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Introduction

In recognition of the advanced design techniques incorporated in the logic of
the 6600, the development of the 6600 programming systems included a mathe-
matical investigation of the library functions intended for the 6600. Previous
methods of approximations were analyzed in terms of the 6600 and, where
appropriate, new algorithms were programmed and tested using a CONTROL
DATA 1604A in double-precision.

As a general goal, approximations of the required accuracy were sought which
were as short as possible with the constraint that the range reduction mechanism
be of reasonable complexity. In most cases, continued fraction forms appear best,
although polynomial and rational forms were derived for many of the functions
in order not to prejudge during the development phase the form most efficient in
practice. Therefore, rather than limiting consideration to algorithms optimized
for the 6600, this document includes a general discussion of methods along with
presentation of a variety of algorithms selected to meet the general requirements.
Consequently, the algorithms and the given coefficients, which were taken di-
rectly from the 1604A double precision results, are designed to achieve the stipu-
lated accuracy but do not take into account the 6600 round-off effects.

Although the information derived here was gathered during the study of 6600
library function algorithms, the exact techniques implemented in the original
library version of the 6600 systems or subsequent revisions thereto are not neces-
sarily contained in this document.
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1. Characteristics of the 6600"

The CONTROL DATA 6600 is a large-scale, solid-
state, general-purpose digital computing system
composed of eleven independent computers. Ten of
these are peripheral and control processors, each
with a 12-bit 4096-word memory. The eleventh com-
puter, the central processor, is a high-speed arithme-
tic device. The common element between these
computers is a random-access central memory of
131,072 words (of length 60-bits) organized in 32
banks of 4096 words each. It is the central processor
whose characteristics are to be considered in select-
ing appropriate algorithms.

The central processor has ten independent arith-
metic and logical units which operate concurrently
in the solution of a problem. In addition, it has 24
operating registers for functional units and 8 tran-
sistor registers for servicing functional units. A
word length is 60 bits, 48 bits of which determine
the integer coefficient, 11 bits the biased exponent,
and 1 bit, the coefficient sign. Execution times for
floating-point operations are as follows:

Floating-point add:
4 minor cycles=4(100)(10-°)SECS=4(10-")SECS

Floating-point multiply:
10 minor cycles =10(100)(10-°)SECS =10-° SECS

®(See Ref. 17)

Floating-point divide:
29 minor cycles=29(100)(10-°)SECS
=2.9(10-)SECS

Hence, relative speeds are

M=25A and D=29M=7.25A

Central processor instructions are sent automatic-
ally and in the original sequence to the instruction
stack which holds up to 32 instructions. A branch
to another area of the program voids the old in-
structions in the registers and brings in new ones.
Branch orders of the type “GO TO K IF B;<B;”
require 6(10-7) SECS and an additional 5(107)
SECS for a branch to an instruction which is out
of the stack. High speed in the central processor
depends upon minimizing memory references and
waiting time for unrelated instructions and partial
answers.

Since arithmetic computations are extremely effi-
cient and several operations may be done simulta-
neously, algorithms which break down into inde-
pendent blocks which can be computed in parallel
are desirable. On the other hand, it is surmised that
division of the interval of definition of a variable
into many small sub-intervals, requiring the com-
puter to do much testing and branching to other
blocks of the program not in the stacker, is not very
efficient for the 6600.




I. Method of Testing

Let F(x) be the function to be considered as the
correct one, and let Y(x) be the approximation to
F(x) being tested . Define A(x)=|F(x)—Y(x)| as

the absolute error in Y over some x range, and

AW
AR= v

range. For floating-point subroutines, accuracy is
defined by the number of first correct significant
digits, so that if

as the relative error in Y over this

RSS(IO-(MI))

the n first significant digits are correct. For fixed-
point subroutines, the absolute error measures
accuracy. If

A<5(10-0)

then n digits after the decimal point are correct.
Since all approximations considered here are to be
in floating-point, it shall be required that

R<2-9~1.775(10-),

which is the basic roundoff due to the size of the
6600 register.

The algorithms Y(x) described here have been pro-
grammed on the 1604 in FORTRAN 63 using
double-precision, and compared with double-pre-
cision library routines F(x) supplied by Palo Alto.
This provided a test for truncation error in the
algorithm itself, but, of course, gave no effect of
6600 roundoff since the floating-point word length
for the 6600 in single-precision is between those of
the 1604 used in single and double precision modes.




Ill. General Methods of Approximation®

Three forms of approximations have been consid-
ered—(1) polynomials, (2) rationals, and (3) (trun-
cated) continued fractions, together with techniques
for improving convergence and for converting from
one form to another.

The following sections attempt to give in capsule
form the theoretical background for the approxima-
tions developed in later sections, though not all
methods discussed were actually used in these
approximations.

A. POLYNOMIAL APPROXIMATIONS

1. Truncated Taylor-Maclaurin Power
Series

One of the most common approximations upon
which many others are based is the Taylor-
Maclaurin power series truncated to m terms,

m f(n) (0) X0
o S

n=o0 n!

f(x)

x |<a, where m is

>

chosen sufficiently large to insure the desired accu-
racy. The absolute error is less than the maximum
of the absolute value of the first neglected term
over | x|<a. Such approximations usually require
too many terms to be used directly unless the inter-
val | x| <a is so subdivided that the full number of
terms is used only a small proportion of the time.
(In this connection, see Ref. 13 on the subject of
“Partitioned Polynomials”). More often, Taylor-
Maclaurin series provide a starting point from
which more efficient routines can be built.

2. Chebyshev Expansions (See Ref. 3 and 5)

Denote by T,(x)=cos nfé the Chebyshev polyno-
mial of degree n in x=cos 4. It is simply the poly-
nomial in x obtained by expressing cos né in terms
of cos @, then replacing cosd by x. Note that
| x| <1 and that | T,(x) | <1. The polynomial T.,(x)
attains its greatest absolute value, one, in the inter-
val [—11] at n+2 points (including endpoints)
with alternating sign. These polynomials may be
generated by the recursion

®(See Ref. 5,4, 1, 2 and 18)

Tae(X)=2x Ta(x)— Ta(x)

with T,(x)=1 and T,(x)=x.
Writing

T (=0l Cix+Cx? ., 5 Crx®
the coefficients C" are computed from

Cx=0 if (n+m)is odd

b [ b ol s || o

if (n+m) is even
Alternately, the shifted Chebyshev polynomials
T:(x)=T (2x—1),

4 | l1+cosd .,
obtained by the transformation x = ———> 1:©»

by replacing x by (2x—1) in the polynomial T,(x),
can be used for the range 0 <x<1. Coefficients for
T (x) are found from

co=gims [2 (7)) = (3)] (-0

Tables of Chebyshev coefficients may be found in
Refs. 3 and 13, and also in publications by the
National Bureau of Standards. Reference 7 pro-
vides an excellent source of information for locat-
ing appropriate tables.

The Chebyshev expansion of f(ax) over the inter-
val —a<ax<a, truncated after the mth term, is
written

C” m
f(ax)=~ 2(3) + 3 Cu(@)Tu(x), | x |1
where

Ci(a)= 72;/ f(ax) Ta(x)(1—x2) = g




The truncation error is approximately Cy..(a)
Tu.(x). Since the coefficients in this expansion
depend upon values of f(ax) in the entire interval
(—a, a) rather than only upon values at zero, the
approximation is more efficient and converges
more rapidly than the Taylor-Maclaurin series as
n increases. However, the coefficients C,(a) are
often extremely troublesome to compute accurately.

3. Telescoped Polynomials (See Ref. 3 and 5)

If f(x) is an arbitrary polynomial of degree n+1,
the “best” polynomial approximation of degree n
in [—1,1] is pa(x)=£(x) —an Tni:(x) where a,,, is
a constant chosen so that the coefficient of x*** on
the right-hand side vanishes. In the sense of the
next Section (IIL.A.4.) the polynomial T,.,(x)/2" is
the unique “best” approximation to zero in [—1, 1]
with leading term exactly

xn+1. or. xn+l_ Tnii(x)
> 2 2n

is the unique “best” approximation to x*' of de-
gree n. This fact forms the basis for a telescoping
procedure described in the following manner.

Let f(x) =~ a,+a;x+ax?+.. . +a,,,x", |x|<1 or
xe [0, 1], represent f(x) to the required accuracy in
the interval. Usually f(x) is represented by a trun-
cated Taylor-Maclaurin power series. If the range
of x is not [—1,1] or [0,1], a simple transforma-
tion can be made to a variable with such a range.

Now

Cn+1 C"”

n+1 n+l

Tnn(x) or <T:u (X))

S G pl 0 0 o e Tt T tix+t;
where

tm = Cm /Cn+1

Next try replacing x*! by
T fx)
Cnfl

T ®

, 1.e., substitute

xn+'l —

b S e & Gl A e R S S S

n+l

Letting
t fori = 0, n, the result is

n+l i
a, T,  (x
f(x) =~ a3+ a’x+ a;x2 +...+ a:‘x“+%___ :

n+1l
n+l

a:=ai—-a

Since
| Taua(x) | <1, we have

a

n+l

Cnvl

n+1

n+

| Cn+1

n+l

R T

=E1 .

Let E, be the original truncation error incurred by
using terms of the Taylor series only through
(n+1), and let E be the allowable error.

Then if E,+E, <E, the term a,.; Tn.:(x)/ Coix

may be dropped, and the result is a polynomial
approximation for f(x) of degree n with error less
than E. The process may be repeated so long as

2 E,<E. When using T,.;(x) for telescoping, the
ilighest power of x will decrease by two with each
substitution, since T,.;(x) contains only alternate
powers of x. T! (x), however, contains all powers
of x from 0 through n+1, so that its use in tele-
scoping reduces the highest power of x by one with
each substitution. Note that telescoping a power
series using Chebyshev polynomials is not equiva-
lent to the Chebyshev expansion described in Sec-
tion III.A.2. (See Ref. 5, p. 12 for an example).

4. Best-Fit Polynomials (See Ref. 22 and 4)

Let f(x) be a given function continuous on the
interval [a,b], and let g(x) be a given weight
function, continuous and positive on [a,b]. That
polynomial, P* (x) for which

| P* (x)—£(x) |
1y 75, o L= NN REIE.

i ) =Min

is called the Chebyshev-approximant or best-fit
polynomial of degree n (in the sense of Chebyshev)
with respect to the weight function g(x). The
weight function allows the option of minimizing
either absolute or relative error by taking g(x)=1
or g(x)=| f(x) | respectively.
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Let f(x) be an arbitrary single-valued function de-
fined in the closed interval [a,b] and let p.(x) be
a polynomial of degree n such that the deviation

En(x) = f(x) _pn(x)

attains its greatest absolute value L at not less than
n+2 distinct points in [a, b] and is alternately +L
and —L at the successive points. Then p,(x) is the
best polynomial approximation of degree n to f(x)
in [a,b] in the sense that the maximum value of
| £n(x) | is as small as possible.

These conditions imply a set of (2n+2) equations
for L, the (n+1) coefficients of p,(x), and the n
critical points, x;, at which the value =L is at-
tained (the other two are endpoints). The assump-
tion that ¢/ (x) is continuous on [a,b] and is zero
at each x; is usually required. Hence the 2n+2
equations to be solved are

en(Xi) =£(x;) —pa(x:) = (—1)'L
fori=0,n+1

el (x,)=0

fori=1,n .

Their solution requires some sort of iterative pro-
cedure. (See Ref. 22).

If pa(x) exists, it is unique. If f(x) is a continuous
function in [a, b], then there exists a unique poly-
nomial of best approximation of given degree. If
f(x) is a polynomial of degree n+1, the best poly-
nomial approximation of degree n in [—1,1] is
Pu(x)=£(x)—an., Tn,(x), where a,,, is a constant
chosen so that the coefficient of x**! on the right-
hand side vanishes. No simple explicit expression

i=o0

is known for the best polynomial approximation of
given degree to an arbitrary function f(x).

B. RATIONAL APPROXIMATIONS—
QUOTIENT OF TWO POLYNOMIALS

1. Pade Approximants and Table
(See Refs. 6, 5)

o«
Given a power series P(x) =3 Cix' and a pair of

i=0
non-negative integers (m, n), there exists a uniquely
determined rational fraction, R"(x), whose numer-
ator and denominator are of degrees less than or
equal to m and n respectively and whose expansion
in ascending powers of x agrees term by term with
P(x) for more terms than that of any other such
rational fraction. R*(x) is called a Padé approxi-
mant of P(x) and the associated table formed by
putting R™(x) in the (n+1)st. row and (m+1)st.
column, n, m=0, 1, 2,..., is called a Padé table.

Let

P(x) = % Cix', An(x) = % ax',

i=0 i=0

B.(x) = é bix!.

i=0

Then there are m+n+2 coefficients a;, b; to be
found.

Hence, if we write

P o Am(X) ® -
(X) = W = 2 Ckx

n ) k=n+m+1

P(OBu(x)—An()=B,(x) 3 Cua'= 3 du¥

k=n+m+1 k=n+m+1

or

[Cob0+(C1bO+CQb1)x + ...+ é Ck-]b|xk + ...+ nz C,,-ﬂ),x“] e

[E le_ib-.x"*l + ...+ i Ck-|b1xk + ...+ i Cn+m-|ngn+m] +
i=0 i=0 i=0

S e U o b 2 ) e o o] B L o A2



and set all coefficients of x through x™™ to zero,
the result is

K
> Ck-ibi_ak=0 for k=0, n

i=0

é Ci-ibi—a,=0fork=n+1,n+m

a,=0 for k>m

which provide n+m+1 equations to be solved for
a; and b;. These equations will not contain a,’s for
k=m+1, m+n, so will provide n equations for
finding (n+1) b,’s. Since one of the b;’s must be
arbitrary, choose b,=1.

Thus, to solve the above equations for the coeffi-
cients of the rational approximation

R (x),
set
bo =]

and solve the n equations,

5: Ci-ibi=0for k=m+1, m+nforb; i=1, n.

Then solve the (m+1) equations

min(k,n)
2 Ck_ibi = ay, k=0, m

i=0

fora;,i=0, m

and

R:(x)=(§aix*)/(1+§b,xi> .

Padé approximants are most useful for m=n or
m=n++1. P(x) is normally taken to be the Taylor-
Maclaurin expansion of the function to be approxi-
mated and n and m chosen so that the terms of the
series through x**™ yield an approximation with the

6

accuracy desired. If m=n, the resulting rational
function is more accurate than the series through
x"; je., the rational function actually agrees with
more terms of the series than required. An error
estimate is given in Ref. 5, p. 14, which requires the
evaluation of the quotient of two determinants of
orders (n+1)x(n+1) and nxn for the case m=n.
The elements of the determinants are C;s.

2. Maehly’s Method (See Refs. 5 and 13)

Rational approximations may also be derived from
Chebyshev expansions as shown by H. Maehly. If
a function f(ax) in the interval —a<ax<a is ex-
panded in its Chebysheyv series,

f(ax)=S C,T,(x), (See Section IILA.2.)

i=0
and

An(0)=3 a,T;(x), Ba(x)=3 b, T:(x)

i=0 i=0

then the (n+m+1) unknowns a;, b; (b,=1) are
determined from

= 3 hT..

1=m+n+1

Using the relation Tuun(X)+ Tr-n(x) =2Tn(x)Ta(x),
the following system of n+m+1 linear equations
is obtained for the a; and b;:

a,=C,+ —; En b,C;

i=1

B dia .
L (Cin+C,, ),i=1, m+n

al:cj+ 2l:l

where a;=0 for j>m and b;=0 for j>n. Note that
it is necessary to find the coefficients C; before
Maehly’s Method may be used. An error estimate
is given in Ref. 5, p. 16, and a detailed example
from Arcsin x is given in Ref. 13, pp. 123-131.




3. Best-Fit Rational Approximations
(See Ref. 22)

Let

An(x) = X a;x' be the numerator and

i=0

B.(x) = X bix' the denominator of a rational

function Ry(x) =An(x)/B.u(x), N=n+m.

In the same manner as was done for polynomials,
a rational best-fit approximation of order N to the
continuous function f(x) on the interval [a,b] is
defined as that rational function R} (x) for which

| RS (x)— £(x) |
max ————— = min.

ta, o] g(x)

where g(x) is a given weight function, continuous
and positive in [a, b], e.g., g(x)=1 or g(x)=| f(x) |.

N. Achieser has shown that R? (x) is uniquely char-
acterized by its error curve,

assuming its maximum absolute value sufficiently
often with alternating signs. Arguments x! for
which the maximum absolute value is assumed are
called critical points.

An error curve has standard form if it meets the
additional requirements that it has exactly N+2
critical points, the first and last of which are end-
points of the interval, and has a continuous deriva-
tive with respect to x which vanishes at the critical

points.

If an error curve has standard form, it is necessarily
the optimal error curve corresponding to the best-
fit rational R} (x). The converse is not necessarily
true—the optimal error curve need not have stand-
ard form.

8*(x) in standard form yields 2N+2 equations in
the 2N+2 unknowns x',i=1, N; a,, i=0, m;
b;, i=1, n, and the maximum error, A. Since one of
the coefficients in R (x) is arbitrary, assume b,=1.

8(x;)=(—1)'r,i=0, N+1
#(x,)=0,i= 1, N

This is a non-linear system of equations whose
solution requires an iterative procedure. The term
“direct” method is used to indicate that the coeffi-
cients of the best-fit rational are computed directly
from the equations above, whereas an “indirect”
method determines the corrections necessary to
modify a fixed approximant (e.g., a Padé approxi-
mant) to obtain the best-fit rational. Details for
several direct, indirect and combined methods, due
largely to the late H. Maehly, may be found in
Reference 22.

4. Conversion of Rational Approximations
to Continued Fractions

Any rational fraction may be converted to an
equivalent continued fraction. The continued frac-
tion form evaluated from bottom to top (See Sec-
tion III.C.1.) is nearly always more efficient (i.e.,
requires fewer operations) to evaluate than the
rational form.

Assuming the degree m of the numerator is = the
degree n of the denominator, set the rational func-
tion identically equal to the continued fraction:

ag+a;z+a.z2+ ...+ apz™
bs+biz+b.z2 + ... + b,z"

G, C G
(z+B)+(z+B.)+ ... (z+B,) "

Since the a; and b; are known, the C; and B; are
found by equating coefficients of like powers of z
after converting the right-hand side to a rational
form. The resulting equations are non-linear, but
easy to solve. Results for n=2,3,4 are given in Ap-
pendix A as COF 2, COF 3 and COF 4 respectively.
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C. CONTINUED FRACTIONS
(See References 6 and 8)

1. Notation and Methods of Evaluating

Let

F=b,+a,
b:+a.
b.+a,

o
+

be a continued fraction.

F may also be written in either of the following
two notations:

a; ay aj

S

a,]+ a, | a; |
F_b0+|b1 (B, +I'b—3'+...

Assume in the sequel that no b;, i>1 is zero and
that the continued fraction converges. F can be
evaluated for n terms in several ways:

(a) Top to bottom

A.=b, A\, + an A l
n=12 ...
B.=b, B..+a, B,

where A ,=1, A,=b,, B.,=0, B,=1.

F.= A./B, is the nth approximant to F.

(b) Bottom to top

P,=a,
Ql=bn
Pi=an+l—i Qi—1 l
i=2 n
Qi=bn+l-i Q1-1+Pi—1 ’
Fu=b,+ —"
Q.

2. Error Estimate

In determining the size of n required to give a
desired accuracy, the following “determinant for-
mula” is often helpful:

a1 8y 520

= _1 n-1
=0 B.-1 Ba

where B,, and B, are defined in the previous
Section 1. Note that this is merely an expression for
the difference between the (n—1)st and the nth
approximants and says nothing about F—F, No
simple formula for the error F—F, is known except
for special cases.

3. Equivalent Continued Fractions

The continued fraction

C:C;a, G.C.a,

Cn—lcnan
C]bl + Cgbg +

F=Cb,+
C.b. +

where C; 5 0, has approximant E, /D, where
E.=CiCs v« Celn

D,=C,;...C,;B,

D,=B,=1

and A,/B, is the nth approximant of F as defined
in 1.
E C.A,

We have —2 =
Dn Bn

\
and both converge or diverge together.

If C,=1, the two continued fractions F and F are
equivalent. This equivalence is useful for chang-
ing the form of a given continued fraction, say to
one in which the numerators (or denominators) are
all one.

4. Even and Odd Part Contractions

The even part of a continued fraction is the con-

Zn

tinued fraction whose approximants are ; simi-

2n




larly, the odd part is the continued fraction whose
approximants are

A2 n+l

2n+l

,n=0,1,...

The even and odd part contractions converge if the
original fraction does and to the same value.

ale azagb4

Feven =b0 +
(b1b2+a2) =y (b3b3+ag)b4 +b234 foy

a4asb2bs aGaTb«le
(b4b5+a5)b5+b;as f (b6b7+a7)b3+bsas— e

Pl b(.bl + a; alar_)b:;/bl
gaaaE b1 (b1b2+a2)b3+b1a3 —
asa.b,b; azagb;b;

(b3b4+a4)b5+b3a5 o (b5bs+aﬁ)b7+bsar T et

5. Continued Fractions Equivalent
to Series

The series C;+C,+ ... +C, ... and the continued
fraction
& C./C,
1~ (@(A+CJ/C,) ~
C3/C2 Cn/Cn—l
(14+Cy/C,)— (1+C./Co) —

C,+

are equivalent in the sense that

oA Ay
B, Bui

Similarly, the power series C,+Cix+Cx*+ ...
and the continued fraction,

C./C)x
(o  SalGoE
1- 1+4(C/Ci)x —...

are equivalent.

Another method for obtaining a continued-fraction
expansion from a function defined by a power
series is the Quotient-Difference algorithm of
Rutishauser described in References 18 and 19.

6. Functions Expressed as Continued
Fractions

Each of the previous Sections 1 through 5 applies
when the a; or b, are either constant or a function
of x. It is assumed that the continued fraction F(x)
converges for | x | <e.

Especially useful are the continued fraction expan-

sions of Gauss for the functions tan x, arctan x, e~
IEx

and log, T These are reproduced in Appen-

dix B together with some of their successive

approximants, A,/B,.

As an illustration of the uses of some of the rela-
tions given in this Section C, consider the Gaussian
continued fraction for e* (Appendix B.3.a.):

e=1+

bl
I
O M
+
ol >
|
2o |
op
Qtl
|
DO
+
TIIX

The even part contraction of this continued frac-
tion (IIL.C.4.) is

" 2x 2x?
B=x)y [(6+x)2—2x] +

ee=1

4x? 4x?
[(10+x)2—2x] + [(14+x)2—2x] +

2x 2xt dx®> 4x?

el end Dk W B

which is equivalent by Section IILC.3. to

2

2x XA X

gl T Bk T

This is now form 3.b. of Appendix B.



7. Telescoping Procedures for Continued
Fractions (Maehly) (See Reference 21)

In IIT.A.3. 2 method was described for telescoping
a truncated power series by use of Chebyshev poly-
nomials. Maehly has derived a method by which
the (n+1)st approximant of a continued fraction
may be telescoped one step to a corrected nth
approximant.

Let

@  ax| = oax|
o |bo+|b1 2

be a convergent continued fraction representation
of f(x) whose (n+1)st approximant approximates
f(x) to within the desired accuracy in the interval
| x | <e. The (n+1)st approximant is

]

an:X |

A
W, g = ult)

Rnn T
(X) lbo I bl l bnﬂ Bnﬂ(x)

where A,., and B,,, are defined recursively as

Apa= bn IA +anaX An -1 '

n>1
Bx|~1=b|u1Bn+an+lx Bn—l (
Ag=ag, Ay =ayb,
Bn=bn, B|=bob,+a1X

Now we may alter either the ay, or the by, or the
A, and B,. Formulae are given in Reference 21 for
all of these cases, but only those for altering A,
and B, to obtain a new R, (called R?) are given
here.

At Antyotx uz Yk Az
n =2

R = — x
n Bn+Xy,+X 2 Yk Bk-g
k=2

where

n+1
@

w= =sd=et I x=eu, |u|<L,

and

10

T,..(u) is the Chebyshev polynomial of degree
(n+1).

For the uncorrected nth approximant, R,(x), it is
known that

fia Ry(eu) —f(eu)

E= £n+l

=Cyu?

where

Cra=(=1)-2 11 S

The corresponding limit relation for R? is:

R (eu) — £(eu)
im—"  =C,..S™(u).

£E—=0 en"‘l

Hence the corrected approximant R!(x) yields an
“almost best-fit” rational.

>

Since many of the functions of interest are “even’
or “odd” functions, definitions and telescoping for-
mulae will be given for these special cases. First
replace x by x* in the recursive definitions for A,
and B,...

Even Functions:
An even function, g(x), is one of the form

aX* I apX® l

€= 5 = ‘

lb +...+ ]bn . for | x | <e.
Let
x=¢u where | u |<1and

szz(u) iy

S(2n+z)(u) R e G

92n+1 kE sau®*, where Ts,.0(u)

is the Chebyshev polynomial of degree 2n+2.

Define

n+l

201K HF' for k=0, n.

i=k i

Y™ —'| Sak




Then
A* An+‘yn+X?’ 3 vk Ak_g
n k=2
Rn = B‘ o X 5 n
n By +x’y,+x% 3 ¥k Bi-2
k=2
and
lim R:(eu)—g(eu)
£ ____€2n+2 - C“‘1 S(2n+2) (u).
Odd Functions:

An odd function, f(x), is one of the form

pape il enl e s e
(x)—Ibn o, etk oo for | x| <Le.
Let x=¢u where | u|<1and

T2n+3(u) = o2

S(2n+3)<u) -

2k+1
> Sox UK,
22n+2 e

where T.,.;(u) is the Chebyshev polynomial of de-
gree 2n+3.

Define

n+1
7= = S22 | £ 112 fork=0,n.

i=k Vi

Then

A’ Aty t+x° IE.’ vk An-z

R*=x— =x
n

B

B, +x%y, +x? kE i B2

and

lim R;(eu)—f(eu)

&5 e —22,“3 - =Cn+1 S('.’n+3) (u)’

D. RANGE REDUCTION

Use of a single approximation to a function f(x)
over its entire range of definition is usually not
feasible. Therefore, it is usual to subdivide the x
range into intervals small enough to provide the
desired accuracy with algorithms of reasonable
length, but not into so many subintervals that the
mechanism for deciding into which interval x falls
and for acting accordingly becomes cumbersome
and time consuming. Depending upon the charac-
teristics of the computer, some balance must be
struck between the number of intervals of subdivi-
sion and the number of terms (operations) in the
algorithm.

11



1IV. Approximations Obtained for
Library Functions®

The library functions considered are square root,
cube root, sin u, tan u, arctan u, arcsin u, e" and
log.u. Other functions may be computed in terms
of these. Numerical coefficients are not given for
all of the approximations tested, but those not
given may be found in SSD Memos, Refs. 9
through 12.

A. SQUARE ROOT
(See References 5, 14, 15 and 16)

1. Reduction of Range

To find /N, N>0, first reduce N to the form
1 1
N=2+x where 1 <x<1 (or i <x<1) and m is

zero or a positive or negative integer. If this repre-
sentation is to be unique, only one of the two end-

points i,l should be included in the range of x.

1
For example 16=2*+1=2° <Z) :

Hence \/N=2"+/x.

2. Computation of \/x for

1 <x<1 or % <x<1

2

V/x is computed via a Newton-Raphson iteration
starting with a first guess, y,, for \/x. Successive
approximations are found from

Vit =g- (yl +i),i=1,2,...

Yi

iterating until |yi.—y:|<2*. The number of
iterations required will depend upon the accuracy
of the first guess, y,. For the various estimates for
y, which follow, maximum and minimum number
of iterations are given for values of N ranging from
.1 to 10 at intervals of .1.

*See References 1, 2, 5, 13, 14, 15, 16 and 20.

12

3. Estimates for y,
a. Best-fit rational derived by Maehly (Ref. 14)
for y, with max. relative error <2.6(10-%).

b
ctx

y: =a-+

a= 3090315520/\/2
b = —8.550050013/2\/2
c = 3.090315520/2

Max. number of iterations = 4

Min. number of iterations = 2

b. Padé approximation in continued fraction
form (Ref. 5) with max. relative error <2.3(10™*)

for y,.
5000 15
Tl m( +4'9>
L 235 15\ _ 400
(mE) (+E) ST

Max. number of iterations = 3

Min. number of iterations = 2

c. Padé approximation in continued fraction
form with split range (Ref. 5) and max. relative
error <10-% in y;.

Fori SxX< }
50,/70 3
5\/70 9 (" i 1‘4>
g e
14 14) " 19
For-l- <y
-
200\/35 3
5\/35 19 (x * ?)

Y= e
7 47)( 3)_16
(”7 bl

Max. number of iterations = 3

Min. number of iterations = 1



The approximation c. gave no better results than
b. and has the additional disadvantage of using a
split range. Method a. needs one more iteration
than b. so that a. takes the time-equivalent of 3
iterations +2D+1M+3A=3 iterations +20A,
while b. takes 3 iterations +1D+2M+4A=3 iter-
ations + 16.25A, assuming all fractions in a. and
b. are precomputed. Hence b. is slightly faster, but
requires 3 more constants than a. Either a. or b. is
preferable to c.

B. CUBE ROOT (References 16 and 20d.)
1. Reduction of Range

To find \/N for N>0, write N=2i+k+x where
5 <x<1 and where k and n are either zero or
integers with the same sign; k is restricted to the
values k=0, =1, =2, Then \/N=2"2k* Yx,

2. Computation of \/x for % o 1

Find \/x by means of a Newton-Raphson iteration

starting with a first approximation, y,, for \/x.
Successive approximants are found from

iterating until
| Yin—y:i | <2

The maximum and minimum number of iterations
for arguments ranging from .1 to 10 at increments

of .1 are given for each of the estimates for y,
which follow.

3. Estimates for y,

a. Linear approximation for y, has absolute error
of about 8(10-%) for x=1 (Reference 16).

yi = A + Bx

A = 5914052048

B = .3319149488

Maximum number of iterations = 5

Minimum number of iterations = 5

b. Rational approximation for y, with absolute
error of about 9(10*) at x=1 (Reference 20.d.).

a;
o x+b,
a, = 1.78781
a; = 1.91548
b, = 1.42856

Maximum number of iterations = 4

Minimum number of iterations = 3

¢. Continued fraction approximations for y, with
absolute error of about 9(10-°) at x=1 (Refer-
ence 20.d.).

= a d;
Yo =S AT b))
= a;(x+b,)
g (x+b,) (x+b,)—a,
a, = 2.502926
a, = 8.045125
b, = 4.612244
a; = .3598496
b, = .3877552

Maximum number of iterations = 3

Minimum numb\er of iterations = 3

Method a. takes 2 iterations more than c., while b.
takes only one more. Hence, in addition to the
three iterations required by all three methods, the
time-equivalent of

TM+2D+3A=35A is needed for a.,

SM+2D+3A=25A for b., and

2M+1D+4A=16.25A forc.

Thus, even if no operations could be done in
parallel, c¢. is more efficient than b., which is more

13



efficient than a. Of course, c. would be even more
effective if parallel operations are done.

C. SIN u

1. Range Reduction

Assume first that the argument, u, has been re-

duced to the range — — <u< —. Then two

=
2 2

ranges are considered,
ks 2 ™
| x| S-é-andlxl gg
a. |x| < o
2
For [u| < % ,let x=u and sin u=sin x

b.]xlgf-
6

For | u ! < ET ,let x=u and sin u=sin x

F Sl
or |u| -

letx = lﬁl and sinu = sin x (3—4 sin® x).

2. Taylor-Maclaurin Series (See IILA.1.)

] © (_l)n x‘_’n+1
it E @ntD) 1

For |x | g% the terms through n=9 provide an
approximation with absolute and relative errors
<249 while for \ X | < 167_’ n=6 is sufficient. These

two polynomials form the basis for much better
approximations to be developed in the next sections.

()
=

xﬂnfl T
_~(2n+1)!sinx @n+1)! or|x| <3
(1>:n+1
6 ™
< f ==
S @ry Ixlsg

14

so that for

)

=10, -7 ~2.6(10-1%)< 24
% 211 )

and for

n=7 o 10—15.33<2-49_
L

o)
6
5!

3. Telescoped Polynomials (See IILA.3.)

Al

a. |x| < 5
9 — Dy 2n+1

Sinx~ 3 E_l)i__ with error<2.6(10°).
a0 (2n+1)!

=—7r—!, < I
Letx = 2y ly|<

Then

i)

sin X ~ s I
HZ: Garl

=0

N )

=2 e,

n=0

19
.

Substitute for y'* in terms of the Chebyshev poly-
nomial T,(y),

i Y Tao(y)
elar e T e

- s Tw()')

o= E’ C:‘:xn’\ Y : + 215
Now

6 |

2) Tuly) | < ~1.66(10*?),

191 918 1912:#



and this error added to the original error of
2.6(10-'%) is still <2, so that the term in To(y)
may be dropped. The result is

T 2n+1 e 19
(—D“(E) (E)
(19) y'.’n-l

sin X ~ S =
2 | @+ B Canes

n=o

where C'” is the coefficient of y**** in the
Chebyshev polynomial of degree 19. Similarly,
after substitution for y'* in terms of T,.(y), it is
found that the coefficient of T,:(y) is about 9(10-'7)
with the total error still less than 2-*, so that the
term containing T,:(y) can be dropped. A further
substitution for y'” results in a coefficient for T,(y)
of about 7(10-*?) which is too large to be dropped.
Thus we must be satisfied with substitutions for y'?
and y'* only, reducing the degree of the polynomial
iny from 19 to 15.

Now, transforming back to the variable x by setting

y =2x/=, the final result is

sin x = Y Cypix*™! = x ¥ C,piiz" where z = x2

n=o n=o

and
B =(z>"
2
B
Riailr !
(1-m) [

Cl B" B\A

18121# 216
9.99999 99999 99990 30428 E-01

31" 1812w | g
—1.66666 66666 66477 96113 E-01

l 8 7

I 8B 2B
51 ‘iglew  om
= 833333 33332 26184 74112 E-03

G =

1 33B¢ 33B°A
G ==  1s1ew 90

= —1.98412 69813 94935 49426 E-04

1 143B° 55B*A

C =5 e o
= 9275573 15528 52388 14908 E-06
o Qs 91B* 13B*A
e (T 18128 25
= —2.50518 24652 10732 20541 E-08
il 35B* _ 7TBA
e T R T 9¢
=  1.60466 21504 47864 08126 E-10
1 B: BA
= —_—— + SRS
Cis 51 T sz 2
= —7.35769 03984 39792 89177 E-13
b. |x|< 2

6

In like manner, the polynomial approximation

) i (_l)nx'.‘n+1
sz~ 2 ]

can be telescoped to sin x ~ x ¥ dspa2",

n=u

where z=x* and

2=
6
B-i
et 121212

9.9999 99999 99999 783585 E-01

pkeg me
1= 2918
—1.6666 66666 66644 563864 E-01

1 7B*
b =5 o

8.3333 33332 68836 248631 E-03

Il

b el
T o
—1.9841 26903 46738 823484 E-04

15



1 5B:
b =51~ Tomar
= 27556 82887 24422 163687 E-06
1 B
du= -7+ T

—2.4909 02134 88806 521004 E-08

Il

The remaining algorithms for sin x are all for the
range

W
.

|x|<

D

4. Padé Rational Approximations for sin X,

x| < g (See IILB.1.)

Write
st }I: C,z" where z=x*and C,= ﬂ_ :
X i=0 (2i+1)!

From IV.C.2. it is known that this polynomial gives
the desired accuracy for |x| < —(;— Thus, taking

n=m=23 in the formulas of I1I1.B.1.,

SO b= fork=458

i=0

k
2 Ck-i bi=ak for k=0, 1, 2, 3

i=0

and b,=1,

there result the equations
Cib;+C.b,+C;b, = —C,
C;b;+C;b.+C,b, = —C;
C;b;+Cib,+Csb, = —C;
for b,, b, and b,

16

and then the equations
a, = G,
a, = C;+Cb,
a, = C,+C,b,+Cb.

as = C3+C2b1 +C1b2+CQ 3

for a,, a;, a. and a,. The solution is
a, =1

a, = —325,523/2,283,996

a, =  34,911/7,613,320
a; = —479,249/11,511,339,840
b, =1

b, = 18,381/761,332
b, = 1,261/4,567,992

b, = 2,623/1,644,477,120

so that

ag+a,z+a.z>+a;2°
bo+b.z+b.z2+b.z| ’

sin X=x z=x>,

Using COF 3 (Appendix A.2a.) to find the co-
efficients C,, C,, C,, C; and B,, B, and B,, this
rational form is now converted to continued frac-
tion form

C1 Cz C3 ]
z+B,)+ (z+B:)+ (z+B,)

|

sin x=x [C0+ (

— [C0+ P,
2

Q




- 9

and evaluated from bottom to top as indicated in
Appendix A.2.b.

C, = —2.6101 46506 18158 052394 EO1
C, = 7.3922 21532 39111 816487 EO03
C, = 7.3906 24698 46447 182801 EO03
C, = 24085 74343 97122 268316 E03

B, = 13171 07143 04415 748255 E02
B, = —2.5089 20716 84564 146366 E00

B, = 4.3867 21136 85869 652633 EO01

sin X

Since sin x<x and = C, + i , the right-

X 2
hand side must yield a number less than one. In

fact, when ] X ] = é— , the right-hand side should be

between .955 and 1. To obtain such a number by
adding

& toC, = —26. ...
Q.

could result in the loss of at least one significant
digit. Possible remedies are to go back to the orig-
inal rational form, or to introduce a parameter £
and an extra term ¢z into the computation (Ref. 5,
p. 25) by writing

sin X

+ gz = é 612‘9

where

o =
Ci — _(_—)——forj=0, 2, 3,4,5,6
@i+1)!

Solving the same system of equations as before,
but replacing C; by C,, the result in terms of £ is

gl 2623
* 7 1,235,520(1331-3990¢)
> 23 2448b,
* 7 326,040 19
By = b poroh o ageah,
7110 <
b, =1
a, =1

a, =<§——é)+bl

1 1
SRt RELE TREE S |
2 120+<§ 6) :

-1 b 1
O s 1T o AN
5t 5040+120+(g 6) *

After finding a; and b, for a particular value of ¢,
the corresponding values C; and B; must be re-
computed from COF 3. Then

P
sinx=x|C, — ¢z + ]
e

Values of ¢ tried were ¢ = .078, .0785, 2.532 and
2.533, and the corresponding values of C, were
about .0907, .2534, .3399 and .0145 respectively.

£=0 is, of course, the case originally computed.
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RS

5. Comparison of Resuits

1604 runs in double-precision using arguments from u=0° through u=90° at 1° intervals yielded the fol-

lowing results:

Maximum
Relative Error

Max. Error of N in the
kth Significant Digit

Maximum
Method Absolute Error
2. Taylor, | x| gg 2.56(10-1%) at 90°
3a. Cheby, | x| < % 3.45(101%) at 90°

8b. Cheby, x| < % 3.78(107) at 30°

4. Padé Rational, |x| <7 357(107) at30°

Cont'd Fraction, £=0
2, r E= 078
7t " ¢= 0785 5.14(10'7) at 30°
v 7 £=2.532 2.3304(10'7) at 30°
4 7 £=2.533 2.3301(10'7) at 30°

3.57(10-'7) at 30°
5.12(10-7) at 30°

2.56(10-%) at 90°
9.64(101%) at 1°
2.10(10°) at 1°

7.13(10-'7) at 30°

7.13(10-7) at 30°
1.02(10-1°) at 30°
1.03(10-%) at 30°
4.661(10-7) at 30°
4.660(10-'7) at 30°

2.56 in 16th at 90°

3.45 in 16th at 90°

859 in 17th at 4°

3.57 in 17th at 30°

3.57 in 17th at 30°
5.121in 17th at 30°
5.14 in 17th at 30°
2.33 in 17th at 30°
2.33in 17th at 30°

In these double precision runs, results for a rational function and its corresponding continued fraction

were nearly identical.
D. TAN u
1. Range Reduction

Two ranges are considered, | x | < %and | x5 ]S -:I- 5
assuming first that the argument u has already

been reduced to the interval lu| < -é—

a.|x|§%

For each u find k and x so that u =k (%) + x,
wherek =0,1,2,3and 0 < x < %.

LetB=tank(i),i.e.,
8
tan (=) =2 -1
an<8> V.

18

tan 2 (L) = 1
8

tan3(%> =/2 +1

I @ B+tanx
hen tanu = —— .
1—Btanx
b. ]x| &2
4
For

[u S%,letx=uandtanu=tanx

For

|u]>£—,letx=%—uandtanu=
; an x



8

2. Rational and Continued Fraction Forms
Obtained from the Gaussian Continued
Fraction (Appendix B.1)

a. For]x|<z
8

The appropriate approximant from Appendix B.1 is

tanx=x(A">.
Bs

The corresponding continued fraction form ob-
tained by using COF 3 of Appendix A.2.a. to find
C; and B, is

G C; Cs
(z+B,)+ (z+B.)+ (z+B,)

B :
= x[c0 - —] , Z=X°
Q.

which is evaluated via Appendix A.2.b.

tanx=x[Co+

Thus, by converting the original 6 or 7 level Gaus-
sian continued fraction to rational form, and then
back to another continued fraction form using
COF 3, it has been reduced to one of three levels.

b. For |x| < i
4

A
Bothtanx=xB—:andtanx=x-lf

were tested in rational form. Since the former
proved accurate enough, only that continued
fraction form was tried. Coefficients were found
from Appendix A.3.a., and the continued fraction
was evaluated as indicated in Appendix A.3.b.

3. Telescoped Rational and Continued
Fraction Forms for | x| < g . (SeelILCT7.)

From the preceding Section IV.D.2.b., we have the
rational approximation

tanx=x[A7]

7

gk aiz+a.72+a42®
— X 5
bo+ blz+ ngz +b3Z3 +b4Z"

where z=x".
Telescoping one step would reduce the degree of

the denominator from 4 to 3 and the correspond-
ing continued fraction from a 4 to a 3-level one.

A;
Consequently we shall telescope xB—, or correct

Ab‘ 7
e using the results of IIL.C.7. for an “odd”

X
fungtion.
Take
n=6,z=—"i,ro= ‘ﬁ =],
andr; = Z—il= @) fori=1,7
Since
T;5(u 15u'* = 45uit
S (y) = % =’ — 1 3
_ 250 o 225u 189w’ 35u’ _ 15u
98 27 29 220 D4
s, = —15/21+
ss = 35/2%
s = —189/2°
S =00 95/0F
So = —275/2°
s, = 45/8
$:s = —15/4
and
Vi = =| ok | 20K fIr. for k =0, 6.

i=k
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Then

R At Yo+ x3(Y2 Ao+ YAy + Vi As+ VA5 + Y6Aq)
- B6+71X2+X2(72B0+ 73B1+74B2+Y5B3+76Bs)

After combining, the resulting a; and b; are and
8o = 135,135 4= Yo

a,+a.z1+a;z*+a.z°
tanx = x >

= 13513 50000 00000 01534 86631 EO05 by+biz+b,z*+b,z?
a, = —17,325+4 (v, + 373+ 15v,+ 10575 +9457,) e o
= —1.7336 10607 38165 56878 55239 E04 , =g
a, = 378—v,—10v; —105%, Again, coefficients and evaluation of the corre-
= 3.7923 56370 39100 52361 14363 EO02 sponding continued fraction form are obtained
2y = =147, using COF 3, Appendix A.2.a.&b.
Bl e C,= 35911 01496 97721 76037 74655 E-02
bo= 135135 C, = —9.4381 65598 19183 41369 40110 E00
b, = —62,3704 7.+ (. +3vs+ 157, + 1057, +945v,) C, = —1.4096 32418 00227 61516 62209 EO3
= —6.2381 10607 38156 27938 77667 E04 C; = —1.5692 00421 75952 56069 73336 EO02

bo = 3150— 73_674 _'4575 _42073
3.1549 37661 62835 53263 58151 KO3 B, = —5.5204 04171 66464 89417 73271 EO1

—28+7:+157; B, = —4.0981 70874 59656 10393 42606 EO1
—2.8176 93975 34850 64078 19239 EO1 B, = —1.5783 03284 85044 64639 80047 EO1

b,

4. Comparison of Results

The following results were obtained from 1604 double-precision runs using arguments from u=0° through
u=89° at 1° intervals.

Method Maximum Maximum Max. Error of N in the
Absolute Error Relative Error kth Significant Digit
2a. Rational & Cont'd Fraction,
=
<2
tan x=xA./Bs 4.89(10*°) at 89° 8.53(107) at89°  4.89in 17th at 89°
2b. Rational & Cont’d Fraction,
<
Fle
1) tan x=xA./B; 4.54(10%%) at45°  4.54(107°) at45°  4.54 in 16th at 45°
2) tan x=xAs/Bs 8.71(10-) at45°  8.71(10*) at45°  8.71in 19that 45°
3. Telescoped form of 2b(1),
|z]< 2 470(10%) at45°  4.70(10°) at45°  4.70in 16th at 45°
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E. ARCTAN u
1. Range Reduction

The argument 0<u< o is reduced to one of two
ranges:

a |x|<v2 -1

u—(Vv2 -1

For0<u<l,letx = ——m8M8M ——
i 1+u (V2 —1)

ko
and arctan u = 3 + arctan x -

1-u(/2 -1)
u+(/2 —1)

Forl<u< w,letx =
3=
and arctanu = == — arctan x.

.| x| <tan —
b|x\_an16

For 0<u<l1,sety=u, A=0,B=1.

1 =
For 1<u< e, sety= —,A= —,B= —1,
u 2
Then
for 0<y<\/2—1,sety,=tan —— , a= ——
_y_\/ )i 16 a 16
and
for \/2—1<y<1, set y,=tan 3_" , = E'_'_ .
16 16
Then
X=*y_yl )
I+y-y,

and arctan u=A+B (a+arctan x).

2. Rational and Continued Fraction Forms
Obtained from the Gaussian Continued
Fraction (Appendix B.2.)

a. |x|<vV2 -1

The appropriate approximant is

Alﬁ

arctan x = x
10

where A,,/B;, is the quotient of two fifth-order
polynomials in z, z=x* It could be converted to a
5-level continued fraction, but was tested only in
its rational form because it seemed less useful than

the methods for the range | x | <tan _1% ;
b. lxigtan_w_ :
16

The approximants arctanx=xA;/B; and
arctan x=xA:/B; were tried in both rational and
continued fraction form. Coefficients for the con-
tinued fraction forms were computed from COF 3
and COF 4 respectively (Appendix A.2 and 3). The
approximation arctan x=xA./B, was not quite
accurate enough, hence A;/B: was telescoped (or
A,/B,; corrected) as described in the next section to
an approximation of the same order as A;/B,.

3. Telescoped Rational and Continued
Fraction Forms for |x| < tan % -

Using the formulae in III.C.7. for an odd function
and the approximants A,, B, in Appendix B.2., and

taking n=6, s =tan 1_7;5 and S (u)=T,;(u)2 ', the
coefficients in the new R are:

a, = 1.3513 49999 99999 99825 84406 EO05

a, = 1.7196 24603 93687 38533 64289 EO05

a, = 52490 48316 37362 32796 35437 E04

a; = 2.2180 98888 44607 11614 67914 EO03

b, = 1.3513 50000 00000 00000 00000 EO05
b, = 2.1700 74603 93685 74205 67287 E05
b, = 9.7799 30329 54139 12080 84660 E04
b, = 1.0721 37452 05929 68736 47196 E04

and

a,+a,z+a.z>+a,z* ]

arctan x = x |:
by+b,z+b,z2+b.z*

z=x% | x|<tan 4.y
16
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Coefficients of the corresponding continued frac-
tion found from COF 3, Appendix A.2.a. are:

then

arctan x = X [CO +

P]
Q:

as evaluated from Appendix A.2.b.

4. Comparison of Results

For arguments of the form u=tan y with y rang-
ing from y=1° through y=89° at intervals of 1°,
results of machine runs on the 1604 in double-
precision are given in the table following.

Maximum
Relative Error

Max. Error of N in the
kth Significant Digit

4.47(10%) at tan 1°

7.80 in 16th at tan 1°

3.40(10*) attan 1°
2.75(10*) attan 1°

5.94 in 15th at tan 1°
4.80 in 17th at tan 1°

2.68(10¢) at tan 1°

4,68 in 17th at tan 1°

C, = 2.0688 56828 18530 47509 55450 E-01
C, = 3.0086 82092 05174 87448 28121 E00
C. = —3.4976 10177 36154 25858 60195 E00
C; = —1.3433 64284 54181 78822 14637 E-01
B, = 5.1827 26637 17441 95978 52947 E00
B, = 2.6194 66421 36919 73145 76466 E00
B, = 13197 06666 86630 28901 33958 E00
Method Abl.\i:;zizug:ror
2a. Rational & Cont'd
Fraction, | x| <v/2 —1
Arctan x=xA,./B1, 2.28(10-%) at tan 45°
2b. Rational & Cont'd
Fraction, | x | < tan _1%
1) Arctan x=xA4/Bs 2.42(10*%) at tan 45°
2) Arctan x=xA;/B; 2.36(10'7) at tan 45°
3. Telescoped form of
2B, | x[= ﬁ 2.38(1077) at tan 45°
F. ARCSIN u

1. Range Reductions

No algorithm is practical for the entire range
|u|<1. Arcsin u can be computed in terms of
arctan u, or the range |u |§l can be reduced to

| x|< 3 and an algorithm for arcsin x applied in

this range. In either case, it is necessary to take a
square root; in the latter case, the range can be so
adjusted that the square root operation is per-
formed only a small proportion of the time.

22

u

a. Aresin u = arctan x where x = ——— re-

V=&

quires the square root operation all the time.

b. For

[0<u<

DO | =

é <u<l, setx=

, set x=u and arcsin u=arcsin x

1—=u

2

s ™ .
and arcsin u= 5 —2 arcsin Xx.

e



This reduction makes use of the square root halt
the time.

set x=2u*—1,A= = ,B=

1S
oI -

-\i\i =n<l,
2

Then arcsinu=A+B arcsinx, so that a square
root is used .134 of the time.

d. For

0<u< ,setx=u, A=0,B=1

(SR8

1 3
i <US i ~ .866,
2 2

setx=2u*—1, A= = B= .
4 2

3 1
}/é__ <u< : \|2+\/3 ~ 965,

set x=8u'—8u*+1, A= 2;— ,B=

W=

965<u<l,

kg
set x= —
L 2 2

Then arcsinu=A+B arcsinx and the square root
is needed .035 of the time.

All of the range reductions except a. depend upon
an algorithm for arcsin x where | x |< —; . Only one

will be developed.

2. Telescoped Polynomials for Arcsin X,

1
=
IxI<3

arcsin x _l+x_'-'+ '3x"+ 13
5 c4:5 2:4°6-7

1
X 6 2

T2 e 5 SO
2+4+6...40-41

A

. , ! arcsin X
is the truncated series expansion of

error less than 6.47(10"%) <27

with

Let
. y Aparl
z=x= 1% that 0<y <1 when 0<x*< T
Then
AesmX _c,+Cy+Cy?+ ... +C.y™,
X
where
GelaiG= O o=, 90
8n(2n+1)

Using the shifted Chebyshev polynomials (see
III.A2. and 3.) this polynomial in y of degree 20
can be telescoped to one of degree 11. When the
transformation from the variable y back to variable
x is made, the final coefficients are:

d, = 99999 99999 99999 78634 63136 E-01
d, = 16666 66666 66910 24987 33835 E-01
d, = 7.4999 99995 41191 18650 66303 E-02
d, = 4.4642 86051 93986 28433 58075 E-02
d, = 30381 81646 51631 62166 80726 E-02
d, = 22375 00912 35718 55117 84246 E-02
d, = 17312 76426 25238 66058 99121 E-02
d. = 14331 24507 67095 51847 69121 E-02
de = 9.3428 06551 28506 27072 55181 E-03
d, = 18356 67090 64025 76498 65645 E-02
d,, = —1.1862 23970 78013 60943 70754 E-02
d,, = 3.1627 12225 71360 72001 51992 E-02



so that

arcsin x=x [d,+d,z+d.22+ ... +d,,21] ,

with z=x>

Note that one of the coefficients, d,,, changed sign!
This would suggest that perhaps the telescoping

had proceeded too far. Such was not the case as
results in the next section show.

3. Test Results

The telescoped polynomial was used in each of the
ranges b, ¢, d for values of u from u=.01 through
u=1.00 at intervals of .01 with these results—

Max. Absolute Error:  5.44(10-'¢) atu=.5

Max. Relative Error:  1.04(10-*°) at u=.5

Max. Error of N in the

Kth Significant Digit:  5.44 in 16th at u=.5

G. EXPONENTIAL: e*
1. Range Reduction

Write e"=2"e* where n and x are found as follows:

Lety = and n = [y == %] = the integral part

u
log.2

of y == % . The minus sign holds if u<0, hence y<0.

(Alternatively, one could compute e!'l and take the
reciprocal when u is negative.) Let w=y—n and
x=w log.2. Then e* may be computed from one of

log.2
the algorithms which follow for |x| < 02g o

u=0, e" should be set to 1.

2. Taylor-Maclaurin Series

ey = § x_n
n=0 n!
with
, xm (logez.)m
truncation error < — < ——— ~ 1.07(10-*%)
13! 2t 13!
log.2

which is less than 2 for | x | < 3

24

3. Padé Rational
(Diagonal of the Padé table) Ref. 18

P.(x)
Po(—x)

X~

where

b n! I:é (2n—j)!x":|
NS STE =)

n=>5 and n=6 were tested.

4. Rational and Continued Fraction Forms
Obtained from Macon’s Even Part of
the Gaussian Continued Fraction for e

(Appendix B.3.b.)
er = ot where S=2+F
S=x

Approximants tested for F were

As Ay Ay
F=x:—,F=x* and F=x* —
Bs " 3

in both rational and continued fraction form. Co-
efficients for the continued fraction forms were
computed from COF 3, COF 2 and COF 2 respec-
tively (Appendix A). The case F=x* A,/B; proved
accurate enough.

Thus,
= S+x
S—x
where
S=g b 2520428z ] e
15,120+ 420z + z*

or, in continued fraction form,

S=2+z[ g‘] where P,=C, (z+B,)

Q,=(z+B,) (z+B.)+C;

e




and
CHI= OS] B, = 330.
C,= —14580 B: = 90.

Note that in this case the continued fraction form
is not much shorter than the rational form.

6. Comparison of Results

5. Telescoped Rational and Continued
Fraction Forms

Using formulae from IIL.C.7. for an even function,
an unsuccessful attempt was made to telescope

¥ Ay

x* R
It would have reduced the degree of the denomi-
nator from second degree to first degree in z.

Results of 1604 double precision tests using arguments from u = —9.9 to u = 10.0 at intervals of .1 are:
Maximum Maximum Ma:t' Esror of 1V
Method X in the Kth
Absolute Error Relative Error S e
Significant Digit
3. Padé n=5 3.35(10%) 8.26(10-'%) 6.53 in 16th
Padé n=6 5.12(10¢) 1.72(10-'?) 1.33 in 19th
4. Rational and Cont'd Fraction
a) F=x?A;/B; 5.76(102°) 2.63(10-2%) 1.95 in 23rd
b) F=x*A,/B, 5.12(10-1¢) L72(10:1%) 1.33 in 19th
c) F=x*A,/B; 3.35(10'2) 8.26(10-¢) 6.53 in 16th
5. Telescoped form of 4.c. 3.33(10%) 3.07(102) 2.63 in 12th
at u=10. at u==+52 at u=4.5
For

H. LOGARITHM: Logu=Inu

1. Reduction of Range

1
Write u=2"+*m where 5 <m<]1, and n may be

zero or a positive or negative integer.

Let

m—\/Z/2 1+x
x = ——— and compute In
m++\/2/2 I=x

from the algorithm.

Inu= (n - }) In2+1n ( 1% ) A
2 1—x

Then

u=1, In u should be set to zero.

The approximations to follow are for In ( ;'f'x )
=%

where | x | <3—2\/2.

2. Taylor-Maclaurin Series

1+x x_' x4 xn x‘.’ll
1 =2 [l+=+—+=+...+—
L et [ 3 5 21
with error
2x23 2‘-‘4 10 23
~ T.3(10718
< < - ( )



for
| X |<3_2\/2_.

Actually one more term could be dropped.

3. Telescoped Polynomial

Let z=x"=a’y where a=3—2\/2 and 0<y<1 in
the truncated Taylor series preceding.

1%
log . ! y
1=x ay. . ay’ a*y'
=l h—
2x 3 s 21

Shifted Chebyshev polynomials are used and sub-
stitutions made for y', y*, y* and y* after which
the coefficients are converted back to coefficients
of z by the substitution y=z/a*. The result is

1+x
X = 2o [Cr b Ciz P Gzt i Gz

e
z=x*
C, = 1.0000 00000 00000 01720 16224 E00
C, = 3.3333 33333 32761 81768 85283 E-01
C., = 2.0000 00003 09807 78908 99307 E-01
C, = 1.4285 70799 46082 73472 61398 E-01
C, = 1.1111 71831 83715 43428 06719 E-01
C, = 9.0609 35658 17935 37172 14254 E-02

C, = 8.4191 86575 86305 31375 34817 E-02

4. Rational and Continued Fraction Forms
Obtained from the Gaussian Continued
Fraction (Appendix B.4.)

Approximations considered were

1+x Ay
a. log = X
l_x B(;
1+x A-
b. log = x—
l_X B:

26

Jex A
¢. log =X
= B.

in both rational and continued fraction form using
COF 3, COF 4 and COF 4 respectively (Appen-
dix A) for computing coefficients of the continued
fraction forms.

Coefficients for the continued fraction form of a.
are:

C, = 4.1795 91836 73469 38775 51020 E-01
C, = —5.9412 24489 79591 83673 46939 K00
C. = —3.3502 52481 31135 23355 48171 EO00

C, = —1.2872 09952 96610 95132 66527 E-01

B, = —5.1029 95328 38691 94833 74554 EO00

B. = —2.5841 78755 04759 66008 33351 EO00
B, = —1.3128 25916 56548 39157 92095 E00
I+ x P,
log =@ —— |
L= Q.

5. Telescoped Rational and Continued
Fraction Forms

1+x A:; 1
= x— was tele-
XB. vas te

The approximation 4.a., log 1
D, &

scoped and provided rational and continued frac-
tion forms still of sufficient accuracy. The formu-
las of III.C.7. for an odd function were used with
n=>5and e=3—2\/2.

1+x
log =X

aqta,;zta.z’ e
1—x b,+b,z+b.z*+b,z* ’

a, = 2.0789 99999 99999 84154 93231 E04
a, = —2.1545 27006 88655 98004 53920 E04

4.2239 18706 18926 27409 32222 KO3

»
Il

1.0395 00000 00000 00000 00000 EO4

i
I

b, = —1.4237 63503 44403 34724 39577 E04

- gE—




i s—

b, = 47788 37699 95350 61419 58903 E03 C, =
b, = —2.3041 91303 93980 93764 71785 E02 C. =
From COF 3 (Appendix A.2.), the continued frac- .

tion form is B, =

o)
Il

1+x P, 2
log =X
l—x Qz B.';

6. Comparison of Results

—1.8331 45841 21857 31138 11787 EO1
—2.2902 78600 16831 17096 16207 EO1
—2.3867 37346 87530 69616 24548 E-01

—1.5638 98338 99084 36432 27360 EOL
—3.7096 29801 61962 30733 12768 E00

—1.3911 47833 44601 98894 76038 E00

Letting u range from u=.1 through u=10. at intervals of .1, largest errors observed in 1604 double-

precision runs are recorded below:

Maximum

Maximum

Max. Error of N

Medod Absolute Error Relative Error ; ir} fhe Kth. :
Significant Digit

3. Chebyshev teles. polynomial

a. degree 7Tinz 2.95(10-1%) 4.25(10-1%) 2.95 in 18th

b. degree 6inz 6.24(107) 9.00(107) 6.24 in 17th
4. Rational & Cont'd Fractions

a. xA,/B; 6.81(10%) 9.83(10-%¢) 6.81 in 16th

b. xA:/B: 5.11(10%) 7.37(10%) 5.11 in 18th

c. xAs/Bs 3.83(10-2°) 5.52(10-2°) 3.83 in 20th
5. Telescoped form of 4.a. 712(10-*%) 1.03(10%) 7.12 in 16th

u=.5,2,4,8 u=.5, 2 u=.5, 2
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A. Appendix

Formulae for Conversion of a Quotient of Two nth
order Polynomials to Continued Fraction Form and
for Evaluating the Resulting Continued Fraction

1. COF 2: n=2

a. Conversion formulae

a,t+azta.z*

Let Fo=—y 39240z’
G c,
-Gyt (z+lB1)+(z+-B._.)
C,=a.b;
ay =a,— Cyby
a; =a;—Cob;
C,=a1/b2

B, = (bel"(YO)/ax
C,= (beo—ﬁ'nBl)/al
B: =ao/a

b. Evaluation
P: =C,(z+B,)
Q.= (z+B,) (z+B;)+C,

P,

F,=C,+ *61—

2. COF 3: n=3

a. Conversion formulae

o a,+a,z+a,z*+a.z’
Let Fs=— 2+ b2 + b2
S C, C C;
=7 (z+B,)+(z+B.)+ (z+Bs)
Co=aa/b3
ay =3-0"Cobo
ay =a|—Cgb1
ay =a,—C,b,
C;—_-a:/b,-;
B, =<b2C1—a1)/az
T =bucl—aoB1

C.=(b,Ci— By —ay) /e
W =a.C.

B, = (a:C.—T)/W
C,=(—T"*Bs+aC.)/W
B, =T/W

b. Evaluation

P, =C.(z+B.)
Q.=(z+B.) (z+B,) +C;
P. =C.Q,
Q.=(z+B,)Q:+P:
B O

Q.

3. COF 4: n=4

a. Conversion formulae

a,+a,z+a.z>+a,z*+a,z!

LetF.,= b,+b,z+b.z*+b.z*+b,z*
=C,+
C, c, Cs G,
(z+B,) + (z+B.) + (z+B,) + (z+B.)
Co=a./b,
as =a,—Cob,
a; =a,—C,b;
a: =a,—Cgb,
a; =a;—Cyb;
C,=as/b,

B, =(b:Ci—a:)/as

C. = (b.Ci—ar—a:B;)/ s
R =(aBi+a—bCy)

S =(aB;—biC:)

W =a,C,

B, = (0,C.+R)/W

C, = (B.R+a,C+S)/W




vV =C,W

B; =(C:R+a,C.+B.S)/(—=V)

C. = [aC:B1+S(B.B,+C,) ]/(~V)
B, = (B.S+a,C,)/V

b. Evaluation
P1 =CS(Z+B4)

Q,=(z+B;)(z+B,)+C,
P, =C.Q,
Q.=(z+B.)Q,+P,
P, =C,Q.
Q.=(z+B,)Q.+P;

P

F,=Co+ Q—“’s

31




Gaussian Continued Fractions and Their
Approximants

1. Tan' x

tan x x2 x2 x2 x?

sl
X 1—

A,=1

A,=3

A,=15—x>

A;=105-10x*
A,=945—105x>+x*

A;=10,395 —1260x*+21x*
A;=135,135—17,325x>+ 378x* — x°

Appendix

_x Lo T
Semtin ==t (=2 O =N S =15 =i B.

B,=1
B,=3—x*
B‘_'= 15‘—'6)(2

B;=105—45x*+x*

B, =945 —420x*+ 15x*
B;=10,395—4725x>+210x* —x°
B;=135,135—62,370x2+ 3150x*—28x°
B, =2,027,025 — 945,945x*+51,975x*

A;=2,027,025 —270,270x> + 6930x* — 36x° —630x8+x2
A5 =34,459,425 —4,729,725x>+ 135,135x* B:=34,459,425 — 16,216,200x* 4+ 945,945x*
— 990x°® +x® —13,860x°+45x®
2. Arctan x
arctanx _ L x_2 4x* 9x? 16x2 25x% 36x% 49x%> 64x* 8lx* 100x? - An
x 1+ 3+ 5+ 74+ 9+ 11+ 13+ 15+ 17+ 19+ 21 B.
A,=1 B,=1
=3 B,=3+x?
A,=15+4x?
B,=15+9x>
A;=105+55x2

A, =945+735x2+ 64x*
A;=10,395+10,710x> +2079x*
As=135,135+173,250x> + 53,487x* + 2,304x¢

A;=2,027,025+3,108,105x* + 1,327,095x*
+136,431x°

A =34,459,425161,486,425x* + 33,648,615x*
+5,742,495x° + 147,456x°

A, =654,729,075+1,332,431,100x>+ 891,080,190x*
+216,602,100x° +13,852,575x*

A;,=13,749,310,575 + 31,426,995,600x*
+24,861,326,490x* +7,913,505,600x°
+865,153,575x" + 14,745,600x°
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B;=105+90x>+9x*

B,=945+1050x>+ 225x*

B;=10,395 + 14,175x* 4 4725x* 4 225x°
B,=135,135+218,295x%+ 99,225x* 4+ 11,025x°

B,=2,027,025+ 3,783,780x*+ 2,182,950x*
+396,900x° + 11,025x®

By =234,459,425 + 72,972,900x*+51,081,030x*
+13,097,700x" + 893,025x*

B, =654,729,075+ 1,550,674,125x* + 1,277,025,750x*
+425,675,250x° +49,116,375x" + 893,025x'°
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B,,=13,749,310,575+ 36,010,099,125x*
+34,114,830,750x*+ 14,047,283,250x°
+2,341,213,875x® + 108,056,025x°

3. Exponential: e*

a. Gaussian Continued Fraction

=TS oF 3= 2% 5- 2 7-

b. Macon — even part contraction of (a)

2x Xt xe x3 xS X2 x?

e=l+5——T & 10+ 14+ 1B+ BF %

(2+F)+x  S+x

er= @+F)—x Gl where S=2+F
dF_ x_2. x2 XZ xz X'.’ x!
and¥= 8+ 10+ 14+ 18+ 22+ 26
i ks 1 x2 x? x2 x2
Ok 6+ 10+ 14+ 18+ 22+
x Aq
R -
A,=1
A, =10
A2=140+x2

A;=2520+28x*
A, =55,440+756x*+x*
A,=1,441,440+22,176x* + 54x*

BD=6
B,=60+x*
B, =840+ 20x>

B, =15,120 +420x*+x*
B,=332,640+10,080x*+ 42x*
B;=8,648,640+277,200x>+ 1512x* + x°

1+
4. Logarithm: log, ( 1_: )

1+x
log. (1—X> 9 x* 4x* O 160

X ~— 1- 8— 5= 77— 9-
25x*  36x* 49x* 64x? A,
= 155 15— uifh leehegn

A,=2

A, =6

A,=30—8x*

A;=210—110x*

A,=1890— 1470x*+ 128x*

A, =20,790 —21,420x* +4158x*
A,=270,270— 346,500x* + 106,974x* — 4608x°
A,=4,054,050—6,216,210x*+2,654,190x*

—272,862x°
A.=68,918,850— 122,972,850x* +67,297,230x*
—11,484,990x° +294,912x°
B,=1
B;=3—x*
B,=15—9x?

B?=105—90x*+ 9x*

B, =945 —1050x? + 225x*

B, =10,395— 14,175x? + 4725x* — 225x°

B,= 135,135 —218,295x* +99,225x* — 11,025x°

B,=2,027,025 —3,783,780x*+2,182,950x* —396,900x°
+11,025%*

B, = 34,459,425 —72,972,900x> + 51,081,030x*
—13,097,700x° + 893,025x®



C.

Constants

™

V2

V3
log. 10

log. 2

Appendix

= 3.14159 26535 89793 23846 26433
83279 50288

= 2.71828 18284 59045 23536 02874
71352 66249

= 1.41421 35623 73095 04880 16887
24209 69807

= 1.7320 50807 56887 72935 27446

= 2.30258 50929 94045 68401 79914
54684 36420

= 0.69314 71805 59945 30941 72321
21458 17656

logie = 0.43429 44819 03251 82765 11289
18916 60508

log..2 = 0.30102 99956 63981 19521 37388
94724 49302

N = 1.25992 10498 94873 16476 7211

\/35 = 59160 79783 09961 60425 67328

/70 = 8.3666 00265 34075 54797 81720

tan 1‘”‘—6 = 0.19891 23673 79658 00691 15976

3 ‘
tan -% = 0.66817 86379 19298 91999 77577
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