
CYBIL for NOS/VE
Language Definition CONTRPL

DATA

Usage 60464113

NOTE

Hie keywords, statements, and functions that were hsted an the inside front
cover of die last edition have been moved. They are now hsted on facing
pages inside the back cover of this manual,

CYBIL for NOS/VE
Language Definition

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features
and parameters.

Publication Number 60464113

Related Manuals

Background (Access as Needed):

SCL
System
Interface

Usage
60464014 f

CYBIL Manual Set:

Quick
Reference
60464018

CYBIL
Keyed-File
and
Sort/Merge
Interfaces

Usage
60464117

Additional References:

SCL
Advanced
File
Management

Usage ,
60486413 | Q

The shaded manual in the diagram is the manual you're using.

—»- indicates a reading sequence.

indicates that the manual is available online.
L
a

© 1984,1985 by Control Data Corporation.
All rights reserved.
Printed in the United States of America.

2 CYBIL Language Definition Revision D

Manual History

This manual is Revision D, printed in October 1985. It reflects NOS/VE
Version 1.1.3. at PSR level 644. Feature changes include: addition of the
#SEQ function, addition of adaptable types as arguments for the #SIZE
function, and addition of the INLINE attribute for user-defined functions.
Minor technical corrections and editorial changes have been incorporated.
This edition obsoletes all previous editions.

Previous
Revisions System Version Date

A 1.0.2 February 1984

B 1.1.1 July 1984

C 1.1.2 March 1985

Revision D Manual History 3/4

Contents

About This Manual 7

Audience 7
Organization 7
The CYBIL Manual Set 7
Conventions 8
Additional Related Manuals.. 9
Ordering Manuals 9
Submitting Comments 9

Introduction 1-1

Program Structure 2-1

Elements Within a
Program 2-1

Structure of a Program 2-8

Constant, Variable, Type, and
Section Declarations 3-1

Constant Declaration 3-1
Variable Declaration 3-3
Type Declaration 3-16
Section Declaration 3-18

Types 4-1

Using Types 4-2
Equivalent Types 4-2
Basic Types 4-3
Structured Types 4-19
Storage Types 4-40
Adaptable Types 4-42

Expressions and
Statements 5-1

Expressions 5-1
Statements 5-13

Functions 6-1

Standard Functions 6-1

User-Defined Functions 6-17
System-Dependent

Functions 6-23

Procedures 7-1

Standard Procedures 7-1
User-Defined

Procedures 7-9
System-Dependent

Procedures 7-15

The CYBIL Command and
Other Compilation
Facilities 8-1

CYBIL Command 8-1
FORMAT_CYBIL_SOURCE

Command 8-7
Compilation Declarations

and Statements 8-8
Compile-Time Directives . . . 8-12

The Debug Utility 9-1

Introduction 9-1
Accessing Debug 9-2
Debug Concepts 9-5
Debug Subcommands 9-18
Debug Functions 9-74
Using Debug 9-82

Glossary A-l

Character Set B-l

Reserved Words C-l

Data Representation
in Memory D-l

Index Index!

Revision D Contents 5/6

About This Manual

This manual describes CYBIL, the implementation language of the
CONTROL DATA® Network Operating System/Virtual Environment
(NOS/VE).

Audience
This manual is written as a reference for CYBIL programmers. It assumes
that you understand NOS/VE and System Command Language (SCL)
concepts as presented in the SCL Language Definition manual and the SCL
System Interface manual. You will also need to be familiar with the CYBIL
file manuals (described next under Organization) in order to perform input to
and output from a CYBIL program.

Organization
This manual is organized by topic, based on elements of the CYBIL
language. The first chapter introduces the basic elements of the language
and refers you to the chapter in which each is further described.

The CYBIL Manual Set
This manual is part of the CYBIL manual set. Besides this manual, the
CYBIL manual set includes the following:

• The CYBIL System Interface manual, which describes the CYBIL
procedures that pertain to command language services and processing,
program services and management, task and job management services,
condition processing, message generation, and interstate communication.

• The CYBIL File Management manual, which describes the CYBIL
procedures that assign files to device classes, specify attributes for files,
and perform file opening, closing, and copying.

• The CYBIL Sequential and Byte Addressable Files manual, which
describes the CYBIL procedures that perform data manipulation on
sequential and byte addressable files.

• The CYBIL Keyed-File and Sort/Merge Interfaces manual, which
describes:

- The interface to NOS/VE keyed-files (that is, files having the indexed-
sequential and direct-access file organizations).

- The interface to NOS/VE Sort/Merge (which is used to sort records or
merge files of sorted records).

Revision D About This Manual 7

CONVENTIONS

Conventions
Within the formats for declarations, type specifications, and statements
shown in this manual, uppercase letters represent reserved words; they must
appear exactly as shown. Lowercase letters represent names and values that
you supply.

Required parameters are shown in bold type. Optional parameters are shown
in italics and are enclosed by braces, as in:

{PACKED}

If the parameter is optional and can be repeated any number of times, it is
also followed by several periods, as in:

{name}...

For example, the notation [digit] means zero digits or one digit can appear;
{digit}... means zero, one, or more digits can appear. Braces also indicate that
the enclosed parameters and reserved words are used together. For example,

{offset MOD base}

is considered a single parameter. Except for the braces and periods
indicating repetition, all other symbols shown in a format must be included.

Numbers are assumed to be decimal unless otherwise noted.

In examples that show interactive terminal sessions, user input is printed in
blue. System output is printed in black.

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by vertical bars in the margins or by a dot near
the page number if more than half the page is affected.

8 CYBIL Language Definition Revision D

ADDITIONAL RELATED MANUALS

Additional Related Manuals
The related manuals listed on page 2 include the manuals you should be
familiar with to this point, and which manuals you may want to read
following this one. In addition, you may want to have a copy of the CDC®
CYBER 170/180 Models 810, 815, 825, 830, 835, 845, 855, and 990 (Virtual
State) Hardware Reference Manual, Volume II, publication number
60458890. You do not need the hardware manual to use the information in
this CYBIL manual, but it is useful because it includes more detail about the
hardware and, in particular, the hardware instructions used in certain
CYBIL procedures described in this manual.

The Math Library manual, publication number 60486513, describes the
mathematical routines available in the Math Library. These routines can be
accessed by CYBIL programs.

The Diagnostic Messages for NOS/VE manual, publication number
60464613, documents diagnostic messages generated by NOS/VE.

Ordering Manuals

Control Data manuals are available through Control Data sales offices or
through:

Control Data Corporation
Literature Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your
opinion of the manual's usability, to suggest specific improvements, and to
report technical or typographical errors. If the comment sheet has already
been used, you can mail your comments to:

Control Data Corporation
Publications and Graphics Division ARH219
4201 Lexington Avenue North
St. Paul, Minnesota 55126-6198

Please indicate whether you would like a written response.

Additionally, if you have access to SOLVER, an online facility for reporting
problems, you can use it to submit comments about the manual. When
entering your comments, use CIL as the product identifier.

Revision D About This Manual 9

Introduction

This chapter introduces the basic elements of a CYBIL program and refers
you to the chapter in which each is further described.

Introduction 1

A CYBIL program consists of two kinds of elements: declarations and
statements. Declarations describe the data to be used in the program.
Statements describe the actions to be performed on the data.

Declarations and statements are made up of predefined reserved words and
user-defined names and values. The way you form these elements is
described in chapter 2, as is the general structure for designing a CYBIL
program.

Data can be either constant or variable. You can use the constant value itself
or give it a name using the constant declaration (CONST). Variables are
named, initialized, and given certain characteristics with the variable
declaration (VAR).

One of the characteristics of a variable is its type, for example, integer or
character. You can use CYBIL's predefined types or define your own types.
To define a new type or redefine an existing type with a new name, you use
the type declaration (TYPE). Once you have defined a type, CYBIL will treat
it as a standard data type; you can specify your new type name as a valid
type in a variable declaration and CYBIL will perform standard type
checking on it. You can also declare where you want certain variables to
reside by defining an area called a section, which can be a read-only section
or a read/write section. This is done with the SECTION declaration. All of
these data-related declarations are described in chapter 3.

Many standard types are available, including integers, floating-point
numbers, characters, and boolean values, to name a few. In addition, you
can use combinations of the standard types to define your own data types,
for example, a record that contains several fields. The next few paragraphs
summarize the types that are predefined by CYBIL. They are described in
detail in chapter 4.

Among the basic types are scalar types, that is, those that have a specific
order. Besides integer, character, and boolean values, you can declare an
ordinal type in which you define the elements and their order. You can also
specify a subrange of any of the scalar types by giving a lower and upper
bound. Floating-point (real) numbers are also available. A cell, which
represents the smallest addressable unit of memory, can be specified as a
type. A pointer is a type that points to a variable, allowing you to access the
variable by location rather than by name. These are the basic types: scalar,
floating point, cell, and pointer. With these basic types you can construct the
structured types: strings, arrays, records, and sets.

Revision A Introduction 1-1

INTRODUCTION

A string is a sequence of characters. You can reference a portion of a string
(called a substring) or a single character within a string. An array is a
structure that contains components all of the same type. The components of
an array have a specific order and each one can be referenced individually. A
record is a structure that contains a fixed number of fields, which may be of
different types. Each field has a unique name within the record and can be
referenced individually. You can also declare a variant record that has
several possible variations (variants). The current value of a field common to
all variants, or the latest assignment to a specific variant field determines
which of the variants should be used for each execution. A set is a structure
that contains elements of a single type. Yet unlike an array, elements in a set
have no order and individual elements cannot be referenced. A set can be
operated on only as a whole.

Storage types are structures to which variables can be added, referenced, and
deleted under explicit program control using a set of storage management
statements. The two storage types are sequences and heaps.

All of the types mentioned above are considered fixed types; that is, there is a
definite size associated with each one when it is declared. If you want to
delay specifying a size until execution time, you can declare it as an
adaptable type. Then, sometime during execution, you assign a fixed size or
value to the type. A string, array, record, sequence, or heap can be adaptable.

All of these types are described in chapter 4.

Statements define the actions to be performed on the data you've defined.
The assignment statement changes the value of a variable. Structured
statements contain and control the execution of a list of statements. The
BEGIN statement unconditionally executes a statement list. The WHILE,
FOR, and REPEAT statements control repetitive executions of a statement
list.

Control statements control the flow of execution. The IF and CASE
statements execute one of a set of statement lists based on the evaluation of a
given expression or the value of a specific variable. CYCLE, EXIT, and
RETURN statements stop execution of a statement list and transfer control
to another place in the program.

Storage management statements allocate, access, and release variables in
sequences (using the RESET and NEXT statements), heaps (using the
RESET, ALLOCATE, and FREE statements), and the run-time stack (using
the PUSH statement).

All of the preceding statements are described in detail in chapter 5, along
with the operands and operators that can be used in expressions within
statements and declarations.

1-2 CYBIL Language Definition Revision A

INTRODUCTION

Statements can appear within a program (as described in chapter 2), a
function, or a procedure.

A function is a list of statements, optionally preceded by a list of
declarations. It is known by a unique name and can be called by that name
from elsewhere in the program. A function performs some calculation and
returns a value that takes the place of the function reference. There are many
standard functions defined in CYBIL and you can also create your own.
Standard functions and rules for forming your own functions are described
in chapter 6.

A procedure, like a function, is a list of statements, optionally preceded by a
list of declarations. It also is known by a unique name and can be called by
that name from elsewhere in the program. A procedure performs specific
operations and may or may not return values to existing variables. You can
use the standard procedures and also define your own. Chapter 7 describes
the standard procedures and rules for forming your own procedures.

Chapter 8 describes the CYBIL command and the FORMAT. CYBIL_
SOURCE command. You can use the CYBIL command to call the CYBIL
compiler, tell it which files to use for input and output, and specify what kind
of listing you want. You use the FORMAT. CYBIL_ SOURCE command to
reformat CYBIL source code. Chapter 8 also describes directives that are
available at compilation time to specify listing options, run-time options, the
layout of the source text and resulting object listing, and what specific
portions of the source text to compile.

Chapter 9 describes the Debug utility, which aids you in debugging CYBIL
programs at a source code level or machine code level, in either interactive or
batch mode.

In summary, chapters 2 through 7 describe the elements within a CYBIL
program. Chapter 8 describes the command and directives that control how
the program is actually compiled. Chapter 9 describes debugging
capabilities.

Procedures that perform input to and output from CYBIL programs are
described in the CYBIL File Management manual, the CYBIL Sequential
and Byte Addressable Files manual, and the CYBIL Keyed-File and
Sort/Merge Interfaces manual.

Revision D Introduction 1-3

£ Program Structure 2

This chapter describes how to form the individual elements used within a
program and how to structure the program itself.

Elements Within a Program 2-1

Valid Characters 2-1
CYBIL-Defined Elements 2-1
User-Defined Elements 2-2

Names 2-2
Constants 2-3
Constant Expressions 2-6

Syntax 2-6
Spaces 2-6
Comments 2-7
Punctuation 2-7
Spacing 2-7

Structure of a Program 2-8

Module Structure 2-8
Scope 2-8
Module Declaration 2-10
Program Declaration 2-12

Program Structure 2

This chapter describes how to form the individual elements used within a
program and how to structure the program itself.

Elements Within a Program

Valid Characters

The characters that can be used within a program are those in the ASCII
character set that have graphic representations (that is, can be printed). This
character set is included in appendix B. It contains uppercase and lowercase
letters. In names that you define, you can use uppercase and lowercase
letters interchangeably. For example, the name LOOP _ COUNT is
equivalent to the name loop_count.

CYBIL-Defined Elements

CYBIL has predefined meanings for many words and symbols. You cannot
redefine or use these words and symbols for other purposes.

A complete list of CYBIL reserved words is given in appendix C. In the
formats for declarations, type specifications, and statements shown in this
manual, reserved words are shown in uppercase letters.

The following list includes the reserved symbols and a brief description of
the purpose of each. They are discussed in more detail throughout this
manual.

Symbol Purpose

+, -, *, / , =, <, <=, These symbols are primarily operators used
>, >=, <>,:=, (,) in expressions. They are discussed in chapter 5.

; The semicolon separates individual declarations and
statements.

: The colon is used in declarations as described in chapter
3.

, The comma separates repeated parameters or other
elements.

A single period indicates a reference to a field within a
record as described in chapter 4.

(Continued)

Revision A Program Structure 2-1

ELEMENTS WITHIN A PROGRAM

(Continued)

Symbol Purpose

Two consecutive periods indicate a subrange as
described in chapter 4.

The circumflex indicates a pointer reference as
described in chapter 4.

' ' Apostrophes delimit strings.

[] Brackets enclose array subscripts, indefinite value
constructors, and set value constructors as described in
chapter 4.

{} Braces delimit comments. (Within the formats shown in
this manual, they are also used to enclose optional
parameters.)

? or ?? A single question mark or a pair of consecutive question
marks indicate compile-time statements and directives
as described in chapter 8.

User-Defined Elements

N a m e s

You define the names for elements, such as constants, variables, types,
procedures, and so on, that you use within a program. A name-'

• Can be from 1 to 31 characters in length.

• Can consist of letters, digits, and the special characters # (number sign),
@ (commercial at sign), _ (underline), and $ (dollar sign).f

• Must begin with a letter. (There is an exception to this rule for system-
defined functions and procedures that begin with the # or $ character.)

• Cannot contain spaces.

t NOS/VE often uses $ in its predefined names. To keep from matching a
system reserved name, avoid using $ in the names you define.

2-2 CYBIL Language Definition Revision A

ELEMENTS WITHIN A PROGRAM

In the formats included in this manual, names that you supply are shown in
lowercase letters. Within a program, however, there is no distinction between
uppercase and lowercase letters. The name my _file is identical to the name
My_File.

There is considerable flexibility in forming names, so you should make them
as descriptive as possible to promote readability and maintainability of the
program. For example, LAST_ FILE_ ACCESSED is more obvious than
LASTFIL.

Examples:

Valid Names Invalid Names

SUM ARRAY
REGISTER#3 FILES&POSITIONS
POINTER, TABLE 2ND

The va , ;d names need no explanation. Among the invalid names, ARRAY
cannot L used because it is a reserved word; FILES&POSITIONS contains
an invalic --haracter (the ampersand); and 2ND does not begin with a letter.

Constants

A constant is a fixed value. It is known at compilation time and does not
change throughout the execution of a program. It can be an integer,
character, boolean, ordinal, floating-point number, pointer, or string.

Integer constants can be binary, octal, decimal, or hexadecimal. The base is
specified by enclosing the radix in parentheses following the integer, as
follows:

integer (radix)

Examples are 1011(2) and 19A(16). If the radix is omitted, the integer is
assumed to be decimal. Integer constants must start with a digit; therefore, 0
must precede any hexadecimal constant that would otherwise begin with a
letter, for example, 0FF(16). Negative integer constants must be preceded by
a minus sign. Positive integer constants can be preceded by a plus sign but
need not be.

Integer constants range in value from -(263-l) to 263-l; that is,
-7FFFFFFFFFFFFFFF hexadecimal through 7FFFFFFFFFFFFFFF
hexadecimal.

A character constant can be any single character in the ASCII character set.
The character is enclosed in apostrophes in the following form:

'character'

Examples are 'A' and '?'. The apostrophe character itself is specified by a
pair of apostrophes.

Revision D Program Structure

ELEMENTS WITHIN A PROGRAM

A boolean constant can be either FALSE or TRUE, each having its usual
meaning.

An ordinal constant is an element of an ordinal type that you have defined.
For further information, refer to Ordinal under Scalar Types in chapter 4.

Floating-point (real) constants can be written in either decimal notation or
scientific notation. A real number written in decimal notation contains a
decimal point and at least one digit on each side, for example, 5.123 or
-72.18. If the number is positive, the sign is optional; if negative, the sign is
required.

A real number written in scientific notation is represented by a number (the
coefficient), which is multiplied by a power of 10 (the exponent) in the form:

coefficientEexponent

The prefix E is read as "times 10 to the power of "; for example,

5.1E6

is 5.1 times 10 to the power of 6, or 5,100,000. The decimal point in the
coefficient is optional. A decimal point cannot appear in the exponent; it
must be a whole number. If the coefficient or exponent is positive, the sign is
optional; if negative, the sign is required.

The pointer constant is NIL. It indicates an unassigned pointer. For CYBIL
on NOS/VE, a pointer is represented partially by an address called the
process virtual address (PVA). The PVA is represented as a packed record
consisting of three fields: the ring number, segment number, and byte offset.
To indicate the NIL pointer constant internally, CYBIL sets these three
fields to OF hexadecimal, 0FFF hexadecimal, and 80000000 hexadecimal,
respectively. NIL can be assigned to a pointer of any type.

2-4 CYBIL Language Definition Revision D

ELEMENTS WITHIN A PROGRAM

String constants consist of one or more characters enclosed in apostrophes in
the form:

'string'

An example is 'USER1234', a string of eight characters. An apostrophe in a
string constant is specified by a pair of apostrophes, for example, 'DON'T'.

String constants can be concatenated by using the reserved word CAT, as in:

'characters_l' CAT 'characters_2'

The result is the string 'characters_lcharacters_2\ The CAT operation
cannot be used with string variables.

A string constant can be empty, that is, a null string; for example,

str •'= ";

assigns a null string to the string constant STR. As a result of this
statement, the length of STR is set to zero.

You cannot reference parts (substrings) of string constants.

Revision D Program Structure 2-5

ELEMENTS WITHIN A PROGRAM

Constant Expressions

Expressions are combinations of operands and operators that are evaluated
to find scalar or string type values. In a constant expression, the operands
must be constants, names of constants (that you declare using the constant
declaration described in chapter 3), or other constant expressions within
parentheses. Computation is done at compile time and the resulting value
used in the same way a constant is used.

The general rules for forming and evaluating expressions are described
under Expressions in chapter 5. These rules apply to constant expressions
with the following exceptions:

• Constant expressions must be simple expressions; terms involving
relational operators must be delimited with parentheses.

• The only functions allowed as factors in constant expressions are the
$INTEGER, $CHAR, SUCC, and PRED functions with constant
expressions as arguments.

• Substring references are not allowed.

Syntax

The exact syntax of the language is shown in the formats of individual
declarations and statements described in the remainder of this manual. The
following paragraphs discuss general syntax rules.

Spaces

Spaces can be used freely in programs with the following exceptions:

• Names and reserved words cannot contain embedded spaces. Normally,
constants cannot contain spaces either, but a character constant or string
constant can.

• A name, reserved word, or constant cannot be split over two lines; it must
appear completely on one line.

• Names, reserved words, and constants must be separated from each other
by at least one space, or one of the other delimiters such as a parenthesis
or comma.

For further information, refer to Spacing later in this chapter.

2-6 CYBIL Language Definition Revision A

ELEMENTS WITHIN A PROGRAM

Comments

Comments can be used in a program anywhere that spaces can be used
(except in string constants). They are printed in the source listing but
otherwise are ignored by the compiler.

A comment is enclosed in left and right braces: {J. It can contain any
character except the right brace (}). To extend a comment over several lines,
repeat the left brace ({) at the beginning of each line. If the right brace is
omitted at the end of the comment, the compiler ends it automatically at the
end of the line.

Example:

•Cthis comment
{appears on
•Cseveral Lines.>

Within this manual, the formats for declarations, type specifications, and
statements use braces to indicate an optional parameter.

Punctuation

A semicolon separates individual declarations and statements. It must be
included at the end of almost every declaration and statement. The single
exception is MODEND which can, but need not, end with a semicolon if it is
the last occurrence of MODEND in a compilation. Punctuation for specific
declarations and statements is shown in the formats in the following
chapters.

Two consecutive semicolons indicate an empty statement, which the
compiler ignores. Spacing between the semicolons in this case is
unimportant.

Spacing

Declarations and statements can start in any column. In this manual,
indentations are used in examples to improve readability. It is recommended
that similar conventions be used in your programs to aid in debugging and
documentation for yourself and other users.

The LEFT and RIGHT directives, described in chapter 8, can be used at
compilation time to specify the left and right margins of the source text. All
source text outside of those margins is then ignored. A warning diagnostic is
issued for every line that exceeds the specified right margin.

A name, reserved word, or constant cannot be split over two lines; each must
appear completely on one line.

Revision A Program Structure 2-7

STRUCTURE OF A PROGRAM

Structure of a Program

Module Structure

The basic unit that can be compiled is a module and, optionally, compile-time
statements and directives. A module can, but need not, contain a program.
Use this general structure for a module:

MODULE module_name;
declarations
PROGRAM program_name;

declarations
statements

PROCEND program_name;
MODEND module_name;

Declarations can be constant, type, variable, section, function, and procedure
declarations. A module can contain any number and combination of
declarations, but it can contain at most one program. The program contains
the code (that is, the statements) that are actually executed. The required
module and program declarations are described later in this chapter.

The structure within a module determines the scope of the elements you
declare within it.

Scope

The scope of an element you declare, such as a variable, function, or
procedure, is the area of code where you can refer to the element and it will
be recognized. Scope is determined by the way the program and procedures
are positioned in a module and where the elements are declared.

In terms of scope, the programs, procedures, and functions are often referred
to as blocks (that is, blocks of code). Generally, if an element is declared
within a block, its scope is just that block. Outside the block, the element is
unknown and references to it are not valid. A variable declared within a
block is said to be local to the block and is called a local variable.

An element declared at the module level (that is, one that is not declared
within a program, procedure, or function) has a scope of the entire module. It
can be referred to anywhere within the module. A variable declared at the
module level is said to be global and is called a global variable.

A block can contain one or more subordinate blocks. A variable declared in
an outer block can always be referenced in a subordinate block. However, if a
subordinate block declares an element of the same name, the new declaration
applies while inside that block. Figure 2-1 illustrates these rules.

2-8 CYBIL Language Definition Revision A

STRUCTURE OF A PROGRAM

•4 Variable A can be referred to anywhere
in block 1, including blocks 2, 3, and 4.

Variable B can be referred to only in
block 2.

4 Variables C and D can be referred to
anywhere in blocks 3 and 4.

•< However, block 4 again declares a
variable named D. This second
declaration identifies a different
variable D and is in effect within
block 4 only. Outside of block 4,
yet within block 3, the original
declaration for D applies.

Figure 2-1. Scope of Variables Within a Block Structure

Storage space is allocated for a variable when the block in which it is
declared is entered. Space is released when an exit is made from the block.
Because space is allocated and released automatically, these variables are
called automatic variables. You can specify that storage for a variable
remains throughout execution by including the STATIC attribute when you
declare the variable. A variable declared in this way is called a static
variable. A global variable is always static. Because it is declared at the
outermost level of a module (consider the module to be a block), storage for a
global variable is allocated throughout execution of the module (or block).
For further information on automatic and static variables, refer to Variable
Declaration in chapter 3.

The one exception to the preceding rules is an element declared with the
XDCL (externally declared) attribute. This attribute means the element is
declared in one module but can be referred to in another. In this case, the
loader handles the links between modules. For further information on the
XDCL attribute, refer to chapter 3.

BLOCK 1

A DECLARATION

BLOCK 2

B DECLARATION

BLOCK 3

C DECLARATION
D DECLARATION

BLOCK 4

D DECLARATION

Revision A Program Structure 2-9

MODULE DECLARATION

Module Declaration

The module declaration marks the beginning of a module. MODEND marks
the end of a module. A module can contain at most one program and any
combination of type, constant, variable, section, function, and procedure
declarations. If two or more modules are compiled and linked together for
execution, there can be only one program declaration in all the linked
modules.

Use this format for a module declaration:

MODULE name;t

n a m e

The name of the module.

Use this format for MODEND:

MODEND {name};

name

The name of the module. This parameter is optional. If used, the name
must be the same as that specified in the module declaration.

When compiling more than one module, a semicolon is required after each
occurrence of MODEND except the last one. There it is not required but is
recommended.

Examples:

The following example shows a module named ONE that contains various
declarations and a program named MAIN. The module name and semicolon
could be omitted following MODEND, but it is recommended that you
include both.

MODULE one;

declarations

PROGRAM main;

declarations

statements
PROCEND main;

MODEND one;

t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a module declaration. If included in a
CYBIL program run on NOS/VE, this parameter is ignored.

2-10 CYBIL Language Definition Revision D

MODULE DECLARATION

The following example shows a compilation consisting of three modules
named ONE, TWO, and THREE. All three modules can be compiled and the
resulting object modules linked together to form a single object module that
can then be executed. For readability, the module names are included in all
occurrences of MODEND. The semicolon could be left off the last occurrence
of MODEND, but it is a good practice to include it.

MODULE one;

declarations/statements
MODEND one;
MODULE two;

declarations/statements
MODEND two;
MODULE three;

declarations/statements
MODEND three;

Revision D Program Structure 2-11

PROGRAM DECLARATION

Program Declaration

The program declaration marks the beginning of a program. The end of a
program is marked by a PROCEND statement. A program can contain any
combination of type, constant, variable, section, function, and procedure
declarations, and any statements. If two or more modules are compiled and
linked together for execution, there can be only one program declaration in
the linked modules.

Use this format for a program declaration:

PROGRAM name {(formal _parameters)};J\

n a m e

The name of the program.

formal _parameters

One or more optional parameters included if the program is to be called
by the operating system. They can be in the form

VAR name {,name\... • type
l,name {,name}... •' type}...

and/or

name {,name}...: type
{,name {,name}... •' type}...

where name is the name of the parameter and type is the type of the
parameter, that is, a predefined type (described in chapter 4) or a user-
defined type (described in chapter 3).

The first form is called a reference parameter; its value can be changed
during execution of the program. The second form is called a value
parameter; its value cannot be changed by the program. Both kinds of
parameters can appear in the formal parameter list; if so, they must be
separated by semicolons (for example, I: INTEGER; VAR A: CHAR).
Reference and value parameters are discussed in more detail later in
this chapter.

t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a program declaration. If included in a
CYBIL program run on NOS/VE, this parameter is ignored.

2-12 CYBIL Language Definition Revision D

PROGRAM DECLARATION

The optional parameter list is included if a CYBIL program is to be called by
the operating system. It allows the system to pass values (for example, a
string that represents a command) to a CYBIL program. For further
information on passing parameters from the operating system, refer to the
CYBIL System Interface manual.

When the system calls a program, it includes parameters called actual
parameters in the call. The values of those actual parameters replace the
formal parameters in the parameter list one-for-one based on position; that is,
the first actual parameter replaces the first formal parameter, and so on.
Wherever the formal parameters appear in statements within the program,
the values of the corresponding actual parameters are substituted. For every
formal parameter in the program declaration, there must be a corresponding
actual parameter.

When a reference parameter is used, the formal parameter represents the
corresponding actual parameter throughout execution of the program. Thus,
an assignment to a formal parameter changes the variable that was passed
as the corresponding actual parameter. An actual parameter that
corresponds to a formal reference parameter must be addressable. A formal
reference parameter can be of any type.

When a value parameter is used, the formal parameter takes on the value of
the corresponding actual parameter. However, the program cannot change a
value parameter by assigning a value to it or specifying it as an actual
reference parameter to a procedure or function. A formal value parameter
can be of any type except a heap, or an array or record that contains a heap.

Revision D Program Structure 2-13

PROGRAM DECLARATION

Use this format for PROCEND:

PROCEND { name};

name

The name of the program. This parameter is optional. If used, the
name must be the same as that specified in the program declaration.

Example:

The following example shows a program named MAIN that contains various
declarations, including a procedure named SUB_l:

PROGRAM main;

declarations

PROCEDURE subj;

declarations

statements
PROCEND subj;
statements

PROCEND main;

Revision D

Constant, Variable, Type, and
Section Declarations 3

This chapter describes how you declare constant and variable data types and
new data types. It also describes how you specify a particular section in
which to group data.

Constant Declaration 3-1

Variable Declaration 3-3

Attributes 3-6
Access 3-6
Scope 3-7
Storage 3-9

Initialization 3-13

Type Declaration 3-16

Section Declaration 3-18

Constant, Variable, Type, and
Sect ion Declarations 3

This chapter describes the constant declaration, which defines a name for a
value that never changes; the variable declaration, which defines a name for
a value that can change; and the type declaration, which defines a new type
of data and gives a name to that type. In addition, it also describes the
section declaration, which groups variables that share common access
characteristics.

Constant Declaration

A constant, as described in chapter 2, is a fixed value that is known at
compile time and doesn't change during execution. A constant declaration
allows you to associate a name with a value and use that name instead of the
actual constant value. This provides greater readability because the name
can be descriptive of the constant. Constant declarations also provide greater
maintainability because the constant value need only be changed in one
place, the constant declaration, not every place it is used in the code.

Use this format for a constant declaration:

CONST name = value {,name = value}...;

n a m e

The name associated with the constant value.

value

The constant value. It can be an integer, character, boolean, ordinal,
floating-point, pointer, string, or constant expression. Rules for
forming these values are given under Constants and under Constant
Expressions in chapter 2.

You can write several constant declarations, each declaring a single
constant, or a single declaration declaring several constants where each
name = value combination is separated by a comma.

Type is not specified in a constant declaration. The type of the constant is
the same as the type of the value assigned to it.

If used, an expression is evaluated during compilation. The expression itself
can contain other constants.

Revision A Declarations 3-1

CONSTANT DECLARATION

Examples:

Rather than repeat the value of pi throughout a program, you can use a
constant declaration to assign a descriptive name (in this case, PI) to the
value and use that name in subsequent expressions and operations. The
constant declaration is:

CONST
pi = 3.1415927;

The following example shows a constant declaration containing several
different types:

CONST
f i r s t = 1 ,
Last = 80 ,
hex = 0a8(16) ,
bi t_pattern = 10110101(2),
fp_number = 1.2e3,
stop_character = ' . ' ,
continue = TRUE,
message = 'end of L ine ' ,
Last_pointer = NIL,
length = last - f i r s t ,
result = (1 * 2) DIV 3;

Each constant has the same type as the value assigned to it. For example,
FIRST and LAST are integer types, as is LENGTH, which is the result of an
expression containing integers. Notice that the value of HEX begins with a 0
because integers must begin with a digit.

3-2 CYBIL Language Definition Revision A

VARIABLE DECLARATION

Variable Declaration
A variable is an element within a program whose value can change during
execution. The name of the variable stays the same; it is only the value
contained in the variable that changes. To use a variable, you must declare
it.

Use this format for a variable declaration:

VAR name {.name}...: {[attributes]} type {•'= initial_value]
{,name {,name}... '-{[attributes]] type {•'= initial_value}]...x\

n a m e

The name of the variable. Specifying more than one name indicates
that all of the named variables will have the characteristics that follow
(attributes, type, and initial_value).

attributes

One or more of the following attributes. If you specify more than one,
separate them with commas.

READ

Access attribute specifying that the variable is a read-only variable;
the compiler checks to ensure that the value of the variable is not
changed. If you specify READ, you must also specify an initial
value.

XDCL

Scope attribute specifying that the variable is declared in this
module but can be referenced from another module.

XREF

Scope attribute specifying that the variable is declared in another
module but can be referenced from this module.

t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a variable declaration. If included in a
CYBIL program run on NOS/VE, this parameter is ignored.

Revision D Declarations 3-3

VARIABLE DECLARATION

#GATEf

Scope attribute that allows the variable to be accessed by a
procedure at a higher ring level. This attribute is undefined for
variable declarations. However, if you specify #GATE, you must
also specify the XDCL attribute.

STATIC

Storage attribute specifying that storage space for the variable is
allocated at load time and remains when control exits from the
block. Static storage is assumed when any attributes are specified.

section_name

Storage attribute specifying the name of the user-defined section in
which the variable resides. A variable in a section that is defined as
read-only is protected by hardware, as opposed to software. The
section name and its read/write attributes must be declared using
the section declaration (discussed later in this chapter).

Attributes are described in more detail later in this chapter.

The attributes parameter is optional. If omitted, CYBIL assumes the
variable can be read and written; can be referenced only within the
block where it is created; and, unless it is declared at the outermost
level of a module, is automatic (that is, storage for the variable is
allocated only during execution of the block in which the variable is
declared).

type

Data type defining the values that the variable can have. Only values
within this data type are allowed. Types are described in chapter 4.

initial _value

Initial value assigned to the variable. Specify a constant expression,
an indefinite value constructor (described under Initialization later in
this chapter), or a pointer to a global procedure. Only a static variable
can be assigned an initial value. Initialization is discussed later in this
chapter.

This parameter is optional. If omitted, the variable is undefined and
filled with the loader's preset value.

t This attribute is not supported on variations of CYBIL available on other
operating systems.

3-4 CYBIL Language Definition Revision D

VARIABLE DECLARATION

Any variable referenced in a program must be declared with the VAR
declaration. A variable can be declared only once at each block level
although it can be redefined in another block or in a contained (nested) block.

The type assigned to a variable defines the range of values it can take on
and also the operations, functions, and procedures that can use it. CYBIL
checks to ensure that the operations performed on variables are compatible
with their types.

Examples:

The following declarations define a variable named SCORES that can be
any integer number, a variable named STATUS that can be either of the
boolean values FALSE or TRUE, and two variables named ALPHAl and
ALPHA2 that can be characters:

VAR
scores: integer;

VAR
status: boolean;

VAR
alphal : char;

VAR
alpha2: char;

The declarations for the two character type variables, ALPHAl and
ALPHA2, could be combined as follows:

VAR
alphal ,
alpha2: char;

To combine all of the variables in one declaration, you could use:

VAR
scores: integer,
status: boolean,
alphal,
alpha2: char;

Revision D Declarations 3-5

VARIABLE DECLARATION

Attributes

Attributes control three characteristics of a variable:

Access - whether the variable can be both read and written

Scope - where within the program the variable can be referenced

Storage - when and where the variable is stored

Access

The access attribute that you can specify is READ. A variable declared with
the READ attribute can only be read. It must be initialized in the declaration
and cannot be assigned another value later. It is called a read-only variable.
If the READ attribute is omitted, CYBIL assumes the variable can be both
read and written (changed).

The READ attribute is enforced by software; that is, the compiler checks to
ensure that the value of a variable does not change. The READ attribute
alone does not mean that the variable is actually in a read-only section.f To
do that, you must specify the name of a read-only section as declared in a
section declaration (described later in this chapter).

A variable with the READ attribute specified is assumed to be static. (For
further information on static variables, refer to Storage later in this chapter.)
You can use a read-only variable as an actual parameter in a procedure call
only if the corresponding formal parameter is a value parameter; that is, a
read-only variable can be passed to a procedure only if the procedure makes
no attempt to assign a value to it. (Procedure parameters are described in
chapter 7.)

A read-only variable is similar to a constant, but can't always be used in the
same places. For example, the initial value that you can assign to a variable
(as described earlier in this chapter) must be a constant expression, an
indefinite value constructor, or a pointer to a global procedure. In this case,
even though a read-only variable has a constant value, you cannot use it in
place of a constant expression. Also, as mentioned in chapter 2, you cannot
reference a substring of a constant. You can, however, reference a substring
of a variable and, thus, a read-only variable. There are other differences
similar to these. The descriptions in this manual state explicitly whether
constants and/or variables can be used.

t A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

3-6 CYBIL Language Definition Revision A

VARIABLE DECLARATION

Examples:

In this example the variable DEBUG is a read-only variable set to the
constant value of TRUE. NUMBER can be read and written.

VAR
debug: [READ] boolean := TRUE,
number: i n t e g e r ;

The following example illustrates a difference between constants and read­
only variables. To declare a string type, you must specify the length of the
string in parentheses following its name. As defined in chapter 4, the length
must be a positive, integer constant expression.

CONST
string_size_1 = 5;

VAR
string_size_2: [READ] integer := 5,
s t r i n g l : s t r ing (str ing_size_1),
str ing2: str ing (string_size_2);

The declaration of STRING1 is valid; the length of the string is 5, which is
the value of the constant STRING_SIZE_1. However, STRING2 is invalid;
even though STRING_SIZE_2 does not change in value, it is still a variable
and cannot be used in place of a constant expression.

Scope

The scope attributes define the part or parts of a module to which a variable
declaration applies. If you don't include any scope attributes in the
declaration, the scope of a variable is the block in which it is declared. A
variable declared in an outermost block applies to that block and all the
blocks it contains. However, a variable declared even at the outermost level
of a module cannot be used outside of that module. Use the scope attributes,
XDCL and XREF, to extend the scope of a variable so that it can be shared
among modules.

To use the same variable in different modules, you must specify the XDCL
and XREF attributes. The XDCL attribute indicates that the variable being
declared can be referenced from other modules. The XREF attribute indicates
that the variable is declared in another module. When the loader loads
modules, it resolves variable declarations so that each XDCL variable is
allocated static storage and the XREF variable shares the same space. This
is known as satisfying externals. The loader issues an error if an XREF
variable does not have a corresponding XDCL variable. In one compilation
unit or group of units that will be combined for execution, a specific variable
can have only one declaration that contains the XDCL attribute.

Revision D Declarations 3-7

VARIABLE DECLARATION

Declarations for a shared variable must match except for initialization. A
variable declared with the XDCL attribute can be initialized and have
different values assigned during program execution. A variable declared
with the XREF attribute cannot be initialized but can be assigned values.

If you declare any attributes, the variable is assumed to be static in storage.
If you don't declare any attributes, the variable is assumed to be automatic,
unless you declare it at the outermost level of the module. (A variable
declared at the outermost level is always static.)

Example:

Assume the following two modules have been compiled. When the loader
loads the resulting object modules and satisfies externals, it allocates storage
to FLAG, an XDCL variable, and initializes it to FALSE. When the loader
finds the XREF variable FLAG in module TWO, it assigns the same storage.
Thus, references to FLAG from either module refer to the same storage
location.

MODULE o n e ;

VAR
flag: [XDCL] boolean := FALSE;

MODEND one;
MODULE two;

VAR
flag: [XREF: boolean;

MODEND two;

3-8 CYBIL Language Definition Revision D

VARIABLE DECLARATION

Storage

The storage attributes determine when storage is allocated and where
storage is allocated.

When Storage is Allocated

There are two methods of allocating storage for variables: automatic and
static. For an automatic variable, storage is allocated when the block
containing the variable's declaration begins execution. Storage is released
when execution of the block ends. If the block is entered again, storage is
allocated again, and so on. When storage is released, the value of the
variable is lost.

For a static variable, storage is allocated (and initialized, if that parameter is
included) only once, at load time. Storage remains allocated throughout
execution of the module. However, even though storage remains allocated, a
static variable still follows normal scope rules. It can be accessed only within
the block in which it is declared. A reference to a static variable from an
outer block is an error even though storage for the static variable is still
allocated.

The ability to declare a static variable is important, for example, in the case
where an XDCL variable is referenced by a procedure before the procedure
that declares the variable is executed. Because an XDCL variable is static
(refer to Scope earlier in this chapter for further information), it is allocated
space and is initialized immediately at load time; therefore, it is available to
be referenced before execution of the procedure that actually declares it as
XDCL.

A variable can be declared static explicitly with the STATIC attribute. It is
assumed to be static implicitly if it is in the outermost level of a module or if
it has any other attributes declared. In all other cases, CYBIL assumes the
variable is automatic. Only a static variable can be initialized.

Revision A Declarations 3-9

VARIABLE DECLARATION

The period between the time storage for a variable is allocated and the time
that storage is released is called the lifetime of the variable. It is defined in
terms of modules and blocks. The lifetime of an automatic variable is the
execution of the block in which it is declared. The lifetime of a static variable
is the execution of the entire module. An attempt to reference a variable
beyond its lifetime causes an error and unpredictable results.

The lifetime of a formal parameter in a procedure is the lifetime of the
procedure in which it is a part. Storage space for the parameter is allocated
when the procedure is called and released when the procedure finishes
executing.

The lifetime of a pointer must be less than or equal to the lifetime of the data
to which it is pointing.

The lifetime of a variable that is allocated using the storage management
statements (described in chapter 5) is the time between the allocation of
storage and the release of storage. A variable allocated by an automatic
pointer (using the ALLOCATE statement) must be explicitly freed (using the
FREE statement) before the block is left, or the space will not be released by
the program. When the block is left, the pointer no longer exists and,
therefore, the variable cannot be referenced. If the block is entered again, the
previous pointer and the variable referenced by the pointer cannot be
reclaimed.

Example:

In this example, the variables COUNTER and FLAG will exist during
execution of the entire module; however, they can be accessed only within
program MAIN.

PROGRAM m a i n ;

VAR
counter: [STATIC] integer := 0,
flag: [STATICD boolean;

PROCEND main;

3-10 CYBIL Language Definition Revision D

VARIABLE DECLARATION

Where Storage is Allocated

You can optionally specify that storage for a variable be allocated in a
particular section. A section is a storage area that can hold variables sharing
common access attributes, such as read-only variables or read/write
variables. You can define the section and its access attributes yourself using
the section declaration (discussed later in this chapter).

If you define a section with the section READ attribute, you define a read­
only section in the hardware.f Any variable declared with that section's
name as an attribute will reside in that read-only section. When you specify
the name of a read-only section in a variable declaration, you must also
include the variable access attribute READ.

In addition to any sections you define, CYBIL has several predefined
sections. You cannot assign a variable to one of these sections explicitly, in
the sense that you could include the section name as an attribute in your
variable declarations. Instead, the variable is assigned to one of these
predefined sections implicitly, based on its other attributes and
characteristics. For example, all static variables that are not assigned to a
user-defined section are automatically assigned to a section named
$STATIC. The following are the CYBIL section names and their contents.

Section Description

$BINDING The binding section that contains the links to

external procedures and the data of the module.

CYB$DEFAULT_HEAP The CYBIL default heap.

$LITERAL Constants.

$PARAMETER A subset of the $STACK section that contains

parameter list variables.

$REGISTER Variables that exist only in hardware registers.

$STACK Automatic variables.

$STATIC Static variables that are not already assigned to
a user-defined section.

t A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

Revision D Declarations 3-11 #

VARIABLE DECLARATION

The SCL Object Code Management manual gives further information on
sections regarding the object module format expected as input by the loader
and the object library generator.

Example-'

This example defines a read-only section named NUMBERS. The variable
I N P U T N U M B E R is a read-only variable that also resides in the section
NUMBERS. In the variable declaration, the READ attribute causes the
compiler to check that the variable is not written; the read-only section name,
NUMBERS, causes the hardware to ensure that the variable is not written.

SECTION
numbers: READ;

VAR
input_number: CREAD, numbers] integer := 100;

3-12 CYBIL Language Definition Revision D

VARIABLE DECLARATION

Initialization

You can assign an initial value to a variable only if it is a static variable.
The value can be a constant expression, an indefinite value constructor
(described next), or a pointer to a global procedure. The value must be of the
proper type and in the proper range. If you don't specify an initial value, the
value of the variable is undefined.

An indefinite value constructor is essentially a list of values. It is used to
assign values to the structured types sets, arrays, and records. It allows you
to specify several values rather than just one. Values listed in a value
constructor are assigned in order (except for sets, which have no order). The
types of the values must match the types of the components in the structure
to which they are being assigned. An indefinite value constructor has the
form

[value lvalue}...]

where value can be one of the following:

• A constant expression.

• Another value constructor (that is, another list).

• The phrase

REP number OF value

which indicates the specified value is repeated the specified number of
times.

• The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

The REP phrase can be used only in arrays. The asterisk can be used only in
arrays and records. For further information, refer to the descriptions of
arrays and records in chapter 4.

If you assign an initial value to a string variable and the variable is longer
than the initial value, spaces are added on the right of the initial value to fill
the field. If the initial value is longer than the variable, the initial value is
truncated on the right to fit the variable.

In a variant record, fields are initialized in order until a special variable
called the tag field name is initialized. The tag field name is then used to
determine the variant for the remaining field or fields in the record, and they
are likewise initialized in order.

Depending on the attributes defined in the variable declaration, initialization
is required, prohibited, or optional. Table 3-1 shows the initialization possible
for various attributes.

Revision A Declarations 3-13

VARIABLE DECLARATION

Table 3-1 . Attributes and Initialization

Attributes Specified! Initialization

None

READ

READ,STATIC

READ.XDCL

READ,STATIC,XDCL

READ,section_name

READ,XDCL,section_name

XREF

XREF,READ

XREF,STATIC

XREF,READ,STATIC

STATIC

XDCL

XDCL.STATIC

section name

section_name,XDCL

Optional if static variable; prohibited
if automatic variable.

Required.

Required.

Required.

Required.

Required.

Required.

Prohibited.

Prohibited.

Prohibited.

Prohibited.

Optional.

Optional.

Optional.

Optional.

Optional.

t The static attribute is assumed if any attributes are specified.

3-14 CYBIL Language Definition Revision A

VARIABLE DECLARATION

Example:

The variables declared in this example are inside program MAIN. Therefore,
they are automatic unless declared with an attribute. TOTAL is automatic
and as such cannot be initialized. COUNT is declared static and can be
initialized. ALPHA and BETA are also static and can be initialized because
they have other attributes declared.

PROGRAM main;

VAR

total: integer,
count: [STATIC] integer := 0,
alpha,
b e t a : D<DCL, READ] char := ' p ' ;

PROCEND main;

Revision D

TYPE DECLARATION

Type Declaration
The standard data types that are defined in CYBIL are described in chapter
4. Any of these can be declared as a valid type within a variable declaration.
The type declaration allows you to define a new data type and give it a
name, or redefine an existing type with a new name. Then that name can be
used as a valid type within a variable declaration.

Use this format for a type declaration:

TYPE name = type {,name = type}...;

name

Name to be given to the new type.

type

Any of the standard types defined by CYBIL or another user-defined
type.

Once you define a type, you can use it to define yet another type. Thus, you
can build a very complex type that can be referred to by a single name.

The type declaration is evaluated at compilation time. It does not occupy
storage space during execution.

Examples:

In this example, INT is defined as a type consisting of all the integers; it is
just a shortened name for a standard type. LETTERS is defined as a type
consisting of the characters 'a' through 'z' only; this is a selective subset of
the standard type characters. DEVICES is an ordinal type that in turn is
used to define EQ_TABLE, a type consisting of an array of 10 elements. Any
element in the type EQ TABLE can have one of the ordinal values specified
in DEVICES.

TYPE
int = integer,
Letters = 'a' .. 'z',
devices = (Lp512, dk8A4, dk885, nt679),
eq_table = array [1 .. 10] of devices;

VAR
i: int,
alpha: Letters,
t a b l e j l : eq_tabLe,
status_table: array C1 . . 3 3 of eq_table;

3-16 CYBIL Language Definition Revision D

TYPE DECLARATION

All of the variables in the preceding example could have been declared using
variable declarations only, as in:

VAR
i: integer,
alpha: 'a' .. 'z',
t a b l e j : array H1 . . 10] of Up512, dk844, dk885, nt679),
status_table: array C1 . . 3 3 of array C1 . . 10] of

(lp512, dk844, dk885, nt679);

However, it becomes cumbersome to declare a complex structure using only
standard types. Defining your own types lets you avoid needless repetition
and the increased possibility of errors. In addition, it makes code easier to
maintain; to add a new device in the first example, you need add it only in
the type declaration, not in every variable declaration that contains devices.

Revision D Declarations 3-17 #

SECTION DECLARATION

Section Declaration
A section is an optional working storage area that contains variables with
common access attributes. You can define a section and its associated
attributes with the section declaration. Including the section name in a
variable declaration causes the variable to reside in that section.

Use this format for a section declaration:

SECTION name {,name}...: attribute
[,name {,name}... •' attribute}...;

n a m e

Name of the section.

attribute

The keyword READ or WRITE.

A section defined with the READ attribute is considered a read-only section.f
A variable declared with that section's name will reside in read-only
memory. In this case, the variable access attribute READ must also be
included in the variable declaration. The section name causes hardware
protection; the READ attribute causes compiler checking.

A section defined with the WRITE attribute contains variables that can be
both read and written.

The initialization of variables declared with a section name depends on their
attributes, as shown in table 3-1. Variables declared with a section name are
static.

The names and contents of predefined CYBIL sections are given earlier in
this section under Where Storage is Allocated. The SCL Object Code
Management manual gives further information on sections regarding the
object module format expected as input by the loader and the object library
generator.

t A read-only section is a hardware feature. Data that resides in a physical
area of the machine designated as a read-only section is protected by
hardware, not by software. This feature is described in further detail in
volume II of the virtual state hardware reference manual.

3-18 CYBIL Language Definition Revision I

SECTION DECLARATION

Example:

Two sections are defined in this example: LETTERS is a read-only section
and NUMBERS is a read/write section. The variable CONTROL,LETTER
is a read-only variable that resides in LETTERS. The READ attribute is
required because of the read-only section name. UPDATE_NUMBER is a
variable that can be read or written, and resides in the section NUMBERS.
In this example, it is also declared as an XDCL variable but this is not
required.

SECTION
Letters: READ,
numbers: WRITE;

VAR
control_letter: [READ, Letters] char := 'p',
update_number: CXDCL, numbers] integer;

Revision D Declarations 3-19

0 Types 4

This chapter describes the standard types predefined by CYBIL.

Using Types 4-2

Equivalent Types 4-2

Basic Types 4-3

Scalar Types 4-3
Integer 4-4
Character 4-5
Boolean 4-6
Ordinal 4-7
Subrange 4-9

Floating-Point Type 4-11
Real 4-11

Cell Type 4-12
Pointer Types 4-13

Pointer to Cell 4-17
Relative Pointer 4-18

Structured Types 4-19

Strings 4-19
Substrings 4-20
Assigning and Comparing String Elements 4-23

Arrays 4-24
Initializing Elements 4-25
Referencing Elements 4-25

Records 4-28
Invariant Records 4-28
Variant Records 4-30
Initializing Elements 4-35
Referencing Elements 4-36
Alignment 4-37

Sets 4-38
Initializing and Assigning Elements 4-38

Storage Types 4-40

Sequences 4-40
Heaps 4-41

Adaptable Types 4-42

Adaptable Strings 4-42
Adaptable Arrays 4-43
Adaptable Records 4-44
Adaptable Sequences 4-46
Adaptable Heaps 4-47

Types 4

There are many standard types defined within CYBIL. A variable can be
assigned to (that is, be made an element of) any of these types. The type
defines characteristics of the variable and what operations can be performed
using the variable. In general, operations involving nonequivalent types are
not allowed; one type cannot be used where another type is expected.
Exceptions are noted in the descriptions of types that follow.

In this chapter, types are grouped into three major categories: basic types,
structured types, and storage types.

Basic types are the most elementary. They can stand alone but are also used
to build the more complex structures. The basic types are:

• Scalar types (integer, character, boolean, ordinal, and subrange)

• Floating-point types (real)

• Cell types

• Pointer types

Structured types are made from combinations of the basic types. The
structured types are:

• Strings

• Arrays

• Records

• Sets

Storage types hold groups of components of various types. The storage types
are:

• Heaps

• Sequences

Most types, when they are declared, have a fixed size. Strings, arrays,
records, sequences, and heaps can also be declared with an adaptable size
that is not fixed until execution. For this reason, they are sometimes called
adaptable types. Adaptable strings, arrays, records, sequences, and heaps
are discussed at the end of this chapter.

Revision D Types 4-1

USING TYPES

Using Types
Types are used as parameters in two kinds of declarations: the variable
declaration (to associate a type with a variable name) and the type
declaration (to associate a type with a new type name). Both declarations are
described in detail in chapter 3, but their basic formats are:

VAR name : {[attributes]} type {•"= initial_value};

TYPE name = type;

The description of each type shown in this chapter includes the keyword and
any additional information necessary to specify that type as a parameter.
The keywords replace the generic word type in the variable and type
declarations. For example, you would use the keyword INTEGER to specify
an integer type. The variable declaration would be:

VAR name : {[attributes]} INTEGER {•'= initial_ value};

The type declaration would be:

TYPE name = INTEGER;

Equivalent Types
As mentioned earlier in this chapter, operations involving nonequivalent
types are not allowed. Two types can be equivalent, though, even if they
don't appear to be identical. For example, two arrays can have different
expressions defining their sizes, but the expressions may yield the same
value. Rules for determining whether types are equivalent are given in the
following descriptions of the types.

Adaptable types and bound variant record types (described under Records
later in this chapter) actually define classes of related types that vary by a
characteristic, such as size. Adaptable type variables, bound variant record
type variables, and pointers to both types are fixed explicitly at execution
time. These types are said to be potentially equivalent to any of the types to
which they can adapt. That is, during compilation, references to adaptable
types and bound variant record types are allowed wherever there is a
reference to one of the types to which they can adapt. However, further type
checking is done during execution when each type is fixed (assigned to a
specific type). It is the current type of an adaptable or bound variant record
type that determines what operations are valid for it at any given time.

4-2 CYBIL Language Definition Revision A

BASIC TYPES

Basic Types

Scalar Types

All scalar types have an order; that is, for every element of a scalar type you
can find its predecessor and successor.

Scalar types are made up of five types:

• Integer

• Character

• Boolean

• Ordinal

• Subrange

Revision A Types 4-3

INTEGER

Integer

Use the keyword INTEGER to specify an integer type.

Integers range in value from -(263-l) to 263-l; that is,
-7FFFFFFFFFFFFFFF hexadecimal through 7FFFFFFFFFFFFFFF
hexadecimal. In general, the subrange type should be used rather than the
integer type. This allows the compiler to perform more rigorous type-
checking and may reduce the amount of storage needed to hold the value.

The operations permitted on integers are assignment, addition, subtraction,
multiplication, division (both quotient and remainder), all relational
operations, and set membership. Refer to Operators in chapter 5 for further
information on operations.

The functions $INTEGER and $REAL, described in chapter 6, convert
between integer type and real type. The $CHAR function, also described in
chapter 6, converts an integer value from 0 to 255 to a character according to
its position in the ASCII collating sequence.

Example:

This example shows the definition of a new type named INT, which consists
of elements of the type integer. The variable declaration declares variable I to
be of type INT, which is the integer type just declared. Also declared as a
variable is NUMBERS, which is explicitly of integer type. Because
NUMBERS is static, it can be initialized.

TYPE
int = integer;

VAR
i : in t ,
numbers: [STATIC] integer := 100;

4-4 CYBIL Language Definition Revision D

CHARACTER

Character

Use the keyword CHAR to specify a character type.

An element of the character type can be any of the characters in the ASCII
character set included in appendix B. It is always a single character; more
than one character is considered a string. (A string is one of the structured
types discussed later in this chapter. A string of length 1 can sometimes be
used as a character. Refer to Substrings later in this chapter.)

The operations permitted on characters are assignment, all relational
operations, and set membership. A character can be assigned to and
compared to a string of length 1. Refer to Operators in chapter 5 for further
information on operations and to Strings later in this chapter for further
information on string assignment.

The $INTEGER function described in chapter 6 converts a character value to
an integer value based on its position in the ASCII collating sequence. The
$CHAR function, also described in chapter 6, converts an integer value
between 0 and 255 to a character in the ASCII collating sequence.

Example:

This example shows the definition of a new type named LETTERS, which
consists of elements of the type character. The variable declaration declares
variable ALPHA to be of type LETTERS, which is type character; it is static
and initialized to the character ' j ' . The variable IDS is explicitly declared to
be of type character.

TYPE

Letters = char;

VAR
alpha: [STATIC] Letters := 'j',
ids: char;

Revision D Types 4-5

BOOLEAN

Boolean

Use the keyword BOOLEAN to specify a boolean type.

An element of the boolean type can have one of two values: FALSE or
TRUE. As with other scalar types, boolean values are ordered. Their order is
FALSE, TRUE. FALSE is always less than TRUE.

You get a boolean value by performing a relational operation on two objects
of the same type. You can perform some, but not necessarily all, relational
operations on every type except the following:

• Arrays or structures that contain an array as a component or field

• Variant records

• Sequences

• Heaps

• Records that contain a field of one of the preceding types

The operations permitted on boolean values are assignment, all relational
operations, set membership, and boolean sum, product, difference, exclusive
OR, and negation. Refer to Operators in chapter 5 for further information on
operations.

The $INTEGER function described in chapter 6 converts a boolean value to
an integer value. 0 is returned for FALSE; 1 is returned for TRUE.

Example:

This example shows the definition of a new type named STATUS, which
consists of the boolean values FALSE and TRUE. The variable declaration
declares variable CONTINUE to be of type STATUS; that is, it can be either
FALSE or TRUE. The variable DEBUG is explicitly declared to be boolean
and, because it is a read-only variable and therefore static, it can be
initialized.

TYPE
status = boolean;

VAR
continue: status,
debug: [READ] boolean := TRUE;

4-6 CYBIL Language Definition Revision D

ORDINAL

O r d i n a l

The ordinal type differs from the other scalar types in that you, the user,
define the elements within the type and their order. The term ordinal refers
to the list of elements you define; the term ordinal name refers to an
individual element within the ordinal.

Use this format to specify an ordinal:

(name, name {,name...})

name

Name of an element within the ordinal. There must be at least two
ordinal names.

The order is given in ascending order from left to right.

Each ordinal name can be used in just one ordinal type. If you use a name in
more than one ordinal, a compilation error occurs.

Ordinals are used to improve the readability and maintainability of
programs. They allow you to use meaningful names within a program rather
than, for example, map the names to a set of integers that are then used in
the program to represent the names.

The operations permitted on ordinals are assignment, all relational
operations, and set membership.

Two ordinal types are equivalent if they are defined in terms of the same
ordinal type names.

The $INTEGER function described in chapter 6 converts an ordinal value
(that is, a name) to an integer value based on its position within the defined
ordinal. The first ordinal name has an integer value of 0, the second name an
integer value of 1, and so on.

Revision D Types 4-7

ORDINAL

Examples:

In this example, the type declaration defines a type named COLORS, which
is an ordinal that consists of the elements RED, GREEN, and BLUE. The
variable PRIMARY_ COLORS is of COLORS type and therefore has the
same elements. The variable WORK_DAYS explicitly declares the ordinal
consisting of elements MONDAY through FRIDAY.

TYPE
colors = (red, green, blue);

VAR
primary_colors: colors,
work_days: (monday, tuesday, Wednesday, thursday,

f r i day) ;

In the ordinal type COLORS, the following relationships hold:

RED < GREEN

RED < BLUE

GREEN < BLUE

You can find the predecessor and successor of every element of an ordinal.
You can also map each element onto an integer using the $INTEGER
function (described in chapter 6). For example, $INTEGER(RED) = 0; this is
the first element of the ordinal.

The type declaration

TYPE
primary_colors = (red, green, b lue),
hot_colors = (red, orange, yel low);

is in error because the name RED appears in two ordinal definitions.

4-8 CYBIL Language Definition Revision D

SUBRANGE

Subrange

A subrange is not really a new type but a specified range of values within an
existing scalar type. A variable defined by a subrange can take on only the
values between and including the specified lower and upper bounds.

Use this format to specify a subrange:

lowerbound. . upperbound

lowerbound

Scalar expression specifying the lower bound of the subrange.

upperbound

Scalar expression specifying the upper bound of the subrange.

The lower bound must be less than or equal to the upper bound. Both bounds
must be of the same scalar type.

The type of a subrange is the type of its lower and upper bounds. If a
subrange completely encompasses its own type, it is said to be an improper
subrange type. For example, the subrange

FALSE..TRUE

is of type boolean and also contains every element of type boolean. It is
equivalent to specifying the type itself. An improper subrange type is always
equivalent to its own type.

Two subranges are equivalent if they have the same lower and upper bounds.

Subranges allow for additional error checking. Compilation options are
available that cause the compiler to check assignments during program
execution and issue an error if it finds a variable not within range. (Range
checking is available as an option on the compiler call command and as a
compiler directive. They are both described in chapter 8.) In addition,
subranges improve readability. Because a subrange defines the valid range
of values for a variable, it is more meaningful to the user for documentation
and maintenance.

The operations permitted on a subrange are the same as those permitted on
its type (the type of its lower and upper bound).

Revision A Types 4-9

SUBRANGE

Example:

This example shows the definition of a new type named LETTERS, which
consists of the characters 'a' through 'z' only. It also defines an ordinal
named COLORS consisting of the colors listed. The variable declaration
declares variable SCORES to consist of the numbers 0 through 100. The
lower and upper bounds are of integer type, so the subrange is also an
integer type. STATUS is a subrange of boolean values, which could have
been declared simply as BOOLEAN. HOT_COLORS is a subrange of the
ordinal type COLORS. It consists of the colors RED, ORANGE, and
YELLOW.

TYPE
Letters = 'a' .. 'z1,
colors = (red, orange, yellow, white, green, blue);

VAR
scores: 0 .. 100,
status: FALSE .. TRUE,
hot_colors: red .. yellow;

4-10 CYBIL Language Definition Revision D

REAL

Floating-Point Type

The floating-point type defines real numbers.

R e a l

Use the keyword REAL to specify a real type.

Real numbers range in value from 4.8*10-1234 to 5.2*101232.

The operations permitted on real types are assignment, addition, subtraction,
multiplication, division, and all relational operations.

The functions $INTEGER and $REAL, described in chapter 6, convert
between integer type and real type.

Revision A

CELL

Cell Type

The cell type represents the smallest storage location that is directly
addressable by a pointer. On NOS/VE, a cell is an 8-bit byte within a 64-bit
memory word.

Use the keyword CELL to specify a cell type.

Operations permitted on a cell type are assignment and comparison for
equality and inequality.

4-12 CYBIL Language Definition Revision A

POINTER

Pointer Types

A pointer represents the location of a value rather than the value itself.
When you reference a pointer, you indirectly reference the object to which it
is pointing.

Use this format to specify a pointer type:

"type

type

Type to which the pointer can point. It can be any defined type. With
the exception of a pointer to cell type (discussed later in this chapter),
the pointer can point only to objects of the type specified.

For example,

VAR
integer_pointer: "integer;

defines a pointer named INTEGER_POINTER that can point only to
integers.

INTEGER POINTER any
integer

Use this format to specify the object of a pointer (that is, what the pointer
points to):

pointer _ name "

pointer _ name

The name you gave the pointer in the variable declaration.

This preceding notation is called a pointer reference; it refers to the object to
which pointer_name points. It can also be referred to as a dereference. For
example,

integer_pointer"

identifies a location in memory; it is the location to which INTEGER_
POINTER points.

INTEGER POINTER ~

INTEGER POINTER • any
integer

Revision D Types 4-13

POINTER

You can initialize or assign a value to the object of a pointer as you would
any other variable; that is:

pointer_name " := value;

This assigns the specified value to the object that the pointer points to. For
example,

integer_pointer~ := 5;

assigns the integer value 5 to the location INTEGER, POINTER points to:

INTEGER POINTER

INTEGER POINTER

You can assign the object of a pointer to a variable in the same way:

variable := pointer_name ";

This takes the value of what pointer_name points to and assigns it to the
variable. For example,

i := integer_pointer" ;

assigns to I the contents of what INTEGER,POINTER points to, that is, 5.

If a pointer reference is to another pointer type variable, meaning that the
pointer points to a pointer that in turn points to a variable, you can specify
the variable in the format:

pointer _ name ""

For example, the declarations

TYPE

integer_pointer = "integer;

VAR
pointer_2: "integer_pointer;

can be pictured conceptually as follows:

POINTER 2

POINTER_2 ~

a pointer
INTEGER_POINTER

POINTER_2~~

any
integer

4-14 CYBIL Language Definition Revision

POINTER

POINTER_2 points to a pointer of type INTEGER_POINTER. INTEGER.
POINTER points to integers. A reference to POINTER_2 " refers to the
location of the pointer that in turn points to an integer. A reference to
POINTER_2 "" refers to the location of the integer.

The value assigned to a pointer can be:

• The pointer constant NIL.

• The pointer symbol" followed by a variable of the type to which the
pointer can point.

• A pointer variable.

• A pointer-valued function.

NIL is the value of a pointer variable without an object; the variable is not
currently assigned to any location. It can be assigned to or compared with
any pointer of any type.

Pointers allow you to manipulate storage dynamically. Using pointers, you
can create and destroy variables while a program is executing. Memory is
allocated when the variable is created and released when it is destroyed.
Pointers also allow you to reference the variables without giving each a
unique name.

A pointer variable can be a component of a structured type as well as a valid
parameter in a function. A function can return a pointer variable as a value.

Permissible operations on pointers are assignment and comparison for
equality and inequality.

Pointers to adaptable types (adaptable strings, arrays, records, sequences,
and heaps) provide the only method for accessing objects of these types other
than through formal parameters of a procedure. In particular, pointers to
adaptable types and pointers to bound variant records are used to access
adaptable variables and bound variant records whose types have been fixed
by an ALLOCATE, PUSH, or NEXT statement (described in chapter 5).

Pointers are equivalent if they are defined in terms of equivalent types. A
pointer to a fixed type (as opposed to an adaptable type) can be assigned and
compared to a pointer to an adaptable type or bound variant record if the
adaptable type is potentially equivalent to the fixed type. (Refer to
Equivalent Types earlier in this chapter for further information on
potentially equivalent types.)

Revision B Types 4-15

POINTER

Example:

The following example shows the declaration and manipulation of two
pointer type variables. Comments appear to the right.

i n teger ;
TYPE

p t r

VAR

J /
k: i n teger ,
p 1 : p t r ,

p2: " p 1 ,

b2: boolean;

ALLOCATE p 1 ;

ALLOCATE p2;

P i "
P2"

10;

p 1 ;

J == P 1 " ;

k := p 2 " ;

b1 := j = k;
b2 := p1 " = p 2 " " ;

p1 := NIL;

k := p 1 " ;

IF p2 = NIL THEN
k := k + 1 ;

IFEND;
p1 := " (i + j + 2 * k) ;

PTR is a type that can contain pointers to
integers.

PI is a variable that can contain pointers to
integers.
P2 is a variable that can contain pointers to
PI (that is, pointers that point to pointers to
integers). It could have been written as
P2: " INTEGER.

Allocates space for an integer (because that is
what PI points to) and sets PI to point to that
space.
Allocates space for a pointer that points to an
integer and sets P2 to point to that pointer.
The space pointed to by PI is set to 10.
The space pointed to by P2 is set to the value
of the pointer PI.
The integer variable J is set to what PI points
to: the integer 10.
The integer variable K is set to the object of
the pointer that P2 points to. (Think of P2 ""
as "P2 points to a pointer; that pointer points
to an object." You are assigning that object to
K.) P2 points to PI, which points to the
integer 10.
J and K are both 10. Bl is TRUE.
PI points to an integer. P2 points to the
pointer (PI) that points to the same integer.
Their values are the same and B2 is TRUE.
PI no longer points to anything.
The statement is in error because PI does not
point to anything.
A valid statement. K is not incremented
because P2 still points to PI.

An invalid statement. The location of an
expression cannot be found.

4-16 CYBIL Language Definition Revision D

POINTER TO CELL

Pointer to Cell

A pointer to cell type can take on values of any type.

Use this format to declare a pointer to a cell:

"CELL

A variable declared simply as a pointer type variable can take on as values
only pointers to a single type, which is specified in the pointer's declaration.
A variable declared as a pointer to cell variable has no such restrictions. It
can take on values of any type. Also, any fixed or bound variant pointer
variable can assume a value of pointer to cell.

Permissible operations on a pointer to a cell are assignment and comparison
for equality and inequality. In addition, a pointer to a cell can be assigned to
any pointer to a fixed or bound variant type. But the pointer to the fixed or
bound variant type cannot have as its value a pointer to a variable that is
not a cell type or, furthermore, whose type is not equivalent to the type to
which the target of the assignment points. A pointer to a cell can be the
target of assignment of any pointer to a fixed or bound variant type.

Revision A Types 4-17

RELATIVE POINTER

Relative Pointer

Relative pointer types represent relative locations of components within an
object with respect to the beginning of the object.

Use this format to specify a relative pointer:

REL { (parent_name) } "component_type

parent _name

Name of the variable that contains the components being designated
by relative pointers. Specify a string, array, record, heap, or sequence
type (either fixed or adaptable). If omitted, the default heap is used.

componen t_ type

Type of the component to which the relative pointer will point.

Relative pointers are generated using the standard function #REL (described
in chapter 6). A relative pointer cannot be used to access data directly.
Instead, the relative pointer must be converted to a direct pointer using the
standard function #PTR (also described in chapter 6). The direct pointer can
then be used to access the data.

Relative pointers have three major differences from the other pointers
discussed in this chapter:

• Relative pointers may need less space than other pointers.

• A linked list or array of relative pointers (or some similar organization)
within a parent type variable is still correct if the entire variable is
assigned to another variable of the same parent type.

• Relative pointers are independent of the base address of the parent type
variable.

Operations permitted on a relative pointer are assignment, comparison for
equality and inequality, and the #PTR function. Relative pointers can be
assigned and compared if they are of equivalent relative pointer types.
Relative pointer types are equivalent if they are defined in terms of
equivalent parent types and equivalent component types.

4-18 CYBIL Language Definition Revision A

STRINGS

Structured Types
Structured types are combinations of the basic types already described in
this chapter (integer, character, boolean, ordinal, subrange, real, cell, and
pointer). Even the structured types discussed here can be combined with each
other but they are still essentially groups of the basic types. The structured
types described in this section are:

• Strings

• Arrays

• Records

• Sets

Strings

A string is one or more characters that can be identified and referenced as a
whole by one name.

Use this format to specify a string type:

STRING (length)

length

A positive integer constant expression from 1 to 65,535.

If you specify an initial value in the variable declaration for a string, it can
be:

• A string constant.

• The name of a string constant declared with a constant declaration.

• A constant expression (as described in chapter 2).

A string cannot be packed. Two string types are equivalent if they have the
same length.

The operations permitted on string types are assignment and comparison (all
six relational operations). For further information, refer to Assigning and
Comparing String Elements later in this chapter.

Revision D Types 4-19

STRINGS

Substrings

You can reference a part of a string (this is called a substring) or a single
character of a string.

Use this format to reference a substring or single character:

n a m e (position {, length})

n a m e

Name of the string.

posi t ion

Position within the string of the first character of the substring. (The
position of the first character of the string is always 1.) Specify a
positive integer expression less than or equal to the length of the string
plus one; that is,

1 < position < string length + 1

If you specify string length plus one, the substring is an empty string.

length

Number of characters in the substring. Specify a nonnegative integer
expression or * (the asterisk character). If you specify *, the substring
consists of the character specified by the position parameter and all
characters following it in the string. If you specify 0, the substring is
an empty string. Omission causes 1 to be used.

4-20 CYBIL Language Definition Revision B

STRINGS

A substring reference in the form

name(position)

is a substring of length 1, a single character. In this form, it can be used
anywhere a character expression is allowed. It can be:

• Compared with a character.

• Tested for membership in a set of characters.

• Used as the initial and/or final value in a FOR statement that is
controlled by a character variable.

• Used as a value in a CASE statement.

• Used as an argument in the standard functions $INTEGER, SUCC, and
PRED.

• Assigned to a character variable.

• Used as an actual parameter to a formal parameter of type character.

• Used as an index value corresponding to a character type index in an
array.

A string constant, even if it is declared with a name in a constant (CONST)
declaration, is not a variable. Therefore, substrings cannot be referenced in a
string constant.

Revision D Types 4-21

STRINGS

Examples:

If a string variable LETTERS is declared and initialized as follows

VAR
Letters: [STATIC str ing (6) := 'abcdef ;

the following substring references are valid:

Substring Comments

LETTERS(l) Refers to 'a'.

LETTERS(6) Refers to 'f.

LETTERS(1,6) Refers to the entire string.

LETTERS(1,*) Refers to the entire string.

LETTERS(2,5) Refers to Tjcdef.

LETTERS(2,*) Refers to W e f .

LETTERS(2,0) Refers to an empty string ".

LETTERS(7,*) Refers to an empty string ".

LETTERS(O), LETTERS(8), and LETTERS(8,0) are illegal.

If a pointer variable is declared and initialized as follows

VAR
stn'ng_ptr: [STATIC] "s t r ing (6) ' l e t t e r s ;

then STRING_PTR points to the string LETTERS and the pointer variable
STRING_PTR" can be used to make substring references just like the
variable LETTERS.

Substring Comments

STRING_PTR-(1)

STRING_PTR"(6)

STRING_PTR-(1,6)

STRING_PTR-(2,*)

STRING_PTR-(2,0)

Refers to 'a'.

Refers to 'f.

Refers to the entire string.

Refers to 'bcdef.

Refers to an empty string ".

4-22 CYBIL Language Definition Revision D

STRINGS

Assigning and Comparing String Elements

You can assign or compare a character, substring, or string to a substring,
string variable, or character variable. A character is treated as a string of
length 1.

If you assign a value that is longer than the substring or variable to which it
is being assigned, the value is truncated on the right. If you assign a value
that is shorter, spaces are added on the right to fill the field. This method is
also used for comparing strings of different lengths.

If you assign a substring to a substring of the same variable, the fields
cannot overlap or the results are undefined.

The concatenation operation, CAT, cannot be used with string variables.

Example:

Assume the string variable DAY is declared and initialized as follows:

VAR
day: [STATIC] string (6) := 'monday';

The following assignments can be made:

short := day (1, 3);
empty := day (1, 0);

SHORT is assigned the string 'mon'. EMPTY is assigned a null string.

Revision D Types 4-23

ARRAYS

Arrays

An array in C YBIL is a collection of data of the same type. You can access
an array as a whole, using a single name, or you can access its elements
individually.

Use this format to specify an array type:

{PACKED} ARRAY [subscript.bounds] OF type

PACKED

Optional packing parameter. When specified, the elements of the array
are mapped in storage in a manner that conserves storage space,
possibly at the expense of access time. If omitted, the array is
unpacked; that is, the elements are mapped in storage to optimize
access time rather than to conserve space. (The array itself is always
mapped into an addressable memory location; that is, it starts on a
word boundary or, in the case of a packed array in a record, on a byte
boundary.) For further information on how data is stored in memory,
refer to appendix D, Data Representation in Memory.

If the array contains structured types (such as records), the elements of
that type (the fields in the records) are not automatically packed. The
structured type itself must be declared packed.

subscript_ bounds

Value that specifies the size of the array and what values you can use
to refer to individual elements. The bounds can be any scalar type or
subrange of a scalar type; the bounds is often a subrange of integers.

type

Type of the elements within the array. The type can be any defined
type, including another array, except an adaptable type (that is, an
adaptable string, array, or record). All elements must be of the same
type.

Elements of a packed array cannot be passed as reference (that is, VAR)
parameters in programs, functions, or procedures.

Two array types are equivalent if they have the same packing attribute,
equivalent subscript bounds, and equivalent component types.

The only operation permitted on an array type is assignment.

4-24 CYBIL Language Definition Revision D

ARRAYS

Initializing Elements

An array can be initialized using an indefinite value constructor. An
indefinite value constuctor is a list of values assigned in order to the
elements of an array. The first value in the list is assigned to the first
element, and so on. The number of values in the value constructor must be
the same as the number of elements in the array. The type of the values must
match the type of the elements in the array. An indefinite value constructor
has the form

[value l,value}...]

where value can be one of the following:

• A constant expression.

• Another value constructor (that is, another list).

• The phrase

REP number OF value

which indicates the specified value is repeated the specified number of
times.

• The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

An indefinite value constructor can be used only for initialization; it cannot
be used to assign values during program execution. Individual elements can
be assigned during execution using the assignment statement (described in
chapter 5).

Referencing Elements

The array name alone refers to the entire structure.

Use this format to refer to an individual element of an array:

a r ray_name[subscr ip t]

subscr ipt

A scalar expression within the range and of the type specified in the
subscript_ bounds field of the array declaration. This subscript
specifies a particular element.

Revision A Types 4-25

ARRAYS

Examples:

This example shows the definition of a type named POS_TABLE, which is
an array of 10 elements that can take on the values defined in POSITION.
The variable declaration declares variable NUMBERS to be an array of five
elements initialized to the values 1, 2, 3, 4, and 5 where 1 is the value of the
first element, and so on. LETTERS is an array of 26 elements that can be
any characters. BIG_TABLE is a 100-element array, each element of which
is an array of 10 elements.

TYPE
posit ion = (bo i , as is , eo i) ,
pos_tabLe = array [1 . . 103 of posi t ion;

VAR
i : [STATIC] integer := 5,
numbers: [STATIC] array [1 . . 5 3 of integer := [1 , 2 , 3, 4 , 51,
Letters: array C'a' . . ' z '] of char,
big_table: array [1 . . 100] of pos_table;

The declaration of BIG_TABLE is equivalent to:

VAR
big_table: array C1 . . 100] of array C1 . . 10] of posi t ion;

You can reference individual elements using the following statements:

numbers L~i] This reference is the same as
NUMBERS[5]; it refers to the fifth
element of the array NUMBERS.

Letters C'b'] := 'B ' ; This statement sets the second
element of the array LETTERS to the
uppercase character B.

big_tabLe [13] [10] := as i s ; This statement sets the tenth element
of the thirteenth array to ASIS.

4-26 CYBIL Language Definition Revision D

ARRAYS

The following example shows the declaration and initialization of a two-
dimensional array named DATA_TABLE. All of the components of the third
element of the array (which is an array itself) are set to 0. Notice that the
third element of the last array, DATA_TABLE [4][3], is uninitialized.

TYPE
innerarray = array C1 . . 5] of integer,
twodim = array C1 . . 4 3 of innerarray;

VAR
data_table: [STATIC] twodim := LL5, - 10, 2, 6, Zl,

C4, 11, 19, - 3, 6 : ,
[REP 5 of 0J,
t3 , - 9, * , 4, 15:3;

Revision D

RECORDS

Records

Records are collections of data that can be of different types. You can access
a record as a whole using a single name, or you can access elements
individually.

A record has a fixed number of components, usually called fields, each with
its own unique name. Different fields are used to indicate different data types
or purposes.

There are two types of records: invariant records and variant records.
Invariant records consist of fields that don't change in size or type. Variant
records can contain fields that vary depending on the value of a key variable.
Formats used for specifying both kinds of records are given later in this
chapter.

Operations permitted on record types are assignment and, for invariant
records only, comparison for equality and inequality. The invariant records
being compared cannot contain arrays as fields.

Invariant Records

An invariant record consists of fields that do not vary in size or type once
they have been declared. They are called fixed or invariant fields.

Use this format to specify an invariant record:

{PACKED} RECORD
field_name : {ALIGNED {[offset MOD base])} type
{.field_name: {ALIGNED {[offset MOD base]}} type}...

RECEND

PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly
at the expense of access time. If omitted, the record is unpacked; that
is, the fields are mapped in storage to optimize access time rather than
to conserve space. For further information on how data is stored in
memory, refer to appendix D, Data Representation in Memory.

If one of the fields is a structured type (such as another record), the
elements of that type are not packed automatically. The structured type
itself must be declared packed.

f ie ld_name

Name identifying a particular field. The name must be unique within
the record. Outside of the record declaration, it can be redefined.

4-28 CYBIL Language Definition Revision A

RECORDS

ALIGNED

Optional alignment parameter. If specified, it can appear alone or with
an offset, in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary
to facilitate rapid access to the field. This may negate some of the effect
of packing the record. For further information, refer to Alignment later
in this chapter.

offset MOD base

Optional offset to be used in conjunction with the ALIGNED
parameter. This offset causes the field to be mapped to a particular
hardware address relative to the specified base and offset. Specify a
particular word or a particular byte within a word. Base is evaluated
first to find the word boundary; offset is then evaluated to determine
the number of bytes offset within that word. Filler is created if
necessary to ensure that the field begins on the specified word or byte.

offset

Byte offset within the word specified by base. Specify an integer
constant less than base.

base

Word boundary. Specify an integer constant that is divisible by 8.
For automatic variables, the base can only be 8.

type

Any defined type, including another record, but not an adaptable type.

Elements of a packed record cannot be passed as reference (that is, VAR)
parameters in programs, functions, or procedures unless they are aligned.

The only operations possible on whole invariant records are assignment and
comparison. A record can be assigned to another record if they are both of
the same type. A record can also be compared to another record for equality
or inequality if they are both of the same type. Invariant record types are the
same if they have the same packing attributes, the same number of fields,
and corresponding fields have the same field names, same alignment
attribute, and equivalent types.

Revision A Types 4-29

RECORDS

Example:

This example shows the definition of two new types, both records. The record
named DATE has three fields that can hold, respectively, DAY, MONTH,
and YEAR. The record named RECEIPTS appears to contain two fields,
NAME and PAYMENT; but PAYMENT is itself a record consisting of the
three fields in DATE, just described. Initialization of fields within records is
discussed under Initializing Elements later in this chapter.

TYPE
date = record

day: 1 .. 31,
month: string (4),
year: 1900 .. 2100,

recend,
receipts = record
name: string (40),
payment: date,

recend;

Variant Records

A variant record contains fields that may vary in size, type, or number
depending on the value of an optional tag field. These different fields are
called variant fields or simply variants.

Use this format to specify a variant record:

{PACKED} {BOUND} RECORD
{fixed_field_name: {ALIGNED {[offset MOD base]}} type}..j
CASE {tag_field_name •'} tag_field_type OF
= tag_field_value =

variant_ field
{= tag_field_value =

variant _field\...
CASEND

RECEND

t When you specify more than one fixed field, you must separate them with
commas.

4-30 CYBIL Language Definition Revision D

RECORDS

PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly
at the expense of access time. If omitted, the record is unpacked; that
is, the fields are mapped in storage to optimize access time rather than
to conserve space. For further information on how data is stored in
memory, refer to appendix D, Data Representation in Memory.

If a field is a structured type (such as another record), the elements of
that type are not packed automatically. The structured type itself must
be declared packed.

BOUND

Optional parameter indicating that this is a bound variant record. If
specified, the tag_field_name parameter is required. Additional
information on bound variant records follows the parameter
descriptions.

fixed_field_ name

The name of a fixed field (one that does not vary in size), as described
under Invariant Records earlier in this chapter. The name must be
unique within the record. Outside of the record declaration, it can be
redefined. There can be zero or more fixed fields.

ALIGNED

Optional alignment parameter; the same as that for an invariant
record. If specified, it can appear alone or with an offset in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary
to facilitate rapid access to the field. This may negate some of the effect
of packing the record. For further information, refer to Alignment later
in this chapter.

Revision A Types 4-31

RECORDS

offset MOD base
Optional offset to be used in conjunction with the ALIGNED
parameter, the same as that for an invariant record. This offset causes
the field to be mapped to a particular hardware address relative to the
specified base and offset. Specify a particular word or a particular byte
within a word. Base is evaluated first to find the word boundary; offset
is then evaluated to determine the number of bytes offset within that
word. Filler is created if necessary to ensure that the field begins on the
specified word or byte.

offset

Byte offset within the word specified by base. Specify an integer
constant less than base.

base
Word boundary. Specify an integer constant that is divisible by 8.
For automatic variables, the base can only be 8.

type
Any defined type, including another record, but not an adaptable type.

tag_field_ name

Optional parameter specifying the name of the variable that
determines the variant. The current value of this variable determines
which of the variant fields that follow will actually be used. If omitted,
the variant that had the last assignment made to one of its fields is
used. This parameter is required if the record is a bound variant record
(BOUND is specified). Additional information is given following the
parameter descriptions.

tag_field_type
Any scalar type. This type defines the values that the tag_field_value
can have.

tag_field_value
A constant scalar expression or subrange. Specify one of the possible
values that can be assigned to the variable specified by tag_field_
name. It must be of the type and within the range specified by tag_
field_type. Specifying a subrange has the same effect as listing each
value separately.

variant _ field
Zero or more fixed fields of the same form as that shown in the second
line of this format. This field exists only if the current value of tag_
field_name is the same as that in the tag_field_value associated with
the variant field. The last field can be a variant itself.

4-32 CYBIL Language Definition Revision A

RECORDS

The variant fields must follow all invariant (fixed) fields in the record. The
field following the reserved word CASE is called the tag_field_name. The
tag _ field _ name can take on different values during execution. When its
value matches one of the values specified in a tag_field_ value, the variants
associatd with that tag_field_value are used. Variants themselves consist of
zero or more fixed fields optionally followed by another variant. If the last
field is itself a variant, it can have another CASE clause, tag_field_name,
and so on.

The tag_field_name is an optional field. When it is omitted, no storage is
assigned for the tag field. If the record has no tag field, you choose a variant
by making an assignment to a subfield within a variant. The variant
containing that subfield becomes the currently active variant. In a variant
record without a tag field, all fields in a new active variant become undefined
except the subfield that was just assigned. An attempt to access a variant
field that is not currently active produces undefined results.

Space for a variant record is allocated using the largest possible variant.

Variant record types are equivalent if they have the same packing attribute,
their fixed fields are equivalent (as defined for invariant record types), they
have the same tag field names, their tag field types are equivalent, their tag
field values are the same, and their corresponding variant fields are
equivalent.

A bound variant record is specified by including the BOUND parameter; the
tag_field_name is also required. A bound variant record type can be used
only to define pointers for bound variant record types (that is, bound variant
pointers). A variable of this type is always allocated in a sequence or heap, or
in the run-time stack managed by the system.

When allocating a bound variant record, you must specify the tag field
values that select the variation of the record. Only the specified space is
allocated. The ALLOCATE statement in this case returns a bound variant
pointer.

If a formal parameter of a procedure is a variant record type, the actual
parameter cannot be a bound variant record type.

A record cannot be assigned to a variable of bound variant record type.

Bound variant record types are equivalent if they are defined in terms of
equivalent, unbound records. A bound variant record type is never equivalent
to a variant record type.

Revision A Types 4-33

RECORDS

Example:

This example defines a type named SHAPE, which becomes the type of the
tag field, in this case a variable named S. When S is equal to TRIANGLE,
the record containing fields SIZE, INCUNATION, ANGLEl, and ANGLE2
is used as if it were the only record available. When the value of S changes,
the record variant being used changes too.

TYPE
shape = (t r iang le , rectangle, c i r c l e) ,
angle = - 180 . . 180,
f igure - record

X/

y,
area: real,
case s: shape of
= triangle =

size: real,
i nc l i na t ion ,
angle l ,
angle2: angle,

= rectangle =
sidel,
side2: integer,
skew,
angle3: angle,

= circle =
diameter: integer,

casend,
recend;

• 4-34 CYBIL Language Definition Revision D

RECORDS

Initializing Elements

A record can be initialized using an indefinite value constructor. An
indefinite value constructor is a list of values assigned in order to the fields
of a record. The first value in the list is assigned to the first field, or first
element in a field, and so on. The type of the values must match the type of
the elements in the field. An indefinite value constructor has the form

[value {.value}...]

where value can be one of the following:

• A constant expression.

• Another value constructor (that is, another list).

• The asterisk character (*), which indicates the element in the
corresponding position is uninitialized.

An indefinite value constructor can be used only for initialization; it cannot
be used to assign values during program execution. Individual fields can be
assigned during execution using the assignment statement (described in
chapter 5).

Example:

The variable BIRTH_DAY, in this example, is a record with the fields
described in the record type named DATE. It is initialized using an indefinite
value constructor to the 24th day of August, 1950.

TYPE
date = record

day: 1 . . 3 1 ,
month: str ing (4) ,
year: 1900 . . 2100,

recend;

VAR
birth_day: [STATIC] date := :24, 'aug ' , 1950];

Revision D Types 4-35

RECORDS

Referencing Elements

The record name alone refers to the entire structure.

Use this format to access a field in a record:

record_name.field_name{.su6_/ieW_name}...

record _ name

Name of the record as declared in the variable declaration.

field _ name
Name of the field to be accessed. If the field is an array, a reference to
an individual element can also be included using the form:

field_name[subscript]

sub _field _name

Optional field name. Use this parameter if the field previously specified
is itself a structured type, for example, another record. If the contained
field is an array, you can include a reference to an individual element
in the format:

sub _field_ name[subscript]

Example:

The variable PROFILE is a record with the fields described in the record
type STATS. In this example, PROFILE is initialized with the values in the
indefinite value constructor in the variable declaration.

TYPE
stats = record

age: 6 . . 66,
married: boolean,
date: record

day: 1 . . 3 1 ,
month: 1 . . 12,
year: 80 . . 90,

recend,
recend;

VAR
profile: CSTATIC: stats := H23, FALSE, C3, 5, 82]];

4-36 CYBIL Language Definition Revision D

RECORDS

The following references can be made to fields:

profi le.age
prof i le.married
profi le.date.day
prof i Le.date.month

This field contains 23.
This field contains FALSE.
This field contains 3.
This field contains 5.

prof i Le.date.year This field contains 82.

Alignment

Unpacked records and their fields are always aligned (that is, directly
addressable). Even if it is packed, a record itself is always aligned (that is,
the first field is directly addressable) unless it is an unaligned field within
another packed structure. Fields in a packed record, however, are not aligned
unless the ALIGNED attribute is explicitly included. Aligning the first field
of a record aligns the entire record.

Unpacked records and their fields, because they are aligned, can always be
passed as reference (that is, VAR) parameters in programs, functions, and
procedures. Packed records must be aligned to be valid as reference
parameters. Packed, unaligned records cannot be used.

Revision A Types 4-37

SETS

Sets
A set is a collection of elements that, unlike arrays and records, is always
operated on as a single unit. Individual elements are never referenced.

Use this format to specify a set type:

SET OF scalar_type

scalar _ type

Type of all the elements that will be within the set. Specify a scalar
type or a subrange of a scalar type. The maximum number of elements
that can be in a set is 32,767.

All members of a set must be of the same type. Members within a set have no
specific order; that is, order has no effect in any of the operations performed
on sets.

Set types are equivalent if their elements have equivalent types.

Permissible operations on sets are assignment, intersection, union,
difference, symmetric difference, negation, inclusion, identity, and
membership. Refer to Operators in chapter 5 for further information on set
operations. The SUCC and PRED functions are not defined for set types.

The difference (-) or symmetric difference (XOR) of two identical sets is the
empty set. The empty set is contained in any set. For a given set, the
complement of the empty set, -[], is the full set.

Initializing and Assigning Elements

Values can be assigned to a set using an indefinite value constructor or a set
value constructor. An indefinite value constructor can be used only for
initialization; a set value constructor can be used for both initialization and
assignment during program execution.

An indefinite value constructor is a list of values assigned to the set. The
type of the values must match the type of the set.

Use this format to specify an indefinite value constructor:

[value {,value}...]

value

A constant expression or another indefinite value constructor (that is,
another list).

4-38 CYBIL Language Definition Revision D

SETS

A set value constructor constructs a set through explicit assignment. Use
this format to specify a set value constructor:

$name [{ value lvalue}...}]

name
Name of the set type. The dollar sign ($) must precede the name to
indicate a set value constructor.

value

An expression of the same type as that specified for the set. When used
in initialization, only constants or constant expressions are valid. The
empty set can be specified by [].

A set value constructor can be used wherever an expression can be used.

Example:

This example shows the declaration of a variable named ODD that is a type
of a set of integers from 0 to 10. It is initialized with an indefinite value
constructor assigning the integers 1, 3, and 5 to the set. The variable
VOWELS is a set that can contain any of the letters 'a' through Y. It is
assigned the letters 'a', 'e', T, 'o' and 'u' using a set value constructor. It
constructs a set of type C, which contains the specified letters; then that set
is assigned to the set VOWELS. The variables LIST_1 and LIST_2 are sets
that can contain any characters. LIST_1 is assigned, using a set value
constructor, the letters 'x', 'y', and 'z'. LIST_2 is assigned the complement of
'x', 'y', and Y, that is, a set consisting of every character except the letters
'x', 'y', and Y.

TYPE
a = set of 0 . . 10,
c = set of 'a1 . . ' z ' ,
ch = set of char;

VAR
odd: [STATIC] a := C1, 3, 5] ,
vowels: c,
l i s t j ,
List_2: ch;

vowels := $c [' a ' , ' e ' , M ' , ' o ' , ' u '] ;
l i s t j := $ch C V , ' y ' , ' z ' : ;
l is t_2 := - $ch C'x ' , ' y ' , 'z'l;

Revision D Types 4-39 •

SEQUENCES

Storage Types

Storage types represent structures to which variables can be added, deleted,
and referenced under program control. (The statements used to access the
storage types are described under Storage Management Statements in
chapter 5.) There are two storage types:

• Sequences

• Heaps

Sequences

A sequence type is a storage structure whose components are referenced
sequentially using pointers. These pointers are constructed by the NEXT and
RESET statements (described in chapter 5).

Use this format to specify a sequence type:

SEQ ({REP number OF\ type {,{REP number OF} type}...)

number

Positive integer constant expression. This is an optional parameter
specifying the number of repetitions of the specified type.

type

A fixed type that can be a user-defined type name; one of the
predefined types integer, character, boolean, real, or cell; or a
structured type using the preceding types.

You can repeat the phrase REP number OF type as many times as desired. It
specifies that storage must be available to hold the indicated number of
occurrences of the named types simultaneously. The types that are actually
stored in a sequence do not have to be the same as the types specified in the
declaration, but adequate space must have been allocated to hold those types
in the declaration. In other words, if a sequence is declared with several
repetitions of integer type, the space to hold these integers has to be
available, but it might actually hold strings or boolean values.

Sequence types are equivalent if they have the same number of REP phrases
and corresponding phrases are equivalent. Two REP phrases are equivalent
if they have the same number of repetitions of equivalent types.

Assignment to another sequence is the only operation permitted on
sequences.

4-40 CYBIL Language Definition Revision D

Heaps

A heap type is a storage structure whose components are allocated explicitly
by the ALLOCATE statement and released by the FREE and RESET
statements (described in chapter 5). They are referenced by pointers
constructed by the ALLOCATE statement.

Use this format to specify a heap type:

HEAP ([REP number OF] type [,{REP number OF] type]...)

number

Positive integer constant expression. This is an optional parameter
specifying the number of repetitions of the specified type.

type

A fixed type that can be a user-defined type name; one of the
predefined types integer, character, boolean, real, or cell; or a
structured type using the preceding types.

You can repeat the phrase REP number OF type as many times as desired. It
specifies that storage must be available to hold the indicated number of
occurrences of the named types simultaneously. The types that are actually
stored in a heap do not have to be the same as the types specified in the
declaration, but adequate space must have been allocated to hold those types
in the declaration. In other words, if a heap is declared with several
repetitions of integer type, the space to hold these integers has to be
available, but it might actually hold strings or boolean values.

Heap types are equivalent if they have the same number of REP phrases and
corresponding phrases are equivalent. Two REP phrases are equivalent if
they have the same number of repetitions of equivalent types.

The default heap can be managed with the ALLOCATE and FREE
statements in the same way as a user-defined heap. For further information,
refer to the descriptions of these statements in chapter 5.

Revision D Types 4-41

ADAPTABLE STRINGS

Adaptable Types
An adaptable type is a type that has indefinite size or bounds; it adapts to
data of the same type but of different sizes and bounds. The types described
thus far in this chapter are fixed types. An adaptable type differs from a
fixed type in that the storage required for a fixed type is constant and can be
determined before execution. Storage for an adaptable type is determined
during program execution.

An adaptable type can be a string, array, record, sequence, or heap. An
adaptable type can be used to define formal parameters in a procedure and
adaptable pointers. Pointers are the mechanism used for referencing
adaptable variables.

The size of an adaptable type must be fixed during execution. This can be
done in one of three ways:

• If the adaptable type is a formal parameter to a procedure or function, the
size is fixed by the actual parameters when the procedure or function is
called. You can determine the length of an actual parameter string using
the STRLENGTH function, and the bounds of an act-al parameter array
using the UPPERBOUND and LOWERBOUND functions. (For further
information, refer to the description of the appropriate function in chapter
6.)

• An adaptable pointer type on the left side of an assignment statement is
fixed by the assignment operation. It can be assigned any pointer whose
current type is one of the types that the adaptable type can take on.

• An adaptable type can be fixed explicitly using the storage management
statements (described in chapter 5).

An adaptable type is declared with an asterisk taking the place of the size or
bounds normally found in the type or variable declaration.

Adaptable Strings

Use this format to specify an adaptable string:

STRING (* {<= length})

length

Optional parameter specifying the maximum length of the adaptable
string. If omitted, 65,535 characters is assumed.

If the string exceeds the maximum allowable length, an error occurs.

Two adaptable string types are always equivalent.

4-42 CYBIL Language Definition Revision B

ADAPTABLE ARRAYS

Adaptable Arrays

Use this format to specify an adaptable array:

{PACKED} ARRAY [{lower_bound..} *] OF type

PACKED

Optional packing parameter. When specified, the elements of the array
are mapped in storage in a manner that conserves storage space,
possibly at the expense of access time. If omitted, the array is
unpacked; that is, the elements are mapped in storage to optimize
access time rather than to conserve space. (The array itself is always
mapped into an addressable memory location.) For further information
on how data is stored in memory, refer to appendix D, Data
Representation in Memory.

If the array contains structured types (such as records), the elements of
that type (the fields in the records) are not automatically packed. The
structured type itself must be declared packed.

lower _bound

A constant integer expression that specifies the lower bound of the
adaptable array. This parameter is optional, but its use is encouraged.
Omission of this parameter (only the * appears) indicates it is an
adaptable bound of type integer.

type

Type of the elements within the array. The type can be any defined
type except an adaptable type (that is, an adaptable string, array,
record, sequence, or heap). All elements must be of the same type.

Only one dimension can be adaptable in an array and that dimension must
be the outermost (first one in the declaration).

Adaptable arrays adapt to a specific range of subscripts. An adaptable array
can adapt to any array with the same packing attribute, equivalent subscript
bounds, and equivalent component types. If a lower bound is specified in the
adaptable array declaration, both arrays must also have the same lower
bound.

Adaptable array types are equivalent if they have the same packing
attributes and equivalent component types, and if their corresponding array
and component subscript bounds are equivalent. Two subscript bounds that
contain asterisks only are always equivalent. Two subscript bounds that
contain identical lower bounds are equivalent.

Revision B Types 4-43

ADAPTABLE RECORDS

Adaptable Records

An adaptable record contains zero or more fixed fields followed by one
adaptable field that is a field of an adaptable type.

Use this format to specify an adaptable record:

{PACKED} RECORD
{fixed_field_name: {ALIGNED {[offset MOD base]]} type}..A
adaptable_field_name : {ALIGNED {[offset MOD base]}}

adaptable_type
RECEND

PACKED

Optional packing parameter. When specified, the fields of a record are
mapped in storage in a manner that conserves storage space, possibly
at the expense of access time. If omitted, the record is unpacked; that
is, the fields are mapped in storage to optimize access time rather than
to conserve space. For further information on how data is stored in
memory, refer to appendix D, Data Representation in Memory.

If a field is a structured type (such as another record), the elements of
that type are not packed automatically. The structured type itself must
be declared packed.

fixed _ field _name

Name identifying a particular fixed field. The name must be unique
within the record.

ALIGNED

Optional alignment parameter. If specified, it can appear alone, or with
an offset in the form:

ALIGNED [offset MOD base]

When a field is aligned, it is mapped in storage so that it is directly
addressable. This means the field begins on an addressable boundary
to facilitate rapid access to the field. This may negate some of the effect
of packing the record. For further information, refer to Alignment
earlier in this chapter.

t If you specify more than one fixed (nonadaptable) field, you must separate
them with commas.

4-44 CYBIL Language Definition Revision A

ADAPTABLE RECORDS

[offset MOD base]

Optional offset to be used in conjunction with the ALIGNED
parameter. This offset causes the field to be mapped to a particular
hardware address relative to the specified base and offset. Filler is
created if necessary to ensure that the field begins on the specified
addressable unit.

offset

An integer constant. Offset must be less than base.

base

An integer constant that must be divisible by 8. For automatic
variables, the base can only be 8.

type

Any defined type, including another record, but not an adaptable type.

adaptable _ field _ name

Name identifying the adaptable field.

adaptable _ type

An adaptable type.

An adaptable record can adapt to any record whose types are the same
except for the last field. That last field must be one to which the adaptable
field can adapt.

Two adaptable record types are equivalent if they have the same packing
attributes, the same alignment, the same number of fields, and
corresponding fields with identical names and equivalent types.

Revision A Types 4-45

ADAPTABLE SEQUENCES

Adaptable Sequences

Use this format to specify an adaptable sequence:

SEQ (*)

An adaptable sequence can adapt to a sequence of any size.

Two adaptable sequence types are always equivalent.

4-46 CYBIL Language Definition Revision A

ADAPTABLE HEAPS

Adaptable Heaps

Use this format to specify an adaptable heap:

HEAP (*)

An adaptable heap can adapt to a heap of any size.

Two adaptable heap types are always equivalent.

Revision B Types 4-47

Expressions and Statements 5

This chapter describes expressions and statements that can be used within a
CYBIL program, procedure, or function.

Expressions 5-1

Operands 5-1
Operators 5-2

Negation Operator 5-2
Multiplication Operators 5-2
Sign Operators 5 4
Addition Operators 5 4
Relational Operators 5-6
Set Operators 5-10

Statements 5-13

Assignment Statement 5-13
Structured Statements 5-16

BEGIN Statement 5-16
FOR Statement 5-17
REPEAT Statement 5-20
WHILE Statement 5-21

Control Statements 5-23
IF Statement 5-24
CASE Statement 5-26
CYCLE Statement 5-28
EXIT Statement 5-30
RETURN Statement 5-31

Storage Management Statements 5-32
RESET Statement 5-35
NEXT Statement 5-37
ALLOCATE Statement 5-38
FREE Statement 5-39
PUSH Statement 540

Expressions and Statements 5

Expressions
Expressions are made up of operands and operators. Operators act on
operands to produce new values. (Constant expressions are evaluated to
provide values for constants. Refer also to Constant Expressions in chapter
2.)

In general, operations involving nonequivalent types are not allowed; one
type cannot be used where another type is expected. Exceptions are noted in
the following descriptions.

Operands

Operands hold or represent the values to be used during evaluation of an
expression. An operand can be a variable, constant, name of a constant, set
value constructor, function reference (either standard function or user-
defined function), pointer to a procedure name, pointer to a variable, or
another expression enclosed in parentheses.

The value of a variable being used as an operand is the last value assigned
to it. A constant name is replaced by the constant value associated with it in
the constant declaration.

A function reference causes the function to be executed; the value returned by
the function takes the place of the function reference in the expression.

Revision A Expressions and Statements 5-1

OPERATORS

Operators

Operators cause an action to be performed on one operand or a pair of
operands. Many of the operators can be used only on basic types; they will be
noted in their individual descriptions. Some operators can be used on sets.
Although they are discussed in the individual descriptions that follow, for a
more detailed description also refer to Set Operators later in this chapter.

An operation on a variable or component of a variable that has an undefined
value will produce an undefined result.

There are five kinds of operators, many of which are identified by reserved
symbols. They are listed next in the order in which they are evaluated from
highest to lowest precedence.

• Negation operator (NOT)

• Multiplication operators (* , DIV, / , MOD, and AND)

• Sign operators (+ and -)

• Addition operators (+ , - , OR, and XOR)

• Relational operators (< , < = , > , > = , = , < > , and IN)

In relational operators that consist of two symbols (that is, <=, >=,
and < >), do not separate the symbols with a space or any other character;
the symbols must appear together.

When an expression contains two or more operators of the same precedence,
operations are performed from left to right. The only way to explicitly change
the order of evaluation is to use parentheses. Parentheses specify that the
expression inside them should be evaluated first.

Negation Operator

The negation operator, NOT, applies only to boolean operands.

NOT TRUE equals FALSE. NOT FALSE equals TRUE.

Multiplication Operators

The multiplication operators perform multiplication and set intersection (*),
integer quotient division (DIV), real quotient division (/), remainder division
(MOD), and the logical AND operation (AND). Table 5-1 shows the
multiplication operators, the permissible types of their operands, and the
type of result they produce.

5-2 CYBIL Language Definition Revision B

OPERATORS

Table 5-1. Multiplication Operators

Operator
*

*

DIV

/

MOD

AND

Operation

Multiplication

Set intersection

Integer quotientf

Real quotient

Remainderft

Logical ANDttt

Type of
Operands

Integer or subrange
of integer

Real

Set of a scalar type

Integer or subrange
of integer

Real

Integer or subrange
of integer

Boolean

Type of
Result

Integer

Real

Set of the
same type

Integer

Real

Integer

Boolean

t Integer quotient refers to the whole number that results from a division
operation. The remainder is ignored. A more formal definition is: for
positive integers a, b, and n,

a DIV b = n

where n is the largest integer so that b * n <= a.

For one or two negative integers,

(-a) DIV b = (a) DIV (-b) = - (a DIV b) and
(-a)DIV(-b) = aDIVb

ft Remainder refers to the remainder of a division operation. A more
formal definition is:

a MOD b = a - (a DIV b) * b

t t t TRUE AND FALSE = FALSE
TRUE AND TRUE = TRUE
FALSE AND FALSE = FALSE
FALSE AND TRUE = FALSE

When the first operand is FALSE, the second operand is never
evaluated.

Revision A Expressions and Statements 5-3

OPERATORS

Sign Operators

The sign operators perform the identity operation (+) and sign inversion and
set complement operation (-). Table 5-2 shows the sign operators, the
permissible types of their operands, and the type of result they produce.

Table 5-2. Sign Operators

Operation

Identity
(indicates a
positive operand)

Sign inversion
(indicates a
negative operand)

Set complement

Type of
Operands

Integer

Real

Integer

Real

Set of a
scalar type

Type of
Result

Integer

Real

Integer

Real

Set of the
same type

Addition Operators

The addition operators perform addition and set union (+), subtraction,
boolean difference, and set difference (-), the logical OR operation (OR), and
the exclusive OR operation (XOR). Table 5-3 shows the addition operators,
the permissible types of their operands, and the type of result they produce.

5-4 CYBIL Language Definition Revision B

OPERATORS

Table 5-3. Addition Operators

Operator

+

+

-

-

-

OR

XOR

XOR

t T R U E -
T R U E -
FALSE
FALSE

Operation

Addition

Set union

Subtraction

Boolean
differencef

Set difference

Logical ORff-

Exclusive ORfft

Symmetric
difference

TRUE = FALSE
FALSE = TRUE
- TRUE = FALSE
- FALSE = FALSE

Type of
Operands

Integer or subrange
of integer

Real

Set of a
scalar type

Integer or subrange
of integer

Real

Boolean

Set of a
scalar type

Boolean

Boolean

Set of a
scalar type

Type of
Result

Integer

Real

Set of the
same type

Integer

Real

Boolean

Set of the
same type

Boolean

Boolean

Set of the
same type

tt TRUE OR TRUE = TRUE
TRUE OR FALSE = TRUE
FALSE OR TRUE = TRUE
FALSE OR FALSE = FALSE

When the first operand is TRUE, the second operand is never evaluated.

t t t TRUE XOR TRUE = FALSE
TRUE XOR FALSE = TRUE
FALSE XOR TRUE = TRUE
FALSE XOR FALSE = FALSE

Revision D Expressions and Statements 5-5

OPERATORS

Relational Operators

The relational operators (<, <=, >, >=, =, < >, and IN) test whether the
following given conditions are true or false: less than (<), less than or equal
to or subset of a set (<=), greater than (>), greater than or equal to or a
superset of a set (>=), equal to or set identity (=), not equal to or set inequality
(< >), and set membership (IN).

Because relational operators are valid on so many different types, some
special points about each type are noted next. Following these comments,
table 5-4 lists the relational operators and the permissible types of their
operands; they always produce a boolean type result.

Comparison of Scalar Types

The comparison operators (<,<=,>,>=, = , and < >) are allowed only
between operands of the same scalar type or between a substring of length 1
and a character.

For integer type operands, the relationships all have their usual meaning.

For character type operands, each character is essentially mapped to its
corresponding integer value according to the ASCII collating sequence. (This
is the same operation performed by the $INTEGER function described in
chapter 6.) The operands and relational operators are then evaluated using
the characters' integer values.

For boolean type operands, FALSE is always considered to be less than
TRUE.

For ordinal type operands, operands are equal only if they are the same
value; otherwise, they are not equal. For the other relational operators, each
ordinal is essentially mapped to the corresponding integer value of its
position in the ordinal list where it is defined. (This is the same operation
performed by the $INTEGER function described in chapter 6.) The operands
and relational operators are then evaluated using the ordinals' integer
values. For an example, refer to the discussion of ordinal types under Scalar
Types in chapter 4.

Operands that are a subrange of a scalar type can be compared with
operands of the same type, including another subrange of the same type.

5-6 CYBIL Language Definition Revision A

OPERATORS

Comparison of Floating-Point Types

All of the comparison operators are valid between operands of the real type.

Comparison of Pointer Types

Two pointers can be compared if they are pointers to equivalent or
potentially equivalent types. (For further information on equivalent types,
refer to Equivalent Types in chapter 4.) For potentially equivalent types, one
or both of the pointers can be pointers to adaptable or bound variant types.
The current type of such a pointer must be equivalent to the type of the
pointer with which it is being compared; if it is not, the operation is
undefined.

Pointers can be compared for equality and inequality only. Two pointers are
equal if they designate the same variable or if they both have the value NIL.
A pointer of any type can be compared with the value NIL. Two pointers to a
procedure are equal if they designate the same declaration of a procedure.

Comparison of Relative Pointers

Two relative pointers can be compared only if they are of equivalent types.
Two relative pointers are equal if they can be converted to equal pointers
using the #PTR function (described in chapter 6).

Comparison of String Types

All of the comparison operators are valid between operands that are strings.
If the lengths of the two string operands are unequal, spaces are added to the
right of the shorter string to fill the field.

Strings are compared character by character from left to right; that is, each
character from one string is compared with the character in the
corresponding position of the second string. Each character is compared
using the same method as for operands of character type; the integer value of
the character, when mapped to the ASCII collating sequence, is used.

Revision A Expressions and Statements 5-7

OPERATORS

Comparison of Sets and Set Membership

Comparison operators have slightly different meanings for sets than for
other types. The only comparison operators valid for sets are: = (meaning
identical to), < > (meaning different from), <= (meaning the left operand is
contained in the right operand), and >= (meaning the left operand contains
the right operand). These operators are valid between two sets of the same
type. Their exact meanings are detailed later in this chapter under Set
Operators.

The other relational operator for sets is IN. A specified operand is IN a set if
that operand is a member of the set. The set must be of the same type or a
subrange of the same type as the operand. The operand can be a subrange of
the type of the set.

Comparison of Other Types

Invariant records can be compared for equality and inequality only. Two
equivalent records are equal if their corresponding fields are equal.

The following types cannot be compared:

• Arrays or structures that contain an array as a component or field

• Variant records

• Sequences

• Heaps

• Records that contain a field of one of the preceding types

However, pointers to these types can be compared.

5-8 CYBIL Language Definition Revision D

OPERATORS

Table 5-4. Relational Operators

Operator

<

<=

>

>=

—

< >

IN

=

< >

<=

>=

< >

Operation

Less than

Less than or
equal to

Greater than

Greater than or
equal to

Equal to

Not equal to

Set membership

Equality (also
called identity)

Inequality

Is contained in

Contains

Equality
Inequality

Type of
Left Operand

Any scalar
type

Real

A string

A string
of length If

A character

Any scalar
type

Real

A string
of length If

A set of any
scalar type

A set of
real type

A nonvariant
record type
containing
no arrays

Any pointer
type or the
value NIL

Type of
Right Operand

The same
scalar type

Real

A string of
the same
length

A character

A string
of length If

A set of the
same type

A set of
real type

A set of
character type

A set of the
same type

A set of
real type

The same type

The same type
or the value
NIL

t The string of length 1 has the form

STRING(position)

where the length is implied. The form

STRING(position,l)

is not valid in this case.

Revision D Expressions and Statements 5-9

OPERATORS

Set Operators

The set operators have already been mentioned briefly in the preceding
sections on multiplication, sign, addition, and relational operators. This
section discusses all of them and details how they are used with sets.

The set operators perform assignment, union (+), intersection (*), difference
(-), symmetric difference (XOR), negation (-), identity or equality (=),
inequality (< >), inclusion (<=), containment (>=), and membership (IN).

Assignment is discussed under Sets in chapter 4. The next five operations
(union, intersection, difference, symmetric difference, and negation) all
produce results that are sets. They are described in table 5-5. The remaining
operations (identity, inequality, inclusion, containment, and membership)
produce boolean results. They are described in table 5-6.

The relational operations described in table 5-6 take place only after any
operations described in table 5-5 have been performed.

5-10 CYBIL Language Definition Revision B

OPERATORS

Table 5-5. Operations That Produce Sets

Operator Operation Description of Operation

Union The resulting set consists of all members
of both sets. The result of A + B is all
elements of sets A and B.

Difference The resulting set consists of the members
in the lefthand set that are not in the
righthand set. The result of A - B is the
elements of A that are not in B. This
operation differs from negation in that
two operands are present.

The resulting set consists of the members
that are in both sets. The result of A * B
is all elements that are in both A and B.

The resulting set consists of the members
of the set's type that are not in the set.
The result of -A is all elements of A's
type that are not in A. This operation
differs from the difference operation in
that only one operand is present.

Symmetric The resulting set consists of the members
difference of either but not both sets. The result of

A XOR B is all elements in A or B that
are not common to both A and B.

XOR

Intersection

Negation
(complement)

Revision B Expressions and Statements 5-11

OPERATORS

Table 5-6. Operations That Produce Boolean Results

Operator Operation Description of Operation

Equality The resulting value is TRUE if every
(identity) member of one set is present in the other

set and vice versa. A = B is TRUE if
every element of A is in B and every
element of B is in A. It is also TRUE if A
and B are both empty sets. In any other
case, it is FALSE.

Inequality The resulting value is TRUE if not every
member of one set is a member of the
other set. A <> B is TRUE if A = B is
FALSE.

Inclusion The resulting value is TRUE if every
member of the lefthand set is also a
member of the righthand set. A <= B is
TRUE if every element of A is in B. It is
also TRUE if A is an empty set. In all
other cases, it is FALSE.

Containment The resulting value is TRUE if every
member of the righthand set is also a
member of the lefthand set. A >= B is
TRUE if every element of B is in A (that
is, B <= A).

Membership This operation differs somewhat from
the others in that it can specify as an
operand a value or a variable rather
than a set. It has the form

scalar IN set

where scalar can be a value (including a
subrange) or a variable. The resulting
value is TRUE if the scalar is of the
same type as the type of the set, and is
an element within the set. A IN B is
TRUE if A is the same type as the set B
and A is an element of B.

IN

5-12 CYBIL Language Definition Revision D

ASSIGNMENT

Statements
Statements specify actions to be performed. Unlike declarations, statements
can be executed. They can appear only in a program, procedure, or function.

A statement list is an ordered sequence of statements. In a statement list, a
statement is separated from the one following it by a semicolon. Two
consecutive semicolons indicate an empty statement, which means no action.

Statements can be divided into four types depending on their purpose or
nature:

• Assignment

• Structured

• Control

• Storage management

Assignment Statement

The assignment statement assigns a value to a variable.

Use this format for the assignment statement:

n a m e : = expression

name

Name of a variable previously declared.

expression

An expression that meets the requirements stated earlier in this
chapter. Any constant or variable contained in the expression must be
defined and have a value assigned.

Revision A

ASSIGNMENT

This statement is similar to the initialization part of the VAE declaration
where you can assign an initial value to a variable. (For further information
on initialization, refer to Variable Declaration in chapter 3.) The assignment
statement allows you to change that value at any point in the program. The
expression is evaluated and the result becomes the current value of the
named variable.

The variable cannot be:

• A read-only variable.

• A formal value parameter of the procedure that contains the assignment
statement.

• A bound variant record.

• The tag field name of a bound variant record.

• A heap.

• An array or record that contains a heap.

The type of the expression must be equivalent to the type of the variable,
with the exceptions discussed next. Both types can be subranges of
equivalent types.

A character, string, or substring variable can be assigned the value of a
character expression, a string, or a substring. If you assign a value that is
shorter than the variable or substring to which it is being assigned, spaces
are added to the right of the shorter string to fill the field. If you assign a
value that is longer than the variable or substring, the value is truncated on
the right. Assigning strings or substrings that overlap is not a valid
operation, for example, STRING_1 := STRING. 1(3,7); results are
unpredictable.

5-14 CYBIL Language Definition Revision A

ASSIGNMENT

If the variable is a pointer, its scope must be less than or equal to the scope of
the data to which it is pointing. For example, a static pointer variable should
not point to an automatic variable local to a procedure. When the procedure
is left, the pointer variable will be pointing at undefined data.

A pointer to a bound variant record can be assigned a pointer to a variant
record that is not bound and is otherwise equivalent.

An adaptable pointer can be assigned either a pointer to a type to which it
can adapt, or an adaptable pointer than has been adapted to one of those
types. Both the type of the expression and its value are assigned, thus setting
the current type of the adaptable pointer.

Any fixed pointer except a pointer to sequence can be assigned a pointer to
cell. After the assignment, the #LOC function (described in chapter 6)
performed on the fixed pointer would return the same value as the pointer to
cell.

A pointer to cell can be assigned any pointer type. The value assigned is a
pointer to the first cell allocated for the variable to which the pointer being
assigned points.

When assigning pointers, remember that generally the object of a pointer has
a different lifetime than the pointer variable. Automatic variables are
released when the block in which they are declared has been executed.
Allocated variables no longer exist when they are explicitly released with the
FREE statement. An attempt to reference a variable beyond its lifetime
causes an error and unpredictable results to occur.

A variant record can be assigned a bound variant record of types that are
otherwise equivalent.

The colon (:) and equals sign (=) together are called the assignment operator.
When used as the assignment operator, there can be no spaces or comments
between the two symbols.

Revision A Expressions and Statements 5-15

BEGIN

Structured Statements

A structured statement is one that actually contains one or more statements.
The statements contained in a structured statement are called, collectively, a
statement list. The structured statement determines when the statement list
contained in it will be executed.

There are four structured statements:

BEGIN Provides a logical grouping of statements that performs a
specific function.

FOR Executes a list of statements while a variable is incremented
or decremented from an initial value to a final value.

REPEAT Executes a list of statements until a specified condition is true.
The test is made after each execution of the statements.

WHILE Executes a list of statements while a specified condition is
true. The test is made before each execution of the statements.

BEGIN Statement

The BEGIN statement executes a single statement list once; there is no
repetition. This statement provides for a logical grouping of statements that
performs a particular function and can improve readability.

Use this format for the BEGIN statement:

{/label/}
BEGIN

statement list;
END {/label/};

label

Name that identifies the BEGIN statement and the statement list
within it. Use of labels is optional. If you use a label before BEGIN, it
is recommended that you use one after END, but it is not required. If
you use labels in both places, they must match. The label name must
be unique within the block in which you use it.

s t a t emen t l ist

One or more statements.

Declarations are not allowed with the BEGIN statement. Execution of the
BEGIN statement ends when either the last statement in the list is executed
or control is explicitly transferred from within the list.

5-16 CYBIL Language Definition Revision A

FOR

F O R S t a t e m e n t

The FOR statement executes a statement list repeatedly while a special
variable ranges from an initial value to a final value. There are two formats
for the FOR statement: one that increments the variable and one that
decrements the variable.

Use this format to increment the variable:

{/label/}
FOR name := in i t ia l ,va lue TO final_value DO

statement list;
FOREND {/label/};

Use this format to decrement the variable:

{/label/}
FOR name := initial_value DOWNTO final_value DO

statement list;
FOREND {/label/};

label

Name that identifies the FOR statement and the statement list in it.
Use of labels is optional. If you use a label before FOR, it is
recommended that you use one after FOREND, but it is not required. If
you use labels in both places, they must match. The label name must
be unique within the block in which you use it.

name

Name of the variable that controls the number of repetitions of the
statement list. This variable keeps track of the number of iterations
performed or the current position within the range of values.

initial _ value

Scalar expression specifying the initial value assigned to the variable.

final _ value

Scalar expression specifying the final value to be assigned to the
variable if the statement ends normally. If the statement ends
abnormally or as the result of an EXIT statement, this may not be the
actual final value.

statement list

One or more statements.

Revision A Expressions and Statements 5-17

FOR

The variable, initial value, and final value must be of equivalent scalar types
or subranges of equivalent types. The variable cannot be assigned a value
within the statement list, or be passed as a reference parameter to a
procedure called within the statement list. Either condition causes a fatal
compilation error. The variable cannot be an unaligned component of a
packed structure.

When CYBIL encounters a FOR statement that increments (one containing
the TO clause), it evaluates the initial value and final value. If the initial
value is greater than the final value, the FOR statement ends and execution
continues with the statement following FOREND; the statement list is not
executed. If the initial value is less than or equal to the final value, the initial
value is assigned to the control variable and the statement list is executed.
Then, the control variable is incremented by one value and, for each
increment, the statement list is executed. This sequence of actions continues
through the final value. For example, the statement

FOR i = 1 TO 5 DO

FOREND;

causes the statement list to be executed five times, that is, while I takes on
values from 1 to 5. Then the FOR statement ends and execution continues
with the statement following FOREND.

5-18 CYBIL Language Definition Revision B

When CYBIL encounters a FOR statement that decrements (one containing
the DOWNTO clause), it performs essentially the same process. If the initial
value is less than the final value, the FOR statement ends and execution
continues with the statement following FOREND. If the initial value is
greater than or equal to the final value, the initial value is assigned to the
control variable and the statement list is executed. The control variable is
decremented by one value and, for each decrement, the statement list is
executed. When the control variable reaches the final value and the
statement list is executed the last time, the FOR statement ends.

The initial value and final value expressions are evaluated once, when the
statement is entered; the values are then held in temporary locations. Thus,
subsequent assignments to initial value and final value have no effect on the
execution of the FOR statement.

When a FOR statement completes normally, the value of the control variable
is that of the final value specified in the statement. This may not be the case
if the statement ends abnormally or ends as a result of an EXIT statement.

Example:

Integer values are often used in FOR statements, but any scalar type can be
used. The following example executes a statement list while the value of a
character variable is incremented.

FOR c o n t r o l := ' a ' TO ' z ' DO

FOREND;

Each time the statement list is performed, the value of CONTROL increases
by one value, following the normal sequence of alphabetic characters from 'a'
to Y; that is, after the statement list is executed once, the value of
CONTROL changes to 'b', and so on until the list has been executed 26
times.

Revision D Expressions and Statements 5-19

REPEAT

REPEAT Statement

The REPEAT statement executes a statement list repeatedly until a specific
condition is true.

Use this format for the REPEAT statement:

{/label/}
REPEAT

statement list;
UNTIL expression;

label

Name that identifies the REPEAT statement and the statement list in
it. Use of the label before REPEAT is optional; a label is not permitted
after UNTIL. The label name must be unique within the block in
which it is used.

s t a t emen t l ist

One or more statements.

express ion

A boolean type expression.

The statement list is always executed at least once. After the last statement
in the list, the expression is evaluated. Every time the expression is FALSE,
the statement list is executed again. When the expression is TRUE, the
REPEAT statement ends and execution continues with the statement
following the UNTIL clause.

The statement list can contain nested REPEAT statements.

Example:

In this example, the statement list (mod operation and assignments) is
executed once. If J is not equal to zero, it is executed again and continues
until J is equal to zero.

REPEAT
k := i MOD j;
i := j;
j := k;

UNTIL j = 0;

5-20 CYBIL Language Definition Revision A

WHILE

W H I L E S t a t e m e n t

The WHILE statement executes a statement list repeatedly while a specific
condition is true.

Use this format for the WHILE statement:

{/label/}
WHILE express ion DO

s t a t e m e n t list;
WHILEND {/label/};

label

Name that identifies the WHILE statement and the statement list in it.
Use of labels is optional. If you use a label before WHILE, it is
recommended that you use one after WHILEND, but it is not required.
If you use labels in both places, they must match. The label name must
be unique within the block in which you use it.

express ion

A boolean type expression.

s t a t e m e n t l is t

One or more statements.

Revision A

WHILE

4

If the boolean expression is evaluated as TRUE, the statement list is m
executed. After the last statement in the list, the expression is again
evaluated. Every time the expression is TRUE, the statement list is executed.
When the expression is FALSE, the WHILE statement ends and execution
continues with the statement following WHILEND. If the expression is
FALSE in the initial evaluation, the statement list is never executed.

Example:

In this example, the expression TABLEfl] <> 0 is evaluated; an element of
the array TABLE is compared to 0. While the expression is true (the element
is not 0), I is incremented. This causes the next element of the array to be
checked. When the expression is false, the statement list is not executed.
Execution continues with the statement following WHILEND. I is the
position of an element in the array that is 0.

/check_for_zero/
WHILI table CiD <> 0 DO

i := i + 1 ;
WHILEND /check_for_zero/;

The preceding example assumes, of course, that the array contains an
element with the value 0. If not, the WHILE statement list executes in an
infinite loop. In either the WHILE expression or the statement list, there
must be a check. One solution is to set a variable, TABLE_MAX, to the
maximum number of elements in the array and check it before executing the
statement list, as in:

WHILE (i < tablejnax) AND (table Ci] <> 0) DO

Now both expressions must be true before the statement list is executed. If
either is false, execution continues following WHILEND.

5-22 CYBIL Language Definition Revision D

CONTROL STATEMENTS

Control Statements

A control statement can change the flow of execution of a program by
transferring control from one place in the program to another.

There are five control statements:

IF Executes one statement list if a given condition is true; ends
the statement or executes another statement list if the
condition is false.

CASE Executes one statement list out of a set of statement lists
depending on the value of a given expression.

CYCLE Causes the remaining statements in a repetitive statement
(FOR, REPEAT, or WHILE) to be skipped and the next
iteration of the statement to take place.

EXIT Unconditionally stops execution within a procedure,
function, or a structured statement (BEGIN, REPEAT,
WHILE, and FOR).

RETURN Returns control from a procedure or function to the point at
which it was called.

Procedure and function calls also transfer control of an executing program.
Functions are discussed in chapter 6 and procedures are discussed in
chapter 7.

Revision A Expressions and Statements 5-23

IF

IF Statement

The IF statement executes or skips a statement list depending on whether a
given condition is true or false.

Use this format for the IF statement:

IF expression THEN
statement list;

{ELSEIF expression THEN
statement list;}...

{ELSE
statement list;}

IFEND;

expression

A boolean expression.

statement list

One or more statements.

The ELSEIF and ELSE clauses are optional. The ELSEIF clause contains
another test condition that is evaluated only if the preceding condition
(expression) is false. The ELSE clause provides a statement list that is
executed unconditionally when the preceding expression is false.

When an expression is evaluated as true, the statement list following the
reserved word THEN is executed. When the list is completed, execution
continues with the first statement following IFEND. If the expression is
false, execution continues with the next clause or reserved word in the IF
statement format (that is, ELSEIF, ELSE, or IFEND).

If the next reserved word in the IF statement format is IFEND, execution
continues with the first statement following it.

5-24 CYBIL Language Definition Revision A

IF

If the next reserved word is ELSEIF, the expression contained in that clause
is evaluated; if true, the statement list that follows is executed. Otherwise,
execution continues with the next reserved word in the IF statement format.

If the next reserved word is ELSE, the statement list that follows is always
executed. You get to this point only if the preceding expressions) is false.

Additional IF statements can be contained (nested) in any of the statement
lists. A consistent style of indentation or spacing greatly improves
readability of such statements.

If the ELSE clause is included in a nested IF statement, the clause applies to
the most recent IF statement.

Examples:

In this example, Y is assigned to X only if X is less than Y.

IF x < y THEN

x := y;
I FEND;

In the next example, Z is always assigned one of the values 1,2, 3, or 4
depending on the value of X.

IF x <= 5 THEN
z := 1 ;

ELSEIF x > 30 THEN
z := 2 ;

ELSEIF x = 15 THEN
z : = 3 ;

ELSE
z := 4 ;

I FEND;

Revision A Expressions and Statements 5-25

CASE

CASE Statement d

The CASE statement executes one statement list out of a set of lists based on
the value of a given expression.

Use this format for the CASE statement' M

CASE expression OF
= value {.value}... =

statement list;
{= value {,value}... =

statement list;}...
{ELSE statement list;}
CASEND;

expression

A scalar expression. The expression must be of the same type as the
value or values that follow.

value

One or more constant scalar expressions or a subrange of constant
scalar expressions. A subrange indicates that all of the values included
in the subrange are acceptable values. If you specify two or more
values, separate them with commas. The values must be of the same _
type as the expression. Values can be in any order, not strictly fl
sequential. Values must be unique within the CASE statement.

statement list

One or more statements.

You define a set of possible values that a variable or expression can have.
With one or more of the values you associate a statement list using
the format

= value =
statement list;

When the CASE statement is executed, the expression is evaluated and the
statement list associated with the current value of the expression is executed.
If the current value is not found among those in the CASE statement,
execution continues with the ELSE clause. If ELSE is omitted and the value
is not found in the CASE statement, the program is in error. After any one of
the statement lists is executed, execution continues with the statement
following CASEND. A

5-26 CYBIL Language Definition Revision D

CASE

Examples:

In this example, I is a variable that is expected to take on one of the values 1
through 4. If its value is 1, the first statement list (X : = X + 1) is executed and
control goes to the statement following CASEND. If the value of I is 2, the
second list is executed, arid so on.

CASE i OF

x := x + 1;
= 2 =

x := x + 2;
= 3 =

x := x + 3;
= 4 =

x := x + A;
CASEND;

In the next example, OPERATOR is a variable that is expected to take on
values of PLUS, MINUS, or TIMES. Depending on the current value of
OPERATOR, the associated statement is executed.

CASE operator OF
= plus =

x := x + y;
= minus =

x := x - y;
= times =

x := x * y;
CASEND;

Revision D Expressions and Statements 5-27

CYCLE

CYCLE Statement

The CYCLE statement can be included in the statement list of a repetitive
statement (FOR, REPEAT, or WHILE) and causes any statements following
it to be skipped and the next iteration of the repetitive statement to take
place.

Use this format for the CYCLE statement:

CYCLE / l a b e l /

label

Name that identifies the repetitive statement in which the CYCLE
statement is contained.

The CYCLE statement is usually used in conjunction with an IF statement,
as in:

/ label/
repetitive statement

IF expression THEN
CYCLE /label/;
IFEND;
remainder of statement list;

end of repetitive statement;

The IF statement tests for a condition that, if true, causes the CYCLE
statement to be executed. Then the remaining statements of the repetitive
statement are skipped and execution continues with whatever would
normally follow the statement list, either another cycle of the repetitive
statement or the next statement following the end of the repetitive statement.
If the condition in the IF statement is false, the remaining statements in the
repetitive statement are executed.

If not contained in a repetitive statement, the CYCLE statement is diagnosed
as a compilation error.

5-28 CYBIL Language Definition Revision A

CYCLE

Example:

This example finds the smallest element of an array TABLE. On the first
execution, X (the first element of the array) is assumed to be smallest. If X is
smaller than succeeding elements of the array, the CYCLE statement is
executed; the remainder of the statements are then skipped, and the next
iteration of the FOR statement occurs. If an element smaller than X is found,
the CYCLE statement is ignored and the rest of the statement list is
processed; X is replaced by the smaller element. If N has not yet been
reached, the FOR statement continues. When N is reached, X will contain the
smallest element of the array.

x := table L"l];

/find_smallest/
FOR*k := 2 TO n DO
IF x < table Ck: THEN
CYCLE /find_smallest/;

IFEND;
x := table CkD;

FOREND /find_smallest/;

Revision D Expressions and Statements 5-29

EXIT

EXIT Statement

The EXIT statement causes an unconditional exit from a procedure, function,
or a structured statement (BEGIN, FOR, REPEAT, and WHILE).

Use this format for the EXIT statement:

EXIT name;

name
Name that identifies the procedure, function, or statement. For a
procedure or function, it is the procedure or function name. For a
structured statement, it is the statement label; in this case the format
could be shown as EXIT /label/.

When the EXIT statement is encountered, execution of the named procedure,
function, or statement is automatically stopped and execution resumes with
the statement that would follow normal completion. For a procedure or
function, it is the statement that would normally follow the procedure or
function call. For a structured statement, it is the statement following the
end of the structured statement (END, FOREND, UNTIL expression, and
WHILEND).

The EXIT statement must be within the scope of the procedure, function, or
statement it names. Otherwise, it has no meaning and is diagnosed as a
programming error.

With a single EXIT statement, you can exit several levels of procedures,
functions, or statements; they need not be exited separately. (This is
sometimes referred to as a nonlocal exit.) If the EXIT statement is executed
in a nested recursive procedure or function, it is the most recent invocation of
the procedure or function and any intervening procedures or functions that
are exited.

5-30 CYBIL Language Definition Revision D

RETURN

RETURN Statement

The RETURN statement completes the execution of a procedure or function
and returns control to the program, procedure, or function that called it.

Use this format for the RETURN statement:

RETURN;

If omitted at the end of a procedure or function, the RETURN statement is
assumed.

Revision B Expressions and Statements 5-31

STORAGE MANAGEMENT STATEMENTS

Storage Management Statements

Storage management statements allow you to manipulate components of
sequence and heap types, and put variables in the run-time stack.

There are five storage management statements:

RESET Resets the pointer in a sequence or releases all the
variables in a user-defined heap.

NEXT Creates or accesses the next element of a sequence given a

starting element.

ALLOCATE Allocates storage for a variable in a heap.

FREE Releases a variable from a heap.

PUSH Allocates storage for a variable in the run-time stack.
Sequences use the RESET and NEXT statements. Heaps use the RESET,
ALLOCATE, and FREE statements. The run-time stack uses the PUSH
statement. (Refer to Storage Types in chapter 4 for further information on
sequences and heaps.) The NEXT and ALLOCATE statements can also be
used to allocate space in a segment access file. Accessing a file as a memory
segment is described in the CYBIL Sequential and Byte Addressable Files
manual. That manual also compares use of the default heap and run-time
stack with use of a segment access file for data storage.

In the NEXT, ALLOCATE, and PUSH statements, you must specify a
pointer to the variable to be manipulated so that sufficient space can be
allocated for that type. This pointer can be a pointer to a fixed type, a pointer
to an adaptable type, or a pointer to a bound variant record type. Space is
then allocated for a variable of the type to which the pointer can point. This
pointer is also used to access the variable. When space is allocated, CYBIL
returns the address of the variable to the pointer. Therefore, to reference a
variable in a sequence, heap, or the run-time stack, you indicate the object of
the pointer in this form: pointer name .

5-32 CYBIL Language Definition Revision D

STORAGE MANAGEMENT STATEMENTS

If you specify a fixed type pointer, the statement uses a variable of the type
designated by that pointer variable. If you specify an adaptable type pointer
or bound variant record type pointer, you must also indicate the size of the
adaptable type or the tag field of the variant record to be used. This causes a
fixed type to be set and the adaptable or bound variant record pointer
designates a variable of that fixed type. That particular fixed type is
designated until it is reset by a subsequent assignment or another storage
management statement.

To indicate the size of an adaptable pointer or the tag field of a bound
variant record pointer, you use the format

pointer: [size]

pointer

Name of an adaptable pointer variable or a bound variant record
pointer variable.

size

Fixed amount of space required for the variable designated by pointer.
This is also referred to as the size fixer. You set the size of the
adaptable type the same way you specify the size of the corresponding
unadaptable (fixed) type. For example, in a variable or type
declaration, you specify the size of a fixed array with subscript bounds,
usually a subrange of "scalar expression..scalar expression". You set
the size of an adaptable array here using the same form. Summarized
next are the forms used to set the size of all possible adaptable types.
For more detailed information, refer to the descriptions of the
corresponding fixed types in chapter 4.

Pointer Type Form Used to Set Size

Adaptable array scalar expression .. scalar expression

Adaptable string A positive integer expression specifying the
length of the string

Adaptable heap [{REP positive integer expression OF] fixed
type name {,{REP positive integer expression
OF] fixed type name]...]

Adaptable sequence [{REP positive integer expression OF] fixed
type name {,{REP positive integer expression
OF] fixed type name]...]

Adaptable record One of the forms used for an adaptable array,
string, heap, or sequence

Bound variant record A scalar expression or one or more
constant scalar expressions followed by an
optional scalar expression

Revision D Expressions and Statements 5-33

STORAGE MANAGEMENT STATEMENTS

If an adaptable array had a lower bound specified in its original declaration,
the lower bound specified here must match that value. For an adaptable
record, the form used must be a value and type to which the record can
adapt. For a bound variant record, the order, types, and values used must be
valid for a variant of the record; all but the last of the expressions must be
constant expressions.

Examples:

This example declares a type that is an adaptable array named
ADAPT_ ARRAY. PTR is a pointer to that type. BUNCH is a heap with
space for 100 integers. The heap BUNCH is reset; that is, any existing
elements are released. Space is then allocated in the heap for a variable of
the type designated by PTR. That variable is of type ADAPT_ ARRAY (an
array of integers) and it has fixed subscript bounds of from 1 to 15. PTR now
points to that array.

TYPE
adapt_array = array C1 . . *] of integer;

VAR
ptr: ~adapt_array,
bunch: HEAP (REP 100 of integer);

RESET bunch;
ALLOCATE ptr: C1 . . 15: IN bunch;

The following example shows the setting of an adaptable sequence. Notice
that two sets of brackets are required in the PUSH statement.

VAR
ptr: "SEQ (*) ;

PUSH ptr: LTREP 10 OF integer, REP 22 OF char:];

5-34 CYBIL Language Definition Revision D

RESET

RESET Statement

The RESET statement operates on both sequences and heaps. In a sequence,
it resets the pointer to the beginning of the sequence or to a specific variable
within the sequence. In a heap, it releases all the variables in the heap.

The RESET statement must appear before the first NEXT statement (for a
sequence) or ALLOCATE statement (for a user-defined heap). This ensures
that the sequence is at the beginning or the heap is empty. If you reserve
space by using a NEXT or ALLOCATE statement before the RESET
statement, the program is in error.

RESET in a S e q u e n c e

This statement sets the current element being pointed to in a sequence.

Use this format for the RESET statement in a sequence:

RESET sequence , pointer { TO variable_pointer}

sequence _ pointer

Name of a pointer to a sequence. This specifies the particular sequence.

variable _pointer

Name of a pointer to a particular variable within the sequence. If
omitted, the pointer points to the first element of the sequence.

If you did not set the value of the pointer variable with a NEXT statement
for the same sequence, an error will occur. An error will also occur if the
value of the pointer variable is NIL.

The RESET statement must appear before the first occurrence of a NEXT
statement to reset the sequence to its beginning; otherwise, the program is in
error.

Revision A Expressions and Statements 5-35

RESET

RESET in a Heap

This statement releases the variables currently in a heap.

Use this format for the RESET statement in a heap:

RESET heap

heap
Name of a heap type variable.

Space for the variables is released and their values become undefined.

Make sure that the RESET statement appears before the first occurrence of
an ALLOCATE statement for a user-defined heap so that the heap is empty;
otherwise, the program is in error.

5-36 CYBIL Language Definition Revision A

NEXT

NEXT Statement

The NEXT statement sets the specified pointer to designate the current
element of the sequence and then makes the next element in the sequence the
current element. This essentially moves the pointer along the sequence
allowing you to assign values to and access elements.

Use this format for the NEXT statement

NEXT pointer {•' [size]} IN s e q u e n c e , po in te r

po in t e r

Name of a pointer to a fixed type, pointer to an adaptable type, or
pointer to a bound variant record type. The type pointed to by the
pointer is the type of the variable in the sequence. These pointers are
described in detail under Storage Management Statements earlier in
this section.

size

Size of an adaptable type or tag field of a bound variant record type. If
omitted, the pointer must be a pointer to a fixed type. The forms used to
specify size are described in detail under Storage Management
Statements earlier in this section.

s e q u e n c e , po in t e r

Name of a pointer to a sequence. This specifies the particular sequence.

After a RESET statement, the current element is always the first element of
the sequence. A NEXT statement assigns to the specified pointer the address
of the current (first) element, and then makes the next element (the second)
the new current element. Thus, the order of variables in a sequence is
determined by the order in which the NEXT statements are executed.

If the NEXT statement causes the new element to be outside the bounds of
the sequence, the pointer is set to NIL. Before attempting to reference an
element in a sequence, check for a NIL pointer value. If you use a pointer
variable with a value of NIL to access an element, an error will occur.

The type of the pointer you specify when data is retrieved from the sequence
must be equivalent to the type of the pointer you used when the same data
was stored in the sequence; otherwise, the program is in error.

Revision A Expressions and Statements 5-37

ALLOCATE

ALLOCATE Statement

The ALLOCATE statement allocates storage space for a variable of the
specified type in the specified heap and then sets the pointer to point to that
variable.

Use this format for the ALLOCATE statement

ALLOCATE pointer {: [size]} {IN heap}

pointer

Name of a pointer to a fixed type, adaptable type, or bound variant
record type. These pointers are described in detail under Storage
Management Statements earlier in this section.

size

Size of an adaptable type or tag field of a bound variant record type. If
omitted, the pointer must be a pointer to a fixed type. The forms used to
specify size are described in detail under Storage Management
Statements earlier in this section.

heap

Name of a heap type variable. If omitted, the default heap is assumed.

If there is not enough space for the variable to be allocated, the pointer is set
to NIL. Before attempting to reference a variable in a heap, check for a NIL
pointer value. If you use a pointer variable with a value of NIL to access
data, an error will occur.

The RESET statement must appear before the first occurrence of an
ALLOCATE statement for a user-defined heap to ensure that the heap is
empty; otherwise, the program is in error. (This is not allowed for the default
heap.)

The lifetime of a variable that is allocated using the storage management
statements is the time between the allocation of storage (with the
ALLOCATE statement) and the release of storage (with the FREE
statement). A variable allocated using an automatic pointer must be
explicitly freed (using the FREE statement) before the block is left, or the
space will not be released by the program. When the block is left, the pointer
no longer exists and, therefore, the variable cannot be referenced. If the block
is entered again, the previous pointer and the variable referenced by the
pointer cannot be reclaimed.

5-38 CYBIL Language Definition Revision A

FREE

FREE Statement

The FREE statement releases the specified variable from the specified heap.

Use this format for the FREE statement:

FREE pointer {IN heap}

pointer

Name of the pointer variable that designates the variable to be
released.

heap

Name of a heap type variable. If omitted, the default heap is assumed.

The variable's space in the heap is released and its value becomes undefined.
The pointer variable designating the released variable is set to NIL. If you
specify a variable that is not currently allocated in the heap, the results are
unpredictable.

Using a pointer variable with the value NIL to access data causes an error to
occur. Releasing the NIL pointer is also an error.

Revision A Expressions and Statements 5-39

PUSH

PUSH Statement

The PUSH statement allocates storage space on the run-time stack for a
variable of the specified type and then sets the pointer to point to that
variable.

Use this format for the PUSH statement

PUSH pointer {• [size]}

pointer

Name of a pointer to a fixed type, adaptable type, or bound variant
record type. These pointers are described in detail under Storage
Management Statements earlier in this section.

size

Size of an adaptable type or tag field of a bound variant record type. If
omitted, the pointer must be a pointer to a fixed type. The forms used to
specify size are described in detail under Storage Management
Statements earlier in this section.

If there is not enough space for the variable to be allocated, the pointer is set
to NIL. The value of the variable that has just been allocated is undefined
until a subsequent assignment to the variable is made.

You cannot release space on the run-time stack explicitly. It is released
automatically when the procedure containing the PUSH statement
completes. At that time, space for the variable is released and its value
becomes undefined.

Example:

This example shows the declaration of a pointer variable named ARRAY_
PTR that points to an adaptable array. The PUSH statement allocates space
in the run-time stack for a fixed array of from 1 to 20 elements. Elements of
the array can be referenced by ARRAY_PTR"[i], where i is an integer from 1
to 20.

VAR
array_ptr: "array C1 . . *] of integer;

PUSH array_ptr: C1 . . 203;

5-40 CYBIL Language Definition Revision D

0 Functions 6

This chapter describes the functions that are predefined in CYBIL and
explains how to define your own functions.

Standard Functions 6-1
$CHAR Function 6-2
$INTEGER Function 6-3
#LOC Function 6-4
LOWERBOUND Function 6-5
LOWERVALUE Function 6-6
PRED Function 6-7
#PTR Function 6-8
$REAL Function 6-9
#REL Function 6-10
#SEQ Function 6-11
#SIZE Function 6-12
STRLENGTH Function 6-13
SUCC Function 6-14
UPPERBOUND Function 6-15
UPPERVALUE Function 6-16

User-Defined Functions 6-17
Function Declaration 6-17
Parameter List 6-19
Referencing a Function 6-21

System-Dependent Functions 6-23
#ADDRESS Function 6-23
#FREE_RUNNING_CLOCK Function 6-24
#OFFSET Function 6-25
#PREVIOUS_SAVE_AREA Function 6-26
#READ_ REGISTER Function 6-27
#RING Function 6-28
#SEGMENT Function 6-29

Functions 6

A function is one or more statements that perform a specific action and can
be called by name from a statement elsewhere in a program. A reference to a
function causes actual parameters in the calling statement to be substituted
for the formal parameters in the function declaration and then the function's
statements to be executed. Usually the function computes a value and
returns it to the portion of the program that called it.

A function differs from a procedure in that the value returned for a function
replaces the actual function reference within the statement. A function is a
valid operand in an expression; the value returned by the function replaces
the reference and becomes the operand.

The value of a function is the last value assigned to it before the function
returns to the point where it was called. The reason for its return doesn't
matter; it could complete normally or abnormally. If the function returns for
any reason before a value is assigned to the function name, results are
undefined.

Functions can be recursive; that is, a function can call itself. In that case,
however, there must be some provision for ending the calls.

You can call standard functions that are already defined in the CYBIL
language, you can define your own functions, or you can call functions
designed specifically for use on NOS/VE. This chapter describes all three.

Functions that start with $ are data conversion functions. Functions that
start with # are either system-dependent functions (that is, unique to CYBIL
on NOS/VE) or functions whose results are system dependent. (For example,
#SIZE is a standard function available on all variations of CYBIL regardless
of operating system; however, its results vary depending on the system on
which it is being used.)

Standard Functions
The functions described here are standard CYBIL functions. They can be
used safely in variations of CYBIL available on other operating systems.
Under System-Dependent Functions, later in this chapter, you'll find
descriptions of functions unique to CYBIL on NOS/VE.

The functions are described in alphabetical order.

Revision D Functions 6-1

$CHAR

$CHAR Function

The $CHAR function returns the character whose ordinal number within the
ASCII collating sequence is that of a given expression.

Use this format for the $CrlAR function call:

$CHAR(expression)

expression
An integer expression whose value can be from 0 to 255.

If you specify a value for the integer expression less than 0 or greater than
255, an error occurs.

6-2 CYBIL Language Definition Revision A

SINTEGER

$INTEGER Function

The $INTEGER function returns the integer value of a given expression.

Use this format for the $INTEGER function call:

$INTEGER(expression)

expression
An expression of type integer, subrange of integer, boolean, character,
ordinal, or real.

If the expression is an integer expression, the value of that expression is
returned.

If the expression is a boolean expression, 0 is returned for a false expression
and 1 is returned for a true expression.

If the expression is a character expression, the ordinal number of the
character in the ASCII collating sequence is returned.

If the expression is an ordinal expression, the ordinal number associated
with that ordinal value is returned. The value returned for the first element
of an ordinal type is 0, the second element is 1, and so on.

If the expression is a real expression, the value of the expression is truncated
to a whole number. If the number is in the range defined for integers, that
number is returned; otherwise, an out-of-range error occurs.

Revision A Functions 6-3

#LOC

#LOC Function

The #LOC function returns a pointer to the first cell allocated for a given
variable.

Use this format for the #LOC function call:

#LOC(name)

name
Name of a variable.

6-4 CYBIL Language Definition Revision A

LOWERBOUND

LOWERBOUND Function

The LOWERBOUND function returns the lower bound of an array's
subscript bounds.

Use this format for the LOWERBOUND function call:

LOWERBOUND(array)

array
An array variable or the name of a fixed array type.

The type of the value returned is the same as the type of the array's subscript
bounds.

Example:

Assuming the following declaration has been made

VAR
x: array C1 . . 1003 of boolean,
y: array C'a' . . ' t '] of integer;

the value of LOWERBOUND(X) is 1; the value of LOWERBOUND(Y) is 'a'.

Revision D Functions 6-5

LOWERVALUE

LOWERVALUE Function

The LOWERVALUE function returns the smallest possible value that a
given variable or type can have.

Use this format for the LOWERVALUE function call:

LOWERVALUE(name)

name

A scalar variable or name of a scalar type.

The type of the value returned is the same as the given type.

Examples:

Assuming the following declaration has been made

VAR
I dozen: 1 . . 1 2 ;

the value of LOWERVALUE(DOZEN) is 1.

After the declarations

TYPE
t = (f i r s t , second, third);

VAR
| v: t ;

the value of LOWERVALUE(V) is FIRST and the value of
LOWERVALUE(T) is FIRST.

6-6 CYBIL Language Definition Revision D

PRED

PRED Function

The PRED function returns the predecessor of a given expression.

Use this format for the PRED function call:

PRED(expression)

expression

A scalar expression.

If the predecessor of the expression does not exist, the program is in error.

Example:

The following example declares two variables, WARM and COLD, each of
which can take on ordinal values of the type SEASONS. The variable
WARM is assigned the value SPRING while the variable COLD is assigned
the value WINTER.

TYPE
seasons = (winter, spring, summer, f a l l) ;

VAR
warm: seasons,
cold: seasons;

warm := spring;
cold := PRED (warm);

Revision D

#PTR

#PTR Function

The #PTR function returns a pointer that can be used to access the object of
a relative pointer.

Use this format for the #PTR function call:

#PTR(pointer_name {,parent_name})

pointer_name
Name of the relative pointer variable.

parent _name
Name of the variable that contains the components being designated
by relative pointers. If omitted, the default heap is used. The variable
can be a string, array, record, heap, or sequence type (either fixed or
adaptable).

Relative pointers cannot be used to access data directly. The #PTR function
converts a relative pointer to a pointer in order to reference the object of the
relative pointer.

The type of the object pointed to by the returned pointer is the same as the
type of the object pointed to by the relative pointer. If the type of the parent
variable associated with the specified relative pointer is not equivalent to the
type of the specified parent variable, an error occurs.

For further information on relative pointers, refer to Pointer Types in chapter
4.

6-8 CYBIL Language Definition Revision A

SREAL

$REAL Function

The $REAL function returns the real number equivalent of a given integer
expression.

Use this format for the $REAL function call:

$REAL(expression)

expression
An integer expression.

Revision A Functions 6-9

#REL

#REL Function

The #REL function returns a relative pointer.

Use this format for the #REL function call:

#REL(pointer_name \j)arent_name})

pointer_name

Name of the direct pointer variable.

parent_name

Name of the variable that contains the components being designated
by relative pointers. If omitted, the default heap is used. The variable
can be a string, array, record, heap, or sequence type (either fixed or
adaptable).

The type of the relative pointer's object is the same as the type of the given
direct pointer's object. (This type was specified in the VAR declaration of the
relative pointer variable.) The parent type of the relative pointer's object is
the same as the type of the specified parent variable.

If the pointer specified in the function call does not designate an element of
the parent variable, the result is undefined.

Relative pointer values can be generated solely through this function. For
further information on relative pointers, refer to Pointer Types in chapter 4.

6-10 CYBIL Language Definition Revision A

#SEQ

#SEQ Function

The #SEQ function returns an adaptable pointer to a sequence allocated for a
given variable.

Use this format for the #SEQ function call:

#SEQ(name)

name

Name of a variable of any type.

The following relationships hold between the #LOC, #SEQ, and #SIZE
functions:

#LOC(#SEQ(name)") = #LOC(name)

#SIZE(#SEQ(name) *) = #SIZE(name)

Revision D

#SIZE

#SIZE Function

The #SIZE function returns the number of cells required to contain a given
variable or a variable of a specified type.

Use this format for the #SIZE function call:

#SIZE(name)

name

Name of a variable, fixed record type, bound variant record, or an
adaptable type.

If you specify the name of a bound variant record type, the variant that
requires the largest size is used. If you specify the name of an adaptable type,
you must also supply a size fixer for the type.

Example:

The following example declares a procedure, FIND_SIZE, that has as its
only parameter an adaptable array named A. When the procedure is called,
the #SIZE function determines the size of the fixed array that was passed to
it.

PROCEDURE find_size (a: array C1 . . *J OF integer);

i := #SIZE(a);

Revision D

STRLENGTH

STRLENGTH Function

The STRLENGTH function returns the length of a given string.

Use this format for the STRLENGTH function call:

STRLENGTH(string)

string
A string variable, name of a string type, or adaptable string reference.

For a fixed string, the allocated length is returned as an integer subrange.
For an adaptable string, the current length is returned.

Example:

The following example declares a procedure, FIND_LENGTH, that has as
its only parameter an adaptable string named S. When the procedure is
called, the STRLENGTH function determines the length of the fixed string
that was passed to it.

PROCEDURE find_length (s: str ing(*)) ;

i := STRLENGTH (s);

Revision D Functions 6-13

succ

SUCC Function

The SUCC function returns the successor of a given expression.

Use this format for the SUCC function call:

SUCC(expression)

expression

A scalar expression.

If the successor of the expression does not exist, the program is in error.

Example:

The following example declares two variables, HOT and COOL, each of
which can take on ordinal values of the type SEASONS. The variable HOT
is assigned the value SUMMER while the variable COOL is assigned the
value FALL.

TYPE
seasons = (winter , spring, summer, f a l l) ;

VAR
hot: seasons,
cool: seasons;

hot := summer;
cool := SUCC (hot) ;

6-14 CYBIL Language Definition Revision D

UPPERBOUND

UPPERBOUND Function

The UPPERBOUND function returns the upper bound of an array's
subscript bounds.

Use this format for the UPPERBOUND function call:

UPPERBOUND(array)

array

An array variable or the name of a fixed array type.

The type of the value returned is the same as the type of the array's subscript
bounds.

Examples:

Assuming the following declaration has been made

VAR
x: array C1 . . 10OT of boolean,
y: array C'a' . . ' t '] of integer;

the value of UPPERBOUND(X) is 100; the value of UPPERBOUND(Y) is 't'.

In the following example, the value of UPPERBOUND(TABLE) is 50:

VAR
table: "array C1 .. * 1 of c e l l ;

ALLOCATE table: C1 . . 50] ;

Revision D Functions 6-15

UPPERVALUE

UPPERVALUE Function

The UPPERVALUE function returns the largest possible value that a given
variable or type can have.

Use this format for the UPPERVALUE function call:

UPPERVALUE(name)

name

A scalar variable or name of a scalar type.

The type of the value returned is the same as the given type.

Examples:

Assuming the following declaration has been made
VAR

I dozen: 1 . . 12;

the value of UPPERVALUE(DOZEN) is 12.

After the declarations

TYPE
t = (f i r s t , second, third);

VAR
I v: t;

the value of UPPERVALUE(V) is THIRD and the value of
UPPERVALUE(T) is THIRD.

6-16 CYBIL Language Definition Revision D

USER-DEFINED FUNCTIONS

User-Defined Functions

Function Declaration

You define your own functions with function declarations.

Use this format to declare a function:

FUNCTION {[attributes]] name {(formal ̂ parameters)} • result_type;t
{declaration _list]
statement_list

FUNCEND {name};

attributes

One or more of the following attributes. If you specify more than one,
separate them with commas.

XREF
The function has been compiled in a different module. In this case,
the function declaration can contain the name and formal
parameters, but no declaration list or statement list. In the other
module, the function must have been declared with the XDCL
attribute and an identical parameter list. If omitted, the function
must be defined within the module where it is called.

XDCL
The function can be called from outside of the module in which it is
located. This attribute can be included only in a function declared at
the outermost level of a module; it cannot be contained in a
program, procedure, or another function. Other modules that call
this function must contain the same function declaration with the
XREF attribute specified.

t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a function declaration. If included in a
CYBIL program run on NOS/VE, this parameter is ignored.

Revision D Functions 6-17

USER-DEFINED FUNCTIONS

INLINE

Instead of calling the function, the compiler inserts the actual function
statements at the point in the code where the function call is made.

#GATEf
The function can be called by a function call from a higher ring level if
the call is issued from within the call bracket of the gated function.ft If
you specify #GATE, you must also specify the XDCL attribute.

If you don't specify any attributes, the function is assumed to be in the
same module in which it is called.

n a m e

Name of the function. The function name is optional following
FUNCEND.

formal parameters

One or more parameters in the form:

VAR name \,name}...: type
{,name {,name}...: type}...

and/or:

name \,name}... ' type
{.name {,name}... '• type}...

The first form is called a reference parameter; the second form is called
a value parameter. There is essentially no difference between them in
the context of a function. However, procedures (and programs) do treat
them differently. Both kinds of parameters can appear in the formal
parameter list; if so, they are separated by semicolons (for example,
I: INTEGER; VAR A: CHAR). Reference and value parameters are
discussed in more detail later in this chapter under Parameter List.

r e su l t_ type

The type of the result to be returned. Specify any fixed scalar, floating­
point, pointer, or cell type.

declaration _list

Zero or more declarations.

s t a t ement_ l i s t

One or more statements.

t This attribute is not supported on variations of CYBIL available on other
operating systems.

t t A ring level is a hardware feature. Rings provide hardware protection in
that an unauthorized program cannot access anything at a lower ring
level. For further information on rings, refer to the SCL Object Code
Management manual.

6-18 CYBIL Language Definition Revision D

USER-DEFINED FUNCTIONS

In an assignment statement within a function, the lefthand side of the
statement (the variable to receive the value) cannot be:

• A nonlocal variable.

• A formal parameter of the function.

• The object of a pointer variable.

User-defined functions cannot contain:

• Procedure call statements that call user-defined procedures or NOS/VE
procedures.

• Parameters of type pointer to procedure.

• ALLOCATE, FREE, PUSH, or NEXT statements that have parameters
that are not local variables.

Parameter List

A parameter list is an optional list of variable declarations that appears in
the first statement of the function declaration. In the function declaration
format shown earlier, they are shown as formal_parameters. Declarations
for formal parameters must appear in that first statement; they cannot
appear in the declaration list in the body of the function.

A parameter list allows you to pass values from the calling program to the
function. When a call is made to a function, parameters called actual
parameters are included with the function name. The values of those actual
parameters replace the formal parameters in the parameter list. Wherever
the formal parameters exist in the statements within the function, the values
of the corresponding actual parameters are substituted. For every formal
parameter in a function declaration, there must be a corresponding actual
parameter in the function call.

There are two kinds of parameters: reference parameters and value
parameters. A reference parameter has the form:

VAR name {,name}...: type
{,name {,name}... •' type}...

A value parameter has the form:

name {,name}...: type
{.name {,name}... •' type}...

Revision A Functions 6-19

USER-DEFINED FUNCTIONS

In procedures, reference parameters and value parameters cause different
actions to be taken; in functions, however, both kinds of parameters have the
same effect. (In a procedure, the value of a reference parameter can change
during execution of the procedure; a value parameter cannot change.) In a
function, neither reference parameters nor value parameters can change in
value. A formal reference parameter can be any fixed or adaptable type. A
formal value parameter can be any fixed or adaptable type, except a heap or
an array or record that contains a heap.

Reference parameters and value parameters can be specified in many
combinations. When both kinds of parameters appear together, they must be
separated by semicolons. Parameters of the same type can also be separated
by semicolons instead of commas, but in this case, VAR must appear with
each reference parameter. All of the following parameter lists are valid.

• VAR i , j : integer; a, b: char;

• VAR i : integer; VAR j : integer; a: char; b: char;

• a: char; VAR i , j : integer; b: char;

• VAR i : integer, j : real; a: char, b: boolean;

In each of the preceding examples, I and J are reference parameters; A and B
are value parameters.

• 6-20 CYBIL Language Definition Revision D

USER-DEFINED FUNCTIONS

Referencing a Function

The call to the function is usually contained in an expression. The call
consists of the function name (as given in the function declaration) and any
parameters to be passed to the function in the following format:

name ({actualparameters})

name
Name of the function.

actual ̂ parameters

Zero or more expressions or variables to be substituted for formal
parameters defined in the function declaration. If you specify two or
more, separate them with commas. They are substituted one-for-one
based on their position within the list; that is, the first actual
parameter replaces the first formal parameter, the second actual
parameter replaces the second formal parameter, and so on. For every
formal parameter in a function declaration, there must be a
corresponding actual parameter in the function call.

If you did not specify any formal parameters in the function
declaration, you can't include any actual parameters in the function
call. However, you must enter left and right parentheses to indicate the
absence of parameters. In this case, the call is:

name()

The function can be anywhere that a variable of the same type could be. The
value returned by a function is the last value assigned to it. If control is
returned to the calling point before an assignment is made, results are
unpredictable.

The only types that can be returned as values of functions are the basic
types: scalar, floating point, pointer, and cell.

Revision D Functions 6-21

USER-DEFINED FUNCTIONS

Example:

The following function finds the smaller of two integer values represented by
formal value parameters A and B. The smaller value is assigned to MIN, the
name of the function, and that integer value is returned.

FUNCTION min (a,
b: integer): integer;

IF a > b THEN
min := b;

ELSE
min := a;

IFEND;
FUNCEND min;

This function could be called using the following reference:

smaller := min (f i r s t , second);

The value of the variable FIRST is substituted for the formal parameter A;
the value of SECOND is substituted for B. The value returned, the smaller
value, replaces the entire function reference; the variable SMALLER is
assigned the smaller value.

• 6-22 CYBIL Language Definition Revision D

#ADDRESS

System-Dependent Functions
The functions described here can be used with CYBIL only on NOS/VE. As
you review this section, keep in mind that programs using these functions
cannot be transported to other operating systems and run on variations of
CYBIL.

To use these functions properly and efficiently, you should be familiar with
basic hardware concepts of your computer system. This information can be
found in volume II of the virtual state hardware reference manual.

The functions are described in alphabetical order.

#ADDRESS Function

The #ADDRESS function accepts a ring number, segment number, and byte
offset and returns a value that is of type pointer to cell.

Use this format for the #ADDRESS function call:

#ADDRESS(ring, segment, offset)

ring

Ring number, ranging from 1 to 15.

segment

Segment number, ranging from 0 to 4,095.

offset

Byte offset, ranging from -80000000 hexadecimal to 7FFFFFFF
hexadecimal.

Example:

The following example uses the #ADDRESS function to set the variable
PTR1 to a pointer to cell formed using a ring number of 11, a segment
number of 10, and a byte offset of 0FFFF hexadecimal.

VAR
i /
j /
k: integer,
p t M : " c e l l ;

i := 11;
j := 10;
k := o f f f f (16) ;
p t r l := #address (i , j , k) ;

Revision D Functions 6-23

#FREE_RUNNING_CLOCK

#FREE_RUNNING_CLOCK Function

The #FREE_RUNNING_CLOCK function returns the value of the free
running microsecond clock.

Use this format for the #FREE_RUNNING_CLOCK function call:

#FREE_RUNNING_CLOCK(port)

port
An integer expression whose value is 0 or 1. It specifies the memory
port to be used for reading the clock.

The integer value returned is that of the free running clock that is
maintained within the memory connected to the specified processor
memory port.

For further information on the free running microsecond clock and memory
ports, refer to volume II of the virtual state hardware reference manual.

Example:

The following example sets the integer variable I to the value of the free
running microsecond clock in the memory connected to processor memory
port 0.

VAR
i : integer;

i := #free_running_clock (0) ;

6-24 CYBIL Language Definition Revision D

#OFFSET

#OFFSET Function

The #OFFSET function accepts a direct pointer and returns the integer value
of the signed offset (byte number) contained in the pointer.

Use this format for the #OFFSET function call:

#OFFSET(pointer)

pointer
Name of a direct pointer expression.

A pointer consists in part of the process virtual address (PVA) of the first
byte of the object to which it is pointing. An element of the PVA is the byte
number. This byte number is the signed offset returned.

For further information on PVAs, refer to volume II of the virtual state
hardware reference manual.

Example:

The following example finds the byte offset in the pointer PTR1.

VAR
p t r l : " c e l l ,
byte_offset: - 80000000(16) . . 7 f f f f f f f (1 6) ;

byte_offset := Soffset (p t rD;

If PTR1 was formed using the following #ADDRESS function,

ptrl := ^address (11, 10, offff(16));

the value of BYTE _ OFFSET would be 0FFFF hexadecimal.

Revision D Functions 6-25

#PREVIOUS_SAVE_AREA

#PREVIOUS_SAVE_AREA Function

The #PREVIOUS_SAVE_AREA function returns a pointer to the first cell
of the previous save area.

Use this format for the #PREVIOUS_ SAVE _ AREA function call:

#PREVIOUS_SAVE_AREA ()

A procedure uses an area called a stack frame to store its dynamic variables.
If another procedure is called, hardware saves certain registers of the calling
procedure and puts them in a stack frame save area. These registers contain
the information required for the calling procedure to resume normal
execution when control is returned by the called procedure.

If procedure calls are nested, each subsequent call creates its own stack
frame save area and the last save area becomes the previous save area.
Pointers are kept to link the previous save areas so that as procedures
complete and return, the system works back through the previous save areas
using the information contained in them to resume each procedure.

The formats of the stack frame save area and previous save area are shown
in the CYBIL System Interface manual. For further information on the stack
frame save area and previous save area, refer to volume II of the virtual state
hardware reference manual.

Example:

The following example sets the pointer variable PSA_PTR to point to the
first cell of the previous save area. The #CALLER_ID procedure then returns
information about the caller of the last function. That information is
returned in the record CALLER_RECORD. In this example, CALLER,
RECORD is equivalent to the object of pointer PSA_PTR (that is, CALLER,
RECORD = PSA_PTR").

TYPE
id_rec = record
id: 0 .. 0ffffffff(16),

recend;

VAR
psa_ptr: "id_rec,
caller_record: id_rec;

psa_ptr := #previous_save_area () ;
#caller_id (caller_record);

6-26 CYBIL Language Definition Revision D

#READ_REGISTER

#READ_REGISTER Function

The #READ_REGISTER function performs actions equivalent to the copy
from state register (CPYSX) hardware instruction. It allows a program to
read the contents of a process or processor register.

Use this format for the #READ_ REGISTER function call:

#READ_REGISTER(register_id)

registered
An integer expression from 0 to 255 that identifies the number of the
register to be read. Register numbers are given in volume II of the
virtual state hardware reference manual.

An integer value is returned.

The #WRITE_REGISTER procedure described in chapter 7 allows a
program to change the contents of a process or processor register.

For further information on process and processor registers, and the CPYSX
instruction, refer to volume II of the virtual state hardware reference manual.

Example:

The following example sets the integer variable J to the value of register E5,
the Debug mask register.

VAR
j : integer;

j := #read_register (0e5(16));

Revision D Procedures 6-27

#RING

#RING Function

The #RING function accepts a pointer and returns the integer value of the
ring number contained in the pointer.

Use this format for the #RING function call:

#RING(poiiiter)

po in t e r

Name of a direct pointer expression.

Example:

The following example finds the ring number in the pointer PTRl.

VAR
p t r l : " c e l l ,
Mng_number: integer;

Hng_number := #ring (p t r D ;

If PTRl was formed using the following #ADDRESS function,

p t r l := #address (11 , 10, 0 f f f f (16)) ;

the value of RING_NUMBER would be 11.

6-28 CYBIL Language Definition Revision D

#SEGMENT Function

The #SEGMENT function accepts a pointer and returns the integer value of
the segment number contained in the pointer.

Use this format for the #SEGMENT function call:

#SEGMENT(pointer)

pointer
Name of a direct pointer expression.

Example:

The following example finds the segment number in the pointer PTRl.

VAR
p t r l : " c e l l ,
segmentjiumber: integer;

segmentjiumber := ^segment (p t rD;

If PTRl was formed using the following #ADDRESS function,

ptrl := #address (11, 10, offff(16));

the value of SEGMENT_NUMBER would be 10.

Revision D Functions 6-29

Procedures 7

This chapter descrihes the procedures that are predefined in CYBIL and
explains how you can define your own procedures.

Standard Procedures 7-1

STRINGREP Procedure 7-2
Integer Element 7-3
Character Element 7-3
Boolean Element 7-4
Ordinal Element 7-4
Subrange Element 7-4
Floating-Point Element 7-5
Pointer Element 7-8
String Element 7-8

User-Defined Procedures 7-9
Procedure Declaration 7-9
Parameter List 7-11
Calling a Procedure 7-13

System-Dependent Procedures 7-15

#CALLER_ID Procedure 7-15
#COMPARE_SWAP Procedure 7-17
#CONVERT_POINTER_TO_PROCEDURE Procedure 7-19
#HASH_SVA Procedure 7-20
#KEYPOINT Procedure 7-21
#PURGE_BUFFER Procedure 7-22
#SCAN Procedure 7-24
#TRANSLATE Procedure 7-26
#UNCHECKED_CONVERSION Procedure 7-27
#WRITE_REGISTER Procedure 7-28

Procedures 7

A procedure is one or more statements that perform a specific action and can
be called by a single statement. A procedure allows you to associate a name
with the statement list so that by specifying the name itself as if it were a
statement, you cause the list to be executed. Declarations can be included
and take effect when the procedure is called. A procedure call can optionally
cause actual parameters included in the call to be substituted for the formal
parameters in the procedure declaration before the procedure's statements
are executed.

A procedure differs from a function in that:

• A procedure can, but does not always, return a value.

• The call to a procedure is the procedure's name itself; a function call by
contrast must be part of an expression in a statement.

• There can be no value assigned to the procedure name as there is to a
function name.

You can call standard procedures that are already defined in the CYBIL
language, you can define your own procedures, or you can call procedures
designed specifically for use on NOS/VE. This chapter describes all three.

Standard Procedures
The STRINGREP procedure described here is a standard CYBIL procedure.
It can be used safely in variations of CYBIL available on other operating
systems. The last section in this chapter, System-Dependent Procedures,
describes procedures that may not be available on other operating systems or
that are unique to CYBIL on NOS/VE.

Revision D Procedures 7-1

STRINGREP

STRINGREP Procedure

The STRINGREP procedure converts one or more elements to a string of
characters, then returns that string and the length of the string.

Use this format for the STRINGREP procedure call:

STRINGREP(string_name, length, element {.element}...)

string_name
Name of a string type variable. (You can specify it as a substring.) The
result is returned here. It will contain the character representations of
the named element(s).

length
Name of an integer variable. The procedure will set its value to the
length in characters of the resulting string variable, string_name. It
will be less than or equal to the declared length of the string variable.

element

Name of the element to be converted. The element can be a scalar,
floating-point, pointer, or string type. Formats for specifying particular
types and rules for conversion of those types are discussed in more
detail later in this chapter.

The named elements are converted to strings of characters. Those strings are
then concatenated and returned left-justified in the named string variable.
The length of the string variable is also returned. If the result of
concatenating the string representations is longer than the length of the
string variable, the result is truncated on the right; the length that will be
returned is the length of the string variable.

Each individual element is converted and placed in a temporary field before
concatenation with other elements. The length of the temporary field can be
specified as part of the element parameter that is described in the following
sections. Generally, numeric values are written right-justified in the
temporary field with spaces added on the left to fill the field, if necessary.
String or character values are written left-justified in the temporary field
with spaces added on the right to fill the field, if necessary. For both numeric
and alphabetic values, the field is filled with asterisk characters if it is too
short to hold the resulting value. The value of the field length, when
specified, must be greater than or equal to zero; otherwise, an error occurs.

The following paragraphs describe how the STRINGREP procedure converts
specific types and how they appear in the temporary fields.

7-2 CYBIL Language Definition Revision D

STEINGREP

Integer Element

Use this format to specify an integer element:

expression {•' length} {: U(radix)}

expression
An integer expression to be converted.

length
A positive integer expression specifying the length of the temporary
field. The length must be greater than or equal to 2. If omitted, the
temporary field is the minimum size required to hold the integer value
and the leading sign character.

radix
Radix of expression. Possible values are 2, 8,10, and 16. If omitted, 10
(decimal) is assumed.

The value of the integer expression is converted into a string representation
in the desired radix. The resulting string representation is right-justified in
the temporary field. If the expression is positive, a space precedes the
leftmost significant digit. If the integer expression is negative, a minus sign
precedes the leftmost significant digit. The leading space or hyphen must be
considered a part of the length. Thus, the length must be greater than or
equal to 2 in order to hold the sign character and at least one digit.

If you specify a field length larger than necessary, spaces are added on the
left to fill the field. If you specify a field length that is not long enough to
contain all digits and the sign character, the field is filled with a string of
asterisk characters. If you specify a field length less than or equal to zero, an
error occurs.

Character Element

Use this format to specify a character element:

expression {•' length}

expression
A character expression to be converted.

length
A positive integer expression specifying the length of the temporary
field. If omitted, a length of 1 is assumed.

A single character is left-justified in the temporary field. If you specify a field
length larger than necessary, spaces are added on the right to fill the field.
Including a radix for a character element causes a compilation error.

Revision A Procedures 7-3

STCUNGREP

Boolean Element

Use this format to specify a boolean element

expression {•' length}

expression
A boolean expression to be converted.

length
A positive integer expression specifying the length of the temporary
field. If omitted, a length of 5 is assumed.

Either of the 5-character strings ' TRUE' or 'FALSE' is left-justified in the
temporary field. If you specify a field length larger than necessary, spaces
are added on the right to fill the field. If you specify a field length that is not
long enough to contain all five characters, the temporary field is filled with
asterisk characters. Including a radix for a boolean element causes a
compilation error to occur.

Ordinal Element

The integer value of an ordinal expression is handled the same way as an
integer element. Refer to the discussion under Integer Element earlier in this
chapter.

Subrange Element

A subrange element is handled the same way as the element of which it is a
subrange.

7-4 CYBIL Language Definition Revision A

STRINGREP

Floating-Point Element

Use this format to specify a floating-point element:

expression {•' length {: fraction}}

express ion

A real expression to be converted. If the value is INFINITE or
INDEFINITE, an error occurs.

length

A positive integer expression specifying the length of the temporary
field. If omitted, the temporary field is the minimum size required to
hold the integer value and the necessary leading character.

fraction

Positive integer expression specifying the number of fractional digits
to be included in a fixed-point format. Specify a value less than or
equal to "length - 2". If omitted, conversion to floating-point format is
assumed.

A floating-point expression can be converted into either a fixed-point format
or a floating-point format depending on the fraction parameter. If it is
included, the expression is converted to fixed-point format; if omitted, the
expression is converted to floating-point format.

Revision A Procedures 7-5

STRINGREP

Fixed-Point Format

The form

expression {•' length{: fraction}}

causes the specified expression to be converted to a string in fixed-point
format. The string will have the specified length with the specified number of
fractional digits to the right of the decimal place. The expression is rounded
off so that the specified number of fractional digits are present. If no positive
digit appears to the left of the decimal point, a 0 (zero) is inserted.

When figuring the length required to hold the expression, the compiler counts
all digits to the left of the decimal point (it also counts 0 if it appears alone),
the decimal point, and the specified number of fractional digits that appear
to the right of the decimal point. If the expression is negative, an extra space
is required for the minus sign. If you specify a field length larger than
necessary, spaces are added on the left to fill the field. If you specify a field
length that is not long enough to contain all digits, the sign character, and
the decimal point, the field is filled with a string of asterisk characters.

Examples:

Value of Expression E Format of Element Resulting String

1.23456 E=6:2 ' 1 . 2 3 '
-1.23456 E:6:3 '-1.235'
0 E:5:2 • 0-00'

7-6 CYBIL Language Definition Revision A

Floating-Point Format
The form

expression {•' length]

causes the specified expression to be converted to a string in floating-point
format.

The length of the temporary field is determined somewhat differently from
the other elements. The system defines a maximum number of digits that
can be contained in the mantissa of a real number and the number of digits
that can be in the exponent.

When the compiler figures the number of digits that will be in the mantissa,
it first determines the number of spaces that must be present in the string. It
allows for the number of digits in the exponent and four additional spaces:
one for the sign of the expression (a space if positive, - if negative), one for
the decimal point in the mantissa, one for the exponent character (E), and
one for the sign of the exponent (+ or -). The total number of required spaces
is subtracted from the specified field length. The compiler then compares the
result (field length minus required spaces) and the maximum number of
digits allowed in the mantissa, and takes the smaller of the two. That
number is used as the number of digits in the mantissa when the compiler
rounds the floating-point expression.

If a field length larger than necessary is specified, spaces are added on the
left to fill the field. If the fixed size of the exponent is larger than necessary,
zeroes are added on the left to fill the field. If the number that results from
the subtraction of required spaces from the field length is less than 1, the
field is filled with a string of asterisk characters.

Examples:

Value of Expression E Format of Element Resulting String

123.456 E=10 ' 1.23E+002'
-123.456 E : l l '-1.235E+0021

Revision A Procedures 7-7

STRINGREP

Pointer Element

Use this format to specify a pointer element:

pointer {•' length} {: #(radix)}

pointer
A pointer reference to be converted.

length
A positive integer expression specifying the length of the temporary
field. If you omit the field length, the temporary field is the minimum
size required to contain the pointer value.

radix

Radix of the pointer value. Possible values are 2, 8,10, and 16. For
NOS/VE, the default radix is 16.

The value of the pointer expression is converted into a string representation
in the specified radix. It is right-justified in the temporary field. If you specify
a field length larger than necessary, spaces are added on the left to fill the
field. If you specify a field length that is not long enough to contain all the
digits, the field is filled with a string of asterisk characters.

String Element

Use this format to specify a string element:

expression {•' length}

expression
A string variable, string constant, or substring to be converted.

length
A positive integer expression specifying the length of the temporary
field. If omitted, the field is the minimum size required to contain the
string expression.

A string expression is left-justified in the temporary field. If you specify a
field length larger than necessary, spaces are added on the right to fill the
field. If you specify a field length that is shorter than the length of the string,
the temporary field is filled with a string of asterisk characters.

7-8 CYBIL Language Definition Revision A

USER-DEFINED PROCEDURES

User-Defined Procedures

Procedure Declaration

You define your own procedures with procedure declarations.

Use this format to declare a procedure:

PROCEDURE {[attributes]] name {(formal _parameters)};t
{declaration _list]
{statement_ list]

PROCEND {name};

attributes

Specify one or more of the following attributes. If you specify more
than one attribute, separate them with commas.

XREF
The procedure has been compiled in a different module. In this case,
the procedure declaration can contain the name and formal
parameters, but no declaration list or statement list. In the other
module, the procedure must have been declared with the XDCL
attribute and an identical parameter list. If omitted, the procedure
must be defined within the module where it is called.

XDCL

The procedure can be called from outside the module in which it is
located. This attribute can be included only in a procedure declared
at the outermost level of a module; it cannot be contained in a
program, function, or another procedure. Other modules that call
this procedure must contain the same procedure declaration with
the XREF attribute specified.

t Some variations of CYBIL available on other operating systems allow an
additional option, the alias name, in a procedure declaration. If included in
a CYBIL program run on NOS/VE, this parameter is ignored.

Revision D Procedures 7-9

PROCEDURES

INLINE

Instead of calling the procedure, the compiler inserts the actual
procedure statements at the point in the code where the procedure
call is made.

#GATEt

The procedure can be called by a procedure at a higher ring level if
the call is issued from within the call bracket of the gated
procedure.tt K you specify #GATE, you must also specify the XDCL
attribute.

If you don't specify any attributes, the procedure is assumed to be in
the same module in which it is called.

n a m e

Name of the procedure. The procedure name is optional following
PROCEND.

formal parameters

One or more parameters in the form:

VAR name {,name}...'- type
{,name {.name}... •' type}...

and/or:

name {,name}...: type
Iname Iname}... •' type}...

The first form is called a reference parameter; its value can be changed
during execution of the procedure. The second form is called a value
parameter; its value cannot be changed by the procedure. Both kinds of
parameters can appear in the formal parameter list; if so, separate
them with semicolons (for example, I: INTEGER; VAR A: CHAR).
Reference and value parameters are discussed in more detail later in
this chapter under Parameter List.

declaration _list

Zero or more declarations.

statement _list

Zero or more statements.

t This attribute is not supported on variations of C YBIL available on other
operating systems.

t t A ring level is a hardware feature. Rings provide hardware protection in
that an unauthorized program cannot access anything at a lower ring
level. For further information on rings, refer to the SCL Object Code
Management manual.

7-10 CYBIL Language Definition Revision D

USER-DEFINED PROCEDOntS

Parameter List

A parameter list is an optional list of variable declarations that appears in
the first statement of the procedure declaration. In the procedure declaration
format shown earlier, they are shown as formal_parameters. Declarations
for formal parameters must appear in that first statement; they cannot
appear in the declaration list in the body of the procedure.

A parameter list allows you to pass values from the calling program to the
procedure. When a call is made to a procedure, parameters called actual
parameters are included with the procedure name. The values of those actual
parameters replace the formal parameters in the parameter list. Wherever
the formal parameters exist in the statements within the procedure, the
values of the corresponding actual parameters are substituted. For every
formal parameter in a procedure declaration, there must be a corresponding
actual parameter in the procedure call.

There are two kinds of parameters: reference parameters and value
parameters. A reference parameter has the form:

VAR name {.name}... • type
{.name {.name}... • type}...

When a reference parameter is used, the formal parameter represents the
corresponding actual parameter throughout execution of the procedure. Thus,
an assignment to a formal parameter changes the variable that was passed
as the corresponding actual parameter. An actual parameter corresponding
to a formal reference parameter must be addressable. A formal reference
parameter can be any fixed or adaptable type. If the formal parameter is a
fixed type, the actual parameter must be a variable or substring of an
equivalent type. If the formal parameter is an adaptable type, the actual
parameter must be a variable or substring whose type is potentially
equivalent. (For further information on potentially equivalent types, refer to
Equivalent Types in chapter 4.)

Revision A Procedure* M l

USER-DEFINED PROCEDURES

A value parameter has the form:

name {.name}... • type
{,name {.name}... • type}...

When a value parameter is used, the formal parameter takes on the value of
the corresponding actual parameter. However, the procedure cannot change
a value parameter by assigning a value to it or using it as an actual
reference parameter to another procedure or function. A formal value
parameter can be any fixed or adaptable type except a type that cannot have
a value assigned, that is, a heap, or an array or record that contains a heap.
If the formal parameter is a fixed type, the actual parameter can be any
expression that could be assigned to a variable of that type. Strings must be
of equal length. If the formal parameter is an adaptable type, the current
type of the actual parameter must be one to which the formal parameter can
adapt. If the formal parameter is an adaptable pointer, the actual parameter
can be any pointer expression that could be assigned to the formal
parameter. Both the value and the current type of the actual parameter are
assigned to the formal parameter.

Reference parameters and value parameters can be specified in many
combinations. When both kinds of parameters appear together, they must be
separated by semicolons. Parameters of the same type can also be separated
by semicolons instead of commas, but in this case, VAR must appear with
each reference parameter. All of the following parameter lists are valid:

• VAR i , j : integer; a, b: char;

• VAR i : integer; VAR j : integer; a: char; b: char;

• a: char; VAR i , j : integer; b: char;

• VAR i : integer, j : real; a: char, b: boolean;

In each of the preceding examples, I and J are reference parameters; A and B
are value parameters.

7-12 CYBIL Language Definition Revision D

USER-DEFINED

Calling a Procedure

A call to a procedure consists of the procedure name (as given in the
procedure declaration) and any parameters to be passed to the procedure in
the following format:

name {(actual_parameters)};

name

Name of the procedure or a pointer to a procedure.

actual ̂ parameters

One or more expressions or variables to be substituted for formal
parameters defined in the procedure declaration. If you specify two or
more, separate them with commas. They are substituted one-for-one
based on their position within the list; that is, the first actual
parameter replaces the first formal parameter, the second actual
parameter replaces the second formal parameter, and so on. For every
formal parameter in a procedure declaration, there must be a
corresponding actual parameter in the procedure call.

A procedure is a type, like the types described in chapter 4. Procedure types
are used for declaration of pointers to procedures; there are no procedure
variables.

The lifetime of a formal parameter is the lifetime of the procedure in which it
is a part. Storage space for the parameter is allocated when the procedure is
entered and released when the procedure is left.

The lifetime of a variable that is allocated using the storage management
statements (described in chapter 5) is the time between the allocation of
storage (with the ALLOCATE statement) and the release of storage (with the
FREE statement).

Two procedure types are equivalent if corresponding parameter segments
have the same number of formal parameters, the same methods of passing
parameters (reference or value), and equivalent types.

Revision A Procedures 7-13 J

USER-DEFINED PROCEDURES

Example:

This example calculates the greatest common divisor X of M and N. M and N
are passed as value parameters; that is, their values are used but M and N
themselves are not changed. X, Y, and Z are reference parameters (preceded
by the VAR keyword). Their original values are not used in this procedure;
they are assigned new values in the procedure that destroy their previous
values.

PROCEDURE gcd (m,
n: integer;

VAR x,
y,
z: integer);

{Extended Euclid's Algorithm}
VAR

a1,
a2,
b1,
b2,
c,
d,

r: integer;

a1 := 0,
a2 := 1
b1 := 1
b2 := 0,
c := m;
d := n;

WHILE d <> 0 DO
•Ca1 * m + b1 * n = d, a2 * m + b2 * n = c>
•Cgcd (c,d) = gcd (m,n)>

q := c DIV d;
r := c MOD d;
a2 := a2 - q * a1;
b2 := b2 - q * b1;
c := d;
d := r;
r := al;
a1 := a2;
a2 := r;
r := b1;
b1 := b2;
b2 := r;

WHILEND;
x := c;
y := a2;
z := b2;
•Cx = gcd (rti/n), y * m + z * n

PROCEND gcd;
* gcd (m,n)>

• 7-14 CYBIL Language Definition Revision D

#CALLER_ID

System-Dependent Procedures
Of the procedures described here, some can be used only with NOS/VE;
others may be available in variations of CYBIL on other operating systems,
but they are not guaranteed to be. Keep in mind that programs using these
procedures may not be transportable to other systems.

To use these procedures properly and efficiently, you should be familiar with
basic hardware concepts of your computer system. This information can be
found in volume II of the virtual state hardware reference manual.

The functions are described in alphabetical order.

#CALLER_ID Procedure

The #CALLER_ID procedure returns the identification (caller id) of the
caller of a function or procedure. This procedure can be used only with
NOS/VE.

Use this format for the #CALLER_ID procedure call:

#CALLER_ID(id_record)

id_record
Name of the record that will contain the caller id information. It must
be four bytes long.

The caller id is a record that contains the global/local key, ring number, and
segment number of the caller. When a function or procedure is called, the
caller id is placed in the leftmost 32 bits of the XO register as a result of a call
relative (CALLREL) or call indirect (CALLSEG) hardware instruction. The
#CALLER_ID procedure accesses XO while this information is there.

No special scope attributes (XDCL or XREF) are required in the calling
function or procedure to use this procedure.

For further information on the caller id record and the CALLREL and
CALLSEG instructions, refer to volume II of the virtual state hardware
reference manual.

Revision A Procedures 7-15

#CALLER_ID

Example:

The following example sets the pointer variable PSA_PTR to point to the
first cell of the previous save area. The #CALLER_ID procedure then returns
information about the caller of the last function. That information is
returned in the record CALLER.RECORD. In this example, CALLER.
RECORD is equivalent to the object of pointer PSA_PTR (that is, CALLER_
RECORD = PSA_PTR").

TYPE
id rec = record

Td: 0 . . 0 f f f f f f f f < 1 6) ,
recend;

VAR
psa_ptr: *id_recx

caUer_record: id_rec;

psa_ptr := #previous_save_area () ;
#cal ler_id (caller_record);

• 7-16 CYBIL Language Definition Revision D

#COMPARE_SWAP

#COMPARE_SWAP Procedure

The #COMPARE_SWAP procedure performs actions equivalent to the
compare swap (CMPXA) hardware instruction. It compares the contents of a
variable with an expression. If the variable is unlocked and equal to the
expression, the variable is swapped with a new expression. This procedure
can be used only with NOS/VE.

Use this format for the #COMPARE_SWAP procedure call:

#COMP ARE_SWAP(lock_ variable, initial_expression,
new _ expression, actual _ variable, result_variable)

lock_variable
Name of the variable on which the compare swap operation is to be
performed. This variable must be aligned on a word boundary.

initial_expression

Expression that is compared to the lock variable. They must be equal
for the swap operation to occur.

new _ expression
Expression that specifies the value to be stored in the lock variable if
the swap is successful (that is, the contents of lock_variable equals
initial_expression).

actual _ variable
Name of the variable into which the initial contents of the lock
variable is returned. If the lock variable is locked, this field is not
changed.

result_ variable
Name of the variable into which the result of the compare swap
instruction is returned. Specify a subrange from 0 to 2 where each
value has the following significance:

0
Swap operation was successful.

Swap operation failed because the initial expression was not equal
to the contents of the lock variable.

2
Swap operation failed because the lock variable was locked.

The types of the lock variable, initial expression, new expression, and actual
variable must be equivalent and have a size of eight bytes.

Revision D Procedures 7-17

#COMPARE_SWAP

The lock variable is said to be locked if the leftmost 32 bits are ones. If it is
locked, no action occurs. If it is unlocked, the contents of the lock variable is
assigned to the actual variable. Then the lock variable is compared to an
initial expression. If they are equal, a new expression is assigned to the lock
variable. Otherwise, no swap occurs.

This procedure essentially performs the following statements:

IF (left half of lock_variable) = 0ffffffff(16) THEN
result_ variable := 2;

ELSE
actual_variable := lock_variable;
IF lock_variable = initial_expression THEN

lock_variable := new_expression;
result_ variable := 0;

ELSE
result_variable := 1;

IFEND;
IFEND;

These statements are executed by the hardware as a noninterruptable
sequence. Access to the lock_variable from other sources, such as another
processor or peripheral processor (PP), is prevented while these statements
are being executed.

For further information on the CMPXA instruction, refer to volume II of the
virtual state hardware reference manual.

Example:

The following example compares the variable LOCK with INITIAL. If
LOCK is unlocked and equal to INITIAL, the value of LOCK is replaced by
the value of variable NEW. In this example, LOCK is unlocked and equal to
INITIAL. Therefore, following completion of the procedure, LOCK is equal to
NEW which is 10. The variable RESULT is 0 indicating that the swap was
successful.

VAR
Lock,
i n i t i a l ,
new,
actual : integer,
resul t : 0 . . 2;

lock := 5;
i n i t i a l := 5;
new := 10;
#compare_swap (lock, i n i t i a l , new, actua l , resu l t) ;

• 7-18 CYBIL Language Definition Revision D

#CONVERT_POINTER_TO_PROCEDURE

#CONVERT_POINTER_TO_PROCEDURE
Procedure
The #CONVERT_POINTER_TO_PROCEDURE procedure converts a
variable of the type pointer to procedure that has no parameters to a variable
of the type pointer to procedure that can have parameters. This procedure
may not be available on variations of C YBIL that execute on other operating
systems.

Use this format for the #CONVERT_POINTER_TO_PROCEDURE
procedure call:

#CONVERT_POINTER_TO_PROCEDURE(pointer_ 1, pointer_2)

pointer_ 1
Name of a pointer to procedure variable with no parameters.

pointer_2
Name of a pointer to procedure variable with an arbitrary parameter
list.

Example:

The following example converts the variable PTR_TO_PROCl, a pointer to
a procedure that has no parameters, to the variable PTR_TO_PROC2, a
pointer to a procedure that does have parameters.

VAR
Ptr_to_proc1: "procedure,
ptr_to_proc2: "procedure (a rg l : integer,
arg2: rea l) ;

ptr_to_prod := " p r o d ;
#convert_pointer_to_procedure (ptr_to_proc1, ptr_to_proc2);

Revision D Procedures 7-19

#HASH_SVA

#HASH_SVA Procedure

The #HASH_SVA procedure performs actions equivalent to the load page
table index (LPAGE) hardware instruction. This instruction searches the
system page table (SPT) for a given system virtual address (SVA). This
procedure can be used only with NOS/VE.

Use this format for the #HASH_SVA procedure call:

#HASH_SVA(sva_variable, index, count, result_variable)

sva_ variable
Name of the variable that contains the SVA for which the instruction
will search.

index
Name of an integer variable that will contain a word index into the
SPT. If the SVA is found, this index points to the SPT entry for the
SVA. If the SVA is not found, it points to the last entry searched.

count
Name of an integer variable that will contain the number of SPT
entries searched.

result_variable
Name of a boolean variable that is set to TRUE if the SVA is found.

The procedure returns either an index within the table if the SVA is found, or
an index of the last entry searched if the SVA is not found. It also returns
the number of entries searched and a boolean value indicating whether the
entry was found.

For further information on the SVA, addressing in general, and the LPAGE
instruction, refer to volume II of the virtual state hardware reference manual.

7-20 CYBIL Language Definition Revision A

#KEYFonfr

#KEYPOINT Procedure

The #KEYPOINT procedure generates an inline keypoint hardware
instruction based on parameters supplied in the call. It allows performance
monitoring of programs using keypoint instructions as trap interrupts. This
procedure can be used only with NOS/VE.

Use this format for the #KE YPOINT procedure call:

#KEYPOINT(class, data, identifier)

class
A constant integer expession from 0 to 15 that specifies the keypoint
class. This value is placed in the j field of the hardware instruction.

data
A constant or variable expression from 0 to OFFFFFFFF hexadecimal
that specifies optional data to be collected with the keypoint. If you
specify the constant 0, a 0 is placed in the k field of the hardware
instruction. If you don't specify 0, the value is placed in an X register
and that register is placed in the k field of the hardware instruction.

identifier

A constant expression from 0 to OFFFF hexadecimal that specifies a
keypoint identifier. It is placed in the Q field of the hardware
instruction.

For further information on the KEYPOINT instruction, refer to volume II of
the virtual state hardware reference manual.

Revision A

#PURGE_BUFFER

#PURGE_BUFFER Procedure

The #PURGE_ BUFFER procedure performs actions equivalent to the purge
hardware instruction. It purges the contents of cache or the map buffer. This
procedure can be used only with NOS/VE. However, not all computer
systems that support NOS/VE have cache and map buffers. If executed on a
model without cache or map buffers, no action occurs.

Use this format for the #PURGE_BUFFER procedure call:

#PURGE_BUFFER(option_value, address)

option _ value
A constant integer expression from 0 to 15 that specifies one of the
following purge options:

0

Purge all entries in cache that are included in the 512-byte block
defined by the system virtual address (SVA) in Xj.

1
Purge all entries in cache that are included in the active segment
identifier (ASID) defined by the SVA in Xj.

2
Purge all entries in cache.

3

Purge all entries in cache that are included in the 512-byte block
defined by the process virtual address (PVA) in Xj.

4-7

Purge all entries in cache that are included in the segment number
defined by the PVA in Xj.

8

Purge all entries in the map (page table map if entries are kept in
separate maps) relating to the page table entry denned by the SVA
inXj.

7-22 CYBIL Language Definition Revision A

#PURGE_BUFFER

9
Purge all entries in the map (page table map if entries are kept in
separate maps) relating to the page table entries that are included in
the segment defined by the SVA in Xj.

10 or A(16)
Purge all entries in the map (page table map if entries are kept in
separate maps) relating to the page table entry defined by the PVA
in Xj.

11 or B(16)
Purge all entries in the map (both the page table and segment map)
relating to the segment table entry defined by the PVA in Xj, and to
all page table entries included within that segment.

12-15 or C(16)-F(16)

Purge all entries in the map.

address
Name of a 6-byte variable that specifies the PVA or SVA of the data to
be purged.

For further information on addressing, cache and map buffers, and the purge
instruction, refer to volume II of the virtual state hardware reference manual.

Example:

The following example purges all entries in cache that are in the block
defined by the PVA in pointer variable PTR1.

VAR
i: integer,
ptrl: "cell;

ptM := " i ;
#purge_buffer (3, p t r l) ;

Revision D Procedures 7-23

#SCAN

#SCAN Procedure

The #SCAN procedure scans a string from left to right until one of a
specified set of characters is found or the entire string has been searched.
This procedure may not be available on variations of CYBIL that execute on
other operating systems.

Use this format for the #SCAN procedure call:

#SCAN(scan_variable, string, index, result_variable)

scan _ variable
Name of the variable that indicates the character values for which the
string is scanned. The variable must be 256 bits long. Each bit of the
variable represents the character in the corresponding position of the
ASCII character set. If a bit is set, the corresponding character is one
for which the procedure scans.

string
String or substring to be scanned.

index
Name of an integer variable. If a character is found during scanning,
the index of that character is returned in this variable. The index of a
character is that character's position in the string; for example, the
index value of the first character is 1. If no matching values are found,
the variable contains the string length plus one.

result_variable

Name of a boolean variable, which is set to TRUE if the scan finds one
of the selected characters.

The procedure looks for any one character from a set of characters specified
in a 256-bit variable. Bits are set in the variable to correspond to the
characters in the same positions in the ASCII character set collating
sequence. A set bit indicates that the procedure scans the string for the
corresponding character. The procedure stops if it finds one of the characters
specified. It returns the position of the character that caused termination and
the boolean variable that indicates whether a character was found.

7-24 CYBIL Language Definition Revision A

#SCAN

Example:

The following example searches the string variable SOURCE_STRING for
the asterisk character (*). First, the character to be searched for (the asterisk)
must be specified in the array variable SELECT. To do this, all 256 elements
of SELECT are set to 0. Then the $INTEGER function is used to determine
the position of the asterisk character in the ASCII character set collating
sequence. The value returned in I is 42 (because the asterisk is in the forty-
second position in the collating sequence). The forty-second position in the
array SELECT is then set to 1. Assuming SOURCE .STRING contains an
asterisk as the fifty-fourth character of the string, the value returned in
INDEX is 54 and the value returned in RESULT is TRUE.

VAR
source_string: string (100),
select: packed array CO . . 255] of 0 . . 1 ,
i ,
index: integer,
result: boolean;

FOR i := 0 TO 255 DO
select Ci] := 0;

FOREND;
i := SINTEGER (' * ') ;
select Ci] := 1 ;
ffscan (select, source_string, index, result);

Revision D Procedures 7-25

TRANSLATE

#TRANSLATE Procedure

The #TRANSLATE procedure translates each character in a source field
according to a translation table, and transfers the result to a destination
field. This procedure may not be available on variations of CYBIL that
execute on other operating systems.

Use this format for the #TRANSLATE procedure call:

#TRANSLATE(table, source, destination)

table
Name of a string variable whose length is 256 characters. This
variable defines the translation table.

source
String to be translated.

destination
Name of a string variable into which the translated string is
transferred.

Translation of the string occurs from left to right with each source byte used
as an index into the translation table. Translated bytes from the table are
stored in the destination field.

If the length of the source field is less than the length of the destination field,
translated spaces fill the destination field. If the source field is larger than
the destination field, the rightmost characters of the source field are
truncated.

Example:

The following example translates a string named SOURCE _ STRING
according to an externally referenced translation table named TRANS1_
TABLE. The resulting string is placed in DEST_STRING.

VAR
t rans l . tab le : CXREF] str ing (256),
source_string: s t r ing (100),
dest_str ing: s t r ing (100);

source_string (1 , 10) := ' ten chars . ' ;
^translate (trans1_table, source.str ing, dest_str ing);

7-26 CYBIL Language Definition Revision D

#UNCHECKED_CONVERSION

#UNCHECKED_CONVERSION Procedure
The #UNCHECKED_CONVERSION procedure copies directly from a
source field to a destination field. This procedure may not be available on
variations of CYBIL that execute on other operating systems.

Use this format for the #UNCHECKED_ CONVERSION procedure call:

#UNCHECKED_CONVERSION(source, destination)

source
Name of a variable from which the copy is made.

destination
Name of a variable to which the copy is made.

The source and destination fields must have the same length in bits. Neither
the source nor the destination field can be a pointer or contain a pointer. If
either the source or destination field is the object of a pointer reference
(pointer*), the pointer cannot be a pointer to a procedure.

The destination field must satisfy the same restrictions as the target of an
assignment statement. This means that the destination field cannot be:

• A read-only variable.

• A formal value parameter of the procedure that calls the
#UNCHECKED_CONVERSION procedure.

• A bound variant record.

• The tag field name of abound variant record.

• A heap.

• An array or record that contains a heap.

Example:

The following example copies the contents of a 5-character string named
SOURCE to a 5-element array named DESTINATION. After the operation,
the contents of both variables are identical.

VAR
source: s t r ing (5) ,
destination: packed array C1 . . 5J of char;

#unchecked_conversion (source/ dest inat ion);

Revision D Procedures 7-27

#WRITE_REGISTER

#WRITE_REGISTER Procedure

The #WRITE_REGISTER procedure performs actions equivalent to the copy
to state register (CPYXS) hardware instruction. It allows a program to
change the contents of a process or processor register. This procedure can be
used only with NOS/VE.

Use this format for the #WRITE_ REGISTER procedure call:

#WRITE_REGISTER(register_id, data)

register _ id
An integer expression from 0 to 255 that identifies the number of the
register to be written. Register numbers are given in volume II of the
virtual state hardware reference manual.

data
Integer expression that contains the data to be written to the register.

The #READ_REGISTER function described in chapter 6 allows a program
to read the contents of a process or processor register.

Writing to certain registers requires special privileges. For further
information on process and processor registers, and the CPYXS instruction,
refer to volume II of the virtual state hardware reference manual.

Example:

The following example changes the contents of register E5, the Debug mask
register, to IF hexadecimal.

VAR
i : integer;

i := 01f(16);
#write_register (oe5(16), i) ;

7-28 CYBIL Language Definition Revision D

The CYBIL Command and
Other Compilation Facilities S

This chapter describes the CYBIL command, the FORMAT_CYBIL_
SOURCE command, and the declarations, statements, and directives that
can be used at compilation time.

CYBIL Command 8-1

FORMAT_CYBIL_SOURCE Command 8-7

Compilation Declarations and Statements 8-8

Compile-Time Variables 8-8
Compile-Time Expressions 8-9
Compile-Time Assignment Statement 8-10
Compile-Time IF Statement 8-11

Compile-Time Directives 8-12
Toggle Control 8-13

SET Directive 8-13
PUSH Directive 8-16
POP Directive 8-17
RESET Directive 8-18

Layout Control 8-19
LEFT and RIGHT Directives 8-19
EJECT Directive 8-20
SPACING Directive 8-21
SKIP Directive 8-22
NEWTITLE Directive 8-23
TITLE Directive 8-24
OLDTITLE Directive 8-25

Maintenance Control 8-26
COMPILE Directive 8-26
NOCOMPILE Directive 8-27

Comment Control 8-28
COMMENT Directive 8-28

The CYBIL Command and
Other Compilation Facilities $

This chapter describes the CYBIL command, the FORMAT, CYBIL_
SOURCE command, and the declarations, statements, and directives that
can be used at compilation time. The CYBIL command is used to compile one
or more CYBIL modules. The FORMAT_CYBIL_SOURCE command is
used to reformat CYBIL source code. The compilation statements and
directives are used to construct the unit to be compiled and to control that
process. If a CYBIL command and a directive specify conflicting options, the
option encountered most recently is used.

For further information on program execution, refer to the SCL Object Code
Management manual.

The CYBIL and FORMAT_CYBIL_SOURCE commands described next are
standard system commands and use the syntax and language elements for
parameters described in the SCL Language Definition manual.

CYBIL Command
Purpose The CYBIL command calls the compiler, specifies the files to

be used for input and output, and indicates the type of output
to be produced.

CYBIL
INPUT=file
LIST=file
BOfARY^file
LIST_OPTIONS=list of keyword value
DEBUG _AWS=list of keyword value
ERROR_LEVEL=keyword value
OPTIMIZATION_LEVEL=keyword value
PAD=integer
RUNTIME_CHECKS=list of keyword value
STATUS=status variable

INPUT or /
Specifies the file that contains the source text to be read. You
can specify a file position as part of the file name. Source
input ends when an end-of-partition or an end-of-information
is encountered on the source input file. If omitted, $INPUT is

LIST or L
Specifies the file on which the compilation listing is to be
written. You can specify a file position as part of the file
name. If you specify $NULL, all compile-time output is
discarded. If omitted, $LIST is assumed.

Revision D CYBIL Command/Other Facilities 8-1 •

COMMAND

BINARY or B or BINARY_OBJECT at BO

Specifies the file on which object code is to be written. You can
specify a file position as part of the file name. If you specify
$NULL, the compiler performs a syntactic and semantic scan
of the program but does not generate object code. If omitted,
$LOCAL.LGO is assumed.

LIST_OPTIONS or LO

Specifies a combination of the following list options. If you
specify NONE, no list options are selected. If omitted, option S
(list the source input file) is assumed.

A

Produces an attribute list of source input block structure
and relative stack. The attribute listing is produced
following the source listing on the file specified by the
LIST parameter or, if you omit the LIST parameter, on file
$LIST.

F

Produces a full listing. In effect, this option selects options
A, S, and R.

O

Lists compiler-generated object code. When selected, this
listing includes an assembly-like listing of the generated
object code. This option has no effect if the BINARY_
OBJECT parameter is set to $NULL.

R

Produces a symbolic cross-reference listing showing the
location of a program entity definition and its use within a
program.

RA

Produces a symbolic cross-reference listing of all program
entities whether referenced or not.

S

Lists the source input file.

X

Used in conjunction with the compile-time directive
LISTEXT so that listings can be externally controlled
using the CYBIL command. The LISTEXT toggle must be
ON. For further information, refer to Toggle Control under
Compile-Time Directives later in this chapter.

CYBIL Language Definition Revision D

CYBIL COMMAND

DEBUG_AIDS or DA
Specifies a combination of the following debug options. If
omitted, NONE (no debug options) is assumed.

ALL
Selects debug options DS and DT.

DS
Compiles all debugging statements. A debugging
statement is a statement in die source text that is ignored
unless this option is specified. These statements are
enclosed by the compile-time directives COMPILE and
NOCOMPILE. (For further information, refer to
Maintenance Control under Compile-Time Directives later
in this chapter.) Hie symbol table and line table for
interactive debugging are also generated.

DT
Generates debug tables (that is, the symbol table and line
table) as part of the object code. These tables are used by
the Debug utility.

NONE
No debug options are selected.

ESROR_LEVEL or EL
Specifies one of the following error list options. If omitted, W
(list warning and fatal diagnostics) is assumed.

F
Lists fatal diagnostics. If selected, only fatal diagnostics
are listed.

W

Lists warning (informative) diagnostics as well as fatal
diagnostics.

Revision D CYBIL Command/Other Facilities 8-3

CYBIL COMMAND

OPTIMIZATION_LEVEL or OL or OPTIMIZATION or OPT

Specifies one of the following optimization options. If omitted,
LOW is assumed.

DEBUG
Object code is stylized to facilitate debugging. Stylized code
contains a separate packet of instructions for each
executable source statement; it carries no variable values
across statement boundaries in registers, and it notifies
Debug each time the beginning of a statement or procedure
is reached.

LOW

Provides for keeping constant values in registers.

HIGH
Provides for keeping local variables in registers, passing
parameters to local procedures in registers, and
eliminating redundant memory references, common
subexpressions, and jumps to jumps.

PAD

Generates the specified number of no-op (no operation)
instructions between instructions that actually perform
operations. If omitted, zero is assumed; no-op instructions are
not generated.

8-4 CYBIL Language Definition Revision D

CYBIL COMMAND

R UNTIME_ CHECKS or RC
Specifies a combination of the following run-time checking
options. If omitted, NONE (no run-time checks) is assumed.

ALL

Selects run-time checking options N, R, and S.

N
Produces compiler-generated code that checks for a NIL
value when a reference is made to the object of a pointer.

NONE
No run-time checks are produced.

R
Produces compiler-generated code to check ranges. Range
checking code is generated for assignment to integer
subranges, ordinal subranges, and character variables. All
CASE statements are checked to ensure that the selection
expression corresponds to one of the variant values
specified if no ELSE clause is provided. All references to
substrings are verified. If you specify an offset (variable
pointer) on a RESET statement, it is checked to ensure that
it is valid for the specified sequence.

S
Produces compiler-generated code to test the subscripting
of arrays.

STATUS
Specifies an optional SCL status variable in which the
completion status of the command is returned. If specified, the
compiler returns a status to this variable indicating whether
any fatal errors were found during the compilation that was
just completed. You can test this status variable and take
special action if fatal compilation errors occurred. If omitted
and the status returned from the compiler is abnormal, SCL
terminates the current command sequence.

Revision D CYBIL Command/Other Facilities 8-5 •

CYBIL COMMAND

Remarks If the compiler command specifies an option that differs from
a directive, the latest occurrence of either the command or the
directive takes precedence.

Example This command reads source code from a file named
COMPILE, writes the compilation file on file LIST, and writes
the object code on file BIN1. The listing includes source code,
compiler-generated object code, and a symbolic cross-reference
listing.

cybi l i=compile L=List b=bin1 lo=(o /r)

8-6 CYBIL Language Definition Revision A

FORMAT,CYBIL_SOURCE COMMAND

FORMAT_CYBIL_SOURCE Command
Purpose Reformats CYBIL source code for consistency and greater

readability.

Format FORMAT CYBIL SOURCE or
FORCS

INPUT=file
OUTPUT=file
STATUS=status variable

Parameters INPUT or I

Specifies the file from which the CYBIL source code is to be
read. If omitted, local file I is assumed.

OUTPUT or O
Specifies the file on which the reformatted CYBIL source code
is to be written. If omitted, local file O is assumed.

STATUS
Specifies an optional SCL status variable in which the
completion status of the command is returned.

The CYBIL source code must be syntactically correct.

This command reformats the CYBIL source program
contained on file INITIAL and writes it to file
$USER.FINAL.

format_cybil_source i n i t i a l $user.f inal

Remarks

Example

Revision D

COMPILE-TIME VARIABLES

Compilation Declarations and
Statements
Many program elements defined in CYBIL have counterparts that can be
used to control the compilation process. They include variable declarations,
expressions, and the assignment and IF statements. The IF statement is
used to specify certain areas of code to be compiled. The IF statement
requires the use of expressions, which in turn require variables. Assignment
statements are used to change the value of variables and, thus, expressions.

Compile-Time Variables

Only boolean type variables can be declared.

Use this format to specify a boolean type compile-time variable:

? VAR name {,name}... '• BOOLEAN := expression
{, name {.name}...: BOOLEAN := expression}... ?;

name

Name of the compile-time variable. This name must be unique among
all other names in the program.

expression

A compile-time expression that specifies the initial value of the
variable.

A compile-time declaration must appear before any compile-time variables
are used. The scope of such a variable extends from the point at which it is
declared to the end of the module. Compile-time variables can be used only in
compile-time expressions and compile-time assignment statements.

&8 CYBIL Language Definition Revision A

COMPILE-TIME EXPRESSIONS

Compile-Time Expressions

Compile-time expressions are composed of operands and operators like
CYBIL-defined expressions. An operand can be:

• Either of the constants TRUE or FALSE.

• A compile-time variable.

• Another compile-time expression.

The operators are NOT, AND, OR, and XOR Their order of evaluation from
highest to lowest is:

• NOT

• AND

• OR and XOR

These operators have their usual meanings, as described under Operators in
chapter 5.

Revision A

COMPILE-TIME ASSIGNMENT

Compile-Time Assignment Statement

A compile-time assignment statement assigns a value to a compile-time
variable.

Use this format for the compile-time assignment statement:

? name := expression ?;

name

Name of a compile-time variable.

expression
A compile-time expression.

8-10 CYBIL Language Definition Revision A

COMPILE-TIME IF

Compile-Time IF Statement

The compile-time IF statement compiles or skips a certain area of code
depending on whether a given expression is true or false.

Use this format for the compile-time IF statement:

? IF expression THEN
code
{?ELSE
code]

?IFEND

expression
A boolean compile-time expression.

code
An area of CYBIL code or text

When the expression is evaluated as true, the code following the reserved
word THEN is compiled. When compilation of that code is completed,
compilation continues with the first statement following IFEND. When the
expression is false, compilation continues following the ELSE phrase, if it is
included, or following IFEND.

The ELSE clause is optional. If included, the ELSE clause designates an
area of code that is compiled when the preceding expression is false.

Example^

The following example shows the declaration of a compile-time variable
named SMALL_SIZE that is initialized to the value TRUE. A line of CYBIL
code declaring an array named TABLE is compiled. Then a compile-time IF
statement checks the value of SMALL.SIZE. If it is TRUE, the line of
CYBIL code calling a procedure named BUBBLESORT is compiled in the
program. Kit is FALSE, the CYBIL line calling procedure QUICKSORT is
inserted instead. Because SMALL_SIZE was initialized to TRUE, the call to
BUBBLESORT is included in the compiled program.

7VAR
saall_size: boolean := TRUE?;

VAR
table: array C1 .. 50] of integer;

?IF ssall.size = TRUE THEN
bubblesort (table);

?ELSE
quicksort (table);

IFEND

Revision D CYBIL Command/Other Facilities 8-11

COMPILE-TIME DIRECTIVES

Compile-Time Directives
Compile-time directives allow you to perform the following activities during
compilation:

• Set toggles that turn on or off listing options such as source code listing
and object code listing (SET, PUSH, POP, and RESET directives when
they contain one or more of the listing options).

• Set toggles that turn on or off run-time options such as range checking
and array subscript checking (SET, PUSH, POP, and RESET directives
when they contain one or more of the run-time checking options).

• Specify the layout of the source text to be used (LEFT and RIGHT margin
directives).

• Specify the layout of the resulting listing (EJECT, SPACING, SKIP,
NEWTITLE, TITLE, and OLDTITLE directives).

• Specify what code to compile (COMPILE and NOCOMPILE directives).

• Include comments in the object module (COMMENT directive).

You can specify one or more directives with the format:

?? directive {.directive}... ??

directive
One of the directives discussed in the remainder of this chapter. They
can be broken down into four categories:

• Toggle control (SET, PUSH, POP, and RESET)

• Layout control (LEFT, RIGHT, EJECT, SPACING, SKIP,
NEWTITLE, TITLE, and OLDTITLE)

• Maintenance control (COMPILE and NOCOMPILE)

• Object code comment control (COMMENT)

Directives must be bounded by a pair of consecutive question marks. These
delimiters are not shown in the following formats for individual directives,
but they are required around one or more directives.

If a directive differs from an option specified on a compiler command, the
latest occurrence of either the directive or the command takes precedence.

8-12 CYBIL Language Definition Revision A

SET

Toggle Control

Toggle controls can set the values of individual toggles, save and restore
preceding toggle values in a last in-first out manner, and reset all toggles to
their initial values.

SET Directive

The SET directive specifies the setting of one or more toggles.

Use this format for the SET directive:

SET (toggle_name := condition {.toggle_name := condition}...)

toggle_name
Name of the toggle being set Listing toggles are described in table 8-1.
Ran4une checking toggles are described in table 8-2. The names of
toggles can be used freely outside of directives.

condition
ON or OFF. If a toggle is ON, the activity associated with it is
performed during compilation; if it is OFF, the activity is not
performed.

All settings specified in the SET directive are done at the same time. If the
duective list contains more than one setting for a single toggle, the rightmost
setting in the list is used.

Revision A CYBIL Command/Other Facilities 8-13

LISTING TOGGLES

Table 8-1 describes the listing toggles and gives their initial settings.

Table 8-1. Listing Toggles

Initial
Toggle Value Description

LIST ON

LLSTOBJ

USTCTS

LLSTEXT

LLSTALL

OFF

OFF

OFF

Not
applicable

Determines whether other listing toggles are read.
When ON, a source listing is produced and the
other listing toggles are used to control other
aspects of listing. When OFF, no listing is
produced; the other listing toggles are ignored.

Controls the listing of generated object code.
When ON, object code is interspersed with source
code following the corresponding source code line.

Controls the listing of the listing toggle directives
and layout directives.

When ON, the listing of source statements is
controlled by a list option on the CYBIL compiler
command.

This option represents all of the listing toggles.
When ON, all other listing toggles are ON; when
OFF, all other listing toggles are OFF.

8-14 CYBIL Language Definition Revision A

RUN-TIME CHECKING TOGGLES

Table 8-2 describes the run-time checking toggles and gives their initial
settings.

Table 8-2. Run-Time Checking Toggles

Initial
Toggle Value Description

CHKRNG ON Controls the generation of object code that
performs range checking of scalar subrange
assignments and case variables.

CHKSUB ON Controls the generation of object code that checks
array subscripts (indexes) and substring
selections to verify that they are valid.

CHKNIL OFF Controls the generation of object code that checks
for a NIL value when a reference is made to the
object of a pointer.

CHKALL Not This option represents all run-time checking
applicable toggles. When ON, all other run-time checking

toggles are ON; when OFF, all other run-time
checking toggles are OFF.

Revision A

PUSH

PUSH Directive

The PUSH directive specifies the setting of one or more toggles like the SET
directive, but before the settings are put into effect, a record of the current
state of all toggles is saved for later use.

Use this format for the PUSH directive:

PUSH (toggle_name := condition {.toggle_name •= condition}...)

toggle _ name

Name of the toggle being set. Listing toggles are described in table 8-1.
Run-time checking toggles are described in table 8-2. The names of
toggles can be used freely outside of directives.

condition

ON or OFF. If a toggle is ON, the activity associated with it is
performed during compilation; if it is OFF, the activity is not
performed.

Settings in the PUSH list are performed in the same manner as a SET list. If
the directive list contains more than one setting for a single toggle, the
rightmost setting in the list is used.

The POP directive, described later in this chapter, restores the original toggle
settings in a last in-first out manner (that is, the last record to be saved is the
first to be restored).

Example:

This example turns off listing temporarily, that is, until the POP directive is
encountered.

?? PUSH (LIST := OFF) ??

?? POP ??

8-16 CYBIL Language Definition Revision B

POP

POP Directive

The POP directive restores the last toggle settings that were saved by the
PUSH directive.

Use this format for the POP directive:

POP

If no record was kept (such as when a SET directive is performed), the initial
settings are restored.

Example:

This example shows a PUSH directive that temporarily turns off listing. The
POP directive restores listing.

?? PUSH (LIST := OFF) ??

?? POP ??

Revision B

RESET

RESET Directive

The RESET directive restores the initial toggle settings.

Use this format for the RESET directive:

RESET

When the RESET directive is performed, any record of previous settings is
destroyed.

8-18 CYBIL Language Definition Revision A

LEFT AND RIGHT

Layout Control

Layout controls are used to specify the margins of the source text and to
control the layout of the listing.

LEFT and RIGHT Direct ives

The LEFT and RIGHT directives specify the column number of the left and
right margins of the source text, respectively.

Use these formats for the LEFT and RIGHT directives:

LEFT := integer

RIGHT := integer

integer
An integer value that represents the column number of the left and
right margins, respectively.
The left margin must be greater than zero; that is:

left margin >0

The right margin must be greater than or equal to the left margin plus
10, and less than or equal to 110; that is:

left margin + 10 <= right margin <= 110

All source text left of the left margin and right of the right margin is ignored.

If you don't use the margin directives, the left margin is assumed to begin in
column 1 with the right margin in column 79.

Example:

This example sets the left margin at column 1 and the right margin at
column 110.

?? LEFT := 1 , RIGHT := 110 ??

Revision A CYBIL Command/Other Facilities 8-19

EJECT

EJECT Directive

The EJECT directive causes the paper to be advanced to the top of the next
page.

Use this format for the EJECT directive:

EJECT

8-20 CYBIL Language Definition Revision A

SPACING

SPACING Directive

The SPACING directive specifies the number of blank lines between
individual lines of the listing.

Use this format for the SPACING directive:

SPACING := spacing

spacing
One of the values 1, 2, or 3 specifying single, double, and triple spacing,
respectively.

An undefined value has no effect on spacing, but an error message is issued.

If you don't use the SPACING directive, single spacing (no intervening
blank lines) is assumed.

Revision A CYBIL Command/Other Facilities 8-21

SKIP

SKIP Directive

The SKIP directive specifies that a given number of lines is to be skipped.

Use this format for the SKIP directive:

SKIP := lines

lines
Integer value specifying the number of lines to skip. Specify a value
greater than or equal to 1.

If you specify more lines than the number of lines on the page, or if you
specify a value for lines that would cause the paper to skip past the bottom of
the current page, the paper is advanced to the top of the next page.

8-22 CYBIL Language Definition Revision A

NEWTITLE

NEWTITLE Directive

The NEWTITLE directive specifies a new, additional title to be used on a
page while saving the current title.

Use this format for the NEWTITLE directive:

NEWTITLE := 'character.string*

character _ string

A character string specifying the title to be used. A single quote mark
is indicated by two consecutive quote marks enclosed by quote marks
[that is,""].

The current title is saved and the given character string becomes the current
title. A standard page header is always the first title printed on a page,
followed by user-defined titles in the order in which they were saved. This
means that titles are saved and restored in a last in-first out order, but they
are printed in a first in-first oat order. There is always a single empty line
between the standard page header and any user-defined titles. There is
always at least one empty line between the last title and the text.

The maximum number of titles that can be specified is 10. Any attempts to
add more tides is ignored.

Tiding does not take effect until the top of the next printed page.

Revision A CYBIL Command/Other Facilities 8-23

TITLE

TITLE Directive

The TITLE directive replaces the current user-defined title with the given
character string.

Use this format for the TITLE directive:

TITLE := 'character_string'

character _ string
A character string specifying the title to be used. A single quote mark
is indicated by two consecutive quote marks enclosed by quote marks
[that is,""].

If there is no user-defined title currently, the character string becomes the
current title.

A standard page header is always the first title printed on a page. There is
always a single empty line between the standard page header and any user-
defined titles. There is always at least one empty line between the last title
and the text.

Titling does not take effect until the top of the next printed page.

8-24 CYBIL Language Definition Revision A

OLDTTTLE

OLDTITLE Directive

The OLDTITLE directive restores the last user-defined title that was saved,
making it the current title.

Use this format for the OLDTITLE directive:

OLDTITLE

If there is no saved title, no action occurs.

Revision A CYBIL Command/Other Facilities 8-25

COMPILE

Maintenance Control

COMPILE Directive

The COMPILE directive causes compilation to occur, or to resume after the
occurrence of a NOCOMPILE directive.

Use this format for the COMPILE directive:

COMPILE

If you don't use either the COMPILE nor NOCOMPILE directive, the
COMPILE directive is assumed; source code is compiled.

When the CYBIL command includes the DEBUG_AIDS parameter with DS
specified, debugging statements enclosed by the COMPILE and
NOCOMPILE directives are compiled.

CYBIL Language Definition Revision D

NOCOMPILE

NOCOMPILE Directive

The NOCOMPILE directive causes compilation to stop until the occurrence
of a COMPILE directive or the end of the module.

Use this format for the NOCOMPILE directive:

NOCOMPILE

NOCOMPILE continues listing source code and text according to the listing
toggles and layout directives, interpreting and obeying directives, but source
code is not compiled until a COMPILE directive is encountered or a
MODEND statement is encountered.

When the CYBIL command includes the DEBUG_ AIDS parameter with DS
specified, debugging statements enclosed by the COMPILE and
NOCOMPILE directives are compiled.

Revision D CYBIL Command/Other Facilities 8-27

COMMENT

Comment Control

COMMENT Directive

The COMMENT directive causes the compiler to include the given character
string in the commentary portion of the object module generated by the
compilation process.

Use this format for the COMMENT directive:

COMMENT := 'character .string'

character _ string
A character string of up to 40 characters that specifies a compile-time
comment.

This directive allows you to include comments in object modules so that the
comments appear in the load maps. Any number of comments can be
included, but only the last comment encountered appears.

Example:

?? COMMENT := 'Copyright 1985 by Control Data Corporation' ??

CYBIL Language Definition Revision A

The Debug Utility 9

This chapter describes the Debug utility, which aids in debugging CYBIL
programs.

Introduction 9-1

Accessing Debug 9-2

Accessing Debug During Program Execution 9-3
Accessing Debug When Program Failure Occurs 9-4

Debug Concepts 9-5

Debug Input/Output 9-5
Debug Input 9-5
Debug Output 9-6

Status Variable 9-7
Breaks 9-8
Addressing 9-8

Reported Addresses 9-9
Referenced Addresses 9-11
Addressing Bound Modules 9-13

Debugging Optimized Code 9-13
Debugging With Condition Handlers 9-14
Multitask Debugging 9-14
Interrupt Processing While Debugging 9-14
Debug Ring 9-16

Deferred Breaks 9-16
Multiple Breaks 9-17
Multiring Environment 9-17

(Continued on other side)

Debug Subcommands 9-18
CHANGE .DEFAULT 9-22
CHANGE_MEMORY 9-25
CHANGE _PROGRAM_ VALUE 9-28
CHANGE .REGISTER 9-32
DELETE _BREAK 9-35
DISPLAY_BREAK 9-36
DISPLAY_CALL 9-38
DISPLAY_DEBUGGING_ENVIRONMENT 9-41
DISPLAY_MEMORY 9-44
DISPLAY_PROGRAM_VALUE 9-48
DISPLAY_REGISTER 9-51
DISPLAY_STACK_FRAME 9-54
QUIT 9-58
RUN 9-59
SET_BREAK 9-60
SET_STEP_MODE 9-70

Debug Functions 9-74

$CURRENT_LINE 9-75
$CURRENT_MODULE 9-76
$CURRENT_PROCEDURE 9-77
$CURRENT_PVA 9-78
$PROGRAM_VALUE 9-79

Using Debug 9-82

Sample Debug Sessions 9-82
Interactive Debug Session 9-82
Batch Debug Session 9-92

The Debug Utility 9

Introduction
The Debug utility provides source code level symbolic debugging for
programs written in BASIC, COBOL, CYBIL, FORTRAN, and PASCAL,
and machine code level debugging for object modules. Using Debug does not
require source-level program modifications, a knowledge of assembly
language, or the ability to interpret extensive memory dumps. Debugging
can be done at the source language level.

Debug enables you to monitor and control the execution of programs in
interactive and batch mode. Debug allows program conditions to be modified
and tested during execution. With Debug, you can:

• Suspend program execution a t specified locations, such as line 398 of
module MAIN_PROGRAM.

• Suspend program execution when a selected event occurs, such as writing
to a specified location.

• Display and change the values of program variables, memory locations,
and registers while execution is suspended.

• Display the procedure calls that led to the current location (call traceback
information).

• Display the environment that you are currently debugging under.

• Resume program execution at the location where execution was
suspended or a t another location.

• Step through a program by lines or procedures.

Revision D The Debug Utility 9-1

ACCESSING DEBUG

Because Debug is a command utility, SCL features are available while
Debug is in control. With SCL, you can:

• Temporarily read Debug subcommands from a file other than the Debug
input file using the SCL command INCLUDE_FILE.

• Enter multiple commands, separated by semicolons, on one line.

• Continue a single command on one or more continuation lines.

• Evaluate and display SCL expressions using the SCL command
DISPLAY_VALUE.

• Echo Debug subcommands to one or more files, and write Debug output to
several files using the SCL command CREATE _FILE_ CONNECTION.

• Include Debug subcommands in SCL procedures.

• Enter commands for processing by another active command processor,
such as an editor to examine your source listing.

Accessing Debug

You can access Debug explicitly when executing your program. You can also
access Debug when your program aborts unexpectedly.

9-2 CYBIL Language Definition Revision B

ACCESSING DEBUG

Accessing Debug During Program Execution

Every program has various attributes that control its execution. Among
these are the Debug attributes DEBUG_MODE, DEBUG_INPUT, and
DEBUG_OUTPUT. These attributes are defined as follows:

DEBUG_MODE = ON or OFF

A keyword value that determines whether or not the program is to be
executed under Debug control.

DEBUG_INPUT = file

The file from which Debug initially reads subcommands when
DEBUG_MODE=ON.

DEBUG_OUTPUT = file

The file to which Debug initially writes its output.

These attributes can be specified at two levels: program level and job level.
Program level specifications apply to a specific program. Job level
specifications apply to all programs of a job that do not explicitly specify
values at the program level.

Program level specifications are set as parameter values on the SCL
command EXECUTE_TASK or on the SCL CREATE_OBJECT_LIBRARY
utility's subcommand CREATE_PROGRAM_DESCRIPTION. Job level
specifications are set as parameter values of the SCL command SET_
PROGRAM_ATTRIBUTE. (Refer to the SCL Object Code Management
manual for complete descriptions of these commands.)

For example, if you issue

set_program_attributes debug_mode=on

just after logging in, all program executions will be under control of Debug
unless you specify DEBUG_MODE=OFF on the EXECUTE _TASK
command or in a previously created program description. You can change
job level attributes at any time by issuing another SET_PROGRAM_
ATTRIBUTES command.

Initially, the values of the job level Debug attributes are DEBUG_
MODE=OFF, DEBUG_INPUT=COMMAND, and DEBUG,
OUTPUT=$OUTPUT. For interactive jobs, COMMAND and $OUTPUT are
assigned to the terminal by default.

Individual sites and individual users at a site can change these initial
defaults by including a SET_PROGRAM_ATTRIBUTES command in the
system or user prologue file.

Revision D The Debug UtiHr * »

ACCESSING DEBUG

Accessing Debug When Program Failure Occurs

Once you have a working program, you generally want to access Debug only
if the program unexpectedly fails. The program attributes that control Debug
when a working program fails are ABORT_FILE and DEBUG_OUTPUT.
These attributes are defined as follows:

ABORT_FILE = file

The file from which Debug initially reads subcommands if the program
aborts when DEBUG_MODE=OFF.

DEBUG_OUTPUT = file

The file to which Debug initially writes its output.

These attributes can be specified at two levels: program level and job level.
Program level specifications apply to a specific program. Job level
specifications apply to all programs of a job that do not explicitly specify
values at the program level.

Program level specifications are set as parameter values on the SCL
command EXECUTE_TASK or on the SCL CREATE_OBJECT_LIBRARY
utility's subcommand CREATE_PROGRAM_DESCRIPTION. Job level
specifications are set as parameter values of the SCL command SET_
PROGRAM_ATTRIBUTE. (Refer to the SCL Object Code Management
manual for complete descriptions of these SCL commands.)

For example, if you issue

set_program_attributes debug_mode=off/ abort_f i le=abort f i le

just after logging in, Debug will not gain control unless the program fails.
Programs will not execute under the control of Debug unless you specify
DEBUG_MODE=ON on the EXECUTE_TASK command or in a previously
created program description. You can change job level attributes at any time
by issuing another SET _ PROGRAM _ ATTRIBUTES command.

The initial value of ABORT_FILE is $NULL, the special system file with no
data in it. DEBUG_MODE must be off and ABORT_FILE must be a file
other than $NULL for Debug to gain control when the program fails.

9-4 CYBIL Language Definition Revision D

DEBUG CONCEPTS

Debug Concepts
This section contains miscellaneous information that applies to Debug
usage. This information includes Debug input/output, status variable,
breaks, and addressing.

Debug Input/Output

Although Debug input/output takes place automatically, you can, by
manipulating the Debug input/output files, expand the capabilities of
Debug.

Debug Input

Debug subcommands are initially read from the file specified by the
DEBUG_INPUT parameter or the ABORT_FILE parameter of the SCL
commands EXECUTE_TASK, CREATE_PROGRAM_DESCRIPTION, or
SET_PROGRAM_ATTRIBUTES.

The default Debug input file is COMMAND. In interactive jobs, COMMAND
is the terminal. In batch jobs, it is the normal command stream. You cannot
use COMMAND as the source of Debug input for a batch job because
COMMAND is positioned at beginning-of-information, which is your
LOGIN command. Instead, you must copy the Debug input to another file,
using the SCL command COLLECT_TEXT for example, and use that as the
Debug input.

You can change the input file temporarily by entering an SCL INCLUDE _
FILE command. As soon as you enter the command, subcommands are read
from the specified file until an end-of-partition, an end-of-information, or a
RUN subcommand is encountered. If an end-of-partition or an end-of-file is
encountered, subcommands are again read from the file that contained the
INCLUDE _FILE command. If a RUN subcommand is encountered,
program execution is resumed; any remaining subcommands in the file that
was included are not processed. When Debug again gains control,
subcommands are read from the current Debug input file.

Revision D The Debug Utility » 5 •

DEBUG CONCEPTS

The Debug subcommand CHANGE _ DEFAULT (described in detail later in
this chapter) can also be used to change the Debug subcommand source. The
DEBUG_INPUT parameter of the CHANGE_DEFAULT subcommand
changes the subcommand source so that Debug subcommands are read from
the specified file when Debug gains control after program execution has
been resumed. Unlike the INCLUDE _FILE command, the CHANGE _
DEFAULT subcommand has no effect on the current subcommand source.

If Debug is activated from within an SCL procedure, subcommands are read
from COMMAND when Debug gains control, not from the procedure. To
force Debug to read subcommands from the procedure, specify

debug_i nput=$command

in the program description or on the EXECUTE _TASK command.

Debug Output

Debug output (messages and information produced by Debug display
subcommands) is initially written to the file specified by the DEBUG_
OUTPUT parameter (default output file is $OUTPUT) of the SCL
commands EXECUTE_TASK, CREATE_PROGRAM_DESCRIPTION, or
SET_PROGRAM_ ATTRIBUTES. The OUTPUT parameter of the Debug
display subcommands can be used to divert display output to another file;
the diversion applies only to the subcommand that contains the OUTPUT
parameter.

The Debug subcommand CHANGE _ DEFAULT (described in detail later in
this chapter) can be used to change the current Debug output file. The
DEBUG_OUTPUT parameter of the CHANGE .DEFAULT subcommand
causes Debug to write all output to the specified file; the change takes place
as soon as the subcommand is executed.

The default Debug output file is $OUTPUT. $OUTPUT is the terminal for
interactive jobs and the listing file for batch jobs. Initially, $OUTPUT is
connected to the actual file OUTPUT. You can connect $OUTPUT to other
files by using the SCL command CREATE_FILE_CONNECTION. If the
standard files $ECHO, $RESPONSE, and $ERRORS are also connected to
one of the actual output files, a complete record of a Debug session can be
created.

9-6 CYBIL Language Definition Revision D

DEBUG CONCEPTS

Status Variable

All Debug subcommands have an optional parameter called STATUS. When
you specify this parameter, a previously declared SCL variable of kind
STATUS must be supplied as its value. (Refer to the SCL Language
Definition manual for a discussion of SCL variables.) This variable contains
the completion status of the subcommand.

A status variable is a record that contains the following fields:

NORMAL

A boolean that has a value of FALSE if the subcommand could not be
processed correctly and a value of TRUE if the subcommand was
processed correctly.

IDENTIFIER

A string with a length of 2 that contains the product identifier of the
processor in which the error was detected. The product identifier for
Debug is DB. This field is undefined when the subcommand is processed
correctly.

CONDITION

An integer code that identifies the detected error. The two leftmost digits
in a Debug condition code are 64. This field is undefined when the
subcommand is processed correctly.

TEXT

A string with a length of 256 that contains the error message text. This
field is undefined when the subcommand is processed correctly.

The presence of the STATUS parameter on a subcommand causes the next
subcommand to be processed even if an error condition is encountered. After
checking the contents of the status variable, you can use succeeding
subcommands to alter the flow of control based upon the occurrence of error
conditions.

Revision B

Breaks

The primary mechanism that allows Debug to gain control from an
executing program is the user-defined break. A user-defined break specifies
one or more events and an address range so that when a specified event
occurs within the address range, program execution is interrupted and Debug
takes control.

Many events can be specified, for example, when execution reaches a specific
place, before a branch to a specific address range occurs, or before a write
into memory. Address ranges also can be specified in many forms. You
cannot set two breaks for the same event at the same address range or
overlapping address ranges. Once set, a break stays set until it is explicitly
deleted or implicitly deleted with the DELETE _BREAK ALL subcommand.
The SET_BREAK, DELETE _BREAK, and DISPLAY_BREAK
subcommands are used to set, delete, and display break definitions. (These
subcommands are described in detail later in this chapter.)

The maximum number of breaks that the Debug utility can handle is 64. Of
these 64 breaks, 32 can be the type of break that is detected by Debug
hardware (read, write, call, branch, execution, and read next instruction).
Some breaks that you set cause Debug to set one or more internal breaks.
Thus, the actual maximum number of breaks that are available to you is not
a fixed number. A message is issued when another break cannot be set.

Addressing

Debug uses source level addresses when addresses are reported in Debug
subcommand output, such as when DISPLAY_CALL or DISPLAY_BREAK
is executed and when Debug gains control. Debug also uses source level
addresses when addresses are referenced in Debug subcommands, such as
SET_BREAK and DISPLAY_MEMORY.

9-8 CYBIL Language Definition Revision B

DEBUG CONCEPTS

Reported Addresses

The level of reported addresses is determined by the information available.
For CYBIL programs, the following are available by default:

• Module address tables indicating where modules are located.

• Line address tables indicating where code for each line is located.

• Symbol tables indicating where the value of each program name is
located.

If you specify DEBUG_AIDS=NONE on the CYBIL command, however, line
address and symbol table addresses are suppressed. In this case, only module
and machine level addressing are possible.

Addresses in the message issued when Debug gains control (the break report
message) are formatted as follows depending on the information available.

When line and module tables are available (symbolic addressing):

If the address corresponds to the beginning of a line, then the format is

M=module_name L=line_number

otherwise, if the address is somewhere within the line, then the format is

M=module_name L=line_number BO=byte_offset_from_
start_of_line

When only the module table is available (module addressing):

If the module is not bound (refer to Addressing Bound Modules later in
this chapter), then the format is

M=source_module_name P=procedure_name BO=byte_
offset _ from _ start _ of _ procedure

otherwise, if the module is bound, then the format is

M=source_ module _ name BO=byte _ offset _ from _
start_of_bound_module

When line and module tables are not available (machine addressing), the
format is:

A=machine _ address

Revision D The Debug Utility 9-9

DEBUG CONCEPTS

Within the address formats:

• module_name and procedure_name correspond to the source program
module and procedure names.

• line _ number corresponds to a line number on the source listing.

• byte _ offset is a decimal number corresponding to the number of bytes
beyond the beginning of a line or a hexadecimal number corresponding to
the number of bytes beyond the start of a procedure or bound module.

• machine _ address is a set of three hexadecimal numbers representing the
ring number, segment number, and segment offset of a machine address.

Addresses reported in subcommand output also provide the highest address
level possible, but they are not always formatted the same as in break report
messages. Addresses shown in DISPLAY_BREAK output are very similar,
but addresses shown in DISPLAY_CALL output contain both the procedure
name and line number. Typical DISPLAY_CALL output might look like
this:

— Traceback from procedure PR0C2 module M0D2 at Line 34
— Called from procedure PR0C1 module M0D2 at line 55 byte

offset 4
— Called from procedure BEGIN_PROCESS module M0D1 byte

offset 1A3(16)

Addresses shown in DISPLAY_REGISTER output are formatted only as
hexadecimal addresses in the form

r sss oooooooo

where r is the ring number, sss is the segment number, and oooooooo
is the offset from the start of the segment. Pointer addresses displayed by
DISPLAY_PROGRAM_VALUE are also formatted as hexadecimal
machine addresses except for pointers to procedures; dereferenced pointers to
procedures are displayed as the procedure name if possible.

9-10 CYBIL Language Definition Revision A

DEBUG CONCEPTS

Referenced Addresses

Several Debug subcommands reference program code and data addresses.
For example, SET_ BREAK designates an address or address range for
break events, DISPLAY_MEMORY specifies the address of memory to be
displayed, and DISPLAY_PROGRAM_VALUE names a program identifier
whose value is to be displayed.

Just as for reporting addresses, the capabilities available when referencing
program addresses depend on the information available:

• Symbolic addressing (source level addressing) is available if line and
symbol tables exist (they exist unless line number and symbol table
generation is specifically turned off at compile time).

• Module/procedure offset addressing is available if module tables exist
(they always do for user programs).

• Machine-level addressing is always available.

Addresses can be referenced in many more forms than the form in which
they are reported. For example, entry point names, section names, and
program names can be referenced, but addresses are never reported in these
terms. Machine level addresses can be referenced only as a single integer (a
12-digit hexadecimal value); they are reported, however, either as a 12-digit
hexadecimal integer or as three separate integers corresponding to ring
number, segment number, and byte offset from the start of the segment.

Revision B The Debug Utility 9-11

DEBUG CONCEPTS

Not all address forms, however, are used by all subcommands. For example,
the DISPLAY_PROGRAM_VALUE subcommand allows a program name
to be referenced by name, including all of the subscripting and qualification
syntax. But, the DISPLAY_PROGRAM_VALUE subcommand does not
allow machine level addressing. The DISPLAY_MEMORY subcommand, on
the other hand, allows machine and module addressing but almost no
symbolic level addressing. The SET_BREAK subcommand allows all forms
except names defined in a source program.

The different forms of addresses are specified by different parameters. LINE,
MODULE, PROCEDURE, NAME, ENTRY_POINT, SECTION, and
ADDRESS are typical address parameter names. Many of these address
parameters can be used in combination to specify an address. For example,
LINE and MODULE together specify a particular line of a particular
module. NAME, MODULE, and PROCEDURE together specify a particular
name of a particular procedure in a particular module. Similarly, SECTION
can be used in conjunction with MODULE. ENTRY_POINT and
ADDRESS, however, cannot be used in conjunction with MODULE or with
each other because they specify addresses independent of any module. Debug
issues an error message if an invalid combination of address parameters is
used.

The BYTE_OFFSET parameter can be used to modify the address
parameters. For example, the MODULE parameter without the BYTE_
OFFSET parameter specifies the first byte of the module; the MODULE
parameter modified with BYTE_OFFSET=4, on the other hand, specifies the
fifth byte of the module.

Another parameter, BYTE_COUNT, can be used to establish the block size
(address range) associated with a referenced address. The BYTE _ COUNT
parameter indicates how many memory bytes are to be included in the block.
For example,

section=trap, byte_count=3

identifies a three-byte block that begins at section TRAP. BYTE_COUNT
and BYTE _ OFFSET can be used to modify any referenced address except a
program name (NAME parameter).

i
9-12 CYBIL Language Definition Revision B

DEBUG CONCEPTS

Addressing Bound Modules
Individual modules can be bound (combined) to form a new load module that
loads and executes faster than the original separate modules. (For further
information, refer to the CREATE_OBJECT_LIBRAKY command in the
SCL Object Code Management manual.) Binding modules together has no
effect on address reporting or address referencing at the symbolic level; you
can debug bound modules in terms of their component module names, line
numbers, and identifier names.

Binding does, however, have an effect on module/procedure and
module/section offset addressing. After binding, original module and
procedure names are not available when the tables that support symbolic
addressing are not available; addresses are reported and must be referenced
in terms of the new bound module name and byte offsets from the beginning
of the module. Code from all original component modules is combined into
one code section, static data from all original modules are combined into one
static data memory section, and so forth, so that the original component
portions of each section cannot be distinguished by Debug. You can deduce
where each component portion is by inspecting the section map produced by
the GENERATE_LIBRARY subcommand (described in the SCL Object
Code Management manual).

Debugging Optimized Code

Most compilers can generate more than one level of object code. The
OPTIMIZATION_LEVEL parameter on the compiler call controls the level
of object code optimization. Specifying the DEBUG option on the
OPITMIZATION_LEVEL parameter generates the most debuggable object
code possible. This level of object code contains a separate packet of machine
instructions for each executable source statement, carries no altered variable
values across statement boundaries in registers without also updating their
values in memory, enables Debug to recognize that start of execution of each
new line or procedure, and ensures that Debug can always find actual
parameter lists.

If some higher level of optimization is selected, Debug can still function, but
with restricted capabilities. For example, you cannot display program
identifier values that are permanently allocated to machine registers. When
values are temporarily carried in registers between statements, or when code
for several source statements is mixed together, displayed values may not be
the most recent values. Break report locations may not be as precise either.

Revision D The Debug Utility 9-13

DEBUG CONCEPTS

Debugging With Condition Handlers

Condition handlers are special procedures whose purpose is to process
conditions, or exceptions, when they arise. They are automatically activated
by NOS/VE when the conditions for which they have been established
occur. Condition handlers can be established for one or more classes of
conditions. Refer to the CYBIL System Interface manual for a detailed
discussion of how to write condition handlers.

When executing with DEBUG_MODE=ON, Debug first gains control when
any condition occurs, except job resource conditions, detected uncorrected
error conditions, and block exit conditions. The condition handler of the
program, if one exists, is not executed until a Debug RUN subcommand is
executed.

The condition handler of the program can be debugged using Debug, but the
program will not execute until you have had a chance to respond to the
condition. For conditions for which breaks can be set, a RUN subcommand
can be associated with the break so that the subcommand is automatically
executed when the break occurs. (Refer to the COMMAND parameter of the
SET_BREAK subcommand described later in this chapter.) This mechanism
makes it possible to effectively circumvent the preemptive control of Debug.
It appears as though Debug did not get control since the RUN subcommand
automatically executes the instant the condition arises.

Multitask Debugging

The use of Debug in a multitask environment is very restricted. If an initial
task executes with DEBUG_MODE=ON and then spins off a second task,
the second task may execute with DEBUG_MODE = ON (if its program
description says to). This causes two separate instances of Debug to be
active. The user may have difficulty distinguishing between them, as well as
determining to which task a terminal is connected. One way to determine
which instance of Debug has control is to inspect the output from the
DISPLAY_CALL calling chain or from the user address displayed by
DISPLAY_DEBUGGING_ENVIRONMENT.

Interrupt Processing While Debugging

Three external events can interrupt an executing user program or the Debug
utility. These events are pause break, terminate break, and nearly exhausted
resource. Table 9-1 shows the effects of these interrupts.

9-14 CYBIL Language Definition Revision C

DEBUG CONCEPTS

Table 9-1 . Effects of Interrupts While Debugging

Interrupt User Program Executing Debug Executing

Pause
Break

Terminate
Break

Nearly
Exhausted
Resource

Debug gains control and
prompts for subcommands.

Debug gains control and
prompts for subcommands.

Debug does not get control.
If you have defined a handler,
it gains control; otherwise,
the system default handler
processes the condition.

Default system action
occurs. If you have
established a handler for
this condition, that
handler gains control.
Debug does not gain
control unless the
handler returns with
normal status.

If a Debug subcommand
is executing, that
subcommand is
terminated and you are
prompted for a new
subcommand. If Debug
is already waiting for a
subcommand, the
terminate break is
ignored.

Debug does not process
this condition. If you
have defined a handler,
it gains control; otherwise,
the system default
handler processes the
condition. Debug does
not gain control unless a
user-defined handler
returns with normal
status.

Revision D The Debug Utility 9-15

DEBUG CONCEPTS

Debug Ring

Debug normally runs in the same ring as the program being debugged. You
can, however, control the ring in which Debug executes. The SCL command
SET_DEBUG_RING specifies the ring in which Debug executes. The Debug
ring cannot be set to a ring more privileged than the lowest ring for which
you are validated.

You are responsible for ensuring that the program being executed runs in the
same ring set for Debug on the SET_DEBUG_RING command. (The ring
attributes of the program can be changed using the SCL CHANGE _FILE_
ATTRIBUTES command.)

If your program runs entirely in one ring, you need not be concerned with the
Debug ring except to understand deferred breaks and multiple breaks (as
discussed later in this section).

If the program being debugged begins execution in a ring other than the
Debug ring, Debug does not gain immediate control and the D B / prompt
does not appear. However, while the program is executing, you can access
Debug by entering the user break 2 (termination) sequence (usually
CONTROL/T followed by a carriage return) and then entering Debug
subcommands. For example, you could interrupt the program soon after it
begins execution and set breakpoints.

Deferred Breaks

Breaks that occur in a lower numbered ring than the Debug ring are
deferred, or delayed, until execution again reaches the Debug ring. The break
is deferred so that you do not get control in a ring more privileged than your
own. If you were able to get control at a lower ring, you could read or change
data that you normally do not have access to, thereby compromising system
security.

Deferred breaks can occur even when your program runs in a single ring.
Many of the operating system services used by the program execute in more
privileged rings. For example, if you set a read or write break on a status
variable used in some NOS/VE request and that variable is accessed in a
lower ring, the break is delayed until NOS/VE returns control to your
program.

When a break is deferred, Debug issues a special break report message. The
break is reported as having happened at the line after the line that made the
call, and a second line indicating the actual address of the event is output.
The second line is formatted as follows:

Trap deferred from <address>

where address is where the event actually occurred.

9-16 CYBIL Language Definition Revision D

DEBUG CONCEPTS

Multiple Breaks

Because breaks below the Debug ring are deferred until control returns to the
Debug ring, several breaks can be stacked up before Debug gains control.
When this happens, Debug must process multiple breaks.

If there are several unprocessed breaks outstanding when Debug gains
control, Debug reports each one in the usual way but honors only the first
one that occurs. No subcommands are processed for the most recent breaks,
not even subcommands associated with the break definition, since execution
of the subcommands could destroy the environment that existed when the
first break occurred.

Multiple breaks can also occur when execution is not below the Debug ring.
For example, two terminal breaks or an execution break and a terminal
break could occur before Debug gets control. If this ever occurs, Debug
honors only the first break.

Multiring Environment

The ability of Debug to function in a multiring environment is limited. If a
break event occurs in a lower ring than the Debug ring, Debug gains control,
but your options are limited. You can only resume execution of the
interrupted procedure or terminate the Debug session. Any program
condition handlers established for that event are not processed.

Revision A The Debug Utility 9-17

DEBUG SUBCOMMANDS

Debug Subcommands
This section includes descriptions of the Debug subcommands. The
subcommands are listed in alphabetical order. They follow the syntax and
conventions for SCL commands, as described in the SCL Language
Definition manual. The language elements used as parameters are standard
SCL elements as defined in that manual, except for source program names
used in the CHANGE_PROGRAM_VALUE and DISPLAY.PROGRAM,
VALUE subcommands.

The Debug subcommands are summarized next.

Subcommand Description

CHANGE .DEFAULT or
CHANGE DEFAULTS or
CHAD

MODULE = name or keyword value
PROCEDURE = name or keyword value
DEBUG JNPUT = file
DEBUG _OUTPUT = file
STATUS = status variable

CHANGE_MEMORY or
CHAM

ADDRESS = integer
VALUE = string or integer
TYPE = keyword value
REPEAT_COUNT = integer or keyword value
STATUS - status variable

CHANGE_PROGRAM_VALUE or
CHAPV

NAME = name
VALUE = name
MODULE = name
PROCEDURE = name
RECURSION_LEVEL = integer
RECURSION _DIRECTION= keyword value
STATUS = status variable

Changes the default
Debug input/output
files and procedure
and module names.

Changes the
contents of
memory.

Changes the value
of a program
variable.

(Continued)

9-18 CYBIL Language Definition Revision B

DEBUG SUBCOMMANDS

(Continued)

Subcommand Description

CHANGE_REGISTER or
CHANGE_REGISTERS or
CHAR

KIND = keyword value
NUMBER = keyword value or list of integer
VALUE = integer or string
TYPE = keyword value
STATUS = status variable

DELETE_BREAK or
DELETE_BREAKS or
DELB

BREAK = keyword value or list of name
STATUS = status variable

DISPLAY.BREAK or
DISPLAY BREAKS or
DISB

BREAK = keyword value or list of name
OUTPUT'=file
STATUS = status variable

DISPLAY.CALL or
DISPLAY CALLS or
DISC

COUNT = integer or keyword value
START = integer
DISPLAY_OPTION= list of keyword value
OUTPUT'=file
STATUS = status variable

DISPLAY_DEBUGGING ENVIRONMENT or
DISDE

DISPLAY_OPTION= list of keyword value
OUTPUT' = file
STATUS = status variable

Changes the
contents of the
P, A, or X registers.

Deletes one or more
break definitions.

Displays specified
break definitions.

Displays
information about
the dynamic call
chain.

Displays the
debugging
environment
of your session.

(Continued)

Revision C The Debug Utility 9-19

DEBUG SUBCOMMANDS

(Continued)

Subcommand Description

DISPLAY_MEMORY or
DISM

address
BYTE_OFFSET = integer
BYTE_COUNT = integer
REPEAT_COUNT = integer or keyword value
OUTPUT = file
STATUS = status variable

DISPLAY_PROGRAM_VALUE or
DISPV

NAME = program name or keyword value
MODULE = name
PROCEDURE = name
RECURSION_LEVEL = integer
RECURSION_DIRECTION= keyword value
TYPE = keyword value
OUTPUT' = file
STATUS = status variable

DISPLAY_REGISTER or
DISPLAY.REGISTERS or
DISR

KIND = list of keyword value
NUMBER = keyword value or list of integer
TYPE = keyword value
OUTPUT = file
STATUS = status variable

DISPLAY_STACK_FRAME or
DISPLAY_STACK_FRAMES or
DISSF

COUNT = integer or keyword value
START = integer
DISPLAY_OPTION= list of keyword value
OUTPUT = file
STATUS = status variable

Displays the
contents of memory.

Displays the value
of a program
value.

Displays the
contents of
the P, A, or
X registers.

Displays the
contents of one or
more stack frames.

(Continued)

9-20 CYBIL Language Definition Revision D

DEBUG SUBCOMMANDS

(Continued)

Subcommand Descr ip t ion

QUIT or
QUI

STATUS = status variable

RUN
STATUS = status variable

SET_BREAK or
SET_BREAKS or
SETB

BREAK = name
EVENT = list of keyword value
address
BYTE_OFFSET= integer
BYTE_COUNT= integer
COMMAND = string
STATUS = status variable

SET_STEP_MODE or
SETSM

MODE = keyword value
UNIT= keyword value
MODULE = keyword value or list of name
PROCEDURE = keyword value or list of name
SPAN= integer
COMMAND = string
STATUS = status variable

Terminates the
Debug session.

Initiates or resumes
program execution.

Defines the break.

Defines a subset of a
task to be executed
in one step.

Revision C The Debug Utility 9-21

CHANGE_DEFAULT

CHANGE.DEFAULT
Purpose Changes the default module, default procedure, default Debug

input file, and default Debug output file. The change remains
in effect until altered by another CHANGE_DEFAULT
subcommand.

Format CHANGE . D E F A U L T or
CHANGE_DEFAULTS or
CHAD

MODULE=name or keyword value
PROCEDURE=name or keyword value
DEBUG _INPUT = file
DEBUG _OUTPUT = file
STATUS = status variable

Parameters MOD ULE or M

Name of the module to be used if the module parameter is not
specified in Debug subcommands that must refer to a module.
Specifying the keyword $CURRENT causes the default
module to be reset to the module that was executing when
Debug gained control.

Omission causes the current default module to remain
unchanged.

Debug subcommands that can use this default module are:

CHANGE_PROGRAM_VALUE
DISPLAY_PROGRAM_ VALUE
SET_BREAK
SET_STEP_MODE

PROCEDURE or P

Name of the procedure to be used if the procedure parameter is
not specified in Debug subcommands that must refer to a
procedure. Specifying the keyword $CURRENT causes the
default procedure to be reset to the procedure that was
executing when Debug gained control.

Omission causes the current default procedure to remain
unchanged.

Debug subcommands that can use this default procedure are:

CHANGE_PROGRAM_VALUE
DISPLAY_PROGRAM_VALUE
SET_BREAK
SET_STEP_MODE

• 9-22 CYBIL Language Definition Revision D

CHANGE_DEFAULT

DEBUG JNPUT or DI

File from which Debug subcommands are read when Debug
next gains control. Unless you specify a file position as part of
the file name, the file is initially positioned at the beginning-
of-information; the file is not repositioned in subsequent
accesses. Subcommands are read from the file sequentially. If
an end-of-partition or an end-of-file is reached on the input
file, program execution resumes.

Omission causes the current Debug input file to remain
unchanged. Unless specified otherwise, the initial Debug
input file is COMMAND.

DEBUG_OUTPUTor DO

File on which Debug output is written. The change takes
effect immediately. Break report messages and subcommand
output are written to this file. Unless you specify a file
position as part of the file name, the file is initially positioned
at the beginning-of-information; the file is repositioned to the
beginning-of-information in subsequent accesses.

Omission causes the current Debug output file to remain
unchanged. Unless specified otherwise, the initial Debug
output file is $OUTPUT.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Revision D The Debug Utility 9-23 •

CHANGE_DEFAULT

Examples The following subcommand specifies that Debug is to read
subcommands from the file DBIN the next time Debug gains
control:

change_default debug_input=dbin

The following subcommand specifies that Debug is to write its
output to the file $LIST:

change_default debug_output=$list

The following subcommand specifies the default module
name:

change_default module=main

9-24 CYBIL Language Definition Revision B

CHANGE_MEMORY

CHANGE.MEMORY
Purpose Changes the contents of memory starting at a specific

address. You can change the value of any memory location for
which you have write permission.

Format CHANGE.MEMORY or
CHAM

ADDRESS = integer
VALUE = string or integer
TYPE = keyword value
REPEAT_COUNT= integer or keyword value
STATUS = status variable

Parameters ADDRESS or A

Address of the first byte of memory to be changed in the form

rsssoooooooo(16)

where r is the ring number, sss is the segment number, and
oooooooo is the offset from the beginning of the segment. You
can obtain machine addresses by using the cross-reference
and load maps for your program.

This parameter is required.

VALUE or V

New memory value. A string value can be interpreted as a
hexadecimal or ASCII string, depending on the value of the
TYPE parameter.

A hexadecimal string consists of the hexadecimal digits 0
through 9 and A through F and spaces. Spaces are ignored,
but you can use them to improve legibility. Each hexadecimal
digit corresponds to 4 bits of memory. The first two digits
replace the first byte of memory at the specified address, the
second two digits replace the second byte, and so on. If there
is an odd number of hexadecimal digits, only the first half of
the corresponding byte is changed.

An ASCII string consists of a string of ASCII characters.
Each ASCII character corresponds to one byte of memory.
The first character replaces the first byte of memory at the
specified address, the second character replaces the second
byte, and so on.

An integer value completely replaces the contents of eight
bytes. A diagnostic message is issued if the integer does not fit
into eight bytes.

This parameter is required.

Revision A The Debug Utility 9-25

CHANGE_MEMORY

TYPE or T

Type of data defined by the VALUE parameter. Specify one of
the following keywords:

ASCII (A)

VALUE is an ASCII string.

HEX(H)

VALUE is a hexadecimal string.

INTEGER (I)

VALUE is an integer.

Omission causes HEX to be used for string values and
INTEGER to be used for numeric values.

REPEAT_COUNT or RC

Number of times VALUE is repeated in memory. Specify a
positive integer greater than zero. The address is incremented
by the value size each time the value is repeated. The memory
change is limited to the end of the data segment containing
the specified address. Specifying a value that is too large or
specifying the keyword ALL changes all the memory that can
be changed.

Omission causes 1 to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

If the CHANGE _MEMORY subcommand contains an error
before the STATUS parameter, the remainder of the
subcommand is skipped. Therefore, the contents of the
STATUS parameter does not reflect the status of the
subcommand.

9-26 CYBIL Language Definition Revision D

CHANGE,MEMORY

The following subcommand replaces four bytes of memory
beginning at location 0B02200001112 hexadecimal with the
hexadecimal string 'lOlOaaab':

changejnemory address=0b02200001112(16) . .
value="l010aaab'

The following subcommand replaces six bytes of memory
beginning at location 0B02200000055 hexadecimal with the
ASCII string 'string':

changejnemory address=0bO22OOOOOO55(16) . .
vaLue=,string' type=ascii

The following subcommand replaces eight bytes of memory
beginning at location 0B02300000223 hexadecimal with the
integer value 44:

changejnemory address=0b02300000223(16) . .
value=44

Revision A

CHANGE_PROGRAM_VALUE

CHANGE_PROGRAM__ VALUE
Purpose Changes the value of the specified program variable.

Replacement values are entered in the same format as defined
in your program, not as they are represented in memory.

Format CHANGE,PROGRAM,VALUE or
CHAPV

NAME = name
VALUE = name
MODULE = name
PROCEDURE = name
RECURSION_LEVEL = integer
RECURSION_DIRECTION= keyword value
STATUS - status variable

Parameters NAME or N

Name of the program variable in the source program whose
value is to be changed. Specify one of the following:

• Simple variable name

• Subscripted name

• Field reference

• Pointer dereference

Subscripts can be constants or variables, but not expressions.
Substring references are not allowed.

Because names can be long, you can use SCL string variables
as aliases for them. To do this, assign a string that contains
the identifier to the SCL variable. Then use the SCL variable
preceded by a question mark as the value of the NAME
parameter.

This parameter is required.

9-28 CYBIL Language Definition Revision A

CHANGE_PROGRAM_VALUE

VALUE or V

New value for the NAME parameter variable. The named
VALUE parameter variable must be of the same type as the
NAME parameter variable. Combinations allowed for the
NAME and VALUE parameters are:

NAME Type

Integer

Character

Boolean

Ordinal

Cell

Pointer

String

Array, record,
set, or sequence

VALUE Type

Integer constant or variable reference.

Character constant or variable reference.

Boolean constant or variable reference.

Ordinal name or variable reference.

Integer constant or variable reference.

Integer constant or variable reference.

String constant or variable reference.

Variable reference (byte-aligned
and unpacked).

This parameter is required.

Revision B The Debug Utility 9-29

CHANGE_PROGRAM_VALUE

MODULE or M

Name of the module that contains the NAME parameter
variable.

Omission causes the module executing when Debug gained
control or the module specified by the CHANGE _DEFAULT
subcommand to be used.

PROCEDURE or P

Name of the procedure that contains the NAME parameter
variable. If the PROCEDURE parameter is specified, the
NAME parameter variable must exist in this procedure or
exist in the containing procedure or module. If an inactive
procedure is specified, the automatic variables cannot be
changed.

Omission causes the procedure executing when Debug gained
control or the procedure specified by the CHANGE _
DEFAULT subcommand to be used.

RECURSION_LEVEL or RL

The particular call of a recursive procedure to be used. Specify
a positive integer greater than zero. If RECURSION_
DIRECTION=FORWARD, use a value of 1 for the first call, 2
for the second call (the one called by the first call), and so on.
If RECURSION_DIRECTION=BACKWARD, use 1 for the
most recent call, 2 for the predecessor, and so on.

Recursion only applies to program variables stored on the
stack. Recursion cannot apply to variables stored in either a
common block or the $STATIC section.

Omission causes 1 to be used.

9-30 CYBIL Language Definition Revision B

CHANGE _PROGRAM_VAUD«

RECURSION_DIRECTION or RD

Order in which calls to a recursive procedure are searched.
This parameter controls how the value of the RECURSION_
LEVEL parameter is interpreted. Specify one of the following
keywords:

FORWARD

A RECURSION_LEVEL of 1 specifies that the first call to
the procedure is used, a 2 specifies the second call, and so
on.

BACKWARD

A RECURSION_LEVEL of 1 specifies that the most
recent call to the procedure is used, a 2 specifies its
predecessor, and so on.

Recursion only applies to program variables stored on the
stack. Recursion cannot apply to variables stored in either a
common block or the $STATIC section.

Omission causes BACKWARD to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Examples The following subcommand changes the value of

VARIABLES

change_program_value name=variable1 value=3

The following subcommand changes the value of INDEX:

change_program_value name=index value=63 . .
module=ff_pp procedure=gg_pg

Revision D The Debug Utility 9-31

CHANGE_REGISTEK

CHANGE.REGISTER
Purpose Changes the value of the P, A, or X registers that are

associated with the procedure executing when Debug gained
control.

Format CHANGE_REGISTER or
CHANGE_REGISTERS or
CHAR

KIND = keyword value
NUMBER = keyword value or list of integer
VALUE = integer or string
TYPE = keyword value
STATUS = status variable

Parameters KIND or K

Kind of register or registers to change. Specify one of the
following keywords:

P The P register.

A The A registers.

X The X registers.

Omission causes P to be used.

NUMBER or N

Number of the register or registers to change. Specify a set of
one or more integers or ranges of integers from 0 to 15, or the
keyword ALL. An informative message is issued for each
referenced register whose value was not saved in the current
stack frame and, therefore, cannot be changed. This
parameter is ignored if KIND=P since there is only one P
register.

Omission causes 0 to be used.

9-32 CYBIL Language Definition Revision D

CHANGE_REGISTEB

VALUE or V
New value of the register. If KIND is P or A, VALUE can be:

• An integer in the range 0 through OFFFFFFFFFFFF
hexadecimal.

• A hexadecimal string containing a maximum of 12
hexadecimal digits (spaces are ignored); each hexadecimal
digit corresponds to 4 bits.

The upper 4 bits are ignored when changing the P register
since the ring number in P cannot be changed.

If KIND is X, VALUE can be:

• An integer ranging from -7FFFFFFFFFFFFFFF
hexadecimal to 7FFFFFFFFFFFFFFF hexadecimal.

• A hexadecimal string containing a maximum of 16
hexadecimal digits (spaces are ignored); each hexadecimal
digit corresponds to 4 bits.

• An ASCII string containing a maximum of eight ASCII
characters; each character corresponds to one byte.

The upper bits of the register are set to 0 if an integer is
positive or to 1 if an integer is negative and the value does not
fill the register. A string value is left-justified with remaining
bytes unchanged.

This parameter is required.

TYPE or T

Type of data specified by the VALUE parameter. Specify one
of the following keywords:

ASCII (A) VALUE is an ASCII string.

HEX (H) VALUE is a hexadecimal string.

INTEGER (I) VALUE is an integer.

Omission causes HEX to be used for string values and
INTEGER to be used for numeric values.

Revision B The Debug Utility 9-33

CHANGE_REGISTER

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

If the CHANGE_REGISTER subcommand contains an error
before the STATUS parameter, the remainder of the
subcommand is skipped. Therefore, the contents of the
STATUS parameter does not reflect the status of the
subcommand.

Examples The following subcommand changes the current value of the
P register to OA02200004500 hexadecimal. The upper 4 bits for
the ring number are ignored.

change_register kind=p, . .
value=0a02200004500(16)

The following subcommand changes the current value of the
X7 register to 'abcdefgh':

change_register kind=x, number=7, . .
value='abcdefgh' type=ascii

• 9-34 CYBIL Language Definition Revision D

DELETE_BREAK

DELETE_BREAK
Purpose Deletes one or more break definitions.

Format DELETE _BREAK or
DELETE.BREAKS or
DELB

BREAK = keyword value or list of name
STATUS = status variable

Parameters BREAK or BREAKS or B

Break definitions to be deleted. If the keyword ALL appears in
the list of break names, all breaks are deleted. An informative
message is issued if a specified break name does not exist;
however, all subsequent breaks in the list are processed.

This parameter is required.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

If the DELETE_BREAK subcommand contains an error
before the STATUS parameter, the remainder of the
subcommand is skipped. Therefore, the contents of the
STATUS parameter does not reflect the status of the
subcommand.

Examples The following subcommand deletes break definitions Bl , B2,
andB3:

deletejareaks breaks=(b1,b2,b3)

The following subcommand deletes all break definitions:

delete_breaks a l l

The following subcommand deletes break definition B4:

delete break b4

Revision D The Debug Utility 9-35 •

DISPLAY.BREAK

DISPLAY.BREAK

Purpose Displays break definitions. The break name, events, address,
and any subcommands associated with the break are
displayed.

Format DISPLAY_BREAK or
DISPLAY_BREAKS or
DISB

BREAK = keyword value or list of name
OUTPUT' = file
STATUS = status variable

Parameters BREAK or BREAKS or B

Break definitions to be displayed. If the keyword ALL appears
in the list of break names, all break definitions are displayed.
An informative message is issued if a specified break name
does not exist; however, all subsequent breaks in the list are
processed.

Omission causes all break definitions to be displayed.

OUTPUT or O

File on which the break definitions are written. You can
specify a file position as part of the file name. Omission
causes the current default Debug output file to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Examples The following subcommand displays all break definitions:

display_breaks

• 9-36 CYBIL Language Definition Revision D

DISPLAY_BREAK

Debug then displays information similar to the following:

— Break B1
—event(s) = execution
— location: M=main_module L=26

— Break B2
—event(s) = execution
— location: M=module_two L=13 B0=16

— Break B3
—event(s) = execution
— location: M=module_two L=16

— Break B4
—event(s) = execution
— location: R=multiplication_module L=7

The following subcommand displays break definitions Bl, B2,
andB4:

display.breaks breaks=(b1,b2,b4)

Debug displays the following:

— Break B1

— event(s) = execution
— location: M=main_module L=26

— Break B2
—event(s) = execution
— location: M=module_two L=14

—Break B4
—event(s) = execution
— location: M=multiplication_module L=7

Revision D The Debug Utility 9-37

DISPLAY_CALL

DISPLAY.CALL
Purpose Displays information about the dynamic call chain. Usually

the procedure name, module name, and line number of each
call are shown. Only the procedure or module name and byte
offset from the beginning of the procedure or module are
shown if you inhibit Debug tables when compiling your
program. Only machine addresses are shown for internal
NOS/VE calls.

Format DISPLAY_CALL or
DISPLAY CALLS or
DISC

COUNT = integer or keyword value
START'= integer
DISPLA Y_OPTION = list of keyword value
OUTPUT'=file
STATUS = status variable

Parameters CO UNT or C

Number of calls to be displayed. Specify a positive integer
greater than zero or the keyword ALL. If you specify a value
greater than the number of existing calls, all calls are
displayed.

Omission causes all calls to be displayed.

START or S

Call on the chain to be displayed first. Thus, it is possible to
skip the most recent calls. Specify a positive integer greater
than zero. The value 1 represents the most recent call, 2
represents the predecessor of the most recent call, and so
forth.

Omission causes 1 to be used.

An informative message is issued if the number of calls you
specify is greater than the actual number of calls.

DISPLA Y_ OPTION or DISPLA Y_ OPTIONS or DO

Type of information to be displayed. Specify one or more of
the following keywords:

USER_CALLS (UC)

Causes only calls that are in user code to be displayed.

SYSTEM_CALLS (SC)

Causes only calls that are not part of the user code to be
displayed.

9-38 CYBIL Language Definition Revision D

DISPIAT_

ALL_CALLS (AC)

Causes both user calls and system calls to be displayed.

VARIABLE, VALUES (W)

Causes all variables known to the procedure to be
displayed.

Omission causes only USER _ CALLS to be displayed.

OUTPUT or O

File on which the call information is written. You can specify
a file position as part of the file name.

Omission causes the current Debug output file to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Examples The following subcommand displays the first two user calls
on the call chain:

display_calls count=2

Debug displays information similar to the following:

— Traceback from procedure MULT module MULTIPLICATION,
MODULE at Line 7

— Called from procedure P module M0DULE_TW0 at l ine 13
byte offset 36

The following subcommand displays all of the user calls on
the call chain beginning with the second most recent call:

display_calls start=2

Debug displays information similar to the following:

— Called from procedure P module M0DULE_TW0 at l ine 13
byte offset 36

— Called from procedure MAIN module MAIN_M0DULE at
l ine 25 byte offset 44

Revision D The Debug Utility 9-39 •

DISPLAY_CALL

The following subcommand writes all of the user calls on the
call chain to FILE1, the output file specified. Because the
DISPLAY _ OPTION parameter is omitted, only user calls are
written to FILE1.

display_calls count=all output=file1 status=stat

The contents of FILE1 is similar to the following:

— Traceback from procedure MULT module MULTIPLICATION,

MODULE at l ine 7
— Called from procedure P module M0DULE_TW0 at l ine 13

byte offset 36
— Called from procedure MAIN module MAIN_MODULE at l ine

25 byte offset 44

The following subcommand displays all calls (both user calls
and system calls, if any) and all variables known to the
procedure.

display_call display_option=(all_calls,variable_values)

Debug displays information similar to the following:

— Traceback from procedure MAIN module MODULE_MAIN at
l ine 21 byte offset 8

— DISPLAY OF ALL VARIABLES IN MAIN

B = * * INVALID BOOLEAN VALUE * *
I = 576460752303423487
J = 268435456
K = 0

9-40 CYBIL Language Definition Revision D

DISPLAY_DEBUGGING_ENVIRONMENT

DISPLAY_DEBUGGING_ENVIRONMENT

Purpose Displays the following information about the environment of
your debugging session: current defaults for module,
procedure, Debug input file, and Debug output file; the total
number of breaks you have set; information about step mode;
and the location in your program where execution stopped.

Format DISPLAY_DEBUGGING_ENVIRONMENT or
DISDE

DISPLA Y_ OPTION = list of keyword value
OUTPUT = file
STATUS = status variable

Parameters DISPLA Y_ OPTION or DISPLA Y_ OPTIONS or DO

Type of information to be displayed. Specify one or more of
the following keywords:

ALL

Defaults, breaks, step mode attributes, and the user
address are displayed.

BREAKS (B)

The number of breaks you have set, the number of breaks
currently in use by Debug, and the number of unused
breaks are displayed.

DEFAULTS (D)

The current default values for module, procedure, Debug
input file, and Debug output file are displayed.

Unless the CHANGE _DEFAULT subcommand has been
specified, the default module and procedure is where
execution has stopped in your task. The text $CURRENT
is output if module or procedure has not been initialized.

STEP_MODE (SM)

The current step mode attributes are displayed.

USER_ ADDRESS (UA)

The location where execution has stopped in your program
is displayed.

Omission causes ALL to be used.

Revision B The Debug Utility 9-41

DISPLAY_DEBUGGING_ENVIRONMENT

OUTPUT or 0

File on which the call information is written. You can specify
a file position as part of the file name. Omission causes the
current Debug output file to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Examples The following subcommand writes defaults, breaks, step mode
attributes, and location where execution stopped to the
current default Debug output file:

di sp Lay_debuggi ng_envi ronment

Debug displays information similar to the following:

— Default module is SCURRENT.
— Default procedure is SCURRENT.
— Default debug_input file is :$L0CAL.COMMAND.
— Default debugjxitput file is :$LOCAL.$OUTPUT.
— The number of breaks set by the user is 4.
— The number of breaks in use by DEBUG is 0.
— The number of available breaks is 60.
— Stepjnode is OFF.
— Execution is currently stopped at B 04D 00000132 which,
in higher symbolic terms is M=m L=16

• 9-42 CYBIL Language Definition Revision D

DISPLAY_DEBUGGING_ENVIRONMENT

The following subcommand displays the number of breaks
set, the number of unused breaks, and the location where
execution stopped:

display_debugging_environment . .
display_options=(b,ua)

Debug displays information similar to the following:

— The number of breaks set by the user is 4.
— The number of breaks in use by DEBUG is 0.
— The number of avai lable breaks is 60.
— Execution is current ly stopped at B 04D 00000132 which,
in higher symbolic terms is H=m L=16

The following subcommand writes defaults, breaks, step mode
attributes, and location where execution stopped to file FILEl
and returns the subcommand status to variable SS:

display_debugging_environment . .
display_options=all output=file1 status=ss

The contents of FILEl is similar to the following:

— Default module is SCURRENT.
— Default procedure is SCURRENT.
— Default debug_input file is :$L0CAL.COMMAND.
— Default debug_output file is :$L0CAL.$0UTPUT.
— The number of breaks set by the user is 4.
— The number of breaks in use by DEBUG is 0.
— The number of available breaks is 60.
— Stepjnode is OFF.
— Execution is currently stopped at B 04D 00000132 which,
in higher symbolic terms is M=m L=16

Revision D The Debug Utility 9-43 •

DISPLAY, MEMORY

DISPLAY.MEMORY

Purpose Displays information located at any address to which ywi
have read access. This subcommand allows you to debug yotr
program even when compiler-generated symbol tables are not
available, and to display memory areas that do not
correspond to program identifiers. Each display line shows
the memory contents in hexadecimal and ASCII formats; the
relative byte offset from the initial address is also shown.

The compiler-generated attributes list shows the section name
and offset for all variables. You can reference static variables
by specifying section name and byte offset. You can reference
variables on the stack by specifying the machine address of
the stack frame and byte offset. You can obtain the address of
the stack frame of the procedure executing when Debug got
control by displaying register Al . You can obtain the address
of other stack frames by displaying the save area of the
wanted stack frame using the DISPLAY_STACK_FRAME
subcommand and obtaining the value of register Al from that
stack frame. You can also use the DISPLAY_PROGRAM_
VALUE subcommand to display program variables when
symbol tables are available.

Format DISPLAY_MEMORY or
DISM

addres s
BYTE_OFFSET = integer
BYTE_COUNT = integer
REPEAT_COUNT = integer or keyword value
OUTPUT = file
STATUS = status variable

Parameters address

Memory location to be displayed. The memory location is
specified by one or more of the following address parameters:

SECTION = name or keyword value
MODULE = name
ADDRESS = integer

9-44 CYBIL Language Definition Revision A

DISPLAY_MEMORY

SECTION (SEC)
Memory section containing the data to be displayed. Specify
one of the following:

• Working storage section name of a CYBIL program.

• A common block name (for languages that support
common blocks).

• $BINDING, which is the memory section containing the
links to external procedures and the data of the module.

• $LITERAL, which is the memory section containing the
literal data (that is, long constants) of the module.

• $STATIC, which is the memory section containing the
static (not on the run-time stack) variables not explicitly
allocated to a named section of the module.

• CYB$DEFAULT_HEAP, which is the memory section
containing the default heap of CYBIL.

When you use SECTION to specify an address, you must
qualify it with the MODULE parameter. You can use the
BYTE_OFFSET parameter to modify the starting address of
memory to be displayed.

Omission indicates that the memory address is specified by
the ADDRESS parameter.

MODULE (M)
Module containing the data to be displayed. The MODULE
parameter cannot be specified unless the SECTION
parameter is specified.

Omission indicates that the memory address is specified by
the ADDRESS parameter.

Revision D The Debug Utility 9-45

DISPLAY_MEMORY

ADDRESS (A)

Address of the first byte of memory to be displayed. Its value
is expressed in the form

rsssoooooooo(16)

where r is the ring number, sss is the segment number, and
oooooooo is the offset from the beginning of the segment. You
can use the BYTE _ OFFSET parameter to modify the starting
address of memory to be displayed.

Omission indicates that the address is specified by the
SECTION and MODULE parameters.

BYTE_OFFSETor BO

Offset to the base address established by one of the address
parameters. Specify a positive integer. Its value is added to
the base address to form a new address.

The address generated by adding BYTE _ OFFSET to the base
address must be within the memory block implied by the base
address. The block size is the length of the section when the
SECTION parameter is specified, and the length of the
segment containing the machine address when the
ADDRESS parameter is specified.

Omission causes 0 to be used.

BYTE _COUNT or BC

Number of bytes in the item to be displayed. Specify a positive
integer greater than zero.

Omission causes 1 to be used.

REPEAT_COUNT or RC

Number of memory areas (items) of length BYTE_COUNT to
be displayed. Specify a positive integer. The maximum
amount of memory that can be displayed is limited to the
block size implied by address (section length for SECTION
and segment length for ADDRESS). The keyword ALL or a
large integer causes all memory from the specified address to
the end of the memory block to be displayed.

Omission causes 1 to be used.

9-4S CYBIL Language Definition Revision B

DISPLAY_MEMORY

OUTPUT or O

File on which the displayed information is written. You can
specify a file position as part of the file name.

Omission causes the current Debug output file to be used.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
IRESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Examples The following subcommand displays the first three bytes of
the literal memory section for module MODI:

displayjnemory sect ion=$l i teral module=mod1 . .
byte_count=3

The following subcommand displays the first 32 bytes of the
memory section DATAl for module MOD2 as separate items:

displayjnemory section=data1 module=mod2 . .
repeat_count=4

The following subcommand displays the first 200 bytes of
memory starting from the specified address:

displayjnemory address=0602400000224(16) . .
byte_count=8 repeat_count=25

Revision D The Debug Utility 9-47 •

DISPLAY_PROGRAM_VALUE

DISPLAY_PROGRAM_VAUJE
Purpose Displays the value of the specified program variable (except a

boolean value) as it appears in the source program or in
hexadecimal format.

Format DISPLAY_PROGRAM_VALUE or
DISPV

NAME = program n a m e or k e y w o r d value
MODULE = name
PROCEDURE = name
RECURSION_LEVEL = integer
RECURSION_DIRECTION = keyword value
TYPE = keyword value
OUTPUT = file
STATUS = status variable

Parameters NAME or N

Name of the program element whose value is to be displayed
or the keyword $ALL. Specifying $ALL causes all variables in
the specified (or default) procedure to be displayed.

A program element can be one of the following:

• Simple variable or constant name

• Subscripted name

• Field reference

• Pointer reference

Subscripts can be constants or variables but not expressions.
NAME cannot be a substring.

The variable must be used in your program.

Because names can be long, SCL string variables can be used
as aliases for them. To do so, assign the SCL variable to a
string containing the identifier. Then use the SCL variable
preceded by a question mark as the value of the NAME
parameter.

This parameter is required.

• 9-48 CYBIL Language Definition Revision D

DISPLAY_PROGRAM_VALDB

MODULE or M

Name of the module containing the NAME parameter
variable.

Omission causes the module executing when Debug gained
control or the module specified by the CHANGE,DEFAULT
subcommand to be used.

PROCEDURE or P

Name of the procedure containing the program name. If you
specify a procedure that is not in the active call chain, its
automatic variables cannot be displayed because it has no
stack frame.

Omission causes the procedure executing when Debug gained
control to be used if MODULE is also omitted. Otherwise,
there is no default procedure when MODULE is specified and
PROCEDURE is not; the program name must exist at the
module level.

RECURSION_LEVEL or RL

The particular call of a recursive procedure to be used. Specify
a positive integer greater than zero. If RECURSION,
DIRECTION=FORWARD, use a value of 1 for the first call, 2
for the second call (the one called by the first call), and so on.
If RECURSION_DIRECTION=BACKWARD, use 1 for the
most recent call, 2 for the predecessor, and so on.

Omission causes 1 to be used.

RECURSION_DIRECTION or RD

Order in which calls to a recursive procedure are searched.
This parameter controls how the value of the RECURSION,
LEVEL parameter is interpreted. Specify one of the following
keywords:

FORWARD (F)

A RECURSION,LEVEL of 1 specifies that the first call to
the procedure is used, a 2 specifies the second call, and so
on.

BACKWARD (B)

A RECURSION_LEVEL of 1 specifies that the most
recent call to the procedure is used, a 2 specifies its
predecessor, and so on.

Omission causes BACKWARD to be used.

Revision B The Debug Utility 9-49

DISPLAY_PROGRAM_VALUE

TYPE or T

Format of the value to be displayed. If the keyword HEX is
specified, Debug displays the variable name, the process
virtual address (PVA) that corresponds to the start of the
variable, the memory representation of the variable's value,
and the ASCII representation of memory (with a question
mark representing an unprintable character). If the requested
data is not contained in a contiguous block of memory, an
error message is issued.

Omission causes Debug to print the variable name and the
value of the variable as it is defined in the source program
rather than in hexadecimal format.

OUTPUT or O

File where the display information is written. You can specify
a file position as part of the file name.

Omission causes the current Debug output file to be used.

STATUS

Optional SCL status variable in which the completion status of
the subcommand is returned. If omitted and an error does not
occur, Debug processes the next subcommand. If omitted and an
error occurs, the status value is returned to $RESPONSE and to
the Debug output file if $RESPONSE is connected to that file.
This file is normally connected during interactive debugging.

Examples The following subcommand displays the value of I from the
current module:

display_program_value name=i

Debug displays the following:

i = 576460752303423487

The following subcommand displays the value of J from
procedure MAIN in the current module:

display_program_value name=j . .
procedure=main

Debug displays the following:

i = 268435456

The following subcommand displays the value of all variables
from the current module:

display_program_value Sal I

Debug displays the following:

— DISPLAY OF ALL VARIABLES IN MAIN

B = * * INVALID BOOLEAN VALUE * *
I = 576460752303423487
J = 268435456

• 9-50 CYBIL Language Definition Revision D

DISPLAY_REGISTER

DISPLAY.REGISTER
Purpose Displays the contents of the P, A, or X registers that are

associated with the procedure executing when Debug gained
control.

Format DISPLAY.REGISTER or
DISPLAY REGISTERS or
DISR

KIND = list of keyword value
NUMBER = keyword value or list of integer
TYPE = keyword value
OUTPUT = file
STATUS = status variable

Parameters KIND or K

Kind of register or registers to display. Specify one of the
following keywords:

P The P register.

A The A registers.

X The X registers.

Omission causes P to be used.

NUMBER or N

Number of the register or registers to display. Specify a set of
one or more integers or ranges of integers from 0 to 15, or the
keyword ALL. An informative message is issued for each
referenced register whose value was not saved in the current
stack frame and, therefore, cannot be displayed. This
parameter is ignored if KIND=P since there is only one P
register.

Omission causes 0 to be used.

Revision D

DISPLAY_REGISTER

TYPE or T
Type of the displayed register values. Specify one of the
following keywords:

ASCII (A)
Displays ASCII string values.

HEX (H)
Displays hexadecimal string values.

INTEGERffi
Displays integer values.

Omission causes HEX to be used for string values and
INTEGER for numeric values.

OUTPUT or O
File on which the register contents are written. You can
specify a file position as part of the file name.

Omission causes the current Debug output file to be used.

STATUS
Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

9-52 CYBIL Language Definition Revision D

DISPLAY_REGISTER

Examples The following subcommand displays the contents of the P
register in hexadecimal:

display_register p

Debugs displays the following:

P=B 04D 00000040

The following subcommand displays the contents of the A8
register in hexadecimal:

display_register kind=a number=8 type=hex

Debug displays the following:

A8=B 04E 00000442

The following subcommand displays the contents of the X4,
X5, X6, X7, X8, X9, and XA registers in hexadecimal:

display_register kind=x number=4..10

Debug displays the following:

X4=00000000 10000000
X5=00000000 00000008
X6=00000000 0000000D
X7=00000000 0000001D
X8=00000000 00000000
X9=00000000 00000008
XA=00000000 00000300

Revision D The Debug Utility 9-53 •

DISPLAY _ STACK, FRAME

DISPLAY_STACK_FRAME

Purpose Displays the contents of one or more stack frames. Values are
displayed in hexadecimal.

Format DISPLAY_STACK_FRAME or
DISPLAY_STACK_FRAMES or
DISSF

COUNT = integer or keyword value
START = integer
DISPLAY_OPTION'= list of keyword value
OUTPUT' = file
STATUS = status variable

Parameters CO UNT or C

Number of stack frames to be displayed. Specify a positive
integer. An integer value greater than the number of existing
stack frames or the keyword ALL causes all stack frames to
be displayed.

Omission causes one stack frame to be displayed.

START or S

Stack frame to be displayed first. Specify a positive integer
greater than zero. The value 1 represents the most recent
stack frame, 2 represents its predecessor, and so on.

Omission causes 1 to be used.

DISPLA Y_ OPTION or DISPLA Y_ OPTIONS or DO

Area of the stack frames to be displayed. Specify one or more
of the following keywords:

AUTO (A)

Area containing the automatic (dynamically allocated)
variables of the procedure.

SAVE (S)

Area containing a copy of the registers of the procedure as
they existed at the time of a call or trap.

ALL

Both the automatic and save areas.

Omission causes ALL to be used.

OUTPUT or O
File on which the stack frame values are written. You can
specify a file position as part of the file name.

Omission causes the current Debug output file to be used.

9-54 CYBIL Language Definition Revision D

DISPLAY_STACK_FRAME

Examples

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

The following subcommand displays the automatic and save
areas of the most recent stack frame:

display_stack_frame count=1

Debug displays the following:

STACK FRAME 001

00000000
00000008
00000010
00000018
00000020
00000028
00000030
00000038
00000040
00000048
00000050

SAVE AREA

uuuuuuuu
00000000
3O4C0000
00000000
FFFFFFFF
0000B01D
0000B04E
00000000
FFFFFFFF
B04E0000
B04E0000

SEGMENT=04E

00000000
00000000
00C0FFFF
00000000
FFFFFF0C
000D4A2E
00000400
00000000
FFFFFE0C
04A05D58
04AF0430

0L

N

N
N

J.

]X
0

P=B 04D 000000AC VMID=0
UH=FFF7 UCR=0080 MCR=0000

A0=B 04E
A2=B 04E
A4=B 04E
A6=B 04E
A8=B 04E
AA=B 04E
AC=F FFF
AE=F FFF

000004DO
00000430
00000400
000004AF
00000442
00000A88
80000000
80000000

A1=B 04E
A3=B 04C
A5=B 04B
A7=B 04E
A9=B 04E
AB=F FFF
AD=B 04E
AF=8 00B

00000478
00000000
00000020
000004AF
000006A0
80000000
000010D8
0000BB98

X0=0000B04D
X2=0000FFFF
X4=00000000
X6=00000000
X8=00000000
XA=00000000
XC=0000FFFF
XE=0000FFFF

00040254
80000000
00000064
00000000
00000000
00000300
80000000
80000000

X1=0000FFFF
X3=00000000
X5=FFFFFFFF
X7=00000000
X9=00000000
XB=0000FFFF
XD=0000FFFF
XF=00000000

80000000
00000000
FFFFFE0C
0000001D
00000008
80000000
80000000
00000008

Revision D The Debug Utility 9-55 •

DISPLAY_STACK_FRAME

The following subcommand displays the save area of the
most recent stack frame:

display_stack_frame display_option=save

Debug displays the following:

STACK FRAME 001
SAVE AREA

SEGMENT=04E

P=B 04D 0O0OO0AC VMID=0
UM=FFF7 UCR=0080 MCR=0000

A0=B 04E
A2=B 04E
A4=B 04E
A6=B 04E
A8=B 04E
AA=B 04E
AC=F FFF
AE=F FFF

000004DO
00000430
00000400
000004AF
00000442
00000A88
80000000
80000000

A1=B 04E
A3=B 04C
A5=B 04B
A7=B 04E
A9=B 04E
AB=F FFF
AD=8 04E
AF=8 006

00000478
00000000
00000020
000004AF
00O0O6A0
80000000
000010D8
0O00BB98

X0=O00OBO4D
X2=OO0OFFFF
X4=00000000
X6=00000000
X8=00000000
XA=00000000
SC=OOO0FFFF
XE=OOO0FFFF

00040254
80000000
00000064
00000000
00000000
00000300
80000000
80000000

X1=OO0OFFFF
X3=00000000
X5=FFFFFFFF
X7=00000000
X9=00000000
XB=OOO0FFFF
XD=0O00FFFF
XF=00000000

80000000
00000000
FFFFFEOC
0000001D
00000008
80000000
80000000
00000008

The following subcommand displays the automatic and save
areas of three stack frames beginning with the second most
recent one:

display_stack_frames count=3 start=2

• »S6 CYBIL Language Definition Revision D

DISPLAY_STACK_FKAME

Debug displays the following:

STACK FRAME 002
00000000
00000008
00000010
00000018
00000020
00000028

SAVE AREA

0O00B04E
7FE4B04E
04A1FFFF
00000000
00000000
B04E0000

P=B 040 0000011C
UM=FFF7 UCR=0000

SEGMENT=04E
000006A0
OOOO0A88
80000000
00000017
0000001D
04A00000 N

VMID=0
MCR=0000

N
N

AO=B 04E 00000550
A2=B 04E 000004DO
A4=B 04E 000004B0

A1=B 04E 00000520
A3=B 04C 00000040
A5=8 04B 00000020

X2=0000FFFF 80000000
STACK FRAME 003 SEGMENT=04E
00000000 00000000 00000000
00000008 00000000 00000000

00000048
00000050

SAVE AREA

BO4E00O0 04A05D58 N]X
BO4E00O0 04AF0430 N 0

P=8 04D OOOOOOAC VMID=0
UH=FFF7 UCR=O0O0 MCR=0000

AO=B 04E 000O04D0
A2=B 04E 00000430
A4=B 04E 00000400

A1=B 04E 00000478
A3=B 04C 00000000
A5=B 04B 00000020

X2=00O0FFFF 80000000
X4=00000000 00000064
STACK FRAME 004
00000000 BO4E0O0O
00000008 0OO0BO4E

000002F8
00000300

SAVE AREA

B04E0O00
01020000

P=B 01D 00OD4996
UM=FFF7 UCR=0400

X3=00000000 00000017

SEGMENT=04E
01584810 N XH
00000128 N (

001EOOOO N
00000000

VMID=0
MCR=0OO0

AO=B 04E 00000430
A2=F FFF 80000000
A4=B 04E 00000000
A6=B 04E 000001 DO

A1=B 04E 00000128
A3=B 01B 0OO05D58
A5=B 04E 00000400

X0=00000000 00020060

Revision D The Debug Utility 9-57 «

QUIT

QUIT

Purpose Terminates the Debug session and returns control to the
NOS/VE operating system. The session is terminated
immediately; the program is not executed to completion.

Format QUIT or
QUI

STATUS = status variable

Parameter STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

9-58 CYBIL Language Definition Revision D

RON

RUN
Purpose

Format

Parameter

Initiates or resumes program execution once Debug has
gained control. Execution continues until Debug again gains
control. If the program has run to completion, entering the
RUN subcommand terminates the program and returns
control to the NOS/VE operating system.
Execution begins at the instruction whose address is
contained in the P register or at the condition handler (if there
is one) of the program for the event that caused Debug to gain
control. (Refer to the SCL Language Definition manual for a
discussion of condition handlers.) If the P register points to
the instruction that caused the event (such as division by
zero), the same event will occur immediately after entering the
RUN subcommand. In this case, you must change the value
in the P register (use the CHANGE_REGISTER
subcommand) or change the value of one of the operands (use
the CHANGE _PROGRAM_ VALUE subcommand) before
entering the RUN subcommand.

When Debug processes the RUN subcommand, all previously
created SCL blocks (except SET _ BREAK subcommand
information and the name of the current Debug input file) are
lost. This means that some information about SCL
commands, such as IF/THEN blocks or WHILE/FOR loops
that span RUN subcommands, is lost. In the following
example, SCOPE = JOB will retain the variables.

DB/create_variable name=count . .
DB../kind=integer scope=job value=0
DB/set_break break=one Line=1 command='run'
DB/create_variable name=count . .
DB../kind=integer scope=xref

RUN
STATUS = status variable

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Revision D The Debug Utility 9-59 •

SET_BREAK

SET_BREAK
Purpose Defines the break. You can specify one or more events and the

location at which Debug is to take control. When the specified
event occurs, program execution is suspended and a message
informs you which break occurred. At this point, you can
enter another Debug subcommand, or any command that can
be processed by the operating system or an active command
utility.

Format SET BREAK or
SET_BREAKS or
SETB

BREAK = name
EVENT = list of keyword value
address
BYTE_OFFSET= integer
BYTE _COUNT= integer
COMMAND = string
STATUS = status variable

Parameters BREAK or B

Name of the break definition. This name is used to reference
the break definition in the DISPLAY_BREAK and
DELETE_BREAK subcommands. This name is displayed in
the break report message when the break occurs. You cannot
specify a break name of ALL (because ALL is used as a
keyword in other Debug subcommands) or a break name that
contains the dollar sign character ($).

Omission causes Debug to assign a unique name. In this case,
Debug notifies you of the name assigned.

EVENT or EVENTS or E

Events that must occur for the break to occur. If you specify
more than one event, the break is honored if only one of the
events occurs. Possible events can be any of the following
keywords:

ARITHMETIC_OVERFLOW (AO)

Break when an arithmetic overflow occurs on an
instruction in the specified address range. The P register
points to the instruction that caused the overflow.

9-60 CYBIL Language Definition Revision D

SET_BREAK

ARITHMETIC_SIGNIFICANCE (AS)
Break when arithmetic significance is lost on an
instruction in the specified address range. The P register
points to the instruction that caused the loss of
significance.

BRANCH (B)
Break before a branch to or a return from any location in
the specified address range occurs.

CALL(C)
Break before a subprogram call occurs to any address in
the specified address range.

DIVTOE.FAULT (DF)
Break when division by zero occurs in an instruction in the
specified address range. The P register points to the
instruction that caused the division by zero.

EXECUTION (E)
Break before the instruction in the specified address range
is executed.

If the address is specified by the line number, not every line
is usable. For example, breaks cannot be set at IFEND
statements because it is not obvious when control reaches
them.

EXPONENT_OVERFLOW (EO)
Break when an exponent overflow occurs in an instruction
in the specified address range. The P register points to the
instruction following the one that caused the overflow.

EXPONENT_UNDERFLOW (EU)
Break when an exponent underflow occurs in an
instruction in the specified address range. The P register
points to the instruction following the one that caused the
underflow.

FLOATING_POINT_INDEFINITE (FPI)
Break when the result of a floating-point operation is
indefinite in an instruction in the specified address range.
The P register points to the instruction following the one
that caused the results to be indefinite.

Revision B The Debug Utility 9-61

SET_BREAK .1

FLOATING_POINT_SIGNIFICANCE (FPS)
Break when significance is lost during a floating-point
operation in an instruction in the specified address range.
The P register points to the instruction following the one
that caused the loss of significance. This event will not
occur unless your program sets the floating-point loss-of-
significance bit in the user mask register.

INVALID_BDP_DATA (IBD)
Break when a business data processing (BDP) instruction
fault occurs in an instruction in the specified address
range. The P register points to the instruction that caused
the fault. The BDP instructions are described in volume II
of the virtual state hardware reference manual.

READ (R)

Break before a read occurs from the specified address
range. The break occurs only if the first byte of the item to
be read is within the address range.

READ_NEXT_INSTRUCTION (RNI)
Break before the instruction in the specified address range
is executed.

WRITE (W)

Break before a write occurs into the specified address
range. The break occurs only if the first byte of the item to
be written is within the address range.

Omission causes EXECUTION to be used.

»«2 CYBIL Language Definition Revision B

SET.

Debug gains control when the following events occur even if
you do not set a break for them:

ARITHMETIC_OVERFLOW
ARITHMETIC_SIGNIFICANCE
DIVIDE_FAULT
EXPONENT_OVERFLOW
EXPONENT_UNDERFLOW
FLOATING_POINT_INDEFINITE
FLOATING_POINT_SIGNIFICANCE
INVAUD_BDP_DATA

Specific breaks can be set for these events, however, so that a
predefined set of commands or subcommands can be executed
when Debug gains control.

address

Location at which the break occurs. For the break to occur, the
specified event must occur within the range defined by the
address parameters. All address parameters are interpreted as
a single address. You can use the BYTE_COUNT and
BYTE_OFFSET parameters to specify an address range.
Omission indicates an address range of one byte. The address
parameters are:

LINE = integer
SECTION = name or keyword value
MODULE = name
PROCEDURE = name
ENTRY_POINT = name
ADDRESS = integer

Revision C The Debug Utility 9-63

SET_BREAK

LINE (L)

Line at which Debug gains control. Unless the MODULE
parameter is also specified, the line number must exist in the
module that was executing when Debug gained control or the
default module set with the CHANGE _ DEFAULT
subcommand.

You can use BYTE_OFFSET and BYTE_COUNT to modify
this parameter.

Not all lines of a program can be referenced. Only executable
statements that begin on a separate line can be referenced. A
second or third statement on a line or a line containing the
continuation of a statement cannot be referenced. In addition,
IFEND lines cannot be referenced.

Omission indicates that the break address is specified by
another parameter.

SECTION (SEC)

A memory section. Specify one of the following:

• Name of the working storage section as declared in the
source program.

• Name of a common block.

• $BINDING, which is the memory section containing the
links to external procedures and the data of the module.

• CYB$DEFAULT_HEAP, which is the memory section
containing the default heap for CYBIL.

• $LITERAL, which is the memory section containing the
literal data (that is, long constants) of the module.

• $STATIC, which is the memory section containing the
static (not on the run-time stack) variables that are not
allocated to an explicitly named section of the module.

i
9-64 CYBIL Language Definition Revision B

SET_BREAK

Unless the MODULE parameter is also specified, the section
must exist for the module that was executing when Debug
gained control or the default module set with the CHANGE _
DEFAULT subcommand. The SECTION parameter cannot
be specified for modules that are components of a bound
module unless the section is a common block (refer to the
discussion under Addressing Bound Modules earlier in this
chapter). You can use the BYTE_OFFSET and BYTE_
COUNT parameters to modify this parameter.

Omission indicates that the break address is specified by
another parameter.

MODULE (M)
An address or qualification of another address specifier. If
used alone, the MODULE parameter specifies an address (the
first byte of the first code section of the module). Module
represents only the first code section. MODULE cannot
reference the code section of a component module of a bound
module (refer to the discussion under Addressing Bound
Modules earlier in this chapter). If used with the LINE,
SECTION, or PROCEDURE address parameters, the
MODULE parameter identifies the module containing the
line, section, or procedure. If used to specify an address, the
BYTE_OFFSET and BYTE_COUNT parameters can be used
to modify the MODULE parameter.

Omission causes the module executing when Debug gained
control or the default module set with the CHANGE _
DEFAULT subcommand to be used.

Revision B The Debug Utility 9-65

SET BREAK

PROCEDURE (P)

An address (the first byte of the code section of the procedure).
Unless the MODULE parameter is also specified, the
procedure must exist in the module that was executing when
Debug gained control or the default module set with the
CHANGE_DEFAULT subcommand. You can use the BYTE_
OFFSET and BYTE_COUNT parameters to modify the
PROCEDURE parameter. You cannot specify the LINE or
SECTION address parameters with the PROCEDURE
parameter.

When a name is specified, this parameter indicates the
procedure to be used. The name must be a procedure, function,
or program.

Omission indicates that the break address is specified by
another parameter.

ENTRY_POINT (EP)

An entry point expressed as a name known to the loader.
Specify a procedure or data name with an XDCL attribute
subject to certain restrictions. (Refer to Attributes in chapter 3
for a description of the XDCL attribute. Also, refer to the SCL
Object Code Management manual for further information on
restrictions.) You can use the BYTE_OFFSET and BYTE_
COUNT parameters to modify the ENTRY_POINT
parameter. You cannot use other address parameters with this
parameter.

Omission indicates that the break address is specified by
another parameter.

9*6 CYBIL Language Definition Revision B

SET_BREAK

ADDRESS (A)
Address of the break event in the form

rsssoooooooo(16)

where r is the ring number, sss is the segment number, and
oooooooo is the offset within the segment. You can obtain
machine addresses firom the cross-reference and load maps for
your program. You can use the BYTE_OFFSET and BYTE_
COUNT parameters to modify the ADDRESS parameter. You
cannot use other address parameters with this parameter.

Omission indicates that the break address is specified by
another parameter.

The address parameter is required.

BYTE_OFFSET or BO

Offset to the base address established by one of the address
parameters. Specify a positive integer. Its value is added to
the base address to form a new address. The break is then set
for this new address.

Omission causes a value of zero to be used.

BYTE_COUNT or BC

Number of bytes in an address range. Specify a positive
integer greater than zero.

Omission causes 1 to be used.

Revision B The Debug Utility 9-67

SET_BREAK

COMMAND or COMMANDS or C

String of commands or subcommands to be executed when the
break is honored. These commands or subcommands can be
processed by Debug, the operating system, or other active
command processor. If a command in the string includes a
quoted string, that string must be enclosed in two single
quotes. After the commands in the string have been executed,
commands are read from the current Debug input file unless
the string contains a RUN subcommand.

No break report message is issued before the commands in the
string are executed. If you want a message to be displayed,
include an SCL PUT_LINE command in the string.

If an error is detected in one of the commands in the string,
the break report message is issued, the error is reported, and
commands are read from the Debug input file. The remaining
commands in the string are not executed.

Omission indicates that no commands are associated with the
break. Commands are read from the Debug input file.

STATUS

Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

If the SET _ BREAK subcommand contains an error before the
STATUS parameter, the remainder of the subcommand is
skipped. Therefore, the contents of the STATUS parameter
does not reflect the status of the subcommand.

SM58 CYBIL Language Definition Revision D

SET_BREAK

Examples The following subcommand causes a break when execution
reaches line 10 of module PROG1:

set_break break=b1 Line=10 module=prog1

The following subcommand causes a break when a branch or
return occurs to line 40 of the module executing when Debug
gained control:

set break break=b2 event=branch Line=40

Revision B The Debug Utility 9-69

SET_STEP_MODE

SET_STEP_MODE
Purpose Enables you to execute a specified subset of a task and receive

control.

If you activate step mode, a RUN subcommand causes your
program to execute for the specified unit. You are then
prompted for further subcommand input. A string of
subcommands can be associated with the step and will be
processed each time the step is completed. Stepping with a
unit of line or procedure is only available if the source
program was compiled with the Debug optimization option
(OPTIMIZATION_LEVEL=DEBUG).

Activating step mode is an effective debugging aid but is
expensive in terms of execution time.

Format SET_STEP_MODE or
SETSM

MODE = keyword value
UNIT = keyword value
MODULE = keyword value or list of name
PROCEDURE = keyword value or list of name
SPAN'= integer
COMMAND = string
STATUS = status variable

Parameters MODE

Activates or deactivates step mode. Specify one of the
following keywords:

ON

Activates step mode. When step mode is on, a RUN
subcommand causes one step to be executed. A step is
defined by the UNIT parameter.

OFF

Deactivates step mode. When step mode is off, any
remaining parameters are ignored.

If you specify ON and step mode is already on, all previous
values are replaced with the new values.

This parameter is required.

9-70 CYBIL Language Definition Revision D

SET_SIKP_

UNIT or U

Length of the step. Specify one of the following keywords:

PROCEDURE (P)

The step is reported each time a new procedure begins and
after any prologue code for the procedure has executed.

LINE (L)

The step is reported before the code is executed for each line

except for the procedure lines.

Omission causes LINE to be used.

MODULE or M

The modules reported. This parameter is used with the UNIT
parameter. Specify one of the following keywords or a list of
modules:

$ALL

Reports a step that is in any module.

$CURRENT

Reports a step only if the step occurs in the module where
the program is executing when step mode is activated.

Using a list of modules causes a step to be reported only if the
step occurs in a specified module.

You cannot specify both the MODULE and the PROCEDURE
parameters in the same SET_STEP_MODE subcommand.

Omission causes the current value for the default module to be
used.

Revision C The Debug Utility 9-71

SET_STEP_MODE

PROCEDURE or P

The procedures reported. This parameter is used with the
UNIT parameter. Specify one of the following keywords or a
list of procedures:

$ALL

Reports a step that is in any procedure.

$CURRENT
Reports a step only if the step occurs in the procedure
where the program is executing when step mode is
activated.

Using a list of procedures causes a step to be reported only if
the step occurs in a specified procedure.

You cannot specify both the PROCEDURE and MODULE
parameters in the same SET _ STEP _ MODE subcommand.

Omission causes $CURRENT to be used.

SPAN or S

Specifies how many steps must occur before execution stops
and the step is reported. Omission causes Debug to report
every step that occurs.

COMMAND or COMMANDS or C

String of subcommands that will be executed when the step
occurs. If the subcommand string includes a RUN
subcommand, the task is resumed and the step is not reported.
If the string does not include a RUN subcommand,
subcommand input is requested from the current Debug input
file.

9-72 CYBIL Language Definition Revision C

SET_STEP_MODE

STATUS
Optional SCL status variable in which the completion status
of the subcommand is returned. If omitted and an error does
not occur, Debug processes the next subcommand. If omitted
and an error occurs, the status value is returned to
$RESPONSE and to the Debug output file if $RESPONSE is
connected to that file. This file is normally connected during
interactive debugging.

Example The following subcommands activate step mode with a unit of
line in the current module, execute the entire program
automatically, display each line executed, and then deactivate
step mode.

set_step_mode mode=on . .
command=*display_debugging_environment . .
display_options=ua; RUN' . .

run
set_stepjnde «ode=off
quit

Revision D The Debug Utility 9-73

DEBUG FUNCTIONS

Debug Functions
Debug functions are intended for use with SCL during a Debug session.
These functions are only available while Debug has control. They are not
known when your program is executing or after the Debug session has been
terminated.

9-74 CYBIL Language Definition Revision B

$CURRENT_LINE

Purpose Returns the current line number value from the program i
the point where Debug has control.

Format $CURRENT_LINE

Example i f $current_line < 100 then
display_calls

ifend

Revision B The Debug Utility 9-75

$CURRENT_MODULE

$CURRENT_MODULE ^
Purpose Returns the name of the module where execution is stopped.

Format $CURRENT_MODULE

Example i f $current_module=*main' then m
set_break name=break1 line=234 ^

ifend

9-76 CYBIL Language Definition Revision C

$CURRENT_PBOCHW^|

$CURRENT_PROCEDURE

Purpose Returns the name of the procedure where execution is stopped.

Format $CURRENT_PROCEDURE

Example set_step_mode mode=on unit=procedure . .
command='if $current_procedure="sub2" then; . .

set_step_mode mode=on un i t= l ine; . .
else; run; i fend'

Revision C The Debug Utility 9-77

$CURRENT_PVA

$CURRENT_PVA
Purpose Returns an integer value for the process virtual address (PVA)

where execution is stopped.

Format $CURRENT_PVA

Example i f $current_pva > 0b03500000026(16) then
display_calls display_option=all_calls

ifend

4

1
9-78 CYBIL Language Definition Revision D

$PROGRAM_VALUK

$PROGRAM_ VALUE
Purpose Returns the value of the program element that is specified as

the name parameter. Additional parameters for module,
procedure, recursion level, and recursion direction can be
specified to fully identify the named variable.

The $PROGRAM_VALUE function allows you to incorporate
the values of program variables in SCL statements in order to
enhance debugging capabilities.

Parameter values for functions are positional. Keywords such
as NAME = are not recognized. Positional parameters cannot
be selectively omitted unless no other parameter values are
specified in the calling sequence. For instance, $PROGRAM_
VALUE (name.module) is valid, since all parameters up to the
procedure parameter are specified. However, $PROGRAM_
VALUE (name„procedure) is not valid since the module
parameter that is omitted is followed by a specified value for
the procedure parameter.

Format $PROGRAM_VALUE(name,morfufe,procerfure>

recursion _level,recursion_direction)

Parameters name

Name of the program element whose value is to be displayed.
Specify one of the following:

• Simple variable

• Subscripted name

• Field reference

• Pointer reference

The named variable must be used in your program.

Because names can be long, SCL string variables can be used
as aliases for them. To do this, assign the SCL variable to a
string containing the identifier. Then use the SCL variable
preceded by a question mark as the value of the name
parameter.

This parameter is required.

Revision D The Debug Utility 9-79

$PROGRAM_VALUE

module

Name of the module that contains the element specified by the
name parameter. Omission causes the module executing when
Debug gained control or the module specified by the
CHANGE_DEFAULT subcommand to be used.

procedure

Name of the procedure that contains the element specified by
the name parameter. If you specify a procedure that is not in
the active call chain, its automatic variables cannot be used
because it has no stack frame. Omission causes the procedure
executing when Debug gained control to be used if a module
name is not specified. Otherwise, there is no default procedure
when a module name is specified and a procedure name is not
specified; the element specified by the name parameter must
exist at the module level.

recursion _level

The particular call of a recursive procedure to be used. Specify
a positive integer greater than zero. If the recursion _ direction
parameter specifies the keyword FORWARD, use a value of 1
for the first call, 2 for the second call (the one called by the
first call), and so on. If the recursion_direction parameter
specifies the keyword BACKWARD, use 1 for the most recent
call, 2 for the predecessor, and so on.

Omission causes 1 to be used.

<

«

• 9*0 CYBIL Language Definition Revision D

(PROGRAM.

recursion _direction

Order in which calls to a recursive procedure are searched. It
controls how the value of the recursion _level parameter is
interpreted. Specify one of the following keywords:

FORWARD (F)

If the recursion _ level parameter specifies 1, the first call to
the procedure is used, a 2 specifies the second call, and so
on.

BACKWARD (B)

If the recursion _level parameter specifies 1, the most
recent call to the procedure is used, a 2 specifies its
predecessor, and so on.

Omission causes BACKWARD to be used.

Example set_break name=b1 line=23 command= . .
' i f $program_value(index) < 45 then; run; ifend'

USING DEBUG

Using Debug
This section illustrates the use of Debug. Major Debug subcommands are
illustrated in the sample Debug sessions.

Sample Debus Sessions

Debug can be used in interactive or batch mode. Two Debug sessions follow.
The first session illustrates using Debug interactively. The second session
illustrates using Debug in batch mode.

Interactive Debug Session

The source listing of the C YBIL program used in this interactive Debug
session is shown in figure 9-1.

9-82 CYBIL Language Definition Revision B

INTERACTIVE!

SOURCE LIST OF module.main

0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
14
1C
2A
38
42
54
80
88
8A
8A
8E
0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

MODULE modulejnain;

PROCEDURE CXREF] p (operandi.
operand2: integer;

VAR result: integer;
VAR status: boolean);

PROGRAM main;

VAR

i/

J/
k: [STATIC] integer,
x,
1,
z: integer,
b: boolean;

i := 7ffffffffffffff(16);
j := 10000000(16);
k := i * j;
k := i DIV j;
FOR x := 0 TO 100 DO
y := x * x - 500;
p (x, y, z, b);
IF b THEN

EXIT main;
I FEND;

FOREND;
PROCEND main;

MODEND modulejnain;

Figure 9-1. Source Listing for Interactive Debug Session

(Continued)

Revision A The Debug Utility 9-83

INTERACTIVE SESSION

(Continued)

SOURCE LIST

0
0
0
0
0
0
0
0
4
4
4
4
10
34
3E
42
4C
4C
0

OF m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

NODULE m;

PROCEDURE CXDCL] p (operandi,
operand2: integer;

VAR result: integer;
VAR b: boolean);

PROCEDURE CXREF] mult (a,
b: integer;

VAR c: integer);

IF operandi < operand2 THEN
mult (operandi, operand2, result);
b := TRUE;

ELSE
b := FALSE;

IFEND;
PROCEND p;

19 MODEND m;

SOURCE LIST OF perform_integer_multiplications

0
0
0
0
0
0
0
16
0

1
2
3
4
5
6
7
8

NODULE perform_integer_multiplications;

PROCEDURE CXDCL] mult (a,
b: integer;

VAR c: integer);

c := a * b;
PROCEND mult;

9 MODENO perform_integer_multiplications;

Figure 9-1. Source Listing for Interactive Debug Session

9-84 CYBIL Language Definition Revision A

INTERACTIVE SESSION

The following command compiles the CYBIL program:

/ cyb i l i=sample L=List b=lgo lo=f da=alL

The name of the file containing the object code of the program is LGO. The
following command initiates a Debug session:

/execute_task f i le= lgo debug_mode=on

Debug issues a banner and the Debug prompt, DB/, indicating that Debug
has control. Entering the RUN subcommand initiates program execution:

DEBUG 1.2
DB/run
— DEBU6: arithnetic_overflow at M=module_main L=21 B0=12

DB/

By looking at the source listing for MODULE_MAIN, line 21, you can see
that the overflow occurred during a multiplication operation. Entering the
following subcommands allows you to view the values of the variables I and
J:

DB/display_program_value name=i
i = 576460752303423487
OB/display_program value name=j
j = 268435456

When I and J are multiplied, the result exceeds the maximum value allowed;
therefore, arithmetic overflow occurs. Since the P register points to the
instruction that caused the overflow, entering the RUN subcommand would
cause the overflow to reoccur. Changing the P register allows program
execution to continue. The following subcommands accomplish this:

DB/displav_register kind=p
P=B04D 00000040
DB/change_register kind=p value=0b04d00000042(16)

Revision D

INTERACTIVE SESSION

Since the value in the P register begins with a letter, a leading zero is
required for the value parameter. Because the value parameter is in
hexadecimal, the radix is required. The following subcommand shows that
the P register is indeed changed:

DB/display_register kind=p
P=B 04D 00000042

The SET_STEP_MODE subcommand allows you to step through the
execution of your program for a specified unit of stepping, as follows:

DB/set_step_mode mode=on unit=line
DB/run
— DEBUG: step at M=module_main L=22

DB/run
— DEBUG: step at M=module_main L=23

DB/run
— DEBUG: step at M=module_main L=24

DB/run
— DEBUG: step at M=module_main L=25

DB/set_step_mode mode=off

Setting the breaks shown next allows you to follow program execution:

DB/set_break break=prog_main module=module_main Line=26
DB/set_break break=proc_p1 module=m procedure=p . .
DB../byte_offset=4c(16)~
DB/set_break break=proc_p2 line=16 moduLe=m
DB/set_break module=perform_integer_multipLications Line=7
— Break name DBB$1 assigned to this break

The first break set, PROG_MAIN, would not require the module/procedure
parameters because it is for the module/procedure executing when Debug
gained control. The address for the second break set, PROC_Pl, is specified
in terms of module/procedure offset addressing; the hexadecimal offset is
obtained from the first column of numbers on the source listing. (Since line
tables were produced during compilation, and are available at execution, the
break address is reported as a line number.) The third and fourth breaks set,
PROC_P2 and DBB$1, require the module and procedure parameters since
they are not set for the current module/procedure. Notice that you are not
required to give a name to a break set. Debug assigns a name to the break if
you do not specify a name. For example, in the fourth break shown in the
preceding example, Debug assigned the name DBB$1.

MB CYBIL language Definition Revision D

INTERACTIVE SESSION

Entering the RUN subcommand causes the program to execute until the first
break is reached, as shown in the following example. The DISPLAY _ CALL
subcommand allows you to trace program execution. The DISPLAY,
OPTION parameter allows you to specify the type of traceback information
you want to display.

DB/run
— DEBUG: break PR0C_P2, execution at M=m L=16
DB/display_calls display_option=user_calls
— Traceback from procedure P module H at line 16
— Called from procedure MAIN module MODULE_MAIN at line 25

byte offset 44
DB/display_calls display_option=system_calls
— There are no system_calls on the stack frame.
DB/run
— DEBUG: break PROG_MAIN, execution at M=module_main L=26
DB/display_calls
— Traceback from procedure MAIN module MODULE.MAIN at
line 26

Revision C

INTERACTIVE SESSION

At this point, you could enter any other subcommand. For example, you
could enter the DISPLAY_STACK_FRAME subcommand and then the
RUN subcommand:

DB/display_stack_frame

i

STACK FRAME 001
00000000
00000008
00000010
00000018
00000020
00000028
00000030
00000038
00000040
00000048
00000050

SAVE AREA

00000000
00000000
304COOO0
00000000
FFFFFFFF
0000B01D
O0OOBO4E
00000000
FFFFFFFF
B04EOOO0
B04EOOOO

SEGMENT=04E
00000000
00000000
00C0FFFF
00000000
FFFFFE0C
0O0D4A2E
00000400
00000000
FFFFFE0C
04A05D58
04AF0430

0L

N

N
N

J.

:x
0

P=B 04D OOOOO0AC VMID=0
UM=FFF7 UCR=0080 MCR=0000

A0=B 04E
A2=B 04E
A4=B 04E
A6=B 04E
A8=B 04E
AA=B 04E
AC=F FFF
AE=F FFF

000004D0
00000430
00000400
000004AF
00000442
OOOO0A88
80000000
80000000

A1=B 04E
A3=B 04C
A5=B 04B
A7=B 04E
A9=B 04E
AB=F FFF
AD=B 04E
AF=B 00B

00000478
00000000
00000020
000004AF
000006A0
80000000
000010D8
0000BB98

X0=0O00B04D
X2=OO00FFFF
X4=00000000
X6=00000000
X8=00000000
XA=00000000
XC=O0OOFFFF
XE=OO00FFFF
DB/run
— DEBUG:

00040254
80000000
00000064
00000000
00000000
00000300
80000000
80000000

X1=OOO0FFFF
X3=00000000
X5=FFFFFFFF
X7=00000000
X9=00000000
XB=0000FFFF
XD=0000FFFF
XF=00000000

80000000
00000000
FFFFFEOC
0000001D
00000008
80000000
80000000
00000008

break PR0C_P2/ execution at M=m L=16

9-88 CYBIL Language Definition Revision D

INTERACTIVE SESSWW

Since CYBIL variable names can be long, you can assign an SCL variable to
that name and then use the SCL variable prefixed by ? in a Debug
subcommand. For example, the variable OPERANDI in procedure P can be
shortened to OP1 as follows:

DB/op1='operand1'
DB/display_program_value name=?op1
operandi = 1

By looking at the source listing, you can see that the program is in a loop to
be executed at the most 101 times. To avoid encountering the two breaks that
are in the loop, you can delete them. First, you can display the break
definitions to obtain the break names. Then delete them. Displaying the
breaks again shows that two breaks were eliminated:

DB/display_breaks

— Break PR0G_MAIN
— event(s) = execution
— location: M=module_main L=26

— Break PR0C_P1
— event(s) = execution
— location: H=m L=14

— Break PR0C_P2
— event(s) = execution
— location: M=m L=16

— Break D6BS1
— event(s) = execution
— location: M=perform_integer_multiplications L=7
DB/delete_breaks break=(prog_main,proc_p2)
DB/display_breaks

— Break PR0C_P1
— event(s) = execution
— location: M=m L=K

— Break DBB$1
— event(s) = execution
— location: M=perform_integer_multiplications L=7

Instead of entering two DELETE _BREAK subcommands, both breaks are
specified in the same DELETE_BREAK subcommand.

Revision D The Debug UtiHty 9*B •

INTERACTIVE SESSION

When displaying the call chain, you can skip one or more of the most recent
calls.

DB/run
— DEBUG: break DBB$1, execution at M=perform_integer_

multiplications L=7
DB/display_calls
— Traceback from procedure MULT module PERFORM_INTEGER_
MULTIPLICATIONS at line 7
— Called from procedure P module M at line 13 byte
offset 36
— Called from procedure MAIN module MODULE.MAIN at line 25

byte offset 44
DB/display_calls start=2
— Called from procedure P module M at line 13 byte offset 36
— Called from procedure MAIN module MODULE.MAIN at line 25
byte offset 44

• 9-90 CYBIL Language Definition Revision D

INTERACTIVE SESSION

Displaying values of program names is an important aspect of debugging.
You can display the value of program names in other procedures/modules as
well as in the current ones. All static values can be displayed. The value of a
static variable can be displayed at any point of execution, but the value of
an automatic variable can be displayed only when the procedure it belongs
to is in the active call chain. To obtain the active call chain, enter the
DISPLAY_CALLS subcommand as follows:

DB/run
— DEBUG: break PR0C_P1, execution at H=m L=14

DB/display_calls
— Traceback from procedure P Module N at Line 14
— Called from procedure MAIN Module MOOULE_MAIN at l ine 25

byte offset 44

Procedures MAIN and P are active. Yon can, therefore, display the value of
any variable within these procedures. To display the value of B in procedure
P, enter the following subcommand:

DB/display_prograM_value naae=b procedures
b = FALSE

To display the value of B in procedure MAIN, enter the following
subcommand:

DB/display_program_value name=b module=module_main procedure=main
b = FALSE

Since module MODULE _MAIN and procedure MAIN are not the current
module and procedure, the MODULE and PROCEDURE parameters are
required.

Entering the RUN subcommand one more time causes the program to
terminate- To terminate the Debug session, enter the QUIT subcommand as
follows:

DB/run
— DEBUG: program terminated by returning
— DEBUG: The status at termination was: NORMAL.

DB/quit
— DEBUG: QUIT terminated task

At this point, the operating system prompt, /, appears and you can enter
any SCL command.

Revision D The Debug Utility 9-91 •

BATCH SESSION

Batch Debug Session

The source listing of the CY6IL program used in this batch Debug session is
shown in figure 9-2. The name of the file containing the object code of the
program is SAMPLE2. SAMPLE2 is essentially the same as the program
used in the interactive session. The command stream used for the batch
session is shown in figure 9-3. The Debug subcommands used are similar to
those used in the interactive session.

SOURCE

0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
E
20
4C
54
56
56
5A
0

LIST OF modulejnain

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

MODULE modulejnain;

PROCEDURE CXREFD p (operandi,
operand2: integer;

VAR result: integer;
VAR status: boolean);

PROGRAM main;

VAR
x,
Yr
z: integer,
b: boolean;

FOR x := 0 TO 100 DO
y := x * x - 500;
p (x, y, z, b);
IF b THEN

EXIT main;
I FEND;

F0REND;
PR0CEND main;

24 MODEND modulejnain;

Figure 9-2. Source Listing for Batch Debug Session

(Continued)

%

%

9-92 CYBIL Language Definition Revision C

BATCH!

(Continued)

SOURCE LIST OF m

0
0
0
0
0
0
0
0
4
4
4
4
10
34
3E
42
4C
4C
0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

MODULE m;

PROCEDURE [XDCL] p (operandi,
operand2: integer;

VAR result: integer;
VAR b: boolean);

PROCEDURE CXREFD mult (a,
b: integer;

VAR c: integer);

IF operandi < operand2 THEN
mult (operandi, operand2, result);
b := TRUE;

ELSE
b := FALSE;

IFEND;
PROCEND p;

19 NODEND m;

SOURCE LIST OF perform_integer_multiplications

0
0
0
0
0
0
0
16
0

1
2
3
4
5
6
7
8

NODULE perform_integer_multiplications;

PROCEDURE CXDCL] mult (a,
b: integer;

VAR c: integer);

c := a * b;
PROCEND mult;

9 NODEND perform_integer_multiplications;

Figure 9-2. Source Listing for Batch Debug Session

Revision C The Debug Utility 9-93

BATCH SESSION

The following numbered paragraphs correspond to the numbers in figure 9&

Q The COLLECT_TEXT command collects the Debug subcommands
on the file named BATCH_SESSION. All subcommands are placed
on BATCH_SESSION until the double asterisks are encountered.

© The CREATE _ VARIABLE command creates an SCL variable of
type STATUS to be used on the Debug SET_BREAK subcommands.

(3) The IF/IFEND command is used to check the status variable. If the
status variable is not provided and the subcommand is in error, the
session will be terminated.

(D Indicates that subcommands are no longer collected on the file
BATCH_SESSION.

(3) The four CREATE _FILE .CONNECTION commands cause a
complete record of the Debug session to be recorded on file SESSION.

(6) The EXECUTE _TASK command initiates the Debug session. Notice
that the Debug input file is BATCH .SESSION.

@ The standard file $OUTPUT must be disconnected from SESSION
before that file can be copied.

® The COPY_FILE command causes the file SESSION to be copied to
file $OUTPUT, which is printed at the end of the job. The contents of
this file are shown in figure 9-4. Notice that the Debug prompt, DB/,
is replaced by CI or CS because of the file connections.

9-94 CYBIL Language Definition Revision C

BATCH SESSION

login family_name=... user=... password=... job_class=batch
(D collect_text output=batch_session
© create_variable name=stat kind=status

set_break break=prog_main line=26 module=module_main status=stat
d) if stat.norma I = false then;

display_value 'break progjnain f a i l e d '
ifend
set_break break=proc_p1 line=14 module=m status=stat
if stat.normal = false then; display_value 'break proc_p1 failed'
ifend
set_break break=proc_p2 line=16 module=m status=stat
if stat.normal = false then; display_value 'break proc_p2 failed'
ifend
set_break break=proc_mult line=7 ..
module=perform_integer_multiplications status=stat
if stat.normal = false then;
display_value 'break proc_mult failed'
ifend
run
display_calls display_option=user_calls
di splay_ca Us di splay_opt i on=system_ca 11s
run
display_calls
di splay_stack_f rame
run
display_breaks
delete_breaks break=(prog_main/proc_p2)
display_breaks
run
display_calls
display_calls start=2
run
display_calls
display_program_value name=b procedure=p
display_program_value name=b module=module_main procedure=main
run

quit

© **
at tach_f i le file=sample2

© ereate_file_connection Soutput session
create_file_connection Sresponse session
create_file_connection Serrors session
create_file_connection $echo session

@ execute_task file=sanple2 debug_input=batch_session ..
debug_output=sess i on debug_mode=on

© delete_file_connection Soutput session
® copy_file session

logout

Figure 9-3. Command Stream for Batch Debug Session

Revision D The Debug Utility 9-95

BATCH SESSION

CI execute_task file=sample2 debug_input=batch_session
debug_output=session debug_mode=on
DEBUG"
CI create_variable name=stat kind=status
CI set_break break=prog_main line=26 module=module_main status=stat

CI if stat.normal = false then
CS display_value "break progjnain failed'
CS ifend
CI set_break break=proc_p1 line=14 module=m status=stat
CI if stat.normal = false then
CS display_value 'break proc_p1 failed'

CS ifend
CI set_break break=proc_p2 line=16 module=m status=stat
CI if stat.normal = false then
CS display_value 'break proc_p2 failed'
CS ifend
CI set_break break=proc_mult line=7
module=perform_integer_muItiplications status=stat
CI i f stat.normal = false then
CS disp lay j /a lue 'break procjnul t f a i l e d '
CS i fend
CI run
— DEBUG: break PR0C_P2, execution at M=m L=16
CI display_cal ls display_option=user_calls
— Traceback from procedure P module M at l ine 16
— Called from procedure MAIN module MODULE_MAIN at l ine 25 byte
of fset 44
CI display_cal ls display_option=system_calls
— There are no system_calls on the stack frame.
CI run
— DEBUG: break PROG_MAIN, execution at M=module_main L=26
CI display_cal ls
— Traceback from procedure MAIN module MODULE_MAIN at l ine 26

Figure 9-4. Batch Debug Session

(Continued)

CI1BL language Definition Revision D

(Continued)

BATCH SESSION

CI display_stack_frame
STACK FRAME_001
00000000
00000008
00000010
00000018
00000020
00000028
00000030
00000038
00000040
00000048
00000050

SAVE AREA

00000000
00000000
0000B034
00000000
FFFFFFFF
0000B035
00000000
00000000
FFFFFFFF
B0350000
B0350000

P=B 034 0000004C
UH=FFF7 UCR=0080

A0=B 035 00000438
A2=8 035 00000398
A4=8 035 00000370
A6=8 035 00000417
A8=B 033 00000080
AA=B 011 00000168
AC=B 00B 00021A10
AE=F FFF 80000000

SEGMENT=035
00000000
00000000
00000000
00000000
FFFFFEOC
00000398
00000000
00000000
FFFFFEOC
04084834
04170428

VMD=0
MCR=0000

4

5

5 H4
5 (

A1=B 035 000003E0
A3=B 033 00000000
A5=B 035 00000417
A7=B 035 00000250
A9=B 011
AB=8 011

00000408
00000608

AD=B 006 000029A0
AF=B 035 00000398

Figure 9-4. Batch Debug Session

(Continued)

Revision C The Debug Utility 9-97

BATCH SESSION

(Continued)

XO0000B034 00040243
X2-00000000 00000000
X4=FFFFFFFF FFFFFEOC
X6=00000000 0000000F
X8=00000000 00000022
XA=00000000 0000004E
XC=00000000 000004CC
XE=00000000 00000751
CI run
— DEBUG: break PR0C_P2,
CI display_breaks
— Break PROG_MAIN
— event(s) = execution

X1=0000B035
X3=00000000
X5=00000000
X7=00000000
X9=00000000
XB=00000000
XD=00000000
XF=00000000

execution at

— location: M=module_main L=26
— Break PR0C_P1
— event(s) = execution
— location: M=m L=14
— Break PR0C_P2
— event(s) = execution
— location: M=m L=16
— Break PR0C_MULT
— event(s) = execution
— location: M=perform_i

00000398
00000064
00000000
00989680
00000012
00000000
00000003
00000000

M=m L=16

nteger_multiplications L=7
CI delete_breaks break=(prog_main,proc
CI display_breaks
~ Break PR0C_P1
— event(s) = execution
— location: M=m L=14
— Break PR0C_MULT
— event(s) = execution
— location: M=perform_i

_P2)

nteger_multiplications L=7

Figure 9-4. Batch Debug Session

(Continued)

9-98 CYBIL Language Definition Revision D

BATCH SESSION

(Continued)

CI run
— DEBUG: break PR0C_MULT, execution at

M=perform_integer_multiplications L=7
CI display_calls
— Traceback from procedure MULT module
PERFORM_INTEGER_MULTIPLICATIONS at line 7
— Called from procedure P module M at line 13 byte offset 36
— Called from procedure MAIN module MODULE_MAIN at line 25 byte

offset 44
CI display_calls start=2
— Called from procedure P module M at line 13 byte offset 36
— Called from procedure MAIN module MODULE.MAIN at line 25 byte

offset 44
CI run
— DEBUG: break PR0C_P1, execution at M=m L=14
CI display_calls
— Traceback from procedure P module M at line 14
— Called from procedure MAIN module MODULE.MAIN at line 25 byte

offset 44
CI display_program_value name=b procedure=p

b = FALSE
CI display_program_value name=b module=module_main procedure=main

b = FALSE
CI run
— DEBUG: program terminated by returning
— DEBUG: The status at termination was: NORMAL.
CI quit
— DEBUG: QUIT terminated task
CI delete_file_connection Soutput session
CI copyjfile session
EOI ENCOUNTERED.

Figure 9-4. Batch Debug Session

Revision D The Debug Utility 9-99 •

Appendixes

Glossary A-l

Character Set B-l

Reserved Words C-l

Data Representation in Memory D-l

Glossary A

A

Access Attribute

Characteristic of a variable that determines whether the variable can be
both read and written. Specifying the access attribute READ makes the
variable a read-only variable.

Active Call Chain

List of calls that led to the current procedure.

Alphabetic Character

One of the following letters:

A through Z

a through z

See also Character and Alphanumeric Character.

Alphanumeric Character

Alphabetic character or a digit. See also Character, Alphabetic Character,
and Digit.

Assignment Statement

A statement that assigns a value to a variable.

Revision A Glossary A-l

GLOSSARY

B

Batch Debugging

Debugging when the user has no direct control of debugging during
program execution. Contrast with Interactive Debugging.

Bit

Binary digit. A bit has the value 0 or 1. See also Byte.

Boolean

A kind of value that is evaluated as TRUE or FALSE.

Break

The primary mechanism for Debug to gain control from an executing
program. A break specifies an event and an address range such that when
the event occurs within the address range, Debug takes control.

Byte

A group of bits. For NOS/VE, one byte is equal to 8 bits. An ASCII
character code uses the rightmost 7 bits of one byte.

Byte Offset

A number corresponding to the number of bytes beyond the beginning of
a line, procedure, module, or section.

A-2 CYBIL Language Definition Revision A

GLOSSARY

c
C h a r a c t e r

Letter, digit, space, or symbol that is represented by a code in one or more
of the standard character sets.

It is also referred to as a byte when used as a unit of measure to specify
block length, record length, and so forth.

A character can be a graphic character or a control character. A graphic
character is printable; a control character is nonprintable and is used to
control an input or output operation.

C h a r a c t e r C o n s t a n t

A fixed value that represents a single character.

Comment

Any character or sequence of characters that is preceded by an opening
brace and terminated by a closing brace or an end of line. A comment is
treated exactly as a space.

Compilation Time

The time at which a source program is translated by the compiler to an
object program that can be loaded and executed. Contrast with Execution
Time.

Compiler

A processor that accepts source code as input and generates object code as
output.

Condition Handler

A procedure called when an exception condition occurs. Condition handler
processing occurs after Debug processing if Debug mode is on. The
procedure is called only if it has been established as the condition handler
for the condition type and the condition occurs within its scope.

Revision B

GLOSSARY

D

Delimiter

The indicator that separates and organizes data.

Digit

One of the following characters:

0 1 2 3 4 5 6 7 8 9

E

Entry Point

The point in a module at which execution of the module can begin.

Event

A condition, such as division by zero, that causes Debug to gain control.

Execution Ring

The level of hardware protection assigned to a procedure while it is
executing.

Execution Time

The time at which a compiled source program is executed. Also known as
Run Time.

Expression

Notation that represents a value. A constant or variable appearing alone,
or combinations of constants, variables, and operators.

External Reference

Call to an entry point in another module.

F

Field

A subdivision of a record that is referenced by name. For example, the
field NORMAL in a record named OLD .STATUS is referenced as
follows:

OLD_STATUS.NORMAL

A-4 CYBIL Language Definition Revision D

GLOSSARY

In t ege r C o n s t a n t

One or more digits and, for hexadecimal integer constants, the following
characters:

A B C D E F a b c d e f

A hexadecimal integer constant must begin with a digit. A preceding sign
and subsequent radix are optional.

In te rac t ive Debugging

Debugging when the user has direct control of the debugging process.
Contrast with Batch Debugging.

L

Load Module

A module reformatted for code sharing and efficient loading. When the
user generates an object library, each object module in the module list is
reformatted and written as a load module on the object library.

M

Machine Addressing

Use of actual machine addresses. Contrast with Module Addressing and
Symbolic Addressing.

Machine-Level Debugging

Debugging using machine-level terms such as machine addresses. A
knowledge of machine architecture is required. Contrast with Symbolic
Debugging.

Module

Unit of text accepted as input by the loader, linker, or object library
generator. See also Object Module and Load Module.

Module Addressing

Use of addresses in terms of module and procedure names and an offset.
Contrast with Machine Addressing and Symbolic Addressing.

Revision A Glossary A-5

GLOSSARY

N

Name

Combination of from 1 through 31 characters chosen from the following
set:

• Alphabetic characters (A through Z and a through z).

• Digits (0 through 9).

• Special characters (#, @, $, and _).

The first character of a name cannot be a digit.

O

Object Code

Executable code produced by a compiler.

Object Module

Compiler-generated unit containing object code and instructions for
loading the object code. It is accepted as input by the system loader and
the object library generator.

A-6 CYBIL Language Definition Revision A

GLOSSARY

P

P a g e

An allocatable unit of real memory.

Po in t e r

The virtual address of a value.

R

Range

Value represented as two values separated by an ellipsis. The element is
associated with the values from the first value through the second value.
The first value must be less than or equal to the second value. For
example:

1.. 100

Reserved Word

Word that has a predefined meaning in a language. The user cannot
define a new meaning or use for a reserved word.

Ring

Level of hardware protection given a file or segment. A file is protected
from unauthorized access by tasks executing in higher rings. See also
Execution Ring.

Ron Time

See Execution Time.

Revision D

GLOSSARY

s
Section

A storage area that contains variables with common access attributes (for
example, read-only variables or read/write variables).

Segment

One or more pages assigned to a file. The segment has the ring attributes
of the file.

Source Code

Statements written for input to a compiler.

Statement List

One or more statements separated by delimiters.

String Constant

Sequence of characters delimited by apostrophes ('). An apostrophe can be
included in the string by specifying two consecutive apostrophes.

Symbolic Addressing

Use of addresses in source program terms such as program names and
line numbers. Contrast with Machine Addressing and Module
Addressing.

Symbolic Debugging

Debugging using source program terms such as line numbers and
program names. Contrast with Machine-Level Debugging.

T

Traceback

A list of procedure names within a program, beginning with the currently
executing procedure, proceeding backward through the sequence of called
procedures, and ending with the main program.

A-8 CYBIL Language Definition Revision D

GLOSSARY

Variable

Represents a data value.

Variable Attribute

Characteristic of a variable.

See also Access Attribute.

Revision A Glossary A-9

Character Set B

Table B-l lists the ASCII character set.

NOS/VE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOS/VE represents each 7-
bit ASCII code in an 8-bit byte. The 7 bits are right-justified in each byte. For
ASCII characters, the leftmost bit is always zero.

In addition to the 128 ASCII characters, NOS/VE allows use of the leftmost
bit in an 8-bit byte for 256 characters. The use and interpretation of the
additional 128 characters is user-defined.

Revision B Character Set B-l

CHARACTER SET

Table B-1. ASCII Character Set

Decimal

000
001
002
003

004
005
006
007

008
009
010
Oil

012
013
014
015

016
017
018
019

020
021
022
023

024
025
026
027

028
029
030
031

032
033
034
035

036
037
038
039

040
041
042
043

044
045
046
047

ASCII Code

H e x a d e c i m a l

00
01
02
03

04
05
06
07

08
09
0A
OB

OC
OD
OE
OF

10
11
12
13

14
15
16
17

18
19
1A
IB

1C
ID
IE
IF

20
21
22
23

24
25
26
27

28
29
2A
2B

2C
2D
2E
2F

Octal

000
001
002
003

004
005
006
007

010
Oil
012
013

014
015
016
017

020
021
022
023

024
025
026
027

030
031
032
033

034
035
036
037

040
041
042
043

044
045
046
047

050
051
052
053

054
055
056
057

Graphic or
Mnemonic

NUL
SOH
STX
ETX

EOT
ENQ
ACK
BEL

BS
HT
LF
VT

FF
CR
SO
SI

DLE
DC1
DC2
DC3

DC4
NAK
SYN
ETB

CAN
EM
SUB
ESC

FS
GS
RS
US

SP
!

$
%
&

(
)

+

/

Name or Meaning

Null
Start of heading
Start of text
End of text

End of transmission
Enquiry
Acknowledge
Bell

Backspace
Horizontal tabulation
Linefeed
Vertical tabulation

Formfeed
Carriage return
Shift out
Shift in

Data link escape
Device control 1
Device control 2
Device control 3

Device control 4
Negative acknowledge
Synchronous idle
End of transmission block

Cancel
End of medium
Substitute
Escape

File separator
Group separator
Record separator
Unit separator

Space
Exclamation point
Quotation marks
Number sign

Dollar sign
Percent sign
Ampersand
Apostrophe

Opening parenthesis
Closing parenthesis
Asterisk
Plus

Comma
Hyphen
Period
Slant

(Continued)

B-2 CYBIL Language Definition Revision A

CHARACTER SET

Table B-l. ASCII Character Set (Continued)

Dec imal

048
049
050
051

052
053
054
055

056
057
058
059

060
061
062
063

064
065
066
067

068
069
070
071

072
073
074
075

076
077
078
079

080
081
082
083

084
085
086
087

088
089
090
091

ASCII Code

H e x a d e c i m a l

30
31
32
33

34
35
36
37

38
39
3A
3B

3C
3D
3E
3F

40
41
42
43

44
45
46
47

48
49
4A
4B

4C
4D
4E
4F

50
51
52
53

54
55
56
57

58
59
5A
5B

Octal

060
061
062
063

064
065
066
067

070
071
072
073

074
075
076
077

100
101
102
103

104
105
106
107

110
111
112
113

114
115
116
117

120
121
122
123

124
125
126
127

130
131
132
133

Graphic or
Mnemonic

0
1
2
3

4
5
6
7

8
9

;
<
=
>
?

@
A
B
C

D
E
F
G

H
I
J
K

L
M
N
0

P
Q
R
S

T
U
V

w
X
Y
Z
[

N a m e or Mean ing

Zero
One
Two
Three

Four
Five
Six
Seven

Eight
Nine
Colon
Semicolon

Less t h a n
Equals
Greater t h a n
Question mark

Commercial a t
Uppercase A
Uppercase B
Uppercase C

Uppercase D
Uppercase E
Uppercase F
Uppercase G

Uppercase H
Uppercase I
Uppercase J
Uppercase K

Uppercase L
Uppercase M
Uppercase N
Uppercase O

Uppercase P
Uppercase Q
Uppercase R
Uppercase S

Uppercase T
Uppercase U
Uppercase V
Uppercase W

Uppercase X
Uppercase Y
Uppercase Z
Opening bracket

(Continued)

Revision A Character Set B-3

CHARACTER SET

Table B-1. ASCII Character Set (Continued)

ASCII Code

D e c i m a l

092
093
094
095

096
097
098
099

100
101
102
103

104
105
106
107

108
109
110
111

112
113
114
115

116
117
118
119

120
121
122
123

124
125
126
127

H e x a d e c i m a l

5C
5D
5E
5F

60
61
62
63

64
65
66
67

68
69
6A
6B

6C
6D
6E
6F

70
71
72
73

74
75
76
77

78
79
7A
7B

7C
7D
7E
7F

Octal

134
135
136
137

140
141
142
143

144
145
146
147

150
151
152
153

154
155
156
157

160
161
162
163

164
165
166
167

170
171
172
173

174
175
176
177

ixrapnic or
Mnemonic

]

-
-
a
b
c

d
e
f
g

h
i
j
k

1
m
n
0

P
q
r
s

t
u
V

w

X

y
z
f
1
I
DEL

N a m e or M e a n i n g

Reverse s lan t
Closing bracket
Circumflex
Underline

Grave accent
Lowercase a
Lowercase b
Lowercase c

Lowercase d
Lowercase e
Lowercase f
Lowercase g

Lowercase h
Lowercase i
Lowercase j
Lowercase k

Lowercase 1
Lowercase m
Lowercase n
Lowercase o

Lowercase p
Lowercase q
Lowercase r
Lowercase s

Lowercase t
Lowercase u
Lowercase v
Lowercase w

Lowercase x
Lowercase y
Lowercase z
Opening brace

Vertical line
Closing brace
Tilde
Delete

B-4 CYBIL Language Definition Revision A

Reserved Words C

The reserved words in CYBIL are listed next.

ALIAS
ALIGNED
ALLOCATE
AND
ARRAY
BEGIN
BOOLEAN
BOUND
CASE
CASEND
CAT
CELL
CHAR
CHKALL
CHKNIL
CHKRNG
CHKSUB
CHKTAG
CHR
COMMENT
COMPILE
CONST
CYCLE
DIV
DO
DOWNTO
EJECT
ELSE
ELSEIF
END
EXIT
FALSE
FOR
FOREND
FREE
FUNCEND
FUNCTION
HEAP
IF
IFEND
IN
INLINE
INTEGER
LEFT
LIST

LISTALL
LISTCTS
LISTEXT
LISTOBJ
LOWERBOUND
LOWERVALUE
MOD
MODEND
MODULE
NEWTITLE
NEXT
NIL
NOCOMPILE
NOT
OF
OFF
OLDTITLE
ON
OR
ORD
PACKED
POP
PRED
PROCEDURE
PROCEND
PROGRAM
PUSH
READ
REAL
RECEND
RECORD
REL
REP
REPEAT
RESET
RETURN
RIGHT
SECTION
SEQ
SET
SKIP
SPACING
STATIC
STRING
STRLENGTH

SUCC
THEN
TITLE
TO
TRUE
TYPE
UNTIL
UPPERBOUND
UPPERVALUE
VAR
WHILE
WHILEND
WRITE
XDCL
XOR
XREF
#ADDRESS
#CALLER_ID
#COMPARE_SWAP
#CONVERT_POINTER_TO_PROCEDU
#FREE _ RUNNING _ CLOCK
#GATE
#HASH_SVA
#INLINE
#KEYPOINT
#LOC
#OFFSET
#PRE VIOUS _ S AVE _ ARE A
#PTR
#PURGE_ BUFFER
#READ^ REGISTER
#REL
#RING
#SCAN
#SEGMENT
#SEQ
#SIZE
#TRANSLATE
#UNCHECKED_CONVERSION
#WRITE_ REGISTER
$CHAR
$INTEGER
$REAL

Revision D Reserved Words C-l

Data Representation in Memory D

Memory is made up of 8-bit addressable bytes with eight bytes to one 64-bit
word. (An 8-bit byte is synonymous with a cell.) Table D-l summarizes how
different data types are represented in memory. The data under the heading
Alignment specifies how a variable of the data type is stored in packed and
unpacked format. The word "byte" means a variable is stored in the first
available byte; "bit" means it is stored in the first available bit.

Table D - l . Data Representation in Memory

Alignment

Type Size Unpacked Packed

Integer

Character

Boolean

Ordinal

Subrange

Real

Cell

Fixed pointer

Fixed relative
pointer

String

Array/
Record

Set

8 bytes

l by t e

l b i t

As needed
for components

As needed
for components

8 bytes

Byte

6 bytes

4 bytes

1 byte for
each character

Depends on
type of
components

As needed
for components

Byte

Byte

Right-justified
in a byte

Right-justified
in a byte

Right-justified
in a byte

Byte

Byte

Byte

Byte

Byte

Byte

Right-justified
in a byte

Byte

Bit

Bit

Bit

Bit

Byte

Byte

Byte

Byte

Byte

Components are
unaligned

Bit if < 57
components;
byte if > 57
components

Revision D Data Representation D-l

DATA REPRESENTATION IN MEMORY

The following examples show how a record would look in memory in various
formats: first unpacked, then packed, packed with some positioning changes,
and finally aligned. The memory shown here is in 8-byte words, but because
bytes can be addressed individually, it's possible the record could start at any
byte (if it is not aligned otherwise).

The unpacked record is:

TYPE
table = record

name: s t r ing(7) ,
f i l e : (b i , d i , l g , p r) ,
number_of_accesses: integer,
users: 0 . . 100,
ptr_iotype: " iotype,
b: boolean,

recend;

This record would appear in memory as follows (slashes indicate unused
memory):

FILE —
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

NAME
Character Character Character Character Character Character Character

I USERS

NUMBER OF ACCESSES

1 1 T 1 1
PTR IOTYPE

1 1 " I 1 1 m B

D-2 CYBIL Language Definition Revision B

DATA REPRESENTATION IN MEMORY

The packed record is:

TYPE
tab le = packed record

name: s t r i n g (7) ,
f i l e : (b i , d i , I g , p r) ,
number_of_accesses: i n t e g e r ,
users : 0 . . 100,
p t r _ i o t y p e : " i o t y p e ,
b: boolean,

recend;

This record would appear in memory as follows (slashes indicate unused
memory):

r -FILE

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 \ Byte 7
NAME

Character Character Character Character Character Character Character

USERS 1
NUMBER OF ACCESSES

i 1 ' f 1 1
PTR IOTYPE

1 1 "1 1 1 B

Revision B Data Representation D-3

DATA REPRESENTATION IN MEMORY

The record, as follows, is now rearranged slightly to make more efficient use
of the space:

TYPE
table = packed record

name: s t r ing(7) ,
f i l e : (b i , d i , I g , p r) ,
number_of_accesses: integer,
users: 0 . . 100,
b: boolean,
ptr_iotype: " iotype,

recend;

This record would appear in memory as follows (slashes indicate unused
memory):

Byte 0 Byte 1

Character I Character

USERS B

Byte 2 Byte 3 Byte 4 Byte 5
NAME

Character I Character Character I Character

NUMBER OF ACCESSES

I T I
PTR IOTYPE

I " I I

Byte 6

Character

r - l - I L t

\ Byte 7

\ m
'/////A

D-4 CYBIL Language Definition Revision B

DATA REPRESENTATION IN MEMORY

The following record declares the pointer field to be aligned at byte zero (the
first byte) of a word-'

TYPE
table = packed record

name: s t r ing(7) ,
f i l e : (b i , d i , l g , p r) ,
number_of_accesses: integer,
users: 0 . . 100/
b: boolean,
ptr_iotype: ALIGNED CO MOD 8] " iotype,

recend;

This record would appear in memory as follows (slashes indicate unused
memory):

r-FILE
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 \ Byte 7

Revision B Data Representation D-5

Index

Index

A
A registers

Change 9-32
Display 9-51

ABORT_ FILE attribute 9-4
Access attribute 3-6; A-l
Accessing Debug

During program execution 9-3
When a program fails 9-4

Active call chain A-l
Active segment identifier 7-22
Actual parameters

Function 6-19,21
Procedure 7-11,13
Program 2-13

Adaptable array
Definition 4-43
Example 5-34
Format 443
Size 5-33

Adaptable heap
Definition 447
Format 447
Size 5-33

Adaptable pointer size 5-33
Adaptable record

Definition 444
Format 444
Size 5-33

Adaptable sequence
Definition 446
Example 5-34
Format 446
Size 5-33

Adaptable string
Definition 442
Format 442
Size 5-33

Adaptable types
Definition 442
Equivalent 4-2
Example 5-34
Pointers to 4-15

Addition operation 5-5
Addition operators 5 4
#ADDRESS function 6-23
Addressing

Bound modules 9-13
Debug 9-8
Machine A-5
Module A-5
Symbolic A-8

Advance page directive 8-20
Alias name 2-10,12; 3-3; 6-17; 7-9
ALIGNED

parameter 4-29,31,37,44
Alignment

Examples D-2
Of elements in memory D-l
Parameter 4-29,31,37,44

ALLOCATE statement
Definition 5-38
Example 5-34
Format 5-38

Alphabetic character A-l
Alphanumeric character A-l
AND operator 5-3
ARITHMETIC, OVERFLOW

break 9-60
ARITHMETIC, SIGNIFICANCE

break 9-61
Array

Adaptable 443
Definition 4-24
Elements 4-26
Examples 4-26,27
Format 4-24
Initializing elements 4-25
LOWERBOUND function 6-5
Referencing elements 4-25
Size 4-24
Subscript bounds 4-24
Two-dimensional 4-26
UPPERBOUND function 6-15

ASCII character set B-l
ASID, see active segment identifier

Revision D CYBIL Language Definition Index-1

INDEX

Assigning
Elements of a set 4-38
Strings 4-23

Assignment operator 5-15
Assignment, set 4-38
Assignment statement

Compile-time 8-10
Definition 5-13; A-l
Format 5-13

Attribute(s)
Access 3-6
Debug 9-3,4
Effect on initialization by 3-14
Function 6-17
#GATE 3-4
l i s t 8-2
Procedure 7-9
READ 3-3,6
Scope 3-7
Section name 3-4,11
STATIC 2-9; 34,9
Storage 3-9
XDCL 2-9; 3-3,7
XREF 3-3,7

Automatic variable 2-9; 3-9

B

Basic types 4-3
Batch Debug

Definition A-2
Example 9-92

BEGIN statement
Definition 5-16
Format 5-16

Binary object code, listing 8-2
$BINDING section 3-11
Bit A-2
Blanks in syntax 2-6
Blocks 2-8
Boolean

Constant 2-4
Definition 4-6; A-2
Difference 5-5
Example 4-6
Format 4-6

Bound module
addressing 9-13

BOUND parameter 4-31
Bound variant record

Definition 4-33
Equivalent 4-2
Tag field size 5-33

BRANCH break 9-61
Break report message 9-9
Breaks, Debug

Definition 9-8; A-2
Delete 9-35
Display 9-36
Set 9-60

Byte A-2
Byte offset 6-23,25; A-2

C

Cache, purging 7-22
CALL break 9-61
Call chain, Debug 9-38
Caller id 7-15
#CALLER_ ID procedure 7-15
Calling

Function 6-21
Procedure 7-13

CALLREL instruction 7-15
CALLSEG instruction 7-15
CASE statement

Definition 5-26
Examples 5-27
Format 5-26

CASEND 5-26
CAT 2-5; 4-23
Cell

Definition 4-12
Format of type 4-12
Pointer to 4-17
Type 4-12

CHAD subcommand 9-22
CHAM subcommand 9-25
CHANGE_DEFAULT

subcommand 9-22
CHANGE_MEMORY

subcommand 9-25

Index-2 CYBIL Language Definition Revision D

INDEX

CHANGE_PROGRAM_ VALUE
subcommand 9-28

CHANGE_REGISTER
subcommand 9-32

CHAPV subcommand 9-28
$CHAR function 6-2
CHAR subcommand 9-32
Character

Alphabetic A-l
Alphanumeric A-l
Constant 2-3; A-3
Definition 4-5; A-3
Example 4-5
Format 4-5
Valid 2-1

Character set B-l
CHKALL toggle 8-15
CHKNIL toggle 8-15
CHKRNG toggle 8-15
CHKSUB toggle 8-15
CMPXA instruction 7-17
Coefficient 24
COMMAND file 9-5
Comment control directive 8-28
COMMENT directive 8-28
Comments 2-7; A-3
#COMPARE_SWAP

procedure 7-17
Comparing strings 4-23
Compilation

Call 8-1
Declarations 8-8
Listing 8-1
Statements 8-8
Time A-3

COMPILE directive 8-26
Compile-time

Assignment statement 8-10
Directives 8-12
Expressions 8-9
IF statement 8-11
Variables 8-8

Compiler
Checking of subranges 4-9
Definition A-3

Complement operation 5-11
Complement, set 5-4

Component type 4-18
Concatenation 2-5; 4-23
Condition code, Debug 9-7
CONDITION field 9-7
Condition handler

Debugging 9-14
Definition A-3

CONST format 3-1
Constant

Boolean 24
Character 2-3
Declaration 3-1
Definition 2-3
Examples 3-2
Expression 2-6
Floating-point 2 4
Format 3-1
Integer 2-3
Ordinal 2 4
Pointer 24
Real 24
String 2-5

Control statements
CASE 5-26
CYCLE 5-28
EXIT 5-30
IF 5-24
Overview 5-23
RETURN 5-31

Conventions 8
#CONVERT_POINTER_TO_

PROCEDURE procedure 7-19
CPYSX instruction 6-27
CPYXS instruction 7-28
$CURRENT_LINE function 9-75
$CURRENT_MODULE

function 9-76
$CURRENT_PROCEDURE

function 9-77
$CURRENT_PVA function 9-78
C YB$DEFAULT_ HEAP

section 3-11
CYBIL command

BINARY, OBJECT
parameter 8-2

BINARY parameter 8-2
DEBUG_ AIDS parameter 8-3

Revision D CYBIL Language Definition Index-3

INDEX

ERROR_LEVEL
parameter 8-3

Example 8-6
Format 8-1
INPUT parameter 8-1
LIST_OPTIONS parameter 8-2
LIST parameter 8-1
OPTIMIZATION_LEVEL

parameter 8-4; 9-13
OPTIMIZATION

parameter 8-4
PAD parameter 8-4
RUNTIME _ CHECKS

parameter 8-5
STATUS parameter 8-5

CYBIL-defined elements 2-1
CYBIL reserved words C-l
CYBIL syntax 2-6
CYCLE statement

Definition 5-28
Example 5-29
Format 5-28

D
Data conversion functions 6-1
Data in memory

Alignment D-l
Examples D-2
Size requirements D-l

Debug commands
Debug compiler options 8-3,4
Debug functions

$CURRENT_LINE 9-75
$CURRENT_ MODULE 9-76
$CURRENT_

PROCEDURE 9-77
$CURRENT_PVA 9-78
Overview 9-74
$PROGRAM_VALUE 9-79

DEBUG_INPUT attribute 9-3
DEBUG_ MODE attribute 9-3
DEBUG_ OUTPUT attribute 9-3,4
Debug subcommands

CHAD 9-22
CHAM 9-25
CHANGE DEFAULT 9-22

CHANGE_MEMORY 9-25
CHANGE_PROGRAM_

VALUE 9-28
CHANGE_REGISTER 9-32
CHAPV 9-28
CHAR 9-32
DELB 9-35
DELETE, BREAK 9-35
DISB 9-36
DISC 9-38
DISDE 941
DISM 944
DISPLAY, BREAK 9-36
DISPLAY, CALL 9-38
DISPLAY, DEBUGGING,

ENVIRONMENT 941
DISPLAY_MEMORY 944
DISPLAY_PROGRAM_

VALUE 948
DISPLAY_REGISTER 9-51
DISPLAY_STACK_

FRAME 9-54
DISPV 948
DISR 9-51
DISSF 9-54
QUI 9-58
QUIT 9-58
RUN 9-59
SET_BREAK 9-60
SET_STEP_MODE 9-70
SETB 9-60
SETSM 9-70
Summary 9-18

Debug utility
Accessing 9-2
Addressing 9-8
Attributes 9-3,4
Bound modules 9-13
Break report message 9-9
Breaks 9-8,35,36,60
Call chain 9-38
Commands, see separate entry
Condition code 9-7
Condition handlers 9-14
Defaults 9-22
Deferred breaks 9-16
Ending a session 9-58

i

^1

Index-4 CYBIL Language Definition Revision D

INDEX

Environment 9-41
Example of batch session 9-92
Example of interactive

session 9-82
Functions, see separate entry
Input file 9-5,23
Interrupt processing 9-14
Multiple breaks 9-17
Multiring environment 9-17
Multitask debugging 9-14
Optimized code 9-13
Output file 9-6,23
Overview 9-1
Product identifier 9-7
Program addresses 9-8
Resuming a session 9-59
Ring 9-16
Starting a session 9-59
Status variable 9-7
Step mode 9-70
Use 9-82

Debugging programs, see
Debug utility

Decimal notation 2-4
Declarations

Compilation 8-8
Overview 1-1

Default heap 3-11
Defaults, Debug 9-22
Deferred breaks 9-16
DELB subcommand 9-35
DELETE_BREAK

subcommand 9-35
Delete Debug breaks 9-35
Delimiter A-4
Dereference, pointer 4-13
Diagnostics, listing 8-3
Digit A-4
Direct pointer

Byte number 6-25
Converting from a relative

pointer 4-18
#OFFSET function 6-25
Return ring number 6-28
Return segment number 6-29
Ring 6-28

Segment 6-29
Signed offset

(byte number) 6-25
Directives, compile-time

COMMENT 8-28
Comment control 8-28
COMPILE 8-26
Definition 8-12
EJECT 8-20
General format 8-12
Layout control 8-19
LEFT 8-19
Maintenance control 8-26
NEWTITLE 8-23
NOCOMPILE 8-27
OLDTITLE 8-25
POP 8-17
PUSH 8-16
RESET 8-18
RIGHT 8-19
SET 8-13
SKIP 8-22
SPACING 8-21
TITLE 8-24
Toggle control 8-13

DISB subcommand 9-36
DISC subcommand 9-38
DISDE subcommand 941
DISM subcommand 944
DISPLAY, BREAK

subcommand 9-36
DISPLAY_CALL

subcommand 9-38
Display Debug breaks 9-36
DISPLAY, DEBUGGING,

ENVIRONMENT
subcommand 941

DISPLAY, MEMORY
subcommand 944

DISPLAY, PROGRAM, VALUE
subcommand 948

DISPLAY, REGISTER
subcommand 9-51

DISPLAY, STACK, FRAME
subcommand 9-54

DISPV subcommand 948

Revision D CYBIL Language Definition Index-5

INDEX

DISR subcommand 9-51
DISSF subcommand 9-54
DIV operator 5-3
DIVIDE_FAULT break 9-61
Division operation

Integer quotient 5-3
Real quotient 5-3
Remainder 5-3

EJECT directive 8-20
Elements

CYBIL-defined 2-1
Scope of 2-8
Syntax of 2-6
User-defined 2-2

ELSE 5-24,26
ELSEIF 5-24
Empty statement 2-7; 5-13
END 5-16
Entry point A-4
Equal to operator 5-6,9
Equality, set 5-9,12
Equivalent types 4-2
Error checking of subranges 4-9
Error list compiler options 8-3
Event A-4

Exclusive OR operation 5-5
Execution 8-1
EXECUTION break 9-61
Execution ring A-4
Execution time A-4
EXIT statement

Definition 5-30
Format 5-30

Exponent 2-4
EXPONENT, OVERFLOW

break 9-61
EXPONENT_UNDERFLOW

break 9-61
Expression

Compile-time 8-9
Constant 2-6
Definition 5-1; A-4
Operands 5-1
Operators 5-2

External reference A-4
Externally declared variable

2-9; 3-3
Externally referenced

variable 3-3

FALSE 4-6
Fatal diagnostics, listing 8-3
Field 4-28; A 4
Floating-point

Constant 24
Type 4-11

FLOATING_POINT_
INDEFINITE break 9-61

F L O A T I N G P O I N T ,
SIGNIFICANCE break 9-62

FOR statement
Definition 5-17
Examples 5-18,19
Format 5-17

FOREND 5-17
Formal parameters

Function 6-18,19
Procedure 7-10,11
Program 2-12
Reference 2-12
Value 2-12

Format 8
FORMAT_ C YBIL_ SOURCE

command 8-7
Format source code 8-7
#FREE_RUNNING_ CLOCK

function 6-24
Free running microsecond

clock 6-24
FREE statement

Definition 5-39
Format 5-39

Functions, see also user-defined
functions

#ADDRESS 6-23
Calling 6-21
$CHAR 6-2
$CURRENT_LINE 9-75
$CURRENT_MODULE 9-76

i

c
Index-6 CYBIL Language Definition Revision D

$CURRENT_
PROCEDURE 9-77

$CURRENT_PVA 9-78
Data conversion 6-1
Definition 6-1
Format 6-17
IINTEGER 6-3
#LOC 6-4
LOWERBOUND 6-5
LOWERVALUE 6-6
#OFFSET 6-25
Overview 1-3; 6-1
Parameters 6-17
PRED 6-7
$PROGRAM_VALUE 9-79
#PTR 6-8
#READ_REGISTER 6-27
$REAL 6-9
Recursive 6-1
#REL 6-10
#RING 6-28
#SEGMENT 6-29
#SEQ 6-11
#SIZE 6-12
Standard 6-1
STRLENGTH 6-13
SUCC 6-14
System-dependent 6-1,23
UPPERBOUND 6-15
UPPERVALUE 6-16
User-defined 6-17

#GATE attribute 34
Global key 7-15
Global variable 2-8
Glossary A-l
Greater than operator 5-6,9
Greater than or equal to

operator 5-6,9

H

#HASH_SVA procedure 7-20

Heap
Adaptable 447
Default 3-11
Definition 441
Example 5-34
Format 441
Management 5-32

IDENTIFIER field 9-7
Identity operation 54
Identity, set 5-9,12
IF statement

Compile-time 8-11
Definition 5-24
Examples 5-25
Format 5-24

IFEND 5-24
Improper subrange type 4-9
IN operator 5-6,9,12
Indefinite value constructor 3-13;

4-25,35,38
Inequality, set 5-9,12
Informative diagnostics,

listing 8-3
Initializing

Array elements 4-25
Effect of attribute on 3-14
Record 4-35
Set elements 4-38
Variable 34,13

Input
Compiler parameter 8-1
To programs 1-3

Input file, Debug 9-5,23
Input/output 7; 1-3
Integer

Constant 2-3; A-5
Definition 44
Example 44
Format 44
Quotient division 5-3
Range 44

IINTEGER function 6-3

Revision D CYBIL Language Definition Index-7

INDEX

Interactive Debug
Definition A-5
Example 9-82

Interrupt processing, Debug 9-14
Intersection operation 5-11
Intersection, set 5-3
INVALID. BDP_ DATA

break 9-62
Invariant record

Definition 4-28
Example 4-30
Format 4-28

Job level specifications 9-3,4

K

Keypoint instruction 7-21
#KEYPOINT procedure 7-21

Label, statement 5-16,17,20,21,28
Language syntax 2-6
Layout control directives 8-19
LEFT directive 8-19
Less than operator 5-6,9
Less than or equal to

operator 5-6,9
Lifetime of a variable 3-10
Line tables 8-3
LIST toggle 8-14
LIST ALL toggle 8-14
LISTCTS toggle 8-14
LISTEXT toggle 8-14
Listing, compiler

Options 8-2
Parameter 8-1

Listing toggles 8-14
LISTOBJ toggle 8-14
$LITERAL section 3-11
Load module A-5
Load page table index 7-20
#LOC function 64

Local
Key 7-15
Variable 2-8

Lock variable 7-17
Logical AND operation 5-3
Logical OR operation 5-5
LOWERBOUND function 6-5
Lowerbounds 4-9
LOWERVALUE function 6-6
LP AGE instruction 7-20

M
Machine addressing A-5
Machine code debugging, see

Debug utility
Machine-level debugging A-5
Maintenance control

directives 8-26
Manuals, related 2; 9
Map buffer, purging 7-22
Margins, set 8-19
Memory

Alignment of elements D-l
Cell D-l
Change contents during

debugging 9-25
Display during debugging 9-44
Examples of representation D-2
Size requirements for

elements D-l
MOD operator 5-3
MODEND format 2-10
Module A-5

Addressing A-5
Declaration 2-10
Definition 2-8
Examples 2-10
Format 2-10
Level 2-8
Name 2-10
Structure 2-8

MODULE format 2-10
Multiple breaks 9-17
Multiplication operation 5-3
Multiplication operators 5-2
Multiring environment 9-17
Multitask debugging 9-14

Index-8 CYBIL Language Definition Revision D

INDEX

N

Name
Definition A-6
Examples 2-3
Rules for forming 2-2

Nearly exhausted resources 9-15
Negation operation 5-11
Negation operators 5-2
NEWTITLE directive 8-23
NEXT statement

Definition 5-37
Format 5-37

NIL pointer constant 2-4; 4-15
No-op instructions 8-4
NOCOMPILE directive 8-27
NORMAL field 9-7
Not equal to operator 5-6,9
NOT operator 5-2
Null string 2-5

o
Object code

Definition A-6
Listing 8-2,14

Object module A-6
Object of a pointer 4-13
Offset, byte A-2
#OFFSET function 6-25
OLDnTLE directive 8-25
Operands 5-1
Operators

Addition 5-4
Definition 5-2
Multiplication 5-2
Negation 5-2
Order of evaluation 5-2
Relational 5-6
Set 5-10
Sign 5-4

Optimization compiler options 84;
9-13

Optimized code, debugging 9-13
OR operator 5-5
Ordinal

Constant 24

Definition 4-7
Examples 4-8
Format 4-7

$OUTPUTfile 9-6
Output file, Debug 9-6,23
Output from programs 1-3
Overview of language 1-1

P register
Change 9-32
Display 9-51

Packed elements in memory D-l
PACKED parameter

Adaptable arrays 443
Adaptable records 444
Arrays 4-24
Records 4-28,31

Packing parameter
Adaptable arrays 443
Adaptable records 444
Arrays 4-24
Records 4-28,31

Padding compiler parameter 84
Page A-7
Page advance directive 8-20
Page table map 7-22,23
Page table, see system page table
Parameter list 2-13; 6-19; 7-11
$PARAMETER section 3-11
Parent name 4-18; 6-8,10
Pause break 9-15
Performance monitoring 7-21
Pointer

Adaptable types 4-15
Constant 24
Definition 4-13; A-7
Dereference 4-13
Example 4-16
Format 4-13
NIL 4-15
Object 4-13
Pointer to cell 4-17
Reference 4-13
Relative 4-18

Revision D CYBIL Language Definition Index-9

INDEX

Pointer to cell
#ADDRESS function 6-23
Definition 4-17

Pointer-to-procedure conversion
procedure 7-19

POP directive 8-17
Potentially equivalent types 4-2
PRED function 6-7
Predecessor of an expression 6-7
Predefined sections 3-11
Previous save area 6-26
#PREVIOUS_SAVE_AREA

function 6-26
Procedures, see also user-defined

procedures
#CALLER_ID 7-15
Calling 7-13
#COMPARE_SWAP 7-17
Definition 7-1
Format 7-9
#HASH_SVA 7-20
#KEYPOINT 7-21
Overview 1-3; 7-1
Parameters 7-9
#PURGE_BUFFER 7-22
#SCAN 7-24
Standard 7-1
STRINGREP 7-2
System-dependent 7-15
#TRANSLATE 7-26
User-defined 7-9
#WRITE_REGISTER 7-28

PROCEND format 2-14
Process register

Read 6-27
Write 7-28

Process virtual address 24; 6-25;
9-78

Processor register
Read 6-27
Write 7-28

Product identifier, Debug 9-7
Program

Addresses in Debug 9-8
Declaration 2-12
Elements 2-1
Example 2-14

Execution 8-1
Format 2-12
Input 1-3
Name 2-12
Output 1-3
Structure 2-8
Syntax 2-6
Value, change 9-28
Value, display 948,79

PROGRAM format 2-12
Program level specifications 9-3,4
$PROGRAM_ VALUE

function 9-79
#PTR function 4-18; 6-8
Punctuation 2-7
Purge

Cache 7-22
Instruction 7-22
Map buffer 7-22

#PURGE_BUFFER
procedure 7-22

PUSH directive 8-16
PUSH statement

Definition 540
Example 5-34,40
Format 540

PVA, see process virtual address

Q

QUI subcommand 9-58
QUIT subcommand 9-58

R

Radix 2-3
Range A-7
Range checking

Compiler options 8-5
Toggles 8-15

READ attribute 3-3,6
READ break 9-62
READ_NEXT_INSTRUCTION

break 9-62
Read-only

Section 3-6,11,18
Variable 3-3,6

Index-10 CYBIL Language Definition Revision D

INDEX

#READ_REGISTER function 6-27
Real

Constant 24
Definition 4-11
Format 4-11
Quotient division 5-3
Range 4-11

$REAL function 6-9
Record

Adaptable 444
Alignment 4-29,31,37,44
Bound variant 4-31,33
Definition 4-28
Examples 4-30,34,35,36
Fields 4-28
Format 4-28,31
Initializing elements 4-35
Invariant 4-28
Referencing elements 4-36
Variant 4-31

Reference parameters
Function 6-18,19
Procedure 7-10,11
Program 2-12

Reference, pointer 4-13
Referenced addresses 9-11
Reformat source code 8-7
SREGISTER section 3-11
Registers

Change contents of 9-32
Display 9-51
Read 6-27
Write 7-28

#REL function 4-18; 6-10
Related manuals 2; 9
Relational operators 5-6
Relative pointer

Access object of 6-8
Converting to direct

pointer 4-18
Definition 4-18
Direct pointer 4-18
Format 4-18
#PTR function 6-8
#REL function 6-10
Return 6-10

Remainder division operation 5-3

REP format 3-13; 4-25
REPEAT statement

Definition 5-20
Example 5-20
Format 5-20

Reported addresses 9-9
Reserved symbols 2-1
Reserved words 2-1; A-7; C-l
RESET directive 8-18
RESET statement

Definition 5-35
Example 5-34
Format for a heap 5-36
Format for a sequence 5-35

RETURN statement
Definition 5-31
Format 5-31

RIGHT directive 8-19
Ring

Debug 9-16
Definition A-7
Level 34
Number 6-23; 7-15
Return number in pointer 6-28

Ring, execution A 4
#RING function 6-28
RUN subcommand 9-59
Run-time checking

Compiler options 8-5
Toggles 8-15

Run time, see execution time
Run-time stack

management 5-32,40

S
Save area 6-26
Scalar types 4-3
#SCAN procedure 7-24
Scientific notation 24
Scope attributes 3-7
Scope of elements 2-8
Section

Attribute 34,11
Declaration 3-18
Definition 3-11,18; A-8
Example 3-19

Revision D CYBIL Language Definition Index-11

INDEX

Format 3-18
Map 9-13
Name 34,11
Predefined names 3-11

SECTION format 3-18
Segment

Definition A-8
Number 6-23; 7-15
Return number in pointer 6-29

#SEGMENT function 6-29
Segment table map 7-23
Semicolon 2-7
#SEQ function 6-11
Sequence

Adaptable 446
Definition 440
Format 440
Management 5-32
Return pointer to 6-11
#SEQ function 6-11

Set
Complement 54,11
Containment 5-12
Difference 5-5,11
Equality 5-9,12
Identity 5-6,9,12
Inclusion 5-12
Inequality 5-6,9,12
Intersection 5-3,11
Membership 5-6,9,12
Negation 5-11
Operators 5-10
Subset 5-6,9
Superset 5-6,9
Symmetric difference 5-11
Union 5-5,11

SET_ BREAK subcommand 9-60
SET directive 8-13
SET_ S T E P . MODE

subcommand 9-70
Set type

Assigning elements 4-38
Definition 4-38
Example 4-39
Format 4-38
Initializing elements 4-38

Set value constructor
Definition 4-39
Format 4-39

SETB subcommand 9-60
SETSM subcommand 9-70
Sign inversion 54
Sign operators 54
Size fixer 5-33
#SIZE function 6-12
SKIP directive 8-22
Source

Code A-8
Lasting 8-2
Text input 8-1

Source code
Reformat 8-7

Source code debugging, see Debug
utility

Spaces in syntax 2-6
Spacing 2-7
SPACING directive 8-21
SPT, see system page table
Stack frame 6-26
Stack frame, display 9-54
Stack frame save area 6-26
$STACK section 3-11
Stack, see run-time stack

management
Standard functions 6-1
Standard procedures 7-1
Statements)

ALLOCATE 5-38
Assignment 5-13
BEGIN 5-16
CASE 5-26
Compilation 8-8
Control 5-23
CYCLE 5-28
Definition 5-13
Empty 2-7; 5-13
EXIT 5-30
FOR 5-17
FREE 5-39
IF 5-24
Label 5-16,17,20,21,28
List 5-13,16; A-8

Index-12 CYBIL Language Definition Revision D

INDEX

NEXT 5-37
Overview 1-1,2
PUSH 540
REPEAT 5-20
RESET 5-35
RETURN 5-31
Storage management 5-32
Structured 5-16
WHILE 5-21

STATIC attribute 2-9; 3-4,9
$STATIC section 3-11
Static variable 2-9; 3-9
Status variable

Compiler call 8-5
CYBIL command 8-5
Debug 9-7
FORMAT, CYBIL_ SOURCE

command 8-7
Step mode, Debug 9-70
Storage allocation 2-9
Storage attributes 3-9
Storage management statements

ALLOCATE 5-38
Examples 5-34
FREE 5-39
NEXT 5-37
Overview 5-32
PUSH 540
RESET 5-35

Storage types 440
String

Adaptable 442
Assigning 4-23
Comparing 4-23
Constant 2-5; A-8
Definition 4-19
Examples 4-22,23
Format 4-19
Length 6-13
STRLENGTH function 6-13
Substring 2-5; 4-20

STRINGREP procedure
Boolean element 74
Character element 7-3
Definition 7-2
Floating-point element 7-5
Format 7-2

Integer element 7-3
Ordinal element 74
Pointer element 7-8
String element 7-8
Subrange element 74

STRLENGTH function 6-13
Structured statements

BEGIN 5-16
FOR 5-17
Overview 5-16
REPEAT 5-20
WHILE 5-21

Structured types 4-19
Subrange

Definition 4-9
Error checking 4-9
Example 4-10
Format 4-9

Subscript bounds 4-24
Subset of a set 5-6,9
Substring

Definition 4-20
Examples 4-22
Format 4-20
Of a string constant 2-5

Subtraction operation 5-5
SUCC function 6-14
Successor of an expression 6-14
Superset of a set 5-6,9
SVA, see system virtual address
Symbol tables 8-3
Symbolic

Addressing A-8
Cross-reference listing 8-2
Debugging A-8

Symbols, reserved 2-1
Symmetric difference 5-5
Symmetric difference

operation 5-11
Syntax 2-6
System-dependent

Functions 6-23
Procedures 7-15

System-dependent
functions 6-1

System page table 7-20
System virtual address 7-20

Revision D CYBIL Language Definition Index-13

INDEX

Tag field
Definition 4-31,32
Size 5-33

Terminate break 9-15
TEXT field 9-7
TITLE directive 8-24
Titles 8-23,24,25
Toggle control directives

Definition 8-13
Listing toggles 8-14
Run-time checking toggles 8-15

Traceback A-8
#TRANSLATE procedure 7-26
Translation table 7-26
Trap interrupts 7-21
TRUE 4-6
Type

Declaration 3-16
Examples 3-16
Format 3-16

TYPE format 3-16
Types 4-1

Adaptable 4-42
Adaptable array 4-43
Adaptable heap 447
Adaptable record 444
Adaptable sequence 446
Adaptable string 442
Array 4-24
Basic 4-3
Boolean 4-6
Cell 4-12
Character 4-5
Equivalent 4-2
Floating-point 4-11
Formats for using 4-2
Heap 441
Integer 44
Ordinal 4-7
Overview 1-1; 4-1
Pointer 4-13
Pointer to cell 4-17
Potentially equivalent 4-2
Real 4-11

Record 4-28
Relative pointer 4-18
Scalar 4-3
Sequence 440
Set 4-38
Storage 440
String 4-19
Structured 4-19
Subrange 4-9

u
#UNCHECKED_ CONVERSION

procedure 7-27
Union operation 5-11
Union, set 5-5
Unpacked elements in

memory D-l
UNTIL 5-20
UPPERBOUND function 6-15
Upperbounds 4-9
UPPERVALUE function 6-16
User-defined elements

Constants 2-3
Definition 2-2

User-defined functions
Actual parameters 6-19,21
Attributes 6-17
Calling 6-21
Examples 6-20,22
Formal parameters 6-18,19
Format 6-17
Parameters 6-17,19
Reference parameters 6-18,19
Value parameters 6-18,19

User-defined procedures
Actual parameters 7-11,13
Attributes 7-9
Calling 7-13
Examples 7-12,14
Formal parameters 7-10,11
Format 7-9
Parameters 7-9,11
Reference parameters 7-10,11
Value parameters 7-10,12

Index-14 CYBIL Language Definition Revision D

INDEX

Value constructor, see indefinite
value constructor

Value parameters
Function 6-18,19
Procedure 7-10,12
Program 2-12

VAE format 3-3
Variable A-9

Attributes 3-3,6; A-9
Automatic 2-9; 3-9
Compile-time 8-8
Declaration 3-3
Definition 3-3
Examples 3-5,7,8,10,12,15
Format 3-3
Global 2̂ 8
Initialization 34,13
Lifetime 3-10
Local 2-8
Read-only 3-3,6
Static 2-9; 3-9
Types 4-1

Variant record
Bound 4-31,33

Definition 4-30
Example 4-34
Format 4-30

W

Warning diagnostics, listing 8-3
WHILE statement

Definition 5-21
Example 5-22
Format 5-21

WHILEND 5-21
Words, reserved 2-1; A-7; C-l
WRITE break 9-62
#WRITE _ REGISTER

procedure 7-28

X

X registers
Change 9-32
Display 9-51

XDCL attribute 2-9; 3-3,7
XOR operator 5-5
XREF attribute 3-3,7

Revision D CYBIL Language Definition Index-15

CYBIL for NOS/VE Language Definition 60464113 D

We would like your comments on this manual. While writing it, we made some assumptions about who would use it
and how it would be used. Your comments will help us improve this manual. Please take a few minutes to reply.

Who Are You? How Do You Use This Manual? Which Do You Also Have?

• Manager

• Systems Analyst or Programmer

• Applications Programmer

• Operator

n Other

Which are helpful to

• As an Overview

D To Learn the Product/System

• For Comprehensive

• For Quick Look-up

you? • Procedures ndex (inside covers) C

• Character Set • Other:

Reference

• AnySCLMani als

• CYBIL File Interface

• CYBIL System

Glossary • Related Manuals page

Interface

How Do You Like This Manual? Check those that apply.

Yes

a
D

a
a
a
a
a
D

D

Somewhat

•
D

•
•
•
O

•
•
a

No

a
a
p

a
D

a
a
D

a

Is the manual easy to read (print size, page layout, and so on)?
Is it easy to understand?
Is the order of topics logical?
Are there enough examples?
Are the examples helpful? (• Too simple • Too complex)
Is the technical information accurate?
Can you easily find what you want?
Do the illustrations help you?
Does the manual tell you what you need to know about the topic?

Comments? If applicable, note page number and paragraph.

Would you like a reply? D Yes • No Continue on other side

From:

Company

Please send program listing and output if applicable to your comment.

BUSINESS REPLY MAIL
First Class Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

gg)CONTRpLDATA
Publications and Graphics Division
ARH219
4201 Lexington Avenue North
St. Paul, MN 55126-6198

No Postage
Necessary
if Mailed in the
United States

Fold

Tape Here Only

Keyword Index

ARRAY (adaptable) 4-43
ARRAY (fixed) 4-24
BOOLEAN 4-6
CELL 4-12
CHAR 4-5
CONST 3-1
FUNCEND 6-17
FUNCTION 6-17
HEAP (adaptable) 4-47
HEAP (fixed) 4-41
INTEGER 4-4
MODEND 2-10
MODULE 2-10
Ordinal 4-7
Pointer 4-13
PROCEDURE 7-9
PROCEND (for a procedure) . . . 7-9

Statement Index

ALLOCATE 5-38
Assignment 5-13
BEGIN 5-16
CASE 5-26
CYCLE 5-28
EXIT 5-30
FOR 5-17
FREE 5-39

Function Index

#ADDRESS 6-23
$CHAR 6-2
#FREE_RUNNING_

CLOCK 6-24
FUNCEND 6-17
FUNCTION 6-17
$INTEGER 6-3
#LOC 6-4
LOWERBOUND 6-5
LOWERVALUE 6-6
#OFFSET 6-25
PRED 6-7
#PREVIOUS_SAVE_

AREA 6-26

PROCEND (for a program) . . . 2-14
PROGRAM 2-12
REAL 4-11
RECORD (adaptable) 4-44
RECORD (invariant) 4-28
RECORD (variant) 4-30
REL 4-18
SECTION 3-18
SET 4-38
SEQ (adaptable) 4-46
SEQ (fixed) 4-40
STRING (adaptable) 4-42
STRING (fixed) 4-19
Subrange 4-9
TYPE 3-16
VAR 3-3

IF 5-24
NEXT 5-37
PUSH 5-40
REPEAT 5-20
RESET (in a heap) 5-36
RESET (in a sequence) 5-35
RETURN 5-31
WHILE 5-21

#PTR 6-8
#READ_REGISTER 6-27
$REAL 6-9
#REL 6-10
#RING 6-28
#SEGMENT 6-29
#SEQ 6-11
#SIZE 6-12
STRLENGTH 6-13
SUCC 6-14
UPPERBOUND 6-15
UPPERVALUE 6-16
User-defined functions 6-17

(Continued)

(Continued)

Procedure Index

#CALLER ID
#COMPARE SWAP
#CONVERT POINTER TO

PROCEDURE
#HASH SVA
#KEYPOINT
PROCEDURE
PROCEND

Compilation Index

COMMENT directive
COMPILE directive
CYRTT.mmmanH

EJECT directive
FORMAT CYBIL SOURCE

command
LEFT directive
NEWTITLE directive
NOCOMPILE directive

.7-15

.7-17

.7-19

.7-20

.7-21

..7-9
7-9

.8-28

.8-26
8-1

8-20

..8-7

.8-19

.8-23
8-27

#PURGE BUFFER
#SCAN
STRINGREP
#TRANSLATE
#UNCHECKED

CONVERSION

#WRTTE REGISTER

OLDTITLE directive
POP directive
PUSH directive
RESET directive
RIGHT directive
SET directive
SKIP directive
SPACING directive
TITLE directive

Debug Command and Function Index

CHAD
CHAM
CHANGE DEFAULT
CHANGE MEMORY
CHANGE PROGRAM

VALUE
CHANGE REGISTER
CHAPV
CHAR
$CURRENT LINE
$CURRENT MODULE
$CURRENT_

PROCEDURE
$CURRENT PVA
DELB
DELETE BREAK
DISB
DISC
DISDE
DISM

.9-22

.9-25

.9-22

.9-25

.9-28

.9-32

.9-28

.9-32

.9-75

.9-76

.9-77

.9-78

.9-35

.9-35

.9-36

.9-38

.9-41

.9-44

DISPLAY BREAK
DISPLAY CALL
DISPLAY DEBUGGING

ENVIRONMENT
DISPLAY MEMORY
DISPLAY PROGRAM

VALUE
DISPLAY REGISTER
DISPLAY STACK

FRAME
DISPV
DISR
DISSF
$PROGRAM VALUE
QUIT
QUI
RUN
SETB
SET BREAK
SETSM
SET STEP MODE

. . . 7-22

. . . 7-24

. . . . 7-2

. . . 7-26

. . . 7-27

. . . . 7-9
7-28

. . . 8-25

. . . 8-17

. . . 8-16

. . . 8-18

. . . 8-19

. . . 8-13

. . . 8-22

. . . 8-21
8-24

. . . 9-36

. . . 9-38

. . . 9-41

. . . 9-44

. . . 9-48

. . . 9-51

. . . 9-54

. . . 9-48

. . . 9-51

. . . 9-54

. . . 9-79

. . . 9-58

. . . 9-58

. . . 9-59
, . . 9-60
. . . 9-60
. . . 9-70
. . . 9-70

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

Title: CDC CYBIL for NOS/VE Language Definition

Publication No.: 60464113

Revision: D

Date: 10-16-85

Reason for Change:

This revision reflects NOS/VE Version 1.1.3 at PSR level 644. Feature changes
include: addition of the #SEQ function, addition of adaptable types as
arguments for the #SIZE function, and addition of the INLINE attribute for
user-defined functions. Minor technical corrections and editorial changes have
been incorporated. This edition obsoletes all previous editions.

