) ‘ : P Y .

OLD

SITE CorY 2 CowTROL DATHR ENEneeldS

U iER SITY OF ADELAIDE

[6600 §
A COMPUTER 8
TRAINING
MANUAL

VOLUME 11

PRELIMINARY
~ EDITION

'CONTROL DATA |§

CORPORATION

SECTION 7.2

SHIFT

Functional Units

7.2.1

SHIFT FUNCTIONAL UNIT

INTRODUCTION

The Shift Functional Unit performs shift, normalize, round, pack, unpack,
and mask operations as required by instructions 20 through 27 and 43.

The functional unit time is 400 nanoseconds for the normalize instructions
(24 and 25) and 300 nanocseconds for any of the other shift operations.

The time difference arises because during normalize, a shift count must

be generated by the Normalize Network before shifting of the coefficient
takes place. The breakdown of the functional unit time into Read, Execute,

and Store cycles will then differ as follows:

t00 t100 €200 £300

NORMALIZE l Read l Execute Store !

| | shift |

NORMALIZE t00 . t100 t200 £300 t400

l Read l Execute | " Store AJ

generate
shift count . shift

FIGURE 7.2.1

The Shift Unit shares data trunk number 1 with the Add and Long Add Units.

It holds second priority on the Read Operand trunk and first priority on
the Result trunk. The Unit may select operands from registers Xk, Xi, or
Bj and may designate a result register of Xi and/or Bj. Also, the six
bits, jk, may be used to specify a shift count - these bits are uncondi-~
tionally sent to the Shift Unit each minor cycle and are used only if

required by the instruction (used by instructions 20, 21, or 43).

The Shift Unit follows the functional unit principles discussed in the

Boolean chapter (Section 7.1) in that it uses mode bits and a timing chain

to select and sequence the required operations. In the standard manner, it

is initiated with a "Go" signal from the scoreboard and terminates its operation
(Clears its Busy flipflop and transmits its result(s))upon being released by the
scoreboard. It is on the other haﬁd, a somewhat more complex unit because more

intricate and varied functions are defined by its instruction list.

The main component of the Shift Unit is of course the Shifting Network, which
is a 60-bit, 6-rank shifter that operates in nearly the same manner as the
Peripheral Processor shift network. The six ranks enable shifts of 1, 2, 4,
8, 16, or 32 places in either the left or right direction. Shift direction
and magnitude are determined by two circuits, Shift Direction Control and the
Shift Count Register (SK). Shift Direction Control will determine and enable

shift direction (left or right) by checking the mode bits of the Shift Unit.

The Shift Count Register contains six-bits each of which conditions one rank of
the shift network. (Bit 2° conditions the 32 place shift rank, bit 2% the 16

plage rank, etc;) A rank is enabled if its corresponding bit in SK is set, and
disabled if that bit is a zero. The maximum shift count is thus 77(8) or 63(10)

places (when all bits of SK are set.).

The shift count may come from any ore of three sources, depending upon the
instruction being executed; from 1) the six bits, jk, 2) the lower six bits

of Bj (during nominal shifts), or 3) the Normalize Network which generates

the shift count required to normalize a given coefficient. Another component
of the Shift Unit to be discussed is the Bj Ones Test Network. During Nominal

Right shifts, this network looks for any "one" in bit positions 6 through 10 of

Bj. If a one if found, the result of the shift network is not enabled to
the shift network; the result is thus an all zero coefficient. To understand
the reason for this circuit, consider that if any one of bits 6 through 10

is set, a right shift should result in an all zero coefficient (right shifts
are by nature "end-off!" and the shift co?nt is greater‘than 6319). If the
network was absent, an erroneous, non-zero coefficient would be generated

for all cases where Bj bits O through 5 gave a magnitude of less than 64g
(since these six bits would unconditionally be used as tﬁe shift count). The
Ones Test Network then guarantees an all zero coefficient for the case
illustrated. The final component of the shift unit to be discussed is the
Exponent Adder. It is used during Normalize to subtract the normalize

shift count from the original operand (Xk) exponent. This insures that the
normalized number is of the éame value as the original. Further analysis

of the components mentioned here will be found on the later pages of this

section. First, the Shift Unit instructions and data flow are discussed.

7.2,2 INSTRUCTION LIST

Data paths for the following instructions may be seen by referring to Block

Diagram #1, Figure 7.2-2. The expressions in parenthesis following the instruc-

tion names are the ASCENT symbolic -codes.

20

21

SHIFT Xi LEFT jk places (LXi jk)

DEFINITION: This instruction shifts the 60-bit word in X register 1
left circular jk places. The 6-bit shift count, jk, allows a complete
circular left shift of X register i.

DATA FLOW: The X Input Register is tranferred to the Shift Input
Register (SIR) and the jk Input Register to the Shift Count Register
(SK). The gates for the shift network are controlled by the SK register
and the shift direction translation. The output of the shift network

is gated directly to the chassis line drivers.

SHIFT Xi RIGHT jk places (AXi jk)

DEFINITION: This instruction shifts the 60-bit word in X register i
right jk places. The shift is end-off with sign extension.

DATA FLOW: Same as the 20 instruction.

¢-C¢°/ F4NO14

“-nlllllu..lill_
mmmcmumHmEoou 0
m | 303 umoyg) @ £
"“ STIOMLAN " G
11 IZITVIRION | MSVW 20 j[14THS
=osssTRess = a9 LNIT
LITHS TYNTHON
LJIIHS LT TYNIWON
S(vfele)t
(0 =01 - 9 f9)
+(ILAAT) ,
+(TYNIRON) TOYINOD
I \1 » NOILOMIIq
IINSNVIL q .Kw + ILHOIY
+ 14971
|
0 zelot|ls| vz
MNNYL
VIvVa £\ X I0 XX
X 0L @ ~ N 09 n
66; R 6C 69| 66
SHOMIAN YIOMIAN ¥IS) ¥I
INdino LATIHS VILSIDHE SYHLSIOTY
8 SISSVHD LNaNI LOANT
LATHS 8 SISSVHD

(¢ 30 ‘g7 ‘Tz 1¢ ‘0z SUOTIONIISUT 103)
T# WY¥OVIQ MO0Td LINN TYNOILONNA LJTHS

22

23

SHIFT Xk NOMINALLY LEFT Bj places to Xi (LXi = Bj, Xk)
DEFINITION: This instruction shifts the 60-bit word in X register k
the number of places specified by the 1ow-ofder six bits (0 - 5) of

B register j and places the result in X register i. If Bj sign

(bit 17) is positive, the shift is left circular; if Bj sign is

negaﬁive, the shift is right (end-off with sign extension).*
DATA.FLOW: The X Input Register is transferred to SIR and the lower
sixfbits of Bj Input Register to SK (compleméﬁted if B register j

sign is neggtive). The gates for the shift network are controlled

by the SK fégister and the shift direction translation. The specified
shiftﬁdiréction is reverséarif B register j sign is negative. The
output of the shift network is gated direétly to the chassis line
drivers.

SHIFT Xk NOMINALLY RIGHT Bj places to Xi (AXi = Bj, Xk)

DEFINITION: This instruction shifts thé 6d-bi£ word in X register k
the number of places specified by the low-order six bits of B register
i énd places the result in X register i. If Bj sign (bit 17) is
positive, the shift is right (end-off witﬁ sign extension);* if Bj
sign is negative, the shift is left circular.

DATA FLOW: Same as the 22 instruction.

Data paths for the following instructions may be seen by referring to

Block Diagram #2, Figure 7.2-3

*The Bj Ones Test Network checks bits 6-10 of B register j during

22 and 23 instructions. If any bit is a one during nominal right

shifts, all zeros are sent to Xi.

€-¢°L H4NOI4

dZTTVIRI ON

LLLE + LLLT # daXd X

J_ INHRITINOD

OHY INMO
LATHS

HZ T TVION

JZTTVIRION TIOMLEN
HZTTVIEON

TOJLNOD

0¢ 0
- ")
x Avnulunéwnxuuleov‘
TZTTVIRION It
= BY]
'
6¢C 66
MOMLAN MAOMLAN // (¥19)
104100 | rargs Vv € QNOOH YALSIOT YALSIOM
8 SISSVHD LNdNT IL0dNI
, LATHS 8 SISSVHD

(GZ Pu® %7 SUOTIONIISUT I07)
Z# WvV4OVIA ¥MD0TY LINA TVNOILONAA LAIHS

NORMALIZE Xk in Xi and Bj (NXi, Bj = Xk)

DEFINITION: This instruction normalizes the floating-point quantity
in X register k and places it in X register i. The number of shifts
required to normalize the quantity is entered in B register j. A
normalize operation may cause underflow, in which case both exponent
and coefficient will be cleared; the normalize count is still entered
in B register j. Normalizing a zero coefficient reduces the exponent
by 481b (608). If Xk is in infinite or indefinite form, it is sent

out in tact and the normalize count is sent out as zero.

DATA FLOW: The X register sign bit is stored in a flip-flop to

control data flow, and the X Input Register is transferred to SIR
(compleﬁented if Xk éign is negative). Bits O through 47 feed the
normalize network which determines the number of zeros from bit 47

to the left-most "1" of the coefficient. The output of the normalize
network (the normalize shift count) is gated to the SK register which,
with the shift direction translation (always LEFT during normalize
operations), controls the gates for the shift network. The transfer of
the normalize network to SK is disabled if Xk exponent eguals 1777 or
3777. The output of bits 0 through 47 of the shift network are gated
(complemented if Xk sign was negative) to the chassis line drivers.

The complement of the exponent portion of SIR and the true value of

SK feed the exponent adder where the normalize shift count is subtracted
from the exponent portion of SIR. The difference is the exponent
portion of the normalized number and is gated directly to the chassis

line drivers.

25 ROUND and NORMALIZE Xk in Xi and Bj (ZXi, Bj = Xk)

DEFINITION: This instruction performs the same operation as instruction
24 except that the quantity in X register k is rounded by % if that
quantity is shifted. (It would not be shifted if the original quantity
was already normalized.) A normalize operation may cause underflow in
which case both exponent and coefficient will be cleared. Normalizing

a zero coefficient places the round bit in bit 47 and reduces the
exponent by 481 (608). If Xk is in infinite or indefinite form, it

is sent out in tact and the normalize count is sent out as zZero.

DATA FLOW: Data paths are the same as the 24 instruction with the
addition of the round operation. With "Round" specified, a one bit
is forced in position 59 of the shift network. As in the 24 instruc~
tion, LEFT shift is specified. If the coefficient is shifted, the
round bit will be pulled around below the least significant bit, thus

adding a % round bit.

Data paths for the following instruction may be seen by referring to

Block Diagram #3, Figure 7.2-4,

26 UNPACK ¥k to Xi and Bj (UXi, Bj = Xk)
DEFINITION: This instruction unpacks the floating point quantity in
X register k and sends the 48-bit coefficient with sign extended in
the upper 12-bits to X register i. The 10-bit exponent (unbiased,
sign extended, and represented in true one's>comp1ement) is sent to
B register j. |
DATA FLOW: The X register sign bit is stored in a flip-flop to control
data flow and the X Input Register is transferred to SIR. Bits 0-47
are sent directly to Bits 0-47 of the Xi output network. The coefficient

sign is extended to bits 48-59 through a fan-out. Bits 48-57 of SIR

7-¢°L HINOId4

—— 3}

9ATIBS2U JT JuswsTdwo)

(97 uor3loniisut uomV
C# WVYOHVIA M007Td LINN TVYNOILONNL L4IHS

are sent directly to bits 0-9 of the Bj output network - complemented
if Xi sign’(bit 59) is negative. To remove the exponent bias and
provide proper sign extehsion, the complement of SIR bit 58 is fanned-
out to bits 10-17 of the Bj output network. These 18 bits will be

complemented at the Bj output network if Xk sign (bit 59) is negative.

Data paths for the following iﬁstruction may be seen by referring to Block
Diagram #4, Figure 7.2-5,
27 PACK Xi from Xk and Bj (PXi = Bj, Xk)
DEFINITION: This instruction packs a floating point quantity in X
register 1. The coefficient is obtained from the lower 48 bits of X
register k and the exponent from the lower 10 bits of B register j.
*Bias is added to the exponent during the pack operation.
DATA FLOW: The X register sign bit is stored in a flip-flop to control
data flow and bits 0-47 of the X input Register are transferred to bits
0-47 of SIR. Bits 0 through 10 of B register j are transferred to bits
48-58 of SIR. The setting of SIR bit 59 is disabled duriﬁg PACK
operations. The word now assembled in SIR is gated’to the Xi data
trunk. SIR bits 0-47 are transferred in true form. Bits'48-59 (bit
58 is complemented out of SItho remove bias and bit 59 was made a
"zero") are transferred in true form if Xk sign is positive; in

complement form if Xk sign is negative.

Data paths for the following instruction may be seen by referring to the

block diagram on page .

11

¢-g*L HANOIA

(e AKX

8%
: 86
SAI3E8oU JI JusweTdwo) \\‘““ul
. IOVa0LS
NDIS

(/g uoTrjonajsut I03)
H# WVIOVIA M00T€ LINN TVNOLLONNA LATHS

12

43 FORM jk MASK in Xi (MXi jk)

DEFINITION: This instruction forms a mask in X register 1. The 6-bit

quantity jk defines the number of ones in the mask as counted from the
highest order bit in X register i. If jk equals zero, X register i will
equal all zeros.

DATA FLOW: The SIR is cleared, the jk count is transferred to the

SK register, and a right shift is translated. The mask mode will

cause a negative sign to be exténded during the right shift. The
overall effect is that an all zero operand is right shifted jk places
with ones forced as sign extemsion. Thus, a mask jk places long is
formed at the output of the shift network. This output is gated to

the Xi line drivers.

7.2.3 MODE BITS
The following chart, Figure 7.2-6, summarizes the nine instructions that

use the Shift Unit.

CODE NAME SHIFT COUNT SOURGE RESULT | xdhe)
20 | Shift Left | jk X1 Xi 300
21 | shift Right| jk Xi Xi 300
22 gg;fga%§§t Bj(bits 17, 5-0) | Xk X1 300
23 ;gifgaﬁight Bj(bits 17, 5-0) | Xk Xi 300
24 Normalize ggiﬁg%&ze Xk Xi and Bj 400
e Mandny | 0
26 Unpack None Xk Xi and Bj 300
27 Pack Nqne Xk and Bj Xi 300
43 Mask jk None Xi 300

FIGURE 7.2-6

Note that two instructioms (20 & 21) specify Shift jk, two (20 & 22) specify
Shift Left, two (21 & 23) specify Shift Right, two (22 & 23) are Nominal

Shifts, two (24 & 25) are Normalize instructions, and there is one each of

Mask (43), Round (25), Pack (27), and Unpack (26). With this informatiom,

the following list of Mode Bits used by the Shift Functional Unit can be

derived.

MODE BITS fm (INSTRUCTION)
Shift jk 20 & 21
Shift Left 20 & 22
Shift Nominal . 22 & 23
Mask 43
Normalize 24 & 25
Round 25

Pack 27

Unpack 26

The Mode Bits are translated in the same manner as the Boolean mode bits
were, that is, the bits are ANDed, ORed, and fanned out to emnable the

various operations required by each instruction. Figure 7.2-8, for

example, shows the decoding of the "Mask" and ”Shif£ jk'" mode bits to

enable the six bits, jk, to the Shift Count Register (SK) during instructions
20, 21, and 43. The Mode Bit translators, transmitters, and receivers are
shown on sheet 110 of the Shift Functional Unit Customer Engineering Diagrams.
Complete translations may be made by referring to the Chassis 8 Wiring Tabs.

Figure 7.2-7 summarizes the Mode Bits and the associated instructions.

Left

Shift

.| Rnd. | Pack |U ck
Code Name ik Shift| Nom Mask | Norm.| Rn ac npa
20 Shift Left X X
21 "Shift Right X
292 Shift Left X x
Nominally
Shift Right
23 Nominally X
24 Normalize X
25 Round gnd % %
Normalize
26 Unpack X
27 Pack X
43 Mask X
7.2-7

FIGURE

15

S
o3l

8-¢°L

YALSIHAY NS OL ¥AISIOHHAY INANI Ml FTdYNd 0L

8119 HAOW o[LATHSH ANV nMSVH. OHNICODHEA

qd lf///k
Vi< mjv,
<
Il
Z0HS ol 118

VHAISIOTI INdANT Af

LOHS-HNO
+09SsuU €1

SEHONE 96

140914

0¢

A0 LITHS AVMMu
ﬁmmu
ﬁ--,AJHiIIO\\
I
_ Al L41HS
"
! 1d
" 9198
|
1

af 14IHS
s JSVH
........ (O I
NOISHISVH Q———— \,\
€1 ¢
ASYH d ;Allmm
MSYR
N

2

1A

7.2.4 TIMING CHAIN

As was mentioned in the introduction to this section, (7.2.1) the Shift
Unit time duration is 100 nanoseconds longer for Normalize than for
Non-Normalize shift class instructions. This occurs because during
Normalize, a Shift count must be generated by the Normalize Network of the
Shift Unit while for other Shift instructions, the shift count is avail-

able at the same time as the operand.

The timing sequence for the Shift unit is shown in Figure 7.2-9 and an
explanation of the timing is found on the facing page. The timing se-

quence assumes that no second or third order conflicts occur. If a sewmnd

order conflict does occur, the "Go Shift" pulse will be delayed for the duration

of the conflict.

SCBD
ISSUE X t000 t100 t200 t300
XesssososaosoonasX X X . X
2nd Order READ EXECUTE STORE

Conflict

If a third order conflict should occur, gating of the result to the
register chassis (Transmit Result) will be delayed for the length of the

conflict,

SCBD
ISSUE
t000
X X XecasasasseseaeseesX X
READ EXECUTE 3rd Order STORE
Conflict

Thus, 300 nanoseconds is the Functional Unit time for Non-Normalize
instructions; 400 nanoseconds for the Normalize and the Round and Normalize

instructions.

17

6 ¢°/ HANOId

*3DTTJuOD I231ST801 J[nsax

ou - awtl ar1qrssod 3IseTTIRY

4

7227 I s31nsay uHEmcmuHHu=
§ jqaomieN 2FIYS A. quno) 3I1YsS
2 MS & FUno) BZTTEUWION
¥4z (9zT11RWION) ,9S5B819y 3Isanbey,
ONIKWIL TVIDHEdS HZITVIMON
A « (s) 3Insey ITWSUBI
7. S IBSTD
§ jaoMisaN 23F1IYs A juno) 1ITYS
B4 1935189y NS 2198
v ¥1S € VI
|) 10a13U0) UOTIOBIATQ IFTYS
|72) ¥IS 1BSTD
g peated9y spueiasadg
A |22] V2 24 2 193s180y anduy aesi)d
) 7] (@zTTBWION) ,°SBIT9Y 1sanbay,,
) 2] w3ITYS 09y
d1SSI @IVOEHAOOS
HZTTVWION LdHDXH ONIWIL LATHS

: S

009 00¢ 00% 00¢€ 00¢ 001 000

JYVHD ONIWIL LINN TVNOILONNA LAIHS

18

0093 3Inoqe e To1juoy LI13juy IB PIATAOLI Bq [[TM puE ‘ulTwsuex],, £q paied ‘sisseyd 12157831 943 03 3JuAS ST IINSaI ITw) IFJIYS IYL - C/C3
*asynd ,;3twsuex], ay3z jo 3diesax 843 03 3Np paaead ST 193ST80Y IWNO) IFIYS °GT ~ (CCI
*3TUf IITYS BYI I POATLEDLI ST 9s1nd ,3TWsmeay, =gy - 00eS3

*I0M19W JITYS DTIJEIS @yC3I

037
3U3 ySnoayl awr3l ISITTJ I0J DPIMOI[E oie Spuovssoueu gg A{o3emixoxddy *yiemjay 33TY4S 243l a1qeue so3e8 gNV IpniTuleR 3FIyg Sy - 093
*I93ST891 S 2yl 031 poied sy (3unod 33TYs 9zITeULIOU) YIOMIDN DZITBEION 2yl Jo INGIRO 241, ~ OLy3

*P31310°ds ST apow szTTRUION BYI JT MIoMIBN 1E31D 1TV @43 01 juss sy asind ,oses|oy senbay, =ul- QoL

ONIHLL TVIDAIS AZTTYRION

*0063 Inoqe 3' Joijuo) LIjuy I POATIDII @ J[IM pue ‘nITwsuexy, £q pa3e8 ‘sysseyd 1a3s1Fex 9yl o3 Juss ST 3IINS9X Jruy 3IFJIWS SUYL, — G/43
*osind ,3twsuexr, aya yo 1dievex ayj jo 3TNS91 ' S PRIEI[O ST I9ISTHII YT ouL - Ly3
(3ISTX2 S3OI[JUOD I8pPIO PITYI ou Surunsse) uﬁ::.uMHLw 943 12 pPaAIadl1 ST 3snd ITWSWBIL, 3L - QFy2D
TRLOoMIRW ITEHS (43
o3
9T3els 2yl YySnoig3l swWI3 ISI[IF I0J POmOIIE SIE SPUOIISOUBU 0€T A123ewrxoxddy -yIom3sy 3I3TYS 9yl °[qeud sojed QNy opniTuliEm IITYT ~ (HEI
*I93ST821 35 2yl 03 pajed ST Junod 1JIYS (PP Trutwoy JT) [dg (g) *¥Is 03 sia3st8ey andug 2u3 wolj pajed sie spueiado SdInog {1) - ovE3
@993
- o3
*MI0M3aN IITYS OYI S[qEUS uIng Ul IIIM YoTym Sajed qNy (Ms) @pn3tulew 137ys Ay1 ©3 PI[qeUd ST [0IIUOD UOTIIRBIATE IJIYS - (PELT
"pueiado 8yl zo 3dredex @3 107 uoijeiedsad UT PBIB3[D ST (YIS) 1935189y Indug IITYg 24gr - TzLl
'8 STSSBYD jo S5191s7189y jndul @2yl Ie paaledsr ale spueredo IDIANOG - (UL
*poT3TOds JoN ST @pom IzT[EUION A3 JT (qeds) Mr0M3IBN BB [TV 2Yy3 03 Juas sT asind ,aseafay isembay, @4y - @Cz3
ureys Jutwil ITUn IFFYS Y3 s3AeIS °snd 13IITUS 09y YL - <413

29351891 S 9Yl 03 paiIdJsueal ST 133s18oa Surynieo [8yl ‘paaTessl sem 319 2pow SR, o [IITYSy IT - Q0TI

(g-z*¢ 2anBig =2g) (319 apow il 3IFTysy 0 ,Nsew, & Jo 3dra091 uodn yg o3 paied sT pue fspuodasouru gOi AIsA2 ITUR IITYS P13
01 3Juss L7f{euoriTpucdoun ST f) *3ITUf [RPUOTIDUNS IITYS ©Yl I8 PIATIVLI ST UoTIONIISUT IFTYS JudIInd 9yl jo uorixod Hf =yr - <zp3

PIBOQ31005 BY3 03 UOTIDNIISUT IJTYS Yl 3JO amsSsy - (QUO3

(4ZTTVION 1dd0Xd) OHIWLL LALHS
’ A

19

7.2.5

Reference is made to the Shift Functional Unit Customer Engineering
Diagrams, Sheet 111, where the logic associated with Shift timing can

be seen.

SHIFT DIRECTION CONTROL

As is implied by the name, the'function of Shift Direction Control is to
determine the direction (left or right) of shift for the Shift class
instructions. Mode bits and the negative or positive condition of Bj
sign are logically combined on a CT module (Il7) whose output will
ultimately specify Left or Right direction. The direction is combined
with bits from the Shift Count Register (SK) on CA modules which are then
fanned out to enable the six ranks of the shift network. One of three
possible enables will condition rank "X!" of the Shift Network (where
X=1, 2, 4, 8, 16, or 32).
1. Shift Left "X" places (if Direction Control == Left)
2. Shift Right "X" places (if Direction Control ——=rRight)
3. No Shift "X" places (if the SK bit for magnitude "X" = Q)
During thé following explanations, refer to Figure 7.2-~10, a logic drawing
of Direction Control.

Left shifts are possible only with the following instructions and conditions:

20 This instruction specifies an unconditional LEFT shift in the shift
constant (jk) mode. Mode bits "Shift jk" and "Shift Left" are ANDed
(117, inverter L) and force a "one' out of test points one and two

and pin 9.

20

ISII SHENO g o3

I93s189y Mg 03

(LATT+SOd+HAON)
(IHOTIHDINHRON)

(LITT + AT) (WION) <= IHOTY

(La397)(S0d) (WON)+
(IHOTH) (9AN) (WON)+
(1431) (1L)+(RION) &= IIAT

) LT 11€ fa

TOYLNOD NOILDMIIA IJAIHS

01-2°. H4NO1I
TYNIHON 1431
LATHS LATHS Aaf LAIHS avaTo
g Y . Y O\)\
8 ‘ Eﬁﬁv [0¢ mNH
v ”w\ a 9 H
m ﬁ
N
V14
3 |
61 _mmm
a
a LiTHS
q LINX
Y 5 NOIS
A - fa
=
6 o Y
* JON L
o)
1D
LT11

21

22

23

This instruction specifies a nominal LEFT shift if the sign at B
register j is positive. (if Bj sign is negative, the shift direction
will be right.) Mode bits "Nominal” and "Shift Left" and the condition

"Bj is positive" are ANDed (117, inverter K) and force a '"one" out of

test points one and two and pin 9.

This instruction specifies a nominal right shift if the sign of B
register j is positive. If Bj sign is negative, the shift direction
will be LEFT. Mode bits "Nominal and '"NOT Left Shift" and the

condition "Bj is Negative' are ANDed (Il7, inverter J) and force a

"one" out of test points one and two and pin 9.

24 and 25 Both of these instructions specify the Normalize mode of operation.

A LEFT shift is always required during Normalize; therefore, the
"Normalize' mode bit forces a "one" out of test points one and

two and pin 9 of module Il7.

Right shifts are possible only with the following inmstructicns and conditions.

A right shift will result in "zeros" at the outputs of test points one and

two and a one out of pin 4 since all three AND gates (J, K, & L) and the

Normalize condition will be Vones."

21

22

23

43

This instruction specifies an unconditional RIGHT shift in the shift

constant (jk) mode.

This instruction specifies a nominal left shift if B register j sign

is positive. If Bj sign is negative, the shift will be RIGHT.
This instruction specifies a nominal RIGHT shift if B register j sign
is positive. (If Bj sign is negative, the shift will be left.)

This instruction forms a mask by RIGHT shifting a2 "one" frem bit 39

the number of places specified by jk. Thus, RIGHT shift is always forced.

22

7.2.6

26 and 27

The Unpack and Pack instructions do not require shifting, but

since all three AND gates (J, K and L) and the NORMALIZE condition

will be 'ones", a RIGHT shift signal is distributed to the shift

network. But, these instructions do not gate the operands through

the shift network and consequently, they are not shifted.

The outputs of Shift Direction Control are summarized with the following

table:
DIRECTION | PIN BOOLEAN FORMULAS
Left 9 (NORM) -+ (jk) (LEFT) + (NOM) (NEG) (RIGHT) + (NOM) (POS) (LEFT)
Right 4 |(NorM) (3k + LEFT) (NOM + NEG + RIGHT) (NOM + POS + LEFT)

Figure 7.2-11 shows how the shift direction and magnitude are combined to

enable a given rank of the Shift Network. This example is for bit 22 or

the Shift 4 places rank of the Network. The same method is uséd for the

other ranks of the shift network.

SHIFT NETWORK

The shift metwork shifts 60-bit quantities left or right on the basis of

a 6-bit shift count in the shift count (SK) register. Left shifts are

circular; right shifts are end-off with sign extension.

The quantity to be shifted is transferred from the chassis input register

(IR) to the shift input register (SIR) whose slave outputs drive the

100 nsec static shift network. (See Figure 7.2-12) The network is

organized in six shift paths or levels of 1, 2, 4, 8, 16, and 32 shifts

progressing out from the input register. Each level corresponds to a

23

11-2°/ H4NOT14

\\\. """""""" I\//
IATHS ON 71 g N
)
01
= " Ye—O------
\\n mH
rd
V4
\\\ \\n
NH rd \\
\\
% LIAT r HL
> =1 811 100-NVA
I 1 % ILAIHS
| t
| |
|]
]
“ '
OTR | \
| i
I H +
R e Vi
| IHOTEY 1
l/ t *
i
AN 48 N
t LHOTY «
....... o I
\\ w1 1aT1 T € all
' %
e /11 TOMINOD

CIR

NOTILOJI¥IA IJATHS

01
1
,‘I
7 i
0¢ aa
)
011 MALSIOTY
INNOD IJTHS

TOMINOD HANLINOVH

NV NOILOHYWIA IATIHS

2

,,,,,

power of two and each "one" bit of the 6-bit shift count in 5K gates a

corresponding level of the network. A "zero" in any bit position of SK

implies no shift (See Figure 7.2-11). Slave inverters on each bit of SK are

gated by shift direction (left or right) according to instruction requirements.

(Refer to Section 7.2.5, SHIFT DIRECTION CONTROL) The inverter outputs are
fanned out to the proper level in the network and indicate a left, right or

no shift for each of the six levels.

Each level of the shift network sends a bit to the next higher order

shift level unshifted or shifted left or right the number of places
assigned to the level. For left shifts, high order bits (259) are wired

to low order positions (2°9) to proﬁide a complete circular left shift. For
right shifts, no connections are made on the right shift outputs of bit 0

or other bits in the network where a right shift would carry past bit O.

For example, the right shift 16 output of the bit 9 circuit has no termina-

tion. This wiring produces the end-off feature of the right shift.

The sign (Bit 59) of the shifted quantity is extended on right shifts.,

A 'one" (negative quantity) or a "zero" (positive quantity) in this
position is extended to the right the number of positions the quantity

is shifted. During the formation of a Mask, a negative sign is forced.
The shift network treats zero extension automatically. Since any shift
will be at least ome position, omes are extended beginning at the second
level and the first level is ignored. The sign extension slaves are thus

necessary only when the shift quantity is negative.

25

Figure 7.2-12 is a representative logic drawing of the Shift Network

showing bits 0, 1 and 2. Notice the three enables (Left, Right, or No
Shift) entering the first four stages of the Network. Note also, that on
stages 16 and 32 only two enables enter each stage, Left and No Shift, since
a right shift of 16 or 32 would produce an end off effect for these stages.
The design of the network is like that of the Peripheral Processor Shift
Network with the exception that this is a 60-bit, 6 stage network. The PPU

shifter was an 18 bit, 5 stage network.

26

Z1-7°L 2In8Id

~
yIomIdN IITUS o
. ¥3Lsioa
14IHS ON = SN AINNOD LIHS
LHOIM = ¥ e
1431 = 1 T0HINOD NOLLIZNIG
NI Nv3d O 118 04 ¢ 8! p o L8
[s
NINV4 2§ 118 OL ‘o 1181817
[T .
NINVA | 118 OL (1] tv w_mmz: L 118
\
Y/ \ (21118}
S
NINV4 €€ 118 OL wnarene) ¥ s
3 v /r
z
i ol flnm
NI NVd 2 118 0L 2% !B LIE1ESNC 52 118
o >e—— 518 By le—Ix+lx
NI NVd $E 118 OL {s1 118)81¢ @ O 1N319144300
5 v 3 v 4 v
Y i Yy ¥ ¥
z L8 1] [20] 504 o v 8 Ls
S] 1 [selna ! s 5 T
o T BIEED z s . o]
I T || [l#0] s00 £ L 1t J
| 1]]40] 204 2 9l o2 L8 .
] @ M 11 [a0] 21e £l 1 12z
_ RIEEED ¥l Bl 2z |
|| | soee =2 82 vy Li8 2] 100 " p - | :
| ao[via 62 S | 1 { [20]s0a o oz = T
1 [zelse v ot ov] 1| [so[21a o P o T 0] sod 2 82 62 |
[ksoliod o [} w48] M | 2000 oz o ve L8] 11 [zo[s0u og 1 s vef
1| ls0f0e o 2 8y | | [#o]eon = . o] 7 [[0l z0m £¢ e se]
i 0[200 4 £€ (34 _ [11{ [a0] s0a 9 o (22] {11]20]eox a¢ i€ 8 |
|1 Llzc]zoe @ ve os i8] Hinee Te » . 1e] 10] s0u &F ov i d1g]
[11z0][voe e sg 15] [[zolvon o 7y o | # 6] o 2y £ vy |
|11 lsclsoe o2 ot 2s | M | [zos0n ot v v | 1y sy 9 v [
11 s0[ece i€ g] | [a] o s 2c os L] | [20] 2w ay & os i8] .
uaTon 22 ag e _ ua_ cid o s 26 _ o] £ 14 25 €S]
M1 [aclece 1 1]) e e
| 2 6% T 40 s00 os ¥ s N 0] viu L4 k] 1 LN3INDdX3
v2 oY 9%] a0 010 is s 65 18] 0] 51w L5 8¢ 6% |
52 i s |
40 __myl, 92 2% 8¢
{218 12 v 6% 18

SHILSI93H 1NdNI
L14IHS 8 SISSYHI

7.2.7

NORMALIZE NETWORK

The static normalize network forms a six-bit shift count, which defines
the number of shifts necessary to normalize, and stores the count in the

SK register. The shift network, under control of the SK register, is -

used to normalize the coefficient.

Initially, the coefficient is transferred from the chassis input register
to the SIR (complemented if Xk is negative). Thus, the content of SIR.
is always positive during normalize operations. The normalize network
organizes the low-order 48 bits of SIR into six 8-bit groups. It then:
. 1. Determines the highest order "one" in each group (a 1 of 8 selection).
2. Determines the highest order group with a '"ome" (a 1 of 6 selection).
3. Determines the number of zeros between the highest order '"one'" of
247

the coefficient and bit ,» and stores the quantity in the SK register.

Refer to Figure 7.2-13, during the following discussion.

Locating the highest order '"one" in a group is a 1 of 8 selection which

is accomplished by comparing a bit with all of the higher order bits in

the group (modules G25-G30). 1In each of the six groups, this yields a
three-bit "group count! which indicates the number of shifts necessary

to move the bit to the most significant position in its group (test points

3, 4, and 5). The six group counts are combined in an OR circuit (TA module)
which feeds the lower three bits of the SK register. The group count
selected to enter SK corresponds to the group hqlding the highest order

"one'" in the coefficient,

Another circuit in each group tests the group for "All zeros" (modules -

28

€= "L ®an31d
NIomION 9ZTTBWION

\
[
o .:mA
1 .:mA
LA1HS
1437 2 118 ¢

AS

H3LSI9IY LNOOD LdIHS fe—— <

NENVd
9-1
V1i| dNOHY

2€9

m.:nm

N
A tdnous ore—] |
v L8l o B0y~
Ot
9
d

OO

s tnqu_nnw.um

2

y anods

oL

N

>

S dnou9

) ¥ dnOHS

JE dNOY9

)2 dnous

1 dNOH9

oL

i<—0 S118 95 dNOH9

629 Gl«—8 Sli8 S m:o:u_

Ajges €3«—9t 5189 ¥ dnoy9 —
M| 129 iE<—$2 SLI8 € dnou9 _
O%|929 6£<—2E Sl8 2 dnoyo M
INGE9 Ilv<-0t Siig 1 dNOHS _

olg

[]

2 l1ia

€118

v 18

9 18

4118

s1i8 Bt
AN3I12144300

be—Ix +%x

silig 2t
ANINCdX3I

SH¥ILSI93Y LNdNi
L4IHS 8 SISSYHD

29

7.2.8

G25-G30, inverters A). The highest order group with a "one" is determined -
in the same manner as described above, i.e. each group is compared with

all higher order groups through the all zeros circuits (module G31).
Agaiﬁ, a three-bit quantity is formed in a count network but is sent to |
the upper half of the SK register. This quantity can be thought of as

representing the number of sequential all zero groups beginning with the -

most significant (group 1).

Summary: Starting with the high-order bits of the coefficient, groups
with all zeros are eliminated. When the first group containing a '"one"
is found, a count is sent to the three low-order bits of SK. This count
is equal to the number of places required to shift the "one" to the
highest-order bit of the group. The upper three bits 6f the SK register
are loaded with the number of all zero groups to the left of the group
containing the first ome. Entry of all other groups into SK is blocked.

Thus, a six-bit shift count ranging from O to 48 (608) is formed in SK.

Bj ONES TEST NETWORK

The purpose of this test is to guarantee an all zero coefficient when

the shift count contained in B register j exceeds 77(8) and a Nominal
Right Shift is specified. For example, assume that Bj equals 000425(8)
and a 23 (Shift Right Nominally) instruction is coded. The proper (all
zero) coefficient should be obtained by shifting the coefficient 425(8)
places to the right (since right shifts are by nature end-off). Since
only six bits are contained in the Shift Count Register, tﬁe maximum shift
possible is 77(8) places. In the case of a Nominal Shift, only the lower
six bits of B register j are used, and thus if the Ones Test Network was

not present, a Shift count of 25(g) would be used in this example. The

result could obviously be erroneous since only 21(10) bits of the co- =

30

efficient would be shifted to the right and end-off. The possibility of

such an error occurring is eliminated by the Bj Ones Test Network.

This ‘network is used to determine whether any omne of Bj bits 6 through

10 is set during Nominal Riéht Shifts. The question arises: why are

only bits 6 through 10 tested? The answer is found by considering that the
Left Nominal (22) instruction.is used during the conversion of Floating

Point Numbers to Integers. The following example illustrates this process:

GIVEN: (X3) = 2006 Q= (527

PROGRAM STEPS: 26423 (Unpack X3 to X4 and B2)
22624 (Left Shift X4 Nominally B2 places to X6)

RESULT: 1. The Unpack instruction will place 527 in X4 and 6 in B2,
2. The Shift Nominal instruction will éhift X4 six places
to the left and place the number 52700 in X6.
3. Thus, the floating point number 527 X 26 is converted

to the Integer 52700,

The point to be stressed from this example is that the Unpack instruction
will not return to Bj, an exponent greater than 10 bits in magnitude.
Consequently, the Shift Nominal instruction, if used properly, should

never find an exponent (Bj Register) greater in magnitude than 10 bits.

Figure 7.2.14 is a logic drawing of the Bj Ones Test Network. The
test is a relatively simple matter of checking the state of bits 6
through 10 together with the sign (217) of B register j. A 'one! out

of either test point 5 or 6 will disable the sending of the shifted co-

‘efficient to the output network since a "one" is required on pin 10 of

H24. Thus, to enable the shifted result, the flip-flop on K30 must NOT

be set. Test point 5 checks the Negative ("one") state of Bj against a

31

MYOMIAN ISAI SANO {g

?1-¢°/ H¥NO14

IIRX

cz3

014N

.’%

AR
#7¢H

v
]

8
=z

M~
—
o~

o (O—

N.l
- Q)

<
= <—Q|

(::).,__

—0

.)

I o — —

< f— 1

9¢ A X

01

11

)ot¢

0eA

\J
LIJATHS ¥YHINA 1dS

19

7.2.9

zero in each of bits 6 through 10 (terms "X" and "F", "G", UH'", "IN,
and "J"). If Bj is negative, zeros are checked because the magnitude
is in complement form. If any of these bits is a zero when Bj is nega-
tive, a zero is forced into test point 5 and when the "Set Enter Shift"
is enabled, the flip-flop on K30 will be set. Test point 6 checks the
Positive ("zero") state of Bj against a ”oﬁe” in each of bits 6 through
10 (terms "Y" and "A", uBM, ngn, m1, gnd "E"), If any one of the

bits is a "one" when Bj is Positive, a zero into test point 6 will
allow the flip-flop to set when the "Set Enter Shift" gate arrives.
Note that this circuit is used'only during Nominal shifts when the
Right direction is specified. The following Boolean formulas express
the conditions required for terms "XV ér ryn,

X

I
Il

(NOMINAL) (LEFT) (217) or, Nominal Left and Bj Neg (Right Shift)

Y

I
Il

(NOMINAL (LEFT) (217) or, Nominal Right and Bj VPos (Right Shift)
Thus, during Nominal Right Shifts when there is a one present in any
of bits 6 through 10 (true magnitude) the shifted result is not enabled

to the coefficient bits of the transmitters. An all zero coefficient

is then returned to Xi.

EXPONENT ADDER

Since the coefficient of Xk is shifted left (increased) during the
normalize process, the exponent of Xk must be decremented by an equiva-
lent value. This is the function of the exponent adder - to subtract

the shift count generated by the normalize network from the exponent of
the source operand. The example in figure 7.2-15 illustrates the initial

and final values of a normalize operation. In the example, a normalize

33

shift count of 37g is generated and sent to the SK register, which in turn
conditions the shift network. The six bits of SK also feed the exponent-

adder along with the eleven bits (248 - 298) of the original exponent.

Before Normalizing:

(Xk) = 2135 Ommmm-- 0327715 (327715 X 2133)

After Normalizing:

2076 6576320~~~~- 0 (657632 X 276)

I

(Xi)

(Bji) = Om=uw- 037 (Normalize Shift Count)

Figure 7.2-15

Recall, that if the sign of the coefficient is negative during normalize
operations, the complement of IR is sent to SIR. If the sign is positive,
the true value of IR is sent to SIR. Thus, bits 48 - 58 of SIR will always
contains the true form of the biased exponent and bit 59 will always be

zero. The sign of the exponent can be determined with bit 38; the set
condition indicated positive with the magnitude in true form (2000 - 3777)
and the cleared condition indicates negative with the magnitude in complement

form (0000 - 1777). ~

Also recall that underflow may occur during the normalize process, but
only if the exponent is smaller (more negative) than negative 60g (since

60g is the largest shift count that can be generated by the normalize network).

For the purpose of explanation, the range of possible exponents is divided

into four groups:

1) 0000 - 0057 (-1777 to -1720): A Negative exponent, and

34

under flow can occur if SK > 5EXP‘0. It is indicated by the

presence of an End Around Borrow (EAB).

UNDERFLOW UNDERFLOW
EXP = 0032 -1745 0053 -1724
SK = 51 - 51 15 - 15
RESULT = 1161 -2016 0036 -1741
EAB? YES NO

2) 0060 - 1777 (-=1717 to -0000)

Negative, but no underflow can occur (an End Around Borrow

is not possible).

EXP. 0060 ~1717
MAXIMUM (SK) 60 - 60
0000 -1777

3) 2000 - 2057 (40000 to +005Z;

Positive, and transition to negative might occur (if SK > 5EXP()

Transition No Transition
EXP (2050) +50 2046 +46
SK 52 (gAB 0 -52 35 -35
1776 ‘rorced) o2 ' 2011 11

1

1775

4) 2060 - 3776 (40060 to +1776)

Positive, but transition to negative is not possible.

EXP 2060 +60
(SK) Maximum 60 -60
2000 +00

With this information in mind, a discussion of the adder logic follows.
The terms "Generate!, "Satisfy', and "Enable'" are used during this
explanation. They refer to the 1 and O combinations in each stage and

are defined as follows:

35

Generate: requires (generates) a borrow from a higher stage.

Satisfy: will fill (satisfy) the borrow requirement of a
lower stage and in doing so, will not generate a
borrow.

Enable: in a sense, full-fills a borrow requirement, but
in so doing, generates a borrow itself. It there-
fore passes-on (enables) a borrow to the next higher

stage.

Figure 7.2-16 shows the subtraction of SK from the Xk exponent of
our original example (FIGURE 7.2-15). Each stage is labeled as

to its state; i.e. Generate, Satisfy, or Enable. Note that bits 6-10

10 9 876 7 N\ 543 210

XK exp. = S E EES EEE EGE
10 001 011 101

SK = 011 111
10 000 111 110

FIGURE 7.2-16
of SK are not physically present and are thgrefore considered to be
zeros. Consequently, a generate in stages six through ten is an
impossibility. The zero/zero enable and satisfy are the only conditions
possible in these stages. Thus, if a borrow is required by stage 5, it
can be satisfied by a '"one" in any of bits 6 - 9 of the Xk exponent. If
no satisfy exists, all enables are assumed, each pf bits 6-9 is toggled
to a one, bit 10 is cleared, and an End Around Borrow is generéted.

Study the following example.:

xic =(2031] o 000 011 o1) = 431

Il

Sk = 55 EAB = 101 101 EAB = -55
1754 0l 111 101. 100
1&~ 1

1753 = 01 111 101 011 = =2

~

—

SHIAIEA
LNINOJX3
In oL

[1-Z*L 2In3H
I9PPV ,ucmaoaxm

ar us !x
‘o u8

1NINOAXA O | .

¥300Y dX3 8 NHOMLIN LJIHS

‘SITNAON NI-Nvd

vs L8 ix
‘9 L8
AHANOAX3

M o

IR T

e

Nxﬁn:

auvit

ol 18 mxm_

H3QaV dX3 © HHOML3N 1IIHS

‘SITNCON RI-NVH

IZITYRHON

o L8
) LNNOJ LJiHS

AZ1ITYNHON

) IZITUNHON

v 18

dR0D & Lid

ANINOdXT

37

Recall, that an EAB may also be generated if an exponent lies in the
range, 0000 - 0057 (Group 1), but in this case, it indicates the
Underflow condition. Thus, an EAB may occur in two cases, 1) with a
positive exponent in the range 0-57 and 2) with a negative exponent in
the range -~ 1777 - 1720. The adder logic differentiates between the

two with the following conditions expressed in Boolean:

1. (EXP bit 210 = 1) (EAB) —> Positive to Negative transition.

2. (EXP bit 210 # 0) (EAB) — Underflow.

Figure 7.2-17 is a logic drawing of the exponent adder. To the left
of the drawing, two KR modules (G19 and G20) determine the generate,
satisfy, and enable condition for each of the low-order six stages.
The outputs of inverters H, I, or J being a "one" indicate the enable
(equivalence) condition for stages 0, 1, and 2 (G19) and 3, 4, and 5
(G20). Translations for the geﬁerate condition are also made on these
modules (pins 13, 16, and 18 on both G19 and G20 indicate the generate

condition).

The KQ module (H19) determines the effect of an EAB on each stage of
the adder. It determines whether or not an EAB is generated and checks
for satisfies in each of the bit positions. A "one" out of term "DV
indicates a 10 000 (20XX) configuration in bits 10 - 6 of the exponent
and will enable the propagation of an EAB through bits 0-9 of the adder.
A '"zero!" out of term "D'" indicates that the exponent is negative of a
satisfy is present in bits 9-6 (D =10 +9 + 8 + 7 + 6 =— 20XX) and
disables thé propagation of an EAB (Recall that if an EAB occurs when
the exponent is negative, underflow has occurred) Pin 10 of HI19 is

the EAB signal that is ANDed with the 210 condition to indicate an undep-

flow condition (Refer to the C.E. Diagrams, sheet 111, 124, pin 6)

The RS module (G34) is a further summation network that determines
whether or not a generate enters stages 1, 2, 4, or 5. This condition
is determined for stage zero at pin 16 of H19, and for stages 6, 7, 8,

and 9 by pins 14, 9, 13, and 11 respectively, of H19.

The KE modules (I04 through Il4) are used to AND the EQUIVALENCE or
EQUIVALENGE conditions with the Borrow or Borrow condition for each
stage, Here, the final result for each stage is determined according

to the following table:

CONDITION ON KEs RESULT
(EQUIVALENCE) (BORROW) =———3 1
(EQUIVALENCE) (BORROW) =——> 0
(EQUIVALENCE) (BORROW) ——> 0
(EQUIVALENCE) (BORROW) ——> 1

peataray g 83
12y13um 33pag
PITUL 307 TivA

81~-¢* /[2an3T4

wearavaana

oms AT
vemp 22351878 93
(F)aineay puIs(1

LI

PpawOGRI03G
waag panjadey
on
wLINSHYEL.

T
EYLre ._A w1 Aaoa1a niomaau Indang
azomaeg 13I4E andang 03 1 @3 sappy_-dry

»

t }

pur py-p *yion
i sk wote -390 31748 3yengy

J1on1e0_ind]
<3n0 Tx 83 1app
nsuodxy puv (n-0f
yaemran 3p1us 19

quaws deny 21qeey

95-Ry 1K @3 9| 3aon3
“dna pur (70 ‘Fx] andino 1y @
01 sassz 3pavuy] snzsr (ie ajamey

:.w -:»

asppy uaundxg
o1 gg-wy ‘EIS
fa Jums|dmoy

yiomian
15748 10 gE Al
~vod 119 07 L.1..

© ansoy amu”og)

3i0ATed 37 14T

1atus pus RaBAdN
3ys 02 Wi)
19-D %114 s1qe

wiealau IFTYE §
5 worateed 3t
a3). ¥ #2304

i1e =oH
~punTH,

23193881 June:
1374 e1 2unoal

a2y wmioy 31qeg

12141893 2une:
3114s ©3 3uncy
asy{emion I{GUTY

P
10 ¢ 019 Lenann . .
: u ppv usundr]
L) :.“.._. o ™ v wagarg P inatiaapin 03 geg ‘2018198
s e “iemaaw e appy wauDdey anoa 111ue a19eus]
~Oy] TR (65=@y) Raonisg Z.—_: :ﬂ.a_ a
andang 1x andang 1 a30aIwy andang] “”._..F”. ““Hm
a3 (ow) 85 PUY 53'(02) 68 puv Ty o3 peuury {u 03 pauusy *
.mm ‘e5-Gy B1S LI ¥1s B5.218 XIS ‘gg 219 215 238 0% .
38 an1wa snl ueeay; 36 3n[eA an3L 10 T g ey
(§+0) A3onTey {6-0} naan2sy
im e sndang (g nding T4
(65 118) uTiS 3 I5-r ‘8IS 01 'g-2y ‘vis
o e o angey anay Juvwe jdmoy
(w¥ju Jusiodag
anowny 1)
LIRAL R S 43 |
Jnswaydecy
Sxagmiam i3 Juatpds:; *
“ndang 1 =3 s o1 uojaaesia J— [— weriaes
‘ir-g tuis e §5 319 A1S 33us uB 3pms 3 artys i Jemiaeara
hiea ana Slivaadm stans atan3 sar e
§5-8Y _*AionIeH x5 93 6-0 ‘% ¥ 91 ¢-0 ‘U x5 03 §-0 'fu a1 g-p * o
o — as a3 -p *(y wayaaasin Toa3a
o rgt0 o (4t ara 153 a et T aniva anay e v sy 1374s 19 66
30 ante anaL pRE stae s Bans3 stama i

65 319

'RI§ 03 033Z(i)
“11-a

1§ 03 1y-0 ‘AX
?u.._;!:.::

i

378 o
ey

I

17-0 ‘yiom3sy
nding 1x

B3 (g5 118 HIS)

39 wnpe aniL

i

1S 03 (65-0)
1aae)fay anduy
3o angep ansg

1319 3P

(€z « 02)
131w oy
1491

(ez -)y
1339 PR

o\ wawdun | i

ox | IWIROH. T

I9vHO MOTd =

-ﬂ

sm)L 3a1114 NIORIK

axpwmaoy

et - Lt
o1 {emba
Juauodsy 11

“aasy 001

51 3Eve]3]
avihEay pies 123

Rzomiau azi (s
uou 01 gn-g $319
a1 219w (1)

utys aaerg (1

s 91
65-0 5114 *xx 19
+dmo3 @109 (2
ums smig (1

ez« 02) gy = o1
BICETCS PECET
prec XGVH

asasitay

unoy 33pus 83
wf zaysuvsp

]

\ (er 9 "1z ‘oz

918 Ipon.
e../ at

¥IS == 3L
(ax‘on) dl 313
OND5 e 13u-bay

LINN TVNOILONNA LAIHS

PESET
ox axn
sy
(52 vz = =)
1119 3004
O\ .3zITVIOH.

savei®ay andug
 srnn
P

ATEdN 3T

~pray oo
L3j1s @,

Itdn Supazasas
mox) sEna1a1
403 aten

i%33§13u00 sapag
pusass Auy

T 9 D '3 L

Asag apul 13507
T4 € TR Apodt
aass voepiaas|

BaLL SST
@VOaINEIS

I

SECTION 7.3

LONG ADD

Functional Unit

LONG ADD FUNCTIONAL UNIT

INTRODUCTION

The Long Add Unit is an integer arithmetic unit that performs fixed point
addition and subtraction of 60-bit operands and performs tests on X registers
which are used to condition the'OBX jump instructions. It is a 300 nanosecond
unit located on data trunk #1 along with the Floating Add and Shift functional
units. Long Add holds third (last) priority for reading operands and for

storing results.

The Long Add Unit is controlled by mode bits (only one), a timing chain,
and the scoreboard (to the extent of starting the unit and transmitting
results). It also contains an adder capable of forming a 60~bit sum or
difference and testing networks which check the sign, zero, infinite, and
indefinite conditions of X registers. The resulting control bits of these
testing networks are sent to the Branch Unit where they enable or disable
conditional jumps. The testing networks are not used during the addition
and subtraction processes; no arithmetic error conditions are checked and

therefore overflow, underflow, and indefinite results are ignored.

In discussing the 03X Branch instructions, it is helpful to review the
events that take place during the movement of any 0X instruction to the
scoreboard. Recall, that in transferring a 0X instruction from Ul to U2,
the i and j portions of Ul are shifted to the j and k portions of U2. The
i portion of Ul is also sent to the i portiom of U2. Symbolically, then,

the transfer looks as follows:

UL = fmijk kemm-- k

U2 = fmiij ke-omm k

Translations used to determine the existence of a result register (first
order) conflict are made from the U2 i portion and Result (Ai, Bi, Bj

or Xi) flip/flops. vIn the case of 0X instructions none of the four
Result flip/flops are set, hence the issuance of a 0X instruction cannot
be delayed by a Result register conflict. (The functional unit type of
first order conflict may exist, since in the case of the 03X instructions

the Long Add unit must be used, but is not significant to this discussion).

In the discussion of second order (source operand) conflicts we will analyze,

specifically, the case of the 03X instructioms.

Since the Long Add unit must read the X register designated by the k

portion of U2 (the j portion of the original instruction format) the
scoreboard must determine whether or not that register is reserved for

the result of another functional unit. This is done in the standard

manner -- by transferring the XBA designator for the specified X register

to the QK designator of the Long Add unit and translating Q. If Q =0,

the register is not reserved and RF2 (XK) will be set. If Q # 0, the register
is reserved by the unit whose code is in QK, and the read flag will be

set when that unit is released. Although oply one operand is read

during 03X instructions, both read flags must be set to generate the "Go

Read" signal for the long add unit. This means that Read Flag 1 (X3i)

must also be set even though the Xj operand will not be used. Since

no special gates exist for setting RF1 for this case, the normal procedure

of setting and translating Qj is used. Consequently, a second order conflict
may occur if the X register specified by the i portion o the original instruc-

tion 1s reserved.

Normally, when these second order conflicts are resolved, two "Go ReadV
signals (Xj and Xk) and two 3-bit tags (Fj and Fk) are sent to register

Exit control to gate the source operands to the Long Add Unit. Upon issuing
03X ins£ructions to the scoreboard, only the Fk designator is set (setting
Fj and Fi is disabled by the translation, fm = 0X). Also, setting RF1l

and RF2 results in sending only the "Go Read" and F designator for Xk to
Exit control. (The Fj designator, which equals zero, is sent to exit
control; but the absence of the "Go Read Xj" inhibits translation; therefore
all zeros are sent on the Long Add Xj data trunk). In conclusion, both

the j and k octals of U2 may specify an X register which is reserved, and
thus cause a second order conflict. Nevertheless, once the conflicts are
resolved only a "Go Read Xk" is sent to Exit Control and the Long Add

Unit receives only the one operand originally designated by the j portion

of the 03X instruction.

To consider the possibility of a third order conflict arising during 03X
instructions; recall that due to the fm = OX translation, the Fi designator
of the Long Add Unit, is not set at scofeboard‘issue time. Fi will thus
contain "O", Also, becaﬁse of the 0X instruction, translation of Fi = 0

is inhibited (by the clear side "Full Bit" for Fi). When the "Request
Release! arrives at the All Clear Network there is no Long Add Fi tramslation
to compare with other Fj and Fk designators. Thus, a third order conflict
cannot be generated, and the Long Add unit will immediately be sent the
"Transmit!" signal. As a result, the 60-bit quantity in the Long Add output
network is gated to register entry control. Because the Full Bit of the

Fi designator is cleared, a "Go Store!" to Entry control is inhibited,

although the three bit Fi designator (equal to zero) is sent. In order

to translate a code Fi = 0, the translating network in Entry control
requires a "Go Store' pulse. Since one was not sent, the translation is
disabled and none of the gates to the X registers are opened. To
summariée, during 03X instructions a third order conflict cannot be generated.
Although a "Transmit" is sent to Long Add, no Entry tag is translated and

the quantity transmitted is therefore lost in Entry control.

Since the Long Add Fj and Fi "Full Bits" remain cleared only during the
03X instructions, first, second, and third order conflicts for the 36 and

37 instructions are handled in the conventional manner.

1-¢+, @an814

—““wnv [II1

L-

s

~L

JTWSuUBL]

1-

asea1ay
3senbay

I=Ix§ SISEL .
ZLINIAHANI § TOMINOD (65-8% $3Tq) [X - 0X
—“le — 1IXT ,
- =Lx§
LLLE ¢ i
sSn1d
PPy 3uog
0 # X
SISHL
0¥ dZ/NOIS Y
0>!X .
£
N ' \0Y/ gaaay
oy ——— (¥ & [y

NIVHD ONIWIL

WVIOVIQ AD0Td - LINMN adv ONOT

9X

w3

7.3.2 INSTRUCTION LIST/DATA FLOW

This discussion is divided into two subsections, (1) Fixed Point Arithmetic

Instructions and (2) Conditional Branch Instructions. The expressions in

parenthesis which follow the instruction name are the symbolic ASCENT

Assembler codes. Data flow may be followed by referring to the block

diagram, Figure 7.3-1.

Fixed Point Arithmetic Instructions

36

37

Integer Sum of Xj and Xk to Xi (IXi = Xj + Xk)

Definition:

Forms a 60-bit one's complement sum of the quantities from operand
registers Xj and Xk and stores the result in Xi. An overflow condition
is ignored.

Data Flow:

The source operands, Xj and Xk are transferred from the chassis 8 input
register to the feeder registers of the long add functional unit.

Both Xj and Xk are transferred in true form. When a "transmit" signal
is received from the scoreboard, the sum gf Xj and‘Xk is gated to the

result register Xi.

Integer Differenée of Xj and Xk to Xi (IXi = Xj - Xk)

Definition:

Forms the 60-bit one's complement difference of the quantities from
operand registers Xj (minuend) and Xk (subtrahend) and stores the
result‘in Xi. An overflow condition is ignored.

Data Flow:

The source operands, Xj and Xk are transferred from the chassis 8

input register to the feeder registers of the Long Add functional
unit. Xj is transferred in true form; Xk in complement form. When
the "transmit" signal is received from the scoreboard, the difference

of Xj and Xk is gated to the result register.

Conditional Branch Instructions

030

031

032

033

034

035

036

037

JWMP to K if Xj = 0 , (ZR Xj K)
JUMP to K if Xj # 0 (NZ Xj K)
JUMP to K if Xj = plus (positive) (PL Xj K)
JUMP to K if Xj = negative (NG Xj K)
JUMP to K if Xj is in range (IR Xj K)
JUMP to K if Xj is out of range (OR Xj K)
JUMP to K if Xj is definite (DF Xj K)
JUMP to K if Xj is indefinite (I Xj K)

Definitions:

These instructions jump to address K when the 60~bit word in operand

register Xj meets the condition specified by the i digit.

Test Validity:

030 & 031 - The zero test check the full 60-bit word in Xj. The
words 0---0 and 7---7 are considered as zero. All other
words are non-zero. The test is therefore valid for
both fixed and floating point words.

032 & 033 - The sign tests check only bit 239 (sign) of Xj. A zero
indicates positive; a one indicates negative. The test
is valid for both fixed and floating point quantities.

034 & 035 - The range tests check the upper 12 bits (259 - 248) of
Xj for both plus (3777X----X) and minus 4000X-~--X)

infinity. Since the low order 48-bits are ignored, near

overflow numbers are also considered out of range. The
test is valid for both fixed and floating point numbers.
036 & 037 - The definite/indefinite tests check the upper 12 bits
(259 - 248) of Xj for both plus (1777 X----- X) and minus
(6000 X----X) indefinite forms. The test is valid only
for floating pqint values.
Data Flow:
During the 03X instructions, the operand to be tested is sent to the Xk
feeder register in complement form. There is input to the Xj input
register; it therefore contains all zeros. For sign tests, (32 + 33)
a test of Xk bit 59 will indicate a negative or positive quantity. For
the zero tests (030 + 031) all 60-bits of Xk are checked for all
zeros" or all "ones"., Either condition indicates a "zero' quantity.
During Range or Indefinite tests, the Input Registers are not usea.
Instead, the upper 12 bits of Xk are checked from the operating register
(through Exit control). The Range tests checks bits 48-59 for 3777
or 4000 (positive or negative infinity). The indefinite tests checks
these bits for 1777 or 6000 (positive or negative indefinite). The
presence or absence of control signals resulting from these tests
are where they are sent to the Branch Unit to enable or disable the

03X conditional jump instructions.

7.3.3 MODE BIT

As far as arithmetic processes are concerned, the Long Add unit is capable
of performing only two; addition and subtractiomn. A single mode bit, called
Long Add Plus is used to distinguish between these operations. It is
generated with fm translation = X6 ANDed with Long Add Unit Busy. The

true value of operand Xj is alwéys sent to the Xj feeder register. During
Addition, the Long Add Plus flip/flop is set and enables the true value

of operand Xk to the Xk feeder register. Since the adder is additive in
nature (it forms Xj feeder plus Xk feeder) the sum of Xj and Xk will be
generated. During Subtraction, the Long Add Plus flip/flop is cleared.
Consequently, the complemented value of Xk is sent to the Xk feeder and

the difference, Xj - Xk, is formed.

During the Branch (03X) instructions the Long Add Plus flip/flop is cleared.
Thefore, the complemented value of the the Xk input register is sent to
the Xk feeder, whose outputs are used in making the sign and zero tests.
Range and Indefinite tests are made directly from the operating register

(through Exit Control) j hence the mode bit is not significant.

Figure 7.3-2 is a logic drawing which shows the effect of the Long Add

Plus mode bit on the IR to feeder transfers.

g-€°*L 2an31g

SNTd ddv _ONOT

- 0% ||nwﬁmwux =0~ 0;
_
|
| VO HL N
Lo .
h . —
_
S
g 9
)
3
70~ sz
B[57 TO¥INOD IIXH woi3
d X ,
SHALSIDTY v
Efeleicictt
0)
.
e O ——O) -]
mmnw. R £ 17 TOMINOD LIXH Wox3
fx
4 =i aav_9NOT NI
vd . —
€€1

L071 SYILSIOHY LOINT

7.3-4 TIMING SEQUENGE

A timing chart for the Long Add Unit is showsn in Figure 7.3-3. The
following page explains the pulses shown on the chart. These two pages, in
conjunction with the C.E. Diagrams (i.e. sheet 136) should explain quite
fully the Long Add Sequence. The time has used (t000) is the Scoreboard

issue of the Long Add (36 or 37) or the Branch (03X) instruction.

11

¢-¢*/ @an81g

3011Juo)n I93st89y 3I[NSdY ON - SWEI a1qrssod 3S3TTaBT x

-

-

L
BB

o

004

ooy

P

np—
-

e
L od

00¢

[
m——
-

00¢

IMVHD ONIWIIL - IINN TIV ONOT

001

= =
B)

§3Nsay ITWSUBIL]
¢ *yp 01 s1s9] youeag
« 3oy a9peag 03 ¥I

+ 3oy Iopoag I1e9iD

-89y anduy o3 spueaadg
sousnbag ppy SuoT
asea1ay 3sonbay

ppy SuoT ul

1935189y 3anduy 1BSTD
ppy 3uo 09

3nss] pie0geaodg

12

(239 ‘G793 fG/G31 *d°T f001 3o sordr3a]nw uUI 93BT °q TIIM ITWSUBI] °YJ °SINID0 39TTJUOD I9pPIO PITYI ®B
31) *10a3uod £L13us 123sT89x 03 I9pPpPY 9Y3 JO IINSSI 9YJ ITWSUBII 07 97qissod swil 3IS8TTIBD 9y ST STYL
| (po11sap JT AJuo pasn {pojeasusl

sfem]® 2I®B 989Y]) °C SISSEYD UO JTun Youelq 9Yl 03 JUSS dIB §1§93 YoueBaq woxj SUTITNSSI $ITE [0IJU0NH
(se@inpouw y4) SI9peS9I 0] pPOIIDISUBRI] DIF (se1npou J) sasyst8ea ndug

*spuexasdo jo 3dtedex xoy uorjeiedoad ur psaesld 9a (se1npouw yj3) saapesg

(seTnpow 1) @ STSSeYd uo paaTedal aae (X pue [¥) spueasdp

*3s93 youeag IoJ (/g

‘9OHg wWox3J) ¢ sIsseyo o3 BT8utls Burled UT s3I[nsay °s39s (Z al ‘gz4#8) ureyo Sutwry uf doy3z/dITI paTyg
*pPIBOQDIO0DS mﬂw 031 Juds sT 9selay 3seonbey

(1 41 ‘¢zrg) -sies (ppy maoq.ad ureyo Zutwrl uy doyy/driy puodeg

(GT-£078) 0%3 YITM STDLD IOUTW YOBD pPaIBe[o ST 39357891 3Indur g sISseyy

‘ureyd SuTWIl 9Y3 s3IALIS pue 3I9s ST (TO0HR) do13/dITJ ppy SuoT on ayj

UOTIONIISUT YXEQ IO ‘/¢ ‘9¢ JO 9NSST PIBOQSIODG - SOUSIDIDI SWIT

VAR

06e?

GT€E3

01¢€?

00¢3

G8Z3

06¢3

00¢3

0603

G113

0003

13

7.3.5

ADDER

The Long Add Unit Adder forms the 60-bit integer sum (Xj + Xk) or difference
(Xj - Xk) of the two source operands. To perform addition, both operands
are sent to ﬁhe feeders in true form. During subtraction, Xj is sent in
true form and Xk is complemented. The decision to load the true or false
value of Xk is made by the LongAAdd Plus flip/flop which is set only for

the 36 instruction (See Section 7.3.3, Mode Bit).

As a preliminary to the explanation of the adder logic, the terminology

used must be defined.

The Long Add Unit adder is said to be subtractive in nature, The distinction
between additive and subtractive adders is made by lodking at the result
generated when adding complemented numbers., An additive adder will generate
negative zero (all ones) when adding complemented numbers. In other words,

it forms the quantity, A + B (A and B being the source operands).

Additive 542---673
Adder 235-~-104
777~--777

A subtractive adder will generate positive zero when adding complemented

values. 1In other words, it forms A - (-B) or , A + B by the rules of algebra.

Subtractive 542---673 = 542---673
Adder +235--~105 = =542---673
000---000

The Long Add adder generates positive zero when adding complemented quantities,
although it is not accomplished by the "pencil and paper' method shown above.

It is therefore a subtractive adder by definition.

14

In the discussion of the adder logic reference is made to the terms; Borrow,
Satisfy, Enable, and Pass. These are defined using the subtractive approach,
A - (-B), as the criterion. Normally, when adding by complementing and
subtracting the possible bit configurations are defined as in Figure 7.3-4A,

In the case of the Long Add adder, the operands are contained in the feeders

EBSE EBSE
A=0011 A=0011
B=0101 B=1010

(4) (B)

Figure 7.3-4

in true value, and the stages are labeled as in Figure 7.3-4B. Essentially,
we are saying IF operand B was complemented, two ones (in true value) is a
Satisfy, two zeros a Borrow, and any zero-one combination an Enable. A

Pass has the same meaning as Not Satisfy.

The adder is divided into five 12-bit sections as follows:

59 48 147 36(35 24123 12111 0
Section 4 3 2 ' 1 0

Each section is further divided into four 3-bit groups as follows:

i1 ols 6ls 3]2 o]
Group 3 2 1 0

Since all sections and groups are logically similar, only one section (section

0) will be analyzed. Figure 7.3-5 is a logic diagram of section 0 and

should be referenced in following this discussion.

15

HNHOM L3N
1Ndino
8 HO OL

34j el O 4dNnOH9

3d[se1 1 dnous |
34] 951 z dnous|
R € dnous]|

HHOML3IN 17nS3Y
aagv 9NO01

43151934 1NdN!
8 SISSYH) 3lv9 Ol

SSvd 0 2350 B
ssvd v 085238 0| 1]
El

) S5vd 0 93§

$Svd 1 238 iu ssvd | 938

I

|
SSvd 2 935 O V4 Bl 155vd 2 D38

I

q !

ssvd € ¢ 2 SI3SO |
SSvd € 03§ “mm«n € 038

—
nmvlo.‘a

— ci—
1 O
| 2
|
|

) SSvd 2 23S “
i

PR ——
S5Vd #- € 'SI35

——ee e
o]
n
-

aav 9NOT NI

J
tha g2
tha ge
a2

‘93y

LNdN|

8 'H)

WOHd
frfm
S04 52

(.

tho e |

$1IN2dID> MOYHOE ONV SSvd

!
// |
~< i
~ ~
Sl T~ i
RS |
-
~o - /“l/
A N ~
' T~ >~
I ! S~
| | ~<
~
| |
! '
! [
! 1
| I
! &
! B
|
| Ll
! 3 jeqQssVd 1 9
| 8 e 0s5svd 2 do
| v ssvd€d9 .~
1 4 -
| g -
| b} v -7
I £IA .~
H MOHYOE
L 0 'd9 0 dnows
L 5 8 ol v4] 824 | dnous |
MOuNO
8 kot vid|62H 2 dnous|
dl v . va|ogH £ dnous
3 4 Monu0s 43151938
y v 430334
o1 agv 9NO
3 MoNHOE
S] € d9

FA Modules

To the left of the diagram feeder registers for group O (Section 0) are
shown. One FA module is required for each group; hence a total of 20 such
modules are used. Each FA module checks for a group pass (pins 8,’13, and
15) and a group borrow (pin 17). These signals are sent to the Pass and
Borrow summation circuits (FB, FC, and FD modules). Pins 6, 1 and 28 of

the FA modules, when a logical 1, indicate a Enable (Equivalence) condition
in the respective bit positions. Pins 2 and 5 indicate the Borrow state

of bits 2! and 20 respectively. Pin 27 checks for the EEEEEE§ (Pass) state

of bit 29,

FB and FD Modules

The Pass and Borrow circuits are used to summarize the pass and borrow
conditions determined by the FA modules. Test Point 1 on the FB modules,

for instance, checks for borrows generated in each of groups 0, 1, 2 and

3; checks for satisfies (?EEEEE) in the groups and will ultimately determine
whether a borrow can be satisfied in this section, or whether it must be
propagated to the other sections (from pin 7 o£ the FB to pin 21 of the FD).
The FD module then compares the section borrows to the section passes
(Satifies) and group passes. For example, pin 24 of 140 says (translated for

a "zero'):

(groups 0, 1 and 2 of Section 0 contained no satisfies (term k))

AND
((Section 4 generated a borrow) OR (Section 3 generated a borrow and
Section 4 could not satisfy) OR (Section 2 generated a borrow and Sections

3 and 4 contained no satisfies) OR (Section 1 generated a borrow and ’

Section O generated a borrow and Sections 1, 2, 3 and 4 contained no satisfies))

17

To the right of the FB modules drawing borrows and passes for group 0, 1
2, and 3 are combined to determine finally, which groups have borrow inputs
and which do not. At this point, all possibilities for borrow inputs to

any one group have been checked. It is now necessary to determine which

stages within each group have borrow inputs and how this will affect the

final result of each stage. This is the function of the FE modules. J
FE Modules

Each FE module summarizes the borrow and enable (equivalence) conditions for

one group. (i.e, three stages). Thus, 20 FE modules are used.

Earlier, and Enable was defined as a 0, 1 or 1, O combination. With either
of these bit configurations, a '"one! should result (as the answer) if mno
borrow enters that stage, and a zero if a borrow does enter the stage:
In Boolean -

(Enable) (Borrow) to 1

(Enable) (Borrow) to O

Conversely, if an Enable is not present, equivalence (1, 1 or 0, 0) must
exist in that stage. With no borrow the result should be '"zero'; with a
borrow the result should be "one". 1In Boolean -

(Enable)(Borrow) to 1

(Enable) (Borrow) to O

By analyzing the FE module of Figure 7.3-5 the above statements are confirmed.
Figure 7.3-6 summarizes the possible combinations and the result obtained

for any one stage, as determined by the FE modules.

18

Condition Result
(Enable) (Borrow) =——» 1
(Enable) (Borrow) =i==> 1
(Enable)(Borrow) ==%=%> 0
(Enable)(Borrow) = 0

Figure 7.3-6

19

7.3.6 BRANCH TESTS

The Branch tests are used to condition the 03X series of jump intructions.

Four tests (Zero, Sign, Range, and Indefinite) are used as follows:

Opcode Name Test

030 Jump to K i£'Xj =20 zero

031 Jump to K if Xj # O Zero

032 Jump to K if Xj =0 sign

033 Jump to K if Xj< O sign

034 Jump to K if Xj is in Range range

035 Jump to K if Xj is out of Range range

036> Jump to K if Xj is definite indefinite
037 Jump to K if Xj is indefinite indefinite

Zefo Test

The zero test circuitry tests all 60-bits of the Xk input register (the

content of the X register specifed by the j portion of the instruction)

for all zeros (positive zero) or all ones (negative zero). Any other bit

configuration is considered a non-zero quantity.

During the discussion of the Zero Test Logic, refer to Figure 7.3-7.

Recall

that during 03X instructions, the Long Add Plus flip/flop (I19) is cleared

and the complement of the Xk input register is sent to the Xk feeder.

Xj input register receives no input;

all zeros.

The

consequently the Xj feeder contains

20

For the positive zero test, a check for non equivalence between each bit of
Xj and Xk is made. (i.e., FA module, pin 28) The non-equivalent conditions
for all bit positions are ANDed (with sign = 0 or positive) on FE ﬁodules
(i.e.,‘J39)n If any bit position is equivalent, the resulting '"zero! out of
the FE module will enable the transmitter on HO06 (pin 22) to send an Xj # O
signal to the Branch unit. Conversely, if all bit positions are non-
equivalent, the transmitter is disabled; the absence of the Xj # 0 signal

implies Xj = 0.

The Negative Zero test works in a similar manner. A check is made for all
bit positions being equivalent. Any position resulting in non-equivalence
will enable the Xj # O signal to be transmitted., The absence of the Xj # 0

signal will indicate to the branch unit that Xj = 0.

. Sign Test

The sign test is a simple matter of checking bit positioﬁ 299 of the Xj
register (on I19, test point 1). If set (indicating negative), a transmitter
on H06 sends a signal to the Bfanch unit indicating the Xj< 0 céndition.

A positive sign (299 cleared) disables the transmitter. The absence of the

Xj < 0 signal implies Xj=0. (See Figure 7.3-7)

Range Test

The range test checks bits 48-59 of Xj for negative or positive infinity
(4000 or 3777). Since the lower 48 bits are ignored near overflow numbers

are also considered out of range if the upper 12 bits equal 3777 or 4000.

21

or [y

{1531 0H3Z)
- -

L-¢*/ @an814

8 SISSVHD 1

| ag? 9g? 9g2 9g2 14 3¢ 9¢e
| | i t t t t t
i L% 9x sx .| ex EX 2x Ix

‘M3LS1934 Y¥3IQ334 IHL 0L 034v9 St Ax 40 anva 551v4 3HL aNv !

(dvaTd s i1 snd oav ONOT 3JHL) 300W 1OVHL8NS NI G33¥7d SI LINN Qav 9NOT 3IHL §
“NOILDNHLSNI HONVNE 3HL 40 NOILHOd — 3JHL A8 Q314123dS t
43151934 X 3HL 40 SLN3ILNOD 3IH1 53A13334 HILSI93H LINONI xx 3HL t
"Q3Yy3T) SNIVWIY ONY AMINT OH3Z ¥V S3A13238 H3IL1SI93Y LNdNI _x 3HL t

310N f

662 66¢ 65¢ 652 652 652 652

(4L SISSYHD NO Q31vJi01 S€~0 SLIB) SH3ILSI9IY X

J0H1INOD 1IX3

H31S193¥ H¥30334
aqav 9N0T

SNOILIONHASNT HONVNE

61T snid
agy 9NOd

Ax :ovi
avay 09
wos n<fn
QHVOBIHODS IHL NI
310N

021

NI-NV4 eEr P
18 09 -

1-1)

6 S

=

D 62|

Figure 7.3-8 shows the logic of the range/indefinite tests. The chassis
8 input registers and Long Add feeders are not used during these tests. Instead,

the checks are made directly from the X registers via register Exit Control.

Two KS modules are utilized in making the negative and positive range tests.

K19 determines the state of bits 48-53. A 'Vone'' out of pin 20 indicates:

1. bits 48-53 are all "ones" and the sign is positive, (0XX XXX 111 111,)
OR

2. bits 48-53 are all "zeros" and the sign is negative (1XX XXX 000 0002)

The check is made by comparing each bit position with the sign (bit 59) of
the register (terms E and F). K19, pin 20 then feeds pin 12 of K20, the
second KS module, along with bits 54, 55, and 56. At test point 4, all the

bit states are combined and the output of pin 20 indicates:

1. bits 48~57 are all '"ones'" and the sign is positive (0X1 111 111 1112)
OR

2. bits 48-57 are all "zeros" and the sign is negative (1X0 000 000 000;)

The output of K20, pin 20, is returned to K19,.pin 19. At this point the
circuit looks at bits 58 and 59 in combination to determine the existence of
fl7778 (indefinite) or f37778 (out of range) or neither. The translation for
K19, pin 14 ((58)(59) v (58)(59)) is ANDed with pin 19 and both pins equaling
a one imply an out of range condition (3777 or 4000). This is indicated

by a 'one' on pin 13 which enables setting test point 2 on F17 via D20 and
Gl7. On the following t50, the "Xj out of range" signal is ftransmitted to the

Branch unit from HO6.

23

g-¢*/ ©an81g

v
r ~Q 8t @
1 [l By e 8y e ave -1 143 ave av 2 [T
I..z 58
% oo
\\ 4

Q
<
-]

8 SISSVHD

-~

o
0
o
—=TO
-5
~
>
w0
x
n
x
<
x
o
x
™~
x

IX ox

LI 1 XXX XXX}
—

65¢ 6s? 65 ¢ 65¢ 65¢ 65 11

A\ﬂw arrem ;w_

{slig 21 H3ddn) SHILSIOZH X

-3

AN
O

2E8 ovi Gv3d

- T 09

I
|
1
I
|
1
|
|
1
T
3

- TOHINOD 1IX3

104 Ay iavi

av3iy 09

4wzo_._.uzm._.mZHqu<xm IOu xN: l.ul M_:

aHv0B3¥0IS 3HL NI
t 310N

3L1INI

~ 430NT _x

agv 9NGY 09

Indefinite Test

This test utilizes the same circuitry as the range test (Figure 7.3-8)

except that the K19, pin 19 transiation (0X1 111 111 1119 or 1XO 000 000 000j3)
is ANDed with K19, pin 21. When equal to a "1" this pin indicates (58)(59)

or (58)(59). If both pins 19 and 21 equal "l's", pin 15 will be a zero
indicating an indefinite condition (1777 or 6000). This output enables
setting test point 4 on F17 via M19 and G17, which in turn enables the HO6

transmitter to send the "Xj indefinite! singla to the Branch unit.

Synchronization of the Branch test results from the Long Add Unit with thé
sequence of the Branch Unit is accomplished by extending the Long Add

timing sequence (Figure 7.3-9). A transmitter on HO6 is conditioned

by the "In Long Add" flip/flop and sends a signal (called "Long Add Sequence
A,to Ch. 5") to the Branch Unit. This results in a signa called "Auxilliary
Functional Unit Release' which enables the branch sequence to coﬁtinue after

making the In Stack/Out Stack tests. (Refer to Branch Unit, Section 7.8)

25

26

6-€° L °In3T4

. e £ Houyd 66
‘\MMLHH ONI o1 anesr oonc
Asva1dd .nulnLvnn.x.Af‘ - P §] L _
IINA 0t €1 11 6 m v c | 1
T¥NOILONNA lr///Av Jx//// 4 _
AMVITIXAV 0T} 1-ONI ozl "1ds |
“¥d
zH_ Hm_ |
GzH 8071 021 A7) t
i
|
|

o

e Ot A O - 4t - 4O O
IIA - ﬁ — L . — e 1 }
G SISSVHD |/t 8T .J 11 71 7¢ 0 B 9 71

0L AD:dANL3IS
aqav 9Ro1

or_| hL 2y | aa |
9QHS8 8¢d8 . Gcdsy €708 aayv SNOT NI

SECTION 7.7

INCREMENT

Functional Units

~ INCREMENT FUNCTIONAL UNITS

7.7.1 INTRODUCTION

The Increment Functional Units are 18-bit, fixed point arithmetic units

‘which perform these general functions.

1. Indexing
2. Reading and Storing Operénds

3. Conditional Branch Tests

One's complement addition and subtraction of 18-bit operands is performed
in accomplishing the Indexing, Read Operand, and Store Operand functions.
Operands may be selected from A registers, B registers, X registers (the

truncated, lower 18 bits), or the K portion of a 30 bit instruction.

The following instructions are classified as indexing instructions: (They

are discussed in detail in section 7.7.2)

5X0 (where X = 0-7) The result of the arithmetic process specified

by octal "X!" is stored in A register zero (AQ).

6X Instructions (where X = 0-7) The result of the arithmetic process

specified by octal "X" is stored in any one of B registers 1-7. (BO is
a constant all-zero word; if specified as a result register, the result

is lost).

7X Instructions (where X = 0-7) The result of the arithmetic process

specified by octal "X" is stored in any one of X registers 0-7. Since
an 18-bit result is stored in a 60-bit register, the sign of the result

(bit 217) is extended to the upper 42 bits of the X register.

02 Instruction The result of the arithmetic process (in this case,

Bi + K) specifies a jump address. The 02 (unconditional jump) is always
_out of the stack. Therefore the result is sent to the P register and an

RNI is initiated.

The following instructions may incorporate the indexing function in their
operations, but the end result of executing these opcodes is to read or store
an operand. They are therefore classified separately as Read and Store

operand instructions.

5le- 5X5 (where X = 0-7) The result of the arithmetic process
specified by octal, "X", is stored in the;A register specified by the

i digit (1-5). The result is also sent to memory as an operand.address.
A memory read cycle is made and a 60-bit word is read from memory into

the X register specified by the i digit' (X1 - X5).

5X6 - 5X7 (where X = 0-7) The résult of the arithmetic process

specified by octal '"X" is stored in.the’A reglister specified by the i
digit (6 or 7). The resilt is also sent to memoery as a store address

for an operand. A memoxy w;ite cycle is iﬁitiated and a 60-bit word from
the X register specified by the i(octal is stored in the memofy>location

specified by the result.

The following instructions are classified as Conditional Branch Test
instructions. ’These ppcodes cause both Branch and Increment functional
units to start at the éame. While Branch performs the In Stack/Out Stack
tests (see Section 7.8) the Increment unit selected compares two 18-bit
operands. The results of the tests are returned to the Branch unit where

they are used in determining whether or not the branch condition specified

was met. These instructions also are discussed in greater detail in

Section 7.7.2.

The 04-07 instructions will jump to location K if the specified condition

is met.
04 - Bi = Bj
05 - Bi # Bj
06 - Bi Bj
07 - Bi Bj

Logically there are two Increment functional units. Although they share

a common arithmetic section, their control portions are separate - but
interlocked in special circumstances. (see Figure 7.3-1). Because of the
duplexed control circuits, two increment instructions in sequence normally
will not cause a functional unit conflict. (A special case does exist where

a unit conflict will occur. This is explained in later paragraphs).

FEEDERS RESULT
: : I
™ INCREMENT I CONTROL If,
p———t
\ R
T P\\\\\ :
INTERLOCKS
2 OPERANDS ADDER

I
/4 N
C
R

~w' INGREMENT IT CONTROL
II

Figure 7.7-1

7.7.2 INSTRUCTION LIST/DATA FLOW

The instruction set for the increment units includes 29 opcodes classified

in four groups:

a) 50 - 57 - Result register is Ai

b) 60 - 67 Result register is Bi

c) 70 -~ 77 - Result register is Xi

d) 02, 04-07 Branch instructions

The 5X, 6X, and 7X use the same source operands for corresponding values
of the octal digit, X, but the instruction groups differ in two respects;

1) the result register specified and 2) the 5X series causes operand read

(if i = 1-5) and write (if i = 6 + 7) memory cycles.

5X Instructions:

50 SUM of Aj and K to Ai (30 bits)
51 SUM of Bj and K to Ai (30 bits)
52 SUM of Xj and K ta Ai (30 bits)
53 SWM of Xj and Bk to Ai (15 bits)
54 SUM of Aj and Bk to Ai (15 bits)
55 DIFFERENCE of Aj and Bk to Ai‘ (15 bits)
56 SUM of Bj and Bk to Ai (15 bits)
57 DIFFERENGE of Bj and Bk and Ai (15 bits)

These instructions perform one's complement addition and subtraction of

18-bit operands and store an 18-bit result in the address (A) register
designated by the i octal. Note that the j operand may be selected from

any one of the X, B, or A registers. The second operand may be any one of

the B registers or the 18-bit constant, K. o

Depending on the value of octal i, an operand read or write cycle may be

initiated by the 5X instructions.

If i = 0, no memory reference is made. The result is simply sent to A

register zero (AQ).

If i = 1, 2, 3, 4, or 5, an operand read memory cyclé is initiated. This

will cause a 60-bit word to be read from the memary location specified
by the result of the operation, into the X register specified by octal
i (1-5). Thus, two result registers are used, Ai and Xi, by the 5 X 1 -

5 X 5 opcodes.

If i = 6 or 7, an operand write memory cycle is initiated. This will

cause a 60 bit operand from the X register specified by octal i (6 or 7)
to be stored in the memory location specified by the result of the operation.
Thus, the result register is Ai, and Xi is, in a sense, a source register

for memory, for the 5 X 6 and 5 X 7 opcodes.
Data Flow (Refer to Figure 7.7-2)

Upon issuing the increment instruction to the scoreboard, the 18-bit constant
K is gated from the R register to the Result register (I or II) of the
selected increment unit by the K to Incr. I or II gate. After resolving

any second order conflicts which may have occurred, the selected Increment
unit is sent a "GO" signal which starts its timing sequence. The operands
(determined by the m octal of fm) are sent from register Exist control to

the Input registers (feeders) of the 18 bit adder. If fm = 50, 51, or 52

the 18 bit constant K is sent to the feeder for operand two by the Enter

K, Incr T or II gate. If K is not used (fm # 50, 51, or 52) Bk is used

¢-L"L ounBIg

II ¥ONI ‘IIRWX

T YONT Y 9aiNE P

adgos

SYHLSIDIY
ONIIVYEHEdO
0L

ados

d 03 YONI

I ¥ONI ‘IIWX

II ¥MONT ‘M mmazm“

I IT ¥ONI O A 0
Il } |
1 |
n l|w.l| il
S _
T M.A qNSST :
q L A /1

0

MR NnDAH H

IT ¥ONI OJ I7T10SH
I ¥ONI O&L 11INnsdy

"N°d HONVIL gy
oL

agns

ados

LEHW *ANODu

TOYLNOD II INHWAYONI

L

II " TTaOTg

L-

I 1Ty 09y

/

TOYINOD I INHWH¥ONT

WVIOVIQ MD0Td = SIINA TYNOILONNA INTRTIONT

ll.l
fegp——
et it}
a1
[x
poagt)— _..m
[y
uI
S20TI93UT
I 90
09

as the second operand. If fm = 55 or 57, Bk is complemented into the feeder

register and a difference is subsequently formed.

The arithmetic result is unconditionally sent to either the Result II or
Result T register, (depending upon which Unit was selected). When the
"transmit" signal is received from the scoreboard, the result is sent to

the designated (by the i octal) A register. If i =1 through 7, the result
is also sent to the MOregister of the Stunt Box and priority is requested

by setting the Enter Central flip-flop. If i was equal to 1-5, a memory read
cycle is initiated and a 60-bit result will be sent from memory to the X
register designated by the i octal. If X was equal to 6 or 7, a write memory
cycle is initiated and a 60-bit operand from X6 or X7 is stored in Central

Memory.

6X Instructions

60 SWM of Aj and K to Bi (30 bits)
61 SUM of Bj and K to Bi (30 bits)
62 SUM of Xj and K to Bi (30 bits)
63 SUM of Xj and Bk to Bi (i5 bits)
64 SUM of Aj and Bk to Bi (15 bits)
65 DIFFERENCE of Aj and Bk to Bi (15 bits)
66 SWM of Bj and Bk to Bi (15 bits)

67 DIFFERENCE of Bj and Bk to Bi (15 bits)

These instructions perform one's complement addition and subtraction of
18-bit operands and store an 18 bit result in the B register designated
by the i octal. The j operand may be selected from any one of the X,

B, or A registers. The second operand may be any one of the B registers

or the 18 bit constant, K.
Data Flow (Refer to Figure 7.7-2)

With the exceptions of initiating operand read or store memory cycles, and
storing the result in a flow for 6X instructions is the same as the 5X
series. Once again, the operand combinations are selected by the m portion
of fm and the result is gated to the selected B register by the "transmit"

signal.

7X Instructions

70 SM of Aj and K to Xi (30 bits)
71 SUM of Bj and K to Xi (30 bits)
72 SWM of Xj and K to Xi (30 bits)
73 SUM of Xj and Bk to Xi (15 bits)
74 SWM of Aj and Bk to Xi (15 bits)
75 DIFFERENCE of Aj and Bk to Xi (15 bits)
76 SWM of Bj and Bk to Xi (15 bits)
77 DIFFERENCE of Bj and Bk to Xi (15 bits)

These instructions perform one's complement addition and subtraction of

18-bit operands ahd store the 18-bit result with sign (2!7) extended, in
the X register designated by the i octal. The j operand may be selected
from any one of the X, B, or A registers. The second operand may be any

one of the B registers or the 18-bit constant, K.

.......

Data Flow (Refer to Figure 7.7-2)

With the exception of the result register selected (X instead of B), data
flow is the same as the 6X instructioms. Operand combinations are selected
by the m octal of fm and the result is gated to the selected X register by
the "transmit" signal. The sign of the result (bit 217) is extended to

bits 18-60 of the X register by using a fan-out.

02, 04-07 Branch instructions

02 GO TO K + Bi (30 bits)

This instruction adds the contents of B register i to K and branches to
the location specified by the sum. Addition is performed in modulus 218.1,

The branch address is K when Bi = BO.
Data Flow (Refer to Figure 7.7-2)

The operand from Bj* and 18-bit constant K are placed in the feeder registers.
Bj is sent from Exit Control and K from the Result I or Il registers with

the "Enter K" gate., The operands are added and the "Incr to P" gate is enabled,
sending the sum to the P register. The resu1£ is also sent to Result I

or IT register (unconditionally), but since a "transmit" is not received from
the scoreboard, the result is not sent to the operating register. The

result is also sent to MO and from there will be sent to Ml, when stunt box

priority is granted, to initiate the RNI.

*Recall that on 0X instructionms, U} and j are sent to U2j and k respectively.

Bj is thus designated by Bi of the original opcode and Bk by Bj.

04-07 Branch Instructions

04 GO TO K if Bi = Bj (30 bits)
05 GO TO K if Bi # Bj (30 bits)
06 GO TO K if Bi = Bj (30 bits)
07 GO TO K if Bi < Bj (30 bits)

These instruction test an 18-bit word in register Bi against an 18-bit
word in register Bj (both words signed quantities) for the condition

specified and branch to address K on a successful test.
Data Flow (Refer to Figure 7.7-2)

Operands Bj* and Bk* are sent to the Increment Unit feeder registers.

For the conditional tests of equality (04 and 05) a bit by bit equivalence
check is mode in the result network of the adder. 1If all bits positions
are equivalent, the 04 jump may be enabled. If any bit position is not
equivalent, the 05 jump may be enabled. For the conditional test of
magnitude (06 and 07), the sign bit of the one's complement difference

(Bi - Bj) is examined.

oJa
75

1f it is zero, Bi = Bj; if a one, Bi< Bj.* 1In all four cases, the

result of the tests are combined with the opcode translation to generate

the "Condition Met" signal (the absense of "Condition Met" implies "Condition
Not Met") which is sent to the Branch functional unit to enable the branch

sequence to continue.

2

#Recall that on 0X instructions, uli and j are sent to U”j and k respectively.
Bj is thus designated by Bi of the original opcode and Bk by Bj.

* B
%*Incertain cases, overflow will yield an incorrect result. For example, when

Bi=300000 and Bj=577777, the result, 500000, carries a sign bit of 1, indicating

Bi < Bj when, in fact, Bi > Bj.

(LXS= TXG) S93TIM PuB peOY JuswLIDUT 03 ATuo 91qesT11ddys

€-L°/ @an31g

*S3IDTTJUOD I9pPI0 PATYI OuU - dWI] 97qTssod ISSTTIBTxy

|

T
——

00613

00%3

oowu 00c¢3

TONHNOES ONIWII INHWIMONI

001

003

(s¥0) ITNSI¥ LIRSNVEL
I ¥ONI Ol 11InSHy

ol O ¥ONI

€ dl ‘/€d *INID WHINI
¢ 4l ‘/gd *¥Av *¥ONI

T 41 ‘ze¥ °*DES "9ONI
¥4I IV SANVYEJO

YT AVATD

I ¥ONI ‘M ¥HINI

8€H ‘USVATAY LSINDIY
% 4% ‘1€9 *0IS "¥ONI
T 41 ‘1€9 *0HS "YONI
€dL ‘0€d

GdlL ‘€EW

I °¥ONI O ¥

ASNE IINN “¥ONI
ANSST

11

[N 03T S521ppe 123u3 03 £37101d 3sonboy *dofy/dT1q *apy -I9uT BUFIISS I OMP 39§ iEal /64 TVHINED WEINE
oW 03 ITNSax JueWOIIUT 2388 03 pas;] °pelInooxs sT opoddo (2ITIM IO PBOY WD) [XG-IXG ® T 39§ :Z 41 ‘/€d "¥AV YONI
*3aomlau unmu:o.
JoppE 943 wWoIJ s1TnNsa1 9388 03 posp) ureyo BuTwil JUSWRIDUT IYI IO do13/dT13 PaTyl 9yl :1 4l ‘g€ '0IS YONI
‘saInpow y[r 8yl U0 [0I3jU0) ITXY I193sT8oy woxJ poAaTadel a1k spueasdg :YI IV SANVIIJO
‘spueasdo Suipeol a03j uoiljeaedsad ur sielstBox ndur 8Y3 sABATD YL YVIATD
‘20 + (ZX + TX + OX) (XL + X9 + XG) = WF :SISTX®
UOTITPUOD SUTMOTTOF 943 JT T Jl ‘T€Y SUTMOTIOJ GZ SWII Y3 U0 # g ‘T¢d Sur3iies £q peyqeug :I YONI ‘M YHINE
*3STX®
LBW YOoTYM SIDTTJUOD IBPIO0 PATYI AUB SATOSSI OF HIOMIdU JABBT) TV S1PIBOGDIODS 3Y3I 0 JUSG PSVATHY 1SaAnOIy
| ‘uteyd Surwil Jusweadul syl o doiy/dil wzoumw a4y % dL ‘1ed ‘-DIS "¥WONI
‘oseeTey 3sonboy 9TqEUS 03 pOs) (%°/*/ UOTIVBS 995) (SSAYOON NI HIT¥M ¥O Avd¥ ON)
pU® (INEWAWONI 09) YITM 38§ ST 3T °UTeyd BuTwy3 Jusweaduy oYy3 jo doTy/di1y 3saTy 94l 1 41 ‘1€ "DAS “¥ONI
*(z a1 ‘Lga) do13/dI13 SSIPPY
Juswe xdUT oYl 39S 03 posnh oq TIT# 1T °peInooxs sT 9poddo (S3TIM I0 peeY WD) (XS - IXG ® JT ¥ g dl ‘ocd
(t/*/ uOT1D9s 99g) oWII BWES 2yl e 9oB[d 93EI 0] suotjeaado
Liowsw om] ®TQESIP ©3 Posn 9q TITM IT °poindsxe ST 2poddo (93TaM I0 peBdY ‘W'D) [XS - TXG ® IT 3I®8s G dlL ‘CER
‘(11 10 T) I93sTBey 3I[NSOY 3JUBWRIOUT SY3J 03 Juds ST 193sT8ex ¥y oyl Jo 3Julaquod YL I ¥YONI 03 M
| *00%3 3T
pa@310979sa1 oq Arw JTum STYL °I9SU (QGE £1e1ewtx0adde 103 39s sT doy3j/di13 Asnq 3Tun 9YL :XSNE IINN "¥ONI

*31BYD °Y3] JOJ 9OUIIJIDI dwWI] 9Y3 SEB PIasn ST UOTIONIISUT JUSWSIIUT 3Y3F 3O onssI pPIBOQaIOOS Y :HNSSI

12

*($3931TWSUBI]) SOTNPOW ¥ UC GZ3I Y3ITm si93sT3ea 3Insai 03 pajjTusueil sT ITNS9Y :IINSHI IIWSNVIL
(I1 20 1) I93sT821 3ITNSeI JudWEIDUT OIUT Iom3idu Indino isppe selen T *YONI OL ITNSHY
(SuoT3onI3ISUT /XG - TXG Sutanp) gl ©3 3TNS21 JUSMWSIDUT SPUBS YITYM 9388 Byl :gH OL INHWIIONI

(suoT3onijsur /XSG - T1XS Suranp £7uo) " oW WOy

13

7.7.4 ADDER CONTROL

General Information

When all Read flags are set, the "Go Increment" signal starts the control

sequence of the Increment Unit selected. The adder is common to both Increment

units, but as has been mentioned, the control sequences are separate for each

unit.

The control sequence is a timing chain which accomplishes the following

(Refer to section 7.7.3 for specific timing information).

Transmits Request Release to scoreboard.

Clears adder feeder registers (IRs)

The "Go Increment" is ANDed with an fm translation and in the case

of a (5% + 6X + 7X)(X0 + X1 + X2) ar 02 instruction, gates K to the
input register. (K, the lower 18 bits of U? are unconditionally sent
to the R register on every issue. If an Increment Unit is selected,
R is gated to Increment Register I or II).

The "Go Increment" is ANDed with another fm translation and for

(5% + 6X + 7X)+ (X5 + X7) or 04 -~ 07 instructions (difference or branch
tests), Bk or K is complemented out of the Input Register into the
adder.

"Go Increment' clears all Read flags.

Gates the result from the adder into the Increment 1 or Il register.
(Figure 7.7-4 summarizes the sources of operands and destinations of

results).

14

INSTRUCTION RESULT DESTINATION

02 K + Bi M0 and P registers
04 - 07 Condition Met or Not Met Branch Unit
5%, 1 = 1-7 (A+B+X)j plus (Bk + K) MO and Ai Registers
5%, 1 =0 (A+B+X)j plus (Bk + K) Ai register
6X (A+B+X)j plus (Bk + K) Bi register
7X (A+BHX) élus (Bk + K) Xi register

Figure 7.7-4

The results to MO and P registers are transmitted from the result network of
the adder. The results to the operating registers are first sent to the Incre-

ment I or II registers from the result network.

Increment First Order Conflicts (Special Cases): (5X)(i = 1-3)

When an increment instruction (5X)(i = 1-5) is issued to the scoreboard a
reservation is made for the X and A register involved. A is reserved with an
Increment Unit code (0l or 02) and X with a Memory to X code (11 - 15). Thus
before the scoreboard issue is enabled, both X and A registers must to free.
On Modules E26 and E27, both Ai and Xi reservations will be checked (term T),

and the scoreboard issue occurs only if both reservations are cleared.

The Ai and Xi reservations are cleared by separate gates, Ai is cleared upon
"Releagse'" of the Increment unit (Request Release and All Clear). Xi is
cleared only when the address sent to memory is accepted. Logically, the hopper

tag is translated (11 ~ 15) and is ANDed with the Accept for that tag.

15

(56)(1 =6 +7)

In the caée of a 5X instruction where i = 6 or 7, the A register (6 or 7) is

the result register of the Increment unit, while X6 or X7 may'be considered
”sourcé registeré” for memory. When considered in this light, it seems that

the A register should be reserved, but thé X register need not be reserved

(it is not a result register). -As far as the XBA reservation list is concerned,
the A register is reserved (code = 0l or 02), but the X register is not.

If the store operation was delayed (by second order conflicts or memory priority)
and if no other circuitry was involved in handling operand store instructions,

it would be possible for a subsequent instruction to specify X6 or X7 as a

result register and to chanée X6 or X7 before storing the previous content

in memory. Hence, the wrong operand would be stored. Study the following

example:
| Read |‘ Execute Store |
5X6XX l i | - ———ffF-———- -lv\
Address Stunt Box X6 to Memory
to MO Priority
Conflict or
Bank Conflict
| Read Execute Store J
IX6 = X1 + X2 | i | e
Result
.to X6

The result of the Long Add instruction is stored instead of the previous content

of X6.

16

To eliminate this problem, two flip/flops are used (refer to Figure 7.7-5).

TP 6 on L0l is cleared (via pin 15) whenever an Increment Write is issued

with bit 29 of the i octal equal to zero. This implies a 5X6 instruction.

LOl pin 17 feeds the result register reservation logic and whenever a result
register, X6 or A6 is desired, a first order conflict results. TP 6 on LOZ
serves the same function for an Increment write of X7 (5X7 instruction).

Thus, a 'pseudo-reservation" of X7 or X6 takes place during Increment Write
operations. The reservations are cleared by ANDing an "Accept!" with translations
of the lower three bits of the hopper tag (X6 or X7). (The upper octal need

not be translated since, with the exception of exchange jump hopper tags, no

other tags use a second octal of 6 or 7. Hence a tag of 56 or 57 is implied).

The implications of‘thisyspecial case are as follows: 1) The "pseudo
reservations" made on modules LOl and LO2 will cause a first order conflict
with any instruction requiring X6 or X7 (respectively) as a result register,

A requirement of A6 or A7 as a result register will cause a first order conflict
in the normal fashion - by translating A6 and A7 reservations in the XBA
designator list for 'mot equal to zero'. Of course, both of these cases will
stop issue until the reservations are cleared; 2) Second order conflicts

will occur only if A6 or A7 is required as a source register by a subsequent '
instruction. Since the X6 and X7 reservations are not made in the XBA reserva-
tion list by 5X6 and 5X7 instruction, second order conflicts with subsequent
instructions wishing to read X6 or X7 will not occur as a result of Memory
Write reservétions. (Other instructions may have reserved X6 or X7 and

therefore cause a conflict).

17

SPECIAL CASE: (5X6 or 5X7)

M10 LO1
L_:EL L_1n
fes T Zéés | ' E26
3 ‘ HH
(Accept) p X6 — —O—= -
Tag = 11X - elec
e) ' . r Xi or Ai
15 17 112
L= d)———-&)——é.—i = f
’
G26 7/
: /
l HJ P 20

Incr. Write
e
O T
I
i=2 |
|
|

L—el =
M10 > No Reg.
l_iz__ v —— - Conflict
/
| ‘
t = XX1 , L02
(] |
(Accept) 5 I
(Tag = 11X) Z@l |
JL E27

{%_—-A | T2 [

G26

| 1

|
Incr. Write 15 1L 17 L 12 a R .
I) 13l ,/ﬁ =0 a |

. Select
Xi or Ai

Figure 7.7-5

18

Mixed Memory Modes

Another situation will cause a third type of "unique! first order conflict.
This is the case in which an Increment instruction of one memory mode (Read
or Write) is coded subsequent to an Increment instruction of the other mode.
A problem exists in preventing the two memory'references from getting out of
sequence. This could happen if, for instance, the first Increment Unit was
held up due to a second order conflict. This problem is significant only

if the two instructions reference the same address in central memory. Lt
would be possible then, to read a location before storing the new operand
(assuming the sfore was programmed before the read, and the mix-up did occur).

Storing before reading is the second possiblility. Study the following example.

FX1 = X2 + X3 (30123)
SA6 = X1 + K (526 1KKKKKK)
SA2 = Bl + K (51 21KKKKKK)

Assume that X1 + K = Bl + K

The timing looks as follows:

time o’oo 100 290 300 400 Soo' 00 Too [-T53
FX1 i Read l Exectfite ‘ Store;4] I l '

¥ " 1 J

| | | |

| ! 1 |

SA6 | . —l _ _J_ - ’;Read 4 Exec1 StoreJ memory cyclf
Read Exec. Store memory cycle ti

sa2 ~ ! |! g Temery cy e time | ¢

l
:|:"l|||

o Lo b

Address Address
to MO to MO

19

Conclusion: Although the store instruction (SA6) was coded before the read
instruction (SA2) the read address was sent to the stunt box first. Hence,
the content of the memory location will be read into X2 before storing X6

in the location. The programmer obviously intended to store before reading.

Fortunately, this erroneous operation cannot occur. It is prevented on modules
G26 and G27, the Increment Unit busy circuits (Figures 7.7-6 and 7.7-13) shows
the Unit Select and Busy logic for Incement Unit I. Increment II is handled

on G27 in a similar manner; therefore only Increment 1 will be discussed.

The Unit Request flip/flops (set on the U2 issue) have inputs on pins 6, 8,
and 5. Term J indicates a Write unit request and term K a Read unit request.
In order to generate the issue for a memory read request (term K) the AND
gate, term M, must have all ones in. The translation for a zero out of M is:
(Memory Read Request)(Incr. I Not Busy)(Incr. II Write). Hence, if Increment
II is doing a Write and this request is for a Read, subsequent issues are
disabled until Increment II finishes its Write operation (its Unit Busy flip/

flops, A/B and C/D, are cleared with "release' of the unit).

Similarly, if the request is for a Write (term J) term H must have all ones

in to enable the issue. The translation for a zero out of H is:

(Memory Write Request)(Increment Not Busy)(Incr. II Read). ‘Hence, if Increment
IT is doing a Read and this request is for a Write, subsequent issues are
disabled until Increment II finishes its Read operation. (Its Unit Busy

flip/flops, A/B and C/D are cleared with '"release" of the unit).

Thus, attempting a memory operation of one mode while the other mode is in

process will cause a first order conflict.

The flow charts (figures 7.7-7 through 7.7-10) illustrate the operation of
the Increment select logic.

20

Select Control Increment Unit I

G26

UZ=60+70+02 J3
+04-07+50 L T LE "
i=0 Issue
B
;2 H }_’ |
D

J
—_— 18
Incr. I RD+ (ID-_.. " Set F-XBA
WR
—|7
Incr. 11 Ready et Q
— 13 ! 19
Incr. II Wr. M G ‘
K
G .
A
-\QO_%(P Read + Write
, 28 B
SCBD Issue ()< '
E
2 [
. 5) Write
C
8 : .
U2=5%+ i=6+7 . Write 2 -
v v | (Unit Req.) D ‘ L———{) Read
U%=5%- i=1-5 < |Read
(Unit Request)

Flip-Flop Incr. Selected
A/B | c/D For:
Set Clear READ

Set Set WRITE
Clear | Set INCREMENT
Clear | Clear FREE

Figure 7.7-6

21

Ul
time

U2
time

From
Stack

Issue
Instruction
to Ul

fmi = Yes

(5X) (i=6+7)?

fmi = Yes

(sxiifiiiilg//”

~Imi=02+

4+H07+H6X+T7X+
(5%) (i=0
?

Yes

:

SOt an Select Select Select
1ncremenF Increment Read Write
instructiay or Test
(to Figure (to Figure (to Figure
7.7-10) 7.7-9) 7.7-8)

Figure 7.7-7

22

Incr. I

Free?

Yes

Yes Incr. II
Reading?

N

No

Release
Increment I

Incr. I
Reading?

¥

. Selectt - Select
nérifen Increment I
rite Write

Select Increment Write

Figure 7.7-8

23

Incr. I Yes

Free?

Yes

////;ncr. 11
<:\\\\\Free?

No

Select Increment Read

Incr. II
Writing?

No
Release

Increment I

J,

Select
Increment II
Read

Select

Increment I
Read

Figure 7.7-9

No

Yes

Yes

Select Increment or Test

Y

Select
Increment II
Incr or Test

Select
Increment I
Incr or Test

Figure 7.7-10

25

Increment Second Order Conflict (Special Case)

A special case of a second order conflict arises in the Increment units, and
the case again applies only to memory mode instructions (5%1 ~ 5X7). To
illustrate the problem, assume that Increment unit I was issued a Read operand
instruction. It has generated the address which is now sitting in the output
network of the Increment adder.. Assume also, that the address cannét be sent
to MO because MO contains some other central address. This could occur, for
instance, if the content of P or a previous operand aadress was sent to MO
and central priority (MO to M1) is not granted because the Hopper contains an
unaccepted address. Now, assume that another operand read instruction (5X1 -
5X5) is issued. (It will be issued if IncremenEIII is not busy since
Increment 1 is also handling a Read mode instruction). If the second Read
instruction were allowed to start, the address generated by Increment I

would be destroyed, because the adder is a static metwork - once the cperands
are loaded into the feeders, the result appears at the output within &0
nanoseconds. Thus, the logic must prevent reading the operands for Increment
II until Increment I sends its address to MO.. (0Of course, the same problem

exists if the Increment units were reversed or with two instructions of the

Write mode.)

This situation is resolved with the logic contained on module M33. (Refer
to Figures 7.7-11, 7.7-12, and 7.7-13). For the purpose of explanation,

an example is discussed.

Assume that in a program, two increment instructions separated by several
other instructions appear. Both of these instructions are of the type which
cause a memory reference and are of the same memory mode (i.e. both read or

both write). The first is issued to the scoreboard and begins to execute

26

via Increment Unit I. Since it is a memory mode instruction, M33, TP5

will be set (Figure 7.7-11). Within 300 manoseconds the address is generated
and will be sent into the result register for Increment I. Note also, that
the Inérement address flip/flop on P37 (Figure 7.7-13) is set later in the
Increment sequence. This in turn causes Enter Central to be set which
requests Stunt Box priority. Assume at this point that an RNI address is
setting in MO and stunt box priofity 2 is not granted (due to priority 1,
Read/Write tag conflicts, etc.). As a consequence, the RNI address remains

in MO and the operand address remains at the output network of the adder.#*

Assume that by this time the program has progressed and now attempts to issue
the second Increment instruction of our example. Since Increment II is free

and the memory modes are the same, a scoreboard issue is generated.

Hence, Increment II and result registers are reserved in the normal fashion.
If the source reaisters required are not reserved, the Increment II read flags

will be set and a logical "one" will appear on pin 4 of M33 ("Go Incr. II").

In order to start the Increment I1 sequence, term "D" is the clear side of
TP5, which was set by the first Increment instruction of the example. TP5
is cleared when term "F" is a logical '"zero", in other words when all inputs

to "F" are ones. The following translation yields a "Zero!" out of term "F!:

(540) (Prog.Addr.) (Incr.Addr.) (Inch)(Branch) (Enter Cent,+MO to M1)

#*#1f no third order conflicts exist Increment I may be released and the result
sent to the specified A register. Nevertheless, the Increment to MO gate

may still be delayed.,

27

11-,*/ ®2an81g

¢1] 01 ?
v
pESY 05 93BHC m d
¥
q

3IM 4+ PY II *Idul). — —

- e kK L1 €2
S§2IppYy *aAdUT '
ssoappy °*8oiag MM fe—3IM + P¥ IT °20Ul
youeag 4 youg 3

032
(TW ©3 QW) (3uwad) Juy) fa—V 5
T813us) I93Uqle] !
3aM + 1 IoUIQ N llOCn)
At oL 1 L Gz 0T AIlIJu
lw—33IM + PY T °aouft 10|
A —_— 80K
00 1z
EERW souenbag T *JIdul 3IBIG

IONHNDES INIWAYONI I¥VIS

s38e13
P¥ II ouy

sSe13

PY I I9Uy

28

Starting Increment I for the first instruction caused the setting of the
Increment Address and Enter Central flip/flops.. The Increment Address is
cleared when the signal, Increment to MO is generated. This signal requires

the following conditions:
Incr —» MO €= (Incr. Addr.)(Enter Central + MO to M1)

When priority is finally granted for the RNI address, the ™0 to M1" gate

will be generated. This then will enable "Incr to MO" which in ‘turn clearsi
the Increment Address flip/flop. 'MO to M1" will also clear the Eﬁtef Cenﬁral
flip/flop. All conditidns required by term "F'" are now met. M33, TP5

will be cleared and the startihg of Increment II is enabled. Note, that making
the AND gate for starting Increment II also allows the clearing of that unig's
Read flags (M33, pin 2 feeds Q19, pin 19 where the '"clear RFs! is fanned out.)

(Figure 7.7-12)

This explanation also appliesuto starting the Increment 1 sequence. If the
result Increment II can nmot be sent to MO, Increment I may not start until

term "G" is a one, implying that Incr to MO &id occur. These cases then are
special second order conflicts applicable only to operand read or write instruc-

tions.-

29

T

CI=L°L sxm3ny

(2 T041NOD)
€—0E0 0L

{ 2 T0HLNOD)
v+-129 OL

2 T04.LNOD)
21-080 0L J

{2 “T04LNOD)
21—-929 oL

sz
1 1013u0y zeppy ,
{ 2 TO4LNOD}
S—2¢ OL
r - > 1
| |
_ !
_ i
" [
| { 2 08LNOD) |
|
i € e A s O e ‘o
__ -
I 1
| [
| (]
| [
L Il
[
[
“wom anssi b
[
a {1
SRR O 3 B
¥aanaT g |
2 wont ¥ ¥3iN3 [3] Som awoa m b
[
1 50N *¥ ¥3.N3 []e~(@)e0- —— O 0= Tvonianssiy S| 1
[
1N3w3Tawoa [4] ——— d0
- —
a P
uva1o (V)0 -
| |ivrizze I L
B ED |
L vr[rzo -7
{1]vr[sze r _I
vr[sza | X
vr{ (20 I |
vr|oze ! |
vr[eza PO |
vr[ose 1 i
43151938 LNaNl .
|
-7 - —
| r
L
[
[
-
llllllllllllll -l _
U |

[7181=1.400-=2 . 42

8¢€3 EIVEREL r - -
153n03y St € £! |

30

€1-/*, san81y4

¢ T°ajuop isppy

92
P+ d
ND| 10N [+)
o[2o |
o[€oN [
—\ wo| voN |
%0[soN |

%0 SON —

H3Igav 1+ d

QN "HINI
[ac] 108

ar[zog

a] cop

4] vog

ar sos

4r] sop

HALSIOAY N

O
nuoxwooaEs

1nsad Lmx [9]
2 HoN| =1ns3y [a]
| "HON§ =-110s3y [3]

) HONI =¥ [9]

2 "HONI = [€]
LLYE 104
ar] zod |
ar] cod]
or] vod |

(s 504]
ar| 904 |
;w!._ 10d |
T

[o4
ar] sod
SWILSI93Y 2 W1 LNIWIWONT

4015 HOM¥H3

I yaav ooud 135

03s 40071
+ dWnp
HONVUYE

Q

\ 9
p |

Y
d--Jd

004

G2-IEd MOud

ua I TOHINOD)
L1—-1gH woud

1
I
!
|
I
|
I
|
|
[
|
|
{1 J0HINOD} |
|
|
!
!
t
|
|
I
|
i
i

I
t
I
I
[
o e e —

31iHA + Qv3Y
2 "HONI

)2 "HONI 09

? Tom T gvie

| "MONI

w | “HONI 09

{1 JOMLNOD) 61— 61d OL
{1 TOHLNO3) £2—6ld OL

31

7.7.5 ADDER

General Information

The Increment units' 18-bit adder is subtractive in nature, but because of
the logic configuration of the input register (JA modules) the true value of
Bk or K is gated for Add instructions and the one complement value for

Subtract. The true value of the first operand (Aj, Xj or Bj) is always used.

In explaining the adder logic, the following definitions apply:

Borrow = 0
0
Satisfy = 1
-1
Enable = 1 0
0 or 1

Since the adder is subtractive in nature, the definitions presented are based
upon the process of complementing and subtracting to add. In other words,
if the adder did subtract to perform addition the second operand would have

to be complemented. The following table relates the two processes:

True Operands Second Operand Condition of
(if adding to add) Comp lemented ~ Stage
(if subtracting to add)
0 0 , —
0 - 1 Borrow
1 1
1 0 Satisfy
0 0
1 0 Enable
1 1
0 1 Enable

Figure 7.7-14

32

| Hence, even though the true values of the operands are used in the feeders
‘during addition, the condition of a stage is defined with the "subtract to

add" process in mind. A "Pass" has the same meaning as "Not Satisfy'".

Pencil and Paper Method

The "Pencil and Paper'" method of adding will be discussed before analyzing

the adder logic. Assume that the following binary numbers are to be added.

EAC

ol L)

[} leoNe]
= O
1O =
—|O O
QOIC
o= O
i Ol =

0011100 = Sum

By simple binary addition, the sum should be as shown.

The pencil and paper method which simulates the machine addition process is

summarized as follows:

1. Label each stage according to its condition (Borrow, Satisfy, Enable)
2. Perform an "exclusive OR!" between the source operands. In other words,
for any stage containing an "enable" write a "one'". (defined by

Figure 7.7-14)

3. For each stage that has a Borrow input, write a "onel.
4. Perform an "equivalence! between the first '"exclusive OR'" and the

list of borrow inputs.

Example:

L
SBEE BEES 1. 1label stages
1001 0101 operand #1
1010 0011 operand #2
0011 0110 2, M"exclusive OR"
1111 0000 3. borrows into stage

,,,,,,, 0011 1001 4. T"Equivalence"

After completion of step 4, the correct sum has been generated.

33

Adder Logic Analysis

The adder is divided into six groups, each containing three bits as follows:

17 1514 12|11 9|8 6|5 3]2 0l

Group ~--~ 5 4 3 2 1 0

Since the groups all operate similarly, only group zZero is analyzed in detail.
Figure 7.7-15 is a logic diagram of Group O and should referenced during the

following discussion.
JA Modules

The JA modules hold the feeder registers. Each étage on these modules sends
three signals to the QB modules (summing network). Stage 20, for instance,
has outputs from pins 20, 18, and 28, Respectively, these pins translate

as j, j or k, and k. Note, that during difference or branch test operations
the complement gate (term F) will be a one, enabling the complement of operand

k. In this case, the three outputs are j, j or k, and k. Since the rest of

the difference process is the same as addition, only addition will be discussed,

QB Modules

With reference to the 'pencil and paper!" example, the QB modules perform

four main functions.

1. Perform the exclusive OR between the source operands. (Step 2
of the pencil and paper example) The output of test point #4,
for instance, states that stage 20 does not contain an enable
(Not "exclusive OR")

2. Check for a borrow leaving each stage. Using Stage 20 as an example,

34

L ity St el it e e e ey e
€1~,"/ 2an81a ____nlilllllllllllll||||||||||!l|1|||l||;||||||||||_v”__
| r-e - - - - - - - N -
o ! e e S e e e s e e ..J_ _
'y [hl \ '
| [|
el | "
L e Tt T 49 v !
e ettt el At Bl I ~ !
P - T T T T T [
o CE] v !
bt (2td '1b4) ! Ty g dgd !
Pl NHOMLIN 1Nd1N0 wiA 'v uo'la‘lx ¥o ¢ o ! v u0"8 X I
! Y3ILSI93H INILYHIAO OL LINSIY %% uo o H3LSI93H ONILVYIAO WO LNANI * |
|
9 8 I8 |
Py | LN3W3TdWOD 0
!
u9 / 4 t , , t
/ | 2 "HONI ‘S ¥3IN3 |
/ |
M 49 / 3 2 | |
’ / ! | "HINI ‘¥ HILN3 i
- Y9 y [
g - - 1
uo LERE)
o
u9 /
/
/ ./
, SSVd G H9 /
/)
P YV ¥ MOHHOE b D /
[ofJieNn o rue Ssvd 1 W9, ‘y
orfzen 2 € | ~sSvi 0 To~ /,
br[een ¢ s \\\
Jlpesn o ¢] /o
ar[seN 8 & | v
[Tloroen or v T 20] sid i
br[e 21 e | SLINJYID MONYOB ONV SSvd "y
or] 8N b1 sl —
GEN 91 18] | devom [3 et e] T0HLNOD
el L8 o < HONI asy |1t
¥3LSI93Y o
d oL U el
LNdNI MOYHOB O 118 |
oW 0LO !
P!
A U —— =
o 02 !
U |
LNNI MOHHOE O LA
d oL — = e
ANdNI MOMHOE | Lig
oW oL
-0 2 2
IIIII - — = dh
LNdNI MOBHDE | 118
d oL S o ——
LNdNI MOBsoR 2 L1g
22
-7 ot e DD — - — — = - _ 02
oW oL 22 M |vr] 228 o 1 ua
— N vr| £20 G T
1NdNI MOHNOE 2 118
vr| vze v S]
|80] 224 oms | H [v]see s .]
g [1iso] €ze 189 [wr[oze G
r 2-p2 0 dNOHO r
| wfsosy s 8 I 22792 50 dnows | | 8o b2d z 9 | ﬁ vr| .20 o
aofeoge 6 o il | 82752 ‘Z dnouo gof szd cus | o |w[eze S |
afogzl s v G | sZ=sz :v dnoto o[524 b Ho | wr[e2e % T
ar| 60d 91 1l 118 | o[g sl 2 | L127g12 *SdNO¥S | fgof sz4 gus | vr]oce sl e

SHILSIO3Y 2B IN3W3HON! AHOML3N 17NS3H HHOMLIN ONIWANS H31S193H LNdNI

35

test point #1 (pin 2) states that stage zero
In other words, stage 1 has a borrow input.
into stage 1 (Test point #1 inverted). This
and paper example.

3. Determine whether or not this group contains

Pin 22 states, for instance, that group zero

has a borrow output.
Pin 1 says no borrow

is step 3 of the pencil

all passes (no satisfies).

is all passes.

4. Checks for a borrow leaving the group. Pin 16, for instance, states

that a borrow does leave group zero.

Note: The results of steps 3 and 4 are ultimately used to determine the

existence of an End Around Borrow. (See QC module discussion)

CD Modules (and QL)

The CD modules perform step 4 of the pencil and paper

example - equivalence

between borrows and enables. For example, pin 10 (the 20 sum) translates

is follows:

(Borrow) (Enable) + (Borrow)(Enable)

The following table summarizes the possible combinations at CD modules and

the resulting sum.

Condition Sum
(Borrow) (Enable) 1
(Borrow) (Enable) 1
(Borrow) (Enable) » 0
(Borrow) (Enable) 0

36

QC Modules

The QC Modules summarize the Pass and Borrow conditions of all six groups

r ‘ and will ultimately determine whether or not an End Around Borrow exists.

For the purpose of explanation the following translation of pin 17 = zero

is made:

Pin 17=0&>F +« B
F<—> (Gp 5 = Pass)(Gp 4 = Pass)
BE——> (Gp 3 = Borrow Up)+(Gp 2 = Borrow Up)(Gp 3 = Pass)
F.«B <3::=’Eép 5= Pass] -[ép 4 = Pasé]- EGp 3 = Borrow Up)+(Gp 2 - Borrow Up)

(Gp 3 = Passﬂ

Diagramatically:

f
']
4 . 3 1

|

|
STAGE o :_‘ b e
; BORROW __ MH{PASS or BORJ

L _ 2 _

O

! !
PASS b Borrow]
| !

FAB «——{ PASS@ f—— Pass

In general, if any stage generates a borrow up and all subsequent stages

are passes, an End Around Borrow will be generated.

37

7.7.6

BRANCH TESTS

General Information

The Inérement Units test operands for the 04-07 conditional branch instructions
and send the test results to the Branch Unit where continuation of the branch
sequences are enabled. If the condition is met, the Increment unit sends a
"Condition Met" signal to the branch unit and the Jump or Loop sequence 1is
enabled. The absence of "Condition Met" implies that the condition was not

met. In this case, the "No Branch!" sequence is enabled.

Two branch tests are used to condition the four jump instructions as follows:

Test Used ' fm Condition

Equality 04 Bi = Bj
05 Bi # Bj

Magnitude 06 Bi = Bj
07 Bi << Bj

Although both tests use the adder logic, only the magnitude test checks the
result of the complete add process. Since Bk (Bj of opcode) is complemented
during Branch tests, the adder subtracts Bk from Bj. Henqe the result is a
difference. The Equality test, on the other hand, checks the 18-bit operands

bit by bit.

Equality Test

. Figure 7.7-16 is a logic drawing which shows the Branch test circuitry. The

equality test simply checks each stage for equality. Since one operand

(Bk) is in complement form, equality can be determined by looking for

38

91~,°/ @an814

HONVHE (S1531 INIWIYoNI (41

HHOMLIN
1ans3yd

NYOMLIN
Lnsad

LNdNi MouNGE 0 118

F— e e e]

1NdNI_modH08 4 118

LNdNl MOUHO8 L1 118 —

y3gav
LiNN
LNINIRONE

39

an "exclusive OR" in each stage. For example,

if feeders equal: if the true operands equal:
1l orO 1 or O
0 1 1 0
(exclusive OR) (equivalence)

Recall that during the adder discussion (Section 7.7-5) it was pointed out
that an "exclusive OR!" is done with each stage (this was the check for enables).
This same signal is used for the Equality test. Pins 14, 17 and 8 on module

p07, for instance, state that the content of the feeder flip/flops of stages

0, 1, and 2 (respectively) are equivalent. Since the Bk feeder holds the

one's complement of Bk, a zero on pins O, 1, or 2 indicate equivalence for

the given stage. Hence, for a 'one' out of TP3, TP4 must have all '"omes" in,

or stages 0, 1, 2 and 3 must all show equivalence, with respect to true

values, or exclusive OR, with respect to the feeder contents.

Q08 - Qll check for equivalence of the remaining stages. If all are‘equivalent,
R37, TP3 will have all "ones" in and a zero out. This condition is ANDed with

opcodes 04 and 05. The following combinations yield a "Condition Met':

(TP3 = 0 to Equal)(fm = 04)
or
(TP3 = 1 to Equal)(fm = 05)

Magnitude Test

The magnitude test simply checks bit 217 of the difference, Bj - Bk. If a
one (or negative) Bj is considered less than Bk. If a zero (positive) Bj is

considered equal to or greater than Bk.

40

The test is made on module Qll (Figure 7.7-16). Pin 25 which states that
fm = 07, is ANDed with term "P" (TP2) which states that bit 2l7 = 1
(negative). If the AND conditions are met, a zero appears on pin 27 and the

condition is met. Pin 16, which states that fm = 06 is ANDed with terms M

and N,

M <> Borrow + Enable (= 0 sum)

N&—> Borrow + Enable (= 0 sum)

By ANDing and simplifying we obtain:

1. (fm

06) (M) (N) =

2. (fm = 06)(Borrow + Enable)(Borrow + Enable) =

I

3. (fm 06)(B6rrow - Enable + Borrow « Enable)

Formula #3 includes all conditions which yield a zero sum for stage 17,

hence the sign is positive and the condition is met.
Module R37, TP2 "OR's!" the 4 possible condition met gates:

1. (fm = 04)(Equivalence)
2. (fm = 05)(Equivalence)
3. (fm = 06)(Result 217 = 0)

4, (fm = 07)(Result 2l7 = 1)

The output of TP2 is gated with a tl5 to clear L09, TP6 if the condition
was met. The clear side of TP6 feeds pin 17 which in turn sends the '"Condition

Met" to the branch unit.

41

SECTION 7.8

BRANCH

Functional Unit

BRANCH FUNCTIONAL UNIT

7.8.1 TINTRODUCTION

The function of the Branch Unit is to control the execution of the branch
class (fm = 0X) instructions. These instructions may be categorized as

follows:

l. Unconditional Branches
01 Return Jump to K
02 Jump to Bi + K

2. Conditional Branches
030

07 Jump to K if . . .

Handling the unconditional branches is a relatively simple matter of

(1) calculating the jump address, (2) placing the new address in the P
register, and (3) initiating a memory reference for the new instruction
word. An unconditional jump may not be made in the stack, so PK is set
to zero, D to 7, and L is set to 7, (indicating I0) and when the new
instruction word is read from memory issuance of the instructions begins

with parcel zero. |

The conditional branches are not quite so straight forward. The branch

unit must perform three functions in processing the conditional: branches.

1. Determine whether the specified branching condition is
met. The operand from an X or a B register is tested by the

Long Add or an Increment unit respectively.

1-8°, 2an314

T MU 319G |I|!uv

Ioqunu X93SIF0x I
Jo jusweTdwod SPIOH

pd
i M

H.:::::HH —< 1

Ahndv‘ (L = q 3°95) ("IVIION)

- (3I5VIS A0 IN0 HAONvHY)

Ty (PoI9pTSU0D
1D usts yITM g-¥)

diys o3 seoeld

. Jo Isqunu SUIBIUODH (2X) (1X) (0X) (X0)

LIW NOILIANOQ

(1-1) - d

jyoe3ls 9yl uf

SUOT3ONIISUT [NJFSsSn Jo

zequnu Jo juswepdwod pPIoOY
0+«

HONI
uSYHISIOHE LNdNIu

*N1*4 HONVE4
WVYDVIQ 007149 LINN HONVId

Results of the tests are sent to the branch unit where they are

logically "ANDed" with a translation of the opcode being

processed; ultimately, the condition is met, or it is not.

If the condition is met a second decision must be made.

Can the branch be made in the stack, or must a memory reference

be made for the instruction word? This decision may be divided

into three considerations.

(a)

(b)

(e)

Is the number of places desired to branch within the
maximum limit of the physical I registers? A branch in
the stack is limited to forward seven registers (from I7
to I0) and backward six registers (Il to I7). In other
words, is the absolute value of the number of places
desired to jump less than or equal to seven?

Is a branch in the stack possible with respect to the 1
register containing the branch instruction? For example,
assume that the branch instruction is located in I4 and

a branch backward five places is desired. In this case
test 2a will be met since the jump magnitude is less than
7. The maximum jump backward from I4 is thrge places

(to I7); a jump of five is therefore "out of the stack!.
Thus, although the first test (2a) is met, the second
may not be.

A third and final situation must be taken into consideration,
but only in the event that tests one and two are met and
a backward branch is desired. Assume, for example, that

the branch instruction is in I3 and a branch backward

__. *n°d II 9ONI
1 |
|]
| {
| 1
_ _ y I ¥ONI |
| _ gict
I | dTY |
_ — _
k . f 1 { ‘n*d4 I ¥ONI
T |
_HH 9 I mUZH_mmm | } woxz
_ _ Vo oqan !
| o | | Om |
| | | | |
<« ON I !
o 4 80 drir HONVIE 09) _ M_Hmd,wmm\m _ | e :
~—1¥0 J00T 1ay
HONVEd ON - - NOD | “ D@ "
!
_ |] i }
_ | i i .|
_ ! | _ '
JRnr 1 goo1 03 s3§e3 (I-1)-0 jL-T1 ‘d-¥ _ i
3 e\ } A/" !
: ! | i .
\ i I) — *n*d HONVYE
1 | L '
\ 1

!
|
00%3 00e3 00¢3 0013 003

four places is desired. Both conditions one and two

will be met (since we wish to branch from I3 to I7)
indicating that the branch is within the physical limits
of the stack. Recall that during normal instruction
sequencing (RNI) each time a word was sent from memory
into I0, the stackAwas "inched" and the "D register"

*was decremented. A D value of zero indicated a full
stack; D = 7 indicates an empty stack. Thus, if the
branch is backward and within the physical limits of the
stack we must determine whether or not‘enough instructions
associated with this particular routine have been loaded
into tHe stack from memory. Returning to the example, if
D does not equal zero (full stack) the desired jump to I7
is disabled and a memory reference is started to obtain

the instruction word.

Note, that if tests one and two indicate a forward branch
in the stack, test three is superfluous since all instructions

in the stack after the branch are related to this sequence.

The third function of the branch unit is to initiate the new
program sequence if a branch is to be made or to continue the

old sequence if the branch is not made.

*D holds the complement of the number of instructions in the
stack that are within the present subroutine (instruction

sequence). It is therefore decremented to increase the value

represented.

To continue the old sequence (branch condition not met) it is
only necessary to generate a 'proceed" signal to restart
instruction issue. Recall that when stopping issues after

the scoreboard issue of the branch instruction, the parcel
counter had been properly incremented to select the parcel
following the branch instruction. The L register is not
changed if a "No Branch" condition exists. Therefqre, the
generation of the "proceed" will move the instruction following
the Branch to U2 with two U issues and to the scoreboard with
the subsequent scoreboard issue. (Refer to Section 7.8.6

for a detailed explanation of the No Branch sequence).

To initiate a new program sequence (branch condition met)
the two possibilities, Branch In the Stack and Branch Out of

the Stack, must be considered.

(a) To Branch In the Stack the stack controls must be modified
to select parcel zero of the new instruction word. The
parcel counter is therefogé set to zero, the L register
is loaded with the new value, and the P register is
loaded with the jump address (from R). A 'proceed" is
generated and subsequent issued begin the new "in stack"

program. (Refer to Section 7.8.6 for a detailed explana-

tion of the "Loop" Sequence).

(b) In Branching Nut of Stack a memory reference (RNI) is
required to obtain the next instruction word. The jump
address is therefore sent from R to P and the P to M®
flip/flop is set. When stunt box priority is granted and
the address is accepted, the new instruction word will be
sent to the Chassis 5 Input Register. The stack controls
are also modified as follows: L and D are both set to 7,
and PK is set to O. Thus, parcel zero of the new word
in I® will be the first instruction issued. (Refer to
Section 7.8.6 for a detailed explanation of the "Jump"

sequence).
INSTRUCTION LIST

The conditional and unconditional Branch instructions are defined in this
section. Following each instruction definition is a general explanation
of the branch (or no branch) sequence of events. The expressions in

parentheses following the instruction name are the ASCENT sympolic codes.

01 Return Jump to K RJ K
Definition:
This instruction stores an unconditional Jump (0400) and
the current address plus one (P + 1) in the upper half of
address K, then branches to K + 1 for the next instruction.
This branch is always out of the stack. A jump to.address K
at the end of the branch routine returns the program to the

original sequence.

02

Sequence:

The following sequence of events occurs during execution of the

return jump:

1. Read Return Jump

2. Stop instruction issue

3. Transfer P (contains P +1) to S register

4. Send R (Jump Address K) to P

5. Send P to M°

6. Send S to Memory write distributor and force 0400 into
write distributor.

7. Increment P (Jump Address plus 1) and send to M°

8. Send M° and tag = 10 (RNI) to Hopper

9. Wait for accept to start issue (proceed)

Jump to Bi + K JP Bi + K

Definition:

This instruction branches to the loca;ion specified by the sum
of register Bi and constant, K. (When i equals zero, the address
is K). The branch is always out of the stack.*

Sequence:

An "Out of Stack" (Jump) condition is always forced by the 02
instruction. Thus, the Jump Address is sent to the P register

and the P to M° flip/flop is set. Issuance of instructions is

*To perform an unindexed, unconditional jump in the stack,

the 04 instruction with i and j = O may be used.

030

031

032

033

034

035

036

037

resumed when the hopper tag = 10 is accepted.

Jump to K¥Xj =0 R Xj K
Jump to K¥Xj # 0 NZ Xj K
Jump to KYXj = plus (positive) PL‘ Xj K
Jump to KYXj = negative NG Xj K
Jump to KYXj is in range | IR Xj K
Jump to KYXj is out of range OR Xj K
Jump to KYXj is definite DF Xj K
Jump to KYXj is indefinite ID Xj K
Definition:

These instructions test the 60-bit word in Xj for the condition

specified by the i digit. If the condition is met, a jump to K

is performed. The tests are performed in the Long Add Unit

(See Sections 7.3.2 and 7.3.6 for detailed analysis) and are

bound by the following rules:

(a)

(b)

(c)

The 030 and 031 operations test the 60-bits of Xj for
either negative (all ones) or positive (all zeros) zero.
All other words are non-zero. The test is valid for
fixed or floating print words.

The 032 and 033 operations examine only the sign

(bit 259) of Xj. 1If equal to zero, the word is positive;
if equal to one, the word is negative. The test is
valid for fixed or floating point words.

The 034 and 035 operations check the upper 12 bits of

Xj for eithef plus or minus infinity. 3777 and 4000

are out of range; all other bit configurations are in

range. The test is valid for both fixed and floating
point quantities.
(d) The 036 and 037 operations test the upper 12 bits of

Xj for either plus or minus indefinite forms. 1777

and 6000 are indefinite; all other bit configurations

are definite forms. The test is valid only for |

| floating point words.

Sequence:
The 03X instructions cause both the Branch and Long Add units
to be initiated at the same time. The Long Add Unit receives
the Xj operand from Register Exit control and performs the four
tests (zero; sign, infinite, and indefinite) simultaneously.
Four signals may result from testing of Xj 1) Xj # 0, 2)
Xj < 0, 3) Xj = out of range, or 4) Xj = indefinite. The
absence of a signal implies the opposite condition. Thus, eight
possibilities exist. The results of the Long Add testing networks
are sent to the‘Branch functional unit, where they are combined
with the instruction translation (030, 031, . . . 037) to
generate the.”condition met' or ”condition not met'" gates. The
Branch unit is informed of the test completion by the "Auxiliary
Functional Unit Release!" gate which, in this case, is a function

of the Long Add Unit's timing chain.

While Long Add is making its tests, the Branch unit is making the
In Stack/Out Stack tests. One of two signals, "Loop" (in stack)
or "Jump" (out of stack) may result from these tests. They are

logically combined with the condition met or not met gates as

follows:

10

Unconditional Branch OR

Go Read B
~senopy— py]
. ‘ P
g-OB-ECES . Increment Unit . . .
Ul U2 a0 et et tetiu meee :
- — IR '
" fm [£ =
. m ‘;31: m ﬂﬁ?—h
! d ey
—O O :
4, T | ¢ (address) Out Reg. :
\ H
k] o
i :
| IR 1 el ittt SR K'*Bkj) ;
R IR
0 Vo . : MO
] H >
%* € [P~ - :
W : i 18
: i |
|L] +
2 . SCBD issue . - Enter Ce:
[0}
tesue (or issue of MO to MI
SCBD issue time)
! Delay
Time .
| >
i
i—ﬂ Dlyi Delay AJ
o : ‘
! Release
o~ . —*Stop C.PT— ‘ ——= Proceed
RNI
JET L
i D P
PK =

11

(Condition Not Met) + (Loop + Jump) to No Branch

(Condition Met) * (Loop) to Branch In Stack

(Condition Met) + (Jump) to Branch Out of Stack

No Branch:

If the branch condition is not met, the resulting No Branch gate
generates a proceed signal which causes the issuancé of instructions
to resume with the instruction following the branch. Until
another branch (0X) instruction is encountered, the normal issue
sequence (RNI) takes place.

Loop:

If the Loop and Condition Met gates occur, a Branch in stack will
result. In'this case, the L register will be loaded with a new
.value (the "stack address'), the jump address is sent to the

P register, and the parcel counter is cleared to zero. A "proceed"
is then generated and instruction issue resumes with parcei zero
of the new I register.

Jump :

In the event that the Jump and Condition Met gates occur, a
memory reference is required .to obtain the new instruction word.
Thus, 1) the Jump address is sent'to P, 2) P is sent to MO,

3) M° and tag = 10 is sent ﬁo Ml, 4) the D and L registers are
set to 7, 5) PK is cleared, and 6) when the tag = 10 is accepted

issuance of instructions resumes with parcel zero of I0.

12

040

050

060

070

Jump to KY Bi = Bj EQ Bi Bj K

Jump to KY Bi # Bj NE Bi Bj K
Jump to KY Bi > Bj GE B1 Bj K
Jump to KY Bi < Bj LT Bi Bj K
Definition:

These instructions test the 18-bit word in Bi against the
18-bit word in Bj (both words are signed quantities) for the
condition specified by the opcode. If the condition is met, a

jump to K is performed.

The tests are performed in one of the Increment Units (See
Section 7.7.6 for detailed analysis). The following rules
apply to the tests:
(a) Positive zero is recognized as unequal to negative zero.
(b) Positive zero is recognized as greater than negative zero.
(c) A positive number is greater than a negative number.
Sequence:
The 04 - 07 instructions cause both tﬁe Branch and Increment units
to be initiated at the same time. The Increment unit recelves
the two B register operands from Register Exit Control and performs
the two tests (equality and threshold) simultaneously. The four
possible results (Bi = Bj, Bi # Bj, Bi > Bj, and Bi<Bj) are
combined with opcode translations to generate the '"condition met!"
or '"condition not met" gates. The Branch Unit is informed of
the test completion by the "Auxiliary Functiomal Unit Release!
gate which, in this case, is a function of the Long Add Unit's

timing chain.

While the Increment Unit is making its tests, the Branch Unit
is making the In Stack/Out Stack tests. The "Loop" or "Jump"
gates may result from these tests and are combined with the

condition met or not met gates from the Increment Unit.

From this point on, the branch sequence uses the same circuity
as was explained for the 03X branch instructions. Reference
is therefore made to the sequence discussion of the 03X
instructions for further explanation of the No Branch, Loop,

and Jump cases.

14

7.8.3

TIMING SEQUENCE

Figure 7.8 is a timing chart showing the sequence of events for conditional

branches.

The auxiliary functional unit used in the chart is an Increment

unit. Long Add timing will be similar (both are 300 nanosecond units) and

is therefore not shown. The scoreboard issue of the branch instruction is

used as the time zero reference.

Refer to the timing chart and Customer Engineering diagrams during the

following explanations.

1.

2.

4 - 13.

14.

Branch Select F.F. is set by (U%fm = 0X). (SCBD ISSUE)

Branch Selept F.F. is cleared by the following gate (Q04, pin 16):
(fm = 00) + (GO BRANCH) + (AUX. F.U. RELEASE + JUMP + LOOP) + (MC)
The auxiliary functional unit is started at the same time as the
Branch Unit.

This time series is shown to relate the Increment Unit timing to
the Branch Unit. 1In general, this is the timing of the Increment
Unit Branch tests. For detailed explanations of the signals,

refer to Section 7.7.3.

L21, TP6 is.set by the following condition: (ISSUE) (ERROR). It
is cleared by a functional unit reservation code of XXX1l. This
circuit is a "lockout" which prevents the release from Long Add

or the second Increment Unit (which are not associated with the
Branch tests) from generating the Auxiliary Functional Unit Release
for Branch. Note that of the three flip/flops (L20, 21 and 22 - TP6)
only one will remain cleared during a Branch instruction (the one

selected by Q = xxxx to perform the test). The other two will be

15

15.

16 - 18.

19.

20.

21.

22.

23.

24,

set by the ISSUE. Thus, only the release from the Functional
Unit whose flip/flop is cleared can generate the Auxiliary
Functional Unit Release signal.

The Auxiliary Functional Unit Release enables the continuation

of the Branch sequence. Branch at this point has performed the
In Stack/Out Stack test. It now must perform the No Branch,
Loop, or Jump sequence.

These are stages of the Branch unit timing chain which enable
setting the stack controls (if necessary) and proceeding in

the proper sequence.

The JUMP + LOOP flip/flop is set in one of three ways.

1) Increment Test Condition Met, 2) Long Add Test Condition Met,
or 3) Return Jump OR Error Mode AND P to M0. It will disable the
generation of a Proceed until the Word from CM is sent to I0.

The R to P enable is generated for both the Jump and Loop conditions.
(Since P must be updated for both the In Stack and Out of Stack
branches).

If the Jump + Loop flip/flop (R37 - TP4) does not get set
(condition not met) the No Branch flip/flop is set. This will
enable the sequence which resumes with the instruction following
the Branch instruction. L14 - TP6 is the first flip/flop in the
sequence.,

This is a further step in the No Branch sequence (R33, TP5).

The Proceed resulting from the No Branch sequence occurs at this
time.

The "GO" flip/flop is set at this point if the No Branch condition

was present.

16

NOIE:

In the event of a Jump, F37, TP4 (flip/flop A) is set. As a result,
Stop CP (R32, TP6) and Enable Restart (F37, TPl) are set. In

order to "Proceed", the RNI tag (10) must be accepted by CM.

In the case of a Loop, the Branch Unit sets the new value in L and
P and clears the Parcel Counter. A Proceed is forced by the Loop

signal.

17

7.8‘4

IN STACK/OUT STACK TESTS

The purpose of the in stack/out stack tests is to determine whether or not
a conditional branch (03X or 04-07) can be made in the stack or out of the
stack. Ultimately, it is necessary to generate one of two logic signals:
"Loop" or "Jump". "Loop" implies an in stack branch. "Jump" implies an
out of stack branch. Of course, a third condition exists in case the
condition for the branch is not met. This condition 1s called '"mo branch".
Naturally, in order for a Jump or Loop to be executed, the condition must

be met (No Branch).

The In Stack/Out Stack Tests are divided into three parts: 1) R - P test,
2) T - T test, and 3) D - (L - T) test. The tests are analyzed separately,
but keep in mind that they are inter-related and in the end will indicate

the Jump or Loop condition.

R - P TEST:

The R ~ P test will determine whether the difference between the jum§
address (K) and the location of the branch insﬁruction (P) is within the
limits of the instruction stack (Seven registers forward - I7 to I0, or six
registers backward - Il to I7). This check is made by subtracting the

value in P from that in R (R holds the K portion of branch instructions).

Since the network forms R - P, it is logical that if R is greater than or
equal to P the result will be positive. A politive difference thus
indicates a branch forward. If P is greater than R, a braneh backward is
implied by the negative result. Also, if the magnitude of the branch is

less than or equal to seven, the branch is within the limits of the stack

registers.

18

Four cases may result from the R - P test:

].'

R - P positive and < 7.

Example: R = 010006
P = 010003
Difference: = 000003

The upper bit of the difference equals zero, indicating a positive

result, or that R > P. Thus, the branch is forward. Bits 3 - 16

of the result equal all zeros. This indicates that the difference
was less than or equal to 7. Thus, bits 3 - 17 of the result
being all zeros say that the branch is forward seven or less

places.

R - P positive and >7.

Example: R = 010007
P = 007774
Difference: = 000013

Again, the upper bit of the difference equals zero, indicating

that R is greater than P. Thus, the branch is forward. Bits 3 - 16

of the result are not equal to all zeros. This indicates that
the difference is greater than 7, which means the branch cannot
possibly take place in the stack. This is a Jump (out of stack)

case.

R - P negative and < 7.

010003

Example:

-
Il

010007

777774
1.4—FEAB

777773

19

4.

The upper bit of the difference is a "one!, indicating that P

is greater than R. Thus, the branch is backward. Bits 3 - 16

_ of the result equal all ones. This indicates that the difference

is less than or equal to 7. Thus, bits 3 - 17 of the result
being all "ones" indicates the branch is backward seven or less
places. The difference is the complement of the number of
blanched places.
R - P negative and>7.
Example: R = 010005

P =-010016

777767
-1 - EAB

777766
The upper bit of the difference (217) is a one, indicating that P
is greater than R. Thus, the branch is backward. Bits 3 - 16 of

the result are not all "ones'. This indicates that the difference

is greater than 7, which means the branch cannot possible be in

the stack (again, a Jump case).

20

V SINO TTV

| .
4 ON

Sdi S09gZ TIV

=

F=="77 suy

AOVIS 40 IO

|

L

(II ©3 oI ~ GI ©3 #I) (ASnd 39)

L 03 d=¥ == WVIOVIA M001I4

(EWIL 4NSSI a€0s)
dNSSIT

Iy

s

[

21

Summary

In order for the branch to be in the stack, the absolute value of (R - P)
must be less than or equal to 7. This is indicated by the all one or all
zero state of bits 3 - 17 of the difference. If these bits are not all

ones or all zeros, a Jump (branch out of stack) is forced at this point.

Even though the absolute value of R - P is less than or equal to seven,

the "branch out of stack' condition may exist if there are not enough I
registers before or after the I register containing the branch instruction.
Assume, for example, the branch instruction is in I5 and branch of 6 places
forward is desired. A branch forward from I5 is limited to 5 places

(from I5 to I0). The branch is therefore out of the stack. A similar
situation could exist for a backward branch, where the branch would be out
the "top" of the stack. The L - T network thus determines whether or not

a loop is possible with relation to the position of the Branch instruction.
This check is made by the (L - T) network which subtracts the result of

the R - P test (T) ffom the complement of the L register. Recall, that

the quantity, T, is in one's complement notation. That is, if the result
of R - P was negative, T is the complement of the difference; if the result

was positive, T is the true value of the difference.

If the result of R - P is negative and less than or equal to 7, recall that
bits 3 - 17 of the result are all ones. This condition will force a carry
into the L = T network. As will be seen, this causes the result of this
test to be true for negative values of T (an erroneous answer would result
otherwise). 1If the result of the R - P test is positive and less than or

equal to 7, bits 3 - 17 of the result are all ones. In this case, a carry

is not forced into the L - T network.

In analyzing the result of the L - T network it should be realized that
if the result is less than zero (negative), the branch will be out of the

stack. This is more obvious with forward branches than with backward.

In the case of forward branch the L - T network subtracts the number of
places we wish to branch from the I register number where the Branch
instruction is located (i.e. L yields I register number). Any result of

zero means the jump is to I0 (maximum forward loop).

Example: A branch from I4 forward 4 places.
L=3
T4 L=3 T =4
+4 _
S 10 L-T=4-4+0

Thus, a difference greater than or equal to zero indicates the branch is
forward less than the maximum number of places. (Incidentally, the condition
L-T _ zero is sufficient condition to branch forward in the stack (loop)
as we shall see shortly. A negative result (L - T 0) then implies the
out of stack condifion (negative is indicated Ey an End Around Borrow). In
summary of forward branches:

EAB to loop (in'stack

EAB to jump (out of stack)

A branch backward in the stack is not quite so obvious. It would be possible
to use the End Around Borrow condition to enable a branch backward in the

stack, but if this were the case the true value of T should be added to L.

23

Example: Branch backward 4 places from IZ.

L=>5
branch & places (T = 4 - true value)
16 T+T=2+4=6
4 places
Lz The result, 6, is positive
(EAB)

Note that a branch greater than 5 places backward from IZ would cause
overflow (End Around Borrow). f +T=2+6=10. Essentially the same
thing is accomplished by subtracting the complement of the desired number
of places to branch from L. (Since adding can be accomplished by
complementing and subtracting).

Using the same example as before:

L=35 (12)

T=3 (Complement of # places to branch)

T-T=2-3=2-(-4)=2+4=6 .
Note that since we are subtracting, (actual values: 2 - 3) an EAB will be

generated. In the case of negative values of T then, an EAB indicates

"in the stack” and NO EAB indicates "out of the stack'.

Actually, the L - T network operates somewhat differently from the previous
example indicated. Recall that if the R - P network generated a negative
result less than or equal to 7 (indicated by "all ones") a carry was sent
to the L - T network. This carry makes the LT - T adder a two's complement
netwérk. It thus forms the quantity expressed as follows:

L-T-=~carry = 1

(1 = result of L -~ T network)
1f the difference between R and P is positive (forward branch) the carry is

not used and the formula becomes simply:

T-T=1

24

The output of the L - T network (1) will be the true value of the I register
into which the branch is desired. If all branch tests are met, the output

of the L -~ T network will be complemented and sent to the L register,

replacing the old content of L (fecall that L holds the complement of the
I register number from which instructions are to be issued). The following
example should point out the need for two's complement arithmetic:

Assume that the branch instruction is in IZ and a branch backward

5 piaces (to 17) is desired.

Then: L =5, T=2

One's complement:

L-T=2-2=0
(The result indicates a branch to I0; wrong!)

Two's complement:

L-T- carry =

2-2-1=7

(The result is correct, indicating I7)
To summarize the L - T network, the following four cases are presented.
They apply, of course, only if the first consi&eration (IR - P1 _ is met.

1. Branch Forward In Stack

el 16 ‘ T =4 ‘
+4 all zeros to carry
1z
L=1
L-T=1

6 - 4 = 2 and EAB

(all zeros) * (EAB) to in stack

2. Branch Forward Out of Stack

T=26
)//,— 15 all zeros to carry
+6\; L=2

L-T=1
5-6=7andEAB
(all zeros) ° (EAB) to out of stack

3. Backward Branch In Stack

-6 T=1
_-- all ones to carry
11
L=2©6

L-T=1
1 -1 -~ carry = 7 and EAB

(all ones) * (EAR) to gate result (1 = 7) to the D - (L - T) network.

Note: Branch is out of stack, but not necessarily in stack. See
consideration #3.

4, Backward Branch Out of Stack

S/——é
N

T=2
all ones to carry

14

L=3

L-T=1

4 = 2 - carry = 1 and EAB

(all ones) * (EAB) to don't gate result (R = 1) to D - (L - T) network.

Branch is out of stack.

26

27

€-g°*, @and1g

aATIESdU Sem [JT 9nx3 I[NSaI SaNEJy

(qQEvMOvVe A1 TD¥0d)
*A94VD

T MEN 14S

Q-

#8911 =1

UOTIONIISUT Yyouexag L
Bur3noexs jou 3JI 38g

1 -1 -~ RAVEDVIQ 3007

ADVLS
NI o3

=g/ 2an31J

jyIomi9u I~ JO 3IInSax

XTIv0 QIvMNiove =
(11n3 03 0)
a .
(43dwe 03 /)
ulu
a
n0u ulu mﬂWMNV\ a+1
1
MOVLS NI 0L A¥¥VD
MOVIS A0 1IN0 Ol A¥dVD
1
*1

(1-1) - @ -- RVEOVIA ¥00Td

Tx

28

From the previous examples it was seen that the D - (L -T) test is
necessary for only case number 3 of the L - T test. With this case it was
determined that the branch is backward and within the limit of the physical
I registers (i.e. branch is not beyong I7). It is now necessary to

determine whether enough valid instructions exist in the I register.

Recall that each time an instruction was brought from memory into IO (RNI)
the stack was "Inched" and the D register decremented (D holds the
complement of the number of valid instructions). Thus, D = 7 indicates

an "empty!" stack; D = 0 a "full" stack.

In analyzing the formula, D - (L - T), recall that the result of the

L - T network yields‘the new I register number. Also, the complement of
the D register indicates the number of valid instructions in the stack.
From another point of view, D indicates the number of the I register which
holds the first valid instruction in the stack. For example, D equal to
one means there are six (D) valid instructions or that the first valid
instruction is in I6. Thus, we are actually sybtracting the number of the
I register to which we wish to branch (f - T) from the number of the
register holding the first valid instruction (D). If L - T is less than
or equal to D the difference will be positive (indicated by no End Around
Borrow). This means the branch is within the ranée of validvinstructions
and the "in stack" gate is enabled. If L - T exceeds D, we wish to branch
! to a register number greater than the one holding the first valid
instruction; in this case the.difference will be negative (indicated by an
End Around Borrow). Hence, the range of valid instructions has been

exceeded and the "out of stack" gate is generated.

29

In summary, only the End Around Borrow signal from the D-(L-T)
network is required. The presence of an EAB indicates "out of stack';

the absence of an EAB implies "in stack'.

Figure 7.8- is a flow chart of the In Stack/Out Stack tests. It is
intended as a logical, concise summary of the decisions made by the test

networks as explained in the preceding paragraphs.

30

7.8.5 UNCONDITIONAL AND TETURN JUMPS

Unconditional Jump (fm = 02)

The unconditional jump uses very little of the Branch Units'! logic. It, of
course, does not use the '"Condition Met" circuits nor does it use the "In

Stack/Out Stack!'" tests (since the 02 is always out of the stack).

Nothing prevents the use of the R - P compare network, but whatever the
result, it is not sent to the T register. The T register is therefore
always set and the out of stack (Jump) condition is always present. (Refer

to Figure 7.8~ during the following discussion.

The "Go branch" flip/flop (R37, TP4) is set by the translation "fm = 02"

(R37, pin 27) and "Release of Auxiliary Functional Unit." The same signal
enables P to MO which will result in the memory reference at location K + Bi.
The Go Branch flip/flop is ANDed with the conditions, WINGH" (P10, TP6) and
”O;t of Stack'". This combination of signals sets the Stop CP flip/flop which,
in combination with the RNI tag (10) Accepted, will generate the proceed.

The setting of Stop CP also sets L =7, D=7, and PK = 0. Hence, the next

instruction issued will be parcel zero of the Branch Address in memory.

Return Jump (fm = 01)

Although the Return Jump performs a function quite different from the
Condit ional or Unconditional Jumps, it shares some of the Branch Unit logic.
Recall that the 0l instruction stores in location K the following word:

59 30 29 0
0400 P+1 Ommmmmcmmmmmmem 0

31

It then transfers program control to location K + 1.

To perform these operations, the following events take place (Refer to

Figure 7.8-5)

1.

2.

Issuance of instructions is stopped as with any OX instruction.
The output of the Pinc;ementer (P + L) is sent to the S5 register
with the following gate:

(tag = 60) + (Issue) (Error)
The content of R (K = Jump Adderss) is sent to the P register with
the following gate:

(fm = 01)(P to MO)(Issue)
P is sent to MO with a 50 tag accepted (RJP or EM) and the memory
reference (write) is initiated at location K.~
When the tag = 50 is accepted, the content of the S register (P+1) is
gated to;memory. Also, bit 256 is set and the remaining bits in the
write distributor are cleared. Thus, the following word is stored

in location K.
59 48 47 30, 29 0
X)) = 0040 P+1

When the P to MO gate is generated address K is sgnt to MO and

the Enter Central and Program Address flip/flops are set thus
requesting hopper priority 2. The occurrence of P to MO gate

will clear the RTJ or EM flip/flop (Q04, T)1), cause the P register
td advance by one, and again set the Program Address and Enter

Central flip/flops, thus reQuesting hopper priority for address K + 1.

Since the RTJ or EM flip/flop was cleared, the tag sent to the

hopper with address K + 1 is a 10 tag (RNI) rather than a 50 tag).

an

generate
R-P

bits
3-17 all
ones?

3-17 all
zeros?

Send carry to
L-T
network

Gate bits 0 - 2
to
T register

e i
No l'
_Form
L-T
Yes
all in
zeros and Stack (Loop)
EAB? \ 4
No out
| 4 Pt of Stack
Jum
Figure 7.8-5 (Jomp)

33

Thus, when the address is sent through the Read Distributor, it
is gated to the Chassis 5 input register as an instrudion.

7. The proceed is generated as follows: The "Go Branch'" f£lip/flop
(R37) is set by term "X"* the unconditional Jump, the output of
the R - P network is not sent to the T register. T therefore
remains set and the Out Of Stack gate is always present. Thus,
the Jump gate is used to set Stop CP, which again sets L and D = 7,
PK = 0, and sets the Enable Restart flip/flop (F37, TP1l). Issue
is resumed when the tag = 10 is accepted by memory in the normal

fashion.

% Recall, that the Return Jump specifies the jump address és K (not K + Bi

as with the unconditional jump). There is no need therefore to start an
Increment Unit. Thus, the Auxiliary F.U. Release, which normally is used to
set "Go Branch" does not occur. Note, that term "X!" (R37) makes no reference

to an auxiliary functional unit - the translation is simply RTJ + EM.

34

,,,,,,,

7.8.6 NO BRANCH SEQUENCE

A "No Branch'" signal will be generated if a conditional branch instruction is

processed, and the branch condition is not met.

The Branch tests are made by an auxiliary functional unit (long Add for the
03X series instructions; Increment I or IT for the 04 - 07 instructions) which
sends the test results to the Branch Unit. The Branch Unit then determines
whether or not the condition has been met by ANDing the test results with

the translation of the opcode being processed. This occurs on module R37

(See Figure 7.8-). If the condition is met, the "Go Branch" (Jump or

Loop) flip/flop is set (R37, TP4). If the condtion is not met, the flip/flop

remains cleared.

The cleared state of the "Go Branch!" flip/flop disables the generation of
"Jump" or '"Loop'" gates. This is done since P10, TP3 (an AND gate) cannot
be made unless "Go Branch" is present. TP3 is needed for both Jump and Loop

sequences.

The No Branch sequence is enabled by the cleared state of "Go Branch'. If
the condition is not met, pin 8 of R37 will be a logical "1", This feeds .
an AND gate on Q04 (pin 17) whose second input (pin 15) comes from the
Auxiliary Functional Unit Release time delay (modules R30 and 31). When
both of these inputs are "ones!" the output of Q04, pin 21, will be a logical
zero. This output cleares TP6 Qn L14 (which is set every time 00). Ll4,
pin 17, enables the setting of R33, TP5, R33, pin 27, is used to disable
the L - T sequence during No Branch. Pin 25 sets L03, TP6 (via H24, TP4).
The Clear side of H24; TP6 (via pin 17) sends a "proceed" to Instruction Go

Control which resumes issuing instructions.

35

Note, that the L and PK registers are not changed by the No Branch sequence.

This means that the instruction following the branch is the next one issued.

36

7.8.7 LOOP SEQUENCE

Two conditions are necessary to initlate the Loop Sequence. 1) The branch
condition must be met. This is indicated by setting the "Go Branch'
flip/flop (See Figure 7.8- , R37, TP4). 2) The "In Stack" signal must

be present from the Branch Unit's In Stack/Out Stack testing logic.

Setting the "Go Branch!" flip/flop disables the No Branch sequence, since the
AND gate on Q04 (pins 17 and 15) cannot be made (see Section 7.8.6 - No
Branch Sequence). With "Go Branch" set, P10, TP3 will output a "aero" when
the Inch f£lip/flop (P10, TP6) is cleared (term "A"). This zero feeds an
"OR" gate which will output a "one'" on pin 19 of P10. Pin 19‘féeds an

AND gate on F33 (pin 26) whose second input (pin 24) says "In Stack". If
both of these signals are present, a Loop proceed is sent to Instruction

Go Control. Making the AND gate on P10, TP3 places a "one" on one of the

inputs to P10, TP2.

The Loop condition must also set the new value of L so that the proper

I register can be addressed. This is done by enabling terﬁ "G" on G28
(via F33, pin 28) which gates the output of the L - T network into the L
register for either the Jump or Loop case. (See Figure 7.8-).

Note: As will be seen, the Jump sequence will set L = 7 after setting
the new value of L. Thus, no problems arise by setting the new L for

both Loop and Jump cases. See Section 7.8.8.

The second input (from pin 2) says "RT5 + EM". If these conditions are
met, Test Point 2 will cause the transfer of R (contains the jump address,
K) to P. Note that this signal will occur in both the Jump and Loop

cases. This makes good sense, since the P register should "follow" the

37

program sequence even when 1t is executed "in the stack'". Note, though,
that the Program Address and Enter Central flip/flops will be set only for

the Jump case. Therefore, the RNI is not made during Loop.

Finally, the parcel counter must be cleared to insure issuing the first
parcel of the Loop program. This is accomplished with the "one!" output

of F33, pin 23 (Figure 7.8-).

Thus, parcel zero of the I register to which the branch was made is the

first instruction to be issued after the branch operation is completed.

........

38

7.8.8 JUMP SEQUENCE

The Jump Sequence is started if a conditional jump condition is met and the
branch .is out of the stack (as determined by the In Stack/Out Stack tests),
or if an Unconditional or a Return Jump is programmed. In any one of the

cases, an RNI for the next instruction must be made.

As with the Loop sequence, setting "Go Branch!' disables the No Branch
sequence since the AND gate on Q04 (pins 17 and 15) cannot be made. The
set condition of "Go Branch' allows P10, TP3 to output a zero when the inch
flip/flop (TP6) is cleared. TP 3 feeds TP 2 along with the RIJ + EM gate
from 016, pin 14. When both these conditions are present, the R register
(contains the Juﬁp address, K) is sent to P. The Program Address and

Enter Central flip/flops are set requesting hopper priority. When granted,
MO will be sent to Ml along with a tag = 10 (RNI), and the memory reference

will be started.

Pin 20 of P10 (translates as Go Branch ° Out of Stack) feeds pin 21 of
F37 (See Figure 7.8~) thus setting TP4. F37, TP4 in turn enables
setting the Stop CP flip/flop. This causes L to be set to 7, PK cleared,
and the Enable Restart flip/flop to be set. The proceed is thus delayed

until the tag = 10 has been accepted.

39

o —————

(194 "crie)
(LE0-e0)+ 20
So
ao(fazTe)
Lo (Far1g)
+0
3509 9y

‘Ng
XNy

—— e ——

KON

Y onsst (3825

40

JONINDIS 123713 HONvug |NOISIAID ¥3L1ndWOD
LINR HONvHg

HOSS3J004d TVHLNID | NOILVHOdNHOD
Yilva TOMLINOD

37414

] b3S 4007
anssi| 7193735 HoNvNE wv31D + dwnr
ro- e = — —— — —— ~| 0uLNO3D . |
|] ¥ONY3 + 30SSI LS |
|
" Sy Xxix=o) 10-g0=w}
| 0s9}
|
N .
_ v%; oot
. L
b3s | (L0-g0=uwy
IIIIII 4= [“.(3nssi agos)
[€7 52 T
| !
0as
[| |HONwuB ON]N
| o4 I x&ww b3as doon|
| N _ & + dWNT [(xa=s))(3nSsi agas)
|
| |o3s doon
[N + 4mne / L/ -
EXERELD] , k X0=1wj
[T
r [JeOxixx=0 | Lozss | (= anssi aaas
| | HONVHE |
1 12373s
| wouu3 +anssi | HINVHE
_ _ =1
Be4d
" _l O L — - q
| -0 - v |
z21 | - howiNos 09 1
. | | 1SN \\.uu AGY T8 h
¥LNGD I —_—
P~ 7/
d/4 - | _ 4
~ 431NNDD
> 4 - ' 130HYd HL
7 3svaay uan EI3
03s doo1 — — — - 1 XXX = 0
+ dRnr Lo o —
-

HOHH3 + 3INSSI

3sv3aTa¥ N4 xnv

W

3sv313y EONOT
XXX1=0

r———_——_———— = -

o

) HO¥H¥3 + 3NSS|

NI
021

41

il _ 101
S m.m..nm._,” o5 3ON3NDAS dOOT + dNne |NOISIAIG ¥3LNdNOD
Azn ‘ou_SMIAVEQ -w.- LINN HONVYHE NO! LYHOJH0D P
1099 ¥OSSIDOHd TYHLNID ._m -
13ncoud a1 VYiva TOHLNOD - ~
- \\ _
-7 |
- |
e —_
-7 . |
- _
-7 i !
P ! i
|
| |
| i
| |
I |
r - o> Ikladle{0Y O — =~ - ———— |
| |
L el |epe{(V)e0--—— — -~~~ —&3 " ousz |
|]
i 1£0-b€0 [LUSI1TH3ONT 9NOT “
mo=od S1S3L
" HONVHE Lonoinianos| I
i 1831 4N |
| =Wy |
" 1
i
=AU,
“ HONVYE : S1S3L g 1
[agy SNO1 _
||||||||||||||||| i
] | |
“ ! | |
1 |||I|~|x 39N3N03S " |
I [ouinod s N | (L-1-a | i
| drd b T A Ve - ' e 5 e e — | = [
| |
|
_ wa+ rad | 3onanoas | ! !
| Q =05 Tigwvua 09 4001 | " “ -
_ N T _ -
llllllllll | -
_ _ P‘ﬁ-o I _~" (3nsS1)Q33708d)(0b1NE=Dd)
FoNanoas | _ _ _ __ - L
| (=T} [HoNvyE oa]- | ‘. ER) Jdvig § ohaneas Iy
I 0iL3 AQY) 4 SN e I 5 -I0MLNOD
| y) v | 09 1SNI
| t ldvd [05 1SNI _ | !
{ 0HLNGD | e i |
| | 09 1s81I “ ® w\\\ - b 1
! _ v P _ I
! | - | i
I | - | | 1
- | | €7~ |
| 2 TOHINOD | - / | RN !
| LINN "HONI - ~ |
_ _ .) ! I g~ qouinos
— 7 103738 Wonvue| NI asy _
“ | Lo l) | 907 “ _
" J(x0=uy)y - i
| __ W | |{3nssI ‘08as) |:|L | d wva R |
| S oid 3ININO3S] |
! i 193735 i i
| L HONVHE X
_ ! !
I ! I “
| |
“ ! ! _
L " .
“ \
30N3N03S
133735
HoNvuE
3INING3S
193 13§
HONVHE
llllllllllll 3IN3N03S
||||||||||||||||||||||||||||| ——=-— 193135
w%_qwmﬁoww ESERE LRI 0 HONVHR

€l

cuUl
u:n:.!-

Alg

00€£61109¢ o

“om swimvaa] 3218

1099

1300084

‘03S dWNP '°D3IS 4007
‘JON3NDIS HONVHE ON
LINN HONVYE NOILVHO0d¥0D
HOSS3IDO0Hd IVHLINID viva TO¥LNOD

11111

NOISIAIG ¥31NndWOD

TOHLNOD 09 EELF

00}

‘HOX3 ON3

03§ d007
dnne + dwnr

[~ = m = = = m — e e L L
i
| P
| -7
i 25y
| :
| (3SVD dHNF) OH3Z == 0 S3IJ¥0L §
| 0 - d007 O 3ONVAQY S3lvo 8 .
{3SVD dWNF) OHIZ <= $30803 ¥
! 7 - (1=7) S3LYD ¥
i 3ININD3IS (1~1)-0a ONV 3JONINOIS (L-1) 335
! 310N
i
!
|
i
| .
AHVISI¥ IBYNT 13§ “
| HILNNOD | - AIVLS NI i ‘038
! T308vd Tt - o - - (1= -g
5d HvIT)
| 18vd
FOHLINOD = — o= = = — — — = —— — — — —— o Y Yo A
05 LSNI 0335084 d00T
T .
|
l
Q33204d HONVYE ON |
03§
|||||| 4 1om13s
103135 HONVEE | Lonvag
VIS (LT = — — — — - - -

I
i
|
|
|
!
I
i
|
|
|
I

HONVYE ON+HONVYE 09

433004d
HONVYE
ON

L84
30N3Nn03s dWar

v3s 4007
llllll W3+ 11U+ HONVEE 09 | + dwnr

3ON3INO3IS 4007

"03s 4001
HONVYE ON 13S + Jmne

JON3ND3S HONVHE ON

43

TIME (nsec.)

Branch Select
F38 - TP2

Clear Branch Select
F38 - TP2

Issue Auxiliary
Functional Unit

Set Read Flags
L02 -~ TP1

Go Read
L42, L4l

Increment Sequence
R31 - TP1

Increment Sequence
R31 - TP4

Increment Request
Release (E38)

Increment Request
Release (121)

Operands of JA
of Incr. Unit

Clear Increment Busy
G26, G27

Increment Sequence
R32

Increment Result to
JB (Adder output)

Branch Increment
(L21, TP6)

Auxiliary Unit
Release (H25 ~ TP5)

Branch Sequence
R31 - TPR3

Branch Sequence
R30 - TP3

Jump + Loop
(R37 - TP4)

R to P Enable
(P10 - Pin 1)

No Branch
L14 - TP

No Branch
R33 - TP5

Proceed (No
Branch)

Set M"Go"
G30 - TP1

% If Branch Test is met

next
issue

{¢

77

100

200

300 400 500 600 700

BRANCH UNIT TIMING

Figure 7.8-

800

15SUE
INSTRUCTTON
TO 1y

DISAHLE
el LYl
AND PRI

1S5UE
up TO Uy

Istor 1ssue !
YEST\NTIL L‘ONFLLCT{

|15 RESOLVED |
1

ISSUE 0X
INSTRUCTION
TO SCBD

v

| !

AUXILIARY “Go" TO R BRANCH UNIT
UNCT. INIT AUXILIARY R ___.| IN STACK/OUT
JLMP COND. 1T T oinveTToNAL R - STACK TEST
TEST SENUENT UNIT SEQUENCE
SEND_CARRY
TEST TOL-T
OPERAND(S) NETWORK
BITS GATE BITS
3-17 ALL 0-2- TO
ZEROS? T REGISTER
NO +
’,-J'J FORM
L-T
A 4
SEND TEST
KESULTS TO
BRANCH UNTT

S~

Is
iy
RINE:

(i

SOLLT NG BR,
a

a4 " IUMP "LOOP " A
FORCE: D 7 FORCE:
L7 PK -~ 0
PK - 0
RTOP SET Li=
p o MO =
0
u 1
T N
M0 To Ml
0 Ml To oM
F s
T
5 A
T l C
A K
4
< M TO IR
1R TO 10
NEXT
INSTRUCTION
FROM 10

(No
BRANCH)

"PROCEED"

FORM
D-(L-1)

BRANCH
FUNCTIONAL
UNIT

FLOW CHART

FIGURE 7.8—

RETURN JUMP BLOCK DIAGRAM

u2
17

U 1SSUE

R REGISTER
17

(52 T0 HL)(r_To MO)(ERROR + 01)

(ATTEMPT WRITE,RD TAGS) 4
(ATTEMPT READ-WRT TAGS)

(TIME IN INCR. SEQ.)

(INCR. RD OR WRT)
£TaeR o uh

cH.2 CH.2
____1IR FROM CH.5 XMIT
59 59
NOT USED DURING
Glt, 5 NCENTRAL CONTROL WR. " 58
o 57
(ERROR) (EXcii) > 6 36
55 CH. 16
34 -3]
t75 53 53
NOT USED DURING 52
YCENTRAL CONTHOL WRITEY 51
50
O o —
cH.5 49
F_REGISTER S RECISTER S N 48|
17 17 47 47
46
45
44
A CH.15
0O Pl 18 (9—O Ialﬂl.v
RTO P ENABLE P TO (ERCH) (£55;
{TAC = 60) +
(1SSUE) (ERKOR)
v
CH.14
o o 30 I O
+1 (29
(ERRGR) (EXCH) (01 - P To HO) A
NOT 4
USED
DURING 15 CH.13
UCENTRAL J 14
CONTROL y
WRITE"
STUNT _BOX
IIIIIIIIIIIIIIIIIIIIIIII -
|
i
| @
PRIORITY "
|
|
CENTRAL | A\
(40 To Ml) 1 ﬁ o
ul 1 R
TAG \
O T | 247
R
ﬁ(((.l. WN A | CENT.
NT. - CONTROL :
16V .n%l O S A) (TAG=50) (ACCEPT). WRITE
LG 1 F.F.
A i
o 1
INCR. I E
OR |
INCR. I1 i
Fi
“— ACCEPT

T
(4]

BN >0 < wOoRME

-

<mOoEm®

BN 0

O\

L . -
* 'y P2

