@ CONTROL DATA
CORPORATION

60492600

COMPASS VERSION 3
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 1 |
NOS/BE 1
SCOPE 2

o ‘ i . “

CPU AND PPU INSTRUCTION INDEX S O
CPU INSTRUCTIONS CPU INSTRUCTIONS (cont’d) PPU INSTRUCTIONS (cont’d) T
. B -
Mnemonic Operation Page. %" Mnemonic Operation Page . Operation Pige N~
Code Code (octal) . Numbei: Code Code (octal) Number Name -+ Code (octal) Number .
830 | RXi Xj* Xk 41ik 8-39 EIM myd 61°m 9-18 N
w8232 ‘RXi Xj/Xk 45ijk - 8-42 EIM m,d 67dm 9-17 u*
8-25 " RXj Xk 014ik 8-16 EOM m,d 65dm 9-18 o
- 826 |- SAi AjtK 501K 8-44 ERN d 2704 9-11
8-26 | -"SAi Bi+K 51iK 8-44 - ESN d 7700 922 TN
827 SAi Xj+K 52K 8-44 ETN d 260d 9-11 ,
) 827 | SAi Xj+Bk 53ijk 8-44 EXN 4 260d 9-10 N
828 1 SAi* . Aj+Bk 54ijk 8-44 FAN- d , 764 921
8-28 SAi Aj-Bk 55ijk 844 ‘FIM m,d < 60dm 9-18 .
8-29 SAi - Bj+Bk 56ijk 844 FIM m,d 66dm 9-17 R
8-44 |. SAi Bj-Bk 57ik 844 FNC m,d 77dm -~ 9-21 ‘ N A
821 SBi Aj+K 60ijK 8-46 FOM m,d 64dm . 9-18
'8-37 SBi Bj+K 61K 8-46 TAM m,d 71dm 9-19
8-37 SBi = Xj*xX 621K 846 | 1IAN d 70d 9-19 TN
8-40 SBi Xj+Bk 631k 8-46 oM m,d 65dm 9-17
823 SBi Aj+Bk 64ijk 8-46 IRM md 62dm 9-18 N
8-11 SBi Aj-Bk 65ijk 8-46 LCN d 154 9-7
836 | SBi Bj+Bk 66ijk 8-46 LDC c : 20dm 98 -
8-36 SBi Bj-Bk 67ijk 8-46 LDD d 30d 9-12 I \jx
8-39 SXi AjtK 70iK 848 ILDI. d -40d 9-13 A
8-42 SXi BjtK 713K 848 LDM myd 50dm 9-14 Rl
Bi,Bj,K 8-23 - SXi Xj+K 724K 8-48 LDN d : 144 9-7
Bi,K 823 SXi Xj+Bk 735K 848 LIM md 01dm 9-6
Bj,Bi,K 8-23 SXi Aj+Bk T4ijk 848 LMC c 23dm 98
Bi.K 8-23 SXi Aj-Bk 751k 848 LMD d 33d ©79.12
Bk 8-19 SXi Bj+Bk 76ijk 848 LMI d 43d Q;J‘;{;s -
Xj,K 8-21 SXi Bj-Bk 773k 848 LMM m,d" 53dm 9-14
Xj K 8-21 TBj 016j0 8-18 LMN d 11d 9-7
Xj+Xk 8-38 UXi Bj, Xk 261k 8-34 LPC c 22dm 98
Xj-Xk 8-38 WE Bj+K 012jK 8-12 LPN d 12d 9-7
Xi*Xk 8-40 WL Bj+K 012jK 8-13 MAN d 262d 9-10
P BitK 8-20 WXj Xk 015jk 816 MJIN T 07d 9-5 N
LE Bj,BiK 8-23 XJ Bj+K 013jK 8-14 -MXN d 261d 9-10 ’ ;
LT Bi,Bj K 823 ZR Xj K 030iK 821 NIM m,d 63dm 9-18 St/
LXi ‘+jk 8-30 ZR BiK 04i0K 823 NJN T 05d 95 ‘
LXi Bj, Xk 8-31 ZXi Bj,. Xk 25iik 8-33 NOM m,d 67dm 9-18 e
MI Xj,K 821 CMU INSTRUCTIONS OAM md) 73dm - 9-19 ’ ! :
Mi Bi,K 8231 CC £Ka,Ca Kb »Ch 8-53 OAN 4 724 9-19 N
MJ 815 | CU 2Ka:Ca Kb o 8-54 ORM mgd 66dm 9-18 o
MI BjzK 8-15 DM Lks.cokd,cq 8-52 PIN T 06d 95
MXi +jk. 8-41 M Bi+tK - (464iK) 8-51 PSN 2400 9-9 AT
NE Bi,Bj.K 823 | MD Qkg,cs KdiCd - 8-51 RAD d ‘ 35d 9-12 L
NG BiK 8-23 RAI d : 45d 9-13 N
NG XiK ‘821 PPU INSTRUST:gﬁs'n pase | RAM md 55dm 9-14 ;
NO n 843 | Cod tootad) - N | REN d 74d 920 s
NXi Bj,Xk 8-33 | g ode focta umberl’ rRIM- md 02dm 95 T
NZ Bi,K 8-23 ACN d 74d 9-21 RPN d 2704 9-11 N
NZ Xj,K 8-21 ADC - ¢ 21dm- . 9-8 SBD - d 32d 9-12 o
OBj Bk 8-19 ADD d 314 - 9412 SBI- . d 424 9-13
OR Xj,K 821 ADI d 41d 9-13 SBM m,d 52dm 9-14 R
PL Xi K 821 ADM m,d 51dm 9-14 SBN d 17d 97 ; :
PL . Bi,K 8-23 ADN d ~16d 97 SCN d 13d 9-7 et
PS K 8-10 AIM m,d 64dm 9-17 SHN T 10x 9-7 ~
PXi Bj, Xk 8-35 AOD d 364 9-12 SOD d 374 9-12 e
RE Bj+K 8-12 AQI d 46d 9-13 SO1 d 47d 9-13 TN
RI Bk 8-17 AOM m,d 56dm 9-14 SOM m,d 57dm 9-14 Naned’
RJ K 8-11 CRD d 60d - 9-15 STD d 34d 9-12 }
RL BjxK 8-13 CRM m,d 61dm 9-15 STI d 44d 9-13
RO Bk 8-18 CWD d 62d 9-15 ST™M m,d 54dm 9-14 N
RXi Xj+Xk 8-37 CWM m,d 63dm 9-15 UIN T 03d 9-5)
RXi Xi-Xk 8-37 DCN d . 754 921 ZIN T 04d 95 S
TThere is also an integer divide macro (¥IXi Xj/Xk). <
60492600 G S

N

LIST OF EFFECTIVE PAGES

—

New features, as well as changes, deletions, and additions to information in this manual are

indicated by bars in the margins or b

affected. A bar by the page number indicates pagination rather than content has changed.

Page

Revision

y a dot near the page number if the entire page is

Page

Revision

Front Cover
Inside Front Cover
Title Page
ii’

iii

iv

v

vi

vi-a/vi-b
vii

viii

ix thru xi
1-1 thru 1-4
2-1 thru 2-3

.1/2-8.2
thru 2-13

NMNN!T?MNNN
)-_l;\ooooo\nmm.:.\

i
o
(%]

thru 2-20

3-1 thru 3-15
4~1 thru 4-4
4-5

4~6

4-7

4~8 thru 4-19
4-20

4-21

4=-22

4-22.1

4-22.2
4-22.3/4-22.4
4~23

4=24

4-25

4~26

4~27

>mwo>wmnnnm»oo»onoo»uco>o>wmo>mc>oooonooonn|ol

/ U'Ik{lul

[1
t—-‘ls\om\lc‘\\n-l-\wl\)

[

b
e N

5-15
5-16
5-26
5-27

thru 4-36

thru 4-41

thru 4-45
thru 4-51
thru 4-54

thru 4-68

thru 4-75

thru 5-25

CQPEHEPPOHOPBARPPOOPPPRPEPPOPOPOPPEPOPOQADCPOEPOO >

60492600 G

iii ®

Page

Revision

5-28 thru 5-35

8-15 thru 8~20
8-21 thru 8-~55
9-1 thru 9-4

10-1 thru 10~11
11-1 thru 11-4

11-7 thru 11-13

12-2 thru 12-4

QHMEBUOPOMOPOOQAPHOOAPOPOHEPPOPAPOOONQOOPPOOPOQPHEUQAREPORPEPPQOR>ED

Page

Revision

12-6

12-7

12-8

12-9

12-10 thru 12-13
12-14 thru 12-16
12-17

12-18 thru-12-20
12-21

12-22 thru 12-24
12-25

12-26

12-27

12-28

12-29

12-30

12~-31

12-32

A-1 thru A-4

B~1

B-2

thru D=5

F-1 thru F-4
Index~1 thru =14
Comment- Sheet
Mailer

Inside Back Cover
Back Cover

lo|nmuoumuo»»oo»»»mmwwnmuﬂmmommmmmwmw

- iv

60492600 G

S’

RN

N\
S’

PREFACE

L e e T

The Control Data COMPASS Version 3.6 Assembler provides the user with a versatile, extensive language
for generation of object code to be loaded and executed on the eentral proeessor unit (CPU) or a peripheral
processor unit (PPU). The assembler executes on the following computer systems and operating systems:

e NOS 1 for the CONTROL DATA® CYBER 170 Series; CYBER 70 Models 71, 72, 73, 74; and 6000
Series Computer Systems

e NOS/BE 1 for the CDC® CYBER 170 Series; CYBER 70 Models 71, 72, 73, 74; and 6000 Series
Computer Systems

e SCOPE 2 for the CONTROL DATA CYBER 170 Model 176, CYBER 70 Model 76, and 7600 Computer
Systems

The CDC CYBER 170 Models 720 and 730 have unified processors and use the instructions noted in this ,
publication for computer models with a Compare/Move Unit (CMU) such as the CYBER 170 Model 172.

The CDC CYBER 170 Models 740, 750, and 760 have functional units and use instructions noted in this
publication for computer models with funetional units such as the CYBER 170 Model 175.

This publieation is not intended as a replacement for the related computer system reference manuals,
which contain detailed information on machine instruetions. Information in the related computer system
reference manualis takes precedence over information in this publication should discrepancies arise between
the publications.

The reader is assumed to be familiar with a Control Data computer and operating system, and with
assemblers in general.

NOTE

Continued use of COMPASS in creating application programs should be avoided
when possible. COMPASS and other machine~dependent languages can com-
plicate migration to future hardware and software systems. Program mobility
will be restricted by continued use of COMPASS for stand-alone programs,
COMPASS subroutines embedded in programs using higher-level languages, and
user-written COMPASS owneode routines in CDC standard products.

Extended memory for the CDC CYBER 170 Models 171, 172, 173, 174, 175, 720, 730, 740, 750, and 760 is
extended core storage (ECS). Extended memory for the CDC CYBER 170 Model 176 is large eentral
memory (LCM) or large central memory extended (LCME). ECS, LCM, and LCME are functionally equi-
valent, except as follows:

e LCM and LCME eannot link mainframes and do not have a distributive data path (DDP) capability.
e LCM and LCME transfer errors initiate an error exit, not a half exit, as noted in section 8.4.4.

The CYBER 170 Model 176 supports direct LCM and LCME transfer instructions. These are described in
section 8.4.8.

In this manual, numbers occurring in text are decimal unless otherwise noted. Lowercase letters in formats
depict variables., The examples assume that assembler numeric mode is decimal and that character mode is
display eode unless otherwise noted. In examples, statements generated by the assembler as a result of a
call or a substitution are shown in shaded print.

60492600 G v

General explanations of COMPASS coneepts have been limited to the initial pages of each chapter or
section, whenever possible. Subsequent material has been presented in a concise manner to aid in rapid
access to reference information. In keeping with this concept, instruction indexes have been included
inside the front and back covers.

Additional information essential to programming in the COMPASS environment can be found in the listed
publications. The first group consists of software-related publications; the second group consists of
hardware-related publications. Publications are listed by ASCII collating sequence within each group.

The applications programmer will need the CYBER Record Manager Basic Access Methods and Advanced
Access Methods manuals for information about the macros needed to define, access, and manipulate files.
Information necessary to ereate and manipulate program structures can be found in the appropriate Loader
reference manual (CYBER Loader for the NOS and NOS/BE operating systems, and the SCOPE 2 Loader
for the SCOPE 2 operating system).

In addition to the above, the systems programmer will need the appropriate operating system manual to
obtain information about system macros. Volume 2 of the NOS reference manual is indispensible for the
COMPASS programmer in the NOS environment. Further, more detailed descriptions of COMPASS
instruetions can be found in the appropriate hardware reference manual,

A Control Data abstracts manual is a pocket-sized booklet containing brief deseriptions of the econtents and
intended audience of all manuals for a CDC operating system and its product set. The abstracts manual
ean be useful in determining which manuals are of greatest interest to a particular user. The Software
Publications Release History serves as a guide to the revision level of software documentation which
corresponds to the Programming System Report (PSR) level of installed site software.

Software-Related Publications

Publication
Publication Number
7000 Record Manager Reference Manual 60454690
COMPASS Version 3 Instant 60492800
CYBER Interactive Debug Version 1 Reference Manual 60481400
CYBER Loader Version 1 Reference Manual 60429800
CYBER Record Manager Advanced Access Methods
Version 2 Reference Manual 60499300
CYBER Record Manager Basic Access Methods
Version 1.5 Reference Manual 60495700
Modify Reference Manual 60450100
NOS 1 Reference Manual, Volume 1 60435400
NOS i Reference Manual, Volume 2 60445300
NOS Version 1 Manual Abstracts 84000420
NOS/BE 1 Reference Manual 60493800
NOS/BE Version 1 Manual Abstracts 84000470
vi 60492600 G

S

SCOPE 2 Loader Version 2 Reference Manual 60454780

SCOPE 2 Reference Manual 60342600
Software Publications Release History 60481000
Update 1 Reference Manual 60449900

Hardware-Related Publications

Publication
Publication Number
CDC CYBER 170 Computer Systems Models 171 through 175
(levels A, B, C) Model 176 (level A) 60420000
CDC CYBER 170 Computer Systems Models 720, 730, 740,
750, 760 Model 176 (level B) 60456100
CDC CYBER 70 Computer Systems-7030 Extended
Core Storage Reference Manual 60347100
CDC CYBER 70 Model 71 Systems Description and
Programming Information Reference Manual, Volume 1 60453300
CDC CYBER 70 Model 72 Systems Description and
Programming Information Reference Manual, Volume 1 60347000
CDC CYBER 70 Model 73 Systems Description and
Programming Information Reference Manual, Volume 1 60347200
CDC CYBER 70 Model 74 Systems Description and
Programming Information Reference Manual, Volume 1 60347400
CDC CYBER 70 Model 76 Reference Manual - 60367200
CDC CYBER 70 Models 72, 73, and 74 and 6000 Series
Computer Systems I/0 Specifications Reference Manual 60352500
CDC CYBER 70 Models 72, 73, and 74 Instruction
Descriptions Reference Manual, Volume 2 60347300

CDC manuals can be ordered from Control Data Corporation, Literature and Distribution
Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as deseribed
in this document. Control Data cannot be respon-
sible for the proper functioning of undeseribed
features or parameters.

60492600 G vi-a/vi-b @

N’

CONTENTS

‘

1. INTRODUCTION - 1-1 3.4 Absolute Program Structure 3-6
3.4.1 Absolute Overlays 3-8
1,1 Configuration 1-3 3.4.2 Multiple Entry Point Overlays 3-12 I
1.2 Assembler Execution 1-3 3.4.3 Partial Binary 3-12
1.3 Relocatable Object Program Execution 1-4
1.4 Interactive Program Debugging 1-4 4. PSEUDO INSTRUCTIONS 4-1
4.1 Introduetion to Pseudo Instructions 4-1
4.1.1 Types of Pseudo Instructions ~ 4-1 ||
2. LANGUAGE STRUCTURE 2-1 4.1.2 Required Pseudo Instructions 4-2
2.1 Statement Format 2-1 4.1.3 First Statement Group 4-2
2.1,1 First Column 2-1 4.1.4 Permissible Anywhere
2.1.2 Location Field 2-1 Instructions 4-2
2.1.3 Operation Field 2-1 4.2 Subprogram Identification 4-2
2.1.4 Variable Field 2-2 4.2.1 - IDENT-Subprogram
2.1.5 . Comments Field 2-2 Identification 4-2
2.1.6 Comments Statement 2-2 4.2.2 END-End of Subprogram 4-4
2.1.7 Statement Continuation 2-2 4.3 Binary Control 4-6
2.1.8 Coding Conventions 2-3 4.3.1 ABS - Absolute CPU Program 4-6
2.2 Statement Editing 2-4 4.3.2 MACHINE - Declare Object
2.2.1- Concatenation 2-4 Processor Type 4-7
2.2.2 Micro Substitution 2-4 4.3.3 PPU - CYBER 70/Model 76 or
2.3 Names 2-4 7600 PPU Program 4-8
2.4 Symbols 2-5 4.3.4 PERIPH - CYBER 170 Series,
2.4.1 Linkage Symbols 2-6 CYBER 70/Models 72, 73, 74
2.4.2 Default Symbols - 2-7 or 6000 Series PPU Program 4-10
2.4.3 Previously Defined Symbols 2-7 4.3.5 IDENT - Identify and Generate
2.4,4 Undefined Symbols 2-8 Overlay 4-11
2.4.5 Qualified Symbols 2-8 4.3.6 SEGMENT - Generate Binary
2.5 CPU Registers 2-8 Segment 4-15
2.6 Special Elements 2-9 4.3.7 SEG - Write Partial Binary 4-16
2.7 Data Notation 2-10 4.3.8 STEXT - Generate System
2.7.1 Data Items 2-10 Text Record 4-17
2.7.2 Constants 2-10 4.3.9 COMMENT - Prefix Table
2.7.3 Literals 2-11 Comment 4-20
2.7.4 Character Data Notation 2-13 4.3.10 NOLABEL - Delete Header
2.7.5 Numeric Data Notation 2-16 Table ' 4-20
2.7.6 . Hexadecimal Data Notation 2-21 4.3.11 LCC - Loader Directive 4-21
2.8 Expressions 2-21 4.3.12 LDSET - Generate LDSET
2.8.1 Types of Expressions 2-23 Object Directives 4-21
2.8.2 Evaluation of Expressions 2-26 4.4 Mode Control 4-22.2 I
4.4.1 BASE - Declare Numeric Data
3. PROGRAM STRUCTURE 3-1 Mode 4-22.2
3.1 Subprogram Blocks 3-1 4.4.2 CHAR - Define Other Character
3.1.1 Absolute Block 3-2 Data Code 4-24
3.1.2 Zero Block 3-2 4.4.3 CODE - Declare Character
3.1.3 Literals Block 3-2 Data Code 4-24
3.1.4 User-Established Local Blocks 3-2 4.4.4 QUAL - Qualify Symbols 4-25
3.1.5 Labeled Common Blocks 3-2 4.4.5 Bl=1 and B7=1 - Declare that
3.1.6 Blank Common Blocks 3-3 B Register Contains One 4-28
3.1.7 Redundant Block Names 3-3 4.4.6 COL - Set Comments Column 4-29
3.2 Block Control Counters 3-3 4.5 Block Counter Control 4-30
3.2.1 Origin Counter 3-3 4.5.1 USE - Establish and Use Block 4-30
3.2.2 Location Counter 3-4 4.5.2 USELCM - Establish and Use
3.2,3 Position Counter 3-4 ECS/LCM Block 4-32
3.2.4 Forcing Upper - 3-4 4.5.3 ORG and ORGC - Set Origin
3.3 Relocatable Program Structure 3-5 Counter 4-33

60492600 G vii

viii

4.7

4.10

4.11

4.5.4 BSS - Block Storage :

Reservation 4-35
4.5.5 LOC - Set Location Counter 4-36
4.5.6 POS -~ Set Position Counter 4-38
Symbol Definition 4-38
4.6.1 EQU or = - Equate Symbol

Value 4-39
4.6.2 SET - Set or Reset Symbol

Value 4-39
4.6.3 MAX - Set Symbol to Maximum

Value 4-40
4.6.4 - MIN - Set Symbol to Minimum

Value 4-41
4.6.5 MICCNT - Set Symbol to

Micro Size 4-42
4.6.6 SST - System Symbol Table 4-43

Subprogram Linkage

: 4-43
ENTRY and ENTRYC - Declare

4.7.1

Entry Symbols 4-43
4.7.2 EXT - Declare External

Symbols 4-45
Data Generation 4-45
4.8.1 BSSZ and Blank Operation

Field - Reserve Zeroed Storage 4-46
4.8.2 DATA - Generate Data Words 4-46
4.8.3 DIS - Generate Words of

Character Data 4-47

4.8.4 LIT - Declare Literal Values 4-49
4.8.5 VFD - Variable Field Definition 4-51
4.8.6 CON - Generate Constants 4-52
4.8.7 R= - Conditional Increment

Instruction 4-53
4.8.8 REP, REPC, and REPI - Gen-

erate Loader ReplicationTable 4-55
Conditional Assembly 4-57
4.9.1 ENDIF - End of IF Range 4-57
4.9.2 ELSE - Reverse Effects of IF 4-58
4.9.3 IFtype -~ Test Object Processor

Type 4-58
4.9.4 IFop - Compare Expression

Values 4-60
4.9.5 IFPL and IFMI ~ Test Sign of

Expression 4-62
4.9.6 IF - Test Symbol or Expression

Attribute 4-63
4.9.7 IFC - Compare Character

Strings 4-66
4.9.8 SKIP - Unconditionally Skip

Code 4-68
Error Control 4-69
4.10.1 ERR - Unconditionally Set

Error Flag 4-69
4.10.2 ERRxx - Conditionally Set
) Error Flag 4-70
Listing Control 4-71
4.11.1 LIST - Select List Options 4-71
4.11.2 EJECT - Eject Page and Begin

New Sub-Subtitie 4-74
4.11.3 SPACE - Skip Lines and Begin

New Sub-Subtitle 4-74
4.11.4 TITLE - Assembly Listing

Title 4-75
4.11.5 TTL - New Assembly Listing

Title 4-76

oo
o ¢
Do

5.4

6.2

-1 -3 =1
PP
[N

7.3

4.11.6 NOREF - Omit Symbol

References 4-76
4.11.7 CTEXT and ENDX - Disable/

Enable Listing of Common

Deck Text 4-77
4.11.8 XREF - Reference Symbolic
Address 4-78

DEFINITION OPERATIONS 5-1
External Text (XTEXT) 5-2
Remote Assembly 5-3
5.2.1 RMT - Save Remote Code 5-3
5.2.2 HERE - Assemble Remote Code 5-4
Code Duplication - 5-6
5-6
5-7
5-9

5,3.1 DUP. - Simple Duplication -
5.3.2 ECHO - Echoed Duplication -
5.3.3 STOPDUP - Stop Duplication -
5.3.4 ENDD - End Duplication

Sequence 5-10
Macros and Opdefs 5-13
5.4.1 ENDM - End Macro Definition 5-14
5.4.2 MACRO - Macro Heading 5-15
5.4.3 Macro Calls 5-18
5.4.4 MACROE - Equivalenced

Macro Header 5-24
5.4.5 Equivalenced Macro Call 5-25
5.4.6 OPDEF - Define CPU Operation 5-27
5.4.7 Opdef Call 5-29
5.4.8 LOCAL - Local Symbols 5-31
5.4.9 - IRP - Indefinitely Repeated

Parameter 5-32
System Macro and Opdef Definitions 5-35
OPERATION CODE TABLE
MANAGEMENT 6-1
Mnemonically Identified Instructions 6-3
6.1.1 PPOP - PPU Operation Code 6-3
6.1.2 OPSYN - Synonymous Mnemonic

Operation 6-5
6.1.3 NIL - Do Nothing Pseudo

Instruction 6-6
6.1.4 PURGMAC - Purge Macros 6-7
Syntactically Identified Instructions 6-7
6.2.1 CPOP - CPU Operation Code 6-7
6.2,2 CPSYN - Synonymous CPU

Instruction 6-10
6.2.3 PURGDEF - Purge CPU

Operation Code 6-10
MICROS -

Micro Substitution
Micro Definition

7-1

7-1

7-2
7.2.1 MICRO -~ Define Micro 7-2
7.2.2 DECMIC - Decimal Micro 7-4
7.2.3 OCTMIC - Octal Micro 7-4
Predefined Micro Names 7-5
7.3.1 DATE 7-5
7.3.2 JDATE 7-6
7.3.3 TIME 7-6
7.3.4 BASE 7-6
7.3.5 CODE 7-6
7.3.6 QUAL 7-6
7.3.7 SEQUENCE 7-7
7.3.8 MODLEVEL 7-7
7.3.9 PCOMMENT 7-7

60492600 C

—

S~

N .

S’

o oo
DN =

8.3

8.4

CPU SYMBOLIC MACHINE

INSTRUCTIONS

Machine Instruction Formats

Instruction Execution

8.2.1 6600/6700 and CYBER 70/
Model 74 Execution

8.2.2 CYBER 170/Models 171,
172, 173, 174, 720, 730,
and the CYBER 70/Models 71,
72, 73 and 6200/6400/6500
Execution

8.2.3 CYBER 170/Model 175, 176,
740, 750, and 760 and the
CYBER 70/Model 76 and 7600
Execution

Operating Registers

8.3.1 X Registers

8.3.2 A Registers

8.3.3 B Registers

Symbolic Notation

8.4.1 Program Stop or Exchange
Jump Instruction (CYBER 170
Series, CYBER 70/Models 71,
72, 73, 74 or 6000 Series)

8.4.2 Error Exit Instruction

(CYBER 70/Model 76 or 7600)

Return Jump Instruetion

ECS Instructions

(CYBER 170 Series,

CYBER 70/Models 71, 72, 73,

74 or 6000 Series)

8.4.5 LCM Block Copy Instructions
(CYBER 170/Model 1786,
CYBER 70/Model 76 or 7600)

8.4.6 Exchange Jump Instruction
(CYBER 170 Series, CYBER 70/
Models 71, 72, 73, 74 and
6000 Series

8.4.7 Exchange Exit Instruction
(CYBER 70/Model 76 or 7600)

8.4.8 Direct LCM Transfer Instruc-
tions (CYBER 170/Model 1786,
CYBER 70/Model 76 or 7600)

8.4.9 Reset Input Channel Buffer

Instruection (CYBER 170/

Model 176, CYBER 70/Model 76

or 7600)

Set Real-Time Clock

Instruction (CYBER 170/

Model 176, CYBER 70/

Model 76 or 7600)

Reset Output Channel

Buffer Instruction

(CYBER 170/Model 1786,

CYBER 70/Model 76 or 7600)

Read Channel Status

Instructions (CYBER 170/

Model 176, CYBER 70/

Model 76 or 7600)

X-Register Conditional

Branch Instruments

B-Register Conditional

Branch Instructions

Transmit Instruetion

Logical Produet Instruetion

0 0o
.
> w

8.4.10

8.4.11

8.4.12

8.4.14

8.4.15

o
Pl
bl ey
=
~ o

60492600 G

% o o
DO P

8-18

8-18

8.5

© ©
o

[o el
.
Loy
P
-
w oo

Qo O
b
Fo -
R
B DO
-0

8.4.22
8.4.23
8.4.24
8.4.25
8.4.26

8.4.27

h .
= NN
¢ . 0

8.4.33
8.4.34
8.4.35
8.4.36
8.4.37

8.4.38

® o 0
B e
o W
o w

8.4.42

8.4.43
8.4.44
8.4.45
8.4.46
8.4.47

Logical Sum Instruction
Logical Difference
Instruction

Complement Instruction
Logical Produet and
Complement Instruction
Complement and Logical
Sum Instruction
Complement and Logical
Difference Instruction
Logical Left Shift jk
Places Instruction
Arithmetie Right Shift

jk Places Instruction
Logical Left Shift (Bj)
Places Instruction
Arithmetie Right Shift (Bj)
Places Instruetion
Normalize Instruction
Round and Normalize
Instruction

Unpack Instruetion

Pack Instruction
Unrounded SP Floating
Point Add Instruetions

DP Floating Point Add
Instruections

Rounded SP Floating Point
Add Instruetions .
Long Add (Fixed Point)
Instruetions

Unrounded SP Floating
Point Multiply Instruection
Rounded SP Floating Point
Multiply Instruetion

DP Floating Point Multiply
Instruction

Integer Multiply Instruction
Mask Instruction
Unrounded SP Floating
Point Divide Instruetion
Rounded SP Floating Point
Divide Instruetion

Pass Instruction
Population Count Instruction
Set A Register Instructions
Set B Register Instructions
Set X Register Instructions

CMU Symbolic Machine Instructions

8.5.1
8.5.2

o 00 00

5.
5.
5.

(2 3 SR

IM - Indirect Move

MD - Indirect Move
Descriptor Word

DM - Direct Move

CC - Compare Collated
CU ~ Compare Uncollated

PPU SYMBOLIC MACHINE
INSTRUCTIONS

Machine Instruction Formats
Symbolic Notation

9.2.1
2

ANV)

2
.2
2

WO WWw W

Branch Instructions

Shift Instructions

No Address Mode Instructions
Constant Mode Instructions
No Operation Instruction

O 00 =] =3 TN =

10.
10.

10.
11,

11.

11.

9.2.6

9.2.7

[{egie]
P
[
w o

9.2.10

9.2.11

9.2.12

9.2.13

9.2.14

9.2.15
9.2.16

9.2.17

9.2.18

9.2.19

Exchange Jump Instruc-
tions (CYBER 170 Series,
CYBER 70/Models 72, 73,
74, and 6000 Series)

Read Program Address
Instruction (CYBER 170
Series, CYBER 70/

Models 72, 73, 74, and

6000 Series)

6416 PPU Instructions
Direct Address Mode
Instructions

Indirect Address Mode
Instructions
Central/Read/Write Instrue-
tions (CYBER 170 Series,
CYBER 70/Models 72, 73, 74
and 6000 Series)

Central Read/Write Instruc-
tions (CYBER 170 Series,
CYBER 70/Models 71, 72,
73, 74 or 6000 Series)

I/0 Branch Instructions
(CYBER 170 Series, CYBER
70/Models 72, 73, 74 and
6000 Series)

1/0 Branch Instructions
(CYBER 70/Model 76 and
7600)

A Register Input/Output
Instructions

Block Input/Output
Instructions

Set Output Record Flag
Instruction (CYBER 70/
Model 76 and 7600)
Channel Function Instruc-
tions (CYBER 170 Series,
CYBER 70/Models 72, 73, 74
and 6000 Series)

Error Stop Instruction
(CYBER 70/Model 76

and 7600)

PROGRAM EXECUTION
Control Statements

10. 1.

H
(=]

AR

1O RN

Job Statement

COMPASS Call Statement

LGO Control Statement
Program Call Statement

7/8/9 Card

6/7/8/9 Card

USER Control Statement (NOS 1
Only)

Sample Decks

LISTING FORMAT

Page Heading

Header Information .
11.2.1 Binary Control Card Summary

11.2.2
11.2.3
11. 2.4

Block Usage Summary
Entry Point List
External Symbol List

Octal and Source Statement Listing

Literals

9-10

9-21

9-22
10-1
10-1
10-1
10-2
10-6
10-6
10-6
10-6

10-7
10-7

11-1

11-1
11-1
11-1
11-2
11-4
11-4
11-5
11-7

11.5
11.6
11.7
11.8
12.

12.1

12.2

Default Symbols 11-8
Assembler Statistics 11-8
Error Directory 11-9
Symbolic Reference Table 11-11
COMMON COMMON DECKS 12-1
Residence of the Common Common
Decks 12-1
Description of the Common Common
Decks 12-1
12.2.1 COMCARG - Process
. Arguments 12-3
12.2.2 COMCCDD - Constant to Deci-
mal Display Code Conversion 12-3
12.2.3 COMCCRD - Convert Constant
to F10.3 Format 12-4
12.2.4 COMCCIO - 1/0 Operation
Processor 12-4
12.2.5 COMCCOD - Convert Constant
to Octal Display Code 12-5
12.2.6 COMCCPT - Extract Comments
Field from PRE FIX Table 12-5
12.2.7 COMCDXB - Convert Display
Code to Binary 12-6
12.2.8 COMCMNS ~ Move Non-Over-
lapping Bit String 12-6
12.2.9 COMCMOS - Move Overlapping
Bit String 12-7
12.2.10 COMCMTM - Managed Table
Macros 12-8
12.2.11 COMCMTP - Managed Table
Processors 12-9
12.2.12 COMCMVE ~ Move Block of
Data 12-13
12.2.13 COMCRDC - Read Coded
Line, C Format 12-13
12,2.14 COMCRDH - Read Coded
Line, H Format 12-14
12.2.15 COMCRDO - Read One Word 12-14
12.2.16 COMCRDS - Read Coded Line
- to String Buffer 12-15
12.2.17 COMCRDW - Read Words to
Working Buffer 12-16
12.2.18 COMCRSR -~ Restore All
Registers 12-16
12.2.19 COMCSFN - Space Fill Name 12-17
12.2.20 COMCSRT - Set Record Type 12-17
12.2.21 COMCSST - Shell Sort Table 12-17
12.2.22 COMCSTF - Set Terminal File 12-19
12.2.23 COMCSVR - Save All Registers 12-19
12.2.24 COMCSYS - Process System
Request 12-19
12.2.25 COMCUPC - Unpack Control
Card 12-21
12.2.26 COMCWOD - Convert Word to
Octal Display Code 12-22
12.2.27 COMCWTC - Write Coded
Line, C Format 12-22
60492600 G

N’

[

St

12.2.28 COMCWTH - Write Coded

Line, H Format 12-22
12.2.29 COMCWTO -~ Write One Word 12-23
12.2,30 COMCWTS -~ Write Coded Line
from String Buffer 12-23
12.2.31 COMCWTW - Write Words
from Working Buffer 12-24
12.2,32 COMCXJR - Restore All
Registers with a System XJR
Call 12-25
12.2.33 COMCTB - Convert All 00
Characters to Blanks 12-25
12.3 Macros That Call the Common Common
Decks 12-25
12.3.1 MESSAGE 12-25
APPENDIXES
A CHARACTER SETS A-1 D
ASSEMBLY-TIME I/0O B-1 E
C BINARY CARD C-1 F
FIGURES
2-1 COMPASS Coding Form 2-3 8-2
3-1 Relocatable Program Struc-
ture 3-6 8-3
3-2 Absolute Program Structure 3-7
3-3 Overlay Hierarchy 3-9 9-1
3-4 IDENT-Type Overiay Structure 3-11
3-5 SEGMENT-Type Overlay 9-2
Structure 3-13
3-6 SEG-Type Partial Binary 3-14 11-1
3-7 IDENT-Type Partial Binary 3-15 .
8-1 CPU 15-Bit Instruction 11-2
Format 8-1
TABLES
8-1 CYBER 70/Model 74 and 6600/6700 11-2
Functional Units 8-3 12-1
8-2 CYBER 170/Model 175, 176, CYBER 70/ 12-2
Model 76 and 7600 Functional Units 8-6 12-3
9-1 PPU Instruction Designators 9-3
11-1 Fatal Errors 11-9
60492600 G

12.3.2 MOVE
12.3.3 READC
12,3.4 READH
12.3.5 READO
12,3.6 READS
12.3.7 READW
12.3.8 RECALL
12.3.9 SYSTEM

12.3.10 WRITEC
12.3.11 WRITEH
12.3.12 WRITEO
12.3.13 WRITES
12.3,14 WRITEW

HINTS ON USING COMPASS
DAYFILE MESSAGES
GLOSSARY

CPU 30-Bit Instruction
Format

Arrangements of Instructions
in a 60-Bit CPU Word

PPU 12-Bit Instruction
Format

PPU 24-Bit Instruction
Format

Format of Octal and Source
Statement Listing

Format of Symbolic Refer-
ence Table

Informative Errors

Summary of Common Common Decks
Type Codes Returned by COMCSRT

Macros That Call Common Common

Decks

12-28
12-28
12-28
12-29
12-29
12-29
12-30
12-30
12-31
12-31
12-31
12-32
12-32

D-1

E-1

8-1
8-2
9-1
9-2
11-5

11-13

11-12
12-2
12-18

12-26

xi

N’

L

INTRODUCTION 1

This manual describes the features of the COMPASS Version 3 assembly language processor and the
principles, methods, rules, and techniques of coding a COMPASS program.

The user is assumed to be familiar with a Control Data computer and operating system, and is assumed to
be familiar with assemblers in general.

Readers with no previous experience with the COMPASS assembler are encouraged to direct their initial

.attention to the following sections of the manual:

Chapter 1 Introduction

Chapter 2 Language Structure

Chapter 3 Program Structure, sections 3.1 through 3.3

Chapter 4 Pseudo Instructions, sections 4.1 and 4.2

Chapter 8 or 9 CPU or PPU Symbolic Machine Instructions, the chapter depending upon the
machine language the user requires

Chapter 10 Program Execution ‘

Appendix D Hints on Using COMPASS (example program)

COMPASS, like other assemblers, is machine~ and operating system-dependent. The user, therefore, should
be aware of restrictions imposed on COMPASS by the programming environment. Specifieally, the user
should note:

e Differences between CPU and PPU program environments
e Features of COMPASS not supported by a particular operating system

Machine and operating system limitations are outlined in the preface of this manual. The applicability of
instruetion sets is shown in the instruction indexes (inside front and back covers), and is addressed as
necessary throughout the manual.

A COMPASS program consists of one or more subprograms. From source language subprograms, the
assembler generates binary output aceeptabie for loading and execution. The programmer can divide a
subprogram, whether it is assembled as absolute or relocatable, into areas called blocks. Blocks are
assembled independently. Thus, they can be loaded and executed independently or linked by the system
loader preparatory to execution of the program. This capability provides much flexibility in combining,
segmenting, overlaying, and ordering blocks for execution.

Subprogram blocks consist of two types of source statements:

e Symbolic machine instruetions

e Pseudo instruetions

Symbolic machine instructions are the counterparts of the binary machine instructions. They provide a

means of expressing symbolically the data manipulation functions of the machine. Each symbolie
instruction typically generates one machine instruction.

60492600 G -1 @

Pseudo instruetions do not have a one-to-one relationship with binary machine instructions. They are used,
instead, to control aspects of the assembly process, such as:

Storage allocation
Symbol definition
Subprogram linkage

Listing options

Automatic generation of predefined code sequences (maeros)

From CPU source language subprograms, COMPASS generates absolute or relocatable binary output
acceptable for loading and execution. From PPU source language subprograms, COMPASS generates
absolute binary output to be loaded and executed on a peripheral processor unit. The operating system
allows only specially privileged jobs to access a peripheral processor unit.

Features inherent to COMPASS include:

Free-field source
statement format

Control of local
and common blocks

Preloaded data

Data notation

Address arithmetic

Symbol equation and
redefinition

Symbol quélification

Binary control

Selective assembly of
code sequences

Mode control

Size of source statement fields is largely controlled by user.

Programmer and system can designate up to 255 areas to facilitate
interprogram communication. In CPU programs, common areas can be
defined in smail core memory (CM or SCM) or extended or large core
memory (ECS or LCM).

Data areas may be specified and loaded in core memory with the source
program.

Data can be designated in integer, floating-point, and character string

notation. It can be introduced into the program as a data item, a constant, or

a literal.

Addresses can be specified making extensive use of constants, symbolic
addresses, and arithmetic expressions.

Equation and redefinition of symbols allow extensive parameterization
of assembly and linkage of subprograms and subroutines.

Ability to associate a symbol qualifier with a symbol defined within a
qualified sequence to render the symbol unique to the sequence. An
unqgualified symbol is global and can be referred to from within any sequence
without qualification.

The programmer can specify whether binary output is to be absolute or
relocatable. Absolute code can be generated for any PPU or CPU.
Relocatable code can be generated for any CPU. Binary can be written as
overlays or-as partial records.

Assembly-time tests allow the user to select or alter code sequences.
Ability to specify the base to be used for numeric notation not explicitly
defined as octal or decimal, and to specify the code conversion to be applied

to character data as either display code, ASCII, internal BCD, or
external BCD.

60492600 G

e

—

e Listing control Assembly-time control of list content.

e Micro coding Sl{bstitution of sequences of characters defined in the program whenever the
micro name is referenced. Several micros are predefined by the system for
user convenience. .

e Macro coding Assembly of sequences of instructions defined in the program or on the
system library whenever the macro name is referenced. Macro definitions
can be redefined or purged from the operation code tabie.

e Operation code table The programmer can specify or respecify the syntax of a CPU or PPU
instruction. The assembler generates an entry in the operation code table for
the instruction. No macro or opdef definition is associated with the entry.

e Operation code Assembly of sequences of instructions defined in the program or on the
definition system library whenever an operation code of the specified syntax is
referenced.
e Code repetition Sequences of code can be repeated during assembly or at load time.
e Remote assembly Defers assembly of defined coding sequence until later in the assembly.
e Library routine calls Routines can be called from the system library.
e Diagnostics Diagnosties for source program errors are included on output listing.

1.1 CONFIGURATION

The hardware requirements for executing COMPASS on a CPU are the minimum required for the operating
system.

1.2 ASSEMBLER EXECUTION

COMPASS is called from the system library by a COMPASS control statement (chapter 10) or FORTRAN
compiler upon encountering a COMPASS IDENT statement in the source input file. Parameters on the
control statement specify files used during the assembler run such as the file containing source statements
and the files to receive listable output and load-and-go output. The COMPASS assembler executes as a
CPU program.

The operating system allocates the input/output resources as needed and performs all input/output required
during the assembly.

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first pass, it
reads each source language instruction, expands and edits called sequences as needed, interprets the
operation code, and assigns storage.

The function of the second pass is to assign block origins, locate literals, fiil in all valid symbol values and
produce the assembly listing and binary output. Finally, it prepares the symbolic reference table and
reinitializes itself preparatory to assembling the next subprogram.

COMPASS alters its field length dynamically, thus ensuring that central memory requirements for tables
used by the assembler are satisfied. The assembler requests additional central memory as needed up to a
threshold field length. (The threshold value is determined by the installation.) When the threshold field
length is reached, the intermediate file and cross-references are transferred to the system mass storage
device. If additional core is needed, the assembler continues to request central memory up to the
maximum available to the job. (COMPASS may use any ECS/LCM space assigned to the job for table
space.) If core requirements are still not satisfied, COMPASS aborts and issues a diagnostic message.

60492600 G ' 1-3

All nested proeessing of macros and similar definitions is handled in a single recursive push-down stack.
COMPASS has a maximum recursion level of 400; that is, COMPASS allows nesting to a depth of 400,

1.3 RELOCATABLE OBJECT PROGRAM EXECUTION

When the assembler has completely processed the source deck, a control statement (for example, LGO) can
be used to call for loading and execution of a CPU object program from the load-and-go file. The loader
links the newly assembled subprogram to any previously assembled subprograms and subroutines referred to
by the new program and to programs on any other files specified by the programmer. After all
subprograms are loaded and linked, the operating system begins program execution at a location specified
by one of the subprograms. Data for the object program can be on some programmer-specified file.
Normally, this loading and execution does not take place if the COMPASS assembler detects fatal errors.

1.4 INTERACTIVE PROGRAM DEBUGGING

A COMPASS program that assembles without fatal errors can be executed under control of the CYBER
Interactive Debug (CID) software. CID allows the programmer to correct errors in program logic from a
terminal. Using CID, the COMPASS programmer can:

e Suspend program execution at a specific location or upon oceurrence of a specific trap condition, such
as execution of a return jump instruction

e Alter location content during program suspension
e Resume execution at a specified location or at the location where suspension oceurred

A complete description of CID features and use is given in the CYBER Interactive Debug Reference
Manual listed in the preface.

| 1+ 60492600 G

N

_,/>

p—

\\,—/k

LANGUAGE STRUCTURE 2

2.1 STATEMENT FORMAT

A COMPASS language source program consists of a sequence of symbolic machine instructions, pseudo
instructions, and comment lines. With the exception of the comment lines, each statement consists of
a location field, an operation field, a variable field, and a comments field., Each field is terminated by
one or more blank characters. However, a blank embedded in a character data item, parenthesized
macro parameter, or comments field does not terminate a field, The size of the variable field is re-
stricted by the maximum statement size only. Statement format is essentially free field.

Statements are 80-to-90 column lines. When punched on cards, each card is considered a line. A single
statement may be composed of as many as ten lines. Information beyond column 72 is not interpreted

by COMPASS but does appear on the assembly listing. Thus, columns 73-80 can be used for additional
comments or sequencing. Column 81~90 are used for sequencing by library maintenance programs; they
are normally not used by the programmer. A line that contains two or more consecutive colons may be
read and printed as two lines because of operating system conventions for delimiting line images.

2.1.1 FIRST COLUMN
The contents of column one designate the type of line, as follows:

» (comma) Designates the line as a continuation of the previous line.
*(asterisk) Designates the line as a comments line,

other Indicates the beginning of a new statement.

2.1.2 LOCATION FIELD

The location field entry begins in column one or two of a new statement line and is terminated by a blank.
If columns one and two are blank, the location field has no entry. A location field entry is usually
optional. It may contain a symbol or name according to the requirements of the operation field, or a
plus sign (+) or a minus sign (-) (section 3.2.4).

2.1.3 OPERATION FIELD

If the location field is blank, the operation field can begin in column three. If the location field is
nonblank, the operation field begins with the first nonblank character following the location field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank characters
between the location field and column 30. The following are legal field entries:

Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preceded by a comma.

Peripheral processor unit mnemonic operation code

60492600A 2-1

Pseudo instruction mnemonic operation code
Macro name

Blank

2.1.4 VARIABLE FIELD

The contents of the operation field determine if any entry is required in the variable field which consists
of one or more subfields separated by commas. The variable field begins with the first nonblank
character following the operation field and is terminated by one or more blanks. It is blank if there are
no nonblank characters between the operation field and column 30,

A variable subfield contains one of the following:

Data item

Expression

Register designator

Name

Special element

Entry uniquely defined for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank character following the variable field or, if the
variable field is missing, begin no earlier than column 30, The beginning comments column can be
changed through the COL pseudo instruction (Section 4.4, 5).

2.1.6 COMMENTS STATEMENT

A comments statement is designated either by an asterisk in column 1 or by blanks in columns 1-29,
Comments statements are listed in assembler output but have no other effect on assembly.. A statement
beginning with * is not counted in line counts for IF-skipping (Section 4, 9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Normally, column 72 terminates a source statement that has not yet terminated. However, a statement
that cannot be contained in the first 72 characters can be continued on the next line by placing a comma
in column one and continuing the field in column two. A maximum of nine continuation lines is permitted
for a statement. The break between lines need not coincide with a field or subfield separator; even a
symbol can be split between two lines. Continuation lines beyond the ninth, and continuation lines
following a terminated statement are considered comment lines.

9-2 ' 60492600A

2.1.8 CODING CONVENTIONS

~ Figure 2-1 illustrates a COMPASS coding form that es—tabligﬁes a coding convention as follows:
Column Contents

1 Blank, asterisk,or comma

2-9 Location field entry or plus, or minus left justified

10 Blank ‘

11-16 Operation field entry left justified

~ 17 Blank

18-29 Variable field entry left justified
~ 30 Beginning of comments ~
. All examples in this manual abide by this convention.

= COMPASS CODING FORM
PROGRAM NAME
ROUTINE DATE]PAGE OF
LOCATION JOPERATION VARIABLE COMMENTS IDENT.
...,l.m.|,1.1.*;..'"'”.:[24»'»-1,1.- CHOTHICNDEW: I PYI P CHCHI I I M S EY D 0 MY e I P Y D PN A Y S D N B CHO I T e
e s L PN . L AU Ll - L
N’ L L " 1 [P S : it] : : T : L
a1 gy s PR . Lty ; et i . i
AP PR . PR . " Ly . . . - - s
VIR B L FEEEN I W) ‘ollltl S -1 | NP | § SR T S S U T §
ot L . . s N SR M- : PP NN S R
- . - N L R Ly - ; IR IS RS B .
. NIV I i 2 : " - PRI . N Lo
S’
. e T L - A . . M S
N . P P L L T I TR SPETETa
T SIS N T S Y T S B S T Y S A A S A S T B AT S S S R A S S A A S ST S IR I
o e S SR TR S SIS S AU ArE S A S A S A A I A A A A S ST S A AT A AR ST A AT AU
SN IS NS FII I TS S S AT OV A A AT S S A A ISP ITAr
§ ESY U VO A T WU IS G B ANV W W 1 AeA!A L iy VUG S S W WO S S A S T A S S I SO GBI W SO0 S0 ST R T SO BV RS T SO A BTSN B R I
I P N S T S S Y S S Y S I S SO S A S S S AU A U AT I SR O SR AT PR TSR
- PSS SRS W S e o OV S U T S Y S A S A B S R A A0 S W S SRV AT U AT T IR O APV
- ¥ I S LT T T TOVURS N S N W R T U I Y SR A N 1 SENEE ROV T i s I W TS S WS S5 T S T N A Y A U A S S0 WU ST SR N (O N S HAE O T
Y FEWNN S L . o SO S T Y Y W A A SV RV ST O B SR A W S A S AT R VI RS AT S
NI N FE N ST TR Y S S R S I S S ST A WA ST AV ST S AP ST ISR ROV AN
R IS WIS e i B A S S S S S S S S A AT AT EE ST A S AT R AT A ST AT AT E IS
NS WIS IS S AT . T Y S S R A S R A ST AT U ST IS AT S SRR
SIS PN AT e W U S Y Y Y Y R T O S T A R A R S A ST AT A S ERUTRT AU RS AR
. e o i o ST SR ST S W A A A W I I S T
~ sttt eltete bttt el et sttt atetetbatatatatatrtohtate ottt i,.i,,i..iui..i,,f,.I,.{..i.-f.,iu{.‘i.,iuini..w
AA2VEY REV.$-67 PATEO N U, S. A

Figure 2-1. COMPASS Coding Form

TN 60492600A

2.2 STATEMENT EDITING

COMPASS reads statements in sequence from the source file. It immediately edits and interprets each
statement unless (1) it is a comments statement of the type indicated by an asterisk in column one, or
(2) it is part of a definition, that is, it is a statement between a macro or OPDEF header and an ENDM,
between a DUP or ECHO and an ENDD, or between an RMT pair. Statements within definitions are

saved for editing and interpretaticn wen the definition is referenced or expanded. ENDD and ENDM
are part of the definition they terminate and are not edited. Statements within the range of a conditional
(IF type) pseudo instruction are edited even when they are skipped. COMPASS performs two types of
editing: concatenation, and micro substitution.

2.2.1 CONCATENATION

COMPASS examines the statement for the concatenation character — and removes it from any field of
the statement so that the two adjoining columns are linked. The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parameter name. After the substitution takes
place, the r—is superfluous and is removed by editing before the definition is interpreted.

Each removal of — shifts the remaining columns in the statement left one character. This could
become significant when comments follow a blank variable field because the comments would be
shifted left and interpreted as a variable field entry rather than comments.,

2.2.2 MICRO SUBSTITUTION

COMPASS examines the statement for pairs of micro marks (#) that delimit references to miecro
definitions (chapter 7) and replaces each reference (including the micro marks) with the micro character
string referenced. The string that replaces the reference in the statement can be a different number of
characters than the reference so that after the substitution, remaining characters in the statement are
shifted left or right, accordingly. If, as a result of micro substitution, column 72 of the last statement
read is exceeded, the assembler creates up to a maximum of nine continuation cards, beyond which it
discards excess without notification on the listing. No replacement takes place if the micro name is
unknown or if one of the micro marks has been omitted. The micro marks and name remain in the line.
In the first case, the assembler flags a nonfatal assembly error. However, a single micro mark is not
illegal and does not produce an error flag.

If the micro name is null (i.e., the two micro marks are adjacent) both micro marks are deleted and no
error flag is set. :

N

The columnar displacement caused by a micro replacement could also affect the relationship of fields
to the beginning comments column. For example, it could shift the operation or variable field right
beyond column 30, or could shift comments left into a blank field.

A line that contains two or more consecutive colons after editing may be printed as two lines because
of operating system conventions for delimiting print lines.

2.3 NAMES

A name is a sequence of characters that identifies one of the following:
Subprogram or overlay

Block

2-4 ‘ ' 60492600 D

—

N

S

Macro definition

Remote definition

Duplicated sequence (DUP or ECHO)
IF sequence

Micro

A comma or a blank terminates a name. Concatenation marks and pairs of micro marks are removed
before the name is scanned (see section 2.2 Statement Editing).

A CPU subprogram name or overlay name is used for linkage with other subprograms. It must begin
with a letter (A-Z) and is limited to seven characters maximum. Conventions imposed on names by
the operating system could restrict the use of certain characters in names. There is no restriction on
the first character for a PPU subprogram or overlay name. For a CYBER 70/Model 76 or 7600 PPU
assembly, the name can be seven characters but for a CYBER 170 Series or a CYBER 70/Model 72,
73, 74 or a 6000 Series PPU assembly it is limited to three characters maximum, In all cases, the
last character of a subprogram or overlay name cannot be a colon,

Any other type of name can consist of one to eight characters. A name does not have a value or
attributes and cannot be used in an expression. '

The different types of names do not conflict with each other. For example, a micro can have the same
name as a macro, or a subprogram can have the same name as a block, etec.

2.4 SYMBOLS

A symbol is a set of characters that identifies a value and its associated attributes. For an ordinary
symbol, the first character cannot be a $ or =or : or a humber; a symbol can be a maximum of eight
characters. A symbol cannot include the following characters:

+-*/blank T~ or A

Other special characters must be used with care, especially in ECHO and macro definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters
in symbols.

An external or entry point symbol is used for linkage with other subprograms and has additional
restrictions (section2,4,1 Linkage Symbols). -

Concatenation marks or pairs of micro marks are removed before a symbol is examined (section 2.2
Statement Editing). In CPU assemblies, to avoid conflict with register designators, a symbol cannot
normally be An, Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A.x, B.Xx,
or X.X, because x is assumed to be a data item by the assembler. However, symbols resembling
register designators can be used if each use of the symbol is prefixed by =S or =X (section 2. 4. 2).
Register designators are described further in Section 2. 5.

The process of associating a symbol with a value and attributes is known as symbol definition. This
can occur in five major ways.

60492600 E 2=5

1. A symbol used in the location field of a symbolic machine instruction or certain pseudo
instructions is defined as an address having the current value of the location counter {section
3.2, 2) and having an attribute defined as follows:

Absolute for the absolute block
Common for labeled or blank common blocks (relocatable assemblies only)
Relocatable for local blocks other than absolute during pass one

Absolute for local blocks during pass two of an absolute assembly

2. A symbol used in the location field of definition pseudo instructions (section 4. 6) is defined as
having the value and attributes derived from an expression in the variable subfield of the
instruction. Certain of these pseudo instructions assign an attribute of redefinability to a
symbol. Unless a symbol is redefinable, a second attempt to define it with a different value
produces a duplicate definition fatal error flag,

3. An external symbol is defined outside the bounds of the current subprogram and is declared as
external in the current subprogram or is defined in relation to a symbol declared as external.
In either case it has the attribute of external. Unlike a systems symbol, the true value
definition is not known to the current subprogram,

4. Definitions of systems symbols that take place outside of the current program can be
carried over to the current program through the SST pseudo instruction. COMPASS uses
the true definitions but assigns the additional attribute of systems symbol. ;

5., COMPASS defines a symbol by default if a reference to a symbol is preceded by =S and the
symbol is not otherwise defined in the subprogram. This feature is further described
in section 2. 4. 2 Default Symbols.

There is no restriction on the number of times that the symbol can be referred to in the subprogram.

Examples:
Legal Symbols Illegal Symbols
P 5A First character numeric
R3 ABCDEFGHI Exceeds eight characters
PROGRAM ABE+15 Contains plus sign

=11 First character equal sign

2.4.1 LINKAGE SYMBOLS

A relocatable subprogram can be linked to other subprograms through linkage symbols. The two types
of linkage symbols are external symbols and entry point symbols. An external or entry point symbol
can be a maximum of seven characters, the first character must be a letter (A-Z), and the last
character must not be a colon.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the

current subprogram can be declared as an external symbol in the current subprogram. Any symbol
declared as an entry point in the current subprogram can be declared as an external symbol in some

2-6 60492600A

other subprogram. The symbol has a zero value and an attribute of external. An external symbol can
be declared either through the EXT pseudo instruction or through default (a reference to the symbol is
preceded by =X or =Y; see section 2.4. 2 Default Symbols).

An external symbol can be-strong or weak. A strong external symbol reference causes the loader to try
to find and load a subprogram having a matching entry point symbol. Failure of the loader to satisfy a
strong external in this way is flagged as a non-fatal error by the loader. A weak external does not
require the loader to search for a satisfying subprogram; however if one is loaded for some other
reason, the loader associates the matching linkage symbols in the usual way. At the end of loading, the
existence of unsatisfied weak external symbol references is not an error.

External symbols can be defined in the subprogram relative to any external symbol declared in an EXT
pseudo instruction. This is possible through use of symbol definition instructions that assign the value
and attributes of an expression to a symbol. If the value of the expression reduces to an external symbol
+ an integer, the location field symbol is defined as having an integer value and external attribute.
Entry point symbols and external symbols are not qualified (section 2.4.5).

2.4.2 DEFAULT SYMBOLS

When a symbol reference is preceded by =S, =X, or =Y and the symbol is not defined in the subprogram,
COMPASS defines the symbol or declares it as a strong or weak external symbol, respectively, at the
end of assembly. The =X and =Y forms are defined by default in relocatable assemblies only.

=Ssymbol If symbol is not defined, COMPASS assigns an address at the end of the zero
block. All subsequent references to the symbol, whether preceded by =S or not,
are to the location of the word. A default symbol cannot be used where a
previously defined symbol is required.

If the symbol is defined by a conventional merthod, COMPASS does not define it
again but uses the programmer definition. ‘ ‘

=Xsymbol This option permits a programmer to define his symbols in a subroutine or link
-to them in another subprogram. If the programmer defines the symbol, the
assembler uses the programmed definition. If the programmer does not define

the symbol, the assembler assumes that the symbol is a strong external as though
declared in an EXT pseudo instruction. A symbol prefixed by =X must conform
to the requirements for external symbols.

=Ysymbol This option permits a programmer to define symbols in a subroutine or to link
to them in another subprogram that need not be loaded. If the programmer
defines the symbol, the assembler uses the programmed definition. If the pro-
grammer does not define the symbol and if it is not referenced elsewhere with an
=X or =S prefix, or declared in an EXT pseudo instruction, the assembler
assumes that the symbol is a weak external. A symbol prefixed by =Y must
conform to the requirements for external symbols.

The system does not define a default symbol and issues an error flag if a symbol is prefixed by both
=8 and =X, or is prefixed by =X or =Y, and is not defined conventionally in an absolute assembly. Default
symbols are qualified by the qualifier in effect at the time of the =S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instructions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instruction.

60492600 C 2-7

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined (not even by default) causes a U error flag to be placed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qualifier is in effect during assembly (section 4.4, 3) can be referred
to outside of the qualifier sequence in which it was defined through:

' /qualifier/symbol

The feature permits the same symbol to be defined in different subroutines without conflict.. An’
unqualified symbol is global and does not require a qualifier when it is referenced, unless a qualifier
is in effect, and a symbol qualified by the same qualifier has been defined. In this case, the unqualified
symbol can be referenced as // symbol.

P ‘
The combination of qualifier and symbol permits a value to be identified by a unique 16-character
identifier. Linkage symbols are not qualified.

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU operating registers. These registers are
described more fully in chapter 8. The designators are inherent to COMPASS and cannot be changed
during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence
of such a symbol is prefixed by =S, =X, or =Y (see section 2.4.2). However, a warning message is
issued when such symbols are defined, The prefix cannot be used in the location field of machine
instructions and symbol defining, data generating, BSS pseudo instructions, in the variable field of
ENTRY, EXT, and S8ST pseudo instructions.

Register Type g Designator
~Address Anor A.n
Index Bnor Bin
Operand Xn or X,n

For the forms An, Bn, or Xn, n is a single digit from 0 to 7. Any other value for n, for example 8, causes
- An, Bn, or Xn to be interpreted as a symbol rather than a register designator.

For the forms A.n, B.n, X.n, n can be a symbol or an integer. If the value of n or the value of the
symbol exceeds 7, the assembler truncates it to the least significant 3 bits and issues a warning flag.

Registers designated by A1l through A5 or A.1 through A, 5 are used for addressing to obtain information
from central memory. Registers designated by A6, A7, A.6, or A.7 are used for addressing to place
information into central memory.

2-8 . 60492600 F

Pt

~—

B

—

COMPASS does not recognize registers in PPU assemblies; there, the designators are acceptable as
ordinary symbols.

Examples:
Al Designates address register 1
Al0 Interpreted as a symbol, not a register
Al Designates address register 1
A.NUM If the value of NUM is 6, it designates address register 6
A, 10 Designates address register 2; however, it produces a warning flag because the

two was derived from the truncation of 12, the octal value for 10.]
The following produce equivalent results. A SET pseudo instruction (section 4. 6. 2) defines SUM and

SUB as absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the same
result as if the value had been used directly. In this example, the address of ALPHA is 001000.

60492600 F 2-8.1/2-8.2

N’

Code Generated ! LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [30
1
5732001000 <a3 [azearowe |
LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 T30
1
2 SumM cew 2 H
K sgn SET 2 !
6332091467 SBLSUN AL SR ALTHA |

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as references to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a
value specified by the element in the expression. The control counters are discussed further in

section 3. 2.

Designator Significance

* or *L The assembler uses the value of the location counter for the block in use.
The element is relocatable unless _the counter in use is for the absolute block.

*O The assembler uses the value of the origin counter for the block in use. The
element is relocatable unless the counter in use is for the absolute block.

$ The assembler uses one less than the absolute value of the position counter

for the block in use,

*P The assembler uses the absolute value of the position counter for the

block in use.

*F The assembler uses an absolute value obtained as follows:

0 COMPASS was called by a COMPASS control statement
1 COMPASS was called by a RUN-type compiler '
2 COMPASS was called by a FTN-type compiler

These designators are inherent to COMPASS and cannot be altered by the programmer during an

assembly.

60492600A

2-9

Examples:
LOCATION " | OPERATION |- VARIABLE COMMENTS -
- " 18 R [0
p— N T
Jn 41407 l
P
: I
.
R I
22 lw3,ep- |
. S
. B - - i
v i
e |
LT *)-2¢3eene !
. :

L
n
2

»0

[

L T Y
I
—

it
A

1 e > i

i

2.7 DATA NOTATION

Data notation provides a means of enteringAvalues for calculation, increment counts, operand values,
line counts, control counter values, text for printing out messages, characters for forming symbols,
etes . . - .

The two types of data notation are character and numeric, The assembler allows the user to introduce
data in the program in three basic ways.

As a data item
As a constant in an expression
As a literal

2.7.1 DATA ITEMS

Character and numeric data items can be used in subfields of the DATA (section 4, 8, 2) and LIT
(section 4f 8.4) pseudo ins.trqctions or as. specifications of figeld 1engths on VFD pseudo instructions.

2.7.2 CONSTANTS

A data . constant is an expression element consisting of a value represented in octal, decimal,
hexadecimal, or character notation. It resembles a data item but is restricted by its use as an

expression element in two ways: 1‘

2-10 , - 60492600A

:\\-/l '

. .

"~ .

1, The first character must be numeric, prohibiting the delimited type of character string
(section 2,7.4) and the preradix for numeric values.

2. The field size is determined by the destination field for an expression and can be a maximum
of 60 bits thus prohibiting double precision floating point numbers.

2.7.3 LITERALS

A literal is a read-only constant. It is specified as a data item in a subfield of a LIT pseudo instruction
or as an element in an expression.

The method of specifying a literal in an address expression is nearly identical to that for specifying a
data item in a DATA (section 4, 8, 2) or a LIT (section 4, 8, 4) pseudo instruction. The primary difference
is that the literal is prefixed with an equal sign, which indicates that a literal follows.

When a literal is used as an element in an expression, the expression is evaluated using the address of
the literal in the literals block rather than the value of the data item. Thus, the literal is considered
relocatable. (For a discussion of the literals block, see section 3.1.3).

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store
the data in the literals block using as many words as are required to hold the data. If the binary pattern
of the prefixed type of literal or of all the literals in a LIT declared sequence matches the binary
pattern of words previously entered in the literals block, an entry is not generated for the

data. This process eliminates duplication of read-only data.

The LIT pseudo instruction permits symbols to be associated with literals block entries. Such entries
can be referenced symbolically or through use of a prefixed literal. However, to preserve the integrity
of the literals block, they should be used as read only locations.

The assembly listing includes a list of the literals block when the D list option is selected (section 4.11.1),
Example:

In the following example, using CPU instructions, the first statement creates a word in the literals
block having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the state-

ment at the lower part of 101.

The literal in the second statement specifies a right justified character, A, which has a display code
value of 1. The SB4 creates a one~-word literal block entry having the value 00000000000000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101

and 102. In this example, the LIT sequence duplicates a sequence of entries in the literals block
and does not cause new entries to be assembled.

60492600A 2-11

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
:] n 18 [30
107 6120015555 + <02 =1 l
F£13710555% + SR3 =128
101 6140005556 + SBu =1en |
5555 | 1L LIT 1,2
£120005565 + sA? L !
102 6137005556 + SAz L+t i

CONTENT OF LITERALS ELOCK.

0 V)

205555 0o
N
El

£056554

HEERLE AR R B Rl |

N
<
[AP IR RS R A OIS AL

Continuing the previous example, a LIT sequence as illustrated below, does not duplicate a sequence in
the literals block and causes entries to be generated in the litzrals block: ’

LOCATION |

OPERATION

VARIABLE

COMMENTS

i}

[30

CONTENT CF LITERALS ELCCK,

Location Code Generated

5557
05555 390000000NR00200N0001
305555 AnanqeneannaarnnnQo?
5065557 agnoagannAnNgqgrAngng
0NGERT mnanagnaernIgnagon
grsee 14090000000 R300N0R000
0NseR2 ananapaconnoananAgnn?

151 R Be ¥ = Yoo B

LI te7,10N

)
i
* |
|

However, if the literals sequence in the first part of the example had been followed by a LIT that

duplicates, in part; the most recent entries in the literals block, only the unduplicated part is added
to the block. Thus, if the following LIT sequence had been used in place of the LIT 1,3,1RD, 2, the
first two words of the sequence would mateh the last two words of the literals block so that only two
additional words would be required to complete the sequence.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) N 18 [30

5565 LI 1929 %,4 ;
CONTENT OF LITERALS BLOCK.
go555s 4nNnangaenqggonnnOnnp A
005556 2000000000000 00ON0N002 n
005557 aQnonQaonoagNanNnQnNg r
005560 ANO2000ANNNQNQNNONN0L n

2-12 60492600A

p—

X, .

2.7.4 CHARACTER DATA NOTATION

Character data strings are converted to the code in use at the time the string is evaluated (section 4. 4. 2,
CODE pseudo instruction), and placed in a field indicated by the data type (data item, constant, or
literal). When no CODE instruction has been issued, conversion is to display code representation.

Format: ‘ Example
Data Ttem Lsignlnl typel string I ~3RABC
or

l signl type I d Istringl dI -R*ABC*
Constant ¥ I n ltypel string] 3RABC
Literalt l = Isign] nltypeJ string1 =-3RABC

or .
| = |sign]| type| d [string] d| =—R*ABC*

= Applies to literals used as expression elements only; signifies that a literal follows.

sign Optional for data item or literal. A sign with a constant is interpreted as an element
operator,
+ or omitted The value is positive

- The complemented (negative) value is formed

n Signifies how the string is determined: ,
omitted The string is delimited by d. n cannot be omitted for a constant,
0 For data item or literal, the string consists of all characters following
type to:
blank or ,

For a constant, string consists of all characters following type to:
+-%*/blank , or ‘A

n For a data item or literal, n is an integer count of the number of
characters. in the string not counting guaranteed zeros. It is limited
only by statement size.

For a constant, n is an integer count of the number of characters in the
string. It cannot exceed 1/6 of the number of bits in the field that will
contain the expression. A truncation error is flagged for a right
justified constant if the most significant bit exceeds the field. Truncated
zeros do not cause an error in this case. A truncation error is flagged
for a left justified constant if the least significant bit positions are
truncated, even if they are zero.

The string consists of the n characters following type.

Regardless of base, COMPASS assumes that n is decimal.

T Expression element

60492600A

2-14

type

string

Character string justification. The characters formed by the data item
or constant are right or left justified into the destination field as follows:

Type ‘Significance

-C Left justified with zero fill. For data item or

literal, 12 zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, C is the same as L; the 12 zero

bits are not guaranteed.

Left justified with blank fill
Right justified with blank fill
Right justified with zero fill
Left justiﬁéd with zero fill

N & " o> m

Left justified with zero fill, For data item or
literal, six zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, Z is the same as L; the six zero
bits are not guaranteed.

A delimiting character used only when n is omitted. The characters
between the first occurrence of d and the second oceurrence of d form the
string. d can be any character other thanor #.

Characters from one of the COMPASS character sets (appendix A), except
for those characters that act as delimiters (see n and d), the concatenation
character (), and pairs of miero marks (#).

Concatenation marks and pairs of micro marks are removed by editing
before a string is examined. A single micro mark can be used in a string.

An empty or omitted character string is defined under one of the following
conditions:

. n is 0 and type is immediately followed by a delimiter, for
example, OL.

° n is omitted and the two delimiﬁng characters are adjacent, for
example, H+ +. ' ,

Omission of a string in a DATA pseudo instruction is legal and does not
cause generation of a data word.

For a constant, an omission of the string is valid and has a zero value.

An omitted string in a LIT pseudo instruction is legal and does not cause

‘generation of a literal for that item; however, the LIT must contain at

least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces an
error.

It is not possible to generate empty strings using types C, Z, R, or A.

60492600 G

. -

~—

S’

RN

Examples of character data:

In these examples, characters are converted to display code representation; all lines of code
generated by DATA are printed only if the D or G list option is selected.

Data Items

Location Code Generated

Tt
145
145

052P2217228511165629
QL21E500000N 030050
55666565E5655555550

Location Code Generated

1100
1101
1102

1725
26?240
2524

Constants

Location Code Generated

w722
k723

bicq

4725

w720

Note that the character constant in the expression in the second line consists of a decimal point

7130033047
/1400600050
5111031117
0260530093
1117246155
0155555531
1725242025
2400000001
07006304du0

LOCATION OPERATION | VARIABLE COMMENTS
" 18 T30
T
RATA L¥CRROR [N PUX ¥yplaeoewlot
LOCATION OPERATION.| VARIABLE COMMENTS
n 18 {30
PPy ;
: |
i |
DATA gLouTPUT [
LOCATION OPERATION]| VARIABLE COMMENTS
I 18 [30
Sx32 1RrR* |
TAG SXb IR+ | |
SaL IRCIQ |
5383 Xa+iL 3 |
VFU 30/74HTUTA,0/71RA,20L/5A8+1
|
VFO G2/0L0UTPUT, 1871
|
VED |15/0L6,15/0y

(57 in display code) to which 01 is added before the value is stored. Similarly, in the third field

of the first VFD, 1 is added to the display code representation of X right justified with blank fill

(55555530) so that 55555531 is generated.

60492600A

Literals

Location Code Generated

1009083765
196003770
2652 51190323772 +
- 5120003774 +
2653 5130003767 +

LOCATION QOPERATION |: VARIABLE COMMENTS
n 18 [30
I
TAGY LIT RA+-¥/7{A46L) L= 4.,7C,00L

LIT
<Al
SA?
<Az

CONTENT OF LITERALS BLOCK.

003765 0N0NND000045464L750651
00376A 5252645568570010000300
00%767 3300000007°09992000000
003770 16411240522011423555%
003771 655655555555555R555665
00772 240516031N0122032423
002772 0007N0000N000000N00000
002774 1405N0H24L4551225232411
003775 06315577112410550214
002776 D11613723555555555555

+=%/1

Y= .
n

LITERALS
TENCHARCTS
LEFT JusTl

FY WITH PL
ANKS

POHLITERALS
=NCTENCHARCTS
=HHLEFY JUSTIFY WITH PLANKS+

=110

The first LIT pseudo instruction generates three words in the literals block; the OL item is an empty
string and does nof produce an entry. The second LIT pseudo instruction generates one two-word
entry. The expressions in the variable fields of the SA1l, SA2, and SA3 instructions each consist of a
literal element. The character strings in the SA1 and SA2 literals do not duplicate former literals
block entries so COMPASS generates new entries. However, since SA3 references an existing entry,
COMPASS places the address of the entry in the address field of the instruction.

2.7.5 NUMERIC DATA NOTATION

Numeric data can be specified in octal or decimal notation,

floating point value in single or double precision,

Formats:

Data Item [signJPreradixlvaluelmodifiers l

Constant |va1ue| modifiers l

Literal l =Isign| preradixl valuel modifiers l
2-16

The value is converted to an integer or a

60492600A

5 P

N

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element

sign
operator,
+ or omitted The value is positive
- The complemented (negative) value is formed
preradix Optional for data items and literals; cannot be used for constants. The preradix
indicates the notation used for the value.
omitted Notation can be specified by a postradix modifier or can be
assumed from the assembly base, See BASE pseudo instruction,
Bor O Octal notation
D Decimal notation
value A series of octal or decimal digits optionally consisting of an integer, a decimal (or
octal) point, and a fraction. An integer value (fixed point) does not contain a point.,
A floating point value (legal in CPU assemblies only) is noted by the occurrence of
the point.
An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 1,15 x 1018 (fixed point) or 7.9 x 1028 (floating point, ignoring the decimal
point)., Extra significant digits cause erroneous results.
If value is omitted, it is assumed to be zero.
modifiers ' Associated with the value are the following optional modifiers specified in any sequence.
A specific type of modifier can be specified only once. A duplicate produces an error
flag.
postradix Indicates the notation used for the value. See preradix for legal values.
An error is flagged if notation contains both a preradix and a postradix.
decimal exponent Defines a power of 10 scale factor
Einor Enor E Single precision
"EE+n or EEn or EE Double precision
When the sign is plus or is omitted, the exponent (n) is positive,
When n is omitted, it is assumed to be 0. The value of n cannot exceed
32767 and is always assumed to be a decimal integer.
A fixed point value can be single precision (one word) only but a CPU
floating point value can be generated in double precision (two words).
If EE is used with a fixed point value, the assembler produces a fixed point
number in single precision,
The effect of the exponent is to multiply the value by 10 decimal raised
to the n power.
60492600A 2-17

binary scale Defines a power of two scale factor and is specified as follows:
Sin or Sn or s

When the sign is plus or is omitted, the scale factor (n) is positive, When
n is omitted, it is assumed to be 0. The value of n cannot exceed 32767
and is always assumed to be a decimal integer.

The effect of the binary scale is to multiply the value by 2 raised to the

n power.
binary point Applies to floating point values only and is specified as follows:
position

Pin or Pn or P

When the sign is + or omitted, n indicates the number of bit positions
the point is to be shifted to the left of bit 0. When the signis -, n
indicates the number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary point occurs to the
right of the nth bit.)

The exponent is adjusted to a value of - (in)

For example, a value with P-6 will have a biased exponent of 20068; a
value with P10 will have an exponent of 17 658'

If P is not specified for a floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value.

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or double precision number, the assembler
generates an overflow or underflow error.

Although scale factors can exceed valid ranges, the ranges for numbers are restricted
by the hardware.

Example:

The number 1. 0E40008-1200 yields a number that is approximately 5. 8 x 1038
and is in range of the floating point representation.

All calculations are performed in 144-bit precisiori. The values are rounded to 96
bits for double precision and to 48 bits for single precision floating point numbers and
to 60 bits for integers.

The order in which the assembler acts on the modifiers, regardless of the sequence
in which they are specified is:

1. Decimal exponent (single or double)

.2. Binary scaling

3. Binary point position (CPU assemblies only)

2-18 : 60492600A

e’

"

N

CPU Numeric Data Items

Location Code Generated

5000 T7PTT77PTIVTITRUTINIG?
5001 17235000000000009000
5002 1643000000000000N000
5003 20000000000000000012

5004 17760000000000000002

5005 171546517676355L4264
5006 17200314631463146314
S007 TTITYIT?TTITTIYTYTYIITITIIIY
5010 0000000N00000000N000N

CPU Numeric Constants

Location Code Generated
5001
556
5012
5112 20360
43760
7150400000

CPU Numeric Literals

Location Code Generated

5113 5150005151 +
5138005152
5152
5155
5156
5157

CONTENY OF LITERBLS BLOCK,

005151 200&6755000236400000%
005152 17204314631463146315
005153 17235000000000000000
005154 16430000000000000000
005155 17200314631463146314
005156 TITYTTTTITYIYITITTITYSG
005157 1715465176T7635544264
805160 T7YYXYYTITTIYITYITYITITY
005161 0009000D0000300000000
60492600A

POA 81 D
oPeLsLELEM
0s/

N8

oPCLELEL L
338338388
OM=(~~2=7¢
Tsesressye

LOCATION OPERATION | VARIABLE COMMENTS
n 18 130
POOL DATA =29 ;
NUM nAYA | 1.0EEt I
DATA |1.0F¢1pp |
NATA | 3,2P1S=5E1
DATA | 0.0151Eeny |
|
LOCATION OPERATION | VARIABLE COMMENTS
) 18 130
|aLPHa £ny POOL 1 ;
vaL qu 5550
ASS? 1090 {
Lx3 -14R |
MXT &8
SXs5 11817 1
LOCATION OPERATION | VARIABLE COMMENTS
" k) 130
YG =2006L6755000234000004R
SAZ =1.1 |
APLE LIY 1,0F€1 [
LIT 0.1PLT
LIY -nia |
LIT 0.0151€401,-E4,0FES

2-19

Examples of numeric data (assume default radix is decimal):

PPU Data Items

Location Code Generated " LocaTioN | OPERATION |- VARIABLE COMMENTS
: i n 18 {30

PPU |

. “le - l
300 0005 DATA [5,-9D,+B13,148S1,24BE-1
301 7766 !
342 0013
303 8030
3Ny gpone2

PPU Constants

Location Code Generated LOCATION - OPERATION | VARIABLE COMMENTS
1 n 18 |30
395 gono ~oN T,+11 i
396 0011 : : : l
397 LL4L3Z2 roN -3334 I
31 ARC = 250

101 N LM seT 0101 |

310 7777 coM 7777 |

PPU Literals

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
R 1 n B [30

311 2000 1103 LDC =100 |

313 2100 1104 ADC =-1 '

315 2000 1105 ‘ e | =7777 I

CONTENT OF LITERALS BLOCK,

1103 go12 o
1104 7776 353333383
1105 7777 g

2-20 60492600A

p—

2.7.6 HEXADECIMAL DATA NOTATION

Numeric data can be specified in hexadecimal notation. The value is converted to an integer in single

precision.
Formats:

Data Item
Constant

Literal

sign

preradix

value

modifiers

Examples of hexadecimal data:

sign|0|preradix|{ value {modifiers

0} preradix|value|modifiers

=| sign | 0| preradix| value | modifiers

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element
operator.

+ or omitted Value is positive.
- ' Complemented (negative) value is formed.

The zero is optional for data items and literals but must be present for constants, so
the preradix will not be taken as the first character of a symbol.

Must be present to indicate that a hexadecimal value follows. The preradix character
is = or # depending on the printer used.

A series of hexadecimal digits. Each hexadecimal digit represents 4 bits and is either
a decimal digit 0-9 or a letter A~-F. The digits 0-9 represent values 0-9 and the letters
A-F represent the decimal values 10-15.

The value may contain up to 26 significant hexadecimal digits. No radix point is
permitted. If value is omitted, it is assumed to be zero.

The binary scale (S) modifier is optional and has the same form and meaning as for
octal and decimal data (see section 2.7.5).

The binary point position (P) modifier is permitted but ignored, since it does not
apply to integer values.

LOCATIO OPERATION | VARIABLE COMMENTS
Location Code Generated o
1 h 18 I30
0 0080000000000%43E27L JATA S12343C -3, - ZAAAAA,Z1234512
L TTINTIININIIIINIINY ' !
2 TTTINTI?ITITTISZG2525 !
3 000006002001 106L0uu]
4 00000000Dc0C53012566 X cou UZAC1576 |
5 7125084udsh + HE X $x3 ==21234552
CONTEWT OF LITZRALS 9LOCK, |
o TIITITITITITI6ET1353 $333317AKS 1

2.8 EXPRESSIONS

Entries in subfields of most source statements are interpreted as expressions consisting of a combina-
tion of one or more terms. Each term consists of one or more elements joined by operators. A comma
or a blank terminates the expression.

An expression element can be a:

Symbol

Register designator (CPU only)

Numeric or character constant Literal
Special element

60492600 C

2-21

Examples of elements:

ALPHA A7 3HABC
$ X3 =10HOUTPUT
*p 77BS3

A term can be a single element or two or more elements joined by the following elgment operators:
* Multiplication
/ Division

An expression can be a single term or two or more terms joined by the following term operators:
+ Addition

- Subtraction
A Logical minus (exclusive or)

The exclusive or operator is printed as A (carat) in the CDC character set or as & (ampersand) in
the ASCII character set,
Rules:
1, If the last element of a term is omitted, COMPASS provides an element of zero, For example,
if ABLE is a symbol, ABLE*+3 is interpreted as the value of ABLE times 0 plus 3.

2. Two successive elements are illegal. Note, however, that ** is legal because the first
asterisk is interpreted as an element, the second asterisk is interpreted as an operator, and
the blank is interpreted as a null element,

3. A term can contain one relocatable or external element only. Thus, **ABLE, where ABLE is
a relocatable address, is illegal because ABLE and * are both relocatable.

4. The element to the left of a divisor must be absolute.
5. Division by zero results in zero with no error.

6. Two or more additive operators (+ or - or A) in sequence are interpreted as having a term of
zero value between them,

7. If an expression begins with an additive operator (+ or - or A), COMPASS provides a term with
zero value preceding the operator,

8. All arithmetic in expression is performed in integer mode, even if an element is a floating
point constant such as 2.3. Results are restricted to 60 bits; that is, if a term or value
exceeds 60 bits, the excess high-order bits are discarded without comment.

The operator that immediately precedes a register designator is the register operator, regardless
of the placement of the designator in the expression. The register operator can be:

+ - * or /
Examples of expressions:

ABLF Single term
$-29 Two terms; $ and 29

2-22 60492600 D

\-_/ <

S’

14=3,14159EE+6

%3

ABLE*4-72/NUM

108
2+ p6-NUM
1R=atR/

Two terms; a constant and the address of a literal.” COMPASS pla{ces the
literal in the literal block and uses its address in the expression.

- Two terms: value of the location counter and Iiumeric constant 3.

Two terms, each consisting of two elements; the value of ABLE times 4,
and 72 divided by the value of NUM.

Single term consisting of a numeric constant.
The components of the expression are register A6 and 3-NUM.

The character constants (= and /) are logically differenced.

2.8.1 TYPES OF EXPRESSIONS

Evaluation during assembly reduces an expression to:

An absolute value (absolute address or an integer value)

An external symbol + a 21-bit integer

+ relocatable value + a 21-bit integer

Register designators and one of the above

Register designators

Absolute Expressions

CPU assembly only

An expression is absolute if its value is unaffected by program relocation. An expression can be
absolute, even though it contains relocatable terms, under these two conditions:

1. The expression contains an even number of relocatable elements

2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the expression.

Examples of absolute expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
The control counters are for the block that contains EASY and FOX.

EASY~-FOX+MIKE
FOX~-*
MIKF+16

EASY-FOX¥2+%

60492600 D

EASY and FOX cancel each other.
FOX and the location counter cancel each other.
The expression contains no relocatable elements. -

EASY and the location counter cancel 2 times FOX.

2-23

Relocatable Expressions

An expression is relocatable if its value is affected by pr;ogram relocation. A relocatable expression
consists of a single relocatable term or, under these two conditions, a combination of relocatable and
absolute terms:

1. The expression does not contain an even number of relocatable elements

2. All the relocatable elements but one must be organized in pairs that cancel each other. That
is, for all but one block, each relocatable element (or multiple thereof) in a block must be
canceled by another element (or multiple thereof) in the same block. The elements that form
a pair need not be contiguous in the expression.

3. The uncanceled relocatable element can have three kinds of relocation:

a. Positive program
b. Negative program
c. Positive common (Negative common relocation is not permitted by the loader).

Examples of relocatable expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
LIMA is relocatable in a different block. The control counters are for the block that contains
EASY and FOX.

LIMA+MINE-16
FOX-EASY +FOX
3%FOX-2%FASY
EASY-*+FOX
FOX-1008/MIKE
~MIKE®24LIMA
=10HMESSAGE 33

. ¥
The pairing of relocatable terms cancels the effect of relocation because both terms would be relocated

by the same amount. The comparative value of the two terms remains the same regardless of program
relocation.

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression consists of a single positive external term or under the
following conditions an external expression may consist of an external term, relocatable terms, and
absolute terms.

2-24 60492600A

—’

1. The expression contains an even number of relocatable terms.

2, The relocatable elements must cancel each other. That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the expression.

Examples of external expressions:

In the following examples, XYZ and ABC are external symbols. EASY and FOX are in the same
block. The control counters are for the block that contains LIMA., MIKE is absolute.

XYZ-*+FOX~-EASY+LIMA The pairs * and LIMA, and FOX and EASY cancel each other.
FOX-3*EASY+2*FOX+XY2Z The relocatable elements all cancel. -
ABC+1008
- XYZ+ABC Nllegal; both are external -
~ARC+*=LIMA Illegal; ABC is negative
XYZe¥Q : Illegal; *O is an unpaired relocatable elen;ent

Register Expressions

An expression is a register expression if, in a CPU assembly, it reduces to one or more register
designators and an operand. The attributes of the operand can be that of an absolute, external, or
relocatable expression. Use of register expressions is generally restricted to symbolic CPU machine
instructions (Sections 8.4 and 8,5). I the register designator is the first element in the expression,
the operator can be omitted and is assumed to be +,

Examples of register expressions:
In the following examples, XYZ is an external symbol and LIMA is a relocatable symbol.

X3I+LIMA-10B

LIMA#X3-108 Produce identical results
=~108B+LIMA+ X3

BL+XYZ

¥+A.NUM

Evaluatable Expressions

An evaluatable expression is an expression that does not contain any symbols as yet undefined. Certain
pseudo instructions require that the expressions be evaluatable,

60492600A 2-25

2.8.2 EVALUATION OF EXPRESSIONS

When evaluating an expression, COMPASS replaces each element with a 60-bit value. A character
constant is first right or left adjusted in a field the size of the destination field and then extended to
60 bits. Signs are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In
division, the integral portion of the quotient is retained; any remainder is discarded. Thus, 5/2*2
results in 4,

COMPASS forms a term value by interpreting each element and operator from left to right until it
reaches a + or - or A operator. It then notes whether or not the newly formed term contains a
relocatable or external symbol or register designators. The value of the symbol is added, subtracted,
or differenced from the cumulative sum of the absolute elements, relocatable elements, or external
values. - The assembler continues evaluating the expression until it is reduced to a symbol and/or a
value. An error is flagged if the expression cannot be reduced. The expression value is truncated, if
necessary, and placed in the destination field, If it is too large for the field, the system issues an
error flag. The maximum field size for an expression is 60 bits.

The value of an external symbol is zero if the external symbol is defined outside of the subprogram.
It is the value relative to the external used in defining the symbol if the external symbol was deflned
within the subprogram.

A zero value is used in place of a register designator,

For pass one evaluation, the system uses the value of a relocatable symbol relative to the block in
which the symbol was defined. For pass two evaluation, the system uses a value relative to program
or common block origin.)

The field size for an-expression depends upon the instruction and is determined as'follows,:

1. For a symbol definition pseudo instruction, the expression value (including characber
constants) is justified in a 21-bit field.

2. In a VFD pseudo instruction, the expression is placed in a field of the size specified.

3. For a CON pseudo instruction, the field size is one word (12 bits for PPU assemblies,
60 bits for CPU assemblies). ,

4., In a symbolic machine instruction, values of expressions are placed in address fields (18 or
6 bits for CPU assemblies; 18, 12, or 6 bits for PPU assemblies).

Some relocatable program loaders may give unexpected results if relocatable or external address values
are assembled into the same field of the same word more than once, as a result of ORGing backward
over the word, or by having more than one subprogram preset a common block, The ORGC pseudo
instruction (see section 4.5.3) can be used to avoid such problems,

2-26 60492600A

S, /

PROGRAM STRUCTURE 3

—

This chapter is designed to give the programmer a better understanding of how a program is assembled,
loaded, and executed. This discussion of program structure is at the machine executable level, the level at
which code is loaded into memory and executed.

A COMPASS subprogram consists of statements beginning with an IDENT pseudo instruction and ending
with an END pseudo instruction. The user can designate a subprogram to be a main program by specifying
a transfer address in its END pseudo instruction.

The programmer can control the assembly of COMPASS source statements so that subprograms are divided
into blocks of binary code. These blocks can be controlled during the loading process. The first section of
the chapter presents subprogram block concepts and how the programmer and the assembler organize
object code into blocks. Following this is a brief description of the counters used to control the bloeks.

A subprogram loaded into central memory can be either absolute or relocatable. An absolute subprogram is
loaded at the same fixed address every time; a relocatable subprogram can be loaded into different
locations, aceording to the available central memory at load time. Sections 3.3 and 3.4 discuss the
structure of absolute and relocatable programs, respectively, and show the differences in block usage for
both types.

Limited available central memory occasionally requires the use of overlays and partial binary sections in
lengthy programs. Section 3.4 covers the use of these important programming tools.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, can be divided into subprogram areas called
blocks. As assembly of a subprogram proceeds, the assembler or the programmer designates that object
code be generated or that storage be reserved in specific blocks. By properly assigning code sequences,
data, or reserved storage areas to blocks through use of ORG or ORGC, USE or USELCM, a programmer
ean intersperse instructions for the different blocks. The assembler assigns locations in a block
consecutively as it encounters instructions destined for the block. A symbol defined within a block is not
local to the bloek. That is, it is global and can be referred to from any other block in the subprogram. To
render a symbol local to a sequence of code requires use of the QUAL pseudo instruction (section 4.4.3).

Blocks established between two IDENT instructions, or between an IDENT and END, form a group of
blocks. COMPASS recognizes a maximum of 255 blocks in a single block group, 252 of which can be
user-established. When COMPASS interprets an IDENT or END pseudo instruction, it begins pass two
processing of the completed block group.

In pass two all symbols are assigned absolute values, the table of block names is cleared, the list of USE,
USELCM, ORG, and ORGC instructions is cleared, and block structuring restarts. For END, the symbol
table is cleared before the next subprogram is assembled. If the group does not contain a USE instruction
or if object code is generated (or storage reserved) before the first USE instruction, COMPASS places the
code in the nominal block (identified as PROGRAM* on the listing). For an absolute program, the nominal
block is the absolute bloeck. For a relocatable program, the nominal block is the zero block. The user
controls use of the nominal block and any user-established blocks through USE, USELCM, ORG, and ORGC
pseudo instructions (section 4.5). Each occurrence of a non-redundant literal constant causes an entry in
the literals block; otherwise, the user has no control of this bloek.

60492600 G 3-1

3.1.1 ABSOLUTE BLOCK

The absolute block is the nominal block for an absolute assembly. It is identified by the name PROGRAM*
on the listing. All code generated in the block is absolute. Each address symbol is defined during pass one
as an absolute value relative to zero which is block origin. The code generated must be loaded and
executed at the origin specified as the absolute bloek origin.

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG (or ORGC) request using an absolute value. The assembler
generates text tables specifying absolute block relocation. The loader loads the absolute text when it
encounters the text table, without manipulating any addresses. For a relocatable assembly, an absolute
bloek is identified on the assembly listing by the name ABSOLUTE*. There is no ECS/LCM absolute bloek.

3.1.2 ZERO BLOCK

The zero block has the block name 0 and is the nominal CM/SCM block for a relocatable assembly. It is a
local bloek; that is, it is not aceessible to other subprograms. Upon completion of assembly, the assembler
assigns any undefined default symbols at the end of the zero block. The zero bloek is identified by the
name PROGRAM* on the assembler listing.

An absolute program has a zero block only if the program contains default symbols. In an absolute
assembly, the zero block immediately follows the absolute PROGRAM?* block. The zero block is also
named PROGRAM*,

There is no ECS/LCM zero block.

3.1.3 LITERALS BLOCK

COMPASS generates litéral data entries in the literals block. It is local to a subprogram. The literals
bloek is identified by the name LITERALS* on the assembly listing. COMPASS always assigns storage to
the literals block immediately following the zero block. There is no ECS/LCM literals block.

//

//

3.1.4 USER-ESTABLISHED LOCAL BLOCKS -

By using USE and USELCM statements, a programmer can establish local bloeks in addition to those
previously described for an absolute or relocatable subprogram. At the end of assembly, COMPASS assigns
an origin relative to the nominal block to each user-established local bloek, in the sequence in which they
are established.

All of the CM/SCM local blocks are concatenated to form a single block, which is treated by the loader as
a CM/SCM bloek whose name is unique to the subprogram. Similarly, all of the ECS/LCM local blocks are
concatenated to form a single block which is treated by the loader as an ECS/LCM block whose name is
unique to the subprogram. (SCOPE 2 does not currently allow LCM local blocks.)

The length of each ECS/LCM bloek, including the eombined local block, is rounded up, if necessary, to an
integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1,048,568 words.

3.1.5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessiblé to one or more
relocatable subprograms. These blocks are designated during assembly as being in CM/SCM or ECS/LCM
through the USE and USELCM pseudo instructions respectively, where the name of the block is the name
enclosed by slashes; that is, /name/. The tables are designed so that the loader can allocate space in
memory for the first subprogram that is loaded that declares the block. Thus, the first subprogram that
names a block sets the maximum size of the bloek. Each subprogram, as it is loaded, can link to allocated
blocks or can cause new blocks to be allocated. The contents of a labeled common block can be generated
by any of the subprograms having access to it.

3.9 60492600 G

If an absolute subprogram attempts to establish a labeled common block by using a USE /name/ or USELCM
/name/ pseudo instruction, COMPASS treats the block as a local block having the slash-enclosed name.

3.1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that cannot be preset with data. That is, the loader does not load
information into the area before the program is executed.

For a relocatable program, the CM/SCM and ECS/LCM blank common blocks are allocated space by the
loader after all subprograms are loaded, according to the largest block area declared by any of the
subprograms.. A CM/SCM blank common bloek is established through use of the USE pseudo instruction
(section 4.5.1). An ECS/LCM blank common block is established through use of the USELCM pseudo
instruction (section 4.5.2). A blank common block has no name. A USE // indicates blank common in
CM/SCM; A USELCM // indicates blank common in ECS/LCM.

If no relocatable program declares a blank common block, there is none. If an absolute program contains a
USE // or USELCM // pseudo instruction, COMPASS treats the block as a local block named // and data can
be stored in this block.

The USELCM pseudo instruetion can occur only in CPU programs.

3.1.7 REDUNDANT BLOCK NAMES

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks with the
same name and the same block type if they have different memory types (CM/SCM or ECS/LCM). Thus,
altogether, there may be up to four different blocks with the same name.

3.2 BLOCK CONTROL COUNTERS

For each block used in a subprogram, COMPASS maintains three counters: an origin counter, a location
counter, and a position counter. When a block is first established or its use is resumed, COMPASS uses the
counters for that block. During pass one, the origin and location counters are initially zero. During pass
two, as the assembler construets the program, it assigns an initial value to each local bloek origin counter
and location counter. Thus, expressions containing relocatable symbols are not necessarily evaluated the
same in pass one and pass two.

3.2.1 ORIGIN COUNTER

The origin counter controls the relative location of the next word to be assembled or reserved in the block.
It is possible to reserve blank storage areas simply by using either the ORG, ORGC, or BSS pseudo
instruetions to advance the origin ecounter; ORG and ORGC also permit the programmer to reset the
counter to some lower loeation in the block or to change blocks. BSS allows the programmer to decrement
the counter but not to change blocks. The origin counter is incremented by one for each word assembled or
skipped forward. The origin counter is deecremented by one for each word skipped in the reverse direction.

When the special element *O is used in an expression, the assembler replaces it by the current value of the
origin counter for the block in use.

60492600 G ‘ 3-3

3.2.2 LOCATION COUNTER

The location counter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter is incremented whenever the origin counter is
incremented. It is possible through the LOC pseudo instruction to adjust the location counter so that it
differs from the origin counter. This may be desirable when the code being assembled is to be loaded at
one location and subsequently moved and executed at another location. In this case, the programmer resets
the location counter to reflect the actual location at which execution is to occur. As another example of
its use, the programmer assembling a large table may reset the location counter to zero so that on the
listing, the addresses alongside each word of the table reflect the word's position in the table rather than in
the block. Note that use of this technique does not alter the placement of code in the bloek. (For an
example of these apphcations, see the LOC pseudo instruction, section 4.5.5.) When either of the special
elements * or *L is used in an expression, the assembler replaces it by the current value of the location
counter for the block in use.

3.2.3 POSITION COUNTER

Assume that bits are numbered 59 through 00, from left to right within a 60-bit CPU word and numbered 11
through 00 within a 12-bit PPU word. Then, the position counter is initially 60 or 12, respectively, and
indicates the number of bits remaining in the word. The position counter, which is deeremented by one for
each completed bit of an assembled word, becomes 00 when the word is completed, and is reset to 60 or 12
when a new operation is started.

For a CPU assembly, the 15-bit and 30-bit CPU instructions cause the position counter to normally have
values of 60, 45, 30, and 15 reflecting the placement in the word for the next instruction or data value to
be generated. For a PPU assembly, the normal value is 12.

The normal pattern of advancement for the position counter can be altered through use of the VFD and
POS pseudo instruections. ‘

When the special element *P is used in an expression, the assembler replaces it with the current value of
the position counter.

When the special element $ is used in an expression, the assembler replaces it with the current value minus
one of the position counter for the block in use; that is, it returns the next available bit position.

3.2.4 FORCING UPPER

In a CPU assembly, if any of the following conditions is true, the assembler packs parceels remaining in a
partially completed word with no~operation instructions (seetion 8.1), sets the position counter to 60, and
increments the origin and location counters before it assembles code for the next instruction:

e Insufficient room remains in a partially filled word for the next instruction or data to be generated.

e The current statement is a machine instruection, or a VFD pseudo instruetion, with a location symbol
or +in the location field.

e The current statement is an RE, WE, PS, XJ, CC, CU, DM, or IM instruction for a CYBER 170 Series
or CYBER 70/Model 71,72, 73, 74, or 6000 Series. (The programmer can negate this force upper by
placing a minus sign in the location field of the instruetion.)

o The current statement is an END, BSS, BSSZ, DATA, DIS, CON, SEGMENT, SEG, IDENT, ORGC, LOC,
ORG, or MD pseudo instruction. .

3-4 ‘ 60492600 G

~—

N

The assembler forces upper after it assembles code for one of the following:

JP

RJ

Unconditional EQ

Unconditional ZR

ES (CYBER 70 Model 76 or 7600)

MJ (CYBER 70 Model 76 or 7600)

PS (CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
XJ'(CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
IM (CYBER 70 Model 72 and 73)

This post force upper does not occur immediately, but is deferred until the assembler encounters the next
machine instruction or data generating, storage allocating, or binary control pseudo instruction in the same
USE block. The programmer can negate the force upper following the instruetion by placing a minus sign in
the location field of the next instruetion. Thus, pseudo instructions following one of the above machine
instructions and referencing the origin, location, or position counter will use the value before the force
upper.

In a PPU assembly, no foreing upper occurs; the assembler ignores a + in the location field on any
instruction other than a VFD. A plus or minus in the location field of a VFD in PPU assemblies forces the
VFD data to begin at the next full word.)

3.3 RELOCATABLE PROGRAM STRUCTURE

A CPU relocatable program consists of one or more subprograms that can be assembled separately, either
in the same job run or in independent runs. The subprograms can all be written in COMPASS source
language, or can be written in any other source language available in the product set of the operating
system as long as the compiler or assembler produces relocatable binary output in a form acceptable to the
loader. A COMPASS language subprogram is composed of instructions beginning with an IDENT pseudo
instruction and ending with an END pseudo instruction. A subprogram can be either a main program or a
subroutine, depending on how its END pseudo instruction has been written.

When a program is loaded into memory, its subprograms occupy contiguous blocks of words. The first word
in the first block is known as the reference address (RA). The total number of words in the blocks is the
job field length.

When a subprogram is relocated, each machine instruetion in it that references a specific address must be
adjusted. Because of this necessity, relocatable subprograms are assembled as though they begin at address
zero; they are not assigned specific origins. In this way the loader can load subprograms independently, yet
contiguously; their origins are relative to RA. Since all addresses within the subprogram are relative to the
first word address of the subprogram, each address in the program effectively becomes a function of RA.

A nonblank IDENT pseudo instruction that does not specify a fixed load address indicates a relocatable
subprogram Upon completing assembly of a relocatable subprogram, COMPASS assigns each local block an
origin relative to the zero block. Each bloek thus becomes an extension of the zero block (figure 3-1).

COMPASS also provides for subprogram linkage. Through pseudo instructions such as ENTRY, ENTRYC,
and EXT, subprograms can transfer control to each other and access common storage locations.

The loader is thus able to load subprogram blocks independently, as required. Program execution is not
affected by the relocation process.

The length of the subprogram given on the assembly listing is the sum of the final values of the origin
counters for the local bloeks, including the zero block and literals block; but not the absolute block. Any
absolute text is simply inserted at the absolute location relative to RA.

COMPASS binary output for a relocatable subprogram consists of one section for each LCC pseudo
instruection (if any) in the source program, followed by one section containing the subprogram loader tables.

60492600 G 3-5

Low -
Address —— IDENT Sizes and locations ‘
Subprogram 1 determined by first)| Labeled Common
END subprogram declaring Blocks
them ; -—IDENT
Subprogram 2 (Program?* ’
{Zero Block)
Subprogram 3 '
P LITERALS*
T Local Block 1
R Subprogram length < cal Bloe
Subprogram n P
Size determined by
{' Blank Common largest block declared
High . . \
Address ‘ ~— END
Map of Organization of
Loaded Program Subprogram 1

Figure 3-1. Relocatable Program Structure

3.4 ABSOLUTE PROGRAM STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specific memory
locations. Because the loader performs no address manipulation for absolute programs, absolute code can
be loaded more rapidly than relocatable code.

A CPU program can be either relocatable or absolute. PPU programs are always absolute. PPU programs
are parts of the operating system that reside in the peripheral processors; they are normally the concern of
only system analysts. Any user can assemble PPU code, but cannot execute it without special system
access privilege.

The programmer has the option of constructing an absolute program as a single unit, or of dividing it into
overlays. Each overlay consists of data, information, or instructions that are needed at different times.
Dividing a program into overlays allows several routines to occupy the same central memory storage
consecutively so that total storage requirements for a program are reduced. For maximum program
efficiency, the reduction of storage requirements must be weighed against an increase in execution delay
while loading parts of the program.

During assembly of an absolute program or overlay, COMPASS creates a memory image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute plock. Any relocatable
symbol is reassigned an absolute address; each bloek effectively becomes an extension of the absolute block.

Figure 3-2 illustrates the structure of an absolute program that is not divided into overlays. The absolute
bloek is the nominal block for the program (labeled PROGRAM* on the listing). The use of default symbols
and literals causes the generation of the zero block and the literals block, respectively. Local blocks A, B,
and C follow the literals block. The transfer symbol in the END pseudo instruction indicates a main
subprogram. In the bmary load module the'prefix (PRFX or 7700g) table and the header table precede

the binary section that is the memory image of the program.

® 3-6 60492600 G

IDENT name

END trasym

Low Address

Y
High Address

60492600 G

PROGRAM*

A

B

C

Source Program
Block Structure

Crigin

CPU or PPU ;

Origin —_7
PROGRAM*
. LITERALS*
Binary

Section A

B

\ C

Binary

PROGRAM*

}

LITERALS*

A

B

C

Map of

Loaded Program

Load Module

Zero Block
(Default)

Figure 3-2. Absolute Program Structure

|

Program
Identification

and Loader Control
Information

Zero Block
(Default)

-7 ®

The binary output for the program consists of a section for each overlay. Note that the binary section for
an absolute program that is not divided into overlays has the same format as the main overlay of a program
divided into overlays. The user has the option of writing part of a binary section at a time by using either a
SEG pseudo instruetion or an IDENT (other than the first IDENT) with a blank variable field.

An absolute binary load module usually has three parts: a prefix (PRFX or 7700g) table, a header table,
and the binary image of the program or overlay. A header table can be one of the following:

® ASCM or 5000g,

e EASCM or 5100g.

e ACPM or 5300g. .
e EACPM or 5400g.

Tables are shown on a COMPASS listing by their octal numbers. The table formats are deseribed m the
Loader reference manual. :

The amount of binary written as a result of the binary control instruetion (IDENT, SEGMENT, SET, or END)
is subject to whether or not an entire block group is written, as follows:

o Ifa completé block group is being written (everything between an IDENT and an END or between two
IDENT instruetions), the memory image of the program or overlay ends with the maximum origin
counter value for the last block established, that is, with the last word address.

e If only a portion of the binary for the block group is being written, it consists of the memory image of
the program or overlay ending with the value of the current origin counter.

END, SEGMENT, and a nonblank IDENT complete one overlay and write an end of section. SEGMENT and
IDENT write header information for the overlay to follow. -

3.4.1 ABSOLUTE OVERLAYS

When an absolute program contains more than the one IDENTT pseudo instruction or contains SEGMENT
pseudo instructions, COMPASS does not prepare just one section of a memory image of the program as it is
assembled, but, instead, generates a section for each overlay.

Dividing the program into overlays permits memory to be sequentially overlaid by different subroutines and
data during program execution, reducing the maximum memory requirements for the program.

Three levels of overlays can be generated for a CPU assembly: main, primary, and secondary. Each
overlay is identified by a level number specified in the IDENT or SEGMENT pseudo instruction. The level
number consists of an ordered pair of octal numbers, each of which can be 0 through 77g. The first
number is known as the primary level number; the second is known as the secondary level number. The
level number 0,0 signifies the main overlay (normally the portion of the program following the first
IDENT). A primary overlay is indicated by a nonzero primary number paired with a zero secondary level
number. For a secondary overlay both the primary and the secondary level numbers are nonzero.

Conventionally, the main overlay is loaded first and remains in central memory throughout execution. Only
two other overlays can remain loaded concurrently: these are usually one primary overlay and one of its
associated secondary overlays.

TIDENT instructions described in this section are assumed to have nonblank parameters. The special case
of the blank IDENT is deseribed in section 3.4.3.

® 3-8 60492600 G

o’

The hierarchy of overlay association is depicted by figure 3-3. The primary overlay 1,0 has three
associated secondary overlays numbered 1,15 1,2; and 1,3. A primary overlay and all of its associated
secondaries have the same primary level number. The next branch of overlays (indicated by level
numbers 77,y) shows that the level numbers of the overlays are not required to be consecutive nor to be
indicative of the order in which they were generated. :

1,3 77,2 23,40)
1,2 77,20 23,30 Secondary
> Overlays
1,1 77,7 23,10
R N X U W | _
Primary
23,0 Overlays
_ !
— —_ _\’
‘ Main
0,0 Overlay

Figure 3-3. Overlay Hierarchy

The main overlay can call both primary and secondary overlays into main memory via the operating system
loader. (For detailed information concerning loader calls, see the Loader reference manual.) Once &
primary overlay is loaded, it can call any of its associated secondary overlays. Overlay 23,0, for example,
can call overlays 23,10; 23,30; and 23,40 in any order. ‘

The main overlay can have multiple entry points: execution can begin at any one of them. Usually,
primary and secondary overlays have a single entry point which provides the transfer address. A secondary
overlay can reference entry points in its primary and in the main overlay." A primary overlay can reference
entry points in the main overlay. The programmer must ensure that the necessary entry points have not
been overwritten.

These conventions concerning the numbering, hierarchy, loading, and execution of overlays are not
enforced by COMPASS. Any overlay can call the operating system loader to load another overlay, and any
overlay can reference addresses in any other overlay. However, overlays are not all in central memory
during program execution and the sequence in which the overlays are loaded and executed is beyond the
scope of the assembler; therefore, it is the user's responsibility to assure that an overlay does not refer to
symbols, instructions, or data not concurrently in central memory.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in all other
respects. However, a PPU overlay with assembled code in locations 7774g through 77778 may load
incorrectly due to wraparound to location 0000.

Overlays generated by using IDENT pseudo instructions differ in certain respects from overlays generated
by using SEGMENT instructions, as described below. »

Binary formats for overlays are deseribed in the Loader reference manual.

60492600 G ‘ ‘ / 3-9 @

IDENT-Type Overlays

An IDENT-type overlay consists of the portions of the program from:
e One IDENT to (but not including) the next IDENT
o The last IDENT in the overlay to the END

IDENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

The first IDENT causes COMPASS to generate the program or overlay identification information that
precedes the absolute section. Upon encountering a second IDENT instruction before an END instruection,
COMPASS generates output consisting of a memory image of the overlay, starting with the overlay origin
specified on the previous IDENT and normally ending with the maximum origin counter value of the last
block declared in the overlay; that is, the overlay normally ends with the last word address of its last
block. An IDENT subsequent to a-SEG or SEGMENT, however, generates binary that ends at the location
specified by the current origin counter. Following the memory image, COMPASS writes an end-of-section
(or end-of-record) and the overlay identification information specified by the new IDENT for the overlay to
follow.

For an IDENT-type overlay, COMPASS completes all blocks, including the literals block. Block structuring
starts fresh with each overlay. This means that each overlay can use the same block names used by other
overlays, and each overlay can contain a literals block. The USE table and control counters are all
reinitialized. The origin specified for an IDENT-type overlay can be any place in a previously generated
overlay. This is possible because IDENT causes the assembler to assign an absolute address to each symbol
in the symbol table. It can do this because the sizes of all the blocks are known.

Figure 3-4 illustrates a CPU program in which a second IDENT is used prior to an END pseudo instruction
to generate a main overlay and a primary overlay. Between the two IDENT instructions, block usage
alternates between the absolute block (labeled PROGRAM* on the listing) and block A, as depicted in the
block structure diagram. Note that in the main overlay (the first section of binary generated, labeled
MAIN), the assembler has concatenated the portions of each block. Concatenation also oceurs in the
primary overlay, OV1, for the portions of the absolute block ABSOLUTE' and for those of blocks A', B,
and C.

The oceurrence of literals and default symbols causes the assembler to generate a zero block and a literals
block, respectively, in both of these overlays. Following the second nonblank IDENT, the program overlay
origin is set back into block A, as shown in the map of the two loaded overlays. Note that the loader
control table is loaded in memory below the address specified in the ORG pseudo instruction (BETA, in the
figure), as shown in the map of the loaded overlays.

The first IDENT pseudo instruction assigns the level number 0,0 to the first overlay (MAIN). COMPASS
assigns level number 1,0 to overlay OV1 by default.

SEGMENT—T&pe Overlays

A SEGMENT-type overlay consists of the portions of a program from:
e The IDENT that identifies the program to a SEGMENT pseudo instruetion
e One SEGMENT to the next SEGMENT

e The last SEGMENT to the END pseudo instruction

® 3-10 60492600 G

N

IDENT MAIN,0,0 —
BETA—

ABSOLUTE

A

ABSOLUTE

A

ABSOLUTE

IDENT OV17

ORG BETA

AV

B

ABSOLUTE'

C

ABSOLUTE'

B

AI

END —

Source Program
Block Structure

of MAIN overlay

Overlaid portion{ :

ABSOLUTE'

ZERO'

LITERALS'

A|

B

C

60492600 G

Map of Loaded
Overlays

MAIN origin

ABSOLUTE
ZERO
LITERALS
BETA —>
\ —
N T — A
AN — —
h N First Binary
N Load Module
N
AN
AN
~N
OV1 origin—
ABSOLUTE'
AN
N ZERO'
Low > LITERALS'
Address\
N
AN
N
N B
N
\ C
Second Binary
Load Module
>0 Vi
1,0
Y

} High Address

Figure 3-4. IDENT-Type Overlay Structure

MAIN overlay
6,0

OV1 overlay
1,0

3-11 o

SEGMENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not speeify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a memory image of
the overlay starting with the overlay origin specified on the previous SEGMENT (or IDENT, for the first
overlay), and ending with the current origin counter value of the block in use at the time the SEGMENT
was encountered. Following this, COMPASS writes an end-of-section and overlay identification ’
information for the overlay to follow.

SEGMENT does not clear the symbol table or reinitialize the USE table. Thus, when a SEGMENT is
encountered, the block in use is incomplete. It is the responsibility of the user to assure that all blocks
other than the one in use are complete at that time. Also, the only symbols that can be used to define the
origin of the new overlay are those valid for the block in use.

Each new SEGMENT-created overlay must use unique block names because bldcks established in previous
overlays cannot be resumed and because the block names remain in the USE table due to the
incompleteness of the block group.

Figure 3-5 illustrates a program consisting of a main overlay, MAIN, and a primary, OV1. The use of
default symbols causes generation of a zero block. The use of literals causes generation of a literals
block. Both of these blocks oceur in the overlay MAIN, because it contains the end of the absolute block.
Block A beginsin the main overlay, but is incomplete when COMPASS encounters the SEGMENT. The
ORG pseudo instruction causes the origin of the primary overlay OV1, to be set at load time to TAG, at a
lower address in block A. (Note that the loader control information is loaded at an address lower than the
origin of the overlay.) OV1 establishes new blocks C and D.

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called, it
may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instructions are permitted within an absolute assembly and cause the generation of a 5100g overlay
table. This table consists of a control word and a list of overlay entry points. The calling program can
examine the list and link to any of the entry points. The 5100g table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 5100g
table, refer to the Loader reference manual.

3.4.3 PARTIAL BINARY

When a CPU absolute program or overlay contains SEG pseudo instructions or IDENT pseudo instructions for
which the parameters are omitted (blank), COMPASS writes a partial binary section consisting of the
binary generated since the previous IDENT, SEGMENT, or SEG instruction. However, it does not write an
end-of-section (or end-of-record) or a new prefxx table. A SEGMENT, nonblank IDENT, or END instruction
completes the binary section.

SEG Partial Binary Record

By writing partial binary records using SEG, the programmer can reduce the assembler storage
requirements. SEG does not write a complete block group.- When the SEG is encountered, COMPASS writes
binary beginning with the first block established in that portion of binary and ending with the final eount
specified by the origin count for the current block. A fatal error is issued if the user attempts to store
data into a block not in the current partial binary record.

The portion of the binary that contains the end of the absolute block contains the literals block, if there is
one. The symbol table and USE table are not reinitialized.

@ 3-12 , 60492600 G

N

p——

MAIN
> Overlay
0,0

IDENT MAIN
ABSOLUTE
G : ABSOLUTE
TAG —= A
ABSOLUTE ZERO
LITERALS
SEGMENTOV1___| A
ORG TAG V\\\\\TAG oA
c N T~
END D N N First Binary
Load Module
Source Program AN
Block Structure N AN
AN
N \
AN
N oVl \
\Origin
AN
N C
N\ D
Second Binary
Load Module
Low Address
MAIN
Origin
ABSOLUTE ABSOLUTE
ZERO ZERO
MAIN< LITERALS LITERALS
A <~ — — TAG— —
\ C
High Address \ _____
D

60492600 G

Map of Loaded

oVl
Overlay
1,0

Overlaid

Portion ovVi
of MAIN Overlay
Overlay 1,0

Overlays MAIN and OV1

Figure 3-5. SEGMENT-Type Overlay Structure

3-13 @

Figure 3-6 illustrates how the binary for an absolute program can be written in three separate binary
writes to reduce the amount of memory required to assemble the program. The resulting absolute section
is loaded and executed as a single program or overlay. -

IDENT PROG
ABSOLUTE ABSOLUTE
SEG
(writes partiagl —»t - - - — - - = - - 1 ' Absolute Binary
binary) ABSOLUTE LITERALS > Section
SEG A : ' A
(writes pagtial—»- -——m - — = »
binar
y : B Largest partial assembly B
determines assembler
v C storage requirements c
END : / End-of-section
. Source Program Binary Load
Block Structure - Module

Figure 3-6. SEG Partial Binary

IDENT Partial Binary

An IDENT with a blank variable field causes all binary accumulated since the previous IDENT, SEG, or
SEGMENT to be written out without an end-of-section (or end-of-record) or a new 7700g prefix table.

The USE table and the block counters are reinitialized. Each symbol in the symbol table is assigned an
absolute address. The blocks in each partial binary section generated in this manner are allocated as if the
partial binary section were a new subprogram with its own absolute block, literals block, and local blocks.
This allows portions of a program to be self-contained units even though they are not overlays but are
loaded as a single unit. The origin of an absolute block for new portion is the last word address plus one of
the last block of the previous portion.

The core image written by a blank IDENT starts with the origin of the absolute block and normally ends
with the maximum origin counter value of the last block declared in the block group; that is, it normally
ends with the last word address. If part of the block group has already been written by a SEG or
SEGMENT, however, the end of the binary is specified by the value of the origin counter for the current
block.

COMPASS completes all blocks. The literals block is terminated. Block structuring starts fresh with each
IDENT. Each new partial binary section ereated by a blank IDENT can use the same block names as are
used by the other blank IDENT-created partial binary sections and non-blank IDENT-created overlays and
each IDENT can contain a literals block but the blocks with the same names are independent of each other.

An attempt to write into or to reset the origin counter to a location in a partial binary section written

l separately causes an assembler range error.

3-14 60492600 G

S

N .

N

g

Figure 3-7 illustrates how the binary for an overlay can be written in three discrete partial binary sections
to reduce the amount of central memory required to assemble the program and divide the program into
self-contained units. The resulting absolute section is loaded and executed as a single overlay.

Prefix Table
IDENT PGM IDENT PGM

ABSOLUTE ABRSOLUTE

LITERALS LITERALS

IDENT LocalBlocks | Local Blocks
ABSOLUTE! ABSOLUTE'

LITERALS' LITERALS'

Local Blocks Local Blocks

IDENT—t—4 0 —— |

ABSOLUTE" ABSOLUTE"

LITERALS" LITERALS"

IDENT OVLY —= LocalBlocks | Local Blocks End-of-section
Source Program
Block Structure
Identification
for OVLY
Binary Load
Modules
Figure 3-7. IDENT Partial Binary Records
60492600 G 3-15

N’

S~

PSEUDO INSTRUCTIONS | 4

—

4.1 INTRODUCTION TO PSEUDO INSTRUCTIONS

The format of the COMPASS pseudo instruction is the same as that of the symbolic machine instruction; it
includes the loeation field, the operation field, the variable field, and the comments field.” The pseudo
instruction differs from the symbolic machine instruction in that it is used to control the actions of the
assembler at assembly time, rather than those of the machine at execution time.

The pseudo instruetions available in the COMPASS language are presented in this chapter and in

chapters 5, 6, and 7. Programmers with little COMPASS experience should give special attention to a few
important pseudo instructions, which are listed in the following table. It is not possible to write a
COMPASS program without using some of them. The table indicates the type of assemblies in which the
pseudo instructions can be used.

Pseudo Instruction Section CPU Relocatable CPU Absolute PPU Absolute

IDENT 4.2,1 X X X
ABS 4.3.1 - X -
PPU or PERIPH 4.3.3 or 4,3.4 - - X
ORG 4.5.3 X X X
ENTRY 4.7.1 X - -
BSS 4.5.4 X X X
CON 4.8.6 X X X
END 4.2,2 X X X

4.1.1 TYPES OF PSEUDO INSTRUCTIONS
Pseudo instructions discussed in this chapter are classed according to application as follows:
e Subprogram identification (IDENT and END)

e Binary control (ABS, MACHINE, PERIPH, PPU, IDENT, SEGMENT, SEG, LCC, LDSET, STEXT,
COMMENT, and NOLABEL)

e Mode control (BASE, CHAR, CODE, COL, B1=1, B7=1, and QUAL)

e Block counter control (USE, USELCM, ORG, ORGC, BSS, LOC, and POS)
e Symbol definition (EQU and =, SET, MAX, MIN, MICCNT, and SST)

e Subprogram linkage (ENTRY, ENTRYC, and EXT)

o Data generation (BSSZ and blank operation code, DATA, DIS, LIT, VFD, CON, R=, REP, REPC, and
REPI)

® Assembly control (ELSE, ENDIF, IFtype, IFop, IF, IFC, IFPL, IFMI, and SKIP)
e Error control (ERR and ERRxx)

e Listing control (LIST, EJECT, SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF)

60496200 G - 4-1

Later chapters describe pseudo instructions that involve definition operations, alterations to the operation
code table, and micros. In general, pseudo instructions can be summarized according to where they can be
placed in a subprogram.

4.1.2 REQUIRED PSEUDO INSTRUCTIONS

-Two pseudo instructions, IDENT and END, are required for any assembly. IDENT must be the first source
statement; END signals the termination of source statements for a subprogram. :

4.1.3 FIRST STATEMENT GROUP

Certain pseudo instruetions establish basic characteristies of the assembly and provide the assembler with
- required information. These instructions make up the first statement group which must precede any
symbol definition, storage allocation, or object code generation. The following instruetions, if used, must
be in the first statement group: :

ABS
MACHINE
PERIPH
PPU
STEXT

4.1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS

The following pseudo instructions are permissible anywhere, including in the first statement group:

BASE CPSYN ENDM MACROE OPDEF SKIP
B1=1 DECMIC HERE MICCNT OPSYN SPACE
B7=1 EJECT IFC MICRO PPOP SST
CHAR ELSE IRP NIL PURGDEF TITLE
CODE END LDSET NOLABEL PURGMAC TTL
COMMENT ENDD LIST NOREF QUAL XREF
CPOP ENDIF MACRO OCTMIC RMT

Comment lines and references to macro definitions are also permitted anywhere.

CPU or PPU symbolic machine instructions and all other pseudo instructions cannot be placed in the first
statement group. The first use of one of these instructions terminates the first statement group.

4.2 SUBPROGRAM IDENTIFICATION

Subprogram identification pseudo instructions designate subprogram beginning and end. When two or more
subprograms are assembled in a single COMPASS run called through the COMPASS control statement, the
end of the source decks is indieated by an end-of-section, such as a 7/8/9 card.

4.2.1 IDENT — SUBPROGRAM IDENTIFICATION

An IDENT pseudo instruction of the following form is the first statement of a subprogram recognized by
the assembler. Usually, any lines preceding the first IDENT or between an END and IDENT are assumed to
be comments. However, when COMPASS has been called by some other language processor such as
FORTRAN, the assembler returns control to the processor when the statement following END is not
IDENT. For a relocatable subprogram, COMPASS flags any subsequent use of IDENT before END as an
error. For an absolute subprogram, a second form of IDENT described under BINARY CONTROL is
available for overlay generation. ‘

4-2 60492600 G

P

N

The format of IDENT varies according to the type of assembly.

CPU Relocatable Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name

CPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name, origin, entry, £1 s 9
7600 PPU Absolute Format:
LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION

OPERATION VARIABLE SUSBFIELDS

name

origin

60492600 G

IDENT name,origin

. Name of the subprogram or overlay. The parameter is required. For a CPU relocatable

or absolute assembly, name can be 1 through 7 characters, of which the first must be
alphabetie (A through Z) and the last must not be a colon.

For a CYBER 70/Model 76 or 7600 PPU assembly, name can be 1 through 7 characters.
For CYBER 170 Series or CYBER 70/Model 72, 73, 74 or 6000 Series PPU assembly,
name can be 1 through 3 characters. In either case, there is no restriction on the first
character, but the last character must not be a colon. :

An expression specifying the first word address of the absolute program or overlay. The
overlay loader table and all code assembled starting at this address and ending with the
next SEGMENT, nonblank IDENT, or END instruction make up the overlay. For a singie
entry point CPU program, the load address for the overlay is origin-1. The word at
origin-1 is overlaid by the 5000g loader eontrol table. For a multiple entry point CPU
program, the load address for the absolute overlay is origin-we-1, where we is the
number of entry points in the 5100g loader table.

For a PPU subprogram, the ioad address is origin-5. Five 12-bit PPU words are overlaid
by the 60-bit loader table.

Data can be generated in locations starting with origin and above, but not below origin.
The origin subfield does not serve the same funtion as ORG, nor does it replace ORG for
setting the origin counter.

If the origin field is null for an absolute subprograin, the assembler uses address

000000 RA(S) as the origin for a CPU program and 0000 as the origin for a PPU program.

For a relocatable subprogram, the subfield is ignored. The loader automatically
relocates the first subprogram to be loaded starting at RA(S)+1003, the second
subprogram starting at the first available location ollowing the first subprogram, and so

forth.

entry For a CYBER 70/Model 76 or 7600 PPU assembly or for an absolute CPU assembly, this
-subfield contains an expression speeifying the subprogram entry address, which can be
symbolie. ‘

4949 Absolute expééssions specifying the level numbers of the overlay. {; is the primary

level (0 through 63) and £ is the secondary level (0~63). When the first IDENT
identifies the main overlay, £ and £9 can be omitted. If £; is omitted, it is set
to 00. If £, is omitted, it is set to 00.

Because the first IDENT precedes any use of the BASE pseudo instruetion,.the level
numbers on this IDENT are evaluated as decimal unless specifically designated as octal
by a post radix.

ppu Absolute expression specifying the number of the PPU on which this program is to be

loaded. On the first IDENT, this number is evaluated as decimal unless specifically
designated as octal.

A location field symbol, if present, is ignored.

If the COMPASS assembler is called from within a FORTRAN compilation rather than by a COMPASS
control statement, IDENT must be in columns 11 through 15.

When the subprogram does not include a TITLE instruetion, COMPASS uses the IDENT variable field entry
as the main subprogram title on the assembly listing.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
INDENT |CT,CONTROL,CONTROL
ARS JARSOLUTE CPU PROGRAM
’ ORG 110R |

CONTROL (8BSS i} lDEFINES SYMROL CONTROL

END .

Absolute CPU program CT will be loaded at origin address 00110g,

4.2.2 END — END OF SUBPROGRAM
An END pseudo instruction must be the last instruetion of each subprogram. It causes the assembler to

terminate all eounters, conditional assembly, macro generation, or code duplication. Before terminating
assembly, COMPASS assembles any waiting remote text (see RMT).

4-4 60492600 G

For a relocatable subprogram, the assembler combines all local blocks into a relocatable subprogram
block, generates the relocatable binary tables and produces the listing.,

For an absolute assembly, the assembler assigns each block an origin relative to absolute zero,
combines all blocks into an absolute subprogram or overlay, generates the absolute binary section and

produces the listing.

END can also be used to signal the end of source statements from an external source (see XTEXT). In
this case, it does not terminate the subprogram,

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

sym

sym

trasym

Example:

END trasym

Optional last word-address symbol; if present, COMPASS defines it as the
total subprogram length, including the literals block and all local blocks.
The value is the last word address plus one.

A symbol specifying the entry point to which control transfers for a reloca-
table subprogram. This symbolmust be declared as an entry point in a
subprogram -- not necessarily the subprogram being assembled. At least
one subprogram must specify a transfer address or the loader signals an
error, If more than one subprogram indicates a transfer address, the loader
uses the last one encountered.

For an absolute assembly, trasym is ignored.

LOCATION

OPERATION

VARIABLE

COMMENTS

n

RFGIN

60492600A

IDENT
ENTRY

PROG1
REGIN

-

L]
*
1
R J
.
*
n

REGIN

!
|
|
|
I.
|
|

4-5

4.3 BINARY CONTROL

Pseudo instructions that allow the user extensive control of binary output produced by the assembler
are summarized below and described fully in this section.

ABS Specifies CPU absolute binary output

MACHINE Specifies processor type

PPU ‘ Specifies CYBER 70/Model 76 or 7600 PPU binary output

PERI?H Specifies CYBER 170 Series, CYBER 70/Model 71, 72, 73, 74, or 6000
Senes PPU binary output

IDENT - Begins absolute overlay or writes partial binary section

SEGMENT Begins absolute overlay

SEG Writes partial binary section

STEXT Generates system text overlay

COMMENT ‘ Inserts comments into the 778 prefix table

NOLABEL Suppresses header information on binary output

LCC Passes loader control information to the relocatable loader

LDSET Generates loader directive LDSET

4.3.1 ABS — ABSOLUTE CPU PROGRAM

An ABS instruction declares a CPU program to be absolute, K used, it must be in the first statement
group.
The following instructions are illegal in an absolute program:

EXT v o

LCC

REP

REPC
REPI

A symbol can be prefixed by =X if it is also defined conventionally, in this case, the =X has no signifi-
cance because a conventional definition takes precedence (Section 244.2).

- Format:

tOCATION OPERATION VANIABLE SUBHIELDS
ABS

Symbols in the location and variable ﬁelds, if present, are ignored. If a program contains both ABS
and PERIPH (or PPU), the PERIPH (or PPU) instruction takes precedence. :

4-6 . ' 60492600C

Example:

LOCATION OPERATION | VARIABLE COMMENTS

1 " 18 [0
TOENT |GY,RONTROL,CIONTROL
8BS ARSOLUTE CPU PROGRAM
NRG 119R |

CONTROL |BSS 3 bEFINES SYMBOL CONTROL
. . |
FND |

4.3.2 MACHINE - DECLARE OBJECT PROCESSOR TYPE

The MACHINE pseudo instruction specifies the type of computer system on which the object program
can be executed successfully and optionally specifies hardware features needed by the object program,
If used, MACHINE must be in the first statement group.

Format:

LOCATION

OPERATION

VARIABLE SUBFIELDS

MACHINE

type, hf, , bf, ey, .. ., hE

A location field symbol, if present, is ignored.

type

60492600 C

Character string designating object processor type. The subfield can be any length
and may contain any characters other than blank or comma. The first character
identifies processor type, as follows:

6 The object program is restricted to the following computer systems: CYBER
170 Series, CYBER 70/Model 71, 72, 73, or 74, or 6000 Series. All machine
instructions unigue to the CYBER 70/Model 76 or 7600 Computer Systems are
undefined.

to a 7600

7 The object program is restricted to a CYBER 70/Model 76 Computer System or

Computer System, With the exception of the PS instruction (often used

for subroutine entry points in CPU assemblies), all instructions unique to the

following

computer systems are undefined: CYBER 170 Series, CYBER 70/

Models 71, 72, 73, and 74, and 6000 Series.

Ina CPU

assembly, if the MACHINE pseudo instruction is omitted, or the type

subfield is blank, or its first character is not 6 or 7, then all CPU instructions
are defined, and the target and valid fields of the PRFX table in the object pro-
gram are blanks, If the type subfield is present and its first character is 6 or 7,

4-7

the valid field contains 6X or 7X. If the type subfield is at least two characters, .
the first character is 6 or 7, and the second character is a digit (0-9), the target
field contains those two characters,

In a PPU assembly, if the MACHINE pseudo instruction is omitted, or the type
subfield is blank, or its first character is not 6, or 7, then: if the PERIPH
pseudo instruction is present, MACHINE 6 is-assumed; if the PPU pseudo in-
struction is present, MACHINE 7 is assumed. The target field of the PRFX
table contains blanks, and the valid field contains 6P or 7P.

hf Optional subfield, a character string designating an optional hardware feature re-
quired for successful execution of the object program. The subfield may be any
length and may contain any characters other than blank or comma. It has no effeet on
assembly of the program. The first character of the subfield is placed in the hard-
ware-instruction-dependencies field in the PRFX table in the object program.

Recommended mnemonic letters are:

C Compare/Move Unit

D Distributive Data Path '
1 Integer Multiply Instruction
L ECS/LCM

R Interlock Register

X Central and Monitor Exchange Jumps

Up to nine hf, subfields are processed; any additional subfields are ignored. If the
hfi subfields are omitted, the comma following type can also be omitted.

Example:

LOCATION OPERATION | VARIABLE COMMENTS

1 " 18 [0

MACHINE 6,0MU,L0M,%)
1
{

4.3.3 PPU - CYBER 70/MODEL 76 OR 7600 PPU PROGRAM

A PPU instruction declares a program to be a CYBER 70/ Model 76 or 7600 absolute PPU program rather
than a CPU program. If used, PPU must be in the first statement group. For a description of binary
format generated as a result of this instruction, refer to the Loader reference manual.

4-8 60492600A

Mo’

N’

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY SEGMENT
ENTRYC USELCM
EXT R=

LCC Bl=1

REP B7=1
REPC

REPI

SEG

A symbol can be prefixed by = X if it is also defined conventionally.

If the program contains both a PPU and a PERIPH pseudo instruction, the PPU takes precedence.

PPU programs permit symbols of the form used for CPU register designators; they are normal symbols
having no special significance. The following instructions are legal but are not applicable in a PPU
assembly:

OPDEF
CPOP
CPSYN
PURGDEF
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PPU J
J A character string beginning with J supplied in the variable field alters the way

that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or
PJN instructions.

If J is not specified, COMPASS first tests the range of the expression against
the short jump limit (+31). If the value is in range, COMPASS assembles the
jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the
location counter value, If the value is now in range, COMPASS assembles the
instruction using the expression value minus the location counter value.
However, if it is out of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

As a result, COMPASS is able to differentiate between an expression value
that is an absolute address in the short jump range from an expression value

that is a true relative address.

A symbol in the location field, if present, is ignored.

60492600A 4-9

Example:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30
ooy ;
. |
740 TAG nse 2R !
760 0387 UJN TAG-* |[EXPRESSION < 278
i
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [0
©P1) JumMp ;
| . |
;: g ac TAG RS< 20n I
0357 UJN TAG |EXPRESSION-* < 37R

4.3.4 PERIPH - CYBER 170 SERIES OR CYBER 70/MODELS 72, 73,

74 OR 6000 SERIES PPU PROGRAM
A PERIPH instruction declares a program to be a CYBER 170 Series or CYBER 70/Model 72, 73, 74,
or 6000 Series absolute PPU program rather than a CPU program. If used, PERIPH must be in the

first statement group, For a description of binary output produced as a result of this instruction,
refer to the Loader Reference Manual,

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY LCC REPI R=
ENTRYC REP SEG Bl=1
EXT REPC USELCM B7=1

A symbol can be prefixed by =X if it is also defined conventionally,

PPU programs permit symbols of the form used for CPU register designators; they are normal
symbols having no special significance. The following instructions are legal but are not applicable
to PPU assemblies:

OPDEF
CPOP
" CPSYN
PURGDEF
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PERIPH . |J
J A character string beginning with J supplied in the variable field alters the
way that COMPASS assembles the variable field expression on UJN, ZJN,
MJN, or PJN instructions.
4-10 60492600A

S~

If J is not specified, COMPASS first tests the range of the expression value
against the short jump limit (+31). If the value is in range, COMPASS assembles
the jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the location
counter value. If the value is now in range, COMPASS assembles the instruction
-using the expression value minus the location counter value. However, if it is out
of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

For an example illustrating how to use J, see the PPU pseudo instruction.

A symbol in the location field, if present, is ignored.

4.3.5 IDENT - IDENTIFY AND GENERATE OVERLAY

Two or more IDENT pseudo instructions are permitted in CPU absolute or PPU assemblies. Second
and subsequent IDENT instructions having nonblank variable fields cause generation of overlays. IDENT
differs from SEGMENT in the way it generates overlays. First, it allows the specification of overlay
numbers. Second, the USE table and all block counters are reinitialized. The symbol table is not
cleared; all symbols are reassigned absolute addresses relative to absolute zero. Thus, an ORG to a
previously defined symbol restarts the absolute block at the symbolic address. The third difference is
that normally the end of the overlay is determined by the last word address, the maximum origin
counter value of the last block established in the overlay. A preceding SEG or SEGMENT can alter

this, however (Section 3. 4).

For a CPU assembly, an IDENT with a blank variable field causes a partial binary write. The
output is not terminated by an end-of-section or a new 778 table. However, the USE table and the
block counters are reinitialized and each symbol in the symbol table is assigned an absolute address.

Following an IDENT, COMPASS assumes that all blocks, including the literals block are complete.
Block structuring starts fresh with the new overlay or portion of binary. Thus, each new overlay or
partial can use the same block names as are used by other overlays or partial and each can have a
literals block.

For a blank IDENT, an attempt to write into or reset the origin counter to a location in a partial section
written separately causes a range error. Following the IDENT, the origin of the new absolute block
is the next word after the binary written out, that is, it is lwa+1.

The format of the IDENT varies according to the type of assembly as follows:

CPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, 11 ol 9

60492600A ' . 4-11

or

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT

7600 PPU Absolute Format:

LOCATION

QPERATION VARIABLE SUBFIELDS

6000 Series PPU Absolute Format:

IDENT name, origin, entry, ppu

LOCATION

OPERATION VARIABLE SUBFIELDS

name

origin

entry

21,12

4-12

IDENT name, origin

Name of the overlay. For a CPU program, 1-7 characters, the first of which
must be alphabetic (A-Z); for CYBER 170 Series or a CYBER 70/Model 72, 73,
or 74 or a 6000 Series PPU program, 1-3 characters; for a CYBER 70/Model 76
or 7600 PPU program, 1-7 characters. In all cases, the last character must
not be a colon. A name is a loader linkage symbol required for overlays,

An expression specifying the first word address of the overlay. The overlay
control word and all code assembled starting with this address and ending with
the next SEGMENT, nonblank IDENT, or END instruction comprises the overlay.
For a single entry point CPU program, the load address for the overlay is
origin-1, The word at origin-1 is overlayed by the 50_ loader table. For a
multiple entry point CPU program, the load address for the overlay is origin-
wec~1, where we is the number of entry points listed in the 51g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader control table. Data can be generated in
locations starting with origin and above, but not below origin. The origin
subfield does not serve the same function as ORG nor does it replace ORG for
setting the origin counter, The origin of an overlay can be below the origin
specified on any other IDENT or SEGMENT,

An expression specifying the overlay entry address. When the overlay is
called, .control optionally transfers to this address.

Absolute expressions specifying the level numbers of the overlay for CPU
programs only. ¢ is the primary level (00-778), £9 is the secondary level

(00-77¢). If base is M, £; and 2, are assumed to be octal. If ¢; and g, are not
specified, £, is set to 01 and g, is set to 00. '

60492600A

ppu

A location field symbol, if present, is ignored.

The binary is written on the file spe01f1ed by the B parameter on the COMPASS control statement. -

dumps the last overlay or completes

Examples:

The following program uses IDENT for overlay creation. Symbols T.OVL, O.DMP1, etc, are

a partially written section.

defined on a system text overlay,

LOCATION OPERATION

VARIABLE COMMENTS

1]

18 |30

TDENT
ABS
BASE
COMMENY,
LIST
SST
ORG
QUAL
SX9

.

DM

pMP

QUAL
IDENT
ORG

PRW2 Sx0

QUAL
IDENT
ORG
SXo

END

60492600A

DMP.i.T.OVL.F.nHPi
M 1

10/07/70.CFNTROL CARO CALL.DMP.
6

| OVERLAY

T.OVL OMPL
DMP1 |
81 |
g:gS.T.OVL'CIDMPZ 7
T.0VL | OVERLAYS DMP2
B6+1 l THROUGH DMP8

[.JMPQ | ‘ J

bt
OMP.9,T.0VL, 0. DMP9 OVERLAY
T.OVL oMP9
0.DMP2+F .MDE ‘

|
|
FND'OVERLAY DMPg

An absolute expression specifying the number of the PPU in which the overlay
is to be loaded. If base is M, ppu is assumed to be octal.

END

4-13

The following program uses IDENT instructions having blank variable fields.

1517

3Iu55

71156

Origin—

1617 =

3455 —

7116 —

lwa —

4-14

Core Map

LOCATION OPERATION | VARIABLE COMMENTS
1 " 8 [0
TOENT | VVV,T10B,ENT |
ARS ' |
0oRG 1110R l
ENT X9 1 |
. - |
. . l First
LIY 12,7 | Partial Binary
L] *
TOENY | !]
| Z
L] - l .
Lrr | 2,3 ! Second
. . | . Partial Binary
. . |
INFNY '
. -
. L3 '
LIT 142 Third
. . ' Partial Binary
Fan 0 ' 4
ABSOLUTE]
LITERALS First
Partial Binary
Local Blocks
]
ABSOLUTE' Se(?ond
LITERALS' PartialJBinary
b |
ABSOLUTE!"'
LITERALS" Third
Partial Binary
Local Blocks J

60492600A

\a -

N7

4.3.6 SEGMENT - GENERATE BINARY SEGMENT

Thé SEGMENT pseudo instruction produces overlays at assembly time. It has many of the features of
IDENT and is included primarily to provide another way of handling literals. Use of SEGMENT is
intended for 6000 Series CPU absolute or PPU assemblies. For a relocatable subprogram, a SEG-
MENT pseudo instruction causes BSSZ code and the FILL, REPL, and LINK relocatable tables to be
written on the binary output file.

The first SEGMENT causes all binary accumulated since the IDENT to be dumped as the main (0, 0)
overlay. Each subsequent SEGMENT generates a new overlay with the specified level numbers. END
dumps the last overlay. When COMPASS encounters a SEGMENT pseudo instruction, it does not clear the
symbol table or block declarations, All blocks other than the block in use must be complete. For a

CPU assembly, the literals block must be in one overlay only but that overlay can be any overlay.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
name SEGMENT | origin,entry, !1,12

name Name of overlay. For a CPU program, 1-7 characters, first of which must be
alphabetic (A-Z); for a PPU subprogram, 1-3 characters. In all cases, the last
character must not be a colon., It is a required loader linkage symbol.

origin A relocatable expression specifying the first word address of the overlay.,
It can only be an address in the block in use. The overlay loader table and all
code assembled starting at this address and ending with the next SEGMENT,
nonblank IDENT, or END instruction comprises the overlay.

For a CPU program the load address for the record is origin-1. The word at
origin-1 is overlayed by the 50g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader table. Data can be generated in locations
starting with origin and above, but not below origin. The origin subfield does
not serve the same function as ORG nor does it replace ORG for setting the
origin counter., The origin of an overlay can be below the origin specified on
any other IDENT or SEGMENT.

entry An expression specifying the overlay entry address. It is used for CPU
assemblies only. When the overlay is called, control optionally transfers to
this address.

11,12 Absolute expressions specifying the level numbers of the overlay for CPU
programs only, 21 is the primary level (00—778), 2,2 is the secondary level

(00—778). If base is M, 21 and 22 are assumed to be octal. If 21 and 22

are not specified, ll is set to 01 and 22 is set to 00.

60492600A 4-15

Example:
LOCATION OPERATION | VARIABLE COMMENTS
] n 18 l30

INENT [SAM,ENTA !
AnS
ORG 1108 '

ENTA PSS n 'ENTRY POINT
. .)
. . |

ovLNt asS n |OVFRLAY LCAD POINT
* *
. - |
L] »

SEG1L SEGMENT STRT,ENTA |

: NRG ovLern

RSS 1 ° LOADER TAPLE

STRY PSS n JFIRST WORD OF OVERLAY
[] N L] .
L] L] '

ENTB RSS 9 'Exscuvxouraeclns HERE
* » l
. *
END {END OF OVERLAY

SEGI1 is loaded as an overlay upon a call for the loader from the program. The first word of the overlay

© is loaded at OVLOC +1, following the loader table. The entry point to the overlay and the first executable
instruction is at ENTB. The overlay, when executed occupies the area of the main program beginning

at OVLOC,. .

4.3.7 SEG - WRITE PARTIAL BINARY

The SEG pseudo instruction permits the generation of a CPU absolute subprogram or overlay in less core
than would otherwise be required for assembly, It is illegal in PPU and relocatable assemblies.

SEG causes COMPASS to write on the binary output file all binary information accumulated since the
previous IDENT, SEGMENT, or SEG pseudo instruction. It does not write an end-of-section or begin
a new PRFX table. A SEGMENT, IDENT, or END instruction completes the binary section.

SEG does not affect the location and origin counters. The user cannot resume use of a block established
prior to the SEG, except for the block in use when the SEG was encountered. An attempt to reset the
origin counter so as to resume a block already written out causes an R error. Also, since the block
group is incomplete and the names of the blocks already written out are still in the USE table, no new
blocks can be established using the same block names as were used prior to the SEG.

The literals block is written in the portion that contains the end of the absolute block.

4-16 60492600A

S’

p N

%

S~

Format: _

LOCATION OPERATION VARIABLE SUBFIELDS
SEG

.Symbols in the location field and variable field, if present, are ignored.

Example:
LOCATION | OPERATION | VARIABLE COMMENTS
) n N {30
IDENT | NAME,ORIGIN, ENTRY
aAnsS -
use A |
L] []
. . |
. * |
SEG
uUse |= I
L] [] ’
L] [})
. .) '
SEG I
. . |
END :

4.3.8 STEXT - GENERATE SYSTEM TEXT RECORD

As a result of an STEXT pseudo instruction, binary output for the subprogram consists of all symbols,
micros, and opcodes (macros, opdefs, and machine and pseudo instructions), written in overlay
format at the end of pass one. The STEXT instruction must be in the first statement group.

The system text overlay becomes available in other assemblies through use of the G or S option on the
COMPASS control statement (chapter 10). Through this feature, information in the system text overlay
need be processed only once for all COMPASS programs using the same system text. System text over-
lays cannot be generated and used in the same assembly batch; system text overlays generated by one
COMPASS control statement call can be used only by assemblies performed by later COMPASS control
statement calls.

The symbols included in the system text overlay written are all symbols defined in the assembly except
those for which at least one of the following is true:

The symbol value is relocatable or external.

The symbol is qualified.

60492600A 4-17

The symbol is redefinable (i.e., defined by SET, MAX, MIN, or MICCNT).

The symbol is defined by statements read by XTEXT or occurring between CTEXT and ENDX.

The symbol is defined by SST (i.e., is a system symbol input tdr the presént system text assembly).

The symbol is 8 characters beginning with } }.
All defined micros are included in the system text overlay.

All program-defined opcodes are also included. Machine and pseudo instructions automatically
defined by COMPASS, and opcodes defined by system text input (if any) to the assembly, are not
included.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS con-
trol statement, all of the micros and opcodes in the system text are automatically defined at the start of
each assembly; however, the symbols in the system text are defined only for those assembhes that
contain the SST pseudo instruction.

A system text overlay on the library is an absolute overlay that has the.'foilowiﬁg control table:
59 48 42 36 00
| 5000 | o] 1] 000000000000 , N

Format of Text:

System. Symbol
Table
2 words per entry

W ¢ Micro Definitions

W . Macro/opdef Definitions

9 Operation Table
m Entries (2 words per entry)

£i= Number of words in each part of overlay

4-18 60492600A

N

Format:

LOCATION CPERATION VARIABLE SUBFIELDS
Trname STEXT
rname Name assigned to overlay; 1-7 alphanumeric characters, of which the first must be a

letter (A-7Z) and the last must not be a colon. It is placed in the prefix table that
precedes the overlay.

If rname is blank, COMPASS uses the name from the IDENT instruction and generates
the system text only. Otherwise, the system text is generated in addition to the re-
locatable or absolute binary and precedes the binary output on the binary file.

An entry in the variable field, if present, is ignored.

Example:
LOCATION OvPERATlON VARIABLE COMMENTS
1 n 18 {30
IDENT | SYSTEXT i
STEXT , '
BASE | MIXED
MPRS £QU 100 IT
'SYSTEM'CONSTAN?S, SYMBOLS,
|AND COMMUNICATIONS AREAS
TRTS EQU 7777 |
IXX/X OPDEF |I,4,K |
. 1e . lSYSTEM-DEFINED MACROS
. . . (AND OPDEFS
ENDM I
SYSCOM |MACRO |N '
S M ‘
. [3 l -
ENDM I e
DATE MICRO |1,10,%,..% !
L) * * l
. . . |SYSTEM-DEFINED MICROS
END]

60492600A 4-19

4.3.9 COMMENT—PREFIX TABLE COMMENT

The COMMENT pseudo instruction inserts the character string specified in the variable field into

the eighth through fourteenth words of the PRFX table in the object program. The prefix table, and
thus the comment, is ignored by the loader but identifies the section, If a subprogram contains more
than one COMMENT instruction, the new comments are appended to the table for the most recent
binary control statement. If the subprogram contains a NOLABEL instruction, the COMMENT instruc-
tion is meaningless. COMMENT instructions following SEG and blank IDENT pseudo instructions are
ignored without notification.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

COMMENT |string

string COMPASS searches the columns following the blank that terminates the operation
field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one. Otherwise, the character string begins with the first
nonblank character following the operation field. In either case, the last character
of the string is the last nonblank character of the statement. 1 to 10 blanks are
appended on the right so that the string is followed by at least one blank and the
length of the string is a multiple of 10 characters, If the variable and comment fields
are all blanks, the string consists of 10 blanks. If the string length is more than 70
characters, all characters beyond the 70th are lost.

A location field symbol, if present, is ignored. Refer to section 4.3.5 for an exainple.

4.3.10 NOLABEL — DELETE HEADER TABLE
The NOLABEL instruction modifies the format of the i)inary output produced by COMPASS for an

absolute assembly by optionally suppressing header information, It is particularly convenient for
generating deadstart programs which must be loaded at location zero.

JSormat:

LOCATION OPERATION VARIABLE SUBFIELDS

NOLABEL |1

4-20 60492600 F

N

S

1 Optional; if the variable field contains a character string beginning with an I,
COMPASS suppresses all prefix (7700g) tables, but retains the other program
header tables.

If the I option is omitted, COMPASS suppresses all of the following:

Prefix tables (7700g)

Overlay control tables (5000g)

Multiple entry point tables (51008)

PPU header control tables - .

A location field symbol, if present, is ignored. NOLABEL is illegal in a relocatable CPU assembly.

4.3.11 LCC—LOADER DIRECTIVE

The LCC pseudo instruction provides a means of including loader directives with the tables for a
relocatable program.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LCC directive
directive First nonblank character following LCC to the first blank, For directive

formats, refer to the Loader Reference Manual.
A location field symbol, if present, is ignored.

COMPASS writes a directive as a section in packed display code for subsequent interpretation by the
loader, COMPASS does not edit the directive; the loader recognizes illegal forms at load time,

4.3.12 LDSET—GENERATE LDSET OBJECT DIRECTIVES

The LDSET pseudo instruction generates loader LDSET directives for a relocatable program. A
program may contain any number of LDSET instructions. COMPASS collects all LDSET options and
writes a single LDSET (7000g) table in the relocatable binary output between the PRFX (7700g)
table and the PIDL (3400g) tables The LDSET table is not written if LDSET instruections do not
appear in the program. LDSET is not allowed in a PPU or absolute CPU assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LDSET options
60492600 G 4-21

options

4-22

LIB

LIB=libname

MAP
MAP=p

MAP=p/lfn
MAP=/ifn

PS=p

PD=p

PRESET=p

PRESETA=p

ERR=ALL

One or more options separated by commas.

Clear local library set.

Add the specified libraries to the local library set. More than one library can
be specified by separating library names with a slash, in the form:

libnamej/libnameg/.../libname,,
Write load map to file OUTPUT.
Write load map to file OUTPUT. Map items are selected by p:
N No map.
S Statisties.
B Bloek list.
E Entry point list.
X Cross reference map.
p can be written as N or as any combination of SBEX in any order.
Write load map to file named Ifn. p is as above.

Write load map to file named Ifn. Installation default determines items on
the map.

Select page size for load map by a specification of number of lines. p can be
decimal 10 through 999999. A value outside this range results in the
installation default page size.

Select print density for load map by a specification of decimal number of
lines per inch. p can be:

6 6 lines per inch.

8 8 lines per inch.

other Installation default.
Preset memory to the value specified by p. Under NOS/BE, p can be a 1
through 20 digit octal number with an optional + or - prefix and an optionai B

suffix.

p can also be one of the following key words:

NONE No presetting for ECS; same as ZERO for CM
ZERO 0000 0000 0000 0000 0000
ONES TTTT T NI TN 177
INDEF 1777 0000 0000 0000 0000
INF 3777 0000 0000 0000 0000
NGINDEF 6000 0000 0000 0000 0000
NGINF - 4000 0000 0000 0000 0000

ALTZERO 2525 2525 2525 2525 2525
ALTONES 5252 5252 5252 5252 5252
DEBUG 6000 0000 0004 0040 0000

p can be as defined for PRESET. The lower 17 bits (CM/SCM) or lower 24
bits (ECS/LCM) of each word contains its address. This option is not
supported by SCOPE 2,

Select loader abort for all errors.

60492600 G

\\/'

S’

ERR=FATAL

ERR=NONE

REWIND

NOREWIN

EPT=eptname

NOEPT=eptname

USEP=pname

USE=eptname

COMMON

COMMON=blkname

SUBST=pair

OMIT=eptname

Select loader abort only for fatal errors.
Select loader abort only for catastrophic fatal errors.

Reset the default REWIND/NOREWIN option for load files to REWIND. The
NR parameter on LOAD and SLOAD directives can override this default for
individual files. :

Reset the default REWIND/NOREWIN option for load files to NOREWIN. The
R parameter on LOAD and SLOAD directives can override this default for
individual files.

If -the symbol eptname is defined, declare it an entry point of the CAPSULE
or OVCAP binary subsequently generated by the loader in the form:

pnamej/pnamesy/.../pnamey

Do not define eptname as an entry point of the CAPSULE or OVCAP binary
subsequently generated by the loader.

Cause the designated object modules to be loaded whether or not they are
needed to satisfy external references, More than one module can be
specified by separating module names by a slash.

Cause the load of objeet modules containing the specified entry points
whether or not they are needed to satisfy external references. More than one

entry point can be specified by separating entry point names by a slash in the
form: '

eptnamej/eptnamey/.../eptnamey,

Assign all labeled bloeks to a segment such that the blocks are available to
all segments that reference them. Valid for segment loads only.

Assign the labeled common block named blkname to a segment such that it is
available to all segments that reference it. Valid for segment loads only.

More than one block name can be specified by separating the individual bloek
names with a slash in the form:

biknamej/blknamegy/.../blknamep

Treat external references to eptname; as though they were references to
eptnameg, where the entry point names are specified as a pair in the form:

eptnamej-eptnameg

More than one pair of entry point names can be specified by separating the
pairs with a slash in the form:

pairj/pairg/.../pairy
Omit satisfying external references to the specified externals. More than
one entry point name can be specified by separating the names with a slash in
the form: "

eptnamej/eptnamesy/.../eptnamey -

A location field symbol, if present, is ignored.

See the Loader reference manual for details of these parameters, including the operating system to which a
given option applies.

60492600 G 4-22.1

4.4 MODE CONTROL

Mode control pseudo instructions influence the basic operating characteristics of the assembler,
Specifically, the instructions allow the programmer to alter the way in which the assembler:

Interprets binary data BASE pseudo instruction
Generates character data . CODE pseudo instruction
Interprets the beginning of comments on statements COL pseudo instruction
Qualifies symbols or does not qualify them QUAL pseudo instruction
Interprets the R= instruction . Bl=1 or B7=1 pseudo instruction

In each case, the assembler has a default mode which it uses if one of these instructions is never used,-

4.4.1 BASE — DECLARE NUMERIC DATA MODE

The BASE pseudo instruction declares the mode of interpretation for numeric data for which a base
radix is not explicitly defined. Use of the BASE pseudo is optional; if BASE is not used in a subpro-
gram, COMPASS evaluates unspecified numeric data as decimal,

An alternate application of BASE is to define the previous base as a micro,

In addition, if no program or system micro named BASE has been defined, COMPASS changes the
predefined BASE micro to be a single letter D, M, or O, corresponding to the new mode established
by this BASE instruction,

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname BASE mode
mname Optional 1~-8 character micro name by which the previous BASE mode can be referenced
in subsequent BASE instructions. If mname is present, the value of the micro named
mname is (re)defined to be a single letter D, M, or O, corresponding to the BASE mode
in effect prior to this BASE instruction.
mode Blank, in which case the base remains unchanged, or 1-8 characters, the
first of which designates the new base as follows:
o . Octal assembly base; any subsequent use of a data item not
specifically identified by an O, D, or B prefix or suffix is
evaluated as octal. For example, the constants 15 and 15B
are evaluated as 15g; constant 15D is evaluated as 17 g Any
item containing an 8 or 9 without a D radix is flagged as
erroneous. Exceptions are scale factors, character counts,
shift counts (S modifier), and binary point positions, which
are always considered decimal.
22.2 ' 60492600 F

D Decimal assembly base; any subsequent use of a data item
not specifically identified by an O, D, or B prefix or suffix
is evaluated as decimal.

M Mixed assembly base; any subsequent use of a data item not
specifically identified by an O, D, or B is evaluated as decimal
if it is one of the following. Otherwise, it is evaluated as
octal,

VFD bit count

IF, ELSE, or SKIP line count

MICRO, OCTMIC, or DECMIC character count
B, C, or I subfield in REP or REPI

DUP or ECHO line count

Character count

Shift counts (S modifier)

Scale factors

60492600 F 4-22,3/4-22,4

N’

(

Binary point position
COL column number
DIS word count

SPACE line count

* Use base in effect prior to current base, The assembler records
occurrences of BASE pseudo instructions and maintains a table
of the most recent 50 occurrences. Each BASE * resumes use
of the most recent entry and removes it from the list. When the
subprogram contains more BASE * instructions than there are
entries in the stack, COMPASS uses a decimal base.

other If the variable field is not blank and does not contain one of the
above, COMPASS sets an error flag,

Examples:

This example illustrates the affect of BASE on a VFD instruction that defines a 48-bit field
containing 10 g

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
D0 AASE |0 .
0000000000000040 VFD 60710 |
L L l
- L] I
0eD BASE |D |
0000 VFD 4878
200000000010 |
. . |
DeM BASE M |
| 00000000 VFD |&8/10 '
00000010 [

The following example illustrates the micro capability of BAS];:

LOCATION OPERATION | VARIABLE COMMENTS
1 } n 18 ! 30
DM SAVES BASE | M ISAVE BASE IN USE
. . . :cons USING BASE M
) BASE | #SAvEB? IRESTORE SAVED BASE

60492600A 4-23

4.4.2 CHAR-DEFINE OTHER CHARACTER DATA CODE

The CHAR pseudo instruction defines character data codes to be used when the CODE O (for Other)

mode is in effect.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
CHAR expl,exp2
expl Evaluatable absolute expression whose value is 00 to 77g. The value of expl
is the display code value of the character to be redefined.
exp2 Evaluatable absolute expression whose value is 00 to 778. The value of exp2

is the new code other value of the character designated by expl.

A location field symbol, if present, is ignored.

Initially, all code other values are the same as display code. CHAR need be used only for those
characters whose code other values are different from display code. Characters may be redefined
as many times as desired by subsequent CHAR pseudo instructions.

Example:
LOCATION OPERATION VARIABLE SUBFIELDS
00r63 CHAR 05638 INTERCHANGE COLON AND
63200 CHAR 63850 PERCENT FOR CODE OTHER

4.4.3 CODE — DECLARE CHARACTER DATA CODE

The CODE pseudo instruction declares that until the next CODE pseudo instruction is encountered all
constants, character strings, and character data items are to be generated in the specified code.
Character data can be generated in ASCIIt, display, external BCD, or internal BCD, codes. If no

CODE instruction is used, COMPASS generates display code.

Codes are given in appendix A.

An alternative application of CODE is to define the previous code as a micro.

In addition, if no program or system micro named CODE has been defined, COMPASS changes the
predefined CODE micro to be a single letter A, D, E, 1, or O, corresponding to the new mode
established by this CODE instruction.

Format:
LOCATION QPERATION VARIABLE SUBFIELDS
mname CODE char

TAmerican Standard Code for Information Interchange.

4-24

60492600C

-
mname Optional 1-8 character micro name by which the previous CODE mode can be referenced
in subsequent CODE instructions. If mname is present, the value of the micro named
~— mname is (re)defined to be a single letter A, D, E, I, or O, corresponding to the CODE
mode in effect prior to this CODE instruction. ’
L char The first character of a string indicates the code conversion:
A ASCIH six-bit subset
u D Display
S
E External BCD
I Internal BCD
RN
(o] Other code, defined by CHAR pseudo instructions.
~ * Use code in effect prior to current code. The assembler records occurrences of
CODE pseudo instructions and maintains a table of the most recent 50 occurrences.
Each CODE * resumes use of the most recent entry and removes it from the list.
L When the subprogram contains more CODE * instructions than there are entries in
e the stack, COMPASS generates display code.
~ Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 T30
1725242032524G300uC0J DATA 0LOUTPUY |
" DeA CNDE ASCII
5765646uB564 00443300 DATA oLOUTPUT |
AsE CO0E EXTERNAL BCOD
4624234726423 54500000 0 DATA gLOUTPUT |
S’ Eel CAODE INTERNAL BCD
LobLO34T76LOI JALLIIVL DATA gLOuUTPUY l
IeD COdE DISPLAY
— 172524202524 4050300 0ata |oroutPur |
Nel CONE * i
466463476L63 G0 CUudLL DATA GLOUTPUT
|
“— 4.4.4 QUAL — QUALIFY SYMBOLS
The QUAL pseudo instruction signals the beginning of a sequence of code in which all symbols defined
’ in it are either qualified or are unqualified (global). If no QUAL is in a subprogram, all symbols are
~ defined as global. '
An alternative application of QUAL is to define the previous qualifier as a micro,
e
In addition, if no program or system micro named QUAL has been defined, COMPASS changes the
predefined QUAL micro to be the new qualifier name established by this QUAL instruction.
~—
N
L 60492600 B 4-25

Within a QUAL sequence in which a symbol is defined, a symbol reference need not be qualified.
Used outside the sequence, the symbol must be referenced as/qualifier/symbol. Thus, a symbol and
a qualifier become a unique identifier local to the sequence in which the symbol was defined. The
same symbol used with a different qualifier is local to a different QUAL sequence. If a symbol is
defined with no qualifier as well as being defined as qualified, a reference to the symbol within the
QUAL sequence is assumed to be a reference to the qualified symbol rather than to the global symbol.

In this case, a reference to the global symbol must be written as // symbol. However, ina
NORET statement when the unqualified symbol is previously defined and the qualified symbol is not,
COMPASS assumes the reference is to the unqualified symbol.

Default symbols and linkage symbols are not qualified.

LOCATION OPERATION VARIABLE SUBFIELDS
mname QUAL qualifier
mname Optional 1-8 character micro name by which the previous qualifier can be

referenced in subsequent QUAL instructions or symbol references. If mname
is present, the value of the micro named mname is (re)defined to be the 0-8
characters comprising the qualifier in effect prior to this QUAL instruction.

qualifier A symbol qualifier or * or blank, as follows:

qualifier 1-8 character name, the first character of which cannot be $ or
= or : or numeric. The qualifier cannot contain the characters

+ - %/ Jor a
A blank terminates the qualifier.

Any symbol defined subsequent to this QUAL up to the next
QUAL must be referenced from outside the QUAL sequence as

/qualifier/symbol

The current qualifier appears as the third sub-subtitle on the
assembly listing (section 11.1).

* The assembler resumes using the qualifier in use prior to the
current qualifier, The assembler records occurrences of QUAL
pseudo instructions and maintains a table of the most recent 50
occurrences, Each QUAL * resumes use of the most recent entry
and removes if from the list, When the subprogram contains more
QUAL * instructions than there are entries in the stack,
COMPASS uses the null (global) qualifier.

4-26 60492600 E

S’

blank A blank variable field causes any symbols defined up to the next QUAL to be
global. A global symbol does not require a qualifier.

NOTE

The first attempt to redefine a global symbol from
within a QUAL sequence results in A and U errors.
The symbol is defined local to the QUAL sequence
with a zero value. To avoid fatal errors, precede
any redefinition instruction (SET, MAX, MIN, or
MICCNT) within a QUAL sequence with a blank QUAL
and follow it with a QUAL *,

Examples:
LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 {30
QUAL | PASst | ;
BernF X6 F |IBCNE QUALIFIED R’Y PASS1
. Y l
Fn LoC1 !
ouaL | pass? !
RCOE QU Loc? IRCDE QUALIFIED RY PASS2
ounL [SYMROLS GLORAL F20M NOW ON
. . i
* - l
GLOR nss n |6LOB IS GLOBAL
. R !
RJ /PASS1/BCDF [JUMP TC PASS1 ROUTINF
. |
RJ /PASS?/RCDE| JUMP TG PASS2 ROUTINE
60492600A

4-27

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18
TR MACRO | BLOCK,XWAL

USE ALOCK
QUAL KWAL

w
=4

TAGY BSS 10R

YpG2 VFD f07-1
USE *
QUAL *
ENDM

TAR | ONF,ONF

—— e e e o —— e e e e i

LOCATION OPERATION | VARIABLE COMMENTS
P 1 " 18 |30
QuUAL | Z i
21 8ss) |21 QUALIFIED BY 2
OUAL |8 EQUATE SYMBOLS SO THAT
71 = 12/21 Z1 IN Z CAN BF REFERRED

|TO AS Z1 IN B

4.4.5 B1 =1 AND B7 = 1 — DECLARE THAT B REGISTER CONTAINS ONE

The Bl=1 and B7=1 pseudo instructions declare that in this CPU subprogram, the contents of the Bl
‘register or the B7 register, respectively, are one. These instructions do not produce code; they alter
the way in which code is generated by the R= instruction (section 4. 8.7) and define the symbol Bl=1

or B7=1. If more than one instruction is used, the assembler uses the last one encountered.

4-28 60492600A

Formats:

LOCATION OPERATION VARIABLE SUBFIELDS

Bl=1
B7=1

A symbol in the location or variable field is ignored.
Note that loading the respective B register with one is the user's responsibility.

For an example of use, refer to R= (section 4.8.7).

4.4.6 COL— SET COMMENTS COLUMN

- The COL pseudo instruction sets the column number at which the comments field can begin when the
variable field is blank. If no COL instruction is used in the subprogram, COMPASS uses 30.

LOCATION QOPERATION VARIABLE SUBFIELDS
COL n
n An absolute evaluatable expression designating the eolumn number; n 12. When base is M, n

is assumed to be decimal. If n is less than 12, COMPASS sets the column at 12. If n is zero
or blank, COMPASS sets the column to 30, the default column.

If the current operation field extends past the current comments column, COMPASS
substitutes a very large number for n in the current instruction only; that is, if n is less than
or equal to the last column of the operation field, a variable field must be present if a
comment is present.

A location field symbol, if present, is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 I30
bl coL 36 i
USE IRETURN TO BLOCK 0
l

In this example, subsequent statements for which the variable field is blank ecannot have comments
beginning before column 36.

60492600 G 4-29

4.5 BLOCK COUNTER CONTROL

Counter control pseudo instruetions establish local blocks, labeled common blocks, and blank common
blocks in addition to the absolute, zero, and literal blocks established by the assembler; they control use of
all program blocks, and provide the user with a means of changing origin, location, and position counters.

4.5.1 USE — ESTABLISH AND USE BLOCK

USE establishes a new block or resumes use of an already established bloek. The bloek in use is the block
into which code is subsequently assembled. A user may establish up to 252 blocks in a bloek group.

Format:
LOCATION OPERATION VARIABLE SiJBFIELDS
USE block
block Identifies block to be used, as follows:
0 or blank Nominal bloek (absolute or 0).
!/ Blank common block; for a relocatable subprogram, this block eannot

contain data. The only storage allocation instructions that can follow are
BSS and ORG. The BSSZ instruction is illegal because it presets the block
to zeros.

/name/ Labeled ecommon block. A name can be a maximum of 7 characters and
cannot include blank or comma. The first and last characters must not be
colons. Conventions imposed by the loader or other assemblers or
compilers could further restriet the use of names.

name Local block. A name can be 1 through 8 characters, excluding blank or
comma. The first character must not be a colon. Use of this name
enclosed by brackets does not cause the block to become a labeled common
block. For example, USE A and USE/A/ are different blocks.

* Blocek in use prior to current USE, USELCM, ORG, or ORGC. See
discussion following.

A loecation field symbol, if present, is ignored.
The nominal program block contains the entire program if no USE or USELCM is encountered.
Redundancy between block names is permitted as follows.

A labeled common block designated by /0/ can coexist with the program block designated by 0. Blank
eommon designated by // can coexist with a labeled ecommon block designated as ////.

4-30 60492600 G

" \..//

N

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks
with the same name and the same block type if they have different memory types (CM/SCM or
ECS/LCM). Thus, altogether, there may be up to four different blocks with the same name,

When a block is first established, its origin and location counters are zero and its position counter is
either 60 (CPU subprogram) or 12 (PPU subprogram). When a different block than that in use is
indicated, COMPASS saves the values of the current origin and position counters along with an
indicator as to whether the next instruction is to be forced upper. If the most recently assembled
instruction under the block is one that forces the next instruction upper, the first instruction
assembled upon resumption of the block is forced upper. When the designated block has been
previously established, COMPASS resumes assembly in the block using the last known values for

the origin and position counters. The value of the location counter is not saved. Upon resumption of
the block, it is set to the value of the origin counter. If a LOC had been used previously, resetting
of the location counter to produce the desired results is the responsibility of the programmer.

The assembler records occurrences of USE, USELCM, ORG, and ORGC pseudo instructions (except
USE * and USELCM *) and maintains a USE table of the most recent 50 occurrences. Each USE * and
USELCM * resumes use of the most recent entry and removes it from the table, When the subprogram
contains more USE * or USELCM * instructions than there are entries in the stack, COMPASS uses
the nominal block.

Examples:
Location Code Generated LOCATION OPERATION | VARiABLE COMMENTS
Y n 18 [30

USE |
12 Dignogonon GAMMA Ry ALPHA IBLOCK N IN USE

tISF GATAL IRLCCK DATA1L IN USF
35 172040000N00N000000000 SAR NATA 1.0 |

USE * | RESUME USF OF RLOCK 0
14 5130900n0N SAZ SaM |

Note that the SA3 is forced upper because the RJ causes a force upper of the next instruction in the

block.

Locatio'n Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
, USE TABLE USE TABLE LOCAL BLOCK
2615 00 VFD 6/0 ,
USE * IRESUME PREVIOUS BLOCK
|
[] L] l L]
L] L] I :
USE TABLE :RE:UME USING TABLE
30002600 + VFD 6/1RX 418/S
use | * I'ResuMe PRZVIOUS BLOCK

Note how separate blocks can be used to facilitate packing of partial-word bytes into a table res1d1ng in
a block other than the one primarily being used.

60492600A ’ 4-31

The USELCM pseudo instruction establishes or resumes use of a block assigned to extended core
storage (ECS) or large core memory (LCM). For all ECS/LCM blocks in an absolute CPU assembly,
and for the ECS/LCM blank common block in a relocatable assembly, data generating instructions
(including BSSZ) and symbolic machine instructions are illegal; only storage reservation pseudo
instructions (BSS, ORG,and ORGC) are allowed. The USELCM pseudo instruction is illegal in PPU

assemblies.

Format:

LOCATION

OPERATION

VARIABLE SUBFIELDS

USELCM

block

block: Identifies block to be used, as follows:

0 or blank

//

/name/ .

name

*

Illegal.

Blank common block. A subprogram can have two blank common
blocks if one of them is in ECS/LCM.

Labeled common block. The name can be a maximum of 7
characters and cannot include blank or comma. The first and last
characters must not be colons. The loader or other assemblers or
compilers could further restrict the use of names.

Local block. § The name can be 1-8 characters, excluding blank or
comma. The first character must not be a colon. Use of this name
enclosed by brackets does not cause the block to become a labeled
common block. For example, A and /A/ are different blocks. All
of the local ECS/LCM blocks are concatenated to form a single block,
which is treated by the loader as an ECS/LCM common block whose
name is unique to the subprogram.

Block in use prior to current USE, USELCM, ORG, or ORGC.

A location field entry, if present, is ignored.

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60~bit words. The maximum size of an ECS/LCM block is 1,048,568

words.

Further rules for USELCM are the same as for USE.

T SCOPE 2 does not currently allow local blocks in LCM.

4-32

60492600 E

e

Examples:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 IED)
BASE o i
1
, USELCM|LCM JESTABLISH ANO USE LUM BLOCK
LCMC 8ss 0 JUEFINE SYM4BOL LCMC
8LOC1 BSS 100 |RESERVE 100 WORDS
BLOC2 BSS 200 - |RESERVE 200 WORDS
USE ¥ |[RESUME PREVIOUS BLCUK
L |
ORG 8Loc1+10008 !
BLOC3 8SS 20 IRESERVE 20 MORE WORDS
USE . IRESUME PREVIOUS BLOLK

4.5.3 ORG AND ORGC - SET ORIGIN COUNTER

ORG indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values.

ORGCt indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set, COMPASS makes an entry in the USE table and
saves the current origin and position counter values. In a PPU or absolute assembly, ORGC is the
same as ORG, In a relocatable CPU assembly, ORGC is the same as ORG if the USE block specified
by the address expression is not a common block; otherwise, code following an ORGC is ignored by

the linking loader if that common block was first declared by a previously loaded subprogram. If two
or more programs in a load sequence preset relocatable text within the same common block, the ORGC
must be used; otherwise, multiple relocation of those words can occur.

Formats:
LOCATION OPERATION VARIASLE SUBFIELDS
ORG exp
ORGC exp
exp Expression specifying the address to which the origin and location counters are to be

set. Following ORG or ORGC, the assembly resumes at the upper position of the
location specified. COMPASS determines the block as follows:

T Not supported by SCOPE 2 Loader.

60492600 D 4-33

1. If the expression contains a symbolic address, COMPASS uses the block 1n
which the symbol was defined.

2, COMPASS uses the current block if the value of the expression is *, *L, or
*O. If the origin and location counters are the same value, and no code has
been assembled in the current location, the only effect of *, *L, or *O is to
force the next instruction upper. If a word is partially assembled, however,
the code already assembled into the location is lost.

If the counter values differ, * or *L sets the origin counter to agree with the
location counter value; *O sets the location counter to the origin counter value.

3. An absolute expression causes use of the absolute block, In a relocatable
assembly, this is the only way to establish the absolute block. All symbols
defined in the absolute block are absolute.

. Any symbols in the expression must be already defined in the assembly and must not result in a
negative relocatable value. It is not possible to ORG or ORGC into the literals block.

A location field symbol, if present, is ignored.

Once an ORGC pseudo instruction has established the conditional loading indication for a given common
block, it is in effect whenever assembly in that block is resumed by subsequent USE or USELCM
pseudo instructions, and can be cleared only by an ORG pseudo instruction specifying that block.

4-34

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 |30
USE ALPHA |
- e K
L] . ’ »
. . pe
ABC DATA 20,100,1000 {LOCATED IN ALPHA
l
. - l .
. . I .
Ust BETA |
xXY?2 BSsS 0 ILOCATED IN BETA
. . .
. - lo
ORG A8C [SETS ALPHA COUNTERS TO ABC
. . JAND RESUMES USE OF ALPHA
- - |
BSS 1000 |
.) I

60492600A

LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 T30
ORG 50 |SETS ABSOLUTE BLOCK COUNTER
. .« {TO 50 AND BEGINS ITS USE
[] [] *
ORG XYZ+100 ISETS BETA COUNTERS TO XYZ+109
L] L] -
L] L : L 3
USE ¥ IRESUMES ABSOLUTE 3L0CK
L] * l L d
C I
USE * I2ESUMES BLOCK ALPHA
> L J l *
L) * l L]
L[] [J *
USE . |RESUMES BLOCK BETA
* L] | *
. . :I
USE . |RESUMES BLOCK ALPHA
. - | .
L] . ' *
[] L] .
USE . ;eesunes NOMINAL BLOCK
. - H
U3E /OATA/ |
DATA 83S 0 |
0GC | naTa
DATA | 1,2,3 {CONDTITTONALLY ORESST JATA
|
UsE anvaLock |
SON 3RXYZ TUNCONDITYIONAL DATA
U3F ® |
FOUR DATA | & RETURN TN /NATA/ STTILL
NATA | 5,5 TONDITIONALLY SKIPRING
|
0R5 FOUR
R X1,ERROR lUNCONDITIONALLY LOADED
?J suBau | INSTRUCTIONS

4.5.4 BSS—BLOCK STORAGE RESERVATION

The BSS instruction reserves core in the block in use by adjusting the origin and location counters.

It

does not generate data to be stored in the reserved area. A primary application is for reserving blank
common storage. It can also be used to reserve an area to receive replicated code (see REP, REPC,

and REPI, section 4. 8. 8).

60492600A

4-35

Format:
LOCATION OPERATION VARIABLE SUBFIELDS '
sym BSS aexp
sym If present, sym is defined as the value of the location counter after the force
upper occurs. It is the beginning symbol for the storage area.
aexp Absolute expression specifying the number of storage words to be reserved.
All symbols must be previously defined; aexp cannot contain external symbols.
The value of the expression can be negative, zero, or positive and the value
is added to both the origin counter and the location counter. A BSS 0 or an
erroneous expression causes a force upper and symbol definition but no storage
is reserved.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30
USE 77 !
COMMON BSsS 10008 IRESERVE 512 WORDS OF BLANK COMMON
USE * I
. . l .
. . |
SA6 COMMON#SO0R |
TAG BSS] :DEFINE SYMBOL TAG

4.5.5 LOC — SET LOCATION COUNTER

A L.OC pseudo instruction sets the value of the current location counter to the value in the variable
field expression. The location counter is used for assigning address values to location symbols.
Changing the location counter permits code to be generated so that it can be loaded at the location
controlled by the origin counter and moved and executed at the location controlled by the location
counter. Thus, any addresses defined while the location counter is different from the origin counter
will be correctly relocated only after the code is moved.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

LOC exp

4-36 ' 60492600A

e
exp Relocatable expression specifying the address to which the location counter
L is to be set. Any symbols in the expression must be already defined in the
assembly and must not result in negative relocation.
- A location field symbol, if present, is ignored.

Following a LOC, if the value of the location counter differs from the origin counter, the location field
“ is flagged with an L on the listing until a LOC *O, USE, ORG, ORGC, or USELCM instruction resets the
location counter to the value of the origin counter.

A LOC instruction does not affect the origin counter except that it causes the next instruction to be

~ forced upper. The only effect of LOC* or LOC *L is to force upper. Because COMPASS does not
save the value of the location counter when it switches blocks, a USE, ORG, ORGC, or USELCM for
a different block effectively resets the location counter to the origin counter value. When use of the

N block is resumed, it is the responsibility of the user to reset the location counter to produce the desired

‘ results. :

N Example:

In the following example, the first LOC is used to generate PPU code that is to be loaded into one

~ PPU and transmitted to a different PPU for execution. The second LOC is used so that on the listing
the address field contains the table ordinal rather than a load address. At the end of the table, a LOC
instruction changes the location counter to resume counting under the first LOC. At the end of the

N program, LOC *O returns the location counter to the value of the origin counter.
LOCATION OPERATION | VARIABLE COMMENTS
Location Code Generated) 1 18 T30
1 T1 £Qu 1 '
— 0 CH EQU 0 |
7100 ORG 7100 |
7100 RES BSS- |0 |
, L 100 Loc 100
~ L 100 2400 P PR PSN 0 |
L 101 2400 PSN 0 |
L 102 2400 PSN 0
N L 103 6100 0100 EIM PPR,CH |
- L] L 2 l
— S |
L 205 P PRA Bss |0 i
L 0 \ Loc 0 |
‘ L 0 0100 CON PPR
~ L 1 011t CON STM |
L 2 0121 CON DPM l
v L 3 0122 CON EXR
~ L 4 0136 CON CHS I
L 5 0147 CON DMP |
L 6 0240 CON END
“~ L 4 1000 CON 1000 :
[L[] . I
~ L 215 Loc *0-RES+PPR |
L 215 8SsS 240~% |
L 240 END BSS
E 3
N 7240 Loc 0 |
~— 60492600 D 4-37

4.5.6 POS — SET POSITION COUNTER

The POS pseudo instruction sets the value of the position counter for the block in use to the value
specified by the expression in the variable field.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
POS aexp -
aexp An absolute evaluatable expression having a positive value less than or

equal to the assembly word size (60 for CPU, 12 for PPU). A negative value, or
a value greater than 60 (or 12), causes an error. The value indicates the bit
position within the current word at which the assembler is to assemble the next
code generated. Use caution, because if the new position counter value is greater
than the old position counter value, part of the word is reassembled. (New code
is ORed with previously assembled data.) If the new position counter value is less
than the old position counter value, the assembler generates zero bits to the
specified bit position. If the value of aexp is zero, COMPASS assembles the next
code in the following word.

A location field symbol, if present, is ignored.
NOTE

If the POS instruction is used on a word containing relocatable or external
addresses, undefined results ean occur with no diagnosties.

The POS instruction does not alter the origin and location counters. The position counter is never 0
at the beginning of an instruction. At the beginning of a new operation, if a data value has been
stored into bit 0 (the rightmost bit) of a word, COMPASS increments the origin counter and the
location counter and resets the position counter to 60 (or 12).

A POS *P has no effect whereas a POS $ subtracts one from the counter.

4.6 SYMBOL DEFINITION

The pseudo instructions EQU, =, SET, MAX, MIN, and MICCNT permit direct assignment of 21-bit
values to symbols. The values can be absolute, relocatable, or external. Register designators are
not valid in the expressions. Subsequent use of the symbol in an expression produces the same result
as if the value had been used as a constant. In the listing of the symbolic reference table, a refer-
ence to an EQU, =, SET, MAX, MIN, or MICCNT instruction is flagged with a D, Symbols defined
using EQU and = cannot be redefined; symbols defined using any of the other symbol definition
instructions can be redefined.

4-38 ‘ 60492600 G

S

4.6.1 EQU OR = —EQUATE SYMBOL VALUE

An EQU or = pseudo instruction permanently defines the symbol in the location field as having the value
and attributes indicated by the expression in the variable field.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
sym EQU exp
or
sym = exp
sym A location symbol is required. See section 2.4 for symbol requirements.
exp An evaluatable expression. Any symbols in the expression must be previously
defined or declared as external. The expression cannot contain symbols
prefixed by =S, =X, or =Y unless the symbols have also been defined conven-
tionally. If the expression is erroneous, COMPASS does not define the location
symbol but flags an error.
Examples:

LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 I30
206437 GPS = 204378
74 LINF = 7408
3 CH EGY 3
74 FAGESIZ |= LINP
o4271 LGOPS EGJ *«0PS

4.6.2 SET — SET OR RESET SYMBOL VALUE

A SET pseudo instruction defines the symbol in the location field as having the value and attributes

indicated by the expression in the variable field. A subsequent SET using the same symbol redefines

the symbol to the new value and attributes.

MIN, or MICCNT, only.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym SET exp
60492600C

SET can be used to redefine symbols defined by SET, MAX,

4-39

sym

exp

A location symbol is required. See section 2.4 for symbol requirements.

An evaluatable expression. The expression cannot include symbols as yet undefined
and cannot contain symbols prefixed by =S, =X, or =Y, unless the symbols are
also defined conventionally.

I the expression is erroneous, COMPASS does not define the symbol but
issues a warning flag.

The symbol in the location field cannot be referred to prior to its first definition.

Examples:

17
T4
22
76

24

20

LOCATION OPERATION | VARIABLE COMMENTS
n 18 Y
A EQuU 15 | A HAS VALUE OF 15
8 SET *p :e HAS VALUE OF POSITION COUNTER
c SET Ae3 :c HAS VALUE A+3 OR 18
B = B2 | ILLEGAL, B IS DOUBLY DEFINED
I
c SET c+2 | LEGAL, C CHANGES FROM 18 T0 20
D SEY F+A | TLLEGAL, F AS YET UNDEFINED
i
BSS | AA | ILLEGAL, REFERENCE PRECEDES
IFIPST DEFINITION
AA SETY 16 |

4.6.3 MAX — SET SYMBOL TO MAXIMUM VALUE

The MAX pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the largest (most positive) value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MAX can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MAX eXP; s €XPys .+, €XP)
sym A location field symbol is required. See section 2.4 for symbol requirements.
exp, An evaluatable expression. Any symbols in the expression must be previously
1 defined. The expression cannot contain symbols prefixed by =8, or =X, or =Y
unless the symbols are also defined conventionally. '
4-40 60492600C

S

N

M’

The expressions should have similar attributes. No test is made for attributes. The test for maximum

value is made in pass one.

In testing for the maximum value in pass one, COMPASS uses values for

relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and these values are
used for the final value of the expression selected in the
first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning flag.
The symbol in the location field cannot be referred to prior to its first definition.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
5 PT3 EQU 5 |
6 PT31 EQU 6 |
2 PT32 EGU 2 !
6 SYM MAX PT3,PT31,PT32
i

4.6.4 MIN — SET SYMBOL TO MINIMUM VALUE

A MIN pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the minimum or least positive value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MIN can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym. MIN €XPq€XPgs« « o 3 XD
sym A location symbol is required (section 2.4).
exp An evaluatable expression. Any symbols in the expression must be previously

defined. The expression cannot contain symbols prefixed by =8, =X, or =Y,
unless the symbols are also defined conventionally.

The expressions should have similar attributes; no test is made for attributes.

The test for minimum value is made in pass one. In testing for the minimum value in pass one.
COMPASS uses values for relocatable symbols relative to block origins.

60492600 C

4-41

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and it is these values
that are used for the final value of the expression which
was selected in the first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning

flag.

The symbol in the location field cannot be referred to prior to its first definition.

4.6.5 MICCNT — SET SYMBOL TO MICRO SIZE

The MICCNT pseudo instruction defines the symbol in the location field as having a value equal fo the
number of characters in the value of the micro named in the variable field. A subsequent SET, MAX,
MIN, or MICCNT using the same symbol redefines the symbol to the new value. Conversely, MICCNT
can be used to redefine symbols defined by these instructions. '

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MICCNT mname
sym A location symbol is required (Section 2. 4).
mname Name of a previously defined micro; it may be a system micro or may have
been defined through MICRO, OCTMIC, DECMIC, or BASE. If mname has
not been previously defined, the location symbol is not defined (or redefined)
and a warning flag is issued.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 [0
MSG MICRO | 1y,*STRING* ;DFFINE 6=-CHARACTER MICRO
. . l .
L :
6 MSIZE MICCNT | MSG IMSIZE EQUALS &
. . le
* - [
23 MSIZE MICCNT | MSG !MSIZE EQUALS 19
4-42 60492600A

e

4.6.6 SST — SYSTEM SYMBOL TABLE

An SST pseudo instruction defines system symbols, with the exception of the symbols noted, as if the
symbols had been defined in the subprogram.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS
control card, all micros and opcodes in the system text overlay are defined automatically at the start
of each assembly; however, the symbols in the system text overlay are defined only for assemblies
that contain the SST pseudo instruction,

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
SST syml, sym2, ceny symn
sym, One or more symbols on the file that are not to be defined,

A location field symbol, if present, is ignored.

Refer to section 10, 2 for an example of SST use.

4.7 SUBPROGRAM LINKAGE

Pseudo instructions ENTRY, ENTRYC, and EXT do not define symbols but either declare symbols
defined within the subprogram as being available outside the subprogram or declare symbols referred
to in the subprogram as being defined outside the subprogram.,

4.7.1 ENTRY AND ENTRYC - DECLARE ENTRY SYMBOLS

The ENTRY pseudo instruction specifies which of the symbolic addresses defined in the subprogram
can be referred to by subprograms compiled or assembled independently; ENTRY lists entry points to
the current subprogram. ENTRY is illegal in PPU assemblies.

The ENTRYC t pseudo instruction conditionally specifies which of the symbolic addresses defined in
the subprogram can be referred to by subprograms compiled or assembled independently; ENTRYC
lists conditional entry points to the current subprogram. ENTRYC is illegal in PPU assemblies and
is synonymous with ENTRY in absolute CPU assemblies, In a relocatable assembly, an entry point
symbol declared by ENTRYC is ignored by the linking loader if the value of the symbol is relative to a
common block and that common block was first declared by a previously loaded subprogram.,

tNot supported by SCOPE 2 Loader,

60492600C _ 4-43

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
ENTRY Symy, SyMy, ..., SYM
ENTRYC syml, symz, ceey symn
symi Linkage symbol; 1-7 characters of which the first must be alphabetic (A-Z) and the

last must not be a colon.

+ =~ * /plank , or A

The symbol cannot include the following characters:

Each symbol must be defined in the subprogram as nonexternal (cannot begin with

=X or =Y or be listed on an EXT pseudo instruction).

ungualified (section 2.4.5).

A location symbol, if present, is ignored.

Entry point symbols must be

A list of all entry points declared in the subprogram precedes the assembly listing. An asterisk

appears to the right of each conditional entry point.

Example:
Location Code Generated
110
110
110 5120000100
727210
111 5110000002
4-44

LOCATION OPERATION | VARIABLE COMMENTS
) " 18 I30
IDENT |GT,CONTROL ,CONTROL
ABS , |
ENTRY |MODE |
ENTRY |ONSW
ENTRY |OFFSW |
ENTRY [ROLLOUY |
ENTRY |[SETPR
ENTRY [SETTL |
ENTRY |SWITCH |
ORG 110n
CONTROL |RSS 0 |
MoDE SA2 ACTR |
SX7 X2
SA1 2 I
. |
. |
. !

60492600C

S

L

N

4.7.2 EXT — DECLARE EXTERNAL SYMBOLS

The EXT pseudo instruction lists symbols that are defined as entry points in independently compiled or
assembled subprograms for which references can appear in the subprogram being assembled. The
EXT pseudo instruction is illegal in an absolute subprogram. In a relocatable subprogram, EXT
defines symbols as strong externals (section 2.4. 1).

Format:
LOCATION OPERATION VARIABLE SUBFIELDS qr
EXT syml, symz, cevy sym11
sym, Linkage symbol, 1-7 characters of which the first must be alphabetic (A~Z) and the

last must not be a colon. The symbol cannot include the following characters;
+ - * / blank , or A

These symbols must not be defined within the subprogram. External symbols
are unqualified.

A location field symbol, if present, is ignored.

An external reference is flagged with an X in the address field in the listing of code generated. All
external symbols are listed in the header information for the assembly listing.

4.8 DATA GENERATION

The instructions described in this section are the only pseudo instructions that generate data. All
other program data is generated through symbolic machine instructions. An instruction that
generates data cannot be used in a blank common block, The pseudo instructions that generate data
are:

BSSZ

blank operation field
DATA

DIS

LIT

VFD

CON

R=

REP, REPC, or REPI

60492600C

Generates zeroed words

Generates one zeroed word

Generates one or more words of data
Generates one or more words of data
Generates literals block entries

Places expression values in user-defined fields
Places expression values in full words

For use in macros; R= assumes that either (B1)=1 or (B7)=1 and
generates increment instructions accordingly

Does not actually generate object code at assembly time but
causes the relocatable loader to repeatedly load a sequence of
code into a reserved blank storage area.

4-45

4.8.1 BSSZ AND BLANK OPERATION FIELD—RESERVE ZEROED STORAGE

The BSSZ instruction reserves zeroed core in the block in use. The origin and location counters are
adjusted by the requested number of words and the assembler generates data words of zero to be
loaded into the reserved area. An instruction that contains a symbol in the location field but has a
blank operation field has the same effect as a BSSZ of one word.

Format:
LOCATION OPERATION VARJABLE SUBFIELDS
sym BSSZ aexp
sym If present, sym is defined as the value of the location counter after the force
upper occurs. The symbol identifies the beginning of the reserved storage area.
aexp Absolute evaluatable expression specifying the number of zeroed words of

storage to be reserved. The expression cannot contain external symbols or
result in a relocatable or negative value.

A BSSZ 0 or an erroneous expression causes a force upper and symbol definition but no storage is
reserved.

A BSSZ or group of BSSZ instructions of six or more words produces an REPL table in object code to
reduce the physical size of the object program (appendix B).

For a blank operation field the listing shows one zero word of data; for a BSSZ instruction the listing
shows the word count.

4.8.2 DATA — GENERATE DATA WORDS

The DATA pseudo instruction generates one or more complete 60-bit or 12-bit data words inthe
current block for each item listed in the variable field.

Format:
LOCATION OPERATION VARIABLE SUSBFIELDS
sym DATA item1 , itemz, ey itemn
sym If present, sym is assigned the value of the current location counter after
the force upper occurs. It becomes the symbolic address of the first item
listed. 4
4-46 604926004

~

item,
i

A DATA pseudo instruction always forces upper. A blank item does not cause generation of a data word.

Character, octal numeric, or decimal numeric data item, according to

Floating point notation is illegal in
Items are separated by commas and terminated
A literal cannot be used as an item.

specifications described in section 2. 7.

PPU assemblies.

Unless the D list option is selected, only ii:em1 appears on the listing.

by a blank.

4.8.3 DIS—GENERATE WORDS OF CHARACTER DATA

- Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
u 18 [0
552 14071700000000000000 0PTB DATA nLLGO |
553 %000Nn00C000000000000 oPY DATA i18ssa l
554 03171520111405000800 oPTY DATA aLcompILe |
555 17252420252400000000 OPYD DATA OLOQUTPUT D l
556 00000000000000000030 I
557 17205146314631463146 oPTY DATA 1.3€F |
561 1640314L6314631463146
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
’ i n 18 {30
1
PERIPH l
De O RASE 0
I
L |
1250 70790 DAT DATA [F070,-7,0,1R1
1251 7770 [
1252 oooo I
1253 0034 |
1254 5501 DATA PC A,OLEF
1255 0000 I
1256 g0s06 |
12%7 0123 DATA D123,-4 |
1260 7773
1261 0401 DATA H¥*DATA* I
1262 2401

The DIS pseudo instruction generates words containing character data. The instruction can be used

conveniently when a character data string is to be used repeatedly.

Unless the D list option is selected

only the first word of character data appears on the listing. The instruction has two formats:

60492600A

4-47

Format one:

LOCATION OPFRATION VARIABLE SUBFIELDS

sym DIS n, string

sym If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

n An absolute evaluatable expression specifying an integer number of words to be

generated. When base is M, COMPASS assumes that n is decimal.
string Character string

For a CPU program, COMPASS takes 10 times n characters from the string and packs them as they occur
10 characters per word into n words. For a PPU program, COMPASS takes two times n characters from
the string and packs them as they occur two characters per word into n words. If the statement ends
before 10 x n (or 2 x n) characters, the remainder of the requested words are filled with blanks,

K nis 0, COMPASS assumes the instruction is in format two.

Format two:

LOCATION OPERATION VARIABLE SUBF!ELDé

sym DIS ,dstringd

sym If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

d _ Delimiting character

string Character string; any character other than delimiting character

In this form, the string must be bounded by delimiters. The comma is required. The characters between
the two delimiting characters are packed into as many CPU or PPU words as are needed to contain them,
Twelve zero bits are guaranteed at the end of the character string even if COMPASS must generate an
additional word for them, I COMPASS detects the end of the statement before it detects a second
delimiting character, it produces a fatal error.

4-48 ' 60492600A

_/I

" .

o, .

e

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30
561 070516052201124055535 ONE DIS 23GENERATE ?‘ CPU HWORDS
562 55032025552717220423 |
563 B7051605220124055535 THWO DIS s *GENERATE 2| CPU WORDS*
564 55032025552717220423 [
565 00000000000000000000 i
Location Code Generated LOCATION OPERATION | VARIABLE » COMMENTS
1 n 18 [30
FPJ ‘
1
DM BASE M :
1402 a7ces uIs 10sGENERATL Ly PP WORUS
1403 1ei5 t
1404 2201 i
1409 2405 |
14006 5534 I
1407 : 3355
1410 2020 l
1411 . 5527 !
1412 1722 |
1613 ‘ Juc3 t
1414 0765 LIS s *GENERATE 10 °P wW0kDS*®
1415 1005 (
14106 2201
1417 24053 !
1423 5534 |
1621 3355
1422 2020 l
1423 5527 |
1424 1722
1425 0423
1426 quid

4.8.4 LIT — DECLARE LITERAL VALUES

~ A LIT pseudo instruction generates data words in the literals block. This instruction and the

= prefix to a data item provide the only means of generating data in the literals block, The LIT
pseudo instruction assures sequential entries for a table of values.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym LIT iteml, itemz, ceesy it:emn

60492600A

4-49

sym

item,

If present, sym is assigned the value of the literals block location counter.

At least one and not more than 100 words of character, octal numeric, or
decimal numeric data items.
are separated by commas and terminated by a blank. Floating point data
items are illegal in PPU assemblies.

Section 2.7.3 contains specifications. Items

COMPASS enters data items into the literals block in the order specified.

If the converted binary values for all the data items listed with a single LIT match an existing literal
block sequence, they are not duplicated. If, however, any item in the list does not match an entry in
the block, the entire sequence is generated. A literal item subsequently referred to through an

= prefix is not duplicated. A null item (e.g. H** or 0L) does not cause a word to be generated.

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
N 18 I30
611 POOL LIT 341,1.59265,2.7182182,57.2957795£€1
CONTENT CF LITERALS BLOCK,
§oob11L 17216146314631463146 0Q(=Y=Y=Y~
000612 17206275576441776271 OP12,#6%1¢
800613 17215337351136014426 0QW2IZA9Y
00061. 17314363651440663121 OYRtaLS5VYYQ
000615 16513333033540576566 _ N(OQC25,pv
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 o 18 [30
7447 N2 LIT 1R1,7078,7,0
7453 LIY 2C A,L,0LEF
7456 LIT H*L TTERALS* |
CONTENT CF LITERALS BLOCK. '
7447 0034 1
7450 7070 £
7451 0007 G
7452 0000
7453 5501 A
7454 pono
7455 05086 EF
7456 1411 LI
7457 2405 TE
7460 2201 RA
7461 1423 LS
4-50 60492600A

~

~—

4.8.5 VFD — VARIABLE FIELD DEFINITION

The VFD instruction generates data in the current block by placing the value of an expression into a
field of the specified size.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym VFD iteml/expl, itemz/expz, eoositem /expn

sym For a CPU assembly, the location field can contain sym, plus, minus, or
blank, as follows:

sym If a symbol is provided in the location field, a force upper occurs
and the value of the location counter following the force upper is
assigned to the symbol. The symbol identifies the first word of
data generated by the VFD.

+ Causes a force upper. Data generation begins in a new word.

- COMPASS generates zero bits to the next quarter word boundary,
at which point the first field begins.

blank COMPASS begins the first field at the current value of the position
counter. ’

For a PPU assembly, if the location field contains a plus, minus, or a symbol,
data generation begins in a new word. If the location field is blank, the first
field begins at the current value of the position counter.

item, An unsigned constant or previously defined symbol having a value specifying a
! positive integer number of bits for the field to be generated; maximum field
size is 60 bits for both CPU and PPU assemblies (60 being the maximum
number of significant bits for an expression value). When base is M, il:emi _
is assumed to be decimal notation.

exp; An absolute, relocatable, or external expression, the value of which will be
inserted into the field specified by item;j. The expression is evaluated using
the specified field size. Character constants are right or left justified in the
field according fo the type of justification indicated. In a relocatable CPU
assembly, no field that contains a relocatable or external address expression
can cross a 60-bit word boundary, and no 60-bit word can have more than
four fields that contain relocatable or external address expressions.

Each field is generated as it occurs., For a CPU assembly, if the next instruction that generates code
in the block is not a VFD with a blank location field, and the last VFD field in the current VFD ends to
the left of a quarter word boundary, COMPASS inserts zero bits up to the next quarter word boundary.
These zero bits do not show on the assembly listing. Remaining parcels are then filled with no—
operation instructions.

60492600A » 4-51

When a VFD instruction that does not have a location field entry immediately follows another VFD in the
same block, no padding with zeros or forcing upper occurs; fields are generated sequentially as they are
specified. ‘ -
Following a VFD, the position counter contains the number of bits remaining to be assembled in the last
word in which data was generated by the VFD.
Examples: —
In the first example, the symbol TABLOC has been defined earlier in the program and associated with
000551. '
’ S
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [0
31 ALPHA SET 25 \ ~
566 24010200000023000551 TABLE VFD 36/3CTAB,6/19,18/TABLOC
567 00808005665555555555 VFD 38/7%=-1,30/5H s ALPHA/ -0
570 777777774 | ~—
0000000000040 VFD *py |
571 1117240155815555653 4 VFD 3070HIOTA,6/1RA,24L/0AX+1
572 0000001585232308107905 VFD 60 /0RMESSAGE ,30/73LCI0,15/7/0R0 L
573 031117000000033 '
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS : ,
1 N 18 [30 —
PPU '
OpM ‘ BASE |M I
1310 333% N JVFD 60/10R0123456789
1311 3536 |
1312 3740 | ’
1313 4142 S~
131% \ 4344 !
1315 8010 Al1 VFD 12/710412711,127=-124142/-7070
131e 0011 i L
1317 7765 |
1320 8707
N’
4.8.6 CON — GENERATE CONSTANTS
The CON pseudo instruction generates one or more full words of binary data in the block in use. It o
differs from DATA in that it generates expression values rather than data items and differs from VFD —
in that the field size is fixed.
Format: ~
LOCATION OPERATION VARIABLE SUBFIELDS
~—
sym CON . expl, expz, eny expn
sym If present, sym is assigned the value of the location counter after the force i
upper occurs.
. ~—
expi An absolute, relocatable, or external expression the value of which will be
inserted into a field having a size of one word. For PPU assembly, floating
point is not allowed; for CPU assembly, double precision is not allowed. ..
4-52 60492600 F ~

N
R
Examples: ,
N In the first example, the symbols FAIL and PASS have been defined earlier in the program and associated
with 22047gnd 2172, respectively.
M Code Generated | T'iocanion OPERATION | VARIABLE COMMENTS
S 1 N 18 [30
1460 0000 MSG1 CNN 0 !
‘ . 1461 0006 CON 6 !
e 1462 0003 CNN 3 I
1463 2204 CoN FATL
1464 0024 Con 20 |
-— 1465 0000 MSG2 CaN 0
1466 0006 ' cAN 6 |
1467 0003 CoN 3
1470 2172 CON | PASS |
k‘_/" 1471 0024 CQN 20 |
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
. 1 N 18 [0
S - T
574 TAD T8SS 0 |
L n LOC 0 !
L 0 003800000000000000055 TON iR |98
— L 1 00000000000000000062 CON 1R1] 01
L 2 00000000000000000064 CON 1R2 |32
L 3 00000000000000000060 ; CON 1R= lo3
L] L J | -
‘ . » l .
L 75 000000000006000000066 B 1 CON 1Rv 175
o L 76 0000000000000000N0076 CON 1R" | 76
L 77 00000000000080000055 CON 1R l??
67% LoC *0 ,
AN
4.8.7 R= — CONDITIONAL INCREMENT INSTRUCTION
- The R= pseudo instruction generates a CPU increment unit instruction depending on the contents of the
variable subfields and on whether or not the subprogram earlier contained a Bl=1 or B7=1 pseudo
instruction (section 4.4.4).
=~ Use of R= augments macro definitions and increases optimization of object code. It is illegal in a
PPU program.
~ The A list option controls listing of substituted instructions.
7 Format:
LOCATION OPERATION VARIABLE SUBFIELDS
L sym R~ reg, exp
-
™~ sym Optional, if present, sym is assigned the value of the location counter after
‘_7 the force upper occurs. This force upper occurs whether the R= generates an
instruction or not.
A . 60492600 F 4-53

reg

€xp

Examples:

1.

A register designator (A, X, or B) and a digit (0-7) which COMPASS
concatenates with S to form the instruction operation code.

Operand register or value expression. If exp is the same two characters
as reg, no instruction is generated.

If the expression value is 0, the variable field is BO.

If the Bl=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field of the instruction is B1,
B1+Bl1, or -Bl, respectively.

If the B7=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field for the instruction is B7,
B7+B7, or -B7, respectively.

In all other cases, the variable field is the register or value indicated by the
expression. o

R= used with Bl=1

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

] n 18 T30

2.

4-54

R=used with B1#1

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 " 18

ltac R X5 ,-1

60492600 F

\//

S

3. Expression is same as register designator:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
RFG ‘MICRO [1,,%R5* :
R= 15, 2REG? .

No instruction is generated; SB5 B5 would be a no operation instruction.,

4.8.8 REP, REPC, AND REPI - GENERATE LOADER REPLICATION TABLE

The REP, REPC, and REPI instructions cause the assembler to generate an REPL loader table so
that when the subprogram being assembled is loaded, the loader will load one or more copies of a
data sequence. For the REPI instruction, the loader generates the copies immediately upon encoun-
tering the table; for REP, the replication takes place at the end of loading. For REPC ¥ the loader
ignores the REPL table if the destination data address is in a common block that was first declared
by a previously loaded subprogram; otherwise, the loader generates the copies immediately upon
encountering the tables.

Replication of object code is valid in relocatable assemblies only. It is particularly useful for setting
one or more blocks of storage to a given series of values or for generating tables.

Data to be replicated must not contain any external references or common block relocatable addresses.
For REPC and REPI, data must be inpreviously assembled text.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
REP 8/saddr, D/daddr, C/rep, B/bsz,1/inc
REPC T
REPI

A location field symbol, if present, is ignored.
The variable field subfields can be in any order.
S/saddr Relocatable expression specifying first word address of code to be copied.
The S/saddr subfield must be provided. If it is zero, or omitted, the assembler
flags the instruction as erroneous and does not generate an REPL loader table.
D/daddr Relocatable expression specifying the destination of the first word of the first
copy. If D/daddr is omitted, the assembler sets daddr to zero, and, when

daddr is zero, the loader uses saddr plus bsz for the destination address.

Note that room for the repeated data must be reserved in the destination block.

¥ Not supported by SCOPE 2 Loader.

60492600A 4-55

C/rep

B/bsz

1/inc

Absolute expression specifying the number of times code is to be copied. When

base is M, COMPASS assumes that rep is a decimal value. I C/rep is
‘omitted, the assembler sets rep to zero.

makes one copy.

When rep is zero or one, the loader

Absolute expression specifying the number of words to be copied (block size).

When base is M, COMPASS assumes that bsz is decimal.

If B/bsz is omitted, the assembler sets Bsz to zero. When bsz is zero or one,
the loader copies one word.

COMPASS assumes that inc is in decimal.

Absolute expression specifying the increment size in words. When base is M,

The increment size is the number of words between the first word of each copy.
When inc is zero or omitted, the loader uses bsz as the increment size. The
loader writes the first copy starting at daddr, the second starting at daddr+inc,
the third at daddr + 2 x inc, etc. until the rep count is exhausted.

The origin and location counters for the block containing the daddr are not advanced by a value of
inc x rep. Storage reservation for replicated code is the responsibility of the user.

Rules for replication:

1. The S subfield cannot be omitted
2,
ORG, ORGC, or BSS)
- 3.
4,
addresses
5.
Example:
Location Code Generated
10
5017 000NOCOCO0ON0NON0001S
5021 nnooooonNnNNENEEnnNo2n
5021 gnNooo0NnNNoo00AN007o07o
5022 00000000000000N0N001
5023 CO0000DOPONNODON0O0005
5024 17216300000000000000
132
5251
4-56

Room must be reserved for the copies in the destination block (for example, through

REP, REPC, and REPI can be used in relocatable assemblies only

Data to be replicated must not contain any external references or common block relocatable

For REPC and REPI, data must be in previously loaded text

LOCATION OPERATION | VARIABLE ‘ COMMENTS
) n 18 [30
or = 11 i
USE NEWP !
g8 NATA | 15,20,7070R,155,3414
|
|
1 FQU #-Np+5 |
uSE DALACK |
na rSS RO*T |
USE *
RFPT |S/RA,0/NA,R/I~5,C/RC,I/I

60492600A

e

N’

4.9 CONDITIONAL ASSEMBLY

The following pseudo instructions permit optional assembly or skipping of source code. A special form,
SKIP, causes unconditional skipping. COMPASS provides IF test instructions that:

Test for assembly environment (IFtype)

Compare values of two expressions (IFop)

Compare values of two character strings (IFC)

Test the attribute of a single symbol or an expression (IF)
Test the sign of an expression (IFPL and IFMI)

Immediately following the test instruction are instructions that are assembled when the tested condition
is true and skipped when the condition is false. Skipping is terminated either by a source statement
count on the IF instruction, or by an ENDIF, an ELSE, or an END.

The statement -count, when used, is decremented for instructivon lines only; comment lines (identified by
* in column one) are not counted. Determining the IF range with a statement count produces slightly
faster assembly than using the ENDIF,

The results of an IF test are determined by the values of expressions in pass one; the value of a
relocatable symbol is relative to the USE block in which it was defined. The value of an external symbol
is 0 if the symbol was declared as external. If the symbol was defined relative to a declared external,
the value is the relative value.

4.9.1 ENDIF — END OF IF RANGE

An ENDIF causes skipping to terminate and assembly to resume. When the sequence containing the
ENDIF is being assembled, or is controlled by a statement count, the ENDIF has no effect other than
to be included in the count.

Skipped instructions such as macro references are not expanded. Thus, any ENDIF that would have
resulted from an expansion is not detected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname ENDIF
ifname Name of an IF, SKIP, or ELSE sequence; or blank. ifname can be used as any

other type of symbol elsewhere in the program.

Skipping of a sequence initiated by an IF, SKIP, or ELSE that is assigned a name can be terminated
by an ENDIF specifying the sequence by name, or by any unnamed ENDIF. Any ENDIF terminates
skipping of an unnamed sequence that is not controlled by a source line count. A named ENDIF
terminates the named IF, SKIP, or ELSE and any unnamed IF, SKIP, or ELSE sequences in effect
that are not under line count control.

60492600C 4-57

4.9.2 ELSE — REVERSE EFFECTS OF IF
Through the ELSE instruction, COMPASS provides the facility to reverse the effects of an IF test
within the IF range. An ELSE detected during skipping causes assembly to resume at the instruction
following the ELSE. An ELSE detected while a sequence is being assembled initiates skipping of source
code following the ELSE. Skipping continues until:

1. A statement count specified on the ELSE is exhausted

2. A second ELSE is detected for the sequence

3. An ENDIF is detected for the sequence

Format:
LOCATION) OPERATION VARIABLE SUBFIELDS
ifname ELSE mct
ifname Name of an IF, SKIP, or ELSE sequence, or blank.
mct Optional absolute evaluatable expression specifying integer number of source

lines to be skipped. It has no effect if the ELSE resumes assembly. When the
base is M, COMPASS assumes that gnct is decimal.

An ELSE specifying the sequence by name or any unnamed ELSE terminates skipping of a sequence

initiated by an IF, SKIP, or an ELSE that has an assigned name. Skipped instructions such as macro
references are not expanded; any ELSE that would have resulted from the expansion is not detected.

4.9.3 IFTYPE - TEST OBJECT PROCESSOR TYPE

IFtype pseudo instructions test for the type of processor that will execute the object program, as
declared by MACHINE, and PERIPH or PPU pseudo instructions.

Format:
LOCATION |oreraTion VARIABLE SUBFIELDS
ifname IFtype et
4-58 N 60492600A

N

ifname Optional 1-8 character name,.

type Mnemonic specifying type of object processor.
Type Condition Causing Assembly
CP Any central processor unit
CP6 Neither PERIPH nor PPU nor MACHINE 7 has been specified.

CPU code is assembled for a CYBER 170 Series, CYBER 70/
Model 71, 72, 73, or 74 or 6000 Series Computer System.

CP7 Neither PERIPH nor PPU nor MACHINE 6 has been specified.
That is, CPU code is assembled for a CYBER 70/Model 76
or a 7600 Computer System.

PP Any peripheral processor unit
PPé One of the following is true:

1. PERIPH has been specified but MACHINE 7 has not
been specified.

2. PPU and MACHINE 6 have both been specified. PPU
code is assembled for a CYBER 170 Series, CYBER
70/Model 71, 72, 73, or 74 or a 6000 Series Computer
System. -

PP7 One of the following is true:

1. PPU has been specified but MACHINE 6 has not
been specified.

2. PERIPH and MACHINE 7 have both been specified.
That is, PPU code is assembled for a CYBER 70/
Model 76 or a 7600 Computer System.

fnet Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped, When base is M, COMPASS assumes
that gnct is decimal.

The ifname and fnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect,

60492600C 4-59

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

Code Generated

0

173 34130000000

LOCATION OPERATION | VARIABLE COMMENTS
1 , 1 1§ [30

TOENT [XY2 |
MACHINE & i
: |
BSS 123 !
IFCPs |2 |
XJ 0 |
leLse |1
M.J o 1

]

4.9.4 IFOP- COMPARE EXPRESSION VALUES

An IFop pseudo instruction compares the values of two expressions according to the relational
mnemonic specified and assembles instructions in the IF range when the comparison is satisfied.

Equality, the expressions are equal in all respects. That is,they
not only have the same numeric value but have the same attributes

The first expression is greater in value than the second expression.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname IFop exp, , €XP,, met
ifname Optional 1-8 character name
op Specifies comparative test:
op Condition causing assembly
EQ
as well. For example, both are names that are common
relocatable, or absolute,or external, etc.
NE Inequality, the expressions are not equal in all respects. They
differ in value or in some attribute.
GT
No other attributés are tested.
4-60

60492600A

GE The first expression is greater than or equal in value to the second
expression. No other attributes are tested.

LT - The first expression is less in value than the second expression,
No other attributes are tested. ‘

LE The first expression is less than or equal in value to the
second expression. No other attributes are tested.
For these tests, positive zero and negative zero are equal.

exp An expression. When the value of exp is tested, exp can include only previously
defined symbols and the result can be absolute, relocatable, or external. If an
undefined symbol is used, the expression value is set to zero, the IF instruction
is flagged as erroneous, and assembly continues with the next instruction.

mct Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that ¢gnct is decimal. When gnct is blank, the comma can be omitted.

The ifname and fnct parameters are related as follows:

1. Tf a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2, If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first., A named ELSE -
has no effect.

3. I a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

A demonstration of one use of IF statements in a PPU program:

'lOCATloN OPERATION | VARIABLE COMMENTS
| i n 18 130
IF DEF,LOO0P '
IFLTY *-{ 0Py40B
ZJIN LooP
ELSE 2
NJN ¥43
LuM |LooP

This code assembles a zero jump to the symbol LOOP if LOOP has been defined within 37 _, words (the
range of a short jump) prior to the occurrence of this code. Otherwise, the NJN and L are assembled,

60492600A : 4-61

4.9.5 IFPL AND IFMI —TEST SIGN OF EXPRESSION

The IFPL and IFMI pseudo instructions test the sign of an expression and assemble instructions in
the IF range according to whether the sign of the value is plus (PL) or minus (MI). The pseudo
instructions allow positive zero to be distinguished from negative zero,

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFPL exp, (net

ifname IFMI exp, fnct

ifname Optional 1-8 character name

exp An expression. It can include only previously defined symbols and the result

can be absolute, relocatable, or external. If an undefined symbol is used, the
instruction is flagged as erroneous and assembly continues with the next
instruction.

fnct Optional absolute expression specifying an integer count of the number of

statements to be skipped. When base is M, COMPASS assumes that ¢nct is
decimal, When ¢nct is blank, the comma can be omitted.

The ifname and ¢nct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a

matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

The condition tested for by IFPL is satisfied if the value of exp is greater than or equal to plus zero;
the condition for IFMI is satisfied if the value of exp is less than or equal to minus zero.

4-62

60492600A

S’

R

Example:

The following opdef defines the CPU instruction MXi jk so that the address value is 60 if the expression
value is negative zero or a positive non-zero multiple of 60, otherwise it is the address expression
value modulo 60. ’

IFEQ Ayiy3
IFLE VAL,0,1

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30

MxXq OPNEF | REG, VAL |
LOCAL | A |
A SET | vaL |
A SET A-A/ﬁﬂﬂ‘ﬁﬂnl
IFPL Ay 3 |
|
|

SKIP 1
A SET A+60D '
VFD 67 438y 3/REGyH/A
ENDM |
|
1
Example of call:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30
MX6 -52 |
rz7ezi3 sennnanng i -5z |
7777713 LEZISI Rt B SET wnn":'r_m:-Nnmﬂﬂummeqn
IFPL se00001,3 |
IFEQ ALR00N01,1,3
IFLE -T2, ‘
SKIp 1
: 10 iy nanng]ET T ANGN 2T +A 0D
43610 . |VFD E/URB /646724270001
ENDM I
|

4.9.6 IF - TEST SYMBOL OR EXPRESSION ATTRIBUTE

The IF pseudo instruction tests a symbol or an expression for a specific attribute and assembles
instructions in the IF range if the test is satisfied,

60492600A 4-63

The expression in the second subfield is not a common relocatable

The expression does not reduce to a program relocatable address

60492600A

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname IF att, exp, fnct
ifname Optional 1-8 character name
att Specifies attribute test. A minus prefix to the attribute causes assembly on
the false rather than the true condition.
att Condition causing assembly
SET The symbol given in the second subfield was defined by a SET,
MAX, MIN, or MICCNT
-SET The symbol given in the second subfield was deflned other than
by a SET, MAX, MIN, or MICCNT
ABS The expression in the second subfield reduces to a value that is
not relocatable or external
-ABS The expression in the second subfield reduces to either a
relocatable or an external address
REL The expression in the second subfield reduces to a loecal or
common relocatable address
-REL The expression in the second subfield does not reduce to a local
or common relocatable address
REG The expression in the second subfield contains one or more
register names
-REG . The expression in the second subfield does not contain a register
name
COM The expression in the second subfield reduces to a common re-
locatable address (any blank or labeled common block)
-COM
address (any blank or labeled common block)
EXT The expression in the second subfield contains one or more
external symbols
-EXT The expression in the second subfield does not contain an
external symbol
LCM The expression reduces to an LCM address
-LCM The expression does not reduce to an LCM address
LOC The expression reduces to a program relocatable address
-LOC
4-64

- .

N’

DEF All the symbols in the expression in the second subfield are

defined

-DEF One or more of the symbols in the expression in the second
subfield is undefined

MAC The name in the second subfield is an opcode name

-MAC The name in the second subfield does not contain an opcode name

MIC The name in the second subfield is a micro

-MIC The second subfield does not contain a micro name

SST The second subfield contains a system symbol

-SST The second subfield does not contain a system symbol

exp For SET, 8ST, -SET, and -SST, exp must be a single defined symbol. For

MIC and -MIC, exp must be a name. For any other test, it is an expression.
The expression can include symbols as yet undefined if att is DEF, -DEF, REG,

-REG, EXT, or -EXT only. If an undefined symbol is used with any other '
attribute, the expression value is set to zero, the instruction is flagged as
erroneous, and assembly continues with the next instruction. Note that if
a symbol is never defined conventionally but only by use of =S or =X prefix
(see section 2.4.2), COMPASS does not define the symbol until the end of

the assembly, and IF tests will consider the symbol undefined.

nct Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that gnct is decimal. When gnct is blank, the comma can be omitted.

The ifname and gnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is en-
countered, whichever occurs first,

2, If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first., A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

60492600A 4-65

Examples

LOCATION OPERATION{ VARIABLE COMMENTS
) n 18 J30
ABLE BSS 20 |
L] * - l
S M |
TEST IF REL ,ABLE+15 :
L) L) - [} '
. . . !
TEST ENDIF I
1F COM,DTA,2 ERRONEOUS, DTA AS YET UNDEFINED
. . |
1 e L] I
* 2 |
USE 77/ ’ |
DTA BSS 1 |
]

49.7 IFC - COMPARE CHARACTER STRINGS

The IFC pseudo instruction compares two character strings according to the operator specified
and assembles instructions in the IF range if the comparison is satisfied.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFC ’ op,dstri'hgldstringzd, fct

ifname Optional 1-8 character name

d Delimiting character. Characters between the first and second occurrence of this.
character constitute the first character string; characters between the second and
third occurrence constitute the second character string, '

op Specifies comparative test: .

op Condition causing assembly

EQ or ~-NE string1 has the same value as st;ring2

NE or -EQ stringl does not equal string,

GT or -LE string1 is greater than string2

4-66 . , 60492600A

SN

stringi

Mmct

GE or -LT string, is greater than or equal to string 0
LTor -GE string, is less than stringp
LE or -GT string; is less than or equal to string,

Character string, When IFC is within a macro definition, each character string
can be a formal parameter.] ‘

Optional absolute evaluatable expression specifying an integer count of the number
of statements to be skipped. When base is M, COMPASS assumes that gnct is
decimal. When fnct is blank, the comma can be omitted.

The ifname and gnct parameters are related as follows:

1. I a count is supplied, it takes precedence over any ENDIF but not over an ELSE, The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2, If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE

has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect ‘

Each character in string, is compared with the corresponding character in stringg progressing from

left to right until an inequality is found or both strings are exhausted. When one string is shorter than

the other, it is padded with a character that has a value less than any other character in the string.

The truth condition is based on the relative magnitudes of the characters in the strings.

Examples:

LOCATION OPERATION | VARIABLE COMMENTS

1 H

8 130

TEST1 IFC
TEST2 IFC
| |TEST3 | TFC

: IFC

£Q,ABCABCS, ABC EQUALS ABC
LT,*AB*ABC* | AB IS LESS THAN ABC
6T, XAXX | A IS GREATER THAN NULL
~GE,*Z%8%,3 | Z IS LESS THAN 8

The IFC in the following example checks for an empty parameter string.

60492600A

4-67

LOCATION OPERATION ‘VARIABLE COMMENTS
) n 18 T30
XX MACRO [P1,P2 !
IFC |Fa,**p2®,1 !
P ERR ''Fy a6 EPROR
. |
. |
. I
i
ENDM i

The following example illustrates a character string terminated incorrectly. When COMPASS reaches
end of statement without finding a third asterisk, the asterisk omitted following P1 causes an error flag.

4 LOCATION

OPERATION | VARIABLE ’ COMMENTS

f30

IFC EQ,*¥0N*P1,28P2

4.9.8 SKIP — UNCONDITIONALLY SKIP CODE

‘The SKIP instruction causes VCOMPASS to unconditionally skip the instructions in the SKIP range.
It resembles an IF for which there is no true condition.

Format
LOCATION OPERATION VARIABLE SUBFIELDS
ifname SKIP et
ifname Optional 1-8 character name
fnct Optional absolute evaluatable expression specifying an integer count of the number

of statements to be skipped. When base is M, COMPASS assumes that gnct is

decimal.

The ifname and ¢net parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

4-68

60492600A

AN

2. If neither a count nor a name is supplied, the SKIP range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the SKIP range is terminated by an ENDIF or ELSE with
a matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that

does not match has no effect.

4.10 ERROR CONTROL

The ERR and ERRxx pseudo instructions described in this section either conditionally or unconditionally
set an error flag.

4.10.1 ERR — UNCONDITIONALLY SET ERROR FLAG

An ERR pseudo instruction produces an assembly error but does not affect other code. Usually, it is
used in conjunction with a conditional assembly pseudo instruction to force an error into the assembly ‘
based on an assembly time test. One application is to use a test and ERR to detect illegal macro

parameters,
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
flag ERR
flag A single alphanumeric character denoting the error type. The flag is placed

in the listing to the left of the line for ERR. The flag can denote a fatal or

nonfatal error.

A fatal error causes COMPASS to.suppress generation of the

binary deck unless the D mode option is selected on the COMPASS control
card. If no flag is specified, or the character is not one of those given in
section 11.7, COMPASS uses P.

A variable field entry, if present, is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 [30
NNN MACRO | P1,P2,P3,P4|
IFEQ | P1,0 |
A ERR [
. I
ENDM :
[] [] |
NNN - | 0,A,8,C |
60492600C

4-69

4.10.2 ERRxx — CONDITIONALLY SET ERROR FLAG

An ERRxx pseudo instruction produces an assembly error when a condition detected during the second
pass of the assembler is true.

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

flag

flag

aexp

Example:

ERRxx aexp

A single alphanumeric character denoting the error type. The flag is placed

in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error., A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control card.
If no flag is specified, or the character is not one of those given in section 11.7,
COMPASS uses P,

Defines condition under which aexp value is erroneous.

XX - Error Condition

NG or Ml Value of expression is negative
NZ : Value of expression is nonzero
PL Value of expression is positive

ZR Value of expression is zero

Absolute expression. It cannot contain external symbols or references to blank

common. The test is made in pass two of the assembler. Relocatable addresses

are assigned values relative to program origin rather than to the block in which
they are defined.

NOTE

ERRxx is the only conditional instruction for which the
test is made in pass two. Therefore, this is the only
pseudo instruction that can be used to determine PPU
overflow if the PPU program has literals and USE
blocks. '

Test for memory overflow in PPU assembly

Location

7467

7462

4-70

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 _ n 18 T30
1

PERIPH !

. l

LASTTAG |BSS |8 |
7777047 R ERRPL [LASTTAG-7777|
END |

60492600A.

S

e

—

S’

4.11 LISTING CONTROL

The instructions described in this section permit extensive control of the assembly listing format,

4.11.1 LIST — SELECT LIST OPTIONS

The LIST pseudo instruction controls the content and format of the assembler listing. LIST instructions
are disabled under either of the following conditions:

When the list parameter (L) on the COMPASS control statement (section 10.1.2) is zero, or

When the list option parameter (LO) on the COMPASS control statement is used and is other
than LO=0.

Use of the LIST pseudo instruction is optional. If it is not used in the subprogram, COMPASS list
output is according to the L and LO parameters on the COMPASS control statement. If the LO parameter
is omitted or LO=9, the list options are as if L, B, N, and R only are selected and the listing contains
heading information, assembly text, assembler statistics, an error directory (upon occurrence of an
error only), and a symbolic reference table. Formats of this output are described in detail in

chapter 11 and brief summaries are given below.

Heading information Program length, origin, and length of each block, entry points
and external symbols.

Assembly text Line, and assembly results of each line assembled (not skipped)
) from the input device (excludes code generated by RMT, DUP,
ECHO, XTEXT, or a macro or opdef expansion). For data
generating pseudo instructions DATA, DIS, BSSZ that produce
more than one word of object code, only the first word is listed.
For VFD and CON all words of object code are listed. For R=,
only the pseudo instruction is listed.

Each occurrence of the LIST instruction is listed.

Assembler statistics Amount of storage used, counts of assembled statements,
defined symbols, invented symbols, and references to symbols.

Error directory Lists fatal and nonfatal errors and summarizes the causes of each.
Symbolic reference table List of all symbols defined in the program according to symbol

qualifier, if any, followed by an index to every reference to the
symbol in the listed statements.

Formats:
LOCATION QOPERATION VARIABLE SUBFIELDS
LIST OP150Pgs .+« 0P
or
LIST *
60492600A 4-71

A location field symbol, if present, is ignored.

4-72

op,

1

A list option represented by a single letter or a letter prefixed by a minus sign.
The unprefixed letter:selects the option; the prefixed letter cancels the option.
Options are separated by commas and terminated by a blank,

A

List statements actually assembled

When A is not selected, a line containing concatenation and micro substi-
tution marks is listed with the marks in it exactly as presented to the
assembler. When the A option is selected, however, the assembler lists
the line before and after the editing takes place. Selecting A also causes
the listing of lines of code resulting from the R= pseudo instruction.

List binary control statements

When B is selected, the listing includes SEG, SEGMENT, IDENT, and
END pseudo instructions.

List listing control statements

When C is selected, the listing includes EJECT, SPACE, TTL, and
TITLE pseudo instructions. A listing instruction that causes an EJECT
is listed as the first line of the new page after the EJECT takes place

Include details

Selection of the D option causes listing of the following items not normally
listed: ’

Second and subsequent lines of DATA and DIS

Code ‘assembled remotely when HERE or END causes its assembl
- Literals block '

Default symbols

Include echoed lines

Selection of E causes listing of all iterations of code duplicated as a result
of DUP and ECHO.

List IF-skipped lines

When F is selected, the listing includes all lines skipped by IF, IFop,
IFC, IFPP, IFCP, SKIP, and ELSE. In addition, the Symbolic Reference
Table contains references to symbols in IF statements.

List generated code

‘Selection of this option causes listing of all code generating lines regardless'
‘of list controls other than L. Instructions listed include symbolic machine

instructions and BSS, BSSZ, CON, DATA, DIS, R=, and VFD.

Master list control

This option is normally selected. When L is canceled, the long list contains
error flagged lines, an-error directory, and LIST and END pseudo instruc-
tions only, regardless of selection of any other options on LIST.

List macros and opdefs

Selection of M causes all lines generated by calls to macros and opdefs other
than those defined by the system to be listed.

60492600B

RN

e

N List nonreferenced symbols
This option is normally selected. Cancellation of this option causes
any nonsystem symbol for which no reference has been accumulated
(e« g+, all occurrences are in IF statements with the F option deselected,
or are between CTEXT or ENDX with the X option deselected) to be
omitted from the symbolic reference table.

R Accumulate and List references v
This option is normally selected. When R is canceled, COMPASS does
not accumulate references. R should not be canceled if a complete
symbolic reference table is desired. If R is canceled at the end of
assembly, no symbolic reference table is produced.

S List systems macros and opdefs
Selection of S causes all lines generated by calls to systems-defined
macros and opdefs to be listed.

T List nonreferenced system symbols
Selection of this option causes a symbol defined through SST to be
included in the symbolic reference table even if there are no accumulated
references.

X List XTEXT lines

Selection of the X option causes listing of all statements assembled as a
result of an XTEXT pseudo instruction. CTEXT and ENDX provide a
means of alternately turning this external designator off and on.

A dollar sign in the variable field selects all options,

* An asterisk in the variable field causes selection of the options in effect prior
to the current selection, The assembler records occurrences of LIST pseudo
instructions and maintains a table of the most recent 50 occurrences. Each
LIST * resumes use of the most recent entry and removes it from the list.
When the subprogram contains more LIST * instructions than there are entries
in the stack, COMPASS selects the default list options (B, L, N, and R).

For list options A, C, D, E, F, M, S, ‘and X, all applicable options must be selected for a specific
line to be listed. For example, listing of an expansion resulting from a DUP within a macro requires
selection of both- M and E. Similarly, an expansion caused by an XTEXT within a system macro call is
listed only when both X and S are selected. To obtain a listing showing [~and # marks removed from
external text inside a DUP range, A, X, and E must all be selected.

" Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T

LIST A
DATA 1.30EE

0 17205146314631463146 _ DATA 1.3EE
LIST D
DATA 1.3#E€

2 17205146314631463146 DATA 1 .3EE

LIST ~A,~D

!
|
!
[
!
3 16403146314631463146 ;
I
|
[
I
!

4 17205146314631463146 DATA | 1.30EE
LIST |+
DATA |1.3eEEZ#
6 17205146314631463146 DATA |1.3€E
7 16403146314631463146
60492600A 4-73

4.11.2 EJECT—EJECT PAGE AND BEGIN NEW SUB-SUBTITLE

The EJECT pseudo instruction advances printer paper to a new page before printing. Then, page
headings are printed and listing continues, EJECT has no effect, other than setting the sub-subtitle,
if it is generated by DUP, ECHO, RMT, XTEXT, or a macro or opdef expansion, and the cor-
responding LIST options are not all selected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name |EJECT
name New program sub-subtitle for the pyage will be pﬁnted in character positions

70-79 of the second line of the page. A blank name clears the sub-subtitle.

An entry in the variable field, if present, is ignored.

4.11.3 SPACE — SKIP LINES AND BEGIN NEW SUB-SUBTITLE

The SPACE pseudo instruction spaces the assembler listing, When a page is full, an eject occurs
and listing resumes on the next page. A SPACE immediately following an EJECT is ignored. SPACE
has no effect, other than setting the sub-subtitle, if it is generated by a DUP, ECHO, RMT,
XTEXT, or a macro or opdef expansion, and the corresponding LIST options are not all selected.

LOCATION - OPERATION VARIABLE SUBFIELDS -
name SPA CE |scnt,rent
name New subprogram sub-subtitle will be printed in characters 70-79 on the second

line of the next page heading. A blank name clears the sub-subtitle.

sent An absolute expression specifying a positive integer number of spaces between
' the most recent line and the next line of printout. If baseis M, scnt is assumed
to be decimal, If scat is omitted or zero, no line is skipped.

rent An absolute expression specifying a positive integer number of lines that must
be remaining on the page following spacing. If base is M, rcnt is assumed to
be decimal.

If seat + rent exceeds the number of lines on the page before spacing occurs, the SPACE acts like an
EJECT. Note that either the eject occurs or the number of spaces are skipped but not both,

Blank cards or statements can also be used to space the listing.

4-74 ' 60492600A

o

S’

4.11.4 TITLE — ASSEMBLY LISTING TITLE

The first TITLE pseudo instruction establishes the title that will be printed on each page of the listing,

A subsequent TITLE instruction generates a subtitle and causes a page eject. If the subprogram does not
include a TITLE instruction, COMPASS prints the variable field of the first IDENT pseudo instruction

as the title. A TITLE instruction without a character string produces an untitled listing. A name in

the location field introduces a new subprogram sub-subtitle,

A TITLE instruction has no effect when LIST option X is deselected and the TITLE instruction is
in text read by XTEXT or is between CTEXT and ENDX instructions. All other TITLE instructions
(except the first which sets the main title) cause a page eject, even when generated by a macro
expansion, unless LIST option L is deselected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name TITLE string
name New subprogram sub-subtitle to be printed in character positions 70-79
on the second line of the page. A blank name clears the sub-subtitle.
string COMPASS searches the columns following the blank that terminates the
operation field. If it does not find a nonblank character before the default
comments column (see COL pseudo instruction), it takes the characters
starting with the default comments column minus one up to the end of the
statement. Otherwise, the title or subtitle begins with the first nonblank
character following TITLE and continues to the end of the statement or to
62 characters, Any characters beyond the 62nd are lost. A blank string
produces an untitied listing.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 {30
IUVENT [MTD |
LIST c I
TITLE |MT ORIVER |
I
. i
[
. 1
TITLE |I/0 ROUTINES)
* |
* {
60492600A 4-75

First page:

Subsequent pages:

MT DRIVER

mT ORIVER |
170 ROUTINES

4.11.5 TTL — NEW ASSEMBLY LISTING TITLE

The TTL pseudo instruction introduces a new main title to be printed on each page of the listing, and

clears the subtitle.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
hame TTL string
name New sub-subtitle to be printed in character positions 70-79 on the second
line of the pages. A blank name clears the sub-subtitle.
string COMPASS searches the columns following the blank that terminates the operating

field.

If it does not find a nonblank character before the default comments column

(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one up to the statement end. Otherwise, the title begins
with the first nonblank character following TTL and continues to the end of the
statement or to the 62nd character. Any characters beyond the 62nd are lost.

A blank string produces an untitled listing.

TTL does not cause a page eject.

4.11.6 NOREF — OMIT SYMBOL REFERENCES

The NOREF pseudo instruction causes the symbols named in the variable field to be suppressed from
the symbolic reference table.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
NOREF Sym, , SyMyseses sym
symi One or more symbols defined in the subprogram. If a symbol qualifier is in

effect when the NORETF is encountered, the symbols are assumed to be
qualified by the qualifier in use, unless an unqualified symbol of that name
is defined before the NOREF and the qualified symbol is not defined before
the NOREF. Alternatively, sym. , can be a nonblank qualifier symbol en-
closed by slant bars, /qualifier/, in which case all symbols qualified by
the specified qualifier are suppressed from the symbolic reference table.

A location field symbol, if present, is ignored.

4-76

60492600 E

N '

RN

4.11.7 CTEXT AND ENDX — DISABLE/ENABLE LISTING OF COMMON DECK TEXT

The CTEXT pseudo instruction sets the XTEXT flag forlist control.

NOTE

When the flag is set, external text is listed and symbol
references are recorded, only if the X list option is selected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name CTEXT string
name If X list option is selected, nanﬁe is treated as a sub-subtitle; other-
wise it is ignored.
string If the variable field is nonblank and the X list option is selected, the CTEXT

is treated as a subtitle. The CTEXT instruction generates a subtitle and
causes a page eject. If X is not selected, the CTEXT does not affect titling,.

The subtitle begins with the first nonblank character following CTEXT
or in the default comments column (see COL pseudo instruction) minus
one, whichever comes first, and continues to the end of the statement
or to 62 characters. Any characters beyond the 62nd are lost.

~ The ENDX pseudo instruction clears the XTEXT flag for list control and causes listing to resume,

starting with the instruction after ENDX, when the X list option has not been selected.

Format:

LOCATION

OPERATION

VARIABLE SUBFIELDS

ENDX

Entries in the location field or variable field, if present, are ignored.

60492600A

4-77

4.11.8 XREF—REFERENCE SYMBOLIC ADDRESS

The XREF pseudo instruction provides the options of having the symbolic reference table contain
references to symbols according to (1) location counter address, (2) page and line number, or (3) both.
For the format of the symbolic reference table, refer to section 11. 8.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
XREF string
string An optional character string, the first character of which indicates how symbols

are
A
B

P

to be referenced.
The symbolic reference table lists addresses only. Flags are not included.

The symbolic reference table lists references to symbols according to
page number, line, and address. Flags are included.

The symbolic reference table lists references to symbols according to
page and line numbers. Flags are included.

A location field symbol, if present, is ignored.

If the string is omitted or if no XREF is issued, the symbolic reference table contains references
according to page and line numbers and includes flags. The last XREF encountered in a subprogram
determines the form of the listing for the entire subprogram.

4-78

60492600A

N’

R

DEFINITION OPERATIONS | 5

This chapter describes pseudo instructions that involve definition operations. These pseudo
instructions cause sequences of instructions to be .saved for these reasons:

They can be assembled from an external source (XTEXT).

Assembly can be delayed until later in the subprogram (RMT).

They can be assembled repeatedly (DUP and ECHO).

They can be referred to for assembly (MACRO, MACROE or OPDEF).

Any instructions other than END, including other definitions or calls, can be in the body of a definition.

Each request for assembly of one of the saved sequences of code, such as a reference to a macro,
causes an entry in the assembler recursion stack. The most recent entry in the stack points to the
source of statements (the definition) to be assembled. When the definition contains an inner, nested,
reference to a saved definition, the stack pointer is changed so that the source of statements is the
inmermost definition. The stack allows nesting of definitions to a maximum level of 400. When the
end of a definition is reached, the assembler switches to the preceding entry in the stack. When the
stack is empty, the assembler resumes assembly of the next statement in the input source deck.

A nested definition must be wholly contained by its next outer definition.

Definitions are saved compressed but otherwise unedited (with micro and concatenation marks). Editing
occurs each time the definition is processed. Compression removes blanks and replaces them with
coded bytes as follows: J

A single space is represented by 55g; it is not compressed. Two or more embedded spaces are
replaced in the image as follows:

2 spaces replaced by 5555
3 spaces replaced by 0002
4 spaces replaced by 0003

8

.
. . .

64 spaces replaced by 0077g
65 spaces replaced by 0077558

66 spaces replaced by 007755558
- 67 spaces replaced by 007700028, ete.

Trailing spaces are considered as embedded and are included in the image. The 00 character
(colon) is represented by the 12-bit code 0001. A 12-bit zero byte marks the end of the statement.

The listing identifies the source of statements and the recursion level for all definition operations.

60492600A ‘ 5-1

For XTEXT, DUP, and ECHO, assembly occurs as soon as a definition is saved. Unless the definition
contains a USE, USELCM, or ORG instruction, code is assembled into the block in use when the
XTEXT, DUP, or ECHO is encountered. For RMT, macros, and opdefs, however, definition and
assembly take place in two steps. The block in use at definition time does not determine where code

in the definition will be assembled. That is, code is assembled into the block in use when the definition
is assembled if the definition does not itself contain a USE, USELCM, or ORG.

Similarly, for XTEXT, DUP, and ECHO, any qualifier in effect when the pseudo instruction is
encountered applies to symbols defined in the sequence (assuming the sequence does not contain a
QUAL). For RMT, macros, and opdefs, however, because definition and assembly take place in two
steps, the qualifier in use at definition time does not affect symbols in the definition. The qualifier,
if any, in effect when the definition is assembled is applied to the symbols defined in the sequence.

A qualifier applies to symbols only, It does not apply to block names or to the names of DUP ECHO,
RMT, or macro definitions, nor to any substitutable parameter names.

In definitions having substitutable parameters, it is possible to use a different block name, different
qualifier, or different symbols with each expansion simply by declaring either the qualifier symbol,
block name, or symbols to be qualified as substitutable parameters. (For an example, refer to
example 7 under Macro Call,)

5.1 EXTERNAL TEXT (XTEXT)

The XTEXT pseudo instruction provides a means of obtaining source statements frem a fite other than
that being used for input. COMPASS transfers the text from the external source and assembles it

before taking the next statement from the interrupted source of statements. The file may be a sequential
file, an indexed file with named records, or an UPDATE or MODIFY! random-access program library
file.

Format:
LOCATION JOPERATION VARIABLE SUBFIELDS
file XTEXT rname
file Name of a file containing source statements. If file is omitted, COMPASS
assumes the file named in the X parameter on the COMPASS control statement
(section 10.1.2). If no X parameter was specified, COMPASS assumes OLDPL.
rname If rname is blank, COMPASS assumes that the file is sequential; it rewinds the

file and reads the first section. If rname is not blank, it is the name of the
section to be read. The file must be a SCOPE 3 indexed file with named
records, a record indexed file with named records, a random-access program
library file in UPDATE format, or a random=-access program library file in
MODIFY format.

T MODIFY is not supported by NOS/BE 1 and SCOPE 2.

5-2 ‘ 60492600C

N

N

Text records may be in any of the following formats:
1. Normal text. If the first line contains rname starting in column 1, it is skipped.

2. A common deck in an UPDATE or MODIFYT random-access program library file. If the file
is in UPDATE format, the first line (*COMDECK rname) is always skipped, If the file is in

MODIFY format, the identification (7700) and modification (7702) tables are skipped. COMPASS

does not recognize UPDATE or MODIFY directives such as *IF in the common deck.
3. An UPDATE or MODIFYT compressed compile file section.

COMPASS reads source statements to an end-of-section mark or an END pseudo instruction.

5.2 REMOTE ASSEMBLY

Definition and assembly of remote code takes place in two steps. A pair of RMT pseudo instructions
delimit code that is to be saved for later assembly. Later, a HERE pseudo instruction directs
COMPASS to assemble a specific sequence of remote code or to assemble all unlabeled remote code.
An END instruction causes any unlabeled remote code to be assembled.

5.2.1 RMT — SAVE REMOTE CODE

A RMT pseudo instruction signals the beginning or the end of a sequence of code to be assembled
remotely.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rmtname RMT
rmtname Optional 1-8 character name identifying the remote sequence. It is

significant on the beginning RMT only. The field is ignored for a terminating
RMT. If supplied, rmtname can be used on a subsequent labeled HERE,
If the sequence is unlabeled, an unlabeled HERE or END causes its assembly.

A variable field entry, if present, is ignored.

Any instruction legal when the remote lines are called for assembly is legal between the RMT pair.
If expansion of an RMT reveals a second RMT pair implicit to the saved definition, assembly of the
first pair must occur through a HERE instruction so that the inner pair will be expanded by an END.
Similarly, if the assembly of the second pair reveals yet a third RMT pair, the second pair must be
assembled through a HERE rather than the END, etc.

Any labeled remote code present when END is processed is discarded without notice.

TMODIFY is not supported by NOS/BE 1 and SCOPE 2.

60492600C 5-3

5.2.2 HERE — ASSEMBLE REMOTE CODE

A HERE pseudo instruction causes the labeled remote sequence to be assembled or unlabeled saved
remote sequences to be assembled. In the absence of a USE, USELCM, IDENT, or an ORG within
the saved sequence, the remote code is assembled under the block in use at the time the HERE is
encountered. In the absence of a QUAL within the saved sequence, symbols are qualified under the
qualifier in use at the time the HERE is encountered. RMT code is assembled only once. After it
is assembled, it is no longer saved. A HERE encountered when there is no remote text saved has no
effect on assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rmtname HERE
rmtname Optional; the name of a previously saved RMT sequence. Only the named

sequence will be assembled at this time.
A variable field entry, if present, is ignored.
If unlabeled remote sequences still remain to be assembled when the END statement signaling the end of
assembly is encountered, COMPASS assembles them before it terminates assembly. However, any
RMT pairs that might have resulted from the assembly are lost. Also, any remaining labeled remote
code is lost,

Examples:

The following example illustrates use of RMT within a macro definition. Following the last call to
the macro, a HERE causes all saved unlabeled RMT sequences to be assembled.

5-4 60492600A

g

Code Generated

LOCATION OPERATION | VARIABLE
! n 18
MACRO TABLE « INAMEUW]LV
1FC EGottitE IV
TNAM EQu #=0RIGINS
O« TNAM CON BUCKET
ELSE 2
TNAM EQU eQIV
0. TNAM EQU J.EQIV
RMT
L«TNAM £QU TNAM+SIZES
RMT
ENDM

1ZES

In the following example, assembly of the RMT sequence is caused by the END statement.

LOCATION OPERATION | VARIABLE COMMENTS
) " 18 {30
RMT]
FLD DECMIC| BUF +BUFL-WwSA+ENDS
PRS LIT CoFLD# DEC{MAL REQUIRED.®
i

5.3 CODE DUPLICATION

This section describes two pseudo instructions (DUP and ECHO) that cause a sequence of code to be
assembled repeatedly. For a DUP sequence, each assembly is identical with the first, and the
number of repetitions is specified or is indefinite. For an ECHO sequence, each assembly resembles
a macro reference. Actual parameters supplied in a list are substituted for formal parameters on
each repetition of the code sequence. The number of repetitions is determined by the number of
actual parameters provided on the ECHO instruction. -

Every inner DUP or ECHO sequence must lie totally within the range of the next outer DUP or ECHO,
or a fatal E error is flagged.

5.3.1 DUP — SIMPLE DUPLICATION

The DUP pseudo instruction specifies repeated assembly of the statements immediately following.

The range of the DUP is specified either by a source statement count on the DUP instruction or by an
ENDD.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname DUP rep, inct
dupname Optional name of the DUP sequence; 1-8 characters. When supplied, it can be
used in an ENDD, When no name is supplied, the range of the DUP is determined
by a statement count or by any unnamed ENDD.
rep Absolute evaluatable expression specifying the integer number of times state-
ments in the DUP range are to be assembled. If rep is null or zero, the instruc-
tions in the range are not assembled; that is, code is skipped. When base is M,
COMPASS assumes that rep is decimal.
5-6 . 60492600E

e’

N

et

NOTE
A very large (unobtainable) repeat count in conjunction with a
STOPDUP instruction can be used for indefinite duplication

of code.

An evaluatable expression specifying an integer count of the number of

statements to be assembled repeatedly. When base mode is M, COMPASS

assumes that et is decimal. The count is decremented for statements only;~

comment lines (identified by * in column one) are not counted. On each
iteration, the assembler copies the source statements and then assembles
them, Thus, any recursive statements within the sequence are counted

before they are expanded.

The aupname and gnct parameters are related.

1. K a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD is to

be included in the count. Under count control, a name is 1rrelevant.

2. If neither a count nor a name is supplied, the DUP range is termlnated only by an unnamed

ENDD.

3. If a name but no count is supplied, the DUP range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not effect the

range.

5.3.2 ECHO — ECHOED DUPLICATION

The ECHO instruction specifies repeated assembly of the instructions immediately following.

each formal parameter until the shortest list is exhausted, and then assembles the statements.
offers many of the features of macros but does not require separate definition and reference.

instruction, or by an ENDD,

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname - ECHO mct, p1=(list1),p2=(list2), evesBy =(1istn)
dupname Optional name of the ECHO sequence; 1-8 characters. When supplied,
it can be used in an ENDD. When no name is supplied, the range of the
ECHO is determined by a statement count or by any unnamed ENDD.
60492600E

On each
iteration, the assembler copies the source statements substituting an actual parameter in the list for
ECHO
The
range of the ECHO instruction is specified either by a source statement count specified on the ECHO
The statement count, when used, is decremented for instructions only;
comment lines, identified by * in column one, are not part of the definition and are not counted.

et

The

1.

2.

Optional absolute evaluatable expression specifying an integer count of the number
of source statements to be assembled repeatedly. If base mode is M, the

.count is assumed to be decimal. I gnet is zero or omitted, the comma must

be present and the ECHO range is defined by an ENDD.

Any recursive statements, such as macro references, are counted before
they are expanded.

If the count exceeds the range of an outer DUP or ECHO sequence, a fatal
‘E error is flagged.

dupname and gnct parameters are related.

If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD in a
count-controlled sequence is for it to be included in the count. Under count control a name
is irrelevant.

If neither a count nor a name is supplied, the ECHO range is terminated only by an unnamed
ENDD.

If a name but no count is supplied, the ECHO i‘ange is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not terminate
the sequence.

Names of not more than 63 formal substitutable parameters. Each name is 1-8
characters, the first of which must be alphabetic. A name cannot be END,
LOCAL, ENDD, IRP, or ENDM. A second or later occurrence of a parameter
name is ignored. A name that begins with a number is ignored. The substi-
tutable parameter name can occur in any field within a definition. . :

The separator between p; and (list;) is conventionally an = but can be any of the
following: ,

+-*/()$=,or.

COMPASS recognizes a substitutable parameter name within a definition when it
is between any two of the following:

+=-*/ () $=n"Dlank , . # or

Before the ECHO definition is stored, COMPASS replaces each use of a
substitutable name. Otherwise, it saves the definition unedited, i.e., with
micro and concatenation marks. Use of the semicolon is restricted in the
definition because the assembler, when it expands the definition, interprets it
as a substitutable parameter flag (778).

60492600A

p—

N’

N

(listi)

The character ~ flags the occurrence of a name not bounded by any other

- special character and, thus,. not otherwise recognized. When it expands the
definition, COMPASS substitutes an actual parameter value from the list for
the substitutable parameter and removes the so that the adjacent items are
concatenated.

Because the assembler replaces the first substitutable parameter with 7701,
the second with 7702, etc. the programmer can use the display characters
A, ;B, etc. directly in place of his substitutable parameter names in the
definition and achieve the same results as if the assembler had replaced the

name with the flag. (Example 8, section 5. 4. 3 illustrates a similar application
of this technique.)

Actual parameter list in the form B589se0s sy where ay is substituted for Py

on the first assembly of the ECHO sequence, a, is substituted on the second
assembly, etc. until the shortest list is exhausted. Two consecutive commas
are interpreted as a null parameter. An explicit zero, if desired, must be

. entered. An actual parameter can contain a set of embedded parameters
enclosed by parentheses. However, the embedded parentheses must be
properly paired. The assembler removes the outer pair of parentheses before

substituting the embedded set in a line. A parenthetical item can contain blanks
or commas.

If there are no parameters or any of the lists are null, COMPASS assembles the
ECHO sequence zero times, effectively skipping it.

5.3.3 STOPDUP — STOP DUPLICATION

The STOPDUP instruction allows premature termination of a DUP duplication before the repeat count.

is reached or of an ECHO duplication before the shortest list is exhausted.

end of the range for the current iteration and then continues with the next source statement. Only the
innermost duplication is affected.

A STOPDUP outside of a DUP or ECHO range has no effect on assembly. If a DUP or ECHO is nested,
STOPDUP terminates only the innermost DUP or ECHO. :

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

STOPDUP

An entry in the location or variable field is ignored.

60492600C

Assembly is .completed to the

5.3.4 ENDD — END DUPLICATION SEQUENCE

The ENDD pseudo instruction terminates a DUP or ECHO sequence when the statement count is
unspecified on the DUP or ECHO.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname ENDD
dupname Name of a DUP or ECHO sequence, or blank, A named DUP or ECHO

sequence can be terminated by an ENDD specifying the sequence by name,
or by any unnamed ENDD. An unnamed DUP or ECHO sequence that is not
controlled by statement count is terminated only by an unnamed ENDD.

An ENDD does not terminate a sequence controlled by a statement count.
The ENDD is included in the count but has no other effect.

An ENDD outside the range of a DUP or ECHO has no effect on assembly.

ENDD is part of the definition it terminates; consequently, it is not edited at ECHO definition time.
The following definition is in error:

T r—=1ECHO
Code
T r~ 1ENDD

In this code, the location field of the edited ECHO statement is T1, but the location field of the un~
edited ENDD statement remains at Tr>1.

Examples:

In the following examples, the statements that result from expansion are shown shaded. They are
listed only when the E list option is selected. Source statements are shown in bold characters.

1. This example illustrates use of a simple DUP instruction.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18)
000005 e < ol
DATA 1
5153 0000000000C000000C01 CATA 1 #NUPe 1
5154 00000000060003000001 NATA 1 ®PyP# 1
5155 00006000000069000001 GATA 1 RO 1
5156 00000000000060G0060601 DATA 1 #oUP e 1
5157 000000Nn0000000000601 DATA I #DUPH 1
5-10 60492600 E

e’

N

e

N

2. This example illustrates

by a STOPDUP.

LOCATION

OPERATION

VARIABLE COMMENTS

n 18 I30
1

60492600 D

Imacco

MICHG
IFC
SYCRMiR

MICRO
SET
=
6o

MOe o /ub VramE TR/

Tifve] NO IS 6 IN LAST ITERATIOUN

Teo/BCUFFOHT UK/
1

-1 UNOBTAINARLE

e s ETRGE/E /0] ASSEMRBLE STOPUUP whiEm

ITERATION COUNT

-

i

TAG=E

D w

a nested DUP instruction with one of the DUP duplications terminated

5-11

3. This example illustrates nested ECHO instructions. A statement count terminates the second
level ECHO The ENDD terminates the first level. Notice how COMPASS assembles each

copy before it begins the next iteration.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30

|

<739 |

<TM PPOP [5454]15u

LISY My s F |

ECHO alVMz{XyYeZ)

ECHO ?Qp":(A!P'OC)l

LDN CM : '

STM]

5-12

60492600A

p——

N

R

A

N

N’

5.4 MACROS AND OPDEFS

A macro or opdef definition is a sequence of source statements that are saved and then assembled
whenever needed through a macro or opdef call. A macro call consists of the occurrence of the
macro name in the operation field of a statement. It usually includes parameters to be substituted

for formal parameters in the macro code sequence so that code generated can vary with each assembly
of the definition.

An opdef call differs from a macro call in that the assembler interprets the call by examining the
format or syntax of the instruction rather than the contents of the operation field alone. The instruction
comprising the opdef call usually includes parameters to be substituted for parameters in the code
sequence. There are some differences in the way parameters are substituted, however, as is further
described under Opdef Call.

Use of a macro or an opdef requires two steps, definition of the macro or opdef sequence, and calling
of the definition.

A definition consists of three parts: heading, body, and terminator.

Heading A macro definition is headed by a MACRO or MACROE pseudo instruction
stating the name of the macro and identifying substitutable parameters in
the body of the macro.

An opdef definition is headed by an OPDEF pseudo instruction stating the syntax
of the calling instruction and identifying substitutable parameters in the body of
the macro.

The heading optionally includes one or more LOCAL instructions identifying
symbols local to the definition.

Body The body begins with the first statement in a definition that is not a LOCAL
statement or a comment line. A comment line can be either identified by *
in column one or can have columns 1-29 blank. (Following the first statement
of the macro body, only comments identified by * in column 1 are ignored.)

Use of the semicolon is restricted because when a definition is expanded a
semicolon is interpreted as a substitutable parameter mark or a local symbol

flag.

The body consists of a series of symbolic instructions. All instructions other
than END, including other maero and opdef definitions and calls are legal within
a definition. However, a definition within a definition is not defined until the
outer definition is called. Therefore, an inner definition cannot be called before
the outer definition is called.

A name of a substitutable parameter or local symbol listed in the heading can
occur in any field within the body. A reference to a substitutable parameter or
local symbol is recognized when it is between two of the following characters in
an expression or field:

#-%/()$="0blak , . #or —

The character— flags the occurrence of a name not bounded by any other special

60492600A 5-13

Terminator

Definition
Processing

character, and, thus, not otherwise recognized. On a call, the assembier
substitutes an actual parameter value for the substitutable parameter and
removes the — so that the adjacent items are concatenated.

NOTE

The programmer can legally use the characters . () :

$ and = in symbols, but when he does, he must be careful
that these characters are not interpreted as delimiters in
macro definitions (example 4 under macro calls). A symbol
should not begin with a colon; if it does, the colon is

ignored and no error message is issued.

The macro body optionally contains IRP pseudo instructions that allow iterative
assembly of a sequence within the body such that each iteration uses a different
parameter value.

An ENDM pseudo instruction terminates a macro or opdef definition.

A macro or opdef can be defined anywhere in a subprogram before it is called.
When COMPASS encounters a definition, it places the name of the macro or the
syntax of the opdef along with the number of substitutable parameters and local
symbols in the assembler operation code table. Before the definition is saved,
COMPASS replaces each occurrence of a parameter name or local symbol with
a 7T7xx (where xx is a number assigned to the substitutable parameter or local

symbol).

On the call, each use of a substitutable parameter (each 77xx) is replaced by
its actual parameter; each use of a local symbol is replaced by a unique symbol
generated by the assembler. Usually, symbols replaced in this way have no
meaning outside the definition. However, if the macro includes an RMT
sequence which contains local symbols, the local symbols will have meaning
where the remote code is assembled outside of the definition.

5.4.1 ENDM — END MACRO DEFINITION

An ENDM terminates a macro or opdef definition.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname ENDM
mname Name of a macro sequence, syntax of an OPDEF sequence, or blank.
5-14 . 60492600 E

g

An ENDM specifying a macro by name terminates the named macro definition and any unterminated
macro or opdef definitions within it. An ENDM that does not specify a macro by name terminates all
unterminated definitions. An ENDM outside the range of any macro sequence has no effect other than
to be included in statement counts.

ENDM is part of the definition it terminates; consequently, it is not edited at MACRO definition time. I
The following definition is in error:

Tr1 MACRO
Code :
Tre1 ENDM
In this code, the location field of the edited MACRO statement is T1, but the location field of the l
unedited ENDM statement remains at Tr*1.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
JAY MACRO | P1,P2,P3 |
. i
. |
. [
KAY MACRDOE| PK2,PK2,PK3,PK4

JPX/XQ OPDEF | OP1,0P2,0P3

KAY ENDOM TERMINATES KAY AND
. THE OPDEF OEFINITION
ENDM TERMINATES JAY

l
[
!
|
. |
I
|
|
|

5.4.2 MACRO — MACRO HEADING

A MACRO pseudo instruction notifies the assembler to place the instructions forming the body of the
macro in a table of macro definitions for assembly upon call and place the macro name in the operation
code table.

The MACRO pseudo instruction has two forms:

Format one:
LOCATION OPERATION VARIABLE SUBFIELDS
mname MACRO parameters

60492600 F ’ 5-15

Format two:

LOCATION

OPERATION VARIABLE SUBFIELDS

MACRO mname, parameters

The blank location field identifies the second format.

mname

parameters

5-16

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. 1-8 characters.

A name that is identical to a PPU symbolic machine instruction, pseudo
instruction, or macro already in the operation code table redefines the
instruction. The most recent definition applies for the maecro call, A
redefinition causes an informative flag to be issued but the new definition
holds, ' ’

Names of substitutable parameters. The order in which names are listed
.determines the order in which parameters must occur in the macro call.
Each name is 1-8 characters, the first of which must be alphabetic. A name
cannot be END, IRP, LOCAL, ENDD, ENDM, or the same as a local symbol.
A name that begins with a number, or a second or later occurrence of a para-
meter name in the list is ignored.

Any of the following special characters separate parameters in the list:
+-*/()8$=,o0r.

These characters have no meaning other than as separators. A blank
terminates the list of parameters, Also, any of these characters can be used
to separate the mname from parameters in format two.

The total number of unique parameter names and local symbols must not
exceed 63 for any one macro definition.

Format one does not require parameters.

Format two requires at least one substitutable parameter., This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue afatal error-and
ignore the definition,

The assembler ignores a blank parameter produced by two adjacent
separators or by a separator at the end of the list.

For an example of definition and calls, refer to Macro Calls.

60492600A

N

Examples of macro instructions:

1. Legal MACRO instructions:

LOCATION

OPERATION

VARIABLE

COMMENTS

1]

18

[30

ABC

MACRO
MACRO

MESSAGE

MACRO

P1,P2,P3

L3

OEF*LOC‘DNEWTNO*TEN

2. MACRO instructions having identical parameter lists.

LtOCATION

OPERATION

VARIABLE

COMMENTS

1

8

)

SuMm
SuM
SUM
SUM

RAO
RAOC

MACRO
MACRO
MACRO
MACRO

MACRO
MACRO

X=Y+Z2+X
X(Y+2)
X=Y+2
XYy (Z+X)

X
X=X+1

3. 1llegal use of format two:

issconn X PARAMETER IS IGNORED
|

INULL PARAMETER AND SECOND

:x ARE IGNORED .

|SECOND X AND NUMERIC
IPARAMETER ARE IGNORED

LOCATION

OPERATION

VARIABLE

COMMENTS

n

18

T30

60492600A

MACRO
MACRO
MACRO

ABC
ABC,,FP
ABCs16+FP

| NO SUBSTITUTABLE PARAMETER
| NULL PARAMETER FIELD
| NUMERIC PARAMETER FIELD

5-17

5.4.3 MACRO CALLS

A macro headed by a MACRO pseudo instruction can be called by an instruction in the following format:

LOCATION ~ |oreraTiON VARIABLE SUSFIELDS
sym mname P1sPgss«+ 5Py
sym » Optional; depends on definition (see discussion following)
p; Parameter list composed of alphanumeric strings. Parameters are separated

by commas and terminated by a blank. Two consecutive commas constitute
a null parameter. An explicit zero, if desired, must be entered.

Each parameter must be in its correct relative position depending on the sequence

in which its formal substitutable name is given in the MA CRO pseudo instruction.

When the definition MA CRO is in format one, the first parameter in the call is substituted wherever the
first substitutable parameter occurs in the definition, the second parameter in the call is substituted
wherever the second substitutable parameter occurs in the definition, etc. When the definition MACRO
is in format two, the location field entry in the call is substituted wherever the first substitutable
parameter occurs in the definition, the first parameter in the variable field of the call is substituted
wherever the second substitutable parameter occurs in the definition, etc.

If null parameters are interspersed with legal parameters, the correct positions must be established
with commas. When the list terminates before the last possible parameter, all remaining parameters
are considered null.

When the first character of a parameter is a left parenthesis, the assembler considers all the
characters between it and the matching right parenthesis as an embedded parameter or as an iterative
parameter, It is an iterative parameter when the substitutable parameter has been named in an IRP
pseudo instruction (section 5.4.9). Otherwise, it is an embedded parameter.

The assembler removes the outer pair of parentheses before substituting the enclosed character string
in a line. Embedded parenthetical items must be properly paired. A parenthetical item can contain
blanks and commas.

Example:

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 |30

MESSAGE| (=C*PROGRAMI ABORT,*)
'

After substitution, spacing between fields is the same as it was before substitution. One effect is that

a null actual parameter replacing a formal parameter in a variable field effectively moves the comments

field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as
a variable subfield.

5-18 60492600A

N’

M

Processing of a location symbol and forcing upper of the first macro instruction depend on the MACRO
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument, The fact that this argument came from the location field rather than
the variable field has no special significance in the macro expansion. In the macro call, the location
field argument cannot be more than 8 characters., Parentheses are not given the special meaning used
in the variable field of a macro callline,

Example:

1. An illustration of concatenation

Location Code LOCATION OPERATION | VARIABLE COMMENTS
Generated 1 n 18 {30
MACK MACRO |P1,p2

SeP} Pl+lRoP2

474y MACK AZoA

ENOM | MACK .

60492600A ’ 5-19

2. An illustration of nested definitions and calls
LOCATION OPERATION VA‘RIABlE COMMENTS

1 n 18 [0
NAME1 MACRO

3.

Location

NAME 2 MACRO

NAME?2 ENUM

NAMEL ENDM

NAMEZ

- . - - o —— — o]

IAT THIS 1IMEs THIS LINE
'IS PART OF A DEFINITION
IRATHER THAN BEING A CALL.

CALL TO NAMEZ2 IS VALID

1

i
1
!
!
!
!
!
INAMEL IS CALLED ANU EXPANUED,
!
]
|
|
|
|
I

The following example illustrates two calls to a definition headed by a MACRO in format two
The macro is named TABLE; its substitutable arguments are
TABNAM, VALUE1, and VALUE2, where TABNAM is the location argument.

using the location argument.

Code Generated

LOCATION

OPERATION | VARIABLE COMMENTS

n

18 |30
L

ABNAM

MACRO | TABLE+TARBNAMsVALUE L s VALUEZ
VFD bO/VALUElobP/VALUEZ
ENDM |

60492600A

P

4. An illustration of embedded parameters:

Definition:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 130
X AM MAGRO | A, R |
LoM 4 {
LJM 3] |
ENOM |
Call:
LOCATION OPERATION | VARIABLE COMMENTS
] I 18 T30
IXAM (StiM,108) , (SAM,IND3)
Expansion:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18

5. The following example illustrates use of R= in macros:

[30
i s
{
|
[
|

60492600A

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 T30
ONSH MACRO | N T
= X1,N ,
sx2 |118 |
RJ =XCPM= i
ENDM |
OFFSH MACRO | N J
= Xi4N |
sX2 128 i
RJ =XCPM= |
ENDM |

5-21

6. The following example illustrates a character in a symbol erroneously being interpreted as a
delimiter for a parameter.

|
|
|
[
|
|

LOCATION OPERATION | VARIABLE COMMENTS
1 i 18 l30
ABC MACRC |ZsVAL 4PS !
7 SET |VAL |
SA7 Z+ALPHA IILLEGAL SYMBOLe TOO LONG

ILLEGAL SYMBOLe+ TOO LONG

ABC
ABC
ABC

o1
1
o1

7. The following example illustrates changing of control blocks and symbol qualifiers through

substitutable parameters in a macro.

change actual parameters.)

5-22

TWO, TWO

LOCATION OPERATION | VARIABLE COMMENTS
) " 18 |30
TAB MACRO | BLOCK 4KwAL !
USE BLOCK |
QUAL KwAL |
TAG1 8ss 108 |
TAG2 VFD 60/~1 |
USE #
QUAL | = |
ENDM |
. |
* |
TAB ONE o ONE |

(The same call could be used by using micros to

60492600A

g

N

S

8. The following example illustrates a technique that an experienced programmer may wish to
use to save time in processing of definitions. Remember that the assembler replaces the
first substitutable parameter with 7701, the second with 7702, etc. Note that 7701 is ;A in
display characters, 7702 is ;B, etc. This means that the programmer can use the display
characters directly in place of his substitutable parameter names in the body of the definition
and achieve the same results as if the assembler had made the substitution when it saved the
definition. At the time the definition is assembled, the assembler replaces each 77xx with the
actual parameter whether the code was inserted by the assembler when it saved the definition
or by the programmer when he coded the definition.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30
CHAR MACKRD [ASCITINTERHAL «EXTHFENAL «5C
Ccon sNICinree
EnNOM
D0 RLQE o]

60492600A ~ 5-23

5.4.4 MACROE — EQUIVALENCED MACRO HEADER

A MACROE pseudo instruction can be used instead of a MACRO instruction to notify the assembler to
place the instructions forming the body of the macro in a table of macro definitions for assembly upon
call, to place the macro name in the operation code table, and to save the list of parameter names so
that actual parameters supplied in the macro call can be listed by name in any sequence in the macro

call.

The MACROE pseudo instruction has two forms:

Format one:

{OCATION OPERATION VARIABLE SUBFIELDS

mname MACROE parameters
Format two:

LOCATION OPERATION VARIABLE SUBFIELDS

MACROE mname, parameters

The blank location field identifies the second format.

5-24

mname

parameters

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. It can be

1-8 characters. A name that is identical to a PPU symbolic machine instruction
name, pseudo instruction, or macro instruction already in the operation code
table redefines the instruction. The most recent definition is the one that applies
for the macro call. A redefinition causes an informative flag to be issued but the
new definition holds. '

Names of substitutable parameters. Unlike MACRO, the order in which names
are listed does not determine the order in which parameters can occur in the
macro call. Each name is 1-8 characters, the first of which must be alphabetic.
A name cannot be END, ENDD, LOCAL, IRP, ENDM, or the same as a local
symbol. A name that begins with a number, or a second or later occurrence of
a parameter name in the list is ignored. Any of the following speclal characters
separate parameters in the list:

+ - * / () $ =, Oor ,
These characters have no meaning other than as separators. A blank terminates
the list of parameters. Also, any of these can be used to separate the mname

from parameters in format two.

The total number of unique parameter names and local symbols must not exceed
63 for any one macro definition.

Format one does not require parameters.

60492600A

“ .

o’

Format two requires at least one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call .
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a fatal error flag and
ignore the definition,

The assembler ignores a blank parameter produced by two adjacent separators
or by a separator at the end of the list. '

For an example of definition and calls, refer to Equivalenced Macro Call.

5.4.5 EQUIVALENCED MACRO CALL

A macro definition headed by a MACROE pseudo instruction can be called by an instruction of the
following format:

LOCATION OPERATION VARIABLE SUBFIELDS
sym mname P1=81sPy=Rgs. . sP, =2
mname Name of MACROE definition
sym Optional symbol. A symbol in the location field causes the location counter

to be forced upper. The symbol is then assigned the value of the location
counter. A location field symbol on the first line in the definition that generates
code is assigned the same address. If the location field of the macro call does
not contain a symbol, the manner of the force upper is a function of the first-
code-generating line in the macro expansion,

p.=a, An equivalenced parameter. Each p is the name of a substitutable parameter.
The a; is an actual parameter to be substituted for pj. The parameters need not
be listed in the same order as they are listed on the MACROE instruction,
Equivalenced parameters in the list are separated by commas and terminated
by a blank,

A null value is substituted for any parameter omitted from the list.

When the first character of an actual parameter is a left parenthesis, the
assembler considers all the characters between it and the matching parenthesis
as an embedded parameter or as an iterative parameter. It is an iterative
parameter when the substitutable parameter has been named in an IRP pseudo
instruction (section 5.4.9, IRP). Otherwise, it is an embedded parameter. The
assembler removes the outer pair of parentheses before substituting the enclosed
character string in a line. Embedded parenthetical items must be properly
paired. A parenthetical item can contain blanks and commas,

60492600A 5-25

After substitution, spacing between fields is the same as it was before substitution. One effect is that

a null actual parameter replacing a formal parameter in a variable field effectively moves the comments

field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as

a variable subfield.

Processing of a location symbol and forcing upper of the first macro instruction depend on the MACROE

form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address, If the location
does not contain a symbol, the location and position counters are not affected by the call,

field of the macro call

When the macro is defined using format two, that is, the macro name is in the variable field and the first
parameter is a location argument, the location symbol of the call is substituted for the first parameter or
location argument. The faet that this argument came from the location field rather than the variable field
has no special significance in the macro expansion. After substitution, spacing between fields is the same

as it was before substitution.

I Example, format one:

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) " 18 [30
SAM MACROE | AsBoC
con A
CON 3
CON C
5007 SAM A=

Example, format two:

Location Code Generated LOCATION OPERATION| VARIABLE COMMENTS
| " 18 30
MACROE| SAM»XXsAsBsC
CON A
CON 8
i, | €
2 00000000000000000001 S AM AslsB=2,C=3

5-26

60492600 G

— .

N

5.4.6 OPDEF — DEFINE CPU OPERATION

An OPDEF pseudo instruction notifies the assembler to place instructions in the body of the definition
in a table of definitions for assembly upon call and place the instruction syntax in the operation code
table. There is no way of removing the definition from the table. It can, however, be bypassed
through redefinition, or disabled through PURGDEF. If the syntax duplicates a CPU instruction already
in the table, the OPDEF definition takes precedence.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
syntax OPDEF - parameters
syntax The syntax consists of a mnemonic operator and variable field descriptors.

60492600 B

The mnemonic operator consists of two characters. The first can be any
character except blank. The second character can be a register designator:
A, B, or X inwhich case the operation field of the opdef call is recog-
nized as cAn, cXn, or ¢Bn (c is a unique character; n is 0-7); or the second
character can be any other character, in which case the operation field of
the opdef call is recognized simply by a two-character mnemonic, such as

EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
opdef call. It consists of none, one, two, or three of the following 22 subfield
descriptors. Q represents an expression. An r represents a register letter
(A, B, or X). A comma separates two descriptors; a blank terminates the

syntax.

void Q

r . rQ

-r -rQ

r; 1T, ry +roQ
-T, T, -ry +r2Q
T Ty Ty,
-, *r, -r1*r,Q
ry /1Ty ry/reQ
-rl/r2 -Ty /r2Q
r,-T, r,-ry,Q
17T T TR

5-27

parameters

Examples:

For example, -rl’"r2 would be written as -X*B to' describe -X3*B1 whereas rQ
would be written as BQ to describe B2+ALPHA. The first descriptor immedi-
ately follows the mnemonic operator.

A substitatable parameter for each register designator (r) and expression
designator (Q) in the syntax in the order in which they occur in the syntax
(and, consequently, in the calling instruction). Each name is 1-8 characters,
the first of which must be alphabetic. A name cannot be END, ENDD, ENDM,

" IRP, LOCAL, or the same as a local symbol, A name that begins with a num-

ber, or a second or later occurrence of a parameter name in the list is ignored.
Parameters can be separated by any of the characters:

+-*/()y$=, or.

These characters have no meaning other than as separators. A blank terminates
the list of parameters,.

The total number of unique parameter names and local symbols must not exceed
63 for any one OPDEF definition.

The assembler ignores a blank parameter produced by two concurrent separators
or by a separator at the end of the list. A second or later occurrence of a
parameter name in the list is ignored.

1. Listed below are some instructions that could be defined through OPDEF:

Calling Instruction Opdef
Operation Variable Subfields Syntax
Jpt Kt JPQ
Jpt Bn+K JPBQ
JP Bn+Bn+K JPB+BQ
Jp an,K JPB,Q
JP Xn/Xn+K | JPX/XQ
NET Bn, Bn,K NEB, B, Q
LI Bn-Bn, An-Xn, K LIB-B,A-X,Q
BXn' -Xn*Xn BX-X*X
SBnt Xn+Bn SBX+B
LXnt Bn, Xn 1XB, X
Jpt Bj+K JPBQ
NET Bj, Bk, K NEB,B,Q
BXit -Xk*Xj BX-X*X
SBit Xj+Bk ' SBX+B
SBit Bj+Xk SBB+X

¥ Legal COMPASS CPU instructions
it K represents an expression.

5-28

60492600A

2. The following complete definition redefines single-address long jump JP as the EQ jump, which
is faster than JP on the 6600 Computer System.

LOCATION

OPERATION | VARIABLE COMMENTS
1 n 18 l30
JPQ OPDEF | P1 |
EQ P1 l
ENOM |

Each subsequent JP instruction that matches the syntax JPQ is assembled as an EQ. A JP
instruction having a different syntax, such as the following, is not affected.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30
i’
10002 0233000005 + JP RI+ALPHA |

3. The following definition traps all floating point double-precision subtraction instructions
(DXi Xj-Xk) and jumps to an error-check routine for debugging. I, J, and K are substitutable
parameters used within the definition.

tOCATION OPERATION | VARIABLE COMMENTS
) " 18 l30
DXX=X OPNEF | T4J.K :
. |
. [
RJ cx0uT |
ENDM l

4. The following sequence causes RXi K to be defined as AXi K, It does not affect the standard
RXi instructions involving registers.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
RXQ OPDEF |P1,P2 '
AX.P1 | P2 !
ENDM {

5.4.7 OPDEF CALL

An opdef call resembles a CPU mnemonic machine instruction. The mnemonic code, quantity and
sequence of registers, arithmetic operators, and expressions (excluding operators within the expressions)
must match the syntax described in the OPDEF for the definition to be called.

60492600A 5-29

NOTE

If the Q in a descriptor is combined with register letters,
a plus or minus must precede an expression in the call,

OPDEF Syntax Call

JPQ JP K Not combined
JPBQ JP BniK Combined

J PB, Q JP Bn,K Not combined
JPX/XQ JP Xn/Xn+K Combined

An OPDETF call can occur any place after the definition is saved. In substituting parameters, the

assembler uses only the register values given in the call, It does not substitute the register designators.

A location symbol on the opdef call line forces the first word of generated code upper. The location field
symbol is assigned the current value of the current location counter after the force upper. A location
field on the line in the definition that generates code is assigned the same value. If the location field of

- the opdef call does not contain a symbol, the manner of the force upper is a function of the first code-
generating instruction in the expansion. If the call location field and the code-generating instruction
field both contain symbols they are assigned the same value.

Only a line having the correct syntax calls the definition.
Examples: .

The following opdef defines an instruction having the syntax IXX/X. On the call, the assembler
substitutes 3, 4, and DIV (not X3, X4, and X, DIV) for P1, P2, and P3, respectively.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30

[XX/X OPDEF - Pl4P24P3
PXeP2 [XeP2

PXeP3 [XeP3

NX.P2 [XeP29s8B4
NXeP3 ([XeP3sba
FXeP1 XeP2/KeP3
UX.Pl X.Plobh
LX.Pl [XePlyBa
ENDM

5~30 60492600A

N~

~——

S

N

The following OPDEF selectively traps the SXi Xj+Bk instructions.

Definition:
LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [30
SXX+B | OPDEF |I,J,K |
. |
. |
* |
ENDM I

Statements that call the definition:

] LOCATION OPERATION VAlIAhlE COMMENTS
i n 18 [30
SX3 X1+82 |
. |
. [
* '
sYm SX.NN |X6+¢B.XXX |

Statements that do not call the definition:

LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 130
SX5 X4 éNO B DESIGNATOR OR +.
SX6 B3+Xb [REGISTERS INTERCHANGED
SX.Y |83 ino X DESIGNATOR OR OPERAND
SY X4 +Bl4 IMNEMONIC CODE NOT SX.

5.4.8 LOCAL—LOCAL SYMBOLS

One or more LOCAL instructions that list symbols local to the definition optionally follows the MACRO,
MACROE, or OPDEF pseudo instruction. The only lines that can separate the first header statement
from LOCAL are comment lines.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LOCAL symbols
symbols List of local symbols. Each symbol must begin with an alphabetic character.
Symbols must be separated by and must not include the following characters:
+—*/()$=,01‘.
60492600A

5~-31

A blank terminates the list. The assembler ignores a null symbol produced by

two adjacent separators or by a separator at the end of the list. COMPASS ignores
the use of a substitutable parameter name, another local symbol name, or a name
beginning with a number in the local symbol list. A local symbol cannot be END,
ENDD, ENDM, IRP, or LOCAL. The total number of unique parameter names and
local symbols must not exceed 63 for any one macro or OPDEF definition.

A location field symbol, if present, is ignored.

A symbol in the list is considered local to the macro; that is, it is known only within the macro definition.
On each expansion of the macro, COMPASS creates a new symbol for each local symbol and substitutes it
for each occurrence of the local symbol in the definition (other than in comment lines identified by * in
column 1), Thus, invented symbols replace LOCA L-named symbols wherever they appear in a macro
definition in a manner similar to the way substitutable parameters are replaced. The chief difference
between substitutable parameters and local symbols is that COMPASS automatically supplies the value C
(character string to be substituted for) a local symbol so that it is unique for each macro call.

A user passes a local symbol to inner macro definitions or inner macro calls when he does not declare
the symbol local in any of the inner definitions saved or called. That is, a symbol declared local in a
macro can be referred to in any inner macro that does not also declare it as local (see example 2).

A symbol not defined as local is accessible from outside the macro definition. An invented symbol is
qualified if defined while in a QUAL block. It is not listed in the symbolic reference table. Blanks
are preserved in a line containing a substituted symbol; COMPASS makes no attempt to change the
structure of the line,

On the listing, each invented symbol is shown as Hsym, where sym is unique for each local symbol in
the subprogram. For example, if the symbol A is declared local to the macro, the subprogram can
define a different symbol A elsewhere,

Examples:

1. In the following example, C is local to macro ABC and is passed to inner macro definitions.
In the definition, each occurrence of formal parameter A is replaced by the parameter mark
7701; each occurrence of B by the parameter mark 7702, and each occurrence of C by the
parameter mark 7703. Then, when ABC is called, COMPASS assigns invented symbol
$1000001 to C and replaces each occurrence of 7703 in definitions ABC and XYZ.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 130
[|asc MACRO |A,B |
LOCAL |C -
C BSS 108 ! t
. . | | DEFINITION
. . , OF ABC
XYZ MACRO | D , :
SAL c {DEFINITION
. |OF XYZ
. I 7
ENDM |
|
ABC i EXPANSION
| OF ABC
}DEFINITION
I oF XvZ
!
I

6 A
5-32 0492600

2, n the following example, C is local to each level. Note how this example differs from the
preceding one. ' '
LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 l30
8CD MACRO | A,B | R
LOCAL | € I
c 8SsS 108 l
. L] I
. . : | DEFINITTON
o N OF BCD
YZA MACRO ’
LocAL | ¢ :
SA1 1 IDEFINITION
o {OF YZA
. |
c B8SSZ 1 |)
ENDM ‘

On the call to BCD, the assembler replaces each occurrence of C with the invented symbol,
$000002. including the use of the symbol in the LOCAL instruction for macro XYZ,

LOCATION

OPERATION

VARIABLE

COMMENTS

30

JEXPA

Finally, on a call to YZA, 4000002 is defined as local and the assembler replaces each
Thus, each reference to C in the source code SA1l
instruction does not result in a reference to the BSS in the outer macro.

+000002 with another invented symbol.

LOCATION

OPERATION

VARIABLE

COMMENTS

18

I30
1

.5.4.9 IRP — INDEFINITELY REPEATED PARAMETER

EXPANSION OF YZA

An IRP pseudo instruction in a macro definition signals the beginning or end of a sequence of code to be
assembled repeatedly with one parameter varied with each repetition.

It has two formats:

LOCATION OPERATION VARIABLE SUSBFIELDS
IRP parameter
IRP
60492600A

5-33

The first form introduces the sequence and names the substitutable parameter; the second form
terminates the repeated sequence. In either form, a location field symbol, if present, is ignored.

The parameter name must be listed as a substitutable parameter on the MACRO or MACROE pseudo
instruction for the definition.

On the macro call, the indefinitely repeated parameter consists of one or more subparameters enclosed
by parentheses and separated by commas. The assembler assembles the sequence for each subparameter;
the number of copies of the sequence depends on the number of subparameters (none at all when the

actual parameter is null). When the list of subparameters is exhausted, the assembler continues with

the next line in the definition. If the named substitutable parameter does not occur between the two

IRP instructions, the assembler repeats the code unchanged for each subparameter provided in the call.
An IRP ocutside of the range of a macro has no effect on assembly other than to be included in statement
counts.

IF-skips of IRP sequences should be controlled by instruction bracket names rather than statement
counts because IRP expansions are done even when an IF-gkip is used and because the number of
statements generated by IRP is variable.

Anything that can be done with an IRP pair can be done with ECHO and ENDD, IRP is faster at assembly
time but ECHO is more flexible (it is not expanded during IF-gkips, allows multiple arguments, and

can be nested). IRP should be used when greater speed is desired and the expanded capabilities of
ECHO are not needed.

Examples:

1. Repeat sequence within macro

LOCATION OPERATION | VARIABLE COMMENTS

1 N 1 . [30

7A8 MACRO |ARG,B f
IRP ARG ,
SAl ARG PEFINITION
SX6 X1+B ~ kepeaten OF ZA8
SA6 ARG [SEQUENCE
IRP i
ENDM ,
. |
. 1
.) |

22 . ZAB |(J4KoL) 4CON ! ZAB 1

5-34 A 60492600A

. :

2. Assign symbol at every 1008 words of zeroed storage:

LOCATION | OPERATION| VARIABLE COMMENTS
1 n 18 [30

USE STORAGE

BUF MACRO Pl
IRP P1

Pl BSSZ 1008
IRP
ENDM
BUF (PeQyRyS,T)

5.5 SYSTEM MACRO AND OPDEF DEFINITIONS

Definitions of such general usefulness that they should be available to any program without each
program defining them can be placed on the system text file as system macros or can bé placed on
a file accessible through an XTEXT pseudo instruction.

System macros provide for such system functions as reading and writing files and specifying parameters
for file environment tables, etc. Systems macro definitions are available to COMPASS for each
assembly. The programmer can use a macro call for a system macro at any time in his program.
Descriptions of system macros are given in the operating system reference manual.

Systems definitions can include any legal macro or opdef definition. An expansion of a call for a

system definition is not normally included on the assembler listing. Use of the S option of the LIST
pseudo instruction(Section 4.11. 1)' enables listing of expansions of system definitions.

60492600A 5-35

N’

OPERATION CODE TABLE MANAGEMENT 6

“

The COMPASS operation code table contains the information that COMPASS requ1res for interpreting
legal operation field entries for COMPASS instructions.

When assembly begins, the operation code table contains these entries:

Pseudo instructions (except LOCAL)
CPU symbolic instructions (Section 8, 4)
CMU symbolic instructions (Section 8.5)
PPU symbolic instructions (Chapter 9)
System macro and opdef definitions

The MACRO, MACROE, and OPDEF pseudo instructions (chapter 5) cause entries to be made in this
table. In addition, the programmer has the capability of creating entries through the following
instructions discussed later in this chapter:

CPOP CPU operation

PPOP PPU operation

OPSYN Synonymous PPU or pseudo operation or macro
CPSYN Synonymous CPU operation or opdef

If a new entry redefines an instruction already in the table, the obsolete entry is not physically removed
from the table. Instead, it is saved so that the table canbe reconstructed between assemblies.
COMPASS reconstructs the operation code table using all the original system macros, opdefs, pseudo
instructions, and symbolic machine instructions. No programmer-created entry is preserved from
assembly to assembly. The number of entries in the table is limited to 4123.

The only pseudo instructions that logically remove entries from the operation code table are PURGMAC
and PURGDEF,

Entries in the operation code table are in two distinct formats permitting a logical division of the
table. One type of entry permits identification of an instruction by finding a match for the contents of
the operation field, thus, it provides mnemonic recognition. The other type of entry is looked at only
if the search for a mnemonic operator fails to yield a match during a CPU assembly.

This type of entry provides for recognition of an instruction according to its syntax. COMPASS

" -analyzes the statement to be interpreted, determines the syntax of the operation and variable subfields,

and again searches the table.

60492600 E 6-1

Instructions recognized in the mnemonic search and the information provided to the assembler for
each instruction are as follows:

Pseudo instructions The entry contains addresses to routines that perform
pass one and pass fwo operations
PPU symbolic instructions The entry describes the format of the instructions to
: be assembled :
Instructions described through PPOP The entry describes the format of the instruction to
be assembled
Macro instructions The entry directs the assembler to the location of the

saved definition

Instructions described through OPSYN The entry is a copy of the synonymous entry

For a PPU assembly, a failure to find an entry for a mnemonic operator causes an operation code error.
For a CPU assembly, however, if the search for the mnemonic operator does not yield a match,
COMPASS searches the operation code table agam\fo{an entry with a matching syntax. nstructions
recognized in the syntactical search and the information provided to the assembler for each instruction
are as follows:

CPU symbolic instructions The entry describes the format of the CPU instruction
to be assembled

Instructions described through CPOP The entry describes the format of the CPU instruction
to be assembled '

Instructions defined through OPDEF The entry directs the assembler to the location of the
definition

Instructions described through CPSYN The entry is a copy of the synonymous instruction

The action taken depends on the synonymous entry

If, following the second search of the operation code table, the statement still has not been identified,
the assembler takes the following action:

For a PPU assembly, it generates a 24-bit instruction of which the first 12 bits are zero.

For a CPU assembly, it generates a 30-bit zero instruction,

Although OPSYN and CPSYN pseudo instructions provide a means of rendering more than one
instruction synonymous, only instructions of the same type can become synonymous. The logical
division of the table between the two types of entries prevents mnemonically identified instructions from
being made synonymous with syntactically identified instructions.

When a MACRO, MACROE, PPOP, or OPSYN creates an entry for a mnemonic name that is already

in the table for a different instruction, the new entry takes precedence over the old entry. Similarly,
when a OPDEF, CPOP, or CPSYN redescribes a syntax already in the table for a different instruction,
the new entry takes precedence over the old entry. As a result, the order of precedence for operation
field recognition is, from highest to lowest:

1. Programmer-created entries for mnemonieally identified instructions

6-2 60492600A

N .

“ 2

N /
S

2. System macros, pseudo instructions, PPU symbolic machine instructions, and CMU
instructions other than the IM instruction.

3. Programmer-created entries for syntactically identified instructions
4. CPU symbolic instructions and the CMU IM instruction

Example:

The following exa:rhple illustrates a special case in which a macro name takes precedence over one
form of a machine instruction, i.e., the form using SB4 as an operation code.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
SBY MACRO | P1,P2 iDE?INE MACRO NAMED SB4
: |
. x
ENDM ;
: |
4
S8y AL+ABLE ;CALL TO MACRO. NOY CPU INSTRUCTION
. : 1
. |
° . |
s83, AL1+ABLE }nAcuINE INSTRUCTION
|
|

S84 OPSYN | NIL ,DISABLES MACRO B8UT DOES NOT
{ RESTORE NORMAL USE OF S84

. |AS AN OPERATION CODE. EVEN IF
. | IT WERE REDEFINED WITH OPDEF

. /IT WOULD NOT BE RECOGNIZED.

. THE MACRO FORM ALWAYS TAKES

. :PRECEDENCE-

PURGMAT| SB&4 | RESTORES NORMAL USE OF SBA4

6.1 MNEMONICALLY IDENTIFIED INSTRUCTIONS

Mnemonically identified instructions include all pseudo instructions, macro instructions, and PPU
symbolic instructions whether system or programmer defined. PPOP, OPSYN, NIL, and PURGMAC
provide the programmer with a means of creating or removing operation code table entries that are in
the mnemonically identified format.

6.1.1 PPOP — PPU OPERATION CODE

The PPOP pseudo instruction defines the operation and variable fields of a PPU symbolic machine
instruction and creates an operation code table entry for the instruction. COMPASS generates an
octal machine instruction of the defined format whenever the PPU instruction described by the PPOP

“instruction is used. If the operation code table already contains an entry for the name, the new

definition takes precedence over the old during assembly of the subprogram or until it is redefined.
No error is flagged. Any illegal parameter in PPOP causes COMPASS to ignore the PPOP and issue

a 7-type error flag.

60492600A 6-3

12-bit instruction with signed relative address or absolute address

Restrict the instruction being defined to the CYBER 70/Model 76;

Format:
LOCATION OPERATION ‘ VARIABLE SUBFIElDﬁ
name PPOP ctl, val, type
name Mnemonic name, 1-8 characters
ctl Control of instruction assembly
ctl Significance
0 Tilegal; if used, COMPASS ignores the PPOP
1 24-bit instruction with 12-bit address and no indexing
2
' (e.g., UIN)
24-bit instruction with 18-bit address (e.g. , LDC)
4 12-bit instruction with 6-~bit address (e. g. , LDN)
24-bit instruction with 12-bit address and optional indexing
(e.g., LDM)
6 12-bit instruction with signed relative address (e.g., SHN)
7 24-bit instruction with 12-bit address and required second
field (e.g., IAM)
val An evaluatable expression specifying the octal 4-digit operation code value;
usually, only the two leftmost digits are significant. I the assembly base is M,
the field is assumed to be octal.
type An evaluatable expression spécifying an integer value that COMPASS interprets
as follows:
6 Restrict the instruction being defined to the CYBER 170 Series,
CYBER 70/Models 71, 72, 73, and 74; COMPASS sets an error
flag if the instruction being defined is used in a CYBER 70/
Model 76 PPU assembly.
7
COMPASS sets an error flag if the instruction being defined is
used in a CYBER 170 Series, CYBER 70/Model 71, 72, 73, or
74 PPU assembly.
other or The instructibn is not restricted to either machine type.
omitted If the base is M, type is assumed to be octal. If type is omitted,
the comma preceding it can be omitted also.
6-4

60492600C

e’

e

Example:

Code Generated . LOCATION OPERATION | VARIABLE COMMENTS
! n 18 [0
PERIOH ;
De0 RASE 0 |
: |
. |
156 LA Fou 15 |
LG C FouU 40 |
ST™ PPOP |5,5400+LA |
. |
. |
. |
7311 5415 0040 . ST™ o 1

6.1.2 OPSYN — SYNONYMOUS MNEMONIC OPERATION

The OPSYN pseudo instruction makes a name in the location field of the OPSYN synonymous with the
macro, pseudo instruction or PPU mnemonic name specified in the variable field. The size of the
operation code table is the only limit to the number of instructions that can be made synonymous.

Format:
LOCATION OPERATION VARIABLE SUSBFIELDS
nameq OPSYN nameo

The name in the variable subfield must be previously defined as a standard instruction code. After an
OPSYN, either name produces equivalent results. If the location field specifies a previously defined
macro or operation code, the new definition takes precedence over the old without notification. Thus,
a macro defined by a name that is subsequently used in an OPSYN location field is not called when

the macro name is used in the operation field. The instruction actually called is the instruction
named in the variable subfield of the OPSYN. On the other hand, the old macro definition is not lost
and can be restored by purging the new definition with PURGMAC.

Example:

1. An operation named CALL is synonymous with RIM.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
CALL OPSYN |RJM |
- |
R I
. |
CALL |=XSUBR= IPRODUCES SAME RESULTS
IAS IF IT WERE AN RUM

60492600A 6-5

2. In the following example, a programmer wishes to use a macro named LJM for part of the
program and use the real LJM for the remainder of the program.

6.1.3 NIL — DO NOTHING PSEUDO INSTRUCTION

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 |30

LM, OPSYN [LJM 'SAVE ORIGINAL DEFINITION AS LJM,
PURGMAG LJM PURGE ORIGINAL DEFINITION
* I
° |

L JM MACRO |XX :
. |
R J l

LN ENDM I
. [
R CODE USING LJM MACRO
. |

LJM OPSYN |LJM. RESTORES ORIGINAL LJM
. |
. CODE USING ORIGINAL LJM

The NIL pseudo instruction resembles a no-op; it produces no code and conveys no information to the
assembler. It is primarily designed for disabling a macro; it cannot be used with CPSYN. The

following instructions could be used in place of NIL as nil instructions:

ENDM
ENDD
ENDIF
IRP

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

NIL

A location field symbol if present is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30

MACK OPSYN [NIL |
i

° |

* |

* |

TAG MACK AyB,6’73 {
. : |

I

60492600A

N
S

The assembler interprets each call to MACK as a NIL instruction. TAG is not defined because it
becomes the location field symbol for NIL when the statement is assembled.

6.1.4 PURGIMAC—PURGE MACROS

The PURGMAC pseudo instruction provides a means of disabling operation code entries for the named
instructions for the duration of the current assembly.

|
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PURGMAC name, , name,, ... ,name;
namei Names of mnemonic operation codes for macro definitions, pseudo instructions,

or PPU instructions.

A location field symbol if present is ignored.

6.2 SYNTACTICALLY IDENTIFIED INSTRUCTIONS

Syntactically identified instructions apply to CPU assemblies only. The CPOP and CPSYN pseudo
instructions create operation code table entries for instructions that are to be identified through
recognition of their syntax, rather than through the contents of the operation field only.

6.2.1 CPOP — CPU OPERATION CODE

The CPOP pseudo instruction describes the syntax of a new CPU symbolic machine instruction and
creates an operation code table entry for the instruction. An instruction of the defined format is
generated whenever the CPU instruction described by the CPOP instruction is used. If the operation
code table already contains an entry for the instruction, the new definition takes precedence over the
old during assembly of the subprogram. Any illegal parameter in CPOP causes COMPASS to ignore
the CPOP and issue an error flag.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sytx CPOP ctl, val, reg, type
sytx) The syntax consists of a mnemonic operator and variable field descriptors.

The mnemonic operator consists of two characters., The first can be any
character except blank. The second character can be a register designator:
A, B, or X, in which case, the operation field of the instruction is recognized
as cAn, cXn, or cBn, (c is a unique character; n is 0-7); or the second o
character can be any other character except blank, in which case the operation
field of the instruction is recognized simply by a two—charactqr mnemonic, such
as EQ.

60492600 B 6-7

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the

instruction being described.

It consists of none, one, two, or three of the

following 22 subfield descriptors. Q represents an expression. An r represents
a register letter (A, B, or X). A comma separates two descriptors; a blank

terminates the syntax.

void
r
-r

Tty

Tyt

*
rl r2

-r_*r
1 2

r,/Ty

-1, /Ty

T

-rI-r2

Q

rQ
- rQ
r1+r2Q

L TTTQ

ry *r2Q
-t *r,Q
rl/ r,Q \\
“T/TQ a
rl-er

T TR

For example, to describe -X3*B1, the descriptor, -ry *rz, would be written as -X*B whereas, to
describe B2+ALPHA, the descriptor rQ would be written as BQ.

ctl Control of instruction assembly,
ctl Significance
0 15-bit instruction
1 30-bit instruction
2 15-bit instruction, force upper before assembly
3 30-bit instruction, force upper before assembly
4 15 bit instruetion, force upper after assembly
5 30-bit instruction, force upper after assembly
6 15-bit instruction, force upper before and after

assembly

7 30-bit instruction, force upper before and after

assembly

60492600A

N

val An evaluatable expression specifying a 9-bit operation code; if the base is M,
val is assumed to be octal.

reg Three octal digits specifying the order from left to right into which register
numbers are to be inserted into the i, j, k portions of a 15-bit instruction, or
into the i and j portions of a 30-bit instruction. If the assembly base is M,
reg is assumed to be octal.

1 Register-number obtained from operation field
2 Number of second register or only register in
variable field-
3 Number of first of two registers in variable field
0 Set field to 0
type An evaluatable expression specifying an integer value that COMPASS interprets
' as follows: ‘
6 Restrict the instruction being defined to the 6000 Series, CYBER
170 Series and CYBER 70/Models 71, 72, 73, and 74; COMPASS
sets an error flag if the instruction being defined is used when
MACHINE 7 has been specified.
7 Restrict the instruction being defined to the 7600 or the CYBER 70/
Model 76; COMPASS sets an error flag if the instruction being
defined is used when MACHINE 6 has been specified,
other The instruction is not restricted to a machine type.
or
omitted

If base is M, type is assumed to be octal. If type is omitted, the comma
preceding it can be omitted also,

Example:

Code Generated

LOCATION OPERATION | VARIABLE COMMENTS

53731

722 7231000003

60492600C

n 18 |30

SAX+D crOP 0,5308,13ZBEDEFINES SAI XJ+BK

SXXQ CPOP |1,7208,1208 \DEFINES SXI XJ4K
. ' i
. !
!
* i
Saz X3+81 }
146 Sx3 | x1+3 |

6.2.2 CPSYN — SYNONYMOUS CPU INSTRUCTION

The CPSYN pseudo instruction renders an instruction with the syntax given in the location field
synonymous with the instruction having the syntax specified in the variable field. The only limit to
the number of CPU instructions that can be made synonymous is the size of the operation code table

(4123 entries).

Format:
LOCATION - OPERATION VARIABLE SUBFIELDS
syt;x1 CPSYN sytx2
Sytxl Syntax of a CPU instruction (see CPOP for legal forms). If this syntax is
already in the operation code table, the table entry for sytx2 takes precedence
over the old table entry for sytxl without notification.
SthZ Syntax of a CPU instruction for which there must be an entry in the operationb

‘code table. Following the CPSYN, an instruction in either sytx1 or sytxy
produces an octal instruction of the format described by the entry for sytxz.

6.2.3 PURGDEF—PURGE CPU OPERATION CODE

The PURGDET pseudo instruction provides a means of disabling syntactically-identified operation code
entries for the duration of the current assembly.

Format:
tOCATION OPERATION VARIABLE SUBFIELDS
PURGDEF |sytx
sytx Syntax of a CPU instruction (see CPOP for legal forms).

A loeation field symbol, if present, is ignored.

60492600A

o ;

MICROS 7

The COMPASS micro capability enables the programmer to symbolically refer to a defined character
string. When used in conjunction with IFC, DUP, STOPDUP, and SET pseudo instructions, micro
strings provide for varied manipulation of character strings -- testing for a particular character,
counting characters, concatenation of strings, etc.)

Use of a micro definition requires two steps: definition of the character string, and substitution. In
this discussion, substitution rather than definition is discussed first so that the reader has a better
understanding of how a definition is used when it is described.

7.1 MICRO SUBSTITUTION

Wherever a micro name between micro marks (#) occurs in a statement other than a comment
line (* in column 1), the assembler substitutes the micro before it interprets the statement., If

colur\nn 72 of the last statement read is exceeded as a result of micro substitution, the assembler creates
up to a maximum of 9 continuation statements, beyond which it discards excess characters without noti-
fication on the listing. No replacement takes place if the micro name is unknown or if one of the micro
marks has been omitted. If the micro name is unknown, the assembler flags a nonfatal assembly error.
If the micro name is null (that is, the two micro marks are adjacent), then

1. Both micro marks are deleted, and

2. No error flag is set

Example:
A micro identified as NAM is defined as the 7 characters:

ADDRESS

A reference to NAM is in the varlable field of a line:

LOCATION OPERATION | VARIABLE COMMENTS
) N 18 T30
LoC SAL | #NAMZ+4

However, before the line is interpreted, COMPASS substitutes the definition for NAM producing the
following line:

- LOCATION OPERATION | VARIABLE COMMENTS
1 n i8 [30
‘lLoc SA1 ABDRESS+4 |
NOTE

Unless the A option of the LIST pseudo instruction is
enabled, the listing depicts the instruction as it was
- before the substitution took place.

60492600A 7-1

#

7.2 MICRO DEFINITION

Pseudo instructions specifically designed for the purpose of defining micros are: MICRO, OCTMIC and
DECMIC. In addition, the following pseudo instructions optionally define micros: BASE, CODE, and

QUAL. Also, system or built-in micros are automatically defined by COMPASS at the start of each
subprogram assembly.

7.2.1 MICRO — DEFINE -MICRO

The MICRO pseudo instruction defines a character string and assigns a name to that string.

Format:

LOCATION OPERATION VARIABLE SUSFIELDS

micname MICRO ny,n, » dstringd

micname Name by which definition is called; 1-8 characters

ny ~ Absolute evaluatable expression specifying starting character in string; when the
base is M, COMPASS assumes that n1 is decimal.

n, Absolute evaluatable expression specifying number of characters; when the base
is M, COMPASS assumes that n, is decimal.

dstringd Delimited character string. The delimiter d is a character not used in the

string.

Counting the first character after d as character 1, the assembler forms the string by extracting n,
characters starting with character n,, If the second delimiting character occurs before count n, is
exhausted, the defined string terminates at that point. If ny is greater than zero and ny is omitted, zero,
or negative, the defined string includes all the characters from n to the closing delimiter (see second
example).

If n; is omitted, zero, or negative, the defined string is empty; no substitution takes place when the micro
name is referred to. That is, n, and the character string are ignored.

A previously defined micro can be a part of a micro definition; one micro can be defined as a substring
of another (see third example).

A micro can combine previously defined micros or can be a subset of another. Also, a micro defined

originally as one character string can be redefined subsequently with a different character string. After
the redefinition, the original character string is inaccessible.

If ny or ng is negative, the assembler generates a T7-type error.
Examples:

1. The following MICRO defines NAME as the 19 characters beginning with A and ending with G.

LOCATION OPERATION | VARIABLE COMMENTS

1 " 18 [0
N AME MIGRO 1519, *ALPHANUMERIC STRING*

7-2 60492600A

e’

e

~ -
S

2.

This example illustrates a blank character count. The defined string begins with A and is
terminated by the closing delimiter. '

LOCATION

OPERATION

VARIABLE COMMENTS

n

18 [30

MICKY

MICRO

19y ¥ALPHANUMERIC STRING*

3. One micro can be defined as a substring of another.

COMMENTS

LOCATION OPERATION | VARIABLE
1 n 18 [30
NAM1 MICRO |1,25,%MAJOR iALpHANUMERIC STRING*
. . . |
. . . |
NAM2 MICRO | 7494 *2NAM1Z* :SAME STRING AS IN EXAMPLES i AND 2

4, One micro can combine others,
LOCAYION OPERATION | VARIABLE COMMENTS
1 n 18 I30
NAM1 MICRO [1,12,83ALPHANUMFRICY
NAM2 MICRO |1474X STRINGX
NAMZ MICRO ! 1,,+2ZNAM1ZZNAM2Z+ CCHMBINES NAML AND NAM2
5. A micro name can be redefined.
LOCATION QPERATION | VARIABLE COMMENTS
] n 18 [30
MSG MICRO |[1,6,*STRING¥
[] [. \ !
. o . }. :CODE USING FIRST DEFINITION
* L] * I
MSG MICRO |1,19,¥ALPHANUMERIC £MSGz* »
.] e) :
. i e . r ,CODE USING SEFfOND DEFINITICN,
. i' . ; FIPST DEFINTTION IS INACCESSIBLE.
6. Micro substitution takes place bhefore a line is assembled or examined for syntax.
the following is possible.
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 {30
NAM MICRO [14254% LOC SAl ADDRESS+*

604926

00 G

Thus,

7-3

7.2.2 DECMIC — DECIMAL MICRO

Using a decimal conversion, the DECMIC pseudo instruction converts the expression into a character
string to be saved under the name specified. ’

Format:
tOCATION OPERATION VARIABLE SUBFIELDS
micname DECMIC aexp,n
micname Name by which definition is called; 1-8 characters
aexp Absolute evaluatable expression
n Optional absolute evaluatable expression specifying number of characters
in the defined string. The defined string is a maximum of 10 characters
regardless of the magnitude of n, When base is M, COMPASS assumes that’
n is decimal
If n is omitted or has a zero value, the micro contains the number of characters
indicated by the conversion to a maximum of 10 characters. If the converted
expression has more than n (or 10) digits, the most significant digits are
truncated. If the value has fewer than n digits, the string is right justified and
filled with leading zeros. All numbers are treated as positive.
Example:

B has the value 1024 decimal or 2000 octal before conversion.

OPERATION

VARIABLE COMMENTS

LOCATION
1 I 18 130
v DEGMIG|R,6 |
|
RO

7.2.3 OCTMIC — OCTAL MICRO

Using an octal conversion, the OCTMIC pseudo instruction converts the value of the expression into a
character string to be saved under the name specified.

60492600 D

S

N

S

\\.//

N

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
micname OCTMIC aexp,n
micname Name by which definition is called; 1-8 characters
aexp Absolute evaluatable expression
n Optional absolute evaluatable expression specifying number of characters

in the string. The defined string is a maximum of 10 characters regardless
of the magnitude of n., When base is M, COMPASS assumes n as a decimal.
If n is omitted or has a zero value, the micro contains the number of
characters indicated by the conversion to a maximum of 10 characters.

If the converted expression has more than n (or 10) digits, the most significant digits are truncated.
If the value has fewer than n digits, the string is right justified and filled with leading zeros. All
numbers are treated as positive,

Example:

B has the value 1024 decimal or 2000 octal before conversion.

LOCATION OPERATION | VARIABLE COMMENTS
Vi OCTMIC|B,6

] n 18 I30
H
L]
I
|
l
!
I
|

7.3 PREDEFINED MICRO NAMES

Several standard micros are predefined by the COMPASS assembler. They are available for every
assembly. The programmer simply writes the micro reference as desired. ‘

These micros are automatically defined at the beginning of each assembly, and have the default values
specified below until they are redefined by the programmer; thereafter, the programmer's definition
holds until the start of the next assembly.

7.3.1 DATE

The DATE micro contains the current date in 10 characters in one of the following forms as obtained
from the operating system:

Ayr/mo/dy. or Amo/dy/yr.

The micro reference is #DATE%.

60492600 E ‘ 7-5

7.3.2 JDATE

The automatic value of the JDATE micro is five digits yyddd, where yy is the year and ddd is.the day
of year at the time of assembly. Thus, JDATE is the Julian date form of DATE.

The micro reference is #JDATE#.

7.3.3 TIME

The TIME micro contains the current time of day in 10 characters in the following form as obtained
from the operating system: : :

A hr.min. sec.

The micro reference is #TIME#

Example:
LOCATION OPERATION | VARIABLE . COMMENTS
) n 18 [0
TITLE |PROGRAM ASSEMBLED ON #DATE# AT®TIME:
7.3.4 BASE)

The automatic value of the BASE micro is a single letter D, M, or O, corresponding to the number
base currently in effect(specified by the most recent BASE pseudo instruction); it is initially D.

The micro reference is #BASE#.

7.3.5 CODE
The automatic value of the CODE micro is a single letter A, D, E, O, or I, corresponding to the
character code currently in effect (specified by the most recent CODE pseudo instruction); it is

initially D.

The micro reference is #CODE#.

7.3.6 QUAL
The automatic value of the QUAL micro is 0 to 8 characters comprising the gualifier symbol
currently in effect (specified by the most recent QUAL pseudo instruction); it is null initially and

whenever the blank qualifier is in effect.

The micro reference is #QUAL#,

7-6 60492600 F

7.3.7 SEQUENCE

The automatic value of the SEQUENCE micro is 18 characters comprising the sequence field

(columns 73-90) of the first line of the COMPASS source statement most recently read from the main
source input file. Thus, if the current statement was read from the main source input file, SEQUENCE
is the sequence field of the first line of the statement. However, if the current statement is generated
(.e., part of a macro call expansion, DUP expansion, etc.) or is read from a different file via the
XTEXT pseudo instruction, then SEQUENCE is the sequence field of the first line .of the statement most
recently read from the main source input file.

The micro reference is #SEQUENCE#.

7.3.8 MODLEVEL

The automatic value of the MODLEVEL micro is the value (up to 9 characters) specified by the ML pa-
rameter on the COMPASS control statement. If no ML parameter is present, the automatic value of the
MODLEVEL micro is equal to that of the JDATE micro. When COMPASS is called by a compiler to
process embedded COMPASS subprograms, the automatic value of the MODLEVEL micro is supplied
by the calling compiler. The MODLEVEL micro is intended to be used when assembling a compiler
(or COMPASS itself), to provide the compiler modification level to be placed in word 6 of each PRFX
table in the binary output written by the compiler,

The micro reference is ZMODLEVEL#,

7.3.9 PCOMMENT .

The automatic value of the PCOMMENT micro is the value specified by the PC parameter on the
COMPASS control statement, with characters truncated from the right or blanks appended to the right, as
necessary, so that the micro's length is exactly 30 characters. I no PC parameter is present, the auto-
matic value of the PCOMMENT micro is 30 blanks. When COMPASS is called by a compiler to process
embedded COMPASS subprograms, the automatic value of the PCOMMENT micro is supplied by the call-
ing compiler. The PCOMMENT micro is intended to be used in a COMMENT pseudo instruction to
specify words 8 through 10 of the PRFX table in the binary output. It may also be used, in conjunction
with the *F special symbol, to determine compiler options (debug mode, rounded arithmetic, etc.) in
effect at the time of assembly.

The micro reference is #PCOMMENT#,

60492600A 7-7

N’

CPU SYMBOLIC MACHINE INSTRUCTIONS 8

COMPASS recognizes symbolie notation for all CYBER 170 Series Central Processor Unit (CPU) l
instruetions, all CYBER 70 Series Central Processor Unit instructions, all 7600 Central Processor Unit
instructions, and all 6000 Series Computer Systems Central Processor Unit instruetions.

The assembler identifies each symbolic instruction aceording to its syntax and generates a one-parcel
15-bit instruction or a two-parcel 30-bit instruction. The object code for an instruction is generated in the
block in use when the instruection is encountered.

8.1 MACHINE INSTRUCTION FORMATS

Figures 8-1 and 8-2 illustrate the formats for CPU 15-bit and 30-bit instructions generated by the
assembler.

tm il [k| |

14 08 05 02 00

Figure 8-1. CPU 15-Bit Instruction Format

fm i i K '
29 23 20 17 14 00

Figure 8-2. CPU 30-Bit Instruction Format

fm 6-bit instruction code

fmi 9-bit instruetion code

i 3-bit code (0 through 7) specifying one of eight designated registers (for example, Ai)

j 3-bit code (0 through 7) specifying one of eight designated registérs (for example, Bj)

k 3-bit code (0 through 7) speeifying one of eight designated registers (for example, Xk)

K 18-bit integer value used as an operand, address of an operand, or branch destination address
jk 6-bit integer value specifying a shift count or mask count

Figure 8-3 illustrates possible arrangements of one- and two-parcel instructions in a 60-bit CPU instruetion
word. Generally, the assembler does not allow a two-parcel instruction to begin in the fourth parcel of a
word.

60492600 G 8-1

First . : _ Second . .- Third Fourth
Parcel (Parcel 0) Parcel (Parcel 1) Parcel (Parcel 2) Parcel (Parcel 3)
15 15 15 15
59 44 — 29 - 14 ~ 00
30 15 15
59 - 29 14 00
15 ' 30 15
59 o 44 , 14 00
15 15 | 30
59 44 29 00
[30 30
59 7 29 D 00

Figure 8-3. Arrangements of Instructions in a 60-bit CPU Word

When a two-parcel instruction begins in the last parcel of a word, the CYBER 170/Model 175, 176, 740,
750, or 760, and the CYBER 70/Model 76 or 7600 executes it as if the instruction word had a fifth parcel
containing all zeros. On the CYBER 170/Model 171, 172, 173, 174, 720, or 730, and the CYBER 70/Model
71, 72, or 73, or 6400, this condition causes an error ex1t. On the 6600 or CYBER 70/Model 74, the CPU
takes the flrst parcel of the current instruetion.

Before it assembles an instruetion that must begin inthe first parcel (forced upper) and after it assembles
an instruction that requlres the instruction following it to be foreed upper, the assembler completes a word
~ as follows:

e Lower 15 bits remain They are packed with a one-parcel NO (pass) instruction.
e Lower 30 bits remain They are packed with a two-parcel SB0 B0+K instruction.
o Lower 45 bits remain They are packed with a NO instruction and an SB0 B0+K instruetion.

8.2 INSTRUCTION EXECUTION

8.2.1 6600/6700" AND CYBER 70/MODEL 74 EXECUTION

After an exchange jump start by a peripheral processor unit \PPU) and CPU program, CPU instruetions
issue automatically in the original sequence, to an 8-word instruction stack. The stack can hold a program
loop consisting of up to twenty-six 15-bit instructions and one 30-bit instruction.

Instructions are read from the stack, one at a time, and issued to the functional units (table 8-1) for

execution. A scoreboard reservation system in CPU control keeps a current log of which units and
operating registers are reserved for computation results from functional units.

"The 6700 also includes a 6400-type central processor unit

8-2 60492600 G

\\/—/

N

\(\

TABLE 8-1. CYBER 70/Model 74 and 6600/6700 FUNCTIONAL UNITS

UNIT ‘ GENERAL FUNCTION
Branch Handles all jumps or branches from the program.
Boolean Handles the basic logical operations of transfer, logical product,

logical sum, and logical difference.

Shift Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and normalize, pack, and
unpack floating point operations. The unit also includes a mask

generator,
Floating Add Performs single or double precision floating point addition and
subtraction on floating point operands.
Long Add Performs addition and subtraction of two 60-bit fixed point operands
Floating Multiply Performs single or double precision floating point multiplication on

floating point operands

Floating Divide Performs single precision floating point division of floating point
operands; also counts the number of 1 bits in a 60-bit word.

Increment Performs one's complement addition and subtraction of 18-bit operands,

Each functional unit executes several instructions, but only one at a time. Some branch instructions
require two units, the second unit receives direction from the branch unit.

The rate of issuing instructions varies from the maximum of one instruction every 100 nanoseconds
(one minor cycle).” Sustained issuing at this rate may not be possible because of functional unit and CM
conflict or because of serial rather than simultaneous operation of units. Program run time can be
decreased by efficient use of the units. Instructions that are not dependent on previous steps may be
arranged or nested in program areas where they may be executed concurrently with other operations to
eliminate dead spots in the program and increase the instruction issue rate.

The following steps summarize instruction issuing and execution:

@ An instruction is issued to a function unit when:
Specified functional unit is not reserved
Specified result register is not reserved for a previous result

® Instructions are issued to functional units at minor cycle intervals when no reservation conflicts
are present,

® Instruction execution starts in a functional unit when both operands are available. Execution is
delayed when an operand is a result of a previous step which is not complete.

® No delay occurs between the end of a first unit and the start of a second unit which is waiting for
the results of the first.

60492600A 8-3

o After a branch instruction no further instructions are issued until instruction has beén executed.

In the execution of a branch instruction, the branch unit uses:
Increment unit to form the instructions that branch to K + Bi and branch to Kif Bi ...
Long add unit to perform the instructions that branch to K if Xj .

Time spent in the long add 61‘ increment units is part of total branch time.

Read central memory access time is computed from the end of increment unit time to the time an
operand is available in X operand register. Minimum time is 500 nanoseconds assuming no central
memory bank conflict.

8.2.2 CYBER 170/MODELS 171,172, 173,174, 720, 730, AND THE CYBER 70/

The

MODELS 71,72, 73 AND 6200/6400/6500 EXECUTION

CYBER 170/Models 172, 173, 174, 720, and 730, and the CYBER 70/Models 71, 72, and 73, and 6200,

6400, and 6500 systems CPU has a unified arithmetiec unit, rather than separate functional units as in the
6600 system. Instructions in the CPU are executed sequentially.

For

efficient coding in the central processor unit:

Always attempt to place jump instructions in the upper portion of the instruction word to avoid both
the additional time for RNI (read next instruction, 2 minor cycles) and the possibility of a memory
bank conflict with (P + 1).

Where possible, place load/store instructions in the lower two portions to avoid lengthening
execution times.

Reading the next instruction words of a program from central memory, RNI, is partially concurrent
with instruction execution. RNI is initiated between execution of the first and second instructions of the
word being processed. Initiating RNI operation requires two minor cycles; the remainder of the RNI

is parallel in time with execution of the remaining instructions in the word:

1 2 3

8-4

NN

RNI Execution of

l <+—instructions %

2 and 3

RNI

— | 200 <+———minimum of —-——+>
nsec

800 nsec

A
Y

Total RNI time

60492600 G

~—

P

——

In caleulating execution times, two minor cyeles are added to each instruction word in a program to cover
the RNI initiation time. Exceptions are the return jump and the jump instructions (in which the jump
condition is met) when they occupy the upper position of the instruetion word. Since the times for these
instructions already include the time required to read the new instruetion word at the jump address, no
additional time is consumed. '

Example:
P |Jump to K (met) Pass Pass
K {Add1 Add 2 Load | Store
Instruction ' Minor Cycles Required
Jump : 13
Add1 5
RNI Initiation 2
Add 2 5
Load 12
Store 10
Total Time 47 minor cycles

After RNI is initiated (between the first and second instruetions of the word), a minimum of eight minor
eycles elapses before the next instruction word is available for execution. Even if the lower order positions
of the word should require less than eight minor cyeles, a minimum of eight minor eyeles is allowed.

Example:

Jump to K

Pa P
(not met) 58 ass

P+1

8.2.3 CYBER 170/MODELS 175,176, 740, 750, AND 760 AND THE
CYBER 70/MODELS 76, AND 7600 EXECUTION

Execution of an arithmetic or logical machine instruction takes place in one of nine functional units in the
computation section of the CYBER 170/Models 175, 176, 740, 750, or 760 and the CYBER 70/Models 76 or
7600 CPU. Each is a specialized unit with algorithms for a portion of the CPU instruetion execution.
Table 8-2 lists the general function of each unit. A number of functional units can be in operation at the
same time.

60492600 G 8-5

TABLE 8-2. CYBER 170/MODELS 175, 176, 740, 750, AND 760 AND THE CYBER 70/MODEL 76
AND 7600 FUNCTIONAL UNITS

Unit) General Function

Boolean Handles the basic Togical operations of transfer, logical product, logical
sum, and logical difference. It also performs the pack and unpack
floating point operations. co '

Shift Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and mask generation.

Normalize Performs the normalize operations.

Floating Add Performs single or double precision floating point addition or subtraction|
on floating point operands. ‘

Long Add Performs integer addition or subtraction of two 60-bit fixed point
operands.

Floating Multiply Performs single or double precision floating point multiplication on
floating point operands.

Floating Divide Performs single precision floating point division of floating point
operands.

Population Count Counts the number of 1 bits in a 60-bit word.

Increment Performs one's complement addition and subtraction of 18-bit operands.

A functional unit receives one or two operands from operating registers at the beginning of instruction
execution and delivers the result to the operating registers after performing the function. The functional
units do not retain any information for reference in subsequent instructions. The units operate in three-
address mode with source and destination addressing limited to the operating registers.

Except for the floating multiply and divide units, all functional units have one clock period segmentation.
This means that the information arriving at the unit, or moving within the unit, is captured and held

in a new set of registers at the end of every clock period. It is therefore possible to start a new set

of operands for unrelated computation into a functional unit each clock period even though the unit may
require more than one clock period to complete the calculation. This process may be compared to a
delay line in which data moves through the unit in segments to arrive at the destination in the proper
order but at a later time. All functional units perform their algorithms in a fixed amount of time. No
delays are possible once the operands have been delivered to the front of the unit.

The floating multiply unit has a two clock period segmentation. Operands may enter the multiply unit
in any clock period providing there was no multiply operation initiated in the preceding clock period.

The floating divide unit is the only functional unit in which an iterative algorithm is executed., There is
little segmentation possible in this unit. However, to increase execution speed, the beginning of a new
divide operation can follow a previous divide operation by 18 clock periods for a gain of 2 clock periods.

Instructions involving storage references for operands or program branching are difficult to time.

Program branching within the instruction stack causes no storage references and small program loops
can therefore be precisely timed.

8-6 60492600 G

M’

8.3 OPERATING REGISTERS

Twenty-four registers minimize memory references for arithmetic operands and results:

Function Identity Length Number
Operand Registers X0 - X7 60 Bits 8
Address Registers A0 - A7 18 Bits 8
Index Registers B0 - B7 18 Bits 8

A register is reserved if it is the destination of an instruction that has been initiated but has not been
completed. A register is free in the clock period (or minor cycle) following the store into it.

8.3.1 X REGISTERS

Eight 60-bit X registers in the computation section of the CPU designated X0, X1,...,X7 are the
principal data handling registers for computation. Data flows from these registers to the SCM (CM)
and the LCM (not ECS). Data also flows from SCM (CM) and LCM (not ECS) into these registers,
All 60-bit operands involved in computation must originate and terminate in these registers.

Operands and results transfer between SCM (CM) and these registers as a result of placing SCM (CM)
into corresponding address registers.

On the CYBER 170/Model 176, CYBER 70/Model 76 and 7600, the X registers also serve as address
registers for referencing single words from LCM,. X0 is used as the LCM relative starting address
in a block copy operation.

8.3.2 A REGISTERS

Eight 18-bit. A registers in the computation section of the CPU, designated as A0, Al,..., A7, are
essentially SCM (CM) operand address registers., With the exception of A0 and X0, A registers are
associated one-for-one with the X registers. Placing a quantity into an address register Al - A5
causes an immediate SCM (CM) read reference to that relative address and sends the SCM (CM) word
to the corresponding operand register X1 - X5. Similarly, placing a value into address register A6
or A7 causes the word in the corresponding X6 or X7 operand register to be written into that relative
address of SCM (CM).

The A0 and X0 registers operate independently of each other and have no connection with SCM (CM).
A0 is used as the relative SCM (CM) starting address in a block copy operation and for scratch pad or
intermediate results.

8.3.3 B REGISTERS

Eight 18-bit B registers in the computation section of the CPU designated as BO, B1,...,B7 are
primarily indexing registers for controlling program execution. Program loop counts can be incremented
and decremented in these registers.

60492600C 8-7

Program addresses may be modified on the way to an A register by adding or subtracting B register
quantities. The B register also holds shift counts for pack and normalize operations and the channel
number for channel status requests.

BO always contains positive zero; that is, BO is held clear. Often as a programming convention, Bl
or B7 contains positive 1. See the Bl=1, the B7=1, and the R= pseudo instructions.

8.4 SYMBOLIC NOTATION

This section describes notation used for coding symbolic CPU machine instructions. Instructions are
listed according to octal sequence. Instructions unigue to a computer system are identified as such.
These instructions can be assembled on any machine but will execute properly on the noted machine only.
For details and special conditions arising during instruction execution, refer to the relevant hardware
system reference manual.

The location field of a symbolic machine instruction optionally contains a location symbol. When the
symbol is present, it is assigned the value of the location counter after the force upper (if any) occurs.

The operation field of a symbolic CPU machine instruction contains a mnemonic operator, the last two
characters of which are often a register designator,

The variable field contains one, two, or three subfields. For 15-bit instruction, subfields take the
forms:~ '

r

-r } r is a register designator
r,r
ropr) _
+ - %
-ropr ’ op is a register operator /
ik jk is an absolute expression specifying a shift count or mask bit count. If

the expression value is in the range -60 to -0, inclusive, COMPASS adds 60 to it.
If it is less than -60 or greater than 63, COMPASS sets a warning flag and uses
the low-order 6 bits of the expression value.

For a 30-bit instruction, subfields take the forms:

K The single subfield contains an absolute, relocatable, or external expression
‘that does not include a register.

rop K The single subfield contains an absolute, relocatable, or external expression
that includes a register designator; op is an expression operator:

+ - * /

r, K One subfield contains a register designator, the other subfield contains an
absolute, relocatable, or external expression that does not include a register
designator. . ‘

r,rv,K Two subfields contain register designators; a third contains an absolute,

relocatable, or external expression that does not include a register.

8-8 60492600A

e’

~—

N’

S

""\/

In the formats and examples, K reduces to an 18-bit value that represents one of the following in pass
two:

An absolute address or a word count

An external symbol + an integer value

An address that is relocatable relative to the program origin or common block origin.
An address of a literal

If K is negative, the assembler inserts the one's complement of the integer value in the K portion of the
instruction.

In the descriptions of the formats, +K designates that the evaluation of all nonregister elements can
result in a positive or negative value for the expression (see section 2. 8, 2 Evaluation of Expressions).
Use of +K to represent the integer portion of the expression does not imply that the first term oper-
ator in the expression is an expression operator. If you consider that a and b are terms in expression
K, then +K indicates that the sum of the values of a and b is positive and -K indicates that the sum of
the values is negative. Thus, -K does not mean that a-b would become -a+b.

In the following example, the symbol XRAY has the value 407 .. The first term operator (-) forms the
value 777370 _. Subtracting 1 from this results in 7773678 or a -K (—4108).

8
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 , [30
13 7212777367 Sx1 X2-XRAY-1 i

Unless otherwise noted, subfields can be in any order., COMPASS also allows an added degree of
flexibility by allowing the variable subfields of an instruction to be written in the operation field with
each subfield preceded by a comma, For example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
I
uxt n2,X2 I

can be written

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
26123 liX1,82 |X3 H

The instructions are identical to the assembler.

60492600A , 8-9

Similarly, the following instructions are regarded as identical. Use of this feature is optional.

LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [0

]

L423J10 641 £ R2,33,K |
S42301.641 £2,32 |93,x |
¥ I

0423010641 £Q,82,R3 K |

|
J423010641 £2,32,83,K :

8.41 PROGRAM STOP OR EXCHANGE JUMP INSTRUCTION
(CYBER 170 SERIES, CYBER 70/MODEL 71,72,73,74, AND 6000 SERIES)

The CEJ/MEJ Panel Switch determines whether this instruction causes the central processor unit to
halt or to execute an exchange jump. The DISABLE position disables the central exchange jump or

the monitor exchange jump. In this case, the instruction is illegal for a CYBER 170/Model 175. For
all other systems, PS halts the central processor unit at the current step in the program. An exchange
jump is necessary to restart the central processor unit, The ENABLE position enables the jump capa-
bilities for all systems. In this case, PS causes an exchange jump to monitor address (MA) in the
exchange package. For the CYBER 170/Model 176, the CEJ/MEJ switch is ignored; exchange jumps
are always enabled. For 6000 series systems, the CEJ/MEJ switch is ignored; PS always causes the

central processor unit to halt. The job continues to hold a control point until the time-limit is satis-
fied; at that time the job aborts.

The contents of the location field become a sub-subtitle on the assembler listing. The assembler forces
upper before and after assembling a PS instruction.

Formats: CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
CYBER 170/Model 175, 176 Functional Unit: None

Operation Variable | Description : Size Octal Code

PS Program stop or exchange jump to (MA) 30 bits 00000 00000

PS K Program stop or exchange jump to (MA) 30 bits 0000K

Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 |30
a0B0700000 PS :
~ 1
8-10' ’ 60492600 E

N

e

R

N

8.4.2 ERROR EXIT INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

ES execution is treated as an error condition and the machine sets the program range condition flag

in the PSD register. The condition flag then generates an error exit request which causes an exchange
jump to address (EEA). All instructions issued prior to this instruction are run to completion, Any
instruction following this instruction in the current instruction word is not executed. When all operands
have arrived at the operating registers as a result of previously issued instructions, an exchange

jump occurs to the exchange package designated by (EEA). '

The i, j, and k designators, which are ignored by the computation section, are set to zero by the
assembler. The program address stored in the exchange package on the terminating exchange jump is
advanced one count from the address of the current instruction word (P=P+1). This is true regardless
of which parcel of the current instruction word contains the error exit instruction.

The error exit instruction is not intended for use in user program code. The program range condition
flag is set in the PSD register to indicate that the program has jumped to an area of the SCM field which
may be in range but is not valid program code. This should occur when an incorrectly coded program
jumps into an unused area of the SCM field or into a data field. The program range condition flag is
also set on the condition of a jump to address zero. These conditions can be determined on the basis

of the register contents in the exchange package. The existence of an error exit condition resulting
from execution of this instruction can thus be deduced.

The location field of an ES instruction becomes a sub-subtitle on the assembler listing.

Format: : Functional Unit: None
Operation Variable Description ‘ Size Octal Code
ES Error exit to EEA 15 bits 00000
ES K Error exit to EEA 15 bits 00000
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) " 18 [30
00000 ES :

8.4.3 RETURN JUMP INSTRUCTION

When this instruction is executed, an unconditional jump to the current address plus one [(P)+1] is
stored in the upper half of relative address K in SCM and control then transfers to K+1 for the next
instruction. The lower half of the stored word is all zeros., The instruction always branches out of
the instruction stack and voids all instructions currently in the instruction stack.

After thé instruction is executed the octal word at K is:

Address K |0400 | P+1 I 0000000000 |
: 59 29 00
Bi=B |
60492600 C 8-11

This instruction is intended for transferring control to a subroutine between execution of the current
instruction word and the following instruction word. Instructions appearing after the return jump
instruction in the current instruction are not executed. The called subroutine must exit at address K
in CM (SCM). A jump to address K of the branch routine returns the program to the original sequence.
The assembler sets the unused j designator to zero.

A force upper occurs after the instruction is assembled.

CYBER 70/Model 74 or 6600/6700 Functional ’Unit: Branch
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: None

Format:
Operation Variable Description Size Octal Code
RJ K Return jump to K 30 bits 0100K
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [30
0100005250 + RJ HELP H

8.4.4 ECS INSTRUCTIONS (CYBER 170 SERIES, CYBER 70/MODELS 71,
72,73,74 OR 6000 SERIES) .

These instructions initiate either a read or write operation to transfer (Bj)+K 60-bit words between
extended core storage (ECS) and central memory (CM). The initial ECS address is (X0)+RAECS;
the initial CM address is (AO)+RACM. .

The assembler forces upper before assembling an RE or WE instruction.

If no error occurs, the next instruction executed is the first instruction in the current address plus one-
[(P)+1].

Three error conditions cause an error exit to the lower-order 30 bits of the instruction word containing
the RE or WE instructions. These 30 bits should always hold a jump to an error routine. The conditions
are:

1. Parity errors when reading ECS. If a parity error is detected, the entire block of data is
transferred before the exit is taken.

2. The ECS bank from/to which data is to be transferred is not available because the bank is in
maintenance mode, or the bank has lost power. If either of these conditions exists on an
attempted read or write, an immediate error exit is taken,

3. An attempt to reference a nonexistent address. On an attempted write operation, no data
transfer occurs and an immedi ate error exit is taken. If the attempted operation is a read,
and addresses are in range, zeros are transferred to central memory. This is a convenient
high-speed method of clearing blocks of central memory.

On a CYBER 170 Model 176, action in the case of error depends on the operating system being run.

Under SCOPE 2, error processing is just as for the RL and WL instructions (section 8.4.5). Under
NOS 1, an error causes the job to abort. Under NOS/BE 1, an error exit to the lower 30 bits of the
instruction word takes place. This action is provided by the operating system, not by the hardware.

For additional information about these instructions, refer to the 7030 Extended Core Storage Reference
Manual.

8-12 60492600 G

~

N’

Functional Unit: None

Formats:
Operation Variable Description ' Size Octal Code
RE - Bj . Read extended core storage , 30 bits 0110 00000
RE K Read extended core storage 4 30 bits 0110K
RE BjzK Read extended core storage ' 30 bits 011jK
WE Bj Write extended core storage 30 bits 012j0 00000
WE K Write extended core storage 30 bits 0120K
WE BjzK Write extended core storage 30 bits 012jK
Examples: A
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [30

0110002000 RF 20008 i

0117001000 ' RE R7+1000B :

9125101000 WE 1000R+85 |

8.4.5 LCM BLOCK COPY INSTRUCTIONS (CYBER 170/MODEL 176,
CYBER 70/MODEL 76 OR 7600

Block copy instructions move quantities of data between L.CM and SCM as quickly as possible. All
activity in the CPU other than I/O word requests is stopped during a block copy operation. All
instructions issued prior to a block copy instruction are executed to completion and no further
instructions issue until the block copy is nearly completed. As a result of these restrictions the

data flow between L.LCM and SCM can proceed at the rate of one 60-bit word each clock period.

When an I/0 multiplexer word request for SCM occurs during this transfer, the data flow is
interrupted for one clock period. The I/O word address is inserted in the stream of addresses to

the SAS, and the addresses for the block copy are resumed with a minimum of a one clock period delay.
An additional delay will occur if the I/O reference causes a bank conflict in SCM.

The length of the block is determined by adding the quantity K to the contents of register Bj. Either
quantity may be used as an increment or decrement. The result is an 18-bit integer which is truncated
to a 10-bit quantity. Thus, a maximum block size is 17778. (For example, if the result of the add is
0030008, the instruction transfers 10008 words.) No error indications are given when this occurs unless
the field length is exceeded causing a block range error. If the block length is zero, the instruction
becomes a do-nothing instruction; the condition is not error flagged. ’

Relative source or destination addresses begin at (A0) in the SCM and at the relative LCM address
determined from the lowest order 19 bits of (X0). If (X0) is negative, the 19 bits are treated as a
positive integer. If the sum of (X018—00) and the block count exceeds the (FLL), the copy is not
executed and the LCM block range condition flag is set in the PSD register. Similarly, if the sum of
(A0) and the block exceeds (FLS), the copy is not executed and the SCM block range condition flag is
set in the PSD register.

COMPASS will truncate a block copy instruction if it begins in the last parcel and its K field is zero.
Under such conditions, a block copy is a 15-bit instruction.

60492600 F 8-13

Any error condition occurring during execution of a block copy instruction causes a flag to be set in the
PSD register but does not interrupt the block copy instruction. No further instructions are issued during
block transfer of data. Instructions already issued are completed; all other activity, with the exception
of I/0 word requests, stops.

On a CYBER 170 Model 176, if no error takes place, the next instruction executed is the first instruction
in the current address plus one [(P) + 1]. Action in the case of error depends on the operating system
being run. Under SCOPE 2, error processing is just as for any program running on the CYBER 70
Model 76, as described in the SCOPE 2 Reference Manual listed in the preface. Under NOS 1, an error

causes the job to abort. Under NOS/BE 1, an error exit to the lower 30 bits of the instruction word takes

place. This action is provided by the operating system, not by the hardware. :

Format: » Functional Unit: None
Operation Variable Description - |size Octal Code
RL Bj Block copy (Bj) words from LCM to SCM 30 bits 0110 00000
RL K Block copy (K) words from LCM fo SCM 30 bits 0110K
RL Bj+K Block copy (Bj) + K words from LCM to ‘
SCM 30 bits 011jK
WL K Block copy (K) words from SCM to LCM 130 bits 0120K
WL Bj Block copy (Bj) words from.SCM to LCM 30 bits 012j0 00000
W, BjzK Block copy (Bj) + K words from SCM to
LCM 30 bits 012jK
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
‘ 1) 1] 18) J30
011590010€0 , PL 10008+R5 |
]
0116002000 RL 200n8 |
]
N124777¢77 LIR 34-1008]

8.4.6 EXCHANGE JUMP INSTRUCTION {(CYBER 170 SERIES,

CYBER 70/MODELS 71,72, 73, 74, AND 6000 SERIES)
This instruetion uneonditionally exchange jumps the central processor, regardless of the state of the
monitor flag bit. Instruction action differs, however, depending on whether the monitor flag bit is set or
clear. '

This instruetion is not legal for a CYBER 170/Model 175, 740, 750, or 760 if the MEJ/CEJ switeh is in the
DISABLE position or if the instruction does not reside in parcel 0 of the instruction word.

Operation is as follows:

e Monitor flag bit clear: The starting address for the exchange is taken from the 18-bit Monitor Address
register. This starting address is an absolute address. During the exchange, the monitor flag bit is set.

e . Monitor flag bit set: The starting address for the exchange is the 18-bit result formed by adding K to
the contents of register Bj. This starting address is an absolute address. During the exchange, the
monitor flag bit is cleared.

For additional information, refer to the appropriate hardware reference manual.

8-14 , ' 60492600 G

A

—
v The assembler forces upper before and after assembling an XJ instruction.
o Formats: Functional Unit: Branch
Operation Variable Description : Size Octal Code
XJ Exchange jump to MA if in program mode 30 bits 01300 00000
L XJ Bj Exchange jump to (Bj); flag set 30 bits 013j0 00000
I X3 K Exchange jump to K; flag set 30 bits 0130K
X3 BjtK Exchange jump to (Bj) + K; flag set 30 bits 013jK
N Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
~ 1 n 18 T30
0130000000 XJ |
~— 0130001000 , ' XJ 10008 '
I
1135000600 XJ B5+0UUB |
o 8.4.7 EXCHANGE EXIT INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

This instruction is used for calling a system monitor program for input/output, monitor calls, etc. and
has priority over all other types of exchange jump requests. If an I/O interrupt request or an error exit

N request occurred prior to execution of this instruction, it is denied and the exchange jump specified by
the MJ is executed. The rejected interrupt request is not lost, however. The conditions that caused it
are reinstated when the exchange package enters its next execution interval.

The normal termination for an exchange package execution interval is through execution of an exchange
instruction (MJ). The MJ instruction voids the instruction word stack. Any instructions remaining in
the stack are not executed. The exit mode flag in the PSD register determines the source of the ex~
N change package as follows:

Exit mode flag set: When the exit mode flag is set, the MJ instruction causes the current program

sequence to terminate with an exchange jump to a relative address in the SCM field for the current

program. The exchange package is located at relative address (Bj) + K. An overflow of the

lowest order 16 bits of this result causes an error condition that is not sensed in the hardware.

Should a program erroneously execute an exchange exit instruction with an overflow condition, the

S exchange jump sequence begins at the absolute SCM address corresponding to the lowest order 16
bits of this sum. This 30-bit form of MJ is privileged to a monitor program.

Exit mode flag not set: When the exit mode flag is not set, the object program terminates the exe-

~ cution interval with a 15-bit form of the MJ instruction. The normal exit address (NEA) is the
absolute address of the exchange package. This is an absolute address in SCM and is generally not
in the SCM field for the current program. This form of the MJ instruction has a blank variable
e field; the assembler sets the j and k designators to zero. «
The system makes no protective tests on the exchange jump address.
N
~ 60492600 C ' 8-15

All operating register values, program addresses, and mode selections are preserved in the exchange
package for the object program so that the object program can be continued at a later time. The program
address in the object program exchange package is advanced one count from the address of the instruc-
tion word containing the exchange exit instruction. The monitor program normally resumes the object
program at this address.

The assignment of (NEA) is a responsibility of the system monitor program. If (NEA) has more than 16
bits of significance, the upper bits are discarded and the lower 16 bits are used as the absolute address
in SCM for the exchange jump. A force upper occurs after the instruction is assembled.

Formats: : ‘ , Functional Unit: None
Operation Variable Description . : Size Octal ‘ Code
MJ Exchange exit to NEA if exit flag clear # 15 bits 01300
MJ Bj Exchange exit to (Bj) if exit flag set 30 bits 013j0 00000
MJ Bj+K .| Exchange exit to (Bj) + K if exit flag set 30 bits 013jK
MJ K Exchange exit to K if exit flag set 30 bits 0130K

Examples:

Code Generated | 11rocation OPERATION | VARIABLE COMMENTS

] I 18 {30

21200 MJ i
]
013u000=0N MJ AL+500N I
|
D13F7770L77 M) -3108+R6 |
. , |
0120090600 My &ngA [

8.4.8 DIRECT LCM TRANSFER INSTRUCTIONS (CYBER 170/MODEL 176,
CYBER 76 /MODEL 76 OR 7600)

A single word transfer either reads one 60-bit word from LCM and enters this word into an X register
or writes one 60-bit word directly into LCM from an X register.

The execution time for transferring a word from LCM to an X register depends on whether the
requested word already resides in one of the bank operand registers. A read LCM instruction for a
word not currently residing in a bank operand register will require 17 clock periods for delivering a
field of eight 60-bit words to the designated X register. A read LCM instruction for a word already
residing in a LCM bank operand register as a result of a previous instruction will require three clock
periods to deliver the requested word to the designated X register. Thus, although the first 60-bit
word will require 17 clock periods, the second through eighth words in the same LCM word require

three clock periods-each. This means that consecutive LCM operands are available, on an average,
every five clock periods as opposed to SCM operands at eight clock periods.

The LCM address is determined from the low order 19 bits of Xk. Even if (Xk) is negative, the 19
bits are treated as a positive integer. If the address exceeds the field length (FLL), the word transfer
does not take place and the LCM direct range condition flag is set in the PSD register. Xj is either
the source or destination register.

8-16 6049260Q C

S

AN,

N

Instructions are buffered to the extent that each issues in one minor cycle unless a previous LCM
reference is in process. When an RX instruction issues, the LCM busy flag is set and remains set
until the requested word is delivered.

For a write (WX) instruction, if the word cannot be entered immediately in the proper bank operand
register, it is held in the LCM write register until the bank operand register is free.

Formats: Functional Unit: None
Operation Variable Description Size Octal Code
RXj Xk Read LCM at (Xk) and set Xj 15 bits 014jk
WXj . Xk Write (Xj) into LCM at (Xk) 15 bits 0155k -

Examples:

CodeGe—nerabéd LOCATION OPERATION | VARIABLE COMMENTS
‘ i " 18 [30
014R5 RX6 X5 ;
91578 wx7 X0 :

8.4.9 RESET INPUT CHANNEL BUFFER INSTRUCTION (CYBER 170/MODEL 176,
CYBER 70/MODEL 76 OR 7600)

This instruction initiates a new record transmission from a PPU to SCM. This instruction prepares
the input channel (Bk) buffer for a new record transmission from a PPU to SCM. The instruction
clears the input channel buffer address and resets the input channel assembly counter to the first
12-bit position in the SCM word.

This instruction is intended to be privileged to an input routine, that is, one that terminates a record
of incoming data and prepares for the next record.

The input routine removes the data in the input channel buffer and then executes this instruction to
prepare the buffer for the next incoming record. This instruction is effective only if the monitor mode
flag is set in the program status register. If the monitor mode flag is cleared, this instruction
becomes a.pass instruction. When this instruction issues, it will execute the required channel functions
without regard to the current status or activity at the input channel buffer.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If
higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (BKk) is zero, this instruction becomes a pass instruction.

Two or more consecutive RI instructions referring to different channels will issue in consecutive

clock periods with no interference resulting in the multiplexer., I two consecutive instructions refer to
the same channel, they repeatedly perform the same function but do not cause interference in the
multiplexer. '

60492600 C 8-17

Format: Functional Unit: None
Operation Variable Description Size Octal Code
RI Bk Reset input channel (Bk) buffer 15 bits 0160k

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 no 18 [30
nN16°7 ‘ ' , RI 87 i

8.4.10 SET REAL-TIME CLOCK INSTRUCTION (CYBER 170/MODEL 176,
CYBER 70/ MODEL 76 OR 7600)

This instruction reads the contents of the CPU clock period counter (real-time clock) and places them in
Bf" The 18-bit clock counter advances one count in two's complement mode for each clock period. The
217 pit is the overflow bit. The CPU is interrupted when the overflow bit is set. When the interrupt
is handled, the bit is cleared. It permits measurement of CPU execution.

Format: Functional Unit: None
Operation Variable Description Size Octal Code
TBj Set Bj to current clock time ' 15 bits 01630
TBj K. Set Bj to current clock time; K is ignored. | 15 bits | 016j0

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] " 18 [30
01670 TB7 ']

8.4.11 RESET OUTPUT CHANNEL BUFFER INSTRUCTION (CYBER 170/MODEL 176,
CYBER 70/MODEL 76 OR 7600)

This instruction initiates a new record transmission from SCM to PPU, It clears the output channel
(Bk) buffer address and disassembly counter, transmits a record pulse over the output channel data
path to the PPU, and initiates an SCM reference for the first word to be transmitted.

This instruction is intended for execution in an output routine t{o initiate a new record transmission
over an output channel data path. The output channel buffer is normally inactive when this instruction
is executed.. The output channel buffer is loaded with the data for the next record, and this instruction
is executed to initiate the transmission. The record pulse is transmitted along with the word pulse as
soon as the first word of data from the SCM is entered in the output channel disassembly register.

8-18 60492600 C

N’

S

This instruction is effective only if the monitor mode flag is set in the program status register. If the
monitor mode flag is cleared, this instruction becomes a pass instruction. When this instruction issues,
it will execute the required channel functions without regard to the current status or activity at the
output channel,

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If
higher order bits are set in (Bk), the lowest order four bits are masked out and used to determine the
channel number. If (Bk) is zero, this instruction becomes a pass instruction.

Normally, the output channel buffer is inactive when this instruction is executed, the program having
checked for completion of the previous record before issuing an RO. The program can detect the end
of record in two ways. First, it can compare the output channel buffer address with a known record
length, The alternative is to obtain a response from the peripheral unit over the corresponding input
channel data path. If data is moving over the output channel data path when an RO is issued, the RO
instruction takes priority, with a resulting loss of data in the previous record. Two or more
consecutive RO instructions referring to different channels will issue in consécutive clock periods with
no interference resulting in the multiplexer. If two consecutive instructions refer to the same channel,
they transmit a record pulse over the output path and restart the buffer repeatedly. A data word may
or may not be transmitted depending on the timing of the instructions and conflicts that occur.

Format: - Functional Unit: None
Operation Variable Description Size Octal Code
RO Bk Reset output channel (Bk) buffer 15 bits 0170k
Example:

LOCATION OPERATION | VARIABLE COMMENTS

Code Generated

1 ' n 18 130
1

017056 RO 85 !

8.4.12 READ CHANNEL STATUS INSTRUCTIONS (CYBER 170/MODEL 176
CYBER 70/MODEL 76 OR 7600) '

These instructions copy the contents of the input or output channel buffer address register indicated
by masking the low order 4 bits of Bk and enter the value in Bj. The instructions are used for
monitoring the progress of an input channel buffer or an output channel buffer.

A channel buffer area is divided into fields by the threshold testing mechanism. The first half of the
buffer area constitutes one field and the last half of the buffer area the other field. An I/0O multiplexer
interrupt request is generated by the threshold testing mechanism whenever the channel buffer address
is advanced across a field boundary. This occurs at the center of the buffer area and at the end of the
buffer area.) : :

The IBj instruction is the only vehicle for é program to determine whether an I/O multiplexer interrupt

request was generated by a buffer threshold test or by a record flag. The program must retain the

i 8-19
60492600C

input channel buffer address from one interrupt period to the next, If the buffer address is in the same
field as for the previous interrupt, the interrupt request was from a record flag. - If the buffer address
is in the opposite field from the previous interrupt, the interrupt request was from a threshold test.

The lowest order four bits of (Bk) are used in these instructions. The higher order bits are ignored.
If higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. I (Bk) = 0, the IBj instruction reads the contents of the CPU clock period counter.
However, the OBj instruction places all zeros into Bj.

Two or more IBj instructions or OBj instructions may occur in consecutive program instruction locations
referencing the same or different channels. These instructions may issue in consecutive clock periods
providing the Bj register reservations do not cause a delay. No interference will result in the multi~
plexer in these situations.)

If correct results are to be obtained, .an IBj instruction must not immediately follow an RI instruction
nor may an OBj instruction immediately follow an RO instruction. A delay of one clock period is
sufficient.

Formats: ' : 7 Functional Unit: None
Operation Variable Description Size Octal Code
I1Bj Bk ' Bj «<—Read input channel (Bk) status 15 bits | 016jk
OBj Bk Bj «—Read output channel (Bk) status 15 bits - | 017jk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 N 18 30
n1AGL k AR ETN |
t
01756 ngs |k !

8.4.13 UNCONDITIONAL JUMP INSTRUCTION

This instruction adds the contents of index register Bi to K and branches to the relaﬁve CM (SCM)
address specified by the sum. The remaining instructions, if any, in the current instruction word are
not executed. The branch address is K when i is zero.

Addition is performed in an 18-bit one's complement mode, On a CYBER 170 Series, (except Model
176), a CYBER 70/ Model 71, 72, 73, or 74 or 6000 Series system this instruction voids the stack.

On a CYBER 70/Model 76 and 7600 or CYBER 170/Model 176, the instruction word stack is not altered
by execution of this instruction. The instruction is intended to allow computed branch point destinations.
It is the only CPU instruction in which a computed parameter can specify a program branch destination
address. All other jump instructions have preassigned destination addresses at execution time.

The assembler sets the unused j designator to the same value as the i designator. A force upper occurs
after the instruction is assembled.

8-20 60492600C

N

p—g

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: None

Format:
Operation Variable Description - Size Octal Code |
Jp BizK Jump to (Bi)tK 30 bits 02iiK
JpP | Bi Jump to (Bi) 30 bits 02ii0 00000
JP K Jump to K 30 bits 0200K
Exampleé

Code Generate’ LOCATION OPERATION | VARIABLE COMMENTS

1 " 18 {30
0255000004 « N 85+GOTO i
i
0277000000 JP 87 i

8.4.14 X-REGISTER CONDITIONAL BRANCH INSTRUCTIONS‘

These instructions cause the program sequence to branch to K or to continue with the current program

sequence depending on the contents of operand re,
is free. These instructions do not void the stack.

The following rules apply to tests made in this instruction group:

gister Xj. The decision is not made until the Xj register

e The ZR and NZ operations test the full 60-bit word in Xj. The words 00.....00 and 77.....77g are

treated as zero. All other words are non-zero. Thus, these instructions are not a valid test for
floating point zero coefficients. However, they can be used for underflow of floating point quantities.

e The PL and NG operations examine only the sign bit (bit 59) of Xj. If the sign bit is zero, the word is
positive; if the sign bit is one, the word is negative. Thus, the sign test is valid for fixed point words
or for coefficients in floating point words.

¢ The IR and OR operations examine the upper-order 12 bits of Xj.

On the CYBER 170/Model 176, CYBER 70/Model 76 or 7600, the following octal quantities are

detected as being out of range:

3777x.....x (positive overflow)
4000x.....x (negative overflow)
1777x..... x (positive indefinite)
6000x.....x (negative indefinite)

All other words are in range. An underflow quantity is considered in range. The value of the
coefficient is ignored in making this test.

On a CYBER 70/Model 71, 72, 73, or 74, CYBER 170 Series (except Model 176) or 6000 Series

computer system, the octal quantities 3777x...x and 4000x...x are out of range; all other words are

in range.

60492600 G

8-21

Operation | Variable Description Size Octal Code
ZR Xj, K Branch to K if (Xj) = 0 30 bits 030jK
|NZ Xj,K Branch to K if (Xj) # 0 ‘ 30 bits 031jK
PL Xj,K Branch to K if (Xj) sign is plus 30 bits 032jK
ING Xj,K Branch to K if (Xj) sign is minus 30 bits 033jK
M1 X, K Branch to K if (Xj) sign ié minus ‘ 30 bits 033jK
IR Xj, K Branch to K if (Xj) in range 30 bits 034jK
OR Xj,K - | Branch to K if (Xj) out of range 30 bits 035jK
DF Xj, K Branch to K if (Xj) definite 30 bits 036jK
D ’Xj, K Branch to K if (Xj) indefinite 30 bits 037jK
8-22 60492600 G

The DF and ID operations examine the upper-order 12 bits of Xj. Both positive and negative indefinite
forms are detected: : :

1777x.....x and 6000x.....x gre indefinite.
All other words are definite. The value of the coefficient is ignored in making this test.
An error exit occurs on a 6000 Series, a CYBER 170 Series or a CYBER 70/Model 71, 72, 73 or 74
system when an indefinite or out of range value is used as an operand of an arithmetic instruction.
Such error exits can be avoided by using DF, ID, IR, or OR instructions to test for such values before

using them as operands.

On a 7600 or CYBER 70/Model 76 system, an error exit occurs as soon as indefinite or out of range
value is produced as the result of an arithmetie instruction. The DF, ID, IR and OR instructions are

- useful only when a MODE control statement is used to suppress such error exits.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: = None

Format:

N

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 8 T30
0305002363 + ZR X54ZERO E
0313002364 ¢ NZ X3,NONZERG |
0324002365 + lee X4 ,PLUS E
0331002366 + NG |X1,NEG :
0331002366 + MI X1,NEG :
0340002367 + IR X0y INRANGE i
0351002370 + OR X140UTRNGE :
0365002371 + UF X5»DEFINT {
0377002372 + v X7,INUEFNT |

8.4.15 B-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

The following rules apply in the tests made by these instructions:

e Positive zero is recognized as unequal to negative zero.

e Positive zero is recognized as greater than negative zero.

e A positive number is recognized as greater than a negative number.

The 06 and 07 instructions. are intended for branching on an index threshold test. The tests are made in a
19-bit one's complement mode. The (Bi) and the (Bj) are sign extended one bit to prevent erroneous results
caused by exeeeding the modulus of the comparison device. The (Bj) is then subtracted from the (Bi). The
branch decision is based on the sign bit in the 19-bit result.

For these instruetions, Bi and Bj must be specified in the order indicated below.

These instruetions do not void the instruetion stack.

60492600 G

8-23

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Mode1 76 or 7600 Functional Unit: None

Format:

Operation Variable Description Size Octal Code
ZR K Branch to K 30 bits 0400K
ZR Bi,K Branch to K if (Bi) = 0 30 bits - | 04i0K
EQ K Branch to K ’ 30 bits 0400K
EQ Bi,K Branch to K if (Bi) = 0 30 bits 04i0K
EQ | Bi, Bj,K Branch to K if (Bi) = (Bj) 30 bits 04ijK
NE Bi,K Branch to K if (Bi) # 0 30 bits 05i0K
NE Bi, Bj,K Branch to K if (Bi) # (Bj) 30 bits 05ijK
NZ Bi, K Branch to K if (Bi) # 0 : 30 bits 05i0K
PL Bi,K Branch to K if (Bi) > 0 | 30pits | 06i0K
GE Bi,K Branch to K if (Bi) > 0 30 bits 06i0K
GE Bi, Bj,K | Branch to K if (Bi) > (Bj) 30 bits 06ijK
LE Bj,Bi,K |Branch to K if (Bj) < (Bi) ; 30 bits 06ijK
LE Bj,K " {Branch to K if (Bj) < 0 30 bits 060jK
NG Bi,K Branch to K if (Bi)< 0 30 bits 07i0K
MI 'Bi, K Branch to K if (Bi)< 0 30 bits 07i0K
GT . Bj, Bi, K Branch to K if (Bj) > (Bi) 30 bits 07ijK
GT Bj,K Branch to K if (Bj) >0 30 bits 070jK
LT - Bi,K | Branch to K if (Bi) <0 30 bits 07i0K
LT Bi, Bj,K Branch to K if (Bi) < (Bj) 30 bits 07ijK

8-24 60492600 G

e

—

— Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
~ ! n 18 130
0450005221 + R B85,BZERO {
. !
N~ 0405005222 + €Q 80,85, EQUAL
!
0453005222 + €Q 85,83, JUMP |
~ 0400005223 « £Q JUMP !
N515005224 + NE 81,75,N0TEQ |
—]
0560005225 + NZ 86,BNOTZR I
!
" 0620005226 + PL B2,BPLUS]
0645005227 + GE A4 ,4B5,6EQ :
N 0650005230 + GE 85,GEB0 ;
0676005231 + LE B6,R7,LTHAN |
~ 0770005232 + NG 7,8BNEG :
0720005233 + MI B3,83LT0 :
0767005234 + 6T B7,B6,876T ;
\ 0705005235 «+ 6T BS,B5GT0 |
N’ |
0712005236 + LY B1.,82,8LTB |
g
8.4.16 TRANSMIT INSTRUCTION
N This instruction transfers the 60-bit word in operand register Xj to register Xi. It is essentially a copy
instruction intended for moving data from X register to X register as quickly as possible. No loglcal
funetion occurs, The assembler sets the k designator to the value specified for j.
N
CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750, or 760 and the
. CYBER 70/Model 76 or 7600 Functional Unit: Boolean
g
Format:
R Operation Variable Description Size Octal Code
BXi : Xj Transmit (Xj) to Xi 15 bhits 10ijj
~ ,
Example:
e Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18)
10622 BX6 x2
—
o 60492600 G 8-25

8.4.17 LOGICAL PRODUCT INSTRUCTION

This instruction forms the logical product (AND function) of 60-bit words from operand registers Xj and Xk
and places the produet in operand register Xi. Bits of register Xi are set to 1 when the corresponding bits
of the Xj and Xk registers are 1 as in the following example:

(Xj) =0101
(Xk) =1100
(Xi) = UT00

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and k
designators have the same value, the instruction becomes a transmit instruetion.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750 or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit:' Boolean

Format:
Operation Variable Description Size Octal Code
BXi Xj*Xk Logical product of (Xj) and Xk) to Xi 15 bits 11ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
i ' n J1s T30
11552 , BXS X5*¥X3 |

8.4.18 LOGICAL SUM INSTRUCTION

This instruetion forms the logical sum (inclusive OR) of 60-bit words from operand registers Xj and Xk and
places the sum in operand register Xi. A bit of register Xi is set to 1 if the corresponding bit of the Xj or
XKk register is a 1, as in the following example:

(Xj) =o0101
(Xk) =1100
(Xi) =T101

This instruetion is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the instruction degenerates into a transmit
instruetion. '

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
' CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:
Operation Variable Description Size Octal Code
BXi Xj+Xk Logical sum of (Xj) and (Xk) to Xi 15 bits 12ijk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

] 0 18 [30

12767 BX7 X64+X7 i

8-26 60492900 G

N’

8.4.19 LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand registers Xj and
Xk and places the difference in operand register Xi. A bit in register Xi is set to 1 if the corresponding
bits in the Xj and Xk registers are unlike, as in the following example:

(Xj) =o0101
(Xk) = 1100
(Xi) =T001

This ins'truction is intended for comparing bit patterns or for complementing bit patterns during data
processing.. If the j and k designators have the same value, the result will be a word of all zeros written

into register Xi.

CYBER 70/Model 74 or 6600/6700 Functional Unit:

Boolean

CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:
Operation Variable Description Size Octal Code
BXi Xj-Xk Logical difference of (Xj) and Xk) to Xi 15 bits 13ijk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 " 18 |30
13601 BX6 X0-X1 I

8.4.20 COMPLEMENT INSTRUCTION

t

This instruction extracts the 60-bit word from operand register Xk, complements it, and transmits this
complemented quantity to operand register Xi. It is intended for changing the sign of a fixed point or
floating point quantity as quickly as possible.

The assembler sets the unused j designator of the instruction to k.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:
Operation Variable Description Size Octal Code
BXi -Xk Transmit complement of (Xk) to Xi 15 bits 14ikk
Example:

Code _Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 [30

16311 8x3 -X1 {

60492600 G 8-27

8.4.21 LOGICAL PRODUCT AND COMPLEMENT INSTRUCTION

This instruction forms the logical product (AND funection) of the 60-bit quantity from operand register Xj
and the complement of the 60-bit quantity from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 when the corresponding bits of the Xj register and the
complement of the Xk register are 1, as in the following example:

(Xj) =0101
Complemented (Xk) = 0011
(Xi) =0001

This instruetion is intended for extracting portions of a 60-bit word during data processing. If the j and k
designators have the same value, a logical product is formed between two complementary quantities. The
result will be a word of all zeros.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:
Operation Variable Description Size Octal Code
BXi - Xk *Xj Logical product of (Xj) and complement
of (Xk) to Xi 15 bits 15ijk

Examples: -

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 " 18 EY)
15432 BY 4 -X2*X%3 i

8.4.22 COMPLEMENT AND LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand register Xj and
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi.
Thus, bits of Xi are set to 1 if the corresponding bit of the Xj register is one or the corresponding bit of the
Xk register is a 0, as in the following example: ‘

(Xj) =o0101
(XkK) = 1100
(Xi) =0111

This instruction is intended for merging portions of a 60-bit word into a composite word during data
~ processing. If the j and k designators have the same value, the result is a word of all ones.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:
Operation Variable Description .) Size Octal Code
BXi =Xk+Xj Logical sum of (Xj) and complement of ;
(Xk) to Xi ' 15 hits ' 16ijk
8-28 . , 60492600 G

R

N

N

Example:

/,

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
16654 BX6 XG+X5 !

8.4.23 COMPLEMENT AND LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of the quantity from operand register Xj and
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi.
Thus, bits of Xi are set to 1 if the corresponding bits of Xj and register Xk are alike, as in the following
example:

(Xj) =o0101
(Xk) =1100
(Xi) =0110

This instruetion is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, a logieal difference is formed between two
complementary quantities. The result is a word of all ones. : :

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:
Operation Variable Description Size Octal Code
BXi : -Xk-Xj Logical difference of (Xj) and complement
of (Xk) to Xi 15 bits 17ijk

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) n 18 [30
17731 BX7 -X1-X3 i

8.4.24 LOGICAL LEFT SHIFT jk PLACES INSTRUCTION

This instruetion shifts the 60-bit word in operand register Xi left circular jk places if expression jkis
positive or left circular 60+jk places if jk is negative. Bits shifted off the left end of operand register Xi
replace those shifted from the right end.

The 6-bit shift count jk allows a complete circular shift of (Xi).

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS Places the lower 6 bits of
the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result in the jk flelds:
Thus, a negative value effectively designates a logical right shift. A positive value designates a left shift.

If the negative shift count is less than -60, the assembler generates a type 7 error.

60492600 G v 8-29

CYBER 70/Model 74 or 6600/6700 Functional‘Unit: Shift

CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Shift

Format:
Operation Variable Description Size Octal Code
LXi jk Logical shift (Xi) by + jk places 15 bits 20ijk
Example:
LOCATION OPERATION | VARIABLE COMMENTS
Code Generated) n 18 [30
20325 Lx3 258 |
I
20362 Lx3 -128]
i

8.4.25 ARITHMETIC RIGHT SHIFT jk PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi right jk places if expression jk is positive and
right 60+jk places if expression jk is negative. The rightmost bits of Xi are discarded and the sign bit is

extended.

If the shift count is equal to the 60-bit register length, the result contains 60 copies of the sign bit. If the
operand is positive, a positive zero results. If the operand is negative, a negative zero results.

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6 bits of

the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result in the jk fields.

Thus, a negative value effectively designates the number of high order bits of the operand that are to be
B retained. If the negative shift count is-less than -60, a type 7 error is generated.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Shift

Format:
Operation Variable Description Size Octal Code
AXi ik Arithmetic shift (Xi) by + jk places 15 bits 21ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
21537 AXS 78 i

8-30

60492600 G

N’

8.4.26 LOGICAL LEFT SHIFT (Bj) PLACES INSTRUCTION

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified by the
quantity in index register Bj and places the result in operand register Xi. The direction of the shift
operation is determined by the sign of Bj, as follows:

e If (Bj) is positive (that is, bit 17 of Bj=0), the quantity from XXk is shifted left circular. The low order 6
bits of (Bj) specify the shift count. The higher order bits are ignored.

e If (Bj) is negative (that is, bit 17 of Bj=1), the quantity from Xk is shifted right (end off with sign
extension). For the CYBER 170 Series (except Model 176), the CYBER 70 Series/Models 71, 72, 73,
and 74, and the 6000 Series, the one's complement of the low order 11 bits of (Bj) specify the shift
count. The higher order bits are ignored. If the shift count is 59 to 63 (decimal%, the result stored in

" the Xi register consists of 60 copies of the operand sign bit. If the shift count is 64 (decimal) or
greater, the result register Xi is cleared to 60 zeros. For the CYBER 170/Model 176, CYBER 70/
Model 76 and the 7600, the one's complement of the low order 12 bits of (Bj) specify the shift count.
The higher order bits are ignored. If the shift count is 59 (decimal) or greater, the result stored in the
Xi register consists of 60 copies of the operand sign bit. '

If -Bj is specified, the assembler converts the instruction to an arithmetic right shift. The (Bj) might be
the result of an unpack instruction, in which case it is the unbiased exponent and (Xi) is the coefficient.
This instruction is used for shifting a coefficient from a floating point number to the integer position after
an unpack operation.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Shift

Format:
Operation Variable Description Size Octal Code
LXi Xk, Bj Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk
LXi Bj, Xk Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk
LXi Xk Transmit (Xk) to Xi 15 bits 22i0k
LXi Bj Logically shift (Xi) by (Bj) places to Xi 15 bits 221ji
LXi -Bj, Xk Arithmetic right shift (Xk) by (Bj)
places to Xi 15 bits 23ijk
LXi Xk,~Bj Arithmetic right shift (Xk) by (Bj)
places to Xi 15 bits 23ijk
LXi -Bj Arithmetic right shift (Xi) by (Bj)
places to Xi 15 bits 23iji
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
22675 - LX6 XS,87 i
!
22534 LX5 B3,x4 i
22302 Xz |x2 !
60492600 G ' 8-31

8.4.27 ARITHMETIC RIGHT SHIFT (Bj) PLACES INSTRUCTION

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified by the
quantity in index register Bj and places the result in operand register Xi. The direction of the shift
operation is determined by the sign of Bj, as follows:

e If (Bj) is positive (that is, bit 17 of Bj=0), the quantity from register Xk is shifted right (end off with
sign extension). For the CYBER 170 Series, (except Model 176) CYBER 70/Model 71, 72, 73, 74 and
6000 Series Computer Systems, the low order 11 bits of (Bj) specify the shift ecount. The higher order
bits are ignored. If the shift count is 59 to 63 (decimal), the Xi register contains 60 copies of the (Xk)
sign bit. If the shift count is 64 (decimal) or more, the Xi register is zeroed. For the CYBER 170/
Model 176, CYBER 70/Model 76 or 7600 Computer Systems, the low order 12 bits of (Bj) specify the
shift count. The higher order bits are ignored. If the shift count is 59 (decimal) or more, the Xi
register contains 60 copies of the sign of the operand.

e If (Bj) is negative (that is, bit 17 of Bj=1), the quantity from register Xk is shifted left circular. The
complement of the lower order 6 bits of Bj specify the shift count. The higher order bits are ignored.

If -B is specified, the assembler converts the instruction to a logical left shift. This instruetion is intended
for use in data processing where the amount of shift is derived in the ecomputation. This instruction is also
useful for adjusting the coefficient of a floating point number while it is in its unpacked form.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Shift

Format:

Operation Variable Description Size Octal Code

AXi Xk, Bj Arithmetic shift of (Xk) by (Bj) places to Xi 15 bits 23ijk

AXi Bj, Xk Arithmetic shift of (Xk) by (Bj) places to Xi 15 bits 23ijk

AXi Xk Transmit (Xk) to Xi 15 bits 23i0k

AXi Bj Arithmetic shift of (Xi) by (Bj) places to Xi 15 bits 23iji

AXi -Bj, Xk Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk

AXi Xk, ~-Bj - Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk

AXi -Bj Logically shift (Xi) by (Bj) places to Xi 15 bits 22iji
Example:

Code Generated

23764
23211
23502

23424

8-32

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 !39
AX7 |X4,B6 ’
axz 81,X1 :
AXS X2 :
AXG B2 |

60492600 G

~

N’

S

g

~

S

. .

S

8.4.28 NORMALIZE INSTRUCTION

This instruetion normalizes the floating point quantity from operand register Xk and places it in operand
register Xi. Normalizing consists of shifting the coefficient the minimum number of positions required to
make bit 47 different from bit 59. This places the most significant bit of the coefficient in the highest
order position of the coefficient portion of the word. The exponent portion of the word is then decreased
by the number of bit positions shifted. The number of shifts required to normalize the quantity is entered
in index register Bj.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: ‘Shift

Format:
Operation Variable Description Size Octal Code
NXi Xk Normalize (Xk) to Xi 15 bits 24i0k
NXi Bj, Xk Normalize (Xk) to Xi; shift count to Bj 15 bits 24ijk
NXi Xk, Bj Normalize (Xk) to Xi; shift count to Bj 15 bits 24ijk
NXi Normalize (Xi) to Xi 15 bits 24i0i
NXi Bj Normalize (Xi) to Xi; shift count to Bj 15 bits 24iji
Example:
Code Generated 5 LOCATION OPERATION | VARIABLE COMMENTS
1 I 8 {30
24575 NXS XS ,87 :
24505 NX5 :
24552 NX5, 85 [x2 |

8.4.29 ROUND AND NORMALIZE INSTRUCTION

This instruetion performs the same operation as the NXi instruction with the exception that the quantity
from operand register Xk is rounded before it is normalized. Rounding is accomplished by placing a 1 round
bit immediately to the right of the least significant coefficient bit. The resulting coefficient is increased
by one-half the value of the least significant bit. Normalizing a zero coefficient places the round bit in bit
47 and reduces the exponent by 48. Note that the same rules apply for underflow, overflow, infinite, and
indefinite results.

If (XK) is an infinite quantity (3777x...xg or 4000x...xg) or an indefinite quantity (1777x...xg or
6000x .. .xg), no shift takes place. The contents of Xk are copied into Xi, and Bj is set to zero.

60492600 G 8-33

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Shift

Format:
Operation Variable Description Size Octal Code
ZXi Xk Round and normalize (Xk) to Xi 15 bits 2510k
ZXi Bj, Xk Round and normalize (Xk) to Xi; shift
count to Bj 15 bits 25ijk
ZXi Xk, Bj Round and normalize (Xk) to Xi; shift
count to Bj 15 bits 25ijk
Zxi Bj Round and normalize (Xi) to Xi; shift
count to Bj 15 bits 25iji
ZXi Round and normalize (Xi) to Xi 15 bits 25101
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS

25474

25404

25361

L}

18

8.4.30 UNPACK INSTRUCTION

Xh X4 4 B7
X1y
Z%3,B6 |x1

{30
i
1
|
|
|
|
I

This instruetion unpacks the floating point quantity from operand register Xk and sends the 48-bit
coefficient to operand register Xi and the 11-bit exponent to index register Bj. The exponent packing is
removed during unpack so that the quantity in Bj is the true one's complement representation of the
exponent. The contents of Xk need not be normalized.

The exponent and coefficient are sent to the low-order bits of the respective registers, as shown below:

Packed Quantity ‘ l l

Unpacked Bjr //// %
17

Sign Packed Exponent Coefficient
I | xx
5958 48 00
Unpacked
Exponent
Exponent Sign Coefficient
Extended Sign Extended
| Dz Ixi
10 9 00 59 4847 00
Special operand formats are treated in the same manner as normal operands.
60492600 G

8-34

—

S

R

p—e

e

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:
Operation Variable Description Size Octal Code
UXi Xk Unpack (Xk) to Xi 15 bits 26i0k l
UXi Bj, Xk Unpack (Xk) to Xi and Bj 15 bits 26ijk
UXi Xk, Bj Unpack (Xk) to Xi and Bj 15 bits 26ijk
UXi Unpack (Xi) to Xi 15 bits 26101
UXi Bj Unpack (Xi) to Xi and Bj 15 bits 26iji
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
o ' 1 n 18 [30
26777 ux? X7 437 ‘
26342 UX3,X2 [B& |
I
26707 ux? I
26777 ux7 87 |
i

8.4.31 PACK INSTRUCTION

This instruetion packs a floating point number in operand register xi. The coefficient of the number is
obtained from operand register Xk and the exponent is obtained from index register Bj. The exponent is
packed by reversing the setting of bit 10 of the exponent during the pack operation. The pack instruction
“does not normalize the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective registers and

packed in reverse order as shown in the illustration for the unpack instruetion. Thus, bits 58 through 48 of I
Xk and bits 17 through 11 of Bj are ignored. There is no test for overflow or underflow. No flags are set in
the PSD register by this instruetion.

Note that if (Xk) is positive, the packed exponent occupying bits 58 through 48 of Xi is obtained from bits
10 through 00 of Bj by complementing bit 10; if (Xk) is negative, bit 10 is not complemented but bits 09 I
through 00 are complemented.

The j designator can be set to zero in this instruetion to pack a fixed point integer into floating point
format without using one of the active B registers (exponent=0).

60492600 G ' _ 8-35

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Format:
Operation - Variable Description Size Octal Code
PXi Xk Pack (Xk) to Xi 15 bits 27i0k
PXi Xk, Bj Pack (Xk) and (Bj) to Xi 15 bits 27ijk
PXi Bj, Xk Pack (Xk) and (Bj) to Xi 15 bits 27ijk
PXi Pack (Xi) to Xi 15 bits 27i01
PXi Bj Pack (Xi) and (Bj) to Xi 15 bits 27Tiji
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS

27565
27671
27505

27565

8.4.32 UNROUNDED SP FLOATING POINT ADD INSTRUCTIONS

1 n 18

PX5 X5,86

PX6,87 (X1
PY5
PY5 B6

{30
l
|
!
|
|
!

These instructions form the unrounded sum or difference of the floating point quantitiés from operand
registers Xj and Xk and pack the result in operand register Xi. The packed result is the upper half of a
double precision sum or difference.

At the start both arguments are unpacked, and the coefficient of the argument with the sma]_lerk eprnent
is entered into the upper half of the accumulator. The coefficient is shifted right by the difference of the

exponents. The other coefficient is then added to or subtracted from the upper half of the accumulator. If

overflow occurs, the result is right-shifted one place and the exponent of the result increased by one. The
upper half of the accumulator holds the coefficient of the result, which is not necessarily in normalized
form. The exponent and upper coefficient are then repacked in operand register Xi.

- CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Floating Add

Format:
Operation Variable Description Size Octal Code
FXi Xj+Xk Floating point sum of (Xj) and (Xk) to Xi 15 bits 30ijk
FXi Xj-Xk . . Floating point difference of (Xj) minus
(Xk) to Xi 15 bits 31ijk
8-36 60492600 G

S

S’

R

Examples:

Code Generated

39345

31213

8.4.33 DP FLOATING POINT ADD INSTRUCTIONS

LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 [30
Fx3 X4+X5 I‘
FX2 X1-%3 :

These instructions form the sum or difference of two floating point numbers as in the single precision
instructions, but pack the lower half of the double precision result with an exponent 48 less than the upper
sum. The result is not necessarily normalized.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Floating Add

Format:
Operation Variable Description Size Octal Code
DXi Xj+Xk Floating DP sum of (Xj) and (Xk) to Xi 15 bits 32ijk
DXi Xj-Xk Floating DP difference of (Xj) and (Xk)
to Xi 15 bits 33ijk
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 [30
32323 DX3 X2+X3 ;
i
32414 DXt X1 -X4 ;

8.4.34 ROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These instruetions form the rounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the upper portion of the double precision result in operand register Xi. These
instructions are intended for use in floating point caleulations involving single precision accuracy.

60492600 G

8-37

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Floating Add

Format:
Operation Variable Description Size Octal Code
RXi Xj+Xk Rounded floating sum of (Xj) and (XKk)
to Xi 15 bits 34ijk
RX1 Xj-Xk Rounded floating difference of (Xj) minus
Xk) to Xi 15 bits 35ijk
Examples:
Code Generated LOCATION 'OPERATION | VARIABLE COMMENTS

34534

35653

1 n 18

RXS5 X3 +X4

RX& X5~X3

8.4.35 LONG ADD (FIXED POINT) INSTRUCTIONS

These instructions form the 60-bit one's complement integer sum or integer difference of quantities from
operand registers Xj and Xk and store the result in operand register Xi. An overflow condition is ignored.

The instructions are intended for addition or subtraction of integers too large for handling in the increment

unit. They are also useful for merging and comparing data fields during data processing. -

For an addition, if both operands are zero, the result is zero. If either zero operand is positive zero (all

0's), the result is a positive zero q

zero quantity.

uantity. If both operands are minus zero (all 1's), the result is a negative

CYBER 70/Model 74 or 6600/6700 Functional Unit: Long Add
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Long Add

Format:
Operation Variable Description Size Octal Code
Xi Xj+Xk Integer sum of (Xj) and (Xk) to Xi 15 bits 36ijk
IXi Xj-Xk Integer difference of (Xj) minus (Xk)
to Xi 15 bits 37ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
i
36545 IX5 X4+X5 i
' 1
37631 IX6 X3-X1]
8-38 60492600 G

8.4.36 UNROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj (multiplier) and
Xk (multiplicand) and packs the upper produet result in operand register Xi.

In this operation, the exponents of the two operands are unpacked from the floating point format and are
added with a correction factor of 48 to form the exponent for the result. The coefficients are multiplied
as signed integers to form a 96-bit integer product. The upper half of this product is then extracted to
form the coefficient of the result. The result is a normalized quantity only when both operands are
normalized; the exponent in this case is the sum of the exponents plus 47 (or 48). The result is not
normalized when either or both operands are not normalized.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Format:
Operation Variable Description Size . Octal Code
FXi Xj*Xk Floating point product of (Xj) and
(Xk) to Xi 15 bits 40ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 T 18 {30
40011 X0 X1%#x1 ;
|

8.4.37 ROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies the floating point number from operand register Xk (multiplicand), by the
floating point number from operand register Xj. The upper product result is packed in operand

register Xi. (No lower product is available.) The multiply operation is identical to that of the single
precision instruction exeept that a rounding bit is added in bit position 46 of the 96-bit product. The upper
half of the product is then extracted to form the coefficient for the result. An alternate output path is
provided with a left shift of one bit position to normalize the result coefficient if the original operands
were normalized and the double precision product has only 95 bits of significance. The exponent for the
result is decremented by one count in this case.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Format:
Operation Variable Description Size Octal Code
RXi Xj* Xk Rounded floating point product of (Xj)

and (Xk) to Xi 15 bits 41ijk
60492600 G ' 8-39

Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n I I30
41232 |rx2 [xaexz |
|

8.4.38 DP FLOATING POINT MULTIPLY INSTRUCTION

This instruetion multiplies two floating point quantities obtained from operand registers Xj and Xk and
packs the lower product in operand register Xi. The two 48-bit coefficients are multiplied together to
form a 96-bit product. The lower order 48 bits of the produet (bits 47 through 0) are then packed together
with the resulting exponent. The result is not necessarily normalized. The exponent of this result is 48 less
than the exponent resulting from an unrounded single precision instruction using the same operands.

This instruction is intended for use in multiple precision floating point calculations. It may also be used to
form the product of two integers providing the resulting product does not exceed 48 bits of significance.
The operands must be packed in floating point format before executmg this instruetion. The results must
be unpacked to obtain the integer product.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Format:
Operation Variable Description Size Octal Code
DXi . Xj*Xk Floating point DP product of (Xj) and
(Xk) to Xi 15 bits 42ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n s [0
42345 - |oxs X& & X5 '
|

8.4.39 INTEGER MULTIPLY INSTRUCTION

The CPU integer multiply instruction is, to COMPASS, synonymous with the double precision floating point

multiply instruction. Regardless of how it is written in COMPASS, the 42ijk instruetion is executed as
follows: If each operand register has all zeros or all ones in its leftmost 12 bits, the 47-bit integer product
is formed in Xi with sign extension in its leftmost 12 bits. (Exception: if each operand has bit 47 different
from its sign bit, the result is shifted left one bit position.) Otherwise, a double precision floating point
multiplication is performed. Thus, there is no need to pack exponents into the operands, and unpack the:
result, for an integer multiply. COMPASS provides the alternate symbolic representations IXi Xj*Xk and
DXi Xj*Xk for the 42ijk instruction as an aid to program readability, so the programmer can indicate
whether or not the instruetion is being used for integer multiplication.

8-40 : 60492600 G

- .

/“\\\

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Format:
Operation Variable Description Size Octal Code
IXi Xj*Xk Integer product of (Xj) and (Xk) to Xi 15 bits | 42ijk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 i 18 30

L2234 Ix2 X3*X4

[
I
I
!

8.4.40 MASK INSTRUCTION

This instruetion clears register Xi and forms a mask in it. A positive value for expression jk defines the
number of ones in the mask as counted from the highest order bit in Xi. A negative value for expression jk
defines the number of 0 bits (unmasked) counted from the low order bit in Xi. The completed masking
word consists of ones in the high order bit positions of the word and zeros in the remainder of the word.

The contents of operand register i are zero when jk is zero. The contents of operand register i are all ones
when jk is 60.

This instruction is intended for generating masks for logical operations. Used with the shift instruection,
this instruction creates an arbitrary field mask faster than by reading a previously generated mask from
storage.

In COMPASS notation, if the value of absolute expression jk is positive, the assembler inserts it into the jk
field of the assembled instruetion. If the value of absolute expression jk is negative, the assembler adds 60
to the expression value and places the sum in the jk field of the assembled instruction.

A negative jk value less than -60 results in a type 7 assembly error.

60492600 G 8-41

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER .70/Model 76 or 7600 Functional Unit: Shift

Format:
Operation Variable Description Size Octal Code
MXi jk Form mask in Xi, #jk bits 15 bits 43ijk
Example:
LOCATION : OPERATION | VARIABLE COMMENTS
Code Generated . i i
]) " 18 l30
43042 MX0 428 |
|
43360 MX3 -148 |

8.4.41 UNROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides two normalized floating point quantities obtained from operand registers Xj
{dividend) and Xk (divisor) and packs the quotient in operand register Xi. '

CYBER,'70/Mode1 74 or 6600/6700 Functional Unit: Floating Divide
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Floating Divide

Format:
Operation A Variable Description Size Octal Code
FXi Xj/Xk Floating point divide of (Xj) by Xk)
to Xi ’ 15 bits 44ijk

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) 0 18 [30
LL631 FX6 X2/X1 i

8.4.42 ROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruetion divides the floating quantity from operand register Xj (dividend) by the floating point
quantity from operand register Xk (divisor) and packs the rounded quotient in operand register Xi.

8-42

60492600 G

~—

—

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Divide
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Floating Divide

Format:
Operation Variable Description Size Octal Code
RXi Xj/Xk Rounded floating point division of (Xj)
by (Xk) to Xi 15 bits 45ijk
Example:
LOCATION OPERATION | VARIABLE "COMMENTS

Code Generated

L5724

8.4.43 PASS INSTRUCTION

1 n 18

30

T

RX7 X2/X4

The no-operation (pass) instruction is not associated with a functional unit. This instruction is a do-nothing
instruetion used typically to pad the program between steps. An integer value in the variable field
(optional) is inserted into the lower 8 bits of the instruction. The assembler automatically pads the
remainder of a word whenever a force upper occurs; in this case, the programmer is not required to insert

the NO.

On a machine with a Compare/Move Unit (CMU), a value of n greater than or equal to 400g causes the
instruction to be interpreted as a CMU instruetion.

On a CYBER 170/Model 175, 740, 750, or 760, a value of n greater than or equal to 400g is illegal.

CYBER 70/Model 74 or 6600/6700 Functional Unit: None
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: None

Format:
Operation Variable ‘ Description Size Octal Code
NO Pass 15 bits 46000
NO n Pass 15 bits 46n
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 30
1

46000 NO I

60492600 G 8-43

8.4.44 POPULATION COUNT INSTRUCTION

This instruction counts the number of 1 bits in operand register Xk and stores the count in the lower order
6 bits of operand register Xi. Bits 59 through 06 are cleared.

If Xk is a word of all ones, a count of 60 (decimal) is delivered to the Xi register. If Xk is a word of all
zeros, a zero word is delivered to the Xi register.

The assembler sets the unused j desfgnator to k.
CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Divide

CYBER '170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Mode1 76 or 7600 Functional Unit: Population Count

Format:
Operation Variable Description Size Octal Code
CXi Xk : Count of number of 1's in (Xk) to Xi 15 bits 47ikk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 130
47700 ' cx7. X0 :

8.4.45 SET A REGISTER INSTRUCTIONS

These instructions are intended for fetching operands from storage for computation and for delivering
results back into storage. The instructions have two destination registers: the Ai register, which receives
the address formed from the operands, and either the Xi register or a CM (SCM) storage location.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the truncated
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored.

If the i designator is nonzero, a storage reference is made using the lower 15, 16, or 17 bits of the resulting
sum or difference as the relative storage address depending on machine size. The upper bits are ignored.
The type of storage reference is a function of the i designator value, as follows:

i = 0; no storage reference

i=1,2,3, 4, or 5; contents of CM (SCM) relative address (Ai) to register Xi

o
U

6 or T; contents of register Xi stored at CM (SCM) relative address (Ai)

8-44 60492600 G

CYBER 70/Model 74 or 6600/6700 Functional Unit: Increment
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Increment

S

Format:
Operation Variable Description Size Octal Code
SAi Aj+K Set Ai to (Aj) + K 30 bits 50ijK
SAi K Set Ai to K 30 bits 51i0K
SAi Bj+K Set Ai to (Bj) + K 30 bits 51ijK
SAi Xj+K Set Ai to (Xj) +K 30 bits 52ijK
- ISAd Xj Set Ai to (Xj) 15 bits 53ij0
SAi Xj+Bk Set Ai to (Xj) + (Bk) 15 bits 53ijk
SAi Bk-+Xj Set Ai to (Xj) + (Bk) 15 bits 53ijk
SAi Aj Set Ai to: (Aj) 15 bits 54ij0
SAi Aj+Bk Set Ai to (Aj)+ (Bk) 15 bits 54ijk
SAi Bk +Aj Set Ai to (Aj) + (Bk) _ 15 bits 54ijk
SAi Aj-Bk Set Ai to (Aj) - (Bk) 15 bits 55ijk
SAi -Bk+Aj Set Ai to (Aj) - (Bk) 15 bits 55ijk
SAi Bj Set Ai to (Bj) 15 bits 56ij0
SAi Bj+Bk Set Ai to (Bj) + (Bk) 15 bits 56ijk
SAi -Bk Set Af to (B0) - (Bk) 15 bits | 57i0k
SAi Bj-Bk Set Ai to (Bj) - (Bk) 15 bits 57ijk
SAi -Bk+Bj Set Ai to (Bj) - (Bk) 15 bits 57ijk
60492600 G 8-45

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
-] n 18 l30
5010000001 <A1 [ap+1 i
510777774 SAQ -3]
5121000003 SA2 3+81 ;
5231777771 ' SA3 X1-6 :
53611 ' sAh [x1+B1 !
55541 SAS AL+B1 :
S4641 | _ A6 AL +B1 l
54540 _ SAS Al :
55641 sa6 -81+ A4 :
56711 : k <a? B1+81 !
|
|

57721 iSA7 B2-81

8.4.46 SET B REGISTER INSTRUCTIONS

These instructions perform one's complement addition and subtraction of 18-bit operands and store an

18-bit result in index register Bi. Note the result will never be -0 unless ~0 is added to -0.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the truncated
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored.

If the i designator is a zero, the instruetion is a do-nothing instruction.

] s-46

60492600 G

o

R

\~_/’

R

CYBER 70/Model 74 or 6600/6700 Functional Unit: Increment
CYBER 170/Model 175, 176, 740, 750, or 760 and the
CYBER 70/Model 76 or 7600 Functional Unit: Increment

Format:

Operation Variable Description Size - Octal Code
SBi Aj+K Set Bi to (Aj) + K 30 bits 60ijK

SBi K Set Bi to K 30 bits 61i0K

SBi Bj+K Set Bi to (Bj) + K 30 bits 61ijK

SBi Xj+K Set Bi to (Xj) + K 30 bits 62ijK

SBi Xj Set Bi to (Xj) 15 bits 631ij0

SBi Xj+Bk Set Bi to (Xj) + (Bk) 15 bits 63ijk

SBi Bk+Xj Set Bi to (Xj) + (Bk) 15 bits 63ijk

ISBi Aj Set Bi to (Aj) 15 bits 64ij0

SBi Aj+Bk Set Bi to (Aj) + (Bk) 15 bits 64ijk

SBi Bk+Aj Set Bi to (Aj) + (Bk) 15 bits 64ijk

SBi Aj-Bk Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi -Bk+Aj Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi Bj Set Bi to (Bj) 15 bits 66ij0

SBi Bj+Bk Set Bi to (Bj) + (Bk) 15 bits 66ijk

SBi ~Bk Set Bi to (B0) - (Bk) 15 bits 6710k

éSBi Bj-Bk Set Bi to (Bj) - (Bk) 15 bits 67ijk

SBi -Bk+Bj Set Bi to (Bj) - (Bk) 15 bits 67ijk
60492600 G 8-47

_ Examples:

Code Generated

6011777772
6110777772
6121000011
6231000100
£IL27
LLY1Y
6L54u0
65641
65643
66711

s7751

8.4.47 SET X REGISTER INSTRUCTIONS

42 bits of operand register Xi. An overflow condition is ignored.

60-bit word. The highest order bits are ignored.

St
\._/.
LOCATION OPERATION | VARIABLE COMMENTS —
n 18 {30
SRl |a1-5 | »
S81 -5 :
S82 |3+R1+ : ,\/
SB3 |X1+1n0n i
B [X24R7 I 7 —
85 AL +B1 |
$BS A | ~
<B6 ~Ri+A4 l
<86 AH-B3 |
SR7 B1+81 !
| ~
o = -‘ sa e . s . \—/
The SXi instruetions perform one's complement addition and subtraction of 18-bit operands and store an
.18-bit result into the lower 18 bits of operand register Xi. The sign of the result is extended to the upper
A
Operands are obtained from address (A), index (B), and operand (X) registers as well as the instruction
itself (K = 18-bit operand). Operands obtained from an Xj register are the truncated lower 18 bits of the
N
—
S
—
o’
60492600 G ~—r

J 848

CYBER 70/Model 74 or 6600/6700 Functional Unit: Increment
CYBER 170/Model 175, 176, 740, 750, or 760 and the

CYBER 70/Model 76 or 7600 Functional Unit: Increment
Format:
Operation Variable Description Size Octal Code
SXi Aj+K Set Xi to (Aj) + K 30 bits T0ijK -
SXi K Set Xito K 30 bits | 71i0K
SXi Bj+K Set Xi to (Bj) + K 30 bits 71ijK
SXi Xj+K Set Xi to (Xj) + K 30 bits 72ijK
SXi Xj Set Xi to (Xj) 15 bits 73ij0
SXi Xj+Bk Set Xi to (Xj) + (Bk) 15 bits 73ijk
SXi Bk+Xj Set Xi to (Xj) + (Bk) 15 bits 78ijk
sXi Aj Set Xi to (Aj) 15 bits | 74ij0
SXi Aj+Bk Set Xi to (Aj) + (Bk) 15 bits 74ijk
SXi Bk+Aj Set Xi to (Aj) + (Bk) 15 bits 74ijk
SXi Aj-Bk Set Xi to (Aj) - (Bk) 15 bits 75ijk
SXi -Bk+Aj Set Xi to (Aj) - (Bk) 15 bits 75ijk
SXi Bj Set Xi to (Bj) 15 bits 76ij0
SXi Bj+Bk Set Xi to (Bj) + (Bk) 15 bits 76ijk
SXi -Bk Set Xi to (BO) - (Bk) 15 bits 7710k
SXi Bj-Bk Set Xi to (Bj) - (BK) 15 bits 77ijk
SXi -Bk+Bj Set Xi to (Bj) - (Bk) 15 bits T7ijk
60492600 G 8-49

Examples: '
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
: ; 1 " 18 i30
7000005233 + SX0 ANEG+AT+1 i
7110775755 | SX1 -20228 ;
7121000005 Sx2 a14+5 |
7232777740 SX3 X3-338 :
7242 <xXb X4+82 :
74553 SXS 85433 |
74540 SX5 LL :
75641 . SX6 =B1+Au :
75604 7 SX6 |AD-B4 |
76776 X7 R7+86 :
77751 ‘ 324 B5-81 |

8.5 CMU SYMBOLIC MACHINE INSTRUCTIONS

The Compare/Move Unit (CMU) is a standard CPU hardware component of the CYBER 70 Series Model 72
and Model 73, and the CYBER -170/Models 172, 173, 174, 720, and 730. It provides CPU instructions for
moving and comparing data fields that consist of strings of 6-bit characters. Data fields can span word
boundaries and can begin and end at any character position within a word. A data field is specified by its
length in characters and the location of its leftmost character (according to word address and character
position). Data fields cannot be in the operating registers nor in ECS.

Each 60-bit word of a data field contains 10 character positions numbered 0 to 9 from left to right (high
order to low order).

COMPASS provides a symbolie forms of the four CMU instructions plus a pseudo instruction used to
generate a deseriptor word to be referenced by the indirect move instruetion. Of the four instruetions, the
indirect move (IM) instruction is the only one that syntactically resembles other CPU instructions. The
other three instruetions have formats dissimilar to CPU instructions and are generated through COMPASS
pseudo instructions. All of these instructions must begin at the top of a 60-bit word; COMPASS automat-
ically forces upper before each of them unless the location field contains & minus sign. All but IM are 60
bits in length. IM is 30 bits, but the hardware requires that the instruction be in the upper half of its word.
The lower half of the word is not executed. COMPASS automatically forces upper following IM, unless the
next instruction has a minus sign in its location field.

8-50 60492600 G

N

N

8.5.1 IM - INDIRECT MOVE

The indirect move instruction moves the contents of a data field to another location. It is a 30-bit
instruetion that specifies the address of a descriptor word which, in turn, contains the length and address of
the data fields.

The assembler forces upper before and after the IM instruction.

The descriptor word is fetched from storage location (Bj+K. If the data field length is zero, the
instruetion is executed as a pass but the execution time is longer. Otherwise, the contents of the source
field are moved to the destination field. If the two fields overlap, the results are undefined. The X0
register is used for intermediate storage during execution of the instruction, and is cleared upon
completion of the instruction.

Operation Variable Description Octal Code
M K Move data according to word at K 4640K
IM BjtK Move data according to word at (Bj)+ K 464jK
M Bj Move data according to word at (Bj) 464j 000000

8.5.2 MD - INDIRECT MOVE DESCRIPTOR WORD
The MD pseudo instruction generates a descriptor word for use by the indirect move (IM) instruetion.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym MD ﬂ’ks’cs’kd’cd

sym If present, sjm is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the descriptor word.

[Absolute address expression specifying the field length in characters (0 through 8191). The
upper 9 bits () are placed in bits 56 through 48 of the descriptor word; the lower 4 bits (£) are
placed in bits 29 through 26.

kg An expression specifying the first word address of the source field in CM.

cg An absolute expression (0 through 9) specifying the starting character position of the source
field within the word at location kg. Characters are numbered from left to right.

kg An expression specifying the first word address of the destination field in CM.

eqd An absolute expression (0 through 9) specifying the starting character position of the
destination field within the word at location kg.

60492600 G

8-51

Indirect Move Descriptor Word format:

59 48 30 26 22 18 00

0 source src [des destination
£12.4 address 3. Och ch address

Example:

Code Generated

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 130
i
0u760050004605u07000 DWORD M) 1043 ,BUFFA,IQ,BUFFB,S
. |
4640010665 _ i." DWORD :

BUFFA is at address 2560; BUFFB is at address 3584.

8.5.3 DM - DIRECT MOVE

The direct move (DM) pseudo instruction generates a CMU instruction that moves the contents of a data
field to another data field. The machine instruetion occupies one full word. The instruction includes its
own data field descriptor.

The assembler forces upper before a DM instruction.

If the data field length- is zero, the instruction is executed as a pass, but the execution time is longer.
Otherwise, the contents of the source field are moved to the destination field. If the two fields overlap,
the results are undefined. The X0 register is used for intermediate storage during execution of the
instruction and is cleared upon completion of the instruction.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym DM ll,k g d’ 4

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the instruetion word.

L Absolute address expression specifying the field length in characters (0 through 127).
Kg An expression specifying the first word address of the source field in CM.
eg An absolute expression (0 through 9) specifying the startmg character position of the source

field within the word at location kg.
K4 An expression specifying the first word address of the destination field in CM.

eq An absolute expression (0 through 9) specifying the starting character position of the
destination field within the word at location k4. Characters are numbered from left to right.

8-52 60492600 G

S’

5 .
po—g

Octal format of instruction:

59 51 48 30 26 22 18 00
source src |[des destinati
465 |4 address l3-(jch ch address
] i

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

_ 1 n 18 {30

46570053067405007000 DM 127,’%UFFA,O,§8UFFR,5

8.5.4 CC - COMPARE COLLATED

The compare collated (CC) pseudo instruetion generates a CMU instruction that compares the contents of
two data fields, one character at a time, from left to right, until a pair of corresponding characters is i
found to have unequal collating values or until the data fields are exhausted. It is a 60-bit instruetion that
occupies one full word. It eannot be split between two words. The instruetion includes its own data field
descriptor. Register A0 contains the first word address of a table in storage that contains the collating
values to be used in comparing characters. The result of the comparison is placed in register X0.

The first word address of the collating table is obtained from register A0. The contents of the data fields
are compared from left to right, one character at a time from each field, until two unequal characters are
found. The collating value of each character is obtained from the collating table. If these values are
equal, the compare continues until another charaeter pair is unequal or until all characters have been
compared. If the collating values are unequal, the two data fields are unequal and the field with a larger
collating value is the greater of the two fields. The collating values are treated as 6-bit unsigned integers.
Note that two unequal characters could have the same collating value and would compare equal.

Upon instruction completion, register X0 contains a 60-bit signed integer as follows:

(Field A)>(Field B) (X0)=2-n; (X0)>0 1

(Field A)=(Field B) (X0)=0

(Field A)<(Field B) (X0)=n-#; (X0)<0 l
n is the number of pairs of characters that compared equal. If £=0, then (X0) is 0.

The format of the collating table for 6-bit characters is:

59 53 47 41 35 29 23 27
(A0) 00 01 02 03 04 05 06
(AO0)+1 10 11 12 13 14 15 16
(A0)+T7 70 71 72 73 74 75 76
60492600 G 8-53

Format:

LOCATION ' OPER.ATION VARIABLE SUBFIELDS

sym CC m,ka, cé’kb’ cb

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic¢ address of the instruection.

2 Absolute address expression specifying the field length in characters (0 through 127).
Kq An expression specifying the first word address of the first data field in CM.
N An absolute expression specifying the starting character position of the first data field within
the word at location ky. Characters are numbered from left to right.
Kp An expression specifying the first word address of the second data field in CM.
_Cp An absolute expression (0 through 9) specifying the starting character position ot the second

data field within the word at location k.
Octal format of instruction:

59 51 48 30 26 22 18 o 00

466 11 l first string |, st .ss| second string

6-14 address 3-0 ch | ch{ address
| -
Example:
COde Generated LOCATION OPERATION | VARIABLE . COMMENTS
) I 18 [30
5130003120 SAQ TABLE I
466700500C7405ud70380 cc 127,QUFFA,D,ﬁUFFB,5
i

- 8.5.5 CU - COMPARE UNCOLLATED

The compare uncollated (CU) pseudo instruction generates a CMU instruction that compares the contents
of two data fields, one character at a time, from left to right, untii a pair of corresponding characters are
found to have unequal values or until the data fields are exhausted. The machine instruction is a 60-bit
instruction that occupies one full word and cannot be split between two words. It includes its own data
field descriptor. The result of the comparison is placed in register X0.

Execution resembles the CC instruction except that A0 and the collating table are not used. Instead, tne

characters are compared directly with each character regarded as a 6-bit unsigned binary integer.
Register X0 is set in the same manner as by the CC instruction.

8-54 60492600 G

e’

e

S

N’

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym CU z,ka, c kb' cb

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the instruction.

£ Absolute address expression (0 through 127) specifying the field length in characters. |

kg An expression specifying the first word address of the first data field in CM.

Cq An absolute expression (0 thfough 9) specifying the starting character position of the first data |
field within the word at location kg. Characters are numbered from left to right.

Kp An expression specifying the first word address of the second data field in CM.

¢h An absolute expression (0 through 9) specifying the starting character position of the second l

data field within the word at location k.

Octal format of instruction:

59 51 48 30 26 22 18 00
first string fs| ss| second string
467 £6'14 address £3"ﬂ ch | ch | address
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 [30
4o?T7d053006764053476212 cY 127,3UFFA,!3,:=1UFFB,5
f
[

60492600 G 8-55

N’

S’

\\/

PPU SYMBOLIC MACHINE INSTRUCTIONS 9

The COMPASS assembler recognizes symbolic notation for peripheral processor unit (PPU)
instructions. When a PPU or PERIPH pseudo instruction is in the first statement group, the assembler
identifies each symbolic instruction by name and generates a one word (12 bit) or two word (24 bit)
object code machine instruction under control of the current origin, location, and position counters.,

All PPU code is absolute. Numeric data must be in integer notation, Floating point notation is illegal.

9.1 MACHINE INSTRUCTION FORMATS

An assembled instruction has a 12-bit or 24-bit format. The 12-bit format has a 6-bit operation code f
and a 6-bit operand d. A PPU accomplishes program indexing and manipulates operands in several
modes. The 12-bit and 24-bit instruction formats provide for 6-bit, 12-bit, or 18-bit operands and
6-bit or 12-bit addresses. Figures 9-1 and 9-2 illustrate the 12-bit instruction format and the 24-bit
instruction format, respectively.

Direct Mode:
d = memory address of operand
operation Indirect Mode:
code

d = memory address of the address
of the operand

(P) f d
11 06 05 00 No Address Mode:

d = 6-bit operand, shift count, or
relative address

Other:
d = special value; e.g., channel designator

Figure 9-1, PPU 12-bit Instruction Format

60492600A 9-1

The 24-bit format uses. the 12-bit quantity m, which is the contents of the next program address (P + 1),
with d or the contents of d to form an 18-bit operand or a 12-bit operand address.

Indexed Mode:

d = address of the index for

operation o
code modifying the address of
the operand
r A A
P) f d m = base address of the operand
11 06 05 00 (d) + m = address of operand
(P+1) m ‘ Constant Mode:
11 00

dm = 18-bit operand
Other:

dm = special values; e.g., d = channel
designator and m = 12-bit address
of word count on IAM and OAM
instructions

Figure 9-2. PPU 24-bit Instruction Format

9.2 SYMBOLIC NOTATION

This section describes notation used for coding symbolic PPU machine instructions. Instructions are
described in octal operation code sequence which generally reflects the mode of addressing.
Instructions unique to a computer system are identified as such.

The location field of a symbolic PPU machine instruction optionally contains a location symbol. When
the symbol is present, it is assigned the value of the location counter.

The operation field of a symbolic PPU machine instruction contains a three-character name.

The variable field contains one or two subfields. Each subfield contains an absolute or relocatable
expression that reduces to a 6-bit, 12-bit, or 18-bit value.

Designators used in this section are listed in table 9-1.

Generally, the third character of the instruction mnemonic (N, D, M, C, or I) indicates the mode of '
addressing:

No operand address reference

Direct operand address: d contains operand
Memory address m or m + (d) contains operand
18-bit constant

Indirect; operand address is (d)

“ago2=z

9-2 60492600A

TABLE 9-1. PERIPHERAL PROCESSOR INSTRUCTION DESIGNA TORS

Designator Use

A 18-bit A register
An expression that reduces to an 18-bit operand value.
A 6-bit operand or operand address expression.

m A 12-bit expression value used with d or (d) to form an 18-bit operand or 12-bit
operand address.

P 12-bit Program Address register

Q 12-bit Q register

r An expression that reduces to a 6-bit value (-37gxrg< 378)
speclfymg relative address or shift count

@) Contents of a register or location

(@) Refers to indirect addressing

Some of the instructions provide similar functions using different modes of addressing. They can be
grouped according to function as shown below:

Function

Data transmission

60492600A

Description

The following instructions either load data into the A register or store
data from it. A load instruction loads a 6-bit, 12-bit, or 18-bit value
as indicated by the instruction; any remaining upper bits of A are zeroed,
except for the LCN instruction for which remaining bits are set to one.

A store instruction stores the lower 12 bits of the A register contents into
a memory location indicated by the instruction.

The contents of A are not altered,

Instruction Octal Code Section
LDN 14 9.2.3
LCN 15 9.2.3
LDC 20 9.2.4
LDD "~ 80 9.2.9
STD 34 92.2.9
LDI 40 9.2,10
STI 44 9.2.10
LDM 50 9.2,11
STM 54 9.2.11

9-3

Function (cont'd)

Arithmetic

Logical

Description (cont'd)

A PPU arithmetic instruction adds or subtracts a 6-bit, 12-bit, or
18-bit quantity from the contents of the A register and enters the result
in A.

Instruction Octal Code Section
ADN 16 9.2.3
SBN 17 92.2.3
ADC 21 9.2.4
ADD 3 9.2.6
SBD ' 32 9.2.6
ADI 41 9.2.7
SBI 42 9.2.7
ADM 51 9.2.8
SBM 52 9.2.8

A logical instruction forms a logical value in A using the contents of A
as one of the operands and a 6-bit, 12-bit, or 18-bit value indicated by
the instruction as the second operand. When the second operand is
fewer than 18 bits, the remaining upper bits of A are unaltered, except
for the LPN instruction for which the upper 12 bits are zeroed.

Formation of a logical difference is equivalent to setting each bit in A
that is unlike the corresponding bit in the second operand. For example,

Initial (A) =0101
Operand =1100
Final (A) =1001

Formation of a logical product is equivalent to setting a bit in A when
the original setting of the bit in A and the corresponding bit in the second
operand are both one's.

For example,

Initial (A) =0101
Operand =1100
Final (A) =0100

- A selective clear sets a bit zero in the A register wherever a bit is set

in the second operand. For example,

 Initial (A) =0101
Operand =1100
Final (A) =0001

60492600A

Function (cont'd)

Logical (cont'd)

Replace

Description ‘(cont'd)

Logical instructions include the following:

Instruction Octal Code Section
LMN 11 9.2.3
LPN 12 9.2.3
SCN 13 9.2,3
LPC 22 9.2.4
LMC 23, 9.2.4
LMD 33 9.2.9
LMI 43 9.2.10
LMM 53 9.2.11

A replace instruction performs an arithmetie operation and returns the

results to the A register and the memory location from which one operand
was obtained. The lower 12 bits of the result replaces the operand
obtained from a memory location. Replace instructions include the

following:

Instruction Octal -Code Section
RAD 35 9.2.9
AOD 36 9.2.9
SOD 37 9.2.9
RAI 45 9.2.10
AOQI 46 9.2.10
SOI 47 9.2.10
RAM 55 9.2.11
AOM 56 9.2.11
SOM 57 9.2.11

9.2.1 BRANCH INSTRUCTIONS

For branch instructions, the r subfield is a numeric value that indicates the number of locations to be
jumped (maximum 31). When r is positive (01 through 37g), the jump is forward r locations. When r is
negative (-76g through -40g), the jump is backward 77g-r locations. In the following tests, negative
zero (777777) is nonzero. For conditional instruetions, when the test condition is true, the jump takes
place. When the condition is not met, execution continues with the next instruction,

The J option of the PPU instruction (section 4.3.3) and the PERIPH Instruction (section 4.3.4) cause the
value of the location counter to be subtracted from the value of the sy
placed in the d field of the object code instruetion.

60492600 G

NOTE

The jump count must not be 00 or 77, If it is, execution loops on
the jump instruetion.

mbolic address (tag) before it is

Formats:

Operation Variable Description Size Octal Code
LJM m,d Long jump to m+(d); if d = 0, m is not
modified- o 24 bits 01dm
RJM m,d Return jump to m+(d); Store P+2 at m+(d)
-and jump to m-+(d)+1. o 24 bits 02dm
UJIN rt Unconditional jump to P+ r locations 12 bits 03d
UJIN tag Unconditional jump to tag 12 bits 03d
ZJIN r Zero jump; jump to P+r locations if
A)=0 12 bits 04d
ZJN tag Zero jump to tag 12 bits 04d
NJIN rt Nonzero jump; jump to P+r locations if
A)#0 , : 12 bits 05d
NJN tag Nonzero jump to tag 12 bits 05d
PJN rt Positive jump; jump to P+r locations if
A)>0 12 bits 06d
PJN tag Positive jump to tag 12 bits 06d
MIN rf Minus jump; jump to P+r locations if
(A)<0 12 bits 07d
MJIN tag -Minus jump to tag 12 bits 07d

T PPU J or PERIPH J option has been selected, r is not valid. The contents of the variable field must

be a symbolic address (tag).

Examples:

1100

.- N274

1271

oLny

3525

neR7

n726

Code Generated

1362

ongo |

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 I30
LJM START E
puM |0,cT0 :
(VR L] TA Gi -* |
7IN + :
NIM TAGR {
PUM TaGr-r :
MUN TAGL !

In the above examples, the LJM instruction is at address 00148; TAG1 is address 00128, TAG2 has a
value of 13g, TAGS has a value of 25g, and TAG4 has a value of 268.

9-6

60492600A

_/'

Code Generated LOCATION OPERATION | VARIABLE COMMENTS:
' . 1 N 18 Tao
PPy J :
|
[
0247 UJN TAG1 |
nLrg 7IN TAG? | In this example, the UJN is at
| address 0040. TAG1 is address
055 NJM TAR2+10 | 0010, TAG2 is 0011, TAGS is
| address 0045, and TAG4 is
f6n? PIN -1+TAGYH | address 0046.
1767 MIN TAG1 |
I

9.2.2 SHIFT INSTRUCTION

The SHN instruction shifts the contents of the A register right or left r places. I r is positive (+1 to
+31), the shift is left circular r places; if r is negative (-31 to -1), the shift is end off r places to the
right with no sign extension, No shift takes place when r is + 0. The assembler places the value of

the r expression in the d field.

If-31 sr>

31, the assembler generates an address error.

Format:
Operation Variable Description Size Octal Code
SHN r Shift (A) by + (left) or - (right) r bits 12 bits 10r
Examples:
1. Shift contents of A left circular 6 places
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
1016 SHN f i
2. Shift contents of A right end off 6 places
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 T30
: SrNT sy 1% f
1071 SHN -SONT :

9.2.3 NO ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field are interpreted as a 6-bit

positive operand. This mode eliminates the need for storing many consfants in core,

60492600 D

Formats:
Operation Variable Description Size Octal Code
LMN d Logical difference (A)-d—A 12 bits | 11d
LPN d Logical product (A)*d—~A 12 bits 12d
SCN d Selective clear (A) 12 bits 13d
LDN d Load d—~A - 12 bits 14d
LCN d Load complement d—A 12 bits | 15d
ADN d Add (Ay+d—A 12 bits 16d
SBN d Subtract (A)-d—A 12 bits - 17d
Examples:
Code Generated. 1| rocation OPERATION | VARIABLE COMMENTS
} " 18 {30
1112 LMN 128 }
1207 LPN 7 |
1224 seN 210 :
15 Ly SET 158 |
1415 LON AR |
1514 LCN AA-1]
1601 aON |2 '
17n2 <SRN ? :

9.2.4 CONSTANT MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the. d and m fields are taken directly as an

operand.
absolute or relocatable expression ¢ to an 18
12 bits in m.

This mode also eliminates the need for storing many constants. The assembler reduces
_bit value and stores the upper six bits in d and the lower

60492600A

S

Format:
Operation Variable Description Size Octal Code
LDC c Load ¢ —A 24 bits 20dm
ADC c Add (A)+c —A 24 bits . 21dm
LPC c Logical product (A)*c —A 24 bits 22dm
LMC c Logical difference (A)-c —A 24 bits 23dm
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I 30
2070 7070 LOC (7070708 |
: |
0 VAL = 0 }
2177 7776 ADC VAL-1 |
I
2207 0707 LPC g707078 !
i
78707 MASK SET g707078 i
2307 0707 LMC MASK !

9.2.5 NO OPERATION INSTRUCTION

The PSN instruction specifies that no operation is to be performed. It provides a means of padding

a program.,
Format:
Operation Variable Description Size Octal Code
PSN No operation (Pass) 12 bits 2400
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l30
2unQ PSN i

Other octal operation codes (not generated by COMPASS) that act as pass instructions are:

CYBER 170 Series, CYBER 70/
Models 72, 73, 74 and 6000 Series

00
25

60492600A

CYBER 70/Model 76 and 7600

25
26
27
75
76

9.2.6 EXCHANGE JUMP INSTRUCTIONS (CYBER 170 SERIES,
CYBER 70/MODEL 71, 72, 73, 74 OR 6000 SERIES)

The EXN instruction transmits an 18-bit (absolute) address from the A register to the CPU with a signal
notifying the CPU to execute an exchange jump. The address in A is the starting location of the 16-word
exchange package which contains information about the CPU program to be executed. The 18-bit initial
address must be entered in A before the EXN instruction is executed. The CPU replaces the file with
similar information from the interrupted CPU program. The PPU is not interrupted. The EXN instruc-
tion does not affect the monitor flag bit. '

The MXN instruction conditionally exchange jumps to the CPU and initiates CPU monitor activity. If
the monitor flag bit is clear, this instruction sets the flag and initiates the exchange. If the monitor
flag bit is set, this instruction acts as a pass instruction. The starting address for this exchange is
the 18~bit address in the PPU A register. This address must be entered in A before the MXN instruc~
tion is executed.

Execution of MAN resembles MXN, However, the exchange package address is taken from the 18-bit
Monitor Address (MA) register in CPU d, rather than from the PPU A register.

In a system with dual central processors, d can be 0 or 1 and specifies which CPU the exchange jump
will interrupt. In single processor systems, this value is not interpreted.

Formats:
Operation Variable Description Size Octal Code
EXN d Exchange jump CPU d to (4) 12 bits 260d
MXN d Monitor exchange jump CPU d to (A) 12 bits 261d
MAN ¥ d Monitor exchange jump CPU d to (MA) 12 hits 262d
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
2601 EXN 1 |
/ |
2610 MXN g ‘
2623 MAN 3 !
1

TCYBER 170 Series and CYBER 70/Model 71, 72, 73, and 74 only.

9-10 ‘ ' 60492600 F

. -

9.2.7 READ PROGRAM ADDRESS INSTRUCTION
(CYBER 170 SERIES , CYBER 70/MODELS 71, 72, 73, 74, AND 6000 SERIES)

This instruction transfers the contents of the CPU P register to the PPU A register; this allows the PPU
to determine whether the CPU is in execution. In a dual central processor system, the lowest order bit
of the instruction format specifies which CPU P register is to be examined. This bit is not interpreted
for a single central processor system.

Format:
Operation Variable Description) Size Octal Code
RPN d Read program address CPUd - A 12 bits 2704
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] I 18 T30
2760 RPN)
.]

i is 17 bits. An ECS transfer is in
For the 6000 and CYBER 70 series, the largest value that (P) can be is : ; .
progress when bit 17 of the A regis,ter is set. For the CYBER 170 series, the P register is 18 bits.

9.2.8 6416 PPU INSTRUCTIONS

COMPASS assembles the following instructions for execution on a 6416 computer system only. The
ETN instruction initiates memory transfer operations by transmitting an 18-bit address from the
PPU A register to the 6416 16K memory. This address points to a word having the following format:

| X0 A0 K |

59 36 18 00
AN

- \ A -

Vv Y v
~ Starting Address Starting Address Word Count
in Extended Core Storage in 16 K Memory

Expression d of this instruction specifies the transfer to be performed:

If dis 0, K words are transferred from ECS to 16K memory.

If dis 1, K words are transferred from 16K memory to ECS,

Note that addresses contained in the word are absolute addresses. Operating systems may require
relocation (adding RA to an address) and field length testing, e. g., Is address + RA > FL? The
Exchange Jump package contains RA and FL values for central memory and for extended core storage.
The 6416 has no hardware for automatic relocation and field length testing; it is therefore incumbent
upon the program to perform these functions whenever required by an operating system.

60492600C 9-11
i

The ERN instruction examines the status of the data trunk between 16K memory and the extended core
coupler. If the data trunk is busy (a transfer is in progress), a 1 is placed in the most significant bit
position of the A register, If the trunk is free (not busy), the A register remains cleared. The d

portion of this instruction is ignored. ‘

After execution of this instruction the program would typically test the A register for a sign before
executing an instruction that initiates an ECS operation.

Formats:
Operation Variable Description Size Octal Code
ETN Extended core transfer 12 bits 260d
ERN Read extended core coupler status 12 bits 270d
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
2600 ' ETN ;
2760 ERN :

9.2.9 DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field specify the address of the operand.

During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that
specifies one of the first 1004 addresses in core memory (0000 - 00778)' During instruction execution,
(d) is treated as a positive 12-bit quantity.

Format:

Operation Variable Description Size Octal Code
LDD d Load (d)—A 12 bits 30d

ADD d Add (A) + @) —A 12 bits 31d

SBD d Subtract (A) - (d) ~A 12 bits 32d

LMD d Logical difference (A) and (d) —A 12 bits 33d

STD d Store (A)—d 12 bits 34d

RAD d Replace add (d) + (A)—d and A 12 bits 35d

AOD d Replace add (d) + 1—d and A.__ 12 bits 36d

SOD d Replace subtract one (d) - 1—d and A’ 12 bits 37d

9-12 60492600A

Examplés :

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
| I 18 T30

391°? L0D TAG1 i
31nz ADD TAGZ2-10R :
32439 S3N 691 :
3327 ; LMD TARLI+158 :
2401 $Tn 1 i
neg 48N 551 l
3612 ' aAND TAGY :
27132 <nn TAG?2 :

|

9.2.10 INDIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, d specifies an address, the contents of which specify the
address of the desired operand. Thus, d specifies the operand address indirectly.

During assembly, the assembler reduces absolute or relocatable expression d to a 6~bit value that
specifies one of the first 100 8 addresses in core memory (0000 --0077 8).

On the 7600 (or CYBER 70/Model 76), the address formed permits referencing of all memory locations
but one (0000 ~ 77768).

On a 6000 Series Computer System (as well as CYBER 170 Series or CYBER 70/Model 71, 72, 73 or 74)
PPU, the address formed in indirect address mode permits referencing of all memory locations,
including address 7777 8

Formats:

Operation Variable Description Size Octal Code
LDI d Load ((d)—A 12 bits 40d

ADI d Add (A) + (d))—A 12 bits 41d

SBI d Suﬁtract Ay - (d))—A 12 bits 42d

LMI d Logical difference (A) - ((d))—A 12 bits 43d

STI d Store (A)—(d) ; 12 bits 44d

RAI d Replace add ((d)) + (A)—(d) and A 12 bits 45d

AOI d Replace add one ((d)) + 1—~(d)and A 12 bits 46d

SO1 d Replace subtract one ((d)) - 1—(d) and A 12 bits 47d

60492600C 9-13

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 Tao
4n12 L0T TAGY ;
4103 ADY TAGZ2-11 {
L2460 snt wge I
4227 LMT TAGL+15P |
L4un1 ST 1 :
4555) RAT 551 ;
4612 AQT, TAGH {
4713 SOt TAG? :

9.2.11 INDEXED DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the value formed by m+(d) is used as the address of the
operand. During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit
value that specifies one of the first 100, addresses in core memory (0000 - 0077g). The value of
absolute or relocatable expression m is a 12-bit base address.

NOTE

- ~The address formed in indexed addressing permits:
referencing of all memory locations but one
(0000-7776g). Although m and/or (d) can have a
value of 7777g, the computer system does not
permit m+(d) to reference address 7777g.

When in indexed direct address mode, if d is nonzero the contents of address d are added to m to
produce a 12-bit operand address (indexed addressing). If d is zero, m is taken as the operand address.

60492600A

Formats:
Operation Variable Description -Size Octal Code
!LDM m,d Load (m+(d))—A 24 bits 50dm
'ADM m,d Add (A) + m+(d))~-A 24 bits 51dm
SBM m,d Subtract (A) - (m+(d)) =A 24 bits | 52dm
LMM m,d . Logical difference (A) - (m~(d))—A 24 hits 53dm
STA m,d Store (A)—m-(d) 24 bits i 54dm
RAM m,d ; Replace add (m~+(d)) ~ (A)—m=(d)and A 24 bits 55dm
IAOMI m,d ‘ Replace add one (m~(d)) -~ 1—m-=(d) and A ‘ 24 hits 56dm
SOM m,d g(ttle&)lg\ce subtract one (m—(d)) - 1—m-(d) 24 hits 57dm
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
e el 1 n 18 [30
5077 0203 LOM TAGG, 778 :
, '

5106 0202 ADM | TAGS5,6 !

5200 0202 SBM | TAGS !

5315 70090 LMM 70008,158 |

5410 0272 ST T~AGS*?08,TAGII°2

5500 0342 ‘ RAM unannss,o:

5600 0173 AOM -108+TAGE !

5712 0203 5 SOM | TAG6, TAG1 !

9.2.12 CENTRAL READ/WRITE INSTRUCTIONS
(CYBER 170 SERIES, CYBER 70/MODELS 71,72, 73, 74 OR 6000 SERIES)

The CRD instruction transfers a 60-bit word from central memory to five consecutive PPU locations. The

18-bit address of the central memory location must be loaded into A prior to executing this instruction.

(Note that this is an absolute address.) The 60-bit word is disassembled into five 12-bit words beginning at
the left. Location d receives the first 12-bit word. The remaining 12-bit words go to successive locations.
The contents of A are not altered.

The CRM instruction reads a block of 60-bit words from central memory. The contents of location d give
the block length. The 18-bit address of the first ecentral word must be loaded into A prior to executing this
instruction. (Note that this is an absolute address.) During the execution of the instruetion, the contents
of P go to processor address 0 and P holds m. Also, the block length (from d) goes to the Q register where
it is reduced by one as each central word is processed. The original content of P is restored at the end of
the instruetion. The new contents of P are fetched from word 0. If the read operation overwrote the
contents of word 0, the restored value of P will be different from the original contents.

60492600 G 9-15

l The contents of A are incremented by one to provide the next central memory address after each 60-bit
word is disassembled and stored. The contents of the Q register are also reduced by one. The bloek
transfer is complete when (Q)=0. The block of eentral memory locations proceeds from address (A) to
address (A)+(d)-1. The block of processor memory locations proceeds from address m to m+5(d)-1.

Each central word is disassembled into five 12-bit words beginning with the high-order 12 bits. The

first word is stored at processor memory location m. The content of P (which is holding m) is advanced
by one to provide the next address in the processor memory as each 12-bit word is stored. If P overflows,

operation continues as P is advanced from 7777 8 to 00008. These locations will be written into as if
they were consecutive. '

» The CWD instruction assembles five successive 12-bit words into a 60-bit word and stores the word
in central memory. The 18-bit address word designating the central memory location must be in A
prior to execution of the instruction. (Note that this is an absolute address.)

Location d holds the first word to be read out of the processor memory. This word appears as the
higher order 12 bits of the 60-bit word to be stored in central memory. The remaining words are taken
from successive addresses.

The CWM instruction assembles a block of 60-bit words and writes them in central memory. The content

of location d gives the number of 60-bit words. The content of the A register gives the beginning

= central memory address. (Note that this is an absolute address.) During the execution of this instruction

e (P) goes to processor address 0, and P holds m. Also, (d) goes to the Q register, where it is reduced
by one as each central word is assembled. The original content of P is restored at the end of the
" instruction, ’ '

The content of P (the m portion of the instruction) gives the address of the first word to be read out of
the processor memory. This word appears as the higher order 12 bits of the first 60-bit word to be
stored in central memory. :

The content of P is advanced by one to provide the next address in the processor memory as each
12-bit word is read. If P overflows, operation continues as P is advanced from 77778 to 00008.

These locations will be read from as if they were consecutive.

(A) is advanced by one to provide the next central memory address after each 60-bit word is assembled,
Also, Q is reduced by one. The block transfer is complete when (Q)=0.

Formats:

Operation Variable Desecription i Size Octal Code
CRD d Central read from (A) to d 12 bits 60d
I CRM m,d’ Central read (d) CM words beginning
at CM (A)»PPUm 24 bits 61dm
CWD d Central write from d to (A) 12 bits 62d
CWM m,d’ Central write (d) words beginning
at PPU m—-»CM (A) 24 bits ‘ 63dm
TI'prression d is required.
9-16 ; 60492600 G

S’

N

S

Mo’

Example:

LOCATION

COMMENTS

Code Generated

6015

6125 0012

5360 o012

9.2.13 1/O BRANCH INSTRUCTIONS

OPERATION | VARIABLE
n 18

CRD 158

caM TAGL1,258
CwnD 32e

CWM TAG1,508

(CYBER 170 SERIES, CYBER 70/MODELS 71, 72, 73, 74, AND 6000 SERIES)

The following instructions are conditional long jump instructions, each of which tests for a condition
on channel d. When the condition is true, the jump to address m takes place. When the condition is
not met, execution continues with the next instruction. The d expression is required.

For the FJM instruction, an input channel is full when the input equipment has sent a word to the channel
register and sets the full flag. The channel remains full until the PPU accepts the word and clears the
flag. An output channel remains full when a PPU sends a word to the channel register and sets the

full flag. The channel is empty when the output equipment accepts the word and notifies the PPU,

Formats:
Operation Variable Description Size Octal Code
AJM m,d Jump to m if channel d active 24 bits 64dm
oM m,d Jump to m if channel d inactive 24 bits 65dm
FJM m,d Jump to m if channel d full 24 bits 66dm
EIM- m,d Jump to m if channel d empty 24 bits 67dm
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [0
bun2 9012 AgM TAG1,2 |
) ’ |
6502 03132 IJM TAG2 yCHAN=2
]
A6H0L N025 FJM TAG3 4 |
|
6794 0026 FJM TAGL yCHAN |
|
60492600FE 9-17

9.2.14 1/0O BRANCH INSTRUCTIONS (CYBER 70/MODEL 76 AND 7600)

The following instructions are conditional long jump instructions each of which tests 4 condition on
channel d. When the condition is true, the jump to address m takes place,

met, execution continues with the next instruction.

When the condition is not
These instructions are exclusively 7600 PPU

instructions. The d expression is required.
Formats:
Operation Variable Description Size Octal Code
FIM m,d Jump to m on channel d input word flag 24 bits 60dm
EIM m,d Jump to m-if no input word flag on channel d| 24 bits 61dm
IRM m,d Jump to m on channel d input record flag 24 bits 62dm
NIM m,d Jump to m if no input record flag on
channel d 24 bits 63dm
FOM m,d Jump to m' on channel d output word flag 24 bits 64dm
EOM m,d Jump to m if no output word flag on ~
channel d 24 bits 65dm
ORM m,d Jump to m on channel d output record flag 24 bits 66dm
NOM m,d Jump to m if no output record flag on
channel d 24 bits 67dm
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
») n 18 130
AROS 1365 FIv TAGS,5 :
6102 17265 FIM TAGS,? :
62M1 1366 IrM TAGF 41 l
CHEN SET L :
62NL 17266 MM TAG6,CHAN :
6415 7000 Fom |7o%gn,158 |
pRN0 1525 EOM 16NN+ TARS, T :
hEN1 1266 [ORM —1'JﬂR+TA66.("HAN-5
6705 1366 NGOM TAGA 4CHAN+ 1 ;
9-18 60492600A

— .

RN

R

9.2.15 A REGISTER INPUT/OUTPUT INSTRUCTIONS

The following instructions transfer a word to or from channel d and the lower 12 bits of the A register.

On the CYBER 70/Model 76 or 7600, the IAN instruction is not executed until the input channel d word
flag is set, If the flag is not set when the instruction is read, execution halts until an external signal
sets the flag. The input channel d record flag does not affect the IAN execution. The IAN instruction
clears the input channel d word flag and record flag and transmits a resume signal over the input cable
after the word is entered in the A register.

On the CYBER 70/Model 76 or 7600, the OAN instruction is not executed while the output channel d
word flag is set. If the flag is set, execution stops until an external resume signal clears the flag,
This instruction sets the output channel d word flag and transmits a work pulse over the output channe
cable. ‘
On a CYBER 170 Series, CYBER 70/Model 71, 72, 73, or 74 or 6000 Series machine, executing

either of these instructions when the channel is inactive causes the peripheral processor unit to become.
inoperative until some other peripheral processor activates the channel or the system is deadstarted.

Formats:
Operation Variable i Description t Size Octal Code ‘
o
IAN d Input: channel d to A 12 bits : 70d ;
OAN d . Output: (A) to channel d] 12 bits 72d]
Examples: -
. LOCATION OPERATION ! VARIABLE COMMENTS
.Code Generated ; " " T30
7003 IAN 3 I
7204. 0AN CHAN |

9.2.16 BLOCK INPUT/OUTPUT INSTRUCTIONS

The following instructions transfer a block of 12-bit words on channel d to or from a starting PPU memory
location specified by m. The number of words transferred is specified by the contents of the A register
which is reduced by one as each word is transferred. The operation is completed when (A)=0 or the channel
becomes inactive (CYBER 170 Series, CYBER 70/Model 71, 72, 73, 74 or 6000 only).

On a CYBER 170 Series, CYBER 70/Model 71, 72, 73, 74 or 6000 Series machine, the input operation is
complete when the contents of A equal 0 or the data channel becomes inactive. If the operation is
terminated by the channel becoming inactive, the next location in the processor memory is set to all
zeros. The word count is not affected by this empty word. Therefore, the contents of the A register give
the block length minus the number of real data words actually read in.

During execution of either of these instruections, address 0000 temporarily holds P, while the P register
holds m. The contents of P advance by one to give the address for the next word as each word is
transferred.

If a read operation overwrites word 0 (address 0000), the restored value of P may be different from the
contents of P before the operation.

60492600 G 9-19

NOTE

If this instruction is executed on a CYBER 170 Series,

CYBER 70/Model 71, 72, 73, or 74 or 6000 Series machine when
the data channel is inactive, no operation is accomplished and
the program continues at P + 2, However, the location specified
by m is set to all zeros for the IAM instruction.

On a CYBER 70/Model 76 or 7600, the IAM instruction is not executed untii the input channel d word flag
is set. If the flag is not set when the instruection is read, execution halts until an external signal sets the
flag. The presence of an input channel d record flag is ignored for the first word of the block but
terminates the block input at any word after the first. -In this case, the next location in the PPU block
input storage area contains a noise word; any remaining locations are unaltered. Note that the storage
location ean be ineremented through loeation 7776g to 000g on a 7600 (or CYBER 70/Model 76), or
location 7777 through 0000 on a 6000 Series machine (or a CYBER 170 Series, CYBER 70/Model 71, 72, 73,
or 74), which could destroy existing data or a program.

On a CYBER 70/Model 76 or 7600, the OAM instruction is not executed until the output channel d word
flag is cleared. If the flag is set when the instruction is read, execution halts until a resume pulse ciears
the flag. An output channel d record flag does not affect OAM execution.

Formats:

Operation Variable Description Size Octal Code

1AM m,dT Input: (A) words to m from channel d 24 hits 71ldm
TOAM m,d T Output: (A) words to channel d from m 24 hits 73dm

T Expression d is required.

Examples:
Code Generated LOCATION OPERAT!QN VARIABLE COMMENTS
} " . s {30
7102 13564 IAM TAG,3 ;
|
7204 1364 oAM TAG,Y |

9.217 SET OUTPUT RECORD FLAG INSTRUCTION (CYBER 70/MODEL 76 AND 7600)

The RFN instruction sets the output channel d record flag and transmits a record pulse over the cable.
The instruction ignores the previous status of the channel d flags; the instruction is executed even if the
output channel d record flag is set.

Format:

Operation Variable Description Size Octal Code
RFN d Set output record flag on channel d 12 bits 74d

9-20 60492600 G

e’

\ s

Example: -
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 [30
¥
7L06 RFM 6 ;

9.2.18 CHANNEL FUNCTION INSTRUCTIONS
(CYBER 170 SERIES, CYBER 70/MODELS 71, 72, 73, 74, AND 6000 SERIES)

The ACN instruction activates the channel specified by d. This instruction must precede the IAN, IAM,
OAM, or OAN instructions. Activating a channel alerts the input/output equipment for the exchange of

data. Activating an already active channel causes the PPU to become inoperative until another PPU or
an external equipment deactivates the channel, or the system is deadstarted.

The DCN instruction deactivates the channel specified by expression d. It stops the input/output
equipment and terminates the buffer. Deactivating an already inactive channel causes the PPU to
become inoperative until deadstart or until the channel is activated. Avoid disconnecting the

channel before first sensing for channel empty, deactivating a channel before stopping the associated
processor, or deactivating a channel before placing a useful program into the associated processor.
After deadstart, PPUs wait on an input channel. Deactivating a channel after deadstart causes an
exit to address 0001 and execution of the program.

The FAN instruction sends the external function code from the lower 12 bits of the A register on
channel d. '

The FNC instruction sends the external function code specified by m on channel d. For this instruction,
expression d is required.

Execution of a FAN or FNC instruction when the channel is active causes the PPU to become inoperative
until another PPU or an external equipment deactivates the channel, or the system is deadstarted.

Formats:
Operation Variable Description Size Octal Code
ACN - d Activate channel d 12 bits 74d
DCN d Disconnect channel d 12 bits 75d
FAN d Function (A) on channel d 12 bits 76d
FNC c,d Function ¢ on channel d 24 bits T7dm
Examples:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30

7405 ACN 5 - l;

7504 CCN CHAN :

7605 FAN CHAN+1 :

7705 0020 FNC 208,45 :
60492600C 9-21.

9.2.19 ERROR STOP INSTRUCTION (CYBER 70/MODEL 76 AND 7600)

The ESN instruction halts execution of the peripheral processor program and indicates a program
The PPU must be restarted by a deadstart sequence from

error condition to the monitor control unit.
the MCU, only.

Format:
Operation Variable Description Size Octal Code
ESN d Error Stop 12 bits 7700
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] i 18]30
7700 TSN ;
60492600A

S’

N~

s

N v

- PROGRAM EXECUTION 10

P

N
COMPASS can be called from the library and placed in execution through a COMPASS compiler call
statement or through an IDENT statement (section 4.2.1) in a FORTRAN source deck. Ordinarily, when

— COMPASS is called through FORTRAN, the parameters specified on the statement apply also to COMPASS.

~— 10.1 CONTROL STATEMENTS

Normally, assembly of COMPASS source programs or the execution of CPU binary object decks is done
— from a job file. A file is usually submitted in the form of eard decks or ecard images. The first seetion of
the file must contain the control statements deseribed in this section. Other optional statements are
described in the operating system reference manual. Following the control statement section are one or
more sections containing source statements and data.

A control statement begins with the first nonblank character. A comma or a left parenthesis or blank
marks the beginning of a parameter string. Parameters in the string are separated by commas. A period or

o right parenthesis terminates a parameter string. Comments optionally follow the terminator. Within the
parameter strings, blanks are ignored. Ordinarily, a parameter can contain only letters and digits. When a
parameter is enclosed between dollar signs, all characters are permitted and blanks are not ignored. Within
such a dollar-sign delimited parameter, two consecutive dollar signs represent a single dollar sign.

~F 10.1.1 JOB STATEMENT

A job statement of the following format must be the first statement in the deck. The parameters following
, name can be in any order or can be omitted. For any omitted field, a default value is supplied which is an
S~ installation option.

Format:
R
(name, Tt,E Clem.

R

name 1 through 7 letters or digits by which the job is identified.
~ The first character must be a letter.

Tt CPU time limit in seconds (NOS/BE 1, SCOPE 2: 1 through 77777g; NOS 1: 1 through
S 3276071¢). Must be sufficient to process all control statements for the job, including

assembly and execution.

“— EClem (NOS/BE 1, SCOPE 2 only). Estimate of maximum amount of LCM or ECS in octal

thousands, required for assembly or execution (1 through 1400g).

COMPASS notes storage used in the job dayfile. For subsequent runs, the field lengths can be decreased
S’ accordingly.

~— 60492600 G 10-1

Examples:

(JOBI, T100, EC30.

(TE STER.

10.1.2 COMPASS CALL STATEMENT

The following statement causes the COMPASS assembler to be loaded from the library and executed.
Parameters specify modes and files. :

Format:

rCOMPASS(pl,pz, oen ,pn)
The optional paravmeters, p, may be in any order within the parehtheses. A parameter can be omitted or
can be in one of the following forms:
mode
mode=0
mode=1fn

Mode is one or two characters as described below; 1fn is a 1 through 7 character name of a file or a
character string.

Mode Significance

A - Abort mode.
A Abort job at end of run if any assembly errors occurred.
omitted Do not abort job for assembly errors.

B - Binary output.

omitted or B Binary on the load-and-go file (LGO).
B=0 No binary output. '
B=1fn Binary on the named file.

BL - Burstable listing. Generates output listing easily separable into components:

° Issues page ejects betweén load map, source code, and cross reference
map.
° Assures an even number of pages (page parify) for each program unit
listing, issuing a blank page at end if necessary.
omitted or BL=0 Generates listings in compact format. Page ejects issued only before new
subprograms.
10-2 : 60492600 G

N’

N’

SN

N g

Mode Significance
D - Debug mode.

D Binary is generated on the file indicated by B parameter in spite of assembly
errors and regardless of the abort mode (A parameter). The A parameter is

ignored when the D parameter is selected.

D is ignored if B=0.

omitted Assembly errors inhibit binary output. In abort mode (A parameter present),
no binary output is written at all for a subprogram containing assembly errors.

Otherwise (A parameter omitted), the message ERRORS IN ASSEMBLY is
written to the file indicated by the B parameter for each subprogram
containing assembly errors.

E - Error list. Suppressed if full list is directed to the same file or if no assembly errors ocecur.
However, if the full list and error list are on different files (for example, the full list is written

to

OUTPUT and the error list is written on the named file), the error list will contain all statements
having error flags. If an error line was generated by a macro call, the macro eall can also appear in
the error list. Specification of both the E and the O parameter results in a control statement error.

omitted Error list on file OUTPUT.

E Error list on file ERRS.

E=lfn Error list on named file.

E=0 fl:l(il elt:rg)r list is generated (equivalent to directing error list to the same file as l
ull list).

F - FORTRAN mode. Establishes value of special element *F.

omitted or F *F is 0.

F=number *F is number (one decimal digit).

F=name *F is a number corresponding to name as follows:
COMPASS =0
RUN=1
FTN =2

G - Get system text.

omitted or G=0 Load no system text from a sequenﬁal binary file.

G Load the first system text overlay, if any, from file named SYSTEXT.

G=l1fn Load the first system text overlay, if any, in the specified sequential binary
file.

G=lfn/ovl Search the specified sequential binary file for a system text overlay whose

name is ovl and load the first such overlay.

60432600 G

10-3

Mode

LO -

ML -

I ~-

10-4

Source of assembler input.

omitted Source deck is on INPUT file.

I Source deck is on COMPILE file in either compressed or expanded format.

I=0 Ilegal.

I=1fn : Source deck is on named file.

Full list.

omitted or L List output on QUTPUT file.

L=1fn List output on named file. When the full list is on a different file than the
short list, the listing for each subprogram is a séparate section beginning with
a one-word header consisting of an asterisk and the first six characters of the
subprogram name. This header identifies the subprogram as a eonvenience for
sorting and cataloging. For ease in bursting listings between subprograms, a
blank page will be used, if necessary, to ensure an even number of pages per
subprogram. Also see O option.

L=0 No full list will be generated.

List options. Selects or deselects a max1mum of nine of the list optlons A,B,C,D,E,F,G,L, My, N,

R,S, T, or X.

omitted or LO=0 Same as selecting B, L, N; and R only.

LO Selects list options C, F, G, and X, and deselects R.

LO=ecje9...0 A list of up to nine characters. Inclusion of B; L, N, or R deselects the -
corresponding option. Otherwise, inclusion of a character selects the option.
For options, refer to LIST pseudo instruction, section 4.11.1.

LO=$$$$ _ Selects all list options. |

Initial Value of MODLEVEL Miero.

omitted or ML MODLEVEL is defined equal to JDATE at the start of each assembly.

ML=string MODLEVEL is defined as string (nine characters max1mum) at the start of
each assembly.

No eject. This parameter has been obsoleted by the BL parameter.

Short list. Suppressed if full list is directed to the same file or if no assembly errors occur.
However, if the full list and short list are on different files (for example, the full list is written on
OUTPUT and the short list is written on the named file), the short list will contain all statements
having error flags. If an error line was generated by a maecro call, the macro call may also be in the
short list. Spemflcatlon of both the O parameter and the E parameter results in a control statement
error.

omitted or O List output on OUTPUT file.
O=ifn List output on named file.
0=0 No short list will be generated (equivalent to directing short list to the same

file as full list).

60492600 G

N

e

Mode Significance

P - Continue page.
P Page numbering continues from subprogram to subprogram.
omitted Page numbering begins with 1 at the start of each subprogram.

PC - Initial Value of PCOMMENT Micro.
omitted or PC PCOMMENT is defined as 30 blanks at the start of each assembly.
PC=string PCOMMENT is defined as string at the start of each assembly. Characters are
truncated from the right or blanks are appended to the right, as necessary, so
that the length of the micro value is exactly 30 characters.

PD - Print Density. Print density of six is assumed upon entry. Listing control is changed only when print
density of 8 is requested, then returned to 6 when finished.

PD=6 Print density is six lines per inch.

PD=8 or PD Pring density is eight lines per inch.
PD=other or Print density défault’s to IP.PD lines per inch.
omitted

PS - Page Size.

PS=x Page size is x lines per page. Acceptable values of x are 4 <x<99.

PS=other or If PD is not specified, page size defaults to IP.PS lines per page. If PD is

omitted specified, page size defaults to PS=(PD*IP.PS)/IP.PD.

S - System Text Name.

omitted 7 If there are no G parameters other than G=0, load the overlay named
SYSTEXT from the job's current global library set.

S=0 Load no system text from a libréry.

S Load system text overlay named SYSTEXT from job's current global library set.

S=ovl Lotad the system text overlay named ovl from the job's current global library
set.

S=lib/ovl Load the system text overlay named ovl from the library named lib, which may

be a user library file or a system library.
Overlay residence in user libraries is not currently supported by NOS. I

X - Source of external text (XTEXT) when location field of XTEXT pseudo instruction is blank.

omitted External text OLDPL file,
X=1lfn External text on named file.
X=0 Iegal.

X External text on OPL file.

60492600 G ' 10-5

Examples:

Reads source from INPUT, writes the binary output to LGO,
and the listing to OUTPUT. Assemble in debug mode with
system text from overlay OVI in the global library set.

(COM PASS(B, D, S=0VI])

Disables LIST pseudo instruction and sets LIST options
A, S, G, X, and D.

[d d ions.
COMPASS. Uses the standard default options

MULTIPLE SYSTEM TEXT OVERLAYS

(COMPASS(LO=ASGXD)

COMPASS 3 allows up to seven system text overlays to be used for-an assembler run. They are specified by
G and S parameters on the COMPASS control statement. Each G parameter (except G=0) specifies loading
of a system text overlay from a sequential binary file, and each S parameter (except S=0) specifies loading
of a system text overlay from a user library file or a system library. The G and S parameters can be used
in any combination and in any order, and can be intermixed freely with other parameters, provided the
total number of system text overlays specified does not exceed seven. COMPASS loads the system text
overlays in the order in which the G and S parameters occur on the COMPASS statement. If a system
macro, micro, or symbol is defined by more than one system text, only the last definition is used. 8=0 has
no effect if there are any other S or G parameters.

Examples:

Reads source from file COMPILE and gets system
text from overlays SYSTEXT and PFMTEXT in the
global library set, and from the local file MYTEXT.

(COM PASS(1,S8,S=PFMTEXT, G=MYTEXT)

Get system text from overlay SCPTEXT
COMPASS(G=FILE/SCPTEXT,S=MYLIB/TEXT) on the file FILE, and from overlay TEXT

* in library MYLIB.

10.1.3 LGO CONTROL STATEMENT

An LGO control statement calls for the loading and execution of CPU binary output produced by the
assembler unless the B option on the COMPASS control statement is set to 0 or to some other file name.
When binary output is on some file other than LGO, the statement is replaced by a program call statement
for that file. The file is automatically rewound before loading. The LGO file is temporary; it is released
at job termination.

Formats:

(LGO(Pl,PZspsn-- ’pn) or LGO,

10.1.4 PROGRAM CALL STATEMENT

The program call statement directs the operating system to search for a file or CPU program that has the
specified name, load it into ecentral memory (CM or SCM), and execute it as a CPU program.

10-6 : 60492600 G

S’

. .

Formats:
ﬁame(p]_’pz’ coe !pn)
r name.
name Program name.
P; ' Parameters in a format acceptable to the program being called.

When the operating system ldcates the file, it rewinds and loads the file. When loading is complete, it
executes the program as a CPU program.

10.1.5 7/8/9 CARD

A card with rows 7, 8, and 9 punched in column one separates sections in the job deck. The level is
assumed zero unless columns 2 and 3 contain an octal level number punched in Hollerith code. The
remaining columns optionally contain comments.

As an example, a deck consisting of a control statement section and a COMPASS source input section

would include two 7/8/9 eards. The first terminates the control statements and the second terminates
COMPASS input. A 7/8/9 eard of level 17 is interpreted by the operating system as a 6/7/8/9 card.

10.1.6 6/7/8/9 CARD

A card with rows 6, 7, 8, and 9 punched in eolumn one signals the end of the job deck. Columns 2 through
80 optionally contain comments.

10.1.7 USER CONTROL STATEMENT {NOS 1 ONLY]

The user control statement format is:

I USER, usernam, passwrd, famname.

usernam User number or name
passwrd User password
famname Name of user permanent file device family name

The USER statement, required by NOS 1, follows the job control statement and specifies user access
information. The user name is used in system bookkeeping and defines the user's file catalog area. The
user can specify a different permanent file catalog during job processing by issuing another USER control
statement.

60492600 G 10-7

10.2 SAMPLE DECKS

The following job calls for assembly of the source program and execution of the binary object program
produced by the assembly. The USER control statement (for NOS 1 only) provides required user access
information. COMPASS reads source statements from file INPUT, writes the listing on OUTPUT, and
writes a binary objeet deck on file LGO. Control statement LGO calls for execution of the binary object
program, which obtains its data from file INPUT.

Subprogram
Test

‘ Control
Section

® 10-8

\

6
7
8 Z
9 Z
Data for e
Execution W
7
8
9
(END TEST
Z
Z
Z
y yd
(IDENT TEST
7
8

9
7/ LGO.

//COMPASS.

/CHARGE statement.

/ USER statement.
/ SAMPLE, T100.

60492600 G

S

SN’

In the following job, the COMPASS assembler is called twice. During the first assembly, binary object
decks for subprograms TEST1 and TEST2 are written on file LGFILE1. The source decks for these
subprograms are in the second section of the INPUT file. During the second assembly, COMPASS writes a
binary object deck for subprogram CDA on file LGFILE2. Each assembler run produces a full listing.
Following the second assembly, LGFILE2 is repositioned to the beginning of the file. Then, the COPYBR
program is called to copy the contents of LGFILE2 to a punch file (PUNCHB). The LGFILE1 statement
then calls for the loading and execution of subprograms TEST1 and TEST2 from LGFILEL. Following
successful execution of the subprograms, the file is rewound and copied to the punch file, after which the
job terminates.

4
6 , | 3
58) ,v" Y } Data for execution
9 (END CDA |
= = } Subprogram CDA
(IDENT CDA

g i

9 END TEST2 i
= } Subprogram TEST2
IDENT TEST2]
END TEST1 |
= 1 Subprogram TEST1
IDENT TEST1 "”l
g l [N
9 (COPYBR(LGFILE1, PUNCHB)
{ REWIND(LGFILE1)
(LGFILEL.
(COPYBR(LGFILE2, PUNCHB) Control
(REWIND(LGFILE?) — Section
(cOMPASS (B=LGFILEZ) —
(COMPASS(B=LGFILEL) —
SAMPLE, T500, EC50. —
a J
—
-]

60492600 G 10-9 |

In the following example, the IDENT statement causes FTN to call COMPASS to process the COMPASS
source deck. If the COMPASS END statement is not followed by another IDENT statement, then

COMPASS returns control to the compiler that called it.

NeReJ0N Ber}

J:END

r COMPASS Source Deck

column 11—

/ FORTRAN Source Deck

7
(8
(9

(FTN.

JOB,EC100,

The following sample programs illustrate how to assemble and use a system text overlay.

IDENT MYTEXT
STEXT
1 onNE - kuU i CONSTANT ONE
46 HALF QU 30 PUS CONSTANT
SHIET MACRG ALPHAGHETA ROSITIONING MACRO
I1FC NE s BALPHASX2S s)
SAP ALPHA
. Ite NE s SBETadB2 s 1
S8z SETA
{X& Xeohg
ENDM
tND

10-10

60492600 G

S

IDENT TEST
ENTRY TEST

SST
0110000001 TEST SB1 ONE CONSTANT ONE FROM TEXT
5126000006 + sa2 INBUF PICK UP VALUE FROM STORAGE
6120000036 SHIFT X2sHALF POSITION WORD IN X6
5160000006 + SA6 QUTHUF RETURN NEW WORD TO STORAGE
7160247021 ENDRUN
2 INBUF 6SS 2
1 OUTBUF BSS 1
END TEST
The deck for this job could be set up as follows:
6 |
7 7
8 A
9/
(IDENT TEST
7
8 7
9 A
(IDENT MYTEXT
7 |
9 (COMPASS (G=MYTEXT, §)

(COMPASS (S=0, B=MYTEXT)

TEXT, T17.

60492600 G v) 10-11 I

N’

LISTING FORMAT n

This section describes assembly listing format. Control of the contents of the listing is descrlbed in
section 4.11 Listing Control, and in section 10.1.2 COMPASS Call Statement.

1.1 PAGE HEADING

Each page of the assembly listing contains a title line and a subtitle line in the following format:

title COMPASS Version date time PAGE x
i ’
subtitle sub-sub | block symbol %
title name qual / %
title Up to 62 characters taken from the first TITLE pseudo instruction or from a
TTL pseudo instruction or, in lieu of these, from the IDENT instruction
date Date of assembly
time Time of assembly in hours, minutes and seconds
PAGE x Page number of listing. Pagination begins with 1 for each END instruction

unless the P option is selected on the COMPASS control statement

subtitle Up to 62 characters taken from second and subsequent TITLE pseudo
instructions or a CTEXT pseudo instruction

sub-subtitle Up to 10 characters taken from the most recent EJECT, SPACE, TITLE, or
TTL pseudo instruction or the location field of an ES or PS machine instruction.
If the instruction that introduces the new sub-subtitle also causes a page eject,
the instruction immediately follows the heading (assuming the C list option is
also selected).

block name Name of the block in use at beginning of page

symbol qual Qualifier in use (see QUAL pseudo instruction)

N.2 HEADER INFORMATION

"The first page of the assembly listing for each subprogram contains a summary of binary control cards

(optional), a list of all the blocks established for the subprogram, and lists of entry points and
external symbols,

11.2.1 BINARY CONTROL CARD SUMMARY

A binary control card summary in the following format is generated for each IDENT instruction when the

60492600 F 11-1

COMPASS control statement or the LIST instruction selects the B list option:

ADDRESS LENGTH . BINARY CONTROL CARDS
addr1 !ll binary card1
addr2 lz binary card2
addr), L, binary card,
eop {Leop) END card or blank
binary cardi The binary card that caused generation of the binary for the overlay, partial
binary, or subprogram. The list includes SEG, SEGMENT, and IDENT instruc-
tions. :
a.ddri The central memory or peripheral processor memory origin address for the
subprogram, overlay, or partial binary written out as a result of the binary
card.
L. The octal length of the subprogram, overlay or partial binary, in central

memory words for a central processor assembly, or in peripheral processor
words for a peripheral processor assembly.

eop - The octal central memory or peripheral processor address for the end of the
program unit begun by the previous IDENT.

feop The octal length in central memory words of a peripheral assembly; not present
in a listing of a central processor assembly,

Examples:
ANDRESS LENGTH BINARY CONTROL CA™DS,
101 271 INENT COMPASS,LOVER,CMP
372 S2u1 SEG
5632 1242 SEG
707% 4165 SEG
13242 5175 SEG
20437 1352 SEG
22011 END COMPASS
ADDRESS LENGTH SINARY CONTROL CARDS.
0 7761 IDENMT DSDs0O

7761 (las2)

11-2 60492600 F

11.2.2 BLOCK USAGE SUMMARY

A block usage summary of the following format is generated in the assembly listing under control of the

B list option:
BLOCKS
name,

name
2

nam
aen

namei

type

badd:c’.l
lengthi

Examples:

8LONKS

PROGRAME
LIVERALS®*
TONTROL
PSFUDN
SURS
BUFFERS

60492600 F

TYPE

n

ADDRESS ILENGTH
ba.ddr1 b!l1
baddr 9 , b!l2
baddrn bln

Name of the block used in the subprogram, as follows:
PROGRAM*

ABSOLUTE*

LITERALS*

other

For a relocatable assembly, indicates the zero block, For an
absolute assembly, the first PROGRAM* indicates the absolute
block, the second indicates the default symbols block,

Appears in a relocatable assembly only and indicates the use
of an absolute block.

Identifies the literals block.
Identifies a local, labeled common, or blank common block.

The type of the block as follows:
ABSOLUTE

+LOCAL

+COMMON

All addresses in the block are relative to absolute zero. For
an absolute asembly, all blocks are ABSOLUTE.

Addresses in the block are relative to the origin assigned to
block zero. The + is present for an ECS/LCM block.

Addresses in the block are relative to the origin of the common
block. The + is present for an ECS/LCM block.

Beginning address of the block according to type.
Number of words in the block.

TYPF

ARSOLUTE
ARSOLUTF
ARSOLUTF
ARSOLUTF
agsoLyTr
ARSOLUTF

APNRESS

f
5416
56132
7073

13242
20437

LENGTH

5416
215
1262
4145
5175
11149

11-3

BLOCKS TYPE ADDRESS LENGTH
ABSOLUTE* A3SOLUTE] 62
PROGRAM* LOCAL 0 35
DATAL LOCAL 35 1
LCM +L0OGAL] 5
TABLE +LOCAL 5 5
TABLE +COMMON 0 123
TABLE LOCAL 36 i
TABLE COMMON] 1
/77 COMMON] 1600

11.2.3 ENTRY POINT LIST

If the subprogram declares entry points, a list of entry point symbols in the following format follows the
block usage summary.

ENTRY POINTS. ,
sym, *+addr1+7]c>1ock1 sym +1"‘+addrn +1+blockn + sym, 4_1*+addr2n +1+block2n +1

..
+acldrn 9 +blockn +2 sSym, .o *+addr2n +2+block2n 42

|k
sym, +addr2+block2 sym .o

- . -
- . .

. . .

* : * ' *
sym +addrn+blockn sym, +addr2n+block symg +addr3n+block3n

2n- 3

Where n is one-third the number of entry points. The asterisk to the right of sym, is present if sym, is a
conditional entry point (declared by ENTRYC). The + to the left of addr, is presenlt if block, is an ECS/LCM
block. The + to the right of addr, is present if addr is relocatable. Block, is blank or a common block
name surrounded by slashes. 1

If the symbol is undefined, addri is Hokkkdokok,

Example:

ENTRY POINTS.,

SNAPL 1345+ CALL 72+ RFEORDER 2375+

SNAP2 1352+ GOoTO 156+ RPF 2L4bH1le
SNAP3 1357+ IF 224+ RPH 2463+
JUMPVEC ¥ - 0+/JUMPVEC/ LABEL 372+ LCM + G+
BEGIN g+ READ 435+ LCHAR *+ 1 0+/7LC0MAY

BYTESIZ 6 RECORD 24+/DATA/

11.2.4 EXTERNAL SYMBOL LIST

If external symbol references are declared in the subprogram, a list of the following format follows the
list of entry point symbols:

EXTERNAL SYMBOLS.

sym, sym. .4 Symg. g SyMg .1 o+ e symg. .4

sym sym

2 n+2 |

11-4 ' 60492600 F

S

symg sym, . o

- .
. .

sym, symg,

Where n is one-eighth the number of external symbols. If a symbol is a weak external it is
followed by an asterisk.

Example.

FXTFRNAL SYMROLS,

FPMSG CANFXTT ¥AFreT . SymagL ~CGNTo opr

11.3 OCTAL AND SOURCE STATEMENT LISTING

The contents of the octal and source statement listing depends on the options selected.

The list is 130 characters wide with fields assigned as shown in figure 11-1.

Title Line

Subtitle Line

Error Location Octal Source Lines Sequence
Flags Addresses Code

Figure 11-1. Format of Octal and Source Statement Listing

60492600C 11-5

11-6

Error Flags

Location
Addresses

Octal Code

Error flags indicating that errors of the type indicated have been detected on the
source line or in a subsequent statement that is not listed. These flags are
described more fully under Error Directory. Lines containing errors are always
listed.

The value of the location counter with leading zeros suppressed. If no code is
generated or no location symbol is defined by the statement, this field is blank.
If at the time the value is assigned, the value of the location counter differs from
the value of the origin counter, an L precedes the address.

The actual code generated by this statement. Depending on options selected, the
listing shows just the first word or all words generated for data generation
instructions. The field does not include NO instructions (46000,) packed for a
force upper or zeros packed for a completed parcel on a VFD, A 24-bit PPU
instruction is shown two words of data per line.

If the word contains an address, the octal code is flagged as follows:

Negative relocatable address
Positive relocatable address

Common relocatable address
External address

®O -+ 1

For a statement that does not generate code, this field is normally blank.
Exceptions are as follows:

For a LIT instruction the field contains the address of the first word of
the literals generated.

For a COL instruction, the field contains the new beginning-of-comments
column number.

For a symbol defined throug/h SET, MAX, MIN, EQU, =, or MICCNT,
this field contains the octal value of the symbol right justified with leading
zeros suppressed.

For an instruction resulting in a change of base, the notation by—~b, is right
justified in the field. b; indicates the old base and by indicates the new base.

For an instruction resulting in a change of code conversion, the notation
¢y ¢, is right justified in the field. c; indicates the old code and cg
indicates the new code. :

For a DUP instruction, the field contains the repeat count.

For a BSS or BSSZ instruction, the field contains the octal value of the word
count right justified with leading zeros suppressed. If the word count is
zero the field is blank.

For a DECMIC or OCTMIC instruction, the field contains the octal value of
the expression right justified with leading zeros suppressed.

60492600A

T

«\ -~
.
y Source Code Source statement image (columns 1 through 72)
- . . o .
Sequence Columns 73 through 90 of the ecard image or an identifier for an expansion of a
: definition operation as follows:
" -
Macro maero name
— Remote code *RMT*
Duplicated code *DUP*
Echoed code - *ECHO*
XTEXT file name
— . OPDEF Operation field of opdef call, such as SB1
v The recursion level is indicated in the right half of the field. .
RN
— Example:
COMPASS 3.71210 - CYBER 78/ COMPREHENSIVE ASSEMBLER. COMPASS 3.71210 CB720/71 16.25.40G, PAGE 82
COMMON AND UTILITY SUBROUTIMES, ALC :
had ALC - TABLE MANAGER AND ALLOTATOR. CIMPASS 1685
* ALLOCATOR WILL MOVE TABLES TO ACGUIRE ROOM. ALSO MAY DUMP COMPASS 1696
» INTERMEDIATE OR CROSS-REFEPENCES ONTO SCRATCH FILE. COM“ASS 16837
- ENTRY (AJ) = TABLE INDEX. COMTASS 1698
Ad {X1} = CHANGE (+ OR ~-) TO TABLE SIZE. COMPASS 1699
- * EXIT {(X2) = ORIGIN OF TA3LE, COMPASS . 17,
- {X3) = NEW LENGYH OF TABLE. CoHrass 17,1
coM™AsSs 17:2
COMPASS 17:3
- 5466 5020003462 ALCX SA2 ORIGIMS+AG ~ RECLATM VALUES FOR EXIT 2EPLY CIMTART 1T &4
S 5030003516 sAa3 SIZES+AS COMOASS 1705
COMPASS 17.6
5467 (3000000600 ALe PS RETURN EXIT COMPRSS 177
5470 6120000034 ALCL s32 NTABLES BOESET THDEX REGISTERS < < 4178
5020003462 342 ORISTNS+AS CURPENT ORIGIM 17.9
Se7t 54322 sa3 A2432 CURRENT LEMNGTH 1P
N, h Shte24 SA4 AZ2e31 NEXT TA3LE ORIGIN 1711
S~ 36613 IX4 X14X3 NEW STZE 1712
37342 Ix3 X4-X2 TOST IF RI0M FN CY¥PANSTIMN 1713
B472 37006 IXs X0 ~-X6 1714
1330005474 N3 Xd,aLC2 JUMP YO RE-ALLOCATE nQ=C 1715
5463) S5 A3 SYORE NN SIZT 17186
5473 . 04UDGB5466 £1 ALGX EXTY . $ 177
B N CAMYAYT 1718
~ . MIVE TABLFS. s
S474 5120003172 ALG2 SA2 SIZ0RE SEE IF CHOUGH POOM
10411 Qe X1
67721 s37 B2-n1
A 5475 67771 ALCY s37 fA7-31
___/ 5157663516 SAS SIZES+t7
6445 X4 X4 ¢X5
S675 0573005475 NI 8744L23 LO0P
5130003345 343 PASS
5477 63738 s37 X3
37026 Ix3 X2-%4
< 83440 514 X& {R4) = TOTAL LENGTH
N’ . 67 597 -a7
8005533

~ .4 LITERALS

When the D list option has been selected, the assembly listing includes a listing of the literals block
— following the default symbols listing. Following each literal address are the octal contents of the word and
a display code conversion of the econtents of the word.

S~ 60492600 G . 11-7

Examples:)
CONTENT OF LITERALS BLOCK.

010121 17455773753030000000 O0+.>2X

010122 - 16650000000000000000 Ne

01912% 15052322010705553636 MESSAGE 33

010124 55040503111501145522 DECIMAL R

010125 05212511220504570000 EQUIRED,

010126 552205212511220504010 RFQUIRED

010127 0000000000000 00D0000

010137 20221707220115550102 PROGRAM AS

010131 17222457000000000000 ORTY,

CONTENT OF LITERALS BLOCK.

7315 go3y 1
7316 70718 *r
7317 gony G
7320 gnon
7321 5501 A
7322 anodgo
7323 0506 FF
7324 1411 LI
7325 2405 TE
7326 2201 RA
7327 14?23 LS

1.5 DEFAULT SYMBOLS

. When the D list option is selected, a list of default symbols immediately precedes the literals block.

Example: k
DEFAULT SYMBOLS DEFINED BY COMPASS
800000 X MSG=
005461 TAGY
005462 TAG2
0054632 ARC
EN5 L6 SYWM

N.6 ASSEMBLER STATISTICS

Assembler statistics are printed at the end of the octal and source statement listing or, if the D list option
is selected, following the default symbols. Information includes the following:

e Amount of storage used (octal)

e . Number of source statements

e Number of symbols defined

e Number of invented symbols

) Number of symbol references

e CPU type in which COMPASS executed and assembly time
e Number of errors encountered during assembly

e Number of lost references, that is, references to symbols that have been omitted from the symbolie
reference tabie

11-8 : 60492600 G

S~

1.7 ERROR DIRECTORY

The assembly listing includes an error directory if any errors are detected during assembly, The
directory begins a new page identified with the subtitle ERROR DIRECTORY. Each type of error that
occurred is called out with a two-line message of the following format:

x TYPE ERROR description
OCCURRED ON PAGES Py» by Pys «0 By

Types and descriptions are given in Tables 11-1 and 11-2, Errors flagged with an alphabetic character
are fatal, A fatal error causes suppression of binary output. Nonfatal warning flags are numeric; they
are informative only.

TABLE 11-1. FATAL ERRORS

Type Message Significance Action

A ADDRESS FIELD | An error exists in a variable subfield | Refer to the
BAD. entry. The following is a list of manual for the
possible errors: correct address
field format
The CODE character is hot A, D, E, I, for the opera-
O, or *, tion code
specified.

The symbol or name is greater than 8
characters.

The expression does not reduce to one
external term.

The relocatable terms do not cancel
properly.

The instruction requires an absolute
expression.

The instruction disallows register
designators.

A data error; 8 or 9 is encountered in
octal data and the modifier is not §,
P, O, E, D, or B.

No data is found in the variable field
of a LIT instruction.

No symbol is following an =S, =X, or l
=Y prefix. :

The relative jump is out of range
(-31>r>31) on a PPU instruction.

The BASE character is not O, M, D,
or *,

60492600 G 11-9

TABLE 11-1. FATAL ERRORS (Contd)

Type Message Significance Action

A ADDRESS FIELD| A register is illegal in a CON
BAD. (Contd) instruction.

A synonymous instruction for OPSYN or
CPSYN cannot be located.

~

The micro count is less than zero or
greater than ten.

The NOLABEL character is not I.

A negative relocation is specified on
ORG or ORGC.

The POS value is less than 0 or
greater than word size.

The OPDEF reference is erroneous.

No comma is following the DIS word
count,

An illegal entry is in the variable
field of IDENT.

D | DOUBLY A symbol has been previously defined Rename the
DEFINED or declared external. duplicate
SYMBOL. v symbol in the
THE FIRST program.
DEFINITION
HOLDS.

E ECHO, DUP, The definition of ECHO, DUP, RMT, or Correct the
RMT, OR MACRO is not entirely within the next program.
MACRO outer definition,

ILLEGALLY
NESTED.

F NUMBER OF One of the following error conditions Correct error
ENTRIES exists: condition and
EXCEEDS : rerun the job.
PERMISSIBLE LIT generates more than 100 words.

AMOUNT.

Data is missing or erroneous on XTEXT
file.

More than 63 formal parameters and
local names are in a macro definition.

There are more than 255 blocks.

There are more than 511 external
symbols.

11-10 60492600 G

,\\-/,

pa—_

TABLE 11-1, FATAL ERRORS (Cont'd)

Type Message Significance Action

U UNDEFINED There is a reference to a symbol that is not defined; | Define the
SYMBOL. for example, an IF statement line count, a DIS word | symbol.
VALUE ASSUMED 0. count, an unrecognizable attribute on an IF state-

ment, or an undefined qualifier.

\ BIT COUNT ERROR The VFD field size is erroneous. Correct the
ON VFD (MUST BE size of the
0 < COUNT < 60). ') VED field.

11.8 SYMBOLIC REFERENCE TABLE

The assembler generates a symbolic reference table (figure 11-2) if the L list option is on at the end of
assembly. The table is not complete if the option was turned off at any time during the assembly. The
table lists symbols according to the qualifier, if any, under which they were defined. The global
symbols are listed first. A new heading of the following form introduces each new list of qualified

symbols.

SYMBOL QUALIFIER = qualifier
The qualifiers are in the order declared in the subprogram. Symbols are listed alphabetically.

When symbol references are lost because table space has been exceeded, the subtitle line includes
notification in the form n LOST REFERENCES.

60492600 D 11-11

TABLE 11-2. INFORMATIVE ERRORS

Type Message Significance Action

1 LOCATION SYMBOL | The location field entry is erroneous. The instrue- Define or
BAD. tion does not require an entry. eliminate the
SYMBOL NOT symbol in the
DEFINED. location field.

2 ADDRESS ERROR The variable field entry is erroneous. The location Correct the

-ON SYMBOL field symbol is not defined. symbol
DEFINITION. definition.

3 DUPLICATE MACRO | The macro, opdef, or synonymous operation Rename the
DEFINITION. NEW redefines the operation code. duplicate
ONE OVERRIDES. macro name.

4 BAD FORMAL The macro or ECHO formal parameter name is Correet the
PARAMETER NAME repeated or illegal. formal
IGNORED. parameter

name. .

5 CPU OPERATION The OPDEF, CPOP, CPSYN, or PURGDEF specifies | Correct the
SYNTAX INCOR- an illegal syntax. syntax of the
RECTLY SPECIFIED. pseudo

instruection.

6 LOCATION FIELD The entry in the location field is erroneous; it is Correct the
MEANINGLESS. ignored. location

field.

7 ADDRESS VALUE The value of the address is erroneous; one of the Check the
EXCEEDS FIELD following conditions exists: possible
,?‘II%IEJN%EA%%I]')T '(Ii‘hetyal‘?e off .tlig expression exceeds the size of the zgilil:glgf the

: estination field. subfield.
The BSS address expression value is negative.
The MICRO starting character position or charac-
ter count is negative.

8 MISSING OR EXTRA | The variable subfield entry is missing or superfluous. | Correct the
ADDRESS SUBFIELD. variable

- subfield.
9 MICRO SUBSTITU- The miero reference is unrecognizable. Correct the

TION ERROR. NO micro
SUBSTITUTION. reference.
11-12 60492600 D

S’

The qualifiers are in the order declared in the subprogram. Symbols are listed alphabetically.

When symbol references are lost because table space has been exceeded, the subtitle line includes
notification in the form n LOST REFERENCES.

Format 1 reflects the XREF P effect; P is the default for the XREF pseudo instruction. Formats 2 and 3
reflect the effects of XREF B and XREF A, respectively.

Title Line /|
SYMBOLIC REFERENCE TABLE. 7/
Format 1 (XREF P):
b) [o ap
symbol value block | page/line | & | page/line | = | page/line | & | \\page/line| & | page/line | &
Format 2 (XREF B):
R : & . ¥
symbol value block | page/line || addressy page/line |g& address,| page/line |
Format 3 (XREF A):
symbol value block address, address, address, -1|address, address,

symbol

value

block

page/line

address

60492600 G

Figure 11-2. Format of Symbolic Reference Table

Alphabetical list of symbols defined under the qualifier.

Absolute value of the symbol or the address assigned to this symbol relative to
the block named.

If the symbol was defined by the SST pseudo instruction, block is the system ‘
text file or overlay name. Otherwise, this field is blank in an absolute assembly
or, in a relocatable assembly, it contains the name of the block containing the
symbol.

From left to right and from top to bottom, a list of indices sequenced according
to page number. Each index points to a statement containing references to the
symbol or defining the symbol. Present when XREF B or P is in effect.

The location counter address of the instruction containing the reference. Pres-
ent when XREF A or B is in effect.

11-13

flag '

When XREF A is in effect,

Example:

" Identifies page/line index to a statement that defines the symbol or uses it in an
IF statement as follows:

o o= O

L]

Definition statement; EQU, =, SET, MAX, MIN, or MICCNT
ENTRY or ENTRYC pseudo instruction

Symbol used in conditional test

Symbol used for indirect storage (applies only to PPU or PERIPH
assemblies)

Symbol used in location field of the statement

Symbol used for storage

EXT pseudo instruction

the table does not include the flags.

11-14

COMPASS 3.71210 - GYAER 70/ COMPREHENSIVE ASSEMBLER.

SYMBOLIC REFERINCE
SNTENP 5115
SKUMB 5421
SHUNBL 5416
SHHLIN 5423
SHRLINL 5426
SHNLINZ 5427
SNX 5134
113 6675
oes 7326
ces1 7332
ccs2 7321
CsA 7250
¢sc 7257
CSH 7259
csL 7263
oSSR 7266
cs2z 7261
oc3 7222
B3 7225
oL 5674
00 65673
ov 6653
£F Hudl
ERR 6715
ES 5662
£SC 7iut
EV 6663
FG 6660
o 6676
6CS 7273
CS4 7275
5CS52 7277
GCS3 7300
6C3h 7303
6055 7304
GCSH 7306
6Cs7 7337
GCS8 7316
INY 7135
LRS 6740

TABLE.

72712
73748
78748
73728
- 79714
79413
72716
72132

115439
132744
135752
135728
117732
11772%
117728
117717
117711
117/.8
1177.9
131742
115738
115737
115216
115721
116735
115753
118752
115722
122722
115723
115719
115743
132749
134736
134732
130781
12005
134748
176746
135253
135202
125768
117215

- - -

nr-

L

.

el

-

e

Lol R

74751 3 76753
74763 Tu/s2
78753 78756
71063 74755
79715

79717 L

w7398 Tie/20
72742 S 7u/386

SYMBOL QUALIFIER =

116746 121737

133757 133718

13u784 L .

128701

125722 137721

121717 133739

121714 132762

121744 123762

121768 133757

121795 133720

117732 117738

131745
136/2,
116735
122741
12571y
122784
122747

122708 122720

128704 L

122743 123737

125735 S 1202/49

1357v3 138747

137769 133721

134737

134739 L

1307506

135/45 L

134781

134753 L

134755 L

135751 135715

126785 L

317724 117736

COMPASS 3.71213
oEsYS
7612 3 75024
7607 7ar62
74s52 7622
77716 70%
702, 77738
eata
52 L3319
133731 133/un
L
L
L
L
L
t
11721 ta7/27
126735 134719
1237356 1227
1267338 127735
1324335 1264.5
125,33 128/1%
125455 175/4%
s 123442
133226 137407
L
119706 t

121718

872,771

757466

79/i8 L

117738

1322:%

12777
i?8719
17a/6¢

1347.5

121723

HCS 233 121706 123749 121712 121715
327

16,2504,

75753

7osuy

135768 L

158733 0

131781
1327.8
132712

134719 L

132705 L

PaGY

73704 L

127 &

\/—-J

60492600 D

N .

e’

COMMON COMMON DECKS 12

The common common decks are a set of COMPASS subroutines which are powerful tools for use by
COMPASS programmers. The common common decks perform functions such as:

Data conversion

Dynamic table management

Saving/restoring registers

Providing an input/output interface at the CIO and FET level

A1l of the common common decks run under NOS and NOS/BE; a subset of them run under SCOPE 2.
Table 12-1 shows each deck name, relocatable program name, entry point names, and the decks
supported under SCOPE 2.

12.1 RESIDENCE OF THE COMMON COMMON DECKS

The source of the common common decks resides on the COMPASS old program library as a set of
COMDE CKs. This old program library can be used by Update-based procedures as a secondary old
program library (see the Update Reference Manual); the decks can be called just as one would call a
common deck from one's own old program library. Modify-based products can convert the COMPASS
old program library to an OPL via the UPMOD utility (see the Modify Reference Manual); the OPL is
then used as the source for the common common decks. The source of the common common decks can
also be obtained via the use of the COMPASS XTEXT pseudo-instruction using either an old program
library or an OPL as input. System texts required to assemble the common common decks residing
on the COMPASS old program library are IPTEXT and CPUTEXT.

The common common decks (except the table management decks COMCMTM and COMCMTP) are also
available as relocatable subroutines which reside on the system library SYSLIB. Relocatable programs
need only include external references to entry point names in the common common decks. These
external references are satisfied from SYSLIB at load time. (The CYBER Loader searches SYSLIB by
default when satisfying external references but the SCOPE 2 Loader does not. Hence, under SCOPE 2,
SYSLIB must be explicitly included in the library set.)

12.2 DESCRIPTION OF THE COMMON COMMON DECKS

A detailed external reference description of each common common deck follows. The decks are
described in alphabetical order. Each description lists entry and exit conditions, registers used, and
routines explicitly called.
The following rules apply to the use of all common common decks:
Any input/output buffers, string buffers, exchange package save areas, and so forth, to be used by
any of the common common decks should not be located with the last 10B words of the field length.
Some fetch loops, move loops, and so forth, may mode out if the above restriction is not adhered to.

Registers that are not used by the common common decks are not modified.

Entry and exit conditions are only those listed in the descriptions below.

60492600 E 12-1

TABLE 12-1. SUMMARY OF COMMON COMMON DECKS

12-2

e | proeetle R e
COMCARG CPU. ARG ARG= Yes -
COMCCDD CPU. CDD CDD= Yes
COMCCFD CPU.CFD CFD= Yes
COMCCIO CPU. CIO CIO= No
COMCCOD CPU. COD COD= Yes
COMCCPT CPU. CPT CPT= Yes
COMCDXB CPU.DXB DXB= Yes
COMCMNS CPU. MNS MNS= Yes
COMCMOS CPU. MOS MOSs= Yes
COMCMTM Yes
COMCMTP Yes
COMCMVE CPU.MVE MVE= Yes
COMCRDC CPU.RDC RDC= No
COMCRDH CPU.RDH RDH= No
COMCRDO CPU.RDO RDO= No
COMCRDS CPU.RDS RDS= No

RDW= No
COMCRDW . CPU.RDW RDX=
LCB=
COMCRSR CPU.RSR RSR= Yes
COMCSFN CPU.SFN SFN= Yes
COMCSRT CPU.SRT SRT= Yes
COMCSST CPU.SST SST= Yes
COMCSTF CPU,STF STF= No
COMCSVR CPU,.SVR SVR= Yes
SYS= No
COMCSYS CPU.SYS ‘I?V%Iﬁ::
’ MSG=
COMCUPC CPU.UPC UPC= Yes
COMCWOD CPU.WOD WOD= Yes
COMCWTC CPU.WTC WTC= No
COMCWTH CPU.WTH WTH= No
COMCWTO CPU.WTO WTO= No
COMCWTS CPU.WTS WTS= No
WTW= No
COMCWTW CPU.WTW WTX=
DCB=
COMCXJR CPU.XJR XJR= No
COMCZTB CPU.ZTB ZTB= Yes
60492600 F

12.2.1 COMCARG — PROCESS ARGUMENTS
~ COMCARG processes a list of arguments by the use of an equivalence table. The argument list must
be in the following format:i
— 12/op, 18/asv, 12/st, 18/addr
op One or two character keywords (left justified, zero filled)
~ asv Address of assumed value
st Status
~ addr Address where argument is placed
L This format is generated by COMCUPC or the COMPASS VFD pseudo instruction. ARG= is the only
entry point for COMCARG.
Enfry conditions:
N
: (Bl) 1
(B4) Argument count
, (A4) Address of first argument
~ (X4) First argument
(B5) Address of argument table
Exit conditions:
X1 #£0
N 1 Option not found in table
2 Single argument equivalenced
3 Illegal re-entry of argument
N Registers used:
A2, A3, A4, A7
/ B2, B3, B4
N~ X0, X1, X2, X3, X4, X6, X7
‘ The following conditions apply to the use of COMCARG:
N
If a keyword=value form is found in the argument list, addr is set to the upper 42 bits of the argu-~
ment value (in bits 59-18) and the lower 18 bits of asv (in bits 17-0).
N’ If only a keyword is found in the argument list, addr is set to the full 60 bits of asv.
If asv <0, the argument cannot be equivalenced.
If status=4000B, a zero value is retained as a display zero. Otherwise, a value of zero full word)
is stored at addr.
S~ If asv=addr, only one entry of that argument is allowed and op is set to -0.
N~ 12.2.2 COMCCDD — CONSTANT TO DECIMAL DISPLAY CODE CONVERSION
COMCCDD converts an integer constant to decimal display code. Up to ten digits are converted with
leading zero suppression. The converted integer contains space fill. - One register contains the display
N code right justified; another register contains it left justified. CDD= is the only entry point for
COMCCDD.
60492600 F 12-3

Entry conditions:

(B1) 1
X1) Number to be converted

Exit conditions:
(B2) 6*(count of digits converted)
(X4) Conversion left justified
(X6) Conversionxright justified
Registers used:
A2, A3, A4

B2, B3, B4
X1, X2, X3, X4, X6, X7

1223 COMCCFD - CONVERT CONSTANT TO F10.3 FORMAT

COMCCFD converts a 30 bit integer to display code in FORTRAN F10. 3 format. The integer
represents the floating point value time 1000. One register contains the display code right justified
with blank fill; another register contains it left justified with blank fill. Ieading zeros in the integer
portion are suppressed. CFD= is the only entry point for COMCCFD.

Entry conditions:

(Bl 1
(X1) Integer to be converted

Exit conditions:
(B3) -(number of blank fill bits in result)
(X4) Conversion left justified
(X6) Conversion right justified
Registers used:
Al, A2, A3, A4

B2, B3, B4, B5
X1, X2, X3, X4, X6, X7

12.2.4 COMCCIO - I0 OPERATION PROCESSOR

COMCCIO performs input/output operations. via the peripheral processor program CIO. An operation
is performed when the buffer is not busy. If the file~-status-word is zero, the operation is not proces-
sed and IN and OUT are set to FIRST. CIO= is the only entry point for COMCCIO.

Entry conditions:

(X2) 24/unused, 18/skip count to CIO, 18/FET address for file
X7 Function code; if <0, X7 is the complement of the request and auto recall is requested

Exit conditions:

(X2) FET address
X7 0

12-4 60492600 F

N

~—

o~

If ERP$ is defined:

. (X2 FET address

X7 FET error code:
0 No error, operation performed, normal exit
other Error code from FET; operation not performed, exit to ERP$

If ERP1$ is defined:

X2) FET address

X7) FET error code:
0 No error, operation performed, normal exit
other Error code from FET; operation not performed, normal exit

Registers used:

Al, A6, A7
X1, X2, X6, X7

12.2.5 COMCCOD — CONVERT CONSTANT TO OCTAL DISPLAY CODE

COMCCOD converts an integer constant to octal display code with leading zero suppression. Up to ten
digits can be converted. The converted integer contains space fill. One register contains the display
code right justified, another register contains it left justified. COD= is the only entry point for
COMCCOD.

Entry conditions:

(B1 1
X1 Number to be converted

Exit conditions:

(B2) 6*(count of digits converted)
X4) Conversion left justified
(X6) Conversion right justified

Registers used:
A4

B2, B3, B4
X1, X2, X3, X4, X6, X7

12.2.6 COMCCPT — EXTRACT COMMENTS FIELD FROM PREFIX TABLE

COMCCPT copies the comments field of a prefix (7700g) table to a working storage area. Either the old
or new forms of the prefix table ecan be used. COMCCPT differentiates between the forms by eheecking
word FWA+3 of the table to see if it looks like a time-of-day word. The copy terminates on end-of-table,
zero byte, or COPYRIGHT. The working storage area is terminated by a zero word. CPT= is the only
entry point for COMCCPT.

Entry conditions:

(A1) Prefix table address
(A6) - Address of working storage - 1

60492600 G 12-5

(B1) 1
(X1) Control word

Registers used:

A2, A3, A4, A6
B3, B4
X1, X2, X3, X4, X6

12.2.7 COMCDXB — CONVERT DISPLAY CODE TO BINARY

COMCDXB converts one word of display code digits into internal integer format. Either a base 10 or a
base 8 string of digits can be converted as specified in the call. This specification, however, is over-
ridden if an explicit B (octal) or D (decimal) is the last character of the value to be converted. DXB=
is the only entry point for COMCDXB.

The assembly option DXB1$ controls the processing of an 8 or 9 when octal is specified for the display
‘code value and no explicit B or D appears in the value. If DXB1$ is not defined, an error occurs. If
DXB1$ is defined, the value is considered to be decimal.

Entry conditions:

(B1) 1
(B7) Base; if > 0, decimal base; if 0, octal base.
(X5) Word to be converted (left justified, zero filled)

Exit conditions:

(X6) Converted digits
(X4) Error code:

0 No error
other Error in assembly

Registers used:

B2, B3, B4, B5
Xo0, X1, X2, X3, X4, X5, X6, X7

The presence of one or more of the following always causes an error:

A non-digit in the word to be converted
A character after the post radix

An 8 or 9 with the post radix equal to B

12.2.8 COMCMNS — MOVE NON-OVERLAPPING BIT STRING

COMCMNS moves a specified source string from one location to another in central memory. The only
bits disturbed in the destination field are those extracted to accept the source string. The destination
field must not overlap the source field in any way; results are undefined if overlapping occurs;

COMCMOS can be used for overlapping moves MNS= is the only entry point for COMCMNS.
Entry conditions:

(B1) 1
(B2) Source first bit (0, 1, , 59)
(B4) Destination first bit (0, 1, . . . , 59)

12-6 60492600 F

. .
et

(X0)
(X2)
(X4)

Number of bits to move
Source first word address
Destination first word address

Exit conditions:

(B
(B2)
(B4)
(X2)
(X4)

1

Source next bit 0, 1, . . . , 59)
Destination next bit 0, 1, . . ., 59)
Source next word address
Destination next word address

Registers used:

Al, A2, A3, A5, A6
Bl, B2, B3, B4, B5, B6
X0, X1, X2, X3, X4, X5, X6, X7

12.2.9 COMCMOS — MOVE OVERLAPPING BIT STRING

COMCMOS moves a specified source string from one location to another in central memory. The only

bits disturbed in the destination field are those extracted to accept the source string. COMCMOS

allows the user to move strings where the destination field overlaps (lies partly or completely within)
the source field. I the move is not an overlap move, COMCMOS calls the faster common common

deck COMCMNS to do the move.
COMCMOS is.

Entry conditions:

(B1)
(B2)
(B4)
(X0)
(X2)
(X4)

1

Source first bit (0, 1, . . . , 59)
Destination first bit (0, 1, . . . , 59)
Number of bits to move

Source first word address
Destination first word address

Exit conditions:

(BL)
(B2)
(B4)
(X2)
X4

1

Source next bit (0, 1, . . . , 59)
Destination next bit (0, 1, . . . , 59)
Source next word address .
Destination next word address

Registers used:

Al, A2, A3, A5, A6, A7
Bl, B2, B3, B4, B5, B6
X0, X1, X2, X3, X4, X5, X6, X7

Calls:

MNS=

60492600 E

For this reason, COMCMNS should always be called whenever
MOS= is the only entry point for COMCMOS.

12-7

12.2.10 COMCMTM — MANAGED TABLE MACROS

COMCMTM contains four macros, ADDWRD, ALLOC, SEARCH, and TABLE, for generation, alloca-
tion, and processing of managed tables. COMCMTM is intended to be used with COMCMT P,
ADDWRD - ADD WORD TO TABLE

ADDWRD adds a word to a managed table. ADDWRD calls ADW and uses A0 and X1.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ADDWRD table,reg
table Table number
reg Register name or expression for word to be added

ALLOC - ALLOCATE TABLE SPACE
ALLOC allocates table space. ALLOC calls ATS and uses A0 and X1.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ALLOC table,words
table Table number
words Word count (+ or -) to be added

SEARCH - SEARCH MANAGED TABLE

SEARCH searches for a specified entry. SEARCH calls EQS or MES and uses A0, B7, and X6,

Format:
LOCATION OPERATION VARIASLE SUBFIELDS
SEARCH tname, entry, mask
tname Table name
entry Entry to be searched for
mask Search mask in XO0; if not present, defaults to all bits.

TABLE - GENERATE MANAGED TABLE

TABLE generates a managed table.

12-8 60492600 F

R

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
TABLE tname, count, equiv
tname Table name
count Word count per entry (1 if not specified)
equiv Equivalent table name; allows certain tables to be used by different processors

After the table is generated:
F.tname is the name of the word containing the table FWA.
L. tname is the name of the word containing the table length;

C.tname is the word count per entry,

12.2.11 COMCMTP — MANAGED TABLE PROCESSORS

COMCMTP contains the following routines for processing managed tables:

ADW Adds a word to the table.
AMU Returns the total memory used by the tables.
ATS Allocates table space.
EQS Searches table for equal entries.
MES Searches a table for equal entries using a mask.
MTD Moves the table down.

- MTU Moves the table up.

Macros for calling these routines and for table generation are contained in COMCMT M.

The managed table processors allow the partitioning of central memory into variable regions called
tables. These tables are referenced by pointers that indicate the first word address of the table and
the table length., Memory is allocated to each table as it is required; the user can delete space from
the tables. Each table is allowed at least one word of expansion space to allow a dummy word between
each table, thus, ensuring efficient search methods.

The caller of the table processors is expected to provide certain constants for use by the processors.
Other data is provided by COMCMTM.

Data provided by the caller:
MEML Lowest address of managed memory
TOV Address of the table overflow processor

Data provided by COMCMT M:

NTAB Number of managed tables
FTAB Start of table addresses

LTAB Start of table lengths

F.tnam Address pointer for table tnam

60492600 E 12-9

L. tnam

Length pointer for table tnam

Data dynamically changeable:

TN

TO

LM

F.TEND

TOVT

Number of managed tables. Set to NTAB by COMCMTM., TN must be less than NTAB
during use.

Table overflow processor. Setto TOV by COMCMTM.

Low memory limit. Set to MEML by COMCMT M. If this value is increased, MTU
should be called to allow room for change.

High memory limit. F.TEND must be initialized by the user. If this value is
decreased, MTD should be called to allow room for change. :

TOV threshold. If the word is defined, it should contain the threshold for calling
TOV; ATS calls TOV when the tables must be moved and less than TOVT free words
remain. If TOVT is not defined, an effective value of zero is used.

ADW - ADD WORD TO TABLE

ADW adds a word to a managed table.

Entry conditions:

(A0) Table number
(X1) Word to be added

Exit conditions:

(A6) Address of added word
(X1) Added word

(X2) FWA of table

(X3) Length of table

(X6) Added word

Registers used:

Al, A2, A3,
X1, X2, X3,

Calls:

ATS

A4, A6, AT
X4, X6, X7

AMU - ACCUMULATE MEMORY USED

AMU returns the amount of memory used by the managed tables or the current length, whichever is the

largest. The variable MU is set to this value.

Exit conditions:

MU MAX(memory used, current assigned length)

12-10

60492600 F

“ .

—

S

Registers used:
Al, A2, Aé
B2
X1, X2, X3, X6
ATS - ALLOCATE TABLE SPACE
ATS allocates table space. The table length can be increased or decreased as specified.
Entry conditions:

(A0) Table number
(X1) Change (+ or -) to the table size

Exit conditions:
(X1) Change made to the table size
X2) FWA of table
(X3) New length of table
(X7) Less than 0 if tables moved
Registers used if tables are not moved.

A2, A3, A4, A6
X2, X3, X4, X6, X7

Registers used if tables are moved:
Al, A2, A3, A4, A6, AT
B2, B3, B4, B5, B6, B7
Xo0, X1, X2, X3, X4, X5, X6, X7

Registers restored:

B2, B3, B4, B5, B6, B7 (except -0 restored as +0)
X0, X1, X5

Calls:
AMU, MVE=, TOV
TOV, the user provided table overflow processor, is described below.

Entry conditions:

(B1) 1
(B5) Complement of number of words required
(B6) Return address to continue processing

The location TOV must contain executable code. TOV is entered via a JP instruction.
Exit from TOV via a JP B6 instruction.

Exit conditions:
Only Bl must be preserved.
A pointer word must be incremented by the number of words newly available. If TN has not been
altered during execution, the address of the pointer word is F, TEND. If TN has changed, the
address of the pointer word is FTAB-~1 plus the contents of TN.

60492600 F . 12-11

EQS - EQUALITY SEARCH TABLE

EQS searches for a specified entry.
Entry conditions:

(A0) Table number
(BT7) Word count per entry
(X6) . Entry for search

Exit conditions:

(X2) = 0 if entry not found
(X2) = entry, if found
(A2) = address of entry found

Registers used:
Al, A2, A6
X1, X2, X3, X7
MES - MASKED EQUALITY SEARCH TABLE

MES searches for a specified entry using a mask.
Entry conditions:

(AD) Table number

(B7) Word count per entry
(X0) Mask

(X6) Entry for search

Exit conditions:

(X2) = 0 if entry not found
(X2) = entry, if found
(A2) = address of entry found

Registers used:

Al, A2, A6
X1, X2, X3, X4, X7

MTD - MOVE TABLES DOWN

MTD moves the tables down (away from RA) to eliminate unused memory.

Exit conditions:

(B2) Number of tables
Registers used:

Al, A2, A3, AT

B2, B3

X0, X1, X2, X3, X4, X7
Calls:

MVE=

12-12

60492600 F

-

.

e

MTU - MOVE TABLES UP

MTU moves the tables up (toward RA) to eliminate unused memory.

Registers used:

Al, A2, A7

B3

Xo0, X1, X2, X3, X7
Calls:

MVE=

12.2.12 COMCMVE — MOVE BLOCK OF DATA

COMCMVE moves a block of data to a specified location. COMCMVE moves the data from the source
address through the source address plus the word count minus one to the destination address through
the destination address plus the word count minus one.” The move ¢an be in either direction. MVE=
is the only entry point for COMCMVE.

Entry conditions:

(Bl 1
(X1) Word count
X2) Source address

(X3) Destination address
Registers used:

A2, A4, A6, AT
B7
X1, X2, X3, X4, X6, X7

12.2.13 COMCRDC — READ CODED LINE, C FORMAT

COMCRDC reads a coded line terminated by a zero byte from a CIO buffer to a working buffer. RDC=
is the only entry point for COMCRDC.

Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is less than zero, then -B7 is the word count of the working buffer; COMCRDC will not read
and discard words until an end-of-line for lines longer than the working buffer.

Exit conditions:

(B1) 1
(B6) Address of last word transferred to working buffer plus one
X1 Status of transfer:
0 Transfer completed
-1 EOF detected on file
-2 . EOI detected on file :
B6 EOR detected on file before transfer completed

60492600 F 12-13

X2) Address of FET for file
(X4) Contents of last data word transferred before EOL guaranteed
XN Level number of EOR

Registers used:
Al, A2, A3, A4, A6, A7
B1, B2, B3, B4, B5, B6, B7
X1, X2, X3, X4, X6, X7
Calls:

LCB=, RDX=

12.2.14 COMCRDH — READ CODED LINE, H FORMAT

COMCRDH reads a coded line terminated by a zero byte from a CIO buffer to a working buffer with
trailing space fill, RDH= is the only entry point for COMCRDH.

" -Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

Exit conditions:

(B1) 1
(B6) Address of last word transferred to working buffer plus one
X1) Status of transfer:
0 Transfer completed

-1 EOF detected on file

-2 EOI detected on file

B6 EOR detected on file before transfer completed
(X2) Address of FET for file
(X7) . Level number of EOR

Registers used:
Al, A2, A3, A4, A6
B1, B2, B3, B4, B5, B6, B7
X1, X2, X3, X4, X6, X7
Calls:

LCB=, RDX=

12.2.15 COMCRDO — READ ONE WORD
COMCRDO reads one word from a CIO buffer into X6. RDO= is the only entry point for COMCRDO.
Entry conditions: 7

(A1) Address of IN pointer
X1 IN

12-14 60492600 E

v
Ry

N s
P

s

e

Ny

Exit conditions:

By 1
X1 Status of transfer:
0 Transfer completed
1 EOR detected on file
-1 EOF detected on file
-2 EOI detected on file
X2) Address of FET for file
(X6) Word read

Registers used:

Al, A2, A3, A4, A6, A7
B1
X1, X2, X3, X4, X6, X7

Calls:

CIO=

12.2.16 COMCRDS — READ CODED LINE TO STRING BUFFER

COMCRDS reads a coded line from a CIO buffer to a working buffer. Words in the circular buffer are
unpacked and stored one character per word in the working buffer. This process is continued until
the end-of-line byte is detected. If the coded line terminates before the working buffer is filled, the
working buffer is padded with spaces; the buffer is not padded if the complement of the word count of
the buffer is used. I the coded line exceeds the size of the working buffer, the excess characters are
ignored. RDS= is the only entry point for COMCRDS.

Entry conditions:

(B6) FWA of working buffer
B7) Word count of working buffer
(X2) Address of FET for file

If B7 is less than 0, B7 is the complement of the buffer length and the string buffer will not be
space filled.

Exit conditions:

(B1) 1
(B6) Address of the last character from the coded line in the working buffer plus one
X1) Status of transfer:
0 Transfer completed

-1 EOF detected on file

-2 EOI detected on file

B6 EOR detected on file before transfer completed
(X2) Address of FET for file
(X7) Level number of EOR

Registers used:
Al, A2, A3, A4, A6, AT .

B1, B2, B3, B4, B5, B6, BT
X1, X2, X3, X4, X6, X7

60492600 E 12-15

Calls:

LCB=, RDX=

12.2.177 COMCRDW — READ WORDS TO WORKING BUFFER

COMCRDW reads a specified number of words from a CIO buffer to a working buffer. COMCRDW also
contains the load CIO buffer and read exit routines required by COMCRDC, COMCRDH, and COMCRDS.
RDW=, LCB=, and RDX= are the entry points for COMCRDW.

Entry conditions:

(B6) FWA of working buffer
B7) Word count of working buffer
X2) Address of FET for file

Exit conditions:

(B1) 1
(B6) Address of last word transferred to the working buffer plus one
®B7) Word count remaining to be transferred
X1) Status of transfer:
0 Transfer completed

-1 EOF detected on file

-2 EOI detected on file

-3 CIO= was called to read more data and returned an error status

B6 EOR was detected on file before transfer was completed
X2) Address of FET for file
X7 Error status if X1 is -3, otherwise level number of EOR

Registers used:
Al, A2, A3, A4, A6, AT
B1, B2, B3, B4, B5, B6, B7
X1, X2, X3, X4, X6, X7
Calls:

CIO=

12.2.18 COMCRSR — RESTORE ALL REGISTERS

COMCRSR restores the B, A, and X registers from a specified register save area. The format of the
registers in the save area is B0, B1, . . . , B7, AJ, A1, ..., A7, X0, X1, .. ., X7. Each regis-
ter occupies a full word with the B and A register values in bits 17-0. RSR= is the only entry point for
COMCRSR. :
Entry conditions:

X1) Address of register save area

Exit conditions:

All registers are set to the content of the register save area.

12-16 ' 60492600 E

R

R

R

Registers used:
A0, A1, A2, A3, A4, A5, A6, AT

B1, B2, B3, B4, B5, B6, B7
Xo, X1, X2, X3, X4, X5, X6, X7

12.2.199 COMCSFN — SPACE FILL NAME

COMCSFN converts trailing 00 characters in a word to blanks, SFN= is the only entry point for

COMCSFN,
Entry conditions:

X1) Name left justified, zero fill
®B1) 1

Exit conditions:

X6) Name space filled
XT) Final character mask

Registers used:
A3

B2
X3, X6, X7

12.2.20 COMCSRT — SET RECORD TYPE

COMCSRT identifies theé format of a record from the first 64 words located in a working buffer. The
type codes returned are listed in table 12-2, L.SRT is defined to be the largest number assigned a

record type code. SRT= is the only entry point for COMSCRT.

Entry conditions:

B1) 1
X1) LWA+1 of block
(X2) FWA of current record

Exit conditions:

X6) 42/0OL r* name, 12/0, 6/type number
X7) Record name in L format

If type number and record name are zero, the record is zero length.
Registers used:

Al, A2, A3

B2, B3

Xo0, X1, X2, X3, X4, X6, X7
12.2.21 COMCSST — SHELL SORT TABLE

COMCSST sorts a table of one word entries into ascending order using a shell sort.
should be of the same sign. SST= is the only entry point for COMCSST.

60492600 F

All of the entries

12-17

TABLE 12-2, TYPE CODES RETURNED BY COMCSRT

Type Number
TEXT ' 0
6PP ' 1
Cos 2
REL 3
OVL 4
ULIB 5
OPL 6
OPLC 7
OPLD 8
ABS 9
7PP 10
UPL 11
UCF 12
ACF 13
CAP 14
DATA 15
16
PROC 17
SDR 18

Format

Text record

6000-series peripheral processor overlay
Chippewa OS formatted program
Relocatable subprogram

Central processor overlay

NOS user library

Modify program library deck

Modify program library common deck
Modify program library directory
Multiple entry point overlay

7000-series peripheral processor overlay
Update sequential program library
Update compressed compile file

Modify compressed compile file

Fast dynamic load capsule

Arbitrary data

CDC reserved

Procedure record

Special deadstart record

Entry conditions:
®) 1
B7) Address of table to be sorted
X1) Number of elements in the table
Exit conditions:
The table is sorted.
Registers used:
Al, A2, A6, A7

B2, B3, B4, B5
X1, X2, X3, X4, X6, X7

12-18

60492600 E

N

N’

s

12.2.22 COMCSTF — SET TERMINAL FILE

COMCSTF detects if a flle is assigned to an interactive terminal. STF= is the only entry point for
COMCSTF.

Entry conditions:

(B1) 1
X2) Address of FET

The FET must be greatér than five words in length.

Exit conditions:

X2) Address of FET
X6) 0 if file is assigned to a terminal

Registers used:

Al, A4
X1, X3, X4, X6

Calls:
CIO=

12.2.23 COMCSVR — SAVE ALL REGISTERS

COMCSVR saves the B, A, and X registers in a specified register save area. The registers are saved
in the following order:

BO, B1, . .., B7, A0, A1, ., .., A7, X0, X1, . . ., X7

Each register occupies a full word with the B and A register values in bits 17-0. B and A registers are
sign extended. SVR= is the only entry point for COMCSVR.

Entry conditions:
Bits 17-0 of the word from which SVR=was called contain the address of the register save area.
EXxit conditions:
(save thru save+7) B registers
(save+8 thru save+15) A registers
(save+16 thru save+23) X registers
Registers used:
A0, A1, A2, A3, A4, A5, A6, AT
B1, B2, B3, B4, B5, B6, B7
X0, X1, X2, X3, X4, X5, X6, X7
12.2.24 COMCSYS — PROCESS SYSTEM REQUEST

COMCSYS issues a system monitor request through RA+1. SYS=, RCL=, WNB=, and MSG= are the
entry points for COMCSYS. .

60492600 E 12-19

SYS= - PROCESS SYSTEM REQUEST
SYS= waits for RA+1 to clear before issuing the desired request. Central exchange jump hardware is
used if it is available, If the hardware is not available and the auto-recall bit is sét, SYS= waits for the
monitor to process the call before returning.
Entry conditions:
(X6) System request
Exit conditions:
Request processed
Registers used:
Al, A6
X6
RCIL= - PLACE PROGRAM ON RECALL
RCIL~= issues a single system request for periodié recall. If RA+1 is busy, no request is issued.
Exit conditions:
Request processed.
Registers used:

Al
X1, X6

WNB= - WAIT NOT BUSY
WNB= waits for a specified status word, bit 0, to be set. If the word is initially 0, WNB= returns.
Entry conditions:
X2) Address of status word
Exit conditions:
Returns when bit 0 of status word is set.
Registers used:
Al
X1, X6

MSG= - SEND MESSAGE

MSG= formats and issues a system request to send a dayfile message.

12-20 ' 60492600 E

e’

N .

R

Entry conditions:
(X1) Address of data
(X6) Message options:
bit 16 - Auto recall if on
bits 11 through 0 - Message option code
Exit conditions:
Returns when operation is complete.
Registers used:
Al, A6
X1, X6
12.2.25 COMCUPC — UNPACK CONTROL CARD

COMCUPC unpacks a control statement into the keyword and individual parameters. The following
conditions apply to the use of COMCUPC:

e If B7 is negative on entry, a blank after the keyword is considered to be a separator; otherwise, blanks

are ignored. ‘
e The characters) and . are considered as the termination of the control statement.
e Characters with display code values 0 or 60B through 77B are illegal before the terminator.
e The parameter must contain 7 or fewer characters.

e The parameters are stored left-justified with zero fill.

e The separator character is placed in the lower 18 bits of the parameter unless it is & *,* in which case

the lower 18 bits are zero.

e Two successive separators or a separator followed by a terminator results in a parameter of all zeros.

UPC= is the only entry point for COMCUPC.
Entry conditions:
(A5) Address of first word of control statement
fgg %"irst word address of buffer containing parameter information
(X5) First word of control statement
If B7 is negative, B7 contains the complement of the first word address of the parameter buffer.

Exit conditions:

(B6) Parameter count
(X6) 0 if no error during unpacking

Registers used:
A1, A2, A5, A6, AT

B2, B3, B4, B5, B6
X0, X1, X2, X3, X4, X5, X6, X7

60492600 G

12-21

12.2.26 COMCWOD — CONVERT WORD TO OCTAL DISPLAY CODE
COMCWOD converts a word into octal display code. WOD= is the only entry point for COMCWOD.
Entry conditions:
X1 Word to be converted
Exit conditions:

(B1) 1
X6, XT7) Conversion

Registers used:
A2, A3, A4, A5
Xo0, X1, X2, X3, X4, X5, X6, X7

12.2.27 COMCWTC — WRITE CODED LINE, C FORMAT

COMCWTC writes a zero byte delimited line from a working buffer to a CIO buffer. If the CIO buffer
becomes sufficiently full to require writing or if the device type indicates a NOS/BE terminal, COMCWTC
performs a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO function that is in
the FET is reissued. WTC= is the only entry point for COMCWTC. ’

Entry conditions:

(B6) FWA of working buffer
X2) Address of FET for file

Exit conditions:

(B1) 1
X2) Address of FET for file

Registers used: ' -
Al, A2, A3, A4, A6, A7
B1, B2, B3, B4, B5, B6
X1, X2, X3, X4, X6, X7

Calls:

DCB=, WTX=

12.2.28 COMCWTH — WRITE CODED LINE, H FORMAT

COMCWTH writes a coded line in H format from a working buffer to a CIO buffer. Trailing spaces are
deleted. I the buffer becomes sufficiently full to require writing, or the device type indicates a NOS/BE
terminal, COMCWTH performs a WRITE function unless the symbol WRIF$ is defined. In this case, the
CIO function that is in the FET is reissued. If the line to be written terminates with 6 bits of zero, a
word containing a blank byte is appended to preserve the 00 character as a colon. If the line terminates
on an end-of-line, it is written as is. WTH= is the only entry point for COMCWTH.

12-22 60492600 E

..__/'

Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is 0, no transfer is performed.

Exit conditions:

B1) 1
X2) Address of FET for file

Registers used:
Al, A2, A3, A4, A6, AT
B1, B2, B3, B4, B5, B6, B7
X1, X2, X3, X4, X6, X7
Calls:

DCB=, WTX=

12.2.29 COMCWTO — WRITE ONE WORD

COMCWTO writes one word to a CIO buffer from X6. If the buffer becomes sufficiently full to require
writing, COMCWTO performs a WRITE function unless the symbol WRIFS$ is defined. m this case, the
CIO function that is in the FET is reissued. WTO= is the only entry point for COMCWTO.

~Entry conditions:

Al) Address of IN pointer

X1 IN
{X6) Word to write

EXxit conditions:

(B1) 1
X2) Address of FET for file

Registers used:

Al, A2, A3, A4, A6, AT
Bl
X1, X2, X3, X4, X6, X7

12.2.30 COMCWTS — WRITE CODED LINE FROM STRING BUFFER

COMCWTS writes a coded line from a working buffer to a CIO buffer with trailing space suppression.
Characters in the working buffer are packed and stored in the circular buffer. If the buffer becomes
sufficiently full to require writing or if the device type indicates a NOS/BE terminal, COMCWTS performs
a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO function that is in the FET
is reissued. WTS= is the only entry point for COMCWTS.

60492600 E 12-23

Entry conditions:

(B6) FWA of working buffer
(B7) Word count of working buffer
(X2) Address of FET for file

If B7 is 0, no transfer is performed.

Exit conditions:

(B1) 1
(B6) Word count of data written
X2) Address of FET for file

Registers used:

Al, A2, A3, A4, A6, AT
B1, B2, B3, B4, B5, B6, BT
X1, X2, X3, X4, X6, X7

Calls:
DCB=, WTX=

12.2.31 COMCWTW — WRITE WORDS FROM WORKING BUFFER

COMCWTW writes data from a working buffer to a CIO buffer. If the buffer becomes sufficiently full to
require writing or if the device type indicates a NOS/BE terminal, COMCWTW performs a WRITE
-function unless the symbol WRIF$ is defined. In this case, the CIO function that is in the FET is reissued.
WTW=, DCB=, and WTX= are the entry points for COMCWTW.

Entry conditions:

(B6) FWA working buffer
37 Word count of working buffer
(X2) Address of FET for file

If B7 is 0, no transfer is performed.

Exit conditions:

B1) 1
(B6) Address of next word to be transferred from working buffer
B7) Status of transfer:
0 Transfer completed
other Remaining word count if CIO= was called to write data and returned an error status
x2) Address of FET for file
XT7) Error status if B7 is 0

Registers used:
Al, A2, A3, A4, A6, AT -
B1, B2, B3, B4, B5, B6, B7
X1, X2, X3, X4, X6, X7
Calls:

ClO0=

12-24 60492600 E

e’

o

e

M

A

12.2.32 COMCXJR — RESTORE ALL REGISTERS WITH A SYSTEM XJR CALL
COMCXJR restores all registers from a register save area with a system XJR call. The format of the
registers in the save area is B0, B1, . . . , B7, A0, Al, ..., A7, X0, X1, . . ., X7. Each register
occupies a full word with the B and A register values in bits 17-0, XJR= is the only entry point for
COMCXJR.
Entry conditions:
X1 Address of the register save area.
Exit conditions:
Al registers are set to the contents of the register save area.
Registers used:
A0, Al, A2, A3, A4, A5, A6, AT
B0, B1, B2, B3, B4, B5, B6, B7
X0, X1, X2, X3, X4, X5, X6, X7
12.2.33 COMCZTB — CONVERT ALL 00 CHARACTERS TO BLANKS
COMCZTB converts all 00 characters in a word to blanks. ZTB= is the only entry point for COMCZTB.

Entry conditions:

(B1) 1 :
X1) Word to be converted

Exit conditions:

X6) Converted word
X7) Final character mask

Registers used:

A3
X3, X6, X7

12.3 MACROS THAT CALL THE COMMON COMMON DECKS

Entry points in the common common decks can be called by using system macros. Table 12-3 shows
which macros call sntry points in the common common decks. All of the macros are supported under
NOS and NOS/BE. Only the MOVE macro is supported under SCOPE 2. All macros applicable to a
given operating system exist in the system text CPUTEXT. Each macro is described in detail in the
following paragraphs.

12.3.1 MESSAGE

MESSAGE displays a message on the system console display and enters it into a dayfile. I the job is of
system origin, the message can be flashed on the B display by including a dollar sign as the first charac-
ter of the message. MESSAGE requires the common common deck COMCSYS.

60492600 F 12-25

TABLE 12-3. MACROS THAT CALL COMMON COMMON DECKS

Entry Points Description
Macro Called cripti

MESSAGE MSG= ' Displays a message on the system
console and enters it in a dayfile.

MOVE MVE= Moves a block of data from one
address to another.

READC RDC= Reads one coded line from the input/output
buffer to the working buffer.

READH RDH= Reads one coded line with space fill from

' the input/output buffer to the working

buffer,

READO RDO= Reads one word from the input/output
buffer to X6. -

READS RDS= Reads a line image to a character
buffer.

READW RDW= Fills the working buffer from an
input/output buffer.

RECALL RCI= Relinquishes the CPU until a

WNB= function is completed or the CPU

recall time has elapsed.

SYSTEM SYS= Requests the system to process
any three-character request.

WRITEC WTC= Writes a coded line image from the working
buffer to the input/output buffer.

WRITEH WTH= Writes a coded line, deleting all
trailing spaces, from the working
buffer to the input/output buffer.

WRITEO WTO= Writes one word from X6 to the
input/output buffer.

WRITES WTS= Writes a line image from the
character buffer.

WRITEW WTW= Writes data from the working
buffer to the input/output buffer.

12-26

60492600 F

o

e’

s

The maximum length that a message can be is 80 characters; up to 40 characters per line are displayed.
The message ends with either the first word containing 12 bits of zeros in any byte or at the eightieth
character. The user must pack the display code message in sequential locations before calling MESSAGE.

- The format of the RA+1 call for this macro is:

59 40 35 23 17 0
RatL | MsG Bl ol <« [o | addr
Macro format:
LOCATION OPERATION VARIABLE SUBFIELDS

MESSAGE addr,x,r

addr Beginning address of the message. If the upper 12 bits of the location specified by this
address are zero, then the next 18 bits (47 thru 30) of this location are assumed to contain
the beginning address of the message.

x Message routing option:

0 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 of
the control point.

Message is displayed at line 1 of the control point.
Message is displayed at line 2 of the control point.
Message is placed in the user dayfile and displayed at line 1 of the control poiat.

W N

Message is placed in the error log dayfile if the job is a special system job (that is, has
an SSJ= entry point) or is of system origin; otherwise, the message is placed in the user
dayfile.

5 Message is placed in the account dayfile if the job is a special system job or is of system
origin; otherwise, the message is placed in the user dayfile.

6 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 of
the control point.

7 Message is placed in the user dayfile and displayed at line 1 of the control point.

If x is not specified or is an illegal value, x=0 is assumed. If x is not defined, x=1 is
assumed. If x is the character string LOCAL, x=3 is used.

r If r is specified, control is not returned until the operation is complete.

The control point message areas (lines 1 and 2) provide the user with the ability to display concurrently
messages that enter the dayfile and those that require operator action. Line 2 is normally used to display
information about the current status of the executing program.

Only messages that do not refer to the job, such as the control statements processed and compilers used,
should be placed in the system dayfile (x=0). All messages that refer to the job, such as the path taken
by the programs and the number of records copied, should be placed only in the user dayfile (x=3). All
messages placed in the user dayfile (x=0 and x=6) are counted by the system. If the number of messages
issued by the job exceeds the limit for which the user is validated, the error message MESSAGE LIMIT;
is issued to the user dayfile and the job is aborted.

60492600 E 12-27

12.3.2 MOVE

MOVE moves a block of data from one address to another. MOVE requires the common common deck
COMCMVE for absolute assemblies.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS
MOVE ‘count, addr1, addr2
count Number of words in the block to be moved
addrl Address of the first word of the block to be moved
addr2 Address of the first word of the destination

MO VE allows overlap in data moves (addr2 can be less than addrl plus count).

12.3.3 READC

READC reads one coded line from the input/output buffer to the working buffer. Data is transferred
until the end of the line (0000 in bits 11 through 0) is sensed or until the specified number of words are
transferred. READC requires the common common deck COMCRDC,

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS
READC addr,buf,n
addr FET address
) buf Working buffer address
n Working buffer word count
12.3.4 READH

READH reads a coded line with space fill from the input/output buffer to the working buffer. Data is
transferred until the end of the line (0000 in bits 11 through 0) is sensed or until the specified number of
words are transferred. READH requires the common common deck COMCRDH.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READH addr,buf,n

12-28 60492600 G

—_*

S’

S

addr FET address

buf Working buffer address

n Working buffer word count
12.3.5 READO

READO reads one word from the input/output buffer to X6, READO requires the common common deck
COMCRDO. :

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS
READO addr
addr FET address
12.3.6 READS

READS reads a line image to a character buffer. The words are unpacked and stored in the working
buffer right justified, one character per word, until the end~of-byte (0000) is detected. If the coded
line terminates before the specified number of characters are stored, the working buffer is blank filled.
READS requires the common common deck COMCRDS.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS
READS ‘addr,buf,n
addr FET address
buf Working buffer address
n Working buffer word count

12.3.7 READW

READW fills the working buffer from an input/output circular buffer. READW reads ahead in the input/
output buffer. This could cause the program to abort if the last word address of the input/output buffer is
within four words of the FL. If the word count is greater than the length of the working buffer, READW
writes beyond the end of the working buffer. READW requires the common common deck COMCRDW,

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

READW addr,buf,n

60492600 E - 12-29

RN
S
addr FET address
buf Working buffer address ~
n Working buffer word count
12.3.8 RECALL
RE CALL enables the user to relinquish the CPU until a function is completed or the CPU recall time has
elapsed (delay time depends on the operating system and the site). If the stat parameter is included in the
call, control is not returned to the program until bit 0 of the word specified by stat is set, If stat is not !
included in the macro call, the program relinquishes the CPU only until the next pass through the recall
loop. RECALL requires the common common deck COMCSYS.
The format of the RA+1 call for this macro is:
59 40 .
RAHL | RCL 78 0 —
Macro format: —
LOCATION OPERATION VARIABLE SUBFIELDS
RECALL stat
S
stat If this parameter is present, control is returned to the program when bit 0 of the word
specified by the address stat is set.
12.3.9 SYSTEM
SYSTE M processes a three-letter request. The request can be either the functions that MTR performs ~
or a PPU program. A PPU program can be called from a CPU program if the first character of the
name is alphabetic. SYSTEM requires the common common deck COMCSYS.
S’
The format of the RA-+1 call for this macro is:
59 40 35
R
e | /7|
Macro format: N
LOCATION OPERATION VARIABLE SUBFIELDS
SYSTEM req, r,pl,p2 —
.12-30 60492600 F ~—

B »

Nt

req Three-character system request

r If specified, control is returned only after the request is completed
pl ; Bits 17 through 0 of the request

p2 Bits 35 through 18 of the request

12.3.10 WRITEC

WRITE C writes a coded line image from the working buffer to the input/output buffer. Data is trans-
ferred until the end of the line (0000 in bits 11 through 0) is sensed. WRITEC requires the common
common deck COMCWTC.

~ Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITEC addr, buf

addr FET address
buf Working buffer address

12.3.11 WRITEH

WRITEH writes a coded line, deleting all trailing spaces, from the working buffer to the input/output
buffer. WRITEH requires the common common deck COMCWTH.

Macro format:

LOCATION OPERATION VARIABLE SUBFIELDS

WRITEH addr,buf, n

addr FET address
buf Working buffer address
n Working buffer word count

12.3.12 WRITEO

WRITEO writes one word from X6 to the input/output buffer. WRITEO requires the common common
deck COMCWTO.

60492600 E 12-31

ot

—
N’
Macro format:
LOCATION OPERATION © JVARIABLE SUBFIELDS
WRITEO addr /
addr FET address S
12.3.13 WRITES o
RN
WRITES writes a line image from the working buffer. Characters are packed ten characters per word.
Trailing spaces are deleted before the characters are packed. WRITES requires the common common
deck COMCWTS, N
Macro format:
LtOCATION OPERATION VARIABLE SUBFIELDS | ~—
WRITES addr,buf,n
A
addr FET address
buf Working buffer address
n Working buffer word count
S
12.3.24 WRITEW : N

WRITEW writes data from the working buffer to the input/output circular buffer. WRITEW writes ahead

in the input/output buffer. This could cause the program to abort if the last word address of the input/ - L
output buffer is within four words of the FL. If the word count is greater than the length of the working

buffer, WRITEW reads beyond the end of the working buffer. WRITEW requires the common common

deck COMCWTW,

.v,
Macro formats
LOCATION OPERATION VARIABLE SUBFIELDS s
WRITEW addr,buf,n

addr . FET address

buf Working buffer address ~—

n Working buffer word count
12-32 60492600 E N~

£ .

.

B /

1.

2.

4.
5.

7.

10.

11.

12.

13.

CHARACTER SETS A

NOTES

The terms upper case and lower case apply only to the case conversions, and
do not necessarily reflect any true case.

When translating from display code to ASCII/EBCDIC the upper case equivalent
character is taken.

When translating from ASCII/EBCDIC to display code, the upper case and lower
case characters fold together to a single display code equivalent character.

All ASCII and EBCDIC codes not listed are translated to display code 55 (space).

Where two display code graphics are shown for a single octal code, the leftmost
graphic corresponds to the CDC 64-character set (system assembled with IP CSET
set to C64.1), and the rightmost graphic corresponds to the CDC 64-~character
ASCII subset (system assembled with IP CSET set to C64.2).

In a 63-character set system, the display code for the : graphic is 63, The %
character does not exist, and translations from ASCII/EBCDIC % or ENQ yield
blank (558). The display code value 00 is undefined in 63-character set systems.,

Twelve or more zero bits at the end of a 60-bit word are interpreted as an
end-of-line mark rather than two colons. An end-of-line mark is converted to
external BCD 1632 and internal BCD 1672 by operating systems when writing
7-track magnetic tape in even parity (coded) mode, and converted back to 0000
when reading.

This code is changed to 12 when written on a T-track magnetic tape in even
parity (coded) mode.

11-0 and 11-8-2 are equivalent on input. The character will be punched as
11-0 on output.

12-0 and 12-8-2 are equivalent on input. The character will be punched as
12-0 on output.

12-8-7 and 11-0 are equivalent on input. The character will be punched as
12-8-7 on output.

12-8-4 and 12-0 are equivalent on input, The character will be punched as
12-8-4 on output.

CODE pseudo selects 6-bit octal code as follows:

ASCII

Display Code (default)
External BCD
Internal BCD

HEg e

60492600A A-1

CODE D (default) CODE ECODE I CODE A
Display Hollerith BCD AsCl EBCDIC]
Code Punch Upper Case Lower Case Upper Lower
- (026) 6-Bit
Octal | Char. Ext. | Int. | Octal | Hex, | Char, | Punch | Hex. | Char, Punch Hex, | Char. | Hex.!| Char.
@ O (029)
00 :® 8-2 00@ 12 32 3A B 8-2 1A SUB 9-8-7 7A 3F | SUB
01 A 12-1 61 21 41 41 A 12-1" 61 a 12-0-1 Cl A 81 a
02 B 12-2 62 22| 42 42 B 12-2 62 b 12~-0-2 Cc2 B 82 b
03 C 12-3 63 23 43 43 C 12-3 63 c 12-0-3 Cc3 C 83 c
04 D 12-4 64 24 44 44 D 12-4 64 d 12-0-4 Cc4 D 84 d
05 E 12-5 65 25 45 45 E 12-5 65 e 12-0-5 C5 E 85 e
06 F 12-6 66 26 46 46 F 12-6 66 f 12-0-6 Ccé F 86 i
o7 G 12-7 67 27 47 47 G 12-7 87 g . 12-0-7 Cc7 G 87 g
10 H 12:-8 70 30 | 50 48 H 12-8 68 h 12-0-8 c8 H 88 h
11 1 12-9 71 31 51 49 1 12-9 69 i 12-0~9 c9 1 89 i
12 J 1i-1 41 41 | 52 4A J 11-1 6A j 12-11-1 D1 J 91 j
13 K 11~2 42 42 53 4B K 11-2 6B k 12-11-2 D2 K 92 k
14 L 11-3 43 43 54 4C L 11-3 6C 1 12-11~3 D3I ¥ L 93 1
15 M 11-4 44 44 55 4D M 11-4 6D m 12-11-4 D4 M 94 m
16 N 11-5 45 45 56 4E N 11-5 6E n 12-11-5 D5 N 95 n
17 o] 11-6 46 46 57 4F 0 11-6 6F [12~-11-6 Dé (o] 96 o
20 P 11-7 47 47 60 50 P 11-7 70 p 12-11-7 D7 P 97 P
21 Q 11-8 50 50 61 51 Q 11-8 n q 12-11-8 D8 Q 98 q
22 R 11-9 51 51 62 52 R 11-9 72 T 12-11-9 D9 R 929 T
23 S 0-2 22 62 63 53 S 0-2 13 s 11-0-2 E2 'S A2 s
24 T 0-3 23 63 64 54 T 0-3 4 t 11-0-3 E3 T A3 t
25 U 0-4 24 64 65 55 U 0-4 75 u 11-0-4 E4 U A4 u
26 v 0-5 25 65 66 56 \' 0-5 76 v 11-0-5 ES v As v
27 w 0-6 26 66 67 57 w 0-6 7 w 11-0-6 E6 w A6 w
30 X 0-7 27 67 70 58 X 0-7 78 X 11-0-7 E7 X AT X
31 Y 6-8 30 70| 71 59 Y 0-8 | 79 y 11-0-8 E8 | Y A8 | y
32 z 0-9 |81 |m| 72| 54| z -5 | 7a | z | 11-0-9 | ES | z | A9
33 0 0 12 00 20 30 0 .0 10 DLE {12-11-9-8-1| FO 0 10 DLE
34 1 1. 01 -01 21 31 1 1 11 DC1 11-9-1 F1 1 11 DC1
35 2 2 02 02 22 32 2 2 12 DC2 11-9-2 F2 2 12 DC2
36 3 3 03 03 23 33 3 3 13 DC3 11-9-3 ¥3- 3 13 T™M
37 4 4 04 04 24 34 4 4 14 DC4 11-9-4 ¥4 4 3C | DC4
60492600A

N

N

CODEE

CODE D (default) CODE ICODE A
Display Hollerith BCD ASCH EBCDIC
Code Punch Upper Case Lower Case Upper Lower
(026) 6-Bit-
Octal | Char. Ext. | Int. | Octal | Hex. | Char. Punch |Hex. | Char. Punch | Hex..| Char.| Hex.| Char.
@ (029)
40 5 5 05 | 05 25 35 5 5 15 | NAK 9-8-5 F5 5 3D NAK
4 6 6 06 | 06 | 26 36 6 6 16 | SYN 9-2 F6 6 32 SYN
42 7 7 07 | 07T | 27 37 7 1 17 | ETB 0-9-6 F7 7 26 ETB
43 8 8 10 | 10 | 30 38 8 8 18 | CAN | 11-9-8 F8 8 18 CAN
44 9 9 11} 11} 31 39 9 9 19 | EM | 11-9-8-1 | F9 9 19 EM
45 + 12 60 | 20 | 13 2B + 12-8-6 | 0B | VT 12-9-8-3 | 4E + 0B vT
46 - 11 40 | 40 | 15 2D - 11 ob | CR 12-9-8-5 | 60 - 0D CR
47 * 11-8-4 54 | 54 | 12 2A * 11-8-4 | 0A | LF 0-9-5. | 5C * 25 LF
50 / 0-1 21 61 17 2F / 0-1 OF St 12-9-8-7 | 61 / OF SI
51 (0-8-4 84 | 74 10 28 (12-8-5 08 | BS 11-9-6 | 4D (16 BS
652) 12-8-4 74 34 11 29) 11-8-5 09 HT 12-9-5 5D) 05 HT
53 $ 11-8-8 53 | 63 | 04 24 $ 11-8-3 04 | EOT 9-7 5B $ 37 EOT
54 = 8-3 13 | 13 | 35 3D = 8-6 1D | GS 11-9-8-5 | 7E = 1D 1GS
55 space space 20 60 00 20 space space 00 NUL (12-0-9-8-1| 40 space | 00 NUL
56 , 0-8-3 33 |73 | 14 2C N 0-8-3 0C | FF | '12-9-8-4- | 6B ’ oC FF
57 . 12-8-3 73 |1 33 | 16 2E . 12-8-3 OE | SO 12-9-8-6 | 4B . OE SO
60 |m #® 0-8-6 36 | 76 | 03 23 # 8-3 03 | ETX | 12-9-3 | 7B # 03 ETX
61 { 8-7 17 | 17 | 78 5B [12-8-2 1C | FS 11-9-8-4 | 4A ¢ ic IFS
62] 0-8-2 32 72 15 5D 1 11-8-2 01 SOH 12-9-1 S5A ! 01 SOH
63 %© 8-6 16 | 16 | 05 25 % 0-8-4 | 05 | ENQ | 0-9-8-5 | 6C % 2D ENQ
64 " 8-4 14 | 14 | 02 22 " 8-7 02 | STX 12-9-2 | TF " 02 STX
65 o 0-8-5 35 75 kid 5F = 0-8-5 7F | DEL 12-9-7 6D _ 07 DEL
66 |V! 11-0® 52 | 52 | 01 21 ! 12-8-7 7D } 11-0 4F | Do ’
67 A& 0-8-7 37 | 77 | 06 26 & 12 06 | ACK | 0-9-8-6 { 50 & 2E ACK
70 |t 11-8-5 55 | 55 | 07 27 ' 8-5 07 | BEL | 0-9-8-7 | 7D ' 2F BEL
71 l ? 11-8-6 56 56 37 3F ? 0-8-7 1F | US 11-9-8-7 | 6F ? iF IUS
72 < 12-0 72 | 32 | 34 38c < |12-8-4 B { 12-0 4C < Co {
73 > 11-8-7 | 57 | 67 | 36 SE > 0-8-6 | 1E | RS 11-9-8-6 | 6E > 1E IRS
74 |< @ 8-5 15 | 15 | 40 40 (<] 8-4 60 " 8-1 7C @ 79 N
7% |> \ | 12-8-5 75 | 35 | 74 sC N 0-8-2 | 7c | 't 12-11 | E0 N | ea :
76 {7V A | 12-8-6 76 | 36 | 76 SE A 11-8-7 7E | 11-0-1 5F - Al n
k44 H 12-8-7 77 [37 | 38 3B H 11-8-6 | 1B .| ESC 0-9-7 SE H 27 ESC
60492600A A-3

HEXADECIMAL—OCTAL CONVERSION TABLE

First Hexadecimal Digit

0

1

2

3

Second
Hexadecimal

Digit

020

040

060

100

120

140

160

200

220

240

260

300

320

340

360

021

041

061

101

121

141

161

201

221

241

261

301

321

341

361

002

022

042

062

102

122

142

162

202

222

242

262

302

322

342

362

003

023

043

063

103

123

143

163

203

223

243

263

303

323

343

363

024

044

064

104

124

144

164

204

224

244

264

304

324

344

364

005

025

045

065

105

125

145

165

205

225

245

265

305

325

345

365

006

026

046

066

106

126

146

166

206

226

246

266

306

326

346

366

027

067

107

127

147

167

207

227

247

267

307

327

367

010

030

050

070

A10

130

150

170

210

230

250

270

310

330

350

370 .

o011

031

051

on

111

131

151

171

21

231

251

271

311

331

351

371

012

032

052

072

112

132

162

172

212

232

252

272

312

332

352

372

013

033

053

073

113

133

183

173

213

233

253

273

313

333

353

373

014

034

054

074

114

134

154

174

214

234

254

274

314

334

354

374

015

035

055

075

115

135

155

175

215

235

255

275

315

335

355

375

016

036

056

076

116

136

156

176

216

236

256

276

316

336

356

376

017

037

057

077

117

137

157

177

217

237

257

277

317

337

357

377

Octal

037

040 —

077

100 —

137

140 —

177

200 —

237

240 -

277

300 -

337

340 —

377

60492600A

s

|

S’

e’

ASSEMBLY-TIME I/0

SCOPE 2

COMPASS 3 under SCOPE 2 uses the Record Manager for all of its I/O operations. Thus, COMPASS 3

can read and write files with a variety of external formats.

For each of the files used by COMPASS,

the default format, and the combinations of file format description parameters that may be specified in
FILE control statements to override the defaults, are given below.

Main Source Input File

The main source input file may be a normal source input file or a compressed compile file; COMPASS
determines which it is by inspecting the data in the file, A normal source input file under SCOPE 2

comprises the following:

File Organization (FO)
Block Type (BT)

Maximum Block Length (MBL)

Record Type RT)

Maximum Record Length (MRL)

Conversion Mode (CM)
Label Type (LT)

sequential (SQ)
unblocked

none

control word (W)
100 chars.

NO

unlabeled (UL)

The only other formats that may be specified by FILE control statements are as follows (X=allowed,

—-=not allowed):

Block Record Type
Type F W 4
unblocked X X -
C X X - X
I - X —_

File Organization (FO) must be sequential (SQ).

Maximum Record Length (MRL) must not exceed 160 characters.

Label Type (LT) may be any value supported by the operating system.

Although the maximum record length may be as large as 160 characters, only the first 90 char-
acters of each record are reproduced in the listing output files,

60492600A

If the file is a compressed compile file (written by UPDATE in X mode or MODIFY7} in A mode),
COMPASS sets the file format description parameters to resemble normal input; however, MRL =
5120 characters.

Listing Output Files

The default format under SCOPE 2 comprises the following:

File Organization (FO) sequential (SQ)

Block Type (BT) unblocked
Maximum Block Length (MBL) none

Record Type (RT) control word (W)
Maximum Record Length (MRL) 137 chars.
Conversion Mode (CM) NO

Label Type (LT) Unlabeled (UL)

The only other formats that may be specified by FILE control statements are as follows (X=allowed,
-=not allowed):

Block Record Type

Type F w Z

unblocked X X -
C X X X
1 - X -

File Organization (FO) must be sequential (3Q).
Maximum Record Length (MRL) must not exceed 137 characters.

Label Type (LT) may be any value supported by the operating system.

Binary Output File

FILE control statements can be used under SCOPE 2 to specify the format of binary output files for any
of the operating systems, such that a program can be assembled under SCOPE 2 and the object program
executed under a different system if so desired.

TMODIFY is not available under SCOPE 2.

B-2 ' 60492600A

e’

RN

p—

N

File Characteristics SCOPE 2 NOS and NOS/BE 1

File Organization (FO) sequential (SQ) sequential (SQ)

Block Type (BT) unblocked character count (C)
Maximum Block Length (MBL) none 5120 chars.

Record Type RT) control word (W) , system-logical-record (S)
Maximum Record Length (MRL) 1,310,710 chars. none

Conversion Mode (CM) NO NO

Label Type (LT) Unlabeled (UL) ANY

No other formats are allowed, except that the label type (LT) can be any value supported by the operating
system used for assembly. The format shown above under SCOPE 2 is the default binary output file format
under that system.
Scratch Files
COMPASS uses two scrateh files named ZZZZZRL and ZZZZZRM, when table storage space overflows.
Regardless of what is specified by FILE control statements, COMPASS sets the file format description
parameters for these files under SCOPE 2 as follows:

File Organization (FO) = sequential (SQ).

Conversion Mode (CM) = NO,
For file ZZZZZRL:

Block Type (BT) = unblocked.

Maximum Block Length = 5120 characters.

Record Type (RT) = undefined (U) Maximum Record Length = 2550 characters.
For file ZZZZZRM:

Block Type (BT) = character count (C), Maximum Block Length = 5120 characters.

Record Type (RT) = SCOPE logical (S), no Maximum Record Length.

ALL OPERATING SYSTEMS

System Text Input Files

A user library file designated by an S parameter on the COMPASS control statement must have the
standard library file format for the system on which COMPASS is being used.f COMPASS uses the
operating system overlay loader to access these files.

For a sequential binary (non-library) file designated by a G parameter on the COMPASS control statement,
the default and permitted formats are the same as those given above for the COMPASS binary output file.

TOverlay residence in user libraries is not currently supported by NOS.

60492600 G ' B-3

XTEXT Input Files

A file read by COMPASS when processing an XTEXT pseudo instruetion can have any of several formats.
COMPASS determines the file format (a) by whether the XTEXT pseudo instruction variable field is empty
and (b) by inspecting the data in the file.

If the variable field is empty, the File Organization (FO) must be sequential (SQ). COMPASS rewinds the
file and reads until end of section or a COMPASS END statement is encountered, whichever comes first.
The default and permitted formats under SCOPE 2 are the same as those given above for the main source
input file.

I the XTEXT variable field is non-empty, the file organization can be any of three non-standard types:
° Record indexed with name index (under SCOPE 2 only).

° SCOPE 3.3 style random file with name index (not supported under SCOPE 2).

® Update or ModifyT random program library file.

In each case, COMPASS sets the file format description parametefs to the appropriate values; no FILE

control statement is needed.

The record indexed file organization is actually the word addressable (WA) file organization with a set of
format conventions superimposed on it. Such a file can be created by a FORTRAN program by using the
library subroutines OPENMS, STINDX, WRITMS, and CLOSMS with a name index, or by a COBOL program
specifying ORGANIZATION IS WORD-ADDRESS, WORD-ADDRESS IS data-name. When COMPASS detects
such a file under SCOPE 2, it sets the file format deseription parameters as follows (no FILE card is
needed):

° File Organization (FO) = word addressable (WA).

® Bloek Type (BT) = unblocked.

° Record Type (RT) = control word (W); Maximum Record Length (MRL) = 160 characters.

° Conversion Mode (CM) = NO.

[COMPASS positions the file at the record pointed to by the index entry containing the name given in
the XTEXT statement variable field, and then reads records sequentially until end of section or a
COMPASS END statement is encountered, whichever comes first.

The SCOPE 3.3 style random file with name index is permitted for compatibility with previous versions of

COMPASS. When COMPASS detects such a file, it searches the file index and positions the file at the

beginning of the specified section, and then reads sequentially until end of section or a COMPASS END
statement is encountered, whichever comes first. Such files cannot be used with SCOPE 2.

An Update or Modify'r random program library file is processed similarly. The name in the variable field of

the XTEXT statement must be the name of a common deck. When COMPASS detects such a file under
SCOPE 2, it sets the file format description parameters as follows (no FILE control statement is needed):

l TModify is not available under SCOPE 2 or NOS/BE 1.

B-4 ’ ' 60492600 G

e’

e’

N

-

RN

File Organization (FO) = word addressable (WA),

Block Type (BT) = unblocked

Record Type (RT) = control word (W), Maximum Record Length (MRL) = 5120 characters
Conversion Mode (CM) = NO '

COMPASS positions the file at the first card image of the designated section (common deck). For
an UPDATE program library, the first active card image (the *COMDECK card) is skipped.
COMPASS then reads card images sequentially, ignoring inactive card images, until end of section
or a COMPASS END statement is encountered, whichever comes first.

60492600A B-5

N’

Column 1

levels 0 to 16

8,9
7,9
7,8,90r7,8,9 level 17

and 9 not both in column 1

BINARY CARD FORMATS

End-of-section
End-of-partition (NOS only)
End-of-information

Binary card

Coded card

1 2 3 4 5
12 i_ .
11] | <
0 ‘§ 0 < Column Binary Information > 51
172}
18| % §
= | e "
2la|= 2
|3
3|8 << g
E o3 'z,
4 % S
g 3>
5 @ e =1
i 4) Q
] 8 =
6 Q - o
5 5 3
7 B © 8
8 LN
9

A binary card can contain up to 15 60-bit CPU words starting at column 3. Column 1 also contains
a count of 60-bit words in rows 0, 1, 2, and 3plus a check indicator in row 4.

If row 4 of column 1 is

zero, column 2 is used as a checksum for the card on input; if row 4 is one, no check is performed on

input.

Column 78 of a binary card is not used, and columns 79 and 80 contain a binary serial number. I a
section is punched, each card has a checksum in column 2 and a serial number in columns 79 and 80,
which sequences it within the logical record.

60492600A

N’

TN

Pl

- HINTS ON USING COMPASS ‘ D

1. Within a macro definition:

™ Use comment statements having * in column one. These are not saved, whereas other types of
comments are saved.

° Whenever possible, minimize the number of lines of code.

° IRP is faster than either ECHO or DUP.

o Use the substitute parameter flags ;A, ;B, and so forth, for macros, to avoid a second line.
™ Within macros, use symbols such as .1, .2, and so forth, instead of local symbols.

™ If possible, avoid recursive macro structure to increase assembly speed.

If a macro call is the cause of an error, direct full list output to a file other than OUTPUT
(L=filename) to obtain a list of the erroneous maecro call with the error listing.

2. In IF sequences:
o Use line counts rather than ENDIF to terminate sequences.

'} Use SKIP rather than IFPP to skip code.

3. Macros:
° Micro replacement is time-consuming.
[Avoid using local symbols for micros.

° Use # # for a null substitution.
4. Minimize SYSTEXT size.
5. To reduce core requirements, use SEG statements in absolute programs.
6. Use NOREF for symbols for which listing is not required.
7. Use QUAL for all overlays.
The program EXAMPLE (figure D-1) presents fundamental program organization. It also demonstrates
some COMPASS coding conventions and illustrates efficient coding practice. The program obtains numbers

from six successive locations, adding the numbers one at a time to the running sum. The total is then
printed with a label.

60492600 G D-1

S3IINIYIII¥Y s¢ SANDJ3S 912°0 ATOW3ISSY Nd) 3dA1-009L

ST08NAS 82 SINIWILVLS E9Y a3sn 39vaols
:«aucxa 40 GN3 NI939 an3

QW0 AX3LX T4 INY

0IJJW0D 1IX31X TdINY

HiIMONWOD IX31X Td INY

SASIWOD 1X31X V4 INY

*
STOBNAS W3ILSAS 3NI43¢ OU 1SS

) *
*iIX31 TYN¥3IXI 01 SS3IJJV *
*

SQY0M-% fno3l N3
1 s$Sse SNY
SI Y3IMSNY 3HL »H viva SQA0M
*
*
9 viva
[viva
“*I¥104 01 Y vyiva
SUIEHNN 3HIL |3 viva
Jdv 3S3HA é viva
1 viva 378yl
*
3000 376viNJ3X3 40 ON3 NN¥ONI
Y3J4NE LINdIND 30 SAINIINOD SINIUd 1NdiN0 ¥ILINUA
¥344N8 INdANO 3IHL 01 S3LTYN NI TSOUOMCLINJLIND HILI UM
SNV NI ¥36NNN 03000 AVI4S10 3IHLI 3301S SNY 9vS
300 AVI4SIO D1 Y3IGWAN AVVNIG LU3IANDD aglxs= ru
*
(£8) # ¥IND SS3¥0Av 31 40071 400VCQe2e aN
WNS ONINNNY 01 d3BWAN M3IN aQv TX+2X IXI
¥IAINNOD SSIYAAV 3HL LNINIUINI 168428 28S
SSIYOCY AYOW3IW LX3N 139 e9+3179vl 2vs d001
*
0d3Z 01 WNS ONINNNY 3ZITVILIND 0 TXW
LINIY 4007 ¥ SV 3Sn 304 13S 9 €8S
0¥3Z 01 ¥ILINNOD S$S3IWAAY IZIIVILINI 08 28s
1 188 NI93¢
910€¢4n80 237114 indino
¥334N9 1ndino 810¢ S$S8 N80
NIS38 A¥IN3
37dW¥X3 IN3QI

ST YIMSNY 3IHIL

SOSSaIPPY
W) 800216 uo[18007 18390
N,
26Yy
0oy
(T4
eLE
r433
parquiassy
apo) 18120
~ - N
€
1 1€t
G0L2€2911066600T%265 22¢
90000000000000000000 9¢¢
$0000000000000000000 6¢¢€
$0000000000000000000 %2¢
€0000000000000000000 €2¢€
20000000000000000000 22¢
10000000000000000000 12¢€
1204420914 L1t
+ T0€00002TL 61€
+ L2€0000919
+ T£€0000916 ¢21¢
+ €4%00000T0
+ 0TI€000€250 11t
1219¢
12299
+ 12€0002215 O1¢
00ley
.9000000€19 L0€
00299
1000000119 90¢
T10000000%¢6202%2624T 10€
10¢ (4]

€€

(44
1€
0¢
6%
8¢

L3

€%
(14
18
0%
61
81

LT
91
ST
4]
el

(48
1T
01

O YD O -0

S

60492600 G

D-2

e

One of the main considerations in assembly language programming is the reduction of execution time. The
instruction repertoire of COMPASS often allows an operation to be eoded in several ways. The
programmer, therefore, should give careful consideration to the instructions used in the program to
perform specific functions.

60492600 G

Line 1. The IDENT pseudo instruction is always the first instruction in a program. It specifies a
program name (EXAMPLE, in this case) to identify the program to the assembler.

Line 2. The ENTRY pseudo instruction declares the point in the program at which execution is to
begin. The main entry point in a program is the control transfer address.

Line 3. The BSS instruction establishes the output buffer OBUF. The programmer has allocated
301g words of storage for the buffer, as shown in the assembled octal code listed to the left of the
source code. Note that the octal code format for the pseudo instructions will differ from the format
for the symbolic machine instructions because pseudo instructions do not have single machine
instruction equivalents.

Line 4. The operating system macro FILEC is called to create a file environment table (FET) for the
output buffer. Only the first word of the FET is shown in the octal code, but examination of the
location addresses reveals that the table is actually five words in length (the minimum length of a
FET). For more information about FETs, see the appropriate operating system reference manual.

Line 5. The first executable line of code has been designated the main entry point for the program.
Incrementing by one occurs so often within a program that it has become a COMPASS coding
convention for register Bl to always be initialized to one, and to remain one throughout the entire
program. This is particularly important during the use of the common common decks (chapter 12), and
can be a factor in execution time (see B1=1 pseudo instruction) as well as in assembly time.

Line 6. A counter is initialized to zero by setting the contents of a B register (chapter 8) equal to the
contents of the B0 register. B0 is hard-wired to zero, thereby avoiding the need for repeated
processing of the literal or constant zero.

Line 7. Comparing the octal code for lines 6 and 7, the programmer can see the difference between
two forms of register-setting instructions. The 15-bit form of the instruction is used in line 6, where
only three bits are required to represent the B0 register as the source of an operand. The 30-bit form
of set B register instruction is required for line 7, where the constant 6 is represented by the lower 18
bits of the instruction.

Line 8. The mask instruetion is normally used to extract fields from a register. Here, it is used
instead of the slower set X register instruetion to initialize an X register.

Another important feature of COMPASS is illustrated here. The octal code seems to indicate that the
lower 15 bits of the current word in memory have been left blank. This is the result of a foree upper.
The next instruction is too large to fit in the remaining 15-bit parcel, so COMPASS packs that parecel
with a no—o)peration instruction. The next instruction is placed at the beginning of the next word (see
section 8.1).

Line 9. The use of the set A register instruction to obtain a word of data is demonstrated here. As
seen in the octal code, the address of the word (321g) is placed in the specified A register. The data
itself is placed in the corresponding X register (X2 in this instance). {See section 8.4.45.)

The plus sign (+) after the octal code indicates that the address or K portion of the instruetion (the
lower 18 bits in this case) is relocatable.

Line 10. The 15-bit format of the set B instruection is illustrated here. The first six bits contain the
operation code for the instruction (66g in this instance). The next three bits designate the
destination register (B2) for the results of the instruction. The next three bits indicate the register
containing the first source operand (B2). The final three bits indicate the source register for the
second source operand (B1).

D-3 e

Line 11. The number obtained in the previous instruction is added to the running sum kept in X1. This
is a 60-bit add instruction, as opposed to the SXi instruction, which adds only 18-bit operands.

Line 12. The NE instruction shows another use of the B registers in testing for a conditional branch.
In each iteration of the loop, the source operands are compared. While they are unequal, control is
transferred from this mstructlon back to LOOP. When the operands become equal, control passes to
the next instruction.

Line 13. The return jump (RJ) instruction is used here to access a common common deck,
COMCCDD, as a relocatable subroutine. The programmer has taken advantage of the COMPASS
default method of defining external symbols. The =X indicates to the assembler that CDD, the entry
point to the subroutine, is external to EXAMPLE.

The use of common ecommon decks is important to the programmer. Note that the decks require
certain entry conditions. Specific arguments are expected to be in certain registers, for example,
upon entry to the routines. An efficient program will establish these conditions with & minimum of
data transfers by using the registers judiciously prior to the cali. COMCCDD, for example, converts
an octal word to decimal display code; that word is expected to be in register X1. For this reason, the
running total has been kept in X1, avoiding the need for extra data transfers.

Line 14. The method of storing an operand in memory is illustrated here. Setting register A6 or A7
to a valid address causes the contents of X6 or X7, respectively, to be stored in the address specified.
When COMCCDD has converted the word, it places the result in register X6, ready for storage upon
return to the calling routine.

Line 15. Another method of accessing a common common deck is shown here. A call is made to a
system macro, WRITEH, which utilizes the common common deck COMCWTH to write a line from a
working buffer to an output buffer.

Line 16. A call is made to the operating system macro WRITER to write the contents of the buffer
OBUF (with which the system ecommunicates through the FET OUTPUT) to the system default output
file, also named OUTPUT. (For more information about operating system macros, see the appropriate

~ operating system reference manual.)

Line 17. Another operating system macro, ENDRUN, is called to terminate program execution.

Lines 18 through 23. DATA pseudo instructions are used here to establish a table comprising six
consecutive words in memory, starting at location TABLE. The default base mode is base 10 in
COMPASS (see section 4.4.1).

Line 24. DATA is used here to set in memory a display-coded image of the characters specified, for
use in the output line. Ten 6-bit characters can be stored per word in this fashion. Therefore, more
than one word is required here, as seen from the location address on the next line.

Line 25. One word of memory is reserved for the final sum. This word is labeled ANS. Note that this
word is not initialized by the BSS instruction.

Line 26. The symbol LEN is equated with the value of the origin counter minus the address of

"WORDS. This yields the length of the output line specified in line 15.

® D-4

Line 27. The SST instruction ensures that symbols from the system texts used by the program are
defined.

Lines 28 through 31. These XTEXT pseudo instructions tell COMPASS to search the system-defined
program library OPL for the common common decks named. Declarations of this type are normally
grouped together after the end of the executable code for easy reference.

Line 32. The END instruction signifies the end of the program. Control is released through the
transfer address at BEGIN.

60492600 G

L

The dayfile for the program is shown in figure D-2. It shows how the COMPASS program library was
obtained from a tape with the LABEL command and converted to a random access file via Update.

ACLAAFD. 80/04/15.(22) SVL SN112 NOS.

08.19.43.EXAMPLE,

08.19.,43.UCCR, 7631, 0.051KCDS.

08+.19.43. USER statement.

08419.43, CHARGE statement.

08+19.43.COMMENT. GET COMMON COMMON DECKS FROM ¢
08¢19.43.,0MPASS PROGRAM LIBRARY,
08e19¢43.LABELsCPLsRyD=HI»F=51,PO=URM, VSN=0U1066,
08.24.10.MT53, ASSIGNED TO CPL » VSN=0QU1066.
08¢24.10.UPDATE»ApP=CPLsN=RNCPL,L =0UTPUT,
084.24+.29. UPDATE COMPLETE,

08424.29.UNLDAD,CPL.
08e¢24430.COMPASS(S»yS=IPTEXT»S=CPUTEXT»X=RNCPL D)
08.24431. ASSEMBLY COMPLETE. 512008 CM USED.
08.,24.31. 0.237 CPU SECONDS ASSEMBLY TIME.

08424431.LG0.

08424.32.,UEAD, 0.003KUNS.
0842432, UEPF, 0+ 041KUNS.
08026.320UE"T’ I.QZZKUNS.
08.2%4432.UEMS 12.879KUNS.
08424432.,UECP, 2.031SECS.
08.2"032.AESR’ QQQIZUNTS.
08437.30.UCLP» 7635, 0«448KLNS.

Figure D-2. Dayfile of Program EXAMPLE

60492600 G

N’

R

DAYFILE MESSAGES E

“
The dayfile messages that can be issued by COMPASS are listed in table E-1.

The following message, with xxxxxxx denoting the name of the subprogram being assembled, is displayed at
the system operator's console only; it is not written to the dayfile. COMPASS updates the display when-
ever it processes an IDENT statement with a non-blank variable field.

ASSEMBLING XXXXXXX

60492600 D E-1

TABLE E-1. DAYFILE MESSAGES

Message

Significance

Action

ASSEMBLY ABORTED ~ ECS READ ERROR.

ASSEMBLY ABORTED - ECS WRITE ERROR.

ASSEMBLY ABORTED - PASS n TABLE
OVERFLOW ASSEMBLING xxxxxxx

This message ean oceur only when
the job has an ECS field length and
is used on a CYBER 170 or CYBER
70/Model 71, 72, 73, or 74, COM-
PASS may store some of its inter-
nal tables in ECS. When an ECS
error persists through four at-
tempts to read the data, the mes-
sage is issued, and the job is
aborted. For the CYBER 70/
Model 76, LCM errors are hand-
led by the operating system.

This message can occur only when
the job has an ECS field length and
is used on a CYBER 170 or CYBER
70/Model 71, 72, 73, or 74. COM~
PASS may store some of its inter-
nal tables in ECS. When an error
occurs in writing data to ECS, no
retry attempt is made. The mes-
sage is issued, and the job is
aborted. For the CYBER 70/Model
76, LCM errors are handled by the
operating system.

While processing the program indi-
cated by xxxxxxXx, an irrecoverable
table overflow condition has occur-
red in assembly pass n (1 or 2).
COMPASS allocates memory space
dynamically to all of its internal
tables. If one table overflows, they
all do. When the tables do not fit
in the available SCM space, COM-
PASS will request additional cen-
tral memory up to a threshold at
which time the intermediate file
and cross-references are dumped
to mass storage scratch files. If
table space is still inadequate,
COMPASS will request additional
central memory up to the maxi-
mum available to the job. When
insufficient SCM exists after ail
such possibilities have been ex~
hausted, COMPASS issues the
message and aborts the job.

Rerun job. If con-
dition persists, con-
tact a system
analyst.

Rerun job. If con-
dition persists, con-
tact a system
analyst.

Rerun job inserting
an RFL statement
specifying suffi-
cient field length to
assemble,

60492600 E

AN

RN

TABLE E-1. DAYFILE MESSAGES (Cont'd)

Message

Significance

Action

CM

ASSEMBLY COMPLETE. nnnnnnB {SCM

} USED.

xxx%.xxx CPU {SECONDS ASSEMBLY TIME. }

, ECS
SEC. nnnnnnB {LCM} USED.
ASSEMBLY ERRORS. nnnnnnB {gg‘M} USED.

Sp— {SECONDS ASSEMBLY TIME.;

ECS
SEC.nnnnnnB {LCM} USED.

BAD CONTROL STATEMENT ARGUMENT - xx

60492600 D

If COMPASS did not detect any
fatal errors during assembly,
this message is issued at the
completicn of processing of all
source programs on the input
file. The minimum field length -
needed to perform the assem-
blies successfully is the octal
number of SCM words, nnnnnn.
If this number is larger than the .
actual field length, it is the
minimum field length needed to
avoid lost references. The
second line of the message can
be suppressed by an installation
parameter; XXXx.XXXx represents
the total central processor time
used by COMPASS, in seconds to
three decimal places. If any
ECS/LCM space was assigned to
the job, nnnnnn is the oetal num-
ber of words used.

If COMPASS detected at least
one fatal error during assembly,
this message is issued at the
completion of processing of all
source programs on the input
file. If the A option was speci-
fied on the COMPASS control
statement, the job is aborted
after this message is issued. The
minimum field length need to
perform the assemblies success-
fully is the octal number of SCM
words, nnnnnn. The second line
of the message can be suppressed
by an installation parameter;
XXXX.XXX represents the total
central processor time used by
COMPASS, in seconds to three
decimal places. If any ECS/LCM
space was assigned to the job,
nnnnnn is the octal number of
words used.

The COMPASS control state-
ment contains an unrecognized
or invalid argument. The
offending argument is named in
the message.

No action required.

Correct the fatal
errors and
reassemble.

Refer to chapter 10
of this manual to
correct the COM-~
PASS control
statement.

TABLE E-1.

DAYFILE MESSAGES (Cont'd)

Message

Significance

Action

CANT LOAD COMP3$

COMPASS NEEDS AT LEAST nnnnnB SCM.

nnnnnnnnn ERRORS IN xxxxxxx

FILE USE CONTRADICTION,

IDENT STATEMENT MISSING.

IMPROPER SYSTEM TEXT FORMAT.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

The operating system loader
reported a fatal error when
COMPASS attempted to load its
primary overlay. This message
should be preceded by an explan-
atory message from the loader.

The SCM field length for the
job is too small for COMPASS.
The number of octal words
needed by COMPASS before it
can begin processing is nnnnnn.
This number varies depending on
the version of COMPASS used
and the listing and binary out-
put options specified on the
control statement. It is an abso-
lute minimum number of words;
it does not include whatever
space may be required for
system text, local maecro and
micro definitions, and so forth.

COMPASS issues this message
for each source program in
which fatal errors are detected;
nnnnnnnnn is the number of
errors, and xxxxxxx is the sub-
program name.

Control statement specifies
the same file name for two or
more of the following:

-~ Source input

— List output (full or short
list)

—~ Binary output

- XTEXT source

COMPASS issues this message
for each source program in
which an END statement is en~
countered before an IDENT
statement is found. This is a
fatal error.

A system text overlay does not
have the internal format
required by this version of
COMPASS. This may be caused

Refer to the loader
diagnosties in the
loader reference
manual for informa-
tion about the
specific loader
error.

Rerun job inserting
an RFL statement
specifying suffi-
cient field length.

Correct the fatal
errors and
reassemble.

Correct contra-
dietion.

Correct the source
program to inelude
an IDENT and END
statement for each
subprogram..

Correct the inter-
nal format of the
system text
overlay.

60492600 G

SN

SN

., o

TABLE E-1. DAYFILE MESSAGES (Cont'd)

Message

Significance

Action

T

INPUT FILE EMPTY OR MISPOSITIONED.

BAD SYSTEM TEXT - x=yyyyyyy/z2z2z2z2z

nnnnnnnnn LOST REFERENCES IN xXXXXXX

MORE THAN 7 SYSTEM TEXTS SPECIFIED.

N PARAMETER OBSOLETE, IGNORED.

60492600 G

INSUFFICIENT STORAGE FOR SYSTEM TEXT.

by a system error. COMPASS
ignores the bad overlay but does
not abort the job. The expres-
sion, X=yyyyyyy/zzzzzzz, iden-
tifies the offending overlay in
the same form in which it is
specified in the COMPASS con-
trol statement; it may be any of
the following:

= G=filenam

~ G=filenam/overlay

— S=overlay

— S=library/overlay

When attempting to read the
first line from the source input
file, COMPASS encountered end
of data and aborted.

When an irrecoverable table
overflow ocecurs, COMPASS
issues ‘this message before

the first assembly is begun. It
does not abort the job. The
expression, x=yyyyyyy/zzzzzzz,
identifies the system text being
loaded at the time.

The symbolic cross-reference
table is sorted before it is
printed. If the table does not fit
in the job's SCM field length

for sorting, COMPASS discards
some of the references. A
message is issued; nnnnnnnnn is
the number of references
discarded, and xxxxxxx is the
subprogram name. The job is not
aborted. The ASSEMBLY COM-
PLETE message gives the field
length needed to avoid lost
references.

COMPASS issues this message
and aborts the job, when the G
and S parameters on the COM-
PASS control statement specify
a total of more than seven
system text overlays.

The N parameter has been
obsoleted by the BL parameter.

Correct the name
of the source input
file or reposition
the file.

Increase the SCM
field length for the
job.

Increase the SCM
field length for the
job.

Restruecture the job
to reduce the num-
ber of system text
overlays required.

Remove the N
parameter from

TABLE E-1. DAYFILE MESSAGES (Cont'd)

Message

Significance

Action

NO CONTROL STATEMENT TERMINATOR.

RECURSION DEPTH EXCEEDED 400.

SYSTEM TEXT NOT FOUND.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

nnnnnnnnn WARNING MESSAGES IN xxXxxxxx

Before finding a parenthesis or
period not in a $-delimited
string, COMPASS read continua-
tion control statements and
encountered an end-of-section.
This is not a fatal error.

COMPASS maintains a push-
down stack for source input con-
trol. This stack has one entry
for each active DUP, ECHO,
HERE, XTEXT, or macro call.
The maximum depth of the
stack is set by an installation
parameter; it is 400 in the
released system. When this
limit is exceeded, COMPASS
sets a fatal error and clears the
stack. The next statement can
then be read from the source

input file. The job is not aborted.

This error is usually eaused by a
source program in which a
macro calls itself indefinitely.

When it cannot load the system
text overlay identified by
X=yyyyyyy/zzzzzzz, COMPASS
issues this message. It does not
abort the job. For an overlay
loaded from a library file (S
parameter), this message
should be preceded by an
explanatory message from the
operating system loader. For an
overlay loaded from a non-
library file (G parameter),
COMPASS could not find the
overlay on the file.

COMPASS issues this message
for each source program in
which nonfatal errors are de-
tected; nnnnnnnnn is the number
of errors, and xxxxxxx is the
subprogram name.

the control state-
ment.

Correct the con-
trol statement.

Correct the macro
call program error.

For an overlay
loaded from a
library file, refer
to the diagnostics
in the loader refer-
ence manual. For
an overlay loaded
from a non-library
file, check that the
overlay name is
specified correctly
and that the over-
lay is located on
the file,

Correct the non-
fatal errors and re-
assemble.

N’

60492600 G

N

R

o

: -

Nomer”

GLOSSARY | F

ABSOLUTE BLOCK -

ASSEMBLER -

A block of object code dgenerated in an absolute assembly. The ABS pseudo
instruction is used to declare a program absolute.

A computer language that prepares an executable program from a source
language program by substituting machine operation codes for symbolic opération
codes and absolute or relocatable addresses for symbolic addresses.

BLANK COMMON BLOCK -

BLOCK -

CAPSULE -

CENTRAL PROCESSOR

COMMENT LINE -

COMMENTS FIELD -

COMMON BLOCK -
CONSTANT -

DATA ITEM -

ENTRY POINT -

A common block into which no data is stored at load time. The first declaration
of a blank common block need not be the largest declaration for the common
block.

A grouping of words of object code or storage within a subprogram for a
specific purpose.

A relocatable collection of one or more programs bound together in a special
format that allows the programs to be loaded and unloaded dynamically to form
an executing program by the Fast Dynamic Loading facility.

UNIT (CPU) -

The high-speed arithmetic unit that performs the addition, subtraction,
maultiplication, division, incrementing, logical operations, and branching
instructions needed to execute programs. ‘

A statement providing documentary information for a section of code. Comment
lines are indicated by either an asterisk in column 1 or blanks in columns 1
through 29, and are listed but not otherwise processed by the assembler.

The field in a COMPASS statement providing documentary information for the
statement. It is listed but not otherwise processed by the assembler. This
field begins with the first nonblank character following the variable field, or
in column 30 if the variable field is blank.

An area of memory that can be declared by more than one subprogram and used
for storage of shared data.

An expression element consisting of a value represented in octal, decimal
hexadecimal, or character notation.

A type of character or numeric value that can be used in subfields of the DATA
and LIT instructions, and as specifications of field lengths on VFD pseudo
instructions.,

"A location within a subprogram that can be referenced from other subprograms.
Each entry point has a name with which it is associated.

EXTERNAL REFERENCE -

FORCE UPPER -

60492600 D

A reference in one subprogram to an entry point in another subprogram.

To guarantee that an instruction begins on a word boundary by packing the
parcels remaining in a partially completed word with no-op instructions and
beginning to assemble the specified instruction in the next word. The assembler

automatically forces upper in some cases, and the user program can specify
that a given instruction be forced upper.

LABELED COMMON BLOCK -

LINKING -
LITERAL -

LITERALS BLOCK -

LOAD SEQUENCE -

LOCAL BLOCK -

LOCATION COUNTER -

LOCATION FIELD -

A common block into which data can be stored at load time. The first program
declaring a labeled common block determines the amount of memory allocated.

The process of matching external references to entry points of the same names
and inserting the addresses of the entry points into the external references.

A read-only constant. Conventionally, it is the only element in an expression.
Literals are stored in the program's literals block to avoid duplication of
read-only data.

A block of literal data entries local to a subprogram.

One or more consecutive control statements processed by the loader as a

unit. A load sequence can be a single name call statement, or it can consist

of loader statements (such as LOAD and LDSET) that are terminated by NOGO,
EXECUTE, or a name call statement.

A storage area defined by a USE or USELCM pseudo instruction.

Normally the same as the origin counter. Can be reset by the programmer to
relocate code or data without affecting relative positions within the block.

The first field in a COMPASS statement, usually providing a name for the
address of the instruction or for the entity defined by the statement. The
location field begins in column 1 or 2.

MACHINE INSTRUCTION -

MACRO -

MICRO - -

OPDEF -

OPERATION CODE -

OPERATION FIELD =~

ORIGIN COUNTER -

A string of bits capable of being interpreted directly by a central processor
or peripheral processor as an instruction to perform some operation.

A sequence of source statements that are saved and then assembled whenever
needed through a macro call.

A character string identified by a symbolic name, Wherever the name is
encountered in the program, the character string is substituted.

A sequence of source statements that are saved and then assembled whenever
needed through an opdef call. Differs from a macro in that the assembler
interprets the call by examining the format or syntax of the instruction rather
than the contents of the operation field alone.

A mnemonic operator, used in the operator field of a COMPASS statement,
to indicate a specific machine instruction.

The field in a COMPASS statement indicating the operation to be performed. It
begins with the first nonblank character following the location field; or, if the
location field is blank, it begins with the first nonblank character after column
2,

A pointer indicating the relative location of the next word to be assembled or
reserved in a given block. :

60492600 D

Ry

OVERLAY -

PARCEL -

One or more relocatable programs that were relocated and linked together into
a single absolute program.

One of the 15-bit sections of a central memory word. A CPU machine instruc-
tion occupies one, two, or four parcels.

PERIPHERAL PROCESSORf UNIT (PPU) -

POSITION COUNTER -

PROGRAM -

PSEUDO INSTRUCTION

QUALIFIED SYMBOL -

REFERENCE ADDRESS

REGISTER -

RELOCATION -
REMOTE ASSEMBLY -

STRONG EXTEKNAL -

SUBPROGRAM -

SYMBOL -

SYSTEM TEXT -

TRANSFER ADDRESS -

60492600 D

An individual computer with its own memory, used for high-speed transfer of
information (input and output) between peripheral devices and central memory.

A pointer indicating the bit position within the word of the next item to be

assembled in a given block.

One or more subprograms capable of being executed as a unit.

An assembler-defined instruction appearing in the operation field of a statement.

It normally does not specify the assembly of a single machine instruction, but
instead specifies some other assembly process (such as symbol definition,

listing control, and so forth.)

A symbol defined when a qualifier is in effect during assembly. Through
qualification, the same symbol can be referred to in different subprograms
without conflict.

(RA) -

The first word in the field length of a job. Because of dynamic relocation, the
RA frequently changes with respect to the first word in central memory; but it
always remains the same with respect to other addresses within the job's
field length.

A unit within the central processor used to hold operands. The A registers
contain the addresses of words within central memory; the X registers contain
operands used in calculations; the B registers are used for incrementing and
indexing.

Placement of object code into central memory in locations that are not pre-
determined, and adjusting the addresses accordingly.

An operation in which code is assembled, saved, and then inserted into the
object code when specified. -

An external reference whose satisfaction is obligatory for program loading.

A group of COMPASS statements beginning with an IDENT pseudo instruction
and ending with an END pseudo instruction.

A set of characters that identifies a value and- its associated attributes.

A set of tables containing symbol, micro, macro, and opdef definitions that
can be saved on a file to be accessed by other programs.

The address of the entry point to which the loader jumps to begin program
execution.

VARIABLE FIELD -

WEAK EXTERNAL -

ZERO BLOCK -

F-4

The field in a COMPASS statement identifying operands for the statement. It
consists of one or more subfields, and begins with the first nonblank character
after the operation field.

An external reference that is ignored by the loader during library searching
and cannot cause any other program to be loaded. A weak external is linked,
however, if the corresponding entry point is loaded for any other reason.

The nominal central memory block for a relocatable assembly. It is local to

a sub-program. Also, a zero block is created for an absolute assembly if
default symbols are used.

60492600 D

A abort mode 10-2

A code option 4-24

A error 11-9

A list option 4-72

A reference table option 4-78

A register
description 8-7
designators 2-8
setting 8-44

ABS attribute 4-64

ABS pseudo
description 4-6
example 4-4,7,13, 14,16,17,44
first statement group 4-2

Absolute block
absolute program 3-6
description 3-2
establishment 4-30
relocatable program 3-5
using 4-30,31

Absolute program
declaration 4-6
structure 3-6

Absolute text 3-5

ACN instruction 9-21

ADC instruction
arithmetic function 9-4
description 9-9
example 2-20,9-9
ADD instruction
arithmetic function 9-4
description 9-12
Add unit
floating point 8-3, 6,37
long 8-3,8-39
Address modes, PPU 9-1
Address
absolute 4-4
direct 9-12
entry point 4-4,5,43
external 4-6,9,45
indexed 9-14
indirect 9-13
ADI instruction
arithmetic function 9-4
description 9-13
ADM instruction
arithmetic function 9-4
description 9-15
ADN instruction
arithmetic function 9-4
description 9-8
AJM instruction 9-17

60492600 G

INDEX

AOD instruction
description 9-12
replace function 9-5
AOQI instruction
description 9-13
replace function 9-5
AOM instruction
description 9-15
replace function 9-5
Arithmetic functions, PPU 9-4
Arithmetic shift 8-32
Arrow
parameter separator 5-8,13
special character 2-4
ASCII code
character set A-1
" option 4-25
Assembler 1-1
central memory requirements 1-3; 10-1
statisties 4-71; 11-8
Assembly environment test 4-58
Assembly listing
detailed description 11-1
general description 4-71
generation 1-3
Assembly, remote code 5-3
Assembly time 11-8
Asterisk
BASE instruction 4-23
element operator 2-22
first column 2-1,2
local symbol separator 5-31
location counter 2-9;3-4
parameter separator 5-8,13, 16,24, 28
special element 2-9, 32;3-4
USE instruction 4-30
USELCM instruction 4-32
Attribute, symbol 2-5
Attribute test 4-64
AXi instruction 8-30,32

B base 2-17,18;4-22
B binary mode 10-2
B list option 4-72
B reference table option 4-78
Bl=1 or B7=1 pseudo instruction
description 4-28
effect on R= 4-53
example 4-54
illegal for PPU 4-9,10
B register
conditional jumps 8-23
contents of 4-28
description 8-7

Index-1

designators 2-8
setting 8-46
Base, assembly 4-22.1
COL column count 4-29
DIS word count 4-47
DUP count 5-6
ECHO count 5-7
line count 4-58,59, 61, 62,65,67,68
micro count 7-2,4
numeric value 2-16
overlay level numbers - 4-4
PPU number 4-4
REP counts 4-55
setting through BASE 4-22.2
SPACE line count 4-74
string count 2-13
VFD count 4-51
BASE micro 7-6
BASE pseudo)
description 4-22.2
example 4-13, 19, 23, 47, 49
permissible anywhere 4-2
Binary control statements 4-1, 72; 11-1
Binary load module 3-8
Binary mode 10-2
Binary output generation 1-3; 3-7, 9,11, 13; 10-2
Binary write 3-8
Blank
compressed 5-1
embedded 2-1
expression terminator 2-1
name terminator 2-5
operation field 2-1
parameéter separator 5- 8,13
statement terminator 2- 1
string terminator 2-14
use in character data 2-14
variable field 2-2, 3; 3-8
Blank card 4-74
Blank common
CM 4-30
description 3-3
ECS 4-32
establishment 4-30, 32
example 4-36
LCM 4-32
SCM 4-30
Blank fill 2-14
DIS 4-47
Blank operation field 4-45
Block copy instruction 8-13

B Block growp 3-1, 12, 14

Block group listing 11-2

Block
absolute 3-1; 4-32, 36
blank common 3-3; 4-32, 34
labeled common 3-2; 4-30
literals 2-11; 3-2, 3-5 thru 15
local 3-2; 4-30
maximum number 3-1; 4-30
origin assigned 1-2; 3-5,7
subprogram 3-1
used for definition operation 5-2
user established 3-2; 4-30, 32
zero 3-2; 4-30,32

Index-2

Block name 3-3; 4-30, 32
Bloek name listed 11-1
Bloek origin 1-2; 3-5
Bloek usage summary 11-2
Boolean unit
description 8-3, 6
instructions 8-25, 26, 27, 28, 29, 34, 35, 36
Branch instructions
CPU 8-10, 11, 14, 20, 23
PPU 9-5
Branch unit
description 8-3
instructions 8-10, 11, 14, 20, 21, 23
BSS pseudo
description 4-35
effect on origin counter 3-3
example 4-4,7,10,16, 28, 33, 36, 37, 40 44;
5-22, 32
force upper 3-4
BSSZ pseudo
description 4-46
dumped by SEGMENT 4-16
example 2-19; 5-33, 35
force upper 3-4
BXi instruction 8-25 thru 8-28
Byte, guaranteed zero 2-14; 4-48

C hardware feature code 4-8
C list option 4-72
C on octal listing 11-6
Call
equivalenced macro 5-25
macro 5-18
opdef 5-29
CC instruetion 8-53
Central memory requirements 1-3, 10-1
Central processor unit

functional units 8-3;6
instructions 8-1
registers 8-7
Channel buffer instruction
read status 8-19
reset input 8-17
reset output 8-18
CHAR
define other character 4-24
Character codes A-1
Character data 2-13
code conversion 4-24
evaluation 2-27
examples 2-12,15
CMU 8-50
Code
CPU operation 6-7; 8-1
duplication 5-6
Code other 4-24
PPU operation 6-3; 9-1
remote assembly 5-3
replication 4-55
CODE micro 7-6
CODE pseudo
description 4-24
effect on character data 2-13; 4-47
example 4-25
permissible anywhere 4-2

60492600 G

N

Coding form 2-3

COL pseudo
description 4-9
octal listing 11-6
Column one 2-1
COM attribute 4-64
Comma
character string 2-13
column one 2-1
continuation 2-1
expression terminator 2-21
local symbol separator 5-31
name terminator 2-5
parameter separator 5-8,13,16, 24, 28
string terminator 2-13
subfield delimiter 2-1
COMMENT pseudo
description 4-20
example 4-13
first statement group 4-2
Comments column control 4-29
Comments field 2-2, 3; 4-29
Comments statement 2-2
heading of definition 5-13
micros not substituted 7-1
not counted 4-57; 5-7, 8
permissible anywhere 4-2
Comments, prefix table 4-20
Common common decks
COMCARG 12-3
COMCCDD 12-3
COMCCFD 12-4
COMCCRD 12-4
COMCCIO 12-4
COMCCOD 12-5
COMCCPT 12-5
COMCDXB 12-6
COMCMNS 12-6
COMCMOS 12-7
COMCMTM 12-8
COMCMTB 12-9
COMCMVE 12-13
COMCRDC 12-13
COMCRDH 12-14
COMCRDO 12-14
COMCRDS 12-15
COMCRDW 12-16
COMCRSR 12-16
COMCSFN 12-17
COMCSRT 12-17
COMCSST 12-17
COMCSTF 12-19
COMCSVR 12-19
COMCSYS 12-19
COMCUPC 12-21
COMCWOD 12-22
COMCWTC . 12-22
COMCWTH 12-22
COMCWTO 12-23
COMCWTS 12-23
COMCWTW 12-24
COMCXJR 12-25
COMCZTB 12-25 .

60492600 G

Compare character strings 4-66
Compare expression values 4-60
Compare/Move unit 8-50
COMPASS call statement

description 10-2

effect on LIST 4-77
Compile file 10-4
Comp and log difference instruction 8-30
Comp and log sum instruction 8-30
Complement instruction 8-29
Compressed code 5-1
CON pseudo

description 4-52

example 2-22; 4-53; 5-5, 23, 26

force upper 3-4
Concatenation 2-4
Concatenation mark 2-4

example of use 5-19

in definition 5-1
Conditional assembly 4-57
Conditional jump

B register 8-23

PPU 9-5

X register 8-21
Configuration 1-3
Constant

character 2-14

description 2-10

expression element 2-21, 26

field size 2-11

generated by pseudo 4-52

numeric 2-16

read only 2-11
Continuation, statement 2-2

generation of lines 2-4;7-1
Control statements

COMPASS 10-2

job statement 10-1

Counters, block control 3-3, 10, 12
Counter control
BSS 4-35
forcing upper 3-4
LOC 4-36
ORG 4-33
ORGC 4-33
POS 4-38
USE 4-30
USELCM 4-32
CPOP pseudo 6-7
CPSYN pseudo
description 6~10
permissible anywhere 4-2
CPU instructions
block copy 8-13
Boolean 8-25 thru 28, 34, 35, 36
branching 8-21, 26
channel buffer 8-17,18
channel status 8-19
complement 8-28, 29
conditional 8-21,23
direct LCM transfer 8-16
divide 8-42
double precision 8-37,40
ECS 8-12
error exit 8-11

Index-3

exchange exit 8-15
exchange jump, 6000 8 14
fixed point 8-38

floating point 8-33; 36,37, 39 40,42

increment 8-44, 46, 48
left shift 8-30, 31
logical 8-26 thru 31
long add 8-38
mask 8-41
multiply 8-39, 40
no operation 8-43
normalize 8-33
pack 8-35
pass 8-43
population 8-44
program stop 8-10
real-time clock 8-18
return jump 8-11
right shift 8-30, 32
set register 8-44, 46, 48
set time 8-18
shift 8-30 thru 33
single precision 8-36
transmit 8-25
unconditional jump 8-20
unpack 8-34
CPU program execution 1-3; 10-1
CPU register designators 2-8; 8-7
CRD instruction 9-16
Created symbol 5-31; 11-8
CRM instruction 9-16
Cross reference table
(see symbolic reference table)
CTEXT pseudo 4-77
CU instruction 8-54
CWD instruction 9-16
CWM instruction 9-16
CXi instruction 8-44

D base 2-17; 4-22.2

D code option 4-24

D debug mode 10-3

D definition flag 11-14

D error 11-10

D hardware feature code 4-7

D list option 4-72

Data generation 4-45

Data item
character format 2-13
DATA pseudo 4-47
general description 2-10
LIT pseudo 4-49
numeric format 2-17
VFD pseudo 4-51

Data notation
character 2-13
constant 2-10,13,16
decimal 2-17
element 2-10,21
fixed point 2-17
floating point 2-17
hexadecimal 2-21
item 2-10,13,16
literal 2-11,13,16
numeric 2-16

Index-4

octal 2-17
DATA pseudo
description 4-46

example 2-15,19, 20; 4-25, 31, 35 47

force upper 3-4
Data transmission, PPU 9-3
DATE micro 7-5
Date of listing 11-1
DCN instruction 9-21
Debug, interactive 1-4
Debug mode 10-3
Decimal exponent 2-17
Decimal notation 2-17
DECMIC pseudo
description 7-4
example 5-6; 7-4
permissible anywhere 4-2
DEF attribute 4-65
Default symbols
definition 2-7
listing 11-9
unqualified 4-25
zero block 3-2
Deferred symbols
(see default symbols)
Definition
equivalenced macro 5-24
macro 5-13, 15,24
micro 7-2
opdef 5-13,27
processing 5-13
purging 6-9
reference 5-18, 25,30
symbol 2-6; 4-42
system 5-35
Definition operation
duplicated code 5-6
equivalenced macro 5-13
external text 5-2
macro 5-13
operation code 5-13
processing 5-14
recursion level 5-1
remote text 5-3
Delimiter
actual parameter 5-18,26
data item 2-15,16
expression element 2-21
field 2-1,2

substitutable parameter 5-8, 13 16

term 2-22

Descriptor, variable field 5-27

Destination field 2-26
Detailed listing 4-72; 11-1
DF instruction 8-23
Direct address 9-12
Directives, loader 4-21
Directory, error 11-9
DIS pseudo
description 4-47
example 4-47,49
force upper 3-4
Display code option
character set A-1
default mode 2-13
option 4-24

60492600 G

S’

N

Divide instructions 8-42
DM instruction 8-52
Dollar sign
local symbol separator 5-31
parameter separator 5-8,13, 16,24, 28
special element 2-5
Double precision instructions 8-36, 37,40
DUP pseudo
description 5-6
example 5-10, 11
listing of count 11-6
Duplication
code 5-6
echoed 5-7
indefinite 5-7,9
DXi instructions
add 8-37
multiply 8-40

E code option 4-25
E entry point flag 11-14
E error 11-10
E list option 4-72
E numeric data modifier 2-17
ECHO pseudo
description 5-7
example 5-12
ECS blocks 4-32
Editing 2-4
EE numeric data modifier 2-17
EIM instruction 9-18
EJECT pseudo 4-74
permissible anywhere 4-2
Eject suppression 10-4
EJM instruction 9-17
Element
absolute 2-23
data 2-10
expression 2-21, 26
external 2-24
operator 2-22
register 2-25
- relocatable 2-9,24
special 2-9,21
ELSE pseudo
description 4-58
example 5-5
permissible anywhere 4-2
END pseudo
assembly of remote code 5-3
binary generation 3-6
description 4-4
effect on blocks 3-1, 6, 8, 10, 12
example 4-4;5-7, 13, 14, 16
external text use 5-3
force upper 3-4
illegal definitions 5-1
permissible anywhere 4-2
ENDD pseudo
acting as nil 6-6
description 5-10
example 5-11
permissible anywhere 4-2
used with DUP 5-7
used with ECHO 5-8

60492600 G

ENDIF pseudo
acting as nil 6-6
description 4-57
permissible anywhere 4-2
ENDM pseudo
acting as nil 6-6
description 5-14
example 4-29; 5-11, 15, 19, 20, 21
permissible anywhere 4-2
End-of-line mark 5-1
ENDX pseudo 4-77
Entry address
absolute 4-3
declaration 4-43
multiple 3-12
relocatable 4-4
ENTRY pseudo
description 4-43
example 4-5,44

' ENTRYC pseudo 4-43

Entry point list 11-4
Environment test 4-58
EOM instruction 9-18
EQ instruction
description 8-24
example 8-25
force upper 3-4
EQ IF operator 4-60
IFC operator 4-66
EQU pseudo
description 4-39
example 2-19,21; 4-19, 37, 39,62; 5-6
listing 11-6
Equal sign
default symbol prefix 2-7
instruction 4-39
literals prefix 2-11,13,17
local symbol separator 5-31
parameter separator 5-8,13,16,25,28
ERN instruction 9-12
ERR pseudo
description 4-69
Error, assembly
fatal 11-9
informative 11-12
programmer controller 4-69,70
Error directory
detailed description 11-9
general description 4-71
Error exit instruction 8-11
Error flags
conditionally set 4-69
fatal 11-9
informative 11-12
unconditionally set 4-70
where on listing 11-6
ERRxx pseudo 4-70
ES instruction 8-11
ESN instruction 9-22
ETN instruction 9-12
Evaluation of expression 2-26
Exchange exit instruction 8-15
Exchange jump instruction 8-14
Execution, CPU program 1-3
EXN instruction 9-10

Index-5

Exponent 2-17

Expression
absolute 2-23
attribute 4-64
comparison 4-60
CON use 4-52
description 2-21
evaluation 2-21,26; 3-3
examples 2-24,25
external 2-24
maximum size 2-26
operators 2-22
pass one value 2-26; 3-3
pass two value 2-26; 3-3
register 2-25; 8-2,9
rules 2-22
size 2-26
types 2-23
value 2-23,26; 3-3; 8-5
VFD. 4-51

EXT attribute 4-64

External BCD
character set A-1
option 4-25

External symbol
declaration 4-45
description 2-5
strong 2-7
weak 2-7

External symbol list 11-4

External text
assembly 5-2
file declaration 10-3
listing 4-77

EXT pseudo
description 4-45

illegal in absolute code 4-6,9, 10

' F conditional flag 11-14
F error 11-10
F FORTRAN mode 10-3
F list option 4-72
FAN instruction 9-21
Fatal error flag 11-9
Features of COMPASS 1-2
Field
comments - 2-2; 4-29
conventional 2-3
delimiter 2-1,2
destination 2-25; 4-51
free 2-1
length, threshold 1-3
loeation 2-1
operation 2-1
size 2-1
subfield 2-2
terminator 2-1
variable 2-2
File
COMPILE 10-3
INPUT 10-3
LGO 10-2
list output 10-3
load and go 10-2
OLDPC 10-5
OPL 10-5
OUTPUT 10-3

Index-6

source 10-3
SYSTEXT 4-17; 10-3,4,5
System text overlay 10-5
Fill .
blank 2-14
zero 2-14
FIM instruction 9-18
First column 2-1
First statement group 4-2
Fixed point data notation 2-17
Fixed point instructions 8-38,40
FJM instruction 9-17
Flag, error
listing 11-6
setting 4-69
type 11-14
Floating point data notation 2-16
Floating point units 8-3,6
add 8-36, 37
divide 8-42
multiply 8-39,40
FNC instruction 9-21
FOM instruction 9-18
Forcing upper 3-4
BSS 4-35
CPU instructions 8-2
LOC 4-36
macro call 5-18,25
opdef call 5-27
ORG 4-33
ORGC 4-33
R= 4-53
USE 4-30
USELCM 4-32
VFD 4-51
Form, COMPASS coding 2-3
Format
control statement 10-1
CPU instruction 8-12
line 2-1
listing 11-1
PPU instruction 9-1
FORTRAN 4-4; 10-3
Full list 10-3 ’
Functional units 8-3,6
Functions, PPU
arithmetic 9-4
data transmission 9-3
logical 9-4
replace 9-5
FXi instruction
add 8-37
divide 8-42
multiply 8-39

G assembly mode 10-3
G list option 4-72
GE instructions 8-23
GE IF operator 4-60
IFC operator 4-66
Generated code listing 4-72
Generation, data 4-46
Get text mode 10-3
GT instruction 8-23
GT IF operator 4-67
IFC operator 4-72
Guaranteed zero 2-14 4-48

60492600 G

N

\\—/

k\-\-/‘

"

S’

Hardware configuration 1-3
Hardware feature dependency 4-7
Heading

listing 4-71; 11-1

maero 5-13

opdef 5-13
HERE pseudo

description 5-4

permissible anywhere 4-2
Hexadecimal data 2-21

I code option 4-21

I hardware feature code 4-7

I input mode 10-3

I NOLABEL option 4-21

TAM instruction 9-20

IAN instruction 9-19

IBj instruction 8-20

ID instruction 8-22

IDENT pseudo
binary generation 3-8, 9, 10
blank variable field 3-14; 4-11

“description 4-2, 11

example 4-4, 7, 13, 14, 16, 17, 19

force upper 3-4
overlay generation 3-8, 9, 10
program identification 4-2
IF pseudo 4-63
IF skipped lines listed 4-72
IFCP pseudos 4-59
IFC pseudo
description 4-66
example 5-5,11
permissible anywhere 4-2
IFop pseudo 4-60
IFPP pseudo 4-59
IFtype pseudo 4-59
IJM instruction 9-17
IM instruction 8-51
Increment unit 8-3, 6, 44, 46, 48
Indexed address, PPU 9-14
Index register 8-7
Indirect address, PPU 9-13
Input, assembler 10-3
Instructions
coding of 2-1
CMU 8-49
CPU 8-1
mnemonically identified 6-3
nil 6-6
no-operation 8-43; 9-9
PPU 9-1
pseudo 4-1
redefinition 5-16, 25
synonymous 6-5, 10
syntactically identified 6-7
Integer add 8-37
Integer subtract 8-37
Integer multiply 8-40
Integer value 2-17
Interactive debugging 1-4
Internal BCD
character set D-1
option 4-24
Invented symbol 5-32; 11-8
IR instruction 8-22

60492600 G

IRM instruction 9-18
IRP pseudo
acting as nil 6-6
description 5-33
example 5-34, 35
permissible anywhere 4-2
IXi instructions 8-38,40

J option 4-9,10; 9-5
JDATE micro 7-6
Job statement 10-1
JP instruction
description 8-21
force upper 3-5

L control statement option
description 10-3
related to LIST 4-72
L error 11-11
L hardware feature code 4-8
L list option 4-72
L location flag 4-36; 11-14
Labeled common
description 3-2
establishment 4-30. 32
LCC pseudo
description 4-21
illegal if absolute 4-6,9, 10
LCM attribute 4-64
LCM blocks 3-2; 4-32
LCM transfer instructions 8-13, 16
LCN instruction
data transmission 9-3
description 9-8
LDC instruction
data transmission 9-3
description 9-9
example 2-20
LDD instruction
data transmission 9-3
description 9-12
LDI instruction
data transmission 9-3
description 9-13
LDM instruction
data transmission 9-3
description 9-15
example 5-21
LDN instruction
data transmission 9-3
description 9-8
example 5-12; 9-8
LDSET pseudo
description 4-21
permissible anywhere 4-2
Left shift instruction 8-29, 31
LE IF operator 4-60
IFC operator 4-66
LE instruction 8-24
Library maintenance programs 2-1
LGO control statement 10-6
Linkage symbols 2-6; 4-43
Listable output
assembled code 11-5
assembler statistics 11-8

Index-7

binary control cards 11-1
block usage 11-2
control statement 10-3
default symbols 11-8
entry point symbols 11-4
error directory 11-9
error flags 11-9 thru 12
external symbnols 11-4
header information 11-1
literals 11-7
source statements 11-5
statisties 11-8
subtitles 11-1
symbolic reference table 11-13
titles 11-1
user control 4-77; 10-3,4
List, full 10-3
Listing control
control statement 10-3,4
pseudo 4-71
List, parameter
ECHO 5-8
equivalenced macro 5-25
macro 5-18
LIST pseudo
description 4-71
example 4-13; 5-6,12
permissible anywhere 4-2
List, short 10-4
Literals
absolute program 3-6, 7, 10, 11.
description of block 3-1, 2
IDENT 3-10, 14
listing 11-7
location 1-3; 3-1,2
notation 2-11

protection 4-33

SEGMENT overlay 3-10

SEG pertial binary 3-12

symbol (default) 2-7
LIT pseudo

description 4-49

example 2-12, 17, 21; 4-15,56; 5-6

listing 11-6,7
LIM instruction
description 9-6
example 5-21
LMC instruction
description 9-9
logical function 9-5
LMD instruction
description 9-12
logical function 9-5
LMI instruction
description 9-13
logical function 9-5
LMM instruction
description 9-15
logical function 9-5
LMN instruction
description 9-8
logical function 9-5
LO control statement option 10-4
Load address 4-3
Load-and-go file 1-3; 10-2

ndex-8

Loader control statement 4-21
LOC attribute 4-64
Local blocks 3-2
absolute program 3-6
description 3-2
establishment 4-30, 32
relocatable program 3-5
LOCAL statement
description 5-31
example 5-32
heading 5-13
Local symbol
CPU instruction 8-4
macro body 5-13
subprogram 3-1; 4-27
Location counter '
BSS 4-35
control 4-36
description 3-4
forced upper 3-4
ORG 4-33
ORGC 4-33
special element 2-9; 3-4
USE 4-30
USELCM 4-32
Location field
listing 11-6
statement 2-1
LO control card option
description 10-4
related to LIST 4-71
LOC pseudo
description 4-36
example 4-37,53
location counter changed 3-4
Logical difference instruction 8-27
Logical functions, PPU 9-4
Logical minus 2-22
Logical product instruction 8-26

Logical produet and complement instruction

Logical shift instruction 8-29, 31, 32
Logical sum instruction 8-26
Long add umit
description 8-4,6
instructions 8-38
LPC instruction
description 9-9
logical function 9-5
LPN instruction
description 9-8
logical function 9-5
LT IF operator 4-60
IFC operator 4-64
LT instruction 8-24
LXi instruction 8-29, 31
example 2-19

M base option 4-22.2
M list option 4-72
Machine test 4-58
MACHINE pseudo 4-7
Macro

body 5-13

call 5-18,25

equivalenced 5-24

AN

N

(

(

(,

definition 5-13
header 5-14
list control. 4-72
name 2-2; 5-15,18,25; 6-1
permissible anywhere 4-2
processing 5-1,14
gystem defined 4-73; 5-35
terminator 5-14
MACROE pseudo
description 5-24
example 5-26
IRP related 5-33
operation code table entry 6-1
permissible anywhere 4-2
MACRO pseudo
description 5-15
example 4-29,74; 5-5, 19, 20, 21, 22, 32, 33, 34
IRP related 5-33
operation code table entry 6-1
permissible anywhere 4-2
MAN instruction 9-10
Mask instruction 8-3
Mass storage, system 1-3
Master list control 4-71
MAX pseudo
description 4-40
listing 11-6
MD instruction 8-51
MESSAGE macro 12-25
MI instruction 8-22, 24
MIC attribute 4-65
MICCNT pseudo
description 4-42
example 4-42
listing 11-6
permissible anywhere 4-2
MICRO
decimal 7-4
definition 4-22,25,26; 7-2
editing 2-4
mark 2-4; 5-1
octal 7-4
reference 7-1
size 4-42; 7-2
system defined 4-17; 7-2,5
test for 4-65
MICRO pseudo
description 7-2
example 4-42; 5-11; 7-2,3
permissible anywhere 4-2
MI instructions 8-22,24
MIN pseudo
description 4-41
listing 11-6
Minus as local symbol separator 5-31
Minus as parameter separator 5-8,13, 16, 24,28
Minus on listing 11-6
Minus operator 2-21,22; 8-4
Minus sign in location field
CPU instruction 3-4,5; 4-51
PPU instruction 3-4; 4-51
VFD instruction 4-51
MJ instruction 8-16
force upper 3-4

60492600 G

MJN instruction
description 9-6
effect of J 4-9,11
ML control statement option 10-4
Mnemonic operation code
legal operation field entry 2-1
OPDEF defined 5-27
search for 6-1
Modifiers, numeric data 2-17
MODIFY common decks 5-2
MODLEVEL micro 7-7
MOVE maecro 12-28
Multiple entry point table
suppression 4-20
used for overlays 3-12
MXi instruction
description 8-41
example 2-19; 8-41
MXN instruction
description 9-10

N eject mode 10-4
N error 11-11
N list option 4-73
Name
block 4-30,32
different types 2-4
duplicate code 5-7, 8
general description 2-4
IF sequence 4-57
macro 5-16
micro 4-22, 24, 26; 7-2,4,5
mnemonic operation 6-1
overlay 4-11,15
parameter 5-8
remote code 5-3
NE instruction 8-24
NE IF operator 4-60
IFC operator 4-66
Nesting, level of 1-3
NG instruction 8-22,24
NIL pseudo 6-6
permissible anywhere 4-2
NIM instruction 9-18
NJN instruction
description 9-6
effect of J 4-9, 10
NO eject option 10-4
NO instruction 8-43
NOLABEL pseudo
description 4-20
permissible anywhere 4-2
NOM instruction 9-18
NOREF pseudo 4-76
permissible anywhere 4-2
Normalize instruction 8-33
Normalize unit
description 8-6
instructions 8-33
Not equal sign
parameter separator 5-8,13
special character 2-4
Numeric data 2-16
NXi instruction 8-33
NZ instruction 8-22, 24

Index-9

O base 2-18; 4-22.2
O error 11-11
O mode 10-4 .
OAM instruction 9-20
OAN instruction 9-19
OBj instruction 8-20
Octal listing 11-5
Octal notation 2-16
OCTMIC pseudo 7-4
. permissible anywhere 4-2°
OLDPL file 10-3
Opdef
body 5-13
call 5-29
definition 5-13
heading 5-13-
list control 4-72,73
processing 5-14
system defined 4-17, 33
OPDEF pseudo
description 5-27
example 5-29, 30, 31, 32
operation code table entry 6-1
permissible anywhere 4-2
Operand register 8-8
Operation code table 6-1
Operation code value
CPU 6-7; 8-1
PPU 6-3; 9-1
Operation, definition
compressed 5-1
duplicated text 5-6
external text 5-2 .
general description 5-1
macro definition 5-13
opdef definition 5-13
remote text 5-3
system 5-35
Operation field
blank 4-46
description 2-1
search 6-1
Operator
element 2-22
mnemonic 5-27; 6-3
register 2-21; 5-28; 6-7
term 2-22
Operator with constant 2-13, 16
OPL file 5-2; 10-3; 12-1
OPSYN pseudo
description 6-5
permissible anywhere 4-2
ORG pseudo
description 4-33
determine blocks 3-1
establish absolute blocks 3-2; 4-33
example 4-4,7,13,14,16
location counter changed 4-33
origin counter changed 3-3; 4-33
ORGC pseudo 4-33
Origin
multiply entry point 4-3
overlay 4-12, 15
program 4-3
Origin counter
BSS 4-35

Index-10

control 3-3; 4-33, 35
description 3-3
final value, absolute 3-6 - 1
final value, relocatable 3-5
forced upper 3-4

ORG 4-33
ORGC 4-33
special element 2-9; 3~3
USE 4-30

OR instruction 8-22

ORM instraction 9-18

Overflow error 2-17

Overlay
absolute 3-8
control tables 4-21
entry point 4-12, 15
general description 3-6, 8
level numbers 4-4, 12, 15
multiple entry point 3-12
name 4-12, 15
origin 4-12, 15
PPU 3-7,9
primary 3-8,9, 11, 13; 4-12, 15
secondary 3-6, 8, 9; 4-12, 15

P error 11-11
P numeric data modifier 2-17
P pagination mode 10-4
Pack instruction 8-35 l
Padding of CPU word 3-4; 4-51; 8-2
Page heading 11-1
Page number 11-1
Pagination control 10-4
Parameter
actual 5-7,18,25
embedded 5-18,25
formal 5-8,13
indefinitely repeated 5-34
iterative 5-18, 25, 34
substitutable 5-8, 13, 16, 25, 28, 34
Parameter mark 5-9,13
Parameter, null 5-9,18,25
Parameter separator
actual 5-18,25
formal 5-8,13, 16
Parcel 8-1
Parentheses
local symbol separator 5-31
nested 5-9 ’
parameter separator 5-8,13,16,25, 28
Partial binary
IDENT type 3-14
SEG type 3-12 |
Pass instruction =
CPU 8-43
PPU 9-9
Pass one :
expression evaluation 2-23, 26, 28; 3-3
general description 1-3
maximum test 4-40
minimum test 4-41
symbol definition 2-6
Pass two
expression evaluation 2-22, 26; 3-3; 8-2
general description 1-3

60492600 G

N

S

N’

i o

e

N

symbol definition 2-5
value for MAX 4-40
value for MIN 4-41
PC control statement option 10-4
PCOMMENT micro 7-7
PD control statement option 10-4
PERIPH pseudo
description 4-10
effect on branch instructions 9-5
example 4-47; 6-5
first statement group 4-2
PJN instruction
description 9-6
effect of J- 4-9, 10
PL instruction 8-22, 24
Plus in location field
CPU instruction 3-4
PPU instruction 3-5
VFD instruction 4-51
Plus as parameter separator 5-8,13, 16, 25, 28
Plus as local name separator 5-31
Plus on listing 11-6; D-2, 3
Plus operator 2-21, 23; 8-4
Point -
binary 2-18,19
decimal 2-18,19
octal 2-18,19
parameter separator 5-8,13, 16, 25, 28
register designator 2-8
Population unit 8-44
Position counter
control 4-38,51
description 3-4
special element 2-9; 3-4
POS pseudo 4-38
Post radix 2-17
PPROP
description 6-3
example 5-12; 6-5
permissible anywhere 4-2
PPU instructions 9-1
A-register 1/0 9-19
block I/0 9-19
branch I/0 9-17,18
branch 9-5
‘central read/write 9-15
channel function 9-21
constant mode 9-8
designators 9-3
direct address 9-12
error stop 9-22
exchange jump 9-10
format 9-1
functions 9-3
indexed direct address 9-14
indirect address 9-13
no address 9-7
no operation 9-9.
output record flag 9-20
shift 9-7
PPU pseudo
description 4-8
effect on branch 9-5
example 4-10,52
first statement group 4-2

60492600 G

Prefix table
comments 4-20
generation 3-6, 7, 8
suppression 4-21
Preradix 2-17
Program, absolute 3-6; 4-6
Program execution 10-5
Program identification 4-2
Program origin 4-3
Program, relocatable 3-5
Program stop instruction 8-10
Program structure 3-1

PS control statement option 10-4
Pseudo instructions
binary control 4-6
block counter control 4-30
conditional assembly 4-57
data generation 4-45
definition operation 5-1
error control 4-69
first statement group 4-2
introduction 4-1
listing control 4-71
micro 7-1
mode control 4-21
operation code table management 6-1

operation field entry 2-2
permissible anywhere 4-2
required 4-2
subprogram identification 4-2
subprogram linkage 4-43
symbol definition 4-38
types 4-1
PS instruction
description 8-10
force upper 3-4
PSN instruction 9-9
PURGDEF pseudo
description 6-10
permissible anywhere 4-2
PURGMAC pseudo
description 6-7
example 6-6
permissible anywhere 4-2
Push down stack 1-3
PXi instruction 8-35

Q to represent expression 5-27; 6-8
Qualifier, symbol 4-25
used for definition operations 5-2
QUAL micro 7-6
QUAL pseudo
description 4-25
example 4-13,28; 5-22
permissible anywhere 4-2

R error 11-11
R hardware feature code 4-8
R list option 4-73
R= pseudo
description 4-53
example 4-54; 5-21
illegal in PPU program 4-9, 10

Index-11

RAD instruction
description 9-12
replace function 9-5
Radix 2-17
RALI instruction
description 9-13
replace function 9-5
RAM instruction
description 9-15 -
replace function 9-5 L
Real-time clock set instruction 8-18
Record name, external text 5-3
Recursion level 1-4; 5-1
Recursion stack 1-4; 5-1
Reference
macro 5-18
macroe 5-24
nested 5-1
opdef 5-27
Reference table, symbolie 11-13
Registers, CPU 2-8;8-7
Register designators
CPOP 6-7
description 2-8; 8-7
not symbols 2-5
OPDEF 5-27
OPSYN 6-5
PURGDEF 6-10
RE instruction
description 8-13
force upper 3-4
READC macro 12-28
READH macro 12-28
READO macro 12-29
READS macro 12-29
READW macro 12-29
RECALLmacro 12-30
REL attribute 4-64
Relocatable program structure 3-5
Relocatable test 4-64
Remote assembly 5-3
Repeat count
DUP 5-7
replication 4-55
REP pseudo 4-55
REPC pseudo 4-55
REPI pseudo
example 4-55
description 4-55
illegal if absolute 4-6,9, 10
REPL table
result of BSSZ 4-46
result of REP,REPC, or REPI 4-55
written by SEGMENT 4-15
Replace functions, PPU 9-5
Replication of code 4-55
Return jump, CPU 8-11
RFN instruction 9-20
RI instruction 8-18
Right shift 8-30, 32
RJ instruction
description 8-12
example 4-31; 5-21; 8-12
force upper 3-5

Index-12

RJM instruction 9-6
RL instruction 8-14
RMT pseudo
description 5-3-
example 5-5,6
permissible anywhere 4-2
RO instruction 8-19
Round and normalize instruction 8-34

RPN instructions 9-11
RXi instructions

add 8-38

divide 8-42

multiply 8-39
RXj instruction 8-17

S list option 4-73
S numeric data modifier 2-18
S storage flag 11-14
S system text mode 10-5
SAi instructions
description 8-44

example 2-15,16,19; 4-31, 36; 5-22, 33; 8-45

SBD instruction
arithmetic function 9-4
description 9-12
SBI instruction
arithmetic function 9-4
description 9-13
SBi instructions
description 8-46
example 2-9,12; 8-47
SBM instruction
arithmetic function 9-4
‘description 9-15
SBN instruction
arithmetic function 9-4
-description 9-8
Scale, binary 2-18
SCM blank common 3-3
SCM labeled common 3-2
SCN instruction
description 9-8
logical function 9-5
SEG pseudo
binary generation 3-12
description 4-15
example 4-16
force upper 3-4
illegal in PPU program 4-9,10
SEGMENT pseudo
binary generation 3-8, 9, 10,12
description 4-16
example 4-17
force upper 3-4
illegal in PPU program 4-9, 10
overlay structure 3-10, 12
Semicolon in definition 5-8,13
SEQUENCE micro 7-7
Sequencing
listing 11-7
statement 2-1
SET attribute 4-64
Set instructions 8-44 thru 8-49

60492600 G

s

((

(

N

SET pseudo
description 4-39
example 2-9,20; 5-11, 22
listing 11-6
Shift
description of unit 8-3,6
i CPU instructions 8-29 thru 8-32, 41
PPU instructions 9-7
SHN instruction 9-7
Short jump limit 4-9,11
Short list 10-4 -
Single precision instructions
| add rounded 8-37
add unrounded 8-36
divide rounded 8-42
divide unrounded 8-42
multiply rounded 8-39
multiply unrounded 8-39
SKIP pseudo
description 4-68
permissible anywhere 4-2
Slant bar
local symbol separator 5-31
operator 2-22
parameter separator 5-8,13,16, 24, 28
SOD instruction
description 9-12
replace function 9-5
SOI instruction
description 9-13
replace function 9-5
SOM instruction
description 9-15
replace function 9-5
Space, embedded (see blank)
SPACE pseudo
description 4-74
permissible anywhere 4-2
Special elements
FORTRAN call 2-9
general description 2-9
in variable field 2-2
location counter 3-4

I origin counter 3-3

position counter 3-4
SST attribute 4-65
SST pseudo 4-43

example 4-13

permissible anywhere 4-2
Stack, recursion 1-4; 5-1
Statement

coding conventions 2-3

comments 2-2

compressed 5-1

continuation 2-2

external source 5-2

first column 2-1

first group 4-1

format 2-1

listing 11-5

number assembled 11-8

size 2-1

source of 5-1; 10-3
Statistics, assembler 11-8
STD instruction

data transmission function 9-3

description 9-12

60492600 G

STEXT pseudo
description 4-17
example 4-19
first statement group 4-2
STI instruction
data transmission function 9-3
description 9-13
STM instruction
data transmission function 9-3
description 9-15
STOPDUP pseudo
description 5-9
example 5-11
Storage reservation 4-35, 46
String, character
comparison 4-66
data generation 4-47
delimited 2-11, 14
empty 2-14
micro 2-4
notation 2-13
Strong external 2-7
Subprogram length 3-5
Substitution, micro 7-1
Subsubtitle
’ CTEXT 4-77
EJECT 4-74
listing of 11-1
QUAL 4-25
SPACE 4-74
TITLE 4-75
TTL 4-76
Subtitle
CTEXT 4-17
listing of 11-1
TITLE 4-75
SXi instruction
description 8-48
example 2-15,19; 5-21, 31; 8-48
Symbol
attribute 2-6; 4-37, 64
created 5-32
default 2-7
definition 2-5; 4-38
duplicate 2-6
entry point 2-6
external 2-7
invented 5-32; 11-8
literals 2-6
local to macro 5-13, 31
local to QUAL 3-1
location field 2-6
lost 11-8,13
number defined 11-8
number referenced 11-8
previously defined 2-7
qualified 2-7; 4-25
redefinition 4-27, 39
system-defined 2-6; 4-43
undefined 2-7
value 2-6; 4-37
Symbol qualifier listed 11-1
Symbol table
clearing 3-10, 12
system text 4-17
Symbolic reference table
address reference 4-78

Index-13

l detailed description 11-12
general description 4-71
generation 1-3
list control- 4-71;-10-3:
omit symbol 4-76

Synonymous operation
CPU 6-10
mnemonic 6-5
PPU 6-5
syntactic 6-7
Syntax definition 5-27; 6-7,10
Syntax search 6-1 S
SYSTEM macro 12-30
System text 4-19
SYSTEXT option 10-4
related to G mode 10-4
related to STEXT 4-17

T list option 4-73

Table
operation code 6-1
1 symbolic reference 11-12
USE 4-30
TBj instruction 8-18
Term 2-22

Term operator 2-22
Terminator, macro 5-13
Test symbol attribute 4-64
Time limit 10-1
TIME micro 7-6
Time of assembly 11-1
Title
ES 8-11
IDENT 4-3
listing of 11-1
PS 8-10
TITLE 4-75
TITLE pseudo 4-75
permissible anywhere 4-2
Transfer symbol 4-4
Transmit instruction 8-25
" Truncation, character data 2-13
expression value 2-26
TTL pseudo 4-76
permissible anywhere 4-2

l U error 11-11
UJN instruction
effect of J 4-9, 10
description 9-6
Unconditional jump
CPU 8-20
PPU 9-6
Underflow error 2-18
Unpack instruction 8-35
USE pseudo
I change blocks 3-1, 2, 3, 5; 4-30
description 4-30
establish common blocks 3-2, 3; 4-30
establish local blocks 3-2; 4-30
example 4-17,28, 29, 31, 34, 36
USE table
entry 4-30, 32, 33
| reinitialization 3-10, 12; 4-11
USELCM pseudo
description 4-32

Index-14

establish common blocks 3-2, 3 l
example 4-33
illegal in PPU program 4-9, 10
USER control statement 10-7 i
UXi instruction 8-34 B |

V error 11-11 '
Value, numeric 2-17
Variable field 2-2
Variable field definition 4-51
VFD pseudo
description 4-51
example 2-15; 4-23, 28, 31, 52; 5-22

WE instruction
description 8-13
force upper 3-4

Weak external 2-7

WL instruction 8-14

WRITEC macro 12-31

WRITEH macro 12-31

WRITEO macro 12-31

WRITES macro 12-32

WRITEW macro .12-32

WXj instruction 8-17

X external flag 4-45; 11-6
X external text mode 10-5
X file option
description 10-5
XTEXT default 5-3
X hardware feature code 4-8
X list option 4-73
X register
conditional instructions 8-21
description 8-3

designator 2-8 l

setting 8-48
XJ instruction

description 8-15

force upper 3-4
XREF pseudo

description 4-78

permissible anywhere 4-2
XTEXT pseudo 5-1 B

related to CTEXT/ENDX. 4-77
XTEXT source 10-5

Zero block
i

absolute program 3-2, 6, 7
description 3-2
relocatable program 3-5
Zeroed words 4-46
Zero fill 2-14, 4-51
Zero guaranteed
data item 2-14
DIS item 4-48
ZJN instruction
description 9-6
effect of J 4-9,10
ZR instruction
description 8-22,24

force upper 3-4 '

ZXi instruction 8-34

60492600 G

S~

K

(

N—

R

N .
RN

CUT ALONG LINE

AA3419 REV. 4/79 PRINTED IN U.S.A.

T oo M oo MU g g R T

G corroraTion

COMMENT SHEET
MANUAL TITLE: COMPASS Version 3 Reference Manual
PUBLICATION NO.: 60492600 REVISION: G

NAME:

COMPANY:

STREET ADDRESS:

ary: STATE: ZiP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manvual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

O PLEASE REPLY {0 NO REPLY NECESSARY

NO POSTAGE STAMP NECESSARY IF MAILED IN US.A.

FOLD ON DOTTED LINES

TAPE TAPE
FOLD FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

I

BUS'NESS REPLY MAIL I

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.]

]

POSTAGE WILL BE PAID BY N

CONTROL DATA CORPORATION —

|

Publications and Graphics Division R

215 Moffett Park Drive N

Sunnyvale, California 94086]

]

]

]
FOLD - - FOLD
TAPE

CUT ALONG LINE

N

~—

pN

PSEUDO INSTRUCTION INDEX

Name

ABS
BASE
BSS
BSSZ
Bi=1
B7=1
CHAR
CODE
CoL
COMMENT
CON
CPOP
CPSYN
CTEXT
DATA
DECMIC
DIS
DUP
ECHO
EJECT
ELSE'
ENDT
ENDD
ENDIFT
ENDM
ENDX
ENTRY
ENTRYC
EQU
ERR
ERRMI
ERRNG
ERRNZ
ERRPL
ERRZR
EXT
HERE
IDENT

IF
IFC
IFCP
IFCP6
IFCP7
IFEQ
IFGE
IFGT
IFLE
IFLT
IFEMI
IFNE
IFPL
IFPP

N

Placement

first group
anywhere
normal
normal
anywhere
anywhere
anywhere
anywhere
normal
anywhere
normal
anywhere
anywhere
normal
normal
anywhere
normal
normal
normal
anywhere

. anywhere

required last
anywhere
anywhere
anywhere
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
anywhere
required first

normal
anywhere
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal

Looked for during IF skipping.

Usage

CPA
CP PP
CP PP
CP PP
CP

CP

CP PP
CP PP
CP PP
CP,PP
CP,PP
cP

CP

CP

CP,PP
CP PP
CP PP
CP,PP
CP PP
CP,PP
CP PP
CP PP
CP,PP
CP PP
CP,PP
CP PP
CPPP
CP PP
CP,PP
CP,PP
CP PP
CP,PP
CP,PP
CP PP
CP.PP
CP PP
CP PP
CP PP

CP.pP
CP.PP
CP.PP
CPPP
CP.rp
CP,pPP
CP.pP
CP,PP
CP,pP
CP.,PP
CP.pP
CP.PP
CPPP

CP,PP

Page
Number

4-6
4-22.1
4-35
4-46
4-28
4-28
4-24
4-24
4-29
4-20
4-52
6-7
6-10
477
4-46
7-4
4-47
5-6
5-7
4-74
4-58
44
5-10
457
5-14
4-77
4-43
4-43
4-39
4-69
4-70
4-70
4-70
4-70
4-70
445
54
4-2 and
4-11
4-63
4-66
4-58
4-58
4-58
4-60
4-60
4-60
4-60
4-60
4-62
4-60
4-62
4-58

Name

IFPP6
IFPP7

IRP

LCC
LDSET
LIST

LIT

LocC
LOCAL
MACHINE
MACRO
MACROE
MAX
MICCNT
MICRO
MIN

NIL
NOLABEL
NOREF
OCTMIC
OPDEF
OPSYN
ORG
ORGC
PERIPH
POS

PPOP

PPU
PURGDEF
PURGMAC
QUAL
REP
REPC
REPI
RMT

R=

SEG
SEGMENT
SET

SKIP
SPACE
SST
STEXT
STOPDUP
TITLE
TTL

USE
USELCM
VFD
XREF
XTEXT
(blank)

Legend

CcP
CPA
CPR
PP

Page
Placement Usage ~ Number
normal Cp PP 4-58
normal CP PP 4-58
anywhere CP PP 5-33
normal CPR 421
anywhere CPR 4-21
anywhere CPPP 4-71
normal CP PP 4-49
normal CP PP 4-36
macro or opdef CPPP 5-31
first group CP.pPP 4T
anywhere CP PP 5-15°
anywhere CP.pP 5-24
normal CP PP 4-40
anywhere CP.PP 442
anywhere CP,PP 72
normal CP PP 4-41
anywhere CP,pPP 6-6
anywhere CPA PP 420
anywhere CP,PP 476
anywhere CP PP 7-4
anywhere CP 5-27
anywhere CP PP 6-5
normal CP PP 4-33
normal CPPP 4-33
first group pp 4-10
normal CP.PP 4-38
anywhere PP 6-3
first group PP 4-8
anywhere CP 6-10
anywhere PP.CP 6-7
anywhere CPYP 425
normal CPR 4-55
normal CPR 4-55
normal CPR 4-55
anywhere CP PP 53
normal cp 4-53
normal CPA PP 4-16
normal CPA PP 4-15
normal CP.PP 4-39
anywhere CP PP 4-68
anywhere CP PP 4-74
anywhere CP PP 4-43
first group CP PP 4-17
normal CP.PP 5-9
anywhere CP PP 4-75
anywhere CP PP 4-76
normal CPPP 4-30
normal Ccp 4-32
normal CP.PP 4-51
anywhere CP.PP 4-78
normal CP.PP 52
normal CP,pPP 4-46
normal CP.PP 4-39

Absolute or relocatable CPU program
Absolute CPU program
Relocatable CPU program
Absolute PPU program

60492600 G

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN. 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

>
-

- CONTROL DATA CORPORATION

LITHO IN U.S.A.

