60471160

(G5 CONTROL DATA

COMMUNICATIONS CONTROL INTERCOM
VERSION 3

SYSTEM PROGRAMMERS

REFERENCE MANUAL

cpc® COMPUTER SYSTEMS
255X HOST COMMUNICATIONS PROCESSOR
255X NETWORK PROCESSOR UNIT
CDC®HOST NETWORK OPERATING SYSTEMS
NOS/BE 1

60471160 susr

(GB) CONTROL DATA

COMMUNICATIONS CONTROL INTERCOM
VERSION 3

SYSTEM PROGRAMMERS

REFERENCE MANUAL

cpc® COMPUTER SYSTEMS
255X HOST COMMUNICATIONS PROCESSOR
255X NETWORK PROCESSOR UNIT

cDC® HOST NETWORK OPERATING SYSTEMS
NOS/BE 1

REVISION RECORD

REVISION DESCRIPTION
A Initial Release
12/31/79

Publication No.

60471160

REVISION LETTERS i, O, Q AND X ARE NOT USED

Address comments concerning this
manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. O. Box 4380-P

Anaheim, CA 92803

©1979

by Control Data Corporation or use Comment Sheet in the back of
. . ,) this manual.

Printed in the United States of America

ii

LIST OF EFFECTIVE PAGES

D~]

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by bars in the margins or by a dot near the page
number if the entire page is affected. A bar by the page number indicates
pagination rather than content has changed.

Page Rev Page Rev Page Rev

Cover
Title Page
ii thru xiii
1-1 thru 1-19
thru 2-12
thru 3-6
thru 4-30
thru 5-29
thru 6-36
thru 7-26
thru 8-~13
=1 thru 9-6
0-1 thru 10-17
Il1-1 thru 11-28
12-1 thru 12-16
Index-1 thru
Index-13
A-1 thru A-1l1
B-1 thru B-5
C-1 thru C-21
D-1 thru D-14
E-1
FP-1/F=2
G-1 thru G-35
H-1 thru H-83
I-1 thru I-13
Comment Sheet
Mailer
Back Cover

mequhww
el S S R W

LI I ppprpoPPE PRI |

60471160 A iii/iv

PREFACE
““

This manual describes those externals of the Communications Control Intercom
(CCI), Version 3.0, necessary to aid a systems programmer in making. minor
modifications to standard CCI software. The manual also provides a ’
sufficient basis to understand those standard programs which interface to
any new terminal interface program which the user writes for a nonstandard
terminal. CCI is used with the CONTROL DATA® 255x Series Network
Processing Unit (NPU).

It is assumed that the reader is already familiar with CCI basic functions
and the role of CCI in network processing. If the reader does not have this
knowledge, he is referred to the CCI 3 reference manual which provides an
introduction to CCI functions.

It is recommended that the user be experienced with the PASCAL programming
language and the CYBER CROSS support system software. If the user plans to
write his own terminal interface program, he should also be familiar with
the state programming language.

CONVENTIONS USED

Throughout this manual, the following conventions are used in the
presentation of statement formats, operator type-ins, and diagnostic
messages:

ALN Uppercase letters indicate words, acronymns, or mnemonics either
required by the network software as input to it or produced as
output.

aln Lowercase letters identify variables for which values are
supplied by the host or terminal user, or by the network
software as output.

«». Ellipsis indicates that the omitted entities repeat the form and
function of the entity last given.

Square brackets enclose entities that are optional; if omission
[] of any entity causes the use of a default entity, the default is
under lined.
{} Braces enclose entities from which one must be chosen.
Unless otherwise specified, all references to numbers are to decimal

values; all references to bytes are to 8-bit bytes; all references to
characters are to 8-bit ASCII-coded characters.

60471160 A v

RELATED MANAULS

Additional information on both the hardware and software elements of the
CONTROL DATA 255x Series Computer Systems and the CCI and related software
can be found in the following documents:

Publication Title

Network Products
UPDATE Reference Manual

Macro Assembler Reference Manual
Mass Storage Operating System

INTERCOM Version 5
Reference Manual

Network Products

Communciations Control Intercom (CCI)
Version 3

Reference Manual

CYBER CROSS System Version 1
Link Editor and Library Maintenance Programs
Reference Manual -

Network Processor Unit
Hardware Maintenance Manual

State Programming Language
Reference Manual

NOS/BE Version 1
Operator's Guide
NOS/BE Version 1
Installation Handbook

CYBER CROSS System Version 1
PASCAL Reference Manual

CYBER CROSS System Version 1
Micro Assembler Reference Manual

CYBER CROSS System Version 1
Macro Assembler Reference Manual

Publication Number

60342500
60361900

60455010

60471150

60471200

60472000

60472200

60493900

60494300

96836100

96836400

96836500

These publications can be ordered from Control Data Corporation, Literature

and Distribution Services, 308 North Dale Street, St.

Paul, Minnesota 55103.

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of undescribed
features or parameters.

vi

60471160 A

CONTENTS
—

1. CCI OVERVIEW 1-1 Configure Terminal SM 2-11
TCB Reconfiguration 2-12
CCI Design 1-3 TCB Deletion 2-12
Priority Processing at the
Interfaces 1-3
OPS=Level Processing 1-4 3. FAILURE, RECOVERY, AND
Downline Message Processing 1-5 DIAGNOSTICS 3-1
Upline Message Processing 1-5
CCI Features 1-8 Host Failure 3-1
CCI Modular Structure 1-9 NPU Failure 3-1
CCI Programming Methods 1-9 NPU Recovery 3-2
Block Protocol 1-9 Halt Codes and Dump Inter-
Block Routing 1-13 pretation . 3-2
Point of Interface (POI) Line Failure 3-2
Programs 1-13 Line Recovery 3-2
.Direct and Worklist Calls 1-13 Terminal Failure 3=-3
"Direct Calls on Firmware Terminal Recovery 3-3
Level 1-15 In-line Diagnostic Aids 3-3
Special Call to Multiplex CE Error Messages 3-4
Subsystem 1-15 Statistics Messages 3-5
Special Call to Firmware
Interface 1-15
Communication Using PASCAL 4. BASE SYSTEM SOFTWARE 4-1
Globals (Tables) 1-16
Line Interface Handling 1-16 System Monitor 4~-1
CCI Programming Languages 1-18 Buffer Handling 4-2
Obtaining a Single Buffer 4-6
Releasing a Buffer 4-7
2. INITIALIZING AND Releasing a Single Buffer 4-7
CONFIGURING THE NPU 2-1 Releasing Several Buffers 7-7
Testing Buffer Availability 4-7
Initializing the NPU 2-1 Buffer Copying 4-7
Phase I Initialization 2-1 Other Buffer Handling
Phase II Initialization 2-2 Routines 4-8
PINIT 2-2 Timing Services 4-8
PIPROTECT 2-2 Direct Calls 4-9
PIBUF1 2-2 Worklist Services 4-10
PIWLINIT 2-3 Making a Worklist Entry 4-12
PIINIT 2-3 Extracting a Worklist Zntry 4-13
PIAPPS 2=-3 Basic Interrupt Processing 4-13
PIMLIA 2-3 Macrointerrupts 4-13
PILININIT 2-3 Interrupt Priority 4-14
PIBUF2 2=3 PBSMASK - Set Interrupt
Load and Dump NPU 2-4 Mask 4-14
Configuring the NPU 2-4 PBAMASK -~ And Interrupt
Configuring NPU 2-5 Mask (and PBLMASK) 4-14
Line Configuration 2-5 PBOMASK - Or Interrupt
Configure Line SM 2-6 Mask 4-14
Configure Line Deletion 2-10 User Interface 4-15
Terminal (TCB) Configur- Microinterrupts 4-16
ation 2-10 PASCAL Globals 4-17

60471160 A ' vii

Standard Subroutines
Calling Macroassembly
Langquage Programs from
PASCAL Programs
Defeating Type-Checking
in PASCAL Procedure
Calls
Handling Routines
PBFMAD - Converts from
ASCII Decimal to Binary
PBFMAH ~ Converts from
ASCII Hexadecimal to
Binary
PBMAX - Funds the Larger
Maximum of Two Numbers
PBMEMBER -~ Test ASCII
Set Membership
PBMIN - Funds the Smaller
Minimum of Two Numbers
PTOAD - Converts
Binary to ASCII
Decimal
PBTOAH - Converts Binary
to ASCII Hexadecimal
Maintaining Paging
Registers
PBSTPMODE - Sets Paging
Mode
PBPSWITCH - Performs
Page Switching
PBRDPGE - Reads Dynamic
Page Register
PBPUTPAGE -~ Write
Specified Page Register
PBGETPAGE -~ Reads
Specified Page Register
PB18ADD - 18-Bit
Addresses
PB18BITS - 18-Bit Address
Functions
PB18COMP - Compares Two
18-Bit Addresses
Block Functions
PBCLR - Clears a Block
of Main Memory
PBCOMP - Compares Two
Equal Length Blocks
Set/Clear Protect Bits
PBSETPROT - Set Protect
Bit
PBCLRPOT - Clear Protect
Bit
Miscellaneous Subroutines
PBFILEl - Load/Display
File 1
PBHALT -~ Stops the NPU
PBILL - Illegal Calls
PBLOAD - Load a User-
Defined Message
Program Execution Timers

viii

4-20
4-20
4-20
4-21

4-21
4-22
4-22
4-22
4-22
4-23

Console Support 4-27
General Peripheral Pro-

cessing 4-27
Console Support Services 4-28
Console Worklist Entry 4-29
Console Control Messages 4-29

S. MULTIPLEX SUBSYSTEM 5-1

Hardware Components 5-3
Multiplex Loop Interface

Adapter -

5-3

Loop Multiplexers 5-3
Communications Line

Adapters (CLA) 5-3

System and User Interfaces 5-4

System Interfaces 5-4
Multiplex Level 1

(Firmware) 5-4
Multiplex Level 2
{PMWOLP) ' 5=7

Multiplex Subsystem
Firmware Worklist

Entries 5-8
Command Driver Work-
list Entries 5-8
OPS Level 5-8
User Interfaces 5-9
Command Driver Interface 5-9
Clear Line Command 5-11
Initialize Line Command 5-11
Control Command 5-11
Enable Line Command
(KLENBL) 5=-12

Input Command (NKINPT) 5-15
Output Command (NKDOUT) 5-15
Input After Output

(NKINOUT) 5-18
Terminate Input
Command (NKENDIN) 5-19
Terminate Output
Command (NKENDOUT) 5~19
Disable Line Command
(NKDISL) 5-20
Common Multiplex Sub-
routines for TIPs 5=-21
PMWOLP, Multiplex
Worklist Processor 5-21
PTCLAS, CLA Status
Analyzer 5-22
CLA Status Overflow
Handling 5=~24
Modem Response
Timeout Handling 5-25
PLINIT, Line
Initializer 5-26

PMT1SEC, Output Data
Demand Timing Handler 5-29

60471160 A

6. NETWORK COMMUNICATIONS
SOFTWARE

Block Protocol
Address
Node
Connection Number
BSN/Block Type

Block Serial Number (BSN)

Block Types
BLK (Block) Block
MSG (Message) Block
BACK (Block Acknowledg-
ment) Block
CMD (Command) Block
Service Channel
Data Stream Control
Data Formats
Interactive Format Data
Batch Format Data
Nontransparent Data
Transparent Data
Routing
Directories
Destinations Node
Directory
Source Node Directory
Connection Directory
Routing Process
Alternating Directories
Service Messages (SM)
Internal SM Processing
Validating and Timing Out
SMs

Generating and Dispatching’

Service Messages
Configuring/Enabling/

Disabling/Deleting

Control Blocks
‘Generating and Sending

Status SMs

Line Status Request SM

Line Count Request SM

Terminal Status Request

SM
Generating and Sending
Statistics SMs
CE Error Messages
Common TIP Subroutines

Point of Interface Routines

(POI)
PBPIPOI, Post Input POI

PBIOPOI, Internal Output

POI

PBPROPOI - Preoutput POI
PBPOPOI - Post Output POI

Standard TIP Subroutines
Output Queuing (PBQlBLK
and PBQBLKS)

60471160 A

[=))
|
[

77997 TTTIIITIT
OO om-Jd- NN AN N

N
|

T
ot nd A L LN
o

6-12
6-12
6-13

6-13
6-13
6-13
6-13
6-16
6-16
6-17

6-17
6-18

6-18

6-19
6~-19
6-20

6-20

6-20
6-21
6-21

6-21
6-22

6-22
6-30
6-30
6-30

6-30

7.

Removing a Message Segment
From Queue PBGT1SET
Saving and Restoring

Registers

PBBEXIT -~ Save Rl and R2

PBAEXIT - Restore Rl and
R2

Interface to Text Pro-
cessing Firmware,
PTTPINF

Finding Number of Char-
acters to be Processed,
PTCTCHR

Saving and Restoring
LCBs, PTSVxLCB, and
PTRTxLCB

Common Return Control
Routine, PTRETOPS

Common TIP Regulation,
PTREGL

Set Logical Link Regu-
lation, PNLLREG

Set Accept Input/Accept
Output Flags, PTINIT

Discards Non-routable
Blocks, PBLOST

Upline Abort, PBUPABRT

Downline Abort, PBDNABRT

Send CMD Block to Host,
PTCOMMAND

Upline PRU Block Routing,
PBRTEPRU

PRU Block Routing,
PBRTEIA

Check to Find if Block is
to be Sent, PBBCHCHK

Generate Banner and Lace
Records, PTBANLACE

HOST INTERFACE PACKAGE
(HIP)

Transaction Protocol

Transfer Functions
Directives Used
Transfer Initiation
Transfer Timing
Error Processing

Host/NPU Word Formats
Coupler Interface Hardware

Programming

Coupler Register Use
Programming the Coupler By

Use of Function Codes
Host Function Commands
NPU Function Commands

HIP Functions

6-32

. 6=32

6-32
6-33

6-33
6-34
6-34
6-34
6-35
6-35
6-35
6-35
6-35
6-35
6-35
6~35
6-35

~ -3 qqrquq ~
OO WA HH

~
i

[wn

(=]

7-10
7=-12
7-12

ix

Single Word Transfers Carriage Control for Output

(Control) 7-12 Messages 9-4
Load/Dump NPU 7=14 Direct Calls to TTY TIP 9-4
Multiple Character Data Direct Calls from the TTY TIP 9-5
Transfer (3lock Transfer) 7-16 Error Processing 9-6
Contention for Coupler Use 7-17 Autorecognition 9-6
Regulation of Coupler Use 7-18 ’
Host Pailure and Recovery 7-18
Error Checking and , 10. MODE 4 TIP 10-1
Timeouts 7-19 :
Inter face Protocol Sequences 7-20 Hardware Considerations 10-1
Buffer Format 7-25 TIP Functions 10-1
HIP States 7-25 Terminal Interface 10-3
Terminal Addressing 10-3
Message Type Indicators 10-3
8. BINARY SYNCHRONOUS E Codes ; 10-3
COMMUNICATIONS (BSC) TIP 8-1 Code Conversion 10-3
- Host Interface 10-7
Operational Features 8-2 Interactive Interface 10-7
Remote Batch Facilities 8-2 Cursor Positioning 10-7
EOR/EOI 8-2 Carriage Control 10-8
Binary Codes 8-2 Upline Breaks ~ 10-8
026/029 Codes 8-2 Contention Resolution 10-9
Transparent Data 8-3 Card Reader Interface 10-9
Carriage Control 8-3 Printer Interface 10-9
Interactive Carriage Error Handling 10-12
Control 8-3 Short Term Error Pro- :
Punch Files , 8-3 cessing 10-12
Compression/Expansion 8-4 Long Term Recovery 10-13
Terminal Features 8-5 Handling of Errors for
Operational Characteristics 8-5 CDC 711 Terminal 10-13
2780 Input Nontransparent Duplicating of Write Data
Terminal Mode 8-5 on CRT 10-13
2780 Input Transparent Input Regulation 10-13
Terminal Mode 8-6 Autorecognition 10-14
3780 Input Nontransparent Mode 4 Protocol Features
Terminal Mode 8~7 Not Supported 10-16
3780 Input Transparent : Direct Calls to the Mode 4
Terminal Mode 8-7 TIP 10-16
Input Transparent Data Direct Calls from the Mode
Mode, 2780 and 3780 8-7 4 TIP 10-16
2780 Qutput Nontransparent
Transmission Mode 8-8 ,
2780 Output Transparent 11. HASP TIP 11-1
Transmission Mode 8-10
3780 Output Nontrans- Hardware Considerations © o 11-1
parent Transmission Major TIP Functions 11-3
Mode 8-10 HASP Protocol 11-4
Direct Calls to the BSC TIP 8-11 Terminal Operational
Direct Calls frem the BSC TIP 8-12 Procedure 11-6
Error Processing 8-13 Multileaving Block
Autorecognition 8-13 Descriptions 11-6
Control Blocks _ 11-6
Acknowledgment Block
9. ASYNCHRONOUS (TTY) TIP 9-1 (ACK) 11-6
Negative Acknowledge
Operating Modes 9-~1 Block {NAK) 11-7
Interactive Mode 9-1 Enquiry Block (ENQ) 11-7
Tape Mode 9-2

X 60471160 A

Idle Block (ACKO) 11-8 Punch 11-22

Control Bytes for Data Error Conditions 11-22
Blocks 11-8 CRC-16 Error (Cyclic
Block Control Byte (BCB) 11-8 Redundancy Checking) 11-23
Function Control Illegal Block Make-up
Sequence (FCS) 11-10 Error 11-23
Record Control Byte Unknown Response Error 11-23
(RCB) 11-10 Block Control Byte (BCB)
Subrecord Control Byte Error 11-23
(SRCB) 11-11 Regulation and Flow Control 11-25
String Control Byte Autorecognition 11-25
(SCB) 11-12 Direct Calls to the HASP TIP 11-26
Data Block Description 11-12 Direct Calls from the HASP
Operator Conscle Blocks 11-13 TIP 11-26
End-of-File Blocks (EOF) 11-13 HASP Postprint - 11-27
FCS Change Blocks 11-13
User Interface 11-14
Workstation Startup and 12. STATE PROGRAMS 12-1
Termination 11-14
Workstation Initialization 11-14 Execution of State Programs 12-1
Communication Line Classes 12-2
Initialization 11-14 Components of a State Program 12-4
Signon Block 11-15 Functions 12-4
Signoff Block 11-16 Input State Programs 12-5
Host Interface 11-16 Text Processing State
Configuration and Programs 12-6
Addressing 11-16 Firmware Interface to the
Console 11-17 Output Data Processing 12-7
Card Reader 1l1-18 Modem State Programs 12-8
Card Reader Non- Firmware Interface to the
. transparent Data Mode 11-19 Modem State Programs 12-9
Card Reader Transparent Multiplex Level Status
Data Mode 11-20 Handler (PTCLAS)
Printer 11-20 Interface to the
Printer Nontransparent Modem State Programs 12-10
Data Mode 11-20 Input State Programs
Printer Transparent Interface to the Modem
Data Mode 11-21 State Programs 12-10
Command Interface for Macroinstructions 12-10
the Printer ‘ 11-21 -
APPENDIXES
A Glossary A-1 F CCI Naming Conventions F-1
B CCI Mnemonics B-1 G Standard TIP and SVM
c Service and Command Trees G-1
Message Summary c-1 H Principal Data
D Block Protocol Summary D-1 Structure H-1
E Sample Main Memory I On-line Debugging Aids I-1
Map for NPU E~1
INDEX

60471160 A xi

TY TNy
H O W e

xii

Role of NPU in a Network 1-2
Prioritv and Nonpriority

Tasks in CCI 1-4
Downline Message Pro-

cessing 1-6
Upline Message Pro-

cessing 1-7
NPU Configuration

Sequence 2~-4
Line/Terminal Configur-

ation Flowchart 2=7
Format of CE Error,

and Statistics

Messages 3-3
OPS Monitor Table Format 4-4
Buffer Formats and

Stamping 4-5
Worklist Organization 4-11
Basic Elements of the

Multiplex Subsystem 5-2
TIP and Multiplex Sub-

system Worklist

Communications 5-5
Command Packet General

Format ‘ 5-10
Control Command Format 5-12
Enable Line Command

Format 5=-13
Input Command Format 5-16
Input After Output

Command Format 5-18
Terminate Input Command

Format 5=-20
Terminate Output

Command Format 5=21
PTLINIT Relationships

With Major CCI

Modules 5=-27

Communications Paths
for Block Flow Control 6-3

CCI Modules 1-10
Support Programs for

TIPs 1-11
Principal Data

Structures 1-17
Inline Diagnostic

Service Messages 3=5
OPS Monitor Table 4-3

FIGURES

6-2
6-3
6-4
6-5
6-6
7-1
7-2
7-3

7-4
7-5

7-6
7-7

10-1
10-2
11-1

11-2
11-3
11-4
11-5

12-1

TABLES

Data Block Header

Formats 6-4
Use of Routing

Directories 6-14
Simplified Routing

Flow Chart, PBSWITCH 6-15
Important Common TIP

Subroutines 6-23
Structure of a TCB

Queue 6-31
Coupler I/0 Trans-

actions 7-3

I/0 Transaction Con-
tention at the Coupler 7-5
OPS and Interrupt Levels

for the HIP 7-6
Coupler Registers 7-9
Host Interface Protocol

Sequence, NPU Side 7-21
Host Interface Protocol

Sequence, Host Side 7-23
Standard Data Block

Format Used by the

HIP 7-25
Mode 4 Protocol Message

Formats 10-4
MTI Codes for Mode 4 10-5
Typical HASP Multi-

leaving Data Trans-

mission Block 11-9
EOF Block 11-13
FCS Change Block 11-14
Signon Block Format 11-15
Format of Block

Control Byte (BCB)

Error Block 11-24
Locating a State

Process 12-3
Interrupt State Defi-

nitions (PBINTRAPS) 4-15
Interrupt Assignments 4~-16
Standard Subroutines 4-18
NPU Console Control

Commands 4-29
Multiplex Level 2

Worklists 5-6

60471160 A

5=2 TIP/TI.IP OPS level
Worklists
5-3 Optional Modem/Circuit
Functions
S5-4 PTCIAS Worklist
Analysis and Action
5-5 PTLINIT State Transi-
tion Table
-1 Block Types
2 Command Blocks Used on
Nonzero Connections
7-1 Coupler Status Register
Bit Assignment
7-2° Orderword Register
Codes
7-3 NPU Status Word Codes
7-4 Address Register Code
7-5 PPU Function Commands
7-6 NPU Function Commands
7-7 HIP States and
Transitions
8-1 Summary of Batch Car-
riage Control Symbols
8-2 Summary of Interactive
Carriage Control
Symbols
8-3 2780 Batch Carriage
Control Action
8-4 3780 Batch Carriage
Control Action
9-1 TIP State Transitions,
Interactive Mode
a-2 TIP State Transitions,
Tape Mode

60471160 A

9-2
9-3

11-4
11-5

11-6
11-7
11-8
12-1

Carriage Control for

TTY Output Messages 9-5
Mode 4 Nomenclature 10-2
Mode 4 Terminal/Cluster

Addresses 10-5
E~Codes 10-6
DBC Codes for Carriage

Control 10-8
Break Codes 10-8

Card Reader Input

Stopped CMD Blocks 10-10
Printer Carriage

Control Codes 10-11
Printer Input Stopped

CMD Blocks 10-11
HASP Workstation

Features 11-2
HASP Protocol Mnemonic

Definitions 11-5
HASP Significant EBCDIC

Characters 11-7
HASP Device Type 11-17
Card Reader Stream

Control CMD Blocks 11-18
Printer Data Stream

Control CMD Blocks 11-20
HASP Printer Carriage

Control Codes 11-21
Punch Data Stream

Control CMD Block 11-22
State Program Macro-

instructions 12-11

xiii

CCl OVERVIEW 1

This section describes Communications Control Intercom (CCI) on a conceptual
level. The description gives the programmer an overview of how CCI
functions in a Network Processor Unit (NPU). For a more complete
description of how CCI functions in a network, refer to the CCI reference
manual.

CCI provides the software necessary to process data (messages) through the
network communications portion of a Control Data network. The network
communication functions that are moved from the host (a CYBER 70/170) to the
NPU allow an application program in the host to process data as if the
program were connected to a virtual terminal that was connected directly to
a host port. Since virtual terminals must be either batch or interactive,
host processing becomes almost independent of terminal type.

The network communications tasks that have been moved into the NPU are of
four types:

) Multiplexing data to and from the terminals

° Demultiplexing data and storing it in buffers for buffered high-speed
transfers to and from the host

e Converting all terminal protocols into either an interactive virtual
terminal protocol or into a -batch virtual terminal protocol

° Regulating the volume of message traffic handled

CCI is divided into several major subsections to handle these tasks: (See
figure 1-1.)

° Base modules to provide NPU control and general services to other
major subsections

) Network communications subsystem modules (internal processor and
service module) to provide routing and network configuration services

® A host interface (HIP and coupler) subsection
® Terminal interface subsections for each major class of terminal

. A multiplex subsystem that provides the hardware and software
interface between the NPU and the various types of terminals

60471160 A 1-1

NPU M
c u
0 L
HOST N ip || INTERNAL S TERMINAL
ST 1 L PROCESSOR ",
E L
R 3
<|® ®
®]
U
[B L
s
Y
e 3 TERMINAL
E
M
HIP -~ HOST INTERFACE PACKAGE
SVM -~ SERVICE MODULE
TIP ~ TERMINAL INTERFACE PACKAGE M-753

Figure 1-1.

Role of NPU in a Network

60471160 A

CCI passes ASCII and display code messages to and from the host in format.
CCI passes messages to and from the terminals in a code and format
appropriate to the terminal. Downline messages (output from the host) are
switched to the proper terminal and translated from host to terminal format
and code. Upline messages are normally received From the terminals,
converted to host format, and passed to the host.

NOTE

A transparent mode is available. 1In this case, the message
remains in the terminal code and format throughout the
network.

CCi DESIGN

CCI can be classified as a responsive (driven) system rather than an active
system. The external stimuli that drive the system come (1) from the host
in the form of downline messages and commands and (2) from the terminals in
the form of upline messages. At the two principal interfaces (Host
Interface Package, HIP, on the upline side; multiplex subsystem on the
downline side), hardware and firmware do much of the preparation for a
message or command transfer.

PRIORITY PROCESSING AT THE INTERFACES

At the interfaces, CCI is largely interrupt-driven and operates at priority
levels. Interrupts are processed immediately unless a higher priority task
is already being performed. The interrupt can be processed completely at
that time. However, many tasks take so much time that it is preferable to
defer part of the task processing until later. This is done by generating a
worklist that defines the parameters for the task and then queuing that
worklist (task request) to the module that must process it. The multiplex
subsystem works this way and has its own worklist processor to schedule the
appropriate modules at a priority level.

The principal priority tasks, in order of decreasing importance, are as
follows:

Memory errors

Multiplex loop errors

Host coupler events

Real-time clock count

Output data demands (multiplex subsystem)

Input data frame received (multiplex subsystem)

The output of the priority level is either a message that the NPU can route
to the specified destination, or a command for the NPU which CCI interprets
to change its own. processing mode.

Some major modules operate largely on the priority level (the multiplex
subsystem, for example):; others have portions that operate on a priority
level while the remainder of their processing is on a nonpriority (OPS)
level (HIP, Terminal Interface Package (TIP), for example). A few of the
major modules do almost all of their processing on the OPS level (internal
processor and service module).

60471160 A 1-3

OPS-LEVEL PROCESSING

When no priority tasks are pending, CCI processes OPS-level tasks. There is

an OPS Monitor that assigns tasks by scanning all the nonpriority

worklists. These worklists are queued to one or another of the major system
modules. Each of these major modules (such as a TIP, HIP, internal
processor, or the service module) has its own internal worklist scanner that
determines the exact task to be performed on the basis of a workcode in the
worklist. '

OPS-level worklists can originate either from a priority task or from
another nonpriority task. For example, a downline message from the host is
first handled on a priority basis as the HIP and the coupler set up to
receive the message and actually input the message into the assigned buffers
in the NPU. When the message (or part of a message called a block) has been
completely received, CCI is ready to process it. This block is passed on a
nonpriority basis to the internal processor with a worklist. The internal
processor routes the block to the proper TIP with a worklist. The TIP
passes the message (still at OPS level) to the multiplex subsystem. The
multiplex subsystem sets up the transfer on the OPS level and then outputs
the message to the terminal, one character at a time, on a priority basis.

Figure 1-2 shows the processing levels for most of the major modules.

MULTIPLEX
f HIP SUBSYSTEM TIPS
REAL-
PRIORITY COUPLER I/0 PROCES- | STATE
TIME CLOCK | |NTERRUPT |SING (WORK-| PROGRAMS
HANDLING | LISTS) (ASYNC 1/0)
TIMED R
EVENTS MODULE | MULTIPLEX | wopyLe
(DELAYED CONTROL SUBSYSTEM CONTROL
NONPRIORITY OR CONTROL
(OPS LEVEL) PERIODIC)
OPS MONITOR INTERNAL SERVICE
BASE MODULES PROCESSOR MODULE
M-379

Figure 1-2.

Priority and Nonpriority Tasks in CCI

60471160 A

DOWNLINE MESSAGE PROCESSING

Downline interactive messages originate in the host in blocks, each block
usually being one output line. It is assumed that the interactive mode is
conversational; that is, a line output is followed by a reply of one input
line entered from the terminal's interactive device. The interactive device
at the terminal is always ready for output unless the connection of the
terminal is preempted by batch transfers or by an input interactive

message. The output block is passed to the Host Interface Program (HIP) and
is handled as a batch mode Physical Record Unit (PRU) block. See
description, following.

Downline messages originate serially from the host in blocks. A block is a
full message or one part of a message treated as a unit. The block is
passed to the NPU via the HIP, which is responsible for all transfers across
the coupler. (See figure 1-3.) The HIP passes the block to an internal
processor, which examines the block header to gain information about the
terminal receiving the message. Each category of terminal is serviced by
one of the Terminal Interface Programs (TIPs). The internal processor
passes the message to the appropriate TIP.

The TIP processes the message (translates it to terminal code and format)
and passes the message to the command driver in the multiplex subsystem.
Before this, the host (through the TIP) must have requested the multiplex
subsystem to prepare the line connecting the NPU to the terminal for a
transmission.

At the multiplex subsystem, the output message block is multiplexed, along
with other message blocks being transmitted to the terminals, and sent to
the terminal one character at a time. Actual timing of the character
transmission depends on an output data demand (ODD) signal sent by the
communication line controller (consisting of the communications line adapter-
(CLA)) to the NPU. An output data processor in the multiplex subsystem
handles this activity. The host is informed of message transmission
progress twice: first, when the complete block is accepted by the NPU; and
again after the block is transmitted to the terminal.

UPLINE MESSAGE PROCESSING

Upline messages (input to the host) originate at the terminals and are sent
one character at a time to the input loop of the multiplex subsystem. An
input processor picks up all characters and stores them in a temporary
buffer called the circular input buffer. The TIPs are responsible for
furnishing the multiplex subsystem a set of programs that are used to
demultiplex the data into line~-oriented input buffers. Code and format
conversions are performed along with the demultiplexing. Since block size
is a CCI/host build-time parameter, any message that exceeds the maximum
block size is divided into blocks. Each block is then treated as a separate
message unit by CCI. The message is converted from terminal code and format
to host format. (Note that a transparent mode is also available for
messages.) After a complete block has been assembled, the multiplex
subsystem notifies the appropriate TIP, which finishes processing the
message. Then the TIP passes the message block to an input Point of
Interface (POI) program. That program transforms the batch blocks to PRU
blocks and then passes the block to the HIP by way of an input Point of
Interface (POI) program. The HIP, in turn, passes the block to the host.
Terminals are notified of processing progress according to the demands of
the terminal protocol. Figure 1-4 shows simplified upline message
processing.

60471160 a 1-5

HOST c MESSAGE
> 1 |9 HOST MESSAGE TRANSLATION O ER
~ U ROUTING AND CONTROL
| PPU P »| INTERFACE [—»{ (NTERNAL ["] (TERMINAL »| MULTIPLEX
L PACKAGE PROCESSOR) INTERFACE v
R PACKAGE)
TIP
A
MLIA
TP OUTPUT
MULTIPLEX
LOOP
NETWORK PROCESSOR UNIT
TERMINAL | @ @ @ | TERMINAL
M-376
Figure 1-3. Downline Message Processing
1-6 60471160 A

TERMINAL

\ .
=== r--
l
. | mpur | JCIRCULAR H_ I b:
. | i, [¥1INPUT -> | |
. | LOOP |BUFFER l:[‘:* 1 b »{ INTERNAL .
: [b J “o T »| PROCESSOR
TERMINAL || __.JJ_. >
LINE-ORIENTED
INPUT v
BUFFERS
HIP
NETWORK PROCESSOR UNIT
b
COUPLER
[PPU |
|
“INPUT POI PROGRAMS TRANSFORM UPLINE HOST

BLOCKS TO PRU FORMAT.

Figure 1-4.

60471160 A

Upline Message Processing

M-377

CCl FEATURES

CCI provides several message processing features:

) TIPs and Point of Interface (POI) programs relieve host application
programs of needing to handle terminal protocols. The TIPS and POIs
convert messages to and from host code (display for batch devices)
for the host.

° Block protocol relieves the NPU and the host of upline message length
restrictions. Any size input message is accepted; when the normal
maximum number of input characters has been received (2048 bytes
including NrPU-added header bytes), the block is declared full. It is
processed for shipment to the host, and another block is started.
Blocks are designed so that the only block, or the last block of a
message, is clearly designated (MSG type block).

° The multiplex subsystem provides hardware and software which makes
the terminal hardware characteristics invisible to the TIPs. The TIP
needs to know only the terminal type.

o The NPU regulates its input (rejects incoming messages) under one of
several conditions:

The entire NPU is short of assignable space (buffers) for message
processing.

An individual TIP is using too many buffers at any one time.

An accept input/accept output flag is being set by the NPU or by
the host.

Message priority is lower than the current logical link
regulation level,

"In this way, the NPU rejects messages directed to it when those
messages might cause peak loading problems severe enough to stop the
NPU.

° Priorities exist so that time-critical tasks can interrupt non-time
dependent tasks. The time-critical tasks are concerned with either
the multiplex subsystem (input and output processing at the lines to
the terminals plus various errors that occur during this processing)
or the NPU console. Since the console is rarely used, these latter
interrupts have minimal system impact. The lowest priority is not
interrupt-driven. It is called the operations (OPS) level. Most
processing occurs on the OPS level.

° Programs are written in PASCAL or using state programming
instructions. (A few frequently-used routines are written in
macroassembly language.) There is no correlation between language
used and operating priority. PASCAL was chosen for its simplicity of
use and because it is an effective language for manipulating table
entries. Much of the CCI processing depends on information saved in
tables. The OPS level of any program (TIP or otherwise) uses PASCAL
code. '

1-8 60471160 A

For some purposes, it is more effective to write code on the firmware
level (also called multiplex-level processing). State programming
instructions are used for this. Such programs demultiplex data and
translate code and format. Every TIP has at least one firmware level
program: an upline input state program. Most TIPs also have at
least one downline firmware level program: the text processor for
translating host code to terminal code and format.

The HIP does not use firmware programs directly. Several of the
general support programs that are written in macroassembly language
contain portions that are written in firmware. These programs should
not be altered by any user.

. Three methods of communication between modules are provided: direct
calls, queued calls (using worklists), and setting global variables
in tables, which are then accessed by other programs.

CCl MODULAR STRUCTURE

CCI can be considered as a group of generalized modules that provide
services for the TIPs, which interface the terminal protocol to the host
(block) protocol. Terminal-oriented programs are called Terminal Interface
Packages (TIPs). The modularization of CCI is shown in tables 1-1 and 1-2.

CCI is always resident in the NPU. It is downline loaded from the host.
After loading is complete, additional communications between the host and
CCI configure all the tables that hold line and terminal-oriented
information. See appendix E for a sample CCI load map.

CCl PROGRAMMING METHODS

CCI provides the interface for the network between terminal protocols and
the host (block) protocol. It also provides multiplexing to match the
high-speed block transfers at the host interface with the low-speed
character-by-character transfers at the line interfaces to the terminals.

BLOCK PROTOCOL
Block protocol defines three principal types of block:

] BLK and MSG blocks carry data. No block can have more than 2048
bytes. The host is responsible for block size downline; the TIP
input state programs and internal process are responsible for block
size upline. MSG blocks carry a full message or the end of a
message. BLK blocks carry all segments of a message except the last
or only segment.

® CMD blocks carry commands and status. The service module (SVM)

handles generalized commands. Some commands can also be directed to
and from TIPs, to start or stop a data stream for a specific terminal.

60471160 A 1-9

] BACK blocks carry communications protocol information, such as
acknowledgment that is sent to the terminal that downline messages
have been received from the host, and acknowledgment that upline
messages have been received by the host.

Each block header has information relating to routing: source/destination
nodes (SN and DN), which are related to the host and NPU, and a connection
number (CN), which is related (through directories) to lines and terminals.

Data (BLK and MSG) blocks have an additional header, which contains control
information and includes a data block clarifier (DBC).

Internal processing handles downline routing by use of the directories.
Upline, the originating terminal is known. Using this information, the
multiplex subsystem passes the block to the appropriate TIP. The input POI
provides destination code information during upline routing, since this data
is to be shipped to the host.

TABLE 1-1. CCI MODULES

Module Major Function Normal Calls

Terminal-Oriented
Mode 4 TIP Handles synchronous Mode 4A/4C

terminals. PT4...
TTY TIP Handles asynchronous terminals

using teletypewriter protocols. PTTY...
HASP TIP Handles synchronous HASP) {HS...

workstations. HASP...
BSC TIP Handles the bisynchronous

protocol used by IBM 2780/3780

terminals. various
Host-Oriented
Host Interface Handles block protocol between
Program (HIP) host and NPU; transfers use

the host coupler. PTHIP...

1-10 60471160

TABLE 1-1. CCI MODULES (Contd)
Module Major Function Normal Calls
General Support
Base system Includes a monitor, timing,
standard subroutines, NPU
console services, and task
calls (worklists). PB...
Mul tiplex Part of the base system;
subsystem contains command driver and
input/output multiplex loops.
The multiplex subsystem con-
sists of hardware, software,
and firmware. PM...
Network Message routing, service
communications messages, and common TIP
subroutines (including POIs). {PN...
This group of modules also PT...
handles upline formatting
of blocks to PRU format.
TABLE 1-2. SUPPORT PROGRAMS FOR TIPS
Programs Location?t Comments
Host Interface Program (HIP)
GENERAL SUPPORT
Operating system B (Includes program
execution, space
allocation, and
interrupt handling)
Worklist handling B Interprogram task re-
quests
Timing services B
Standard subroutines B

60471160 A

1-11

TABLE 1-2. SUPPORT PROGRAMS FOR TIPS (Contd)

Programs Locationt Comments

Host Interface Program (HIP)

Internal processor maintenance B Building directories

Command driver . M

OQutput data processor (ODP) M

Input data processor (IDP) M

Other multiplex

subsystem routines M

Message routing N

Service module, SVM B Handles most commands
between host and NPU

TIP support) N Includes Point of

: Interface (POI)

programs, block
handlers, regula-
tion, and command
block generator

Inline diagnostics N

NPU consale services B

Initialization programs Released when
initialization is
complete

B = Base system

M = Multiplex subsystem
N = Network communications

All host/NPU transfers are controlled on the NPU side by the HIP. The HIP
operates either by coupler interrupts or at OPS-level. The HIP does not
process blocks except to the extent that it assures that a complete block is
sent or received. The HIP can reject a request to send an input block
unless enough buffers can be assigned to receive the entire block at the
time the transfer is requested. No effort is made to re-receive or
retransmit portions of a block.

1-12 60471160 A

The service module (SVM) handles most commands between host and NPU other
than those to start and stop a data stream. For service messages, the
connection number (CN) is zero. For downline commands, the SVM processes
the command (such as entering fields in a terminal~-related table) and
returns an acknowledgment service message to the host. In processing a
service message, SVM can call on a TIP or on one or more other support
routines.

Commands to start or stop message transmission on a line are sent directly
between the host and the appropriate TIP. 1In this case, CN is not zero.

BLOCK ROUTING

Block switching downline is done by internal processing. Almost all blocks
are passed to the receiving program (TIP, or SAVM) using a worklist entry.
Invalid blocks are discarded. Upline blocks are routed by internal
processing to the host (directly or through the local NPU), or, in rare
cases, to the NPU console.

POINT OF INTERFACE (POI) PROGRAMS

From the standpoint of the TIPs, there are certain protocol requirements
that each TIP must fulfill both upline and downline. Common POI programs
are provided for these tasks.

] PBIOPOI - internal output POI. Downline block switching is handled
by the PBIOPOI. This POI checks the block serial number to assure
that the block is in sequence. If it is a batch block, the TIP is
called directly to convert the PRU block to a block in terminal
code/format; then queues the block to the TIP or SVM for further
processing.

° PBPOPOI - postoutput POI. This downline POI generates an
acknowledgment to the host that the block has been transmitted to the
terminal, It alsoc gathers statistics for the transfer.

° PBPIPOI - postinput POI. These POIs handle the upline block by
building the block header. If it is a batch device block, the block
is reformatted to PRU format. This is done by gathering the data
buffers together to form a PRU size block (note: the UPs have already
converted the data into display code). In all cases, the block is
routed upline immediately, or is queued for upline routine.

) PBPROPOI - preoutput POI. This POI sets up table information for
downline transfers.

DIRECT AND WORKLIST CALLS

Direct calls can be made from any PASCAL program to any other PASCAL
program. At the OPS level, direct calls are freely made between routines of
the same kind (such as SVM routines or TIP routines within the same TIP).
Calls are also made freely from the SVM, a TIP, and the HIP to support
routines (base and network types). : ,

60471160 A 1-13

Direct calls pass task-oriented information in either of two ways:

® Information can be stored in one or more fields of PASCAL tables
(data structures). The called program is expected to find the table
and the field.

® A small parameter list may accompany the call. This type of list is
ordinarily restricted to a few pointers and/or numbers. In this
manual this type of call is depicted as:

MNCALL parml,...parmn

MNCALL is at least the first six characters of the entry point
name. Parml...parmn are the associated parameters. Parameters
can be omitted, but the delimiting commas cannot (exception:
terminating comma(s)).

Calls between types of routines (such as a call from a TIP to the SVM or the
reverse, or a block switching call) are usually made with worklists.

A worklist is a packet of information about the requested task. Worklists
are queued on a first in, first out basis to those few modules designated to
receive them. Those modules are the following:

TIPs

HIP

SVM

Internal processox

Timing processaor

Multiplex loop interface adapter interrupt processor
NPU console handler

All of the named modules execute at the OPS level. Worklists are also
queued for certain priority routines in the multiplex subsystem (multiplex
level). A worklist is considered to be an event that requires CCI to take
appropriate action.

The monitor scans the list of OPS-~level programs to find the next event
(task) that must be processed. It then passes control to that module
together with the worklist. The worklist contains a workcode that most
receiving modules (such as a TIP) use as the index to an internal switch
determining the module entry point appropriate to the requested task.

The multiplex subsystem has its own worklist processor which runs at
multiplex level (priority 3). The worklist processor handles the following
functions:

Communications line adapter status

Qutput buffer transmitted

Buffer threshold reached in multiplex subsystem
Unsolicited input or output on a line

Bad communications line adapter address

Illegal frame format

Timeout of output data demand (ODD)

Termination of input .

CE error message generation

Hardware errors

Calling the TIP at OPS level for further processing

1-14 60471160 A

The event workcodes in the worklist define the internal switching for the
multiplex worklist processor.

DIRECT CALLS ON FIRMWARE LEVEL

Input state programs and text processing programs can branch during
processing. The branching calls are embedded in the code. Whenever state
programs are suspended for any reason (such as finishing processing on the
current input character and having to release control until the next input
character is available for processing), the state programs save a pointer to
the next entry point in a global table (NAPORT, MLCB, or TPCB: these are
defined later). When firmware processing resumes, the appropriate table is
checked for the pointers to the firmware entry point. Since the table is an
OPS-level data structure, the pointers can be readily used by software on
any priority level, as well as by firmware.

SPECIAL CALL TO MULTIPLEX SUBSYSTEM

TIPs or SVM call the multiplex subsystem directly, to save processing time.
This call to the command driver (PBCOIN) has a special parameter list called
a command packet. Information in this packet is used by the multiplex
subsystem to set up the table controlling this message transfer (MLCB).
During the transfer, additional information is added to the MLCB, and all
programs concerned with the transfer (whether software or firmware) refer to
the MLCB for transfer control information. The MLCB for the transfer is
released when the transfer is completed.

SPECIAL CALL TO FIRMWARE INTERFACE -

A support routine (PTTPINF) is called directly by the OPS-level TIP when
firmware-level text processing is to be done. All text processing for a
block occurs in a single pass, although PTTPINF returns to OPS level (within
itself) frequently so that interrupts can be processed. (While processing
on the firmware level, interrupts are inhibited.) For text processing, the
OpPS-level TIP defines a table to control the transfer (TPCB) and fills all
the necessary fields before calling PTTPINF. The firmware accesses TPCB for
control information and adds status information used by the OPS-level TIP
after PTTPINF returns control to the TIP. The TPCB is discarded by the
OPS-level TIP when the text processing is completed.

NOTE

Space is reserved in the TPCB for the contents'of the first
16 microprocessor file 1 registers. This provides 16 full
words for communication in addition to the words already
defined in the TPCB.)

60471160 A 1-15

COMMUNICATION USING PASCAL GLOBALS (TABLES)

Instances of communications between modules and between different levels of
programs (OPS level/firmware level) have already been cited: worklists,
MLCBs, TPCBs. Use of PASCAL globals (tables) is a way of passing
information between programs or saving information for later use. CCI
defines several major data structures as shown in table 1-3. Some of these
are defined temporarily, to be used only for one task (such as sending a
message block to a terminal) or for one sequence of tasks (such as defining
terminal information from the time when the line is enabled until the line
is disabled). A few structures are defined permanently. Even permanent
structures may need to be reconfigured each time the NPU is downloaded from
the host.

All principal data structures are defined in appendix H.

LINE INTERFACE HANDLING

Much of the line inte;face is the responsibility of the multiplex subsystem.
Important aspects of message transfer are as follows:

® Setting up the communication line adapter (CLA) for the transfer is
accomplished by a command originating in the host and passed to the
command driver via the TIP that controls this type of terminal
{line). The whole process can be started by a signon from the
terminal. Low-speed lines can use autorecognition features (part of
the TIP code) to establish line speed and code type.

) Polling synchronous Mcode 4 lines for the next input character is
initiated by the command to start polling, which originates in the
host. The TIP, however, determines the exact moment of sending each
successive polling message. The line polling message is passed to
the terminal via the multiplex subsystem. It is a timed output so
that failure to supply another input character in the specified
period is treated as a hardware error.. Unsolicited input characters
are also treated as hardware errors.

. The NPU may reject input when the entire NPU is running out of
buffers.

) Output data is sent to the multiplex subsystem as a block of data in
terminal format and code. The output processor sends each character
in response to an output data demand (ODD) interrupt from the CLA.
This is a timed operation. If the ODD request does not appear in one
second, this is treated as a hardware error.

° The multiplex subsystem has limited error recovery logic. If the
attempt to send or receive a character fails n times, the line is
declared down and the TIP and SVM are called to take the appropriate
internal action and to notify the host of the line failure.

1-16 60471160 A

TABLE 1-3. PRINCIPAL DATA STRUCTURES

Structure

Major Functions

Principal
Users

Block format

Service message
formats

Console request
packet

System buffers
and buffer
control block
{BCB)

Worklists,
worklist
control block
(WLCB)

Timing tables

Logical link
control block
({LLCB)

Line control
block (LCB)

Terminal
control block
(TCB)

Command packet
(NKINCOM)

60471160 A

Provides vehicle for NPU-to-host
communications.

Part of block format; passes commands,
status, and statistics between NPU and
host. '

Controls transfer to and from NPU
console.

Controls space for processing. BCBs
locate assignable buffers in each of
four pools of assignable buffers.
Nominal buffer sizes are 8, 16, 32,
and 64 words (2 bytes per word).

Make major task request calls from
module to module. WLCB locates work-
lists queued to a single module.

Provide periodic and delayed calls;
some timing is embedded in LCBs.

Directory information and regula-
tion level; one static block per link.

Line-related information, timing,
pointers to TIPs and terminal-related
structures (TCBs); statistics informa-~
tion for the line; one static block
per line.

Terminal-related information, includ-
ing terminal and device type, cluster
and terminal addresses, statistics,
pointers, and flags for data in the
current transfer. Dynamically
assigned when terminal is configured;
released when line disabled or termi-
nal deleted. :

Controls information for a multiplex
subsystem I/0; builds the MLCB.

All modules

SVM, all
modules

Base
modules

Base modules;
all modules
use buffers

Base modules:;
all modules
that call
other modules

Base modules;
TIPs, SVM

Routing- mod-
ules, SVM

SVM, timing
module, TIPs,
HIP, multiplex
subsystem

SVM, TIPs,
HIP, multiplex
subsystem

Sent from
initializer,
base or TIP
to multiplex
subsystem

1-17

TABLE 1-3.

PRINCIPAL DATA STRUCTURES (Contd)

Principal
Structure Major Functions Users
Port table Current line (port) status; pointers Multiplex
(NAPORT) to MLCB and state programs controlling subsystem
a transfer at the multiplex port; one
static entry per line.
Multiplex line Controls information for a message Multiplex
control block transfer to and from a terminal major subsystem
(MLCB) device used by OPS level and firmware
level (input state programs) to
exchange information. Dynamically
assigned for a single block transfer
(downline) or message transfer (upline).
Text processing Controls information for converting Responsible

control block
(TPCB)

code and format (downline or second TIP
pass upline) of data blocks; dynami=-
cally assigned for a single block.

TIP-type table TIP-related addresses. SVM, base
modules

Line table Defines principal characteristics of Multiplex

a line. subsystem
Modem/CLA Defines modem and communications line Multiplex
tables adapter physical characteristics. subsystem
Terminal/device Defines physical characteristics of Multiplex
type tables terminals and devices at a terminal. subsystem

The generation of the ODD and polling messages, and the use of worklists for
calls is sometimes referred to as an event-driven processing system.

Physical positioning of CLAs in the loop multiplexer card cage generates a
preferential processing scheme. Since only one line frame (input or output)
is on the multiplex loop at any one time, the CLA farthest from the loop
multiplexer has first chance to use the loop. As viewed from the front, the
loop multiplexer is in the next to last slot on the right-hand side of the
cage (the last slot is not used). The CLA which has first chance to use the
loop is in the leftmost slot, and is the half of the CLA card associated
with the switches for the top half of the card.

CC! PROGRAMMING LANGUAGES

Commonly-used base programs, especially those with firmware portions, are
written in macroassembly language for speed of execution. These programs
should never be altered in the field. Such programs are listed in an
assembly listing.

1-18 60471160 A

OPS-level support programs, most priority-level multiplex subsystem
programs, and the OPS level of each TIP are written in PASCAL language.
Altering these programs can require altering the data structures (tables)
that these programs use to store and pass programming control information.
These programs are listed in an MPEDIT listing and are especially usable in
a PASCAL EDIT XREF listing.

NOTE

These programs can escape directly to firmware processing
using the PASCAL INST instruction together with the firmware
address of the firmware program.

The firmware parts of the TIP are called input state programs or text
processing state programs. The multiplex subsystem has special firmware
programs called the modem state programs. These are used to process
CLA-generated status. If this status word occurs, it is usually in the same
frame as an input message character.

These programs are written using a predefined set of macroassembly language
macroinstructions called state instructions. These programs are called in
one of three ways:

° A direct call from the internal processor to PTTPINF for a text
processing program.

L] An event-driven call, triggered by the placement of data in the
circular input buffer, to the modem state programs.

°® A call from a modem state program to an input state program.

The firmware programs communicate with the multiplex subsystem by releasing
control (input state programs or modem state programs) and by storing
information in data structures. Worklist calls can be made to the OPS-level
and multiplex-level multiplex subsystem programs, or the OPS-level or
multiplex-level TIP. (Multiplex-level calls to the TIP are ordinarily
immediately converted to OPS-level calls to the same TIP.)

Text processing programs communicate with the calling TIP by releasing

control and by storing information in the TPCB. Worklist entries to the
OPS-level TIP can also be made.

60471160 A 1-19

INITIALIZING AND CONFIGURING THE NPU 2

_

This section describes the loading, initializing, and configuring of the NPU.

Before the CCI can be loaded into the NPU, the host must prepare the load
file. Two cases of load file preparation in the host must be considered.
The normal case assumes released installation tapes and the associated
installation materials. Use the techniques described in the NOS
installation handbook (see preface) to generate a CCI load file and to
update a load file using corrective code release (CCR) tapes.

The special case occurs when the user initiates his own changes to CCI.
This case assumes the use of a system configqure file (SCF) or the
equivalent. New modules sometimes have to be generated and prepared as
change tapes. 1In all cases, changes may need to be made to the SCF itself
and to the CCI tables. Table changes are normally entered by MPEDIT
Statements. Such changes should be made only by qualified analysts.
Consult the CDC publication index for TIP Writer's Guide bulletins.

Assuming a load file is ready, a three-step process is used to make the NPU
into a fully operational network node:

) Dumping the contents of the failed NPU to the host. This is an
optional procedure but is normally used. If the user has purchased
network maintenance from CDC, a host application program is available
for a quick analysis of the dump. Refer to the CCI reference manual
for standard dump formats. If the user has not purchased this
maintenance, he should devise his own programs to make the dumps
readily available for later analysis.

[]

Loading the NPU from the host. A special overlay loading capability
is available for the dump/load process.

e Configuring the NPU by specifying the network logical link, line, and
terminal connectipns for this NPU. ,

INITIALIZING THE NPU

Initialization takes place in two phases: the first to load and initijalize
the micromemory; the second to load and initialize the macromemory.

PHASE | INITIALIZATION
BEGINA starts initialization after the following occurs:
The macromemory is downline-loaded with the phase I load file.

°
® The host sends the start signal.
® The processor starts execution at location 00003¢ (routine BEGINA).

60471160 A 2-1

BEGINA first executes PIRAM to load the firmware microcode into the
micromemory. Then BEGINA calls PIEX to send a coupler idle status to the
host. CCI loops while waiting for the phase II load file.

PHASE 11 INITIALIZATION

The system initialization routine (PINIT) receives control after the
following occurs: :

e The phase II load file is downline-loaded into the NPU.
) The host sends a start signal.
° The NPU starts execution at memory location 00001g (a jump to

routine BEGINX). BEGINX loads general-purpose registers 1 and 3 with
parameters for dynamic stack management (used during initialization

of recursive routines). Register 1 contains the dynamic stack last
word address; register 3 contains the dynamic stack first word
address.

° BEGINX executes the PASCAL routine MAINS. This routine disables
interrupts, loads the interrupt mask, and calls PINIT.

PINIT

PINIT controls the remaining macromemory initialization. The routine resets
the deadman timer for host transfers, sets the page registers, and zeroes
the page mode. It then calls each of the other initialization routines.
Before each routine is called, a specified bit is set in the initialization
status word. This word can be checked for debugging purposes if the
initialization procedures fail. (See CCI reference manual.) The routines
are called in the sequence given in the following paragraphs.

PIPROTECT

PIPROTECT sets memory protect bits. Before setting or clearing these bits,
PIPROTECT calls PISIZCORE to determine the last addressable memory location
and the last word of the buffer area. The protect bits are cleared from
every buffer word and set for all other words. Use of the protect system
prevents DMA devices from writing into any area but buffers. The protect
system can also be used with the Test Utility Program (TUP) for debugging
purposes. (See appendix I.)

PIBUF1

PIBUFl starts buffer initialization. PIWINIT is called to determine DN
limits, and to allocate the first node in the DN table to the NPU's local
node. The IDLNK and IDTBL tables are allocated and initialized, as is the
ORG DN table. An entry to TUP is allowed if the TUP option has been
selected.

2-2 60471160 A

PIGETABLE calls PILCBS to create port and circular input buffer tables. The
PIGETABLE determines the pointers to the timer, port, LCB, and subLCR
tables. SubLCBs for the MLIA, console, and coupler are initialized, and the
first LCB is also initialized. The address variables for these subLCBs are
then filled.

PIBUFl sets the address limits of the buffer area and calls PIFR1 to
initialize the file 1 (firmware) registers. A 256-~word array is used.
Dynamic values are assigned FFFF1¢. Any nonused registers are set to
zero. PBEF transfers the array contents into the file 1 registers. Next,
some file 2 registers are loaded using assembly language (INST) commands.

Finally, PIBUFl initializes the buffer maintenance control block. For each
buffer size, the pool boundary is forced to an even boundary, each word in
the buffer area is cleared, each buffer is released to the pool, and the
normal buffer threshold is set.

PIWLINIT

PIWLINIT initiates worklists. Each active worklist is allocated one
worklist-sized buffer. The put and get pointers are set. Zero-sized
worklists are assumed to be inactive: a default size of three is used but no
buffer is assigned.

PIINIT

PIINIT sets the NPU console to the write mode so the CCI banner message can
be displayed. PIINIT also sets up the branch-to-low-core halt routine.
This routine consists of 14 no-op instructions followed by a jump to
PBHALT. The routine starts at memory location 0000;g. WNext, PIINIT sets
the time of day clock to the operator-assigned value (month, day, hour,
minute, second).

PIAPPS

PIAPPS initializes any trunks in the system, using the LIP. The banner
message is sent to the NPU console.

PIMLIA

PIMLIA initializes the MLIA and the CLAs. The routine checks for duplicate
CLA addresses. If any are found, PBHALT is called. The system is also
halted if the MLIA cannot be initialized correctly.

PILININIT
PILININIT sets up the multiplexer and coupler timing services by adding the

MLIA and coupler subLCBs to the list of active LCBs. The data buffer size
is set up for the coupler. The deadman timer is reset.

PIBUF2

60471160 A 2-3

PIBUF2 clears and releases the last of the data buffers. The real-time
clock is started, the NPU jnitialized message is sent to the host,

interrupts are enabled, and the deadman timer is reset. PIBUF2 passes
control to PBMON (the OPS monitor routine), to start normal operation of CCI.

LOAD AND DUMP NPU

A detailed description of loading and dumping an NPU, whether a local or
remote unit, is given in the CCI 3 reference manual.

CONFIGURING THE NPU
After loading and initializing the NPU, the host configures it by
establishing all logical links and logical connections for that NPU. This
is done in the following sequence:

® Logical links (LL) are configured by building the LLCB.

o Lines are configured by building the line LCBs.

) Terminals are configured by building the TCBs.
See appendix H for the definition of the data structures known as LLCB, LCB,
and TCB. Format for the service messages to configure the LLCB, LCB, and

TCB are given in appendix C.

Figure 2-1 shows the sequence of configuring the NPU and the service
messages and blocks used for the operation.

HOST NPU

Configure line service message o Repeat for

Line-configured service messade each line in

A

Enable line service messaqge the system.

v

Line-enabled service message

A

Configure TCB service message > Repeat for
. TCcB-configured service message each terminal
INIT block > in the system.

o INIT block

Figure 2-1. NPU Configuration Sequence

2-4 60471160 A

A logical connection is the association of two stations made by the
assignment of a network logical address. The network logical address is a
set of three numbers: two node IDs, followed by a connection number.
(Refer to Block Protocol portion of section 6.) The two node IDs represent
the nodes at which each station interfaces to the network. The order in
which they appear in the network logical address specifies the direction of
the connection (the destination node appearing first, then the source
node). The connection number specifies a full-duplex logical channel
connecting the stations. Connection number zero is reserved as a permanent
service channel for service messages.

CONFIGURING NPU

After the NPU is loaded, the host configures the unit by establishing all
logical links and logical connections for that NPU. (Note: 1In CCI the
links are preconfigured.) This is done in the following sequence:

. Lines are configured by building the line control blocks (LCB).

° Terminals are configured by building the terminal control blocks
(TCB) .

Refer to appendix H for the definition of the data structures known as LCB
and TCB. Format for the service messages used to configure the LCB and TCB
are given in appendix C.

A logical connection is the association of two stations made by the
assignment of a network logical address. The network logical address is a
set of three numbers: two node IDs, followed by a connection number.
(Refer to block protocol portion of section 6.) The two node IDs represent
the nodes at which each station interfaces to the network. The order in
which they appear in the network logical address specifies the direction of
the connection (the destination node appearing first, then the source
node). The connection number specifies a logical channel connecting the
stations. Connection number zero is reserved as a permanent service channe
for service messages.

The NPU sends an NPU-initialized service message to the host to notify it
that the NPU has entered this active state.

LINE CONFIGURATION

After loading the NPU, the host sends service messages to the NPU to
configure the lines between the NPU and the terminals. These configure lin
service messages are handled by the service module in the receiving NPU.
The format of the service message is shown in appendix C.

Line configuration requires sending the following line control block (LCB)
information to the NPU in the FN/FV pairs:

e Port ID for the line.

60471160 A

1

e

) Host identifier.

° Line type - includes type of duplex, CLA, modem, carrier circuit;
answering and turnaround mode; and type of transmission, synchronous
or asynchronous. '

] Terminal type (TIP/sub-TIP required to process the terminal's data,
device type, and terminal class).

° Data necessary to fill the seiected fields of the line control block
(LCB) .

Processing of each line is governed by fields in the LCB. The format of the
LCB is shown in appendix H.

A simplified flowchart for line configuration is shown in figure 2-2.
Terminal configuration consists of configuring the terminal control block
(TCB). TCB configuration is shown on the same diagram, to emphasize the
fact that a network cannot use the terminal until both of the terminal's
associated LCB and TCB are configured. After configuration, the following
events occur:

° The host can identify the terminal. The host can also find the
proper regqulation level to use.

L) CCI can identify the protocol necessary for the data transfers and
can assign a proper TIP to handle that protocol.

. The hardware in the CLA and modem are prepared for data transfers.

After a line is configured, it is automatically enabled by the service
module. This allows the line to be monitored. Normal response is made,
using the enable line service message response message. When the line is
reported operational, TCBs are configured. The host starts the line
configuration process whenever an NPU has been locaded and all links are
configured, or when a network operator has entered a command that generates
a specific type of supervisory message in the host.

Configure Line SM

For each line to be configured, the host sends a configure line service
message to the NPU connected to that terminal. All configure SMs contain a
control block descriptor string (FN/FV). There is one such descriptor
string for each type of configurable block in the NPU. The descriptor
string equates a field number to a field position within the control block,
and allows the associated field value to be entered into that field.
Additionally, an optional action can be defined for the field number. The
action allows such operations as validating the field value, assigning
chains to other structures, and other actions appropriate to the newly
entered field. The service module returns a line configured response to the
host. The host then sends an enable line service message to the NPU. The
service module then attempts to enable the configured line. At the
completion of the enable process, the line enabled response SM is returned.

2-6 60471160 A

Figure 2-2,

60471160 A

HOST SENDS
CONFIG _INE
SM TO NPU

\ 4

NPU SENDS LINE
CONFIGURED
RESPONSE

y

HOST SENDS
ENABLE LINE
SM TO NPU

OPERATIONAL
?

CONDITION
MODEM FOR
OPERATION

Line/Terminal

\ 4

NPU SENDS
LINE STATUS
SM TO HOST:
LINE INOP-
ERATIVE

TED STATUS
MESSAGE

ON UNSOLICH

DISCONNECT ‘

y DELETE
DISCONNECT DELETE
LINE SM LINE S5M
TO NPU TO NPU
A
NPU == HOST.

LINE DELETED
SM

M-756

Configuration Flowchart (Sheet 1 of 3)

SWITCHED, DEDICATED, SWITCHED,

W/O AUTO- WITH AUTO. WITH AUTO-
DEDICATED, | RECOGNITION RECOGNITION RECOGNITION
W/O AUTO-
RECOGNITION
W NPU == HOST ¢ NPU == HOST ¥ NPU - HOST ¥ NPU = HOST
SEND LINE SEND LINE s . LINE ENABLE
ENABLE SM: ENABLE SM: -yl SM WITH
LINE OPERATIVE WAIT FOR AING o WAIT FOR RING
PROCESS
A v
RING 1N BIALIN
IDIAL-IN) OCCURS
OCCURS
\ 4
NPU SENDS y Y
UNSOLICITED PERFORM PERFORM
LINE STATUS AUTO. AUTO-
SM TO HOST RECOGNITION RECOGNITION
LINE OPERATIVE

M.757

Figure 2-2. Line/Terminal Configuration Flowchart (Sheet 2 of 3)

60471160 A

HOST —» NPU

CONFIGURE
TCB SM

P NPU + HOST

TCB
CONFIGURED
SM

3

TERMINAL
REMAINS
CONFIGURED

LINE/MODEM
FAILURE

CHANGE

OF STATUS
?
HOST
INTERVENES
HOST + NPU
DELETE TCB
SM
w NPU + HOST
p NPU -+ HOST UNSOLICITED
LINE STATUS SM
TCB DELETED LINE {NOP.
SM ERATIVE

M-381

Figure 2-2. Line/Terminal Configuration Flowchart (Sheet 3 of 3)

60471160 A

The response message contains a reason code. If the response is normal, the
code specifies either that the line is enabled and operational, or that the
line is enabled but must wait for ring indicator/autorecognition results.

If the response is an error type, the reason code specifies the type of
error.

The four normal types of response messages correspond to the four major line
types:

e ° Dedicated line, no autorecognition

o Switched line, no autorecognition

° Dedicated line, autorecognition

) Switched line, autorecognition

The response to configuration of a dedicated line is line enabled (1) if the
modem of a dedicated line indicates data set ready, and (2) if (for a
constant carrier) both clear-to-send and data-carrier-detect are on.
Otherwise, line inoperative is reported.

Line operational is reported if autorecognition is not specified. A
30-second timer is started if autorecognition is specified. If no response
is obtained within the 30 seconds, the TIP responds with
line-not-operational; the host then disconnects the line at the earliest
opportunity. If a response is obtained, line operational is reported,
containing the results of autorecognition.

The response to configuration of a switched line is line enabled, if a ring
indicator is present. This normal response is generated immediately. Line
enabled with no ring indicator is generated immediately, if no ring
indicator is present. This is followed by a line operational SM when a
dial-in connection occurs. At this time, ring indicator is signaled and the
NPU returns a data-terminal-ready to answer the call. 1If, when ring
indicator is signaled, the host or logical link is not available, the NPU
ignores the dial-in.

Autorecognition/non-autorecognition is the same for switched lines as it is
for dedicated lines.

CONFIGURED LINE DELETION

The delete line SM changes the LCB status to not-configured. CCI also
releases all TCBs for the line. The delete line SM is also treated as a
positive response to an unsolicited line inoperative SM.

TERMINAL (TCB) CONFIGURATION

When the line is operational, the host can configure terminals for the line
by issuing one or more configure terminal service messages. CCI responds to
the configure terminal SM by generating the TCB. The amount of information
in a TCB varies, depending on terminal type.

A TCB can be built only when a line is enabled and operational. The block

remains in existence until a delete terminal SM, a disconnect SM, or
delete-line SM is processed.

2-10 60471160 A

Terminals are identified in service messages by specifying the line, the
hardware address, device type, and terminal class. Cluster and terminal
address ranges are as follows (in hexadecimal):

Cluster Address Terminal Address
Mode 4A 70-7F 60
Mode 4C 70-7F 61~-6F
TTY 0 0
HASP 0 0-7
BSC 0 0-1

TA = stream ID of device: console = 1, card reader = 0-7, printers = 0-7,
punches = 0-7.

Punch only. All other devices = 0.

The hardware address varies with the protocol being used by the terminal.
Mode 4A can have one or more cluster controllers on a line, but only a
single console terminal on the cluster. Mode 4C can have one or more
cluster controllers per line, and one or more console terminals per

cluster. The TTY TIP does not support any terminal addressing capability.
The HASP TIP uses the terminal address as the stream number and does not use
the cluster address. For HASP, the device type is combined with the
terminal address to form the hardware identifier. Card readers and line
printers can use the full range of stream number, but plotters must share
the range with card punches.

A single line can have numerous terminals and therefore numerous TCBs. Each
terminal has its own TCB, and each TCB is normally established at the close
of the intialization process.

Configure Terminal SM

The configure terminal SM requires the service module to configure the TCB.
Message parameters include terminal address, cluster address, device type,
and FN/FV pairs, such as were defined for the configure line SM. The FV
values are used in the specified fields of the TCB.

The service message is sent to the NPU by the host as the result of a line
operational SM received and processed by the host. As in the configure line
service message, the FN/FV pair designates the field number and the value to
be used in the field, and has an optional action associated with entering
the field in the TCB. The SVM sets the fields in the TCB, as directed.
Ranges for the FVs are given in appendix C.

A response SM is sent to the host indicating whether the fields were set or
not. :

60471160 A 2-11

TCB Reconfiguration

Terminals are reconfigured to establish or delete a logical connection
number in an existing TCB, or to reinitialize the block protocol on an
existing logical connection. This occurs when the host detects a need to
establish or change a connection or modify other values in the TCB.

The format of the reconfigure terminal SM is similar to that for the
configure terminal SM, except that the subfunction code (SFC) differs. The
resulting operation in the NPU is the same, except that the TCB should
already exist. The TCB is modified as specified in the SM. The response
formats are the same as those for the configure terminal SM.

The reconfigure terminal SM provides a general mechanism for the host to
control terminals. Any action required coincident with the field change is
also provided by the reconfiguration mechanism. If the toggle bit setting
in the host ordinal byte doces not change, an error response is generated.
If the connection number is not zero, the block protocol is initialized or
reinitialized on the connection.

TCB DELETION

When the operator requests that a terminal be deleted from the network, the
host sends a delete terminal SM to delete the TCB and to clean up all table
and data space associated with the TCB. CCI removes the connection from the
logical connection directory. The service module responds to the host with
a TCB-deleted SM. The host is responsible for correctly deleting both ends
of a connection.

Format of the delete terminal SM is similar to that of the configure
terminal SM (above) except the SFC code differs and there are no FN/FV pairs
in the message. Normal response format is similar to that of the reply to
the configure terminal SM response.

2-12 60471160 A

FAILURE, RECOVERY, AND DIAGNOSTICS 3

Failure and recovery of CCI depends on a number of factors:

® Host failure - If a host fails, the NPU and its software stop message
processing.

® NPU failure - If an NPU fails, it must be reloaded and reinitiated
from the host. Off-line diagnostic tests are useful during this
period to help identify the cause of failure.

® Line failure - Lines are disconnected and terminal control blocks
associated with the lines are deleted.

) Terminal failure - Terminal status is reported and message is
discarded.

To aid recovery and to assure dependable network operations involving the
CCI, three sets of diagnostic programs are available:

) In-line diagnostics - These include CE error and alarm messages,
statistics messages, halt code messages that specify the reason for an
NPU stoppage, and off~line dumps.

®. Optional on-line diagnostics - These tests allow checking of circuits
to terminals, and are available only if a network maintenance contract
is purchased.

® Off-line diagnostics - These hardware tests for NPU circuits are
described in detail in the Network Processor Unit Hardware Maintenance

Manual.

HOST FAILURE

If the NPU fails to receive a coupler interrupt within 10 seconds, the NPU
assumes a host failure and declares the host is unavailable. (See HIP
description, section 7.) The NPU also sends an informative service message
to all connected interactive terminals.

NPU FAILURE

The peripheral processor unit (PPU) of the host has a l0-second deadman
timer. 1If the PPU connected to the NPU fails to receive an anticipated input
or an idle response during this period, a timeout occurs. The host declares
the NPU dead, and the NPU dump and load (or load only) operation is entered
to start NPU recovery.

60471160 A 3-1

NPU RECOVERY

The host dumps and reloads an NPU after receiving a request for load. The
stimulus for this reload comes from the host PPU driver. The reasons for
requesting a load are as follows:

) Software failure caused PPU hardware deadman timer to expire.
° Hardware failure caused deadman timer in the PPU to expire.
° Operator initiated a software halt, forcing reloading.

° Operator pressed MASTER CLEAR on the NPU maintenance panel, causing a
reload request.

After n successive attempts to load, the loading operation is aborted. The
NPU is thereafter ignored until manually reactivated. After the NPU is
successfully loaded and initialized, the host sets up all logical links for
that NPU that the present state of the network allows. The methods of
loading and initializing NPUs are described in the CCI 3 reference manual.
The host examines its configuration tables for elements that have been
affected by the change in status. Then the host configures and enables
lines that are supported by the NPU. PFor any line reported as operational,
an examination of the configuration tables reveals those terminals that can
be connected. For each such terminal, both the terminal and the host
support tables are configured and thereby connected.

HALT CODES AND DUMP INTERPRETATION

Unless the NPU stoppage resulted from a host failure or was initiated by
operator action, some fault in the NPU caused the failure. If a dump is a
normal part of the reloading cycle (and the network is normally set up so
that it is), a dump is sent to the host. The CCI 3 reference manual
describes the mechanics of transmitting the dump. Appendix B of that manual
(Diagnostics) describes the format of the dump and its interpretation with
or without the use of halt codes.

LINE FAILURE

Line failure is detected by abnormal modem status or by line protocol
failure. The change of status is reported to the host using an unsolicited
line status reply SM. The host deletes all TCBs supported by the line using
the disconnect line service message.

LINE RECOVERY

A line cannot recover from a failure spontaneously. The host must first
process the unsolicited status reply (line inoperative) SM by deleting the
supported TCBs. The host then disables and reenables the line, using the
appropriate service message. At this time, the TIP/HIP commences to check
for a change in status. When the line status changes to operational, this

is reported to the host with an unsolicited line status reply SM (line
operational). When the host receives a message indicating that line status
has changed to operatiocnal, it attempts to configure the supported terminals.

3-2 60471160 A

TERMINAL FAILURE

Where the protocol is capable of determining terminal status, the protocol
maintains records of such status. Terminal failure status is reported to
the host for network management purposes. An unsolicited terminal status
reply (terminal inoperative) SM reports the failure.

Undeliverable traffic is discarded. The logical connection is not broken on
terminal failure.

TERMINAL RECOVERY

When terminal failure is detected, possible terminal recovery is monitored.
Typically, this is performed by a periodic status or diagnostic poll from
the NPU to the terminal. Terminal recovery status is reported to the host
with an unsolicited terminal status reply SM. The host replies with start
message to the TIP, allowing transmission for the terminal to begin.

IN-LINE DIAGNQOSTIC AIDS

Three tyvpes of in-line diagnostic aids are provided with CCI:

"e CE Error SMs. These messages, which report individual hardware
errors, are sent to the host engineering file. Such messages should
be examined periodically.

€ Statistics SMs. These messages, are optional periodically for each

B NPU, line, and terminal. Statistics SMs are also generated when
frequent errors cause the error counters for the device (statistic
block counters) to overflow. All statistics SMs are sent to the host
engineering file. These messages should be processed and displayed
periodically.

e Halt messages, dumps, and dump interpretation. When the NPU stops, a
halt message is sent to the NPU console. This message contains a
code indicating the cause of the halt (a halt message indicates the
NPU came to a soft stop; in a hard stop situation, the message cannot
be generated), and the dump should be examined. The dump will
disclose the program in control when the halt command was generated.
Dumps are part of the initialization process and are discussed in
detail in appendix B of the CCI 3 reference manual. Dump
interpretation is described in appendix B. Note that the halt
message is delivered using PBQUICKIO; the message does not use an SM,

Format of the SMs used to generate alarm, CE error, and statistics messages
are given in appendix C. The basic format of all three SMs is shown in
figure 3-1. : :

Byte 1 2 3 4 5 6 .
DN SN CN BT PFC SFC Data (one or
more bytes)

60471160 A _ 3-3

DN - Destination node
SN - Source node, the originating NPU
CN - Connection number, 00 = services messages
BT - Block type, 04 = CMD (see section 6)
PFC - Primary function code
OA - CE error or alarm
07 - Statistics
SFC - Secondary function code
00 - CE error message, with PFC = OA

0L - Alarm message)
gg : NPU statistics with PFC = 07

02 - Terminal statistics

Trunk/line statistics ‘
DATA - (see table 3-1)

Figure 3-1. Format of CE Error, and Statistics Messages

CE ERROR MESSAGES

This category of diagnostic service message reports the occurrence of
hardware-related abnormalities. This includes all NPU-related hardware
(coupler, MLIA, loop multiplexers, CLAs), and (indirectly) all connected
hardware: modems, lines and terminals. The creation of the service message
is separate from and in addition to the statistics accumulated in the NPU
and periodically dumped to the host.

To prevent swapping the NPU or host with error messages when an oscillatory
condition arises, an error counter is incremented for each error message
generated. When the counter reaches the limit specified at build-time, the
event is discarded rather than recorded. The counter is periodically reset
to zero. This period is another system build-time parameter.

Six types of CE error messages are used. The types and text portion of the
messages are in appendix B of the CCI 3 reference manual.

3-4 60471160 A

TABLE 3~1. INLINE DIAGNOSTIC SERVICE MESSAGES
Message PFC SFC Data Bvtes
CE Error 0A 00 First: Error Code (EC)+
Subsequent: data (if any) - up to 27 bytes
NPU 07 00 Error words 1 thru 117 ; 2 bytes/word
Statistics
Line 07 0l First: p - portl
Statistics Second: 00
Third: 00 ‘
Subsequent: explanation words 1 thru 4;
2 bytes/word+
Terminal 07 02 First: P - port
Statistics Second: 00
Third: CA - cluster address
Fourth: TA - terminal address See appendix C
Fifth: DT - device type for values.
Sixth: CN - connection number
Subsequent: explanation words 1-3,
2 bytes/word

TRefer to appendix B of the CCI 3 reference manual for details.

STATISTICS MESSAGES

Three forms of statistics messages are used:
statistics, and terminal statistics.
engineering file.

NPU statistics, line
Each type is sent upline to the host
The host does not reply to statistics messages.

Statistics data is placed in the statistics block for the appropriate device
(coupler TCB for NPU, LCB for lines, TCBs terminals) by a call to PNSGATH.
The call comes from either a TIP (usually via the post-input or post-output

POI) or the HIP.

60471160 A

One stimulus for a statistics report is a request from the timer module
PBTIMAL. The period for this timeout is a system build time parameter.
PNPSTAT handles the periodic request. Two other stimuli cause PNDSTAT to
generate the message: one stimulus arises when any one of the counters that
keeps the statistics overflows. 1In that case, the message for the NPU,
line, or terminal is immediately generated. The other stimulus arises when
a line disconnect SM, a delete line SM, or delete terminal SM is received by
the NPU. The affected line and/or terminal statistics blocks are dumped and
the appropriate statistics SM is sent before the normal response SM is

sent. When any statistics message is sent upline, the statistics counters
in that statistics block of the TCB or LCB are cleared.

The search by PNPSTAT for periodic statis%ics is conducted as follows. The
search c¢ycle begins at the permanently-assigned TCB for the NPU. The
statistics from this TCB are dumped if any are available. The next search
is set to begin at the first active LCB. If no NPU statistics are
available, the currect search moves to the first active LCB. These
statistics are dumped, if available. The next search is set to begin at the
first TCB attached to this LCB. If the LCB has no statistics available, the
search moves to the first TCB. 1Its statistics are dumped, if available.

The next search is set to begin at the next TCB for this line; then
continues until all the TCBs for the first active line are checked. Then,
the second active line and all its TCBs are checked. This continues until
all TCBs and all active lines are checked. The next cycle again starts with
the NPU TCB.

3-6 60471160 A

BASE SYSTEM SOFTWARE 4
‘“ﬁ

The support software can be divided into three categories: the base system,
the multiplex subsystem (technically a part of the base system), and the
network communications software. This section describes the support software
for the base system only. Note also that the HIP (section 7) can be
considered as a support program for the TIPs.

The functional grouping of support tasks is as follows:

° Base system - operating system functions (program execution, buffer
allocation, interrupt handling), timing support, and data structures
support. NPU console handling is also described in this grouping.

® Multiplex subsystem - drivers for the multiplexer I/O lines.

) Network communications software - message routing, command
interpretation (the service module), common TIP support routines
(including statistics gathering, CE error messages to the host, and
regulation assistance).

The major base subsystem components are the following:

Monitor, also called OPS monitor

Space (buffer) allocation

Timing services

Direct program calls

Indirect (worklist-driven) program calls
Interrupt handling

Directory maintenance

Global structures

Standard code and arithmetic support routines

SYSTEM MONITOR

The NPU is a multiple-interrupt-level processor. Interrupts are serviced in
a priority scheme in which all lower priority interrupts are disabled. during
execution of a program that is operating at a higher priority level. When no
interrupt is being processed, the NPU runs at its lowest priority, known as
the operations (OPS) monitor level. (Refer to interrupt lines/priorities in
appendix H.) :

NOTE
This priority is not to be confused with the regulation level
priority (discussed in the CCI 3 reference manual) nor with

the host interface priorities (discussed as a part of the
HIP). :

60471160 A 4-1

The system monitor (PBMON) controls allocation of time to programs running
at the OPS level. The monitor gives control to a program by scanning the
table by worklist control block WLCB that defines the OPS level programs
that can be called with a worklist. Control is released to the first
program encountered with a queued worklist waiting to be serviced.

Scanning starts at entry 8 of the table (table 4-1) and continues until the
first program is encountered with a worklist attached (figure 4-1). The
monitor then determines whether the program can be called with more than one
worklist (N=1). Worklist control block (BYLISTCB) contains parameter
(BYMAXCNT) which defines the number of worklist entries to be processed by
the OPS level program before the pointer is moved to the next program (usual
number is 1). If multiple executions are allowed, pointer does not advance
until the N allowable worklist entries have been cleared from the worklist,
or until there are no more worklist entries in the module's queue. If N is
greater than 1, the program is given control successively until either all
the worklists for that program are serviced or until the maximum number of
consecutive executions for that program has been reached. If N is 1, the
scan pointer moves to the next entry each time the program is executed, even
though there may be more worklists attached to this program's queue.

The scan pointer automatically recycles to the BOCHWL entry when BODUMMY is
reached. If new worklist-driven OPS-level programs are added to the list,
they precede BODUMMY. A worklist must be established to drive the new
program.

Each time a program completes, PBMON initializes a timer (BTTIMER). This
timer is advanced and checked by the interrupt level timer routine (PBTIMER)
at specific system~defined intervals. If the timer expires, it indicates
that an OPS-level program has been abnormally delayed. PBMON execution then
terminates and a call to PBHALT is made. This is called an OPS timeout
condition.

BUFFER HANDLING

This function allocates any of the four types of buffers (each type has its
own free buffer pool) and returns buffers to the appropriate free buffer
pool when users are finished with the buffers. As an option, the function
also stamps buffers to keep a record of the buffer's usage and the address
of the program requesting the buffer.

Standard buffers are also assigned for the following:

Data buffer for special TIP application
Console format

Integer overlay

Buffer chaining overlay

Terminal control blocks (TCBS)

Physical I/0 request packets

Active TTY LCB list

Type 1 table entries

Type 4 table entries

Timeout buffers

Diagnostic control block (DCB)

Mux line control block (MLCB) and text processing control block (TPCB)

4-2 60471160 A

TABLE 4-1. OPS MONITOR TABLE
: WLG
Eii?%:s E;gfy Program Enzgies+ Psgéiim (aégg)
BYWLCR BOFSWL 1
2 These entries not
3 serviced by the
4 monitor; reserved
5 for generating the
6 worklists
7
...to here BOCHWL 8 Console 1 PBCONSOLE
BOINWL Q Internal processing PBINTPROC 2
BOMLWL 10 MLIA interrupt
handler 10 PBMLIAOPS 5
Current —— | BOSMWL 11 Service module
[(SVM) PNSMWL
Pointer | BOTIWL 12 Timing services PBTIMAL
Positionl 13 Reserved
l BOLIWL 14 Line initializer 1 PTLINIT 3
BODGWL 15 (On-line
diagnostics) 0 | =m——— -
BOCOWL 16 HIP 1 PTHIPOPS 3
BOM4WL 1B Mode 4 TIP 1 PTMD4TIP 3
BOTTYWL 19 TTY TIP (Mode 3) 1 PTTYTIP 3
BOHASP 20 HASP TIP 1 PTHSOPSTIP 3
Moni tor BO27WL 21 2780/3780 TIP 1 PTIP780 3
Pointer BOHHWL 22 Reserved 0 | ==———- -
recycles... |BODUMMY 23 Dummy for console;
\ / recycles to entry 8 0 | mm——— -
TNumber of multiple executions allowed for this program.
4-3

£0471160 A

Word 15 8 7

0 T BYCNT (count)
1 Put pointer
Common
2 Get pointer
3 First entry index BYINC
Used by
OPS 4 Not used
Monitor
5 ++ BYMAXCNT) BYPAGE
6 BYPRADDR

See appendix H for the format of entries in a worklist.

*Multi-WLCB flag

+T BYWLREQ, worklist required flag
BYCNT - number of WLCBs to process in one pass
BYCNT - number of WLCBs to process in one pass
BYWLINDEX - WLCB index
BYMAXCNT - number of WLCBs to process in one pass
BYPAGE - program page address
PYPRADDR - program address

Figure 4-1. OPS Monitor Table Format

4-4 60471160

Figure 4~2 indicates the types of buffers assigned. Each buffer type has

its own field definitions.

The figure also shows the stamping techniques.

0 ICD FCD 0 LCD FCD (o] LCD FCD
FLAGS FLAGS FLAGS
[
[]
CHAIN CHAIN REVERSE m-1 NIL
m-1 CHAIN FWD
Buffer of size m
LCD - last character
displacement
FCD - first character Buffer before assignment. Buffer after assignment.
displacement Chains of free buffers No chain, but word for
FLAGS - end indications, both forward and reverse. chaining reserved.
transparent
text, queuing,
etc.
- Buffer stamping area
15 l O
0 W Address of requestor
1 Address of buffer F
Pointer Most recent
to next 150 buffers
entry assigned or
released
98 Last buffer entry
29 F

F status flag
0 = put
1 = get

A circular buffer, two words/entry

Figure 4-2. Buffer Formats and Stamping

60471160 A

Buffer splitting continues until enough buffers of the size needed are made
available from progressively larger buffer pools, or until all possible
buffer splits have been made from all larger buffer pools, and not enough
buffers are available.

When testing buffer availability against a specified threshold number,
buffer maintenance attempts to adjust distribution of buffer sizes by using
buffer mating or buffer splitting to replenish buffer pools that are below
the threshold level. If buffer cannot be made available, the system halts
with a diagnostic halt. Buffer mating is the converse of buffer splitting.

Buffers are potentially available in six sizes: 4, 8, 16, 32, 64, and 128
words. At installation time, the user chooses any four contiguous sizes;
for instance, 8, 16, 32, and 64 words.

In the standard system, buffers are assigned in following sizes, for the
uses indicated:

® 8 words -~ timing

® 16 words - MLCB and WLCB
° 32 words - TCB and TPCB
) 64 words - data

Buffers are assigned from a buffer pool of the -appropriate size, and are
assigned one at a time; buffers can be released singly or in a chain of
buffers. Buffers are released to the buffer pool from which they were
originally drawn.

Buffer stamping is available as a build-time option. If this option is
selected, a buffer stamping area is reserved to save diagnostic information
on the assignment and release of buffers. The circular stamping buffer, 100
words long, can save information on the most recent 50 buffer assignments/
releases. Each 2-word entry consists of the address of the routine that
requested the assignment/release, and the address of the buffer. A flag in
each entry indicates whether the buffer is currently assigned or in a free
buffer pool. Information concerning the use and location of the buffer
stamp area and the pointer to the next entry to be used is found in

appendix H, the buffer subsection.

OBTAINING A SINGLE BUFFER
The calling sequence to obtain a single buffer of a specified size is:
PBGET1BF (parm)

Parm is the address of the pointer to the buffer control block. PBGETIBF is
a PASCAL function and returns the value of BOBUFPTR that points to the base
address of the buffer obtained. PBGETLBF also uses the buffer control block
for the specified size buffer. The chain word and flag word of the newly
assigned buffer is cleared and the LCD/FCD are set to their initial values.

Interrupts are inhibited during execution. A system halt occurs if the
buffer pool is down to the last buffer and there are no buffers in
larger-sized pools available to be split. A halt occurs if the next buffer
has a bad chain address.

4-6 60471160 A

RELEASING A BUFFER

The following calling sequences are used, respectively, to release a single
buffer, or a specified size to release one or more buffers of a specified
size, or to release a chain of buffers. After checking for no buffers, the
system returns the released buffer to the free pool of other same-sized
buffers. The buffer handler also ensures that the address is a valid buffer
address and determines if the buffer has already been released to the free
buffer pool. Contents of released buffers are not altered except for chain
words,

Relsasing a Single Buffer

The calling sequence to release a single buffer is:-
PBREL1BF (parml, parm2)

Parml is a pointer to any address within any word of the buffer to be
released, and parml is the address of the pointer to the buffer control
block. Parml is a PASCAL VAR parameter that is altered by the procedure so
that, upon completion, parml contains the chain value of the last buffer
released.

Releesing Several Buffers

Two methods are available to do this. The first method requires a pointer
to the first buffer in the chain to be released. The second method will not
return an error indication if the buffer address is zero. 1In both cases,
the release mechanism is actually performed by firmware. The two methods
are called by PBRELCHN (parml, parm2) and PBRELZRO (parml, parm2).

In both cases, parml designates a pointer to the first buffer in the chain
to be released, and parm2 designates (indirectly) the address of the buffer

pool to which the buffers will be returned. If parml for PBRELZRO is zero,
no action is taken.

TESTING BUFFER AVAILABILITY
The calling sequence to test buffer availability is:

PBBFAVAIL (parml, parm2, parm3)
PARM1 specifies the number of buffers réquired: parm2 pointer specifies the
buffer control block required; and parm3 specifies the total free space
threshold. PBBFAVAIL is a PASCAL function; it returns a true value if the

test indicates that sufficient buffers are available. This calling segquence
can be used at any interrupt level. :

BUFFER COPYING

The BBCOPYBFRS routine allows copying data from a chain of any type of
buffers to a chain of data buffers. The call is:

PBCOPYBFRS (parm rcd)

60471160 A ‘ 4-7

The parameter record (parm rcd) requires the following:

The number of source buffers to copy
Source buffer size

Data buffer size

A release flag

The source chain can be released after the copying operation.

OTHER BUFFER HANDLING ROUTINES

PBDLTXT deletes data from a buffer by advancing the first character
displacement (FCD) pointer in the buffer header. (See figure 4-2.) PBSTRIP
returns the empty buffers to the free buffer pool of the appropriate size.

TIMING SERVICES :

Timing services provide the means for running those programs or functions
which are executed periodically or following a specific lapse of time.
Seven timing services are available:

) A firmware program handles the 3.33 ms microinterrupt to provide a
100-ms timing interval. This real-time clock interrupt is handled by
PBTIMER. PBCLKINIT restarts the real-time clock following the
interrupt.

] Every 100 ms, PBTIMER calls PBTOSRCH to search the chain of
time-lapsed buffer entries. These entries are assigned as needed in
response to calls from any module. If an entry's time period
elapses, and if the release flag for that entry is set, the entry is
deleted from the chain. In all cases, a worklist call is made to the
program which requested the delayed call. Timing services use
PBTOQUE to add entries to this chain of delayed calls.

° Every 500 ms, PBTIMER checks the deadman timer. The timer is reset,
and the timer monitor routine is executed. If the deadman timer
expires, the monitor has spent too much time in one OpPS~-level
program. The NPU stops.

° Every 100 ms, PTMSCAN (a part of the ASYNC TIP) scans the list of
active line control blocks (LCBs) for asynchronous terminals. If a
character is received, the timeout is set for the next character. If
no character has been received during the 100-ms period, a timeout is
declared, the LCB is removed from the list of active LCBs, and the
ASYNC TIP is notified by means of a worklist.

° Every second, a timing routine checks all active output lines to find
whether an output data demand (ODD) interrupt has been generated for
the next character to output. If one second has passed with no new
ODD interrupt, the multiplex subsystem worklist processor is called
to declare a hardware failure for the line.

° A time-of-day routine, PBTIMEOFDAY, is called every second. The time

of day is incremented and, if necessary, recycled to the start of day
time (00 hour, 00 minute, 00 second).

4-8 60471160 A

® Every 500 ms, PBLCBTMSCAN scans all active lines for periodic
requests. If a line's period for a specific request has elapsed, the
appropriate TIP is called, using a worklist entry. 1Input or output
is terminated for the line if this is requested. Inactive LCBs are
unchained from the set of active LCBs. Timer services provide the
means for chaining LCBs to this list of LCBs that require periodic
action.

DIRECT CALLS

Most OPS-level programs call other programs directly for performing minor
tasks. A few major task calls use indirect (worklist) calls. For direct
calls, the last program in the calling chain is usually PBCALL. It is used
for direct calls among OPS-level programs, for transferrlng between programs
on different pages, for timed or periodic calls, for service message
switching, for overlay execution, and by PBMON when that program places a
program into execution.

PBCALL calls a procedure from PASCAL by address, rather than by name.
Unlike other procedure calls, PBCALL can pass a variable number of
parameters, corresponding to the number of parameters expected by the
calling procedure. Example:

type pgms = (pgml...pgmn);

var table: array pgms of integer:
index: pgms:

addr (programl , table pgml);

addr (programn , table pgmn);

v

set up index
PBCALL (table index); (call program, no parameters)

The PBCALL calling sequence is:
PBCALL (addr, parml,...parmn)

addr is the address of the program to be called, and parml through parmn are
optional and are parameters passed to the called program as shown:

procedure PBCALL;
begin
(store return address in called procedures entry polnt)
{jump to procedure)
end;
Other switching programs of importance are as follows:
° PBPAGE (parml) switches control directly from one OPS-level program

to another. Parml is a worklist index to OPS programs set into an
intermediate array.

60471160 A 4-9

° PBXFER (parml, parm2) transfers control to a program that may be on
another page of main memory. Parml is the called program's address,
and parm2 is the dynamic page register base address. Both are global
variables.

° PBTIMAL (parm) controls all time-dependent OPS-level programs. Parm
is the array of time dependent programs (CBTIMTBL).

WORKLIST SERVICES

Worklists provide a convenient method to handle communications between
software modules that do not use direct calls. Figure 4-3 depicts the
worklist organization. The list services function manipulates worklists
with variable entry sizes. Functions provided by list services include the
following:

® Make (PUT) worklist entries from any priority level (including OPS
level) by terminal type.

e Extract (GET) an entry from a list.
Characteristics of lists managed by list services are as follows:
° First in, first out.

° Entries can be from one to six words in length, but all entries in a
particular list must be the same length.

o Lists are maintained in dynamically assigned space.

® There is no maximum on the number of entries in a list or on the
number of lists serviced.

Contention between priority interrupt levels is resclved by defining an
intermediate worklist array (BWWLENTRY) with 6-word entries for each
possible system interrupt level, Worklist entry parameters are assembled
and extracted in the intermediate worklist area corresponding to their
interrupt level. (A user can design his own programs to perform this
function, however.)

A worklist entry is passed to PBLSPUT and data is normally obtained from
PBLSGET through a global array named BWWLENTRY. Each element of the array
has a variant record structure consisting of one case for each logical entry
structure. When each new worklist-driven program is created, the format of
the new worklist is added as another case to the PASCAL~-type definition
BOWKLSTS. Thus, each worklist has unique fields and names.

There are 17 elements to the array BWWLENTRY, one for each priority
interrupt level. To access the proper interrupt level, the global variable
LEVELNO is used. For example, to access a field of a particular worklist
entry at the proper interrupt level, the folleowing expression is used:

BWWLENTRY LEVELNO . FIELDNAME

4-10 60471160 A

BYLISTCB

F = BYCONTEND

BYCNT
BYINC
BYFEINC

60471160 &

Figure 4-3.

F BYCNT
BYPUT
BYGET
BYFEINC BYINC
BYFEINC
> Entry
Next entry Entry
> to GET
L = 2 x
FWD CHAIN FWD CHAIN o

kNext entry
to PUT

N

FWD CHAIN

L4

A multiprocessor contention flag for 2552 NPUs

Entry count

Entry size (uniform in any one worklist)
Displacement in buffer to first entry

Worklist Organization

4-11

The fields of the worklist entry are accessed to store information before
calling PBLSPUT or to obtain information after calling PBLSGET. For
programs that always run at a specific interrupt (for example, OPS, and
RTC), constants can be used to increase efficiency.

If a program using PBLSPUT or PBLSGET calls a program also using PBLSPUT or
PBLSGET, information in the worklist entry BWWLENTRY might be changed upon
return. In such cases, one of the following techniques must be used to
ensure proper data integrity: .

L Put all information in the worklist entry and call PBLSPUT before
calling the second program.

® Call PBLSGET and access all pertinent information from the worklist
entry before calling the second program.

] Save and restore the worklist entry from BWWLENTRY.

MAKING A WORKLIST ENTRY

PBLSPUT puts an entry into a worklist from any interrupt priority level.
The calling segquence is:

PBLSPUT (parml, parm2)

Parml is the address of the worklist entry, and parm2 is the address of the
proper worklist control block.

PBPUTYP makes a worklist entry after calculating the worklist index from the
line number. Firmware makes the actual worklist entry. Format of the call
is:

PBPUTYP (parm)

Parm is the entry to be made, either in an intermediate array or in a local
save area.

NOTE
The second word of the entry is always a line number.

Two other important worklist entry builders are actually a part of network
supervision:

. PBTWLE parm - This makes a worklist entry for the specified terminal
control block (TCB). The parm is the work code. The entry made
contains the line number and the TCB pointer. PBPUTYP moves the
entry from the intermediate array to the worklist.

° PBSWLE -~ This makes a worklist entry for SWITCH, the procedure-used
for switching. PBSWLE puts the pointer to the block to be switched
in a worklist entry for PRINTPRC. That routine calls SWITCH.
PBLSPUT moves the entry from the intermediate array to PBINTPRC's
worklist.

4-12 60471160 A

EXTRACTING A WORKLIST ENTRY

The PBLSGET routine moves entries from a worklist to an intermediate array
(BWWLENTRY). The routine is available at all priority interrupt levels. A
special firmware sequence speeds up execution and eliminates contention
between software and firmware. Format of the call is:

PBLSGET (parml, parm2)

Parml is the address of the worklist entry, and parm2 is the address of the
worklist control block. If the list is not empty, the next entry is moved
into the specified worklist area.

BASIC INTERRUPT PROCESSING

The two types of interrupts that are processed are the macrointerrupts and
the microinterrupts.

MACROINTERRUPTS

The interrupt mask register is set by an interregister command, and the
interrupt system is activated by the enable interrupt command. Upon
recognizing an interrupt, the hardware automatically stores the appropriate
program return address in a storage location reserved for the activated
interrupt state. This ensures that the software returns to the interrupted
program after interrupt processing. '

With the return address stored, the hardware deactivates the interrupt
system and transfers control to an interrupt handler program that begins at
the address specified for that interrupt state. The program thus entered
stores all registers (including the interrupt mask register and overflow) in
addresses reserved for the interrupt state. The interrupt mask register is
then loaded with a mask to be used while in this interrupt state, with a one
in the bit position indicating interrupt lines with higher priority than the
interrupt state being processed. The program then saves the current
software priority level, sets the new software level, activates the
interrupt system, and processes the interrupt.

During such interrupt processing, an interrupt line with higher priority may
interrupt. However, such interrupts also cause storage of return address

links to permit sequential interrupt processing according to priority level,
with eventual return through the return addresses to the mainstream computer

program.

When processing is completed at that level, the computer exits from an
interrupt state by inhibiting interrupts, restoring registers to their
pre-interrupt states, and executing the exit interrupt state command (EXI).
This command retrieves the return address stored when the interrupt state
was entered. Control is transferred to the return address, and the .
interrupt system is again activated.

60471160 A 4-13

Interrupt Priority

Interrupt priority is under control of the computer program. Priority is
established by an interrupt mask for each interrupt state that enables all
higher priority interrupts and disables all lower priority interrupts. When
an interrupt state is entered, the mask for that state is placed in the mask
register. Bit 0 of the mask register corresponds to interrupt state 00;

bit 1 corresponds to interrupt state 01, and so forth. A bit that is set
means that the corresponding interrupt state has a higher priority than the
interrupt state to which the mask belongs. Thus, there can be as many as 17
levels of priority.

NOTE

Priority of any interrupt state can be changed during program
execution.

Standard subroutines are provided for servicing the interrupt mask. These
subroutines are as follows:

Set interrupt mask.

Reload interrupt mask.

Perform a logical AND with the mask.
Perform a logical OR with the mask.

PBSMASK - SET INTERRUPT MASK

This routine loads a specified interrupt mask value into the M register to
become the new interrupt mask. The calling sequence is:

PBSMASK (parm)

Parm is a value parameter specifying the new interrupt mask value to be
loaded into the M register. The resultant mask becomes the new mask value
in the M register.

PBAMASK - AND INTERRUPT MASK (AND PBLMASK)

PBAMASK, in conjunction with PBLMASK, is used to selectively disable and
enable one or more software interrupt levels. The calling sequence is:

PBAMASK (parm)

Parm is a value parameter specifying the value to be logically ANDed with
the current interrupt mask.

PBOMASK - OR INTERRUPT MASK

PBOMASK employs a logical OR function to combine a given interrupt mask with
the current mask in the M register, the result becoming the new interrupt
mask value in the M register. The calling sequence is:

PBOMASK (parm)

Parm is a value parameter specifying the mask value to OR with the current
interrupt mask.

4-14 60471160 A

User Interface

Because each interrupt handler is an independent program, there are no

specific user interfaces.

However, pertinent information is necessary to

enable modification of, and additions to, the interrupt handlers.

An array contains interrupt masks for the 16 interrupt states.

particular interrupt mask, use the interrupt state number as an index.
LEVELNO is the global variable where the current software priority level is

saved.

To access a

Table 4-2 lists the 16 interrupt states, gives the value for the delta field
for its exit instruction, the storage location for its return address, and
the location of the first instruction of the interrupt handler program.
Current interrupt assignments and their associated software priority are

listed in table 4-3,
is the OPS level.

The seventeenth state (no interrupt line associated)

TABLE 4-2. INTERRUPT STATE DEFINITIONS (PBINTRAPS)
Interrupt E:ignISZEEEC- ngagéggrgf Firggc?gézguggion
State Field Value Address of Interrupt
Handler Program

00 00 0100 0101

01 04 0104 0105

02 08 0108 0109

03 oc cloc 010D

04 10 0110 0111

05 14 0114 0115

06 18 0118 0119

07 1c 0l1c 01l1lp

08 20 0120 0121

09 24 0124 0125

10 28 0128 0129

11 2C 0l2c 012D

12 30 0130 0131

13 34 0134 0135

14 38 0138 0139

15 3c 013C 013D

60471160 A

TABLE 4-3. INTERRUPT ASSIGNMENTS

InE?;;upt §:§;¥?€; Interrupt Descriptién Hgggier
0 Pl Memory parity, program protect,
power failure, software breakpoint PBLNOO
1 P6 NPU consoie PBLNOL1
2 P2 Multiplex loop error (MLIA) PBLNO2
3 P3 Multiplex subsystem - Level 2 PBLNO3
4
5 7 Coupler 2 PBLNOS
6 P7 Coupler 1 PBLNO6
7 P8 Spare
8 P9 Real-time clock PBLNOS8
10 Pll Spare
11 P12 Spare
‘12 P13 ODD input parallel PBLNOC
13 P14 Input line frame received (MLIA) PBLNOD
15 — Macro breakpoint PBLNOF

MICROINTERRUPTS
Three microinterrupts are also serviced:

° The output data processor processes the output data demand (ODD)
interrupt that each communications line adapter generates to indicate
that it is ready to output another character. The output data
processor (part of the multiplex subsystem) gets the next character
from the appropriate line-oriented output buffer and puts the
character on the output locop. The requesting communications line
adapter picks the character from the loop and transmits it.

° The input data processor processes the interrupt produced when the
entry of either a data character or communications line adapter
status into the circular input buffer is completed. The input data
processor (also part of the multiplex subsystem) gets the next
character from the appropriate line-oriented ocutput buffer and puts
the character on the output loop. The requesting communications line
adapter picks the character from the loop and transmits it.

° The timing services firmware processes the 3.,3-millisecond clock
interrupt, which is used as the time base for all timed NPU functions.

4-16 : 60471160 A

PASCAL GLOBALS

CCI provides a number of PASCAL globals, frequently in the form of fields
‘embedded in tables. Appendix H shows the tabular form of the principal data
structures and describes the fields. A complete listing of the CCI PASCAL
globals is in an MPEDIT listing.

STANDARD SUBROUTINES

Standard subroutines are a miscellaneous group of support routines that
perform the following tasks:

Convert and handle numbers.

Maintain paging registers.

Perform block functions.

Set or clear protect bit.
® Perform miscellaneous other tasks.

Table 4-4 lists these standard subroutines. Some of these frequently used
routines are written in macroassembly language rather than in PASCAL.

CALLING MACROASSEMBLY LANGUAGE
PROGRAMS FROM PASCAL PROGRAMS

A procedure call to a macroassembly source code program from a PASCAL-coded
program is the same as a call to any other PASCAL program. The same calling
sequence code is generated; that is:

RTJ program
ADC parml
ADC éarmn

A macroassembly program handles parameters as PASCAL parameters. To treat a
parameter as a value parameter, the user loads the contents of the parameter
and stores it locally and then passes the address of the store location to
the called program. To treat a parameter as a variable parameter, the user
loads the address of the parameter and uses this as a pointer. Packed
record parameters that are fields less than full word length are unpacked
into a temporary word and the address of the temporary word is passed to the
called program. : .

60471160 A 4-17

TABLE 4-4. STANDARD SUBROUTINES
Subroutine Description — ++ Type
Name ype Language Checking
Defeated
PBCLR Clears block of main memory. NI PP Yes
PBCLRPROT Clears protect bit. NI MA Yes
PBCOMP Compares two blocks. NI MA Yes
PBFILEl Loads/displays file 1. 0 MA Yes
PBFMAD Converts from ASCII to binary. R PP No
PBFMAH Converts from ASCII to binary. R PF No
PBGETPAGE Reads page register from '
specified bank. NI MA Yes
PBHALT System halt. NI PP Yes
PBILL Illegal call; passes to TIP
for CCI variants. NI PP Yes
PBLOAD Loads a canned message. R PP Yes
PBMAX Gets max of 2 numbers. NI PF No
PBMEMBER Tests ASCII set membership. NI PF No
PEMIN Gets min of 2 numbers. NI PF No
PBPSWITCH Loads page registers 30 and 31. NI MA Yes
PBPUTPAGE Writes page registers to either
bank. NI MA Yes
PBRDPGE Reads dynamic page register. NI MA Yes
PBSETPROT Sets protect bit. ¢] MA Yes
PBSTPMODE Sets page mode. NI MA Yes
PBTOAD Converts to ASCII decimal. R PP No
PBTOAH Converts to ASCII hexadecimal. R PP No
PB18ADD Adds to 18-bit address (paging). R PP No
PB18BITS 18-bit address functions (paging). R PP No
PB18COMP Compares two 18-bit addresses :
(paging) . R PP No
TOSTART Starts program execution timer. R PP No
TOSTOP Stops program execution timer. R PP No
TOTIME Programs execution timer. R PP No
tNI = Noninterruptable t+PP = PASCAL procedure
0 = OPS level only PF = PASCAL function
R = reentrant MA = Macroassembler
4~18 60471160 A

A functional call to a macroassembly program differs in that a PASCAL
forward reference describing the calling sequence must appear before all
function calls in the source code so that type-checking on the function
return value can be performed.

Defeating Type-Checking in Pascal Procedure Calls

The PASCAL compiler is a one-pass compiler. When it encounters a procedure
call in source code, it may or may not have processed the calling sequence
of the called program. If the calling sequence has been processed, all
parameters of the user's procedure are error checked. The type of each
parameter corresponds to the type specified in the calling sequence, and the
number of parameters must be the same. No expressions and no fields of less
than a word in length in a packed record can be variable parameters.

If the calling sequence of a program has not been processed when a call to
it is encountered, the PASCAL compiler generates a subroutine jump to an
external symbol. The standard calling sequence is then generated; however,
no error checking is done on the parameters. This situation defeats
type-checking in the procedure call.

If used carefully, defeating type-checking can be a useful technique. For
example, arrays with the same element types, but of different lengths, are
treated as different types by PASCAL. Therefore, any program needing
variable length array input as a variable parameter must defeat
type-checking. Ramifications of defeating type-checking are as follows:

) All calls from PASCAL programs to macroassembly procedures
automatically defeat type-checking unless defined as FORWARD.

) PASCAL and macroassembly functions cannot defeat type-checking.

HANDLING ROUTINES

These seven handling routines for number conversion are listed below and
described in the following paragraphs.

o PBFMAD - converts from ASCII decimal to binary.
° PBFMAH - converts ASCII hexadecimal to binary.
e PBMAX - finds larger of two numbers.

® PBMEMBER - tests number to find whether it is a member of the user
defined subset of ASCII code.

) PBMIN - finds smaller of two numbers.
) PBTOAD - converts binary to ASCII decimal.

® PBTOAH - converts binary to ASCII hexadecimal.

60471160 A 4-19

PBFMAD - Converts From ASCIl Decimal to Binary

PBFMAD converts up to five ASCII decimal characters in a buffer into a
binary number contained in one 16-bit word. The calling sequence is:

PBFMAD (parml, parm2, parm3)

Parml is integer type; the converted word is returned in parml. Parm2 is a
pointer specifying the buffer address where the decimal digits to be
converted are located. Parm3 is an integer variable specifying the index
where the first decimal digit to be converted is located within the buffer.

PBFMAD is a Boolean function. If PBFMAD is true, the conversion was
successful; otherwise, there was either bad data or a bad index.

PBFMAH —~ Converts From ASCI! Hexadecimal to Binary

PBFMAH converts up to four ASCII hexadecimal characters in a buffer to a
binary number stored in one l6-bit word. The calling sequence is:

PBFMAH (parml, parm2, parm3)

Parml is a variable parameter of type BOOVERLAY; the converted word is
returned in parml. Parm2 is a pointer to the buffer address where the
hexadecimal characters to be converted are located. Parm3 is an integer
parameter specifying the index where the first hexadecimal character to be
converted is located within the buffer.

Like PBFMAD, PBFMAH is a Boolean function. If true, PBFMAH indicates the
conversion was successful. Otherwise, there was either bad data or a bad
start/stop index.

PBMAX — Funds the Larger Maximum of Two Numbers

PBMAX is a function that returns the larger (maximum) of two given numbers.
The calling sequence is:

PBMAX (parml, parm2)

Parml and parm2 are integers to be compared. The larger of parml and parm2
is returned by PBMAX.

PBMEMBER — Tests ASClI Set Membership

PBMEMBER determines whether or not a given ASCII character is a member of a
user-defined set of ASCII characters. PBMEMBER overcomes the 255X PASCAL
restriction of having l-word, l6-element sets by accessing an array of
l-word sets. A character is broken up for testing by the following format:

7 6 4 3 0

Index into Element number
array of sets in set

4-20 60471160

In an array of type JSACIISET, 128 bits are reserved (one for each possible
ASCII character), where JSASCIISET = array (0..7) of SETWORD. Characters
are located in the set by bit number; for instance, a blank (2016) is bit
number 203g. Bits of the JSASCIISET array are numbered as follows:

Word 0 { Word 1| Word 2| Word 3 | Word 4 | Word 5 | Word 6 | word 7
F 0 1F 10 2F 20 3F 30 4F 40 S5SF 50 6F 60 JF 70

Bit Numbers (hexadecimal)

Therefore, the value initialization for testing hexadecimal characters is:

var JSHEXSET: JSACIISET;
value JSHEXSET = (0, 0, 0, 3Fi6-

P —um—
digits 0-9
7E]_6' 0, 0, 0);

N

‘Eharacters A—E:

The calling sequence is:

PBMEMBER (parml, parm2)

PARM] is a value parameter of type BOOVERLAY containing the character to
test. Parm2 is a variable parameter of type JSASCIISET and is the set to
test parml for membership. PBMEMBER is a Boolean function; it returns a
true value if the character is in the set, and a false value otherwise.

PBMIN — Funds the Smaller Minimum of Two Numbers

PBMIN is a function that returns the smaller minimum of two given numbers.
The calling sequence is:

PBMIN Pparml, parm2)

Parml and parm2 are integer value parameters. The smaller number of parml
and parm2 is returned by PBMIN.

PBTOAD - CONVERTS BINARY TO ASCII DECIMAL

PBTOAD converts a binary number contained in one 16-bit word to as many as
five ASCII decimal characters. Leading zeros are suppressed. The converted
digits are stored in a specified position in a buffer, followed by a blank.

The calling seguence is:

PBTOAD (parml, parm2, parm3, parm4)

60471160 A 4-21

Parml is an integer containing the word to be converted; parm2 is a pointer
to the buffer that stores the converted ASCII digits. Parm3 and parm4d are
integers specifying the start and stop indices for storing the converted
ASCII digits in the buffer. The JMCNVTO (convert to ASCII) system table is
used by this routine.

PBTOAH - Converts Binary to ASC!l Hexadecimal

PBTOAH converts a binary number contained in one l6-bit word into four ASCII
hexadecimal characters. The converted characters are stored in a specified
position in a buffer, followed by a blank. The calling sequence is:

PBTOAH (parml, parm2, parm3, parm4)

Parml is a hexadecimal value and contains the word to be converted. Parm2
is a pointer to the buffer that stores the converted hexadecimal
characters. Parm3 and parm4 are integers specifying the start and stop
indices for storing the characters in the buffer. The SMCNVTO (convert to
ASCII) system table is used by this routine.

MAINTAINING PAGING REGISTERS

Five subroutines maintain the paging address system for an NPU with more
than 65K words of main memory. (The maximum allowable address is 3FFFFjg,

and—requires—18bitss)—Three—other subroutines—allow—arithmetic—and
functional operations on 18-bit paging type addresses.
PBSTPMODE — Sets Paging Mode
PBSTPMODE sets the page mode for one of the three possible types of
operation: no paging, paging with bank 0 page registers, or paging with
bank 1 page registers. The calling sequence is:
PBSTPMODE (parm)

Parm is the input index:

0 - use page mode 0; bank 0 registers

1l - use page mode 1l; bank 1 registers

2 - absolute; no paging
PBPSWITCH — Performs Page Switching

PBPSWITCH loads the two dynamic page registers (30 and 31) using the input
specified page register base value. The calling sequence is:

PBPSWITCH (parm)
Parm is the page register base value for the program to be executed

{programs must execute within a single 2K-word page). Output of the
subroutine is that the dynamic paging registers are ready for use.

4-22 60471160 A

PBRDPGE — Reads Dynamic Page Register

PBRDPGE reads the contents of the dynamic page register (30) and returns the
base address in_the register to the requestor. The calling sequence is:

PBRDPGE

There are no input parameters.

PBPUTPAGE — Write Specified Page Register

PBPUTPAGE loads a specified page register (number and bank) with a specified
value. The calling sequence is:

PBPUTPAGE (parml, parm2)
Parml contains the page number; a bank flag uses the leftmost bit (flag = 0
indicates bank 0; flag = 1 indicates bank l). Parm2 is the 9-bit value to

be loaded in the designated register. Upon return, the specified page
register is loaded.

PBGETPAGE — Reads Specified Page Register

PBGETPAGE reads the contents of the specified page register and returns them
to the user. The calling sequence is: :

PBGETPAGE (parml, parm2)
Parml designates the number of the register and uses the leftmost bit as a

bank flag (flag = 0 indicates bank 0: flag = 1 indicates bank l). Parm2 is
the location used to return the page register contents to the caller.

PB1BADD - Add Bit Addresses

PB1lBADD adds two 18-bit addresses together. Format of an 18-bit address is
as follows:

Word 1 2

— —

lower 16 bits
upper 2 bits _—J

The calling sequence is:

PB18ADD (parml, parm2)

Parml and parm2 are the two addresses tobbe added in BO18BITS format.
Output is the single 18-bit address which is properly loaded by PB1BBITS.

60471160 A 4-23

PB18BITS — 18-Bit Address Functions
PB18BITS performs one of five possible functions:

Stores a number into an 18-bit address.

Reads the specified 18~bit address.

Clears the protect bit in an 18-~bit address.
Sets the protect bit in an 18-bit address.
Forms an l1l8-bit address from a 17-bit address.

The calling sequence is:
PB18BITS (parml, parm2, parm3)
Parml is an 18-bit address; parm2 is the read/store word address, and parm3

specifies the function to be performed. The output is a properly performed
function.

PB18COMP —~ Compares Two 18-Bit Addresses

PB18COMP makes a comparison between two 18-bit addresses. The calling
sequence is:

PB18COMP (parml, parm2, parm3)
Parml is the A address, and parm3 is the B address. Parm2 specifies the
type of comparison: A COMP B, where COMP is one of =, #, = , = , <« , Or

=< . The output is a BOOLEAN function: true if A COMP Bl; false if any
other condition exists.

BLOCK FUNCTIONS
Two standard block function subroutines are provided: PBCLR clears the
contents of a block, and PBCOMP compares the contents of two blocks.

PBCLR — Clears a Block of Masin Memory

This subroutine is used to clear any block-sized area in main memory. The
calling sequence is: -

PECLR (parml, parm2)
Parml is the starting address of the block to be cleared; parm2 is the

number of consecutive words to be zeroced. Output is a cleared block of
memory.

PBCOMP — Compares two Equal Length Blocks

After block comparison,"a Boolean answer (1 represents true; 0, false) is
returned to the caller. The calling sequence is:

PBCOMP (parml, parm2, parm3)

4-24 60471160 A

Parml and parm2 are the starting address of the two blocks to be compared;
parm3 is the number of words compared in each block. Output is the Boolean
true-false function, which depends on whether the blocks had identical
contents.

SET/CLEAR PROTECT BITS
The protect bit is bit 17 of the main memory word. It cannot be used for
data, but it can be used to deny unprotected programs access to the word.

The bit (as well as the parity bit) is dropped by most interregister
transfers. :

PBSETPROT — Set Protect Bit

PBSETPROT sets the protect bit at a specified address. The calling
sequence is:

PBSETPROT (parm)

Parm is the address of the protect bit to be set.

PBCLRPOT — Clear Protect Bit

PBCLRPOT clears the protect bit at the specified address. The calling
sequence is:

PBCLRPOT (parm)

Parm is the address at which the protect bit is to be cleared.

MISCELLANEOUS SUBROUTINES

PBFILEY — Load/Display Fils 1

PBFILEl consists of two routines: PBEF (load file 1) and PBDF (display file
1). Both programs execute specified firmware sequences to perform the load

or display operations. Because of firmware timing constraints, a maximum of

12 transfers per call can be specified during on-line operation. During
off-line operation, as many as 256 transfers can be specified.

PBEF transfers the contents of memory to file 1 starting at a specified
register. The calling sequence is:

PBEF (parml, parm2)
Parml is a value parameter, formatted as follows:

15 7 ‘ 0
Number of words to load First File 1 register to load

To load all 256 registers, set parml to 0. Parm2 is a value parameter
specifying the address of the first memory location to transfer.

60471160 A 4-25

PBDF transfers the contents of file 1, starting at register n, to memory.
The calling sequence is:

PBDF (parml, parm2)
Parml is a value parameter formatted as follows:

13 7 0

First file 1 register
to transfer

Number of words to move

To display all 256 registers, set parml to 0. Parm2 is a value parameter
specifying the memory address to receive the first register transfer.

PBHALT — Stops the NPU

PBHALT stops the system after a serious error has occurred. The following
information is saved, starting in consecutive words at address 30;¢.

® Return address of program calling PBHALT, or a value relating to a
halt code. .

® Halt code (indicates a reason for the halt).
° Software registers.
The calling sequence is:
PBHALT (parm)

Parm is an integer value parameter specifying the halt code. The halt
message printed at the local console is:

*HALT RXXXX YYYY
xxxxx is the return address of the program calling PBHALT and yyyy is the
hexadecimal halt code or a value relating to the halt code.
PBILL — lllegal Cails

This subroutine is used to stop the NPU when calls are made to TIPs that are
not a part of the CCI system. The calling sequence is:

PBILL

PBILL calls PBHALT with the halt code for an illegal TIP call.

PBLOAD -~ Load a User-Defined Message

The PBLOAD module loads a usér-defined message into a buffer starting at the
designated character position. The calling sequence is:

PBLOAD (parml, parm2, parm3, parm4)

4-26 60471160 A

Parml points to the location where the user-defined message is to be loaded,
and parm2 specifies the text of the message to be loaded. . Parm3 specifies
the starting position in the buffer of the first character in the message,
and parm4 specifies the position of the last data character in the message
after it is loaded in the buffer. Parmé4 overrides the message length.
Example:

VAR Buffer: BOBUFPTR: (assume a 32-word buffer)
MSG : JOML1O:
Value MSG = (Z 0123456789=);

PBLOAD (BUFFER, MSG, J1FRSTCHAR, J1LST32);
NOTE

All user-defined messages must have a right bracket (]) as
the end-of-message delimiter unless parm3 minus parmd is less
than the message length.

PROGRAM EXECUTION TIMERS

Three subroutines (TOTIME, TOSTART, and TOSTOP) provide execution timing
analysis for programs. TOSTART sets a status mode (flag bit 206) which can
be used by an external hardware instrument to start a timer. TOSTOP resets
the status bit. TOTIME measures the elapsed time. Output is the total
execution time as measured by an external hardware instrument.

CONSOLE SUPPORT

This group of modules provides the Terminal Interface Package (TIP) ¥or the
NPU console. Console devices communicate with the NPU via the A/Q register
interface, rather than through the multiplex subsystem interface. Two
categories of subroutines are discussed in the following paragraphs.

[General peripheral processing: these modules assign device, start,
read, and write.

) Console processing: this set of routines forms the console TIP.

GENERAL PERIPHERAL PROCESSING
These subroutines provide for general peripheral functions.

. Starting I/O0 and (if necessary) assigning a device. Two routines
perform these services: PBIOSERV and PBSTARTIO.

PBIOSERV reformats the logical request packet (LRP) from the user
into a physical request packet (PRP). A device code is assigned and
the subroutine tests whether there are too many messages awaiting
delivery. If so, the new message is discarded. Then PBSTARTIO is
called.

60471160 A 4~-27

.PBSTARTIO either starts the I/0, using the LRP packet from PBIOSERV,
or it queues the logical request packet to the appropriate driver,
using a worklist entry. If immediate I/O is requested but cannot be
accomplished, the request is rejected. This subroutine sets up the
device controller table parameters and issues the I/O start command.
The individual driver interrupt handler then takes control.

) Testing whether device is ready, PBTCSTIORDY. Input to this routine
is the device number. If the device status indicates it is ready for
I/0, a ready indication is returned to the caller.

® Off-line quick output, PBQUICKIO. This permits one buffer (a short
message) to be output while the NPU is in off-line mode (such as
initialization breakpoint or during halt operations). As input, the
caller specifies the device to be used and the location of the
message to be sent.

® Timeout: PBIOTMP and PBTMEOUT are discussed in this section with
other timing services,

® Ready and write a character to a peripheral device. PBWRITE and
PBREAD handle the single character transfers. Characters passing
over the A/Q channel are in unpacked format, right-justified in the A
register. (Q register usually carries peripheral addressing
information.)

PBWRITE writes data or director functions to a local peripheral device. The
subroutine uses the macroassembler routine PBPUTCHAR, to write the
character. Attempts are made to write until a retry threshold is reached.
At that time, the attempts cease and the reject error is counted by the
reject counter. This can cause a peripheral device timeout. In any event,
Q and A values are saved for debugging. '

PBREAD reads data or status from a peripheral device. The routine uses the
macroassembler routine, PTGETCHAR, to read the character. Attempts are made
to read the character until a retry threshold is reached. At that time, the
attempts cease and a reject error is added to the count in reject counter.
This can cause a peripheral device timeout. 1In any event, Q and A values
are saved for debugging.

° Common driver completion PBDRCOMPL. This routine uses a completion
code in the logical request packet. It requires device
jdentification and a physical request packet address as input.
Completion actions can include one or more of the following:

Releasing message output buffers

Changing I/O request flags

Starting another message transfer

Releasing current messages physical request packet

CONSOLE SUPPORT SERVICES

For certain applications, a local console is used as a communications
supervisory position. Two console functions can be selectively activated or
deactivated by the console operator (or at build time). These functions are
orderwire and diagnostics. When one, or both, of these functions is
transferred to a remote console, the corresponding functions must be
deactivated at the local console.

4-28 60471160 A

The orderwire function is employed for both input and output traffic

messages. The diagnostic function is used for input of diagnostic commands

and output of hardware diagnostic messages.

CONSOLE WORKLIST ENTRY
A type BOCHWL worklist entry is made by the internal process output

procedure for every message placed in an empty console queue. Such entry

contains the console TCB address.

CONSOLE CONTROL MESSAGES

All console control messages begin with a slash (/) and end with an

end-of-transmission code, control D (this consists of pressing the CONTROL
and D keys simultaneously). Table 4-5 contains console control messages and

the results of each.

Several routines constitute or support the console TIP.

e PBDISPLAY queues a message of 300 characters or less for output on
the local console. The input parameter is the location of the
message to display. This routine is a part of the base and is not

technically a part of the console TIP. The routine could be used to

support other devices.
NOTE
Every canned message must have a right bracket (]).

Canned messages use 32-word buffers.

PBDISPLAY uses the PBLOA and PBIOSERV subroutines to load a canned message

and to provide I/O services. PBDISPLAY also uses system structure JCOPSLRP

(OPS-level console logical request packet).

) PBOFMT formats the output for the console. Characters are converted

to hexadecimal and stored in a new buffer chain.

TABLE 4-5. NPU CONSOLE CONTROL COMMANDS

Command Function
/SUP Puts console in supervisory mode.
/ORD Puts console in orderwire (diagnostic) mode.
/OVL Puts NPU in overlay mode.
/REQ Message interrupted by manual interrupt is requeued to console.
/CAN Message interrupted by manual interrupt is canceled.
/MTQ Flushes console queue.
ggT} Controls routing of service messages (input, output, and
LOC locally generated messages).
MSNOP Generates message to NOP.

60471160 A

° PRTTYSETMODE switches the console (keyboard/display or
teletypewriter) between read and write modes. If the console is in
TUP mode, a TUP message flag is set. If the output interrupt flag is
already set, the subroutine restarts the message output. Otherwise,
the message is sent to the console primary output device. A 5-minute
timeout period is set when entering read mode.

® PBTTYINT is the interrupt handler for the console. Interrupts clear
the I/O timer. Action depends on the interrupt type, such as one of
the following:

Type Action
Spurious Count as spurious interrupt.
Alarm Clear console.
Manual Change mode.
Data (read) Read character.
Data (write) Write character.
Other Clear interrupt.

This interrupt handler is composed of several local subroutines.

°® PBSUPMSG decodes and executes supervisory (/SUP) input messages from
the NPU console. The subroutine routes to the NPU console input
service messages (SMs), output SMs, locally generated SMs, and
messages that are directed to the network operator (NOP). An error
message is generated if the messages cannot be routed.

) PBIFMT formats input messages from the console. Supervisory messages
(/SUP) are specially flagged. Messages are converted from

- hexadecimal and the buffer headers are prepared. Conversion takes
place in a new chain of buffers. This subroutine uses other local
internal subroutines. Otherwise, the output is a message in normal
network block protocol. If this is a /SUP message, the action
directed by the /SUP message has been performed.

4-30 60471160 A

MULTIPLEX SUBSYSTEM 5
—

The multiplex subsystem contains the hardware, microprograms, and software
elements necessary to provide data and control paths for information
interchange between the various protocol handlers (TIPs and LIP) and all
communications lines. Design of the subsystem is based on the multiplex
loop concept, which is a demand-driven system for gathering input data and
status from the communications lines, and distributing output data and
control information to the communications lines. All of this is done on a
real-time basis. Figure 5-1 shows the basic elements of the multiplex
subsystem. :

A major purpose of the multiplex subsystem is to transfer the task of
processing lines according to physical characteristics from the TIPs to the
multiplex subsystem programs. The TIPs need only command the multiplex
subsystem according to the logical characteristics of a line; the physical
characteristics are handled by the multiplex subsystem and are transparent
to the TIPs.

Line-oriented input and output buffers provide temporary storage for data.
The.input data is placed in the circular input buffer (CIB) from which it is
later extracted (demultiplexed), transformed to IVT/BVT ASCII format by the
appropriate TIP, and moved into a line-oriented input buffer. The part of
the TIP that does this (called input state programs) is controlled by the
multiplex subsystem. The OPS-level TIP informs the command driver where the
programs are located; the multiplex subsystem's input processor controls
execution of the input state programs. For trunks, the frames are removed
from the block formatted data, and the blocks are reconstituted.

Output data is picked by the output processor from an output data buffer.
The address of this buffer and other transfer information is supplied by the
OPS-level TIP to the command driver. Data is in terminal format.

The multiplex subsystem is event-driven by interrupts: an output data
demand (ODD) for the next character of output data, or the input line frame
received interrupt which indicates that data (and possibly CLA status) is
contained in the CIB ready for demultiplexing.

The interrupts are handled with global information stored in various

tables. The subsystem processes data on a character-by-character basis
while user programs (TIPs) process data on a message or block basis.
Circuit, modem, and subsystem status is detected and transferred to the TIPs
multiplex 2 level worklist calls. Control information is received from the
TIPs in the form of a call to the command driver with an attached command
packet. This command packet is used to set up the multiplex LCB (MLCB) ,
which is the principal table used to control the transfer.

60471160 A 5-1

I INPUT LOOP
//ourruv Loop

©_

COMMUNICATIONS PAOCESSOR
|)
LooP .
MULTI . l
- PLEXER
l MULTIPLEX « |
. SUBSYSTEM MULTIPLEX l J.
MICROPRO-
. GRAMS AND LooP . COMMUNI-
Ld SOFTWARE INTERFACE MULTIPLEX . : CATIONS
A ADAPTER Looes . LINES OR
1 MLiA) T T TRUNKS
i
INCLUDES COMMAND DRIVER, |
INPUT DATA PROCESSOR, AND LOOP
| OUTPUT DATA PROCESSOR MULTI- -
PLEXER .
l L]
MEMORY BUFFERS - I
) >/
y T |
! MULTIPLEX SUBSYSTEM L !
CLA - COMMUNICATIONS LINE ADAPTER ‘
TIP - TERMINAL INTERFACE PROGRAM ; [T

Figure 5-1. Basic Elements of the Multiplex Subsystem

5-2 60471160 A

HARDWARE COMPONENTS

The multiplex subsystem includes the multiplex loop interface adapter
(MLIA), loop multiplexers, and communications line adapters (CLAS).

MULTIPLEX LOOP INTERFACE ADAPTER

The MLIA provides hardware interface between the multiplex input/output
loops and the multiplex subsystem software. The major functions are as
follows:

e Management of the I/O loops.

Input data buffering - compensates for the difference in rate at
which characters are removed from the input loops and the rate at
which they are stored in the main memory.

® Output data demand (ODD) detection and buffering.
® Multiplex loop error detection.

® Generation of interrupts for the multiplex subsystem microprograms
and software for functions such as:

Output data demand received
Line frame received
Loop error conditions

LOOP MULTIPLEXERS

Each loop multiplexer provides an interface between a group of as many as 32
CLAs and the demand-driven multiplex loop. Its primary function is to
receive parallel data from the CLAs and present it to the serial input loop
in the loop cell format. Conversely, it assembles serial data in the loop
cell format from the output loop and presents it to the CLAs in parallel
form.

COMMUNICATIONS LINE ADAPTERS (CLA)

The CLAs provide the interface between the loop multiplexers and the
communications lines. The primary functions of the CLAs are to assemble
serial data from the communications line into parallel data and present this
data to the loop multiplexer or, conversely, to disassemble parallel data
from the loop multiplexer and present it in serial form to the
communications line. The CLA operating characteristics can be altered under
program control for such functions as signal rate, character length, parity,
and stop bit duration.

60471160 A 5-3

SYSTEM AND USER INTERFACES

To promote a better understanding of the internal multiplex subsystem
interfaces, the system and user interfaces are described in detail in the
following paragraphs.

SYSTEM INTERFACE

A TIP is a multilevel program that executes at three processing levels:
) Multiplex level 1 (firmware or microcode level)
) Multiplex level 2 (macrocode level)

® OPS level (processing to satisfy network protocol such as service
message handling and timing)

Control passes to the TIP or multiplex control OPS level by use of worklist
entries. Direct calls are used for the other two levels. The TIP must
handle the worklist entry according to the program's current processing
state. State programs operate on firmware levels. State instructions
provide a type of reentrant processing where the states are related to entry
points, which are, in turn, related to the various stages of processing a
message. Each TIP contains decision logic that switches processing to the
entry point determined by a combination of the worklist and the program
state.

Figure 5-2 shows the multiplex level 2 worklist codes and the programs
responsible for handling and generating these codes. Table 5-1 summarizes
workcode functions for level 2, and table 5-2 describes the workcode
functions for OPS level.

Muitiplex Level 1 (Firmware)

This level of TIP processing handles all incoming characters and status.
Worklist entries generated by the input state programs are directed to
either multiplex level 2 or to OPS level for processing.

Preliminary handling of CLA status is done by the modem state programs. The
two lowest-numbered input states (which receive control from the modem state
programs) are reserved to handle the following special status conditions:

e State 0 - is reserved for CLA status such as parity errors and data
transfer overruns. :

° State 1 - is reserved for data carrier detect (CDC) signal dropped.

5-4 60471160 A

SUOTIEDTUNWWOD ISTTYIOM WaIsAsqng xa[dIITNK pue diL "g-§ 2Inbrd
9gcw _
4 < S oM TYNGILIO
_ I S UoM TVNDILIO
S0 _
H3IAING 1NANI ILVYNINGSL
H3AIHO _
awo and
_ 1NJINO ILVNIWHIL 3
i k- :
X3 ¢—5uug 39 4 10MWd <— GEFITTY) v
_ I3 +—5ems 35 .:oz_s_n_ < HOVOWW W
_ dil < d10MWd < e !
L diL AJILON 4
o> BH3aHvHOY | diomnd X
@0108NS0V | n
I G3LvNINe31 W
o | TOLTONSOY _ 1NdNI — ONINIWW _
lllll' —
E LIV NTETS YAWSovY _ m(%\uu QaoWLLAW _
' e ALYNINEIL |
8IS0V _ G I _z.mz:s_s
.
NIWSOV awo uouuy 3o d10MWd § Taosnnwm
_ diL }e ; ; _
AVIHEWW ‘STINN a FHWILWW
§5320ud d0150v _ _ SWVYHDO0Hd
TYNHILNI < -« < v
: 1xa e SV1D1d ¢— dIOMWd tviomm zmmpo /1
1no3anoov _ _
4 _ P _ 4OOHUd
$3IDIAYIS LIX3 < dIOMINd < . SWv
L, ¥3idnad a3svaiay HOLNGWA
ONIWIL [InOINILoV _ Su344n 3 _ M
" EENMOY ~=- L IMOY _ ‘013 "M2018 avs ‘NJ018 ooow_
(diL) {(3202042VW) _ (IHVMWHIL)
13A37 SdO | Z 13A37 XNW L 13A37 XNW

60471160 A

TABLE 5-1. MULTIPLEX LEVEL 2 WORKLISTS

Wor kcode
Wor kcode to TIP Functions
MMCLAS - CLA status error, implies line error to TIP.
MMUNSOD - Unsolicited output, implies hard error to
PMWOLP, which disables the line.
MMUNSIN - Unsolicited input, implies hard line error to
PMWOLP, which disables the line.
MMTIMODD - ODD timeout, implies hard line error to PMWOLP,
which disables the line.
MMTIMRE MMHARDER Modem response timeout, implies hard line error
to TIP.
MMOBT MMOBT Qutput block transmitted.
MMBUTCH MMBUTCH Multiplex subsystem buffer threshold reached.
Buffers are released.
MMCHOUT MMCHOUT 100-ms timeout.
MMCAOR - CLA address out of range - not seen by TIP.
MMIFFO - Illegal lineframe format - not seen by TIP.
NMINEND AQCHARDERR Input buffer terminated, response to PMWOLP
to OPS command for hard errors.
level
MMFES - Framing error status, TIP should cause command
driver to send delimiter to line (asynchronous
lines).
MMBREAK - User break, TIP is called (asynchronous lines).
5-6 60471160 A

TABLE 5-2. TIP/LIP OPS LEVEL WORKLISTS

Workcode to TIP/LIP Description
AQOWK1 Good block received from IP input states.
AOWKn Other workcodes from IP input states.
AOHARDERR Hard error detected from IP at level 2.
AQTIMEOUT Line timeout from timing services.
AQOQUEOUT Output buffer queued to IP's TCB.
AOSMEN Line enabled from service module.
AQSMTCB TCB configured from service module.
AQSMDA Disable line command from service module.
AOSMDLTCB Delete TCB command from service module.
AQOSMRCTCB Reconfigure TCB command from service module.

Two additional input states are reserved for buffer handling conditions.
These are called by the input data processor if one of the buffer thresholds
is exceeded when the multiplex subsystem is trying to store another input
character when this requires assigning a new buffer. (Note: the character
is discarded.)

) State 2 - Number of input buffers being used by this TIP exceeds the
allowable number (ABL threshold).

) State 3 - System buffer threshold reached.

Multiplex Level 2 (PMWOLP)

This processing runs at the multiplex interrupt level. It is entered by
means of worklist entries received from the modem state programs, the
multiplex subsystem firmware, and the command driver. Processing "at this
level is primarily of an error nature. Each interface program provides code
to process the workcodes at this level (MMOBT, MMBUTCH, MMCHOUT, MMFGS,
MMBREAK) plus any of its own that are generated in multiplex level 1. For
synchronous TIPs, there is no processing required since the MMOBT entry is
optional.

60471160 A 5-7

Input State Program Worklists from firmware level are passed directly to the
TIP or LIP at OPS level.

The primary workcode generated is the CLA status workcode. After the modem
state programs have analyzed the CLA status for soft errors {(data carrier
detect dropped and others) and determined that this is not a soft error, the
input processor modem state program generates a CLA status worklist to this
processing level. The CLA status handler (PTCLAS) analyzes the status and
generates the appropriate CE error code. If a hard error is detected on the
line, PMWOLP terminates input and output over the line. All multiplex level
worklists for the line are discarded until a response from the terminate
input logic is received. At that time, the TIP is sent an OPS-level
AOHARDERR worklist.

MULTIPLEX SUBSYSTEM FIRMWARE WORKLIST ENTRIES

The multiplex subsystem firmware generates nine worklists to the interrupt
level. These can be divided into three categories:

® Worklists resulting from hard errors for unsolicited input or output,
and timeouts for output data demand or modem response.

° Worklists to the system indicating that the output buffer has been
transmitted, the buffer threshold has been reached so no more buffers
can be assigned, or 100 ms have elapsed since the last input
character was received.

® Worklists resulting from multiplex loop errors indicating that the
CLA address is out of range or an illegal line frame format was
detected.

COMMAND DRIVER WORKLIST ENTRIES

The command driver generates worklist entries at the request of the TIP.
Two opticnal entries are generated: input terminated and output terminated. -

OPS Level

The OPS level portion of the TIP handles all line or terminal servicing,
output block preparation, input block processing, service module interface
for configuring lines and terminals, and line error handling. Worklists are
generated to the interface processor by four different programs: 1)
interrupt programs multiplex level 1 and 2; 2) timing services; 3) internal
process; and 4) service module.

® Multiplex level 1 worklist normally indicates a good block has been
" received on input. The block is passed to the Point of Interface
(POI) program and the interface program resumes its processing at the
initial entry point or at the saved entry point where processing was
suspended.

5-8 60471160 A

) Multiplex level 2 worklist indicates a hard error has occurred on the
line. Normally, a line nonoperational service message is sent to the
host. Service on that line is discontinued until the host takes
continuation action.

[} Timing services worklist is generated whenever the line control block
timer expires (BZLTIMER). It can be used as a means of delaying
service on a line or indicating a line failure (failure to respond).

® Internal processing worklist indicates that output is gqueued to the
terminal control block (TCB) for this interface program. This is a
worklist for interface programs that stop processing when there is
nothing to do; it must therefore be restarted when the next output
arrives.

® The service module (SVM) maintains the interface between the host and
the interface program. SVM worklists indicate to the interface
program those lines and terminals that are to be configured or are to
be deleted from service.

USER INTERFACES

User interfaces to the multiplex subsystem can be divided into three
categories:

] Command driver interface (PBCOIN and PMCDRV). These modules command
communications to the multiplex subsystem and control data flow to
and from the communications lines. These include setting up the
hardware to start or stop transmissions.

) Common multiplex subroutines for TIPs are provided. These
subroutines allow the multiplex subsystem to communicate input events
to the user.

e State programs. PMCDRV sets up the operation and calls PMCOIN to
escape to the firmware. On the firmware level, the input state

programs provide processing on a character-by-character basis. State
programs and their OPS-level interfaces are described in section 12.

Command Driver Interface
The command driver calling sequence from the OPS level is:
PBCOIN (parm)

where parm is the command packet (NKINCOM). The command driver calling
sequence from level 2 is:

PMCDRV (parm)

where parm = NKINCOM is the name of the command packet. The general format
of a command packet which is used for most commands (NKCMD type) is shown in
figure 5-3.

60471160 A 5-9

WORD 15 7 0
0 Command Parameter

Line Number

[]

Parameters

Parameters

Parameters

Parameters

Parameters

~N e W

Parameters

Figure 5-3. Command Packet General Format

The following commands are available to the user for controlling the flow of
data to and from the communications lines:

e NKCLRL - Clear 1line.

® NKINIL - Initialize line.

° NKCONTROL - Control line,

° NKENBL - Enable line.

® NKINPT - Input.

) NKDOUT - Direct output.

e NKINOUT - Input after output.

) NKENDIN - Terminate input.

) NKENDOUT - Terminate output.

® NKDISL - Disable line,

e NKTURN - Turn line around (not used).
® NKSPECIAL - Diagnostic interface.

Individual subroutines handle the various requests. PMCOIN is the interface
between the command driver and the firmware. PMCOIN can be used by other
software users to clear a CLA, If it is so used, it must be followed by a
clear line command. Inputs to PMCOIN are the two global variables, NGA and
NGQ, that hold command and port information for use in the A and Q registers
by the firmware.

5-10 60471160 A

CLEAR LINE COMMAND

The clear line command (NKCLRL) causes the subsystem to clear (reset) all
. line-oriented software .and hardware (CLA) functions associated with the line
specified by the line number. The command format is as follows:

WORD 15 7 0
0 NKCMD NKLTYP
1 NKLINO

NKCMD - Command code (NKCLRL).
NKLINO - Line number; identifies port and subport.

NEKLTYP - Line type; specifies line-type entry; defines physical
characteristics of port, modem, and circuit type.

INITIALIZE LINE COMMAND

The initialize line command (NKINIL) establishes the line type of the
specified port, and places the line in a mode in which the subsystem
monitors and processes modem and circuit related status. Other line-related
functions, such as processing of input and output characters, are inhibited
while the line is in the initialize mode. The command format is as follows:

WORD 15 7 0
0 NRCMD NKLTYP
1 ' NKLINO

NKCMD - Command code (NKINIL).
NKLINO - Line number.
NKITYP =~ Line type; specifies line-type table entry.

CONTROL COMMAND

The control command (NKCONTROL) serves a twofold purpose. It can define the
character transmission characteristics of a given line according to the
transmission characteristics key (NKTCKY) for input/output signaling rate,
character length, parity type, stop bit duration, and sync character. The
command can also specify up to five modem/circuit control functions, such as
echo, break, terminal busy, or resync. Such control functions are specified
in the optional fields of the command packet.

Generally, the command is used to initialize or alter the character
transmission characteristics of the line or to generate circuit control
functions. This command must not be issued before the initialize command.
The control command format is as shown in figure 5-4, Optional
modem/circuit functions are defined in table 5-3.

60471160 A 5-11

ENABLE LINE COMMAND (NKENBL)

The enable line command directs the subsystem to activate, as a function of
line type, the necessary modem signals to allow the local modem to connect

to the specified

communications line. The command also conditions the

subsystem to monitor and analyze any changes in the modem status for signals
indicating that a line connect occurred. Character processing functions are

inhibited during

the time the line is in the enable mode. The format for

the enable line command is shown in figure 5-5.

WORD 15 14 i y 0
0 NKCMD NKTCKY
1 NKLINO
2 Fl NKFUN1 F2 NKFUN2
3 F3 NKFUN3 F4 NKFUN4
4 FS NKFUNS NKZERO
NKCMD - Command code (NKCONTROL).

NKTCKY -

NKLINO -

Fl thru F5
and NKFUN1
thru NKFUNS

NKZERO

5-12

Optional character transmission key. If nonzero,
references the character transmission characteristics table.

Line number.

Optional modem/circuit function; if the associated flag
{NKSRF1 - NKSRFS) is set, the function is to be
implemented.

NICSRF1 - NKSRFS5 is zero, the function is disabled.
Delimits end of options. NKZERO is placed in the byte

following the last requested modem/circuit function; five
functions can be specified.

Figure 5-4, Control Command Format

60471160 A

o

W N

NECMD
NRTCLS

NKLINO

NKUOPS

NKIFCD

60471160 A

i NKCMD NKTCLS
NKLINO
Not used
NKUOPS NKIFCD
Fl - NKBLKL
Not used
NKSCHR

Command code (NKENBL).
Terminal class.
Line number.

Eight user flags (NKUOPl - NKUOP8) can be accessed either
individually or as an 8-bit field.

First character displacement (FCD) of first buffer of input

block; optional FCD or zero. 1If zero, use value from the
terminal characteristiecs table (NJTECT).

Figure 5-5. Enable Line Command Format (Sheet 1 of 2)

5-13

Fl - NKNOXL, the code translate flag

1l = translate
0 = do not translate

NKBLKL - Block length; optional block length or zero. If zero, use value
from NJTECT.

NKSCHR -~ Special character (optionai character or 0).

Figure 5-5. Enable Line Command Format (Sheet 2 of 2)

TABLE 5-3. OPTIONAL MODEM/CIRCUIT FUNCTIONS

Function Punction

Mnemonic Provided Description

NOISR starust Input status request

NORTS RTS Request to send

NOSRTS SRTS Secondary request to send (Supervisory Channel)
NOOM oM Originate mode/auxiliary modem control
NOLM LM Local mode/auxiliary modem control
NOLT LT Local test

NODTR DTR Data terminal ready

NOTB B Terminal busy (line busy out)

NORSYN rsynt Resynchronize

NONSYN NSYN New sync

NOBREAK BREAK Send break ’
NODLM pm?t Data line monitor

NOECHO ECHO Echoplex mode

NOLBT LBT Loopback test

NOION ION I?put on

NOOON OON Output on

5-14

60471160

TABLE 5-3. OPTIONAL MODEM/CIRCUIT FUNCTIONS (Contd)

Function Function

Mnemonic Provided Description

NOISON ISON Input supervision on

NOPON PON Parity on

NOPSET PSET Parity set (1 = even, 0 = odd)

NOCLLS CLLS Character length (LSB)

NOCLMS CLMS Character length (MSB)

* Pulsed functions, provide momentary signal and need not be reset.

INPUT COMMAND (NKINPT)

The input command directs the multiplex subsystem to initiate the processing
of data on the specified input line (that is, turn on the input side of the
communications line adapter). The processing functions provided by the
subsystem are determined by the input processing state program index.
Additional information is passed by a pointer table address for the input
processing states. If this option is not used, the information is taken
from the terminal characteristics table (NJTECT). Parity is stripped for
normal processing or passed for test purposes. Format of the input command

is shown in figure 5-6.

OUTPUT COMMAND (NKDOUT)

The output command permits output messages to be directed to a specified
output line. Line, modem, and control functions, as defined in the line
type tables, are generated by the subsystem as a function of the physical

line requirements.

60471160 A) 5-15

NKCMD
NKLINO

NEKUOPS

Fl
F2

5-16

I w [] — o

~N oy B

13

NKCMD

Not used

NKLINO

Not used

NKUOPS

Fl

F2

NKISTAI

F3 | F4

" NKBLKL

NKISPTA

NKSCHR

NKCNT1

NKCXLTA

Command code (NKINPT).

Line number.

Eight user flags (NKUOPl - NKUOPS).

MLCB user flag field,...NKUOP8 is bit 8 in that field.

is moved into MLCB if NKMVB is 1.

NRMVB; move block of user flags into MLCB.

NKRPRT; strip parity flag.

1 = strip parity

0 = do not strip parity

Figure 5-6.

Input Command Format (Sheet 1 of

2)

NKUOP1 is bit 15 in the

NKUOPS

60471160 A

NKISTAI -~ Input state program index.

F3 - NENOXL; code translate flag.
1l = translate

F4 - NKSCENBL; change special character flagqg.

NKBL - Block length. 1If this value is nonze:o; this replaces CC2 in
the MPCB.

NKISPTA - Pointer to input state program pointer table address. Optional
address or zero. If zero, use NJTECT value.

NKSCHR - Special character; moved to MLCB if NKSCENBL flag is set.

NKCNT1 - Character count; moved into the CCl field of the MLCB if the
value is nonzero.

NKCXLTA - Code translation table address. If nonzero, this replaces the

current code translation table address in MLCE.
Figure 5-6. Input Command Format (Sheet 2 of 2)

Output continues until the character specified by the last character
displacement is transmitted. At that point, the subsystem chains to the
next output buffer, if the chain address in the buffer is nonzero. Output
stops if the chain address is zero or if the suppress chaining flag
(BFSUPCHAIN) is set in the flag word of the first output buffer.

The subsystem generates an optional worklist entry for the user program for
each data block output by the subsystem. If the buffer output is the last
data buffer of a transmission block and line turnaround is required, the
subsystem: 1) generates the proper modem control signals to turn the line
around, 2) monitors modem status for line turnaround, and 3) notifies the
appropriate terminal dependent subroutine that the line is ready for input.
Modem signals and modem status analysis functions are specified by the line
type tables. , ,

Either the terminate output or the disable command can be used to terminate
output processing functions on a specified line. Receipt of either command
causes the subsystem to immediately cease all processing functions
associated with the specified line.

The format of the output command is as follows:

WORD 15 7 0
—7 "
0 NKCMD Not used
1 NKLINO
2 NKOBP

60471160 A 5-17

NKCMD - Command code (NKDOUT)
NKLINO - Line number
NROBP -~ Output buffer pointer

INPUT AFTER OUTPUT (NKINOUT)

This command permits interactive terminals (such as a display/keyboard
combination) to be immediately readvy to receive input data in response to a
message displayed at the terminal. An index to the input state process

table indicates the treatment of the returned data.
command is shown in figure 5-7.

The forma

t for this

WORD _15 14 13 7 6 5 0
0 NKCMD Not used
1 NKLINO
2 NKOBP
3 NKUOPS Fl|F2 NKISTAI
4 F3 NRBLKL
5 NKISPTA
6 NKSCHR 'NKCNT1
7 NKCX%?A
NKCMD - Command code (NKINOUT).

NKI.INO Line number.

NKOBP - Output buffer pointer.

NKUOPS - Eight user flags (NKUOP1 - NKUOP8). NRUOPl is bit 15 in the
MLCB user flag word; NRKUOP8 is bit 8 in that word. NKUOPS is
moved into MLCB if NKMVB is 1.

Fl - NKMVB; move user flags to MLCB.

F2 - NKRPRT; strip parity flag.
1l = strip parity
0 = do not strip parity

NKBLKL - Block length (CC2). Moved into MLCB if nonzero; replaces
current MLCB block length.

Figure 5-7. Input After Output Command Format (Sheet 1 of 2)
5-18 60471160 A

F3 ~ NKSCENBL, special character flag. If set, move NKSCHR into the

MLCB.
NKISTAI - Input processing state index.
NKISPTA - Input processing state pointers table address (optional address

or 0; if 0, NJTECT value is used).

NKSCHR =~ Special character; moved into MLCB if NKSCENBL flag is set.

NKCNT1 - Character count (CCl). If nonzero, this replaces the current
character count in the MLCB.
NRKCXLTA - Code translation table address. If nonzero, this replaces the

current translation table address in MLCB.

Figure 5-7. Input After Output Command Format (Sheet 2 of 2)

TERMINATE INPUT COMMAND (NKENDIN)

This command enables the TIP to direct the multiplex subsystem to
immediately stop input processing functions on the specified line. All
input characters and buffers are discarded. The TIP program can, by issuing
an input command, direct the subsystem to resume input on the line.
Transmission line characteristics are not altered by the terminate input
command and therefore the TIP need not generate a control command. The
format for the terminate input command is shown in figure 5-8.

After processing the terminate input command, the subsystem optionally
generates a worklist entry to the TIP as specified in the worklist and
workcode.

TERMINATE OUTPUT COMMAND (NKENDOUT)

This command enables the TIP to direct the multiplex subsystem to terminate
output processing functions on the specified line immediately. After
processing the terminate command, an optional worklist entry is generated to
the TIP, using the specified worklist and workcode. This command is used
when the TIP interrupts an outgoing message for a higher priority message,
or when an abnormal line condition occurs. The format of the terminate
output command is shown in figure 5-9,

60471160 A 5-19

DISABLE LINE COMMAND (NKDISL) -

The disable line command directs the multiplex subsystem to terminate all
processing functions of the specified line. Modem control signals are
generated to inhibit further exchange between the local modem and the
communications line. The subsystem also releases all data structures
defining the character processing functions for the line. To reactivate the
line, the system must issue control, initialize, and enable commands,
followed by either an input or output command. The format for the disable
line command is as follows:

WORD 15 7 0
0 NKCMD Not used
1 NKLINO

NKCMD - Command cocde (NKDISL)
NKLINO -~ Line number

WORD 15 7 6 5 0
0 NKCMD Fl | F2 NRWLINDX '
1 NKLINO
2 ~ NKUSRBY NEWKCOD
NKCMD - Command code (NKENDIN). ;
Fl - NKRELBFS; release buffer flag (release buffer if set).
F2 - NEKWKFL; send worklist to user (if set).
NKWLINDX - Worklist index; used if NKWKFLG is set.
NKLINO - Line number.
NRKUSRBY - User-supplied byte returned in field MMWTCOUNT in worklist.
NEWRCOD - User workcode in worklist (MMWKCOD).

Figure 5-8. Terminate Input Command Format

5-20 60471160 A

0 B NKCMD Fl| F2 NKWLINDX
1 NELINO
2 NKUSRBY NKWKCOD

NKCMD - Command code (NKENDOU?).

Fl - NKRELBFS; releases buffer when flag is set, These are buffers
specified in BZLBTOMUX.

F2 - NKWKFLG; sends worklist to user when set.

NKWLINDX - Worklist index; used if NEKWKFLG is set.

NKLINO =~ Line number.

NKUSRBY - User-supplied byte to be returned in field MMWTCOUNT in

worklist.

NKWKCOD - User workcode in worklist (MMWERCO).

Figure 5-9. Terminate Output Command Format

Common Muitipiex Subroutines for Tips

The multiplex subsystem provides a number of common subroutines for the
interface programs; these are as follows:

PMWOLP, the worklist processor on the multiplex level

PTCLAS, the CLA status analyzer

PTLINIT, the line initializer

PMT1SEC, the timing supplier for the output data demand (ODD) function

PMWOLP, MULTIPLEX WORKLIST PROCESSOR

PMWOLP processes each multiplex worklist by workcode type. Most workcodes
concern error processing. Workcodes that PMWOLP does not recognize are
passed directly to the responsible TIP at multiplex level 2.

If the workcode is a hard error, the line is cleared, and input and output
are terminated. The terminate input command to the command driver causes
the driver to return a worklist to PMWOLP. All hard errors from the line
are discarded until the terminate input worklist is received. The input
terminated worklist is changed into a hard error worklist (AOHARDERR =
MMHARDERR) and the worklist is sent to the responsible tip at OPS level.

If the line is active, all errors, hard or soft, are reported to the CE
error file.

60471160 A 5-21

The multiplex level workcodes are summarized in table 5-1. The actions that
PMWOLP takes in response to the workcodes are as follows:

) MMCLAS - CLA status. This workcode is generated for selected CLA
status words by one of the modem state programs. (Refer to
section 12.) PMWOLP calls PTCLAS to analyze the status word. PTCLAS
returns information to PMWOLP in three ways: 1) the function is set
true if the worklist is to be sent to the TIP, 2) NRCODE is set to
nonzero if a CE error is to bhe reported, or 3) the workcode in the
intermediate array is changed to AOHARDERR (or MMHARDERR) if a hard
error is found. |

e MMOBUX - Output buffer terminated. This is an optional worklist
generated by the multiplex firmware after the completion of an output
message. If the line is to be turned around, PBTOQUE is called to
provide a 200-ms delay. The worklist is passed to the TIP at level 2
either immediately (if the line does not require a turnaround delay)
or when the delay timeout period is completed.

) MMBUTCH - Multiplex buffer threshold reached. This worklisr is
generated by the TIP's input state program 3 (section 12) when the
multiplex firmware notifies that state program that the buffer
threshold has been reached. PMWOLP releases any input buffers and
stops processing.

® MMCAOR - CLA address out of range. The multiplex firmware reports
this error whenever the CLA address is out of range. The CLA is
cleared and the error is reported to the CE error file.

® MMUNSOD - Unsolicited output data demand (ODD). The multiplex
firmware reports this error when an ODD is received on a line that is
not in output state. The error is reported to the CE error file and
a hard error is declared. :

) MMUNSIN - Unsolicited input. The multiplex firmware reports this
error in two cases: 1) a status character is received and input
status flag (ISON) i3 not set, or 2) a data character is received and
the input on (ION) flag is not set. In either case, the error is
reported to the CE error file and a hard error condition is declared.

° MMIFFO ~ Input framing error. The multiplex firmware reports this
error when it cannot recognize the input frame. The error is
reported to the CE error file and no further action is taken.

] MMTIMOD - Modem timeout. PTCLAS reports this error after the
10-second timeout for dedicated lines has elapsed without a response
from the modem. The error is reported to the CE error file and a
hard error condition is declared. :

® MMINEND - Input terminated. PMWOLP generates this error worklist to
itself after the terminate input command is sent to the command
driver. The worklist informs PMWOLP that no more worklists will
follow. PMWOLP sends a hard error (AOHARDERR) worklist to the
OPS~-level TIP.

5-22 60471160 A

MMTIMOD - ODD timeout. The multiplex subsystem timing routine
(PMT1SEC) generates this worklist when an active output line has not
requested a new character (ODD) within the allotted l-second period.
The error is reported to the CE error file and a hard error condition
is declared. :

MMFES - Framing error for synchronous lines. PTCLAS generates this
error after examining the status word. The error is reported to the
CE error file and control is passed to the responsible TIP at
multiplex level 2. The TIP should send a command to the command
driver to clear this condition.

MMBREAK - User break on synchronous lines. PTCLAS generates this
condition after examining the status word. The user break indicates
that the user has requested output to be terminated. The condition
is reported to the CE error file and control is passed to the
responsible TIP at multiplex level 2.

PTCLAS, CLA STATUS ANALYZER

Analyzing CLA status is a joint task of the modem state programs and

PTCLAS

All incoming 2-word status entries (8 bits per word) are combined

into one 16-bit status word by the multiplex firmware. Control is passed to
the responsible modem state program for that line. The modem state program

checks

for one of the necessary modem signals:

To initialize or enable the line
To give control to the TIP's appropriate input state program
To detect line error conditions

modem state program generates a worklist to PTCLAS, PMWOLP calls
to analyze the status word. The format of the worklist is as shown:

15 : 11 7 0
Line inop code ~ Status indicator Workcode

Line number

Status word

The line inoperative code is supplied to PTCLAS for the TIP whenever a hard
error is detected. When PTCLAS detects a hard error, it changes the
workcode to MMHARDERR. The status condition indicator is set by the
originator to indicate the type of status that was detected. PTCLAS
analyzes the status word and takes one of the following actions:

Causes control to be given to the line initializer (PTLINIT) or to a
TIP.

Causes PMWOLP to request a CE error file entry.

60471160 A _ 5-23

° Starts the timeout period for a CLA status overflow condition or for
a modem signal loss condition (modem timeout).

See MMCLAS workcode in the PMWOLP subsection, above. Table 5~4 lists the
status condition indicators and the action that PTCLAS sets up for PMWOLP.

CLA Status Overflow Handling

Each time a status word is received, the firmware increments a CLA status
word overflow counter in the port table (NAPORT). This overflow count is
cleared by any of the following conditions:

° Qutput buffer terminated (OBT) generated.

° Terminate input buffer state instruction executed.
] Terminate input command issued.

) Terminate output command issued.

When the counter overflows, the firmware builds a MOOVRT status worklist and
turns off input supervigion for the CLA. When PTCLAS receives the first
status overflow entry, it starts a l0-second timeout period and sets flags
in the port table. When the 10 seconds expire, PTCLAS receives control with
a MOOVTO worklist from PBTOQUE. PTCLAS resets the overflow counter in the
port table, issues a command to turn on input supervision for the CLA, and
resets the wait bit. If the timeout occurs before another status overflow
is detected by the firmware, status processing continues normally. However,
if another overflow entry is received during the timeout period, PTCLAS
reports the status overflow to the TIP as a hard error. If, at any time,
there are not enough buffers available to start the timeout, PTCLAS reports
the status overflow to the TIP as a hard error.

TABLE 5-4. PTCLAS WORKLIST ANALYSIS AND ACTION

Condition
Indicator Reported by Meaning Detected Action
MOCLAON (0) | Modem state | Line initialized | Any status Control to line
(MSTLNI) initializer
MORING (1) | Modem state | Ring indicator RI status Control to line
(MSTLNTI) , initializer
MOENBL (2) | Modem state | Line enabled | DSR or DSR Control to line
(MSTENB) and DCD initializer
status
MOHERR (3) | Modem state | Hard error ILE, OLE, Control to TIP
(MSTCHK) INVALID RI, (supply INOP code
loss of DSRT and change work-
code)

5-24 60471160 A

TABLE 5-4.

PTCLAS WORKLIST ANALYSIS AND ACTION (Contd)

Condition

(MSTINP)

charactert

Indicator Reported by Meaning Detected Action
MOSOER (4) | Modem state | Soft output NCNA statust Control to TIP
(MSTOUT) error (change workcode)
MOSIER (5)| Modem state | Soft input error | DTO, FES, Control to TIP
(MSTINP) loss of DCD (change workcode)
statust
MOSTRT . (6) | Modem state | Start modem Loss of DCD Call PBTOQUE to
(MSTCHK) timeout on constant start 15-second
carrier linet | timeout
MOSTOP (7)| Modem state | Stop modem DCD status Cancel timeout
(MSTCHK) timeout during modem
: timeout
MOOVRF = (8) | Firmware CLA status Overflow of
overflow status
counter
MOOVTO (9) | PBTOQUE Status overflow 1l0-second
(TIMEOUT) timeout timer expired
MOMRTO (A) | PBTOQUE Modem response 15-second Refer to control
(TIMEOUT) timeout timer to TIP (change
expired? wor kcode) -
"MOBREAK (B) | Modem state | Break condition FES with null | Control to TIP

{(change workcode)

+C.E. error

messages generated on these conditions.

Modem Response Timeout Handling

When DCD on constant carrier lines drops, a MOSTRT status worklist is
generated by the modem state program, and a bit is set in the MLCB

indicating that a modem timeout is in progress.
worklist, it causes a l0-second timeout entry to be generated.

When PTCLAS receives this

If the

timeout period elapses before DCD comes up, PTCLAS reports a hard error

If, during the timeout period, the modem state
programs receive a status word with DCD set, a MOSTOP worklist is generated
When PTCLAS processes the worklist, it resets the timeout in

(modem timeout)

for PTCLAS.

progress flags and cancels the timeout.

to the TIP.

If, at any time there are not

enough buffers to start the timeout, PTCLAS immediately reports the
condition to the TIP as a hard error.

60471160 A

5-25

PTLINIT, LINE INITIALIZER

PTLINIT initializes conditions on a line for input and output operations.
The program acts like a TIP and is composed of several subroutines. Figure
5-10 shows the relationship of PTLINIT with other multiplex modules, the
service module, timing services, and the TIPS.

Upon receiving control, the line initializer executes the
Clear-Initialize-Control sequence. As the initializer is state driven,
BZSTATE is set accordingly.

On a dedicated line, a check for CLA on is made before issuing the enable
line command. When the line is enabled, the initializer builds a line
operational worklist message for the service module and the associated TIP.

For enabling a switched line, three conditions must be met: 1) the ring
indicator (RI) must be detected, 2) the host must be up, and 3) buffers must
be available. If no RI is present, a timer is started. A worklist (line
status nonoperational; no ring indicator) is issued if this timer expires
before an RI is detected. If buffers are not available or if the host is
down, another timer is started. If this timeout period expires, program
control is returned to the Clear-Initialize-Control sequence. If the
timeout period has not expired and RI is received in a status word, PTLINIT
again checks for buffer availability and whether or not host is up. With an
RI present, the host up, and buffers available, the enable line command ig
issued. Line operational worklists are built for the service module and for
the associated TIP.

Error messages are generated under the following conditions:

° A timeout period has expired and a required status has not been
detected.

° The status indicates that the line is not operational.
PTLINIT is state driven with each state defined in table 5-5.

PTLMUX2, the multiplex level 2 program, merely passes control by generating
worklist entries to PTLINIT. This is reached through PBXFER.

After a line has been enabled, a l-second delay is made before notifying the
TIP. This allows time for line/modem transients to settle.

5-26 60471160 A

MULTIPLEX LEVEL OPS LEVEL

BZLCB
PMWOLP/
fos .
CLAS LINE
CONTROL SERVICE
B8LOCK N MODULE
€
vﬁﬁ
NS A
i [3
MMCLAS AOSMEN OR
AOSMDA
CLA ENABLE OR
STATUS DISABLE LINE
y LINE STATUS
ADHARDERR k = COLINOP
OHARDE OR_COLNINOP
HARD $f PTLINIT ~—1 OPERATIONAL
ERROR OR NON-
' : OPERATIONAL
LINE
AOTIMEOUT
cMD
DRIVER LINE TIMING
TIMED OQUT SERVICES
\ cMD ‘ \—/
LEGEND: PACKET A
AOQSMEN
WORKCODE ‘ TP
) LINE ENABLED OR
OR DISABLED LIP

\wﬁ--J
M-382

Figure 5-10. PTLINIT Relationships With Major CCI Modules

60471160 A 5-27

"g=13wll
anyjoeul cQ=13WIL
=aje3s *3ar3oeul
“aur =33e3§ '
1eaf)d “aur1 iead
*abessay *abessal
atfqesid a1qes1ia aur]
Jull puas auyq puas | @0 0----- ————— ————— ———— - afqesta
" puonas
1=33WlL
“NOVTID=33e]§ -
uuuuu taurq
uor131puUo)
*adAy 41l auyl
jagyanes | 00 ----=- } e] e P e ————— atqeud
cabepssay -abessay
dou] doug
oui’] puas aull puas
*anrioeu] anr3oeu] Jjoiliy
=931e3§5 =a3e3§ {2 —-=-= e} e=e—- B me=me- O} meeee piey
0=33wld, p=38wty,
an1jaeu] aatioeug
=331e38 =a3e3s 0=a2uwry
ol diL s abeysoy -obessay " puUVd9sS ani1joeuj
a10sey | L ----- dou] puag doul puasg 1=13wl] =a3e3s
“did 03 tSUll 1edL) coutt 1eafy NOV'1D=91€1S§ ONIUMS=23Ee3]8 *abessap
19 aigeuy Tautg “aut’] “auTg abessap doul puasg
puay ajyesia 3fyestg uoriipuoc) buty ON puas 33Ul 1e3(d INOIWL Y
. °3jo
cadng St 10wly 31
*dll 10] sadAd, fasulL jaels uoi1jeaadQ ON
M pring dllL 910353y TAR(ap umoq 3ISoHl umog 131SOH puoosas
“bsW 1ado puuoas 1 10 lieay 10 jreay 1=33WIlL
QU] _puas 10) Jouwny, 10N jnd JON jnd NOMS=33elg
1ayi0 dn 3a9s MS
SpuUodas Spuoosas
|||||||||| *bsi douon g =13w1l 0E=12Wl] SpuoDas
-afqeug *Aeraq AQumMs=33e3s AQUMs=83e3s Qg=13uty
aull puas puonas-1 aurl afqeug auyl ajqeud XQUVID=2181S
-booaioiny 103 asuwiy dn 1soH dn 3sol | -aur1 arqeud
0=J13wl,L dn 2a3s /1reay jng /1ieay jng pa3d snjeys
A'1aMs sajels 1TV AQy¥'1d AQUMS ONITUMS AIMS NOV1D juaag
ajels
F19¥YL NOILISNVYL ALVLS LINITLId °6-9 dTHVL

60471160 A

5-28

PMT1SEC, OUTPUT DATA DEMAND TIMING HANDLER

This program supplies the timing for the ODD function. If 1 second elapses
on an active output line without an ODD signal being received, PMT1SEC times
the line out. A hardware error is declared by generating a multiplex
worklist, which requests an interrupt to process the error.

60471160 A 5-29

NETWORK COMMUNICATIONS SOFTWARE 6
—

Network communications software programs handle routing of blocks, some
command execution (when the service_module executes the command), and common
TIP subroutines. The block protocol is discussed in this section.

The functions performed by the network communications programs are as
follows:

) Defines the types of blocks that are acceptable4for data transfer.

) Routes blocks. This includes checking the validity of incoming
blocks and attaching the blocks to an NPU program that will continue
processing the block.

® Provides and processes a special type of block reserved for
command/status/statistics information. All service messages (SM) use
this kind of block. The modules that process service messages are
collectively called the service module. CE error, statistics, and
alarm messages are special classes of service messages.

) Provides formatting for upline blocks so the block set -to the HIP is
in standard physical record unit (PRU) size and format (if required).

[Provides acknowledgment to assure that waiting batch data is
transmitted as rapidly as possible.

] Provides standard TIP support programs. These include the Point of
Interface (POI) programs and other standard routines that can be used
by any TIP.

BLOCK PROTOCOL

This is the protocol used to communicate commands and information between
the NPU and the host. Blocks are composed of consecutive bytes. The
shortest block consists of only a header (four bytes); the longest block
consists of 2047 bytes, including the block header.

Block protocol assumes that the logical connection between processes in the
host and the NPU is error free (a supportive, lower level protocol provides
delivery assurance between the processes). However, the logical connection
can be abnormally broken, either process can fail, or the processes can

become temporarily congested, leading to regulation of information transfer.

Failure of a process is usually reported by means of a service message.
Temporary bottlenecks at a destination process are usually a result of
inability to deliver data to an associated terminal or to the host. Block
handling provides a standard method for informing the transmitting process
of a temporary problem, so that any subseguent data transfers on that
connection can be held in abeyance until the problem is corrected.

60471160 A 6-1

The starting and stopping of a data stream between a host application
program and a terminal is handled by a special set of command blocks.

The paths between the two processes are fully symmetrical, as shown in
figure 6-1. Blocks belong to one of two categories, explained as follows:

] Forward data (FD) functions are performed by BLK and MSG blocks and
the command carrying CMD blocks. Two types of command blocks are
defined: service messages which are handled by the service module,
and other commands which are handled by the TIPs.

° Reverse supervision (RS) functions are performed by the BACK blocks
which acknowledge reception of MSG, BLK, and CMD blocks.

The first four bytes of any block constitute the block header. Format of
the block header is as follows:

Byte 1 2 3 4 5
1 H .
Bit 7 413 0 Remainder
DN SN | CN | BSN | BT of block 2

DN - Destination node
SN - Source node
CN - Connection number (00 = service message channel)
BSN - Block sequence number (range 0 - 7)
BT = Block type (defined in table 6-1)

The first three bytes of the block header provide a standard network
address. The fourth byte contains block sequence number (BSN) and block
type (BT). The content of the remainder of the block, if any, varies with
the block type. An additional four bytes are reserved for control
information in data (MSG and BLK type) blocks. Data block header
information is shown in figure 6-2.

ADDRESS

The address occurs in the first three bytes: It contains the node IDs for
the source and destination of the block plus a connection number.

Node

Each NPU has one unique node ID; each interface between host and an NPU has
one unique node ID; Node ID = 0 is reserved for the host. The remaining
node IDs range between 1 and 255, and are build-time parameters. For
example, in a single host, single NPU system, the host ID 0, and the NPU ID
is 2. Upline traffic from a terminal would have a destination node of 0 and
a source node of 2. A service message going downline to the NPU would have
a destination node of 2 and a source node of 0.

6-2 60471160 A

NPU HOST

FD, RSy AND FD,
T

RSy RS, RSz RS

y
FD, AND RS ﬁ
R2 T2

FD - FORWARD DATA

R - A ROUTING (SUPERVISORY) PROCESS

RS - REVERSE SUPERVISION

T - A TERMINAL (DATA SOURCE OR DESTINATION! PROCESS

M-759

Figure 6-1. Communications Paths for Block Flow Control

60471160 A '

TEXT Y

BYTE 0 | 2 3 4 5 6 7 8
ON SN CN 8T DBC | TIME |STAMP|LEVEL| DATA §
- -~ g
NETWORK HEADER OPTIONAL
ON - DESTINATION NODE |
SN - SOURCE NODE ADDRESS PRESENT ON ALL BLOCKS

CN -~ CONNECTION NUMBER
BT - BLOCK TYPE, SAME AS NON-DATA BLOCKS

DBC - DATA BLOCK CLARIFIER. TWO TYPES - ONE FOR BATCH AND
ONE FOR INTERACTIVE

DBC FOR BATCH DATA BLOCK
7 6 £ 4 3 2 1 0

() = NON-TRANSPARENT DATA
1 = TRANSPARENT DATA

0 = MESSAGE CONTAINS EOR
{(END-OF-RECORD)

1 = MESSAGE CONTAINS EOI
(END-OF -INFORMATION)

e NOT USED

— (0 = NOT A BANNER BLOCK
1 = BANNER BLOCK

e | = BATCH BLOCK PHYSICAL RECORD UNIT BLOCK (PRUB)}

Figure 6-2, Data Block Header Formats (Sheet 1 of 2)

60471160 A

60471160 A

Figure 6-2.

DBC FOR AN INTERACTIVE BLOCK
7 6 5 4 3 2 1 0

l— CARRIAGE

CONTROL CODE

NOT USED

L——0 - INTERACTIVE BLOCK

CARRIAGE CONTROL CODE GENERAL FUNCTION

0 NEW POSITION

1 NEW PAGE

2 NEW PHYSICAL LINE
3 oo NEW LOGICAL LINE
4 NO SPACE

5 NO OPERATION

6, 7, 14, 15) INVALID

8 - 13 SAME AS 0 - 5

TIME STAMP — THE OPTIONAL, 2-BYTE TIME STAMP CONTAINS
THE TIME THE LAST CHARACTER WAS PLACED IN THE PRUB
FOR BATCH BLOCKS. INTERACTIVE BLOCKS DO NOT USE THE
TIME STAMP FIELD. THE TIME STAMP IS USED FOR
PERFORMANCE ANALYSIS ONLY.

LEVEL NUMBER - THE LEVEL NUMBER FIELD CONTAINS THE
FILE LEVEL NUMBER RECEIVED ON THE EOR CARD OF BATCH
DATA INPUT INTERACTIVE BLOCKS DO NOT USE THE LEVEL
NUMBER FIELD

M-761

Data Block Header Format (Sheet 2 of 2)

TABLE 6-1. BLOCK TYPES

Block Traffic
Mnemonic Name Type Type General Function

BLK Block 1 FD Data block which is a
non-end-of-message block of a
multi-block message

MSG Message 2 FD Data block which is the
end-of-message block of
multi-block message or an
entire single block message

BACK Block 3 RS Acknowledgment for block
Acknowl- transmitted in opposite
edgment direction

CMD Command 4 FD Command either a service

message (CN = 00) or a command
to a line (CN # 00).

Connection Number

A logical connection is the association between a terminal's terminal
control block (TCB) and an application program in the host. This unique
number therefore fixes the end points of each block transmission in the
network. The TCB contains all status information relative to a particular
terminal (or terminal device) and the current transfer. The TCB also
contains a host-assigned connection number. The connection number is one
byte long, and has a range of values between 1 and 255. Every block
traveling downline to a terminal device or upline from a terminal device
bears the connection number of the associated TCB. Unique connection
numbers are assigned to all TCBs within a given NPU node associated with
particular host node. A CMD message with CN = 0 is a service message.

fu

BSN/BLOCK TYPE

The fourth byte contains block serial number and block type information.

Block Serial Number (BSN)

Each block (CMD, BACK, BLK, or MSG) contains a block serial number (BSN) in
bits 4 through 7 of the fourth byte. The BSN field is always zero on the
service message channel.

BSNs are assigned sequentially by the transmitting process. This is a
modulo 16 count that begins with zero when the connection is established.
The count continues sequentially until the connection is dissolved. No
correlation between upline and downline BSNs can be assumed.

6-6 60471160 A

The block receiver checks the BSNs of the received block against the
next-expected serial number., If the number is correct, the next expected
BSN count is updated. If the NPU detects an out-of-sequence number, the NPU
sends an upline stop command to the host.

No specific recovery logic is included to restart a connection when the host
receives an out-of-sequence upline block or an upline command from the NPU
signifying receipt of an out-of-sequence block.

BLOCK TYPES
The block types are described in detail below.

BLK (Block) Block

A BLK block is a data block containing a portion, but not the last segment,

of a data message. All data blocks contain from 1 to 2039 bytes of data
immediately following the 4-byte block header and the additional 4-byte

MSG/BLK block header. The content of the data field is determined
arbitrarily by the communicating processes.

MSG (Message) Biock

A message block is a self-contained unit of data communications. 1In
half-duplex, two-party communications, the transmitter signals
ready-to~receive by sending end-of-message. Thus, a message block is a data
stream terminated with an end-of-message indicator.

If a message is 2039 bytes or less in length, it can be transmitted within a
single MSG block. All segments but the last are transmitted within BLK
blocks: 1) if a message is longer than 2039 bytes, or 2) if, as is usual,
the message is segmented by the terminal, or 3) in order to optimize NPU
dynamic space. The last segment is transmitted within a MSG block.

Back (Block Acknowisdgment) Block

A BACK block is returned to the transmitter by the receiver as BLK, MSG, and
CMD blocks are processed, to allow the transmitter to adjust the rate of
issuing data to the rate of delivery to the receiver. The transmitter
should not issue unacknowledged blocks in excess of an available block limit
(ABL) for each connection. The BACK block, which acknowledges a previously
transmitted block, allows the transmitter to maintain an outstanding block
count to ensure that the ABL is not exceeded. ABL is established by the
connection as a part of the configuration process. Note that no data bytes
are associated with a BACK block.

CMD (Command) Block

A CMD block carries a network command and allows connected processes to
communicate outside the data stream, but concurrently with it. The command
is received by the destination process in the same order sequence to the
data stream as existed at the source. For this reason, a set of commands
(with CN not 0) is defined for stopping and starting stream. These commands
normally originate in, or are processed by, a TIP. These commands are
summarized in table 6-2.

60471160 A 6-7

The second major group of commands exist where CN is 0. These are called
service messages (SMs). SMs normally originate with, and are processed by,
the service module. A TIP can be called to perform processing on a service
message, as well as call the service module to generate a service message.

Service Channei

The logical channel (CN is 0) for service messages is called the service
channel. Unlike other logical connections which can be dynamically created
and released, the service channel always exists. Service messages include
commands, request for status, error information, statistics information, or
replies to one of these message categories. The service channel can also be
used to send messages between terminals. Commands traveling via the service
channel establish logical connections and communicate control, status, and
error data.

Service messages are described in detail later in this section. The
complete summary of service messages is found in appendix C.

Data Steam Control

The following rules are a part of the block protocol between NPU and host:

[Interactive data streams are usually open; therefore, these streams
do not require start or stop commands.

] All TIPs start batch input streams by a command from the host, and
start output streams by the first output block.

e All INTERCOM commands input at the terminal are passed to the host,
and may result in a downline CMD to control the TIP.

) The TIP must notify the host of any terminal condition requiring
operator intervention.

® On batch or interactive connections, upline CMD blocks from the NPU
to the host must be suspended until the host is expecting a block on
that connection. That is, the host has sent a BACK block
acknowledging the previous upline block.

° On batch output connections, upline CMD blocks from the NPU to the
host cannot be sent unless the host is expecting a BACK block. If
the upline CMD is stream stopped, the BACK block that is due is

suspended until a restart stream CMD block is received from the
host. Then the BACK block is discarded.

DATA FORMATS

The data formats for INTERCOM are interactive format and batch format.

6-8 60471160 A

*Atuo sasodind or13soubeiqg

18pio

30 3Ino 13aqunu 3aouanbas

0 ¥O01q pa3oalap sey nNdN 6 30119 NS€ sy
"8jeuTWId] pue ejep piedsiqg 0 -] andano doas ad
jndano
weaa3s Indino aunsay 0 - L 31e3say ad
) paijie3s
-Atuo sn3e3s 1} do3is 1333je jiejsay 9 and3nQ sy
"d1d
Ay poulgap ¥ea1q 10j uoseay [4 9 jeaag
‘dis
Ay paurjop %ealq 10 uoseay I3 G yeauy
“d1d
Ay pauyjup ¥Paly J0] uoseay £ b seaig
*dllL
Ay pautjap jealsq 10j] uoseay z ¢ Jeaug
‘did
Ay pauljep yeaiq 10} UOSEIN 1 Zz 3eaig
*dl4 Aq paurjap
yeaiq padduis Jo) uoseay 0 1 yeaig [4 andang Sy
" (Ajuo mmumum. ¥ealq 193je
sWNSuJ pajlels aaljoelajul 0 dojs 13})je jiejsay ¥ nduy ad
*dld
AQ paur)3p yeaiq 10) uoseay F4 ¢ jeaid
*did
Ay paurjap 3eaiq 10j) uvsesy 1 1 jeaig
poddo3is
*pua [ewion 0 pua £ indug ad
*jtes pue buyryrod dojzsg 1 puadsng
*buijod doias pue eaep pieossig 0 ajeuyuwiag z anduy doig [
*8d1A3p Yo3jeq woirj 3Induy ie3s k4 aunsay
*9dja2p yojeq woij indur jiels 1 juaiedsueiy ‘ajerjjujl
“9d1a2p yojeq woij andur jie3ls 0 juaiedsueijuou ‘ajeyjjul 1 andut jie3s SH
|Poy apo)
suotioung uoyjounyg ad&y
asn doyjoung B uojjoung
A1epucoag Kivepuodag A1ewr g Alewrig oyjjeay

SNOILOANNOD OYIZNON NO QISN SHO0TH ANYWWOD

"C-9 JdT1dVL

60471160 A

Interactive Format Data

Interactive data (both upline and downline) is transferred between host and
NPU over the coupler channel using the 7-bit internal ASCII code set. The
NPU translates characters between the code set of the terminal and internal
7-bit ASCII code. All active terminals have at least one interactive
connection configured.

Interactive streams are treated independently without concern for
interference with batch streams. The TIPs resolve contention between
interactive and batch streams. Interactive streams are always open and do
not required commands to stop or start. The steams do not notify the host
‘when a connection is stopped under normal conditions. A few abnormal
interactive stoppages and resumes are reported to the host for the purpose
of updating status.

Interactive input starts after the first output to the device. It continues
until the terminal or device fails, or the line or terminal is deleted. 1If
contention exists, interactive input is suspended when preempted by batch
input or output to the same terminal. The interactive input automatically
resumes whenever possible.

Upline interactive data blocks generally contain a single line of input from
the terminal, and are normally followed by a single line of output from the
host. The TTY TIP provides block mode and paper tape mode which allow
multiple inputs from the terminal before output.

Interactive input data is terminated by special characters, by timeouts, or
by the number of input characters, depending on the TIP and mode of
operation. The input data is sent either in a BLK or MSG block, depending
on the terminator.

Downline interactive data blocks can be terminated by any character. Once
the NPU has started output to a device in the interactive mode, BLK blocks
are delivered without allowing input until a MSG block has been delivered.

The host defines the desired interactive carriage control by specifying a
logical carriage control function in the data block clarifier (DBC) field of
each interactive output block. Each TIP translates the DBC codes to an
equivalent function for output to the interactive device. In cases where
there is not an equivalent function for the output device, the DBC code is
either ignored or treated as a new line, depending on the terminal
characteristics. DBC codes are shown in figure 6-2,

Batch Format Data

Batch data (both upline and downline) is transferred between the host and
NPU over the coupler channel, using physical record unit block (PRUB)
format. The PRUB is formatted to be directly compatible with a CYBER
physical (disc) record unit (PRU) with the network block header appended to
the front. Each data character is 8 bits, as stored in the NPU memory or
transferred across the CYBER .coupler interface. Data characters are either
6=-bit display code (stored right-justified in each 8-bit character) for
nontransparent modes, or the code of the terminal device for transparent
data modes.

6-10 60471160 A

The PRUB can contain one to three PRUs (either 640 characters, 1280
characters, or 1920 characters maximum), depending on preset system option.

The PRU block is terminated by any of three conditions as follo&s:
® The maximum number of characters has been stored.
® An end-of-record (EOR) has been deleted.
° An end-of-information (EOI) has been deleted.

After the PRUB is terminated, it is forwarded to its destination. Only
significant data within the PRUB is transferred across the connection.

PRUBs containing EOR or EOI must be less than the maximum PRUB size.
Therefore, a record or file ending on exactly a 640- or 1280-character
boundary will cause an additional PRUB to be generated which contains no
data characters, but contains a bare EOR or EOI in the header. This applies
to both upline and downline blocks.

The block type (BT) field within the network header specifies MSG if the
PRUB contains EOR, EOI, or BANNER. The BT field specifies BLK for all other
types of PRUB blocks.

NONTRANSPARENT DATA

For upline blocks, nontransparent data within the PRUB is assumed to be card
data. For downline blocks, nontransparent data is assumed to be either
print or punch data.

Each card input has trailing blanks suppressed and the end-of-card signified
by at least two binary zero characters on a modulo 10 character boundary.
That is, the NPU inserts 2 to ll zeros following the last nonblank character
on a card so that the total number of characters and zeros is an even
multiple of 10.

For downline punch or print data, an 8-bit character of all ones (FF16)
signifies the end of each card or print line. The FF1g can be preceded by
one binary zero character. Zero pad characters normally used to specify
end-of-card or line within the PRU are not to be transferred downline to the
NPU. The first character of each print line is treated as a carriage
control character, using standard INTERCOM conventions.

Where an EOR or EOI card itself is discarded and the appropriate bits are
set in DBC field of the PRUB header, EOR or EOI conditions are listed below.

® EOR - 7/8/9 punch in column 1 for Mode 4
) ECI - 6/7/8/9 punch in column -1 for Mode 4
- /*EOI in columns 1 to 5 for BSC and HASP
® With bisynchronous ETX received from the terminal: ETX is generated
when an ETX is punched in the last column of the last card or when
the last card is entered with the EOF switch depressed. This is the

only method of determining EOI when in the transparent mode for a
bisynchronous terminal.)

60471160 A 6-11

A 1- or 2-digit level number can be specified in columns 2 and 3 of the EOR
card. This level number, if present, is converted to an 8-bit binary value
and transferred upline to the host in the level number field of the header
of any PRUB containing EOR. The level number field is zero if not present
in the EOR card.

Downline PRUBs containing EOR or EOI that are directed to a punch device
cause an EOR card (7/8/9/ punch) or EOI card (/*EOI) to be punched. The
level number contained in the header of an EOR block is also punched in
columns 2 and 3 of the EOR card.

TRANSPARENT DATA

Transparent data within the PRUB provides a method of transferring batch
data between the terminal and the host files without modification by the CCI
software. The block header is identical to that defined for nontransparent
data.

Input data received in the transparent mode is stored in the PRUB without
code translation, data expansion, or blamk suppression. Transparent PRUB
blocks are terminated and forwarded to the host when one-half the number of
characters specified for the PRUB size is reached (320/640) or the
end-of-information is reached. EOR and EOI cards are not recognized in the
transparent data mode. Therefore, end-of-information is detected by
receiving ETX from the terminal.

Transparent input data is specified by three methods, as follows:

® Optional parameter on the INTERCOM command READ FILE NAME
o TR in columns 79 and 80 of the job card
) TR in columns 79 and 80 of the EOR card

The full 8 bits of each data character are written to disk PRUs for
transparent upline PRUB blocks.

Qutput files can also be specified as transparent. The host marks the
header of each PRUB as transparent for the files. Transparent PRUBs are
output to the terminal without modification of the data characters (no code
translation, data compression, carriage control line folding, etc.). Data
characters are, however, blocked into the maximum size transmission blocks
specified for the terminal device receiving the data. Transmission blocks
are terminated at the last data character of a PRUB block that is marked as
an EOR or EOI block.

ROUTING

Routing of blocks is performed by the internal processing, usually called
through PBINTPRC. The internal processing call is made from the monitor
with a worklist entry.

PBINTPRC passes the block to be switched to PBSWITCH, the general systems
block switch. PBSWITCH uses the directories to pass the block to the
program which must continue processing the block.

Upline blocks that are completely processed are passed to the HIP for .
transmission to the host.

6-12 60471160 A

Downline blocks that are to be sent to terminals are queued to the TCB,
which is associated with the terminal/device that is to receive the messagde.

A second source of switching uses PNROUTE. At present, only the service
module and utilities use this switching method.

DIRECTORIES

Each block of information (service messages are a special subclass of
blocks) has three address elements: The destination node (DN), the source
node (SN), and a connection number (CN). There are three directories; one
associated with each of the three address elements:

° Destination node directory
) Source node directory (LLCB for the link)
® Connection number directory

The three directories are collectively designated as the routing
directories. Formats of the three directories are shown in figure 6-3.

Destination Node Directory

The destination node directory contains an integer value associated with
each valid DN address (range: 0-255). For a local node (meaning within the
same physical node) the directory provides the address of the source node
directory associated with that logical node. For all external logical
nodes, the directory entry provides a logical link control block (LLCB)
address. A zero entry indicates a nonexistent node (an unassigned value of
DN} .

The destination node directory is a fixed length table with two words per
entry. The first word contains the index (by node number), and the second
word points to the appropriate LLCB.

Source Node Directory

The local logical node has a source node directory for each local node
address. Each SN directory is used to select the connection directory
associated with the pair of nodes indicated by DN and SN. Nonzero entries
point to the address of the connection directory.

Connection Directory

For each logical node there is a connection directory for all terminals,
with at least one conection defined. An entry in the connection directory
provides the address of a terminal control block (TCB). The directory is
indexed by CN and has a pointer to the TCB for that CN. The connection
directory is located in dynamic buffer space.

Routing Process

The PBSWITCH module starts the search of the three directories to perform
either internode or intranode routing; figure 6-4 indicates the steps of the
routing search.

60471160 A 6~13

DESTINATION NODE DIRECTORY

DELOCDN

| =
LLCB ADDRESS ’ HOST
| o
LLCB ADDRESS HOST UPLINE
| 02
ADDRESS OF SN DIRECTORY §gﬂ°{:‘§$&?
[03

ADDRESS OF SN DIRECTORY

SN DIRECTORY |

FOR TERMINALS { DOWNLINE

LLCB CHAIN FOR THIS DN

POINTER

SET OF LLCBs FOR

THIS DN AND ALL SNs

THAT HAVE LINKS TO THIS
DN THROUGH THIS NPU.

POINTER TO CN DIRECTORY

[SN = 2

CN DIRECTORY FOR THIS SN

DN AND CN

[01

L

DIRECTORIES ARE

POINTER TO TCB FOR CN = 1

TYPE 1 TABLES.

| 02

POINTER TO TCB FOR CN = 2

| 03

POINTER TO TCB FOR CN = 3

TCB ADDRESS

NOTE: DIRECTORIES SHOWN FOR A ONE NPU NETWORK,

Figure 6-3.

M.758

Use of Routing Directories

60471160 A

ENTER

y DIRECTORY)
SEARCH
DND USING
DN AS INDEX
DIRECTORY
SEARCH SND
USING SN == éégasn
ENTRY YES AS INDEX
=0

A

NO NO DN
NODE DEFINED

>
-

A4

ERROR. DISCARD
BLOCK - COUNT
AS A BAD BLOCK

PREPARE BLOCK
FOR HIP ~ SET
EOT FLAG IN DIRECTORY
LAST BUFFER

SEARCH CND

v USING CN
AS INDEX

LOCATION
OF NODE
?

NO ADDRESS

OF TCB
Lﬁ \ ,
EXIT YES
PBIOPOI

PASS BLOCK
SERVICE ' TO PROCESS
MESSAGE ADDRESS
y INDICATED
IN TCB
LocK
TO SVM USING
A WLE 4
EXIT
\ 4
EXIT

+
THIS 1S LLCB FOR TERMINALS M.785

Figure 6-4. Simplified Routing Flow Chart, PBSWITCH

60471160 A

Following the routing £f£low, DN indexes the destination node directory to
obtain an address. If the address obtained is zero, the destination of the
block is undefined, and PBSWITCH discards the block without notifying the
sender. However, the bad block count is incremented.

Service messages are passed to the service module using a worklist entry.

The LLCB for the terminal load link is searched using SN. The SN/DN LLCB
has a pointer to the CN directory. This directory is similar to the DN
directory. It is indexed by CN and has a pointer to the CN's associated
TCB. Using the TCB address, PBSWITCH calls the internal output POI
(PBIOPOI) which queues the block to the TCB.

ALTERING DIRECTORIES

The modules PNDIRADD and PNDIRDLT add or delete entries to the directories.
PNDIRADD requires four input parameters, listed as follows:

) The first two are PASCAL values in the range 0 to 255, and represent
DN and SN values respectively.

® The third is a PASCAL variable in the range 1 to 255, and represents
CN.

] The fourth is a PASCAL variable of the buffer.pointer type (range 2
to 65 and 535). that points to a TCB for use in the appropriate
directory. :

The DN directory can have a new 2-word entry. The CN directory can have new
entries as well as new chained segments, if necessary. LLCBs (the SN
directory) are pre~-established.

PNDIRDLT removes entries from the DN and CN directories. Three input
parameters are necessary, listed as follows:

® The first is a PASCAL value between 0 and 255, and is the index to
the DN entry to be removed.

° The second is a PASCAL value between 0 and 255, and is the index to
the SN entry to be removed.

® The third is a PASCAL variable in the range 0 and 255, and is the
index to the CN entry to be removed.

If the entry removed in the CN directory is the last remaining entry of that

segment of the directory, that segment of the directory is released.
Rechaining of directory segments is performed as necessary.

SERVICE MESSAGES (SM)

The special group of control messages (SMs) that carry extended command,
status, and statistics information between the host and NPU nodes are
processed by the service module (SVM). The procedures that make up the SVM
are grouped into the following general categories:

° Internal SM processing.

) Validating and timing-out service messages.

6-16 60471160 A

® Generating and dispatching service messages.

® Configuring/enabling/disabling/deleting control blocks. These
include control blocks for lines (LCB) and terminals (TCB).

] Generating and sending status SMs. These include line and terminal
status SMs.

) Generating and sending statistics SMs.

® Generating and sending broadcast one and broadcast all SMs.

INTERNAL SM PROCESSING
Four types of functions are handled by these SVM modules:

° Making worklist entries for SVM and awaiting availability of buffers
for SVM processing.

] The interface to the OPS monitor so that the monitor can pass control
to SVM,

e An indexing function that finds the proper point in SVM to resume
processing after a pause. The necessary marking information is
contained in the worklist entry.

) The logic to process the line inoperative and line operative worklist
entries. The output is a line enable/disable SM or a status SM.

VALIDATING AND TIMING OUT SMS °
The timeout group of modules times out SMs and responses to timeout SMs.

The validation group of modules assures that all SMs have:

e A valid primary function code (PFC) and a secondary function code
(SFC).

) The port identification number is within the range of ports assigned
to this NPU. :

NOTE

The format for each type of service message is given in
appendix C.

The general format of an SM (appendix C) is as follows:

byte 0 Py 2 3 4 5_ 6
- - BSN/ EB/RB/
SM DN SN CN 00 BT=4 PFC SFC PARAMETERS
N— R

"
block header
NOTE

Bytes are number starting at DN byte.

60471160 A 6-17

DN - Destination node -
SN - Source node

CN - Connection number = 00 for all service messages. The service
channel is always assumed to be configqured

BSN - Block serial number; bits 7-4 of byte. Always = 0 for SMs
BT - Block type = 4, command bloék. This is lower 4 bits of byte
PFC - Primary function code.

00—3F16 - Reserved for network use

40-9F15 =~ Reserved for intra-host use (error for CCI to
Receive these messages)

AO-BF16 - Reserved for expansion

CO—EO16 - Reserved for network use

El-EF16 - Reserved for installations

EB - Error response SM; EB = 1, which is bit 7 of byte 5

RB - Normal response SM; EB = 1, which is bit 6 of byte 5
SPC - Secondary function code; see appendix C, table C-1,

bits 5 through 0 of byte 5
Parameters - Defined in bytes. See appendix C

GENERATING AND DISPATCHING SERVICE MESSAGES
The following functions are handled by this group of modules:
® DN and SN of the SM are reversed for use in generating the reply SM.
® Queues SM to the local NPU console.
) Releases buffers used for SMs.
® Generates a message from the operator at the NPU console to the
network operator (NOP). This process begins when the operator at the
NPU console places the console in supervisory mode and enters the
message test. There is no response to this type of service message.
. Generates PFC and SFC for service messages.

Dispatches the SM to:

The HIP if DN designates the local coupler.
SYM if DN designates a local CCI action.

CONFIGURING/ENABLING/DISABLING/DELETING CONTROL BLOCKS

This set of modules is used for initiation and changing control blocks for
lines and terminals. The format and functional effect of these messages are
described in detail in the initialization section of the CCI 3 reference
manual and in section 2 of this manual.

6-18 60471160 A

GENERATING AND SENDING STATUS SMS

This group of modules generates and sends the logical link, line, and
terminal status messages. Included in these operations is the ability to
count configured lines. The status also indicates whether or not the line
is operational.

Line Status Request SM

This status request specifies the port used by the line. If the port is not
specified, the message is treated as a request for status of all lines
connected to the NPU. A response status SM is sent for each line configured
and owned by this host. The reply includes a response code (line)
operational, line inoperative, or autorecognition/no ring indicator), line
type, and configuration state. If an error response is set, the reason code
specifies one of the following error states:

e Port invalid.
[Another line status request is in progress.

. Illegal configuration state exists (for a single-line response
message) .

. No lines are configured (for an all lines response message) .

On a dial-up circuit, a line enabled response is generated by the NPU
immediately following a configure line SM. When a user dials in, the modem
interface signals indicate an active line. The NPU then generates an
unsolicited line status operation SM following autorecognition, if
applicable (see unsolicited response, below).

Upon receiving the line status operational SM, the host configures the
terminals for the line by sending one or more configure terminal SM(s).

An unsolicited line status request SM is sent whenever the TIP senses
conditions causing the line to be inoperative, including normal disconnect
on a dial-up line.

Line inoperative is reported when line or modem conditions cause the line to
become inoperative. It is not reported if the line is made inactive by
terminating its logical connections or by disabling the line.

The following modem signal conditions cause the line to be reported inoper-
ative. The timeouts involved ensure that a line is not declared inoperative
because of transient conditions, which are to be normally expected.

e Data Set Ready (DSR): If the data set ready signal drops at any
time, data transmit ready (DTR) is immediately turned off, and line
inoperative is reported. .

) Clear to Send (CTS - 201 and 208 modem): If the clear to send signal
does not occur within one second of the rise of the ready to send
(RTS) signal, remain on for the duration of ready to send, and drop
within one second of the fall of ready to send; the data transmit
ready signal is turned off (causing a switched line to disconnect}),
and line inoperative is reported. Clear to send is not monitored for
the 103/113/202 modems.

60471160 A 6-19

) Data Carrier Detect (DCD - for full duplex constant carrier): Once a
line is operational, if the data carrier detect signal drops and
remains off for a period of 10 seconds, data transmit ready is turned
off; line inoperative is reported. Abnormal operation of a data
carrier detect on a half duplex or on controlled carrier lines does
not influence line status.

TCBs are not automatically deleted when a line becomes inoperative. The
host must terminate each logical connection explicitly with a delete
terminal SM, or implicitly by sending a delete line SM or a disconnect line
SM. The unsolicited SM also contains bytes defining the number of
terminals, the terminal type, the terminal address and the cluster address,
line speed and code type, and the device type. For autorecognition
responses, the terminal address and device type are repeated for each
terminal that can be detected by the TIP. The TTY TIP reports only one
terminal address/device type pair.

Line Count Request SM

The host sends this message when it requires a count of the line which it
owns. This occurs following a host failure, or when the NPU causes records
to be incomplete or erroneous.

The reply message contains the requested count.

TERMINAL STATUS REQUEST SM

The host sends this message when its records are incomplete due to a host
failure. Status can be requested for one or all terminals on a specified
line. The request specifies the line to be checked.

The response may be either for a request, or unsolicited, when the NPU
detects a terminal failure or a terminal recovery. - Response parameters are
defined in appendix C.

When terminal failure is detected, the correspondent is informed via the
logical connection (if any), and the terminal status SM is sent. Terminal
failure does not change the state of the TCB with regard to the logical
connection, nor is the state of the line (as recorded in the LCB) modified.
Operator action is required to delete the terminal, if desired.

If an error response is sent, the error is one of the following:

Invalid line number

No terminals configured

Line inoperative or not enabled

Another terminal status request SM is in progress
LCB not configured

GENERATING AND SENDING STATISTICS SMS
The network operator can send a message to one or all terminals. This

message text is carried in a service message to the NPU, where it is copied,
then sends the terminal-directed messages to the interactive terminals.

6-20 60471160 A

The message identifies the cluster and terminal addresses, and the device
type of the receiving terminal. The network operator produces the text of
the message. The procedures for entering this message from the host console
are given in the NOS/BE operator's gquide.

A normal response uses a similar format to acknowledge that the message was
received and passed to the specified terminal. 1If the message was not
delivered, an error response is generated. The possible errors are as
follows:

Invalid line number

Invalid device type

Terminal or line not configured
Terminal or line inoperative

A broadcast message can be sent to all interactive terminals connected to
the NPU. 1In this case, only the text of the message and the ID of the nodes
being used are necessary in the request message. The network operator
enters the message at the host console using the procedure outlined in the
NOS/BE Operator's Guide.

A normal response is sent when the message is queued to all the interactive
terminals connected to the destination NPU. Otherwise, an error response is
sent. Two types of errors are reported, as follows:

° No logical link established, or this logical link is not established.

) Another broadcast SM is already in progress.

CE ERROR MESSAGES

CE error messages are special SMs that report hardware failures. These
messages all include a l-byte CE error code, and can include additional
data. These messages are described in appendix B of the CCI reference
manual.

COMMON TIP SUBROUTINES

These subroutines belong to one of two classes: Point of Interface (POI)
routines, and other standard TIP support routines.

POINT OF INTERFACE ROUTINES (POI)

Four Point of Interface routines are included in the internal processor.
These routines handle many of the interfaces enabling the TIPs to begin or
to end processing of a message. The programs are as follows:

PBPIPOI - Post input POI
PBIOPOI - Internal output POI
PBPROPOI - Preoutput POI
PBPOPOI - Post output POI

60471160 A 6-21

PBPIPOI, Post Input POI

This POI is called when the TIP has a block to be passed upline to the
host. PBPIPOI first calls PNSGATH to gather statistics on the transfer.
(See figure 6-5.) It then calls a group of nested subroutines. These
subroutines are listed as follows:

) PBIIPOI determines if the block is from a batch or interactive
terminal. If it is for an interactive terminal, the block header is
completed. The subroutines to convert the data to PRU format are
called. 1In both cases, the block is routed upline to the host, 1if
possible. Otherwise, the block is added to the upline PRU gqueue.

° ITPRUPOI determines whether the block from a batch device is a
command or data. If it is data, the conversion subroutines are
called; if it is a command, the header is completed. The output
stopped command is sent immediately if an upline BACK block is
pending. Other commands are sent immediately unless the terminal is
waiting for a downline BACK block.

) BLKTOPRUS processes each buffer in the block to transform the data to
PRUB format. This consists of setting the level number, setting the
transparent indicators (if necessary), splitting buffers (as
necessary), rechaining buffers, and setting character count in the -
transformed buffers. Also, the EOI must be set.

L ENDPRU performs buffer chaining during the transformation, and
handles header and chaining operations.

PBIOPOI, Intarnal Output POI

This routine is called by the switch to process downline blocks that are
routed to TIPs. The POI first checks if the block is in sequence. 1If it is
not, PTCOMMAND is called to generate a sequence error message for this
connection. PBIIPOI sends the message to the host. 1If the block is for an
interactive device, PBIOPOI determines the block type as follows:

° Data blocks are regularly queued to the TCB output for all TIPs
except the Mode 4 TIP. Data blocks are specially queued for Mode 4
devices.

° CMD blocks are queued to the TCB's output gqueue.

° BACK blocks cause the outstanding block count to be decremented. If
another block is waiting to be routed, PBRTEIA does this.

If the block is for a batch device, the batch downline routing subroutines
are called.

° IOPRUPOI checks the block type.
Data blocks are transformed to TIP input blocké if they are

currently in PRU format.

Pd

6-22 60471160 A

GENERATES LINE-ORIENTED
PT COMMAND CMD BLOCK (INPUT. PFC/SFC PBUPABRT
DETERMINE CMD TYPE)

L 2 v
ASSIGN A RELEASE ANY
BUFFER FOR PARTIAL PRU
THE CMD BLOCK BUFFERS
y A4
SET FCD/LCD ’ RELEASE ANY
AND PRU BUFFERS
PFC/SFC
! v
A RESET COUNTERS
PBHPO! RESET TRANS-
ROUTES THE PARENT FLAGS.
BLOCK UPLINE EOI DISCARDS,
AND BACK BLOCK
DUE FLAGS
A 4
EXIT 3
EXIT
PTDNABRT
PTBACK
A4
RELEASE h 4
s e 2
. BUFFER FOR
THE BACK
Y BLOCK
RELEASE
ALL CMD y
BUFFERS SET FCD/LCD
BLOCK TYPE,
s BSN, SN, DN
RELEASE ALL
TEXT PROCESSING y
BUFFERS [SOURCE,
DESTINATION, INCREMENT
AND PARAMETERS) ~BSN
! ,
RESET BACK SWITCH THE
BLOCK BLOCK USING
REQUIRED FLAG A WORKLIST
y A4
EXIT EXIT

M-786

Figure 6~5. Important Common TIP Subroutines (Sheet 1 of 7)

60471160 A 6-23

ROUTE BLOCKS
PERTEPRU UPLINE PRU PBRTEIA AS LONG
BLOCK AOUTING AS OBL PERMITS
A4
REMOVE FIRST
PRU FROM Q:
RESET POINTERS
AND CHAIN
y
A 4
EXIT
PUT SN/DN
IN PRU BLOCK
HEADER UNQUEUE
FIRST BLOCK
v
oMb ‘o INCREMENT 0BL
BLOCK ‘ UNLESS IT IS
; A CMD BLOCK
\ 4
VES SET BACK L 4
DUE F
LAG PUT BSN IN
T HEADER AND
— : BUMP BSN COUNT
A
SET 8SN IN y
BLOCK: SWITCH THE
INCREMENT | BLOCK USING
BSN COUNT A WORKLIST
v
SWITCH BLOCK
USING A
WORKLIST

COUNT <
JHRESHOL
?

y

NO BSO8L = 0:
ALLOW TIP
TO INPUT
\ 4
EXIT

M-787

Figure 6-5. Important Common TIP Subroutines (Sheet 2 of 7)

60471160 A

Figure 6-5,

60471160 A

PTBCKCHK

h 4

COUNT ALL
NON.INTERNAL
OUTPUT BLOCKS
QUEVED TO TCB

NO
YES

SEND A
BACK BLOCK

L

RESET BACK-
B8LOCK DELAYED
FLAG

h 4

P ER—

m

DEVICE

PUNCH

TYPE
?

PTBANNER FILL
BUFFERS WITH
INFORMATION
TO BUILD A
BANNER PAGE

v

PBPROPOI

A

SET BUFFER
POINTERS

FOR B

LOCK

4

UPDATE
BUFFER

CHAIN

EXIT

PBPOPO!

A

GATHER
STATISTICS

FOR TR
MITTED

ANS-
8LOCK

SEND

BACK

BLOCK (F
REQUIRED

A

y

PTLACE: FILL
BUFFER(S! WITH
INFORMATION
TO PUNCH A
LACE CARD

RELEASE
THE BLOCK'S
BUFFERS

4

EXIT

&
-

4

EXIT

M-789

Important Common TIP Subroutines (Sheet 3 of

7)

SWITCHES UPLINE
BLOCKS FOR TIP

PBPIPOI

DEVICE
TYPE
?

INTER-
ACTIVE

BATCH SET UP
8LOCK
HEADER

SET 0BC,
QUEUE
BLOCK
h 4 A
1PRUPQI: PBRTEIA:
PROCESS ROUTE
PRU BLOCKS BLOCK

I1PRUPO!

|

<
-

EXIT

Figure 6-5. Important Common TIP Subroutines

6-26

Y
BLK 8UILD
MSG 8LOCK
HEADER
\
QUEUE
WITH PRU
8LOCKS
AND UPLINE
ACK WAIT,
\
BLKTOPRUS: PBATEPRU: YES
PRQCESS PRU ROUTE .
DATA BUFFERS 8LOCK
< A A
A
EXIT
M-790

(Sheet 4 of 7)

60471160 A

BLKTOPRUS

ADJUST
BLANKS

A

ADJUST PRU QOD;UST REGULATE
BOUNDARY - =~ EORTIAL INPUT

(END PRUI PRUs

\ 4
A 4
FILL PRU

SIZE BUFFER
WITH DATA . ExT

A 4

SPLIT INTO A
SECOND BUFFER
{F NECESSARY ~

ADD TO
PRU CHAIN

Figure 6-5. Important Common TIP Subroutines (Sheet 5 of

60471160 A

7)

BACK
P SWITCHES DOWNLINE
FaloFa! BLOCKS TO TIP L
j DECREMENT
QUTSTANDING
BLOCK COUNT
\ 4
DISCARD
4 THE BACK
YES SEND BAD BLOCKS
BSN MESSAGE
TO HOST v
PBRTEIA:
y AOUTE ANOTHER
BLOCK IF
INCREMENT
BSN POSSIBLE
= b
N Y
¥ 1
L ‘ EXIT ’
BATCH
A
INTERACTIVE IOPRUPOL:
CONVERT
BLOCK TO TIP v
PROTOCOL NORMIAL pe——
SWITCH QUEUING QUEUING
ON BLOCK T0 TCB aueuin
TYPE A
?
< Y.
cMD < <
Y
L
QUEUE
BLOCK TQ TCB
M-793

Figure 6-5. Important Common TIP Subroutines (Sheet 6 of 7)

60471160 A

60471160 A

10PRUPO!

NO

MSG
A
h 4

PRUTOBLKS.
TRANSFORM DATA
TO TERMINAL
FORMAT

¥ BACK

YES

A4

A 4

PBDNABRT
RELEASE allL
OUTPUT BLOCKS

SAVE EMPTY
EOQI BLOCKS

Y.

RELEASE
THE BACK
BLOCK

RESET BACK
8LOCK DUE
FLAG

y

PBRTEPRU-
ROUTE AS MANY
PAL BLOCKS AS
POSSIBLE

| I

y

PBBCKCHK:
SEND BACK BLOCK
1IF NECESSARY

-

v

QUEUE THE
COMMAND
TO TCB

Figure 6-5.

M-794

Important Common TIP Subroutines (7 of 7)

CMD blocks are of three types. Restart output CMD blocks cause the
POI to send a BACK block if the back block threshold has not been
reached. Stop output commands cause all blocks queued to this TCB
to be released. Start input commands prevent empty EOI blocks from
being discarded. In all cases, the CMD block is queued to the TCB's
output queue.

BACK blocks cause waiting PRU blocks to be routed upline.
® PRUTOBLKS checks the block use.

If this is a banner block and banner blocks are to be used,
PTBANLACE generates the banner block.

If this is a text block and if text processing is required, PBXFER
calls the TIP's text processing routine to transform the text to
terminal format/code at this point. Blocks are gueued and BACK
blocks are sent, or set for later sending, as a function of the
current TIP state.

PBPROPOI - Preoutput POl

This POI is used to update pointers in the output message block that is
queued to the TIP.

PBPOPOl — Post Output POI

This POI is called from the TIP's post output routine to generate the
statistics for the block (using PNSGATH), and to send a BACK block if one is
necessary, assuming the block was not internally generated. (BACK blocks
are always generated for interactive downline blocks.) The POI then
releases the buffers holding message which the TIP has now finished
processing.

STANDARD TIP SUBROUTINES

OUTPUT QUEUING (PBQ1BLK AND PBQBLKS)

OQutput queues are associated with a specific TCB. That TCB contains a
pointer to the first block in the queue, specifically to the first buffer of
that block. Figure 6-6 illustrates the queue structure. The queue contains
one or more data blocks, each of which is composed of one or more buffers.
The buffers are linked in the order they are removed from the chain. The
last word of one buffer is the pointer to the next buffer. The last word of
the last buffer contains NIL.

Blocks are chained together using the QCHN word of the buffer header (word 3
of the data buffer header). New blocks are always chained to the previous
last block. The QCHN word of the newest block is always NIL.

The TCB output queue is built by two routines: PBQIBLK and PBQBLKS.

) PBQI1BLK (parm) uses the parameter (block address) to clear the chain
word of the block to be queued. Then PBQlBLK calls PBQBLKS.

6-30 60471160 A

MESSAGE BUFFER
CHAIN IS
COMPOSED

OF TWO OR
MORE BUFFERS
CHAINED
TOGETHER TO
FORM A
MESSAGE

BLOCK

60471160 A

TERMINAL CONTROL BLOCK

Figure 6-6.

A
~2 > [] ;’;
. » BSQTYPE
* TRUE
> BFLCD BFFCD BFLCD 8FFCD 8FLCD aFrFeo
FLAGS FLAGS FLAGS
QCHN - POINT
P = P » .
IN NEXT BLOCK QCHN = PT —p- QCHN = NIL
. J ° J °
AE . o~ aF g > JF ® ~
° ° .
POINTER TO NEXT
BUFFER NiIL
4 v
v v
NIL
FIRST SEGMENT OUT .
NiL
—~
L LAST SEGMENT IN
1

MESSAGE BLOCK CHAIN IS COMPOSED OF TWO OR MORE 8LOCKS CHAINED TOGETHER
TO FORM A TERMINAL OUTPUT QUEUE

Structure of a TCB Queue

M-374

° PBOBLKS (parml, parm2) uses parml to find the TCB output queue and
parm2 to find the buffers to be added to the chain. If the TCB queue
is empty, a worklist entry is made to the TIP which controls the TCB;
the TIP can process the queue.

The TIP which must process the message calls PBQlBLK (or PBTOCONS if the
message is for the NPU console). PBQlBLK is called indirectly using the
internal output POI (PBIOPOI).)

REMOVING A MESSAGE SEGMENT FROM QUEUE PBGTI1SEG

The form of the call used to remove a single buffer from the message is as
follows:

PBFT1SEG (parm) where R3SEGPTR contains a pointer to the buffer to be
removed from queue. For parameter setup, BlTCB is a global variable
containing a pointer to the TCB associated with the queue.

PBGT1SEG is a PASCAL function that returns as follows:
A zero value, if the gqueue was busy and no buffer was removed from the
queue, A value of one, if the gueue was not busy, but was empty, and no
buffer was removed from the queue.

A value of two, if the queue was neither busy nor empty and a buffer was
removed from the queue.

It is assumed in the foregoing that B1lTCB does not contain a NIL pointer.

It should further be noted that the chain word of a returned segment will
not necessarily be NIL.

SAVING AND RESTORING REGISTERS
Two subroutines save and restore the Rl and R2 registers: PBBEXIT & PBAEXIT.
PBBEXIT — Save R1 and R2
PBBEXIT is used to save R1 and R2 before executing the GOTO (EXIT) when the
GOTO statement occurs within one or more executable WITH statements.
NOTE
A GOTO (EXIT) from within a noninterruptable program does not

perform an UNLOCK operation before exiting.

PBBEXIT then restores R1 and R2.

6-32 60471160 A

PBAEXIT — Restore R1 and R2

PBAEXIT is used before a GOTO (EXIT) is executed from within one or more
executable WITH statements. PBBEXIT has previously saved Rl and R2 in a
specified area so that they can be used as base addresses of the structures
associated with the first two executable WITH statements. The calling
sequence is: PBAEXIT (parm) where parm is the name of the 2-word save area
for Rl and R2.

Interface to Text Processing Firmware, PTTPINF

TIPs call this interface to firmware routine to execute the upline or
downline text processing state programs (upline text processing is used only
for TIPs that require two-stage input processing, such as the HASP TIP).
After escaping to firmware processing, PTTPINF periodicallv returns tc OPS
level to process interrupts (interrupts are inhibited while firmware is
executing state programs). When the entire text processing segquence is
completed, PTTPINF returns control to the calling program. If the text
could not be converted, PTTPINF notifies the calling program of the failure.

This module is technically a part of the base system; it is discussed here
since it provides a TIP-related service.

Finding Number of Characters to be Processed, PTCTCHR

PTCTCHR counts the number of characters in the buffer to be processed. This
count includes the complete chain of data buffers in the message. PTCTCHR
is also a part of the base system.

Saving and Restoring LCBs, PTSVxXLCB, and PTRTxLCB

Two sets of routines allow TIPs to mark transmissions that must be suspended
until further terminal or host action occurs. The suspension address in the
TIP controlling the transfer is saved in the LCB and, upon the necessary
action being completed, control returns to the TIP at the specified point.
Transmission processing continues.

e PTSV1LCB or PTSV2LCB - saves the TIP return address in the LCB and
saves a wait count prior to returning control to the monitor. The
former is used for input; the latter is used for output. The TIP
will later receive control by a worklist entry to continue processing
at this point.

] PTRTILCB or PTRT2LCB - The TIP for this suspended transmission
receives control as a result of a worklist entry to it. These
routines restore TIP processing at the address (next entry point)
saved by PTSVXLCB. The former is used for input; the latter is used
for output.

These modules are also part of the base system.

60471160 A 6-33

Common Return Control Routine, PTRETOPS

PTRETOPS is called by TIPs in order to properly relinquish control to the
monitor (PBMON). This module is also part of the base system.

Common Tip Regulation, PTREGL

The common regulation checking routine is called when the TIP is ready to
start processing the data {(upline or downline). Even though some processing
of the data may already be completed (for instance, input state processing
has been completed on upline data), CCI may need protection from an
additional request for space or processing resources. At the TIP's request,
PTREGL checks any one or any combination of the following four regulation
conditions: :

e The requlation level at this end of the logical link is higher than
the priority level of the block transmitted to this NPU.

[The allowable number of blocks that can be gqueued to this TCB (ABL)
is greater than the number of blocks already queued to this TCB for
processing (OBL).

e The accept input (AI) flag is not set in the TCB (upline data).

o The buffer availability level in this NPU is below the level set for
this type (low or high priority) of data block.

NOTE

This routine is not called by the mux subsystem for upline
data. Instead, upline data is accepted from the input loop,
stored in the CIB, and demultiplexed into a line~oriented
input buffer. Then the TIP is called. The TIP has the
responsibility of checking whether or not the message should
be rejected (requlation occurs). The mechanism for stopping
input at the external interface is also a TIP
responsibility. This is done by breaking the message (input
stopped or BRK block) and commanding the mux command driver
to turn off the CLA. Until the CLA state is changed, the mux
subsystem must continue to accept input data.

The calling format is: PTREGL (parml, parm2). Parml is a pointer to the
buffer associated with the proposed input operation. Parm2 is the type of
comparison to be made.

If the type (or types) of regulation checked does not currently exist,
PTREGL passes a no regulation flag to the caller.

PTREGL is technically part of the base system.

_ Set Logical Link Regulation, PNLLREG
This routine is called from the HIP only to set the logical level in the

LLCB. The levels are UP or DOWN. In the former case, all messages are
accepted; in the latter case, all messages are rejected. The call is

6-34 60471160 A

PNLLREG (parm)
where:

parm is the new regulation level, UP or DOWN.

Set Accept Input/Accept Output Flags, PTINIT

This routine is called only from the SVM, but it is used to set the accept
input and accept output flags in the TCBs after the TCB has been completely
configured. The call is PTINIT.

Discards Non-Routable Blocks, PBLOST

This routine is called from the routing function toc handle blocks with a
header (DN/SN/CN) that cannot be routed tec an existing node or terminal
according to the information in the routing directories. The blocks are
counted as bad address blocks (for NPU statistics), and the block is
released. No acknowledgment of any sort is generated. The call is PBLOST.

Upline Abort, PBUPABRT

This routine is called by a TIP when upline traffic continuity cannot be
maintained. Partial and full PRU buffers are released. The TCB fields for
character count, block count, and various other flags are cleared. The call
is PBUPABRT. This routine is also called by SVM.

Downline Abort, PBDNABRT

This routine is called by SVM when a TCB is deleted, or by a TIP when
downline traffic under internal processing control is to be discarded. All
BLE and CMD buffers are released, as are all source and destination buffers,
for a text processing operation in progress. Various TCB fields are
cleared. The call is PBDNABRT.

Send CMD Biock to Host, PTCOMMAND

This routine is called to generate the CMD blocks for starting and stopping
a data stream. The list of such commands is shown in table 6-2. The TIP

calls the program with:

PTCOMMAND (parml, parm2)

where:
parml = PFC. TIP can use these primary function code values:
3 - input stopped
4 - input started
5 - output stopped
6 - output started
parm2 = SFC. The TIP uses the secondary function codes, as shown in

table 6-2.

60471160 A 6-35

PTCOMMAND uses PBIIPOI to route the block upline to the host.

Upline PRU Block Routing, PBRTEPRU

This routine is called by PBPIPOI. It removes the first upline PRU queued
to the designated TCB. The routine completes the header including the block
serial number (BSN), and uses a worklist to switch the block. A flag is set
which causes the NPU to expect a BACK for MSG, BLK, or CMD blocks. After
the block is switched, the routine checks the number of characters gqueued
for this TCB. If it is below the threshold value, BSOBL is set to zero.
This allows input to be received from the terminal. The call to the routine
is PBRTEPRU. o .

PRU Block Routing, PBRTEIA

This routine is called for both upline and downline block routing. If there
are queued blocks and if the block is either a command block or if the
available buffer limit is below threshold value, the first block is unqueued
from the TCB. 1If a data block was unqueued, the BSOBL buffer's counter is
incremented. The BSN is put in the header and BSN count in the TCB is
incremented. A worklist is used to switch the block. Call to the routine
is PBRTEIA.

Check to Find if Back Block is to be Send, PBBCKCHK

CCI uses a scheme of sending BACK blocks so that data flow from the host is
optimized. PBBCKCHK is the routine which counts the number of queued
non-internal blocks, and sends a BACK block if the number is below a preset
value (a build time parameter). When the host receives the BACK block, it
can send more downline blocks (if any are waiting) to this terminal. PTBACK
sends the BACK block. After sending the BACK block, PBBCKRCHK clears the
flag which indicates there is a BACK block waiting to be sent upline. Call
to the routine is PBBCKCHK.

Generate Banner and Lace Records, PTBANLACE

This routine is called from internal processing when a banner record is
needed for a printer or a lace card is needed for a punch. Call to the
routine is PTBANLACE, together with an input buffer containing the block
header and a job name.

If the device is a punch, PTLACE formats buffer(s) for a lace card of blanks
(EOL card has been detected or FFjg has been detected), or with the job
name. If the device is a printer, PTBANNER builds the banner page buffers
with the job name.

6-36 60471160 A

HOST INTERFACE PACKAGE (HIP) 7
%

This section describes the operation of the Host Interface Package (HIP).
The CYBER 70/170 channel coupler provides the hardware interface between the
NPU and the PPU of a CYBER 70/170 host processor. This coupler is aperated
through the cooperation of two programs: one is resident in- the host; the
other is resident in the NPU. The NPU program is called the Host Inter face
Package (HIP). The HIP provides logic to support the following functions:

[Interrupt processing for coupler generated interrupts.
) Initiation and control of data transfers across the coupler.
® Coupler status processing and error recovery.

. Communication with the host coupler control program to support the
transaction protocol.

. The standardized logical (as opposed to physical) interface for all
NPU resident software involved with data transfers between the host
and NPU.

TRANSACTION PROTOCOL

A special protocol is used for transfers between the NPU and the host. The
block portion of this protocol is discussed in section 6. The directives
that pass the blocks across the coupler are discussed here.

TRANSFER FUNCTIONS

The coupler's transfer path is half-duplex. This means it is
bi-directional, but transmission occurs in only one direction at a time.
Both the host and NPU can bid for the right to transmit over the transfer
path. The following conventions govern the transfers:

° When both the PPU and NPU simultaneously bid for the transfer path,
output from the host takes precedence over input to the host. Input
to the host is called an upline transfer. Output from the host is
called a downline transfer.

e The NPU can reject an output request if it has insufficient space to
assign for receiving the message. This is called an overload
condition.

° Both the host and NPU coupler control programs operate in one of
three states: idle, sending, or receiving.

° When an error occurs during a transaction, the receiving processor

discards all data associated with the transaction and returns to an
idle state.

60471160 A 7-1

e During periods of inactivity, the NPU coupler program generates a
periodic IDLE INQUIRY status word to verify that the host is still
operating. The host must respond by reading the NPU status word. If
the host does not read the word within 10 seconds, the NPU assumes a
host failure. :

DIRECTIVES USED

Five directives govern the data transfers:
® OUTPUT REQUEST specifies that the host has data to send to the NPU.
e INPUT REQUEST specifies that the NPU has data ﬁo send to the host.

) READY FOR OUTPUT specifies that the NPU is ready to accept the data
transfer designated by the current QUTPUT REQUEST. This is a
response to an OUTPUT REQUEST.

e NOT READY FOR OUTPUT specifies that the NPU cannot accept the data
transfer designated by the current OUTPUT REQUEST because there are
not sufficient buffers to store the data. This is a response to an
OUTPUT REQUEST.

) IDLE INQUIRY indicates that the preestablished timeout period for
another transfer to or from the host has expired without activity.
The NPU issues this directive to verify that the host is still
operating.

TRANSFER INITIATION

Upline data transfers are initiated by the HIP when the CCI notifies the HIP
that there is input data queued for transfer to the host. This is an
OPS-level event. Downline data transfers are initiated when the HIP
receives an OUTPUT REQUEST orderword from the host. This is an
interrupt-level event.

If either the upline or the downline data transfer occurs while the HIP is
in idle state, the HIP immediately begins to process the request. Requests
for upline data transfers are queued if the HIP is already sending or
receiving data. Requests for downline data transfers are accepted if the
HIP is not already receiving data from the host.

Figure 7-1 shows typical input and output transactions over the coupler.
Figure 7-2 shows the resolution of I/O contention at the coupler. Figure
7-3 shows the division of the HIP tasks between the OPS and interrupt
levels. The PTxxxxx labels designate HIP subroutines. PFor further details,
see a HIP listing.

7-2 60471160

HOST ACTION

A

Host has data
and initiates
action.

Host has data
and initiates
action.

to send
trans-

to send
trans-

TYPICAL OUTPUT TRANSACTIONS

PROTOCOL DIRECTIVE NPU ACTION

~_—-—-\~_——\

HIP in Idle State.

OUTPUT REQUEST

No buffers avail-
able. HIP returns
NOT READY FOR OUTPUT response,

Host has data
and initiates
action.

to send
trans-

Host initiates write

operation.

HIP in Idle State.

OUTPUT REQUEST

Buffers available.

HIP sets up coupler

to receive data;
READY FOR OUTPUT returns response.

The transaction is ended when the coupler generates the completion
interrupts to the host and NPU. If a transfer error occurs, the data is
discarded by the HIP and the host must initiate the transfer again.

Figure 7-1.

60471160 A

Coupler I/O Transactions (Sheet 1 of 2)

TYPICAL INPUT TRANSACTIONS

HOST ACTION PROTOCOL DIRECTIVE NPU ACTION

HIP has data to
send, sets up
coupler, and
initiates trans-

INPUT REQUEST action.
Host unable to accept
data.) NOT READY FOR INPUT

HIP waits up to 1l-2
ms before trying
again.

- wt e e m wm e em e = w= e mm e s w e w mm e e e = = m m e = = @ = = = S

HIP has data to
send, sets up
coupler, and

- initiates trans-

INPUT REQUEST action.

Host can accept data
and initiates a read
operation.

When transfer com-

pletes, channel

coupler sends

interrupt. TRANSACTION COMPLETE

HIP releases data
buffers.

Figure 7-1. Coupler I/0 Transactions (Sheet 2 of 2)

7-4 60471160 A

INPUT/OUTPUT TRANSACTION CONTENTION

HOST ACTION

N*—A

Host has data to send
and initiates trans-
action.

Host ignores.

Host initjiates write
operation.

When transfer comp-
pletes, channel coupler
sends response.

PROTOCOL DIRECTIVE

s “eam——

OUTPUT REQUEST

INPUT REQUEST

READY FOR OUTPUT

TRANSMISSION COMPLETE

NPU ACTION

~\A

HIP has data to send,
sets up coupler, and
initiates trans~
action.

HIP discontinues
input. Buffers are
available, so HIP
sets up coupler to
receive data;
returns response.

HIP forwards data to
internal processor.

Host has data to send
and initiates trans-
action.

Host executes a delay
before sending another
request.

HIP then starts a normal

Figure 7-2.

60471160 A

OUTPUT REQUEST

INPUT REQUEST

NOT READY FOR OUTPUT

input sequence.

HIP has data to send,
sets up coupler, and
initiates trans-
action.

HIP discontinues
input. No buffers
are available, so
HIP returns a nega-
tive response.

I/0 Transaction Contention at the Coupler

dIH @yl 103 ST9497 3dn11d3jul pue S40 “g-L 9inblg

@y

1sn
AHOM

HOSS300Hd 3018 VLVvO 1NdiN0o
TYNHILNI

4

#0SS300ud
IVNYILNI

OdiHid NISdiHLd

151
NHOM
diH
) $32018
oLnon ' 104 LNOD FPTTEITT
y . Jb .
S40 J0U1NOD SdOdiHLd J4—P |_<Z:W‘w~ﬂam_..__. & INIdIHLG
4 viva ¥
. SANVWWOD
NHOM |
37Na0owW _m
JINAONW FOIAHIS <
301AH3S _) 31vis Ison |
13A37 SdO | 13A3 LdNYYILNI

60471160 A

)

VOO0 Jda JwE

(

7-6

TRANSFER TIMING

All coupler transfers are timed by means of a deadman timer which is set for
ten seconds. TIf the scheduled transfer fails to complete during that period
(a timeout condition), the HIP declares that the host is down. The HIP then
causes the service module to send the HOST UNAVAILABLE message to all
interactive terminals. The NPU rejects all further input from terminals.
The HIP also discards any output if an output transfer was in progress. If
an input transfer was in progress, the current block is replaced at the head
of the output queue. It will be the first block transmitted when the host
recovers,

The HIP recognizes that the host has recovered when a valid orderword is
received. All terminals are notified by a message sent through the service
module. 1Input is again accepted from the terminals.

ERROR PROCESSING
The HIP provides two types of error processing:

] For recoverable errors, the HIP retries the transfer. The HIP
provides an unlimited number of retries to accomplish the transfer.
However, in practice the number of retries is limited by the host
stopping the transfer or stopping the NPU and reiocading the CCI. The
recoverable errors are data parity error, hardware timeout, and
abnormal termination.

] For unrecoverable errors, the HIP aborts the transaction. The
unrecoverable errors are memory parity error, memory protect error,
and chain address zero (the condition that occurs when the HIP
expects to find a chained data buffer, but finds a zero address for
that buffer). All of these cause an NPU halt and are, therefore,
unrecoverable errors. The NPU processor must be downline-loaded from
the host to continue message processing.

When an error is detected during a downline transfer, the HIP discards the
data associated with the transfer, and returns to the idle state.

HOST/NPU WORD FORMATS

The host uses a l2-bit byte at the PPU interface. Format is as shown:

11 7 0
data byte

ALreserved for control (output) or status (input)

The NPU uses a l6-bit word composed of two 8-bit bytes. Each NPU word
requires two PPU words. Data transmission to the host is made only over the
direct memory access (DMA) path. Format is as shown:

15 7 0

byte 0 byte 1

60471160 A 7-7

Other transfers are made through four sets of special registers in the
coupler. The NPU uses the internal data channel (IDC) for loading and
reading these registers. The registers have a 16-bit interface on the NPU
side and a 12-bit interface on the host side. Transfers to the registers
are discussed below under coupler interface hardware programming.

COUPLER INTERFACE HARDWARE PROGRAMMING

Figure 7-4 shows the coupler hardware that constitutes the host/NPU
interface. A PPU can interface to one or two couplers, but each coupler
must connect to a different NPU. An NPU can also have two couplers. If
there are two couplers, the NPU determines which host loads the NPU at
initialization time.

The coupler has three transmission circuits:

° A half-duplex data circuit for transmission of programs or data
between the memory of the PPU and the main memory of the NPU. On the
NPU side, this circuit uses the direct memory access mode of
transmission. This channel also provides an execution control method
(function command) used by the PPU to start or stop NPU microprogram
execution. Micromemory execution must be started at address 0. This
method is used for initial loading and dumping of the NPU.

® A full-duplex control circuit which the NPU and the PPU use to
perform transaction setup (handshaking).

° A supervisory circuit which is set up and monitored by both NPU and
PPU. fTransaction status is made available to both sides of the
interface by this circuit.

COUPLER REGISTER USE

Tt must be recognized that the names of some of the registers (coupler
status, orderword, NPU status word) and some of the circuits (supervisory,
control) do not adequately define coupler operations. For instance, the
control and set up of the NPU involve the following:

e The host loads the orderword register, and examines the coupler
status word to determine if the NPU status word is available for
examination. The NPU status word is then checked.

) The host sends a function word address to the coupler channel and
executes an output command for a single word transfer.

® At a later time, the host sends service messages for further control
of the NPU using block transfers on the data channel. The NPU
replies using service messages.

® In all cases, the host and/or NPU checks and changes coupler status
register bits to indicate the current status of the transfer
activities.

° The host or NPU transmits data (messages) after properly setting up a

block starting address in the NPU using the memory address registers
in the coupler.

7-8 60471160 A

$133s160y 197dno) *p-L 21Inbr1gd
Zrw
_‘mmuumzqﬁ viva zou;‘
%~ G3NIVHD 38 NVD 2
NdN NI SH344n8
AUOW3IW NIVWN NdN
! 31A9 0 31A8 TFINNVHI 201 VIA
AL
8 8 s A
TINNVYHD HIASNVHL
YWa VLvYQ HOd
vin dn13s (S301S H108
SS3HAaV
A8 135 aNV "_
Q3HOLINOW)
(x31dna 41w /| {(X31dna 11n4) -
1IN2W1D viva J LINJHID TOHANOD |
1102410
4 A AHOSIAHIINS
ot 9 91 2_
[™
aNO 043z [Y31S1934
S53HAAV | SS3IHAQY QHOM SNLVYIS NdN aHOM H3IQHO SNLVLS HIN4NOD
AHOW3W | AHOWIW 1l
0 8 ail o 86 Gt
8 ol zL zt z
WYHDOHJ/Viva v i
1NdLNO/LNdNI
HIASNVYHL LINDJHID
WVYHO0Ud HOA - J04INOD — ’
dniis ssadsaay
8\ 8 ol
AHOW3IW ndd
0 8 z! oz £z 0 8 Il o0 ol il
LSOH NI SH344n8

7-9

60471160 A

The coupler registers shown in figure 7-4 directly accessed by the PPU
program for normal data transmission are as follows:

° Coupler Status Register - A group of 16 hardware-defined flags, the
low order twelve bits can be read by the PPU. The flags inform the
NPU of the reason for interrupt, and indicate to both the NPU and PPU
the status of the transaction and the status of other coupler
registers. ’

° NPU Order Word - A 16-~bit register, the low order twelve bits are
written by the PPU to communicate a software-defined order code to
the NPU. This code determines the order of regulation across the
coupler.

e NPU Status Word - A 16-bit register, the low order twelve bits can be
read by the PPU. The NPU uses this register to communicate a
software-defined status code to the PPU. This code indicates the
type of transfer that the NPU is ready to perform.

) NPU Address Register - An 18-bit register, the PPU can write all 18
bits for the purpose of loading or dumping the NPU. The high order
10 bits (address register bits 17-8, plus bit 8 of the NPU status
register) are called memory address zero. The low order 8 bits,
address register bits 7-0, are called memory address cne. The PPU
must perform two function operations to write the entire register.
Since the highest order bits of the address register (bits 17, 16)
are actually implemented as bits 9, 8 of the NPU status word, those
bits cannot be used for other purposes.

The NPU address register is also set by the NPU to indicate to the
host the address of the first word to be transferred during a data
transfer.

The code/bit assignment for each of these registers is shown in tables 7-1
through 7-4.

The NPU receives an interrupt when the PPU writes the order word or
completes a data transfer. The coupler status register indicates the reason
for the interrupt to the NPU. Therefore, the PPU does not use a separate
control circuit to indicate that the transaction is complete; this
information is automatically available in the supervisory circuit.

PROGRAMMING THE COUPLER BY USE OF FUNCTION CODES

The coupler can be given function codes by either the PPU or the NPU. In
either case, the codes are treated as one word addressed to the coupler
equipment. From the NPU side, functions are sent to the coupler over the
internal data channel.

HOST FUNCTION COMMANDS

The coupler is programmed from the host (PPU) side by setting a function
code (table 7-5) and executing an I/0 instruction. The coupler function
code occupies the low order nine bits of the 12~bit PPU function code. The
high order three bits of this PPU word contain the equipment code (coupler
address on the channel). The equipment code is determined by the setting of
hardware switches on the coupler.

7-10 60471160 A

TABLE 7-1. COUPLER STATUS REGISTER BIT ASSIGNMENT
Bit RESET
Number I/A Flag Name SET Condition Condition
0 A Memory parity error NPU memory parity +
error
1 A Memory protect fault NPU memory protect t
fault
2 - NPU status word NPU writes status PPU reads
loaded word NPU status
word tt
3 - Memory address PPU or NPU writes -
register loaded memory address one
4 I External cabinet Power failure 1
alarm
5 I Transmission PPU completes any +
complete input or output
operation
6 I Transfer terminated NPU terminates +
by NPU transfer (not used)
7 I Transfer terminated PPU sets channel t
by PPU inactive during
data I1/0
8 I Orderword register PPU writes order- NPU reads
loaded word orderword
9 - NPU status read PPU reads NPU +
status word
10 I Timeout Inactive returned +
during a PPU data
I/0 operation
because coupler was
selected and active
for more than 3
seconds
11 A CYBER 170 channel 12-bit word plus Enable
parity error parity from data parity
channel not odd switch
parity. Enable positive
parity switch on. transition.
12-13 Unused

60471160 A

7-11

TABLE 7-1. COQUPLER STATUS REGISTER BIT ASSIGNMENT (Contd)

Bit RESET
Number I/A Flag Name SET Condition Condition
14 Chain address zero Coupler finds zero +
in last word of NPU
buffer.
15 - Alarm Positive transition +
of any flag marked
“A"-

All flags (tTexcept bit 2) are reset when NPU or PPU clears the coupler.
Those flags marked with Tare also cleared when the NPU reads the coupler
status register. All flags are cleared by Master Clear.

I/A: I = Raising Flag causes NPU Interrupt; A = Raising Flag causes Alarm.

The coupler channel is automatically disconnected when the PPU sends the
function code. The disconnect occurs within one microsecond of executing
the function code. If a parity error is detected on the function code
(CYBER 170), the channel is not disconnected.

NPU FUNCTION COMMANDS

The NPU commands (table 7-6) are issued over the internal data channel. The
coupler is not disconnected from the host by these commands.

HIP FUNCTIONS
There are two primary functions performed by the HIP:
) Processing single word (control/status) function.

) Processing block transfers, for control or message processing
purposes. :

SINGLE WORD TRANSFERS (CONTROL)

The PPU can write the orderword at any time. The NPU reads the orderword
only if it has been loaded by the PPU, as indicated by bit 8 of the coupler
status register. This bit is automatically reset when the NPU reads the
orderword.

The NPU can write the NPU status word at any time. The PPU can read the NPU
status word only if it has been loaded by the NPU. When the PPU reads the
register, it cannot read the register again until the NPU again writes the
register. The PPU determines that the NPU status word has been loaded
(written) by interrogating bit 2 of the coupler status register. This bit
is automatically reset when the PPU reads the NPU status word.

7-12 60471160 A

TABLE 7-2. ORDERWORD REGISTER CODES

11 8 0
g;gzr Length Orderword Register

Order
Code Regulation
Value Name Level

1 Output Level 1 (Service Messages) 1

2 Output Level 2 (High Priority Data) 2

3 Output Level 3 (Low Priority Data) 3

5 Not ready for input

Length - In B-byte increments, of the output block to be transferred.
The value is rounded up when the length is not a multiple of 8.

- TABLE 7-3. NPU STATUS WORD CODES

Code Value
(hexadecimal) Name Protocol
0 Ignore value and read again Data transfer
1 Idle
4 Ready for output
7 Not ready for output
8 Ready for dump Dump transfer
12 Input available: batch block PRUB Data transfer
13 Input available, 256 bytes Data transfer
(non-PRUB)
14 Input available, 256 bytes Data transfer
{non-PRUB)

60471160 A

TABLE 7-4. ADDRESS REGISTER CODE

Bit 16 Bits 15 - 8 Bits 7 - 0
(first word)

Used as bit Memory address 0 Memory address 1
8 of NPU

status word

1. Address register increments with each NPU word (16 bits)
transferred.

2. Bits 11-8 of the second PPU word and bits 11-9 of the first PPU
word are discarded when loading register from PPU.

3. Only 15 bits are loaded from NPU; PPU zero fills the upper sets of
each word.

Note that the NPU accesses the orderword and the NPU status word over the
internal data channel (IDC).

LOAD/DUMP NPU
Load/dump transfers use the direct memory access channel.

To load or dump the main memory of the NPU, the PPU must first specify a
starting location by writing memory address zero and memory address one.

The HIP then performs successive data transfers. The first pair of PPU
words transferred corresponds to the contents of the specified NPU main
memory address. The NPU memory address register is automatically
incremented by one, so that successive word pair transfers correspond to the
contents of successively higher-numbered NPU main memory locations. The
memory load or dump is terminated when the PPU sets the channel inactive.
See the initialization section of this manual for a detailed description of
dumping and loading an NPU.

The PPU transfers an even number of PPU words. The first word of a pair of
words transferred by the PPU corresponds to bits 15 through 8 of the NPU
word (byte 0). The low order eight bits of the second word of the pair
transferred by the PPU corresponds to bits 7 through 0 of the NPU word (byte
1). The high order four bits of the PPU words are not transferred to the
NPU. When transferring from the NPU, the coupler sets the high order four
bits of the PPU words to zero.

After loading, the PPU reads back the NPU main memory contents to verify
loading of each module prior to issuing the start NPU code. If the load is
not verified, the PPU retries loading three times before an alarm message is
sent to the network operator.

7-14 60471160 A

TABLE 7-5. PPU FUNCTION COMMANDS

PPU Function Code Octal Value PPU Usage

Clear NPU 200 Used prior to loading or dumping
the NPU. Stops the NPU and sets
micromemory address register to
location 0.

Start NpUuT 040 Starts the NPU emulator (micro-
code) at the location in the
micromemory address register. The
emulator must always be started at
location 0.

Input program 007 Used to dump NPU main memory.

Output program 015 Used to locad the NPU main memory.
Micromemory can neither be loaded
nor dumped directly from the PPU.

Clear coupler 400 Resets the coupler's control lodgic
' and most registers. The protocol
defined allows only the NPU to
clear the coupler.

Output memory address 010 Sets NPU main memory accessing for
zero and one 011 loading and dumping.
Output orderword 016 Loads the coupler orderword regis-

ter. Causes an NPU interrupt.

Input coupler status 005 Used to check the state of various
registers and flip-flops in the
coupler. Used to test whether

the NPU has loaded the NPU status
word.

Input NPU status 004 Inputs the NPU status word
previously loaded by the NPU.

Input orderword 006 Allows the PPU to read back the
orderword it had written. Used
only prior to dumping the NPU,

Input data 003 Allows characters to be input to
the PPU. The coupler must have
been previously set up by the NPU.

Output data 014 Allows characters to be output
from the PPU. The coupler must
have been previously set up by the
NPU.

t Must be delayed at least 10 ms following a clear NPU function code.

60471160 A 7-15

TABLE 7-6. NPU FUNCTION COMMANDS

NPU Command Hexadecimal Value NPU Usage

Input switch status 0654 Allows the NPU to check PPU
data channel device address,
on-line/off-line switch set-
ting, alarm override switch
setting. Executed during
initialization.

Output buffer 0658 Sets the coupler to follow
the NPU buffer chains for
the current buffer length in
use. Executed during ini-
tialization.

Clear coupler 060C Resets the coupler control
logic and most registers.
Used during protocol error
processing. The contents of
the NPU status word are not
affected.

Input coupler status 0650 Used in the NPU interrupt
handler to determine the
reason for interrupt.

Input orderword ' 0660 Used in the NPU interrupt
handler to input the order-
word previously loaded by
PPU.

Qutput NPU status 0648 Used to send control codes
to the PPU.

Qutput memory address 066C Used to set up the coupler

for data transfer. Points

the coupler to the start of
an NPU buffer chain.

Load/dump and multiple character data transfer (described below) take place
at a maximum instantaneous rate of one PPU word per microsecond. The actual
instantaneous rate may be lower as transfers to or from NPU memory may cause
direct memory access contention problems; however, such delays are unlikely
to exceed one or two microseconds per character, and happen infrequently.

MULTIPLE CHARACTER DATA TRANSFER (BLOCK TRANSFER)

Block transfers use the direct memory access channel.

When executing the Data Transfer Protocol, an arbitrary number of characters
are transferred between contiguous locations in the PPU and a set of chained

buffers in the NPU. The location of the characters in NPU memory and the
operation of the buffer chaining mechanism are transparent to the PPU.

7-16 60471160

From the point of view of both NPU and PPU, input means data flowing upline,
that is, from NPU to PPU. Similarly, output means data flowing downline,
from PPU to NPU.

This operation of the coupler requires concurrent action of both the NPU and
PPU. Either the NPU or the PPU can initiate the operation. When both have
completed the setup, the transfer takes place.

The PPU sends a function to the coupler, either to input data or to output
data. During an output operation the PPU can not directly determine if the
NPU has set up its side of the coupler to transfer the data. The
determination is accomplished by the preceding comunications during which
the NPU and PPU agree that setup for output will be the next thing done by
both sides. For an input operation, after the PPU has sent a function to
the coupler and has activated the channel, the PPU can test the channel to
determine if a first buffer address is specified for the transfer and if the
NPU status indicates that the NPU has input data available. If soc, NPU is
set up and the transfer can take place. If not, the NPU sets up the
coupler. The channel should become ready for transfer within 12 ms of the
input data function command to the coupler.

The NPU sets up its side of the coupler for data transfer by writing the
address of the first buffer of a chain to the coupler address register
(buffer length is set up during initialization).

The high order four bits of each PPU data word control the operation of the
output transaction, although bits 10-8 are not used in the defined protocol
and are always set to zero. (If any of bits 10-8 are set, NPU buffer
chaining occurs at other than end-of-buffer. This causes excessive buffer
use in the NPU.) Bit 11 is set to 1 on the last character of the
transaction; this causes the coupler to stop storing data into the NPU
memory. The PPU disconnects the channel following transfer of this flagged
word.

Input transfer is terminated when the last character of an NPU buffer is
transmitted, and when bit 11 in the last word of the buffer is 1. The last
character transferred is stored in PPU memory with bit 11 set. The coupler
automatically disconnects the channel after this word is transferred.

It should be noted that a service message is handled by block transfers,
although such messages have a control rather than a message transfer
function. Interpretation of service messages is discussed throughout this
manual according to the type of service message.

Checking data transfers is discussed below under the timeout and error
checking heading.

CONTENTION FOR COUPLER USE

The coupler performs block mode transfers in only one direction at a time
(half-duplex protocol). Either the NPU or PPU can request the channel at
any time. The NPU requests the channel by setting the output memory address
to point to the start of the input block buffer chain, and then by setting
the output NPU status with one of the input available status codez. The PPU
requests the channel by sending a function to the coupler to output the
orderword with one of the output codes.

60471160 A . 7-17

If the NPU and PPU both request to use the channel at approximately the same
time, PPU output is usually favored. This is accomplished by changing the
value in the coupler's memory address register to point to an output buffer
chain and responding with a READY FOR OUTPUT flag in the NPU status word.
The NPU will re-request the channel at the completion of the output
transaction.

When the output transaction is completed; the PPU starts a brief (1-10 ms)
output-continue timer cycle to allow the NPU to request input, if the NPU
has data queued for the PPU. This timer prevents the PPU from monopolizing
the channel with output operations and thereby flooding the NPU. ’

If the NPU has a scarcity of buffers, it rejects the PPU's request, thus
regulating NPU input data. To limit the frequency of output~request-driven
coupler interrupts to the NPU during this data requlation period, a host
output rejected timer cycle of 100 ms is used.

REGULATION OF COUPLER USE

The primary objective of host regulation is to:

° Prevent saturation or overloading of the host or network in the event
of an abnormality (emergency regulation).

) Allow data flow between the network and the host to ensure that
continuity of service and performance standards are maintained.

) Smooth data flow (prevent over-requlation) using appropriate feedback
control technigues.

The host coupler interface is a controlled, variable bandwidth I/0O channel,
in which the bandwidth is increased or decreased by a combination of
load-balancing and reaching regqgulation thresholds.

Host Failure and Recovery

A special case of regulation occurs when the host fails and when it recovers.

When the NPU software determines that communications across the coupler has
failed, a regulation level of zero is communicated to the other end of each
logical link terminating at the coupler. This inhibits acceptance of
further input traffic from terminals logically connected via the coupler.
Additionally, an informative message will be sent out to each affected
interactive terminal.

When the NPU software determines that communications across the coupler have
been restored, a normal regulation level is communicated to the other end of
each logical link terminating at the coupler. This enables input from
terminals logically connected via the coupler and causes an informative
message to be sent to all affected interactive terminals.

7-18 , 60471160

ERROR CHECKING AND TIMEOUTS
The data transfer physical protocol checks for:

e Contaminated data
® Incomplete transaction
® Failure of interface to respond

The first two types of errors are handled at the physical protocol level by
accepting only good blocks, and by discarding bad blocks in their entirety.

The physical level protocol does not retransmit blocks. The coupler iz
assumed to provide a noise-free channel and to generate only hard (rather
ghaz intermittent) failure modes. Errors are detected and logged by the
ost.

Norwally, the NPU accepts all input offered by the PPU. When buffer
avgllgbility levels drop below predefined thresholds, the NPU uses the
priority level defined below to reject downline messages from the host:

Priority Message Type
1 Service messages
2 Data blocks and related forward and reverse supervision

at the highest priority

3 Data blocks and related forward and reverse supervision
at the lowest priority

Each of these message types is kept in a separate queue in the host.
Regulation in the NPU occurs by the NPU first rejecting output offered at
level 3, then rejecting levels 3 and 2, and in an extreme situation,
rejecting all output offered by the PPU. As buffer levels rise above these
regulation thresholds, the NPU reverses this procedure until the unit is
again capable of accepting all outputs.

The order in which the PPU offers the various output levels is determined by
host considerations.

There are also two classifications of upline messages:

Classification Message Type
1 Data and supervision less than 256 bytes in length
2 . Data and supervision greater than 256 bytes in
length

Both types of message are kept on a single queue in the NPU.

There is no priority associated with the two upline classifications offered
by the NPU to the PPU; the separation into two length ranges is only to
allow the PPU to utilize its buffer space more efficiently.

60471160 A) 7-19

Interface failure causes the interface to be declared down, but the protocol
returns to the initial state and continues to wait for interface response.
Both the PPU and NPU have timers implemented locally to accomplish failure
detection. A keep-alive timer of l-second duration generates a periodic
idle status, made available to the PPU when no traffic is in progress. The
PPU deadman timer provides a l0-second duration signal. This timer expires
only if the PPU fails to receive either an idle or input request during that
period. If the timer expires, the PPU declares the NPU to be down and
enters the NPU dump/reload sequence.

The NPU deadman timer also provides a 30-second duration signal. If the NPU
fails to receive a coupler interrupt within this period, it declares the
host unavailable. The NPU deadman timer is not explicity shown in the NPU
protocol flow diagram (figure 7-2) but it is implicit in all places where
the NPU is waiting for an interrupt.

INTERFACE PROTOCOL SEQUENCES

Figures 7-5 and 7-6 show the interface protocol sequences as viewed from the
host and from the NPU respectively.

The principal features of the protocol detailed by the flowcharts are as
follows:

° The NPU can specify input available and set up the coupler for input
data transfers at any time.

) The PPU can order output at any time.
e If conflict occurs, the NPU normally allows output from the PPU.

) The NPU can refuse to take PPU output if the NPU does not have
sufficient buffer space for the transfer.

e The PPU can refuse input from the NPU by requesting output or by
responding with a NOT READY FOR INPUT.

) If either the NPU or the PPU deadman timer expires, protocol is reset
to the start condition, but continues.

) If a given output type is refused by the NPU, the PPU performs a
short timeout before re-requesting output, to prevent swamping the
NPU with interrupts. The type of output offered in succeeding
attempts is determined by the host logic.

) If output is accepted by the NPU, the PPU allows the NPU to indicate
if input is available, before again ordering output.

° Once data transfer is initiated, the transaction must be complete.
If it does not, the entire transaction unit is discarded.

) Error checking is performed by the receiving device. If an error is
detected, a CE error message is sent to the host engineering file,
any received data is discarded, and the protocol is reset. No
attempt is made to retransmit the data.

7-20 60471160

START
CONDITION

START DEAD
TIMER {10 SEC)

DEAD
TIMER

RUNNING
? BUFFERS YES
AVAILABLE
NO ? s
H—-—————{ 8 >
NO READ INPUT
A 4 DATA
DECLARE
SEND ‘NOT
NPU DEAD READY FOR
INPUT"
COUPLER ERROR
STATUS
y
LOG ERROR(S)
STORE DATA y
DISCARD DATA
K 4 R 5 >
y
A
. M425
Figure 7-5. Host Interface Protocol Sequence,

Host Side (Sheet 1 of 2)

60471160 A

REGULATION
LEVEL 1
?

REGULATION
LEVEL 2

y

ORDERWORD SET
TO "QUTPUT
LEVEL 1"

ORDERWORD SET
TO “QUTPUT
LEVEL 2"

ORDERWORD SET
TO “OUTPUT
LEVEL 3"

Y.

NO = REGULATION LEVEL 3

DEAD

YES TIMER

WNNING
?

Figure 7-5.

STATUS=
'READY FOR
QUTPUT’

QuUTPUT
THE DATA

A

STATUS=
'NOT_READY
FOR QUT-
PUT’
?

YES

START QUTPUT

START OUTPUT

{CONTINUE!} {REJECTED)
TIMER TIMER
{1-10 MS) 1100 MS}
START START
M428

Host Interface Protocol Sequence,
Host Side (Sheet 2 of 2)

60471160

TIMEOUT

ORDERWORD
LOADED

OUTPUT REQUEST

NOT READY
) FOR INPUT
SET TIMER
TO IDLE
FE
AS&,::EE TIMEOUT VALUE
N {500MS)
y ?
SET STATUS WORD v
TO NOT READY
FOR OUTPUT \DLE
SET BUFFER
ADDRESS IN
COUPLER
+ \
STATUS WORD
SET TO READY
FOR OUTPUT, SET
TIMER TO DEAD-
MAN VALUE
DEADMAN ouTPUT
TIMEOUT COMPLETE
COUPLER
STATUS
?
A 4
HOST NOT AVAIL- ROUTE
ABLE NPU DATA IN NPU
SEND MSG TO
4 CE ERROR FILE
SET TIMER TO IN HOST
KEEP ALIVE
VALUE v
) DISCARD
\ 4 DATA
IDLE

+ see nOTE ON
SHEET 2

MAa27

Figure 7-6. BHost Interface Protocol Sequence,
NPU Side (Sheet 1 of 2)

60471160 A

7-24

INPUT
AVAILABLE

TiMEOUT

SET BUFFER
ADDRESS IN
COUPLER

\ 4

SET TIMER TO
DEADMAN VALUE

* Y

SET STATUS WORD
SET TO INPUT

v

DEADMAN ORDERWORD
} TIMEQUT LOADED

MAX
NON-READ
JOLES SENT

INPUT
AVAILABLE
?

SET STATUS
WORD SET TO
IOLE, SET
TIMER TO IDLE
VALUE

y SET TIMER TO

KEEP ALIVE
VALUE
‘ IDLE > {1 SECOND)
+ IOLE
BEFORE LOADING

THE STATUS REGISTER, THE
STATUS 1S CHECKED TO
VERIFY T IS NOT STILL
LOADED FROM A PREVIOUS
TIMER. IF IT IS, A WORKLIST
IS MADE BACK TO THE OPS
LEVEL HIP TO RE-EXAMINE
THE STATUS.

Figure 7-6. Host Interface Protocol Sequence,
NPU Side (Sheet 2 of 2)

60471160 A

BUFFER FORMAT

The HIP requires all using programs to provide or accept data blocks in
standard format. Figure 7-7 shows format that is a variation of standarg
block format. ’

HIP STATES

The HIP can be considered a passive program that passes from one state to
the next as a result of a stimulus from an external event. Table 7-7 cshows
the HIP as a state driven program.

FWa LCD ' FCD* w
Fw *
A+ 1| a0 FLAGS
s ﬁv‘
- L 4 ﬂr
) CHAR. 0 CHAR. 1 > BL
. ~1 P
. CHAR. N-1 CHAR. N
LWA CHAIN*)

BL = Buffer length (in 16 bit words) BL = 2X, 2 x 7
FCD = First character displacement (relative to FWA) 4 FCD 253

FLAGS = Bit indicators that provide additional information about the data
or data buffers.

FWA = Pirst word address of buffer (must be an integer multiple of BL)
LBF = Last buffer flag (1 = last)

LCD = Last character displacement (relative to FWA) 4 LCD 253,
BL LCD/2 + 1

LWA . = Last word address of buffer LWA = FWA + BL - 1l

CHAIN FWA of next data buffer (can contain zero value when LBF = 1)

Figure 7-7. Standard Data Block Format Used by the HIP

60471160 A 7-25

TABLE 7-7. HIP STATES AND TRANSITIONS
Event Transfer Chain
Transfer Terminated Orderword Address Transaction
State Complete by PPU Loaded Zero Timeout
AQPTO Start Send idle
output inquiry
IDLE CE=Spurious | CE=Spurious | (AOPT3) CE=Spurious
interrupt interrupt Invalid interrupt
orderword
— Halt
AOPT1 Start out- CK for idle
put or not response
Ready for {deadman
input timeout)
Idle CE=Spurious | CE=Spurious | Invalid CE=Spurious | Send idle
Inquiry interrupt interrupt orderword interrupt inquiry
Sent - Halt
AOPT2 NORMAL CE=Transfer | Terminate - CE=Chain Host down
INPUT term by PPU | input, address to SVC mod-
COMPLETION Start zero, Re- ule, Requeue
output lease input | input mes-
block sage
Input Release in- | (AOPT3)
Completion put block Invalid
orderword
—e= Halt
AQOPT4 NORMAL CE=Transfer | CE=End-of- System halt | Host down to
OUTPUT term by PPU | operation (JOCHAIN) SVC module,
COMPLETION missing Release out-
put buffers
Qutput Release Release
Completion output output
buffers buffers,
invalid
orderword
~—sHalt
AOPTS No action No action No action No action No action
AOPT6
Delay
7-26 60471160 A

BINARY SYNCHRONOUS COMMUNICATIONS {BSC) TIP 88

M

The Binary Synchronous Communications (BSC) TIP provides for the interchange
of data between an application program in the host computer and a remote
2780, 3780, or compatible batch terminal. The line protocol used is BSC,
operating point-to-pcint on a dedicated or dial-up line.

Each BSC terminal consists of a card reader and a line printer. A card
punch is optional. Remote batch operation with the terminal provides Ffor
support of the standard INTERCOM remote batch features and commands, with
the minor extension described later.

The operational procedures for submitting remote hatch inbs and the return
of generated print or punch files follows the rules described in aprendix

F. The INTERCOM remote batch command set is available to a user at the
terminal. The commands are entered from pre-prepared cards at the card
reader. One command per card is allowed. Messages to the terminal operator
and other unsolicited diagnostic/error messages are directed to the

printer. Interactive message output is followed by a form feed to position
the message for reading. Interactive message output occurs only at input
and output file boundaries.

For 2780 and 3780 terminal input and output data the entire file is
transferred before another data transfer can begin; that is, blocks of input
and output files cannot be interleaved.

At any time, the TIP must resolve which stream is to be active. Four (or
optionally five) streams are managed to or from the two (optionally three)
devices on a terminal. The five possible streams and the associated devices
are as follows:

Stream Device
Interactive card input Card reader
Interactive card input Line printer
Batch card input Card reader
Batch card output Line printer
Batch punch output Card punch

After the terminal operator dials up the terminal, the host sends an
INTERCOM banner message downline, using the interactive output stream.

Input messages from the terminal's card reader can then be accepted. These
are treated input. For dedicated lines, input is accepted immediately after
the terminal is configured (after the banner message is output).

All input is treated as interactive input until a start input CMD block on
the batch connection is sent from INTERCOM to the NPU. (INTERCOM generates
the start batch input CMD block immediately upon receipt of a READ or READ
FILE NAME message from the terminal.) After receipt of the start input CMD
block, all subsequent input is assumed to be batch input until EOT is
received from the terminal. At this time, the TIP reverts to processing
input as interactive input until the next start input CMD block is sent
downline from the host.

60471160 A 8-1

NOTE
Stream control CMD blocks are defined in section 6.

Interactive output is generated by the host and sent to the TIP. . All
interactive output messages in queue are delivered to the line printer
immediately following the completion of any active batch input or output
file (EOT received or transmitted) or immediately following EOT received on
the interactive input stream.

After outputting EOT to the terminal, a 3-second delay is initiated by the
TIP. This allows any waiting input message to be sent upline before another
output file can be started.

Input takes precedence when contention exists between input and output batch
data streams. An output printer stream takes precedence when contention
exists between two batch output streams. This is the result of the
printer's TCB being the first output device TCB in the terminal's TCB chain.

OPERATIONAL FEATURES

It can generally be assumed that INTERCOM interactive and remote batch
features are functionally the same as the standard INTERCOM 4.5 release.
Special job stream command formats and terminal operations are described
below.

REMOTE BATCH FACILITIES

The following remote batch facilities protocols apply.

EOR/EO!

Only 7/8/% and 6/7/9 end-of-record (EOR) and end-of-information (EOI) cards
are required by CDC terminals. Since IBM readers treat multipunches in
columns 1 through 7 as errors, EQI cards for type 2780 or 3780 terminals are

punched as /*EOI in columns one through five. An EOR card is represented as
/*EOR in columns one through five.

A level number placed in columns 2 and 3 of the EOR card is supported. For
punch output, the level number is punched in columns 2 and 3 of the EOR card.

Binary Cards

Binary card deck input or output is not supported by any terminal.

026/029 Codes

A 26 or 29 punched in columns 79 and 80 of the JOB CARD or EOR cards changes
the input code translation for 2780 and 3780 terminals. Output for punched
cards always uses 026 Code,

8-2 ' 60471160 A

Transparent Data

Transparent data assumes an 8-bit byte. Transparent input can be definzd by
either a READ, FILENAME, or MODE command, where mode specifies transparent,
or by punching TR in columns 79 and 90 of the EOR card. Transparent mode
ends on receipt of logical EOI (last card transmitted). [/*EOI is not
detected in the transparent mode.

Transparent input data is written to rotating mass storage and is stored
8~bits in 12-bit right-justified characters, with five characters per CYBER
word. Neither code translation nor character expansion is performedl,

Transparent output is created by using parameters on the ROUTE control
card. Transparent output is selected to be deliverd to the terminal using
the DEFINE terminal command. {See INTERCOM reference manual.) Transparent
output files are delivered to the terminal without performing any character
compression, code translation, carriage control conversions, print line, or
card blocking.

Carriage Control

Printer carriage control for batch output terminal printers is controlled by
the first character of each line. The action taken by the 2780 and 3780
terminals in response to INTERCOM control characters is summarized in table
8-1.

The suppress print file carriage control command is supported. The
horizontal and vertical tab features are not supported.

interactive Carriage Controi

Standard INTERCOM carriage control characters are supported. These control
characters are translated to equivalents when interactive output is being
delivered to a 2780 or 3780 line printer. Control characters and their
equivalents are shown in table 8-2.

Punch Files

Punch files are supported for the 2780 and 3780 terminals if a punch device
is present. Punch files are specified by setting the forms code. INTERCOM
recognizes the forms code and identifies the file to the 255x by the
connection number.

Output files to the punch are proceeded by a banner message (generated by
INTERCOM) which generates a lace file separator card record with nulls in
columns 1 through 70 and the job name in columns 71 through 80. The card
record must not contain a carriage control character; it can contain from 1
to 80 characters. Short cards can optionally be punched with the BSC record
separator in the last column for 2780 and 3780 terminals, by selection
within the INTERCOM DEFINE command.

Transparent mode output files can be sent to the punch. In this case the
user is responsible for ensuring that all 80 columns are present.

60471160 A 8-3

TABLE 8-1.

SUMMARY OF BATCH CARRIAGE

CONTROL SYMBOLS

INTERCOM Terminal Type
Control
Character 2780 3780
1 Space 1 New Page
+ Space 1 No space
0 Space 1 Space 2
- Space 1 Space 3
B Space 1 Space 1
All others Space 1 Space 1
TABLE 8-2. SUMMARY OF INTERACTIVE CARRIAGE
CONTROL SYMBOLS
INTERCOM 2780/3780 Terminals
Control
Character Before After
1 Skip to Top Space 1
of Page
* Skip to Top Space 1
of Page
+ 2780-Space 1
3780-No Space
o Space 1
- Space 2 Space 1
Blank Space 1
Compression/Expansion

Compressed data from the terminal is expanded to the standard SCOPE file
format before the record is written to disc. Conversely, data read from an
output file is compressed before transmission to the terminal. Both
compression and expansion are performed by the TIP. The methods differ for

the two terminal types:

) 2780: Trailing blanks for input nontransparent card data are
suppressed., The end-of-card is indicated using the standard SCOPE
file format. Trailing blanks are not transmitted to the printer or
punch except in the transparent mode.

60471160

3 3780: Nontrailing blanks are expanded for input'nontransparent card
data. Trailing blanks are suppressed and the end-of-card is

indicated the standard SCOPE file format.

has all blanks compressed whenever possible.

TERMINAL FEATURES

The following features of the 2780/3780 devices are suppor ted:

Output nontransparent data

Feature 2780 3780
Character set EBCDIC EBCDIC
Horizontal format control No No
EBCDIC transparent mode Yes Yes
Multiple record feature Yes N/A
Space compression/expansion N/A Yes
Print line width 80-105 80-105
Punch/component selection Yes Yes
Line speeds 2000-9600 bps 2000-9600 bps
Printer character set EBCDIC 63 EBCDIC 63
Multi-point No No

Terminal ID

Accepted but
not checked

Accepted but
not checked

Conversational mode Not used Not used
Processor interrupt Not used Not used
Multiple cards in Yes Yes

transparent mode

OPERATIONAL CHARACTERISTICS

Each terminal can be operated in the nontransparent mode. 1If the terminal
supports the feature, the terminal can also operate in the transparent
mode. The operational characteristics of each terminal for transparent and
for nontransparent modes are described below.

2780 input Nontransparent Terminal Mode

Commands are entered one per card. Commands can be stacked in the card
reader only if an ETX is punched as the last column of each command.
Commands can be input without an ETX punched in the last column only if a
single command is placed in the reader and if the EOF toggle switch on the

terminal is ON.

60471160 A 8-5

The last command entered before an input file or job deck must be either a
READ or a READ, FILE NAME. The job deck or input file can be stacked
directly behind the READ or READ, FILE NAME command if the ETX is punched in
the last column. If the ETX is not included, the command must be entered
separately from the input file or job.

The first card of batch input is assumed to be a job card. It is
interpreted by the TIP. Batch input can be terminated in one of three ways:

® A /*EOI in columns 1 through 7

® An ETX in the last column of the last input card (can be first column
of a separate card)

® Input - -of the last card with the EOF toggle switch ON,

Note that if ETX is used to terminate a job, another job cannot be stacked
directly as the TIP treats the next input after an ETX/EOT as interactive
input.

The TIP does not distinguish between batch input initiated by a READ or
batch input initiated by a READ, FILE NAME. However, the following rules
apply for INTERCOM even though no special checks are made in the TIP. If
the data transfer was initiated by a READ command, multiple jobs can be
stacked in the reader with each job terminated by /*EOI. Multiple /*EOI
cards between jobs are discarded by the TIP. The first non/*EOI card is
assumed to be the job card for the subsequent job. If the data transfer was
initiated by a READ, FILE NAME command, only one file can be stacked in the
reader. Subsequent input must be initiated by a new READ or READ, FILE NAME
command. -

]
2780 Input Transparent Terminal Mode

If the 2780 terminal has the transparent option; data can be input with the
transparent switch ON.

Each command must be entered separately with the EOF toggle switch ON, as
ETX is not recognized in this mode.

Each card input causes a full 80 characters to be transferred to the NPU and
each card is transferred upline to the host as a separate transmission
block. Operation in this mode is less efficient than in the nontransparent
mode.

All other characteristics are the same as in the nontransparent terminal
mode.

NOTE

This mode should not be confused with the transparent data
feature initiated by a TR optional parameter in the READ,
FILE NAME command or by placement of a TR in columns 79 and
80 of the EOR card of a card deck. These modes are described
below under the input transparent data mode heading.

8-6 60471160 A

3780 input Nontransparent Terminal Mode

?he operational characteristics of the 3780 terminal with respect to card
input are the same as those described for the 2780 except:

) EXT can not be punched in a command card or as the last card of an
input job or file to terminate input.

® Each command card (interactive input) must be input separately with
the EOF toggle switch ON.

[Multiple jobs can be stacked in the reader separated by /*EOI cards,
but the last card must be input with the EOF toggle switch ON.

3780 Input Transparent Terminal Mode

If the 3780 terminal has the transparent mode option, data can be input with
the transparent switch ON.

The operational characteristics in this mode are identical to the
nontransparent terminal mode. However, there are differences in line
efficiency and number of blocks transmitted. Each card input causes all 80
characters to be transmitted across the communication line; that is,
trailing blanks at the end-of-card are not suppressed, and embedded strings
of blanks and zeros are not compressed, as in the nontransparent mode.

Input Transparent Data Mode, 2780 and 3780

The TIP provides another mode of inputting the batch data for both 2780 and
3780 terminals, if the data is being sent to the host without translation.
This mode of input is specified only when the terminal is operating in the
transparent mode. Three methods are provided to enter the transparent data
mode ¢ .

° For local input files, an optional parameter TR is included as part
of the READ, FILE NAME command.

) TR is included in columns 79 and 80 of the INTERCOM job card for
normal input jobs.

°® TR is included in columns 79 and 80 of the INTERCOM EOR card.

When TR is specified, none of the following data is translated. The data is
stored as 8-bit characters. Since no EOR (7-8-9 punch) is recognized in
this mode, a file must be terminated using the EOF toggle switch.

Transparent B-bit characters are stored in the physical record unit block
(PRUB) without marking the record boundary; such as the 80-column card
boundary. A BSC transparent transmission block can contain single records
that are terminated by DLE ETB or multiple records with each record
separated by an DLE ITB (DLE ITB and DLE ETB are not stored in the PRUB).
The 3780 also has an optional feature to input four fixed length
80-character records in each transmission block. This feature is not
specifically supported by the TIP. If the feature is used, 320 characters
are stored in the PRUB for each transmission block received.

60471160 A 8-7

If any case, characters are stored as received in the PRUB blocks without
regard to record or transmission block boundaries. Transmission blocks are
split across PRUB boundaries and input continues to be stored until ETX is
received.

In any case, characters are stored as received in the PRUB blocks without
regard to record or transmission block boundaries. Transmission blocks are
split across PRUB boundaries and input continues to be stored until ETX is
received.

2780 Output Nontransparent Transmission Mode

Qutput streams can be directed to either the line printer or the terminal
card punch, where applicable. The host software determines which device is.
to receive the output. The output to each device is controlled by separate
connections.

The TIP accepts PRUB blocks from the host and converts the data from display
code to external EBCDIC code and formats print lines into BSC transmission
blocks for output. Each transmission block is made up of multiple print
lines (records) where the number of lines is either two or seven, depending
on the terminal option defined to the system. In any case, the transmission
blocks cannot exceed 400 characters. Print lines are never split across
transmission block boundaries. .

The first character of each print line in the PRUB block is an INTERCOM
carriage control character; it is translated to BSC printer carriage control
as defined in table 8-1. The algorithm used for the conversion is shown in
table 8-3,

Most carriage control operations performed by the TIP can be suppressed by
use of the INTERCOM SUP (suppress) command. If this option is used, the
host sets the suppress field in the TCB. The first character of each print
line is discarded (no specific carriage control characters are transmitted
to the terminal; a space 1 after print occurs automatically).

A P carriage control character followed by an M character activates the
standard INTERCOM feature for embedding an operator message (print message)
within the print file. For the 2780, the print line following the PM is
printed on the line printer, preceded by and followed by a skip to top of
page carriage control. Output to the printer then stops and the host is
notified of the condition by an upline break CMD block. The TIP then allows
interactive input from the card reader. Printing will not resume until
commanded by the host.

The printer line width can be defined for a terminal as any value from 50 to
150 characters by use of the INTERCOM DEFINE command after login. The host
changes the TIP's terminal line width by sending a reconfigure TCB SM with
the appropriate FN/FV pair. (See section 3 and table E-7, BSPGWIDTH.) The
default line width is set to 144 characters. Characters in a PRUB block
print line, in excess of the PRUB block print line length, are printed on
the next line. Trailing blanks for short print lines are not transmitted to
the terminal.

8-8 60471160 A

TABLE 8-3. 2780 BATCH CARRIAGE CONTROL ACTION

INTERCOM

Interactive Batch

DBC Control Carriaqge

Codet Character Action TIP Action

0 or 1, 8, 9 1 New Page Transmits null line with skip to
channel 1, then transmits the
output line with the automatic
space after print.

2, 10 B Space 1 No special action - a space 1
after print occurs automatically.

3, 11 + No space No special action - a space 1
after print occurs automatically
and cannot be suppressed.

4, 12 0 Space 2 Transmits null line which causes
an automatic space, then
transmits the output line with
an automatic space 1 after print.

5, 13 - Space 3 Transmits null line with space 2
carriage control character, then
transmits the output line which
automatically spaces 1 after
print.

All Others All Others Space 1 No special action - a space 1
after print occurs automatically.

*See section §, DBEC.

Transfer of an output data file to a printer or a punch normally continues

either until completion or a failure occurs.

A method of interrupting an

output stream allows for receiving interactive input commands that might

change the disposition of the output stream.
"intervene", may differ operationally for

emulators of these terminals.

The method, called

type 2780 and 3780 terminals and

In general, making the printer not ready causes a timeout for approximately
30 seconds. Then input from the card reader is allowed. Making the printer
ready before the timeout has expired causes continuation of the output

file. In some cases, several print lines will be duplicated. The timeout

period is a function of the terminal itself.

The period is usually

extendable by pressing the PRINTER STOP key again.

In any case, an EOT received from the terminal as a response to an output
block causes that output stream to be stopped, allowing input from the card

reader.

60471160 A

Card punch output data is processed by the TIP in a manner similar to print
output data, except that the first character of each card (BSC record) is
treated as data instead of carriage control, and each record must be 80
characters or less in length. Characters within the PRUB record in excess
of 80 characters or less in length. Characters within the PRUB record in
excess of 80 are punched on the next card. An option is provided to punch
an EM character as the last character in each card that contains fewer than
80 characters of data. This option can be specified by an INTERCOM DEFINE
command, which causes a reconfigure TCB SM to be sent to the TIP. The
default value is set for no EM character (BSEM = 0).

2780 Output Transparent Transmission Mode

Output to a terminal is normally transmitted as nontransparent transmission
blocks. If the terminal contains the transparent mode optional feature,
data is output in the transparent transmission mode only if the data file
being output is specified as transparent. Transparent data files are
designated to INTERCOM by parameters within INTERCOM ROUTE command.
INTERCOM marks the data file as transparent in the DBC field of each PRUB
block of the file.

In transparent mode, the TIP processes transparent output blocks differently
than nontransparent blocks. PRUB block characters are output as
transmission blocks without code conversion and carriage control

transforms. Characters are taken from the PRUB to make up transmission
blocks without regard to record markers (FF;g character) or to the PRUB
boundary. Characters are transferred from the PRUB to the transmission
block until the transmission block is full or until the last character of an
EOR or EOI PRUB has been transferred. An EOI PRUB terminates the file. An
EOR PRUB terminates only the transmission block; the following transmission
to the terminal continues with the next PRUB block from the host and a new
transmission block.

3780 Output Nontransparent Transmission Mode

Output to the 3780 terminal functionally provides the same capabilities as
with 2780 terminals. The internal processing differences are as follows:

® The number of print line records or card records is not limited to 2
or 7. The number of records included in a transmission block is
limited only by the transmission block size. This is normally 512
characters, but can be configured to any size. Records cannot be
split across transmission block boundaries.

® Output to the 3780 follows the rules for data compression for that
terminal; that is, multiple blanks are compressed.

® Short records (print lines or cards) are terminated by the EBCDIC IRS
character. Trailing blanks are transmitted if contained in the PRUB
record.

e Carriage control for 3780 printer output is designed to be directly
compatible with Mode 4 terminal carriage control. The algorithm used
by the TIP for conversions from INTERCOM carriage control characters
to 3780 carriage control is shown in table 8-4,

8-10 60471160 A

TABLE 8-4.

3780 BATCH CARRIAGE CONTROL ACTION

Interactive
DBC
Code

Control
Character

INTERCOM
Batch
Carriage
Action

TIP Action

0, 9

New Page

Transmits null line with skip to
channel 1, then transmits the

line with suppress space after
print carriage control.

Transmits a blank line with
space 1 after print carriage
control followed by the text
line with suppress space
carriage control.

B Space 1

Transmits the line with suppress
space after print carriage
control.

No space

Transmits a blank line with
space 2 after print carriage
control followed by the text
line with suppress space
carriage control.

0 Space 2

Transmits a blank line with
space 3 after print carriage
control followed by the text
line with suppress space
carriage control.

- Space 3

Transmits null line with skip to
channel 1, then transmits the
line with suppress space after
print carriage control.

thers All others Space

-1
[
'—‘
o

DIRECT CALLS TO THE BSC TIP
The BSC TIP can be called by:

e Any other program using a 3-word standard TIP worklist. Worklists
are queued to PTIP780. The monitor passes control to the TIP with a
single worklist attached. ©PTIP780 is the principal switch for the
TIP. (See BSC TIPTREES, appendix G.) The switching procedure is
based on the workcode in the worklist (lower half of word 0 of the
worklist). The principal users of this call are as follows:

Internal processing, to process downline data blocks and commands.

The service module, to set up line and terminal changes, and so

forth.

60471160 A 8-11

The TIP's own input state programs, to process special conditions in
input blocks, and to continue input processing on the OPS-level.

The multiplex subsystem, to have the TIP process special conditions
such as terminal failure or CLA status.

Internal processing, by switching to the page and address of the BSC
text processor (PTTP780). Text processing is done at the same time
as the output message is converted from PRUB format to BSC terminal
format. Control then returns to internal processing which
subsequently calls the TIP with a worklist so that the TIP can
prepare the text processed block for output transmission to the
terminal/device specified.

SVM, to build the TCB. This is the direct call to PTTCB780 to finish
building the TCB and to chain the TCB to the other TCBs in this
line's TCB chain (priority: card reader, then printer, then punch -
if any).

Note that there is no multiplex level 2 call to this TIP. The input state
programs are written to call the OPS-level TIP, if any major error
processing is to be performed by the TIP.

DIRECT CALLS FROM THE BSC TIP

The BSC TIP uses the following routines:

Buffer handlers: PBRELZRO, PBRELCHN, PBREL1BF, and PBGETIBF to
release or to assign buffers. PBCLR is used to clear space in
assigned buffers.

PTREGL is called to determine whether input is to be accepted, or
whether data from the terminal is to be rejected. All four
regulation checks are used. See section 6, PTREGL.

PTTPINF is used to called the firmware text processing programs.
Control returns directly to the TIP after text processing is
completed.

PBPROPOI is called to set up output block parameters where the TIP is
searching for the next block to process. '

PBPOPOI is called to acknowledge the block that has been sent to the
terminal.

PBPIPOI is called to prepare the upline block for the host. This
relieves the TIP of the conversion to PRUB formatting task.

PBCOIN is called to cause the command driver to prepare a BSC line
for input/output for transmitting a message or for shutting down a
line. The BSC protocol requires sending acknowledgment messages to
the terminal.

PTCOMMAND is called to generate and send data stream control CMD
blocks to the host. See CMD block formats in section 6.

60471160

. BLTIMTBL is called to set up timed functions and to clear timeout
counters when the expected event occurs within the allowable period.

° PBLSPUT is called to prepare worklist calls to the service module
(for instance, to report that a TCB has been deleted), or to call
itself after marking a line down.

ERROR PROCESSING

Lower level error processing takes place on the firmware lavel. If 2a
problem can be corrected on that level, the OPS~level TIP does not receive
notification that a problem error existed. If this cannot be done, a
worklist entry is made. The SVM alsc sends ervor type entries. The error
processing worklists are:

° Disable or disconnect line (from the SVM) or hardware error (from the
multiplex subsystem). BRINGLINEDOWN notifies the command driver to
deactivate the line, and the service module that the line has been
deactivated. Any transmission in progress is aborted.

. Timeouts. BRINGLINEDOWN deactivates the line and the TIP checks for
any task that can be started on another line.

] Received bad or error data blocks during input. The host is notified
that the input has been stopped and the terminal is sent an
end-of-transmission (EOT) message.

) Received NAK or WACK blocks indicated an error condition. A variety
of actions are taken depending on the situation. An EOT may be sent
to the terminal to abort the transmission.

AUTORECOGNITION

The BSC protoceol uses autorecognition as a means of showing that the
terminal is operational. A worklist entry is made to SVM indicating this.
This routine alsoc handles the preliminary autorecognition for the HASP TIP.
A worklist entry is made for the HASP TIP.

60471160 A

ASYNCHRONOUS (TTY) TIP 9
M

The Terminal Interface Package (TIP) for Mode 3 terminals provides a set of
procedures for the interchange of interactive data between the host
processor and Mode 3 terminals. The Mode 3 terminals can be Teletype (TTY;
or teletypewriter compatible terminals. These terminals customarily use
ASCII code.

The TTY TIP supports single terminals switched or dedicated asynchronous
lines at speeds of 110, 150, 300, 600, 1200, 2400, 4800, and 9600 baud. The
lines are considered to be half duplex:; that is, the TIP can be transmitting
or receiving on a given line, but not doing both simultaneously. The TIP
can be considered to be in transparent mode at all times. No code
translation or parity check is performed on data characters that are input
from the terminal. Data characters that are output to the terminal are
output as received from the host, with the exception of the character parity
bit which is complemented, when necessary, so that all output characters
have even parity.

All characters (both input and output) are passed between the host ang
terminal in full 8-bit form, without code translation or parity generation
and checking. An input message is sent in one or more blocks. The maximum
size of an input BLK or MSG block is controlled by a program build parameter
(up to 2047 characters). If the message length exceeds the maximum block
size parameter, all but the last block are BLK blocks. The last block is a
MSG block. Where message length is less than maximum block size, the single
block sent is a MSG block.

OPERATING MODES

The TIP operates in either interactive (keyboard) mode, or tape mode (paper
tape reader/punch or magnetic tape cassette).

INTERACTIVE MODE

In interactive mode, the TIP interfaces the network to a Teletype/TTY
compatible device for either input or output. The interactive mode
processes input from a TTY keyboard or processes block mode characters from
a TTY compatible device where the characters are received at line speed.

In interactive mode, the TIP operates in half-duplex fashion with three
basic states: idle, input, and output. Table 9-~1 shows the events that
cause a change of state. Note that input messages are one logical line in
length; that is, a carriage return places the TIP in idle state. Output
messages can be any length that is acceptable to the terminal. For this
reason, stream control commands are not needed for interactive mode messages.

60471160 A 9-1

TABLE 9-1.

TIP STATE TRANSITIONS,

INTERACTIVE MODE

Current New
State Stimulus State Other Actions
IDLE Input of any INPUT TIP (using output state programs)
character except accepts the message unless
CR, LF, or pad conditions for regulation exist.
(FF or 7F1g)
IDLE Input of CR, LF, IDLE Character is discarded (LF 1is
or pad echoed for a single CR).
INPUT End of message, IDLE TIP sends LF to terminal if no
CR other character is input within
100 ms.
INPUT LF + 100 ms IDLE TIP outputs a CR.
without another
input
INPUT Any character ouTpUT, TIP breaks input message,
but regqulation THEN discards characters, notifies
conditions exist IDLE the multiplex subsystem.
IDLE Output message OUTPUT
gueued to TCB
OUTPUT No more messages IDLE
queued to any
TIP TCB
ouTPUT Input of any INPUT 1. Character is discarded.
character
2. Current output message is
terminated. Message block is
requeued at top of TCB's
output queue.
TAPE MODE

In tape mode,

tape cassette).
between input,

requires two

the TIP interfaces the network to a tape reader

Table 9-2. shows the events that cause the TIP to change
idle, and output state in tape mode.
The first stage places the TIP in tape mode so that

stages.

(paper tape or

Note that the tape mode

the TIP can send the X-ON messages to start tape motion on the reader/punch

or magnetic tape.

always stops

The second

tape mode. This

block size of 256 is reached,

host.

This prevents flooding

stage reads the messages.
also places the TIP in idle state.
the next CR causes a BLK to be sent to the
the NPU with input data.

An X-OFF character
When a

60471160 A

TABLE 9-2. TIP STATE TRANSITIONS, TAPE MODE

Current New
State Stimulus State Other Actions
IDLE Start input CMD INPUT 1. TIP sends ¥X-OM (lljg) to
on tape (tape tape readar.
connection mode) 2. CR delimits message blocks.
INPUT X-OFF IDLE TIP now readv for keyboard data.
{tape
mode)
INPUT Any character OUTPUT Message is rejected. Multiplex
(tape but regulation then subsystem is notified of
mode) conditions exist IDLE regulation. :
IDLE Output message ouTPUT TIP delivers message.
queued to a
punch TCB
OUTPUT X=OFF in IDLE TIP checks for more queued
output block data. Another tape or inter-
action message queued for output
can immediately place TIP in
mode again.

Two block stream control messages are used in tape mode (section 6, CMD
blocks):

e Start input. This downline message from the host has the format:

DN SN CN BT = 4 PFC = 01 SFC

DN - NPU ID

Host ID

CN - Connection for this TCB

4 (CMD)

PFC = 01 - Start input, send X-ON to terminal to start tape motion
SFC - Not used

2]
>
I

o
3
i

® Input stopped. This upline message results from an X-OFF byte in the
incoming message. Format is:

DN SN CN BT = 4 PFC = 03 SFC = 00

DN - Host ID

SN -~ NPU ID

CN - Connection for this TCB

BT - 4 (CMD)

PFC - 03 - stopped input

SFC - 00 - normal reason: X-OFF detected.

60471160 A 9-3

CARRIAGE CONTROL FOR OUTPUT MESSAGES

The carriage control for interactive TTY terminals is defined by the data
block clarifier (DBC) character received from the host. The DBC is the
fifth byte of a data block. (See section 6.) Only the least significant
four bits of the DBC are used by the TIP to determine the carriage control
character sequence. The carriage control character sequence is sent to the
terminal prior to the first character in the output message block.

The carriage control commands are shown in table 9-3.

The number of line feed characters in the character sequences is decremented
by one {described in table 9-3) if the following occurs:

e The line feed count in the sequence is nonzero.

° A line feed was the last character sent to the terminal in response
to a carriage return received from the terminal.

® The system parameter GOLFSTRIP is a 1.

DIRECT CALLS TO TTY TIP
The TTY TIP can be’called by the following:

o Any other program, using a 3-word, standard TIP worklist. Worklists
are gqueued to PTTYTIP. The monitor passes control to the TIP with a
single worklist attached. PTTYTIP is the principal switch for the
TTY TIP. (See TTY TIP trees, appendix G.) The switching procedure
is based on the workcode in the worklist (lower half to word 0). The
principal users of this call are:

Internal processing to process downline data blocks and commands.
The service module to set line and terminal changes.

The TIP's own input state programs to process special conditions
in input messages, or to continue processing the input block at

OprPS-level. These include special calls to process CR, LF,
autorecognition, and X-OFF messages.

The multiplex subsystem to have the TIP process special error
conditions.

The timing system for events that have timed out (processing
resumes at the saved address), or for periodic calls to check for
input from terminals.

The multiplex subsystem at mux level 2. PTTTYMUX2 converts this
mux level 2 worklist to an OPS-level worklist.

° SVM, to build the TCB. PTTYTCB sets interactive mode.

° Timing related calls handled by PTMSQUE (100 ms timer), PTMSCAN (100
ms timer) for the active TTY LCBs, and PTDELMS to delete periodic
timing entries.

9~-4 60471160

TABLE 9-3. CARRIAGE CONTROL FOR TTY OUTPUT MESSAGES

DBC Character Seguence at Terminal
0 CR, LF

1 CR, 3LF

2 CR, LF

3 CR, LF

4 CR

5 (Nothing)

6 CR, LF

7 CR, LF

8 CR, LF, 4 nulls

9 CR, 3LF, 4 nulls

10 CR, LF, 4 nulls

11 CR, LF, 4 nulls

12 CR 4 nulls

13 4 nulls

141 CR, LF, 4 nulls

15t CR, LF, 4 nulls

TCE error message generated by TIP for invélid DBC received from host.

DIRECT CALLS FROM THE TTY TIP
The TTY TIP uses the following routines:

° Buffer handlers: PBGET1BF, PBREL1BF, PBRELCHN, and PBRELZRO to
assign and release buffers.

) PTREGL is called to determine whether input is to be accepted from
the terminals. Only three of the four possible input checks are
used: the available block limit check is not made. (See section 6,
PTREGL.) If regulation is in effect, the message is rejected. A
break message is sent to the terminal. Later, the terminal is forced
into output mode, and still later to idle mode. After two seconds in
idle mode, the TIP gains control to end regulation. If a new message
is waiting to be input, regulation can be reset immediately if the
conditions for regulation have not disappeared.

) PBPROPOI is called to set up output block pointers when the TIP is
searching for the next output block to unqueue and process.

) PBPIPOI is called to send the upline block to the host.

60471160 A 9-5

PBCOIN is called to cause the command driver to prepare a TTY line
for transmission, to shut down a line, or to transmit a messade to a
TTY terminal.

PTSVILCB is called to suspend processing until an event occurs.

BLTIMTBL is used to set up timed functions or to clear timeout
counters when the expected event occurs within the allowable period.

PBLSPUT is called to generate worklist calls to the TTY TIP itself or
to the service module (notify host of line failure, report
autorecognition parameters, etc).

PTCOMMAND is called to generate the data stream control CMD block
(X-OFF) that is sent upline for tape mode.

PNCEFILE is called to generate a CE error message for the host's
engineering file. .

PBRETOPS returns control to the monitor.

ERROR PROCESSING

Lower level error processing takes place on the input state program level.
If the error is resolved, the OPS-level TIP does not receive any
notification of the problem. Otherwise, an OPS-level worklist comes to the
TIP from the following sources:

) Disable line/delete TCB (from SVM) or hardware errors (from the
multiplex subsystem). Both types of these cause PTTYHANGUP to abort
the current transfer (if any), and cause the line to be marked down.

° Framing errors from the multiplex subsystem cause the TIP to send a
delimiter back to the multiplex subsystem.

AUTORECOGNITION

The TIP automatically performs baud rate recognition for lines that have
been configured as switched auto-baud by the host. Baud rates are

recognized up to 1200 baud (except 600).

After the terminal has been dialed

in, the operator must enter a carriage return character as the first
character to enable the TIP to determine the baud rate.

60471160 A

MODE 4 TIP 10
m

The Mode 4 terminal interface package (TIP) provides procedures to convert
data from synchronous terminals using Mode 4 protocol to data that is
compatible with the host's initialize or batch formats. There are three
versions of the protocol:

° Mode 4A supports a group of devices such as console, printer, and
card reader.

® Mode 4B supports a console,.
® Mode 4C supports several consoles.

The TIP also handles the necessary interface control tasks.

HARDWARE CONSIDERATIONS

Some of the hardware considerations for Mode 4 are the following:

[Terminal types: a typical Mode 4A terminal is the 200 User Terminal
consisting of a keyboard, a display (CRT), a card reader, and a
printer. This terminal has both interactive and batch devices, and
uses a single line.

e Cluster capabilities: the Mode 4 terminal can be a cluster of
several devices of the same types, such as a group of consoles or a
group of printers. The TIP services multiple terminals in sequential
order, without priority. However, the individual batch devices (card
reader and printer) in a Mode 4A cluster terminal are subordinated to
the interactive device. A batch transfer using such a device is
preempted by an interactive device transfer. .

° Line speed: the TIP supports line speeds up to 19200 baud.

° Line type: Lines are of two types: dedicated without a transceiver,
or dial-up with a modem. Lines are considered to be half duplex.
The TIP either transmits data over the line or receives data, but
does not do both simultaneously.

° Terminal codes: The TIP supports terminals that use either ASCII or
external BCD code.

TIP FUNCTIONS

The TIP performs the following major functions:
° It interfaces terminal protocol (some variation of Mode 4 protocol)

to host protocol (usually display code/PRUB format for batch devices,
ASCII code for interactive devices).

60471160 A . 10-1

10-2

The TIP simultaneously controls several transfers to terminals on
different lines. Each Mode 4 line can have several messages waiting
for transfer. Information for controlling a transfer is contained in
a worklist entry (WLE). The WLE is attached to the terminal control
block (TCB) for the appropriate terminal on that line. The TIP must
have an active TCB for each potentially active terminal device on the
line (each terminal in a cluster must have at least one TCB). 1If a
terminal device has a task in progress, additional tasks are gueued
to its TCB in the form of more worklist entries. One terminal cannot
interrupt the active transfer on another terminal, but an interactive
device on one terminal can interrupt the batch device on the same
terminal.

At the multiplex interface, most of the terminal transfer functions
(such as finding the next character on output, placing it in an
output frame, and passing the frame to the output control loop) are
performed by the multiplex subsystem. The TIP specifies the data
location on output; on input the mux-level (input state programs) TIP
demultiplexes data under the control of the input data processor
(part cf the multiplex subsystem). The OPS-level TIP must specify
the first of the series of state programs to be used to input the
data to the command driver. For many output transfers, processing
the entire block of data is handled within the firmware level text
processing state programs. For both input and output operations, the
TIP again gains control to terminate the data transfer or to process
an unrecoverable transfer failure.

It provides a transparent mode of passing terminal data to and from
the host. In transparent mode, the host application program that
receives or originates the data is responsible for handling all data
interpretation, including control characters.

It converts external BCD code to and from display code (or ASCII)
where necessary.

It polls terminals to solicit upline data or to ensure that the
terminal is ready to accept downline data. The host requests the
polling; the TIP controls actual timing of the polling.

It resolves all contention between devices and controllers on a line
and reports to the host any condition that has stopped an active
connection except those caused by host command.

It processes autorecognition to gather terminal configuration data
for the host. Autorecognition cannot be performed on lines that have
multicluster terminals.

It toggles between read and write modes for interactive terminals.
It processes unrecoverable errors in data transfers and reports the
failure to the host. The TIP also processes terminal and line
recovery in conjunction with the service module.

NOTE
Considerable differences in terminolcogy exist in Mode 4

documents. Table 10-1 defines the terms used in this manual
and in other Mode 4A and 4C documents.

60471160 A

TABLE 10-1. MODE 4 NOMENCLATURE

Nomenclature Mode 4 : Mode 4C

Used in This Nomenclature Nomenclature
Manual

NPU Data source Control station
Cluster address Site address Terminal address
Cluster controller Equipment controller Station

Terminal address Station address Device address

TERMINAL INTERFACE

A summary of the Mode 4 block format is shown in figure 10-1. The TIP must
perform transformations between the Mode 4 formats and the block protocol
format used in host/NPU transfers. (See section 6.) The Mode 4 transform
used depends on the type of terminal (Mode 4A or Mode 4C). Terminal type is
determined by the configuration messages used to set up the TCBs for the
terminal/device. Terminal type can also be automatically determined by the
TIP and reported to the host by using an upline line status service message
{(autorecognition).

TERMINAL ADDRESSING

Terminals can have both terminal (TA) and cluster (CA) addresses. The
permissible address ranges are given in table 10-2.

MESSAGE TYPE INDICATORS

The message type indicator (MTI) in a Mode 4 transmission block prepares the
TIP to accept certain types of blocks in reply. The type of MTI code
affixed to output data is a function of the format effector in character
mode only. For transparent mode, MTI is always write. The MTI codes shown
in figure 10-2 are in hexadecimal notation, exclusive of parity.

E CODES

For downline transforms, device selection is performed by E codes. The E
code follows the text in the output block and must be appended to the output
by the TIP. For upline transforms, E codes coming from the terminal
indicate the responding device and also report status. Received E codes are
stripped from the input data by the TIP. Table 10-3 shows the E codes,
exclusive of parity.

CODE CONVERSION

The TIP uses block protocol to transfer data to and from the host. (See
section 6.)

Code conversions between Mode 4 blocks and host blocks are as follows:

60471160 A 10-3

DATA BLOCK FORMAT (odd parity):

TRANSMISSEQE HEADER TRANSMISSIQON TRAILER
P . A — " ~——
PP
Sync SOH CA | TA MTI TEXT ESC E Code ETX LPC| A | A
: D|D

Mode 4 Transmission Block
Transmit and]
receive at !
least 2 syncs }

/
0 1 2 3/ 4 5 6 7
DN | SN | CN | BSN ;BT | DBC | Lv | PAD | PaD Text
1

Block Format (NPU and Host)

NON-DATA BLOCK FORMAT:

Sync SOH ca TA MTI ETX LPC

Mode 4 Transmission Block

Sync - Sync Byte = 16

SOH - Start of header = 01

ESC - Escape code; external BCD = 3E16' ASCII = lB16

ETX - End of text = 03

MTI - Message text indicator

E-Code ~ Equipment code (table ;0—3)

Cca ~ Cluster address (appendix C)

TA - Terminal address (appendix C) .

LPC - Longitudinal parity check -~ collects parity on bits 0~6 of all
characters except sync bytes

DN, SN,

CN - Block header address

BSN/BT - Blogk serial number/block type. BT for a data block must be 2
or

DBC - Data block clarifier

PAD - Byte of all 1l's to ensure transmission of LPC by modem

LV - Level - not used

Figure 10-1. MODE 4 Protocol Message Formats

10-4 60471160 A

TABLE 10-2.

MODE 4 TERMINAL/CLUSTER ADDRESSES

Address Values

Address Type
200UT 711 714
CA cluster address 70-7F 20~-7F 20-7F
TA terminal addresst 61-6F
Cluster controller 60 60
CRT/keyboard 61
Printer 64

tBit 4 of the terminal

zero, but it can be a

one.

this bit changes with
correctly received by

address is the toggle bit.
When the NPU transmits to the cluster,
If the output was
the input response to

each succeeding output.
the cluster controller,
the output carries the same value in the same bit position.
Otherwise, the opposite value is carried in that position.

It is shown here as

MTI

(he

in

Transmitted
Block

xadecimal)

MTI in Received Block

'REJECT

ACK
0616

ERROR
1516

READ
1316

Poll

Clear write
Reset write
Write

Alert
Configuration

POLL, ALERT, REJECT, ACK,
blocks, and have the following format:

i]

2 D0 D A D

and ERROR transmission blocks are non-data

SYNC

SOH

ca TA

MTI

ETX

LPC

X

60471160 A

Figure 10-2.

MTI Codes for Mode 4

10-5

TABLE 10-3. E-CODES

Code

TRANSMISSION MODE

Hexa-
decimal Write (Output) Read (Input)
equivalent

El

42 To CRT (text). From CRT (text).

E2

20 To printer (text). From printer (no text);
indicates possible error in
printing last block.

From card reader (text);
indicates that card reading
has stopped.

E3

21 To card reader (no From printer (no text);
text); enables trans- indicates that last block
fer of card buffer to is correctly printed.

CRT buffer.
From card reader (text);
normal card data.

E4

22 To CRT (text): Not used.
position to start
index.

10-6

All data in interactive data blocks to and from the host uses ASCII
code. The TIP does character conversion for BCD terminals. The
ASCII to external BCD translation includes folding the lowercase
letters into uppercase and substituting blanks for any control code
{control codes are described later). Those BCD terminals having
switch selection for internal or external BCD must have the switch
set to external. No translation is performed by the TIP on
interactive data to or from ASCII terminals.

All batch data blocks to and from the host use display code (internal
BCD). The TIP does character-for-character conversion between the
terminal code (external BCD or ASCII) and display code. For upline
traffic from an ASCII terminal that has a 96-code character set, all
lowercase characters are folded into uppercase display code
characters.

Each byte, including the longitudinal parity check (LPC), has odd
parity in bit 7. LPC is odd parity on bits 0 through 6 of all
characters except SYNC. The TIP inserts 7 through 14 SYNC characters
between the MTI and TEXT on all output where the MTI is clear write
or reset write.

The TIP is not responsible for conversion to or from PRUB format for
batch devices. This is done downline by PBIOPOI and upline by
PBPIPOI.

60471160 A

HOST INTERFACE

The NPU transfers data to or from the host using block format. Three major
types of transfer are defined, as follows:

° Interactive interface (console keyboard and display) is usually
conversational in nature and uses ASCII code.

o Card reader {batch input) interface uses PRUB format upline and
display code.

o Printer (batch output) interface uses PRUB format downline and
display code. :

INTERACTIVE INTERFACE

The interactive interface supports display keyboards attached to Mode 4
synchronous lines. The configuration can be multicluster; esach cluster can
be multiterminal. The 200UT display is also supported bv this interface,.
Additional logic resolves contention for the common buffer used by batch
devices and the display/keyboard.

The display is activated by delivery of the first output te the device.
Polling begins following delivery of data to the terminal and continues
uritil the terminal is deleted or fails. Polling is suspended to deliver
output to the display, and during Mode 4A batch I/0 operations. Polling
resumes after completion of these conditions.

Output has priority over input. If there is data in the output queue, the
TIP builds a transmission block from multiple BLK blocks received from the
host. The transmission block is transmitted to the terminal when either a
MSG block is received or the transmission buffer is filled with BLK blocks
from the host. 1If the last block delivered is a MSG block, polling is
resumed. If the last block delivered is a BLK block, the TIP waits for more
output; it does not resume polling. The TIP inserts a new line character
after each BLK block within the transmission block and inserts the
appropriate number of blanks at the end of the last BLK or MSG to position
the cursor at the beginning of the next line.

Input received while in the interactive mode is sent to the host as a MSG
block.

CURSOR POSITIONING

During receipt of input, the TIP calculates the horizontal position of the
cursor on the CRT screen. This calculation includes positioning for the
following:

) Escape, carriage-return from any Mode 4 CRT.
) New line code from any Mode 4C CRT.

In either case the cursor is forced to the leftmost position on the next
line.

60471160 A 10-7

After input the TIP generates a write El block containing sufficient blanks
to force the cursor to wrap around to the first position of the next line.
To do this, the TIP needs the screen width. When the TCB is built, the
screen width is initialized to the INTERCOM default value. The screen width
parameter can be reset to any value by the downline reconfigure terminal
service message. (See appendix C.)

CARRIAGE CONTROL
Interactive carriage control for each output line is based on the data block

clarifier (DBC) in each data block. Valid codes for the Mode 4 terminals
are shown in table 10-4.

TABLE 10-4. DBC CODES FOR CARRIAGE CONTROL

DBC Mode 4
0 Clear write
16 (103¢) Clear write
All other Write

NOTE

The TIP will automatically insert a Clear Write on the first
output to a Mode 4A display after a batch input or output
operation.

UPLINE BREAKS

The reason for break field appears in the upline input stopped CMD block
when input is terminated by the TIP. Interactive input is terminated by the
TIP for abnormal conditions only. The secondary function break codes that
can be generated by the interactive interface are shown in table 10-5.
Whenever an input stopped CMD block is generated on an interactive

connection, any output queued for that connection is discarded.

TABLE 10-5. BREAK CODES

(PFC=3: Input Stopped)

Secondary Function

Codes (SFC) Meaning

4 No response from
terminal

5 Bad response from
terminal; unable to
select

6 Error response from
terminal; unable to
deliver

10-8 60471160 A

CONTENTION RESOLUTION

For the 200UT, using the display causes the card reader and printer
connections to send input stopped CMD blocks to the host. These inter—
channel interactions are intended to signal the use of the 200UT

transmission buffer which is shared by the display, card reader, and printer.

CARD READER INTERFACE

The card reader is activated by sending a start input CMD block on the card
reader connection. The TIP transforms card reader data into PRUB record
format. Trailing blanks on each card are suppressed. Each block of data is
sent to the host as a BLK block until an EOR (7/8/9 punch in column 1) or an
EOI (6/7/8/9 punch in column 1) card is detected. A block containing EOR or
EOI is sent to the host as a MSG block with appropriate flags set in the DBC
header field. The EOR or ECI card is not included :n the MSG block and
multiple EOI or blank cards received after EOI are discarded.

The data following the last EOI is considered part of the next message.
This allows multiple messages to be stacked in the card reader.

2 file level number is taken from columns 2 and 3 of the EOR card, converted
to a binary value, and placed in the level number field of the upline PRUB
header.

Columns 79 and B0 of the EOR and job card are not tested for either the
026/029 option or TR (transparent), as neither feature applies to the Mode 4
TIP. Even though the 026/029 option is supported by some Mode 4 terminals,
the special character conversions are performed by the terminal and are
transparent to CCI and INTERCOM support of the terminal.

When card reader empty is detected by the TIP, an input stopped CMD block is
forwarded to the host following the last PRUB block. The input stopped CMD
block indicates a normal end (if the last card read was an EOI), or a break
condition (if the last card was not EOT). Any partial PRUB is saved in CCI
buffers. The host must inform the TIP of the desired disposition of the
partial PRUB. A start input (resume) CMD block causes card reading input to
continue placing data into the same PRUB; a stop input (terminate) CMD block
causes the partial PRUB to be discarded. The card reader connection is then
returned to the idle state.

If the response to the card reader poll message contains an E code = El, the
TIP sends the host an input stopped CMD block (PFC=3, SFC=2) to indicate a
batch input interrupt has occurred. Other possible function codes for the
input stopped CMD block are shown in table 10-5.

Flow control for the upline PRUB is requlated by the downline BACK block
from the host. The TIP temporarily suspends polling for card reader data if
the previous PRUB block has not been acknowledged and one additional
transmission block has been received from the terminal. Polling continues
when the BACK is received for the outstanding PRUB.

60471160 A : 10-9

TABLE 10-6. CARD READER INPUT STOPPED CMD BLOCKS

(PFC=3: Input Stopped)
Secondary Function
Codes (SFC) Meaning
00 CR empty, EOI received
01 CR empty, No EOI received
02 Batch interrupt
03 Slipped card
04 No response
05 Bad response
06 Error response

PRINTER INTERFACE

Output to the printer is activated by the host sending the first downline
data block on a printer connection. The first block must be a MSG block in
PRUB format and must be marked as a banner MSG in the DBC field. If the
terminal is configured for the banner off condition, the MSG is discarded;
otherwise, the MSG is converted to the file identification banner page.

Each subsequent PRUB is converted to output transmission blocks depending on
the terminal code set and line width. If the print line taken from the PRUB
is greater than the defined printer line width, the excess characters are
automatically printed on the next line.

The first character of each line is normally interpreted as a carriage

control character according to table 10-7. The carriage control character
is ignored and replaced by single space when the suppress carriage control
is activated. This is done by sending a configure/reconfigure TCB service
message with the suppress carriage control flag FN/FV set. .

The end-of-line character sequence is inserted at the end of each line of
any output transmission block except the last. (The E-code sequence is
appended to the end of each transmission block and takes the place of the
end-of-line sequence.) .

The end~of-line control sequences inserted by the TIP are as follows:

Terminal Type Hexadecimal Code
BCD 3E50 ESCp
ASCII 9840 ESCa

10-10 60471160 A

TABLE 10-7. PRINTER CARRIAGE CONTROL CODES

Display Code EBCD Code ASCII Code
Function (hex) (char) (hex) (char) (hex) (char)
New page 1C 1 41 1 41 A
New line 2D B 50 B 20 B
Space 2 1B 0 4A 0 4a J
No space 25 + BOQ + BO 0

The TIP sends a BACK block for each PRUB received. The BACK block is used
tor flow control only; it is sent upline to sclicit the next downline PRUB
block. Note that all lines of a PRUB block may not have been delivered to
the terminal at the time the BACK is transmitted to the host for that block.

Output to the printer is always sent as a clear writsz MTI code. A response
E-code of El or E2, received when polling for the printer, causezs the TIP tc
send an output stopped CMD block toc the host. The secondary function code
of the CMD is 02 if El1 was received (batch interrupt). The SFC is 01 if E2
was received (printer not ready). Any undelivered PRUB data will remain in
CCI buffers until the host issues a restart output CMD block. This causes
the file output to be resumed. If the host sends a stop output CMD block,
all data is discarded and the printer returns to the idle state.

The last PRUB block of an output file must be a MSG block. This does not
cause an output stopped CMD block to be sent upline. This method is used to
condition the TIP to expect a banner block as the next block. '

The possible secondary function codes for an output stopped CMD block for
the printer connection are shown in table 10-8§.

TABLE 10-8. PRINTER INPUT STOPPED CMD BLOCKS

(PFC=05: Output Stopped)
Secondary Function
Codes (SFC) Meaning
o0
01 Printer not ready
02 Batch interrupt
03 o PM message
04 No response
05 Bad response
06 Error response

60471160 A 10-11

ERROR HANDLING

The Mode 4 TIP handles three types of errors, as follows:

® Short term errors in which an error counter is incremented and the
operation is retired.

e Long term errors in which the short term errors cannot be corrected
SO an unrecoverable error is declared and the I/0 is terminated.

Regulation due to running out of buffers for I/0 transfers is discussed in
the next subsection.

SHORT TERM ERROR PROCESSING

The TIP performs short term recovery for both input and output. The TIP
retains three error counters, as follows:

Error
Counter Type of Error
1 No response: after transmitting to the terminal, a
response timeout occurs - SOH is never received.
2 Bad response:
] Cluster address (CA) or terminal address (TA) does not
correspond to terminal addressed by transmit block.
° Invalid message type indicator.
) Invalid or missing E-code.
° ETX missing (over-length block or data carrier
detected signal drops prematurely).
) Character or longitudinal parity error.
° Text in block which should not have text.
3 Error response (indicates an error).

Whenever any error occurs, the TIP increments the appropriate counter and
retries the output/input sequence. If any counter reaches threshold value
(currently set to five) in an attempt to complete a single transaction with
the terminal, the TIP performs the long term error handling procedures and
the send break subroutine generates a break message. The message is an
upline input stopped CMD block or output stopped CMD block depending on the
stream direction at the time the error occurred. The secondary function
code in the CMD block indicates one of the following reason codes:

Reason for Break (RB Description
04 No response
05 Bad response
06 Error response

10-12 60471160

An error condition caused by terminal malfunction normally is reported
separately on each active connection.

If a TIP is unable to acquire sufficient buffers for an input block, any
partial block is discarded and the terminal is polled again later. If the
host is down, the terminal is not polled.

LONG TERM ERROR RECOVERY

After the TIP detects the abnormal terminal operation and sends the reason
for break message to the host for all active connections (active indicates
TIP is delivering data or polling for data), the TIP begins a failure mode
polling cycle. The TIP polls the interactive device at a reduced rate where
the rate depends on the number of terminals on a line and the system
activity. No output is delivered while the TIP is in the failure mode
polling cycle. If the TIP receives a good response to a poll, normal
operation is restored. The TIP sends an input started CMD block (PFC=4,
SFC=0) on the interactive connection. Any output in queue on the
interactive connection is then delivered.

HANDLING OF ERRORS FOR CDC 711 TERMINAL

The toggle bit received from the 711 terminals is always the same as
appeared in the previous write or poll message. This makes it impossible to
determine whether data was correctly received by the 711 if the ACK or
REJECT is garbled by transmission line noise. Therefore, the toggle bit of
a poll message (which is ignored by all other Mode 4 terminals) is set to
the value opposite to that which the terminal is expected to receive,
assuming that the last message was correctly received by the terminal.
Thus, if the TIP is polling a 711 for toggle state, and receives an
unexpected toggle state, the TIP repeats the write message. This causes a
duplicated output on the 711 display. The TIP cannot compensate for the
loss of status information; however, no output data is lost. (This
procedure is also supplied for the Tektronix 4014 terminal which implements
Mode 4 protocol without complying with the standard.)

DUPLICATION OF WRITE DATA ON CRT

Those terminals that do not have separate CRT and transmission buffers (such
as the 200 UT) write output data directly to the CRT screen as it is being
received. If the terminal detects an error in the block, it sends an error
response, causing the TIP to resend the output. Because the cursor is not
in the same place as it was when the original write was performed, the
output block appears two (or more) times on the CRT screen. This is not a
problem with reset write or clear write, which home the cursor before
displaying the output data, and thus overwrite the bad block.

INPUT REGULATION.

The Mode 4 TIP calls PTREGL to check if input should be solicited from the
console or the card reader. All four possible requlation criteria are
checked. (See section 6.) If none of the regulation causes are present,
the console is polled or the card reader is set to receive input.

60471160 A 10-13

AUTORECOGNITION

The host can request autorecognition for Mode 4 lines. This activates a
procedure for determining the address and terminal that exists on the line.
When the host configures the line, the TIP responds with the line enable
response. If the line is dedicated, autorecognition begins. If the line is
switched, the TIP waits until the ring indicator is present.

Autorecognition begins with a cluster poll to determine the cluster address
of the caller. The first poll is done at cluster address 7Djg to allow

the caller to hear the audible tone and to allow the modem time to stabilize
after the modem data switch is depressed. All cluster addresses are
attempted at least twice before a failure is declared. The timeout for a
nonexistent cluster is 1/2 to 1 second.

Once the cluster address has been determined, the TIP checks for receipt of
a read message. The terminal operator must press the send key on at least
one of the displays. The read message contains an escape code which
determines the code set in use by the terminal. Polling continues until the
read message is received. For external BCD terminals, this completes
autorecognition. For ASCII terminals, the configuration poll is sent to
determine the configuration. 1If there is an error response or no response,
the terminal is assumed to be Mode 4A. If a read response is detected, the
terminal is assumed to be Mode 4C.

The line status operational service message is sent to the host at the
normal completion of autorecognition. This service message contains the
following:

Field Name Description
T Terminal type (table C-2)
CA Cluster address
TA Terminal address for each terminal
DT Device type (see appendix E for

more details)

For all terminals the appropriate terminal type is reported as one of the
following: Mode 4A external BCD, Mode 4A ASCII, or Mode 4C. The actual
cluster address is also reported in the range 70-7F;g.

For the Mode 4A external BCD or Mode 4A ASCII, three terminals are
reported: These describe the console, the card reader, and the line
printer. The terminal address for all three terminals is 603¢.

The configuration request terminal feature is used for Mode 4C terminals to
determine the terminal addresses (TA) and device types (DT). Only the
consoles are reported, with addresses ranging from 6lig to 6Fyg.

The printer device code for a Mode 4C impact printer is 2; the device code
for a Mode 4C non-impact printer is 4. The TIP sends the host a line status
operational service message for autorecognition. Format of the message is:

DN {SN|CN|BT |PFC|SFC|P|SP|RC|LT |CFS|NT | TT |CA | TAy DTJ.%

{, TAy.| DTy

10-14 ' 60471160 A

DN -~ Destination mode: 00 for host
SN - Source mode: NPU ID

CN -~ Connection number = 0 for service message

BT Block type: 4 for CMD block

PFC - Primary function code: 06 for line status

SFC - Secondary function code: 02 for unsolicited (autorecognition)
message
P - Port: 1line ID
SP -~ 00
RC - Reason code: 00 = line operational
LT - Line type: 01 -
02 ~ see appendix C
03 -
CF5 -~ Configuration state: 06 = line inoperative (no TCBs are configured
yet)
NT - Number of terminals configured on the line: 00 (since no terminals
are configured yet)
TT - Terminal type: 90 = Mode 4A EBCD

Mode 4A ASCII
Mode 4C

- 91
92

CA - Cluster address: 7015 CA 7Fi

Note that only one CA is reported, as multicluster autorecognition
is not supported. Multiclusters can, however, be configured on an
autorecognition type line after the autorecognition is complete and
the line is reported operational.

TA; - For Mode 4A, this value is 6016. For Mode 4C, value is a
sequential value 60;¢ through 6F;¢, received from the
configuration poll of the cluster address.

DT; = For Mode 4A, three TA/DT pairs are reported: TA=60;¢,
DT=0A;¢ (console}, TA=6016, DT=2A1¢ (card reader),
TA=601¢, DT=4A1g (line printer).

For Mode 4C, up to 16 TA/DT pairs are reported. The TA value can
range from 60;¢ through 6F;g, and DT can be any of the
following, depending on the cluster configuration.

OA g = console

4A1g = impact printer
BA1g = non-impact printer

60471160 A 10-15

- MODE 4 PROTOCOL FEATURES NOT SUPPORTED

The following features of Mode 4 devices are not supported by the TIP.

Status regquest

Alert

Diagnostic write

Receipt of initialization

DIRECT CALLS TO THE MODE 4 TIP

The Mode 4 TIP can be called by the following:

® Any other program, using a 3-word standard TIP worklist. Worklists
are queued to PTMDATIP. The monitor passes control to the TIP with a
single worklist attached. PTMD4TIP is the principal switch for the
Mode 4 TIP. (See Mode 4 TIP trees, appendix G.) The switching
procedure is based on the workcode in the worklist (lower half of
word 0 of the worklist). The principal users of this call are:

Internal processing to process downline data blocks and commands.

The service module to set up line and terminal changes, and so
forth.

The TIP's own input state programs to process special conditions to
input blocks, and to continue input processing on the OPS level.

The mutliplex subsystem to have the TIP process special conditions
such _as terminal failure.

Note that the Mode 4 TIP has an important secondary switch,
PT4TASKPROCESSOR, which is called from the primary switch.

® Internal processing, by switching to the page and address of the Mode
4 text processor (PTTPMODE4). Text processing is done at the same
time that the output message is converted from PRUB format to Mode 4
terminal format. Control then returns to internal processing which
subsequently calls the TIP with a worklist so that the TIP can
prepare the text processed block for output transmission to the
terminal/device specified.

® SVM, to build the TCB. This is the direct call to PT4TCBINIT to
finish building the TCB fields with the TIP's special default values.

° At multiplex 2 level by the multiplex subsystem. The state programs
have been written to avoid this call. So if it occurs, a serious
system error is indicated. PBHALT is called to stop the NPU.

e Directly from internal processing to queue interactive blocks.

DIRECT CALLS FROM THE MODE 4 TIP

The Mode 4 TIP uses the following routines:

™ Buffer handlers: PBRELCHN, PBREL1BF, and PBGETI1BF to release or to
assign buffers.

10-16 60471160 A

. PTREGL is called to determine whether input is to be accepted, or
whether data from the terminal is to be rejected. All four
regulation checks are used. See section 6, PTREGL.

® PTTPINF is used to call the firmware text processing programs.
Control returns directly to the TIP after text processing is
completed.

[PBPOPOI is called to acknowledge the block that has been sent to the
terminal. . :

(] PBPIPOI is called to prepare the upline block for the host. This
relieves the TIP of the conversion of PRUB formatting task.

® PBCOIN is called to cause the command driver to prepare a message or
command for input or output. The Mode 4 protocol requires
acknowledgment of most transmitted blocks (toggle bit serves as a
check for some transmission).

) PT COMMAND is called to generate and to send data stream control CMD
blocks to the host. See CMD block formats in section 6.

. BLTIMTBL is used to set up timed functions and to clear timeout
counters when the expected event occurs within the allowable period.

® PBLSPUT is called to prepare worklist calls to the service module
(for instance to report that a TCB has been deleted).

) PBUPABRT is called to send an upline abort message when the card
reader fails.

] PNSGATH is called to gather statistics after certain message errors.

° PBGT1SEG is used to unqﬁeue messages from the TCB by the secondary
switch.

) PBSV1ILCB is used to suspend tasks until an expected event (such as a
reply to a poll message) occurs.

o PTRETOPS is the standard return to the OPS-monitor.

e PBHALT is called if a mux-2 level worklist occurs or if the secondary
switch cannot find a valid task.

60471160 A 10-17

HASP TIP 11

—

The HASP multileaving TIP supports HASP workstations. The protocol uses
bidirectional transmission over HASP lines to terminals that have both
interactive and batch devices.

The HASP protocol defines two types of blocks for transmission between NPU
and HASP workstations; they are: data blocks and control blocks. Data
blocks also contain control information. Positive acknowledgment of the
receipt of each block is required. These blocks are not to be confused with
the blocks used in the host or NPU block protocol. (See section 6.)

The HASP protocol automatically attempts to resend garbled blocks. If the
block cannot be successfully sent after four attempts, the line is declared
inoperative.

Data blocks are composed of data records, which are in turn composed of
character strings. 1If several consecutive identical characters occur, this
character string is sent as a number (the number of identical characters)
plus the character. This type of data compression can save significant
transmission time. Another important feature of the HASP protocol is its
ability to meter the rate of input/output: so that fast processing devices
have most of the transmission time available, yet slow processing devices
can have data whenever they are ready to use it. This ability to suspend
transmission on one device's data stream, while transmitting data from other
devices in a single block, is called multileaving.

Data can be transferred upline and downline in two data formats:
transparent or nontransparent.

[Nontransparent data is treated as 6-bit characters formatted for
cards on print line images.

® Transparent data is treated as 8-bit characters and is blocked and
deblocked between the terminal without regard for card length,
carriage control, or print-line width.

The TIP design is insensitive to line speeds, but has been tested at
standard synchronous line speeds up to 9600 baud. Lines can be dedicated
(with or without a modem/transceiver) or switched (dial up) with a modem.
The transmission facilities are used by the TIP in a half duplex manner;
that is, the TIP is either transmitting to the line or receiving from the
line, but not both simultaneously.

HARDWARE CONSIDERATIONS

Some typical HASP hardware considerations are as follows:

60471160 A 11-1

A typical HASP workstation consists of a keyboard, a CRT display, up
to 7 card readers, a processor, and (optionally) an external storage
magnetic tape or disk. The processor has computer-like functions,
with upline and downline data processing (such as data compression,
metering, testing line readiness, constructing data blocks and
interpreting them, data storage, etc.)

The terminal has its own software, which is loaded from the
designated storage device: maghetic or paper tape, cards, or
terminal; mass storage.

The internal code of the workstation is EBCDIC.

Any hardware (computer) that can be made to respond to HASP protocol,
and which uses EBCDIC internal code, can be used as a HASP
workstation.

Each workstation uses one NPU port (line). Device sharing is the
responsibility of the HASP TIP on the NPU end and the workstation
processor on the terminal end.

All terminals have interactive devices, and most have batch devices.
Transmission over the line is bidirectional.

Line speed is determined by the modem clock.

Other fixed workstation features are given in table 11-1.

TABLE 1l-1. HASP WORKSTATION FEATURES

Feature Suppor ted
Multicard Yes
Character set) EBCDIC-64
EBCDIC transparency (256 characters) Yes
Character compression/expansion All character strings
Console A Mandatory
Printer character set EBCDIC-64
Card punch line Yes
Print line width 80-150
Binary cards No
Plotter)
Magnetic tape - As card/print emulator only
Paper tape s
Autorecognition Yes

60471160

MAJOR TIP FUNCTIONS
The HASP TIP functions as follows:

® Interfaces the host codes and block protocol to a HASP workstation,
which uses EBCDIC as its internal code and the HASP protocol.

3 Handles tasks by queuing them as worklist entries (WLEs) to the
terminal control block (TCB) for the line. The host application
programs send data to one HASP device at a time. The HASP TIP sends
all output data blocks to one device at a time. There is no
multileaving on downline data transfers other than the ability of the
terminal to direct the host to stop sending data to a particular
device.

° Supports upline and downline data compression for both interactive
and batch devices. :

[Supports data flow control to various devices by the use of a
function control sequence (FCS).

] Initiates line synchronization when the line has been configqured;
uses an enquiry/reply protocol to find if line can currently be used
for a transfer.

3 Provides soft error processing (retransmitting the garbled data
block), and hard error processing (declaring a line inoperative when
soft error processing fails to transmit data correctly).

. Rejects all data when the host is down or the NPU's supply of
available buffers ‘has reached the threshold level. Note that there
can be no regulation distinction between interactive and batch data
since one HASP block can carry both types of data.

e Discards the terminal's signon card. A network login is used instead.

e Processes autorecognition only to the extent that this message is
used to indicate the workstation is enabled.

e Interfaces to the multiplex subsystem. Downline, nontransparent data
is reformatted to the terminal (HASP) protocol by the text processing
state programs on a call from PBIOPOI (the state programs are reached
through the HASP TIP text processor's call to PTTPINF). The TIP
later gains control with a worklist and the converted data, and then
calls the multiplex subsystem command driver. The address of the
converted block and other message processing information, are placed
in a command packet for the command driver (call to PBCOIN). The
multiplex subsystem is then responsible for sending the data,
character-by-character, over the line to the HASP workstation.

Upline, the HASP data is partially processed by the multiplex subsystem
using the input state programs that are part of the firmware level TIP.
Prior to starting the input transfer, the TIP sets up the message
processing by passing the transfer parameters to PBCOIN (including the
pointer to the first input state program to be used and an input buffer
address). After the first stage of processing is completed by the TIP's
input state programs, the multiplex subsystem calls the TIP at OPS-level
using a worklist entry. The TIP then uses this partially processed data

60471160 A 11-3

as a source buffer and calls the HASP TIP input text processing programs
(via PTTPINF) to demultiplex as well as to convert the upline data to
host format. Batch data is later converted to PRUB format when the TIP
passes control to the internal processing by calling PBPIPOI.

e Transparent data is passed upline and downline without text
processing.

HASP PROTOCOL

The multileaving protocol consists of the bidirectional transmission of
information blocks between an NPU and a HASP multileaving terminal.

The basic line protocol is standard BSC point to point (one terminal per
line) and either transparent or nontransparent modes of BSC transmission are
automatically recognized by the TIP on each received data block from the
terminal. The TIP then uses the detected transmission mode for subsequent
communication with that terminal.

Two types of blocks are defined, as follows:

] Control Blocks - contain binary synchronous communications (BSC)
characters only (table 11-2 lists commonly used HASP mnemonics).

) Data Blocks - contain data records that are composed of character
strings and their associated character string control bytes. Each
data record in the data block is associated with a specific
peripheral device. 1In order to facilitate identification, a record
control byte (RCB) is used to assign a stream number and a device
type of the data record. Each record control byte has an associated
subrecord control byte (SRCB) to provide additional information about
the data record.

A data block can consist of several data records, all of which can be
from the same device. A function control sequence (FCS) is added to each
data ‘block to control the flow of data from, or to, any particular device.

To facilitate error detection, a block control byte (BCB) is added to
each data block.

A binary synchronous communications envelope surrounds the data block.

The host sends multileaved downline data to the HASP terminal in transparent
mode. In nontransparent mode the host must send to the HASP TIP the
approximate desirable length of data for each active output stream (device)
to make a single data block.

The HASP TIP supports multileaved data from a HASP workstation in both
transparent and nontransparent modes. In nontransparent mode, the HASP TIP
parses the input stream, relating each physical record to its associated
connection (CN), and sends the data to the host, sorted by device. 1In
transparent mode the host must separate the data for the various devices.

11l-4 ‘ 60471160 A

TABLE 11l-2,

HASP PROTOCOL MNEMONIC DEFINITIONS

Mnemonic

Definition

Use

ACKO

BCD

BSC

CRC

DLE

ENQ

EOF

ETB

FCS

NAK

PAD

RCB

SCB

SOH

SRCB

STX
SYN

WLE

Acknewledge block or
character

Block control byte

Binary synchronous communi-
cations control characters
Cyclic redundancy check

Data line escape control
character

Enquiry control character
or block
End-of-file block

End-of-transmission block
character

Function control sequence
block

Negative acknowledgment
block

Padding control character

Record control byte

String control byte

Start of header character

Subrecord control
character

Start of text character
Sync control character

Worklist entry

Positive acknowledgment that trans-
mission was received.

Use for error detection; includes

block seguence number.

Any of several block control charac-
ters, such as DLE, STX, and ETB.

Data quality checksum.
BSC control character.
Inquiry if transmission can be

started when terminal is newly
configured.

BSC control character.
Controls data transmission rate
from/to a device.

Confirms that transmission failed.

All bits are 1's.

Stream number and device type ID:
contains status information.

String length and type, duplicate
character.

BSC control character.

Additional data record information.

BSC control character.

Maintains line synchronization.

60471160 A

11-5

TERMINAL OPERATIONAL PROCEDURE

The workstation software is loaded and the communications line is
initialized. After the signon card is transmitted, the NPU and the terminal
transmit idle blocks until one or the other initiates a function (data or
command transfer).

When a function other than a console message or console command is desired,
the process trying to initiate the function transmits a request to initiate
function transmission RCB. The receiving process then transmits a
permission to initiate function transmission TCB, if the data from the
requesting process can be handled. If the data cannot be handled, or a
function is currently being processed, the request to initiate a function
transmission TCB is ignored.

When a permission to initiate a function transmission TCB is received, the
requesting process begins transmitting data blocks to the other process.
Data blocks can be transmitted until an EOF is encountered. In order to
transmit more data blocks for the same device stream, the request to
initiate a function transmission TCB sequence must be repeated. If a
request to initiate a function transmission is not received before data
blocks are received, the data blocks are ignored.

Data blocks are transmitted and acknowledged one block at a time. Before a
second block can be transmitted, the receiving process must transmit a
positive response which takes one of two forms: 1if no data is ready to be
transmitted to the sending process, an acknowledge block is sent; otherwise,
the .next waiting data block is transmitted to the sending process.

Console functions (operator messages or commands) do not have to follow the
request-to-initiate or permission-to-initiate sequence. A console function
can be initialized any time that the wait-a-bit in the FCS is not set and
the remote console bit is set.

MULTY LEAV!Né BLOCK DESCRIPTIONS

Control Blocks
The multileaving protocol uses four types of control blocks:

Acknowledge block (ACK)

Negative acknowledge block (NAK)
Enquiry block (ENQ)

Idle block (ACKO)

Table 11-3 lists significant EBCDIC characters associated with these blocks.

Acknowledge Block (ACK)

The acknowledge block (ACK) consists of the following control characters:
SYN, SYN, SYN, DLE, ACKO, PAD

SYN Synchronization control character
DLE Data link escape control character
ACKO Affirmative acknowledgment control character
PAD Pad control character (all 1 bits)

11-6" 60471160

The ACKO back indicates that the previous block was received without error
and no data is available for transmissicn.

TABLE 1l1-3. HASP SIGNIFICANT EBCDIC CHARACTERS

Char Hex Definition
SOK 0l Start of header
STX 02 Start of text
DLE 10 Data link escape
ETB 26 End-of-transmission block
ENQ 2D Enquiry
SYN 32 Synchronize
NAK 3D Negative acknowledge
ACKO 70 Positive acknowledge
PAD FF Pad
Note: ACKO only has significance in the
sequence DLE ACKO (as the entire
message) since ACKO is not a
protocol character. ’

Negative Acknowledge Block (NAK)

The negative acknowledge block (NAK) consists of the following control
characters: SYN, S¥YN, SYN, NAK, PAD

SYN Svnchronization control character
NAK Negative acknowledgment control character
PAD Pad control character (all 1 bits)

The NAK block indicates that the previous block was received in error and a
retransmission is necessary. If the allotted number of retry attempts have
been completed, the line is declared inoperative. A NAK block cannot be
transmitted as a response to a NAK block.

Enquiry Block (ENQ)

The enquiry block consists of the following control characters: SYN, SYN,
SYN, SOH, ENG, PAD

SYN Synchronization control character
SOH Start of header control character
ENQ Enquiry control character

PAD Pad control character (all 1 bits)

The enguiry block establishes communications between the HASP terminal and
the NPU at loading time. It is not used at any other time.

60471160 A 11-7

idle Block (ACKO)

The idle block is an ACKO block that is used to maintain communicaticns and
to avoid an unwanted timecut, when neither process has any data to
transmit. An idle block is transmitted at least once every two seconds.
This block has the same format as the acknowledge block.

CONTROL BYTES FOR DATA BLOCKS

Each data block has at least one sequence of five control bytes that define
the data immediately following the last control byte. The control bytes
appear in the following order:

® Block Control Byte (BCB); used for sequencing block.

° Function Control Sequence (FCS); defines the transmission flow
(suspending all data or the data for a device, or restarting data
transmission for one or all devices).

® Record Control Byte (RCB); carries status information for the
following data and stream identification.

® Subrecord Control Byte (SRCB); carries more status and data control
information.

® String Control Byte (SCB); describes the data string (length and
nature - whether it is compressed or uncompressed data).

Following the first set of five bytes, additional data subblocks can be
preceded by only an SCB, or by a sequence of RCB/SRCB/SCB.

Each control block byte is defined below. Figure 1l-1 shows a typical
transmission block and its associated control bytes.

NOTE
The bytes in the following descriptions are described as if
they appeared on a card input device. That is, the least

significant bit is on the left, the most significant bit is
on the right.

Block Control Byte (BCB)

The block control byte bit representation is as follows:

Bit Number 0 7
AXXXCCCC
[’} = 1 - Must always be on
XXX 000 -~ Normal block

001 - Ignore sequence count

010 - Reset expected block sequence count to CCCC
011 - 111, Not used in this implementation

Module block sequence count, range 0 to 15

cccce

11-8 60471160

SYN

SYN

SYN

DLE

STX

BCB

FCS

SCB=0

RCB=0

DLE

ETB

CRC-16

PAD

Synchronization characters

BSC leader (SOH if no transparency feature)
BSC start-of-text
Block control byte

Function control sequence (2 bytes)

Record control byte for record 1
Subrecord control byte for record 1
String control byte for record 1

Character string

String control byte for record 1

Character string

Terminating string control byte for record 1
Record control byte for record 2

Subrecord control byte for record 2

String control byte for record 2

Terminating string control byte for record 2
Transmission block terminator record control byte
BSC trailer (SYN if not in transparent mode)

BSC ending sequence

Cyclic redundancy checksum (2 bytes)

All 1 bits

The signon blocks are described in the user terminal interface subsection

(below).

BCB error blocks are described in the error conditions

subsection (below).

Figure 11-1. Typical HASP Multileaving Data Transmission Block

60471160 A

11-9

Function Control Sequence (FCS)

The function control seguence bit representation is as follows:

Bit Number 0 78 F

|ﬂSRRABCDﬂTRRWXYZI

1 - Must always be on
1 - Suspend all stream transmissicn (wait-a-bit)
0 - Normal state

n
Houu

NOTE

continue (restart)

For the following bits: a bit -
suspend (stop) function

function transmission; a bit = 0
transmission.

1

T - Remote console stream identifier
R - Not used
ABCDWXYZ - Various function stream identifiers

These stream identifiers are bit-defined and have two sets of definitions:
one for upline use, the other for downline use. For upline use the bits
identify the card reader that is to send data:

Card reader number
Card reader number
Card reader number
Card reader number
Card reader number
Card reader number
Card reader number
Card reader number

W3OV UL LN
W oonouonu
NKXIZOOWP

For downline use, the bits identify the ounch or printer which will recieve
the data: ~

- Punch number
- Punch number
- Punch number
Punch number
- Punch number
- Punch number
- Punch number
- Punch number

Printer number
Printer number
Printer number
Printer number
Printer number
Printer number
Printer number
Printer number

o nunnw oy

NKXFOOD P
]

HNWA&UD -]

Q02U & WK

Record Control Byte (RCB)

The record control bvte bit representaticn is as follows:

Bit Number 0 7

FgIIITTTT

11-10 60471160 A

ITI

TTTT

000 -~
001 -
010 -
011 -
110 -
111 -

End~of-transmission block (IIITTTT = 0)

All other RCBs

Stream identifier if TTTT # O

Control information if TTTT = 0 (control record)
Not used

Request to initiate a function transmission
Permission to initiate a function transmisssion
101 = Not used

Bad BCD on last block received

General control recordt

Record type identifier

Control record

Operator message display request (downline)
Operator command (upline)

Card input record

Print record

Punch record

1111 = Not used

Subrecord Control Byte (SRCB)

The bit representation of the subrecord control byte is as follows:

Bit Number 0

= 1 (must always be on)

g

§888s8s8s =

Additional record information dependent upon record type (see

..

TCB above)

For general control record:
SS88S8s =

100000001 - Initial terminal signon

For request or permission to initiate a function transmission:
S8888SS - Stream identifier and record type identifier as described

in RCB

For bad BCD on last block received:
SSSSSS - Expected block sequence count

For print record:
§8S8S58Ss - MCCCCCC

M

cccecec

= 0 - Normal carriage control
=1 - Not used

- Carriage control information
1000NN - Space immediately NN spaces
1INNNN - Skip immediately to channel NNNN
O0O0ONN - Skip NN spaces after print
O1NNNN - Skip to channel NNNN after print
000000 -~ Suppress space

tThe RCB for these functions is contained in the SRCB.

60471160 A

11-11

For punch record:
SSSSSSS = MMBRRSS

sSs - Punch stacker select information
B =290 - Normal EBCDIC card image
=] - Not used
MM = 00 -~ SCB count units = 1
= 01 to 11 - Not used
RR = Not used

For input record:
SSSSSSS = MMBRRRR

MM = 00 ~ SCB count unit = 1
01 to 11 - Not used
B=20 - Normal EBCDIC card image
=] - Not used
RRR - Not used

String Control Byta (SCB)

The bit representation of the string control byte is as follows:

Bit Number 0 7

0 = 0 - End-of-record (KTCCCCC = 0)
= 1 - All other SCBs

K = 0 - Duplicate character string

T = 0 - Duplicate character is a blank
= 1 - Duplicate character is nonblank (character follows

SCB)
cccee - Duplication count
K = 1 - Nonduplicate character string
TCCCCC - Character string length

If KTCCCCC = 0 and O = 1, SCB indicates record is continued in the next
transmission block. This feature is not supported by the HASP TIP and is
shown for completeness only.

DATA BLOCK DESCRIPTION

Data blocks consist of data records, the control bytes described above, and
the following text control characters:

‘SYN -~ Synchronization control character
DLE - Data link escape control character
SOH - Start-of-header control character - used only if nontransparent
mode
STX - Start-of-text control character
ETB - End-of-transmission block control character
CRC-16 - Cyclic redundancy checking control characters (2 bytes)
PAD - Pad control character (all 1 bits)

A typical data transmission block was shown in figure 11-1.

11-12 60471160 A

Several types of blocks are specially defined. These blocks appear to be
data blocks but are actually special purpose blocks containing transmission
control information. They are as follows:

Operator console blocks
End-of-file blocks

FSC change blocks
Signon blocks

BCB error blocks

OPERATOR CONSOLE BLOCKS

Blocks that contain operator console messages or commands do not contain any
additional records in the data block following the console record.

A request to initiate a transmission function is not required to transmit
console records. However, the wait-a~-bit flag must not be set in the FCS,
but the remote console bit must be set.

END-OF-FILE BLOCKS (EOF)

Blocks that contain the end-of-file indicator do not contain any additional
records from the same device stream in the data block following the EOF.
Data blocks that are terminated by an EOF contain a final record in the
format of figure 11-2 (shown for card reader number 1l):

(BSC header)

BCB

FCS

RCB = 10010011 - Card reader stream number 1

SRCB = 10000000 - SCB count units = 1, EBCDIC card images
SCB = 00000000 - EOF

RCB = 00000000 - Tramsmission block terminator (BSC trailer)

(BSC trailer)
Figure 11-2. EOF Block

In order to transmit additional records for a device stream that contains an
EOF, the request to initiate a function transmission must be transmitted
again. If another device stream contains data for transmission, and has
permission to transmit, the last RCB in the above example would be a device
stream TCB followed by data, instead of a transmission block terminator.

FCS CHANGE BLOCKS
The FCS change block is transmitted when the status of one or more of the

streams has changed, and there is no data ready to transmit. The FCS change
block format is shown in figure 11-3.

60471160 A 11-13

(BSC header)

- Changed FCS
= 00000000 - Transmission block terminator

(BSC trailer)

Figure 11-3. PCS Change Block

USER INTERFACE

The user is required to load the software into the HASP workstation
processor, to execute this initializing software, to signon after the
communications line is configured (by the HASP TIP and the workstation), and
to sign off.

WORKSTATION STARTUP AND TERMINATION
The workstation startup procedure consists of three steps:
) Terminal initialization at the HASP workstation

® Communication line initialization, which involves the workstation,
the NPU, and the host

) Signing-on, which involves the workstation and the HASP TIP in the NPU

WORKSTATION INITIALIZATION

The HASP workstation operator loads the terminal software and executes it.
The loading medium can be paper tape, cards, magnetic tape or mass storage,
depending upon the terminal hardware. The workstation initialization
processor establishes I/0 buffers and other necessary parameters. After
initialization, a card is read from the card reader. If the card is blank,
the default signon parameters are used (default signon parameters are
assembled into the terminal software). If the card is a /*SIGNON card, the
parameters on the /*SIGNON card are used instead of the default. 1In either
case, the/*SIGNON card is discarded by the HASP TIP; it is not passed to the

host.

COMMUNICATION LINE INITIALIZATION

After the terminal is initialized, the communication line is initialized by
the HASP TIP, upon receipt of a configure line service message (SM) from the
host. When communication is established with the line, communications
between the HASP TIP in the NPU, and the HASP workstation, are established

by the following procedure:

° An ENQ block is sent from the workstation to the HASP TIP.
) The ENQ is ignored by the HASP TIP until configure terminal SM

arrives from the host for the HASP console stream. The HASP TIP then
sends an ACKO to the ENQ.

11-14 60471160 A

® If the ACK block is received by the workstation, the signon record is
transmitted to the HASP TIP.

) If I/0 errors occur or the ACKO block is not received, the process
restarts with another ENQ block.

e After the signon record is transmitted and a positive acknowledgment
is received (ACKO), the workstation is ready for normal processing.

® As each individual batch device stream is configured by the host, the
INIT block is received and the HASP TIP allows processing of the
corresponding output streams. For batch 1nput streams, processing
does not begin until a START INPUT command is received for the input
device stream. For the console input stream, input is allowed after
the receipt of a downline data block, or a START INPUT command.

SIGNON BLOCK

Column 1 16 25
/*SIGNON REMOTEnn password

NOTE

Record is shown in punched card format; least significant
character on the left, most significant character on the
right.

nn = a l- or 2-digit number that can be used to correlate this remote
terminal with information about it in the host computer,

Password can be blank.

The signon block format is shown in figure 11-4

} BSC Header
BCB 1010XXXX - Reset count to XXXX
FCS
RCB 11110000 - General control record
SRCB
] |
A Signon record
T
A
RCB 0000000 - Transmission block terminator
} BSC Trailer

Figure 1l1-4. Signon‘Block format

60471160 A 11-15

The signon record is not sent to the host, since the host requires a
separate logging on procedure at the operator's console.

SIGNOFF BLOCK

The /*STGNOFF card, when transmitted to the HASP TIP as a record in the data
block, has the same effect as an EOF. The HASP TIP converts the signoff
record to a EOI and sends it to the host as a MSG data block.

HOST INTERFACE

The host interface is used for connection configuration, and initialization
of the workstation devices. Once the line becomes operational, the HASP TIP
allows the signon block to be sent from the the HASP workstation. The
signon block is acknowledged to the HASP workstation, but is not delivered

to the host.

Upon receiving a line operational service message for a HASP workstation,
the host issues a configure terminal service message to configqure the
workstation's console. A start input CMD, or downline data block, causes
the HASP TIP to permit input from the workstation console. The console
connection allows the workstation operator to send and receive messages to
and from the host. ‘

After the console is configured, the batch devices are configured. A CMD
block from the host causes the HASP TIP to allow the input devices to read
cards. Output device streams are initiated by the HASP TIP as soon as data
arrives. Devices configured as plotters use card punch output streams.
Each such terminal has a stream dedicated to its exclusive use.

Once the necessary initialization and configuration are complete, traffic
can flow between the terminal and the host. During this traffic handling
period, the HASP TIP is involved in the following functions:

) Code conversion - upline and downline (unless transparent mode is
specified)

) Format conversion (if required), HASP to host format upline, host to
HASP format downline

® Flow control, upline and downline
® HASP error recovery procedures

° Input/output streams, to or from a HASP terminal

CONFIGURATION AND ADDRESSING

In addition to the required console, a HASP workstation can have up to seven
other devices. Each device has a separate stream ID and is specified in the
configuration service messages from the host in the terminal address (TA)
field. The cluster address (CA) field is always zero. Stream numbers are
identified from 1 to 7 for each device type. Table 11-4 lists possible CA,
TA, and DT values for HASP devices.

11-16 60471160

TABLE 11-4. HASP DEVICE TYPE

. DT -
cat| oat (device/class) Stream/Device Number
00 01 . 09 Console 1
00 01 29 Card Reader 1 These streams are
. . . .) also used for magnetic
. . . . tape and paper tape
. . . . ‘ input.
0o 07 29 Card Reader 7
00 0l 49 Printer 1
60 67 ;9 Printer 7
00 01 69 Punch 1 These streams are
. . . . ’ also used for plotter,
. . . . magnetic tape, and
. . . . s paper tape output.
00 07 69 Punch 7

fca = cluster address; TA = terminal address; DT = device type

INTERCOM commands or status to or from the terminal operator use the stream
or device number when referring to a particular device. Example: line
printer number 1 would be LP 1.

A console type interactive device is required. The TIP accepts MSG and BLK
blocks from the host and passes them to the terminal (the TIP does not
distinguish between MSG and BLK blocks). For all blocks, data is converted
from ASCII to EBCDIC prior to being sent to the terminal, but no other
transformations take place. DBC carriage control values are ignored by the
TIP since the HASP workstation does internal .carriage control and screen
formatting to its interactive device.

Blocks received from the terminal are delivered to the host after conversion
from EBCDIC to ASCII code. i .

The console data stream is always open and -does not require any commands to
start or stop the stream. If the terminal stops the console data stream (by
resetting the console stream FCS bit) for more than 30 seconds, the terminal
is assumed to be inoperative. The host is notified by an input stopped CMD
block (PFC=3, SFC=4).

NOTE

The data stream control CMD blocks are summarized
in section 6.

60471160 A ‘ 11-17

CARD READER

Several CMD blocks are used to requlate the card reader data stream. Note
that this data stream type is also used for magnetic tape and paper tape

input.

However, to be used in this way, the HASP workstation must have the

device emulation controlware installed. A summary of the card reader CMD

blocks is given in table 11-5.

TABLE 11-5.

CARD READER DATA STREAM CONTROL CMD BLOCKS

PFC SFC Name Definition
1 0 START Downline command to start a card input in
INPUT, the nontransparent data mode.
NON-
TRANSPARENT
1 1 START Downline command to start a card read
INPUT, input stream in the transparent data mode.
TRANSPARENT
1 2 RESUME Downline command to resume card read
INPUT input after a suspended input. This
command resets suspension of all
workstation streams when issued on any
stream,
2 0 STOP Downline command to stop a card read
INPUT, stream and to discard all data received.
TERMINATE
2 1 STOP Downline command to stop a card read
INPUT, stream and hold all data received. This
SUSPEND command suspends all streams on a work-
station when issued on any stream.
3 0 INPUT Upline command signifying a /*EOS has been
STOPPED received on a card reader stream. The
command is also sent upline when a stop
input, terminate is received to signify
all data has been terminated on the
connection.

A HASP card reader is activated by the start input CMD block on the card

reader connection. When a card reader connection is activated, it runs in a
hot card reader mode; that is, the card reader stream is always on, unless
terminated by the following:

[Input of a /*EOS (end-of-stream).

° The HASP workstation or the communications line fails and a recovery
of the entire line/workstation takes place.

° A stop input CMD block (PFC=2, SFC=0/1) is received from the host.

11-18 60471160

The card reader stream must be terminated to change from a READ of non-
transparent data to a READ FILENAME or a READ FILENAME with transparent
data. The host does not act on a mode change request from the interactive
console unless the card read stream is currently receiving data. Because of
this restriction, the data stream is normally terminated by entering a /*EO0S
card when changing modes.

If the last input received from the card reader terminated the previous
input file (either /*EOI or ETX), the HASP TIP discards any subsequent /*EOQOI
or /*EOS card. A /*EOS card always causes an input stopped CMD block
(PFC=3, SFC=0) to be sent to the host. Subsequent data received from the
card reader is discarded until the data stream is started again.

Normal termination of an input job with a /*EOI card or ETX from the
terminal causes termination of the PRUB data block with EOT marked in the
DBC field. No upline command is sent to the host in this case.

Since the card reader not ready status is not reported by the HASP
workstation, this condition is not reported to the host.

A stop input CMD block received from the host terminates the input data
stream and, in addition, causes the TIP to send an input stopped CMD block
(PFC=3, SFC=0) to the host as an acknowledgment. Any subsequent data
received from the card reader on that data stream is discarded by the TIP.

Upline data is transformed to PRUB format by PBPOPOI in either transparent
or nontransparent modes. The data stream can be placed in the transparent
mode by one of three methods:

)] For local input files, an optional parameter TR is included as a
parameter in the READ FILENAME command.

) TR is 'included in columns 79 and 80 of the job card.
e TR is included in columns 79 and 80 of an EOR card.

A change to transparent mode requested by the READ FILENAME command causes a
CMD block to be sent from the host to the TIP specifying the mode change.
When TR is specified, none of the following data is translated. The data is
stored as 8-bit characters. No EOR (7/8/9 punch) or /*EOI cards are
recognized in transparent mode. The file is read until ETX is received from
the terminal.

The HASP TIP also examines columns 79 and 80 of all job cards and EOR cards
to determine if the code translation should be the 026 or 029 character
set. A 26 in columns 79 and 80 specifies 026 mode and a 29 specifies 029
mode. The code translation default to INTERCOM default code set after a
/*EOI card is detected. :

Card Reader Nontransparent Data Mode

When in the nontransparent data mode, characters received from the card
reader are expanded from the HASP compressed format, translated to display
code, and stored in standard PRUB format. Trailing blanks on each card are
discarded. The end of each card is marked within the PRUB with 2 to 11 zero

characters.

60471160 A 11-19

Card Reader Transparent Data Mode

Transparent B-bit characters are expanded from the HASP compressed format
and stored in the PRUB without translation or marking of card boundaries.
Records or transmission blocks are stored contiguously within the PRUB and,
therefore, can be split across PRUB boundaries. Data is stored until ETX is
received. When ETX is detected, the DBC of the last PRUB is marked as EOI
and the card read stream is returned to the nontransparent data mode by

means of an input stopped CMD block.

PRINTER

Several CMD blocks are used to regulate the printer data stream. Table 11-6
summarizes these commands. .

TABLE 11-6. PRINTER DATA STREAM CONTROL CMD BLOCKS

PFC SFC Name Definition

5 1 ouTPUT Upline command to notify the host that
STOPPED, the print stream has been suspended by
PRINTER NOT ‘the terminal for more than 30 seconds.
READY

5 3 oUTPUT Upline command to notify the host that
STOPPED, the print stream has been stopped due to
PM MESSAGE receipt of a PM message from the operator.

7 0 RESUME Downline command to cause the TIP to
OUTPUT restart output after a stop condition.

8 0 STOP Downline command to cause the TIP to
OUTPUT, discard buffers and stop output to the
ABORT printer.

Output to a printer is started by the host sending the first downline data
block on the printer's connection. The first block received is normally a
banner MSG block. If the terminal is configured for the banner off
condition, the banner block is discarded; otherwise, the MSG block is
converted to two copies of the file identification banner page.

Data blocks originate in the host as PRUBs. The DBC of each PRUB is
examined by the TIP (this is the direct call from PBIOPOI) for data mode,
transparent or nontransparent, and the data is translated accordingly. Each
subsequent PRUB is converted to HASP printer protocol in the same way.

Printer Nontransparent Data Mode

Data within the PRUB is considered to be print lines. The end of each line
is detected according to the standard PRUB format: (FF3jg). This can
optionally be preceded by 00:4.

11-20 60471160

If the print line taken from the PRUB is larger than the configured printer
line width, excess characters are automatically printed on the next line.
Print lines are never split across transmission blocks. The first character
of each line is normally interpreted as a carriage control character, and is
converted to the corresponding HASP workstation subrecord control byte
(SRCB) , according to table 11-7. Optionally, if the data stream is
configured to suppress carriage control, the first character of each line is
ignored and replaced by a single space before printed output.

All characters are converted from display code to EBCDIC code prior to being
output.

TABLE 11-7. HASP PRINTER CARRIAGE CONTROL CODES

INTERCOM Function HASP SRCB
CODE Before Print Value (Hexadecimal)
1 New page Bl
+ No space 80
0 Space 2 A2
- Space 3 A3
B Space 1 Al
Others Space 1 Al

Printer Transparent Data Mode

For PRUs marked as transparent data, no print lines are detected within the
PRUB. Characters are placed in the transmission block without code
conversion, carriage control, or end-of-line processing.

If an EOR or EOI block is received, the transmission block is terminated
with the last character of that PRUEB. Otherwise, transmission blocks are
filled to the maximum configured size,

Command Interface for the Printer

Print files are output to the printer without TIP intervention between
files. The host is not notified when the last block of a file is output.
The host is notified by an output stopped (printer not ready) CMD block
(PFC=5, SFC=1) if the data stream is suspended by the terminal for more than
30 seconds. The TIP also notifies the host and stops the printer data
stream when a PM message is detected as the first two characters of a print
line. The command sent upline for this condition is output stopped, PM
(PFC=5, SFC=3). The PM print line is then sent to the console device,

The print stream can be restarted after a stop condition by an INTERCOM
command to the host which causes the host to send a downline restart output
CMD block (PFC=7, SFC=0). The print stream is aborted by a downline stop
output CMD block (PFC=8, SFC=0). This command causes any PRUB queued for
the stream to be discarded.

60471160 A 11-21

PUNCH

The TIP processes card punch output in a manner similar to printer output.
The differences are as follows:

) There is no carriage control function.
e Punch records are 80 characters long.

® A lace card consisting of 70 characters of *, the 7-character job
name, and 3 blanks, is punched as the first card of each job file as
a separator.

) There is an option to punch an EM ($19) character immediately
following the last data character on each card that is less than 80
characters in length. The EM character allows card reading to be
more efficient for some terminals.

Note that the punch data stream can be used for plotters, or output magnetic
or paper tape, if the workstation contains the required emulation
controlware. Files output to the punch can be specified as transparent data
in the same manner as print files. In this case, they would be handled
exactly as described for transparent data for the line printer except that
the lace card would be punched in place of the printer banner page.

A summary of the commands applicable to the punch stream are given in the
table 11-8.

TABLE 11-8. PUNCH DATA STREAM CONTROL CMD BLOCK

PFC SFC Name : Definition

5 1 ouTPUT Upline command to notify the host the print
STOPPED, stream has been suspended by the terminal
DEVICE NOT for more than 30 seconds.
READY

7 0 RESUME Downline command to cause the TIP to
CUTPUT . start output after a stop condition.
TRANSPARENT

8 0 STOP Downline command to cause the TIP to
ouTPUT, discard buffers and stop output to the
ABORT punch.

ERROR CONDITIONS

The error conditions recognized by the HASP TIP are as follows:

CRC-16 error

Illegal block make-up
Unknown response
Timeout

BCB error

11-22 60471160 A

CRC-16 ERROR (CYCLIC REDUNDANCY CHECKING)

Cyclic redundancy checking only occurs on data blocks. If a CRC~-16 error
occurs, the receiving process transmits a NAK block to the transmitting
process. This indicates that a retransmission of the last block is
required. If the retransmitted block is correct, the processing continues.

ILLEGAL BLOCK MAKE-UP ERROR

A data block must end with an ETB control character. If the data block does
not, an illegal block make-up error occurs. The receiving process transmits
a NAK block to the transmitting process which informs the transmitting
process that a retransmission of the -last block is required. If the
re-transmission block is correct, the processing continues.

UNKNOWN RESPONSE ERROR

An unknown response error occurs when the response received from the
transmitting process is not one of the following:

° A data block beginning with the DLE and STX control characters in
transparent mode

° A data block beginning with the SOH and STX control characters in
nontransparent mode :

® An ACKO block
® A NAK block

"If an unknown response error occurs, the receiving process transmits a NAK
block to the transmitting process. This informs the transmitting process

‘that a retransmission of the last block is required. If the retransmitted
block is correct, processing continues.

BLOCK CONTROL BYTE (BCB) ERROR

Every data block has a block control byte which contains a block sequence
count. The data blocks are transmitted in sequentially ascending order,
unless an ignore or reset block control byte is transmitted. If the block
sequence count in the data block is not equal to the expected block segquence
count, a block control byte error occurs.

If a block control byte error occurs .and the block sequence count is a
duplicate of a block sequence count previously received, (expected block
Sequence count minus received block sequence count 2), the data block is
ignored and processing continues as if a function control seqguence change
block or ACKO block was received.

If a block control byte error occurs and the block seguence count is not a
duplicate block count, as described in the previous paragraph, a block
control byte error block is transmitted from the receiving process to the
transmitting process. The block control byte error block informs the other
process that a block segquence count error has occurred, and that the
transmitting process must trarsmit a reset block control byte. The format
of the block control byte error block is shown in figure 11-5.

60471160 A 11-23

- BSC header

BCB - 1001XXXX; ignore sequence checking where XXXX = received
block sequence count

FCS

RCB -‘11100000; bad BCB on last block

SRCB - 1000YYYY; where YYYY is expected block sequence count

SCB - All zeros; end-of-record

RCB - All zeros; transmission block terminator

- BSC trailer

Figure 11-5. Format of Block Control Byte (BCB) Error Block

11-24 60471160 A

REGULATION AND FLOW CONTROL

The NPU regulates upline input from the HASP workstation when the NPU runs
out of buffers, when the host stops, or when data transmission is not
ready. The workstation regulates downline data outpnut from the host/NPU as
a function of the busy state of the workstation device, which uses or

produces the data.
° Upline Regulation

In response to the stop input CMD block (section 6), the TIP sends an
input stopped CMD block to the host. If data continues to arrive
from the terminal, that data is discarded. No permission to transmit
is granted by the TIP.

Upon receipt of an end-of-file block from the terminal, the TIP sends
an input stopped CMD block to the host following the data.

Permission to send more data is not granted until a start input CMD
block is received from the host.

To check whether any internal NPU condition exists which should cause
rejection of input messages, the TIP calls PTREGL, (l) at the time an
acknowledgment is sent, or (2) when an output command is sent to the
workstation that could result in an input data block being returned.
Only two regulation conditions are checked, as follows:

Host has reset accept input flag.
Logical link regulation priority exceeds input priority.
o Downline Data Flow Control

The function control sequence fields control flow on each of the
streams (terminal devices) by the use of the bits assigned to control
each stream. The FCS sent by the terminal to the TIP controls the
TIP's downline delivery of records related to each stream.

The TIP correlates the FCS bits with the applicable connection numbers. If
a bit is set to the suspend transmission state, the TIP sends an upline
input stopped CMD block on the related connection after a timeout occurs.
In some subsequent upline block from the terminal to the TIP, the function
control sequence bit for the specified stream is set to change transmission
from the suspend state to the continue state. This causes the TIP to send
input resumed CMD blocks upline on the related connection number .

The data stream to the host then continues.

If a request to initiate function transmission sent from the HASP TIP is
denied by the terminal, then an output stopped CMD block is sent upline for
this device's connection number (CN), after a timeout occurs. If permission
is granted, a resume output CMD block is sent.

AUTORECOGNITION

Lines using BSC modes can be configured for autorecognition. Since some
program must distinguish between standard TIPs (2780/3780 and HASP
terminals) using BSC codes for autorecognition, this function has been
placed in the BSC TIP. As soon as the BSC TIP discovers the auto-

60471160 A 11-25

recognition message from the terminal is for a HASP workstation, the BSC TIP
uses PBLSPUT to build an OPS-level worklist for the HASP TIP. The workcode
is set to line enabled. The HASP TIP processes this OPS-level worklist
code, by setting up LCB fields (the BSC TIP has previously set up other LCB
fields for the HASP TIP).

DIRECT CALLS TO THE HASP TIP _
The HASP TIP can be called by the following:

] Any other program, using a 3~-word standard TIP worklist. Worklists
are queued to PTHOPSTIP. The monitor passes control to the TIP with
a single worklist attached. PTHOPSTIP is the principal switch for
the HASP TIP. (See HASP TIP trees, appendix G.) The switching
procedure is based on the workcode in the worklist (lower half of
word 0). The principal users of this call are:

Internal processing to process downline data blocks and commands.
The service module to set upline and terminal changes.

The multiplex subsystem to have the TIP process special conditions
such as unrecoverable hardware errors and protocol acknowledgments.

The TIP's own input state programs to start the TIP into the upline
text processing cycle.

The TIP's own text processing state programs for unrecoverable
error conditions.

] Internal processing, by switching to the page and address of the HASP
text processor, PTTPHASP. Downline text processing is done at the
same time as the output message is converted from PRUB format to
terminal format. Control then returns to internal processing which
subsequently calls the TIP with a worklist so that the TIP can

° SVM so that the TIP can finish processing the TCB at configure time.
The TIP sets the default values for fields that were not explicitly
configured by SVM using an FN/FV pair.

° The multiplex subsystem at mux 2 level. This call is immediately

converted to an OPS-level call if the work code indicated buaffer
threshold has been reached. Otherwise, no action is taken.

DIRECT CALLS FROM THE HASP TIP

The HASP TIP uses the following routines:

e Buffer handlers: PBGET1BF, PBREL1BF, PBRELCHN and PBRELZRO are used
to assign and release buffers. PBCLR is used to clear buffer space.

o PTREGL is used to check if input should be rejected. The conditions
for requlation were discussed previously.

11-26 60471160 A

) PTTPINF is used to call the firmware text processing programs.
Control returns directly to the TIP after the upline or downline data
block has been text processed.

[] PBPOPOI is called to send upline acknowledgments (BACK blocks) when
the data block has been sent to the terminal.

° PBPIPOI is called to prepare the upline block for the host. This
relieves the TIP of the task of converting the block to PRUB format.

e PBUPABRT is called when the host has sent a stop input (terminate)
CMD block to the TIP. All upline PRUBs are released and the TCB
fields are set to their no traffic values.

® PTCOMMAND is called to generate the data stream control CMD blocks
for the host.

) PBPTISEG is used for adding entries to the data queue.

) BLTIMTBL is used to prepare timed functions and to clear timeout
counters when the expected event occurs within the allowable period.

® PBLSPUT is called to prepare worklist calls to the service module
(for instance, to report that a TCBE has been deleted), or to call the

HASP OPS-level TIP itself when converting the mux 2 level entry to an
OP5 level entry, and when gqueuing input messages for later processing.

HASP POSTPRINT
HASP printers vary in the way they perform terminal carriage control
-actions. Some perform carriage control, then print the data; others print
the data, then perform carriage return actions. The former are called
preprint terminals, the latter are called postprint terminals. The preprint
terminals are designed to receive the data in this format:

[CARRIAGE CONTROL] [para]

w J L d

The terminal action is performed in this order:

(1} Perform the carriage control action.
(2) Print the data.

Initially, CCI treated all printers as preprint terminals.

However, postprint terminals cannot perform these actions as one step.
These terminal use the following sequence of actions:

(1) Print the data.
(2) Perform the carriage control actions.

To handle both preprint and postprint terminals with the same data format,
CCI divides HASP printer output data into two records:

[CARRIAGE CcONTROL] [para]
[2 BLANKS] [CARRIAGE CONTROL] and [DATA] [no cc]

where no CC indicates no carriage control character.

60471160 A 11-27

Preprint terminals handle this as a carriage control, then a print data
sequence. Postprint terminals print out two blanks from the first record
(that is, nothing is printed) and then perform the carriage control action.
For the second record, the postprint terminal prints the data, but performs
no carriage contrnl action.

11-28 60471160 A

STATE PROGRAMS 12
“

This section describes the firmware level state programs that are used by
the TIPs and the multiplex subsystem to speed programming. One set of state
programs controls upline transfer (input state programs, sometimes augmented
by upline text processing programs) and another set controls downline
transfers (text processing). Each program is composed of a series of state
processes. Each state process is composed of a series of state instructions.

Each TIP (in some cases, each type of terminal serviced by a TIP) has upline
and downline state programs to process control characters, assign buffers,
perform error processing for garbled characters in the transmission stream,
and (if necessary) to translate code. (Exception: The TTY TIP does not
translate code, up or downline; that TIP lacks text processing programs,)
The entire group of state processes comprising a state program has a state
pointer program associated with it. To execute a program, the TIP sets an
index in this pointer table to specify the first state process to be used
when the next character is to be processed. The pointer table index is then
moved as appropriate for the next anticipated character. This is usually
done by the state programs themselves. -

The multiplex subsystem also controls a set of state programs called the
modem state programs.

EXECUTION OF STATE PROGRAMS

All state programs are executed on the firmware level. Message processing
itself is under the control of the appropriate TIP, which is executed on the
OP3 level. That TIP, before starting processing of the message, sets up a
multiplex line control block (MLCB) for upline messages or a text processing
control block (TPCB) for downline messages. Since most of the message
processing is normal (for instance, the modem is set up in the same way each
time, buffers are assigned, a sequence of control characters delimit the
message, and termination is generally the same), this kind of processing can
be handled entirely within the state programs.

As the message is processed on the firmware level, the state program index
is changed on the firmware level by the state programs themselves. The
State programs process the data without further communication with the
OPS-level part of the TIP. For upline data, processing consists of moving
data from the circular input buffer to a dynamically assigned, line-oriented
input buffer. When the line buffer is ready, the OPS level TIP is called to
process it, For downline data state processing consists of taking all the
data from the line-oriented output buffer, translating and reformatting it
for the terminal, and placing it in an output buffer. Control returns to
the OPS-level TIP to continue processing the message. Usually the TIP
notifies the multiplexer that the message is ready for outputting.

60471160 A 12-1

The ideal case summarized above makes few provisions for special problems
such as error processing. In such a case, the state programs might inform
the TIP that message transmission failed, and the TIP would then activate
one of its OPS-level routines for handling that situation based on the type
of error encountered.

State program processing is usually more complicated, than in the ideal
case. Processing may shift several times between firmware-level processing
of the state programs and the OPS-level TIP. Communication between the TIP
and the multiplex subsystem is needed to set up the input state program.
This communication uses the command packet. The multiplex subsystem then
starts the input state programs when the first character of the message is
placed in the CIB. Whenever the TIP passes control to the multiplex
subsystem, the new input state index must be set in the MLCB.

Figure 12-1 shows the pointers that initially are needed to locate the first
state process in a state program sequence. As a state process is completed
and requires another, the index in the state pointer table is changed so the
TIP or multiplex subsystem can find the next state process of the state
program to be executed.

CLASSES

Functionally, there are three classes of state programs:

° Input state programs for upline processing. An input data processor
handles the character processing.

The input data processor is a multiplex subsystem level 1
microprogram which has the basic task of removing loop cell data from
the input multiplexer loop, stripping away the multiplex loop control
fields, and packing the resulting characters into a circular input
buffer (CIB). Then the input state program is called to store an
input character into a line-oriented input buffer. The current input
state process determines whether any special action (code or format
conversion) is required for the character and processes the character
as needed. When all the input characters for that block are
processed, input is terminated and a worklist entry is made to call

the TIP at OPS level.

The input data processor is interrupt driven (priority 2) by the
multiplex lcop interface adapter whenever a line frame is stored in
the CIB. Unless preempted by a priority 1 interrupt, the input data
processor causes the appropriate state program (input or modem) to
remove all unprocessed entries from the CIB prior to relinquishing
control. 1In this way, the CIB's pick pointer is moved up to the put
pointer position whenever possible. Running out of space in the CIB
causes the NPU to stop.

) Text processing state programs for downline processing. Output text
processing is required unless the output sent by the host is in
transparent mode. Normally PBIOPOI calls the text processing
programs of the OPS-level TIP directly. This program in turn calls
the text processing state program to convert data to terminal
format. The TIP makes a direct call to the state programs
reformatting and converting to terminal code where necessary. Note
that the format has already been changed from PRUB format. This

12-2 60471160 A

§58D014 9sje3s e burjecon T-z1 sanbrg

Z6EW

3avl
H3LNIOd
ETR- AT
waaow
X3IANI
1V1iS
N H34ing
viva &
N
// {WVYHDOUd 31V1S
| N H3LNIOd W3aow Hod)
SNOILONH LSNI L ¥3ddng |, | "344nd
N $S3204d viva
J1VLS
"HO
o
Haav
¢ N SS300Hd 3LVIS a9
°] 43inNlod H3IBWNN
ETR TS {3NIT) 1YHod
o - A8 Q3IX3ANI
SNOLLINYASNI
L $S300ud ™]
31V1S
o
; X3ON1
SNOILINYLSNI L $S3204d 31VIS] 31ViS Haav 8210N
0 $S320Hd
vis | 0 SS3ID0Hd 3ILVIS
WYUDOHd 31Y1S (W3QOW YO ‘DNISSIDOH {82d1L HO 821W) (LHOJVN)
IX31 ‘LndNE 39 NYD) %2078 TOHINOD 379VL 1HOd

378v1 Y3ILINIOd 31ViS

12-3

60471160 A

operation moves the data from the buffers holding the partially
transformed output data to buffers holding the data in terminal
format. This data conversion must be accomplished before calling the
TIP to initiate output on the line.

After the text is converted to terminal code and format by the text
processing state program, the output data processor (ODP) in the
multiplex subsystem handles the character output to the line. The
output data processor is an interrupt-driven (priority 1) level 1
microprogram that is activated when an output data demand (ODD) is
generated by the CLA on that line. The output data processor's
primary function is to obtain a single character from line-oriented
output buffer, to place this data into line frame format, and to
transfer the line frame onto the multiplex output loop. This process
is repeated, driven by the ODD interrupts, until the entire message
is transmitted.

Text processing is also performed on some upline data This occurs
where the input block is composed of data from several devices at the
same workstation, as in the case of the HASP TIP. In this case, the
input state programs move the data into a line-oriented input

buffer. Then the multiplex subsystem calls the OPS-level TIP. The
OPS~level TIP calls PTTPINF to convert this block of terminal data to
one or more blocks of device-oriented data in host format. Note that
conversion to PRUB format is done later by PBPIPOI. Different sets
of text processing programs are needed for upline and downline
conversions.

) Modem state programs. The IDP and ODP described above handle those
tasks that are protocol dependent. Modem state programs handle those
tasks that are performed for all line protocols, such as processing
CLA status.

COMPONENTS OF A STATE PROGRAM
There are three

e A state program consists of one or more state processes. The number
and variety of state processes defined for a state program is a
function of the particular terminal protocol. Each state program is
assembled as a sequential table of coded state processes.

L) A state process, is composed of one or more state instructions
(firmware macroinstructions). The set of these macros forms the
language of state processing. For complete description of the macros
and their use, refer to the State Programming Reference Manual. (See
preface.)

® The state pointer table contains the address of each state process

defined for a particular protocol or line type. A state process is
selected by setting the state index to the process number.

FUNCTIONS

The function of the input state, text processing, and modem state programs
are described in this subsection.

12-4 60471160 A

INPUT STATE PROGRAMS

Input state programs demultiplex characters into line-oriented input buffers.
This is done in two ways:

e One-pass processing. These buffers of converted data are passed to
the host via the TIP, PBPIPOI, and the HIP.

° Two-pass processing. These buffers of partially demultiplexed data
become the source buffers for input text processing. The OPS-level
TIP is called to finish the demultiplexing. Then the TIP passes the
converted data to the host via PBPIPOI and the HIP.

An input state program consists of a maximum of 64 state processes. These
processes handle tasks such as data conversion, CRC generation, character
compression, and message blocking. Since all state processes are reentrant,
lines with a similiar protocol can share some state processes.

The TIP must provide programs for the four reserved input state processes
(0, 1, 2, and 3). State 0 handles parity errors of data transfer overrun.
State 1 is called when the data carrier detect (DCD) signal is dropped.
This condition can be used as a logical end-of-text for controlled carrier
lines. Both state 0 and 1 are given control by the modem state program
(regardless of the current input state) when the stated condition occurs.
States 2 and 3 are called by the input data processor to process
buffer-related conditions. State 2 is given control when the number of
input buffers currently in use exceeds the system limit. State 3 receives
control when the available buffer minimum threshold is reached. States 4
through 63 are defined by the TIP.

The 1l6-word multiplex line control block (MLCB) stores control information
for the message. Numerous flags and fields are defined for the transfer,
including the state process pointer and the state program index. Together,
these locate the next state process to be executed. The MLCB fields are
defined in appendix H. ‘

The input data processor has three interfaces: to firmware, to modem state
programs, and to text processing state programs.

° Firmware interface to input data processor

The firmware input data interrupt causes the multiplex subsystem to
pass control to the designated input state process for the
line/terminal.. Before executing the first state input state
instruction, the firmware loads a selected register with the current
(untranslated) character. The contents of this register can be
changed by state macroinstructions.

If parity stripping is specified, the parity bit is stripped when the
register is initially loaded. 1If and when the register contents are

changed, parity stripping is ignored. Exit options allow the TIP to

store the characters from the register without changing the register

contents.

60471160 A 12-5

) Modem state program interface to input data processor

When a data character and CLA status occur in the same line frame of
the CIB, the firmware transfers control to the current modem state
process. The modem state program is responsible for passing control
to input state process 0 or 1 upon detecting status conditions for
which the input state program should get control.

Flags in the MLCB are used for communication between the modem state
program and input state program. One flag indicates that a workcode
has been saved for use when the carrier drops. Another flag is set
by the line initializer when a controlled carrier line is detected.

The input state program must set the modem state index to the modem
state process that handles status while input is in progress. That
is, upon detecting start-of-input, the input state program must
change the modem state index to the modem state process that handles
status when inputting. Then, upon detecting end-of-transmission, the
input state program must set the modem state index to the modem state
process for idle.

For the controlled carrier type of line, an output message cannot be
transmitted until data carrier detect drops on input. To eliminate
the possibility of a TIP starting output before data carrier detect
has dropped during input, the input state program has the ability to
terminate the input buffer and save the workcode in the MLCB (the
alternative would be building the worklist at the time of the
termination). The input state program then sets a user flag
indicating this saved workcode condition.

A worklist entry can be built immediately if the line type is not a
controlled carrier line.

The modem state program jumps to input state process 1 when the saved
workcode flag is set, data carrier detect has dropped, and the idle
modem state exists., The TIP does not get control until data carrier
detect has dropped, eliminating the possibility of starting output
before data carrier detect has dropped during input.

Other input/modem state interfaces can be defined as needed by the
user.

® Text processing state program interface to input data processor
The input state program creates interim (source) buffers to be used

by the text processing state program only when more than one pass is
required to process the input from the CIB.

TEXT PROCESSING STATE PROGRAMS
These state programs handle all protocol-oriented output processing and some

input processing (where several devices on the same line have data to
convert within a single upline block).

12-6 60471160 A

When handling characters for output text processing, the buffer received from
the host (after transformed by PBIOPOI) is referred to as the source buffer.

A character from this buffer is known as a source character. For input text

processing, the source character is obtained from the source buffer that was

created by the input state program at the end of the first pass. The source

character is placed in the current character register by the firmware.

A text processing state program consists of a maximum of 64 state
processes. Since all state processes are reentrant, lines with a similar
protocol can use the same state processes.

Text processing state process 0 is reserved for handling the end of a
source-reached condition, and state process 2 is reserved for handling
buffer overflow processing. States 1 and 3 through 63 are defined by the
TIP.

The selection of the text processing state process to execute is determined
by combining the value of the state process index with the state pointer
table address. Both fields are in the text processing state pointer table
entry points to the associated text processing state process. See appendix
H for a definition of TPCB fields.

The state pointer table address and state process index fields are set by
the OPS-level TIP program. State program macroinstructions allow the
firmware program to change the state process index while executing text
processing state programs.

Before text processing is initiated, a group of 16 firmware registers (file
1 text processing registers) are initialized from the last 16 words of the
TPCB by PTTPINF. This action allows the firmware to operate entirely within
micromemory.

The 16 file 1 registers are accessed by specifying a displacement to the
seélected file 1 register. A displacement of 0 selects the first file 1
register and a displacement of 15 selects the last file 1 register.

Firmware Interface to the Output Data Processor

The destination buffers generated by the output text processing program can
be accessed by the ocutput data processor when an output data demand (ODD) is
received from the communications line adapter. The output data processor
gets the next character from line-oriented buffers, moves the character into
multiplex output loop frame, and transfers the frame to the MLIA for
transmission on the multiplex output loop.

The TIP support‘program, PTTPINF, provides the interface between the
OpS-level TIP and the firmware that performs state~drive text processing.
PTTPINF performs the following functions:

e Initializes the file 1 registers for text processing with the lower
16 words of the text processing control block (TPCB) array.

° Initiates text processing state processes.

° Releases unused destination buffers created by the save and restore
state instructions upon return to macrolevel processing.

] Restores the text processing TPCB array with the file 1 registers
upon return to macrolevel processing.

60471160 A 12-7

PTTPINF is called with a parameter containing the address of the TPCB.

After detecting a character but before executing the first text processing
state instruction, the firmware loads file register 0 and a selected
register with the current (untranslated) character. The programmer can
change the contents of file register 0 by using the state program
macroinstructions.

If parity stripping is specified, the parity bit .is stripped when the
register is initially locaded. If the contents of the register are changed,
parity is ignored. Exit options can store this character without changing
the register contents.

MODEM STATE PROGRAMS

The modem state programs process modem status as a function of modem control
signals. The programs (which are called by the firmware when communications
line adapter (CLA) status word enters the subsystem) use a worklist entry to
forward the logical CLA status to the multiplexer level status handler
(PTCLAS). PTCLAS analyzes the status and uses a worklist entry to report
line conditions to the OPS-level TIP modem state program.

A modem state program consists of a maximum of 16 state processes. There
are modem state processes defined for each line type based on line
condition. Thus, the modem state program can have one or more processes for
each condition, or one state process to handle more than one line condition,
depending on the line type. :

The modem state programs report status conditions to the line initializer
and to the TIPs. These programs are based on line type. The states defined
for each line analyze the status as a function of the current state of the
line (for example, line idle, output in progress, input in progress, and
initializing line).

State 0 is the starting state of the modem state programs when a CLA status
word is detected in the circular input buffer. This state checks for hard
errors and any other signals that are common to idle, input, and output
states. Control passes to the current state program if no errors are
detected or if the current state is discard, initializing line, or enabling
line. ,

State 1 discards all status. This state is selected following any hard
error worklist generation or by a clear line or disable line command to the
command driver.

State 3 is the enable line state. It is selected whenever an enable line
command is issued. The modem signals that indicate that the line is ready
for data transfer are checked. 1If these are found, a worklist indicating
the line is enabled is generated. The modem state program changes to state
4 (idle) after the worklist is generated. Either of two signals indicate
the line is enabled: data set ready (DSR) alone, or a combination of DSR
and data carrier detect (DCD).

12-8 60471160 A

NOTE

States 0, 1, 2, and 3 are similar for all line types. Any
new modem state programs must perform these same functions.
New programs should also check the three hard error
indicators: input line enabled, output line enabled, and DSR.

State 4 is the idle state. It checks for any error conditions that are not
checked in state 0.

" NOTE
States 5 and 6 are unigue by line type.

State 5 is the output state. It checks for output-related errors not
checked in state 0, such as next character not available.

State 6 is the input state. It checks for input-related errors not checked
by state 0, such as parity error status. The program also provides a jump
to the TIP input state that handles the data character that accompanies the
status indicator for any status condition that requires such a character
(for example, PES, data transfer overrun, and SDLC character status).

NOTE

States 4, 5, and 6 can be separate states if the line does
not use full-duplex transmission. With full-duplex
transmission lines, these states can be performing the same
functions for handling status while input and output are
simultaneously in progress.

State 7 is ready for output, reverse channel. It is not used.

The modem state index in the port table (NAPORT) can be set by the command
driver, an input state program, or a modem state program. The modem state
program address field is set by the command driver when a line is
initialized. The command driver sets the index to the modem state process
according to the command being issued. The input state programs control the
setting of the modem state program index for handling status while input is
in progress.

The modem state program is initially entered by accessing modem state
process 0. Modem state process 0 sets the modem state index according to
the status informtion it receives. Subsequent selection of a modem state
process is determined by the modem state program address and modem state
index of the port table. This combination of the index and address selects
the state pointer table entry which points to the associated modem state
process.

The modem state programs have three interfaces.

Firmware Interface to the Modem State Programs

CLA status is moved into the circular input buffer (CIB) along with the
input data. When the firmware's input data processor detects CLA status, it
passes control to modem state process 0 for that line.

60471160 A 12-9

Muitiplex Level Status Handler (PTCLAS) Interface to the Modem State Programs

After the modem state program builds a worklist entry containing the logical
CLA status, the multiplex level worklist processor routes the priority
worklist entry to the mux level status handler, PTCLAS. Upon receiving
control, PTCLAS analyzes the status condition indicator and acts
accordingly. The appropriate action may be to generate a CE error message,
to start a timer from modem response or CLA status overflow, or to make a
worklist entry to the associated TIP at OPS-level.

Input State Program Interface to the Modem State Programs

This interface was described in the Input State Program subsection.

MACROINSTRUCTIONS

There are nine classes of macroinstructions:

Status of the two assignable counters

Character manipulation (store, replace, etc.)

Index manipulation

Skips

CLA status handling

Flag control (set and reset)

Worklist handling (build, terminate, use fields)

Text processor operations

Miscellaneous (addresses, timers, backspace, resync, CRC, buffer
allocation, block length, move fields))

The state program macroinstructions are summarized in table 12-1. The
general format of a state program macroinstruction is:

MACRO NAME parml,parm2,...,parmn

The instruction in this call format is closed up and all defined parameters
must be present. If a parameter is inapplicable to the current call or if
the default value is to be used, the parameter value can be omitted, but its
delimiting commas must be present.
Example:

MACROX parml,parm2,parm3,parm4
could appear as

MACROX parml,,parm3,

if parameters 2 and 4 are to have default values,

12-10 60471160 A

TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS

Name Function Parameters

STATUS OF ASSIGNABLE COUNTERS

INTCC Initialize character counters (CC). COUNT, ACTION

INTCC1 Initialize CCl with packet size. ACTION

INTCC2 Initialize CC2 with maximum block length. ACTION

SETCC Set CC to value (CV). COUNT, CV

SETCC1 Set CCl to CV. cv

SETCC2 Set CC2 to CV. cv

CHRCC Mask and set CC. COUNT, IMASK

CHRCC1 Set CCl. ' IMASK

CHRCC2 Set CC2. IMASK

MOICC Set CC with modulus function (Modulus = CV). | COUNT, CV

ICC Increment CC. COUNT, ACTION

ICC1 Increment CCl. ACTION

ICC2 Increment CC2. ACTION

DCC Decrement CC. COUNT, LABEL,
ACTION

DCC1 Decrement CCl. LABEL, ACTION

pce2 Decrement CC2. LABEL, ACTION

CNTNE Compare CC with value (CV). COUNT, CV,
LABEL

CNTI1NE Use count 1. CV, LABEL

CNT2NE Use count 2. CV, LABEL

BLCNE Compare CC to block length. COUNT, LABEL

BLC1NE Use count 1. LABEL

BLC2NE ‘Use count 2. LABEL

STORC Store CC in destination buffer. COUNT, ACTION

STORC1 Use count 1. ACTION |

STORC2 Use count 2. ACTION

60471160 A 12-11

TABLE 12-1.

STATE PROGRAM MACROIMNSTRUCTIONS

(Contd)

Name Function Parameters

CHARACTER MANIPULATION

STORE Store current character in destination CRCA
buffer with or without CRC.

RCHAR Make specified character the current CHAR, ACTION
(untranslated) character.

RPLACE Make specified character the current CHAR, CRCA
character, store it (combines RCHAR
and STORE).

ADDC Insert (add) character to destination CHAR, ACTION
buffer.

RADDC Add CHAR to destination buffer the CHAR
number of times specified in count 1.

CHRPT Add current character to destination none

buffer the number of times specified in
count 1.

INDEX MANIPULATION

MSTATE

MJUMP

STATE
RTRN

JUMP

SKIPS
SKIP

SKIPB
CRCEQ

STATLS

12-12

Set modem state index in port table to
value (STATE).

MSTATE, then execute indexed program.

Set input index in MLCB to value (STATE)
or set TP index in TPCB to value.

Execute currently indexed input or TP
state programs.

Optionally update state index, then

execute indexed input or TP state
program.

Skip forward to LABEL.
Skip backward to LABEL.
Skip to LABEL if CRC check is good.

Skip to LABEL if current input/TP state
index < LABEL.

STATE, ACTION

STATE

STATE, ACTION

none

STATE, RTN

LABEL
LABEL
SB, LABEL

STATE, LABEL

60471160

TABLE 12-1.

STATE PROGRAM MACROINSTRUCTIONS (Contd)

Name Function Parameters

MSTLS Skip to LABEL if current modem state STATE, LABEL
index < LABEL.

CHARNE Skip to LABEL if current character CHAR, LABEL
CHAR.

SPCHEQ Perform ACTION if current character #- LABEL, ACTION
special character, skip to LABEL
otherwise (special character in control
block).

CHARLS Skip to LABEL if current character CHAR, LABEL

CHAR.

CLA STATUS HANDLING

TSTCLA

CMPCLA

FLAG CONTROL

Check unmasked CLA status bits, skip to
LABEL unless bits match. Use AND
function.

Same as TSTCLA but use exclusive OR
function.

SETRAN
RSTRAN
SETINP
RSTINP
SETMXF
RSTMXF
TSTMXF

SETFLG

SETPAR

RSTPAR

60471160 A

Seﬁ translate flag.

Reset translate flag.

Set message in process flag.

Reset message in process flag.

Set specified flags.

Reset specified flags.

Skip to LABEL if any of MFLAGS is set.
Set flags in destination buffer,

Set parity flag in control block
(strips parity from subsequent current
characters).

Reset parity flag.

CMASK, LABEL

CMASK, LABEL

ACTION
ACTION
ACTION
ACTION
MFLAGS, ACTION
MFLAGS, ACTION
MFLAGS, LABEL

MFLAGS, BUFFER,
ACTION

ACTION

ACTION

12-13

TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS (Contd)
Name Function Parameters
WORKLIST HANDLING
TIBWL Terminate input buffer, build a worklist wC, WL, EOT,
entry (WLE) for TIP. ACTION, EP
TIBSWC Terminate input buffer, save workcode WC, EOT,
(WC) in MLCB. ACTION
BLDWL Build WLE for OPS or multiplex level. WC, WL,
ACTION, EP
BLDO1l Generate CLA status WLE for multiplex SCI, ACTION

level 2.

TEXT PROCESSOR OPERATIONS

TPADDR

TPSUBR

TPCMPR

TPINCR
TPDECR

TPMARK

TPBKUP

TPSTLC

TPSTRC

TPRSTL

TPRSTR

TPEXIT

12-14

(SF1R+DF1R) DFlR. PFI1R is a file 1
register, S is source, D is destination.
(DF1R-SF1R) DF1R.

SF1R DF1R, execute P+1 instruction

SF1R = DF1R, execute P+2 instruction
SF1R DF1R, execute P+3 instruction

Increment specified F1R by VALUE.
Decrement specified F1R by VALUE.

Mark (save processing parameters) source
and destination buffers at level (LV).

tion buffer (with or without CRC check).
Store right byte of F1R.

Restore untranslated character registers
from F1R, left byte.

Restore untranslated character register
from F1R, right byte.

Exit from TP state program to OPS level.

Return to the specified buffers at level.

Store left byte of F1R (SD) into destina-

sD, DD

SD, DD

SD, DD

' SD, VALUE

SD, VALUE

Lv

LV, SRC, DST

SD, CRCA

SD, CRCA

SD

SD

none

60471160

TABLE 12-1. STATE PROGRAM MACROINSTRUCTIONS {Contd)

Name Function Parameters

MISCELLANEOUS

STRNTB Store translation table address in TA, ACTION
control block. :

RSTIME Reset line control timer value (TIME); TIME, ACTION
is a function of line type.

BKSPAC Backspace destination buffer pointer one none
word.

RESYNC Send resync command to CLA. ACTION

ICRC Initialize CRC. ICRC, ACTION

ALNBUF Allocate and initialize a buffer. FCD, ACTION

NOPR Specify ACTION parameter. ACTION

TPMOVE Move SF1lR contents to DF1R. sSb, DD

TPST Move SF1R to specified CB word. SsD, DD

TPSTR Move right byte of SF1R to specified CB Sb, DD
word.

TPSTL Move left byte of SFIR to specified CB sb, DD
worqd.

TPLD Move specified CB word to DFIR. SD, DD

TPLDR Move right byte of specified CB word to SD, DD
DFI1R.

TPLDL Move left byte of specified CB word to Ssb, bD
DF1R. :

SBLC Adjust block length count and then store ADJ, ACTION
new count in CB.

60471160 A

12-15

The number of parameters varies. Macrcinstructions are represented in
either a l-word or a 2-word instruction (parameter list). The usual
word-oriented format is as follows:

1-word
15 7 3 0
Flags/Fields Fl - Code
Flags - Usually in bits 14 and 15
F1 - A set of frequently used parameters, including ACTION, a

parameter that specifies the actions to take prior to exiting
from the instruction sequence

Code - The instruction ID (index): 00 CODE 1F;¢

Field - Any additional control or address field
Each code can have several variations, defined by use of flags and fields.
2-word

r;s 7 3 0
Flags/Fields Fl Code

FIELD

NOTE
Flags, Fields, and Fl are all parameters. The order of the
parameters in the call is not usually the same as the packed
order in the instruction words.

For a detailed description of the macroinstructions, refer to the State
Programming Language Reference Manual.

12-16 60471160 A

GLOSSARY . A
\
ADDRESS - A location of data (as in the NPU main or micromemory) or of a

device (as a peripheral device or terminal). The NPU main memory is
paged. :

A/Q CHANNEL -~ The internal data channel of the 255x NPU. Peripheral devices
located on the A/Q channel ordinarily use the A register for data or
status transfers and the Q register for command or addressing information.

ASYNCHRONOUS PROTOCOL - The protocol used by asynchronous, teletypewriter-
compatible devices. The NPU/terminal interface is handled by the
asynchronous TTY TIP.

AUTORECOGNITION - A capability offered to selected terminals which allows
the TIP to discern some device characteristics for the terminal, rather
than having the terminal or the host specify the information.

BANDWIDTH - For CCI, bandwidth indicates the transfer rate (in characters per
second) between the NPU and the terminal.

BASE SYSTEM SOFTWARE - The set of programs in CCI which supply the monitor,
timing, interrupt handling, and multiplexing functions for the NPU. Base
software also includes common areas.

BATCH DATA FORMAT ~ The transmission format used by the block protocol of
CCI. Batch data is usually in 6-bit display code, within B~bit bytes,
within PRU-sized blocks.

BLOCK - A unit of information used by networks. A block consists of four
or more 8-bit characters and contains sufficient information to identify
the type of block, its origin, destination, and routing. Different
protocols apply to the host/NPU and the NPU/terminal interfaces.

BLOCK PROTOCOL - The protocol governing block transfers of information
between the host and the NPU.

BREAK - An element of a protocol indicating an interruption in the data
stream.

BROADCAST MESSAGE ~ A message generated by the system or by an operator
using the system. The message is sent to one (broadcast one) or all of the
terminals in the system (broadcast all).

BUFFER - A collection of data in contiguous words. CCI assigns one size of
buffer for data and three other sizes of buffers for internal
processing. A buffer usually has a header of one or more words. Data
within a data buffer is delimited by pointers to the first and last
characters (data buffers are character-oriented). If the data cannot all
fit into one buffer, an additional buffer is assigned and is chained to
the current buffer. Buffer assignment continues until the entire message
is contained in the chain of buffers. Buffers are chained together only
in the forward direction.

60471160 A A-1

BUFFERING - The process of collecting data together in buffers. Filled
buffers include the case where data is terminated before the end of the

buffer and the remaining space is ‘filled with extraneous-matter.

BUFFER THRESHOLD -~ The minimum number of buffers available for assignment of
‘new-tasks: As the-buffer level “falls"below the threshold, new tasks are
rejected (regqulation).

BYTE - A group of contiquous bits. For data handling within the NPU/host
interface,.a byte is 8 bits, usually in the form of a 7-bit ASCII
character with the eighth bit reserved for parity.

CASSETTE - The magnetic tape device in an NPU used for bootstrap loading of
offline diagnostics.

CE ERROR MESSAGE - A diagnostic message sent upline to the host from the
NPU. The message contains information concerning hardware and/or
software malfunctions.

"CHARACTER - A coded byte of data. In CCI, a character is ordinarily in
8-bit ASCII format (7 bits plus an eighth bit reserved for parity) or
6-bit display code.

CIRCULAR INPUT BUFFER (CIB) - The fixed buffer used by the multiplex
subsystem to collect all data passing upline from the multiplex. The
buffer is controlled by a put pointer for the multiplexer and a pick
pointer used to demultiplex data to individual line-oriented data buffers.

COMMAND DRIVER - The base system program (PMCDRV) that controls the
multiplex subsystem.

COMMON AREA - Area of main memory dedicated to system and global data.
These are usually below address 1D5035.

COMMUNICATIONS CONTROL INTERCOM (CCI) - A set of modules that perform the
tasks delegated to the NPU in the network message processing system.

CONFIGURATION - See System Configuration.

CONNECTION NUMBER (CN) - A number specifying the path used to connect the
terminal through the NPU to the host. For each NPU-host pair, there are
255 available connection numbers.

CONSOLE -~ A terminal devoted to network control processing. There are two
such terminals: the host computer system console and the NPU console.

CONTENTION - (1) The state that exists in a bidirectional transmission line
when both ends of the line try to use the line for transmission at the
same time. Most protocols contain logic to resolve the contention

_____situation. (2) The situation that exists when an interruptable program
and the program that can interrupt it share data elements. -

CONTROL BLOCK - (1) The type offﬁldck,dSed'to:ttédémit~cdﬂtrol information
{as opposeq_to data), i L P L e L

A-2 60471160-A

(2) Data structures assigned for special confiquration or status purposes
in the NPU. The major control blocks are line control blocks (LCB),
logical 1link control blocks (LI.CB), terminal control blocks (TCB),
worklist control blocks (WLCB), buffer maintenance control blocks (BCB) .
multiplex line control blocks (MLCB), text processor control blocks ‘
(TPCB) , and diagnostics control blocks (DCB).

COUPLER - The hardware interface between the NPU and the host.
Transmissions across the coupler use block protocol.

CROSS - The software support system for CCI. This system supports PASCAL
coding, and is run on the host computer. One output is a CCI program in
255x machine code readv for execution in the NPU.

CYCLIC REDUNDANCY CHEECK (CRC) - A check code transmitted with blocks of
data. This code is used by several protocols, including the HASP mode 4,

and BSC protocols.

DATA - Information processsed by the network or some components of the
network. Data usually has the form of messages, but commands and status
are frequently transmitted using the same information packets as data
(for instance, system messages).

DATA BLOCK CLARIFIER (DBC) - A byte in the header of a data block. The DBC
contains data control information. ,

DATA COMPRESSION - The technigue of transmitting a sequence of identical
characters as a control character and a number representing the lenath of
the sequence. HASP and mode 4 protocols support data compression, as do

other terminal formats.

DATA SET -~ A hardware interface that transforms analog data to digital data
and vice versa. A data set is used to connect remotely located terminals
to the NPU.

DESTINATION NODE (DN) -~ The network node to which a messade is directed; for
instance, the DN of an upline message can be INTERCOM 5.

DIAGNOSTICS - Software programs or combinations of programs and tables which
aid the troubleshooter in isolating problems.

DIRECT CALL - The method of passing control directly from one program to
another. This is the usual transfer mode. Some CCI calls are indirect,
through the monitor. Such OPS-level indirect calls pass information to
the called program through parameter areas called worklists. See
Worklist.

DIRECT MEMORY ACCESS (DMA) - The high-speed input/output channel to the NPU
main memory. This channel is used by the coupler for host/NPU buffered
transfers and by the multiplex subsystem (MLIA) for line to/from NPU

~transfersy-

DIRECTORY - A table in CCI that contains information used to route blocks
to the proper interface and line. There are directories for source and
destination node and for connection number. A routed message is attached
to the terminal control block for the line over which the message will

pass.

60471160 A A-3

DOWNLINE - The direction of output information fleow, from host to terminal
or NPU. ‘

DUMP - The process of transferring the contents of the NPU main memory,
registers, and file 1 registers to the host. The dump can be processed
by the host to produce a listing of the dumped hexadecimal information.

EXTERNAL BCD -~ A type of binary coded decimal code used by some TTY and
mode 4 terminals.

FILE REGISTERS - Thé two sets of microregisters (file 1 and file 2) in the
NPU. File 1 registers contain parameter information that is reloaded
whenever the NPU is initialized. Microprograms using these registers can
also change values in them. File 2 registers are invariant firmware
registers that come preprogrammed with the NPU.

FORMAT EFFECTOR (FE) - A control symbol used by certain protocols (for
instance, the HASP protocol).

FULL DUPLEX (FDX) - A transmission mode allowing data transfer in both
directions at the same time. A full-duplex system requires a dual set of
data lines, each set dedicated to transmission in one direction only.

FUNCTION CODE - A code used by the service module to designate the type of
function (command or status) being transmitted. Two codes are defined:
primary function code (PFC) secondary function code (SFC). See appendix
E for definitions of these codes.

GLOBAI VARIABLES - Variables that are defined for use throughout ccI.
Contrast global variables with local variables that are identified only
within a single NPU or host program.

HALF DUPLEX (HDX) - A transmission mode allowing data transfer in one
direction at a time. Normally a single set of data lines carries input,
ouput, and part of the control information. Contention for use is
possible in half-duplex mode, and must be resolved by the protocol
governing line transfers.

HALT CODE - A code generated by the NPU when it executes a soft-stop. . These
codes (which indicate the cause of the stoppage) are delivered at the NPU
console in the form of a halt message.

HASP - Houston Automatic Spooling Process; the protocol used by the HASP
workstations. The standard code of a HASP workstation is EBCDIC. The
HASP TIP in the NPU processes the HASP protocol and normally performs
code conversions since the host uses ASCII and display code for its
processing.

HEADER - A word or set of words at the beginning of a block, record, file,
or buffer which contains control information for that unit of data.

HOST - The computer that controls the network and contains INTERCOM 5.
HOST INTERFACE PACKAGE (HIP) - The CCI program that handles block transfers

across the host/local NPU interface. The HIP normally uses CCI block
protocol. ‘

A-4 60471160 A

ID -~ The identifier for ports, nodes, lines, ‘links, or terminals. Any
hardware elements or connection can have an ID, normally a sequentially
assigned number. , ' ‘ :

INITIALIZATICON - The process of loading ‘an’NPU ‘and optionally ‘dumping the
NPU contents. - After downline loading from the host, the NPU
network-oriented tables are configured by the host so that all network
processes have themsamEMIDswaxwall;netwonkwtenminastm&iﬂeSywand@5u

forth.

INPUT BUFFER - A data buffer reserved by CCI for receiving an upline message
for the host. The input buffer is assigned and released dynamically.
Contrast with the circular input buffer on the multiplex subsystem
interface.

INTERACTIVE DATA FORMAT - The transmission format used by the block protocol
of CCI. 1Interactive data is in 7-bit ASCII, within 8-bit bytes, within

line-sized blocks.

INTERACE (NPU) - The set of hardware and software that permits transfers
between the NPU and an external device. There are four principal
interfaces: to the host (block protocol in internal terminal format
handled by a HIP), to the peripheral devices {NPU console protocol
handled by base system software), and to the terminals via the multiplex
subsystem (various protocols; standard protocels are handled by the mode
4, TTY, 2780/3780, and HASP TIPs).

INTERRUPTS - A set of hardware lines and software programs which allow
external events to interrupt NPU processing. ‘Interrupting programs are
allowed preferential processing on a priority basis. The lowest priority
level is processed by the OPS monitor.

LINE - A connection between an NPU and a terminal.

LINE CONTROL BLOCK (LCB) - A table assigned to each active line in the
system. It contains configuration information as well as current
processing information.

LOAD - The process of moving programs downline from the host and storing
them in the NPU main and micromemory.

LOCAL NPU - An NPU that is connected to the host via a coupler., A local NPU
always contains a HIP for processing block protocol transfers across the
host/local NPU interface.

LOGICAL CONNECTION - A logical message path established between a network
terminal and a host program. Until terminated, the logical connection
allows messages to pass between the two entities.

LOGICAL LINK CONTROL BLOCK (LLCB) - A table assigned to each logical link in. .
“om o —thesystemwhich is directly connected to this NPU. The table contains
configuration information as well ‘as’‘current processing information.

LOGICAL REQUEST PACKET (LRP) - A parameter or data packet to or from a
peripheral device. The LRP, attached to a real peripheral control block,
is transformed to ‘a physical request ‘packet and is delivered to the
assigned console device. R SR

60471160 A A-5

LOOP MULTIPLEXER (LM) - The hardware that interfaces the CLAs, which convert
data between bit-serial digital and bit-parallel digital (character
format), and the input and output loops.

MAIN MEMORY - The macromemory of the NPU. ' This memory is partly dedicated
to programs and common areas. The remainder is buffer area used for data
and overlay programs. Word size is 16 data. bits plus three additional
bits for parity and program protection. Memory is packaged in 16K and
32K word increments; 48K is the minimum memory size.

MASK REGISTER - A register used in the interrupt subsystem to check if an
interrupt is of sufficiently high priority to be processed now. Each bit
in the mask register (M) corresponds to an interrupt line. The M
register operates under program control.

MESSAGE - A logical unit of information, as processed bv a program. When
transmitted over a network, a message can consist of one or more physical
blocks.

MICROMEMORY - The micro portion of the NPU memory. This consists of 2048
words of 64-bit length. 1024 words are read only memory (ROM); the
remaining 1024 words are random access memory (RAM) and are alterable.
The ROM contains the emulator microprogram that allows use of assembly
language.

MICROPROCESSOR - The portion of the NPU which processes CCI programs.

MODE 4 - A communication line transmission protocol for synchronous :
terminals. The protocol requires the polling of sources for input to the
data communications network. CCI supports mode 4A, mode 4B, and mode 4C
equipment. Mode 4A equipment is polled through a single hardware address
(usually that of the console device), regardless of how many devices use
the address as the point of interface to the network. Mode 4C equipment
is polled through several hardware addresses, depending on the point each
device uses to interface with the network. The Mode 4 TIP processes the
interface between the NPU and the mode 4 terminals.

NOTE

Considerable differences exist in the terminology associated
with Mode 4 devices. The equivalent terms are shown in Table

in This Manual

A-1.
TABLE A-1. MODE 4 TERMINOLOGY
Nomenclature Mode 4A Mode 4C
Nomenclature Nomenclature

NPU
Cluster address

Cluster
controller

Terminal address

Data soutce
Site address

Equipment
controller

Station address

Control station
Station address

Station

Device address

604711604

MODEM - A hardware device for converting analog levels to digital signals
and vice versa.. Long lines interface to digital equipment via modems.
Modem is synonymous with data set.

MODULE - See Program.

MONITOR - The portion of the NPU base system software responsible for time
and space allocation within the computer. The principal monitor vrogram
is PBMON which executes OPS level programs by scanning a table of
programs that have pending tasks (worklist entries).

MULTILEAVING - The technique of interleaving several similar data streams in
one transmission stream, while preserving the identity of the data stream
source or destination.

MUX-LEVEL - A series of priority levels for time dependent tasks such as
input or output data processing at the multiplex subsystem interface.

MULTIPLEX LOOP INTERFACE ADAPTER (MLIA) - The hardware portion of the
multiplex subsystem which controls the multiplex loops (input and output)
as well as the interface between the NPU and the multiplex subsystem.

MULTIPLEX SUBSYSTEM -~ The portion of the NPU bage system software which
performs multiplexing tasks for upline and downline data, and also
demultiplexes upline data from the CIB and places the data into
line~-oriented input data buffers.

NETWORK - A connected set of network elements consisting of a host, one or
more NPUs, and terminals.

NETWORK LOGICAL ADDRESS - The address used by block protocol to establish
routing for the message. The network logical address consists of three
parts: DN - the destination node, SN - the source node, and CN - the
connection number.

NETWORK PROCESSING UNIT (NPU) - The collection of 255x hardware and
peripherals together with the software Communications Control INTERCOM
(CCI) modules. These CCI programs buffer and transmit data between
terminals and the host computer.

NODE - A network element that creates, absorbs, switches, and/or buffers
message blocks. Typical system nodes are INTERCOM in the host, and the
coupler node of an NPU.

OFFLINE DIAGNOSTICS - Optional diagnostics for the NPU which require the NPU
to be disconnected from the network.

ONLINE DIAGNOSTICS - Optional diagnostics for the NPU which can be executed
while the NPU is connected to and operating as a part of the network.

Individual lines being tested must, however, be disconnected from the .

“network or dialed to an unused CLA address. These diagnostics are
provided if the user purchases a maintenance contract. ,

OPS-LEVEL - The lowest priority level of CCI. All processing that ‘is not
time critical is performed at this priority level. :

OPS MONITOR - The NPU monitor. ' See Monitor.

60471160 A A-7

OUTPUT. BUFFER - Any buffer that is currently used to output information from
the NPU to a peripheral device, or to a terminal via the multiplex
subsystem.

PAGING - A method of executing programs and accessing data in the NPU main
memory region above 65K. Paging is required to allow addressing where
the address is larger than 16 bits (NPU word size) in length.

PARITY - A bit-oriented data assurance method. Parity in the NPU is
word oriented and is ordinarily not controlled by the operator. A parity
bit is added when words are stored in main memory, and is discarded after
checking when the word is read from main memory. A parity error causes
the highest priority interrupt in the system. Parity bits are also
associated with ASCII characters (bit 7) and with some synchronous
protocols (LPC - longitudinal parity character).

PASCAL - A high-level programming language used for CCI programs. Most CCI
OpPS-level programs are written in PASCAL language.

PERIPHERAL DEVICE - An I/O device attached to the NPU A/Q channel. The NPU
console is a peripheral device.

PERIPHERAL PROCESSING UNIT (PPU) - The part of the host dedicated to
performing input/output transfers. The coupler connects the PPU to an
NPU via a data channel.

PHYSICAL RECORD UNIT (PRU) - Under NOS/BE, the amount of information

transmitted by a single physical operation of a specified device. The
size of a PRU depends on the device, as shown in Table A-2.

TABLE A-2. PRU SIZES

Size in Number

Device of 60-Bit Words

Mass storage 64

Tape in SI format

with coded data 128

Tape in SI format

with binary data 512

Tape in I format 512

Tape in other format Undefined

A PRU that is not full of user data is called a short PRU; a PRU that has

_a level terminator but no user data is called a zero-length PRU.

PHYSICAI, REQUEST PACKET (PRP) - A packet of data to or from a peripheral
device. Data in PRP format is ready to be processed by the peripheral

device handler. A logical request packet must be:converted into a PRP
prior to output to the device. : ‘

POINT OF INTERFACE (POI) PROGRAMS - A special set of base system programs

that interface directly with TIPs. POIs are provided for such standard
functions as ending an output operation or ending an input operation.

A-8 60471160 A

POLLING - (1) The action of checking ports to find if a terminal is readv to
transmit or receive another word of data. The multiplex subsvstem
performs the polling operation for active lines under the direction of a
TIP. (2) The action of soliciting input from certain tvpes of
terminals. A poll message is output to the terminal. The response is

device status or an indication that no data is to be input,.

PORT (P) - The physical connection in the NPU through which data is
transferred to or from the NPU. Each port is numbered and supports a
single line.

PRIMARY FUNCTION CODE (PFC) - See Function Code.

PRIORITY LEVEL - CCI uses 16 interrupt processing levels plus the OPS
processing level. Priority levels are interrupt driven. The OPS monitor
brocesses at the lowest priority level; that is, at a level below any

interrupt-driven level.

PROGRAM - A series of instructions that are executed by a computer to
perform a task; usually synonymous to a module. A prooram can be
composed of several subprograms.

PROTECT SYSTEM - A method of prohibiting one set of programs (unprotected)
from accessing another set of programs (protected) and their associated
data. The system uses a brotect bit in each main memory word,

PROTOCOL - The complete set of rules used to transmit data between two
nodes. This includes the format of the data and commands, and the
sequence of commands needed to prepare the nodes for sending and
receiving data. CCI was block protocol, coupler protocel, and varies
terminal protocols. .

QUEUE - A sequence of blocks, buffers, messages, and so forth. Most NPU
queues are maintained by leaving the queued elements in place and using a
combination of tables of pointers to the next queued elements and pointer
words within the queued elements. Most gueues operate on a first in,
first out basis. A series of worklist entries for a specific terminal is
an example of an NPU queue.

RECORD - A data unit defined for the host record manager or for HASP
workstations and HASP transmissions. 'A record contains space for at
least one character of data and normally has a header associated with
it. Records for HASP can be composed of subrecords.

REGULATION - The process of making an NPU or a host progressively less
available to accept various classes of input messages. The host has one
regulation scheme; the multiplex interface has another scheme. Some
tvpes of terminals (for instance HASP workstations) can also regulate
messages; message classifications are usuallv based on batch,
interactive, and control message criteria.

RESPONSE MESSAGES - A subclass of service (network control). messages. directed
to the host, normally generated to respond to a service messace from the
host. 'Response messages normally contain the requested information or
indicate the requested task has been started or performed. Error
responses are sent when the NPU cannot deliver the information or start
the task. A class of unsolicited response messages are generated bv the
NPU to report hardware failures.

0

60471160 ‘A aA-

ROUTING - The process of sending data or commands through the NPU to the
internal NPU process or to an external device (for. instance, a

terminal). - The .network logical address (DN, SN, and CN) is the primarv
criterion for routing.. . The NPU directcries are used to accomplish
routing.

SECONDARY FUNCTION CODE (SFC) ~ See Function Code.

SERVICE CHANNEL -~ The network logicai 1ink used for service message
transmission. For this channel, CN=0. The channel is alwavs configured,
even at load time.

SERVICE MESSAGE (SM) - The network method of transmitting most command and
status information to or from the NPU. Service messages use CMD blocks
in the block protocol.

SERVICE MODULE (SVM) -~ The set of NPU programs responsible for processing
most service messages. SVM is a part of the network communications
software.

SOURCE NODE (SN) - The network node originating a message or block of
information.

STATE PROGRAMS - Programs in the multiplex subsystem with execution that
depends on the current state of the message being transmitted; that is,
one state program is executed at the start of the message header
processing, another at start of text processing, another at end-of-text
processing, and so forth.

STATISTICS SERVICE MESSAGE - A subclass of service messages that contain
detailed information about the characterlstlcs and history of a network
element such as a line or a terminal.

STATUS - Information relating to the current state of a device, line, and so
forth. Service messages are the principal carriers of status
information. Statistics are a special subclass of status.

STRING - A unit of information transmission used bv the HASP protocol. One
or more strings compose a record. A string can be composed of different
characters or it can be a string of contiguous identical characters. 1In
the latter case, the string is normally compressed to a single character
(the only one tvpe in the the string) and a value indicating the number
of times the character occurs.

SUBPROGRAM - A series of instructions that are executed by a computer to
perform a task or part of a task. A subprogram can be called by several
programs or can be unigue to a single program. Subprograms are normally
reached by a direct call from a program.

SWITCHING - The process of routing a message or block to the specified

—internal-program-or—external--destination.

SYSTEM CONFIGURATION - The process of setting tables and variables
throughout the network to assign lines, terminals, and so forth, so that
all elements of the network recognize a uniform. addressing scheme. After
configuration, all network elements accept. all data commands directed to
or through themselves and reject all other data and:commands.

A-10 60471160 4

TERMINAL - An element connected to a network by means of a communication
line. Terminals supply input messages to, and/or accept output messages
from, INTERCOM. .5, A terminal can be a separately addressable device
comprising a physical terminal or station, or the collection of all
devices with a common address.

TERMINAL CONTROL BLOCK (TCB) - A control block containing configuration and

wwwmstatuswinéefmat%enwforwanwactivewterminaif~”Most“TCBswar9“ﬁynamicaLly
assigned.

TERMINAL INTERFACE PACKAGES (TIPs) - NPU programs that provide the interface
between terminal format and host data format. TIPs are responsible for
some data conversion and for error case processing.

TIMEOUT - The process of setting a time for completion of an operation and
entering an error processing condition if the operation has not finished
in the allotted time.

TIMING SERVICES - The subset of base system programs that provide timeout
processing and clock times for messages, status, and so forth.

UNSOLICITED SERVICE MESSAGES - Service messaqges sent to the host which do
not respond to a previous service message from the host. Unsolicited
service messages report hardware or software failures to the host.

UPLINE - The direction of message travel from a terminal through an NPU to
the host.

WORD - The basic storage and processing element of a computer. The NPU uses
16-bit words (main memory) and 32-bit words (internal to the
microprocessor only). All interfaces are 16-bit words (DMA and A/Q) or
in character format (multiplexer loop interface). Characters are stored
in main memory two per word. Hosts use 60-bit words internally but a
12-bit byte at the interface to the NPU. Characters at the host side of
the NPU/host interface are stored in bits 19 through 12 and 7 through 0
of a dual 12-bit byte.

Interfacing terminals such as a HASP workstation can use any word size
but must communicate to the NPU in character format. Therefore,
workstation word size is transparent to the NPU.

WORKLIST PROCESSOR -~ (1) Any system program that receives and processes
worklists. (2) The program within the multiplex subsystem that handles
worklist entries within the multiplex subsystem firmware (PMWOLP).

WORKLISTS - Packets of information containing the parameters for a task to
be performed. Programs use worklists to communicate information to
different operating levels. Worklist entries are queued to the called
program. Entries are one to six words long and a given program always
has entries of the same size. Worklists are also_used .on-multiplex

(priority) level.

60471160 A A-11

CCl MNEMONICS | B

L

This appendix lists mnemonics used in comment fields within source code
listings of CCI, or used as symbolic entities within the code itself. The
mnemonics defined in the following columns also appear in the text of other
CCI documentation.

ABL
ACK
A/Q
ASCII
ASYNC

BACK
BCB
BFC
BFR
BLK
BSC
BSN
BT

ca
CB
CcCI
CE
CFrs
CIB
CLA
CMD
CN
CND
CR
CRC

DBC

DEL

60471160 A

Allowable block limit

Acknowledge block (HASP mode 4 and BSC protocols)
The A/Q internal I/0 channel of the NPU

American Standard Code for Information Interchange
Asynchronous

Acknowledgment block
Block control byte
Block flow control
Buffer

Message block .
Binary synchronous communications (protocol)
Block serial number (for blocks/SVM)

Block type

Cluster address

Control block

Communications control INTERCOM in NPU
Customer engineer

Configuration state (for SVM)

Circular input buffer

Commﬁnication line adapter

Command (element of block protocol)
Connection number

Connection number directory

Carriage return

Cyclic redundancy checksum

Data block clarifier (for blocks/SVM)
Data carrier detect
Delete character

DMA Direct memory access (in NPU)

DN Destination node number

DND Destination node directory

DSR Data set ready

nT Device tvpe

DTR Data terminal ready

EB Error bit in response service message

FBCDIC Fxtended Binary Coded Decimal Interchange Code

EC Error code

E-CODE Device codes {mode 4 protocol)

ENQ Enquiry block (HASP/BSC protocols)

EOF End of file

EOI End of information (6/7/8/9% punch or /*EGCI for HASP and 278C/3780
terminals)

EOM End of medium

ECR End of record .

ETB End of block (HASP/BSC protccols)

ETX End of text

FCD First character displacement (in buffer)

FCS Function control sequence (HASP protocol)

FD Forward data (block protocol)

FDX Full duplex

FE Front end

FF Form feed

FN Field number (for SVM)

FS Forward supervision (block protocol)

FV Field values (for SVM protoccl)

HASP Houston Automatic Spooling Process (protocol)

HCP Host Communications Processor (alternate name for NPU)

HDLC High level data link control

HDX Half duplex

HIP Host Interface Package

HL Higher level

B-2 60471160 A

ID Identifier (number or code)

IDC Internal data channel (in NPU)
T/0 Input/Output '

IS0 International Standards Organization

LCB Line control block in NPU

TCD T.ast character displacement (in buffer)

LD Load/dump _

TF Line feed

LL Logical link

LLCB Logical link control block in NPU

LLREG Logical link regulation

M Toop multiplexer

LRP Logical request packet (I/0)

LT Line type

M Mask register

MLCB Multiplex iine control block

MLIA Multiplex loop interface adapter

MPLINK The CYBER Cross System linking editor

MSG Message (element of block protocol)

MTI Message type indicators (Mode 4 protocol)

M4 Mode 4

MD4 Mode 4

NAK Negative acknowledgment block (HASP, mode 4, and BSC protocol)
NBI, Network block limit

NL Number of lines

NPTINTARB CCP data structure containing initialization status.
NPU Network processing unit

NT Number of terminals

ODD Output data demand (multiplex subsystem)

OPS Operations (OPS-level = monitor level programs)
OPSMON—Monitor :

) 2 l. Priority

2. Port

60471160 A

PAD
PFC
PM

POI
PPU
PRP

RB
RC

RCB
RCV
RL

RS
RT
RTS

SCB
SCF
SFC
SM
SN
SND
SCH
SP
SRCB
SPRM
STX
SVM
SYNC

TA
TC
TCB
TDP
TIP
TO

Pading element (synchronous protocols)
Primary function code (for SVM)

Print message

Point of interface

Peripheral processing unit (in host)
Physical reguest packet

Random access memory
Response bit in response service message

1. Remote concentrator
2. Reason code

Record control byte (HASP protocol)
Receive state

Regulation level

Response message (SM)

Reverse supervision (block protocol)
Record type

Request to send

.8tring control byte (HASP protocol)

System configure file

Secondary function code (for SVM)

Service message

Source node (for blocks/SVM)

Source node directory

Start of header

Subport

Subrecord control byte (HASP protocol)

System Programmer's Reference Manual

Start of text

Service module for processing service messages
Synchronizing character (synchronous protocols)

Terminal address

Perminal class
Terminal control block in NPU
Time dependent program
Terminal Interface Package
Timeout

60471160 A

TOT Total number of status service messages

TPCB Text processing control block
T Terminal type

™Y Teletypewriter (asynchroncus device)
TUP Test utility package

VAR PASCAL keyword for variable statements
WACK Wait acknowledgment block (synchronization protocol)
WL Worklist

WLCB Worklist control block

WLE Worklist cntry

WLP Worklist processor

X-OFF Stop tape character } (asyvnchronous
X-ON Start tape character protccol)

0471360 A

SERVICE AND COMMAND MESSAGE SUMMARY

C

This appendix is divided into five partsﬁ

SERVICE AND COMMAND MESSAGE GENERAL FORMAT

The general format of all service or command messages (SMs)
The network SM primary and subfunction summary table

A summary of each network SM and its normal or error response sequence
A table of SM mnemonics

A set of tables defining SM parameter values

All service messages described within this appendix are prefixed by the

header information shown below.
individual descriptions to conserve space.)

in the header format diagram is one 8-bit byte in length.

Block.Header

{This irformation is omitted in the
Each of the major subdivisions

Bvte 0 1 2 3
Connection
Destination Source NMumber (CN) BSN BT=4
Node (DN) Node (SN) = 00 (SM)
= 00 (others)
Bits 7 4 3 0O

BSN - Block serial number

BT - Block tvpe = 04 for service messages/commands.

The general format of the service and command message body is shown below.

This is a CMD blcck.

Each of the major subdivisions in the body is also one 8-bit byte in length.

Bvte 4

5

PFC

EB RB

S

Service message parameters
(defined individually)

FC

PFC - Primary function code

-———-—-——-———-q

EB~ = 1" = Error response service messige
RB - 1 = Normal response service message
SFC - Secondary function code

00 - 3F)g = Reserved for network use

40 - 9F1¢ = Reserved for intrahost use

A0 - BFig - Reserved for expansion

C0 - EOjg - Reserved for network use

El - EF1¢ - Reserved for installations

60471160 A

INDIVIDUAL SERVICE MESSAGES

NPU INITIALIZED

_ _ CCI CCI CCI
PFC=01 Syc=02 Version Cycle Level
N~ ~" —

‘Describes the current software

running in the NPU.

Response
NONE
CONFIGURE LINE
PFC | SFC

=03 | =00 Sp LT TT FN1 | FV1| ... |FN_ | FV_
N .

"

See table C-3
See table C-2

(See table C=5)

60471160 2

TABLE C-1.

SERVICE MESSAGES

SERVICE MESSAGE/COMMAND SUMMARY

(Sheet 1 of 2)

Service Message Name PFC IPU SFC NPU
(hex) Mnemonic {hex) Mnemonic
NPU initialized 01 D8LOAD 1 DIFRC
02
Configure line 0 DI9LNCNF
Delete line 1 DIOLNNDLT
Configure terminal 03 DBCONFIG 2 DI9TMLCNF
Reconfigure terminal 3 D9TMLRCNF
Delete terminal 4 DY9TMLDLT
04
05
Line status request 06 CB8STATUS 2 DO9LNSTAT
Terminal status request 3 DITMLSTAT
Line count reguest 5
NPU statistics 0 DILNSTAT
Line statistics 07 DBCOUNTS 1 DYCNTLN
Terminal statistics 2 DOCNTML
Enable line 0 DY9ENABLE
Disable line 08 DBLINE 1 DO9DISABLE
Disconnect line 2 DO9DISCONNECT
09
CF error 0a D8EVENT 0] DOCE
Host broadacast one oc DBUSER 0 DIBRD1
Host broadcast all 1 D9BRDCST
Operator message 2 DAOPMSG
Terminal 3 D9TMCL

60471160 A

TABLE . C-1. “SERVICE MESSAGE/COMMAND SUMMARY (Sheet 2 of 2)
Command Command
Megssage Tvne PFC | Message Name SFC 1se
Start input 01 Initiate, 0 Start input from batch device
nontransparent
Initiate, 1 Start input from batch device
transparent
Resume 2 Start input from batch device
Stop input N2 Terminate 0 Discard data and stop polling
Suspend 1 Stop polling and wait
Input stopped 03 nd 0 Normal end
Break 1 1 Reason for break defined by
TIP
Break 2 2 Reason for break cdefined by
TIP
Tnput started 04 Restart after stop 0 Interactive resume after
break (status only)
Qutput stopped | 05 Break 1 0 Reason for break defined by
TIP
Break 2 1 Reason for break defined by
TIP
Break 3 2 | Reason for break defined bv
TIP
Rreak 4 3 Reason for hreak defined bv
TIP
Break 5 4 Reason for hreak defined hy
TIP
Break 6) Reason for break defined hy
TTP
Qutput started | 0A Restart after stop | 0 Status only
Restart output | 07 - 0 Resume output stream
~&topoutput 08 - 0 Discard—-data-and-terminate
BSN error 09 NPU has detected 0 Diagnostic purposes only

block sequence
number out of order

60471160 2

Normai Response

PEC = | SFC = P Sp LT T RC = 40
03 40
16
40316 = Configure LtSee table C-2)
(See table C-3)
Error Response
PFC | SFC=| , SP LT TT RC FN FV
=03 8016
SFC = 8015 - 801 = Configure

LT - See table C-3
_TT ~ See table C-2
RC - 01 = Invalid FN/FV
02 = Invalid line number
03 = Line control block already conflgured
04 = Invalid line type
05 = Invalid terminal type
FN/FV - Pair returned if RC = 01
DELETE LINE
PFC SFC
=03 | =01 | P SP
Normal Response
PFC = | SFC = p SP | RC=00
03 4116

60471160 A

Error Response

i P sp RC =
16
RC - 02 Invalid line number

03 Line control block already deleted

CONFIGURE/RECONFIGURE TERMINAL

PFC | SFC ;' v oy -
=03 | =02 P SP CA TA DT | CN FN1|FV1}| ... N l"Vn
e “~ -
See table C-7
02 = Configure
03 = Reconfigure
DT = See table C-2

The table below shows the valid CA and TA values for each terminal.

ca TA
(hexadecimal) (hexadecimal) -
Mode 4A 70-7F 80
Mode 4C 70-7F 61-6F
Y 00 00
HASP 00 -7t
BSC 00 12-1312)

(1) Equal to the stream of the device. The
interactive console must be 01, card reader(s)
01...07, printer(s) 01...07, punch(es) 01...07.

(2) Punch only, all other devices are zero.

Normal Response

e SFC P sp ca A DT cN RC=0
SFC ~ 4216 = Terminal configured DT - See table C-2
4316 = Terminal reconfigured

c-6 . 60471160 A

Error Response

{Confiqured)

fgg SFC sp | ca |l |{pr|cx| re | P | PV

SFC - R2y¢ = Configqure
8316 = Reconfigure
DT - See table C-2
RC - 01 = Invalid FN or FV
02 = Invalid line number or terminal address
03 = Terminal already confiqured (confiqure), or not configured
(reconfigure)
04 = Mo buffer for TCB
05 = Invalid terminal tvype
06 = Line inoperative or not enabled
08 = Logical link not establiched
09 = CN in use
010 = Console not configured fcr a Mode 4 device
FN/FV - Pair returned if RC = 01 or 09
DELETE TERMINAL

PFC | SFC

<03 | =04 SP | CA | TA | DT |CN
DT - See table C-2

Normal Response
PFC | SFC= sp | ca | T | pr | v | Rme=00
=03 4416

DT - See table C-2

704713160 . A -

Error Responss

PFC SFC=

=03 84,16 ’ P AP CA ’TA ; 'D')‘ cN RC

BT See--table C=2

RC - 02 = Invalid line number
03 = Terminal not configured

LINE STATUS REQUEST

PFC= SFC=

06 02 P SP

P/SP - If missing, return status on all lines except trunks

Normal Response

PFC= SFC=

06 4216 ; P SP RC LT CFsS NT

LT - See table C=-3
CFS - See table C-4

00 - Line operational

RC=04 - Line inoperative
05 - No ring indicator or autoreccgnition in progress
06 - Stop -~ CLA not responding, (CE intervention required)

Error Response

PFC= SFC=
P SP RC
06 8216
RC - 01 Invalid line number or no lines configured

02

Line status request in progress

03 Illegal. state

c-8 . : 60471160 ‘A

Unsolicited Response

PFC | SFC
=06 | =02 | P|SP|RC|LT|CFs
RC - Same as other line status responses
LT - See table C-3
CFS - See table C-4
TT - See table C-2

For Autorecognition responses, the TA DT pairs are repeated for each
terminal that can be detected by the TIP.
15 TA DT pairs with the Full range of vzlues as shown in table C-2 for DT.

For autorecognition between BSC and HASP terminals, the TT field is returned
as a 03 or 04 if the terminal is configurred for TT
autorecognition bit set.

TA, DT fields will be returned.

TERMINAL STATUS REQUEST

PFC= SIC=

ce 03 P SP
Normal Response i

PPCISFC=1p | sp | ca | ta

06 4316

DT - See table C-2

RC - 00
04

Error Response

Terminal operational
Terminal inoperative

PFC= SFC=
P SP
‘06 83,¢
RC - 01 = Invalid line number; no terminals configured belonging to
requestor ‘
02 = No terminals configured
03 = Terminal not configured
05 =

€C471160 &

Terminal status request

autorecognition-

The Mode 4 TIP can report up to

04 with the

(See table C-2.) The CA field will be zero and no

in progress

" Unsolicited Response

NOTE

Normal resoonss can te sent as an unsolilcited ctatus message
vith SFC = 03.

LINE COUNT REQUEST

PFC= 3FC=
36 s

Normal Response

PFC= | SFC= |
06 45,4

NPU STATISTICS

_———msmsmsmTmTmM
gs"_ ggc_ Statistics FWords : 2 hvies,/word

I I |

word 1 - Service messages generated

Word 2 - Service messages ctrocessed

Word 3 - Bad service messages received

Word 4 - Blocks discarded due to bad address

Word 5 - Packets/blocks discarded due to bad format

Word 6 - Times at regulation level § (ro regulation)

Word 7 - Times at regulation level 3

Word 28 - Times at regulation level 2

Word 9 - Times at regqulaticn level !

Word 10 - Times at regulation level 0

Word 11 ~ Network assurance protocel timeout

Response

Mone

LINE STATISTICS

_____ S -
PFC= | SFC= o Cad Y { 2 bytes
07 91 P SP Q‘ co Staylst*cs Words 1 4 : Jword
Word 1 - Blocks transmitted
Word 2 - Blecks received
Word 3 - Characrters transmitted !good blocks only)
word 4 - Characters received (aocd blocks only)
-0 60472160

Response

None

TERMINAL STATISTICS (UPLINE ONLY)
2 bytes/word

PFC | SFC
=07 | =02

P SP CA TA DT CN Statistics Words 1 - 3

—_—— e - ————

DT See table C-2

Word 1 - Blocks transmitted
Word 2 Blocks received
Word 3 Blocks in error

Response

None

ENABLE LINE

PFC= | SFC=
08 00 P Sp

NORMAL RESPONSE (LINE ENABLED)

PFC= | SFC= P sp RC LT CFS NT=0
08 40
16
RC - See line status request response codes

LT =~ See table C-3
CFS - See table C-4

Error Response (Line Not Ensbled)

PFC= SFC= P Sp RC

1.08 . . -804¢

RC - See line status request response codes

60471160 A Cc-11

DISABLE LINE

PFC= SFC=
08 01 P sP
Normal Responss (Line Disabled)
PFC= | SFC= P sp RC=0 LT CFS NT
08 41
16
LT - See table C-3
CFS -~ See table C-4
Error Response
PFC= SFC= P Sp RC
08 8116

RC - See line status request responses

DISCONNECT LINE

PFC=
08

SFC=
02

SP

Normal Responss

Normal response is line enabled normal response SM.

Error Response
Al B P SP RC
) 16*
*SFC = aolswfor RC 04
RC - See line status request response codes

C-12

60471160 A

CE ERROR

PFC= SFC=

OAlﬁ 00 EC 1 - 27 bvtes of data

EC - Bee error codes in appendix B of the CCT reference manusl

Response

None

HOST BROADCAST ONE

PFC= SFC= -
0C 00 P 534 CA TA nT Text
16
Normal Response
oo | Ske= P sp ca TA b RC=0
16 16
Error Response
i grc= P sp ca TA pT | RC
16 16
RC - 01 = Invalid line number
02 = Invalid device type
03 = Terminal not configured
04 = Terminal inoperative
05 = Host broadcast in process

HOST BROADCAST

PFC=| SFC=

ID1= ID2= | 20
00 | 00

. 'I—TEXT

oc 01

16 16

2016~ Filler space- for DBC i B -
If zero, broadcast to interactive terminals -

Normal Response

Error Responss

PFC= SFC= RC=
OC16 4116 0a
PFC= SFC=

RC
OCls 8116

RC - 01 = Not used

02 = Broadcast already in progress

SERVICE MESSAGE MNEMONICS

The following table defines abbreviations used in the individual service

message descriptions.

Abbreviation

ABL

BSN
BT

Ca

CD

CFS

CN

DN
DT

FV

S c-14

Meaning

Available Block Limit - the number of blocks allowed to be
outstanding for any terminal at any one time,

Block Serial Number - part of the block protocol.

Block Type - SMs are always of type CMD (BT=4).

Cluster Address - part of a

identification.

Code Type.

Configuration State - state

terminal's physical

of the line as known by the

service module. (See table C-4 for values.)

Connection Number - part of

the block address. In the

address of an SM, the CN is always zero. When used as data
in an SM,

the CN can be nonzero.

Destination Node ID - part of the block address.

Device Type - part of the terminal type. (See table C-2.)

-Brror-Bit-in-SM..response.

Field Number - used in line and terminal configure SMs to

describe a field in the LCB or TCB.

for values.)

(See table C-5 and C-6

Field Value - used in line and terminal confiqure SMs as

the value to be put.in the field.

(See tables C-5 ‘and C-6.)

60471160 A

Abbreviation

LS

LT
NL

NT

PFC

RB

RC
SFC

SN

TA

TC

60471160 A

Meaning
Line Speed Index

Line Type - used to describe the transmission capabilities
of the line. (See table C-2.)

Number of Lines - the number of confiqured lines belonging
to the host.

Number of Terminals - the number of terminals confiqured on
a line.

Port - the CLA address used for a communications line.

Primary Function Code - used to delineate the class of SM.
(See table C-1.)

Response Bit in SM response.

Response Code - used ir. SM responses to indicate the
requested action has taken place or an error has occurred.

Secondary Function Code - used to indicate a particular SM
within a class of SMs. (See table C-1.)

Source Node - part of the block address.

Terminal Address - part of the terminal's physical
identification.

Total Number of Status SMs to be sent for this request.,
Used by the requestor tc verify all responses have arrived.

Terminal Class - used to describe. the common

characteristics of a set of terminals. (See tables C-2 and

c-8.)

Terminal Tvpe - the combination of DT and TC.

TABLES SPECIFYING SM PARAMETER VALUES

TABLE C~-2. - TERMINAL TYPE (TT)/DEVICE TYPE (DT)

Terminal Tvpe (TT)

7 s 5 4 3 2 1 0

—~ N—
Auto—J TIP Sub
Type TIP

In the Configqure Line SM, the TT (Terminal Type) field is defined as shown
using the following values:

Auto = 0 No autorecognition.
=1 Autorecoqnition performed when line becomes operational.

TIP Type = 0 1 2 3 4
N/A Y Mode 4 HASP BSC
(2780/3780)

Sub TIP = 0 N/A ASCII - 110 N/A N/A

=1 M4A/BCD

= 2 ASCII - 150 M4A/ASCII

= 3 ASCII - 300 M4C

- 4

Note 1 - Sub TIP is used for upline SMs only.
Note 2 - Use TIP Type 4 for autorecognition on HASP, BSC type lines.

7 6 5 4 3 2 1 40
“
Device Class

C-1€ 6047110 A

TABLE C-2. TERMINAL TYPE (TT)/DEVICE TYPE (DT) (Contd)
Terminals. Supported (By Device)
Class 0 1 2 ; 3 4
Console Card Reader | Line Printer | Card Punch Non-Impact Printer
1 TTY Comp.
2
4
5
6
7 2780 2780 2780 2780
8 3780 3780 3780 3780
9 HASP HASP HASP HASP
10 Mode 4 Mode 4 Mode 4 Mode 4

*When the DT byte is sent in a downline SM
TC field need not match the field in the T

any time.

to identify a particular TCB, the
CB as the latter can change at

fC471160 A

c-17

*¥sag + dja Afuo ‘buty siinbai jou saop - utl (eIp OpnNasd
10003014 XQH YIim m:_umuwm0+

- AIAYEASTAY (ag)
—— aanyasay | {vo0)
nouo 1yauis a1t ue p3yo31ns afgriedwo)d | . _ m

sfougueutev on oN Mz} aueastion | err/acot-zezsy | UT19SC Xa4 (6)

SNoOuo 1Yyouksy. a1t a11oI1ju 8 atqtiedwo) | . n

Y A S3ak sax IM ¢ | PRTTOI7UOD | PBYDITMS Sz0zZ-zEZSH 1-1952 XaH (8)

uo1 X u pajeo arq1aeduwo) _ |

snouoaysulsy ON ON °11M T jue3suo) ~tped 2601 -zezs | 171952 Xaa (L)

snouoayouds a1t ue3sUO auo 1M atqriedwod | . :
q Y ON ON M ¢ juey 2 | PaUdIIMS £11/3€0T-2€254 1-19s¢ Xad | (9)
snouoaysulsy ON S3X a1tm z | pet10o313U0) | PRYDITIMS 1-1952 Xau (s}
snouoysuis a1y 2711013U0 pajed FELSEREITER I
Y v ON Sdx TM Z | PPTT10213U0D -1paa 1-8°GE T-19S¢ XaH (v)
shouoiyouk a1l ue3lsUO p3jed @ﬁﬂwumma——ou -

Y S ON ON 150 4 juey o -1paa | veoz/atoz-zezsy 1-096¢ Xaa (g)
snouoiyouk , a1y a11033uUC pajea arqriedwo] | _

wouts | N SaA M ¥ | POTTOIIUOD | ypaq | vgoz/atoz-zezsy | T7O9SC | +XQd (z)
mmocou ouh a1t a1qiieduwo) _ :

q s ON sax IM z | PeT11033U0D | PaYI3I 1MS 1802/410Z-Z€ZSH 1-09S2Z xozk (1)
9pON paleyad | paiinbay adiL adAy opon adAygy wapow adky K3rtioea anjep
uoisstwsue1l | punoay| punoay 31ND11D 1ariaen 13MBUY vid uoissiu | Tewyoapexay

~uing -uany, -sue1y | adAg surl
(L1) SddAL NI “€-D JTHVL

0371160 A

C-18

TABLE C—-4. CONFIGURATIOM STATES
Value Siqnificath
0 LCB not .configqured.
i : LCB configured; not enabled, -
2 Enable requested to TIP.
3 Line operational, no TCBs.
4 Line operational, TCBs configured.
5 Disable requested to TIP.
6 Line inoperative, no TCBs.
7 Line inoperative, TCBs configured.
8 Disconnect requected to TIP.
9 Line inoperative. Waiting for ring indicator or
autorecognition in process.
TABLE C-5. LINE CONTROL BLOCK FIELD NUMBER/FIELD VALUE
(FN/FV) ASSIGNMENTS
NPU
Field Mnemonic Mode 4
Number Name Description TIP ASYNC HASP RSC
5 BZOWNER Node ID of Owning Eost o* ot ot 0+
21 BZLNSPD Line speed index - 0-8t*t - -

" Required for confiquration.
““Required if autorecognition not specified.

60471160 &

c-19

TABLE C-5. LIKE SPEED INDEX TABLE

Index ' Baud Rate
0 110
1 134.5
2 150
3 200
4 600
5 1200
6 2400
7 4800
8 2600

This field only required if Autorecogniticn is not specificd.

60471160 A

TABLE C-7. TCB FIELC NUMBER (FN)/FIELD VALUE (FV) ASSIGNMENTS

Values
NPU
Field Mnemonic Mode 4 | Async
Number { Name Description L TIP. b TP | HASP | BSC 1
5 BSTCLASS | Terminal Class™ 10 1) 7-8
12 BSOWNER Node ID of Host™™ 0 0 0 0
13 BSCN Connection Number ©* 1-255 1-255 | 1-255 1-255
14 - Destination Node (NPU)™T] 1-32 1-32 1-32 1-32
15 - Source Node (Host)™™ 0 0 0 0
16 BSNBL Network Block Limit 1 1 1 1
19 BSIPRI Input Priority 1-3 1-3 1-3 1-3
28 BSPGWIDTH | Page Width 0-255 0-255 50~150
30 BSXBLKLL Transmission Block 0-255 0-255 0-255
Length Least Signifi-
cant
31 BSBLKLM Transmission Block 0~7 0-7 0-7
Length Most Sianificant
32 BS 2629 026/0292 Code Option 0=29 0=29 0=29
. 0=26 0=26 0=26
33 BSNUMR Number of Records per 2/7
Block
34 BSSUPCC Suppress Carriage 0=N/S 0=N/S 0=N/S
Control =5 1=5 1=8
35 BSBAN Banner On/Off 0=0N 0=0N 0=0ON
1=0FF 1=0FF 1=0FF
36 BSEM "EM" at end of card for 0=No EM | 0=No EM
short records) 1=EM 1=EM
37 BSCODE TIP Code 1-3%7%
e -N G- =--NO~-SUPPTES ST S—=-SUppress
* Required for reconfigure SM; cannot use for confiqure.
“*Required for configure TCB SM (these fields must be ordered 14, 15, 13,
12).
“““Required only if not autorecoanition on a confiqure TCB SM, l=Mode 42
BCD; 2=Mode 4A ASCII; 3=Mode 4C.

f0471160 A C-21

BLOCK PROTOCOL SUMMARY 5 D

BLOCKTYPES

The unit transmission between the host and the NPU is referred to as a
block. It is never ‘more than 2047 bytes in length, including block header
information. The actual length of a block is a function of the type of
source transmitting the data.

The block flow control interface between two logically connected processes
can be envisioned as two simultaneously active communications paths. The
procedure is fully symmetric. Sequence is maintained on each of the four
paths but not between the separate paths.

The types of traffic which exist on each communications path consist of the
following:

® Forward data (FD) - Textual information sent from a transmitter
directly to a remote receiver. These blocks are either data or
command blocks.

e Reverse. supervision (RS) - Answer back blocks sent from the receiver
in response to receipt of forward data or forward supervision. These
blocks can be generated and sent even when not solicited under
certain local abnormalities at the receiver. -

Every block has a header consisting of four bytes. The first three bytes
provide the network address. The last four bits of the last byte indicate
the block type; the other four bits in this byte are reserved for network
use as a modulo 8 block serial number. The contents of the remainder of the
block, if any, vary with the block type. Because the header portion of all
blocks has the same format, it is omitted from all block formats shown in
this appendix. ,

The network address consists of a source node number, a destination node
number, and a connection number. The node numbers identify the originating
and terminal process locations for the block and identify the path
direction. These node numbers correspond to the node ID numbers displayed
on the NPU console at initialization. The connection number identifies the
set of communication paths between the nodes that comprise the logical
connection over which the block is transmitted. For data blocks and reverse
supervision blocks, the connection number is a nonzero value identifying the
terminal control block (TCB); separate connection numbers are assigned to
each interactive data stream, upline batch data stream, and downline batch
data stream for a terminal.

60471160 A D-1

FD blocks that contain commands are a separate block type from other FD
block's, ‘and ‘are called command ‘blocks. A subset ofthese command blocks are

called service messages. Service message blocks have a connection number of

zero in -the header, identifying the logical connection called the service
channel. Unlike logical connections with nonzero connection numbers, which
can be dynamically created and destroyed, the service channel always
exists. Blocks traveling via the service channel establish other logical
.connections, and communicate control, status, and error data io ,

the common equipment and software which service the other logical
connections. Blocks traveling via the service channel have a block serial
number of 0 in their block header.

The relationships of block type values in the block header, traffic type,
and block function are shown in table D-1.

TABLE D-1. BLOCK TYPES

Block s Traffic .
Type Mnemonic Name Type General Function

1l BLK Block FD This block is a data block
which is not an end-of-
message block of a multi-
block message.

2 MSG Message FD This block is a data block
which is the end-of-message
block of a multi-block

‘'message or all of a single
block message.

3 BACK Block RS This block is an acknowledg-
acknowledgment ment for a block transmitted
in the opposite direction.

4 CMD Command FD This block is a service
message on connection number
0 or a command on any other
connecton number.

8LK BLOCK

A BLK block is a data block containing a portion, but not the last segment,
of a data message. All data blocks contain 0 to 2039 bytes of data

immediately following an 8-byte header. The 8-byte header consists of the
... _standard 4-byte header described previously, plus four additional bytes of

information describing the subsequent data. The contents of the data field
are determined by the communicating processes. In CCI, a BLK block does not
contain an EOR or EOI code.

D-2 ' 60471160 A

MSG BLOCK

A.message is.-a-.self-contained unit of data communications. In half-duplex,
fwo-partyv communications, the transmitter signals readv-to~receive by 1
sending an end-of-message indicator. Thus. a message is-a-data stream
terminated with an-end-of-message indicator. ‘ '

Tf a message is 2039 bvtes or less in lenath, it can be transmitted via a
single MSG-tvpe block. If z mescage is longer than 2029 bvtes,; or if for
some other reason it is desired to segment the message, all segments but the
last are transmitted via BLK blocks, and the last segment is transmitted via
a MSG block. In CCI, each block containing an EOR or EOI code is a MSG block.

BACK BLOCK

A BACK block is sent from the receiver to the transmitter to allow the
transmitter to adjust the rate of issue of data to the deliverv rate of the
receiver. The transmitter should not issue more than one unacknowledged
block for each connection. The BACK block, which acknowledges a previouslv
transmitted block, allows the transmitter to maintain an outstanding block
count to ensure that the allowable block limit is not exceeded. The BACK
block contains no information other thar the block holder.

When the NPU software detects a bad block fanv block with fields that
contain unexpected or undefined information), the NPU discards the hlock.
Tf the block is a BLK or MSG, no BACK is sent to the host. For anv other
hlock tvpe, no action solicited by the block is taken and it is not
acknowledged. An NPU statistics word for a block discarded due to bad
address condition is incremented.

CMD BLOCK

Command blocks allow connected processes to communicate outside of the data
stream but syvnchronous with that stream. Command blocks are received by the
destination process in the same ordering sequence to the data stream or
other commands as existed at source.

The contents of a CMD block are bilateraily defined by the communicating
processes. A CMD with a connection number of 0 has special significance as
a service message.

CMD blocks are also used on nonzero connections to control data streams,
control terminal nodes, and to report status between the host and the NPU.
CMD blocks can use either the reverse supervision or forward data channels
of a connection, depending on the type of command. In either case the CMD
block flows asynchronously to any data block on the channel and, therefore,
cannot be used to mark position within the data stream. Commands received
on a connection are not acknowledged by-a BACK block in the reverse
direction. Figures D-2 through D-10 summarize the general format of CMD

— hlocks—used-on-nonzero—connections—within CCITIn this table, the primarv
and secondary function code columns identifv the contents of the first and
second bytes of the block after the block header.

60471160 A p-3

.

BLOCK TYPE

2047

@(maxi

BILK = 1. 4
I “Header

Data

]

1 4 2047 (max)
l Header Data
BACK = 3
1 4
! Keader
CMD = 4
1 4 X
r- Header Parameters

Defined in appendix C.

604711€C 2

NPU

User ‘commands to

initiate input

- 'MSG (READ,xx)

CN{(T)

!t————749————55——+————%—4—————
CN(B,I)

BACK

BLK CN(B,I)

MSG (EOR,nn)

BLK

BLK
° e e
e e e
® e °

MSG (EOI)

End of input data
CMD (input stopped)
- CN(TI)

° e °
° e ®
° ° °

CMD (start input)

BACK

BACK

BACK

BACK

BACK

MSG (COMMAND)

Figure D-1.

6C471160 A

General Batch Input Flow

NPU

MSG (RFAD, fn,x) CNI(I)
CN(B3,I)
BT.K CN(P,I)
o) e
() o ®
®])
MSG (EOI)
End of input data
CMD (input stopped)
CN(T)
BACK
® e]
® ° e
®) ®

Host

BACK

CMD (start, input,
transparent, non-
transparent)

BACK

BACK

MSG (COMMAND)

Figure D-2.

INTERCOM READ, Filename, Mode Command

60471160 a

NPU

Host

More-—than—-one—file on
READ, fn

MSG. (EOI) CH(R;TI)
. ' - BACK
BLK
CMD (stop input,
terminate)
CN(I) MSG (error-too much
data)
BACK CN(I)
°) °
°))
Input suspended by host ® ®)
MSG (EOI) CN(B,I)
CMD (stop input,
suspend)
Time delay
BACK (for EOI)
® ® °
)))
)))
CMD (start input,
resume)
BLK
BACK
® e)
. ° ®
® ®)

Figure D-3.

€0472160 A

Input Error Conditions (Sheet 1 of 2)

NPU

Input device not
ready

BLK CN(3,T) -

g
CMD (Input stopped)
CN (BI)

BACK
Eventual operator [e ®
actior)) ®

) ® 'Y
a. MsG (E,CR) or CN(T) -

b. MSG (contin.)

F

Host

BACK

MSG (DEVICE NOT
READY)

BACK

a. CMD (stop input,
terminate)

b. CMD (start input,
resume)

Figure D-3. Input Error Conditions (Sheet 2 of 2)

60471160 A

NPU

Host

Qutput. device not ready

CK{B.0) BLK
CMD (output stopped) o
‘ oN(T) MSG (DEVICE NOT
READY)
BACK
) ° e
)))
Eventual operator action ® ® e
CN(3,0) a. CMD (restart
i output)
b. CMD (stop output)
)] °
For last output BTK, if)) e
CMD is restart output e) []
BACK
BLK
) °]
e ° °
]) ®

Figure D-4.

NPU

Terminal powered off

Output Error Conditions

Host

CMD (input stopped, CN(I)

break in)
e ° °
o o °
° e e

Delaved poll from NPU

CMD (input started)
o] .
° ° °
e e o

Figure D-5. General Errors

50471160 A

BLK CN(B,I)

co——— o
L BACK
CMD (input stopped) -
MSG CN(I) .
- BACK
®))
) ® ®
] ® ®
a. MsG (E,CR) or
b. MSG (C.CR) -
BACK
a. CMD (stop input,
terminate)
CN(B,I) b. CMD (start input,
resume)

Piqure D-6. Input Intervention

D-10 60471160 A

NPU i Host

Intervene
CN(3,0) BLK
CMD (output
stopped)
a. MSG (GO LP) CN(I)
b. MSG (END LP)
—— BACK
) o °
®))
®))
CN(B,0) a. CMD (restart
output)
b. CMD (stop output)
For last output BLK
BACK
For CMD (restart output)
BACK
BLK
° e)
®) ®
° [] e

Figure D-7. Output Intervention

€0471160 A) D-11

| iR _ - Host
Line operational sM _____ ow(@) _

s
Configure TCB (I) SM
TCB configured@ SM
—— CM(Z) MSG (INTERCOM
banner)
BACK -
Write to terminal and
start polling
MSG (LOGIN)
— BACK
e) ®
Define batch streams e () ®
or equivalent ® e ®
MSG (DEFINE, xx) —
- BACK
- CN (O) Configure TCB
(B,0) sSM
TCB configured SM o
Define batch data stream
connection number
MSG (DEFINE,xx) CN(I)
BACK
CN (2) Configure TCB
(B,I) SM

TCB configured SM

“FPigure D-8. Initialization

p-12 60471160 2

NPU _ Host

ON or equivalent
batch command

MSG (ON,xx) CN (1)
- BACK
CN (3,0) MSG (output file
banner)
Banner MSG gives B
file name
BACK
BLK (output file
data)
BACK
BLK
BACK
® °® °
) ® ®
) ® ®
—— MSG (EOI)
BACK
. CN(I) MSG (COMMAND)
BACK
)) °
) °)
° e)

Figure D-9. Batch Output

60471160 2 : D=-13

Binary channel number
Binary equipment number cf NPU coupler
Display-coded blank fill

Q
33

Displav-coded period character

Displav-coded digit of minute, system clock time
Display~-coded diqgit of second, system clock time
Display-coded of month, system time of dump
Display-coded slash character

Display-coded digit of day, system time of dump
Displav-coded digit of year, system time of dump

<N ude O

File registers format

uhw upper half of word (character 1)
lhw lower half of word (character 2)

Display-coded digit of hour, system clock time of dump

of dump
of dump

D-14

60471160 A

SAMPLE MAIN MEMORY MAP FOR NPU E

Fiqure E-1 shows the layout of CCI in the main memory of a 255% network
processing unit with 65K words of main memory.

PROGRAM NAME

0000, | JUMP TO BEGINX ZEROX
0100, | INTERRUPT TRAP LOCATIONS PBINTRP
0150,c | ADDRESS POINTER TABLE ADDRESSES

0170,6 | CONSOLE INTERRUPT ROUTINES

0D70,5 | PASCAL GLOBALS GLOBLS

10505 | ASSEMBLY LANGUAGE ROUTINES

23BCye | STATE PROGRAMS

35A3,6 | PascAL PROGRAMS

. 7F00,6 | b TABLE 1 PIDTBL
8000,¢ | CIRCULAR INPUT BUFFER SET UP AT
INITIALIZATION
8200, I LINE PORT TABLE TIME
LINE CONTROL BLOCKS
D98¢ | SET UP STACK. GO TO PINIT ‘MAINS
D998,¢ | LOAD R). R2, R3, R4, GO TO MAINS BEGINX
BECOMES
PART | OF INITIALIZATION PROGRAMS : BUFFERS WHEN
NEEDED
DE7F g | INITIALIZE SYSTEM . 1 einnt
PART 11 OF INITIALIZATION PROGRAMS
EFAO,5 | INITIALIZE LAST OF BUFFER PIBUF2)
FO00,5 | SYSTEM PAGED OVERLAY SERVICE MODULE
M-795

Figure E-l. Sample Main Memory Map

60471160 A . E-1

CCl NAMING CONVENTIONS | F

K L . ';’, J k :

The following namiﬂgwconvent%cnSWfbr“thé“CCIMPKSCAL grograms ‘should be

regarded as guidelines rather than as strict regquirements.

The general format of a lahel is:

PIRRRRSSS

where the usuval length is six hvtes; but additional bvtes can be usegd.

e

P values are:

o

x D

T values are: 0
1
A

0O Glohal data
Procedure or function
W Local data
7 Non=CDC
Transparent or not tied down
9 Not a structure

Z A structure

For procedures and functions:

P=P, I = A

B

-3

Assurance programs
Base svstem programs
Diagnestic programs

Plex subsvstem programs bart of the hase
)

Metwork communications programs

2
(=)
it
~1
—
ja
(213
L
s

For types, variables, fields, and so ferth:
AO... OPS-level workcddes
BA... Overlav
BC... Physical/logical request packet (PRP/LRP)
‘BF... Buffer
BJ... TIP—tYpe table
BL... Logical link control block (LLCB)
BS... Terminal control block (TCB)
BT... Timing, monitor controlled
BW... Intermediate arrav for worklist
BY... Worklist control block (WLCB)
BZ... Line control block (LCB)
CM... Service module
D... Input/output (I/0)
J.ew Logical/physical I/0 request packet
JC... TUP table
LD... Load or dump
M... Multiplex subsystem
MM... Event worklists (multiplex subsystem)
N... Multiplex subsystem
NA... Port table
MB... Line types
MC... ﬁultiplex LCB (MLCB) or text processing control block (TPCB)
NJ... Terminal characteristics
NK... Multiplex command driver inputs (command packet)

NZ... Diagnostics control block (DCB)

SI... System interfaces (SIT)

F-2 60471160 A

STANDARD TIP AND SVM TREES | G
\
This appendix consists of five sections, one for each cof the standard TIPs:
Mode 4, TTY, HASP, BSC, and a section_for the service module (SVM).

Within each TIP section there are two parts: a one line description of each
routine or subroutine, followed by a tree for the PASCAL level routines and
subroutines making up the TIP. The trees are laid out so that the OPS
work-level entry is on the first sheets and subroutines follow. Following
the OPS-level switch, and preceding the subroutines, are the direct call
routines from SVM and the mux 2 interrupt routines.

Comparing these trees and TIPs can aid the TIP programmer in finding how
other TIP programmers have solved similar problems.

The SVM section follows the TIP sections.
Conventions used are described as followe:

External calls are underlines. No effort is made to trace calls from
external routines.

MODE 4 TIP ROUTINES
PTMD4TIP - Main TIP switch

Enable line

TCB build

Output queued

Disable line

Delete TCB

Input status workcodes
Autorecognition work codes
Line timecut workcodes
Hardware errors

PT4TCBINIT - Call from SVM to finish building TCB (also used to build
autorecognition TCB).

PTTPMODE4 - Call from PBIOPOI to process downline PRU bloéks.

PT4QIA - Call from internal processing to queue downline interactive
blocks. '

PTMD4MUX - Multiplex level-two entry.

PT4GOTOTASK - Sets next tasks for terminal in TCB.
PT4CONTROL - Determines TCB to get control, and Mode (4A or 4C).

PT4RETRYOVF - Counts errors; determines if more retries should be made.

'_‘
bt
h
o
e
Q)
|
}J

5047

PT4TOGTA - Retransmits write message if ‘toggle bit problem exists.

PT4AWRITE - Builds write E1/E4 message for keyboard or E3 message for CRT.

PTCHOQ - Checks output queue for tasks.
PT4CROFF - Handles card reader off action.

PT4TASKPROCESSOR - Processes next task for current terminal.

Device ’ Task
- Qutput gqueues
Console ACK after write
Card reader : Read after poll
Printer Reject during poll
- | Error retries exhausted

Autorecognition for terminal

I/0 related tasks (in addition to device or task)
Output write message
Output write failure
Poll for E-code or toggle
Error responses to E-code or toggle polls
Good responses to toggle polls

PT4I0 - I/Q0 processor (calls PBCOIN).

PT4ADISABLE - Disables line.

60471160 A

(9 3o 1 399ys) seail dIL ¥ Spow

va1||||||1|||zommmoozmzmca«am

SdOLHYLd
N
T d1dYSI1avdd
(@,
s31x4
Sdo1FUId- S88R) puF—
@Ixmt&gow_ihm
L 23e38 dIL 10J 9Sed pug—
HIVDSNG
: (s10a1s
NHO'13uad LAMOY) —

@-Izmt&gowv

HOTTLYLd ——————(2A730RUT BuTT)—

QU

{Ld

ON

(3AT310¥ 0/1)—

(31pP1)—

83e3s dIl -~ sase) -

(3noawry auyy

LOOFAWILOY)

S3pO0YIOM — sase)

@Il aTdvsIavLd

@l ¥0SSdD0oUdNSYL LA

"1-9 aanb1rg

(8 pue g

@l JSYLODYId H—l
NHOTZHEd

QOTTLHLd

(1T

(11s9pod yiom
uo 13 fubooaioyny)-—

BUIT 3[qesip

snje3ls. 3nduy)—

Amuvuunsnuu:.

= HOLTAWS OV) —

= 64MOV) 1,
- ZAMOV)

(sepoo yiom

(KAS woay
404, ®3379p

(WAS woxg

mUﬂABmBmil_

{penanb 3ndj3no

VAWSOV) —

TALWILTE

ASVLOLODY LA

J4T3AD4d-

—= HOLWSQV) —

LNoANO0V) —

(31Tnq €D

THLRILTE

(NAWS OV)—

S3pPODY IOM -~ B8se)

I
TTEa

WLIMS dIL NIVW

O)

60471160 A

(9 jJo gz 3199ys) s931L dIL ¥ 9poW "1-D 21Inb1g

.—.at:mml—

(TTED T 1=2A9T XNW)

(s%001q aar3loeiajut ananb
03 buissanoad jeuiajur woij paTred) VIdOrlId -

(10ss2001d 3x391) ANIdLLA—

{syoo1q nud 103

XOWY AL

AIVELI —

{31°8) I IMIdd—

A191049d

J49TT3YLd—

NHOTAIHdd —

1040164 wo1j paited)

(dD1 uor3ztubooai

-o3ne BurpiIng 103 payreo
oste - €)1 9ZI1TeI3TUl

03 HWAS wolj pa1ied)

YAQONd LLd

SQUON —

GINIHOLYId

®

60471160 A

G~4

(9 3o ¢ 3I89ys) seail dIL ¥ Spon

J9TTd¥Ld ||_

d40¥D¥%Ld

0asTLoLd

J9173414

OOHOLd

SUON - ALIUMKId

SUON - VIOOLYLd

*1-9 aanb1rg

TIJADON

JETTI™Ld

9ISTLIADLA

@.ll zmﬁ_oaouv__.ml_

TOdLNODVLd

O—

gOTTASTId—

TLWILTE

@I FT1EVSIdyd.d—
@-II HOSSADOUIASYL bd.d —

ASVLOLOOYId

. 60471160 A

(9 Jo ¢ 393ys) saai1l did ¥ 2POW

@

A”UYlllxm<EOBOUvBm (mo1319a00
_ K1391
ANYWHWOOLO 10119) —
(110d
ASYILOLODK Ld uo rIY)—j
xm<&0900vkm|g
e| JJ04D¥ Ld—]
I10d1d49d—
ANYIWHODLJd— ,
(pea1x
NHO'1IYdd ejeq)—
A“”VIllqom9z00v9m|J (9311Mm
1933%e
HLYOSNA AOV) —
AHUYII:maHm3v9m||
TOTYLd —
ANVWWOO.Ld —
A” Yllnxmtaopoovamll
g.l J408OYLd —
(andano
Luavdnad — anan()—

(xapeax

— pae))—

®

*T-95 ainb1g

®|||xm¢.~.0.~.00v.~.n~

ANVYRWOO.Ld

NHOTIY4d

DASTLOYd

@

(mo131900

A”UYlllmeBOBOuBm
@-‘I JLIYUMYLd —

10d1ddd
UNVYHWOOLd —

NHO'1344d

L1391 101137)—

110d atosuoo
— Bbutanp rIY)—

(110d

Tododdad —

NHOTAdad —
HIVOSNd —

DdSTLOYLd

Bbutanp peay)—

(3311M

A”VI!I&mtBOPOUvBmlJ

TOddLd

1333% NOV)—

(andano

anand)—

(atosuo))

(yo3tms Laepuooas juapuadap 201430} HOSSAD0UANSVLY LA

60471160 A

. G=6

(9 3o g 399yg) saai1] dIL ¥ 9POW °T1-9 2inb1g

@

(23124 03
asuodsai
° ASVLOLODY I.d— peq 10
asuodsai
° JAQULIY VLA ON)~
NHOTI¥gd—
. (burssaooad

Ix3L) ANIdLLd—

OIbLd—

(s3iso)
@Imew«aml pe3eraa
(a311M 0/1 03

andjnQ)—y—uinjay)—

@llsm<aoaowq._.ml
SdOLIHEd —
Jd4T7139dd —
: (Teuoyy
(WAS) LNdSTdd— -eaado
aurT
NHOY1dydad -~ 8poo-d
TT3un
J4TLIDLd — 110d)—
(s110d
Xeuw jo (do1
LINIEOLYLd asuodsaa uofr3TuU
lg yits -booaa
474d9vs1iavid— T110d) —-03NE) —em

)

7

ASYILOLOOY1Ld (moT3a3n0
_ L1381
AUNVHWODLA 10319)~

D)

(x19jutad

(T10d
snjeys:
ASYIOLOOY Ld——10 [HYH)—
ASVLOLODY Ld—
ANYRRODLd ~—
10d0dgd—
53STLOad—
NHOTZ¥Ed —~t—— (3nduT) —
AwUMu@
1ajje
@.Il TOYLNODY Ld MOV) —
- ONVWWODZLA
A”UY|||zmceoaouvem
{(and3no
A”UYloomoam panand)

BUTT)—

)

60471160 A

(9 30 9 393ys) S22y JIL ¥ SPOW "T-D danbrd

SdOLITULd —

TALNILTH—

(WAS) 1nds19d—

A9 113 dd—

NIOOgd—

dT19VSIAALd

Aﬂuvlluqom9200qamij

A”UV|||

ASYLOLOOYLd—
NHDTHHEd —
G0TTASLd—
TEIRILTE—

NIODdd —

Oo1vdd

D

@II TOALNODY Ld

HIYOSNd —

@.'xmﬁwoaoog.m.ll ‘(aa , 'peay)—

° ASVILOLODY Ld —

° JA0 XHELIYVLd—

o1vdd

AHUY|||qoxaz00qam|1
A”Uvnnnlnn.xm<aoaowqamnn

.H Ylllh>o>mamm«am|||||||||||

OIbld—

ASYLOLOOYIE ————

TOULNOD Y Ld —]

A” Ylllll.zm¢aoaouqamr|
AHUY|||m>ouxsmxvsmnn

HLYOSNd —

LIVHEd

(11od a1bbo3
‘Bbuimortol
*301319

(T1od
816603
buimoTiOF
810119)-

(216603
303 110d)-

(110d apoo-a
buitmoTTO3
10219)

(epoo-a

(K1zaza
331IM
i1a33e

asuodsay)—

103 T10d)-

60471160 A

. G-8

HASPTIP

PTSMUXTIP - Mux WC. Converts mux 2 level worklist to OPS level HASP TIP
worklist : .) *

PTHSOPSTIP - OPS-level entry. Processes worklists from OPS-level (main HASP
process). ‘ : '

Workcodes recognized are as follows:

(AOSMEN) - Enables line (sets LCB fields).
(AOSMDA) -~ Disables line.
(AOSMTCB) - Checks for an ENO block: processes transmission.

(AOSMDLTCB) - Terminates and releases TCB, passes terminate command to
command driver, notifies host.

(MSGCONT) - Sets up RCB/SRCB.
/RQP/ - Requests permission to send.
/PG/ - Permission granted to send.
/BCBERR/ - Bad BCE, brings line down.
/CONT/ - Sends control record.
/9, 3, 4, 5/ - Purges record.
(AOTIMEOUT) - Timeout handler.
(AOQUEOUT) - Output handler.
(MSGCMPLT) - Message completed, returns to caller.
(ERROR) - Releases buffer; returns to caller.
(ENQACK/NAK) - Sets completion value, returns to caller.
(NMINDEND) - Ends input, returns to caller.
(AOHARDER) - Hardware error, set inop code and return to caller.
(BUFTHR) - No buffers (threshold reached), drops message.
NAKTEST - If NAKs received after I/0O, marks line down.
FINDTCB - Finds TCB for stream (upline TCB) .

STROPN - Checks if workstation device will accept data (wait-a-bit~check).
Notifies host if it will.

DELINK - Unlinks entry from data-list gueue (DLQ).

HASPGET - Removes entry from DLQ; i.e., gets buffer of data that is ready
to transmit.

HASPPUT - Queues entries into DLQ (2 wds/entry).
HASPIO - Calls command driver (PBCOIN).

e P TBEBPES———-8ets—up—-BCB—and—FCS-
GETBCBFCS ~ Sets up BCB and FCS for output.

PTTHASP - Text processing; calls PTTPINF.

GENDATA - Sets up buffer prior to PTTPINF call.

HSPREL - Releases data buffers.

WRAPUP - Cleans up data transfers to HASP workstation.

604711602 G-9

BRINGLINEDOWN - Terminates a HASP workstation due to errors; sends terminal
command to mux, notifies host.

ERRCHK - Chécks for errors in 1/0 transfer; marks line down-:if necessary
CHRCMD - Parses CMD blocks from host for a HASP TCB.

PREOUTPUT - Gets next entry in TCB queue and starts proce551ng (downllne
switch).

POSTOUTPUT - Cleans up output transmission (PBPOPOI).

HSPTCBUILD - Initializes TIP dependent TCB fields; directs call from the
SVM during configuration of terminal.

POSTINPUT -~ Prepares to send block to host via PBPIPOI.

HSPTPINP - Prepares for input text processing.

DSTCHAIN - Forms queue chain.

CORBUILD - Prepares EOR block.

EOIBUILD - Prepares EOI block.

PRBLOCKTYPE - Determines block type: EOI, EOR, mag, banner.

TP1BUILD - Prepares a text processing buffer for interactive messages.
TP2NDPASS - Upline text processing for card printer.

TP1STPASS - Downline text processing for punch or printer.
TPINTERACTIVE - Upline/downline text processing for console.

. G=10 60471160 A

(9 jo 1 3238ysg) saYD3IIMS utel dIl, dSVH

)

]

o

[
oHo

-]

@l.l. ———— (0N Yd)—
(pajatd
~-4oo bsw

AH Tn TAYdSH ——— LTdHWDOSH) —]
TELWILTY — (1o13u0d

ananb

e.lu LNd1N0F¥d ——— 1,003NO0Y) —
A””YIII.qmmmmmlll (Toajuon
Inoawry

TELWILTE —1— LNOAWILOV) —

*¢-9 sanbrg

®

d
A“HV (WAS) INdsSTad—
8UoN - (g ‘¢ ‘g ‘0)—n
v SUON - YNITIA—
SUON - (LNOD) — (4ol
e OIdSVH— ajeutwiay
A””vnnzzcnmzmawzamm - (yyadog) — /@38Tep
9 T39dSH———— \@OrTaRs oV)—
ela:manommm
ll_ 9 MHOYYH~—
° g01ANId (9d) (804 pTINg
° OI1dSVH 4DIWSO0V)—
° Inddsvi
: _ (3urT srqesip
° gOLANIA (ddy) — @l NMOUANIIONIYE YAWS OV)~
(dSVH) INdsTed— (908 :sase)d)— (3UTT afqeus
auou - (NIWSOV)—
el._.:mzu 1S0d—— (buyssaooid
andurt sase)
SUON - @DLANTJ— LNOODSW) — _
(dIM ut
sase) Sp0od Y I0M uo Yo3TMs (A13ud gdQ) JILSJOHIA

dSVH

G-11

- 60471160 A

(9 3o ¢ 3I99US) SIYDIIMS UTeW dIL dSVH

(-burssasoad 3Ixa3 surTumop

303 10401Idd9d woij ATTeuIajixe
paTieo. osy . "buissaooad 3x9)3

saurtdn 103 [1eO TPUIS]jU]I) anmmﬁ_m.r_.m
‘ w:OZlA

(WAS woi13 TTe0 3I0911d) TIINADLJISYH
(dsvH) IndsTdad
o¥zTaudad

{Ax3ua a3dnazsjur g xnK) JILXAWSHId

pul

@.l NMOGANITONI¥E—
@ll TAHdSH—

(WAS) LNdSTHd—

@l LIDISVH
®|I LNdLN0LSOd —
@Iamuazczl

SO01

*z-9 ainbra

1933nq
AHUYlln TE¥dSH - HHIANH)—

(10113 21uwmpiey

O
Oz

(A1dazx

o7

yjeqd 0/I ufiewn
j1e3s ‘sased

pua

(pToyssiyy

|
~ HHAAUYHOV) —

(a3ndur pus
—— ONANIWN)—

Y2019 dSVH
AVN

Qulaumwl

L pe)

60471160 A

G-12

(9 30 € 3I93ys) sayojIMs utey dIL dSVH

NIODdd

(buyssaooad
anduy 103 dn 335) NIODOH4

(buyssaooad

indino 103 dn 385) 'Niooddd
.Gmm.EH_, (AWDENO)—

NIODgd

NIODHd

‘.Ig VIVANZO

193¥Ld

SUON - (AWDOON)—

(aWONOV) —

SUON - SDALDHLIAD

(OIWYAL) —

(AWDANT) —

(AWONYN)—

ase)

(eoe3ji83uy xXnKW) OI4SVH

*Z-9 9inbrg

SUON - LNIddSVH

ellls_knzwu
@lxzsmn

(Ind3no ssaooid 3IxaL) LADASVH

3UON - MANITIA

@_

BUON ~ HOLANId

@_

@I NMOUJEANITONINE 7
HUN

LSl

@_

G-13

- 60471160 A

(9 JO ¥ 2199ys) sSayoslTms utrely 411 4dSYH

@llm:mﬁzn

NIOOdd—

(WAS) INdS'19d

@vlul TIYd SHA
@I MNITAQ

NMOQINI'T ONI¥q

OIdSVH

G)—
@Ill T139dSH

dNdvyM

Oquﬂmmmld

TI9dSH

*z-9 ainbra

QI

AHUVII:
A”UYlllmu

@.I

OdSTIddd—

@I

LAdLOOTY] —
d

JHTLADEd ~

Qll.l NdOY.LS —
S

Jd40814d—

i

— INITIA—

SYHA LJd—

YLVANED

(o

4408130
I_

5049048404

—ANI'T3qa

UNVHWODLd

NdOULS

60471160 A

G-14

Buyssanol
3Ix33 aujytd

© oF

TRSERCER

J4TTIYId—

d
N - INIdLLd—

471044

dNId&LdSH

ANVYWWOOLd

Iodidad
— dNId1LdSH

LNdNILSOd

(Y

— LNdLA0TYd

MVIuaammczn

10d0dgd~

—— 1344 SH

INdIN0oLS0d

(9 30 5 393ys) sayolIag uyen dId d8VH °Z-D 8inbig

®

Qo

@ll,..l...._ﬂmmmml

UNYHWOD.Ld—

—— LNASYH
— GWONHD

bOdLN0FYd

Y

Igavdndd—
JaTTauad—

O¥zZTaydd

(spuewmod s38S8001d) AWIMHD

9

— TH¥ASYH
—— OIdSVH
ANITONIYNE

AHOYYHH

G-15

60471160 A

(9 3o 9 399ys) Sayo3 Mg UteW dIL dSVH °Z-9 ainbrg

y104d -~

J41T394d—

ANIdLLd —

agaiiandd—|

@III. HATLOVUALNIAL SSYAANZdL
‘llle SSVALSTdd

‘ ”” '.I SSVdANZdd
@'I AdX1LAD0'1948d

dSVYHdLLd
Q 44713984

41084
evll aTIngtdi—) - a1ing

dariagad —
NHOTAuad—
- ®.||. a1109104
ANTdLId—
@.I a110n9¥0d
ANILOVUIALNIAL
@ dd Al NO0THANd

e.l NIVHOLSA— -
u.:._.uunml_ ECIREREED

@ @&

@+ @

ANTdLdid—
a11n830% a11ng
FaTTAdad— @
®|| FAAIND0THHd —

SSY4LSTdd SUON - NIVH

®

G-

60471160 A

.G=16

TTY TIP ROUTINES

PTMSQUE
PTMSCAN
PTDELMS
PTTMUX?2
PTTYTIP

Worklists:

Enable

Adds entries to the 100 ms timeout queue."

Scans LCB timeout queue for expired entries (100 ms)

Deletes entfy from 100 ms timeout queue.’
Mux level 2 entry; converts. to OPS-level entry.
Main switch.

line

TCB built

Output

queued task

Disable line

Delete

TCB

Autorecognition
Start block
Framing error
LF message

CR message

Delayed routine returns

Paper tape message

Paper tape turned off message

Over flowed block size
Mux buffer threshold reached

Hardware error

Qutput

PTTYTCB -

block transmitted

Calls from SVM to finish building TCB.

PTYCRQ - Checks output queue for tasks to perform.

PTYTERM -
PTYPASS -
PTYHANGUP

Sends terminate I/O command to multiplex subsystem.

Passes data block to host.
- Stops activity on a line.

.l.

*These can be used by other TIPs-also.

. 60471160. A

G-17

(£ 30 1 399ys) s931% dIL XLL “€-D 2anb1g

O,

i (andurt
adey 1aded
A“”v1||-mm<m»an 0T AMOV) —
; | (uanjyax Aetap
NI0D8d LONOHOWHW) ~—
muw~>mam|J
ANOSWLd —
] (bsu ¥D
@.lpmcmsam 9XNMOVY) —
. @OTIASIA—
: (bsw a7
ﬂ:amzam LAMOY) —
M (10119 Hutuwurea]
' NI0D®d SAAWW) ~—
ognqumam
| (yo01q
@ll We3LAL 30 31e38
: AYTHINNH
SWiddid ! 6MMOY)—

®

(RAS) 1ndsigd

Jd914398d

@II dNONVHALA
A”UYIII&DUZt:»B&

o8

O
(oa@103n®e

_ - v pue |

fTaMov)—

(803 @39T9p |
#OLIAWSOV)—

(3]

(surr |
a1qes1ip
YAWsSov)—1:

(ysea
O and3yno
&NoaANdOV) —

(3TTNg €OL

NI0Odd

NIODHd

HOLNSOVY)—

(aurt
arqeus
NIWSOV)—

(sapooyIoM)

(yo31MS UTPH) dILALLd

60471160 A

G-18

(¢ 30 7 398ys) s99811 dIL ALL ‘€£-9 aanbra

*sd1l 19yjo Aq pasn OSTV

(3198) Bmmmqmmlq

T9A3T 7 xnw woiy 1D -~ ZXNWALLLA SdOLIAYLd—
NIODdd HOTTASLd — (juss joo1lq
IA and3no
L13us bBuywry ajayag - SWTHALd 4 : 10doddd XNGONW)—
(3T°s) Indsidd (10119 azempiey
|._ @‘,mauzcm Ald —————— HHIAQHVHOV) —
ureyo ad1 (pawyl) sArjoe WOoiy T[ed - NVOSWLA ,
(3noauwry
zHoommlg SRR AAR - LOOIWILOV)—
Jawyl sw QO wWoij yre) - 4n0SKWid © 8dOLAVLd —
0:02|~] NIODgd—
1 o} uWﬁsa 03 HWAS Wo13] 1TeD - €DLALLA gOTTASLd —
SdOLIUL] — _ @n’ WYALAL] — ,
(uor3egnbai
THLWILTE — TAINILTE TTAMOV)~
@l WYILALd — . (MOT3 1840
~8Z18 YOoOoTq
T9AYLd — Anuvllnmm<m»am 83MOVY)—
EOTTASLd — nm- :
NIODHd— AGNYHWODLd (edey 1aded
woi1y Jg40X
@ul. OHOXLI— @l SSVYdALd GIMOV)

G-19

60471160 A

Sd0oLIUdd —

{WAS) 1INdsT4d—
NIOJad —
TELWILTE —
ouzIaudd —

@-l WHaALALd —]

dNONVYHXLA

(£ Jo £ 3133ys) sSIaiL dIL ALL

‘€-9 2Inbrg

[ECIUEC R

10d1ddd-
NHO'T3Hdd

SSVdXid

©

NI0DHd
I_

WYILALA

®

J4TL3D9d—
A TI3IONd

10dOudHd—

0¥0xdd

©

60471160 A

‘G=20

BSC TIP ROUTINES

PTIP780 - Entry/switch; main program.
RSTIMER - Set periodic timing.

ISSUECMDPKT ~ Call CMD driver with command packet.
SENDACK - Sénds acknowledgment message.

SENDCMD - Sends command block to host.

SENDSVM - Sends service message to hdst.

TCBDELETE Deletés specified TCB.

TERMINATE -~ Terminates input or .output as requested.
ANYOUTPUT - Searches for output to process.
CMDQPROCESS - Processes all gueued commands.

GOODACK - Processes good acknowledgment block.
INEOTSENT - Sends EOT to terminal.

INIDLE - Sets input state to idle.

INLINBID - Checks to see if line bids for input.
INTTDSENT - TTD sent. ’

NTMAXNAKS - Checks for maximum number of NAKs.
NTMAXTIM - Checks for maximum number of timeouts.
NTMAXWACKS - Checks for maximum number of WACKS.
OKTOINPUT - Sets up for input on next available TCB.
POSTINPUT - Post input processor (calls PBPIPOI).
POSTOUTPUT - Post output processor (calls PBPOPOI).
PRLNBID - Prepares line for next type of transfer.
PRNXTBLOCK - Prepares next block to be sent.
RCVABORT - Input message aborted; notify terminal.
RESPAUTOREC - Responds to autorecognition information from terminal.
RESPTOBLOCK - Responds to data or ENQBLOCK from host.
PRBLOCKTYPE -~ Determines block type.

EOIBUILD - Builds an EOI.

EORBUILD - Builds an EOR.

PTTP780 - Test processor.

PTTCB780 - Finishes building TCB for SVM.

60471160 A

G-21

Q.Il.xuoamoammmmj

ONYWWOO.Ld

el LNANILSOd—
elll LYOAVA DY —

o¥zZ13udd

(v 3o 1 333ys) s931y dIL JSH

O]

(yoo1q
vlep poob

@I FATAINI—
9 QIENITINI—

LNd LOOANY —

@I dWOaNdgs —————

NMOGQINITONIYE

paa1209Y)

(paA13da1 50d)—

ADOTHLXNYG —

7

ATAINI—]

7

nHmzHAzHI

LNdLNOXNY —

NMOGANITONIYG —

‘ ” TE%&QEUMDmmHI
@.II WILXVRLN—

7

(Loaana)—

TdLWILTE

@lummo__bcmmmmJ

{(asvH) 1nds18d—

NIODgd

(3noawiy)—

(paata031

DNIHOS)—

O

'y~ 9anbrg

AO0T40OLdSTY

?

LIY0HVYADY

?

DJY0oLNVdSITY

Te

dIgNI‘THd

5

NMOQINITONIYY

o7

AO0THLXNY —

9 QIGNITINI—]
° LNdLNOANY —

®

(paaT13031 DONIF)—

(10119 paey)—

(ananbur
pueuwoD

S$SEJ04dOAWD
ALITIAEOL —

/¥o01d)—

INISLOANT —
ALYNIWYA L ——— (921 23313Q)—
(IsTTYI0M
@l mnzmm 1es 1))
(sury
@l OQIANITONING — 3TqesTd)—
®||.5.mazum=mmH
@IllmanzH
(pa1qeuUs
TAIWIZIIE AUTT)—
og8idiid

HOLIMS DS"€ NIVH

60471160 A

. G-22

(v 3o ¢z 3I99ys) sa2915 d4IL DOSH

“ISTIRI04 e UITM dId [8A31-SdO
943 1182 03 ue33rim are sweiaboid ajzels jndujg

SUON - [TBD g T3A3T Xny

S : @lconmaam

iejep €NUd jo burssaonoad 3xaj
103 burssaooig Teuisajul woiy TTe0 j30811Q

SUON - 08L4D4ld

HAS woilj TTeO 308311q

A ” }— HAWILSE —
@.Iaxmosomammul

e WIXVWIN —

.AN. UHOANTS —

6 ADOTELXNY —
9 SHYNXVHIN —
Q — LNISLOINI—
AHHV|L|.ummoyacmmmmulnlllnlAcw>ﬂmomu A¥N)
(pToysaiyy

A””vnnl.axmmzomammH 1933n8)

?%@%%@??@

69 C‘?

SHOYMX YH.LN—

L01dLAOLS Od —
LNISLOANI —
0dY0oLNYdSEY ~—

AD0THLXNYd —
LNISLOINI —
SHUYNXVIRLN—

szmmzom:meL;
INASLOANI —
AHUYllnozuczmmnu
_ NHOTZgdd—
INASLOINI—
A”UYIIIQ:oczwmnl
INdANDANSS I—

SAVYNXVRWLN—

*v-5 sanbig

YAWILSY—

HIWILSY —

AWOANHIS —

MOVa009 —

LIYOEVYIIY —

odZ2T1HYdd —

——(P3A§3031 NOWM) —

—— 10113 pPSATIaDIY)—

(p8aTe081 YOV)—

(%0019 e3ep

(¥001q ejep
peq paaTaday)—

®

(P3U0D) HOLIMS NIVW

G-23

. 60471160 A

(v Jo £ 3I99ays) .s98a1, dIL DOSH

10d0d€d '
nzczzooamHHH|||||a:mamosmom

fodidda

LNdNILSOd
SUON - ILNdNIOLMO
JWOANIS SHYMXVHWIN

WILXVARLN

@IEszszEmlll
AHUV|||.azmmaomzmulllllllumx<zx¢zaz

INdARIANSS I ————— INFSALLNI
IL¥daWOANSS I—————— AIENI'INI
INdAWIANSST

' H_l ATAINI

OdZTa9dd

IAd0noanssI——m————
AD0THLXNEd

UNVHHWODLd

A””YIIIBQQRDOBMOQ

INISLOINI

ADVA0OD

é‘) OON60066060606

*p-D 21nb1d

AHUYIIIGWZHBmmll
®|||| ALYNIWIAL —

NHOTayad
YARILSY —
HASANIS—

(31°%) ands1ed-—

NIODHd —

SUON - LNdLNOKNV

NIODEd
(WAS) IndsTed
(nAs) IndsTad

ANVAWODId

A”VlllmeQ:UmDmmHllllllll

mmmoommonzo.iie

—NMOGANIIONI Y

FLVNIWYIL
ALITACEOL
WASANES

QWDANIS

NOVANds

ZHOUmmHu
A”UYIIIGNZHBmM LAdANOANSS T

TdIWILTH

YAWILSYH

sauT3noy 31o0ddng

60471160 A

.G-24

JeTLID8d

JHTLEOdd

ell Q'TINEY0d—
e.ln aning1oa —!

. ANIdLLd—

‘Ile dd AL D0T8Yd —

¥108d—

4T T1949d—-

(v 30 v 329ys) s981L dIL Dsd

aT1navod 6
a110a108——62)

dd XI400Ta¥d lle

cmhmBBQIIIIA””v

*y-9 eanbig

TO¥Ld

LAdAWDANSS I-

o7

SAUNXVHIN

NOVANFS

(WAS) LIndsTdd

LNISLOINI

T

LAdAWOANSS I —

T

08LdLid—

T

I10d0¥ddd —
LNISALLNI—

INISLOINI—

LAdAROEINS ST~

7

ADVANIS —

T

LOdNIOLNO —

AD0T80LdSAY
DANOLOYASTY

LHYOHVADY

000

~—— MJ0'TdLXNUd

argNITad

5 o

(P3uo)) saurinoy 3jioddng

G-25

‘60471160 A

SERVICE MODULE TREES

The section shows the service module trees. There are two parts: a short
description of each S5VM routine, and the trees relating the routines.

Note the routines that are service module related, hut not a part of the SVM:

- .PNSGATH - gathers statistics (stores them in- TCB or LCB as appropriate).

PTLINIT ~ initializes the line by setting up the LCB.

PNCEFILE -~ generates the CE error and alarm service messages. The text of
the message identifies the line (or other device such as
coupler, MLIA, etc.) that failed.

" See appendix C for format of individual SMs.
SVM Routines:

PNAWAIT - gives up control for external event.

PNRTN - used to regain control after PNAWAIT is used.

PNSMBAD - validates PFC/SFC of SM.

PNLNBAD - validates line number (used when enabling and deleting lines).

PNRVRSE - reverses SN and DN to réturn an SM reply to the host.

.PNTOCONS - delivers an SM to the NPU console.

PNQREL - releases buffers in a queue.

PNGTCB ~ gets a TCB address.

PNRCWAIT - terminates a reconfiguration in progress.

PNTCBSRCH - uses line number, cluster address, terminal address, and
device type to find a TCB.

PNDLTCB - deletes a TCB and its queue.

PNDISCARD ~ discards SMs with invalid PFC or SFC.
PNSMTO ~ handles the SVM timeout worklist entries.
PNSMTR - removes a WLE in the SVM timer worklist.

PNSMWL - WL entry switch for SVM.

COSMIN/COSMOUT = sends/receives SM. This work code is the subswitch
for the SVM handler table.- (See table E-l.)

CO2MDISP - calls PNSDISP to send an SM. ;
COLINOP/COLININOPyé calls PNLINE to enable or disable a line.

COLNDA - handles*ré?lies from TIP for line disable'requests by the
SVM.

G-26 60471160 A

CODLTCB - handles replies from TIP for delete TCB requests from SVM.

COOVLDATA - handles the overlay data SM.

COBFR I :

CODISABLE { call PNRTN to continue ‘processing TIP reply following
COENABLE PNAWAIT release of control.

COTMLDLT

The following routines are called either from the first level (work code) of
the main switch (above), or are called from the PFC/SFC decoding of the
subcode.

PNSMDISP - sends an SM to the host or remote NPU.

PNCONFIGURE - common subroutine to process LCB or TCB configuration.

PNLNCNF - configures a trunk or line.

PNTMLCNF - configures or reconfigures a TCB.

PNDELETE - deletes a line.

PNENABLE - enables a line,

PNDISAELE -~ disables a line.

PNLINE - handles line operational or line inoperative work codes.

PNTMLDLT - deletes a TCB.

'PNI1LLSTAT - formats a status SM.

PNCNTLN - counts trunks or lines.

PNLCR - handles the count line request SM. .

PNSTATE - generates response code for a line status SM.

PN1LNSTAT - formats the line status SM.

PN2LNSTAT - formats the line status SM for a single line,

PNLNSTAT - handles line status SM.

PN1TMLSTAT - formats the terminal status SM.

PNTMLSTAT - handles the terminal status SM.

PNBRDCST - handles broadcast SM (message to all terminals).

PNIBRDCST -~ handles the broadcast 1 SM (message to one terminal).

The following programs are called externally as SVM common programs for
TIPs, the multiplex subsystem, and so forth.

PNPSTAT - generates the periodic statistics SM (one statistics block -
next in the list). . ,

PNDSTAT ~ generates the dump statistics SM (the specified statistics

block).

PNSMGEN - generates an SM,

60471160 A G-27

(*D x1puadde aag)

**" 64 = D45 pue

(8 Jo T 193Yys) S331L WAS

*** gd = Ddd UO paseq YOIJIIMS
Teuaajur ayj 8sed STY] ur - TIVDHd |

S - g s399ys 99§,

(I1QTHLOD
JNOWTHLOD
HTGYNI 0D
FI1IYSIA0D
¥d400)
LIXdvdd - NLUNd
(YIVaIA00D)
GOURLE
(80104 00)
AuoN
_ €2171d02)
QUON -
JIVHEd
- la {(Vvan10d)
BUON - OVININd
(dONINT0D)
(dONIT10D)

‘-9 ainbta

=== LVISANd - IVLSdAWINd -

@I..l

. (dS1IaWsod)
AH Ylllummmmmmmm
TIVOad —
, QUON -~ QVININd—
TIMSEd
BUON ~ YIdIOTNd—
SHAAAJ0Ddd —
Auqullllumzouoszmn.
YHOLOLd —
(nrogvr)
HOIVYASIayr)
TIVAVAHad
(INI¥dYC) F
(aquvosiavr)
NHOTA¥Ad
aseoqnsg
NHOTH¥Ed —
AHVJuuunnlamcumanmuL (L0OWS0D
: (NIWS0D)
QUON - aVdWsSNd
mwmm_U
LIixdadd

(WAS

03 dTM) 'TMWSNd

60471160 A

. G-28

JUON -~

8UON

LIVMOUN —
- dSUYAYNG —

LYLSNTTNd —

A””‘ 7 HOXLTANd —

..l'ng LIYMYNd —

dIi 104

QUON

(LINI

DUON

- dALAdEd—
==" YLWSNd —
= LYLSANd—
AOWITT8d—

NHDTIYEd—]

- dS3AUNd ——

) 10dsTgd—

NHOTIddd—]

- JSYAYUNG —]

4817TH9dd —

(8 3O ¢ 3193ys) S991L WAS °G-9 ainbtg

(suty
aanb1juod
/819qestia)
JdLATIAND

(sutt
ainbijuo))
JANONINd

(sueaboid

WAS-UOU Wo13

A13o911p patteo

Kitensn aae

asay3y {so13s7T

-1930BIRYD BUWI)

‘103e19do woi3z/o3

su ‘10119 HA)D

‘sor3isyieas [ye

° ‘pez1TRTITUT NdN

uuuuu SNODOLNA ‘3ssnbai peor)
° === acemmzmzm.n.._lllazcum Ezmll.@

JES/0d4d pue IIVDEd ybnoiyl yo3lIMs

G-29

60471160 ‘A

@.'l dSIAHSNA

BUON - ASYAYUNA

J911344dd - ‘17I¥04d

(8 Jo ¢ 3193yYys) s83IL HAS

(ejep Aepiaao)
YILVATAONd

*G-n ainbia

HOLTANd —

LIVMYNG —]

{dIL o3) dx1nddd—

NHOTIYEd —

(” J====="QSIaNSNd—
(801_23213p)

SUON - JASYAUNG ABTATHLNG

NHOTIYad—
LINILG —
LUEVYNAEd —

ell._.:zczml

J9TLIOEd —

{d1i 03) dxrnddd—

LXLTa9d —
y10dd —

TIVAYENODDd—

@.||| HOYSHDING —
@4“” HIWSNd —|

BUON - HSUAUNG —

J4TTI9dd ANDTWING

A1as/0d4d buisn T1yDdd ybnoiylz yos3iss

60471160 A

-G=30

(LINI) [L0dSTdd—
YINITIdd—

(41T 103) IndsTad—
NHOTaHEd—

i
i

‘H Ylllllmmanmzmll

(8 3o v 3I93ysg) s931L WAS

(3uTT 31qeUd)

BUON - FASUAUNG— ATIYNAN
@I.ﬂmmgsmzml.
SUON - FSYAYNI—

SUON - NTINONA "OINd
NHOTTUEd—
BUON - LVLSTWITNd—
e.uluu”azzczml
TIVAVANGdd—
| UIWSNd—

@J. dSIAWSNd —] (so13sT3e3S

Teutwiay)
BUON ~ ISUAUNG —

LYLSTWLNG

‘g~-9 aianbrtg

@llaﬁmzq ZNd—

NHOTUdd—

SUON - LVLSNIINd—

..lle ===== LIVMVNd—

TIVAVANGdd —

SUON - ALVISNd—

SUON - NTLNDNI—

snjels auig)

SUON - USHAMUNA

LVLSNINd

J4s8/04d buisn TIvDdd yb

NoOIY3 yo3TMs

G-31

60471160 A

(8 3o G 383yg) s991L WAS °5-9 ainbi1d

NHOTIYEd—

I0odorgad—]

TIVAVI99d—

SYJAHXd00dd

YHILO1Ld — AH v.ll ||||| HILT1ANd —
A ” v'..l. uuuuu dSIUHSNd—1 HINITI9d —

BUON - FSUAUNI— (LINI) 1ndsi1dd—
AT TTIdd — (sTeutwaay A ” v.lllfnn IV LSaNd—]

ITe 03 bBsH)
ALNOUNI — LSoaquand AOWYT1T1dd—

(d11 o) axinddd—

10d018d— @ﬂ.m&:mzml

S01JdXd008d — 9'1{" ATAYNING —
@Jﬂ”:vxmmoazml SUON - IVLSNTTNd—
@.ﬂmmzzmzml) NHOTAHEd —

UON - LIVMDYNJ—
SUON - FASHAUNG—] (Teurwaal @nﬂmmwnzmzml " (309uuoosTp
auo o3 bsy) 10 9tqesiq)

LSOQUETNG SUON - HASYA¥Nd JT4YSIANd

A4T T d—

04S/04d bursn TIYOdd ybnoigy yo3img

60471160 A

G-32

(8 Jo 9 393ys) sea1l WAS °¢-H @inbrg

J91Ta849d —
avo1dd —
HOUSZNd — (butwrl/3798) LNdSTdd—]
arroznd gOLONd BUOU - LYLSTWLINd —
(InosuT3-37195) LNds1dd— (319s8) Lnas1dd—
(31°s) IndsTdd— SYJdZxd00dd —]
S¥JIdXd0o0dd — - auou - LVLSTTINd—
YHILOLd —] Jd9T11I39dd — (3soy o3 us
sajeiIauan)
NHDTaddd — TIVAVANGdd NIDWSNI
QUON - AVENINd~——] {butwyy {(so13s13e3s
woij Tred) O1potT1aqg)
L39s74d OLWSNd AHUYunnun:a<amnzm IVILSdNd

STTEeO TeUIS3X3 3D31Tp J0J ATSATSN[OX3 SaUTINOJ 90TA19S Se dpTaoid SaUTINOT WAS

G-33

60471160 A

(8 Jo [398ys) 59911 MHAS

dTMSdd —

9UON - LYILSdWENd—

(HAS) Inds71dad—

BUON - HLALOTNd—

SY44Xd00d9d— -

TIVAVAHEd —

NHOTAUNd—
QIVOSIANd—
SUON -~ JVHHSNd—

YHOLOLd—

(WS puag) mmE:mzml@

(HAS) INdSTdd—

ECIGETCESS
JATII98d—
TIVAVAadd—
(so13s13e3s dung) s<amnzml®

*g-9 9anb1d

(329ys puooas 33Sg) QUYDS

(WIL) INdST€d—

(” J====="ds IaNSNd—
w

i

NHOTAYEd—
1

SUON - LVISNTINd—
]
i

JATIFDRE—
i

IIVHEd—|

H
SUON - AVENINd—]
|
(dONI/d0 8uty) - INIINA

¥14108d

SuaAdxd008d

(8Tosuod ndN 3e b6sw burletdsid) - SNOJOINA

60471160 A

|AMHV

-

IaNd |@

G-34

LIXdvead

(8 Jo 8 3I93yg) 8391 WAS

QUON - LVLSNITNd

BUON - JLVILSNd

NHOT3¥ad

‘ ” ' ====="dSIAWSNd

SUON - QVdaNINd

JETTIddd—

‘ ” v =====" LVLSONd —

LUEYdNgd —

LYgYNadd —

LTAIIANd —

LIXIAVEd—

(3198} INndsTad—

LIXagdd—

(butwil WAS) IndsTdd—

NHOTIHYdd —

(burwry) IID5TAd—

NIYUNd

LYLSNIZNG ll@
mUxmmUaﬁm'@

HOLTANd ||©

LIVMYNG é

YLWSNd '.@

*G-9 aanbya

(d11) ¥Zaxad —

LINILd—

Luavdndd —

JHgYNadd—

JavyIaNg —

LTI IANd —

LITVYHEd —

ALNOYUNG —

THOLSNg —

(€D e
FUNO

Brzuo))

IdINOONd I@

NHOTTYHd

qmmozm:l*muv

G-35

60471160 A

PRINCIPAL DATA STRUCTURES H

This appendix lists and describes the principal data structures in CCI. It
is intended for use with a link edit or cross-reference listing.

Because PASCAL definitions can occur in three stages (types of structure,
variables using these types, and values of constants assigned to type/
variable fields), the tables discussed in this section are defined with the
type definition. Mnemonics for variables assigned to the same fields vary
somewhat. The listing should be consulted for the correct variable name.
Wherever the variable name is frequently used, this name is also given in
this appendix.

In some cases (such as the structure for service messages) the data
structures are already described elsewhere. 1In these cases, the reader is
referred to another location in this manual or in the CCI reference manual.

60471160 A H-1

CONTENTS

Bits, Words, and Pointers H-4
Bit Definition H-4
Word Structures H-4

Characters (2/word) H-4
Integers (1l/word) H-5

Four Hexadecimal Numbers/Words H-5

Flag Word (16 flags/word) H-5

Line Timing ' H-5

Masks H-6
Character Masks H-6

Bit Masks o H-6

Pointer Definitions (BOINTPTR) H-6

- Variable Word Definitions H-6

Multiword ASCII Set H-11

Hardware Related Tables H-11
Register Designation H-11
Register Save Area H-11
Coupler Related Constants H-11

Q and A Register Load Area, NGAQLT H-12
Hardware Lines and Associated Software Priorities H-13
NPU Console H-14
Logical/Physical I/0 Request Packet, JCPACKET H-14
Device Controller Table, JACONTROLLERTABLE H-16
I/0 Response Codes, JOIORESP H-18
Director (Controller) Function Codes for the 1713 TTY E-18
Special TTY (Console Keyboard) Characters H-18
Halt Codes H~-19

Block Protocol H~-19
Block Protocol Constants H-19
Block Type H-19
Block Byte Sequence H=-20
Field Bit Start Position in Byte H-20
Block Type (BT) Byte H-20
Data Bytes H~-21
Data Block Clarifier, DBDBC H-21

Character H=-22
Downline DBC H-22
Upline DBC H-22

Directories/Internal Processor/Common TIP Routines H-23

Type 1 and Type 4 Tables H-23
Type 1/Type 4 Table Entries, BRDIRCTRY H-23
Type 4 Table List Search Control Block, LSRCHCB H-23

POI Interface Values H-23

Common TIP Routine Structures H-24

TIP Type Table, TIPTYPE H=-25

Base System Software H-26
Buffers H-26

Buffer Maintenance Control Block, BECTRL H-26
System Buffer, BOBUFFER H-27
Buffer Constants BH-34
Buffer Stamping Area, BYSTAMP H-35
Copy Buffer Parameters, JTCOPYB H~35
Buffer Threshold Levels, BOBUFLEVELS H-35

Worklists H-36
Intermediate Array Format, BWWORKLIST H-36

H-2 60471160 A

Multiplex Event Worklist Queue Types, MMEVENT H-37

Service Module Type Worklist Entry Formats, CMSMWLE H-39
Worklist Control Block, -BYLISTCB H=-40
OPS~Level Worklist, BOWKLSTS . ."H=40
OPS-Level Work Codes, CMWKCODE e E=41
Multiplex Event Work COGes o , , H-43
Monitor Tables o : : H-44
PGMSKIP e H-44
BYPGMS e H-44
SMONT) H-44
CBSYTMT H~-44
Miscellaneous H-44
System Interfaces H-44
System Interface Table, SITTBL H-44
‘Firmware Entry Points H-46
Low-Core Pointers H-46
Timing Tables H=~47
RTC/Autodata Transfer Table, CICLKADT ’ H-47
One-Second Clock, CASECNTR H-47
Line Timing Control Table, BLTIMTBL H~-47
Periodically Executed Programs, CBTIMTBL H-48
Time of Day Tables, CADATE H-49
Loop Forever Instruction H-49
Regulation H-49
Input Regulation Option for PTREGL, REGLTYPES H=-50
Control Blocks H-50
~Statiec Logical Link Control Block (LLCB), BOSLLCB H~-50
Line Control Block (LCB), BZLCB] H-51
Terminal Control Block (TCB), BSTCBLK H-55
Multiplex Subsystem H=-61
Multiplex Command Driver Packet, NEKINCOM H-62
Multiplex Line Control Block (MLCB), NCLCB, Text
Processing Control Block (TPCB) H-64
Port Table (NAPORT) H-69
Line Tables H-70
Multiplex Line Type Table, NBLTYT H-70
Line Types, NOLTYP H-71
Asynchronous Line Speeds H-72
Line Number Field, BOLINO H-~72
Multiplex Character Transmit Characteristies Table, NICTCT H-72
CLA/Modem Tables H-73
Modem/CLA Relationships H-73
CLA Types H-74
CLA Commands and Status H-74
Control Command Sequence Word, NDSEQE H-74
Multiplex CLA Command Status Table Entries, NFCCSE H-74
CLA Status Condition Indicators, MOSCTYP H-78
Modem Control States H-78
Modem State Programs H-78
Terminal Tables H-78
Terminal Characteristics Table, NJTECT H=-78
Terminal Classes H-80
Terminal and Devxce Types - (TT/DT) H-80
Service Messages , , , . .H=-82
FN/FV Data Structures ') H-82
Field Description Table, DDFDTRECORD . s H-82
Action Table Entries, DFATENTRY o . H=-82
Halt Codes H-83

60471160 A _ H-3

BITS, WORDS AND POINTERS

_BIT _DEFINITION

Thé following labels define the bit structure for NPU words.

Bit 15 , , L ~ 0

Word
Mnemonic Bits Decimal Range
BO1BIT 0 0-1
BO2BITS 0-1 0-3
BO3BITS 0-2 0-7
BO4BITS 0-3 0-15
BOSBITS 0-4 0-31
BO6BITS 0-5 0-63
BO7BITS 0-6 0-127
BO8BITS 0-7 0-255
BO9BITS 0-8 0-511
BO10OBITS 0-9 0-1023
BO1l1BITS 0-10 - 0=2047
BO12BITS 0-11 0-4095
BO13BITS 0-12 0-8191
BO14BITS 0-13 0-16383
BO15BITS 0-14 0-32767

The bit elements that make up the l1l6-bit NPU word are as follows:
ELEMENTS = (BIT 0, BIT 1, BIT 2, BIT 3, BIT 4, BIT 5, BIT 6,
BIT 7, BIT 8, BIT 9, BIT 10, BIT 11, BIT 12,
BIT 13, BIT 14, BIT 15)

Bit 0 is least significant bit; bit 15 is most significant bit.

WORD STRUCTURES
Mask Word
SETWORD = SET OF ELEMENTS

Bit set allows corresponding bit to be inspected (logical AND)

Characters (2/Word)
15 7 0
D

CHAR CHAR

 Array of up to 131K characters
BOCHRARAY = PACKED ARRAY (BO15BITS) OF CHAR;

H-4 60471160

Integers (1/Word)
Word -array of 65K words

BOINTARAY = ARRAY (BO15BITS) OF INTEGER:

Four HexadammlNummord o

BOHEX = PACKED RECORD
BOHl, BOH2, BOH3, BOH4: BO4BITS

END:

BOH1 BOE2 BOH3 BOH4

Flag Word
Sixteen flags are packed in one word.
BOFKAGS = PACKED RECORD
BOBl1l5, BOB14, BOB1l3, BOBl2, BOBll1,
BOB10, BOBY BOB8, BOB7, BOB6,
BOBS5, BOB4, BOB3, BOB2, BOB1l, BOBO: BOOLEAN

15 0

| L——BOlS BOBO——J

Sixteen flags with mnemonic corresponding to bit positioh of flag in word.

Line Timing
BZLTIME has three values, packed as shown. The count increments are in half
seconds.

15 14 1 0
I—E“l BLTRESET BLTIME

LOutput buffer terminated (OBT) [-Timeout field count
reset value -

- BLTCONT - firmware contention flag:

MASKS

The principal masks are for single characters and single bits.

60471160 A ‘ . H-5

Character Maasks

Left byte, BYOMSK

13 7 :
All 1's k All o's . . .}
Right byte, BYIMSK
L3 7 0
All 0's All 1's

POINTER DEFINITIONS {BOINTPTR)
Pointers are all one word (INTEGER) type.

Pointer

BOINTPR
BOQPTR
BOBUFPTR
BOHEXPTR
BOREGPTR
NOLCBP
BZLCBP
BODCBP

Control Block

or Buffer Meaning

INTEGER Integer pointer

BOCBENT Queue control block pointer (QCB)
BOBUFFER Buffer pointer for general buffer
BOHEX Hex pointer

BOREGSAVE Register save area pointer

NCLCB Multiplex LCB (MLCB) pointer
BZLCB LCB pointer

NZDCB Diagnostic control blk PTR.

VARIABLE WORD DEFINITIONS

The universal word overlay has many variations. Each variation is of the
most frequently used type. Thus, by overlayving the universal overlay over a
variable, the variable can be accessed in a variety of formats.

15 7 0
0 BACHARS CHAR 1 BACHARS CHAR 2
type: CHAR: length 1 to ALFALENG
15 0
0 BABOOL
type: BOFLAGS - up to 16 flags
60471160 A

15

0 BASET
type: SETWORD = mask
15 v
, e
0 BASETN
type: SET of 0 through Fj¢
15
0 BABUFBTR
type: BOBUFPTR, buffer pointer
15
0 BAINT
type: INTEGER, full word integer
15
0 BAWLCODE
type: BOWLCODES, worklist code
VARIANT:
15 7
0 BALCHAR BARCHAR
type: CHAR, left and right characters
VARIANT:
15
0 BACORE
type: BOHEXPTR, hexadecimal pointer
VARIANT:
15 11 ' 7 3
0 ""BAHEX ‘
type: BOHEX, 4 hexadecimal digits

60471160 A

VARIANT

15 _ 0
o | 'BAINTPTR
type: BOOINTPTR, integer pointer
VARIANT:
15 0
o BAREGPTR
type: BOREGPTR, register pointer
VARIANT:
15 7 0
0 BALBYT BARBYT
type: BO8BITS, integers in left and right bytes
VARIANT:
15 0
0 BA1BOL
type: BOOLEAN, uses only bit 0
VARIANT:
15 0
0 BAQPTR
type: BOQPTR, gqueue pointer
VARIANT:
15 0
0 BABUFSIZE
type: BOBUFSIZES. Index to size of buffer (1, 2, 3, 4)
for the network. Nominal sizes: 8, 16, 32, 64
correspond to values 1, 2, 3, and 4.
VARIANT:
15 0
0 BAWKLST
type: ~BOWKLSTS. ~Worklist “index: Entries in~“the monitor
table as shown in section 5. .Uses.only bits..0
through 4. B ' .
H-8 60471160 A

VARIANT:

15 0
0 BALTYP
type: NOLTYP, Line typé. See table C-3. Uses only bits
0 through 3. .
VARIANT:
15 0
0 BALINO
type: NOLINO. Line number. Used to index LCBs.
VARIANT:
15 0
0 BALCBP
type: BZLCBP. LCB pointer,
VARIANT:
15 0
0 BATTYP
type: NOTTYP. Terminal type. See appendix C.
VARIANT:
15 0
0 BA1CHAR
type: CHAR. Right character. Uses full word with
character right-justified.
VARIANT: BACHROVLY
15 6 3 0
0 BAPAD BAINDEX BABITPOS
type: Three fields together make a pointer to an ASCII

60471160 A

character in the ASCII/binary conversion table. See

appendix A. Used in firmware code conversion tables,

wagzshown in f_a‘sgemb’ly;tf:lii?stfj.:ﬁgg"f’::ffi:ir:t,',""

VARIANT:

15 - 11 _ 8 ___ 0

N BA15T012 ... BACPOC BACPLN

type: Two fields (leftmost field is spare). BACPOC is

the coupler orderword code and BACPLN is block
length, used by the HIP for threshold checks and for
computing the number of buffers needed for an input

block.
VARIANT:
15 6 0
0 BASP9 BA7BITS
type: fields: variants 24 and 25 are used ﬁogether as an
18-bit address. BA7BITS is upper 7 bits, BAllBITS
is lower 11 bits of address.
VARIANT:
15 10 0
0 BAPAGE BAllBITS
BAPAGE is the page number: range 0 through 31.
VARIANT:
15 . ' 0
0 BAPGM
type: BOPGM. Used by TUP to index into the OPS monitor
table. Uses only bits 0 through 4.
VARIANT:
15 0
0 BALIO
type: JOLIO. Console logical I/0O index. Uses only bits
0 through 3. .
VARIANT:
15 0
0 BABLKTYPE

type: BLKTYPE. Block type (BT) field in the block header.
Uses lower 4 bits.

B-10 60471160 A

VARIANT:

15 0
0 ‘ BACTCT

type: NICTCT. Entry in character transmission table (NICTCY).

MULTIWORD ASCH SET

JSASCIISET = ARRAY (303BITS) OF SET OF B04BITS:
This is an 8-column, l6~row array of 8-bit characters. The 8 by 16 array

completely defines the full l28-character set (as well as the 96-character
subsets) for ASCII. See appendix A of the CCI reference manual.

HARDWARE RELATED TABLES

This subsection describes hardware registers and lines which are not handled
by the multiplex subsystem.

REGISTER DESIGNATION

This sequence defines the principal 255X hardware registers: R1-R4, Q, A,
I, M, overflow. Extra is a dummy register.

BOREGISTERS = (BOEXTRA, BORl, BOR2, BOR3, BOR4, B0Q, BOA,
BOI, BOM, BOOFLOW)

REGISTER SAVE AREA
BOREGSAVE = ARRAY (BOREGISTERS) OF INTEGER

Register Saved

15 . 0

Word 0 BOREGSAVE -
Rl
BOREGSAVE (ARRAY) Rg
A
. I
M

9 BOREGSAVE ELEMENT- 10— Overflow

COUPLER RELATED CONSTANTS

The coupler codes used by the various coupler registers are described in
section 7.

60471160 A H-11

Mnemonic Value

Coupler Functions

(hexadecimal)
ACPICS 50
ACPIOW 60
ACPONS 48
ACPOBL 58
ACPCLR ocC
ACPOMA 6C
ACPRMA 10

{end hexadecimal)

Data Transfer Status Commands

AIDLE 1
AAQUTPT 3
AAREADY 4
AANREADY 7
AINPSB 13
AINPLB 14
AINPPU 12

Coupler Condition States

AQPTO
AOPT1
AQPT2
AOPT3
AQPT4
AQPTS
AOPT6

AL WNHO

Coupler Timeout vValues

AIDLETO 3
ADEADTO 60

Q and A Register Load Area, NGAQLT

Meaning

INPUT COUPLER STATUS

INPUT ORDERWORD

OUTPUT NPU STATUS

OUTPUT BUFFER LENGTH

CLEAR COUPLER

OUTPUT MEMORY ADDRESS

READ MEMORY ADDRESS REGISTER

IDLE STATUS

OUTPUT DATA AVAILABLE

READY TO ACCEPT QUTPUT DATA

NOT READY TO ACCEPT OUTPUT DATA
INPUT AVAILABLE - SMALL BLK OR MSG
INPUT AVAILABLE - LARGE BLK OR MSG
INPUT AVAILABLE - PRU BLOCK

IDLE STATE

IDLE INQUIRY SENT
INITIATED INPUT

INITIATE OUTPUT

OUTPUT IN PROGRESS

READY FOR OUTPUT DELAY
NOT RDY FOR QUTPUT DELAY

IDLE TIMEOUT = 1 TO 1 1/2 SECONDS
DEADMAN TIMEOUT = 30 SECONDS

One word is provided for commands (Q register) and two variants are provided

for data/subcommands (A register).

The NPU console uses the A/Q channel for

I/0. These are used only for the command driver.

~- Commang--(Q)-

15

0

0 r- NGPORT - Port Number

NGCMD - 1I/0 device commana'

H-12

60471160 A

Subcommand (A)

15 7 0
0 r-iNGLTYP - Line Type NGCNT - Count of characters being sent

Universal Overlay

- i 0
0 r— NGINT - Integer '

Hardware Lines and Associated Software Priorities

Hardware Software
Line No. Priority Description of Interrupt

0 Pl Internal (parity and protect, power)

1 P6 Teletype (NPU console)

2 P2 Multiplex loop error

3 p3 Multiplex Level 2

4 Plé 1742-30 line printer (for console - not
used)

S PS Spare

6 P7 ‘ cﬁupler

7 P8 Spare

8 P9 ‘ Real-time clock

9 P10 1742 line printer (for console - not used)

10 Pll Spare

11 Pl2 ; Spare

12 P13 MLIA ODD (parallel for all NPU ports)

13 P14 MLIA input line frame (parallel for all NPU"
ports)

14 P15 Spare

15) - Hardware breakpoint

Te T '“517 WU;;MQPSfiéveifP:déyamsf

JRMASK defines the array of 17 priority level masks (BOPRILEVEL) associated
with these interrupts. Priority 1 is highest; priority 17 is not associated

with any interrupt driver.

604711602 H-13

NPU CONSOLE

The NPU console has two levels of data structures.

° The request packet from the user (logical request packet, LRP)
establishes the message transfer parameters. The LRP is converted to
a physical request packet (PRP) by the console driver so that the
user does not need to concern hlmself with terminal physical
characteristics.

) The device controller table provides parameter storage for the A/Q
transfer between NPU and console device. One such controller table
is provided for each device associated with the NPU console.

In addition, the console driver for the device must:

) Recognize the A/Q line responses.

° Provide the controller functions in the form recognized by the
controller (bits set).

® Recognize special characters that are used by the console for mode or
message control.

LOGICAL/PHYSICAL |/O REQUEST PACKET, JCPACKET
These two packets share the same format. The packets .are used to pass

requests to the NPU console and are the logical equivalent of the LCB/TCB
for remote terminals.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 JCCOMMAND - I/O command JCCOMPL - I/O completion code

1 |P1|P2|{F3|F4|{PS5|F6|F7|F8|F9| F1l0|F11|F12|F13|F1l4|F15|F1l6

2 gsglgaigzig:l JCPD - Physical device code (bits 7-0 only)

3 JCUSERWD - User word

4 JCPOINTER - Pointer to tag or first buffer

5 JCBUFSZE - Pointer to buffer control block

o |acomioons. | RS s [P17| [0 resue cone
(bits 3-0 only)

7 JCRETRYCNT - JCRECDSZ; - JC@LKSZE - block size

Retry count Record size (bits 3-0 only)
8 JCSTATUS - Physical device status

H-14 . 60471160 A

Fl
F2
F3
F4
F5
F6
F7
F8
F9
Fl0
Fll
Fl2
F13
Fl4
F1l5
F16

F17

JCRELBUFLG, release output buffers
JCRELPRFFLG, release physical request packet (PRP)
JCNOBUFLG, I/O not in buffer

JCSP1l, not used

JCPRIFLG, priority output

JCTRANSPFLG, transparent data

JCGETBUFLG, get buffers for input
JCRESETFLG, reset wait I/O bit
JCCHAINFLG, chain messages

JCSTACKFLG, stack this completion request
JCENDSTACKFL, end of completion stack
JCBATCHFLG, batch this request
JCENDBATCHFLS, last request in batch
JCSP2, not used

JCIMMEOFLG, perform immediate output

JCCOMFLG, call PBDRCOMPL, the console common driver
completion routine

JCOPCODE, worklist OPS code

The following constant values are assigned to the LRP/PRP fields indicated.

Mnenomic Value Meaning : Type
J3READ 0 Console read ' 1/0

. .J3WRITE 1l Console write - commands
J 3NOCOMPL 0 Failed to complete } Corpletion
J3 0 Not used (JCCOMPL)
J3ACCEPTED 0 LRP accepted .
J3REJECTED 1 LRP rejected
J3ERR1 2 All retries attempted ?gggégugg?es
J3ERR2 3 More retries can be attempted
J3COMPLETE 4 LRP completed
J1PRIWL 1 Pricr@ty worklist two console 3§§K§§st
J1REGWL 0 No priority worklist queues priorities

60471160 A H-15

Functions (JCLIO field) are:

JOLIO = (J2S8JPIN,

Mnemonic Value Console Mode

1 SUPERVISORY INPUT
J2SUPOUT, 2 SUPERVISORY OUTPUT
J2ALM, 3 ALARMS
J2REP, 4 REPORTS
J20RD, 5 ORDERWIRE -
J2DIAG, 6 _DIAGNOSTICS
J2TUPINPUT, 7 TUP INPUT
J2TUPOUTPUT, 8 TUP OUTPUT
J2TUPDUMP, 9 TUP DUMP
J2SNP1, 10 SNAPSHOT 1
J2SNP2, 11 DUMP REGISTERS
J2SNP3, 12 PRINT BREAKPOINT ADDRESS
J2SPARE, 13 SPARE
J2QUICK, 14 QUICK I/0
J2Ws1, 15 WRAP-SNAP 1
J2LAST) ; - DUMMY

Device Controller Table, JACONTROLLERTABLE

The device controller table is used by the modules comprising the NPU
drivers.

H-16

o ~ o un

10
11
12
13
14

One controller table is used for each console device (i.e., TTY).

15 0

JASTATUS ~ Physical device status

JACRUREQ - Pointer to current I/O request

JAIOBUF - Pointer to I/0 buffer

JAINPROGFLG - I/O in progress flag

JABUFXZE - Pointer to I/0 buffer control block

JACHRCNT - I/0 character count

JATIMER - I/O timer - half seconds

JATIMOUT - Timeout count - half seconds - 5 minute overflow

JAREJECT - Rejected transfer count

JABADINT - Bad interrupts count

JARETRY - Retry I/O count

JAQVALUE - Q register contents for last I/O transfer

JAAVALUE - A register contents for last‘I/O count (data)

JAREADFLG - Last I/0 type flag; 1 = read, 0 = write

JAMASK - Mask out device for DRSTARTIO

60471160 A

sun

i15

15

JAIOWL - Driver worklists, used for PBLSGET and PBLSPUT

JAIOWL (ARRAY))

16

I/0 worklist
JAIOWL ELEMENT 2 }

17

JAAUTOFLG - Automatic output flag

18

JAFRSTFLG - First character of message plan

19

JAINTFLG - Message interrupted flag

20

JAMODEFLG - Mode change flag

21

JACHFLG - Console input message flag

22

JACURIBP - Current input buffer pointer

23

JAOLDIBP ~ First input buffer pointer

24

JAQCHOSEN - Queue chosen

25

JADROPQ - Interactive queue

26

JAERRCNT - Error count

Words 17 through 26 are used only for the display/keyboard.

-~ JAINPROGFLG - Only bit 0 is valid
.. JAAVALUE - Only bits 7 through 0 are valid
- JAREADFLG - Only bit 0 is valid
JAIOWL - Only bits 4 through 0 are valid
JAAUTOFLG - Only bit 0 is valiad
JAFRSTFLG - Only bit 0 is valid
JAINTFLG - Only bit 0 is valid
JAMODEFLG - Only bit 0 is valid
JACHFLG - Only bit 0 is valid

60471160 A

H-17

1/0 Response Codes, JOIORESP

These are hardware responses checked by the console I/0 drivers when reading
or writing a character.

EXTERNAL REJECT
INTERNAL REJECT
REPLY

JOXREJECT 1
JOIREJECT 2
JOREPLY) 3

Director (Controller) Function Codes for 1713 TTY

BIT 15, 14 - BAUD RATE SELECTOR; 0 = 110, 1 = 300, 2 = 1200, 3 = 9600
BIT 13 - DISCONNECT PRINTER

BIT 12 - §-BIT WORD

BIT 11 ~ DE-SELECT PARITY

BIT 10 - CONNECT PRINTER

BIT 9 ~ SELECT READ MODE

BIT 8 - SELECT WRITE MODE

BIT 7 - NOT USED

BIT 6 - ADT MODE

BIT 5 - NOT USED

BIT 4 - INTERRUPT ON ALARM

BIT 3 - INTERRUPT ON END-OF-OPERATION
BIT 2 - INTERRUPT ON DATA

BIT 1 - CLEAR INTERRUPT

BIT 0 - CLEAR CONTROLLER

Multiple functions are accepted by the controller; they are defined as
follows:

TTYCLR, - TTY clear interrupt, clear controller

TTYREAD, - TTY select read mode, alarm interrupt, data interrupt
TTYRITE, - TTY select write mode, no interrupt

TTYWRITE, - TTY select write mode, alarm interrupt, data interrupt

TTYEOP: CHAR: Clear interrupt select EOP interrupt

Special TTY (Console Keyboard) Characters

H-18

Character
Definition Keyboard Character/Use
(CHAR)

JICR, CARRIAGE RETURN
J1LF, LINE FEED
J1CTLH, CONTROL H - TREATED AS BACKSPACE
J1BCKSPCE, BACKSPACE
J1TUPEOM, /TUP MESSAGE EOM
J1TUPCAN, QUESTION MARK TUP CANCEL INPUT
J1ENTERTUP, CONTROL A ENTER TUP MODE
J1LVETUP, CONTROL D LEAVE TUP MODE
J2ENTERMP, ESCAPE “ENTER MAINT PANEL MODE
J2LVEMP; LEAVE: MAINT PANEL MODE
J1ICR, REPLACE WITH CR CONTROL SHIFT N,
J1ILF, REPLACE WITH LF CONTROL SHIFT M,
J1IDISCARD, DISCARD CONSOLE INPUT ‘

J1SYSEOM

CONTROL D SYSTEM EOM

60471160 A

Hait Codes

The NPU halt message is sent to the NPU console. The halt codes are
described in The CCI reference manual.

BLOCK PROTCCOL

The block protocol defines the byte structure used to transmit blocks
between the host and the terminal mode of the NPU., Blocks are composed of
buffers with one or more chained buffers. Each buffer in the chain requires
a buffer header and (except for the last or only buffer case) a buffer
pointer for chaining. All other bytes can be used for the message.

See section 6 for block protocol discussion.

BLOCK PROTOCOL CONSTANTS

The block header occurs at the start of the buffer, following the bytes
reserved for the buffer header (four bytes). An additional four bytes are
reserved for data block headers, starting with DBC.

_Bytes
bN | sN | cn ng/ DBC DATA
S e

-

Block header

BT - block type; BT uses bits 3-0 only.
DBC - data block clarifier; if present, it is the first data byte.

BLOCK TYPE
Mnemonic Value Block Type Meaning

BT - bits 3 through 0 of P/BSN/BT byte

HTBLK 1l Block

HTMSG > Message } data transfer blocks

HTBACK 3 Back - acknowledgment

HTCMD 4 Command - used for service messages and data/

stream control

60471160 A H-19

BLOCK BYTE SEQUENCE

Byte position assumes buffer header and link header. Bytes are numbered
starting at 1 in the upper byte of word 0 of the buffer.

Byte

Mnemonic Position Byte Use

DN 6 Destination node

SN 7 Source node

CN 8 Connection number

BTPT 9 Block type/packet type

Pl 10 Parameter 1 (DBC if data instead of parameter)
P2 11 Parameter 2 \

P3 12 Parameter 3

P4 13 Parameter 4

P5 14 Parameter 5

P6 15 Parameter 6

P?7 16 Parameter 7

P8 17 Parameter 8 Data can start at any
P9 - 18 Parameter 9 parameter position; it
P10 19 Parameter 10 > must start at the byte
Pll 20 . Parameter 1l following the last

P12 . 21 Parameter 12 parameter used.

P13 22 Parameter 13 .

P14 23 Parameter 14

P16 25 Parameter 16

P18 : 27 Parameter 18

P20 28 Parameter 20

P24 33 Parameter 24

FBYTE DN FCD for first byte of data

BLOCK DN FCD of first byte of block header

FIELD BIT START POSITION IN BYTE

Binary
Mnemonic Value Starting Bit
FSO 1 bit 0
FS1 2 bit 1
FS2 4 bit 2
FS3 8 bit 3
FS4 10 bit 4
FS5 20 bit 5
FS6 40 bit 6
FS7 80 bit 7

BLOCK TYPE (BT) TYPE

The fourth byte of the block header can have two forms:

‘H=20 60471160 A

By te BTBSN BTYPE = BLKTYPE 1

[_- I---—-Block type, range 0 ~ 14

Block serial number

BTPRID - Priority designator

Byte CHAR = BLKTYPE 2

Character

DATA BYTES
Position of Byte in
Mnemonic Data Part of Message Meaning
DBC Pl =1 Data block clarifier (control
flags for the data that
follows)
TIME P2 = 2
STMP P3 = 3 .Stamp
LVLN P4 = 4 Level numbers
DATA P5 = 5 Data bytes (can begin at
positions 1 through 5)
DWORD1 6
DWORD 2 7
DWORD3 8
DWORD4 9
DWORDS 10
DWORD6 11

DATA BLOCK CLARIFIER, DBDBC

The DBC is often used as the first byte of the data header in a message. In
the definition, it is right-justified in a computer word. Six DBC variants
are provided.

604711602 . B=21

15 7 0
0 l DBDM1 - Not used DBCHAR - Character
Downline DBC
15 7 6 5 4 3 2 1 0
0 DBDLFILL Fl F2 F3 F4 F5 F6 F7 F8
Fl1 - DBDLS1, spares
F2 - DBDLS2, spares
F3 - DBDLS3, spares
F4 - DBDLS4, spares)
FS - DBDLFE, format effectors used
F6 - DBDLXPT, transparent data
F7 - DBDLSS, spare
F8 - DBDLAUTO, autoinput block
Upline DBC
15 7 6 5 4 3 2 1 0
0 DBULFILL F9 F1l0 Fl1l F12 F13 Fl4 F15 Fl6
F9 - DBULS1l, spare
F10 - DBULS2, spare
F1ll - DBULS3, spare
Fl2 - DBULS4, spare
F13 - DBULSS, spare
Fl4 - DNULXPT, transparent data
F15 - DBULCAn, cancel data
Fl6 - DBULPERR, parity error
15 , 5 3 2 0
0 DBSPl1 - not used DBCCF | F17 | DBDBT
DBCCF - Code conversion
F17 - DBBSF, backspace present
DBDBT - Data clarifier, see section 6, block description
Batch data
F;S -7 6 5 1 0
0 PDPM1 - not used Fl8 Fl9 PDSP1 - not used F20 F21
Fl18 - PDPRUB, physical record unit block .
F19 - PDBANB, banner block
F20 - PDEOI, message contains an EOI
F21 - PDXPAR, transparent data
H=-22 -60471160:

Batch data

.15 , 7 6 5 4 o3 2. 1 0
0 DBF1 - not used F22 F23 F24 | F25 | F26 | F27 | F28 l F29
F22 - DBPRUB, phy51cal record unit block
F23 - DBBANNER, banner message
F24 - DBSP2, not used
F25 - DBSP3, not used
F26 - DBSP4, not used
F27 - DBSP5, not used
F28 - DBEOI, block contains EQI, 0: block contains an EOR
F29 - DBCXPT, transparent data

DIRECTORIES/INTERNAL PROCESSOR/COMMON TIP ROUTINES

The internal processor includes the POIs and various switching routines.
The routing routines use the LCBs as directories; the routines also use
directories built in type 1 and type 4 tables. See section 6 for routing
and POI descriptions.

TYPE 1 AND TYPE 4 TABLES

Typs 1/Type 4 Table Entries, BRDIRCTRY

These are indexed tables with a pointer associated with each index. Two
words/entry: word 1 has the index right~justified; word 2 has the
associated pointer. The routing directories use the following type of
table:

15 7 0
r-;RLF'I'_BYTE BRID - index ~ Left byte is optional

- Searching routine returns this
pointer to the table user

BRPTR -~ pointer

Type 4 Table List Search Control Block, LSRCHCB

15 -0
LSCOUNT - Entry count for this buffer
LSBUFPTR - Pointer to current buffer

- PO INTERFACE--VALUES .-

B1TCB: BOBUFPTR POINTER TO A TCB
B1BUFF: BOBUFPTR DATA BUFFER POINTER

60471160 A H-23

COMMON TIP ROUTINE STRUCTURES

TIP CONSTANTS

Mnemonic

Mode 4 TIP

CI9M4LCA
CI9M4UCA

CIMALTA
C9M4TUA

TTY TIP

GOKEYBRD
GOAUTO
GOTAPE
GOOUTPUT
G0I0UT

Value

2016
P16

601¢
6P1¢

W0 00 &

Meaning
. Lower
Cluster address (CA) { Upper
. \ Lower
Terminal address (CA) Upper

INPUT STATE - KEYBOARD
INPUT STATE - AUTO REC
INPUT STATE - PAPERTAPE
QUTPUT BREAK DETECTION
INITIAL OUTPUT

INPUT STATES POINTER TABLE SIZE: O ... 80.

One such table exists for each TIP.

are discussed under service messages.

limit
limit

limit
limit

ACTION TABLES and TIP TYPE/SUBTIP TYPE

‘H=24

60471160 A

TIP TYPE TABLE, TIPTYPE

This table contains one entry of each interface package 1n a system (TIP, or"

THIPYS

“The local console, MLIA, line 1n1t1allzer, and on-line dlagnostlcs

are also included. The table f;elds are unique to each TIP.

Pointer to the table is BJTIPTYPT.

10
11
12
13

Flags

15 14 13 12 8 6 4 0

BJLISTIX Worklist

Fl F2 F3 BJIVTSIZE BJTCBSIZ BJQTYPE Monitor Table Index

BIDFTC - Default terminal class when enabling line (see appendix C)
bits 0 - 4 only

BJPTIMRTN - TIP TIMAL routine page address

BJETIMRTN - TIP TIMAL routine entry address

BJJFDT - TCB field descriptor table address

BJFDT - LCB field descriptor table address

BJJAT - TCB action table address

BJAT - LCB action table address

BJTPMUX2 - TIP level 2 (multiplex interrupt entry) page address

BJTEMUX2 - TIP level 2 entry address

BIJTCBPINIT - TCB initialization routine page address

BJTCBEINIT - TCB initialization routine entry address

BJTXTPAGE - Text processing page address

BJTXTENT - Text proéessing routine entry address

Fl - BJOBT, generates output buffer terminated (OBT) flag

F2 - BJBZL, resets timer flag when OBT occurs

F3 - BJSPl, not used

BJQTYPE - TCB buffer size (0 = 8, l =16, 2 = 32, 8 = 64 in nominal

system)

60471160 A : HB~-25

BASE SYSTEM SOFTWARE

The base system datgustructures,support‘the_following functions: ..

e Buffer assignment, release, and copying

@ Worklist assignment and control

e Monitor table use

) Finding system interface locations
° Low-core pointers

e Timing

e Masking

® Input regulation

® Control block support (setting up control blocks is a service
module/TIP responsibility)

e Multiplex. subsystem operators

BUFFERS

The principal buffer structures are as follows:
e A control block for each pool of free buffers
e Definitions of each type of buffer assigned

° The optional stamping area which contains two words for tracing
buffer use

) A copy buffer input parameter list used by the copy buffers routine,
PBCOPYBFRS

There are four buffer sizes. In the normal systems, the buffers are
assigned as shown:

B0SO - 8 words
BOS1 - 16 words
B0S2 -~ 32 words
B0S3 - 64 words

Buffer Maintenance Control Block, BECTRL

This control block contains all the necessary information for allocating and
releasing system buffers. There is a control block for each of the four
free buffer pools. Each control block is initialized by PIBUFl. Firmware
subroutines allocate and release the buffers.

H-26 60471160 A

15 14 7 : 0
p——

0 F1l-|-BEBAC -~ Number -of bufferjcurréntly,available for assignment

1 BENFB - Next free buffer location

2 BELFB. -~ Last free buffer location

4 BELCD - LCD.of newly . BEFCD - FCD‘of newly
assigned buffer assigned buffer

5 BETRS1 - Pool's buffer threshold

6 BECHAIN - Pointer to buffer control block for next largest size
buffer

7 BEDUM2 -~ Not used

Fl - Not used
BECTPTR is pointer to BECTRL

System Buffer, BOBUFFER

System buffers exist in four sizes as defined by BOBUFSIZES. Buffers are
used for a variety of purposes as described by the following overlay
definitions:

15 14 13 12 11 10 9 8 7 6 5 3 2 1 0
0 BFLCD - Last character BFFCD - Pirst character
displacement displacement

1l Fl1|F2 |F3 |F4|F5|F6|F7|FB|F9|Fl0| BFQCNT | F11|{F12|{F13|F14

2 BFDATAC CHAR 1 BFDATAC CHAR 2

BFDATAC } 116 data characters

62 BFDATAC CHAR 115 BFDATAC CHAR 116

BFQCNT - queue count

Last word usually reserved for chain to next buffer (see chain variant,

below)

Flags:

Fl BFEOTFLG;—end—of —transmission—buffer

F2. - BFSOTT, start of transparent. text

F3 -~ BFSONT, start of nontransparent text

F4 . - BFSUPCHAIN, suppress buffer chaining

F5 - BFEOBFLG, end of block buffer

F6 - BFINTBLK, internal block; do not send BACK block
F7 = BFPRTK; buffer protect :

F8 - BFPERM, permanent buffer

F9 -~ BFLNKQ, buffer is part of link queue or frame

60471160 A H-27

F10 - BFSPS, not used

F11 -~ BFSP7, used by conscle 1/0 -) -

P12 - BFSP8, used by console output ‘ Reserved for TIP user

F13 - BFSP9, not used

F14 - BFDBSIZE, data buffer size, not used (alwavs 64 words in nominal

system

Overlays for TIP flags (werd one)

15

0 BFFIL1

1 BFFIL2 - fill (bits 11 - 0 only for flags)

Mode 4 TIP flags
15 14 13

1 I F15 | F16 BFM4C3 - Fill
F15 - BFPREPARED, text prepared by text processor
F16 - BFTOGGLE, toggle bit contained in block

BSC TIP

15 14 13 12

1 | F20 | F21 | F22 BF32D3 - Fill
F20 - BFBCCOK, BCC in and OK (3270)
F21 - BFNOTABRTPRT, input state program termlnated
F22 - BFVRCBAD, VRC error in packet

Console TIP

15 14 13

1 I-;za F24 BFCNSLFIL -~ Fill '

F23 - BFFORMAT, message in console (l=true O0O=false)
F24 - BFTEXT, console text to be delivered (l=true 0=false)

Any batch T1P

15 14 13 12

1 |—F17 F18 | F19| BF78F1

F17 - BFJOB, job card expected next . '
F1l8 - BFCXLTA, 026 code translation (0=029 1= 026) by control card type
Fl19 - BFTR, transparent input ; ;

General Purpose Integer Buffer (64 words)

- 15
0 BIINT
BIINT (ARRAY) 64 words of integers
63 BIINT ELEMENT 64

General Purpose Chaining Buffer (64 words)

15 0
0 | BCCHAINS \
64 words of pointers for chaining
BCCHAINS (ARRAY) § (or other) purposes
53 BCCHAINS ELEMENT 64)
TCB buffer (32 word buffer)
15 0
o
0)
BSTCB } See TCB field definitions (above); 32 word maximum
31)
Physical/Logical Request Packet (PRP/LRP) buffer (16 word buffer)
15 0
0)
BCPRP See PRD/LRP field definitions (above);
only first 9 words of buffer are assigned
8)
H-29

60471160 A

Active TTY ICB List buffer (16 words)

15 , 0

0 ' " NELED - Index to last entry

1 lone entry = | ‘ | NELINO - Line number \

2 requires 2 words l NELCBP - Pointer to MLCB

NEENTRY (ARRAY) > Up to 7 entries

per buffer
ii NEETRY ELEMENT 7
15 ‘ NECHAIN - Pointers to next active TTY
Entries for a Type 1 Table
15 0

o [)

1 BRTYP1 ° ’ Two words per entry - see directories, section 6

Buffer for type 4 table (16 word buffer)

15 0
0 CECOUNT - Index to last entry
1 ((

Up to 7 directory 2-word directory entry -
2 entries per buffer CEENTRY see directories section 6

4

CEENTRY (ARRAY)

13 CEENTRY ELEMENT 7
14 \

Logical Link Control Block (LLCB) buffer (8 words)

L3 0

BLLLCB } See LLCE field definition

‘H=30 60471160 A

Timeout buffers (8 words)

Two variants are provided.

_15 14 10 i : 0
0 F25 BFTUSR - user bits BFTWKCOD - Work code

1 BFTLINO - Line number

BFTWLINDX

Worklist index BFTSP1 - Not used

3 BFTOVAL - Timeout count - base = 100 ms

4 BFTCHAIN - Pointer to next timeout buffer or chain

Variant for word 1 of timeout buffer

15 11 7 0
0 r;FTOMl - Not used | BFTSCI - Status indication | BFTDM2 - Not used

Flags:

F25 -~ Buffer release flag

Multiplex LCB (MLCB) buffer (32 words). Also used for TPCB.

15 ' 0
-

BGMLCB See alsc multiplex subsystem, section 5§

} See MCLB for field definitions.

31

NPU statistics buffer (16 words)
See appendix B of CCI reference manual for field definitions.

15 0
0 FEPFILO \

| cerIno (amray) 5 Six words of file for NPU

6
15 CPNPU 11 words of NPU statistics
16

60471160 A H-31

Line statistics buffer (16 words)

See appendix B of the CCI reference manual for field definitions.

15 0
0 |cpriL1]
8 words of f£ill message block
CPFIL1 (ARRAY) }header and SVM bytes
7 CPFIL1 ELEMENT 8)
8
CPLINE 4 words of line statistics
11
Terminal statistics buffer (16 words)
See appendix B of the CCI reference manual for field definitions.
15 0
[.
0 | CPFIL2 \
19 words of £ill for message
CPFIL2 (ARRAY) } bloek header and SVM bytes
8 |cprin2 ELEMENT 9)
0)
CPTML } 3 words of terminal statistics
11)
Mode 4 buffer (8 words)
_15 S 4 0
0 BFM4D4 - Integer - (bits 0 - 1 only)
1 BFM4D5 - Fill F30 BFM4D6 ~ Fill
F30 - BFMD4EOJ -~ extra EOI flag
60471160 A

H-32

HASP TIP buffer (8 words)

Flags:

15

11

BFHS1 - Fill

BFHSTYP - Canned
message type

BFHS2 - Not used

F31 F32 F33

F34

F31 - BFHSTXT, text processed data
F32 - BFHSCMODE, transparent
F33 - BFHSNEW, new record flag
F34 - BFHS3, not used

BSC TIP buffer (8 words)

0
1

Flags

F35 - BFETXRCVD,
F36 - BFTPROCESSED,

15
i

data

BF78D - Integer

BF78D1 - Not used

F35

F36

BF78D2 - Not used

TrY TIP buffer (8 words)

Flags

15

ETX received
text processed data

BFTYF1 ~ Not used

BFTYF2 - Not used

F37

BFTYF3 - Not used

F37 - PFTYPREPARED, Data block clarifier prepared by TTY TIP

60471160 A

H-33

Buffer Constants

Mnemonic

J1FRSTCHAR
J1DATAFRST

' J1LST8
J1LST16
J1LST32
J1LST64
J2LST128
J1LSTCHAR
J1LCDFCD
J2LCDFCD
J3LCDFCD
J4LCDFCD
JSLCDFCD
J6LCDFCD
J1BLMAX

DBUFLENGTH

BYSTSZE

B1CIBSIZ
QCHN

JQT2SZE
JQT4SZE

-~ DOD g

value

13

29

61

125

253
J1LST64
0404)
090A
1F06
1706
1906

1806 /
64

64
100

512

16
16

10

Meaning

FCD FOR BUFFER ALLOCATE WHEN NOT IN A
NETWORK

FIRST CHAR POSITION OF ARRAY BFDATAC IN A
BUFFER

LAST CHAR OF 8-WORD BUFFER

LAST CHAR OF 16-WORD BUFFER
LAST CHAR OF 32-WORD BUFFER
LAST CHAR OF 64-WORD BUFFER
LAST CHAR OF 128-WORD BUFFER

Maximum LCD in a data buffer

Hexadecimal displacements to character
positions for LCD, FCD

Maximum buffer length in system with 8-,
16-, 32-, and 64-word buffers

Data buffer length (largest buffer)

Length of circular stamp buffer, one word
per buffer

Size of circular input buffer (CIB)

Word 3 of buffer assigned as a block is
the chain word

Length of type 2 table Buffer
assigned
Length of a type 4 table ’ as tabile

‘Length of a local directory (DN) table -

60471160 A

Buffer Stamping Area, BYSTAMP

The buffer stamping area provides a circular table of 50 entries to record
the usage of the most recently :assigned or released buffers in the NPU. As
a buffer is assigned or released, the address of the program requesting this
action is recorded together with the buffer address. The LSB of the entry
indicates whether the buffer is currently free or assigned. The file 1
microregisters contain information about the buffer stamping:

File 1 displacement

0095 - Stamping status: 0 = not used; ¥ 0 indicates stamping
0069 Base address of stamping area

006A - Pointer to next entry to be used in the stamping area
006B - Address of last entry in stamping area

15 0
0 BYSCALLER Caller's address ~ 1
BYSBUFFER Buffer address F

Array of 2-word stamp entries

98/99 Last stamp entry

/

F - flag giving the status of the buffer: 0 = put, 1 = get

Copy Buffer Parametars, JTCOPYB

This is the parameter list used when calling PBCOPYBFRS the buffer copying
routine.

15 14 13 0

0 JTNUM - Number of buffers to copy

1l JTSSIZE - Source buffer size

2 Fl F2 JTRLS - Release source buffers flag

JTDSIZE, destination buffer size flag

Fl -

F2 - JTSMIXED, mixed data buffer source chain - not used
JINUM - Only bits 7 through 0 are valid

JTRLS - Only bit 0 is valid

Buffnr Thndnold Lmh BOBUFLEVELS

The follow:.ng-are t e buffer rfeshold levels checked by the various

regulation routines when determining whether to assign buffers from the
appropriate free buffer pool, or to reject input or to move to a lower level
of ‘input regulation. In the hierarchy of regulation checks, 9 is the most
important, 0 is the least important.

60471160 A H=-35

Mnemonic Value Meaning Type

BOT1 0 CONSOLE SNAPSHOT

BOT2 1 CONSOLE SNAPSHOT

BOTHDLY 2 COPY TO CONSOLE

BOTHCT 3 TCB ALLOCATION

BOTH3LV 4 LOWEST PRIORITY DATA

BOTH2LV 5 HIGHEST PRIORITY DATA

BOTHILV 6 SERVICE MESSAGE DOWNLINE

BOTHDIS 7 SERVICE MESSAGES UPLINE

BOTHTIM 8 CLA STATUS HANDLER

BOTHMUX 9 MULTIPLEX SUBSYSTEM BUFFER THRESHOLD
WORKLISTS

Worklists can be used on any level, but are principally used on the
OPS~level (a variant type of worklist - event worklists - is used in the
multiplex subsystem). A worklist is a processing request (task). It is
attached to a program. If more than one task is waiting to be executed by
an OpPS-level program, the worklists for the tasks are queued to the program
on a first in, first out basis.

Worklists use work codes to describe the task to be done. The called
program often uses the work code as a switching index to subprogram entry
points.)

Each worklist has a control block to point to the locations of the queued
worklists.

An intermediate area (BWWORKLIST) is provided which PBLSPUT uses for
constructing worklists and PBLSGET uses for handling worklists when a
program is called for execution with the next worklist. Several routines
define local worklist areas using the BWWORKLIST format.

intermediats Array Format, BWWORKLIST

BWWORKLIST depicts the different format overlays which the intermediate
array can assume. It also depicts the formats of the entries of the
different worklists of the system. All fields are word length. The array
of entries allows a maximum sized entry for each priority level in the
system. The array is located at BWWLENTRY.

- BWPKTPTY : BOBUFPTR This overlay is for the console
drivers worklists (BOTTYP, BOTTYN),
and all worklists whose entries are a
single pointer word of type B30BUFPTR.

CATMLEY : INTEGER) This overlay is for the timing
gervices worklist (BOBTIWL) and all
worklists with single word integer

BOEWLQ : MMEVENT oo Thig overlay is for the multiplex
: ; o event worklist queue (MMEWLQ) and all
worklists whose entriedg are 5 words =
long of type MMEVENT. Format is
defined below.

H-36 60471160 A

BWTCB, BWBLKPTR : BOBUFPTR
BWIMED : ARRAY (l..J1WLMAX)
CMSMLEY : CMSMWLE

ACPEVENT : BO7BITS
ACPBLINC : BOLINO

ACPBOBUF : BOBUFPTR
BWORD1,

BWORDZ2,

BWORD3,

BWORD4,

BWORDS,

BWORD6 : INTEGER

This overlay is for the internal
processor worklist and all worklists
with 2 consecutive pointer words.

This overlay is the general format
used by list services for the bulk
transfer of entries to and from any

worklist.

This is the service module worklist

‘overlay.

Event code)
Line number
Buffer pointer

’ Coupler overlay

This overlay is for TIP debug and it
provides easy access to each word

of the intermediate array.

The largest number of words allowed in any worklist (JIWLMAX) is six.

Multiplex Event Worklist Queus Types, MMEVENT

The event worklist for the multiplex subsystem is five words long.

types are provided. The worklists can be prepared by users or by multiplex

subsystem

VARIANT:

firmware.

Input processing - data

Several

15 7 5 0
0 MMWTCOUNT wait count MMSP1 MMWKCOD multiplex
in half seconds (Not used) work code (given later
in this subsection)
1 MMLINO - Line number
2 MMIBP - Input buffer pointer
g MMDM2 - Not used
4 MMDM3 - Not used
_ VARIANT: Output processing - data
_15 AL - — 0
0 MMDELAYCNT - Delay count MMSP4 - not used
1 oopm . Physical port Lol
5 MMPORT number MMLOPOR
60471160 A H~37

Fl is

VARIANT:

[T 7 T X B R =

VARIANT:

VARIANT:

[V]

A_£5

MMOBP - Output buffer pointer

MMDMS5 - Not used

MMDM6 - Not used

a delay completed flag, MMDECMPLT

Universal overlay - user defined word format

H-38

13 0
MMWDO
MMWD1
MMWD2
MMWD3
MMWD4
Error condition B
_15 11 7 0
el BRI T e —
MMDM9 -~ Spare
MMCSTS - CLA Status Word - See appendix B of
the CCI reference manual
Defines CLA status flags
15 14 13 12 11 10 9 8 7 6 5 4 3 0
MMDM10 - Not used
MMDM1l - Not used
F2|F3|F4|PS|F6| FP7| F8| F9 | F10| F11 | F12 | F13 MMDM12
£ CLA STATUS BYTE 1 ‘) -
' See appendix B in ,
the CCI reference manual
CLA STATUS BYTE 2 |
60471160 A

VARIANT: MLIA status
bits 3 ~ 0

0 MMDM13 - Not used

1 NNDM14 - Not used

2 MMLIAST - MLIA status

Service Module Type Worklist Entry Formats, CMSMWLE

Two principal types of worklists are provided: a class of entries with a
work code and one type of entry for timing calls.

Work code class:

) Related to TCB

15 7 0
po
0 CMDATA (optional data) CMWKCODE Code range:
: 21-3F16. See
1 CMLINO Line number , OPS-level work-
- codes for SVM.
2 CMPTR Points to SM or TCB

® SM pointer

r;s 7 0
0 CMDATA " | CMWRCODE
1 CMPOINT) Pointer to SM

) Save and return

15 7 0
~L
o | cvpara CMWKCODE
CMR1

Save location
MR 2 for R1 and R2
return address

W N

CMRTN

Service mes

0

7

CMTIMER - Timeout | CMTIPWC - TIP generated.
inhalf ‘seconds work ‘code “for SVM

60471160 A : H-39

Worklist Control Block, BYLISTCB

This control block holds information for each worklist., See worklist
services portion of section 4C.

Variant for multiplex-level worklists

Normal

15 14 7 i 0
Fl BYCNT - Number of entries in worklist

BYPUT - Put pointer for next entry

BYGET - Get pointer for next entry

BYFEINC -~ Index to first entry

in WL buffer BYINC - Size of entry (words)

variant for OPS-level worklists

w N = O

15 14 10 8 0

Fl BYCNT

BYPUTMASK ~ Put mask

BYGETMASK - Get mask

BYSPARE - Not used

BYSP2 - not used; can use

BYWLINDEX - Worklist index only bits 7-0

BYSP3 -~ Not used

BYMAXCNT - Number of work- BYPAGE - Program page

F2 list to get on this call address

BYPRADDR -~ Program address

Fl - Not used

F2 - BYWLREQ, worklist required flag. Used by PBPAGE to set up

intermediate WL array entry if the call was made without a WL.

BYWLTY is the array (BOWKLSTS) of BYLISTCB.

OPS-Level Worklist, BOWKLSTS

“The following ranked worklists determine the indexing of the OPS-monitor

~ table. Values 1 through 7 are not serviced by the OPS-monitor. They are in

‘the index to generate the worklist array. New entries should be added in

front of these entries,

H-40

60471160 A

The remaining worklists (8 through end) are serviced by the OPS-monitor
program. They are also part of the worklist array. New entries must be
added at the end, but in front of BODUMMY. The last entry must be BODUMMY
which is equal to the last TIP worklist value and causes the monitor scan

pointer to return to value 8.

Mnemonic value ‘ Meaning

BOFSWL 1 FIRST WORKLIST = MMEWLQ
MMEWLQ 1 MUX EVENT WORKLIST QUEUE
BOHIPDLQ 2 HIP DATA LIST QUEUE

BOSMTO 3 SERVICE MODULE TIMEOUT LIST
B0T200 4 CRITICAL 200 MS TIMEOUT
BOTTYP 5 TTY CONSOLE DRIVER - PRIORITY
BOTTYN 6 TTY CONSOLE DRIVER - NON PRIORITY
BOLPWL 7 LINE PRINTER DRIVER

BOCHWL 8 CONSOLE PROGRAM

BOINWL 9 INTERNAL PROCESSOR (IP)
BOMLWL 10 MLIA INTERRUPT HANDLER

BOSMWL 11 SERVICE MODULE (SVM)

BOTIWL 12 TIMING SERVICES

BOTYWD 13 TIP DEBUG (PTTIPDBG) - OPTIONAL
BOLIWL 14 LINE INITIALIZER (LINIT)
BODGWL 15 ONLINE DIAGNOSTICS - OPTIONAL
BODOWL 16 HOST INTERFACE PACKAGE (HIP)
BOHDLC 17 NOT USE

BOM4WL 18 MODE 4 TIP

BOTTYWL 19 MODE 3 TIP - TTY

BOHASP 20 HASP TIP

B027WL 21 2780/3780 TIP

BOHHWL 22 HASP/360 HIP

BODUMMY 23 DUMMY FOR CONSOLE

The subtable scanned by the OPS monitor is called BOPGMS. It extends from
BOCHWL to BODUMMY. The value assigned in the array is BOWLCODES.

OPS-Level Work Codes, CMWKCODE

The work codes are used in the worklist entry to indicate the type of task a
called module is to perform. These are also called TIP workcodes.

Value
Mnemonic (hex) Meaning

System work codes for HIP, or TIPs

AOHARDERR OF Hardware error From multiplex subsystem
AOTIMEOUT Line timer expired From LCB scan timing
AOQUEOUT 11 - Output in queue “From internal processor
AOSMEN 12 ble line From line alizer
AOSMDA 13 Dpisable line) |

AOSMTCB 14 TCB built From SVM

AOSMDLTCB 15 Delete TCB ‘ '

AOBREAK 16 Downline break

60471160 A _ H-41

Mnemonic

(hex)

Miscellaneous

AODBUX 17
AOSMLN 18
AQOSMNPUINIT 19
AQOSMMPCCINIT 1A
AOSMFAIL 1B
COLINOP 20
COLNINOP 21
COLNDA 22
CODLTCB 23
COSMIN 24
cosMouT 25
COSMDISP 26
COOVLDATA 27
COBFR 28
COENABLE 29
CODISABLE 2A
COTMLDLT 2B

Value

Meaning

Output buffer XMIT

Line status prot
NPU init protect
MPCC Init protec
Force load MPCC
LINE OPERATIONAL
LINE INOPERATIVE
LINE DISABLED
TCB . DELETED

SM IN

SM oUT

'DISPATCH SM

OVERLAY DATA
(not used)

" MISCL. BFR EVENT
ENABLE LINE EVENT
DISABLE LINE EVENT

DELETE TERM. EVE

ect

"

NT

From
From
From

From

From
line

PIP to itself

SVM,}not used
initializer

(LINIT)
From TIP

> From SVM to itself

Generated by input state programs to OPS-level TIP (note that multiplex
macros must equate this AOWK1l to its own AOWKl with the same value).

H-42

Mnemonic Value User Work Code ID
AQWK1 21 TIP WORK CODE 1
AQWK2 22 TIP WORK CODE 2
AQWK3 23 TIP WORK CODE 3
AOWK4 24 TIP WORK CODE 4
AQWK5S 25 TIP WORK CODE 5
AQWK6 26 TIP WORK CODE 6
AOWK? 27 TIP WORK CODE 7
AQOWKS8 28 TIP WORK CODE 8
AQWK9 29 TIP WORK CODE 9
AOWK10 2A TIP WORK CODE 10,
AOWK1l 2B TIP WORK CODE 11
AOWK12 2C TIP WORK CODE 12
AQOWK13 2D TIP WORK CODE 13
AQWK15 = 2F TIP _ WORK CODE 15

31 TIP . WORK' CODE 17
AQWK18 32 TIP WORK. CODE .18
AQWK19 33 TIP WORK CODE 19
AQWK 20 34 TIP “WORK' CODE 20
AQWK21 35 TIP WORK CODE 21

60471160 A

Mnemonic

AOWK22
AOWK23
AOWK 24
AOWK 25
AOWK 26
AOWK27
AQWK 28
AOWK29
AOWK 30
AOWK31'
AOSTOP

Muitiplex' Event Work Code

Value

36
37
38
39
3A
3B
3C
3D
3E

AOWK1

TIP
TIP

TIP

TIP
TIP

Work

Code

WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK
WORK

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE

31

Stop transmission code

These work codes appear in the work code field of the event packet returned
The codes specify the nature of the
Code values of 01 through 0lE;g are

to the multiplex event worklist gqueue.
information contained in the packet.
reserved for multiplexer use.

Value
Mnemonic {hex) Meaning
MMCLAS CLA status received .
MMOBUX 2 Output buffer transmitted
MMBUTCH 3 Buffer threshold changed
MMUNSOD 4 Unsolicited ODD
MMCAOR 5 CLA address out of range
MMIFFO 6 Illegal frame format (multiplex)
MMUNS IN 7 Unsolicited input
MMFES 8 Framing error status (multiplex subsystem
frames) ‘
MMCHOUT 9 Character timeout
MMTIMOD A ODD timeout
MMTIMREF B Modem response timeout
MMINEND c Input terminated
MOTEND D output terminated
MMBREAK E ~TTY terminal break detected =
MMHARDEBR F Hardware error

60471160 A

H-43

MONITOR TABLES

The main monitor tables is the OPS-level worklist array described above.
That table's use is described in section 4. Other monitor tables are
defined below.

PGMSKIP = (RUN, SKIP)
Run skip flag.

BYPGMS
Three cases:
e BYIPGM - BOPGMS type

® BYWKLS - Worklists type
® BYINT - Integer type

SMONT

Used by timing services for timed programs (half-second time base)

15 0
BTTIMER - Timer count

BTCURSP -

BTCURPD - } non-used pointers

BTMRIX - Loop end check index

CBSYTMT

Used for OPS~level, time-dependent programs.

MISCELLANEQUS

System Interfaces

A system interface table (SIT) is defined in the form of a pointer array.
Pointers define the locations of individual entries in this group of tables
which are frequently used. 1In addition to the formally defined tables at
the top of the SIT, the last group of entries are pointers to frequently
used base programs.

System Interfsce Table, SITTBL.

Mnemonic Definition - RS Common Name:
STENTY POINTER TO BWWLENTRY OPS monitor

SITMTB POINTER TO CBTIMTBL Timing (PBTIMAL)
SILCBS POINTER TO CGLCBS 1CB

SIWLCB POINTER TO BYWLCB Worklist CB

H~-44 : 60471160 A

Mnemonic Definition
SIDBSIZE POINTER TO BEDBSIZE.
SINJTEC POINTER TO NJTECT
SITIMTBL POINTER TO BLTIMTBL
SITIPTYP POINTER TO BJTIPTYPT
SIOVLBLK , POINTERH: |
SILCBE ! - : ~
SILLRMOV ADDRESS OF PBLLRMOV
SILLENTB ADDRESS OF PBLLENTB.
SICOIN ADDRESS OF PBCOIN
SIGT1BF ADDRESS OF PBGETI1BF
SIRLI1BF ADDRESS OF PBRELI1BF
SIBFAVL ADDRESS OF PBBFAVAIL
SIRTILCB ADDRESS OF PTRTILCB
SISV1LCB ADDRESS OF PTSV1LCB
SILSPUT ADDRESS OF PBLSPUT
SIRELCHN ADDRESS OF PBRELCHN
SIRELZRO ADDRESS OF SIRELZRO
SILOAD ADDRESS OF PBLOAD
SI1BADD ADDRESS OF PB18ADD
SI1BCOMP ADDRESS OF PB1l8COMP
SITOAH ADDRESS OF PBTOAH

Extent of the entries that

Common Name

Data buffer sizes :
Terminal characterlstlcs

Line timing
TIP. type

Dverlay‘cchtrol (not used)

LLCB remove
LLCB enter
Command driver
Get buffer
Release buffer

Buffer availability check
Return to TIP entry after event
Save TIP entry until event occurs

Make a worklist
Release buffers

Release and zero buffers

Load NPU

18-bit address final
18-bit address computer
Convert hex in ASCII format

point to other tables are:

Number of
Name Description Pointer Entries
SYLCBP LCBs BZLCBP HLRANGE
SYLINO Line number BOLINO HLRANGE
SYENTY Interrupt worklist BWWORKLIST BOPRILEVEL
SYLTYT Line type NBLTYE NOLTYP,
1...NKCONTROL
SYPRTT Port NAPORY NOPORTS
SYCTCT Multiplex charac- NICTCY NOLNSPDS
ter transmit
characteristics
SYTMTB OPS -~ level CBSYTMT COTDPGMS
periodic programs
SYTECT Terminal NJTECY NOTCLASS
characteristics
SYTIMTBL Line timing BZLTIME 0...C4LCBS
SYTIPTYPT TIP type TIPTYPE. NOTIPTY
SYOVLCB Overlay control SYOVLCB Not used

60471160 A

block

H-45

Firmwsre Entry Points

The following words (znteger type) are the entry points for frequently used

firmware routxnes.v

. Add;gss ‘
Mnemonic (hex) s
PPLSGET 607
PFLSPUT 608
PFBURLS 606
PFBUGET 605
PFBUEXT 609
N1FIRMAD 600
N2P3INTAD 601
N3P3INTAD 602
PFLINTO 60A
PFSR2SM 60E

Low-Core Pointer

Gets ‘a work11st entry.

; Function Performed bz Flrmware;“;

Builds a worklist entry and queues if
necessary.

Releases a buffer.

Assigns a buffer of the size requested.
Extracts a buffer.

Outputs to CLA sequence.

Generates a multiplex - level 2 interrupt.
Resets multiplex - level 2 interrupt.
Decrements line tiﬁeout count.

Sets/resets status bits. Used to load/dump
/start the multiplex side of a 2552 program

execution timing (requires external
hardware measuring device).

The low-core pointer (also called the address table) is a sequence of
addresses extending from location 0150314 to location 016Ajg. It is
shown in appendix B of the CCI reference manual.

H-46

60471160 A

TIMING TABLES
The principal timing tables are:

[RTC (real-timé clock) ‘table used to count 3.3 ms increments that are
used to generate the 100 ms RTC interrupt

e One-second clock counter

® Line timing table for timing .out I/0 events
e Array of programs that are run periodically

) Time of day tables

RTC/Autodata Transfer Tabie, CICLKADT

CICOUNT is incremented by firmware every 3.3 ms. When CICOUNT = CILIMIT =
30 (100 ms), the timer is reset and PBTIMER generates the 100-ms interrupt.

15 0
CIWORD1 Constant = B0F03¢

CICOUNT - Counter; incremented every 3.3 ms

CILIMIT Interrupt count = 30; compared to CICOUNT

CISPARE Not used

One-Second Clock, CASECNTR

This clock is used by PBTIMEOFDAY for time of day calculations. The count
is used modulo 60 by the minute counter, modulo 60 x 60 by the hour counter,
modulo 60 x 60 x 24 by the day counter, and modulo 60 x 60 x 24 x month
(days) by the month counter.

15 0
CASECNTR - One-second clqck

Line Timing Control Table, BLTIMTBL

This table is used for timing out the output buffer (OBT) for each line,
Entries are accessed by line number. Entries use a half-second time base.

60471160 A - H-47

BLTIMTBL uses SYTIMTBL type table and BZLTIME entry (one word).

15 14 7 s i 0 : T
0 | F1 | BLTRESET | BLTIME - timeout counter ; BZLTIME
32 ,[, _ OBT timeout on this ;ing%_,x:,?1,;‘_
Fl - Not used

BLTRESET - OBT timeout value for the line
BLTIME - Set by line user; decremented each half-second by PBTIMER

Periodically Executed Programs, CBTIMTBL

This array of timing entries (type CBSYTMT) is used to time out the period
between program executions. The table is scanned every half second by
PBTIMAL and each program's count is decremented.

If count = 0, the associated periodic program is called, and the timing
counter returns to the full period value.

15

—
0 CBTIMER ~ Time remaining

1 CBINTVAL - Period - in half seconds - used to reset periodic
program calls

2 | CBPADDR -~ Page address of program to be called

3 CBADDR -~ Address of program to be called

4

5 ,

6 CBTIMTBL ELEMENT 1

b

8 Array of CBSYTMT

32 4 four word entries]
Nw N r,

gi CBTIMBL ELEMENT 13

35

L34

The period is set for each program at build time. The programs: .in
normal system and their place in the table are shown below:

the

Mnemonic Element Meaning/Program
‘COLCETMSON 21 ACTIME LCB. LIST. SCAN, PBLCBTMSCAN
COADJUST 2 BUFFER ADJUSTMENT, PBADJUST
coTUoR. 3 “TEST UTILITY PROGRAM (TUP), PBTUP
COTIMEOFDAY 4 TIME OF DAY AND DATE/PBTIMEOFDAY
COT1SEC 5 MUX TTY TIMER, PMT1SEC
COPSTAT 6 PERIODIC STATISTICS DUMP, PNDSTAT
COIOTMR 7 I/0 TIMAL APPENDAGE, PBTOSRCH
COCECNT 8 RESET CE ERROR COUNT,

COSPARE 9 SPARE - FOR DEBUG PURPOSE

Time of Day Tables, CADATE

—tt

The table is checked every second and incremented. An overflow in one word
causes that word to be zeroed and the next word to be incremented.
r_15 0
0 CASEC - Seconds (0~-59)
1 CAMIN - Minutes (0-59)
2 CAHOUR - Hours (0-23)
3 CADAY - Days (0-31)
4 CAMONTH - Months (1-12)
Overlay for conversion .
" 15 0
0 ' CATIMV
1 CATIMV (ARRAY)
o |
4 CATIMV ELEMENT 5

Loop Forever Instruction

LOOPFOREVER has a value of 18FFjg. Executing this instruction places the

NPU in a closed, continuous loop.

REGULATION

60471160 A

H-49

INPUT REGULATION OPTION FOR PTREGL, REGLTYPES

These options define the four types for tegulation conditions which PTREGL

can check.

RELOGLNK. . 1. " LOGICAL LINK REGULATION level highe

‘ ;’prioritY~

r-than input

RELOCAL, 2 LOCAL BUFFER LEVELS sufficient for

REABL, 3 ALLOWABLE BLOCK LIMIT greater than
block count

REACPINP 4 ACCEPT INPUT flag set

The set of REGLTYPES = REGSET

CONTROL BLOCKS

The system structures provide these principal control blocks
elements:

e LLCBs for logical links } State assignment

) LLCBs for each line
. ® TCBs for each terminal - Dynamic assignment at enable

STATIC LOGICAL LINK CONTROL BLOCK (LLCB), BOSLLCB

input 7

outstanding

for network

time

A static LLCB is required for each logical link connected through this NPU
(that is, this NPU has at least one of the nodes_forming this logical
link). The number of LLCBs is a build time parameter and LLCBs are
initialized at load time. Two variants are provided for word 6. These ar

a maximum of 5 (JOMAXLLCB) LLCB in the system.

e

15 14 13 10 7 0
0 Fl| F2 BLREG Not used
1l BLCONDIR ~ Connection directory or coupler TCB
2 BLDN - Destination node BLSN - Source node
3 BLCHAIN - Chain to next LLCB
4 BLHO - Host ordinal (not used) BLSTATE - Configuration state
5 BLTE - LL state expiration time (not used)
6A F3
6B BLSTE -~ LI state
Fl - BLCDS, connection directory flag
F2 - BLINIT, initial LL status SM sent to host
F3 - LL operational
BLREG - Regulation level at this end of link (range 0-7) { 2 : ggwn
H=50 60471160 A

When used as a directory, the chain of blocks can be searched using either

BLDN.-or ‘BLSN-as an-index.

-BLCONDIR points-to the.connection- directory for

this link =(looking toward multlplex subsystem 11nes) ~or:ito.the coupler TCB

(looklng toward host)

UNE CONTRDL BLOCK(LCB) BZLCB

One llne control block is prov1ded for each llne (port) connected to the
The LCB contains the line dependent information used primarily by OPS

NPU.
level interface packages to:

° Define and control line protocol.

° Define and interface with external line managers (such as the service

module).

Words 0 through 14 are common to all LCBs.

for various TIP and subport types, starting at word 15.
block array is composed of successive 24 word LCBs.
elements are permitted for a total of 792 words.

COLCBD =
15 14 13 12

ARRAY (0..C4LCBS5) of BZLCB

11

A series of overlays is provided

The line control
A maximum of 33 array

0 BZLINO - Line number

1 BZTMRCHN - Active LCBE timer chain

BZWTCOUNT - Wait
half-second base

count;

BZOWNER - Node ID of CS
which owns line

3 Save locations for) BZRET1ADDR - Input routine return address

Suspended TIP
processing

AY

‘ BZRET2ADDR - Output routine return address

5 Fl1{ F2| F3| F4

Line type BZLTYP;

see appendix C

BZHO - Host otdinal
(not used)

gﬁifzgf - BZLNSPD - Line BZTCBONT - Number of TCBs
6 . configuration speed; see currently attached to
state appendix C this line
BZSTATE - Line BZWKCODE - Last work

7 F5| F6 | F7 | F8

state (note 1)

code received

BZTIPTYPE - TIP

BZSUBTIP ~ sub

BZSVTIPTYPE -~ Save area for

8 type; see TIP type;: see TIP type during initializa-—
appendix C appendix C tion (uses only bits 3 - 0).

5 \; .

10 | BZSTIC - Line statistics block; a 4-integer record.

12)

H-51

15 14 13 12 11 ' ' 7 . B g

————

BZTCBPTR - Pointer to first TCB attached to this line -

BZLBTOMUX - Pointer to last huffer given to multiplex subsystem

BZTAPEX, TIMAL appendage exists for this line; that. is, PBTIMAL
scans this block for an I/0 timeout (active LCB))

BZCHECKQS, checks when output queued
BZSMRESP, SM response received
BZSMTO, SM is being timed out

BZTOUTPUT, terminate output

B2ZDIS, line disabled (used by SVM only)
BZDIAG, online diagnostic test in progress

BZAUTO, autorecognition required on this line

13
14
Flags:
Fl1 -
F2 -
F3 =
F4 =
F5 -
F6 - BZTINPUT, terminate input
F7 -
F8 -
- F9 =~
NOTE 1:

These states are local constants in the line initializer
program: PTLINIT. See that routine for values assigned to
line states..

VARIATIONS: Words 15 énd higher.

Subline control block

- 15 ' 7 , 0
15 BZSUB1PTR - Pointer to first attached subport
16 BZSP5 - Not used BZNUMSUBS - Number of subports
Mode 4 TIP
15 13 12 ‘ 7 6 5 0
BZCURTCB - TCB currently being serviced by TIP
BZRARTASK -~ BZMAXRETRY -~ Maxi-
16 FA F10 Last autore- Fll | Fl2 mum number of re-
cognition task tries for this line
FA - BZDISABLED,~1ine disabled) initialization
BZENABLED, line enable flags i
BZAUTOREC, -autorecognition on-line- BZINITSEQ

F10 - BZMLTCLS, multiple clusters on line
F1l - BZDELAYLINE, delay service on this line
Fl2.-.BZTBDISABLED, disable-line requested-

H-52

60471160 A

HASP TIP

Two variations are provided as follows:

15 14 13 12 11 L 7 6. 5. . 0
_BZHSWFCS - Workstation function control sequence (FCS)

2

16 JHSTFCS - TII

17 BZHSHEAD Pointer to head of data list queue

18 BZHSTAIL Pointer to tail of data list queue

19 BZHSCONSOLE - Pointer to address of console TCB

20 BZHSOTCB - Pointer to current TCB address

21 BZHSCCB - Pointer to current continue buffer

BZHSOBCB - ' B2HSETO -

22 gggsigﬁgt' Input Output BCB | F13 | F14| Retry count |F15
count - errors

23 | r16 | F17 | F18 | F19 | BZHSNAK BZHSRRBITS - Read F20
Retry count request bits
- NAKS

Flags:

F13 - BZHSGNON, Sign on card seen

Fl14 - BZHSENQSEEN, Enquiry block seen

Fl5 - BZHSWOQ, Waiting for output -

F16 - BZHSICREG, Suspend card reader command

F17 - BZHSIPREG, Suspend input - buffer regulation
Fl8 - BZHSXPT, Transparent mode

F19 - BZHSRSBCB, Reset BCB needs to be sent flag
F20 - BZHSLINERR, Line error occurred

HASP TIP Records

15 0
15 BZHSC
. 8-word array
~ BZHSC (ARRAY) for clean up J
purposes

L4Y

22 BZHSC ELEMENT 8

23 BZHSRQP - Input stream request flags; 16 bits, one per device
(0 = must request permission, 1 = permission granted)

BZHSPNED - Output stream request flags; one per device

60471160 A ‘H~-53

2780/3780 TIP

Two. variations are provided:

15 14 13 12 11 10

9 8 7 6 5 4 3 2 1 0

g

16

17
is8

F21
F22
F23
F24
F25
F26
F27
F28
F29
F30
F31
F32
F33
F34
F35
F36

Consecutive
WACKs counter

BZCURTCB - Pointer to current TCB

BZTIMCOUNT
Consecutive Consecutive
timeouts counter NAKs counter

F21|F22|F23{F24|F25

F26

F27|F28|F29{F30|F31|{F32|F33|F34|F35(F36

BZTIMER - Timeout for interactive device

B278F2, not used
BZUOP1l, not used
BZUJOB, not used
BZUOP3, not used
BZUOP4, not used

BZUOP7, not used

2nd 2780/3780 TIP

1s
16
17

15

BZETXRCVD, ETX block received

BZACKSENSE, toggle bit to indicate if ACK received on last block
BZBADBLOCK, last received block was bad

BZETXSENT, ETX block sent :

BZ2629, code translation (026=1, 029=0)

BZRTIMER, timer running

BZNOTIFIED, host notified of timeout

BZUXLTA, current code translation (026=1, 029=0)
BZ2780, 2780 terminal (0=3780 terminal)

BZUTR, transparent mode

BZ78F6 -~ Not used

BZCOUNTS -~ Counter

B278F6 - Not used

BZUOPS - User option

TTY TIP - timed entry

15
16

15 11

BZMSCHN -~ Pointer to timing chain entry

BAMSCNT
100 ms base

BZMSCART - Character timeout flag

time counter

BZMSCART - :Uses -bit zero only

TERMINAL CONTROL BLOCK (TCB), BSTCBLK

The terminal control block defines terminal-dependent information. One TCB
is provided for each terminal in the system. Some terminal devices also
have independent TCBs. ‘The first 20 words of the TCB contain common
terminal information. The remaining words are used for TIP dependent

_variations.

However, there is an array of five

Most TCBs are dynamically allocated.
This array of static TCBs

fixed TCBs (For the MLIA, coupler, etc.).
(CGTCBs) occupies 160 words.

Allocatable TCBs are released by a line disable condition or by a delete TCB
command.

15 14 13 11 10 8 7 6 4 3 2 1 0
0 BSCHAIN -~ Pointer to next TCB for this line
1 BSLCBP - Pointer to LCB for this line
2 BSCA - Cluster Address BSTA - Terminal address
Code set BSDEVTYPE -
3 | py | for BSCODE | BSHO - Host | Device it S
terminal ordinal type; see see appendix C'
(1) (not used) appendix C , pp
4 BSQPTR - Pointer to downline BLK or MSG block gueue
BSOWNER - Node ID of CS .
5 owning the TCB BSCN - Connection number (CN)
6 | BSLLCB - Pointer to LLCB for this line
BSABL- BSOBL - BSLBTPROC - BSIPRI~
Available Outstand- Type of Input
7 F2 count F3 ing block last block F4| FS prior-
block (1A) count (1B) processed (2) ity (3)
BSQTYPE | BSBSNLAST | BSBSNCRNT
8 |oQueue | BSN of BSN of F6 | BSPARITIBSCHLEN | py | pg | pg
Type last back | CRNT out- (5) (6)
block (4) { put block
3)
10 BSSTIC Terminal statistics block. See appendix B of CCI
reference manual.
1)
12 | BSFPPRU - Pointer to the first PRUB that is in the process of

being converted to PRUB format

60471160 A H-55

15 14 13 12 11 7 4 3 2 1 0
13 | BSCCPRRU - Character count in o B (N
e partial PRUB , . |FIOFLLIF12]F13}F14
14 ,VESPRUF-f Pointérftokﬁﬁline PRUB. queue. (ready forgsehding;tb HID)
15 | BSCCPRUS - Character count in a PRUB queue |F15|BSBCKLTR |
16 BSCPTR - Pointer to downline CMD block queue
17 BSOTPP - Pointer to text processing parameters
18 BSPGWIDTH - Page width BSPGLENTH -~ Page length
19 F16 | F17 | BSNUMR BSXBLKLENTH - Transmission block length

(8)

Notes:

1. SBCODE, see subTIP type table in appendix C.

2. BSABL is the largest number of interactive blocks that can be sent
upline without a BACK block acknowledging them. In the standard
system BSABL = 1.

3. BSOBL is the number of blocks that have currently been sent upline
without being acknowledged with a BACK block.

4. BSIPRI - Input priority
S. - BSBSNLAST,

See block protocol in section 6, 0 < BSN < 7
BSBSNCRNT
See block protocol in section 6, 0 =< BSN = 7

6. BSPARITY - Parity type:

0 = zero
1l = odd

2 = even
3 = none

7. BSCHLEN

Character length:

bits
bits
bits
bits

WO
U3 B B |

WA WU,

8. BSBCKLTR, must send a BACK block for this batch PRUB (the PRUB has
already been text processed. Flag is set by PBIOPOI. It is reset by
PBDNABRT when discarding.a block, or by PBBLKCHK when. a BACK block is
fent. : fdad ot & : 5 .

9. BSNUMR - Number of records in a block

Fl - BSSTOP, data stream to this terminal stopped
F2 - BSINOP, terminal inoperative

F3 ~ BSRES1l, not used

F4 - BSACPINP, terminal accepts input for host

F5 - BSACPOUT, terminal accepts output from host
F6 '~ BSTBTERM, TCB is to be deleted

F7 - BSPGWAIT, in page wait mode

F8 - BSXPARENT, input data in transparent mode
F9 - BSHOTOGL, host ordinal toggle bit (not used)

F10 - BSBTCH, batch (PRU) terminal

Fll - BS2629, 026/029 code; 1=026, 0=029

Fl2 - BSEM, EM punch required for a short record
F13 - BSDROPEDI, discard repeated EOI block
Fl4 - BSXPTOEOI, transparent to EOI

Fl5 - BSBCKDUE, awaiting downline BACK block

Flé6 - BSSUPCC, suppress carriage control

F17 - BSBAN, banner off (PRU records)

The following queues are controlled by the TCB:

UPLINE:

o The PRUB queue, located through pointer BSPRUF. Blocks in this queue
are ready to be routed by PBRTEPRU, Associated field for this queue
is BSCCPRUS (total character count for all blocks in the queue) .
Note that both batch and interactive blocks use the queue. The TCB
itself can be for either a batch or an interactive device.

) A partial PRUB gueue, used during PBPIPOI's conversion of a block to
PRUB format. When the conversion is complete, the block is moved
into the PRUB gueue. Pointer to this queue is BSFPPRU. Field
associated with this queue is BSCCPRRU (character count of all blocks
in the partial PRUB queue). - = -

DOWNLINE:
[Output command queue:

- For both batch and interactive devices, CMD blocks (which
regulate the data stream) are queued to a special command gueue
located through pointer BSCPTR. When the TIP processes this
queue, all entries are processed during a single TIP pass.

- For interactive devices, BACK blocks are handled entirely by
PBIOPOI. These blocks are not queued to the TCB: therefore, the
blocks cannot be processed by the TIP.

- For batch devices, some BACK blocks are partially processed by
PBIOPOI. All BACK blocks are queued to the output command queve.

® Output data (MSG and BLK) block queue (located through pointer BSQPTR)

- Interactive Mode 4 blocks are queued here by PT4QIA (which is
called through PBIOPOI) if they are BLK blocks. .The TIP is not
notified that there is data to be processed.. .The TIP is notified
when all the blocks of the message are queued; that is, when the
MSG ‘block marking the ‘end of the message is ready to be processed.

60471160 A H=-57

- Interactive blocks for all other TIPs is queued here. PBQIBLK
queues the block on call from PBIOPOI; then PBQLlBLK notifies the
TIP that the block is available for processing unless other
blocks are already in queue waiting to be processed.

- Batch blocks: PBIOPOI calls PRUTOBLKS to text process the
blocks, then PBQlBLK queues the block. The TIP is notified that
output is available, unless other blocks are already in the queue
waiting to be processed.

-

Associated field: BSBLKLTR (the send-a-BACK-block~-later flag) must
be set in all cases. ;

MLIA Handler (static TCB)
15 14 0

—
20 F18] BSWRKCO - Process state work code (bits 0 and 1 only)
0=SBTIMOUT 1=SBRD STATUS
2=SBHALT 3z —-—--

21 BSCONB - Condition B counter (input drop errors)

22 BSCONC - Condition C counter (last data errors)

BSCOND - Condition D counter (Input error ODD first in,

23 first out error)

Flag
F1l8 = BSCEMI - CE Error SM issued
MODE 4 TIP

There are two overlays for the Mode 4 TIP.

15 14 13 12 11 10 9 8 7 6 5 0
[- ~ 1
BSERRODE -
20 F19{FP20| Number of BSTASK, task BSERRICOUNT - Number of
bad (error) index (1) no response errors
responses

BSERR2COUNT - Number of

21 F2l|F22|{F23|F24|F25|{F26|F27|F28|F29|F30 bad responses received

BSM4COUNT - General

22 F31{F32|F33|F34|F35|F36|F37|F38|F39|F40 purpose counter

23 | BSM4POLL 3
BSM4POLL (ARRAY) ‘ ‘ Poll Message
30 | BSM4POLL ELEMENT 8)

31 BSCLSPTR - EOinter to cluster TCB

(1) BSTASK task index 0-31. These tasks are defined in the local data
area for the Mode 4 TIP (PTMDATIP) flags

H-58 60471160 A

Flags:

Fl9
- F20
F21

BSMA4ACRPS, configuration poll message sent
BSHOG, -hog control flag

BSCRON, card reader on

F22
F23
F24
F25
F26
F27
F28
F29
F30
F31
F32

F33
F34
F35
F36
F37
F38
F39

F40

BSPRON, printer on

BSBATCH, batch interrupt

BSLASTDEV, last device used for I/0 (l=batch, O=interactive)
BSTOGKNOWN, toggle is known

BSTOGSTATEXP, expected toggle state

BSCLSDOWN, cluster is down

BSHOLD, TCB control in hog mode

BSEOICRO, skip blanks during EOI card reading

BSM4S2, not used

BSM4FAIL, terminal in failure mode

BSM4AWRQ, mode 4 queue flag (write request message, blank fill
message, or print message (PM) is queued)

BSPFECODE, escape to poll for E-code
BSACKOUT, acknowledge last write request is still outstanding
BSLIO, last I/O state (O=write, l=poll)
BSWAIT, wait for resume

BSCLRCNT, clear error counters

BSINPUT, input accepted (Al)

BSTOGRECEIVED, toggle state last received }

Toggie for read/write

BSTOGCORRECT, toggle state is correct made at console

Second Mode 4 TIP overlay

Four to six records as shown in first word

15 6 5 0
——
20 BSM4FLAGS - Flags for cluster TCB | F41| BSERCOUNT - Error Counter
BSM4 (ARRAY) Additional 3 to 5 records
22 | BSM4 ELEMENT 3)

F4l - BSM4DZ,‘not used

60471160 A : ‘H-59

Coupler TCB (static TCB)

This is the TCB used by the HIP for transfers to/from the host.

20
21
22
23
24
25
26

27
28
29
30

Flag:

F42 -

HASP TIP

15 14 7 0
BSCPAVPTR -~ Pointer to first available output buffer

BSCPLAST - Pointer to last available output buffer

BSCPINPUT - Input buffer address

BSBUFOTT ~ Memory address loaded address

BSCPSTATUS - Coupler status

BSCPDATA - Orderword storage

BSCPCMD -~ Last NPU status word sent to host

BSCPBUFAV - Number of available

buffers BSCOBZSTA - Previous state

BSCPAMASK - Coupler interrupt mask

F42 | BSCPIDLT - Idle timeout counter

BSCPCONN - Coupler connection number

BSCPHST, host status

1
0

a host available
= host down

15 14 13 12 11 10 9 8 7 0

BSHSOBUFF - Pointer to current output buffer

BSHSHEAD - Pointer to head of data list queue

BSHSTAIL - Pointer to head of data list queue

BSHSQBF - Pointer to buffer for data list queue

BSHSSTMR - Suspend transfer timer

BSHSFCSM -St£eammmaskméefmfunetiénmcentxolwsequence (FPES)

'BSHSIMD | F43|F44|F45|F46|F47|F48| BSHSIOK - Start input received

BSHSIMD, Card reader mode

H-60

3
2
1
0

wononon

transparent
nontransparent
EBCDIC - 026 card
EBCDIC - 029 card

60471160 A

Flags:

F43 - BSHSEOISNT, EOI BVT record sent

F44 - BSHSRSNT, request permission to transmit sent

F45 - BSHSPNED, request permission is needed to start transfer
F46 ~ RSHSOIP, output in progress

F47 BSHSSUSP, data stream output stopped message sent to host
F48 - BSHSSF, countdown for output stopped condition
TTY TIP
15 14 13 12 11 10 9 8 7 0
BSTYIST - Input state index

20 F49|F50|FS1{F52|F53|F54|F55| F56 (bits 0-5)
F49 -~ BSTYLF, echo line feed
F50 - BSTYCR, echo carriage return
F51 - BSTYTAPE, paper tape mode
F52 - BSTYRGL, regulation in effect

F53 - BSTRXON, send an X-ON to paper tape
F54 BSTYHOUT, hold output

F55 BSTYBLK, block mode

F56 - BSTYKEY, keyboard mode

2780/3780 TIP
15 14 13 0

20 FS57 F58 BSOPRI - Output priority (bits 0 - 2 only)

Flags:

F57 - BSSUSPIO, suspend I/0
F58 - BSINPOK, OK to input

MULTIPLEX SUBSYSTEM

The multiplex subsystem data structures are of two types: those that
interface the multiplex subsystem to the other NPU software (such as TIPs)
and those that concern the physical characteristics of lines, terminals,
CLAs, modems, and hardware controllers for the lines.

The data structures in the system interface category are:

o MICB - The format for this table is also used for the TPCB. 1In
either case it contains information used for state programs.

® The multiplex command drlver packet (command packet) that sets up the
=data-transfer parameters. : .

_ The data structures in the hardware character1st1cs category are;

“Multiplex port table (NAPORT) whlch has an entry for - each line
-~ Line type’ tables:

CLA related tables

Modem related tables

Terminal -related tables

Device .related tables

60471160 A H-61

MULTIPLEX COMMAND DRIVER PACKET, NKINCOM

The command packet provides the communication from either the TIPs or

service module to the command driver, PBCOIN.
the necessary information for the multiplex subsystem to prepare the line
Six standard formats are provided.

for a transmission.

Set up commands - see sectidn 5, multiplex command driver.

This parameter list provides

_15 7 0
0 NKCMD ~ Command NKLTYP - Line type
1 NKPORT - I/O port NKLOPOR - Not used
2 NKCARY CHAR 1] NKCARY CHAR 2
NKCARY An B8-character array holding the
command parameters
5 NKCARY CHAR 7) NKCARY CHAR 8
Function commands .
_15 14 7 6 0
NKTCLS ~ Default terminal
0 NKDM1 Not used class
1 NKLINO - Line number
2 Fl NKFUN1 F2 NKFUN2
3 F3 NKFUN3 F4 NKFUN4
4 FS NKFUNS NKZERO - End of function

NKFUN1l-5 are function bytes

Fl1 - NKSRF1l
F2 - NKSRF2
F3 - NKSRF3
F4 ~ NKSRF4
F5 - NKSRF5

Variation: Input operation

Function selected flags

15 14 13 12 11 10 9 8 7 0
0 - { NKDM2 - Not ‘used ,
1,QQL;-f,,pru3ﬁ@gug;,used¢‘” “ MJ
24 k““'ﬁkfﬁf - Input buffer'addreSSV

3 F6 F7 F8 9

F1l0

F11 | Fl2 | F13 of 1/0 buffer

 NKIFCD- Optional FCD

Fl5 NKDM9

4 Fl4

NKBLKL - Block length (words)

H~62

60471160 A

F6 - NKUOP1 Multiplex bit 15
F7 -="NKUOP2

F8 - NKUOP3 . , ‘)
- User option flags 1-8; .
F10 - NKUOBS [Can also be used as a : £ield NCUOBS
F1l - NKUOP6 single field, NKUOPS .
Fl1l2 - NKUOP7 i : .
F1l3 - NKUOPS Multiplex bit 8

Fl4 - NKNOXL, Translate code flag; 1 = translate
F15 - NKSCENBL, Move special character to be changed

NKDM9 - not used

Set up for input processing (call from TIP)

15 7 6 5 0
0 NEWDO - Word 0 and 1 of universal overlay
1 NKWD1l - Word 0 and 1 of universal overlay
2 NKOBP - Pointer to output buffer

NKISTAI - Program index

3 NKUOPS - User bits | F16 | F17 to input state

4 NKDM6 - Not used

5 NKISPTA - Pointer to'input state table
6 NKSCHR - Special NEKCNT1 - Character counter 1 value
character : for input state programs

7 NEKCXLTA - Translate table address

Fl6 - NKMVB, Move user bits to LCB
F17 - NKRPRT, Strip parity flag

Universal input
15 0
NKDM7 - Not used

"NKDM8 - Not used

= o

2 NERWD2)

3 NEKWD3

sal overlay words ——

60471160 A H-63

Terminate I/0 command

15

5 0

NKDM10 - Not used F18

F1l9

NKWLINDX - Worklist index

NKDM1l - Not used

NKJSRDY -~ User parameter -
for worklist

NKWKCOD - User work code if
worklist requested

F18 - NKRELBFS, release input buffer flag
F19 - NKWKFLG, make worklist for caller £

NKWLINDX: Only bits 4 through 0 are vali

Values for NKCMD (first variant) are shown below.

lag
d

See section 5 for

description of parameters list for each command.

Value
Mnemonic (hex) Meaning
NKTURN 3 TURN LINE AROUND
NKINIL 4 INITIALIZE LINE
‘NKENBL 5 ENABLE LINE
NKINPT 6 INPUT
NKDOUT 7 DIRECT OUTPUT
NKOBT 8 OUTPUT BUFFER TRANSMITTED
NKINOUT 9 INPUT AFTER OUTPUT
NKENDIN A TERMINATE INPUT
NKENDOUT B TERMINATE OUTPUT
NKDISL C DISABLE LINE
NRCLRL D CLEAR LINE
NKCONTROL E CONTROL
NKSPECIAL 10 UPDATE MUX TABLE

MULTIPLEX LINE CONTROL BLOCK (MLCB), NCLCB TEXT PROCESSING

CONTROL BLOCK (TPCB)

The MLCB is a dynamically allocated buffer obtained and released as a result

of requests issued by the TIPs.
to be provided by the multiplex subsystem.
there is one MLCB for each enabled line.

Seven variants of the MLCB are provided.

The MLCB defines the processing functions

For a given communications line,

Usual TIP I/0 data transfer request
15 14 13 12 11 10 9 8 7 6 5 0
: — T | - . 7
0 |F1|F2 |F3 |F4|F5]| F6 | F7 !FBINCOCHR
1 | F9 | F1o| p11| NCTIME = Mux NCOBLCD - LCD of output buffer

NCOBP -~ Pointer to output buffer

H-64

60471160 A

{15 14 13 12 11 10 9 8 7 6 5

4 0

NCISTAI - Input state

3 F12|F13|{Fl4{F15(Fl16|F17|F18|F19| F20|F21 ;
: program index
4 NCCNTL - Character count limit NCCNT1 - Character counter 1
5 NCISPTA - Pointer to input state program pointer table
6 NCIBP - Pointer to input buffer
' NCCRCP - CRC
7 F22|F23{F24|F25|F26{F27|{F28|F29|F30{F31{F32 polynomial
N— "
NCUOPS-—:]V
15 12 7 0
8 NCSCHR - Special character NCIBFCK - FCD of input buffer
9 NCCRCS - CRC accumulation
10 NCZER1 - Zero NCCNT2 -~ Character counter 2
11 | NCZER2 - Zero NCBLKL - Block length (records)
12 NCCXLTA - Pointer to code translate table
13 NCSCBA - Pointer to first buffer in block
NCBLCNT - Number of buffers .
14 allocated NCSVWL - Saved worklist
Flags:
Fl - NCEOBL, end of block
F2 - NCNXOCA, next output character available
F3 - NCILCT, last character transmitted (CDCCP)
F4 - NCBCREQ, buffer chaining required
FS - NCOMPRO, output message in progress
F6 - NCSPl, spare
F7 -~ NCODDIN, ODD received
F8 ~ NCSPl, spare
F9 -~ NCSUPCHAIN, suppress buffer chaining
F10 - NCOBT, generate output buffer terminated (OBT)
F1ll - NCBZL, reset timer
F1l2 - NCRINCH, input character in right byte
F13 - NCCAREC, character received
Fl14 - NCRIGHTC, left/right source flag (1 = right)
P15~ NCINPRO; input -message in progress
F16 - NCNOXL, code translation active .
F17 - NCRPRT, strips parity bit
F18 - NCSCF, suppress chain flag
F19 - NCLASTCH, LCD of source buffer reached
F20 - NCEOSR, end of source buffer reached
F21 - NCSP3, not used
60471160 A H-65

F22 -~ NCUOP1l

F23 - NCUOP2

F24 - NCUOP3

F25 - NCUOP4 Optional user flags; can also be
F26 - NCUOP5S addressed as a single field NCUOPS
F27 - NCUOP6

F28 - NCUOP7

F29 - NCUOPS8

F30 - NCETX, delay ETX worklist generation

F31 - NCMRTO, modem response timed out

F32 - NCCARR, line carrier type

1 = controlled
0 = constant)

Sixteen integer words

15 0
0 | Nccarry ‘)

NCCARRY (ARRAY) } Integer
15 | NCCARRY ELEMENT 16)

Eight user option words includes half a word of flags

15 7 0
0 "NCWDO \ ‘
1 | ncwp1 |
2 | ncwp2 [
3 NCWD3 > User option words
4 | ncwpa ‘
5 | ncwps |
6 |Ncwps /
7 NCUOPS - User option flags NCDMOM2 - Not used

H-66 60471160 A

TPCB

@ 4

10
11
12
13
14
15
16
17
18

Flaé:

F33 - NCDCRB, character in right byte

15 14
-

NCLCDFCD

..Integers.

NCSBP - Source buffer pointers

F33

NCFFLGS - Text processing firmware
(see F1l3 - F21 of MLCB)

flags mask

NCSTAI - Index to

source
state programs

NCDUM4 - Not used

NCSPTA -~ Pointer to state programs table

NCDBP - Pointer to destination buffer

NCDUMS - Not used

NCDUM6 - Not used NCBFCD - FCD of buffer
NCDUM7 - Not used

NCDUMB8 ~ Not used

NCDUM9 - Not used

NCDUMA - Not used

NCFDBA - Pointer to first destination buffer
NCDUMB - Not used

NCDUMC ~ Not used

NCDUMD - Not used

NCDUME - Not used

NCFSBA - First source buffer address

Integer/File Register 1 TECB

This MLCB has 16 words of INTEGER and 16 words for saving the first 16 file
1l registers (firmware level). ‘

60471160 A

_H—67

15 0
0 NCTPML

NCTPML ~(ARRAY) : 16 “integers
16 | NCT;}I

NCTPF1l (ARRAY) -Spare for 16 file 1 registers
31 NCTPFl ELEMENT 16

Batch TIPs - Variant for data compression on batch device (TPCB)

15 0
0 NPAD1 1
NCPAD1 (ARRAY) } 19 integers
18 | NCPAD1 ELEMENT 19)
19 NCDBLC - Destination block count
20 NCCOUNT - Counter
21 NCCLIMIT -~ Count limit
22 NCBINIT - Blank initial count
23 NCBLIMIT - Blank limit
24 NCDINIT - Duplicate initial count
25 NCDLIMIT - Duplicate limit
26 | NCUINIT - .Unlike initial count
27 NCULIMIT - Unlike limit
28 NCSVCH - Save character for compression
29 NCRCB - Record control byte
30 NCPAD2 ~ Not used
31 NCPAD3 - Not used
2780/3780 TIP TPCB
15 0
0 rEEQan - Integer
H=68 60471160 A

PORT TABLE (NAPORT)

A multiplex -subsystem port-table-entry- (NAPORT). defines-information: relating
to each line.- Entries are ordered by line number and an entry is provided
‘for each port in the system. The multiplex port table is the.starting point
of ‘line orlentatlon to the multlplex subsystem. “The multlplex subsystem

1

{ “to ommun1cat1on'1nterface “between
the multiplex subsystem and a user communication line. The port table entry
points to the MLCBR which in turn points to the input state programs which
process data for the multiplex subsystem. The port table points to the
modem state program pointers directly. Four variants are provided.

Normal Port Table
15 14 13 12 11 10 7 6 5 4 3 0

NALTYP - Line
0 | Fi|F2{F3|F4|F5| type: see F6| NASPILL - Sgﬁnitat“s

appendix E

1 NALCBP - Pointer to MLCB

_ NAMSI - Index to
2 | NAOBTCMD - CLA turn around F7|F8|F9|F10| state pointer
command
table
3 NAMSPTA - Pointer to modem state pointer table

4 NAFCCST - CLA command status

)
6 NASTAT - Not used
7

NASPARE - Not used

Fl1 - NAION, input on

F2 - NAOON, output on

F3 - NAISON, input supervision

F4 - NALCBUP, LCB assigned

F5 - NAISR, CLA status pending

F6 - NAHARDER, hard error in progress

F7 - NANDCD, data carrier detected signal (DCD) dropped
F8 - NAMTO, modem timeout in progress

F9 - NAWAIT, timeout flag for first overflow

F1l0 NAOVFE, first status overflow worklist received

Clearing Port Table Variant

This table of 8 integer entries can be used to clear all of the port table.

15 L B ‘ ' 0

0 NAARY

NAARY (ARRAY)

7 NAARY ELEMENT 8

60471160 A : : H-69

Pointer/Flags Variant

This table allows the MLCB'andfthg‘word 2 flags to be overlaid.

15

[

| naDM3 - Mot used

 MABFPTR - Buffer pointer -

NADM4 - Not used

NAFLAGS

NADMS - Not used

NAFLAFS - Overlay for flags F8, F9, and F1l0

Overlay Array

15 0
—
BOOVERLAY
NAOVERAY - 8 words
BOOVERLAY
LINE TABLES
Multiplex Line Type Table, NBLTYT -
The line type table is an array of entries of type NBLTYE. Each entry
corresponds to a line type in the system. See appendix C. The line type
table entry defines the physical characteristics of a given port, modem
circuit. Four variants are provided.
Normal Entry
_15 13 12 11 10 9 8 4 0
NBOTYP - CLA type:
NBMODCLS - Modem ’
NBSP1 | Fl|{ F2| F3 | F4 | PS5 class; see below see CLA constants
above
NBAND - Mask
NBSP1 - Not used
Flags:
Fl1 - NBTURN, line turnaround required
‘F2 - NBDELAY, delay the line’turnaround
F3 - NBANSMOD, answer mode: 0 = autorecognition, 1 = dedicated
F4 - NBCARR, carrier type: 0 = constant, 1 = controlled
FS - NBCIRTYP, circuit type: 0 = 2 wire, 1 = 4 wire
60471160 A

H=-70

Integer Entry

__]__5 ey b 0

0 NBINTI.) ' 5
e - PO integers
1 |mBINT2

Universal Overlay Entry

15 0

0 NBWDO
e { Two overlay words

1 NBWD1

Overlay for Input Status Flag Word 0 Overlay

15 6 5 0
0 r;;DMl - Not Used Fé | NBDM2 - Not used

F6 - NBISR, Input status request

Line Types, NOLTYP

This is the line type entry for the LCB. The sequence of line types is
included in the SIT. SW indicates a switched (dial up) line; DE indicates a
dedicated line. See appendix C.

Value
Mnemonic (hex) Meaning
NOLDIAG 0 RESERVED FOR ON-LINE DIAGNOSTICS
NOL1 1 2560-1 201A SW HDX CONTR 2WIRE
NOL2 2 2560-1 201B DE FDX CONTR 4WIRE (HDX MODE)
NOL3 3 2560-1 201B DE FDX CONST 4WIRE
NOL4 4 2560-1 208A DE FDX CONST 4WIRE
NOLS 5 2560-1 208A SW HDX CONTR 2WIRE
NOL6 6 2561-1 103E SW FDX CONST 2WIRE
NOL7 7 2561-1 103E DE FDX CONST 2WIRE
NOLS8 8 2561-1 2025 RS 232 103E/113 SW HDX CONTR 2 WIRE
NOL9Y 9 SPARE__(UNDEFINED).
NOLA A 2563-1 201B DE FDX CONST 4WIRE (SDLC)
NOLS B SPARE (UNDEFINED) ‘
NOLAST B LAST LINE TYPE

60471160 A H-71

Asynchronous Line Speeds

Mnemonic
(Index) Value Baud Rate
NOBOO 0 800
0iio 1 110
NO0134 2 134, 5°
NO150 3 150
N0300 4 300
N0600 5 600
N01200 6 1200
N02400 7 2400
N04800 8 4800
NO09600 9 9600
NODIAG 10 DIAGNOSTICS CLASS

" Line Number Field, BOLINO

This is the usual field used by the system to reference line number. It is
used in the LCB, and line number fields compose the line array part of the
SIT. Several routines define their own line number variable using BOLINO
type as a basis.

15 0
BOLINO

Multiplex Character Transmit Characteristics Table, NICTCT

The character transmission characteristics table is an array of l-word
entries (type NICTCY) indexed by the line speed index. Each entry specifies
the speed range, speed, and number of output stop bits for transmitting and
receiving to/from asynchronous terminals. An array of these entries is a
part of the SIT.

15 14 13 10 9 8 7 4 3 0
NICTCY (0 NIRSPED NITSPED NISTOP entry
Array of L—-Stop bit
NICTCY length (bit
indexed 0 only)
by line m . -
s;eed i =Transmit-speed

< L_NITSP - Transmit
speed range
—Receive speed

—NIRSR - Receive speed range

\ 9

H-72 60471160 A

NIRSP 0 = 110 1 = 134.5 2 = 150 3 = 300 baud
NIRSPED - See appendix C-
NITSP 0 = 110 1 =134.5 2 =150 3 300 baud
NITSPED - See appendix C
NISTOP - 0 = 1 stop bit L. f
-1 =2 stop bits } for.character delimiting
CLA/MODEM TABLES
Modem/CLA Relationships
Modems
Maximum (The modems listed
CLa Modem Modem Class are only a sampling
Type Speed (hexadecimal) of modems available)
All Not 0 None
' Applicable
2560-1 Not 201B, 201A, 201C, 201D
2560-2 Applicable 208A, 208B
2560-3 1 358-2
,2563-1
1 2561-1 100 2
Async
110
120 4
134.5 5
150 6
300 7 103 series, 113A, 113B,
VA3405 A thru G
600 8 VA3405 A thru G
800 9
1050 A~
1200 B
1600 D
2400 F
4800 10 ;
9600 12 358~1

60471160 A

B=-73

CLA Types

Mnemonic Value Meaning

NOSYNC 0 . . Synchronous CLA 2560-1

NOASYNC 1 Asynchronous CcLA 2561—1

NONORS232 2 High-speed synchronous CLA 2560-3, 2560-4
NOSDLC 3 Trunk data line control for LIP protocol -

CLA 2563-1

CLA Commands and Status

A control command sequence word (NDSEQE) is used by the multiplex level
command driver, PMCDRV, to send commands to the CLAs. These commands are
indexed as shown below. Four CLA status words (8-byte) make up the two
NPU/CLA status words (NRCCSE) and use a bit set method of checking the
commands currently in effect for a given CLA/modem.

Control Command Sequence Word, NDSEQE

Used for multiplex commands to modem or circuit hardware. Three variants
are provided.

Normal Entry

15 7 6 0

NDCASE - Index to modem/circuit

0 NDDM1 - Not used | Fl command case

Fl - Set function flag (0 = reset)

NDCASE is defined in the table below.
Character Overlay

15 7 0
0 NDDM2 - Not used NDCHAR - Character

Universal Overlay

15 ' 0
p——

"""" 0~ | NDWORD = Universal word

Multiplex CLA Command Status Table Entries, 'NFCCSE

The CLA command status table reflects the current command status of each
CLA. It contains the cumulative history of all phy51cal commands sent to
each CLA. - Five variants are provided:

H-74 . 60471160 A

BIT ASSIGNMENT ENTRY

This variant provides four CLA 8-bit words with a name assigned to each

bit. "It is used to set and'clear bits in the CLAs.
CLA word 1, bits 7-0 . CLA word 2, bits 7=0
o o - ol s 0
0
1l

L-CLA word 3, bits 7=0

The individual bits are named as shown:

L-CLA word 4, bits 7-0

NFW1B? ' NFW3B7)
. CLA word 1, bits . CLA word 3, bits
. 7 through 0 . 7 through 0
NFW1BO NFW3BO
NFW2B7 I NFW4B7
: CLA word 2, bits : CLA word 4, bits
. 7 through 0 . 7 through ©
NFW2B0 NFW4BO
See table that follows for flag usage.
SDLC CLA ENTRY
Defines SDLC CLA bit assigmment.
15 2 0
0 rEFDMO NFXCNT
WHOLE WORD VARIATION
15 0
—
0 NFINT1
Integers
1 NFINTZ
ASYNC CLA ENTRY
15 13 11 10 o 8 7 3 1 0’
] NFDM1 - Not used : NFARSR NFATSR
i NFAPARY | NFACHLE | F33 | F34 | F35 | F36 | NFARSPED NFATSPED
MFARSR - Receive speed range (baud) 0 = 110
1 = 134.5
2 = 150
3 = 300
60471260 2 #=15

NPFATSR - Transmit speed range (baud) 0 = 110
1 = 134.5
2= 150
3 =300
NFAPARY. = -
NFACHLE -
F33 - NFSTOP, stop bit
F34 - NFDM2, not used
F35 - NFECHO, echoplex mode
F36 - NFLBT, currently in one-line diagnostic loopback test
NFARSPED - Receive speed (baud)
0 = 110
1 = 134.5
2 = 150
3 = 300
NFATSPED -~ Transmit speed (baud)
0 = 110
1 = 134.5
2 = 150
3 = 500
Synchronous CLA Entry
15 7 3 1L 0
0 NFDM3 - Not used NFSPARY NFSCHLE

1 NFSYCAR - Synchronous character NFDM4 - Not used

NFSPARY - parity

zZero
odd
even

WNHO
onouo

none

NFSCHLE - character length (bité)

=]
0
1
2
3

wonnam

oo

H-76 60471160 A

The following table (not a data structure) correlates command index to

command status.

Sync/

Value

Mnemonic NDCASE MFCCEE : Async

for NDCASE - (hex) (Word/bit): Mean;nq or Generai

_ NORTS 1 (W1B7) {RTS) Reques end =
NOSRTS 2 (W1B6) (SRTS) Secondary reguest to send A
NORSYN 2 (W1B6) (RSYN) Resync -
NOOM 3 (W1B5) (OM) Originate mode/auxiliary A
NOLM 4 (W1B4) (LM) Local mode/auxiliary a
NONSYN 4 (W1B4) (NXYN) New sync]
NOLT 4 (W1B4) (LT) Local test (2560-3) -
NODTR 5 (W1B3) (DTR) Data terminal ready -
NOTB 6 (W1B2) (TB) Terminal busy A
NOION 7 (W1B1l) (ION) Input on -
NOOON 8 (W1BO) (OCN) Output on -
NOBREAK 9 (W2B7) (BREAK) Break mode A
NOISR A (W2B6) (ISR) Input status request -
NOISON B (W2B5) (ISON) Input supervision on -
NODLM (o] (W2B4) (DLY) Data line monitor A
NOECHO D (W3B1l) (ECHO) Echoplex mode A
NOLBT E (W3B0) (LIT) Loopback test A
NOLBT E (W2B4) (LIT) Loopback test s
NOLBT E (W2B4) (LIT) Loopback test +
NOLBT E (W2B4) (LIT) Loopback test SDLC
NOPON F (W3B6) (PON) Parity on A
NOPON F (W2B2) (PON) Parity on s
NOPON F (W2B2) (PON) Parity on +
NOPSET 10 (W3B7) (PSET) Parity set, 1 = even A
NOPSET 10 (W2B3) (PSET) Parity set, 0 = odd s
NOPSET 10 (W2B3) (PSET) Character length - LSB +
NOCLLS 11 (W3B4) (CLLS) Character length - LSB A
NOCLLS 11 (W2B0) (CLLS) Character length - LSB S
NOCLLS 11 (W2B0) (CLLS) Character length - LSB +
COCLMS 12 (W3BS5) (CLMS) Character length - MSB a
NOCLMS 12 (W2B1) (CLMS) Character length - MSB s
NOCLMS 12 (W2B1) (CLMS) Character length - MSB +
* Not RS-232

60471160 A H-77

CLA Status Condition .Indicators, MOSCTYP

The status indicators are used in the werklist entry.

- "MOCLAON, 0 CLA ON DETECTED
MORING, 1 RING: INDICATOR DETECTED:
MOENBL, 2 LINE ENABLED
_MOHERR, 3 HARD FRRORS DETECTED =
MOSOER, 4 SOFT OUTPUT ERRORS DETECTED
MOSIER, 5 SOFT INPUT ERRORS DETECTED (unsolicited input)
MOSTRT, 6 START MODEM TIMEOUT
MOSTOP, 7 STOP MODEM TIMEOUT
MOOVRF, 8 CLA STATUS OVERFLOW (unsolicited output)
MOOVTO, 9 CLA STATUS OVERFLOW TIMEOUT
MOMRTO, A MODEM RESPONSE TIMEOUT
MOBREAK; B BREAK FROM FRAMING ERROR STATUS

Modem Control States

These states are used in the command packet to PBCOIN to set up the modem's
state of operation.

Mnemonic .Value Meaning
MSTCHK 0 STATE 0

‘MSTERR 1 STATE 1 LINE CLEARED
MSTLNI 2 STATE 2 LINE INITIALIZED
MSTENB 3 STATE 3 LINE ENABLED
MSTIDL 4 STATE 4 LINE IDLED
MSTOUT 5 STATE 5 OUTPUT ON
MSTINP 6 STATE 6

INPUT ON

Modem State Prorams
NOMSPT has range 0,..40; this is the size of modem states pointer table. One
table exists for multiplex modem state pointers subsystem.

TERMINAL TABLES

Terminal Characteristics Table, NJTECT

The terminal characteristics table entry (NITECY) contains parameters that
define the special processing characteristics of a given terminal type. It
is used to set up the MLCB and to configure the system (SVM use). The

—-yariant-is—accessed-vwhen—the—interactive-terminal-parameters—areused:

H-78 60471160 A

15 14 13 12 11 e 8 7 3 0

0 | NJISPTA - Address of input state programs pointer table

1 NJCXLTA - Address of code translate table

_NJSYNC - Sync
acter =

2 | MICNT1 - Input character count 1

NJCRCP -~ CRC .
3 polynomial NJIBFCD -~ FCD of first buffer .

(bits 7-0 only)

index
NIJTIPTY -
- . TIP tvpe;
4 NJBLKL Block size (words) see appen-
dix C
NJPARIT gigngN- NIPARTY -
5 . ASYNC TIP| F1 | F2 NJSP1l -~ Not used
~Parity acter .
length parity

6 NIPSWIDTH -~ Page width (bits 0 -7)

7 NIJPGLENGTH - Page length (bits 0 - 7)

8 NJCANCHAR ~ Character for cancel input line (bits 0 - 7)

9 NJCNTRLCHAR - Control character (bits 0 - 7)

10 NJUSF1l - Character for user break 1 (bits 0 - 7)

11 NJUSR2 = Character for user break 2

12 F3 F4 FS Fé NJXCNT - Counter for transparent character

NJOUTDE- NJAPL- NJXCHAR - Character
13 F7 F8 F9 F10 | output APL that delimits
device mode transparent text

NJABTLINE -
14 NJIBSCHAR - Backspace character Character to abort
. output line

. NJFIDLES - Count
NJCRIDLES Count of idles of idles following

15 :
following a CR an LF

—»www~w~~~IVT~parameterswarewin-wordsvé*throughwit“TVT*varianf.

IVT variant

s B 0
0 NJARRY)

NJARRY (ARRAY) ’} Overlay for interactive terminal parameters
14 NJARRY ELEMENT 15 }

60471160 A ' H-79

Values

= odd = even 3 = none

NJIPARIT 0 = zero 1 2
NJCHLEN 0 =5bits 1=6bits 2 =7 bits 3 = 8 bits
NJPARTY _0,?;=efo‘ 1=o0dd 2 =-even 3 = none

~ NJOUTDE nué’;'p:iﬁi&i’wwiw;'éi§§ié§'"2 ;yééééf”fébé 3 = not used
NJAPL 0 = no 1= yes- 2 = special APL mode 3 = not used
Flags:
Fl NJPGWAIT, page wait mode

F2 - NJXPARENT, input transparent mode

F3 - NJXTO, expected delimiter is a timeout

F4 - NJXCCON, expected delimiter is reaching transparent character count
FS - NJXCHRON, delimiter is transparent character

F6 - NJOM1l, not used

F7 - NJCRCALC, calculate CR idle count

F8 - NJLFCALC, calculate LF idle count

F9 -~ NJECHOPLX, echoplex mode

F1l0 - NJINDEV, input device (0 = keyboard, 1 = paper tape)

Terminal Classes

This is the BZTIPTYPE field of the LCB. Further information on terminal
class is found in appendix C.

Mnemonic ~ Value Meaning

NOTMLIA _ 0 MLIA (Multiplex interface adapter)

NOM33 1 Async - M33, M35, M37, M38 (TTY terminals)
N02780 7 2780

N03780 8 3780

NOHASP 9 HASP

N02000T 10 Mode

NOCOUPLER 11 Coupler

NOTCONSOLE 12 Console

NOTDIAG 13 Diagnostics

Terminal and Device Types (TT/DT)

—.Phese-data structures are_used to-find TCBs, check devices for
deliverability of messages, and so forth. See appendix C.

TERMINAL TYPE, NPTT

Three cases are possible:

i
-
(=]

<

()}
[]
(=]

Bit _15 7

| NPSPR3 :
| (spare byte)

L-NPSUBTfP, rangé 0 - 7,wsub?
.. TP size (see appendix E) -

NPAUTO

_NPTIPTYPE, range 0 - 15, TIP type
autorecognition _ (see appendix E)
flag
Bit _15 7 0
NPSPR 4

CHAR

‘L————-Character overlay

(spare byte)

DEVICE TYPE, NPDT
Two cases are possible:

Bit _15 7 4 0

NPSPR1
(spare byte)

L-NPTCLASS, range 1 - 31,
. terminal class (see appendix E)

lL—NPDEV, range 1 - 7, device type
(see appendix E)

Bit _15 7 0

NPSPR 2
(spare byte)

CHAR = NPDT(2)

I—Chax: acter overlay

DEVICE TYPES

These mnemonics are used by programs to determine if device type is proper
for delivery of message, generating status, and so forth.

Mnemonic———Value——————Meaning
N1CON 0 Console
NI1CR 1l Card reader
N1LP 2 Line printer
N1CP +:3 Card -punch-
N1PLOT 4 Plotter

7

NlINTDEV~k Internal device

60471160 A “H-81

SERVICE MESSAGES

Appendix C defines most of the service message data structures. Table C-1
defines the function and subfunction codes used to switch processing within
the SVM to the 1nd1cated SVM reutines.

Other servmcevmessage‘xnformatlon is at the following location.

Definition = Fields Lccation, table
TIP/Sub-TIP NO... Appendix C, C2

Line type Appendix C, C3

Configuration states C7... Appendix C, C4d

CE error messages CN... Appendix C, C2

Statistics messages

CCI
(NPW) CP... Appendix B, B4 reference

(tr/1ln) BZ... Appendix B, B4 manual
(term) BS... Appendix B, B4 ‘

FN/FV DATA STRUCTURES

These data structures are used when taking FN/FV parameters from the
configure service messages and entering them in the appropriate place
(usually in the TCB).

Field Description Table, DDFDTRECORD

The field descriptor table size is given by DDFTDRECORD in the first word.
A series of l-word entries (DDFDTENTRY) follow.

_15 11 7 0
DDFTDRECORD - Number of table entries

DDFSTRT - DDFLNTH - DDFDISP - Displacement
Field start Field length to start of field in

bit position (bits) - 1 record (words)

Pointer to table is DDFTDPTR.

Action Table Entries, DFATENTRY

The action table is used for configuring lines and terminals. There can be

an entry in the table associated with the field number (FN) of each possible
FN/FV pair in the configqure/reconfigure service message. Normal values for
the entries can be found in the Link Edit listing normal table entry.

DFERRCDE -~ Error code R ‘DEFN - Field number (table index)

DFRKEY - Reconfigure action key DFCKEY - Configure éétidn key '

DFPARAM - Optional action parameter

H-82 60471160 A

Table end

15 2

DFEND - End . of table

Pointer to the table is DFATPTR.

Configure Action Codes - Each TIP has associated with it an action table
which is set up in a link edit operation. After storing the field value
(FV) in the TCB, PNCONFIGURE checks the TIPs action table using the action
code as an index, and takes the action specified by the PNCONFIGURE routine.

DFCKEY or DFRKEY

D2NA 0 NO ACTION

D2VUL 1 VERIFY UPPER AND LOWER VALUE

D2VU 2 VERIFY UPPER VALUE

D2VL 3 VERIFY LOWER VALUE

D2ACN 4 PROCESS CONNECTION NUMBER

D2LLCB 5 TRANSFORM ON, SN IN LLCB ADDRESS

D2TCPCHN 6 CHAIN TCB (not used)

D2INK 7 GET INDEX INTO LINK TABLE FROM LRN

D2QCB 9 GET A QUEUE CONTROL AND SEND INIT (not used)
D2PARITY 10 PROCESS PARITY

D2INIT 15 EMPTY OUTPUT QUEUE AND SEND INIT (not used)
D2TCBINIT 16 SET UP VARIANT TCB

Configure action error codes - If the action specified by the action table
cannot be completed, a PNCONFIGURE subroutine sets an error code (DEFERRCDE)
in the action table entry which commanded the action. Other SVM routines
use this code to generate the configure/reconfigure SM reply (normal or
error) to the host.

DFERRCDE
D3AC 0 Action complete
D3FNFVERR 1l Field number of field value out-of-range
D3INVCB 2 Invalid control block ID
D3CNFERR 3 Control block already configured (configure SM)
Control block not configured (reconfigure SM)
D3NOBFR 4 No buffer for TCB
D3INVLT 4 Invalid line type
D3INVTT 5 Invalid terminal type
D3INVDT 5 Invalid device type
D3NOTENABLED 6 Line not enabled
D3NOL 8 Logical link not established
D3CNINUSE 9 Connection number already in use
HALT CODES

The halt codes delivered to the NPU console are shown in appendix B, of the
CCI reference manual.

60471160 A ‘ H-83

ON-LINE DEBUGGING AIDS |

The on-line debugging aids for CCI include the Test Utility Package (TUP)
and other aids. These debugging aids offer a varietv of interactive
commands useful to the programmer who is altering CCI code or adding a new
TIP to the system. - Several breakpoint commands are available.

NOTE

These on-line debugging aids are not a supported product.

The descriptions are given here because of their usefulness.
However, the user should be cautious about any analysis based
on the use of these debuqging aids.

CONSOLE COMMANDS

Commands for on-line debugging are entered through the NPU console. A
special character (control A) places the console in debug mode. In this
mode, the console is an interactive device. 1In addition to the standard
machine language debugging features, there are aids based on the internal
structure of the software (such as dumping a line control block (LCB) or
making a worklist entry). Various machine language level breakpoints are
also available. These debugging aids allow one or more breakpoints per
machine instruction.

INSTALLING DEBUGGING AIDS

The on-line debugging aids are an optional feature. They are made available
by using the Update command:

* DEFINE DBUGALL
during the build process. During the MPEDIT phase, the global to console
must be set to true.
GENERAL COMMAND FORMAT

Once thé debugging system is activated, it accepts any of the commands
listed in table I-1. Rules for entering the commands are as follows:

. ® Control A allows the user to enter debug mode. The control A must be

recognized-as—the—first—characterof the input message.
(] Control D allows the user to leave the debug mode.
e Each command can include up to eight parameters. Each parameter

field includes one to five hexadecimal characters (18-bit addressing
is supported).

60471160 A ' I-1

Commas or blanks delimit the parameters. These symbols are
interchangeable. '

A slash (/) delimits the end of a command or the end of a command
line. ,

Control C or questlon mark (?) cancels a partially entered debugging

Shift O or control H are used for backspacing.

An error message (*ERR) is printed in response to an invalid input.
The usual invalid inputs are a bad command mnemonic, the wrong number
of parameters, or a parameter containing nonhexadecimal characters.

60471160 A

TABLE I-1l. DEBUGGING AID COMMANDS

Command

Syntax

OPS Halt oB/
Or/

 OPS Restart

Dump Memory

Load Memory
Display Register
Enter Register
Display File 1
Enter File 1

Get a Worklist
Release a Buffer
Get a Worklist
Put a Worklist
Device Assignment

Dump OPS Program

Load OPS Program

Read Page Register
Dump LCB

Dump LLCB, TCB

Search for TCB

Enter Breakpoint

Remove Breakpoint
Enable Software BP
Disable Software BP
Breakpoint Restart

DP{E},start, stop, base/

LHX, start, base/C, word l, ... word 8/
DR/

E R / where R is 1, 2, 3, 4, Q, A, I, or M
DR, file 1 register (0 .. X'FF)/

EF, file 1 register 0 .. X'FF)/

BG, buffer size (0 .. 3)/

BR, buffer address, buffer size (0 .. 3)/
LG, worklist number/

LP, worklist number, word .1, ... word 6/
DA, LIP, PD/

P
L

LDX, start, OPS worklist number/C,
word 1, ... word S.

DM{ }, start, end, OPS worklist number/

RP, page number + X'8000*bank/
LC{E},line number/

B

Tc{L},DN, SN, CN/

TS{:},line number, CA, TA, DT/

EB, inst. start, inst. stop, BP code,
optional parameters/

RB, inst. start, inst. stop, BP code/

" BL, software priority level (0 .. X'11)/

DL, software priority level (0 .. X'11)/
RS/

COMMAND FORMATS

Each ‘command is described individually in-this subsection. The normal
response to the command. is also given. Two types of responses occur:

) Debug. asks. .for morekparamete:s {such. as wheﬁe a Load Hexadecimal
command is used). These additional parameters always use_a. C.command
in the form: , ' - = . , :

C, word 1l, ... , word 8/

Word is a hexadecimal value (00000-FFFFFig4) (5-character
hexadecimal should be used only for addresses above (FFFFFig)

, or is the delimiter
/ ends the input.

) Debug returns results or a comment. The return always begins with *.
In the following, the syntax of the input is given on the first line and the
format of the normal response is given on subsequent lines.

OPS Halt

The OPS halt command stops OPS-level processing in the system. All other
debug commands can be entered while the system is in this mode.

OH/
*
* OPS HLT
The error response *ERR SYS HLT is returned if the OPS level is already
hal ted.
OPS Restart
This command returns control to the OPS level after an OPS halt.

OR/
*
The error response *ERRR SYS HLT prints if the OPS level is not halted.

Dump Memory

DPC
DPL , start address, stop address, base address/

* dump address word 1 ... word 8

* dump address +8 word 9 ... word 16
etc.

The DPC éommand displays the memory contents within the specified range on
the local console. The DPL command dumps memory to the assigned dump device.

I-4 60471160 A

The base address is optional and is used for relative addressing.: If only
the start -address "is entered, one word of memory 1s dumped

An. error .response .is returned 1f the user attempts to dump out51de the
memory range. ~ ,

A DR/command can be repeated thhout reenterlng the command by’

ressing the
-manual interrupt (control G) key. ..

Load Memory

LHX start address, base address/

C, new word 1, ... new word 8/
* load address old word 1 ... old word 8

The LHX command sets up the load address. The C command loads from one to
eight words into memory. The load address is incremented for each word
loaded. Thus, mulitple C commands load contiguous memory. Other debug
commands (except an LHX command) can be executed between C commands without
disturbing the load address. The previous contents of the loaded memory
locations are displayed in response to a C command. If the user tries to
load an out-of-range location, dashes print following the contents of the
last in-range location.

Display Registers

The contents of macro registers R1, R2, R3, R4, Q, A, I, and M are
displayed. The command gives valid information only if the system is in the
OPS halt, breakpoint halt or system halt mode.

DR/
*] = contents of Rl ... M = contents of M

Enter Register

The specified register is loaded. This command is accepted only in the OPS
halt or breakpoint halt modes.

E{R}, value/ where R is 1, 2, 3, 4, Q, A, I, or M
* previous register contents

Display File 1
The contents of the specified micro file 1 register are displayed. A series
of file 1 registers can be displayed quickly by using the manual interrupt
e {control G}*kEwa~After~the“%n%tLal~dlsplay—fr}e—l—commandﬁntheﬁnextﬁfrte~t~-w—ww-—
reglster is dlsplayed by pre351ng manual 1nterrupt ‘ :

DF, file 1 register (0- FFls)/
* register contents

An error response is displayed if the file 1 register number is too large.

1160 A 1-5

)]
Ql
~ll

___worklist.

Enter File 1 Register

A spec1f1ed file 1 reglster is loaded with a glven value.

EF file 1 reglster o .. FF15), value/
* prev1ous file 1 reglster contents

An error response Ls dlsplayed if the flle l register number 1s too larqe.a,;

Get A Buffer
A buffer of a given size is obtained.

BG, buffer size (0..3)/
* buffer address

An error response is displayed if the buffer size is too large.

Relsase A Buffer
A given buffer is returned to the free buffer pool.
NOTE
No error checking is performed by the ‘Release a Buffer
gggﬂ?nd. Incorrect use of this command can cause a system

BR, buffer address, buffer size (0..3)/
- ;
An error response is displayed if the buffer size is too large.

GET A WORKLIST ENTRY

The next entry from the specified worklist is removed and printed. If the
worklist is currently empty, *LIST EMPTY is printed.

LG, worklist number/
* worklist entry word 1 ... worklist entry word 6/

An error response is displayed if the worklist number is too large.

Put A Worklist Entry

The given worklist entry (zero to six words) is placed into the specified
OpS=-level programs_can be exercised with the command First,

halt OPS level scheduling via the OPS halt command. -Next, place the desired
worklist entry or entries into the desired OPS-level worklist(s). Finally,

return control to OPS scheduling using the OPS-restart command.: The queued

worklist entries are worked off and results can be verified.

- LP, worklist number, word 1, ... word 6/
3 LiSt. Per, .

An error response is displayed if the worklist number is too large.

1-6 ' 60471160 -

Device Assignment

This command allows the. user. to dynamically assign.logical input/output

functions (LIO) to physical devices (PD). The available PD codes are as
follows: , : - . . : o ; i e

0 Nuli device

1 Local console

2 Line printer

The currently defined LIO codes are as follows:

8 Dump device

9 Memory snapshot

XA5g Register snapshot

XBjg Breakpoint return address snapshot

XCi¢ Spare breakpoint
XDig Quick output

The default for all LIO codes except the dump device is the local console.

The dump device is the local line printer if the line printer software is
built into the system.

DA, LIO, PD/
*
An error response is displayed if either parameter is too large.

Dump OPS Program Locations

This command is similar to the DP command, which uses the base address
feature. Instead of a base address, however, the user enters the desired
OPS program worklist number. The correct OPS program base address is
obtained from a prebuilt table. ; ' ;

DMP)

DML , start address, end address, OPS wl number/

* dump address word 1 ... word 8

* dump address +8 word 9 ... word 16

etc.

The DMP command dumps to the local console. The DML command dumps to the
assigned dump device. All three parameters are mandatory. An error
response is printed if the OPS worklist number is too large.

NOTE

When the OPS programs are paged above 64K (FFF315) , the
necessary paging is automatically performed. -

Load OPS Program Location

This command. is similar: to the LHX: command, which uses the 'base address
feature.. Instead of .a base address, however, ‘the user enters the desired
OPS program worklist ‘number. The correct OPS program base address is
obtained from a prebuilt table. :

. LDX, start address, OPS wl number/
" :

C, new word 1, ... new word 8/
* load address old word 1 ... old word 8/

NOTE

When the OPS programs are paged above 64K, the necessary
paging is automatically performed.

Read Page Register

In NPUs with the paging feature, page registers in either bank can be
displayed. Writing a page register while the system is on-line is gquite
hazardous and is not allowed. The leftmost bit of the page number parameter
determines which bank to read: 0..1Fjg for bank 0 and 8000..801F;g for

bank 1.

RP, page number/
* page contents.

An error response is displayed if the page number is out of range.

Dump Line Control Block

Given a line number, the corresponding line control block (LCB) is dumped.
The line number is a 16-bit quantity containing the port (left 8 hits) and
subport (right bits), subport = 00. '

iLCB}

\LCLf, line number/

*I,CB start address word 1 ... word 8
*L,CB start address +8 word 9 ... word 16

etc.

ICB dumps to the local console. LCL dumps to the assigned dump device. An
error response is displayed if either the port or subport is too large for

the configured system.

Dump Terminal Control Block or Logical Link Control Block By DN, SN, AND CN

If the CN is zero, the logical link control block (LLCB) is dumped. ek
Otherwise, the terminal control block (TCB) is dumped. The DN and SN (and
CN) form the logical network address and a search through the routing

directory is performed to find the proper control block.

,{TCE& .
TTCLY, -

* control block start address word 1 ... word 8
* control block start address +8 word 9 ... word 16

etc.

TCB dumps to the local console. TCL dumps to the assigned dump device. An
error response is displayed if the control block is not found in the routing

directory.

Dump Terminal Control Block By Line Number, CA AND TA

The line number, cluster address, and terminal address form the physical
network address of the terminal control block (TCB) and a search through the
active line control blocks is performed to find the TCB.

{TSB}

'TSLf, line number, CA, TA, DT/

* TCB start address word 1 ... word 8

* TCB start address +8 word 9 ... word 16
etc.

TSB dumps to the local console. TSL dumps to the assigned device. An error
response is displayed if the TCB is not found.

Enter Breakpoint

This command places an entry into the software breakpoint table

(JEBPTABLE). The entry consists of the starting and ending addresses of the
instruction to breakpoint, the breakpoint code specifying which breakpoint
to execute, and any optional parameters required by the breakpoint. a
maximum of five optional parameters are allowed.

EB, instruction start, instruction stop, breakpoint code, parameter
l, ... parameter 5/
*

The following conditions cause an error response to be displayed:

) Breakpoint table full
® Start address, end address, and/or breakpoint code missing
e Start or end address out-of-range

Breakpoint codes are discussed below.

]

‘Ronnwn Breakpoint

This command removes a specified ‘entry. from the breakpoint table. . Only .. .
matches with the instruction start and end addresses and . the breakp01nt code
are searched for “in the breakpoint table. An error response is -displayed if
the wrong number of parameters are entered or if the entry is not found.

_ RB, instruction start, instruction end, breakpoint code/
x ;

Enable Software Breakpoint By Priority Level

This command allows software breakpoints to occur at a specific software
priority level. This allows reentrant code which is executed at different
priority levels to be breakpointed at a specific priority level or levels.

BL, priority level (0..11l34)/
" .
An error response is displayed if the priority level is too large.

Disable Software Breakpoint By Priority Level
This command disables software breakpoints on a specific priority level.
DL, priority level (0..1l3g)/

An error response is displayed if the priority level is too large.

SOFTWARE BREAKPOINTS

Software breakpoints on the NPU are generated through the hardware program
protect system. When the system is initialized, all of memory except the
dynamic buffer area is protected. That is, the program protect bits are set
on each nonbuffer memory location. When a breakpoint is set on an
instruction, the program protect bits are reset for that instruction. When
the protected instruction following the unprotected (breakpoint) instruction
is executed, a program protect interrupt (line 0) is generated, provided the
program protect system is activated. The instruction generating the
interrupt executes as a l-word NOP. The line 0 interrupt handler passes
control to the breakpoint handler. The breakpoint interrupt handler
searches the breakpoint table using the interrupt return address for line

0. If an entry in the breakpoint table is not found, a true program protect
fault has occurred and the system is halted. Otherwise, control is passed
to the proper breakpoint handler for each entry found in the breakpoint
table, provided software breakpoints are enabled for the interrupting
priority level. Note that more than one breakpoint entry per instruction is

——alloweds

A basic knowledge of the macro assembly language is necessary when using
sof tware breakpoints.

Certain restrictions must be observed when using software breakpoints.

I-10 60471160 A

Instructions that write into nonbuffer memory, jump, return jump or skip, or
are priviledged (disable and enable interrupts, set and clear protect bit,
and interregister ‘instructions with the interrupt mask reqister as the
destination register) cannot have breakpoints. :The enter breakpoint command
isi , pEa

~EB, start global area; end global area; 0/

This clears the protect bits on all al variables, allowing the user to

breakpoint instructions that write into the global area.

Two. consecutive instructions cannot have breakpoints. Noninterruptable code
cannot have breakpoints.

Note that both the proper software priority and the program protect system
must be active before a breakpoint interrupt can occur. The program protect
system is activated by entering J28: on the NPU maintenance panel.

Entering J20: deactivates the program protect system,

The global constant J1BREAKMAX specifies the number of entries in the
breakpoint table JEBPTABLE. Currently, J1BREAKMAX is 10.

BREAKPOINT HANDLERS

Currently, there are seven breakpoints handlers available:

Enter debug mode

Memory snapshot

Register snapshot
Instruction address snapshot
Quick output

Wraparound snapshot
User-defined snapshot

The enter debug mode breakpoint enters a loop after the breakpoint
instruction executes. In this loop, all priority levels at and below the
breakpoint priority level are suspended until the loop is exited using the
breakpoint restart debug command. All debug commands can be entered while
in the breakpoint loop.

The memory snapshot formats a specified memory range into system buffers and
queues them to a specified local peripheral.

The register snéPShot formats the contents of macro registers R1, R2, R3,
R4, Q, A, I, and M into a system buffer and queues it to a specified local
peripheral.

The instruction address snapshot places the address of the breakpoint
instruction into a system buffer and queues it to the memory snapshot local

~~~~~~~~~~~~~~~~ —peripheral.

Quick output writes the contents of one buffer of ASCII characters to a
specified local peripheral.

The wraparound snapshot places the contents of a specified memory range into
a user-supplied circular save area.

80471160 A I-11



The user-defined snapshot consists of 20 NOPs ‘available to contain
user—-written. breaprLnt code.

The local perlpheral for the above snapshots is specxfled by the devxce
assignment debug command.

Combinations of the above snapshots can be entered for a single breakpointed

instruction. Table 1I-2 defines the optional parameters for the Enter

Breakpoint debugglng ‘command. The execution count is the maximum number of
times the snapshot is to be executed.

OPS SCHEDULED DEBUG AID

A special OPS scheduled program (PBTIPDBG) is available to execute
user-supplied debug code. PBTIPDBG is entered by making a worklist entry
from source code or through the List Put debugging command (LP, parameters,
see table I-1l). The first word of the worklist entry is a code defining
which user code to execute. The next four words are optional and are used
to pass parameters to the user code. Code 0 is reserved and contains 20
NOPs available for on-line patching.

I-12 60471160 A



TABLE I-2. BREAKPOINT PARAMETERS

Breakpoint . Parameter Number
Code ' (Hex) Breakpoint and -Description
7 Enter debug mode NO parameters
-+ ' :
9 Memory snapshot 1 - Snapshot start address
2 - Snapshot end address
3 - Execution count
A Register snapshot 1 - Execution count
B Instruction address 1 -~ Execution count snapshot
snapshot
C User-defined snapshot 1 - Execution count
D Quick output 1 - Address of buffer to output
2 - Execution count
E Wraparound snapshot 1l - start address of snap area
2 -~ End address of snap area
- 3 - Start address of save area
4 - End address of save area
5 - Execution count

60471160 A







INDEX

Abort
Downline 6-35
Upline 6~35
Accept
Input Flag, PTINIT 6-35
Output Flag, PTINIT 6-35"
ACK 11-6
ACKO 11-8
Acknowledgment Block, HASP 1ll1-6,
11-7
Address 4-23, 6-2
Functions 4-24
HASP 11~-16
Mode 4 10-5
Mode 4 Terminal 10-3
Register Code 7-14
18-Bit 4-24
Al ternating Directories 6~16
Analyzer, CLA Status 5-22
ASCII
Decimal Conversions 4-20, 4-21
Hexadecimal Conversions 4-20,
4-22
Set Membership 4-20
Assignments, Interrupt 4-16
Asynchronous (TTY) TIP 9-1
Autorecognition
BSC 8-13
HASP 11-25
Mode 4 10-14
TTY 9-6
Availability, Buffer 4-7

BACK Block 6-7
Base System Software 4-1
Basic Interrupt Processing 4-13
Batch Carriage Control
Action, 2780 8-9
Action, 3780 8-11
Symbols 8-4
Batch Format Data 6-10
BCB 11-8

Bit Assignment, Coupler Status

Register 7-11
BLK (Block) Block 6-7
Block 6-35

ACK 11-6
Acknowledgment 6-7
BACK 6-~7

BLK 6-7

BSN Type 6-6
CMD 6-7, 6-35, 10-10
Card Reader CMD 11-18
Command 6-9
Control Byte (BCB) Error 11-24
Control Byte Error, HASP 11-23
Control Byte, HASP 11-8
Data 6-4
Discard Non-routable 6-35
FCS Change 11-13
Flow Control 6-3
Format, Data 7-25
Format, HASP Signon 11-15
Functions 4~24
HASP ,
Control 11-6
Data 11-8, 1l1-12
EOF 11-13
End-of-File 11-13
Enquiry 11-7
FCS Change 11-14
Idle 11-8
Multileaving 11-6
Operator Console 11-13
Signoff 11-16
Signon 11-15
Length, Compare 4-24
Make-up Error 11-23
Main Memory, Clear 4-24
Printer CMD 10~-11
Printer Data CMD 11-20
Protocol 1-9, 6~1
Protocol Summary D-1

Error 11-23
Error Block 11-24
Binary 4-20 :
Binary Codes, BSC 8-2
Binary Synchronous Communications:
TIP 8-1 T '
Binary Conversions :
to ASCIT Decimal - 4-21
to ASCII Hexadecimal 4-22

Routing 1-13 ' )
Serial Number  (BSN) '~ 6-6
Transfer’ 7-16 ‘
Types 6-6, 6-7
Break Codes 10-8
Breaks, Upline 10-8
BSC 026/029 Codes 8-2
BSC Autorecognition -
BSC Binary Codes 8-2

13

Index~1

Punch-Data~EMD——11=22



BSC Carriage Control 8-3
BSC Error Processing 8-13

Modular Structure 1-9
Modules - 1-10

BSC Interactive Carriage Control
8-3

BSC Operatlonal Characteristics

‘8=5 ‘
BSC. Operational Features 8=2
BsSC TIP  8-1 ‘

Modules Relationships With
PTLINIT 5~27

Naming Conventions F-1

Overview . 1-1

Priority and Nonpriority Tasks
1-4

"BSC TIP, Direct Calls from §=-12
BSC TIP, Direct Calls to 8-11
BSC Terminal Features 8=5
BSC Transparent Data 8=3
BSN 6-6
BSN/Block Type 6-6
Buffer
Availability 4-7
Copying 4-7
Formats 4-5, 7-25
Handling 4-~2, 4=7
Stamping 4-5
Releasing 4-7
Releasing Several 7=7
Single 4-6, 4-7

Call
BSC TIP 8-11
Direct 4-9
Direct and Worklist 1-13
Firmware Interface 1-15
Firmware Level 1-15
Illegal 4-26
Macroassembly Programs from

PASCAL 4-17

Multiplex Subsystem 1-15
PASCAL 4-~19

Card Reader
HASP 11-18
Input Stopped CMD Blocks 10-10
Interface, Mode 4 10-9
Nontransparent Data, HASP 11-19
Stream Control CMD Blocks 11-18
Transparent HASP Data, HASP

11-20

Carriage Control
Action, 2780 Batch 8-9
Action, 3780 Batch 8~-11
BSC 8-3
BSC Interactive 8~3
Codes, HASP Printer 11-21
Codes, Printer 10-11

___________________ DBC _Codes_for 10-8

Programming Languages ~1=18
Programming Methods 1-9
CDC 711 Terminal Error
Processing 10-13
CE Error Messages 3-3, 3-4, 6-21
Change Block, HASP FCS 11-14
Channel, Service 6~-8
Characteristics, BSC 8-5
Characters, EBCDIC 11-7
Check if Block is to be Sent,
PBBCHCHK 6-35
CLA 5=3
. Status Analyzer 5-22
Status Overflow Handling 5-24
Classes 12-2
Clear
Block of Main Memory 4-24
Line Command 5=-11
Protect Bits 4-25
Cluster Addresses, Mode 4 10-5

‘CMD Block 6=7

Card Reader Input Stopped 10-10
Card Reader Stream Control
11-18
Printer Data Stream Control
11-20
Printer Input Stopped 10-11
Punch Data Stream Control 11-22
to Host 6-35
Code Conversion, Mode 4 10-3
Codes, Halt 3-2
Command
Clear Line 5-11
Control 5-11
Disable Line 5-20
Enable Line 5-12
Host Function 7-10
Initialize Line 5-11
Input 5=-15
Input After Output 5-18
NPU .Console Control 4~29
NPU Function 7-12, 7-16

Mode 4 10~-8 :

Symbols, Batch.. - 8~4 =

Symbols, Interactive 8-4

TTY Output Messages 9-5
CcC1

Design 1-3 .

Features  1-8

Mnemonics: . B=-1..:

1 ndex‘—? 3

Output 5=15

PPU Function 7-15

Terminate Input 5-19

Terminate Output 5-19
Command Block 76~7

Used on:Nonzero Connectlons Y e=-9
Command Driver ‘

Interface 5=-9 :

Worklist Entries - .:5-8

N
(=]
-9
~3
=
[ )
=33
[
>»



Command Format
Enable Line 5-13
Input . -5=16 = &
~Input-Af ter Output 5~18::
Terminate Input 5-20
Terminate: Output = 5-21
Command Interface ‘for: Prlnter,

L Yy
Command Packet Format 5-10
Common
Multiplex Subroutines for TIPs
5-21
Return Control Routine,
PTRETOPS 6-34
TIP Regulation, PTREGL 6-34
TIP Subroutines 6~21, 6-23
Communication Line Adapters
(CLa) 5-3
Communication
Line Initialization, HASP 11-14
Network 6-1
Paths for Block .Flow Control
6-3
Using PASCAL Globals 1-16
Worklist 5-5
Compare
Equal Length Blocks 4-24
Two 18-Bit Addresses 4-24
Components
Hardware 5-3
State Program 12-4
Compression 8-4
Configuration
Control Blocks 6-18
HASP 11-16
Line 2=5
Line Deletion 2-10
Line Service Message 2-6
Line/Terminal 2=-7
NPU 2-1, 2-4, 2-5
Sequence, NPU 2-4
Terminal (TCB) 2-10
Terminal Service Message 2-11
Connection
Directory 6~-13
Nonzero 6-9
Number 6-6
Console
Blocks, HASP 11-13
Control Commands 4=29

Control
Blocks
Configuring ' 6<~18
Deleting  6=18
Disabling 6~18
Enabling 6-18
HASP 1l1=6 .
Byte ...
Data”BIBEEET HASP 11-8
HASP Block 11-8
HASP Record 11-10
HASP String 11-12
HASP Subrecord 11-11
Codes
HASP Printer Carriage 11-21
Printer Carriage 10-11
Command 5-11
Format 5«12
NPU Console 4-29
BSC Carriage 8-3
BSC Interactive Carriage 8-3
Carriage for TTY OQutput
Messages 9-5
DBC Codes 10-8
Data Stream 6-8
Flow 11-25
Mode 4 Carriage 10-8
Routine, PTRETOPS 6-34
Sequence, HASP Function 11-10
Single Word Transfers 7=-12
Symbols, Batch Carriage 8~4
Symbols, Interactive '
Carriage 8-4
TTY Carriage 9-4
Convert ASCII
Decimal to Binary 4-20
Hexadecimal to Binary 4-20
Convert Binary :
to ASCII Decimal 4-21
to ‘ASCII Hexadecimal 4-22
Copying Buffer 4=-7
Count, Line 6-20
Coupler
Contention 7-17
Function Codes, Programming
7-10
I/0 Transaction Contention 7-5
I/0 Transactions 7-3
Interface Hardware Programming
7-8
*ueerface-Protocoi“Sequences

Control Messages 4-29
HASP 11-17 :
Support 4-27 ~
Support Services 4-28
Worklist Entry =~ 4-29
Contention, Coupler 71=5, 7=-17
Contention. Resolution, Mode 4
10-9

7-20
Registers 7-8, 7-9°
Regulation 7-18
Status Reglster Blt A551gnment
7-11
CRC-16 Error (Cyclic Redundancy
Check) ll 23 '

“'Index=-3



CRT, Duplicating of Write Data
10-13

Cursor Positioning, Mode 4 10-7

Cyclic Redundancy Check : :11-23

Data wriy
Batch Format ,6—10
Block , =
‘Format Used by the HIP '7=25
Header Formats 6-4
HASP 11-8, 11-12
Formats 6-8
Interactive Format 6-10
Nontransparent 6-11
Mode
Nontransparent 11-19, 11-20
Transparent 11-20, 11-21
Processing, Output 12-7
Stream Control 6-8
Structures 1-17, H=-1
Transfer, Multiple Character
(Block) 7-16
Transmission, HASP 11-9
Transparent 6~-12, 8-3
DBC Codes for Carriage Control
10-8
Debugging Aids, On-1line I-1
Deletion
Confiqure Line. 2-10
Control Blocks 6-18
TCB 2-12
Design, CCI 1-3
Destination Node Directory 6=13
Device Type, HASP -11-17
Diagnostics 3-1
Aids, ‘In-line 3-3
Service Messages 3-5
Direct Calls 1-13, 4-9
from the BSC TIP 8-12
from the Mode 4 TIP 10~-16
from the TTY TIP 9-5
on Firmware Level 1-15
to TTY TIP 9-4
to the BSC TIP 8-11
to the HASP TIP 11-26
to the Mode 4 TIP 10-16
Directives, HIP 7-2
Directories 6-13
Alternating 6-16
Connection 6-13

Dupllcatlng of Write Data on CRT,

Display File 1 4-25
Downline ~ :
Abort; PBDNABRT - 6-35
Message Proce551ng '1—5, 1-6
Dump g
Interpretatlon 3=2
NPU . - 2-4, 7-14

“Mode 4 10-13 —
Dynamic Page Register 4-23

E~Codes 10-3, 10-6
EBCDIC Characters, HASP 11-7
Elements of Multiplex Subsystem
5-2
Enable Line Command
Format 5-13
- NKLENBL 5-12
Enabling Control Blocks 6~18
End-of-File Blocks, HASP 11-13
ENQ 11-7
Enquiry Block, HASP 11-7
Entries, Worklist 5-8
Entry
Console Worklist 4-29
Worklist 4-12, 4-13
EOF ~ 11-13
Block, HASP 11-13
EOI 8-2
EOR g8-2
Error
Block, BCB 11-24
CRC-16 11-23
Checking, HIP 7-19
Conditions, HASP 11-22
HASP Block Control Byte 11-23
HASP Unknown Response 11-23
Handling, Mode 4 10-12
Illegal Block Make-up 11-23
Messages 6-21 S
Processing
BSC 8-13
CDC 711 Terminal 10-13
HIP 7-7
Short Term 10-12
TTY 9-6
Execution Timers 4=-27
Execution of State Programs 12-1
Expansion 8~-4
Extracting a Worklist Entry 4-13

S — ~-Destination-Node 6=13

Routing 6-14
Source Node  6=-13 ;
Disable Line Command - NKDISL
5-20
Disabling Control Blocks 6-18
Discard Non-routable Blocks,
PBLOST - 6-35 .
Dispatching Service Messages 6-18

Index—4

Failure 3=-1
Host 3-1, 7-18
Line 3-2 '
NPU 3=1
Terminal:: -3-3
FCS: -7 11=10 favenen s sk by
Change-Block -:11-13, :11-14::



Features

BSC 8-2 ‘

BSC Terminal 8~5

CCI 1-8 : e ey

HASP Workstation. ' 11-2
File 1, Load/Display - 4-25
Files, Punch 8=3

,Flndlng Number of Characters to be ,

Processed  6-33
Pirmware
Interface 1-15
Interface to Modem State
Programs 12-9
Interface to Output Data
Processing 12-7
Level, Direct Calls 1-15
Multiplex Level 1 5-4
Text Processing 6-33
Worklist Entries 5-8
Flags, Set Accept Input/Accept
Output 6-35
Flow Control 6-3
HASP 11-25
Format
Batch Data 6-10
Buffer 4-5, 7-25
CE Error and Statistics
Messages 3-3
Command Packet 5=10
Control Command 5-12
Data 6-8
Data Block 7-25
Data Block Header 6~4
Enable Line Command 5-13
HASP Signon Block 11-15
Host/NPU Word 7-7
Input After Output Command 5-18
Input Command 5-16
Interactive Data 6-10
Terminate Input Command 5-20
Terminate Output Command 5-21
Function 12-4
Block 4-24
Codes, Coupler 7-10
Commands, NPU 7-16
Commands, PPU 7-15
Control Sequence, HASP 11-10
HASP TIP 11-3

Generate - :
Banner Records, PTBANLACE 6~35
Lace.'Records; PTBANLACE 6—35
Service Messages ~6-18
Statistics Serv1ce ‘Messages

6-20
Status Service Messages 6= 19
Globa sg;;wfiﬁwis 1 4-&7

Halt Codes 3-2
Handling
Buffer 4-2, 4-7
CLA Status OQverflow 5-24
Line Interface 1-16
Modem Response Timeout 5-25
Routines 4-19
Hardware
Components 5-3
Considerations, Mode 4 10-1
Considerations, HASP 11-1
Programming, Coupler Interface
7-8
HASP
Acknowledgment Block (ACK) 11-6
Addressing 11-16
Autorecognition 11-25
Block Control Byte (BCB) l1-8,
11-23
Card Reader 11-18
Card Reader Nontransparent Data
Mode 11-19
Card Reader Transparent Data
Mode 11-20
Command Interface for Printer
11-21
Communication Line
Initialization 11-14
Configuration 11-16
Console 11-17
Control Blocks 11~-6
Control Bytes for Data Blocks
11-8
Data Block Description 11-12
Device Type 11-17
EOF Block 11-13
End-of-File Blocks (EOF) 11-13
Enquiry Block (ENQ) 11-7

HIP 7-12 Error Conditions 11-22
Host 7-10 FCS Change Block 11-13, 11-14
Mode 4 TIP 10=1 Flow—-Control-——11=25

Modem/Circuit 5-14
NPU 7=12 4. :
Transfer 7-1 ~
18-Bit Address 4-24

General Peripheral Processzng
4~27 Pt e

Function ‘Control ‘Sequence
(FCS) 11-10 = ~

Hardware Considerations 11-1
Host Interface 11-16 B
Idle Block (ACKD) ‘11-8
Illegal Block Make-up Error
11-23

Index-5



Multileaving Block Descrlptlon

11-6,11~-9
Negative: Acknowledgment Block
{NAK) 11=7 :

Operator Console Blocks 11-13
Postprlnt 11-27
Printer 11-20

Carrlage Controllbodes lljglf“

Nontransparent Data Mode'
11-20
Transparent Data Mode 11-21
Protocol 11-4, 1l1-5
Punch 11-22
Record Control Byte (RCB) 11-10
Regulation 11-25
Significant EBCDIC Characters
) 11-7
Signoff Block 11-16
Signon Block 11-15
Signon Block Format 11-15
String Control Byte (SCB) 11-12
Subrecord Control Byte (SRCB) .
, 11-11
TIP 11-1
TIP Functions 11-3 ~
TIP, Direct Calls to 11-26
Terminal Operational Procedure
11-6
Unknown Response Error 11-23
User Interface 11-14
Workstation
Features 11-2
Initialization 11-14
Startup 11-14
Termination 11-14
Header Formats, Data Block 6-4
HIP 7-1
Data Block Format 7-25
Directives 7-2
Error Processing 7-7, 7-19
Functions 7=12
OPS and Interrupt Levels 7-6 -
States 7-25, 7-27
Timeouts 7-19
Transfer Initiation 7-2
Transfer Timing 7-7
Transitions 7=-27
Host
Failure 3-1, 7-18
Function Commands 7-10

- In=line Dlagncsti
““Indicators, Mode 4 Message Type

I/0 Transactions :
Contention at the Coupler 7=-5
Coupler 7=-3

Idle Block, HASP 11-8

Illegal Block Make—up Error,

HASP 11-23 =
Illegal Calils 4= 26

10-3
Initialization
HASP Communication Line 11-14
HASP Workstation 11-14
Line 5-26
NPU 2-1
Phase I 2-1
Phase II 2-2
Initialize Line Command 5-11
Initiating HIP Transfer 7-2
Inline Diagnostic Service
Messages 3~-5
Input After Output Command -
NKINOUT 5-18
Input Command - NKINPT 5-15, 5-16
Input Nontransparent Terminal Mode
2780 8-5
3780 8=7
Input Regulation, Mode 4 10-13
Input State Programs 12-5
Input State/Modem State Programs
Interface 12-10
Input Stopped, Card Reader 10-10
Input Transparent
Data Mode, 2780 and 3780 8-7
Terminal Mode, 2780 8-6
Terminal Mode, 3780 8-7
Input, Accept 6-35 i
Interactive Carriage Control
BSC 8-3
Symbols 8-4
Interactive
Format Data 6-10
Interface, Mode 4 10-7
Mode TIP State Transitions 9-2
Mode, TTY 9-1
Inter face
Command Driver 5-9
Coupler 7-8, 7-20
Firmware 12-7, 12-9 .
HASP Command for Printer 11-21
HASP -User - 11l-14

Interface Package (HIP) 7=1
Interface .Protocol Sequence
NPU Side 7-21 ‘
Host Side . . 7-23 .
Interface
HASP 11-16
Mode .4 .. :10=7. e
NPU Word Formats 7-7
Recovery 7-18
Send CMD Block to  6-35

Index-6

HASP/Host 11-16

Input State/Modem State
Programs 12-10 :

Line 1-16

Mode 4
Card ‘Reader -10~9:
Printer 10-9
Terminal = 10-3



PTCLAS/Modem State Programs-
12-10

Package, Host 7=1

Priority Processing 1=-3

Protocol Seguence .

‘Host/NPU- 7= 21

NPU/Host - ~

Text Processing Flrmware 6-33

User 4-15, 5-9
Internal Output POI 6-22
Internal Service Message

Processing 6~17
Interpretation, Dump 3-2
Interrupt

Assignments 4~16

Levels for the HIP 7-6

Mask
AND 4-14
OR 4-14
Set 4-14

Priority 4-14

Processing 4-13

State Definitions (PBINTRAPS)
4-15

Languages, CCI Programming 1-18
LCBs, Saving and Restoring 6~33
Level 1, Multiplex 5-4
Level 2
Multiplex 5-7
Worklists 5-6
Levels, OPS and Interrupt 7-6
Line
Clear Command 5-11
Configuration 2-5, 2-6, 2-7,
2-10
Count Request Serv1ce Message
6-20
Enable Command 5-12, 5-13
Failure 3-2
Initialization, HASP 11-14
Initialize Command 5=-11
Initializer 5~26
Interface Handling 1-16
Recovery 3-2
Status Request Service Message
6-19
Link, Logical 6-34

Load -
«File -1 4=25
NPU 2-4, 7-14 ~
User-Defined Message .. :4-26
Locating a State Process -::12-3"
Logical :Link :Regulation :6-34:7".
Long Term Recovery, Mode 4 :10-13
Loop Multiplexers 5-3

60471160 A

LIP/TIP~GPS~LeveL—Werklistsvw—5-7~ﬂ~~—-ﬁ~—ﬁError~Handlrng~**10“Iz

Macroassembly Programs = 4-17
Macroinstructions 12-10
State Program = 12-11

~Macrointerrupts = 4-13

Main Memory
Clear 4-24
Map forkNPU ,

malnd ing gisters 4-22
Maklng a Workllst Entry 4-12

Mask
AND Interrupt 4-14
OR Interrupt 4-14
Set Interrupt 4-14
Maximum, Two Numbers 4-20
Memory Map for NPU E~1
Message
Block, MSG 6-7
CE Error 3-4, 6-21
Command c-1 ;
Console Control 4-29
Downline Processing 1-5
Formats
CE Error and Statistics 3~3
Mode 4 Protocol 10-4
Output  9-4
Processing
Downline i~-6
Upline 1-5, 1-7
Segment 6-32
Service 6-16, C-1
Statistics 3=5
Type Indicators, Mode 4 10-3
User-Defined 4~-26 ‘
Methods, CCI Programming 1-9
Microinterrupts 4-16
Minimum, Two Numbers 4-21
Miscellaneous Subroutines 4-25
MLIA 5-3
Mnemonics
CCI B-1
HASP Protocol 11-5
Mode 4 ‘
Butorecognition 10~14
Card Reader Interface 10-9
Carriage Control 10-8
Code Conversion 10-3
Contention Resolution 10-9
Cursor Positioning 10-7
Duplicating of Write Data on
CRT 10-13

Hardware Considerations 10-1
Host Interface 10-7 '
Input Regulation 10-13
Interactive Interface 10-7
Long Term Recovery ~-10-13

MTI Codes 106-5 :
Message Type Indicators 10-3
Nomenclature 10-3 ,

Index-7




Printer . Interface :-10-9
_Protocol Features Not

Supported 10~16 -
Protocol Message Formats ::10-4
Short Term Error Proce531nq

10~ 12

" Termina Aadre551ng
Terminal Interface 10-3

Terminal/Cluster Addresses 10-5%

Upline Breaks 10-8
Modem Response Timeout Handling
5-25
Modem State Programs 12-8
Firmware Interface 12-9
PTCLAS Interface 12-10
Modem State/Input State Programs
Interface 12-10
Modem/Circuit Functions 5-14
Modular Structure, CCI 1-9
Modules, CCI 1-10
Monitor Table 4-3, 4-4
Monitor, System 4-1
MSG (Message) Block 6-7
MTI Codes for Mode 4 10-5
Multileaving Transmission Block,
HASP 11-6, 11-9
Multiple Character Data Transfer
7-16
Multiplex Subsystem 5-1, 5=2
Firmware Worklist Entries 5-8
~Level 1 - Firmware 5~4
Level 2 - .PMWOLP 5-7
Level 2 Worklists 5~-6
Level Status Handler Interface
12-10
Loop Interface Adapter 5=3
Special Call 1-15 :
Subroutines for TIPs, Common
5-21
Worklist Communications 5=5
Worklist Processor 5=-21
Multiplexers, Loop 5=3

NAK 11-7 ~

Naming Conventions, CCI F-1

Negative Acknowledgment Block,
HASP 11-7

Network 1-2

: 10-3 e

Node " 6=2 :

Destination 6-13

Source 6-13 : ‘
Nomenclature; ‘Mode: 4 +:10=3
Non-routable Blocks  6~35
Nonpriority Tasks in CCI 1-4

Nontransparent Data Modei 6-11

Nontransparent Terminal Mode
2780 8-5
3780 - 8-7

Nontransparent Transmission Mode
2780 Output 8-8
3780 Qutput - '8-10

Nonzero Connection Command
Blocks 6-9

NPU ‘
Configuring 2-4 2-5
Console Control Commands 4-29
Failure 3-1
Function Commands 7-12, 7-16
Host Word Formats 7=-7
in a Network 1-2
Initializing and Configuring

2-1
Load and Dump 2-4, 7-14
Memory ‘Map E-1
Recovery 3=-2
Side, Host Interface Protocol
Sequence 7-21

Status Word Codes 7-13

- Stop 4-26

" Number of Characters to be

Processed 6-33
Numbers 4-20, 4-21

Obtaining a Single Buffer 4-6

" ODD Handler 5-29

On-line Debugging Aids I-1

Operating Modes, TTY 9-~1

Operational Character1st1cs, BSC
8-~5

Operational Procedure, HASP

" Terminal 11-6

Operator Console Blocks, HASP
11-13

OPS Level 5-8

HIP 7-6
Processing 1-4
Worklists,-TIP/LIP 5~7

e Communication-Software 6-1

NKDISL  5-20
NKDOUT  5-15
NKENDIN: = 5=19
NKENDOUT  5-19
NKINOUT  5-18
NKINPT  5-15
NKLENBL = 5-12

Index-8

OPS Monitor Table 4-3, 4-4

Optional Modem/C1rcu1t Functlons
S5-14

OR Interrupt-Mask  4-14:

Orderword -Register Codes 7-13

Organlzatlon, Worklist:i 4-=11 ¢

Output : Lol

60471160 A



Accept 6-35 . . :

Command - NKDOUT 5-15 ;

Data Demand Timing Handler 5-29

Data Proce551ng, Firmware.
Interface 12-7-

Messages, TTY Carriage Control

3780 8~10
Queuing (PBQ1lBLK and PBQBLKS)
6-30
Transparent Transmission Mode,
2780 8~10
Over flow Handling, CLA Status
5-24
Overview, CCI 1-1

Page Mode 4-22

Page Register 4-22, 4-23

Page Switching 4-22

PASCAL
Globals 1-l6, 4-17
Procedure Calls, Type-Checking

4-19

Programs 4-17

Paths, Communications 6=-3

PB18ADD -~ 18-Bit Addresses 4-23

PB18BITS ~ 18-Bit Address
Functions 4~24 ;

PB18COMP -~ Compares Two 1B-Bit
Addresses 4-~24

PBAEXIT, Restore Rl and R2 6-33

PBAMASK - AND Interrupt Mask 4~14

PBBCHCHK 6-35

PBBEXIT, Save Rl and R2 6-32

PBCLR = Clears a Block of Main
Memoryv 4-24

PECLRPOT - Clear Protect Bit 4-25

PBCOMP - Compares Equal Length
Blocks 4-24

PBDNABRT 6-35

PBFILE]l -~ Load/Displav File 1
4-25

PBFMAD - Converts ASCII Decimal to
Binary 4-20

PBFMAH - Converts ASCII Hex to
Binary 4-20

PBGETPAGE - Reads Specified Page
Register 4-23

PBGT1SET 6-32

 PBOMASK

PBLOST 6-35 .
PBMAX - Flnds the Maximum of Two
Numbers 4-20 -

.-PBMEMBER - Test ASCII Set

Membershlp 4-20
PBMIN - Finds. the Mlnlmum of Two
Number s ;

4—14

PBPOPOI - Post Qutput POI 6- 30

PBPROPOI - Preoutput POI 6~30

PBPSWITCH - Performs Page
Switching 4-22

PBPUTPAGE - Write Specified Page
Register 4-23

PBQ1BLK 6-30

PBOBLKS 6-30

PBRDPGE - Reads Dynamic Page
Register 4~23

PBRTEIA 6-35

PBRTEPRU 6-35 -

PBSETPROT - Set Protect Bit 4-25

PBSMASK - Set Interrupt Mask 4-14

" PBSTPMODE - Sets Paging Mode 4~22

PBSWITCH 6-15

PEBTOAD - Converts Binary to ASCII
Decimal 4-21

PBTOAH - Converts Binary to ASCII
Hex 4-22

PBUPABRT 6-35

Per form Page Switching 4-22

Peripheral Processing 4=-27

Phase I Initialization 2-1

Phase II Initialization 2-2

PIAPPS 2-3

PIBUF1 2-2
PIBUF2 2-3
PIINIT 2-3
PILININIT 2-3
PIMLIA 2-3
PINIT 2-2

PIPROTECT 2-2

PIWLINIT 2~3

PLINIT -~ Line. Initializer 5«26 .

PMT1SEC - Qutput Data Demand
Timing Handler - 5-29

PMWOLP. 5-7

PMWOLP -~ Multiplex Worklist
Processor 5-21

POI Programs 1-13, 6-21

Internal Output 6=22

PBHALT -~ Stops the NPU 4-26

PBILL -~ Illegal Calls 4-26.

PBINTRAPS 4-15 |

PBIOPQOI -~ Internal Output POI
6-22 ,

PBLMASK 4-14

PBLOAD - Load a User-Deflned
Message 4-26 .

Post Input 6=-22
Post Output 6-30
Preoutput 6-30 ;
Point of Interface Programs
1-13, 6=-21
Positioning. Cursor X0=7
Post Input POI .. .6-22
Post Output POI 6-30

‘Index-9




Postprint, HASP 11-27
PPU Function Commands : 7-15
Preoutput POI 6«30 R
Principal Data Structures,'jlel7,
Holo ; T
Printer

. Data Stream Control CMD .Blocks
-7'11=20
HASP 11-20

HASP Command Interface '“11—21
Input Stopped CMD Blocks. 10-11

Interface, Mode 4 10-9,
Nontransparent Data Mode, _HASP
11-20
Transparent Data Mode, HASP
11-21
Priority
Interrupt - 4-14
Processing at the Interfaces
1-3 R
Tasks in CCI ,1—4 ; o
Procedure Calls, PASCAL 4-19
Procedure, HASP Termlnal 11-6
Processing
“BSC Error 8-13
Basic Interrupt 4-13
CDC 711 Terminal Error 10-13
Downline Message 1-5, 1-6
General Peripheral 4-27
HIP Error 7-7 '
Mode 4 Short Term Error 10-12
Number of Characters = 6-33_
OPS-Level 1-4 : :
Routing 6-13
Priority 1-3
Service Message 6=17
TTY Error 9-6 :
Upline Message 1-5, 1-7

Program Execution Timers o 4427€“;

Programming Coupler S
By Use of Function Codes 7=10
Interface Hardware 7-8. ..
Programming Languages, CCI 51718
Programming Methods 1-9 -
Programs
Macroassembly 4~-17
PASCAL  4-17 L
Point of Interface  1-13 =

~ PTBANLACE  6-35
PTCLAS - CLA Status Analyzer 5-22

Mnemonic Deflnltlons, dASP ~11-5

.. Mode 4. 10~-4 : ;
VSequence, Host Interface '7—21,

: 7-23 )

Sequence, Coupler Interface

S 9=20

T

tion

71

Interface to Modem State
Programs 12-10 :
Worklist 5~24
PTCOMMAND 6-35
PTCTCHR 6-33
PTINIT 6-35
Relationships With CCI Modules
5-27
State Transition Table 5-28
PTREGL 6-34
PTRETOPS 6-34
PTRTxLCB 6-33
PTSVXLCB 6-33
PTTPINF 6-33
Punch Data Stream Control CMD
Block 11-22
Punch Files 8-3
Punch, HASP 11-22

Queuing
Qutput =~ 6-30
Removing a Message Segment
from = 6-32
TCB 6-31

RBF 8-2
RCB 11-10
Read '

Dynamic Page Register 4-23

Specified Page Register 4-23
Reconfiguration, TCB 2-12
Record Control Byte, HASP 11-10
Records, Banner and Lace 6-35
Recovery 3-1

Host 7-18

Line . 3-2

Mode 4 10-13

NPU 3-2

Terminal 3-3
Register

State 12-1
Support - 1-11
Protect Bit ‘
Clear 4-25 -
‘Set  14=28
Protocol . “i“’
Block  1-9, 6-1, 11—4, D=1

Features Not Supported Mode 4757

10 16

Index-10

-9

Address T=1

Coupler 7-9

Orderword 7-13

Paging ~ 4-22, 4-23 R

Saving and Restoring 6-32_ "

Use, Coupler 7-8
Regulation . -

Coupler Use ~7-18

HASP 11-25 = o

60471160 A




Logical Link. . . 6=34
Mode 4 Input . 10-13 ,
TIP 6=34 st R
Relationships, PTLINIT/OCI
Modules 5=27:
Releasing
Buffer 4-~7., 4=7
Several Buffer

g et

Set Do
Interrupt Mask 4-14
Logical Link“Regulation, .. |
LNLLREG ~ 6-34 - -~ -
“ Membership 4,20 :
Paging Mode = 4-22..

Remote Batch Facili : B
Removing a Message Segment from :

Queue 6-32
Restoring

LCBs 6-33 ;

Registers 6-32

Rl and R2 6-33 ol
Return Control Routine, PTRETOPS - -

6-34 o
Routines 4-8, 4-19

Point of Interface 6-21
Routing 6-12

Block 1-13

Directories 6-14

FPlow Chart, PBSWITCH 6-15

PRU Block 6-35

Process 6-13

‘Upline PRU Block 6-35

Saving
LCBs 6-33
Registers 6-32
Rl and R2 6-32
SCB 11-12
Sending S s
CMD Block to Host, PTCOMMAND
6-35
Statistics Service Messages
6~20
Status Service Messages - 6-19°
Service Channel 6-8 :
Service Message 6~-16
Configure Line 2-6
Configure Termlnal 2-11
Dispatching 6-18 -
Generating 6-18
Inline Diagnostic 3-5
Internal Processing ~ 6-17
Line Count Request 6-20
Line Status Request  6-19
Statistics 6-20 -
Status 6-19
Summary c-1

Signoff-Block; HASP 11-16
Signon Block, HASP 11-15
Single Word Transfers Control

7-12 S
Software, Base System 4-1
Source Node Directory 6-13
Special Call

to Firmware Interface 1-15

to Multiplex Subsystem 1-15"
SRCB 11-11 , ~
Stamping, Buffer 4=-5
Standard

Subroutines 4-17, 4-18

TIP Subroutines 6-30

TIP Trees G-1 : )
Startup, HASP Workstation  11-14
State Process 12-3 o
State Program = 12-1

Components 12-4

Execution = 12-1

Input 12-5 )

Interface 12-10

Macroinstructions 12-11

Modem. - 12-8, 12-9

Text Processing 12-6-
State Transitions

Table, PTLINIT 5=-28

TIP Interactive Mode 9-2 -

TIP Tape Mode - 9-3 '
States, HIP 7-25, 7-27 o
Statistics Messages 3-3, 3-5,

6-20 T
Status”

.Analyzer, CLA 5-22

‘'Handler, Multiplex Level-

. Interface . 12-10

“Line 6-19 Tt

Overflow Handling, CLA 5-24 -

Register, Coupler 7-11 ER

Service Messages 6=19 -

Terminal 6-20

Word, NPU 7=13

Terminal Status .Request 6-20
Timing Out . 6=17::. W
Validating 6=17

Services . e
Console Support ' 4-28. -
Timing 4-8 o0 e
Worklist 4=10 -

Stop NPU 4=26 .
Stream Control CMD Block

Card Reader 11-18

Printer Data 11-20

Punch Data’ B "11-22:::~ She
String Control Byte, HASP - -11=-12
Structures, Data  1-17 ' ¢

P



fSubrecord Control Byte, HASP

11-11 - : B :

Subroutlnes
‘Common TIP: ' ‘ e
for TIPs, Common Mult1plex 521
‘Miscellaneous 4-25f ;

Standard - '

: P; e
Support Programs for- TIPs “1-11"

Support Serv1ces, Console 4270
4-28 SR

SUM Trees G-1

Switching, Page = 4-22-

System Interfaces 5—

System Monitor 4-1

Table T
OPS Monitor 4-3, 4~-4 R
PTLINIT State Transltlon - 5=28"
Tape Mode FhanTh
TIP State Trans1tlons 179-3~ ;
Tasks, Prlorltv and Nonprlorlty
o 1=4

Configuration . 2-10 e
Deletion ° '2=12. R

Queue  6-31 R A
"Reconfiguration 2-12 ' '
Terminal I

Addressing, Mode 4 10-3,.10-5"
Configuration 2-7, 2-10,12=11.
Error Process1ng, ‘CDC 711 - 10~13
. Failure 3-3 e T
Features, BSC 8-5
Interface, Mode 4 10-3
‘Mode, 2780 8-5, 8-=6
Mode, 3780  8=7
Operational Procedure, HASP-
11-6
Recovery 3-3
Status Reqguest Serv1ce Message
6-20
Terminate Input Command -
NKENDIN  5-19, 5-20
Terminate Output Command -
NKENDOUT 5-19, 5-21
Termination, HASP Workstation
11-14 ;
Test

Output Data Demand  5-29

Service Messages 7 6-17
Tlmers, Program Executlon 4-27
Timing Services 4=8 -

“Timing, HIP Transfer 7=7

TIP

BSC 8- l

HASP ; ll l. 11-3

LIP- OPS level Worklists - 5-7

Mode 4  10-1

Regulation, PTREGL 6-34

State Transitions

Interactive Mode 9-2

5 Tape Mode 9-3

Subroutines 6-21, 6-23, 6~-30

Support Programs 1-11

Worklist Communications 5-5
Transaction ‘

Contention at the Coupler - 7-5

‘Protocol ' 7-1 '
Transactions, Coupler I/0 7-3
Transfer

Block 7-16

Functions 7-1

Initiation, HIP 7-2

Single Word 7-12

Timing, HIP *~ 7-7

‘Trandgitions, HIP 7-27

Transmission Mode
2780 Output Nontransparent 8-8
2780 Output Transparent 8-10
3780 Output Nontransparent 8-10
Transparent Data Mode 6-12
BSC 8-3
HASP Card Reader 11-20
HASP Printer 11-21
2780 and 3780 8-7
Transparent Terminal Mode
2780 8-6
3780 8-7
Transparent Transmission Mode,
2780 Output 8-10
TTY
Autorecognition 9-6
Carriage Control for Output
Messages 9-4
Error Processing . 9-6
Interactive Mode 9-1

ASCII Set Membershlp 4-20
, Buffer Availability  4=7
Text‘Processing*' b

- Pirmware Interface. 6=33
State Programs 1 12-5,

“Timeout < g
Handllng, Modem Response F:5=25
HIP 7-19

Index=12

Operating Modes' 9-1
Qutput Messages Carriage
Control 9-5. :
TIP 9-1 SR
TIP Direct ‘Calls:® 9-4,‘9—5
Tape Mode = - 9-2: i T
Type, BSN/Block ' 6-6

60471160 A



Type Checking in PASCAL. Procedure
Calls 4-19
Types, Block 6~ 6,

Unknown Response Error, HASP R
11-23

Upline .. o
Abort; PBUPABRT 6-35

Serv1ces -4 10|,M_ ¢ el
TIP/LIP OP§ level 5-7 ° .
Workstation, HASP 11-2, 11-1740
Initialization 11-14
Write Data,. Dupllcatxng on CRT
10=13 )
Write Spec1f1ed Page Reglster ;
4-23 T

- Breaks, Mode 4 . 10-8

Message Process1ng 1-5, 1 7
PRU Block Routlng,,PBRTEPRU
6-35
User Interface 4-15,f5-4, §+9~
HASP 11-14 e e
User Defined Messaqg”;}QrZG;m' i

Validating Service Meéﬁé?egi.;

Word Formats, Host/NPU  7-7 ..
Word Transfers Control =~ 7-12_ .
Worklist o
Calls 1-13
Communications, TIP and Mux
Subsystem 5-5 ) oy .-
Entries ' 'f.ﬂ .

Command Driver .5-8 .
Console 4-29 . PP
Exttacting a .4-137° '
Making -12 -
Multlplex Subsystem . Flrmware
5-8 -

Multiplex Level 2 " 5= 6
Organization 4= 11

PTCLAS 5-24 . . .. .
Processor, Multiplex ' 5-21

026/029 CQdes, BSC  8-2 B

18-Bit Addreéss_Functions 4-24" "

18-Bit Addresses 4-23 L

18-Bit Addresses, Compare  4-2

2780 Batch Carriage Control
Action 8=9 .

2780 Input Nontransparent Termlnal
Mode 8-5

2780 _Input Transparent Data Mode .
8-7 )

2780 Input Transparent Termlnal
‘Mode 8-6 e

2780 Output. Nontransparent
Transmission Mode  8-8

2780.Output . Transparent
Transmission Mode 8-10

3780 Batch Carriage Control
Action 8-11.

3780 Input Nontransparent Terminal
Mode 8~7

3780 Input.Transparent Data Mode
8-7 v

3780 Input -Transparent Terminal
Mode -8-7 ,

BN
E i

:3780 Output Nontransparent:

Transmission Mode 8-10

LR AN




L . ‘ : “




COMMENT SHEET

MANUAL TITLE CCI, VERSION 3 SYSTEM PROGRAMMERS REFERENCE MANUAL

PUBLICATION NO. 60471160  REVISION A

FROM: NAME:

BUS INESS
ADDRESS :

COMMENTS : )
This form is not intended to be used as an order blank. Your evaluation of
this manual will be welcomed by Control Data Corporation. Any errors,
suggested additions or deletions, or general comments may be made below.
Please include page number references and fill in publication revision level
as shown by the last entry on the Revision Record page at the front of the
manual. Customer engineers are urged to use the TAR.

NO. POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
Fold on Dotted Lines and Tape



Lo

3

LD

BUSINESS REPLY MAIL

FARST CLASS PERMIT NO. 8241 MINNEAPOLIS, MiMN.

POSTAGE WilL BE PAID 8Y

CONTROL DATA CORPORATION
Publicstions snd Graphics Division

P. O. Box 4380-P

Anahaim, Californis 92803

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

D

LD

CUT ALONG LINE







CORPORATE HEADQUARTERS, P.0. BOX O, MINNEAPOLIS, MINN 55440 LITHO IN US.A
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD T

(@2 CONTROL DATA



