- CONTROL DATA® 6600 Computer System
Reference Manual

SECOND EDITION

Peripheral and Control Processor Instructions

Mnemonic &

Mnemonic &

Octal Code Name Page Octal Code Name Page
PSN 00 Pass 46 LMl 43 Logical difference ((d)} 48
LM 01 Long jump to m —+ (d) 46 STI 44 Store ({d})) 45
RJM 02 Return jump to m -+ (d) 46 RAl 45 Replace add ((d)) 48
UJN 03 Unconditional jump d 46 AOl 48 Replace add one ((d)) 48
ZJN 04 Zero jump d 46 SOl 47 Replace subtract one ((d)) 48
NJN 05 Nonzero jump d 46
PJN 06 Plus jump d 46 LDM 650 Load {m -+ (d)) 45
MJN 07 Minus jump d 46 ADM 51 Add (m -+ (d)) 45
SHN 10 Shift d 45 SBM 52 Subtract {(m - {d)) 46
LMN 11 Logical difference d 46 LMM 53 Logical Difference (m + (d)) 48
LPN 12 Logical product d 46 STM 54 | Store {m + (d)) 45
SCN 13 Selective clear d 46 RAM 55 Replace add (m + (d}} 48
LDN 14 Load d 45 AOM 56 Replace add one {m -+ (d)) 48
LCN 15 Load complement d 45 SOM 57 Replace subtract one (m - (d) 48
ADN 16 Add d 45
SBN 17 Subtract d 45 CRD 60 Central read from (A) to d 49
CRM 61 Central read (d) words
LDC 20 Load dm 45 from (A) to m 49
ADC 21 Add dm 45 CWD 62 Central write to (A) from d 49
LPC 22 Logical product dm 46 CWM 63 Central write (d} words
LMC 23 Logical difference dm 48 to {A) from m 49
PSN 24 Pass 46 AJM 64 Jump to m if
PSN 25 Pass 46 channel d active 49
IJM 65 Jump to m if
EXN 26 Exchange jump 48 channel d inactive 49
RPN 27 Read program address 49 FJM 66 Jump to m if
channel d full 49
LDD 30 Load {d) 45 EJM 67 Jump to m if
ADD 31 Add (d) 45 channel d empty 51
SBD 32 Subtract (d) 45 IAN 70 Input to A from channel d 51
LMD 33 Logical difference (d) 48 1AM 71 Input {A) words to m
STD 34 Store (d) 45 from channel d 51
RAD 35 Replace add {d) 48 OAN 72 Output from A on channel d 51
AOD 36 Replace add one {d} 48 OAM 73 Output (A) words from m on
SOD 37 Replace subtract one (d) 48 channel d 51
ACN 74 Activate channel d 51
LDl 40 Load ({d)) 45 DCN 75 Disconnect channel d 51
ADl 41 Add ((d)) 45 FAN 76 Function {A) on channel d 51
SBlI 42 Subtract ({d)) 45 FNC 77 Function m on channel d 51

S e g e

CONTROL DATA® 6600 Computer System
Reference Manual

SECOND EDITION

August, 1963
© 1963, Control Data Corporation

Printed in U.S.A.

CONTENTS

SYSTEM CONCEPTS. e 7
CHARACTERISTICS SUMMARY. s 9
SYSTEM . . 9
CENTRAL PROCESSOR e 9
PERIPHERAL AND CONTROL PROCESSORS o 9
CENTRAL MEMORY e e 10
DISPLAY CONSOLE 10
DESCRIPTION OF SYSTEM UNITS. e 10
CENTRAL PROCESSOR e 10
PERIPHERAL AND CONTROL PROCESSORS 13
CENTRAL MEMORY e 14
DISPLAY CONSOLE 14
CENTRAL PROCESSOR PROGRAMMING 17
INSTRUCTION FORMAT e e e e 17
OPERATING REGISTERS e 18
PROGRAM ADDRESS. 18
EXCHANGE JUMP . . . e 18
FLOATING POINT ARITHMETIC. 20

Dﬁ‘ Format e .20
L Normalizing and Rounding P 24
Single and Double Precision 24

Range Definitions. 24

Converting Integers to Floating Format 24

FIXED POINT ARITHMETIC e e e e 24
FUNCTIONAL UNITS . . . e e e e 26
DESCRIPTION OF INSTRUCTIONS. e 28
PERIPHERAL AND CONTROL PROCESSOR PROGRANMIMING 37
INTRODUCTION. e e e e 37
REGISTERS 37

A Register e e 37

P Register 38

Q Register e 38

K Register e 38

INSTRUCTION FORMAT e e e e 38
ADDRESS MODES e 38

No Address. e 38

Direct AdAress. e 38

Indirect Address. e 38

ACCESS TO CENTRAL MEMORY. s 39

Read Central Memory e 39

Write Central Memory 39

ACCESS TO CENTRAL PROCESSOR. i 39
Exchange Jump e 39

Read Program Address 41

3

CONTENTS (Cont/'nued)

PERIPHERAL AND CONTROL PROCESSOR PROGRAMMING (Continued)

INPUT AND QUTPUT e e e e e e 41

Data Channels. e 41

Word Rate e e 41

Channel Active/lnactive Flag. 41

Register Full/Empty Flag 41

Data Input e 42

Data Outputo 42

REAL TIME CLOCK . . . e e e 43

DESCRIPTION OF INSTRUCTIONS. e 45

Data TransSmisSIiON o o i e e 45

Shift . . e 45

Arithmetic. e e 45

Pass e e e 46

Jump . 46

Logical. e 46

Replace 48

Central Processor and Central Memory 48

Input-Output o 49

OPERATION 53

GENERAL . . .o oo 53

DEAD START e 53

CONSOLE . . 54

Keyboard INput e 54

Display e 54
APPENDICES

| TABLE OF POWERS OF TWO. e e e e e e 57

Il OCTAL-DECIMAL INTEGER CONVERSION TABLE. 60

Il OCTAL-DECIMAL FRACTION CONVERSION TABLE. 67

IV INSTRUCTION EXECUTION TIMES e 73

© N o o ks b=

11.
12.

PO b=

FIGURES

CONTROL DATA 66800. e e e e 7
Concurrent Operations in the 6600. 8
Block Diagram of 6600 10
Flow Diagram of 6600 e 12
Display Console. e 15
Central Processor Instruction Formats. L. 17
Central Processor Operating Registers. 19
Exchange Jump Package. 21
Peripheral and Control Processors. 36
Dead Start Panel 52
Display Console. e 53
Sample Display e 54
TABLES
Indefinite FOrms. 24
Definitions for Central Processor Instructions 26
Central Processor Instructions 27
Peripheral and Control Processor Instructions. 44

6600 COMPUTING SYSTEM

Main frame (center)— contains 10 peripheral and control processors, central processor, central
memory, some 1/0 synchronizers.

Display console (foreground)—includes a keyboard for manual input and operator control, and two
10-inch display tubes for display of problem status and operator directives.

CONTROL DATA 607 tapes fleft front)— Y inch magnetic tape units for supplementary storage,
binary or BCD data handled at 200, 556, or 800 bpi.

CONTROL DATA 626 tapes (left rear)—1-inch magnetic tape units for supplementary storage,
binary data handled at 800 bpi.

Disc file (right rear)— Supplementary mass storage device holds 500 million bits of information.
CONTROL DATA 405 card reader (right front) — reads binary or BCD cards at 1200 card per minute rate.

System Concepts

The CONTROL DATA® 6600 is a large-scale,
solid-state, general-purpose digital computing
system. The advanced design techniques incor-
porated in the system provide for extremely fast
solutions to data processing, scientific, and control
center problems.

Within the 6600 are eleven independent com-
puters (Fig. 1). Ten of these are constructed
with the peripheral and operating system in
mind. These ten have separate memory and can
execute programs independently of each other or

the central processor. The eleventh computer,
the central processor, is a very high-speed
arithmetic device. The common element between
these computers is the large central memory.
In the course of solution of a problem, one or
more peripheral and control processors are used
for high speed information transfer in and out of
the system and to provide operator control. If
the problem requires significant arithmetic speed,
the central processor may be called on by a
peripheral and control processor. A number of

4096 WORD :
CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

6600 CENTRAL MEMORY

4096 WORD:
CORE MEMORY

PERIPHERAL
8 CONTROL :
PROCESSOR 4096 WORD
CORE.. MEMORY

PERIPHERAL
8 CONTROL

PROCESSOR

6600 CENTRAL MEMORY

CORE MEMORY 6600 ‘ !
PERIPHERAL CENTRAL PERIPHERAL
8 CONTROL PROCESSOR & CONTROL
PROCESSOR PROCE SSOR

6600 CENTRAL. MEMORY.

Fig. 1 CONTROL DATA 6600

4096 WORD
CORE' MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

4096 WORD
CORE MEMORY -

PERIPHERAL
& CONTROL
PROCESSOR

AMOW3IW TTVNLN3D 0099

4096 WORD
'CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR

4096 WORD -
CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR

problems may operate concurrently (Fig. 2)
with time sharing of the central processor. To
facilitate this, the central processor may operate
in central memory only within address bounds
prescribed by a peripheral and control processor.

The 6600 has sufficient independence between
its functional segments to sustain a high number
of concurrent operations, thereby achieving very
high over-all speed. In the large, the eleven
programs maintain a cooperative independence,
each doing its assigned portion of the problem
solution. In the small, especially in the central
processor, a similar condition of parallel, con-
current operation is maintained.

The central processor has ten independent
arithmetic and logical units which operate con-
currently in the solution of a problem. Similarly,
central memory is organized in 32 logically in-
dependent banks of 4096 words (60-bit). Several
banks may be in operation simultaneously, thereby
minimizing execution time. The multiple operating
modes of all segments of the computer, in combin-
ation with high-speed transistor circuits, produce
a very high over-all computing speed.

The peripheral and control processor input/
output facility provides a flexible arrangement
for very high speed communication with a variety
of I/0 devices. Some of the I/O devices available
with the 6600 are listed below.

—A display console with manual keyboard. This
program controlled unit displays problem
status on two cathode ray tubes and handles
operator directives from an alpha-numeric
keyboard which is similar to a standard type-
writer keyboard.

—Nominal 500 million bit mass storage disc files.

—CONTROL DATA 607 ‘a-inch magnetic tape
units which handle binary or BCD data record-
ing at 200, 556, or 800 bpi on tapes up to 2400
feet long.

—CONTROL DATA 626 one-inch magnetic tape
units which handle binary data recording at 800
bpi on tapes up to 2400 feet long.

—CONTROL DATA 405 card readers which read
cards at a 1200 card/minute rate.

—CONTROL DATA 1000 line/minute printers.

6600 CONCURRENCY
LEVELS

LEVEL *¥
CONCURRENCY

PROGF:QAMS
DISC PROGRAM A
TAPE PROGRAM
DISPLAY PROGRAM
DISC PROGRAM B
DISC PROGRAM C

6600 CENTRAL PROGRAM

CENTRAL MONITER PROGRAM
DISC PROGRAM

REAL ;TIME COMMUNICATIONS PROGRAM

CARD READERS ¢PRINTERS PROGRAM
REAL TIME SEQUENCE PROGRAM

LEVEL *®2 LEVEL *3
CONCURRENCY CONCURRENCY
N

IN
FUNCTIONS MEMORY BANKS

/ MEMORY BANK A

ADD

IREAD MEMORY BANK B

MULTIPLY

NORMALIZE

INCREMENT

\ MEMORY BANK C
/MEMORY BANK D

ISTORE

MEMORY BANK E
MULTIPLY

Fig. 2 Concurrent Operations in the 6600

%f

oo

Characteristics Summary

SYSTEM

—Large-scale, general-purpose computer system
—11 independent computers
1 central processor (60-bit)
10 peripheral and control processors {12-bit)
Central memory (60-bit)
Display console and keyboard
—System communicates with a variety of ex-
ternal equipment
Disc files
Magnetic tapes
Card equipment
Printers
—Central memory common to the 11 computers

—Central memory storage
131,072 words (60-bit)
Major cycle = 1000 ns*
Minor cycle=100 ns
Memory organized in 32 banks of 4096 words
Multiphase

—Central processor instructions
Arithmetic, logical, indexing, branch

—Peripheral and contral processor instructions
Logical, input/output, access to central processor

and central memory

—Each peripheral and control processor has 12-
bit 4096 word memory

—Solid-state system
Transistor logic

CENTRAL PROCESSOR

—10 arithmetic and logical units

Add Shift
Multiply Branch
Multiply Boolean
Divide Increment
Long add Increment

—24 operating registers for functional units
8 operand (60-bit)
8 address (18-bit)
8 increment {18-bit)

—8 transistor registers (60-bit) hold 32 instruc-
tions (15-bit) or 16 instructions (30-bit) or
combination of two for servicing functional
units

*
Ns = nanoseconds

—Floating point add—4 minor cycles
—Floating point multiply —10 minor cycles
—Floating point divide—29 minor cycles
—Floating point arithmetic
Single and double precision
Optional rounding and normalizing
Format
Integer coefficient—48 bits
Biased exponent— 11 bits (210)
Coefficient sign—1 bit

~—Fixed point arithmetic (subset of floating point
arithmetic)
Full 60-bit add/subtract

—Controlled-and started by peripheral and control
processors

—Addresses in central memory relative

PERIPHERAL AND CONTROL
PROCESSORS

— 10 identical processors (characteristics as
listed are per processor except as noted

—4096 word magnetic core memory (12-bit)
Random access, coincident-current
Major cycle— 1000 ns
Minor cycle—100 ns

—12 input/output channels
All channels common to all processors
Maximum transfer rate per channel—one word/
major cycle
All 12 channels may be active simultaneously
Ali channels 12-bit bi-directional

—Real-time clock (period=4096 major cycles)

—Instructions
Add/Subtract
Logical
Branch
Input/output
Central processor access
Central memory access

—Average instruction execution time=two major
cycles

—Indirect addressing
—Indexed addressing

CENTRAL MEMORY DISPLAY CONSOLE

—131,072 words —Two display tubes
—60-bit words —Modes
—Memory organized in 32 logically independent Character

banks of 4096 words with corresponding multi- Dot

phasing of banks _ Character size
—Random access, coincident-current, magnetic Large— 16 characters/line

core Medium —32 characters/line
—One major cycle for read-write Small—64 characters/line
—Maximum memory reference rate to all banks —Characters

—one address/minor cycle 26 alphabetic
— Maximum rate of data flow to/from memory— 10 numeric

one word/minor cycle 11 special

MULTIPLY
i MULTIPLY
UPPER
<-->'. BOUNDARY 7 —
i
= 04 LONG ADD
- b] OPERATING
REGISTERS ,
> CENTRAL SHIFT
-~ MEMORY
> :
<] \LOWER BOOLEAN
> BOUNDARY
12 INCREMENT
INPUT
MANNEL [INCREMENT |
CHANNELS , INCREMENT
BRANCH
PERIPHERAL & CONTROL PROCESSORS CENTRAL PROCESSOR

Fig. 3 Block Diagram of 6600

Description of System Units

CENTRAL PROCESSOR

Programs for the central processor are held
in central memory. A program is begun by an
exchange jump instruction from a peripheral
and control processor. This instruction also al-
locates a segment of central memory for the
central program and specifies the mode of exit
(normal or error) of the program.

High speed in the central processor depends
first on minimizing memory references. Twenty-
four registers (Fig. 3) are provided to lower the
central memory requirements for arithmetic
operands and results. These 24 are divided into

8 address registers of 18 bits length
8 increment registers of 18 bits length
8 operand registers of 60 bits length

Thirty-two transistor registers are provided
to hold instructions, thereby limiting the number
of memory reads for repetitive instructions, es-
pecially in inner loops. Another method of mini-
mizing memory reference time, multiple banks
of central memory, is also provided. References
to different banks of memory may be handled
without wait.

A second limit on high speed is the unnecessary
waiting period for unrelated instructions and for
partial answers. Very often, a sequence of unre-
lated instructions may proceed without delay, if
separate arithmetic units are available. To mini-
mize this delay, 10 arithmetic units are included
with a reservation control which allows these
units to sustain a high degree of concurrency
while maintaining the original sequence of the
program.

Programs are written for the central processor
in a conventional manner, specifying a sequence
of arithmetic and control operations to be
executed. Each instruction in a program is
brought up in its turn from one of the 32 instruc-
tion registers. These registers are filled from
central memory in a manner sufficient to keep
a reasonable flow of instructions available. A
branch to another area of the program voids the
old instructions in the registers and brings in
new instructions. When a new instruction is
brought up, a test is made on it to determine
which of the 10 arithmetic units is needed, if it
is busy, and if reservation conflict is possible. If

the unit is free and no conflict is present, the
entire instruction is given to” the specified arith-
metic unit for further action. Another instruction
may then be brought up for issuance.

The original sequence of the program is estab-
lished at the time each instruction is issued. Only
those operations which depend on previous steps
prevent the issuing of instructions, and then only
if the steps are incomplete. The reservation
control keeps a running account of the address,
increment, and operand registers and of the
arithmetic units in order to preserve the original
sequence.

Central memory references for information or
instructions are made on an implicit or secondary
basis. Instructions are fetched from memory
only if the instruction registers are near empty
(or when ordered by a branch). Information is
brought to or from the operand registers only
when appropriate address registers are changed
during the course of a program. As a result, the
program never explicitly calls for a central
memory reference. Such references are also
accounted for in the reservation control.

All central processor references to central
memory are made relative to the lower bBound-
ary address assigned by a peripheral and control
processor. A central processor program may
therefore be relocated in central memory by
modifying the boundaries only. Optionally, any
attempt by the central processor to reference
memory outside of its boundaries causes an im-
mediate exit which can be readily examined by
a peripheral and control processor and displayed
for the operator.

The exchange jump instruction described pre-
viously starts a central program. This instruc-
tion starts a sequence of central memory
references which exchanges 16 words in memory
with the contents of the address, increment, and
operand registers of the central processor. Also
exchanged are the program address, the central
memory boundaries, and choice of program
exit. This instruction may be executed by any
peripheral and control processor and acts as an
interrupt to an active central program as well
as a start from an inactive state. Such signals
may be used by an operating system to switch
between two central programs, leaving the first
program in a usuable state for later re-entry.

11

013

SY3LNIYd
N7

S3TOSNOD

S3HONNd
Qyvo

S3dvl
QILINOYW

s34 Osid

IN3WCIND3

VY3HdIN3d

€

el
i
[¢]]
L

O - N M 10 W

T3NNVHD
T3ANNVHD
T3NNYHO
TANNVHD
T3NNVHO
“TINNVHD
TINNVHD
T3NNYHD
TTANNVHO
TANNVYHD
TFINNVHO
TINNVHO

0/1
0/1
0/1
0/
0/t
o/t
0/1
0/1
o/1
0/1
0/l
0/1

—1Nd1No

- AHOW3N 340D
QHOM 960V SVH
¥0§5390ud

TTOHLNOD: ONY.
TIWHAHdIHAG - HOV3

dded
dd8d
dde8d
dd8d
dd 8d
dd8d
dd8d
dd8d
dd8d
dd®8ed

O —-—amainOWK~Q

0099 j0 weibeig mol4 B4

2.Lolel

AHOW3W
AVYLINED

= | NdNI

MOVLS NOLLONYLSNI 2g-
v WOHd
SY3LSI93Y ONVH3dO 8

SY3LSI93d LNIW3HONI 8 - AHOWIW 305

QHOM 960+ ¥V SVH

SY31S193y SS3¥aav 8 - HOSS3I0Hd

- TTOMANQD NV
TWH3IHdINEd “HOV3

SH3LSI93Y 2 WOHd 9ONILvH3IdO

AHOW3N
HONVHE | - 3400 il do8d
auom
220181 of daBd
NY31008 | L dosd
AYOW3N 9 ddwed
L4HS | - IVHINTD § do8d
v ddBd
SHOLNIWIHONI 2 - ¢ doed
2 dowsd
Y3QIAIG | - | d0®8d
0 dow®d

€l
[
l
(o]}
L

=

9
S
14
€
2
|

o]

TTANNVHD
“IANNVHO
TINNVYHD
T3INNVHD
TTANNYHO
T3NNVHD
T13INNVHD
T3NNYHD
TANNVHD
TANNVHD
TTANNYHD
TTINNVHD

0/1
0/1
0/]
0/1
0/1
/1
0/1
0/1
0/1
0/1
0/l
0/1

SH3ITILINN 2 -

sy3daav 2

9NIANTON! ‘SNOILONNA Of

HOSS3208d IVHLINID

G 1715

43
S3T0SNO2

SH3AY3Y
Quvo

S3dvl
OILINOVAN

s34 IS

ININDIND3

AVH3IHdIN3d

PERIPHERAL AND CONTROL
PROCESSORS

The 10 peripheral and control processors are
identical and operate independently and simul-
taneously as stored-program computers. Thus
10 programs may be running at one time. A
combination of processors can be involved in
one problem whose solution may require a variety
of I/O tasks plus use of central memory and
central processor. Fig. 4 shows data flow between
1/0 devices, the processors, and central memory.

Each processor has a 12-bit, 4096 word
memory (not a part of central memory) and an
18-bit adder. The repertoire of instructions
allows each processor access to central memory
and the central processor, and features flexible
I/0O and logical operations, plus 18-bit add and
subtract capability (fixed point). Indirect address-
ing is also provided.

Execution time of processor instructions is
based on memory cycle time, which is defined
as a major cycle. A minor cycle is */10 of a major
cycle and is another basic time interval.

All processors communicate with external
equipment and each other on 12 independent
1/0 channels. Each channel has a single register
which holds the data word being transferred in or
out. All channels are 12 bit (plus control), and
each may be connected to one or more external
devices. Each channel operates at a maximum rate
of one word per major cycle. The channels are
bi-directional, but data flows in one direction
only at one time.

Data flows between a processor memory and
the external device in blocks of words (a block
may be as small as one word). A single word
may be transferred between an external device
and the A register of a processor.

The 1/0 instructions direct all activity with
external equipment. These instructions determine
the status of and select an equipment on any
channel, and transfer data to or from the selected
device. Two channel conditions are made available
to all processors as an aid to orderly use of
channels.

1 Each channel has an active/inactive flag to
signal that it has been selected for use and is
busy with an external device.

2 Each channel has a full/empty flag to signal that

a word (function or data) is available in the
register associated with the channel.

Either state of both flags can be sensed. In gener-
al, I/0 operation involves the following steps.

Determine channel inactive
Determine equipment ready
Select equipment

Activate channel
Input/output data
Disconnect channel

OGO s WN =

One processor may communicate with another
over a channel which is selected as output by one
and input by the other. A common channel can
be reserved for inter-processor communication
and order preserved by determining equipment
and channel status.

A real time clock reading is available on a
channel which is separate from the 12 I/O chan-
nels. The clock period is 4096 major cycles. The
clock starts with power on and runs continuously
and cannot be preset or altered. The clock may
be used to determine program running time or
other functions such as time-of=day, as re-
quired.

Each processor exchanges data with central
memory in blocks of n words. Five successive
12-bit processor words are assembled into a
60-bit word and sent to central memory. Con-
versely, a 60-bit central memory word is dis-
assembled into five 12-bit words and sent to
successive locations in a processor memory.
Separate assembly (write) and disassembly
(read) paths to central memory are shared by
all 10 processors. Up to four processors may be
writing in central memory while another four are
simultaneously reading from central memory.

The processors generally do not solve complex
arithmetic and logical problems but call on the
central processor for solutions. The processors
organize problem data (operands, addresses,
constants, length of program, relative starting
address, exit mode) and store it in central memory.
Then, an exchange jump instruction starts (or
interrupts) the central processor and provides it
with the starting address of a problem on file in
central memory. At the next convenient break-
point, the central processor exchanges the contents
of its A, B, and X registers, program address,
relative starting address, length of program, and
exit mode, with the same information for the new
program. A later exchange jump may return to
complete the interrupted program.

13

An operating system program can provide an
orderly scheme for supervising 1/O and central
processor activity. Such a system may employ
one processor as a master control to direct chan-
nel assignments, provide file protection in central
memory, handle central processor requests for
all processors, assign specific I/O jobs to the
processors, and assign other tasks as necessary.

CENTRAL MEMORY

Central memory stores 131,072 words (60-bit)
in 32 banks of 4096 words each. The banks are
logically independent, and consecutive addresses
go to different banks. Banks may be phased into
operation at minor cycle intervals, resulting in
very high central memory operating speed. The
central memory address and data control mech-
anisms permit a word to move to or from central
memory every minor cycle.

References to central memory from all areas
of the system (central and peripheral and control
processors) go to-a common address clearing
house called a stunt box and are sent from there
to all banks in central memory. The stunt box
accepts addresses from the various sources under
a priority system and at a maximum rate of one
address every minor cycle.

An address is sent to all banks, and the correct
bank, if free, accepts the address and indicates
this to the stunt box. The associated data word is
then sent to (read) or stored from a central data
distributor. The bank ignores the address if it is
busy processing a previous address. The stunt
box issues addresses at a maximum rate of one
every minor cycle,

The stunt box saves, in a hopper mechanism,
each address that it sends to central memory
and then reissues it (and again saves it) under
priority control in the event it is not accepted
because of bank conflict. The address issue-save
scheme repeats until the address is accepted, at
which time the address is dropped from the
hopper and the read or store data word is dis-
tributed. A fixed time lapse from address issue to
the memory accept synchronizes the action taken.

The hopper has highest priority in issuing ad-
dresses to central memory. The central processor
and peripheral and control processors (all 10
share a common path to the stunt box) follow in
that order.

A data distributor which is common to all
processors handles all data words to and from

14

central memory (all peripheral and control
processors share separate read and write paths
to the distributor). A series of buffer registers in
the distributor provide temporary storage for
write words whose addresses are not immediately
accepted because of bank conflict.

Each group of four banks communicates with
the distributor on separate 60-bit read and write
paths, but only one word moves on the data paths
at one time. However, words can move at minor
cycle intervals between the distributor and central
memory or distributor and address sender.

The reissue of addresses because of bank con-
flict results in addresses being issued to central
memory out of order with respect to when they
are received by the stunt box. Data words and
addresses are correlated by control information
(tags) entered in the stunt box with the address.
The tags define the address sender, origin/destina-
tion of data, and whether the address is a read,
write, or exchange jump address.

Address Format

The address word for central memory refer-
ences is a 12-bit address quantity and a 5-bit
bank quantity which defines one of 32 banks. The
12-bit quantity defines 4096 separate locations or
addresses in each bank.

Address Bank

% 12 5 32 Banks
17 5 4 0

Addresses written or compiled in the conven-
tional manner reference consecutive banks and
hence make most efficient use of the bank phas-
ing feature.

DISPLAY CONSOLE

The display console consists of two 10-inch dis-
play units and a manual keyboard. Three char-
acter sizes are available for display of information.
The keyboard contains 47 alpha-numeric and
special characters.

Typical operation of a display console in the
system allocates one display for presentation of
operator directives. The remaining display would
provide the operator with status information on
the current problem or information on other

problems being run. None of the registers in the
system are displayed automatically; however, a
control program can extract register information
from the proper memory and send it to a display
console for viewing. The displays and keyboard
connect to a common channel associated with a
peripheral and control processor. In an operating
system, one peripheral and control processor
could direct the in/out activities of a display

console in response to commands from the
master control.

The multi-programming ability and inherent
high speed of the system permit use of more than
one display console in an installation. Multiple
units minimize idle time in the system and allow
simultaneous solutions to many unrelated prob-
lems. A typical installation may have three or
more units in operation simultaneously.

Fig. 5 Display Console -

15

Central Processor Programming

Central processor program instructions are
stored in central memory. A 60-bit memory
location may hold 60 data bits, four 15-bit instruc-
tions, two 30-bit instructions, or a combination of
15 and 30-bit instructions. Fig. 6 shows all in-
struction combinations in a 60-bit word and the
two instruction word formats.

The central processor reads 60-bit words from
central memory and stores them in an instruction
stack which is capable of holding up to eight 60-
bit words. Each instruction in turn is sent to a
series of instruction registers for interpretation
and testing and then issued to one of 10 functional
units for execution. The functional units obtain
the instruction operands from and store results in
the 24 operating registers. The reservation control
records active operating registers and functional
units to avoid conflicts and insure that the original
instructions do not get out of order.

INSTRUCTION FORMAT

Groups of bits in an instruction are identified by
the letters f, m, 1, j, k, and K (Fig. 6). All letters
represent octal digits except K which is an 18-bit
constant.

The f and m digits identify the type of instruc-
tion and are the operation code.

In most 15-bit instructions the i, j, and k digits
each specify one of eight operating registers
where operands are found and where the result
of the operation is to be stored. In other 15-bit
instructions, the j and k digits provide a 6-bit
shift count.

In 30-bit instructions the i and j digits each
specify one of eight operating registers where one
operand is found and where the result is to be
stored, and K is taken directly as an 18-bit
second operand.

INSTRUCTION FORMATS
INSTRUCTION COMBINATIONS foom i ik
N 3] 3 3l3|3||saws
CENTRAL MEMORY \4 o
OPERATION
CODE
L:s | 5 [15 | I5 60 BITS
59 0 RESULT
REG.
I 30 I 15 I 15 l (1 of 8)
| st OPERAND
REG.
(Iof 8) W
| 5 | 30 | :51 2 nd OPERAND
REG.
(I of 8)
| 15 | 5 | 30 |
L 30 | 30
f m i j K
3|3 3|3| 18] 30BITS
29 0
OPERATION
CODE
2nd OPERAND
RESULT
REG.
(tof B)
I'st OPERAND
REG.
(I of 8)
Fig. 6 Central Processor Instruction Formats

OPERATING REGISTERS

In order to provide a compact symbolic lan-
guage, the 24 operating registers are identified by
letters (and numbers). Table 2 defines the various
letters which are used in the instruction list of
Table 3.

The operating registers are identified as follows:

A = address register (A0, A1,...A7)
B = increment register (BO, B1, ... B7)
X = operand register (X0, X1, ... X7)

The operand registers hold operands and results
for servicing the functional units. Five registers
(X1-X5) hold read operands from central mem-
ory, and two registers (X6-X7) send results to
central memory (Fig. 7). Operands and results
transfer between memory and these registers as
a result of a change in the contents of a corre-
sponding address register (A1-A7).

A change in the contents of an address register
A1-AS produces an immediate memory reference
to that address and reads the operand into the
corresponding operand register X1-X5. Similar-
ly, a change in the contents of address register
A6 or A7 stores the word in the corresponding
X6 or X7 operand register in the new address.

The increment instructions with the Ai result
register (table 3) change an Al1-A7 address
register in several ways.

1 By adding an 18-bit signed constant K to the
contents of any A, B, or X register.

2 By adding the content of any B register to any
A, B, or X register.

3 By subtracting the content of any B register
from any A register or any other B register.

The AO and X0 registers are independent and
have no connection with central memory. They
may be used for scratch pad or intermediate
results.

The B registers have no connection with cen-
tral memory. The BO register is fixed to provide
a constant zero (18-bit) which is useful for
various tests against zero, providing an uncon-
ditional jump modifier, etc. In general, the B
registers provide means for program indexing.
For example, B4 may store the number of times
a program loop has been traversed, thereby pro-
viding a terminal condition for a program exit.

An exchange jump instruction from a periph-
eral and control processor enters initial values
in the operating registers to start central proc-
essor operation. Subsequent address modification

18

instructions executed in the increment functional
units provide the address changes required to
fetch and store data.

PROGRAM ADDRESS

An 18-bit P register serves as a program ad-
dress counter and holds the address of each
program step. P is advanced to the next program
step in the following ways:

1. P is advanced by 1 when all instructions in
a 60-bit word (in the instruction stack) have
been extracted and sent to the instruction reg-
isters.

2. P is set to the address specified by agoto. ..
(branch) instruction. If the instruction is a
return jump, P--1 is stored before the branch to
allow a return to the sequence after the branch.

3. P is set to the address specified in the ex-
change jump package.

All branch instructions to a new program start
the program with the instruction located in the
highest order position of the 60-bit word.

EXCHANGE JUMP

A peripheral and control processor exchange
jump instruction starts or interrupts the central
processor and provides it with the first address
(which is the address in the peripheral and
control processor A register) of a 16-word
package in central memory. The exchange
jump package (Fig. 8) provides the following
information on a program to be executed.

Program address (P)

Reference address (RA)

Field length of program (FL)

Program exit mode (EM)

Initial contents of the eight A registers

Initial contents of the eight X registers

Initial contents of B registers B1-B7 (BO is
fixed at 0.)

NOORWN =

The central processor enters the information
about a new program into the appropriate regi-
sters and then stores the corresponding and
current information from the interrupted pro-
gram at the same 16 locations in central memory.
Hence two programs are exchanged. A later ex-
change jump may return an interrupted program
to the central processor for completion. The
normal relation of the A and X registers (de-
scribed earlier) is not active during the exchange
jump so that the new entries in A are not re-
flected into changes in X.

All central processor reference addresses to

OPERANDS

X
OPERANDS
(60-BIT)

X0

X1

X2

RESULTS

o X3

X4

X5

X6

CENTRAL
MEMORY

OPERAND

X7

(_J

A
ADDRESS
(18-BIT)

AO

Al

A2

ADDRESSES

RESULT

A3

A4

A5

A6

ADDRESSES

INSTRUCTIONS

IAT

B
INCREMENT
(18—BIT)

BO

B2

B3

B4

BS
B6

BT

10
FUNCTIONAL
UNITS

OPERATING
REG, CONTROL

CONTROL

INSTRUCTION
REGISTERS

INSTRUCTION
STACK

(UP TO 8 WORDS
60—BIT)

Fig. 7 Central Processor Operating Registers

SCOREBOARD

19

central memory for new instructions, or to
fetch and store data, are made relative to the
reference address. This allows easy relocation
of a program in central memory. The reference
address or beginning address and field length define
the central memory limits of the program. An
optional exit condition allows the central processor
to stop on a memory reference outside these
limits.

The program address register P defines the
location of a program step within the limits pre-
scribed. Each reference to memory is made to the
address specified by P+ RA. Hence program re-
location is conveniently handled through a single
change to RA.

A P = 0 condition specifies address zero and
hence RA. This address is reserved for recording
program exit conditions.

The exit mode feature allows the programmef
to choose the exit or stop condition of the central
processof. Exit selections are stored in the func-
tional units, and the exit occurs as soon as it is
sensed. The various exit conditions are shown
below in octal format:

EM=000000 Normal stop

=010000 Address out of range—an attempt
to reference memory outside estab-
lished limits

=020000 Operand out of range —floating point
arithmetic generated or regenerated
an infinite result (see Range Defini-
tion paragraph)

=(030000 Address or operand out of range

= 040000 Indefinite operand—floating point
arithmetic generated or regenerated
anindefinite result (see Range Def-
initions paragraph)

=050000 Indefinite operand or address out of
range.

=060000 Indefinite operand or operand out of
range

= (070000 Indefinite operand or operand or
address out of range

The central processor records at RA a stop

instruction, exit condition, and the program

Stop Exit P

——

00 XX XXXXXX|0 000000000
P = 0, Normal stop
P = (P) 4+ 1. at time of error exit

address at exit time in the format shown below
and jumps to P=0 (RA) thereby stopping.

For error stops the (P)+1 gives an approx-
imate location of the error since the central
processor may have issued other instructions to
the functional units (one of which may have been
a branch) before the exit was sensed.

The peripheral and control processor searches
for a central processor P = 0 condition to deter-
mine that the latter has stopped. The contents of
RA may be examined then to determine the
nature of the stop.

FLOATING POINT ARITHMETIC

Format

Floating point arithmetic takes advantage of
the ability to express a number with the general
expression kB", where

k ==coefficient

B=base number

n = exponent, or power to which the base num-
ber is raised

The base number is constant (2) for binary-
coded quantities and is not included in the general
format. The 60-bit floating-word format is shown
below. The binary point is considered to be to the
right of the coefficient, thereby providing a 43-
bit integer coeflicient, the equivalent of about 15
decimal digits. The sign of the coeflicient is
carried in the highest order bit of the packed
word. Negative numbers are represented in 1°s
complement notation.

Coefficient Biased Integer
Sign Exponent Coefficient
1 11 48
59 58 48 47 0
Binary
Point

The 11-bit exponent carries a bias of 210
(20008) when packed in the floating point word
(biased exponent sometimes referred to as char-
acteristic). The bias is removed when the word is
unpacked for computation and restored when a
word is packed into floating format. The bias
provides for a signed exponent within the follow-
ing ranges.

21023 =3777s
20 = 20008 {zero = 00000000000000000000s)
21023 = 00008

CENTRAL MEMORY

PERIPHERAL AND CONTROL
PROCESSOR
/_\ 6 18 18 18
A REGISTER / Loc. n \\ P A0 _
CENTRAL Msuoav,/ n+ | RA Al Bl
Loc. N
” 5 n+2 FL A2 B2
n+3 \ EM A3 B3
[
53 Yas W B[o4 5
AS B5
A6 B6
& A7 B7
X0
X1
X2
X3
X4
X5
X6
Loc. n+I15 X7
55 0
P = PROGRAM ADDRESS A = ADDRESS REGISTERS
RA = REFERENCE A.DDRESS B = INCREMENT REGISTERS
FL = FIELD LENGTH X = OPERAND REGISTERS
EM = EXIT MODE = 000000 NORMAL STOP
010000 ADDRESS OUT OF RANGE
020000 OPERAND OUT OF RANGE
030000 ADDRESS OR OPERAND OUT OF RANGE
040000 INDEFINITE RESULT
050000 INDEFINITE RESULT OR ADDRESS OUT OF
RANGE
060000 INDEFINITE RESULT OR OPERAND QUT OF
RANGE .
070000 INDEFINITE RESULT OR ADDRESS OUT OF
RANGE OR OPERAND OUT OF RANGE

Fig. 8 Exchange Jump Package

21

Over Va2 million silicon transistors are used in the 6600. The illustration shows a silicon transistor
with cap removed and the base-emitter connections between the lead posts and silicon pellet. The
size of the transistor element is contrasted with the tip of an ordinary ball point pen.

22

The silicon pellet of the transistor on the facing page is shown enlarged many times in the
microphotograph above. The pellet is about 15 mils square, the base junction is at the bottom of
the photo, and the emitter is at the top.

23

Thus, a number whose true exponent is 342
would appear as 2342; a number whose true
exponent is -160 would appear as 1617. Exponent
arithmetic is done in I’s complement notation.
Floating point numbers can be compared for
equality and threshold.

Normalizing and Rounding

Normalizing a floating point quantity shifts the
coefficient left until the most significant bit is in
bit 47. Sign bits are entered in the low-order bits
of the coefficient as it is normalized. Each shift
decreases the exponent by one.

A round bit is added (optionally) to the co-
efficient during an arithmetic process and has
the effect of increasing the absolute value of the
operand or result by Y% the value of the least
significant bit. Normalizing and rounding are not
automatic during pack or unpack operations so
that operands and results may not be normalized.

Single and Double Precision

The floating point arithmetic instructions
generate double precision results. Use of un-
rounded operands allows separate recovery of
upper and lower half results with proper ex-
ponents; only upper half results can be obtained
with rounded operands.

Range Definitions

A tesult whose exponent is so large that it
reaches or exceeds the upper limit of octal 3777
(overflow case) is treated as an infinite quantity.
A coefficient of all zeroes and an exponent of octal
3777 is packed for this case. An optional exit is
provided for infinity since its later use may propa-
gate an indefinite result as shown in table 1.

Table 1. Indefinite Forms

w — © = INDEFINITE o +N =w
] = INDEFINITE @ +N =
) = INDEFINITE o —N =
0 +0 = INDEFINITE N +0 =
INDEFINITE +,—,-+, (X) = INDEFINITE 0 + = =0
o - @ = ® 0«0 =0
w e @ == 00 0 +N =0
w =0 = o N +-o=0

0 «N =0

where: © = INFINITY, N = INTEGER
X= o Noro

A result whose exponent is less than the lower
limit of octal 0000 (underflow case) is treated as

24

a zero quantity. This quantity is packed with a
zero exponent and zero coeflicient. No exit is pro-
vided for underflow. A result whose exponent is
octal 0000 and whose coeflicient is not zero is a
non-zero quantity and is packed with a zero ex-
ponent and the non-zero coefficient.

Use of either infinity or zero as operands may
produce an indefinite result. An exponent of octal
1777 and a zero coeflicient are packed in this case,
and an optional exit provided. Note that zero, in-
finity, and indefinite results are generated or re-
generated in the floating arithmetic units only; the
exits are sensed in these units also. The branch
unit instructions test for indefinite or infinite
quantities.

Converting Integers to Floating Format

Conversion of integers to floating point format
makes use of the shift unit and the zero constant
in increment register BO. The BO quantity pro-
vides for generation of exponent bias in this case.
For example, the instructions

1 Sum of Bj and Bk to Xi (where i=2, j=3, k=4)
2 Pack Xi from Xk and Bj {where i=2, j=0, k==2)

form an 18-bit signed integer in operand register
X2 as a result of the addition of the contents of
increment registers B3 and B4. The integer co-
efficient with its sign, plus the octal 2000 exponent
is packed then into the floating format shown
earlier. The coefficient is not normalized but may
be with a normalize instruction.

FIXED POINT ARITHMETIC

Fixed point addition and subtraction of 60-bit
numbers are handled in the long add unit. Neg-
ative numbers are represented in 1’s comple-
ment notation, and overflows are ignored. The
sign bit is in the high-order bit position (bit 59),
and the binary point is at the right of the low-
order bit position (bit 0).

The increment units provide an 18-bit fixed
point add and subtract facility. Negative num-
bers are represented in 1’s complement notation,
and overflows are ignored. The sign bit is in the
high-order bit position (bit 17), and the binary
point is at the right of the low-order bit position
(bit 0). The increment units allow program index-
ing through the full range of central memory
addresses.

Fixed point integer addition and subtraction
are possible in the floating add unit providing the
exponents of both operands are zero and no over-
flow occurs. The unit performs the 1’s complement
addition (or subtraction) in the upper half of a
96-bit accumulator. If overflow occurs, the unit
shifts the result one place right and adds one to
the exponent, thereby producing a floating point
quantity. Thus, care must be used in performing
fixed point arithmetic in the floating add unit.

Fixed point integer multiplication is handled
in the multiply functional units as a subset opera-
tion of the unrounded floating multiply (40, 42)
instructions. The multiply is double precision
(96 bits) and allows separate recovery of upper
and lower products. The multiply requires that
both of the integer operands be converted to
floating format to provide a biased exponent.
This insures that results are not sensed as under-
flow conditions. The bias is removed when the
result is unpacked.

An integer divide takes several steps and
makes use of the divide and shift units. For
example, an integer quotient X1=X2/X3 is pro-
duced by the following steps.

INSTRUCTIONS REMARKS
1 Pack X2 from X2 and BO Pack X2
2 Pack X3 from X3 and BO Pack X3

3 Normalize X3 in X0

and BO
4 Floating quotient of

X2 and X0 to X1
5 Unpack X1to X1 and B7
6 Shift X1 nominally

left B7 places Shift to integer position

The divide requires that both integer (247 max-

imum) operands be in floating format. Also, the
divisor must be shifted 48 places left, or the quo-
tient be. shifted 48 places right, or any combina-
tion of n left shifts of the divisor and 48-n right
shifts of the quotient. The normalize X3 instruc-
tion shifts the divisor n places left (n = 0) provid-
ing a divisor exponent of —n. The quotient ex-
ponent then is

O0—(—n)—48=n—48=0

Normalize X3 (divisor)

Divide
Unpack quotient

After unpacking and shifting nominally left, the
negative (or zero) value in B7 shifts the quotient
48 — n places right, producing an integer quotient
in X1. A remainder may be obtained by an integer
multiply of X1 and X3 and subtracting the result
from X2.

25

FUNCTIONAL UNITS is sent to the second unit if the first is busy. The

The 10 functional units handle the requirements general function of each unit is given below.
of the various instructions. The multiply and in- Table 3 groups the instructions under the unit
crement units are duplexed, and an instruction which executes them.

FUNCTIONAL UNITS

Branch — handles all jumps or branches from the program.

Boolean — handles the basic logical operations of transfer, logical product, logical sum, and logical
difference.

Shift — handles operations basic to shifting. This includes left (circular) and right (end-off sign

extension) shifting, and normalize, pack, and unpack floating point operations. The
unit also provides a mask generator.

Add — performs floating point addition and subtraction on floating point numbers or their
rounded representation.

Long add — performs 1's complement addition and subtraction of 60-bit fixed point numbers.

Multiply — performs floating point multiplication on floating point numbers or their rounded rep-

resentation.

Divide — performs floating point division of floating point quantities or their rounded represent-
ation. Also sums the number of 1's in a 60-bit word.

Increment — performs 1's complement addition and subtraction of 18-bit numbers.

Table 2. Definitions for Central Processor Instructions

A one of eight address registers (18 bits)

B one of eight index registers (18 bits)
BO is fixed and equal to zero

fm instruction code (6 bits)

i specifies which of eight designated registers (3 bits)

i specifies which of eight designated registers (3 bits)

ik constant, indicating number of shifts to be taken (6 bits)

k specifies which of eight designated registers (3 bits)

K constant, indicating branch destination or operand (18 bits)
X one of eight operand registers {60 bits)

Table 3. Central

Processor Instructions

LONG ADD UNIT

INTEGER SUM of Xj and Xk to Xi
INTEGER DIFFERENCE of Xj and Xk to Xi

MULTIPLY UNIT*

FLOATING PRODUCT of Xj and Xk to Xi
ROUND FLOATING PRODUCT of Xj and Xk to Xi
FLOATING DP PRODUCT of Xj and Xk to Xi

DIVIDE UNIT

FLOATING DIVIDE Xj by Xk to Xi
ROUND FLOATING DIVIDE Xj by Xk to Xi
PASS

SUM of T's in Xk to Xi

INCREMENT UNIT*

SUM of Aj and K to Ai
SUM of Bj and K to Ai
SUM of Xj and K to Ai
SUM of Xj and Bk to Ai
SUM of Aj and Bk to Ai
DIFFERENCE of Aj and Bk to Ai
SUM of Bj and Bk to Ai
DIFFERENGE of Bj and Bk to Ai

SUM of Aj and K to Bi
SUM of Bj and K to Bi
SUM of Xj and K to Bi
SUM of Xj and Bk to Bi
SUM of Aj and Bk to Bi
DIFFERENCE of Aj and Bk to Bi
SUM of Bj and Bk to Bi
DIFFERENCE of Bj and Bk to Bi

SUM of Aj and K to Xi
SUM of Bj and K to Xi
SUM of Xj and-K to Xi
SUM of Xj and Bk te Xi
SUM of Aj and Bk to Xi
DIFFERENCE of Aj and Bk to Xi
SUM of Bj and Bk to Xi
DIFFERENCE of Bj and Bk to Xi

BRANCH UNIT
00 STOP 36
01 RETURN JUMP to K 37
02 GO TO K + Bi {Note 1}
030 | GO TO K if Xj = zero
031 | GO TO K if Xj & zero
032 | GO TO K if Xj == positive
033 | GO TO K if Xj = negative Note 40
034 | GO TO K if Xj is in range 2 4
035 | GO TO K if Xj is out of range 42
036 | GO TO K if Xj is definite
037 | GO TC X if Xj is indefinite
04 GO TO K if Bi = Bj
0§ GO T0 K if Bi 5 Bj Note
06 GO TO K if Bi = Bj 1 44
07 | GO TOKif Bi < Bj 45
46
Note 1. GO TO K - Bi and GO 70 K if Bi--- tests a7
made in increment unit
Note 2. GO TO K if Xj---tests made in long add
unit
50
51
BOOLEAN UNIT 52
53
10 | TRANSMIT Xj to Xi 54
11 LOGICAL PRODUCT of Xj and Xk to Xi 55
12 LOGICAL SUM of Xj and Xk to Xi 56
13 LOGICAL DIFFERENCE of Xj and Xk to Xi 57
14 TRANSMIT Xk COMP. to Xi
15 LOGICAL PRODUCT of Xj and Xk COMP. to Xi 50
16 LOGICAL SUM of Xj and Xk COMP. to Xi 61
17 LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi 52
63
SHIFT UNIT 64
65
20 SHIFT Xi LEFT jk places 66
21 SHIFT Xi RIGHT jk places 67
22 SHIFT Xk NOMINALLY LEFT Bj places to Xi
23 SHIFT Xk NOMINALLY RIGHT Bj places to Xi 70
24 NORMALIZE Xk in Xi and Bj 71
25 ROUND AND NORMALIZE Xk in Xi and Bj 72
26 UNPACK Xk to Xi and Bj 73
27 PACK Xi from Xk and Bj 74
43 FORM jk MASK in Xi 75
76
ADD UNIT n
30 FLOATING SUM of Xj and Xk to Xi
3 FLOATING DIFFERENCE of Xj and Xk to Xi
32 FLOATING DP SUM of Xj and Xk to Xi
33 FLOATING DP DIFFERENCE of Xj and Xk to Xi
34 ROUND FLOATING SUM of Xj and Xk to Xi
35 ROUND FLOATING DIFFERENCE of Xj and Xk ta Xi

*Duplexed units—instruction goes to free unit

Octal Cede at left of instruction
Comp.—Complement

DP—Double Precision

27

DESCRIPTION OF INSTRUCTIONS
00 STOP (30 Bits)

This instruction stops the central processor at
the current step in the program. An exchange jump
is necessary to restart the central processor.

01 RETURN JUMP to K (30 Bits)

The instruction stores an 04 unconditional
jump and the current address plus one (P4 1) in
the upper half of address K and then branches
to K 4 1 for the next instruction.

The octal word at K after the instruction appears
as follows:

Uncond. -
Jump
P -1
e P
K| 04 00 XXXXXX 000.... 0
59 — 3029 0
Bi = Bj

A jump to address K at the end of the branch

routine returns the program to the original sequence.

02 GO TO K + Bi (30 Bits)

This instruction adds the contents of incre-
ment register i to K and branches to the address
specified by the sum. The branch address is K
when Bi=B0. Addition is performed modulus 218-1.

030 GO TO K if Xj is zero (30 Bits}
031 GO TO K if Xj is not zero (30 Bits)
032 GO TO K if Xj is positive (30 Bits)
033 GO TO K if Xj is negative (30 Bits)
034 GO TO K if Xj is in range {30 Bits)
035 GO TO K if Xj is out of range {30 Bits)
036 GO TO K if Xj is definite (30 Bits)
037 GO TO K if Xj is indefinite (30 Bits)

This instruction branches to K when the 60-bit
word in operand register j meets the condition
specified by the i digit. The instruction allows
zero, sign, and magnitude tests for fixed or floating
point words.

The range tests are comparisons against infinity

(377700 ...08); the definite / indefinite tests are

comparisons against an indefinite quantity (177700
... 08).

04 GO TO K if Bi = Bj (30 Bits)
05 GO TO K if Bi # Bj (30 Bits)
06 GO TO K if Bi = Bj (30 Bits)
07 GO TO K if Bi < Bj (30 Bits)

28

These instructions test an 18-bit word in reg-
ister Bi against an 18-bit word in register Bj
(both words signed quantities) for the condition
specified and branch to address K on a successful
test.

All tests against zero can be made by setting
Bj = BO.

10 TRANSMIT Xj to Xi (15 Bits)

This instruction transfers a 60-bit word from
operand register j to operand register i.

11 LOGICAL PRODUCT of

Xj and Xk to Xi (15 Bits)

This instruction forms the logical product (AND
function) of 60-bit words in operand registers j and
k and places the product in operand register i. Bits
of register i are set to 1 when the corresponding
bits of the j and k registers are 1 as in the fol-
lowing example.

Xj = 0101
Xk = 1100
Xi = 0100

12 LOGICAL SUM of Xj and Xk to Xi ({15 BITS)

This instruction forms the logical sum (inclu-
sive OR) of 60-bit words in operand registers j and
k and places the sum in operand register i. Bits of
register i are set to 1 if the corresponding bit of
thej or k register is a 1 as in the following example.

Xj= 1010
Xk = 0011
Xi= 1011

13 LOGICAL DIFFERENCE of

Xj and Xk to Xi (15 Bits)

~ This instruction forms the logical difference (ex-

clusive OR) of 60-bit words in operand registers j
and k and places the difference in operand register
i. Bits of register i are set to 1 if the correspond-
ing bits in the j and k registers are unlike as in the
following example.

Xj = 0101
Xk = 0110
Xi = 0011

14 TRANSMIT Xk COMPLEMENT to Xi (15 Bits)

This instruction complements the 60-bit word in
operand register k and sends it to operand register i.

15 LOGICAL PRODUCT of Xj and

Xk COMPLEMENT to Xi {15 Bits)

This instruction complements the 60-bit word
in operand register k, forms the logical product
(AND function) of this quantity and the 60-bit
quantity in operand register j, and places the
result in operand register i. Thus, bits of i are
set to 1 when the corresponding bits of the j
register and the complement of the k register are
1 as in the following example.

Initial Final
Xj = 0101 Xj = 0101
Xk = 1001 Xk= 0110
Xi = 0100
16 LOGICAL SUM of Xj and
Xk COMPLEMENT to Xi (15 Bits)

This instruction complements the 60-bit quantity
in operand register k, forms the logical sum
(inclusive OR) of this quantity and the 60-bit
quantity in operand register j, and places the
result in operand register i. Thus, bits of i are
set to 1 if the corresponding bit of the j register
or complement of the k register is a 1 as in the
following example.

Initial Final

Xj = 0011 Xj = 0011
Xk = 0100 Xk = 1011

Xi = 1011
17 LOGICAL DIFFERENCE of
Xj and Xk COMPLEMENT to Xi {15 Bits)

This instruction complements the 60-bit word in
operand register k, forms the logical difference
(exclusive OR) of this quantity and the quantity in
operand register j and places the result in operand
register i. Thus, bits of i are set to 1 if the cor-
responding bits of register j and the complement
of register k are unlike as in the following example.

Initial Final

Xj =0111 Xj = 0111
Xk = 0001 Xk= 1110
Xi = 1001
20 SHIFT Xi LEFT jk places (15 Bits)

This instruction shifts the 60-bit word in operand
register i left circular jk places. The shift enters
the left-most bits of i in the lower bits of i.

The 6-bit (26-1) shift count jk allows a complete
circular shift of register i.

21 SHIFT Xi RIGHT jk places (15 Bits)

This instruction shifts the 60-bit word in operand
register 1 right jk places. The right-most bits of i

are discarded and the sign bit extended.

22 SHIFT Xk NOMINALLY
LEFT Bj places to Xi (15 Bits)

This instruction shifts the 60-bit word in operand
register k the number of places specified by the
low-order six bits of the 18-bit quantity in incre-
ment register j and places the result in operand
register i.

If Bj is positive, register k is shifted left circular.

If Bj is negative, register k is shifted right (end-
off with sign extension).

23 SHIFT Xk NOMINALLY
RIGHT Bj places to Xi {15 Bits)

This instruction shifts the 60-bit word in operand
register k the number of places specified by the
low-order six bits of the 18-bit quantity in incre-
ment register j and places the result in operand
register i.

If Bj is positive, register k is shifted right (end-
off with sign extension).

If Bj is negative, register k is shifted left circular.

24 NORMALIZE Xk in Xi and Bj (15 Bits)

This instruction normalizes the floating point
quantity in operand register k and places it in
operand register i. The number of left shifts neces-
sary to normalize the quantity is entered in incre-
ment register j. A normalize operation may cause
underflow which will clear both exponent and co-
efficient. Normalizing a zero coeflicient reduces the
exponent by 48.

25 ROUND AND NORMALIZE
Xk in Xi and Bj (15 Bits)

This instruction performs the same operation as
instruction 24 except that the quantity in operand
register k is rounded before it is normalized. Nor-
malizing a zero coefficient places the round bit in
bit 47 and reduces the exponent by 48.

26 UNPACK Xk to Xi and Bj (15 Bits)

This instruction unpacks the floating point quan-
tity in operand register k and sends the 48-bit co-
efficient to operand register i and the 11-bit exponent
to increment register j. The exponent bias is re-
moved during unpack so that the quantity in Bj is
the true 1’s complement representation of the ex-
ponent. The quantity in k may not be a normalized
number.

The exponent and coefficient are sent to the
low-order bits of the respective registers as shown
on the next page:

29

Biased

Sign Exponent Coefficient

Packed Quantity‘ 1 ’ 11 \ 48 Xk
59 58 48 47 0
Exponent Unbiased
Sign Extended Exponent Coefficient

* Sign Extended

unpackedtil/ /| LS x
17 10 9 0 59 48 47 0

27 PACK Xi from Xk and Bj {15 Bits)

This instruction packs a floating point number
in operand register i. The coefficient of the number
is obtained from operand register k and the ex-
ponent from increment register j. Bias is added to
the exponent during the pack operation. The in-
struction does not normalize the coefficient.

Bias and coefficient are obtained from the proper
low-order bits of the respective register and
packed as shown in the illustration for the unpack
(26) instruction. Overflow is produced during pack
when the B register quantity is a positive number
of more than 10 bits; the overflow exit is optional.
Underflow is produced (no exit) when the B register
quantity is a negative number of more than 10 bits.

30 FLOATING SUM of Xj and Xk to Xi {15 Bits)

This instruction forms the sum of the floating
point quantities in operand registers j and k and
packs the result in operand register i. The packed
result is the upper half of a double precision sum.

At the start both arguments are unpacked, and
the coefficient of the argument with the smaller
exponent is entered into the upper half of a 96-bit
accumulator. The coefficient is shifted right by the
difference of the exponents. The other coefficient is
then added into the upper half of the accumulator.
If overflow occurs, the sum is right shifted one
place and the exponent of the result increased by
one. The upper half of the accumulator holds the
coefficient of the sum, which is not necessarily in
normalized form. The exponent and upper coeffi-

30

cient are then repacked in operand register i.

If both exponents are zero and no overflow oc-
curs, the instruction effects an ordinary integer
addition.

31 FLOATING DIFFERENCE of

Xj and Xk to Xi (15 Bits)

This instruction forms the difference of the float-
ing point quantities in operand registers j and k
and packs the result in operand register i. Align-
ment and overflow operations are similar to the
floating sum (30) instruction, and the difference is
not necessarily normalized. The packed result is
the upper half of a double precision difference.

An ordinary integer subtraction is performed
when the exponents are equal.

32 FLOATING DP SUM of

Xj and Xk to Xi (15 Bits)

This instruction forms the sum of two floating
point numbers as in the floating sum (30) instruc-
tion, but packs the lower half of the double preci-
sion sum with an exponent 48 less than the upper
sum.

33 FLOATING DP DIFFERENCE of

Xj and Xk to Xi (15 Bits}

This instruction forms the difference of two
floating point numbers as in the floating difference
(31) instruction, but packs the lower half of the

double precision difference with an exponent of 48
less than the upper sum.

34 ROUND FLOATING SUM of

Xj and Xk to Xi (15 Bits)

This instruction forms the round sum of the
floating point quantities in operand registers j and
k and packs the upper sum of the double precision
result in operand register i. The sum is formed in
the same manner as the floating sum instruction
but the operands are rounded before the addition,
as shown below, to produce a round sum.

1. Around bit is attached at the right end of both
operands if
a. both operands are normalized, or
b. the operands have unlike signs.

2. Around bit is attached at the right end of the

operand with the larger exponent for all other
cases.

35 ROUND FLOATING DIFFERENCE of

Xj and Xk to Xi (15 Bits)

This instruction forms the round difference of
the floating point quantities in operand registers
jand k and packs the upper difference of the double
precision result in operand register i. The difference
is formed in the same manner as the floating dif-
ference instruction but the operands are rounded
before the subtraction, as shown below, to produce
a round difference.

1 A round bit is attached at the right end of both
operands if
a. both operands are normalized, or
b. the operands have like signs.

2 Around bit is attached at the right end of the
operand with the larger exponent for all other
cases.

36 INTEGER SUM of Xj and Xk to Xi {15 Bits)

This instruction forms a 60-bit 1's complement
sum of the quantities in operand registers j and k
and stores the result in operand register i. An over-
flow condition is ignored.

6600 logic hardware is constructed from nearly 8000 printed circuit modules shown full size above.
Transistors, resistors, and other components are mounted on and between two printed circuit boards
in a high-density cordwood packaging or stacking technique. A 30-pin connector provides in-out

electrical access for the circuits, and up to six test points allow circuit performance to be monitored
on an oscilloscope.

31

37 INTEGER DIFFERENCE of

Xj and Xk to Xi (15 Bits)

This instruction forms the 60-bit 1’s complement
difference of the quantities in operand registers j
(minuend) and k (subtrahend) and stores the result
in operand register 1.

40 FLOATING PRODUCT of

Xj and Xk to Xi (15 Bits)

This instruction multiplies two floating point
quantities located in operand registers j (multiplier)
and k (multiplicand) and packs the upper product
result in operand register i.

The result is a normalized quantity only when
both operands are normalized; the exponent in this
case is the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or both
operands are unnormalized; the exponent in this
case is the sum of the exponents plus 48.

41 ROUND FLOATING PRODUCT of

Xj and Xk to Xi {15 Bits)

This instruction attaches a round bit to the float-
ing point number in operand register k (multipli-
cand), multiplies this number by the floating point
number in operand register j, and packs the upper
product result in operand register i. (No lower
product available.)

The result is a normalized quantity only when
both operands are normalized; the exponent in
this case is the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or both
operands are unnormalized; the exponent in this
case is the sum of the exponents plus 48.

42 FLOATING DP PRODUCT of

Xj and Xk to Xi (15 Bits)

This instruction multiplies two floating point
quantities located in operand registers j and k and
packs the lower product in operand register i. The
result is not necessarily a normalized quantity.

43 FORM jk MASK in Xi (15 Bits)

This instruction forms a mask in operand reg-
ister i. The 6-bit quantity jk defines the number of
I’s in the mask as counted from the highest order
bit in i.

Operand register i = 0 when jk = 0.

44 FLOATING DIVIDE Xj by Xk to Xi (15 Bits)

This instruction divides two floating point quan-

32

tities located in operand registers j (dividend) and
k (divisor) and packs the quotient in operand reg-
ister 1.

The exponent of the result in a no-overflow case
is the difference of the dividend and divisor expo-
nents minus 48.

A one-bit overflow is compensated for by adjust-
ing the exponent and right shifting the quotient
one place. In this case the exponent is the difference
of the dividend and divisor exponents minus 47.

The result is a normalized quantity when both
the dividend and the divisor are normalized.

45 ROUND FLOATING DIVIDE

Xj by Xk to Xi (15 Bits)

This instruction divides the floating quantity in
operand register j (dividend) by the floating point
quantity in operand register k (divisor) and packs
the round quotient in operand register i. A %
round bit is added to the least significant bit of the
dividend before division starts.

The result exponent in a no-overflow case is the
difference of the dividend and divisor exponents
minus 48.

A one-bit overflow is compensated for by adjust-
ing the exponent and right shifting the quotient one
place; in this case the exponent is the difference of
the dividend and divisor exponents minus 47.

The result is a normalized quantity when both
dividend and divisor are normalized.

46 PASS
47 SUM OF 1's in Xk to Xi

{15 Bits)
{15 Bits)
This instruction counts the number of I's in

operand register k and stores the count in operand
register i.

50 SUM of Aj and K to Ai (30 Bits)
51 SUM of Bj and K to Ai (30 Bits)
52 SUM of Xj and K to Ai (30 Bits)
53 SUM of Xj and Bk to Ai (15 Bits)
54 SUM of Aj and Bk to Ai (15 Bits)
55 DIFFERENCE of Aj and Bk to Ai (15 Bits)
56 SUM of Bj and Bk to Ai (15 Bits)
57 DIFFERENCE of Bj and Bk to Ai (15 Bits)

These instructions perform 1’s complement
addition and subtraction of 18-bit operands and
store an 18-bit result in address register i.

Operands are obtained from address (A), incre-
ment (B), and operand (X) registers as well as the
instruction itself (K = 18-bit signed constant).
Operands obtained from an Xj operand register are

the truncated lower 18 bits of the 60-bit word.

Note that an immediate memory reference is
performed to the address specified by the final
content of address registers A1-A7. The operand
read from the memory address specified by A1-A5
is sent to the corresponding operand register X1-X5.
When A6 or A7 is changed, the operand from the
corresponding X6 or X7 operand register is stored
at the address specified by A6 or A7.

60 SUM of Aj and K to Bi (30 Bits)
61 SUM of Bj and K to Bi (30 Bits)
62 SUM of Xj and K to Bi (30 Bits)
63 SUM of Xj and Bk to Bi (15 Bits)
64 SUM of Aj and Bk to Bi (15 Bits)
65 DIFFERENCE of Aj and Bk to Bi {15 Bits)
66 SUM of Bj and Bk to Bi (15 Bits)
67 DIFFERENCE of Bj and Bk to Bi (15 Bits)

These instructions perform 1’s complement addi-
tion and subtraction of 18-bit operands and store
an 18-bit result in increment register 1.

Operands are obtained from address (A), incre-
ment (B), and operand (X) registers as well as the

instruction itself (K = 18-bit signed constant).
Operands obtained from an Xj operand register
are the truncated lower 18 bits of the 60-bit word.

70 SUM of Aj and K to Xi (30 Bits)
71 SUM of Bj and K to Xi (30 Bits)
72 SUM of Xj and K to Xi (30 Bits)
73 SUM of Xj and Bk to Xi (15 Bits)
74 SUM of Aj and Bk to Xi (15 Bits)
75 DIFFERENCE of Aj and Bk to Xi (15 Bits)
76 SUM of Bj and Bk to Xi (15 Bits)
77 DIFFERENCE of Bj and Bk to Xi (15 Bits)

These instructions perform 1’s complement addi-
tion and subtraction of 18-bit operands and store
an 18-bit result in operand register i.

Operands are obtained from address (A), incre-
ment (B), and operand (X) registers as well as the
instruction itself (K = 18-bit signed constant).
Operands obtained from an Xj operand register
are the truncated lower 18 bits of the 60-bit word.
Conversely, an 18-bit result placed in an operand
register carries the sign bit extended to the remain-
ing bits of the 60-bit word.

33

The core memories of the peripheral and control processors are constructed from a basic 12-bit,
4096-word magnetic core storage module shown full size above. Five such modules, driven in
parallel, form one 60-bit bank of storage for 4096 central memory words. The module has a read-
write cycle time of 1 usec and uses coincident current switching techniques on the drive and in-
hibit lines which thread the magnetic cores. The module draws only 26 watts of power. Cordwood
packaging of 400 transistors and many other components provides an extremely high-density package.

35

10 MEMORIES, 4096 WORDS EACH, 12-BIT

i 2 3 4 5 & 7 10 1 12

10 PROGRAMS

v

SLOT
T
(TIME— SHARED
INSTRUCTION
CONTROL)
41 A
[e] e O oo
L % & —
) < L)
;:? Q
CENTRAL CENTRAL
MEMORY MEMORY
{60) 60)
12
\ REAL TIME
-
0 I 2 3 4 5 6 7 10 I 12 |13 14 | 1/0 CHANNELS

3(12)

EXTERNAL EQUIPMENT

Fig. 9 Peripheral and Control Processors

36

Peripheral and
Control Processor Programming

INTRODUCTION

Each of the 10 peripheral and control processors
is a stored-program computer with a [2-bit,
4096 word magnetic core memory. The memory
is random-access and has a cycle time of 1000
ns (major cycle). The processors solve problems
and communicate with each other, the central
processor, central memory, and external equip-
ment. Each instruction requires one or more
major cycles to execute fully.

The peripheral and control processors act as
system control computers and I/O processors.
This permits the central processor to continue
high-speed computations while the peripheral and
control processors do the slower 1/O and super-
visory operations.

There are 12 1/0 channels, which are bi-
directional, and each may have one or more units
of external equipment connected to it. Only one
external equipment can communicate on one
channel at one time, but all 12 channels can be
active at one time. Data is transferred in or out
of the system in 12-bit words. Each channel can
transfer words at major cycle intervals, a 1 mc
rate. Any processor may determine the condition
of any equipment on any channel; thus simul-
taneous I/O operations may be carried out in an
orderly manner.

A real time clock reading is continuously avail-
able to all processors.

Programs for the 10 processors are written in
the conventional manner and are executed in a
multiplexing arrangement which uses the prin-
ciple of time-sharing. Thus, the 10 programs
operate from separate memories, but all share a
common facility for add/subtract, I/0, data
transfer to/from central memory, and other
necessary instruction control facilities. The
multiplex consists of a 10-position barrel, which
stores information (in parallel) about the cur-
rent instruction in each of 10 programs, and a
common instruction control device, or slot (Fig.
9). The 10 program steps move around the barrel
in series, and each step is presented in turn to
the slot. A portion of or all of the instruction re-
quirements are accomplished in one pass through
the slot, and the altered instruction (or next in-
struction in a program) is re-entered in the

barrel for the next excursion. One or more trips
around the barrel complete execution of an in-
struction. Thus, one or up to 10 programs are in
operation at one time, and each program is acted
upon once very 1000 ns.

One cycle of the multiplex is 1000 ns, with 900
ns consumed in the barrel and 100 ns (minor
cycle) in the slot. Instructions in the barrel are
interpreted at critical time intervals so that in-
formation is available in the slot at the time the
instruction is ready to enter the slot. Hence, a
reference to memory for data is determined
ahead of time so that the data word is available
in the slot when the instruction arrives. Similar-
ly, instructions are interpreted before they reach
the slot so that control paths in the slot are estab-
lished when the instruction arrives.

The slot contains two adders as part of the
instruction control. One adder is 12 bits, and the
other is 18 bits. Both adders treat all quantities
as 1’s complement.

For 1/0 instructions or communication with
central memory, one pass through the slot trans-
fers one 12-bit word to or from a peripheral
memory. Thus, block transfer of data requires a
number of trips around the barrel.

The barrel network holds four quantities which
pertain to the current instruction in each of the
programs. The quantities are held in registers
which require a total of 51 bits. (The barrel can
be considered as a 51 X 10 shifting matrix which
is closed by the slot.) The barrel registers are
referred to implicitly in the instruction steps and
are discussed below.

REGISTERS

The four registers in the barrel are A, P, Q,
and K. Each plays an important part in the ex-
ecution of processor instructions.

A Register (18 bits)

The arithmetic or A register is an adder. Quan-
tities are treated as positive and overflows are ig-
nored. No sign extension is provided for 6-bit or
12-bit quantities which are entered in the low order
bits. However, the unused high-order bits are
cleared to zero. Zero is represented by all zeroes.
The A register holds an 18-bit central memory

37

address during several instructions. A also partici-
pates in shift, logical, and some I/0O instructions.

P Register (12 bits)

The program address register or P register holds
the address of the current instruction. At the be-
ginning of each instruction, the contents of P are
advanced by one to provide the address of the next
instruction in the program. If a jump is called for
the jump address is entered in P.

Q Register (12 bits)

The Q register holds the lower six bits of a 12-bit
instruction word, or, when the six bits specify an
address, Q holds the 12-bit word which is read
from that address. Q is an adder which may add
“+1 or —1 to its content.

K Register (9 bits)

The K register holds the upper six bits (opera-
tion code) of an instruction and a 3-bit trip count
designator. The trip count is the number of times
the instruction has been around the barrel and
lends control to the sequential execution of an
instruction.

There are other registers which provide indirect
or transient control during execution of instruc-
tions. These include registers associated with the
I/O channels, the registers in the read and write
pyramids which assemble successive 12-bit words
into 60-bit words or vice versa, and registers
which hold the reference address and the word
at that address for each peripheral memory.

INSTRUCTION FORMAT

An instruction may have a 12-bit or a 24-bit
format. The 12-bit format has a 6-bit operation
code F and a 6-bit operand or operand address
d.

Operation Operand or
Code Operand Address
F d
6 6
11 0

The 24-bit format uses the [2-bit quantity
m, which is the contents of the next program
address (P 4+ 1), with d to form an 18-bit op-
erand or operand address.

Operand or
Operation Operand Address
Code o A ~
F d m
6 v 6 12
11 Y, 6] 11, / 0

A4 '
(P) P+ 1)

ADDRESS MODES

Program indexing is accomplished and operands
manipulated in several modes. The two instruc-
tion formats provide for 6-bit or 18-bit operands
and 6-bit, 12-bit, or 18-bit addresses.

No Address

In this mode d or dm is taken directly as an
operand. This mode eliminates the need for
storing many constants in storage. The d quan-
tity is considered as a 12-bit number whose
upper six bits are zero. The dm quantity has d as
the upper six bits and m as the lower 12 bits.

Direct Address

In this mode d or m -+ (d) is used as the ad-
dress of the operand. The d quantity specifies one
of the first 64 addresses in memory (0000-0077s).
The m + (d) quantity generates a 12-bit address

38

for referencing all possible peripheral memory
locations (0000-7777s). If d = 0, the content of
address d is added to m to produce an operand
address (indexed addressing). If d = 0, m is taken
as the operand address.

Indirect Address

In this mode d specifies an address whose con-
tent is the address of the desired operand. Thus,
d specifies the operand address indirectly. In-
direct addressing and indexed addressing require
an additional memory reference over direct
addressing.

The list of instructions (table 4) uses the
expression (d) to define the contents of memory
location d. An expression with double parentheses
((d)) refers to indirect addressing. The expres-
sion (m + (d)) refers to direct addressing when
d = 0 and to indexed direct addressing when
ds=0.

ACCESS TO CENTRAL MEMORY

The peripheral and control processors have
access to all central memory storage locations.
Four of the instructions (60, 61, 62, 63) transfer
one word or a block of words from a peripheral
memory to central memory or vice versa. Data
from an external equipment is read into a periph-
eral memory and, with separate instructions, trans-
ferred from there to central memory where it may
be used by the central processor. Conversely, data
is transferred from central memory to a peripheral
memory and then transferred by separate instruc-
tions to external equipment.

Read Central Memory

The 60 and 61 instructions read one word or a
block of 60-bit central memory words. The
central memory words are delivered to a five
stage read pyramid where they are disassembled
into five 12-bit words, beginning with the high-
order word. Successive stages of the pyramid
contain 60, 48, 36, 24, and 12 bits. The upper 12
bits of the word are removed and sent to a pe-
ripheral memory as the word is transferred through
each stage. Thus, a 60-bit word is disassembled
into five 12-bit words.

Words move through the pyramid when the
stage ahead is clear. One pass through the slot
determines that the next stage is clear, sends 12
bits of the word to a peripheral memory, and
moves the word ahead to the cleared stage. The
pyramid is a part of the slot and may be time
shared by up to four processors. Thus four central
memory words may be in the pyramid at one time
in varying stages of disassembly. With a full pyra-
mid, read instructions from other processors are
partially executed (housekeeping) and circulated
unchanged in the barrel until the number of pyra-
mid users drops below four. Waiting processors
are serviced in the order in which they appear at
the slot. Other instruction control provides address
incrementing and keeps the word count.

The central memory starting address must be
entered in A before a read instruction is execut-
ed. A load dm (20) instruction may be used for
this. For a one word transfer, the d portion of
the read (60) instruction specifies the following:

d=peripheral address (0000-0077s) of first 12-bit
word; remaining words go to d-+1, d+42, etc.

For block transfer, d and m of the read (61) in-
struction specify the following:

(d}y=number of central memory words to be trans-
ferred; reduced by one for each word trans-
ferred.

m = peripheral starting address; increased by one
to provide locations for successive words. (A)
is increased by one to locate consecutive cen-
tral memory words.

Write Central Memory

The 62 and 63 instructions assemble 12-bit
peripheral words into 60-bit words and write
them in central memory. Peripheral words are
assembled in a write pyramid and delivered from
there to central memory. As in read central
memory, the pyramid is a part of the slot and is
time shared by up to four processors. Write pyra-
mid action is similar to read pyramid action except
for the assembly.

The starting address in central memory is
entered in A before the write instruction is ex-
ecuted. For a one word transfer, the d portion of
the write (62) instruction specifies the following:

d=peripheral address {0000-0077s) of first 12-bit
word; remaining words are taken from d-1,
d+ 2, etc.

For block transfer, d and m of the write (63)
instruction specify the following:

{d)=number of central memory words to be trans-
ferred; reduced by one for each word trans-
ferred.

m= peripheral starting address; increased by one
to locate each successive peripheral word. (A)
is increased by one to provide consecutive
central memory locations.

ACCESS TO CENTRAL PROCESSOR

The peripheral and control processors use two
instructions to communicate with the central proc-
essor. One instruction starts a program running in
the central processor, and the other instruction
monitors the progress of the program.

Exchange Jump

The 26 instruction starts a program running in
the central processor or interrupts a current
program and starts a new program running. In
either case, the central processor is directed to
a central memory file of 16 words which stores
information about the new program to be executed

39

The 6600 main frame and some 1/0 synchronizer hardware is mounted on 16 page-frame chassis
which are hung four to a wing. A refrigeration unit in the end of each wing (unit accessible through
door at left of photo) maintains each chassis at a uniform temperature.

40

(see EXCHANGE JUMP heading under CEN-
TRAL PROCESSOR PROGRAMMING). The
18-bit starting address of this file must be en-
tered in A before the exchange jump instruction
is executed. The central processor replaces the file
with similar but current information from the in-
terrupted program. A later exchange jump instruc-
tion referencing this file returns the interrupted
program to the central processor for completion.
This exchange feature permits the peripheral proc-
essors to time share the central processor.

Read Program Address

The 27 instruction transfers the content of the
central processor P register into a peripheral
A register. The peripheral program tests the A
register content to determine the condition of the
central processor. If A0, the central processor
is running a program. If A =0, the central proc-
essor has stopped in a normal or exit mode; the
reference address for the central processor program
is examined then to determine which condition
exists. A stop instruction (00s) in the upper six
bits of the reference address signals a stop; the
next lower six bits define the nature of the
exit (see EXCHANGE JUMP paragraph under
CENTRAL PROCESSOR PROGRAMMING).

INPUT AND OUTPUT

There are 12 instructions to direct activity on
the I/O channels. These instructions select a unit
of external equipment and transfer data to or
from the equipment. The instructions also deter-
mine whether a channel or external equipment
is available and ready to transfer data. Generally,
several preparatory I/0 instructions are issued
before the instructions which transfer data. The
preparatory steps insure that the data transfer is
carried out in an orderly fashion.

Each external equipment has a set of external
function codes which are used by the processors
to establish modes of operation and to start or
stop data transfer. Also, the devices are capable
of detecting certain errors (e.g., parity error)
and provide an indication of these errors to the
controlling processor. The external error con-
ditions can be read into a processor for inter-
pretation and further action. Details of mode
selection and error flags in external devices such
as card readers, magnetic tape systems, etc., are
presented in literature associated with the exter-
nal device.

Data Channels

Each channel has a 12-bit bi-directional data
register and two control flags which indicate:

1 The channel is active or inactive
2 The channel register is full or empty

The 64 and 65 instructions determine the state of
the channel, and the 66 and 67 instructions deter-
mine the state of the register. The flags provide
housekeeping information for the processors so
that channels can be monitored and processed in
an orderly way. The flags also provide control for
the I/O operation.

Word Rate. Each processor is serviced by the
slot once every major cycle. This sets the maxi-
mum word rate on a channel at one word each
1000 ns, a 1 mc word rate. Up to 10 processors
can be communicating with I/O equipment over
separate channels at this rate since each proces-
sor is regularly serviced at major cycle intervals.

Channel Active/Inactive Flag. A channel is made
active by a function (76, 77) instruction or an
activate channel (74) instruction.

The function instruction selects a mode of
operation in the external equipment. The instruc-
tion places a 12-bit function word in the channel
register and activates the channel. The external
equipment accepts the function word, and its
response to the processor clears the register and
drops the channel active flag. The latter action
produces the channel inactive flag.

The activate channel instruction prepares a
channel for data transfer. Subsequent input or
output instructions transfer the data. A disconnect
channel instruction after data transfer is com-
plete returns the channel to the inactive state.

Register Full/Empty Flag. A register is full when
it contains a function or data word for an ex-
ternal equipment or contains a word received
from an external equipment. The register is
empty when it is cleared. The flags are turned
on or off as the register changes state.

On data output, the processor places a word in
the channel register and sets the full flag. The
external device accepts the word, clears the
register, and sets the empty flag. The empty flag
and channel active flag signal the processor to
send another word to the register to repeat the
sequence.

41

On input, the external device places a word in
the register and sets the full flag. The processor
stores the word, clears the register, and sets the
empty flag. The empty flag and channel active flag
signal the external device to deliver another word.

Data Input

Several instructions are necessary to transfer
data from external equipment into a processor.
The instructions prepare the channel and equip-
ment for the transfer and then start the transfer.
Some external equipment, when once started,
sends a series of words (record) spaced at equal
time intervals and then stops automatically be-
tween records. Magnetic tape equipment is an
example of this type of transfer. The processor
can read all or a part of the record and then dis-
connect the channel to end the operation. The
latter step makes the channel inactive. Other
equipment, such as the display console, can send
one word (or character) and then stop. The input
instructions allow the input transfer to vary from
one word to the capacity of the processor.

An input transfer may be accomplished in the
following way:

1. Determine if the channel is inactive. A jump
to m on channel d inactive (65) instruction does
this. Here, m can be a function instruction to
select read mode or determine the status of the
equipment.

2. Determine if the equipment is ready. A
function m on channel d (77) instruction followed
by an input to A from channel d (70) instruction
loads A with the status response of the desired
equipment. Here, m is a status request code, and
the status response in A can be tested to deter-
mine the course of action.

3. Select read mode in the equipment. A func-
tion m on channel d (77) instruction or function
(A} on channel d (76) instruction will send a
code word to the desired device to prepare it for
data transfer.

4. Enter the number of words to be transferred
in A. A load d (14) or load (d) (30) instruction
will accomplish this.

5. Activate the channel. An activate channel d
(74) instruction sets the channel active flag and
prepares for the impending data transfer.

6. Start input data transfer. An input (A4)
words to m on channel d (71) instruction or an
input to A from channel d (70) instruction starts
data transfer. The 71 instruction transfers one

42

word or up to the capacity of the processor
memory. The 70 instruction transfers one word
only.

7. Disconnect the channel. A disconnect channel
d (75) instruction makes the channel inactive
and stops the flow of input information.

The design of some external equipment requires
timing considerations in issuing function, activate,
and input instructions. The timing consideration
may be based on motion in the equipment; i.e., the
equipment must attain a given speed before send-
ing data (e.g., magnetic tape). In general, timing
considerations can be resolved by issuing the neces-
sary instructions without an intervening time gap.
The external equipment literature lists timing con-
siderations to be taken into account.

Data Output

The data output operation is similar to data
input in that the channel and equipment must be
ready before the data transfer is started by an
output instruction.

An output transfer may be accomplished in the
following way:

1. Determine if the channel is inactive. A jump
to m on channel d inactive (65) instruction does
this. Here, m can be a function instruction to
select write mode or determine the status of the
equipment.

2. Determine if the equipment is ready. A
function m on channel d (77) followed by an
input to A from channel d (70) instruction loads
A with the status response of the desired equip-
ment. Here, m is a status request code, and the
status response in A can be tested to determine
the course of action.

3. Select write mode in the equipment. A func-
tion m on channel d (77) instruction or function
(A} on channel d (76) instruction will send a
code word to the desired device to prepare it for
data transfer.

4. Enter the number of words to be transferred
in A. A load d (14) or load (d) (30) instruction will
accomplish this.

5. Activate the channel. An activate channel d
(74) instructton signals an active channel and pre-
pares for the impending data transfer.

6. Start data transfer. An output (A) words
from m on channel d (73) instruction or an
output from A on channel d (72) instruction
starts data transfer. The 73 instruction can
transfer one or more words while the 72 instruc-
tion transfers only one word.

e

7. Test for channel empty. A jump to m if
channel d full (66) instruction, where m = current
address, provides this test. The instruction exits
to itself until the channel is empty. When the
channel is empty, the processor goes on to the
next instruction which generally disconnects the
channel. The instruction acts to idle the program
briefly to ensure successful transfer of the last
output word to the recording device.

8. Disconnect the channel. A disconnect chan-
nel d (75) instruction makes the channel inactive.
Data flow in this case terminates automatically

when the correct number of words is sent out.

Instruction timing considerations, as in a data
input operation, are a function of the external
device.

REAL TIME CLOCK

The real time clock runs continuously; its period
is 4096 major cycles (4.096 ms). The clock may be
sampled by any peripheral and control processor
with an input to A (70) instruction from channel
14s. The clock is advanced by the storage sequence
control and cannot be cleared or preset.

43

Table 4. Peripheral and Control Processor Instructions

Mnemonic & Mnemonic &
Octal Code Name Page Octal Code Name Page
PSN 00 Pass 00 LMl 43 Logical difference ((d)) 00
LJM 01 Long jump to m 4 (d) 00 STl 44 Store {{d)) 00
RJM 02 Return jump to m -+ (d} 00 RAI 45 Replace add ({d)) 00
UJN 03 Unconditional jump d 00 AOl 46 Replace add one {((d}) 00
ZJN 04 Zero jump d 00 SOl 47 Replace subtract one ({d)) 00
NJN 05 Nonzero jump d 00
PJN 06 Plus jump d 00 LDM 50 Load (m 4 (d)) 00
MJN 07 Minus jump d 00 ADM 51 Add (m - (d)) 00
SHN 10 Shift d 00 SBM 52 Subtract (m -+ (d)) 00
LMN 11 Logical difference d 00 LMM 53 Logical Difference (m -+ (d)) 00
LPN 12 Logical product d 00 STM 54 | Store (m - (d)) 00
SCN 13 Selective clear d 00 RAM 55 Replace add (m -~ (d)) 00
LDN 14 Load d 00 AOM 56 Replace add one (m 4+ (d)) 00
LCN 15 Load complement d 00 SOM 57 Replace subtract one {(m - (d} 00
ADN 16 Add d 00
SBN 17 Subtract d 00 CRD 60 Central read from (A) to d 00
CRM 61 Central read (d) words 00
LDC 20 Load dm 00 from (A) to m 00
ADC 21 Add dm 00 CWD 62 Central write to (A) from d 00
LPC 22 Logical product dm CWM 63 Central write (d) words 00
LMC 23 Logical difference dm 00 to (A) from m 00
PSN 24 Pass 00 AJM 64 Jump to m if
PSN 25 Pass 00 channel d active 00
IJM 65 Jump to m if
EXN 26 Exchange jump 00 channel d inactive 00
RPN 27 Read program address 00 FJM 66 Jump to m if
channel d full 00
LDD 30 Load (d) 00 EJM 67 Jump to m if
ADD 31 Add (d) 00 channel d empty 00
SBD 32 Subtract (d) 00 AN 70 Input to A from channel d 00
LMD 33 Logical difference (d) 00 IAM 71 Input (A} words to m
STD 34 Store (d) 00 from channel d 00
RAD 35 Replace add (d) 00 OAN 72 Output from A on channel d 00
AOD 36 Replace add one (d) 00 OAM 73 Output (A) words from m on
SOD 37 Replace subtract one (d) 00 channel d 00
ACN 74 Activate channel d 00
LDl 40 Load (({d)) 00 DCN 75 Disconnect channel d 00
ADI . 41 Add {(d)) 00 FAN 76 Function {A) on channel d 00
sSBlI 42 Subtract ({d)) 00 FNC 77 Function m on channel d 00

44

e

T,

DESCRIPTION OF INSTRUCTIONS

Data Transmission

LDN 14 Loadd

This instruction clears the A register and loads
d. The upper 12 bits of A are zero.

LCN 15 Load Complement d

This instruction clears the A register and loads
the complement of d. The upper 12 bits of A are
set to one.

LDC 20 Load dm

This instruction clears the A register and loads
an 18-bit quantity consisting of d as the higher six
bits and m as the lower 12 bits. The contents of the
location following the present program address are
read out to provide m.

LDD 30 Load {d)

This instruction clears the A register and loads
the contents of location d. The upper six bits of A
are zero.

STD 34 Store {d)
This instruction stores the lower 12 bits of A in
location d.

LDl 40 Load ({d)}

This instruction clears the A register and loads
a 12-bit quantity that is obtained by indirect ad-
dressing. The upper six bits of A are zero. Location
d is read out of memory, and the word obtained
is used as the operand address.

STl 44 Store ({d))
This instruction stores the lower 12 bits of A 1in
the location specified by the contents of location d.

LDM 50 Load (m + (d)}

This instruction clears the A register and loads a
12-bit quantity. The upper six bits of A are zero.
The 12-bit operand is obtained by indexed direct
addressing. Location m is read out of memory, and
the word obtained serves as the base operand ad-
dress to which (d) is added. If d = 0, the operand
address is simply m, but if d > 0 then m + (d) is
the operand address. Thus location d may be used
for an index quantity to modify operand addresses.

STM 54 Store (m + (d)}

This instruction stores the lower 12 bits of A in
the location determined by indexed direct addres-
sing (see instruction 50).

Shift

SHN 10 Shift d

This instruction shifts the contents of A right or
left d places. If d is positive (00 - 37) the shift is left
circular; if d is negative (40 - 77) A is shifted right
(end off with no sign extension). Thus, d = 06
requires a left shift of six places. A right shift of
six places results when d = 71.

Arithmetic

ADN 16 Add d
This instruction adds d (treated as a 6-bit posi-
tive quantity) to the content of the A register.

SBN 17 Subtract d
This instruction subtracts d (treated as a 6-bit
positive quantity) from the content of the A register.

ADC 21 Add dm

This instruction adds to the A register the 18-bit
quantity consisting of d as the higher six bits and
m as the lower 12 bits. The contents of the location
following the present program address.are read out
to provide m.

ADD 31 Add (d)

This instruction adds to the A register the con-
tents of location d (treated as a 12-bit positive
quantity).

SBD 32 Subtract (d)

This instruction subtracts from the A register
the contents of location d (treated as a 12-bit posi-
tive quantity).

ADI 41 Add {(d))

This instruction adds to the content of A a 12-
bit operand (treated as a positive quantity) ob-
tained by indirect addressing. Location d is read
out of memory, and the word obtained is used as
the operand address.

SBl 42 Subtract {(d))

This instruction subtracts from the A register a
12-bit operand (treated as a positive quantity) ob-
tained by indirect addressing. Location d is read
out of memory, and the word obtained is used as
the operand address.

ADM 51 Add (m 4+ (d))

This instruction adds to the content of A a 12-
bit operand (treated as a positive quantity) ob-
tained by indexed direct addressing (see instruc-
tion 50).

45

SBM 52 Subtract (m 4+ (d))

This instruction subtracts from the A register a
12-bit operand (treated as a positive quantity) ob-
tained by indexed direct addressing (see instruc-
tion 50).

Pass

PSN OO Pass

This code specifies that no operation be per-
formed. It provides a means of padding out a
program.

PSN 24 Pass
PSN 25 Pass

Jump

LJM 01 Long Jump {m - (d}))

This instruction jumps to the sequence beginning
at the address given by m + (d). If d = 0, then m
is not modified.

RJM 02 Return Jump (m - (d))

This instruction jumps to the sequence beginning
at the address given by m + (d). If d = 0 then m
is not modified. The current program address (P)
plus two is stored at the jump address. The new
program commences at the jump address plus one.
This program should end with a long jump to, or
normal sequencing into, the jump address minus
one, which should in turn contain a long jump,
0100. The latter returns the original program ad-
dress plus two to the P register.

UJN 03 Unconditional Jump d

This instruction provides an unconditional jump
to any instruction up to 31 steps forward or back-
ward from the current program address. The value
of d is added to the current program address. If d
is positive (01-37), then 0001 (41) - 0037 (+31)
is added and the jump is forward. If d is negative
(40 - 76) then 7740 (—31) - 7776 (— 1) is added and
the jump is backward. The program stops when d
= 00 or 77.

ZJN 04 Zero Jump d

This instruction provides a conditional jump to
any instruction up to 31 steps forward or backward
from the current program address. If the content
of the A register is zero, the jump is taken. If the
content of A is nonzero, the next instruction is
executed. Negative zero (777777) is treated as non-
zero. For interpretation of d see instruction 03.

46

NJN 05 Nonzero Jump d

This instruction provides a conditional jump to
any instruction up to 31 steps forward or backward
from the current program address. If the content
of the A register is nonzero, the jump is taken. If
A is zero, the next instruction is executed. Nega-
tive zero (777777) is treated as nonzero. For inter-
pretation of d see instruction 03.

PJN 06 Plus Jump d

This instruction provides a conditional jump to
any instruction up to 31 steps forward or backward
from the current program address. If the content
of the A register is positive, the jump is taken. If A
is negative, the next instruction is executed. For
interpretation of d see instruction 03.

MJN 07 Minus Jump d

This instruction provides a conditional jump to
any instruction up to 31 steps forward or backward
from the current program address. If the content
of the A register is negative, the jump is taken. If A
is positive, the next instruction is executed. For
interpretation of d see instruction 03.

Logical

LMN 11 Logica! Difference d

This instruction forms in A the bit by bit logical
difference of d and the lower six bits of A. This is
equivalent to complementing individual bits of A
that correspond to bits of d that are one. The upper
12 bits of A are not altered.

LPN 12 Logical Product d

This instruction forms the bit-by-bit logical
product of d and the lower six bits of the A register,
and leaves this quantity in the lower 6 bits of A.
The upper 12 bits of A are zero.

SCN 13 Selective Clear d

This instruction clears any of the lower six bits of
the A register where there are corresponding bits
of d that are one. The 12 higher bits of A are not
altered.

LPC 22 Logical Product dm

This instruction forms in the A register the bit-
by-bit logical product of the contents of A and the
18-bit quantity dm. The upper six bits of this quan-
tity consist of d and the lower 12 bits are the con-
tent of the location following the present program
address.

STORAGE MOBULE oy
- AL 0. 0040 .

Logic and storage modules are mounted in individual compartments in each 6600 chassis. Module
connectors mate with similar chassis-mounted connectors which in turn are interconnected by back
panel wiring of twisted pair and coaxial cable transmission lines. Separate module compartments
provide electrical shielding and eliminate module cross-talk. Compartments also provide greater
surface area on the chassis, which is treated as a constant temperature cold plate by the cooling

system.
47

LMC 23 Logical Difference dm

This instruction forms in A the bit-by-bit logical
difference of the contents of A and the 18-bit quan-
tity dm. This is equivalent to complementing in-
dividual bits of A which correspond to bits of dm
that are one. The upper six bits of the quantity
consist of d, and the lower 12 bits are the content
of the location following the present program
address.

LMD 33 Logical Difference (d}

This instruction forms in A the bit-by-bit logical
difference of the lower 12 bits of A and the con-
tents of location d. This is equivalent to comple-
menting individual bits of A which correspond to
bits of (d) that are one. The upper six bits of A
are not altered.

LM! 43 Logical Difference {(d)}

This instruction forms in A the bit-by-bit logical
difference of the lower 12 bits of A and the 12-bit
operand obtained by indirect addressing. Location
d is read out of memory, and the word obtained
is used as the operand address. The upper six bits
of A are not altered.

LMM 53 Logical Difference {m - (d))

This instruction forms in A the bit-by-bit logical
difference of the lower 12-bits of A and a 12-bit
operand obtained by indexed direct addressing.
The upper six bits of A are not altered.

Replace

RAD 35 Replace Add (d)

This instruction adds the quantity in location d
to the contents of A and stores the lower 12 bits of
the result at location d. The resultant sum is left in
A at the end of the operation.

AOD 36 Replace Add One (d}

The quantity in location d is replaced by its
original value plus one. The resultant sum is left in
A at the end of the operation, and the original
contents of A are destroyed.

SOD 37 Replace Subtract One (d)

The quantity in location d is replaced by its
original value minus one. The resultant difference
is left in A at the end of the operation, and the
original contents of A are destroyed.

48

RAl 45 Replace Add ((d))

The operand, which is obtained from the loca-
tion specified by the contents of location d, is
added to the contents of A, and the lower 12 bits
of the sum replace the original operand. The re-
sultant sum is left in A at the end of the operation.

AO! 46 Replace Add One ((d})

The operand, which is obtained from the loca-
tion specified by the contents of location d, is re~
placed by its original value plus one. The resultant
sum is left in A at the end of the operation, and
the original contents of A are destroyed.

SOl 47 Replace Subtract One {{d))

The operand, which is obtained from the loca-
tion specified by the contents of location d, is re-
placed by its original value minus one. The resultant
difference is left in A at the end of the operation,
and the original contents of A are destroyed.

RAM 55 Replace Add (m - (d)}

The operand, which is obtained from the loca-
tion determined by indexed direct addressing, is
replaced by its original value plus one (see instruc-
tion 50 for explanation of addressing). The result-
ant sum is left in A at the end of the operation, and
the original contents of A are destroyed.

AOM 56 Replace Add One {m — (d)}

The operand, which is obtained from the loca-
tion determined by indexed direct addressing, is
replaced by its original value plus one (see instruc-
tion 50 for explanation of addressing). The result-
ant sum is left in A at the end of the operation, and
the original contents of A are destroyed.

SOM 57 Replace Subtract One {m + {d))

The operand, which is obtained from the loca-
tion determined by indexed direct addressing, is
replaced by its original value minus one (see in-
struction 50 for explanation of addressing). The
resultant difference is left in A at the end of the
operation, and the original contents of A are de-
stroyed.

Central Processor and Central Memory

EXN 26 Exchange Jump

An 18-bit address is transmitted from A to the
central processor with a signal which tells the cen-
tral processor to perform an exchange jump on
the address. The d portion of the instruction is
ignored.

.

RPN 27 Read Program Address

This instruction sends the content of the central
processor program address register to A to allow
the peripheral and control processors to determine
whether the central processor is running,.

CRD 60 Central Read From (A) to d

This instruction transfers a 60-bit word from
central memory to five consecutive locations in the
processor memory. The 18-bit address of the cen-
tral memory location must be loaded in A prior to
this instruction. The 60-bit word is disassembled
into five 12-bit words beginning at the left. Loca-
tion d receives the first 12-bit word. The remaining
12-bit words go to succeeding locations.

CRM 61 Central Read (d) words from (A) to m

This instruction reads a block of 60-bit words
from central memory. The contents of location d
gives the block length. The 18-bit address of the
first central word must be loaded in A prior to this
instruction. During the execution of this instruc-
tion (P) goes to processor address 0 and P holds
m. Also, (d) goes to the Q register where it is re-
duced by one as each central word is processed.
The original content of P is restored at the end of
the instruction.

Each central word is disassembled into five 12-
bit words beginning with the high-order 12 bits.
The first word is stored at processor memory loca-
tion m. The content of P (which is holding m) is
advanced by one to provide the next address in the
processor memory as each 12-bit word is stored.

The content of A is advanced by one to provide
the next central memory address after each 60-bit
word is disassembled and stored. Also, the con-
tents of the Q register are reduced by one. The
block transfer is complete when Q = 0.

The block of central memory locations goes from
address (A) to address (A) + (d)—1. The block of
processor memory locations goes from address m
tom -+ 5(d) — 1.

CWD 62 Central Write to (A) from d

This instruction assembles five successive 12-bit
words into a 60-bit word and stores the word in
central memory. The 18-bit address word desig-
nating the central memory location must be in A
prior to execution of the instruction.

Location d holds the first word to be read out of
the processor memory. This word appears as the
higher order 12 bits of the 60-bit word. The re-
maining words are taken from successive addresses.

CWM 63 Central Write (d) words from m to {A)

This instruction assembles a block of 60-bit
words and writes them in central memory. The
contents of location d gives the number of 60-bit
words. The content of the A register gives the
beginning central memory address. During the exe-
cution of this instruction (P) goes to processor
address 0 and P holds m. Also, (d) goes to the Q
register where it is reduced by one as each central
word is assembled. The original content of P is
restored at the end of the instruction.

The content of P (the m portion of the instruc-
tion) gives the address of the first word to be read
out of the processor memory. This word appears
as the higher order 12 bits of the first 60-bit word.

The content of P is advanced by one to provide
the next address in the processor memory as each
12-bit word is read.

The content of A is advanced by one to provide
the next central memory address after each 60-bit
word is assembled. Also, Q is reduced by one. The
block transfer is complete when Q = 0.

Input/Output

AJM 64 Jump to m if channel d active

This instruction provides a conditional jump to
a new program sequence beginning at an address
given by the contents of m. The jump is taken if
the channel specified by d is active. The current
program sequence continues if the channel is in-
active.

IUJM 65 Jump to m if channel d inactive
This instruction provides a conditional jump to a

.new program sequence beginning at an address

given by m. The jump is taken if the channel speci-
fied by d is inactive. The current program sequence
continues if the channel is active.

FJM 66 Jump to m if channel d full

This instruction provides a conditional jump to
a new program sequence beginning at an address
given by m. The jump is taken if the channel
designated by d is full. The present program se-
quence continues if the channel is empty.

An input channel is full when the input equip-
ment has placed a word on the channel and that
word has not yet been sampled by a processor. The
channel is empty when the word has been accepted.
An output channel is full when a processor places
aword on the channel. The channel is empty when
the output equipment has sampled the word.

49

The 6600 cooling system employs a freon refrigeration technique for cooling hardware components.
The scheme produces a uniform chassis temperature and results in very low noise level operation. A
continuous copper tube carrying freon refrigerant is imbedded in each module row separator on a
chassis and is connected to the refrigeration unit (one unit/main frame wing). The copper tube acts
as the evaporator coil in the refrigeration system, and the metal chassis becomes a large, constant
temperature cold plate to which component heat flows by conduction and convection.

50

EJM 67 Jump to m if channel d empty

This instruction provides a conditional jump to
a new program sequence beginning at an address
specified by m. The jump is taken if the channel
specified by d is empty. The current program se-
quence continues if the channel is full. (See in-
struction 66 for explanation of full and empty.)

IAN 70 Input to A from channel d

This instruction transfers a word from input
channel d to the lower 12 bits of the A register.

IAM 71 Input (A) words to m from channel d

This instruction transfers a block of words from
input channel d to the processor memory. The con-
tent of A gives the block length. The content of
location m specifies the processor address which
is to receive the first word. The content of A is
reduced by one as each word is read. The input
operation is complete when A = 0.

During this instruction address 0000 temporarily
holds P, while m is held in the P register. The con-
tent of P advances by one to give the address for
the next word as each word is stored.

OAN 72 Output (A} on channel d
This instruction transfers a word from A (lower
12 bits) to output channel d.

OAM 73 Output {A) words from m on channel d
This instruction transfers a block of words from

the processor memory to channel d. The first word
comes from the address specified by m. The con-
tent of A specifies the number of words to be sent
out. The content of A is reduced by one as each
word is read out. The output operation is complete
when A = 0.

During this instruction address 0000 temporarily
holds P, while m is held in the P register. The con-
tent of P advances by one to give the address of the
next word as each word is stored.

ACN 74 Activate channel d

This instruction activates the channel specified
by d. Activating a channel (must precede a 70-73
instruction) alerts and prepares the 1/0 equipment
for the exchange of data.

DCN 75 Disconnect channel d

This instruction deactivates the channel specified
by d. As a result the 1/O equipment stops and the
buffer terminates.

FAN 76 Function (A) on channel d

The external function code in the lower 12 bits
of A is sent out on channel d.
FNC 77 Function m on channel d.

The external function code specified by m is sent
out on channel d.

51

Fig. 10 Dead Start Panel

Operation

GENERAL

Manual control of 6600 operation is provided in
two ways; dead start and console keyboard. The
dead start circuit is a means of manually enter-
ing a 12-word program (normally a load routine)
to start operation. The console keyboard pro-
vides for the manual entry of data or instructions
under program control.

DEAD START

The dead start panel (Fig. 10) contains a
12 X 12 matrix of toggle switches which may be set
manually and read by processor 0 as twelve
12-bit words. With the MODE switch in the load
position, turning on the DEAD START switch*
initiates the dead start operations:

1 Loadthe 12 words from the toggle switches
into memory locations 0001-0014s of proc-
essor 0.

2 Assign processors 0-11sto corresponding data
channels.

3 Set all processors to input instruction 71.

4 Set all channels to active and empty {ready
for input).

After the program is read from the dead
start panel, the panel is automatically discon-
nected and processor 0 begins executing the pro-
gram. The program from the dead start panel is
normally a load routine used to load a larger
program from an input device such as a disc file
or magnetic tape.

*The DEAD START switch is turned on momentarily, then off.

Fig. 11 Display Console

53

CONSOLE

The display console (Fig. 11) consists of two
cathode ray tube displays and a keyboard for
manual entry of data. A typical 6600 system may
have several display consoles for controlling in-
dependent programs simultaneously.

Keyboard Input

The console may be selected for input to allow
manual entry of data or instructions to the com-
puter. The first part of an operating system pro-
gram may select keyboard input to allow the
programmer to manually select a routine from
the operating system. Data entered via the
keyboard may be displayed on one of the display
tubes if desired. Assembly and display of keyboard
entries is done by a routine in the operating system.

Display

The console may be selected to display (Fig. 12)
in either the character or dot mode. In the character
mode two alphanumeric characters may be dis-
played for each 12-bit word sent from a processor.
Character sizes are;

Small—64 characters/line
Medium—32 characters/line
Large— 16 characters/line

In dot mode a pattern of dots (graph, figures,
etc.) may be displayed. Each dot is located by
two 12-bit words; a vertical coordinate and a
horizontal coordinate. A display program must
repeat a display periodically in order to main-
tain persistence on the display tube.

Fig. 12. Sample Display

54

Appendix |

TABLES OF POWERS OF TWO

R

TABLE OF POWERS OF TWO
2" n 27
1 0 10
2 1 05
4 2 025
8 3 0125
16 4 0062 5
32 5 0.031 25
64 6 0.015 625
128 7 0.007 812 5
256 8 0.003 906 25
512 9 0.001 953 125
1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25
4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5
16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125
65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5
1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25
16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25
134 217 728 27 0.000 000 007 450 580 596 923 828 125
268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0.000 000 000 465 661 287 307 739 257 812 b
4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25
68 719 476 736 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 9563 472 37 0.000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 38 0.000 000 000 003 637 978 807 091 712 951 660 156 25
549 755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

57

Appendix I

OCTAL-DECIMAL INTEGER CONVERSION TABLE

OCTAL-DECIMAL INTEGER CONVERSION TABLE

o 1 2 3 4 5 6 7 c 1 2 3 4 5 6 7

gooo 0000 0000} 00DO ©0OOT O0OD2 0003 O00O4 O0DOS 0006 0007 0400 0256 0257 0258 0250 0260 0261 0262 0263

t0 to 0010| 0OO8 0009 0010 0011 0012 0013 0014 Q015 0410| 0264 0265 0266 0267 0268 0269 0270 0271

a7 0511 0020| 0016 0017 0018 0019 0020 0021 0022 0023 0420/ 0272 0273 0274 0275 0276 0277 0278 0279

(Octel) (Decimal) 0030| 0024 0025 0026 0027 0028 0029 (0030 0031 0430 0280 0281 0282 0283 0284 (0285 0286 (0287

0040 | 0032 0033 0034 (0035 0036 0037 0038 0039 0440 0288 0289 0290 (0291 0292 0293 (0294 0295

0050 | 0040 0041 0042 0043 0044 0045 0046 0047 0450| 0296 0297 0298 0299 0300 0301 0302 0303

0060 | 0048 0049 D50 0051 0052 0053 0054 0055 0460 0304 0305 0306 0307 0308 0309 0310 0311

Octal Decimal 0070 | 0056 0057 D058 0059 G0OB0 0061 0062 0063 0470 0312 0313 0314 0315 0316 0317 0318 0319
10000 - 4096

20000 8192 0100 | 0064 00B5 0066 0067 O0DGB 006 0070 0071 0500 0320 0321 0322 0323 0324 0326 0326 0327

30000 - 12788 0110{ 0072 0073 0074 0075 0076 0077 0078 (0079 0510 0328 0329 0330 0331 0332 0333 0334 0335

40000 - 16382 0120 0080 0081 0082 (0083 0084 0085 0086 0087 0520 0336 0337 0338 0339 0340 0341 0342 0343

0130 0088 0089 0090 (0091 0092 0093 0094 0095 0530| 0344 0345 0346 0347 0348 0349 0350 0351

50000 - 20480 0140| 0096 0037 0098 0099 0100 0101 0102 0103 0540| 0352 0353 0354 0355 0356 0357 0358 0359

60000 - 24576 0150 | 0104 0105 0106 0107 0108 0108 0110 0111 0550| 0360 0361 0362 0363 0364 0365 0366 0367

70000 - 28672 0160| 0112 0113 0114 0115 0116 0117 0118 0118 0560 0368 0369 0370 0371 0372 0373 0374 0375

M70| 0120 0121 0122 0123 0124 0125 0126 0127 0570| 0376 0377 0378 0379 0380 0381 0382 (0383

0200| 0128 0129 0130 0131 0132 0133 0134 0135 0600| 0384 0385 0386 0387 0388 0389 0390 0381

0210| 0136 0137 0138 0138 0140 0141 0142 0143 0610 0392 0393 0334 0395 0396 0397 0398 0399

0220 | 0144 0145 0146 0147 0148 D148 0150 0151 0620 0400 0401 0402 0403 0404 0405 0406 0407

0230 | 0162 0153 0154 0155 0156 0157 0158 0159 0630| 0408 0409 0410 0411 0412 0413 0414 0415

0240 | 0160 D161 0162 0163 0164 0165 0166 0167 0640) 0418 0417 0418 0419 0420 0421 0422 0423

0250 0168 0169 0170 0171 0172 0173 0174 0175 0650 0424 0425 0426 0427 0428 0428 0430 0431

0260 0176 0177 0178 0179 0180 0181 0182 0183 0660 0432 0433 043¢ 0435 0436 0437 0438 0439

0270| 0184 0185 0186 0187 0188 0189 0190 0181 0670 0440 0441 0442 0443 0444 0445 0446 0447

0300| 0192 0193 0194 0195 0196 0197 0198 0199 0700| 0448 0449 0450 0451 0452 0453 0454 0455

0310| 0200 0201 0202 0203 (0204 0205 0206 0207 0710| 0456 0457 0458 0459 0460 D461 (0462 0463

0320 | 0208 0208 0210 0211 0212 0213 0214 0215 0720| D464 0465 0466 0467 0468 0469 0470 0471

0330 | 0216 0217 0218 0219 (0220 0221 0222 0223 0730] 0472 0473 0474 0475 0476 D477 0478 0478

0340 | 0224 0225 0226 0227 0228 0228 0230 0231 0740] 0480 0481 0482 0483 0484 (0485 0486 0487

0350 | 0232 0233 0234 0235 (0236 0237 (0238 0239 0750 0488 0489 0490 0491 0492 0493 0494 0495

0360 | 0240 0241 0242 0243 (0244 0245 (0246 0247 0760 0496 0497 0498 0493 0500 0501 0502 (0503

0370| 0248 0249 0250 0251 0252 0253 0254 0255 0770| 0504 0505 0506 0507 0508 0509 0510 0511

¢ 1 2 3 4 5 6 7 6 1 2 3 4 5 6 7

1000 0512 1000 | 0512 0513 0514 0515 0516 0517 0518 0519 1400 | 0768 0769 0770 0771 0772 0773 0774 0775

to to 1010 | 0520 0521 0522 0523 0524 0525 0526 0527 1410{ 0776 0777 0778 0779 0780 0781 0782 0783

- 1023 1020 | 0528 0529 0530 0531 0532 0533 0534 0835 1420(0784 0785 0786 0787 0788 0789 0790 0791

(Octa) (Decimal) 1030 {0536 0537 0538 0539 0540 0541 0542 0543 1430 0792 0793 0734 0795 0795 0797 0798 0799

1040 | 0544 0545 0546 0547 0548 0549 0550 0650 1440 | 0800 0801 0802 0803 0804 (0805 0806 0807

1050 | 0552 0553 0554 0555 0556 0557 0558 0559 1450 | 0808 0809 0810 0811 0812 0813 (0814 0815

1060 | 0560 0561 0562 0563 0564 0565 0566 0567 1460 | 0816 0817 0818 0819 0820 0821 0822 0823

1070 | 0568 0563 0570 0571 0572 0573 (0574 0575 1470 | 0824 0825 0826 0827 0828 0823 0830 0831

1100 | 0576 0577 0578 0579 0580 0581 0582 0583 1500 | 0832 0833 0834 0835 0836 0837 0838 0839

1110 | 0584 0585 0586 0587 0588 0589 0590 0591 1510 0840 0841 0842 0843 0844 0845 0846 0847

1120 | 0592 0593 0594 0595 0596 0597 0598 0599 1520| 0848 0849 0850 0851 0857 0853 0854 0855

1130 | 0600 0G0 0B02 0B03 0GO4 0B05 0BOG 0807 1530 | 0856 0857 0858 0859 0860 0861 0862 0863

1140 | 0608 0603 0610 0611 0612 0613 0B14 0815 1540 | 0864 0865 0866 0867 0868 0869 0870 0871

1150 | 0616 0617 0618 0619 0620 0621 0622 0623 1550 | 0872 (0873 (0874 0875 0876 0877 0878 0879

1160 | 0624 0625 0626 0627 0828 0629 0630 0631 1560 | 08B0 (0881 (0882 0883 0884 0885 0886 0887

1170 | 0632 0833 0634 0635 0636 0637 0638 0639 1570| 0888 (0889 0890 0891 0892 0893 0894 089S

1200 | 0640 0841 0642 0643 0644 0G4S 0G46 0647 1600 | 0896 0837 (0898 0899 0300 0901 0902 0903

1210 | 0648 0649 (0650 0651 0652 0B53 0654 0BG 1610| 0304 0905 0906 0907 0308 0309 D910 0911

1220 | 0656 0657 0658 0659 0660 0861 0662 0BG3 1620 | 0312 0913 0914 0915 0816 0817 0918 0919

1230 | 0664 0665 0666 0667 0GB 0663 0670 0671 1630 | 0920 0921 0922 0923 0924 0325 0926 0927

1240 | 0672 0673 0674 0675 0676 0677 0678 0B79 1640 | 0928 0929 0930 0931 0932 0933 0934 093§

1250 | 0680 0681 0682 0683 0684 0685 0686 0687 1650 0936 0937 0938 0933 0940 0941 0942 0943

1260 | 0688 0689 0690 0B9T 0692 0BY3 0694 0BY5 1660 | 0944 0945 0946 0947 0948 0949 0950 0951

1270 | 0696 0697 0698 0699 0700 0701 0702 0703 1670 0952 0953 0954 0855 0956 0857 0958 0959

1300 | 0704 0705 0706 0707 0708 0708 0710 0711 1700 0960 0961 0962 0963 0954 0965 0966 0967

1310 | 0712 0713 0714 Q715 0716 0717 0718 0719 1710] 0968 0969 0970 0971 0972 0973 0974 0975

1320 | 0720 0721 0722 0723 0724 0725 0726 0727 1720 0976 0977 0978 0979 0980 0981 0982 0983

1330 | 0728 0728 0730 0731 0732 0733 0734 0735 1730| 0984 (0985 0986 0987 0988 0989 (0B90 0981

1340 | 0736 0737 0738 0733 0740 0741 0742 0743 1740 0932 (0993 0984 0995 0995 0897 0998 0999

1350 | 0744 0745 0746 0747 0748 0743 0750 0751 1750| 1000 1001 1002 1003 1004 1005 1006 1007

1360 | 0752 0753 0754 0755 0756 0757 0758 0759 1760 | 1008 1008 1010 1011 1092 1013 1014 1015

1370 | 0760 0761 0762 0763 0764 0765 0766 0767 1770| 1016 1017 1018 1019 1020 1021 1022 1023

60

OCTAL-DECIMAL INTEGER CONVERSION TABLE
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7
2000 | 1024 1025 1026 1027 1028 1029 1030 103 2400 | 1280 1281 1282 1283 1284 1285 1286 1287 2000 1024
2010 1032 1033 1034 1035 1036 1037 1038 1039 2410 | 1288 1289 1280 1281 1292 1293 12894 1295 o 10
2020 1040 1041 1042 1043 1044 1045 1046 1047 2420 | 1296 1297 1298 1299 1300 1301 1302 1303 2777 1535
2030 |1048 1049 1050 1051 1052 1053 1054 1056 2430 { 1304 1305 1306 1307 1308 1308 1310 131 {Octalh {Decimal)
2040 | 1086 1057 1058 1059 1060 1081 1062 1063 2440 [1312 1313 1314 1316 1316 1317 1318 1319
2050 | 1064 1065 1066 1067 1068 1069 1070 1071 2450 | 1320 1321 1322 1323 1324 1325 1326 1327
2060 {1072 1073 1074 1075 1076 1077 1078 1079 2460 | 1328 1329 1330 1331 1332 1333 1334 1335
2070 1080 1081 1082 1083 1084 1085 1086 1087 2470 | 1336 1337 1338 1339 1340 1341 1342 1343 Octal Decimal
10000 - 4096
2100 1088 1089 1090 1091 1092 1093 1084 1095 2500 | 1344 1345 1346 1347 1348 1349 1350 1351 20000 - 8192
2100 1096 1087 1098 1089 1100 1101 1102 1103 2510 | 1352 1353 1354 1355 1356 1357 1358 1358 30000 - 12288
2120 1104 1105 1106 1107 1108 1108 1110 1111 2520 | 1360 1361 1362 1363 1364 1365 1366 1367 40000 - 18384
2130 {1112 1113 1114 1115 1116 1117 1118 11189 2530 | 1368 1369 1370 1371 1372 1373 1374 1375 0000 - 20480
2140 | 1120 1121 1122 1123 1124 1125 1126 1127 2540 | 1376 1377 1378 1379 1380 1381 1382 1383
2150 (1128 1129 1130 1131 1132 1133 1134 1135 2550 | 1384 1385 1386 1387 1388 1389 1390 1391 60000 - 24576
2160 | 1136 1137 1138 1138 1140 1141 1142 1143 2560 | 1392 1393 1394 1395 1396 1397 1398 1399 70000 - 28672
2170 [1144 1145 1146 1147 1148 1149 1150 1151 2570 | 1400 1401 1402 1403 1404 1405 1406 1407
2200 {1152 1153 1154 1155 1156 1157 1158 1159 2600 | 1408 1409 1410 1411 1412 1413 1414 1415
2210 (1160 1167 1162 1163 1164 1165 1166 1167 2610 | 1416 1417 1418 1419 1420 1421 1422 1423
2220 (1168 1168 1170 1171 1172 1173 1174 1176 2620 | 1424 1425 1426 1427 1428 1429 1430 1431
2230 (1176 1177 1178 1179 1180 1181 1182 1183 2630 | 1432 1433 1434 1435 1436 1437 1438 1438
2240 {1184 1185 1186 1187 1188 1189 1180 1191 2640 | 1440 1441 1442 1443 1444 1445 1446 1447
2250 11192 1193 1184 1185 1186 1197 1198 1199 2650 | 1448 1443 1450 1451 1452 1463 1454 1455
2260 {1200 1201 1202 1203 1204 1205 1206 1207 2660 | 1456 1457 1458 1459 1460 1461 1462 1483
2270 (1208 1209 1210 1211 1212 1213 1214 1215 2670 | 1464 1465 1486 1467 1468 1469 1470 1471
2300 (1216 1217 1218 1219 1220 1221 1222 1223 2700 | 1472 1473 1474 1475 1476 1477 1478 1479
2310 {1224 12256 1226 1227 1228 1229 1230 1231 2710 | 1480 1481 1482 1483 1484 1485 1486 1487
2320 {1232 1233 1234 1235 1236 1237 1238 1239 2720 | 1488 1489 1490 1491 1482 1493 1484 1485
2330 (1240 1241 1242 1243 1244 1245 1246 1247 2730 | 1496 1497 1498 1499 1500 1501 1502 1503
2340 (1248 1249 1250 1251 1252 1253 1254 1255 2740 | 1504 1505 1806 1507 1508 1519 1510 1511
2360 [1256 1257 1258 1259 1260 1261 1262 1263 2750 | 1512 1513 1514 1516 1§16 1617 1518 1519
2360 [1264 1266 1266 1267 1268 1268 1270 1271 2760 | 1520 1521 1522 1523 1524 1525 1526 1527
2370 (1272 1273 1274 1275 1278 1277 1278 1279 2770 | 1528 1529 1530 1531 1532 1533 1534 1535
o 1 2 3 4 5 6 7 o 1 2 3 4 585 6 7
3000 | 1536 1537 1538 1539 1540 1541 1542 1543 3400 | 1792 1793 1794 1795 1796 1797 1798 1798 3000 1536
3010 |1544 1545 1546 1547 1548 1548 1550 1651 3410 | 1800 1801 1802 1803 1804 1805 1806 1807 1o to
3020 |1552 1653 1554 1655 1566 1557 1558 1659 3420 | 1808 1809 1810 1811 1812 1813 1814 1815 3777 2047
3030 | 1560 1561 1562 1563 1564 1565 1566 1567 3430 | 1816 1817 1818 1819 1820 1821 1822 1823 (Octal] {Decimal]
3040 |1568 1569 1570 1571 1572 1573 1574 1576 3440 | 1824 1825 1826 1827 1828 1829 1830 1831
3050 |1576 1577 1578 1579 1580 1581 1582 1583 3450 | 1832 1833 1834 1835 1836 1837 1838 1839
3060 |1584 1585 1586 1687 1588 1589 1590 1591 3460 | 1840 1841 1842 1843 1844 1845 1846 1847
3070 [1592 1593 1594 1595 1596 1597 1588 1599 3470 | 1848 1849 1850 1851 1852 1853 1854 1855
3100 {1600 1601 1602 1603 1604 1605 1606 1607 3500 | 1856 1857 1858 1853 1860 1861 1862 1863
3110 |1608 1608 1810 1611 1612 1613 1614 1615 3510 | 1864 1865 1866 1867 1868 18G9 1870 1871
3120 |1616 1617 1618 1619 1620 1621 1622 1623 3520 | 1872 1873 1874 1875 1876 1877 1878 1879
3130 {1624 1625 1626 1627 1628 1629 1630 1631 3530 | 1880 1881 1882 1883 1884 1885 1886 1887
3140 |1632 1633 1634 1635 1636 1637 1638 1639 3540 | 1888 1889 1890 1881 1892 1893 1894 1885
3150 1640 1641 1642 1643 1644 1645 1646 1647 3550 | 1896 1897 1898 1893 1900 1901 1902 1903
3160 |1648 1649 1650 1651 1662 1653 1654 1655 3560 | 1904 1905 1906 1807 1908 1809 1910 191
3170 {1666 1657 1658 1659 1660 1661 1662 1663 3570 1912 1913 1914 1915 1916 1817 1918 1919
3200 |1664 1665 1666 1667 1668 1669 1670 1671 3600 | 1920 1921 1922 1923 1824 1826 1926 1927
3210 {1672 1673 1674 1675 1676 1677 1678 1679 3610 | 1928 1929 1930 1931 1832 1833 1934 1935
3220 {1680 1681 1682 1683 1684 1685 1686 1687 3620 | 1936 1937 1938 18939 1940 1941 1942 1943
3230 |1688 1689 1690 1691 1692 1693 1684 1695 3630 | 1944 1945 1946 1947 1948 1949 1950 1951
3240 (1696 1697 1698 1698 1700 1701 1702 1703 3640 | 1952 1953 1954 1955 1956 1857 1958 1949
3250 {1704 1705 1706 1707 1708 1708 1710 1711 3650 | 1960 1961 1962 1963 1964 1965 1966 1967
3260 (1712 1713 1714 1715 1716 1717 1718 1719 3660 | 1968 1969 1970 1971 1872 1973 1974 1975
3270 (1720 1721 1722 1723 1724 1725 1726 1727 3670 | 1976 1977 1978 1979 1980 1981 1982 1983
3300 (1728 1729 1730 1731 1732 1733 1734 1735 3700 | 1984 1985 1986 1987 1988 1989 1990 1991
3310 (1736 1737 1738 1739 1740 1741 1742 1743 3710 | 1992 1993 1994 1885 1996 1987 1998 1999
3320 1744 1745 1746 1747 1748 1749 1750 1751 3720 | 2000 2001 2002 2003 2004 2005 2006 2007
3330 |1752 1753 1754 1755 1756 1757 1758 1759 3730 | 2008 2009 2010 2011 2012 2013 2014 2015
3340 |1760 1761 1762 1763 1764 1765 1766 1767 3740 | 2016 2017 2018 2019 2020 2021 2022 2023
3350 |1768 1788 1770 1771 1772 1773 1774 1776 3750 | 2024 2025 2026 2027 2028 2029 2030 2031
3360 {1776 1777 1778 1779 1780 1781 1782 1783 3760 | 2032 2033 2034 2035 2036 2037 2038 2039
3370 (1784 1785 1786 1787 1788 1789 1790 1791 3770 | 2040 2041 2042 2043 2044 2045 2046 2047

61

OCTAL-DECIMAL INTEGER CONVERSION TABLE

4000 2048
to ta
4717 2559
{Octal) (Decimal)

Octal Decimal
10000 - 4096
20000 - 8192
30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

5000 2560
to to

5777 3071

{COctal) {Decimal)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
4000 | 2048 2043 2050 2051 2052 20653 2054 2055 4400 | 2304 2305 2306 2307 2308 2309 2310 2311
4010 | 2086 2057 2058 2059 2060 2081 2062 2063 4410 | 2312 2313 2314 2315 2316 2317 2318 2319
4020 | 2064 2065 2066 2067 2068 2068 2070 2071 4470 | 2320 2321 2322 2323 2324 2325 2326 2327
4030 | 2072 2073 2074 2075 2076 2077 2078 2078 44301 2328 2323 2330 2331 2332 2333 2334 233
4040 | 2080 2081 2082 2083 2084 2085 2086 2087 4440 | 2336 2337 2338 2339 2340 2341 2342 2343
4050 | 2088 2083 2030 2091 2092 2093 2094 2095 4450 | 2344 2345 2346 2347 2348 2349 2350 2351
4060 | 2096 2097 2098 2099 2100 2101 2102 2103 4450 | 2352 2353 2354 2355 2356 2357 2358 2359
4070 | 2104 2105 2106 2107 2108 2109 2110 2111 4470 | 2360 2361 2362 2363 2364 2365 2366 2367
4100 | 2112 2113 2114 2115 2118 2117 2118 2119 4500 | 2368 2369 2370 2371 2372 2373 2374 2375
4110 | 2120 2121 2122 2123 2124 2125 2126 2127 4510 | 2376 2377 2378 2379 2380 2381 2382 2383
4120 | 2128 2129 2130 2131 2132 2133 2134 2135 4520 | 2384 2385 2386 2387 2388 2389 2390 2391
4130 | 2136 2137 2138 2139 2140 2141 2142 2143 4530 | 2392 2393 2394 2395 2396 2397 2398 2398
4140 | 2144 2145 2146 2147 2148 2148 2160 2151 4540} 2400 2401 2402 2403 2404 2405 2406 2407
4150 | 2152 2153 2154 2165 2156 2157 2158 2159 4550 | 2408 2409 2410 2411 2412 2413 2414 2415
4160 | 2160 2161 2162 2163 2164 2165 2166 2167 4560 | 2416 2417 2418 2419 2420 2421 2422 2423
4170 12168 2169 2170 2177 2172 2173 2174 2175 4570 | 2424 2425 2426 2427 2428 2429 2430 2431
4200 | 2176 2177 2178 2179 2180 2181 2182 2183 4600 | 2432 2433 2434 2435 2436 2437 2438 2439
4210 | 2184 2185 2186 2187 2188 2189 2180 2191 4610 | 2440 2441 2442 2443 2444 2445 2448 2447
4220 {2192 2193 2194 2195 2196 2187 2198 2199 4620 | 2448 2449 2450 2451 2452 2453 2454 2455
4230 | 2200 2201 2202 2203 2204 2205 2206 2207 4630 | 2456 2457 2458 2453 2460 2461 2462 2463
4240 | 2208 2208 2210 2211 2212 2213 2214 2215 48401 2464 2465 2466 2467 2468 2469 2470 2471
4250 | 2216 2217 2218 2219 2220 2221 2222 2223 4650 | 2472 2473 2474 2475 2476 2477 2478 2479
4260 | 2224 2225 2226 2227 2228 2229 2230 2231 4660 | 2480 2481 2482 2483 2484 2485 2486 2487
4270 | 2232 2233 2234 2235 2236 2237 2238 2238 4670 | 2488 2489 2450 2491 2492 2493 2494 2485
4300 | 2240 2241 2242 2243 2244 2245 2248 2247 4700 (2496 2497 2498 2489 2500 2501 2502 2503
4310 | 2248 2249 2250 2251 2252 2253 2254 2255 4710 2504 2505 2506 2507 2508 2508 2510 2511
4320 | 2256 2257 2258 2259 2260 2261 2262 2263 4720} 2512 2513 2514 2515 2516 2517 2518 2518
4330 | 2264 2265 2266 2267 2268 2268 2270 2271 4730 2520 2521 2522 2523 2524 2525 2526 2527
4340 | 2272 2273 2274 2278 2276 2271 22718 2279 4740 | 2528 2529 2530 2531 2532 2533 2534 2535
4350 | 2280 2281 2282 2283 2284 2285 2286 2287 4750 | 2536 2537 2538 2539 2540 2541 2542 2543
4360 | 2288 2289 2280 2281 2282 2293 2294 2295 4760 | 2544 2545 2546 2547 2548 2549 2550 2551
4370 | 2296 2297 2298 2299 2300 2301 2302 2303 4770 | 2552 2553 2554 2555 2556 2557 2558 2559
0o 1 2 3 4 5 6 7 V] 1 2 3 4 5 6 7
5000 | 2560 2561 2562 2563 2564 2566 2566 2567 5400 | 26816 2817 2818 2819 2820 2821 2822 2823
5010 | 2568 2569 2570 2571 2572 2573 2574 2575 5410 | 2824 2825 2826 2827 2828 2828 2830 2831
6020 | 2576 2577 2578 2579 2580 2581 2582 2583 §420 | 2832 2833 2834 2835 2836 2837 2838 2839
5030 | 2584 2585 2586 2587 2588 2589 2590 2591 5430 | 2840 2841 2842 2843 2844 2845 2846 2847
5040 | 2582 2583 2594 2595 2696 2697 2508 2589 5440 | 2848 2849 2850 2851 2852 2853 2854 2855
5050 | 2600 2601 2602 2603 2604 2605 2606 2607 5450 | 2866 2857 2858 2859 2860 2861 2862 2863
5060 | 2608 2609 2610 2611 2612 2613 2614 2615 5460 | 2864 2865 2866 2867 2868 2863 2870 2871
5070 | 2616 2617 2618 2619 2620 2621 2622 2623 5470 | 2872 2873 2874 2875 2876 2877 2878 2879
5100 | 2624 2625 2626 2627 2628 2628 2630 2631 5500 | 2880 2881 2882 2883 2884 2885 2886 2887
5110 | 2632 2633 2634 2635 2636 2637 2638 2639 5510] 2888 2889 2890 2881 2882 2893 2834 2895
5120 | 2640 2641 2642 2643 2644 2645 2646 2647 5520 | 2896 2897 2898 2899 2800 2901 2902 2903
5130 | 2648 2649 2650 2651 2652 2653 2654 2655 5530 | 2904 2905 2906 2907 2908 2908 2910 2911
5140 | 2656 2657 2658 2659 2660 2661 2662 2663 55401 2912 2913 2914 2915 2916 2917 2918 2819
5150 | 2664 2665 2666 2667 2668 2663 2670 2671 5550 | 2920 2921 2922 2923 2924 2925 2826 2927
5160 | 2672 2673 2674 2675 2676 2677 2678 2679 5560 | 2928 2929 2930 2931 2932 2933 2934 2935
5170 | 2680 2681 2682 2683 2684 2685 2686 2687 5570 | 2936 2937 2938 2939 2940 2941 2942 2943
5200 | 2688 2689 2690 2691 2692 2693 2694 2695 5600 2944 2945 2946 2947 2948 2943 2950 2951
5210 | 2696 2687 2698 2699 2700 2701 2702 2703 6610 2952 2953 2954 2955 2956 2957 2958 2859
5220 | 2704 2705 2706 2707 2708 2709 2710 2711 5620 2960 2961 2962 2963 2964 2965 2966 2867
5230 | 2712 2713 2714 2716 2716 2717 2718 2718 5630| 2968 2969 2970 2971 2972 2973 2974 2975
5240 | 2720 2721 2722 2723 2724 2726 2726 2727 5640| 2976 2977 2978 2979 2980 2981 2982 2983
5250 | 2728 2729 2730 2731 2732 2733 2734 2735 5650| 2984 2985 2986 2987 2988 2983 2930 2991
5260 | 2736 2737 2738 2739 2740 2741 2742 2143 6660 | 2992 2993 2994 2995 2996 2997 2998 2989
5270 | 2744 2745 2746 2747 2748 2748 2750 2751 6670 | 3000 3001 3002 3003 3004 3005 3006 3007
5300 | 2752 2753 2754 2755 2756 2757 2748 2759 5700 3008 3009 3010 3011 3012 3013 3014 3015
6310 | 2760 2761 2762 2763 2764 2765 2766 2767 5710| 3016 3017 3018 3019 3020 3021 3022 3023
6320 | 2768 2769 2770 2771 2772 2713 2774 2775 §720(3024 3025 3026 3027 3028 3029 3030 3031
5330 | 2776 2777 2778 2779 2780 2781 2782 2783 6730 | 3032 3033 3034 3035 3036 3037 3038 3039
5340 | 2784 2785 2786 2787 2788 2783 2790 2791 5740| 3040 3041 3042 3043 3044 30456 3048 3047
5350 | 2792 2793 2794 2795 2796 2797 2798 2799 5750 | 3048 3049 3050 3051 3052 3063 3054 3055
5360 | 2800 2801 2802 2803 2804 2805 2806 2807 5760 | 3056 3057 3058 3059 3060 3061 3062 3083
5370 | 2808 2809 2810 2811 2B12 2813 2814 2815 5770| 3064 3065 3066 3067 3068 3068 3070 3071

62

§
|
]

OCTAL-DECIMAL INTEGER

CONVERSION TABLE

6000 3072
to to
6777 3583
{Octal) {Decimal}
Octal Decimal
10000 - 4096
20000 - 8192

30000 - 12288
40000 - 16384
50000 - 20480
60000 - 24576
70000 - 28672

o} 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
6000 | 3072 3073 3074 3075 3076 3077 3078 3079 6400 | 3328 3329 3330 3331 3332 3333 3334 3335
6010 | 3080 3081 3082 3083 3084 3085 3085 3087 6410 | 3336 3337 3338 3339 3340 3341 3342 3343
6020 | 3088 3089 3090 3091 3092 3093 3094 3085 6420 | 3344 3345 3346 3347 3348 3349 3350 3351
6030 | 3096 3087 3098 3098 3100 3101 3102 3103 6430 | 3352 3353 3354 3355 3356 3357 3358 3359
6040 | 3104 3106 3106 3107 3108 3109 3110 3111 6440 | 3360 3361 3362 3363 3364 3365 3366 3367
6050 | 3112 3113 3114 3115 3116 3117 3118 3119 6450 | 3368 3369 3370 3371 3372 3373 3374 3375
6060 | 3120 3121 3122 3123 3124 3125 3126 3127 6460 | 3376 3377 3378 3379 3380 3381 3382 3383
6070 | 3128 3128 3130 3131 3132 3133 3134 3135 6470 | 3384 3385 3386 3387 3388 3383 3380 3391
6100 | 3136 3137 3138 3139 3140 3141 3142 3143 6600 | 3392 3393 3394 3335 3396 3397 3398 3399
6110 | 3144 3145 3146 3147 3148 3149 3150 3161 6510 | 3400 3401 3402 3403 3404 3405 3406 3407
6120 | 3152 3153 3154 3155 3156 3157 3158 3159 6520 | 3408 3409 3410 3411 3412 3413 3414 3415
6130 | 3160 3161 3162 3163 3164 3165 3166 3167 6530 | 3416 3417 3418 3419 3420 3421 3422 3423
6140 | 3188 3168 3170 3171 3172 3173 3174 375 6540 | 3424 3425 3426 3427 3428 3429 3430 34%
6150 | 3176 3177 3178 3179 3180 3181 3182 3183 6550 | 3432 3433 3434 3435 3436 3437 3438 3438
6160 | 3184 3185 3186 3187 3188 3183 3190 3191 6560 | 3440 3441 3442 3443 3444 3445 3446 3447
6170 | 3192 3193 3194 3185 3196 3197 3198 3199 6570 | 3448 3449 3450 3451 3452 3453 3454 3485
6200 | 3200 3201 3202 3203 3204 3205 3206 3207 6600 | 3466 3457 3458 3459 3460 3461 3462 3463
6210 | 3208 3209 3210 3211 3212 3213 3214 3215 6610 | 3464 3465 3466 3467 3468 3468 3470 3471
6220 | 3216 3217 3218 3219 3220 3221 3222 3223 6620 | 3472 3473 3474 3475 3476 3477 3478 3479
6230 | 3224 3225 3226 3227 3228 3229 3230 323t 6630 | 3480 3481 3482 3483 3484 3485 3488 3487
6240 | 3232 3233 3234 3235 3236 3237 3238 3239 6640 | 3488 3489 3490 3491 3492 3483 3494 3495
6250 | 3240 3241 3242 3243 3244 3245 3246 3247 6650 | 3496 3497 3498 3499 3500 3501 3502 3503
6260 | 3248 3249 3250 3251 3252 3253 3254 3255 6660 | 3504 3505 3506 3507 3508 3509 3510 3511
6270 | 3256 3257 3258 3259 3260 3261 3262 3263 6670 | 3512 3513 3514 3515 3616 3517 3518 3519
6300 | 3264 3265 3266 3267 3268 3269 3270 327 6700 | 3520 3521 3522 3523 3524 3525 3526 3527
6310 | 3272 3273 3274 3275 3276 3277 3278 3279 6710 [3528 3529 3530 3531 3532 3533 3534 3535
6320 | 3280 3281 3282 3283 3284 3285 3286 3287 6720 | 3636 3537 3538 3539 3540 3541 3542 3543
6330 | 3288 3289 3290 3291 3292 3293 3294 3295 6730 | 3544 3545 3546 3547 3548 3549 3550 3551
6340 | 3296 3297 3298 3299 3300 3301 3302 3303 6740 | 3852 3553 3554 3555 3556 3557 3558 3559
6350 | 3304 3305 3306 3307 3308 3308 3310 3311 6750 | 3560 3561 3562 3563 3564 3565 3566 3567
6360 | 3312 3313 3314 3315 3316 3317 3318 3318 6760 | 3568 3569 3570 3571 3572 3573 3574 3575
6370 | 3320 3321 3322 3323 3324 3325 3326 3327 6770 | 3576 3577 3578 3579 3580 3581 3582 3583
0 1 2 3 4 5 6 7 [} 1 2 3 4 5 6 7
7000 | 3584 3585 3586 3587 3588 3589 3590 3591 7400 | 3840 3841 3842 3843 3844 3845 3846 3847
7010 | 3592 3593 3594 3595 3496 3497 3598 3599 7410 |3B48 3849 3850 3851 3852 3853 3854 3855
7020 | 3600 3601 3602 3803 3604 3605 3606 3607 7420 | 3856 3857 3858 3859 3860 3861 3862 3863
7030 | 3608 3609 3610 3611 3612 3613 3614 3615 7430 | 3864 3865 3866 3867 3868 3869 3870 3871
7040 | 3616 3617 3618 3619 3620 3621 3622 3623 7440 13872 3873 3874 3875 3876 3877 3878 3879
7050 | 3624 3625 3626 3627 3628 3629 3630 3631 7450 | 3880 3881 3882 3883 3884 3885 3886 3887
7060 | 3632 3633 3634 3635 3636 3637 3638 3639 7460 | 3888 3889 3890 3891 3892 3893 3834 3895
7070 | 3640 3641 3642 3643 3644 3645 3646 3647 7470 (3896 3897 3838 3899 3900 3901 3902 3903
7100 | 3648 3649 3650 3651 3652 3653 3654 3655 7500 (3904 3905 3906 3907 3308 39303 310 331
7110 | 3656 3657 3658 3659 3660 3661 3662 3663 7510 (3912 3913 3914 3915 3916 3917 3918 3919
7120 | 3664 3665 3666 3667 3668 3669 3670 3671 7520 | 3920 3921 3922 3923 3924 3925 3926 3927
7130 | 3672 3673 3674 3675 3676 3677 3678 3679 7530 (3928 3929 3930 3931 3932 3933 3934 3935
7140 | 3680 3681 3682 3683 3684 3685 3686 3687 7540 | 3936 3937 3938 3939 3940 3941 3942 3943
7150 | 3688 3689 3690 3691 3692 3693 3694 3695 7550 | 3944 3945 38946 3947 3948 3949 3950 3951
7160 | 3696 3697 3698 3699 3700 3701 3702 3703 7560 |3952 3953 3854 3955 3956 3957 3958 3959
7170 | 3704 3705 3706 3707 3708 3708 3710 3711 7570 | 3960 3961 3962 3963 3964 3965 3966 3967
7200 | 3712 3713 3714 3715 3716 3717 3718 3719 7600 3968 3963 3970 3971 3972 3973 3974 3975
7210 | 3720 3721 3722 3723 3724 3725 3726 3727 7610 | 3976 3977 3378 3979 3980 3981 3982 3983
7220 (3728 3729 3730 3731 3732 3733 3734 3735 7620 {3984 3985 3986 3987 3988 3983 3930 339
7230 | 3736 3737 3738 373% 3740 3741 3742 3743 7630 |3992 3993 3994 3995 3996 3997 3998 3999
7240 | 3744 3745 3746 3747 3748 3749 3750 3751 7640 | 4000 4001 4002 4003 4004 4005 4006 4007
7250 | 3752 3753 3754 3755 3756 3757 3758 3759 7650 | 4008 4009 4010 4011 4012 4013 4014 4015
7260 | 3760 3761 3762 3763 3764 3765 3766 3767 7660 14016 4017 4018 4019 4020 4021 4022 4023
7270 | 3768 3769 3770 3771 3772 3773 3714 3715 7670 |4024 4025 4026 4027 4028 4029 4030 4031
7300 (3776 3777 3778 3779 3780 3781 3782 3783 7700 |4032 4033 4034 4035 4036 4037 4038 4039
7310 | 3784 3785 3786 3787 3788 3783 3730 37191 7710 4040 4041 4042 4043 4044 4045 ADAB 4047
7320 {3792 3793 3794 3795 3796 3797 3798 3799 7720 |4048 4048 4050 4051 4052 4053 4054 4055
7330 {3800 3801 3802 3803 3804 3805 3806 3807 7730 |4056 4057 4058 4059 4060 4061 4062 4063
7340 | 3808 3809 3810 3811 3812 3813 3814 3815 7740 |4084 4085 4066 4067 4068 4063 4070 40N
7350 | 3816 3817 3818 3819 3820 3821 23822 3823 7750 |4072 4073 4074 4075 4076 4077 4078 4079
7360 | 3824 3825 3826 3827 3828 3829 3830 3831 7760 [4080 4081 4082 4083 4084 4085 4086 4087
7370 | 3832 3833 3834 3835 3836 3837 3838 3839 7770 14088 4089 4090 4091 4092 4033 4094 4095

7000
to
7
{Octal)

3584
to
4095
{Decimal)

63

Appendix 111

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC
000 .000000 100 .125000 200 .250000 .300 375000
001 001953 101 126953 201 251953 301 376953
.002 .003806 102 128906 202 253906 302 378906
.003 .005859 .103 .130859 203 255859 .303 380859
.004 007812 .104 132812 204 257812 304 382812
.005 009765 105 134765 205 259765 305 384765
008 011718 .106 136718 206 261718 306 386718
007 013671 107 138671 207 263671 307 388671
010 015625 110 140625 210 266625 310 390625
011 017578 A11 142578 211 267578 311 392578
012 018531 A12 144531 212 269531 312 .394531
013 021484 113 146484 213 271484 313 396484
014 023437 114 148437 214 273437 314 398437
015 025390 115 .150390 215 275390 316 400390
016 027343 116 152343 216 277343 316 402343
017 029296 17 154296 217 279296 317 404296
020 031250 120 156250 220 281250 320 406250
021 033203 121 .158203 221 283203 321 408203
022 035156 122 160156 222 285156 322 410156
023 037109 123 162109 223 287109 323 412109
024 039062 124 164062 224 289062 324 414062
025 041015 125 166015 225 291015 325 416015
026 042968 126 167968 226 292968 328 417968
027 044921 127 169921 227 294921 327 419921
030 046875 130 171875 230 296875 330 421875
031 048828 131 173828 231. 298828 331 423828
032 050781 132 175781 232 .300781 332 425781
033 052734 133 477734 233 302734 333 427734
034 054687 134 179687 234 304687 334 429687
035 .056640 135 181640 235 .306640 335 431640
036 058593 136 .183593 236 .308593 336 433593
037 060546 137 185546 237 310546 337 435546
040 062500 140 .187500 240 312500 340 437500
041 064453 141 .189453 241 314453 341 439453
042 066406 142 191406 242 316406 342 441406
043 068359 143 193359 243 318359 343 443359
044 070312 144 195312 244 320312 344 445312
045 072265 145 197265 245 .322265 345 447265
046 074218 146 199218 246 324218 346 449218
047 076171 147 201171 247 326171 347 451171
050 078125 150 203125 250 328125 350 453125
051 080078 151 205078 251 330078 351 455078
052 082031 152 207031 252 .332031 352 457031
053 083984 153 208984 253 .333984 .353 458984
.054 085937 154 210937 254 336937 354 460937
055 .087890 155 212890 255 .337890 355 462890
056 089843 156 214843 256 .339843 356 464843
057 091796 157 216796 257 341796 357 466796
060 093750 160 218750 260 343750 360 468750
061 095703 161 220703 261 345703 361 470703
062 097656 162 222656 262 347656 362 472656
063 099609 163 224609 263 349609 363 474609
064 101562 164 226562 264 351562 364 476562
065 103515 165 228515 265 353515 385 478515
066 105468 166 230468 266 .355468 366 480468
067 107421 167 232421 267 357421 367 482421
.070 109375 170 234375 270 359375 370 484375
071 111328 A71 236328 271 361328 371 486328
072 113281 172 238281 272 363281 372 488281
073 115234 173 240234 273 365234 373 490234
074 117187 174 242187 274 367187 374 492187
075 119140 175 244140 275 369140 375 494140
076 121093 176 246093 276 371093 376 496093
077 123046 A77 248046 277 373046 377 498046

67

OCTAL-DECIMAL FRACTION CONVERSION TABLE

OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.
.000000 000000 .000100 .000244 .000200 000488 .000300 .000732
.000001 .000003 .000101 .000247 .000201 .000492 .000301 .000736
.000002 .000007 .000102 .000251 .000202 .000495 .000302 .000740
.000003 .000011 .000103 .0002565 .000203 .000499 .000303 .000743
.000004 000015 000104 .000259 .000204 .000503 .000304 .000747
.000005 .000019 .000105 .000263 .000205 .000507 .000305 .000751
.000006 000022 .000106 .000267 .000206 .000511 .000306 .000755
.000007 .000026 .000107 .000270 .000207 .000514 .000307 000759
.000010 .000030 .000110 .000274 .000210 .000518 000310 .000762
.000011 000034 .000111 .000278 .000211 .000522 .000311 .000766
.000012 .000038 000112 .000282 .000212 .000526 .000312 .000770
.000013 .000041 .000113 .000286 .000213 .000530 000313 .000774
.000014 .000045 .000114 .000289 .000214 .000534 .000314 .000778
.000015 000049 000115 .000293 .000215 .000537 .000315 000782
.000016 .000053 .000116 .000297 000216 .000541 000316 .000785
.000017 .000057 000117 .000301 .000217 000545 000317 .000789
.000020 .000061 000120 .000305 .000220 000549 .000320 .000793
.000021 000064 .000121 .000308 .000221 .000553 .000321 .000797
.000022 .000068 .000122 000312 .000222 .000556 .000322 .000801
000023 000072 .000123 000316 .000223 000560 .000323 .000805
000024 .000076 000124 .000320 .000224 .000564 .000324 .000808
.000025 .000080 000125 .000324 .000225 .000568 .000325 .000812
.000026 .000083 .000126 .000328 .000226 .000572 .000326 .000816
.000027 .000087 000127 000331 .000227 .000576 .000327 .000820
.000030 .000091 .000130 .000335 .000230 .000579 000330 .000823
.000031 .000095 000131 .000339 .000231 .000583 .000331 .000827
.000032 .000099 000132 .000343 .000232 .000587 .000332 .000831
.000033 .000102 000133 .000347 .000233 .000591 .000333 .000835
.000034 .000106 .000134 .000350 .000234 .000595 .000334 .000839
.000035 .000110 .000135 .000354 .000235 .000598 .000335 .000843
.000036 .000114 000136 .000358 .000236 .000602 .000336 .000846
.000037 .000118 000137 .000362 .000237 000606 .000337 000850
.000040 .000122 .000140 000366 .000240 .000610 .000340 000854
.000041 .000125 .000141 .000370 000241 .000614 .000341 .000858
000042 .000129 .000142 000373 .000242 .000617 .000342 .000862
.000043 .000133 .000143 .000377 .000243 .000621 .000343 .000865
000044 .000137 .000144 000381 .000244 000625 .000344 .000869
.000045 000141 .000145 .000385 .000245 .000629 .000345 .000873
.000046 000144 .0001486 .000389 000246 .000633 .0003486 .000877
.000047 000148 .000147 .000392 .000247 000637 .000347 .000881
.000050 .000152 .000150 .000396 .000250 .000640 .000350 .000885
.000051 000156 0001561 .000400 .000251 .000644 .000351 .000888
.000052 .000160 .000152 .000404 .000252 .000648 000352 .000892
.000053 000164 .0001563 .000408 .000253 .000652 .000353 .000896
.000054 000167 .0001564 .000411 .000254 000656 000354 .000800
.000055 .000171 .0001565 .000415 .000255 .000659 000355 .000804
.000056 000175 .000156 .000419 000256 000663 .000356 .000907
.000057 .000179 000157 .000423 .000257 .000667 .000357 .000911
.000060 000183 .000160 .000427 .000260 .000671 000360 .000915
.000061 000186 .000161 000431 000261 .000675 000361 .000919
.000062 000190 .000162 000434 .000262 000679 .000362 .0009823
.000063 .000194 .0001863 .000438 .000263 .000682 .000363 .000926
000064 000198 .000164 .000442 .000264 .000686 000364 .000930
000065 000202 .000165 .000446 .000265 000690 .000365 .000934
.000066 .000205 .000166 .000450 .000266 .000694 .000366 .000938
000067 000209 .000167 .000453 .000267 .000698 .000367 000942
.000070 .000213 .000170 .000457 .000270 .000701 000370 000946
.000071 000217 .000171 .000461 .000271 .000705 .000371 .000949
.000072 000221 000172 .000465 000272 .000709 .000372 000953
000073 .000225 .000173 .000469 .000273 000713 .000373 .000957
000074 .000228 .000174 .000473 .000274 .000717 .000374 .000961
.000075 .000232 000175 000476 000275 .000720 .000375 .000965
.000076 .000236 .000176 000480 000276 .000724 .000376 .000968
.000077 .000240 .000177 000484 .000277 .000728 .000377 .000972

68

OCTAL-DECIMAL FRACTION CONVERSION TABLE
OCTAL DEC. OCTAL DEC. OCTAL DEC. OCTAL DEC.
.000400 000976 .000500 001220 .000600 001464 .000700 .001708
.000401 .000980 .000501 .001224 .000601 .001468 .000701 001712
.000402 .000984 .000502 .001228 000602 001472 .000702 001716
.000403 .000988 000503 001232 000603 .001476 .000703 001720
000404 000891 .000504 .001235 .000604 001480 .000704 001724
000405 000995 .000505 .001239 .000605 .001483 .000705 .001728
.000406 .000999 .000506 .001243 .000606 .001487 .000706 001731
.000407 001003 .000507 001247 .000607 001491 .000707 .001735
000410 .001007 .000510 001251 .000610 001495 .000710 001739
.000411 .001010 000511 .0012585 000611 .001499 000711 .001743
.000412 001014 .000512 001258 000612 .001502 .000712 001747
.000413 001018 .000513 001262 .000613 .001506 000713 001750
.000414 001022 000514 .001266 .000614 .001510 000714 .001754
000415 .001026 .000515 001270 .000615 001514 .000715 .001758
.000416 001029 000516 001274 .000616 001518 000716 001762
.000417 001033 000517 .001277 .000617 001522 .000717 .001766
.000420 .001037 000520 .001281 .000620 001525 000720 .001770
.000421 001041 .000521 .001285 .000621 .001529 .000721 001773
000422 001045 .0005622 .001289 .000622 .001533 .000722 001777
.000423 .001049 .000523 001293 000623 001537 .000723 001781
000424 .001062 .000524 001296 .000624 001541 .000724 001785
.000425 001056 .000525 .001300 .000625 .001544 .000725 .001789
000426 .001060 .000526 .001304 .000626 001548 .000726 .001792
000427 001064 000527 .001308 .000627 .001552 .000727 .001796
000430 .001068 .0005630 001312 000630 .001556 000730 .001800
000431 .001071 .000531 .001316 .000631 .001560 000731 .001804
.000432 .001075 .000532 001319 .000632 .001564 .000732 001808
000433 .007079 .000533 001323 .000633 001567 .000733 001811
000434 .001083 .000534 .001327 .000634 001571 .000734 .001815
.000435 001087 .000535 001331 .000635 .001575 .000735 .001819
.000436 001091 000536 001335 .000636 .001579 000736 001823
000437 001094 .000537 .001338 .000637 .001583 000737 .001827
.000440 001098 .000540 .001342 000640 .001586 000740 .001831
.000441 .001102 000541 .001346 .000641 .001590 .000741 .001834
000442 .001106 .000542 .0013560 .000642 .001594 .000742 001838
000443 001110 000543 001354 .000643 .001598 .000743 .001842
.000444 001113 000544 0013568 .000644 001602 000744 .001846
.000445 001117 .000545 .001361 000645 .001605 .000745 001850
000446 001121 000546 001365 .000646 .001609 .000746 .001853
000447 0011256 .000547 .001369 .000647 001613 .000747 .001857
.000450 001129 .000550 .001373 .000650 .001617 .000750 001861
.000451 001132 .000551 .001377 000651 0018621 .000751 001865
.000452 001136 000552 .001380 0006562 .001625 000752 .001869
.000453 .001140 .000553 001384 .000653 001628 000753 .001873
.000454 .001144 .000554 001388 .000654 .001632 000754 .001876
.000455 001148 .0005556 .001392 0006565 001636 000755 001880
000456 .001162 .000556 001396 .000656 .001640 .000756 001884
.000457 .001155 .000557 001399 .000657 .001644 000757 001888
.000460 001159 .000560 001403 .000660 .001647 .000760 001892
.000461 .001163 .000561 .001407 000661 .001651 .000761 .001895
000462 0011867 000562 001411 .000662 0016565 000762 .001899
000463 .001171 000563 001415 .000663 .001659 000763 .001903
.000464 001174 .000564 .001419 000664 .001663 .000764 001907
.000465 001178 .000565 .001422 .000665 .001667 .000765 001911
000466 001182 .000566 001426 .000666 001670 .000766 001914
000467 .001186 000567 001430 000667 .001674 .000767 001918
.000470 001190 .000570 .001434 000670 001678 .000770 001922
000471 001194 .000571 .001438 .000671 001682 000771 001926
.000472 001197 .0005672 001441 000672 .001686 000772 001930
.000473 .001201 000573 .001445 000673 001689 .000773 .001934
000474 .001205 .000574 .001449 .000674 001693 000774 .001937
000475 001209 .000575 .001453 .000675 001697 000775 .001941
.000476 001213 .000576 001457 .000676 001701 .000776 001945
.000477 001216 .000577 .001461 000677 .001705 .000777 .001949

69

"T' 2

APPENDIX IV

Instruction Execution Times

The execution times for central and peripheral
and control processor instructions are given in
the following paragraphs. Factors which influence
instruction execution time and hence program
running time are given also.

CENTRAL PROCESSOR

The execution time of central processor in-
structions is given in minor cycles, and instruc-
tions are grouped under the functional unit which
executes the instruction. Time is counted from
the time the unit has both input operands to when
the instruction result is available in the specified
result register. Central memory access time is
not considered in those increment instructions
which result in memory references to read
operands or store results.

The paragraphs following give some general
statements about central processor instruction
execution and summarize the statements into a
list which may be used as a guide to efficient
use of the central processor functional umits.

Central processor programs are written in the
conventional manner and are stored in central
memory under direction of a peripheral and
control processor. After an exchange jump start
by a peripheral and control processor program,
central processor instructions are sent auto-
matically, and in the original sequence, to the
instruction stack, which holds up to 32 instruc-
tions.

Instructions are read from the stack one at a
time and issued to the functional units for execu-
tion. A scoreboard reservation system in central
processor control keeps a current log of which
units are busy (reserved) and which operating
registers are reserved for results of computa-
tion in functional units.

Each unit executes several instructions, but
only one at a time. Some branch instructions re-
quire two units, but the second unit receives its
direction from the branch unit.

The instruction issue rate may vary from a
theoretical maximum rate.of one instruction
every minor cycle (sustained- issuing at this

rate may not be possible because of unit and
central memory conflict) and resulting parallel
operation of many units to a slow issue rate and
serial operation of units. The latter results when
successive operations depend on results of pre-
vious steps. Thus, program running time can be
decreased by efficient use of the many units. In-
structions which are not dependent on previous
steps may be arranged or nested in areas of the
program where they may be executed during
operation time of other units. Effectively, this
eliminates dead spots in the program and steps
up the instruction issue rate.

The steps following summarize instruction
issuing and execution.

1. An instruction is issued to a functional unit
when
a. The specified functional unit is not reserved.
b. The specified result register is not reserved
for a previous result.

2. Instructions are issued to functional units at
minor cycle intervals when no reservation con-
flicts (1. above) are present.

3. Instruction execution starts in a functional
unit when both operands are available (execu-
tion is delayed when an operand (s) is a result
of a previous step which is not complete).

4. No delay occurs between the end of a first
unit and the start of a second unit which is wait-
ing for the results of the first.

5. No instructions are issued after a branch
instruction until the branch instruction has been
executed. The branch unit uses

a. An increment unit to form the go to k+ Bi
and go to k if Bi . . . instructions, or
b. The long add unit to perform the go to k if
Xj .. .instructions
in the execution of a branch instruction. The
time spent in the long add or increment units is
part of the total branch time.

6. Read central memory access time is com-
puted from end of increment unit time to the
time operand is available in X operand register.
Minimum time is 500 ns assuming no central
memory bank conflict.

73

74

Central Processor Instruction Execution Times
(Times listed in Minor Cycles)

BRANCH UNIT LONG ADD UNIT
o0 | stop - 36 | INTEGER SUM of Xj and Xk to Xi 3
01 | RETURN JUMP to K n 37 | INTEGER DIFFERENCE of Xj and Xk to Xi 3
02 | 6OT0K + Bi {Note 1} 6*
030] GO TOK if Xj = zero 6*
031 | GO TO K if Xj = zero 6* MULTIPLY UNIT*
032 | GO TOKif Xj = positive o*
033] GO TOKif Xj = negative Note 5* 40 | FLOATING PRODUCT of Xj and Xk fo Xi 10
034 | GO TO K if Xj is in range 2 6* 41 | ROUND FLOATING PROBUCT of Xj and Xk to Xi 10
035| BO TO K if Xj is out of range 6* 42 | FLOATING DP PRODUCT of Xj and Xk to Xi 10
036 | 60 TO K if Xj is definite 6*
037 | GO TO K if X is indefinite 6*
04 | GO TOKif Bi = Bj 6* DIVIDE UNIT
05 | GO 7O K if Bi > Bj Note 6*
06 | GO TOKif Bi = Bj 1 6* 44 | FLOATING DIVIDE Xj by Xk to Xi 29
07 | 60 TOKif Bi < Bj g* 45 | ROUND FLOATING DIVIDE Xj by Xk to Xi 29
46 | PpAss -
Note 1. GO TO K + Bi and 60 TO K if Bi--- tests AT SUM of T's in Xk to Xi 8
made in increment unit
Note 2. 60 T0 K if Xj---tests made in long add
u INCREMENT UNIT*
*Add 5 minor o h 1 i i i . .
51 | SUM of Bj and K 10 Ai 3
52 | SUM of Xj and K 1o Ai 3
BOOLEAN UNIT 53 SUM of Xi and Bk to Al 3
54 | SUM of Aj and Bk 1o Ai 3
10 | TRANSMIT Xj 1o Xi 3 56 | DIFFERENCE of Aj and Bk to Ai 3
11 | LOGICAL PRODUCT of Xj and Xk to Xi 3 56 | SUM of Bj and Bk 1o Ai 3
12 | LDGIEAL SUM of Xj and Xk to Xi 3 57 | DIFFERENCE of Bj and Bk to Ai 3
13 | LOGICAL DIFFERENCE of Xj and Xk to Xi 3
14 | TRANSMIT Xk COMP. 10 Xi 3 60 | SUM of Aj and K 1o Bi 3
15 | LOGICAL PRODUCT of Xj and Xk COMP. to Xi 3 6% | SUM of B and K to Bi 3
16 | LOGICAL SUM of Xj and Xk COMP. 1o Xi 3 62 | SUM of Xj and K 1 B L 3
17 | LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi 3 63 | SUM of Xj and Bk to Bi 3
64 | SUM of Aj and BK to Bi 3
65 | DIFFERENCE of Aj and Bk 1o B 3
SHIFT UNIT 66 | SUM of Bj and Bk to Bi 3
20 | SHIFF Y6 LEFT jk places 3 67 | DIFFERENEE of Bj and B to Bi 3
21 | SHIFT X RIGHT jk places 3 g)
22 | SHIFT Xk NOMIMALLY LEFT Bj places to Xi | 3 78 | SUM of Ajand K 1o Xi 3
23 | SHIFT Xk NOMINALLY RIGHT Bj places to Xi 3 7T | SUM of Bj and K tn XF 3
24 | NOBMALIZE Xk in Xi and Bj 4 72 | SUM of X} and K to Xi 3
25 | ROUND AND NORMALZE Xk in Xi and Bj 4 73 L SUM of Xj and Bk to Xi 3
26 | UNPACK Xk to Xi and Bj 3 74 | SUM of Aj and Bk to X0 | 3
27 | PACK Xi from Xk and B 3 75 | WFFERENCE of Aj and BK to Xi 3
53 | FORM jk MASK i Xi g 76 “ SUM of Bj and Bk to Xi 3
I7 | DIFFERENGE of Bj znd BK to Xi i
AR UNIT
30 | FLOATING SUM of Xj and Xk to Xi . 4
31 | FLOATING DIFFERENCE of Xj and Xk to Xi 4 *Duplexed! units—instmiction gees ta free unit
32 | FLOATING BF SUM of Xj and Xk to Xi 4
33 | FLOATING DP DIFFERENGE of Xj and Xk to Xi 4 Octal Gode at left of nstruction
34 | ROUND FEDATING SUM of Xj and Xk to Xi 4 Comp.—Camplement
35 | ROUNE FLOATING DIFFERENCE of Xj and Xk to Xi 4

DP—Double Precision

o

PERIPHERAL AND
CONTROL PROCESSOR

The execution time of peripheral and control
processor instructions is influenced by the follow-
ing factors:

1. Number of memory references—indirect
addressing and indexed addressing require an
extra memory reference. Instructions in 24-bit
format require an extra reference to read m.

2. Number of words to be transferred—in 1/0
instructions and in references to central memory
the execution times vary with the number of

words to be transferred. The maximum theoret-
ical rate of flow is 1 word/major cycle. I/O word
rates depend upon the speed of external equip-
ments which are normally much slower than the
computer.

3.References to central memory may be delayed
if there is conflict with central processor memory
requests.

4. Following an exchange jump instruction, no
memory references (nor other exchange jump in-
structions) may be made until the central processor
has completed the exchange jump.

75

Peripheral and Control Processor

Instruction Execution Times

Time Time
Octal (Major || Octal (Major
Code Name Cycles) || Code Name Cycles)
00 Pass 1 42 Subtract ({d)) 3
43 Logical difference ({d)) 3
01 Long jump to m <+ (d) 2-3
02 Return jump to m - (d) 3-4 44 Store ({d)) 3
03 Unconditional jump d 1 45 Replace add ((d}) 4
04 Zero jump d 1 46 Replace add one ((d)) 4
05 Nonzero jump d 1 47 Replace subtract one ((d)) 4
06 Plus jump d 1
07 Minus jump d 1 50 Load {m 4 (d)) 3-4
10 Shift d 1 51 Add {m 4 (d)) 3-4
11 Logical difference d 1 52 Subtract {m -+ (d)) 3-4
12 Logical product d 1 53 Logical difference (m -+ (d)) 3-4
13 Selective clear d 1 54 Store (m + (d)) 3-4
14 Load d 1 55 Replace add (m <+ (d)) 4-5
15 Load complement d 1 56 Replace add one (m 4+ (d)) 4-5
16 Add d 1 57 Replace subtract one (m -+ (d)) 4-5
17 Subtract d 1
60 Central read from (A) to d min. 6
20 Load dm 2 61 Central read (d) words 5 plus
21 Add dm 2 from (A) to m 5/word
22 Logical product dm 2 62 Central write to {A) from d min. 6
23 Logical difference dm 2 63 Central write {d) words 5 plus
24 Pass 1 to (A) from m 5/word
25 Pass 1 64 Jump to m if channel d active 2
26 Exchange jump min. 20 65 Jump to m if channel d inactive 2
27 Read program address 1 66 Jump to m if channel d full 2
67 Jump to m if channel d empty 2
30 Load {(d) 2
31 Add (d) 2 70 input to A from channel d 2
32 Subtract {d) 2 71 Input (A) words to m 4 plus
33 Logical difference (d) 2 from channel d 1/word
34 Store (d) 2 72 Output from A on channel d 2
35 Replace add (d) 3 73 Output (A) words from m 4 plus
36 Replace add one (d) 3 on channel d 1/word
37 Replace subtract one (d} 3 74 Activate channel d 2
75 Disconnect channel d 2
40 Load ({d)) 3 76 Function {A) on channel d 2
41 Add ((d)) 3 77 Function m on channel d 2

76

MEMORANDUM

Definitions for Central Processor Instructions

one of eight address registers (18 bits)

one of eight index registers (18 bits)
BO is fixed and equal to zero

instruction code (6 bits)

specifies which of eight designated registers (3 bits)
specifies which of eight designated registers (3 bits)
constant, indicating number of shifts to be taken (6 bits)
specifies which of eight designated registers (3 bits)
constant, indicating branch destination or operand (18 bits)

one of eight operand registers (60 bits)

80

i

ﬁ

Central Processor Instructions

BRANCH UNIT Page LONG ADD UNIT Page
oo | sTop 28 36 INTEGER SUM of X and Xk to Xi 3
01 | RETURN JUMP to K 28 37 INTEGER DIFFERENGE of Xj and Xk to Xi 32
02 | G0 TOK - Bi {Note 1) 28
030 GO TOKif Xj = zero 28
031 GO TO K if Xj = zern 28 MULTIPLY UNIT*
032 GO 70 K if Xj = npositive 28
033| GO TO K if Xj = negative Note 28 40 FLOATING PRODUCT of Xj and Xk to Xi 32
034| GO TO K if Xj is in range 2 28 41 ROUND FLOATING PRODUCT of Xj and Xk to Xi 32
035] G0 TO K if Xj is out of range 28 42 FLOATING DP PRODUCT of Xj and Xk to Xi 32
036 GO TO K if Xj is definite 28
037| GO TO K if Xj is indefinite 28
04 | GO TOKifBi = B 28 DWVIDE UNIT
05 | GO TOKif Bi = Bj Note 28
06 | 60 TO K if Bi = Bj 1 28 44 FLOATING DIVIDE Xj by Xk to Xi 32
07 | GO TOKif Bi < Bj 28 45 ROUND FLOATING DIVIDE X by Xk to Xi 32
46 PASS 32
Note 1. GO TG K - Bi and GO TO K if Bi- - - tests 47 SUM of 1's in Xk to Xi 32
made in increment unit
Note 2. GO TO K if Xj---tests made in long add
umit INCREMENT UNIT*
50 SUM of Aj and K to Ai 32
BOOLEAN UNIT 51 SUM of Bj and K to Ai 32
52 SUM of Xj and K to Ai 32
10 TRANSMIT Xj ta Xi 28 53 SUM of Xj and Bk to Ai 32
1 LOGICAL PRODUCT of Xj and Xk to Xi 28 54 SUM of Aj and Bk to Ai 32
12 LOGICAL SUM of Xj and Xk to Xi 28 55 DIFFERENCE of Aj and Bk to Ai 32
13 LOGICAL DIFFERENCE of Xj and Xk to Xi 28 56 SUM of Bj and Bk to Ai 32
14 | TRANSMIT Xk COMP. to Xi 28 57 DIFFERENCE of Bj and Bk to Ai 32
15 | LOGICAL PRODUCT of Xj and Xk COMP. to Xi 28
16 LOGICAL SUM of Xj and Xk COMP. to Xi 29 60 SUM of Aj and K to Bi 33
17 LOGICAL DIFFERENCE of Xj and Xk COMP. to Xi 29 61 SUM of Bj and K to Bi 33
62 SUM of Xj and K to Bi 33
SHIET UNIT 63 | SUM of Xj and Bk to Bi 33
84 SUM of Aj and Bk to Bi 33
20 | SHIFT Xi LEFT jk places 29 65 DIFFERENCE of Aj and Bk to Bi 33
21 | SHIFT Xi RIGHT jk places 29 66 | 'SUM of Bj and Bk to Bi 33
22 | SHIFT Xk NOMINALLY LEFT Bj places to Xi 29 67 DIFFERENCE of Bj and Bk to Bi 33
23 | SHIFT Xk NOMINALLY RIGHT Bj places to Xi 29
24 | NORMALIZE Xk in Xi and Bj 29 70 SUM of Aj and K to Xi 33
25 | ROUND AND NORMALIZE Xk in Xi and Bj 29 1Al SUM of Bj and K to Xi 33
26 | UNPACK Xk to Xi and Bj 29 72 SUM of Xj and K to Xi 33
27 | PACK Xi from Xk and Bj 30 73 SUM of Xj and Bk to Xi 33
43 | FORM fk MASK in Xi 32 74 | SUM of Aj and Bk to Xi 33
75 DIFFERENCE of Aj and Bk to Xi gg
76 SUM of Bj and Bk to Xi
ADD UNIT 77 DIFFERENCE of Bj and Bk to Xi a3
30 | FLDATING SUM of Xj and Xk to Xi 30
31 FLOATING DIFFERENCE of Xj and Xk to Xi 30 *Duplexed units—instruction goes to free unit
32 | FLOATING DP SUM of Xj and Xk to Xi 30
33 | FLDATING DP DIFFERENCE of Xj and Xk to Xi 30 Octal Code at left of instructian
34 | ROUND FLOATING SUM of Xj and Xk to Xi 31 Comp.—Complement
35 | ROUND FLOATING DIFFERENCE of Xj and Xk to Xi 31

DP —Double Precision

CONTROL DATA SALES OFFICES

INTERNATIONAL OFFICES

C 6600

Pub. No. 60045000 (Rev. 6-64)

ALAMOGORDO « ALBUQUERQUE « ATLANTA « BOSTON «» CAPE CANAVERAL
CHICAGO « CINCINNATI « CLEVELAND » COLORADO SPRINGS « DALLAS « DAYTON
DENVER « DETROIT « DOWNEY, CALIF. » HONOLULU « HOUSTON « HUNTSVILLE
ITHACA « KANSAS CITY, KAN. « LOS ANGELES « MINNEAPOLIS » NEWARK

NEW ORLEANS «: NEW YORK CITY « OAKLAND - OMAHA « PALO ALTO
PHILADELPHIA » PHOENIX « PITTSBURGH « SACRAMENTO « SALT LAKE CITY

SAN BERNARDINO « SAN DIEGO « SEATTLE « WASHINGTON, D.C.

FRANKFURT, GERMANY « HAMBURG, GERMANY « STUTTGART, GERMANY

GENEVA, SWITZERLAND « ZURICH, SWITZERLAND - CANBERRA, AUSTRALIA
MELBOURNE, AUSTRALIA « SYDNEY, AUSTRALIA » ATHENS, GREECE

LONDON; ENGLAND » OSLO, NORWAY « PARIS, FRANCE - STOCKHOLM, SWEDEN
MEXICO CITY, MEXICO, (REGAL ELECTRONICA DE WMEXICO, S.A.)

OTTAWA, CANADA, (COMPUTING DEVICES OF CANADA, LIMITED) » TOKYO, JAPAN,

(C. ITOH ELECTRONIC COMPUTING SERVICE CO., LTD.)

'CONTROL DATA
8100 34th AVENUE SOUTH, MINNEAPOLIS, MINNESOTA 55440

Litho in U.S.A.

