CONTROL DATA" 6000 SERIES COMPUTER SYSTEMS
CHIPPEWA OPERATING SYSTEM DOCUMENTATION

Volume Ill Preliminary Edition

CONTROL DATA CORPORATION

Development Division - Applications

DSD -~ THE SYSTEM DISPLAY

Chippewa Operating System

11/25/65

DSD: The System Display

Introduction

The display,conéole is controlled by a display program, DSD, which
permanentiy resides in peripheral processor 9. DSD displays a variety
of information concerning the status of the system, including a display
of the dayfile, a display of the jobs waiting to be executed and waiting
to be printed, and a display showing the status of each control point.
DSD permits selected portions of central memory to be displayed, and
also provides for the modification of central memory locations.

In addition to its display function, DSD processes keyboard messages
from the operator. Operator functions include bringing a job to or
dropping a job from a éontrpl point, assigning equipment, ana selection
of various types of displays. The Chippewa Operating System also
contains a job display package, DIS. DIS, when called,'is assigned to a
control point, and permits the modification of job parameters, memory
locations, and control statement sequences for this job assigned to the

control point, ‘For the most part, DSD and DIS displays are identical.

The main components of the display console are the two cathode ray tubes
and the keyboard. By issuing the appropriate function codes to the
display console controller, displays of 16, 32, or 64 characters per
line may be selected on either the right or left screens. A dot mode
display is also available, although only the character mode display is
used by the operating system. The display area can be considered tokbé
composed of a grid of points, 512 by 512 points in size. A display can
be initiated at any point in the display area by issuing the coordinates
of that point. A vertical, or Y, coordinate is sent to the controller
in the low-order nine bits of a byte in which the high-order octal digit
is a 7. Similarly, a horizontal, or X, coo;dinate is sent to the controller
in the low-order nine bits of a byte in which the high-order octal digit

is a 6, If the display comnsole controllér receives a byte in which the
high-order octal digit is.neither a 6 or a %, it is assumed that this

byte contains two display code characters.

To display a line of information on the screen, an X and a Y coordinate

are sent to the controller via the appropriate output instructions

(OAN or 0AM). These coordinates define the location of the lower leit-
corner of the first character to be displayed. The information to be

displayed is then sent to the controller via an OAM instruction. As

each character is displayed th X coordinate is automatically incremented.

To display another line, the X and ¥ coordinates should be reinitialized.
A coordinate of X=000 defines the left-most boundary of the display area;
a coordinate of x=7778 defines the right-most boundary of the display
area; a coordinate of Y=7778 defines the upper boundary of the display
area, and a coordinate of Y=000 defines the lower boundary of the display

area.

The Chippewa Operating'System uses a display of 64 characters perbline
in both DSD and DIS. Generally, the Y (vertical) coordinate spacing
between successive lines is 128. The display must be regenerated at
least 25 times per second in order to avoid flicker. The DSD display

is designed to maintain an aveérage rate of 40 displays per second.

DSD Master Loop

The DSD master loop is shown on page A-1 of the attached flow charts.
On the initial entry to this routine (i.e.; at dead start time), a
subroutine is called to perform housekeeping. This subroutine clears
the temporary storage areas used by DSD, selects the "AY display
(dayfile) on the left screen and the "B" display (control points) on
the right screen, and requests reservation of channel 10 from MTR.
Display selection in DSD is performed by setting the address of the
desired display subroutine in location 70 for thé left screen and in

location 71 for the right screen.

On each pass through its master loop, DSD selects the display console
keyboard and issues an input instruction to read the keyboard. 1If a
zero byte is returned, then no key has been depressed since the last
pass through the master loop. If a non-zero byte is returned, the key-
board character in the low-order bits of the byte is processed., If the
character 1s a'carriage return, the Message Ready flag is set and the

keyboard message is proceésed.

After keyboard proce551ng is completed, ' DSD issues a function code to
select the left screen, and dlsplays the time and date from central
memory resident beginning at location 30. The contents of this area are
read and displayed, word by word, until a zero byte is encountered.
Regardless of the display selected for the left screen, the time-date
line is always displayed., DSD then jumps to the subroutine whose address
is contained in location 70 to process the selected left screen display.
At the bottom of the left screen, tﬂe keyboard message currently being
entered is displayed. If an error is encountered in processing this
message, the error message "FORMAT ERROR" will be displayed immediately
above the keyboard message. Once processing of a valid message is com=

plete, the message will be no longer displayed.

DSD then issues a function code to display the right screen. At the top
of the right screen, the contents of the central processor P register

and the status of the 12 data channels are always displayed. DSD reads
the central processor P register, converts the contents of the P register
to display code, and displays these characters. On the same line, three
groups of four characters, one character for each of the 12 data channels,
are displayed. Each channel is first tested to determine if it is active
or inactive. If the channel is inactive, the displayed character cor-
responding to that channel is a "D" (disconnected). If the channel is
active and empty, an "E" is displayed, while if the channel is active

and full, an "F" is displayed. (See figure 1) DSD then jumps to the
subroutine whose address is contained in location 71 to .process the

selected right screen display.

After both screens have been displayed, DSD calls the Adjust Display
Period subroutine (shown on page A=l of the attached flow charts). The
purpose of this subroutine is to control the number of passes made through
DSD's mastér loop in a fixed time interval in order to avoid flicker.

On each entry to the Adjust Display Period subroutine (i.e., on each

pass through DSD's master loop), a display cycle counter is advanced.

At the end of each second, the display cycle count is examined to determine
if the display was repeated more than 508 times in the past second.

If it was, a delay count (D) equal to the display cycle count - 508 is

set, If the display was repeated less than 50 times‘in the past second,

this delay count is set to zero. The delay count is used to establish

-3=

ANINIFOVId AV IdSida
3 SAVIdSId d3XI4 dsad

H=-V
AVIdSId @aroaATds

—\

\\\mmmm aaaa 45aa sTANNVED ‘Ho111 = 4

ALdRE TINNVHO = 1
TINd TANNVHO = 4
FATIOVNI TANNVHO =

21 - 1 STANNVHO ‘SNIVIS TANNVHO

YILSIOIY d ¥0SS300dd TVIINIAD

AIYIING SV QIAVIASIA ‘IOVSSIN QYvOodAdN

dOVSSIN ¥0odygd

\

dOVSSAN QIVOdAIN
//,/ NAVAVANAN

[90¥¥d Iviniod
// ////,//

H-V
AVIdSIA QIIO3ATAS

SAAN NN NNNS

961 YIEANIAON *70°1%°%0]

0€ NOILVIOOT INIQISI¥ WO
RO¥d ‘QF¥IINT AT ALVA ANV “IRIL

Figure 1

e

a delay between successive passes through DSD's master loop: the larger
the delay, the greater the time between successive passes through the
master loop. Also, in the next second, D will be set to zero if the
display is repeated SO;D times or less. If in any second, then, the

display is repeated more than 50, times, a delay so that the display will

8
be repeated less than 508 times in the subsequent second: over a period
of several seconds, the display rate should average out to 508 times per

second., At the end of each second, the display cycle counter is reset

to zero, ‘)

In a 6000 system with a single display console, DSD must relinquish control
to DIS when the latter is called to .a control point. When DIS begins
execution, it requests MIR to assign an equipment of type DS. MTR
searches the EST for an entry of this type, and, when found, enters the
requestor's control point address in byte one of the EST entry. On

each pass through its master loop, DSD reads the EST entry for equip-

ment number 10. If byte one is non-zero, then this equipment has been
assigned to another user - DIS. DSD then releases the channel reservation
for the channel to which the display controller is connected, and loops

on a test of byte one of the EST entry. When this byte becomes zero

once again, DIS has released control of the conéole, and so DSD requests

the channel once again and returns to its master loop.

One of the keyboard entries processed by DSD is the 'STEP," message,
which causes MIR to enter a step mode of operation. In step mode, MTR
pauses for operation intervention before processing each request from

a peripheral processor. To process the STEP message, DSD sends function-
request 5 to MTR. MTR then sets a switch in the subroutine which
processes requests from peripheral processors. When a request.is next
received from a peripheral:processor, MIR will set a.Wait flag in byte

5 of central memory location 14, and will then loop until this flag has
been modified. Entering a space on the keyboard will :esult in the
clearing of this flag by DSD: MTR will then process the request just
received, but will pause again before processing subsequent requests.
Entering a period on the keyboard will result in this flag's being set to
7777 by DSD: MTR will then reset the switch in the subroutine which

processes peripheral processor requests, and will process subsequent

requests in the normal manner. Since a space or a period is not, in

-5-

itself, a conventional DSD message, DSD checks for the entry of these

characters on each pass through its master loop if MIR is in step mode.

DSD Keyboard Message Processing

The processing of characters received from the keyboard is shown in

the flow chart on page A-l. If the character received is a carriage
return, then a complete message has been entered and so the Message Ready
flag is set. If the character received is a backspace, DSD clears the
last character entered in the buffer, resets the buf};; address accordingly,
and clears the error flag which may have been set if an attempt was made
to process the message. If the drop key was depressed, then the entire
message is deleted: the buffer address is reset to the starting address,
and the error flag cleared. Should the character be a valid keyboard
character, it is entered in the message buffer and the buffer address
advanced. Note that the space character from the keyboard (628) is not

a display code character, and so a blank (558) is substituted for it.

When DSD detects that a carriage return has been entered on the keyboard,
the Message Ready flag is set to indicate that a message is ready for
processing. DSD then proceeds to interpret the message. Message
processing is illustrated in the flow chart.on page A-2. The second
character is examined to determine if it is a period: if it is, then the
message is a control point message, and so the first character is examined
" to determine if it is a valid control point number (1-7). If the first
character is not a numeric in the range 1-7, the Message Error flag is

set and control returned to DSD's master loop, where the message 'FORMAT
ERROR" will be displayed. If the first character is a valid control

point number, then a table search is made for the address of the appropriate
subroutine. If the message is not found in the table, the Message Error
flag is set and control is returned to DSD's master loop. Processing of

the valid control point messages is described below.

ONSW: If the message is of the form.n.ONSWx., DSD sets the bit

corresponding to X+5 in byte 5 of location RA for comtrol point n,
and in word 26 of control poimt area n. Control is then returned

to DSD's master loop.

OFFSW: If the message is of the form n.0FFSWx., DSD clears the
bit corresponding to X+5 in byte 5 of location RA for control
point n, and in word 26 of control point area n. Control is then

returned to DSD's master loop.

LOAD: 1If the message is of the form n.LOAD., DSD writes the package
name (1LT) and the control point number, n, in its Message Buffer,
Word 21 of control point area n is then examined to determine/}f the
" control point area contains a job name. If it does not, DSD requests
MIR to assign a pool processor to control point n.' MTR will copy
the contents of DSD's Message Buffer into the Input Register of a
.féee pool processor, and assign the processor to control point n.
Control is theﬁ returned to DSD's master loop. If the control
point area contains a job name (word 21 non-zero), control is
returned to the DSD master loop. If the control point area contains
a job name (word 21 non-zero), control is returnedkto tﬁe DSD master

loop without requesting the assignment of a processor.

NEXT: Processing of the message n.NEXT. is identical to the pro-
cessing of the LOAD message with the ‘exception that the package name

1BJ is written in DSD's Message Buffer.

READ: Processing of the message n.READ. is identical to the pro-
cessing of the LOAD message with the exception that the package

name 1LJ is written in DSD's Message Buffer.

PRINT: Processing of the message n.PRINT. is identical to the pro-
cessing of the LOAD message with the exception that the package

name 1DJ is written in DSD's Message Buffer,

DIS: If the message is of the form n.DIS., DSD writes the package
name DIS in its Message Buffer, and requests MIR to assign a pool
processor to control point n. Control is then returned to DSD's

master loop.

ASSIGN: The ASSIGN message is generally éntered in response to a
REQUEST statement display or the message WAITING FOR XX. If the
message is of the form n,ASSIGNXX., DSD requests MIR to assign the

-7=

Specified equipment to the control point. MIR looks up the
corresponding entry in the EST: if equipment XX is not already
assigned, then MTR assigns the equipment to control point n and
writes the equipment number in word 22 in the control point area.
After initiating the MTR request, control is returned to DSD's

master loop.

-

GO: The>20 bit in byte 4 of location RA is a pause bit, This bit
is.set by a FORTRAN PAUSE statement, and is also set by certain
peripheral packages when an error is detected. For example, 2RT
sets this bit when a parity error has occurred after reading a
record three times. When the n.GO. statement is processed, this
bit is cleared. Also, the most recent message in"fthe control

point area (presumably the PAUSE statement) is cleared.

END: If the message is of the form n.ENDl., n.END2., n.END3.,

or n.END4., DSD sets a printer stop code in byte 2 of word 20 in

the control point area. This stop code is equivalent to setting

the low-order second octal digit of this byte to the digit following
the word END in the message. The printer stop code is sensed by

the four-printer print programs.

DROP: If the message is of the form n.DROP., DSD writes the control
point number n in its>0utput Register, and requests MIR to drop
the job at control point n. MIR sets error flag six (Operator

Drop) to initiate error processing.

If the second character in the message was a period, and the message was
not found to be one of those described above, the Message Error flag is

set and control returned to DSD's master loop. If the second character

in the message was not a period, the first character is examined to
determine if it is an octal digit. Should the first character be an

octal digit, it is assumed that the message is a storage entry message of
the form a,d., where a represents a central memory address and d represents
the data to be entered in memory at that address. The characters in

the message are assembled and converted to octal until a separator is
found: if the separator is not a comma, the Message Error flag is set.

Once the address has been assembled, the characters following the comma

-8-

are assembled and converted to octal until another separator is found.

If this separator is not a period, the Message Error flag is set. The
assembled data is stored, right-justified, in a 5-byte area, and the
contents of this area are then written in central memory at the specified

3

address,

If the first character is not an octal digit, the third character is
examined to determine if it is a period. 1If the third character is a
period, the message is assumed to be a display mode &essage of the form
AB., where A and B represent characters specifying the desired display
on the left and right screens respectively. The subroutine address
corresponding to the specified display (A-H) is located in a tablé and
stored in location 70, in the case of the left screen display, or

location 71, in the case of the right screeh display.

If the third character was not a period but was a comma, it is assumed
that the message is a display field change message of the form mf,a.,
where m is the display mode (C-G), A is the field whose starting address
is to be changed (0-3 for fields 0-3, or 4 for all four fields), and a

is the new starting address. Each of the storage display subroutines for
storage displays C, D, E, F, and G maintains a list of four addresses,
one for each of the four fields displayed. When this message is detected,
DSD modifies the appropriate address in the list of field addresses for
the specified display if the second character is 0-3. If the second
character of the message is 4, the first address in the list is set to
the address contained in the message, the second address in the list

is set to the address contained in the message plus 108, and so forth.

If the third character in the message is not a comma, it is assumed to

be a non-control point message of the form described below. DSD searches
a table for the address of the‘appropriate subroutine: if the message

is not found in the table, the Message Error flag is set and control
returned to DSD's master loop. Processing of these messages is described

below.

DCN: If the messagé is of the form DCNXX., where XX is an octal
channel number, DSD assembles the channel number and tests the

channel to determine if it is inactive. If the clannel is active,

-9-

a channel disconnect is issued.

FCN: 1If the message is of the form FCNXX., where X is an octal
‘channel number, the channel number is assembled and a test made to
determine if the channel is inactive. If the channel is inactive,

a zero function is sent to the channel.

AUTO: If the message is AUTO., DSD assigns READ (1LJ) to control
point 1, PRINT (1DJ) to control point 2, and NEXT (1BJ) to control
points 3, 4, 5, and 6. To assign a package to a control point,
DSD writes the package name and control point number in bytes one
and two of word one of its Message Buffer, and sgnds function
request 20, Assign PPU, to MTR. MTR locates a éree pool processor,
assigns it to the control point, and copies word one of DSD's

Message Buffer into the pool processor's Input Register.

STEP: If the message is STEP., DSD requests MTR to enter step

mode by sending function request 5 to MTR. (See discussion on

page 5.)

ON or OFF: The messages ONXX* and OFFXX. permit the operator to
clear and set, respectively, the interlock bit in the EST table
entries. In these messages, XX is an octal equipment nuﬁber which
defines a location in EST. The interlock bit is generally used B
only with magnetic tape units. When this bit is set, the corresponding

equipment will not be automaticaily allocated in response to an

ASSIGN request: if this bit is cleared, and a request such as

ASSIGN MT is processed, the equipment will be automatically assigned

by MTR. For equipment types MT and WT, this bit is set at load

time. (See page 9 of CENTRAL MEMORY RESIDENT.)

TIME: If the message begins with the characters TIME., and

contents of the keyboard message buffer following these characters
are copied into central memory resident beginning at location 30..
This information may comprise up to six central memory words. It

is assumed that the first portion of this message has the form _HR.MN.
SC., where HR represents hours, MN represents minutes, and SC

represents seconds., This time will be advanced by MIR and will

-10- \

appear in all dayfile messages and at the top of the left sCréen~
display. The information following the time may be the'date and/or
any other desired information. The date portion will also be
displayed at the top of the left screen, and will be printed at

the end of a job's dayfile Iis;ipg; - '

P

DSD Displays

The various display modes which may be selected in bSD are as folldws:
A.veveesscDayfile Display
BesesessssControl Point Display ‘
CeveeeesssStorage Display (5 groups of 4 digits)
Deeeeo-s..Storage Display (5 groups of 4 digits)
Eeeeeee-o.Storage Display (5 groups of 4 digits)
FeeseesssoStorage Display (4 groups of 5 digits)
Gse..sesssStorage Display (4 groups of 5 digits)
HeeeeeseesdOb Backlog Display
The format of these displays is illustrated in figures 2, 3, and 4.
Each display is processed by a separate DSD subroutine: these sub~
routines appear on pages A-3 and A-4 of the attached flow charts.
For the most part, display processing is quite straightforward, and

discussions of these displays will be limited to points of interest.

"A" Display: The "A" display is a display of the dayfile buffer
(DFB) contents from FIRST to IN. It is possible that the bottom

of the display area may be reached before all the information in

the dayfile has been displayed. If so, the subroutine parameters
are modified so that on the next entry to.the subroutine, the
message which previously appeared at the top of the display will not
be processed, thus permittingba new message to be displayed. Also,
the point at which the display begins ié moved down by the width of
a line, and gradually moved back up during the next 10 displays.

As a result, a revolving or rolling effect is obtained.

"B" Display: The B display shows information concerning each of the
seven control points, as shown in figure 3., On entry to this
subroutine, the copy of the control stack which MIR maintains in

locations 56-57 of central memory resident is read. For each control

-11-

SAVIdSIGH 3V (S0

O0I0Vd 90rf -~ wHu AVIdSIA dTIJAVA ~

ALTIOIY¥d

dHVN dOfr

[1

*11°AIaNyd and

*11°¢. #%dbad (TINNY

*G1¢ SIMATA *L1° ssSnvo *00009°0€“ % SIMATA
*0d4S 200 dd

*S3TId 1Nd1NO *SATIA INANI *avay

uVu AVIdSI1d

ARIL WALSAS
TRVN €OC<
TOVSSAH ITIAAVA

* SIMATA
* SIMITL
* SIMATA
* SIMATA
° SIMITA

"9eT0v %0
"EET0Y° 40
"TET0OHTH0
"1e°0%° %0
‘6E70%° %0

Figure 2

-12-

HOVSSAN FTTIAVA/ATOSNOD LSV
, ﬂv HLONET ATAId

SLNIOd TOJINOD :XV1dSId _d.a5a

SSEYAAY FONTWAITY /
\\\\\\\nxgzmzmH:cm amonmm<.

/~—ZXava¥ ION 1% FdVl
["
17 ‘0% ‘60 ‘00001 ‘00059 —1

‘00% L1 ¢ SIMATI €

N\ |~

A‘HZHom TOYLNOD
JRVN dor
ALIY¥0TIHd

LIIRIT IRIL
dNIL ONINNNA

SNLVILS INIOCd TOYINOD

S¥0SSEAD0Yd TVHIHAI¥Id dINDISSY

_ [INIOd TO¥INOD
NANANDNAOAONNEKNINETKT®
. 9 INIOd 10Y¥INOD N

N N N N N N N N N

G INIOd TO¥INOO

AN

%7 INIOd TOYINOD

SOONNONNNNNN

£ INIOd TOY¥INOD

SONONNONONANN NN

¢ INIOd TOYINOD

S S S S SASOSNNNTNS

- T INIOd TO¥INOD

oo

Figure 3

-13-

point in the stack, a status indicator, A-G, is set to represent

the position of that control point in the stack (i.e., A represents
the top of the stack, B the second entry in the stack, and so forth).
The status byte in each control point is also read, and the status
indicator set to W or X depending on the setting of these flags.

The remaining processing performed by the subroutine consists of
reading information from the control point area and displaying

this information.

Displays C-G: The storage displays, C'through G, each display &4
fields of 8 central memory words (see figure 4). Displays C, D,
E are identical in format and display each central memory word as
> groups of 4 octal digits, Displays F and G are identical in
format and dispiay each central memory word as 4 groups of 5 octal
digits, There is a separate subroutine for each of these five
displays: each of these subroutines maintains a list of four field
addresses which specify the starting point for each of the four
8-word field displays. These address lists are set via keyboard
messages (see page 9). The address lists are initialized at load
time as follows: -~
C DisplayWords 20-27 of éontrol point areas 1, 2,v3, and 4
D DisplayCM resident locations 0-37
E Display ose...CM resident locations 60-117
F Disblay 2 esssCentral Memory locations 10000-10037
G DisplayCentral Memory locations 10040-10077

The reason for identical displays (C, D, E, and F, G) is to permit
the operation to switch between scans of selected memory areas
without the necessity of entering starting addresses each time he

switches from one area to another.

"H'" Display: The H display lists the input and output files in the
FNT. Upon entry to the H display subroutine, the FNT is searched
and two lists prepared: one, a list of FNT addresses for entries
of file type INPUT, and the other a list of FNT addresses for

entries of file type OUTPUT. The entries represented in these lists

~14-

9 MHHL D SAVI4STa. 080

(3 _anv_‘d ‘0 sividasia)
SLIOIA TVID0 # 40 S4Nogo ¢

0020 0%00 10S0 009z 0119 L0940 3
¢1TL 9%00 000€ L160 T49L 90940
€000 00€L TZ2Z0 0000 OLIS SO9%0
0%L0 T€00 0920 %1S0 €.95 #09+0 V
OELT T¢00 0000 €1SZ T€L9 €09+0
¢s0€ %0¢Z €920 009Z 0ZIS ZO9%0
0001 0000 0000 0000 0000 109+%0
0000 0000 0000 0000 0000 00940 -/

£ aTd1d

L .

vd
\\\\\\\\\

T ATd14

A\

(9 ANV d4 SAVI4SIqQ) -

SLIDIA '1VIO0 G 40 Sdnows & S \\\\\M\AV\N\\N\\N\\A\\\

0 aTd14

00200 %0010 S0009 ZOTT9 L0940 ~
¢11.9 %0000 0€LTIS O1L9L 909+%0
€0000 0€LTL 70000 00LIS S09+%0
0%L0T €£0009 ¢0%1S 0€L9S +09+%0 v
OELTT ¢0000 00€TIS ZI€L9 €09%0 /
ZS0¢ehy 0Z7€9 ¢0009 ¢0ZIS ¢09%0 . . B
00010 00C0COO 00000 00000 T109%0
00000 00000 00000 ooow@ 009%0 ./

\ -~ ——/
S~ NOIL1VDO0T

NOILVD0T 40 SINIINOD

Figure 4

=15~

are then read, and the file name and priority displayed. These

lists are updated only at intervals of 1/10 of a second in order

to reduce unnecessary read pyramid conflicts.

-16-

1I1X3

{ Trww avasia 1sadw |

o

4 Q3IRDISSY TII1S AVI4SIQ S1
_ S3%

AVISIO ¥04d AMINT 153 Qvad

[

C TINNVID AV14S1a 40ua |

s3X
¢1N104 71041KOD V Ol @INOISSV

1a

ON

NIIE I70SNOD AVISIQ SVH
AVEIIT ¥0d XYING 1S3 Qva

[

L

QNOD23S IX3AN HOd 0§ =
0 + 1NNOJ ITIAD = @ 13§

L

»f AV130_FTOAD~HIINT Je——

[

[avodas ixaw w0 =a 135 |

ON

1 QN0D3S SIHL STHIL UOR ¥0

@ - 0§ G3L1vadTW AVI4SIA SVA
AINNOD QNOD3IS A3N FHOLS

S3x

4 O325VAQY INNOD QNOD3S SYH
JR1L KILSAS Qvad

[19 31023 av1dsia_sonvaav]

Q0T¥3d AY1dS1Q isnrav —

E

[SSTEAAY WILANG IONVAQY |

oN
[¢ TIMd ¥3440€ IIVSSAR ST

1 434308 N1 ¥3IDVEVHD THOLS
s3ax .

53X

o

{ ¢ ¥31ovevid Tvo3T v SRl st |

ON
I

SSTEQOV ¥I4anG 1357 |
V14 ¥O¥YD 3IVSSIK wvAD [

[(1x3 fe—r]

S3A

{_{ 0355T4d AJ¥ J0ND IRL SvA |

ON

s
|

¥33478 NI NNYTIE ¥ ¥IINT

—{_ ¢ 32vd5 v Y310wuviD 5w |

ON

OV14 HCEd3 IDVSSIK ¥YATD X i 30VdSNIVH ¥ MILIVAVHD W4ﬂ~
dILIVEVHD 1SYT ¥vADD

[ix3 fe— o acvas stvessad i3S

T

OoN

_ Nzﬁ,ﬁx
1 3ovIv¥vo v WIIDVNVHD sw

_

¥3IOVHVHD SS3008d]

I-¥ 39vd :gs@g

11a

[oD AVIdSTa 1A 1

NIUOS IHOTH
NO udu AVI4SIOQ 1D3TIS

NITUIS LIFT NO
AVIdSIO0 FT1dAVT 103735

_

[__=svuois moveosar wvan |

I soveois soviosdr tasma]

. 3QCK 431§
1IX3 OL 9v1d 431§ 13§
S3x

i 02911x3 00TH3d V svA —unf

OoN

[¥R d31s oL ovid a3is 135 |———e

x5
i QIWIINI I0VIS v svm |

on

s3Ik

[300K 4315 ST WOIINOR 1 }——mf

_ OK

_ G01¥3d Av1dsid Isarav |

N3TIS IHOIY AVIdSIQ
SNIVIS TINNVHD AVI4SIG
NATUIS 1HOIH L1OITES

I

((3ovssaR_wevomaay xviasta |

_ ON

[

+HOWNI LVWEO4x AVISIO |e e —{ ix3s svia wewa owssaw st]

[

K3F43§ 1437 Av1ds1Q
3INIT Z1va Xv1dS1Q
N3FTE2E 1437 103738

|

C

[¢ GIAI353Y nd3ad

3DVSSIH §530CUd {

_ 35VvSSIR 32ITERCT ¥ SYH
$34

_ o

L

1 { L LNESTEd dRiiYevRd

IILVIVHD SS3004d [x| VST vl cvia g

CONTROL DATA CORPORATION

Development Division - Applications

THE JOB DISPLAY, DIS

Chippewa Operating System

10/15/65
REV. 1

INTRODUCTION

- OPERATIONS

CONSOLE DISPLAY

DIS JO3 DISZLAY

DIS is the name of the Chippewa Operating System peripheral
program that monitors comsole - keyboard activity for a

job assigned to a particular control point. DIS must be
loaded in as many PPU units as the number of control points
for which it is required. The package is usually located
on the system disk in the peripheral library; therefore,
its name will appear in the PLD (Peripheral Library Direct-
ory). DIS may be brought to a control point in any one

of three ways:

1. Typing "A. DIS CR'" when DSD (system display) is active.

2. Inserting a DIS control card.
3. A central memory pfogram requesting DIS through a call
to MSG.

DIS is concerned with the following functions:

« Job Displays

* Monitoring Keyboard Activity

* Processing Requests for job control debugging for only
the job aésigned to its control point.

DIS operates during the time the job to which it is attached

has the control point. If it is desired to manually re-

lease DIS, a drop request is made, which in turn causes

a drop PPUS %o be issued by the PPU containing DIS. DIS

would have-to again be loaded for future use by this con-

trol point. If an error condition (error byte becomes non-

zero in CP area) the program will drop itself; a check of

this nature is mede on each iteration through the master

control loop.

One of the prime functions of DIS is displaying informa=-
tion concerning the status of the job at the control point
to which it is attached. To do this, DIS outputs informa-
tion in the form of display coded characters (see SIPROS

DEF Manual) and necessitates issuing X and Y coordinate

(2

values followed by the string of 6-bit display code char-
acters. The screen of each CRT may be considered a grid

of. points as follows:

X=6000 X=6777
Y=7000 ‘ Y=7000

Figure 1

The coordinates (x=6xxx, ¥Y=7xxx) specify the position of
the first display coded character follow. Thereafter,
‘the x coordinate is advanced (by one character space)
along the increasing x axis but the y coordinate remains
constant until another y coordinate (7xxx) is issued.
For example, the dayfile display program in DSD uses the
area 7200 to 7660 and form 6000 to 6777.

LOOP

DELAY

(3)

In the dayfile display, the y coordinate is allowed to
increase by +1, from 7646 to 7660 on each cycle of the mas=-

ter control loop. As will be seen, this has the effect of

' "rolling" the display upwards on the screen. The use of

the console display is quite simple, involving only .the
outputing of appropriate x and y coordinates followad by

the display coded string of characters.

Besides the formation of display characters and screen
positioning, the program also controls the brightness

(or intensity) of the image on the screen. The latter
increases in proportion to the number of times per second
the display coded information is presented to the conscle.
To maintain a stable visable image, the code must be out-
put to the console at least every 1/25 of a second. More
repetitions per second will produce a brighter image. A
delay loop is commonly employed to control the image out-

put period.

Example of display loopﬁ

IJM *+3, 10B Jump L1f channel 10B inactive
DCN 10B .Disconnect channel 10B

FNC 7001B10B .Select 32kChar/Line left screen
ACN | 108 .Activate channel

LDC 70008 -«A= Y coordinate

OAN 108 .Output Y coordinate

'LDC 6337B .A= X coordinate

OAC . 108 Output X coordinate

LG 16 .A= No. Words to output

0AM Buffer10B .Output from buffer ‘
LDN 01B .Set A= No. milliseconds delay .
SHN 9 ~ .Convert for LOOP ‘

SBN 1 .2 4s delay loop

PJN Delay

LIM Loop .End of millisecond loop.

(4)

€ 2an3dtg

LAHT

TOVSSHAW LASAT 9907
(ANV JdI) FOVSSAH H0W9d 001¢
A
vVIgvy
vadV AVidSIida AVIdS1Q ITIIAVA
4 7
SNLVLIS TANNVHD 9539 4 ANIT dA1vd 00412

AVIdSIQ 40 40L AVIdSId J0 dol

dLVNIQY00D X

ININEDVId AVIdSIA

(3)

The logic in DIS which controls console output is not
basically different from the above example. The overall

scheme can be visualized as follows:

i) :
' oy
: AR
i N
I
| I

1

l

!

. / = %
,\\4ﬁfﬁﬁ=;\\v /%IGHT ““““““====3 i
START | SCREEN j===== SCREEN DELAY o
, y v

Figure &

e=oe)
g ——

E

oo iy

To maintain the delay function, a parameter may be in-
serted into the ADJUST DISPLAY PERIOD and PRESET INITIAL
VALUES ROUTINES. It has the form: LDN nn, where nn is

the number of milliseconds (from 00 to 478) in the delay.
For maximum brightness,‘this is preset to nn=00; it can

be modified, however. Since other operations (keyboard
monitoring) take place in DIS, this constant also effects
the total sensitivity of the whole system. For normal
operations, it is not necessary to alter this constant.
Notice in figure & the image is established through contin-

uous trips around the display loop.

‘KEYBOARD Along with the display screens at the console unit is a
typewrite-like keyboard containing keys for alphabetic,
numeric and special characters. These, in display code,
are listed on page 46 of the manual on CODES for the 6000
Computer System. Keys are also present for the following

special purposes:

(6)

KEY DISPLAY CODE
Carriage Return (CR) f 608
Backspade » 618
Space o ' 628

These keys are used by the K&WBOARD MONITORING routine to
control the proper filling of the KB (keyboard) assembly
buffef (location 1300/1377 in DIS). A CR is interpreted
by DIS as an end of message. The backspace key will erase
the last character input. The drop key (code 55) will
cause the string of characters of the current message,in-
put to that time, to be cleared; the next character keyed

will be treated as the first of a new message.

When it is desired to interrogate the keyboard for keyed
information, an input to A is given. Lf there was a char-
acter keyed, ‘the console unit cOntroller will return the
character, in display code, in the lower 6 bits of a 12~
bit byte (the high order 6 bits are cleared to 00). If
no key was activated, however, the controller will return

an all zero 12-bit byte.

On each cycle of the Master Control Loop, DIS examines the
data at the keyboard. If a valid character is input, the
byte is stored away in a contiguous manner in the KB.
assembly buffer. ’ A cleared byte (0000)
will cause no data to be stored. Appropriate action is
taken when the CR, backspace or drop key is activated.

When a CR is recognized, a flag, called the keyset Ready
flag is set to 0001; representing the 'on'" condition. This
flag is examined once during each control cycle. If not
set (0000) no action is taken; if set (0001), however, the
message in the KB Assembly buffer is interpreted, processed

and the flag reset to 0000.

Figure 5 illustrates the position of the keyboard process-

ing in the control sequence of DIS (see figure 4 also):

\7)

FUNCTIONAL SEQUENCE OF DIS

tineef SR S Tt

=

MONT - KEYSET

nmuuunwaﬁnnﬂ, m\

S T ——
TIITIEIITI T ITTIY)

u:llli\\f FLAG SET?

Y

Bz

YES

(7)
h

V

s

PROCESS KB
REQUEST

No AEFT
SCREEN

Figure 5

YT TIIEE

sy

MASTER_CONTROL

PROGRAM

Figure 5 combines several of the functions which make up

the MCP (MASTER CONTROL PROGRAM) :

*Keyboard Monitoring

-Request Processing initiation
‘Left Screen Display

'Righﬁ Screen Display

‘Display Period Adjustment

Only a few more functions need to be added to produce the
operations performed by the MCP. Regardless of the dis-
play mode selected (A, B, ..., G) there are permanent dis-
Plays on both the left and right screens. On the left ap-
pears the time and date line stored in Central Memory lo-
cations 30/37; this is displayed at Y coordinate 7700.

At Y coordinates 7100 and 7066 are the error message (if
any) and the contents of the KB Assembly Buffer (at that
point in time), respectively. The current Central Pro-
cessor RPregister and the status of all 12 data channels
are displayed at Y coordinate 7700 on the right screen.

In the functional diagfam (figure 5) these displays may

be thought of as belonging to the left and right screen

displays.

One function remains: breakpoint monitoring. The user

is given the opportunity to request (via the keyboard) a

‘breakpoint debugging action. This routine reads the CP P

register and if the contents match the requested breakpoint
address (in P 52/53) the Central Processor is dropped from
the control point and the word at the breakpoint (saved

in P40/144 during breakpoint initiation) is restored in

CM. This function foilows the display period adjustment
routine. All functions of the MCP areiillustrated in de~

tail in MCP flow chart (see appendix A).

DISPLAY PROGRAMS

DISPLAY MODES

(9

DIS is able to provide four different types (modes) of
displays. The operations indicated in the two circles in
Figure 5 refer to the particular display and its assoc-
iated display program selected for that screen for dis-
cussion purposes. The permanent diépléys were considered
here as well. Initially, DIS will put up the dayfile
display on the left screen and the job status infor

on the right. These can be altered, if desired, by key-

ing the following request.
LR. "CR"

The mode code placed in the L position will bring the dis-
play for that code to the left screen and one placed in R
will specify the right screen display. The address for

the left and right screen programs are stored in locations

70 and 71, respectively.

CODE ‘ DISPLAY INFORMATION

A .Day File

B Job Status

C, D, E Program Storage
F, G Data Storage

Day File Display =~ MODE A

This program displays the contents of the DFB (Day File
Buffer) between Y coordinates 7660 (top) to 7200 (bottom).
This coordinate is stored in location 64. The most cur-

rent being displayed message will élﬁays appear at the

bottom of the display. Up to 3/10 messages can appear be~
tween these limits. After each message is displayed, the

Y coordinate is decremented by 128.

A pointer in location 65 is maintained to indicate the ad~
dress of the DFB message to be displayed at the top of
the display. Initially this pointer equals the "OUT" ad-

dress of the DFB status word (CM location 0003); this is

(10)

advanced?as the number‘messages between the current address
(at 65) and the ”INPUT“'address exceeds 31,,. When 31 or
fewer DFB messages are between (65) and "INPUTY the display
stays constant with new méssages being displayed at the

bottom of the display as they appear in the DFB.

1f, h6Wever; the number of messages in the DFB exceeds the
maximum number that can be processed at oﬁe time, the dis-
play will not remain fixed. Rather, it will "roll up" om
the face of the screen. This gives the impression that
when the message now at the head of the display reaches
the top it is rolled off the screen and a new (and more
current) message enters the display at the bottom. This
will continue until the number of DFB messages betweén

the address stored in 65 and the INPUT DFB status indica=
tor becomes less than 31. This rolling is accomplished
by allowing the beginning Y coordinate to vary from 7646
to 7660 (in increments of 1) on each cycle of the DIS mas-
ter control loop. Therefore, 128 iterations will be
necessary to roll off a message. As each message is rolled
off the screeﬁ, the DFB pointer in 65 is advanced to the
address of the next message in the DFB. All display ref-
erences are made relative to this address. Eg: 1if 65
contained 2334 then the first (top most) message would be
picked up from the CM location 002334. Then the next 30
messages (not the next 30 cells) to be displayed will be
picked up. When the message beginning at CM 002334 is
rolled off the display, the address in 65 will be set to
point to the first word of the next DFB message. If the
message at CM 002334 is three cells long, 65 will be set
equal to 002337. Whenever a message is rolled off, the Y
coordinate is reset equal to 7646. See the flow chart in

Appendix A, A-39 for a detailed description of the process.

Job Status Display - MODE B

This display exhibits the control point status. (W, X, A,

«vve:G, =), last dayfile message the next control state-

(11)

ment to be processed and the exchange jump package. This

information is gathered from the control point area.

Storage Displays - MODES C, D, E, F, G

Modes C, D, E are primarily used to display program text

residing within Central Memory. These form display octal

digits in the form of &4 groups of 5 digits each.

Modes F,VG, in contrast, displéy octal digits in 5 groups
of 4 digits. These coorespond to the 12~bit PPU words and

hence modes F, G are used for data storage.

Besides the above differences, the five modes all share
these characteristics. All displays have four fields.
A field is the display of the eight words XXXXX0 - XXXXX7 .

The particular field specification is given by the typed

statement:
Xn, m. "CR"
where X =C,D,E, F, G
n = Field 0 begins with m

Field 1 begins with m
Field 2 begins with m
Field 3 begins with m
Four consecutive field beginning with m.

SPLWNORO

m = Central memory relative (to RA) address.
This should be of the form XXXXX0. 1In any
case, the low order digits is made 0 if any
other digit is specified.

Eg: 1. €2,330. "CR" would set field 2 beginning address
equal to 000330 and display 000330 - 000337.

Eg: 2. E3,351. "CR" would set field 3 equal to 000350
and display 000350 - 000357.

All displays give'thé relative CM address tothe left of
each entry of the display.

REQUEST PROCESSING On each iteration through the Master Control Loop the Key-
set Ready flag is examined. If the flag has the value

(12)

0000 (i.e., not set) the remaining portion of the loop
is traversed. If, however, the flag is set, control is
given to the INTERPRET KEYBOARD MESSAGE routine. This

routine scans the information in the KB buffer and gives

control to the proper routine to process the keyed request.

The réquests may be classified into the following groups:
1. Display mode selection and mode field specifi-
cation |
2. Central Memory médification
3. Exchange Jump Package and Control Point modifi-
cation
4. Job control

5. Debugging Aids.

The KB interpretive routine first checks for a special for-
mat (see list of possible requests following this discuss-
ion) and if request is of this gives control to the routine
specified (see flow charts A-17 to A-36). If it is not

one of these, the statement is examined for a display entry
(mode or field'change); if it is of this type, control goes
to proper display procéssor. If the statement still can
not be identified, it is treated as a possible PP call and
the RPL and FLD are reached. If a match is made, a re-
quest is set up in 10/14 and a return is made to PP Resi-
dent to inform EXEC that there is a request to process.

If the request is not a PP call, it is considered to be

an error and Ehe message'”FORMAT ERROR" is desplayed on

the left screen. The Keyset Ready flag is then cleared to
0000 and control is returned to the Master Control Pro-
gram. For a complete descripﬁion of individual request

processing, consult the DIS flow charts in Appendix A.

DIS REQUESTS

(13)

The following commands to DIS refer to the control point

to which it is attached.

Some of the entries cause the

job to be switched away from the CPU (e.g. when the job's

exchange package has to be changed). Execution can be

resumed using RCP or BKP, Numbers are in octal.

. ENP, 12345.

. ENA3, 665000.

. ENB2, 4.

. ENX5, 2223 4000-
0000 0000 0200.
(Spacing unimportant)

. ENEM, 7.

. ENFL, 10000.

. ENTL, 200.

. ENPR, 5.

L] MP

. RCP L]

. BKP, 44300.

Set P = 12345. (Next instruc-
tion address in exchange package).

Set A3=665000 in exchange
package.

Set B2=44 in exchange package.

Set X5=22234000000000000200 in
exchange package.

Set Exit Mode = 7 in exchange
package.

Set FL=100000 en exchange pack-
age. (Storage moved if necess-

ary).

Set CPU Time Limit = 2008 sec=-
onds.

Set job Priority = 5.

Drop central processor and dis-
play exchange package (in dis-
play B). Using DIS, the exchange
package is displayed.in any case
if the job does not have status
A, B, etc.

Request central processor. This
puts the job in W status, and it
will take the CPU if its priority
is sufficient. The register set-
tings of the exchange package
will be used.

'Breakpoint to address 44300 in
* the program. CPU execution be=-

gins at the current value of P
and stops when P = 44300. DIS
effects this by clearing 44300
to stop the program at that
point, and restores the origin-
al word when the stop occurs.

(14)

.
. RNS, : Read next coantrol statemen

i T
and obey it. {During usec of

DIS the normal advance of
control statements is inhib~-
ited).

. RSS. Read next control statement
and begin execution. This is
like RNS, except that a cen-
tral program is only brought
to central memory, and not
executed.

. ENS . XXXXXXXXAXKXAX . This command allows the entry
of any control statecment as if
it had been entered on a con-
trol card. The statement can
then be processed using RNS or
RSS.

-« GO. This command restarts a pro-
‘ gram which has paused.

. ONSW3. Set sense switch 3 for the job.

. OFFSW4. Switch off sense switch 4 for
the job.

. HOLD. This entry causes DIS to re-

linquish its display console,
but the job is held at its pres-
ent status. A console must be
reassigned to continue use of
DIs.

. DROP. This causes DIS to be dropped
and normal execution of the job
is countinued. It does not mean
'Drop the job.'

. DMP (200, 300). Dump storage from 200 to 277 in
the output file.

. DMP (400). _ Dump storage from the job's
reference address to 377.

. DMP, Dump exchange package to out=-
put file.

(DMP formats are the same as if used on control cards).

APPENDIX A - DIS FLOW CHARTS

INDEX

TITLE

MAIN CONTROL PROGRAM
PRESET INITIAL VALUES
MONITOR KEYBOARD
INTERPRET KEYSET MESSAGE

DISPLAY DATE LINE

DISPLAY ERROR MESSAGE
DISPLAY KEYSET MESSAGE
DISPLAY CHANNEL STATUS
ADJUST DISPLAY PERIOD
MONITOR BREAKPOINT ADDRESS
ENP

ENFL

ENTL

"ENEM

ENTER EM
ENA

ENB

ENX

ENS

DROP
ENPR

GO

RCP
ce
BREAKPOINT REQUEST
RSS

PAGE

A-01
A-03
A~04

A-06
A-08
A-09
A-10
A-11
A-14
A-16
A-17
A-17
A-18
A-19
A~19
A-20
A=22
A-23
A-24
A-26
A=26
A-27
A-27
A-28
A-29
A=30

(2)
INDEX

ADVANCE ' 430
RNS A-31
HOLD A=32
ONSW ‘ A-35
OFFSW A-36
ENTER P, FL, RA, EM A-37
DISPLAY C, D, E, F, G A-38
DISPLAY DAYFILE , A=39
DISPLAY B (EXJ PACKAGE) A4l

SEARCH FOR SPECIAL FORMAT A=43

0DIS

40/44

51
52/53
60
61
62
63
64
65
66
67
70
71
73
74
75
76

77

TEMPORARY STORAGE ALLOC|“JON

BREAKPOINT WORD
REFERENCE ADDRESS

FIELD LENGTH
BREAKPOINT ADDRESS
KEYBOARD READY FLAG
KEYBOARD ERROR FLAG
KEYBOARD ADDRESS
EQUIPMENT ADDRESS
DAYFILE DISPLAY COORDINATE
DAYFILE DISPLAY ADDRESS
DISPLAY GCYCLE COUNTER .

DELAY COUNT

. LEFT SCREEN PROGRAM

RIGHT SCREEN PROGRAM'

KEYSET INITIAL ADDRESS
CONTROL POINT ADDRESS

INPUT REGISTER-

OUTPUT REGISTER

MESSAGE BUFFER

DIS - MAIN CONTROL PROGRAM

E ENTER g
V |

1
PRESET “\\
- INITIAL \
VALUES ;//

E G)

MONITOR \\%
KEYBOARD J//;
i
YES
KEYSET READY , . INTERPRET \
?) ? KEYSET MES-
// /\\\AGE
NO }c j

e

SELECT LEFT
SCREEN, CONSOLE
CHANNEL 11
ACTIVATE CHAN 1}

DISPLAY ’ ’
DATE LINE

|

LEFT SCREEN
DISPLAY PRO-.
GRAM

ISPLAY ERROR
MESSAGE

bz e

DIS — MAIN CONTROL PROGRLH (OUTTILE .) ,,,,,

N
(__ L) _ o

T |
| | ,w

DISPLAY Y

KEYBOARD j\ o .

! MESSAGE
| T
I |

DISCONNECT ,
CHANNEL 11 ~

)

':

SELLCL RIGHT
SCREEN, CHAN 11

U

J ACTIVATE GHAN 11
|

/ DISPLAY \

¢ CHANNIL _

\iTATUS /

St s vcr

RIGHT — \
SCRZEN A
DISPLAY)
pROGRAY /. / IS BREAKPOINT \YES / HONITOR \
H re=i OPTION IN USE)8/ mRmcpOINT \,
DISCONKECT ! / ,
CHANMEL 1L 4 ¢ T
|
ADJST \
DISPLAY > LOOP
PRI
i
PICK UP BREAK~
POINT ADDRESS
P52/53

4-02

DIS - PRESET INITIAL VALUES

<

CP Means Control Point

iICLEAR TO 0000:
READY FLAG P&0
ERROR FLAG P61 |
DELAY COUNTER P67,

|

ISET XB POINTER
P62 = INITIAL KB
|ADDRESS P73 =
113008

a

i

STORE OUTPUT AD-
DRESS OF DAYFILE
BUFFER IN P65 i

i
g
|

SET LEFT SCREEN
?RDGRAM ADDRESS
P70 = DISPLAY DAY
FILE

|

§ET RIGHT SCREEN
EROGRAM ADDRESS
71 = DISPLAY B

T e v—

e
|

|
COMPUTE CP%* AD-
DRESS (ND STORE
N P74. CP NUM-
BER IN P75

|

CLEAR TO 0000 |
BREAKPOINT INDI-

CATOR P52/53

A

REQUEST DS

V
i
5
|
f
OBTAIN CHANNEL

NUMBER OF DS U-

NIT. STORE IN |
A I
f

|
|

REQUEST
CHANNEL

;
;

\
MODIFY \\\

PARAMETERS

PPU RESIDENT
. REGUEST.
7 BRI 741

—_—-R

EXIT

A-03

RIS -~

D [
NT T

MON

TOF AWVRGARD

|

ENTER

SELECT RICGHT
SCRZEN, CHAYN 11
ACTIVATE CHAN 11

ITE = 00XX, XX is in Dlsplay
Code

[}

"

Hi

5

{INPUT BYTE FROM

[KEYBOARD TO A,

| SET (A) EQUAL fs YRS |

TO 0055, STORE |

4 IN KB BUFFER

¥ -~ KB Means Key Board

DISCONNECT CHAN
11
" ;;;;;
HAS CHAMNEL \ ~ EXIT
EMPTY __YES ' §E§§§§§
(xx = oo)) /V
NO iy g
/ X = . o \\ g | SET Kevssr READY a
& =3 FLAG (P6D) ot
Carraipe Returl ' f 0001 1
NO
= 6lg IS THIS 1ST \ N DECREI‘JLEN’“ KEY- |
BACKSPACE BYTL INPUT? BOARD LDDRESS POQ%
/ BY 1 (BACKSPACE) |
N\ i
NO v YESW H
/XX = 628 K ,
SPACE ol
\ | SET LAST BYTE -

IN KB% BUFFER
TO 0000 (CLEAR)

CLEAR XB ERROR
FLAG - P 61

EXIT

—>

A-04

DIS -

MONITON HoVan!en

= 57,
ATy e
DROP XEY
\.

CEARACTZ

YES {/)a:_eo
\\ INVALID

L
[
?J D

‘iAA_J

X5 DU"l‘ R
’QDRJ Pé”

12 BLTF
[IN i
AD— "
b
i
i

[
JADVANCE KB

BY 1

| BUT-
{FER POINTER, P62,;

i
iy

L L

Mmoo
i A PP
L inal Lo LsusDLn
AT o Ela) 5
U BiTe o2 10 s
: ~~ :
i G000 (N
"

""1115

TdE T

:LTRV IN

A
-\

-
P
A.D‘:

it
3
e
-
TN=7SS
i aedardvd

s 1

NO

CLZiR EZERCR i
““’“
i F
PEL = 0000 ;o
L
g
|
]
i
i
"
i
i
I
?:
;';
n
Hi
\
L
g

e rEraTE I iy s

~

9
T
O
%
’U
(@]
=1
s
39

iiB' 1 P01
!zpez BY

L

NTER

oo,

SN .

A-05

DIS - TINTRRPRET AEVSRT MESSAGE

S
" SEARCH FOR \

SPECIAL .
FORMAT

/ "m.S A VALID \\ YES
!

‘ PECIAL FOR-
k MAT FOUND ?

o]

. V7
SSET KB BUFFER,
POl = INITIAL
LDDRESS P73

IS THE FIRST \ / i \
CHARACTER IN KB YES'\"/ CROCESS)

A4

BUFER 4N OCTAL// STORAGE

N2

N

TR 4N oS
o |
S 3RD ChAR— \
ACTER A YESM, PROCESS
non9 DISPLAY I\‘ODE
(DIS CODL 57) ChANGE
o |
)
IS 3RD CHAR- ‘
PROCESS \
ACTE}} f'* DISPLAY FIELD\
CHANGE

(DIS com.,' 56)

N7

DIS - INTERPRET KEYSET MESSAGE (CONTINUED)

| ii
|

5 THE i FLAG
: S THE 1ST Ai\\\yzs [SET ERROR ;

_ CHARACTER IN KB P61 = ADDRESS OF

- "BUFFER = 00 ? |} ~\FORMAT ERROR !
IMESSAGE !

NO ﬁ ;

o ,

e My ;

#/SEARCH FOR
SPECIAL

4w P oy Vevens

“CLEAR KEYSET READY
FLAG P61 TO 0000

|

IS ERROR FLAG \
SET?
e, P6140000 ;

NO
df
,,,,,, | RESET KB ADDRESS ' 1

P62= INITIAL KB |
ADDRESS P73

e |

e et

CLEAR ENTIRE KB . i
BUFFER TO 0000]

”———
Sy
a——

A=07

EXIT

DIS - DISPLAY DATE LINE

l

i
|
|

. 1
OUTPUT Y COORD- |
INATE 7700 ON |
CHANNEL 11 |

| i
q

|
|
|

b
i
]
4l

W SET A = 0030, CM AD-
DRESS OF DATE LINE

f
L

DISPLAY ONE\
LINE

.:'
|
1
\V/

A-08

(A) CONTAINS ADDRESS OF
THE FIRST CHARACTER QF
APPROPRIATE ERROR MES—

SAGE.

JJ

DIS - DISPLAY ER: MESSACE

| PICK UP ERROR
FLAG P&l

|

N0

(a)

= 0000
R e

ERROR ?

IS THERE AN %

YiS H
17

i CHANNZL 11

s

OUTPUT Y COORD-
INATE 7100 ON

e e

f
[
I8
I
I

| OUTPUT X COORD- |

INATE 6000 ON
CHANNEL 11

Secess S W S X

N

v
|

'PICK UP NEXT TWO%

CHARACTZRS FROM |
| ERROR MiSSAGE. ﬁ
POINTER, POl

| OUTPUT CHARACTERS
! ADVANCE MESSAGE

EPOINTER

END OF MESSAGE

?

~ (ie. 0000)

EXIT

A-09

;
{OUTPUT % COORD- |
{INATE 6000 !
| - f
|
i
'OUTPUT Y COORD- |
FNATE 7066 g
| i
! t

P

1
et
/i

FORM PAIR OF DIS-
PLAY CODE CHARS |

: FROM NEXT TWO KB !

| BUFFER EYTES [

| ;; éz
1 z
! i
| . }{

]
4/(END OF MESSAGE) Y28 (1

, \ ? /B

‘ \, CHARS = 0000 2/
i

; |

| NO iz

i | QUTEUT TWO !

| CHARACTERS !

|

{ i

| ﬂ

.; f

g | ADVANCE KE BUF- |

| FER ADDRESS

il POINTER, P62,
IBY 2

/V}s CHANNEL

---—--;% EMPTY ?

\

\

A-10

DIS - DISPLAY CHANNEL STATUS

ENTER f
H

i

!
|
I

!
iREAD P FROM CENTRAL
PROCESSOR SAVE IN

P13/14
| I
| SET DISPLAY CODE FOR
P (20) INTO HEARING

|

OUTPUT: X COORD |
Y COORD and
P =

 E I ——

P —

{ SET A = P ADDRESS
‘SAVED IN P13/14

L

DISPLAY SIX
DIGITS

OUTPUT:
. CHANNELS

E

{]INITIALIZE P01 = 00 i
)

sEg%cﬁHANNEL ACTIVITY

- 9

pFORM CHAN ACTIVE !
!JUMP INST. FOR
[NEXT CHANNEL IN
PO

A-11

e
9
;
‘FORM CHANNEL EMP-

@Y JUMP INST. FOR
| NEXT CHANNEL IN

Lo

| po1
*{
STATUS . CODE CHAR | s
'SET STATUS D IN
DISCONNECTED 04 D /A REG TO INITIAL-
EMPTY 05 E TZE CHANNEL STAT-
FULL 06 F . bs_§CAN_ N
L
f
i .
AVEE"EEZEEEE'”"*\\ YES D-STATUS
| INACTIVE ? = - o
=
J
4
NO i :
it !
<l u
; M
| ADVANCE CHANNEL STAT=- |
HUS TO E H
|
}
t
/IS CHANNEL \\ YES = E-STATUS
/[EMPTY ? \ N
: l — 7
\\ J
\ 3
NO [l |
-'1,7 i
[3 T 3
ADVANCE CHANNEL STAT-q , i
US TO F y F~-STATUS - |
|
2

i
!
1

JSTORE STATUS IN PO2.

' RIGHT ADJUSTED

: i
I
iADVANCE CHANNEL NO.
JIN POl %

.;
f
.r!

OUTPUT STATUS CODES YES /

\ NO
‘ DOES P02 CON- \ |
(‘ TAIN TWO STATUS ,;’m*:‘g c >
- * CODES ? Ali

SCAN NEXT CHANNEL

DIS - DISPLAY CHANNEL STATUS (CONTINUED)

4

OUTPUT TWO STATUS |
CODES IN P)2

}t
— |
HAVE FOUR \\ n NO

CONSECTUTIVE M

CODES BEEN
QUTPUT?

|

J,
{
g OUTPUT TWO SPACES

YES

i
i
l
j

Vr

‘\ "NO
HAVE ALL CHAN-\\

TRV (A

NELS BEEN EX-
AMINED ? /

YES

A-13

DIS

= ADJUST DISPLAY PERTOI

ADVANCE CYCLE COUNTER |
BY +1 P66 |

B

|

READ CM* SECOND CLOCK |
FROM CM LOC 000030 |

VA N\
/HAS CLOCK AD- \ NO
| VANCED SINCE \ DELAY & EXIT
LAST CYCLE?
YES 4
i
¢7 :
JPDATE DIS SECOND‘CLOCKi
: J
i .
ADD CYCLE COUNT TO ;
DELAY COUNT
|
N\ e —
DOES SUM ° \w YES { ENTER DIFFERENCE
4%
| EACEED 20g" J 'ﬂ COUNTER" P67 [

1
i
i

RESET DELAY COUNTER E

P67 TO INITIAL VALUE

|
?
i

|
|

l:

S —

| CLEAR CYCLE COUNTER

P66
!
il \
PAUSE FOR \\§
{ STORAGE RELO-
' CATION

A-14

DIS - ADJUST DIS2LAY PERI0D (CONTINIED)

&

F
|

fi -
| READ CONTROL POINT
4 STATUS

|
. !
SSAVE RA IN P50
| SAVE FL IN P51

‘;1
1 |

IS ERROR FLAG \\ NO ERROR AT CONTROL POINT
SET TO 0000?

YES N

== M4 \ DROP_DIS FROM CONTROL. POINT
f OES CONTROL \ YES [

| POINT HAVE 0000 ! \/ Il PICK UP EQUIPMENT
\\pRIORITY?) | ADDRESS FROM P11l

N

B ol J
_ i /PP_RESIDENT \
n S e DROP EQUIP- N\
PICK UP DELAY COUNTER \ MENT
FROM P67 '
!

CONVERT TO MILLISEC-
OND CONSTANT FOR LOQP

o .
./,
=

 DEGCREMENT MILL-CON-
STANT BY +1

S~ Iﬁ

|

NO/
HAS LOOP TER-

¢ PP RESIDENT
DROP THIS PP
FROM CONTROL
« POINT

MINATED?

YES F , :

"EXIT TO 0100 IN PP RESIDENT
. A=15

DIS - MONITOR BRAEKPOINT ADDRESS

A

E ENTER l
ﬁ |
!
I
'READ P REG FROM CENTRAﬁi
! :
PROCESSOR i {:;}
! \
H I
i |
DOES P EQUAL \ NO |[FORM CM ABSOLUTE |
BREAKPOINT I S, {BP* ADDRESS FROM |
ADDRESS IN ¢ i3, P52/53 AND |
P52/53 : IRA, P50 |
ES i H
) L [
; !’!
L Ml
RESTORE BP WORD
|INTO CENTRAL
ﬂ MEMORY
. | A
¢7is THERE AN \ YES | !
| ACTIVE PPU AT B o 5’ -
\THIS CONTROL ¢ ey
\POINT? y . | CLEAR BP ADDRESS!
STATUS CODE 7 ; ?
READ CP :
WAITING W STATUS FLAG | §
RECALL X |
ACTIVE A
IN STACK B to G i f
/>DOES CONTROL \\\ NO J o
POINT HAVE A : <
éACTIV‘E) STAT- !
S7? J
YES i

$7

—— L}
| SET A = 16, DROP CENT-}
RAL PROCESSOR CODE ﬂ

L

PPU RESI-
DENT. PROCESS
REQUEST

!

!

* BP Mecans BreakPoint @
- - [A

DIS - ENP REQUEST PROCESSOR

; ENTER B.

i
|
f
ESET A REG = 0000 }

DIS - ENFL REQUEST PROCESSOR
g ENTER

i
{]

&EEEEELE‘ \\
OCTAL DIGITS N\
\, RIGHT ADJUST%;2>
/
|
PICK UP FL, DIVIDE

BY 1008, STORE IN
P11

' SET A REG = 0010

t

L

PP RESIDENT

REQUEST STOR-
AGE

A-17

DIS - ENTL REQUEST PROCESSOR

g ENTER n
li -
L
{l
///ASSEMBLE N\
#/ DIGITS Y 4
\\\ RETURNED IN P33/34

U

{ SET A REG EQUAL TO
} ggTAL STRING IN P33/

{!
IADD 7 TO LOW ORDER || .
POSIT] QN AND DIVIDE { ‘

[

| store TDME TN
I P11 FOR REQUEST
[PROCESS ING

!
| et S i s svomsate s sy

(TIME LIMIT)

g SET'; REG = 0014 i
j

PP RESIDENT
TIME LI MIT \\

REQUEST J/IV

Y -

DIS - ENEM REQUEST PROCESSOR

| =]

SET A REG = 0003 . l

|
ENTER EM ﬁ\\>
/

EXIT

DIS - ENTER EM

ﬂ ' ENTER n
| | h
STORE A REG IN P06 ! READ WORD INTO }
1 .20/24 |
| i
ASSEMBLE j\§§
DIGITS ! ;
,// ISOLATE EM CODE (P34) |

H . i STORE IN P20

SET A REG = 0016 ' - H

!1 | |

PP RESIDENf\\S' i WRITE 20/24 INTO EX=-

B
DROP CENTRAL CHANGE JUMP ARFA
PROCESSOR :
EQUEST

COMPUTE ADDRESS OF
WORD CONTAINING EM

IN EXCHANGE JUMP PACK-
AGE (P06) ' EXIT

4-19

DIS

- ENA REQUEST PROCESSCR .

Y

lKB BUFFER (PO1)

PICK uP VEXT ‘BYTE FROM |

A A Sl

|

/" \« YES (ERROR)
i 1S IT ALPHABETIC N
4 7 j L8
NO \?17 ¢
IS IT OTHER \§“ YES
| THAN AN OCTAL N
\ DIGIT ? y v
NO | r 2
‘17 li !\.‘
; i .,
STORE THE OCTAL IN N ¢
P 06 l
i | SET P6l = 1670

ADVANCE KB POINTER ‘
BY +1 - pol

7 1S NEXT BYTE
A w2

\$ NO

YES%
'lx_——;

i
|

ADVANCE KB BUFFER

ADDRESS OF FORMAT
ERROR MESSAGE

e O—
b T T

i

POINTER BY +1 POl :
ASSEMBLE ‘k\ S
DIGITS - RETURNED |
IN P33/34
NO
IS THE NEXT
BYTE A .1 ?

o

DIS - ENA REQUEST PROCESSOR (CONTINUED)

' §SET A REG = 0016 B

Ij
e
OGRS/

i
COMPUTE CM ADDRESS OF

Ap IN EXJ PACKAGE
OF CONTROL POINT

i turye ponsact

|
1 READ WORD FROM EXJ
| PACKAGE INTO 20/24

ENTER NEW A INTO
P22/23 FROM P33/34

a“‘"

WRITE P20/24 INTO
| EXJ PACKAGE AREA

A-21

DIS - ENB REQUEST PROCESSOR

ENTER

b
i
PICK UP NEXT BYTE FROM |

KB BUFFER Il
.
‘ 7o H R h
X0 S IT AN OCTAL Y\, i
___ | NUMBER? \ } &
4 ' :
// i PP RESIDEVL\
- ! ROP CENTRAL
Y ! PROCESSOR RE-
is gRE OCTAL DIGIT IN i’ : \QUEST ;

, i

” { v
| ADVANCE KB POINTER TO | ' Il coMPuTE ABSOLUTE AD- H
NEXT BYTE DRESGoRE Bn- READ

- i

i U i

|]
IS NEXT BYTE \| g I 3 ,

{ A n,n 7 : | INSERT NEW B, , WRITE

NO

]BACK TO CM

YESii

ADVANCE KB POINTER TO;]
NEXT BYTE t

SSEMBLE P
DIGITS i:>> 1

| | || SET P61 = 1670, AD:
: | DRESS OF FORMAT ERROR

(D

Pan

[S NEXT BYTE MESSAGE
NO 7 A n,n ;
\ "
YES
\?

| SET A = 0016

ii’

NO

DIS - ENX REQUEST PROGESSOR

B ENTER g

ii

e

KB BUFFER

PICK UP NEXT BYTE FROM! X NUMBER (0-7)

¥

|

NUMBER?
N

7
YES d?

15 IT AN OCTAL)

]

PP RESIDENT

ADVANCE ADDRESS BY 108F

DROP CENTRAL X
PROCESSOR

TO POINT TQ X ENTRIES

;

i!
!
i

{ ADVANCE KB POINTER TO
NEXT BYTE

ICOMPUTE ABSOLUTE GM {

HADDRESS OF X ENTRY
{

|
NO . iés NEXT BYTE %
1" A I /)
f ’ :
1

\
YES |
\l¢

H
u

| WRITE NEW 60 BIT WORD |
| INTO XJ PACKAGE
I

i
!
i

.
&)

ADVANCE KB POINTER TO
NEXT BYTE

4
ASSEMBLE ‘
DIGITS 4///

NO 4/'15 NEXT BYTE

A u,un 2

@)
PAY

_

SET P61 = 1670 I
ADDRESS OF FORMAT R
ERROR MESSAGE [

. A=23

- DIS - ENS REQUEST PROCESSOR

R ENTER ﬁ,

IH
l‘,’

N

W_PICK UP NEXT KB BYTE |
' n POl

i
n
it

IS IT A SPACE\\
// ? : X YES

!,
F
f

\\ (55, DIS CODEi}

|
N7

FORM ADDRESS OF CONTROL
| POINT CONTROL STATE-
MENT BUFFER, SAVE IN
P06 & P02

v

CLEAR THE NEXT WORD OF
ﬂggNTROL STATEMENT BUF=~ |

|

NO //ﬁls ALL OF THE
BUFFER BEEN

CLEARED?

Pl LR et ettt SO T

. i
YES “\[17

READ WORD 021 OF CP
INTO 10/14 i

H

SET ADDR OF NEXT. CTL

STATEMENT TO THE_1ST 4'
WORD OF THE BUFFER

!f‘!

WRITE 10/14 BACK INTO
CONTROL" POINT AREA

N\

q’ BY +1

\H ADVANGCE KB POINTER

.PO1

b
4

|

|

|
CLEAR P10/14

[4

AnD/

DIS - ENS REQUEST PROCESSOR _(CONTINL{@)

SET PO2—-lO ADDRESS OF |

S D
| |

y Q.s‘
7 >

ﬁ ‘ | PICK UP NEXT BYTE FROM|
b | KB BUFFER, STORE IN

i | | UPPER 6 BITS OF AS-
i : SEMBLY AREA (P02) i

]

I
| ADVANCE KB POINTER
i BY +1 POl

)
PICK UP NEXT BYTE
FROM KBYBUFFER,

STORE IN LOWER 6 BITS |
OF ASSEMBLY AREA (P02)
= 2

p a END OF STATEMENT

| WRITE P10/14 INTO 1ST |

LAST TWO CHARSY, YES | :
= OOOO? o OF'THE CONTROL
yﬂ “} STATEMENT BUFFER

NO i 4 i

VANCE KB BUFFER _POINT)
éR % E Qv

| ADVANCE ASSEMBLY AREA i i ;

POINTER BY +1 PO2 EXIT

NO ‘
END OF ASSEMBLY)

\A\ZTREA ?

YES Qb

WRITE P10/14 INTO CP
STATEMENT BUFFER

(P06) |
|

ADVANCE STATEMENT .
BUFFER ADDRESS pQ6

NS

A=25

DIS - DROP REQUEST PROCESSOR

Ry

===y

fl
ENTER ﬁ
}

AT Wuaius-ary

EXIT TO DROP DIS IN ADJUST DISPLAY PERIOD

DIS - ENPR REQUEST PROCESSOR

ﬂ ENTER —J
! e —eed]

/"'—"‘“’. e
ASSEMBLE
OCTAL DIGITS \,

RIGHT AD=-
% JUSTED / i

STORE PRIORITY IN P

P11

P |

—

SET A REG = 0024 UF]

PP RESIDEN'I"\.

ORITY

A-26

DIS - GO REQUEST PROCESSOR -

ENTER

H

4

CLEAR P10/14

——

i
|COMPUTE CM ADDRESS OF
CONTROL POINT DAYFILE
|MESSAGS BUFFER (1ST
WORD)

!
| CLEAR DAYFILE MESSAGE

H

| COMPUTE RA and READ
| CONTENTS OF RA INTO'
1 P10/14

|
|

| 'CLEAR BIT 00 OF P13
j AND WRITE P10/14

BACK INTO RA IN CM~

L

/ |

EXIT.

DIS - RCP REQUEST PROCESSQB

| e |

I

SET A REG = 0015

e
L?P RESIDENT‘\§

REQUEST CEN-‘””> ;

RAL PROCESSS?}

|

~_EXIT

A=27

DIS - DCP REQUEST PROCESSOR

DROP CENTRAL
PROCESSOR
REQUEST ;

|

| PICK UP BREAKPOINT {

ADDRESS IN P52/53

|

1S IT EQUAL §\ YES (NOT BEING USED)

TO 0000 ?

\ / Z

T

- NO \b—m.“
COMPUTE ABSOLUTE CM

! ADDRESS’ OF BP FROM

{ RA P50 AND P52/53

|
1
;

jWRITE INTO CM THE WORD|
| SAVED IN P40/44 FROM
| BP INITIALIZATION

:
a

CLEAR BP ADDRESS
P52/53

!
[
[
g.

A-28

’U
J

Bk

y U2
1O
Y

DIS - INITIATE BREAKPOINT REQ JZST

P
e

ﬂ ENTER ﬁf

!2

ASSEMBLE j\\$ RETURNED IN P33/34
\ DIGITS ///

CLEAR PlO/l4

|
PICK UP BP ADDRESS
| DIVIDE BY 100g

?J

DOES BP AD- ‘X -
DRESS LIE WITHIN:

FIELD LENGTH?

ﬁ D1 SET A REG <=. 5160

ADDRESS OF OUT OF
RANGE MESSAGE

o

STORE BP ADDRESS IN
P52/53

|

I
COMPUTE ABSQOLUTE .CM
ADDRESS OF BP FROM
RA AND BP ADDRESS IN
P53/52 '

READ CM WORD AT THIS | ' :
LOCATION INTO P40/44 | .

- |

CLEAR BP WORD IN CM-

| SET A REG = 0015
Il

e e e

PP RESIDEN :
REQUEST E\\@ | \Y/ «f‘““\

—T

CENTRAL Vi
PROCESSOR 4)

\

::> EXIT

A-29

DIS - RSS REQUEST PROGESSOR
L At bract et ¥

S

' a ENTER

i
J CLEAR P10/14
|
i:l

i SET Pl4 = 0001

i

I"

Wty

o

h :

PLACE DISPLAY CODE FOR!
3] I
"lAgnit TN 10/11
i

.
ADVANCE TO\\\
NEXT CONTROL %
STATEMENT 4//>

R

EXIT
DIS - ADVANGCE TO NEXT CONTROL STATEMEQE

]

N :

READ CP WORD 021 INTO
P10/14

WPICK UP ADDRESS OF NEXT

CONTROL STATEMENT FROM
P14, READ INTO 10/14

PICK UP FIRST BYTE OF

STATEMENT
e ﬂ SET A REG = 0020
t7 -
/ NO PP RESIDENT \ ,
IS IT EQUAL TO N REQUEST BPU , [\\\\\
0000 ? —_— < //V"7§ r, EXIT
YES E

DIS - RNS REQUEST PROCESSOR

n ENTER

;[

| cLEar PLO/14
{
|

oy

i
i
!
i
!

il
|
, | A
i STORE DIS GODE FOR |
n1A" IN P10

=

T

i
!

. ~
{ PICK UP GONTROL POINT ”
| ADDRESS AND CONVERT [
TO CONTROL POINT NUMBER|

- I
= ‘
i
|
l

| PracE DIS CODE FOR |f
| "It IN P11 }

|

g WRITE P10/14 INTO

PP MESSAGE BUFFER ..
(IN P77)

i e rvert e

L

e m———

EXIT

A-3l

DIS_- HOLD REQUEST PROCESSCR

A
f

|'PICK UP EQUIP ADDRESS

? - ENTER

l’i

-y

FROM P63, SAVE IN P11

: !
SET A REG = 0023

|
1

H
PP RESIDEN[N
DROP EQUIP \

Q\\REQUEST —y//’

|

SET A REG = CHANNEL |
NUMBER OF DIS

-

{ SET A REG = ADDRESS OF I
i LAST DAYFILE MESSAGE

|

WRITE INTO ADDRESS 1IN |
A REG:

"REQUEST DISPLAY, "

©

SET A REG = 0017

 A=32

PP RESIDENT N\
PAUSE FOR RE~ N

LOCATION RE-)
QUEST -)/

i

i
READ CP STATUS (020) |
INTO 10/14 ,,t B

ERROR CONDITION SET

1S ERROR FLAG \)
<\ (P14) = 00007 } v SET A REG 0012H
U

//PP RESIDENT

/RELEASE PPU
<\\5EQUEST

| READ CP STATUS WORD
(022) INTO 10/14

fi*

YES // IS OPERATOR
A

e

SSIGNED FLAG

D)& //> . -
NS = 0000 . EXIT TO 0l00

(Bl4) | .
LOOP FOR DIS ASSIGNMENT P - OF PP RESIDENT
BY OPERATOR ~ NO ﬂ
| y
STORE EQUIPMENT NUMBER
IN P63

|

CLEAR Pl4, WRITE STATUS
{WORD (022) ‘INTO CP
AREA

MBI T E ADDRESS
|OF LAST DAYFILE MESSAGE
| IN CP AREA

—
oo o

CLEAR LAST DAYFILE
MESSAGE

@w
0

A=33

DIS - HOLD REQUEST PROCESSOR (CONTINUED)

| READ EST POINTER FROM
}cm 000005 INTO 10/14

-
|

COMPUTE ABSOLUTE AD- u

iDRESS OF EQUIP IN P63

-
|
l»'
{

R

READ EST ENTRY INTO |
20/24

"SET A REG = CHANNEL |

HNUMBER (p20) y

I :
{;
|
PP RESIDENES\\
REQUEST‘ \

CHANNEL J//?

MODIFY
PARAMETERS

EXIT

A=34

DIS - ONSW REQUEST PROCESSOR
L ———

ﬁ ENTER ﬂ

: (
|
7 \
//KSSEMBLE \\\
DIGITS y
. Q\\ ;/2)RETURNED IN P34

1
h

ISOLATE LOWER THREE
BITS OF P34, IN A

|
IFORM COMPUTED 1 LEFT
SHIFT, BIASED BY 5

SET A REG = 0001

]l | |
'PERFORM COMPUTED SHIFT! ' M e
(TO PROPER SW POSITION)} WRITE UPDATED CM WORD i

i . IN P10/14 INTO l
' CONTROL POINT AREA |

]

I STORE MASK IN POL

i

P

.n j
COMPLEMENT A AND SAVE PICK UP WORD AT RA,

AS m OPERAND OF LPC ‘ i ' .
| i UPDA
{ INSTRUCTION. . UPDATE SWITCH SETTING

%ND WRITE BACK INTO
- H

]

*l
READ WORD 026 OF CP | _ “

|

)

]

Wtbas e ey

AREA INTO P10/14. ‘
" (PICK UP SENSE LIGHTS : ; =3
AND SWITCHES) '

|

NOR" ON BIT FOR THE I EXIT
! SWITCH IN REQUEST.

| P14

A=35

F ENTER

H
/%;SSEMBLE \K‘
<\\?IGITS //>
I

E ISOLATE LOW ORDER
| THREE BITS OF P34

R—— 3

I

o e N

FORM COMPUTED LEFT
SHIFT, BIASED BY 5

TSI

|
SET A REG = 0001

PERFORM COMPUTED
SHIFT '

| AS A MASK

"

g
| COMPUTE ABSOLUTE AD-

| DRESS OF WORD 026 OF
CP. READ INTO Pl0/14

e e et

e —

j 3

= = ~3
COMPLEMENT A AND STORE] .,

!

| PICK UP P14, M"ANDY
WITH PRESET MASK

fi

WRITE P10/14 INTO
CONTROL POINT AREA

RETURNED IN P34

M

|

PICK UP CONTENTS OF
RA. M"AND" WITH PRE-

1 SET MASK.
|

If
| WRTITE BACK INTO 1
RA. (IE: RESTORE ;
[
{

UPDATED SENSE LIGHTS
| AND SWITCHES)

1
e ———

/

|
B

A-36

DIS - ENTER P, FL, RA. EX

n ENTER

|
| STORE A REG IN P06 %

(INDEX IN THE CP EX- ||
CHANGE JUMP PACKAGE) '

ASSEMBLE
DIGITS RETURNED IN P33/34

.SET A REG = 0016

|

/r—-——__———*\
Jy/PP RESIDEN5\\\

DROP CENTRL
PROCESSOR
. REQUEST

!

} COMPUTE ADDRESS OF
i EXJ PACKAGE + P06

:i
[}
!

x
j

READ THE WORD INTO

| 20/24

INSERT NEW VALUE - IN
33/34 INTO P20/21

T -l

!

| WRITE WORD IN 20/24

BACK INTO EXJ PACKAGE ||
REA :

H

EXIT

DIS - DISPLAY C, D, E, F, G

=
2
=3
3]
o]

[SET P24 = ADDRESS OF |

{ 1ST ENTRY OF DISPLAY
“FIELD TABLE. (EACH
i
|
1

TYPE OF DISPLAY HAS ITS

'OWN TABLE)
i MODE ADDRESS
i o 1470
! D 1520
E 1550
F 1600
G 1630

1 NOTE: EACH TABLE HAS
: FOUR ENTRIES, TWO PPU

| WORDS EACH. QNRRESPONDA
ING TO FIELD. L

L

ISET A REG = ADDRESS OF
{DISPLAY FORMAT PROCES-
ISOR:

1" MopE ADDRESS
- C 3000
D 3000

L E 3000

i F 2600
L G 2600
‘NOTE:

(3000)=4GRPS OF 5DIGTS |
| (2600)=5GPS OF 4DIGTS }

[f
!
X
DISPLAY \%\
STORAGE N

/

A-38

pa—

'iCOORDINATE VALUE

DIS - DISPLAY DAYFILE

ENTER

|

Pt v]
Stapmypp §

| SET PO4 = INITIAL DFB* |
| DISPLAY ADDRESS
‘STORED IN P65

i

|SET P03 = INITIAL Y

STORED IN P64

i

d)

? gy

! YES
i 2
¥o!

i DECREMENT Y COORDINATE
IN P03 BY 12g

1
DOES PO4 = N\
DFB INPUT
P21

O |
<

HAS Y COORD-

J YES
Vo2 {. INATE BEEN RE=-
T \GA DUCED TO 200

\BOTTOM OF DISP

NO |

S

1OUTPUT Y COORDINATE :
1IN P03

|

W\,
DISPLAY ONE\\\
_LINE OF THEA/2>

DFB
'v

i BY +1

ADVANCE DFB POINTER

PO4 H
|

OES P04 =

7

DFB STATUS WORD HAS BEEN READ

INTO P20/24.

W)

DFB
20

INP
21

out
22

LIM
23

24

\
\

N

NO <lp

‘§ * YES
DFB LIMIT (P23))A
?

Vl‘
¥
Iy

RESET PO
WORD OF

c\HSET PO4 = P20. 1IE:
INTER TO 1ST
DFB.

'ILE (CONTINUED)

DIS - DISPLAY DiVF

;\\ f'/

)
{
l

YES //DOES P64 =7660 \
. i(Top oF DISPLAY)

-

T timmiriaart sp A e e T e

\)

¥

ISET P64 = 7646
d(RESET Y COORDINATE)

_nl

“

IN P65 . INTO P10/14

I
| ADVANCE DFB POINTER
BY +1 P65

:af

| -

| READ DFB FROM ADDRESS {
I
|

//DOES DFB POINT:%\
{ ER EQUAL LIMIT |
?

YES “fRESET P65 = DFB 1ST '
y}WORD ADDRESS

I
!

0 IS THE LAST
BYTE OF DFB =

0ooo? | //

¥Es | .

2]

K7

DOES P6l4= ‘
7660 (UPPER

YES “{

DISPLAY?Y COOR?;;

ADVANCE P64 BY +1 i

‘|

w v

4-40

DIS - DISPLAY 3

E ENTER

5
SET P07 = Y COORDINATE
7650

bm=rorooa

DISPLAY \\\
(CONTROL PQINT

STATUS ///
't

EDECREMENT Y COORDINATE

IN P0O7. OUTPUT PO7.

ﬂ

CLEAR LOC P23

CCOMPUTE ADDRESS OF LAST

DAYFILE MESSAGE IN
CONTROL .POINT AREA

DISPLAY LAST N\
DAYFILE MES- 4
SAGE. Vi

DISPLAY
NEXT CONTROL
STATEMENT

| PICK UP RA FROM EXJ
| axes

° i‘.- .4'

DIS - DISPLAY B (CONTINUED

Y

IS THIS THE
SAME RA AS STORED: NO

IN P50? ,/[

YES i
!

QSTORE CONTROL POINT
} ADDRESS IN PO6

|

" DISPLAY
EXJ AREA

EXTIT

EXIT

A=42

T
o~

DIS - SEARCH FOR SPECI:

i ENTER

f

i

Lo s o

| SET P07 =

ADDRESS OF TH’
THE FIRST ENTRY OF THE
PATTERN TABLE

H
i
i

[
%q

NO MATCH

ADVANCE RETURN
ADDRESS SET BY
RJ, BY+1l

g

g

STORE INITIAL KB ADDRESS

IN LOC POl

4

h‘

ISTORE ADDRESS OF PAT-
TERN TABLE IN P02

YES

HAS THE ENTIRE
PATTERN TABLE
“BEEN SEARCHED? |
(P02=0000)

NO ig
|

i

'
v

PICK UP WORD INDIRECT-
LY FROM PO2. (WORD
HAS THE FORM: 00XX)

]

f
|

ADVANCE P02 AND POl BY
+1l. GET SET TO COMPARE
NEXT CHARACTER IN STRING

\
/AN

I

LAST WORD =

0000

IN PATTERN TABLE
BEEN SCANNED?

YES //’Go PROCESS\\\
HAVE THE CHAR\\ SPECTAL FORMAj//

NO

OES WORB AT
(PO1l) = WORD
READ FROM PAT-
TERN TABLE7

YES |

RJ 02, P02

ADVANCE PATTERN
TABLE POINTER BY
+1 PO7

N
E/,::%QIT

(@]

CONTROL DATA CORPORATION

Development Division - Applications

DISK’ ROUTINES AND OVERLAYS

Chippewa Operating System

11/1/65

Disk Routines and Overlays

Contents

Introduction

6603 Disk File: Description and Organization
6603 Disk File: Timing Considerations
6603 Disk File: Disk Capacity
Chippewa Operating System Disk Usage
The Disk Write Overlay, 2WD

The Disk Read Overlay, 2RD

The Backspace Disk Overlay, 2BD

The Drop Track Oﬁerlay, 2DT

2WD Flow Chart

2RD Flow Chart

2DT Flow ghart

2BD Flow Chart

Page

W O N

13
17
19
21
A-1
A-2
A-3
A-4

DISK ROUTINES AND OVERLAYS

Introduction

In the Chippewa Operatihg System, there is no single system element used
to perform disk operations for all other elements of the system.
Instead, each system element performs its own disk operations. This,
while requiring additional coding for each of the system elements ﬁsing
the disk, eliminates the need for a request queueing and priority

scheme required by the use of a single system element to process all
disk operations. In addition, the housekeeping required by a disk
subroutine in one system element can overlap, to some extent, a disk
operation being performed by another system element, Among the system

elements which perform disk operations are:

+ peripheral processor resident (reads transient programs from the
disk library)
o MIR (writes the contents of the dayfile buffer to the disk)

o some transient programs (read overlays from the disk)

Disk operations for externa} users are performed via the overlays

2WD (write disk), 2RD (read disk), and 2BD (backspace disk). These
overlays are called by CIO when a disk operation is requested by a
central processor program. In addition, these overlays are used by
certain transient programs to perform disk operations., Thus, 1LJ

and 1LT call 2WD when loading jobs from the card reader and a tape unit,
respectively, while 1DJ and 1TD call 2RD when transferring job output to

the printer or a tape unit.

Regardless of where in the system they are performed, disk operations are
similar: this discussion will therefore be limited to the overlays
2WD, 2RD, and 2BD., Before discussing these routines a short review of

the physical characteristics of the 6603 disk file is in order.

6603 Disk File: Description and Oreanization

The 6603 Disk File contains fourteen disks, each coated on both sides

with magnetic oxide. Thus, there are a total of twenty-eight recording
surfaces. On two of these surfaces timing tracks are recorded, two are
used for spares, and twenty-four are used for reacording data (see figure 1).
All fourteen disks are mounted (in a vertical plane) on a common axis and
rotate at a speed of approximately 900 revolutions per minute. Twelve

of the data surfaces are on the right side of the unit, and twelve are

on the left. Information is recorded on the disk in 12-bit bytes:

each bit in'a 12-bit byte is recorded on a separate disk surface.

Associated with each disk surface is a set of four read/write heads
(see figure 2)., An assembly consisting of a rocker arm and a head bar
fits between each pair of facing disk surfaces. The head bar holds two
sets of four heads, one set for each of the two facing surfaces. The
read/write heads are mounted on this head bar in a fixed position
relative to each other. The rocker arm~head bar assemblies for all
disks mount on a common bracket which can be rotated. This rotation
moves all the head bars simultaneously (with the exception of the

heads accessing the timing track surfaces: these heads are fixed).

The disk surface is divided into four zones. A zone is that portion of
the disk surface transversed by one of the four heads associated with
that surface as the head (on its head bar-rocker arm assembly) moves
throﬁgh its maximum angular rotation. A byte may be written on the
twelve data surfaces on the right side of the disk file or on the

twelve data surfaces on the left side of the disk file: on either side,
a byte may be written in any one of four zones. On each side of the disk
file and for each zone on side, a single set of twelve read/write heads
are used to record a byte (see figure 1), This set of twelve heads is
called a head group. There are four head groups for each of the two sets

of twelve disk surfaces: a total of eight head groups.

Each zone contains 128 tracks. A track is the recording path available
‘to a given head group in a given position as the disk makes a complete

revolution., To move from one track to another requires a physical

-2-

SAVIH

A qIVd S

A

3714 2SId £099

YIHLIO0L FAOW (SAVEH aaXId IddDXHA) SAVEH TIV

SAV3H Viva SAVdH V1va

A

SavaR

| / =
)

¢

i) i
it i
il

NUW) e

Sdnoydo
av4aH

B

Javdas

[IR
[
.

(TR I () [T W
NN AL 77
3.4d g Uy SRR E 1 k1 A A

e
\

TVLsadad

—}

e b]

JOLCR

<+ 1001 —>

SHNE | N | B | bd Ul

N ~
SOSIA viva SO0SIa viva

RO N

S4Noy¥9
av3H.

]

T

Figure 1

-3 .

movement, or repositioning, of the head bar-rocker arm assemblies, At

a given position, each head group accesses the same track in its zone.
Thus, if head group 2 is positioned to track 125, the other 7 head

groups are also positioned to track 125.

Tracks arc divided into sectors: a sector is the smallest addressable
segment of a track. There are 128 sectors in each of the tracks in the
two outer zones. In the two innermost zones, there are only 100 sectors
per track because of the reduced track length near the center of the
disk compared to the trackllength available near the outside edge., A~
sector contains 351 bytes (each bit in a byte is recorded in one of 12
corresponding sectors across 12 disk surfaces). The first four bytes
recorded are reserved for use by the controller: They provide a time
lag between consecutive sectors and contain all zero bits. After the
last data byte has been written, the controller writes a longitudinal
parity byte, . The sector format is illustrated in figure 3. Of the
351 bytes in a sector, then, five are used by the controller: The
remaining 346 bytes may be used for data. Normally, 320 bytes (the

equivalent of 64 central memory words) are used for data.

The number of words read from or written to the disk is solely a function
of the word count specified in the IAM or OAM instruction. It is
possible to read or write more than one sector at a time; it is

possible to read or write in the group switch gap; it is possible for

a read or write to wrap around on the same track. A read or write
operation always begins at the beginning of a sector. When a write is
initiated, the disk controller inserts four zero bytes before the data
and inserts a parity byte after the last data byte. (The parity byte

is not necessarily in the last byte position in a sector.) When a read
is initiated, the controller assumes that the first four bytes are zero
bytes, and does not pass these on to the data channel. When the word
count in a read has been reduced to zero, the controller assumes that the
next byte to be read is the parity byte. Thus, any attempt to read a
number of bytes different than the number of bytes written will invariably
create problems due to the interpretation of zero bytes and parity bytes
as data and vice_ versa. TFor this reason, regardless of the amount of

data to be recorded, a fixed number of bytes is written in each sector,

by

SECTOR 0 (OUTER)

REFERENCE MARK

INNER
SECTORS

At

DISC ORGANIZ ATION

<
O .
= (o=
= rosllll
=)
7
5
2 2
i ==
Figure 2

=] .

ROCKER ARM

HEAD BAR

———

F74 XS €099 :IVWNHOT HOI93S

Figure 3

JIdTIOYINOD 2STIA A9 dIIOVIIXA
NV JQAL¥ESNI :SHLAL OJHAZ 47 o

SHLA9 VIVA 9%¢ OL dfl o

\

l&lllll!l.m&%ﬂ VIV ISV ¥YAIAV NATIITYM 31X ALIUVd e

q0.Ld4ds

SNSIU £ NO s3a0VJ4¥NS JSId ¢1

-6

and only one sector is written at a time (i.e., data is recorded in

physical records of one sector).

A reference mark on the disks containing the timing tracks defines the
beginning of sector O in all four zones. Beyond this point, the
starting point of sectors in the two inner zones does not coincide with
the starting point of sectors in the two outer zones (see figure 2).

The clock surfaces contain timing tracks for each zone. As the disk
rotates, one of these timing tracks (depending on which head group is
selected) drives a cell counter. This counter in turn triggers a sector
counter. Both counters are initialized when the reference mark is
detected. The cell counter is incremented as the timing track is read:
When it reaches a count of 351, it is reset and the sector count
advanced. The controller compares the sector number specified in a read
or write function code: When equality is obtained, the read or write
operation is initiated. The contents of the sector counter appear in

the low-order 7 bits of the status response.

6603 Disk File: Timing Considerations -

The rotational speed of the disk is approximately 900 revolutions per
minute, corresponding to a revolution time of about 66 milliseconds.

The time required to read or write a byte is approximately 1.4 micro-
scconds on the two outer zones and 1.8 microseconds on the two inner
zones. In the outer zones, then, a sector passes under the heads

cvery 490 microseconds, It requires a minimum of 325 microseconds to
transfer the 64 central memory words in a sector from peripheral pro-
cessor memory to centrai memory, and, because of memory and pyramid
conflicts, will probably require longer. A single peripheral processor
cannot maintain a continuous data flow between consecutive sectors on the

disk and central memory.

If the plogrammer wishes to read or write in a given sector, he 51mp1y
issues the approprlate function code and, when the sector comes under
the heads, the operation is initiated. The programmer may prefer to
minimize the time spent waiting for this sector by sensing (via a

status request) the position of the disk, Timing considerations make

-7

it impossible to sense for a given sector and then initiate an operation
in that sector: If one wishes to read or write sector N, then sector
N-2 should be sensed in order to assure that a revolution will not be

lost.

There are two types of delays which are of concern to the disk programmer.

One of these is the positioning delay: The time required to move the

heads to a new track. When a track select function has been received
by the disk controller and positioning initiated, a delay determined by

counting 4iwe reference marks is provided to permit the head assembly to

stabilize, Thus, depending on when positioning is initiated, up to 133 ZeC

milliseconds may be required. During positioning, a status request will

receive a "NOT READY" reply.

The second type of delay is the switching delay encountered when a

different head group is selected. When head group switching is initiated,
the controller provides a one millisecond delay to allow the circuits to
stabilize: Furthermore, reading or writing cannot be initiated until a
reference mark is detected. Thus, depending on when the head group
select function is issued, up to 66 milliseconds may be required for head

group selection,

Between the last sector in a track (sector 127 in the outer zones, sector
99 in the inner zones) and the first sector (sector 0) on that track

is an area called the group switch gap (see figure 2). This arca is

approximately equivalent to three sectors in size. It is provided to
accommodate the minimum 1 millisecond switching delay. A programmer can
thus read or write the last sector in a track, select a new head group,

and read or write sector zero of the new track without incurring a

delay.

The function code for head group selection is 160X, where X is the head
group number (0-7). It is possible to vary the second octal digit in this
function code (normally zero) from 1 to 7: In doing so, the manner in
which the data signals from the disk are sampled is varied. Use of the

feature is reserved for error routines.

6603 Disk File: Data Capacity

There are 128 physical positioms of the heads: At any one positionm,

a track may be accessed by selecting one of eight head groups. Thus,

the disk has a total of 8 x 128 = 1024 tracks. Of the eight head

groups, four cover inner zones and four cover outer zones, In the

inner zones, there are 100 sectors per track: In the outer zones, there
arc 128 sectors per track. Therefore, 512 tracks each contain 100 sectors
while the other 512 tracks each contain 128 sectors. The disk file thus
contains 116, 736 sectors. In normal use, up to 64 central memory words
are recorded in a sector. The capacity of the 6603 disk file is thus

approximately 7.5 million central memory words.

Chippewa Operating System Disk Usage

As we have seen, a single peripheral processor cannot maintain a con-
tinuous data flow from consecutive disk sectors to central memory.
Therefore, the Chippewa Operating System uses a half track scheme in

its disk operations. A half track is cdmpoéed of either the odd-numbered
or the even-numbered sectors in a track. In a disk operation, the system
reads or writes alternate sectors, transferring data to or from central
memory while passing over the intervening sector. Since the disk

contains 1024 physical tracks, the equivalent half track capacity is

2048, The allocation of haif tracks is controlled by MTR: disk

write routines obtain half track addresses from MTR via the Request

Track function. MTIR maintains a table called the Track Reservation

Table (TRT) which contains an entry for each hélf track on a disk. On
receipt of the Request Track function, MTR searches the table for an
unassigned half track, and returns the half track address to the requestor
in the upper byte of the Message Buffer. If no half track is available,

a zero address is returned to the requestor. A half track is never

split between files; thus, the half track is the smallest unit of

storage allocated on the disk.

The format of the half track address, and its relationship to physical

disk addresses, is illustrated below.

¢ dIOYD avdH

SU0LOAS ARUILUIN-NIAT

7e1 AOVAL

}\ll.\fJ

0T0O00O0TTITIOTTI

20€9" :SSAVAAV NOVIL J1VH

JAOVEL ATVH IHL NO ¥0I03S IXAN
dHL dvdd Ol AQVAY NIHL SI WALSAS HHIL

AGOMEN TVIINAD Ol adyy¥da
~SNVYL SI aviay ISArC VIVA dHL “¥0OLDAES
TVOISAUd IXIN JHL YdA0 ONISSVA ATIHM

AJONIR
d0SSE208d TWANJINIS OINI NOWIL JA1vH
UL 40 81¢ WolLoES savay NALSAS JHIL

FI1dWVYXT NV 13S0 SOVl 9 TvH

8T SoVaL

e

.4/////////:|s $Y010dS

TVOISAHd

S¥0103s
TVO1901T

Figure &

-10-

ID.0:9.0:00:0/0.0.0'0.4
_[:———— head group number (0-75)

"1" if odd sectors, "0" if even sectors

track number (0-1778)

Sector numbers maintained by the system (éuch as the Current Sector

in an FST entry) are logical;sécfor numbers, and refer to a sector
within a half track. In the outer zomes, sectors within a half track
arc -numbecred 0-778: In the‘inncr zones, sectors within a half track are
numbered 0-618. To convert a logical sector number to a physical sector
number, the system shifts the loglcal sector number left one place and
inserts the 24 bit from the halx track address into the low-order bit
position. For example, consider loglcal sector 778 (6310)H1n a half
track composed of the odd~numbered sectors in a physical track. In this
case, the 24 bit of the half track address will be a "1"., By shifting
the loblcal sector left one place and 1nsert1ng the "1" bit from the 24
bit position of the half track address, we obtaln 1778 (127 0) for the
physical sector number., TFor.the remainder of our discussion, a reference

to '"sector number" will refer to the logical sector number unless other-

wise described.

TFor filés recorded on the disk, the physical récord is, of course, the

scctor. A logical record may be composed of several sectors. The

format of the physical record is shown in figure 5. 5028 bytes are

always written in each sector. The first two bytes written are control
bytes: the remaining 500 bytes are data bytes. Control byte 2 contains
the number of useful central memory words in this sector: If control byte

2 contains 1008, all 5008 bytes in this sector:COntaiﬁ useful information.

A sector in which control byte 2 contains less thanﬂloos iscalled a

short sector, and is interpreted as a record mark. A 1dgica1 record
may comprise several full sectors, but is always terminated by a short
sector. If the data to be recorded és:a logical record is a muitiple of
100, CM words, the system will wrlte, as the record mark a sector in

8
which control byte 2 contains zero.

Control Byte one points to the next physical record in this file. If

the next sector is on the same half track, then this byte contains the

wlla

2/

IVNG0S GN053d TVIISAHG 3715 SSIa

MIVR 2114
MAVR @I00d9 :¥0I1DES uIYOHSH
MWL AM0DHT fQN02dY IVOIO0T V 0 I¥Vd 1W0INAS uI¥OHSu

MI023d TVOIDOT V 40 Idvd :¥0L0dS uTINdu

L meT, T TN . ——rn - ERIv

043z
o¥aZ
8001> ‘0¥EZ-NON

8001

—re

ag9004yg

¢ JdILAY TOYLINOD

0832

0ddZ-NON

0d3Z~-NON

0ddZ-NON

T 3LA9 TO0¥INQD

MOVEL ATVH YIHIONV NO A1 WAGRON MOVIL ITVH e

MOVIL ATVH HRVS NO AT (877 - 0) YHGHAN WOLDES e

JOLOIS IXIAN Ol ¥IINIO4

d0IDIS STIHI NI SQ¥0OM WO ‘InJdasn 40 mwmﬂ:z:ﬂlllllmw

e e i ———

ZMHHHmBN N SAVMTV SHIAY 0¢C¢

P

¢ d1lid
TONTNOD

T dIAd
. TOYINOD

Figure 5

-12.

number of that sector. If the next sector is on anotner half track,
then this byte contains the half track address for that half track,
(The file would be continued beginning with sector zero of the new half

track.)

At the end of each write operation, the system writes a file mark. The
Current Sector byte of the FST entry is not incremented to reflect this
" file mark sector, so the effect is equivalent to writing a file mark
and backspacing over it. On the disk, a file mark is a sector in which

both control bytes contain zero.

. The Disk Write Overlay, 2WD

Disk write requests by users are executed by CIO's overlay 2WD. This
overlay is also used by 1LJ and 1LT in loading jobs on the disk. Before
calling 2WD, CIO calls the 2BP overlay to check the legality of the buffer
parameters FIRST, IN, OUT, and LIMIT. After checking these parameters,
2BP searches the File Name Table for the file name specified in the CIO
call (i.e., in the first word of the argument list). When found, 2BP
stores the address of the corresponding FST entry. Should the file name
not be found in the FNT, 2BP constructs an FNT entry for this file.
TFinally, 2BP clears the 2O bit in the buffer status byte of the FST

entry to reserve the file.

CIO then calls 2WD., (Refer to the flow chart on page A?l.) 2WD reads
the FST entry for the file and extracts the equipment number from byte
~one. The equipment number is added to the EST base address, and the

EST entry read., The channel number from byte 2 of the EST‘entry is then

inserted in the appropriate I/0 instructions.

The output data in the circular buffer may appear as a contiguous block,
or may wrap around the buffer, asvilluétrated in figure 6. In computing ’
the total number of sectors in the circular buffer, then, the 2WD routine
first subtracts OUT from IN. If the difference is positive, then this
difference is the total number of words to be written, and ZWD shifts

off the lower six bits of this word count in order to obtain the
equivalent number of sectors. If.OUT-IN is negative, the value of

LIMIT is added to the difference and FIRST subtracted to obtain the

-13~

DTz wreermmeamwer s - - = s

AVINIAO QHZ - ONISSAOONd NALAAVIVA S14d0d Svinouis

goLods

LITdS JHL ONISSAD04d - 1sandbay 4114
404 SNOTIDMMLSNI dn 13I8 */ INZ ¥0 qYO0DH¥ aNI 41 ATINO

NILLIEM :90IDAS IVILYVd © dd9z A9 QTI0LS SYIINIO4L
doLOAS 1I1dS
JHL 1474100 0L ¥IA@iIo
NI ISYIJd 1V ONINNIOSAY
ALING JIHL 1Mo¥d dvad 39 Ol
SQ0M A0 MITHAN 199 01 S .
8001 1Oud (S) NI aQidIndNod
S@IOA 10 MIAMNN 1LOoVdIdNs 9

dd4409 4vINd9Id

Zl
|
: o
¢ i

L LINIT anv
1IN0 NAIMLAL NOLOUS IITdS
AL 30 LAVd IVEL NI SUNOM
A0 WANHNN IHL STATO STHL

*INNOD (MOM LIKI'I-LA0 40 i x\“vNV\\ 7P
SLIT 9 WAWMO-HOT JIOVIIXE °G , ,mxw;an\MMW1\ox,LAv« / k\\\

SAIVI4d 9 1HOIV INROD

(R0 _LIHTT-IN0 ONILIIHS ¥OLDAS SWOLOAS.
A9 LIMIT GNV IR0 NAIMLEG : L11dS T4
SYOIDES J0 WALNAN. ALNIKOD *%

LINTT ANV LNO NIIMLIG
SQUOM 40 WHHIMIN JLNAKOD ¢

Lno

SIOVId 9 IHOTIY INNOD
JHOM TVIOL OHILJAIUS A9
VIV INdINO NT $4010dS

J0 HHHAN TVIOL dINdiR0d g

VYV 14100 NI SQUOAM
J0 HIHNN TVIOL JIndN0d °1

ONISSED0E: AALdVEVd ¥43ad409

gy

LINLT

Figure 6

“14=

total word count and, from that, the equivalent number of sectors.

Regardless of whether the data is contiguous or wraps around the buffer,
2¥D procecds on the assumption that the data does wrap around, and
proceeds to compute the values needed to process the wraparound case,

The steps involved are listed in figure 6. These values, although

always computed, are not required in the contiguous case: in either
case, the terminal path is entered when the total sector count is reduced
to zero. By computing these values regardless of whether the data is
contiguous in the buffer or wraps around the buffer, computations during

the period when the disk is actively in use are reduced.

Next, 2WD picks up the chamnel number from the EST entry and requests
reservation of that channel from MTR. The Gurrent Track byte of the
FST entry for this file is then examined, If this byte is zero, then
this file has not previously been used. A half track assignment is
requested from MTR: MTR returns a half track address to the requestor
in byte one of the first word in the message buffer. If no half track
is available, MTR will return a zero byte to the requestor: 2WD then
inserts an error message in the dayfile and aborts the control point
after dropping the channel reservation. 2WD now has the address of the
half track where the next operation is to be performed, and proceeds

to position the disk to this half track. This half track address’is
compared with byte 2 of the TRT pointer word for this disk, and
repositioning or head group selection performed only if required. Byte

2 of the TRT pointer is then updated.

2WD next requests another half track assignment from MTR., This half
track is a spare: by keeping it available, it is possible for 2WD to
switch head groups within the group switch gap if this action should be

required when the end of the current half track is reached.

The transfer of data from the buffer to the disk then begins. 2WD reads
1008 words from central memory into peripheral processor memory, sets
control bytes one and two, and then writes the completed sector to the
disk, As each sector is written, the number of the sector is examined
to determine if the end of the half track is reached. To do this, 2WD

compares the sector number with byte 4 of the TRT pointer word (if head

~15~

group number = 0-3) or byte 5 of the TRT pointer word (if head group

number = 4-7). These bytes contain the values lOO8 and 628, respectively.

If the end of the half track has been reached, 2WD positions the disk to
the spare half track: again, the half track address is compared with byte
2 of the TRT pointer word and positioning or head group selection per-
formed only if required. 4fter initiating any repositioning which might

be required, ZWD requests a spare half track from MIR,

2WD continues reading 1008—word blocks from central memory and writing
them to the disk until it recognizes that there is not enough data in
the circular buffer for a complete sector. (Some part of a sector ﬁay
still, however, remain.) 2WD then examines the buffer status contained
in byte 5 of the FST entry to sece if an end record was requested

(24 bit = 1). If an end record was requested, 2WD writes a short sector
to the disk. If any data remained in the circular buffer, it will be
written in this short sector: otherwise, control byte 2 will simply be

sct to zcro.

After the last data sector has been written to the disk, 2WD writes a
file mark - a sector with both control bytes equal to zero. The Current
Scctor byte of the FST entry is not, however, incremented to reilect the
writing of this file mark: the next write to this file will write over
the filc mark sector. After the file mark has been written, 2ZWD requests
MTR to drop the spare half track assignment and to release the channel
_reservation.

If no cnd record function was requested, 2WD simply updates the OUT
pointer before returning control to CIO: There may still be some data
in the circular buffer. If an end record function was requested, no
data remains in the buffer: 2WD therefore sets IN = QUL = FIRST to

indicate that the buffer is empty.

When control is returned to CIO, CIO sets the Zo.bit of the buffer
status in the FST entry to 1 to indicate that the file is no longer in
use, and sets ‘the 2o bit of the buffer status in the calling program's

argument list to 1 to indicate to the calling program that the operation

has been completed.

-16=

The Disk Read Overlay, 22D

Disk read requests by users are executed by CIO's overlay 2RD. This
cverlay is also used by 1DJ and 1TD. The processing performed by 2BP

in this case is identical to that performed in the case of 2WD. On

entry, 2RD reads the FST entry for the file, picks up the equipment number
from byte one, and uses this number to obtain the EST entry. The channel

number from the EST entry is then set in the I/0 instructions.

2RD then proceeds to compute the number of sectors which can be-loaded
into.the circular buffer. If there is not room for a full sectbr, control
is returned to CIO. The data to be read may fit in the buffer in a
contiguous block, or may wrap around the buiffer. The computation of

the values (total word count, total sector count, etc.) used in controlling
the transfer of ?ata to the buffer is performed in a manner similar to

2WD. Again, the wraparound case is assumed.

The Current Track byte of the FST entry is examined. TIf this byte is
zero, the file has not been used before and so contains no data. 2RD

sets the buffer status to indicate a file mark and returns control to

CIO.

2RD requests a channel reservation from MIR and positions the disk to

the half track address contained in the FST entry's Current Track byte.
As in all disk routines, the half track address is compared with the disk
position specified in the TRT pointer, and repositioning or head group

switching performed only if necessary.

2RD then uses the Current Sector byte of the FST entry to construct the
read function code, and reads the specified sector into peripheral
processor memory. A status request is then issued, and the response

is examined to determine if a parity error occurred. In the event of a
parity error, the system rereads the sector three times; once using the
normal sampling method and twice at

varied sampling margins. If the parity error re-occurs in each of the
rereads, 2RD inserts an error message in the dayfile and stops (via a
UJN O instruction). Since the halt occurs without the disk channel being

released, all system activity will shortly cease (if this disk is the

-17~

system disk, disk 0), A dead start load will be necessary to reinitiate

processing.

If the read was successiul, 2RD examines the high-order six bits of

control byte one: if these bits are zero, then this control byte contains

a scctor number, while if these bits are non-zero, this control byte

. contains 4 half track number. In the latter case, 2RD positions the disk

to the ncw half track address. While any repositioning or head group B
switching which might be required is in process, 2RD transfers the

number of words specified in control byte 2 from peripheral processor ;
memory to the circular buffer, and updates the values used in controlling

the transfer. If the sector just read was a full sector (1008 CM words ;
of data), and if there is enough room in the circular buffer for another

full sector, 2RD loops to read the next sector from the disk.

If the last sector read was a short sector, then the end of a logical

record has been reached, and the buffer status is set to reflect a

rccord mark, If the end of logical record has been reached, or if there

is not enough room in the circular buffer for a full sector, 2RD requests

MIR to release the channel reservation, updates the IN pointer in the
calling program's argument list, and returns control to CIO. CIO

updates the buffer status in the FST entry to release the file reser-

vation, and updates the buffer status in the calling program's argument

list to indicate that the operation has been completed.

If, after reading the last logical record in a file, the calling program
issucs another read to the file, the file mark will be read. The pro-
cessing proceeds as described above: 2RD reads a sector whose address is
specified in the Current Track and Current Sector bytes of the FST entry.
Since control byte 2 is zero, 2RD recognizes this as a short sector, sets
the buffer status to reflect a record mark, and releases the channel.

2RD then examines control byte one; since this contains zero, the file
mark is recognized and the buffer status set accordingly before returning

control to CIO.

-18-

The Backspace Disk Overlay; 2BD

Disk backspacing may take the form of a BCD Backspace or, moire commonly,
a binary backspace. In either case, it is desired to backspace over a
logical record, and it is assumed that any backspacing over logical
records in the buffer has been done by the calling program.' Backspacing
over the physical records which nay constitute a logical record is
essentially a matter of backspacing over two sectors and then reading a

sector.

2BD uses a subroutine to backspace over a sector. (See flow chart on

page A=5.) This subroutine examines the Current Sector byte of the FST

entry, and, if non-zero, subtracts one from this number and exits.

This is equivalent to backspacing over one phjsical record (i.e., one

sector). If the Current Sector number is zero, then the preceding

physical record is on another half track. In this case, the subroutine

stores the Current Track byte from the EST entry for this file, since it

will have to search the file for a sector which has this half track

» address contained in control byte one.
The subroutine rewinds the file by picking up the Beginning Track byte
from the TST entry. (Should the Beginning Track byte be equal to the
Current Track byte, the subroutine exits, since this indicates that the
system has backspaced oﬁer all physical records in this file.) After
rewinding the file, the subroutine reads cach sector in the file until
it finds a sector with the desired half track address in controi byte
one. The number of this sector is then stored, and control returned to
the calling routine. A backspace operation on a file of any size may
take considerable time if it should become necessary to rewind the file

and search forward.

A Dbinary backspace on the disk consists of backspacing over two sectors
(using the subroutine described above) and reading a sector until a

short record is found, indicating the end of a logical record. 2BD sets
the circular buffer pointers IN and OUT equal to FIRST, and returns
control to CIO. CIO updates the buffer status in the FST entry and in the

calling program's argument list.before exiting.

-19-

It is also possible to issue a ECD backspace to the disk. For the disk,
as for 1" tape (but mot for 1" tape), a logical BCD record consists of
a sceries of central memory words presumably containing display code data,

terminated by a central memory whose low-order byte (byte 5) is zero.

“he BCD backspace begins with the computation of the amount of data left
in the bufier as a result of the last read. This quantity, referred to

as D, is cqual in IN-OUT if the data in the buffer is contiguous, or
IN-OUT + LIMIT-FIRST if the data wraps around the buffer, This data was:
left in the buffer as a result of the last read, and may have been

stored on the disk in several sectors. The system assumes that the
calling program will backspace within the buffer, and so, before beginning
a logical BCD record backspace on the disk, 2BD will backspace the

disk a number of sectors.equivalent to the amount of data contained in

the buffer. This quantity is represented by D,

2BD thercfore backspaces over a sector (by the same subroutine used in
binary backspacing and described earlier) and reads that sector into
peripheral processor memory. The sector length in control byte 2 is

then compared with D: if less than D, then this sector is assumed to
contain data which has already been read into the buffer. 2BD then
decreascs D by this amount, backspaces over this sector and the sector
preceding it, and then reads a sector. The process of backspacing,
reading, and reducing D is repeated until a sector is read whose length
is greater than the present value of D: this sector could not entirely
be part of the read data in the buffer, and so must be searched for a
logical record. 2BD transfers this sector from peripheral processor
memory to the circular buffer beginning at FIRST. If D is still non-zero,
then part of this sector c'mtains data residing in the buffer at the time
the backSpéce was requested, and presumably has been searched by the
calling program: 2BD therefore sets the OUT pointer to FIRST + sector
length - D. At the same time, the IN pointer is set to reflect the

transfer of the sector to the buffer.

2BD then searches each word in the buffer from OUT - 1 down to FIRST
until a word with a zero low-order byte is found, indicating the end of
a logical BCD record, When the end of the record is found, 2BD updates

the IN and OUT pointers in the calling program's argument list, and

-20-

returns contxol to CIO. OUT now points to the first word following the
end of the logical record. If no zero low-order byte was found, then

2ED backspaces two sectors and reads one, and then repeats the buffer

search.

The Dron Track Overlay, 2DT

When CIO receives a disk write request, it first calls the 2BP overlay
to check the legality of the buffer parameters and to search the FNT for
the file name. CIO then reads the EST entry for this file, and examines
the buffer status in byte 5. If the buffer status indicates that the
last operation performed on this file was a read operation, then an
overlay, 2DT, is called to drop the subsequent portion of the file. In
cffect, then, if some part of a file is read and it is then decided to

write to that file, the remainder of the file is erased.

The flow chart for the 2DT overlay is shown on page A-3 of the attached
flow charts. The routine picks up the Current Track byte and Current

Scctor byte from the FST entry for the file, and reads the sector at this

"address. If this sector is a file mark, 2DT returns control to CIO.

If control byte one of this sector contains a half track address, 2DT
requests MIR to drop this half track reservation. MTR then clears the

bit in the Track Reservation Table corresponding to this half track

-address., 2DT positions the disk to this half track address and begins

reading sectors until a file mark is found or the end of the half
track is reached. The process of reading and dropping half tracks

continues until the end of the file is reached.

At the end of a job, all local files associated with the job are

dropped. TFor disk files, a process similar to that described above is
required to release half track reservations. This is performed for

1AJ by the 2DF overlay. 2DF differs from 2DT in that 2DF drops files
assigned to other equipment as well as those assigned to the disk, and

2DF drops all the half tracks reserved by a file, not just those following
the half track specified iﬁ‘the Current Track byte of the FST entry.

2DF is also called by 1DJ and 1ID when printing files or writing files

on tape,

-21-

NO

ENTER 2'WD OVERLAY
WRITE Dok FILE

M

[MGEIFY OVLALAY FOR EGUMMERT PARAWTTCRD |

. Vi
| BEGUEST CHANNE. FOR DISK FILE

DAYFILE MESSAGE—DISK X TRACK LIMIT

. W
‘ 3 ZW TRACK FROM MONITOR | NO
[HAS THS FILE BEEW USED BEFORE }—'ﬁé ;"‘iuis: CAK ':';:'l oLE OM HONI
YES S A - ? RELEASE CHANNEL
YES ABORT CONTROL POINT
RELEASE PPU
.
Y DAYFILE MESSAGE=DISK X TRACK LIMIT
POSITIGN DISK TO PRGPER TRACK Ko WRITE END OF FILE SECTOR
HEGUEST A NEW TRACK FROM MONITOR RELEASE CHANNEL
1S A THACK AVAILABLE ? ABORT CONTROL POINT
YES RELEASE PPU
V'
15 THERC ENOUGH DATA IN THE CIRCULAR

S

I5 AN END RECORD FUNCTION REQUESTED P

BUFFER FOR A FULL SECTOR P

YES

WRITE SECTOA ON DISK

IS THIS THE LAST SECTOR ON THIS TRACK ¢

YES

| NO-

YES

POSITION DISK TO NEW TRACK

NO

REQULST A NEW TRACK FROM MONITOR
IS A TRACK AVAILABLE ?
YES

0 !

WAS THIS SCCTOR A SHORT SECTOA P l
YES

AvJ

DAYFILE MESSAGE~DISK X TRACK LIMIT
WRITE END OF FILE BECTOR

RELEASE CHANNEL

ABORT CONTROL POINT

RELEASE PPU

WRITE ENO OF FILE SECTOR

DO NOT ADVANCE FILE STATUS FOR THIS SECTOR
CALL MONITOR TO -OROP SPARE TRACK
RELEASE CHANNEL

STORE BUFFER CONTROL IN®QUT sFIRST

Exir

1 NO
J

\/

WRITE END OF FILE SECTOR
DO NOT ADVANCE FILE STATUS FOR THiS SECTOR
CALL MONITOR TO DROP SPARE TRACK

RELEASE 'CHANNEL

UPDATE BUFFER CONTROL OUT ADDRESS
EXIT

2RO OVEHLAY
H

Chad

(St

MLUTFr OVErLaY
COUuPMERT #aHaM
|
¢
'
)

F
=

i
COMPUTL NuMBIH GF SECTGRS
WAl CAR DT LOADED INTO THE | YES

CiCuLAH BuFFLH,

’L i5 humLiR CF LECTORS ZERO 2

- NO
' .
y
/ 1NO
| mas Tms FicE BCEN USED BEFORE J—-———-—-»
: S THIS Fio cN ulEb BE [EXIT
| YESs
i

HEGUEST CrANWNIL FOR DiSK FILE
PUSITIWON 0SK TG PHOMCR TRACK

i
v

[

\

HLAL Uhi S0CTOn

3 EXIT

SET FILE MARK

REAEAD SECTOR

D ——
SELECT MARGIN 2

REREAD SECTOR

SELECT MARGIN }
NO . REREAD SECTOR NO
>

READ OISK STATUS

o, AdAL DLk LSTATUS
i sa PARITY UK 7

READ DISK STATUS
1S PARITY OK ?

YES

IS PARITY OK 7
YES

READ DISK STATUS
Is PAHITY 0K ?

T

YES NO

'
! R A%

By

15 CunThoo ufTk A hiw THACK iuwubH ? :‘

' | ES | O
’ .

o

—
HualTiule WILK 70 hEW THACK]

' l

H
| ; '
i —_ Y v

’L AbvanCl FicE STATUL FOR NEXT SECTCHR J

vt

LTGHC SCCTOUR LATA N CIRCULAR BUFFER YES
AUVANCL BUrFUH ON ADDHESS

15 Trd SCCTUM A SMUMT SECION P

;
.
|
i
L

i nO
\',
15 THEMC ROOM FOR ANOTHCH LECTOR OF |
UaTa o Trl CinCULAK oUFFER 7 }
I'no .

l:
n
1%
r— .

RELEASE CHANNEL

‘[SET END OF RECORD

\
(UPDATE CIACULAR BUFFER IN ADDRESS

| RELEASE CRANNEL T >
§ ;

1S DiSK AT FILE MAAK ?
YES NO

\lf \
SET FILE MARK r EXIT

Le2

v

DAYFILE MESSAGE ~
DiSK PARITY ERAOR
GX TXXX SXXX
SToP

20T OVERLAY
CROP DISK TRACKS
FILE STATUS IN 20/24

\/

MODIFY OVERLAY FOR &

QUIPMENT PARAMETERSJ

V2

rH&S FILE BEEN USED P I

]

NO

YES

\Y

HOLD CURRENT TRACK NUMBER AND SECTOR NUMBER
REGUEST CHANNEL FGR DISK FILE

d

Y

—
——-". PCSITION DISK FOR NEXT SECYOR J

i

READ NEXAT SECTOR

YES

> EXIT

IS SECTOR A FILE MARK ?

NO

NO Al

I5 SECTOR THZ LAST SECTOR
IN THIS TRACK 7

1 YES

\

———r REQUEST MOUNITOR RELEASE

NEXT TRACK

Aa3

RELEASE
RESTOARE
ExiT

CHANNEL .
TRACK AND SECTOR NUMBER

—_—
| 280 GvERuar

| BACASPAZE D.SK

H

n

Vi

SET CIRCULAR BUFFER IN=QUT» FiRST

N

; ‘WAS LAST MEFERENCE A FILE MARK 7 IYES
{ h = L J EXIT
NG
W
Lv.oa»rv GVERLAY FGR EGUPMENT PARAMETERS
\,
i ; . 1 YES
{ 5 & BINAWY BACKSPACE REGUESTED 7 | BACK ONE SECTOR
NG
Vi
[SET FiM3T HEFCRENCE FLaG BACK ONE SECTOR
. [v A\
\'_*J__——_’i COMPUTE OsIN=0UT J . REGUEST CHANNEL FOR DISK
POSITION DISK
READ ONE SEZCTOR
v RELEASE CHANNEL
~) YES
== IS NUXT SECTON THME FIRST SICTOR N THE FilE P l
NO ’
\"J
\r IS SECTOR A SHORT SECTOR 7 Jum—
DACK ONL SECTOR YES
\
.| SET CIRCULAR BUFFER IN = QUTs FIRST
Y 1 Exy

I REGUEST CHANNEL FOR 0iSK
POSITION DISK TO NEXT SECTOR
READ ONE SECTGR
RELEASE CHANNEL

Y

- 1 YES
IS SECTGR LENGTH GREATER THAN D 7 }-——-

NO

v

BECREASE D 8Y SECTOR LENGTH I

¢ BACK ONE SECTOA

SET QUT = FIRST + SECTOR LENGTH — D
SET IN = FIRST + SECTOR LENGTH
STORE SECTOR IN CIRCULAR BUFFER BEGINNING AT FIRST

\VA
—— | YES
————>{ Dozs OUT + FIRST 7 | (n)

NO
\/
[IS FIRST REFERENCE FLAG SET P }—&——
. YES

CLEAR FLAG

\

OUT= QUT~ |
N
NO
[DQES (OUT~{) CONTAIN A BLANK LOWEST BYTE ?‘k——l
YES

UPDATE CIRCULAR BUFFER IN AND OUT ADDRESSES
ExIT

250 SUBROUTINE
BACK ONE SEGCTOR

\/

NO
IS NEXT SECTOR THE FIRST SECTOR OF A TRACK ? l———-ﬁ

NO

REOUCE SECTOR NUMBER ONE COUNT
Exit

' . YES

v/
HOLD CURRENT TRACK MUMBER N

\/

YES

Fs N THE FIRST TRACK FGR THE FIiLE P }
NO

A

REWIND DISK FILE
REQUEST CHANNEL FOR DISK FILE

U
I POSITION DISK TO NEXT SECTOR
JUSUEN— |

READ ONE SECTOR
IS THIS THE LAST SECTOR IN THIS TRACK 7

YES

/

NO
————“TS NEXT TAACK NUMBER N 7 J

YES

RELEASE CHANNEL
EXIT

ExiT

