Programm

£
()
=
L
>
hn
@
-
-
Q
£
o)
(&)
-
o
O
o)
®

<
-
<
o
-l
o
oc
-
<
O
&

ing System/ Reference Manual

beizm

pheral Processor

PER

Assembly System

.

o

e
-
e
o

-

5

=

-

e

e

¢
r
.
L

T
S
ke

e
sl
B
e
-

LR

-

v
-

-
o
s

.

.
e
-

o mwwm 1

s vt
L

-

e

o

D e

S
-

o
L

S T s ,.14\.?(.; L‘»\i .

Peripheral and Control Processor

Instruction Execution Times

Time Time
Mnemonic & (Major Mnemonic & (Major
Octal Code Name Cycles) Octal Code Name Cycles)
PSN 00 Pass 1 SBI 42 Subtract ((d)) 3
LM 01 tong jump tom + (d) 2-3 LMI 43 Logical difference ((d)) 3
RIM 02 Return jumptom + (d) 34 STl 44 Store ((d)) 3
UJN 03 Unconditional jump d 1 RAI 45 Replace add ((d)) 4
ZIN 04 Zero jump d 1 AOI 46 Replace add one ((d)) 4
NIN 05 Nonzero jump d 1 SOl 47 Replace subtract one ((d)) 4
PIN 06 Plus jump d 1
MIN 07 Minus jump d 1 DM 50 Load (m + (d)) 3.4
ADM 51 Add (m + (d)) 34
SHN 10 Shiftd 1 SBM 52 Subtract (m -+ (d)) 34
LMN 11 Logical difference d 1 LMM 53 Logical difference (m + (d)) 34
LPN 12 Logical product d 1 STM 54 Store (m + (d)) 3.4
SCN 13 Selective clear d 1 RAM 55 Replace add (m + (d)) 1.5
LN 14 Loadd 1 AOM 56 Replace add one (m + (d)) 45
LCN 15 Load complemant d L SOM 57 Replace subtract one (m + (d)) 45
ADN 16 Add d 1
SBN 17 Subtract d 1
CRD 60 Central read from (A) to d min. 6
LDC 20 Load dm 2 CRM 61 Centra_l read (d) words 5 plus
ADC 21 Add dm) from (A) tom 5/word
LPC 29 Logical product dm 2 cWD 62 Central write to (A) from d min. 6
LMC 23 Logical difference dm 2 CWM 63 Central write (d) words 5 plus
PSN 24 Pass 1 to (A) fromm 5/word
PSN 25 Pass 1 AIM 64 Jump to m if channel d active 2
EXN 26 Exchange jump min. 20 1M 65 Jump to m if channel d inactive 2
RPN 27 Read program address 1 FIM 66 Jump to m if channel d full 2
EIM 67 Jump to m if channe! d empty 2
Ibb 30 Load (d) 2
ADD 31 Add (d) 2 IAN 70 Input to A from channel d 2
SBD 32 Subtract (d) 2 M 71 Input (A) words to m 4 plus
LMD 33 Logical difference (d) 2 from channel d 1/word
STD 34 Store (d) 2 0AN 72 Output from A on channel d 2
RAD 35 Replace add (d) 3 0AM 73 Output (A) words fromm 4 plus
AOD 36 Replace add one (d) 3 on channel d 1/word
sop 37 Replace subtract one (d) 3 ACN 74 Activate channel d 2
DCN 75 Disconnect channel d 2
LDI 40 Load ((d)) 3 FAN 76 Function (A) on channel d 2
AD! 41 Add ((d)) 3 FNC 77 Function m on channel d 2

PREFACE

The 6600 Assembly System for the Peripheral Proc-
essors, ASPER, is one of the functional subsets of
the 6600 Programming System. It is designed for the
6600 Programming System. It is designed for utility
both as a processor of programs written for isolated
use in a peripheral processor and as a processor of
programs written to work jointly and in synchron-
ization with central processor programs.

ASPER provides a full set of machine mnemonics,
pseudo codes and other assembly features. In addi-
tion, as a part of the 6600 Programming System, it
provides an extended capability in system-oriented
features. Some of these features are:

1. Access to all symbols of the central processor
program with which it is associated. This sym-
bolic access holds whether the central program is
written in ASCENT or FORTRAN or both and
it includes access to variables in COMMON
storage and subroutine formal parameter list.

139]

. Reservation of its own central memory words or

blocks.

3. Peripheral processor program overlay capability.

4, A full set of system macro instructions for re-
questing other peripheral processors to handle
standard input/output operations.

5. System macros to request loading of other pe-
ripheral processor programs.

Many of the properties of mixed language programs
and program organization are described in detail
in Volume I of the 6600 Programming System
Manual “ASCENT.” Volume II describes the lan-
guage forms and organization within a defined
ASPER routine.

Section 1 of this manual defines specific entities of
the symbolic language. Sections 2 and 3 give the
instruction forms; Section 4, the pseudo operations;
Sections 5 and 6, the system macros; and Section 7,
the assembler diagnostics. Section 8 describes pe-
ripheral processor program segmentation.

TABLE OF CONTENTS

LANGUAGE DEFINITIONS. . .. it ittt et e e e e e 1-1
11 CHARACTERSovivenn.. e 1-1
L2 SYMBOLS . ..ot 11
L3 CONSTANTS ..o e e e e e 1-1
14 OPERATORSvuune e e 1-1
15 LITERALS ...t 1-1
1.6 SEPARATORSounnneee et e 1-1
L7 OPERANDS ...ttt e 1-1
18 FIELDS . ..ot 12
. LANGUAGE SPECIFICATIONS it e e 2-1
2.1 FOBRMATS ..ot o-1
2.9 FIELDS . ..ot 2.9
. PERIPHERAL PROCESSOR INSTRUCTIONS 3-1
3.1 INSTRUCTION FORMATuuoeieeeee e 3-1
32 ADDRESS MODESuueteeeaeee 3-1
3.3 DESCRIPTION OF OPERATION CODES 3-2
PSEUDO OPERATION CODESt 4-1
. SYSTEM MACROS - i i e e e e e e 5-1
51 MAGNETIC TAPE OPERATIONSoouuuunnnnnei... 5.4
52 DISK TRANSFERS ...ovvvnnnn e 5.6
53 PRINTER OPERATIONSvvve e 5-8
54 CARD OPERATIONSoonnoee o 5-10
55 CONSOLE OPERATIONSooooeeeeeeeee 5-11
56 SYSTEM ACTIONvuuueee e 5-13
57 PROGRAM OVERLAYoooieeeeam i, 5-14
58 WAIT CHECKouornee e 5-15
. MACRO INSTRUCTIONS -+ttt ersnraretnreireeninananonnss 6-1
8.1 DESCRIPTIONSuoetetm e 6-6
6.2 EXAMPLESttt 6-8
. DIAGNOSTICS AND ASSEMBLER OUTPUT 7-1
7.1 ASPER ERROR PRINTOUTSooooeeeneeaee 7-1
72 SAMPLE PROGRAM PRINTOUTooivn, 7.2
7.3 SUMMARY PAGE DIAGNOSTICSoovrnion, 7-4

iv

FIGURES

1. CONTROL DATA 6600ovivninieeinimenreeees vii
9. BLOCK DIAGBAM OF 6600c.uvtiiimiiineicnnnnnnnes viii
3. BINARY CARD INPUT ...t 6-9
4. CODED CARDINPUTottt 6-10
APPENDIX
TABLE 1 PERIPHERAL PROCESSOR OPERATION CODE A-2
TABLE 2 PSEUDO OPERATION CODESconnn A-4
TABLE 3 SYSTEM MACROS i A-5
TABLE 4 6600 COMPUTER CHARACTER CODE A-6

6600 COMPUTING SYSTEM

Main frame (center)— contains 10 peripheral and control processors, central processor, central
memory, some 1/0 synchronizers.

Display console (foreground)— includes a keyboard for manual input and operator control, and two
10-inch display tubes for display of problem status and operator directives. .

CONTROL DATA 607 tapes (left front) —% inch magnetic tape units for supplementary storage;
binary or BCD data handled at 200, 556, or 800 bpi.

CONTROL DATA 626 tapes (left rear) —I-inch magnetic tape units for supplementary storage;
binary data handled at 800 bpi.

Disk file (right rear) — Supplementary mass storage device holds 500 million bits of information.

CONTROL DATA 405 card reader (right front) — reads binary or BCD cards at 1200 card per minute
rate.

)

SYSTEM ORGANIZATION

The CONTROL DATA® 6600 is a large-scale, solid-
state, general-purpose digital computing system.
The advanced design techniques incorporated in
the system provide for extremely fast solutions to
data processing, scientific and control center prob-
lems.

Within the 6600 are eleven independent computers

(Fig. 1). Ten of these are constructed with the pe-
ripheral and operating system in mind. These ten
have separate memory and can execute programs
independently of each other or the central processor.
The eleventh computer, the central processor, is a
very high-speed arithmetic device. The common
element between these computers is the large
central memory.

4096 WORD
CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR

4096 WORD
CORE - MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

PROCESSOR

6600 CENTRAL MEMORY

4096 WORD
CORE MEMORY

PERIPHERAL.
8 CONTROL
PROCESSOR 4096 WORD
CORE MEMORY

PERIPHERAL
8 CONTROL

PROCESSOR

6600 CENTRAL MEMORY

o MEMORY- B CORE MEMORY
CORE MEMORY 5600 ‘CORE ¥

PERIPHERAL CENTRAL PERIPHERAL
8 CONTROL PROCESSOR 8 CONTROL

6600 CENTRAL MEMORY

4096 WORD

CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

4096 WORD
CORE' MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

PROCESSOR

AHOW3AW TVHIN3D 0099

4096 WORD
CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

PERIPHERAL
8 CONTROL
PROCESSOR

Figure 1 CONTROL DATA 6600

vii

S ——

MULTIPLY
MULTIPLY
- UPPER .
- f BOUNDARY SVIDE
-——P i
-~ 24 LONG ADD
P OPERATING
- REGISTERS
< SHIFT
- ' .
> BOOLEAN
-
-
12 INCREMENT
INPUT

QUTPUT INCREMENT

CHANNELS

PERIPHERAL 8 CONTROL PROCESSORS

BRANCH

CENTRAL PROCESSOR

CENTRAL. MEMORY
~ 131,072 words
— 60-bit words

— Memory organized in 32 logically independent
banks of 4096 words with corresponding multi-
phasing of banks

— Random access, coincident-current, magnetic core

— One major cycle for read-write

— Maximum memory reference rate to all banks —
one address/minor cycle

— Maximum rate of data flow to/from memory —
one word/minor cycle

viii

Figure 2 BLOCK DIAGRAM OF 6600

DISPLAY CONSOLE
— Two display tubes
— Modes
Character
Dot
— Character size
Large — 16 characters/line

Medium — 32 characters/line
Small — 64 characters/line

— Characters
26 alphabetic
10 numeric
11 special

A

1. LANGUAGE DEFINITIONS

1.1 CHARACTERS
ASPER uses the following character set:

The alphabet Letters A through 7
The arabic numerals numbers 0 through 9

The special characters....+ — /* = ()., $ space

1.2 SYMBOLS

A symbol is any arrangement of letters and numbers
which starts with a letter and contains no more than
8 total characters. The special character * has
momentary properties of a symbol under certain
usage as defined under 2.2.3.

Examples: T, PROG, ZI1Z, ABCD1234

1.3 CONSTANTS

Constants may be any of the following forms:

1.3.1 INTEGER
An integer constant is any arrangement of 4 or less
decimal digits = 21* —1.

Examples: 3, 4092, 82

1.3.2 OCTAL

An octal constant is any arrangement of 4 or less
octal digits 0 through 7 appended with the letter B.

Examples: 47B, 7770B, 140B

1.3.3 syYMBOLIC

A symbolic constant meets the specifications for a
symbol but is equated to a constant or to the differ-
ence of two symbols.

Examples: TAM EQU 3677B—150B
GAT EQU 64+99
MAG EQU 20
SAG EQU TAG—SAM

If TAG and SAM are asigned memory loca-
tions 120, and 100, respectively, then SAG is
equated to 20s.

1.3.4 CP CONSTANT

A central program constant is an 18-bit number
=91 —1,

Examples: 12345B, 131000, 77101B

1.4 OPERATORS

Operators are used in address manipulations only.
The two used are:

+ addition

— subtraction

1.5 LITERALS

Literals may be used only in system macros for ad-
dressing a word whose contents are specified by the
quantity within the parentheses. Only central
memory symbols may be used in literals and may
be either of the following forms:

(Symbol)
(Symbol =+ Constant)

Examples: (CMTAG), (CMTAG-5),
(CMTAG+10B)

1.6 SEPARATORS

Separators are used to indicate the end of distinct
entities of an instruction. The five characters used
are:

space , $. =

1.7 OPERANDS

Operands are combinations of symbols, operators,
and constants and are terminated by a separator.
Any group of symbols, operators, and constants in-
tended to be a single operand must not contain
embedded separators. The acceptable forms are:

Symbol
Symbol=Constant
Symbol—Symbol
-+ Constant

Restrictions:

1. The form SYMBOL—SYMBOL is restricted to
both symbols being ASPER symbols or both
being CP Symbols. A mix is undefined.

The form SYMBOL-=CONSTANT is restricted
to constants = 2> —1 for ASPER symbols. For
CP symbols, the constant must be =2 —1.

1-1

)

T

ADDRESS: Supplies the instruction with ap-

1.8 FIELDS .

An instruction is a combination of the following propriate operands.

fields: REMARKS: Programmer notes only. This field

LOCATION: Provides a symbol for referencing has no effect on the assembly proc-
by other instructions. ess and must begin with a period in

OPCODE: Defines the instruction. or after column 11.

N
)

2. LANGUAGE SPECIFICATIONS

2.1 FORMATS

ASPER has one basic instruction format:
LOCATION OPCODE ADDRESS REMARKS

The Location field is a fixed length field and occu-
pies columns 2-9 on the ASPER input card.

The Opcode field is variable length and starts in or
after column 11 on the input card and must be
terminated by at least one separator.

The Address field is variable length and has any of
the three following formats:

OPERAND
OPERAND
LIST

" OPERAND

(LIST is a sequence of operands as specified for the
operation code and is used in certain pseudo opcodes
and macros. Adjacent operands are separated by
commas, spaces, or equal signs.)

The Remarks field is either blank or starts with the
special character, period, in any column 11-72.

ASPER considers only card columns 2 through 72.
Column 1 is reserved for the exclusive use of the
Programming System Contro! Package. Column 10
is blank and serves as a separator between the loca-
tion field and the opcode field.

Up to six instructions may be placed on an input
card. The special character $ is used to denote the
beginning of a new instruction. The following rules

apply:

1. Only one location field can be used on a card
regardless of the number of instructions it con-
tains. When it is used, it applies to the first
instruction on the card.

9. The $ acts as the recurrence of column 10 on the
card. The next expected item is an opcode.

3. All instructions on the card must be completed
prior to column 73.

2.2 FIELLDS

2.2.1 LOCATION FIELD

The location field may be blank or contain a symbol
starting in any column 2-5 and ending prior to
column 10.

Rules:

1. There may be no duplicate symbols in the loca-
tion fields within a routine, or between the
ASPER routine and the central processor routine
of which it is a part. No conflict exists by using
symbols in different ASPER routines defined as
parts of the same central processor routine.

9. The special character * may not appear in the
location field.

2.2.2 OPCODE FIELD

The Opcode field may contain any of the following
items:

1. The 6600 peripheral processor mnemonic codes
or their octal equivalents as given in Table 1.

2. ASPER pseudo codes as given in Table 2.
3. SYSTEM macro codes as given in Table 3.

Mnemonic codes are evaluated to determine their
octal equivalents and the octal value is inserted into
the instruction word. Pseudo operations are inter-
preted and used in assembler sequence control.
System macros are replaced by calling sequences to
a resident communication subroutine.

A separator terminates the field.

2.2.3 ADDRESS FIELD

The address field content and length varies with the
type of instruction. The different types are described
separately.

1. Six-bit address:
No address — mnemonic ends in N
Direct — nmemonic ends in D

Indirect — mnemonic ends in I

Instructions of this class require only one periph-
eral memory location. The address field is
restricted to one operand. The operand evalua-
tion must produce an octal equivalent = 77s.
This value is inserted with the opcode into the
instruction word.

o

Twelve-bit address and six-bit index designator:

Memory — mnemonic ends in M

lI\')
et

]
o

The operand allowed in the address field is as
follows:

OPCODE ADDRESS INDEX

Instructions of this class require two peripheral
memory locations, the first of which contains the
6-bit opcode and the index designator (I = 77,).
The second word contains the address portion
evaluated to = 2! —1. The index designator may

be blank.
Eighteen-bit address:

Constant -- mnemonic ends in C

Instructions of this class require two peripheral
memory locations. The first word contains the 6-
bit opcode and the high-order 6 bits of the

operand. The low-order 12 bits are placed in the
second word. The address field is restricted to
one operand, the evaluation of which must pro-
duce an octal equivalent = 21® —1.

SPECIAL USAGE — The special character *, when
used as an operand or part of an operand, assumes
the value of the current object code address. The
legal forms are:

Ed

* + Constant

Examples:
LDC * A = current location
UN * —4 Jump back 4 words

)

®

3. PERIPHERAL PROCESSOR

INSTRUCTIONS

3.1 INSTRUCTION FORMAT

A PP instruction may have a 12-bit or a 24-bit
format. The two instruction formats provide for
6-bit or 18-bit operands and for 6-bit, 12-bit or
18-bit operand addresses.

The 12-bit format has a 6-bit operation code, f, and
a 6-bit operand or operand address, d.

Operation Operand or
Code Operand Address
f d
6 ! 6
11 0

The 24-bit format requires two memory words. The
6-bit quantity, d, of the first word is used with the
12-bit quantity, m, of the next consecutive word to
form an 18-bit operand or operand address.

address, and indirect address.

In the no address mode d or dm is taken directly
as an operand, thus eliminating the need for storing
many constants. By definition, d is-a 6-bit quantity
00-775, but it may be considered as a 12-bit number
whose upper 6 bits are zero. The dm quantity con-
sists of 18-bits with d as the upper 6 bits and m as
the lower 12 bits.

In the direct address mode, d or m+(d) is used as
the operand address. The d quantity specifies one
of the first 64 memory locations (0000-0077,). The
m+(d) quantity generates a 12-bit address for
referencing all possible PP memory locations (0000-
7777s). If d = 0, m is taken as the operand address.
If d =40, the content of location d is added to m to
produce an operand address (indexed direct ad-
dressing).

In the indirect address mode, d specifies a location
whose content is the address of the desired operand.

Operand or
Operation Operand Address
Code Ie N N
f m
6 6 12
11 ~ J0 11\ y J0
P P+1

3.2 ADDRESS MODES

The usage of the quantities d and/or m varies with
the addressing mode of an instruction. The three
available addressing modes are no address, direct

Indirect addressing and indexed direct addressing
require an additional memory reference over direct

addressing.
Examples of the three modes of addressing follow:

3-1

Given:

d=25

m = 100

contents of loc. 25 = 0150
contents of loc. 150 = 7776
contents of loc. 250 = 1234

Then:

MODE INSTRUCTION A REGISTER
No Address LDN d 000025
LDC dm 250100
Direct Address . LDD (d) 000150
| LDM (m + (d)) 001234
v Indirect Address LDI ((d)) 007776

3.3 DESCRIPTION OF OPERATION

00 PSN

01

02

03

CODES

Pass
A no operation instruction.
LIM m + (d)

Jumps to the sequence beginning at the ad-
dress given by m - (d). If d = 0, then m is not
modifiied.

RM m + (d)

Long Jump

Return Jump

Jumps to the sequence beginning at the loca-
tion given by m + (d). If d = 0, then m is not
modified. The current program address plus two
(P -+ 2) is stored at the jump address and is used
as the return address to the main routine when
the sequence is finished.

UJN d Unconditional Jump

Provides an unconditional jump of up to 31
steps forward or backward from the current pro-
gram address, depending on the value of d. If d
is positive (01-37;), the jump is forward. If d is
negative (40-76;) the jump is backward. The
program stops when d equals 00 or 77.

ZJN d

Provides a conditional jump of up to 31 steps
forward or backward from the current program
address if the content of the A register is zero.
If A is nonzero, the next instruction is executed.

Zero Jump

05

06

07

10

Negative zero (777777) is treated as nonzero. See
instruction 03 for an interpretation of d.

NJN d Nonzero Jump

Provides a conditional jump of up to 31 steps
forward or backward from the current program
address if the content of the A register is non-
zero. If A is zero, the next instruction is executed.
Negative zero (777777) is treated as nonzero. See
instruction 03 for an interpretation of d.

PIN d Plus Jump

Provides a conditional jump of up to 31 steps
forward or backward from the current program
address if the A register is positive. If A is nega-
tive, the next instruction is executed. See instruc-
tion 03 for an interpretation of d.

MJN d Minus Jump

Provides a conditional jump of up to 31 steps
forward or backward from the current program
address if the A register is negative. If A is posi-
tive, the next instruction is executed. See instruc-
tion 03 for an interpretation of d.

SHN d Shift

Shifts the contents of the A register right or
left d places. If d is positive (00-37), the shift is
left circular; if d is negative (40-77), A is shifted
right (end off with no sign extension). Thus, a
left shift of 6 places results when d =6 and a
right shift of 6 places results when d = 71.

11 ILMN d Logical Difference 21 ADC dm Add
{% Forms in the A register the bit-by-bit logical Adds to the A register the 18-bit quantity dm,
. difference of d and the lower 6 bits of A. This consisting of d as the upper 6 bits and m as the

is equivalent to complementing the individual
bits in A which correspond to bits in d equal to
one. The upper 12 bits of A are not altered. 22 LPC dm

A = 001110101011001001

lower 12 bits.

Logical Product
Forms in the A register the bit-by-bit logical

d= 001010 product of the contents of A and the 18-bit quan-
001110101011000011 tity dm.
12 ILPN d Logical Product A = 001110101011001001

dm = 001110000011001010
001110000011001000

Forms in the A register the bit-by-bit logical
product of d and the lower 6 bits of A. The
upper 12 bits of A are zero.

A = 001110101011001001

23 LMC dm Logical Difference

Forms in the A register the bit-by-bit logical

d= 001010 difference of the contents of A and the 18-bit
000000000000001000 quantity dm. This is equivalent to complement-
ing the individual bits in A which correspond to

13 SCN d Selective Clear

bits in dm equal to one.

A = 001110101011001001
dm = 000010000000001010

Clears any of the lower 6 bits of the A register
where corresponding ‘bits of d are one. The
upper 12 bits of A are not altered.

001100101011000011
A = 001110101011001001
{ d= 001010 24 PSN Pass
‘(;;. 001110101011000001 A no operation instruction.
14 LDN d Load

25 PSN Pass

Clears the A register and loads d into the
lower 6 bits of A. The upper 12 bits of A are zero.

15 ILCN d Load Complement

Clears the A register and loads the comple-
ment of d into the lower 6 bits of A. The upper
12 bits of A are set to one.

16 ADN d Add
Adds the 6-bit positive quantity d to the con-
tents of the A register.
17 SBN d Subtract

Subtracts the 6-bit positive quantity d from
the contents of the A register.

20 LDC dm Load

Clears the A register and loads the 18-bit
quantity dm, consisting of d as the upper 6 bits
and m as the lower 12 bits.

26 EXN

A no operation instruction.

Exchange Jump

Transmits an 18-bit address from the A register
to the central processor with a signal which tells
the central processor to perform an exchange
jump, with the address in A as the starting loca-
tion of a file of 16 words containing information
about the CP program to be executed. The 18-
bit initial address must be entered in A before
this instruction is executed. The central proces-
sor replaces the file with similar information
from the interrupted CP program. The PP pro-
gram is not interrupted.

RPN Read Program Address

Transfers the content of the central processor
program address register to the peripheral
processor A register to allow the PP to determine
whether the central processor is running.

3-3

30 LDD (d) Load

Clears the A register and loads the contents
of location d into the lower 12 bits of A. The
upper six bits of A are zero.

31 ADD (d) Add

Adds to the A register the 12-bit positive quan-
tity contained in location d.

32 SBD (d) Subtract

Subtracts from the A register the 12-bit posi-
tive quantity contained in location d.

33 LMD (d) Logical Difference

Forms in the A register the bit-by-bit logical
difference of the lower 12 bits of A and the con-
tents of location d. This is equivalent to comple-
menting individual bits of A which correspond
to one bits in the contents of location d. The
upper 6 bits of A are not altered.

A = 001110101011001001

() = 010100001010
001110111111000011
34 STD (d) Store

Stores the lower 12 bits of the A register into
location d. The contents of A are not altered.

35 RAD (d) Replace Add

Adds the 12-bit quantity in location d to the
contents of the A register and stores the lower
12 bits of the result back in location d. The result
is also left in the A register at the end of the
operation.

36 AOD (d) Replace Add One

Adds one to the original value in location d
and stores the result back in location d. The re-
sult is also left in the A register at the end of the
operation.

37 SOD (d) Replace Subtract One

Subtracts one from the original value in loca-
tion d and stores the result back in location d.
The result is also left in the A register at the end
of the operation.

40 LDI ((d)) Load

Clears the A register and loads into A the 12-
bit quantity obtained by indirect addressing.
The upper 6 bits of A are zero.

41 ADI ((d) Add

Adds to the contents of the A register a 12-
bit positive operand obtained by indirect
addressing.

42 SBI ((d)) Subtract

Subtracts from the A register a 12-bit positive
operand obtained by indirect addressing.

43 LMI ((d)) Logical Difference

Forms in the A register the bit-by-bit logical
difference of the lower 12-bits of A and the 12-bit
operand obtained by indirect addressing. This
is equivalent to complementing individual bits
of A which correspond to one bits in the op-
erand. The upper 6 bits of A are not altered.

A = 001110101011001001

(Q) = 010100001010
001110111111000011
44 STI ((d) Store

Stores the lower 12 bits of the A register into
the location specified by the contents of location
d. The contents of-A are not altered.

45 RAI ((d)) Replace Add

Adds to the contents of the A register the oper-
and obtained from the location specified by the
contents of location d. The resultant sum is left
in the A register at the end of the operation and
the lower 12 bits of A replace the original oper-
and in memory.

46 AOI ((d)) Replace Add One

Adds one to the operand obtained from the
location specified by the contents of location d.
The resultant sum is left in the A register at the
end of the operation and the lower 12 bits of A
replace the original operand in memory.

47 SOI ((d))

50

51

52

53 LMM

54

" Replace Subtract One

Subtracts one from the operand obtained from
the location specified by the contents of location
d. The resultant difference is left in the A reg-
ister at the end of the operation and the lower
12 bits of A replaces the original operand in
memory.

LDM (m+(d)) Load

Clears the A register and loads a 12-bit oper-
and obtained by indexed direct addressing into
the lower 12 bits of A. The upper 6 bits of A are
zero, If d = 0, the operand address is simply m.
If d 5= 0, then m plus the contents of location d
is the operand address. Thus the contents of d
may be used as an index quantity to modify
operand addresses.

ADM

(m + (d) Add

Adds to the contents of the A register a 12-bit
positive operand obtained by indexed direct
addressing. (See instruction 50 for further ex-
planation of addressing.)

SBM (m+ (d)) Subtract

Subtracts from the A register a 12-bit positive
operand obtained by indexed direct addressing.
(See instruction 50 for further explanation of
addressing.)

(m + (d))

Logical Difference

Forms in the A register the bit-by-bit logical
difference of the lower 12 bits of A and a 12-bit
operand obtained by indexed direct addressing.
This is equivalent to complementing individual
bits of A which correspond to one bits in the
operand. The upper 6 bits of A are not altered.

A = 001110101011001001

(m + (d) = 010100001010
001110111111000011
STM (m + (d)) Store

Stores the lower 12 bits of the A register in the
location determined by indexed direct address-
ing. The contents of A are not altered. (See in-
struction 50 for further explanation of address-

ing.)

55

56

57

60

61

RAM (m + (d)) Replace Add

Adds the contents of the A register to the oper-
and obtained from the location determined by
indexed direct addressing. The resultant sum is
left in the A register at the end of the operation
and the lower 12 bits of A replace the original
operand in memory. (See instruction 50 for
further explanation of addressing.)

AOM (m + (d))

Adds one to the operand obtained from the
location determined by indexed direct address-
ing. The resultant sum is left in the A register at
the end of the operation and the lower 12 bits of
A replace the original operand in memory. (See
instruction 50 for further explanation of address-

ing.)

Replace Add One

SOM (m + (d))

Subtracts one from the operand obtained from
the location determined by indexed direct ad-
dressing. The resultant difference is left in the A
register at the end of the operation and the
lower 12 bits of A replace the original operand in
memory. (See instruction 50 for further explana-
tion of addressing.)

Replace Subtract One

CRD d Central Read from (A) tod

Transfers a 60-bit central memory word to 5
consecutive PP memory locations. The A register
must contain the 18-bit CM address before the
instruction is executed. The 60-bit CM word is
disassembled beginning at the left, with the loca-
Hon specified by d receiving the left most 12-bit
word; d + 1, the next 12-bit word, and so on.

CERM m d Central Read (d) words from
(A) tom

Reads a block of 60-bit words from central
memory into peripheral processor memory. The
A register contains the 18-bit CM starting ad-
dress and must be loaded prior to the execution
of this instruction. The contents of A are in-
creased by one as each 60-bit CM word is dis-
assembled and stored. The block length or
number of CM words to be read is contained in
location d. The number also goes to the Q reg-
ister where it is reduced by one as each CM word
is processed. The transfer is completed when

Q=o.
35

63

3-6

The current contents of the P register are
stored in PP location 0000, and the PP starting
address m goes to the P register. The contents of
the P register, m, are increased by one as each

19-bit PP word is stored. The number of PP.

words required is five times the number of CM
words read, since each CM word is disassembled
into five successive PP words. The original con-
tents of P are restored upon completion of the
transfer.

CwD d Central Write from d to (A)

Assembles five successive 12-bit words into a
60-bit word and stores the word in central mem-
ory. The 18-bit CM address must be in the A
register prior to the execution of the instruction.

The first word to be read out of PP memory is
contained in location d. This word appears as
the leftmost 12 bits of the 60-bit word. The re-
maining 12-bit groups are taken from successive
addresses in PP memory.

CWM md Central Write (d) words

from m to (A)

Assembles a block of 60-bit words and writes
them in central memory. The A register contains
the beginning central memory address and must
be loaded prior to the execution of this instruc-
tion. The number in A is increased by one after
each 60-bit word is assembled to provide the
next CM address.

The contents of location d specify the number
of 60-bit words to write. The number also goes
to the Q register where it is reduced by one as
each CM word is assembled. The transfer is com-
pleted when Q = 0.

During execution of this instruction, the origi-
nal contents of the P register are stored in PP
location 0000 and the address of the first word to
read from PP memory, m, goes to the P register.
The contents of the P register are increased by
one as each 12-bit word is read to provide the
next PP memory address. The original contents
of the P register are restored at the completion
of the transfer.

64 AJM m d Jump to m if channel d active

Provides a conditional jump to a new program
sequence beginning at address m if the channel
specified by d is active. If the channel is in-
active, the current program sequence continues.

65 IIM md Jump to m if channel d

inactive

Provides a conditional jump to a new program
sequence beginning at address m if the chan-
nel specified by d is inactive. If the channel is
active, the current program sequence continues.

66 FIM m d Jump to m if channel d full

Provides a conditional jump to a new program
sequence beginning at address m if the channel
specified by d is full. If the channel is empty, the
current program sequence continues.

An input channel is full when the input equip-
ment sends a word to the channel register and
sets the full flag. The channel remains full until
the PP accepts the word and clears the full flag.

An output channel is full when the PP places
a word in the channel register and sets the full
flag. The channel is empty when the output
equipment accepts the word and notifies the PP.

67 E]M m d Jump to m if channel d empty

Provides a conditional jump to a new program
sequence beginning at address m if the channel
specified by d is empty. If the channel is full, the
current program sequence continues.

70 IAN d Input to A from channel d

Transfers a word from input channel d to the
lower 12 bits of the A register.

71 IAM md Input (A) words from

channel d tom

Transfers a block of words from input channel
d to PP memory beginning at a location specified
by m. The A register contains the block length
and is reduced by one as each word is read. The
input operation is completed when A = 0.

@

During this instruction the current contents of
the P register are stored in PP location 0000. The
P register now holds m and is increased by one
as each word is stored to give the address for the
next word. The original contents of the P register
are restored at the end of the operation.

72 OAN d

Transfers a word from the lower 12 bits of the
A register to output channel d.

73 OAM md

Output (A) on channel d

Output (A) words from m
on channel d

Transfers a block of words on output channel
d from PP memory beginning at the location
specified by m. The contents of the A register
specify the number of words to be sent out and
are reduced by one as each word is sent. The out-
put operation is completed when A = 0.

During this instruction the current contents
of the P register are stored in PP location 0000.
The P register now holds m and is increased by

one as each word is read out to give the address
of the next word. The original contents of the P
register are restored at the end of the operation.

74 ACN d

Activates the channel specified by d. This in-
struction must precede a 70-73 instruction. Act-
vating a channel alerts and prepares the I/0
equipment for the exchange of data.

75 DCN d

Deactivates the channel specified by d. This
stops the I/0 equipment and the buffer termi-
nates.

76 FAN d

Sends out on channel d the external function
code in the lower 12 bits of the A register.

Activate channel d

Disconnect channel d

Function (A) on channel d

77 FNC m d Function m on channel d

Sends out on channel d the external function
code specified by m.

3-7

@

4. PSEUDO OPERATION CODES

Pseudo operations provide the means for directing
the assembler to carry out certain functions. The
instruction format is the same as the basic format
shown in 2.1. As used here, LOC indicates that the
particular operation may have a symbolic identifier
in the location field. Where none is shown, those
columns are ignored by the assembler. Following
are ASPER pseudo operations and meanings.

ASPER Pl

Causes the compiling process to enter
peripheral processor assembly mode. P1
names the peripheral processor program
and is referenced by the TPP macro. Each
peripheral processor program associated
with the same central processor program
must have a unique name, P1.

SUPB P1,P2

Defines the coding that follows to be a
subprogram or overlay. P1 names the sub-
program and is referenced by the LOAD
macro. Each subprogram of all peripheral
processor programs associated with the
same central processor program must have
a unique name, P1. P2 is the peripheral
processor location at which the segment is
to be loaded. P2 may be any of the legal

~ operands, excluding central memory sym-
bols. Any PP symbols appearing in P2 must
be previously defined.

ORG

Assigns the coding that follows to the
direct area of peripheral processor mem-
ory and prohibits its relocation at load
time. The ORG pseudo allows the pro-
grammer to define temporary and index
locations within the first 64 core locations
by setting the location counter to address
0010 and labeling the following coding and
symbols as non-relocatable. The setting of
the location counter to 0010 omits the
assignment of locations 0000 to 0007 be-
cause these locations have unique signifi-
cance to the peripheral processor and the
SIPROS resident and generally should not
be used. The assembler does not sense the

end of the direct area but allows the loca-
tion counter to increment through 77,.

ORGR

Assigns the coding that follows to the non-
direct area of peripheral processor mem-
ory and labels that coding as relocatable.
The location counter is set to memory loca-
tion 01003 and is allowed to increment
through 67775, The SIPROS resident exists
at execution time at locations 7000,
through 7776,. If during assembly the loca-
tion counter exceds 6777, subsequent lines
on the output listing are flagged as errors.

BSSD N, L, NAME, R

Defines on logical disk unit N the file iden-
tified by NAME which has L. number of
60-bit words in its longest record. R speci-
fies the maximum number of logical rec-
ords into which the file may be segmented.
The parameters N, L, and R must be num-
bers, where N =16,,, L =217 and R=
4000,,. NAME must be unique within the
routine.

LOC BSS CONSTANT

Reserves the number of 12-bit locations
specified by CONSTANT beginning at
LOC. The contents of the locations re-
served are not set to a particular condi-
tion. The LOC symbol is equated to the
address of the first word of the area. Any
symbolic constant appearing in the address
field must be previously defined.

LOC BSSZ CONSTANT

Same as BSS except the contents of the
locations reserved are set to zero in the
object code.

LOC BSSCM CONSTANT

Reserves the number of 60-bit central mem-
ory locations specified by CONSTANT.
The LOC symbol is equated to the address
of the first word of the area in central
memory. Any symbolic constant appearing
in the address field must be previously
defined.

4-1

LOC EQU

LOC DPC

LOC DPC

LOC BCD

LOC BCD

4-2

OPERAND

The symbol in the LOC field is assigned
the value of the address field. Any symbol
appearing in the address field must be pre-
viously defined.

CiCo---Cy

Converts the characters enclosed by the
asterisks to display code, two characters
per word beginning at LOC. Incomplete
words are padded out with DPC blanks.
The LOC symbol is equated to the address
of the first word of the area.

mnC,C, ---Cy,

Converts the nn characters, C;, C, - - - Cun,
to display code, two characters per word
beginning at LOC. The number of char-
acters, nn, must be a two-digit decimal
number. Incomplete words are padded out
with DPC blanks. The LOC symbol is
equated to the address of the first word of
the area.

C,C. - -- Cy

Converts the characters enclosed by the
asterisks to BCD code, two characters per
word beginning at LOC. Incomplete words
are padded out with BCD blanks. The
LOC symbol is equatedsto the address of
the first word of the area.

IlnC1C2~ - Cnn

Converts the nn characters C,, C,, - - - Cuy,
to BCD code, two characters per word be-
ginning at LOC. The number of characters,
nn, must be a two-digit decimal number.
Incomplete words are padded out with
BCD blanks. The LOC symbol is equated
to the address of the first word of the area.

LOC CON

LOC COND

Vo, ---, Vy

Converts each V; term to a 12-bit constant.
If more than one is defined per a CON
pseudo code, each V; must be separated by
one or more spaces, commas, or equal
signs. The V; may be:

a. = octal integer

b. = decimal integer

c. symbol

d. symbol-+interger
e. symbol—symbol

The LOC symbol is equated to the address
of V..

VO) D Vn

Same as CON, except each V; term occu-
pies two words where the V; term is con-
verted to 18 bits with the most significant
6 bits right justified in the first word and
the remaining 12 bits in the second word.

END

Terminates the assembly process for this
job. When punched into a card, END
must be the only entry in the card and
must start in column 11.

LIST P

Controls the listing of the side-by-side, so
that sections of coding may be omitted
from the listing. At the beginning of each
ASPER program the assembler assumes
the list case of P = 0, unless otherwise
specified by the LIST pseudo opcode.

If P = 0, list the side-by-side that follows.
If P=£0, suppress the side-by-side listing.

SPACE nn

Spaces nn lines on the listing. The deci-
mal number, nn, is evaluated = 63,,.

EJECT

Ejects listing to the top of the next page.

5. SYSTEM MACROS

System macro instructions provide communication
links between an ASPER routine in a peripheral
processor and the system peripheral processors.
While most of these macros direct the operating
system to perform input/output operations, others
request equipment assignment, check the status of
external operations, produce program overlays, uti-
lize system peripheral processors in conjunction with
the ASPER peripheral processor, and request the
operating system to provide channel scheduling
services.

The communication link provided by the system
macros allows a two-way information transfer. The
ASPER routine not only gives the system peripheral
processor request information but also a location in
central memory in which the system peripheral
processor enters the status of the requested opera-
tion, reporting its success back to the ASPER rou-
tine. Each system macro must have a status response
word, which is set by the operating system in
performing the function of the individual macro
request.

All communication links are made through central
memory. The status response word identified by the
request must be a central memory word. Similarly,
requests for the system to input or output data for
an ASPER routine assume the data region is located
in central memory. The regions required may be
defined either by the central processor program, if
one is used, or by the ASPER BSSCM pseudo
operation.

Where applicable, system macros provide a buffered
and a non-buffered mode. In the buffered mode, the
macro used without an appended “W,” the ASPER
routine is free to continue processing while waiting
for the results requested. However, it must do its
own status checking, by means of another macro, to
determine when the requested operation is com-
pleted. In the non-buffered mode, with the “W~
appended to the macro opcode, the macro itself
determines when the requested operation is com-
pleted or aborted, and PP processing is discontinued
until the results are known. Both modes return full
information on the status of the request.

For each system macro encountered, ASPER gener-
ates a sequence of coding which communicates the
requested function to the system through the pe-

ripheral processor resident program. The coding
consists of a Return Jump to the resident routine
followed by an Unconditional Jump past a vector of
words containing the octal opcode, buffer-mode flag,
and evaluated parameters.

A list of required parameters is specified for each
system macro. These parameters may be written in
various forms depending on the type of parameter.
Parameters representing peripheral processor loca-
tions which contain the actual parameter may be
written in the forms:

SYMBOL
SYMBOL+CONSTANT

Parameters representing central memory locations
may be written in the LITERAL forms:

(SYMBOL)
(SYMBOL--CONSTANT)

Parameters representing numbers per se may be
written in the forms:

CONSTANT
SYMBOL
SYMBOL-=CONSTANT

Parameters representing a file or program name
must be written in the form:

SYMBOL

The following is an explanation of certain letters,
terms, and phrases which are used frequently in
connection with macros.

A Symbolic address in PP memory which
contains the CM address of the first word
of the requested block assigned by the
system or which contains the CM ad-
dress, as specified by the programmer,
of the first word of the block in memory
to be released to the system. If the macro
is used in a PP program, the CM address
is absolute; but if used in a CP program, -
the address is relative.

BA Symbolic address in PP memory which
contains the beginning address of the
buffer area in central memory.

5-1

EA

NAME

NwW

5-2

Conversion mode
Card operations:
C = blank or 0 — no conversion
(binary image)

1 — Hollerith to display
code for read; dis-
play code to Hol-
lerith for punch

2 — Hollerith to BCD for
read; BCD to Hol-
lerith for punch

Magnetic tape:
C = blank or 0 — no conversion
1 — BCD to display code
2 — display code to BCD

Printer:

C = blank or 0 — no conversion

2 — display code to BCD

Physical number (or PP symbolic ad-
dress of number) of the I/0 channel re-
quested or released.

Symbolic address in PP memory which
contains the ending address + 1 of the
buffer area in central memory.

Number (or PP symbolic address of num-
ber) of logical tape records.

Number (or PP symbolic address of num-
ber) of 60-bit words in the longest record
in the file identified by NAME.

Equipment logical number (or-PP sym-
bolic address of number), ie., 1,2,... M
for M total units of equipment type in the
system.

Symbolic name uniquely identifying the
disk logical file being referenced.

Total number (or PP symbolic address of
number) of central memory words re-
quested or released.

RL

SYMBOL

Logical record number (or PP symbolic
address of number) in disk file to start
read or write.

Maximum number (or PP symbolic ad-
dress of number) of logical records into
which the disk file may be segmented.

Record length

Card operations: number (or PP sym-
bolic address of number) of leftmost
5 columns (binary image) or 10-
character fields (coded mode) of the
card. For BCD or DPC conversion
mode, each 60-bit word contains ten
6-bit characters. For binary image,
each 60-bit word contains 5 columns.

Console operations: total number (or
PP symbolic address of number) of
characters in the message to be trans-
mitted.

Magnetic tape: number (or PP sym-
bolic address of number) of 60-bit
words per tape record.

Printer: number (or PP symbolic ad-
dress of number) of 10-character words
per line to print.

Symbolic address in PP memory which
contains the CM address for the STATUS
RESPONSE WORD from the PP 1/0
routine. A peripheral processor program
requires that a location in central mem-
ory be reserved and identified for each
macro request. The system enters the
status of the requested operation in this
location.

Symbolic Name

Program overlay: name of overlay region
to be loaded.

System action: name of PP program de-
fined by ASPER pseudo operation.

Wait check: name of transfer location if
abort is indicated by the status response
word.

®

TAG

Display character size:
T = blank or 0 — 64 characters/line
1 — 32 characters/line
2 — 16 characters/line

3 — plot mode

Identification number==18 bits (or PP
symbolic address of number) of message
to be displayed.

A W appended to the opcode of a macro
indicates a “wait for reply.” If the W is
not used (buffered mode), the routine
may continue processing while the re-
quested I/O operation is being per-
formed. However, the routine must do its

own checking on the progress of the re-
quest by means of the WAI (Wait Check)
macro. If the request is in process, the
status response word is positive and non-
zero; if the request is completed, the
word is zero; if the request is aborted,
the word is negative.

When the W is appended to the macro
(nonbuffered mode) and the requested
operation can be performed, the routine
delays until the status response word is
zero (completed) or negative (aborted).

In both modes if the requested operation
is successful, the next in-line instruction
is executed.

5-3

5.1 MAGNETIC TAPE OPERATIONS

OPCODE ADDRESS FIELD REMARKS
RQTW N, S Request tape assignment from system. ~ Wait if W used.
DRTW N, S Release tape back to system. Wait if W used.
SFFW N, S Search file mark forward. Wait if W used.
SFBW. N, S Search file mark backward. Wait if W used.
WFMW N, S Write file mark. Wait if W used.
RWLW N, S Rewind tape to load point. Wait if W used.
RWUW N, S Rewind tape for unload. Wait if W used.
FSPW N, §, K Forespace Wait if W used.
BSPW N, §, K Backspace Wait if W used.
RFCW N, S, BA, EA, RL, C Read tape forward coded mode. Wait if W used.
RFBW N, S, BA, EA, RL, C Read tape forward binary mode. Wait if W used.
WRCW. N, S, BA, EA, RL, C Write tape coded mode. Wait if W used.
WRBW N, S, BA, EA, RL, C Write tape binary mode. Wait if W used.

N = Magnetic tape logical unit number; 1, 2,... M for M tape units in the system.

S = Location containing the central memory address for status response code from System PP

1/0 routine.

K = Number of logical tape records.

BA = Location containing the beginning address of buffer area in central memory.

EA = Location containing the ending address + 1 of buffer area in central memory.

RL = Number of 60-bit words per tape record.

C = Conversion mode.

Blank or 0 — No conversion.

1 —-BCD to Display Code.

2 — Display Code to BCD.

STATUS RESPONSE WORD — positioned as per address S.

Rs =0 Request completed with no trouble,
Bs=1 Request in process.
Rs< 0 Request aborted. Reason give in bits 58-48.

5-4

Rs

Il

L Program error — BA > EA. (BIT 48)

'— End of file. (BIT 49)

Read length error. (BIT 51)

Write parity error unrecoverable. (BIT 52)

Read parity error unrecoverable. (BIT 53)

End of tape mark encountered before function completed (forward). (BIT 54)

Load point encountered before function completed (backward). (BIT 55)

Write enable ring missing. (BIT 56)

Device unassigned. (BIT 57)

Device not ready. (BIT 58)

Request aborted. (BIT 59)

where: 1 implies the condition exists.
0 implies the condition does not exist.

+Refers to peripheral processor words.
perip p

59 48 47 3625 1817 0
l
1
L. e L Y J
Number of words in record Number of records
where read length error completed including
occurred. * bad one.

5-5

5.2 DISK TRANSFERS

Provision is made in the operating system for the programmer to read and write scratch data to and from
disk storage units. Data are usually broken up into related blocks called files. The files, in turn, are seg-
mented into the blocks of data that are transmitted at one time. These are called logical records. For most
efficient utilization of disk storage, logical records contain a minimum of 512 central memory words. A file
is defined by the ASPER pseudo operation, BSSD, which specifies the number of 60-bit words in the lon-
gest record, the maximum number of logical records into which the file is to be segmented, and the symbolic
name by which to identify the file. The actual data transmission is accomplished through the use of the
following macro operators.

OPCODE ADDRESS FIELD REMARKS

RDHW N, S, BA, EA, NAME, P Read record and hold data on disk. Wait if W used.
RDRW N, S, BA, EA, NAME, P Read record and release data on disk. Wait if W used.
WRDW N, S, BA, EA, NAME, P Write record on disk. Wait if W used.

N = Disk logical unit number; 1, 2, ... M for M disk units in the system.

S = Location containing the central memory address for status response code from System PP
1/0 routine.

BA = Location containing the beginning address of buffer area in central memory.
EA. = Location containing the ending address + 1 of buffer area in central memory.
NAME = Symbolic name to identify disk logical file to be referenced.

P = Logical record number used to identify record read from disk or written onto disk.

STATUS RESPONSE WORD — positioned as per address S.

Rs=0 Request is completed with no trouble.
Rs=1 Request is in process.

BRs <0 Request aborted. Reason given in bits 58-48.

5-6

;f,é‘i“ 5

Rs

I

59

1847

18 17

Py M

Y

Number of words
left after abort.

Program error — BA > EA or P > P max. (BIT 48)
File Directory error. (BIT 49)

Length error — all data not transmitted. (BIT 51)
Read parity error. (BIT 53)

Logical file limit is exceeded. (BIT 54)

Disk is not ready. (BIT 58)

Request aborted. (BIT 59)

where: 1implies the condition exists.

0 implies the condition does not exist.

5-7

5.3 PRINTER OPERATIONS

OPCODE ADDRESS FIELD REMARKS
SSPW N, S Single space printer. Wait if W is used.
DSPW N, S Double space printer, Wait if W is used.
FCTW N, § Select Format Channel 7. Wait if W is used.
FC8W. N, S Select Format Channel 8. Wait if W is used.
MC1W N, S Select Monitor Channel 1. Wait if W is used.
MC2W N, S Select Monitor Channel 2. Wait if W is used.
MC3W. N, S Select Monitor Channel 3. Wait if W is used.
MC4W _ N, S Select Monitor Channel 4. Wait if W is used.
MC5W N, S Select Monitor Channel 5. Wait if W is used.
MC6W. N, S Select Monitor Channel 6. Wait if W is used.
CMCW N, S Clear Monitor Channels 1 - 6. Wait if W is used.
SPAW N, S Suppress space after next print. Wait if W is used.
PRNW N, S, BA, EA, RL, C Print single line or multiple Hnes.* Wait if W is used.
#1f SPA is given preceding a multiple line print, it applies only to the first line.

N = Printer logical unit number; 1, 2,... M for M printers in the system.

S = Location containing the central memory address for status response code from System PP
I/0 routine.

BA = Location containing the beginning address of buffer area in central memory.
EA = Location containing the ending address + 1 of buffer area in central memory.
RL = Number of 10 character words per line to print.

C = Conversion mode.
Blank or 0 — No conversion.

2 — Display Code to BCD.

Printer character codes are given in Table 4 of the Appendix.

STATUS RESPONSE WORD — positioned as per address S.
Rs=20 Request is completed with no trouble.
Rs =1 Request is in process.

Rs <0 Request aborted. Reason given in bits 58-48.

5-8

48 47

{
|

Program error — BA > EA. (BIT 48)
Request aborted. (BIT 59)

where: 1implies the condition exists.

0 implies the condition does not exist.

59

5.4 CARD OPERATIONS

OPCODE ADDRESS FIELD REMARKS
PCHW N, S, BA, EA, RL, C Punch cards. Wait if W is used.
RDCW N, S, BA, EA, RL, C Read cards. Wait if W is used.
N = Card reader or punch logical unit number; 1,2, ... M for M readers or punches in the system.

S = Location containing the central memory address for status response code from System PP

1/0 routine.

BA = Location containing the beginning address of buffer area in central memory.

EA = Location containing the ending address + 1 of buffer area in central memory.
RL = Number of leftmost 10-character fields or- 5 columns of the card.

C = Conversion mode.

Blank or 0 — No conversion; i.e., binary image input/output.
1 — Hollerith to Display Code for read; Display Code to Hollerith for punch.
2 — Hollerith to BCD for read; BCD to Hollerith for punch.

Display character codes are given in Table 4 of the Appendix.

STATUS RESPONSE WORD — positioned as per address S.

Rs =0
Rs=1
Rs< 0

59

Request is completed with no trouble.

Request is in process.

Request aborted. Reason given in bits 58-48.

48 47

Rs

I

Program error — BA > EA. (BIT 48)

End of file. (BIT 49)

No read data available (not loaded). (BIT 58)

5-10

Request aborted. (BIT 59)

where: 1 implies the condition exists.

0 implies the condition does not exist.

M ey

i B

5.5 CONSOLE OPERATIONS

Request procedures are provided for ASPER routines to display messages on the primary console right
scope or either of the scopes on other consoles. The system provides a timing service for removal of displays
after a certain exposure. However, the request procedure gives an option to override the system time limit
on display. In this mode, it is assumed that ASPER routine will request a removal of the display as a
result of console acknowledgment or internal decision.

OPCODE ADDRESS FIELD REMARKS
DSRW N, S, BA, EA, RL, TAG, T | Display on Right Scope for
: system time limit. Wait if W is used.

DSLW N, S, BA, EA, RL, TAG, T | Display on Left Scope for

system time limit. Wait if W is used.
DHRW N, S, BA, EA, RL, TAG, T | Display on Right Scope and _

hold indefinitely. Wait if W is used.
DHLW N, S, BA, EA, RL, TAG, T | Display on Left Scope and

hold indefinitely. Wait if W is used.
RDPW N, S, TAG Remove display. Wait if W is used.
RTYW N, S, BA, EA, RL, TAG Read console typewriter. Wait if W is used.

N = Console logical unit number; 1, 2, ... M for M consoles in the system.

S = Location containing the central memory address for status response code from System PP
1/0 routine.

BA = Location containing the beginning address of buffer area in central memory.

EA = Location containing the ending address + 1 of buffer area in central memory.

RL = Total number of characters in the message to be transmitted.

TAG = Identification number = 18 bits for display message.
T = Display character size.
Blank or 0 - 64 characters/line.

1 — 32 characters/line.
2 — 16 characters/line.

3 — plot mode.
Display character codes are given in Table 4 of the Appendix.

STATUS RESPONSE WORD — positioned as per address S.

Rs=10 Request is completed with no trouble.
RBs=1 Request is in process.
Rs < 0 Request aborted. Reason given in bits 58-48.
5-11

59 48 47

Program error — BA > EA. (BIT 48)

Identification of request is non-existent. (BIT 50)

Left screen of system console requested. (BIT 52)

Scope is full. (BIT 54)

‘Record length too large. (BIT 58)

Request is aborted. (BIT 59)

where: 1implies the condition exists.

0 implies the condition does not exist.

5-12

5.6 SYSTEM ACTION

OPCODE ADDRESS FIELD

REMARKS

TPPW N, S, SYMBOL

ROMW | NW, S, A

DRMW | NW, S, A

RODW | N, S, L, NAME, R
DRDW | N, S, NAME

RQCW D, S
DRCW D, S
DRPP N, S

Transfer program SYMBOL from CM
to PP memory and begin execution with

first ASPER instruction. Wait if W is used.
Request memory. Wait if W is used.
Release memory. Wait if W is used.
Request disk space. Wait if W is used.
Release disk space. Wait if W is used.
Request 1/0 channel. Wait if W is used.
Request I/0 channel. Wait if W is used.

Release peripheral processor.

D = Physical number of 1/0 channel.

N = TLogical number of PP or disk unit.

S = Location containing the central memory address for status response code from System PP

1/0 routine.

R = Maximum number of logical records into which the file may be segmented.

NW = Total number of words.

L = Number of 60-bit words in longest record.

A = Location containing the central memory address of the first word of block assigned by the
system or released by the programmer. :

NAME = Symbolic name uniquely identifying the disk logical file being referenced.
~ SYMBOL = Name of PP program defined by ASPER pseudo operation.

STATUS RESPONSE WORD — positioned as per address S.

Rs=0 Request completed with no trouble.

Rs=1 Request in process.

Rs < 0 Request aborted. Reason given in bits 58-48.

59 48 47

[=s]
&
Il

it
\

Core exceeded (BIT 48)
Program not present at load time (BIT 50)
Checksum error (BIT 54)
Device not available (BIT 58)
Request aborted (BIT 59)
where: 1 implies the condition exists.
0 implies the condition does not exist.

5-13

5.7 PROGRAM OVERLAY

No execution takes place unless all SUBP’s called in LOAD macros are present. During execution of the
LOAD macro, control is kept in the macro and returned to the routine only upon successful completion of
the load. Therefore, no status is provided. A further explanation of program segmentation and the overlay
operation is given in Section 8.

OPCODE

ADDRESS FIELD

REMARKS

LOAD

SYMBOL

Load SUBP SYMBOL into PP memory.

SYMBOL = Name of overlay region to be loaded.

5-14

"N

5.8 WAIT CHECK

After a buffered operation is initiated, a Wait Check macro may be used to check status. The routine delays
until the status response word is zero (completed) or negative (aborted). If it is zero, the next instruction in
line is executed. If the status word is negative, the routine exits to the location specified by SYMBOL.

OPCODE ADDRESS FIELD REMARKS

WAIW | S, SYMBOL Check status of S. Exit to SYMBOL if abort.

Wait for reply if not ready and W is used.

S = Location containing the central memory addrerr for status response code from System PP
170 routine.

SYMBOL = Transfer location if an abort is indicated by the status response code.

5-15

@ 6. MACRO INSTRUCTIONS

6.1 DESCRIPTION
Backspace

BSP N, §, K

Backspaces K number of records on logical
tape unit N.

Clear Monitor Channels 1-6
CMC N, S

Deselects monitor channels 1-6 on line printer
N. This macro must be used before selecting
another channel.

Display on Left Scope and Hold Indefinitely
DHL. N, S, BA, EA, RL, TAG, T

Displays a message on the left scope of the
console and holds the display indefinitely or until
an RDP request is received. When displayed the
message is accompanied by the 18-bit identifier,

/@ TAG. BA and EA contain the locations for the

beginning and ending addresses of the buffer
area storing the message to be displayed. Each
CM word contains 10 consecutive display-coded
characters of the message ordered from left to
right in the word. The display character size is
determined by T. RL specifies the number of
characters to be displayed on each line on the
scope and is limited by the character size chosen.
The logical console number, N, indicates which
console is to be used. See Example 1.

Display on Right Scope and Hold Indefinitely
DHR N, S, BA, EA, RL, TAG, T

Displays a message on the right scope of the
console and holds the display indefinitely or
until an RDP request is received. See macro
DHL for further explanation of parameters.

Release Channel Back to System
DRC D, S

Releases the channel specified by D back to
the system for general purpose use.

Release Disk Space Back to System
DRD N, S, NAME

Releases the file indentified by NAME on the
logical disk unit N.

Release Memory
DRM NW, §, A

Releases from the block of central memory
words which the PP has reserved the total num-
ber of words specified by NW beginning with
the CM address given in A.

Release Tape Back to System
DRT N, S

Releases the logical tape unit specified by N
for general system usage.

Display on Left Scope for System Time Limit
DSL N, S, BA, EA, RL, TAG, T

Displays a message on the left scope of the
console for the length of time set by the system.
See macro DHL for further explanation of
parameters.

Double Space Printer
DSP N, S

Advances logical printer N two lines.

Display on Right Scope for System Time Limit
DSR N, S, BA, EA, RL, TAG, T

Displays a message on the right scope of the
console for the length of time set by the system.
See macro DHL for further explanation of
parameters.

6-1

Select Format Channel 7
FC7 N, S

Selects format channel 7 on logical printer
unit N. This format channel advances the paper
to a selected line.

Select Format Channel 8
FC8 N, S

Selects. format channel 8 on logical printer
unit N. This format channel ejects the page to
the top of the form.

Forespace
FSP N, S, K

Spaces forward K number of records on logical
tape unit N.

Select Monitor Channel 1
MC1 N, S

Selects monitor channel 1 on logical printer
unit N. The monitor channels contain prede-
signed line-space formats.

Select Monitor Channel 2
MC2 N, S

Select monitor channel 2 on logical printer
unit N.

Select Monitor Channel 3
MC3 N, S

Select monitor channel 3 on logical printer
unit N.

Select Monitor Channel 4
MC4 N,S

Select monitor channel 4 on logical printer
unit N.

6-2

Select Monitor Channel 5
MC5 N, S

Select monitor channel 5 on logical printer
unit N.

Select Monitor Channel 6
MC6 N, S

Select ‘monitor channel 6 on logical printer
unit N.

Punch Cards
PCH N, S, BA, EA, RL, C

Punches cards on logical unit N for the num-
ber of leftmost 5 columns (binary output, no
conversion) or 10-character fields (coded mode)
as given by RL. The conversion mode is specified
by C. The card images are read from central
memory beginning at the address contained in
location BA and ending at the address contained
in location EA. See Example 2.

Print Single Line or Multiple Lines
PRN N, S, BA, EA, RL, C

Prints on logical unit N the number of 10-
character words per line as given by RL in the
conversion mode specified by C. RL may specify
up to 12 or 14* words per line. The print image
is stored in central memory beginning at the
address contained in location BA and ending at
the address contained in location EA. See Ex-
ample 2.

Read Card
RDC N, S, BA, EA, RL, C

Reads cards on logical unit N for the number
of leftmost 5 columns (binary input, no conver-
sion) or 10-character fields (coded mode) as given
by RL. The conversion mode is specified by C.
The cards are read into central memory begin-
ning at the address contained in location BA and
ending at the address contained in location EA.
See Example 2.

*For the 120 character/line 1612 printer and the 136
character/line 501 printer, respectively.

i iy

7
£

Read Record and Hold Data on Disk
RDH N, S, BA, EA, NAME, P

Reads into the buffer area in central memory
the logical record specified by P of the file iden-
tified by NAME from logical disk N. The words
are read, without code translation, into the
buffer area beginning at the address contained
in Jocation BA and ending at the address con-
tained in location EA. The data are held on disk
for subsequent re-use.

Remove Display
RDP N, S, TAG

Erases from the scope at console N the display
identified by TAG.

Read Record and Release Data on Disk
RDR N, S, BA, EA, NAME, P

Reads into the buffer area in central memory
the logical record specified by P of the file iden-
tified by NAME from logical disk N. The words
are read, without code translation, into the
buffer area beginning at the address contained
in Jocation BA and ending at the address con-
tained in location EA. Once the data are in
memory, the disk space is released for use by
other programs.

Read Tape Forward, Binary Mode
RFB N, S, BA, EA, RL, C

Reads, in binary parity, the number of 60-bit
words per tape record, RL, from logical tape
unit N. Each 6-bit character is converted as
specified by the conversion mode C. The words
are read into a buffer area in central memory
beginning at the address contained in location
BA and ending at the address contained in loca-
tion EA. See Example 2.

Read Tape Forward, Coded Mode
RFC N, S, BA, EA, RL, C

Reads, in BCD parity, the number of 60-bit
words per tape record, RL, from logical tape unit
N. Each 6-bit character is converted as specified
by the conversion mode C. The words are read
into a buffer area in central memory beginning
at the address contained in location BA and
ending at the address contained in location EA.
See Example 2.

Request Channel
- RQC D,S

Requests the channel specified by D for the
exclusive use of the requesting PP program.

Request Disk Space
RQD N, S, L, NAME, R

Reserves on logical disk unit N the file identi-
fied by NAME which has L number of 60-bit
words in its longest record. R specifies the maxi-
mum number of logical records into which the
file may be segmented. The parameters N, L,
and R must be numbers, where N =16,
L = 2%, and R = 4000,,. NAME must be unique
within the routine.

Request Memory Space
ROM NW, §, A

Reserves in central memory the total number
or words specified by NW. The system sets A
to the location containing the address of the first
word of the assigned block in central memory.

-Request Tape Assignment from System
ROQT N, S

Requests logical tape unit N for the exclusive
use of a program.

6-3

Read Console Typewriter
RTY N, S, BA, EA, RL, TAG

Reads and identifies a message with the identi-
fication number, TAG, typed on the typewriter at
logical console unit N. Transmits RL number of
characters to a buffer area in central memory
beginning at the address contained in location
BA and ending at the address contained in loca-
tion EA.

Rewind Tape to Load Point
RWL N, S

Rewinds logical tape unit N to the physical
load point on the tape.

Rewind Tape for Unload
RWU N, S

Rewinds logical tape unit N so that the tape
may be dismounted.

Search File Mark Backward
SFB N, S

Searches the tape on logical unit N one record
at a time back towards the load point until a
file mark is passed over. When the markis found,
the tape is positioned on the load-point side of
the file mark. If none is found, the macro is equi-
valent to RWL.

Search File Mark Forward
SFF N, S

Searches the tape on logical unit N one record
at a time from the current position forward until
a file mark is passed over. When the mark is
found, the tape is positioned on the side of the
file mark away from the load point. If no mark is
found, the end of tape marker stops the search.

6-4

Suppress Space After Next Print
SPA N, S

Suppresses on logical printer N the automatic
advance after the next line printed with a PRN
macro.

Single-Space Printer
SSp N, S

Advances logical printer N one line.

Transfer PP Program and Begin Execution
TPP N, S, SYMBOL

Produces a calling sequence to the PP loader
which, during execution, transfers PP program
SYMBOL from central memory to logical periph-
eral processor N and begins execution with the
first ASPER instruction defined under an ORGR
pseudo code. This macro is used to load an
ASPER program into a PP from CM at execute
time. The load begins at the first binary card
and continues until the loader encounters an-
other ASPER header card, a SUBP header card,
or a terminate card.

The TPP call from a CM program can load any
PP in the system. However, the TPP call by a
PP program can load any other PP in the system
but cannot load itself.

Wait Check
WAI S, SYMBOL

Checks the status response word of other
macros during a buffered operation. If the opera-
tion has been aborted, the WAI macro exits to
the address specified by SYMBOL. If not, the

next instruction, in line, is executed.

Write File Mark

WFM N, S

Writes an end of file mark on the tape on
logical unit N.

»

Write Tape, Binary Mode
WRB N, S, BA, EA, RL, C

Writes, in binary parity, the data between BA
and EA in records of RL 60-bit words each onto
logical tape unit N. Each 6-bit character trans-
ferred is converted as requested by the con-
version mode C. The words are written from a
buffer area in central memory beginning at the
address contained in location BA and ending at
the address contained in location EA. If the con-
version mode is 0, a straight binary output is
expected. If one of the other conversion modes
is used, Example 2 applies.

Write Tape, Coded Mode
WRC N, S, BA, EA, RL, C

Writes, in BCD parity, the data between BA
and EA in records of RL 60-bit words each onto
logical tape unit N. Each 6-bit character trans-
ferred is converted as requested by the con-
version mode C. The words are written from a
buffer area in central memory beginning at
the address contained in location BA and ending
at the address contained in location EA. See
Example 2.

Write Record on Disk
WRD N, S, BA, EA, NAME, P

Writes from the buffer area in central memory
the logical record specified by P of the file iden-
tified by NAME onto logical disk N. The words
are written, without code translation, from the
buffer area beginning at the address contained
in location BA and ending at the address con-
tained in EA.

Release Peripheral Processor
DRPP N, S

Returns the PP, logical unit N, to the system
for general purpose use. This macro must be the
final instruction executed before the program
completes.

Load Segment
LOAD SYMBOL

Loads the subroutine SYMBOL into PP
memory. SYMBOL is a subroutine defined by
the pseudo opcode SUBP.

6-5

6.2 EXAMPLES

EXAMPLE 1

DISPLAY AND TYPEWRITER INPUT/OUTPUT

Suppose a program needs to display a request for
control information which requires a reply from
the operator. The message might be:

REQUEST SWITCH SETTING 1-5

Either the DHL or DHR macro may be used. Both
require that (1) the message data be organized and
ready for display before the macro itself is executed,
and (2) a set of parameters define the message
organization to the operating system.

(1) Data Organization:
Status — A word may be reserved in CM for

the status response from the system
by use of the BSSCM pseudo code.

S BSSCM 1

Data — The message data may be entered
into the ASPER program by use of
the DPC pseudo code.

DATA DPC

*REQUEST SWITCH
SETTING 1-5*

Before execution of the macro, how-
ever, the data must be written into
central memory by the CWM in-
struction. The output data block
may be reserved in CM by

DIS BSSCM 3

The one-word message input area
may be reserved by

DISIN BSSCM 1

Record
Length

— The length of the record to be dis-
played is 26 characters.

6-6

(2) Parameters:

Unit
Number

Status

BA

EA

RL

TAG

— The logical unit number is used
only to indicate, relatively, a dif-
ferent console between different
macros in the same program. For
instance, logical unit number 2 may
be any console that is available
except one which has been pre-
viously referenced as logical unit
number 1, 3, 4, etc.

— The central memory address, S,
may be designated by use of a
literal (S). This specifies the first of
two consecutive peripheral memory
addresses which contain the central
memory address S. (Central mem-
ory addresses are 18 bits and re-
quire two PP 12-bit words).

— The location containing the begin-
ning address of the message in cen-
“tral memory, DIS, may be desig-
nated, as was S, with a literal (DIS).

— The location containing the ending
address in central memory, DIS +3,
may be similarly written (DIS+-3).

— The record length may be given
explicitly as 26 or as a symbolic PP
address, Z, which contains 26.

Z COND 26

— A program may put up more than
one request which requires a reply
from the operator. Therefore an
identifier “TAG” is provided. This
tag is then appended to the program
account number by the system to
provide total uniqueness to all re-
quests from the same and/or differ-
ent programs. Let us suppose the
account number is 3512, and TAG
is L.

SIZE — The message character size may be
chosen as 64, 32, or 16 characters
per line. Let us suppose 32 char-
acters per line is chosen.

The macro is then written:

DHL 1, (S), (DIS), (DIS+3), 26, 1, 1

In this example, logical console number 1 is used.
The literal notation is used for the address specifica-
tion of the status response word and data locations,
and the RL is given numerically.

The result of executing the macro would be a dis-

play positioned somewhere on the left scope of
logical console number 1 as follows:

1 3512

REQUEST SWITCH SETTING 1-5

Implication from the message is that the program
expects the operator to type a reply. Acceptance of
the reply requires another macro, RTY. The para-
meters for this are N, S, BA, EA, RL, TAG.

N might be 1 to specify the typewriter on
logical console 1.

S is a CM word and in this case may be the
same one as before.

BA is the beginning address of the input
message area, DISIN.

EA need be only one larger than BA since
the reply is less than 10 characters,

RL is 1 since the response is a single digit.

TAG is the identifier that the operator must re-
spond to in order to associate his typing

with the request being made, namely
1 3512.

The macro issued would be:
RTY 1, (S), (DISIN), (DISIN+1),1, 1

When the system indicates a ready with the fol-
lowing display:

the operator must type a number, say 3, which is
the switch setting:

3 carriage return

to satisfy both the RTY and DHL macros. The sys-
tem places this response, 3, at the bottom of the
scope.

EXAMPLE 2

PUNCH, READER, PRINTER, AND
TAPE INPUT/OUTPUT

Prior to execution of coded data output macros, it is
necessary that the data to be outputed exist in cen-
tral memory in BCD or display coded form. The
coded data are assumed, by the macro, to be packed
10 characters/word from left to right for all words
between the addresses contained in locations BA
and EA.

Execution of the macro produces r cards, print lines
or tape records of 10%(RL) characters each, where
r is the number of records required to output all the
data between BA and EA. In the process of transfer,
each character is translated from the internal code
to the output code according to the code conver-
sion mode C.

Suppose data to be punched are:
1.052223.925,,,1.3124 (1)

2.0ppAnn 4. 17T s pn3.2127

then the internal storage in display code would be:

BA 34573300000000365744
35400000003457363435
37000000000000000000 (2)
35573300000000375734
42420000003657353435
42000000000000000000

The data are to be punched and therefore must be

converted to Hollerith which calls for a conversion
mode of 1 for display to Hollerith.

The Punch macro is:
PCH 1, (S), (BA), (BA+6), 3, 1

Execution of the macro would produce the two
cards of output left justified from Column 1 as given
in (1) above.

6-8

For input the same conventions hold except in this
case the data are external and will be placed into
memory as given above. If the data example above
were left justified on two consecutive cards, and the
read card macro

RDC 1, (S), (BA), (BA+6), 3, 1

were executed, the data would come into central
memory as shown in (2) above beginning at BA.

Compatibility exists between formats for tape 1/0
and cards and between card and tape output and
printer output. The conversion mode differs due to
the introduction of Hollerith code for cards. To print
the data in (2) above, the macro used would be:

PRN 1, (S), (BA), (BA+6), 3, 2
and write tape would be

WRC 1, (S), (BA), (BA+6), 3, 2

To read the data from the output tape a
RFC 1, (5), (BA), (BA+6), 3, 1

produces the same internal form as given in (2)
above.

For binary data transfers, the conversion mode
C = 0 is used. This mode produces a bit-by-bit
transfer without conversion to the output device
from memory or from the device to memory. In the
case of card input and output, one column on the
card corresponds to one of 5 12-bit bytes of each
CM word. That is, the leftmost 5 columns are in-
serted from left to right into the first CM word
specified, the next five into the next CM word, etc.
RL is the number of consecutive 5 column fields
to be considered on each card. Examples of binary
and coded card inputs and their conversion to card
image in central memory are gjven in Figures 3 and 4,

Row /
12
11
0 0000000000000C00000000000008¢9, 0000000000000000000000D
123456 708 9101112131413 1617 18 192027 22 2324 25 26 27 2 359 6061 62 63 646566676863 7071 7273747576 7778 78 60
1 IR AR R R R R R R R ERR R R RN IR RRERERERRRARRERARR R R
2 222222222222222222222222222 222222222222222222222212
3 333333333333333333333333313 333333333333333333333333 BINARY
CARD
4 444444444444844444444484444 §444444444044484444444444 INPUT
5 5555555555555555555855555 56555555555555555555555555
6 66666666666665666606666606 666666666666666666666666666
7 171711711717 11111171117111111 1717171171771117171171171171111171111
] 8803808888088888888888888 388888888380668888883888838
9 99999989959859635593499099989 999939 99 999899993
1234567891101 213141516171819202122232425 565758596061 6263640566 GTE3 6970717273 747576 7778 79 50
Column \ GLOBE NO. 1 STANDARD FORM 5081 . /
»
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
Bit 59 48 47 3635 24 23 1211 0
Word 1 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
Word 2 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10 CARD IMAGE
IN
CENTRAL
MEMORY
/ ——\‘
Word 16 Col. 76 Col. 77 Col. 78 . Col. 79 Col. 80
Bit 11
5 COLUMN i
121101“3456789BYTEj
H_IL v J
ZONES ROWS

Figure 3 BINARY CARD INPUT

Row /
12
11
0 000600000000000000060000000080 0000000000000000000000
12345678 910HNZNPKISIBITIBBWN22242525627 B 69 G061 6263 6465666768970 TI 23 4151611187980
1 IRRRERRRE R R RN R R R RN R R N A R AR ERRRRERRRRRR R ERER
2 222222222222222222222222222 22222222222222222222222
CODED
3 33333333333333333333333333 333333333333333333333333 CARD
4 4444444444444444444444444 A444444444444444444444444 INPUT
5 555555555555555555555655] pG56556555555555555555555555
6 666666666666666666666666/ (6666666666666666666666666646
7 171711117111111111117111111 11171717171711111111111171171111
8 88888888888863068888888888 8660888888886388888388888
9 9999999999999999999999999 9999999999999999999999999
12345678510 11 i2 3141516 T1IB1920202212425 965758 596061 6263646566 6768691071 1273 4757677787980
Column \ GLOBE NO. STANDARD FORM 5081 J/
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
Bit 59 48 47 36 35 24 23 1211 0
Word 1 Cols. 1-2 Cols. 34 Cols. 5-6 Cols. 7-8 Cols. 9-10
Word 2 | Cols. 11-12 | Cols. 13-14 | Cols. 15-16 | Cols. 17-18 | Cols. 1920 | GARD TMAGE
IN
| MEMORY
—/_-—_——_—\
&_/
Word 8 Cols. 71-72 Cols. 73-74 Cols. 75-76 Cols. 77-78 Cols. 79-80
Bit 11 65

6-10

Col. i,Coded

Col. i+1,Coded

Figure 4 CODED CARD INPUT

COLUMN i, i+1
BYTE j

7. DIAGNOSTICS AND ASSEMBLER

OUTPUT

7.1 ASPER ERROR PRINTOUTS

B

C

Symbol Table Full. The symbol is not assigned
a location.

Peripheral Processor Core Overflow. During
assembly of this ASPER program, the current
location counter exceeds the limit allocated to
the object program.

Duplicate Symbol. The symbol in the location
field has been previously defined. A list of all
duplicate symbols is printed at the end of the
side-by-side listing.

Instruction Error. There are more than six
instructions on the card.

Format Error. An error is detected in the for-
mat of an instruction.

Integer Error. An error is detected in a decimal
or octal number.

K-Field Error (address field). The address por-
tion of the instruction does not meet program
specifications or is out of range.

Multiple Defined Reference. A reference is
made to a symbol that appears more than once
in the location field.

Operation Code Error. The operation code is
not numeric or included in the set of legal
mnemonic codes, pseudos or macros. ASPER
forces two words of PSN instructions on this
€rror.

Parameter List Error. The parameter list does
not satisfy ASPER specifications. The list may
contain too few or too many parameters.

Relative Error. The address portion of this rela-
tive instruction evaluates out-of-range for this
location.

Tag Error. During the definition of a symbol,
the symbo! has been found to violate ASPER
symbol specifications.

Undefined Symbol. A reference is made to a
symbol that does not appear in the location
field. ASPER assigns a location at the end of
the object program to each unique undefined
symbol. In certain pseudo codes (EQU, BSS,
BSSZ), a symbol used in the address field must
be defined prior to the pseudo code. A list of
undefined symbols appears at the end of the
side-by-side listing,

008 HAVI ‘SOHY ANVIN OOL’

SAQYODHY 000F NVH.L SSHT SI SSHOOUd ™

HIGIWAN @HODHd INHWHUDNI'
ASIA ADHHD

JSIA HITHMS

dHOODHdYH SSHDOUd”

ANILNOY HATIA-A0-ANH OL 0D

J0d ISHL®

4004y HdVL davdy’
HdVL ONIMIY®
YHIINNAN ddODdHY ASIA LHSHYd

OHOVIN JSIA 404 YHIWNN dHOOHY "
¢ HHIWNN dJNHL"

T HHIINAN dINHL®

¢ NOILVDOT XHANI®

T NOILVDOT XHANI®

HHAHO HSHHAHY HdV.L LSTT OL ANLLOOY®

aNd

ml*luw
1-+ONDHY
1+ONDHY
108

IUV.LS

o

q

T+ONDHY
IHOgV(LVLS)
ONDAY TATIA (2 + V) (V) (LV.LS)T
I+ANOD
A0

IXN

91

VNI

VNI

LV.IS

1909V (LVLS)
9T 9T+ V) (V) (LVLS)T
(LVIS)T
T+ONDHY

1

91
T

qLT

TO0Hd

WIT €120 0010 €250
NIN £0S0 ©G50
aos A0H QrLE 1530
aws aTHe 0330
oal €90 000G 9130
IN[T €110 0010 #1560
N{W €020 €160
NHS Q00T Z1%0
aov qr9¢ 1120
MIVM ¥LLL 00T0 0020
aam ¥LLL 00T0 LST0
IN[" IXN G580 000 Ge10
[T 160 0010 €910
NId €090 %810
NHS 0301 1510
aat 9108 0810
ayn 9109 L¥10
elei! 0700 0005 gF10
MIVM PLLL 00Z0 $ET0
q49 I9v1S FLLL 0030 eI10
MTMY ¥LLL 0020 Z010
arLs qTHe 1010
NAT LINI 1071 0010

i r)i(e] 0000

ssq VNI 0300
ANOD ONDHY 1000 0000 ¥100
0 GdNAL 0000 £100
0 TdNIL 0000 G100
NOD TANI LT00 1100
0 TANI 0000 0100

}:(0) 0000

HHJSY 0000

LNOLNIdd WVYOO0UHd JTdAVS 2°4L

7-2

HTI4 JSIA ANIJHA”
IOM SNLVLS ANIAHA®
vddv WO INIHHd "

ANOd ONISSHDOUd *

JYODHY SSHDOHd -
HALYNINYHL ANV dd d3SVdTHY "

SANIT ¥ INIHd "
HHAYO HSHHAHY '
ASIAa dvdy-

0007 THIIAGET
I
38
aNd
TANOD
GdINAL Av¥ $ € NA'TI$ caNI
TdNAL T+ VNI
GdNAL
\%
AALLINO
dUODHY SSHOOUd OL HAOD
AALLINO
qUODdY SSADOYd OL HAOD
AHILLINO
A4y0DHAY SSHDOYd OL HAOD
ANOD N[N ¢ TANI

GANI ALS $ 0 NA'T $ TANI ALS $ 91

0
(LV.LS)T

A03

IHOgV(LVLS)

&8 (6 + V(V)'(LVLS)T
RO LN ARRARY)

ONDHY TATIII(BE+ V) (V) (LVLS)T

@
b ;

ANHE
assg
INDSSH
INDSSH
noHA
W1
aos
INMD
aav
DAl

adart
NAT
Wi
ddda
[T
MIVM
NYd
MIVM
ay

LVLS

LHOdV

TANOD

ANOD
aN4

6880

LT100

0000

0000
VLLL
15560
VLLL
VLLL
VLLL
YLLL

T000
1000
0¥00
€10
0010
T1LE
¢Ie9
eIIe
000z

¥7e0
1780
LEE0
9ee0
¥£€0

(4330
950
¥6€0
€180
T1€0
00€0
LSe0
9¥c0
geel

7-3

7.3 SUMMARY PAGE DIAGNOSTICS

At the end of each ASPER assembly a summary page is printed that includes the number of errors detected,
number of symbols assigned, length of ASCENT program, length of ASPER program, amount of central
memory storage defined by the ASPER program, and a list of symbols that are undefined, duplicated or not
referenced. An example follows:

ERRORS 00005
SYMBOLS 00234
ASCENT 02011
ASPER-PP 03121
ASPER-CM 01000
000100 N ABCDE 000205 N TAGA 000500 D AB 002006 U ST

002007 U TA 002010 U SYMB
Explanation
ERRORS - Total number of lines with at least one error.
SYMBOLS - The number of symbols assigned a location.
ASCENT - Address of the next central memory location that is available after the central memory

program.
ASPER-PP - Address of the next peripheral processor memory location that is available.
ASPER-CM - Number of central memory locations defined by the ASPER program.

aaaaaa NUD TAG
a = location assigned to TAG

N = TAG is not referenced by the program. (NULL)
U = TAG is undefined.
D = TAG is a duplicate symbol.

All numbers are octal.

7-4

8. PROGRAM SEGMENTATION

An ASPER program is assumed to be made up of a
sequence of one or more segments. The basic seg-
ment is defined by the ASPER pseudo operation
and any subsegments, if they exist, are defined by
SUBP cards (SUBP pseudo operation). The basic
segment, along with the other subsegments, exists
in central memory as binary card images, having
been placed there by the job loader. The loading of
the basic segment into a PP is initiated by the CM
portion of the program through the use of the TPP
macro. As soon as the basic segment is loaded,
execution of that segment begins in the PP. It is the
responsibility of the ASPER program (basic seg-
ment) to provide overlay requests where needed.
The overlay is initiated by issuance of the LOAD
macro by the ASPER program. The location at
which the subsegment is to be loaded was defined
at assembly time by the SUBP pseudo operation.

The basic segment of a program is defined with an
ASPER header card:

ASPER Pl
where: P1 is the name of a program.

Coding within the segment follows normal rules as
described in Sections 1 through 5. When all of the
coding for the basic segment is completed, the

subprogram pseudo operation (SUBP) is used to
define any additional subsegment to be overlayed.

SUBP P1, P2

where: P1 is the symbolic name of the new seg-
ment to be used by the overlay request.
P2 is an operand which defines the over-
lay point within the first segment and is
of the form:

SYMBOL
SYMBOL = CONSTANT
CONSTANT

Once the basic segment is in execution, any other
subsegment may be called by using the LOAD
pseudo operation.

LOAD p1

where: Pl is the name of the subsegment wanted.

No limit is placed on the number of subsegments
allowed in a routine. The limit on the size of usable
peripheral processor core is 62 direct locations,
2-77; and 3520 non-direct locations, 1004-6777,,
with the other locations being reserved for PP resi-
dent routines.

8-1

LOC OPCODE ADDRESS REMARKS
Col. 2 9 11
ASPER NAME . Define routine name.
. Normal coding and decision
. to load SEGL.
LOAD SEG1 . Loads SEGI into PP.
RIM SAM+1 . Stores P42 in SAM +1 for
. return from SEGI.
. Normal coding and decision
. . to load SEGS3. -
LOAD SEG3 . Loads SEG3 into PP.
LM TOM . Non-return entry into SEG3.
TAG1 . Overlay point for SEG1.
TAG3 . Overlay point for SEG3.
TAG2 . Overlay point for SEG2.
SUBP SEG1, TAG1 . Defines segment name and load point.
SAM LM 0 . Address is filled by R]M instruction.
. . Segment coding
LOAD SEG2 . Loads SEG2 into PP.
LM SAM . Return to main program.
SUBP SEG3, TAG3 . Defines segment name and load point.
TOM
. . Segment coding
DRPP N, STAT . Release PP to system.
SUBP SEG2, TAG2 . Defines segment name and load point.
END . End of program
NOTES:

1. In this illustration, SEG 2 is a non-executable
segment, containing input data only.

2. Both RJM and LJM use two computer words
since they require a 12-bit address and a 6-bit
index designator, the address being placed in
the second word.

8-2

3. The pseudo opcodes, ASPER and SUBP, are
non-executable instructions and cause no binary
word to be generated. However, they do cause
the assembler to generate control information in
the form of control cards in the binary object
program.

o

APPENDIX

TABLE 1

PERIPHERAL PROCESSOR
OPERATION CODES

OCTAL

OPCODE MNEMONIC ADDRESS COMMENTS
00 PSN . Pass
01 LM m d . Long jump tom + (d)
02 ‘RJM m d . Return jump to m -+ (d)
03 U]N d . Unconditional jump d
04 ZJN d . Zero jump d
05 NJN d . Nonzero jump d
06 PIN d . Plus jump d
07 M]N d . Minus jump d
10 SHN d . Shift d
11 LMN d . Logical difference d
12 LPN d . Logical product d
13 SCN d . Selective clear d
14 LDN d . Load d
15 LCN d . Load complement d
16 ADN d .Addd
17 SBN d . Subtract d
20 LDC dm . Load dm
21 ADC dm . Add dm
22 LPC dm . Logical product dm
23 LMC dm . Logical difference dm
24 PSN . Pass
25 PSN . Pass
26 EXN . Exchange jump
27 RPN . Read program address
30 LDD d . Load (d)
31 ADD d . Add (d)
32 SBD d . Subtract (d)
33 LMD d . Logical difference (d)
34 STD d . Store (d)
35 RAD d . Replace add (d)
36 AOD d . Replace add one (d)
37 SOD d . Replace subtract one (d)
40 LDI d . Load ((d))
41 ADI d . Add ((d))
49 SBI d . Subtract ((d))
43 LMI d . Logical difference ((d))
44 STI d . Store ((d))
45 RAI d . Replace add ((d))
46 AOI d . Replace add one ((d))
47 SOI d . Replace subtract one ((d))
50 LDM md . Load (m + (d))
51 ADM md . Add (m + (d))

OCTAL

/,@ OPCODE MNEMONIC ADDRESS COMMENTS
52 SBM m d . Subtract m + (d))
53 LMM m d . Logical difference (m + (d))
54 STM md . Store (m + (d))
55 RAM md . Replace add (m + (d))
56 AOM m d . Replace add one (m + (d))
57 SOM m d . Replace subtract one (m + (d))
60 CRD d . Central read from (A) to d
61 CRM m d . Central read (d) words from (A) tom
62 CWD d . Central write to (A) from d
63 CWM m d . Central write (d) words to (A) from m
64 AIM m d . Jump to m if channel d active
65 M m d . Jump to m if channel d inactive
66 FIM m d . Jump to m if channel d full
67 ETM m d . Jump to m if channel d empty
70 JAN d . Input to A from channel d
71 IAM m d . Input (A) words to m from channel d
72 OAN d . Output from A on channel d
73 OAM m d . Output (A) words from m on channel d
74 ACN d . Activate channel d
75 DCN d . Disconnect channel d
76 FAN d . Function (A) on channel d
77 FNC m d . Function m on channel d
P
®
NOTES TO TABLE 1
NOTATION INTERPRETATION
d Implies d itself
(d) Implies the contents of d
((d)) Implies the contents of the location specified by d
m Implies m itself used as an address
m + (d) The contents of d are added to m to form an operand (jump address)
(m + (d)) The contents of d are added to m to form the address of the operand
dm Implies an 18-bit quantity with d as the upper 6 bits and m as the lower 12 bits

TABLE 2

PSEUDO OPERATION CODES

OPCODE MEANING
ASPER Defines PP program
SUBP Defines overlay
ORG Assigns program words to direct locations, nonrelocatable
ORGR Assigns program words to nondirect locations, relocatable
BSSD Reserves disk space
BSS Reserves peripheral memory region
BSSZ Reserves peripheral memory region and presets it to zero
BSSCM Reserves central memory region
EQU Equates a symbol to a value
DPC Inserts display-coded characters into program
BCD Inserts BCD characters into program
CON Constructs 12-bit constants
COND Constructs 18-bit constants
END Defines end of PP program
LIST Controls side-by-side listing
SPACE Spaces side-by-side listing
EJECT Ejects page on side-by-side listing

A-4

®

TABLE 3
SYSTEM MACROS

RQTW
DRTW.
SFFW.
SFBW
WFMW.
RWLW
RWUW
FSPW
BSPW
RFCW
RFBW
WRCW
WRBW
RDHW
RDRW
WRDW
SSPW
DSPW
FCTW
FC8W
MCIW
MC2W.
MGC3W
MC4W._
MC5W
MCEW

Request tape assignment from system.
Release tape back to system.
Search file mark forward.

Search file mark backward.

Write file mark.

Rewind tape to load point.
Rewind tape for unload.
Forespace.

Backspace.

Read tape forward coded mode.
Read tape forward binary mode.
Write tape coded mode.

Write tape binary mode.

Read record and hold data on disk.
Read record and release data on disk.
Write record on disk.

Single space printer.

Double space printer.

Select Format Channel 7.

Select Format Channel 8.

Select Monitor Channel 1.

Select Monitor Channel 2.

Select Monitor Channel 3.

Select Monitor Channel 4.

Select Monitor Channel 5.

Select Monitor Channel 6.

CMCW.
SPAW
PRNW
PCHW
RDCW
DSRW

DSLW
DHRW
DHLW

RDPW
RTYW
WAIW
TPPW

RQMW._
DRMW
RQDW
DRDW
RQCW
DRCW
DRPP
LOAD

Clear Monitor Channels 1 — 6.
Suppress space after next print.
Print single line or multiple lines.
Punch cards.

Read cards.

Display on right scope for system
time limit.

Display on left scope for system
time limit.

Display on right scope and hold
indefinitely.

Display on left scope and hold
indefinitely.

Remove display.

Read console typewriter.

Check status word.

Transfer program SYMBOL from CM
to PP memory and begin execution
with first ASPER instruction.
Request memory.

Release memory.

Request disk space.

Release disk space.

Request I/0O channel.

Release 1/0 channel.

Release peripheral processor.
Load segment SYMBOL.

A-5

A6

TABLE 4
6600 COMPUTER
CHARACTER CODES

Hollerith
Display Printer Punch
Character Code Code Positions

A 01 61 12-1
B 02 62 12-2
C 03 63 12-3
D 04 64 12-4
E 05 65 12-5
F 06 66 12-6
G 07 67 12-7
H 10 70 12-8
I 11 71 129
J 12 41 11-1
X 13 42 11-2
L 14 43 11-3
M 15 44 11-4
N 16 45 11-5
0] 17 46 11-6
P 20 47 11-7
Q 21 50 11-8
R 29 51 11-9
S 23 29, 0-2
T 24 22 0-3
U 25 24 04
VvV 26 25 0-5
w 27 26 0.6
X 30 7 0.7
Y 31 30 0-8
Z 32 31 0-9
0 33 12 0
1 34 01 1
2 35 02 2
3 36 03 3
4 37 04 4
5 40 05 5
6 41 06 6
7 49, 07 7
8 43 10 8
9 44 11 9
blank 00 20 space
+ 45 60 12
— 46 40 11
* 47 54 11-8-4
/ 50 21 0-1
(51 34 0-8-4

®

®

Character

Display
Code

Printer
Code

Hollerith
Punch
Positions

)
-2

5

JWVAVEZ<LE= L TTRINT

w-

52
54
55
56
57
63

74
13
14
33
73
34
00
15
16
17
32
35
36
37
52
55
56
57
72
75
76
77

12-8-4
8-3
8-4
0-8-3

12-8-3

11-8-3

Central Processor
instruction Execution Times

Time Time
Mnemonic & (Minor Mnemonic & (Minor
Octal Code Name Cycles) Octal Code Name Cycles)
BRANCH: UNIT . LONG ADD UNIT
PS 00 STOP - Xi 36 INTEGER SUM of Xj and Xk to Xi 3
Rl 01 RETURN JUMP to K 13 i 37 INTEGER DIFFERENCE of Xj and
P 02 GOTOK + Bi g+ Xk to Xi 3
IR 030 GOTOKIifXj = zero 8*
NI 031 GOTOKifXjzero g* MULTIPLY UNIT
PL 032 GOTOKIifXj = positive g+ FXi 40 FLOATING PRODUCT of Xj and
NG 033 GOTOKifXj = negative 8* Xk to Xi 10
IR 034 GOTOKIfXjisinrange 8+ RXi 4l ROUND FLOATING PRODUCT of
OR 035 GOTOKIfXjisoutof range 8* Xj and Xk to Xi 10-
DF 036 GO TO K if Xj is definite 8* DXi 42 FLOATING DP PRODUCT of Xj and
D 037 - GO TOKifXj s indefinite 8* Xk to Xi 10
;o4 corokitBi= g* DIVIDE UNIT
NE 05 o . FXi 44 FLOATING DIVIDE Xj by Xk to Xi 29
NZ 05} GO TOKif Bi 7= Bj 8 RXi 45 ROUND FLOATING DIVIDE X; by
S . Xk to Xi
GE 82} GO TOK if Bi = Bj g* . PAS; 23
e o} GOTOKitBi<B 8 CXi 47 SUMof'sinXktoXi 8
BOOLEAN UNIT INCREMENT UNIT
BXi 10 TRANSMIT Xj to Xi 3 SAi 50 SUM of Aj and K to Ai 3
BX! 11 LOGICAL PRODUCT of Xj and Xk. to Xi 3 SAi 51 SUM of Bj and K to Ai 3
() | B 15 LONIGAL DIFFERENGEof¥jand ’ W8 SUMoiXjandK oA ?
\,» ‘ Xk to Xi orran 3 SAi 53 SUMofXjandBktoAi 3
BXi 14 TRANSMIT Xk COMP. to Xi 3 SAi 54 SUMofAjand Bkto Al 8
BXi 15 LOGICAL PRODUCT of Xj and Xk SAi 55 DIFFERENCE of Aj and Bk to Ai 3
COMP. to X! 3 SAi 56 SUM of Bjand Bkto Ai 3
BXi 18 LOGICAL SUM of Xj and Xk SAi 57 DIFFERENCE of Bj and Bk to Ai 3
COMP. fo Xi 3 SBi 60 SUMofAjandKtoBi 3
BXi 17 LOGICAL DIFFERENCE of Xj and Xk : , ,
COMP. to Xi 3 SBi 61 SUM of Bj and K to Bi 3
Xi 20 SHIFT Xi LEFT jk places 3 SBi 63 SUMofXjandBktoBi 3
A2 SHIFT Xi RIGHT jk places 3 SBi 64 SUM ofAj and Bk to Bi 3
i 22 SHIFT Xk NOMINALLY LEFT Bj, SBi 65 DIFFERENCE of Aj and Bk fo Bi 3
_ nlaces to Xi RXi , 3 SBi 66 SUM of Bj and Bk to Bi 3
A 23 S”gf;’g‘g%‘"“” RIGHT Bj 2 SBi 67 DIFFERENCE of Bj and Bk to Bi 3
NXi 24 NORMALIZE Xk in Xi and Bj 4 SXi 70 SUMofAjand KtoXi 3
Xi 25 ROUND AND NORMALIZE Xk in SXi 7 SUM of Bj and K to Xi 3
Xiand Bj 4 SXi 72 SUMofXjandKtoXi 3
Uxi 26 UNPACK Xk to Xi and Bj 3 SXi 73 SUM of Xj and Bk to Xi 3
PXi 27 PACKXifrom Xk and Bj 3 SKi 74 SUMof Aj and Bk toXi 3
MXi 43 FORM jk MASKinXi 3 SXi 75 DIFFERENCE of Aj and Bk toXi 3
FXi 30 ?EC[))ATL::I(:SUM of Xj and Xk to Xi 4 SXi 76 SUM of Bj and Bk to Xi 3
mi a1 FLOATING DIFFERENGE of Xi and SXi 77 DIFFERENCE of Bj and Bk to Xi 3
Xk to Xi 4
DXi 32 FLOATING DP SUM of X] and
Xk to Xi 4 Comp.—~Complement
DXi 33 FLOATING DP DIFFERENGE of Xj
and Xk to Xi 4 DP—Double Precision
RXi 34 ROUND FLOATING SUM of Xj and
RXi 35 Ro)[(_lmtg]):(|I_0AT|NG DIFFERENCE of Xj ' #Add 5 minor cycles to branch time for a branch to an instruction which
and Xk to Xi 4 is out of the stack (no memory conflict considered)

CONTROL DATA SALES OFFICES

ALAMOGORDO » ALBUQUERQUE « ATLANTA - BILLINGS + BOSTON « CAPE
CANAVERAL « CHICAGO « CINCINNATI « CLEVELAND « COLORADO SPRINGS
DALLAS « DAYTON « DENVER « DETROIT « DOWNEY, CALIFORNIA « HONOLULU
HOUSTON « HUNTSVILLE « ITHACA « KANSAS CITY, KANSAS « LOS ANGELES
MADISON, WISCONSIN + MINNEAPOLIS » NEWARK « NEW ORLEANS « NEW
YORK CITY « OAKLAND « OMAHA « PALO ALTO - PHILADELPHIA « PHOENIX
PITTSBURGH « SACRAMENTO « SALT LAKE CITY + SAN BERNARDINO « SAN

DIEGO » SEATTLE « ST. LOUIS « WASHINGTON, D.C.

.itho in U.S.A,

ATHENS « CANBERRA « DUSSELDORF « FRANKFURT « THE HAGUE « HAMBURG
JOHANNESBURG + LONDON . MELBOURNE . MEXICO CITY (REGAL ELEC-
TRONICA DE MEXICO, S.A.) « MILAN « MONTREAL « MUNICH . OSLO « OTTAWA

PARIS » SAVYON » STOCKHOLM « STUTTGART « SYDNEY « TOKYO(C. ITOH

g ’)

CONTROL Dl
[-oroon

© 1966, Control Data Corporation
Pub. No. 601017008

ELECTRONIC COMPUTING SERVICE CO,, LTD.) » TORONTO « ZURICH

8100 34th AVE. SO., MINNEAPOLIS, MINN. 55440

|

