ngséon

o arcd
6000 SERIES COMPUTER SYSTEMS
te ’

C

v/

Richard V. [e
.

a Ope

ippew

h

TA

CONTROL DA

\

1

|
J
i

CONTROL DATA® 6000 SERIES COMPUTER SYSTEMS

Chippewa Operating System Reference Manual.

December 1965
Pub. No. 60134400

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales
office listed on the back cover.

CONTROL DATA CORPORATION
Documentation Department

3145 PORTER DRIVE © 1965, Control Data Corporation
PALO ALTO, CALIFORNIA Printed in the United States of America

PREFACE

The Chippewa Operating System developed by the Chippewa Laboratories
of the Control Data Corporation is designed for use with Control Data®
6000 Series Computers.

The Chippewa Operating System is a monitor system used for directing the
sequencing of programs by Series 6000 computers. The system performs
various input/output, compilation, and storage assignment tasks in a
manner as to achieve the efficiency inherent in the concept of the Series
6000 computers.

Familiarity with 6000 hardware and related software manuals describing
the ASCENT, ASPER, and FORTRAN languages is assumed. Information
concerning the 6000 Series Computer/Programming Systems may be found
in the following manuals.

Publication Number

Control Data 6000 Series Computer Systems 60100000
Reference Manual

Control Data 6600 Computer System/Programming 60101600
System Reference Manual Volume 1 ASCENT
(Assembly System Central Processor)

Control Data 6600 Computer System/ Programming 60101700
System Reference Manual Volume 2 ASPER
(Assembly System Peripheral Processor)

Control Data 6000 Series Chippewa Operating 60132700
System FORTRAN Reference Manual

Control Data 6600 Chippewa Operating System 60124500
(Flow Diagrams)

il

e

CONTENTS

PREFACE

CHIPPEWA OPERATING SYSTEM TERMINOLOGY

CHAPTER 1

CHAPTER 2

CHAPTER 3

INTRODUCTION

1.1 System Components
1.2 Central Memory

1.3 Peripheral Processors
1.4 Disk Storage

1.5 Operation

SYSTEM ORGANIZATION

2.1 PP Memory

2.2 Central Memory
2.3 Disk File

2.4 PP Programs

2.5 Central Programs

SYSTEM CONTROL

PP Communication Areas
Control Point Areas

Exchange Jump Area

Control Point Stacking

Storage Allocation and Movement
PP Recall

Advancing Control Point Status

Central/PP Communication

W w W W W W W w W
W 00 N S U ks W N M

Monitor/PP Communication

xi

i-1

1i-1
1-2

3-10
3-12
3-12
3-13
3-14

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

3.10 Calling Sequences

3.11 Circular Buffer I/0

3.12 Calling Programs

EQUIPMENT USE AND FILE STRUCTURE

NN
=N oo U ok W N

Equipment Channel and File Tables
File Format

File Names

Card Files

Disk Files

Binary and Coded Modes

Magnetic Tape Files

PROGRAMMING LANGUAGES

5.
5.
5.
5.
5.

1
2
3
4
5

Assembly Languages

FORTRAN and Assembly Language Compiler
Machine Language

FORTRAN Compiler/ASCENT Subset
Peripheral Assembly Language

CONTROL CARDS AND JOB PROCESSING

[J0 <> T = > B < > B = > BN = > B « PR o M

o ~N » O o W

Control Cards

Equipment Assignment
Common Files

Mode, Exit, and Switch
Comipiler and Program Calls
Central Library Calls
Peripheral Library Calls

System Action on Control Cards

DECK STRUCTURES

3-22
3-26
3-33

4-1
4-7
4-7
4-9
4-9
4-11
4-12

5-1

5-1

5-12
5-15
5-23
5-25

6-1
6-3
6-5
6-6
6-8
6-10
6-13
6-13

CHAPTER 8

APPENDIX A

APPENDIX B

APPENDIX C

INDEX

SYSTEM/OPERATOR COMMUNICATION

8.1 Dead Start Loading

8.2 Processing Modes

8.3 Console and Display Scopes

8.4 System Display Keyboard Entries
8.5 Job Display

8.6 Dayfile Messages

SYSTEM TAPE AND LIBRARY MAINTENANCE
CENTRAL AND PERIPHERAL LIBRARY PROGRAMS

SUGGESTIONS FOR WRITING PP PROGRAMS

8-1
8-1
8-5
8-7

8-17
8-21

vii

TABLES AND ILLUSTRATIONS

Figure Table Title
1. Peripheral Processor Memory Allocation 2-2
1. Contents of Central Memory Storage 2-2
2. Resident Central Storage 2-4
3. Disk Structure 2-6
4. Track Reservation and Addressing 2-7
5. Control Point Areas and Exchange Jump Information 3-6
6. Monitor/Program Communication 3-15
7. Circular Buffer I/0 Processing Flow 3-28
2. Equipment/Channel Numbers 4-3
8. Standard Binary Card Format 4-10
3. PAS Operation Codes 5-29
4, Dead Start Panel Settings 8-2
9. Console Keyhoard 8-6
5. System Display Keyboard Entries 8-17
6. System Display Codes 8-9 |
10. Dayfile (A) Display 8-10
11. Dayfile Printout 8-13
12. Job Status (B) Display 8-14
13. Storage (C through H) Display 8-16
7. Job Display Codes 8-18
8. Entries for Changing Job Display Contents 8-20
A-1 System Tape Organization A-2

CHIPPEWA OPERATING SYSTEM TERMINOLOGY

byte

central library
directory

channel status table

coded files

control point

common files

dayfile

dead start

display code

equipment number

equipment status
table

file name table/
file status table

idle program

A 12-bit group of bits operated upon as a unit.

A table containing information about all the central memory routines stored on
the disk. (CLD)

A table in resident central storage containing three words, the first 12 bytes of
which are associated with the 12 input/output channels. (CST)

Alphanumeric files stored in packed display code for disk and magnetic tape.

A number, 1 through 7, appearing on the display scope which is associated
with status information about jobs in central memory.

Common files are files that are not discarded upon job completion and may be
picked up by other jobs.

A file on disk that holds a running account of all control cards, equipment
assignments, error diagnostics, central and peripheral processor time used,
and I/O packages (e.g., PRINT, READ) used by the jobs in central memory.

The initial loading of the system tape by manual toggle switching after setting
the panel switches.

A code in which alphanumeric files are stored for console display purposes.
Each line of alphanumeric characters begins at the first 12~bit byte of a cen-
tral word and continues two characters per byte to the end of the line.

A two-digit octal number which uniquely identifies the equipment for job
assignments.

A table in central storage containing one-word entries for each physical
equipment unit in the system. (EST)

A common table structure containing the name and status of all coded files.
(FNT/FST)

A program to which monitor transfers control when no other program is ready
for execution.

input files

job display

local files

output files

package
peripheral
resident
pseudo-control
point

reference address
resident peripheral
library

system display
track reservation
table

transient program

Job files which have not been assigned a control point (listed in the job backlog
(H) display with associated priority). A stored form of a job on disk, or
logical file of cards separated by a record separator or file separator card.

The program that displays only data pertaining to the particular job. (DIS)

Local files are files accessible at specified control points; local files may be
initiated by a job and discarded at the end of a job.

A list of job files which have not been printed (appearing on the job backlog (H)
display). These jobs are processed on a priority basis. If equal priorities
are encountered, the last one in is the first one out.

An 1/0 process which includes at least one routine, for example, Read Package,
Print Package, or Job Display Package.

Those PP programs that permanently reside in a peripheral processor.
A number, 0 or 8, which does not appear on the display scope; 0 is associated
with the monitor program in PP0, and the display program in PP9; 8 is asso-

ciated with the storage move program.

The address serving as a starting point for subsequent central resident address
modification.

Peripheral programs that are stored in central memory. (RPL)
The program that provides an overall status display for all currently running
jobs. (DSD)

A table maintained in resident central storage for each disk file cabinet; each
table contains 2048 bits. (TRT)

Any program that is called into a peripheral processor (PP) but does not
permanently reside there (all PP programs other than monitor (MTR) in PPO,
System Display (DSD) in PP9, and the peripheral resident).

INTRODUCTION 1

1.1
SYSTEM
COMPONENTS

The Chippewa Operating System for the Control Data® Series 6000 uses
advanced design features to achieve efficient multiprocessing of a wide variety
of jobs. The Series-6000 Computers are composed of eleven processors. Ten
of these processors perform peripheral and operating system functions; the
eleventh, the central processor, performs computation and processing at very
high speeds. The eleven processors have separate memories and operate
concurrently under control of the Operating System. The large central memory
is accessible to all eleven processors. The Operating System is in constant
control of all jobs in process, assuring optimum use of I/O equipment and
priority processing where required. It performs such functions as storage
allocation, job scheduling, accounting, I/0 control and operator communication.

The Operating System is initially loaded from the system tape (Appendix A) by
means of keyed settings on the Dead Start panel. Components of the Operating
System are distributed, during this operation, among the central memory, the
ten peripheral memories, and the magnetic disk unit.

The central resident portion of the Operating System includes system control
parameters and pointers, communication linkages, and frequently used pro-
grams and subroutines for both the central and the peripheral processors.

The peripheral resident portion consists of a resident program stored in each
peripheral memory, the system monitor (MTR) assigned permanently to pro-
cessor 0, and the system display program (DSD) assigned permanently to
processor 9.

The remainder of the Operating System is stored on the magnetic disk unit or
in central memory to be called as needed.

1-1

1.2
CENTRAL MEMORY

1.3
PERIPHERAL
PROCESSORS

1.3.1
MONITOR

1-2

The central processor executes jobs of a computational or production nature
including operational user programs and compilation and assembly of user
source language programs. These programs are stored in central memory
along with the data necessary for execution and control. Central memory is
accessible to both central and peripheral processors and serves as the
communication link between them.

A number of programs may be in operation concurrently in the central pro-
cessor. Central resident contains status information for each running program
which enables the Operating System to proceed in an orderly fashion in the con-
trol and sequencing of the programs.

The ten peripheral processors (PP) are used by the Operating System to
perform all I/0 functions required by the system or the operational programs.
They also perform certain auxiliary system functions connected with job
sequencing and control. '

The PP's have identical resident programs which sense a location in central
memory for a control word calling for some action. The resident program
locates the required program in central memory or on the disk and loads it
into its own memory for execution. The peripheral program may, itself, call
additional peripheral programs into its memory, or call for action by the
system monitor.

The PP's form a common pool available for assignment as needed by the
system. Except for MTR, DSD and the resident programs, peripheral pro-
grams have no fixed processor assignments, and are loaded each time they
are called. All processors operate concurrently to maintain a maximum 1/0
transfer rate.

The Operating System functions under the direction of the system monitor
(MTR) which is permanently assigned to PP0. MTR repeatedly scans a set of
locations in central memory which are set by transient peripheral programs

to call for monitor action. MTR also senses the status of the running central
program to determine program aborts, terminations, and requests for monitor
action. :

1.3.2
SYSTEM DISPLAY

1.4
DISK STORAGE

1.5
OPERATION

MTR is used in the assignment and release of all peripheral processors, data
channels, disk storage and I/O equipment. It maintains constant surveillance
of all processing in the central and peripheral processors.

The system display program (DSD), permanently assigned to PP9, serves as
the communication linkage between the system and the operator. Two console
screens provide system monitoring information and displays of central memory,
selectable by the operator. Through the console keyboard, the operator can
modify central memory contents and request system functions.

The magnetic disk unit contains the non-resident portion of the Operating Sys-
tem including both peripheral and central library programs. Central resident
contains a peripheral library directory (PLD) and a central library directory
(CLD) which define the disk location for each library program.

The disk also holds the job stack and the data files for the jobs in process.
Output from job execution is collected on the disk for printing or punching by a
peripheral program. In this sense, the disk serves as a large capacity buffer
between the I/0 devices and the processor complex.

Once the Operating System is loaded, all eleven processors execute idling
programs while waiting to be called into operation. Processing is initiated
when the operator selects the system input unit from the console keyboard; the
system display program alerts the monitor to enter information in the system
tables and call the requested program into operation in a PP. The input
program loads job decks from the system input unit into disk storage. As each
job is filed on the disk, the input program makes an entry in a file name/file
status table (FNT/FST) in central memory from which jobs are selected on a
priority basis.

As many as seven programs may be active in the central processor at one
time. Fach active program is assigned a control point area which contains all
information necessary to control the program and resume operation after
interrupts. MTR continually senses the status of each PP and the running
central program. When a call for action is detected, MTR either performs
the operation itself or passes the request to one of the other PP's.

1-3

MTR interrupts the running central program to pass control to the next active
central program on a priority basis if I/O requests are made. When program
completion is sensed, MTR assigns a PP to search the central memory
FNT/FST for the next program to be assigned to the control point and loaded
into central memory.

A program operating in the central processor may call peripheral library
programs simply by entering the name of the required program in its reference
address location, plus one (RA + 1). It can call directly any peripheral program
whose name begins with a letter. Peripheral programs whose names begin with
numbers are called only by other peripheral programs (section 2. 4).

SYSTEM ORGANIZATION 2

2.1
PP MEMORY

Operating System storage is distributed among central memory, peripheral
memories, and the magnetic disk unit. The most frequently used system
tables and programs are stored in the resident areas of central and peripheral
processor memories. The remaining Operating System programs are filed on
the disk to be called as needed.

Each peripheral processor (PP) memory contains an identical resident program
in locations 0100-0772. This resident program contains an idling routine which
repeatedly examines a location in central resident associated with its PP, A
message in this location is interpreted by the resident to perform some assigned
function. The resident is charged with locating required peripheral library
programs and loading them into its memory for execution.

The PP resident uses locations 0000-0017 for temporary storage. These
locations may also be used by called peripheral programs; no continuity of
information is required. Locations 0020-0074 are also available to called pro-
grams for temporary storage.

Locations 0075-0077 contain addresses of central memory locations which are
associated with each PP. They must not be altered by a peripheral program.
The contents of these locations in central memory are as follows:

0075 address of PP input register
0076 address of PP output register
0077 address of PP message buffer

The system monitor (MTR) is permanently assigned to PP0, beginning at
location 1000. The system display program (DSD) is permanently assigned to
PP9, beginning at location 1000.

PP memories 1-8 load transient programs as assigned by MTR from the peri-
pheral libraries residing in central memory and on the disk. They are treated
as overlays called by the resident PP programs. The basic transient programs,
coded to begin execution at location 1000, are loaded beginning at location 0773.
These programs can, themselves, call equipment driver overlays which are
coded to begin at location 2000 and loaded at location 1773. Transient programs
are not assigned to specific peripheral processors; they are called each time
they are needed and then discarded (Figure 1).

PP1-8 PP9 PPO

0000 1 I
Temborary Storlage
0075 ! ;
Communica}tion Area Addresses
0100 ! |
' | ' [
Peripheral Resident Program
1 |
0773
Basic
Transient
Programs
System System
1773 Display | Monitor
Equipment
Driver
Overlays
7777

Figure 1. Peripheral Processor Memory Allocation

2.2

CENTRAL MEMORY The lower portlon of central memory from location 0000 to 1777 is occupied by
system pointers, tables and communication areas (Figure 2). Storage loca-
tions for this area are fixed as follows:

Table 1. CONTENTS OF CENTRAL MEMORY STORAGE
(Locations 0000-1777)

Storage

Locations (octal) ‘ Contents -
0000 Zero
0001 RPL (resident peripheral library pointer)
0002 PLD, limit (peripheral library directory pointer)
0003 DFB, input, output, limit (dayfile buffer pointer)
0004 FNT, limit (file name/file status table pointer)
0005 EST, limit (equipment status table pointer)
0006 RSL, limit (resident subroutine library pointer)
0007 CLD, limit (central library directory pointer)

2-2

Storage

Locations (octal) Contents

0010 TRTO
0011 TRT1 } track reservation table pointers
0012 TRT2
0013 Blank
0014 Monitor step control flag
0015-0017 Channel status table

- 0020-0022 Control point zero status information
0023 Idle time for central processor
0024 Idle time for peripheral processors
0025 Control point 0 recall input register
0026 Exchange jump address for simulator
0027 P address for simulator
0030-0037 Time and date line
0040-0052 Starting time counts
0053-0054 Blank
0055 Temporary storage for monitor
0056-0057 Control point stack indicators
0060-0067 PP1 communication area

- 0070-0077 PP2 communication area
0100-0107 PP3 communication area
0110-0117 PP4 communication area
0120-0127 PP5 communication area
0130-0137 PP6 communication area
0140-0147 PP7 communication area
0150-0157 PP8 communication area
0160-0167 PP9 communication area
0170-0177 PP0 communication area
0200-0377 Control point 1 area
0400-0577 Control point 2 area
0600-0777 Control point 3 area
1000-1177 Control point 4 area
1200-1377 Control point 5 area
1400-1577 Control point 6 area
1600-1777 Control point 7 area

Locations 002000~013777 are referred to by pointers in location 0001 through
0012. This area is occupied by the central resident program and by the system
tables, library directories, and resident libraries. The remainder of central
memory is available for program and data storage.

2-3

S9Y14 OGNV S¥3ILINIOd

Sv3dy "WWOO dd

SVIYVY LINIOd TOHLNOD

SIN3Qis3y dO

37avLl snivis dind3

AMOLO3¥ia ‘817 TTVHLINID

AHOLO3YIA 917 'Hdid3d

0 378v1 's3y MOvil

| 379vL 'S3Y HMOVHl

2 378Vl 'SIM MHOVHL

(1S3/ INH)
318Vl SNivls 374 /3IWVN 3714

(adq)
g3a44ng 3714Ava

(sy)
A4VHEIT 3NILNOYENS LN3QIS3Y

(4¥)
AUYHEIT IVH3HdIY3d IN3GIS3y

0000
0900
0020 soM3z
pesn jou 144
pasn jou Lwn| ad
0002 [Liwia}] 1no [NI | 840
0012 pesn jou LIWIT| 1Nd
0022 T pesn jou LIWT] Ls3
— pasn jou LINI| sy
00v2 pesn jou Lwr| a»
0062~ Bz9 | 800! |pesn joulyopiyiso| OLML
0092 829 | Bool jpasn joupyonsiisol LY.L
0022 829 | 800! |pesn joupioos ispl] 21HL
000§ = , . o
Y4 d31S H1W
— A —
| (1S2)378VL SNLVLS 13NNVHD]|
000 = 0 LNIOd TTON1NOD-0aN3sd

000§ -—m

Y1W- IWYN gor

pesn jou

WL 31dt d9

IWIL 3701 dd

HI T7v034 O INIOd TOHINOD-0aN3Sd

‘HAQV X HOLVINWIS

000L ==

SHOLVYIIAN! MOVLS
1NIOd TTONMLNOD

‘HAQV 4 HOLVINWIS L2
(98S "uli “IH) S3WIL og
le
s3lva

LE
SANIL ONILYVLS HOSS300u8d TVHLINID |OF
R4

SIWIL ONILYVLS dd
2s
ANVE €S
ANVYTE 14
39vHOLS AHVYHOdW3L dH1W S¢
9g

L8

\ SY3LINIOd
J18vL

Resident Central Storage (typical)

Figure 2.

2.3

DISK FILE The magnetic disk file holds all programs associated with the Operating System
which are not stored in peripheral or central memories. System programs ’
stored on disk 0 consist of the peripheral processor library followed by a
central processor library. Central resident contains directories for both disk
file libraries defining the track and group number for each program
(Appendix B).

All programs and data are stored on an input device (disk or tape units) prior
to processing. Programs, alphanumeric data files and binary data files,
regardless of content, are stored on the disk in a common structure. The
basic unit of storage on the disk is a half-track consisting of either the odd or
the even numbered sectors in a physical track. There are 2048 half-tracks in
each disk cabinet and each half-track contains 64 sectors in the outer zone and
50 sectors in the inner zone. Each sector has a data capacity of 320 12-bit
bytes (Figure 3).

A logical file on the disk is defined as a named half-track followed by any
number of continuation half-tracks in a single cabinet. This named file must
begin in the first sector of a half-track and may be of any length up to the
capacity of the cabinet.

In addition to the 320 data bytes, each sector contains two control bytes which
link the sectors and tracks making up a logical file. The first control byte
designates the location of the next sector in the file. The second control byte
contains the number of central processor words in the current sector. The
first control byte is coded in one of two formats. If the next sector of the file
is in the same half-track, the control byte contains the next sector number
(0000-0077). I the next sector of the file is the beginning of a new half-track,
the control byte is coded for the next half-track number as follows:

bits 0-2 head group number
bit 3 odd/even half-track
bits 4-10 track number

bit 11 always set

The control bytes for the last sector of a file are both zero. This sector is
interpreted as a file mark and terminates the file.

Disk track availability is recorded in three track reservaticn tables (pointers,
TRTO, 1, and 2) in central resident. Each table is associated with one of the
three disk cabinets.

TRTO = 1 disk cabinet

TRT1 = 2 disk cabinets

TRT2 = 3 disk cabinets

2-5

(SPIoM dd 1Gg) paiy Buipioday

“ SpioM dd 22t |||'~
______ ______Euowom?_o\s
dd 02¢

L1 JYNLONYLS ¥0L103S

sojkq |0Jju0d B3y} aiD
SpPIOM DIDP 2 I5413

I [0}
. ~
L iosseooad (piaydisad b of INTWIAOW m
pajlWsuDl} Qg }JOUUDD SPIOM 4 §Sil} HANOILISOd m
#
Y]
I 4
a
2]
=)
A A [S
SH0103S G G G Ghlmnzu: o
[0}
&~
&
\ <
o
S
7

SNOtLISOd lig

, . MOVYL 82|
+ ANOZ A
D ¢,
30iM SHOLD3S € o
K1ALVNIXOMddY dV9 HOLIMS JNOou9 umw\

Olige SNIVINOD HO123S HOV3 : \A

SH0103S eo«

00! OLN! G3AIAIQ S3INOZ MH3INN! 2 e 7 . =——5yoveL 59

& SHOVHL 82 22,00

SH0103s %, I aANOZ 32

g2zl OLNI Q3AIAIQ SINOZ ¥3ILNO 2 o/wm/ ~ — -2 /yov%

0
SHOVML 821 SNIVINOD 3INOZ HOV3I 401035" y31n0 \,WA\

-
\,&
2-6

S o S i s S Lt

2-7

{0 Msia ¥o4 8ol 007 wo)
LVNY04 QUOM H3LNIOd 1¥l

MSId SIHL]
¥O4 1ML OL M3ILNIOH]

3SN NI S1 MOVML 4TVH :lig 1, NOILYY3JO LN3IO3 LSOW]

ALJWN3 SI MOVML 4IVH :lig 0, 40 ‘HQAY MOVHL 4TYH
MOVML 471VH ¥3d lI§ 3ANO

:(8,24€-0) STIMLNT 8¥02 = 2€ X b9

¥S10 ¥3d 378VL 3INO sanoz (Soon) ¥3Lno]

3719V.L NOILVAY3S3IY MNOVHL anY (529) ¥3NNI
‘'SLINIT ¥O0LD3S

a1}
g
7}
0
[
&~
o
el
<
E
=]
Q
=
.
N
=
)]
&
[}
~
Ad
Q
[
~
H
&
O]
o
&
=

; ; ['ss3Maav xovul
¥aav Xsia ¥Gav MOvdl 41vH JUH 40 b-0 118 5va | 900 | o350 [ovuL[waay
S3IAIO 11§ 083Z LON | lsvi | Lyl
| #s1 40 ¥IEWNN d3snNn
8,1 : N N
(8221-0) oz MOVHL , P v N
SY0193S N3IAI/AA0
(82-0) "ON dno¥o avaH
A_M_J, — ﬁ $53¥QAY MOVl
; XXXXXXXXXXX | 47VH 40{I1-G SLIg
JI\J‘.I\ SIAI9 "ON aHOM

The full/empty status of each track in a cabinet is indicated by one of 2048 bits
occupying the rightmost 32 bits of the 64 words in a table. The bit position in
the word (0-37) correspounds to bits 0-4 of a track number. The word position
in the table (0- 778) corresponds to bits 5-10 of the track number (Figure 4).

2.4

PP PROGRAMS PP programs are stored either in the resident peripheral library (RPL) in
central memory or in a magnetic disk file. When called, they are transferred
to the appropriate PP for execution. PP programs whose names begin with a
letter may be called by central programs; those whose names begin with a
numeral are called only by other PP programs. (Section 3.1.)

The first word of each PP program contains the following information:

bits 59 41 11 0

program
program name unused area length
(18 bits) (30 bits) (12 bits)
I\ _J —_—
~—
in display code in central

memory word

RPL programs are stored in a contiguous area of resident central memory
beginning at the location shown by the pointer at location 000001. The last
RPL program is followed by a zero word.

PP programs stored on disk 0 are located by the peripheral library directory
(PLD) in the resident area of central memory. Each word of the directory
defines one program:

bits 59 41 17 11 0
program name unused area n:nii‘;_l;
18 bit 2 it
(18 bits) (24 bits) T (12 bits)
u) I_
. . r
in display code sector number
(6 bits)

When a PP program is called by a central program, the system monitor (MTR)
assigns this call to a PP, and the resident searches for the program in RPL.

If it is not located in RPL, PLD is searched for the disk location of the program.
When the program is found, it is loaded into the PP and executed. If a program
is not found, a message appears at the associated control point and the job is
discontinued. The existing output is printed automatically.

2-8

Appendix C lists suggestions for writing PP programs for the Chippewa
Operating System, and the messages from the system peripheral programs
which are entered into the dayfile are listed in section 8. 6.

2.5
CENTRAL

PROGRAMS Central program subroutines which are most frequently used reside in central
storage in the resident subroutine library (RSL). When a central program calls
for these subroutines they are read directly from this area rather than from
the disk. The first word of each program contains the following information:

bits 59 17 0
program name program length
(42 bits) (18 bits)
“ A J
Y Y
in display code in central

memory words

The central library directory (CLD) locates central programs and subroutines
stored in the disk 0 library. CLD, which is stored in central resident, consists
of one-word entries in the following format:

bits 59 17 11 0

track
program name Aumber
(42 bits) T (12 bits)
“ ~ -/ L_
in display code sector number
(6 bits)

SYSTEM CONTROL 3

3.1
PP COMMUNICATION
AREAS

All activities in the system are controlled and coordinated by the system
monitor (MTR). The monitor is permanently assigned to PP0, where it oper-
ates continually to schedule the use of the other peripheral processors and the
programs in the central processor. MTR functions on the basis of messages
{rom other processors and, in turn, routes messages to the other processors
for action.

MTR communicates with the resident programs in the other nine peripheral.
processors through ten central memory areas. Each area is eight words in
length, and each is associated with a particular processor. :

The communication area is organized as follows:

Word 0 - processor input location
Word 1 - processor output location

Words 2-7 - message buffer

A PP idles in its resident program as long as its associated processor input
location is cleared. The monitor enters a control word in a selected input
location to call a transient peripheral program to that processor. The resident
peripheral program senses the input location entry, locates the called program
in the resident peripheral library or the peripheral library directory, and
loads it into peripheral memory beginning at location 0773. Resident then
jumps to 1000 to begin execution of the transient program.

The PP input register is not cleared by MTR until the transient program has
completed its function, and control has returned to peripheral resident at
location 0100. '

3.2
CONTROL
POINT AREAS

3-2

The format of the input regiéter control word is:

Unused Control Point
bits 59 41 \38 E; 0

rogram name |
P %lAJ) address of parameters

\ v J —

in display code number

A peripheral program, by entering a value in its central memory output loca-
tion, communicates a request to MTR. A request too long for a single location
is continued in the 6-word message buffer. MTR continually scans the ten PP
output locations. When a message is found, MTR jumps to the internal MTR
subroutine to process the request. When the function has been performed,
MTR clears the processor output register and continues scanning.

The ability to exchange central memory programs depends upon the preserva-
tion of all critical parameters and register contents at the time of the exchange.
1600 octal central memory locations are reserved for this purpose. This area
is divided into seven 200 octal word control point areas. Each area preserves
the information necessary to enable an interrupted program to resume execu-
tion.

Relative octal locations of each control point area are:

Locations Control Point Areas

000-017 Exchange Jump area information (Section 3.3)
020-022 Status information

023 Central Processor running time seconds,
024 PP running time § milliseconds
025 PP recall input register

026 Sense switches

027 Equipment assignments

030-037 Last dayfile message
040-177 Control statement buffer

The seven control points, numbered 1 to 7 in central residence are used to
record associated activities. There is also a pseudo-control point, numbered
0, to which the monitor program in PP0 and the display program in PP9 are
attached; pseudo-control point 8 is used by a storage move program. Any

other central or PP activity must be attached to a control point numbered 1 to 7.

An activity attached to a control point can reserve an area of central memory
and may request use of the central memory and of the central processor.

PP's may also be attached temporarily to a control point. During normal
operation, some control points, used for system operations such as the loading
of jobs from a card reader, may never require the central processor.

The 200 octal word central resident area of a control point area (Figure 5)
contains information such as the values of reference address (RA) and field
length (FL) for its reserved area of central memory. Each type of information
is assigned a particular location within the 200 octal word area, so that it can
be picked up in a standard way by PP's.

The control point area includes the following information. Addresses are
relative to the start of a 200 octal word control point area.

bits 59 47 35 23 11 0
Word 020 status error storage reference field
byte flag move flag flag length
. A- A A J
Y Y Y Y
status error storage scaled in hundreds, octal
indication indication adjustment

next statement address (12 bits)

bits 59 1211 0
Word 021 job name in display code
(48 bits)
- A J
v V-
blank if no activity In control state-

ment buffer loca-
tions 40-177

. 3~.3,.

3-4

Word 022

bits 59 47 35 23 11 0

. time limit .
?ob. message track count 8-second equipment
priority count increments number
— A — A ~— A — J
00-77 dayfile track set from operator
messages requests by job job card assigned
bits 59 47 23 0
Words 023/024 not used second count millisecond count
\ _J
—

CP/PP Running Time

Word 025 is the PP recall input location which preserves an input register
message refused because of unreadiness of equipment. It is periodically
re-entered into a PP input register location by monitor until it is accepted.

Word 026 holds the simulated sense switch settings entered through control
cards or the system display or job display consoles.

Word 027 holds a set of 1-bit indicators representing equipment assigned to
this control point.

Words 030-037 contain the last dayfile message or console message associated
with the job until replaced by a subsequent dayfile message. The dayfile
is the peripheral program which retains the system history.

Words 040-177 hold all control statements in packed display code for the job
assigned to this control point. As each statement is processed, the next
statement address in word 021 is advanced. An area overflow is detected
at load time and the job is rejected with the error message TOO MANY
CONTROL CARDS. There is no set number of allowable control cards;
this message refers to the packed total length of these cards.

The seven control points allow concurrent operations of up to eight PP programs
plus one central processor program.

3.3
EXCHANGE
JUMP AREA

B

Central processor operation is initiated or interrupted by an exchange jump
command from MTR. MTR furnishes the central processor with the first
word address of a 16-word area in central memory, the exchange jump area,
which contains all necessary information about the program to be started or
resumed in the central processor. This information and the structure of the
16-word block is shown in Figure 5.

The central processor entexjs,the information about a new program into the
appropriate registers and stores the current information of the interrupted
program in the same 16-word block in central memory, thereby exchanging
two programs. During this exchange, the normal functions of the central pro-
cessor are not in effect.

All central processor reference addresses to central memory instructions or
data are relafive to the reference address (RA). The RA and field length (FL)
define the central memory limits of a program (RA plus FL); field length is the
total program length. The program address register (P) defines the location
of a program step within the limits described. Each reference to memory is
made to the address specified by P + RA. Therefore, relocation of a central
memory program is easily performed by moving the program in memory and
resetting RA to the new address in the exchange jump area.

When an exchange jump interrupts the central processor, several hardware
steps insure that the interrupted program is left in a state for re-entry:

1. Instructions cease after all instructions from the current instruction
word in the stack are issued.

2. P is set to the address of the next instruction word to be executed.
3. Issued instructions are executed.
4. The two programs are exchanged.

Each central memory program is assigned to a control point, within which, the
first 16 words are reserved for the exchange jump area. When a central pro-
gram is ready for execution, the initial values of P, RA and FL are entered
into its exchange jump area by a PP. If this program's priority is greater
than the currently operating central program, MTR initiates this program with
an exchange jump command which interrupts the currently running program.

If the program's priority is not greater, execution will not begin until the run-
ning program terminates or issues a recall ‘request (RCL), or until its priority
becomes higher than that of the running program.

3-5

112! £2ibe GE[9E 1|8

Ll v9{c9 os|t velee 0z|Li ¥
0 65
111 LNIWNDISSY LNIWINO3I
(3000 AVISIQ Q3NOVd) o
¥344ng INIWILVLS T10NLINOD g
ov <
L€ =N
g
]
(39vSSIW 3TOSNOD HO) i %o0iL ¥81Q 111 &
o 30vSSaIW 3114Ava 1SV Hﬁ.m_ h_o_wumomw ol m
L2 Q3NDISSY IN3WJIND3 110qY 49 00 | Pesm ioN &
C joay dd 110
vo34 dd oNlunag 92 SLIHDIT ‘SIHOLIMS 3ISN3S s ey o119 -
43151934 LNdNI dd SATOH—G&Z ‘934 17v93Y dd papasoXa jjw|| awil |00 g
SIWIL ONINNNY LNINNND v | (SO3ASN) (s038) IWW dd a
g2 [(s23sw) (5538) 3WIL &2 g
22 [dinbaubisso'dd] LINIT IWILINNOD MOVHL] LNNOD ' 9SIW[A Lidoiud A~ M
4344N8 NI INIWIALVIS 5 [Tom 5]
IX3N OL ¥aLNioa ! & |[inis:oo iey (3002 Av7dSIQ) IWYN gor [x X X]x X X X X X X X X|9v14 Houy3 g
02 |(spespunH)13](spaspuni)wiilBois anow -oys|ov 14 HouM3| snivis 3 2 &
(" . IX 1 w ~— J 3
E =
9l 89X 3LA9 llg-2| =
sl X 3
4 X 10ss0004d |Dlusd Byj JoOj§
el X Buryiom s jujod josquod sjuy 4o qol ayl T
2! 2X SNIDJS ||paed ui s| jujod |02juod Siyl m
1 11X jujod (oajuod W
siy} oy paubissp si dd =
sia}s1ba upisd
JOVMOVd wad.IUxmA ol ¢ isioed P 0) ox m:_ucoammtoo 2y} :s9}naipu)
L PA:| PAS #q 1, 0 jo aduesald
9 og 9y
g S8 g
v +9 vy r - B
¢ g cv| (W3) apow 41x3 [ole[s]]ols] vlelz]1[x]m] snivis
2 28 2v| (14) yibua7 piaty 8t 8¢
| |(4e4s169Y Juswaioul)|g |7 kv)ssappy 8oualayey \ ~ J
Y 0 | mbmm_mwmmmmhuv<vo<_ﬁmvmmm:vue. woiboid 31A8 1ig9-2! %

3.4
CONTROL POINT
STACKING

When the control point makes use of the central processor, area 000-017
records exchange jump information. The most significant 12 bits of word 020
record the type of processor activity at the control point. The 12 bits are
designated: W, X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

A numbered bit is set to one only if the corresponding PP is working for the
control point. W and X refer to the central processor. The status of a control
point in regard to the central processor is A, B, C, D, E, F, G, W, X, or
blank. The monitor maintains an ordered stack of control points between which
it switches the central processor. The contirol point currently using the central
processor is listed at the top of the stack and has status A.

W =0, X=0 Either the control point has no requirement for the central pro-
cessor (blank status) or is listed in the stack and has a status from A to G.

W=1, X=0 The control point is in waiting (W) status and requires the cen-
tral processor. W is cleared only when the control point is added to the stack,
either when the stack is empty or when the control point's priority exceeds that
of the control point with A status. In the latter case, the stack is pushed down,
the control point with W status assumes A status, the control point which had
A status assumes B, and so on.

W=0, X=1 The control point is in X status, awaiting recall. When the
central processor is active for the control point with A status, the central pro-
gram can temporarily relinquish control by entering the recall code RCL in

RA + 1. Ttusually does this when awaiting completion of an input or output
function by a PP. (Programs produced by the FORTRAN compiler contain
instructions generated to set RCL when necessary). The stack is then pushed
up and the status of the control point becomes X. The control point remains in
X status until it is recalled and changed to W status, when it may again join the
stack. The control point may be recalled by a PP which has completed a task,
or by the monitor program, whichever happens first.

When a central program initiates a PP task by entering a code in RA + 1, it
does not necessarily lose the central processor. A central program may buffer
1/0 so that it can operate simultaneously with the PP. However, by examining
a word in central memory, a program can determine the progress of the input/
output; and if it reaches a point where further progress is temporarily
impossible, the central program may enter RCL in RA + 1. The control point
then assumes X status.

When a PP has completed an I/0 task, the monitor is alerted to recall the
control point. If the control point is in X status, the monitor changes it to W;
if not, its status is unchanged. When the status of a control point is changed
from X to W, the monitor program performs a search for control point priority
to determine if the control point should be listed in the stack.

When a control point has X or W status, the exchange jump area of its central
program is stored at the same control point.

When a control point is listed in the stack, the exchange area of its central
program is stored in the area of the control point, above it in the stack. At the
bottom of the stack is the idle program (a loop stop with P = 2) to which the
monitor switches control when no other program is ready to execute.

The monitor program performs an exchange jump when the stack is pushed up
or down. When the stack is to be pushed up the exchange is with the package in
the area of the control point whose status is A. This will cause the program
corresponding to B (or the idle program) to execute; the stack is then pushed
up so that B becomes A. The former A leaves the stack to assume some other
status (commonly X) and its registers are preserved in its own control point
area. :

When a program which had status W is to be introduced to the top of the stéck,
first the stack is pushed down, then an exchange jump is performed with the
program from the new control point area, which assumes A status.

Example:
Control Point ‘ Contents of Exchange Jump Area
Number Status Stored at Control Point
1 w registers of program 1
2 B , registers of program 5
3 blank * (not requiring central processor)
4 A registers of prograﬁn 2
5 C idle program
8 X registers of program 6
7 blank (not requiring central processor)

Since program 4 is active, it has no stored exchange jump area.

The monitor may remove a control point not at the top of the stack; but the
control points listed above it must be pushed out of the stack into W status, and
exchange jumps performed to bring the program below it (possibly idle) to the
top of the stack. :

Example:
To drop program 5 (C status) in the previous example:

A Exchange jump control point 4, and push up stack, giving W status
to program removed (program 4).-

T Exchange jump control point 2, and push up stack, giving W status
to program removed.

71 Exchange jump control point 5, activating the idle program. Give
control point 5 W, X or blank status.

The status of control points after each step is as follows:

Control Point

Number Original After A After T After Tt
1 W w w w
2 B A W W
3 blank blank blank blank
4 A w w w
5 C B A ?
6 X X X X
7 blank blank blank blank

The status of control point 5 depends on the reason that it was removed
from the stack. A program dropped as a result of a console command,
would assume blank status, and the monitor would reassemble the stack,
according to the rules by which programs of W status may enter the stack.
A program dropped as a result of a storage move request would assume a
W status.

The monitor maintains in PPO0 the list of control points. in the stack, in PP0
words 60g down to 52g. These words contain the addresses of the central
resident areas corresponding to the control points which are in the stack. The
address of a control point's central resident area is its number shifted up 7

- bit positions (control point 1 at 200g, control point.7 at 1600g). Word 60g of

. PPO lists the control point address for the control point with A status, and a
zero word in 60g or below indicates the end of the stack.

. Pseudo-control point 0 represents the idle program. Pseudo-control point 8 is
for the storageé move program. The central resident areas for control points

0 and 8 are 0 and 2000g, respectively, but only a small part of each area is
actually used for control point information; word 020g of the central resident
contains control point zero status, word 021 g contains control point zero job

3-9

3.5

STORAGE
ALLOCATION
AND MOVEMENT

3-10

name (MONITOR), word 2000g contains an exchange jump area for the storage
move program.

The monitor also maintains the stack indicators in words 56-57g of the central
resident. The display program can pick them up to indicate the status of con~
trol points. Word 60g of PP0 always specifies the active control point. I it
is zero, the idle program is running, if it is 2000g the storage move program
is running. '

Storage is allocated so that areas of central memory allocated to control
points lie in the order of the control points, with no gaps between.

Example:

Assuming the central resident and library programs occupy from 0 to 13777g
a possible arrangement is: (octal addresses)

Control Point Reference
Number Address (RA) Field Length (F1L)
1 14000 4000
2 20000 10000
3 30000 100000
4 130000 0
5 130000 150000
6 300000 0
7 300000 40000

The area of unoccupied central memory starts at RA + FL of control
point 7, 340000.

A PP attached to a control point can request or release storage via the monitor
program. This commonly takes place when a new job is brought to the control
point with a different requirement than the previous job.

When storage allocated to a control point is to be changed, the monitor moves
the storage that has been allocated to control points with larger numbers. The
first step is to set storage move flags, the middle 12 bits of word 20g of the
control point area.

A storage request to the monitor from a PP specifies the field length required
and the monitor determines whether the present allocation must be changed.

If a change is necessary, the monitor sets the storage move flag for control
point 4 to the address of the requesting PP's output register, then it sets the
storage move flags for control points 5, 6 and 7 and waits until PP activity for
control points 4 to 7 is such that their central storage may be moved.

PP programs perform their own central memory relocation for a control point
by reading RA and FL from the control point area. A program which occupies
a PP for a long time must provide for intermittent relocation pauses. When a
PP pauses for relocation, the monitor allows it to continue if the storage move
flag for its control point is not set. If the flag is set, the pausing PP must
wait until storage has been moved. (A PP does not continue until the monitor
has cleared its output register).

When there is no PP activity at the control points with move flags, the monitor
empties the stack by successive exchange jumps and push-ups until the idle
program is executing. (Control points in the stack assume W status). It then
prepares an exchange jump area in 20008 for the storage move program, and
exchange jumps to the storage move program at 2020g. Parameters of the
storage move program preset in the exchange jump area are as follows:

Bl = RA + FL for control point requiring storage change
B2 = RA + FL for control point 7

B3 = storage increase or decrease (depending on sign) required by request—
ing control point

The storage move program transfers, forward or backward, the area between
Bl and B2 and sets P = 0 upon completion, the monitor returns the idle pro-
gram, updates RA and FL for the control points, clears the storage move flags,
reassembles the stack by a priority search, and clears the output register of
the PP which requested the change. A PP requesting storage must check RA
and FL of its control point to determine that the change has been made.

The storage move program uses the central processor, but PP activity may

continue at control points with a lesser number than that for which the change
is being made.

3-11

3.6 .
PP RECALL -

3.7
ADVANCING
CONTROL
POINT STATUS

3-12

The recall facility of a PP is similar to that of the central processor. A PP
recall register for each control point allows a PP to be freed if the program
in the PP cannot be held up indefinitely; for example, if equipment needed is
not ready. The program enters a code into the recall register of a control
point and releases its PP. The code should be a PP call of the type normally
put in a PP's input register. Later, the monitor will sense a request in the
recall register and transfer it to the input register of a free PP. This device
is particularly useful when a PP is needed, but cannot immediately proceed.

A PP may set a control point recall register then releases itself, becoming
free for any other task. When monitor recalls a PP to the control point, it
will use any free PP. If there are several conditions under which a program
may choose to be recalled later, the recalled program can determine the stage
reached by examining the control point area or by using parameters from its
input register (which came from the control point recall register).

The recall facility is normally used when a single transient PP is the only
activity at a control point. :

The main loop of the monitor program in PP0 examines the output register of
each PP; and if non-zero, performs the requested function and clears the
corresponding output register. If it is not convenient for the monitor to per-
form the function on this circuit of the main loop (if it must wait for some
condition as in the storage move), the output register remains as is and the
monitor tries again on the next main loop circuit.

When the monitor needs to know the control point number to which a PP output
register request refers, it examines the PP input register. If the central
processor is being used by a control point, the monitor examines RA + 1 for a
request. If the monitor can meet-the request, it does so and clears RA + 1 to
inform the central program. If it cannot meet the request on this circuit of the
main loop (there is no free PP) the monitor leaves RA + 1 and checks it again
on the next main loop circuit. If the central processor is being used by a
control point, the monitor also checks the value of P on every circuit of the
main loop. P = 0 represents an error exit condition.

On every circuit of the main loop the monitor enters a routine called Advance
Control Point Status. This routine promptly exits to the main loop if less than
64 ms. have elapsed since it was last entered. I 64 ms. have elapsed, this
routine advances the status of one control point. Word 26g of PP0 contains a
control point number, which the routine advances by 1, cyclically, in the range
1 to 7, then examines. The routine exits if the control point has no job name,
or there is no free PP. Otherwise, it recalls the central processor PP to the

3.8
CENTRAL/PP
COMMUNICATION

control point, or advances a job to its next phase. Most switching of the
central processor results from other parts of the monitor main loop. This
routine only performs those actions for which a slower time scale is both
necessary and advantageous.

If the X flag for the central point is set, its status is changed to W and a prior-
ity search is made in case this control point is now entitled to the central
processor. If the PP recall register is non-zero at the current control point,
the routine transfers it to the input register of a free PP and performs some
associated housekeeping tasks. Having tested for recall, the routine exits, if
the status byte (W, X, 1, ..., 9, 0) is non-zero. It also exits if the storage
move flag for the control point is set, or the control point is listed in the stack.

If no exit has been made so far, the job has finished all the central processor
and peripheral processor activity associated with one phase. The routine exits
to the monitor main loop.

Once each scan, MTR senses the second location (RA + 1) of the running central
program. It is through this location that the central program passes requests
to the monitor. These may be requests for PP action, or they may be notifica-
tion of some significant state of the central program. The RA + 1 entries take
the following forms:

- Call Peripheral PP program name in display code in upper 18 bits of

RA + 1. Lower 36 bits contain the parameters for the
peripheral program. MTR clears RA + 1 as soon as
requested program is passed to PP for execution.

Recall RCL in display code in upper 18 bits of RA + 1. MTR
exchanges to next program waiting on a priority basis.
This request should be used whenever the program cannot
continue processing until an outside function is complete.
All system peripheral programs recall the central pro-
gram at completion of requested function.

Abort ABT in display code in upper 18 bits of RA+ 1. MTR
calls a peripheral program to advance to next control
statement.

3-13

MTR also performs the following operations with respect to central program:

Higher priority MTR interrupts running program in favor of a higher
priority program.

Arithmetic exit MTR exchanges to next equal or lower priority program
when central program address (P) becomes zero. Arith-
metic exit mode flag is set.

Time limit MTR exchanges to next central program on a priority
basis. When the time limit of the running program is
reached, a flag is set.

3.9
MONITOR/PP

COMMUNICATION MTR is preset to process a standard set of function requests from a PP routine.
The PP normally enters a request through its resident program which places
the request in its output location in central memory. MTR reads the output
location and performs the request or assigns the request to another PP
(Figure 6).

After entering a function request in the output location, the resident program
delays while waiting for the function to be performed. When MTR clears the
output register, the request has been completed. Any parameters which are
to be returned, or error indications affecting the request are entered in the
associated message buffer as indicated in the descriptions of the functions.

The error flag values for MTR Requests are:
Time limit
Arithmetic error

PP abort

PP call error

1

2

3

4 Central processor abort
5

6 Operator drop

7

Disk track limit

The descriptions of the function requests and the actions taken by MTR are
given below. ‘

3-14

BqunN 42
sJiojsanbay |}

I
I
1
‘934 1NdNl dd ¥v31D
‘934 1Ndlno dd dv3Td
dd 3Sv33y
T

I
1

_ ‘934 LNdLNO dd Qv3ay

|
h 431S1938 LNd1NO ¥v310 _

BN

/

N

hwhum 9v14 3IAOW I9VHOLS)

F ‘934 1Ndin0 dd Qv3d _
1
| /
|
|

I+vy ¥Y310
43151934 1ndNI
dd NI 71vd 30vd
‘17v3 NI | 'ON d2 Lyasni
"LNIOd JOHINOD Ol dd NOISSY

i
I
Ay

(ez1avivay ad)
I
UA/

\

I
N A

{ ¢ Q34Vv30D (1+vY)

HIW !

Zan

0 0
0 0
oyy | [do]amvn
0 02100
oyV | [do]3wvN
0 0
oyY | ER]ELED
0 02100
oyv] |do] 3wwn

ouv | | 3wwn

‘90Hd H0SS3I0N0Hd TVYHINID

vy
I+ vd

s

I
4o
an

juswnbiy oMy
julod [oduod d2
Jaysibay inding MO
iajsibay ynduj HI
laying abossaly g
juapisay dd DpIA
sisenbay M LW 3ibijlu} os|D
Aow wpibold judlsupil Byl 4

¥I

YO~ |
an

dI

40
ms_/

I

H0
m_z/

¥T
TTT——>/ ¢a3uvain

HO H3ILSI93Y INdNI

an

934 1ndino =—

~["938 Lndino —

2! NOILONNd HIW

LN3ISNVYL
Woyd LIX3

'004d 3153003y
x| 31LNJ03X3 8 AvOl

A

T~ ¢a34va1n
N\ Y3LSI938 1nd1n0

Ll NOILONNA H1W

\\l/\

V3YV NOILVIINNWWOD dd

Monitor/PP Communication Area

Figure 6.

3-15

3.9.1

MTR FUNCTION CODES

3-16

01

02

.03

04

The output location contents shown are set by the calling‘ PP.
0001, 0000, 0000, 0000, 0000

Process Dayfile Message

PP sets a message in its message buffer (words 2-7 of the communication area)
before requesting this function. '

MTR transfers the message into the assigned control point dayfile message
area along with the time and job name. The message also goes to the dayfile
buffer.

0002, 00nn, 0000, 0000, 0000

Request Channel nn

MTR assigns channel nn to the reciuesting processor as soon as it is available
by storing the requesting PP number in the channel status table in central
resident. :

0003, 00nn, 0000, 0000, 0000

- Drop Chamnel nn -

MTR clears the assignment of channel nn in the channel status table. No check
is made to assure that the PP requesting nn to be dropped was the PP originally
requesting nn.

0004, 0000, 0000, 0000, 0000

Assign PP Time

MTR adds the current time minus PP starting time, in locations 040 - 052 of
the central resident, to accumulated time in control point area. MTR also sets
a new. PP starting time (seconds and milliseconds).

MTR Function

This control is initiated by a keyboard request. MTR sets an internal step
control flag-and at each subsequent request, MTR pauses for console keyboard

‘input. A space from the keyboard causes MTR to process the request. A

period from the keyboard causes MTR to process the request and clear the

mn = 10, 11 or 12 corresponding to TRT pointers 0, 1 or 2. MTR checks the
specified TRT; an available track number is put in the first byte of the pro-
cessor message buffer, and the TRT is updated. If no track is available, byte
1 of the message buffer is cleared. When the request is for disk 0 (TRT0) the
track count in the control point is updated. 1If the track count limit of 1000g is
exceeded, error flag 7 is set in the control point area, the error message

nn =10, 11 or 12 corresponding to TRT 0, 1 or 2. MTR clears track assign-
ment titt from the specified TRT. If the disk 0 track is being dropped, the
control point track count is reduced by 1. This function does not check corres-
pondence between the control point being modified and the control point updated

Codes Output location contents set by calling PP -
05 0005, 0000, 0000, 0000, 0000
Monitor Step Control
step control flag to resume high speed operation.
06 0006, 00nn, 0000, 0000, 0000
Request Digk Track
TRACK LIMIT appears, and the job is terminated.
07 0007, 00nn, tttt, 0000, 0000
Drop Disk Track
for this track.
10 0010, nnnn, 0000, 0000, 0000

Request Storage

Assigns nnnn hundred octal words of central storage to the control point of the
requesting PP if neither of the following conflicts exist:

A PP is waiting for a previous storage request.

The amount of storage requested exceeds available central memory.

3-17

MTR Function

When assignment is made, MTR sets storage move flags at all control points
above that of the requesting PP. When all activity through the control points
ceases, their assigned storage areas are relocated to accommodate the storage

The requesting PP must sense the field length parameter in its control point to
verify the actual assignment. A pause function (17) should precede further

The current dayfile buffer is dumped by the monitor. The buifer is added to

MTR clears the PP control point assignment, computes PP running time, adds
it to accumulated PP time, provides a new PP starting time for subsequent

The job associated with the requesting processor is terminated. The requesting
processor is responsible for an explanatory message in the dayfile. The opera-
tion of this function is identical with function 12, except that error flag 3 is set

Codes Output location contents set by calling PP
10
(cont'd)
request.
requests for storage.
11 0011, 0000, 0000, 0000, 0000
Complete Dayfile
system dayfile and job output file.
12 0012, 0000, 0000, 0000, 0000
Release PP
requests, and clears the PP input register.
13 0013, 0000, 0000, 0000, 0000
Abort Control Point
for the abort function in the control point area.
14 0014, tttt, 0000, 0000, 0000

3-18

Time Limit

A job time limit of tttt time increments is entered at the control point; each
time increment is 8 seconds. Any previous time limit is superseded.

MTR Function
Codes Output location contents set by calling PP

15 0015, 0000, 0000, 0000, 0000

Request Central Processor

MTR sets the central waiting flag (W) at the control point and searches for job
priorities to initiate central processor action. The request is ignored under
the following conditions:

Error flag is set.
(RA + 1) = END request.

A central memory program has been assigned to this control point.

16 0016, 0000, 0000, 0000, 0000

Drop Central Processor

Execution of the central processor job at the PP control point is dropped.

This function is also used to release a control point assigned to PP I/O buffer-
ing; the PP is also dropped by this operation.

17 0017, 0000, 0000, 0000, 0000

Pause for Relocation

This function allows monitor to move central storage for the associated job. .

As long as the move flag at the control point is set, this function inhibits any
further action of the requesting PP. When the move flag is cleared, the pause
function is ended. (See function 10.)

The requesting processor should check the reference address for the control
point after c_:ompletion of this function to determine if central storage for its
job has been moved.

0020, 0000, 0000, 0000, 0000
Request PP
This function requests initiation of another PP. The first word of the requesting
PP message buffer contains the input location data for the new PP including the
control point to which it should be assigned by MTR. The input location address

of the new PP is placed in the first byte of the requesting PP message buffer.
K no PP is available, a zero byte is returned.

3-19

MTR Function
Codes

Qutput location contents set by calling PP -

21

22

23

24

25

3-20

0021, 0000, 0000, 0000, 0000

Recall Central Processor

- The central program associatéd with the requestmg PP is restarted if the

central recall flag (X) is set.

0022, nnnn, 0000, 0000, 0000

Request Equlpm ent

MTR searches the equlpment status table (EST) for an equipment of type nnnn
and assigns it to the control point. EST is updated and MTR places the equip-
ment number in the first byte of the PP message buffer. If the equipment is
not available, a zero byte is returned.

© 0023, 00nn, 0000, 0000, 0000

“Drop Equ1pment

MTR drops equipment number nn from the control point and updates EST to
indicate this equipment is free for reassignment. There is no check by monitor
to insure that the equipment number-dropped from EST was assig'hed to this
control point.

0024, 00nn, 0000, 0000, 0000

Request Priority

Assigns priority nn to the control point, and searches priorities to initiate
central processor actlon

0025, 000n, 0000, 0000, 0000

Assign Error Exit Mode

MTR drops central processor execution for the job at the control point and
assigns the value n to the exit mode f1e1d in the control point exchange jump

fo 1nformat1on area.

MTR Function

A simulator of the central computer is called from the peripheral library or
dropped as required. A call to an unavailable PP will cause the function to be

Clear the lockout bit for equipment nn in the equipment status table (EST).

Set the lockout bit for eqliipmellt nn in the equipment status table (EST).

Assign equipment number nn to control point p and enter nn in the control point
area for operator assignment. If equipment nn is busy, no assignment is made.

Codes Output location contents set by calling PP
26 Unassigned, ignored
27 0027, 0000, 0000, 0000, 0000
Toggle Simulator
ignored.
30 0030, 000n, 0000, 0000, 0000
Operator Drop
Drop the job at control point n and set error flag 6 at control point.
31 0031, 00nn, 0000, 0000, 0000
Equipment On
32 0032, 00nn, 0000, 0000, 0000
Equipment Off
33 0033, 00nn, 000p, OOOO, 0000
Assign Equipment
34—37 Unassigned, ignored.

3-21

3.10
CALLING SEQUENCES

3.101
CENTRAL PROGRAMS

word 1

word 2

3-22

Programs and subroutines are classed as central processor programs or PP
programs. Those most frequently used, of both classes, are stored in central
memory; the remainder reside on the magnetic disk.

Central programs may be loaded from the resident subroutine library (RSL)
which is an area of central memory, from the disk file indexed by the central
library directory (CLD), from the INPUT disk file as a binary version of a
previously compiled program, or from the named disk file as a binary version
of a previously compiled program or a current compilation.

The first two words of the binary version of the program correspond to RA and
RA + 1 which contain:

program name (display code) program length(FL)
i (42 bits) (18 bits)

M PL
N — Al — J (R
18 bits 18 bits 6 bits
M number of words of executable instructions; does not include temporar-

ies, constants, or variables

PL local length of program. If FL # PL, PL + RA is address of next
subroutine associated with this program

N number of parameters

The programs are loaded by a PP program which sets the exchange jump
information (RA, FL, P) in the assigned control point.

P N + 2, the number of parameters plus 2
FL specified program field length from word 1

RA value given in word 20, byte 4 of assigned control point area

The first two words of the binary program are cleared before execution.

Central program parameters begin at RA + 2; they are file names in display
code, left justified in the word. The set of file names is stored in the parame-
ter area at the time the program is compiled. If parameters appear in control
card which calls a central program for execution, these parameters replace
the original values in the program parameter area. If no parameters are used,
or if fewer appear on the control card than are specified in word 2, the original
values are effective at run time. Embedded missing parameters are not
allowed on the control card.

The list of parameters at the beginning of the program (starting at RA + 2)

must be followed by a zero word. This is the entry line for the program. The
first word for execution follows this entry line.

Coding for a Central Memory Program

Location Tag Contents Remarks
RA 0—--—>90 Program error exit location
RA+1 e 90 MTR communication
RA+2 Al file name 1 Parameter 1
RA+3 A2 file name 2 Parameter 2
RA+m+1 An file name n Parameter n
RA-+n+2 e—————>0 Program entry location
RA+n+3 Op. First program instruction
Example:
Bits 5 18 0
RA ONEIDAA 100000
RA+L | O > 0 03

RA+2 | INPUT

RA+3 | OUTPUT

RA+4 | TAPE2

RA+5 | 0 = > 0

RA+6 | (first program instruction)

3-23

3.10.2
PP PROGRAMS

3-24

RA and RA+1 are cleared before execution begins

Program entry at RA+5, with program address = 5 and Field length =
100000

File names used in the program are, INPUT, OUTPUT, and TAPE2

A central program may request MTR action by entering the name of a routine
in display code left-justified in location RA+1. MTR periodically scans RA+1
of the running program for such requests. When RA+1 is non-zero, MTR
passes the value to a PP for action. Requests such as input/output (CIO) are
processed in this manner. When RA+1 is cleared, the running program may
assume that the request has been honored, though not necessarily completed.
Any parameters associated with the request must be put in the lower 36 bits of
location RA+1 by the calling program. The format of the parameter list is
dependent upon the program called.

Whenever a function request is given in RA+1 and the central program cannot
continue processing until the function is complete, the program should give a
recall (RCL) request after the function request has been honored. This allows
another central program of lower or equal priority to continue execution,
thereby obtaining more efficient use of the central processor. All system
peripheral packages are written to recall the central program after the re-
quested operation is complete.)

A central program is normally terminated by entering END in display code in
RA+1. The monitor will then call a PP routine to advance the job to the next
control statement. Abnormal termination may be effected by entering ABT in
display code in RA+1 or by executing an instruction which causes an error exit.

PP programs, used as system routines or central program peripheral routines,
are stored in central memory in the resident peripheral library (RPL) or listed
in the peripheral library directory (PLD) and stored in the disk file. The
binary format is the same for both types. The first word of the program con-
tains the program name and the number of central memory words occupied by
the binary program.

bits 18 30 12
A —
— Y N —
name o unused L . J length

Basic Programs

This central memory control word (five PP words) is not part of the executable
code. The first word of the executable PP program is loaded at location 1000.
The control word is loaded at PP location 0773-0777. Programs of this type
are called basic programs. Loading should begin five PP locations before the
actual transfer location since the first word of the program is part of the
description and is not executable.

After loading, the PP resident routine transfers control to location 1000 to
begin execution of the basic program. Basic programs may call overlay rou-
tines by searching RPL and PLD. Overlay routines are generally loaded
beginning at address 1773 for execution beginning at location 2000. Each PP
program and overlay must be coded to begin at a specific address and is loaded
into PP memory at that address minus five. Basic programs begin at location
1000 since the PP resident routine will always load at 0773 and transfer control
to location 1000.

A basic program may in turn call for overlays which it must load itself. They
may be loaded anywhere in the PP memory but are usually loaded at location
2000 minus five. PP program names can be up to three characters long. If
the program is to be callable by a central program, the first character must be
a letter. If the PP program is a system peripheral routine (not callable by a
central program), the first character must be a number.

When a basic program calls on an overlay, required information is usually
passed through preassigned locations in the PP lower memory (locations 0000-
0074).

System peripheral routine names beginning with the number 1 are loaded in PP
memory starting at location 0773; those names beginning with 2 are loaded at
1773. To prevent destruction of the resident program, a peripheral routine
must not start prior to location 1000; locations 0000 through 0074 may be used
for temporary storage.

PP programs communicate with MTR through the input and output locations
assigned to the particular PP in central memory. A central memory control
point is assigned to each PP when it is executing a called program. This area
contains all pertinent information about the central program requesting an
operation, or about the buffer area for an I/O operation.

When the PP program needs an operation outside its realm, or a function to be
supervised by MTR, it enters a request in its output location. Upon completing
the request, MTR clears the PP output location. Information about a function
is passed to MTR through the message buffer which follows the output location
in central memory. Information is also returned to the requesting program in
this area.

3-25

3.11
CIRCULAR
BUFFER 1/O

To terminate, the overlay generally returns to the calling PP program by
exiting through the entry point of the overlay. To terminate a basic program,
the program must clear the assigned PP input location (MTR function 12) and
return control to PP resident by jumping to location 0100.

The circular buffer I/0 (CIO) program may be called to a PP to perform input
and output between a file and a circular central memory buffer. The user
specifies a file name and operation code, plus information about the buffer,
then CIO performs the operation.

Before calling CIO, circular buffer parameters must be set in five central
memory words as follows:

bits 59 17 5 0
file name not code| Name (display code left adjusted)
used and operation
not used FIRST Beginning address 7
not used IN Current input address of circular
(buffer

not used ouT Current output address

not used LIMIT Last address + 1 J

The buffer and buffer parameter area must be within the field length of the job,
and addresses are relative (address 0 for the job in absolute word RA).

A central program can call on CIO by entering in its word 1 (absolute RA+1)
the code CIO and the (relative) address of the circular buffer parameters.

bits 59 41 17 0
RA+1 CIio relative address
. — J

buffer parameters

Example:

CBP is the symbolic address of the parameters:

SX6 = 031117B CIO in display code
ILX6 42 To top of X6

SX5 = CBP

IX6 = X6+X5 Add in address

SA6 =1 Write to (RA+1)

PP calls in RA+1 of a running central program are detected by the monitor in
PP0. The monitor finds a free PP to perform the task, then clears RA+1 to
indicate that the task is started, not completed. The operation code in the
first parameter word is even, and one is added to it by the PP when it has
performed the operation. PP also updates IN and OUT in the parameter area,
according to the function performed.

The central program continues after setting RA+1 but must not use RA+1 again
until it is cleared by the monitor. This is programmed either by looping on
non-zero RA+1 during the short time taken by the monitor to detect a call, or
by checking that RA+1 is zero before making a further call.

The central program should inform the monitor with an RCL call if it is unable
to proceed further for the time being, then the monitor will switch to another
program. A central program may buffer input and output in order to proceed
to a certain stage before being delayed.

Continuing the last example, if the central program chooses to wait until the
PP has finished:

L1 SAl1 =1 Read (RA+1) to X1
NZ X1, Ll Wait till clear
SAl = CBP Get first parameter word
LX1 59 Determine if odd (PP finished)
NG OK Continue to OK if PP finished
SA6 = 220314B RCL code
LX6 42 To top of X6
SA6 =1 Recall code to (RA+1)
JP L1 Loop
OK Continue processing

3-27

Processing
Flow

3-28

The recall code causes control to be taken from the program. Control is
resumed (subject to priority) in approximately 250 ms. or when a PP com-
pleting an operation tells the monitor to recall the corresponding central
program. The monitor clears RA+1 after receiving the RCL. The loop at L1
holds up the program until the monitor switches control, but allows the program
to continue when control is returned.

Most users need not concern themselves with CIO and RCL use since their
FORTRAN programs are compiled to include the necessary calls. However,
users programming input and output in machine instructions must remember
to explicitly drop the central processor with a RCL when awaiting progress of
a PP task. A PP call does not in itself cause the central processor to be
switched; progress of a CIO operation is determined by examination of the
parameter area.

The current data in a circular buffer starts at OUT and continues (possibly
round the end of the buffer) to IN-1.

FIRST |] FIRST

ouT N\ /N
\/
/\
"4 _ Processin
m ‘ OouT Flow
LIMIT | LIMIT
Partially filled buffers
FIRST FIRST
IN = OUT IN=OUT - 1
ouT
LIMIT LIMIT
empty buffer full buffer

Figure 7. Circular Buffer I/0 (CIO) Processing Flow

:
|
.

When a buffer is filled to capacity, the unused word between IN and OUT
distinguishes it from an empty buffer for which IN = OUT. The capacity of a
buffer is LIMIT - FIRST - 1. A buffer is generally initialized with IN = OUT =
FIRST, then IN and OUT circle the buffer as data is inserted and extracted.

IN defines the address for insertion of data into a buffer. As data is inserted,
IN is stepped round the buffer but never so as to catch up with OUT to avoid
overstepping buffer capacity.

OUT defines the address for extraction of data from a buffer. As data is
extracted, OUT is stepped round the buffer but never beyond IN since the buffer
is empty by the time OUT = IN.

Commonly CIO, moving IN, reads data from a file to the buffer, and the data is
extracted by a central program moving OUT; or a central program, moving IN,
inserts data into the buffer, and the data is written to a file by CIO, moving
OUT.

When CIO writes to a file, only data sufficient to write unit physical records .
for the medium of the file is extracted from the circular buffer. When writing
to disk, for example, CIO takes only 64 word sectors from the buffer,unless
an end-of-record or end-of-file is requested when a shorter sector of data can
be written to empty the buffer. Similarly, on reading from a file, CIO will
transfer another unit physical record to the buffer only if there is room for it.
At the end of a read or write call, the positions of IN and OUT show how much
data is left in the circular buffer.

The operation code given to CIO via the last 6 bits of the first buffer parameter
word is also known as the buffer status since CIO returns a code to these 6
bits when a call has been completed. CIO is given an even code and adds one
to the code after completing a called operation. For read operations, the code
returned also indicates whether end-of-record or end-of-file terminated the
read.

The two octal digits of the buffer status bits have the following meanings:

Value First Digit Second Digit
0 Not used Request coded read
1 Buffer 1/0 Coded read completed
2 End Record Request binary read
3 File Mark Binary read completed
4 Backspace Request coded write
5 Rewind Coded write completed
6 Rewind unload Request binary write
7 Not used Coded write completed

3-29

3-30

A command given to CIO is even, the first digit specifies the type of operation,
and the second specifies the direction (read/write) and mode (coded/binary).
For buffer 1/0, as many physical records as possible are transferred between
file and buffer. End record or End file are used in writing to empty the buffer
and write end-of-logical-record or end-of-file for the particular medium.

One is added to the code to inform the program when a PP has finished a CIO
call. For reading, the first digit may be changed by CIO to indicate that the
transfer was terminated when end-of-logical-record (EOR) or end-of-file (EOF)
was encountered.

A programmer should make certain that a buffer is emptied of all information
to be read, before it is reused.

A backspace operation (40 = coded, 42 = binary) sets the parameters so data

of the new file position can be extracted from OUT. The amount of information
in the buffer (up to IN) depends upon the medium and the previous values of IN
and OUT.

The CIO package is a PP library routine which determines the medium of a
file, then calls in an overlay (listed below) to perform the operation:

2BD Backspace disk 2RD Read disk

2BT Backspace tépe 2RT Read tape (or rewind)

2LP Line printer 2WD Write disk

2PC Punch cards 2WT Write tape

2RC Read cards 2BP Check legality of parameters

CIO is usually called by a central program, but a PP can set up a buffer and
its parameters in central memory and call on another PP to perform a CIO
operation. However, many PP packages which use circular central memory
buffers call the required overlay directly into their own PP. The READ pack-
age (1LJ) transferring jobs from card to disk, for example, uses 2RC to read
cards to a circular buffer, and 2WD to write them to disk.

3.11.1
BUFFER CODES

In the following discussion, the expressions in parentheses are the binary
values which correspond to the buffer status octal digits, x may be either 0
or1l.

Input (001, 0x0)

File is read into circular buffer until buffer is filled (001, 0x1) or until end
record (010, 0x1) or file mark (011, 0x1). The mode bit (binary/BCD) is
ignored only when reading from disk or one-inch tape. A file mark response
should never occur with data.

Output (001, 1x0)

Data in circular buffer is recorded on file for as many complete physical
records as available data. No partial end record is made. (001, 1x1).

End Record (010, 1x0)

Data in circular buffer is recorded on file including a short physical record to
mark end of logical record. The last physical record may be of zero length.
IN=OUT=FIRST. (010, 1x1)

File Mark (011, 1x0)

a) Data in circular buffer; or

b) Last buffer status (001, 1xx)

Data in circular buffer is recorded on file including a short physical
record to mark end of logical record. Then a file mark is recorded.
IN=OUT=FIRST (011, 1x1)

c) All others
A file mark is recorded. IN=OUT=FIRST. (011, 1x1)

Backspace Binary (100, x10)

Backspace to end of last record. A file mark is considered a record in this
case. IN=OUT=FIRST. (100, 011)

3-31

3.11.2
OPERATION

3-32

Backspace Coded (100, x00)

Backspace one coded line. A file mark is considered a coded line in this case.
The last physical record will be left in the buffer beginning at FIRST. IN and
OUT will be adjusted for a one line backspace. (100, 001)

Rewind (101, xx0)

Rewind the file. IN=OUT=FIRST. (101, 0xl)

Rewind Unload (110, xx0)

Rewind and unload the file. IN=OUT=FIRST. (110, 0x1)

All parameter values (IN, OUT, FIRST, LIMIT) must be set by the calling
program. For input, CIO reads data into the buffer beginning at IN. CIO con-
tinues reading as long as there is storage available or until there is no more

“data. IN is advanced by one for each data word read. When the value of

IN=OUT-1, the buffer is full and the operation complete.

If IN = OUT, IN is advanced to LIMIT-1 and CIO automatically resets IN to
FIRST and continues reading all in the same read operation until IN = OUT-1.
The maximum buffer capacity for any read is LIMIT-FIRST-1.

For output, CIO writes data from the buffer beginning at OUT. Only complete
data blocks are written to the output file with no partial end record written
unless the end of record or end of file function is given in the CIO call.

If EOR or EOF is not selected, CIO continues writing until there is not room in
the buffer for a full block. K EOR or EOF is selected, CIO writes until OUT=
IN and then sets INFOUT=FIRST. OUT is advanced by one for each word written
When OUT=LIMIT-1, CIO automatically resets OUT to FIRST and continues the
write operation.

The central program must complete writing a record before requesting a back-
space, rewind, or mode change but it need not complete writing a record before
requesting a file mark.

The central program must complete reading a record before beginning output
data to the buffer.

3.12
CALLING
PROGRAMS

3.12.1
CALL CENTRAL
OVERLAY

Binary tapes and coded one-inch tapes record 1000 octal word physical records
in odd parity: no special control words are added. A zero length physical
record is generated by recording a partial word (4 bytes). Coded one-inch
tapes use packed display code with short word separators. Coded half-inch
tapes record 120 character BCD code in even parity.

A one-inch tape with mixed binary and coded records presents problems if a
backspace crosses a mode boundary. A problem exists in mode change from
coded input to output on one-inch tape if the file is positioned between two lines
of code. No problem exists if the file is positioned before or after a file mark.
No problem exists in mode change on binary files.

A disk file cannot be substituted for a tape file if the file has multiple file marks
or has data recorded after a file mark.

The CLL peripheral program loads one or more overlays into an area specified
by a central memory program. This routine is called from a central program
by placing the name CLL in display code in the upper 18 bits of RA+1 of the
calling program. The low order 18 bits contain the relative address of the
parameters (BA).

bits 18 24 18

RA+1 CLL L(BA)

3-33

3-34

The location BA must be the first word of the following parameters, which
contain:

BA FWA
BA+1 LIMIT
BA+2 OVER1 FWAL
BA+3 OVER2 FWA2
BA+nt+l | OVERn FWAn
BA+n+2 (zero word)

FWA beginning address for first overlay

LIMIT Limit address for group of overlays
FWAn beginning address of OVERn (set by CLL)
OVERn Name of overlay

CLL searches for the overlays in the order named. The order of search is:

1. Resident Subroutine Library (RSL)
2. Control Library Directory (CLD)
3. Assigned job files
An overlay is loaded into central memory at the next available address begin-

ning with FWA. This address is entered into BA+1+n of overlay n. CALL
clears (BA) at the completion of the call.

If an overlay cannot be located, the address is left cleared in the BA region.
If an overlay exceeds LIMIT, 777777 is entered as the value for FWA,. The
last overlay parameter must be followed by a cleared word.

3.12.2

CALL AND EXECUTE EXU (call and execute) is a peripheral program which loads a called program
to replace the calling program. The calling program is destroyed. The
Monitor (MTR), in checking RA+1, calls EXU to overlay the calling program
with the program identified at the address in the lower 18 bits of RA+1.

bits 18 24 18

RA+1 EXU Locn (name)

EXU is in display code

Locn (name) is the location of the name of the routine to be called and
executed; name is in display code left justified.

3.12.3
DUMP STORAGE This peripheral program may be called from a display console with a control
card in any of the forms shown below: An octal jump is entered in the output
file with the central storage address and one data word per line.
DMP.
dumps the exchange area into the output file.
DMP, 3400.
dumps from the reference address to the parameter address.
DMP (4000, 6000) .
dumps from the first address specified to the second.
3.124
LOAD BINARY
CORRECTIONS This peripheral program may be called with a control card or from a display

console. Binary corrections are read from the input file and entered in central
storage. If a parameter is specified in the program call, binary cards are
loaded beginning with that address; otherwise, loading begins at the reference
address. Only one record is read from the input file. A call must be made for

3-35

3.12.5
LOAD OCTAL
CORRECTIONS

3-36

each block of data to be loaded. This program may be called with either of the
following formats:

LBC.

LBC. 2300.

This peripheral program may be called with a control card or at a display
console. Octal corrections are read from the input file and entered in central
storage. The octal cards used for these corrections must be in the following
format:

23001 45020 04000 00042 00044

Address begins in column 1; leading zeros may be dropped in the address.
The data word begins in column 7; spacing in the data word is not important
but the word must contain 20 digits. Several formats may be used to call this
program:

LOC.

reads all of the correction cards in the next input file record and modifies
central storage accordingly.

LOC, 1000.

clears central storage from the reference address to the specified address.
The correction cards are then read from the input file.

LOC (2022, 3465)

clears central storage from the first specified address to the second. The
correction cards are then read from the input file. This program may be called
to clear storage by providing an empty record in the input file.

3.12.6

PUNCH BINARY CARDS This peripheral program, which may be called with a control card or at the

3.12.7
DAYFILE MESSAGE

display console, punches a deck of binary cards directly from central storage.
Storage is not modified by this operation. The formats that may be used for the
call are shown below:

PBC, 2000.

a binary deck is punched from the reference address to the specified address.

PBC (2000, 3000)

a binary deck is punched from the first specified address to the second.

PBC.

punches a binary deck using the first word in central storage as a control word
for deck length. The deck always begins at the reference address and termi-
nates one address less than that indicated in the lower 18 bits of the first word.
This call may be used for punching any central or peripheral program in
standard format.

This peripheral program is called by entering MSG. in display code (left
adjusted) in RA+1. The lowest order 18 bits of the call word indicate the cen-
tral storage address for the parameter which consists of a sequence of words
in display code to be entered in the dayfile. The time and job name are auto-
matically inserted before the ensuing data. The data is terminated by a cleared

byte.

3-37

EQUIPMENT USE AND FILE STRUCTURE 4

.

4.1

EQUIPMENT/CHANNEL
AND FILE TABLES

4.1.1
EQUIPMENT
STATUS TABLE

The tables described in this section are the keys to all PP I/O requests. A
request entered into a PP specifies an operation for a named file. With this
information and the control point number, the PP program uses the tables to
find which piece of I/0O equipment it should drive and the attendant information
concerning channel, synchronizer, unit number, and so forth.

The Equipment Status Table (EST) in the central resident area indicates the
status of available equipment. A two-digit octal number giving the relative
address of a one-word table entry identifies each piece of equipment. The
fourth byte of a table entry contains a two-character mnemonic type. A control
point can request an equipment by number or type from the monitor, or the
operator may be requested to assign a numbered equipment. With the exception
of disk units, an equipment may be assigned to only one control point at a time.

Format for a one-word table entry:

bits 59 47 35 2322 11 0

control synchronizer .
. channel equipment spare
point p and
address number unit number type (6681)
— Y A A — —_—A
bytes lst 2d 3d 4th 5th

Interlock bit controller number
1 = lockout for 3000 series
0 = ready equipment

4-2

An equipment status word contains the following information:

First byte Address of control point (number times 200g) to which equip-
ment is currently assigned. Zero if equipment is not assigned
or is a disk unit.

Second byte Number of channel to which equipment is attached.
Third byte Equipment synchronizer and unit number.

Fourth byte Equipment type in display code:

DA channel zero disk unit

DB channel one disk unit

DC channel two disk unit

DS display console

CP card punch

CR card reader

LP line printer

MT 607 (1/2') magnetic tape unit
wT 626 (1") magnetic tape unit

}g I f,s’ul‘w . . L
ach code occupies only 11 bits; the 12th bit of the byte is an

interlock for equipment which may not be used. This bit is one
when the equipment is not available, zero when it is available.
It may be turned on and off by a console command, so the
operator can inform the system whether an equipment is up or
down.

Fifth byte This entry is not used.

The position of an equipment in the table is often assigned mnemonically; for
example:

equipment 62 = tape on channel 6, unit 2

The equipment numbers may be assigned by the installation, and corresponding
positions in the equipment status table set accordingly. Mnemonics are con-
venient for operators assigning tape units from the console. The quipment
number is the same as the relative location of the equipment data in the equip-
ment status table. The correspondence to tapes for a typical system is shown
on the following page.

TABLE 2

Equipment

00
01
02

04
05

06
07

10
11

30
31
32
33

40
41
42
43
50
51
52
53

60
61
62
63
70
71
72
73

. EQUIPMENT/CHANNEL NUMBERS
Channel Type
0
1 Disk File
2
4
12 Card Reader (405B)
13 Card Punch (415B)
13 Printer (501B)

[ar——
o
N

Display Console

3
2 Tape Transport (626B) (1')
3
4)
4
4
4
5 Tape Transport (607B) (1/2")
5
5
5
3
6
6
6
S > Tape Transport (626B) (1")
7
7
T

Word 027g of a control point area records the numbers of equipment (except
disk) currently assigned to the control point. This allows ten equipment reser-

vations per control point.

For an object job, card reader and printer are not

normally assigned explicitly, since cards will have already been stored on disk
by READ and printer output will go to disk to be printed later by PRINT.

4-3

4.1.2
CHANNEL
STATUS TABLE

41.3
FILE NAME/
STATUS TABLES

4-4

A PP must not drive an equipment before reserving the appropriate channel.
The channel number, determined from the equipment table entry should be
reserved by a request to the monitor and released after use.

The monitor records the assignment of channels to PP's in the channel status
table (CST) which occupies three words (0015 - 0017g) of central resident. The
first 12 bytes are associated with corresponding I/0 channels. A cleared byte
indicates the channel is not assigned; a PP number indicates a channel is

assigned to that PP.

The diagram below indicates the assignment of each channel to a respective

byte in central memory words 15, 16, and 17.
used for access to file name and file status table entries.
number is entered in display code.

Pseudo-channels 14 and 15 are

If assigned, the PP

Channels
bits 59 47 35 23 11 0

15 0 1 2 3 4
Central
Memory 16 5 6 7 10 11
words

pseudo pseudo
17 12 13 14 15

The name and status of all files are stored in central memory. The location of
this table is stored in central memory location 0004. An area of the central
resident contains a two word entry for each current file in the system. The
first word of an entry belongs to the file name table, the second to the file

status table.

FIRST WORD

A file name table word is set as follows:

control point assignment

file type
bits 59 17 11 ;1 2|0

A not
file name T used
priority J l
One octal
digit,1-7

A file name of up to seven alphanumeric characters, starting with a letter, is
stored left justified in display code.

A priority is set for files of type input and output.
The file type bits distinguish four types of file:

0 INPUT file (stored form on disk of a stacked job)

1 OUTPUT file (stored form on disk of output awaiting printing)
2 COMMON file (may be passed on from one job to another)

3 LOCAL file (discarded at the end of a job)

Files may be switched from local to common with the COMMON control card or
from common to local with the RELEASE control card.

The above terms indicating file types are not external descriptions; they are
internal designations which allow the system and user to maintain control over
the use of the files. That is, a file which is c¢lassed as local may not be used
by any job other than that to which it is local (same control point).

Control point assignment is the number of the control point to which the file is
currently assigned. (Zero if unassigned).

SECOND WORD

The file status table entry corresponding to a file name table entry, contains
in the top byte the physical equipment number (a pointer to an equipment status
table entry). The remainder of the word depends upon the type of equipment.

4-5

bits 59 47 35 23 11 0
Disk equipment first current current last buffer
number track track sector status®
bits 59 47 23 11 0
Tape equipment last block number last buffer
number status®
bits 59 47 23 11 0
equipment card count end of last buffer
Cards . .
number in record job flag status¥
bits 59 47 11 0
. equipment
Printer number status®

The operations which may be performed on a file include read and write (coded
or binary), backspace, write end record, and write end file mark. Files are
stored serially; read and write refer to the next position of the file. Equivalence
is preserved subject to the limitations of the equipment; for instance, a card or
printer file may not be backspaced; also a file is considered to extend only as
far as the last record written. A file on disk may have only one file mark after
the last record; therefore if an object program is to preserve equivalence
between tape and disk it should not write more than one file mark.

An operation on a named file is performed when file name, location of central
memory buffers, and a code for the operation are specified (CIO, section 3.11).
A PP can look up the name in the file name table and the equipment number
from the corresponding file status table entry and perform the requested opera-
tion; the operation code is even. When the operation is complete, one is added
to the code and it is entered in the last buffer status area of the file status table
entry. This serves as an interlock so only one PP at a time uses the file
(status is even when the file is active).

*mterlock: even, active; odd, inactive

4-6

4.2
FILE FORMAT

4.3
FILE NAMES

Files may be transferred from one device to another since equivalent formats
are used for files on cards, printer, disk, and magnetic tape. The information
in a file is stored serially. An object program may operate on named files and
the actual medium of a file can be specified on control cards; disk storage is
assumed if no assignment is made.

Except for a tape file which may have more than one file mark, files consist of
a single physical file divided into logical records. A logical record consists of
a number of 60-bit words containing either coded or binary information. The
form of storage and method of separating logical records depends upon the
equipment.

Coded information is stored internally, in display code on either a disk sector
or a magnetic tape record, with a maximum of 1000g central memory words.
The concept of logical records makes it possible to have equivalent forms of a
file on several media, without losing the advantages of each form of storage.
For example, several cards constituting a logical record can be transferred to
an equivalent form on disk storage where they are blocked in sectors.

Input and output operations of a central program involve a named file - a disk,
magnetic tape, punched card, or printer file. The physical unit associated with
a file name is controlled by the job control cards and is not a function of the
central program coding directly. The operating system provides a common
interface between the central program and the peripheral programs which drive
the equipment.

File names must begin with an alphabetic character and may have a maximum of
seven alphanumeric characters.

Three special file names, INPUT, OUTPUT, DAYFILE, are implied with each
job. These names must not be used for temporary files and other 1/0 files.

INPUT - the file from which the job cards are read. FEach job file is assigned
the name appearing on the job card when loaded. As the job file is picked up
for processing, the job file name is changed to INPUT.

OUTPUT - the file which ends in printer copy at the end of the job. During job
processing, this file name (OUTPUT) is used to collect all records to be printed.
When the job is completed, this file name is changed from OUTPUT to the name
which appeared on the job card.

DAYFILE - a disk file which contains the system history (dayfile) messages for
all jobs.

4-7

The total dayfile may be dumped with the following job deck structure:

JOBn,p, t,fl.
COMMON DAYFILE.
BKSP (DAYFILE)
ASSIGN52, A.

COPYBR (DAYFILE, A)

The dump will be on magnetic tape 52 in binary format with each line
shifted one character position to the right and a leading blank added. Other
formats may be selected with other copy routines. The dayfile is not up-
dated while this job is being executed.

TAPEnn.

The characters, TAPE, are added by the FORTRAN compiler whenever a
program 1/0O statement refers to unit nn. If unit mn is to be designated as other
than a disk file, the name TAPEnn must be used in the control cards such as
COMMON, REQUEST, etc.

Example:
READ(5,10) list

This FORTRAN statement would generate a reference to file TAPE5. The
control card necessary for the file to be a tape would be:

ASSIGN MT, TAPES.

OT ASSIGN 50, TAPES.

REQUEST TAPES.

or with subsequent operator assignment.

4.4

CARD FILES
4.5
DISK FILES

The format of a card file is as follows:

Column 1

7,8,9 End of logical record
6,7,8,9 End of file

7,9 Binary card (Figure 8)

7 and 9 not both in column 1 Coded card

A binary card can contain up to 15 central memory words starting at column 3.

Column 1 also contains a central memory word count in rows 0, 1, 2 and 3

plus a check indicator in row 4. If row 4 of column 1 is zero, column 2 is used
as a checksum for the card on input; if column 4 is one, no check is performed

on input.

Column 78 and 79 of a binary card is not used, and column 80 contains a binary
serial number. If a logical record is output on the card punch, each card has
a checksum in column 2 and a serial number in column 80, which orders it
within the logical record.

Coded cards are translated on input from Hollerith to display code, and packed
10 columns per central memory word. A central memory word whose lowest
byte is zero marks the end of a coded card (it is a coded record) and the full
length of the card is not stored if it has trailing blanks. This produces a com-
pact form if coded cards are transferred to another medium.

Storage for a disk file is reserved by the monitor in half-tracks as needed. A
particular disk file is stored on a number of half-tracks within the same disk
cabinet. A half-track consists of either the even or the odd numbered sectors
of a track. With this format, data can be efficiently streamed between disk
and central memory without the need for large buffers in peripheral memory.

Each sector of a file contains up to 64 central memory words of data, plus two
control bytes. The first control byte identifies the location of the next file
sector; it contains a sector number if the file is continued on the same half-
track, a logical half-track number if the file is continued on a different track,
or zero if there is no further information in the file,

8 (Aipulq) JéqumN aosouanbag pip)
1 L T
pasn jou
} ! }
pasn jou
~
N~
A A
v
o=
.2
©
£
S
E
o
- o
£
m
=
E
=
°
(5]
To)
<
Z.
E
5 G60Y 9Inpow Wwnsy¥oayn
O
junod pJaom
N T O - umT W oW M~ O o
SMOY
Figure 8. Standard Binary Card Format
4-10°

4.6
BINARY AND
CODED MODES

A logical half-track number is specified as follows:

(1 bit) Always set (indicates byte is a half-track number, and not a sector
number)

(7 bits) Physical track number
(1 bit) Track of odd or even sectors

(3 bits) Head group number

The second control byte specifies the number of central memory words of
information in a sector. End-of-logical record is indicated if this number is
less than 64. Both control bytes are zero for end-of-file.

Each disk file must start at the first sector of a logical half-track. When a
half-track is full, continuation is to the first sector of another half-track. The
forward linkage is constructed when writing and followed when reading. A
sector with two zero control bytes is always generated after a write operation.
The status word of a disk file records the current position. End-of-file can be
generated explicitly by an operation code, or implicitly after a write operation.

A binary record on disk storage is the same as a logical record. A logical
record may contain coded records, the end of each indicated by a central
memory word whose lowest byte is zero. In this sense, a logical record of
coded records is equivalent on disk storage to a binary record, and its use
depends upon context. '

The code for an operation on a named file specifies whether it is to be per-
formed in binary or coded mode. For some devices, the stored form of a file

is not dependent upon the mode. When writing to disk, for example, a number
of central memory words is transferred from a buffer, and there is no physical
difference between a binary write and a coded write, as the distinction lies in
the contents. This does not destroy equivalence between devices within their
limitations, for instance, a printer always assumes coded information. For a
program copying coded information from disk to 1/2" tape, the mode in reading
from the disk to a central memory buffer is ignored; but the PP writing on tape
will accept coded records (ending in a central memory word whose lowest byte
is zero) from the buffer, and write each as a separate physical record on tape in
BCD mode. A central program may extract a coded record from a named file
with a coded input, and a search for a blank byte, since the PP software will
have taken care of any special hardware action if the device was mode dependent.

4-11

4.7
MAGNETIC
TAPE FILES

4-12

The stored form of a logical record is independent of the mode when written on
1" tape. A logical record is divided into 1000g word (central) physical blocks;
a shorter block marks end-of-logical-record. If the length of a logical record
is not a multiple of 10004 words the data is exactly contained in the physical
blocks; if the length is a multiple of 1000g words; an additional shorter block of
four 12-bit bytes is necessary.

A logical record can have zero length (corresponding to successive 7,8,9 cards).

Any coded records within a logical record end in a word whose lowest byte is
zero. Thus, coded information sent to 1" tape is blocked, in display code.

Exactly the same information is written on 1/2'" as on 1" tape in binary mode.
A coded write to 1/2" tape causes BCD records of 120 characters to be written.
Each coded record is translated from display code to BCD (IBM external code),
padded with spaces to 120 characters, and written on tape with even parity.
Upon input from 1/2" tape in coded mode, characters are translated from BCD
to display code, trailing spaces are discarded, and the record is stored inter-
nally in the normal form. ‘

End-of-file for 1/2' and 1" tapes is written as the usual file mark.

In reading 1" or binary 1/2" tape, blocks of less than 4 bytes are ignored as
noise. Blocks of less than 6 bytes (12 characters) are ignored when reading
1/2" tape in coded (even parity) mode.

Disk storage cannot be substituted for tape if a program writes more than one
end-of-file or writes information beyond end-of-file. Also there is no equiva-
lent to end-of-logical recoxrd on 1/2" tape in coded mode.

PROGRAMMING LANGUAGES 5

5.1
ASSEMBLY
LANGUAGES

5.1.1
ASSEMBLY
SYSTEM CALLS

The ASCENT assembler will produce Chippewa binary decks from ASCENT or
ASPER coding. The language specifications are as described in the ASCENT
and ASPER Reference Manuals with the extensions and restrictions explained in
this section.

When ASCENT and ASPER coding is used:

FORTRAN statements may not be mixed with ASCENT coding.

Common and external symbols are not available.

System macros are not provided.
The ASCENT assembler can produce and modify COSY decks. COSY is a
compressed symbolic deck containing all information, including comments,
from the source deck; but it is from 1/10 to 1/5 the size of the source deck,
depending on the number of comments. Two consecutive field separators ter-
minate the variable field. The variable field may contain the arithmetic

operators for multiplication and division. Programmer macros may be used in
both ASCENT and ASPER. Macros may call macros.

A variable field definition (VFD) is available in ASCENT.

Control card format for calling ASCENT assembly system to produce Chippewa
binary decks:

ASCENT (L, X, PA, PC, PB, COSY)

L If nonzero, a listing is written on the output file.
X Inoperative; if nonzero, will cause a load-and-go file to be written.

PA If nonzero, a Chippewa binary deck is written on P80C (Punch 80
columns).

PC I nonzero, a COSY deck is written on P80C.

5-1

PB I nonzero, a relocatable binary deck is written on P80C.

COSY File from which COSY input may be read; this may be INPUT or
COsY.

The nominal case is ASCENT (L, 0, 0, 0, 0, INBUT)

5.1.2
DECK STRUCTURE The following are examples of deck structure for calling the assembler:

List Only

ASCENT (L)

List and Punch a Chippewa Binary Deck

ASCENT (L,0,PA)
or
ASCENT (L, ,PA)

ASSIGN CP,P80C.

List and Punch a COSY Deck

ASCENT (1.,0,0,PC)
or
ASCENT (L,,,PC)

ASSIGN CP,P80C.

5-2

List and Write a COSY Deck on Tape 51

(ASCENT (L,0,0,PC)

ASSIGN 51,PC,

Insert Modifications Into a COSY Deck on Tape 51, List, and Punch a Chippewa.

Deck

O oo~oy

Modification pack ending
with COSY card

Voo~

(ASCENT (L,0,PA,0,0,COSY)

/ASSIGN 51, COSY.

/ASSIGN CP,P80C

/30B.

5-3

5.1.3
ASCENT PSEUDO-
OPERATIONS

roct
LOC

LOC
LOC
LOC

LoC
LOC

LOC

Name Parameters
ASCENT
SUBRT C
LIST Vi
SPACE Vi
EJECT
MACRO Name, V1,V2...
ENDM
IFF V1i,Vv2,V3
IFZ vV1i,Vv2
IFN V1,V2
REPLACE V1,V2
DELETE V1i,V2
INSERT Vi
COSY
EQU V1
CON Vi,Va...
BSS Vi
BSSZ Vi
BCD nnCOMMENT
BCD *COMMENT*
DPC nmmCOMMENT
DPC *COMMENT*

Description

Sets assembly mode to ASCENT

Causes relocation bits in Chippewa
binary deck

Suppress listing if V1 # 0

Space V1 lines

Eject the page

Beginning of macro definition

End of macro definition

If V1 = 0, assemble next card if V2 # V3
If V1 # 0, assemble next card if V2 = V3
Assemble succeeding V2 cards if V1= 0
Assemble succeeding V2 cards if V1 # 0

Replace cards from COSY V1 to v2. If
V2 is omitted, replace card V1

Delete cards from COSY V1 to V2. If
V2 is omitted, delete card V1

Insert following source cards after
COSY V1

End of modifications and start of COSY
deck

Assign V1 value to LOC

Assign values V1,V2,... to LOC,
LOC+1,...

Assign a block of V1 core cells to LOC
Assign a block of V1 core cells to 1.OC

Assemble nn succeeding characters in
BCD (nn must be 2 decimal digits)

Assemble characters within * in BCD

Assemble nn succeeding characters in
DPC (nn must be 2 decimal digits)

Assemble characters within * in DPC

TLOC indicates a symbolic identifier is permitted in the location field; where
none is shown, this field is ignored by the assembler.

Name Parameters

LOC VFD
END
5.1.4
ASPER PSEUDO-
OPERATIONS Name Parameters
ASPER
ORG Vi
ORGR Vi

Description
VFD card generates a 60 bit word.
Field specifications are:

Dnn/V1 generate nn bits of display
code (nn must be a multiple
of 6, the first char must be
alphabetic)

Nnn/V1 generate nn bits as an integer

Ann/V1 generate nn bits as an address
(if V1 is relocatable, nn must
=18 and the 18-bit byte must
be positioned in bits 0 -17,

15 - 32, or 30 - 47).

The sum of all nn's must be =60. X
less than 60, the result will be leit
justified with 0 fill

Examples:
VFD D30/INPUT, N12/0,A18/NAME

Indicates last card of assembly

Description

Sets assembly mode to ASPER.
Sets location counter to value of V1

Sets location counter to value of V1

All other pseudo-ops are the same as for ASCENT except:

SUBRT
VED

has no meaning

is not allowed

5-5

5.1.5
ERROR FLAGS The left margin of the listing may have error flags as follows:

op-code error
undefined symbol in variable field

doubly defined symbol in variable or location field

range error for ASPER jump instructions

0}
U
D
v VEFD error
R
F

error on CON, BCD, or DPC field

5.1.6

FORCING COMMANDS The instruction following a RJ, JP or PS will be forced upper; and a plus in the
location field will cause the instruction to be forced upper.

A minus in the location field will cause the instruction to be assembled in the
next available portion of the 60 bit word regardless of the preceding instructions.

5.1.7

SCANNING RULES A card may contain information from column 1 through column 72. Either a C
in column 1 or a period in column 2 will indicate a remarks card. A period in
or after column 11 sets off the remainder of the card as a remark; however,
on a CON pseudo-op card or in a literal, a period is a decimal point.

The label field may start anywhere from column 2 through 5. The label ends in
column 9. Column 10 is ignored.

The Op code field may start on or after column 11; it is terminated by a field
separator which may be a blank, comma, or equal sign.

The variable field may begin after any number of field separators following the
op code; the scan will attempt to locate the beginning of the variable field up to
column 72. Field separators after the beginning of the variable fields delineate
operands. Two consecutive field separators will terminate the scan and
remarks may follow without any preceding period. The operand expressions in
the variable field are evaluated in a left to right scan.

B26*5+A21 yields (B26 * 5) + A21
A21+B26%5 yields (A21 + B26) * 5

5.1.8
PROGRAMMER-DEFINED
MACROS

Parentheses are limited to literals and complex constants.

On a CON card the operand entries may be separated by blanks or commas, but
two consecutive commas do not define a zero word.

CON 8.263E+5, 26,27bA53%25bbCONSTANTS FOR J5

defines 4 words, a floating point number and 3 integers.

The numbers generated by literals are listed in the order of occurrence at the
end of the program.

A dollar sign does not define the beginning of the op code field of another
instruction.

The programmer may define macros within an ASCENT or ASPER subprogram
with a MACRO pseudo instruction in the following form:

Location Opcode Address

blank MACRO symbol, list

MACRO pseudo op code
symbol macro name

list sequence of symbols and/or registers, separated by
commas, which define the formal parameters of the macro

Macros are called by writing the name of the macro in the opcode field; and in
the address field, the quantities to be substituted for the dummy parameters in
the definition.

The following rules apply to ASCENT and ASPER use of macros:

1. The definition of a macro must precede the first executable instructions of
the subprogram in which it is used.

2. Programmer-defined macros are local to the routine in which the defini-
tion appears.

3. A maximum of 100 macros is allowed per subprogram.

5-7

5-8

10.

11.

12.

Macros may be nested to any depth; they may be used in the definition of
other macros, provided they are themselves defined prior to use.
Recursive definition (a macro used in its own definition) is not allowed.

Macro names may be any arrangement of letters and numbers which
starts with a letter and contains no more than 8 characters.

The macro name must not be identical to a machine mnemonic code, a
pseudo code, a system macro code, or any other programmer-defined
macro in the same routine.

A maximum of 16 parameters are allowed in a macro parameter list.
The order and count must be the same for formal and actual parameters.
In ASCENT subprograms register names and operands in the formal
parameter list may be changed by an actual parameter. For example, a
parameter Bk may be changed to Ak or to an operand.

A zero actual parameter will cause insertion of a zero in the generated
instruction if the formal parameter is in the address field, or a blank if
the formal parameter is in the location field.

A symbol in the location field of a macro call will be assigned to the first
word of the macro, and will override any symbol placed there as a para-

meter.

ENDM pseudo-op must be the last instruction in the macro definition.

ASCENT Example:

Location

us

Opcode

MACRO
SA1

SA2
FX6
SA6
ENDM

MACRO
SAM
ABC -
FX7
SA7
ENDM

Address

ABC,D,B2,A2,BN,RESULT,X
B2

BN+tX

X1*¥X2

RESULT

DEF,X4,AM,F,H,Z, L
oP

E,B3,A3,Z,F,G
X6/X4

G

Using the definitions above, a macro call of

DEF

X5, A5, LOC1, L.OC2, U*V+Q-10,0

would generate the following set of instructions:

LOC2

SA5
SAl
SA3
FX6
SA6
FXT7
SAT7

op

B3
U+V+Q-12B+G
X1¥X2

LOC1

X6/X5

G

5.1.9
RELOCATION RULES
FOR SUBROUTINES

5-10

ASPER Example:

Location Opcode‘ Address
MACRO XYZ,0P,A,B,C
LDM A,B
or Cc
STM AB
ENDM

Using the definition above, a macro call of
LOC XYZ SBD, D1, D2, D3

would generate the following set of instructions:

LOC LDM D1, D2
SBD D3
STM D1,D2

A symbol is - any arrangement of letters and numbers which starts with a letter
and contains up to 8 characters. A symbol is relocatable if it occurs in the
label field of an instruction or pseudo-operation that defines a core location.

A symbol is non-relocatable if it occurred on the label field of an EQU card
whose operand is an integer. Operands that consist of expressions of non-
relocatable symbols will not be relocated. Operands consisting of expressions
that are mixtures of relocatable and non-relocatable symbols will not be
relocated if a relocatable symbol is involved in a multiply (*) or divide (/)
operation; or if an expression consists of the sum or difference of two or more
relocatable symbols.

In the Chippewa system, the relocation bits are 16 and 17 of a 30-bit instruction.
Bit 16 signifies common; bit 17 an ordinary symbol. Both 16 and 17 on or off
signify a constant. Certain valid instructions although handled properly by the
assembler may be loaded improperly.

Example:

SX7 220314B.

This instruction has bit 16 set and will be relocated in common.

The first two words of a subroutine define its name, length, and relocatable
length for the loader. The required words may be generated by VFD pseudo-ops
of the form:
VFD D24/NAME, N18/0, A18/END
VFD A18/RELOC, A18/END, N24/PARAMS
The symbol END should point to the last core location used by a routine. The
symbol RELOC should point to the first constant used by a routine. Neither
END nor RELOC may be non-relocatable; they should be defined in terms of
relocatable symbols that have been multiplied by the integer, 1. A subroutine
should therefore have the following format:
ASCENT
PARAMS EQU N N = number of parameters in the call
SUBRT
VFD D24/NAME, N18/0, A18/END
VED Al8/RELOC, A18/END, N24/PARAMS
BSS PARAMS + 1

(Subroutine Instructions)
RELOC EQU *k]+1 start of constants
(Subroutine Constants)

END EQU *k1+1 end of constants
END

5-11

5.1.10

MISCELLANEOUS DATA The peripheral routines 2RC and 2PC have been modified for use with ASCENT.
2RC will input the entire 80 columns of a binary card if column 1 = 0005. 2PC
will punch an 80 column card image if the file name is P80C. The ASCENT
assembler requires a field length of 350004.

5.2

FORTRAN AND
ASSEMBLY
LANGUAGE
COMPILER

5-12

The tables have been defined on EQU cards and their lengths are easily changed
by re-assembly. ASCENT table lengths are as follows:

Symbol Length Definition
AS25 1000 Maximum number of symbols
AS32 200 Maximum INSERT, DELTE, REPLACE cards
AS33 500*10 Insert table size
AS78 25 Number of literals
AS90 50 Number of macro names
AS91 400 Macro skeleton table length

The Chippewa Operating System contains a compiler which is capable of pro-
cessing programs written in the FORTRAN language, and programs written in
a subset of the ASCENT Assembly Language. Format and required parameters:

RUN (m, fl, cl, bl, I, O)

m

Mode of compilation

G
S

v’

= W O t

Compile and execute; no source or memory map listing
Compile, no execute, with source and memory map listing

Compile, no execute, punch complete program on binary cards,
with source and memory map listing

Compile, no execute, list source and object code
Chain compile (in G-mode)
Batch program compile (in S-mode)

Compile, no execute, punch, object code and loader information
only

fl Object program field length (octal)

cl Object program common length (octal)

bl Object program I/0 buffer length (octal)

I File name for compiler input

(0] File name for compiler 1isfab1e output
If a parameter is entered as zero, or space, or the list of parameters is shorter
than six, an assumed parameter is used by the compiler:

m Assumed to be G

fl . Set to job field length (defined on job card)

cl Set to length of common in main program

bl Set to buffer length (installation parameter normally 2000g)

I Assumed to be INPUT (standard input file)

(0] Assumed to be OUTPUT (standard output file)

If standard values are to be used for all parameters, the program call card
may be shortened to:

RUN.

Compiler output, except in G mode, includes a reproduction of source state-
ments, a map of variables and all error indications detected during compilation.
If G mode is selected, all source output is suppressed unless errors are
detected; in which case, output is the same as indicated for other modes. If

L mode is selected, output will include an octal list of compiled instructions
following the printing of each source statement for which object code is produced.

A binary copy of the correct object code compiled is always put on the disk as a
binary file; the name of the program becomes the file name. This file may be
called and executed repeatedly by name within this job file.

5-13

5.2.1 ;
FORTRAN A full description of the FORTRAN language statements, card format, restric-

tions and error diagnostics is available in the Chippewa Operating System
FORTRAN manual.

The compiler is capable of compiling programs written in FORTRAN 1V,
FORTRAN II and FORTRAN 63 specifications. FORTRAN 1V is the implied
compilation mode.

Header Cards

The first card of each program to be compiled and executed by the RUN com-
piler must be of the following format;

FORTRAN program statements

5]6]7
‘ IPROGRAM name (fl’ ven ,fn)

Central Chippewa assembly statements

sl6l7
| |MACHINE PROGRAM name (fl,...,fn)

ASCENT assembly statements

5]67
| |ASCENTF PROGRAM name (£,...,f)
i names of all input and output files required by the program and its
subroutines.

Each subroutine written in the PORTRAN language must begin with the state-
ment:

5|6ly
‘ |SUBROUTINE name (py,---,P)

n

pj parameters passed by the calling routine to the subroutine.

5-14

5.3
MACHINE
LANGUAGE

5.3.1
CARD FORMAT

Each function written in the FORTRAN language to be compiled by RUN must
begin with a statement equivalent to the subroutine statement except that the
word SUBROUTINE is replaced by "type FUNCTION". Type which is optional,
may be one of the following:

INTEGER

REAL

DOUBLE PRECISION or DOUBLE

COMPLEX

LOGICAL

The compiler is capable of processing programs and subroutines written in the
Chippewa assembly language. Such programs may be intermixed with regular

FORTRAN programs and subroutines. A subprogram written in this langnage

may be compiled separately by using a RUN program call card.

The format for the assembly language statements is as follows:

567
LOCN|*|instruction comments

e
w

LOCN Location tag of 2 to 6 alphanumeric characters in columns
1-6. No embedded blanks. An asterisk in column 1
indicates a remark card.

* Continuation mark, must be in column 6. Up to 19 continua-
tion cards allowed for each statement; cannot have * in
column 6 in the first card of a continuation statement.

instruction May begin in column 7 or later and terminate before column
73 unless continued on the next card. No embedded blanks

allowed.

comments Comments may follow the instruction if separated by one
blank. :

5-15

5.3.2
CONSTANTS Constants in standard FORTRAN notation may be specified in the assembly
language. (Chippewa FORTRAN manual).

Constants may begin in column 7 or after and terminate before column 73 unless
continued on the next card. Embedded blanks are not allowed. Octal constants
have a B character suffix. A constant may have a symbol associated with it in
the location field.

533
INSTRUCTION FORMATS In the assembly language, operational registers are designated by single-
character names as follows:

5 =X0 0 = B0 A=A0
T =X1 I =B1 B=Al
U =X2 Jd = B2 C = A2
VvV =X3 K = B3 D=A3
W =X4 L =B4 E=A4
X =Xb M = Bb F=A5
Y = X6 N = B6 G = A6
Z =X17 O = B7 H= A7

The letter R specifies a return jump, and the letter P specifies all other jumps.

Let S represent any of the letters 5-Z, I represent any of the letters I-O or the
digit 0, and A represent any of the letters A-H. Let Q represent a positive
integer less than 216 or an alphanumeric tag of two-six characters. Then the
forms of assembly-language instructions, grouped according to functional units
required for execution, are as follows:

Symbolic Form Machine Form Example

0 00xxx 0
=Q 01xxK R=TAG

P=Q+1 02ixK P=TAG+N
P=Q, $=0 030jK P=TAG, T=0
P=Q, 8/0 031jK P=TAG, U/0
P=@, 8)0 032jK P=TAG, V)0
P=Q, 5(0 033jK P=TAG,W(0
P=Q,S.1 034jK P=TAG,X.I
P=Q,8.0 035jK P=TAG,Y.O
P=Q,8.D 036jK P=TAG,Z.D
P=Q,S.N 037K P=TAG,S.N
P=Q, I-1 04ijK P=TAG, J=K

5-16

Symbolic Form

P=Q,1/1
P=Q, 1
P=Q, (I

5=8

S. I=8*8
5. 1=8+8
S.1=8-8

8. N=5+8
8. N=8~-8
S.D=8+8
S.D=8-8
S. R=5+8
S.R=8-S

S. I=S+8
8. I=5-8

5. N=5*8
S. R=5*8
S.D=5*8

5. N=8/8
S.R=8/S

$
S=*8

5=(A+Q)
S=(*+Q)
5=(5+Q)
S=(S+])
S=(A+T)

Machine Form

05ijK
06ijK
07ijK

10ijx
11ijk
12ijk
13ijk
14ijk
15ijk
15ijk
17ijk
20ijk
21ijk
22ijk
23ijk
24ijk
25ijk
26ijk
27ijk
43ijk

30ijk
31ijk
32ijk
33ijk
34ijk
35ijk

36ijk
37ijk

40ijk
41ijk
42ijk

44ijk
45ijk
46xx%xX
47ixk

50ijK
51ijK
52ijK
53ijk
54ijk

Example

P=TAG, L/M
P=TAG, N)O
P=TAG, I(0

Y=V
T.L~W*X
V.L=Y+Z

T=(C+TAG)
U=(J+100)
Z=(T+30B)
T=(T+J)
U=(B+K)

5-17

Symbolic Form Machine Form Example
S=(A-]) 55ijk V=(C-N)
S=(+]) 56ijk W=(M+N)
S=(I-) 57ijk X=(L-K)
EA+Q 60ijK J=H+TAG
EI+Q 61ijK K=1+10
=5tQ 62ijK I=L+55B
I=S+1 63ijk M=T+dJ
I=A+I 64ijk N=G+K
=A-I 65ijk O=A-L
=I+1 661ijk =I+d
=I-1 671ijk =K-M
S=A+Q 701K T=G=TAG
S=HQ 71K U=K+5
S=5+Q 72ijK V=1+15B
S=S8+1 73ijk W=X+J
S=A+1 74ijk X=A+K
S=A-1 75ijk Y=X-L
S=I+1 761ijk Z=M+1
S=I-1 7Tijk S=N-0

Notes:

1. The arithmetic mode indicators L, C, N, D, R, and I may immediately
follow a result register name; the period in these cases is optional.

TL=X*Y
UC=v+V
VN=T/W
WD=X+Y
XR=8-T

2. In the instructions 02 and 50-77 either term may be dropped, in which
case a 0 designation is assembled.

=K
P=TAG
T=()
J=15B
U=-K

3. In the instructions 50-54, 60-64, and 70-74 the terms may be inter-
changed unless Q is a constant.

T=(TAG+L)
M=K+B
U=L+X.

5-18

9.

10.

In the instructions 50-52, 60-62, and 70-72 the plus sign may be
replaced by a minus sign if Q is a constant.

X=(I-30)
J=K-55B
Y=-1'

In the instructions 51, 61, and 71 the right member may be an indicated
sum or difference of a tag and a constant, in which case the constant
must follow the tag.

W=(TAG-35)
K=TAG+1
U=TAG+100B

In the instruction 51 the parenthesized quantity may be a constant,
represented in conventional FORTRAN form, only if the result register
is to receive the machine version of that constant; in this case the
address of the converted number is assembled into the instruction.

T=(-1.5E-6)
U=(47550516045547 B)

I Q is to correspond to an octal integer, the digits in the number must
be trailed by a B.

Alternate forms for certain instructions are:

5=S.8 11ijk
S=8$S 12ijk
S=-8.8 15ijk
S=-5$S 16ijk

§=5+8 36ijk
5=5-8 37ijk
S=5*%8 40ijk
5=S/8 44ijk
A=A+Q 50ijk
A=5+Q 52ijk
A=8+1 53ijk
A=A+ 54ijk
A=A-1 55ijk
A=T+ 56ijk
A=I-1 57ijk

A plus sign in a location field will force the corresponding instruction
to the high order positions of a new word.

The instruction 00 is assembled as a full zero word.

5-19

534
PSEUDO-OPERATIONS
AND VARIATIONS The following FORTRAN statements are permissible in a Chippewa language
assembly:
COMMON
EQUIVALENCE
DIMENSION
EXTERNAL
DATA
These statements, written in the standard FORTRAN notation must appear after
the PROGRAM or SUBROUTINE statement and before the assembly language

cards. The variables in these statements may be referenced in subsequent
instructions.

Six types of declaration statements are allowed. These provide constants with
a symbol which may be referenced within the executable coding.
CON(c1=Vy,C9™Vg: - - Cp=Vy)

The constants on the right of the equal sign are assembled into a cell assigned
to the symbol appearing on the left of the equal sign.

Example: CON(C1=25,C2=777B, C3=-6.54E-2)

HOL(h1:g1 N h2:g2 3 e e hn=gn)

The ten-character groups, including spaces are converted to display code and
assigned to a location identified by the symbols appearing to the left of the equal

sign.

Example: HOL(H1=ABCDEFGHIJ, H2=1234567890)

ABS(3.1=V1, 89=Vg, ... an=vn)

The unsigned values are assembled into the address field of the instructions
containing the associated symbols.

Example: ABS(JJ=100,KK=100B, LI=7777B)

5-20

RES(r{=wy,rg=Wg,... T =W,)

Local blocks are reserved for the number of words specified; the symbols is
assigned to the first word at the block.

Example: RES(K1=10,K2=100B,K3=1000)

COM(cy=V{;Co=Vg,...C =V)

Blank common blocks is reserved for the number of words specified, the
symbol is assigned to the first word of the block.

Example: COM(B1=1, B2=300, B3=205B)

SUB(s;=r;,89=Tg, ... 83=Tg)

The subroutines named on the right of the equals operator are assembled into
memory and tagged with the symbols appearing on the left.

Examples: SUB(SI=SIN, LG=LOG, OUT=OUTPTC)

The card format for declaration statements is similar to assembly language
card format; they must appear in columns 7-72, and no embedded blanks are
permitted; continuation cards and comments are handled in the same way.

The following alternate form of the above declaration statements is accepted.
If the opening parenthesis is not used, any separation such as comma, slash,
etc., may be used if the closing parenthesis is also dropped.

5]6|7
| lCON v=e¢, V=C,...,c=c remark

5-21

5.3.5
PROGRAM
ORGANIZATION

5-22

The card decks to be assembled must be in the following order:

Program or subroutine card
FORTRAN statements, if any
Declaration statements, if any
Instruction cards

Constant cards

@D O ok W N

END card

The instruction portion of the deck must begin with three zero lines of
coding plus one zero line for each file name:

(- ,in) of the program card or each parameter
(Pys---5Pp) of the subroutine card:
0 control word 1
0 control word 2
Aq 0 parameter 1

A, 0 implement 2
0 exit/entry line -

The first two zero lines correspond to the central information furnished by
the compiler and the last zero line is the exit/entry line for a subroutine;
unused by a main program. The first executable instruction follows this
exit/entry line.

The constant portion of the deck must be separated from the instruction
portion by a card with two periods in columns 7 and 8. Constants may
appear in the instruction portion of the deck provided they are positive and
less than 254.

END is a FORTRAN card and must have 7, 8,9 punches in column 1.

A card with a period in column 1 may appear anywhere in the deck; it
causes a page eject of the printed listing.

A card with an asterisk in column 1 may appear anywhere in the deck; it
is treated as a remark card.

5.4

FORTRAN COMPILER/

ASCENT SUBSET

5.4.1
HEADER CARD

The FORTRAN compiler, RUN, is capable of processing programs or subrou-
tines written in a subset of ASCENT assembly language. Such routines may be
intermixed with regular FORTRAN programs or subroutines. A routine written
in this language may be compiled independently by the RUN program call card
described in Section 5. 2.

Any routine written in this language to be processed by RUN must begin with a
card of the following type:

Main Program

|7

|IASCENTF PROGRAM name (f,,...,f)

Subroutine

| |7

||ASCENTF SUBROUTINE name (py,...,p)

n

f; are the file names of all 1/0 files used in this program and its subroutines.

p; are the parameter names in their conventional FORTRAN usage.

5-23

5.4.2
CARD FORMAT

543
CONSTANTS

5.4.4
PSEUDO-OPERATIONS
AND VARIATIONS

54.5
PROGRAM
ORGANIZATION

5-24

The card formats are as described in ASCENT programming manuals with the
following restrictions:

An address field may contain an indicated sum of a symbol and constant,
but not a sum or difference of two symbols.

Location symbols may start in column 1, but may not extend beyond
column 6.

Instructions may start anywhere beyond column 6 but no card may contain
more than one instruction.

A PS instruction causes assembly of a full zero word.

Double precision and complex literal constants are not accepted.
A minus sign is not allowed in a location field.

An asterisk is not allowed in an address field.

The instruction portion of the deck may contain BSS, BSSZ and EQU cards.
The address field of such cards may contain only a single constant.

Constants may appear in the standard FORTRAN notation with the restrictions
as designated in Section 5.3.2.

The allowable pseudo-operations and added statements and instructions are as
described in Section 5. 3.4.

Each ASCENTF subprogram must be organized in the following manner:

Program and subroutine statement
FORTRAN statements, if any
ASCENT instructions

Constant cards

ool W N

END card

5.4.6
COMPATIBILITY

5.5
PERIPHERAL
ASSEMBLY
LANGUAGE

The following definitions and restrictions must be adhered to in this organization.

The instruction portion of the deck must begin with three zero lines of
coding plus one zero line for each file name (fi) or parameter pj) of the
header statement.

The constant portion of the deck may contain BSS, BSSZ, EQU, DPC, BCD
and CON cards. The address field of these cards may contain only a single
constant or 10-character display code string of the form *ABC... .J*,

The DPC and BCD strings are converted to digplay code. BSS and BSSZ
cards produce zeroed regions.

The constant portion of the deck must be separated from the instruction
portion by a card with two periods punched in columns 7 and 8.

END is a FORTRAN card, with END punched in columns 7, 8, and 9.

All formats which have been described in Section 5. 3.2, except the
instruction formats, are acceptable to the compiler under ASCENTF.

Except for the initial card, double-period card, and separating instructions
from constants, upward compatibility from the Chippewa system to SIPROS
may be achieved by starting location symbols of no more than five characters
in column 2 and starting instructions and pseudo-operations in column 11.

This assembler (PAS) is an alternate program which may be used instead of
ASPER. I converts the peripheral processor symbolic language into PP
absolute code. The assembled program is available as a binary card deck and
a line printer listing.

The PP assembler may be called by the name PAS. on a program call card.

The assembler produces a side-by-side listing and binary cards. There is no
provision for leaving a running version of the assembled program in a PP.
Binary card punching is suppressed if an error is detected during the assembly
process. The binary cards are punched in the Chippewa Laboratory standard
binary card format:

5-25

5.5.1
CARD FORMAT

5-26

Columns 1 and 2 contain a binary card identifier (7,9 punches), the number
of central memory words (60 bits) on the card (15, maximum) and a card
checksum. Columns 3-77 contain program information; column 80 is a
card sequence number in binary.

An alternate form of punched cards may be obtained with a parameter on the
PP program call card (transmitted via lower 18 bits of the input register).

|3
PAS, 1000.

This control card produces a full 80-column binary card with no checksum or
other identification; however, these binary decks are not in a usable format for

. the Chippewa Operating system.

The card format for this assembler is fixed field, except for the remarks and
the DIS pseudo-operation.

Standard Format

Columns
1-4 Location field; maximum of four alphanumeric characters
5 Blank
6-8 Operation field; three-character mnemonic
9 Blank
10-13 Address field; maximum of four alphanumeric characters. There

are no provisions for adding or subtracting constants.
14-19 Blank
20-80 Comments

One-word Instruction Format

with
mnemonic
operation

with
octal
code

LOCN
OPN
ADDR

NADR

1 4lsle 8lo]1013|14 19]20-—80]
LOCN’blOPN'b|ADDRlb-—~b comment

[1 4ls|6 8|9]1013]14 19] 20— 80|
'LOCN‘bIbbblb’NADR‘b-—-b comment

Location tag alphanumeric (optional)

Operation mnemonic

Address

octal constant (one or two octal digits)

alphanumeric (four characters maximum)

Four octal digits denoting OPN and ADDR in absolute code

Blank

Two-word Instruction Format

with
mnemonic
operation

with
octal
code

NADR

1 41516 8|9J10 13|14 19{20 <80

LOCN| b| OPN|b| ADDR|b <= b| comment

ADDR

LOCN|b|bbb|b NADR b «— b| comment]

1 4]5]6 8|9/ 1013|14 19]20«— 80
LOCN|b|bbb|b| NADR |b «—=b]| comment

ADDR
NADR b <> b|comment

LOCN|b| bbb |b

Four octal digits denoting OPN and ADDR in absolute code; or in

the second word, a four octal digit ADDR.

5-27

Exceptions:

1. The pseudo-operation REM which must begin in column 6 may use all
of the area from columns 10-80 for comment.

2. A card with an asterisk in column 1 is treated as a remark and is free
field after column 1.

3. The pseudo-operation DIS in columns 6-8 converts all characters
from column 10-80 to standard packed display code.

5.5.2

CONSTANTS Numeric constants used in a program must appear in columns 10-13 and are
considered to be octal. All constants are right justified by the assembler.
They have a range of 0000 to 7777 in a two-address instruction or a range of
00 to 77 in a one-address instruction. Negative constants are defined as the
values from 40 to 77 and 4000 to 7777 in one-and two-address instructions.
All others are positive octal constants. Each word of coding requires a sepa-
rate card. If a constant contains a minus sign, it must appear in column 10.

5.53

PSEUDO-OPERATIONS IDT - Identification of program; must be the first card.
Format: blank IDT name

ORG Origin; beginning location, nnnn, of assembled program. Will be
set to 10005 if no ORG specified.
Format: blank ORG nnnn

SBL Set beginning ldcation, nnnn, of binary punch output.
Format: blank SBL nnnn

BLR Block reservation; reserve nnnn words beginning at location.
Format: locn BLR nnnn

REM Remarks card. Asterisk in column 1 is equivalent.
Format: blank REM comment or * comment

EQU Equates the location tag to a numeric constant, nnnn, or a pre-
defined location to ltag, appearing in the address field.
Format: locn EQU ltag or locn EQU nnnn

5-28

Display code; converts the characters starting at column 10 to
display code and packs them two to a word starting at this location.
The word following packed display code is all zeros.

Defines the last card of the deck to be assembled.

PAS OPERATION CODES

DIS
Format: locn DIS message
END
Format: blank END
Octal
Opcode Mnemonic Address
00 PSN
01 LIM md
02 RIM md
03 UJIN d
04 ZJN d
05 NJIN d
06 PJIN d
07 MIN d
10 SHN d
11 LMN d
12 LPN d
13 SCN d
14 LDN d
15 LCN d
16 ADN d
17 SBN d
20 LDC dm
21 ADC dm
22 LPC dm
23 LMC dm
24 PSN
25 PSN
26 EXN
27 RPN
30 LDD d
31 ADD d
32 SBD d
33 LMD d
34 STD - d
35 RAD d
36 AOD d
37 SOD d

Comments

Pass
Long jump to m + (d)

" Return jump to m + (d)

Unconditional jump d
Zero jump d
Nonzero jump d
Plus jump d-

Minus jump d

Shift d

Logical difference d
Logical product d
Selective clear d
Load d

Load complement d
Add d

Subtract d

Load dm

Add dm

Logical product dm
Logical difference dm
Pass

Pass

Exchange jump

Read program address

Load (d)

Add @)

Subtract (d)

Logical difference (d)
Store (d)

Replace add (d)

‘Replace add one (d)

Replace subtract one (d)

5-29

Octal

Opcode Mnemonic Address N Comments
40 LDI d Load ((d))
41 ADI d Add ((d))
42 SBI d Subtract ((d))
43 LML d Logical difference ((d))
44 STI d Store ((d))
45 RAI d Replace add ((d))
46 AOT d Replace add one ((d))
47 501 d Replace subtract one ((d))
50 LDM md Load (m + (d))
51 ADM md Add (m + (d))
52 SBM md Subtract (m + (d))
53 LMM md Logical difference (m + (d))
54 STM md Store (m + (d))
55 RAM md Replace add (m + (d))
56 AOM md -Replace add one (m + (d))
57 SOM md Replace subtract one (m + (d))
60 CRD d Central read from (A) tod
61 CRM md Central read (d) words from (A) to m
62 CWD d Central write to (A) from d
63 WM md Central write (d) words to (A) from m
64 AIM md Jump to m if channel d active
65 IJM md Jump to m if channel d inactive
66 FIM md Jump to m if channel d full
67 EJM md Jump to m if channel d empty
70 TAN d Input to A from channel d
71 . IAM md Input (A) words to m from channel d
72 OAN d Output from A on channel d
73 0AM md Output (A) words from m on channel d
74 ACN d Activate channel d
75 DCN d Disconnect channel d
76 FAN d Function (A) on channel d
77 FNC md Function m on channel d
Notation Interpretation
d - Implies d itself
@ “The contents of d
(@) - The contents of the location specified by d
Com . Implies m itself used as an address
m -+ (d) The contents of d are added to m to form an operand (jump address)
(m+(d)) The contents of d are added to m to form the address of the operand
dm An 18-bit quantity with d as the upper 6 bits and m as the lower 12
bits :
5-30

5.5.4
ERROR FLAGS

Errors detected by the assembler are shown as a one-character error tag in
the left margin of the assembled listing.

O

U

Illegal operation code

Undefined symbol in the address field

Multiply defined location symbol

Range error. The d portion is greater than 77 g; Or on a jump
instruction (03-07), the address symbol is more than 37, forward or
backward.

Too many characters in operation code

Constant error. (12-bit constants only)

Direct address error (greater than 77g)

Absolute address error (greater than 77g)

Improper use of EQU pseudo-op code (part of variable field not
properly defined)

Incorrect IDP pseudo-op code (first character is not alphabetic)
Improper use of ORG pseudo-op code; a variable error where an

ORG card attempts to set the value of the location backwards. The
ORG card is ignored.

PAS Control Card Options

Punch even if errors are detected

Do not print a listing

5-31

CONTROL CARDS AND JOB PROCESSING 6

6.1
CONTROL CARDS

6.1.1
JOB CARD

A job consists of one or more central programs which are executed with data
files. Control cards are the first logical record; they identify the programs
and their data files, and sequence program executions. The control cards
specify how the job is to be processed; the operations performed upon the other
records of a job file depend upon the control cards.

Each job must begin with a job card and end with a file separator card. All
control cards must appear between the job card and the first record separator.
The end of the control cards is signified by a 7, 8,9 punch (end-of-record)
card, or a 6,7, 8,9 (end-of-file) card if the job consists of control cards only.
No special multipunches are used for control cards and the information on a
control card can start in column 1 (with no imbedded blanks). The card is free
field thereafter. Cards terminate with a period or, if a parenthesized list
appears, a closing parenthesis. The order of cards is described in section 7.

Except for program call cards and job cards, the control card formats are
unique to the system and must not be used for the names of any programs.

The first control card of a job must indicate the job name, priority, central
processor time limit, and central memory requirement. Fields are separated
by commas and the last field is terminated by a period.

rname ,priority,time limit,field length.

name Alphanumeric job name; must begin with a letter and may
be 1-7 characters.

If only a job name is specified, priority 1, time limit 1
minute, field length 400008 is assumed.
priority 1 through 17 (octal).

The highest priority on disk is the next to be brought
to a free control point for processing.

6-1

time limit

field length

Example:

The central processor is always given the highest
priority control point that can use it.

Completed job output files are printed in order of
priority.

If a job which is completely compute-bound has the
highest priority (17g), and another job which does a
great deal of I/O processing issues a recall instruction
and is waiting, the operator may enter a greater priority
to the I/0 job (which will still allow the compute-bound
program to retain the associated control point).

Total time limit for the job in seconds (central processing
time); a maximum of 5 octal digits. The octal value in
hundreds is approximately the time in minutes. The time
limit is actually rounded up to a multiple of 10g by the
system.

Time and space limits must suffice for the whole job,
including all compilation and execution.

Total field length of the job, in octal, maximum of 6 octal
digits. The length cannot exceed 360,000. The field
length (storage requirement) is rounded up to a multiple
0f 100g by the system.

If the RUN compiler is used and a listing requested, it
prints out the amount of storage that was not needed,
both for itself and the compiled program, so that future
attempts may request a lesser amount. A common trial
storage request for compilation is 1000008 (32K). The
standard amount, 40000g, is sometimes sufficient for
compilation, and usually adequate for utility jobs such as
file copying. '

rJOB765,3,600,4000O.

Statements on a job card may use different separators, for example:

(JOB765(2,350,100000)

Spaces may also be introduced, but are best omitted.

6.1.2
PROGRAM CALL CARD

6.2
EQUIPMENT
ASSIGNMENT

6.2.1
ASSIGN wu, f

name (namel, name2,,.,,namen)
name Name of program being called, either a system program or user
program.

name i Names of all files referenced in this job, or parameters to the
program. If a program being called has no parameters the
line must terminate with a period. A closing parenthesis
terminate a line with parameters.

Examples: RUN(G, 300000,100000, 3000)
COPYCR(TAPE2, TAPE3,1000)
LINNEY.

Any file not specifically assigned on control cards is assigned by the system
to storage on disk unit zero. A job need not request card reader and printer
for normal input/output since its cards are already stored in the job input file
on digk, and output for a printer is sent to the job output file on disk. Input
and Output files are normally stored on disk zero.

The control cards of a job are processed in order, so any equipment assign-
ment must be made before the corresponding file is referenced.

This control card assigns any available peripheral unit of type u to a file
named f. The type u may be any of the equipment listed below or it may be an
equipment number, in which case, operator action is not required.

DA disk cabinet, channel 0 CR card reader

DB disk cabinet, channel 1 ’ LP line printer

DC disk cabinet, channel 2 MT 607 magnetic tape (1/2")
DS display cbnsole WT 626 magnetic tape (1)

CP card punch

6-3

6.2.2
REQUEST f.

6-4

This must be the first appearance of the name £ in the job file. The file name f
is alphanumeric, begins with a letter, and is a maximum of seven characters
long. Multiple file names are not allowed.

Examples:

ASSIGN50, TAPEG.

ASSIGN CP, PUNCH.

ASSIGN MT, TAPE2.

ASSIGN WT, TAPES.

Assign equipment number 50 (channel 5, unit 0,
1/2" tape) to TAPE6. The job will be held up if
this tape is presently assigned to another job.

Assign a card punch to the file named PUNCH.
When the job writes to the file PUNCH, data
will be punched on cards.

Operator to assign a 1/2'" tape to file TAPE2.

Operator to assign a 1" tape to file TAPE3.

For MT and WT a message for the operator is displayed under the
number of the job's control point:

WAITING FOR MT (or WT)

To assign tape 61 to control point 6, the operator would key

6. ASSIGN61.

ASSIGNO1, TAPES.

Use disk unit 1 to store file TAPE9.‘

For TAPE, the ASSIGN Statemént is intended for scratch tapes only;
the operator may assign any free tape of the specified type.

A user supplied tape should be assigned with a REQUEST statement.

This control card requests the operator at the system display console to
assign to this job the peripheral equipment specified by f. This must be the
first appearance of the name f. The job waits for operator action before

proceeding.
Example:

REQUEST TAPE 4.

Opei'ator to assign an équipment forvfile TAPE 4.

In this case, the message REQUEST TAPE4. is displayed under the num-
ber of the job's control point, and the operator can key the number of the
equipment on which the user's tape is mounted. For control point 4:

4. ASSIGNT1.

6.3
COMMON FILES

6.3.1 ‘
COMMON f.

The equipment number is related to an actual equipment through the equipment
status table (Section 4.1.1).

The usual convention for the Chippewa System is to set unit numbers for 1/2"
tapes to the lower numbers of a channel. The system may be loaded at dead
start time from channel 5, unit 0, but this unit can be subsequently used by
jobs.

Common files are files that are not discarded upon job completion. Normally,
input files used by a running job (type local) are dropped; disk space is freed
or equipment released. Output files are printed and discarded after printing.
A job may declare a file to be common so as to make it available to other jobs.
However, a job to which a common file is attached, can change it to local if
discarding is desired.

This control card has two effects:

1. If the file name, f, has common status in the FNT/FST and is not being
used by another job, it is assigned to this job until dropped. If the file is
being used by another job or does not have common status, this job must
wait until the file is available.

2. If the file name, f, already appears as a local file name for the job, the
file will be assigned common status in the FNT/FST and is available to
any succeeding job after it is dropped by this job.

A file generated by a job may not be declared in a COMMON card until the job
has been completed.

Example; COMMON BFILE.

6-5

6.3.2
RELEASE f.

6.4
SWITCH, MODE,
EXIT |

6-6

With this control card, the common file named f currently assigned to this job
will be dropped from common status and assigned local status in the FNT/FST.

Example:

RELEASE BFILE.

The common file, named BFILE, attached to this job is changed to type
local so that it will be dropped at the end of the job.

SWITCH n.

This control card sets pseudo sense switches for reference by a subsequent
FORTRAN program; n = 1-6. The settings are preserved at the control point
and copied to RA for the use by the central program. Switches may be changed
by a console command.

Example:

SWITCH 6.

MODE n.

This control card may be used to change the arithmetic exit mode. nis a
single octal digit (See Exchange Jump Information, Section 3.3.) The exit
mode is set to zero unless otherwise specified.

Example:

MODE 3.

EXIT.

The EXIT card can be used to separate the control cards associated with the
normal execution of a job from a group of control cards to be executed in the
event of an error exit as listed below:

1 TIME LIMIT. Job has used all the central processor time it
requested.

2 ARITHMETIC ERROR. Central processor error exit has occurred.
3 PPU ABORT. PP has discovered an illegal request, e.g.,
illegal file name or request to write outside job

field length.

4 CPU ABORT. Central program has requested that the job be

aborted.
5 PP CALL ERROR Monitor has discovered an error in the format of

a PP call entered in RA+1 by a central program
(can occur if a program accidentally writes in
RA+1, as can condition 3).

6 OPERATOR DROP. Operator has requested the job be dropped.
7 DISK TRACE LIMIT. No more room on a disk unit used by a job.

When one of these conditions occurs, an error flag (numbered as above) is set
at the control point. In cases 1, 2, 5, 6, 7, a dayfile message is issued; and
in case 3, the fault-finding PP issues a message (BUFFER ARGUMENT ERROR
from CIO, or NOT IN PPLIB).

When an error flag is set, a search is made for the next EXIT control card;
and if it is not found, the job is terminated. I an EXIT card is found, the
error flag is cleared and succeeding control cards are processed. If an EXIT
card is met and no error flag is set the job is terminated normally at that
point.

6-7

6.5
COMPILER AND
PROGRAM CALLS

6-8

Example:

MYJOB, 1,400,100000. Job card

ASSIGN WT, TAPEL. Request scratch tape
RUN. Compile and execute
EXIT.

DMP. Dump exchange package
DMP, 1000. Dump first 10008 words of store
7.8,9 End of control cards
(Program)

7,8,9

(Data)

6,7,8,9

The dumps are made only if an error condition occurs.

Record Separator

This card, consisting of a 7, 8,9 punch in column 1, separates the different
types of records (control cards, source language cards, data cards) within a
job.

File Separator

This card, consisting of a 6,7, 8,9 punch in column 1, must be the last card of
each job deck. No job may use information beyond this card.

After the job card, any control card other than ASSIGN, REQUEST, COMMON,
RELEASE, MODE, EXIT, or SWITCH, is a call for a central or PP program
to be executed. A program may be in the library, or stored on a file used by
the job. The control cards of a job are processed in order, and a number of
programs may be executed in one job. A job is a set of programs using the
same data files.

Parameters of a central program call follow on the same control card, for
example:

RUN(P) Compile, punch, and do not execute next
record of INPUT file.

COPYBF(TAPEL, DISK2C) Copy binary file from file TAPEL to file
DISK2C.

RUN. Compile, execute, and do not list program
on next logical record of input file.
(Assumed by RUN if no compile mode para-
meter given.)

When RUN compiles a program, the program is written as a binary record on
a disk file with the same name as the program (name taken from the program's
first card). The program can thus be executed separately, for example:

RUN(S) Compile, list, and do not execute program.
PGS8C. Execute program called PG8C.
A program call control card is interpreted as follows:

1. The names of files attached to the job's control point are searched for
the program's name. I the program is found, it is read to central
memory from the next record of the file.

2. The library of central programs on disk 0 is searched for the named
program; if found, the program is read to central storage.

3. The library of peripheral programs on disk 0 is searched for the named
program, and the program is assigned to a PP.

The parameters of a central program are entered beginning at RA+2, left
adjusted in display code, before execution. Parameters are normally com-
piled into a program, and overridden only if new parameters are specified by
a control card call. A peripheral program may have two numerical parame-
ters of at most 6 octal digits. These are entered in the input register of the
PP which executes the program.

The first card of a program compiled by RUN is not a control card. It is part
of the program and must include a list of files used by the program, for
example:

PROGRAM SAMS3 (INPUT, OUTPUT, TAPEL)

6.6
CENTRAL
LIBRARY CALLS

6-10

Such a statement supplies to RUN a list of files used by the program, which
RUN enters from RA+2 as parameters in the binary form of the program. If
the program is compiled and executed directly, those files will be used; but a
separate call for the program can specify other files to be used instead. The
binary form of SAM3 in which the parameters have been compiled could be used
from the INPUT file:

JOB6, , ,100000.

REQUEST FRED.

INPUT(, , FRED)

7,8,9

(SAMS3 on bi.nai‘y cards)

7,8,9

(Data):

6,7,8,9

Here, any reference to TAPEL in the source code of SAM3 would actually

use FRED. As the first two file names were not overridden by the INPUT
card, they would be used as in the source code.

The file names INPUT and OUTPUT are reserved for the job deck and output
file for printing:

The central library includes programs and subroutines. Subroutines are
stored in central memory or on disk according to frequency of use; programs
are always stored on disk. Except for the RUN compiler, a number of utility
routines, and other frequently used programs may be added to the library.

The central utility routines include COPY, COPYCR, COPYCF, COPYBR,
COPYBF, and COPYSBF for copying files or records between files in binary or
coded form. BKSP and REWIND position a file, and VERIFY compares two
files. Although resident in central library, these programs use little central
processor time since they are used only to call for input/output; a job using
them should be given high priority.

Example: Two binary files on magnetic tapes are to be copied to disk as a

single file called TAPEY for use by a FORTRAN program which uses

the punch.
THEJOB, 10,1000, 200000. Job card
REQUEST FIRST. Get first tape
REWIND(FIRST)
REQUEST SECOND Get second tape
REWIND(SECOND) ’
COPYBF(FIRST, TAPEY) First tape to disk
REWIND(FIRST)
BKSP(TAPEY) Backspace over file mark
COPYBF(SECOND, TAPE9) Second tape to disk
REWIND(SECOND)
REWIND(TAPE9)

ASSIGN CP, PUNCH.

RUN.

7,8,9
PROGRAM H3 (INPUT, OUTPUT, PUNC‘H, TAPE9)
(Rest of Program)

7,8,9
(Data)

6,7,8,9

Since TAPE9Y has not been assigned specifically, it goes to disk.

6-11

NS

Example: To obtain a source listing of program SAM and write the binary
version to tape for later use:.
KEEPSAM, 6, ,100000.
RUN(S) List, and write SAM to disk
REQUEST SAMTAPE.
REWIND(SAMTAPE)
COPYBR(SAM, SAMTAPE) Copy to tape
REWIND(SAMTAPE)
7,8,9
PROGRAM SAM(INPUT, OUTPUT)

To use the binary tape version with data:

USESAM, 1,1000,100000.

REQUEST SAMTAPE.

REWIND(SAMTAPE)

COPYBR(SAMTAPE, SAM)

REWIND (SAM)

SAM.

7,8,9

(data)

6,7,8,9

It is necessary to copy the tape to disk since a program call can be made

only to a program stored on disk 0. The copying routines refer to logical
records, which may extend over several physical records.

6-12

6.7
PERIPHERAL

LIBRARY CALLS

6.8

SYSTEM ACTION ON

CONTROL CARDS

Peripheral library programs, stored on disk 0, whose names begin with a
letter can be called from control cards. They include:

CLL Load one or more overlays into specified central area
EXU Ioad a called program to replace the calling program
LBC Load record of binary cards from input to central
LOC Load octal corrections from input to central

PBC Punch binary cards from central

DMP Dump central to output file

DIS Use a display console for this job

MSG Dayfile messages

CIO Processing of I/0 requests

These routines are not often called by programmers; they are used mainly for
system maintenance, and are more fully described in Section 3.12.

When a job is brought to a control point, the first record of the input file is
copied to a 96-word buffer in central memory attached to the control point.

If the control cards will not fit in this buffer, the message TOO MANY CON-
TROL CARDS appears in the dayfile and the job is terminated. Since cards
are compactly stored 10 columns to a word without trailing blanks, this allows
a large number of control cards (about 40) and the error usually arises when
programmers have omitted the 7, 8,9 card following the control cards.

When a job is neither using nor awaiting the central processor or PP's, the
monitor calls to a PP the package 1AJ to advance the job.

This condition may occur when an error flag is set at the control point (usually
taken care of automatically by PP's), in which case 1AJ calls in an overlay
2EF to process the error flag. Otherwise the overlay 2TS is called to inter-
pret the next control statement and act upon it. If there are no more control
statements, the job is terminated.

6-13

DECK STRUCTURES 7

The following card deck indicates the arrangement of control cards to begin a job, separate job
records, and terminate a job. The record separator which must be used between types of cards has
7,8,9 punches in column one. The file separator Which terminates a job has 6,7, 8,9 punches in

column 1.

? file separator
8
9
g record separator
9
—4
=N
—
1
data cards
g record separator
9
// =
—1
|
ﬁ? : source deck
; record separator ‘
9
=
—
AL
A
[/ all control cards
JOB002,p,t,fl.

7-1

ASPER SOURCE DECK

END

A
A
A
A
L=

L

L

ASPER instructions

ASPER PROGNAME

ASPER ASSEMBLY

O oo~

"'U-

(ASPER source deck

7
8
9

ASCENT (L,0,PA)

/ASSIGN CP,P80C. ’ —

/BAR1620,2,3,30000.

7-2

ASCENT SOURCE DECK

END

((ASCENT instructions

ASCENT PROGNAME

ASCENT ASSEMBLY

O 00 ~Noy

| H

ASCENT source deck

7
8
9

ASCENT (6,0,0,PC)

ASSIGN CP,P80C. ——+— Punch COSY Deck

rmne 22,5,3,40000.

7-3

ASSEMBLY WITH COSY

6
7
8
9
ya
I’lf
V4
ya
COSY deck
/o Cosy
= 1.
h
DELETE
REPLACE statements
INSERT
7
8
9
PC,0, INPUT)

(ASCENT (1,0,0,

ASSIGN CP,P80C.

/ J0B88,3,6,45000.

7-4

COSY MODIFICATIONS

O oo~y

DELETE
REPLACE statements
INSERT

COosy

—1
—1

1
1

DELETE
REPLACE statements
INSERT

oo~

r/ASCENT (L,0,0,PC,0,CO08Y)

ASSIGN CP,P80C,

r/REQUEST cosy,

JOB88,3,6,45000.

FORTRAN Load and Run

Job 1
INPUT and OUTPUT are the only I/O files used; no special control cards.

O o~

N

data cards

PROGRAM OVA.(INPUT,OUTPUT)

7
8
9

RUN.,
JOB456,3,500,30000.

FORTRAN Load and Run

Job 2
Three tape references:
TAPE1l — assumed input tape which operator loads on a particular unit

TAPESL

TAPEG output scratch tapes drawn from tape pool

O 0 ~Noy

{/ data deck

source deck

/ PROGRAM ALFRED (INPUT, OUTPUT ,TAPE], TAPES, TAPEG)

7
8
9

/RUN.

REQUEST TAPEL.

(ASSIGN WT, TAPE6,

ASSIGN WT,TAPES5,

MADOO1,2,400,27000.

FORTRAN Compile and Execute with Mixed Deck

Source
Deck

7-8

O oo~y

—

L
7=

L

/—

ASCENTF SUBROUTINE Al,
MACHINE SUBROUTINE ML(p3)

A
SUBROUTINE S1(pl,p2)
«;PROGRAM DONE (INPUT,OUTPUT)

ASCENT language
subroutine

Chippewa assembly
language subroutine

FORTRAN subroutine

FORTRAN program

RUN.
JOB123,6,400,27000,

FORTRAN Compile and Produce Binary Cards

Compile program and produce binary cards, do not execute. Three files of I/0 - INPUT, OUTPUT

and TAPEL
(II'
|
source statements
PROGRAM BOB(INPUT,QUTPUT,TAPEL)
7 .

8
9

——r/RUN(P)

{/RA6600,7,100,40000.

O 00~

Job card
Job name RA6600
Priority 7
Time limit approximately 1 minute
field length 40000, words

8

7-9

FORTRAN Compile and Execute (Plus a Prepunched Binary Deck of a Subroutine)

A binary deck to be loaded with a compiled routine must be preceded by a card with a plus (+) punch
in column 1. This card indicates to the compiler that all succeeding cards to the end of record are
binary cards to be loaded with the program just compiled. A minus (-) punch in column 1 may be
used when no library subroutines are to be loaded.

W0 NI

(data

4
ﬁl
1
1
|
((binary deck
II i
IL
W
source statements
PROGRAM PIP (INPUT,OUTPUT)
/7
8
9
'/RUN.] FORTRAN
control card
AGC015,5,200,220000. ——— Job card

7-10

Load and Execute a Prepunched Binary Program

The binary cards in the input file following the record separator are loaded into central memory when
the program call card INPUT is encountered.

6
7
8
9
ya
=
[
(data cards
7
8
9
—
1
=1

binary deck

0o ~J

/ INPUT.

/ASSIGN MT,FILE.

— Control cards

/GM1111,6,400,20000.

~——t——— Job card

7-11

FORTRAN Compile and Execute with Chaining

O o~ oy

data deck

O oo~

O 0o~

4

L

ya
L
L

Wi
/SEGMENT LINNEY(INPUT,OUTPUT,TAPE2) Segment 2

7
8 ’ !
9 ¥

fli
=
(EEGMENT BOOTS (INPUT , OUTPUT , TAPE2) Segment 1
7
8
9
1
7
1
‘11
PROGRAM DAVE (INPUT, OUTPUT, TAPE2) Main Program
7
8
9

RUN(c) Program Call Card

/ ASSIGN MI',TAPEZ. Assignment Control Card

DUDLEY,1,700,40000, S Job Card

7-12

Compile Once and Execute Twice with Different Data Decks

O 00~y

Data Set #1

oo

| -

PROGRAM TWICE (INPUT,OUTPUT)

7

8
9
(TWICE.

(REWIND(TWICE)

o

REPT2, 5,600,20000.

7-13

)

/S
o Lot
7

ALy A =

-

v(l(/o Cotre

/ /'L,/LLL/LZ; [opc s
AR A

Lot A i,

/4—ufu;wéi

/J L,jsau/(»’

DT EA
& Durdo oo
4=}
0oob

=,
- P
TUTO a g et

Fatee @C;% g/‘t\ﬁl,uv

SO0a

5 s
A)

1
ALy
g
[g /:'3

o000

Cowte Aeledt

Q\{G\\U\[\\YXU\}U\

£/
/2

/3

~

5000

oy
7

TE /DA
’7 T2

‘oo
cAsR8,

~J
~

I/ 3/

Ty
V&

E

e /LLLL—"i -

& IO g

SYSTEM/OPERATOR COMMUNICATION 8

8.1
DEAD START
LOADING

8.2
FROCESSING MODES

When the dead start switch is toggled, the dead start loading process transmits
a short program (up to 12 instructions) to the PP0 memory where it is executed.
The dead start program in turn transmits a hootstrap program to another peri-
pheral processor which brings in the system loader from the library tape and
transfers control to it.

The system tape is completely loaded at dead start time and all data is trans-
ferred either to central memory or to the channel 0 disk file; the tape is not
referenced again during operation.

Dead start panel settings are shown in Table 4.

After the systéﬁnwfape has been loaded via the dead start operation, no activity
will be displayed at control points 1 to 7. After the system tape is rewound, a
keyboard message at the console is needed to initiate a mode of job processing.

The Operating System provides two modes of operation - automatic and manual.
With the Chippewa System, several programs can be running concurrently.

The operator may override the automatic mode and manually modify, delete,

or add new programs and change priorities as the need arises.

Table 4. DEAD START PANEL SETTINGS
(Bootstrap Loading of the System Tape
for 6000 Series Tape Units Only)

MemoryT Contents Action Generated Toggle Settings
/o1 1410 Load (A) with 10g 001 100 001 000
02 730x . Output 10g words starting at 111 011 000 xxx

location 6. on.channel x (pro-
cessor x will store these in its

03 0006 memory beginning at location 0) 000 000 000 110
04 750x Disconnect channel x (permits ‘111 101 000 xxx
execution of program)

05 7113 5 Set to input mode (7770 words 111 001 001 011

xlef \ & to location 0000 on channel 13)
5 PO \} 06 . 0000 S 000 000 000 000
[o7 770x } Select rewind tape on channel x 111 111 000 zaxx
\ 10 2060 010 000 110 000
11 770x Read up to 10,000 words in 111 111 000 xxx.
12 2020 } binary mode on channel x 001 000 010 000
(13 740x', Activate chamnel 111 100 000 xxx
\ 14 710x: Set to ir_lput mode (channel x) 111 001 000 xxx

v 15 - 0000 Cleared during dead start »

TLocations at peripheral processor 0
Procedures for loading are described below.

1. Check to see that the dead start panel is set for the bootstrap loading
of the system tape.

a. Check that the toggle switches are at their proper settings; 1 bits
up and 0 bits down.

b. Toggle the DEAD START switch up and then down; the system tape
is then loaded into the system.

2. Check the master display at the console; the control points should be
displayed. If no display is apparent on the scope after the system
tape has been loaded, adjust the INTENSITY knob on the panel directly
under the display scopes. (Section 8.3 describes the visual displays
that appear on the console scopes.)

8.2.1
AUTOMATIC MODE

/

After dead start loading, the master display routine at PP9 awaits input from
the operator. A keyboard entry AUTO selects the mode for automatic process-
ing. Under this mode, the monitor assumes input from punched cards and
output to the printer. Monitor assigns the Read package to the first available
PP (assigned to control point 1), and then assigns Print, to the next available
PP (assigned to control point 2). The Read package reads, converts the infor-
mation to display code, and forms input files on the disk until cards are
depleted.

The monitor assigns the next package to all available control points, other than
7, which interrogates the jobs in the input file; the input files are executed
according to the priority designated on the job card. As each job produces
output, the records are packed and sent to the disk as printer output files.
When a job is completed, output is printed through assignment of the Print
package, in the order of job priorities.

In normal operation, job processing is initiated with the typein AUTO. which
brings the following activities to control points.

Control Point

Number Job Name PP Program Activity
1 READ 1LJ Load jobs from card
reader and store on disk.
2 PRINT 1 DJ(1 Printer) Transfer job output from
or disk to printers.
1. PJ(3 Printers)
3 NEXT 1 BJ
4 NEXT 1 BJ Search for]O]f) on disk to
process at this control
5 NEXT 1BJ point.
6 NEXT 1 BJd
7 - - No activity.

8-3

8.2.2
MANUAL MODE

8-4

The jobs brought to control points are system jobs which process various
phases of object jobs.

Example:
AUTO. is equivalent to keying:

READ.
PRINT.
NEXT.
NEXT.
NEXT.
NEXT.

o O B W N

Activities may also be dropped.
Example:

2. DROP. printing ceases, and output accumulates on the disk until
PRINT or DUMP is introduced.

AUTO operation leaves control point 7 free, but an activity may be initiated at
that point.

Example:
7. NEXT. enables control point 7 for object jobs.
7. LOAD. brings to control point 7 a package for loading job_s from

magnetic tape to the disk job stack.

Manual operation is similar to automatic except that each operation must be
requested by the operator or the job itself. For example, after the dead start
load has been executed, the operator may enter the control point number and
the read statement, (2. READ.) on the keyboard; this will load the Read
package in the next available PP and assign it to the designated control point.

If an input job stack is prepared off line, the operator enters the control point
number and the load statement (3. LOAD.) on the keyboard, the Load package
is loaded into the next available PP, the package requests the input unit number
and continues.

8.3
CONSOLE AND
DISPLAY SCOPES

To execute, the operator types n. NEXT. for each control point to be assigned
a job. As each job is executed, output files are entered on the disk. No output
processing will result until the operator enters the control point number and the
print statement (4. PRINT.) An alternate method is to enter n. DUMP on the
keyboard; the accumulated output files will be dumped on magnetic tape in the
order of job priorities for printing off line. The operator may enter n. DROP.
on the keyboard, which drops the job at the designated control point. After all
input is read, the Read or Ioad routine may be dropped to allow another job to
use the control point. This operation may be used in both automatic and manual
mode.

Communication between the operator and the system is accomplished through
the console keyboard entries and two or more console display scopes. The
operator may introduce jobs, change priorities, and so forth. The operating
system also allows the operator to examine selected portions of memory and
keeps a permanent record of job history (dayfile) which can be called at any
time.

The system communicates with the operator through the two visual tubes of the
console display. Data is assembled and disassembled by individual routines

in the operating system. At the request of the operator, all portions of job or
system status may be displayed. Data entered at the console keyboard is also
displayed on one of the scopes. A permanent record of system/console
communication is retained in the dayfile and ultimately printed at the request
of the operator.

The operator communicates with the system through the console keyboard
(Figure 9). Keyboard typein messages are shown in the lower left-hand corner
of the left display scope as they are being typed; the operator may check entries
prior to initiating execution.

Each keyboard-initiated command to DSD or DIS is a single line. Backspacing
causes the last character keyed to be blanked. FEach command should end with
the period followed by a carriage return, at which point the message is inter-
preted. If the command is acceptable, it is acted upon and the line on the
screen is cleared; if not acceptable, FORMAT ERROR appears above the
erroneous line. A blank typein can be used to clear an entire command.

yve mu<n_m.J NYNL3IY 3F9VI¥EVI—

Console Keyboard

/% || AP H|{O9|d]Q|S |V ¥

Figure 9.

"
(0))
(eo)
~
(o)
0
<
L8]
N

0

30vdS

m_m<mM||_ 'V
. : . 30VvdsSHOvE

8-6

8.4
SYSTEM DISPLAY

KEYBOARD ENTRIES The keyboard, during the display of the overall system status, is used to
initiate and control equipment assignment and job progress. The following
table describes the keyboard codes and formats.

Table 5. SYSTEM DISPLAY KEYBOARD ENTRIES

Typein Action Initiated

AUTO. 3 . Used after dead start from system tape to initiate
automatic job processing with card input and printer
output.

STEDP. Selects a step mode for the operating system monitor

in PP0. Requests from other PP's are processed when
the keyboard space bar is pressed. High speed opera-
tion may be resumed by entering a period and depress-
ing the carriage return key.

SIM. , Replaces the central processor with a simulator in a
PP (the 007 location program); normally used in
machine check out. Normal operation can be resumed

by repeating SIM. Successive entries toggle the system
between a simulated and a real central processor. The
letter preceding central processor address on system
display denotes the mode.

P = xxxxxx real central processor

S = xxxxxX éimulated central processor

OFFxx. Indicates to the system that equipment number xx must
not be used, for example, during maintenance.

ONXX.) Returns equipment xx to ‘the pool of available equipment.
TIME. 12.10.03, Example of how to inform the system of clock time and

- March 12, 1965. date. The system uses this time (updated every second)
: for dayfile messages. If a TIME command is not given,
the time since dead start is used.

Table 5. SYSTEM DISPLAY KEYBOARD ENTRIES (cont'd.)

Typein Action Initiated

CONTROL POINT COMMANDS TO DSD

Each of these commands is preceded by a control point number and a period.
The numbers in the following examples are for illustrating format only.

4. DROP, Drop job at control point 4.

5. DIS. Assign DIS package to control point 5. If there is no
other console, DSD may relinquish the main console
with the ASSIGN statement.

5. ASSIGN10. Assign main console to control point 5.

1. READ. Bring READ package to control point 1 for loading jobs
from cards. This entry is needed if READ (usually
initiated by AUTO) drops after reading a faulty job card.

2. PRINT. Bring print job to control point 2; normally initiated by
AUTO, but may be brought in separately.

7. LOAD. Bring Load package to control point 7 to load jobs from
tape to double file mark.

6. DUMP. Bring Dump package to control point 6 to dump output
files on tape.

(LOAD and DUMP request assignment of a tape unit).

(READ, PRINT, LOAD, DUMP, and NEXT have no effect if the control point
already has a job name).

7. NEXT. Bring job NEXT to control point 7 to look for a real
job (on disk) for the control point.

6. GO. Continue job at control point 6 if it has come to a pause
(usually as a result of a FORTRAN pause statement,
or if repeated tape transfers after parity failure is not
effective).

5. ASSIGN53. Assign equipment 53 to control point 5; normally used

after a request for tape has been displayed, but any
equipment may be assigned in this way.

8-8

8.4.1
SYSTEM DISPLAY (DSD)

Table 5. SYSTEM DISPLAY KEYBOARD ENTRIES (cont'd.)

Typein Action Initiated

4. ONSW2. Set sense switch 2 for FORTRAN program at control
point 4. Settings are preserved at RA and at a word in
the control point area.

4. OFFSW3. Turn off sense switch 3 for control point 4.
DCNI11. Disconnect channel 11g. (used by maintenance engineer)
FCN10. Enter a zero function on channel 10g. (used by main-

tenance engineer)

The system display program (DSD) is permanently located in PP9. DSD
maintains a display on the two screens of the main console for all currently
running jobs. The keyboard is used to initiate and control equipment assign-
ment and job progress. During normal job processing, operators need not be
concerned with the displays. However, the displays give an accurate picture
of system progress; and, if needed, can be used for on-line debugging.

The console screens may be assigned any combination of two of the displays
indicated in the table below. Figures 10, 12 and 13 illustrate typical views of
system displays.

Table 6. SYSTEM DISPLAY CODES

Codes Display

Dayfile

Job Status

Data Storage
Data Storage
Data Stdrage
Program Storage

Program Storage

a3 8H O QW6 »

Job Backlog

89

A1T1eoT3PWOINE qof yore Jo pus oyl 3e anozurad
oyl uo aesadde TT7IM Blep AeldsIip °11IAeq TION

*asonbax
uodn 3no pejurad aq Lewm unia
1e301 5,4ep 8yl JO AJpumms y

*£10315TYy 5,wW21545 °Y3
sulejuod pue Indurl pIEd BIA
PeONpOIlUT SIUSWSIBIS TOIIUOD
ay3 sjussaida wWNIOD STYJ

HNVN 0L

THEVI HdVL

yoTYM 03 gor FO Slmey

0071

* LOANT

ﬂ ‘S1a

*00006 “0000L° 2L V1AL

*0dS S10 dd

avay

*0dES 110 dd

*INTHd

*0dS $9Z2°020 dd

*0dS 6/6°200 dD

*90Wdd 9¥V ¥HIING

0071

* LOANT

"sIa

*000065 “0000L° L2 v13d

*0ES 610 dd

_ *DES 000 dd

*INT¥d

*DdS TIZ%°610 dd

*0ds (@) "900 dD

(1) aNIM=Ed

(1) aNTMTY

"avEd

(a° &) A9Xd0D

(1) auImEy

(1) aNImzd
(TENDISSY 16)

416 NOISSVY
(QANDISSY 0%)

"V0S NOISSV

_ "000T°0007T°L° T99IH

@Doxommo GZHEZ<MGOM®

NARE:
Viag
vyidd
v13dg
NARE:]
NARE:S
V134
NARCE:|
vidd
vigd
NARCE:S
NARCE:]
yiad
vidd
NARCE:
CRpsicIn
DU
TR
R
R I
EDUEA
vIEg
R
R biACI
erpsicing
EOYEH
TOYEH
EOYEH
TOUIN

aRpseint
Nt

Y

WHLSAS

s8uoiaq sSessam

*29g

HNII, "IVOILOV

GGTCTT0

0%"%0°00
C%7°%0°00
0T°%0"00
01°%0°00
0T°%0°00
S0°%0°00
"%2°10°00
"21°10°00
"C1°T0700
‘¢I°10700
"IT°T0700
‘60°T0°00
7010700
"TET00°00
“1€°00700
"T€°00°00
‘0£°00°00
"0€700°00
"0€700700
*0£°00°00
‘0€700°00
"0£700°00
*L2°00°00
*6Z°00°00
"GZT00°00
"81°00°00
"L1°00°00
TL1700°00
"L1°00°00
“L1°00°700
‘91°00°00

‘OTEF
-£ep QU] 03UT paILIUS IJIE
SeWI] MPU SEB UUMTOD 3Y3
jo doz a2yl 1® pa3d[ap ST
uoTleWwIoFul STIFLEP PO
{A77eOIlEWOINE US8JIDS 3Y3]
jo wojzloq ayl 1e saeadde
UOTJIBULIOIUT STIFABP MON

(o113

-fep 2431 uUO PIUTBIUOD 3]
Lew saUT Zg JO TBIOL V)
fuoTINO9Xs 107
poilsonbaa sem juswelels
10I3U0D yoB® JWIF Il

\ ///\M\\\\\muummwummu um o9 STYL

0

sINoY

Example of a Dayfile (A) Display

Figure 10.

8-10

8.4.2

DAYFILE (A) DISPLAY The dayfile consists of single line messages, each starting with the time and a
job name:

02.14.33. TRIAL2C. RUN(S)

On the left is the actual time since dead start, or the real time if this was
entered into the system by a TIME command to DSD.

Dayfile messages for a job are entered into the dayfile by PP programs as the
job is processed or by central programs of the job. Each control card, includ-
ing the job card, is listed at the time it is obeyed. The dayfile messages may
be inspected as follows:

1) On a console screen (display A). The file is moved up the scope screen
as messages are generated.

2) At the end of a job's printed output, all dayfile messages tagged with that
job name are printed (Figure 11).

Example:

10.28.01. SPECTRE. READ. (Enters card reader)

10.28.12, SPECTRE. PP 011SEC. (Time to read)

10.28.19. SPECTRE. SPECTRE, 17,,100000. (Job card, memory
assigned)

10.28.19. SPECTRE. RUN. (Control card, call RUN)

10.28.22. SPECTRE. END (End of Compile, output
by RUN)

10.28.22. SPECTRE. OP3 (Program ready to
execute)

10.30.00. SPECTRE. CP 049. 0458EC. (Central processor time)

10.30.00. SPECTRE. PP 020.5908EC. (PP time)

The central processor time (in decimal) is that for the whole job, including
compilation.

3) The dayfile is preserved on disk storage; its entire contents can be
accessed for logging purposes (Figure 11).

8-11

8.4.3
JOB STATUS (B)
DISPLAY

8-12

Example:
By the job card sequence:

JBOND.

COMMON DAYFILE.

REWIND (DAYFILE)

COPYBR (DAYFILE, OUTPUT)
6,7,8,9

For the Job Status (B) display (Figure 12), DSD provides the status of all con-
trol points, each in the following format: N
N.JOBNAME PRIORITY, TIME LIMIT, RUNNING TIME S ——==~=--

RA, FL, EQUIPMENT NUMBERS.
LAST DAYFILE MESSAGE OR MESSAGE TO OPERATOR.
N is the control point number, S the central processor status (A, B, W, X
etc.) or the job. If PP's are running at the control points, their numbers are
entered in the first line. All other numbers of the display are in octal:

3.AJOB 7, 100, 37 X -2-——-T7-~

30000, 40000,51,72.
RUN(S)
In this display, the job has used 37g seconds of central processor time

so far, and is not using the central processor at present while PP's 2 and
7 are working.

o} e}
L INTHd— “DES 00 d& ° 00§ o0& 4y " 8T " 00 ©
INI¥Sd ° 00 908 ° 6£ " 8T " 00 o

o "DHES 1/9 00g£ dd ° 00€ 904 ° 8¢ ° 81 ° 00

90 HHI ¥04 SEWII— _"DHES 696 €60 4D ° 00 OS0g * 8€ * 8T ° 00
DILSONIVIQ—f-6——MOWId QuvD TOYINOD ° 00€ 909 ° /£ * 8T ° 00 o}

00€ 9ng * 00€ ©90g " [* 8T * 00

*1I0dD ° 00€ 90 " I% " YT ° 00
Q e}

STEV0 TOUINOD ‘00T 00§ 908 " 0Z ° ¥T * 00
o *SId ° 00E S04 " 8¢ €T 00 o

q¥vd> 90f ————"00000T°0000S°00€ 909 ° O00E 904 ° 8¢ " €1 " 00
o .A.UMm T00 dd ° 00€ 90d ° 9¢ ° €I " 00 °

avad © 00€ 9ng C GE T €1 T 00

— - jl/\
o | _ \ o

NOIIVYEL0 ;rn\\ .UMmII\ /l.
ASIA OL @Ivd SINANAIVIS “NTH S¥NOH
TOMINOD TAVN
WWI908d

(EHIL IVOIOV)

‘@IINVIS SVM

ANIINOY HOVA HWIIL FHI
SINISTIATY NWNTOD STHL

Example of Dayfile Printout

Figure 11.

8-13

SINTHNIISSY
INTHAINDE

(NNY¥ ONIHE
WV¥90¥d dd J0
HAVN) HOVSSHW

-

(INIOd 'TOWINOD
STHI OI QANOISSY Gdd)
WOSSHOOUd TVIEHIIEAd

(SaNoDES TVIDN0)
TWII 0SSED0UL
TVIINTD TVRIOV

(SaNODES 'IVII0)

LTAIT FHIL
9-y

X SOIVILS

M [wvesoud
Juelg

1Ind - 4

£idug - g
pa3o8uuodsIg - {d
STANNVHD I0 SALVIS

1T ‘00005 *000%Z SSTIAAY
..... G-=-X0T *0000L" LT g vIFd 9 /// /// AONTITIAT
. AN AIT¥OT¥A
AT
: 000%¢
........ . IXAN °§
FIAT
*000%2
fmmmmee * ’ IXEN "% SINIOd
TOUINOD
"IaT
: 000%2
........ * : . : IXIN "g7
*TIAT
*/0 "000% 00002
........ . . INT¥E ‘¢
HIONTT
\\\ *gIaT aTaTd
‘S0 "000% *000%T
lllllllll . . - gmm .H
\ HAAYN AT
aaaa aaag aaaa STTANNVHD ‘7=4d
. g) J o\)
HZmzszmm< mmmmao<
INERAIN0E TANNVHD WVE90ud

9sSn Ul I0JBTNWS
sajwoIpul 4 Jo 9oeid ul g ue

Figure 12. Job Status (B) Display

8-14

8.44
STORAGE
DISPLAYS (C-G)

In the STATUS position, A is for the job currently using the central processor.
B, C etc. are for jobs switched are for jobs switched away from the central
processor because of insufficient priority. X is for a job involved in input/
output, awaiting recall to the central processor. W is for a job waiting for the
central processor that will not be admitted until its priority is higher than that
of the A job. A job can proceed from X to A only via W status. A blank in the
STATUS position indicates there is no need for the central processor at this
stage of a job. A job name of NEXT indicates that a PP periodically searched
the input file for a job to bring to the control point. A blank job name indicates
there is no activity at the control point, which can be activated only by a com-
mand to DSD:

7.NEXT. - Look for a job for control point 7.

A storage display of type C through G (Figure 13) has 4 groups of central
memory words, numbered 0 to 3. Each group consists of 8 central memory
words, each displayed in octal on a separate line, preceded by its address.

The address is absolute for DSD, relative for DIS. For data display (C, D, E),
words are divided into 5 groups of 4 digits; for program display (F, G), words
are divided into 4 groups of 5 digits.

The address of an 8-word group to be displayed follows the display type and
group number in a command: '

D2,1020. Set words 001020-001027 in group 2 of D.

Group number 4 is used to set all four groups at once, to display 32 consecutive
words:

D4,1020. Set words
Group
001020-001027 0
001030-001037 1
00104.0-001047 2
001050-001057 3

8-15

(apedde 1T1M suou 3ndino
oy Butritem aae sqol ou z7)
andino 103z peYowls sqor

(oe38 3nduy)
soweN qor

(SIIDIA TVIDO-MNOL 0
SdN0¥d FATA ¥O)--SIIDIA
TVID0-FAII 30 SdNO¥D ¥WNOJ

SSHYAQV 40 SINAINOD

|

(us2a08 31387 uo sLeMTY)
NTHdAL ¥OIVYZJO ¥0d
VIV AVIdSIQ

SAVIdSTIa

ST120 0T000 9.0€9 Tzeog L€00T0
L0708 0TTE0 9¢£000 000172 9€0010
00TO0T ¢eeeo 01229 €15.0 €€0010
00201 GOETT %0022 110€2 ©€0010
0020¢ 0%0¢20 ¢110¢€ 20020 £€00T0
00520 000€0 £0€L9 020%0 ¢E00T0
10666 05170 LETOY €IT70 T€£00T0
0020 0T .00 05000 ¢00%7L 0€0010
009.L0 (A NAS 0g70Y gzL0E LZ00TO
£07€0 O%TT0 £€200¢ 0009/ 920010
¢E0ET %.000 ¢01¢€0 £0000 20010
00100 00000 00000 00000 #20010
00000 00200 T00T¢C 9€091 £€20010
7C169 00T<S T€£900 T€G0€E ¢20010
7IveS 90€€1 7€%90 €0129 120010
2091y STI€90 0TGST £€9001 020010
£60¢EY €50 OEeTYy G290¢ LT00TO
01090 047150 WEEIY S190¢ 9T00T0
©ovET 9%€00 0€ .95 0990T ¢100T0
700€T 01200 ¢019¢ ¢00¢0 #T00T0
19620 02000 001¢e o1o%e €100TO
00¢00 000.1 0€19¢ ¢00¢0 ¢T100T0
S0L0L 001¢€0 0EVTIS 020¢1 110010
©20cT %2200 ¢0000 00010 0T00TO
92100 00000 00007 ceose L000T0
00000 00000 00000 00000 900010
00000 01000 10194 00020 S000T0
€IvIT £€5000 20990 ¢000¢ #000T0
00000 €e200 T0%0L 019¢¢ £€00010
S9TEY TOTO00 2€290 $21.0 ¢000T0
19¢gs 91EWT 0109¢ S%790¢ 100010
0260L €€T109 0g£€?9 0/9¢¢ 000010
= — S
LNOMDHEHD ONTHWVID04d "I2°L1°00

SSHIaav

9°a

Storage (C Thru H) Displays

Figure 13.

8-16

8.4.5
JOB BACKLOG
DISPLAY (H)

8.5
JOB DISPLAY —DIS

Though only two of the A through H displays can be seen at a time, the
settings for C through G are retained:

Successive commands:

CD. Put C on left screen, D on right.

C4,400. Look at words 400-437 on left screen.
D4,1000. Look at words 1000-1037 on right screen.
AB. Look at dayfile and job status.

CD. Have another look at same words.

The three data displays (C, D, E) cannot be shown simultaneously, but they may
be recalled.

A central memory word can be changed by a console command:
1022,2100 1000 0000 0111 2347.

Leading zeros can be dropped in both the address and data word, which are in
octal.

The H display under DSD shows a list of files of types input and output, giving
the name and priority of each file. Input files are jobs waiting on disk; output
files are the output of completed jobs, awaiting printing. The progress of any
job not at a control point can be seen by using the H display.

A job display (DIS), similar to DSD, is used for information more relevant
to a single job. Using DIS, the B display can demonstrate the exchange jump
area of the job; central memory addresses relative to the job's reference
address are used for data and program displays.

DIS can be called either from a control card (DIS.) or by a command to DSD.
The job display package (DIS) may be called at any time during the execution of
job. This package stops further automatic advance of the job control cards.
The display covers only data pertaining to the particular job. The keyboard is
used to advance the job control cards and to provide any two of the following
displays in the same manner as for the DSD display.

8-17

8.5.1
CHANGING PRIORITY

8-18

The B display shows only the condition of the control point to which DIS is
attached; it includes the next control statement, and a picture of the job's
exchange package. The exchange package is displayed only while the job is in
W, X or blank status. The operator may change priorities and suspend job
execution with DIS.

Table 7. JOB DISPLAY CODES

Codes

A Dayfile

B Job Status

C Data Storage 5 groups of

D Data Storage 4 octal digits

E Data Storage per group

F Program Storage 4 groups of
5 octal digits

G Program Storage per group

All jobs are assigned priorities from the job control card (0-17); a zero priority
causes a job to be ignored. The operator may change the priority of any job
through the keyboard, the range is 0-77 g With 77g being highest priority.

The operator may proceed as follows:

1. Type in: ENPR, dd.
dd = a two~digit octal priority number

2. Press the carriage return key. If a priority change is attempted during a
run, the program will stop (normal stop) and the operator may type in
RCP. to resume central processor operation. A priority change may be
made only when the job is assigned to a control point.

8.5.2
SUSPENDING
EXECUTION

Suspending Job

To temporarily suspend execution of a job, the operator may type the following
entries:

DCP. and carriage return

This will temporarily suspend the central processor and display the exchange
jump area.

RCP. and carriage return

This will automatically request the central processor to begin execution at the

next program address for a job suspended by a DCP. request.

Multiprocessing Termination

A control point may be associated with more than one piece of equipment.
When this type of processing is encountered, subpoints are specified for the
additional equipment used.

To terminate a single unit during multi-unit processing, the operator must
proceed as follows:

1. Type in n. ENDx.
n = control point
X = subpoint
2. Press the carriage return key.
The following keyboard entries to DIS refer to the control point to which it is
attached. Some of the entries cause the job to be switched away from the

central processor. Execution can be resumed using RCP. or BKP. Numbers
are in octal.

8-19

8-20

Table 8. ENTRIES FOR CHANGING JOB DISPLAY CONTENTS

ENP,12345.

ENA3, 665000.

ENB2, 44.

Set P = 12345. (next instruction address, in
exchange jump area).

Set A3=665000 in exchange jump area.

Set B2=44 in exchange jump area.

ENX5, 2223 4000 0000 0000 0200. (Spacing is unimportant)

ENEM, 7.

ENFL, 10000.

ENTL, 200.
ENPR, 5.

DCP.

RCP.

BKP, 44300.

RNS.

RSS.

ENS. XXXXXXXXXXKXKXK .

GO.

Set X5=22234000000000000200 in exchange package.
Set Exit Mode = 7 in exchange jump area.

Set F1~10000 in exchange jump area. (storage
moved if necessary).

Set central processor time limit = 2004 seconds.
Set job priority = 5.

Drop central processor and display exchange jump
area (in display B). When DIS is used, the exchange
jump area is displayed in any case if the job does
not have status A, B etc.

Request central processor. This puts the job in
W status, and it will use the central processor if
its priority is sufficient. The register settings of
the exchange jump area will be used.

Breakpoint to address 44300 in the program.
Central processor execution begins at the current
value of P and stops when P = 44300. DIS clears
44300 to stop the program at that point, and
restores the original word when the stop occurs.

Read and execute next control statement.

Read next control statement and stop prior to
execution.

Allows the entry of any control statement
xxxxxxxxxxxxxx as if it had been entered on a
control card. The statement can then be pro-
cessed using RNS. or RSS.

Restarts a program which has paused.

Table 8. ENTRIES FOR CHANGING JOB DISPLAY CONTENTS (cont'd)

ONSW3. Set sense switch 3 for the job.
OFFSwW4. ‘ Turn off sense switch 4 for the job.
HOLD. DIS relinquishes the display console, but the job

is held at the present status. A console must be
reassigned to continue use of DIS.

DROP, DIS is dfopped and normal execution of the job is
continued; it does not drop the job.

DMP(200, 300) Dump storage from 200 to 277 in the output file.
DMP(400) Dump storage from the job reference address to 377.
DMP. Dump: exchange jump area to output file. (DMP for-

mats are the same as if used on control cards).

8.6
DAYFILE MESSAGES Dayfile messages that may be encountered during operation are listed below:

Routine Message
1AJ CP xxxx.xxx SECONDS.
1AJ PP xxxx.xxx SECONDS.
1DJ | PRINT.
1LJ READ.
1LJ PP xxxx SEC.
1LT LOAD.
1TD DUMP.
2BP BUFFER ARG: ERROR.
2BP FNT LIMIT.
2BT TAPE xx PARITY ERROR.
2EF TIME LIMIT.
2EF ARITH. ERROR.
2EF PP CALL ERROR.

8-21

8-22

Routine

2EF
2EF
2RD
2RT
28D
2T
2TJ
2T8
2T8
2WD
2WT
DMP
EXU
EXU
LBC
LOC
MSG
MSG
PBC
PPU
PPU
DSD
HLP

Message

OPERATOR DROP,

TRACK LIMIT.

DISK xx PARITY ERROR Gx Txxx SxxX.
TAPE xx PARITY ERROR.

PP xxxx SEC.

TOO MANY CONTROL CARDS.
JOB CARD ERROR.

(xx ASSIGNED)

CONTROL CARD ERROR.

DISK x TRACK LIMIT.

TAPE xx WRITE PARITY ERROR.
DMP ARG ERROR.

PROGRAM NOT ON DISK.
PROGRAM TOO LONG.

LBC RANGE LIMIT.

LOC ARGUMENT ERROR.
MESSAGE FORMAT ERROR.,
MESSAGE LIMIT.

PBC RANGE ERROR.

xx NOT IN PPLIB.

DISK xx PARITY ERROR Gx Txxx Sxxx.
FORMAT ERROR.

RPL OVERFLOW.

APPENDIX SECTION

SYSTEM TAPE AND LIBRARY MAINTENANCE A

SYSTEM TAPE

This tape contains all system library programs which are part of the Chippewa Operating System.
The system tape is processed by the dead start loading described in section 8.1. When loading is
initiated, the dead start panel instructions are transferred to PP0 and executed beginning at location
01. Processor 0 transfers words 6-15 to the processor on loading channel x, and resets itself to
input mode. The instructions sent by PP0 to PPx are then executed in PPx.

SYSTEM TAPE ORGANIZATION

The first record of the system tape is transferred on data channel x to peripheral memory. The
first record contains the peripheral resident program (common to all PP's) and a transient program
which loads the remainder of the system tape. PPx transfers the peripheral resident program to the
other nine processors.

Record 2(DSD) is transferred to PP9, the processor permanently assigned to system display.

Record 3 (MTR) is transferred to PP0, the processor permanently assigned to the system monitor.
Record 4 is transferred to central memory to set the first 5000g words of central memory. PPx

then disconnects all channels except x which starts execution in all ten processors. Records 5 and 6
(RSL and RPL) are single records containing central library and peripheral library programs,
respectively; they are kept in reserved areas of central memory. The records from the end of RPL
through a double 7, 8,9 record are sent to a disk and entry is made in the peripheral library directory.
The records from the double 7, 8,9 to the zero length record are sent to a disk and entry is made in
the central library directory.

Each record, following the zero length records, contains a central library subroutine or program to
be stored on disk. The system loader builds an index of their positions in the central library direc-
tory in central memory. The system tape ends with a zero length record followed by a file mark.

The first word of a central or peripheral program contains its nhame and length (in central memory
words). Several such programs constitute the single RSL or RPL record, but beyond these each
program is a separate record.

Various peripheral routines with limited use, such as 2PC, DIS, DMP, etc., are punched separately
and stored on disk. They enter the system via the peripheral library directory (PLD). All overlays
called by "1" packages are in RPL because that is the only table searched for them. CIO uses 2PC,
but coding to search PLD is included within CIO. PP resident always searches both RPL and PLD
for a routine.

Record

1 Loading Program
and Peripheral Resident
2 System Display (DSD)
3 Monitor (MTR)
| _ _ _Central Resident (CR) _ _
L - __ _ Tables _ _ _ _]
Subroutines
Single file of
binary records 5 J Central Routines (RSL)
in standard format —— - — — = = — - - — —
8 Peripheral Routines (RPL)
Peripheral Library Directory (PLD)
Zero Length Record
n Central Library Directory (CLD)
Zero Length Record
~ ;

Figure A-1. System Tape Organization

PREPARATION AND FORMAT

Routines to be included in the system library are assembled as binary card decks. The input deck
must be in the order in which it is to appear on the system tape. Each routine is followed by a
record separator card (7, 8,9 punches in column 1). All resident central processor routines and PP
routines must be in the first group. An additional record separator (7, 8,9) follows the last binary
deck in the first group. This card produces a zero length recSrd on the system tape when the full
input deck is processed.

The record separator is followed by the binary card deck of all the central library routines, and

again, each binary deck is followed by a record separator. . The last central library routine must be
followed by a file separator card.

A-2

The control cards for reading the cards are as follows:

O o~

COPYBF (INPUT, TAPEL,1)

(ASSIGN 52, TAPEL,

JOBl,p,t,fl.

These cards, followed by the binary card decks will produce a systems tape on a half-inch magnetic

tape, unit 52, reading from the INPUT file produced on the disk by the card read routine.

A copy of the system tape may be made with the following job deck with the original system tape as

TAPEL and the new tape as TAPE2:

O 00N

COPYBF (TAPEL,TAPE2,1)

r/ASSIGN MT, TAPEZ .

(/ASSIGN MT,TAPEL,

JOB2,p,t,fl.

A-3

Deck Structure for Library Tape Preparation

6
7
8
9 £
L
binary deck of
central library
g programs followed
9 i by end-of-record
y i cards
a
g binary deck of first
9 central library routine
/1
8 =
9 —
—,
last peripheral binary program
7
8
9 V4
Il
/ binary decks of
7 peripheral pro-
8 grams followed
9 by end-of-record
1

1 I cards

(DSD) binary program

(%inary load cards

7
8
9

(COPYBF(INPUT,TAPEB,l)

(ASSIGN MT, TAPE3,

JOB001,9,1000,200000.

A4

LIBRARY TAPE MAINTENANCE

A library program, CATALOG, is available to determine the names and lengths of programs in each
record and produce a printed list to help maintenance. I is used as follows:

O 00Ny

REWIND (LIBRARY)

(CATALOG (LIBRARY)

(REWIND (LIBRARY)

(REQUEST LIBRARY,

JOB1.

When the layout of a library tape is known, a new one may be produced tape-to-tape using COPYBR,
COPYBF, LBC, LOC, RBR and WBR. A card-to-tape copy of system binary cards may also be made.

Selected binary records may be punched, or the entire tape may be punched out as follows:

\O 00 Ny

/REWIND (LIBRARY)

(COPYBF (LIBRARY,CARDS)

(ASSIGN CP, CARDS.

(REWIND (LIBRARY)

(REQUEST LIBRARY

JOB2.

A-5

Since PP and central library programs are always called for by name, the libraries may be extended
by inserting new binary programs in the appropriate positions on the system tape. The modular
structure of the system makes it easy to modify. Central memory space allocations determined by
settings in the central resident, can be easily changed.

SYSTEM SOURCE CARDS

A separate tape contains the source cards.

Tirst file Peripheral programs
Second file Central library programs
Third file RUN compiler

This tape, written in binary, contains blocked coded cards: Each program is a separate logical
record. It may be printed or punched with standard utility routines.

To list a whole file:

O o ~Noy

REWIND (SOURCE)

COPYSBF (SOURCE, OUTPUT)

REWIND (SOURCE)

(REQUEST SOURCE,

JOR3.

A-6

CENTRAL AND PERIPHERAL LIBRARY PROGRAMS

1AJ
1BJ
1DJ
1LJ
2BD
2BP
2BT
2DF
2DT

2EF
2LP
2RC

1LT
1TD
2PC
DMP
LBC
LOC
PBC
DIS

- SIM
PAS

The Resident Peripheral Library contains the following programs:

Advance job 2RD Read disk

Begin job 2RT Read tape

Phase three print 28D Search day file
Phase one card load 2TJ Translate job card
Backspace disk 2TS Translate statement
Process buffer parameters. 2WD Write disk
Backspace tape 2WT Write tape

Drop file CIO Circular I/0

Drop tracks CLL Call library

Error flag EXU Execute

Line printer MSG Message for day file

Read cards

The Peripheral Library Directory lists the following programs and their disk file locations:

Phase one tape load
Phase three tape dump
Punch cards

Dump storage

Load binary cards
Load octal cards
Punch binary cards
Display job

CPU simulator

Assembler for PP code which executes in a PP

B-1

The Resident Central Library contains the following subroutines:

ALOG

ALOG10

ATAN

coSs

DVCHK

END

EXIT

EXP

IBAIEX

IFENDF

OVERFL

PAUSE

RBAIEX

RBAREX

REMARK

SIN

SQRT

SLITE

SLITET

SSWTCH

START

STOP

B-2

Computes the natural logarithm of a floating point number. The result for a negative
argument is indefinite.

Computes the common logarithm of a floating point number. The result for a negative
argument is indefinite.

Computes the arctangent of a floating point number.

Computes the cosine of a floating point number.

Divide and check.

Causes end-of-file on all circular buffers for the program.

Terminates a program as END. The word EXIT is entered in the day file.
Computes the floating point function E**X.

Computes I**J where both I and J are fixed point.

Checks the status of a circular buffer for an end-of-file condition.

Result is set to one if overflow, and two if no overflow.

Loop on recall until operator action. The word PAUSE is entered in the day file.
Computes A**I where A is floating point and I is fixed point.

Computes A**B where both A and B are floating point.

Transmits a message to the system day file and displays it on the console display.
Computes the sine of the argument.

Computes the square root of the argument. A negative argument results in an
indefinite result.

Sense lights. Turn off if zero. Turn on if non-zero.

Respond with 1 if light was on, 2 if light was off. Turn off light.
Respond with 1 if switch is down, 2 if switch is up.

Enter START in day file.

Enter STOP in day file and perform same function as END.

TAN

TANH

TIME

Compute the tangent of the argument.
Compute the hyperbolic tangent of the argument.

Enter the word TIME and Hollerith information in the day file.

The following central subroutines and programs are called from the disky by referring to the Central
Library Directory (CLD):

FORTRAN Subroutines

BACKSP

CHAIN

DISPLA

ENDFIL
INPUTB
INPUTC
OUTPTB
ouTPTC
RANF
REWINM

XLOCF

Programs
APRAB
BKSP
COPY

COPYBF

Backspace medium

Loads a program from the disk file and executes it. Parameters passed from one
program to another must be in the common region. All segments to be chained must
be compiled with the same file names. The segment name is transferred to the day
file and displayed prior to execution.

Displays a variable name and its numerical value as an integer if unnormalized, in
floating point format if normalized.

Write end-of-file.

Binary input

FORTRAN data input
Binary output

FORTRAN data output
Random number generator
Rewind medium

Returns the memory location of a variable name.

Assemble peripheral overlay
Backspace medium
Copy to double file mark

Copy binary file

B-3

B4

COPYER
COPYCF
COPYCR
COPYSBF
REWIND
RETURN
RUN
UNLOAD

VERIFY

Copy binary record

Copy coded file

Copy coded record

Copy shifted binary file

Rewind medium

Release equipment from control point assignment
Compile and run FORTRAN

Rewind and unload medium

Verify two media

SUGGESTIONS FOR WRITING PP PROGRAMS C

The following miscellaneous data contains hints to aid the programmer in writing peripheral pro-
grams for use under control of MTR.

1. The control point reference found in the PP communication areé, input location is the control
point number not the address. The control point address can be determined by shifting the
control point number left 7 bits.

2. The reference address (RA) and field length (FL) in the control point are in octal hundreds.

3. A check must be made to determine whether the field length (FL) is large enough to contain the
buffer parameter area (BA) and the buffer itself.

4. Periodic PAUSE functions (0017) should be issued throughout a PP program; once per record in
I/O routines should be sufficient. When a NOT READY condition is encountered, PAUSE should
be executed between each STATUS sense. In addition to allowing storage shifts, the PAUSE
provides an abort mechanism.

5. An I/O channel must be reserved (0002) by the PP to prevent another PP from using the chan-
nel at the same time. This reservation is normally just for the duration of the actual passage
of data. The reservation should be dropped during housekeeping periods between 1/0 records.
It must be dropped in all cases when a PP program terminates. Care must be exercised to
DROP. (0003) a channel only if it has been previously reserved by this PP.

6. There are two pseudo-channel reservations (14 and 15) which are used to interlock access to
the File Name Table/File Status Table (FNT/FST). This prevents one PP from making a
change in the table while another is reading it. (Reference central memory 00004)

7. Three tables, FNT/FST and EST (Reference central memory 00005), are the keys to all PP
1/0 requests.

A request entered into a PP specifies an operation on a file name. With this information and
the control point number, the PP program must use the tables to find which piece of I/0O
equipment it should drive and the attendant information concerning channel, synchronizer, unit
number, etc.

8. When the disk is used, the programmer should be aware of the table entries concerning current
disk position. (FNT/FST - word two, bytes 3, 4). If a file is assigned to the disk, the second
word of the FNT/FST entry for that file contains the current track and current sector for that
file: this may or may not be the current position for that disk. The current position for the
disk always appears in byte 2 of the TRT pointer word for that disk. Determining the status
eliminates unnecessary positioning functions. Status checking must be used by all disk
handling routines. A positioning function, available for digk 0 in the idle loop (PP resident),
is entered with the track number in A, and a channel is reserved. Dd a return jump to
location 0701.

C-1

10.

11.

12.

13.

A disk parity error will terminate the system and make an entry in the disk flaw table. Return
jump to location 0201 with location 0006 preset to the track number, and location 0007 preset
to the sector in which the parity error was detected.

Monitor function calls from PP programs are all handled by a subroutine in PP resident.
Return jump to location 0761 with a request preset in locations 0011-0014 and the request
number in A. I there are no parameters associated with the request, it is not necessary to
clear 0011-0014. (See 0001, 0004, 0005, 0011, 0012, 0013, 0015, 0016, 0017, 0020, etc.)
(Location 0661 may be used to wait for a cleared output register.)

Channel reservation function (0002) or drop channel function (0003) may be handled as in
pumber 10 (RJ to 0761); or it may be handled directly by presetting A to the channel number
and performing a return jump to 0741 for reserve (0002) or return jump to location 0751 for
drop (0003) function.

Since PP's have access to every part of central memory, the programming interlocks must be
adhered to in all cases. For this reason, a peripheral routine which is not completely
debugged can cause strange results to totally unrelated programs. Therefore, debugging of
PP programs should take place during a period which will not cause a hardship if a Dead Start
is necessary.

A central processor program with priority zero will never be executed. This priority is used
whenever a PP routine needs buffer area in central memory. It is used by Read and Print PP
routines.

INDEX

Abort 3-13, 6-7 Compatibility 5-25
Control Point 3-7, 3-12, 3-18 Complete Dayfile 3-18
Assign COSY Deck Modification 5~1

Equipment 3-21
Error Exit Mode 3-20

PP Time 3-16 Dayfile 3-37, 8-10, 8-11, 8-21
ASCENT 5-4 Dead Start 8-1, 8-2
ASCENTF 5-24, 5-25 Deck Structures 5-2, 5-3, 7-1
Automatic Mode 8-3 Disk
Assembly System Calls 5-1 File Organization 2-5
ASPER 5-5 Storage 1-3

Drop
Channel 3-16
Basic Program 3-25 CP 3-19
Binary Equipment 3-20
Card Files 4-9 Dump Storage 3-35

Tape Files 4—12
Coded Decimal (BCD) 4-11, 4-12

Buffer Codes 3-31 Equipment
Assignment 6-3
Number 4-3
Call Status Table 4-1
and Execute (EXU) 3-35 On 3-21
Central Overlay (CLL) 3-33 Off 3-21
Peripheral 3-13 Error
Calling Sequences 3-22 Flags 5-6, 5-31
Card Format 5-24, 5-26 Exchange Jump Area 3-5
Central
Memory 1-2, 2-2
Peripheral Communication 3-13 File Name Table/File Status Table 4-4
Program 2-9, 2-22 FORTRAN 5-12, 5-14, 5-23, B-3

Circular Buffer I/O 3-26, 3-28
Channel Status Table 4-4

Changing Priority 8-18 Header Cards 5-23
Coded

Card Files 4-9

One-Inch Tape 4-12 Instruction Format 5-16
Control

Cards 6-1, 6-13

Point Areas 3-2 Job
Constants 5-16, 5-24, 5-28 Backlog 8-17
Console and Display Scopes 8-5 Card 6-1
Communication Area 3-1 Status 8-12, 8-14

Index-1

Keyboard 8-6

Loading
Binary Corrections 3-35
Octal Corrections 3-36
System Tape A-1
Library Tape A-1

Macros 5-17

Machine Language 5-15

Manual Mode 8-4

Monitor i
/Peripheral Communication 3-14
Step Control 3-17
Function Codes 3-6

Operation 1-3, 3-32
Operator Drop 3-21

Peripheral
Assembly Language 5-25
Library Directory B-1
Processor 1-2
Monitor 1-2
Programs 2-8, 3-24
Communication Areas 3-1
Memory 2-1
Process Dayfile Message 3-16
Processing Modes. 8-1
Program
Call Card 6-3
Organization 5-22, 5-24

Pseudo-Operations 5-20, 5-24, 5-28 °

Punch Binary Cards 3-37

Resident
Peripheral Library B-1, 2-8
Central Library B-2, 2-9
Central Storage 2-4
Recall
Central Processor 3-20
Release PP 3-18

Index-2

Request '
Channel 3-16
Disk Track 3-17
Storage 3-17
Central Processor 3-19
Equipment 3-20
Priority 3-20

System
Display 1-3, 8-7, 8-9
Tape A-1 :

Tape Organization A-1, A-2
Storage Displays 8-15, 8-16
Suspending Execution 8-19

Time Limit 3-14, 3-18
Toggle Simulator 3-21
Track Reservation Tables 2-5, 2-7

"CORPORATION

CONTROL DATA
| corronaTion

COMMENT AND EVALUATION SHEET

6000 SERIES COMPUTER SYSTEMS
Chippewa Operating System Reference Manual
Pub. No. 60134400 December, 1965

YOUR EVALUATION OF THIS MANUAL WILL BE WELCOMED BY CONTROL,DATA
CORPORATION. ANY ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL
COMMENTS MAY BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM nawme:

BUSINESS
ADDRESS :

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S, A,

FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOLIS, MINN,

]
BUSINESS REPLY MAIL DEREI
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A, o]
ISR
[
POSTAGE WILL BE PAID BY —
CONTROL DATA CORPORATION PR
Documentation Department —
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA L
P
L]
]
N
A
_______________ —— - - = == - T T T T T 777 7 Troap

STAPLE STAPLE

CONTROL DATA SALES OFFICES
ALAMAGORDO « ALBUQUERQUE + ATLANTA « AUSTIN, TEXAS « BILLINGS
BIRMINGHAM . BOSTON . BOULDER, COLORADO . CAPE CANAVERAL

CHICAGO « CINCINNATI - CLEVELAND . COLORADO SPRINGS » DALLAS

DAYTON « DENVER . DETROIT « DOWNEY, CALIFORNIA . GREENSBORO,
NORTH CAROLINA . HARTLAND, WISCONSIN « HONOLULU . HOUSTON
HUNTSVILLE « MIAMI « MONTEREY, CALIFORNIA « INDIANAPOLIS « KANSAS
CITY, KANSAS '+« LOS ANGELES « LAS VEGAS « MADISON, WISCONSIN
MINNEAPOLIS « NEWARK « NEW ORLEANS » NEW YORK CITY « OAKLAND
OMAHA + PALO ALTO » PHILADELPHIA .« PHOENIX .« PITTSBURGH
'ROCHESTER, NEW YORK . SACRAMENTO . SALT LAKE CITY . SAN
BERNARDINO « SAN DIEGO « CONDADO, PUERTO RICO « SANTA BARBARA
SAN FRANCISCO « SEATTLE . ST. LOUIS « TULSA « WASHINGTON, D. C.

"PUB. NO. 60134400

AMSTERDAM « ATHENS « BOMBAY « CANBERRA - DUSSELDORF » FRANK-
FURT « HAMBURG » JOHANNESBURG - LONDON » LUCERNE '+ MELEOURNE
MEXICO CITY « MILAN « MONTREAL » MUNICH « OSLO « OTTAWA « PARIS
TELAVIV « STOCKHOLM » STUTTGART + SYDNEY « TOKYO(C: ITOH ELEC-
TRONIC COMPUTING SERVICE CO., LTD.) » TORONTO « ZURICH

'CONTROL DATA
8100 34th AVE. 50., MINNEAPOLIS, MINN. 55440

LTHO IN U.S.A.

