CYBIL for NOS/VE GD

- .. CONTROL
Language Definition LN

Usage 60464113

NOTE

cover of the last edition have been moved. They are now Listed on facing
pages inside the back cover of this manual

CYBIL for NOS/VE
Language Definition

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features

and parameters.

Publication Number 60464113

Related Manuals

Background (Access as Needed):

SCL
Language
Definition

SCL
System
tnterface

Quick

Usage Usage Reference
6046401 3 6046401 [} 60464018
CYBIL Manual Set:

CYBIL CYBIL CYBIL
File System Sequential
Management Interface and Byte

Addressable
Files

Usage
60464114

Usage
60464116

Usage
60464115

CYBIL
Keyed-File
and

Sort/Merge
Interfaces

Usage
50464117

Diagnostic SCL SCL SCL
Messages Saurce Code Object Code Advanced
for Management Management File
NOS/VE Management
Usage Usage Usage
60464613 6045431 3 60464413 D 60486413

The shaded manual in the diagram is the manual you’re using.

— indicates a reading sequence.

l(____) indicates that the manual is available online.

© 1984, 1985 by Control Data Corporation.
All rights reserved.
Printed in the United States of America.

2 CYBIL Language Definition

Revision D

I

Manual History

This manual is Revision D, printed in October 1985. It reflects NOS/VE
Version 1.1.3. at PSR level 644. Feature changes include: addition of the
#SEQ function, addition of adaptable types as arguments for the #SIZE
function, and addition of the INLINE attribute for user-defined functions.
Minor technical corrections and editorial changes have been incorporated.
This edition obsoletes all previous editions.

Previous

Revisions System Version Date

A 1.0.2 February 1984
B 1.1.1 July 1984

C 112 March 1985

Revision D Manual History 3/4 @

® Contents

About This Manual 7
. Audiencecoovuennnn. 7
Organization 7
The CYBIL Manual Set 7
Conventions................. 8
Additional Related Manuals.. 9
Ordering Manuals 9
Submitting Comments 9
Introduction................. 11
Program Structure.......... 2-1
Elements Within a
Program.................. 21
Structure of a Program 28

Constant, Variable, Type, and

‘ Section Declarations. 31
Constant Declaration 31
Variable Declaration........ 33
Type Declaration 316
Section Declaration 3-18
Types.......o.ovvvvvinn.n. 41
Using Types................ 4-2
Equivalent Types 4-2
Basic Types 43
Structured Types 4-19
Storage Types 4-40
Adaptable Types 442

Expressions and

Statements 5-1

‘ Expressions 51

Statements 513

Functions.................... 61

‘ Standard Functions. 6-1
Revision D

User-Defined Functions6-17

System-Dependent
Functions................ 6-23
Procedures 7-1
Standard Procedures........ 71
User-Defined
Procedures 79
System-Dependent
Procedures 7-15
The CYBIL Command and
Other Compilation
Facilities 81
CYBIL Command 81
FORMAT _CYBIL_SOURCE
Command 87
Compilation Declarations
and Statements 8-8

Compile-Time Directives ...8-12

The Debug Utility 9-1
Introduction................ 91
Accessing Debug 9-2
Debug Concepts 95
Debug Subcommands 9-18
Debug Functions 9-74
Using Debug 9-82

Glossary.................... Al

CharacterSet B1

Reserved Words C1

Data Representation

inMemory D-1

Index Index-1

Contents 5/6

About This Manual

This manual describes CYBIL, the implementation language of the
CONTROL DATA® Network Operating System/Virtual Environment
(NOS/VE).

Audience

This manual is written as a reference for CYBIL programmers. It assumes
that you understand NOS/VE and System Command Language (SCL)
concepts as presented in the SCL Language Definition manual and the SCL
System Interface manual. You will also need to be familiar with the CYBIL
file manuals (described next under Organization) in order to perform input to
and output from a CYBIL program.

Organization

This manual is organized by topic, based on elements of the CYBIL
language. The first chapter introduces the basic elements of the language
and refers you to the chapter in which each is further described.

The CYBIL Manual Set

This manual is part of the CYBIL manual set. Besides this manual, the
CYBIL manual set includes the following:

e The CYBIL System Interface manual, which describes the CYBIL
procedures that pertain to command language services and processing,
program services and management, task and job management services,
condition processing, message generation, and interstate communication.

o The CYBIL File Management manual, which describes the CYBIL
procedures that assign files to device classes, specify attributes for files,
and perform file opening, closing, and copying.

e The CYBIL Sequential and Byte Addressable Files manual, which
describes the CYBIL procedures that perform data manipulation on
sequential and byte addressable files.

e The CYBIL Keyed-File and Sort/Merge Interfaces manual, which
describes:

- The interface to NOS/VE keyed-files (that is, files having the indexed-
sequential and direct-access file organizations).

- The interface to NOS/VE Sort/Merge (which is used to sort records or
merge files of sorted records).

Revision D About This Manual 7 @

CONVENTIONS

Conventions

Within the formats for declarations, type specifications, and statements
shown in this manual, uppercase letters represent reserved words; they must
appear exactly as shown. Lowercase letters represent names and values that
you supply.

Required parameters are shown in bold type. Optional parameters are shown
in italics and are enclosed by braces, as in:

{ PACKED

If the parameter is optional and can be repeated any number of times, it is
also followed by several periods, as in:

{ name }...

For example, the notation {digit} means zero digits or one digit can appear;
{digit}... means zero, one, or more digits can appear. Braces also indicate that
the enclosed parameters and reserved words are used together. For example,

{offset MOD base}

is considered a single parameter. Except for the braces and periods
indicating repetition, all other symbols shown in a format must be included.

Numbers are assumed to be decimal unless otherwise noted.

In examples that show interactive terminal sessions, user input is printed in
blue. System output is printed in black.

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by vertical bars in the margins or by a dot near
the page number if more than half the page is affected.

8 CYBIL Language Definition Revision D

ADDITIONAL RELATED MANUALS

Additional Related Manuals

The related manuals listed on page 2 include the manuals you should be
familiar with to this point, and which manuals you may want to read
following this one. In addition, you may want to have a copy of the CDC®
CYBER 170/180 Models 810, 815, 825, 830, 835, 845, 855, and 990 (Virtual
State) Hardware Reference Manual, Volume II, publication number
60458890. You do not need the hardware manual to use the information in
this CYBIL manual, but it is useful because it includes more detail about the
hardware and, in particular, the hardware instructions used in certain
CYBIL procedures described in this manual.

The Math Library manual, publication number 60486513, describes the
mathematical routines available in the Math Library. These routines can be
accessed by CYBIL programs.

The Diagnostic Messages for NOS/VE manual, publication number
60464613, documents diagnostic messages generated by NOS/VE.

Ordering Manuals

Control Data manuals are available through Control Data sales offices or
through:

Control Data Corporation
Literature Distribution Services
308 North Dale Street

St. Paul, Minnesota 55103

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your
opinion of the manual’s usability, to suggest specific improvements, and to
report technical or typographical errors. If the comment sheet has already
been used, you can mail your comments to:

Control Data Corporation

Publications and Graphics Division ARH219
4201 Lexington Avenue North

St. Paul, Minnesota 55126-6198

Please indicate whether you would like a written response.

Additionally, if you have access to SOLVER, an online facility for reporting
problems, you can use it to submit comments about the manual. When
entering your comments, use CIL as the product identifier.

Revision D About This Manual 9

@ Introduction 1

This chapter introduces the basic elements of a CYBIL program and refers
‘ you to the chapter in which each is further described.

Introduction 1

A CYBIL program consists of two kinds of elements: declarations and
statements. Declarations describe the data to be used in the program.
Statements describe the actions to be performed on the data.

Declarations and statements are made up of predefined reserved words and
user-defined names and values. The way you form these elements is
described in chapter 2, as is the general structure for designing a CYBIL
program,

Data can be either constant or variable. You can use the constant value itself
or give it a name using the constant declaration (CONST). Variables are
named, initialized, and given certain characteristics with the variable
declaration (VAR).

One of the characteristics of a variable is its type, for example, integer or
character. You can use CYBIL’s predefined types or define your own types.
To define a new type or redefine an existing type with a new name, you use
the type declaration (TYPE). Once you have defined a type, CYBIL will treat
it as a standard data type; you can specify your new type name as a valid
type in a variable declaration and CYBIL will perform standard type
checking on it. You can also declare where you want certain variables to
reside by defining an area called a section, which can be a read-only section
or a read/write section. This is done with the SECTION declaration. All of
these data-related declarations are described in chapter 3.

Many standard types are available, including integers, floating-point
numbers, characters, and boolean values, to name a few. In addition, you
can use combinations of the standard types to define your own data types,
for example, a record that contains several fields. The next few paragraphs
summarize the types that are predefined by CYBIL. They are described in
detail in chapter 4.

Among the basic types are scalar types, that is, those that have a specific
order. Besides integer, character, and boolean values, you can declare an
ordinal type in which you define the elements and their order. You can also
specify a subrange of any of the scalar types by giving a lower and upper
bound. Floating-point (real) numbers are also available. A cell, which
represents the smallest addressable unit of memory, can be specified as a
type. A pointer is a type that points to a variable, allowing you to access the
variable by location rather than by name. These are the basic types: scalar,
floating point, cell, and pointer. With these basic types you can construct the
structured types: strings, arrays, records, and sets.

Revision A Introduction 1-1

INTRODUCTION

A string is a sequence of characters. You can reference a portion of a string
(called a substring) or a single character within a string. An array is a
structure that contains components all of the same type. The components of
an array have a specific order and each one can be referenced individually. A
record is a structure that contains a fixed number of fields, which may be of
different types. Each field has a unique name within the record and can be
referenced individually. You can also declare a variant record that has
several possible variations (variants). The current value of a field common to
all variants, or the latest assignment to a specific variant field determines
which of the variants should be used for each execution. A set is a structure
that contains elements of a single type. Yet unlike an array, elements in a set
have no order and individual elements cannot be referenced. A set can be
operated on only as a whole.

Storage types are structures to which variables can be added, referenced, and
deleted under explicit program control using a set of storage management
statements. The two storage types are sequences and heaps.

All of the types mentioned above are considered fixed types; that is, there is a
definite size associated with each one when it is declared. If you want to
delay specifying a size until execution time, you can declare it as an
adaptable type. Then, sometime during execution, you assign a fixed size or
value to the type. A string, array, record, sequence, or heap can be adaptable.

All of these types are described in chapter 4.

Statements define the actions to be performed on the data you've defined.
The assignment statement changes the value of a variable. Structured
statements contain and control the execution of a list of statements. The
BEGIN statement unconditionally executes a statement list. The WHILE,
FOR, and REPEAT statements control repetitive executions of a statement
list.

Control statements control the flow of execution. The IF and CASE
statements execute one of a set of statement lists based on the evaluation of a
given expression or the value of a specific variable. CYCLE, EXIT, and
RETURN statements stop execution of a statement list and transfer control
to another place in the program.

Storage management statements allocate, access, and release variables in
sequences (using the RESET and NEXT statements), heaps (using the
RESET, ALLOCATE, and FREE statements), and the run-time stack (using
the PUSH statement).

All of the preceding statements are described in detail in chapter 5, along
with the operands and operators that can be used in expressions within
statements and declarations.

1-2 CYBIL Language Definition Revision A

INTRODUCTION

Statements can appear within a program (as described in chapter 2), a
function, or a procedure.

A function is a list of statements, optionally preceded by a list of
declarations. It is known by a unique name and can be called by that name
from elsewhere in the program. A function performs some calculation and
returns a value that takes the place of the function reference. There are many
standard functions defined in CYBIL and you can also create your own.
Standard functions and rules for forming your own functions are described
in chapter 6.

A procedure, like a function, is a list of statements, optionally preceded by a
list of declarations. It also is known by a unique name and can be called by
that name from elsewhere in the program. A procedure performs specific
operations and may or may not return values to existing variables. You can
use the standard procedures and also define your own. Chapter 7 describes
the standard procedures and rules for forming your own procedures.

Chapter 8 describes the CYBIL command and the FORMAT_CYBIL _
SOURCE command. You can use the CYBIL command to call the CYBIL
compiler, tell it which files to use for input and output, and specify what kind
of listing you want. You use the FORMAT_CYBIL_SOURCE command to
reformat CYBIL source code. Chapter 8 also describes directives that are
available at compilation time to specify listing options, run-time options, the
layout of the source text and resulting object listing, and what specific
portions of the source text to compile.

Chapter 9 describes the Debug utility, which aids you in debugging CYBIL
programs at a source code level or machine code level, in either interactive or
batch mode.

In summary, chapters 2 through 7 describe the elements within a CYBIL
program. Chapter 8 describes the command and directives that control how
the program is actually compiled. Chapter 9 describes debugging
capabilities.

Procedures that perform input to and output from CYBIL programs are
described in the CYBIL File Management manual, the CYBIL Sequential
and Byte Addressable Files manual, and the CYBIL Keyed-File and
Sort/Merge Interfaces manual.

Revision D Introduction 1-3

Program Structure 2

This chapter describes how to form the individual elements used within a
program and how to structure the program itself.

Elements Within a Programcviiiiiiniiiiiiiiiiiiiinanannnns 2-1
Valid Characterscoouiniiiiireeeterriereeereenaeanennaaannns 2-1
CYBILDefined Elementsc.ovuteiirrreeneiieenneanneennnns 21
User-Defined Elementsccoviiiiiiiiiiiie e iiiiiiiiinnannnnns 2-2

NaAIES ..ot e e e e e 2-2
L0702 5717) 1 1~ AU 2-3
Constant Expressions............c.coiiiiiiiiiiiiiiiiiiaiiinanens 26
Sy A . ottt e e e e e 2-6
S 0 T2 Y=< S 2-6
COMIMENTS ... ittt ittt it e et it naeerennes 2-7
Punctuation et 27
PG . .ottt e e e 27

Structure of a Program i e 2-8
Module Structureoovvtriii it i 2-8
S Ts) o= 2-8
Module Declaration..........ooieiiiiiiiiiie it iiiiii e ieaienenns 2-10

Program Declarationoiiiiiiiiiiiiiiii e 2-12

Program Structure 2

This chapter describes how to form the individual elements used within a
program and how to structure the program itself.

Elements Within a Program

Valid Characters

The characters that can be used within a program are those in the ASCII
character set that have graphic representations (that is, can be printed). This
character set is included in appendix B. It contains uppercase and lowercase
letters. In names that you define, you can use uppercase and lowercase
letters interchangeably. For example, the name LOOP_COUNT is
equivalent to the name loop_count.

CYBIL-Defined Elements

CYBIL has predefined meanings for many words and symbols. You cannot
redefine or use these words and symbols for other purposes.

A complete list of CYBIL reserved words is given in appendix C. In the
formats for declarations, type specifications, and statements shown in this
manual, reserved words are shown in uppercase letters.

The following list includes the reserved symbols and a brief description of
the purpose of each. They are discussed in more detail throughout this
manual.

Symbol Purpose
+ - % /5 <, <=, These symbols are primarily operators used
>, >=, <> 0 () in expressions. They are discussed in chapter 5.

; The semicolon separates individual declarations and
statements.

The colon is used in declarations as described in chapter
3.

, The comma separates repeated parameters or other
elements.

A single period indicates a reference to a field within a
record as described in chapter 4.

{Continued)

Revision A Program Structure 2-1

ELEMENTS WITHIN A PROGRAM

(Continued) ‘

Symbol Purpose

Two consecutive periods indicate a subrange as

described in chapter 4. ‘

The circumflex indicates a pointer reference as
described in chapter 4.

Apostrophes delimit strings.

[1] Brackets enclose array subscripts, indefinite value
constructors, and set value constructors as described in
chapter 4.

{} Braces delimit comments. (Within the formats shown in

this manual, they are also used to enclose optional
parameters.)

?or?? A single question mark or a pair of consecutive question
marks indicate compile-time statements and directives
as described in chapter 8.

User-Defined Elements ‘

Names

You define the names for elements, such as constants, variables, types,
procedures, and so on, that you use within a program. A name:

e Can be from 1 to 31 characters in length.

e Can consist of letters, digits, and the special characters # (number sign),
@ (commercial at sign), _ (underline), and $ (dollar sign).t

® Must begin with a letter. (There is an exception to this rule for system-
defined functions and procedures that begin with the # or $ character.)

¢ (Cannot contain spaces.

T NOS/VE often uses § in its predefined names. To keep from matching a
system reserved name, avoid using $ in the names you define. ‘

2-2 CYBIL Language Definition Revision A

ELEMENTS WITHIN A PROGRAM

In the formats included in this manual, names that you supply are shown in
lowercase letters. Within a program, however, there is no distinction between
uppercase and lowercase letters. The name my _file is identical to the name
My _File.

There is considerable flexibility in forming names, so you should make them
as descriptive as possible to promote readability and maintainability of the
program. For example, LAST_FILE_ACCESSED is more obvious than
LASTFIL.

Examples:

Valid Names Invalid Names
SUM ARRAY
REGISTER#3 FILES&POSITIONS

POINTER_TABLE 2ND

The va'*d names need no explanation. Among the invalid names, ARRAY
cannot L ‘ used because it is a reserved word; FILES&POSITIONS contains
an invalic ~haracter (the ampersand); and 2ND does not begin with a letter.

Constants

A constant is a fixed value. It is known at compilation time and does not
change throughout the execution of a program. It can be an integer,
character, boolean, ordinal, floating-point number, pointer, or string.

Integer constants can be binary, octal, decimal, or hexadecimal. The base is
specified by enclosing the radix in parentheses following the integer, as
follows:

integer (radix)

Examples are 1011(2) and 19A(16). If the radix is omitted, the integer is
assumed to be decimal. Integer constants must start with a digit; therefore, 0
must precede any hexadecimal constant that would otherwise begin with a
letter, for example, OFF(16). Negative integer constants must be preceded by
a minus sign. Positive integer constants can be preceded by a plus sign but
need not be.

Integer constants range in value from -(263-1) to 263-1; that is,
-7FFFFFFFFFFFFFFF hexadecimal through 7FFFFFFFFFFFFFFF
hexadecimal.

A character constant can be any single character in the ASCII character set.
The character is enclosed in apostrophes in the following form:

’character’

Examples are A’ and ’?’. The apostrophe character itself is specified by a
pair of apostrophes.

Revision D Program Structure

2-3

ELEMENTS WITHIN A PROGRAM

A boolean constant can be either FALSE or TRUE, each having its usual .
meaning.

An ordinal constant is an element of an ordinal type that you have defined.
For further information, refer to Ordinal under Scalar Types in chapter 4.

Floating-point (real) constants can be written in either decimal notation or ‘
scientific notation. A real number written in decimal notation contains a

decimal point and at least one digit on each side, for example, 5.123 or

-72.18. If the number is positive, the sign is optional; if negative, the sign is

required.

A real number written in scientific notation is represented by a number (the
coefficient), which is multiplied by a power of 10 (the exponent) in the form:

coefficientEexponent
The prefix E is read as “times 10 to the power of ”’; for example,
5.1E6

is 5.1 times 10 to the power of 6, or 5,100,000. The decimal point in the
coefficient is optional. A decimal point cannot appear in the exponent; it
must be a whole number. If the coefficient or exponent is positive, the sign is
optional; if negative, the sign is required.

The pointer constant is NIL. It indicates an unassigned pointer. For CYBIL ‘
on NOS/VE, a pointer is represented partially by an address called the

process virtual address (PVA). The PVA is represented as a packed record

consisting of three fields: the ring number, segment number, and byte offset.

To indicate the NIL pointer constant internally, CYBIL sets these three

fields to OF hexadecimal, OFFF hexadecimal, and 80000000 hexadecimal,

respectively. NIL can be assigned to a pointer of any type.

2-4 CYBIL Language Definition Revision D

ELEMENTS WITHIN A PROGRAM

String constants consist of one or more characters enclosed in apostrophes in
the form:

’string’

An example is 'USER1234’, a string of eight characters. An apostrophe in a
string constant is specified by a pair of apostrophes, for example, 'DON”T".

String constants can be concatenated by using the reserved word CAT, as in:
’characters_1’ CAT ’characters_2’

The result is the string ’characters_1characters_2’. The CAT operation
cannot be used with string variables.

A string constant can be empty, that is, a null string; for example,
stri=";

assigns a null string to the string constant STR. As a result of this
statement, the length of STR is set to zero.

You cannot reference parts (substrings) of string constants.

Revision D Program Structure 25

ELEMENTS WITHIN A PROGRAM

Constant Expressions .

Expressions are combinations of operands and operators that are evaluated

to find scalar or string type values. In a constant expression, the operands

must be constants, names of constants (that you declare using the constant

declaration described in chapter 3), or other constant expressions within ‘
parentheses. Computation is done at compile time and the resulting value

used in the same way a constant is used.

The general rules for forming and evaluating expressions are described
under Expressions in chapter 5. These rules apply to constant expressions
with the following exceptions:

e (Constant expressions must be simple expressions; terms involving
relational operators must be delimited with parentheses.

¢ The only functions allowed as factors in constant expressions are the
$INTEGER, $CHAR, SUCC, and PRED functions with constant
expressions as arguments.

® Substring references are not allowed.

Syntax

The exact syntax of the language is shown in the formats of individual ‘
declarations and statements described in the remainder of this manual. The
following paragraphs discuss general syntax rules.

Spaces
Spaces can be used freely in programs with the following exceptions:

¢ Names and reserved words cannot contain embedded spaces. Normally,
constants cannot contain spaces either, but a character constant or string
constant can.

® A name, reserved word, or constant cannot be split over two lines; it must
appear completely on one line.

e Names, reserved words, and constants must be separated from each other
by at least one space, or one of the other delimiters such as a parenthesis
or comma.

For further information, refer to Spacing later in this chapter. ‘

26 CYBIL Language Definition Revision A

ELEMENTS WITHIN A PROGRAM

Comments

Comments can be used in a program anywhere that spaces can be used
(except in string constants). They are printed in the source listing but
otherwise are ignored by the compiler.

A comment is enclosed in left and right braces: { }. It can contain any
character except the right brace (}). To extend a comment over several lines,
repeat the left brace ({) at the beginning of each line. If the right brace is
omitted at the end of the comment, the compiler ends it automatically at the
end of the line.

Example:

{this comment
{appears on
{several lines.}

Within this manual, the formats for declarations, type specifications, and
statements use braces to indicate an optional parameter.

Punctuation

A semicolon separates individual declarations and statements. It must be
included at the end of almost every declaration and statement. The single
exception is MODEND which can, but need not, end with a semicolon if it is
the last occurrence of MODEND in a compilation. Punctuation for specific
declarations and statements is shown in the formats in the following
chapters.

Two consecutive semicolons indicate an empty statement, which the
compiler ignores. Spacing between the semicolons in this case is
unimportant.

Spacing

Declarations and statements can start in any column. In this manual,
indentations are used in examples to improve readability. It is recommended
that similar conventions be used in your programs to aid in debugging and
documentation for yourself and other users.

The LEFT and RIGHT directives, described in chapter 8, can be used at
compilation time to specify the left and right margins of the source text. All
source text outside of those margins is then ignored. A warning diagnostic is
issued for every line that exceeds the specified right margin.

A name, reserved word, or constant cannot be split over two lines; each must
appear completely on one line.

Revision A Program Structure 2-7

STRUCTURE OF A PROGRAM

Structure of a Program

Module Structure

The basic unit that can be compiled is a module and, optionally, compile-time
statements and directives. A module can, but need not, contain a program.
Use this general structure for a module:

MODULE module_name;
declarations
PROGRAM program_name;
declarations
statements
PROCEND program_name;
MODEND module name;

Declarations can be constant, type, variable, section, function, and procedure
declarations. A module can contain any number and combination of
declarations, but it can contain at most one program. The program contains
the code (that is, the statements) that are actually executed. The required
module and program declarations are described later in this chapter.

The structure within a module determines the scope of the elements you
declare within it.

Scope

The scope of an element you declare, such as a variable, function, or
procedure, is the area of code where you can refer to the element and it will
be recognized. Scope is determined by the way the program and procedures
are positioned in a module and where the elements are declared.

In terms of scope, the programs, procedures, and functions are often referred
to as blocks (that is, blocks of code). Generally, if an element is declared
within a block, its scope is just that block. Outside the block, the element is
unknown and references to it are not valid. A variable declared within a
block is said to be local to the block and is called a local variable.

An element declared at the module level (that is, one that is not declared
within a program, procedure, or function) has a scope of the entire module. It
can be referred to anywhere within the module. A variable declared at the
module level is said to be global and is called a global variable.

A block can contain one or more subordinate blocks. A variable declared in
an outer block can always be referenced in a subordinate block. However, if a
subordinate block declares an element of the same name, the new declaration
applies while inside that block. Figure 2-1 illustrates these rules.

2-8 CYBIL Language Definition Revision A

STRUCTURE OF A PROGRAM

BLOCK 1
A DECLARATION <4—— Variable A can be referred to anywhere
in block 1, including blocks 2, 3, and 4.
BLOCK 2
B DECLARATION «— Variable B can be referred to only in
block 2.
BLOCK 3
C DECLARATION «4—— Variables C and D can be referred to
D DECLARATION anywhere in blocks 3 and 4.
BLOCK 4
D DECLARATION <4—— However, block 4 again declares a
variable named D. This second
declaration identifies a different
variable D and is in effect within
block 4 only. OQOutside of block 4,
yet within block 3, the original

declaration for D applies.

Figure 2-1. Scope of Variables Within a Block Structure

Storage space is allocated for a variable when the block in which it is
declared is entered. Space is released when an exit is made from the block.
Because space is allocated and released automatically, these variables are
called automatic variables. You can specify that storage for a variable
remains throughout execution by including the STATIC attribute when you
declare the variable. A variable declared in this way is called a static
variable. A global variable is always static. Because it is declared at the
outermost level of a module (consider the module to be a block), storage for a
global variable is allocated throughout execution of the module (or block).
For further information on automatic and static variables, refer to Variable
Declaration in chapter 3.

The one exception to the preceding rules is an element declared with the
XDCL (externally declared) attribute. This attribute means the element is
declared in one module but can be referred to in another. In this case, the
loader handles the links between modules. For further information on the
XDCL attribute, refer to chapter 3.

Revision A Program Structure 29

MODULE DECLARATION

Module Declaration

The module declaration marks the beginning of a module. MODEND marks
the end of a module. A module can contain at most one program and any
combination of type, constant, variable, section, function, and procedure
declarations. If two or more modules are compiled and linked together for
execution, there can be only one program declaration in all the linked
modules.

Use this format for a module declaration:
MODULE name;}

name

The name of the module.
Use this format for MODEND:
MODEND { name };

name

The name of the module. This parameter is optional. If used, the name
must be the same as that specified in the module declaration.

When compiling more than one module, a semicolon is required after each
occurrence of MODEND except the last one. There it is not required but is
recommended.

Examples:

The following example shows a module named ONE that contains various
declarations and a program named MAIN. The module name and semicolon
could be omitted following MODEND, but it is recommended that you
include both.

MODULE one;

declarations
PROGRAM main;
declarations
statements
PROCEND main;
MODEND one;
t Some variations of CYBIL available on other operating systems allow an

additional option, the alias name, in a module declaration. If included in a
CYBIL program run on NOS/VE, this parameter is ignored.

2-10 CYBIL Language Definition Revision D

MODULE DECLARATION

The following example shows a compilation consisting of three modules
named ONE, TWO, and THREE. All three modules can be compiled and the
resulting object modules linked together to form a single object module that
can then be executed. For readability, the module names are included in all
occurrences of MODEND. The semicolon could be left off the last occurrence
of MODEND, but it is a good practice to include it.

MODULE one;
declarations/statements

MODEND one;
MODULE two;

declarations/statements
MODEND two;
MODULE three;

declarations/statements
MODEND three;

Revision D Program Structure 2-11

PROGRAM DECLARATION

Program Declaration

The program declaration marks the beginning of a program. The end of a
program is marked by a PROCEND statement. A program can contain any
combination of type, constant, variable, section, function, and procedure
declarations, and any statements. If two or more modules are compiled and
linked together for execution, there can be only one program declaration in
the linked modules.

Use this format for a program declaration:
PROGRAM name {(formal_parameters)};t

name

The name of the program.

formal_parameters

One or more optional parameters included if the program is to be called
by the operating system. They can be in the form

VAR name {,namejl... : type
{,name {,name}... : type}...

and/or

name {,name}... : type
{,name {,name}... : type}...

where name is the name of the parameter and type is the type of the
parameter, that is, a predefined type (described in chapter 4) or a user-
defined type (described in chapter 3).

The first form is called a reference parameter; its value can be changed
during execution of the program. The second form is called a value
parameter; its value cannot be changed by the program. Both kinds of
parameters can appear in the formal parameter list; if so, they must be
separated by semicolons (for example, LINTEGER; VAR A:CHAR).
Reference and value parameters are discussed in more detail later in
this chapter.

1 Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a program declaration. If included in a
CYBIL program run on NOS/VE, this parameter is ignored.

2-12 CYBIL Language Definition Revision D

PROGRAM DECLARATION

The optional parameter list is included if a CYBIL program is to be called by
the operating system. It allows the system to pass values (for example, a
string that represents a command) to a CYBIL program. For further
information on passing parameters from the operating system, refer to the
CYBIL System Interface manual.

When the system calls a program, it includes parameters called actual
parameters in the call. The values of those actual parameters replace the
formal parameters in the parameter list one-for-one based on position; that is,
the first actual parameter replaces the first formal parameter, and so on.
Wherever the formal parameters appear in statements within the program,
the values of the corresponding actual parameters are substituted. For every
formal parameter in the program declaration, there must be a corresponding
actual parameter.

When a reference parameter is used, the formal parameter represents the
corresponding actual parameter throughout execution of the program. Thus,
an assignment to a formal parameter changes the variable that was passed
as the corresponding actual parameter. An actual parameter that
corresponds to a formal reference parameter must be addressable. A formal
reference parameter can be of any type.

When a value parameter is used, the formal parameter takes on the value of
the corresponding actual parameter. However, the program cannot change a
value parameter by assigning a value to it or specifying it as an actual
reference parameter to a procedure or function. A formal value parameter
can be of any type except a heap, or an array or record that contains a heap.

Revision D Program Structure 213

PROGRAM DECLARATION

Use this format for PROCEND:
PROCEND { name };

name

The name of the program. This parameter is optional. If used, the
name must be the same as that specified in the program declaration.

Example:

The following example shows a program named MAIN that contains various

declarations, including a procedure named SUB_1:
PROGRAM main;
declarations
PROCEDURE sub_1;
declarations
statements
PROCEND sub_1;

statements
PROCEND main;

2.14 CYBIL Language Definition

Revision D

Constant, Variable, Type, and
Section Declarations 3

This chapter describes how you declare constant and variable data types and
new data types. It also describes how you specify a particular section in
which to group data.

Constant Declaration ...t 31
Variable Declarationccovviueriiiiireeiniii i iiiiiteiaannaens 33
7N 7y 0 11 7Y T U PUPPPPPI 36

- <Y1 A 36

I 77 - Y AP 37
370 - Y~ S PN 39
Initialization . ..ov ittt i i e i e e e e e e 3-13
Type Declarationovvinree i e e e e 3-16

Section Declarationuiriererireiniererereeereeereeeeeenens 3-18

® Constant, Variable, Type, and
Section Declarations 3

This chapter describes the constant declaration, which defines a name for a
value that never changes; the variable declaration, which defines a name for
a value that can change; and the type declaration, which defines a new type
of data and gives a name to that type. In addition, it also describes the
section declaration, which groups variables that share common access
characteristics.

Constant Declaration

A constant, as described in chapter 2, is a fixed value that is known at
compile time and doesn’t change during execution. A constant declaration
allows you to associate a name with a value and use that name instead of the
actual constant value. This provides greater readability because the name
can be descriptive of the constant. Constant declarations also provide greater
maintainability because the constant value need only be changed in one
place, the constant declaration, not every place it is used in the code.

. Use this format for a constant declaration:
CONST name = value {,name = value}...;

name

The name associated with the constant value.

value

The constant value. It can be an integer, character, boolean, ordinal,
floating-point, pointer, string, or constant expression. Rules for
forming these values are given under Constants and under Constant
Expressions in chapter 2.

You can write several constant declarations, each declaring a single
constant, or a single declaration declaring several constants where each
name = value combination is separated by a comma.

Type is not specified in a constant declaration. The type of the constant is
the same as the type of the value assigned to it.

‘ If used, an expression is evaluated during compilation. The expression itself
can contain other constants.

Revision A Declarations 3-1

CONSTANT DECLARATION

Examples:

Rather than repeat the value of pi throughout a program, you can use a
constant declaration to assign a descriptive name (in this case, PI) to the
value and use that name in subsequent expressions and operations. The
constant declaration is:

CONST
pi = 3.1415927;

The following example shows a constant declaration containing several
different types:

CONST
first = 1,
last = 80,

hex = 0a8(16),

bit_pattern = 10110101(2),
fp_number = 1.2e3,
stop_character = '.',
continue = TRUE,

message = 'end of line',
Llast_pointer = NIL,

length = Llast - first,

result = (1 = 2) DIV 3; .

Each constant has the same type as the value assigned to it. For example,
FIRST and LAST are integer types, as is LENGTH, which is the result of an
expression containing integers. Notice that the value of HEX begins with a 0
because integers must begin with a digit.

32 CYBIL Language Definition Revision A

VARIABLE DECLARATION

Variable Declaration

A variable is an element within a program whose value can change during
execution. The name of the variable stays the same; it is only the value
contained in the variable that changes. To use a variable, you must declare
it.

Use this format for a variable declaration:

VAR name {,name}... : {{attributes]} type {:= initial_value}
{,name {,name)... :{[attributes]} type {:= initial_value}}...;t
name
The name of the variable. Specifying more than one name indicates
that all of the named variables will have the characteristics that follow
(attributes, type, and initial _value).
attributes
One or more of the following attributes. If you specify more than one,
separate them with commas.

READ

Access attribute specifying that the variable is a read-only variable;
the compiler checks to ensure that the value of the variable is not
changed. If you specify READ, you must also specify an initial
value.

XDCL

Scope attribute specifying that the variable is declared in this
module but can be referenced from another module.

XREF

Scope attribute specifying that the variable is declared in another
module but can be referenced from this module.

T Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a variable declaration. If included in a
CYBIL program run on NOS/VE, this parameter is ignored.

Revision D Declarations 3-3

VARIABLE DECLARATION

HGATEY ‘

Scope attribute that allows the variable to be accessed by a

procedure at a higher ring level. This attribute is undefined for

variable declarations. However, if you specify #GATE, you must

also specify the XDCL attribute. ‘

STATIC

Storage attribute specifying that storage space for the variable is
allocated at load time and remains when control exits from the
block. Static storage is assumed when any attributes are specified.

section_name

Storage attribute specifying the name of the user-defined section in
which the variable resides. A variable in a section that is defined as
read-only is protected by hardware, as opposed to software. The
section name and its read/write attributes must be declared using
the section declaration (discussed later in this chapter).

Attributes are described in more detail later in this chapter.

The attributes parameter is optional. If omitted, CYBIL assumes the

variable can be read and written; can be referenced only within the

block where it is created; and, unless it is declared at the outermost

level of a module, is automatic (that is, storage for the variable is ‘
allocated only during execution of the block in which the variable is

declared).

type

Data type defining the values that the variable can have. Only values
within this data type are allowed. Types are described in chapter 4.

initial _value

Initial value assigned to the variable. Specify a constant expression,
an indefinite value constructor (described under Initialization later in
this chapter), or a pointer to a global procedure. Only a static variable
can be assigned an initial value. Initialization is discussed later in this
chapter.

This parameter is optional. If omitted, the variable is undefined and
filled with the loader’s preset value.

t This attribute is not supported on variations of CYBIL available on other

operating systems. .

3-4 CYBIL Language Definition Revision D

VARIABLE DECLARATION

‘ Any variable referenced in a program must be declared with the VAR
declaration. A variable can be declared only once at each block level
although it can be redefined in another block or in a contained (nested) block.

The type assigned to a variable defines the range of values it can take on

‘ and also the operations, functions, and procedures that can use it. CYBIL
checks to ensure that the operations performed on variables are compatible
with their types.

Examples:

The following declarations define a variable named SCORES that can be
any integer number, a variable named STATUS that can be either of the
boolean values FALSE or TRUE, and two variables named ALPHA1 and
ALPHAZ2 that can be characters:

VAR
scores: integer;

VAR
status: boolean;

VAR
alphal: char;

alpha2: char;

The declarations for the two character type variables, ALPHA1 and
ALPHAZ2, could be combined as follows:

VAR
alphail,
alpha2: char;

To combine all of the variables in one declaration, you could use:

VAR
scores: integer,
status: boolean,
alphat,
alpha2: char;

Revision D Declarations 35 @

R ——

VARIABLE DECLARATION

Attributes

Attributes control three characteristics of a variable:
Access - whether the variable can be both read and written
Scope - where within the program the variable can be referenced

Storage - when and where the variable is stored

Access

The access attribute that you can specify is READ. A variable declared with
the READ attribute can only be read. It must be initialized in the declaration
and cannot be assigned another value later. It is called a read-only variable.
If the READ attribute is omitted, CYBIL assumes the variable can be both
read and written (changed).

The READ attribute is enforced by software; that is, the compiler checks to
ensure that the value of a variable does not change. The READ attribute
alone does not mean that the variable is actually in a read-only section.t To
do that, you must specify the name of a read-only section as declared in a
section declaration (described later in this chapter).

A variable with the READ attribute specified is assumed to be static. (For
further information on static variables, refer to Storage later in this chapter.)
You can use a read-only variable as an actual parameter in a procedure call
only if the corresponding formal parameter is a value parameter; that is, a
read-only variable can be passed to a procedure only if the procedure makes
no attempt to assign a value to it. (Procedure parameters are described in
chapter 7.)

A read-only variable is similar to a constant, but can’t always be used in the
same places. For example, the initial value that you can assign to a variable
(as described earlier in this chapter) must be a constant expression, an
indefinite value constructor, or a pointer to a global procedure. In this case,
even though a read-only variable has a constant value, you cannot use it in
place of a constant expression. Also, as mentioned in chapter 2, you cannot
reference a substring of a constant. You can, however, reference a substring
of a variable and, thus, a read-only variable. There are other differences
similar to these. The descriptions in this manual state explicitly whether
constants and/or variables can be used.

T A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

36 CYBIL Language Definition Revision A

VARIABLE DECLARATION

‘ Examples:

In this example the variable DEBUG is a read-only variable set to the
constant value of TRUE. NUMBER can be read and written.

VAR
debug: [READ] boolean := TRUE,
number: integer;

The following example illustrates a difference between constants and read-
only variables. To declare a string type, you must specify the length of the
string in parentheses following its name. As defined in chapter 4, the length
must be a positive, integer constant expression.

CONST
string_size_1 = 5;

VAR
string_size_2: [READ] integer := 5,
stringl: string (string_size_1),
string2: string (string_size_2);

The declaration of STRINGI is valid; the length of the string is 5, which is

the value of the constant STRING_SIZE _1. However, STRING2 is invalid;

even though STRING _SIZE _2 does not change in value, it is still a variable
‘ and cannot be used in place of a constant expression.

Scope

The scope attributes define the part or parts of a module to which a variable
declaration applies. If you don’t include any scope attributes in the
declaration, the scope of a variable is the block in which it is declared. A
variable declared in an outermost block applies to that block and all the
blocks it contains. However, a variable declared even at the outermost level
of a module cannot be used outside of that module. Use the scope attributes,
XDCL and XREF, to extend the scope of a variable so that it can be shared
among modules.

To use the same variable in different modules, you must specify the XDCL
and XREF attributes. The XDCL attribute indicates that the variable being
declared can be referenced from other modules. The XREF attribute indicates
that the variable is declared in another module. When the loader loads
modules, it resolves variable declarations so that each XDCL variable is
‘ allocated static storage and the XREF variable shares the same space. This
is known as satisfying externals. The loader issues an error if an XREF
variable does not have a corresponding XDCL variable. In one compilation
unit or group of units that will be combined for execution, a specific variable
. can have only one declaration that contains the XDCL attribute.

Revision D Declarations 3-7

ﬁ

VARIABLE DECLARATION

Declarations for a shared variable must match except for initialization. A ‘
variable declared with the XDCL attribute can be initialized and have

different values assigned during program execution. A variable declared

with the XREF attribute cannot be initialized but can be assigned values.

If you declare any attributes, the variable is assumed to be static in storage. .
If you don’t declare any attributes, the variable is assumed to be automatic,

unless you declare it at the outermost level of the module. (A variable

declared at the outermost level is always static.)

Example:

Assume the following two modules have been compiled. When the loader
loads the resulting object modules and satisfies externals, it allocates storage
to FLAG, an XDCL variable, and initializes it to FALSE. When the loader
finds the XREF variable FLAG in module TWO, it assigns the same storage.
Thus, references to FLAG from either module refer to the same storage
location.

MODULE one;

VAR
flag: [XDCL] boolean := FALSE;

MODEND one;
MODULE two;

VAR
flag: [XREF] boolean;

MODEND two;

® 38 CYBIL Language Definition Revision D

VARIABLE DECLARATION

' Storage

The storage attributes determine when storage is allocated and where
storage is allocated.

‘ When Storage is Allocated

There are two methods of allocating storage for variables: automatic and
static. For an automatic variable, storage is allocated when the block
containing the variable’s declaration begins execution. Storage is released
when execution of the block ends. If the block is entered again, storage is
allocated again, and so on. When storage is released, the value of the
variable is lost.

For a static variable, storage is allocated (and initialized, if that parameter is
included) only once, at load time. Storage remains allocated throughout
execution of the module. However, even though storage remains allocated, a
static variable still follows normal scope rules. It can be accessed only within
the block in which it is declared. A reference to a static variable from an
outer block is an error even though storage for the static variable is still
allocated.

The ability to declare a static variable is important, for example, in the case
where an XDCL variable is referenced by a procedure before the procedure
‘ that declares the variable is executed. Because an XDCL variable is static
(refer to Scope earlier in this chapter for further information), it is allocated
space and is initialized immediately at load time; therefore, it is available to

be referenced before execution of the procedure that actually declares it as
XDCL.

A variable can be declared static explicitly with the STATIC attribute. It is
assumed to be static implicitly if it is in the outermost level of a module or if
it has any other attributes declared. In all other cases, CYBIL assumes the
variable is automatic. Only a static variable can be initialized.

Revision A Declarations 39

VARIABLE DECLARATION

The period between the time storage for a variable is allocated and the time ‘
that storage is released is called the lifetime of the variable. It is defined in

terms of modules and blocks. The lifetime of an automatic variable is the
execution of the block in which it is declared. The lifetime of a static variable
is the execution of the entire module. An attempt to reference a variable
beyond its lifetime causes an error and unpredictable results.

The lifetime of a formal parameter in a procedure is the lifetime of the
procedure in which it is a part. Storage space for the parameter is allocated
when the procedure is called and released when the procedure finishes
executing.

The lifetime of a pointer must be less than or equal to the lifetime of the data
to which it is pointing.

The lifetime of a variable that is allocated using the storage management
statements (described in chapter 5) is the time between the allocation of
storage and the release of storage. A variable allocated by an automatic
pointer (using the ALLLOCATE statement) must be explicitly freed (using the
FREE statement) before the block is left, or the space will not be released by
the program. When the block is left, the pointer no longer exists and,
therefore, the variable cannot be referenced. If the block is entered again, the
previous pointer and the variable referenced by the pointer cannot be
reclaimed.

Example:

In this example, the variables COUNTER and FLAG will exist during
execution of the entire module; however, they can be accessed only within
program MAIN,

PROGRAM main;
VAR
counter: [STATIC] integer := 0,
flag: [STATIC] boolean;

PROCEND main;

3-10 CYBIL Language Definition Revision D

VARIABLE DECLARATION

Where Storage is Allocated

You can optionally specify that storage for a variable be allocated in a
particular section. A section is a storage area that can hold variables sharing
common access attributes, such as read-only variables or read/write
variables. You can define the section and its access attributes yourself using
the section declaration (discussed later in this chapter).

If you define a section with the section READ attribute, you define a read-
only section in the hardware.t Any variable declared with that section’s
name as an attribute will reside in that read-only section. When you specify
the name of a read-only section in a variable declaration, you must also
include the variable access attribute READ.

In addition to any sections you define, CYBIL has several predefined
sections. You cannot assign a variable to one of these sections explicitly, in
the sense that you could include the section name as an attribute in your
variable declarations. Instead, the variable is assigned to one of these
predefined sections implicitly, based on its other attributes and
characteristics. For example, all static variables that are not assigned to a
user-defined section are automatically assigned to a section named
$STATIC. The following are the CYBIL section names and their contents.

Section Description

$BINDING The binding section that contains the links to
external procedures and the data of the module.

CYB$DEFAULT_HEAP The CYBIL default heap.

$LITERAL Constants.

$SPARAMETER A subset of the $STACK section that contains
parameter list variables.

$REGISTER Variables that exist only in hardware registers.

$STACK Automatic variables.

$STATIC Static variables that are not already assigned to

a user-defined section.

T A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

Revision D Declarations 311 @

VARIABLE DECLARATION

The SCL Object Code Management manual gives further information on ‘
sections regarding the object module format expected as input by the loader
and the object library generator.

Example:

This example defines a read-only section named NUMBERS. The variable .
INPUT_NUMBER is a read-only variable that also resides in the section

NUMBERS. In the variable declaration, the READ attribute causes the

compiler to check that the variable is not written; the read-only section name,
NUMBERS, causes the hardware to ensure that the variable is not written.

SECTION
numbers: READ;

VAR
input_number: CREAD, numbers] integer := 100;

® 312 CYBIL Language Definition Revision D

_J

VARIABLE DECLARATION

Initialization

You can assign an initial value to a variable only if it is a static variable.
The value can be a constant expression, an indefinite value constructor
(described next), or a pointer to a global procedure. The value must be of the
proper type and in the proper range. If you don’t specify an initial value, the
value of the variable is undefined.

An indefinite value constructor is essentially a list of values. It is used to
assign values to the structured types sets, arrays, and records. It allows you
to specify several values rather than just one. Values listed in a value
constructor are assigned in order (except for sets, which have no order). The
types of the values must match the types of the components in the structure
to which they are being assigned. An indefinite value constructor has the
form

[value {,value}...]
where value can be one of the following:
¢ A constant expression.
e Another value constructor (that is, another list).
o The phrase
REP number OF value

which indicates the specified value is repeated the specified number of
times.

e The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

The REP phrase can be used only in arrays. The asterisk can be used only in
arrays and records. For further information, refer to the descriptions of
arrays and records in chapter 4.

If you assign an initial value to a string variable and the variable is longer
than the initial value, spaces are added on the right of the initial value to fill
the field. If the initial value is longer than the variable, the initial value is
truncated on the right to fit the variable.

In a variant record, fields are initialized in order until a special variable
called the tag field name is initialized. The tag field name is then used to
determine the variant for the remaining field or fields in the record, and they
are likewise initialized in order.

Depending on the attributes defined in the variable declaration, initialization
is required, prohibited, or optional. Table 3-1 shows the initialization possible
for various attributes.

Revision A Declarations 3-13

VARIABLE DECLARATION

Table 3-1. Attributes and Initialization

Attributes Specifiedt Initialization

None Optional if static variable; prohibited
if automatic variable.

READ Required.

READ,STATIC Required.

READ XDCL Required.

READ,STATIC,XDCL Required.

READ, section_name Required.

READ XDCL,section_name Required.

XREF Prohibited.

XREF,READ Prohibited.

XREF,STATIC Prohibited.

XREF,READ,STATIC Prohibited.

STATIC Optional.

XDCL Optional.

XDCL,STATIC Optional.

section_name Optional.

section_name,XDCL Optional.

T The static attribute is assumed if any attributes are specified.

3-14 CYBIL Language Definition

Revision A

VARIABLE DECLARATION

‘ Example:

The variables declared in this example are inside program MAIN. Therefore,
they are automatic unless declared with an attribute. TOTAL is automatic
and as such cannot be initialized. COUNT is declared static and can be

‘ initialized. ALPHA and BETA are also static and can be initialized because
they have other attributes declared.

PROGRAM main;
VAR
total: integer,
count: [STATIC] integer := 0,
alpha,
beta: [XDCL, READ] char := 'p';

PROCéND main;

Revision D Declarations 3-15

TYPE DECLARATION

Type Declaration

The standard data types that are defined in CYBIL are described in chapter
4. Any of these can be declared as a valid type within a variable declaration.
The type declaration allows you to define a new data type and give it a
name, or redefine an existing type with a new name. Then that name can be
used as a valid type within a variable declaration.

Use this format for a type declaration:
TYPE name = type {,name = type}...;

name
Name to be given to the new type.

type
Any of the standard types defined by CYBIL or another user-defined
type.

Once you define a type, you can use it to define yet another type. Thus, you
can build a very complex type that can be referred to by a single name.

The type declaration is evaluated at compilation time. It does not occupy
storage space during execution.

Examples:

In this example, INT is defined as a type consisting of all the integers; it is
just a shortened name for a standard type. LETTERS is defined as a type
consisting of the characters ’a’ through 'z’ only; this is a selective subset of
the standard type characters. DEVICES is an ordinal type that in turn is
used to define EQ_TABLE, a type consisting of an array of 10 elements. Any
element in the type EQ_TABLE can have one of the ordinal values specified

in DEVICES.
TYPE
int = integer,
letters = 'a' .. '2',

devices = (Lp512, dk844, dk885, nt679),
eq_table = array [1 .. 10] of devices;

VAR
i int,
alpha: Lletters,
table_1: eq_table,
status_table: array [1 .. 3] of eq_table;

3-16 CYBIL Language Definition Revision D

—

TYPE DECLARATION

. All of the variables in the preceding example could have been declared using
variable declarations only, as in:

VAR

i: integer,

‘ alpha: 'a' 'z,
table_1: array [1 .. 101 of (1p512, dk844, dk885, nté79),
status_table: array {1 .. 3] of array [1 .. 101 of
(Lp512, dk844, dk885, nté79);

However, it becomes cumbersome to declare a complex structure using only
standard types. Defining your own types lets you avoid needless repetition
and the increased possibility of errors. In addition, it makes code easier to
maintain; to add a new device in the first example, you need add it only in
the type declaration, not in every variable declaration that contains devices.

Revision D Declarations 317 @

—

SECTION DECLARATION

Section Declaration

A section is an optional working storage area that contains variables with
common access attributes. You can define a section and its associated
attributes with the section declaration. Including the section name in a
variable declaration causes the variable to reside in that section.

Use this format for a section declaration:

SECTION name {,name}... : attribute
{,name {,name}... : attribute}...;

name

Name of the section.

attribute
The keyword READ or WRITE.

A section defined with the READ attribute is considered a read-only section.}
A variable declared with that section’s name will reside in read-only
memory. In this case, the variable access attribute READ must also be
included in the variable declaration. The section name causes hardware
protection; the READ attribute causes compiler checking.

A section defined with the WRITE attribute contains variables that can be ‘
both read and written.

The initialization of variables declared with a section name depends on their
attributes, as shown in table 3-1. Variables declared with a section name are
static.

The names and contents of predefined CYBIL sections are given earlier in
this section under Where Storage is Allocated. The SCL Object Code
Management manual gives further information on sections regarding the
object module format expected as input by the loader and the object library
generator.

t A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual. .

3-18 CYBIL Language Definition Revision |

r SECTION DECLARATION

Example:

Two sections are defined in this example: LETTERS is a read-only section
and NUMBERS is a read/write section. The variable CONTROL_LETTER
is a read-only variable that resides in LETTERS. The READ attribute is
required because of the read-only section name. UPDATE_NUMBER is a
variable that can be read or written, and resides in the section NUMBERS.
In this example, it is also declared as an XDCL variable but this is not
required.

SECTION
letters: READ,
numbers: WRITE;

VAR
control_letter: [READ, letters] char := 'p',
update_number: [XDCL, numbersl] integer;

Revision D Declarations 319

Types 4

This chapter describes the standard types predefined by CYBIL.

L0 U T I - 4-2
Equivalent Typescooiiiiiiiiiiiiii it i e 4-2
Basie TyPeS . oottt e e e e e e 4-3
SCalar TYPES ..ot i ittt e e e 4-3
Integer. ... e e 44
Character ... ottt e e, 4-5
Boolean e e, 4-6
Ordinal ... i e e e e 4-7
SUBTANZE . . e e e 49
Floating-Point Typeccoiiiiiiiiiii ittt eaieannens 4-11
Real ... e 4-11

Cell TYDe .ottt e e e e 4-12
PoInter TYPeS ot e e e 4-13
Pointerto Cellottt i it 4-17
Relative Pointerottt eriainees 4-18
Structured TyPes . ..ot e e e 4-19
79 oY+ S 4-19
0T 337 o b o =S 4-20
Assigning and Comparing String Elements 4-23

N g - 7 2t 4-24
Initializing Elements ...ttt 4-25
Referencing Elements............. i it 4-25
Records ..o e e 4-28
Invariant Recordscooiiiiiiiiin i iiiiannes 4-28
Variant Records ..ot i i e 4-30
Initializing Elementst 4-35
Referencing Elements............... i 4-36
Allgnmentttt e 4-37

=1 4-38
Initializing and Assigning Elements............................. 4-38

StOT A Ty DS . ittt et e e e e e e e e 4-40
S BQUEIICES . . oo i ittt e e e 4-40
Heaps ..o e e 4-41
Adaptable Typescooiniiiie i e e e e 4-42
Adaptable Stringsccoiiiiiii i e 442
Adaptable Arrays ...t e e 4-43
Adaptable Recordsoviiriniiiiiiii it 4-44
Adaptable Sequencesoiiii i 4-46
Adaptable Heapsoooiiii it i i i e 447

Types 4

There are many standard types defined within CYBIL. A variable can be
assigned to (that is, be made an element of) any of these types. The type
defines characteristics of the variable and what operations can be performed
using the variable. In general, operations involving nonequivalent types are
not allowed; one type cannot be used where another type is expected.
Exceptions are noted in the descriptions of types that follow.

In this chapter, types are grouped into three major categories: basic types,
structured types, and storage types.

Basic types are the most elementary. They can stand alone but are also used
to build the more complex structures. The basic types are:

e Scalar types (integer, character, boolean, ordinal, and subrange)

¢ Floating-point types (real)

Cell types
e Pointer types

Structured types are made from combinations of the basic types. The
structured types are:

e Strings
® Arrays
® Records
o Sets

Storage types hold groups of components of various types. The storage types
are:

® Heaps
® Sequences

Most types, when they are declared, have a fixed size. Strings, arrays,
records, sequences, and heaps can also be declared with an adaptable size
that is not fixed until execution. For this reason, they are sometimes called
adaptable types. Adaptable strings, arrays, records, sequences, and heaps
are discussed at the end of this chapter.

Revision D Types 41

USING TYPES

Using Types

Types are used as parameters in two kinds of declarations: the variable
declaration (to associate a type with a variable name) and the type
declaration (to associate a type with a new type name). Both declarations are
described in detail in chapter 3, but their basic formats are:

VAR name : { [attributes]} type { ‘= initial _value };
TYPE name = type;

The description of each type shown in this chapter includes the keyword and
any additional information necessary to specify that type as a parameter.
The keywords replace the generic word type in the variable and type
declarations. For example, you would use the keyword INTEGER to specify
an integer type. The variable declaration would be:

VAR name : { [attributes]} INTEGER { := initial_value };
The type declaration would be:
TYPE name = INTEGER;

Equivalent Types

As mentioned earlier in this chapter, operations involving nonequivalent
types are not allowed. Two types can be equivalent, though, even if they
don’t appear to be identical. For example, two arrays can have different
expressions defining their sizes, but the expressions may yield the same
value. Rules for determining whether types are equivalent are given in the
following descriptions of the types.

Adaptable types and bound variant record types (described under Records
later in this chapter) actually define classes of related types that vary by a
characteristic, such as size. Adaptable type variables, bound variant record
type variables, and pointers to both types are fixed explicitly at execution
time. These types are said to be potentially equivalent to any of the types to
which they can adapt. That is, during compilation, references to adaptable
types and bound variant record types are allowed wherever there is a
reference to one of the types to which they can adapt. However, further type
checking is done during execution when each type is fixed (assigned to a
specific type). It is the current type of an adaptable or bound variant record
type that determines what operations are valid for it at any given time.

4-2 CYBIL Language Definition Revision A

BASIC TYPES

. Basic Types

Scalar Types

. All scalar types have an order; that is, for every element of a scalar type you
can find its predecessor and successor.

Scalar types are made up of five types:
e Integer

e Character

¢ Boolean

e Ordinal

¢ Subrange

Revision A Types 43

INTEGER

Integer
Use the keyword INTEGER to specify an integer type.

Integers range in value from -(263-1) to 263-1; that is,
-7FFFFFFFFFFFFFFF hexadecimal through 7FFFFFFFFFFFFFFF
hexadecimal. In general, the subrange type should be used rather than the
integer type. This allows the compiler to perform more rigorous type-
checking and may reduce the amount of storage needed to hold the value.

The operations permitted on integers are assignment, addition, subtraction,
multiplication, division (both quotient and remainder), all relational
operations, and set membership. Refer to Operators in chapter 5 for further
information on operations.

The functions SINTEGER and $REAL, described in chapter 6, convert
between integer type and real type. The $CHAR function, also described in
chapter 6, converts an integer value from 0 to 255 to a character according to
its position in the ASCII collating sequence.

Example:

This example shows the definition of a new type named INT, which consists

- of elements of the type integer. The variable declaration declares variable I to
be of type INT, which is the integer type just declared. Also declared as a
variable is NUMBERS, which is explicitly of integer type. Because
NUMBERS is static, it can be initialized.

TYPE

int = integer;
VAR

i: int,

numbers: L[STATIC] integer := 100;

4-4 CYBIL Language Definition Revision D

CHARACTER

‘ Character

Use the keyword CHAR to specify a character type.

An element of the character type can be any of the characters in the ASCII
character set included in appendix B. It is always a single character; more

' than one character is considered a string. (A string is one of the structured
types discussed later in this chapter. A string of length 1 can sometimes be
used as a character. Refer to Substrings later in this chapter.)

The operations permitted on characters are assignment, all relational
operations, and set membership. A character can be assigned to and
compared to a string of length 1. Refer to Operators in chapter 5 for further
information on operations and to Strings later in this chapter for further
information on string assignment.

The $INTEGER function described in chapter 6 converts a character value to
an integer value based on its position in the ASCII collating sequence. The
$CHAR function, also described in chapter 6, converts an integer value
between 0 and 255 to a character in the ASCII collating sequence.

Example:

This example shows the definition of a new type named LETTERS, which
consists of elements of the type character. The variable declaration declares

‘ variable ALPHA to be of type LETTERS, which is type character; it is static
and initialized to the character ’j’. The variable IDS is explicitly declared to
be of type character.

TYPE
letters = char;

VAR
alpha: [STATIC] lLetters := 'j',
ids: char;

Revision D Types 45

BOOLEAN

Boolean

Use the keyword BOOLEAN to specify a boolean type.

An element of the boolean type can have one of two values: FALSE or
TRUE. As with other scalar types, boolean values are ordered. Their order is
FALSE, TRUE. FALSE is always less than TRUE.

You get a boolean value by performing a relational operation on two objects
of the same type. You can perform some, but not necessarily all, relational
operations on every type except the following:

e Arrays or structures that contain an array as a component or field
® Variant records

e Sequences

e Heaps

e Records that contain a field of one of the preceding types

The operations permitted on boolean values are assignment, all relational
operations, set membership, and boolean sum, product, difference, exclusive
OR, and negation. Refer to Operators in chapter 5 for further information on
operations.

The SINTEGER function described in chapter 6 converts a boolean value to
an integer value. 0 is returned for FALSE; 1 is returned for TRUE.

Example:

This example shows the definition of a new type named STATUS, which
consists of the boolean values FALSE and TRUE. The variable declaration
declares variable CONTINUE to be of type STATUS; that is, it can be either
FALSE or TRUE. The variable DEBUG is explicitly declared to be boolean
and, because it is a read-only variable and therefore static, it can be
initialized.

TYPE
status = boolean;

VAR
continue: status,
debug: [READ] boolean := TRUE;

46 CYBIL Language Definition Revision D

ORDINAL

Ordinal

The ordinal type differs from the other scalar types in that you, the user,
define the elements within the type and their order. The term ordinal refers
to the list of elements you define; the term ordinal name refers to an
individual element within the ordinal.

Use this format to specify an ordinal:
(name, name {,name...})

name

Name of an element within the ordinal. There must be at least two
ordinal names.

The order is given in ascending order from left to right.

Each ordinal name can be used in just one ordinal type. If you use a name in
more than one ordinal, a compilation error occurs.

Ordinals are used to improve the readability and maintainability of
programs. They allow you to use meaningful names within a program rather
than, for example, map the names to a set of integers that are then used in
the program to represent the names.

The operations permitted on ordinals are assignment, all relational
operations, and set membership.

Two ordinal types are equivalent if they are defined in terms of the same
ordinal type names.

The $INTEGER function described in chapter 6 converts an ordinal value
(that is, a name) to an integer value based on its position within the defined
ordinal. The first ordinal name has an integer value of 0, the second name an
integer value of 1, and so on.

Revision D Types 47

ORDINAL

Examples:

In this example, the type declaration defines a type named COLORS, which
is an ordinal that consists of the elements RED, GREEN, and BLUE. The
variable PRIMARY _COLORS is of COLORS type and therefore has the
same elements. The variable WORK _DAYS explicitly declares the ordinal
consisting of elements MONDAY through FRIDAY.

TYPE
colors = (red, green, blue);

VAR
primary_colors: colors,
work_days: (monday, tuesday, wednesday, thursday,
friday);

In the ordinal type COLORS, the following relationships hold:
RED < GREEN
RED < BLUE
GREEN < BLUE

You can find the predecessor and successor of every element of an ordinal.
You can also map each element onto an integer using the $INTEGER
function (described in chapter 6). For example, SINTEGER(RED) = 0; this is
the first element of the ordinal.

The type declaration

TYPE
primary_colors = (red, green, blue),
hot_colors = (red, orange, yellow);

is in error because the name RED appears in two ordinal definitions.

4-8 CYBIL Language Definition Revision D

SUBRANGE

Subrange

A subrange is not really a new type but a specified range of values within an
existing scalar type. A variable defined by a subrange can take on only the
values between and including the specified lower and upper bounds.

Use this format to specify a subrange:
lowerbound .. upperbound

lowerbound

Scalar expression specifying the lower bound of the subrange.

upperbound

Scalar expression specifying the upper bound of the subrange.

The lower bound must be less than or equal to the upper bound. Both bounds
must be of the same scalar type.

The type of a subrange is the type of its lower and upper bounds. If a
subrange completely encompasses its own type, it is said to be an improper
subrange type. For example, the subrange

FALSE. TRUE

is of type boolean and also contains every element of type boolean. It is
equivalent to specifying the type itself. An improper subrange type is always
equivalent to its own type.

Two subranges are equivalent if they have the same lower and upper bounds.

Subranges allow for additional error checking. Compilation options are
available that cause the compiler to check assignments during program
execution and issue an error if it finds a variable not within range. (Range
checking is available as an option on the compiler call command and as a
compiler directive. They are both described in chapter 8.) In addition,
subranges improve readability. Because a subrange defines the valid range
of values for a variable, it is more meaningful to the user for documentation
and maintenance.

The operations permitted on a subrange are the same as those permitted on
its type (the type of its lower and upper bound).

Revision A Types 49

SUBRANGE

Example:

This example shows the definition of a new type named LETTERS, which
consists of the characters ’a’ through ’z’ only. It also defines an ordinal
named COLORS consisting of the colors listed. The variable declaration
declares variable SCORES to consist of the numbers 0 through 100. The
lower and upper bounds are of integer type, so the subrange is also an
integer type. STATUS is a subrange of boolean values, which could have
been declared simply as BOOLEAN. HOT _COLORS is a subrange of the
ordinal type COLORS. It consists of the colors RED, ORANGE, and
YELLOW.

TYPE
letters = 'a' .. '2',
colors = (red, orange, yellow, white, green, blue);

VAR
scores: 0 .. 100,
status: FALSE .. TRUE,
hot_colors: red .. yellow;

4.10 CYBIL Language Definition Revision D

REAL

‘ Floating-Point Type

The floating-point type defines real numbers.

. Real

Use the keyword REAL to specify a real type.
Real numbers range in value from 4.8%10-1234 to 5.2*101232,

The operations permitted on real types are assignment, addition, subtraction,
multiplication, division, and all relational operations.

The functions $INTEGER and $REAL, described in chapter 6, convert
between integer type and real type.

Revision A Types 4-11

CELL

Cell Type '

The cell type represents the smallest storage location that is directly
addressable by a pointer. On NOS/VE, a cell is an 8-bit byte within a 64-bit

memory word.
Use the keyword CELL to specify a cell type. ‘

Operations permitted on a cell type are assignment and comparison for
equality and inequality.

412 CYBIL Language Definition Revision A

POINTER

Pointer Types

A pointer represents the location of a value rather than the value itself.
When you reference a pointer, you indirectly reference the object to which it
is pointing.

Use this format to specify a pointer type:
~ type

type

Type to which the pointer can point. It can be any defined type. With
the exception of a pointer to cell type (discussed later in this chapter),
the pointer can point only to objects of the type specified.

For example,

VAR
integer_pointer: "integer;

defines a pointer named INTEGER_POINTER that can point only to
integers.

INTEGER POINTER ——W _any
- integer

Use this format to specify the object of a pointer (that is, what the pointer
points to):

pointer_name "

pointer_name

The name you gave the pointer in the variable declaration.

This preceding notation is called a pointer reference; it refers to the object to
which pointer_name points. It can also be referred to as a dereference. For
example,

integer_pointer”

identifies a location in memory; it is the location to which INTEGER _
POINTER points.

INTEGER _POINTER ~

any

INTEGER_POINTER — integer

Revision D Types 4-13

POINTER

You can initialize or assign a value to the object of a pointer as you would
any other variable; that is:

pointer _name " := value;

This assigns the specified value to the object that the pointer points to. For
example,

integer_pointer™ := 5;

assigns the integer value 5 to the location INTEGER_POINTER points to:

INTEGER_POINTER *

INTEGER_POINTER 5

You can assign the object of a pointer to a variable in the same way:
variable := pointer_name “;

This takes the value of what pointer_name points to and assigns it to the
variable. For example,

i := integer_pointer”;
assigns to I the contents of what INTEGER_POINTER points to, that is, 5.

If a pointer reference is to another pointer type variable, meaning that the
pointer points to a pointer that in turn points to a variable, you can specify
the variable in the format:

pointer_name ""
For example, the declarations

TYPE
integer_pointer = “integer;

VAR
pointer_2: “integer_pointer;

can be pictured conceptually as follows:

POINTER_2 ~ POINTER _2~~
a pointer N any
POINTER_2 ——® |NTEGER_POINTER integer

4.14 CYBIL Language Definition Revision D

POINTER

POINTER_2 points to a pointer of type INTEGER_POINTER. INTEGER _
POINTER points to integers. A reference to POINTER_2 " refers to the
location of the pointer that in turn points to an integer. A reference to
POINTER_2 =" refers to the location of the integer.

The value assigned to a pointer can be:
® The pointer constant NIL.

o The pointer symbol " followed by a variable of the type to which the
pointer can point.

¢ A pointer variable.
® A pointer-valued function.

NIL is the value of a pointer variable without an object; the variable is not
currently assigned to any location. It can be assigned to or compared with
any pointer of any type.

Pointers allow you to manipulate storage dynamically. Using pointers, you
can create and destroy variables while a program is executing. Memory is
allocated when the variable is created and released when it is destroyed.
Pointers also allow you to reference the variables without giving each a
unique name.

A pointer variable can be a component of a structured type as well as a valid
parameter in a function. A function can return a pointer variable as a value.

Permissible operations on pointers are assignment and comparison for
equality and inequality.

Pointers to adaptable types (adaptable strings, arrays, records, sequences,
and heaps) provide the only method for accessing objects of these types other
than through formal parameters of a procedure. In particular, pointers to
adaptable types and pointers to bound variant records are used to access
adaptable variables and bound variant records whose types have been fixed
by an ALLOCATE, PUSH, or NEXT statement (described in chapter 5).

Pointers are equivalent if they are defined in terms of equivalent types. A
pointer to a fixed type (as opposed to an adaptable type) can be assigned and
compared to a pointer to an adaptable type or bound variant record if the
adaptable type is potentially equivalent to the fixed type. (Refer to
Equivalent Types earlier in this chapter for further information on
potentially equivalent types.)

Revision B Types 415

POINTER

Example:

The following example shows the declaration and manipulation of two
pointer type variables. Comments appear to the right.

TYPE

ptr = “integer;

VAR
i,
i,
k:integer,
pl: ptr,

p2: “pl,

b1,

b2: boolean;

ALLOCATE p1;

ALLOCATE p2;

p1”™ := 10;
p2° := pl;
j=p17

k :=p2°7;
bl :=j = k
b2 := p1”~ =
p1 := NIL;
k == p1°;

p1 = (i + j +2 % Kk);

4-16 CYBIL Language Definition

PTR is a type that can contain pointers to
integers.

P1 is a variable that can contain pointers to
integers.

P2 is a variable that can contain pointers to
P1 (that is, pointers that point to pointers to
integers). It could have been written as

P2: ~~ INTEGER.

Allocates space for an integer (because that is
what P1 points to) and sets P1 to point to that
space.

Allocates space for a pointer that points to an
integer and sets P2 to point to that pointer.
The space pointed to by P1 is set to 10.

The space pointed to by P2 is set to the value
of the pointer P1.

The integer variable J is set to what P1 points
to: the integer 10.

The integer variable K is set to the object of
the pointer that P2 points to. (Think of P2 ~~
as P2 points to a pointer; that pointer points
to an object.” You are assigning that object to
K.) P2 points to P1, which points to the
integer 10.

J and K are both 10. Bl is TRUE.

P1 points to an integer. P2 points to the
pointer (P1) that points to the same integer.
Their values are the same and B2 is TRUE.
P1 no longer points to anything.

The statement is in error because P1 does not
point to anything.

A valid statement. K is not incremented
because P2 still points to P1.

An invalid statement. The location of an
expression cannot be found.

Revision D

POINTER TO CELL

Pointer to Cell
A pointer to cell type can take on values of any type.

Use this format to declare a pointer to a cell:

"CELL

A variable declared simply as a pointer type variable can take on as values
only pointers to a single type, which is specified in the pointer’s declaration.
A variable declared as a pointer to cell variable has no such restrictions. It
can take on values of any type. Also, any fixed or bound variant pointer
variable can assume a value of pointer to cell.

Permissible operations on a pointer to a cell are assignment and comparison
for equality and inequality. In addition, a pointer to a cell can be assigned to
any pointer to a fixed or bound variant type. But the pointer to the fixed or
bound variant type cannot have as its value a pointer to a variable that is
not a cell type or, furthermore, whose type is not equivalent to the type to
which the target of the assignment points. A pointer to a cell can be the
target of assignment of any pointer to a fixed or bound variant type.

Revision A Types 4-17

RELATIVE POINTER

Relative Pointer

Relative pointer types represent relative locations of components within an
object with respect to the beginning of the object.

Use this format to specify a relative pointer:
REL { (parent_name) } “~component_type

parent_name

Name of the variable that contains the components being designated
by relative pointers. Specify a string, array, record, heap, or sequence
type (either fixed or adaptable). If omitted, the default heap is used.

component_type
Type of the component to which the relative pointer will point.

Relative pointers are generated using the standard function #REL (described
in chapter 6). A relative pointer cannot be used to access data directly.
Instead, the relative pointer must be converted to a direct pointer using the
standard function #PTR (also described in chapter 6). The direct pointer can
then be used to access the data.

Relative pointers have three major differences from the other pointers
discussed in this chapter:

e Relative pointers may need less space than other pointers.

¢ A linked list or array of relative pointers (or some similar organization)
within a parent type variable is still correct if the entire variable is
assigned to another variable of the same parent type.

® Relative pointers are independent of the base address of the parent type
variable.

Operations permitted on a relative pointer are assignment, comparison for
equality and inequality, and the #PTR function. Relative pointers can be
assigned and compared if they are of equivalent relative pointer types.
Relative pointer types are equivalent if they are defined in terms of
equivalent parent types and equivalent component types.

4-18 CYBIL Language Definition Revision A

STRINGS

Structured Types

Structured types are combinations of the basic types already described in
this chapter (integer, character, boolean, ordinal, subrange, real, cell, and
pointer). Even the structured types discussed here can be combined with each
other but they are still essentially groups of the basic types. The structured
types described in this section are:

® Strings
® Arrays
¢ Records
® Sets

Strings

A string is one or more characters that can be identified and referenced as a
whole by one name.

Use this format to specify a string type:
STRING (length)
length

A positive integer constant expression from 1 to 65,535.

If you specify an initial value in the variable declaration for a string, it can
be:

® A string constant.
¢ The name of a string constant declared with a constant declaration.
¢ A constant expression (as described in chapter 2).

A string cannot be packed. Two string types are equivalent if they have the
same length.

The operations permitted on string types are assignment and comparison (all
six relational operations). For further information, refer to Assigning and
Comparing String Elements later in this chapter.

Revision D Types 419

STRINGS

Substrings .

You can reference a part of a string (this is called a substring) or a single
character of a string.

Use this format to reference a substring or single character: ‘
name (position {, length})

name
Name of the string.

position

Position within the string of the first character of the substring. (The
position of the first character of the string is always 1.) Specify a
positive integer expression less than or equal to the length of the string
plus one; that is,

1 < position < string length + 1

If you specify string length plus one, the substring is an empty string.

length

Number of characters in the substring. Specify a nonnegative integer
expression or * (the asterisk character). If you specify *, the substring
consists of the character specified by the position parameter and all
characters following it in the string. If you specify 0, the substring is
an empty string. Omission causes 1 to be used.

420 CYBIL Language Definition Revision B

STRINGS

A substring reference in the form

name(position)

is a substring of length 1, a single character. In this form, it can be used
anywhere a character expression is allowed. It can be:

Compared with a character.
Tested for membership in a set of characters.

Used as the initial and/or final value in a FOR statement that is
controlled by a character variable.

Used as a value in a CASE statement.

Used as an argument in the standard functions SINTEGER, SUCC, and
PRED.

Assigned to a character variable.
Used as an actual parameter to a formal parameter of type character.

Used as an index value corresponding to a character type index in an
array.

A string constant, even if it is declared with a name in a constant (CONST)
declaration, is not a variable. Therefore, substrings cannot be referenced in a
string constant.

Revision D Types 4-21

STRINGS

Examples:

If a string variable LETTERS is declared and initialized as follows

VAR
letters: [STATIC] string (6) := 'abcdef';

the following substring references are valid:

Substring Comments

LETTERS(1) Refers to ’a’.

LETTERS(6) Refers to ’f".

LETTERS(1,6) Refers to the entire string.
LETTERS(1,*) Refers to the entire string.
LETTERS(2,5) Refers to bedef’.
LETTERS(2,*) Refers to ’bedef”.
LETTERS(2,0) Refers to an empty string .
LETTERS(7,*) Refers to an empty string ”.

LETTERS(0), LETTERS(8), and LETTERS(8,0) are illegal.
If a pointer variable is declared and initialized as follows

VAR
string_ptr: [STATIC] “string (6) := "letters;

then STRING_PTR points to the string LETTERS and the pointer variable
STRING_PTR" can be used to make substring references just like the
variable LETTERS.

Substring Comments
STRING_PTR"(1) Refers to ’a’.
STRING_PTR"(6) Refers to .

STRING_PTR"(1,6) Refers to the entire string.
STRING_PTR"(2,%) Refers to ’bedef”.

STRING_PTR"(2,0) Refers to an empty string ”.

@® 422 CYBIL Language Definition Revision D

STRINGS

Assigning and Comparing String Elements

You can assign or compare a character, substring, or string to a substring,
string variable, or character variable. A character is treated as a string of
length 1.

If you assign a value that is longer than the substring or variable to which it
is being assigned, the value is truncated on the right. If you assign a value
that is shorter, spaces are added on the right to fill the field. This method is
also used for comparing strings of different lengths.

If you assign a substring to a substring of the same variable, the fields
cannot overlap or the results are undefined.

The concatenation operation, CAT, cannot be used with string variables.
Example:
Assume the string variable DAY is declared and initialized as follows:

VAR
day: L[STATIC] string (6) := 'monday';

The following assignments can be made:

short := day (1, 3);
empty := day (1, 0);

SHORT is assigned the string 'mon’. EMPTY is assigned a null string.

Revision D Types 4-23

ARRAYS

Arrays

An array in CYBIL is a collection of data of the same type. You can access
an array as a whole, using a single name, or you can access its elements
individually.

Use this format to specify an array type:
{PACKED} ARRAY [subscript_bounds] OF type

PACKED

Optional packing parameter. When specified, the elements of the array
are mapped in storage in a manner that conserves storage space,
possibly at the expense of access time. If omitted, the array is
unpacked; that is, the elements are mapped in storage to optimize
access time rather than to conserve space. (The array itself is always
mapped into an addressable memory location; that is, it starts on a
word boundary or, in the case of a packed array in a record, on a byte
boundary.) For further information on how data is stored in memory,
refer to appendix D, Data Representation in Memory.

If the array contains structured types (such as records), the elements of
that type (the fields in the records) are not automatically packed. The
structured type itself must be declared packed.

subscript_bounds

Value that specifies the size of the array and what values you can use
to refer to individual elements. The bounds can be any scalar type or
subrange of a scalar type; the bounds is often a subrange of integers.

type

Type of the elements within the array. The type can be any defined
type, including another array, except an adaptable type (that is, an
adaptable string, array, or record). All elements must be of the same

type.

Elements of a packed array cannot be passed as reference (that is, VAR)
parameters in programs, functions, or procedures.

Two array types are equivalent if they have the same packing attribute,
equivalent subscript bounds, and equivalent component types.

The only operation permitted on an array type is assignment.

4-24 CYBIL Language Definition Revision D

ARRAYS

Initializing Elements

An array can be initialized using an indefinite value constructor. An
indefinite value constuctor is a list of values assigned in order to the
elements of an array. The first value in the list is assigned to the first
element, and so on. The number of values in the value constructor must be
the same as the number of elements in the array. The type of the values must
match the type of the elements in the array. An indefinite value constructor
has the form

[value {,value}...]
where value can be one of the following:
® A constant expression.
e Another value constructor (that is, another list).
® The phrase
REP number OF value

which indicates the specified value is repeated the specified number of
times.

e The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

An indefinite value constructor can be used only for initialization; it cannot
be used to assign values during program execution. Individual elements can
be assigned during execution using the assignment statement (described in
chapter 5).

Referencing Elements

The array name alone refers to the entire structure.

Use this format to refer to an individual element of an array:
array_name[subscript]

subscript

A scalar expression within the range and of the type specified in the
subscript_bounds field of the array declaration. This subscript
specifies a particular element.

Revision A Types 4-25

ARRAYS

Examples: ‘

This example shows the definition of a type named POS_TABLE, which is

an array of 10 elements that can take on the values defined in POSITION.

The variable declaration declares variable NUMBERS to be an array of five

elements initialized to the values 1, 2, 3, 4, and 5 where 1 is the value of the ‘
first element, and so on. LETTERS is an array of 26 elements that can be

any characters. BIG_TABLE is a 100-element array, each element of which

is an array of 10 elements.

TYPE
position = (boi, asis, eoi),
pos_table = array [1 .. 101 of position;

VAR
i: [STATIC] integer := 5,
numbers: [STATIC] array [1 .. 5] of integer := {1, 2, 3, 4, 5],
letters: array ['a' .. 'z'] of char,
big_table: array [1 .. 100] of pos_table;

The declaration of BIG_TABLE is equivalent to:

VAR
big_table: array [1 .. 1001 of array [1 .. 101 of position;
You can reference individual elements using the following statements: ‘
numbers (i] This reference is the same as
NUMBERS[5]; it refers to the fifth
element of the array NUMBERS.
Lletters ['b'] := 'B'; This statement sets the second

element of the array LETTERS to the
uppercase character B.

big_table [131 [10] :

asis; This statement sets the tenth element
of the thirteenth array to ASIS.

@ 426 CYBIL Language Definition Revision D

ARRAYS

‘ The following example shows the declaration and initialization of a two-
dimensional array named DATA_TABLE. All of the components of the third
element of the array (which is an array itself) are set to 0. Notice that the
third element of the last array, DATA _TABLE [4][3], is uninitialized.

. TYPE
innerarray = array [1 .. 5] of integer,
twodim = array [1 .. 4] of innerarray;

VAR
data_table: [STATIC] twodim := [L5, - 10, 2, 6, 3],
4, 11,19, -3, 61,
CREP 5 of 0],
3, -9, >, 4, 1513;

Revision D Types 4.27

RECORDS

Records

Records are collections of data that can be of different types. You can access
arecord as a whole using a single name, or you can access elements
individually.

A record has a fixed number of components, usually called fields, each with
its own unique name. Different fields are used to indicate different data types
Or purposes.

There are two types of records: invariant records and variant records.
Invariant records consist of fields that don’t change in size or type. Variant
records can contain fields that vary depending on the value of a key variable.
Formats used for specifying both kinds of records are given later in this
chapter.

Operations permitted on record types are assignment and, for invariant
records only, comparison for equality and inequality. The invariant records
being compared cannot contain arrays as fields.

Invariant Records

An invariant record consists of fields that do not vary in size or type once
they have been declared. They are called fixed or invariant fields.

Use this format to specify an invariant record:

{PACKED} RECORD
field_name : {ALIGNED {[offset MOD base]}} type
{.field_name : {ALIGNED {[offset MOD base]}} type}...
RECEND

PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly
at the expense of access time. If omitted, the record is unpacked; that
is, the fields are mapped in storage to optimize access time rather than
to conserve space. For further information on how data is stored in
memory, refer to appendix D, Data Representation in Memory.

If one of the fields is a structured type (such as another record), the

elements of that type are not packed automatically. The structured type
itself must be declared packed.

field_name '

Name identifying a particular field. The name must be unique within
the record. OQutside of the record declaration, it can be redefined.

4-28 CYBIL Language Definition Revision A

RECORDS

ALIGNED

Optional alignment parameter. If specified, it can appear alone or with
an offset, in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary
to facilitate rapid access to the field. This may negate some of the effect
of packing the record. For further information, refer to Alignment later
in this chapter.

offset MOD base

Optional offset to be used in conjunction with the ALIGNED
parameter. This offset causes the field to be mapped to a particular
hardware address relative to the specified base and offset. Specify a
particular word or a particular byte within a word. Base is evaluated
first to find the word boundary; offset is then evaluated to determine
the number of bytes offset within that word. Filler is created if
necessary to ensure that the field begins on the specified word or byte.

offset

Byte offset within the word specified by base. Specify an integer
constant less than base.

base

Word boundary. Specify an integer constant that is divisible by 8.
For automatic variables, the base can only be 8.

type
Any defined type, including another record, but not an adaptable type.

Elements of a packed record cannot be passed as reference (that is, VAR)
parameters in programs, functions, or procedures unless they are aligned.

The only operations possible on whole invariant records are assignment and
comparison. A record can be assigned to another record if they are both of
the same type. A record can also be compared to another record for equality
or inequality if they are both of the same type. Invariant record types are the
same if they have the same packing attributes, the same number of fields,
and corresponding fields have the same field names, same alignment
attribute, and equivalent types.

Revision A Types 4-29

RECORDS

Example: .

This example shows the definition of two new types, both records. The record

named DATE has three fields that can hold, respectively, DAY, MONTH,

and YEAR. The record named RECEIPTS appears to contain two fields,

NAME and PAYMENT; but PAYMENT is itself a record consisting of the ‘
three fields in DATE, just described. Initialization of fields within records is

discussed under Initializing Elements later in this chapter.

TYPE

date = record
day: 1 .. 31,
month: string (4),
year: 1900 .. 2100,

recend,

receipts = record
name: string (40),
payment: date,

recend;

Variant Records

A variant record contains fields that may vary in size, type, or number
depending on the value of an optional tag field. These different fields are
called variant fields or simply variants.

Use this format to specify a variant record:

{PACKED) {BOUND} RECORD
{fixed _field_name : {ALIGNED {[offset MOD basef}} type}...t
CASE {tag_field_name: } tag_field_type OF
= tag_field_value =
variant_field
{= tag_field_value =
variant_field}...

CASEND
RECEND
T When you specify more than one fixed field, you must separate them with
commas. ‘

@ 430 CYBIL Language Definition Revision D

RECORDS

. PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly
at the expense of access time. If omitted, the record is unpacked; that
is, the fields are mapped in storage to optimize access time rather than
‘ to conserve space. For further information on how data is stored in
memory, refer to appendix D, Data Representation in Memory.

If a field is a structured type (such as another record), the elements of
that type are not packed automatically. The structured type itself must
be declared packed.

BOUND

Optional parameter indicating that this is a bound variant record. If
specified, the tag_field_name parameter is required. Additional
information on bound variant records follows the parameter
descriptions.

fixed _field_name
The name of a fixed field (one that does not vary in size), as described
under Invariant Records earlier in this chapter. The name must be

unique within the record. Qutside of the record declaration, it can be
redefined. There can be zero or more fixed fields.

‘ ALIGNED

Optional alignment parameter; the same as that for an invariant
record. If specified, it can appear alone or with an offset in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary
to facilitate rapid access to the field. This may negate some of the effect
of packing the record. For further information, refer to Alignment later
in this chapter.

Revision A Types 4-31

RECORDS

offset MOD base ‘
Optional offset to be used in conjunction with the ALIGNED
parameter, the same as that for an invariant record. This offset causes
the field to be mapped to a particular hardware address relative to the
specified base and offset. Specify a particular word or a particular byte
within a word. Base is evaluated first to find the word boundary; offset
is then evaluated to determine the number of bytes offset within that
word. Filler is created if necessary to ensure that the field begins on the
specified word or byte.

offset

Byte offset within the word specified by base. Specify an integer
constant less than base.

base

Word boundary. Specify an integer constant that is divisible by 8.
For automatic variables, the base can only be 8.

type
Any defined type, including another record, but not an adaptable type.

tag_field_name

determines the variant. The current value of this variable determines
which of the variant fields that follow will actually be used. If omitted,
the variant that had the last assignment made to one of its fields is
used. This parameter is required if the record is a bound variant record
(BOUND is specified). Additional information is given following the
parameter descriptions.

Optional parameter specifying the name of the variable that ‘

tag_field_type

Any scalar type. This type defines the values that the tag_field _value
can have.

tag_field_value

A constant scalar expression or subrange. Specify one of the possible
values that can be assigned to the variable specified by tag_field _
name. It must be of the type and within the range specified by tag_
field _type. Specifying a subrange has the same effect as listing each
value separately.

variant_field

Zero or more fixed fields of the same form as that shown in the second
line of this format. This field exists only if the current value of tag_
field _name is the same as that in the tag_field _value associated with
the variant_field. The last field can be a variant itself.

4-32 CYBIL Language Definition Revision A

RECORDS

The variant fields must follow all invariant (fixed) fields in the record. The
field following the reserved word CASE is called the tag_field_name. The
tag_field_name can take on different values during execution. When its
value matches one of the values specified in a tag_field _value, the variants
associatd with that tag_field _value are used. Variants themselves consist of
zero or more fixed fields optionally followed by another variant. If the last
field is itself a variant, it can have another CASE clause, tag_field_name,
and so on.

The tag_field_name is an optional field. When it is omitted, no storage is
assigned for the tag field. If the record has no tag field, you choose a variant
by making an assignment to a subfield within a variant. The variant
containing that subfield becomes the currently active variant. In a variant
record without a tag field, all fields in a new active variant become undefined
except the subfield that was just assigned. An attempt to access a variant
field that is not currently active produces undefined results.

Space for a variant record is allocated using the largest possible variant.

Variant record types are equivalent if they have the same packing attribute,
their fixed fields are equivalent (as defined for invariant record types), they
have the same tag field names, their tag field types are equivalent, their tag
field values are the same, and their corresponding variant fields are
equivalent,

A bound variant record is specified by including the BOUND parameter; the
tag_field_name is also required. A bound variant record type can be used
only to define pointers for bound variant record types (that is, bound variant
pointers). A variable of this type is always allocated in a sequence or heap, or
in the run-time stack managed by the system.

When allocating a bound variant record, you must specify the tag field
values that select the variation of the record. Only the specified space is
allocated. The ALLOCATE statement in this case returns a bound variant
pointer.

If a formal parameter of a procedure is a variant record type, the actual
parameter cannot be a bound variant record type.

A record cannot be assigned to a variable of bound variant record type.

Bound variant record types are equivalent if they are defined in terms of
equivalent, unbound records. A bound variant record type is never equivalent
to a variant record type.

Revision A Types 4-33

RECORDS

Example:

This example defines a type named SHAPE, which becomes the type of the
tag field, in this case a variable named S. When S is equal to TRIANGLE,
the record containing fields SIZE, INCLINATION, ANGLE]1, and ANGLE2
is used as if it were the only record available. When the value of S changes,

the record variant being used changes too.

TYPE

shape
angle

- 180 .. 180,

figure = record

area: real,
case s: shape of

triangle =
size: real,
inclination,
anglel,

angle2: angle,
rectangle =
side1,

side2: integer,
skew,

angle3: angle,
circle =
diameter: integer,

casend,

recend;

@ 4-3¢ CYBIL Language Definition

(triangle, rectangle, circle),

Revision D

RECORDS

. Initializing Elements

A record can be initialized using an indefinite value constructor. An
indefinite value constructor is a list of values assigned in order to the fields
of a record. The first value in the list is assigned to the first field, or first

‘ element in a field, and so on. The type of the values must match the type of
the elements in the field. An indefinite value constructor has the form

[value {,value}...]
where value can be one of the following:
® A constant expression.
e Another value constructor (that is, another list).

o The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

An indefinite value constructor can be used only for initialization; it cannot
be used to assign values during program execution. Individual fields can be
assigned during execution using the assignment statement (described in
chapter 5).

Example:

' The variable BIRTH_DAY, in this example, is a record with the fields
described in the record type named DATE. It is initialized using an indefinite
value constructor to the 24th day of August, 1950.

TYPE
date = record
day: 1 .. 31,
month: string (4),
year: 1900 .. 2100,
recend;

VAR
birth_day: [STATIC] date := [24, ‘aug', 1950];

Revision D Types 4-35

RECORDS

Referencing Elements

The record name alone refers to the entire structure.
Use this format to access a field in a record:

record_name.field_name {.sub_field_name)...

record _name

Name of the record as declared in the variable declaration.

field_name

Name of the field to be accessed. If the field is an array, a reference to
an individual element can also be included using the form:

field_name[subscript]

sub_field_name

Optional field name. Use this parameter if the field previously specified
is itself a structured type, for example, another record. If the contained
field is an array, you can include a reference to an individual element
in the format:

sub_field_name[subscript]

Example: .

The variable PROFILE is a record with the fields described in the record
type STATS. In this example, PROFILE is initialized with the values in the
indefinite value constructor in the variable declaration.

TYPE
stats = record
age: 6 .. 66,
married: boolean,
date: record
day: 1 .. 31,
month: 1 .. 12,
year: 80 .. 90,
recend,
recend;

VAR
profile: [STATIC] stats := [23, FALSE, [3, 5, 82]1];

4-36 CYBIL Language Definition Revision D

RECORDS

The following references can be made to fields:

profile.age This field contains 23.
profile.married This field contains FALSE.
profile.date.day This field contains 3.
profile.date.month This field contains 5.
profile.date.year This field contains 82.

Alignment

Unpacked records and their fields are always aligned (that is, directly
addressable). Even if it is packed, a record itself is always aligned (that is,
the first field is directly addressable) unless it is an unaligned field within
another packed structure. Fields in a packed record, however, are not aligned
unless the ALIGNED attribute is explicitly included. Aligning the first field
of a record aligns the entire record.

Unpacked records and their fields, because they are aligned, can always be
passed as reference (that is, VAR) parameters in programs, functions, and
procedures. Packed records must be aligned to be valid as reference
parameters. Packed, unaligned records cannot be used.

Revision A Types 4-37

SETS

Sets ‘

A set is a collection of elements that, unlike arrays and records, is always
operated on as a single unit. Individual elements are never referenced.

Use this format to specify a set type: .
SET OF scalar_type

scalar_type

Type of all the elements that will be within the set. Specify a scalar
type or a subrange of a scalar type. The maximum number of elements

that can be in a set is 32,767.

All members of a set must be of the same type. Members within a set have no
specific order; that is, order has no effect in any of the operations performed
on sets.

Set types are equivalent if their elements have equivalent types.

Permissible operations on sets are assignment, intersection, union,
difference, symmetric difference, negation, inclusion, identity, and
membership. Refer to Operators in chapter 5 for further information on set
operations. The SUCC and PRED functions are not defined for set types.

The difference (-) or symmetric difference (XOR) of two identical sets is the .
empty set. The empty set is contained in any set. For a given set, the
complement of the empty set, -[], is the full set.

Initializing and Assigning Elements

Values can be assigned to a set using an indefinite value constructor or a set
value constructor. An indefinite value constructor can be used only for
initialization; a set value constructor can be used for both initialization and
assignment during program execution.

An indefinite value constructor is a list of values assigned to the set. The
type of the values must match the type of the set.

Use this format to specify an indefinite value constructor:
[value {,value}...]

value

A constant expression or another indefinite value constructor (that is, ‘
another list).

4-38 CYBIL Language Definition Revision D

SETS

A set value constructor constructs a set through explicit assignment. Use
this format to specify a set value constructor:

$name [{ value {,value}...}]

name
. Name of the set type. The dollar sign ($) must precede the name to
indicate a set value constructor.

value

An expression of the same type as that specified for the set. When used
in initialization, only constants or constant expressions are valid. The
empty set can be specified by [].

A set value constructor can be used wherever an expression can be used.

Example:

This example shows the declaration of a variable named ODD that is a type
of a set of integers from 0 to 10. It is initialized with an indefinite value
constructor assigning the integers 1, 3, and 5 to the set. The variable
VOWELS is a set that can contain any of the letters ’a’ through ’z’. It is
assigned the letters ’a’, ’e’, ’{’, o’ and 'v’ using a set value constructor. It
constructs a set of type C, wh1ch contains the specified letters; then that set
. is assigned to the set VOWELS. The variables LIST _1 and LIST_2 are sets
that can contain any characters. LIST_1 is assigned, using a set value
constructor, the letters ’x’, ’y’, and ’z’. LIST_2 is assigned the complement of
’x’,’y’, and ’ z , that is, a set consisting of every character except the letters

) b ’y and
TYPE
a=setof 0..10,
c = set of 'a' .. '2',

ch = set of char;

VAR
odd: [STATIC] a := [1, 3, 5],
vowels: ¢,
list_1,
list_2: ch;

= $¢ [lal' e', 'i', ‘o', 'u'l;

$Ch [lxl l l] l]
- sch [l l’ lyl] l]

‘ list_2

Revision D Types 439 @

SEQUENCES

Storage Types .

Storage types represent structures to which variables can be added, deleted,

and referenced under program control. (The statements used to access the

storage types are described under Storage Management Statements in

chapter 5.) There are two storage types: .

® Sequences

® Heaps

Sequences

A sequence type is a storage structure whose components are referenced
sequentially using pointers. These pointers are constructed by the NEXT and
RESET statements (described in chapter 5).

Use this format to specify a sequence type:
SEQ ({REP number OF} type {,{REP number OF} type}...)

number

Positive integer constant expression. This is an optional parameter
specifying the number of repetitions of the specified type. .

type

A fixed type that can be a user-defined type name; one of the
predefined types integer, character, boolean, real, or cell; or a
structured type using the preceding types.

You can repeat the phrase REP number OF type as many times as desired. It
specifies that storage must be available to hold the indicated number of
occurrences of the named types simultaneously. The types that are actually
stored in a sequence do not have to be the same as the types specified in the
declaration, but adequate space must have been allocated to hold those types
in the declaration. In other words, if a sequence is declared with several
repetitions of integer type, the space to hold these integers has to be
available, but it might actually hold strings or boolean values.

Sequence types are equivalent if they have the same number of REP phrases
and corresponding phrases are equivalent. Two REP phrases are equivalent
if they have the same number of repetitions of equivalent types.

Assignment to another sequence is the only operation permitted on ‘
sequences.

4-40 CYBIL Language Definition Revision D

‘ Heaps

A heap type is a storage structure whose components are allocated explicitly
by the ALLOCATE statement and released by the FREE and RESET
statements (described in chapter 5). They are referenced by pointers

‘ constructed by the ALLLOCATE statement.

Use this format to specify a heap type:
HEAP ({REP number OF} type {,{REP number OF} type}...)

number

Positive integer constant expression. This is an optional parameter
specifying the number of repetitions of the specified type.

type

A fixed type that can be a user-defined type name; one of the
predefined types integer, character, boolean, real, or cell; or a
structured type using the preceding types.

You can repeat the phrase REP number OF type as many times as desired. It
specifies that storage must be available to hold the indicated number of
occurrences of the named types simultaneously. The types that are actually
stored in a heap do not have to be the same as the types specified in the

‘ declaration, but adequate space must have been allocated to hold those types
in the declaration. In other words, if a heap is declared with several
repetitions of integer type, the space to hold these integers has to be
available, but it might actually hold strings or boolean values.

Heap types are equivalent if they have the same number of REP phrases and
corresponding phrases are equivalent. Two REP phrases are equivalent if
they have the same number of repetitions of equivalent types.

The default heap can be managed with the ALLOCATE and FREE
statements in the same way as a user-defined heap. For further information,
refer to the descriptions of these statements in chapter 5.

Revision D Types 4-41

ADAPTABLE STRINGS

Adaptable Types '

An adaptable type is a type that has indefinite size or bounds; it adapts to

data of the same type but of different sizes and bounds. The types described

thus far in this chapter are fixed types. An adaptable type differs from a

fixed type in that the storage required for a fixed type is constant and can be ‘
determined before execution. Storage for an adaptable type is determined

during program execution.

An adaptable type can be a string, array, record, sequence, or heap. An
adaptable type can be used to define formal parameters in a procedure and
adaptable pointers. Pointers are the mechanism used for referencing
adaptable variables.

The size of an adaptable type must be fixed during execution. This can be
done in one of three ways:

o If the adaptable type is a formal parameter to a procedure or function, the
size is fixed by the actual parameters when the procedure or function is
called. You can determine the length of an actual parameter string using
the STRLENGTH function, and the bounds of an act.’al parameter array
using the UPPERBOUND and LOWERBOUND functions. (For further
information, refer to the description of the appropriate function in chapter
6.)

¢ An adaptable pointer type on the left side of an assignment statement is ‘
fixed by the assignment operation. It can be assigned any pointer whose
current type is one of the types that the adaptable type can take on.

® An adaptable type can be fixed explicitly using the storage management
statements (described in chapter 5).

An adaptable type is declared with an asterisk taking the place of the size or
bounds normally found in the type or variable declaration.

Adaptable Strings

Use this format to specify an adaptable string:
STRING (* {<= length})

length

Optional parameter specifying the maximum length of the adaptable
string. If omitted, 65,535 characters is assumed. .

If the string exceeds the maximum allowable length, an error occurs.

Two adaptable string types are always equivalent.

442 CYBIL Language Definition Revision B

ADAPTABLE ARRAYS

. Adaptable Arrays

Use this format to specify an adaptable array:
{PACKED} ARRAY [{lower_bound ..} *] OF type

PACKED

Optional packing parameter. When specified, the elements of the array
are mapped in storage in a manner that conserves storage space,
possibly at the expense of access time. If omitted, the array is
unpacked; that is, the elements are mapped in storage to optimize
access time rather than to conserve space. (The array itself is always
mapped into an addressable memory location.) For further information
on how data is stored in memory, refer to appendix D, Data
Representation in Memory.

If the array contains structured types (such as records), the elements of
that type (the fields in the records) are not automatically packed. The
structured type itself must be declared packed.

lower_bound

A constant integer expression that specifies the lower bound of the
adaptable array. This parameter is optional, but its use is encouraged.
Omission of this parameter (only the * appears) indicates it is an
adaptable bound of type integer.

type

Type of the elements within the array. The type can be any defined
type except an adaptable type (that is, an adaptable string, array,
record, sequence, or heap). All elements must be of the same type.

Only one dimension can be adaptable in an array and that dimension must
be the outermost (first one in the declaration).

Adaptable arrays adapt to a specific range of subscripts. An adaptable array
can adapt to any array with the same packing attribute, equivalent subscript
bounds, and equivalent component types. If a lower bound is specified in the
adaptable array declaration, both arrays must also have the same lower
bound.

Adaptable array types are equivalent if they have the same packing
attributes and equivalent component types, and if their corresponding array
and component subscript bounds are equivalent. Two subscript bounds that
contain asterisks only are always equivalent. Two subscript bounds that
contain identical lower bounds are equivalent.

Revision B Types 4-43

ADAPTABLE RECORDS

Adaptable Records

An adaptable record contains zero or more fixed fields followed by one
adaptable field that is a field of an adaptable type.

Use this format to specify an adaptable record:

{PACKED} RECORD
{fixed _field_name : {ALIGNED {[offset MOD base}}} type}...}
adaptable_field_name : {ALIGNED {[offset MOD base]}}
adaptable_type
RECEND

PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly
at the expense of access time. If omitted, the record is unpacked; that
is, the fields are mapped in storage to optimize access time rather than
to conserve space. For further information on how data is stored in
memory, refer to appendix D, Data Representation in Memory.

If a field is a structured fype (such as another record), the elements of
that type are not packed automatically. The structured type itself must
be declared packed.

fixed_field _name ‘

Name identifying a particular fixed field. The name must be unique
within the record.

ALIGNED

Optional alignment parameter. If specified, it can appear alone, or with
an offset in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary
to facilitate rapid access to the field. This may negate some of the effect
of packing the record. For further information, refer to Alignment
earlier in this chapter.

T If you specify more than one fixed (nonadaptable) field, you must separate

them with commas. ‘

4-44 CYBIL Language Definition Revision A

ADAPTABLE RECORDS

‘ [offset MOD base]
Optional offset to be used in conjunction with the ALIGNED
parameter. This offset causes the field to be mapped to a particular
hardware address relative to the specified base and offset. Filler is
created if necessary to ensure that the field begins on the specified
‘ addressable unit.

offset

An integer constant. Offset must be less than base.

base

An integer constant that must be divisible by 8. For automatic
variables, the base can only be 8.

type
Any defined type, including another record, but not an adaptable type.

adaptable_field_name
Name identifying the adaptable field.

adaptable_type
An adaptable type.

An adaptable record can adapt to any record whose types are the same
except for the last field. That last field must be one to which the adaptable
field can adapt.

Two adaptable record types are equivalent if they have the same packing
attributes, the same alignment, the same number of fields, and
corresponding fields with identical names and equivalent types.

Revision A Types 4-45

ADAPTABLE SEQUENCES

Adaptable Sequences

Use this format to specify an adaptable sequence:
SEQ (%)

An adaptable sequence can adapt to a sequence of any size.

Two adaptable sequence types are always “iequivalent.

4-46 CYBIL Language Definition Revision A

ADAPTABLE HEAPS

. Adaptable Heaps

Use this format to specify an adaptable heap:
HEAP (*)
‘ An adaptable heap can adapt to a heap of any size.

Two adaptable heap types are always equivalent.

Revision B Types 4-47

o Expressions and Statements 5

This chapter describes expressions and statements that can be used within a
‘ CYBIL program, procedure, or function.

54 03 41153 10) ¢ T- 20 51
OPerandsooiiiiiii it i e e e 51
(0472 22171 -2 52

Negation Operator.oovveiiiiitieierein e enreereneanenns 52
Multiplication Operatorsoooiiiiiiiiiiieiiiiiiiieenas 52
Sign Operatorsovviereteiii ettt it e e, 54
Addition Operatorsviiiiiiiiii ittt 54
Relational Operators.........c.ooiviiiiiiiiiiiiiiiiiniiiieianens 56
St OPeratOrS. ..t inetei ittt rni ettt e 5-10

72173 1= 1 17 SO PO 5-13
Assignment Statement.ooiit ittt e 5-13
Structured Statementsccciieiiiiirrrerrrererrererrrerennnn 5-16

BEGIN Statementovitivrnriinieniniieraieennenaneannns 5-16
FORStatement......coooviiiiiiiiiiiiiieiniiieerrinnneeeennns 5-17
REPEAT Statementocvvitteiniinieriiiianieranenaneenns 5-20
WHILE Statementcoiiiiiiitiiiiitieinnreteannneeannn 521
. Control Statementscooiiinriiiiii ittt et ieeraneneerens 5-23
TF Statementcovvieiiiii it et i et e 5-24
CASE Statementooviiritiiinitiennieniiesrennnnnnss 5-26
CYCLE Statementcoovvtiittvinrnrernneernenenerennenanns 5-28
EXIT Statementooovvviii ittt eniiiieeernnanss 5-30
RETURN Statementootviiiiiiriiiiiieiiinennennnns 5-31
Storage Management Statements...........covviiiiiiiiiiieen, 532
RESET Statementccoiviiiitiiiiiiiiinirerininnneeeanns 5-35
NEXT Statementcoocveenrrinrerererereeereerererereeennns 537
ALLOCATE Statementcoviiriinierirnnenneneeanennns 5-38
FREE Statementc.oiitviitivnneinnernnernneennneeneannns 539
PUSH Statementcoovtiiiiriiieniereenneneerennneeennns 5-40

® Expressions and Statements 5

Expressions

Expressions are made up of operands and operators. Operators act on
operands to produce new values. (Constant expressions are evaluated to
provide values for constants. Refer also to Constant Expressions in chapter
2))

In general, operations involving nonequivalent types are not allowed; one
type cannot be used where another type is expected. Exceptions are noted in
the following descriptions.

Operands

Operands hold or represent the values to be used during evaluation of an
expression. An operand can be a variable, constant, name of a constant, set
value constructor, function reference (either standard function or user-
defined function), pointer to a procedure name, pointer to a variable, or
another expression enclosed in parentheses.

‘ The value of a variable being used as an operand is the last value assigned
to it. A constant name is replaced by the constant value associated with it in
the constant declaration.

A function reference causes the function to be executed; the value returned by
the function takes the place of the function reference in the expression.

Revision A Expressions and Statements 5.1

OPERATORS

Operators

Operators cause an action to be performed on one operand or a pair of
operands. Many of the operators can be used only on basic types; they will be
noted in their individual descriptions. Some operators can be used on sets.
Although they are discussed in the individual descriptions that follow, for a
more detailed description also refer to Set Operators later in this chapter.

An operation on a variable or component of a variable that has an undefined
value will produce an undefined result.

There are five kinds of operators, many of which are identified by reserved
symbols. They are listed next in the order in which they are evaluated from
highest to lowest precedence.

¢ Negation operator (NOT)

e Multiplication operators (*, DIV, /, MOD, and AND)
e Sign operators (+ and -)

e Addition operators (+, -, OR, and XOR)

¢ Relational operators (<, <=,>,>=,=,<>, and IN)

In relational operators that consist of two symbols (that is, <=, >=,
and < >), do not separate the symbols with a space or any other character;
the symbols must appear together.

When an expression contains two or more operators of the same precedence,
operations are performed from left to right. The only way to explicitly change
the order of evaluation is to use parentheses. Parentheses specify that the
expression inside them should be evaluated first.

Negation Operator
The negation operator, NOT, applies only to boolean operands.
NOT TRUE equals FALSE. NOT FALSE equals TRUE.

Multiplication Operators

The multiplication operators perform multiplication and set intersection (*),
integer quotient division (DIV), real quotient division (/), remainder division
(MOD), and the logical AND operation (AND). Table 5-1 shows the
multiplication operators, the permissible types of their operands, and the
type of result they produce.

52 CYBIL Language Definition Revision B

OPERATORS

Table 5-1. Multiplication Operators

Type of Type of
Operator Operation Operands Result
* Multiplication Integer or subrange Integer
of integer
Real Real
* Set intersection Set of a scalar type Set of the
same type
DIV Integer quotientt Integer or subrange Integer
of integer
/ Real quotient Real Real
MOD Remaindertt Integer or subrange Integer
of integer
AND Logical ANDYit Boolean Boolean

1 Integer quotient refers to the whole number that results from a division

Tt

11

operation. The remainder is ignored. A more formal definition is: for

positive integers a, b, and n,
aDIVb=n

where n is the largest integer so that b * n <= a.
For one or two negative integers,

(-a) DIV b = (a) DIV (-b) = - (a DIV b) and
(-a) DIV (-b)=a DIV b

Remainder refers to the remainder of a division operation. A more
formal definition is:

aMODb=a-(aDIVb)*b

TRUE AND FALSE = FALSE
TRUE AND TRUE = TRUE
FALSE AND FALSE = FALSE
FALSE AND TRUE = FALSE

When the first operand is FALSE, the second operand is never
evaluated.

Revision A Expressions and Statements

53

OPERATORS

Sign Operators

The sign operators perform the identity operation (+) and sign inversion and
set complement operation (). Table 5-2 shows the sign operators, the
permissible types of their operands, and the type of result they produce.

Table 5-2. Sign Operators

Type of Type of
Operator Operation Operands Result
+ Identity Integer Integer
(indicates a
positive operand) Real Real
-~ Sign inversion Integer Integer
(indicates a
negative operand) Real Real
- Set complement Set of a Set of the
scalar type same type
Addition Operators
The addition operators perform addition and set union (+), subtraction, ‘

boolean difference, and set difference (-), the logical OR operation (OR), and
the exclusive OR operation (XOR). Table 5-3 shows the addition operators,
the permissible types of their operands, and the type of result they produce.

54 CYBIL Language Definition Revision B

OPERATORS

‘ Table 5-3. Addition Operators

Type of Type of
Operator Operation Operands Result
+ Addition Integer or subrange Integer
‘ of integer
Real Real
+ Set union Setof a Set of the
scalar type same type
- Subtraction Integer or subrange Integer
of integer
Real Real
- Boolean Boolean Boolean
differencet
- Set difference Set of a Set of the
scalar type same type
OR Logical ORtt Boolean Boolean
‘ XOR Exclusive ORTt} Boolean Boolean
XOR Symmetric Setof a Set of the
difference scalar type same type

t TRUE - TRUE = FALSE
TRUE - FALSE = TRUE
FALSE - TRUE = FALSE
FALSE - FALSE = FALSE

it TRUE OR TRUE = TRUE
TRUE OR FALSE = TRUE
FALSE OR TRUE = TRUE
FALSE OR FALSE = FALSE

When the first operand is TRUE, the second operand is never evaluated.

1t TRUE XOR TRUE = FALSE
TRUE XOR FALSE = TRUE
FALSE XOR TRUE = TRUE
. FALSE XOR FALSE = FALSE

Revision D Expressions and Statements 55

OPERATORS

Relational Operators

The relational operators (<, <=, >, >=, =, <>, and IN) test whether the
following given conditions are true or false: less than (<), less than or equal
to or subset of a set (<=), greater than (>), greater than or equal to or a
superset of a set (>=), equal to or set identity (=), not equal to or set inequality
(<>), and set membership (IN).

Because relational operators are valid on so many different types, some
special points about each type are noted next. Following these comments,
table 5-4 lists the relational operators and the permissible types of their
operands; they always produce a boolean type result.

Comparison of Scalar Types

The comparison operators (<, <=, >, >=, =, and <>) are allowed only
between operands of the same scalar type or between a substring of length 1
and a character.

For integer type operands, the relationships all have their usual meaning.

For character type operands, each character is essentially mapped to its
corresponding integer value according to the ASCII collating sequence. (This
is the same operation performed by the $INTEGER function described in
chapter 6.) The operands and relational operators are then evaluated using
the characters’ integer values.

For boolean type operands, FALSE is always considered to be less than
TRUE.

For ordinal type operands, operands are equal only if they are the same
value; otherwise, they are not equal. For the other relational operators, each
ordinal is essentially mapped to the corresponding integer value of its
position in the ordinal list where it is defined. (This is the same operation
performed by the SINTEGER function described in chapter 6.) The operands
and relational operators are then evaluated using the ordinals’ integer
values. For an example, refer to the discussion of ordinal types under Scalar
Types in chapter 4.

Operands that are a subrange of a scalar type can be compared with
operands of the same type, including another subrange of the same type.

656 CYBIL Language Definition Revision A

OPERATORS

‘ Comparison of Floating-Point Types

All of the comparison operators are valid between operands of the real type.

‘ Comparison of Pointer Types

Two pointers can be compared if they are pointers to equivalent or
potentially equivalent types. (For further information on equivalent types,
refer to Equivalent Types in chapter 4.) For potentially equivalent types, one
or both of the pointers can be pointers to adaptable or bound variant types.
The current type of such a pointer must be equivalent to the type of the
pointer with which it is being compared; if it is not, the operation is
undefined.

Pointers can be compared for equality and inequality only. Two pointers are

equal if they designate the same variable or if they both have the value NIL.
A pointer of any type can be compared with the value NIL. Two pointers to a
procedure are equal if they designate the same declaration of a procedure.

Comparison of Relative Pointers

Two relative pointers can be compared only if they are of equivalent types.
Two relative pointers are equal if they can be converted to equal pointers
‘ using the #PTR function (described in chapter 6).

Comparison of String Types

All of the comparison operators are valid between operands that are strings.
If the lengths of the two string operands are unequal, spaces are added to the
right of the shorter string to fill the field.

Strings are compared character by character from left to right; that is, each
character from one string is compared with the character in the
corresponding position of the second string. Each character is compared
using the same method as for operands of character type; the integer value of
the character, when mapped to the ASCII collating sequence, is used.

Revision A Expressions and Statements 57

OPERATORS

Comparison of Sets and Set Membership ‘

Comparison operators have slightly different meanings for sets than for

other types. The only comparison operators valid for sets are: = (neaning

identical to), < > (meaning different from), <= (meaning the left operand is
contained in the right operand), and >= (meaning the left operand contains

the right operand). These operators are valid between two sets of the same '
type. Their exact meanings are detailed later in this chapter under Set

Operators.

The other relational operator for sets is IN. A specified operand is IN a set if
that operand is a member of the set. The set must be of the same type or a
subrange of the same type as the operand. The operand can be a subrange of
the type of the set.

Comparison of Other Types

Invariant records can be compared for equality and inequality only. Two
equivalent records are equal if their corresponding fields are equal.

The following types cannot be compared:

¢ Arrays or structures that contain an array as a component or field

* Variant records ‘
e Sequences

e Heaps

® Records that contain a field of one of the preceding types

However, pointers to these types can be compared.

58 CYBIL Language Definition Revision D

Table 5-4. Relational Operators

OPERATORS

is not valid in this case.

Type of Type of
Operator Operation Left Operand Right Operand
< Less than Any scalar The same
‘ type scalar type
Real Real
<= Less than or A string A string of
equal to the same
length
> Greater than A string A character
of length 1}
>= Greater than or
equal to
= Equal to A character A string
of length 11
<> Not equal to
IN Set membership Any scalar A set of the
type same type
Real A set of
real type
A string A set of
‘ of length 1t character type
= Equality (also A set of any A set of the
called identity) scalar type same type
<> Inequality A set of A set of
real type real type
<= Is contained in
>= Contains
= Equality A nonvariant The same type
<> Inequality record type
containing
no arrays
Any pointer The same type
type or the or the value
value NIL NIL
1 The string of length 1 has the form
STRING(position)
‘ where the length is implied. The form
STRING(position,1)

Revision D

Expressions and Statements

59

OPERATORS

Set Operators

The set operators have already been mentioned briefly in the preceding
sections on multiplication, sign, addition, and relational operators. This
section discusses all of them and details how they are used with sets.

The set operators perform assignment, union (+), intersection (*), difference
(-), symmetric difference (XOR), negation (-), identity or equality (=),
inequality (< >), inclusion (<=), containment (>=), and membership (IN).

Assignment is discussed under Sets in chapter 4. The next five operations
(union, intersection, difference, symmetric difference, and negation) all
produce results that are sets. They are described in table 5-5. The remaining
operations (identity, inequality, inclusion, containment, and membership)
produce boolean results. They are described in table 5-6.

The relational operations described in table 5-6 take place only after any
operations described in table 5-5 have been performed.

5-10 CYBIL Language Definition Revision B

OPERATORS

. Table 5-5. Operations That Produce Sets

Operator

Operation

Description of Operation

+

XOR

Union

Difference

Intersection

Negation
(complement)

Symmetric
difference

The resulting set consists of all members
of both sets. The result of A + B is all
elements of sets A and B.

The resulting set consists of the members
in the lefthand set that are not in the
righthand set. The result of A - B is the
elements of A that are not in B. This
operation differs from negation in that
two operands are present.

The resulting set consists of the members
that are in both sets. The result of A * B
is all elements that are in both A and B.

The resulting set consists of the members
of the set’s type that are not in the set.
The result of -A is all elements of A’s
type that are not in A. This operation
differs from the difference operation in
that only one operand is present.

The resulting set consists of the members
of either but not both sets. The result of
A XOR Bis all elements in A or B that
are not common to both A and B.

Revision B

Expressions and Statements 5-11

OPERATORS

Table 5-6. Operations That Produce Boolean Results

Operator Operation

Description of Operation

IN

Equality
(identity)

Inequality

Inclusion

Containment

Membership

The resulting value is TRUE if every
member of one set is present in the other
set and vice versa. A = B is TRUE if
every element of A is in B and every
element of B is in A. It is also TRUE if A
and B are both empty sets. In any other
case, it is FALSE.

The resulting value is TRUE if not every
member of one set is a member of the
other set. A<>Bis TRUEif A=Bis
FALSE.

The resulting value is TRUE if every
member of the lefthand set is also a
member of the righthand set. A <=Bis
TRUE if every element of A is in B. It is
also TRUE if A is an empty set. In all
other cases, it is FALSE.

The resulting value is TRUE if every
member of the righthand set is also a
member of the lefthand set. A >= B is
TRUE if every element of B is in A (that
is, B <= A).

This operation differs somewhat from
the others in that it can specify as an
operand a value or a variable rather
than a set. It has the form

scalar IN set

where scalar can be a value (including a
subrange) or a variable. The resulting
value is TRUE if the scalar is of the
same type as the type of the set, and is
an element within the set. AIN B is
TRUE if A is the same type as the set B
and A is an element of B.

512

CYBIL Language Definition

Revision D

ASSIGNMENT

‘ Statements

Statements specify actions to be performed. Unlike declarations, statements
can be executed. They can appear only in a program, procedure, or function.

. A statement list is an ordered sequence of statements. In a statement list, a
statement is separated from the one following it by a semicolon. Two
consecutive semicolons indicate an empty statement, which means no action.

Statements can be divided into four types depending on their purpose or
nature:

® Assignment
o Structured
e Control

e Storage management

Assignment Statement

The assignment statement assigns a value to a variable.
. Use this format for the assignment statement:
name := expression

name

Name of a variable previously declared.

expression

An expression that meets the requirements stated earlier in this
chapter. Any constant or variable contained in the expression must be
defined and have a value assigned.

Revision A Expressions and Statements 5-13

ASSIGNMENT

This statement is similar to the initialization part of the VAR declaration
where you can assign an initial value to a variable. (For further information
on initialization, refer to Variable Declaration in chapter 3.) The assignment
statement allows you to change that value at any point in the program. The
expression is evaluated and the result becomes the current value of the
named variable.

The variable cannot be:
e A read-only variable.

e A formal value parameter of the procedure that contains the assignment
statement.

® A bound variant record.

e The tag field name of a bound variant record.
® A heap.

® An array or record that contains a heap.

The type of the expression must be equivalent to the type of the variable,
with the exceptions discussed next. Both types can be subranges of
equivalent types.

A character, string, or substring variable can be assigned the value of a
character expression, a string, or a substring. If you assign a value that is
shorter than the variable or substring to which it is being assigned, spaces
are added to the right of the shorter string to fill the field. If you assign a
value that is longer than the variable or substring, the value is truncated on
the right. Assigning strings or substrings that overlap is not a valid
operation, for example, STRING_1 := STRING _1(3,7); results are
unpredictable.

514 CYBIL Language Definition Revision A

ASSIGNMENT

If the variable is a pointer, its scope must be less than or equal to the scope of
the data to which it is pointing. For example, a static pointer variable should
not point to an automatic variable local to a procedure. When the procedure
is left, the pointer variable will be pointing at undefined data.

A pointer to a bound variant record can be assigned a pointer to a variant
record that is not bound and is otherwise equivalent.

An adaptable pointer can be assigned either a pointer to a type to which it
can adapt, or an adaptable pointer than has been adapted to one of those
types. Both the type of the expression and its value are assigned, thus setting
the current type of the adaptable pointer.

Any fixed pointer except a pointer to sequence can be assigned a pointer to
cell. After the assignment, the #LLOC function (described in chapter 6)
performed on the fixed pointer would return the same value as the pointer to
cell.

A pointer to cell can be assigned any pointer type. The value assigned is a
pointer to the first cell allocated for the variable to which the pointer being
assigned points.

When assigning pointers, remember that generally the object of a pointer has
a different lifetime than the pointer variable. Automatic variables are
released when the block in which they are declared has been executed.
Allocated variables no longer exist when they are explicitly released with the
FREE statement. An attempt to reference a variable beyond its lifetime
causes an error and unpredictable results to occur.

A variant record can be assigned a bound variant record of types that are
otherwise equivalent.

The colon (:) and equals sign (=) together are called the assignment operator.
When used as the assignment operator, there can be no spaces or comments
between the two symbols.

Revision A Expressions and Statements 5-15

BEGIN

Structured Statements

A structured statement is one that actually contains one or more statements.
The statements contained in a structured statement are called, collectively, a
statement list. The structured statement determines when the statement list
contained in it will be executed.

There are four structured statements:

BEGIN Provides a logical grouping of statements that performs a
specific function.
FOR Executes a list of statements while a variable is incremented

or decremented from an initial value to a final value.

REPEAT Executes a list of statements until a specified condition is true.
The test is made after each execution of the statements.

WHILE Executes a list of statements while a specified condition is
true. The test is made before each execution of the statements.

BEGIN Statement

The BEGIN statement executes a single statement list once; there is no
repetition. This statement provides for a logical grouping of statements that
performs a particular function and can improve readability.

Use this format for the BEGIN statement:

{/label/}

BEGIN
statement list;

END {/label/};

label

Name that identifies the BEGIN statement and the statement list
within it. Use of labels is optional. If you use a label before BEGIN, it
is recommended that you use one after END, but it is not required. If
vou use labels in both places, they must match. The label name must
be unique within the block in which you use it.

statement list
One or more statements.

Declarations are not allowed with the BEGIN statement. Execution of the
BEGIN statement ends when either the last statement in the list is executed
or control is explicitly transferred from within the list.

516 CYBIL Language Definition Revision A

FOR

FOR Statement

The FOR statement executes a statement list repeatedly while a special
variable ranges from an initial value to a final value. There are two formats
for the FOR statement: one that increments the variable and one that
decrements the variable.

Use this format to increment the variable:

{/label/}

FOR name := initial_value TO final_value DO
statement list;

FOREND {/label/};

Use this format to decrement the variable:

{/label/}

FOR name := initial_value DOWNTO final _value DO
statement list;

FOREND {/label/};

label

Name that identifies the FOR statement and the statement list in it.
Use of labels is optional. If you use a label before FOR, it is
recommended that you use one after FOREND, but it is not required. If
you use labels in both places, they must match. The label name must
be unique within the block in which you use it.

name

Name of the variable that controls the number of repetitions of the
statement list. This variable keeps track of the number of iterations
performed or the current position within the range of values.
initial _value

Scalar expression specifying the initial value assigned to the variable.

final_value

Scalar expression specifying the final value to be assigned to the
variable if the statement ends normally. If the statement ends
abnormally or as the result of an EXIT statement, this may not be the
actual final value.

statement list

One or more statements.

Revision A Expressions and Statements 5-17

FOR

The variable, initial value, and final value must be of equivalent scalar types
or subranges of equivalent types. The variable cannot be assigned a value
within the statement list, or be passed as a reference parameter to a
procedure called within the statement list. Either condition causes a fatal
compilation error. The variable cannot be an unaligned component of a
packed structure.

When CYBIL encounters a FOR statement that increments (one containing
the TO clause), it evaluates the initial value and final value. If the initial
value is greater than the final value, the FOR statement ends and execution
continues with the statement following FOREND; the statement list is not
executed. If the initial value is less than or equal to the final value, the initial
value is assigned to the control variable and the statement list is executed.
Then, the control variable is incremented by one value and, for each
increment, the statement list is executed. This sequence of actions continues
through the final value, For example, the statement

FOR i =1 T0 5 DO
FOREND;

causes the statement list to be executed five times, that is, while I takes on
values from 1 to 5. Then the FOR statement ends and execution continues
with the statement following FOREND.

518 CYBIL Language Definition Revision B

FOR

When CYBIL encounters a FOR statement that decrements (one containing
the DOWNTO clause), it performs essentially the same process. If the initial
value is less than the final value, the FOR statement ends and execution
continues with the statement following FOREND. If the initial value is
greater than or equal to the final value, the initial value is assigned to the
control variable and the statement list is executed. The control variable is
decremented by one value and, for each decrement, the statement list is
executed. When the control variable reaches the final value and the
statement list is executed the last time, the FOR statement ends.

The initial value and final value expressions are evaluated once, when the
statement is entered; the values are then held in temporary locations. Thus,
subsequent assignments to initial value and final value have no effect on the
execution of the FOR statement.

When a FOR statement completes normally, the value of the control variable
is that of the final value specified in the statement. This may not be the case
if the statement ends abnormally or ends as a result of an EXIT statement.

Example:

Integer values are often used in FOR statements, but any scalar type can be
used. The following example executes a statement list while the value of a
character variable is incremented.

FOR control := 'a' TO 'z' DO

FOREND;

Each time the statement list is performed, the value of CONTROL increases
by one value, following the normal sequence of alphabetic characters from ’a’
to ’z’; that is, after the statement list is executed once, the value of
CONTROL changes to ’b’, and so on until the list has been executed 26
times.

Revision D Expressions and Statements 5-19

REPEAT

REPEAT Statement ‘

The REPEAT statement executes a statement list repeatedly until a specific
condition is true.

Use this format for the REPEAT statement: ‘

{/label/}

REPEAT
statement list;

UNTIL expression;

label

Name that identifies the REPEAT statement and the statement list in
it. Use of the label before REPEAT is optional; a label is not permitted
after UNTIL. The label name must be unique within the block in
which it is used.

statement list

One or more statements.

expression

A boolean type expression.

The statement list is always executed at least once. After the last statement .
in the list, the expression is evaluated. Every time the expression is FALSE,

the statement list is executed again. When the expression is TRUE, the

REPEAT statement ends and execution continues with the statement

following the UNTIL clause.

The statement list can contain nested REPEAT statements.
Example:

In this example, the statement list (mod operation and assignments) is
executed once. If J is not equal to zero, it is executed again and continues
until J is equal to zero.

2= 9 MOD j;
=33
= k;
UNTIL j = 0;

520 CYBIL Language Definition Revision A

WHILE

WHILE Statement

The WHILE statement executes a statement list repeatedly while a specific
condition is true.

Use this format for the WHILE statement:

{/label/}

WHILE expression DO
statement list;

WHILEND {/label/};
label

Name that identifies the WHILE statement and the statement list in it.
Use of labels is optional. If you use a label before WHILE, it is
recommended that you use one after WHILEND, but it is not required.
If you use labels in both places, they must match. The label name must
be unique within the block in which you use it.

expression

A boolean type expression.

statement list

One or more statements.

Revision A Expressions and Statements 521

WHILE

If the boolean expression is evaluated as TRUE, the statement list is
executed. After the last statement in the list, the expression is again
evaluated. Every time the expression is TRUE, the statement list is executed.
When the expression is FALSE, the WHILE statement ends and execution
continues with the statement following WHILEND. If the expression is
FALSE in the initial evaluation, the statement list is never executed.

Example:

In this example, the expression TABLE[I] < > 0 is evaluated; an element of
the array TABLE is compared to 0. While the expression is true (the element
is not 0), I is incremented. This causes the next element of the array to be
checked. When the expression is false, the statement list is not executed.
Execution continues with the statement following WHILEND. 1 is the
position of an element in the array that is 0.

/check_for_zero/
WHILE table [i1 <> 0 DO
i=9+1;
WHILEND /check_for_zero/;

The preceding example assumes, of course, that the array contains an
element with the value 0. If not, the WHILE statement list executes in an
infinite loop. In either the WHILE expression or the statement list, there
must be a check. One solution is to set a variable, TABLE _MAX, to the
maximum number of elements in the array and check it before executing the
statement list, as in:

WHILE (i < table_max) AND (table L[il <> 0 DO

Now both expressions must be true before the statement list is executed. If
either is false, execution continues following WHILEND.

5-22 CYBIL Language Definition Revision D

CONTROL STATEMENTS

Control Statements

A control statement can change the flow of execution of a program by
transferring control from one place in the program to another.

There are five control statements:

IF

CASE

CYCLE

EXIT

RETURN

Executes one statement list if a given condition is true; ends
the statement or executes another statement list if the
condition is false.

Executes one statement list out of a set of statement lists
depending on the value of a given expression.

Causes the remaining statements in a repetitive statement
(FOR, REPEAT, or WHILE) to be skipped and the next
iteration of the statement to take place.

Unconditionally stops execution within a procedure,
function, or a structured statement (BEGIN, REPEAT,
WHILE, and FOR).

Returns control from a procedure or function to the point at
which it was called.

Procedure and function calls also transfer control of an executing program.
Functions are discussed in chapter 6 and procedures are discussed in

chapter 7.

Revision A

Expressions and Statements 523

IF

IF Statement

The IF statement executes or skips a statement list depending on whether a
given condition is true or false.

Use this format for the IF statement:

IF expression THEN
statement list;
{ELSEIF expression THEN
" statement list;}...
{ELSE
statement list;}
IFEND;

expression

A boolean expression.

statement list
One or more statements.

The ELSEIF and ELSE clauses are optional. The ELSEIF clause contains
another test condition that is evaluated only if the preceding condition
(expression) is false, The ELSE clause provides a statement list that is
executed unconditionally when the preceding expression is false.

When an expression is evaluated as true, the statement list following the
reserved word THEN is executed. When the list is completed, execution
continues with the first statement following IFEND. If the expression is
false, execution continues with the next clause or reserved word in the IF
statement format (that is, ELSEIF, ELSE, or IFEND).

If the next reserved word in the IF statement format is IFEND, execution
continues with the first statement following it.

5-24 CYBIL Language Definition Revision A

IF

If the next reserved word is ELSEIF, the expression contained in that clause
is evaluated; if true, the statement list that follows is executed. Otherwise,
execution continues with the next reserved word in the IF statement format.

If the next reserved word is ELSE, the statement list that follows is always
executed. You get to this point only if the preceding expression(s) is false.

Additional IF statements can be contained (nested) in any of the statement
lists. A consistent style of indentation or spacing greatly improves
readability of such statements.

If the ELSE clause is included in a nested IF statement, the clause applies to
the most recent IF statement.

Examples:
In this example, Y is assigned to X only if X is less than Y.
IF x < y THEN
X 1= y;

IFEND;

In the next example, Z is always assigned one of the values 1, 2, 3, or 4
depending on the value of X.

IF x <= 5 THEN

2 :=1;

ELSEIF x > 30 THEN
2 :=2;

ELSEIF x = 15 THEN
z:=3;

ELSE
z 1= 4;

IFEND;

Revision A Expressions and Statements 525

CASE

CASE Statement

The CASE statement executes one statement list out of a set of lists based on
the value of a given expression.

Use this format for the CASE statement:

CASE expression OF

= value {,value}... =
statement list;

{= value {,value}... =
statement list;}...

{ELSE statement list;}

CASEND;

expression

A scalar expression. The expression must be of the same type as the
value or values that follow.

value

One or more constant scalar expressions or a subrange of constant
scalar expressions. A subrange indicates that all of the values included
in the subrange are acceptable values. If you specify two or more
values, separate them with commas. The values must be of the same
type as the expression. Values can be in any order, not strictly
sequential. Values must be unique within the CASE statement.

statement list
One or more statements.

You define a set of possible values that a variable or expression can have.
With one or more of the values you associate a statement list using
the format:

=value=
statement list;

When the CASE statement is executed, the expression is evaluated and the
statement list associated with the current value of the expression is executed.
If the current value is not found among those in the CASE statement,
execution continues with the ELSE clause. If ELSE is omitted and the value
is not found in the CASE statement, the program is in error. After any one of
the statement lists is executed, execution continues with the statement
following CASEND.

526 CYBIL Language Definition Revision D

CASE

‘ Examples:

In this example, I is a variable that is expected to take on one of the values 1

through 4. If its value is 1, the first statement list (X := X + 1) is executed and

control goes to the statement following CASEND. If the value of I is 2, the
. second list is executed, and so on.

CASE i OF
=1=

X :=x+1;
=2 =

X = x +2;
=3 =

X 1= x+3;
=4 =

X 1= x +4;
CASEND;

In the next example, OPERATOR is a variable that is expected to take on
values of PLUS, MINUS, or TIMES. Depending on the current value of
OPERATOR, the associated statement is executed.

CASE operator OF
= plus =
"I' X 1= x +y;
minus =
X = x=-y;
times =
X 1= X %y,
CASEND;

Revision D Expressions and Statements 527 @

CYCLE

CYCLE Statement

The CYCLE statement can be included in the statement list of a repetitive
statement (FOR, REPEAT, or WHILE) and causes any statements following
it to be skipped and the next iteration of the repetitive statement to take
place.

Use this format for the CYCLE statement:

CYCLE /label/

label

Name that identifies the repetitive statement in which the CYCLE
statement is contained.

The CYCLE statement is usually used in conjunction with an IF statement,
asin:

/label/
repetitive statement
IF expression THEN
CYCLE /label/;
IFEND;
remainder of statement list;
end of repetitive statement;

The IF statement tests for a condition that, if true, causes the CYCLE
statement to be executed. Then the remaining statements of the repetitive
statement are skipped and execution continues with whatever would
normally follow the statement list, either another cycle of the repetitive
statement or the next statement following the end of the repetitive statement.
If the condition in the IF statement is false, the remaining statements in the
repetitive statement are executed.

If not contained in a repetitive statement, the CYCLE statement is diagnosed
as a compilation error.

528 CYBIL Language Definition Revision A

CYCLE

. Example:

This example finds the smallest element of an array TABLE. On the first
execution, X (the first element of the array) is assumed to be smallest. If X is
smaller than succeeding elements of the array, the CYCLE statement is
‘ executed; the remainder of the statements are then skipped, and the next
iteration of the FOR statement occurs. If an element smaller than X is found,
the CYCLE statement is ignored and the rest of the statement list is
processed; X is replaced by the smaller element. If N has not yet been
reached, the FOR statement continues. When N is reached, X will contain the
smallest element of the array.

x := table [1];

/find_smallest/
FOR k :=2 70 n DO
IF x < table [kl THEN
CYCLE /find_smallest/;
IFEND;
X := table [k];
FOREND /find_smallest/;

Revision D Expressions and Statements 5.29

EXIT

EXIT Statement

The EXIT statement causes an unconditional exit from a procedure, function,
or a structured statement (BEGIN, FOR, REPEAT, and WHILE).

Use this format for the EXIT statement:
EXIT name;

name

Name that identifies the procedure, function, or statement. For a
procedure or function, it is the procedure or function name. For a
structured statement, it is the statement label; in this case the format
could be shown as EXIT /label/.

When the EXIT statement is encountered, execution of the named procedure,
function, or statement is automatically stopped and execution resumes with
the statement that would follow normal completion. For a procedure or
function, it is the statement that would normally follow the procedure or
function call. For a structured statement, it is the statement following the
end of the structured statement (END, FOREND, UNTIL expression, and
WHILEND).

The EXIT statement must be within the scope of the procedure, function, or
statement it names. Otherwise, it has no meaning and is diagnosed as a
programming error.

With a single EXIT statement, you can exit several levels of procedures,
functions, or statements; they need not be exited separately. (This is
sometimes referred to as a nonlocal exit.) If the EXIT statement is executed
in a nested recursive procedure or function, it is the most recent invocation of
the procedure or function and any intervening procedures or functions that
are exited.

530 CYBIL Language Definition Revision D

RETURN

RETURN Statement

The RETURN statement completes the execution of a procedure or function
and returns control to the program, procedure, or function that called it.

Use this format for the RETURN statement:
RETURN;

If omitted at the end of a procedure or function, the RETURN statement is
assumed.

Revision B Expressions and Statements 531

STORAGE MANAGEMENT STATEMENTS

| Storage Management Statements

Storage management statements allow you to manipulate components of
sequence and heap types, and put variables in the run-time stack.

There are five storage management statements:

RESET Resets the pointer in a sequence or releases all the
variables in a user-defined heap.

NEXT Creates or accesses the next element of a sequence given a
starting element.

ALLOCATE Allocates storage for a variable in a heap.
FREE Releases a variable from a heap.
PUSH Allocates storage for a variable in the run-time stack.

Sequences use the RESET and NEXT statements. Heaps use the RESET,
ALLOCATE, and FREE statements. The run-time stack uses the PUSH
statement. (Refer to Storage Types in chapter 4 for further information on
sequences and heaps.) The NEXT and ALLOCATE statements can also be
used to allocate space in a segment access file. Accessing a file as a memory
segment is described in the CYBIL Sequential and Byte Addressable Files
manual. That manual also compares use of the default heap and run-time
stack with use of a segment access file for data storage.

In the NEXT, ALLOCATE, and PUSH statements, you must specify a
pointer to the variable to be manipulated so that sufficient space can be
allocated for that type. This pointer can be a pointer to a fixed type, a pointer
to an adaptable type, or a pointer to a bound variant record type. Space is
then allocated for a variable of the type to which the pointer can point. This
pointer is also used to access the variable. When space is allocated, CYBIL
returns the address of the variable to the pointer. Therefore, to reference a
variable in a sequence, heap, or the run-time stack, you indicate the object of
the pointer in this form: pointer name .

532 CYBIL Language Definition Revision D

STORAGE MANAGEMENT STATEMENTS

If you specify a fixed type pointer, the statement uses a variable of the type
designated by that pointer variable. If you specify an adaptable type pointer
or bound variant record type pointer, you must also indicate the size of the
adaptable type or the tag field of the variant record to be used. This causes a
fixed type to be set and the adaptable or bound variant record pointer
designates a variable of that fixed type. That particular fixed type is
designated until it is reset by a subsequent assignment or another storage
management statement.

To indicate the size of an adaptable pointer or the tag field of a bound
variant record pointer, you use the format:

pointer : [size]

pointer

Name of an adaptable pointer variable or a bound variant record
pointer variable.

size

Fixed amount of space required for the variable designated by pointer.
This is also referred to as the size fixer. You set the size of the
adaptable type the same way you specify the size of the corresponding
unadaptable (fixed) type. For example, in a variable or type
declaration, you specify the size of a fixed array with subscript bounds,
usually a subrange of "scalar expression..scalar expression”. You set
the size of an adaptable array here using the same form. Summarized
next are the forms used to set the size of all possible adaptable types.
For more detailed information, refer to the descriptions of the
corresponding fixed types in chapter 4.

Pointer Type Form Used to Set Size
Adaptable array scalar expression .. scalar expression
Adaptable string A positive integer expression specifying the

length of the string

Adaptable heap [{REP positive integer expression OF} fixed
type name {,{REP positive integer expression
OF; fixed type namej...]

Adaptable sequence [{REP positive integer expression OF} fixed
type name {,{ REP positive integer expression
OF; fixed type name}...]

Adaptable record One of the forms used for an adaptable array,
string, heap, or sequence

Bound variant record A scalar expression or one or more
constant scalar expressions followed by an
optional scalar expression

Revision D Expressions and Statements 5-33

STORAGE MANAGEMENT STATEMENTS

If an adaptable array had a lower bound specified in its original declaration,
the lower bound specified here must match that value. For an adaptable
record, the form used must be a value and type to which the record can
adapt. For a bound variant record, the order, types, and values used must be
valid for a variant of the record; all but the last of the expressions must be
constant expressions.

Examples:

This example declares a type that is an adaptable array named
ADAPT_ARRAY. PTR is a pointer to that type. BUNCH is a heap with
space for 100 integers. The heap BUNCH is reset; that is, any existing
elements are released. Space is then allocated in the heap for a variable of
the type designated by PTR. That variable is of type ADAPT_ARRAY (an
array of integers) and it has fixed subscript bounds of from 1 to 15. PTR now
points to that array.

TYPE
adapt_array = array [1 .. * 1 of integer;

VAR
ptr: “adapt_array,
bunch: HEAP (REP 100 of integer);

RESET bunch;
ALLOCATE ptr: [1 .. 151 IN bunch;

The following example shows the setting of an adaptable sequence. Notice
that two sets of brackets are required in the PUSH statement.

VAR
ptr: “SEQ (*);

PUSH ptr: CLREP 10 OF integer, REP 22 OF charl];

® 534 CYBIL Language Definition Revision D

RESET

RESET Statement

The RESET statement operates on both sequences and heaps. In a sequence,
it resets the pointer to the beginning of the sequence or to a specific variable
within the sequence. In a heap, it releases all the variables in the heap.

The RESET statement must appear before the first NEXT statement (for a
sequence) or ALLLOCATE statement (for a user-defined heap). This ensures
that the sequence is at the beginning or the heap is empty. If you reserve
space by using a NEXT or ALLOCATE statement before the RESET
statement, the program is in error.

RESET in a Sequence
This statement sets the current element being pointed to in a sequence.
Use this format for the RESET statement in a sequence:

RESET sequence_pointer { 7O variable_pointer }

sequence_pointer
Name of a pointer to a sequence. This specifies the particular sequence.

variable_pointer

Name of a pointer to a particular variable within the sequence. If
omitted, the pointer points to the first element of the sequence.

If you did not set the value of the pointer variable with a NEXT statement
for the same sequence, an error will occur. An error will also occur if the
value of the pointer variable is NIL.

The RESET statement must appear before the first occurrence of a NEXT
statement to reset the sequence to its beginning; otherwise, the program is in
error.

Revision A Expressions and Statements 5-35

RESET

RESET in a Heap

This statement releases the variables currently in a heap.

Use this format for the RESET statement in a heap:

RESET heap

heap
Name of a heap type variable.

Space for the variables is released and their values become undefined.

Make sure that the RESET statement appears before the first occurrence of
an ALLOCATE statement for a user-defined heap so that the heap is empty;
otherwise, the program is in error.

5-36 CYBIL Language Definition Revision A

NEXT

NEXT Statement

The NEXT statement sets the specified pointer to designate the current
element of the sequence and then makes the next element in the sequence the
current element. This essentially moves the pointer along the sequence
allowing you to assign values to and access elements.

Use this format for the NEXT statement:
NEXT pointer { - [size] } IN sequence_pointer

pointer

Name of a pointer to a fixed type, pointer to an adaptable type, or
pointer to a bound variant record type. The type pointed to by the
pointer is the type of the variable in the sequence. These pointers are

described in detail under Storage Management Statements earlier in
this section.

size

Size of an adaptable type or tag field of a bound variant record type. If
omitted, the pointer must be a pointer to a fixed type. The forms used to

specify size are described in detail under Storage Management
Statements earlier in this section.

sequence_pointer

Name of a pointer to a sequence. This specifies the particular sequence.

After a RESET statement, the current element is always the first element of
the sequence. A NEXT statement assigns to the specified pointer the address
of the current (first) element, and then makes the next element (the second)
the new current element. Thus, the order of variables in a sequence is
determined by the order in which the NEXT statements are executed.

If the NEXT statement causes the new element to be outside the bounds of
the sequence, the pointer is set to NIL. Before attempting to reference an
element in a sequence, check for a NIL pointer value. If you use a pointer
variable with a value of NIL to access an element, an error will occur.

The type of the pointer you specify when data is retrieved from the sequence
must be equivalent to the type of the pointer you used when the same data
was stored in the sequence; otherwise, the program is in error.

Revision A Expressions and Statements 5-37

ALLOCATE

ALLOCATE Statement

The ALLOCATE statement allocates storage space for a variable of the
specified type in the specified heap and then sets the pointer to point to that
variable.

Use this format for the ALLOCATE statement:
ALLOCATE pointer {: [size]} { IN heap }

pointer
Name of a pointer to a fixed type, adaptable type, or bound variant

record type. These pointers are described in detail under Storage
Management Statements earlier in this section.

size

Size of an adaptable type or tag field of a bound variant record type. If
omitted, the pointer must be a pointer to a fixed type. The forms used to
specify size are described in detail under Storage Management
Statements earlier in this section.

heap
Name of a heap type variable. If omitted, the default heap is assumed.

If there is not enough space for the variable to be allocated, the pointer is set
to NIL. Before attempting to reference a variable in a heap, check for a NIL
pointer value. If you use a pointer variable with a value of NIL to access
data, an error will occur.

The RESET statement must appear before the first occurrence of an
ALLOCATE statement for a user-defined heap to ensure that the heap is
empty; otherwise, the program is in error. (This is not allowed for the default
heap.)

The lifetime of a variable that is allocated using the storage management
statements is the time between the allocation of storage (with the
ALLOCATE statement) and the release of storage (with the FREE
statement). A variable allocated using an automatic pointer must be
explicitly freed (using the FREE statement) before the block is left, or the
space will not be released by the program. When the block is left, the pointer
no longer exists and, therefore, the variable cannot be referenced. If the block
is entered again, the previous pointer and the variable referenced by the
pointer cannot be reclaimed.

5-38 CYBIL Language Definition Revision A

FREE

‘ FREE Statement
The FREE statement releases the specified variable from the specified heap.
Use this format for the FREE statement:

‘ FREE pointer { IN heap}

pointer

Name of the pointer variable that designates the variable to be
released.

heap
Name of a heap type variable. If omitted, the default heap is assumed.

The variable’s space in the heap is released and its value becomes undefined.
The pointer variable designating the released variable is set to NIL. If you
specify a variable that is not currently allocated in the heap, the results are
unpredictable.

Using a pointer variable with the value NIL to access data causes an error to
occur. Releasing the NIL pointer is also an error.

Revision A Expressions and Statements 5-39

PUSH

PUSH Statement ‘

The PUSH statement allocates storage space on the run-time stack for a
variable of the specified type and then sets the pointer to point to that
variable.

Use this format for the PUSH statement: '
PUSH pointer {: [size] }

pointer

Name of a pointer to a fixed type, adaptable type, or bound variant
record type. These pointers are described in detail under Storage
Management Statements earlier in this section.

size

Size of an adaptable type or tag field of a bound variant record type. If
omitted, the pointer must be a pointer to a fixed type. The forms used to
specify size are described in detail under Storage Management
Statements earlier in this section.

If there is not enough space for the variable to be allocated, the pointer is set
to NIL. The value of the variable that has just been allocated is undefined
until a subsequent assignment to the variable is made.

You cannot release space on the run-time stack explicitly. It is released .
automatically when the procedure containing the PUSH statement

completes. At that time, space for the variable is released and its value

becomes undefined.

Example:

This example shows the declaration of a pointer variable named ARRAY _
PTR that points to an adaptable array. The PUSH statement allocates space
in the run-time stack for a fixed array of from 1 to 20 elements. Elements of
the array can be referenced by ARRAY _PTR™[i], where i is an integer from 1
to 20.

VAR
array_ptr: "array [1 .. *»] of integer;
PUSH array_ptr: [1 .. 20];

540 CYBIL Language Definition Revision D

‘ Functions 6

This chapter describes the functions that are predefined in CYBIL and
. explains how to define your own functions.

Standard FUNCHONSovveiittiiiiiiiiiiiieietnrerereeeenerearsearans 6-1
SCHAR FUNCHOM . . .ottt veieeisieie e eeinteannnneeensnanssaannanns 6-2
SINTEGER FUNCHON ..ottt viieieteieieeetennrreennnerenanannenes 6-3
E:3 170 L 2k 31 Vo 1o + YR 6-4
LOWERBOUND Functioncvcviiiiniiniuerrneeanereneennnnns 6-5
LOWERVALUE FUNctioncvviitiintanirinnereneennnenaneens 6-6
PRED FUNCHON . .vvttiriiiiiiiii i eietererrerenenerretetaresernnns 6-7
HPTR FUnction . ..ot vi it i iet i eieieiseennneeeerenneeeeannns 6-8
FREAL FUNCHON ..\ttt i ittt et aaees 6-9
HREL FUNCHOM . . . oot viiiit i veeeiieieraneseeranareeeannnessennns 6-10
ELESY DU 20 030 Tor n 1o) « WA 6-11
HSIZE FUNCHON ..ottt e it e ettt e ncacneetenaneaeas 6-12
STRLENGTH Function.........cccovnitiitieiirnreanraneeannans 6-13
SUCC FUNCHON . .vvvvt ittt it ene st rireenneanncennaennnes 6-14
UPPERBOUND FUNCHONvviitiiiiniiiiiiieneeriineaneannnss 6-15
UPPERVALUE Functioncoiveririeieeereeereeeeeenereerennns 6-16

. User-Defined Functions.c.oiviiieiiiiiiiiiiiiiienniereeeennnns 6-17
Function Declarationccoiiiriiiiiiiiriiiiiireeenrrreennens 6-17
Parameter Lastooiriiiiiiiii ittt ittt it i e e 6-19
Referencing a Functionccoiiviniiiiiiiiiiiiiiiieienannnn, 6-21

System-Dependent Functionscoiiitiiiiiiiieninireennnnen, 6-23
HADDRESS FUNCHON . . .« et v vt vveiiiie it iiiienteiinecnnannnns 6-23
H#FREE_RUNNING_CLOCKFunction............covviiirinnnnnnn. 6-24
HOFFSET Function.oviiiviiii i iiiecnieraneennnes 6-25
#PREVIOUS_SAVE_AREAFunctionccvvvveiiienneennn.. 6-26
#READ_REGISTER Functioncoovviieiererereeereenenrenenn 6-27
HRING FUNCHOM .. .viiiieiitteraineaneeeinieneerannneseanns 6-28
HSEGMENT FUNCHON .o oottt iiiiivieeeeeeinnrenennrerenannns 6-29

Functions 6

A function is one or more statements that perform a specific action and can
be called by name from a statement elsewhere in a program. A reference to a
function causes actual parameters in the calling statement to be substituted
for the formal parameters in the function declaration and then the function’s
statements to be executed. Usually the function computes a value and
returns it to the portion of the program that called it.

A function differs from a procedure in that the value returned for a function
replaces the actual function reference within the statement. A function is a
valid operand in an expression; the value returned by the function replaces
the reference and becomes the operand.

The value of a function is the last value assigned to it before the function
returns to the point where it was called. The reason for its return doesn'’t
matter; it could complete normally or abnormally. If the function returns for
any reason before a value is assigned to the function name, results are
undefined.

Functions can be recursive; that is, a function can call itself. In that case,
however, there must be some provision for ending the calls.

You can call standard functions that are already defined in the CYBIL
language, you can define your own functions, or you can call functions
designed specifically for use on NOS/VE. This chapter describes all three.

Functions that start with $ are data conversion functions. Functions that
start with # are either system-dependent functions (that is, unique to CYBIL
on NOS/VE) or functions whose results are system dependent. (For example,
#SIZE is a standard function available on all variations of CYBIL regardless
of operating system; however, its results vary depending on the system on
which it is being used.)

Standard Functions

The functions described here are standard CYBIL functions. They can be
used safely in variations of CYBIL available on other operating systems.
Under System-Dependent Functions, later in this chapter, you’ll find
descriptions of functions unique to CYBIL on NOS/VE.

The functions are described in alphabetical order.

Revision D Functions 6-1

$CHAR

$CHAR Function ‘

The $CHAR function returns the character whose ordinal number within the
ASCII collating sequence is that of a given expression.

Use this format for the SCHAR function call: .
$CHAR(expression)

expression
An integer expression whose value can be from 0 to 255.

If you specify a value for the integer expression less than 0 or greater than
255, an error occurs.

6-2 CYBIL Language Definition Revision A

SINTEGER

$SINTEGER Function

The $INTEGER function returns the integer value of a given expression.
Use this format for the $INTEGER function call:
$INTEGER(expression)

expression

An expression of type integer, subrange of integer, boolean, character,
ordinal, or real.

If the expression is an integer expression, the value of that expression is
returned.

If the expression is a boolean expression, 0 is returned for a false expression
and 1 is returned for a true expression.

If the expression is a character expression, the ordinal number of the
character in the ASCII collating sequence is returned.

If the expression is an ordinal expression, the ordinal number associated
with that ordinal value is returned. The value returned for the first element
of an ordinal type is 0, the second element is 1, and so on.

If the expression is a real expression, the value of the expression is truncated
to a whole number. If the number is in the range defined for integers, that
number is returned; otherwise, an out-of-range error occurs.

Revision A Functions 6-3

#LOC

#LOC Function .

The #LOC function returns a pointer to the first cell allocated for a given
variable.

Use this format for the #LOC function call: .
#LOC(mame)

name
Name of a variable.

6-4 CYBIL Language Definition Revision A

LOWERBOUND

LOWERBOUND Function

The LOWERBQUND function returns the lower bound of an array’s
subscript bounds.

Use this format for the LOWERBOUND function call:
LOWERBOUND(array)

array

An array variable or the name of a fixed array type.

The type of the value returned is the same as the type of the array’s subscript
bounds.

Example:
Assuming the following declaration has been made

VAR
x: array [1 .. 100] of boolean,
y: array ['a' .. 't'] of integer;

the value of LOWERBOUND(X) is 1; the value of LOWERBOUND(Y) is ’a’.

Revision D Functions 65

LOWERVALUE

LOWERVALUE Function

The LOWERVALUE function returns the smallest possible value that a
given variable or type can have.

Use this format for the LOWERVALUE function call:

LOWERVALUE(mame)

name
A scalar variable or name of a scalar type.

The type of the value returned is the same as the given type.
Examples:
Assuming the following declaration has been made

VAR
dozen: 1 .. 12;

the value of LOWERVALUE(DOZEN) is 1.
After the declarations

TYPE
t = (first, second, third);

VAR
v:t;

the value of LOWERVALUE(V) is FIRST and the value of
LOWERVALUE(T) is FIRST.

66 CYBIL Language Definition Revision D

PRED

PRED Function

The PRED function returns the predecessor of a given expression.
Use this format for the PRED function call:
PRED(expression)

expression

A scalar expression.
If the predecessor of the expression does not exist, the program is in error.
Example:

The following example declares two variables, WARM and COLD, each of
which can take on ordinal values of the type SEASONS. The variable
WARM is assigned the value SPRING while the variable COLD is assigned
the value WINTER.

TYPE
seasons = (winter, spring, summer, fall);

VAR
warm: seasons,
cold: seasons;

warm := spring;
cold := PRED (warm);

Revision D Functions 6-7

#PTR

#PTR Function

The #PTR function returns a pointer that can be used to access the object of
a relative pointer.

Use this format for the #PTR function call:
#PTR(pointer_name {,parent_name})

pointer_name
Name of the relative pointer variable.

parent_name
Name of the variable that contains the components being designated
by relative pointers. If omitted, the default heap is used. The variable

can be a string, array, record, heap, or sequence type (either fixed or
adaptable).

Relative pointers cannot be used to access data directly. The #PTR function
converts a relative pointer to a pointer in order to reference the object of the
relative pointer.

The type of the object pointed to by the returned pointer is the same as the
type of the object pointed to by the relative pointer. If the type of the parent
variable associated with the specified relative pointer is not equivalent to the .
type of the specified parent variable, an error occurs.

For further information on relative pointers, refer to Pointer Types in chapter
4,

68 CYBIL Language Definition Revision A i

$REAL

$REAL Function

The $REAL function returns the real number equivalent of a given integer
expression.

Use this format for the SREAL function call:
SREAL(expression)

expression

An integer expression.

Revision A Functions 6.9

#REL

#REL Function

The #REL function returns a relative pointer.

Use this format for the #REL function call:

#REL(pointer_name {,parent_name})

pointer_name
Name of the direct pointer variable.

parent_name

Name of the variable that contains the components being designated
by relative pointers. If omitted, the default heap is used. The variable
can be a string, array, record, heap, or sequence type (either fixed or
adaptable).

The type of the relative pointer’s object is the same as the type of the given
direct pointer’s object. (This type was specified in the VAR declaration of the
relative pointer variable.) The parent type of the relative pointer’s object is
the same as the type of the specified parent variable.

If the pointer specified in the function call does not designate an element of
the parent variable, the result is undefined.

Relative pointer values can be generated solely through this function. For .
further information on relative pointers, refer to Pointer Types in chapter 4.

6-10 CYBIL Language Definition Revision A

#SEQ

#SEQ Function

The #SEQ function returns an adaptable pointer to a sequence allocated for a
given variable.

Use this format for the #SEQ function call:
#SEQ(name)

name

Name of a variable of any type.

The following relationships hold between the #LLOC, #SEQ, and #SIZE
functions:

#LOCHSEQ(name) ~) = #LLOC(name)
#SIZE#SEQ(name)) = #SIZE(name)

Revision D Functions 611 @

#SIZE

#SIZE Function ‘

The #SIZE function returns the number of cells required to contain a given
variable or a variable of a specified type.

Use this format for the #SIZE function call: ’
#SIZE(name)

name

Name of a variable, fixed record type, bound variant record, or an
adaptable type.

If you specify the name of a bound variant record type, the variant that
requires the largest size is used. If you specify the name of an adaptable type,
you must also supply a size fixer for the type.

Example:

The following example declares a procedure, FIND_SIZE, that has as its
only parameter an adaptable array named A. When the procedure is called,
the #SIZE function determines the size of the fixed array that was passed to
it.

PROCEDURE find_size (a: array [1 .. *] OF integer); ‘

i 1= #SIZE(a);

6-12 CYBIL Language Definition Revision D

STRLENGTH

STRLENGTH Function

The STRLENGTH function returns the length of a given string.
Use this format for the STRLENGTH function call:
STRLENGTH(string)

string
A string variable, name of a string type, or adaptable string reference.

For a fixed string, the allocated length is returned as an integer subrange.
For an adaptable string, the current length is returned.

Example:

The following example declares a procedure, FIND_LENGTH, that has as

its only parameter an adaptable string named S. When the procedure is

called, the STRLENGTH function determines the length of the fixed string
that was passed to it.

PROCEDURE find_length (s: string(*));

i t= STRLENGTH (s);

Revision D Functions 6-13

succ

SUCC Function

The SUCC function returns the successor of a given expression.

Use this format for the SUCC function call:

SUCC(expression)

expression

A scalar expression.
If the successor of the expression does not exist, the program is in error.
Example:

The following example declares two variables, HOT and COOL, each of
which can take on ordinal values of the type SEASONS. The variable HOT
is assigned the value SUMMER while the variable COOL is assigned the
value FALL.

TYPE
seasons = (winter, spring, summer, fall);

VAR
hot: seasons,
cool: seasons;

hot := summer;
cool := SUCC (hot);

6-14 CYBIL Language Definition Revision D

UPPERBOUND

UPPERBOUND Function

The UPPERBOUND function returns the upper bound of an array’s
subscript bounds.

Use this format for the UPPERBOUND function call:
UPPERBOUND(array)

array

An array variable or the name of a fixed array type.

The type of the value returned is the same as the type of the array’s subscript
bounds.

Examples:
Assuming the following declaration has been made

VAR
x: array [1 .. 100] of boolean,
y: array ['a' .. 't'] of integer;

the value of UPPERBOUND(X) is 100; the value of UPPERBOUNIXY) is t’.
In the following example, the value of UPPERBOUNIXTABLE) is 50:

VAR
table: "array [1 .. * 1 of cell;

ALLOCATE table: [1 .. 501;

Revision D Functions 6-15

UPPERVALUE

UPPERVALUE Function

The UPPERVALUE function returns the largest possible value that a given
variable or type can have.

Use this format for the UPPERVALUE function call:
UPPERVALUE(mame)

name
A scalar variable or name of a scalar type.

The type of the value returned is the same as the given type.
Examples:
Assuming the following declaration has been made

VAR
dozen: 1 .. 12;

the value of UPPERVALUE(DOZEN) is 12.
After the declarations

TYPE
t = (first, second, third);

ve t;

the value of UPPERVALUE(V) is THIRD and the value of
UPPERVALUE(T) is THIRD.

6-16 CYBIL Language Definition Revision D

USER-DEFINED FUNCTIONS

‘ User-Defined Functions

Function Declaration

. You define your own functions with function declarations.
Use this format to declare a function:

FUNCTION {/attributes]} name {(formal_parameters)} : result_type;t
{declaration_list}
statement_list

FUNCEND {name} ;

attributes

One or more of the following attributes. If you specify more than one,
separate them with commas.

XREF

The function has been compiled in a different module. In this case,
the function declaration can contain the name and formal
parameters, but no declaration list or statement list. In the other
module, the function must have been declared with the XDCL

. attribute and an identical parameter list. If omitted, the function
must be defined within the module where it is called.

XDCL

The function can be called from outside of the module in which it is
located. This attribute can be included only in a function declared at
the outermost level of a module; it cannot be contained in a
program, procedure, or another function. Other modules that call
this function must contain the same function declaration with the
XREF attribute specified.

T Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a function declaration. If included in a
CYBIL program run on NOS/VE, this parameter is ignored.

Revision D Functions 6-17

USER-DEFINED FUNCTIONS

INLINE '
Instead of calling the function, the compiler inserts the actual function
statements at the point in the code where the function call is made.

HGATEt

The function can be called by a function call from a higher ring level if '
the call is issued from within the call bracket of the gated function. 1 If
you specify #GATE, you must also specify the XDCL attribute.

If you don’t specify any attributes, the function is assumed to be in the
same module in which it is called.

name

Name of the function. The function name is optional following
FUNCEND.

formal_parameters

One or more parameters in the form:

VAR name {namel... : type
{,name {,namej... : type}...

and/or:

name {,name}... : type

{,name {,namejl... : typel... .

The first form is called a reference parameter; the second form is called
a value parameter. There is essentially no difference between them in
the context of a function. However, procedures (and programs) do treat
them differently. Both kinds of parameters can appear in the formal
parameter list; if so, they are separated by semicolons (for example,
LINTEGER; VAR A:CHAR). Reference and value parameters are
discussed in more detail later in this chapter under Parameter List.

result_type

The type of the result to be returned. Specify any fixed scalar, floating-
point, pointer, or cell type.

declaration _list

Zero or more declarations.
statement _list

One or more statements.

T This attribute is not supported on variations of CYBIL available on other '
operating systems.
++ A ring level is a hardware feature. Rings provide hardware protection in
that an unauthorized program cannot access anything at a lower ring
level. For further information on rings, refer to the SCL Object Code ‘

Management manual.

6-18 CYBIL Language Definition Revision D

USER-DEFINED FUNCTIONS

In an assignment statement within a function, the lefthand side of the
statement (the variable to receive the value) cannot be:

¢ Anonlocal variable.

¢ A formal parameter of the function.
® The object of a pointer variable.
User-defined functions cannot contain:

e Procedure call statements that call user-defined procedures or NOS/VE
procedures.

¢ Parameters of type pointer to procedure.

o ALLOCATE, FREE, PUSH, or NEXT statements that have parameters
that are not local variables.

Parameter List

A parameter list is an optional list of variable declarations that appears in
the first statement of the function declaration. In the function declaration
format shown earlier, they are shown as formal_parameters. Declarations
for formal parameters must appear in that first statement; they cannot
appear in the declaration list in the body of the function.

A parameter list allows you to pass values from the calling program to the
function. When a call is made to a function, parameters called actual
parameters are included with the function name. The values of those actual
parameters replace the formal parameters in the parameter list. Wherever
the formal parameters exist in the statements within the function, the values
of the corresponding actual parameters are substituted. For every formal
parameter in a function declaration, there must be a corresponding actual
parameter in the function call.

There are two kinds of parameters: reference parameters and value
parameters. A reference parameter has the form:

VAR name {,name}... : type
{,name {,name}... : type}...

A value parameter has the form:

name {,namel... : type
{,name {,namel... : type}...

Revision A Functions 6-19

USER-DEFINED FUNCTIONS

In procedures, reference parameters and value parameters cause different ‘
actions to be taken; in functions, however, both kinds of parameters have the

same effect. (In a procedure, the value of a reference parameter can change

during execution of the procedure; a value parameter cannot change.) In a

function, neither reference parameters nor value parameters can change in

value. A formal reference parameter can be any fixed or adaptable type. A ‘
formal value parameter can be any fixed or adaptable type, except a heap or

an array or record that contains a heap.

Reference parameters and value parameters can be specified in many
combinations. When both kinds of parameters appear together, they must be
separated by semicolons. Parameters of the same type can also be separated
by semicolons instead of commas, but in this case, VAR must appear with
each reference parameter. All of the following parameter lists are valid.

e VAR i, j: integer; a, b: char;

e VAR i: integer; VAR j: integer; a: char; b: char;
® a: char; VAR i, j: integer; b: char;

e VAR i: integer, j: real; a: char, b: boolean;

In each of the preceding examples, I and J are reference parameters; A and B
are value parameters.

® 620 CYBIL Language Definition Revision D

USER-DEFINED FUNCTIONS

‘ Referencing a Function

The call to the function is usually contained in an expression. The call
consists of the function name (as given in the function declaration) and any
. parameters to be passed to the function in the following format:

name ({actual_parameters})

name
Name of the function.

actual_parameters

Zero or more expressions or variables to be substituted for formal
parameters defined in the function declaration. If you specify two or
more, separate them with commas. They are substituted one-for-one
based on their position within the list; that is, the first actual
parameter replaces the first formal parameter, the second actual
parameter replaces the second formal parameter, and so on. For every
formal parameter in a function declaration, there must be a
corresponding actual parameter in the function call.

If you did not specify any formal parameters in the function

declaration, you can’t include any actual parameters in the function

call. However, you must enter left and right parentheses to indicate the
' absence of parameters. In this case, the call is:

name()

The function can be anywhere that a variable of the same type could be. The
value returned by a function is the last value assigned to it. If control is
returned to the calling point before an assignment is made, results are
unpredictable.

The only types that can be returned as values of functions are the basic
types: scalar, floating point, pointer, and cell.

Revision D Functions 621

USER-DEFINED FUNCTIONS

Example:

The following function finds the smaller of two integer values represented by
formal value parameters A and B. The smaller value is assigned to MIN, the
name of the function, and that integer value is returned.

FUNCTION min (a,
b: integer): integer;

IF a > b THEN
min := b;
ELSE
min := a;
IFEND;

FUNCEND min;

This function could be called using the following reference:
smaller := min (first, second);

The value of the variable FIRST is substituted for the formal parameter A;
the value of SECOND is substituted for B. The value returned, the smaller
value, replaces the entire function reference; the variable SMALLER is
assigned the smaller value.

® 622 CYBIL Language Definition Revision D

#ADDRESS

System-Dependent Functions

The functions described here can be used with CYBIL only on NOS/VE. As
you review this section, keep in mind that programs using these functions
cannot be transported to other operating systems and run on variations of
CYBIL.

To use these functions properly and efficiently, you should be familiar with
basic hardware concepts of your computer system. This information can be
found in volume II of the virtual state hardware reference manual.

The functions are described in alphabetical order.

#ADDRESS Function

The #ADDRESS function accepts a ring number, segment number, and byte
offset and returns a value that is of type pointer to cell.

Use this format for the #fADDRESS function call:
#ADDRESS(ring, segment, offset)
ring
Ring number, ranging from 1 to 15.

segment
Segment number, ranging from 0 to 4,095.

offset

Byte offset, ranging from -80000000 hexadecimal to 7TFFFFFFF
hexadecimal.

Example:

The following example uses the #ADDRESS function to set the variable
PTRI to a pointer to cell formed using a ring number of 11, a segment
number of 10, and a byte offset of OFFFF hexadecimal.

VAR
i,
s
k: integer,
ptr1: “cell;

11;

i 10;

k := offff(16);

ptr1 := #address (i, j, k);

.i

Revision D Functions 6-23

#FREE_RUNNING_CLOCK

#FREE_RUNNING_CLOCK Function

The #FREE_RUNNING_CLOCK function returns the value of the free
running microsecond clock.

Use this format for the #FREE_RUNNING_CLOCK function call:
#FREE_RUNNING_CLOCK(port)

port

An integer expression whose value is 0 or 1. It specifies the memory
port to be used for reading the clock.

The integer value returned is that of the free running clock that is
maintained within the memory connected to the specified processor
memory port.

For further information on the free running microsecond clock and memory
ports, refer to volume II of the virtual state hardware reference manual.

Example:

The following example sets the integer variable I to the value of the free
running microsecond clock in the memory connected to processor memory
port 0.

VAR
i: integer;

i := #free_running_clock (0);

6-24 CYBIL Language Definition Revision D

#OFFSET

. #OFFSET Function

The #OFFSET function accepts a direct pointer and returns the integer value
of the signed offset (byte number) contained in the pointer.

‘ Use this format for the #OFFSET function call:
#OFFSET(pointer)

pointer

Name of a direct pointer expression.

A pointer consists in part of the process virtual address (PVA) of the first
byte of the object to which it is pointing. An element of the PVA is the byte
number. This byte number is the signed offset returned.

For further information on PVAs, refer to volume II of the virtual state
hardware reference manual.

Example:
The following example finds the byte offset in the pointer PTR1.

VAR
ptr1: “cell,
‘ byte_offset: - 80000000¢16) .. 7fffffff(16);

byte:_offset := $offset (ptr1);

If PTR1 was formed using the following #ADDRESS function,
ptr1 := #address (11, 10, offff(16));

the value of BYTE_OFFSET would be OFFFF hexadecimal.

Revision D Functions 625

#PREVIOUS_SAVE_AREA

#PREVIOUS_SAVE_AREA Function

The #PREVIOUS_SAVE_AREA function returns a pointer to the first cell
of the previous save area.

Use this format for the #PREVIOUS_SAVE _AREA function call:
#PREVIOUS_SAVE_AREA ()

A procedure uses an area called a stack frame to store its dynamic variables.
If another procedure is called, hardware saves certain registers of the calling
procedure and puts them in a stack frame save area. These registers contain
the information required for the calling procedure to resume normal
execution when control is returned by the called procedure.

If procedure calls are nested, each subsequent call creates its own stack
frame save area and the last save area becomes the previous save area.
Pointers are kept to link the previous save areas so that as procedures
complete and return, the system works back through the previous save areas
using the information contained in them to resume each procedure.

The formats of the stack frame save area and previous save area are shown
in the CYBIL System Interface manual. For further information on the stack
frame save area and previous save area, refer to volume II of the virtual state
hardware reference manual.

Example:

The following example sets the pointer variable PSA_PTR to point to the
first cell of the previous save area. The #CALLER_ID procedure then returns
information about the caller of the last function. That information is
returned in the record CALLER_RECORD. In this example, CALLER _
RECORD is equivalent to the object of pointer PSA_PTR (that is, CALLER _
RECORD =PSA_PTR").

TYPE
id_rec = record
id: 0 .. Offffffff(16),
recend;

VAR
psa_ptr: “id_rec,
caller_record: id_rec;

psa_ptr := #previous_save_area ();
#caller_id (caller_record);

6-26 CYBIL Language Definition Revision D

#READ_REGISTER

#READ_REGISTER Function

The #READ_REGISTER function performs actions equivalent to the copy
from state register (CPYSX) hardware instruction. It allows a program to
read the contents of a process or processor register.

Use this format for the #READ _REGISTER function call:
#READ_REGISTER(register_id)

register_id

An integer expression from 0 to 255 that identifies the number of the
register to be read. Register numbers are given in volume II of the
virtual state hardware reference manual.

An integer value is returned.

The #WRITE_REGISTER procedure described in chapter 7 allows a
program to change the contents of a process or processor register.

For further information on process and processor registers, and the CPYSX
instruction, refer to volume II of the virtual state hardware reference manual.

Example:

The following example sets the integer variable J to the value of register E5,
the Debug mask register.

VAR
j: integer;

j = #read_register (0e5(16));

Revision D Procedures 6-27

#RING

#RING Function

The #RING function accepts a pointer and returns the integer value of the

ring number contained in the pointer.
Use this format for the #RING function call:
#RING(pointer)

pointer

Name of a direct pointer expression.

Example:

The following example finds the ring number in the pointer PTR1.

VAR
ptrl: “cell,
ring_number: integer;

ring;number := #ring (ptrl);

If PTR1 was formed using the following #ADDRESS function,
ptr1 := #address (11, 10, Offff(16));

the value of RING_NUMBER would be 11.

628 CYBIL Language Definition

Revision D

. #SEGMENT Function |

The #SEGMENT function accepts a pointer and returns the integer value of
the segment number contained in the pointer.

‘ Use this format for the #SEGMENT function call:
#SEGMENT (pointer)

pointer

Name of a direct pointer expression.
Example:
The following example finds the segment number in the pointer PTR1.

VAR
ptr1: “cell,
segment_number: integer;

segmént_number := #segment (ptr1);
If PTR1 was formed using the following #ADDRESS function,
ptr1 := #address (11, 10, offff(16));
. the value of SEGMENT_NUMBER would be 10.

Revision D Functions 6-29

® Procedures 7

This chapter describes the procedures that are predefined in CYBIL and
‘ explains how you can define your own procedures.

Standard Proceduresccciiiiiiiiiiiiiiiiii e 7-1
STRINGREP Procedureccovivvvinvronneonnrocernnneranses 7-2
IntegerElementoiiiiiiiiiiiiiiiiiiiiiiiiiiieinneanas 7-3
Character Elementccoeviiiriririiiienrenrenaranenanans 7-3
Boolean Elementc.iviriiiiiiiiriiieraneenieennerenaanans 7-4
Ordinal Element........c.cciviiietiiiiieiernneresnonnnesennnnns 74
Subrange Elementcovittiiiiiiiiiernneeeenrnnnennonnann 74
Floating-PointElementoiiiiiiiiiii e, 75
Pointer Elementcoouniiiiiiiiiiiiieieiiieetereeanennnnas 78
String Elementcoitiiiiiiiiiiiiiiiiiereiiiriiaareniiaas 7-8
User-Defined Proceduresccvviiireieiiirrrieneiroreniioscesennnes 79
Procedure Declarationvoviiiiineniennniiieninananinnnnes 79
Parameter Listcoiiiiiiiiiiiiiii ittt iiinet e annnneans 7-11
Callinga Procedure.........cvviiriiiiiiiiiirrrrneneeronneneenenns 7-13
System-Dependent Proceduresccciiiiiiiiiiiiinieeeannns 7-15
‘ #CALLER _ID Procedurec.oiviriiiiereneeneineennenennes 7-15
HCOMPARE _SWAPProcedureoooievvevineneennaneennanns 7-17
#CONVERT_POINTER_TO_PROCEDURE Procedure............. 7-19
HHASH _SVA Procedurec.c.oviitiiirrenereneernnreaneeancs 7-20
HKEYPOINT Procedure.covvieiriviiiineerennneeeennnnceenns 7-21
#PURGE_BUFFER Procedureccovviiiiieiiinnnnennannns 7-22
HSCAN Procedureccoovtiviiiiiiiiiiiiieraiieeeranaeessannns 7-24
HTRANSLATE Procedure........cooovviiiiiinereiinaeneeananeeenns 7-26
#UNCHECKED_CONVERSION Procedurec..ccvvevennn. 7-27
#WRITE_REGISTER Procedureccvveiiinneeiinnnnnennns 7-28

Procedures 7
®

A procedure is one or more statements that perform a specific action and can
be called by a single statement. A procedure allows you to associate a name

. with the statement list so that by specifying the name itself as if it were a
statement, you cause the list to be executed. Declarations can be included
and take effect when the procedure is called. A procedure call can optionally
cause actual parameters included in the call to be substituted for the formal
parameters in the procedure declaration before the procedure’s statements
are executed.

A procedure differs from a function in that:
¢ A procedure can, but does not always, return a value.

e The call to a procedure is the procedure’s name itself; a function call by
contrast must be part of an expression in a statement.

e There can be no value assigned to the procedure name as there is to a
function name.

You can call standard procedures that are already defined in the CYBIL
language, you can define your own procedures, or you can call procedures
’ designed specifically for use on NOS/VE. This chapter describes all three.

Standard Procedures

The STRINGREP procedure described here is a standard CYBIL procedure.
It can be used safely in variations of CYBIL available on other operating
systems. The last section in this chapter, System-Dependent Procedures,
describes procedures that may not be available on other operating systems or
that are unique to CYBIL on NOS/VE.

Revision D Procedures 7-1

STRINGREP i

STRINGREP Procedure

The STRINGREP procedure converts one or more elements to a string of
characters, then returns that string and the length of the string.

Use this format for the STRINGREP procedure call: .
STRINGREP(string_name, length, element {,element}...)

string_name
Name of a string type variable. (You can specify it as a substring.) The

result is returned here. It will contain the character representations of
the named element(s).

length

Name of an integer variable. The procedure will set its value to the
length in characters of the resulting string variable, string_name. It
will be less than or equal to the declared length of the string variable.

element

Name of the element to be converted. The element can be a scalar,
floating-point, pointer, or string type. Formats for specifying particular
types and rules for conversion of those types are discussed in more
detail later in this chapter.

The named elements are converted to strings of characters. Those strings are
then concatenated and returned left-justified in the named string variable.
The length of the string variable is also returned. If the result of
concatenating the string representations is longer than the length of the
string variable, the result is truncated on the right; the length that will be
returned is the length of the string variable.

Each individual element is converted and placed in a temporary field before
concatenation with other elements. The length of the temporary field can be
specified as part of the element parameter that is described in the following
sections. Generally, numeric values are written right-justified in the
temporary field with spaces added on the left to fill the field, if necessary.
String or character values are written leftjustified in the temporary field
with spaces added on the right to fill the field, if necessary. For both numeric
and alphabetic values, the field is filled with asterisk characters if it is too
short to hold the resulting value. The value of the field length, when
specified, must be greater than or equal to zero; otherwise, an error occurs.

The following paragraphs describe how the STRINGREP procedure converts
specific types and how they appear in the temporary fields.

7-2 CYBIL Language Definition Revision D

STRINGREP

Integer Element
Use this format to specify an integer element:
expression {: length } { ! #(radix)}

expression
An integer expression to be converted.

length
A positive integer expression specifying the length of the temporary
field. The length must be greater than or equal to 2. If omitted, the

temporary field is the minimum size required to hold the integer value
and the leading sign character.

radix

Radix of expression. Possible values are 2, 8, 10, and 16. If omitted, 10
(decimal) is assumed.

The value of the integer expression is converted into a string representation
in the desired radix. The resulting string representation is right-justified in
the temporary field. If the expression is positive, a space precedes the
leftmost significant digit. If the integer expression is negative, a minus sign
precedes the leftmost significant digit. The leading space or hyphen must be
considered a part of the length. Thus, the length must be greater than or
equal to 2 in order to hold the sign character and at least one digit.

If you specify a field length larger than necessary, spaces are added on the
left to fill the field. If you specify a field length that is not long enough to
contain all digits and the sign character, the field is filled with a string of
asterisk characters. If you specify a field length less than or equal to zero, an
€rTor occurs.

Character Element
Use this format to specify a character element:
expression { - length }

expression
A character expression to be converted.

length
A positive integer expression specifying the length of the temporary
field. If omitted, a length of 1 is assumed.

A single character is left-justified in the temporary field. If you specify a field
length larger than necessary, spaces are added on the right to fill the field.
Including a radix for a character element causes a compilation error.

Revision A Procedures 7-3

STRINGREP

Boolean Element

Use this format to specify a boolean element:
expression { - length }

expression

A boolean expression to be converted.

length

A positive integer expression specifying the length of the temporary
field. If omitted, a length of 5 is assumed.

Either of the 5-character strings° TRUE’ or 'FALSE'’ is left-justified in the
temporary field. If you specify a field length larger than necessary, spaces
are added on the right to fill the field. If you specify a field length that is not
long enough to contain all five characters, the temporary field is filled with
asterisk characters. Including a radix for a boolean element causes a
compilation error to occur.

Ordinal Element

The integer value of an ordinal expression is handled the same way as an
integer element. Refer to the discussion under Integer Element earlier in this

chapter. .

Subrange Element

A subrange element is handled the same way as the element of which it is a
subrange.

7-4 CYBIL Language Definition Revision A

STRINGREP

Floating-Point Element
Use this format to specify a floating-point element:
expression { : length {: fraction }}

expression

A real expression to be converted. If the value is INFINITE or
INDEFINITE, an error occurs.

length

A positive integer expression specifying the length of the temporary
field. If omitted, the temporary field is the minimum size required to
hold the integer value and the necessary leading character.

fraction

Positive integer expression specifying the number of fractional digits
to be included in a fixed-point format. Specify a value less than or
equal to “length - 2”. If omitted, conversion to floating-point format is
assumed.

A floating-point expression can be converted into either a fixed-point format
or a floating-point format depending on the fraction parameter. If it is
included, the expression is converted to fixed-point format; if omitted, the
expression is converted to floating-point format.

Revision A Procedures 7-5

STRINGREP

Fixed-Point Format
The form
expression {- length{: fraction}}

causes the specified expression to be converted to a string in fixed-point
format. The string will have the specified length with the specified number of
fractional digits to the right of the decimal place. The expression is rounded
off so that the specified number of fractional digits are present. If no positive
digit appears to the left of the decimal point, a 0 (zero) is inserted.

When figuring the length required to hold the expression, the compiler counts
all digits to the left of the decimal point (it also counts 0 if it appears alone),
the decimal point, and the specified number of fractional digits that appear
to the right of the decimal point. If the expression is negative, an extra space
is required for the minus sign. If you specify a field length larger than
necessary, spaces are added on the left to fill the field. If you specify a field
length that is not long enough to contain all digits, the sign character, and
the decimal point, the field is filled with a string of asterisk characters.

Exambples:

Value of Expression E Format of Element Resulting String

1.23456 E:6:2 'o1.23
-1.23456 E:6:3 1-1.235*
0 E:5:2 ' 0.00°'

7-6 CYBIL Language Definition Revision A

STRINGREP

' Floating-Point Format
The form

expression {: length}

‘ causes the specified expression to be converted to a string in floating-point
format.

The length of the temporary field is determined somewhat differently from
the other elements. The system defines a maximum number of digits that
can be contained in the mantissa of a real number and the number of digits
that can be in the exponent.

When the compiler figures the number of digits that will be in the mantissa,
it first determines the number of spaces that must be present in the string. It
allows for the number of digits in the exponent and four additional spaces:
one for the sign of the expression (a space if positive, - if negative), one for
the decimal point in the mantissa, one for the exponent character (E), and
one for the sign of the exponent (+ or -). The total number of required spaces
is subtracted from the specified field length. The compiler then compares the
result (field length minus required spaces) and the maximum number of
digits allowed in the mantissa, and takes the smaller of the two. That
number is used as the number of digits in the mantissa when the compiler
. rounds the floating-point expression.

If a field length larger than necessary is specified, spaces are added on the
left to fill the field. If the fixed size of the exponent is larger than necessary,
zeroes are added on the left to fill the field. If the number that results from
the subtraction of required spaces from the field length is less than 1, the
field is filled with a string of asterisk characters.

Examples:

Value of Expression E Format of Element Resulting String

123.456 E:10 ' 1.23e+002'
-123.456 E:11 '-1.235E+002"

Revision A Procedures 7.7

STRINGREP

Pointer Element
Use this format to specify a pointer element:
pointer {: length } {: #(radix)}

pointer

A pointer reference to be converted.

length

A positive integer expression specifying the length of the temporary
field. If you omit the field length, the temporary field is the minimum
size required to contain the pointer value.

radix

Radix of the pointer value. Possible values are 2, 8, 10, and 16. For
NOS/VE, the default radix is 16.

The value of the pointer expression is converted into a string representation
in the specified radix. It is right-justified in the temporary field. If you specify
a field length larger than necessary, spaces are added on the left to fill the
field. If you specify a field length that is not long enough to contain all the
digits, the field is filled with a string of asterisk characters.

String Element ’
Use this format to specify a string element:
expression {: length }
expression
A string variable, string constant, or substring to be converted.

length

A positive integer expression specifying the length of the temporary
field. If omitted, the field is the minimum size required to contain the
string expression.

A string expression is left-justified in the temporary field. If you specify a
field length larger than necessary, spaces are added on the right to fill the
field. If you specify a field length that is shorter than the length of the string,
the temporary field is filled with a string of asterisk characters.

7-8 CYBIL Language Definition Revision A

USER-DEFINED PROCEDURES

. User-Defined Procedures

Procedure Declaration

‘ You define your own procedures with procedure declarations.
Use this format to declare a procedure:

PROCEDURE {/attributes]} name {(formal_parameters)};}
{declaration_list}
{statement_list}

PROCEND {namej;

attributes

Specify one or more of the following attributes. If you specify more
than one attribute, separate them with commas.

XREF

The procedure has been compiled in a different module. In this case,

the procedure declaration can contain the name and formal

parameters, but no declaration list or statement list. In the other

module, the procedure must have been declared with the XDCL

attribute and an identical parameter list. If omitted, the procedure
. must be defined within the module where it is called.

XDCL

The procedure can be called from outside the module in which it is
located. This attribute can be included only in a procedure declared
at the outermost level of a module; it cannot be contained in a
program, function, or another procedure. Other modules that call
this procedure must contain the same procedure declaration with
the XREF attribute specified.

1 Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a procedure declaration. If included in
‘ a CYBIL program run on NOS/VE, this parameter is ignored.

Revision D Procedures 79

PROCEDURES

INLINE

Instead of calling the procedure, the compiler inserts the actual
procedure statements at the point in the code where the procedure
call is made.

#GATEt

The procedure can be called by a procedure at a higher ring level if
the call is issued from within the call bracket of the gated
procedure.tt If you specify #GATE, you must also specify the XDCL
attribute.

If you don’t specify any attributes, the procedure is assumed to be in
the same module in which it is called.

name

Name of the procedure. The procedure name is optional following
PROCEND.

formal _parameters
One or more parameters in the form:

VAR name {,name}...: type
{,name {,name}... : typel...

and/or:

name {,namel... : type
'{,name {,namel... - typel...

The first form is called a reference parameter; its value can be changed
during execution of the procedure. The second form is called a value
parameter; its value cannot be changed by the procedure. Both kinds of
parameters can appear in the formal parameter list; if so, separate
them with semicolons (for example, I INTEGER; VAR A:CHAR).
Reference and value parameters are discussed in more detail later in
this chapter under Parameter List.

declaration _list

Zero or more declarations.

statement _list
Zero or more statements.

1 This attribute is not supported on variations of CYBIL available on other

operating systems. ‘

++ A ring level is a hardware feature. Rings provide hardware protection in |

that an unauthorized program cannot access anything at a lower ring J

level. For further information on rings, refer to the SCL Object Code
Management manual.

7-10 CYBIL Language Definition Revision D

USER-DEFINED PROCEDURES

Parameter List

A parameter list is an optional list of variable declarations that appears in
the first statement of the procedure declaration. In the procedure declaration
format shown earlier, they are shown as formal_parameters. Declarations
for formal parameters must appear in that first statement; they cannot
appear in the declaration list in the body of the procedure.

A parameter list allows you to pass values from the calling program to the
procedure. When a call is made to a procedure, parameters called actual
parameters are included with the procedure name. The values of those actual
parameters replace the formal parameters in the parameter list. Wherever
the formal parameters exist in the statements within the procedure, the
values of the corresponding actual parameters are substituted. For every
formal parameter in a procedure declaration, there must be a corresponding
actual parameter in the procedure call.

There are two kinds of parameters: reference parameters and value
parameters. A reference parameter has the form:

VAR name {,name}... : type
{,name {,namejl... : typej...

When a reference parameter is used, the formal parameter represents the
corresponding actual parameter throughout execution of the procedure. Thus,
an assignment to a formal parameter changes the variable that was passed
as the corresponding actual parameter. An actual parameter corresponding
to a formal reference parameter must be addressable. A formal reference
parameter can be any fixed or adaptable type. If the formal parameter is a
fixed type, the actual parameter must be a variable or substring of an
equivalent type. If the formal parameter is an adaptable type, the actual .
parameter must be a variable or substring whose type is potentially
equivalent. (For further information on potentially equivalent types, refer to
Equivalent Types in chapter 4.)

Revision A

USER-DEFINED PROCEDURES

A value parameter has the form:

name {,name}... : type
{,name {,name}... : type}...

When a value parameter is used, the formal parameter takes on the value of
the corresponding actual parameter. However, the procedure cannot change
a value parameter by assigning a value to it or using it as an actual
reference parameter to another procedure or function. A formal value
parameter can be any fixed or adaptable type except a type that cannot have
a value assigned, that is, a heap, or an array or record that contains a heap.
If the formal parameter is a fixed type, the actual parameter can be any
expression that could be assigned to a variable of that type. Strings must be
of equal length. If the formal parameter is an adaptable type, the current
type of the actual parameter must be one to which the formal parameter can
adapt. If the formal parameter is an adaptable pointer, the actual parameter
can be any pointer expression that could be assigned to the formal
parameter. Both the value and the current type of the actual parameter are
assigned to the formal parameter.

Reference parameters and value parameters can be specified in many
combinations. When both kinds of parameters appear together, they must be
separated by semicolons. Parameters of the same type can also be separated
by semicolons instead of commas, but in this case, VAR must appear with
each reference parameter. All of the following parameter lists are valid:

e VAR i, j: integer; a, b: char;

® VAR i: integer; VAR j: integer; a: char; b: char;
® a: char; VAR i, j: integer; b: char;

e VAR i: integer, j: real; a: char, b: boolean;

In each of the preceding examples, I and J are reference parameters; A and B
are value parameters.

7-12 CYBIL Language Definition Revision D

USER-DEFINED

Calling a Procedure

A call to a procedure consists of the procedure name (as given in the
procedure declaration) and any parameters to be passed to the procedure in
the following format:

name {(actual_parameters)};

name

Name of the procedure or a pointer to a procedure.

actual_parameters

One or more expressions or variables to be substituted for formal
parameters defined in the procedure declaration. If you specify two or
more, separate them with commas. They are substituted one-for-one
based on their position within the list; that is, the first actual
parameter replaces the first formal parameter, the second actual
parameter replaces the second formal parameter, and so on. For every
formal parameter in a procedure declaration, there must be a
corresponding actual parameter in the procedure call.

A procedure is a type, like the types described in chapter 4. Procedure types
are used for declaration of pointers to procedures; there are no procedure
variables.

The lifetime of a formal parameter is the lifetime of the procedure in which it
is a part. Storage space for the parameter is allocated when the procedure is
entered and released when the procedure is left.

The lifetime of a variable that is allocated using the storage management
statements (described in chapter 5) is the time between the allocation of
storage (with the ALLLOCATE statement) and the release of storage (with the
FREE statement).

Two procedure types are equivalent if corresponding parameter segments
have the same number of formal parameters, the same methods of passing
parameters (reference or value), and equivalent types.

Revision A

USER-DEFINED PROCEDURES

Example:

This example calculates the greatest common divisor X of M and N.M and N ‘
are passed as value parameters; that is, their values are used but M and N

themselves are not changed. X, Y, and Z are reference parameters (preceded

by the VAR keyword). Their original values are not used in this procedure;

they are assigned new values in the procedure that destroy their previous ‘
values.

PROCEDURE gcd (m,
n: integer;

VAR x,

Yo
2: integer);
{Extended Euclid's Algorithm}

VAR

al,

a2,

b1,

b2,

c,

d,

q, .

r: integer;
al :=0;
a :=1;
b1 :=1;
b2 := 0;
c:=m;
d :=n;

WHILE d <> 0 DO
{a1*m+bl *n=d,a2*m+b2 *n
{gcd (c,d) = ged (m,n)}
q := ¢ DIV d;
= ¢ MOD d;

c)

OO0 30000
LS EN

o
x
LI I L T el 3N IR

=r;
E; L
H

2z b2;
{x =gcd (m,n), y *m+ z * n=gcd (m,n))

PROCEND gcd; .

® 714 CYBIL Language Definition Revision D

x

Y

#CALLER_ID

System-Dependent Procedures

Of the procedures described here, some can be used only with NOS/VE;
others may be available in variations of CYBIL on other operating systems,
but they are not guaranteed to be. Keep in mind that programs using these
procedures may not be transportable to other systems.

To use these procedures properly and efficiently, you should be familiar with
basic hardware concepts of your computer system. This information can be
found in volume II of the virtual state hardware reference manual.

The functions are described in alphabetical order.

#CALLER_ID Procedure

The #CALLER _ID procedure returns the identification (caller id) of the
caller of a function or procedure. This procedure can be used only with
NOS/VE.

Use this format for the #CALLER _ID procedure call:
#CALLER_ID(id_record)

id_record

Name of the record that will contain the caller id information. It must
be four bytes long.

The caller id is a record that contains the global/local key, ring number, and
segment number of the caller. When a function or procedure is called, the
caller id is placed in the leftmost 32 bits of the X0 register as a result of a call
relative (CALLREL) or call indirect (CALLSEG) hardware instruction. The
#CALLER _ID procedure accesses X0 while this information is there.

No special scope attributes (XDCL or XREF) are required in the calling
function or procedure to use this procedure.

For further information on the caller id record and the CALLREL and
CALLSEG instructions, refer to volume II of the virtual state hardware
reference manual.

Revision A Procedures 7-15

#CALLER_ID

Example:

The following example sets the pointer variable PSA_PTR to point to the
first cell of the previous save area. The #CALLER_ID procedure then returns
information about the caller of the last function. That information is
returned in the record CALLER_RECORD. In this example, CALLER _
RECORD is equivalent to the object of pointer PSA_PTR (that is, CALLER _
RECORD = PSA_PTR").

TYPE
id_rec = record
id: 0 .. Offffffff(16),
recend;

VAR
psa_ptr: "id_rec,
caller_record: id_rec;

psa_ptr := #previous_save_area ();
#caller_id (caller_record);

@® 716 CYBIL Language Definition Revision D

#COMPARE_SWAP

' #COMPARE_SWAP Procedure

The #COMPARE _SWAP procedure performs actions equivalent to the
compare swap (CMPXA) hardware instruction. It compares the contents of a
variable with an expression. If the variable is unlocked and equal to the

‘ expression, the variable is swapped with a new expression. This procedure
can be used only with NOS/VE.

Use this format for the #COMPARE _SWARP procedure call:

#COMPARE_SWAP(lock_variable, initial _expression,
new_expression, actual_variable, result_variable)
lock _variable
Name of the variable on which the compare swap operation is to be
performed. This variable must be aligned on a word boundary.
initial _expression
Expression that is compared to the lock variable. They must be equal
for the swap operation to occur.
new_expression

Expression that specifies the value to be stored in the lock variable if
the swap is successful (that is, the contents of lock _variable equals

. initial _expression).
actual _variable
Name of the variable into which the initial contents of the lock
variable is returned. If the lock variable is locked, this field is not
changed.
result_variable

Name of the variable into which the result of the compare swap
instruction is returned. Specify a subrange from 0 to 2 where each
value has the following significance:

0
Swap operation was successful.

1

Swap operation failed because the initial expression was not equal
to the contents of the lock variable.

o .

Swap operation failed because the lock variable was locked.

The types of the lock variable, initial expression, new expression, and actual
‘ variable must be equivalent and have a size of eight bytes.

Revision D Procedures 7-17

#COMPARE_SWAP

The lock variable is said to be locked if the leftmost 32 bits are ones. If it is
locked, no action occurs. If it is unlocked, the contents of the lock variable is
assigned to the actual variable. Then the lock variable is compared to an
initial expression. If they are equal, a new expression is assigned to the lock
variable. Otherwise, no swap occurs.

This procedure essentially performs the following statements:

IF (left half of lock_variable) = Offffffff(16) THEN

result_variable := 2;

ELSE

actual _variable lock_variable;

IF lock_variable = initial expression THEN
lock_variable := new_expression;
result_variable := 0;

ELSE
result_variable := 1;

IFEND;

IFEND;

These statements are executed by the hardware as a noninterruptable
sequence. Access to the lock _variable from other sources, such as another
processor or peripheral processor (PP), is prevented while these statements
are being executed.

For further information on the CMPXA instruction, refer to volume II of the
virtual state hardware reference manual.

Example:

The following example compares the variable LOCK with INITIAL. If
LOCK is unlocked and equal to INITIAL, the value of LOCK is replaced by
the value of variable NEW. In this example, LOCK is unlocked and equal to
INITIAL. Therefore, following completion of the procedure, LOCK is equal to
NEW which is 10. The variable RESULT is 0 indicating that the swap was
successful.

VAR
lock,
initial,
new,
actual: integer,
result: 0 .. 2;

lock :=5;
initial := 5;
new := 10;

#compare_swap (lock, initial, new, actual, result);

@® 718 CYBIL Language Definition Revision D

#CONVERT_POINTER_TO_PROCEDURE

#CONVERT_POINTER_TO_PROCEDURE
Procedure

The #CONVERT_POINTER_TO_PROCEDURE procedure converts a
variable of the type pointer to procedure that has no parameters to a variable
of the type pointer to procedure that can have parameters. This procedure
may not be available on variations of CYBIL that execute on other operating
systems.

Use this format for the #CONVERT_POINTER_TO_PROCEDURE
procedure call:

#CONVERT_POINTER_TO_PROCEDURE(pointer_1, pointer_2)

pointer_1
Name of a pointer to procedure variable with no parameters.

pointer_2
Name of a pointer to procedure variable with an arbitrary parameter
list.

Example:

The following example converts the variable PTR_TO_PROC]I, a pointer to
a procedure that has no parameters, to the variable PTR_TO_PROC2, a
pointer to a procedure that does have parameters.

VAR
ptr_to_proc1: “procedure,
ptr_to_proc2: “procedure (argl: integer,
arg2: real);

ptr_to_proc1 := “proci;
#convert_pointer_to_procedure (ptr_to_proci, ptr_to_proc2);

Revision D Procedures 7-19

—

#HASH_SVA

#HASH_SVA Procedure ‘

The #HASH_SVA procedure performs actions equivalent to the load page

table index (LPAGE) hardware instruction. This instruction searches the

system page table (SPT) for a given system virtual address (SVA). This

procedure can be used only with NOS/VE. ‘

Use this format for the #HASH_SVA procedure call:

#HASH_SVA(sva_variable, index, count, result_variable)

sva_variable

Name of the variable that contains the SVA for which the instruction
will search.

index

Name of an integer variable that will contain a word index into the
SPT. If the SVA is found, this index points to the SPT entry for the
SVA. If the SVA is not found, it points to the last entry searched.

count

Name of an integer variable that will contain the number of SPT
entries searched.

result_variable ‘
Name of a boolean variable that is set to TRUE if the SVA is found.

The procedure returns either an index within the table if the SVA is found, or
an index of the last entry searched if the SVA is not found. It also returns
the number of entries searched and a boolean value indicating whether the
entry was found.

For further information on the SVA, addressing in general, and the LPAGE
instruction, refer to volume II of the virtual state hardware reference manual.

o
§

7-20 CYBIL Language Definition Revision A

@ KEYPOINT Procedure ‘

The #KEYPOINT procedure generates an inline keypoint hardware

instruction based on parameters supplied in the call. It allows performance

monitoring of programs using keypoint instructions as trap interrupts. This
. procedure can be used only with NOS/VE.

Use this format for the #KEYPOINT procedure call:
#KEYPOINT(class, data, identifier)

class

A constant integer expession from 0 to 15 that specifies the keypoint
class. This value is placed in the j field of the hardware instruction.
data

A constant or variable expression from 0 to OFFFFFFFF hexadecimal
that specifies optional data to be collected with the keypoint. If you
specify the constant 0, a 0 is placed in the k field of the hardware
instruction. If you don’t specify 0, the value is placed in an X register
and that register is placed in the k field of the hardware instruction.

identifier

A constant expression from 0 to OFFFF hexadecimal that specifies a
. keypoint identifier. It is placed in the Q field of the hardware
instruction.

For further information on the KEYPOINT instruction, refer to volume II of
the virtual state hardware reference manual.

Revision A Procedures 7-21

#PURGE_BUFFER

#PURGE_BUFFER Procedure ‘

The #PURGE_BUFFER procedure performs actions equivalent to the purge

hardware instruction. It purges the contents of cache or the map buffer. This
procedure can be used only with NOS/VE. However, not all computer

systems that support NOS/VE have cache and map buffers. If executed on a ‘
model without cache or map buffers, no action occurs.

Use this format for the #PURGE_BUFFER procedui'e call:
#PURGE_BUFFER(option_value, address)

option_value
A constant integer expression from 0 to 15 that specifies one of the
following purge options:
0
Purge all entries in cache that are included in the 512-byte block
defined by the system virtual address (SVA) in Xj.
1

Purge all entries in cache that are included in the active segment
identifier (ASID) defined by the SVA in Xj.

: ®
Purge all entries in cache.

3

Purge all entries in cache that are included in the 512-byte block
defined by the process virtual address (PVA) in Xj.

4-7

Purge all entries in cache that are included in the segment number
defined by the PVA in Xj.

8

Purge all entries in the map (page table map if entries are kept in
separate maps) relating to the page table entry defined by the SVA
in Xj.

7-22 CYBIL Language Definition Revision A

#PURGE_BUFFER

9

Purge all entries in the map (page table map if entries are kept in
separate maps) relating to the page table entries that are included in
the segment defined by the SVA in Xj.

10 or A(16)

Purge all entries in the map (page table map if entries are kept in
separate maps) relating to the page table entry defined by the PVA
in Xj.

11 or B(16)

Purge all entries in the map (both the page table and segment map)
relating to the segment table entry defined by the PVA in Xj, and to
all page table entries included within that segment.

12-15 or C(16)-F(16)

Purge all entries in the map.

address

Name of a 6-byte variable that specifies the PVA or SVA of the data to
be purged.

For further information on addressing, cache and map buffers, and the purge
instruction, refer to volume II of the virtual state hardware reference manual.

Example:

The following example purges all entries in cache that are in the block
defined by the PVA in pointer variable PTR1.

VAR
it integer,
ptrl: “cell;

ptrl := "i;
#purge_buffer (3, ptrl);

Revision D Procedures 7-23

#SCAN

#SCAN Procedure .

The #SCAN procedure scans a string from left to right until one of a
specified set of characters is found or the entire string has been searched.
This procedure may not be available on variations of CYBIL that execute on
other operating systems.

Use this format for the #SCAN procedure call:
#SCAN(scan_variable, string, index, result_variable)

scan_variable

Name of the variable that indicates the character values for which the
string is scanned. The variable must be 256 bits long. Each bit of the
variable represents the character in the corresponding position of the
ASCII character set. If a bit is set, the corresponding character is one
for which the procedure scans.

string
String or substring to be scanned.

index

Name of an integer variable. If a character is found during scanning,
the index of that character is returned in this variable. The index of a
character is that character’s position in the string; for example, the
index value of the first character is 1. If no matching values are found,
the variable contains the string length plus one.

result_variable

Name of a boolean variable, which is set to TRUE if the scan finds one
of the selected characters.

The procedure looks for any one character from a set of characters specified
in a 256-bit variable. Bits are set in the variable to correspond to the
characters in the same positions in the ASCII character set collating
sequence. A set bit indicates that the procedure scans the string for the
corresponding character. The procedure stops if it finds one of the characters
specified. It returns the position of the character that caused termination and
the boolean variable that indicates whether a character was found.

7-24 CYBIL Language Definition

#SCAN

Example:

The following example searches the string variable SOURCE _STRING for
the asterisk character (*). First, the character to be searched for (the asterisk)
must be specified in the array variable SELECT. To do this, all 256 elements
of SELECT are set to 0. Then the $INTEGER function is used to determine
the position of the asterisk character in the ASCII character set collating
sequence. The value returned in I is 42 (because the asterisk is in the forty-
second position in the collating sequence). The forty-second position in the
array SELECT is then set to 1. Assuming SOURCE_STRING contains an
asterisk as the fifty-fourth character of the string, the value returned in
INDEX is 54 and the value returned in RESULT is TRUE.

VAR
source_string: string (100),
select: packed array [0 .. 255] of 0 .. 1,
i,
index: integer,
result: boolean;

FOR i := 0 T0 255 DO
select [i] := 0;
FOREND;
i := SINTEGER ('x');
select [i] := 1;
#scan (select, source_string, index, result);

Revision D Procedures 7-25

#TRANSLATE

#TRANSLATE Procedure

The #TRANSLATE procedure translates each character in a source field
according to a translation table, and transfers the result to a destination
field. This procedure may not be available on variations of CYBIL that
execute on other operating systems.

Use this format for the #TRANSLATE procedure call:
#TRANSLATE((table, source, destination)

table

Name of a string variable whose length is 256 characters. This
variable defines the translation table.

source
String to be translated.

destination

Name of a string variable into which the translated string is
transferred.

Translation of the string occurs from left to right with each source byte used
as an index into the translation table. Translated bytes from the table are ‘
stored in the destination field. . 1

If the length of the source field is less than the length of the destination field,
translated spaces fill the destination field. If the source field is larger than
the destination field, the rightmost characters of the source field are
truncated.

Example:

The following example translates a string named SOURCE_STRING
according to an externally referenced translation table named TRANSI1 _
TABLE. The resulting string is placed in DEST_STRING.

VAR
trans1_table: [XREF] string (256),
source_string: string (100},
dest_string: string (100);

source_string (1, 10) := 'ten chars.';
#translate (transi_table, source_string, dest_string);

7-26 CYBIL Language Definition Revision D

#UNCHECKED_CONVERSION

#UNCHECKED_CONVERSION Procedure

The #UNCHECKED_CONVERSION procedure copies directly from a
source field to a destination field. This procedure may not be available on
variations of CYBIL that execute on other operating systems.

Use this format for the #UNCHECKED_CONVERSION procedure call:
#UNCHECKED_CONVERSION(source, destination)

source
Name of a variable from which the copy is made.

destination
Name of a variable to which the copy is made.

The source and destination fields must have the same length in bits. Neither
the source nor the destination field can be a pointer or contain a pointer. If
either the source or destination field is the object of a pointer reference
(pointer"), the pointer cannot be a pointer to a procedure.

The destination field must satisfy the same restrictions as the target of an
assignment statement. This means that the destination field cannot be:

e A read-only variable.

o A formal value parameter of the procedure that calls the
#UNCHECKED_CONVERSION procedure.

® A bound variant record.

o The tag field name of a bound variant record.
® A heap.

e An array or record that contains a heap.
Example:

The following example copies the contents of a 5-character string named
SOURCE to a 5-element array named DESTINATION. After the operation,
the contents of both variables are identical.

VAR
source: string (5),
destination: packed array [1 .. 5] of char;

#unchecked_conversion (source, destination);

Revision D Procedures 7-27

#WRITE _REGISTER

#WRITE_REGISTER Procedure

The #WRITE _REGISTER procedure performs actions equivalent to the copy
to state register (CPYXS) hardware instruction. It allows a program to
change the contents of a process or processor register. This procedure can be
used only with NOS/VE.

Use this format for the #WRITE _REGISTER procedure call:
#WRITE_REGISTER(register_id, data)

register_id

An integer expression from 0 to 255 that identifies the number of the
register to be written. Register numbers are given in volume II of the
virtual state hardware reference manual.

data
Integer expression that contains the data to be written to the register.

The #READ _REGISTER function described in chapter 6 allows a program
to read the contents of a process or processor register.

Writing to certain registers requires special privileges. For further
information on process and processor registers, and the CPYXS instruction,
refer to volume II of the virtual state hardware reference manual.

Example:

The following example changes the contents of register E5, the Debug mask
register, to 1F hexadecimal.

VAR
i: integer;

i = 01f(16);
#urite_register (oe5(16), i);

7-28 CYBIL Language Definition Revision D

The CYBIL Command and
Other Compilation Facilities 8

This chapter describes the CYBIL command, the FORMAT_CYBIL _
SOURCE command, and the declarations, statements, and directives that
can be used at compilation time.

CYBIL Commandooitiririnunreiennneerannseeresenansenonaness 81
FORMAT_CYBIL_SOURCECommandc.ocvvevieiiienerneenes 8-7
Compilation Declarations and Statementscconerviiineee.. 8-8
Compile-Time Variablesc.coiiiiiiiiiiiiiieieiiieeininnnnns 88
Compile-Time EXpPressionsccvvveiieeeienererennncreenssaceses 8-9
Compile-Time Assignment Statementccovveeeenanane. 810
Compile-TimeIF Statementcccoiiiiiiiiiiiiiinaiennne, 811
Compile-Time Directivescoviviiiiiiiiiei i ieneieiiinaeien 812
ToggleControlcoiiiiiiiiiiiiiieiiieieiitianeronenens 813
SET DIrectivecocvvviienriererernrereesetetesesssiorsronens 813
PUSH DIrectivecvvvitivitenrrnnnerateansianseosneesnneans 816

POP DIrectiveoovviiit it eierrinrrneereneraeensenananans 817
RESET Directiveooivvirreiieieereneannsenneennneanssans 8-18
Layout Controlcccviiiniiiiiiii et ieianraeennranenss 819
LEFT and RIGHT Directivesvvvveiireerenieecrenenneennnas 819
EJECT DIrectiveoovvvriiiiireeiniieeereninseeranaeeesanes 8-20
SPACING DIreCtivevvvvvrinreiinirreennnneeesennssesannes 821
SKIP DIrectivVeoviiet it i rnneerneeeancaneaneeanneans 8-22
NEWTITLE Directive.ovvvnieeinereieniiraieanseannsannnes 8-23
TITLE Directiveovviittenre i ceiieeieeineeanaeaneeanness 8-24
OLDTITLE Directivecvviierenneeaneenneraneeeneannnenan 825
Maintenance Controlcovviiiinieiiiiiiiiiiiinneennecanes 8-26
COMPILE Directive . ..ot ivinrrtereenenerrsaneeseocanneesanas 8-26
NOCOMPILE DirectiVeo coiviiiiiiiereeereeeeaearararssosans 8-27
Comment Controlciiiiiiiiiiriiiiii et inieanaeanens 8-28

COMMENT Directiveo v oviviieneernreenneenneesieeanneans 8-28

The CYBIL Command and
Other Compilation Facilities 8

This chapter describes the CYBIL command, the FORMAT_CYBIL_
SOURCE command, and the declarations, statements, and directives that
can be used at compilation time. The CYBIL command is used to compile one
or more CYBIL modules. The FORMAT _CYBIL_SOURCE command is
used to reformat CYBIL source code. The compilation statements and
directives are used to construct the unit to be compiled and to control that
process. If a CYBIL command and a directive specify conflicting options, the
option encountered most recently is used.

For further information on program execution, refer to the SCL Object Code
Management manual.

The CYBIL and FORMAT_CYBIL_SOURCE commands described next are
standard system commands and use the syntax and language elements for
parameters described in the SCL Language Definition manual.

CYBIL Command

Purpose The CYBIL command calls the compiler, specifies the files to
be used for input and output, and indicates the type of output
to be produced.

Format CYBIL
INPUT-file
LIST-file
BINARY=file
LIST_OPTIONS=list of keyword value
DEBUG _AIDS=list of keyword value
ERROR_LEVEL=keyword value
OPTIMIZATION _LEVEL=keyword value
PAD-=integer
RUNTIME _CHECKS=list of keyword value
STATUS-=status variable

Parameters INPUTor]
Specifies the file that contains the source text to be read. You
can specify a file position as part of the file name. Source
input ends when an end-of-partition or an end-of-information
is encountered on the source input file. If omitted, $INPUT is
assumed.

LISTorL

Specifies the file on which the compilation listing is to be
written. You can specify a file position as part of the file
name. If you specify $NULL, all compile-time output is
discarded. If omitted, $LIST is assumed.

Revision D CYBIL Command/Other Facilities 81 @

CYBIL COMMAND

BINARY or Bor BINARY_OBJECT or BO '

Specifies the file on which object code is to be written. You can
specify a file position as part of the file name. If you specify
$NULL, the compiler performs a syntactic and semantic scan
of the program but does not generate object code. If omitted,
$LOCAL.LGO is assumed.

LIST OPTIONS or LO
Specifies a combination of the following list options. If you

specify NONE, no list options are selected. If omitted, option S
(list the source input file) is assumed.

A

Produces an attribute list of source input block structure
and relative stack. The attribute listing is produced
following the source listing on the file specified by the
LIST parameter or, if you omit the LIST parameter, on file
$LIST.

F

Produces a full listing. In effect, this option selects options
A, S, and R.

(0]

Lists compiler-generated object code. When selected, this
listing includes an assembly-like listing of the generated
object code. This option has no effect if the BINARY _
OBJECT parameter is set to SNULL.

R

Produces a symbolic cross-reference listing showing the
location of a program entity definition and its use within a
program.

RA

Produces a symbolic cross-reference listing of all program
entities whether referenced or not.

S
Lists the source input file.

X

Used in conjunction with the compile-time directive .
LISTEXT so that listings can be externally controlled
using the CYBIL command. The LISTEXT toggle must be
ON. For further information, refer to Toggle Control under
Compile-Time Directives later in this chapter.

82 CYBIL Language Definition Revision D

CYBIL COMMAND

DEBUG_AIDS or DA
Specifies a combination of the following debug options. If
omitted, NONE (no debug options) is assumed.

ALL

Selects debug options DS and DT.

DS

Compiles all debugging statements. A debugging
statement is a statement in the source text that is ignored
unless this option is specified. These statements are
enclosed by the compile-time directives COMPILE and
NOCOMPILE. (For further information, refer to
Maintenance Control under Compile-Time Directives later
in this chapter.) The symbol table and line table for
interactive debugging are also generated.

DT

Generates debug tables (that is, the symbol table and line
table) as part of the object code. These tables are used by
the Debug utility.

NONE

No debug options are selected.

ERROR_LEVEL or EL
Specifies one of the following error list options. If omitted, W
(list warning and fatal diagnostics) is assumed.
F
Lists fatal diagnostics. If selected, only fatal diagnostics
are listed.
w
Lists warning (informative) diagnostics as well as fatal

diagnostics.

Revision D CYBIL Command/Other Facilities 83 @

CYBIL COMMAND

OPTIMIZATION_LEVEL or OL or OPTIMIZATION or OPT ‘

Specifies one of the following optimization options. If omitted,
LOW is assumed.

DEBUG

Object code is stylized to facilitate debugging. Stylized code é’
contains a separate packet of instructions for each

executable source statement; it carries no variable values

across statement boundaries in registers, and it notifies

Debug each time the beginning of a statement or procedure

is reached.

LOW
Provides for keeping constant values in registers.

HIGH

Provides for keeping local variables in registers, passing
parameters to local procedures in registers, and
eliminating redundant memory references, common
subexpressions, and jumps to jumps.

PAD

Generates the specified number of no-op (no operation)

instructions between instructions that actually perform ‘
operations. If omitted, zero is assumed; no-op instructions are

not generated.

84 CYBIL Language Definition Revision D

Revision D

CYBIL COMMAND

RUNTIME_CHECKS or RC
Specifies a combination of the following run-time checking

options. If omitted, NONE (no run-time checks) is assumed.

ALL
Selects run-time checking options N, R, and S.

N
Produces compiler-generated code that checks for a NIL

value when a reference is made to the object of a pointer.

NONE
No run-time checks are produced.

R

Produces compiler-generated code to check ranges. Range

checking code is generated for assignment to integer

subranges, ordinal subranges, and character variables. All
CASE statements are checked to ensure that the selection

expression corresponds to one of the variant values
specified if no ELSE clause is provided. All references to
substrings are verified. If you specify an offset (variable

pointer) on a RESET statement, it is checked to ensure that

it is valid for the specified sequence.
S

Produces compiler-generated code to test the subscripting

of arrays.

STATUS
Specifies an optional SCL status variable in which the

completion status of the command is returned. If specified, the
compiler returns a status to this variable indicating whether
any fatal errors were found during the compilation that was

just completed. You can test this status variable and take

special action if fatal compilation errors occurred. If omitted

and the status returned from the compiler is abnormal, SCL

terminates the current command sequence.

CYBIL Command/QOther Facilities

85 @

CYBIL COMMAND

Remarks

Example

86 CYBIL Language Definition Revision A

If the compiler command specifies an option that differs from &
a directive, the latest occurrence of either the command or the
directive takes precedence.

This command reads source code from a file named

COMPILE, writes the compilation file on file LIST, and writes ‘
the object code on file BIN1. The listing includes source code,
compiler-generated object code, and a symbolic cross-reference

listing.

cybil i=compile Ll=list b=bin1 Lo=(o,r)

FORMAT_CYBIL_SOURCE COMMAND

FORMAT_CYBIL_SOURCE Command

Purpose Reformats CYBIL source code for consistency and greater
readability.

Format FORMAT_CYBIL_SOURCE or
FORCS
INPUT<file
OUTPUT=file
STATUS=status variable

Parameters INPUTor]

Specifies the file from which the CYBIL source code is to be
read. If omitted, local file I is assumed.

OUTPUT or O

Specifies the file on which the reformatted CYBIL source code
is to be written. If omitted, local file O is assumed.

STATUS

Specifies an optional SCL status variable in which the
completion status of the command is returned.

Remarks The CYBIL source code must be syntactically correct.

Example This command reformats the CYBIL source program
contained on file INITIAL and writes it to file
$USER.FINAL.

format_cybil_source initial $user.final

Revision D CYBIL Command/Other Facilities 87 @

COMPILE-TIME VARIABLES

Compilation Declarations and
Statements

Many program elements defined in CYBIL have counterparts that can be
used to control the compilation process. They include variable declarations,
expressions, and the assignment and IF statements. The IF statement is
used to specify certain areas of code to be compiled. The IF statement
requires the use of expressions, which in turn require variables. Assignment
statements are used to change the value of variables and, thus, expressions.

Compile-Time Variables
Only boolean type variables can be declared.
Use this format to specify a boolean type compile-time variable:

? VAR name {,name}... : BOOLEAN := expression
{, name {;name}...: BOOLEAN := expression}... ?;
name

Name of the compile-time variable. This name must be unique among
all other names in the program.

expression

A compile-time expression that specifies the initial value of the
variable.

A compile-time declaration must appear before any compile-time variables
are used. The scope of such a variable extends from the point at which it is
declared to the end of the module. Compile-time variables can be used only in
compile-time expressions and compile-time assignment statements.

88 CYBIL Language Definition Revision A

COMPILE-TIME EXPRESSIONS

Compile-Time Expressions

Compile-time expressions are composed of operands and operators like
CYBIL-defined expressions. An operand can be:

o Either of the constants TRUE or FALSE.
e A compile-time variable.
¢ Another compile-time expression.

The operators are NOT, AND, OR, and XOR. Their order of evaluation from
highest to lowest is:

e NOT
e AND
¢ OR and XOR

These operators have their usual meanings, as described under Operators in
chapter 5.

Revision A CYBIL Command/Other Facilities 89

COMPILE-TIME ASSIGNMENT

Compile-Time Assignment Statement

A compile-time assignment statement assigns a value to a compile-time
variable.

Use this format for the compile-time assignment statement:
? name := expression ?;

name
Name of a compile-time variable.

expression
A compile-time expression.

-
—
w

810 CYBIL Language Definition Revision A

COMPILE-TIME IF

Compile-Time IF Statement

The compile-time IF statement compiles or skips a certain area of code
depending on whether a given expression is true or false.

Use this format for the compile-time IF statement:

? IF expression THEN
code
{?2ELSE
code }

? IFEND

expression
A boolean compile-time expression.

code
An area of CYBIL code or text.

When the expression is evaluated as true, the code following the reserved
word THEN is compiled. When compilation of that code is completed,
compilation continues with the first statement following IFEND. When the
expression is false, compilation continues following the ELSE phrase, if it is
included, or following IFEND.

The ELSE clause is optional. If included, the ELSE clause designates an
area of code that is compiled when the preceding expression is false.

Example:

The following example shows the declaration of a compile-time variable
named SMALL_SIZE that is initialized to the value TRUE. A line of CYBIL
code declaring an array named TABLE is compiled. Then a compile-time IF
statement checks the value of SMALL_SIZE. If it is TRUE, the line of
CYBIL code calling a procedure named BUBBLESORT is compiled in the
program. If it is FALSE, the CYBIL line calling procedure QUICKSORT is
inserted instead. Because SMALL_SIZE was initialized to TRUE, the call to
BUBBLESORT is included in the compiled program.

2VAR
small_size: boolean := TRUE?;

VAR
table: array [1 .. 501 of integer;

?IF small_size = TRUE THEN
bubblesort (table);
?ELSE
quicksort (table);
2
IFEND

Revision D CYBIL Command/Other Facilities 811

COMPILE-TIME DIRECTIVES

Compile-Time Directives

Compile-time directives allow you to perform the following activities during
compilation:

Set toggles that turn on or off listing options such as source code listing
and object code listing (SET, PUSH, POP, and RESET directives when
they contain one or more of the listing options).

Set toggles that turn on or off run-time options such as range checking
and array subscript checking (SET, PUSH, POP, and RESET directives
when they contain one or more of the run-time checking options).

Specify the layout of the source text to be used (LEFT and RIGHT margin
directives).

Specify the layout of the resulting listing (EJECT, SPACING, SKIP,
NEWTITLE, TITLE, and OLDTITLE directives).

Specify what code to compile (COMPILE and NOCOMPILE directives).
Include comments in the object module (COMMENT directive).

You can specify one or more directives with the format:

?? directive {directive}... 7?7

directive

One of the directives discussed in the remainder of this chapter. They
can be broken down into four categories:

e Toggle control (SET, PUSH, POP, and RESET)

e Layout control (LEFT, RIGHT, EJECT, SPACING, SKIP,
NEWTITLE, TITLE, and OLDTITLE)

e Maintenance control (COMPILE and NOCOMPILE)

e Object code comment control (COMMENT)

Directives must be bounded by a pair of consecutive question marks. These
delimiters are not shown in the following formats for individual directives,
but they are required around one or more directives.

If a directive differs from an option specified on a compiler command, the ‘

latest occurrence of either the directive or the command takes precedence.

812 CYBIL Language Definition

SET

‘ Toggle Control

Toggle controls can set the values of individual toggles, save and restore
preceding toggle values in a last in-first out manner, and reset all toggles to
their initial values.

SET Directive
The SET directive specifies the setting of one or more toggles.
Use this format for the SET directive:
SET (toggle_name := condition {,toggle_name := condition}...)

toggle_name
Name of the toggle being set. Listing toggles are described in table 8-1.

Run-time checking toggles are described in table 8-2. The names of
toggles can be used freely outside of directives.

condition

ON or OFF. If a toggle is ON, the activity associated with it is
pexrformed during compilation; if it is OFF, the activity is not
performed.

. All settings specified in the SET directive are done at the same time. If the

directive list contains more than one setting for a single toggle, the rightmost
getting in the list is used.

Revision A CYBIL Command/Other Facilities 8-13

-

LISTING TOGGLES

Table 8-1 describes the listing toggles and gives their initial settings.

Table 8-1. Listing Toggles

Initial

Toggle Value Description

LIST ON Determines whether other listing toggles are read.
When ON, a source listing is produced and the
other listing toggles are used to control other
aspects of listing. When OFF, no listing is
produced; the other listing toggles are ignored.

LISTOBJ OFF Controls the listing of generated object code.
When ON, object code is interspersed with source
code following the corresponding source code line.

LISTCTS OFF Controls the listing of the listing toggle directives
and layout directives.

LISTEXT OFF When ON, the listing of source statements is
controlled by a list option on the CYBIL compiler
command.

LISTALL Not This option represents all of the listing toggles.

applicable When ON, all other listing toggles are ON; when
OFF, all other listing toggles are OFF.
814 CYBIL Language Definition Revision A

RUN-TIME CHECKING TOGGLES

Table 8-2 describes the run-time checking toggles and gives their initial

settings.

Table 8-2. Run-Time Checking Toggles

Initial

Toggle Value Description

CHKRNG ON Controls the generation of object code that
performs range checking of scalar subrange
assignments and case variables.

CHKSUB ON Controls the generation of object code that checks
array subscripts (indexes) and substring
selections to verify that they are valid.

CHKNIL OFF Controls the generation of object code that checks
for a NIL value when a reference is made to the
object of a pointer.

CHKALL Not This option represents all run-time checking

applicable toggles. When ON, all other run-time checking
toggles are ON; when OFTF, all other run-time
checking toggles are OFF.
Revision A CYBIL Command/Other Facilities 815

PUSH

PUSH Directive

The PUSH directive specifies the setting of one or more toggles like the SET
directive, but before the settings are put into effect, a record of the current
state of all toggles is saved for later use.

Use this format for the PUSH directive:
PUSH (toggle_name := condition {,toggle_name := condition}...)

toggle_name

Name of the toggle being set. Listing toggles are described in table 8-1.
Run-time checking toggles are described in table 8-2. The names of
toggles can be used freely outside of directives.

condition

ON or OFF. If a toggle is ON, the activity associated with it is
performed during compilation; if it is OFF, the activity is not
performed.

Settings in the PUSH list are performed in the same manner as a SET list. If
the directive list contains more than one setting for a single toggle, the
rightmost setting in the list is used.

The POP directive, described later in this chapter, restores the original toggle .
settings in a last in-first out manner (that is, the last record to be saved is the
first to be restored).

Example:

This example turns off listing temporarily, that is, until the POP directive is
encountered.

?? PUSH (LIST := OFF) ??

22 POP 22

816 CYBIL Language Definition Revision B

POP

POP Directive

The POP directive restores the last toggle settings that were saved by the
PUSH directive.

Use this format for the POP directive:
POP

If no record was kept (such as when a SET directive is performed), the initial
settings are restored.

Example:

This example shows a PUSH directive that temporarily turns off listing. The
POP directive restores listing.

?? PUSH (LIST := OFF) ??

?? POP ??

Revision B CYBIL Command/Other Facilities 817

RESET

RESET Directive
The RESET directive restores the initial toggle settings.

Use this format for the RESET directive:

RESET

When the RESET directive is performed, any record of previous settings is
destroyed.

818 CYBIL Language Definition Revision A

LEFT AND RIGHT

Layout Control

Layout controls are used to specify the margins of the source text and to
control the layout of the listing.

LEFT and RIGHT Directives

The LEFT and RIGHT directives specify the column number of the left and
right margins of the source text, respectively.

Use these formats for the LEFT and RIGHT directives:
LEFT := integer
RIGHT := integer
integer
An integer value that represents the column number of the left and
right margins, respectively.
The left margin must be greater than zero; that is:
left margin >0

The right margin must be greater than or equal to the left margin plus
10, and less than or equal to 110; that is:

left margin + 10 <= right margin <= 110
All source text left of the left margin and right of the right margin is ignored.

If you don’t use the margin directives, the left margin is assumed to begin in
colunmmn 1 with the right margin in column 79.

Example:

This example sets the left margin at column 1 and the right margin at
column 110.

?? LEFT := 1, RIGHT := 110 ??

Revision A CYBIL Command/Other Facilities 819

EJECT

EJECT Directive

The EJECT directive causes the paper to be advanced to the top of the next
page.

Use this format for the EJECT directive:

EJECT

820 CYBIL Language Definition

SPACING

SPACING Directive

The SPACING directive specifies the number of blank lines between
individual lines of the listing.

Use this format for the SPACING directive:
SPACING := spacing

spacing

One of the values 1, 2, or 3 specifying single, double, and triple spacing,
respectively.

An undefined value has no effect on spacing, but an error message is issued.

If you don’t use the SPACING directive, single spacing (no intervening
blank lines) is assumed.

Revision A CYBIL Command/Other Facilities 821

SKIP

SKIP Directive
The SKIP directive specifies that a given number of lines is to be skipped.
Use this format for the SKIP directive:

SKIP :=lines

lines
Integer value specifying the number of lines to skip. Specify a value
greater than or equal to 1.

If you specify more lines than the number of lines on the page, or if you
specify a value for lines that would cause the paper to skip past the bottom of
the current page, the paper is advanced to the top of the next page.

822 CYBIL Language Definition Revision A ‘

NEWTITLE

NEWTITLE Directive

The NEWTITLE directive specifies a new, additional title to be used on a
page while saving the current title.

Use this format for the NEWTITLE directive:
NEWTITLE :=’character_string’

character_string

A character string specifying the title to be used. A single quote mark
is indicated by two consecutive quote marks enclosed by quote marks
[that is,).

The current title is saved and the given character string becomes the current
title. A standard page header is always the first title printed on a page,
followed by user-defined titles in the order in which they were saved. This
means that titles are saved and restored in a last in-first out order, but they
are printed in a first in-first out order. There is always a single empty line
between the standard page header and any user-defined titles. There is
always at least one empty line between the last title and the text.

The maximum number of titles that can be specified is 10. Any attempts to
add more titles is ignored.

Titling does not take effect until the top of the next printed page.

Revision A CYBIL Command/Qther Facilities 823

TITLE

TITLE Directive

The TITLE directive replaces the current user-defined title with the given
character string.

Use this format for the TITLE directive:
TITLE :=’character_string’

character_string

A character string specifying the title to be used. A single quote mark
is indicated by two consecutive quote marks enclosed by quote marks
[that is,).

If there is no user-defined title currently, the character string becomes the
current title.

A standard page header is always the first title printed on a page. There is
always a single empty line between the standard page header and any user-
defined titles. There is always at least one empty line between the last title
and the text.

Titling does not take effect until the top of the next printed page.

824 CYBIL Language Definition Revision A

OLDTITLE

OLDTITLE Directive

The OLDTITLE directive restores the last user-defined title that was saved,
making it the current title.

Use this format for the OLDTITLE directive:
OLDTITLE

If there is no saved title, no action occurs.

Revision A CYBIL Command/Other Facilities 825

COMPILE

Maintenance Control

COMPILE Directive

The COMPILE directive causes compilation to occur, or to resume after the
occurrence of a NOCOMPILE directive.

Use this format for the COMPILE directive:
COMPILE

If you don’t use either the COMPILE nor NOCOMPILE directive, the
COMPILE directive is assumed; source code is compiled.

When the CYBIL command includes the DEBUG_ AIDS parameter with DS
specified, debugging statements enclosed by the COMPILE and
NOCOMPILE directives are compiled.

CYBIL Language Definition Revision D

NOCOMPILE

NOCOMPILE Directive

The NOCOMPILE directive causes compilation to stop until the occurrence
of a COMPILE directive or the end of the module.

Use this format for the NOCOMPILE directive:
NOCOMPILE

NOCOMPILE continues listing source code and text according to the listing
toggles and layout directives, interpreting and obeying directives, but source
code is not compiled until a COMPILE directive is encountered or a
MODEND statement is encountered.

When the CYBIL command includes the DEBUG _AIDS parameter with DS
specified, debugging statements enclosed by the COMPILE and
NOCOMPILE directives are compiled.

Revigion D CYBIL Command/Other Facilities 8-27

COMMENT

Comment Control

COMMENT Directive

The COMMENT directive causes the compiler to include the given character
string in the commentary portion of the object module generated by the
compilation process.

Use this format for the COMMENT directive:
COMMENT :=’character_string’

character_string

A character string of up to 40 characters that specifies a compile-time
comment.

This directive allows you to include comments in object modules so that the
comments appear in the load maps. Any number of comments can be
included, but only the last comment encountered appears.

Example:

?? COMMENT := 'Copyright 1985 by Control Data Corporation' ??

CYBIL Language Definition Revision A

The Debug Utility 9

This chapter describes the Debug utility, which aids in debugging CYBIL
programs.

Introductionccoiniiiitiie ittt et e i e e 91
Accessing Debugoovitiiii i e e e e 92
Accessing Debug During Program Execution 93
Accessing Debug When Program Failure Occurs 94
Debug Coneceptsoviiii ittt 95
Debug Input/Outputcoonriiiiiiiiiiitiriiiinieiniaiaanns 95
Debug Input ...ooiiriiii it it ettt e 95
Debug Outputoovineiiiiiiiii ittt et 96
Status Variablec.coiiiiiiiiiiiii ittt 9-7
BreaKksciiiiiii i e e i, 9-8
Addressingc.oiniiiiiiii i e e 9-8
Reported Addressescoooiuiiiiiiriiiiii it 99
Referenced Addresses.............covviiiiiriniiniiiinnnnenns 9-11
Addressing BoundModulescociiiiiiiiiaa., 9-13
Debugging Optimized Codecoviiiiiiiiiniinnnnn. 9-13
Debugging With Condition Handlers 9-14
Multitask Debuggingcoiviiiii ittt it 9-14
Interrupt Processing While Debuggingccvvvant. 9-14
Debug Ringcooviieiiiiii i i e i i e 9-16
Deferred Breaksc.coiiiiiiiiiiiin i iiiinneennns 9-16
Multiple Breakscoiviiiiiii i 9-17
Multiring Environmentoiiiiiiiiiiiiiiiieiarananennnns 917

(Continued on other side)

Debug Subcommandscovitiiniiiiiiiiiie i i 9-18

CHANGE _DEFAULT ...ttt ittt iite i ciieranennnns 9-22
CHANGE _MEMORYiitiitiiiiiiiiiiieetataneenraieanennanns 9-25
CHANGE_PROGRAM _VALUE........iiiiiiiiiietiiennrenanennes 9-28
CHANGE _REGISTERittiititiiteieieenenaeseireneruanennns 9-32
DELETE _BREAK ..ottt iiniiieeiiiianeniannenns 9-35
DISPLAY _BREAKcoiiiiiiiiiiiiiteniieianannaranenanennnens 9-36
DISPLAY _CALL ...ttt ittt ieat et eaaerareeaneeenaaannas 9-38
DISPLAY_DEBUGGING_ENVIRONMENT............ccovvvvnnnn 9-41
DISPLAY _MEMORY ...ciiiiiiiiiiiiineiereiteennaseneennnnnaas 9-44
DISPLAY _PROGRAM _VALUE........ciiiiiiiiiiiiiiiieennenanns 9-48
DISPLAY _REGISTER ...ttt ittt iiiieitieineeaaeeanneanes 9-51
DISPLAY_STACK_FRAMEc.oiiiiiiiii ittt iiieannnannnes 9-54
QUIT ..ttt ittt ettt eat et aaeesnnsaateennnennas 9-58
RUN . i e it ittt it ci e teteaeaneaaieeancaanas 9-59
133 D W 21 34 DTV - QIR 9-60
SET_STEP _MODKE ..ottt iineeaeaneanns 9.70
Debug Functionsooiitiiiiieiiiiiie it iieeieiiineentnneanens 974
SCURRENT _LINE ...oitiiiitiiit it iirerieeenncanesrnnaaennnenn 9-75
SCURRENT _MODULEcoiviiiiiitniiaatenneernneenneanns 9-76
SCURRENT _PROCEDUREciiiiiiiiiiiiiiiiiiiinnneenns 9-77
SCURRENT PV A . it ittt ettt reaieanans 9-78
SPROGRAM _VALUE ...ttt ittt iiiaateeineennenennaans 9-79
Using Debug . ..ot i e e et e e 9-82
Sample Debug Sessionscccoviiiiii ittt it 9-82
Interactive Debug Session..........c.cooiiiiiiiiiiiiinninnann.. 9-82
Batch Debug Sessioncovviiiiiiiiiiireriiiiieeninnnens 9-92

4

o The Debug Utility 9

. Introduction

The Debug utility provides source code level symbolic debugging for
programs written in BASIC, COBOL, CYBIL, FORTRAN, and PASCAL,
and machine code level debugging for object modules. Using Debug does not
require source-level program modifications, a knowledge of assembly
language, or the ability to interpret extensive memory dumps. Debugging
can be done at the source language level.

Debug enables you to monitor and control the execution of programs in
interactive and batch mode. Debug allows program conditions to be modified
and tested during execution. With Debug, you can:

Suspend program execution at specified locations, such as line 398 of
module MAIN_PROGRAM.

Suspend program execution when a selected event occurs, such as writing
to a specified location.

Display and change the values of program variables, memory locations,
and registers while execution is suspended.

Display the procedure calls that led to the current location (call traceback
information).

Display the environment that you are currently debugging under.

Resume program execution at the location where execution was
suspended or at another location.

Step through a program by lines or procedures.

Revision D The Debug Utility 91

AC

Because Debug is a command utility, SCL features are available while
Debug is in control. With SCL, you can:

Accessing Debug

You can access Debug explicitly when executing your program. You can also
access Debug when your program aborts unexpectedly.

92

CESSING DEBUG

Temporarily read Debug subcommands from a file other than the Debug
input file using the SCL command INCLUDE _FILE.

Enter multiple commands, separated by semicolons, on one line.
Continue a single command on one or more continuation lines.

Evaluate and display SCL expressions using the SCL command
DISPLAY_VALUE.

Echo Debug subcommands to one or more files, and write Debug output to
several files using the SCL. command CREATE _FILE_CONNECTION.

Include Debug subcommands in SCL procedures.

Enter commands for processing by another active command processor,
such as an editor to examine your source listing.

CYBIL Language Definition Revision B

ACCESSING DEBUG

Accessing Debug During Program Execution

Every program has various attributes that control its execution. Among
these are the Debug attributes DEBUG_MODE, DEBUG _INPUT, and
DEBUG_OUTPUT. These attributes are defined as follows:

DEBUG_MODE = ON or OFF

A keyword value that determines whether or not the program is to be
executed under Debug control.

DEBUG_INPUT = file

The file from which Debug initially reads subcommands when
DEBUG_MODE=0ON.

DEBUG_OUTPUT = file
The file to which Debug initially writes its output.

These attributes can be specified at two levels: program level and job level.
Program level specifications apply to a specific program. Job level
specifications apply to all programs of a job that do not explicitly specify
values at the program level.

Program level specifications are set as parameter values on the SCL
command EXECUTE _TASK or on the SCL CREATE _OBJECT_LIBRARY
utility’s subcommand CREATE _PROGRAM _DESCRIPTION. Job level
specifications are set as parameter values of the SCL. command SET _
PROGRAM_ATTRIBUTE. (Refer to the SCL Object Code Management
manual for complete descriptions of these commands.)

For example, if you issue
set_program_attributes debug_mode=on

just after logging in, all program executions will be under control of Debug
unless you specify DEBUG_MODE=0FF on the EXECUTE _TASK
command or in a previously created program description. You can change
job level attributes at any time by issuing another SET_PROGRAM _
ATTRIBUTES command.

Initially, the values of the job level Debug attributes are DEBUG _
MODE=0FF, DEBUG _INPUT=COMMAND, and DEBUG _
OUTPUT=$OUTPUT. For interactive jobs, COMMAND and $OUTPUT are
assigned to the terminal by default.

Individual sites and individual users at a site can change these initial
defaults by including a SET_PROGRAM _ATTRIBUTES command in the
system or user prologue file.

Revision D The Debug Utility 93 I

ACCESSING DEBUG

Accessing Debug When Program Failure Occurs

Once you have a working program, you generally want to access Debug only
if the program unexpectedly fails. The program attributes that control Debug
when a working program fails are ABORT _FILE and DEBUG_OUTPUT.
These attributes are defined as follows:

ABORT_FILE = file

The file from which Debug initially reads subcommands if the program
aborts when DEBUG _MODE=OFF.

DEBUG_OUTPUT = file
The file to which Debug initially writes its output.

These attributes can be specified at two levels: program level and job level.
Program level specifications apply to a specific program. Job level
specifications apply to all programs of a job that do not explicitly specify
values at the program level.

Program level specifications are set as parameter values on the SCL
command EXECUTE_TASK or on the SCL CREATE _OBJECT_LIBRARY
utility’s subcommand CREATE_PROGRAM_DESCRIPTION. Job level
specifications are set as parameter values of the SCL command SET _
PROGRAM _ATTRIBUTE. (Refer to the SCL Object Code Management
manual for complete descriptions of these SCL commands.)

For example, if you issue
set_program_attributes debug_mode=off, abort_file=abortfile

just after logging in, Debug will not gain control unless the program fails.
Programs will not execute under the control of Debug unless you specify
DEBUG_MODE=0N on the EXECUTE_TASK command or in a previously
created program description. You can change job level attributes at any time
by issuing another SET_PROGRAM_ATTRIBUTES command.

The initial value of ABORT _FILE is $NULL, the special system file with no
data in it. DEBUG_MODE must be off and ABORT _FILE must be a file
other than $NULL for Debug to gain control when the program fails.

94 CYBIL Language Definition Revision D

DEBUG CONCEPTS

. Debug Concepts

This section contains miscellaneous information that applies to Debug
usage. This information includes Debug input/output, status variable,
breaks, and addressing.

Debug Input/Output

Although Debug input/output takes place automatically, you can, by
manipulating the Debug input/output files, expand the capabilities of
Debug.

Debug Input

Debug subcommands are initially read from the file specified by the
DEBUG _INPUT parameter or the ABORT_FILE parameter of the SCL
commands EXECUTE_TASK, CREATE _PROGRAM _DESCRIPTION, or
SET_PROGRAM_ATTRIBUTES.

The default Debug input file is COMMAND. In interactive jobs, COMMAND
is the terminal. In batch jobs, it is the normal command stream. You cannot
use COMMAND as the source of Debug input for a batch job because

‘ COMMAND is positioned at beginning-of-information, which is your
LOGIN command. Instead, you must copy the Debug input to another file,
using the SCL command COLLECT _TEXT for example, and use that as the
Debug input.

You can change the input file temporarily by entering an SCL INCLUDE _
FILE command. As soon as you enter the command, subcommands are read
from the specified file until an end-of-partition, an end-of-information, or a
RUN subcommand is encountered. If an end-of-partition or an end-of-file is
encountered, subcommands are again read from the file that contained the
INCLUDE_FILE command. If a RUN subcommand is encountered,
program execution is resumed; any remaining subcommands in the file that
was included are not processed. When Debug again gains control,
subcommands are read from the current Debug input file.

Revision D The Debug Utility 95 @

i

DEBUG CONCEPTS

The Debug subcommand CHANGE _DEFAULT (described in detail later in
this chapter) can also be used to change the Debug subcommand source. The ‘
DEBUG _INPUT parameter of the CHANGE _DEFAULT subcommand

changes the subcommand source so that Debug subcommands are read from

the specified file when Debug gains control after program execution has

been resumed. Unlike the INCLUDE _FILE command, the CHANGE _ '
DEFAULT subcommand has no effect on the current subcommand source.

If Debug is activated from within an SCL procedure, subcommands are read
from COMMAND when Debug gains control, not from the procedure. To
force Debug to read subcommands from the procedure, specify

debug_input=$command

in the program description or on the EXECUTE _TASK command.

Debug Output

Debug output (messages and information produced by Debug display
subcommands) is initially written to the file specified by the DEBUG _

OUTPUT parameter (default output file is $OUTPUT) of the SCL

commands EXECUTE_TASK, CREATE_PROGRAM _DESCRIPTION, or
SET_PROGRAM _ATTRIBUTES. The OUTPUT parameter of the Debug

display subcommands can be used to divert display output to another file;

the diversion applies only to the subcommand that contains the OUTPUT ‘
parameter.

The Debug subcommand CHANGE _DEFAULT (described in detail later in
this chapter) can be used to change the current Debug output file. The
DEBUG_OUTPUT parameter of the CHANGE _DEFAULT subcommand
causes Debug to write all output to the specified file; the change takes place
as soon as the subcommand is executed.

The default Debug output file is $OUTPUT. $OUTPUT is the terminal for
interactive jobs and the listing file for batch jobs. Initially, SOUTPUT is
connected to the actual file OUTPUT. You can connect $OUTPUT to other
files by using the SCL command CREATE _FILE_CONNECTION. If the
standard files $SECHO, $SRESPONSE, and $ERRORS are also connected to
one of the actual output files, a complete record of a Debug session can be
created.

® 96 CYBIL Language Definition Revision D

DEBUG CONCEPTS

Status Variable

All Debug subcommands have an optional parameter called STATUS. When
you specify this parameter, a previously declared SCL variable of kind
STATUS must be supplied as its value. (Refer to the SCL Language
Definition manual for a discussion of SCL variables.) This variable contains
the completion status of the subcommand.

A status variable is a record that contains the following fields:

NORMAL

A boolean that has a value of FALSE if the subcommand could not be
processed correctly and a value of TRUE if the subcommand was
processed correctly.

IDENTIFIER
A string with a length of 2 that contains the product identifier of the
processor in which the error was detected. The product identifier for

Debug is DB. This field is undefined when the subcommand is processed
correctly.

CONDITION

An integer code that identifies the detected error. The two leftmost digits
in a Debug condition code are 64. This field is undefined when the
subcommand is processed correctly.

TEXT

A string with a length of 256 that contains the error message text. This
field is undefined when the subcommand is processed correctly.

The presence of the STATUS parameter on a subcommand causes the next
subcommand to be processed even if an error condition is encountered. After
checking the contents of the status variable, you can use succeeding
subcommands to alter the flow of control based upon the occurrence of error
conditions.

Revision B The Debug Utility 97

Breaks '

The primary mechanism that allows Debug to gain control from an

executing program is the user-defined break. A user-defined break specifies

one or more events and an address range so that when a specified event

occurs within the address range, program execution is interrupted and Debug ‘
takes control.

Many events can be specified, for example, when execution reaches a specific
place, before a branch to a specific address range occurs, or before a write
into memory. Address ranges also can be specified in many forms. You
cannot set two breaks for the same event at the same address range or
overlapping address ranges. Once set, a break stays set until it is explicitly
deleted or implicitly deleted with the DELETE _BREAK ALL subcommand.
The SET_BREAK, DELETE_BREAK, and DISPLAY_BREAK
subcommands are used to set, delete, and display break definitions. (These
subcommands are described in detail later in this chapter.)

The maximum number of breaks that the Debug utility can handle is 64. Of
these 64 breaks, 32 can be the type of break that is detected by Debug
hardware (read, write, call, branch, execution, and read next instruction).
Some breaks that you set cause Debug to set one or more internal breaks.
Thus, the actual maximum number of breaks that are available to you is not
a fixed number. A message is issued when another break cannot be set.

Addressing

Debug uses source level addresses when addresses are reported in Debug
subcommand output, such as when DISPLAY _CALL or DISPLAY_BREAK
is executed and when Debug gains control. Debug also uses source level
addresses when addresses are referenced in Debug subcommands, such as
SET_BREAK and DISPLAY_MEMORY.

9-8 CYBIL Language Definition Revision B

"i

DEBUG CONCEPTS

Reported Addresses

The level of reported addresses is determined by the information available.
For CYBIL programs, the following are available by default:

® Module address tables indicating where modules are located.
¢ Line address tables indicating where code for each line is located.

¢ Symbol tables indicating where the value of each program name is
located.

If you specify DEBUG _AIDS=NONE on the CYBIL command, however, line
address and symbol table addresses are suppressed. In this case, only module
and machine level addressing are possible.

Addresses in the message issued when Debug gains control (the break report
message) are formatted as follows depending on the information available.

When line and module tables are available (symbolic addressing):
If the address corresponds to the beginning of a line, then the format is
M=module_name L~line_number
otherwise, if the address is somewhere within the line, then the format is

M=module_name L=line_number BO=byte_offset_from _
start_of_line

When only the module table is available (module addressing):

If the module is not bound (refer to Addressing Bound Modules later in
this chapter), then the format is

M=source_module_name P=procedure_name BO=byte _
offset_from _start_of_procedure

otherwise, if the module is bound, then the format is

M=source_module_name BO=byte_offset_from _
start_of _bound_module

When line and module tables are not available (machine addressing), the
format is:

A=machine_address

Revision D The Debug Utility 99

DEBUG CONCEPTS

Within the address formats:

e module_name and procedure_name correspond to the source program
module and procedure names.

e line_number corresponds to a line number on the source listing.

e byte_offset is a decimal number corresponding to the number of bytes
beyond the beginning of a line or a hexadecimal number corresponding to
the number of bytes beyond the start of a procedure or bound module.

& machine_address is a set of three hexadecimal numbers representing the
ring number, segment number, and segment offset of a machine address.

Addresses reported in subcommand output also provide the highest address
level possible, but they are not always formatted the same as in break report
messages. Addresses shown in DISPLAY_BREAK output are very similar,
but addresses shown in DISPLAY _CALL output contain both the procedure
name and line number. Typical DISPLAY _CALL output might look like
this:

-- Traceback from procedure PROC2 module MOD2 at Line 34

—— Called from procedure PROC1 module MOD2 at Line 55 byte
offset 4

-- Called from procedure BEGIN_PROCESS module MOD1 byte
offset 1A3(16)

Addresses shown in DISPLAY _REGISTER output are formatted only as
hexadecimal addresses in the form

r 888 00000000

where r is the ring number, sss is the segment number, and ooooocco

is the offset from the start of the segment. Pointer addresses displayed by
DISPLAY_PROGRAM_VALUE are also formatted as hexadecimal
machine addresses except for pointers to procedures; dereferenced pointers to
procedures are displayed as the procedure name if possible.

910 CYBIL Language Definition Revision A

DEBUG CONCEPTS

Referenced Addresses

Several Debug subcommands reference program code and data addresses.
For example, SET_BREAK designates an address or address range for
break events, DISPLAY _MEMORY specifies the address of memory to be
displayed, and DISPLAY_PROGRAM_VALUE names a program identifier
whose value is to be displayed.

Just as for reporting addresses, the capabilities available when referencing
program addresses depend on the information available:

® Symbolic addressing (source level addressing) is available if line and
symbol tables exist (they exist unless line number and symbol table
generation is specifically turned off at compile time).

® Module/procedure offset addressing is available if module tables exist
(they always do for user programs).

¢ Machine-level addressing is always available.

Addresses can be referenced in many more forms than the form in which
they are reported. For example, entry point names, section names, and
program names can be referenced, but addresses are never reported in these
terms. Machine level addresses can be referenced only as a single integer (a
12-digit hexadecimal value); they are reported, however, either as a 12-digit
hexadecimal integer or as three separate integers corresponding to ring
number, segment number, and byte offset from the start of the segment.

Revision B The Debug Utility 911

DEBUG CONCEPTS

Not all address forms, however, are used by all subcommands. For example,
the DISPLAY_PROGRAM_VALUE subcommand allows a program name
to be referenced by name, including all of the subscripting and qualification
syntax. But, the DISPLAY_PROGRAM_VALUE subcommand does not
allow machine level addressing. The DISPLAY_MEMORY subcommand, on
the other hand, allows machine and module addressing but almost no
symbolic level addressing. The SET _BREAK subcommand allows all forms
except names defined in a source program.

The different forms of addresses are specified by different parameters. LINE,
MODULE, PROCEDURE, NAME, ENTRY _POINT, SECTION, and
ADDRESS are typical address parameter names. Many of these address
parameters can be used in combination to specify an address. For example,
LINE and MODULE together specify a particular line of a particular
module. NAME, MODULE, and PROCEDURE together specify a particular
name of a particular procedure in a particular module. Similarly, SECTION
can be used in conjunction with MODULE. ENTRY _POINT and
ADDRESS, however, cannot be used in conjunction with MODULE or with
each other because they specify addresses independent of any module. Debug
issues an error message if an invalid combination of address parameters is
used.

The BYTE_OFFSET parameter can be used to modify the address
parameters. For example, the MODULE parameter without the BYTE _
OFFSET parameter specifies the first byte of the module; the MODULE
parameter modified with BYTE _OFFSET=4, on the other hand, specifies the
fifth byte of the module.

Another parameter, BYTE _COUNT, can be used to establish the block size
(address range) associated with a referenced address. The BYTE_COUNT
parameter indicates how many memory bytes are to be included in the block.
For example,

section=trap, byte_count=3

identifies a three-byte block that begins at section TRAP. BYTE_COUNT
and BYTE_OFFSET can be used to modify any referenced address except a
program name (NAME parameter).

9-12 CYBIL Language Definition Revision B

DEBUG CONCEPTS

Addressing Bound Modules

Individual modules can be bound (combined) to form a new load module that
loads and executes faster than the original separate modules. (For further
information, refer to the CREATE _OBJECT _LIBRARY command in the
SCL Object Code Management manual.) Binding modules together has no
effect on address reporting or address referencing at the symbolic level; you
can debug bound modules in terms of their component module names, line
numbers, and identifier names.

Binding does, however, have an effect on module/procedure and
module/section offset addressing. After binding, original module and
procedure names are not available when the tables that support symbolic
addressing are not available; addresses are reported and must be referenced
in terms of the new bound module name and byte offsets from the beginning
of the module. Code from all original component modules is combined into
one code section, static data from all original modules are combined into one
static data memory section, and so forth, so that the original component
portions of each section cannot be distinguished by Debug. You can deduce
where each component portion is by inspecting the section map produced by
the GENERATE _LIBRARY subcommand (described in the SCL Object
Code Management manual).

Debugging Optimized Code

Most compilers can generate more than one level of object code. The
OPTIMIZATION _LEVEL parameter on the compiler call controls the level
of object code optimization. Specifying the DEBUG option on the
OPTIMIZATION _LEVEL parameter generates the most debuggable object
code possible. This level of object code contains a separate packet of machine
instructions for each executable source statement, carries no altered variable
values across statement boundaries in registers without also updating their
values in memory, enables Debug to recognize that start of execution of each
new line or procedure, and ensures that Debug can always find actual
parameter lists.

If some higher level of optimization is selected, Debug can still function, but
with restricted capabilities. For example, you cannot display program
identifier values that are permanently allocated to machine registers. When
values are temporarily carried in registers between statements, or when code
for several source statements is mixed together, displayed values may not be
the most recent values. Break report locations may not be as precise either.

Revision D The Debug Utility 9-13

DEBUG CONCEPTS

Debugging With Condition Handlers

Condition handlers are special procedures whose purpose is to process
conditions, or exceptions, when they arise. They are automatically activated
by NOS/VE when the conditions for which they have been established
occur. Condition handlers can be established for one or more classes of
conditions. Refer to the CYBIL System Interface manual for a detailed
discussion of how to write condition handlers.

When executing with DEBUG _MODE=0N, Debug first gains control when
any condition occurs, except job resource conditions, detected uncorrected
error conditions, and block exit conditions. The condition handler of the
program, if one exists, is not executed until a Debug RUN subcommand is
executed.

The condition handler of the program can be debugged using Debug, but the
program will not execute until you have had a chance to respond to the
condition. For conditions for which breaks can be set, a RUN subcommand
can be associated with the break so that the subcommand is automatically
executed when the break occurs. (Refer to the COMMAND parameter of the
SET_BREAK subcommand described later in this chapter.) This mechanism
makes it possible to effectively circumvent the preemptive control of Debug.
It appears as though Debug did not get control since the RUN subcommand
automatically executes the instant the condition arises.

Multitask Debugging

The use of Debug in a multitask environment is very restricted. If an initial
task executes with DEBUG_MODE=0ON and then spins off a second task,
the second task may execute with DEBUG_MODE = ON (if its program
description says to). This causes two separate instances of Debug to be
active. The user may have difficulty distinguishing between them, as well as
determining to which task a terminal is connected. One way to determine
which instance of Debug has control is to inspect the output from the
DISPLAY _CALL calling chain or from the user address displayed by
DISPLAY_DEBUGGING_ENVIRONMENT.

Interrupt Processing While Debugging
Three external events can interrupt an executing user program or the Debug

utility. These events are pause break, terminate break, and nearly exhausted
resource. Table 9-1 shows the effects of these interrupts.

9-14 CYBIL Language Definition Revision C

DEBUG CONCEPTS

. Table 9-1. Effects of Interrupts While Debugging

Interrupt User Program Executing Debug Executing
Pause Debug gains control and Default system action
Break prompts for subcommands. occurs. If you have

‘ established a handler for

this condition, that
handler gains control.
Debug does not gain
control unless the
handler returns with
normal status.

Terminate Debug gains control and If a Debug subcommand

Break prompts for subcommands. is executing, that
subcommand is
terminated and you are
prompted for a new
subcommand. If Debug
is already waiting for a
subcommand, the
terminate break is

ignored.

‘ Nearly Debug does not get control. Debug does not process
Exhausted If you have defined a handler, this condition. If you
Resource it gains control; otherwise, have defined a handler,

the system default handler it gains control; otherwise,
processes the condition. the system default

handler processes the
condition. Debug does
not gain control unless a
user-defined handler
returns with normal
status.

Revision D The Debug Utility 915 @

DEBUG CONCEPTS

Debug Ring ‘

Debug normally runs in the same ring as the program being debugged. You

can, however, control the ring in which Debug executes. The SCL command
SET_DEBUG _RING specifies the ring in which Debug executes. The Debug

ring cannot be set to a ring more privileged than the lowest ring for which ‘
you are validated.

You are responsible for ensuring that the program being executed runs in the
same ring set for Debug on the SET_DEBUG _RING command. (The ring
attributes of the program can be changed using the SCL CHANGE _FILE _
ATTRIBUTES command.)

If your program runs entirely in one ring, you need not be concerned with the
Debug ring except to understand deferred breaks and multiple breaks (as
discussed later in this section).

If the program being debugged begins execution in a ring other than the
Debug ring, Debug does not gain immediate control and the DB/ prompt
does not appear. However, while the program is executing, you can access
Debug by entering the user break 2 (termination) sequence (usually
CONTROL/T followed by a carriage return) and then entering Debug
subcommands. For example, you could interrupt the program soon after it
begins execution and set breakpoints.

Deferred Breaks

Breaks that occur in a lower numbered ring than the Debug ring are
deferred, or delayed, until execution again reaches the Debug ring. The break
is deferred so that you do not get control in a ring more privileged than your
own. If you were able to get control at a lower ring, you could read or change
data that you normally do not have access to, thereby compromising system
security.

Deferred breaks can occur even when your program runs in a single ring.
Many of the operating system services used by the program execute in more
privileged rings. For example, if you set a read or write break on a status
variable used in some NOS/VE request and that variable is accessed in a
lower ring, the break is delayed until NOS/VE returns control to your
program.

When a break is deferred, Debug issues a special break report message. The

break is reported as having happened at the line after the line that made the

call, and a second line indicating the actual address of the event is output. ‘
The second line is formatted as follows:

Trap deferred from <address>

where address is where the event actually occurred. .

9-16 CYBIL Language Definition Revision D

DEBUG CONCEPTS

Multiple Breaks

Because breaks below the Debug ring are deferred until control returns to the
Debug ring, several breaks can be stacked up before Debug gains control.
When this happens, Debug must process multiple breaks.

If there are several unprocessed breaks outstanding when Debug gains
control, Debug reports each one in the usual way but honors only the first
one that occurs. No subcommands are processed for the most recent breaks,
not even subcommands associated with the break definition, since execution
of the subcommands could destroy the environment that existed when the
first break occurred.

Multiple breaks can also occur when execution is not below the Debug ring.
For example, two terminal breaks or an execution break and a terminal
break could occur before Debug gets control. If this ever occurs, Debug
honors only the first break.

Multiring Environment

The ability of Debug to function in a multiring environment is limited. If a
break event occurs in a lower ring than the Debug ring, Debug gains control,
but your options are limited. You can only resume execution of the
interrupted procedure or terminate the Debug session. Any program
condition handlers established for that event are not processed.

Revision A The Debug Utility 9-17

DEBUG SUBCOMMANDS

Debug Subcommands

This section includes descriptions of the Debug subcommands. The
subcommands are listed in alphabetical order. They follow the syntax and
conventions for SCL commands, as described in the SCL Language
Definition manual. The language elements used as parameters are standard
SCL elements as defined in that manual, except for source program names
used in the CHANGE _ PROGRAM_VALUE and DISPLAY_PROGRAM _
VALUE subcommands.

The Debug subcommands are summarized next.

Subcommand Description
CHANGE _DEFAULT or Changes the default
CHANGE_DEFAULTS or Debug input/output
CHAD files and procedure
MODULE = name or keyword value and module names.

PROCEDURE = name or keyword value
DEBUG_INPUT = file
DEBUG_OUTPUT = file

STATUS = status variable

CHANGE_MEMORY or Changes the
CHAM contents of
ADDRESS = integer memory.

VALUE = string or integer

TYPE = keyword value

REPEAT_COUNT = integer or keyword value
STATUS = status variable

CHANGE_PROGRAM_VALUE or Changes the value
CHAPV ' of a program
NAME = name variable.

VALUE = name

MODULE = name

PROCEDURE = name
RECURSION_LEVEL = integer
RECURSION_DIRECTION = keyword value
STATUS = status variable

(Continued)

9-18 CYBIL Language Definition Revision B

DEBUG SUBCOMMANDS

(Continued)

Subcommand Description
CHANGE _REGISTER or Changes the
CHANGE_REGISTERS or contents of the

CHAR
KIND = keyword value
NUMBER = keyword value or list of integer
VALUE = integer or string
TYPE = keyword value
STATUS = status variable

DELETE_BREAK or

DELETE_BREAKS or

DELB
BREAK = keyword value or list of name
STATUS = status variable

DISPLAY _BREAK or
DISPLAY_BREAKS or

DISB
BREAK = keyword value or list of name
OUTPUT = file

STATUS = status variable

DISPLAY_CALL or
DISPLAY _CALLS or
DISC
COUNT = integer or keyword value
START = integer
DISPLAY_OPTION = list of keyword value
OUTPUT=file
STATUS = status variable
DISPLAY_DEBUGGING_ENVIRONMENT or
DISDE
DISPLAY_OPTION = list of keyword value
OUTPUT = file
STATUS = status variable

Revision C

P, A, or X registers.

Deletes one or more
break definitions.

Displays specified
break definitions.

Displays
information about
the dynamic call
chain.

Displays the
debugging
environment
of your session.

(Continued)

The Debug Utility 9-19

DEBUG SUBCOMMANDS

(Continued)

Subcommand Description

DISPLAY_MEMORY or Displays the

DISM contents of memory.
address

BYTE _OFFSET = integer

BYTE_COUNT = integer

REPEAT_COUNT = integer or keyword value
OUTPUT =file

STATUS = status variable

DISPLAY_PROGRAM_VALUE or

DISPV
NAME = program name or keyword value
MODULE = name
PROCEDURE = name
RECURSION_LEVEL = integer
RECURSION_DIRECTION = keyword value
TYPE = keyword value
OUTPUT =file
STATUS = status variable

DISPLAY_REGISTER or
DISPLAY_REGISTERS or
DISR
KIND = list of keyword value
NUMBER = keyword value or list of integer
TYPE = keyword value
OUTPUT=file
STATUS = status variable

DISPLAY_STACK_FRAME or
DISPLAY_STACK_FRAMES or
DISSF
COUNT = integer or keyword value
START = integer
DISPLAY_OPTION = list of keyword value
OUTPUT = file
STATUS = status variable

920 CYBIL Language Definition

Displays the value
of a program
value.

Displays the
contents of
the P, A, or
X registers.

Displays the
contents of one or
more stack frames.

(Continued)

Revision D

DEBUG SUBCOMMANDS

(Continued)

Subcommand Description
QUIT or Terminates the
QUI Debug session.

STATUS = status variable

RUN
STATUS = status variable

SET_BREAK or
SET_BREAKS or
SETB

BREAK = name

EVENT = list of keyword value

address
BYTE_OFFSET = integer
BYTE_COUNT = integer
COMMAND = string
STATUS = status variable

SET_STEP_MODE or
SETSM
MODE = keyword value
UNIT = keyword value

MODULE = keyword value or list of name
PROCEDURE = keyword value or list of name

SPAN = integer
COMMAND = string
STATUS = status variable

Revision C

Initiates or resumes
program execution.

Defines the break.

Defines a subset of a
task to be executed
in one step.

The Debug Utility 9-21

CHANGE _DEFAULT

CHANGE_DEFAULT '

Purpose Changes the default module, default procedure, default Debug
input file, and default Debug output file. The change remains
in effect until altered by another CHANGE _DEFAULT
subcommand. '

Format CHANGE_DEFAULT or

CHANGE_DEFAULTS or

CHAD
MODULE=name or keyword value
PROCEDURE-=name or keyword value
DEBUG_INPUT = file
DEBUG_OUTPUT-=file
STATUS = status variable

Parameters MODULE or M

Name of the module to be used if the module parameter is not
specified in Debug subcommands that must refer to a module.
Specifying the keyword SCURRENT causes the default
module to be reset to the module that was executing when
Debug gained control.

Omission causes the current default module to remain
unchanged. .

Debug subcommands that can use this default module are:

CHANGE_PROGRAM_VALUE
DISPLAY_PROGRAM_VALUE
SET_BREAK
SET_STEP_MODE

PROCEDURE or P

Name of the procedure to be used if the procedure parameter is
not specified in Debug subcommands that must refer to a
procedure. Specifying the keyword $CURRENT causes the
default procedure to be reset to the procedure that was
executing when Debug gained control.

Omission causes the current default procedure to remain
unchanged.

Debug subcommands that can use this default procedure are:
CHANGE_PROGRAM_VALUE ‘
DISPLAY_PROGRAM_VALUE

SET_BREAK
SET_STEP_MODE

® 922 CYBIL Language Definition Revision D

CHANGE_DEFAULT

‘ DEBUG_INPUT oxr DI

File from which Debug subcommands are read when Debug
next gains control. Unless you specify a file position as part of
the file name, the file is initially positioned at the beginning-
of-information; the file is not repositioned in subsequent

‘ accesses. Subcommands are read from the file sequentially. If
an end-of-partition or an end-of-file is reached on the input
file, program execution resumes.

Omission causes the current Debug input file to remain
unchanged. Unless specified otherwise, the initial Debug
input file is COMMAND.

DEBUG_OUTPUT or DO

File on which Debug output is written. The change takes
effect immediately. Break report messages and subcommand
output are written to this file. Unless you specify a file
position as part of the file name, the file is initially positioned
at the beginning-of-information; the file is repositioned to the
beginning-of-information in subsequent accesses.

Omission causes the current Debug output file to remain
unchanged. Unless specified otherwise, the initial Debug
output file is §OUTPUT.

‘ STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if S(RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Revision D The Debug Utility 923 @

CHANGE _DEFAULT

Examples The following subcommand specifies that Debug is to read '
subcommands from the file DBIN the next time Debug gains
control:

change_default debug_input=dbin

The following subcommand specifies that Debug is to write its ‘
output to the file $LIST:

change_default debug_output=$list

The following subcommand specifies the default module
name:

change_default module=main

924 CYBIL Language Definition Revision B

CHANGE_MEMORY

CHANGE_MEMORY

Purpose

Format

Parameters

Revision A

Changes the contents of memory starting at a specific
address. You can change the value of any memory location for
which you have write permission.

CHANGE_MEMORY or
CHAM
ADDRESS = integer
VALUE = string or integer
TYPE = keyword value
REPEAT_COUNT = integer or keyword value
STATUS = status variable

ADDRESSor A
Address of the first byte of memory to be changed in the form

rs8800000000(16)

where r is the ring number, sss is the segment number, and
00000000 is the offset from the beginning of the segment. You
can obtain machine addresses by using the cross-reference
and load maps for your program.

This parameter is required.

VALUEor V

New memory value. A string value can be interpreted as a
hexadecimal or ASCII string, depending on the value of the
TYPE parameter.

A hexadecimal string consists of the hexadecimal digits 0
through 9 and A through F and spaces. Spaces are ignored,
but you can use them to improve legibility. Each hexadecimal
digit corresponds to 4 bits of memory. The first two digits
replace the first byte of memory at the specified address, the
second two digits replace the second byte, and so on. If there
is an odd number of hexadecimal digits, only the first half of
the corresponding byte is changed.

An ASCII string consists of a string of ASCII characters.
Each ASCII character corresponds to one byte of memory.
The first character replaces the first byte of memory at the
specified address, the second character replaces the second
byte, and so on.

An integer value completely replaces the contents of eight
bytes. A diagnostic message is issued if the integer does not fit
into eight bytes.

This parameter is required.

The Debug Utility 9-25

CHANGE_MEMORY

TYPEor T '

Type of data defined by the VALUE parameter. Specify one of
the following keywords:

ASCII (A)
VALUE is an ASCII string. ‘

HEX (H)
VALUE is a hexadecimal string.

INTEGER (I)
VALUE is an integer.

Omission causes HEX to be used for string values and
INTEGER to be used for numeric values.

REPEAT_COUNT or RC

Number of times VALUE is repeated in memory. Specify a
positive integer greater than zero. The address is incremented
by the value size each time the value is repeated. The memory
change is limited to the end of the data segment containing
the specified address. Specifying a value that is too large or
specifying the keyword ALL changes all the memory that can

be changed. .

Omission causes 1 to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

If the CHANGE _MEMORY subcommand contains an error
before the STATUS parameter, the remainder of the
subcommand is skipped. Therefore, the contents of the
STATUS parameter does not reflect the status of the
subcommand.

926 CYBIL Language Definition Revision D

‘ Examples

Revision A

The following subcommand replaces four bytes of memory
beginning at location 0B02200001112 hexadecimal with the
hexadecimal string ’1010aaab’:

change_memory address=0002200001112(16) ..
value='1010aaab’

The following subcommand replaces six bytes of memory
beginning at location 0B02200000055 hexadecimal with the
ASCII string ’string’:

change_memory address=0b02200000055(16) ..

value='string' type=ascii

The following subcommand replaces eight bytes of memory
beginning at location 0B02300000223 hexadecimal with the
integer value 44:

change_memory address=0b02300000223(16) ..
value=44

The Debug Utility 9-27

CHANGE _MEMORY

CHANGE_PROGRAM_VALUE

CHANGE_PROGRAM_VALUE

Purpose

Format

Parameters

Changes the value of the specified program variable.
Replacement values are entered in the same format as defined
in your program, not as they are represented in memory.

CHANGE_PROGRAM_VALUE or

CHAPV
NAME = name
VALUE = name
MODULE = name
PROCEDURE = name
RECURSION_LEVEL = integer
RECURSION_DIRECTION = keyword value
STATUS = status variable

NAME or N

Name of the program variable in the source program whose
value is to be changed. Specify one of the following:

® Simple variable name
e Subscripted name

¢ Field reference

¢ Pointer dereference

Subscripts can be constants or variables, but not expressions.
Substring references are not allowed.

Because names can be long, you can use SCL string variables
as aliases for them. To do this, assign a string that contains
the identifier to the SCL variable. Then use the SCL variable
preceded by a question mark as the value of the NAME
parameter.

This parameter is required.

928 CYBIL Language Definition Revision A

CHANGE_PROGRAM_VALUE

VALUEorV

New value for the NAME parameter variable. The named
VALUE parameter variable must be of the same type as the
NAME parameter variable. Combinations allowed for the
NAME and VALUE parameters are:

NAME Type VALUE Type

Integer Integer constant or variable reference.
Character Character constant or variable reference.
Boolean Boolean constant or variable reference.
Ordinal Ordinal name or variable reference.

Cell Integer constant or variable reference.
Pointer Integer constant or variable reference.
String String constant or variable reference.
Array, record, Variable reference (byte-aligned

set, or sequence and unpacked).
This parameter is required.

Revision B The Debug Utility 9-29

CHANGE_PROGRAM_VALUE

MODULE or M ‘

Name of the module that contains the NAME parameter
variable.

Omission causes the module executing when Debug gained
control or the module specified by the CHANGE _DEFAULT
subcommand to be used. ‘

PROCEDURE or P

Name of the procedure that contains the NAME parameter
variable. If the PROCEDURE parameter is specified, the
NAME parameter variable must exist in this procedure or
exist in the containing procedure or module. If an inactive
procedure is specified, the automatic variables cannot be
changed.

Omission causes the procedure executing when Debug gained
control or the procedure specified by the CHANGE _
DEFAULT subcommand to be used.

RECURSION_LEVEL or RL

The particular call of a recursive procedure to be used. Specify
a positive integer greater than zero. If RECURSION _
DIRECTION=FORWARD, use a value of 1 for the first call, 2
for the second call (the one called by the first call), and so on.
If RECURSION_DIRECTION=BACKWARD, use 1 for the
most recent call, 2 for the predecessor, and so on.

Recursion only applies to program variables stored on the
stack. Recursion cannot apply to variables stored in either a
common block or the $STATIC section.

Omission causes 1 to be used.

9-30 CYBIL Language Definition Revision B

CHANGE_PROGRAM_VALDE -

. RECURSION_DIRECTION or RD

Order in which calls to a recursive procedure are searched.
This parameter controls how the value of the RECURSION _
LEVEL parameter is interpreted. Specify one of the following

. keywords:
FORWARD
A RECURSION_LEVEL of 1 specifies that the first call to
the procedure is used, a 2 specifies the second call, and so
on.

BACKWARD

A RECURSION_LEVEL of 1 specifies that the most
recent call to the procedure is used, a 2 specifies its
predecessor, and so on.

Recursion only applies to program variables stored on the
stack. Recursion cannot apply to variables stored in either a
common block or the $STATIC section.

Omission causes BACKWARD to be used.

STATUS

Optional SCL status variable in which the completion status

’ of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Examples The following subcommand changes the value of
VARIABLE1:

change_program_value name=variable1 value=3
The following subcommand changes the value of INDEX:

change_program_value name=index value=63 ..
module=ff_pp procedure=gg_pg

Revision D The Debug Utility 9-31

CHANGE _REGISTER

CHANGE_REGISTER

Purpose Changes the value of the P, A, or X registers that are
associated with the procedure executing when Debug gained
control.

Format CHANGE_REGISTER or

CHANGE _REGISTERS or

CHAR
KIND = keyword value
NUMBER = keyword value or list of integer
VALUE = integer or string
TYPE = keyword value
STATUS = status variable

Parameters KIND or K

Kind of register or registers to change. Specify one of the
following keywords:

P The P register.

A The A registers.

X The X registers.
Omission causes P to be used.

NUMBER or N

Number of the register or registers to change. Specify a set of
one or more integers or ranges of integers from 0 to 15, or the
keyword ALL. An informative message is issued for each
referenced register whose value was not saved in the current
stack frame and, therefore, cannot be changed. This
parameter is ignored if KIND=P since there is only one P
register.

Omission causes 0 to be used.

932 CYBIL Language Definition Revision D

CHANGE_REGISTER

VALUEor V
New value of the register. If KIND is P or A, VALUE can be:

® An integer in the range 0 through OFFFFFFFFFFFF
hexadecimal.

¢ A hexadecimal string containing a maximum of 12
hexadecimal digits (spaces are ignored); each hexadecimal
digit corresponds to 4 bits.

The upper 4 bits are ignored when changing the P register
since the ring number in P cannot be changed.

If KIND is X, VALUE can be:

® An integer ranging from -7TFFFFFFFFFFFFFFF
hexadecimal to 7FFFFFFFFFFFFFFF hexadecimal.

® A hexadecimal string containing a maximum of 16
hexadecimal digits (spaces are ignored); each hexadecimal
digit corresponds to 4 bits.

e An ASCII string containing a maximum of eight ASCII
characters; each character corresponds to one byte.

The upper bits of the register are set to 0 if an integer is
positive or to 1 if an integer is negative and the value does not
fill the register. A string value is left-justified with remaining
bytes unchanged.

This parameter is required.

TYPEor T

Type of data specified by the VALUE parameter. Specify one
of the following keywords:

ASCII (A) VALUE is an ASCII string.
HEX (H) VALUE is a hexadecimal string.
INTEGER (1) VALUE is an integer.

Omission causes HEX to be used for string values and
INTEGER to be used for numeric values.

The Debug Utility 9-33

CHANGE _REGISTER

STATUS ‘

Optional SCL status variable in which the completion status

of the subcommand is returned. If omitted and an error does

not occur, Debug processes the next subcommand. If omitted

and an error occurs, the status value is returned to

$RESPONSE and to the Debug output file if SRESPONSE is '
connected to that file. This file is normally connected during
interactive debugging.

If the CHANGE _REGISTER subcommand contains an error
before the STATUS parameter, the remainder of the
subcommand is skipped. Therefore, the contents of the
STATUS parameter does not reflect the status of the
subcommand.

Examples The following subcommand changes the current value of the
P register to 0A02200004500 hexadecimal. The upper 4 bits for
the ring number are ignored.

change_register kind=p, ..
value=0a02200004500(16)

The following subcommand changes the current value of the
X7 register to abcdefgh’

change_register kind=x, number=7, ..
value='abcdefgh' type=ascii

® 934 CYBIL Language Definition Revision D

DELETE_BREAK

DELETE_BREAK
Purpose Deletes one or more break definitions.
Format DELETE_BREAK or
DELETE_BREAKS or
DELB

BREAK = keyword value or list of name
STATUS = status variable

Parameters BREAK or BREAKS or B

Break definitions to be deleted. If the keyword ALL appears in
the list of break names, all breaks are deleted. An informative
message is issued if a specified break name does not exist;
however, all subsequent breaks in the list are processed.

This parameter is required.
STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

If the DELETE _BREAK subcommand contains an error
before the STATUS parameter, the remainder of the
subcommand is skipped. Therefore, the contents of the
STATUS parameter does not reflect the status of the
subcommand.

Examples The following subcommand deletes break definitions B1, B2,
and B3:

delete_breaks breaks=(b1,b2,b3)

The following subcommand deletes all break definitions:
delete_breaks all

The following subcommand deletes break definition B4:
delete_break b4

Revision D The Debug Utility 9-35 @

DISPLAY_BREAK

DISPLAY_BREAK

Purpose

Format

Parameters

Examples

@® 936 CYBIL Language Definition

Displays break definitions. The break name, events, address,
and any subcommands associated with the break are
displayed.

DISPLAY_BREAK or
DISPLAY_BREAKS or
DISB
BREAK = keyword value or list of name
OUTPUT = file
STATUS = status variable

BREAK or BREAKSor B

Break definitions to be displayed. If the keyword ALL appears
in the list of break names, all break definitions are displayed.
An informative message is issued if a specified break name
does not exist; however, all subsequent breaks in the list are
processed.

Omission causes all break definitions to be displayed.

OUTPUTor O
File on which the break definitions are written. You can

specify a file position as part of the file name. Omission
causes the current default Debug output file to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

The following subcommand displays all break definitions:

display_breaks

Revision D

DISPLAY_BREAK

. Debug then displays information similar to the following:

--Break B1
— event(s) = execution
== Llocation: M=main_module L=26

‘ --Break B2

-=event(s) = execution
-- location: M=module_two L=13 B0=16

--Break B3
— event(s) = execution
== location: M=module_two L=16

=-Break B4
— event (s) = execution
— location: M=multiplication_module L=7

The following subcommand displays break definitions B1, B2,
and B4:

display_breaks breaks=(b1,b2,b4)
Debug displays the following:

— Break B1

— event(s) = execution

= location: M=main_module L=26

— Break B2
— event(s) = execution
= location: M=module_two L=14

— Break B4
— event(s) = execution
= location: M=multiplication_module L=7

Revision D The Debug Utility 9-37

DISPLAY_CALL

DISPLAY_CALL ‘

Purpose Displays information about the dynamic call chain. Usually
the procedure name, module name, and line number of each
call are shown. Only the procedure or module name and byte
offset from the beginning of the procedure or module are '
shown if you inhibit Debug tables when compiling your
program. Only machine addresses are shown for internal
NOS/VE calls.

Format DISPLAY_CALL or

DISPLAY_CALLS or

DISC
COUNT = integer or keyword value
START = integer
DISPLAY _OPTION = list of keyword value
OUTPUT = file
STATUS = status variable

Parameters COUNTorC

Number of calls to be displayed. Specify a positive integer
greater than zero or the keyword ALL. If you specify a value
greater than the number of existing calls, all calls are
displayed.

Omission causes all calls to be displayed.

STARTor S

Call on the chain to be displayed first. Thus, it is possible to
skip the most recent calls. Specify a positive integer greater
than zero. The value 1 represents the most recent call, 2
represents the predecessor of the most recent call, and so
forth.

Omission causes 1 to be used.

An informative message is issued if the number of calls you
specify is greater than the actual number of calls.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO
Type of information to be displayed. Specify one or more of
the following keywords:

USER_CALLS (UC)
Causes only calls that are in user code to be displayed. ‘

SYSTEM_CALLS (SC)
Causes only calls that are not part of the user code to be

displayed. .

9-38° CYBIL Language Definition Revision D

‘ ALL_CALLS (AC)
Causes both user calls and system calls to be displayed.

VARIABLE_VALUES (VV)
Causes all variables known to the procedure to be

‘ displayed.

Omission causes only USER_CALLS to be displayed.
OUTPUTor O

File on which the call information is written. You can specify
a file position as part of the file name.

Omission causes the current Debug output file to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

‘ Examples The following subcommand displays the first two user calls
on the call chain:

display_calls count=2
Debug displays information similar to the following:

~= Traceback from procedure MULT module MULTIPLICATION_
MODULE at Lline 7

-~ Called from procedure P module MODULE_TWO at Line 13
byte offset 36

The following subcommand displays all of the user calls on
the call chain beginning with the second most recent call:

display_calls start=2
Debug displays information similar to the following:

—- Called from procedure P module MODULE_TWO at Line 13

‘ byte offset 36
-— Called from procedure MAIN module MAIN_MODULE at
line 25 byte offset 44

Revision D The Debug Utility 9-39 @

DISPLAY_CALL

The following subcommand writes all of the user calls on the

call chain to FILE1, the output file specified. Because the ‘
DISPLAY _OPTION parameter is omitted, only user calls are

written to FILE1.

display_calls count=all output=filel status=stat '

The contents of FILE1 is similar to the following:

-~ Traceback from procedure MULT module MULTIPLICATION_
MODULE at Lline 7

- Called from procedure P module MODULE_TWO at Line 13
byte offset 36

-- Called from procedure MAIN module MAIN_MODULE at Line
25 byte offset 44

The following subcommand displays all calls (both user calls
and system calls, if any) and all variables known to the
procedure.

display_call display_option=(all_calls,variable_values)
Debug displays information similar to the following:

== Traceback from procedure MAIN module MODULE_MAIN at
Lline 21 byte offset 8

== DISPLAY OF ALL VARIABLES IN MAIN

B = %% INVALID BOOLEAN VALUE **
I = 576460752303423487

J = 268435456

K=0

@® 940 CYBIL Language Definition Revision D

DISPLAY_DEBUGGING_ENVIRONMENT

DISPLAY_DEBUGGING_ENVIRONMENT

Purpose

Format

Parameters

Revision B

Displays the following information about the environment of
your debugging session: current defaults for module,
procedure, Debug input file, and Debug output file; the total
number of breaks you have set; information about step mode;
and the location in your program where execution stopped.

DISPLAY_DEBUGGING_ENVIRONMENT or
DISDE

DISPLAY_OPTION = list of keyword value

QUTPUT=file

STATUS = status variable
DISPLAY_ _OPTION or DISPLAY_OPTIONS or DO
Type of information to be displayed. Specify one or more of
the following keywords:

ALL

Defaults, breaks, step mode attributes, and the user

address are displayed.

BREAKS (B)

The number of breaks you have set, the number of breaks
currently in use by Debug, and the number of unused
breaks are displayed.

DEFAULTS (D)

The current default values for module, procedure, Debug
input file, and Debug output file are displayed.

Unless the CHANGE _DEFAULT subcommand has been
specified, the default module and procedure is where
execution has stopped in your task. The text SCURRENT
is output if module or procedure has not been initialized.

STEP_MODE (SM)
The current step mode attributes are displayed.

USER_ADDRESS (UA)

The location where execution has stopped in your program
is displayed.

Omission causes ALL to be used.

The Debug Utility 9-41

DISPLAY_DEBUGGING_ENVIRONMENT

OUTPUT or O

File on which the call information is written. You can specify
a file position as part of the file name. Omission causes the
current Debug output file to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Examples The following subcommand writes defaults, breaks, step mode
attributes, and location where execution stopped to the
current default Debug output file:

display_debugging_environment
Debug displays information similar to the following:

-- Default module is $CURRENT.

-- Default procedure is $CURRENT.

-- Default debug_input file is :$LOCAL.COMMAND.

-- Default debug_output file is :$LOCAL.$OUTPUT.

-- The number of breaks set by the user is 4.

-- The number of breaks in use by DEBUG is O.

-~ The number of available breaks is 60.

-- Step_mode is OFF.

-- Execution is currently stopped at B 04D 00000132 which,
in higher symbolic terms is M=m L=16

® 942 CYBIL Language Definition Revision D

Revision D

DISPLAY_DEBUGGING_ENVIRONMENT

The following subcommand displays the number of breaks
set, the number of unused breaks, and the location where
execution stopped:

display_debugging_environment ..
display_options=(b,ua)

Debug displays information similar to the following:

-- The number of breaks set by the user is 4.

-- The number of breaks in use by DEBUG is 0.

—- The number of available breaks is 60.

-- Execution is currently stopped at B 04D 00000132 which,
in higher symbolic terms is M=m L=16

The following subcommand writes defaults, breaks, step mode
attributes, and location where execution stopped to file FILE1
and returns the subcommand status to variable SS:

display_debugging_environment ..
disptay_options=all output=filel status=ss

The contents of FILE] is similar to the following:

— Default module is $CURRENT.

— Default procedure is $CURRENT.

~— Default debug_input file is :$LOCAL.COMMAND.

— Default debug_output file is :$LOCAL.S$OUTPUT.

= The number of breaks set by the user is 4.

= The number of breaks in use by DEBUG is O.

= The number of available breaks is 60.

— Step_mode is OFF.

- Execution is currently stopped at B 04D 00000132 which,
in higher symbolic terms is M=m L=16

The Debug Utility 943 @

DISPLAY_MEMORY

DISPLAY_MEMORY

Purpose

Format

Parameters

Displays information located at any address to which you i
have read access. This subcommand allows you to debug your :
program even when compiler-generated symbol tables are not
available, and to display memory areas that do not
correspond to program identifiers. Each display line shows
the memory contents in hexadecimal and ASCII formats; the
relative byte offset from the initial address is also shown.

The compiler-generated attributes list shows the section name
and offset for all variables. You can reference static variables
by specifying section name and byte offset. You can reference
variables on the stack by specifying the machine address of
the stack frame and byte offset. You can obtain the address of
the stack frame of the procedure executing when Debug got
control by displaying register Al. You can obtain the address
of other stack frames by displaying the save area of the
wanted stack frame using the DISPLAY_STACK_FRAME
subcommand and obtaining the value of register Al from that
stack frame. You can also use the DISPLAY_PROGRAM _
VALUE subcommand to display program variables when
symbol tables are available.

DISM
address
BYTE_OFFSET = integer
BYTE_COUNT = integer
REPEAT COUNT = integer or keyword value
OUTPUT = file
STATUS = status variable

DISPLAY_MEMORY or .

address

Memory location to be displayed. The memory location is
specified by one or more of the following address parameters:

SECTION = name or keyword value
MODULE = name
ADDRESS = integer

944 CYBIL Language Definition Revision A

DISPLAY_MEMORY

' SECTION (SEC)

Memory section containing the data to be displayed. Specify
one of the following:

e Working storage section name of a CYBIL program.

. ® A common block name (for languages that support
common blocks).

e $BINDING, which is the memory section containing the
links to external procedures and the data of the module.

e SLITERAL, which is the memory section containing the
literal data (that is, long constants) of the module.

e $STATIC, which is the memory section containing the
static (not on the run-time stack) variables not explicitly
allocated to a named section of the module.

e CYBS$SDEFAULT_HEAP, which is the memory section
containing the default heap of CYBIL.

‘When you use SECTION to specify an address, you must
qualify it with the MODULE parameter. You can use the
BYTE_OFFSET parameter to modify the starting address of

‘ memory to be displayed.
Omission indicates that the memory address is specified by
the ADDRESS parameter.

MODULE (M)

Module containing the data to be displayed. The MODULE
parameter cannot be specified unless the SECTION
parameter is specified.

Omission indicates that the memory address is specified by
the ADDRESS parameter.

Revision D The Debug Utility 9-45

DISPLAY_MEMORY

ADDRESS (A)

Addpress of the first byte of memory to be displayed. Its value
is expressed in the form

rs8800000000(16)

where r is the ring number, sss is the segment number, and
00000000 is the offset from the beginning of the segment. You
can use the BYTE _OFFSET parameter to modify the starting
address of memory to be displayed.

Omission indicates that the address is specified by the
SECTION and MODULE parameters.

BYTE_OFFSET or BO

Offset to the base address established by one of the address
parameters. Specify a positive integer. Its value is added to
the base address to form a new address.

The address generated by adding BYTE _ OFFSET to the base
address must be within the memory block implied by the base
address. The block size is the length of the section when the
SECTION parameter is specified, and the length of the

segment containing the machine address when the

ADDRESS parameter is specified. ‘

Omission causes 0 to be used.

BYTE_COQUNT or BC
Number of bytes in the item to be displayed. Specify a positive
integer greater than zero.

Omission causes 1 to be used.

REPEAT_COUNT or RC

Number of memory areas (items) of length BYTE _COUNT to
be displayed. Specify a positive integer. The maximum
amount of memory that can be displayed is limited to the
block size implied by address (section length for SECTION
and segment length for ADDRESS). The keyword ALL or a
large integer causes all memory from the specified address to
the end of the memory block to be displayed.

Omission causes 1 to be used.

946 CYBIL Language Definition Revision B

Examples

Revision D

DISPLAY_MEMORY

OUTPUT or O

File on which the displayed information is written. You can
specify a file position as part of the file name.

Omission causes the current Debug output file to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

The following subcommand displays the first three bytes of
the literal memory section for module MOD1:

display_memory section=$literal module=mod1 ..
byte_count=3

The following subcommand displays the first 32 bytes of the
memory section DATA1 for module MOD2 as separate items:

display_memory section=datal module=mod2 ..
repeat_count=4

The following subcommand displays the first 200 bytes of
memory starting from the specified address:

display_memory address=0602400000224¢16) ..
byte_count=8 repeat_count=25

The Debug Utility 947 @

DISPLAY_PROGRAM_VALUE

DISPLAY_PROGRAM_VALUE

Purpose Displays the value of the specified program variable (except a
boolean value) as it appears in the source program or in
hexadecimal format.

Format DISPLAY_PROGRAM_VALUE or
DISPV
NAME = program name or keyword value
MODULE = name
PROCEDURE = name
RECURSION_LEVEL = integer
RECURSION_DIRECTION = keyword value
TYPE = keyword value
OUTPUT-=file
STATUS = status variable

Parameters NAME or N

Name of the program element whose value is to be displayed
or the keyword $ALL. Specifying $ALL causes all variables in
the specified (or default) procedure to be displayed.

A program element can be one of the following:
® Simple variable or constant name

e Subscripted name

¢ Field reference

* Pointer reference

Subscripts can be constants or variables but not expressions.
NAME cannot be a substring.

The variable must be used in your program.

Because names can be long, SCL string variables can be used
as aliases for them. To do so, assign the SCL variable to a
string containing the identifier. Then use the SCL variable
preceded by a question mark as the value of the NAME
parameter.

This parameter is required.

@® 948 CYBIL Language Definition Revision D

DISPLAY_PROGRAM_VALUE

MODULE or M

Name of the module containing the NAME parameter
variable.

Omission causes the module executing when Debug gained
control or the module specified by the CHANGE _DEFAULT
subcommand to be used.

PROCEDURE or P

Name of the procedure containing the program name. If you
specify a procedure that is not in the active call chain, its
automatic variables cannot be displayed because it has no
stack frame.

Omission causes the procedure executing when Debug gained
control to be used if MODULE is also omitted. Otherwise,
there is no default procedure when MODULE is specified and
PROCEDURE is not; the program name must exist at the
module level.

RECURSION_LEVEL or RL

The particular call of a recursive procedure to be used. Specify
a positive integer greater than zero. If RECURSION _
DIRECTION=FORWARD, use a value of 1 for the first call, 2
for the second call (the one called by the first call), and so on.
If RECURSION _DIRECTION=BACKWARD, use 1 for the
most recent call, 2 for the predecessor, and so on.

Omission causes 1 to be used.

RECURSION_DIRECTION or RD

Order in which calls to a recursive procedure are searched.
This parameter controls how the value of the RECURSION _
LEVEL parameter is interpreted. Specify one of the following
keywords:

FORWARD (F)

A RECURSION_LEVEL of 1 specifies that the first call to
the procedure is used, a 2 specifies the second call, and so
on.

BACKWARD (B)

A RECURSION_LEVEL of 1 specifies that the most
recent call to the procedure is used, a 2 specifies its
predecessor, and so on.

Omission causes BACKWARD to be used.

The Debug Utility 9-49

DISPLAY_PROGRAM_VALUE

TYPEor T '

Format of the value to be displayed. If the keyword HEX is

specified, Debug displays the variable name, the process

virtual address (PVA) that corresponds to the start of the

variable, the memory representation of the variable’s value,

and the ASCII representation of memory (with a question '
mark representing an unprintable character). If the requested

data is not contained in a contiguous block of memory, an

error message is issued.

Omission causes Debug to print the variable name and the
value of the variable as it is defined in the source program
rather than in hexadecimal format.

OUTPUTor O

File where the display information is written. You can specify
a file position as part of the file name.

Omission causes the current Debug output file to be used.
STATUS

Optional SCL status variable in which the completion status of
the subcommand is returned. If omitted and an error does not
occur, Debug processes the next subcommand. If omitted and an
error occurs, the status value is returned to SRESPONSE and to
the Debug output file if SRESPONSE is connected to that file.
This file is normally connected during interactive debugging.

Examples The following subcommand displays the value of I from the
current module:

display_program_value name=i
Debug displays the following:
i = 576460752303423487

The following subcommand displays the value of J from
procedure MAIN in the current module:

display_program_value name=j ..
procedure=main

Debug displays the following:
i = 268435456

The following subcommand displays the value of all variables
from the current module:

display_program_value $all
Debug displays the following:
— DISPLAY OF ALL VARIABLES IN MAIN

B = **x INVALID BOOLEAN VALUE **

I = 576460752303423487

J = 268435456

= ¢

® 950 CYBIL Language Definition Revision D

DISPLAY_REGISTER

DISPLAY_REGISTER

Purpose ' Displays the contents of the P, A, or X registers that are
associated with the procedure executing when Debug gained
control.

Format DISPLAY _REGISTER or

DISPLAY _REGISTERS or

DISR
KIND = list of keyword value
NUMBER = keyword value or list of integer
TYPE = keyword value
OUTPUT = file
STATUS = status variable

Parameters KIND or K
Kind of register or registers to display. Specify one of the
following keywords:
P The P register.
A The A registers.
X The X registers.
Omission causes P to be used.

NUMBER ox N

Number of the register or registers to display. Specify a set of
one or more integers or ranges of integers from 0 to 15, or the
keyword ALL. An informative message is issued for each
referenced register whose value was not saved in the current
stack frame and, therefore, cannot be displayed. This
parameter is ignored if KIND=P since there is only one P
register.

Omission causes 0 to be used.

Revision D The Debug Utility 951 @

DISPLAY_REGISTER

9-52

CYBIL Language Definition

TYPEor T

Type of the displayed register values. Specify one of the
following keywords:

ASCII (A)
Displays ASCII string values.

HEX (H)
Displays hexadecimal string values.

INTEGER (D)
Displays integer values.

Omission causes HEX to be used for string values and
INTEGER for numeric values.

OUTPUTor O

File on which the register contents are written. You can
specify a file position as part of the file name.

Omission causes the current Debug output file to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Revision D

Examples

Revision D

DISPLAY_REGISTER

The following subcommand displays the contents of the P
register in hexadecimal:

display_register p
Debugs displays the following:
P=B 04D 00000040

The following subcommand displays the contents of the A8
register in hexadecimal:

display_register kind=a number=8 type=hex

Debug displays the following:

AB=B 04E 00000442

The following subcommand displays the contents of the X4,
X5, X6, X7, X8, X9, and XA registers in hexadecimal:

display_register kind=x number=4..10
Debug displays the following:

X4=00000000 10000000
X5=00000000 00000008
X6=00000000 0000000D
X7=00000000 0000001D
X8=00000000 00000000
X9=00000000 00000008
XA=00000000 00000300

The Debug Utility 953 @

DISPLAY_STACK_FRAME

DISPLAY_STACK_FRAME

Purpose

Format

Parameters

Displays the contents of one or more stack frames. Values are
displayed in hexadecimal.

DISPLAY _STACK_FRAME or
DISPLAY_STACK_FRAMES or
DISSF
COUNT = integer or keyword value
START = integer
DISPLAY_OPTION = list of keyword value
OUTPUT =file
STATUS = status variable
COUNTor C

Number of stack frames to be displayed. Specify a positive
integer. An integer value greater than the number of existing
stack frames or the keyword ALL causes all stack frames to
be displayed.

Omission causes one stack frame to be displayed.

STARTor S

Stack frame to be displayed first. Specify a positive integer
greater than zero. The value 1 represents the most recent
stack frame, 2 represents its predecessor, and so on.

Omission causes 1 to be used.

DISPLAY_OPTION or DISPLAY_OPTIONS or DO

Area of the stack frames to be displayed. Specify one or more
of the following keywords:

AUTO (A)

Area containing the automatic (dynamically allocated)
variables of the procedure.

SAVE (S)

Area containing a copy of the registers of the procedure as
they existed at the time of a call or trap.

ALL
Both the automatic and save areas.

Omission causes ALL to be used.

OUTPUTor O

File on which the stack frame values are written. You can
specify a file position as part of the file name.

Omission causes the current Debug output file to be used.

954 CYBIL Language Definition Revision D

Examples

Revision D

STATUS

DISPLAY_STACK_FRAME

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does

not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during

interactive debugging.

The following subcommand displays the automatic and save
areas of the most recent stack frame:

display_stack_frame count=1
Debug displays the following:
STACK FRAME 001

00000000 00000000
00000008 0OOO000O
00000010 304C0000
00000018 00000000
00000020 FFFFFFFF
0000801D
00000030 OOOOBO4E
00000038 00000000
00000040 FFFFFFFF
00000048 BO4EDOOO
00000050 BO4EOOOO
SAVE AREA

SEGMENT=04E
00000000
00000000
0OOCOFFFF oL
00000000
FFFFFFOC
000D4A2E

00000400 N

00000000
FFFFFEOC
04AO5DS8 N
04AF0430 N

P=B 04D OOOOOOAC
UM=FFF7

AC=B 04E 0000040
A2=8 04E 00000430
A4=B O4E 00000400
A6=B O4E 0DOD04AF
A8=B O4E 00000442
AA=B 04E 00000A88
AC=F FFF 80000000
AE=F FFF 80000000

UCR=0080

VMID=0
MCR=0000

A1=B 04E 00000478
A3=B 04C 00000000
AS=B 04B 00000020
A7=B 04E OO0O004AF
A9=B 04E 000006A0
AB=F FFF 80000000
AD=B 04E 00001008
AF=B 008 0000BB98

X0=0000804D
X2=0000FFFF
X4=00000000
X6=00000000
X8=00000000
XA=00000000
XC=0000FFFF
XE=0000FFFF

00040254

X1=0000FFFF
X3=00000000
X5=FFFFFFFF
X7=00000000
X9=00000000
XB=0000FFFF
XD=0000FFFF
XF=00000000

80000000
00000000
FFFFFEOC
0000001D
00000008
80000000
80000000
00000008

The Debug Utility

955 @

DISPLAY_STACK_FRAME

The following subcommand displays the save area of the
most recent stack frame:

display_stack_frame display_option=save

Debug displays the following:

STACK FRAME 001
SAVE AREA

P=B 04D OOOOOOAC
UM=FFF?7

A0=B 04E 000004D0
A2=B 04E 00000430
A4=B 04E 00000400
A6=B 04E 000004AF
AB=B 04E 00000442
AA=B 04E 00000A88
AC=F FFF 80000000
AE=F FFF 80000000

UCR=0080

SEGMENT=04E

VMID=0
MCR=0000

A1=B 04E 00000478
A3=B 04C 00000000
A5=B 04B 00000020
A7=B 04E 00DQO4AF
A9=B 04E 000006A0
AB=F FFF 80000000
AD=B (04E 00001008
AF=B 008 00008B98

X0=0000B04D 00040254
X2=0000FFFF 80000000
X4=00000000 00000064
X6=00000000 00000000
X8=00000000 00000000
XA=00000000 00000300
SC=0000FFFF 80000000
XE=0000FFFF 80000000

X1=0000FFFF 80000000
X3=00000000 00000000
XS=FFFFFFFF FFFFFEOC
X7=00000000 0000001D ‘
X9=00000000 00000008
XB=0000OFFFF 80000000
XD=000OFFFF 80000000
XF=00000000 (00000008

The following subcommand displays the automatic and save
areas of three stack frames beginning with the second most
recent one:

display_stack_frames count=3 start=2

@® 956 CYBIL Language Definition Revision D

Revision D

DISPLAY_STACK_FRAME

Debug displays the following:

STACK FRAME 002 SEGMENT=04E
00000000 0000BO4E 000006A0 N
00000008 7FE4BO4E 00000A88 N

00000010 04A1FFFF 80000000
00000018 00000000 00000017
00000020 00000000 0000001D
00000028 BO4EOOO0 04A00000 N

SAVE AREA

P=B 04D 0000011C VMID=0
UM=FFF?7 UCR=0000 MCR=0000

AO=B 04E 00000550 A1=B 04E 00000520
A2=B 04E 00000400 A3=B 04C 00000040
A4=B 04E 00000480 AS=B 048 00000020

X2=0000FFFF 80000000
STACK FRAME 003 SEGMENT=04E
00000000 00000000 00000000

00000048 BO4EOOOD 04A05DS8 N X
00000050 BO4EODOD 04AF0430 N 0

SAVE AREA

P=B 04D OOOOOOAC VMID=0
UM=FFF?7 UCR=0000 MCR=0000
AO=B 04E 000004D0 A1=B 04E 00000478
A2=B 04E 00000430 A3=B 04C 00000000
A4=B 04E 00000400 A5=B 04B 00000020

X2=0000FFFF 80000000 X3=00000000 00000017
X4=00000000 00000064

STACK FRAME 004 SEGMENT=04E
00000000 B04EODC0 01584810 N XH
00000008 0000B04E 00000128 N (

000002F8 BO4EQOO0 001E0000 N
00000300 01020000 00000000

SAVE AREA

P=B 01D 00004996 VMID=0

UM=FFF7 UCR=0400 MCR=0000

AO=B 04E 00000430 A1=B 04E 00000128
A2=F FFF 80000000 A3=B 01B 00005D58

A4=B 04E 00000000 A5=B 04E 00000400
A6=B 04E 000001DO

X0=00000000 00020060

The Debug Utility

957 @

QUIT

QUIT
¢

Purpose Terminates the Debug session and returns control to the
NOS/VE operating system. The session is terminated
immediately; the program is not executed to completion.

Format QUIT or
QU1
STATUS = status variable

Parameter STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

958 CYBIL Language Definition Revision D

RUN

Purpose Initiates or resumes program execution once Debug has
gained control. Execution continues until Debug again gains
control. If the program has run to completion, entering the

. RUN subcommand terminates the program and returns
control to the NOS/VE operating system.

Execution begins at the instruction whose address is
contained in the P register or at the condition handler (if there
is one) of the program for the event that caused Debug to gain
control. (Refer to the SCL Language Definition manual for a
discussion of condition handlers.) If the P register points to
the instruction that caused the event (such as division by
zero), the same event will occur immediately after entering the
RUN subcommand. In this case, you must change the value
in the P register (use the CHANGE _REGISTER
subcommand) or change the value of one of the operands (use
the CHANGE _PROGRAM_VALUE subcommand) before
entering the RUN subcommand.

When Debug processes the RUN subcommand, all previously
created SCL blocks (except SET _BREAK subcommand
information and the name of the current Debug input file) are
lost. This means that some information about SCL

’ commands, such as IF/THEN blocks or WHILE/FOR loops
that span RUN subcommands, is lost. In the following
example, SCOPE = JOB will retain the variables.

DB/create_variable name=count ..
DB../kind=integer scope=job value=0
DB/set_break break=one Line=1 command='run'
DB/create_variable name=count ..
DB../kind=integer scope=xref

Format RUN
STATUS = status variable

Parameter STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is

. connected to that file. This file is normally connected during
interactive debugging.

Revision D The Debug Utility 959 @

SET_BREAK

SET_BREAK

Purpose Defines the break. You can specify one or more events and the ‘
location at which Debug is to take control. When the specified
event occurs, program execution is suspended and a message
informs you which break occurred. At this point, you can
enter another Debug subcommand, or any command that can '
be processed by the operating system or an active command
utility.

Format SET_BREAK or

SET_BREAKS or

SETB
BREAK = name
EVENT = list of keyword value
address
BYTE_OFFSET = integer
BYTE _COUNT = integer
COMMAND = string
STATUS = status variable

Parameters BREAKor B

Name of the break definition. This name is used to reference
the break definition in the DISPLLAY_BREAK and
DELETE_BREAK subcommands. This name is displayed in
the break report message when the break occurs. You cannot
specify a break name of ALL (because ALL is used as a
keyword in other Debug subcommands) or a break name that
contains the dollar sign character ($).

Omission causes Debug to assign a unique name. In this case,
Debug notifies you of the name assigned.

EVENTor EVENTSor E

Events that must occur for the break to occur. If you specify
more than one event, the break is honored if only one of the
events occurs. Possible events can be any of the following
keywords:

ARITHMETIC_OVERFLOW (AO)

Break when an arithmetic overflow occurs on an
instruction in the specified address range. The P register
points to the instruction that caused the overflow.

960 CYBIL Language Definition Revision D

Revision B

SET_BREAK

ARITHMETIC _SIGNIFICANCE (AS)

Break when arithmetic significance is lost on an
instruction in the specified address range. The P register
points to the instruction that caused the loss of
significance.

BRANCH (B)

Break before a branch to or a return from any location in
the specified address range occurs.

CALL (O)

Break before a subprogram call occurs to any address in
the specified address range.

DIVIDE_FAULT (DF)
Break when division by zero occurs in an instruction in the

specified address range. The P register points to the
instruction that caused the division by zero.

EXECUTION (E)

Break before the instruction in the specified address range
is executed.

If the address is specified by the line number, not every line
is usable. For example, breaks cannot be set at IFEND

statements because it is not obvious when control reaches
them.

EXPONENT_OVERFLOW (EO)
Break when an exponent overflow occurs in an instruction

in the specified address range. The P register points to the
instruction following the one that caused the overflow.

EXPONENT_UNDERFLOW (EU)

Break when an exponent underflow occurs in an
instruction in the specified address range. The P register
points to the instruction following the one that caused the
underflow.

FLOATING_POINT _INDEFINITE (FPI)

Break when the result of a floating-point operation is
indefinite in an instruction in the specified address range.
The P register points to the instruction following the one
that caused the results to be indefinite.

The Debug Utility 9-61

SET_BREAK

FLOATING_POINT _SIGNIFICANCE (FPS)

Break when significance is lost during a floating-point
operation in an instruction in the specified address range.
The P register points to the instruction following the one
that caused the loss of significance. This event will not
occur unless your program sets the floating-point loss-of-
significance bit in the user mask register.

INVALID_BDP_DATA (IBD)

Break when a business data processing (BDP) instruction
fault occurs in an instruction in the specified address
range. The P register points to the instruction that caused
the fault. The BDP instructions are described in volume II
of the virtual state hardware reference manual.

READ (R)

Break before a read occurs from the specified address
range. The break occurs only if the first byte of the item to
be read is within the address range.

READ_NEXT_INSTRUCTION (RNI)
Break before the instruction in the specified address range
is executed.

WRITE (W)

Break before a write occurs into the specified address
range. The break occurs only if the first byte of the item to
be written is within the address range.

Omission causes EXECUTION to be used.

962 CYBIL Language Definition Revision B

SET_BREAK

Debug gains control when the following events occur even if
you do not set a break for them:

ARITHMETIC_OVERFLOW
ARITHMETIC _SIGNIFICANCE
DIVIDE_FAULT
EXPONENT_OVERFLOW
EXPONENT_UNDERFLOW
FLOATING_POINT_INDEFINITE
FLOATING _POINT_SIGNIFICANCE
INVALID_BDP_DATA

Specific breaks can be set for these events, however, so that a
predefined set of commands or subcommands can be executed
when Debug gains control.

address

Location at which the break occurs. For the break to occur, the
specified event must occur within the range defined by the
address parameters. All address parameters are interpreted as
a single address. You can use the BYTE_COUNT and

BYTE _OFFSET parameters to specify an address range.
Omission indicates an address range of one byte. The address
parameters are:

LINE =integer

SECTION = name or keyword value
MODULE = name

PROCEDURE = name
ENTRY_POINT = name
ADDRESS = integer

Revision C The Debug Utility 9-63

SET_BREAK

LINE (L)

Line at which Debug gains control. Unless the MODULE
parameter is also specified, the line number must exist in the
module that was executing when Debug gained control or the
default module set with the CHANGE _DEFAULT
subcommand.

You can use BYTE_OFFSET and BYTE _COUNT to modify
this parameter.

Not all lines of a program can be referenced. Only executable
statements that begin on a separate line can be referenced. A
second or third statement on a line or a line containing the
continuation of a statement cannot be referenced. In addition,
IFEND lines cannot be referenced.

Omission indicates that the break address is specified by
another parameter.

SECTION (SEC)
A memory section. Specify one of the following:

o Name of the working storage section as declared in the
source program.

® Name of a common block.

e $BINDING, which is the memory section containing the
links to external procedures and the data of the module.

e CYB$DEFAULT_HEAP, which is the memory section
containing the default heap for CYBIL.

o SLITERAL, which is the memory section containing the
literal data (that is, long constants) of the module.

o $STATIC, which is the memory section containing the
static (not on the run-time stack) variables that are not
allocated to an explicitly named section of the module.

964 CYBIL Language Definition Revision B

Revision B

SET_BREAK

Unless the MODULE parameter is also specified, the section
must exist for the module that was executing when Debug
gained control or the default module set with the CHANGE _
DEFAULT subcommand. The SECTION parameter cannot
be specified for modules that are components of a bound
module unless the section is a common block (refer to the
discussion under Addressing Bound Modules earlier in this
chapter). You can use the BYTE _OFFSET and BYTE _
COUNT parameters to modify this parameter.

Omission indicates that the break address is specified by
another parameter.

MODULE (M)

An address or qualification of another address specifier. If
used alone, the MODULE parameter specifies an address (the
first byte of the first code section of the module). Module
represents only the first code section. MODULE cannot
reference the code section of a component module of a bound
module (refer to the discussion under Addressing Bound
Modules earlier in this chapter). If used with the LINE,
SECTION, or PROCEDURE address parameters, the
MODULE parameter identifies the module containing the
line, section, or procedure. If used to specify an address, the
BYTE_OFFSET and BYTE _COUNT parameters can be used
to modify the MODULE parameter.

Omission causes the module executing when Debug gained
control or the default module set with the CHANGE _
DEFAULT subcommand to be used.

The Debug Utility 9-65

SET_BREAK

PROCEDURE (P)

An address (the first byte of the code section of the procedure).
Unless the MODULE parameter is also specified, the
procedure must exist in the module that was executing when
Debug gained control or the default module set with the
CHANGE _DEFAULT subcommand. You can use the BYTE _
OFFSET and BYTE _COUNT parameters to modify the
PROCEDURE parameter. You cannot specify the LINE or
SECTION address parameters with the PROCEDURE
parameter.

When a name is specified, this parameter indicates the
procedure to be used. The name must be a procedure, function,
or program.

Omission indicates that the break address is specified by
another parameter.

ENTRY_POINT (EP)

An entry point expressed as a name known to the loader.
Specify a procedure or data name with an XDCL attribute
subject to certain restrictions. (Refer to Attributes in chapter 3
for a description of the XDCL attribute. Also, refer to the SCL
Object Code Management manual for further information on
restrictions.) You can use the BYTE_OFFSET and BYTE _
COUNT parameters to modify the ENTRY _POINT
parameter. You cannot use other address parameters with this
parameter.

Omission indicates that the break address is specified by
another parameter.

- 966 CYBIL Language Definition Revision B

Revigion B

SET_BREAK

ADDRESS (A)
Address of the break event in the form

rs8800000000(16)

where r is the ring number, sss is the segment number, and
00000000 is the offset within the segment. You can obtain
machine addresses from the cross-reference and load maps for
your program. You can use the BYTE_OFFSET and BYTE _
COUNT parameters to modify the ADDRESS parameter. You
cannot use other address parameters with this parameter.
Omission indicates that the break address is specified by
another parameter.

The address parameter is required.

BYTE_OFFSET or BO

Offset to the base address established by one of the address
parameters. Specify a positive integer. Its value is added to
the base address to form a new address. The break is then set
for this new address.

Omission causes a value of zero to be used.

BYTE_COUNT or BC

Number of bytes in an address range. Specify a positive
integer greater than zero.

Omission causes 1 to be used.

The Debug Utility 9-67

SET_BREAK

COMMAND or COMMANDS or C

String of commands or subcommands to be executed when the
break is honored. These commands or subcommands can be
processed by Debug, the operating system, or other active
command processor. If a command in the string includes a
quoted string, that string must be enclosed in two single
quotes. After the commands in the string have been executed,
commands are read from the current Debug input file unless
the string contains a RUN subcommand.

No break report message is issued before the commands in the
string are executed. If you want a message to be displayed,
include an SCL PUT _LINE command in the string.

If an error is detected in one of the commands in the string,
the break report message is issued, the error is reported, and
commands are read from the Debug input file. The remaining
commands in the string are not executed.

Omission indicates that no commands are associated with the
break. Commands are read from the Debug input file.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

If the SET _BREAK subcommand contains an error before the
STATUS parameter, the remainder of the subcommand is
skipped. Therefore, the contents of the STATUS parameter
does not reflect the status of the subcommand.

@® 968 CYBIL Language Definition Revision D

Examples

Revision B

SET_BREAK
The following subcommand causes a break when execution
reaches line 10 of module PROG1:
set_break break=b1 Line=10 module=prog1
The following subcommand causes a break when a branch or
return occurs to line 40 of the module executing when Debug
gained control:

set_break break=b2 event=branch Line=40

The Debug Utility 9-69

SET_STEP_MODE

SET_STEP_MODE

Purpose

Format

Parameters

Enables you to execute a specified subset of a task and receive
control.

If you activate step mode, a RUN subcommand causes your

program to execute for the specified unit. You are then '
prompted for further subcommand input. A string of

subcommands can be associated with the step and will be

processed each time the step is completed. Stepping with a

unit of line or procedure is only available if the source

program was compiled with the Debug optimization option
(OPTIMIZATION _LEVEL-DEBUG).

Activating step mode is an effective debugging aid but is

expensive in terms of execution time.

SET_STEP_MODE or
SETSM
MODE = keyword value
UNIT = keyword value
MODULE = keyword value or list of name
PROCEDURE = keyword value or list of name
SPAN = integer
COMMAND = string
STATUS = status variable

MODE
Activates or deactivates step mode. Specify one of the
following keywords:

ON

Activates step mode. When step mode is on, a RUN
subcommand causes one step to be executed. A step is
defined by the UNIT parameter.

OFF

Deactivates step mode. When step mode is off, any
remaining parameters are ignored.

If you specify ON and step mode is already on, all previous
values are replaced with the new values.

This parameter is required. |

9-70 CYBIL Language Definition Revision D

sem_sre_oe 8

UNIToxr U
. Length of the step. Specify one of the following keywords:

PROCEDURE (P)

The step is reported each time a new procedure begins and
‘ after any prologue code for the procedure has executed.

LINE (L)
The step is reported before the code is executed for each line
except for the procedure lines.

Omission causes LINE to be used.

MODULE or M

The modules reported. This parameter is used with the UNIT
parameter. Specify one of the following keywords or a list of
modules:

$ALL
Reports a step that is in any module.

$CURRENT

Reports a step only if the step occurs in the module where
‘ the program is executing when step mode is activated.

Using a list of modules causes a step to be reported only if the
step occurs in a specified module.

You cannot specify both the MODULE and the PROCEDURE
parameters in the same SET_STEP_MODE subcommand.

Omission causes the current value for the default module to be
used.

Revision C The Debug Utility 9-71

SET_STEP_MODE

PROCEDURE or P

The procedures reported. This parameter is used with the
UNIT parameter. Specify one of the following keywords or a
list of procedures:

$ALL
Reports a step that is in any procedure.

$CURRENT
Reports a step only if the step occurs in the procedure

where the program is executing when step mode is
activated.

Using a list of procedures causes a step to be reported only if
the step occurs in a specified procedure.

You cannot specify both the PROCEDURE and MODULE
parameters in the same SET_STEP_MODE subcommand.

Omission causes $CURRENT to be used.

SPANor S

Specifies how many steps must occur before execution stops
and the step is reported. Omission causes Debug to report
every step that occurs.

COMMAND or COMMANDS or C

String of subcommands that will be executed when the step
occurs. If the subcommand string includes a RUN
subcommand, the task is resumed and the step is not reported.
If the string does not include a RUN subcommand,
subcommand input is requested from the current Debug input
file.

972 CYBIL Language Definition Revision C

SET_STEP_MODE

‘ STATUS
Optional SCL status variable in which the completion status

of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to

‘ $RESPONSE and to the Debug output file if SRESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Example The following subcommands activate step mode with a unit of
line in the current module, execute the entire program
automatically, display each line executed, and then deactivate
step mode.

set_step_mode mode=on ..
command="d1isplay_debugging_environment ..
display_options=ua; RUN' ..

run

set_step_mode mode=off

quit

Revision D The Debug Utility 973 @

DEBUG FUNCTIONS

Debug Functions '

Debug functions are intended for use with SCL during a Debug session.
These functions are only available while Debug has control. They are not
known when your program is executing or after the Debug session has been
terminated.

974 CYBIL Language Definition Revision B

. $CURRENT_LINE

Purpose

. Format
Example

Revision B

Returns the current line number value from the program at

the point where Debug has control.
$CURRENT_LINE

if $current_Lline < 100 then
display_calls
ifend

The Debug Utility

9-75

$CURRENT_MODULE

$CURRENT_MODULE '
Purpose Returns the name of the module where execution is stopped.
Format $CURRENT_MODULE
Example if $current_module="'main' then ‘
set_break name=break1 Line=234
ifend

976 CYBIL Language Definition Revision C

$CURRENT_PROCEDURE
Purpose Returns the name of the procedure where execution is stopped.
Format $CURRENT_PROCEDURE
Example set_step_mode mode=on unit=procedure ..
command='if $current_procedure=''sub2'' then; ..
set_step_mode mode=on unit=tine; ..
else; run; ifend'
Revision C

The Debug Utility 9-77

$CURRENT_PVA

$SCURRENT_PVA ‘
Purpose Returns an integer value for the process virtual address (PVA)
where execution is stopped.
Format $CURRENT_PVA ‘
Example if $current_pva > 0b03500000026(16) then
display_calls display_option=all_calls
ifend

978 CYBIL Language Definition Revision D

$PROGRAM_VALUE

. $PROGRAM_VALUE

Purpose Returns the value of the program element that is specified as
the name parameter. Additional parameters for module,
procedure, recursion level, and recursion direction can be

‘ specified to fully identify the named variable.
The $PROGRAM _VALUE function allows you to incorporate
the values of program variables in SCL statements in order to
enhance debugging capabilities.
Parameter values for functions are positional. Keywords such
as NAME = are not recognized. Positional parameters cannot
be selectively omitted unless no other parameter values are
specified in the calling sequence. For instance, SPROGRAM _
VALUE (name,module) is valid, since all parameters up to the
procedure parameter are specified. However, SPROGRAM _
VALUE (name,,procedure) is not valid since the module
parameter that is omitted is followed by a specified value for
the procedure parameter.

Format $SPROGRAM_VALUEmame,module,procedure,
recursion_level,recursion _direction)

Parameters name

. Name of the program element whose value is to be displayed.
Specify one of the following:

® Simple variable
® Subscripted name
e Field reference
e Pointer reference

The named variable must be used in your program.

Because names can be long, SCL string variables can be used
as aliases for them. To do this, assign the SCL variable to a
string containing the identifier. Then use the SCL variable
preceded by a question mark as the value of the name
parameter.

This parameter is required.

Revision D The Debug Utility 979 @

$PROGRAM_VALUE

module ‘
Name of the module that contains the element specified by the

name parameter. Omission causes the module executing when
Debug gained control or the module specified by the
CHANGE_DEFAULT subcommand to be used. '

procedure

Name of the procedure that contains the element specified by
the name parameter. If you specify a procedure that is not in
the active call chain, its automatic variables cannot be used
because it has no stack frame. Omission causes the procedure
executing when Debug gained control to be used if a module
name is not specified. Otherwise, there is no default procedure
when a module name is specified and a procedure name is not
specified; the element specified by the name parameter must
exist at the module level.

recursion_level

The particular call of a recursive procedure to be used. Specify

a positive integer greater than zero. If the recursion_direction
parameter specifies the keyword FORWARD, use a value of 1

for the first call, 2 for the second call (the one called by the

first call), and so on. If the recursion_direction parameter

specifies the keyword BACKWARD, use 1 for the most recent ‘
call, 2 for the predecessor, and so on.

Omission causes 1 to be used.

@ 980 CYBIL Language Definition Revision D

Example

SPROGRAM_VALUE !

recursion_direction

Order in which calls to a recursive procedure are searched. It
controls how the value of the recursion_level parameter is
interpreted. Specify one of the following keywords:

FORWARD (F)

If the recursion _level parameter specifies 1, the first call to
the procedure is used, a 2 specifies the second call, and so
on.

BACKWARD (B)

If the recursion _level parameter specifies 1, the most
recent call to the procedure is used, a 2 specifies its
predecessor, and so on.

Omission causes BACKWARD to be used.

set_break name=b1 Line=23 command= ..
'if $program_value(index) < 45 then; run; ifend'

The Debug Utility 981

USING DEBUG

Using Debug '

This section illustrates the use of Debug. Major Debug subcommands are
illustrated in the sample Debug sessions.

Sample Debug Sessions ‘

Debug can be used in interactive or batch mode. Two Debug sessions follow.
The first session illustrates using Debug interactively. The second session
illustrates using Debug in batch mode.

Interactive Debug Session

The source listing of the CYBIL program used in this interactive Debug
session is shown in figure 9-1.

982 CYBIL Language Definition Revision B

‘ SOURCE LIST OF module_main
0 1 MODULE module_main;
0 2
0 3 PROCEDURE [XREF] p (operandl,
0 4 operand2: integer;
. 0 5 VAR result: integer;
0 6 VAR status: boolean);
0 7
0 8 PROGRAM main;
0 9
0 10 VAR
4 1" i,
4 12 i,
4 13 k: L[STATIC] integer,
4 14 X,
4 15 Y,
4 16 2: integer,
4 17 b: boolean;
4 18
4 19 i = 7FEFFEFFFFFF~F~1£(16);
14 20 j == 10000000(16);
1c 21 k :=14 * j;
2A 22 k :=1 DIV j;

. 38 23 FOR x := 0 TO 100 DO
42 24 y 1= x * x - 500;
54 25 p(x, y, z, b);

80 26 IF b THEN

88 27 EXIT main;
8A 28 IFEND;

8A 29 FOREND;

8E 30 PROCEND main;

0 31 MODEND module_main;

Figure 9-1. Source Listing for Interactive Debug Session

(Continued)

Revision A The Debug Utility 9-83

INTERACTIVE SESSION

(Continued) ‘
SOURCE LIST OF m

0 1 MODULE m;

0 2

0 3 PROCEDURE [XDCL]1 p (operandi, '
0 4 operand2: integer;

0 5 VAR result: integer;

0 6 VAR b: boolean);

0 7

0 8 PROCEDURE [XREF] mult (a,

4 9 b: integer;

4 10 VAR c: integer);

4 "

4 12 IF operand? < operand2 THEN

10 13 mult (operand1, operand?, result);
34 14 b := TRUE;

3E 15 ELSE
42 16 b := FALSE;

4C 1? IFEND;
4C 18 PROCEND p;

0 19 MODEND m;

SOURCE LIST OF perform_integer_multiplications
1 MODULE perform_integer_multiplications;

PROCEDURE [XDCL] mult (a,
: integer;
VAR c: integer);

c :=a*b;
PROCEND mult;
MODEND perform_integer_multiplications;

-
O0O0O000O0O0OO0OO0O

2
3
4
5
6
7
8
9

Figure 9-1. Source Listing for Interactive Debug Session

984 CYBIL Language Definition Revision A

INTERACTIVE SESSION

The following command compiles the CYBIL program:
/cybil i=sample L=list b=lgo Lo=f da=all

The name of the file containing the object code of the program is LGO. The
following command initiates a Debug session:

/execute_task file=Lgo debug_mode=on

Debug issues a banner and the Debug prompt, DB/, indicating that Debug
has control. Entering the RUN subcommand initiates program execution:

DEBUG 1.2

DB/run

-—— DEBUG: arithmetic_overflow at M=module_main L=21 B0=12
bB/

By looking at the source listing for MODULE _MAIN, line 21, you can see
that the overflow occurred during a multiplication operation. Entering the
following subcommands allows you to view the values of the variables I and
J:

DB/display_program_value name=i
i = 576460752303423487
pB/display_program_value name=j
J = 268435456

When I and J are multiplied, the result exceeds the maximum value allowed;
therefore, arithmetic overflow occurs. Since the P register points to the
instruction that caused the overflow, entering the RUN subcommand would
cause the overflow to reoccur. Changing the P register allows program
execution to continue. The following subcommands accomplish this:

DB/display_register kind=p

P=8 04b 00000040
DB/change_register kind=p value=0b04d00000042 (16

Revision D The Debug Utility 985 @

INTERACTIVE SESSION

Since the value in the P register begins with a letter, a leading zero is
required for the value parameter. Because the value parameter is in
hexadecimal, the radix is required. The following subcommand shows that
the P register is indeed changed:

DB/display_register kind=p
P=B 04D 00000042

The SET_STEP_MODE subcommand allows you to step through the
execution of your program for a specified unit of stepping, as follows:

DB/set_step_mode mode=on unit=line
DB/run

-- DEBUG: step at M=module_main L=22
DB/run

-- DEBUG: step at M=module_main L=23
DB/run

-- DEBUG: step at M=module_main L=24
DB/run

-- DEBUG: step at M=module_main L=25
DB/set_step_mode mode=off

Setting the breaks shown next allows you to follow program execution:

DB/set_break break=prog_main module=module_main Line=26
DB/set_break break=proc_p1 module=m procedure=p ..
DB../byte_offset=4c(16)

DB/set_break break=proc_p2 Line=16 module=m

DB/set_break module=perform_integer_multiplications Line=7
-- Break name DBB$1 assigned to this break

The first break set, PROG_MAIN, would not require the module/procedure
parameters because it is for the module/procedure executing when Debug
gained control. The address for the second break set, PROC_P1, is specified
in terms of module/procedure offset addressing; the hexadecimal offset is
obtained from the first column of numbers on the source listing. (Since line
tables were produced during compilation, and are available at execution, the
break address is reported as a line number.) The third and fourth breaks set,
PROC_P2 and DBB$1, require the module and procedure parameters since
they are not set for the current module/procedure. Notice that you are not
required to give a name to a break set. Debug assigns a name to the break if
you do not specify a name. For example, in the fourth break shown in the
preceding example, Debug assigned the name DBB$1.

988 CYBIL Language Definition Revision D

INTERACTIVE SESSION

Entering the RUN subcommand causes the program to execute until the first
break is reached, as shown in the following example. The DISPLAY _CALL
subcommand allows you to trace program execution. The DISPLAY _
OPTION parameter allows you to specify the type of traceback information
you want to display.

DB/run

-- DEBUG: break PROC_P2, execution at M=m L=16
DB/display_calls display_option=user_calls

== Traceback from procedure P module M at Lline 16

== Called from procedure MAIN module MODULE_MAIN at Lline 25
byte offset 44

DB/display_calls display_option=system_calls

== There are no system_calls on the stack frame.

DB/ run

— DEBUG: break PROG_MAIN, execution at M=module_main L=26
DB/display_calls

— Traceback from procedure MAIN module MODULE_MAIN at
Line 26

Revision C The Debug Utility 987

INTERACTIVE SESSION

At this point, you could enter any other subcommand. For example, you
could enter the DISPLAY _STACK_FRAME subcommand and then the

RUN subcommand:
DB/display_stack_frame
STACK FRAME 001
00000000 00000000
00000008 00000000
00000010 304€0000
00000018 00000000
00000020 FFFFFFFF
00000028 00008010
00000030 0000B04E
00000038 00000000
00000040 FFFFFFFF
00000048 BO4EOOOO
00000050 BO4EOOOO
SAVE AREA

SEGMENT=04E
00000000
00000000
OOCOFFFF oL
00000000
FFFFFEOC
000D4A2E
00000400 N
00000000
FFFFFEOC
04A05D58 N
04AF0430 N

P=B 04D 0DOOOOAC
UM=FFF7

AO=B O4E 000004DO
A2=B 04E 00000430
A4=B 04E 00000400
A6=B O4E OODOO4AF
A8=B O4E 00000442
AA=B O4E 00000AS8
AC=F FFF 80000000
AE=F FFF 80000000

UCR=0080

VMID=0
MCR=0000

A1=B 04E 00000478
A3=B 04C 00000000
A5=B 048 00000020
A7=B 04E O00O0O04AF
A9=B 04E 000006A0
AB=F FFF 80000000
AD=B 04E 00001008
AF=B 00B 0000BB98

X0=0000B804D
X2=0000FFFF
X4=00000000
X6=00000000
X8=00000000
XA=00000000
XC=0000FFFF
XE=0000FFFF

00040254
80000000
00000064
00000000
00000000
00000300
80000000
80000000

X1=0000FFFF
X3=00000000
X5=FFFFFFFF
X7=00000000
X9=00000000
XB=0000FFFF
XD=0000FFFF
XF=00000000

80000000
00000000
FFFFFEOC
00000010
00000008
80000000
80000000
00000008

DB/run

~- DEBUG: break PROC_P2, execution at M=m L=16

@® 988 CYBIL Language Definition

Revision D

Since CYBIL variable names can be long, you can assign an SCL variable to

‘ that name and then use the SCL variable prefixed by ? in a Debug
subcommand. For example, the variable OPERANDI in procedure P can be
shortened to OP1 as follows:

DB/op1="'operand1’
. DB/display_program_value name=?0p1

operandl = 1

By looking at the source listing, you can see that the program is in a loop to
be executed at the most 101 times. To avoid encountering the two breaks that
are in the loop, you can delete them. First, you can display the break
definitions to obtain the break names. Then delete them. Displaying the
breaks again shows that two breaks were eliminated:

pB/display_breaks

== Break PROG_MAIN
— event(s) = execution
— location: M=module_main L=26

— Break PROC_P1
— event(s) = execution
— location: M=m L=14

. — Break PROC_P2

-— event(s) = execution
— location: M=m L=16

— Break DBB$1

— event(s) = execution

=— location: M=perform_integer_multiplications L=7
DB/delete_breaks break=(prog_main,proc_p2)
DB/display_breaks

=— Break PROC_P1
— event(s) = execution
— location: M=m L=14

- Break DBB$1
— event(s) = execution
— location: M=perform_integer_multiplications L=7

. Instead of entering two DELETE _BREAK subcommands, both breaks are
specified in the same DELETE _BREAK subcommand.

Revision D] The Debug Utility 989 @

INTERACTIVE SESSION

When displaying the call chain, you can skip one or more of the most recent
calls.

pB/run

-- DEBUG: break DBB$1, execution at M=perform_integer_
multiplications L=7

DB/display_calls

-- Traceback from procedure MULT module PERFORM_INTEGER_
MULTIPLICATIONS at Line 7

-- C(Called from procedure P module M at Line 13 byte

offset 36

-- Called from procedure MAIN module MODULE_MAIN at line 25
byte offset 44

pB/display_calls start=2

-- Called from procedure P module M at Line 13 byte offset 36

—- Called from procedure MAIN module MODULE_MAIN at Line 25
byte offset &4

® 990 CYBIL Language Definition Revision D

INTERACTIVE SESSION

Displaying values of program names is an important aspect of debugging.
You can display the value of program names in other procedures/modules as
well as in the current ones. All static values can be displayed. The value of a
static variable can be displayed at any point of execution, but the value of
an automatic variable can be displayed only when the procedure it belongs
to is in the active call chain. To obtain the active call chain, enter the
DISPLAY _CALLS subcommand as follows:

DB/ run

== DEBUG: break PROC_P1, execution at M=m L=14
DB/display_calls

-- Traceback from procedure P module M at line 14

-- Called from procedure MAIN module MODULE_MAIN at Line 25
byte offset 44

Procedures MAIN and P are active. You can, therefore, display the value of
any variable within these procedures. To display the value of B in procedure
P, enter the following subcommand:

DB/display_program_value name=b procedure=p
b = FALSE

To display the value of B in procedure MAIN, enter the following
subcommand:

bB/display_program_value name=b module=module_main procedure=main
b = FALSE

Since module MODULE _MAIN and procedure MAIN are not the current
module and procedure, the MODULE and PROCEDURE parameters are

required.

Entering the RUN subcommand one more time causes the program to
i To terminate the Debug session, enter the QUIT subcommand as
follows:

DB/ run
: program terminated by returning
— DEBUG: The status at termination was: NORMAL.

DB/quit
- DEBUG: QUIT terminated task

At this point, the operating system prompt, /, appears and you can enter
any SCL command.

Revision D The Debug Utility 991 @

BATCH SESSION

Batch Debug Session ‘

The source listing of the CYBIL program used in this batch Debug session is
shown in figure 9-2. The name of the file containing the object code of the

program is SAMPLE2. SAMPLE2 is essentially the same as the program

used in the interactive session. The command stream used for the batch

session is shown in figure 9-3. The Debug subcommands used are similar to '
those used in the interactive session.

SOURCE LIST OF module_main
0 1 MODULE module_main;
0 2
0 3 PROCEDURE LXREF] p (operandi,
0 4 operand2: integer;
0 5 VAR result: integer;
0 6 VAR status: boolean);
0 7
0 8 PROGRAM main;
0 9
0 10 VAR
4 1 X,
4 12 Y,
4 13 2: integer, .
4 14 b: boolean;
4 15
4 16 FOR x := 0 TO 100 DO
E 17 y = x * x - 500;
20 18 p (x, ¥y, z, b);
4C 19 IF b THEN
54 20 EXIT main;
56 21 IFEND;
56 22 FOREND;
5A 23 PROCEND main;
0 24 MODEND module_main;

Figure 9-2. Source Listing for Batch Debug Session

(Continued)

992 CYBIL Language Definition Revision C

‘ (Continued)

SOURCE LIST OF m

0 1 MODULE m;
0 2
‘ 0 3 PROCEDURE [XxDCL] p (operand?l,
0 4 operand2: integer;
0 5 VAR result: integer;
0 6 VAR b: boolean);
0 7
0 8 PROCEDURE [XREF] mult (a,
4 9 b: integer;
4 10 VAR c: integer);
4 11
4 12 IF operandl < operand2 THEN
10 13 mult (operandl, operand2, result);
3% 14 b := TRUE;
3E 15 ELSE
42 16 b := FALSE;
4C 17 IFEND;
4C 18 PROCEND p;
0 19 MODEND m;

‘ SOURCE LIST OF perform_integer_multiplications
1 MODULE perform_integer_multiplications;

PROCEDURE [XDCL] mult (a,
b: integer;
VAR c¢: integer);

c:=ax*b;
PROCEND mult;
MODEND perform_integer_multiplications;

-
[= - == N = Il N =]

VOOO~NOWVHWN

Figure 9-2. Source Listing for Batch Debug Session

Revision C The Debug Utility 9-93

BATCH SESSION

The following numbered paragraphs correspond to the numbers in figure 3&

@

Q@

@

Q ©® ® ®

©

9-94

The COLLECT_TEXT command collects the Debug subcommands
on the file named BATCH_SESSION. All subcommands are placed
on BATCH_SESSION until the double asterisks are encountered.

The CREATE _VARIABLE command creates an SCL variable of
type STATUS to be used on the Debug SET_BREAK subcommands.

The IF/IFEND command is used to check the status variable. If the
status variable is not provided and the subcommand is in error, the
session will be terminated.

Indicates that subcommands are no longer collected on the file
BATCH_SESSION.

The four CREATE _FILE _CONNECTION commands cause a
complete record of the Debug session to be recorded on file SESSION.

The EXECUTE _TASK command initiates the Debug session. Notice
that the Debug input file is BATCH_SESSION.

The standard file SOUTPUT must be disconnected from SESSION
before that file can be copied.

The COPY _FILE command causes the file SESSION to be copied to
file SOUTPUT, which is printed at the end of the job. The contents of
this file are shown in figure 9-4. Notice that the Debug prompt, DB/,
is replaced by CI or CS because of the file connections.

CYBIL Language Definition Revision C

BATCH SESSION

login family_name=... user=... password=... job_class=batch
collect_text output=batch_session
create_variable name=stat kind=status
set_break break=prog_main Line=26 module=module_main status=stat
® if stat.normal = false then;
display_value ‘'break prog_main failed'
ifend
set_break break=proc_p1 Line=14 module=m status=stat
if stat.normal = false then; display_value 'break proc_p1 failed'
ifend
set_break break=proc_p2 Line=16 module=m status=stat
if stat.normal = false then; display_value 'break proc_p2 failed'
ifend
set_break break=proc_mult Lline=7 ..
module=perform_integer_multiplications status=stat
if stat.normal = false then;
display_value 'break proc_mult failed'
ifend
run
display_calls display_option=user_calls
display_calls display_option=system_calls
run
display_calls
display_stack_frame
run
display_breaks
delete_breaks break=(prog_main,proc_p2)
display_breaks
run
display_calls
display_calls start=2
run
display_calls
display_program_value name=b procedure=p
display_program_value name=b module=module_main procedure=main
run
quit
@ **
attach_file file=sample2
(® create_file_connection $output session
create_file_connection $response session
create_file_connection $errors session
create_file_connection $echo session
execute_task file=sample2 debug_input=batch_session ..
debug_output=session debug_mode=on
delete_file_connection $output session
copy_file session
Llogout

S

@0 ©

Figure 9-3. Command Stream for Batch Debug Session

Revision D The Debug Utility 9.95

BATCH SESSION
CI execute_task file=sample2 debug_input=batch_session '
debug_output=session debug_mode=on
DEBUG

CI create_variable name=stat kind=status
CI set_break break=prog_main line=26 module=module_main status=stat ‘
CI if stat.normal = false then

CS display_value 'break prog_main failed'

€S ifend

CI set_break break=proc_p1 Line=14 module=m status=stat

CI if stat.normal = false then

CS display_value 'break proc_p1 failed'

Cs ifend

CI set_break break=proc_p2 line=16 module=m status=stat

CI if stat.normal = false then

CS display_value 'break proc_p2 failed'

€S ifend

CI set_break break=proc_mutt line=7
module=perform_integer_multiplications status=stat

CI if stat.normal = false then

CS display_value 'break proc_mult failed'

€S ifend

CI run

-- DEBUG: break PROC_P2, execution at M=m L=16

CI display_calls display_option=user_calls

== Traceback from procedure P module M at Line 16

Called from procedure MAIN module MODULE_MAIN at Lline 25 byte
offset 44

C1 display_calls display_option=system_calls

== There are no system_calls on the stack frame.

CI run

-- DEBUG: break PROG_MAIN, execution at M=module_main L=26

€I display_calls

== Traceback from procedure MAIN module MODULE_MAIN at line 26

Figure 9-4. Batch Debug Session

(Continued)

_ CYBIL Language Definition Revision D

BATCH SESSION

‘ (Continued)

CI display_stack_frame

STACK FRAME 001 SEGMENT=035

00000000 00000000 00000000

‘ 00000008 00000000 00000000
00000010 00008034 00000000 4
00000018 00000000 00000000
00000020 FFFFFFFF FFFFFEOC
00000028 00008035 00000398 5
00000030 00000000 00000000
00000038 00000000 00000000
00000040 FFFFFFFF FFFFFEOC
00000048 BO350000 04084834 5 H4
00000050 BO350000 04170428 5 (
SAVE AREA
P=B (034 0000004C VMID=0
UM=FFF7 UCR=0080 MCR=0000

AC=B 035 00000438
A2=8 035 00000398
A4=B 035 00000370
A6=B 035 00000417
A8=8 033 00000080
AA=B 011 00000168
AC=B 008 00021A10
AE=F FFF 80000000

A1=B 035 000003E0
A3=B 033 00000000
A5=B 035 00000417
A7=B 035 00000250
A9=B 011 00000408
AB=B 011 00000608
AD=B 006 000029A0
AF=B 035 00000398

Figure 9-4. Batch Debug Session

Revision C

(Continued)

The Debug Utility

997

BATCH SESSION

(Continued)

X0=00008034
X2=00000000
X4=FFFFFFFF
X6=00000000

00040243
00000000
FFFFFEOC
0000000F

X1=00008035
X3=00000000
X5=00000000
X7=00000000

00000398
00000064
00000000
00989680

X8=00000000
XA=00000000
XC=00000000
XE=00000000

C1

00000022
0000004E
000004cCC
00000751

X9=00000000
XxB=00000000
Xp=00000000
XF=00000000

00000012
00000000
00000003
00000000
run

DEBUG: break PROC_P2, execution at
display_breaks

Break PROG_MAIN

event(s) = execution

location: M=module_main L=26
Break PROC_P1

event(s) = execution

location: M=m L=14

Break PROC_P2

event(s) = execution

Llocation: M=m L=16

Break PROC_MULT

event(s) = execution

location: M=perform_integer_multiplications L=7
delete_breaks break=(prog_main, proc_p2)
display_breaks

Break PROC_P1

event(s) = execution

location: M=m L=14

Break PROC_MULT

event(s) = execution

location: M=perform_integer_multiplications L=7

M=m L=16

998

Figure 9-4. Batch Debug Session

CYBIL Language Definition

(Continued)

Revision D

BATCH SESSION

(Continued)

CI run

—- DEBUG: break PROC_MULT, execution at
M=perform_integer_multiplications L=7

CI display_calls

== Traceback from procedure MULT module
PERFORM_INTEGER_MULTIPLICATIONS at Line 7

-- Called from procedure P module M at Line 13 byte offset 36
—- Called from procedure MAIN module MODULE_MAIN at Line 25 byte
offset 44

CI display_calls start=2

== Called from procedure P module M at Line 13 byte offset 36
— Called from procedure MAIN module MODULE_MAIN at Line 25 byte
offset 44

CI run

= DEBUG: break PROC_P1, execution at M=m L=14

CI display_calls

= Traceback from procedure P module M at Line 14

= Called from procedure MAIN module MODULE_MAIN at Line 25 byte
offset 44

CI display_program_value name=b procedure=p
b = FALSE

CI display_program_value name=b module=module_main procedure=main
b = FALSE

CI run

- DEBUG: program terminated by returning

— DEBUG: The status at termination was: NORMAL.

CI quit

— DEBUG: QUIT terminated task

CI delete_file_connection $output session

CI copy_file session

EOI ENCOUNTERED.

Figure 9-4. Batch Debug Session

Revision D The Debug Utility 999 @

Appendixes

GloSSATY ... it e e A-1
Character Setcoviiii i e B-1
Reserved Words ...ttt e C-1

Data RepresentationinMemory D-1

Glossary A

A

Access Attribute

Characteristic of a variable that determines whether the variable can be
both read and written. Specifying the access attribute READ makes the
variable a read-only variable.

Active Call Chain
List of calls that led to the current procedure.

Alphabetic Character
One of the following letters:

A through Z
a through z

See also Character and Alphanumeric Character.

Alphanumeric Character

Alphabetic character or a digit. See also Character, Alphabetic Character,
and Digit.

Assignment Statement
A statement that assigns a value to a variable.

Revision A Glossary A-1

GLOSSARY

Batch Debugging

Debugging when the user has no direct control of debugging during
program execution. Contrast with Interactive Debugging.

Bit
Binary digit. A bit has the value 0 or 1. See also Byte.

Boolean
A kind of value that is evaluated as TRUE or FALSE.

Break

The primary mechanism for Debug to gain control from an executing
program. A break specifies an event and an address range such that when
the event occurs within the address range, Debug takes control.

Byte
A group of bits. For NOS/VE, one byte is equal to 8 bits. An ASCII
character code uses the rightmost 7 bits of one byte.

Byte Offset

A number corresponding to the number of bytes beyond the beginning of
a line, procedure, module, or section.

A2 CYBIL Language Definition Revision A

GLOSSARY

® .
Character

Letter, digit, space, or symbol that is represented by a code in one or more
of the standard character sets.

It is also referred to as a byte when used as a unit of measure to specify
block length, record length, and so forth.

A character can be a graphic character or a control character. A graphic
character is printable; a control character is nonprintable and is used to
control an input or output operation.

Character Constant
A fixed value that represents a single character.

Comment

Any character or sequence of characters that is preceded by an opening
brace and terminated by a closing brace or an end of line. A comment is
treated exactly as a space.

Compilation Time
The time at which a source program is translated by the compiler to an

object program that can be loaded and executed. Contrast with Execution
Time.

‘ Compiler

A processor that accepts source code as input and generates object code as
output.

Condition Handler

A procedure called when an exception condition occurs. Condition handler
processing occurs after Debug processing if Debug mode is on. The
procedure is called only if it has been established as the condition handler
for the condition type and the condition occurs within its scope.

Revision B Glossary A-3

GLOSSARY

D

Delimiter

The indicator that separates and organizes data.
Digit

One of the following characters:

0123456789

E

Entry Point

The point in a module at which execution of the module can begin.

Event
A condition, such as division by zero, that causes Debug to gain control.

Execution Ring
The level of hardware protection assigned to a procedure while it is
executing.

Execution Time
The time at which a compiled source program is executed. Also known as
Run Time.

Expression
Notation that represents a value. A constant or variable appearing alone,
or combinations of constants, variables, and operators.

External Reference

Call to an entry point in another module.

F

Field
A subdivision of a record that is referenced by name. For example, the

field NORMAL in a record named OLD_STATUS is referenced as
follows:

OLD_STATUS.NORMAL

A-4 CYBIL Language Definition Revision D

GLOSSARY

®
Integer Constant

One or more digits and, for hexadecimal integer constants, the following
characters:

. ABCDEFabcdef

A hexadecimal integer constant must begin with a digit. A preceding sign
and subsequent radix are optional.
Interactive Debugging

Debugging when the user has direct control of the debugging process.
Contrast with Batch Debugging.

L

Load Module

A module reformatted for code sharing and efficient loading. When the
user generates an object library, each object module in the module list is
reformatted and written as a load module on the object library.

M

' Machine Addressing

Use of actual machine addresses. Contrast with Module Addressing and
Symbolic Addressing.

Machine-Level Debugging

Debugging using machine-level terms such as machine addresses. A
knowledge of machine architecture is required. Contrast with Symbolic
Debugging.

Module

Unit of text accepted as input by the loader, linker, or object library
generator. See also Object Module and Load Module.

Module Addressing

Use of addresses in terms of module and procedure names and an offset.
Contrast with Machine Addressing and Symbolic Addressing.

Revision A Glossary A-5

GLOSSARY

. ¢
Name

Combination of from 1 through 31 characters chosen from the following
set:

e Alphabetic characters (A through Z and a through z). '
¢ Digits (0 through 9).
® Special characters (#, @, $, and _).

The first character of a name cannot be a digit.

o

Object Code
Executable code produced by a compiler.

Object Module

Compiler-generated unit containing object code and instructions for
loading the object code. It is accepted as input by the system loader and
the object library generator.

A-6 CYBIL Language Definition Revision A

GLOSSARY

o .
Page

An allocatable unit of real memory.

Pointer
‘ The virtual address of a value.

R
Range

Value represented as two values separated by an ellipsis. The element is
associated with the values from the first value through the second value.
The first value must be less than or equal to the second value. For
example:

1..100

Reserved Word

Word that has a predefined meaning in a language. The user cannot
define a new meaning or use for a reserved word.

Ring
‘ Level of hardware protection given a file or segment. A file is protected

from unauthorized access by tasks executing in higher rings. See also
Execution Ring.

Run Time
See Execution Time.

Revision D Glossary A7

GLOSSARY

)

Section

A storage area that contains variables with common access attributes (for
example, read-only variables or read/write variables).

Segment
One or more pages assigned to a file. The segment has the ring attributes
of the file.

Source Code
Statements written for input to a compiler.

Statement List
One or more statements separated by delimiters.

String Constant

Sequence of characters delimited by apostrophes (’). An apostrophe can be
included in the string by specifying two consecutive apostrophes.

Symbolic Addressing

Use of addresses in source program terms such as program names and
line numbers. Contrast with Machine Addressing and Module
Addressing.

Symbolic Debugging

Debugging using source program terms such as line numbers and
program names. Contrast with Machine-Level Debugging.

T

Traceback
A list of procedure names within a program, beginning with the currently
executing procedure, proceeding backward through the sequence of called
procedures, and ending with the main program.

A-8 CYBIL Language Definition Revision D

\Y

GLOSSARY

Variable

Represents a data value.

‘ Variable Attribute

Characteristic of a variable.

See also Access Attribute.

Revision A

Glossary

A9

‘ Character Set B

Table B-1 lists the ASCII character set.

. NOS/VE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOS/VE represents each 7-
bit ASCII code in an 8bit byte. The 7 bits are right-justified in each byte. For
ASCII characters, the leftmost bit is always zero.

In addition to the 128 ASCII characters, NOS/VE allows use of the leftmost
bit in an 8-bit byte for 256 characters. The use and interpretation of the
additional 128 characters is user-defined.

Revision B Character Set B-1

CHARACTER SET

Table B-1. ASCII Character Set

ASCII Code
Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning
000 00 000 NUL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text
004 04 004 EQT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell
008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 0A 012 LF Line feed
011 0B 013 VT Vertical tabulation
012 oC 014 FF Form feed
013 oD 015 CR Carriage return
014 OE 016 SO Shift out
015 OF 017 SI Shift in
016 10 020 DLE Data link escape
017 11 021 DC1 Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3
020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission block
024 18 030 CAN Cancel
025 19 031 EM End of medium
026 1A 032 SUB Substitute
027 1B 033 ESC Escape
028 1C 034 FS File separator
029 1D 035 GS Group separator
030 1E 036 RS Record separator
031 1F 037 Us Unit separator
032 20 040 SP Space
033 21 041 ! Exclamation point
034 22 042 ” Quotation marks
035 23 043 # Number sign
036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
039 27 047 ’ Apostrophe
040 28 050 (Opening parenthesis
041 29 051) Closing parenthesis
042 2A 052 * Asterisk
043 2B 053 + Plus
044 2C 054 s Comma
045 2D 055 - Hyphen
046 2E 056 . Period
047 2F 057 / Slant

(Continued)

B-2 CYBIL Language Definition Revision A

CHARACTER SET

. Table B-1. ASCII Character Set (Continued)

ASCII Code
Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning

048 30 060 0 Zero

049 31 061 1 One

050 32 062 2 Two

051 33 063 3 Three

052 34 064 4 Four

053 35 065 5 Five

054 36 066 6 Six

055 37 067 7 Seven

056 38 070 8 Eight

057 39 071 9 Nine

058 3A 072 : Colon

059 3B 073 ; Semicolon

060 3C 074 < Less than

061 3D 075 = Equals

062 3E 076 > Greater than

063 3F 077 ? Question mark

064 40 100 @ Commercial at

065 41 101 A Uppercase A

066 42 102 B Uppercase B

067 43 103 C Uppercase C

068 4 104 D Uppercase D

069 45 105 E Uppercase E

070 46 106 F Uppercase F
. 071 47 107 G Uppercase G

072 48 110 H Uppercase H

073 49 111 1 Uppercase I

074 4A 112 J Uppercase J

075 4B 113 K Uppercase K

a76 4C 114 L Uppercase L

077 4D 115 M Uppercase M

078 4E 116 N Uppercase N

079 4F 117 (6] Uppercase O

080 30 120 P Uppercase P

081 51 121 Q Uppercase Q

082 52 122 R Uppercase R

083 53 123 S Uppercase S

084 4 124 T Uppercase T

085 35 125 U Uppercase U

086 56 126 \" Uppercase V

087 57 127 w Uppercase W

088 58 130 X Uppercase X

089 59 131 Y Uppercase Y

090 5A 132 Z Uppercase Z

091 5B 133 [Opening bracket

‘ (Continued)

Revision A Character Set B-3

CHARACTER SET

Table B-1. ASCII Character Set (Continued)

ASCII Code
Graphic or

Decimal Hexadecimal Octal Mnemonic Name or Meaning
092 5C 134 \ Reverse slant
093 5D 135 1 Closing bracket
094 5E 136 - Circumflex
095 5F 137 - Underline
096 60 140 : Grave accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase ¢
100 64 144 d Lowercase d
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g
104 68 150 h Lowercase h
105 69 151 i Lowercase 1
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k
108 6C 154 1 Lowercase 1
109 6D 155 m Lowercase m
110 6E 156 n Lowercase n
111 6F 157 o Lowercase o
112 70 160 p Lowercase p
113 71 161 q Lowercase q
114 72 162 r Lowercase r
115 73 163 s Lowercase s
116 74 164 t Lowercase t
117 75 165 u Lowercase u
118 76 166 v Lowercase v
119 77 167 w Lowercase w
120 78 170 X Lowercase x
121 79 171 y Lowercase y
122 7A 172 z Lowercase z
123 7B 173 { Opening brace
124 7C 174 | Vertical line
125 7D 175 } Closing brace
126 7E 176 - Tilde
127 7F 177 DEL Delete

B-4 CYBIL Language Definition Revision A

Reserved Words

The reserved words in CYBIL are listed next.

ALIAS
ALIGNED
ALLOCATE
AND
ARRAY
BEGIN
BOOLEAN
BOUND
CASE
CASEND
CAT

CELL
CHAR
CHKALL
CHKNIL
CHKRNG
CHKSUB
CHKTAG
CHR
COMMENT
COMPILE
CONST
CYCLE
DIV

DO
DOWNTO
EJECT
ELSE
ELSEIF
END

EXIT
FALSE
FOR
FOREND
FREE
FUNCEND
FUNCTION
HEAP

IF

IFEND

IN

INLINE
INTEGER
LEFT
LIST

Revision D

LISTALL
LISTCTS
LISTEXT
LISTOBJ
LOWERBOUND
LOWERVALUE
MOD
MODEND
MODULE
NEWTITLE
NEXT

NIL
NOCOMPILE
NOT

OF

OFF
OLDTITLE
ON

OR

ORD
PACKED
POP

PRED
PROCEDURE
PROCEND
PROGRAM
PUSH

READ

REAL
RECEND
RECORD
REL

REP
REPEAT
RESET
RETURN
RIGHT
SECTION
SEQ

SET

SKIP
SPACING
STATIC
STRING
STRLENGTH

SuccC

THEN

TITLE

TO

TRUE

TYPE

UNTIL
UPPERBOUND
UPPERVALUE
VAR

WHILE
WHILEND
WRITE

XDCL

XOR

XREF
#ADDRESS
#CALLER_ID
#COMPARE _SWAP

#CONVERT _POINTER_TO_PROCEDU

#FREE_RUNNING_CLOCK
#GATE

#HASH _SVA

SINLINE

#KEYPOINT

#LOC

#OFFSET
#PREVIOUS_SAVE_AREA
#PTR

#PURGE _BUFFER

#READ REGISTER

#REL

$RING

#SCAN

#SEGMENT

#SEQ

#SIZE

#TRANSLATE
#UNCHECKED _CONVERSION
#WRITE _REGISTER
$CHAR

$INTEGER

$REAL

Reserved Words C-1

Data Representation in Memory D

Memory is made up of 8-bit addressable bytes with eight bytes to one 64-bit
word. (An 8-bit byte is synonymous with a cell.) Table D-1 summarizes how
different data types are represented in memory. The data under the heading
Alignment specifies how a variable of the data type is stored in packed and
unpacked format. The word ”byte” means a variable is stored in the first
available byte; ’bit” means it is stored in the first available bit.

Table D-1. Data Representation in Memory

Alignment
Type Size Unpacked Packed
Integer 8 bytes Byte Byte
Character 1 byte Byte Bit
Boolean 1 bit Right-justified Bit
in a byte
Ordinal As needed Right-justified Bit
for components in a byte
Subrange As needed Right-justified Bit
for components in a byte
Real 8 bytes Byte Byte
Cell Byte Byte Byte
Fixed pointer 6 bytes Byte Byte
Fixed relative 4 bytes Byte Byte
pointer
String 1 byte for Byte Byte
each character
Array/ Depends on Byte Components are
Record type of unaligned
components
Set As needed Right-justified Bit if <57
for components in a byte components;
byte if > 57
components
Revision D Data Representation D-1

DATA REPRESENTATION IN MEMORY

The following examples show how a record would look in memory in various
formats: first unpacked, then packed, packed with some positioning changes, ‘
and finally aligned. The memory shown here is in 8-byte words, but because

bytes can be addressed individually, it’s possible the record could start at any

byte (if it is not aligned otherwise).

The unpacked record is: '

TYPE

table = record
name: string(7),
file: (bi, di, lg, pr),
number_of_accesses: integer,
users: 0 .. 100,
ptr_jotype: “iotype,
b: boolean,

recend;

This record would appear in memory as follows (slashes indicate unused
memory):

FILE
Byte 0 Byte T Byte 2 Byte3 Byte4 Byte5 Byte 6 Byte 77

V)
Character /// ‘
NUMBER_OF__ACCESSES

l
USERS | | PTR_IIOTYPE | | //3

Character | Character | Character | Character

Character I Character

N\

D2 CYBIL Language Definition Revision B

DATA REPRESENTATION IN MEMORY

‘ The packed record is:

TYPE

table = packed record
name: string(7),
file: (bi, di, lg, pr),

. number_of_accesses: integer,

users: 0 .. 100,
ptr_iotype: “iotype,
b: boolean,

recend;

This record would appear in memory as follows (slashes indicate unused
memory):

FILE
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 K_Byte 7
V,

Character [Characterj Character | Character

Characterl Character | Character /)

NUMBER_OF _ACCESSES

A R R ,
| I PTR_IIOTYPE | | 37///

USERS

NN

Revision B Data Representation D-3

DATA REPRESENTATION IN MEMORY

The record, as follows, is now rearranged slightly to make more efficient use
of the space:

TYPE

table = packed record
name: string(7),
file: (bi, di, lg, pr),
number_of_accesses: integer,
users: 0 .. 100,
b: boolean,
ptr_iotype: “iotype,

recend;

This record would appear in memory as follows (slashes indicate unused
memory):

FILE
Byte 0 Byte 1 Byte 2 Byte 3 Byte4 Byte 5 Byte 6 Byte 7

NAME YW
Character l CharacterlCharacter [Characterl Character I Character l Character //‘

NUMBER _OF_ACCESSES

l] l

l
USERS| B | | PTR_IIOTYPE | | / /

D4 CYBIL Language Definition Revision B

Y

DATA REPRESENTATION IN MEMORY

The following record declares the pointer field to be aligned at byte zero (the
‘ first byte) of a word:

TYPE
table = packed record

name: string(?),
. file: (bi, di, Lg, pm),

number_of_accesses: integer,

users: 0 .. 100,

b: boolean,

ptr_iotype: ALIGNED [O MOD 8] “iotype,

recend;

This record would appear in memory as follows (slashes indicate unused

memory):
FILE
Byte 0 Byte 1 Byte 2 Byte3 Byte4 Byte5b Byte 6 YByte 7
vy
Character i Character I Character | Character lCharacterI Character | Character 7

NUMBER_OF_ACCESSES

©® =4 3,45/
| | 0,

| PTR_IOTYPE

/

Revision B Data Representation D-5

. Index

Index

A
A registers
Change 9-32
Display 9-51
ABORT_FILE attribute 94
Access attribute 3-6; A-1
Accessing Debug
During program execution 9-3
When a program fails 94
Active call chain A-1
Active segment identifier 7-22
Actual parameters
Function 6-19,21
Procedure 7-11,13
Program 2-13
Adaptable array
Definition 443
Example 5-34
Format 443
Size 5-33
Adaptable heap
Definition 4-47
Format 447
Size 5-33
Adaptable pointer size 5-33
Adaptable record
Definition 4-44
Format 4-44
Size 5-33
Adaptable sequence
Definition 446
Example 5-34
Format 446
Size 5-33
Adaptable string
Definition 4-42
Format 4-42
Size 5-33
Adaptable types
Definition 4-42
Equivalent 4-2
Example 5-34
Pointers to 4-15

Revision D

Addition operation 556
Addition operators 5-4
#ADDRESS function 6-23
Addressing

Bound modules 9-13

Debug 98

Machine A5

Module A5

Symbolic A8
Advance page directive 8-20
Alias name 2-10,12; 3-3;6-17; 79
ALIGNED

parameter 4-29 3137 44
Alignment

Examples D-2

Of elements in memory D-1

Parameter 4-29,31,37,44
ALLOCATE statement

Definition 5-38

Example 5-34

Format 5-38
Alphabetic character A-1
Alphanumeric character A-1
AND operator 5-3
ARITHMETIC_OVERFLOW
break 9-60
ARITHMETIC_SIGNIFICANCE
break 9-61
Array

Adaptable 443

Definition 4-24

Elements 4-26

Examples 4-26,27

Format 4-24

Initializing elements 4-25

LOWERBOUND function 6-5

Referencing elements 4-25

Size 4-24

Subscript bounds 4-24

Two-dimensional 4-26

UPPERBOUND function 6-15
ASCII character set B-1
ASID, see active segment identifier

CYBIL Language Definition Index-1

INDEX

Assigning

Elements of a set 4-38

Strings 4-23
Assignment operator 5-15
Assignment, set 4-38
Assignment statement

Compile-time 8-10

Definition 5-13; A-1

Format 5-13
Attribute(s)

Access 36

Debug 9-34

Effect on initialization by 3-14

Function 6-17

#GATE 34

List 82

Procedure 79

READ 33,6

Scope 3-7

Section name 34,11

STATIC 29;349

Storage 39

XDCL 29; 33,7

XREF 3-3,7
Automatic variable 29;39

Basic types 4-3

Batch Debug
Definition A-2
Example 9-92

BEGIN statement
Definition 5-16
Format 5-16

Binary object code, listing 8-2

$BINDING section 3-11

Bit A2

Blanks in syntax 2-6

Blocks 2-8

Boolean
Constant 2-4
Definition 4-6; A-2
Difference 5-5
Example 4-6
Format 46

Index-2 CYBIL Language Definition

Bound module
addressing 9-13
BOUND parameter 4-31
Bound variant record
Definition 4-33
Equivalent 4-2
Tag field size 5-33
BRANCH break 9-61
Break report message 99
Breaks, Debug
Definition 9-8; A-2
Delete 9-35
Display 9-36
Set 960
Byte A-2
Byte offset 6-23,25; A-2

C

Cache, purging 7-22
CALL break 961
Call chain, Debug 9-38
Callerid 7-15
#CALLER_ID procedure 7-15
Calling
Function 6-21
Procedure 7-13
CALLREL instruction 7-15
CALLSEG instruction 7-15
CASE statement
Definition 5-26
Examples 5-27
Format 5-26
CASEND 5-26
CAT 25;423
Cell
Definition 4-12
Format of type 4-12
Pointer to 4-17
Type 4-12
CHAD subcommand 9-22
CHAM subcommand 9-25
CHANGE_DEFAULT
subcommand 9-22
CHANGE_MEMORY
subcommand 9-25

Revision D

CHANGE_PROGRAM_VALUE
subcommand 9-28
CHANGE_REGISTER
subcommand 9-32
CHAPYV subcommand 9-28
$CHAR function 6-2
CHAR subcommand 9-32
Character

Alphabetic A-1

Alphanumeric A-1

Constant 2-3; A-3

Definition 4-5; A3

Example 45

Format 45

Valid 2-1
Character set B-1
CHKALL toggle 8-15
CHKNIL toggle 8-15
CHKRNG toggle 8-15
CHKSUB toggle 8-15
CMPXA instruction 7-17
Coefficient 24
COMMAND file 95
Comment control directive 8-28
COMMENT directive 8-28
Comments 2-7; A-3
#COMPARE_SWAP
procedure 7-17
Comparing strings 4-23
Compilation

Call 81

Declarations 8-8

Listing 8-1

Statements 8-8

Time A3
COMPILE directive 8-26
Compile-time

Assignment statement 8-10

Directives 8-12

Expressions 89

IF statement 8-11

Variables 8-8
Compiler

Checking of subranges 4-9

Definition A-3
Complement operation 5-11
Complement, set 54

Revision D

INDEX

Component type 4-18
Concatenation 2-5;4-23
Condition code, Debug 9-7
CONDITION field 9-7
Condition handler

Debugging 9-14

Definition A-3
CONST format 3-1
Constant

Boolean 24

Character 2-3

Declaration 3-1

Definition 2-3

Examples 3-2

Expression 2-6

Floating-point 2-4

Format 3-1

Integer 2-3

Ordinal 24

Pointer 24

Real 24

String 25
Control statements

CASE 5-26

CYCLE 5-28

EXIT 530

IF 5-24

Overview 5-23

RETURN 5-31
Conventions 8
#CONVERT_POINTER_TO_
PROCEDURE procedure 7-19
CPYSX instruction 6-27
CPYXS instruction 7-28
$CURRENT _LINE function 9-75
$CURRENT_MODULE
function 9-76
$CURRENT_PROCEDURE
function 9-77
$CURRENT_PVA function 9-78
CYB$DEFAULT_HEAP
section 3-11
CYBIL command

BINARY_OBJECT

parameter 8-2

BINARY parameter 8-2

DEBUG_AIDS parameter 83

CYBIL Language Definition Index-3

INDEX

ERROR_LEVEL
parameter 8-3
Example 86
Format 8-1
INPUT parameter 8-1
LIST_OPTIONS parameter 8-2
LIST parameter 8-1
OPTIMIZATION_LEVEL
parameter 8-4;9-13
OPTIMIZATION
parameter 84
PAD parameter 84
RUNTIME_CHECKS
parameter 8-5
STATUS parameter 85
CYBIL~defined elements 2-1
CYBIL reserved words C-1
CYBIL syntax 26
CYCLE statement
Definition 5-28
Example 5-29
Format 5-28

D

Data conversion functions 6-1
Data in memory
Alignment D-1
Examples D-2
Size requirements D-1
Debug commands
Debug compiler options 8-3,4
Debug functions
$CURRENT_LINE 9-75
$CURRENT_MODULE 9-76
$CURRENT_
PROCEDURE 9-77
$CURRENT_PVA 9-78
Overview 9-74
$PROGRAM_VALUE 9-79
DEBUG_INPUT attribute 9-3
DEBUG_MODE attribute 9-3
DEBUG_OUTPUT attribute 9-3,4
Debug subcommands
CHAD 9-22
CHAM 9-25
CHANGE_DEFAULT 9-22

Index-4 CYBIL Language Definition

CHANGE_MEMORY 9-25
CHANGE_PROGRAM _
VALUE 9-28
CHANGE_REGISTER 9-32
CHAPV 9-28
CHAR 9-32
DELB 9-35
DELETE_BREAK 9-35
DISB 9-36
DISC 9-38
DISDE 941
DISM 944
DISPLAY_BREAK 9-36
DISPLAY_CALL 9-38
DISPLAY_DEBUGGING_
ENVIRONMENT 941
DISPLAY_MEMORY 944
DISPLAY_PROGRAM _
VALUE 948
DISPLAY_REGISTER 9-51
DISPLAY_STACK_
FRAME 9-54
DISPV 948
DISR 951
DISSF 954
QUI 9-58
QUIT 958
RUN 959
SET_BREAK 9-60
SET_STEP_MODE 9-70
SETB 960
SETSM 9-70
Summary 9-18

Debug utility
Accessing 9-2
Addressing 9-8
Attributes 9-34
Bound modules 9-13
Break report message 9-9
Breaks 9-8,35,36,60
Call chain 9-38
Commands, see separate entry
Condition code 9-7
Condition handlers 9-14
Defaults 9-22
Deferred breaks 9-16
Ending a session 9-58

Revision D

¢
¢

Environment 941
Example of batch session 9-92
Example of interactive
session 9-82
Functions, see separate entry
Input file 9-5,23
Interrupt processing 9-14
Multiple breaks 9-17
Multiring environment 9-17
Multitask debugging 9-14
Optimized code 9-13
Output file 96,23
Overview 9-1
Product identifier 9-7
Program addresses 9-8
Resuming a session 9-59
Ring 9-16
Starting a session 9-59
Status variable 9-7
Step mode 9-70
Use 982
Debugging programs, see
Debug utility
Decimal notation 24
Declarations
Compilation 8-8
Overview 1-1
Default heap 3-11
Defaults, Debug 9-22
Deferred breaks 9-16
DELB subcommand 9-35
DELETE_BREAK
subcommand 9-35
Delete Debug breaks 9-35
Delimiter A4
Dereference, pointer 4-13
Diagnostics, listing 8-3
Digit A4
Direct pointer
Byte number 6-25
Converting from a relative
pointer 4-18
#OFFSET function 6-25
Return ring number 6-28
Return segment number 6-29
Ring 6-28

Revision D

INDEX

Segment 6-29
Signed offset
(byte number) 6-25

Directives, compile-time

COMMENT 8-28

Comment control 8-28

COMPILE 8-26

Definition 8-12

EJECT 8-20

General format 8-12

Layout control 8-19

LEFT 8-19

Maintenance control 8-26

NEWTITLE 8-23

NOCOMPILE 8-27

OLDTITLE 8-25

POP 8-17

PUSH 8-16

RESET 8-18

RIGHT 8-19

SET 8-13

SKIP 8-22

SPACING 821

TITLE 8-24

Toggle control 8-13
DISB subcommand 9-36
DISC subcommand 9-38
DISDE subcommand 9-41
DISM subcommand 9-44
DISPLAY_BREAK
subcommand 9-36
DISPLAY_CALL
subcommand 9-38
Display Debug breaks 9-36
DISPLAY_DEBUGGING_
ENVIRONMENT
subcommand 941
DISPLAY_MEMORY
subcommand 9-44
DISPLAY_PROGRAM_VALUE
subcommand 9-48
DISPLAY_REGISTER
subcommand 9-51
DISPLAY_STACK_FRAME
subcommand 9-54
DISPV subcommand 9-48

CYBIL Language Definition

Index-5

INDEX

DISR subcommand 951
DISSF subcommand 9-54
DIV operator 5-3
DIVIDE_FAULT break 961
Division operation

Integer quotient 5-3

Real quotient 5-3

Remainder 5-3

E

EJECT directive 8-20
Elements
CYBIL-defined 2-1
Scope of 2-8
Syntax of 2-6
User-defined 2-2
ELSE 524,26
ELSEIF 5-24
Empty statement 2-7;5-13
END 5-16
Entry point A4
Equal to operator 5-6,9
Equality, set 59,12
Equivalent types 4-2
Error checking of subranges 4-9
Error list compiler options 8-3
Event A4
Exclusive OR operation 55
Execution 8-1
EXECUTION break 961
Execution ring A-4
Execution time A-4
EXIT statement
Definition 5-30
Format 5-30
Exponent 2-4
EXPONENT_OVERFLOW
break 9-61
EXPONENT_UNDERFLOW
break 9-61
Expression
Compile-time 89
Constant 2-6
Definition 5-1; A4
Operands 5-1
Operators 52

Index6 CYBIL Language Definition

External reference A4

Externally declared variable
29; 3-3

Externally referenced
variable 3-3

F

FALSE 46
Fatal diagnostics, listing 8-3
Field 4-28; A4
Floating-point
Constant 24
Type 4-11
FLOATING_POINT _
INDEFINITE break 961
FLOATING_POINT_
SIGNIFICANCE break 9-62
FOR statement
Definition 5-17
Examples 5-18,19
Format 5-17
FOREND 5-17
Formal parameters
Function 6-18,19
Procedure 7-10,11
Program 2-12
Reference 2-12
Value 2-12
Format 8
FORMAT_CYBIL_SOURCE
command 8-7
Format source code 8-7
#FREE_RUNNING_CLOCK
function 6-24
Free running microsecond
clock 6-24
FREE statement
Definition 5-39
Format 5-39
Functions, see also user-defined
functions
#ADDRESS 6-23
Calling 6-21
$CHAR 62
$CURRENT_LINE 9-75
$CURRENT_MODULE 9-76

Revision D

$CURRENT _
PROCEDURE 9-77
$CURRENT_PVA 9-78
Data conversion 6-1
Definition 6-1
Format 6-17
$INTEGER 6-3
#LOC 64
LOWERBOUND 65
LOWERVALUE 6-6
#OFFSET 6-25
Overview 1-3;6-1
Parameters 6-17
PRED 6-7
$PROGRAM_VALUE 9-79
#PTR 68
#READ_REGISTER 6-27
$REAL 69
Recursive 6-1
#REL 6-10
#RING 6-28
#SEGMENT 6-29
#SEQ 6-11
#SIZE 6-12
Standard 6-1
STRLENGTH 6-13
SUCC 6-14
System-dependent 6-1,23
UPPERBOUND 6-15
UPPERVALUE 6-16
User-defined 6-17

G

#GATE attribute 34

Global key 7-15

Global variable 2-8

Glossary A-1

Greater than operator 56,9

Greater than or equal to
operator 56,9

H
#HASH_SVA procedure 7-20

Revision D

INDEX

Heap
Adaptable 447
Default 3-11
Definition 441
Example 5-34
Format 441
Management 5-32

IDENTIFIER field 9-7
Identity operation 5-4
Identity, set 59,12
IF statement
Compile-time 8-11
Definition 5-24
Examples 5-25
Format 524
IFEND 5-24
Improper subrange type 4-9
IN operator 5-6,9,12
Indefinite value constructor 3-13;
4-25.35,38
Inequality, set 5-9,12
Informative diagnostics,
listing 8-3
Initializing
Array elements 4-25
Effect of attribute on 3-14
Record 4-35
Set elements 4-38
Variable 3-4,13
Input
Compiler parameter 8-1
To programs 1-3
Input file, Debug 9-5,23
Input/output 7;1-3
Integer
Constant 2-3; A5
Definition 44
Example 44
Format 44
Quotient division 5-3
Range 44
$INTEGER function 6-3

CYBIL Language Definition Index-7

INDEX

Interactive Debug
Definition A-5
Example 9-82

Interrupt processing, Debug 9-14

Intersection operation 5-11

Intersection, set 5-3

INVALID_BDP_DATA

break 9-62

Invariant record
Definition 4-28
Example 4-30
Format 4-28

J
Job level specifications 9-3,4

K

Keypoint instruction 7-21
#KEYPOINT procedure 7-21

L

Label, statement 5-16,17,20,21,28
Language syntax 26
Layout control directives 8-19
LEFT directive 8-19
Less than operator 56,9
Less than or equal to
operator 5-6,9

Lifetime of a variable 3-10
Line tables 83
LIST toggle 8-14
LISTALL toggle 8-14
LISTCTS toggle 8-14
LISTEXT toggle 8-14
Listing, compiler

Options 8-2

Parameter 8-1
Listing toggles 8-14
LISTOBJ toggle 8-14
$LITERAL section 3-11
Load module A5
Load page table index 7-20
#LOC function 6-4

Index8 CYBIL Language Definition

Local

Key 7-15

Variable 28
Lock variable 7-17
Logical AND operation 5-3
Logical OR operation 55
LOWERBOUND function 6-5
Lowerbounds 49
LOWERVALUE function 6-6
LPAGE instruction 7-20

M
Machine addressing A-5
Machine code debugging, see
Debug utility
Machine-level debugging A5
Maintenance control
directives 8-26
Manuals, related 2;9
Map buffer, purging 7-22
Margins, set 8-19
Memory
Alignment of elements D-1
Cell D-1
Change contents during
debugging 9-25
Display during debugging 9-44
Examples of representation D-2
Size requirements for
elements D-1
MOD operator 5-3
MODEND format 2-10
Module A-5
Addressing A5
Declaration 2-10
Definition 2-8
Examples 2-10
Format 2-10
Level 28
Name 2-10
Structure 2-8
MODULE format 2-10
Multiple breaks 9-17
Multiplication operation 5-3
Multiplication operators 5-2
Multiring environment 9-17
Multitask debugging 9-14

Revision D

N

Name

Definition A-6

Examples 2-3

Rules for forming 2-2
Nearly exhausted resources 9-15
Negation operation 5-11
Negation operators 5-2
NEWTITLE directive 8-23
NEXT statement

Definition 5-37

Format 5-37
NIL pointer constant 24; 4-15
No-op instructions 84
NOCOMPILE directive 8-27
NORMAL field 9-7
Not equal to operator 56,9
NOT operator 5-2
Null string 25

o

Object code
Definition A6
Listing 8-2,14
Object module A-6
Object of a pointer 4-13
Offset, byte A2
#OFFSET function 6-25
OLDTITLE directive 8-25
Operands 5-1
Operators
Addition 54
Definition 5-2
Multiplication 5-2
Negation 52
Order of evaluation 5-2
Relational 56
Set 5-10
Sign 54
Optimization compiler options 84;
913
Optimized code, debugging 9-13
OR operator 55
Ordinal
Constant 24

Revision D

INDEX

Definition 4-7

Examples 48

Format 4-7
$OUTPUT file 9-6
Output file, Debug 9-6,23
Output from programs 1-3
Overview of language 1-1

P

P register
Change 9-32
Display 9-51
Packed elements in memory D-1
PACKED parameter
Adaptable arrays 443
Adaptable records 4-44
Arrays 4-24
Records 4-28,31
Packing parameter
Adaptable arrays 4-43
Adaptable records 4-44
Arrays 4-24
Records 4-28 31
Padding compiler parameter 8-4
Page A-7
Page advance directive 8-20
Page table map 7-22,23
Page table, see system page table
Parameter list 2-13;6-19; 7-11
$PARAMETER section 3-11
Parent name 4-18; 68,10
Pause break 9-15
Performance monitoring 7-21
Pointer
Adaptable types 4-15
Constant 24
Definition 4-13; A-7
Dereference 4-13
Example 4-16
Format 4-13
NIL 4-15
Object 4-13
Pointer to cell 4-17
Reference 4-13
Relative 4-18

CYBIL Language Definition Index9

INDEX

Pointer to cell
#ADDRESS function 6-23
Definition 4-17
Pointer-to-procedure conversion
procedure 7-19
POP directive 8-17
Potentially equivalent types 4-2
PRED function 6-7
Predecessor of an expression 6-7
Predefined sections 3-11
Previous save area 6-26
#PREVIOUS_SAVE_AREA
function 6-26
Procedures, see also user-defined
procedures
#CALLER_ID 7-15
Calling 7-13
#COMPARE_SWAP 7-17
Definition 7-1
Format 79
#HASH_SVA 7-20
#KEYPOINT 7-21
Overview 1-3;7-1
Parameters 7-9
#PURGE_BUFFER 7-22
#SCAN 7-24
Standard 7-1
STRINGREP 7-2
System-dependent 7-15
#TRANSLATE 7-26
User-defined 7-9
#WRITE_REGISTER 7-28
PROCEND format 2-14
Process register
Read 6-27
Write 7-28
Process virtual address 24; 6-25;
9-78
Processor register
Read 6-27
Write 7-28
Product identifier, Debug 9-7
Program
Addresses in Debug 9-8
Declaration 2-12
Elements 2-1
Example 2-14

Index-10 CYBIL Language Definition

Execution 8-1
Format 2-12
Input 13
Name 2-12
Output 13
Structure 2-8
Syntax 26
Value, change 9-28
Value, display 9-48,79
PROGRAM format 2-12
Program level specifications 9-3,4
$PROGRAM_VALUE
function 9-79
#PTR function 4-18;6-8
Punctuation 2-7
Purge
Cache 722
Instruction 7-22
Map buffer 7-22
#PURGE_BUFFER
procedure 7-22
PUSH directive 8-16
PUSH statement
Definition 540
Example 5-34,40
Format 540
PVA, see process virtual address

Q

QUI subcommand 9-58
QUIT subcommand 9-58

Radix 2-3

Range A-7

Range checking
Compiler options 8-5
Toggles 8-15

READ attribute 3-3,6

READ break 962

READ_NEXT_INSTRUCTION
break 9-62

Read-only
Section 36,11,18
Variable 3-3,6

Revision D

#READ_REGISTER function 6-27
Real
Constant 24
Definition 4-11
Format 4-11
Quotient division 5-3
Range 4-11
$REAL function 69
Record
Adaptable 4-44
Alignment 4-29,31,37,44
Bound variant 4-31,33
Definition 4-28
Examples 4-30,34,35,36
Fields 4-28
Format 4-28,31
Initializing elements 4-35
Invariant 4-28
Referencing elements 4-36
Variant 431
Reference parameters
Function 6-18,19
Procedure 7-10,11
Program 2-12
Reference, pointer 4-13
Referenced addresses 9-11
Reformat source code 8-7
$REGISTER section 3-11
Registers
Change contents of 9-32
Display 951
Read 6-27
Write 7-28
#REL function 4-18;6-10
Related manuals 2;9
Relational operators 5-6
Relative pointer
Access object of 6-8
Converting to direct
pointer 4-18
Definition 4-18
Direct pointer 4-18
Format 4-18
#PTR function 68
#REL function 6-10
Return 6-10

‘ Remainder division operation 5-3

Revision D

INDEX

REP format 3-13; 4-25
REPEAT statement
Definition 5-20
Example 5-20
Format 5-20
Reported addresses 9-9
Reserved symbols 2-1
Reserved words 2-1; A-7; C-1
RESET directive 8-18
RESET statement
Definition 5-35
Example 5-34
Format for a heap 5-36
Format for a sequence 5-35
RETURN statement
Definition 5-31
Format 5-31
RIGHT directive 8-19
Ring
Debug 9-16
Definition A-7
Level 34
Number 6-23;7-15
Return number in pointer 6-28
Ring, execution A4
#RING function 6-28
RUN subcommand 9-59
Run-time checking
Compiler options 85
Toggles 8-15
Run time, see execution time
Run-time stack
management 5-32,40

S

Save area 6-26
Scalar types 4-3
#SCAN procedure 7-24
Scientific notation 24
Scope attributes 3-7
Scope of elements 2-8
Section
Attribute 34,11
Declaration 3-18
Definition 3-11,18; A-8
Example 3-19

CYBIL Language Definition = Index-11

INDEX

Format 3-18
Map 9-13
Name 34,11
Predefined names 3-11
SECTION format 3-18
Segment
Definition A-8
Number 6-23;7-15
Return number in pointer 6-29
#SEGMENT function 6-29
Segment table map 7-23
Semicolon 2-7
#SEQ function 6-11
Sequence
Adaptable 4-46
Definition 4-40
Format 440
Management 5-32
Return pointer to 6-11
#SEQ function 6-11
Set
Complement 54,11
Containment 5-12
Difference 5-5,11
Equality 59,12
Identity 56,9,12
Inclusion 5-12
Inequality 5-6,9,12
Intersection 5-3,11
Membership 56,9,12
Negation 5-11
Operators 5-10
Subset 56,9
Superset 56,9
Symmetric difference 5-11
Union 55,11
SET_BREAK subcommand 9-60
SET directive 8-13
SET_STEP_MODE
subcommand 9-70
Set type
Assigning elements 4-38
Definition 4-38
Example 4-39
Format 4-38
Initializing elements 4-38

Index-12 CYBIL Language Definition

Set value constructor
Definition 4-39
Format 4-39

SETB subcommand 9-60

SETSM subcommand 9-70

Sign inversion 54

Sign operators 54

Size fixer 5-33

#SIZE function 6-12

SKIP directive 8-22

Source
Code A8
Listing 82
Text input 8-1

Source code
Reformat 8-7

Source code debugging, see Debug

utility

Spaces in syntax 2-6

Spacing 2-7

SPACING directive 8-21

SPT, see system page table

Stack frame 6-26

Stack frame, display 954

Stack frame save area 6-26

$STACK section 3-11

Stack, see run-time stack

management

Standard functions 6-1

Standard procedures 7-1

Statement(s)
ALLOCATE 5-38
Assignment 5-13
BEGIN 5-16
CASE 5-26
Compilation 88
Control 523
CYCLE 5-28
Definition 5-13
Empty 2-7;5-13
EXIT 5-30
FOR 5-17
FREE 5-39
IF 524
Label 5-16,17,20,21,28
List 5-13,16; A8

Revision D

NEXT 5-37
Overview 1-1,2
PUSH 540
REPEAT 5-20
RESET 5-35
RETURN 5-31
Storage management 5-32
Structured 5-16
WHILE 5-21
STATIC attribute 2-9; 34,9
$STATIC section 3-11
Static variable 29;39
Status variable
Compiler call 85
CYBIL command 8-5
Debug 9-7
FORMAT_CYBIL_SOURCE
command 8-7
Step mode, Debug 9-70
Storage allocation 2-9
Storage attributes 39
Storage management statements
ALLOCATE 5-38
Examples 5-34
FREE 5-39
NEXT 5-37
Overview 5-32
PUSH 540
RESET 535
Storage types 4-40
String
Adaptable 442
Assigning 4-23
Comparing 4-23
Constant 2-5; A-8
Definition 4-19
Examples 4-22,23
Format 4-19
Length 6-13
STRLENGTH function 6-13
Substring 2-5; 4-20
STRINGREP procedure
Boolean element 7-4
Character element 7-3
Definition 7-2
Floating-point element 7-5
Format 7-2

Revision D

INDEX

Integer element 7-3
Ordinal element 74
Pointer element 7-8
String element 7-8
Subrange element 74
STRLENGTH function 6-13
Structured statements
BEGIN 5-16
FOR 5-17
Overview 5-16
REPEAT 5-20
WHILE 5-21
Structured types 4-19
Subrange
Definition 49
Error checking 49
Example 4-10
Format 4-9
Subscript bounds 4-24
Subset of a set 56,9
Substring
Definition 4-20
Examples 4-22
Format 4-20
Of a string constant 25
Subtraction operation 5-5
SUCC function 6-14
Successor of an expression 6-14
Superset of a set 56,9
SVA, see system virtual address
Symbol tables 8-3
Symbolic
Addressing A-8
Cross-reference listing 8-2
Debugging A-8
Symbols, reserved 2-1
Symmetric difference 5-5
Symmetric difference
operation 5-11
Syntax 26
System-dependent
Functions 6-23
Procedures 7-15
System-dependent
functions 6-1
System page table 7-20
System virtual address 7-20

CYBIL Language Definition Index-13

INDEX

T

Tag field
Definition 4-31,32
Size 5-33
Terminate break 9-15
TEXT field 9-7
TITLE directive 8-24
Titles 8-23,24,25
Toggle control directives
Definition 8-13
Listing toggles 8-14

Run-time checking toggles 8-15

Traceback A-8
#TRANSLATE procedure 7-26
Translation table 7-26
Trap interrupts 7-21
TRUE 46
Type
Declaration 3-16
Examples 3-16
Format 3-16
TYPE format 3-16
Types 4-1
Adaptable 4-42
Adaptable array 4-43
Adaptable heap 4-47
Adaptable record 444
Adaptable sequence 4-46
Adaptable string 442
Array 4-24
Basic 4-3
Boolean 46
Cell 4-12
Character 45
Equivalent 4-2
Floating-point 4-11
Formats for using 4-2
Heap 441
Integer 44
Ordinal 4-7
Overview 1-1;4-1
Pointer 4-13
Pointer to cell 4-17
Potentially equivalent 4-2
Real 4-11

Index-14 CYBIL Language Definition

Record 428
Relative pointer 4-18
Scalar 4-3
Sequence 440

Set 4-38

Storage 4-40

String 4-19
Structured 4-19
Subrange 4-9

#UNCHECKED_CONVERSION
procedure 7-27
Union operation 5-11
Union, set 5-5
Unpacked elements in
memory D-1
UNTIL 520
UPPERBOUND function 6-15
Upperbounds 4-9
UPPERVALUE function 6-16
User-defined elements
Constants 2-3
Definition 2-2
User-defined functions
Actual parameters 6-19,21
Attributes 6-17
Calling 6-21
Examples 6-20,22
Formal parameters 6-18,19
Format 6-17
Parameters 6-17,19
Reference parameters 6-18,19
Value parameters 6-18,19
User-defined procedures
Actual parameters 7-11,13
Attributes 79
Calling 7-13
Examples 7-12,14
Formal parameters 7-10,11
Format 7-9
Parameters 79,11
Reference parameters 7-10,11
Value parameters 7-10,12

Revision D

\Y

Value constructor, see indefinite
value constructor
Value parameters
Function 6-18,19
‘ Procedure 7-10,12
Program 2-12
VAR format 3-3
Variable A-9
Attributes 3-3,6; A9
Automatic 2-9; 3-9
Compile-time 88
Declaration 3-3
Definition 3-3
Examples 3-5,7,8,10,12,15
Format 3-3
Global 2-8
Initialization 3-4,13
Lifetime 3-10
Local 28
Read-only 3-3,6
Static 2-9; 39
Types 4-1
Variant record
Bound 4-31,33

Revision D

Definition 4-30
Example 4-34
Format 4-30

W

Warning diagnostics, listing 8-3

WHILE statement
Definition 5-21
Example 5-22
Format 5-21
WHILEND 521
Words, reserved 2-1; A-7; C-1
WRITE break 962
#WRITE_REGISTER
procedure 7-28

X

X registers

Change 9-32

Display 951
XDCL attribute 2-9; 3-3,7
XOR operator 55
XREF attribute 3-3,7

CYBIL Language Definition Index-15

CYBIL for NOS/VE. Language Definition 60464113 D

We would like your comments on this manual. While writing it, we made some assumptions about who would use it
and how it would be used. Your comments will help us improve this manual. Please take a few minutes to reply.

Who Are You? How Do You Use This Manual? Which Do You Also Have?
O Manager O As an Overview O Any SCL Manuals

O Systems Analyst or Programmer O To Learn the Product/System 0 CYBIL File Interface

0 Applications Programmer O For Comprehensive Reference O CYBIL System Interface
O Operator O For Quick Look-up

O Other

What programming languages do you use?

Which are helpful to you? O Procedures Index {inside covers) [Glossary (0 Related Manuals page
O Character Set 0 Other:

How Do You Like This Manual? Check those that apply.

Yes Somewhat No

[} O O Is the manual easy to read (print size, page layout, and so on}?
a [m] O s it easy to understand?

] O O Is the order of topics logical?

0 m] O Are there enough examples?

] a O Are the examples helpful? (O Too simple O Too complex)

[m]] O Is the technical information accurate?

m) O (J Can you easily find what you want?

O a O Do the illustrations help you?

a a 0O Does the manual tell you what you need to know about the topic?

Comments? If applicable, note page number and paragraph.

Would you like areply? O Yes (O No Continue on other side
From:
Name Company
Address Date
Phone No.

Please send program listing and output if applicable to your comment.

No Postage

Necessary
if Mailed in the 1 '
United States

BUSINESS REPLY MAIL

First Class Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

5 CONTROL DATA

Publications and Graphics Division
ARH219

4201 Lexington Avenue North

St. Paul, MN 55126-6198

'\ Y

Fold

Tape Here Only

Keyword Index

ARRAY (adaptable) 443 PROCEND (for a program) ...2-14
ARRAY (fixed) 4-24 PROGRAM 2-12
BOOLEANc...c.... 46 REALcoiuee 4-11
CELL........................ 4-12 RECORD (adaptable)......... 4-44
CHARviiiiiiaen 4-5 RECORD (invariant) 4-28
CONST.....covviiiiiinn. 31 RECORD (variant) 4-30
FUNCEND 6-17 REL ...t 4-18
FUNCTION 6-17 SECTION.............cvnnn 3-18
HEAP (adaptable) 4-47 SET .o 4-38
HEAP (fixed)................. 441 SEQ (adaptable).............. 4-46
INTEGER 44 SEQ(fixed)...............unn. 4-40
MODEND 2-10 STRING (adaptable).......... 4-42
MODULE.................... 2-10 STRING (fixed)............... 4-19
Ordinal 4-7 Subrange 49
Pointer.................o.. 4-13 TYPE ...t 3-16
PROCEDURE................. 7-9 VAR ..o 33
PROCEND (for a procedure) ... 79
Statement Index
ALLOCATE 5-38 IF e 5-24
Assignment 513 NEXT ..., 5-37
BEGINccvviinnntn 5-16 PUSHcvivne. 5-40
CASE.........ciiiiiiinnnn. 5-26 REPEAT..................... 5-20
CYCLEccovvvinnn 5-28 RESET (in a heap)............ 5-36
EXIT ...t 5-30 RESET (in a sequence). 5-35
FORooivviiiiiinnn., 517 RETURNc.... 5-31
FREE.............ccvvvnnnt 5-39 WHILE 521
Function Index
#ADDRESS 6-23 HPTR ... 6-8
$CHARccoiiiiiinannnn, 6-2 #READ_REGISTER 6-27
#FREE_RUNNING _ SREAL 6-9
CLOCKcovviieeannn 6-24 #HRELccovviiin.. 6-10
FUNCEND 6-17 HRING........covveviinn. 6-28
FUNCTION 6-17 #SEGMENT 6-29
$INTEGER 6-3 #SEQo 6-11
HLOC ... 6-4 HSIZE....... .o 6-12
LOWERBOUND 6-5 STRLENGTH 6-13
LOWERVALUE............... 6-6 SUCC ..ot 6-14
#OFFSETocovennnt 6-25 UPPERBOUND.............. 6-15
PREDccoiviiiininn, 6-7 UPPERVALUE 6-16
#PREVIOUS_SAVE _ User-defined functions 6-17
AREA 6-26

(Continued)

(Continued)

Procedure Index

#CALLER_ID................ 7-15 #PURGE BUFFER 7-22
#COMPARE_SWAP.......... 717 #SCAN ... 7-24
#CONVERT_POINTER_TO_ STRINGREP.................. 7-2
PROCEDURE 7-19 #TRANSLATE 7-26
#HASH _SVA 7-20 #UNCHECKED _
#KEYPOINT..........cc...... 7-21 CONVERSION 727
PROCEDURE. 7-9 User-defined procedures........ 79
PROCEND.................... 7-9 #WRITE_REGISTER 7-28
Compilation Index
COMMENT directive 8-28 OLDTITLE directive.......... 825
COMPILE directive 8-26 POP directive 817
CYBIL command.............. 81 PUSH directive............... 8-16
EJECT directive.............. 8-20 RESET directive.............. 818
FORMAT_CYBIL_SOURCE RIGHT directive.............. 819
command.................... 87 SET directive................. 813
LEFT directive 819 SKIP directive................ 8-22
NEWTITLE directive 823 SPACING directive........... 8-21
NOCOMPILE directive 8-27 TITLE directive 824

CHADoll 9-22
CHAM.............cooiiinn. 9-25
CHANGE_DEFAULT........ 9-22
CHANGE_MEMORY 9-25
CHANGE_PROGRAM _

VALUEooee 9-28
CHANGE _REGISTER........ 9-32
CHAPV...........oooiiat 9-28
CHARol 9-32
$CURRENT_LINE........... 9-75
$CURRENT_MODULE 9-76
$CURRENT _

PROCEDURE 9-77
$CURRENT_PVA 9-78
DELBcoooviiiiinn 9-35
DELETE_BREAK 9-35
DISBcoiiiiiiiiiinnn 9-36
DISC ...l 9-38
DISDE..............co. 9-41
DISM..........cooiiiiinn i 9-44

DISPLAY_BREAK........... 9-36
DISPLAY CALL 9-38
DISPLAY_DEBUGGING _

ENVIRONMENT........... 941
DISPLAY_MEMORY 944
DISPLAY_ PROGRAM _

VALUEooenee 9-48
DISPLAY_REGISTER 9-51
DISPLAY_STACK _

FRAME 9-54
DISPV.............oooiiit, 9-48
DISRcoiiiiiiiiiiins 951
DISSF ...t 9-54
$PROGRAM_VALUE........ 9-79
QUIT.............coiiiat 9-58
QUI ... 9-58
RUN........oot 9-59
SETB..........cooiiiiiiiin, 9-60
SET_BREAK 960
SETSMccovvvininnnns 9-70

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue

St. Paul, Minnesota 55126-6198

Title: CDC CYBIL for NOS/VE Language Definition

Publication No.: 60464113

Revision: D

Date: 10-16-85

Reason for Change:

This revision reflects NOS/VE Version 1.1.3 at PSR level 644. Feature changes
include: addition of the #SEQ function, addition of adaptable types as
arguments for the #SIZE function, and addition of the INLINE attribute for
user~defined functions. Minor technical corrections and editorial changes have
been incorporated. This edition obsoletes all previous editions.

