CONTROL DATA® 6600 Computer System Reference Manual # **Peripheral and Control Processor Instructions** | Mnemo
Octal | | Name Page | | Name Page Octal Code | | Name | Page | |----------------|----|-----------------------------|----|----------------------|----|-------------------------------|------| | PSN | 00 | Pass | 46 | LMI | 43 | Logical difference ((d)) | 48 | | LJM | 01 | Long jump to $$ m $+$ (d) | 46 | STI | 44 | Store ((d)) | 45 | | RJM | 02 | Return jump to $$ m $+$ (d) | 46 | RAI | 45 | Replace add ((d)) | 48 | | UJN | 03 | Unconditional jump d | 46 | AOI | 46 | Replace add one ((d)) | 48 | | ZJN | 04 | Zero jump d | 46 | SOI | 47 | Replace subtract one ((d)) | 48 | | NLN | 05 | Nonzero jump d | 46 | | | | | | PJN | 06 | Plus jump d | 46 | LDM | 50 | Load (m + (d)) | 45 | | MJN | 07 | Minus jump d | 46 | ADM | 51 | Add (m + (d)) | 45 | | SHN | 10 | Shift d | 45 | SBM | 52 | Subtract (m + (d)) | 46 | | LMN | 11 | Logical difference d | 46 | LMM | 53 | Logical Difference (m + (d)) | 48 | | LPN | 12 | Logical product d | 46 | STM | 54 | Store (m + (d)) | 45 | | SCN | 13 | Selective clear d | 46 | RAM | 55 | Replace add (m + (d)) | 48 | | LDN | 14 | Load d | 45 | AOM | 56 | Replace add one (m + (d)) | 48 | | LCN | 15 | Load complement d | 45 | SOM | 57 | Replace subtract one (m + (d) | 48 | | ADN | 16 | Add d | 45 | | | | | | SBN | 17 | Subtract d | 45 | CRD | 60 | Central read from (A) to d | 49 | | | | | | CRM | 61 | Central read (d) words | | | LDC | 20 | Load dm | 45 | | | from (A) to m | 49 | | ADC | 21 | Add dm | 45 | CWD | 62 | Central write to (A) from d | 49 | | LPC | 22 | Logical product dm | 46 | CWM | 63 | Central write (d) words | | | LMC | 23 | Logical difference dm | 48 | | | to (A) from m | 49 | | PSN | 24 | Pass | 46 | AJM | 64 | Jump to m if | | | PSN | 25 | Pass | 46 | | | channel d active | 49 | | | | | | IJM | 65 | Jump to m if | | | EXN | 26 | Exchange jump | 48 | | | channel d inactive | 49 | | RPN | 27 | Read program address | 49 | FJM | 66 | Jump to m if | | | | | | | | | channel d full | 49 | | LDD | 30 | Load (d) | 45 | EJM | 67 | Jump to m if | | | ADD | 31 | Add (d) | 45 | | | channel d empty | 51 | | SBD | 32 | Subtract (d) | 45 | IAN | 70 | Input to A from channel d | 51 | | LMD | 33 | Logical difference (d) | 48 | IAM | 71 | Input (A) words to m | | | STD | 34 | Store (d) | 45 | | | from channel d | 51 | | RAD | 35 | Replace add (d) | 48 | OAN | 72 | Output from A on channel d | 51 | | AOD | 36 | Replace add one (d) | 48 | MAO | 73 | Output (A) words from m on | | | SOD | 37 | Replace subtract one (d) | 48 | | | channel d | 51 | | | | | | ACN | 74 | Activate channel d | 51 | | LDI | 40 | Load ((d)) | 45 | DCN | 75 | Disconnect channel d | 51 | | ADI | 41 | Add ((d)) | 45 | FAN | 76 | Function (A) on channel d | 51 | | SBI | 42 | Subtract ((d)) | 45 | FNC | 77 | Function m on channel d | 51 | CONTROL DATA® 6600 Computer System Reference Manual # **CONTENTS** | SYSTEM CONCEPTS | . / | |--|------| | CHARACTERISTICS SUMMARY | . 9 | | SYSTEM | . 9 | | CENTRAL PROCESSOR | . 9 | | PERIPHERAL AND CONTROL PROCESSORS | . 9 | | CENTRAL MEMORY | . 10 | | DISPLAY CONSOLE | . 10 | | DESCRIPTION OF SYSTEM UNITS | 1.0 | | CENTRAL PROCESSOR | | | PERIPHERAL AND CONTROL PROCESSORS | | | | | | CENTRAL MEMORY | | | DISPLAY CONSOLE | . 14 | | CENTRAL PROCESSOR PROGRAMMING | 17 | | INSTRUCTION FORMAT | 17 | | OPERATING REGISTERS | 18 | | PROGRAM ADDRESS | | | EXCHANGE JUMP | | | FLOATING POINT ARITHMETIC | | | Format | | | Normalizing and Rounding | | | Single and Double Precision | | | Range Definitions | | | Converting Integers to Floating Format | | | FIXED POINT ARITHMETIC | | | FUNCTIONAL UNITS | | | DESCRIPTION OF INSTRUCTIONS | | | | | | PERIPHERAL AND CONTROL PROCESSOR PROGRAMMING | | | INTRODUCTION | | | REGISTERS | | | A Register | 3/ | | P Register | 38 | | Q Register | 38 | | K Register | 38 | | INSTRUCTION FORMAT | 38 | | ADDRESS MODES | 38 | | No Address | 38 | | Direct Address | | | Indirect Address | | | ACCESS TO CENTRAL MEMORY | | | Read Central Memory | 39 | | Write Central Memory | 39 | | ACCESS TO CENTRAL PROCESSOR | | | Exchange Jump | | | Read Program Address | 41 | # **CONTENTS** (Continued) | PERIPHERAL AND CONTROL PROCESSOR PROGRAMMING (Continued) | |--| | INPUT AND OUTPUT | | Data Channels | | Word Rate | | Channel Active/Inactive Flag | | Register Full/Empty Flag | | Data Input | | Data Output | | REAL TIME CLOCK | | DESCRIPTION OF INSTRUCTIONS45 | | Data Transmission | | Shift | | Arithmetic | | Pass | | Jump | | Logical | | Replace | | Central Processor and Central Memory | | Input-Output | | | | OPERATION | | GENERAL | | DEAD START53 | | CONSOLE | | Keyboard Input | | Display | | APPENDICES | | I TABLE OF POWERS OF TWO | | II OCTAL-DECIMAL INTEGER CONVERSION TABLE | | III OCTAL-DECIMAL FRACTION CONVERSION TABLE | | IV INSTRUCTION EXECUTION TIMES | # **FIGURES** | ١. | CONTROL DATA 6600 | / | |-----|--|----| | 2. | Concurrent Operations in the 6600 | 8 | | 3. | Block Diagram of 6600 | 10 | | 4. | Flow Diagram of 6600 | 12 | | 5. | Display Console | 15 | | 6. | Central Processor Instruction Formats | 17 | | 7. | Central Processor Operating Registers | 19 | | 8. | Exchange Jump Package | 21 | | 9. | Peripheral and Control Processors | 36 | | 10. | Dead Start Panel | 52 | | 11. | Display Console | 53 | | 12. | Sample Display | 54 | | | | | | | | | | | TABLES | | | | | | | 1. | Indefinite Forms | 24 | | 2. | Definitions for Central Processor Instructions | 26 | | 3. | Central Processor Instructions | 27 | | 4. | Peripheral and Control Processor Instructions | 44 | ## 6600 COMPUTING SYSTEM Main frame (center)—contains 10 peripheral and control processors, central processor, central memory, some I/O synchronizers. Display console (foreground)—includes a keyboard for manual input and operator control, and two 10-inch display tubes for display of problem status and operator directives. CONTROL DATA 607 tapes (left front)— $\frac{1}{2}$ inch magnetic tape units for supplementary storage; binary or BCD data handled at 200, 556, or 800 bpi. CONTROL DATA 626 tapes (left rear)—1-inch magnetic tape units for supplementary storage; binary data handled at 800 bpi. Disc file (right rear)—Supplementary mass storage device holds 500 million bits of information. CONTROL DATA 405 card reader (right front)—reads binary or BCD cards at 1200 card per minute rate. ## **System Concepts** The CONTROL DATA® 6600 is a large-scale, solid-state, general-purpose digital computing system. The advanced design techniques incorporated in the system provide for extremely fast solutions to data processing, scientific, and control center problems. Within the 6600 are eleven independent computers (Fig. 1). Ten of these are constructed with the peripheral and operating system in mind. These ten have separate memory and can execute programs independently of each other or the central processor. The eleventh computer, the central processor, is a very high-speed arithmetic device. The common element between these computers is the large central memory. In the course of solution of a problem, one or more peripheral and control processors are used for high speed information transfer in and out of the system and to provide operator control. If the problem requires significant arithmetic speed, the central processor may be called on by a peripheral and control processor. A number of problems may operate concurrently (Fig. 2) with time sharing of the central processor. To facilitate this, the central processor may operate in central memory only within address bounds prescribed by a peripheral and control processor. The 6600 has sufficient independence between its functional segments to sustain a high number of concurrent operations, thereby achieving very high over-all speed. In the large, the eleven programs maintain a cooperative independence, each doing its assigned portion of the problem solution. In the small, especially in the central processor, a similar condition of parallel, concurrent operation is maintained. The central processor has ten independent arithmetic and logical units which operate concurrently in the solution of a problem. Similarly, central memory is organized in 32 logically independent banks of 4096 words (60-bit). Several banks may be in operation simultaneously, thereby minimizing execution time. The multiple operating modes of all segments of the computer, in combination with high-speed transistor circuits, produce a very high over-all computing speed. The peripheral and control processor input/output facility provides a flexible arrangement for very high speed communication with a variety of I/O devices. Some of the I/O devices available with the 6600 are listed below. - —A display console with manual keyboard. This program controlled unit displays problem status on two cathode ray tubes and handles operator directives from an alpha-numeric keyboard which is similar to a standard typewriter keyboard. - -Nominal 500 million bit mass storage disc files. - -CONTROL DATA 607 ½-inch magnetic tape units which handle binary or BCD data recording at 200, 556, or 800 bpi on tapes up to 2400 feet long. - -CONTROL DATA 626 one-inch magnetic tape units which handle binary data recording at 800 bpi on tapes up to 2400 feet long. - -CONTROL DATA 405 card readers which read cards at a 1200 card/minute rate. - -CONTROL DATA 1000 line/minute printers. ## Characteristics Summary #### **SYSTEM** - -Large-scale, general-purpose computer system - -11 independent computers 1 central processor (60-bit) 10 peripheral and control processors (12-bit) Central memory (60-bit) Display console and keyboard -System communicates with a variety of external equipment Disc files Magnetic tapes Card equipment Printers - —Central memory common to the 11 computers -
-Central memory storage 131,072 words (60-bit) Major cycle = 1000 ns* Minor cycle = 100 ns Memory organized in 32 banks of 4096 words Multiphase - -Central processor instructions - Arithmetic, logical, indexing, branch - -Peripheral and contral processor instructions Logical, input/output, access to central processor and central memory - -Each peripheral and control processor has 12bit 4096 word memory - —Solid-state system Transistor logic #### CENTRAL PROCESSOR -10 arithmetic and logical units Add Shift Multiply Multiply Branch Divide Boolean Increment Long add Increment - -24 operating registers for functional units - 8 operand (60-bit) - 8 address (18-bit) - 8 increment (18-bit) - -8 transistor registers (60-bit) hold 32 instructions (15-bit) or 16 instructions (30-bit) or combination of two for servicing functional units Optional rounding and normalizing Format Integer coefficient - 48 bits Biased exponent — 11 bits (210) -Floating point add-4 minor cycles -Floating point multiply-10 minor cycles -Floating point divide-29 minor cycles Coefficient sign-1 bit -Floating point arithmetic Single and double precision -Fixed point arithmetic (subset of floating point arithmetic) Full 60-bit add/subtract - —Controlled and started by peripheral and control processors - -Addresses in central memory relative ## PERIPHERAL AND CONTROL **PROCESSORS** - -10 identical processors (characteristics as listed are per processor except as noted - -4096 word magnetic core memory (12-bit) Random access, coincident-current Major cycle-1000 ns Minor cycle-100 ns -12 input/output channels All channels common to all processors Maximum transfer rate per channel—one word/ major cycle All 12 channels may be active simultaneously All channels 12-bit bi-directional - -Real-time clock (period=4096 major cycles) - -Instructions Add/Subtract Logical Branch Input/output Central processor access Central memory access - -Average instruction execution time=two major cycles - -Indirect addressing - -Indexed addressing ^{*}ns = nanoseconds ## **CENTRAL MEMORY** - -131,072 words - -60-bit words - Memory organized in 32 logically independent banks of 4096 words with corresponding multiphasing of banks - -Random access, coincident-current, magnetic core - -One major cycle for read-write - Maximum memory reference rate to all banksone address/minor cycle - —Maximum rate of data flow to/from memory one word/minor cycle ## **DISPLAY CONSOLE** - -Two display tubes - —Modes Character Dot - -Character size Large 16 characters/line Medium 32 characters/line Small 64 characters/line - Characters26 alphabetic10 numeric11 special ## **Description of System Units** #### CENTRAL PROCESSOR Programs for the central processor are held in central memory. A program is begun by an exchange jump instruction from a peripheral and control processor. This instruction also allocates a segment of central memory for the central program and specifies the mode of exit (normal or error) of the program. High speed in the central processor depends first on minimizing memory references. Twentyfour registers (Fig. 3) are provided to lower the central memory requirements for arithmetic operands and results. These 24 are divided into - 8 address registers of 18 bits length - 8 increment registers of 18 bits length - 8 operand registers of 60 bits length Thirty-two transistor registers are provided to hold instructions, thereby limiting the number of memory reads for repetitive instructions, especially in inner loops. Another method of minimizing memory reference time, multiple banks of central memory, is also provided. References to different banks of memory may be handled without wait. A second limit on high speed is the unnecessary waiting period for unrelated instructions and for partial answers. Very often, a sequence of unrelated instructions may proceed without delay, if separate arithmetic units are available. To minimize this delay, 10 arithmetic units are included with a reservation control which allows these units to sustain a high degree of concurrency while maintaining the original sequence of the program. Programs are written for the central processor in a conventional manner, specifying a sequence of arithmetic and control operations to be executed. Each instruction in a program is brought up in its turn from one of the 32 instruction registers. These registers are filled from central memory in a manner sufficient to keep a reasonable flow of instructions available. A branch to another area of the program voids the old instructions in the registers and brings in new instructions. When a new instruction is brought up, a test is made on it to determine which of the 10 arithmetic units is needed, if it is busy, and if reservation conflict is possible. If the unit is free and no conflict is present, the entire instruction is given to the specified arithmetic unit for further action. Another instruction may then be brought up for issuance. The original sequence of the program is established at the time each instruction is issued. Only those operations which depend on previous steps prevent the issuing of instructions, and then only if the steps are incomplete. The reservation control keeps a running account of the address, increment, and operand registers and of the arithmetic units in order to preserve the original sequence. Central memory references for information or instructions are made on an implicit or secondary basis. Instructions are fetched from memory only if the instruction registers are near empty (or when ordered by a branch). Information is brought to or from the operand registers only when appropriate address registers are changed during the course of a program. As a result, the program never explicitly calls for a central memory reference. Such references are also accounted for in the reservation control. All central processor references to central memory are made relative to the lower boundary address assigned by a peripheral and control processor. A central processor program may therefore be relocated in central memory by modifying the boundaries only. Optionally, any attempt by the central processor to reference memory outside of its boundaries causes an immediate exit which can be readily examined by a peripheral and control processor and displayed for the operator. The exchange jump instruction described previously starts a central program. This instruction starts a sequence of central memory references which exchanges 16 words in memory with the contents of the address, increment, and operand registers of the central processor. Also exchanged are the program address, the central memory boundaries, and choice of program exit. This instruction may be executed by any peripheral and control processor and acts as an interrupt to an active central program as well as a start from an inactive state. Such signals may be used by an operating system to switch between two central programs, leaving the first program in a usuable state for later re-entry. ## PERIPHERAL AND CONTROL PROCESSORS The 10 peripheral and control processors are identical and operate independently and simultaneously as stored-program computers. Thus 10 programs may be running at one time. A combination of processors can be involved in one problem whose solution may require a variety of I/O tasks plus use of central memory and central processor. Fig. 4 shows data flow between I/O devices, the processors, and central memory. Each processor has a 12-bit, 4096 word memory (not a part of central memory) and an 18-bit adder. The repertoire of instructions allows each processor access to central memory and the central processor, and features flexible I/O and logical operations, plus 18-bit add and subtract capability (fixed point). Indirect addressing is also provided. Execution time of processor instructions is based on memory cycle time, which is defined as a major cycle. A minor cycle is ½10 of a major cycle and is another basic time interval. All processors communicate with external equipment and each other on 12 independent I/O channels. Each channel has a single register which holds the data word being transferred in or out. All channels are 12 bit (plus control), and each may be connected to one or more external devices. Each channel operates at a maximum rate of one word per major cycle. The channels are bi-directional, but data flows in one direction only at one time. Data flows between a processor memory and the external device in blocks of words (a block may be as small as one word). A single word may be transferred between an external device and the A register of a processor. The I/O instructions direct all activity with external equipment. These instructions determine the status of and select an equipment on any channel, and transfer data to or from the selected device. Two channel conditions are made available to all processors as an aid to orderly use of channels. - 1 Each channel has an active/inactive flag to signal that it has been selected for use and is busy with an external device. - 2 Each channel has a full/empty flag to signal that a word (function or data) is available in the register associated with the channel. Either state of both flags can be sensed. In general, I/O operation involves the following steps. - 1 Determine channel inactive - 2 Determine equipment ready - 3 Select equipment - 4 Activate channel - 5 Input/output data - 6 Disconnect channel One processor may communicate with another over a channel which is selected as output by one and input by the other. A common channel can be reserved for inter-processor communication and order preserved by determining equipment and channel status. A real time clock reading is available on a channel which is separate from the 12 I/O channels. The clock period is 4096 major cycles. The clock starts with power on and runs continuously and cannot be preset or altered. The clock may be used to determine program running time
or other functions such as time-of-day, as required. Each processor exchanges data with central memory in blocks of n words. Five successive 12-bit processor words are assembled into a 60-bit word and sent to central memory. Conversely, a 60-bit central memory word is disassembled into five 12-bit words and sent to successive locations in a processor memory. Separate assembly (write) and disassembly (read) paths to central memory are shared by all 10 processors. Up to four processors may be writing in central memory while another four are simultaneously reading from central memory. The processors generally do not solve complex arithmetic and logical problems but call on the central processor for solutions. The processors organize problem data (operands, addresses, constants, length of program, relative starting address, exit mode) and store it in central memory. Then, an exchange jump instruction starts (or interrupts) the central processor and provides it with the starting address of a problem on file in central memory. At the next convenient breakpoint, the central processor exchanges the contents of its A, B, and X registers, program address, relative starting address, length of program, and exit mode, with the same information for the new program. A later exchange jump may return to complete the interrupted program. An operating system program can provide an orderly scheme for supervising I/O and central processor activity. Such a system may employ one processor as a master control to direct channel assignments, provide file protection in central memory, handle central processor requests for all processors, assign specific I/O jobs to the processors, and assign other tasks as necessary. #### CENTRAL MEMORY Central memory stores 131,072 words (60-bit) in 32 banks of 4096 words each. The banks are logically independent, and consecutive addresses go to different banks. Banks may be phased into operation at minor cycle intervals, resulting in very high central memory operating speed. The central memory address and data control mechanisms permit a word to move to or from central memory every minor cycle. References to central memory from all areas of the system (central and peripheral and control processors) go to a common address clearing house called a stunt box and are sent from there to all banks in central memory. The stunt box accepts addresses from the various sources under a priority system and at a maximum rate of one address every minor cycle. An address is sent to all banks, and the correct bank, if free, accepts the address and indicates this to the stunt box. The associated data word is then sent to (read) or stored from a central data distributor. The bank ignores the address if it is busy processing a previous address. The stunt box issues addresses at a maximum rate of one every minor cycle. The stunt box saves, in a hopper mechanism, each address that it sends to central memory and then reissues it (and again saves it) under priority control in the event it is not accepted because of bank conflict. The address issue-save scheme repeats until the address is accepted, at which time the address is dropped from the hopper and the read or store data word is distributed. A fixed time lapse from address issue to the memory accept synchronizes the action taken. The hopper has highest priority in issuing addresses to central memory. The central processor and peripheral and control processors (all 10 share a common path to the stunt box) follow in that order. A data distributor which is common to all processors handles all data words to and from central memory (all peripheral and control processors share separate read and write paths to the distributor). A series of buffer registers in the distributor provide temporary storage for write words whose addresses are not immediately accepted because of bank conflict. Each group of four banks communicates with the distributor on separate 60-bit read and write paths, but only one word moves on the data paths at one time. However, words can move at minor cycle intervals between the distributor and central memory or distributor and address sender. The reissue of addresses because of bank conflict results in addresses being issued to central memory out of order with respect to when they are received by the stunt box. Data words and addresses are correlated by control information (tags) entered in the stunt box with the address. The tags define the address sender, origin/destination of data, and whether the address is a read, write, or exchange jump address. #### **Address Format** The address word for central memory references is a 12-bit address quantity and a 5-bit bank quantity which defines one of 32 banks. The 12-bit quantity defines 4096 separate locations or addresses in each bank. | | Address | | | Bank | | | | |----|---------|---|---|------|---|----|-------| | | 12 | | | 5 | | 32 | Banks | | 17 | | 5 | 4 | | 0 | | | Addresses written or compiled in the conventional manner reference consecutive banks and hence make most efficient use of the bank phasing feature. ### **DISPLAY CONSOLE** The display console consists of two 10-inch display units and a manual keyboard. Three character sizes are available for display of information. The keyboard contains 47 alpha-numeric and special characters. Typical operation of a display console in the system allocates one display for presentation of operator directives. The remaining display would provide the operator with status information on the current problem or information on other problems being run. None of the registers in the system are displayed automatically; however, a control program can extract register information from the proper memory and send it to a display console for viewing. The displays and keyboard connect to a common channel associated with a peripheral and control processor. In an operating system, one peripheral and control processor could direct the in/out activities of a display console in response to commands from the master control. The multi-programming ability and inherent high speed of the system permit use of more than one display console in an installation. Multiple units minimize idle time in the system and allow simultaneous solutions to many unrelated problems. A typical installation may have three or more units in operation simultaneously. Fig. 5 Display Console ## **Central Processor Programming** Central processor program instructions are stored in central memory. A 60-bit memory location may hold 60 data bits, four 15-bit instructions, two 30-bit instructions, or a combination of 15 and 30-bit instructions. Fig. 6 shows all instruction combinations in a 60-bit word and the two instruction word formats. The central processor reads 60-bit words from central memory and stores them in an instruction stack which is capable of holding up to eight 60-bit words. Each instruction in turn is sent to a series of instruction registers for interpretation and testing and then issued to one of 10 functional units for execution. The functional units obtain the instruction operands from and store results in the 24 operating registers. The reservation control records active operating registers and functional units to avoid conflicts and insure that the original instructions do not get out of order. #### **INSTRUCTION FORMAT** Groups of bits in an instruction are identified by the letters f, m, i, j, k, and K (Fig. 6). All letters represent octal digits except K which is an 18-bit constant. The f and m digits identify the type of instruction and are the operation code. In most 15-bit instructions the i, j, and k digits each specify one of eight operating registers where operands are found and where the result of the operation is to be stored. In other 15-bit instructions, the j and k digits provide a 6-bit shift count. In 30-bit instructions the i and j digits each specify one of eight operating registers where one operand is found and where the result is to be stored, and K is taken directly as an 18-bit second operand. #### **OPERATING REGISTERS** In order to provide a compact symbolic language, the 24 operating registers are identified by letters (and numbers). Table 2 defines the various letters which are used in the instruction list of Table 3. The operating registers are identified as follows: A = address register (A0, A1, ... A7) B = increment register (B0, B1, ... B7) X = operand register (X0, X1, ... X7) The operand registers hold operands and results for servicing the functional units. Five registers (X1-X5) hold read operands from central memory, and two registers (X6-X7) send results to central memory (Fig. 7). Operands and results transfer between memory and these registers as a result of a *change* in the contents of a corresponding address register (A1-A7). A change in the contents of an address register A1-A5 produces an immediate memory reference to that address and reads the operand into the corresponding operand register X1-X5. Similarly, a change in the contents of address register A6 or A7 stores the word in the corresponding X6 or X7 operand register in the new address. The increment instructions with the Ai result register (table 3) change an A1-A7 address register in several ways. - 1 By adding an 18-bit signed constant K to the contents of any A, B, or X register. - 2 By adding the content of any B register to any A, B, or X register. - **3** By subtracting the content of any B register from any A register or any other B register. The A0 and X0 registers are independent and have no connection with central memory. They may be used for scratch pad or intermediate results The B registers have no connection with central memory. The B0 register is fixed to provide a constant zero (18-bit) which is useful for various tests against zero, providing an unconditional jump modifier, etc. In general, the B registers provide means for program indexing. For example, B4 may store the
number of times a program loop has been traversed, thereby providing a terminal condition for a program exit. An exchange jump instruction from a peripheral and control processor enters initial values in the operating registers to start central processor operation. Subsequent address modification instructions executed in the increment functional units provide the address changes required to fetch and store data. ### **PROGRAM ADDRESS** An 18-bit P register serves as a program address counter and holds the address of each program step. P is advanced to the next program step in the following ways: - 1. P is advanced by 1 when all instructions in a 60-bit word (in the instruction stack) have been extracted and sent to the instruction registers. - 2. P is set to the address specified by a go to ... (branch) instruction. If the instruction is a return jump, P+1 is stored before the branch to allow a return to the sequence after the branch. - 3. P is set to the address specified in the exchange jump package. All branch instructions to a new program start the program with the instruction located in the highest order position of the 60-bit word. #### **EXCHANGE JUMP** A peripheral and control processor exchange jump instruction starts or interrupts the central processor and provides it with the first address (which is the address in the peripheral and control processor A register) of a 16-word package in central memory. The exchange jump package (Fig. 8) provides the following information on a program to be executed. - 1 Program address (P) - 2 Reference address (RA) - 3 Field length of program (FL) - 4 Program exit mode (EM) - 5 Initial contents of the eight A registers - 6 Initial contents of the eight X registers - 7 Initial contents of B registers B1-B7 (BO is fixed at 0.) The central processor enters the information about a new program into the appropriate registers and then stores the corresponding and current information from the interrupted program at the same 16 locations in central memory. Hence two programs are exchanged. A later exchange jump may return an interrupted program to the central processor for completion. The normal relation of the A and X registers (described earlier) is not active during the exchange jump so that the new entries in A are *not* reflected into changes in X. All central processor reference addresses to central memory for new instructions, or to fetch and store data, are made relative to the reference address. This allows easy relocation of a program in central memory. The reference address or beginning address and field length define the central memory limits of the program. An optional exit condition allows the central processor to stop on a memory reference outside these limits. The program address register P defines the location of a program step within the limits prescribed. Each reference to memory is made to the address specified by P+RA. Hence program relocation is conveniently handled through a single change to RA. A P = 0 condition specifies address zero and hence RA. This address is reserved for recording program exit conditions. The exit mode feature allows the programmer to choose the exit or stop condition of the central processor. Exit selections are stored in the functional units, and the exit occurs as soon as it is sensed. The various exit conditions are shown below in octal format: | EM = 000000 | Normal stop | |-------------|--| | =010000 | Address out of range—an attempt to reference memory outside established limits | | =020000 | Operand out of range—floating point arithmetic generated or regenerated an infinite result (see Range Definition paragraph) | | =030000 | Address or operand out of range | | =040000 | Indefinite operand—floating point arithmetic generated or regenerated an indefinite result (see Range Definitions paragraph) | | =050000 | Indefinite operand or address out of range. | | =060000 | Indefinite operand or operand out of range | | =070000 | Indefinite operand or operand or address out of range | The central processor records at RA a stop instruction, exit condition, and the program | Stop Exit | P | | | | | | | | | | | |-----------|--------|---|---|---|---|---|---|----|-----|------|------| | 0 0 X X | xxxxxx | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | P = (| | | | | | | of | err | or (| exit | address at exit time in the format shown below and jumps to P = 0 (RA) thereby stopping. For error stops the (P)+1 gives an approximate location of the error since the central processor may have issued other instructions to the functional units (one of which may have been a branch) before the exit was sensed. The peripheral and control processor searches for a central processor P=0 condition to determine that the latter has stopped. The contents of RA may be examined then to determine the nature of the stop. #### FLOATING POINT ARITHMETIC #### **Format** Floating point arithmetic takes advantage of the ability to express a number with the general expression kBⁿ, where k = coefficient B = base number n = exponent, or power to which the base number is raised The base number is constant (2) for binary-coded quantities and is not included in the general format. The 60-bit floating-word format is shown below. The binary point is considered to be to the right of the coefficient, thereby providing a 48-bit integer coefficient, the equivalent of about 15 decimal digits. The sign of the coefficient is carried in the highest order bit of the packed word. Negative numbers are represented in 1's complement notation. | Coefficient
Sign | | Biase
Expone | - | | | | |---------------------|----|-----------------|----|----|----|----------------------| | | 1 | 11 | , | | 48 | | | | 59 | 58 | 48 | 47 | | 0
Binary
Point | The 11-bit exponent carries a bias of 2¹⁰ (2000₈) when packed in the floating point word (biased exponent sometimes referred to as characteristic). The bias is removed when the word is unpacked for computation and restored when a word is packed into floating format. The bias provides for a signed exponent within the following ranges. Fig. 8 Exchange Jump Package Over $\frac{1}{2}$ million silicon transistors are used in the 6600. The illustration shows a silicon transistor with cap removed and the base-emitter connections between the lead posts and silicon pellet. The size of the transistor element is contrasted with the tip of an ordinary ball point pen. The silicon pellet of the transistor on the facing page is shown enlarged many times in the microphotograph above. The pellet is about 15 mils square; the base junction is at the bottom of the photo, and the emitter is at the top. Thus, a number whose true exponent is 342 would appear as 2342; a number whose true exponent is -160 would appear as 1617. Exponent arithmetic is done in 1's complement notation. Floating point numbers can be compared for equality and threshold. ## Normalizing and Rounding Normalizing a floating point quantity shifts the coefficient left until the most significant bit is in bit 47. Sign bits are entered in the low-order bits of the coefficient as it is normalized. Each shift decreases the exponent by one. A round bit is added (optionally) to the coefficient during an arithmetic process and has the effect of increasing the absolute value of the operand or result by ½ the value of the least significant bit. Normalizing and rounding are not automatic during pack or unpack operations so that operands and results may not be normalized. ### Single and Double Precision The floating point arithmetic instructions generate double precision results. Use of unrounded operands allows separate recovery of upper and lower half results with proper exponents; only upper half results can be obtained with rounded operands. ## **Range Definitions** A result whose exponent is so large that it reaches or exceeds the upper limit of octal 3777 (overflow case) is treated as an infinite quantity. A coefficient of all zeroes and an exponent of octal 3777 is packed for this case. An optional exit is provided for infinity since its later use may propagate an indefinite result as shown in table 1. Table 1. Indefinite Forms ``` = INDEFINITE \infty \div N = \infty ω -- α = INDEFINITE \infty + N = \infty \infty \div \infty ∞ • O = INDEFINITE \infty - N = \infty = INDEFINITE N \div0 = \infty 0 \div 0 \mathsf{INDEFINITE} +, -, \div, \bullet (\mathsf{X}) \ = \mathsf{INDEFINITE} \ \ 0 \ \ \div \ \infty = 0 0 \cdot 0 = 0 \infty + \infty 0 \div N = 0 ∞ • ∞ N \div \infty = 0 \infty \div 0 o \cdot N = o \infty = INFINITY, N = INTEGER where: X = \infty N or 0 ``` A result whose exponent is less than the lower limit of octal 0000 (underflow case) is treated as a zero quantity. This quantity is packed with a zero exponent and zero coefficient. No exit is provided for underflow. A result whose exponent is octal 0000 and whose coefficient is not zero is a non-zero quantity and is packed with a zero exponent and the non-zero coefficient. Use of either infinity or zero as operands may produce an indefinite result. An exponent of octal 1777 and a zero coefficient are packed in this case, and an optional exit provided. Note that zero, infinity, and indefinite results are generated or regenerated in the floating arithmetic units only; the exits are sensed in these units also. The branch unit instructions test for indefinite or infinite quantities. ## Converting Integers to Floating Format Conversion of integers to floating point format makes use of the shift unit and the zero constant in increment register B0. The B0 quantity provides for generation of exponent bias in this case. For example, the instructions - 1 Sum of Bj and Bk to Xi (where i=2, j=3, k=4) - 2 Pack Xi from Xk and Bj (where i=2, j=0, k=2) form an 18-bit signed integer in operand register X2 as a result of the addition
of the contents of increment registers B3 and B4. The integer coefficient with its sign, plus the octal 2000 exponent is packed then into the floating format shown earlier. The coefficient is not normalized but may be with a normalize instruction. ### **FIXED POINT ARITHMETIC** Fixed point addition and subtraction of 60-bit numbers are handled in the long add unit. Negative numbers are represented in 1's complement notation, and overflows are ignored. The sign bit is in the high-order bit position (bit 59), and the binary point is at the right of the low-order bit position (bit 0). The increment units provide an 18-bit fixed point add and subtract facility. Negative numbers are represented in 1's complement notation, and overflows are ignored. The sign bit is in the high-order bit position (bit 17), and the binary point is at the right of the low-order bit position (bit 0). The increment units allow program indexing through the full range of central memory addresses. Fixed point integer addition and subtraction are possible in the floating add unit providing the exponents of both operands are zero and no overflow occurs. The unit performs the 1's complement addition (or subtraction) in the upper half of a 96-bit accumulator. If overflow occurs, the unit shifts the result one place right and adds one to the exponent, thereby producing a floating point quantity. Thus, care must be used in performing fixed point arithmetic in the floating add unit. Fixed point integer multiplication is handled in the multiply functional units as a subset operation of the unrounded floating multiply (40, 42) instructions. The multiply is double precision (96 bits) and allows separate recovery of upper and lower products. The multiply requires that both of the integer operands be converted to floating format to provide a biased exponent. This insures that results are not sensed as underflow conditions. The bias is removed when the result is unpacked. An integer divide takes several steps and makes use of the divide and shift units. For example, an integer quotient X1=X2/X3 is produced by the following steps. #### **INSTRUCTIONS** - 1 Pack X2 from X2 and B0 - 2 Pack X3 from X3 and B0 - 3 Normalize X3 in X0 and B0 - 4 Floating quotient of X2 and X0 to X1 - 5 Unpack X1 to X1 and B7 - 6 Shift X1 nominally left B7 places #### REMARKS Pack X2 Pack X3 Normalize X3 (divisor) Divide Unpack quotient Shift to integer position The divide requires that both integer (2^{47} maximum) operands be in floating format. Also, the divisor must be shifted 48 places left, or the quotient be shifted 48 places right, or any combination of n left shifts of the divisor and 48-n right shifts of the quotient. The normalize X3 instruction shifts the divisor n places left ($n \ge 0$) providing a divisor exponent of -n. The quotient exponent then is $$0-(-n)-48=n-48\leq 0$$ After unpacking and shifting nominally left, the negative (or zero) value in B7 shifts the quotient 48-n places right, producing an integer quotient in X1. A remainder may be obtained by an integer multiply of X1 and X3 and subtracting the result from X2. ## **FUNCTIONAL UNITS** The 10 functional units handle the requirements of the various instructions. The multiply and increment units are duplexed, and an instruction is sent to the second unit if the first is busy. The general function of each unit is given below. Table 3 groups the instructions under the unit which executes them. ## **FUNCTIONAL UNITS** | Branch | handles all jumps or branches from the program. | |----------|--| | Boolean | handles the basic logical operations of transfer, logical product, logical sum, and logical
difference. | | Shift | handles operations basic to shifting. This includes left (circular) and right (end-off sign
extension) shifting, and normalize, pack, and unpack floating point operations. The
unit also provides a mask generator. | | Add | performs floating point addition and subtraction on floating point numbers or their
rounded representation. | | Long add | performs 1's complement addition and subtraction of 60-bit fixed point numbers. | | Multiply | performs floating point multiplication on floating point numbers or their rounded representation. | | Divide | performs floating point division of floating point quantities or their rounded represent-
ation. Also sums the number of 1's in a 60-bit word. | | | performs 1's complement addition and subtraction of 18-bit numbers. | Table 2. Definitions for Central Processor Instructions | A | one of eight address registers (18 bits) | |----|--| | В | one of eight index registers (18 bits) BO is fixed and equal to zero | | fm | instruction code (6 bits) | | i | specifies which of eight designated registers (3 bits) | | j | specifies which of eight designated registers (3 bits) | | jk | constant, indicating number of shifts to be taken (6 bits) | | k | specifies which of eight designated registers (3 bits) | | K | constant, indicating branch destination or operand (18 bits) | | Χ | one of eight operand registers (60 bits) | ## Table 3. Central Processor Instructions ## BRANCH UNIT | | 00 | STOP | |---|-----|---| | | 01 | RETURN JUMP to K | | | 02 | GO TO K + Bi (Note 1) | | | 030 | GO TO K if $Xj = zero$ | | | 031 | GO TO K if Xj ≠ zero | | | 032 | GO TO K if Xj = positive | | | 033 | GO TO K if Xj = negative (Note | | | 034 | GO TO K if Xj is in range 2 | | | 035 | GO TO K if Xj is out of range | | | 036 | GO TO K if Xj is definite | | | 037 | GO TO K if Xj is indefinite | | | 04 | GO TO K if Bi = Bj \ | | | 05 | GO TO K if Bi ≠ Bj | | | 06 | GO TO K if Bi ≥ Bj | | | 07 | GO TO K if Bi $<$ Bj $igg)$ | | | | Note 1. GO TO K + Bi and GO TO K if Bitests | | | | made in increment unit | | | | Note 2. GO TO K if Xjtests made in long add | | - | | unit | ## BOOLEAN UNIT | 10 | TRANSMIT Xj to Xi | |----|---| | 11 | LOGICAL PRODUCT of Xj and Xk to Xi | | 12 | LOGICAL SUM of Xj and Xk to Xi | | 13 | LOGICAL DIFFERENCE of Xj and Xk to Xi | | 14 | TRANSMIT Xk COMP. to Xi | | 15 | LOGICAL PRODUCT of Xj and Xk COMP. to Xi | | 16 | LOGICAL SUM of Xj and Xk COMP. to Xi | | 17 | LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi | ## SHIFT UNIT | | 20 | SHIFT Xi LEFT jk places | |---|----|--| | | 21 | SHIFT Xi RIGHT jk places | | | 22 | SHIFT Xk NOMINALLY LEFT Bj places to Xi | | | 23 | SHIFT Xk NOMINALLY RIGHT Bj places to Xi | | ١ | 24 | NORMALIZE Xk in Xi and Bj | | ١ | 25 | ROUND AND NORMALIZE Xk in Xi and Bj | | ١ | 26 | UNPACK Xk to Xi and Bj | | ١ | 27 | PACK Xi from Xk and Bj | | | 43 | FORM jk MASK in Xi | #### ADD UNIT | _ | | | |---|----|--| | l | 30 | FLOATING SUM of Xj and Xk to Xi | | | 31 | FLOATING DIFFERENCE of Xj and Xk to Xi | | | 32 | FLOATING DP SUM of Xj and Xk to Xi | | | 33 | FLOATING DP DIFFERENCE of Xj and Xk to Xi | | ١ | 34 | ROUND FLOATING SUM of Xj and Xk to Xi | | ١ | 35 | ROUND FLOATING DIFFERENCE of Xj and Xk to Xi | ## LONG ADD UNIT | 36 | INTEGER SUM of Xj and Xk to Xi | |----|---------------------------------------| | 37 | INTEGER DIFFERENCE of Xj and Xk to Xi | ## MULTIPLY UNIT* | 40 | FLOATING PRODUCT of Xj and Xk to Xi | |----|---| | 41 | ROUND FLOATING PRODUCT of Xj and Xk to Xi | | 42 | FLOATING DP PRODUCT of Xj and Xk to Xi | ## DIVIDE UNIT | 44 | FLOATING DIVIDE Xj by Xk to Xi | |----|--------------------------------------| | 45 | ROUND FLOATING DIVIDE Xj by Xk to Xi | | 46 | PASS | | 47 | SUM of 1's in Xk to Xi | #### INCREMENT UNIT* | 50 | SUM of Aj and K to Ai | |----|-------------------------------| | 51 | SUM of Bj and K to Ai | | 52 | SUM of Xj and K to Ai | | 53 | SUM of Xj and Bk to Ai | | 54 | SUM of Aj and Bk to Ai | | 55 | DIFFERENCE of Aj and Bk to Ai | | 56 | SUM of Bj and Bk to Ai | | 57 | DIFFERENCE of Bj and Bk to Ai | | | | | 60 | SUM of Aj and K to Bi | | 61 | SUM of Bj and K to Bi | | 62 | SUM of Xj and K to Bi | | 63 | SUM of Xj and Bk to Bi | | 64 | SUM of Aj and Bk to Bi | | 65 | DIFFERENCE of Aj and Bk to Bi | | 66 | SUM of Bj and Bk to Bi | | 67 | DIFFERENCE of Bj and Bk to Bi | | | | | 70 | SUM of Aj and K to Xi | | 71 | SUM of Bj and K to Xi | | 72 | SUM of Xj and K to Xi | | 73 | SUM of Xj and Bk to Xi | | 74 | SUM of Aj and Bk to Xi | | 75 | DIFFERENCE of Aj and Bk to Xi | | 76 | SUM of Bj and Bk to Xi | | 77 | DIFFERENCE of Bj and Bk to Xi | *Duplexed units—instruction goes to free unit Octal Code at left of instruction ${\bf Comp.-Complement}$ DP—Double Precision #### **DESCRIPTION OF INSTRUCTIONS** 00 STOP This instruction stops the central processor at the current step in the program. An exchange jump is necessary to restart the central processor. (30 Bits) ## 01 RETURN JUMP to K (30 Bits) The instruction stores an 04 unconditional jump and the current address plus one (P+1) in the upper half of address K and then branches to K+1 for the next instruction. The octal word at K after the instruction appears as follows: | ι | Jncor | nd. | | - | | |------|-------|---------|--------|------|---| | Jump | | | | | | | | | ` | P + 1 | | | | К | 04 | 00 | XXXXXX | 000 | 0 | | | 59 | | 3 | 0 29 | 0 | | | | Bi = Bi | | | | A jump to address K at the end of the branch routine returns the program to the original sequence. O2 GO TO K $$+$$ Bi (30 Bits) This instruction adds the contents of increment register i to K and branches to the
address specified by the sum. The branch address is K when Bi = B0. Addition is performed modulus 2^{18} -1. | 030 | GO | то | K | if | Χj | is | zero | (30 | Bits) | |-----|----|----|---|----|----|----|--------------|-----|-------| | 031 | GΟ | TO | Κ | if | Χj | is | not zero | (30 | Bits) | | 032 | GΟ | ТО | Κ | if | Χj | is | positive | (30 | Bits) | | 033 | GΟ | TO | K | if | Χj | is | negative | (30 | Bits) | | 034 | GO | ТО | Κ | if | Χj | is | in range | (30 | Bits) | | 035 | GΟ | то | Κ | if | Χj | is | out of range | (30 | Bits) | | 036 | GO | ТО | Κ | if | Χj | is | definite | (30 | Bits) | | 037 | GΟ | то | Κ | if | Χj | is | indefinite | (30 | Bits) | This instruction branches to K when the 60-bit word in operand register j meets the condition specified by the i digit. The instruction allows zero, sign, and magnitude tests for fixed or floating point words. The range tests are comparisons against infinity (377700...08); the definite / indefinite tests are comparisons against an indefinite quantity (177700...08). | 04 | GO TO K if Bi = Bj | (30 Bits) | |----|--------------------|-----------| | 05 | GO TO K if Bi ≠ Bj | (30 Bits) | | 06 | GO TO K if Bi ≥ Bj | (30 Bits) | | 07 | GO TO K if Bi < Bi | (30 Bits) | These instructions test an 18-bit word in register Bi against an 18-bit word in register Bj (both words signed quantities) for the condition specified and branch to address K on a successful test. All tests against zero can be made by setting $B_i = B_0$. ## 10 TRANSMIT Xj to Xi (15 Bits) This instruction transfers a 60-bit word from operand register j to operand register i. #### 11 LOGICAL PRODUCT of Xi and Xk to Xi (15 Bits) This instruction forms the logical product (AND function) of 60-bit words in operand registers j and k and places the product in operand register i. Bits of register i are set to 1 when the corresponding bits of the j and k registers are 1 as in the following example. $$Xj = 0101$$ $Xk = 1100$ $Xi = 0100$ ## 12 LOGICAL SUM of Xj and Xk to Xi (15 BITS) This instruction forms the logical sum (inclusive OR) of 60-bit words in operand registers j and k and places the sum in operand register i. Bits of register i are set to 1 if the corresponding bit of the j or k register is a 1 as in the following example. $$X_j = 1010$$ $X_k = 0011$ $X_i = 1011$ ### 13 LOGICAL DIFFERENCE of Xj and Xk to Xi (15 Bits) This instruction forms the logical difference (exclusive OR) of 60-bit words in operand registers j and k and places the difference in operand register i. Bits of register i are set to 1 if the corresponding bits in the j and k registers are unlike as in the following example. $$Xj = 0101$$ $Xk = 0110$ $Xi = 0011$ ## 14 TRANSMIT Xk COMPLEMENT to Xi (15 Bits) This instruction complements the 60-bit word in operand register k and sends it to operand register i. ## 15 LOGICAL PRODUCT of Xj and Xk COMPLEMENT to Xi (15 Bits) This instruction complements the 60-bit word in operand register k, forms the logical product (AND function) of this quantity and the 60-bit quantity in operand register j, and places the result in operand register i. Thus, bits of i are set to 1 when the corresponding bits of the j register and the complement of the k register are 1 as in the following example. | <u>Initial</u> | <u>Final</u> | |----------------|--------------| | Xj = 0101 | Xj = 0101 | | Xk = 1001 | Xk = 0110 | | | Xi = 0100 | 16 LOGICAL SUM of Xj and Xk COMPLEMENT to Xi (15 Bits) This instruction complements the 60-bit quantity in operand register k, forms the logical sum (inclusive OR) of this quantity and the 60-bit quantity in operand register j, and places the result in operand register i. Thus, bits of i are set to 1 if the corresponding bit of the j register or complement of the k register is a 1 as in the following example. | <u>Initial</u> | <u>Final</u> | |----------------|--------------| | Xj = 0011 | Xj = 0011 | | Xk = 0100 | Xk = 1011 | | | Xi = 1011 | #### 17 LOGICAL DIFFERENCE of Xj and Xk COMPLEMENT to Xi (15 Bits) This instruction complements the 60-bit word in operand register k, forms the logical difference (exclusive OR) of this quantity and the quantity in operand register j and places the result in operand register i. Thus, bits of i are set to 1 if the corresponding bits of register j and the complement of register k are unlike as in the following example. | <u>Initial</u> | <u>Final</u> | | | | |----------------|--------------|--|--|--| | Xj = 0111 | Xj = 0111 | | | | | Xk = 0001 | Xk = 1110 | | | | | | Xi = 1001 | | | | 20 SHIFT Xi LEFT jk places (15 Bits) This instruction shifts the 60-bit word in operand register i left circular jk places. The shift enters the left-most bits of i in the lower bits of i. The 6-bit (2⁶-1) shift count jk allows a complete circular shift of register i. This instruction shifts the 60-bit word in operand register i right jk places. The right-most bits of i are discarded and the sign bit extended. #### 22 SHIFT Xk NOMINALLY LEFT Bj places to Xi (15 Bits) This instruction shifts the 60-bit word in operand register k the number of places specified by the low-order six bits of the 18-bit quantity in increment register j and places the result in operand register i. If Bj is positive, register k is shifted left circular. If Bj is negative, register k is shifted right (end-off with sign extension). #### 23 SHIFT Xk NOMINALLY RIGHT Bj places to Xi (15 Bits) This instruction shifts the 60-bit word in operand register k the number of places specified by the low-order six bits of the 18-bit quantity in increment register j and places the result in operand register i. If Bj is positive, register k is shifted right (endoff with sign extension). If Bj is negative, register k is shifted left circular. ### 24 NORMALIZE Xk in Xi and Bj (15 Bits) This instruction normalizes the floating point quantity in operand register k and places it in operand register i. The number of left shifts necessary to normalize the quantity is entered in increment register j. A normalize operation may cause underflow which will clear both exponent and coefficient. Normalizing a zero coefficient reduces the exponent by 48. #### 25 ROUND AND NORMALIZE Xk in Xi and Bj This instruction performs the same operation as instruction 24 except that the quantity in operand register k is rounded before it is normalized. Normalizing a zero coefficient places the round bit in bit 47 and reduces the exponent by 48. ## 26 UNPACK Xk to Xi and Bj (15 Bits) This instruction unpacks the floating point quantity in operand register k and sends the 48-bit coefficient to operand register i and the 11-bit exponent to increment register j. The exponent bias is removed during unpack so that the quantity in Bj is the true 1's complement representation of the exponent. The quantity in k may not be a normalized number. The exponent and coefficient are sent to the low-order bits of the respective registers as shown on the next page: (15 Bits) #### 27 PACK Xi from Xk and Bj (15 Bits) This instruction packs a floating point number in operand register i. The coefficient of the number is obtained from operand register k and the exponent from increment register j. Bias is added to the exponent during the pack operation. The instruction does not normalize the coefficient. Bias and coefficient are obtained from the proper low-order bits of the respective register and packed as shown in the illustration for the unpack (26) instruction. Overflow is produced during pack when the B register quantity is a positive number of more than 10 bits; the overflow exit is optional. Underflow is produced (no exit) when the B register quantity is a negative number of more than 10 bits. ### 30 FLOATING SUM of Xj and Xk to Xi (15 Bits) This instruction forms the sum of the floating point quantities in operand registers j and k and packs the result in operand register i. The packed result is the *upper half* of a double precision sum. At the start both arguments are unpacked, and the coefficient of the argument with the smaller exponent is entered into the upper half of a 96-bit accumulator. The coefficient is shifted right by the difference of the exponents. The other coefficient is then added into the upper half of the accumulator. If overflow occurs, the sum is right shifted one place and the exponent of the result increased by one. The upper half of the accumulator holds the coefficient of the sum, which is not necessarily in normalized form. The exponent and upper coeffi- cient are then repacked in operand register i. If both exponents are zero and no overflow occurs, the instruction effects an ordinary integer addition. This instruction forms the difference of the floating point quantities in operand registers j and k and packs the result in operand register i. Alignment and overflow operations are similar to the floating sum (30) instruction, and the difference is not necessarily normalized. The packed result is the *upper half* of a double precision difference. An ordinary integer subtraction is performed when the exponents are equal. This instruction forms the sum of two floating point numbers as in the floating sum (30) instruction, but packs the *lower half* of the double precision sum with an exponent 48 less than the upper sum. # 33 FLOATING DP DIFFERENCE of Xj and Xk to Xi (15 Bits) This instruction forms the difference of two floating point numbers as in the floating difference (31) instruction, but packs the *lower half* of the double precision difference with an exponent of 48 less than the upper sum. #### 34 ROUND FLOATING SUM of Xj and Xk to Xi (15 Bits) This instruction forms the round sum of the floating point quantities in operand registers j and k and packs the *upper sum* of the double precision result in operand register i. The sum is formed in the same manner as the floating sum instruction but the operands are rounded before the addition, as shown below, to produce a round sum. - A round bit is
attached at the right end of both operands if - a. both operands are normalized, or - b. the operands have unlike signs. - A round bit is attached at the right end of the operand with the larger exponent for all other cases. #### 35 ROUND FLOATING DIFFERENCE of Xj and Xk to Xi (15 Bits) This instruction forms the round difference of the floating point quantities in operand registers j and k and packs the *upper difference* of the double precision result in operand register i. The difference is formed in the same manner as the floating difference instruction but the operands are rounded before the subtraction, as shown below, to produce a round difference. - 1 A round bit is attached at the right end of both operands if - a. both operands are normalized, or - b. the operands have like signs. - 2 A round bit is attached at the right end of the operand with the larger exponent for all other cases. #### 36 INTEGER SUM of Xj and Xk to Xi (15 Bits) This instruction forms a 60-bit 1's complement sum of the quantities in operand registers j and k and stores the result in operand register i. An overflow condition is ignored. 6600 logic hardware is constructed from nearly 8000 printed circuit modules shown full size above. Transistors, resistors, and other components are mounted on and between two printed circuit boards in a high-density cordwood packaging or stacking technique. A 30-pin connector provides in-out electrical access for the circuits, and up to six test points allow circuit performance to be monitored on an oscilloscope. #### 37 INTEGER DIFFERENCE of Xi and Xk to Xi (15 Bits) This instruction forms the 60-bit 1's complement difference of the quantities in operand registers j (minuend) and k (subtrahend) and stores the result in operand register i. ## 40 FLOATING PRODUCT of Xi and Xk to Xi (15 Bits) This instruction multiplies two floating point quantities located in operand registers j (multiplier) and k (multiplicand) and packs the *upper product* result in operand register i. The result is a normalized quantity *only* when both operands are normalized; the exponent in this case is the sum of the exponents plus 47 (or 48). The result is unnormalized when either or both operands are unnormalized; the exponent in this case is the sum of the exponents plus 48. ## 41 ROUND FLOATING PRODUCT of Xi and Xk to Xi (15 Bits) This instruction attaches a round bit to the floating point number in operand register k (multiplicand), multiplies this number by the floating point number in operand register j, and packs the *upper product* result in operand register i. (No lower product available.) The result is a normalized quantity *only* when both operands are normalized; the exponent in this case is the sum of the exponents plus 47 (or 48). The result is unnormalized when either or both operands are unnormalized; the exponent in this case is the sum of the exponents plus 48. ## 42 FLOATING DP PRODUCT of Xj and Xk to Xi (15 Bits) This instruction multiplies two floating point quantities located in operand registers j and k and packs the *lower product* in operand register i. The result is not necessarily a normalized quantity. ## 43 FORM jk MASK in Xi (15 Bits) This instruction forms a mask in operand register i. The 6-bit quantity jk defines the number of 1's in the mask as counted from the highest order bit in i. Operand register i = 0 when jk = 0. 44 FLOATING DIVIDE Xj by Xk to Xi (15 Bits) This instruction divides two floating point quan- tities located in operand registers j (dividend) and k (divisor) and packs the quotient in operand register i. The exponent of the result in a no-overflow case is the difference of the dividend and divisor exponents minus 48. A one-bit overflow is compensated for by adjusting the exponent and right shifting the quotient one place. In this case the exponent is the difference of the dividend and divisor exponents minus 47. The result is a normalized quantity when *both* the dividend and the divisor are normalized. #### 45 ROUND FLOATING DIVIDE Xj by Xk to Xi (15 Bits) This instruction divides the floating quantity in operand register j (dividend) by the floating point quantity in operand register k (divisor) and packs the round quotient in operand register i. A 1/3 round bit is added to the least significant bit of the dividend before division starts. The result exponent in a no-overflow case is the difference of the dividend and divisor exponents minus 48. A one-bit overflow is compensated for by adjusting the exponent and right shifting the quotient one place; in this case the exponent is the difference of the dividend and divisor exponents minus 47. The result is a normalized quantity when both dividend and divisor are normalized. 46 PASS (15 Bits) 47 SUM OF 1's in Xk to Xi (15 Bits) This instruction counts the number of 1's in operand register k and stores the count in operand register i. | 50 | SUM of Aj and K to Ai | (30 Bits) | |----|-------------------------------|-----------| | 51 | SUM of Bj and K to Ai | (30 Bits) | | 52 | SUM of Xj and K to Ai | (30 Bits) | | 53 | SUM of Xj and Bk to Ai | (15 Bits) | | 54 | SUM of Aj and Bk to Ai | (15 Bits) | | 55 | DIFFERENCE of Aj and Bk to Ai | (15 Bits) | | 56 | SUM of Bj and Bk to Ai | (15 Bits) | | 57 | DIFFERENCE of Bj and Bk to Ai | (15 Bits) | | | | | These instructions perform 1's complement addition and subtraction of 18-bit operands and store an 18-bit result in address register i. Operands are obtained from address (A), increment (B), and operand (X) registers as well as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj operand register are the truncated lower 18 bits of the 60-bit word. Note that an immediate memory reference is performed to the address specified by the final content of address registers A1-A7. The operand read from the memory address specified by A1-A5 is sent to the corresponding operand register X1-X5. When A6 or A7 is changed, the operand from the corresponding X6 or X7 operand register is stored at the address specified by A6 or A7. | 60 | SUM of Aj and K to Bi | (30 Bits) | |----|-------------------------------|-----------| | 61 | SUM of Bj and K to Bi | (30 Bits) | | 62 | SUM of Xj and K to Bi | (30 Bits) | | 63 | SUM of Xj and Bk to Bi | (15 Bits) | | 64 | SUM of Aj and Bk to Bi | (15 Bits) | | 65 | DIFFERENCE of Aj and Bk to Bi | (15 Bits) | | 66 | SUM of Bj and Bk to Bi | (15 Bits) | | 67 | DIFFERENCE of Bj and Bk to Bi | (15 Bits) | These instructions perform 1's complement addition and subtraction of 18-bit operands and store an 18-bit result in increment register i. Operands are obtained from address (A), increment (B), and operand (X) registers as well as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj operand register are the truncated lower 18 bits of the 60-bit word. | 70 | SUM of Aj and K to Xi | (30 Bits) | |----|-------------------------------|-----------| | 71 | SUM of Bj and K to Xi | (30 Bits) | | 72 | SUM of Xj and K to Xi | (30 Bits) | | 73 | SUM of Xj and Bk to Xi | (15 Bits) | | 74 | SUM of Aj and Bk to Xi | (15 Bits) | | 75 | DIFFERENCE of Aj and Bk to Xi | (15 Bits) | | 76 | SUM of Bj and Bk to Xi | (15 Bits) | | 77 | DIFFERENCE of Bj and Bk to Xi | (15 Bits) | These instructions perform 1's complement addition and subtraction of 18-bit operands and store an 18-bit result in operand register i. Operands are obtained from address (A), increment (B), and operand (X) registers as well as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj operand register are the truncated lower 18 bits of the 60-bit word. Conversely, an 18-bit result placed in an operand register carries the sign bit extended to the remaining bits of the 60-bit word. The core memories of the peripheral and control processors are constructed from a basic 12-bit, 4096-word magnetic core storage module shown full size above. Five such modules, driven in parallel, form one 60-bit bank of storage for 4096 central memory words. The module has a readwrite cycle time of 1 usec and uses coincident current switching techniques on the drive and inhibit lines which thread the magnetic cores. The module draws only 26 watts of power. Cordwood packaging of 400 transistors and many other components provides an extremely high-density package. # Peripheral and Control Processor Programming #### INTRODUCTION Each of the 10 peripheral and control processors is a stored-program computer with a 12-bit, 4096 word magnetic core memory. The memory is random-access and has a cycle time of 1000 ns (major cycle). The processors solve problems and communicate with each other, the central processor, central memory, and external equipment. Each instruction requires one or more major cycles to execute fully. The peripheral and control processors act as system control computers and I/O processors. This permits the central processor to continue high-speed computations while the peripheral and control processors do the slower I/O and supervisory operations. There are 12 I/O channels, which are bidirectional, and each may have one or more units of external equipment connected to it. Only one external equipment can communicate on one channel at one time, but all 12 channels can be active at one time. Data is transferred in or out of the system in 12-bit words. Each channel can transfer words at major cycle intervals, a 1 mc rate. Any processor may determine the condition of any equipment on any channel; thus simultaneous I/O operations may be carried out in an orderly manner. A real time clock reading is continuously available to all processors. Programs for the 10 processors are written in the conventional manner and are executed in a multiplexing arrangement which uses the principle of time-sharing. Thus, the 10 programs operate from separate memories, but all share a common facility for add/subtract, I/O, data transfer to/from central memory, and other
necessary instruction control facilities. The multiplex consists of a 10-position barrel, which stores information (in parallel) about the current instruction in each of 10 programs, and a common instruction control device, or slot (Fig. 9). The 10 program steps move around the barrel in series, and each step is presented in turn to the slot. A portion of or all of the instruction requirements are accomplished in one pass through the slot, and the altered instruction (or next instruction in a program) is re-entered in the barrel for the next excursion. One or more trips around the barrel complete execution of an instruction. Thus, one or up to 10 programs are in operation at one time, and each program is acted upon once very 1000 ns. One cycle of the multiplex is 1000 ns, with 900 ns consumed in the barrel and 100 ns (minor cycle) in the slot. Instructions in the barrel are interpreted at critical time intervals so that information is available in the slot at the time the instruction is ready to enter the slot. Hence, a reference to memory for data is determined ahead of time so that the data word is available in the slot when the instruction arrives. Similarly, instructions are interpreted before they reach the slot so that control paths in the slot are established when the instruction arrives. The slot contains two adders as part of the instruction control. One adder is 12 bits, and the other is 18 bits. Both adders treat all quantities as 1's complement. For I/O instructions or communication with central memory, one pass through the slot transfers one 12-bit word to or from a peripheral memory. Thus, block transfer of data requires a number of trips around the barrel. The barrel network holds four quantities which pertain to the current instruction in each of the programs. The quantities are held in registers which require a total of 51 bits. (The barrel can be considered as a 51×10 shifting matrix which is closed by the slot.) The barrel registers are referred to implicitly in the instruction steps and are discussed below. #### **REGISTERS** The four registers in the barrel are A, P, Q, and K. Each plays an important part in the execution of processor instructions. #### A Register (18 bits) The arithmetic or A register is an adder. Quantities are treated as positive and overflows are ignored. No sign extension is provided for 6-bit or 12-bit quantities which are entered in the low order bits. However, the unused high-order bits are cleared to zero. Zero is represented by all zeroes. The A register holds an 18-bit central memory address during several instructions. A also participates in shift, logical, and some I/O instructions. #### P Register (12 bits) The program address register or P register holds the address of the current instruction. At the beginning of each instruction, the contents of P are advanced by one to provide the address of the next instruction in the program. If a jump is called for the jump address is entered in P. #### Q Register (12 bits) The Q register holds the lower six bits of a 12-bit instruction word, or, when the six bits specify an address, Q holds the 12-bit word which is read from that address. Q is an adder which may add +1 or -1 to its content. #### K Register (9 bits) The K register holds the upper six bits (operation code) of an instruction and a 3-bit trip count designator. The trip count is the number of times the instruction has been around the barrel and lends control to the sequential execution of an instruction. There are other registers which provide indirect or transient control during execution of instructions. These include registers associated with the I/O channels, the registers in the read and write pyramids which assemble successive 12-bit words into 60-bit words or vice versa, and registers which hold the reference address and the word at that address for each peripheral memory. #### **INSTRUCTION FORMAT** An instruction may have a 12-bit or a 24-bit format. The 12-bit format has a 6-bit operation code F and a 6-bit operand or operand address d. | Operation | Operand or | |-----------|-----------------| | Code | Operand Address | | F | d | | 6 | 6 | | 11 | 0 | The 24-bit format uses the 12-bit quantity m, which is the contents of the next program address (P+1), with d to form an 18-bit operand or operand address. #### **ADDRESS MODES** Program indexing is accomplished and operands manipulated in several modes. The two instruction formats provide for 6-bit or 18-bit operands and 6-bit, 12-bit, or 18-bit addresses. #### No Address In this mode d or dm is taken directly as an operand. This mode eliminates the need for storing many constants in storage. The d quantity is considered as a 12-bit number whose upper six bits are zero. The dm quantity has d as the upper six bits and m as the lower 12 bits. #### **Direct Address** In this mode d or m + (d) is used as the address of the operand. The d quantity specifies one of the first 64 addresses in memory (0000-00778). The m + (d) quantity generates a 12-bit address for referencing all possible peripheral memory locations (0000-77778). If $d \neq 0$, the content of address d is added to m to produce an operand address (indexed addressing). If d = 0, m is taken as the operand address. #### Indirect Address In this mode d specifies an address whose content is the address of the desired operand. Thus, d specifies the operand address indirectly. Indirect addressing and indexed addressing require an additional memory reference over direct addressing. The list of instructions (table 4) uses the expression (d) to define the contents of memory location d. An expression with double parentheses ((d)) refers to indirect addressing. The expression (m + (d)) refers to direct addressing when d = 0 and to indexed direct addressing when $d \neq 0$. #### ACCESS TO CENTRAL MEMORY The peripheral and control processors have access to all central memory storage locations. Four of the instructions (60, 61, 62, 63) transfer one word or a block of words from a peripheral memory to central memory or vice versa. Data from an external equipment is read into a peripheral memory and, with separate instructions, transferred from there to central memory where it may be used by the central processor. Conversely, data is transferred from central memory to a peripheral memory and then transferred by separate instructions to external equipment. #### **Read Central Memory** The 60 and 61 instructions read one word or a block of 60-bit central memory words. The central memory words are delivered to a five stage read pyramid where they are disassembled into five 12-bit words, beginning with the high-order word. Successive stages of the pyramid contain 60, 48, 36, 24, and 12 bits. The upper 12 bits of the word are removed and sent to a peripheral memory as the word is transferred through each stage. Thus, a 60-bit word is disassembled into five 12-bit words. Words move through the pyramid when the stage ahead is clear. One pass through the slot determines that the next stage is clear, sends 12 bits of the word to a peripheral memory, and moves the word ahead to the cleared stage. The pyramid is a part of the slot and may be time shared by up to four processors. Thus four central memory words may be in the pyramid at one time in varying stages of disassembly. With a full pyramid, read instructions from other processors are partially executed (housekeeping) and circulated unchanged in the barrel until the number of pyramid users drops below four. Waiting processors are serviced in the order in which they appear at the slot. Other instruction control provides address incrementing and keeps the word count. The central memory starting address must be entered in A before a read instruction is executed. A load dm (20) instruction may be used for this. For a one word transfer, the d portion of the read (60) instruction specifies the following: d=peripheral address (0000-00778) of first 12-bit word; remaining words go to d+1, d+2, etc. For block transfer, d and m of the read (61) instruction specify the following: - (d) = number of central memory words to be transferred; reduced by one for each word transferred. - m = peripheral starting address; increased by one to provide locations for successive words. (A) is increased by one to locate consecutive central memory words. #### Write Central Memory The 62 and 63 instructions assemble 12-bit peripheral words into 60-bit words and write them in central memory. Peripheral words are assembled in a write pyramid and delivered from there to central memory. As in read central memory, the pyramid is a part of the slot and is time shared by up to four processors. Write pyramid action is similar to read pyramid action except for the assembly. The starting address in central memory is entered in A before the write instruction is executed. For a one word transfer, the d portion of the write (62) instruction specifies the following: d=peripheral address (0000-00778) of first 12-bit word; remaining words are taken from d+1, d+2, etc. For block transfer, d and m of the write (63) instruction specify the following: - (d) = number of central memory words to be transferred; reduced by one for each word transferred. - m= peripheral starting address; increased by one to locate each successive peripheral word. (A) is increased by one to provide consecutive central memory locations. #### **ACCESS TO CENTRAL PROCESSOR** The peripheral and control processors use two instructions to communicate with the central processor. One instruction starts a program running in the central processor, and the other instruction monitors the progress of the program. #### **Exchange Jump** The 26 instruction starts a program running in the central processor or interrupts a current program and starts a new program running. In either case, the central processor is directed to a central memory file of 16 words which stores information about
the new program to be executed The 6600 main frame and some I/O synchronizer hardware is mounted on 16 page-frame chassis which are hung four to a wing. A refrigeration unit in the end of each wing (unit accessible through door at left of photo) maintains each chassis at a uniform temperature. (see EXCHANGE JUMP heading under CENTRAL PROCESSOR PROGRAMMING). The 18-bit starting address of this file must be entered in A before the exchange jump instruction is executed. The central processor replaces the file with similar but current information from the interrupted program. A later exchange jump instruction referencing this file returns the interrupted program to the central processor for completion. This exchange feature permits the peripheral processors to time share the central processor. #### **Read Program Address** The 27 instruction transfers the content of the central processor P register into a peripheral A register. The peripheral program tests the A register content to determine the condition of the central processor. If $A \neq 0$, the central processor is running a program. If A = 0, the central processor has stopped in a normal or exit mode; the reference address for the central processor program is examined then to determine which condition exists. A stop instruction (00s) in the upper six bits of the reference address signals a stop; the next lower six bits define the nature of the exit (see EXCHANGE JUMP paragraph under CENTRAL PROCESSOR PROGRAMMING). #### INPUT AND OUTPUT There are 12 instructions to direct activity on the I/O channels. These instructions select a unit of external equipment and transfer data to or from the equipment. The instructions also determine whether a channel or external equipment is available and ready to transfer data. Generally, several preparatory I/O instructions are issued before the instructions which transfer data. The preparatory steps insure that the data transfer is carried out in an orderly fashion. Each external equipment has a set of external function codes which are used by the processors to establish modes of operation and to start or stop data transfer. Also, the devices are capable of detecting certain errors (e.g., parity error) and provide an indication of these errors to the controlling processor. The external error conditions can be read into a processor for interpretation and further action. Details of mode selection and error flags in external devices such as card readers, magnetic tape systems, etc., are presented in literature associated with the external device. #### **Data Channels** Each channel has a 12-bit bi-directional data register and two control flags which indicate: - 1 The channel is active or inactive - 2 The channel register is full or empty The 64 and 65 instructions determine the state of the channel, and the 66 and 67 instructions determine the state of the register. The flags provide housekeeping information for the processors so that channels can be monitored and processed in an orderly way. The flags also provide control for the I/O operation. <u>Word Rate</u>. Each processor is serviced by the slot once every major cycle. This sets the maximum word rate on a channel at one word each 1000 ns, a 1 mc word rate. Up to 10 processors can be communicating with I/O equipment over separate channels at this rate since each processor is regularly serviced at major cycle intervals. <u>Channel Active/Inactive Flag.</u> A channel is made active by a function (76, 77) instruction or an activate channel (74) instruction. The function instruction selects a mode of operation in the external equipment. The instruction places a 12-bit function word in the channel register and activates the channel. The external equipment accepts the function word, and its response to the processor clears the register and drops the channel active flag. The latter action produces the channel inactive flag. The activate channel instruction prepares a channel for data transfer. Subsequent input or output instructions transfer the data. A disconnect channel instruction after data transfer is complete returns the channel to the inactive state. Register Full/Empty Flag. A register is full when it contains a function or data word for an external equipment or contains a word received from an external equipment. The register is empty when it is cleared. The flags are turned on or off as the register changes state. On data output, the processor places a word in the channel register and sets the full flag. The external device accepts the word, clears the register, and sets the empty flag. The empty flag and channel active flag signal the processor to send another word to the register to repeat the sequence. On input, the external device places a word in the register and sets the full flag. The processor stores the word, clears the register, and sets the empty flag. The empty flag *and* channel active flag signal the external device to deliver another word. #### Data Input Several instructions are necessary to transfer data from external equipment into a processor. The instructions prepare the channel and equipment for the transfer and then start the transfer. Some external equipment, when once started, sends a series of words (record) spaced at equal time intervals and then stops automatically between records. Magnetic tape equipment is an example of this type of transfer. The processor can read all or a part of the record and then disconnect the channel to end the operation. The latter step makes the channel inactive. Other equipment, such as the display console, can send one word (or character) and then stop. The input instructions allow the input transfer to vary from one word to the capacity of the processor. An input transfer may be accomplished in the following way: - 1. Determine if the channel is inactive. A *jump* to m on channel d inactive (65) instruction does this. Here, m can be a function instruction to select read mode or determine the status of the equipment. - 2. Determine if the equipment is ready. A function m on channel d (77) instruction followed by an input to A from channel d (70) instruction loads A with the status response of the desired equipment. Here, m is a status request code, and the status response in A can be tested to determine the course of action. - 3. Select read mode in the equipment. A function m on channel d (77) instruction or function (A) on channel d (76) instruction will send a code word to the desired device to prepare it for data transfer. - **4.** Enter the number of words to be transferred in A. A *load* d (14) or *load* (d) (30) instruction will accomplish this. - 5. Activate the channel. An activate channel d (74) instruction sets the channel active flag and prepares for the impending data transfer. - **6.** Start input data transfer. An *input* (A) words to m on channel d (71) instruction or an input to A from channel d (70) instruction starts data transfer. The 71 instruction transfers one word or up to the capacity of the processor memory. The 70 instruction transfers one word only. 7. Disconnect the channel. A disconnect channel d (75) instruction makes the channel inactive and stops the flow of input information. The design of some external equipment requires timing considerations in issuing function, activate, and input instructions. The timing consideration may be based on motion in the equipment; i.e., the equipment must attain a given speed before sending data (e.g., magnetic tape). In general, timing considerations can be resolved by issuing the necessary instructions without an intervening time gap. The external equipment literature lists timing considerations to be taken into account. #### **Data Output** The data output operation is similar to data input in that the channel and equipment must be ready before the data transfer is started by an output instruction. An output transfer may be accomplished in the following way: - 1. Determine if the channel is inactive. A *jump* to m on channel d inactive (65) instruction does this. Here, m can be a function instruction to select write mode or determine the status of the equipment. - 2. Determine if the equipment is ready. A function m on channel d (77) followed by an input to A from channel d (70) instruction loads A with the status response of the desired equipment. Here, m is a status request code, and the status response in A can be tested to determine the course of action. - 3. Select write mode in the equipment. A function m on channel d (77) instruction or function (A) on channel d (76) instruction will send a code word to the desired device to prepare it for data transfer. - **4.** Enter the number of words to be transferred in A. A *load* d (14) or *load* (d) (30) instruction will accomplish this. - **5.** Activate the channel. An *activate channel d* (74) instruction signals an active channel and prepares for the impending data transfer. - 6. Start data transfer. An output (A) words from m on channel d (73) instruction or an output from A on channel d (72) instruction starts data transfer. The 73 instruction can transfer one or more words while the 72 instruction transfers only one word. - 7. Test for channel empty. A jump to m if channel d full (66) instruction, where m = current address, provides this test. The instruction exits to itself until the channel is empty. When the channel is empty, the processor goes on to the next instruction which generally disconnects the channel. The instruction acts to idle the program briefly to ensure successful transfer of the last output word to the recording device. - **8.** Disconnect the channel. A disconnect channel d (75) instruction makes the channel inactive. Data flow in this case terminates automatically when the correct number of words is sent out. Instruction timing considerations, as in a data input operation, are a function of the external device. #### **REAL TIME CLOCK** The real time clock runs
continuously; its period is 4096 major cycles (4.096 ms). The clock may be sampled by any peripheral and control processor with an input to A (70) instruction from channel 148. The clock is advanced by the storage sequence control and cannot be cleared or preset. Table 4. Peripheral and Control Processor Instructions | | Mnemonic & | | | n.a | -:- 0 | | | |-------|------------|---------------------------|------|-------|-------|---------------------------------|------| | Mnemo | I | Name | Page | Mnemo | | Name | Page | | | 0000 | | 3 - | | | | | | PSN | 00 | Pass | 00 | LMI | 43 | Logical difference ((d)) | 00 | | LJM | 01 | Long jump to $$ m $+$ (d) | 00 | STI | 44 | Store ((d)) | 00 | | RJM | 02 | Return jump to m $+$ (d) | 00 | RAI | 45 | Replace add ((d)) | 00 | | UJN | 03 | Unconditional jump d | 00 | AOI | 46 | Replace add one ((d)) | 00 | | ZJN | 04 | Zero jump d | 00 | SOI | 47 | Replace subtract one ((d)) | 00 | | NJN | 05 | Nonzero jump d | 00 | | | | | | PJN | 06 | Plus jump d | 00 | LDM | 50 | Load (m + (d)) | 00 | | MJN | 07 | Minus jump d | 00 | ADM | 51 | Add (m + (d)) | 00 | | SHN | 10 | Shift d | 00 | SBM | 52 | Subtract (m + (d)) | 00 | | LMN | 11 | Logical difference d | 00 | LMM | 53 | Logical Difference (m + (d)) | 00 | | LPN | 12 | Logical product d | 00 | STM | 54 | Store (m + (d)) | 00 | | SCN | 13 | Selective clear d | 00 | RAM | 55 | Replace add (m + (d)) | 00 | | LDN | 14 | Load d | 00 | AOM | 56 | Replace add one (m + (d)) | 00 | | LCN | 15 | Load complement d | 00 | SOM | 57 | Replace subtract one (m $+$ (d) | 00 | | ADN | 16 | Add d | 00 | | | | | | SBN | 17 | Subtract d | 00 | CRD | 60 | Central read from (A) to d | 00 | | | | | | CRM | 61 | Central read (d) words | 00 | | LDC | 20 | Load dm | 00 | | | from (A) to m | 00 | | ADC | 21 | Add dm | 00 | CWD | 62 | Central write to (A) from d | 00 | | LPC | 22 | Logical product dm | | CWM | 63 | Central write (d) words | 00 | | LMC | 23 | Logical difference dm | 00 | | | to (A) from m | 00 | | PSN | 24 | Pass | 00 | AJM | 64 | Jump to m if | | | PSN | 25 | Pass | 00 | | | channel d active | 00 | | | | · | | IJM | 65 | Jump to m if | | | EXN | 26 | Exchange jump | 00 | | | channel d inactive | 00 | | RPN | 27 | Read program address | 00 | FJM | 66 | Jump to m if | | | | | . 0 | | | | channel d full | 00 | | LDD | 30 | Load (d) | 00 | EJM | 67 | Jump to m if | | | ADD | 31 | Add (d) | 00 | | | channel d empty | 00 | | SBD | 32 | Subtract (d) | 00 | IAN | 70 | Input to A from channel d | 00 | | LMD | 33 | Logical difference (d) | 00 | IAM | 71 | Input (A) words to m | | | STD | 34 | Store (d) | 00 | | | from channel d | 00 | | RAD | 35 | Replace add (d) | 00 | OAN | 72 | Output from A on channel d | 00 | | AOD | 36 | Replace add one (d) | 00 | OAM | | Output (A) words from m on | | | SOD | 37 | Replace subtract one (d) | 00 | | | channel d | 00 | | | | -1 | | ACN | 74 | Activate channel d | 00 | | LDI | 40 | Load ((d)) | 00 | DCN | 75 | Disconnect channel d | 00 | | ADI | 41 | Add ((d)) | 00 | FAN | 76 | Function (A) on channel d | 00 | | SBI | 42 | Subtract ((d)) | 00 | FNC | 77 | Function m on channel d | 00 | | | | | | | | | | #### **DESCRIPTION OF INSTRUCTIONS** #### **Data Transmission** #### LDN 14 Load d This instruction clears the A register and loads d. The upper 12 bits of A are zero. #### LCN 15 Load Complement d This instruction clears the A register and loads the complement of d. The upper 12 bits of A are set to one. #### LDC 20 Load dm This instruction clears the A register and loads an 18-bit quantity consisting of d as the higher six bits and m as the lower 12 bits. The contents of the location following the present program address are read out to provide m. #### LDD 30 Load (d) This instruction clears the A register and loads the contents of location d. The upper six bits of A are zero. #### STD 34 Store (d) This instruction stores the lower 12 bits of A in location d. #### LDI 40 Load ((d)) This instruction clears the A register and loads a 12-bit quantity that is obtained by indirect addressing. The upper six bits of A are zero. Location d is read out of memory, and the word obtained is used as the operand address. #### STI 44 Store ((d)) This instruction stores the lower 12 bits of A in the location specified by the contents of location d. #### LDM 50 Load (m + (d)) This instruction clears the A register and loads a 12-bit quantity. The upper six bits of A are zero. The 12-bit operand is obtained by indexed direct addressing. Location m is read out of memory, and the word obtained serves as the base operand address to which (d) is added. If d = 0, the operand address is simply m, but if $d \neq 0$ then m + (d) is the operand address. Thus location d may be used for an index quantity to modify operand addresses. #### STM 54 Store (m + (d)) This instruction stores the lower 12 bits of A in the location determined by indexed direct addressing (see instruction 50). #### Shift #### SHN 10 Shift d This instruction shifts the contents of A right or left d places. If d is positive (00 - 37) the shift is left circular; if d is negative (40 - 77) A is shifted right (end off with no sign extension). Thus, d = 06 requires a left shift of six places. A right shift of six places results when d = 71. #### Arithmetic #### ADN 16 Add d This instruction adds d (treated as a 6-bit positive quantity) to the content of the A register. #### SBN 17 Subtract d This instruction subtracts d (treated as a 6-bit positive quantity) from the content of the A register. #### ADC 21 Add dm This instruction adds to the A register the 18-bit quantity consisting of d as the higher six bits and m as the lower 12 bits. The contents of the location following the present program address are read out to provide m. #### ADD 31 Add (d) This instruction adds to the A register the contents of location d (treated as a 12-bit positive quantity). #### SBD 32 Subtract (d) This instruction subtracts from the A register the contents of location d (treated as a 12-bit positive quantity). #### ADI 41 Add ((d)) This instruction adds to the content of A a 12-bit operand (treated as a positive quantity) obtained by indirect addressing. Location d is read out of memory, and the word obtained is used as the operand address. #### SBI 42 Subtract ((d)) This instruction subtracts from the A register a 12-bit operand (treated as a positive quantity) obtained by indirect addressing. Location d is read out of memory, and the word obtained is used as the operand address. #### ADM 51 Add (m + (d)) This instruction adds to the content of A a 12-bit operand (treated as a positive quantity) obtained by indexed direct addressing (see instruction 50). #### SBM 52 Subtract (m + (d)) This instruction subtracts from the A register a 12-bit operand (treated as a positive quantity) obtained by indexed direct addressing (see instruction 50). #### **Pass** PSN 00 Pass This code specifies that no operation be performed. It provides a means of padding out a program. PSN 24 Pass PSN 25 Pass #### Jump LJM 01 Long Jump (m + (d)) This instruction jumps to the sequence beginning at the address given by m + (d). If d = 0, then m is not modified. #### RJM 02 Return Jump (m + (d)) This instruction jumps to the sequence beginning at the address given by m + (d). If d = 0 then m is not modified. The current program address (P) plus two is stored at the jump address. The new program commences at the jump address plus one. This program should end with a long jump to, or normal sequencing into, the jump address minus one, which should in turn contain a long jump, 0100. The latter returns the original program address plus two to the P register. #### UJN 03 Unconditional Jump d This instruction provides an unconditional jump to any instruction up to 31 steps forward or backward from the current program address. The value of d is added to the current program address. If d is positive (01 - 37), then 0001 (+1) - 0037 (+31) is added and the jump is forward. If d is negative (40 - 76) then 7740 (-31) - 7776 (-1) is added and the jump is backward. The program stops when d = 00 or 77. #### ZJN 04 Zero Jump d This instruction provides a conditional jump to any instruction up to 31 steps forward or backward from the current program address. If the content of the A register is zero, the jump is taken. If the content of A is nonzero, the next instruction is executed. Negative zero (777777) is treated as nonzero. For interpretation of d see instruction 03. #### NJN 05 Nonzero Jump d This instruction provides a conditional jump to any instruction up to 31 steps forward or backward from the current program address. If the content of the A register is nonzero, the jump is taken. If A is zero, the next instruction is executed. Negative zero (777777) is treated as nonzero. For interpretation of d see instruction 03. #### PJN 06 Plus Jump d This instruction provides a conditional jump to any instruction up to 31 steps forward or backward from the current program address. If the content of the A register is positive, the jump is taken. If A is negative, the next instruction is executed. For interpretation of d see instruction 03. #### MJN 07 Minus Jump d This instruction provides a conditional jump to any instruction up to 31 steps forward or backward from the current program address. If the content of the A register is negative, the jump is taken. If A is positive, the next instruction is executed. For interpretation of d see instruction 03. #### Logical #### LMN 11 Logical Difference d This instruction forms in A the bit by bit logical difference of d and the lower six bits of A. This is equivalent to complementing individual bits of A that correspond to bits of d that are one. The upper 12 bits of A are not altered. #### LPN 12 Logical Product d This instruction forms the bit-by-bit logical product of d and the lower six bits of the A register, and leaves this quantity in the lower 6 bits of A. The upper 12 bits of A are
zero. #### SCN 13 Selective Clear d This instruction clears any of the lower six bits of the A register where there are corresponding bits of d that are one. The 12 higher bits of A are not altered. #### LPC 22 Logical Product dm This instruction forms in the A register the bitby-bit logical product of the contents of A and the 18-bit quantity dm. The upper six bits of this quantity consist of d and the lower 12 bits are the content of the location following the present program address. Logic and storage modules are mounted in individual compartments in each 6600 chassis. Module connectors mate with similar chassis-mounted connectors which in turn are interconnected by back panel wiring of twisted pair and coaxial cable transmission lines. Separate module compartments provide electrical shielding and eliminate module cross-talk. Compartments also provide greater surface area on the chassis, which is treated as a constant temperature cold plate by the cooling system. #### LMC 23 Logical Difference dm This instruction forms in A the bit-by-bit logical difference of the contents of A and the 18-bit quantity dm. This is equivalent to complementing individual bits of A which correspond to bits of dm that are one. The upper six bits of the quantity consist of d, and the lower 12 bits are the content of the location following the present program address. #### LMD 33 Logical Difference (d) This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A and the contents of location d. This is equivalent to complementing individual bits of A which correspond to bits of (d) that are one. The upper six bits of A are not altered. #### LMI 43 Logical Difference ((d)) This instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A and the 12-bit operand obtained by indirect addressing. Location d is read out of memory, and the word obtained is used as the operand address. The upper six bits of A are not altered. #### LMM 53 Logical Difference (m + (d)) This instruction forms in A the bit-by-bit logical difference of the lower 12-bits of A and a 12-bit operand obtained by indexed direct addressing. The upper six bits of A are not altered. #### Replace #### RAD 35 Replace Add (d) This instruction adds the quantity in location d to the contents of A and stores the lower 12 bits of the result at location d. The resultant sum is left in A at the end of the operation. #### AOD 36 Replace Add One (d) The quantity in location d is replaced by its original value plus one. The resultant sum is left in A at the end of the operation, and the original contents of A are destroyed. #### SOD 37 Replace Subtract One (d) The quantity in location d is replaced by its original value minus one. The resultant difference is left in A at the end of the operation, and the original contents of A are destroyed. #### RAI 45 Replace Add ((d)) The operand, which is obtained from the location specified by the contents of location d, is added to the contents of A, and the lower 12 bits of the sum replace the original operand. The resultant sum is left in A at the end of the operation. #### AOI 46 Replace Add One ((d)) The operand, which is obtained from the location specified by the contents of location d, is replaced by its original value plus one. The resultant sum is left in A at the end of the operation, and the original contents of A are destroyed. #### SOI 47 Replace Subtract One ((d)) The operand, which is obtained from the location specified by the contents of location d, is replaced by its original value minus one. The resultant difference is left in A at the end of the operation, and the original contents of A are destroyed. #### RAM 55 Replace Add (m + (d)) The operand, which is obtained from the location determined by indexed direct addressing, is replaced by its original value plus one (see instruction 50 for explanation of addressing). The resultant sum is left in A at the end of the operation, and the original contents of A are destroyed. #### AOM 56 Replace Add One (m + (d)) The operand, which is obtained from the location determined by indexed direct addressing, is replaced by its original value plus one (see instruction 50 for explanation of addressing). The resultant sum is left in A at the end of the operation, and the original contents of A are destroyed. #### SOM 57 Replace Subtract One (m + (d)) The operand, which is obtained from the location determined by indexed direct addressing, is replaced by its original value minus one (see instruction 50 for explanation of addressing). The resultant difference is left in A at the end of the operation, and the original contents of A are destroyed. #### Central Processor and Central Memory #### EXN 26 Exchange Jump An 18-bit address is transmitted from A to the central processor with a signal which tells the central processor to perform an exchange jump on the address. The d portion of the instruction is ignored. #### RPN 27 Read Program Address This instruction sends the content of the central processor program address register to A to allow the peripheral and control processors to determine whether the central processor is running. #### CRD 60 Central Read From (A) to d This instruction transfers a 60-bit word from central memory to five consecutive locations in the processor memory. The 18-bit address of the central memory location must be loaded in A prior to this instruction. The 60-bit word is disassembled into five 12-bit words beginning at the left. Location d receives the first 12-bit word. The remaining 12-bit words go to succeeding locations. #### CRM 61 Central Read (d) words from (A) to m This instruction reads a block of 60-bit words from central memory. The contents of location d gives the block length. The 18-bit address of the first central word must be loaded in A prior to this instruction. During the execution of this instruction (P) goes to processor address 0 and P holds m. Also, (d) goes to the Q register where it is reduced by one as each central word is processed. The original content of P is restored at the end of the instruction. Each central word is disassembled into five 12-bit words beginning with the high-order 12 bits. The first word is stored at processor memory location m. The content of P (which is holding m) is advanced by one to provide the next address in the processor memory as each 12-bit word is stored. The content of A is advanced by one to provide the next central memory address after each 60-bit word is disassembled and stored. Also, the contents of the Q register are reduced by one. The block transfer is complete when Q=0. The block of central memory locations goes from address (A) to address (A) + (d)-1. The block of processor memory locations goes from address m to m + 5(d) - 1. #### CWD 62 Central Write to (A) from d This instruction assembles five successive 12-bit words into a 60-bit word and stores the word in central memory. The 18-bit address word designating the central memory location must be in A prior to execution of the instruction. Location d holds the first word to be read out of the processor memory. This word appears as the higher order 12 bits of the 60-bit word. The remaining words are taken from successive addresses. CWM 63 Central Write (d) words from m to (A) This instruction assembles a block of 60-bit words and writes them in central memory. The contents of location d gives the number of 60-bit words. The content of the A register gives the beginning central memory address. During the execution of this instruction (P) goes to processor address 0 and P holds m. Also, (d) goes to the Q register where it is reduced by one as each central word is assembled. The original content of P is restored at the end of the instruction. The content of P (the m portion of the instruction) gives the address of the first word to be read out of the processor memory. This word appears as the higher order 12 bits of the first 60-bit word. The content of P is advanced by one to provide the next address in the processor memory as each 12-bit word is read. The content of A is advanced by one to provide the next central memory address after each 60-bit word is assembled. Also, Q is reduced by one. The block transfer is complete when Q=0. #### Input/Output #### AJM 64 Jump to m if channel d active This instruction provides a conditional jump to a new program sequence beginning at an address given by the contents of m. The jump is taken if the channel specified by d is active. The current program sequence continues if the channel is inactive. #### IJM 65 Jump to m if channel d inactive This instruction provides a conditional jump to a new program sequence beginning at an address given by m. The jump is taken if the channel specified by d is inactive. The current program sequence continues if the channel is active. #### FJM 66 Jump to m if channel d full This instruction provides a conditional jump to a new program sequence beginning at an address given by m. The jump is taken if the channel designated by d is full. The present program sequence continues if the channel is empty. An input channel is full when the input equipment has placed a word on the channel and that word has not yet been sampled by a processor. The channel is empty when the word has been accepted. An output channel is full when a processor places a word on the channel. The channel is empty when the output equipment has sampled the word. The 6600 cooling system employs a freon refrigeration technique for cooling hardware components. The scheme produces a uniform chassis temperature and results in very low noise level operation. A continuous copper tube carrying freon refrigerant is imbedded in each module row separator on a chassis and is connected to the refrigeration unit (one unit/main frame wing). The copper tube acts as the evaporator coil in the refrigeration system, and the metal chassis becomes a large, constant temperature cold
plate to which component heat flows by conduction and convection. #### EJM 67 Jump to m if channel d empty This instruction provides a conditional jump to a new program sequence beginning at an address specified by m. The jump is taken if the channel specified by d is empty. The current program sequence continues if the channel is full. (See instruction 66 for explanation of full and empty.) #### IAN 70 Input to A from channel d This instruction transfers a word from input channel d to the lower 12 bits of the A register. #### IAM 71 Input (A) words to m from channel d This instruction transfers a block of words from input channel d to the processor memory. The content of A gives the block length. The content of location m specifies the processor address which is to receive the first word. The content of A is reduced by one as each word is read. The input operation is complete when A=0. During this instruction address 0000 temporarily holds P, while m is held in the P register. The content of P advances by one to give the address for the next word as each word is stored. #### OAN 72 Output (A) on channel d This instruction transfers a word from A (lower 12 bits) to output channel d. ## OAM 73 Output (A) words from m on channel d This instruction transfers a block of words from the processor memory to channel d. The first word comes from the address specified by m. The content of A specifies the number of words to be sent out. The content of A is reduced by one as each word is read out. The output operation is complete when A=0. During this instruction address 0000 temporarily holds P, while m is held in the P register. The content of P advances by one to give the address of the next word as each word is stored. #### ACN 74 Activate channel d This instruction activates the channel specified by d. Activating a channel (must precede a 70-73 instruction) alerts and prepares the I/O equipment for the exchange of data. #### DCN 75 Disconnect channel d This instruction deactivates the channel specified by d. As a result the I/O equipment stops and the buffer terminates. #### FAN 76 Function (A) on channel d The external function code in the lower 12 bits of A is sent out on channel d. #### FNC 77 Function m on channel d. The external function code specified by m is sent out on channel d. Fig. 10 Dead Start Panel ## **Operation** #### **GENERAL** Manual control of 6600 operation is provided in two ways; dead start and console keyboard. The dead start circuit is a means of manually entering a 12-word program (normally a load routine) to start operation. The console keyboard provides for the manual entry of data or instructions under program control. #### **DEAD START** The dead start panel (Fig. 10) contains a 12×12 matrix of toggle switches which may be set manually and read by processor 0 as twelve 12-bit words. With the MODE switch in the load position, turning on the DEAD START switch* initiates the dead start operations: - 1 Load the 12 words from the toggle switches into memory locations 0001-00148 of processor 0. - 2 Assign processors 0-11s to corresponding data channels. - 3 Set all processors to input instruction 71. - 4 Set all channels to active and empty (ready for input). After the program is read from the dead start panel, the panel is automatically disconnected and processor 0 begins executing the program. The program from the dead start panel is normally a load routine used to load a larger program from an input device such as a disc file or magnetic tape. ^{*}The DEAD START switch is turned on momentarily, then off. Fig. 11 Display Console #### CONSOLE The display console (Fig. 11) consists of two cathode ray tube displays and a keyboard for manual entry of data. A typical 6600 system may have several display consoles for controlling independent programs simultaneously. #### **Keyboard Input** The console may be selected for input to allow manual entry of data or instructions to the computer. The first part of an operating system program may select keyboard input to allow the programmer to manually select a routine from the operating system. Data entered via the keyboard may be displayed on one of the display tubes if desired. Assembly and display of keyboard entries is done by a routine in the operating system. #### Display The console may be selected to display (Fig. 12) in either the character or dot mode. In the character mode two alphanumeric characters may be displayed for each 12-bit word sent from a processor. Character sizes are; Small—64 characters/line Medium—32 characters/line Large—16 characters/line In dot mode a pattern of dots (graph, figures, etc.) may be displayed. Each dot is located by two 12-bit words; a vertical coordinate and a horizontal coordinate. A display program must repeat a display periodically in order to maintain persistence on the display tube. Fig. 12. Sample Display ## Appendix I TABLES OF POWERS OF TWO #### TABLE OF POWERS OF TWO ``` 2" n 2-" 0 1.0 1 2 1 0.5 2 4 0.25 8 3 0.125 0.062 5 16 4 0.031 25 32 5 64 6 0.015 625 128 0.007 812 5 256 8 0.003 906 25 512 9 0.001 953 125 1 024 10 0.000 976 562 5 2 048 0.000 488 281 25 4 096 12 0.000 244 140 625 8 192 13 0.000 122 070 312 5 16 384 14 0.000 061 035 156 25 32 768 15 0.000 030 517 578 125 65 536 16 0.000 015 258 789 062 5 131 072 17 0.000 007 629 394 531 25 262 144 18 0.000 003 814 697 265 625 19 524 288 0.000 001 907 348 632 812 5 1 048 576 20 0.000 000 953 674 316 406 25 2 097 152 21 0.000 000 476 837 158 203 125 4 194 304 22 0.000 000 238 418 579 101 562 5 8 388 608 0.000 000 119 209 289 550 781 25 16 777 216 24 0.000 000 059 604 644 775 390 625 33 554 432 25 0.000 000 029 802 322 387 695 312 5 67 108 864 26 0.000 000 014 901 161 193 847 656 25 134 217 728 0.000 000 007 450 580 596 923 828 125 27 268 435 456 28 0.000 000 003 725 290 298 461 914 062 5 536 870 912 29 0.000 000 001 862 645 149 230 957 031 25 1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625 2 147 483 648 0.000 000 000 465 661 287 307 739 257 812 5 31 4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25 8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125 17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5 34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25 68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5 137 438 953 472 274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25 549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125 ``` ## Appendix II | | | | | | | | | | | _ | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|---|--|--|--|--|--|--|--|--|--| | | pass. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 0000 0000
to to
0777 0511
(Octal) (Decimal) | 0000
0010
0020
0030 | 0000
0008
0016
0024 | 0001
0009
0017
0025 | 0002
0010
0018
0026 | 0003
0011
0019
0027 | 0004
0012
0020
0028 | 0005
0013
0021
0029 | 0006
0014
0022
0030 | 0007
0015
0023
0031 | | 0400
0410
0420
0430 | 0256
0264
0272
0280 | 0257
0265
0273
0281 | 0258
0266
0274
0282 | 0259
0267
0275
0283 | 0260
0268
0276
0284 | 0261
0269
0277
0285 | 0262
0270
0278
0286 | 026
027
027
028 | | Octal Decimal | 0040
0050
0060
0070 | 0032
0040
0048
0056 | 0033
0041
0049
0057 | 0034
0042
0050
0058 | 0035
0043
0051
0059 | 0036
0044
0052
0060 | 0037
0045
0053
0061 | 0038
0046
0054
0062 | 0039
0047
0055
0063 | | 0440
0450
0460
0470 | 0288
0296
0304
0312 | 0289
0297
0305
0313 | 0290
0298
0306
0314 | 0291
0299
0307
0315 | 0292
0300
0308
0316 | 0293
0301
0309
0317 | 0294
0302
0310
0318 | 029
030
031
031 | | 10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672 | 0100
0110
0120
0130
0140
0150 | 0064
0072
0080
0088
0096
0104
0112 |
0065
0073
0081
0089
0097
0105
0113 | 0066
0074
0082
0090
0098
0106
0114 | 0067
0075
0083
0091
0099
0107
0115 | 0068
0076
0084
0092
0100
0108
0116 | 0069
0077
0085
0093
0101
0109
0117 | 0070
0078
0086
0094
0102
0110
0118 | 0071
0079
0087
0095
0103
0111
0119 | | 0500
0510
0520
0530
0540
0550
0560 | 0320
0328
0336
0344
0352
0360
0368 | 0321
0329
0337
0345
0353
0361
0369 | 0322
0330
0338
0346
0354
0362
0370 | 0323
0331
0339
0347
0355
0363
0371 | 0324
0332
0340
0348
0356
0364
0372 | 0325
0333
0341
0349
0357
0365
0373 | 0326
0334
0342
0350
0358
0366
0374 | 032
033
034
035
035
036 | | | 0170
0200
0210
0220
0230
0240
0250
0260
0270 | 0120
0128
0136
0144
0152
0160
0168
0176
0184 | 0121
0129
0137
0145
0153
0161
0169
0177
0185 | 0122
0130
0138
0146
0154
0162
0170
0178
0186 | 0123
0131
0139
0147
0155
0163
0171
0179
0187 | 0124
0132
0140
0148
0156
0164
0172
0180
0188 | 0125
0133
0141
0149
0157
0165
0173
0181
0189 | 0126
0134
0142
0150
0158
0166
0174
0182
0190 | 0127
0135
0143
0151
0159
0167
0175
0183
0191 | | 0570
0600
0610
0620
0630
0640
0650
0660
0670 | 0376
0384
0392
0400
0408
0416
0424
0432
0440 | 0377
0385
0393
0401
0409
0417
0425
0433
0441 | 0378
0386
0394
0402
0410
0418
0426
0434
0442 | 0379
0387
0395
0403
0411
0419
0427
0435
0443 | 0388
0396
0404
0412
0420
0428
0436
0444 | 0381
0389
0397
0405
0413
0421
0429
0437
0445 | 0382
0390
0398
0406
0414
0422
0430
0438 | 038
039
039
040
041
042
043
043 | | | 0300
0310
0320
0330
0340
0350
0360
0370 | 0192
0200
0208
0216
0224
0232
0240
0248 | 0193
0201
0209
0217
0225
0233
0241
0249 | 0194
0202
0210
0218
0226
0234
0242
0250 | 0195
0203
0211
0219
0227
0235
0243
0251 | 0196
0204
0212
0220
0228
0236
0244
0252 | 0197
0205
0213
0221
0229
0237
0245
0253 | 0198
0206
0214
0222
0230
0238
0246
0254 | 0199
0207
0215
0223
0231
0239
0247
0255 | | 0700
0710
0720
0730
0740
0750
0760
0770 | 0448
0456
0464
0472
0480
0488
0496
0504 | 0449
0457
0465
0473
0481
0489
0497
0505 | 0450
0458
0466
0474
0482
0490
0498
0506 | 0451
0459
0467
0475
0483
0491
0499 | 0452
0460
0468
0476
0484
0492
0500
0508 | 0453
0461
0469
0477
0485
0493
0501
0509 | 0454
0462
0470
0478
0486
0494
0502
0510 | 045
046
047
047
048
049
050 | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 1000 0512
to to
1777 1023 | 1000
1010 | 0512
0520
0528 | 0513
0521
0529 | 0514
0522
0530
0538 | 0515
0523
0531
0539 | 0516
0524
0532
0540 | 0517
0525
0533
0541 | 0518
0526
0534
0542 | 0519
0527
0535 | | 1400
1410
1420 | 0768
0776
0784 | 0769
0777
0785 | 0770
0778
0786 | 0771
0779
0787 | 0772
0780
0788 | 0773
0781
0789 | 0774
0782
0790
0798 | 0775
0785
0795
0795 | | (Octal) (Decimal) | 1020
1030
1040
1050
1060
1070 | 0536
0544
0552
0560
0568 | 0537
0545
0553
0561
0569 | 0546
0554
0562
0570 | 0547
0555
0563
0571 | 0548
0556
0564
0572 | 0549
0557
0565
0573 | 0550
0558
0566
0574 | 0543
0551
0559
0567
0575 | | 1430
1440
1450
1460
1470 | 0792
0800
0808
0816
0824 | 0793
0801
0809
0817
0825 | 0794
0802
0810
0818
0826 | 0795
0803
0811
0819
0827 | 0796
0804
0812
0820
0828 | 0797
0805
0813
0821
0829 | 0806
0814
0822 | 081
082 | | | 1030
1040
1050
1060 | 0536
0544
0552
0560
0568
0576
0584
0592
0600
0608
0616
0624 | 0545
0553
0561
0569
0577
0585
0593
0601
0609
0617 | 0546
0554
0562
0570
0578
0586
0594
0602
0610
0618
0626 | 0547
0555
0563
0571
0579
0587
0595
0603
0611
0619
0627 | 0548
0556
0564
0572
0580
0588
0596
0604
0612
0620
0628 | 0549
0557
0565
0573
0581
0589
0597
0605
0613
0621
0629 | 0550
0558
0566
0574
0582
0590
0598
0606
0614
0622
0630 | 0551
0559
0567
0575
0583
0591
0691
0607
0615
0623
0631 | 1 | 1440
1450
1460
1470
1500
1510
1520
1530
1540
1550
1560 | 0800
0808
0816
0824
0832
0840
0848
0856
0864
0872 | 0801
0809
0817
0825
0833
0841
0849
0857
0865
0873 | 0794
0802
0810
0818
0826
0834
0842
0850
0858
0866
0874 | 0803
0811
0819
0827
0835
0843
0851
0859
0867
0875 | 0804
0812
0820
0828
0836
0844
0852
0860
0868
0876 | 0805
0813
0821
0829
0837
0845
0853
0861
0869
0877 | 0806
0814
0822
0830
0838
0846
0854
0862
0870
0878 | 0819
0820
0830
0840
0850
0860
0870
0875
0887 | | | 1030
1040
1050
1060
1070
1100
1110
1120
1130
1140
1150
1160 | 0536
0544
0552
0560
0568
0576
0584
0592
0600
0608
0616 | 0545
0553
0561
0569
0577
0585
0593
0601
0609
0617 | 0546
0554
0562
0570
0578
0586
0594
0602
0610
0618 | 0547
0555
0563
0571
0579
0587
0595
0603
0611
0619 | 0548
0556
0564
0572
0580
0588
0596
0604
0612
0620
0628
0636
0644
0652
0660
0668
0676
0678
0692 | 0549
0557
0565
0573
0581
0589
0597
0605
0613
0621 | 0550
0558
0566
0574
0582
0590
0598
0606
0614
0622 | 0551
0559
0567
0575
0583
0591
0599
0607
0615
0623 | | 1440
1450
1460
1470
1500
1510
1520
1530
1540
1550 | 0800
0808
0816
0824
0832
0840
0848
0856
0864
0872
0880
0898
0904
0912
0920 | 0801
0809
0817
0825
0833
0841
0849
0857
0865
0873 | 0794
0802
0810
0818
0826
0834
0842
0850
0858
0866
0874
0882
0890
0898
0906
0914
0922
0930
0938 | 0803
0811
0819
0827
0835
0843
0851
0859
0867
0875 | 0804
0812
0820
0828
0836
0844
0852
0860
0868
0876 | 0805
0813
0821
0829
0837
0845
0853
0861
0869
0877 | 0806
0814
0822
0830
0838
0846
0854
0862
0870
0878 | 0807
0818
0822
0831
0839
0847
0855
0863
0871
0879
0887
0903
0911
0919
0927
0943
0943 | | Г | | | ••• | | | | | | | | | | | | | | | | | |--|--|---|--|--|--|--|--|--|--|--
--|---|---|---|---|---|---|--------------------|-------------------| | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | [- · · · | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 2000 | 1001 | | 2000
2010 | 1024
1032 | 1025
1033 | 1026
1034 | 1027
1035 | 1028
1036 | 1029
1037 | 1030
1038 | 1031
1039 | 2400
2410 | 1280
1288 | 1281
1289 | 1282
1290 | 1283
1291 | 1284
1292 | 1285
1293 | 1286
1294 | 1287
1295 | 2000
to | 1024
to | | 2020 | 1040 | 1041 | 1042 | 1043 | 1044 | 1045 | 1046 | 1047 | 2420 | 1296 | 1297 | 1298 | 1299 | 1300 | 1301 | 1302 | 1303 | 2777 | 1535 | | 2030 | 1048 | 1049 | 1050 | 1051 | 1052 | 1053 | 1054 | 1055 | 2430 | 1304 | 1305 | 1306 | 1307 | 1308 | 1309 | 1310 | 1311 | (Octal) | (Decimal) | | 2040
2050 | 1056
1064 | 1057
1065 | 1058
1066 | 1059
1067 | 1060
1068 | 1061
1069 | 1062
1070 | 1063
1071 | 2440
2450 | 1312
1320 | 1313
1321 | 1314
1322 | 1315
1323 | 1316
1324 | 1317
1325 | 1318
1326 | 1319
1327 | | | | 2060 | 1072 | 1073 | 1074 | 1075 | 1076 | 1077 | 1078 | 1079 | 2460 | 1328 | 1329 | 1330 | 1331 | 1332 | 1333 | 1334 | 1335 | | D:- ' | | 2070 | 1080 | 1081 | 1082 | 1083 | 1084 | 1085 | 1086 | 1087 | 2470 | 1336 | 1337 | 1338 | 1339 | 1340 | 1341 | 1342 | 1343 | Octal
10000 | Decimal
- 4096 | | 2100 | 1088 | 1089 | 1090 | 1091 | 1092 | 1093 | 1094 | 1095 | 2500 | 1344 | 1345 | 1346 | 1347 | 1348 | 1349 | 1350 | 1351 | | - 4096
- 8192 | | 2100 | 1096 | 1097 | 1098 | 1099 | 1100 | 1101 | 1102 | 1103 | 2510 | 1352 | 1353 | 1354 | 1355 | 1356 | 1357 | 1358 | 1359 | | - 12288 | | 2120 | 1104 | 1105 | 1106 | 1107 | 1108 | 1109 | 1110 | 1111 | 2520 | 1360 | 1361 | 1362 | 1363 | 1364
1372 | 1365
1373 | 1366
1374 | 1367 | 40000 | - 16384 | | 2130
2140 | 1112
1120 | 1113
1121 | 1114
1122 | 1115
1123 | 1116
1124 | 1117
1125 | 1118
1126 | 1119
1127 | 2530
2540 | 1368
1376 | 1369
1377 | 1370
1378 | 1371
1379 | 1380 | 1381 | 1382 | 1375
1383 | | - 20480 | | 2150 | 1128 | 1129 | 1130 | 1131 | 1132 | 1133 | 1134 | 1135 | 2550 | 1384 | 1385 | 1386 | 1387 | 1388 | 1389 | 1390 | 1391 | | - 24576 | | 2160 | 1136 | 1137 | 1138 | 1139 | 1140 | 1141 | 1142 | 1143 | 2560 | 1392 | 1393 | 1394 | 1395
1403 | 1396
1404 | 1397
1405 | 1398
1406 | 1399
1407 | /0000 | - 28672 | | 2170 | 1144 | 1145 | 1146 | 1147 | 1148 | 1149 | 1150 | 1151 | 2570 | 1400 | 1401 | 1402 | 1403 | 1404 | 1400 | 1400 | 1407 | | | | 2200 | 1152 | 1153 | 1154 | 1155 | 1156 | 1157 | 1158 | 1159 | 2600 | 1408 | 1409 | 1410 | 1411 | 1412 | 1413 | 1414 | 1415 | | | | 2210
2220 | 1160
1168 | 1161
1169 | 1162
1170 | 1163
1171 | 1164
1172 | 1165
1173 | 1166
1174 | 1167
1175 | 2610
2620 | 1416
1424 | 1417
1425 | 1418
1426 | 1419
1427 | 1420
1428 | 1421
1429 | 1422
1430 | 1423
1431 | | | | 2230 | 1176 | 1177 | 1178 | 1179 | 1180 | 1181 | 1182 | 1183 | 2630 | 1432 | 1433 | 1434 | 1435 | 1436 | 1437 | 1438 | 1439 | | | | 2240 | 1184 | 1185 | 1186 | 1187 | 1188 | 1189 | 1190 | 1191 | 2640 | 1440 | 1441 | 1442 | 1443 | 1444 | 1445 | 1446 | 1447 | | | | 2250
2260 | 1192
1200 | 1193
1201 | 1194
1202 | 1195
1203 | 1196
1204 | 1197
1205 | 1198
1206 | 1199
1207 | 2650
2660 | 1448
1456 | 1449
1457 | 1450
1458 | 1451
1459 | 1452
1460 | 1453
1461 | 1454
1462 | 1455
1463 | | | | 2270 | 1208 | 1209 | 1210 | 1211 | 1212 | 1213 | 1214 | 1215 | 2670 | 1464 | 1465 | 1466 | 1467 | 1468 | 1469 | 1470 | 1471 | | | | 2300 | 1216 | 1217 | 1218 | 1219 | 1220 | 1221 | 1222 | 1223 | 2700 | 1472 | 1473 | 1474 | 1475 | 1476 | 1477 | 1478 | 1479 | | | | 2310 | 1224 | 1225 | 1226 | 1227 | 1228 | 1229 | 1230 | 1231 | 2710 | 1480 | 1481 | 1482 | 1483 | 1484 | 1485 | 1486 | 1487 | | | | 2320 | 1232 | 1233 | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 | 2720 | 1488 | 1489 | 1490 | 1491 | 1492 | 1493 | 1494 | 1495 | | | | 2330
2340 | 1240
1248 | 1241
1249 | 1242
1250 | 1243
1251 | 1244
1252 | 1245
1253 | 1246
1254 | 1247
1255 | 2730
2740 | 1496
1504 | 1497
1505 | 1498
1506 | 1499
1507 | 1500
1508 | 1501
1519 | 1502
1510 | 1503
1511 | | | | 2350 | 1256 | 1257 | 1258 | 1259 | 1260 | 1261 | 1262 | 1263 | 2750 | 1512 | 1513 | 1514 | 1515 | 1516 | 1517 | 1518 | 1519 | | | | 2360
2370 | 1264
1272 | 1265
1273 | 1266
1274 | 1267
1275 | 1268
1276 | 1269
1277 | 1270
1278 | 1271
1279 | 2760
2770 | 1520
1528 | 1521
1529 | 1522
1530 | 1523
1531 | 1524
1532 | 1525
1533 | 1526
1534 | 1527
1535 | | | | | | | | | | | | | <u> </u> | | | | | | | ,,,,, | | ı | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | 3000 | 1536 | 1537 | 1538 | 1539 | 1540 | 1541 | 1542 | 1543 | 3400 | O
1792 | 1793 | 2
1794 | 3
1795 | 4 1796 | 5
1797 | 6 1798 | 7 1799 | 3000
to | 1536
to | | 3000
3010
3020 | - | | | | | | 1542
1550
1558 | 1543
1551
1559 | 3400
3410
3420 | 0
1792
1800
1808 | 1793
1801
1809 | 2
1794
1802
1810 | 3
1795
1803
1811 | 4
1796
1804
1812 | 5
1797
1805
1813 | 6
1798
1806
1814 | 7
1799
1807
1815 | 3000
to
3777 | to | | 3010
3020
3030 | 1536
1544
1552
1560 | 1537
1545
1553
1561 | 1538
1546
1554
1562 | 1539
1547
1555
1563 | 1540
1548
1556
1564 | 1541
1549
1557
1565 | 1542
1550
1558
1566 | 1543
1551
1559
1567 | 3400
3410
3420
3430 | 0
1792
1800
1808
1816 | 1793
1801
1809
1817 | 2
1794
1802
1810
1818 | 3
1795
1803
1811
1819 | 4
1796
1804
1812
1820 | 5
1797
1805
1813
1821 | 6
1798
1806
1814
1822 | 7
1799
1807
1815
1823 | to | | | 3010
3020
3030
3040 | 1536
1544
1552
1560
1568 | 1537
1545
1553
1561
1569 | 1538
1546
1554
1562
1570 | 1539
1547
1555
1563
1571 | 1540
1548
1556
1564
1572 | 1541
1549
1557
1565
1573 | 1542
1550
1558
1566
1574 | 1543
1551
1559
1567
1575 | 3400
3410
3420
3430
3440 | 0
1792
1800
1808
1816
1824 | 1793
1801
1809
1817
1825 | 2
1794
1802
1810
1818
1826 | 3
1795
1803
1811
1819
1827 | 4
1796
1804
1812
1820
1828 | 5
1797
1805
1813
1821
1829 | 6
1798
1806
1814
1822
1830 | 7
1799
1807
1815
1823
1831 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060 | 1536
1544
1552
1560
1568
1576
1584 | 1537
1545
1553
1561
1569
1577
1585 | 1538
1546
1554
1562
1570
1578
1586 | 1539
1547
1555
1563
1571
1579
1587 | 1540
1548
1556
1564
1572
1580
1588 | 1541
1549
1557
1565
1573
1581
1589 | 1542
1550
1558
1566
1574
1582
1590 | 1543
1551
1559
1567
1575
1583
1591 | 3400
3410
3420
3430
3440
3450
3460 | 0
1792
1800
1808
1816
1824
1832
1840 | 1793
1801
1809
1817
1825
1833
1841 | 2
1794
1802
1810
1818
1826
1834
1842 | 3
1795
1803
1811
1819
1827
1835
1843 | 4
1796
1804
1812
1820
1828
1836
1844 | 5
1797
1805
1813
1821
1829
1837
1845 | 6
1798
1806
1814
1822
1830
1838
1846 | 7
1799
1807
1815
1823
1831
1839
1847 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050 | 1536
1544
1552
1560
1568
1576 | 1537
1545
1553
1561
1569
1577 | 1538
1546
1554
1562
1570
1578 | 1539
1547
1555
1563
1571
1579 | 1540
1548
1556
1564
1572
1580 | 1541
1549
1557
1565
1573
1581 | 1542
1550
1558
1566
1574
1582 | 1543
1551
1559
1567
1575
1583 | 3400
3410
3420
3430
3440
3450 | 0
1792
1800
1808
1816
1824
1832 | 1793
1801
1809
1817
1825
1833 | 2
1794
1802
1810
1818
1826
1834 | 3
1795
1803
1811
1819
1827
1835 | 4
1796
1804
1812
1820
1828
1836 | 5
1797
1805
1813
1821
1829
1837 | 6
1798
1806
1814
1822
1830
1838 | 7
1799
1807
1815
1823
1831
1839 | to
3777 | to
2047 | |
3010
3020
3030
3040
3050
3060 | 1536
1544
1552
1560
1568
1576
1584 | 1537
1545
1553
1561
1569
1577
1585
1593 | 1538
1546
1554
1562
1570
1578
1586
1594 | 1539
1547
1555
1563
1571
1579
1587
1595 | 1540
1548
1556
1564
1572
1580
1588
1596 | 1541
1549
1557
1565
1573
1581
1589
1597 | 1542
1550
1558
1566
1574
1582
1590
1598 | 1543
1551
1559
1567
1575
1583
1591
1599 | 3400
3410
3420
3430
3440
3450
3460
3470 | O 1792
1800
1808
1816
1824
1832
1840
1848 | 1793
1801
1809
1817
1825
1833
1841
1849 | 2
1794
1802
1810
1818
1826
1834
1842
1850 | 3
1795
1803
1811
1819
1827
1835
1843
1851 | 4
1796
1804
1812
1820
1828
1836
1844
1852 | 5
1797
1805
1813
1821
1829
1837
1845
1853 | 6
1798
1806
1814
1822
1830
1838
1846
1854 | 7
1799
1807
1815
1823
1831
1839
1847
1855 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3100
3110 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611 | 1540
1548
1556
1564
1572
1580
1588
1596 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613 | 1542
1550
1558
1566
1574
1582
1590
1598
1606
1614 | 1543
1551
1559
1567
1575
1583
1591
1599 | 3400
3410
3420
3430
3440
3450
3460
3470 | 0
1792
1800
1808
1816
1824
1832
1840
1848
1856
1864 | 1793
1801
1809
1817
1825
1833
1841
1849 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1859
1867 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1868 | 5
1797
1805
1813
1821
1829
1837
1845
1853 | 6
1798
1806
1814
1822
1830
1838
1846
1854 | 7
1799
1807
1815
1823
1831
1839
1847
1855 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3110
3120 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611
1619 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1620 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621 | 1542
1550
1558
1566
1574
1582
1590
1598
1606
1614
1622 | 1543
1551
1559
1567
1575
1583
1591
1599
1607
1615
1623 | 3400
3410
3420
3430
3440
3450
3460
3470
3510 | O 1792
1800
1808
1816
1824
1832
1840
1848
1856
1864
1872 | 1793
1801
1809
1817
1825
1833
1841
1849 | 2
1794
1802
1810
1818
1826
1834
1842
1850 | 3
1795
1803
1811
1819
1827
1835
1843
1851 | 4
1796
1804
1812
1820
1828
1836
1844
1852 | 5
1797
1805
1813
1821
1829
1837
1845
1853 | 6
1798
1806
1814
1822
1830
1838
1846
1854 | 7
1799
1807
1815
1823
1831
1839
1847
1855 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3110
3120
3130
3140 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617
1625
1633 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618
1626
1634 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611
1619
1627
1635 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1620
1628
1636 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1629
1637 | 1542
1550
1558
1566
1574
1582
1590
1598
1606
1614
1622
1630
1638 | 1543
1551
1559
1567
1575
1583
1591
1599
1607
1615
1623
1631
1639 | 3400
3410
3420
3430
3440
3450
3470
3510
3520
3530 | 0
1792
1800
1808
1816
1824
1832
1840
1848
1856
1864
1872
1880
1888 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1873
1881
1889 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1890 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1859
1867
1867
1883
1891 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1868
1876
1884
1892 | 5
1797
1805
1813
1821
1829
1837
1845
1853
1861
1869
1877
1885
1893 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1870
1878
1886
1894 | 7
1799
1807
1815
1823
1831
1839
1847
1855
1863
1871
1879
1887
1895 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3110
3120
3130
3140
3150 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1640 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617
1625
1633
1641 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618
1626
1634
1642 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611
1619
1627
1635
1643 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1620
1628
1636
1644 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1629
1637
1645 | 1542
1550
1558
1566
1574
1582
1590
1598
1606
1614
1622
1630
1638
1646 | 1543
1551
1559
1567
1575
1583
1591
1599
1607
1615
1623
1631
1639
1647 | 3400
3410
3420
3430
3440
3450
3470
3500
3510
3520
3530
3540
3550 | O
1792
1800
1808
1816
1824
1840
1848
1856
1864
1872
1880
1888
1896 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1873
1881
1889
1897 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1890
1898 | 3
1795
1803
1811
1819
1827
1835
1845
1851
1859
1867
1875
1883
1891
1899 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1868
1876
1884
1892
1900 | 5
1797
1805
1813
1821
1829
1837
1845
1853
1861
1869
1877
1885
1893
1901 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1870
1878
1886
1894
1902 | 7
1799
1807
1815
1823
1831
1839
1847
1855
1863
1871
1879
1887
1895
1903 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3110
3120
3130
3140
3150 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617
1625
1633 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618
1626
1634 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611
1619
1627
1635 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1620
1628
1636 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1629
1637 | 1542
1550
1558
1566
1574
1582
1590
1598
1606
1614
1622
1630
1638 | 1543
1551
1559
1567
1575
1583
1591
1599
1607
1615
1623
1631
1639 | 3400
3410
3420
3430
3440
3450
3470
3510
3520
3530 | 0
1792
1800
1808
1816
1824
1832
1840
1848
1856
1864
1872
1880
1888 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1873
1881
1889 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1890 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1859
1867
1867
1883
1891 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1868
1876
1884
1892 | 5
1797
1805
1813
1821
1829
1837
1845
1853
1861
1869
1877
1885
1893 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1870
1878
1886
1894 | 7
1799
1807
1815
1823
1831
1839
1847
1855
1863
1871
1879
1887
1895 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3110
3120
3130
3140
3150
3160
3170 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1640
1648 |
1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617
1625
1633
1641
1649
1657 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618
1626
1634
1642
1650
1658 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611
1619
1627
1635
1643
1659 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1620
1628
1636
1644
1652
1660 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1629
1637
1645
1663 | 1542
1550
1558
1566
1574
1582
1590
1598
1606
1614
1622
1630
1638
1646
1654 | 1543
1551
1559
1567
1575
1583
1591
1599
1607
1615
1623
1631
1639
1647
1655
1663 | 3400
3410
3420
3430
3440
3450
3470
3500
3510
3520
3530
3540
3550
3560
3570 | 0
1792
1800
1808
1816
1824
1832
1840
1848
1856
1864
1872
1880
1888
1896
1904 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1873
1881
1889
1897
1905 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1890
1898
1906
1914 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1859
1867
1875
1883
1891
1899
1907 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1868
1876
1892
1900
1908
1916 | 5
1797
1805
1813
1821
1829
1837
1845
1853
1861
1869
1877
1885
1893
1901
1909
1917 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1870
1878
1886
1894
1902
1910
1918 | 7
1799
1807
1815
1823
1831
1847
1855
1863
1871
1879
1887
1895
1903
1911
1919 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3110
3120
3130
3140
3150
3160 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1640
1648 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617
1625
1633
1641
1649 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618
1626
1634
1642
1650 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611
1619
1627
1635
1643
1651 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1620
1628
1636
1644
1652 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1629
1637
1645
1653 | 1542
1550
1558
1566
1574
1582
1590
1598
1606
1614
1622
1630
1638
1646
1654 | 1543
1551
1559
1567
1575
1583
1591
1599
1607
1615
1623
1631
1639
1647
1655 | 3400
3410
3420
3430
3440
3450
3510
3520
3530
3540
3550
3560 | 0
1792
1800
1808
1816
1824
1832
1840
1848
1856
1864
1872
1880
1888
1896
1904 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1873
1881
1889
1897
1905 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1898
1906 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1859
1867
1875
1883
1891
1899 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1868
1876
1884
1892
1900
1908 | 5
1797
1805
1813
1821
1829
1837
1845
1853
1861
1869
1877
1885
1893
1901
1909 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1870
1878
1898
1894
1902
1910
1918 | 7
1799
1807
1815
1823
1831
1839
1847
1855
1863
1871
1879
1887
1895
1903
1911
1919 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3050
3050
3100
3110
3120
3130
3140
3150
3160
3170
3220 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1640
1648
1656 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617
1625
1633
1641
1649
1657 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618
1626
1634
1642
1650
1658 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611
1619
1627
1635
1643
1651
1659 | 1540
1548
1556
1564
1572
1580
1596
1604
1612
1620
1628
1636
1644
1652
1660 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1629
1637
1653
1661 | 1542
1550
1558
1566
1574
1582
1590
1598
1606
1614
1622
1630
1638
1646
1654
1662 | 1543
1551
1559
1567
1575
1583
1591
1599
1607
1615
1623
1639
1647
1655
1663 | 3400
3410
3420
3430
3440
3450
3510
3510
3520
3530
3540
3550
3560
3570 | 0
1792
1800
1808
1816
1824
1832
1840
1848
1856
1864
1872
1880
1896
1904
1912
1920
1928 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1873
1881
1889
1897
1905
1913 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1892
1890
1914
1922
1930
1938 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1867
1875
1873
1891
1997
1915
1923
1931 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1868
1876
1900
1908
1918
1919
1924
1932
1940 | 5
1797
1805
1813
1821
1829
1837
1845
1861
1869
1877
1893
1901
1909
1917 | 6 1798 1806 1814 1822 1830 1838 1846 1854 1809 1910 1918 1926 1934 1942 | 7
1799
1807
1815
1823
1831
1839
1847
1855
1863
1871
1879
1887
1903
1911
1919 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3070
3100
3110
3120
3130
3150
3160
3170
3220
3230 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1640
1648
1656 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617
1625
1633
1641
1649
1657 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618
1626
1634
1642
1658
1666
1674
1682
1690 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611
1619
1627
1635
1643
1659
1667
1667
1683
1691 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1620
1628
1636
1644
1652
1660 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1629
1637
1645
1661
1669
1677
1685
1693 | 1542
1550
1558
1566
1574
1582
1590
1598
1606
1614
1622
1630
1638
1646
1654
1662 | 1543
1551
1559
1567
1575
1583
1591
1599
1607
1615
1623
1631
1639
1647
1655
1663 | 3400
3410
3430
3440
3450
3450
3510
3520
3530
3540
3550
3560
3570
3610
3610
3620
3630 | 0
1792
1800
1808
1816
1824
1832
1840
1848
1856
1864
1872
1880
1894
1912
1920
1928
1936 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1873
1881
1889
1897
1905
1913 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1890
1914
1922
1930
1938 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1859
1867
1875
1883
1891
1907
1915 | 4
1796
1804
1820
1828
1828
1836
1844
1852
1868
1876
1889
1900
1908
1916
1924
1932
1940
1948 | 5
1797
1805
1813
1821
1829
1837
1845
1861
1869
1877
1885
1893
1901
1909
1917 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1870
1878
1898
1894
1902
1910
1918 | 7
1799
1807
1815
1823
1831
1839
1847
1855
1863
1871
1879
1887
1895
1903
1911
1919 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3110
3120
3130
3140
3150
3170
3220
3220
3223
3224
3250 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1648
1648
1656
1664
1672
1680
1688
1688
1696
1704 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617
1625
1631
1649
1657
1668
1673
1681
1689
1697
1705 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618
1626
1634
1642
1650
1658 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611
1619
1627
1635
1643
1651
1659
1667
1675
1683
1691
1699 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1628
1636
1644
1652
1660
1668
1676
1668
1676
1684
1692
1700 |
1541
1549
1557
1565
1573
1581
1581
1589
1605
1613
1621
1645
1653
1661
1669
1677
1685
1693
1701
1701 | 1542
1550
1558
1566
1574
1582
1590
1698
1606
1614
1622
1630
1636
1646
1654
1662
1670
1678
1686
1694
1702
1702 | 1543
1551
1559
1567
1575
1575
1599
1607
1615
1623
1631
1637
1647
1655
1663
1671
1679
1687
1697
1697 | 3400
3410
3420
3430
3450
3470
3510
3520
3530
3540
3550
3560
3670
3600
3610
3620
3630
3640
3650 | 0
1792
1800
1808
1816
1824
1832
1848
1856
1864
1872
1880
1904
1912
1920
1928
1936
1944
1952 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1873
1881
1889
1897
1905
1913
1921
1929
1937
1945
1951 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1892
1996
1914
1922
1930
1938
1946
1954 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1867
1875
1899
1907
1915
1923
1931
1939
1947
1955 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1868
1876
1990
1908
1916
1922
1940
1948
1940
1948
1956
1964 | 5
1797
1805
1813
1821
1829
1837
1845
1861
1869
1877
1885
1901
1909
1917 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1870
1878
1894
1902
1910
1918
1924
1950
1950
1950 | 7
1799
1807
1815
1823
1831
1839
1847
1855
1863
1871
1879
1897
1993
1991
1911
1919
1925
1943
1951
1959 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3100
3110
3120
3130
3150
3160
3170
3200
3210
3220
3230
3240
3250
3260 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1640
1640
1640
1640
1640
1640
1640
1672
1672
1672
1704
1704
1771 | 1537
1545
1553
1561
1569
1577
1585
1693
1601
1625
1633
1641
1649
1657
1668
1673
1681
1681
1689
1697
1705
17705 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1626
1634
1642
1650
1658
1668
1668
1674
1682
1690
1690
1796 | 1539
1547
1555
1563
1571
1579
1587
1595
1603
1611
1619
1627
1635
1643
1651
1659
1667
1675
1683
1691
1693
1707 | 1540
1548
1556
1564
1580
1588
1596
1604
1612
1628
1636
1644
1652
1660
1668
1676
1684
1692
1700
1708 | 1541
1549
1557
1565
1573
1581
1581
1589
1693
1629
1637
1645
1663
1661
1669
1693
1701
1709
1717 | 1542
1550
1558
1566
1574
1582
1590
1698
1606
1614
1620
1638
1646
1654
1662
1670
1678
1686
1694
1702
1710 | 1543
1551
1559
1567
1575
1583
1591
1695
1607
1615
1623
1631
1631
1645
1663
1671
1679
1687
1695
1703 | 3400
3410
3430
3440
3450
3460
3510
3520
3530
3540
3550
3660
3670
3620
3630
3640
3630
3660
3660 | 0
1792
1800
1808
1816
1824
1832
1840
1848
1856
1864
1872
1880
1904
1912
1920
1928
1936
1944
1952 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1873
1995
1913
1921
1929
1937
1945
1956
1969 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1890
1914
1922
1930
1938
1946
1954
1954
1954
1954 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1859
1867
1875
1883
1891
1907
1915
1923
1931
1939
1947
1955
1963 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1908
1916
1924
1932
1948
1948
1956
1964
1972 | 5
1797
1805
1813
1821
1829
1837
1845
1853
1861
1869
1893
1999
1917
1925
1933
1941
1949
1957 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1870
1918
1926
1934
1942
1950
1958
1958
1958 | 7
1799
1807
1815
1823
1831
1839
1847
1855
1863
1863
1879
1895
1893
1991
1919
1927
1935
1943
1951
1959
1967 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3110
3120
3130
3140
3150
3210
3210
3210
3220
3210
3220
3230
3240
3250
3270 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1640
1648
1656
1664
1704
1712
1720 | 1537
1545
1553
1561
1569
1577
1585
1691
1607
1625
1633
1641
1649
1657
1668
1673
1681
1689
1705
1705
1713 | 1538
1546
1554
1560
1570
1578
1586
1594
1610
1618
1628
1634
1642
1650
1658
1666
1674
1682
1690
1714
1722 | 1539
1547
1555
1563
1571
1579
1587
1693
1611
1619
1627
1635
1643
1651
1659
1667
1675
1683
1691
1707
1715 | 1540
1548
1556
1564
1572
1580
1588
1696
1696
1604
1636
1636
1644
1652
1660
1668
1696
1700
1708
1716
1724 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1629
1637
1645
1661
1669
1677
1685
1691
1709
1717
1708 | 1542
1550
1558
1568
1564
1574
1582
1590
1698
1606
1614
1622
1630
1648
1654
1662
1670
1678
1686
1670
1718
1718 | 1543
1551
1569
1567
1575
1583
1591
1697
1615
1623
1631
1639
1647
1655
1663
1671
1679
1697
1697
1711
1719 | 3400
3410
3420
3430
3440
3450
3510
3520
3530
3540
3550
3560
3670
3630
3640
3650
3660
3670 | 0
1792
1800
1808
1816
1824
1832
1848
1856
1864
1872
1880
1994
1912
1920
1928
1936
1948
1952
1960
1968
1976 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1913
1905
1913
1921
1929
1937
1945
1961
1969
1977 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1990
1914
1922
1930
1938
1946
1957
1978 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1867
1875
1883
1997
1915
1923
1939
1947
1955
1963
1971
1979 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1968
1990
1908
1916
1924
1940
1948
1940
1948
1956
1964
1972
1980 | 5
1797
1805
1813
1821
1829
1837
1845
1861
1869
1877
1893
1901
1909
1917
1925
1933
1941
1949
1965
1973
1981 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1910
1918
1922
1910
1918
1924
1950
1958
1958
1958
1958 | 7
1799
1807
1815
1823
1831
1839
1847
1855
1863
1871
1879
1993
1991
1993
1994
1995
1996
1997
1998 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3110
3120
3130
3140
3150
3210
3220
3230
3220
3230
3250
3270
3300 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1618
1624
1632
1640
1648
1656
1688
1696
1712
1712 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1625
1631
1641
1649
1657
1668
1673
1681
1689
1697
1713
1721 | 1538
1546
1554
1560
1570
1578
1586
1594
1602
1610
1618
1624
1650
1658
1666
1674
1682
1690
1714
1722 | 1539
1547
1555
1563
1563
1571
1579
1587
1695
1603
1631
1651
1659
1667
1675
1683
1691
1683
1691
1715
1715
1715
1723 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1620
1628
1660
1664
1676
1684
1684
1692
1700
1700
1710
1724 | 1541
1549
1557
1565
1573
1581
1589
1605
1613
1621
1629
1645
1653
1661
1686
1677
1701
1717
1725 | 1542
1550
1558
1566
1574
1582
1590
1698
1606
1614
1622
1630
1646
1654
1662
1670
1678
1686
1694
1701
1718
1726 | 1543
1551
1569
1567
1583
1591
1607
1615
1623
1631
1639
1647
1655
1663
1671
1673
1687
1703
1703
1703
1719
1727 | 3400
3410
3420
3430
3440
3450
3510
3510
3520
3530
3540
3550
3660
3670
3620
3630
3640
3650
3660
3670 | 0
1792
1800
1808
1816
1824
1832
1840
1856
1864
1872
1880
1904
1912
1920
1928
1936
1944
1952
1960
1976 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1905
1913
1921
1929
1937
1946
1953
1969
1977 |
2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1890
1914
1922
1930
1938
1946
1954
1978
1978 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1867
1875
1883
1891
1907
1915
1923
1931
1939
1947
1959
1963
1971
1979 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1908
1916
1932
1948
1948
1956
1964
1972
1988 | 5
1797
1805
1813
1821
1829
1837
1845
1869
1867
1893
1991
1997
1917
1925
1933
1941
1949
1957
1965
1973
1981 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1970
1918
1926
1934
1942
1950
1958
1958
1974
1982 | 7
1799
1807
1815
1823
1831
1831
1839
1847
1855
1863
1867
1878
1890
1991
1995
1995
1995
1995
1995
1995 | to
3777 | to
2047 | | 3010
3020
3020
3030
3040
3050
3060
3170
3110
3120
3150
3170
3210
3210
3210
3220
3210
3220
3230
3240
3250
3270 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1632
1640
1648
1656
1664
1704
1712
1720 | 1537
1545
1553
1561
1569
1577
1585
1691
1607
1625
1633
1641
1649
1657
1668
1673
1681
1689
1705
1705
1713 | 1538
1546
1554
1560
1570
1578
1586
1594
1610
1618
1628
1634
1642
1650
1658
1666
1674
1682
1690
1714
1722 | 1539
1547
1555
1563
1571
1579
1587
1693
1611
1619
1627
1635
1643
1651
1659
1667
1675
1683
1691
1707
1715 | 1540
1548
1556
1564
1572
1580
1588
1696
1696
1604
1636
1636
1644
1652
1660
1668
1696
1700
1708
1716
1724 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1629
1637
1645
1661
1669
1677
1685
1691
1709
1717
1708 | 1542
1550
1558
1568
1564
1574
1582
1590
1698
1606
1614
1622
1630
1648
1654
1662
1670
1678
1686
1670
1718
1718 | 1543
1551
1569
1567
1575
1583
1591
1697
1615
1623
1631
1639
1647
1655
1663
1671
1679
1697
1697
1711
1719 | 3400
3410
3420
3430
3440
3450
3510
3520
3530
3540
3550
3560
3670
3630
3640
3650
3660
3670 | 0
1792
1800
1808
1816
1824
1832
1848
1856
1864
1872
1880
1994
1912
1920
1928
1936
1948
1952
1960
1968
1976 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1913
1905
1913
1921
1929
1937
1945
1961
1969
1977 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1990
1914
1922
1930
1938
1946
1957
1978 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1867
1875
1883
1997
1915
1923
1939
1947
1955
1963
1971
1979 | 4
1796
1804
1812
1820
1828
1836
1844
1852
1860
1968
1990
1908
1916
1924
1940
1948
1940
1948
1956
1964
1972
1980 | 5
1797
1805
1813
1821
1829
1837
1845
1861
1869
1877
1885
1901
1909
1917
1925
1933
1941
1949
1957
1973
1981 | 6
1798
1806
1814
1822
1830
1838
1846
1854
1862
1910
1918
1926
1919
1918
1926
1974
1982
1990
1998
1998 | 7 1799 1807 1815 1823 1831 1839 1847 1879 1895 1993 1991 1997 1997 19983 1991 1999 1997 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3070
3110
3120
3130
3140
3150
3160
3270
320
3230
3240
3250
3270
3310
3310
3250
3270
3310
3310
3310
3210
3210
3210
3210
321 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1640
1648
1656
1680
1688
1690
1772
1720 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617
1625
1633
1641
1649
1657
1681
1681
1681
1773
1721
1722
1737
1745 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618
1622
1650
1658
1666
1674
1714
1722
1730
1738
1738
1738 | 1539
1547
1555
1563
1563
1571
1579
1587
1603
1611
1619
1627
1635
1643
1651
1683
1691
1683
1691
1715
1723 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1620
1620
1621
1636
1644
1652
1660
1700
1716
1724
1732
1740
1744
1756 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1623
1645
1653
1661
1685
1693
1701
1717
1725
1733
1741
1749 | 1542
1550
1558
1566
1574
1582
1590
1698
1606
1614
1622
1630
1638
1646
1654
1662
1670
1718
1726
1726
1734
1742
1750 | 1543
1551
1559
1567
1575
1583
1591
1607
1615
1623
1631
1639
1647
1655
1663
1671
1679
1703
1771
1771
1772
1743
1751 | 3400
3410
3420
3430
3440
3450
3510
3520
3530
3540
3550
3660
3670
3670
3710
3720
3720 | 0
1792
1800
1808
1816
1824
1832
1840
1856
1864
1872
1880
1994
1912
1920
1928
1936
1944
1952
1968
1976 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1905
1913
1921
1929
1937
1945
1969
1977 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1990
1914
1932
1938
1946
1954
1978
1978
1989
1994
2002
2010 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1867
1875
1883
1997
1915
1923
1931
1939
1947
1955
2003
2011 | 1796
1804
1812
1820
1828
1836
1844
1852
1860
1908
1916
1932
1932
1940
1948
1956
1964
1972
1988
1996
2012 | 5
1797
1805
1813
1821
1829
1837
1845
1861
1869
1901
1909
1917
1925
1933
1941
1949
1957
1981
1989
1997 | 1798
1806
1814
1822
1830
1838
1846
1854
1862
1870
1918
1902
1910
1918
1926
1934
1942
1950
1974
1982
2006 | 7
1799
1807
1815
1823
1831
1839
1847
1856
1863
1867
1867
1993
1991
1993
1995
1995
1998
1999
2007 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3060
3070
3110
3120
3130
3140
3150
3210
3220
3210
3220
3230
3240
3250
3270
3310
3320
3320
3320
3320
3320
3320
332 | 1536
1544
1552
1560
1568
1576
1584
1692
1600
1602
1632
1640
1632
1640
1656
1656
1664
1672
1680
1704
1712
1720
1720
1721
1721
1721
1721
1721 | 1537
1545
1553
1561
1561
1561
157
1585
1601
1609
1617
1625
1633
1641
1649
1657
1688
1697
1705
1705
1721
1721
1721
1721
1723
1737
1745
1763 | 1538
1546
1554
1562
1570
1578
1586
1594
1610
1618
1626
1634
1642
1650
1658
1666
1674
1682
1706
1714
1722
1730
1746
1754 | 1539
1547
1555
1563
1571
1579
1587
1693
1611
1619
1627
1635
1643
1651
1659
1667
1683
1691
1707
1715
1715
1723
1731
1747
1755 | 1540
1548
1556
1564
1572
1580
1698
1698
1628
1636
1644
1652
1700
1708
1708
1708
1718
1724
1732
1740
1740
1756 | 1541
1549
1567
1565
1573
1581
1589
1597
1605
1613
1621
1629
1637
1645
1653
1701
1709
1701
1709
1717
1725
1733
1741
1749
1757 | 1542
1550
1558
1566
1574
1582
1690
1590
1690
1638
1646
1654
1662
1670
1710
1710
1710
1712
1726
1734
1742
1750
1758 | 1543
1551
1559
1567
1583
1591
1699
1607
1615
1623
1631
1647
1656
1663
1671
1679
1687
1703
1711
1719
1711
1711
1711
1712
1727 | 3400
3410
3420
3430
3440
3450
3510
3520
3530
3540
3550
3660
3670
3670
3710
3720
3730
3740 | 0
1792
1800
1808
1808
1816
1824
1832
1840
1872
1880
1896
1994
1912
1928
1936
1944
1952
1960
1968
1976
1988
1996
1998
1998
1998
1998
1998
199 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1865
1873
1905
1913
1921
1929
1937
1945
1961
1969
1993
2001 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1992
1993
1938
1938
1938
1954
1954
1954
1954
1952
2002
2010 | 3
1795
1803
1811
1819
1827
1835
1867
1875
1863
1891
1899
1907
1915
1923
1931
1935
1947
1955
1963
1971
1979
1987
1995
2003
2011 |
4
1796
1804
1812
1820
1828
1836
1868
1876
1868
1876
1990
1908
1918
1948
1972
1980
1988
1986
1988
1996
2004
2012
2020 | 5
1797
1805
1813
1821
1829
1837
1845
1861
1869
1877
1885
1991
1909
1917
1925
1933
1941
1949
1957
1958
1973
1981
1989
1997
2005
2013
2021 | 6
1798
1806
1814
1822
1830
1838
1848
1862
1870
1878
1894
1902
1910
1918
1950
1950
1956
1974
1982
1982
1982
1982
1982
1982
1982
1982 | 7
1799
1807
1815
1823
1831
1839
1847
1855
1863
1871
1879
1993
1991
1995
1995
1995
1997
1975
1998
1999
2007
2015 | to
3777 | to
2047 | | 3010
3020
3030
3040
3050
3070
3110
3120
3130
3140
3150
3160
3270
320
3230
3240
3250
3270
3310
3310
3210
3210
3210
3210
3210
321 | 1536
1544
1552
1560
1568
1576
1584
1592
1600
1608
1616
1624
1640
1648
1656
1680
1688
1690
1772
1720 | 1537
1545
1553
1561
1569
1577
1585
1593
1601
1609
1617
1625
1633
1641
1649
1657
1681
1681
1681
1773
1721
1722
1737
1745 | 1538
1546
1554
1562
1570
1578
1586
1594
1602
1610
1618
1622
1650
1658
1666
1674
1714
1722
1730
1738
1738
1738 | 1539
1547
1555
1563
1563
1571
1579
1587
1603
1611
1619
1627
1635
1643
1651
1683
1691
1683
1691
1715
1723 | 1540
1548
1556
1564
1572
1580
1588
1596
1604
1612
1620
1620
1621
1636
1644
1652
1660
1700
1716
1724
1732
1740
1744
1756 | 1541
1549
1557
1565
1573
1581
1589
1597
1605
1613
1621
1623
1645
1653
1661
1685
1693
1701
1717
1725
1733
1741
1749 | 1542
1550
1558
1566
1574
1582
1590
1698
1606
1614
1622
1630
1638
1646
1654
1662
1670
1718
1726
1726
1734
1742
1750 | 1543
1551
1559
1567
1575
1583
1591
1607
1615
1623
1631
1639
1647
1655
1663
1671
1679
1703
1771
1771
1772
1743
1751 | 3400
3410
3420
3430
3440
3450
3510
3520
3530
3540
3550
3660
3670
3670
3710
3720
3720 | 1792
1800
1808
1816
1824
1832
1840
1856
1864
1872
1880
1904
1912
1920
1928
1936
1944
1952
1968
1976 | 1793
1801
1809
1817
1825
1833
1841
1849
1857
1905
1913
1921
1929
1937
1945
1969
1977 | 2
1794
1802
1810
1818
1826
1834
1842
1850
1858
1866
1874
1882
1990
1914
1932
1938
1946
1954
1978
1978
1989
1994
2002
2010 | 3
1795
1803
1811
1819
1827
1835
1843
1851
1867
1875
1883
1997
1915
1923
1931
1939
1947
1955
2003
2011 | 1796
1804
1812
1820
1828
1836
1844
1852
1860
1908
1916
1932
1932
1940
1948
1956
1964
1972
1988
1996
2012 | 5
1797
1805
1813
1821
1829
1837
1845
1861
1869
1901
1909
1917
1925
1933
1941
1949
1957
1981
1989
1997 | 1798
1806
1814
1822
1830
1838
1846
1854
1862
1870
1918
1902
1910
1918
1926
1934
1942
1950
1974
1982
2006 | 7
1799
1807
1815
1823
1831
1839
1847
1856
1863
1867
1867
1993
1991
1993
1995
1995
1998
1999
2007 | to
3777 | to
2047 | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |--------------------------------|--|---|--|--|---|--|--|--|---|--|---|---|---|--|---|---|---
---|---| | 4000 2048 | 4000 | 2048
2056 | 2049
2057 | 2050
2058 | 2051
2059 | 2052 | 2053
2061 | 2054
2062 | 2055
2063 | | 4400
4410 | 2304
2312 | 2305
2313 | 2306
2314 | 2307
2315 | 2308
2316 | 2309
2317 | 2310
2318 | 2311
2319 | | to to 4777 2559 | 4010
4020 | 2064 | 2065 | 2066 | 2067 | 2068 | 2069 | 2070 | 2071 | | 4420 | 2320 | 2321 | 2322 | 2323 | 2324 | 2325 | 2326
2334 | 2327
2335 | | (Octal) (Decimal) | 4030
4040 | 2072
2080 | 2073
2081 | 2074
2082 | 2075
2083 | 2076
2084 | 2077
2085 | 2078
2086 | 2079
2087 | | 4430
4440 | 2328
2336 | 2329
2337 | 2330
2338 | 2331
2339 | 2332
2340 | 2333
2341 | 2342 | 2343 | | | 4050
4060 | 2088
2096 | 2089
2097 | 2090
2098 | 2091
2099 | 2092
2100 | 2093
2101 | 2094
2102 | 2095
2103 | | 4450
4460 | 2344
2352 | 2345
2353 | 2346
2354 | 2347
2355 | 2348
2356 | 2349
2357 | 2350
2358 | 2351
2359 | | Octal Decimal
10000 - 4096 | 4070 | 2104 | 2105 | 2106 | 2107 | 2108 | 2109 | 2110 | 2111 | | 4470 | 2360 | 2361 | 2362 | 2363 | 2364 | 2365 | 2366 | 2367 | | 20000 - 8192 | 4100
4110 | 2112
2120 | 2113
2121 | 2114
2122 | 2115
2123 | 2116
2124 | 2117
2125 | 2118
2126 | 2119
2127 | | 4500
4510 | 2368
2376 | 2369
2377 | 2370
2378 | 2371
2379 | 2372
2380 | 2373
2381 | 2374
2382 | 2375
2383 | | 30000 - 12288
40000 - 16384 | 4120
4130 | 2128
2136 | 2129
2137 | 2130
2138 | 2131
2139 | 2132
2140 | 2133
2141 | 2134
2142 | 2135
2143 | | 4520
4530 | 2384
2392 | 2385
2393 | 2386
2394 | 2387
2395 | 2388
2396 | 2389
2397 | 2390
2398 | 2391
2399 | | 50000 - 20480
60000 - 24576 | 4140 | 2144 | 2145 | 2146 | 2147 | 2148 | 2149 | 2150 | 2151 | | 4540 | 2400 | 2401 | 2402 | 2403 | 2404 | 2405 | 2406 | 2407 | | 70000 - 28672 | 4150
4160 | 2152
2160 | 2153
2161 | 2154
2162 | 2155
2163 | 2156
2164 | 2157
2165 | 2158
2166 | 2159
2167 | | 4550
4560 | 2408
2416 | 2409
2417 | 2410
2418 | 2411
2419 | 2412
2420 | 2413
2421 | 2414
2422 | 2415
2423 | | | 4170 | 2168 | 2169 | 2170 | 2171 | 2172 | 2173 | 2174 | 2175 | | 4570
4600 | 2424 | 2425 | 2426 | 2427 | 2428
2436 | 2429
2437 | 2430
2438 | 2431
2439 | | | 4200
4210 | 2176
2184 | 2177
2185 | 2178
2186 | 2179
2187 | 2180
2188 | 2181
2189 | 2182
2190 | 2183
2191 | | 4610 | 2432
2440 | 2433
2441 | 2434
2442 | 2435
2443 | 2444 | 2445 | 2446 | 2447 | | | 4220
4230 | 2192
2200 | 2193
2201 | 2194
2202 | 2195
2203 | 2196
2204 | 2197
2205 | 2198
2206 | 2199
2207 | | 4620
4630 | 2448
2456 | 2449
2457 | 2450
2458 | 2451
2459 | 2452
2460 | 2453
2461 | 2454
2462 | 2455
2463 | | | 4240
4250 | 2208
2216 | 2209
2217 | 2210
2218 | 2211
2219 | 2212
2220 | 2213
2221 | 2214
2222 | 2215
2223 | | 4640
4650 | 2464
2472 | 2465
2473 | 2466
2474 | 2467
2475 | 2468
2476 | 2469
2477 | 2470
2478 | 2471
2479 | | | 4260 | 2224 | 2225 | 2226
2234 | 2227
2235 | 2228
2236 | 2229
2237 | 2230
2238 | 2231
2239 | | 4660
4670 | 2480
2488 | 2481
2489 | 2482
2490 | 2483
2491 | 2484
2492 | 2485
2493 | 2486
2494 | 2487
2495 | | | 4270 | 2232 | 2233 | 2242 | 2243 | 2244 | 2245 | 2246 | 2247 | | 4700 | 2496 | 2497 | 2498 | 2499 | 2500 | 2501 | 2502 | 2503 | | | 4310
4320 | 2248
2256 | 2249
2257 | 2250
2258 | 2251
2259 | 2252
2260 | 2253
2261 | 2254
2262 | 2255
2263 | | 4710
4720 | 2504
2512 | 2505
2513 | 2506
2514 | 2507
2515 | 2508
2516 | 2509
2517 | 2510
2518 | 2511
2519 | | | 4330 | 2264 | 2265 | 2266 | 2267 | 2268 | 2269 | 2270 | 2271 | | 4730 | 2520 | 2521 | 2522 | 2523 | 2524 | 2525 | 2526 | 2527 | | | 4340
4350 | 2272
2280 | 2273
2281 | 2274
2282 | 2275
2283 | 2276
2284 | 2277
2285 | 2278
2286 | 2279
2287 | | 4740
4750 | 2528
2536 | 2529
2537 | 2530
2538 | 2531
2539 | 2532
2540 | 2533
2541 | 2534
2542 | 2535
2543 | | | 4360 | 2288 | 2289 | 2290 | 2291 | 2292 | 2293 | 2294 | 2295 | - 1 | 4760 | 2544 | 2545 | 2546 | 2547 | 2548 | 2549 | 2550 | 2551 | | | 4370 | 2296 | 2297 | 2298 | 2299 | 2300 | 2301 | 2302 | 2303 | į | 4770 | 2552 | 2553 | 2554 | 2555 | 2556 | 2557 | 2558 | 2559 | | | | | | | 2299 | 2300 | 2301 | 6 | 7 | | 4770 | 0 | 2553 | 2554 | 3 | 2556 | 2557
5 | 2558
6 | 7 | | 5000 2560 | 5000 | O 2560 | 1 2561 | 2298
2
2562 | 3 2563 | 4 2564 | 5
2565 | 6 2566 | 7 2567 | | 5400 | O
2816 | 1 2817 | 2 2818 | 3 2819 | 4 2820 | 5 2821 | 6 2822 | 7 2823 | | to to | 5000
5010
5020 | O
2560
2568
2576 | 1
2561
2569
2577 | 2
2
2
2
2
2
2
2
2
2
2
3
7
0
2
5
7
8 | 3
2563
2571
2579 | 4
2564
2572
2580 | 5
2565
2573
2581 | 6
2566
2574
2582 | 7
2567
2575
2583 | | 5400
5410
5420 | O
2816
2824
2832 | 1
2817
2825
2833 | 2
2818
2826
2834 | 3
2819
2827
2835 | 4
2820
2828
2836 | 5
2821
2829
2837 | 6
2822
2830
2838 | 7
2823
2831
2839 | | | 5000
5010 | O 2560 2568 | 1
2561
2569 | 2
2
2
2562
2570 | 3
2563
2571 | 4
2564
2572 | 5
2565
2573 | 6
2566
2574 | 7
2567
2575 | | 5400
5410 | O
2816
2824 | 1
2817
2825 | 2
2818
2826 | 3
2819
2827 | 4
2820
2828 | 5
2821
2829 | 6
2822
2830 | 7
2823
2831 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050 | 2560
2568
2576
2584
2592
2600 | 2561
2569
2577
2585
2593
2601 | 2
2
2562
2570
2578
2586
2594
2602 | 3
2563
2571
2579
2587
2595
2603 | 4
2564
2572
2580
2588
2596
2604 | 5
2565
2573
2581
2589
2597
2605 | 6
2566
2574
2582
2590
2598
2606 | 7
2567
2575
2583
2591
2599
2607 | To the state of th | 5400
5410
5420
5430
5440
5450 | O
2816
2824
2832
2840
2848
2856 | 1
2817
2825
2833
2841
2849
2857 | 2
2818
2826
2834
2842
2850
2858 | 3
2819
2827
2835
2843
2851
2859 | 4
2820
2828
2836
2844
2852
2860 | 5
2821
2829
2837
2845
2853
2861 | 6
2822
2830
2838
2846
2854
2862 | 7
2823
2831
2839
2847
2855
2863 | | to to
5777 3071 | 5000
5010
5020
5030
5040 | O
2560
2568
2576
2584
2592 | 2297
1
2561
2569
2577
2585
2593 | 2
2
2562
2570
2578
2586
2594 | 3
2563
2571
2579
2587
2595 | 4
2564
2572
2580
2588
2596 | 5
2565
2573
2581
2589
2597 | 6
2566
2574
2582
2590
2598 | 7
2567
2575
2583
2591
2599 | Final Control of the | 5400
5410
5420
5430
5440 | O
2816
2824
2832
2840
2848 | 1
2817
2825
2833
2841
2849 | 2
2818
2826
2834
2842
2850 | 3
2819
2827
2835
2843
2851 | 2820
2828
2836
2844
2852 | 5
2821
2829
2837
2845
2853 | 6
2822
2830
2838
2846
2854 | 7
2823
2831
2839
2847
2855 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050
5060
5070
5100 | 2560
2568
2576
2584
2592
2600
2608
2616 | 2297
1
2561
2569
2577
2585
2593
2601
2609
2617 | 2
2562
2570
2578
2586
2594
2602
2610
2618 | 3
2563
2571
2579
2587
2595
2603
2611
2619 | 2564
2572
2580
2588
2596
2604
2612
2620 | 5
2565
2573
2581
2589
2597
2605
2613
2621 | 6
2566
2574
2582
2590
2598
2606
2614
2622
2630 | 7
2567
2575
2583
2591
2599
2607
2615
2623 | facilities of the state | 5400
5410
5420
5430
5440
5450
5460
5470 | O
2816
2824
2832
2840
2848
2856
2864
2872 | 1
2817
2825
2833
2841
2849
2857
2865
2873 | 2
2818
2826
2834
2842
2850
2858
2866
2874 | 3
2819
2827
2835
2843
2851
2859
2867
2875 | 2820
2828
2836
2844
2852
2860
2868
2876 | 5
2821
2829
2837
2845
2853
2861
2869
2877 | 6
2822
2830
2838
2846
2854
2862
2870
2878 | 7
2823
2831
2839
2847
2855
2863
2871
2879 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5060
5070
5110
5120 | 2560
2568
2568
2578
2592
2600
2608
2616
2624
2632
2640 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641 | 2
2562
2570
2578
2586
2594
2602
2610
2618
2626
2634
2642 | 3
2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643 | 2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644 | 5
2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646 |
7
2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647 | Transmission is a second secon | 5400
5410
5420
5430
5440
5450
5460
5470
5500
5510
5520 | 0
2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2889
2897 | 2
2818
2826
2834
2842
2850
2858
2866
2874
2882
2890
2898 | 3
2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2899 | 2820
2828
2836
2844
2852
2860
2868
2876
2884
2892
2900 | 5
2821
2829
2837
2845
2853
2861
2869
2877
2885
2893
2901 | 2822
2830
2838
2846
2854
2862
2870
2878
2886
2894
2902 | 7
2823
2831
2839
2847
2855
2863
2871
2879
2887
2895
2903 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657 | 2
2562
2570
2578
2586
2594
2602
2618
2626
2634
2634
2650
2658 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659 | 2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644
2652
2660 | 5
2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2653
2661 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2654 | 7
2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663 | | 5400
5410
5420
5430
5440
5450
5460
5470
5500
5510
5520
5530
5540 | O
2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896
2904
2912 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2889
2897
2905
2913 | 2
2818
2826
2834
2842
2850
2858
2866
2874
2882
2890
2898
2906
2914 | 3
2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2899
2907
2915 | 2820
2828
2836
2844
2852
2860
2868
2876
2884
2892
2900
2908
2916 | 5
2821
2829
2837
2845
2853
2861
2869
2877
2885
2893
2901
2909
2917 | 6
2822
2830
2838
2846
2854
2862
2870
2878
2886
2894
2902
2910
2918 | 7
2823
2831
2839
2847
2855
2863
2871
2879
2887
2993
2911
2919 | | to to
5777 3071 | 5000
5010
5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140
5150
5160 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664
2672 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2665
2673 | 2
2562
2570
2578
2586
2594
2602
2610
2618
2626
2634
2642
2650
2658
2656
2674 | 3
2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659
2667
2675 | 4
2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644
2652
2668
2676 | 5
2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2663
2669
2677 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2664
2670
2678 | 7
2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679 | The second secon | 5400
5410
5420
5420
5430
5440
5450
5470
5510
5520
5530
5540
5550
5560 | O
2816
2824
2832
2840
2848
2856
2864
2872
2888
2896
2904
2912
2920
2928 | 1
2817
2825
2833
2841
2849
2857
2865
2873
2881
2889
2897
2907
2913
2921
2929 | 2
2818
2826
2834
2842
2850
2858
2866
2874
2882
2890
2898
2906
2914
2922
2930 | 3
2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2899
2907
2915
2913
2931 | 4
2820
2828
2836
2844
2852
2860
2868
2876
2884
2892
2900
2908
2916
2914
2932 | 5
2821
2829
2837
2845
2853
2861
2869
2877
2885
2901
2909
2917
2925
2933 | 2822
2830
2838
2846
2854
2862
2870
2878
2886
2894
2902
2910
2918
2918
2926
2934 | 7
2823
2831
2839
2847
2855
2863
2871
2879
2895
2903
2911
2927
2927
2935 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5150
5160
5170 | 2560
2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
26464
2672
2680 | 2297
1
2561
2569
2577
2585
2691
2609
2617
2625
2633
2641
2649
2657
2649
2657
2649
2673
2681 | 2
2
2562
2570
2578
2586
2694
2602
2618
2626
2634
2642
2650
2658
2656
2656
2674
2682 | 3
2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659
2667
2675
2683 | 2564
2572
2580
2588
2604
2612
2620
2628
2636
2644
2652
2660
2668
2676
2684 | 5
2565
2573
2581
2589
2697
2605
2613
2621
2629
2637
2645
2663
2663
2669
2677
2685 | 6
2566
2574
2582
2590
2698
2606
2614
2622
2630
2638
2646
2654
2662
2670
2678
2686 | 2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2653
2671
2679
2687 | | 5400
5410
5420
5430
5440
5450
5560
5510
5520
5530
5540
5550
5560
5570 | 0
2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896
2904
2912
2920
2928
2936 | 2817
2825
2833
2841
2849
2857
2865
2873
2881
2889
2897
2905
2913
2921
2929
2937 | 2
2818
2826
2834
2842
2850
2858
2866
2874
2892
2898
2996
2914
2922
2930
2938 | 3
2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2907
2915
2923
2931
2939 | 2820
2828
2836
2844
2852
2860
2868
2876
2884
2892
2900
2908
2916
2924
2932
2940 | 5
2821
2829
2837
2845
2861
2869
2877
2885
2893
2901
2909
2917
2925
2933
2941 | 2822
2830
2838
2846
2854
2862
2870
2878
2886
2894
2900
2918
2926
2934
2942 | 7
2823
2831
2839
2847
2855
2863
2871
2879
2897
2993
2911
2919
2927
2935
2943 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5060
5070
5110
5120
5140
5150
5170 | 2560
2568
2576
2584
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664
2672 | 2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2665
2673
2681
2689
2697 | 2298
2562
2570
2578
2586
2594
2602
2610
2618
2626
2634
2642
2650
2658
2662
2674
2682
2690
2698 | 3
2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659
2667
2675
2683 | 2564
2572
2580
2598
2696
2804
2612
2620
2628
2636
2644
2652
2668
2668
2676
2684
2692
2700 | 5
2565
2573
2589
2597
2605
2613
2621
2629
2637
2645
2661
2665
2665
2677
2685 | 6
2566
2574
2582
2590
2698
2606
2614
2622
2630
2638
2646
2654
2662
2670
2688
2688
2688
2688
2694
2702 | 7
2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679
2687 | | 5400
5410
5420
5430
5440
5450
5450
5510
5520
5530
5540
5550
5550
5560
5570 | 0
2816
2824
2832
2848
2856
2864
2872
2880
2988
2990
2912
2920
2920
2928
2936
2944
2952 | 1
2817
2825
2833
2841
2849
2857
2865
2873
2881
2897
2905
2913
2921
2929
2937
2945
2953 | 2
2818
2826
2834
2850
2858
2866
2874
2892
2890
2914
2922
2930
2938
2946
2954 | 3
2819
2827
2835
2843
2851
2859
2875
2883
2891
2907
2915
2923
2931
2939
2947
2955 | 2820
2828
2836
2836
2844
2852
2860
2876
2884
2892
2900
2908
2916
2924
2932
2932
2940
2948
2956 | 5
2821
2829
2837
2845
2853
2861
2869
2877
2885
2901
2909
2917
2925
2925
2933
2941
2949
2949 | 2822
2830
2838
2846
2854
2862
2870
2878
2898
2902
2910
2918
2918
2926
2934
2942 | 7
2823
2831
2839
2847
2855
2863
2871
2887
2895
2903
2911
2919
2927
2935
2943 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050
5060
5070
5100
51100
5120
5130
5140
5160
5170 |
2560
2560
2568
2576
2578
2592
2600
2618
2624
2632
2640
2648
2648
2646
2648 | 2561
2561
2563
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2653
2673
2681 | 2298
2562
2570
2578
2578
2594
2602
2610
2618
2626
2634
2642
2650
2658
2666
2674
2682 | 3
2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659
2667
2683 | 2564
2572
2580
2588
2596
2604
2612
2620
2628
2636
2644
2652
2660
2668
2668
2684
2692 | 5
2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2663
2661
2669
2677
2685 | 6
2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2662
2670
2686
2686 | 7
2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679
2687 | | 5400
5410
5420
5430
5440
5440
5460
5470
5510
5520
5530
5540
5550
5560
5570 | O
2816
2824
2832
2840
2848
2856
2864
2872
2880
2888
2896
2904
2912
2920
2928
2936
2944 | 1
2817
2825
2833
2841
2849
2857
2865
2873
2891
2905
2913
2921
2929
2937
2945 | 2
2818
2826
2834
2842
2850
2858
2866
2874
2892
2993
2914
2922
2930
2938
2946 | 2819
2827
2835
2843
2851
2859
2867
2875
2883
2891
2907
2915
2915
2923
2931
2939
2947 | 2820
2828
2836
2844
2852
2860
2868
2976
2990
2908
2916
2914
2914
2932
2940 | 5
2821
2829
2837
2845
2853
2861
2869
2877
2885
2990
2901
2902
2917
2925
2933
2941 | 2822
2830
2838
2846
2854
2862
2870
2878
2898
2990
2918
2918
2912
2926
2934
2942 | 7
2823
2831
2839
2847
2855
2863
2871
2879
2987
2993
2911
2919
2927
2935
2943 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050
5060
5070
5110
5130
5140
5150
5170
5220
5220
5220
5220 | 2560
2568
2568
2576
2584
2592
2600
2608
2616
2624
2632
2648
2652
2672
2680
2696
2704
2712
2712
27720 | 2561
2569
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2657
2663
2673
2681
2689
2770
2705
2713
2713 | 2298
2 2562
2570
2578
2586
2594
2602
2610
2618
2626
2634
2642
2650
2658
2662
2674
2682
2690
2698
2706
2706
2706
2702 | 3
2563
2571
2598
2587
2595
2691
2619
2627
2635
2651
2652
2653
2651
2653
2651
2653
2653
2654
2659
2707
2715
2715
2712 | 2564
2572
2580
2580
2580
2596
2604
2602
2612
2622
2636
2634
2652
2660
2688
2676
2708
2708
2708
2700
2708
2716
2716
2716
2714 | 5
2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2653
2661
2669
2707
2709
2707
2707
2707
2707
2707
2717
2717
2717 | 6
2566
2574
2582
2598
2698
2606
2614
2622
2630
2638
2646
2654
2662
2670
2686
2694
2702
2710 | 7
2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679
2687
2695
2697
2703
2711 | | 5400
5410
5420
5430
5440
5450
5460
5510
5520
5520
5550
5560
5560
5560
5610
5620 | 2816
2824
2832
2840
2856
2864
2872
2880
2896
2904
2901
2920
2920
2936
2936
2946 | 1
2817
2825
2833
2841
2849
2867
2865
2873
2861
2995
2991
2992
2937
2945
2945
2953
2961 | 2
2818
2826
2834
2842
2850
2858
2866
2874
2890
2890
2914
2920
2930
2933
2938
2946
2954
2962 | 3
2819
2827
2835
2843
2851
2859
2867
2875
2893
2991
2993
2993
2931
2939
2947
2955
2963
2971
2979 | 2820
2828
2836
2844
2852
2860
2868
2876
2892
2900
2908
2916
2924
2932
2932
2932
2940
2948
2956
2964 | 5
2821
2829
2837
2845
2853
2861
2869
2877
2885
2991
2901
2902
2917
2925
2933
2934
2949
2949
2957
2965 | 2822
2830
2846
2854
2862
2870
2870
2878
29902
2910
2918
2926
2934
2942
2958
2958 | 7
2823
2831
2839
2847
2855
2863
2871
2895
2903
2911
2919
2927
2923
2943
2951
2959
2967 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050
5060
5070
51100
51100
51100
5150
5160
5170
5200
5220
5230
5240
5250 | 2560
2568
2568
2576
2588
2592
2600
2608
2616
2624
2632
2640
2648
2656
2664
2672
2680
2704
2712
2712
2728
2712
2728
2736 | 2297
1
2561
2569
2577
2585
2593
2601
2609
2617
2625
2633
2641
2649
2665
2673
2681
2689
2697
2705
2713
2721
2729
2737 | 2298 2562 2570 2578 2586 2594 2680 2610 2618 2626 2634 2642 2650 2658 2690 2698 2706 2714 2722 2730 2738 | 2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2651
2659
2683
2691
2692
2707
2715
2723
2731
2731 | 2564
2572
2580
2588
2596
2604
2612
2620
2636
2636
2644
2652
2668
2676
2708
2716
2727
2716
2727
2732
2740 | 5
25665
2573
2581
2589
2597
2605
2613
2621
2632
2645
2653
2661
2685
2693
2701
2709
2717
2725
2733
2741 | 2566
2574
2582
2590
2598
2604
2614
2622
2630
2638
2646
2654
2654
2654
2654
2710
2718
2718
2718 | 7
2567
2575
2583
2591
2692
2615
2623
2631
2639
2647
2655
2667
2679
2687
2703
2711
2719
2727
2735
2743 | | 5400
5410
5420
5430
5440
5450
5460
5510
5510
5520
5530
5540
5550
5560
5570
5620
5630
5640 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2994
2912
2920
2928
2936
2956
2968
2976
2988
2976
2988
2984
2984
2959
2969
2978
2989
2989
2989
2989
2989
2989
298 | 1
2817
2825
2833
2841
2849
2865
2873
2881
2897
2905
2913
2929
2937
2945
2969
2977
2969
2977
2969
2977 | 2818
2826
2834
2842
2850
2866
2874
2890
2914
2930
2938
2946
2952
2970
2978
2989
2989
2989
2989
2989
2989
2989 | 3
2819
2827
2835
2843
2851
2867
2875
2883
2891
2907
2915
2933
2931
2939
2947
2955
2963
2971
2979
2987 | 4
2820
2828
2836
2844
2852
2860
2868
2876
2900
2908
2912
2932
2940
2952
2952
2952
2952
2953
2954
2952
2953
2953
2954
2954
2955
2954
2955
2954
2955
2954
2955
2955 | 5
2821
2829
2837
2845
2863
2861
2861
2893
2901
2901
2925
2933
2941
2949
2957
2965
2973
2981 | 2822
2830
2838
2846
2854
2862
2870
2890
2910
2910
2918
2926
2934
2934
2934
2934
2934
2934
2934
2934 | 7
2823
2831
2839
2847
2855
2863
2871
2879
2993
2911
2919
2927
2935
2943
2959
2967
2975
2975
2983 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050
5060
5070
5110
5120
5130
5140
5150
5160
5170
5220
5220
5230
5240
5250 | 2560
2560
2568
2576
2588
2576
2692
2600
2608
2616
2624
2632
2640
2642
2642
2648
2642
2640
2772
2880
2772
2772 | 2297
1
2561
2569
2577
2585
2691
2609
2617
2625
2633
2641
2649
2673
2681
2689
2705
2713
2721 | 2298 2562 2570 2578 2586 2602 2610 2618 2626 2634 2642 2650 2674 2682 2698 2706 2714 2714 2730 | 3
2563
2571
2579
2587
2595
2603
2611
2619
2627
2635
2643
2659
2667
2675
2675
2683
2699
2707
2715
2699
2707
2715
2723
2723
2723 | 2564
2572
2580
2580
2598
2596
2604
2612
2622
2638
2644
2652
2660
2668
2676
2682
2716
2700
2718
2718
2719
2718 | 5
2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2669
2677
2685
2701
2709
2717
2709
2717
2709
2717
2717
2717
2717
2717
2717
2717
271 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2667
2678
2686
2694
2702
2710
2718
2726
2734
2734 | 7
2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2671
2679
2687
2711
2719
2711
2712
2727
2735 | | 5400
5410
5420
5430
5440
5450
5460
5510
5520
5530
5540
5550
5550
5560
5610
6620
6630
5640
5650
5660
5650
5660 |
2816
2824
2832
2840
2856
2864
2872
2880
2898
2991
2992
2912
2928
2932
2936
2944
2952
2960
2962
2964
2952
2960
2988 | 1
2817
2825
2833
2841
2849
2865
2873
2865
2873
2995
2995
2991
2929
2937
2945
2961
2969
2969
2969
2969
2969
2969
2969 | 2
2818
2826
2834
2850
2858
2866
2874
2882
2890
2914
2922
2930
2938
2946
2954
2962
2970
2986 | 2819
2827
2835
2843
2851
2859
2867
2875
2893
29907
2915
2923
2931
2923
2937
2947
2955
2963
2971
2987 | 2820
2828
2836
2844
2852
2860
2868
2876
2908
2908
2916
2924
2932
2940
2948
2948
2956
2964
2972
2980
2988 | 5
2821
2829
2837
2845
2853
2868
2877
2885
2991
2909
2917
2909
2917
2929
2933
2941
2949
2957
2981
2981
2981
2981
2981 | 2822
2830
2838
2846
2854
2862
2870
2910
2912
2912
2913
2914
2914
2915
2915
2916
2914
2916
2917
2918
2919
2919
2919
2919 | 7
2823
2831
2839
2847
2855
2863
2871
2879
2991
2927
2935
2943
2951
2951
2952
2967
2975
2983
2991
2992
2992
2993
2993
2993
2993 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050
5060
5070
5100
5120
5130
5140
5150
5170
5210
5220
5230
5240
5250
5260
5270 | 2560
25680
25688
2575
2584
2592
2600
2608
2616
2624
2632
2640
2648
2652
2684
2652
2680
2686
2704
2712
2720
2728
2736
2744
2752
2756 | 2561
2569
2569
2577
2585
2593
2609
2617
2625
2633
2641
2649
2657
2665
2673
2681
2689
2705
2713
2721
2729
2737
2745
2753
2761 | 2298 2 2562 2570 2578 2586 2594 2602 2610 2618 2626 2634 2642 2650 2698 2706 2698 2706 2714 2722 2730 2738 2746 | 2563
2571
2598
2587
2598
2598
2603
2611
2619
2627
2635
2643
2651
2675
2675
2675
2675
2715
2715
2723
2731
2739
2747 | 2564
2572
2580
2580
2580
2690
2612
2620
2638
2634
2652
2660
2668
2676
2708
2708
2716
2714
2732
2740
2732
2740
2744
2732
2740
2744
2746
2746 | 5
2565
2573
2581
2589
2597
2605
2613
2621
2639
2637
2645
2661
2669
2707
2707
2707
2717
2725
2733
2742
2749
2757
2749 | 2566
2574
2582
2590
2598
2598
2696
2614
2622
2630
2638
2646
2654
2672
2710
2718
2718
2718
2726
2734
2742
2750
2758 | 7
2567
2575
2583
2591
2599
2607
2615
2623
2631
2639
2647
2655
2663
2679
2687
2695
2703
2711
2727
2735
2743
2751
2759 | | 5400
5410
5410
5420
5430
5440
5540
5550
5520
5520
5560
5570
5620
5660
5670
5620
5630
5640
5650
5630
5640
5650
5630
5640
5650
5650
5630
5650
5630
5650
5630
5650
565 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2988
2992
2928
2936
2928
2936
2944
2952
2968
2976
2988
2976
2988
2976
2988
2976
2988
2976
2988
2976
2988
2976
2988
2976
2988
2976
2988
2976
2988
2976
2988
2976
2988
2976
2988
2988
2976
2988
2976
2988
2988
2976
2988
2988
2976
2988
2988
2976
2988
2988
2988
2988
2988
2988
2988
298 | 1
2817
2825
2833
2841
2849
2857
2865
2873
2881
2899
2905
2913
2921
2929
2937
2945
2953
2969
2977
2985
3001
3009
3017 | 2 2818 2826 2834 2842 2850 2874 2892 2898 2996 2914 2922 2930 2938 2936 2954 2967 2978 2986 3002 3010 3018 | 3
2819
2827
2835
2843
2851
2859
2867
2875
2893
2991
2993
2993
2993
2993
29947
2995
2993
3003
3011
3019 | 4
2820
2828
2836
2844
2852
2860
2868
2976
2990
2908
2916
2924
2932
2940
2948
2956
2969
2980
2980
3004
3012
3012 | 5
2821
2829
2837
2845
2853
2868
2877
2885
2991
2909
2917
2925
2933
2941
2989
2981
2989
2981
2989
3005
3013
3021 | 2832
2830
2838
2846
2854
2862
2870
2878
2896
29910
2910
2918
2926
2934
2934
2934
2942
2950
2958
2968
2998
2998
2990
3006 | 7
2823
2831
2839
2847
2855
2863
2871
2899
2903
2911
2919
2927
2935
2943
2959
2963
2993
3007
3015
3023 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050
5060
5110
5120
5130
5140
5150
5160
5170
5220
5230
5240
5250
5270
5320
5320
5320
5330 | 2560
2568
2568
2576
2582
2600
2608
2616
2624
2632
2640
2648
2656
2664
2672
2680
2704
2712
2720
2720
2736
2744
2752
2768
2752
2768
2752
2768
2776
2776
2776
2776
2776
2776
277 | 2297 1 2561 2569 2577 2585 2693 2601 2609 2617 2625 2633 2641 2649 2665 2673 2681 2689 27705 2713 2721 27729 2737 2745 2753 2761 2753 2761 2769 27777 | 2298 2 2562 2570 2578 2586 2694 2602 2610 2618 26264 2634 2662 2674 2682 2690 2714 2722 2730 2738 2746 2754 2762 2770 2778 | 2563
2571
2579
2587
2599
2587
2595
2603
2611
2619
2627
2635
2643
2651
2653
2697
2707
2715
2723
2731
2731
2739
2747 | 2564
2572
2580
2588
2596
2604
2612
2620
2636
2636
2644
2652
2668
2708
2716
2724
2732
2740
2748
2756
2764
2772
2778 | 5
25665
2573
2581
2589
2597
2605
2613
2621
2637
2645
2653
2661
2665
2709
2717
2725
2733
2741
2749
2757
2765
27781 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2662
2646
2702
2710
2718
2726
2734
2750
2758
2768 | 7
2567
2575
2583
2591
2607
2615
2623
2631
2639
2647
2655
2667
2679
2687
2703
2711
2719
2727
2735
2743
2751
2759
2769
2775
2783 | | 5400
5410
5420
5430
5440
5450
5460
5510
5520
5530
5560
5560
5610
5620
5630
5640
5650
5670
5670
5710
5710
5720
5720
5730 | 0
2816
2824
2832
2840
2848
2856
2864
2872
2896
2904
2912
2920
2928
2936
2956
2968
2976
2984
2992
3000
3016
3018
3024
3032 | 1
2817
2825
2833
2841
2849
2857
2865
2873
2881
2897
2905
2913
2929
2937
2945
2969
2977
2969
2973
3001
3009
3017
3009
3013
3025
3023 | 2818
2826
2834
2842
2850
2866
2874
2892
2996
2914
2930
2938
2930
2938
2946
2952
2970
2978
3010
3018
3018
3016
3016
3013 | 3
2819
2827
2835
2843
2851
2859
2867
2875
2899
2907
2915
2933
2931
2939
2947
2953
2963
2971
2979
3003 | 2820
2828
2836
2844
2852
2860
2868
2876
2900
2908
2914
2932
2944
2932
2944
2956
2964
2972
2988
2996
3004 | 5
2821
2829
2837
2845
2863
2861
2901
2901
2902
2917
2925
2933
2941
2957
2981
2981
2997
3005
3013
3021
3029
3037 | 2822
2830
2838
2846
2854
2862
2870
2878
29910
2918
2918
2918
2918
2918
2918
2918
2918 | 7
2823
2831
2839
2847
2855
2863
2871
2895
2991
2919
2935
2943
2951
2957
2983
2999
3007
3015
3023
3031
3039 | | to to
5777 3071 | 5000
5010
5020
5030
5040
5050
5060
5070
5110
5120
5150
5160
5170
5220
5220
5220
5220
5250
5260
5270 | 2560
2568
2568
2576
2588
2576
2690
2608
2616
2624
2632
2640
2642
2642
2642
2643
2644
2772
2786
27704
2772
27726
2744
2752
2756 | 2297 1 2561 2569 2577 2585 2693 2601 2609 2617 2625 2633 2641 2649 2687 2687 2687 2703 2713 2714 2729 2737 2745 2753 | 2298 2 2562 2570 2578 2586 2602 2610 2618 2626 2634 2642 2650 2668 2666 2714 2682 2750 27730 2738 2746 2752 27730 27737 | 2563
2571
2587
2587
2595
2603
2601
2611
2619
2627
2635
2643
2651
2659
2667
2715
2723
2731
2739
2747
2755
2763
2771 | 2564
2572
2580
2588
2596
2604
2612
2622
2632
2636
2644
2652
2660
2708
2716
2724
2732
2740
2748
2754
2748
2754
2744
2754
2754
2754
2754
2754
2754 | 5
2565
2573
2581
2589
2597
2605
2613
2621
2629
2637
2645
2661
2709
2717
2725
2733
2741
2749
2757
2765
2773 | 2566
2574
2582
2590
2598
2606
2614
2622
2630
2638
2646
2654
2672
2678
2678
2710
2718
2742
2750
2758
2758
2756
2774 | 7
2567
2575
2575
2593
2591
2697
2615
2623
2631
2639
2647
2655
2663
2671
2679
2703
2711
2719
2727
2735
2743
2751
2751 | |
5400
5410
5410
5420
5420
5420
5540
5550
5510
5520
5530
5540
5550
5610
5620
5630
5640
5630
5640
5650
5640
5650
5670
5640
5670
5710
5770 | 2816
2824
2832
2840
2848
2856
2864
2872
2880
2994
2912
2920
2912
2920
2928
2936
2944
2952
2960
2968
2976
2988
2995
2984
2992
3000
3008
3016
3016
3016 | 1
2817
2825
2833
2841
2849
2867
2865
2873
2881
2892
2905
2913
2921
2929
2937
2945
2953
2969
2993
3001
3009
3001
30025 | 2
2818
2826
2854
2850
2858
2866
2874
2882
2890
2914
2922
2930
2933
2938
2946
2970
2930
2930
3010
3018
3018
3026 | 3
2819
2827
2835
2843
2851
2859
2867
2875
2893
2907
2915
2923
2931
2939
2947
2955
2963
2979
2987
2995
3003
3011
3019
3027 | 2820
2828
2836
2844
2852
2860
2868
2876
2884
2990
2918
2918
2924
2932
2940
2948
2956
2956
3004
3012
3012
3020
3023 | 5
2821
2829
2837
2845
2853
2869
2877
2885
2909
2917
2925
2933
2941
2949
2957
2965
2973
3005
3013
3013
3021 | 2822
2830
2838
2846
2854
2862
2870
2878
2898
29910
2918
2912
2914
2926
2950
2958
2958
2959
2959
3006 | 7
2823
2831
2839
2847
2855
2863
2879
2887
2990
2927
2935
2997
2957
2959
2967
2975
2993
3007
3015
3023
3031 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|------|------|------|------|------|------| | | | | | | | | | | | 6000 | 3072 | 3073 | 3074 | 3075 | 3076 | 3077 | 3078 | 3079 | | 6010 | 3080 | 3081 | 3082 | 3083 | 3084 | 3085 | 3086 | 3087 | | 6020 | 3088 | 3089 | 3090 | 3091 | 3092 | 3093 | 3094 | 3095 | | 6030 | 3096 | 3097 | 3098 | 3099 | 3100 | 3101 | 3102 | 3103 | | 6040 | 3104 | 3105 | 3106 | 3107 | 3108 | 3109 | 3110 | 3111 | | 6050 | 3112 | 3113 | 3114 | 3115 | 3116 | 3117 | 3118 | 3119 | | 6060 | 3120 | 3121 | 3122 | 3123 | 3124 | 3125 | 3126 | 3127 | | 6070 | 3128 | 3129 | 3130 | 3131 | 3132 | 3133 | 3134 | 3135 | | 6100 | 3136 | 3137 | 3138 | 3139 | 3140 | 3141 | 3142 | 3143 | | 6110 | 3144 | 3145 | 3146 | 3147 | 3148 | 3149 | 3150 | 3151 | | 6120 | 3152 | 3153 | 3154 | 3155 | 3156 | 3157 | 3158 | 3159 | | 6130 | 3160 | 3161 | 3162 | 3163 | 3164 | 3165 | 3166 | 3167 | | 6140 | 3168 | 3169 | 3170 | 3171 | 3172 | 3173 | 3174 | 3175 | | 6150 | 3176 | 3177 | 3178 | 3179 | 3180 | 3181 | 3182 | 3183 | | 6160 | 3184 | 3185 | 3186 | 3187 | 3188 | 3189 | 3190 | 3191 | | 6170 | 3192 | 3193 | 3194 | 3195 | 3196 | 3197 | 3198 | 3199 | | 6200 | 3200 | 3201 | 3202 | 3203 | 3204 | 3205 | 3206 | 3207 | | 6210 | 3208 | 3209 | 3210 | 3211 | 3212 | 3213 | 3214 | 3215 | | 6220 | 3216 | 3217 | 3218 | 3219 | 3220 | 3221 | 3222 | 3223 | | 6230 | 3224 | 3225 | 3226 | 3227 | 3228 | 3229 | 3230 | 3231 | | 6240 | 3232 | 3233 | 3234 | 3235 | 3236 | 3237 | 3238 | 3239 | | 6250 | 3240 | 3241 | 3242 | 3243 | 3244 | 3245 | 3246 | 3247 | | 6260 | 3248 | 3249 | 3250 | 3251 | 3252 | 3253 | 3254 | 3255 | | 6270 | 3256 | 3257 | 3258 | 3259 | 3260 | 3261 | 3262 | 3263 | | 6300 | 3264 | 3265 | 3266 | 3267 | 3268 | 3269 | 3270 | 3271 | | 6310 | 3272 | 3273 | 3274 | 3275 | 3276 | 3277 | 3278 | 3279 | | 6320 | 3280 | 3281 | 3282 | 3283 | 3284 | 3285 | 3286 | 3287 | | 6330 | 3288 | 3289 | 3290 | 3291 | 3292 | 3293 | 3294 | 3295 | | 6340 | 3296 | 3297 | 3298 | 3299 | 3300 | 3301 | 3302 | 3303 | | 6350 | 3304 | 3305 | 3306 | 3307 | 3308 | 3309 | 3310 | 3311 | | 6360 | 3312 | 3313 | 3314 | 3315 | 3316 | 3317 | 3318 | 3319 | | 6370 | 3320 | 3321 | 3322 | 3323 | 3324 | 3325 | 3326 | 3327 | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|------|------|------|------|------|------|------|------| | 6400 | 3328 | 3329 | 3330 | 3331 | 3332 | 3333 | 3334 | 3335 | | 6410 | 3336 | 3337 | 3338 | 3339 | 3340 | 3341 | 3342 | 3343 | | 6420 | 3344 | 3345 | 3346 | 3347 | 3348 | 3349 | 3350 | 3351 | | 6430 | 3352 | 3353 | 3354 | 3355 | 3356 | 3357 | 3358 | 3359 | | 6440 | 3360 | 3361 | 3362 | 3363 | 3364 | 3365 | 3366 | 3367 | | 6450 | 3368 | 3369 | 3370 | 3371 | 3372 | 3373 | 3374 | 3375 | | 6460 | 3376 | 3377 | 3378 | 3379 | 3380 | 3381 | 3382 | 3383 | | 6470 | 3384 | 3385 | 3386 | 3387 | 3388 | 3389 | 3390 | 3391 | | | | | | | | | | | | 6500 | 3392 | 3393 | 3394 | 3395 | 3396 | 3397 | 3398 | 3399 | | 6510 | 3400 | 3401 | 3402 | 3403 | 3404 | 3405 | 3406 | 3407 | | 6520 | 3408 | 3409 | 3410 | 3411 | 3412 | 3413 | 3414 | 3415 | | 6530 | 3416 | 3417 | 3418 | 3419 | 3420 | 3421 | 3422 | 3423 | | 6540 | 3424 | 3425 | 3426 | 3427 | 3428 | 3429 | 3430 | 3431 | | 6550 | 3432 | 3433 | 3434 | 3435 | 3436 | 3437 | 3438 | 3439 | | 6560 | 3440 | 3441 | 3442 | 3443 | 3444 | 3445 | 3446 | 3447 | | 6570 | 3448 | 3449 | 3450 | 3451 | 3452 | 3453 | 3454 | 3455 | | | | | | | | | | | | 6600 | 3456 | 3457 | 3458 | 3459 | 3460 | 3461 | 3462 | 3463 | | 6610 | 3464 | 3465 | 3466 | 3467 | 3468 | 3469 | 3470 | 3471 | | 6620 | 3472 | 3473 | 3474 | 3475 | 3476 | 3477 | 3478 | 3479 | | 6630 | 3480 | 3481 | 3482 | 3483 | 3484 | 3485 | 3486 | 3487 | | 6640 | 3488 | 3489 | 3490 | 3491 | 3492 | 3493 | 3494 | 3495 | | 6650 | 3496 | 3497 | 3498 | 3499 | 3500 | 3501 | 3502 | 3503 | | 6660 | 3504 | 3505 | 3506 | 3507 | 3508 | 3509 | 3510 | 3511 | | 6670 | 3512 | 3513 | 3514 | 3515 | 3516 | 3517 | 3518 | 3519 | | 6700 | 3520 | 3521 | 3522 | 3523 | 3524 | 3525 | 3526 | 3527 | | 6710 | 3528 | 3529 | 3530 | 3531 | 3532 | 3533 | 3534 | 3535 | | 6720 | 3536 | 3537 | 3538 | 3539 | 3540 | 3541 | 3542 | 3543 | | 6730 | 3544 | 3545 | 3546 | 3547 | 3548 | 3549 | 3550 | 3551 | | 6740 | 3552 | 3553 | 3554 | 3555 | 3556 | 3557 | 3558 | 3559 | | 6750 | 3560 | 3561 | 3562 | 3563 | 3564 | 3565 | 3566 | 3567 | | 6760 | 3568 | 3569 | 3570 | 3571 | 3572 | 3573 | 3574 | 3575 | | 6770 | 3576 | 3577 | 3578 | 3579 | 3580 | 3581 | 3582 | 3583 | | | | 30.7 | 3010 | 3073 | 3000 | 3301 | 3302 | | | | | | | | | | | | | 6000 | 3072 | |---------|-----------| | to | to | | 6777 | 3583 | | (Octal) | (Decimal) | Octal Decimal 10000 - 4096 20000 - 8192 30000 - 12288 40000 - 16384 50000 - 24576 70000 - 28672 | _ | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |---|------|------|------|------|------|------|------|------|------| | l | 7000 | 3584 | 3585 | 3586 | 3587 | 3588 | 3589 | 3590 | 3591 | | l | 7010 | 3592 | 3593 | 3594 | 3595 | 3496 | 3497 | 3598 | 3599 | | l | 7020 | 3600 | 3601 | 3602 | 3603 | 3604 | 3605 | 3606 | 3607 | | l | 7030 | 3608 | 3609 | 3610 | 3611 | 3612 | 3613 | 3614 | 3615 | | l | 7040 | 3616 | 3617 | 3618 | 3619 | 3620 | 3621 | 3622 | 3623 | | ł | 7050 | 3624 | 3625 | 3626 | 3627 | 3628 | 3629 | 3630 | 3631 | | ١ | 7060 | 3632 | 3633 | 3634 | 3635 | 3636 | 3637 | 3638 | 3639 | | | 7070 | 3640 | 3641 | 3642 | 3643 | 3644 | 3645 | 3646 | 3647 | | | 7100 | 3648 | 3649 | 3650 | 3651 | 3652 | 3653 | 3654 | 3655 | | ١ | 7110 | 3656 | 3657 | 3658 | 3659 | 3660 | 3661 | 3662 | 3663 | | l | 7120 | 3664 | 3665 | 3666 | 3667 | 3668 | 3669 | 3670 | 3671 | | l | 7130 | 3672 | 3673 | 3674 | 3675 | 3676 | 3677 | 3678 | 3679 | | ı | 7140 | 3680 | 3681 | 3682 | 3683 | 3684 | 3685 | 3686 | 3687 | | ı | 7150 | 3688 | 3689 | 3690 | 3691 | 3692 | 3693 | 3694 | 3695 | | | 7160 | 3696 | 3697 | 3698 | 3699 | 3700 | 3701 | 3702 | 3703 | | | 7170 | 3704 | 3705 | 3706 | 3707 | 3708 | 3709 | 3710 | 3711 | | | 7200 | 3712 | 3713 | 3714 | 3715 | 3716 | 3717 | 3718 | 3719 | | | 7210 | 3720 | 3721 | 3722 | 3723 | 3724 | 3725 | 3726 | 3727 | | | 7220 | 3728 | 3729 | 3730 | 3731 | 3732 | 3733 | 3734 | 3735 | | | 7230 | 3736 | 3737 | 3738 | 3739 | 3740 | 3741 | 3742 | 3743 | | | 7240 | 3744 | 3745 | 3746 | 3747 | 3748 | 3749 | 3750 | 3751 | | | 7250 | 3752 | 3753 | 3754 | 3755 | 3756 | 3757 | 3758 | 3759 | | | 7260 | 3760 | 3761 | 3762 | 3763 | 3764 | 3765 | 3766 | 3767 | | | 7270 | 3768 | 3769 | 3770 | 3771 | 3772 | 3773 | 3774 | 3775 | | | 7300 | 3776 | 3777 | 3778 | 3779 | 3780 | 3781 | 3782 | 3783 | | l | 7310 | 3784 | 3785 | 3786 | 3787 | 3788 | 3789 | 3790 | 3791 | | ١ | 7320 | 3792 | 3793 | 3794 | 3795 | 3796 | 3797 | 3798 | 3799 | | ١ | 7330 | 3800 | 3801 | 3802 | 3803 | 3804 | 3805 | 3806 | 3807 | | l | 7340 | 3808 | 3809 | 3810 | 3811 | 3812 | 3813 | 3814 | 3815 | | ı | 7350 | 3816 | 3817 | 3818 | 3819 | 3820 | 3821 | 3822 | 3823 | | | 7360 | 3824 | 3825 | 3826 | 3827 | 3828 | 3829 | 3830 | 3831 | | | 7370 | 3832 | 3833 | 3834 | 3835 | 3836 | 3837 | 3838 | 3839 | | L | | | | | | | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |------|--|---|---
--|--|--|---| | + | - | | | | | | | | 3840 | 3841 | 3842 | 3843 | 3844 | 3845 | 3846 | 3847 | | | | | | | | | 3855 | | | | | | | | | 3863 | | | | | | | | | 3871 | | | 3873 | 3874 | 3875 | 3876 | 3877 | 3878 | 3879 | | | 3881 | 3882 | 3883 | 3884 | 3885 | 3886 | 3887 | | | | 3890 | 3891 | 3892 | 3893 | 3894 | 3895 | | 3896 | 3897 | 3898 | 3899 | 3900 | 3901 | 3902 | 3903 | | 3904 | 3905 | 3906 | 3907 | 3908 | 3909 | 3910 | 3911 | | 3912 | 3913 | 3914 | 3915 | 3916 | 3917 | 3918 | 3919 | | 3920 | 3921 | 3922 | 3923 | 3924 | 3925 | 3926 | 3927 | | 3928 | 3929 | 3930 | 3931 | 3932 | 3933 | 3934 | 3935 | | 3936 | 3937 | 3938 | 3939 | 3940 | 3941 | 3942 | 3943 | | 3944 | 3945 | 3946 | 3947 | 3948 | 3949 | 3950 | 3951 | | 3952 | 3953 | 3954 | 3955 | 3956 | 3957 | 3958 | 3959 | | 3960 | 3961 | 3962 | 3963 | 3964 | 3965 | 3966 | 3967 | | 3968 | 3969 | 3970 | 3971 | 3972 | 3973 | 3974 | 3975 | | 3976 | 3977 | 3978 | 3979 | 3980 | 3981 | 3982 | 3983 | | 3984 | 3985 | 3986 | 3987 | 3988 | 3989 | 3990 | 3991 | | 3992 | 3993 | 3994 | 3995 | 3996 | 3997 | 3998 | 3999 | | 4000 | 4001 | 4002 | 4003 | 4004 | 4005 | 4006 | 4007 | | 4008 | 4009 | 4010 | 4011 | 4012 | | | 4015 | | 4016 | 4017 | 4018 | 4019 | 4020 | 4021 | | 4023 | | 4024 | 4025 | 4026 | 4027 | 4028 | 4029 | 4030 | 4031 | | 4032 | 4033 | 4034 | 4035 | 4036 | 4037 | 4038 | 4039 | | | | | | | | | 4047 | | | | | | | | | 4055 | | | | | | | | | 4063 | | | | | | | | | 4071 | | | | | | | | | 4079 | | | | | | | | | 4087 | | | | 4090 | 4091 | 4092 | | 4094 | 4095 | | | 3840
3848
3856
3864
3872
3880
3898
3992
3920
3928
3936
3944
3952
3960
3960
3976
3984
3992
4000
4008 | 3840 3841
3848 3849
3856 3857
3864 3865
3872 3873
3880 3881
3888 3896
3996 3997
3904 3905
3928 3928
3928 3929
3936 3937
3944 3945
3952 3953
3960 3961
3968 3969
3976 3977
3984 3985
3992 3993
4000 4001
4016 4017
4024 4025
4032 4033
4040 4041
4048 4049
4056 4057
4064 4065
4072 4073
4080 4081 | 3840 3841 3842 3850 3856 3857 3858 3864 3865 3866 3872 3873 3874 3880 3881 3882 3886 3897 3898 3904 3905 3914 3912 3913 3914 3920 3921 3922 3928 3929 3930 3936 3937 3956 3957 3957 3957 3957 3957 3957 3957 3957 | 3840 3841 3842 3843 3848 3849 3850 3851 3866 3857 3858 3859 3864 3865 3867 3872 3873 3872 3873 3881 3882 3883 3888 3889 3890 3891 3896 3897 3898 3899 3904 3905 3906 3907 3912 3913 3914 3915 3920 3921 3922 3923 3938 3939 3931 3936 3947 3944 3945 3946 3947 3952 3943 3943 3943 3953 3954 3953 3963 3963 3960 3961 3962 3963 3963 3977 3971 3976 3977 3978 3979 3971 3976 3977 3978 3999 3992 3993 3994 | 3840 3841 3842 3843 3844 3848 3849 3850 3851 3852 3866 3857 3858 3867 3868 3862 3867 3868 3867 3868 3872 3873 3874 3875 3878 3880 3881 3882 3883 3884 3886 3887 3898 3891 3892 3896 3897 3906 3907 3908 3912 3913 3914 3915 3916 3920 3821 3822 3923 3924 3928 3929 3930 3931 3932 3936 3937 3938 3939 3940 3944 3945 3946 3947 3948 3952 3953 3954 3955 3956 3960 3961 3967 3973 3972 3976 3977 3978 3979 | 3840 3841 3842 3843 3844 3845 3848 3849 3850 3851 3852 3853 3866 3867 3858 3869 3860 3861 3864 3865 3866 3867 3875 3876 3877 3880 3881 3882 3883 3884 3882 3883 3888 3889 3890 3891 3892 3893 3912 3913 3914 3915 3916 3917 3920 3921 3922 3923 3924 3925 3928 3929 3930 3931 3932 3933 3936 3927 3932 3933 3934 3941 3915 3916 3917 3920 3921 3922 3923 3924 3924 3924 3924 3924 3924 3924 3924 3924 3945 3965 3967 3968 3969 3970 <td>3840 3841 3842 3843 3844 3845 3845 3848 3849 3850 3851 3852 3853 3854 3866 3867 3858 3859 3860 3861 3869 3870 3872 3873 3874 3875 3876 3873 3883 3880 3881 3882 3883 3884 3885 3886 3887 3888 3899 3900 3901 3902 3902 3901 3902 3903 3894 3886 3887 3888 3899 3900 3901 3902 3902 3902 3902 3902 3901 3902 3903 3911 3912 3913 3914 3915 3916 3917 3918 3909 3910 3901 3902 3924 3925 3926 3924 3924 3924 3924 3924 3943 3944 3944 3944 3944 3944 3944 3944 3944</td> | 3840 3841 3842 3843 3844 3845 3845 3848 3849 3850 3851 3852 3853
3854 3866 3867 3858 3859 3860 3861 3869 3870 3872 3873 3874 3875 3876 3873 3883 3880 3881 3882 3883 3884 3885 3886 3887 3888 3899 3900 3901 3902 3902 3901 3902 3903 3894 3886 3887 3888 3899 3900 3901 3902 3902 3902 3902 3902 3901 3902 3903 3911 3912 3913 3914 3915 3916 3917 3918 3909 3910 3901 3902 3924 3925 3926 3924 3924 3924 3924 3924 3943 3944 3944 3944 3944 3944 3944 3944 3944 | 7000 3584 to to 7777 4095 (Octal) (Decimal) ## Appendix III | OCTAL | DEC. | OCTAL | DEC. | OCTAL | DEC. | OCTAL | DEC. | |-------|---------|-------|---------|--------|---------|-------|---------| | .000 | .000000 | .100 | .125000 | .200 | .250000 | .300 | .375000 | | | | | | | | | | | .001 | .001953 | .101 | .126953 | .201 | .251953 | .301 | .376953 | | .002 | .003906 | .102 | .128906 | .202 | .253906 | .302 | .378906 | | .003 | .005859 | .103 | .130859 | .203 | .255859 | .303 | .380859 | | .004 | .007812 | .104 | .132812 | .204 | .257812 | .304 | .382812 | | .005 | .009765 | 105 | .134765 | .205 | .259765 | .305 | .384765 | | .006 | .011718 | .106 | .136718 | .206 | .261718 | .306 | .386718 | | .007 | .013671 | .107 | .138671 | .207 | .263671 | .307 | .388671 | | .007 | .013071 | .107 | .130071 | .207 | .203071 | .307 | .3000/1 | | .010 | .015625 | .110 | .140625 | .210 | .265625 | .310 | .390625 | | .011 | .017578 | .111 | .142578 | .211 | .267578 | .311 | .392578 | | .012 | .019531 | .112 | 144531 | | | | | | | | | | .212 | .269531 | .312 | .394531 | | .013 | .021484 | .113 | .146484 | .213 | .271484 | .313 | .396484 | | .014 | .023437 | .114 | .148437 | .214 | .273437 | .314 | .398437 | | .015 | .025390 | 115 | .150390 | .215 | .275390 | .315 | .400390 | | .016 | .027343 | .116 | .152343 | .216 | .277343 | .316 | .402343 | | .017 | .029296 | .117 | .154296 | .217 | .279296 | .317 | .404296 | | i | | | | | | | | | .020 | .031250 | .120 | .156250 | .220 | .281250 | .320 | .406250 | | .021 | .033203 | .121 | .158203 | .221 | .283203 | .321 | .408203 | | .022 | .035156 | .122 | .160156 | .222 | .285156 | .322 | .410156 | | .023 | .037109 | .123 | .162109 | .223 | .287109 | .323 | 412109 | | .024 | .039062 | .124 | .164062 | .224 | .289062 | .324 | .414062 | | .025 | .041015 | .125 | | | | | | | | .041015 | | .166015 | .225 | .291015 | .325 | .416015 | | .026 | | .126 | .167968 | .226 | .292968 | 326 | .417968 | | .027 | .044921 | .127 | .169921 | .227 | .294921 | .327 | .419921 | | .030 | .046875 | .130 | .171875 | .230 | 206075 | .330 | 421075 | | | .048828 | | | | .296875 | | .421875 | | .031 | | .131 | .173828 | .231 . | .298828 | .331 | .423828 | | .032 | .050781 | .132 | .175781 | .232 | .300781 | .332 | | | .033 | .052734 | .133 | .177734 | .233 | .302734 | .333 | .427734 | | .034 | .054687 | .134 | .179687 | .234 | .304687 | .334 | .429687 | | .035 | .056640 | .135 | .181640 | .235 | .306640 | .335 | .431640 | | .036 | .058593 | .136 | .183593 | .236 | .308593 | .336 | .433593 | | .037 | .060546 | .137 | .185546 | .237 | .310546 | .337 | .435546 | | 1 | | | | | | | | | .040 | .062500 | .140 | .187500 | .240 | .312500 | .340 | .437500 | | .041 | .064453 | .141 | .189453 | .241 | .314453 | .341 | .439453 | | .042 | .066406 | .142 | .191406 | .242 | .316406 | .342 | .441406 | | .043 | .068359 | .143 | .193359 | .243 | .318359 | .343 | .443359 | | .044 | .070312 | .144 | .195312 | .244 | .320312 | .344 | .445312 | | .045 | .072265 | .145 | .197265 | .245 | .322265 | .345 | 447265 | | .046 | .074218 | .146 | .199218 | .246 | .324218 | .346 | 449218 | | .047 | .076171 | .147 | .201171 | .247 | .326171 | .347 | .451171 | | , | .070171 | | .201171 | .247 | .020171 | .547 | .431171 | | .050 | .078125 | .150 | .203125 | .250 | .328125 | .350 | .453125 | | .051 | .080078 | .151 | .205078 | .251 | .330078 | .351 | .455078 | | .052 | .082031 | .152 | .207031 | .252 | .332031 | .352 | .457031 | | .053 | .083984 | .153 | .208984 | .253 | .333984 | .353 | .458984 | | .054 | .085937 | .154 | .210937 | .254 | .335937 | .354 | .460937 | | .055 | .087890 | .155 | .212890 | .255 | .337890 | .355 | .462890 | | .056 | .089843 | | .214843 | | | | | | | | .156 | | .256 | .339843 | .356 | .464843 | | .057 | .091796 | .157 | .216796 | .257 | .341796 | .357 | .466796 | | .060 | .093750 | .160 | .218750 | .260 | .343750 | .360 | .468750 | | .061 | .095703 | .161 | .220703 | .261 | .345703 | .361 | .470703 | | .062 | .097656 | .162 | | | | | .472656 | | .062 | | | .222656 | .262 | .347656 | .362 | | | | .099609 | .163 | .224609 | .263 | .349609 | .363 | .474609 | | .064 | .101562 | .164 | .226562 | .264 | .351562 | .364 | .476562 | | .065 | .103515 | .165 | .228515 | .265 | .353515 | .365 | .478515 | | .066 | .105468 | .166 | .230468 | .266 | .355468 | .366 | .480468 | | .067 | .107421 | .167 | .232421 | .267 | .357421 | .367 | .482421 | | .070 | .109375 | .170 | .234375 | .270 | .359375 | .370 | .484375 | | .071 | 111328 | .171 | .236328 | .270 | .361328 | .371 | .486328 | | .072 | .113281 | .172 | | | | | .488281 | | | | | .238281 | .272 | .363281 | .372 | | | .073 | .115234 | .173 | .240234 | .273 | .365234 | .373 | .490234 | | .074 | .117187 | .174 | .242187 | .274 | .367187 | .374 | .492187 | | .075 | .119140 | .175 | .244140 | .275 | .369140 | .375 | .494140 | | .076 | .121093 | .176 | .246093 | .276 | .371093 | .376 | .496093 | | .077 | .123046 | .177 | .248046 | .277 | .373046 | .377 | .498046 | | L | | | | L | | | | | L | | | | | | | | |---------|---------|---------|---------|----------|---------|---------|---------| | OCTAL | DEC. | OCTAL | DEC. | OCTAL | DEC. | OCTAL | DEC. | | OCIAL | DEG. | | | | | | | | .000000 | .000000 | .000100 | .000244 | .000200 | .000488 | .000300 | .000732 | | .000001 | .000003 | .000100 | .000247 | .000201 | .000400 | .000301 | .000736 | | | | | | | | | | | .000002 | .000007 | .000102 | .000251 | .000202 | .000495 | .000302 | .000740 | | .000003 | .000011 | .000103 | .000255 | .000203 | .000499 | .000303 | .000743 | | .000004 | .000015 | .000104 | .000259 | .000204 | .000503 | .000304 | .000747 | | .000005 | .000019 | .000105 | .000263 | .000205 | .000507 | .000305 | .000751 | | .000006 | .000022 | .000106 | .000267 | .000206 | .000511 | .000306 | .000755 | | .000007 | .000022 | .000100 | .000270 | .000207 | .000514 | .000307 | .000759 | | .000007 | .000020 | .000107 | .000270 | .000207 | .000514 | .000307 | .000753 | | .000010 | .000030 | .000110 | .000274 | .000210 | .000518 | .000310 | .000762 | | | | | .000274 | | .000518 | .000310 | .000766 | | .000011 | .000034 | .000111 | | .000211 | | | | | .000012 | .000038 | .000112 | .000282 | .000212 | .000526 | .000312 | .000770 | | .000013 | .000041 | .000113 | .000286 | .000213 | .000530 | .000313 | .000774 | | .000014 | .000045 | .000114 | .000289 | .000214 | .000534 | .000314 | .000778 | | .000015 | .000049 | .000115 | .000293 | .000215 | .000537 | .000315 | .000782 | | .000016 | .000053 | .000116 | .000297 | .000216 | .000541 | .000316 | .000785 | | .000017 | .000057 | .000117 | .000237 | .000217 | .000545 | .000317 | .000789 | | .000017 | .000057 | .000117 | .000301 | .000217 | .000545 | .000317 | .000765 | | .000020 | .000061 | 000120 | .000305 | .000220 | .000549 | .000320 | .000793 | | | | .000120 | | | | | | | .000021 | .000064 | .000121 | .000308 | .000221 | .000553 | .000321 | .000797 | | .000022 | .000068 | .000122 | .000312 | .000222 | .000556 | .000322 | .000801 | | .000023 | .000072 | .000123 | .000316 | .000223 | .000560 | .000323 | .000805 | | .000024 | .000076 | .000124 | .000320 | .000224 | .000564 | .000324 | .000808 | | .000025 | .000080 | .000125 | .000324 | .000225 | .000568 | .000325 | .000812 | | .000025 | .000083 | .000125 | .000324 | .000225 | .000572 | .000326 | .000812 | | | | | | | | | | | .000027 | .000087 | .000127 | .000331 | .000227 | .000576 | .000327 | .000820 | | 000000 | 000001 | 000130 | 000335 | 000000 | 000570 | 000330 | .000823 | | .000030 | .000091 | .000130 | .000335 | .000230 | .000579 | .000330 | | | .000031 | .000095 | .000131 | .000339 | .000231 | .000583 | .000331 | .000827 | | .000032 | .000099 | .000132 | .000343 | .000232 | .000587 | .000332 | .000831 | | .000033 | .000102 | .000133 | .000347 | .000233 | .000591 | .000333 | .000835 | | .000034 | .000106 | .000134 | .000350 | .000234 | .000595 | .000334 | .000839 | | .000035 | .000110 | .000135 | .000354 | .000235 | .000598 | .000335 | .000843 | | | | | | | .000602 | | .000846 | | .000036 | .000114 | .000136 | .000358 | .000236 | | .000336 | | | .000037 | .000118 | .000137 | .000362 | .000237 | .000606 | .000337 | .000850 | | 000040 | 000100 | 000110 | 000000 | 000040 | 000010 | 000040 | 000054 | | .000040 | .000122 | .000140 | .000366 | .000240 | .000610 | .000340 | .000854 | | .000041 | .000125 | .000141 | .000370 | .000241 | .000614 | .000341 | .000858 | | .000042 | .000129 | .000142 | .000373 | .000242 | .000617 | .000342 | .000862 | | .000043 | .000133 | .000143 | .000377 | .000243 | .000621 | .000343 | .000865 | | .000044 | .000137 | .000144 | .000381 | .000244 | .000625 | .000344 | .000869 | | .000045 | .000141 | .000145 | .000385 | .000245 | .000629 | .000345 | .000873 | | .000046 | | | | .000245 | | | | | | .000144 | .000146 | .000389 | | .000633 | .000346 | .000877 | | .000047 | .000148 | .000147 | .000392 | .000247 | .000637 | .000347 | .000881 | | 000050 | 000450 | 000450 | 000000 | 000050 | 000040 | 000050 | 000005 | | .000050 | .000152 | .000150 | .000396 | .000250 | .000640 | .000350 | .000885 | | .000051 | .000156 | .000151 | .000400 | .000251 | .000644 | .000351 | .000888 | | .000052 | .000160 | .000152 | .000404 | .000252 | .000648 | .000352 | .000892 | | .000053 | .000164 | .000153 | .000408 | .000253 | .000652 | .000353 | .000896 | | .000054 | .000167 | .000154 | .000411 | .000254 | .000656 | .000354 | .000900 | | .000055 | .000171 | .000155 | .000415 | .000255 | .000659 | .000355 | .000904 | | .000056 | | .000156 | .000419 | .000256 | .000663 | | .000907 | | | .000175 | | | 1 | | .000356 | | | .000057 | .000179 | .000157 | .000423 | .000257 |
.000667 | .000357 | .000911 | | 000000 | 000183 | 000160 | 000427 | 000000 | 000671 | 000000 | 000015 | | .000060 | .000183 | .000160 | .000427 | .000260 | .000671 | .000360 | .000915 | | .000061 | .000186 | .000161 | .000431 | .000261 | .000675 | .000361 | .000919 | | .000062 | .000190 | .000162 | .000434 | .000262 | .000679 | .000362 | .000923 | | .000063 | .000194 | .000163 | .000438 | .000263 | .000682 | .000363 | .000926 | | .000064 | .000198 | .000164 | .000442 | .000264 | .000686 | .000364 | .000930 | | .000065 | .000202 | .000165 | .000446 | .000265 | .000690 | .000365 | .000934 | | | | | .000440 | | | | | | .000066 | .000205 | .000166 | | .000266 | .000694 | .000366 | .000938 | | .000067 | .000209 | .000167 | .000453 | .000267 | .000698 | .000367 | .000942 | | 000070 | 000010 | 000470 | 000453 | 000070 | 000704 | 000070 | 000040 | | .000070 | .000213 | .000170 | .000457 | .000270 | .000701 | .000370 | .000946 | | .000071 | .000217 | .000171 | .000461 | .000271 | .000705 | .000371 | .000949 | | .000072 | .000221 | .000172 | .000465 | .000272 | .000709 | .000372 | .000953 | | .000073 | .000225 | .000173 | .000469 | .000273 | .000713 | .000373 | .000957 | | .000074 | .000228 | .000174 | .000473 | .000274 | .000717 | .000374 | .000961 | | .000075 | .000232 | .000175 | .000476 | .000275 | .000717 | .000375 | .000965 | | | | | | | | | | | .000076 | .000236 | .000176 | .000480 | .000276 | .000724 | .000376 | .000968 | | .000077 | .000240 | .000177 | .000484 | .000277 | .000728 | .000377 | .000972 | | | | I | | <u> </u> | | L | | | | | | · | |-----------------|-----------------|-----------------|-----------------| | OCTAL DEC. | OCTAL DEC. | OCTAL DEC. | OCTAL DEC. | | | | 000000 001464 | .000700 .001708 | | .000400 .000976 | .000500 .001220 | .000600 .001464 | | | .000401 .000980 | .000501 .001224 | .000601 .001468 | .000701 .001712 | | .000402 .000984 | .000502 .001228 | .000602 .001472 | .000702 .001716 | | .000403 .000988 | .000503 .001232 | .000603 .001476 | .000703 .001720 | | | .000504 .001235 | .000604 .001480 | .000704 .001724 | | .000404 .000991 | .000505 .001239 | .000605 .001483 | .000705 .001728 | | .000405 .000995 | | | .000706 .001731 | | .000406 .000999 | .000506 .001243 | .000606 .001487 | | | .000407 .001003 | .000507 .001247 | .000607 .001491 | .000707 .001735 | | 000410 001007 | .000510 .001251 | .000610 .001495 | .000710 .001739 | | .000410 .001007 | | .000611 .001499 | .000711 .001743 | | .000411 .001010 | .000511 .001255 | | | | .000412 .001014 | .000512 .001258 | .000612 .001502 | | | .000413 .001018 | .000513 .001262 | .000613 .001506 | .000713 .001750 | | .000414 .001022 | .000514 .001266 | .000614 .001510 | .000714 .001754 | | .000415 .001026 | .000515 .001270 | .000615 .001514 | .000715 .001758 | | | .000516 .001274 | .000616 .001518 | .000716 .001762 | | .000416 .001029 | | .000617 .001522 | .000717 .001766 | | .000417 .001033 | .000517 .001277 | .000617 .001522 | .000717 .0007 | | .000420 .001037 | .000520 .001281 | .000620 .001525 | .000720 .001770 | | | .000520 .001201 | .000621 .001529 | .000721 .001773 | | .000421 .001041 | | | .000722 .001777 | | .000422 .001045 | .000522 .001289 | | | | .000423 .001049 | .000523 .001293 | .000623 .001537 | .000723 .001781 | | .000424 .001052 | .000524 .001296 | .000624 .001541 | .000724 .001785 | | .000425 .001056 | .000525 .001300 | .000625 .001544 | .000725 .001789 | | .000425 .001060 | .000526 .001304 | .000626 .001548 | .000726 .001792 | | .000428 .001060 | .000527 .001308 | .000627 .001552 | .000727 .001796 | | .000427 | | | 000700 001000 | | .000430 .001068 | .000530 .001312 | .000630 .001556 | .000730 .001800 | | .000431 .001071 | .000531 .001316 | .000631 .001560 | .000731 .001804 | | .000432 .001075 | .000532 .001319 | .000632 .001564 | .000732 .001808 | | .000433 .001079 | .000533 .001323 | .000633 .001567 | .000733 .001811 | | | .000534 .001327 | .000634 .001571 | .000734 .001815 | | .000434 .001083 | | .000635 .001575 | .000735 .001819 | | .000435 .001087 | .000535 .001331 | | .000736 .001823 | | .000436 .001091 | .000536 .001335 | .000636 .001579 | | | .000437 .001094 | .000537 .001338 | .000637 .001583 | .000737 .001827 | | 000440 001000 | .000540 .001342 | .000640 .001586 | .000740 .001831 | | .000440 .001098 | | | .000741 .001834 | | .000441 .001102 | .000541 .001346 | | | | .000442 .001106 | .000542 .001350 | .000642 .001594 | .000742 .001838 | | .000443 .001110 | .000543 .001354 | .000643 .001598 | .000743 .001842 | | .000444 .001113 | .000544 .001358 | .000644 .001602 | .000744 .001846 | | .000445 .001117 | .000545 .001361 | .000645 .001605 | .000745 .001850 | | .000446 .001121 | .000546 .001365 | .000646 .001609 | .000746 .001853 | | | .000547 .001369 | .000647 .001613 | .000747 .001857 | | .000447 .001125 | .000347 .001303 | .000047 | | | .000450 .001129 | .000550 .001373 | .000650 .001617 | .000750 .001861 | | .000451 .001132 | .000551 .001377 | .000651 .001621 | .000751 .001865 | | .000451 .001136 | .000552 .001380 | .000652 .001625 | .000752 .001869 | | | .000553 .001384 | .000653 .001628 | .000753 .001873 | | .000453 .001140 | | .000654 .001632 | .000754 .001876 | | .000454 .001144 | .000554 .001388 | | .000755 .001880 | | .000455 .001148 | .000555 .001392 | .000655 .001636 | | | .000456 .001152 | .000556 .001396 | .000656 .001640 | .000756 .001884 | | .000457 .001155 | .000557 .001399 | .000657 .001644 | .000757 .001888 | | 000400 000455 | 000500 001400 | .000660 .001647 | .000760 .001892 | | .000460 .001159 | .000560 .001403 | | 1 | | .000461 .001163 | .000561 .001407 | .000661 .001651 | | | .000462 .001167 | .000562 .001411 | .000662 .001655 | .000762 .001899 | | .000463 .001171 | .000563 .001415 | .000663 .001659 | .000763 .001903 | | .000464 .001174 | .000564 .001419 | .000664 .001663 | .000764 .001907 | | .000465 .001178 | .000565 .001422 | .000665 .001667 | .000765 .001911 | | | | .000666 .001670 | .000766 .001914 | | .000466 .001182 | .000566 .001426 | .000667 .001674 | .000767 .001918 | | .000467 .001186 | .000567 .001430 | .000007 .001074 | | | .000470 .001190 | .000570 .001434 | .000670 .001678 | .000770 .001922 | | .000470 .001130 | .000571 .001438 | .000671 .001682 | .000771 .001926 | | 1 /=== | | .000672 .001686 | .000772 .001930 | | .000472 .001197 | .000572 .001441 | | .000773 .001934 | | .000473 .001201 | .000573 .001445 | .000673 .001689 | | | .000474 .001205 | .000574 .001449 | .000674 .001693 | 1000 | | .000475 .001209 | .000575 .001453 | .000675 .001697 | .000775 .001941 | | .000476 .001213 | .000576 .001457 | .000676 .001701 | .000776 .001945 | | .000477 .001216 | .000577 .001461 | .000677 .001705 | .000777 .001949 | | .000477 .001210 | | | 1 | ## **APPENDIX IV** ## **Instruction Execution Times** The execution times for central and peripheral and control processor instructions are given in the following paragraphs. Factors which influence instruction execution time and hence program running time are given also. #### CENTRAL PROCESSOR The execution time of central processor instructions is given in minor cycles, and instructions are grouped under the functional unit which executes the instruction. Time is counted from the time the unit has both input operands to when the instruction result is available in the specified result register. Central memory access time is not considered in those increment instructions which result in memory references to read operands or store results. The paragraphs following give some general statements about central processor instruction execution and summarize the statements into a list which may be used as a guide to efficient use of the central processor functional units. Central processor programs are written in the conventional manner and are stored in central memory under direction of a peripheral and control processor. After an exchange jump start by a peripheral and control processor program, central processor instructions are sent automatically, and in the original sequence, to the instruction stack, which holds up to 32 instructions. Instructions are read from the stack one at a time and issued to the functional units for execution. A scoreboard reservation system in central processor control keeps a current log of which units are busy (reserved) and which operating registers are reserved for results of computation in functional units. Each unit executes several instructions, but only one at a time. Some branch instructions require two units, but the second unit receives its direction from the branch unit. The instruction issue rate may vary from a theoretical maximum rate of one instruction every minor cycle (sustained issuing at this rate may not be possible because of unit and central memory conflict) and resulting parallel operation of many units to a slow issue rate and serial operation of units. The latter results when successive operations depend on results of previous steps. Thus, program running time can be decreased by efficient use of the many units. Instructions which are not dependent on previous steps may be arranged or nested in areas of the program where they may be executed during operation time of other units. Effectively, this eliminates dead spots in the program and steps up the instruction issue rate. The steps following summarize instruction issuing and execution. - 1. An instruction is issued to a functional unit when - a. The specified functional unit is not reserved. - b. The specified result register is not reserved for a previous result. - 2. Instructions are issued to functional units at minor cycle intervals when no reservation conflicts (1. above) are present. - 3. Instruction execution starts in a functional unit when both operands are available (execution is delayed when an operand (s) is a result of a previous step which is not complete). - **4.** No delay occurs between the end of a first unit and the start of a second unit which is waiting for the results of the first. - 5. No instructions are issued after a branch
instruction until the branch instruction has been executed. The branch unit uses - a. An increment unit to form the go to k+Bi and go to k if Bi . . . instructions, or - b. The long add unit to perform the go to k if Xj... instructions in the execution of a branch instruction. The time spent in the long add or increment units is part of the total branch time. 6. Read central memory access time is computed from end of increment unit time to the time operand is available in X operand register. Minimum time is 500 ns assuming no central memory bank conflict. #### **Central Processor Instruction Execution Times** (Times listed in Minor Cycles) #### BRANCH UNIT | 00 | STOP | _ | | | |--|-------------------------------|----|--|--| | 01 | RETURN JUMP to K | 11 | | | | 02 | GO TO K + Bi (Note 1) | 6* | | | | 030 | GO TO K if Xj = zero | 6* | | | | 031 | GO TO K if Xj ≠ zero | 6* | | | | 032 | GO TO K if Xj = positive | 6* | | | | 033 | GO TO K if Xj = negative Note | 6* | | | | 034 | GO TO K if Xj is in range 2 | 6* | | | | 035 | GO TO K if Xj is out of range | 6* | | | | 036 | GO TO K if Xj is definite | 6* | | | | 037 | GO TO K if Xj is indefinite | 6* | | | | 04 | GO TO K if Bi = Bj | 6* | | | | 05 | GO TO K if Bi ≠ Bj Note | 6* | | | | 06 | GO TO K if Bi ≧ Bj | 6* | | | | 07 | GO TO K if Bi < Bj | 6* | | | | Note 1. GO TO K + Bi and GO TO K if Bitests
made in increment unit
Note 2. GO TO K if Xjtests made in long add
unit | | | | | | *Add 5 minor cycles to branch time for a branch to an instruction which is out of the stack (no memory conflict considered) | | | | | #### **BOOLEAN UNIT** | 10 | TRANSMIT Xj to Xi | 3 | |----|---|---| | 11 | LOGICAL PRODUCT of Xj and Xk to Xi | 3 | | 12 | LOGICAL SUM of Xj and Xk to Xi | 3 | | 13 | LOGICAL DIFFERENCE of Xi and Xk to Xi | 3 | | 14 | TRANSMIT Xk COMP. to Xi | 3 | | 15 | LOGICAL PRODUCT of Xj and Xk COMP. to Xi | 3 | | 16 | LOGICAL SUM of Xj and Xk COMP. to Xi | 3 | | 17 | LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi | 3 | #### SHIFT UNIT | SHIFT Xi LEFT jk places | 3 | |--|---| | SHIFT Xi RIGHT jk places | 3 | | SHIFT Xk NOMINALLY LEFT Bj places to Xi | 3 | | SHIFT Xk NOMINALLY RIGHT By places to Xi | 3 | | NORMALIZE Xk in Xi and Bj | 4 | | ROUND AND NORMALIZE Xk in Xi and Bi | 4 | | UNPACK Xk to Xi and Bj | 3 | | PACK Xi from Xk and Bj | 3 | | FORM jk MASK in Xi | 3 | | | SHIFT XI RIGHT JR places SHIFT XK NOMINALLY LEFT BJ places to Xi SHIFT XK NOMINALLY RIGHT BJ places to Xi NORMALIZE Xk in Xi and BJ ROUND AND NORMALIZE Xk in Xi and BJ UNPACK Xk to Xi and BJ PACK Xi from Xk and BJ | #### ADD UNIT | 30 | FLOATING SUM of Xj and Xk to Xi | 4 | |----|--|---| | 31 | FLOATING DIFFERENCE of Xj and Xk to Xi | 4 | | 32 | FLOATING DP SUM of Xj and Xk to Xi | 4 | | 33 | FLOATING DP DIFFERENCE of Xi and Xk to Xi | 4 | | 34 | ROUND FLOATING SUM of Xi and Xk to Xi | 4 | | 35 | ROUND FLOATING DIFFERENCE of Xj and Xk to Xi | 4 | #### LONG ADD UNIT | 36 INTEGER SUM of Xj and Xk to Xi
37 INTEGER DIFFERENCE of Xj and Xk to Xi | 3 | |---|---| |---|---| #### MULTIPLY UNIT* | 40 | FLOATING PRODUCT of Xj and Xk to Xi | 10 | |----|---|----| | 41 | ROUND FLOATING PRODUCT of Xj and Xk to Xi | 10 | | 42 | FLOATING DP PRODUCT of Xj and Xk to Xi | 10 | #### DIVIDE UNIT | 44
45 | FLOATING DIVIDE Xj by Xk to Xi
ROUND FLOATING DIVIDE Xj by Xk to Xi | 29
29 | |----------|--|----------| | 46 | PASS | _ | | 47 | SUM of 1's in Xk to Xi | 8 | #### INCREMENT UNIT* | | INCREMENT UNIT* | | |--------------|-------------------------------|---| | 50 | SUM of Aj and K to Ai | 3 | | 51 | SUM of Bj and K to Ai | 3 | | 52 | SUM of Xi and K to Ai | 3 | | 53 | SUM of Xi and Bk to Ai | 3 | | 54 | SUM of Aj and Bk to Ai | 3 | | 55 | DIFFERENCE of Aj and Bk to Ai | 3 | | 56 | SUM of Bj and Bk to Ai | 3 | | 57 | DIFFERENCE of Bj and Bk to Ai | 3 | | 60 | SUM of Aj and K to Bi | 3 | | 61 | SUM of Bj and K to Bi | 3 | | 62 | SUM of Xi and K to Bi | 3 | | 63 | SUM of Xi and Bix to Bi | 3 | | 64 | SUM of Aj and Bk to Bi | 3 | | 65 | DIFFERENCE of Aj and Bk to Bi | 3 | | 66 | SUM of Bij and Bik to Bi | 3 | | 67 | DIFFERENCE of Bj and Bk to Bi | 3 | | 70 | SUM of Aj and K to Xi | 3 | | 71 | SUM of Bi and K to Xi | 3 | | 7 2 : | SUM of Xj and K to Xi | 3 | | 73 | SUM of Xj and Bk to Xi | 3 | | 74 | SUM of Ajand Bk to Xi | 3 | | 75 | DIFFERENCE of Aj and Bk to Xi | 3 | | 76 | SUM of Bij and Bik to Xi | 3 | | 77 | DIFFERENCE of Bj and Bk to Xi | 3 | *Duplexed units—instruction goes to free unit Octal Code at left of instruction Comp.—Complement DP-Double Precision ## PERIPHERAL AND CONTROL PROCESSOR The execution time of peripheral and control processor instructions is influenced by the following factors: - 1. Number of memory references—indirect addressing and indexed addressing require an extra memory reference. Instructions in 24-bit format require an extra reference to read m. - 2. Number of words to be transferred—in I/O instructions and in references to central memory the execution times vary with the number of words to be transferred. The maximum theoretical rate of flow is 1 word/major cycle. I/O word rates depend upon the speed of external equipments which are normally much slower than the computer. - 3. References to central memory may be delayed if there is conflict with central processor memory requests. - 4. Following an exchange jump instruction, no memory references (nor other exchange jump instructions) may be made until the central processor has completed the exchange jump. #### Peripheral and Control Processor Instruction Execution Times | Octal
Code | Name | Time
(Major
Cycles) | Octal
Code | Name | Time
(Major
Cycles) | |---------------|--------------------------|---------------------------|---------------|----------------------------------|---------------------------| | 00 | Pass | 1 | | 42 Subtract ((d)) | 3 | | | | | | 43 Logical difference ((d)) | 3 | | 01 | Long jump to m $+$ (d) | 2-3 | | | _ | | 02 | Return jump to m $+$ (d) | 3-4 | 44 | Store ((d)) | 3 | | 03 | Unconditional jump d | 1 | 45 | Replace add ((d)) | 4 | | 04 | Zero jump d | 1 | 46 | Replace add one ((d)) | 4 | | 05 | Nonzero jump d | 1 | 47 | Replace subtract one ((d)) | 4 | | 06 | Plus jump d | 1 | | | | | 07 | Minus jump d | 1 | 50 | Load (m + (d)) | 3-4 | | 10 | Shift d | 1 | 51 | Add (m + (d)) | 3-4 | | 11 | Logical difference d | 1 | 52 | Subtract (m + (d)) | 3-4 | | 12 | Logical product d | 1 | 53 | Logical difference (m + (d)) | 3-4 | | 13 | Selective clear d | 1 | 54 | Store (m + (d)) | 3-4 | | 14 | Load d | 1 | 55 | Replace add (m + (d)) | 4-5 | | 15 | Load complement d | 1 | 56 | Replace add one (m $+$ (d)) | 4-5 | | 16 | Add d | 1 | 57 | Replace subtract one (m $+$ (d)) | 4-5 | | 17 | Subtract d | 1 | | | | | | | | 60 | Central read from (A) to d | min. 6 | | 20 | Load dm | 2 | 61 | Central read (d) words | 5 plus | | 21 | Add dm | 2 | | from (A) to m | 5/word | | 22 | Logical product dm | 2 | 62 | Central write to (A) from d | min. 6 | | 23 | Logical difference dm | 2 | 63 | Central write (d) words | 5 plus | | 24 | Pass | 1 | | to (A) from m | 5/word | | 25 | Pass | 1 | 64 | Jump to m if channel d active | 2 | | 26 | Exchange jump | min. 20 | 65 | Jump to m if channel d inactive | 2 | | 27 | Read program address | 1 | 66 | Jump to m if channel d full | 2 | | | | | 67 | Jump to m if channel d empty | 2 | | 30 | Load (d) | 2 | | | | | 31 | Add (d) | 2 | 70 | Input to A from channel d | 2 | | 32 | Subtract (d) | 2 | 71 | Input (A) words to m | 4 plus | | 33 | Logical difference (d) | 2 | | from channel d | 1/word | | 34 | Store (d) | 2 | 72 | Output from A on channel d | 2 | | 35 | Replace add (d) | 3 | 73 | Output (A) words from m | 4 plus | | 36 | Replace add one (d) | 3 | | on channel d | 1/word | | 37 | Replace subtract one (d) | 3 | 74 | Activate channel d | 2 | | | | | 75 | Disconnect channel d | 2 | | 40 | Load ((d)) | 3 | 76 | Function (A) on channel d | 2 | | 41 | Add ((d)) | 3 | 77 | Function m on channel d | 2 | ## **MEMORANDUM** ## Definitions for Central Processor Instructions | Α | one of eight address registers (18 bits) | |----|---| | В | one of eight index registers (18 bits)
BO is fixed and equal to zero | | fm | instruction code (6 bits) | | i | specifies which of eight designated registers (3 bits) | | j | specifies which of eight designated registers (3 bits) | | jk | constant, indicating number of shifts to be taken (6 bits) | | k | specifies which of eight designated registers (3 bits) | | K | constant, indicating branch destination or operand (18 bits) | | X | one of eight operand registers (60 bits) | ## **Central Processor Instructions** #### BRANCH UNIT #### Page | | I The state of | | |-----
--|----| | 00 | STOP | 28 | | 01 | RETURN JUMP to K | 28 | | 02 | GO TO K + Bi (Note 1) | 28 | | 030 | GO TO K if Xj = zero | 28 | | 031 | GO TO K if Xj ≠ zero | 28 | | 032 | GO TO K if Xj = positive | 28 | | 033 | GO TO K if Xj = negative \ Note | 28 | | 034 | GO TO K if Xj is in range 2 | 28 | | 035 | GO TO K if Xj is out of range | 28 | | 036 | GO TO K if Xj is definite | 28 | | 037 | GO TO K if Xj is indefinite | 28 | | 04 | GO TO K if Bi = Bj | 28 | | 05 | GO TO K if Bi ≠ Bj \ Note | 28 | | 06 | GO TO K if Bi ≧ Bj | 28 | | 07 | GO TO K if Bi < Bj | 28 | | | Note 1. GO TO K + Bi and GO TO K if Bi tests | | Note 1. GO TO K + Bi and GO TO K if Bi - - - tests made in increment unit Note 2. GO TO K if Xj --- tests made in long add unit #### BOOLEAN UNIT | | | T | |----|---|----| | 10 | TRANSMIT Xj to Xi | 28 | | 11 | LOGICAL PRODUCT of Xj and Xk to Xi | 28 | | 12 | LOGICAL SUM of Xj and Xk to Xi | 28 | | 13 | LOGICAL DIFFERENCE of Xj and Xk to Xi | 28 | | 14 | TRANSMIT Xk COMP. to Xi | 28 | | 15 | LOGICAL PRODUCT of Xj and Xk COMP. to Xi | 28 | | 16 | LOGICAL SUM of Xj and Xk COMP. to Xi | 29 | | 17 | LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi | 29 | #### SHIFT UNIT | | 20 | SHIFT Xi LEFT jk places | 29 | |---|----|--|----| | | 21 | SHIFT Xi RIGHT jk places | 29 | | 1 | 22 | SHIFT Xk NOMINALLY LEFT Bj places to Xi | 29 | | 1 | 23 | SHIFT Xk NOMINALLY RIGHT Bj places to Xi | 29 | | ١ | 24 | NORMALIZE Xk in Xi and Bj | 29 | | ı | 25 | ROUND AND NORMALIZE Xk in Xi and Bj | 29 | | | 26 | UNPACK Xk to Xi and Bj | 29 | | | 27 | PACK Xi from Xk and Bj | 30 | | L | 43 | FORM jk MASK in Xi | 32 | | | | | | #### ADD UNIT | | " | | | |----|----|--|----| | i | 30 | FLOATING SUM of Xj and Xk to Xi | 30 | | | 31 | FLOATING DIFFERENCE of Xj and Xk to Xi | 30 | | | 32 | FLOATING DP SUM of Xj and Xk to Xi | 30 | | Į | 33 | FLOATING OP DIFFERENCE of Xj and Xk to Xi | 30 | | ı | 34 | ROUND FLOATING SUM of Xj and Xk to Xi | 31 | | | 35 | ROUND FLOATING DIFFERENCE of Xj and Xk to Xi | 31 | | ٠, | | | | #### LONG ADD UNIT #### Page | 36 | INTEGER SUM of Xj and Xk to Xi | 31 | |----|---------------------------------------|----| | 37 | INTEGER DIFFERENCE of Xj and Xk to Xi | 32 | #### MULTIPLY UNIT* | 40 | FLOATING PRODUCT of Xj and Xk to Xi | 32 | |----|---|----| | 41 | ROUND FLOATING PRODUCT of Xj and Xk to Xi | 32 | | 42 | FLOATING DP PRODUCT of Xj and Xk to Xi | 32 | #### DIVIDE UNIT | 44 | FLOATING DIVIDE Xj by Xk to Xi | 32 | |----|--------------------------------------|----| | 45 | ROUND FLOATING DIVIDE Xj by Xk to Xi | 32 | | 46 | PASS | 32 | | 47 | SUM of 1's in Xk to Xi | 32 | #### INCREMENT UNIT* | | 1700 | | |----|-------------------------------|----| | 50 | SUM of Aj and K to Ai | 32 | | 51 | SUM of Bj and K to Ai | 32 | | 52 | SUM of Xj and K to Ai | 32 | | 53 | SUM of Xj and Bk to Ai | 32 | | 54 | SUM of Aj and Bk to Ai | 32 | | 55 | DIFFERENCE of Aj and Bk to Ai | 32 | | 56 | SUM of Bj and Bk to Ai | 32 | | 57 | DIFFERENCE of Bj and Bk to Ai | 32 | | | | | | 60 | SUM of Aj and K to Bi | 33 | | 61 | SUM of Bj and K to Bi | 33 | | 62 | SUM of Xj and K to Bi | 33 | | 63 | SUM of Xj and Bk to Bi | 33 | | 64 | SUM of Aj and Bk to Bi | 33 | | 65 | DIFFERENCE of Aj and Bk to Bi | 33 | | 66 | SUM of Bj and Bk to Bi | 33 | | 67 | DIFFERENCE of Bj and Bk to Bi | 33 | | | | | | 70 | SUM of Aj and K to Xi | 33 | | 71 | SUM of Bj and K to Xi | 33 | | 72 | SUM of Xj and K to Xi | 33 | | 73 | SUM of Xj and Bk to Xi | 33 | | 74 | SUM of Aj and Bk to Xi | 33 | | 75 | DIFFERENCE of Aj and Bk to Xi | 33 | | 76 | SUM of Bj and Bk to Xi | 33 | | 77 | DIFFERENCE of Bj and Bk to Xi | 33 | *Duplexed units-instruction goes to free unit Octal Code at left of instruction ${\bf Comp.--Complement}$ DP-Double Precision CONTROL DATA SALES OFFICES ALAMOGORDO · ALBUQUERQUE · ATLANTA · BOSTON · CAPE CANAVERAL CHICAGO · CINCINNATI · CLEVELAND · COLORADO SPRINGS · DALLAS · DAYTON DENVER · DETROIT · DOWNEY, CALIF. · HONOLULU · HOUSTON · HUNTSVILLE ITHACA · KANSAS CITY, KAN. · LOS ANGELES · MINNEAPOLIS · NEWARK NEW ORLEANS · NEW YORK CITY · OAKLAND · OMAHA · PALO ALTO PHILADELPHIA · PHOENIX · PITTSBURGH · SACRAMENTO · SALT LAKE CITY SAN BERNARDINO · SAN DIEGO · SEATTLE · WASHINGTON, D.C. INTERNATIONAL OFFICES FRANKFURT, GERMANY • HAMBURG, GERMANY • STUTTGART, GERMANY GENEVA, SWITZERLAND • ZURICH, SWITZERLAND • CANBERRA, AUSTRALIA MELBOURNE, AUSTRALIA • SYDNEY, AUSTRALIA • ATHENS, GREECE LONDON, ENGLAND • OSLO, NORWAY • PARIS, FRANCE • STOCKHOLM, SWEDEN MEXICO CITY, MEXICO, (REGAL ELECTRONICA DE MEXICO, S.A.) OTTAWA, CANADA, (COMPUTING DEVICES OF CANADA, LIMITED) • TOKYO, JAPAN, (C. ITOH ELECTRONIC COMPUTING SERVICE CO., LTD.) 8100 34th AVENUE SOUTH, MINNEAPOLIS, MINNESOTA 55440 C 6600