-

S vamﬁw. it

o % o

w_ww - o
L ‘

Processor

CENTra

Dy
4%@@

ing System/ Reference Manual

i L
. m«i G
S

(e

£
()
4=
n
>
\n
@
gl
-
Q
£
O
(&)
o
o
O
e/
®

<
-~
<
o
wd
o
o
-
2
O
&

Assembly System

-
e

.

o

i

o

Programm

Peripheral and Control Processor

Instruction Execution Times

Time Time
Mnemonic & (Major Mnemonic & (Major
Octal Code Name Cycles) Octal Code Name Cycles)
PSN 00 Pass 1 SBI 42 Subftract ((d)) 3
LM 01 Long jump tom -+ (d) 2-3 LMI 43 Logical difference ((d)) 3
RIM 02 Return jump tom + (d) 34 STI 44 Store ((d)) 3
UIN 03 Unconditional jump d 1 RAI 45 Replace add ((d)) 4
ZIN 04 Zero jump d 1 AOI 46 Replace add one ((d)) 4
NJN 05 Nonzero jump d 1 SOl 47 Replace subtract one ((d)) 4
PIN 06 Plus jump d 1
MIN- 07 Minus jump d ! DM 50 Load (m + (d)) 34
ADM 51 Add (m + (d)) 34
SHN 10 Shiftd 1 SBM 52 Subtract(m -+ (d)) 34
LMN 11 Logical difference d 1 IMM 53 Logical difference (m + (d)) 34
LPN 12 Logical product d 1 STM 54 Store (m + (d)) 3.4
SCN 13 Selective clear d 1 RAM 55 Replace add (m + (d)) 45
DN 14 loadd 1 AOM 56 Replace add one (m + (d)) 4.5
LCN 15 Load complement d ! SOM 57 Replace subtract one (m -+ (d)) 45
ADN 16 Addd 1
SBN 17 Subtract d 1
CRD 60 Central read from (A) to d min. 6
Loc 20 Load dm 2 CRM 61 Central read (d) words 5 plus
ADC 21 Add dm 2 from (A) to m 5/word
LPC 22 Logical product dm 2 CWD 62 Central write to (A) from d min. 6
MC 23 Logical difference dm 2 CWM 63 Central write (d) words 5 plus
PSN 24 Pass 1 to (A) fromm 5/w0rd
PSN 25 Pass 1 AIM 64 Jump to m if channel d active 2
EXN 26 Exchange jump min. 20 1M 65 Jump to m if channel d inactive 2
RPN 27 Read program address 1 FIM 66 Jump to m if channel d full 2
EIM 67 Jump to m if channel d empty 2
IbD 30 Load (d) 2
ADD - 31 Add (d) 2 IAN 70 Input to A from channel d 2
SBD 32 Subtract (d) 2 M 71 Input (A) words to m 4 plus
LMD 33 Logical difference (d) 2 from channel d 1/word
ST 34 Store (d) 2 OAN 72 Output from A on channel d 2
RAD 35 Replace add (d) 3 0AM 73 Output (A) words from m 4 plus
ACD 36 Replace add one (d) 3 on channel d 1/word
SOD 37 Replace subtract one (d) 3 ACN 74 Activate channel d 2
DCN 75 Disconnect channel d 2
LDI 40 Load ((d)) 3 FAN 76 Function (A) on channel d 2
ADI 41 Add ((d)) 3 FNC 77 Function m on channel d 2

PREFACE

The CONTROL DATA 6600 Programming System
is comprised of three major sections, FORTRAN,
ASCENT, and ASPER language processing pro-
grams. Each step of an object program is capable
of switching control between the FORTRAN and
ASCENT programs and from either of them to the
ASPER program. To preserve processing efficiency,
each subsystem has a direct, although not exclusive,
path for its own type of instructions. Only when a
switch between languages occurs do parts other
than the direct path act.

This manual is devoted to a description of the direct
path for the 6600 Central Processor assembly lan-
guage programs, ASCENT. Part 1 gives a general
orientation to the 6600 hardware and system con-
cepts as related to ASCENT programming. Part 2
defines specific entities of the language. Part 3 and
4 give the instruction forms; Part 5, the pseudo oper-
ations; Parts 6 and 7, the system macros; and Part 8,
the assembler diagnostics. Part 9 describes how
subroutines are used, while Parts 10 and 11 explain
Program Segmentation and Organization, respec-
tively.

i.

10.
11.

TABLE OF CONTENTS

ASCENT SYSTEMS CONCEPTS
1.1 System Configuration
1.2 Operating System Conceptso,

LANGUAGE DEFINITIONS

9.1 Charactersc.iiiiiie i
2.2 Symbols
2.3 Constants e
24 OPEratorsvuuri e
25 Literals e
2.6 Separatorsiiiiii
27 Operands
28 Fields e

LANGUAGE SPECIFICATIONS
31 Formats oo
3.2 Fields ... e
3.3 Spedial Usageoooit it

CENTRAL PROCESSOR INSTRUCTIONS

4.1 Instruction Format
4.3 Operating Registers i
4.4 Description of Operation Codesccoiiinnn..

PSEUDO OPERATION CODESo,

SYSTEM MACROS

6.1 General Information i
6.2 Macro Formats ...
6.3 Programmer Defided Macrosc.cccoieiin.s

MACRO INSTRUCTIONS
7.1 Descriptionuuuniiii i e
7.2 Examplest e

DIAGNOSTICS AND ASSEMBLER OUTPUT
8.1 ASCENT Error Printouts,

8.2 Sample Program Printout
8.3 Summary Page Diagnosticsol

SUBROUTINES
9.1 System Library Subroutines
9.2 Programmer-Defined Subroutines

PROGRAM SEGMENTATION

PROGRAM ORGANIZATION
11.1 Program Setupcooniiiiiiiii i

ifi

iv

FIGURES

Page
1. CONTROL DATA 6600uuiiittii it vii
2. Block Diagram of 6600o e viii
3. BinaryCardInput i 79
4. Coded Card Input ..ottt e 7-10
5. 6600 Programming System it 10-4

APPENDIX

Table 1 Central Processor Operation Codes A-2
Table 2 Pseudo OperationCodes i iiinno... A-4
Table 3 System Macrosc.uoeeentoneanini i, A-5
Table 4 6600 Computer Character Codes A6
Table 5 Library Subroutineso i i, A-8
Table 6 Composite Programc.ooiuriii i, A-10

@

6600 COMPUTING SYSTEM

Main frame (center/— contains 10 peripheral and control processors, central processor, central
memory, some I/0 synchronizers.

Display console (foreground)—includes a keyboard for manual input and operator control, and two
10-inch display tubes for display of problem status and operator directives.

CONTROL DATA 607 tapes (left front)— Y inch magnetic tape units for supplementary storage;
binary or BCD data handled at 200, 556, or 800 bpi.

CONTROL DATA 626 tapes fleft rear)—1-inch magnetic tape units for supplementary storage;
binary data handled at 800 bpi.

Disc file (right rear)— Supplementary mass storage device holds 500 million bits of information.
CONTROL DATA 405 card reader (right front) —reads binary or BCD cards at 1200 card per minute rate.

)

SYSTEM ORGANIZATION

The CONTROL DATA® 6600 is a large-scale, solid-
state, general-purpose digital ' computing system.
The advanced design techniques incorporated in
the system provide for extremely fast solutions to
data processing, scientific and control center prob-
lems.

Within the 6600 are eleven independent computers

(Fig. 1). Ten of these are constructed with the pe-
ripheral and operating system in mind. These ten
have separate memory and can execute programs
independently of each other or the central processor.
The eleventh computer, the central processor, is a
very high-speed arithmetic device. The common
element between these computers is the large
central memory.

4096- WORD
CORE MEMORY

PERIPHERAL
_ 8 CONTROL
4096 WORD PROCESSOR

CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR

PROCESSOR

6600 CENTRAL MEMORY

4096 WORD
CORE MEMORY

PERIPHERAL
8 CONTROL ,
PROCESSOR ‘4096 WORD
CORE MEMORY

PERIPHERAL
8 CONTROL

PROCESSOR

6600 CENTRAL MEMORY

409e woro 3 'c::Ess Mgh(d)gRDY
CORE MEMORY 6600 ME

PERIPHERAL CENTRAL PERIPHERAL
& CONTROL PROCESSOR 8 CONTROL

6600 CENTRAL MEMORY

4096 WORD
CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR 4096 WORD

CORE - MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

PROCESSOR

AHOW3N TYHLIN3D 0099

4096 WORD.
CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR

Figure 1 CONTROL DATA 6600

vii

PERIPHERAL 8 CONTROL PROCESSORS

ADD
MULTIPLY
MULTIPLY

- UPPER
- BOUNDARY
- DIVIDE
-
e 54 LONG ADD
> OPERATING
) REGISTERS
P CENTRAL SHIF T
- MEMORY
™ | BOOLEAN |

\LOWER BOOLEAN
- BOUNDARY

12 INCREMENT
INPUT
OUTPUT INCREMENT
CHANNELS

BRANCH

CENTRAL PROCESSOR

CENTRAL MEMORY
— 131,072 words
— 60-bit words

— Memory organized in 32 logically independent
banks of 4096 words with corresponding multi-
phasing of banks

— Random access, coincident-current, magnetic core
— One major cycle for read-write

— Maximum memory reference rate to all banks —
one address/minor cycle

— Maximum rate of data flow to/from memory —
one word/minor cycle

DISPLAY CONSOLE
— Two display tubes

— Modes
Character
Dot

— Character size
Large — 16 characters/line
Medium — 32 characters/line
Small — 64 characters/line

— Characters
26 alphabetic
10 numeric
11 special

Figure 2 BLOCK DIAGRAM OF 6600

1. ASCENT SYSTEMS CONCEPTS

1.1 SYSTEM CONFIGURATION

The basic 6600 computing system is comprised of a
central processor with 131,072 words (60-bits each)
of magnetic core memory, ten peripheral proces-
sors with 4096 12-bit words of magnetic core mem-
ory each and joint control of 12 input/output data
channels with a minimum of:

One disk unit with § million 60-bit words
One display console

One 1200 card /minute reader

One 1000 line/minute printer

One 250 card /minute punch

Bank of two 607 or 626 magnetic tape units

The central processor and its operation are under
the direction of the peripheral processors. At any
given moment, a peripheral processor has access to
all, or only one subset, of central memory at the
discretion of the directing peripheral processor. To
the central processor the relevant subset is always
addressed as locations 0 to n, where n is its size
regardless of the location of the subset within
the total capacity of central memory. The primary
function of the central processor is to handle the
computational load, while central memory stores
operational and system programs together with the
data they require.

The peripheral processors as a class have autonomy
over the input/output channels and have the capa-
bility of directly addressing a word in central mem-
ory. It is a function of these processors to transfer
into central memory, from peripheral input equip-
ment, the programs to be executed by the central
processor, as well as all input data required at
execute time. Similarly, they must transfer output
data, generated by the central programs, from cen-
tral memory and place it on the proper peripheral
equipment.

1.2 OPERATING SYSTEM CONCEPTS

The timely and orderly exchange of programs and
data between central memory and peripheral equip-
ments is the function of the standard operating
system, SIPROS. Complete writeups on SIPROS are
contained in the manual by that name. However,
certain items of particular importance to ASCENT
programmers are given here.

1.2.1 GENERAL

While computational programs are operating in cen-
tral memory, parts of SIPROS reside in different
portions of the 6600 system. The PP controlling the
system performs all the executive and monitoring
functions. This Executive program is responsible
for the control and management of all other parts
of the system, including allocation of central mem-
ory, tasks assigned to the other PP’s, and allocation
of and communication with peripheral equipment.
In addition, it monitors the status of the current
job and checks regularly for changes in status.

An important feature of the system is the use of the
disk. To optimize such use, a Disk Executive rou-
tine, upon receiving assignments from the Executive
program, processes all requests involving reading
or writing the disk. Two disk “slave” PP’s, under the
control of the disk executive, cooperate alternately
in reading (or writing) information into central
memory and in writing (or reading) data from con-
secutive sectors of the disk. This two-processor
approach to disk reading and writing maximizes the
disk transfer rate.

Residing in the same PP as the Disk Executive is the
Console Display program. It is through the use of
the console that man-machine communications are
maintained. It supplies the operator with informa-
tion such as the status of jobs in central memory and
when tapes require mounting or dismounting. It
also allows the operator to communicate with the
system such information as changes in priorities or
a request for a display of the jobs in central memory.
The remaining peripheral processors (Pool PP’s) are
assigned a variety of tasks. These include such oper-
ations as:

Job Loader
Card Reader
Printer
Punch

Tape

Job Termination

1.2.2 COMMUNICATIONS CONVENTIONS

To accomplish the various tasks mentioned in the
preceding section, the monitor function of the

11

Executive program watches the central processor
programs for status changes and for I/O requests.
The links between the executing program and the
operating system are defined and implemented
through the conventions of System Macro* opera-
tions.

A system macro produces a calling sequence to a
communication subroutine stored in a standard
resident section of all central processor programs.
Parameters of the macro supply the subroutine with
values and their addresses which designate the oper-
ation to be performed. The subroutine places a
sequence of values obtained directly and indirectly
from the parameters into designated core communi-
cation words. One of the values is a flag to the moni-
tor function of the Executive program and another
is the operation code which defines the request.

A ready or not ready status exists after the execu-
tion of the system macro, which may be checked
by the object program. It is possible, with consecu-
tive system macros, to have a second request ready
before the first one has been initiated by the Execu-
tive program. If this occurs, the communication sub-
routine holds the request until the communication
words become ready, thereby preventing any re-
quests from being unfulfilled.

If a not ready status exists, the communication sub-
routine will select one of the following conditions
depending upon the request mode:

(1) If the request includes an indication that
no processing may take place until the re-
quested operation is completed, the system is
notified and control is transferred to another
central processor program during the wait
period.

(2) If control is returned to the object program
prior to the completion of the requested opera-
tion, or if no other program is ready for the
central processor, the communication subrou-
tine waits, within itself, for the request to be
completed. If another program achieves ready
status, the second program has precedence and
the first program waits for a control transfer.

If the buffering mode (2) is indicated, the request
is initiated and control is returned to the object
program. The program must then interrogate for
the completion of the requested operation, checking
the status word which the program has listed as a
parameter of the macro.

* The term macro is used only because the specification format is consistent with true macro forms (as defined later) rather
than the way it is implemented for system communication. Object code, in this case, is subroutine form.

2. LANGUAGE DEFINITIONS

2.1 CHARACTERS

ASCENT uses the following character set:

The alphabet — letters A through Z

The arabic numerals — numbers 0 through 9

The special characters— + -/ * = ()., $ space

2.2 SYMBOLS

A symbol is any arrangement of letters and num-
bers which starts with a letter and contains no more
than 8 total characters.

Examples:

T, PROG, ZIZ, ABCD1234

Exceptions:

1. Character arrangements A0Q, Al, ... A7, BO, BI,
... B7, and X0, X1, ... X7 are excluded.

2. The special character * has momentary prop-
erties of a symbol under certain usage as defined
under 3.3.2.

Register Definitions:

A0, AL, ... AT are used for address registers
(18 bits)

BO, BI, ... B7 are used for index registers (18
bits)

X0, X1, ... X7 are for arithmetic and operand
registers (60 bits)

2.3 CONSTANTS

Constants may be any of the following forms.

2.3.1 INTEGER
An integer is any arrangement of 18 or less decimal
digits from — (2% — 1) to (2°° — 1).
Examples:
3, 8125, 1234567891011121

2.3.2 OCTAL
An octal constant is any arrangement of 20 or less
octal digits 0 through 7 appended with the letter B.
Examples:

47B, 770077B, 52525252525252525252B

2.3.3 sYMBOLIC

A symbolic constant meets the specifications for a
symbol but is equated to a constant or to the differ-
ence of two symbols.

Examples: TAM EQU 3677B — 150B

GAT EQU 64+99

MAG EQU 20

SAG EQU TAG — SAM

if TAG and SAM are assigned memory loca-
tions 1205 and 100, respectively, then SAG is
equated to 20,.

2.3.4 SINGLE PRECISION FLOATING POINT

A single precision floating point constant is ex-
pressed by one of two forms:

1. An arrangement of 15 or less decimal digits and
a single decimal point.
Examples:
1., .1, 0.1, 1.0, 5248.6153
2. An arrangement of 15 or less decimal digits with

or without a single decimal point, followed by a
power of 10 representation as follows:

E = nor En

where: E specifies that an exponent follows

n is any arrangement of 3 or less decimal
digits and is the power of 10 to be
applied to the constant

-+ is the sign of n. It may be omitted
in the case of +.
Examples:
1E+5, 1.0E 250, .1E — 30, 5248.6153E7, 14E51

2.3.5 DOUBLE PRECISION FLOATING POINT

A double precision floating point constant is ex-
pressed by one of two forms:

1. An arrangement of 29 or less decimal digits with
or without a decimal point followed by the letter
D.

Examples:
1.D, .1D, 0.1D, 5248.6153D, 10D

2-1

S

An arrangement of 29 or less decimal digits with
or without a decimal point followed by a power
of 10 representation as follows:

D=+ n or Dn
where: D is a required letter

n is any arrangement of 3 or less deci-
mal digits and is the power of 10 to be
applied to the constant

=+ is the sign of n. It may be omitted in
the case of +.

Examples:

1D+5, 1.0D+200, .1D~77, 5248.6153D7,
14D51

2.3.6 COMPLEX

A complex constant is any pair of single precision
floating point constants separated by a comma and
enclosed in parentheses.

Examgples:

(1.0,—2.2), (1E+5, .001E —15)

2.4 OPERATORS

In certain cases, operators join an abbreviated
mnemonic code in defining the numerical operation
code of an instruction. Operators used are the spe-
cial characters:

-+ addition

— subtraction
* multiplication
/ division

The + and — are also used in address manipula-
tion specifications.

Examples:

SYMBOL + 2, SYMBOL — 1

2.5 LITERALS

Literals are used for addressing a core location
whose contents are specified by the value within
parentheses. Literals may be any of the following
forms:

2.9

(Constant)

(Symbol)

(Symbol =+ I)

(Symbol — Symbol)
where: I is an integer, octal or symbolic constant.
When a two-word form such as

(Floating Double Precision Constant)

(Complex Constant)
is defined, the first word only is addressed.
Examples:

(3.2), (SAM), (SAM + 5), ((700., 5.1E31)),
(3.4D70)

2.6 SEPARATORS

Separators are used to indicate the end of distinct
entities of an instruction; the six characters used
are:

$, + space . =

Other characters assume the role of separators de-
pending upon usage. The four characters are:

+ =

2.7 OPERANDS

Operands are combinations of symbols, literals, the
operators + and —, and certain types of constants.

The acceptable forms are:
Symbol
Symbol =+ I
Symbol — Symbol
+ I
Literal
Literal + 1
where: I is an integer, octal or symbolic constant

Examples:

SAM, SAM + 3, SAM — 15, SAMI — SAM2,
14, (1.25)

2.8 FIELDS

An instruction is a combination of the following

fields.

)

@

LOCATION:

OPCODE.:
ADDRESS:

Provides a symbol for referencing REMARKS:

by other instructions.
Defines the instruction.

Supplies the instruction with appro-
priate operands.

Programmer notes only. This field
has no effect on the assembly proc-
ess and must begin with a period in
or after column 11.

2-3

’) !

3. LANGUAGE SPECIFICATIONS

3.1 FORMATS
ASCENT has one basic instruction format:

LOCATION OPCODE ADDRESS REMARKS

Examples of various central processor instructions are given below:

BX3 —X4+XI1
EQ B5 B2 AB
SA7 B2+DATA

SA7T DATA
NZ X1 ABC
R] SUB

STARTL |RDC 1,8T,(BA),(BA+8),8,2
SBI 1 § SA2 DATA+1
START2 [LX1 6

JP B2+BETA

LOCATION INSTRUCTION REMARKS
BX6 Xl X1 TO X6
START |[BX4 —X3 —X3 TO X4
FX7 X6*X4 FLOATING X6*X4 to X7

$ MX2 48 $ JP
SB6 —8$ SA5 B6+DATA $ SBY

X1+ COMP.X4 TO X3

JF B5=B2, GO TO AB

.STORE X7 TO DATA +B2
.STORE X7 to BO+DATA

IF X1 NOT ZERO, GO TO ABC
RETURN JUMP TO SUB

LIST

.PACKED CARD

MAXIMUM 6 PER CARD
.BEGIN REMARKS WITH PERIOD
.JUMP TO B2+BETA

AB+2
B5—B6

The Location field is a fixed length field and occupies
columns 2-9.

The Opcode field is variable length and starts in or
after column 11 and must be terminated by at least
one separator, '

The Address field is variable length and has any of
the following formats:

REGISTER

—REGISTER

REGISTER OPERATOR REGISTER
—REGISTER OPERATOR REGISTER
REGISTER REGISTER OPERAND
REGISTER OPERATOR OPERAND
REGISTER OPERAND

OPERAND

LIST

(LIST is a sequence of registers and operands as
specified for the operation code. Adjacent operands

must be separated by a comma. The LIST form in
an address field is used in certain pseudo and macro
codes.)

The Remarks field* is either blank or starts with
the special character, period, in any column 11-72.

ASCENT considers only card columns 2 through 72.
Column 1 is reserved for the exclusive use of the
Programming System Control Package. Column 10
is blank and serves as a separator between the
Location field and the Opcode field. ASCENT
ignores column 10.

RULES and EXTENSIONS:

Up to six instructions may be placed on one input
card. The special character $ is used to denote the
beginning of a new instruction. The following rules
apply:

1. Only one location field may be used on a card
regardless of the number of instructions it con-
tains. When one is used, it applies to the first
instruction on the card.

* Certain instructions exclude the Remarks field. The exclusion is noted with the definitions of each relevant instruction in

Table 2.

3-1

9. The $ acts as the recurrence of column 10 on the
card. The next expected item is an opcode.

3. All instructions on the card must be completed
prior to column 73.

3.2 FIELDS

3.2.1 LOCATION FIELD

The Location field may be blank or contain a plus,
minus, or symbol starting in any column 2-5 and
ending before colomn 10.

A symbol or plus causes the assembler to assign the
first instruction on the card to the leftmost position
in a 60-bit word. Any partially filled object code
word is filled with no operation instructions, and the
new instruction is forced into the leftmost position
of a new object code word. A minus, normally used
to override assembly forcing assumptions, causes
the first instruction on the card to be placed in the
next available position in the current object code
word if space is available.

Rules:

1. Any given symbol may appear in the location
field only once within a program or subroutine.

2. Symbols defined as formal parameters of a sub-
routine may not appear in the location field with-
in the subroutine. (See Section 9.2.)

3. Symbols defined in COMMON or DIMENSION
statements may not be used in the location field.
(See Section 9.2.)

4. Plus and minus signs may be used repeatedly in
the location field. However, an instruction may
not be referenced by using either of the special
characters.

5. Register names may not appear in the location

field.

6. The special character * may not appear in the
location field.

3.2.2 OPCODE FIELD

The Opcode field may contain any of the following
items.

1. The 6600 central processor mnemonic codes as
given in Table 1.

2. ASCENT pseudo codes as given in Table 2.

3-2

3. System macro codes as given in Table 3.
4, Name of any programmer-defined macro.

5. An integer or octal constant = 2** —1.

Mnemonic codes are evaluated to determine either
the octal equivalent of the code or its class. Pseudo
operations are interpreted and used in assembler
control. Macro instructions produce predefined
sequences of object code with parametric values
changed to actual values and, for system macros,
with the generated calling sequence used by the
communication subroutine. The numerical opcode
is converted if necessary and placed in the upper
12-bit position (Opcode, i, j) of a 30-bit instruction
format.

A separator terminates the field.

3.2.3 ADDRESS FIELD

The content of the address field varies with the

instruction. Therefore, several types of instructions

are important in its specification.

1. No address required.

PS
NO

2. Numeric
LXi ik
AXi ik
MXi ik

The address field may contain blank, or an
integer or octal constant < 63;,.

3. Registers and Operators

CXi Xk FXi Xj+ Xk
BXi Xj FXi Xj—Xk
BXi —Xk DXi Xj+ Xk
BXi Xj* Xk DXi Xj—Xk
BXi Xj+ Xk RXi Xj+ Xk
BXi Xj— Xk RXi Xj—Xk
BXi —Xk*Xi FXi Xj*Xk
BXi —Xk + Xj DXi Xj*Xk
BXi —Xk —Xj RXi Xj* Xk
IXi Xj+ Xk FXi Xj/Xk
IXi Xj— Xk RXi Xj/Xk

The address field is used not only to specify the SAi Aj + operand
ﬁ registers but also to define the exact operation SAi

Bj = d
code within the class defined by the opcode. } == operan

Except for instructions containing minus signs or SAi Xj = operand
slash signs, the registers may be ordered arbi- SBi .

trarily. However, when a minus or slash sign is Bi Aj == operand

used, the order given above must be maintained. SBi Bj == operand

4. Registers only SBi Xj i operand

NXi Bj Xk SXi Aj == operand

ZXi Bj Xk S§Xi Bj == operand

UXi Bj Xk SXi Xj == operand

PXi Bj Xk The registers and operands may be written in
g P

LXi Bj Xk , either order when the separating sign is plus.

However, when the sign is minus, the register

AXi Bj Xk must be first. A BO may be omitted.
The register designation in the address field may 8. 18-bit arithmetic for sum of two registers
be in any order. If the Bj term is equal to BO, it SAi Xj+ Bk SBi Xj+Bk SXi Xj+ Bk

may be omitted.
SAi Aj+ Bk SBi Aj+ Bk SXi Aj+ Bk

5. Opcode complete, order independent SAi Bj+Bk SBi Bj+Bk SXi Bj+ Bk
Constant K ZR Xj K The registers may be written in any order. A B0
R] K N7 Xj X may be omitted.

“@f@ P Bi+ K PL Xj K 9. 18-bit arithmetic for difference of two registers
7R Bi K NG Xj K SAi Aj —Bk SBi Aj— Bk SXi Aj-— Bk
SAi Bj— Bk SBi Bj— Bk SXi Bj— Bk
NZ Bi K IR X X) b P
PL Bi K OR Xj K The register order must be maintained.
NG Bi K DF Xj K 3.3 SPECIAL USAGE
D Xi K 3.3.1 ASCENT FORCING CONVENTION
ASCENT forces the next instruction (NI) to the
The register designation and the operand may upper portion of the 60-bit word following a PS,
be in any order. A B0 in the jump instruction JP, or R] instruction. A minus sign in the location
may be omitted. field of these instructions will override this feature
of ASCENT.

6. Opcode complete, order dependent 3.3.2 ASTERISK

EQ Bi Bj K The special character *, when used as an operand

or part of an operand, assumes the value of the

NE Bi Bj K current object code address. The legal forms are:

GE Bi Bj X #

LT Bi Bj K * + Constant

‘ Examples:

"I'he registers and. the operand should be wntte'n SA; " . Load current object code

in the order designated. If only one B term is word

specified, the Bj is asumed to be BO.

JP * 4+ 3 . Jump forward 3 60-bit

& 7. 18-bit arithmetic with registers and operand words

3-3

o

4. CENTRAL PROCESSOR INSTRUCTIONS

4.1 INSTRUCTION FORMAT

An instruction may have a 15-bit or a 30-bit format.
Either format uses a 6-bit operation code. The result
register requires 3 bits and the number of bits used
for the operand varies with the instruction.

f m i j k
|3]3|3[3|3]1531Ts
4 0

1

OPERATION
CODE

RESULT
REG.
(1 of 8)

A 4
1st OPERAND
REG.

(1 of 8)

N
2nd" OPERAND
REG.
(1 of 8)

f m i j K
IENENERE 18
295_1

] 30 B1TS
0

OPERATION
CODE

RESULT
REG.
(1 of 8)

2nd OPERAND

A 4

1st OPERAND
REG.
(1 of 8)

4.2 DEFINITIONS FOR CENTRAL
PROCESSOR INSTRUCTIONS

fm Operation code (6 bits)

i Specifies which of eight designated reg-
isters is the result register (3 bits)

i Specifies which of eight designated reg-
isters is the first operand register (3 bits)

k Specifies which of eight designated reg-
isters is the second operand register (3
bits)

jk Constant, indicating number of shifts to
be taken (6 bits)

K Constant, indicating branch destination
or second operand (18 bits)

A One of eight address registers (18 bits)

B One of eight index registers (18 bits)
B0 is permanently set equal to zero

X One of eight operand registers (60 bits)

4.3 OPERATING REGISTERS

There are 24 operating registers identified by letters
and numbers. These registers are labeled:

A Address register (A0,Al... A7)
B Increment register (B0,B1...B7)
X Operand register (X0,X1...X7)

4.3.1 A REGISTER

The execution of a SAi (i = 1-5) instruction pro-
duces an immediate memory reference to the ad-
dress contained in Ai and reads the contents at
that location into the corresponding operand register
Xi (i=1-5). When a SAi (i =6,7) instruction is
executed, the contents of the corresponding X regi-
ster is stored at the address specified by Ai. The
address register AQ is used for temporary storage;
i.e., the execution of a SAOQ instruction does not
affect a load of XO0.

SA3 = A4 + 10B

This example adds 10 to the address in A4 and sets
the A3 register to this sum. The X3 register is set

to the contents of the location specified by the
new A3.

SA6 = A2 — 15B

This example stores the contents of X6 into the
location obtained by subtracting 15; from the
address in A2.

4.3.2 B REGISTER

The increment register BO is set permanently to an
18-bit plus zero which may be used in testing for
zero or as an unconditional jump modifier. B1-B7
are used as modifiers and for program indexing. For
example, B4 may be used to control the number of
passes of a program loop, terminating when a given
condition is reached.

SB3 = B5 + B4

This example adds the values contained in the two
increment registers, B5 and B4, and places the result
in B3.

4-1

4.3.3 X REGISTER

Any of the registers X0-X7 may be used as a result
or operand register of an instruction. The registers
X1-X5 hold read operands from central memory,
while X6 and X7 hold results sent to central
memory. The operand registers may be used and
changed without causing a change in the corre-
sponding address register.

BX2 X2+ X4

This example performs the logical addition of X2
and X4 and places the resulant sum in X2.

SX6 A2 — B5

This example subtracts the contents of B5 from the
contents of A2 and stores the result in X6. This
operation produces no change in memory.

4.4 DESCRIPTION OF
OPERATION CODES

Following is a list of the instructions for the central
processor. They are ordered by octal code which in
turn separates the instructions by functional unit.

00 PS Program Stop

Stops the central processor at the current step
in the program. An exchange jump instruction is
necessary to restart the central processor.

01 R]J K Return Jump to K

Stores an unconditional jump (04) and the cur-
rent program address plus one in the upper 30
bits of K and then branches to K+1 for the next
instruction step. The contents of K after the in-
struction appear as follows:

Uncond.
Jump P+1
~r —H
K| 04 00 XXXXXX |000.... 0
59 , 30 29 0
Bi = Bj

A jump to K at the end of the branch routine
returns to the original programming sequence.

02 JP Bi + K Jump to Bi + K

Adds the contents of Bi to K and branches to
the address specified by the resultant sum. When
Bi = B0, the branch address is K. Addition is
performed modulus 2 — 1.

030 ZR Xj K Jump to KifXj =0

Branches to K if Xj is equal to zero. If the con-
dition is not met, the next consecutive instruction
step is executed. The test is made in the long
add unit.

031 NZ Xj K Jump to K if Xj =0

Branches to K if Xj is not equal to zero. If the
condition is not met, the next consecutive
instruction step is executed. The test is made in

the long add unit.

032 PL Xj K Jump to K if Xj is Plus

Branches to K if Xj is positive. If the condition
is not met, the next consecutive instruction step
is executed. The test is made in the long add
unit.

033 NG Xj K Jump to K if Xj is Negative

Branches to K if Xj is negative. If the condition
is not met, the next consecutive instruction step
is executed. The test is made in the long add
unit.

034 IR Xj K Jump to K if Xj is In Range

Branches to K if Xj is in range. The range test
is a comparison with infinity (377700...0s) and
is made in the long add unit.

035 OR Xj K Jump to K if X

is Out of Range

Branches to K if Xj is out of range. The range
test is a comparison with infinity (377700 . . . 0)
and is made in the long add unit.

036 DF Xj K Jump to K if Xj is Definite

Branches to K if Xj is definite. The test
is a comparison against an indefinite quantity

(177700 ...0s) and is made in the long add

unit.

037 ID Xj K Jumpto K if Xj is Indefinite

Branches to K if Xj is indefinite. The test is

a comparison against an indefinite quantity
(177700 . .. 0¢) and is made in the long add unit.

04 EQ Bi Bj K Jump to K if Bi = Bj

Compares Bi with Bj and branches to K if Bi
is equal to Bj. The test is made in the increment
unit.

04 ZR Bi K Jump to Kif Bi = B0

Compares Bi with B0 and branches to K if Bi
is zero. The test is made in the increment unit.
05 NE Bi Bj K Jump to XK if Bi=£ Bj

Compares Bi with Bj and branches to K if Bi
is not equal to Bj. The test is made in the
increment unit.

05 NZ Bi K

Compares Bi with BO and branches to K if Bi

is not zero. The test is made in the increment unit.

06 GE Bi Bj K Jump to K if Bi= Bj

Compares Bi with Bj and branches to K if Bi

is greater than or equal to Bj. The test is made in
the increment unit.

06 PL Bi K Jump to K if Bi==B0

Compares Bi with B0 and branches to K if the
result is positive. The test is made in the incre-
ment unit.

07 LT Bi Bj K

Compares Bi with Bj and branches to K if Bi
is less than Bj. The test is made in the increment
unit.

07 NG Bi K Jump to K if Bi < BO

Compares Bi with BO and branches to K if Bi
is negative. The test is made in the increment unit.

10 BXi Xj Transmit Xj to Xi
Transfers the 60-bit word in operand register

Xj to Xi.
11 BXi XjXk

Jump to K if Bi < Bj

Logical Product of
Xj and Xk to Xi

Forms the logical product (AND function) of
the 60-bit words in operand registers Xj and Xk
and places the result in Xi.

Xj = 0101
Xk = 1100
Xi = 0100

12 BXi Xj + Xk Logical Sum of

Xj and Xk to Xi
Forms the logical sum (inclusive OR) of the

60-bit words in operand registers Xj and Xk and
places the result in Xi.

Xj = 0101
Xk = 1100
Xi = 1101

13 BXi Xj - Xk Logical Difference of

Xj and Xk to X0

Forms the logical difference (exclusive OR) of
the 60-bit words in operand registers Xj and Xk
and places the result in Xi.

Xj = 0101
Xk = 1100
Xi = 1001

14 BXi —Xk Transmit Xk Complement

to Xi
Transmits the complement of the 60-bit word

in operand register Xk to Xi. The contents of
Xk are not changed.

15 BXi —Xk*Xj Logical Product of Xj
and Xk Complement

to Xi

Forms in Xi the logical product (AND func-
tion) of Xj and the complement of Xk. The con-
tents of Xk and Xj are not changed.

Step 1 Xj =010l Step 2 Xj = 0101
Xk = 1100 Xk = 0011

Xi = 0001

16 BXi —Xk + Xj Logical Sum of Xj and

Xk Complement to Xi

Complements the 60-bit word in Xk, then
forms the logical sum (inclusive OR) of this
quantity and Xj, and places the result in Xi. The
contents of Xk and Xj are not changed.

Stepl Xj =0101 Step2 Xj = 0101
Xk = 1100 Xk = 0011

0111
17 BXi —Xk — Xj Logical Difference of Xj and
Xk Complement to Xi
Complements the 60-bit word in Xk. Then
forms the logical difference (exclusive OR) of
this quantity and Xj, and places the result in Xi.
The contents of Xk and Xj are not changed.
4-3

Step 1 Xj = 0101 Step 2 Xj = 0101

Xk = 1100 Xk = 0011
Xi = 0110
20 LXi ik Shift Xi Left jk Places

Shifts the 60-bit word in Xi left circular jk
places. The shift moves the leftmost bits of Xi
through the lower bits of Xi.

The 2-digit shift count jk many be an octal or
decimal number and allows a complete circular
shift of Xi.

21 AXi jk Shift Xi Right jk Places

Shifts the 60-bit word in Xi right jk places. The
rightmost bits of Xi are discarded and the sign
bit is extended. The 2-digit shift count jk may be
an octal or decimal number.

22 LXi Bj Xk Left Shift Xk Nominally

Bj Places to Xi

Shifts the 60-bit word in Xk the number of
places specified by the low-order 6 bits of Bj and
places the result in Xi.

If Bj is positive, Xk is shifted left circular.

If Bj is negative, Xk is shifted right (end off
with sign extension).

When Bj is negative, the complement of the
low-order 6 bits of Bj constitutes the shift count.

23 AXi Bj Xk Arithmetic Right Shift Xk
Nominally Bj Places to Xi

Shifts the 60-bit word in Xk the number of
places specified by the low-order 6 bits of Bj and
places the result in Xi.

24

If Bj is positive, Xk is shifted right (end off

with sign extension).
If Bj is negative, Xk is shifted left circular.
When Bj is negative, the complement of the
low-order 6 bits of Bj constitutes the shift count.
NXi Bj Xk Normalize Xk in Xi and Bj
Normalizes the floating point quantity in Xk
and places it in Xi. The number of left shifts
required to normalize the quantity is placed in
Bj durihg the operation. Normalizing a zero coef-
ficient reduces the exponent by 48. If the size of
the exponent is less than the number of leading
zeros in the coefficient, underflow occurs during
normalizing and the exponent and coefficient are

both cleared.
ZXi Bj Xk Round and Normalize
Xk in Xi and Bj

Performs the same operation as NXi (24) ex-
cept that the quantity in Xk is rounded before
it is normalized. Normalizing a zero coeflicient
places the round bit in bit 47 and reduces the
exponent by 48.

UXi Bj Xk Unpack Xk to Xi and Bj

Unpacks the floating point quantity in Xk
and sends the 48-bit coefficient to Xi and the 11-
bit exponent to Bj. The exponent bias is removed
during unpack so that Bj is the true 1’s comple-
ment representation of the exponent. Xk may be
a unnormalized number.

The exponent and coefficient are sent to the
low-order bits of the respective registers as
shown in the following diagram.

Biased
Sign Exponent Coeflicient
Packed Quantity EI 11 l 48 —IXk
59 58 l 48 47 0
Exponent Unbiased
Sign Extended Exponent Coefficient
* i Sign Extended

Unpacked Bj / / j

17 10 9 o

4-4

/17

/| Xi
0

48 47

27 PXi Bj

30

31

Xk Pack Xi from Xk and Bj

Packs a floating point number in Xi. The
coefficient of the number is obtained from Xk
and the exponent from Bj. A bias of 2*° (2000s)
is added to the exponent during the pack opera-
tion. The coefficient is not normalized.

Exponent and coefficient are obtained from
the proper low-order bits of the respective
register and packed as shown in the diagram for
the unpack (26) instruction. Overflow is pro-
duced during pack when Bj is a positive number
of more than 10 bits; the overflow exit is
optional. Underflow is produced (no exit) when
Bj is a negative number of more than 10 bits.

FXi Xj + Xk Floating Sum of Xj and

Xk to Xi

Forms the sum of the floating point quantities
in Xj and Xk and packs the result in Xi. The
packed result is the upper half of a double
precision sum.

At the start both arguments are unpacked, and
the coeficient of the argument with the smaller
exponent is entered into the upper half of a
96-bit accumulator. The coefficient is shifted
right by the difference of the exponents. The
other coefficient is then added into the upper
half of the accumulator. If overflow occurs, the
sum is shifted right one place, and the exponent
of the result is increased by one. The upper half
of the accumulator holds the coefficient of the
sum, which is not necessarily in normalized
form. The exponent and upper coefficient are
then repacked in Xi.

If both exponents are zero and no overflow
occurs, the instruction effect an ordinary integer
addition.

FXi Xj— Xk Floating Difference of
Xj and Xk to Xi

Forms the difference of the floating point
quantities in Xj and Xk and packs the result in
Xi. Alignment and overflow operations are
similar to the floating sum (30) instruction, and
the difference is not necesarily normalized. The
packed result is the upper half of a double
precision difference.

32

33

34

35

An ordinary integer subtraction is performed
when the exponents are equal.

DXi Xj+ Xk Floating DP Sum of
Xj and Xk to Xi

Forms the sum of two floating point numbers
as in the floating sum (30) instruction, but packs
the lower half of the double precision sum with
an exponent 48 less than the upper sum.

DXi Xj— Xk Floating DP Difference of
Xj and Xk to Xi

Forms the difference of two floating point
numbers as in the floating difference (31) in-
struction, but packs the lower half of the double
precision difference with an exponent of 48 less
than the upper difference.

RXi Xj+ Xk Round Floating Sum of

Xj and Xk to Xi

Forms the round sum of the floating point
quantities in Xj and Xk and packs the upper
sum of the double precision result in Xi. The
sum is formed in the same manner as the floating
sum (30) instruction except that the operands
are rounded before the addition; as explained
below, to produce a round sum.

1. A round bit is attached at the right end of
both operands if:

a. both operands are normalized, or

b. the operands have unlike signs.

2. For all other cases, a round bit is attached at
the right end of the operand with the larger
exponent.

RXi Xj— Xk Round Floating Difference

of Xj and Xk to Xi

Forms the round difference of the floating
point quantities in Xj and Xk and packs the
upper difference of the double precision result
in Xi. The difference is formed in the same man-
ner as the floating difference (31) instruction
except that the operands are rounded before
the subtraction, as explained below, to produce
a round difference.

1. A round bit is attached at the right end of
both operands if:

a. both operands are normalized, or

b. the operands have like signs.
4-5

9. For all other cases, a round bit is attached at
the right end of the operand with the larger
exponent,

36 IXi Xj+ Xk Integer Sum of Xj and
Xk to Xi

Forms a 60-bit one’s complement sum of the
quantities in Xj and Xk and stores the result in
Xi. An overflow condition is ignored.

37 IXi Xj— Xk Integer Difference of Xj
and Xk to Xi

Forms the 60-bit one’s complement difference
of the quantities in Xj (minuend) and Xk (sub-
trahend) and stores the result in Xi.

40 FXi Xj*Xk Floating Product of Xj and
Xk to Xi

Multiplies the floating point quantities in Xj
(multiplier) and Xk (multiplicand) and packs the
upper product result in Xi.

The result is a normalized quantity only when
both operands are normalized; the exponent is
then the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or
both operands are unnormalized; the exponent
is then the sum of the exponents plus 48.

41 RXi Xj* Xk Round Floating Product of
Xj and Xk to Xi

Attaches a round bit to the floating point num-
ber in Xk (multiplicand), multiplies this number
by the floating point number in Xj, and packs
the upper product result in Xi. (No lower prod-
uct is available.)

The result is a normalized quantity only when
both operands are normalized, the exponent is
then the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or
both operands are unnormalized; the exponent
is then the sum of the exponents plus 48.

42 DXi Xj* Xk Floating DP Product of Xj
and Xk to Xi

Multiplies the floating point quantities in Xj
and Xk and packs the lower product in Xi. The
result is not necessarily a normalized quantity.

4-6

43

44

45

MXi jk Form Mask in Xi, jk bits

Forms a mask in Xi. The 6-bit quantity jk
defines the number of one’s in the mask as
counted from the highest order bit in Xi.

FXi Xj/Xk Floating Divide Xj by Xk to Xi

Divides the floating point quantities in Xj
(dividend) and Xk (divisor) and packs the
quotient in Xi.

The exponent of the result in a no-overflow
case is the difference of Xj and Xk exponents
minus 48.

A omne-bit overflow is compensated for by
shifting the coefficient right one place and in-
creasing the exponent by one. The exponent is
then the difference of Xj and Xk exponents
minus 47.

The result is a normalized quantity when both
Xj and Xk are normalized.

RXi Xj/Xk Round Floating Divide Xj
by Xk to Xi

Divides the floating point quantity in Xj
(dividend) by Xk (divisor) and packs the round
quotient in Xi. A % round bit is added to the
least significant bit of the dividend (Xj) before
division starts.

The result exponent in a no-overflow case is
the difference of Xj and Xk exponents minus 48.

A one-bit overflow is compensated for by
shifting the coeflicient right one place and in-
creasing the exponent by one. The exponent is
then the difference of Xj and Xk exponents
minus 47.

The result is a normalized quantity when both
Xj and Xk are normalized.

46 NO Pass

47

No operation.

CXi Xk Count the Number of 1’s in
Xk to Xi

Counts the number of one’s in Xk and stores
the count in Xi.

60
61

63
64
65
66
67

SAi Aj+ K (or complement of K)
SAi Bj + K (or complement of K)
SAi Xj- K (or complement of K)
SAi Xj+ Bk
SAi Aj+ Bk
SAi Aj — Bk
SAi Bj + Bk
SAi Bj — Bk

Set Ai

These instructions perform one’s complement
addition and subtraction of 18-bit operands and
store an 18-bit result in Al

Operands are obtained from address (A), in-
crement (B), and operand (X) registers as well
as the K portion of the instruction. K is an 18-bit
signed constant. As used in instructions 50, 51,
and 52, if the sign of K is minus, ASCENT
places the 18-bit one’s complement of K in the
K portion of the instruction word. Operands
obtained from an X register are the truncated
lower 18 bits of the 60-bit register.

An immediate memory reference to the ad-
dress specified by the final contents of address
register Ai is effected by the execution of a SAi
(i =1-7) instruction. The operand read from
memory address specified by A1-A5 is sent to the
corresponding operand register X1-X5. The op-
erand from X6 or X7 is stored at the address
specified by the corresponding A6 or A7.

SBi Aj + K (or complement of K)
SBi Bj + K (or complement of K)
SBi Xj+ K (or complement of K)
SBi Xj -+ Bk
SBi Aj + Bk
SBi Aj — Bk
SBi Bj + Bk
SBi Bj— Bk

Set Bi

70
71
72
73
74
75
76
77

These instructions perform one’s complement
addition and subtraction of 18-bit operands and
store an 18-bit result in Bi.

Operands are obtained from address (A), in-
crement (B), and operand (X) registers as well
as the K portion of the instruction. K is an 18-bit
signed constant. As used in instructions 60, 61,
and 62, if the sign of K is minus, ASCENT
places the 18-bit one’s complement of K in the
K portion of the instruction word. Operands
obtained from an X register are the truncated
lower 18 bits of the 60-bit register.

SXi Aj+ K (or complement of K)
SXi Bj+ K (or complement of K)
SXi Xj+ K (or complement of K)
SXi Xj+ Bk
SXi Aj -+ Bk
SXi Aj — Bk
SXi Bj+ Bk
SXi Bj— Bk

Set Xi

These instructions perform one’s complement
addition and subtraction of 18-bit operands and
store an 18-bit result in Xi.

Operands are obtained from address (A), in-
crement (B), and operand (X) registers as well
as the K portion of the instruction. K is an 18-bit
signed constant. As used in instructions 70, 71,
and 72, if the sign of K is minus, ASCENT
places the 18-bit one’s complement of X in the
K portion of the instruction word. Operands
obtained from an X register are the truncated
lower 18 bits of the 60-bit register.

Operands obtained from an Xj register are the
truncated lower 18 bits of the 60-bit register.
Conversely, an 18-bit result placed in Xi carries
the sign bit extended to the remaining bits of
the 60-bit register.

4-7

5. PSEUDO OPERATION CODES

Pseudo operations provide the means for directing
the assembler to carry out certain functions. The
instruction format is the same as the basic format
given in 3.1. As used here, LOC indicates that the
particular operation may have a symbolic identifier
in the location field. Where none is shown, these
columns are ignored by the assembler. Any FOR-
TRAN statement may also be used as additional
pseudo operation codes. The CALL statement in
particular is used to reference subroutines defined
by SUBROUTINE cards. Normal mixing rules
apply. Following are ASCENT pseudo operations
and meanings.

ASCENT SYMBOL

Defines the beginning of a program and its
name, SYMBOL. This must be the first in-
struction of an ASCENT routine.

END

Terminate the assembly process for this
program or subprogram. When punched
into a card, END must be the only entry
in the card and must start in column 11.

ASPER SYMBOL

Defines the end of the current ASCENT
routine and/or the beginning of a periph-
eral processor routine. SYMBOL is the
name of the ASPER routine.

SUBROUTINE SYMBOL (LIST)

Defines the beginning of a subroutine, its
name, SYMBOL, and the formal param-
eters given by (LIST). See Section 9.2 for
more detail.

BSSD N, L, NAME, R

Defines on logical disk unit N the file
identified by NAME which has L. number
of 60-bit words in its longest record. R
specifies the maximum number of logical
records into which the file may be seg-
mented. The parameters N, L, and R must
be numbers, where N = 16,,, L = 27, and
R = 4000,,. NAME must be unique with-
in the routine.

LOC BSS OPERAND

Reserve the number of 60-bit locations
specified by OPERAND beginning at

LOC. The contents of the locations
reserved are not set to a particular con-
dition. The LOC symbol is equated to the
address of the first word of the area. Any
symbolic constant appearing in the ad-
dress field must be previously defined.

LOC BSSZ OPERAND

Same as BSS except the contents of the
locations reserved are set to zero in the
object code.

LOC EQU OPERAND

The symbol in the LOC field is assigned
the value of the address field. Any symbol
appearing in the address field must be
previously defined.

L.OC DPC *C, Gy - - - Cp*

Convert the characters enclosed by the
asterisks to display code, ten characters
per word beginning at LOC. Incomplete
words are padded out with DPC blanks.
The LOC symbol is equated to the address
of the first word of the area.

LOC DPC mnC, C; - - - Cqn

Convert the nn characters, C;, Cs, - - - Can,
to display code, ten characters per word
beginning at LOC. The number of charac-
ters, nn, must be a two-digit decimal num-
ber. Incomplete words are padded out
with DPC blanks. The LOC symbol is
equated to the address of the first word of
the area.

LOC BCD *C, C,---Cy¥

Convert the characters enclosed by the
asterisks to BCD code, ten characters per
word beginning at LOC. Incomplete words
are padded out with BCD blanks. The
LOC symbol is equated to the address of
the first word of the area.

LOC BCD nnC; C,---Cus

Converts the nn characters C;, Cs, - - - Can,
to BCD code, ten characters per word
beginning at LOC. The number of charac-
ters, nn, must be a two-digit decimal

5-1

LOC CON

5-2

number. Incomplete words are padded
out with BCD blanks. The LOC symbol
is equated to the address of the first word
of the area.

Vo, T Vn

Convert each V; term to a 60 or 120-bit
constant. If more than one is defined per
a CON pseudo code, each V; must be
separated by commas. The V; may be:

. == octal integer
. = decimal integer
. symbol

a
b
c
d. symbol + integer
e. symbol — symbol
f.

=+ single precision floating
point number

g. - double precision float-
ing point number

h. = complex number

The LOC symbol is equated to the address
assigned to the V, term. Remarks are not
permitted on a CON operation.

LIST P

Controls the listing of the side-by-side so
that sections of coding may be omitted
from the listing. At the beginning of each
ASCENT program the assembler assumes
the list case of P = 0, unless otherwise
specified by the LIST pseudo opcode.

If P =0, list the side-by-side that

follows.
If P40, suppress the side-by-side
listing,.
SPACE nn

Space nn lines on the listing. The integer,
nn, is evaluated =63.,,.

EJECT
Eject the listing to the top of the next page.

6. SYSTEM MACROS

6.1 GENERAL INFORMATION

System macro instructions provide communication
links between a program in central memory and the
system peripheral processors. While most of these
macros direct the operating system to perform
input/output operations, others request equipment
assignment, check the status of external operations,
produce program overlays, and utilize system pe-
ripheral processors in conjunction with the central
Processor program.

The communication link provided by the system
macros allows a two-way information transfer. The
central memory program not only sends the periph-
eral processor request information but also reserves
a location in central memory in which the system
peripheral processor enters the status of the re-
quested operation, reporting its success back to the
central memory program. Each system macro must
have a status response word which is set by the
operating system in performing the function of the
individual macro request.

Further, to facilitate multiprocessing, each system
macro provides a buffered and non-buffered mode.
In the buffered mode, the macro used without the
appended “W,” it is up to the CP program to deter-
mine when an operation is completed or to execute
another macro to wait for completion at a later
time. In the non-buffered mode, with the “W” ap-
pended to the macro code, the macro turns central
processor control back to the operating system for
assignment to another CP program. Control will not
be returned to the next object code step of the CP
program in question until the macro request is
completed or aborted. Both modes return full status
information to the CP program relative to the suc-
cess of the peripheral processor in carrying out the
request.

ASCENT generates a sequence of code from the
system macro which initiates the requested system
function. The Return Jump generated is followed
by the parameters in line with the object code. The
parameters may be any of the following forms:

Constant (integer or octal) — specifies the parameter
itself, such as a unit number, the record
length, or the conversion mode.

Symbolic Location — specifies the location which
contains the parameters.

Literal — specifies the parameter itself. ASCENT
places in a location at the end of the object
code the parameter specified by the literal.

NAME — certain macros require a file or program
name. The NAME is converted to Display
Code and becomes the parameter.

An example of a macro follows:
RDCW 1, (8), (BA), (BA+8), 8, 2
Assume: S = 1001
BA = 2500

Then: ASCENT generates a location for each literal
specified by the macro. If the end of the object code
is location 4200, then:

4201 = 0...01001
4202 = 0... 02500
4203 = 0... 02510

The communication link in the object code to the
Central Resident program becomes:

59 30 28 0

P R] SUB

F+1 |EQ B0 B0 P+5 oPF N

P+2 |00 . . . 0L | 40 . . . 04201 2
P+3 |40 . . . 4902 | 40 . . . 04203 E
P+4 |00 . . . 0010 | 00 . . . 00002 i
P+5 OBJECT CODE

SUB — A routine that forms the parameters in loca-
tions 000002 through (N + 1) for communi-
cation with the operating system. Location
000001 contains the operation code of the
macro requested.

OP — Operation code assigned by the system to
each macro

N — Number of parameters

6-1

The following is an explanation of certain letters, L
terms, and phrases used in connection with macros.

A

BA

EA

6-2

Symbolic address in central memory
which contains the address of the first N
word of the requested block assigned by
the system or which contains the address,
as specified by the programmer, of the
first word of the block in memory to be

released to the system. NAME

Symbolic address in central memory

which contains the beginning address NW
of the buffer area.

Conversion mode P
Card operations:

C = blank or 0 — no conversion (binary R

image)
1 — Hollerith to display
code for read; display code RL
to Hollerith for punch
2 — Hollerith to BCD for
read; BCD to Hollerith for
punch
Magnetic tape:
C = blank or 0 — no conversion
1 — BCD to display code
2 — display code to BCD
Printer:
C = blank or 0 — no conversion
2 — display code to BCD
Symbolic address in central memory
which contains the ending address + 1

of the buffer area.

Number (or CM symbolic address of
number) of logical tape records.

Number (or CM symbolic address of
number) of 60-bit words in the longest
record in the file identified by NAME,

Equipment logical number (or CM sym-
bolic address of number), ie., 1,2,... M
for M total units of equipment type in
the system.

Symbolic name uniquely identifying the
disk logical file being referenced.

Total number (or CM symbolic address
of number) of central memory words re-
quested or released.

Logical record number (or CM symbolic
address of number) in disk file to start
read or write.

Maximum number (a CM symbolic ad-
dress of number) of logical records into
which the disk file may be segmented.

Card operations: total number (or CM
symbolic address of number) of leftmost
5 columns (binary image) or 10-character
fields (coded mode) of the card. For BCD
or DPC conversion mode, each central
memory word contains ten 6-bit char-
acters. For binary image, each central
memory word contains 5 columns.

Console operations: total number (or CM
symbolic address of number) of charac-
ters in the message to be transmitted.

Magnetic tape: number (or CM symbolic
address of number) of 60-bit words per
tape record.

Printer: number (or CM symbolic ad-
dress of number) of 10-character words
per line to print.

Symbolic address in central memory
which contains the address for the
STATUS RESPONSE WORD from the
PP 1/0 routine. The PP I/O routine
handling the request requires that a loca-
tion in central memory be reserved and
identified for each macro request.

SYMBOL

TAG

The PP 1/0 routine reports to this loca-
tion the status of the requested operation.

Program overlay: name of overlay region
to be loaded.

System action: name of PP program de-
fined by ASPER pseudo operation.

Wait check: name of transfer location if
abort is indicated by the status response
word.
Display character size:
T = blank or 0 — 64 char./line

1 — 32 char./line

2 — 16 char./line

3 — plot mode
Identification number==18 bits (or CM

symbolic address of number) of message
to be displayed.

A W appended to the opcode of a macro
indicates a “wait for reply.” If the W is
not used (buffered mode), the CP pro-
gram may continue processing while the
requested I/O operation is being per-
formed. However, the program must do
its own checking on the progress of the
request by means of the WAI (Wait
Check) macro. If the request is in proc-
ess, the status response word is positive
and nonzero; if the request is completed,
the word is zero; if the request is
aborted, the word is negative.

When the W is appended to the macro
(non-buffered mode) and the requested
operation can be performed, control is
turned over to the operating system and
the CP program delays until the status
response word is zero (completed) or
negative (aborted), at which time con-
trol is given back to the program.

In both modes if the requested operation
is successful, the next in-line instruction
is executed.

6.2 MACRO FORMATS

6.2.1 MAGNETIC TAPE OPERATIONS

OPCODE ADDRESS FIELD REMARKS
RQTW N, S Request tape assignment from system. Wait if W used.
DRTW N, S Release tape back to system. Wait if W used.
SFFW N, S Search file mark forward. Wait if W used.
SFBW N, S Search file mark backward. Wait if W used.
WFMW N, § Write file mark. Wait if W used.
RWLW N, S Rewind tape to load point. Wait if W used.
RWUW N, S Rewind tape for unload. Wait if W used.
FSPW N, S, K Forespace Wait if W used.
BSPW N, §, K Backspace Wait if W used.
RFCW N, S, BA, EA, RL, C Read tape forward coded mode. Wait if W used.
RFBW N, S, BA, EA, RL, C Read tape forward binary mode. Wait if W used.
WRCW N, S, BA, EA, RL, C Write tape coded mode. Wait if W used.
WRBW N, S, BA, EA, RL, C Write tape binary mode. Wait if W used.

N = Magnetic tape logical unit number; 1, 2, ... M for M tape units in the system.

S = Location containing the central memory address for status response code from System PP

K = Number of logical tape records.

1/0 routine.

BA = Location containing the beginning address of buffer area in central memory.

EA = Location containing the ending address + 1 of buffer area in central memory.

RL = Number of 60-bit words per tape record.

C = Conversion mode.

Blank or 0 — No conversion.

1~ BCD to Display Code.
2 — Display Code to BCD.

STATUS RESPONSE CODES — positioned as per address S.

Rs=0
Rs=1 Request in process.
Bs< 0

Request completed with no trouble,

Request aborted. Reason give in bits 58-48.

Rs

Il

59

48 47 3625 1817
T
I
]

— N

Ve Y
Number of words in record Number of records
where read length error completed including
occurred.* bad one.

Program error — BA > EA. (BIT 48)

End of file. (BIT 49)

Read length error. (BIT 51)

Write parity error unrecoverable. (BIT 52)

Read parity error unrecoverable. (BIT 53)

Write enable ring missing. (BIT 56)

Device unassigned. (BIT 57)

Device not ready. (BIT 58)

Request aborted. (BIT 59)

where: 1 implies the condition exists.
0 implies the condition does not exist.

*Refers to peripheral processor words. Also, an attempt

to write when the file protect ring is out will cause bit 58
to be set.

End of tape mark encountered before function completed (forward). (BIT 54

Load point encountered before function completed (backward). (BIT 55)

6-5

6.2.2 DISK TRANSFERS

Provision is made in the operating system for the programmer to read and write scratch data to and from
disk storage units. Data are usually broken up into related blocks called files. The files, in turn, are seg-
mented into the blocks of data that are transmitted at one time. These are called logical records. For most
efficient utilization of disk storage, logical records contain a minimum of 512 central memory words. A file
is defined by the ASCENT pseudo operation, BSSD, which specified the number of 60-bit words in the long-
est record, the maximum number of logical records into which the file is to be segmented, and the symbolic
name by which to identify the file. The actual data transmission is accomplished through the use of the
following macro operators.

OPCODE ADDRESS FIELD REMARKS
RDHW N, S, BA, EA, NAME, P Read record and hold data on disk. Wait if W used.
RDRW N, S, BA, EA, NAME, P Read record and release data on disk. Wait if W used.
WRDW N, S, BA, EA, NAME, P Write record on disk. Wait if W used.

N = Disk logical unit number; 1, 2,... M for M disk units in the system.

S = Location containing the central memory address for status response code from System PP
1/0 routine.

BA. = Location containing the beginning address of buffer area in central memory.
EA = Location containing the ending address + 1 of buffer area in central memory. ‘j)
NAME = Symbolic name to identify disk logical file to be referenced.

P = Logical record number used to identify record read from disk or written onto disk.

STATUS RESPONSE CODES—positioned as per address S.
Rs=0 Request is completed with no trouble.
Rs=1 Request is in process.

Rs< 0 Request aborted. Reason given in bits 58-48.

6-6

59 48 47 . 1817 0

L

-
Number of words
left after abort.

Program error — BA > EA or P > P max. (BIT 48)

File Directory error. (BIT 49)

|
|

Length error — all data not transmitted. (BIT 51)

Read parity error. (BIT 53)

Logical file limit is exceeded. (BIT 54)

Disk is not ready. (BIT 58)

Request aborted. (BIT 59)

where: 1implies the condition exists.

0 implies the condition does not exist.

6.2.3 PRINTER OPERATIONS

OPCODE ADDRESS FIELD REMARKS
SSPW N, S Single space printer. Wait if W is used.
DSPW N, S Double space printer. Wait if W is used.
FCTW N, § Select Format Channel 7. Wait if W is used.
FCSW N, § Select Format Channel 8. Wait if W is used.
MCI1W N, S Select Monitor Channel 1. Wait if W is used.
MC2W N, S Select Monitor Channe] 2. Wait if W is used.
MC3W N, S Select Monitor Channel 3. Wait if W is used.
MC4W N, § Select Monitor Channel 4. Wait if W is used.
MC5W N, S Select Monitor Channel 5. Wait if W is used.
MC6W N, S Select Monitor Channel 6. Wait if W is used.
CMCW_ N, S Clear Monitor Channels 1 - 6. Wait if W is used.
SPAW N, S Suppress space after next print. Wait if W is used.
PRNW N, S, BA, EA, RL, C Print single line or multiple lines.* Wait if W is used.

“If SPA is given preceding a multiple line print, it applies only to the first line.

N = Printer logical unit number; 1, 2,... M for M printers in the system.

S = Location containing the central memory address for status response code from System PP

1/0 routine.

BA = Location containing the beginning address of buffer area in central memory.

EA = Location containing the ending address + 1 of buffer area in central memory.

RL = Number of 10 character words per line to print.

C = Conversion mode.

Blank or 0 — No conversion.

9 — Display Code to BCD.

Printer character codes are given in Table 4 of the Appendix.

STATUS RESPONSE CODES — positioned as per address S.

6-8

Bs=10 Request is completed with no trouble.

Rs=1 Request is in process.

Rs < 0 Request aborted. Reason given in bits 58-48.

59

4847

Program error — BA > EA. (BIT 48)
Request aborted. (BIT 59)
where: 1 implies the condition exists.

0 implies the condition does not exist.

6.2.4 CARD OPERATIONS

OPCODE ADDRESS FIELD REMARKS
PCHW N, S, BA, EA, RL, C Punch cards. Wait if W is used.
RDCW N, S, BA, EA, RL, C Read cards. Wait if W is used.
N = Card reader or punch logical unit number; 1,2, ... M for M readers or punches in the system.

S = Location containing the central memory address for status response code from System PP

1/0 routine.

BA = Location containing the beginning address of buffer area in central memory.

EA = Location containing the ending address + 1 of buffer area in central memory.

RL = Number of leftmost 10-character fields or 5 columns of the card.
C = Conversion mode.

Blank or 0 — No conversion; i.e., binary image input/output.

1 — Hollerith to Display Code for read; Display Code to Hollerith for punch.

9 — Hollerith to BCD for read; BCD to Hollerith for punch.
Display character codes are given in Table 4 of the Appendix.

STATUS RESPONSE CODES — positioned as per address S.

Rs=0 Request is completed with no trouble.
Rs=1 Request is in process.

Rs < 0 Request aborted. Reason given in bits 58-48.

59 48 47

Rs

I

Program error — BA > EA. (BIT 48)

L End of file. (BIT 49)

No read data available (not loaded). (BIT 58)

Request aborted. (BIT 59)

where: 1 implies the condition exists.

0 implies the condition does not exist.

6-10

|

6.2.5 CONSOLE OPERATIONS

Request procedures are provided for ASCENT routines to display messages on the primary console right
scope or either of the scopes on other consoles. The system provides a timing service for removal of displays
after a certain exposure. However, the request procedure gives an option to override the system time limit
on display. In this mode, it is assumed that the ASCENT routine will request a removal of the display as a
result of console acknowledgment or internal decision.

OPCODE ADDRESS FIELD REMARKS

DSERW N, S, BA, EA, RL, TAG, T | Display on Right Scope for

system time limit. Wait if W is used.
DSLW N, S, BA, EA, RL, TAG, T | Display on Left Scope for

system time limit. Wait if W is used.
DHRW N, S, BA, EA, RL, TAG, T | Display on Right Scope and

hold indefinitely. Wait if W is used.
DHILW N, S, BA, EA, RL, TAG, T | Display on Left Scope and

hold indefinitely. Wait if W is used.
RDPW N, S, TAG Remove display. Wait if W is used.
RTYW N, S, BA, EA, RL, TAG Read console typewriter. Wait if W is used.

N = Console logical unit number; 1, 2,.. . M for M consoles in the system.

S = Location containing the central memory address for status response code from System PP

1/0 routine.

BA = Location containing the beginning address of buffer area in central memory.

EA = Location containing the ending address 4+ 1 of buffer area in central memory.

RL = Total number of characters in the message to be transmitted.

TAG = Identification number = 18 bits for display message.

T = Display character size.

Blank or 0 — 64 characters/line.
1 — 32 characters/line.
2 — 16 characters/line.

3 — plot mode.

Display character codes are given in Table 4 of the Appendix.

STATUS RESPONSE CODES — positioned as per address S.

Rs=10 Request is completed with no trouble.

Bs=1 Request is in process.

BRs< 0 Request aborted. Reason given in bits 58-48.

6-11

6-12

Il

59

48 47

Program error — BA > EA (BIT 48)
Identification of request is non-existent (BIT 50)
Left screen of system console requested (BIT 52)
Scope is full (BIT 54)

Record length too large (BIT 58)

Request is aborted (BIT 59)

where: 1implies the condition exists.

0 implies the condition does not exist.

6.2.6 SYSTEM ACTION

OPCODE ADDRESS FIELD REMARKS

TPPW N, S, SYMBOL Transfer program SYMBOL from CM

to PP memory and begin execution with

first ASPER instruction. Wait if W is used.
ROMW NW, §, A Request memory. Wait if W is used.
DRMW NW, S, A Release memory. Wait if W is used.
RQDW N, S, L, NAME, R Request disk space. Wait if W is used.
DRDW N, S, NAME Release disk space. Wait if W is used.

N = Logical number of PP or disk unit.

S = Location containing the central memory address for status response code from System PP
I/0O routine.

R = Maximum number of logical records into which the file may be segmented.

NW = Total number of words.

L. = Number of 60-bit words in longest record.

A = Location containing the central memory address of the first word of block assigned by the
system or released by the programmer.

NAME = Symbolic name uniquely identifying the disk logical file being referenced.
SYMBOIL = Name of PP program defined by ASPER pseudo operation.

STATUS RESPONSE CODES — positioned as per address S.

Rs =0 Request completed with no trouble.

Rs=1 Request in process.

Bs <0 Request aborted. Reason given in bits 58-48.

59

48 47 0

Core exceeded (BIT 48)
Program not present at load time (BIT 50)
Checksum error (BIT 54)

Device not available (BIT 58)

Request aborted (BIT 59)
where: 1 implies the condition exists.
0 implies the condition does not exist.

6-13

6.2.7 LOAD SEGMENT

During initial loading, segmentation control cards are matched against subroutines presént to assure overlay
capability when called. Therefore, during the load process control is taken from the CP program and is
returned when the load is successful. No status response is required since success is necessary for the CP pro-

gram to regain control.

OPCODE ADDRESS FIELD REMARKS
LOAD SYMBOL Load segment SYMBOL n
LOAD *SYMBOL* ' Load segment SYMBOL and transfer control u
to indicated routine.

6-14

6.2.8 WAIT CHECK

When a buffered operation is initiated, a- Wait Check macro may be used to check status and exit if an
operation abort occurred on the request. Also, the macro has provision for turning control over to the system

if the request is not completed.

OPCODE

ADDRESS FIELD

REMARKS

. WAIW

S,SYMBOL

Check status of S. Exit to SYMBOL if abort.
Wait for reply if not ready and W is used.

S = Location containing the central memory address for status response code from System PP

1/0 routine.

SYMBOL = Transfer location if an abort is indicated by the status response code.

6-15

6.3 PROGRAMMER DEFINED MACROS

The macro instructions provided by the system may be expanded through a feature of ASCENT that per-
mits the programmer to define new macros at assembly time.

Programmer macros must be defined prior to the executable code in the program or subroutine. As the pro-
grammer macro is encountered, it is stored in memory, which serves as a skeleton, ready to be called and
inserted into the body of the program. A programmer macro is local to the program or subroutine in which
it is defined.

A programmer macro may be defined by using the pseudo operation code MACRO in the operation code
field. The macro must be assigned a unique name followed by a list of formal parameters.

LOC OP FIELD ‘REMARKS
MACRO SYMBOL, LIST .MACRO DEFINITION

where: MACRO is the pseudo operation code,
SYMBOL is the name of the macro that is used to call the macro.

LIST is a sequence of formal parameters which specify the items that may be substituted each time
the macro is called. Each parameter of the LIST may be a symbol, constant, or a register. The
limit on the number of parameters in the LIST is undefined, but all parameters must appear on
one card.

The programmer macro code follows the definition MACRO card. The programmer macro code does not
differ from coding in other parts of the program, except it is restricted to ASCENT code. For example, the
programmer macro code may not contain F ORTRAN statements, ASPER programs, or may not call a pro-
grammer-defined macro.

The end of the programmer macro is denoted by the ENDM pseudo operation code appearing in the oper-
ation field.

Programmer-defined macros may be used in the body of the program or subroutine in which they are de-
fined. Calls to the macros are made by entering the name of the macro in the operation code field, and as
actual parameters (a list of operands and registers). The code of the macro is inserted in line with the actual
parameters substituted for the formal parameters.

LOC OP FIELD REMARKS
LOCATE SYMBOL LIST .CALL OF PROGRAMMER MACRO

where: LOCATE a symbol in the location. field of a call to a programmer macro is optional. If a location
symbol appears, the first instruction of the macro is forced to the upper portion of a word with
the symbol assigned the address of that instruction.

SYMBOL the name of the programmer-defined macro.

LIST a sequence of symbols, constants, and/or registers which serve as the actual parameters that
are substituted in the skeleton code as defined by the formal parameters. The parameters in the
LIST must be in the same order as the formal parameters for proper substitution.

Rules:

1. The definition of the programmer macro must precede the first executable instruction in the program or
subroutine in which it is defined.

6-16

9. The name of the macro must not be identical to a machine mnemonic code, pseudo code, a system macro,
or any other programmer-defined macro in the same routine. Programmer-defined macros are local only
to the program or subroutine in which the definition appears. Therefore, the names of programmer-defined
macros may appear in other subroutines.

The order of actual and formal parameters must be the same.
Neither FORTRAN statements nor ASPER subroutines may be used within the definition of a macro.

. A programmer-defined macro may not call a programmer-defined macro.

o G oA

. Location symbols which appear within the body of the programmer-defined macro must appear as formal
parameters in the definition, and each call must specify a unique location symbol as the actual parameter.

Therefore, programmer-defined macros define a sequence of code with formal parameters which serve as a
skeleton of instructions; as each call is made to the macro, the code is inserted into the main body of the pro-
gram, with the actual parameters substituted for the formal parameters. ASCENT assembles the macros in
line with the program as if the macro code had been a part of the original code.

EXAMPLE 1
Suppose a programmer needs to transfer the contents of one core location to another several times within a
program and the relative inefficiency of the coding sequence is not important.

SAl A . load first value into X6

BX6 X1 . move to storage register

SA6 B . store in B the value in X6
Then he can define the macro, TRANS.

MACRO TRANS, A, B . define MACRO, TRANS

SAl A . load first value

BX6 X1 . move to storage register

SA6 B . store to second word

ENDM . end of MACRO definition

Fach time he needs to make the transfer, he can write a macro call for TRANS.
TRANS X, Y . transfer x to y
where: x and y are the appropriate addreses.

The coding of the macro would be moved in line with parameter substitutions as a replacement for the call.
The in-line code would be:

SAl X . load first value
BX6 X1 . move to storage register
SA6 Y . store to second word

EXAMPLE 2

Suppose the need is the same as Example 1 except register conflicts exist from time to time with X1 and X6.
In this case the macro can be defined as:

MACRO TRANS, TAG, A, B, Al, X1, A6, X6
SA1 A |
TAG BX6 X1
SAB B
ENDM

.6-17

If at the time the transfer is needed, registers A2, X2, A7, and X7 are free, the call can be written as:

CALL TRANS LOG, X, Y, A2, X2, A7, X7
The resulting object code would be:
SA2 X
LOC BX7 X2
SA7 Y

6-18

7. MACRO INSTRUCTIONS

7.1 DESCRIPTION
Backspace

BSP N, S, K

Backspaces K number of records on logical
tape unit N.

Clear Monitor Channels 1-6
CMC N, S

Deselects monitor channels 1-6 on line printer
N. This macro must be used before selecting
another channel.

Display on Left Scope and Hold Indefinitely
DHL N, S, BA, EA, RL, TAG, T

Displays a message on the left scope of the
console and holds the display indefinitely or until
an RDP request is received. When displayed the
message is accompanied by the 18-bit identifier,
TAG. BA and EA contain the locations for the
beginning and ending addresses of the buffer
area storing the message to be displayed. Each
CM word contains 10 consecutive display-coded
characters of the message ordered from left to
right in the word. The display character size is
determined by T. RL specifies the number of
characters to be displayed on each line on the
scope and is limited by the character size chosen.
The logical console number, N, indicates which
console is to be used. See Example 1.

Display on Right Scope and Hold Indefinitely
DHR N, S, BA, EA, RL, TAG, T

Displays a message on the right scope of the
console and holds the display indefinitely or
until an RDP request is received. See macro
DHL for further explanation of parameters.

Release Disk Space Back to System
DRD N, S, NAME

Releases the file indentified by NAME on the
logical disk unit N.

Release Memory
DREM NW, S,’A

Releases from the block of central memory
words which the PP has reserved the total num-
ber of words specified by NW beginning with
the CM address given in A.

Release Tape Back to System
DRT N, S

Releases the logical tape unit specified by N
for general system usage.

Display on Left Scope for System Time Limit
DSL N, S, BA, EA, RL, TAG, T

Displays a message on the left scope of the
console for the length of time set by the system.
See macro DHL for further explanation of
parameters.

Double Space Printer
DSP N, S

Advances logical printer N two lines.

Display on Right Scope for System Time Limit
DSR N, S, BA, EA, RL, TAG, T

Displays a message on the right scope of the
console for the length of time set by the system.
See macro DHL for further explanation of
parameters.

Select Format Channel 7
FC7 N, S

Selects format channel 7 on logical printer
unit N. This format channel advances the paper
to a selected line.

71

Select Format Channel 8
FC8 N, S

Selects format channel 8 on logical printer
unit N. This format channel ejects the page to
the top of the form.

Forespace
FSP N, §, K

Spaces forward X number of records on logical
tape unit N.

Select Monitor Channel 1
MC1 N, S

Selects monitor channel 1 on logical printer
unit N. The monitor channels contain prede-
signed line-space formats.

Select Monitor Channel 2
MC2 N, S

Select monitor channel 2 on logical printer
unit N.

Select Monitor Channel 3
MC3 N, S

Select monitor channel 3 on logical printer
unit N.

Select Monitor Channgl 4
MC4 N, S

Select monitor channel 4 on logical printer
unit N.

Select Monitor Channel 5
MC5 N, S

Select monitor channel 5 on logical printer
unit N.

7-2

Select Monitor Channel 6
MCé6 N, S

Select monitor channel 6 on logical printer
unit N.

Punch Cards
PCH N, S, BA, EA, RL, C

Punches cards on logical unit N for the num-
ber of leftmost 5 columns (binary output, no
conversion) or 10-character fields (coded mode)
as given by RL. The conversion mode is specified
by C. The card images are read from central
memory beginning at the address contained in
location BA and ending at the address contained
in location EA. See Example 2.

Print Single Line or Multiple Lines
PRN N, S, BA, EA, RL, C

Prints on logical unit N the number of 10-
character words per line as given by RL in the
conversion mode specified by C. RL may specify
up to 12 or 14* words per line. The print image
is stored in central memory beginning at the
address contained in location BA and ending at
the address contained in location EA. See Ex-
ample 2.

Read Card
RDC N, S, BA, EA, RL, C

Reads cards on logical unit N for the number
of leftmost 5 columns (binary input, no conver-
sion) or 10-character fields (coded mode) as given
by RL. The conversion mode is specified by C.
The cards are read into central memory begin-
ning at the address contained in location BA and
ending at the address contained in location EA.
See Example 2.

*For the 120 character/line 1612 printer and the 136

character/line 501 printer, respectively.

Read Record and Hold Data on Disk

RDH N, S, BA, EA, NAME, P

Reads into the buffer area in central memory
the logical record specified by P of the file iden-
tified by NAME onto logical disk N. The words
are read, without code translation, into the
buffer area beginning at the address contained
in location BA and ending at the address con-
tained in location EA. The data are held on disk
for subsequent re-use.

Remove Display

RDP N, S, TAG

Erases from the scope at console N the display
identified by TAG.

Read Record and Release Data on Disk

RDR N, S, BA, EA, NAME, P

Reads into the buffer area in central memory
the logical record specified by P of the file iden-
tified by NAME onto logical disk N. The words
are read, without code translation, into the
buffer area beginning at the address contained
in location BA and ending at the address con-
tained in location EA. Once the data are in
memory, the disk space is released for use by
other programs.

Read Tape Forward, Binary Mode

RFB N, S, BA, EA, RL, C

Reads, in binary parity, the number of 60-bit
words per tape record, R, from logical tape
unit N. Each 6-bit character is converted as
specified by the conversion mode C. BA and EA
contain the location for the beginning and end-
ing addresses of the buffer area into which the
words are read. See Example 2.

Read Tape Forward, Coded Mode

RFC N, S, BA, EA, RL, C

Reads, in BCD parity, the number of 60-bit
words per tape record, RL, from logical tape unit
N. Each 6-bit character is converted as specified
by the conversion mode C. BA and EA contain
the location for the beginning and ending ad-
dresses of the buffer area into which the words
are read. See Example 2.

Request Disk Space

ROD N, S, L, NAME, R

Reserves on logical disk unit N the file identi-
fied by NAME which has L number of 60-bit
words in its longest record. R specifies the maxi-
mum number of logical records into which the
file may be segmented. The parameters N, L,
and R must be numbers, where N = 16,
L =2'", and R =4000,,. NAME must be unique
within the routine.

Request Memory Space

ROM NW, S, A

Reserves in central memory the total number
or words specified by NW. The system sets A
to the location containing the address of the first
word of the assigned block in central memory.

Request Tape Assignment from System

RQT N, S

Requests logical tape unit N for the exclusive
use of a program.

Read Console Typewriter

RTY N, S, BA, EA, RL, TAG

Reads and identifies a message with the identi-
fication number, TAG, typed on the typewriter at
logical console unit N. Transmits RL number of
characters to a buffer area in central memory
beginning at the address contained in location
BA and ending at the address contained in loca-
tion EA.

7-3

Rewind Tape to Load Point
RWL N, S

Rewinds logical tape unit N to the physical
load point on the tape.

Rewind Tape for Unload
RWU N, S

Rewinds logical tape unit N so that the tape
may be dismounted.

Search File Mark Backward
SFB N, S

Searches the tape on logical unit N one record
at a time back towards the load point until a
file mark is passed over. When the mark is found,
the tape is positioned on the load-point side of
the file mark. If none is found, the macro is equi-
valent to RWL.

Search File Mark Forward
SFEF N, S

Searches the tape on logical unit N one record

~ at a time from the current position forward until
a file mark is passed over. When the mark is
found, the tape is positioned on the side of the
file mark away from the load point. If no mark is
found, the end of tape marker stops the search.

Suppress Space After Next Print
SPA N, S

Suppresses on logical printer N the automatic
advance after the next line printed with a PRN
macro.

Single-Space Printer
SSp N, S

Advances logical printer N one line.

7-4

Transfer PP Program and Begin Execution
TPP N, S, SYMBOL

Produces a calling sequence to the PP loader
which, during execution, transfers PP program
SYMBOL from central memory to logical periph-
eral processor N and begins execution with the
first ASPER instruction. This macro is used to
load an ASPER program into a PP from CM at
execute time. The load begins at the first binary
card and continues until the loader encounters
another ASPER header card, a SUBP header
card, or a terminate card. Execution begins at
the first ASPER instruction defined under an
ORGR pseudo code.

The TPP call from a CM program can load any
PP in the system. However, the TPP call by a
PP program can load any other PP in the system
but cannot load itself.

Wait Check
WAI S, SYMBOL

Checks the status response word of other
macros during a buffered operation. If the opera-
tion has been aborted, the WAI macro exits to
the address specified by SYMBOL. If not, the

next instruction, in line, is executed.

Write File Mark
WEM N, S

Writes an end of file mark on the tape on
logical unit N.

Write Tape, Binary Mode
WRB N, S, BA, EA, RL, C

Writes, in binary parity, the data between BA
and EA in records of RL 60-bit words each onto
logical tape unit N. Each 6-bit character trans-
ferred is converted as requested by the con-
version mode C. The words are written from a
buffer area in central memory beginning at the
address contained in location BA and ending at

the address contained in location EA. If the con-
version mode is 0, a straight binary output is
expected. If one of the other conversion modes
is used, Example 2 applies.

Write Tape, Coded Mode

WRC N, S, BA, EA, RL, C

Writes, in BCD parity, the data between BA
and EA in records of RL 60-bit words each onto
logical tape unit N. Each 6-bit character trans-
ferred is converted as requested by the con-
version mode C. The words are written from a
buffer area in central memory beginning at
the address contained in location BA and ending
at the address contained in location EA. See
Example 2.

Write Record on Disk

WRD N, S, BA, EA, NAME, P

Writes from the buffer area in central memory
the logical record specified by P of the file iden-
tified by NAME onto logical disk N. The words
are written, without code translation, from the
buffer area beginning at the address contained
in location BA and ending at the address con-
tained in EA.

Load Segment

LOAD SYMBOL

Loads the subroutine SYMBOL into PP
memory. SYMBOL is a subroutine defined by
the pseudo opcode SUBP. When asterisks en-
close SYMBOL, then control is transferred to
the indicated routine.

7-5

7.2 EXAMPLES

EXAMPLE 1

DISPLAY AND TYPEWRITER INPUT/OUTPUT

Suppose a program needs to display a request for
control information which requires a reply from
the operator. The message might be:

REQUEST SWITCH SETTING 1-5

Either the DHL or DHR macro may be used. Both
require that (1) the message data be organized and
ready for display before the macro itself is executed,
and (2) a set of parameters define the message
organization to the operating system.

(1) Data Organization:

Status —a word may be reserved for the

status response from the system by
use of the BSS pseudo code.

S BSS 1
Data — the message data may be entered

into the ASCENT program by use of
the DPC pseudo code.

DATA DPC

*REQUEST SWITCH
SETTING 1-5%

The output data block may be re-
served by

DIS BSS 3

The one-word message input area
may be reserved by

DISIN BSS 1

Record
Length

— The length of the record to be dis-
played is 26 characters.

(2) Parameters:

Unit —The logical unit number is used
Number only to indicate, relatively, a dif-
ferent console between different
macros in the same program. For

7-6

instance, logical unit number 2 may
be any console that is available
except one which has been pre-
viously referenced as logical unit
number 1, 3, 4, etc.

Status — The central memory address, S,
may be designated by use of a

literal (S).

BA — The beginning address of the mes-
sage in central memory, DIS, may
be designated, as was S, with a
literal (DIS).

EA — The ending address in central mem-
ory, DIS+3 may be similarly writ-
ten (DIS+3).

RL — The record length may be given
explicitly as 26 or as a symbolic CM
address, Z, which contains 26.

Z CON 26

TAG — A program may put up more than
one request which requires a reply
from the operator. Therefore an
identifier “TAG” is provided. This
tag is then appended to the program
account number by the system to
provide total uniqueness to all re-
quests from the same and/or differ-
ent programs. Let us suppose the
account number is 3512, and TAG
is 1.

SIZE — The message character size may be
chosen as 64, 32, or 16 characters
per line. Let us suppose 32 char-
acters per line is chosen.

0

The macro is then written:
DHL 1, (S), (DIS), (DIS+3), 26, 1, 1

In this example, logical console number 1 is used.
The literal notation is used for the address specifica-
tion of the status response word and data locations
and the RL is given numerically.

The result of executing the macro would be a dis-
play positioned somewhere on the left scope of
logical console number 1 as follows:

1 3512
REQUEST SWITCH SETTING 1-5

Implication from the message is that the program
expects the operator to type a reply. Acceptance of
the reply requires another macro, RTY. The para-
meters for this are N, S, BA, EA, RL, TAG.

N might be 1 to specify the typewriter on
logical console 1

S is a CM word and in this case may be the
same one as before

BA is the beginning address of the input
message area, DISIN

EA need be only one larger than BA since
reply is less than 10 characters

RL is 1 since the response is a single digit

TAG is the identifier that the operator must re-
spond to in order to associate his typing

with the request being made, namely
1 3512.

The macro issued would be:
RTY 1, (S), (DISIN), (DISIN+1), 1, 1

When the system indicates a ready with the fol-
lowing display:

the operator must type a number, say 3, which is
the switch setting:

3 carriage return

to satisfy both the RTY and DHL macros. The sys-
tem places this response, 3, at the bottom of the
scope.

EXAMPLE 2

PUNCH READER PRINTER AND
TAPE INPUT/OUTPUT

Prior to execution of coded data output macros, it is
necessary that the data to be outputed exist in cen-
tral memory in BCD or display coded form. The
coded data are assumed, by the macro, to be packed
10 characters/word from left to right for all words

between the addresses contained in locations BA
and EA.

Execution of the macro produces r cards, print lines
or tape records of 10*(RL) characters each, where
r is the number of records required to output all the
data between BA and EA. In the process of transfer,
each character is translated from the internal code
to the output code according to the code conver-
sion mode C.

Suppose data to be punched are:
1.0,0203.925,441.3124 (1)

then the internal storage in display code would be:

BA 34573300000000365744
35400000003457363435
37000000000000000000 (2)
35573300000000375734
42420000003657353435
42000000000000000000

The data are to be punched and therefore must be
converted to Hollerith which calls for a conversion
mode of 1 for display to Hollerith.

The Punch macro is:
PCH 1, (S), (BA), (BA+6), 3, 1

Execution of the macro would produce the two
cards of output left justified from Column 1 as given
in (1) above.

7-8

For input the same conventions hold except in this
case the data are external and will be placed into
memory as given above. If the data example above
were left justified on two consecutive cards, and the
read card macro

RDC 1, (S), (BA), (BA+6), 3, 1

were executed, the data would come into central
memory as shown in (2) above beginning at BA.

Compatibility exists between formats for tape I/0
and cards and between card and tape output and
printer output. The conversion mode differs due to
the introduction of Hollerith code for cards. To print
the data in (2) above, the macro used would be:

PRN 1, (S), (BA), (BA+6), 3, 2
and write tape would be

WRC 1, (S), (BA), (BA+6), 3, 2
To read the data from the output tape a
RFC 1, (S), (BA), (BA+6), 3, 1

produces the same internal form as given in (2)
above.

For binary data transfers, the conversion mode
C = 0 is used. This mode produces a bit-by-bit
transfer without conversion to the output device
from memory or from the device to memory. In the
case of card input and output, one column on the
card corresponds to one of 5 12-bit bytes of each
CM word. That is, the leftmost 5 columns are in-
serted from left to right into the first CM word
specified, the next five into the next CM word, etc.
RL is the number of consecutive 5 column fields
to be considered on each card. Examples of binary
and coded inputs and their conversion to card image
in central memory are given in Figures 3 and 4,
respectively.

Row

11
0 6000000000000000000000000000 0000000000000000000000
123 45678 91011 12131415161718192021222324252627 B 596061 626364 6566676868 7071 72713747576777879 80
1 IRRRRREERRERRRERRRRRRRRRRRRE SERRERRRRRRRRRRRRRRERE
2 222222222222222222222222222 22222222222222222222222
3 33333333333333333333333333 333333333333333333333333 BINARY
4 ‘ CARD
A44444444444444444484484444 A4444444404444444444444444 INPUT
5 5555555555555565555555555) A55555555555555555555555555
6 666666666666666666666666 G66666666666666666666666666
7 17171711111171117111111111111 117111711111 17171171111711111111
8 888888563868808838588088888 88888888888888888883888888
9 9999999999399999999599999 999999995999989999999989999
123456708 910M1Mi1213141516171819202122232425 565758596061 6263646566676863 70217273 747576771787950
Column \ GLOBE NO. 1 STANDARD FORM 5081 /
Il @
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
Bit 59 48 47) 36 35 . 24 23 1211 o]
Word 1 Col. 1 Col. 2 Col. 3 Col 4 Col. 5 CARD IMAGE
Word 2 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10 IN
CENTRAL
— MEMORY
/ Ry,
Word 16 Col. 76 Col. 77 Col. 78 Col. 79 Col. 80
Bit 11 0
i2|1fof1fa|ala|s]6[7]s]o0 o
- —]
ZONES ROWS

Figure 3. BINARY CARD INPUT

Row /

\

12
11
0 00000000000000000000000060400 0000000000000000000000
123 45678 91011121314151617 18 1920 27 22 2324 25 26 27 X 959 6061 62 6364 63 6567 686970717273 747576 7778 79 80
1 IRRRERRRRREEEERRRERERRRRAR R IRRSRERE RS REERRRRERERER
2 222222222222222222222222222 2222222222222222222221212
13 CODED
3 33333333333333333333333333 3333333333333332333333 CARD
4 444444444444484444444454444 BA4444444444444444840444444 INPUT
5 555555555555555555655555) p55555555555555555555555555
6 666666666666666666866668 666G666666666665666666666666
7 771711711117111111711117111111 77171717111171711711111111111111
8 3088508888083888088888088888 $863988688888388832588888
9 99999 399593996359999999689 59999869930999999980939
12345 793101 i213141516171819202122292425 555753595081 6263635566 CTE369 7071727374758 7T 7250
Column \ GLOBE NO. 1 STANDARD FORM 508)) /
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
Bit 59 48 47 3635 24 23 1211 o]
Word 1 Cols. 1-2 Cols. 34 Cols. 5-6 Cols. 7-8 Cols. 9-10 CARD IMAGE
IN
- - - - -9,
Word 2 Cols. 11-12 Cols. 13-14 Cols. 15-16 Cols. 17-18 Cols. 19-20 CENTRAL
J—— MEMORY

[—
~—— _\
Word 8 Cols. 71-72 Cols. 73-74 Cols. 75-76 Cols. 77-78 Cols. 79-80

Bit 11 65 0

Col. i,Coded Col. i+1,Coded

COLUMN i, i+1
BYTE i

Figure 4. CODED CARD INPUT
7-10

8. DIAGNOSTICS AND ASSEMBLER OUTPUT

8.1 ASCENT ERROR PRINTOUTS

A

B

Literal Table Full. The literal is not assigned a
location.

Symbol Table Full. The symbol is not assigned
a location,

Duplicate Symbol. The symbol in the location
field has been previously defined. A list of all
duplicate symbols is printed at the end of the
side-by-side listing.

Instruction Error. There are more than six in-
structions on the card.

Format Error. An error is detected in the format
of an instruction.

Integer Error. An error is detected in a decimal
or octal number.

K-Field Error (address field). The address por-
tion of the instruction does not meet program
specifications or is out of range.

Literal Error. An error is detected in the evalu-
ation or conversion of the literal.

Multiple Defined Reference. A reference is
made to a symbol that appears more than once
in the location field.

O Operation Code Error. The operation code can-

not be evaluated. ASCENT assumes an opera-
tion code of zero and processes the instruction
accordingly.

Parameter List Error. The parameter list does
not satisfy ASCENT specifications. The list may
contain too few or too many parameters.

Register Error. An error is detected in the
format of a register name or its improper usage.

Sign Error. A sign is incorrect or out of order.

Tag Error. A symbol in the location or address
field does not meet ASCENT specifications.

Undefined Symbol. A reference is made to a
symbol that does not appear in the location
field. ASCENT assigns a location at the end
of the object program to each unique unde-
fined symbol. In certain pseudo codes (EQU,
BSS, BSSZ), a symbol used in the address field
must be defined prior to the pseudo code. A
list of undefined symbols appears at the end
of the side-by-side listing.

8-1

08 LAAT ¥X°

€X%LX NVHTIOOHd"

0 HO4d 9X LSHUL’

9¥ OL sX—9X°

£X OL 19—¢V SINHINOD®

LX+€X NVHTOOd "

agvd Hdd.LSNI INO
NVHL HHOW 40 HTdNVXH®
HHddN IN HDYO4d”

dOLS”

AOVSSEN LNIUd
A NI L'INSAY HY0LS”

IINSAY AZITVINMON ANV ANNOYH”
asD Ol d/(d«V) aav’

H X4 (4xV) HAIAIA”

€X OL 4 avoT"

SXx¥X XIdILTAN

¢X OL d avoT’

¥X OL D avOT’

BX+IX ATdILTAN

X Ol 9 avoT’

IX Ol V AvOoT"

L9 LSHAL"
XAANI INHNAIDAQ

0=LX ISHL"

ans oL dannl NYNLAY "

¢X OL L+ TOINAS SINZINOD '
L9 OL XHANI"

19 0L T

03 24!
EX#+LX oxd

zdNS 9X az

exX—9X 9X1

19—€V £vSs

pa+EV PVS

£X#LX oxd

X €VS ¢ dns ed ¥z
€X €4S $ SLV PVS
SN €VS $ 31 SXT $ 8¥ LXIN
¢— $4S $ T 14S
* dl

Sd

55 (6+SAN) (SHW) (SNLV.LS)‘T NHd
| LYS

LX LX7Z

9X +0X LXd

eX/LX oxd

| £vS

aX+¥X)¢

a gvs

o) PVS

BX4TIX LXY

d ZVS

v VS

a0 +H/(d+V)=A HLNINOD"
TLYVLS L9 ZN

19—.49 L4S

BILMVLS LX 7z

ans [a

TOIINAS+ L9 avs

q000T L4S

I 14S

¥cy06
€LOTT
T€00309080
299.8
18899
yevys
€LOTT
0¥£E£SL100800E¥0
08889LY0T3007 1S
0S0T300E TSP TS0B09LEY
¥LLLLLOPTITO00000TTY
1100800060
(0000000000

9408

qns

0000000000ET000000TO
8¥00G00LTS
L0LS3
90L0¢
ELOSY
¥P01600ETS
¥tV
EF0TG00STS
T#00%00%1S
CILTY
0¥00500G1S
GLHV.IS LE00300TTS

T000600LS0
TLLLO

¥00030L0&0
LT003000T0

TI9VLS £¥0030.LETS
000T000LT9

LHUVLS T0000001T9

S600%20

¥60030
£600360
660030
160060
050030
L10060
910020

1100320

010030 -

L0000

90030

600020

00020

£00020

¢00020

100030

000080

LNOLNIdd NWvdOOdd TTdNVYS 2'8

8-2

D01 N SF0T30 OV.L N 1£0050 LTMV.LS N 000080 %
000000 IND-gHASV
000000 dd-gHadSV
$S01%0 LNADSY
$50000 STOIINXS
000000 syouyd
AN
q000% NOD SN 00030000000000000000 0S01Z0
I 7SS9 SLY 10000000000000000000 LF0T130
I 7SS9 SALVLS T0000000000000000000 970150
a-v NOD 00T €LLOLLLLLLLLLLLLLLLL SHOTEO
g NOD d 000000000000000FLTLT FFOTG0
I+d9°1 NOD d 000000000000000F%3LT £F0TG0
q000T ssd TOYINAS 00010000000000000000 EF00E0
2dNS nod - OVL
I 7SS9 A T0000000000000000000 ZF00G0
€000000000000000%03 LT NOD D 000000000000000703LT TH00G0
QT NOD g 000000000000000903LT 0F00%0
95T NOD ¥ 000000000000000S03LT LE00T0
« ATANVXH NV SI SIHL = DdA HAOVSSHW T000£3IT00SETTOTFE00 SE0030
agvd ¥iad - NS OH $1d-+¢v €vs 7aNS T€00G000F0TEEFS $E0020
NOLLDNY.LSNI ANO " ans fe)c LT00Z000%0 ££0030
NVHL TYON 0 LXIN § 8F SXT $6XulX oxd 00LEF09S0TELOTT FE00T0
J0 ATINVXA . OF $XV $dLLLL LXS $1d+EV €vs A0S O0SFIGLLLLOOOLTLIEERS TE00G0
LIXd OL dnnl- ans fekci LT00B000%0 0£0030
8% X4 SX LAAT" 8¥ SX'1 09505
LX OL 14" 1d LXS 0TL9L
1908 19 ¢4 CE) $500801£90 L30030
0 ¥Od 9X LSHL" A0S 9X uz $£00G090€0
9X OL SX—9X" aX —9X 9X1 Q99.6
€X OL T4—¢€V INAILNOD " 19—¢V £vs TEESS 920020

8.3 SUMMARY PAGE DIAGNOSTICS

At the end of each ASCENT assembly a summary page is printed that includes the number of errors detected,
number of symbols assigned, length of ASCENT program, length of ASPER program, amount of central mem-
ory storage defined by the ASPER program, and a list of symbols that are undefined, duplicated or not refer-
enced. An example follows:

ERRORS 00005
SYMBOLS 00234
ASCENT 02011
ASPER-PP 03121
ASPER-CM 01000
000100 N ABCDE 000205 N TAGA 000500 D AB 002006 U ST
002007 U TA 002010 U SYMB
Explanation
ERRORS - Total number of lines with at least one error.
SYMBOLS - The number of symbols assigned a location.
ASCENT - Address of the next central memory location that is available after the central memory pro-
gram.

ASPER-PP - Address of the next peripheral processor memory location that is available.
ASPER-CM - Number of central memory locations defined by the ASPER program.
aaaaaa NUD TAG

a = location assigned to TAG

N = TAG is not referenced by the program. (NULL)

U = TAG is undefined.
D = TAG is a duplicate symbol.

All numbers are octal.

8-4

9. SUBROUTINES

9.1 SYSTEM LIBRARY SUBROUTINES

A set of subroutines are provided in the system
library for general use by both ASCENT and FOR-
TRAN-66. In many cases, the library routines are
referenced as Function Subroutines by FORTRAN-
66 and as subroutines in ASCENT coding. There-
fore, a compatible format is used in the definition
of the routines, the FORTRAN code generators,
and the ASCENT calling sequences.

The general form is:

CALL NAME (LIST)

where: CALL is a FORTRAN staterﬁent.
NAME is the name of the routine.

LIST contains a sequence of operands*
which define actual parameters.

Table 5 of the Appendix gives a list of library sub-
routines and their respective calling sequences.

9.2 PROGRAMMER DEFINED
SUBROUTINES

In addition to the library functions, a programmer
may define new subroutines in the process of writ-
ing a program. These also provide separate assem-
bly and/or debugging operations from the main
program and other subroutines since over-all pro-
gram linkages are made at load time, rather than
at-compile time. Symbols within a subroutine are
local to that subroutine.

A compatible definition and calling format are used.
To define a subroutine, a header card is needed:

SUBROUTINE SYMBOL (LIST)

where: SUBROUTINE is the pseudo operation
code.

SYMBOL is the identification name for the
subroutine.

LIST is a sequence of symbols, called
Formal Parameters, separated by commas,
which represent input and output variables
to the subroutine.

References to the subroutine are made with the
statement:

CALL SYMBOL (LIST)

where: SYMBOL is the same combination of letters
used in the subroutine identification name.

LIST contains the names and values# of the
input or output parameters for the subrou-
tine in the same order as given in the sub-
routine definition list.

In addition to the parameter list, other communica-
tions are provided between the subroutine and the
calling programs. These include alternate entry
points, common data blocks, and variable subroutine
and function names for calls made within the sub-
routine. For a full discussion of these features, see
the following items in the FORTRAN-66 manual:

ENTRY
COMMON
EXTERNAL

The generation of code as a result of the CALL
statement produces a fixed sequence as follows:

RJ SUB L KE2E 4L
JP [ENTRY] . 0 A(P1)
JP [ERROR] . 0 A(P2)
. 0 A(P3)
0 0 0 A(P)n
[ENTRY]
where:
SUB is the address of the first word of

the subroutine.

* Operands may be generalized to arithmetic statement forms due to FORTRAN-ASCENT language mix properties. -See

CALL statements in FORTRAN-66 manual.

Values may be generalized to arithmetic statement forms due to FORTRAN-ASCENT language mix properties. Also, con-
tinuation cards may be used. See CALL statements in the FORTRAN-66 manual.

9-1

K is the number of parameters
given in the list.

L is an 18-bit linkage value (used
by the loader).

[ENTRY] is next line of normal coding
after the generated code.

[ERROR] is an error exit address.

A(Pi) is the address of parameter Pi;
i=12...K

Execution of the instruction
RJ SUB

sends the address of the reentry point to the first
location in SUB. This reentry point is also the
address of the first parameter.

In assembly language, this information may be used
any way the programmer chooses. If a formal
parameter list is used which matches the list of
actual parameters in the CALL statement, as in
FORTRAN, he may reference them in his code.
However, it must be realized that each formal
parameter symbol is assigned a value by the assem-
bler which corresponds to its position in the list.
Therefore, references to it yield an additive which
can be applied to the address stored in the first
word of the subroutine and used to locate the
desired parameter address.

Examples:
SUBROUTINE A(P1, P2, P3)

Pl is assigned value 0.
P2 is assigned value 1.
P3 is assigned value 2.

The first word of SUBROUTINE A contains, in the
address portion of the left 30-bit instruction, the
address of the parameter list. As an example, then,
the address of the third actual parameter is

(First word) * 273° + P3
The FORTRAN convention is as follows:

One of the B registers, say Bk, is set permanently to
the address from relative zero. Then parameter
values of simple variables are loaded using:

SAi = Bk + Pi . address of Pi— Xi

- - - . other coding to buffer
- - - . INemory access

SAi = Xi . value of Pito Xi

If an index is applied to the parameter, the second
instruction is biased by the B register containing
the index, Bj, for example.

SAi = Xi+ Bj . value of (Pi)j to Xi

10. PROGRAM SEGMENTATION

In general, the complex for a central processor pro-
gram is assumed to be made up of control programs,
subroutines, and common data blocks. The initiating
control program, any common subroutines and data
blocks comprise a permanent segment in core. Any
subsequent control programs, subroutines and their
data blocks are arranged dynamically in core in seg-
ments according to requests encountered during
execution, and as defined by segmentation control
cards.

The compiling process handles all programs and
subroutines individually. The routines are compiled
separately and, in binary form, are put together
with segmentation specifications at execute time.
Linkage betwen segments and between routines is
handled at load time. Although a routine may ap-
pear in any number of segments, only one copy need
be compiled and placed with the job.

Definition of Terms

Basic Segment — a fixed arrangement of a con-
trol program, subroutines, and common data

blocks.

Normal Segment — an arrangement of a control
program, subroutines, and common data read
into central memory dynamically as required.
It is defined by a segment control card and
loaded by means of the LOAD statement. Nor-
mal segments may be overlayed.

Control Program — defined with a PROGRAM
card and is the only executable program within
a basic segment or a normal segment.

Subroutine —a routine defined by a SUB-
ROUTINE card and executed by means of a
CALL statement.

LOAD —is a macro defined as the overlay
segment request.

The contents of a segment are provided by seg-
mentation control cards at load time and are speci-
fied as a combination of control programs, sub-
routines, and other segments. The overlay operation
when executed does not disturb the contents of the

" basic segment. However, it does destroy all other

requested segments operated prior to the loading of
the overlay. Overlay requests may occur without
restriction in any segment and are coded in line
where the decision is reached that an overlay is
required.

Two independent segmentation concepts are pro-
vided under a single programming mechanism. The
first method allows a basic segment, which resides
permanently in core, to initiate loading, and to con-
trol routing to the various subroutines in the job.
Under this concept, control flows back and forth
between the basic segment and any routine in the
other segments, but always returns to the basic
segment prior to the initiation of an overlay. When
an overlay is initiated, control continues to the next
instruction in line (no control transfer occurs).

The second method provides a program chaining
operation. Under this method each successive over-
lay has its own control program and provides con-
trol routing through the various routines in that
overlay. Each new overlay destroys the preceding
one. Since loading is initiated by the overlay, it is
necessary that a control transfer be made in con-
junction with the load request.

An overlay request may occur in any segment. How-
ever, a transfer address must be provided if the
request is made from other than the basic segment.
The transfer address, if required, is taken to be that
of the control program which has a trace of asterisks
all the way through to the LOAD statement. An
example of a segmented program and the tracing
of control through the segments with asterisks
follows:

EXAMPLE: (Control in Normal Segments)

Assume the basic segment is loaded consisting
of non-executable statements defining common
data and storage areas and a load request:

LOAD * SEG1 *
SEGI is defined as:
SEG1 = *PROGRAM A* SUBROUTINE
Al, SUBROUTINE A2

After the load is accomplished, control is
shifted to Program A as a result of asterisks
around SEGI and Program A in the definition
of SEGI.

10-1

10-

Assume a load request is given in SEGI:
LOAD * SEG2 *

SEG2 = *PROGRAM B*, SUBROUTINE
B1, SUBROUTINE B2

The load is then performed and control turned
over to Program B.

Suppose an overlay request exists within SEG2
which includes both segments SEGI and SEGZ,
plus Program C. In addition, suppose control
is to be shifted back to Program A after SEG3
has been loaded. The specification of the third
segment may take one of several forms:

1. SEG3 = *PROGRAM A*, SUB-
ROUTINE Al, SUB-
ROUTINEA2, PROGRAM B,
SUBROUTINE BI,
SUBROUTINE B2,
PROGRAM C

2. SEG3 = /*SEG1*/, PROGRAM B,
SUBROUTINE BI,
SUBROUTINE B2,
PROGRAM C

3. SEG3 = /*SEG1*/, /SEG2/,
PROGRAM C

where slashes indicate the enclosed is a
segment name.

Upon a LOAD *SEG3* statement, each of
these three forms will produce the same core
arrangement and transfer control to Program A
since it is the only routine in this segment
specification which has an asterisk trace through
the segment definitions to the LOAD statement.
Program A is asterisked (definition 1 above
contains asterisks around Program A, defini-
tions 2 and 3 above have asterisks around
SEGI1, which contains Program A enclosed
with asterisks), SEG3 is asterisked in the LOAD
statement.

However, if control is desired for Program C,
SEG3 may then be defined as:

SEG3 = /SEGL1/, /SEGZ/,
PROGRAM C

or either of the other two forms may be used
with Program C enclosed with the asterisks.

A transfer address is not necessary when the basic
segment maintains control throughout the execution
of the object program. In this instance, segments
consist of subroutines which are executed by means
of a CALL statement. An example of a segmented
program with control residing in the basic segment
follows:

EXAMPLE: (Control in Basic Segment)

Assume the basic segment is loaded and execut-
ing. At some point within the basic segment, a
load request is coded:

LOAD SEG4
SEG4 is defined as:

SEG4 = SUBROUTINE A,
SUBROUTINE Al,
SUBROUTINE A2

After the load is accomplished, all program-
ming conventions relative to subroutine calls
and communications may be followed. How-
ever, when the tasks of the routines in the
normal segment are completed, control always
reverts to the calling program in the basic seg-
ment which may then request the loading of
another segment.

With reference to these examples, general charac-
teristics of segment specifications are stated as
follows:

1. Segments may be defined as a combination of
routines and other segments. There is no limit
on the depth used in the specification. Segment
hierarchies may be conveniently defined as speci-
fying large and highly overlapping segments.

R

. There is no requirement that a one-to-one cor-
respondence exist between segment definitions
and segments referenced in LOAD statements.
Extra segments may be defined which contain
common groupings of routines and these seg-
ments may then be used to define the larger
segments. FEach segment referenced by a LOAD
statement must be defined by a segmentation
card; if not, the entire job is aborted.

3. With the chaining method, control is passed to a
program in the loaded segment by an unbroken
chain of asterisks from the LOAD statement
through the segment specifications to the pro-
gram name. This provides the necessary control
routine capability.

4. There is no requirement that program or sub-
routine names appear uniquely in the combina-
tion of segments that define a segment. The
union of the segments designates the routines to
be loaded. This assures that there is no loss in
core utilization due to name redundancies:

5. Segment identifiers used in the definition of other
segments are surrounded by slash marks (/) to
distinguish them from program and subroutine
names. If a segment name is enclosed in asterisks,
the asterisks are placed inside the slash marks.

The following restrictions are made:

1. If the LOAD statement specifies a transfer of
control, one and only one program in the loaded
segment must be designated as recipient of the
control by meeting characteristic number 3.

1o

No mixing of the two methods is permissible
although a one-time switch may be made from
the basic segment concept to the chaining con-
cept. Once the chaining process is used, there is
no way to return control to the PROGRAM in
the basic segment.

A core map taken at the completion of the loading
of the basic segment would show the control pro-
grams, the programmer subroutines in the basic
segment, one copy of common data blocks, and one
copy of library subroutines and functions referenced
by these basic segment routines. The block of
memory required for this segment is permanently
reserved. The next location after this block is the
initial address for all normal segments called by a
LOAD statement.

If there are additional segments specified to ac-
company the basic segment in the initial load or
when an overlay request occurs, these segments are
brought in from the disk and relocated at the initial
overlay address. Addresses for common blocks refer-
enced in the segments are determined from their
location within the basic segment, or they are as-
signed and inserted where appropriate. Also one
copy of any library subroutine, not previously
required or loaded, is added to the program and
linkages for all routines are then made.

When a transfer is indicated by the segment speci-
fication (asterisks around NAME), a similar name
form is sought from the segment name list and
control is routed to its single entry point.

10-3

WVHD0Hd IN3OSY [
WVHDOHd HidsY W —
WYHO0Ud Nvdluod @
1nd100
318vavoay v
H0SS300Ud dd
S P OUIVM
A—— F9YNONV @ T e e e e dd W31SAS
RS = s e e = ,
sonsn |l d
1ndlno |w aod S:Wm
WY¥50ld |@ p=
y €3
! e
! %)
. e >
¥0SS3004d | H R n
INILNOYENS g o &)
7 AdVHE 4D (@5
_ == = m
T 1ndLNo | m 2
1 T1EVAVOT3Y | g P r e E TU e
| o S ST
: - % WyHDO0ud S Q
¥OSSI00Yd | JouiNoo | e ﬁ @)
OHOVH o 1nant 1Y T LT, =
W3LSAS vivad [) Y o
% o
S
Ve
ey — ©
5 e —] el
)
HOSSIH0Ud T =
3000 |)
G 0anasd o
F] [] Fry
= d2
L _
¥oss300Nd |,
_ OHOVH (B}
L HINWYHDO0Ud j‘

10-4

11. PROGRAM ORGANIZATION

In the most general case, a program may have a
combination of ASCENT or FORTRAN main pro-
grams, FORTRAN subroutines, assembly language
subroutines, and peripheral processor programs. The
program may be logically broken into any number
of segments or overlays to be called during execu-
tion.

Any one of the central processor programs or sub-
routines, whether ASCENT or FORTRAN, may
contain both languages mixed on a line-for-line
basis. Also, any one of the central processor pro-
grams or subroutines, without regard to the seg-
ment in which it lies, may have its own set of periph-
eral processor programs. The individual peripheral
processor programs may have overlays that are
called during their own execution. They may also
contain calls for the loading of other peripheral
processor programs. A program with these opera-
tions is illustrated in skeleton form in Table 6. Sev-
eral items which arg not illustrated but can exist are:

1. Each of the CP programs or subroutines may
contain COMMON block definitions and refer-
ences:

o

Each P_P program may define its own private data
blocks in central memory.

3. Any of the routines may contain calls for system
library subroutines and functions.

4. Any of the routines, CP or PP, may contain macro
calls for system I/O operations.

5. Any one or all of the PP routines may contain
requests to the system for I/O channels and its
own I/0 operations.

The general composite program in Table 6'shows
those cases where unusual situations exist such as
real time applications, very large problems, or prob-
lems which lend themselves to joint effort by more
than one processor. Other programs, more conven-
tional in nature, are handled in a normal manner by
appropriate parts of the programming system. Setup
procedures are standardized so that it is not neces-
sary to put special control information in a program
to indicate its nature. Rather, the various operations
inherent in the unusual program are used to deter-
mine control requirements.

11.1 PROGRAM SETUP

11.1.1 HOMOGENEOUS PROGRAMS

The setup of a conventional program requires only
the problem related instructions as defined for the
language used ~ FORTRAN programs contain only
compatible FORTRAN statements, etc. Precise
specifications and examples of single language pro-
grams appear in the ASCENT, ASPER, and FOR-
TRAN-66 manuals. Figure 5 illustrates the relation-
ship of these programs.

11.1.2 MIXED FORTRAN-66/ASCENT
LANGUAGE PROGRAMS

At any given moment during compilation, the pro-
gramming system is in one of three modes, two of
which are of interest here — FORTRAN mode and
ASCENT mode. Initial mode is established by the
header card used:

PROGRAM NAME
SUBROUTINE NAME b — FORTRAN mode
(LIST)

ASCENT NAME

;

— ASCENT mode

Once a mode is established, processing proceeds
as in a homogeneous program until the mode is
switched by the contents of one of the statement
cards as follows:

F in column 1
Numeric statement tag > - FORTRAN Mode
in columns 2-5

A in column 1

Non-numeric statement
tag beginning in
columns 2 -5

— ASCENT Mode

It should be noted that only the first statement of a
sequence of like code need contain the mode infor-
mation, although redundant mode information on
the cards does not affect the compilation.

The internal procedure, upon the occurrence of an
END card, depends on the type of header card
used. If a PROGRAM card is used, a stop instruc-
tion is generated; if a SUBROUTINE card is used,
an exit return is generated; and if an ASCENT card
is used, no generation takes place.

11-1

11.1.3 MIXED CENTRAL PROCESSOR AND PROGRAM NAME 1

ASPER PROGRAMS

In addition to the mix capability provided for cen- . Central processor coding
tral processor languages, it is also permissible to
insert peripheral processor programs into central
processor programs. This gives the programmer ASPER NAME 2

the capability of writing routines that share the -

processing load. Any number of ASPER routines

may be defined as part of one central processor rou- . Peripheral processor coding
tine. The only limit exists relative to the number of
routines which can be expected for simultaneous

execution in peripheral processors. It should be END } Normal END card for CP program
noted that the assignments of ASPER routines are

dynamically arranged during execution, and are Similarly, a central processor program deck, with
assigned to a peripheral processor only when re- two ASPER routines inserted would be made up as
quested and remain there only as long as required. follows:

This means that, during the process of a run, a PROGRAM NAME 1

single peripheral processor might execute, by —
request, several different programs or the same one
several times. . Central processor coding

ASPER routines are inserted into the central proc-

essor program decks immediately prior to the END ASPER NAME 2

card and are, within themselves, homogeneous — @)
ASPER language routines. They are headed with
an: . Peripheral processor coding

ASPER NAME

ASPER NAME 3
card. Each is followed by either the END card for

the central processor routine or another ASPER .
routine similarly headed by the ASPER header . Peripheral processor coding
card. A central processor program deck, with one

ASPER routine inserted, would be made up as —
follows: END } Normal END card for CP program

11-2

APPENDIX

TABLE 1
CENTRAL PROCESSOR OPERATION CODES

Octal
Opcode Mnemonic Address Comments
. BRANCH UNIT j
00 PS . Program stop |
01 RJ K . Return jump to K
02 JP Bi + K . JumptoBi + K |
030 ZR Xj K . Jump to Kif Xj = 0
031 NZ Xj K . Jump to K if Xj=£0
032 PL Xj X . Jump to K if Xj = plus (positive)
033 NG Xj K . Jump to K if Xj = negative
034 IR Xj K . Jump to K if Xj is in range
035 OR Xj K . Jump to K if Xj is out of range
036 DF Xj X . Jump to K if Xj is definite
037 ID Xj K . Jump to K if Xj is indefinite
04 EQ Bi Bj K . Jump to X if Bi = Bj
04 ZR Bi X . Jump to K if Bi = B0
05 NE Bi Bj K . Jump to K if Bi =~ Bj
05 NZ Bi K . Jump to K if Bi =% B0
06 GE Bi Bj K . Jump to K if Bi = Bj
06 PL Bi K . Jump to K if Bi = B0
07 LT Bi Bj X . Jump to K if Bi < Bj
07 NG Bi K . Jump to K if Bi < BO
. BOOLEAN UNIT
10 BXi Xj . Transmit Xj to Xi
11 BXi Xj*Xk . Logical Product of Xj & Xk to Xi
12 BXi Xj + Xk . Logical sum of Xj & Xk to Xi
13 BXi Xj — Xk . Logical difference of Xj & Xk to Xi
14 BXi — Xk . Transmit the comp. of Xk to Xi
15 BXi — Xk#Xj . Logical product of Xj & Xk comp. to Xi
16 BXi — Xk + Xj . Logical sum of Xj & Xk comp. to Xi
17 BXi — Xk — Xj . Logical difference of Xj & Xk comp. to Xi
. SHIFT UNIT
20 LXi ik . Left shift Xi, jk places
21 AXi ik . Arithmetic right shift Xi, jk places
22 LXi Bj Xk . Left shift Xk nominally Bj places to Xi ;
23 AXi Bj Xk . Arithmetic right shift Xk nominally Bj places to Xi |
24 NXi Bj Xk . Normalize Xk in Xi and Bj ‘
25 ZXi Bi Xk . Round and normalize Xk in Xi and Bj
26 UXi Bj Xk . Unpack Xk to Xi and Bj
27 PXi Bj Xk . Pack Xifrom Xk and Bj
43 MXi ik . Form mask in Xi, jk bits
. ADD UNIT
30 FXi Xj + Xk . Floating sum of Xj and Xk to Xi
31 FXi Xj — Xk . Floating difference Xj and Xk to Xi
32 DXi Xj + Xk . Floating DP sum of Xj and Xk to Xi

Octal

Opcode Mnemonic Address Comments

33 DXi Xj — Xk . Floating DP difference of Xj and Xk to Xi

34 RXi Xj + Xk . Round floating sum of Xj and Xk to Xi

35 RXi Xj — Xk . Round floating difference of Xj and Xk to Xi
. LONG ADD UNIT

36 IXi Xj + Xk . Integer sum of Xj and Xk to Xi

37 IXi Xj — Xk . Integer difference of Xj and Xk to Xi
. MULTIPLY UNIT

40 FXi Xj * Xk . Floating product of Xj and Xk to Xi

41 RXi Xj * Xk . Round floating produect of Xj & Xk to Xi

42 DXi Xj * Xk . Floating DP product of Xj & Xk to Xi
. DIVIDE UNIT

44 FXi Xj / Xk . Floating divide Xj by Xk to Xi

45 RXi Xj / Xk . Round floating divide Xj by Xk to Xi

46 NO, . No operation

47 CXi Xk . Count the number of 1’s in Xk to Xi
. INCREMENT UNIT

50 SAi Aj + K . SetAito Aj + K

50 SAi Aj — K . Set Aito Aj + comp. of K

51 SAi Bj + K . SetAitoBj + K

51 SAi Bi — K . Set Aito Bj + comp. of K

52 SAi Xj + K . SetAitoXj + K

52 SAi Xj - K . Set Aito Xj -+ comp. of K

53 SAi Xj + Bk . Set Aito Xj + Bk

54 SAi Aj + Bk . Set Aito Aj + Bk

55 SAi Aj — Bk . SetAito Aj — Bk

56 SAi Bj + Bk . Set Aito Bj + Bk

57 SAi Bj — Bk . Set Ai to Bj — Bk

60 SBi Aj + K . SetBito Aj + K

60 SBi Aj — K . Set Bito Aj + comp. of K

61 SBi Bji + K . SetBitoBj + K

61 SBi Bj — K . Set Bi to Bj + comp. of K

62 SBi Xj + K . SetBito Xj + K

62 SBi Xj — K . Set Bi to Xj + comp. of K

63 SBi Xj + Bk . Set Bito Xj + Bk

64 SBi Aj + Bk . Set Bito Aj + Bk

65 SBi Aj — Bk . Set Bito Aj — Bk

66 SBi Bj + Bk . Set Bi to Bj + Bk

67 SBi Bj — Bk . Set Bito Bj — Bk

70 SXi Aj + K . SetXito Aj + K

70 SXi Aj — K . Set Xito Aj + comp. of K

71 SXi Bj + K . SetXitoBj + K

71 SXi Bj — K . Set Xito Bj + comp. of K

72 SXi Xj + K . SetXitoXj + K

72 SXi Xj— K . Set Xito Xj + comp. of K

73 SXi Xj + Bk . Set Xito Xj + Bk

74 SXi Aj -+ Bk . SetXito Aj + Bk

75 SXi Aj — Bk . SetXito Aj — Bk

76 SXi Bj + Bk . Set Xi to Bj + Bk

77 SXi Bj — Bk . Set Xito Bj — Bk

A-3

TABLE 2
PSEUDO OPERATION CODES

A4

OPCODE MEANING

ASCENT Defines CP program

END Defines end of CP program

ASPER Defines PP routine

SUBROUTINE Defines subroutine name

BSSD Reserves disk space

BSS Reserves central memory region

BSSZ Reserves central memory region and
presets it to zero

EQU Equates a symbol to a value

DPC Inserts display-coded characters into
program

BCD Inserts BCD characters into program

CON Defines constants in program
Remarks field excluded

LIST Controls side-by-side listing

SPACE Spaces side-by-side listing

EJECT Ejects page on side-by-side listing

TABLE 3
SYSTEM MACROS

RQTW
DRTW
SFFW
SFBW
WFMW

RWLW"

RWUW
FSPW
BSPW
RFCW
RFBW
WRCW
WRBW
RDHW
RDRW
WRDW
SSPW
DSPW
FCTW
FC8W
MC1W
MC2W
MC3W
MCAW
MC5W

Request tape assignment from system.
Release tape back to system.
Search file mark forward.

Search file mark backward.

Write file mark.

Rewind tape to load point.
Rewind tape for unload.
Forespace.

Backspace.

Read tape forward coded mode.
Read tape forward binary mode.
Write tape coded mode.

Write tape binary mode.

BRead record and hold data on disk.

Read record and release data on disk.

Write record bn disk.
Single space printer.
Double space printer.
Select Format Channel 7.
Select Format Channel 8.
Select Monitor Channel 1.
Select Monitor Channel 2.
Select Monitor Channel 3.
Select Monitor Channel 4.
Select Monitor Channel 5.

MCEW
CMCW
SPAW

PRNW
PCHW
RDCW
DSRW.

DSLW
DHRW
DHLW

RDPW
RTYW
WAIW
TPPW

ROMW
DRMW
RQDW

DRDW.
LOAD

Select Monitor Channel 6.

Clear Monitor Channels 1 — 6.
Suppress space after next print.
Print single line or multiple lines.
Punch cards.

Read cards.

Display on right scope for system
time limit.

Display on left scope for system
time limit,

Display on right scope and hold
indefinitely.

Display on left scope and hold
indefinitely.

Remove display.

Read console typewriter.

Check status word.

Transfer program SYMBOL from CM
to PP memory and begin execution
with first ASPER instruction.
Request memory.

Release memory.

Request disk space.

Release disk space.

Load segment SYMBOL.

A5

TABLE 4
6600 COMPUTER
CHARACTER CODES

Hollerith
Display Printer Punch
Character Code Code Positions

A 01 61 12-1
B 02 62 12-2
C 03 63 12-3
D 04 64 12-4
E 05 65 12-5
F 06 66 12-6
G 07 67 12-7
H 10 70 12-8§
I 11 71 129
J 12 41 11-1
K 13 42 11-2
L 14 43 11-3
M 15 44 11-4
N 16 45 11-5
0 17 46 11-6
P 20 47 117
Q 21 50 11-8
R 22 51 11-9
S 23 22 0-2
T 24 123 0-3
U 25 24 0-4
A% 26 25 0-5
W 7 26 0-6
X 30 27 0-7
Y 31 30 0-8
Z 32 31 0-9
0 33 12 0
1 34 01 1
2 35 02 2
3 36 03 3
4 37 04 4
5 40 05 5
6 41 06 6
7 42 07 7
8 43 10 8
9 44 11 9
blank 00 20 space
+ 45 60 12
- 46 40 11
* 47 54 11-84
/ 50 21 0-1
(51 34 0-8-4

Hollerith

/@ Display Printer Punch
b Character Code Code Positions
) 52 74 12-8-4
= 54 13 8-3
= 55 14 8-4
, 56 33 0-8-3
57 73 12-8-3
$ 63 53 11-8-3
: [53 00 illegal
= 60 15 5-8
% 61 16 6-8
[76 17 7-8
1 77 32 0-2-8
- 62 35 0-5-8
= 64 36 0-6-8
A internal| g5 37 0-7-8
v codes gg 52 11-2-8
L I 55 11-5-8
! 70 56 11-6-8
> 71 57 11-7-8
< 72 72 12-2-8
= 73 75 12-5-8
| 74 76 12-6-8
; 75 77 12-7-8

®

TABLE 5
LIBRARY SUBROUTINES

Any library subroutine may be called by name, either with or without the terminal F.

Let: Si be the ith symbol
I represent integer

F represent floating single precision

Input Output
NAME Calling Sequence Parameters Mode Parameters Mode Remarks
ABSF Call ABSF (S,, S,) S, Ior ¥ S. same as Form absolute
input value
INTF Call INTF (S,, S,) S, F S. F Truncate fraction
XINTF Call XINTF (S,, S) S, F S, I Truncate fraction
XFIXF Call XFIXF (S,, S:) S. F S. 1 Truncate fraction
MODF Call MODF (S, S,, Sa) S,, S, F S F S; =S, modulo$,
XMODF Call XMODF (S,, S., S:) S, S. I S, I S; = S; modulo S,
MAXOF Call MAXOF S$.,S,...5n—1 I Sn F Sn = maximum
(S1, Sz, . . . Sn) (Sy,S....Sn—1)
XMAXOF Call XMAXOF $.,S,...5n—1 I Sn I Sn = maximum
(S4, Ss, ... Sn) (54,S....Sn—1)
MAXI1F Call MAX1F $.,Ss...5n—1 F Sn F Sn = maximum
(S1,S,,...Sn) (5,S:...Sn—1)
XMAX1F Call XMAX1F $5,Ss,...S5n—1 F Sn I Sn = maximum
(S, S,, ... Sn)) (S4,S:...5n—1)
MINOF Call MINOF $.,S,,...5n—1 I Sn F Sn = minimum
(S1,S,,...Sn) (S4,S:...5n—1)
XMINOF Call XMINOF S$4,S,...5n—1 I Sn I Sn = minimum
(S4, Sz, . . . Sn) (54,S:...5n—1)
MINI1F Call MIN1F S$,Ss,...5n—1 F Sn F Sn = minimum
(S4,Ss, . .. Sn) (54, S:...5n—1)
XMINI1F Call XMINI1F S,S:,...5n—1 F Sn I Sn = minimum
(S4, Ss, .. . Sn) (51,S:...5n—1)
SINF Call SINF (S,, S:) S,, radians F S, F S, =sin §;
COSF Call COSF (S, S2) S,, radians F S, F S, =cos S,
TANF Call TANF (S,, S.) S,, radians F S. F S, =tan S,
ASINF Call ASINF (S,, S.) S. F S., radians F S,=sin?S,;
ACOSF Call ACOSF (S,, S.) S, F S., radians F S,=costS,
ATANF Call ATANF (S,, S.) S, F S., radians F S,=tan?§,
TANHF Call TANHF (S,, S2) S,, radians F S, F S, = tanh S,
SQRTF Call SQRTF (S,, S.) S, F S, F S. =VS,
LOGF Call LOGF (S,, S:) S, F S, F S,=log.S;
EXPF Call EXPF (S,, S2) S, F S, F S, = €%
SIGNF Call SIGNF (S,, S,, Sa) S, S Forl S, Forl S;=Sign$S,
times S,

A-8

@

NAME

DIMF

XDIMF

CUBERTF
FLOATF

RANF

POWERF

ITOJ
XTOI

ITOX

*Sign of S; defines result mode, + is I, — is F.

Calling Sequence

Call DIMF (S, Ss, S)

Call XDIMF (S,, S, S)

Call CUBERTF (S, S.)

Call FLOATF (S,, S:)
Call RANF (S,, S.)
Call POWERF

(SI: S2) SS)

Call ITOJ (S, Ss, Ss)
Call XTOI (S,, Sz, Ss)

CallITOX (S,, S, S4)

Input Output
Parameters Mode Parameters Mode Remarks
S, S, F S, F IfS, > S, then
S;=8S,—-8,
If S, = S. then
S; =0
S, S, I S, I IfS, > S, then
S;=S,—-85,
IS, =S, then
S; =0

S, F S F S, = (§8,)¥?

S, 1 S F S. = S, in floating
single pre-
cision form

S, TorF S. I or F* S, = number,
repeated
usage gives
uniformally dis-
tributed set

S.,S. F S, F S, =8§,%
S., S. I S, I S, =5,
S, S, F, I S, F S, =8§,%
respec-
tively
S.,S LF S, ¥ S, =8§,%
respec-
tively

TABLE 6
COMPOSITE PROGRAM

Program Item Remarks

PROGRAM COMPOSITE . First card of normal program deck.

. Conventional FORTRAN and/or ASCENT operations.

LOAD S1 . Load segment S1 which contains subroutines “B” and “C”
immediately after subroutine “A.”

CALL B (X1, X2) . Normal subroutine calls for overlay subroutines.

. Conventional FORTRAN and/or ASCENT operations.

TPP 1, S, PPA . Transfer PP routine “PPA™ to any -available PP. Label that
PP logical 1, start execution.

— . Continuation of FORTRAN and ASCENT language steps.
. References to any identifiers of “COMPOSITE,” including
COMMON block data, are permissible.

LOAD S2
ASPER FPA . Define beginning of PP routine “PPA.”
TAG . . Tagged line to be used as overlay point.
— . Continuation of program for first segment.
. References to any identifiers of “COMPOSITE,” including
COMMON block data, are permissible.
SUBP PPAL, TAG . Header card for overlay section of PP code. “TAG” is overlay

point.

A-10

@

Program Item

Remarks

END
SUBROUTINE A (P1, P2, P3)

END
SUBROUTINE B (P1, P2)

END
SUBROUTINE C (P1, P2, P3, P4)

TPP 2, S, PPB

TPP 3, S, PPC

. Header card for subroutine “A.

. Continuation of code. References to identifiers in either

“COMPOSITE” or “PPA” prior to line “TAG.”

. End card for program “COMPOSITE.”

a3

. Conventional FORTRAN and/or ASCENT operations.

. Header card for subroutine “B.”

. Header card for subroutine “C.”

. Transfer PP routine “PPB” to any available PP. Label this PP

logical 2, start execution. (Logical 1 could be specified with-
out conflict since the previous logical 1 was defined in another
subroutine.)

. Conventional FORTRAN and/or ASCENT operations.

. Transfer PP routine “PPC” to any available PP other than

logical 2.

. Label it logical 3, start execution.

. Conventional FORTRAN and/or ASCENT operations.

A-11

Program Item

Remarks

TPP 2, S, PPD

ASPER PPB

ASPER PPC

ASPER PPD

TPP 1, S, PPE

ASPER PPE

END
PROGRAM D

A-12

. Transfer PP routine “PPD” to any available PP other than

logical 3, if logical 2 is available. If not, hold transfer until it
is. Label it logical 2. Start execution.

. Conventional FORTRAN and/or ASCENT operations.

. Header card for peripheral processor routine. The name

could be PPA without conflict since the other PPA was local
to “COMPOSITE.”

. Normal ASPER Steps.
. References to identifiers of subroutine “C” including COM-

MON block data are permissible.

. Header card for PP routine “PPC.”

. Normal ASPER Steps. References to identifiers of subrou-

tine “C.”

. Header card for PP routine “PPD.”

. Normal ASPER steps.
. References to identifiers of subroutine “C.”

. Transfer PP routine “PPE” to any available PP other than

logical 2 and 3.

. Normal ASPER steps.
. References to identifiers of subroutine “C.”

. Header card for PP routine “PPE.”

. Other ASPER steps.
. References to identifiers in subroutine “C.”

. End of subroutine “C” and related PP routines.

. Header card for alternate control program after overlay.

Program Item Remarks

. Conventional FORTRAN and/or ASCENT coding.

END . End of Program D.
END . End of overall program including related subroutines.

A-13

®

o

Central Processor

Instruction Execution Times

Time Time
Mnemonic & (Minor Mnemonic & (Minor
Octal Code Name Cycles) Octal Code Name Cycles)
BRANCH UNIT LONG ADD UNIT
PS 00 STOP - IXi 36 [INTEGER SUM of Xj and Xk to Xi 3
RJ 01 RETURN JUMP to K 13 X 37 INTEGER DIFFERENCE of Xj and
P 02 GO TOK - Bi 8* Xk to Xi 3
ZR 030 GOTOKIifXj = zero 8"
NZ 031 GOTOKIfXj 5~ zero 8* MULTIPLY UNIT
PL 032 GOTOKifXj = positive g FXi 40 FLOATING PRODUCT of Xj and
NG 033 GOTOKIfXj = negative 8* Xk to Xi 10
IR 034 GO TO K if Xj is in range g RXi 41 ROUND FLOATING PRODUCT of
OR 035 GOTOKIfXjisout of range 8" Xj and Xk to Xi 10
DF 036 GO TO K if X is definite 8+ DXi 42 FLOATING DP PRODUCT of Xj and
ID 037 GO TOKif Xj is indefinite 8* Xk to Xi 10
0 gﬁ} GO TOK if Bi = Bj g DIVIDE UNIT
NE 05 . . FXi 44 FLOATING DIVIDE Xj by Xk to Xi 29
NZ 05} GOTOKif Bi 7 B] 8 RXi 45 ROUND FLOATING DIVIDE Xj by
GE gg} GO TO K if Bi = Bj g* - PA’;‘; toXi %
Ly 8;} GO TOK if Bi < B g CXi 47 SUMofl'sinXktoXi 8
BOOLEAN UNIT INCREMENT UNIT
BXi 10 TRANSMIT Xj to Xi 3 SAi 50 SUM of Aj and K to Ai 3
BXi 11 LOGICAL PRODUCT of Xj and Xk to Xi 3 SAi 51 SUMofBjandKtoAi 3
BXi 12 LOGICAL SUM of X} and Xk to Xi 3 SA 52 SUMofXjandKtoAi 3
BXi 13 LO)((}ll(CtﬁLX PIFFERENCE of Xj and , S 53 SUM ofXjand Bkto A 3
BXi 14 TRANSMIT Xk COMP. to Xi 3 SAi 54 SUMof Ajand Bk to Ai 3
BXi 15 LOGICAL PRODUCT of Xj and Xk SAi 55 DIFFERENCE of Aj and Bk to Ai 3
COMP. to XI 3 SAi 56 SUM of Bj and Bk to Ai 3
BXi 16 Logéc,;\# igr)vg of X and Xk , SAi 57 DIFFERENGE of Bj and Bk to Ai 3
BXi 17 LOGICAL DIFFERENCE of Xj and Xk SBi 60 SUMofAjand K toBi 8
COMP. to Xi 3 SBi 61 SUM of Bj and K to Bi 3
SHIFT UNIT SBi 62 SUM of Xj and K to Bi 3
IXi 20 SHIFT Xi LEFT jk places 3 SBi 63 SUMofXjand BktoBi 3
A2 SHIFT Xi RIGHT jk places 3 SBi 64 SUM of Ajand Bk to Bi 3
i 22 SHIFT Xk NOMINALLY LEFT Bj SBi 65 DIFFERENGE of Aj and Bk to Bi 3
R places fo Xi RXi , 3 SBi 66 SUM of Bjand Bk to Bi 3
i 23 SR Xk N OMINALLY RIGHT B} 3 SBi 67 DIFFERENCE of Bj and Bk to Bi 3
NXi 24 NORMALIZE Xk in Xi and Bj 4 SXi 70 SUMof Ajand KtoXi 3
i 25 ROUND AND NORMALIZE Xk in sKi 71 SUM of Bj and K to Xi 3
Xiand Bj 4 sXi 72 SUM of Xj and K to Xi 3
Uxi 26 UNPACK Xk to Xi and Bj 3 SXi 73 SUM of Xj and Bk to Xi 3
PXi 27 PACKXifrom Xk and Bj 3 SXi 74 SUMofAjand Bk toXi 3
MXi 43 FORM ik MASKin X 3 SXi 75 DIFFERENCE of Aj and Bk toXi 3
FXi 30 IF\I[_)C[))ATUI:I(ISUM £ Xj and Xk to Xi 4 SKi 76 SUMofBjandBkio X g
i 0 an 0 Al . 3 H
Xi 3l FLOATING DIFFEREIilCE of Xj and SKi 77 DIFFERENCE of Bj and B to X
Xk to Xi 4
DXi 32 FLOATING DP SUM of Xj and
Xk to Xi 4 Comp.—Complement
DXi 33 FLOATING DP DIFFERENGE of X
and Xk to Xi 4 DP—Double Precision
RXi 34 ROUND FLOATING SUM of X; and ' -
RXi 35 RO)l(Jth[;) I):([I_OATING DIFFERENGE of Xi 4 #Add 5 minor cycles to branch time ft?r a bran::ch to an instruction whic -
and Xk to Xi 4 is out of the stack (no memory conflict considered)

v

:OP;TROL DATA SALES OFFICES

\LAMOGORDO « ALBUQUERQUE « ATLANTA . BILLINGS « BOSTON « CAPE
'ANAVERAL « CHICAGO » CINCINNATI « CLEVELAND . COLORADO SPRINGS
JALLAS « DAYTON « DENVER « DETROIT « DOWNEY, CALIFORNIA « HONOLULU
IOUSTON « HUNTSVILLE « ITHACA « KANSAS CITY, KANSAS « LOS ANGELES
NADISON, WISCONSIN -« MINNEAPOLIS « NEWARK « NEW ORLEANS « NEW
'"ORK CITY « OAKLAND » OMAHA « PALO ALTO « PHILADELPHIA « PHOENIX
NTTSBURGH « SACRAMENTO « SALT LAKE CITY « SAN BERNARDINO « SAN

JIEGO « SEATTLE - ST. LOUIS « WASHINGTON, D.C.

tho in U.S.A,

ATHENS « CANBERRA « DUSSELDORF « FRANKFURT « THE HAGUE « HAMBURG
JOHANNESBURG « LONDON « MELBOURNE « MEXICO CITY (REGAL ELEC-
TRONICA DE MEXICO, S.A.) » MILAN « MONTREAL « MUNICH « OSLO « OTTAWA
PARIS « SAVYON « STOCKHOLM + STUTTGART « SYDNEY « TOKYO(C. ITOH

ELECTRONIC COMPUTING SERVICE CO., LTD.) « TORONTO « ZURICH

8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

© 1965, Control Data Corporation
Pub. No. 601016008

