CONTROL DATA CORPORATION

Development Division - Applications

ALPHABETIC PERIPHERAL PACKAGES

Chippewa Operating System

10/20/65

I.

11,

I11.

1V,

V.

VI,

VIiI.

VIII.

Table of Contents

Introduction

DMP

EXU

CLL

LBGC

1.oC

MSG

PBC

Program Partitioning
a) RUN modes

b) FORTRAN usage

-

c)‘ Machine language calls

13

18

21

27

29

33

34

35

38

ALPHABETIC PERIPHERAL PACKAGES

INTRODUCTION

The packages described on the following pages may be called by a
central program. They are loaded into a peripheral processor from
either RPL (resident peripheral library) or PLD (peripheral library
directory). A chtral program, by setting the package name in left=-
justified display code in RA+1l, requests MTR to assign the package to
a free PP, Each package begins execution at location 1000 in the PP
and arguments are passed to it from the central program through the
lower portion of RA+l. If the execution of the package is terminated
normally or abnormally the PP is released and must be reassigned when
it is needed again.

The last section of this narrative gives a few practical examples

about the use of some of the routines.

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

DMP -- Storage Dump

To enter an octal dump of a requested area of central memory
into the OUTPUT file.

This package may be called by a control card or DIS console.
Three calls may be made:

a) no parameters - dump only exchange package
b) one argument - dump from RA to the specified address

c) _two arguments - dump area between the two addresses

1. Two checks made on the arguments passed through the
input register may cause a diagnostic:

a) terminal address € initial address
b) terminal address » field length

Either condition will cause a "DMP ARG ERROR'" dayfile
message and the control point aborted.

2. 1In the case that both parameters are equal, i.e.,
usually zero, the exchange jump area (first 16 words of
control point area) is set up as the dump address. The
title of the dump is changed to "DMPX."

3. The FNT is searched for a file of local or common and
assigned to this control point. The name must be OUTPUT
and the file on disk 0 with buffer status indicating
not busy (odd value). If no such file is found, an
entry of this type is made into FNT so that the dump can
be printed, The file status in either case is set to
148 (request coded write).

4, If no OUTPUT file was found while searching FNT, then
the new file just added must have a track assignment.
A track is requested of MTR and when it is assigned the
number is inserted in the FST entry of the new file,

5., If the last reference to the file was a read operation, then
no dumping will be done. This prevents writing over
output data that may have been repositioned by the read.

6. The dump has a header of either DMPX, for an exchange
area dump, or DMP. for any other dump. Each central
memory word has an address relative to RA and 4 five
digit groups of data with two spaces between the address
and data and a space separating each byte. The peripheral
buffer spans = from 2000-7000 and is filled before it is
passed to the output file.

- 2 -

NOTES:

8.

9.

1.

The dump address is incremented by one until the
terminal address specified in the input register is
reached, A return jump is issued to dump the PP buffer
into the OUTPUT file when it is full or the terminal
address is encountered,

The PP buffer is written on disk 0 a full sector

(100_ words) at a time until short sector is found.

it i§ written on the disk followed by a file mark and
then channel 0 is released, The buffer input address is
reset so that more data may be inserted if the terminal
address has not been reached. Every write to the disk is
terminated by a file mark but the sector number is not
incremented. This will prevent a file from ever

running away but still allow more information to erase
the file mark and reside within one file,

After the formatted octal dump has been successfully
passed to the OUTPUT file, the buffer status byte in
FST is changed to 15, (completed coded write). Then
the PP is released.

Successive identical lines are not suppressed,

One print line contains only an address and a central
memory word.,

DMP Routines

1000 Main Program 1560, 1100, 1200, 12-760, 100,
530, 13-760
1100 Search for Output File 740, 750, 12-760, 100
1200 Enter Output File 6-760, 1300, 1600
1300 Enter Line in Buffer 1600
1560 Process Exchange Area
1600 Dump Buffer 740, 1700, 700, 1740, 750
1700 Enter Control Byte 6-760
1740 Write Sector
2000 Disk Buffer
2030 Begin Output File 15-740, 750, 12-760, 100

Direct Core Cells

1000 P10/14 CP Status)
P50/54 Input register contents
P55 RA
P60/61 First argument
P62/63 Second argument
P74 CP address
P75 Input register address

1100 POl File type (local or common)
P10/14 FNT entry
P20/24 FNT status later FST entry
P45 Last buffer status from FST
P50/54 Input register contents
P57 FST address

1200 POl Central memory word count
P10/14 PP message buffer contents
P20/24 FST entry
P45 Last buffer status from FST
P57 FST address
P60/61 First argument

-4 -

1300

1560

1600

1700

1740

2030

P62/63
P64
P10/14
P60/61
P64
P60/61
P62/63
P55
P74
POL
P02
P20/24
P64
P65
P02
P10/14
P20/24
POl
P20/24
POl
P10/14
P20/24

Second argument

IN address for PP buffer
Central memory word to be dumped
First argument

IN address for PP buffer
First argument

Second argument

RA

CP address

Central memory word count
Sector length

FST entry

IN address for PP bﬁffer
QUT address for PP buffer
Disk status byte

Message buffer

FST entry

Disk status byte from FST
FST entry

FNT index

FNT entry

FNT status

OMP PACKAGE
STORAGE DUMP

\/

READ INITIAL AND TERMINAL ADDRESS FROM PPU iNPUT REGISTER
18 TERMINAL ADORESS LESS THAN INITIAL ADDRESS ?

YES

DAYFILE MESSAGE ~ DMP ARG ERROR

NO

M

15 TERMINAL ADDRESS EQUAL TO INITIAL ADORESS ? L YES

NO

\

{ 1S TERMINAL AGODRESS GREATER THAN FIELD LENGTH ?
| NO

|

i

\/

1 YES

ABORT CONTROL POINT
RELEASE PPU

!

ENTER INITIAL AND TERMINAL ADDRESS FOR

EXCHANGE PACKAGE AT CONTROL POINT
MODIFY HEADLINE OF PPU BUFFER TO DMPX

RELEASE CHANNEL

RELEASE PPU

RELEASE CHANNEL .

RELEASE PPU

YES | SCARCH FNT FOR OUTPUT FILE ASSIGNED TO THIS CONTROL POINT
1S THERE AN OUTPUT FILE ?
NO
REGUEST FNT CHANNEL NO
SEARCH FNT FOR A BLANK ENTRY
IS THMERE A BLANK ENTRY ?
YES
ENTER AN OUTPUT FILE IN THE FNT
RELEASE CHANNEL
7
REQUEST FST CHANNEL YES
IS AN EQUIPMENT ASSIGNED TO THE OUTPUT FILE ?
NO ’
. =] YES
IS THE OUTPUT FILE BEING USED ? =

NO

it/
L

SET FILE STATUS TO REGUEST CODED WRITE
RELEASE CHANNEL

Vi

PRESET PPU STORAGE BUFFER WITH TWO LINE SPACES AND DMP
IS OUTPUT FiLE A NEW FILE 7

NO

A/

[WaS LAST FILE REFERENCE IN READ MODE ?
NO

\7

YES [ENTER TRACK NUMBER

IN FILE STATUS WORD

{V READ NEXT WORD TO BE DUMPED
ENTER A LINE OF CODING IN PPU BUFFER CONSISTING OF A

YES RIQUEST MONITOR ASSIGN DISK TRACK
VWAS TRACK ASSIGNED 7
NO
tr
1 YES RELEASE FILE STATUS
J RELEASE PPU
YES

6 DIGIT ADDRESS AND 4 FIVE DiGIT GROUPS OF DATA
HAS BUFFER LIMIT BEEN REACHED ?
NO

Y

Y

NO ADVANCE DUKP ADDRESS

HAS TERMINAL ADDRISS BEEN REACHED ?
YES

\/
rCLEAR NEXT WORD IN PPU BUFFEL}

\/
[RJ DUMP PPU BUFFER]

J UPUATE FILE STATUS WORG N FST
RELEASE PPU

[Ry oune PPU surrer |

OMP SUBROUTINE
DUMP PPU BUFFER

v

REQUEST CHANNEL O

RESZT BUFFER QOUTPUT ADDRESS

!

r
e 1S THERE SUFFICIENT DATA iN THE BUFFER

FOR A FULL SECTOR ?
NO

L
YES

\;

\/
POSITION DISK TO NEXT SECTOR

WRITE FULL SECTOR
ADVANCE BJFFER OUTPUT ADDRESS

POSITION DISK TO NEXT SECTOR
WRITE SHORT SECTOR
WRITE FILE MARK

RELEASE CHANNEL
RESET BUFFER INPUT ADORESS

ExiT

——

ROUTINE

PURPOSE

GENERAL

METHOD

EXU - Execute Compiled Program

To locate and read a specified file from the disk into central
memory. The appropriate exchange jump package parameters are
set up and then the central processor is told that the file is
ready for execution,

After a file has been compiled and stored on the disk, EXU is
used to load a file into central memory beginning at the calling
program's reference address, The location of the name of the
file (left-justified display code) to be called and executed

is set in the lower 18 bits of the input register.

1. The error flag at the control point is checked., 1If it is
set, fhe package is released so that error processing may proceed.

2. The file name is read in by adding RA and the lower 18 bits
of tlig: input register. FNT is searched for the file name and
if iFf’is located a check is made on its control point assign-
ment;”
Eﬁ
3. ﬁhen the file is located, its type from the FNT is checked
for input and output. Only common or local files may be executed.
i
4, The FST entry must reflect that the file is on disk and has
been uged.

5. A:dayfile message of "PROGRAM NOT ON DISK" is sent if:

a)% The file name was not located in the FNT.

b) The file was not assigned to the calling control point.

¢) i The file has either an input or output status.

d) " The file has an equipment other than disk assigned,
i.e. it is a card file or tape file,

e) The file has not been used, i.e. no track has been
assigned. This status is reflected by checking the
~beginning track byte in the FST for non-zero.

6. A request for channel 0 is made and the disk is positioned
to the beginning track and sector for the file.

7. The file is read and stored one sector at a time into central
memory beginning at the control points' reference address.
Encountering a short sector or reaching the field.limit causes
the reading of the file to be terminated.

8. If the field limit was reached before the end of the file,
a dayfile message of "PROGRAM TOO LONG" appears and the control
point aborted.,

NOTES

9.

10.

The exchange jump pacKage in the control point area is updated
to permit execution of the newly loaded program.

a) First the sense lights and switches from word 26 of the
control point are sored in RA.

b) RA+ 1 1is read and then cleared.

¢) P in the exchange jump area is set to the number of parameters
from RA+1 plus 3. The field length (in. hundreds) from word 20
is stored in Ag.

The central processor is then requested by a MIR code 15g.
When this request has been processed, the PP is released.

1. The file read in off the disk is loaded beginning at RA so
that a portion or all of the calling program may be overlayed.

2. Sense lights and switches are passed from the calling program
to the new program through RA.

3. The field length specified in RA of the called program is
ignored. The field length assigned to the control point is
checked. '

EXU Routines

1000 Main Program 12-760, 100, 1100, 1200,
1300, 15-760, 531, 13-760

1100 Search for file 1160, 1064

1200 - Read program from disk 740, 700, 400, 750

1300 Clear exchange area

Direct Core Cells

1000 P06 beginniné track number of file
PO7 sector number
P10/14 CP(20) - status word
P20/24 contents of FST entry
P50/54 - contents of input register
P55 RA
P56 FL
P57 FST status
P74 control point address
P75 address of input register
P7200/7702 disk buffer

1100 PO1 : control point assignment
P10/14 FNT entry, later FST entry
P20/24 File name in left-justified display code
P30/34 FNT status

w 10 -

1200 POl control point assignment

P04 RA (in hundreds)
P05 : FL (in hundreds)
P06 track number
PQO7 sector number

1300 POl ’ control point assignment

- P10/14 zeroed, later each word of exchange area

P20/24 CP (26), later RA+1
P30/34 CP (20)

o 1l -

EXU PACKAGE :

EXECUTE PROGRAN |

V)

LREAD RA AND FL FROM CONTROL POINT AREA | YES

IS ERROR FLAG SET ?

NO

READ ARGUMENT ADDRESS FROM PPU INPUT REGISTER
READ FILE NAME FROM ARGUMENT LOCATION

SEARCH FNT FOR FILE NAME

IS NAMED FILE ASSIGNED TO THIS CONTROL POINT ?

NO

i RELEASE PPV

YES

DAYFILE MESSAGE ~PROGRAM NOT ON DISK
AQORT CONTROL POINT
RELEASE PPU

IS AN EQUIPMENT NUMBER ASSIGNED 7 }YES

NO

Al

HAS FILE BEEN USED 7
YES

1 NO
J

HEQUEST CHANNEL O
POSITION DISK FILE TO BEGINNING TRACK AND SECTOR

READ DISK DATA TO A SHORT SECTOR OR FIELD LIMIT BEGINNING AT RA

WaS FL REACHED ?

YES

NO

RELEASE CHANNEL

CLEAR EXCHANGE AREA

SET P TO LOWER SIX BITS OF (RA+1) PLUS 3
ENTER FL N AD

CLEAR RA AND RA +1

REQUEST CENTRAL PROCESSOR
RELEASE PPU

e 12

RELEASE CHANNEL

DAYFILE MESSAGE ~PROGRAM TOO LONG
ABORT CONTROL POINT

RELEASE PPU

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

CLL -- Central Library Loader

To load one or more overlays into an area specified by a
central memory calling program.

The location (BA) of the overlay parameters is set into the
lower 18 bits of the input register. The location (BA)

BA FWA
BA+1 LIMIT
BA+2 NAME ADDR
1]
L]
BAtN+2 | Oen-occconmnccmrcmccen- 0
FWA - beginning address for first overlay
LIMIT - last address for group of overlays
NAME - name of overlay (left-justified display
code)

The address of where the overlay begins will be returned in
the lower 18 bits of its location in the BA area (ADDR). 1If
it cannot be loaded because the length exceeds LIMIT, an
address of 777777, will be inserted. The address will remain
cleared if the overlay cannot be located. A zero word must
terminate the parameters.

1. The RA and FL are read from CP(20) and stored in hundreds.

2, From the input register the location of BA is read and
incremented by RA so the first parameter is read.

3. When the LIMIT is read, a check is made to insure that
it is within the field length., If LIMIT exceeds FlL, the
PP is released and no diagnostic results.

-4, Each argument is read and checked for zero. If it is

zero, then the list is assumed to be exhausted.

5. The resident subroutine library (RSL) is first searched.
The first entry in RSL is checked against the name of
the overlay. If a match is not found, then the field
length of the RSL entry is added to the beginning address
of RSL, in order to find the next subroutine in the table.

6. If the overlay is found in RSL, the length is added to
FWA and that total may not exceed LIMIT. If it does, then
77777, is entered into the beginning address area of that
overlay (ADDR). The next argument will be read and
processed,

“ 13 «

NOTES:

10.

11.

12,

13.

14,

FWA will reflect the next available location for loading
so it is stored as ADDR for that argument, The program
is transferred 100, words at a time and FWA is increased
by the number of words stored until a short record is
encountered. A zero length record is not transmitted.

- FWA is increased to the next available central memory
. address and then the next argument is processed.

If the name is not found in RSL then the central library

directory (CLD) is searched, The format of this table

is:

NAME (DISPLAY CODE) | SEC [TRACK
42 6 12

It is terminated by a zero word or table limit,

When the overlay is found to be in CLD, then FWA is
stored as the overlay's beginning address. Channel 0
for the disk is requested and it is positioned to the
proper track.

One sector at a time is read and its length recorded.

If a zero length is found, it is not transmitted. If
the sector length exceeds the number of words to LIMIT
then they are not stored and 77777_ is set as the
beginning address. Track repositioning is checked after
every read. If the short sector is encountered before
the LIMIT exceeded, it is stored and FWA is updated to
be the next available program address. Another argument
is then processed.

If the name was not found in the RSL or CLD, then the

job file is read. If the package is found in the FNT,
then it must be assigned to the calling program's control
point and be on disk 0, If it is not, then the next
argument is processed.

When a file is found in the FNT, the same disk operations
apply as those with CLD,

When an argument is found to be zero then the next
available program address (FWA) is zeroed. BA is also
cleared to inform the calling program that CLL was
finished. Then an MIR code of 15,, requesting the
control processor is made and the PP released.

The FORTRAN compiler uses GLL to load its subroutines.

All files loaded by CLL are compiled to execute from O.
Therefore, if a program wanted to take advantage of this
feature, all K portions of the instructions must be
modified for a different starting point.

The last overlay loaded by CLL is followed by a zero

word,
YA

CLL Routines

1000 Main Program 1101, 1201, 15-761, 12-761,100
1100 Read arguments 12-761

1200 Process argument 1303, 1501, 1601

1300 Search RSL

1500 Search CLD 1601

1600 Enter program from disk 741, 701, 401, 751

Direct Core Cells

1000 P10/14 CP address
) P20/24 . Argument
P50/54 Contents of Input register
P55 RA in hundreds
P56 FL
P57 Constant 100
P60/61 FWA - next available program address
P74 CP address
P75 Address of Input register
1100 P10/14 FWA and later LIMIT
P50/54 Contents of Input register
P55 RA
P56 FL
P60/61 Location of BA
P62/63 FWA
P64/65 LIMIT
1200 POl CP assignment
P06 Track number
PO7 Sector number
P10/14 FNT entry
P20/24 Contents of Input register
P30/34 FNT status
P74 Address of Input register

- 15 -

1300

1500

1600

POL
P10/14
Pl4
P20/24
P30/34
P55
P57
P62/63
P64/65
P7200/7302
P06
PO7
P10/14
P20/24
P30/34
PO1
P04 /05
P06
P07
P20/24
P55
P60/61
P62/63
P64/65

- 16 =

Number of words read

RSL entry

Total number of words transferred
Contents of Input register
RSL status

RA

Constant 100

FWA, next available program address
LIMIT

Input buffer

Track number

Sector number

CLD entry

Input register

CLD status

Sector length

Number of words to LIMIT
Track number

Sector number

Input register

RA

BA

FWA

LIMIT

CLL PACKAGE
CENTRAL LIBRARY LOADER

READ RA AND FL FROM CONTROL POINT AREA
READ ARGUMENT AREA ACDRE
READ STARTING ADDRESS AND LIMIT ADDRESS

$S FROM PPU INPUT REGISTER

ot

X

l IS LIMIT ADDRESS GREATER THAN FIELD LENGT

5 Es
i

NO

|
|

\/

27 RELEASE PPU !

LEAR NEXT PROGRAM ADDRESS LOCATION

V4

YES

/

{ SET LiMIT FLAG IN ARGUMENT LOCATION]—-—)@

STORE INITIAL PROGRAM ADDRESS IN ARGUMENT LOCATION

T
\'1

®

NO

NO

Al

STORE INITIAL PROGRAM AUDRESS IN ARGUMENT LOCATION

COPY PACKAGE UNTIL SHORT SECTOR OR LIMIT ADDRESS

YES

SET L:MT FLAG IN ARGUMENT LOCATION

RELEASE CHANNEL

RELEASE CHANNEL -

ADVANCE PROGRAM ALDRESS

1Y
@—9{ IS NEXT ARGUMENT ADDRESS OVER FIELD LENGTH ? | ES
NO
\/
READ NEXT &RGUMENT YES CLEAR FIRST ARGUMENT
IS ARGUMENT A BLANK WORD ? REQUEST CENTRAL PROCESSOR
NO RELEASE PPU
'
SEARCH RSL FOR ARGUMENT NaMg | YES
IS PACKAGE iN RSL ?]
TNO NO
———-——l VILL PACKAGE EXCEED LIMIT ADDRESS 7 J
COPY PROGRAM
ADVANCE PROGRAM ADDRESS
M
SEARCH CLD FOR ARGUMENT NAME | YES
IS PACKAGE IN CLD ? ’
NO
REQUEST CHANNEL O
I\ NO POSITION DISK FILE TO BEGINNING OF PACKAGE
SEARCH FNT FOR ARGUMINT NAME WAS LIMIT ADORESS REAGHED 7
ASSIGNED TO THIS CONTROL POINT .
IS PACKAGE IN FNT ?
YES
1S PACKAGE ON DISK FILE O P YES

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

LBC ~- Loading Binary Corrections

To load binary cards from the INPUT file into central
memory.

The lower 18 bits of the input register contain a beginning
address for the card loading. If the address is zero, the

binary cards are loaded beginning at RA. It may be called

via a control card or from a DIS console,

1. From the control point status word (20), the RA and Fi,
are read,

2. Each entry in the FNT is searched for type local and
assignment to this control point,

3. If no entry is found, then the PPU is released without
a diagnostic,

4. When an entry is found, the file name is checked against
INPUT. 1If it does not match, the search of FNT continues,

5. After the INPUT file is located, the FST entry is
checked., The file must be on disk 0 or the PPU is
released,

6. The last buffer status Is checked. If it is even, then
the file is being used and no action will be taken. If
it is odd, then the file bhas no operation begin performed
on it, so the status is decreased by one Lo make it
active, When another PP wants to access this file, the
buffer status will reflect an even number informing the
requesting PP that the file is being acted upon.

7. The disk is positioned to the track stated in the FST and
one sector is read into PP memory. After each read,
a check is made for file mark and data exceeding field
length. If a file mark is encountered, the buffer status
is made odd and the PP released. A dayfile message
"LBC RANGE LIMIT" appears if the field length would be
exceeded thereby also causing the buffer status to be
changed and the CP aborted.

8., After the sector read is checked, it is transferred to
central memory at the location specified from the input
register.

9. Only one record will be read from the INPUT file so when

a short sector is encountered, the buffer status is
changed and the PP is released,

w 18 =

1000

1200

1000

1200

LBC Routines

Main Program 1200, 740, 700, 400, 750,
12-760, 530, 13-760
Search for Input file 740, 12-760, 750

Direct Core Cells

POl Sector length

P06 Track number

P07 Sector number

P10/14 o CP status (word 20)

P20/24 FST entry

P50/54 Contents of input register
P55 » RA (in hundreds)

P56 FL

P74 : CP address

P75 Address of input register

P7200/7702 Disk buffer

PO1 File type of local and CP

P10/14 FNT entry

P20/24 FNT status

P20/24 FST entry

P50/54 Contents of input register
P57 FST address

LBC PACKAGE
LOAD BINARY CORRECTIONS

READ RA AND FL FROM CONTROL POINT AREA
READ INITIAL OATA ENTRY ADDRESS FROM PPU INPUT REGISTER
SEARCH FNT FOR INPUT FILE
IS INPUT FILE ASSIGNED TO THIS CONTROL POINT ?

NO

YES

i

N

REQUEST FST ChANNEL
READ FILE STATUS WORD
IS AN EGUIPMENT NUMBER ASSIGNED 7

YES

7{ RELEASE PPU

NO

RELEASE CHANNEL

IS FILE BEING USED ??ES

NO

SET FILE STATUS WO
RELEASE FST CHANNEL

RD TO ACTIVE STATE

REQUEST CHANNEL O

NO

RELEASE PPU

HAS FILE BEEN USED ?

YES

\l

POSITION DISK FILE TO N
READ SECTOR TO PPU STORAGE
WAS SECTOR A FIiLE MARK ?

EXT TRACK AND SECTOR

YES

UPDATE FILE STATUS WORD

NO

\

WILL DATA EXCEED FIELD LENGTH ?

ADVANCE FILE STATUS TO NEXT SECTOR YES

RELEASE CHANNEL O
RELEASE PPU

NO

NO

W

STORE DATA IN CENTRAL STORAGE
ADVANCE DATA ADDRESS
WAS SECTOR A SHORT SECTOR ?

L4 YES

4

UPDATE FILE STATUS
RELEASE CHANNEL O
RELEASE PPU

—20"

DAYFILE MESSAGE ~ LBC RANGE LIMIT
UPDATE FILE STATUS

RELEASE CHANNEL O

ABORT CONTROL POINT

RELEASE PPU

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

LOC -~ Load Octal Corrections

To make octal corrections to a program already residing in
central memory.

Three calls may be made to this package:

a) A call without parameters will change the central memory
words specified on cards in the next INPUT record,

b) With one parameter, central memory is cleared from RA
to the address specified and the cards in the next
INPUT record are assembled.

¢) 'Two parameters cause the memory between the two arguments
to be cleared and then the correction cards to be read.

1. RA and FL are read from CP (word 20).

2, The arguments, beginning address and terminal address,
of where the corrections are to be inserted are checked.

a) First greater than second.
b) Second greater than field length.

3. 1f the two arguments are not equal, the central memory
contained within the two is cleared.

4., The FNT is searched for a file INPUT associated with this
control point and of local or common type. If one is
not found, no diagnostic results, but the PP is released.

5. The proper file must be on disk file 0 and have an odd
buffer status (not busy). If either condition is not
met, then the PP is released.

6. By decreasing the buffer status by one, this control
point puts the file in active status.

7. Channel 0 is requested for the disk which is positioned
to the proper track from the FST. The PPU buffer is
filled with the octal correction cards from INPUT until
the buffer is either full or a short sector is encountered.

8., The cards have trailing spaces suppressed by a zero byte
and are written in 100, word sectors. Since the buffer is
5000, PP words long, many sectors may be read. Each
sector has a two word control byte which is not useful
data to the program, In order to have all the useful

data packed, the last two words of the previous sector
are temporarily stored out of the buffer and the next
sector is read over their initial location. When the

-21-

NOTES:

9.

10,

il.

12,

13.

3.

control bytes have been used, the two words are restored
to their buffer positions and the last two words of the
sector just read are temporarily stored out of the
buffer,

When the buffer is either filled or all the correction
cards read, INPUT is put into an inactive state (status
is odd) so that another PP may use it.

Each octal correction card is unpacked into a character
string buffer (one character per word). A zero byte
terminates the unpacking of one card.

When the line buffer is loaded, the address is assembled.
The address must be between column 1 and column 7. Spaces
are suppressed and leading zeroes are not necessary. If
a non-octal digit appears, the address is not assembled
and no diagnostic is given.

After the address is assembled, the data word is packed.
The data must begin after column 7 and contain 20 digits.
If a non-octal digit appears the word is not assembled
and no diagnostic is given.

The assembled address is checked against field length and
is not inserted into its position if it exceeds FL. The
assembled word is then entered into its assembled address.

If corrections are to be made to a binary deck, LBC
(load binary cards) should be used before LOC. LOC only
makes changes to programs already in central memory.

Central memory may be cleared using LOC only if an
empty record appears in the INPUT file,

On the correction cards, the address must end before

column 7, Spacing is: not important and leading zeroes
may be dropped.

-22-

LOC Routines

1000 Main Program 1500, 1100, 1200, 1400, 1600
1300, 12-760, 100

1100 Search For Input File 12-760, 100, 740, 750

1200 Load Buffer 740, 700, 400, 750

1300 Assemble Word

1400 Unpack Character String

1500 Clear Storage 530, 13-760

1600 Assembled Address

-

Direct Core Cells

1000 P20/24 FST entry
P4O/44 Assembled word
P50/54 | Input register
P55 RA (in hundreds)
P56 FL (in hundreds)
P60 Input buffer address
P61 ‘ Output buffer address
P63/64 Assembled address
P75 Input register address
1100 POl Local type and CP assignments
P10/14 FNT entry
P20/24 FNT status
P20/24 FST entry
P50/54 Input register
P57 FST address
1200 POl Sector length
' P06 Track number
PO7 Sector number
P20/24 FST entry
P46 Data byte
P47 Data byte
P60 Buffer input address

P2000/7000 Buffer

- 23 -

1300

1400

1500

1600

POl
P02
P4O/44
P62

P60

P61

P62
P7200/7400
P10/14
P50/54
P55

P56
P62/63
POl

062
P63/64

Octal digit
Byte address
Assembled word
String address
Input

Qutput

String address
String buffer
Zero word
Input register
RA

FL

First argument
Octal digit
String address

Assembled address

-24-

LOC PACKAGE
LOAD OCTAL CORREZCTIONS

Y
READ RA aND FL FRGM CGNTROL POINT AREA ves
READ ARGUMENTS FROM PPU INPUT REGISTER
IS FIRST ARGUMENT GREATER THAN SECOND ARGUMENT ?
NO .
YES 7
{ ARE ARGUMENTS EQUAL ?]
NO
r A\ YES DAYFILE MESSAGE=- LOC ARGUMENT ERROR
l IS SECOND ARGUMENT GREATER THAN FIELD LENGTH ? }——————ﬁ ABORT CONTROL POINT
NO RELEASE PPU
Y ’
CLEAR CENTRAL STORAGE FROM FIRST ARGUMENT
ADDRESS TO SECOND ARGUMENT ADORESS
\
SEARCH FNT FOR AN INPUT FILE NO RELEASE PPU
IS THERE AN INPUT FILE ASSIGNED TO THIS CONTROL POINT ? L
YES
iy
Y
REQUEST FST CHANNEL YES
READ FILE STATUS WORD ,{ RELEASE FST CHANNEL l
IS AN EQUIPMENT NUMBER ASSIGNED ? '
NO
/
. » YES
LIs THE INPUT FILE BEING USED ? }
NO
\/
RESERVE FILE '
RELEASE FST CHANNEL
RELEASE FILE STATUS
R ANN NO
HEQUE“ CHANNEL O RELEASE CHANNEL O
AS FiILE BEEN USED ? RELEASE PPU
YES
YES | posiTioN DISK FILE TO NEXT SECTOR
READ SECTOR TO PPU BUFFER
WAS A FILE MARK READ ?
NO
\/
YES UPDATE FILE STATUS
[Is PPU BUFFER FuLL 7 }
RELEASE CHANNEL O
NO
\
NO
‘ﬁWAS A SHORT SECTOR RZAD 7]
YES
Y
EASE FILE STATUS NO
REL - ‘{ IS PPU BUFFER EMPTY ? }—)@ (NEXT PAgE)
RELEASE CHANNEL O -
YES

l RELEASE PPU

.25-

{LOC CONTINUED)

l CLEAR

LINE BUFFER l

N§ HAS END OF BUFFE

R DATA BEEN REACHED ? j

YES

YES
Lwas LAST SECTOR A SMORT SECTOR ,L

NO

REQUEST CHANNEL O
RESET PPU BUFFER ADDRESS

YES

READ SECTOR TO

POSITION DISK FILE TO NEXT SECTOR

WAS A FILE MARK READ 7

PPU BUFFER

NO

UPDATE FILE STATUS

YES
[IS PPU BUFFER FuLL ?—}—

NO

NO
ﬂWAS A SHORT SECTOR READ ?

YES

RELEASE
RELEASE

FILE STATUS

RELEASE CHANNEL O

[

CHANNEL O

;——-—ﬂ“unncx NEXT WOR

>1

YES
I8 PPU BUFFeER EMPTY ? RELEASE PPU

NO

D INTO LINE BUFFER j,’

YES
LHAS LINE BUFFER LIMIT BEEN REACHED 7

NO

NO
“——{‘DOES LAST WORD END IN A BLANK BYTE 7 —I

YES

ASSEMBLE OCTAL DIGITS IN FIRST SiX CHARACTER POSITIONS OF LINE

SKIP SPACES

IS THERE A NON- OCTAL CHARACTER IN FIRST SiX POSITIONS ?

YES

NO

STORE ASSEMBLED ADORESS FOR DATA ENTRY

ASSEMBLE 20 OCTAL DIGITS BEGINNING IN POSITION 7 OF LINE BUFFER YES

SKIP SPACES

IS TMERE A NON - OCTAL CHARACTER BEFORE 20 0IGITS ?

NO

I IS ASSEMBLED ADORESS GRE

YES
ATER THAN FIELD LENOTN"F

NO

bNYER ASSEMBLED woRrD

AT ASSEMBLED ADDRESS]

-26-

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

NOTE

MSG - Dayfile Message

To enter messages from a central memory program into the
dayfile.

This package checks the legality of the characters to be
displayed and transmits them from central memory to this

PP's message buffer. The lower 18 bits of the input register
contains a beginning address of the message to be displayed.

1.

The field length from CP(20) is read and the argument
address of the message must be in bounds.

The message is checked character by character for legal
display codes (0-60.,) and if all are legal, they are
stored in the message buffer area of the PP.

A dayfile message "MESSAGE FORMAT ERROR" appears if:
a) The argument address is not within the field length.
b) There is an illegal character in the message.

c) The message length is greater than 6 central memory
words.

In CP(22) there is a count of the total number of

messages sent to the dayfile from the job assigned to this
control point. If more than 100, messages have been

sent, a dayfile message of "MESSRGE LIMIT" appears and

CP aborted. -

A MIR code of 01 (dayfile message) is sent to the PP

resident and after it has been processed, the PP is
released.

A zero byte terminates the message. This byte must
appear in the lowest 12 bits of the word.

- 27 -

MSG PACKAGE
DAYFILE MESSAGE

READ ARGUMENT ADORESS FROM PPU INPUT REGISTER
READ FIELD LENGTH FROM CONTROL POINT AREA

IS AGRUMENT ADDRESS GREATER THAN FIELD LENGTH ?

YES

NO

ARE THERE ANY ILLEGAL CHARACTER CODES 7

COPY MESSAGE FROM ARGUMENT AREA TO PPU MESSAGE BUFFER | YES

DAYFILE MESSAGE - MESSAGE FORMAT ERROR
ABORT CONTROL POINT
RELEASE PPU

NO

Y.

YES
DOES MESSAGE LENGTH EXCEED BUFFER LENGTM ? ?—————9 ABORT CONTROL POINT

NO

RELEASE MESSAGE TO DAYFILE
RELEASE PPU

OAYFILE MESSAGE - MESSAGE LIMIT

RELEASE PPU

ROUTINE:

PURPOSE :

GENERAL :

METHOD :

PBC - Punch Binary Cards.

To fomat an area of central memory and punch it in the form
of binary cards.

This package may be called by a control card or DIS console.
Four calls may be issued:

1.

2.

3.

4,

no parameters - a binary deck beginning at RA and terminating
one address less than the field length specified in the

first word of the program. This call may be used to punch
either a central or peripheral program in binary form.

one argument - area between RA and the address are punched.

two arguments - first argument is initial address and second
is terminal address for a binary deck.

flagged - 400000g argument - initial address specified by
400000g + address. Lower 18 bits of this address added to
it to form terminal address.

The initial address for the binary deck is read from the
input register.

A check is made for the special 400000g call. If the
eighteenth bit of the terminal address is set, then the lower
portion of the address (that left after 400000g is subtracted)
is set as the initial address. The lower 17 bits of this
location is added to the initial address and used as the
terminal address for the binary deck. Therefore, only a
limited amount of memory may be punched if the 18th bit

flag is set.

If the initial address is greater than the terminal address,
the package is released without a diagnostic.

If the initial and terminal addresses are equal, then the
lower 18 bits of RA is used as a terminal address. The
initial address is cleared so that the area between RA
and the FL-1 will be punched.

When the initial and terminal addresses have been set up
properly, MIR is requested to assign the card punch to this
job. 1If no card punch is available, the processing must
wait on assignment.

Card punch assignment causes channel and synchronizer

references within the package to be modified according to
the entries from the EST.

"29-

NOTES ¢

8.

10.

11.

12,

Since the card punch is generally the slowest piece of
equipment and PBC retains control of the PP until the
complete binary deck is punched, a pause for MTR to adjust
RA and FL during storage move is issued after every card is
punched.

"PBC RANGE ERROR" and control point abort result if the
terminal address ever becomes greater than the field length.

The punch buffer is loaded with data for the next card. 1In
column one is stored 7-9 punches and card length. The

data bytes are summed and stored in column two module 4095.
Column 79 is not used and the binmary sequence number is
stored in column 80.

The punch must be ready or a console message "PUNCH NOT
READY" is sent.

One card is then punched.
When the terminal address is reached, the package is

released so that one less than the terminal address words
are punched.

The flagged call is used by the Fortran compiler to punch a
deck in I mode.

-30-

1000

1100
1200
1240
1300
1400
1440

1500

1540

1560

1600

1640

PBC Routines

Main Program

Sense CP status
Request CP

Sense punch ready
Load Punch buffer

Punch one card

Output one byte to punch

Modify program for

equipment parameters

Channel modification table

Synchronizer modification

table

Process RA length

Process flag length

- 31 =

1640, 1600, 1200, 1500, 1100,
1300, 1400, 23-760, 12-760, 100

17-760, 530, 13-760, 12-760, 100

22-760, 1100

13-740, 1240, 1440, 750

12-760, 100

PBC PACKAGE
PUNCH BINARY CARDS ‘

|

Y
NO| READ NITIAL AND TERMINAL AODRESSES FROM PPU INPUT REGISTER

iS TERMINAL ADORESS 400008 oR GREaTER ?

YES
\
SUBTRACT 400000 FROM TERMINAL ADDRESS AND ENTER AS INITIAL ADDRESS R
READ LOWER | ITS FROM 1 RA ATH A NEW
€40 LOWER 18 BITS FROM THIS STORAGE LOCATION AND ADD TOo YES l'—“'F“_:L—‘EME 'PP'U I
INITIAL ADURESS TO FORM NEW TERMINAL ADDRESS L
ARE NEW INITIAL AND TERMINAL ADDRESSES EQuAL ?
NO
Y
s 1 YES
IS INITIAL ADDRESS GREATER THAN TERMINAL ADDRESS ? f
L
NO
———-—N‘)—Lzs INITIAL ADDRESS EQUAL TO TERMINAL ADDRESS 7 l
YES

READ LOWER 18 BITS OF (RA) AND ENTER AS TERMINAL ADORESS | YES
IS TERMINAL ADDRESS ZERQ ?

NQ

‘

CLEAR INITIAL ADDRESS TO ZERO‘]
[—

\!/ CONSOLE MESSAGE ~NO CP AVAILABLE

1 PAUSE FOR MONITOR YES
REQUEST MONITOR ASSIGN CP EQUIPMENT TO CONTROL POINT LNO READ RA AND FL RELEASE PPU
?
WAS EQUIPMENT ASSIGNED 7 LXS ERROR FLAG SET ?
, YES o
\/
MODIFY PACKAGE FOR EQUIPMENT PARAMETERS -——-{No IS TERMINAL ADDRESS GREATER THAN FIELD LENGTH 7]
CLEAR CARD COUNT
YES
PAUSE FOR MONITOR DAYFILE MEZSSAGE—~PBC RANGE ERROR

READ RA AND FL YES RELEASE PPU ABORT CONTROL POINT
RELEASE PPy

IS ERROR FLAG SET ?

! NO
Y
us TERMINAL ADDRESS GREATER THAN FiELD LGcmms
’ NO
vy

LOAD PPU PUNCH BUFFER WiTH DATA FOR NEXT CARQ
STORE CARD LENGTH AND 7~9 PUNCH IN COLUMN ONE
STORE MOD 4095 CHECK SUM IN COLUMN TwO
STORE CARD NUMBER IN COLUMN B8O

|

Y
[REQUEST CHANNEL FOR CARD PUNCH
}
READ PUNCH STATUSﬁ NO
~1 CoNSOLE MESSAGE —PUNCH NOT REAOY‘]
Is PUNCH READY 7 | —
IYES
Y

PUNCH ONE CARD
RELEASE CHANNEL
HAS TERMINAL ADDRESS BEEN REACHED ?

YES

NO

REQUEST MONITOR RELEASE CARD PUNCH
RELEASE PPU

- 32 .

I,

Program Partitioning

Introduction

Chaining is a method used to execute a program which exceeds
available storage or field length. The program is separated
into a main program and any number of segments which may be
called and executed as needed by the FORTRAN program. Both
the main program and segments may contain one or more sub-
routines and/or functions. Overlays may be loaded (and
executed) or replace the calling program by appropriate
central program machine language action.

- 33 -

II.

RUN Modes’

A copy of the compiled program or segment(s) is always left on the
disk. Either may be called (by name) and executed separately. Each
partition ‘(segment) including its subroutines must be separated from
the main program or other partitions by a record separator. Two
consecutive record separators must separate the last END statement
from the first data card or file separator.

A.

Ctlain MOde - RI}N(C,-...-..-)

Chain mode is comparable to 6 mode except that segments may be
assembled following the main program, That is, no listing is pro-
duced and execution is assumed unless compile errors are encountered.
The programs to be compiled must be a PROGRAM followed by one or
more SEGMENT(s) each separated by a record separator.

Batch Mode -- RUN(B,..seaees)

Batch mode is comparable to S mode except that any combination

of one or more programs, subroutines, segments, or functions may
be compiled. Also, a listing of the source language is always
produced and execution is not assumed. Each program and segment is
written on the disk as a file using the name specified on the
PROGRAM or SEGMENT card. Therefore, execution may be initiated

by a Program Call Card,

III.

FORTRAN Usage
A. Definition of Segment
Each segment must begin with the statement:

f f’l...’ f)

1? "2* 73 n

where name is an alphanumeric identifier for the segment. This
is the name that must be used when calling the segment

SEGMENT name (£

, £, ..are file names of the files used any place in the
1 ’program, These file names must agree in number and
order with those specified for the main program.
All files used in the execution of the main program
and all segments must be specified on the PROGRAM
and all SEGMENT cards.

f

Compilation of segments and programs differ only in the following
respect:

1. Blank common is not cleared to zero by the object code
in a segment,

2. Buffer space and parameters are not initialized by the
object code in a segment. They are carried over from the
main program in order not to destroy any input or output
when calling segments,

B. Calling a Segment
A segment is called by using the FORTRAN statement:

CALL CHAIN (name)

Where CHAIN is the subroutine that loads and initializes
execution of the called segment,

name 1is the identifier of the segment to be loaded and
executed.

-

Segments to be called by CHAIN may reside as a named file on the
disk. The only parameter to CHAIN must be the segment name.

C. General

1. Segments may be called from either the main program or
another segment,

2, Calling of a segment causes the segment to be loaded over the
calling program thus destroying the main program or segment
that issues the call,

3. Segments may be called more than once.

4, Parameters and communication between segments can be passed

only through the use of blank common.

—35-

Each segment is compiled beginning with relative address
zero (RA = 0).

In order to match locations of blank common, all elements of
blank common must be described in the same order and number
in the main program and all segments or the length of

common must be declared on the RUN card.

-36-

Example:

CHNTST, 1, 100, 40000

MODE 7.
RUN (B)
CHN.
7-8-9
* PROGRAM CHN (INPUT, OUTPUT, TAPE1O)
*% COMMON I, J, K, A(5), B(10)
READ 5, A
CALL CHAIN (S82)
END
7-8-9
* SEGMENT S1 (INPUT, OUTPUT, TAPE 10)
*k COMMON I, J, K, A(5), B(10)
WRITE (999, 10) B(10)
CALL CHAIN (S3)
END
7-8-9
* SEGMENT S2 (INPUT, OUTPUT, TAPE1lO)
*% COMMON I, J, K, A(5), B(10)
CALL CHAIN (Sl)
END
7-8-9
%* SEGMENT S3 (INPUT, OUTPUT, TAPE1O0)
Kk COMMON I, J, K, A(5), B(10)
END
7-8-9
7-8-9
Data Deck
6-7-8-9

* These statements must specify all file names even though they are not
referenced in the segment or program,
* All elements must be included in the list,

- 37 -

IV. Machine

Language Calls

Two peripheral packages are available for loading and/or executing
segments. One loads one or more segments., The other loads and
executes one segment or program destroying the calling ptogram.

A. EXU

This package loads a program to replace the calling program and
initiates execution of the loaded program. The calling program is
destroyed.

1.

2,

3.

CALL

The routine is called by setting certain parameters into
RA+1 of the calling program,

RA+1 = EXUOO....0ss. .OLLLLLL
18 24 18 bits
when EXU is in display code,

LLLLL is the address of the argument. The argument
is the name of the central program to be loaded
and executed, The name is specified in display
code with trailing spaces.

Usage

After the monitor recognizes the request in RA+1 and

assigns a PPU to process the request, RA+l is cleared to

zero by the PPU. At this point, the central program must ter-
minate itself normally in order to allow the PPU to load the
program. The central program is terminated by placing END
(trailing spaces) in RA+1 and looping until it is terminated.

EXU resets or clears all operational registers - An’ B, Xn -
before executing the called program, n

EXU loads only from job files on disk 0 (common or local)
Example:

Following is an ASCENT subroutine which may be called from a
FORTRAN program to call EXU. This example is very similar

to the CHAIN subroutine except the name of the program is
fixed to SEGL.

Col. 2 7 11
ASCENTF SUBROUTINE LDS
PS
PS
EXIT PS
TAG1 SAl =1

-~ 38 «

Nz X. TAG1 +ASSURE RA+1 = 0
S5X6=053025B

LX6 42

SX1=SEG1

IX6=X6+X1

SA6=1 .SET RA+1 TO EXU PARAMETER
TAG2 SA2=1 .

NZ X2 TAG2 .WAIT FOR PPU TO ACCEPT CALL

S§X7=051604B

LX7 42

SA7=1 .SET RA+1 TO END
TAG4 ZR BO BO TAG4 .WAIT FOR THE PROGRAM TO TERMINATE
SEG1 CON 230507340000000000008

END

B. CLL
This package loads one or more central programs or segments into
an area of memory specified by the calling program.

1. Call

This routine is called by setting certain parameters into
RA+1 of the calling program,

RA+1 = CLL 0.00-.0 BA
18 24 18 Dbits

BA FIRST
BA+1 LIMIT
BA+2 PROG 1 Pl
BA+3 PROG 2 P2
BA+n+1 PROG n Pn
BA+n+2 (zero) '

where CLL is in display code
BA is an 18 bit address where the parameters are
located
FIRST is the beginning address for loading the first
program,
LIMIT is the limit address for loading the programs
PROG1
PROG2
PROGn are the names (in display code with trailing
spaces) of the programs or segments to be loaded,
2 P1l,P2
++yPn are set by CLL after loading the programs and are
the beginning addresses of the associated overlays.

All of the parameters except Pn must be set up by the calling
program prior to setting RA+l,

-39-

Usage

CLL loads the programs one at a time beginning with the
name specified at BA+2, The order of search for locating
the overlays is:

1, Resident Subroutine Library - RSL
2. Central Library Directory - CLD
3. Assigned Job Files - common or local

The programs are loaded into the consecutive memory locations
beginning with FIRST. No program may be loaded beyond the
address specified by LIMIT. After a program is loaded, its
beginning address is entered into the lowest 18 bits of the
respective parameter word. After Cll has completed the call,
BA is cleared to zero,

If program cannot be located, the address Pn for the program
is not modified by CLL. If a program exceeds LIMIT, the value
777777 is entered into the respective address Pn. The last
parameter must be followed by a full word containing zero.

It should be remembered that programs and segments compile with
a reference address beginning with zero (000000). Since the
central program calling CLL resides at zero, the loaded
programs (by CLL) will not have proper address terms for those
instructions containing 18 bit address, Therefore, the

user must modify the addresses of the loaded program or use
some addressing scheme where the calling program defines a
pseudo-reference address in an index register whenever

memory is referenced. \

-40-

CONTROL DATA CORPORATION

Development Division - Applications

SYSTEM PERIPHERAL PACKAGES AND OVERLAYS

Chippewa Operating System

10/21/65

I.

II1.

III.

Iv.

VI,

ViI.

VIII.

IX.

X.

XI.

XI1I.

XIII.

X1V.

Xxv.

XVI.

XVII.

Table of Contents

Introduction
1AJ
1BJ
1DJ
1LJ
1LT
1TD
2BP
2BT
2EF
2LP
2PC
2RC
2RT
21J
2TS

2WT

14
17
24
30
33

37

41

44

48

52

57

62

66

76

[

SYSTEM PERIPHERAL PACKAGES AND OVERLAYS

INTRODUCTION

All peripheral packages that begin with a numberal are special
operating system packages or equipment driver overlays. The system
packages begin with the numeral "1" and begin execution at address
1000 of peripheral memory. Their functions are to load jobs onto the
disk, make control point assignments, process the control statementsy
and print the jobs' output. Whenever specialized operations , i.e.
read tape, punch cards, translate control statements, etc., are re-
quired, an overlay is loaded into the requesting PP at location 2000.
These overlays begin with the numberal "2" and parameters are passed
to them by direct core cells (1-74g). Most of them are maintained in
RPL (resident peripheral library), however they could be kept in PLD
(peripheral library directory) if the system packages searched this
table. Since most of them are fairly short, the system packages

expect them to reside in central memory.

-1 -

ROUTINE:

PURPOSE :

GENERAL:

METHOD :

1AJ - Advance Job.

To advance the status of a job by controlling the processing
of the next control card or terminating the job.

This package is called by MIR on its main loop and the following
conditions prevail when 1AJ is called. '

a. A job has been assigned to a control point by 1BJ.

b. The central processor is not executing the job at the
control point.

c. The storage move flag is not set.

d. The control point is not listed in the CPU stack, i.e.,
it is not waiting on the central processor.

If an error flag for the control point is set, 2EF is
called to process the error. This routine will issue
the proper error diagnostic to the dayfile and then
position the control card buffer parameters to the
statement after an EXIT card or, if no EXIT card to
found, to the record separator.

2TS is called to process the control statements in the
order encountered and all the statements will be processed
before 1AJ regains control.

If the control point has zero priority, i.e., PP program
that uses central memory, all files and equipment assigned
to this control point are dropped by 2DF and monitor. A
request is also made to monitor to release the storage
reserved by this control point and a pause loop is main-
tained until the field length is zero. The control point
is then cleared of information and 1AJ is released. No
dayfile data will be written in this case.

In the normal case with a priority set at the control
point, an attempt is made to locate an "OUTPUT" circular
buffer so that it may be emptied if it is not. The

first 100g words of the program are searched for the
buffer. The lower 18 bits of each of these words specify
an address where the file name and status is located. If
the address is within the field length, the name is checked
for "OUTPUT." The search continues until RA+100g words
have been checked.

- 2 -

S.

7.

10.

11.

If the buffer status indicates that a file mark has already
been requested, it is assumed that the buffer is emptied

of usable information. If the file mark is not set, then
the buffer will be dumped if

a. it is a disk file
b. the last operation was a write.
2WD is called to write the buffer contents on the disk.

Both the amount of central processor and peripheral
processor running time is read from the control point,
converted to decimal, and sent to the dayfile.

A search is made of FNT to find a file named "OUTPUT"
assigned to this control point. If there is none, then
such a name is entered into the FNT so that the dayfile
can be printed.

The file name is then changed to that of the job name
and the job's priority is also put into the FNT. The
file is released from the control point by putting a
zero value in the control point byte. This action will
cause the print routines (1DJ or 1TD) to sense a file
ready for printing.

All files assigned to this control point in the FNT are
dropped by 2DF, The FNT/FST entries are completely zeroed.

The upper most byte of the EST has the control point
assignment for the equipment. All the pieces of equipment
assigned by this job are released by a monitor request.

The control point area is then cleared and 1BJ is called
to this PP so that another job may be assigned.

-3 o

1000

1100

1200

1320

1410

1500

1AJ ROUTINES

MAIN PROGRAM

RECORD RUNNING TIMES

DECIMAL CONVERSION

RELEASE OUTPUT FILE

DROP FILES

SEARCH FOR OUTPUT BUFFER

BEGIN OUTPUT FILE

CALL SUBROUTINE

CLEAR CP AREA

DIRECT CORE CELLS

P10/14
P55
P56
P50/54
P70
P71
P72
P74
P75
PO1
P10/14

P20/30

P74

P10/14

1700, 1410, 1740, 1500
1100, 1320, 100, 12-760

1200, 530, 530

1640

1700, 23-760
1760

740, 750
2060

10-760, 17-760

CP STATUS

RA

FL

CONTENTS OF INPUT REGISTER
CONSTANT 1

CONSTANT 100

CONSTANT 1800

CP ADDRESS

ADDRESS OF INPUT REGISTER
MESSAGE WORD COUNT
CPTIME, LATER PP TIME

CP TIME MESSAGE, LATER PP
TIME MESSAGE

CP ADDRESS

CP OR PP TIME

1320

1410

1500

1640

1700

P20/30

P71
P10/14
P20/24
P40 /44
P50/54
P74
P10/14
P20/24
P4O /44
P46
P47
P50/54
P74
P01
P10/14

P20/24

P40 /44
P45
P54
P55
P57
PO1
P10/14
P20/24
(4)
PO1

P02/03

CP TIME MESSAGE. LATER PP
TIME MESSAGE

CONSTANT 100

FNT ENTRY

FNT éTATUS

CP(21) WITH ADDED PRIORITY
INPUT REGISTER

CP ADDRESS

FNT STATUS, LATER EST ENTRY
EST STATUS

FNT ENTRY

FIRST OF FNT

IN OF FNT

INPUT REGISTER

CP ADDRESS

SEARCH ADDRESS

ARGUMENTS LOCATED AFTER RA+2

CONTROL WORD OF ARGUMENT AT
RA+2-+n

BUFFER STATUS

LAST BYTE OF CONTROL WORD
RA

FL

FST ADDRESS

CONSTANT 2

FNT ENTRY

FNT STATUS

SUBROUTINE NAME

RPL INDEX

SUBROUTINE NAME

1740

P04
P10/14
POl

P10/14

RPL STARTING ADDRESS
RPL ENTRY

MAXIMUM 2008
CP STATUS, LATER ZERO WORD

WORD COUNTER

— -
REARD “EFERENCE ALIACSS AND FIELD
LENGTR FRCM CONTRGL PCINT

i
i
i
!
{

1
W

r NO
| s ERRCA FLAG SET ?
L
1 YES
\y
1

[Chcn 287 evimlay 1

\I
i

{ CaLe 2TS CviRLAY ‘\‘——‘—1
T
A\
r NG .| BEGIN SZARCH OF CENTRAL STORAGE FOR OUTPUT BUFFER
! 0oL CONTRGL PONT RAVE ZERO PRICRITY 7 }—————-——7
L SET INTIAL ADDRISS TO RA+ 2
arver
{ e I
Vi I
—— N -
Ycs
CoGEanoH FNT OFOR ASSIGNED FILE r oy
o N . | COES NEXT WORD WAVE A CLEARED UPPER ¥TE ? [o
| 15 Trirf A TLE ASSIGNED TO THIS CONTROL POINT P —
' ’ NO
Y3 I \s
\ | 1 YES
i

_ i SEAHCA ST FOR ASSIGNED ECUFMENT

{_”'

i 15 THEAD AN EGUMMENT ASSIGNID TO THIS CONTAZ. POINT 2

L

N

i YES
Vi

EGUEST MONITOR RELEASE EQUIPMENT J

RECUEST MONTOR RELEASE CENTRAL STORAGE
!

2
I—— 'L PAUSE FOR MONITOR
| !

i NO
Is Fidtd LENGTH ZERO 7 J
Ye$
Vi
4
CLEAR CONTROL POINT AREA |
RELEASE PPU J

i BIT ADDRESS NAMED OUTPUT

L

DCES NEXT WORD haVE LCWIST 16, SiTS CLEARED 7 i

i NO
Vi

1 YES

[DCES LOWEST {8 BiTS EXCEED FIELD LENGTH ?_I———

| NO
d

YES f I5 CCNTROL WORD AT THis 18

l NO]
\/ \J/
NO
ADVANCE SEARTH ADDRESS
HAS SEARCH REACHED RA+10CB ? -

. YES .
S~ DCZS CONTAOL WORD CONTAN A Fid MARK STATLS ?

‘NO

Yy

F;ET CONTROL VGRD STATUS TG RECUIST FILE MARK I

!

\!/

!

-
[Call 28P OVIRLAY |

\‘/

I

i
!
i

1 NO
[IS ThiS FiLE ON CiSK O ?f
[YES
X
NO
— HAS FILE BIEN USED 7
| Yzs
\
~) YES
Lls FILE IN READ MODE ? |-
| NO !
\V2 H
|

f
>1 CalLL 2WD OVIRLAY |

|

UPUATE FILE STATUS
UFCATE BUFFER STATUS

Ay

RzAD CP Tiig FROM CONTROL POINT 2RCIA

CONVERT TiME TO DECIMAL SECONDS AND MILLISECONDS
DAYFILE MESSAGE - CP XXXX.XXX SECONDS

]

READ PP TIME FROM CONTROL POINT ARCA
CONVERT TIME TO OECIMAL SECONDS AND MWiLLISECONDS
'L:.wmc MESSAGE = PP XXXX XXX SLCONDS

T

¥

{ NEXT PAGE)

{1AJ PACKAGE CONTINUED)

Al
YES 1 . -]
T SCES FNT CONTaui AN GUTPUT FILE ASSIGNED TO THIS CONTROL POINT 7 |
NO
i
. N4
REQUEST FNT Chaniil O [- L
IS THERE A ZLANK ENTRY IN FNT 2 Z|_RELEASE FNT CHAKNEL |
YES .
vy
ENTER AN QUTPUT FILE FOR ThIS CONTROL PGINT
RELEASE FNT CHANNEL
7
— - NO
r{ Is FILE ASSIGNED TC DISK 0 7 |
Tves
\/
REWIND FiLE
. REPLACE QUTPUT FILE NAME WITH JO3 NAME AND PRIORITY -
RELEASE FiLE FROM CONTROL POWNT I
J_r Nt]
YE .)
_ h S SEARCK FNT FOR ASSIGNED FILE
CaLL 20F ovikLaYy | i
gt Is THERE A FILE ASSIGNED TO THIS CONTROL POINT ? !
NO

v/

YES =
[—w———" SEARCH EST FOR ASSIGNED EQUIPMENT

RE T TOR R A PWIN
EQUEST MONITO ELEASE EQUIPHMINT { IS THERE AN EQUIPMENT ASSIGNED TO THiS CONTROL POINT

NO

CLEAR CONTROL POINT ARZA
CALL 1BJ PACKAGE TO THIS PPU

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

1BJ ~- Begin Job
To assign a job to a control point and process the job card.

The package is called by DSD where "X, NEXT" is requested and
recalled by 1AJ. The control point assignemtn is specified
in the input register upon entry to the package.

1. If the error flag in CP(20) is set, the package is re-
leased, The error will be processed later by 1lAJ and
2EF.

2. If the priority is not zero, this is a recall entry.
Otherwise, the following steps occur:

a. A search is made through FNT for the highest priority
file of TYPE O (INPUT) and no control point assignment.
If none is found, the job name is set to NEXT (for
display) and the message IDLE sent to display and the
package released in recall status.

b, If a file was found, the file name in FNT is set as
job name, the file name is changed to INPUT, and the
TYPE is changed to local, Also, the priority of
the job is set in the CP,

3. If the job cards have been loaded, this is a recall entry.
Otherwise, the following steps occur:

a. 300, words of central memory are requested of MIR.
If not assigned, the message WAITING FOR STORAGE is
sent to display and the package released in recall
status.

b. If 300 words were assigned, the first ten words are
set as follows:

Il
[=]

RA = RA+1 = RA+2

RA+3 =] INPUT 10 File Name and Buffer
RA+: = RA+5 = RA+6 =0 010 | FIRST, 1IN, our St3tus
RA+7 =0 0300 | LIMIT

c. 2BP is called to verify the parameters and set
direct core cells for 2RD,

d. 2RD is called to read the control statement record
into CM.,

e, FST is updated to reflect a completed read. The
control statements are moved from the CM buffer to
CP control statement buffer using PP locations
beginning at 7000 as a transient buffer,

-9 .

NOTES:

£, CP(21) is set to reflect the reading of the control
statements,

g. 2TJ is called to translate and process the job card.
The time limit specified on the JOB card is set by
MTR.

4, The field length specified on the job card is requested of
MTR. If not assigned, the message "WAITING FOR STORAGE"
is sent to display and the package released in recall
status,

5. If MTR assigned the memory, the job card is issued to the
dayfile,

6. Finally, the package is released. The remaining state-
ments will be processed later by 1lAJ and 2TS.

All console messages are sent to display by entering the
message in CP (30-37). These messages are line 3 of the
control point display.

The job card is sent to the dayfile by storing it in the
message buffer (address specified by P77) and issuing a
FO; request to MTR.

All overlays called by 1BJ must be in RPL since PLD is not
searched when calling the overlays. These overlays include
2BP, 2RD, 2TJ.

Two recall flags are used:
a, priority given by CP(22).
b. control cards loaded or not loaded by CP(21).

Three conditions may exist which will cause 1BJ to be released
in a recall status. These are:

1., 1If there exists no unassigned input files in FNT of the
TYPE input.

2, I1f MIR will not assign storage for the buffer to load the
control cards into CM.

3. If MIR will not assign storage for the job as specified
by F1, on the JOB card.

Upon entry to 1BJ, two flags (see above) specify whether this
is the initial entry or a recall entry. 1If it is a recall
entry, the flags given above cause the package to skip the
areas of code it has executed on a previous call. For example,
if the priority given in CP(22) is zero, this is either the
initial entry or no unassigned input file was found on the
previous entry (same as initial entry). If the priority is
not zero, a file has been assigned and the coding to find and
assign a file is bypassed. If the job cards have not been

- 10 -

loaded (specified by CP (21 byte 11-0) = 0) they must be loaded
into the CP control statement buffer, If they have been
loaded, this coding is skipped. 1If the priority is non-zero
and the job cards are loaded, or after these have been done,
storage is requested for the job, If not assigned, the package
is released in recall status again., Upon next entry all coding
will be skipped except this storage request since the

priority will be non~-zero and the job cards are loaded.

Releasing a PP in recall status involves storing the contents

of the input register in CP(25) and then releasing the PP
via MTR request 12, A normal release leaves CP(25)=0.

- 11 -

1BJ Routines

1000 Main Program 1100, 1440, 1400, 1500, 12-760
1100 Search for Job 740, 750, 12-760, 24-760
1240 Call (Overlay)
Subroutine
1300 Read Control
Cards 1240
1400 Request Storage 10-760, 12-760
1440 Read Job Cards 1400, 1300, 1240, 14-760
1500 _ Issue Statement 01-760

1BJ Routine Direct Core Parameters

1000 P75 Address of Input register
1100 P50/54 Contents of input register
* P74 Address of control point
1240) Name of overlay to be loaded and executed
1300 P54 Field Length (FL) from CP-20
P55 Reference Address (RA)
P57 Address of INPUT FST entry.
P63 Lower 12 bits of IN “after control cards are read
P65 Lower 12 bits of OUT =
P70 0001 (constant)
P74 Address of Control point
1400) Field length (in hundreds) needed
P56 Field length (FL) from CP-20.
P74 Address of control point
1440 P36 Time Limit (TL) from JOB card (in tens)
P37 Field Length (FL) from JOB card (in hundreds)
P55 Reference Address (RA)
1500 P74 Address of control point

-]_2»..

P —
| 1B. Pag«est
| BIGIN JCH

L____..T—-_J
';il

X

READ REFERENCE ADCRESS AND FIELD LENGTH YES

!
|

t
IL IS ERRCR FLAG SET ?

RESUEST FNT CHANNEL
Cf

{ RELEASE PPU l

YES

SEAGCH FNT FOR AIGHEST PRISAITY UNASSIGNED INPUT FILE
i IS THERE AN UNASSIGNID INPUT FiLE 7

|
i CCNSOLE MESSAGE —IOLE |
| EnTeR PP AZCALL l
| RELEASE FPU J

YES | . A L

REQUEST MONITOR ASSIGN JOB PRIORITY
ENTER JOB NAME IN CONTROL POINT AREA
CHANGE FILE TYPE TO ASSIGNED LOCAL FILE
CHANGE FILE NAME TO INPUT

RELEASE FNT CHANNEL

1 have W08
L

[REQUEST MCNITOR ASS.GN 000 wials OF STCRAGL ‘l

i
+
|

Ny

| NO

rwAs STORAGE ASSIGNED 72 |-
| VES
|

Al

CONSOLE MESSAGE ~ WAITING FOR STORAGE
ENTER PP RECALL
RELEASE PPU

CLEAR CONTENTS OF RA,KRAT!,RA¥Z
ENTER BUFFER CONTROL WGRDS FOR (NPUT FILE AT RA+3 THRU RA+7

|

N
r - Y
l CaLL 2LP C\/;RL»’.YJ

GPLATE INPUT FILE STATUS

R{AD DATA FROM CIRCULAR BUFFER TO PER!PRIRAL STORAGE
COUPY CATA FROM PERIPHERAL STORAGZ TO CONTROL POINT AREA
SET NEXT STATENMSNT LOCATGR N CONYROL POINT ARZIA TO INITIAL VALUE

|

\Y

CaLL 2TJ ovikuat

i__J

i
:
b

f
I

NECULGT MONITOR ASSISN T/ME LIMIT
ENTOR P05 LINGTH FOR JCB IN 343 BYTE OF PPU INPUT RIGISTER

Y
i
|

e

s ACCUEST MENITOR A35.6N STCRAGE FOR JCL FitlD LINGTH]
|
1

v

1 NO

| WAS GTORAGE AS3.GNED ?

L
Yes

|

!

y
155U% 0L CAHD AS DAYFILE MESSAGE
RLEasy PPy

- 13

CONSCLE MESSAGE — WAITING FOR STORAGE
ENTER PP RECALL
RELEASE PPU

ROUTINE:

PURPOSE:

ENERAL:

METHOD:

1DJ - Phase 3 print
To monitor the processing of an OUTPUT file.

DSD calls 1DJ to a control point to print a jobs' output.
The package appears as "PRINT" and is loaded at dead start
when "AUTO" is typed or whenever "X.PRINT" is typed. It
remains in recall state and is available to print an
OUTPUT file when one is released.

1. 4000, words are requested from MTR. When memory has
been allocated, a line printer is requested and the
package is modified for the equipment parameters.

2. The FNT is searched for an "OUTPUT" file and the
message "IDLE" is displayed until such a file is found.
When found, a "PRINT" entry is made in the dayfile and
when the printer becomes ready, the file name is
changed to the job name in FNT. At the control point
the job name appears instead of "PRINT" and the console
message is changed from "IDLE" to "PRINT".

3. 2RD is called to read from the disk to the circular
buffer in central memory. The reading continues until
the end of the file is encountered or until the central
memory buffer will not hold another full sector.

4, 2LP is then called to print this information and will
continue printing until there is no more data in the
buffer to print.

5. 1If an end-of-file has not yet been detected, control
continues at step 3. When it is detected, the dayfile
is searched for entries belonging to this job and then
the entries are printed. Control reverts back to step 2.

- 14 -

~ S TLECT CARRIAGE CONTROL LEVEL ONE

—_—
10J PACKAGE
PHLSE 3 PRINT

e eeered

!
v

FEAD REFCRENCE ADORESS AND FIELD LENGTH FROM CONTROL POINT AREA l

r YES > ::]
. | IS ERAOR FLAG SET 7 } RELEASE PPU
L
T

[NO
i
. NO f
115 FIELO LENGTH 40008 WwOROS 2 } > REQUEST MCNITOR ASSIGN FIZLD LENGTH OF 40008 WORDS
‘ [YES
Vi i
f ENTER CIWCUL AR EUFFER ADDRESS (O0O03) 1N PPU INPUT REGISTER CONSOLE MESSAGE - WAITING FOR STORAGE
[Cofak RA THRU RA + 2 ENTER PP RECALL
= RELEASE PPU

!
i
N/

YIS
ir"'——*l 15 LP CCUPMINT BUleLOR IN THIRD BYTE OF PPU INPUT REGISTERS ?
i " NO
i
i T A ‘ NO CONSOLE MESSAGE =NO LP AVAILABLE
| NEGUEST Muj.‘l(}d ASSIGN ?LP CQUIPMENT YO CONTROL POINT ! ENTER PP RECALL
l WAS ECUIPAIINT ASSIGNED RELEASE PPU
| YES
f
A
{ ENTER EQUIPMINT NUMBER IN THIRD 8YTE OF PPU INPUT REGISTER J :
—~ N

[.
‘——“‘91 MGDF Y PACKAGE FOR CQUIPMENT PARAMETERS J

sl

.

CNTER O3 NAME - PRINT
CONSOLE MESSAGE - IDLE

—
i
L

REGLEST FNT CHANNEL NO RELZASE FNT CHANNEL
SEARCH FNYT FOR HWIGHEST PRIORITY COMPLETED OUTPUT FiLE ENTER PP RECALL
IS THERE A COMPLETED OUTPUT FILE ? RELEASE PPU

I YES

Vi

ASSIGN FILE TO CONTROL POINT AS LOCAL FILE
ASSIGN FILE NAME AS JOB NAME
RELZASE FNT CHANNEL

|
U3
1
UAYFILE MESSAGE - PRINT
T

l
‘

. i NG RELEASE CHANNZL
© & GousT CHAKNEL FOR LP CONSOLE MESSAGE ~ PRINTER NOT READY YES
N7 LP STATUS NO PAUSE FOR MONITOR
.3 PRINTER AEADY ? READ RA
[vEs Is ERROR FLAG SET ?

! ‘

Cirin CaRRIAGE CONTROLS

~LEASE CHANNEL
LLZAR PP TIME CRARGES TO CONTROL POINT

v
(NEXT PAGE)

(1DJ CONTINUED)

[ENTER CIRCULAR BUFFER CONTROL PARAMETERS
ENTER JO8 MNAME AS FILE NAME

CALL 28BP OVERLAY

\Y

L CALL 2RD OVERLAY

‘7
UPDATE FiLE STATUS IN FST
UPDATE CiRCULAR BUFFER STATUS

Az

ENTER PRINT AS CIRCULAR BUFFER FILE NAME
CALL 28P OVERLAY

v/

ENTER LP EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2LP OVERLAY

\I
UPDATE FILZ STATUS IN FST
UPCATE CIRCULAR SUFFER STATUS

NO

WAS LAST REFERENCE & FILE MARK ?
YES

\/
ENTER JOB NAME AS FiLE NAME
CALL 20F OVERLAY

Ay

PRESET TEMPORARY STORAGEZ FOR READING DAYFILE
iEST MONITOGR COMPLETE DAYFILE

\l7

——-—-—-—:-—i CaLL 2RD OVEALAY]

Air

{ CALL 25D OVERLAY]

\7

NO T
‘——‘L IS DAYFILE AT ENO OF RECORD ? J
YES

Aly

ENTER PRINT AS CIRCULAR BUFFER FILE NAME
CaLL 2BP OVERLAY

Vi

CALL 2LP OVEZRLAY

vy
UPDATE FILE STATUS IN FST
UPDATE CIRCULAR BUFFER STATUS

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

1LJ -- Phase One Card Load

To build up an input file from the card reader onto the disk.

1LY is the "READ" package which is called in by DSh when
"AUTO" is typed at dead start. When '"READ" is assigned a
control point, it remains in recall state and is available
to read a job whenever the card reader becomes ready.

1.

2,

8.

9.

10,

11.

The job name READ is stored in CP(21). The error flag
is checked and if an error is sensed, the PP is released.
READ must be reassigned when it is needed again.

If 4000, words (FL) have not been assigned, the routine
requests the storage and puts itself into PP recall.

A circular buffer address (0003) is entered into the PP
input register and the first 3 words (RA—RA+2) are
cleared. Any central program must have 3 words reserved
for system communication so that means the circular
buffer parameters are located at RA+3.

FIRST = IN = OUT = 10
and LIMIT = 40008.

g are the preset buffer parameters

Upon entry the third byte of the input register may
contain the equipment number of the card reader. If it
does not, then MIR is asked for the assignment. The
number will come back in the first byte of the message
buffer and then is transferred to the third byte of the
input register,

If the assignment was not completed, "NO CR AVAILABLE"
is stored in CP(30) and the PP put into recall.

The above 6 steps are initialization procedures and are
not repeated unless "READ" is dropped and must be
reassigned.

"READ" appears as the job name in the CP and "IDLE" as
a console message when no reading is being done.

The channel from the card reader entry in the equipment
status table (EST) is requested and then the status of
the card reader is checked. If the reader is not ready,
the PP is put into recall and released.

After the card reader is found to be ready, the file
name "READ" and a buffer status of 108 meaning requested
coded read is entered into BA.

2BP is called to check the legality of the buffer
parameters.

- 17 =

12,

13.

14,

15.

16,

17.

18.

19.

20.

21,

22,

23,

24,

25,

The equipment number of the card reader from the
input register is stored in the FST entry.

2RC is then called to read one card.

The FST entry is updated and stored as is the buffer
status word (BA). Both reflect an 118 condition
completed coded read.

2TJ is called to translate the job card. The job name
is entered in PP(30) from 2TJ and is transferred to
CP(21)., Therefore, the control point assigned to READ
has a new job name (from job card) and a console message
of "READ" instead of "IDLE". A dayfile entry of the job
name and READ is made.

Next READ in BA is replaced with the job name and the
buffer status is changed to request coded write (148).

Again 2BP is called to verify the buffer parameters.
Every write operation on the disk is terminated with an
EOF record so that if a file mark was requested it is

not completed so that two file marks will not be written,

2WD is called to write the contents of the buffer of the
disk. -)

Upon reentry to 1LJ, the FST entry and the buffer status
(BA) is updated to reflect a completed coded write.

The file name READ and buffer status of 10
coded read - is again entered into BA.

g " requested

2BP is called to determine the legality of the buffer
parameters and the card reader equipment number is
placed in the third byte of the input register for 2RC.

After 2RC returns control to 1LJ, the FST and buffer
status are updated to reflect a completed coded read.

If a file mark was not read, then the job has not been
completely read in. The contents of the buffer are
written on the disk and more cards read until a 6-7-8-9
card is found.

When a file separator card is sensed, an MIR request (04)
to update the PP running time at the control point for
the requesting processor is issued., The time is con-
verted to decimal and sent to the dayfile in the form
PPXXXX sec,

In order to release the job to the system the job name
is stored in BA and 2BP is called for a final check of
the buffer parameters, The disk file is rewound by
setting the current track to the beginning track in the

- 18 -

26,

27.

FST. Also the current sector byte is cleared and the
last buffer status is set to 0l. The priority is added
to the FNT entry and the control point assignment byte

is cleared. Therefore, the input file is released and
ready for MIR to assign it a control point for execution,

"READ" with a 10, request is again entered into BA of
the circular bufger and 2BP is called to check the
parameters. An FST entry is cleared in preparation
for a new file and a check is made for a ready card
reader.

If a card reader is not ready, the PP is put into recall
so that it will be able to detect when the card reader
becomes ready.

- 19 =«

1000
1040
1100
1200
1300
1400
1440
1500
1600
1700
1740

1000

1040

1100

1200

1

LJ Routines

Main Program
Process Job

Dump Buffer
Release Job
Record Time

Call RPL Package
Request CR
Enter CP Status
Sense CR Ready
Load Buffer

1500, 1440, 1600, 1040

1700, 1400, 530, 1100, 1300, 1200

1400

1400

4-760, 530

2000

22-760, 12-760, 100
10-760, 12-760, 100, 1740
740, 750, 12-760, 100
1400

Preset Buffer Parameters

Dire

ct Core Cells

P50-54
P70
P71
P72
P75
P10/14
P20/24
P74
P10/14
P20/24
P40/44
P50/54
P55
P57
P10/14
P20/24
P35
P55
P57
P74

Input register
Constant 1

Constant 180

Constant 1000

Input register address
Zero word

FST entry

CP address

cr(21)

FST entry

File control word (BA)
Input register

RA

FST address

CP(21), zero word

FST entry

Job priority

RA

FST address

CP address

- 20 =~

1300

1400

1440

1500

1600

1700

1740

P10/14
P74
4)
POl
P02/03
P10/14
POl
P10/14
P50/54
P74
P77
POl
P10/14
P54
P50/54
P55
P56
P74
POL
P10/14
P20/24
P50/54
P74
P20/24
P40/44
P50/54
P55
P57
P10/14
Pl4
P54
P55
P56

PP time - CP(24)
CP address
Package name
RPL ordinal
Package name
RPL entry
Constant 2
Message buffer
Input register
CP address
Message buffer address
Constant 3
CP(20), zero word
Constant 3

Input register
RA

FL

CP address

CR status

EST status

EST entry

Input register
CP address

FST entry

File control word (BA)
Input register
RA

FST address

Zero

108

Constant 3

RA

FL

- 21 -

tLJ PACKAGE
PHASE CNE CARO LOADJ

N
L

ENTER RZAD AS CONTROL POINT JOB NaME | YES

1S ERRGR FLAG SET ?

NO

\

READ RA AND FL FRCM CONTROL POINT AREA | NO

/‘: RELEASE PPU

is FL. « 40008 ?

YES

\7
ENTER CRCULAR BUFFER ADORESS {Q003) 1N PPU iNPUT REGISTER
CLEAR RA THRU RA +2
PRESET CIRCULAR BUFFER PARAMETERS

[1S EQUIPMENT NUMZER IN THRD BYTE OF PPU INPUT REGISTER 7 iﬁ——>

YES

Y
3,

REQUEST MONITOR ASSIGN 40008 FIELD LENGTH
CONSOLE MESSAGE — WAITING FOR STORAGE
ENTER PP RECALL

RELEASE PPU

REQUEST MONITOR ASSiGN EQUIPMENT TYPE CR
WAS EQUIPMENT ASSIGNED ¢

YES

@‘ ENTER READ AS CONTROL POINT JOB NAME | .
CONSOLE MESSAGE - IDLE J

\/
REQUEST CHANNEL FOR CARD READER
READ STATUS NO

STORE EQUIPMENT NUMBER IN THIRD
i BYYE OF PPU INPUT REGISTER

CONSOLE MESSAGE —NO CR AVAILABLE
ENTER PP RECALL

NO

RELEASE PPU

ENTER PP RECALL

RELEASE CHANNEL
IS CARD READER READY ?

YES

\/

ENTER FILE NAME READ IN CIRCULAR BUFFER
CaLL 28P OVERLAY

i
X
ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2RC OVZRLAY

\s

UPOATE FILE STATUS
UPDATE BUFFER STATUS
CaLL 2TJ OVERLAY

Y
ENTER J0B NALC IN CONTROL POINT AREA
DAYFILE MESSAGE = READ

\

ELTER v0B NAME IN CIRCULAR BUFFER AS FILE NAME
CrANGE BUFFER S5TATUS FROM INPUT TO OUTPUT
CALL 2BP OVERLAY

\

RELEASE PPU

IS A FILE MARK REQUESTED 7
NO

CALL 2VW/D OVERLAY
UPDATE FILE STATUS

UPDATE BUFFER STATUS

- 22

Y
)@ {NEXT PAGE)

(ILJ CONTINUED)

®©

H
v

ENTER FILE NAME READ IN CIRCULAR BUFFER

CaLL 2BP OVERLAY

\Vi
ENTER CQUIPMENT NUMBER N FILE STATUS WORD
CALL 2RC OVERLAY

UPCATE FILE STATUS
UPCATE BUFFER STATUS lo————?@
WAS A FIiLE MARK READ ?
YES

iV .

REQUEST MONITOR ASSIGN PP TIME TO CONTROL POINT
READ PP TIME AND CONVERT TO DECIMAL
DAYFILE MESSAGE —PP XXXX SEC.

V2

ENTER JO3 NAME iN BUFFER AS FILE NAME
CALL 23P OVERLAY

REWIND FILE STATUS
ADD JOB PRIORITY TO FILE NAME

UPDATE FILE NAME AND STATUS IN FNT/FST
RELEASE FILE AS COMPLETED INPUT FILE

)l
\I/
ENTER FILE NAME READ IN CIRCULAR BUFFER

CaLL 25P

\t
CLEAR FILE STATUS WORD TO NEW FILE IN FSTJ

®

-23-

ROUTINE: 1LT Phase One Tape Load

PURPOSE: To load jobs from a magnetic tape onto the disk until an
empty file is encountered.

GENERAL: The package 18 called by DSD after the operator types
"X.LOAD," at the console, The control point for the
package is specified in the input register.

METHOD: 1, Initialization of the routine involves the following
steps:

a. If the requested control point has a job name, the
package is released.

b. Otherwise, the job name LOAD is set in the CP(21)
for display purposes,

c. 10000, words of central memory are requested to be
used as a buffer for reading tape and writing disk.

d. If MIR does not assign 10000
is released.

8 words, the package

e, Otherwise, the CM buffer is set up as follows:

RA+1 = RA+2 5§ O

RA =
RA-H3 ='0 1File Name and Buffer Status
RA+: = RA+5 = RA+6 = |00 04| FIRST, IN, OUT
RAY7 =[00 010000] LIMIT

f. The buffer address, 0003, is stored in the PPU
input register (internal) for future reference by
the package.

g. A tape assignment is requested of the operator by
storing REQUEST TAPE in CP(30-37).

h. A function 17 request is sent to MIR while waiting
for the operator to assign the tape. This function
is repeated until the tape is assigned., The equip-
ment number specified by the operator is contained
in CP(22). .

i. The equipment number is stored in PPU input fegister
(internal) for future reference by the package.

2. The following steps occur for the initialization of each
file (job):

a. RA+3 is (re) set as follows:

- 24 -

TAPE......10 in order to read the tape files.

b. 2BP is called to verify the buffer parameters and
to set up direct core parameters for 2RT,

’c. 2RT is called to read information from the tape and

store it in buffer in central memory.

d. The file status (LBS field) in FST is updated
(odd value) to reflect the record(s) just read.

e. The buffer status (at RA) is updated (odd value)
to reflect the record(s) just read.

f. If a file mark was read at this point, it would have
been the second consecutive file mark and, therefore,
the package (1LT) is released,

g. Otherwise, 2TJ is called to set up the job name and
priority in direct core cells.

h. The job name is in the CP for display and dayfile
accounting purposes.

i. The message LOAD is sent to the dayfile.

The following steps occur as a loop for loading the tape
records onto the disk:

a. The job name (from CP) is stored as file name before
writing disk so that FNT contains the job name of
type input,

b. 2BP is called to set up direct core parameters for
2WD, i.e., also assigns the new file.

Co 2WD is called to write the bufferin central memory
onto the disk, if a file mark was not requested. The
file marks are automatically handled by 2WD on
every write,

d. Again, the FST word and the buffer status are updated
to reflect the record(s) just written,

e. The buffer is again loaded as specified before in
steps 2) a., b., c., d., e.

When a file mark is encountered on the tape (and the
record(s) are written on disk), the following steps are
performed to release the disk file (job) just written,

a. The job name is stored as the file name in order to
call 2BP to set up direct core parameters for
rewinding the file,

b. The file (on disk) is rewound by making the following
changes to FST.

- 25 -

NOTES:

i, setting current track=beginning track
ii., setting current sector=0
iii, setting last buffer status=0001
¢. The priority, from the job card, is entered into FNT.
d. The file type is set to input.

e. The file status is cleared from file TAPE by a call to
2BP and resetting FST.

PPU time used to load the jobs on the disk is not charged to
the individual jobs.

The package 1LT is released without completing the tape to disk
operation if any of the following conditions arise:

1. too many control cards in a job.

2, illegal parameters on the job card.

3. no tracks are available on disk.

4. . the track limit (512 tracks) is exceeded for a job.
5. the operator drops the CP.

When the package (LLT) is released, either normally or prematurely,
the files (tape and disk-FNT/FST), equipment (EST), and storage
(CP(20)) are released by a special section of 1AJ. This section
releases these items for control points not using the CPU but
using CM for buffers. 1AJ detects this when a CP has a zero (0)
priority. 1AJ is entered to release the package by the master

loop in MTR.,

The dayfile message LOAD is written via MIR function 01 and
resident routine located at 5308.

Since the package is immediately released if 10000, words are

not available from MTR, the operator should call LOAD after dead
start, Otherwise, he will have to wait for the CP's to be
relatively inactive in order not to run into any storage conflicts.

All overlays called by 1LT must be in RPL since PLD is not

searched when calling the overlays, These overlays include
2BP, 2RT, 2WD, 2T1J.

- 26 -

11T ILoad Tape Routines

1000 Main Program 1300, 1440, 1240, 12-760, 1400, 530,
1100,,1160

1100 Dump Buffer 1400

1160 Release Job 1400

1240 Load Buffer 1400

1300 Enter CP Status 10-760, 12-760

1400 Call RPL Package

1400 Request Tape 17-760, 12-760

Direct Core Cells

P20/24 FST entry for file sent to 2BP
P30/34 Job name from job card set up by 2TJ
P35 Priority from job card set up by 2TJ
P40/ 44 File Control Word+Buffer Status (same as RA+3)
P50/54 Input Register

P55 RA from CP(20)

P56 FL from CP(20)

P57 FST entry address set up by 2BP

P70 0001 (constant)

P71 0100 (constant)

P72 1000 (constant)

P74 Control point ; address

P75 Input register address

- 27 =

W1 PACKAGT
| FrALE CNE TAPE LOAD
L

i
ki

Y
DCES COCNTROL POINT HAVE A JOB NAME ?} £s
f NO
Y
ENTER CONTROL POINT NAME LOAD

FEGUESY MCNITOR AS3.GN FIELD LENGTH OF 100008 | No
READ RA AKND FL
DOES FL=ICO00B ? .
YES

RELEASE PPU

Al

ENTER BUFFER ADDRESS (OCO2) IN PPU INPUT REGISTER
CLEAR RA ThRU RA +2
ENTER BUFFER PARAMETERS

K oo e

{ CCNUGLE MESSAGE ~ REQUEST TAPE

b
¢

PAUSE FOR MONITOR

YES '
RZAD RA { RELEASE PPU

1S ERROR 7i.AG SET ?
NO

|
\/

NO I
'_{ HAS OPEhAIGR ASSIGMNED AN ELULIFMENT NUMBER ?

YES

\,
ENTER EQUIPMENT NUMBLR N THIRD BYTE OF PPU INPUT REGISTER
CLEAR OPERATOR ASSIGNMENT IN CONTROL POINT AREA

CLEAR CONSOLE M{baiu:

|
ENTER FILE NAME TAPE IN CIRCULAR BUFFER

@—————\’ RCQUEST READ C

CALL &Br VLol ay

ATUS

¥
ENTER EQUIPMLN . woimuin in FiLE STATUS WORD
CaALL ZRT OVERLAY

UPDATE BUFFER STATUS

UPDATE FILE STATUS

'

l WAS 4 FILE MARK READ ? 7] YES RELEASE PPU

NO .

ENTER NEW +UB NAME IN CONTROL POINT AREA
DAYFILE MESSAGE —LCAD

NEXT PAGE)

- 28 -

(ILT CONTINUED)

v

ENTER JOB NAME AS FILE NAME IN CIRCULAR BUFFER |, .o
CALL 28P OVERLAY

1S A FILE MARK REQUESTED ?
NO

A\
i
l CaLL 2WD ovaRLAiJ

v/
i UPDATE FILE STATUS
UPDATE BUFFER STATUS

J

M
‘.\ ENTER FILE N4ME TAPE IN CIRCULAR BUFFER
REQUEST READ STATUS

CALL 2BP OVERLAY

N/

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CaLL 2RT CVERLAY

UPDATE BUFFER STATUS

UPDATE FILE STATUS

______AQ_{ WAS A FILE MARK READ ?

YES

ENTER 408 NAME AS FILE NAME IN CIRCULAR BUFFER
CALL 2BP OVERLAY

\/
REWIND FILE STATUS
i ADD PRIORITY TO FILE NAME .
RELEASE FILE AS INPUT FILE

i

ENTER FILE NAME TAPE iN CIRCULAR BUFFER
REQUEST READ STATUS

CALL 2BP OVERLAY

CLEAR FILE STATUS WORD TO NEW FILE

l

- 29 -

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

1TD - Phase 3 Tape Dump

To dump completed output files on tape in order of priority
for off-line printing.

1TD is assigned a PP and a control point when "X.DUMP." is
typed. Whenever all output files are dumped, the package
is released. :

1. U"DUMP" is assigned as the job name for the control
point. 10000g words of central memory are required
for the buffer and if it is not assigned, the PP is
released.

2. The message "REQUEST TAPE" appears as the third line
of the control point. The operator must enter
"X.ASSIGN YY.", where YY is a tape equipment number.

3. The FNT is searched for the highest priority output
file.

4, The file is assigned to the control point as a local
file and the job name from FNT is set into CP(21).
The job name replaces "DUMP" at the control point and
"DUMP!" is displayed as the console message.

5. The central memory buffer is filled by 2RD.

6. 2WT is called and the tape equipment number is set in
FST. 1If the tape assigned is %", a return jump is
made to the BCD write coding in 2WT. A 1" tape assign-
ment giver the binary write of 2WT control.

7. When the buffer is emptied the FST and buffer status
are updated. No file mark is written between jobs.

8. Whenever the job output file has been dumped and a file
mark requested, 2DF is called to drop the disk tracks
used by the file.

9. 2RD and ZSP search the dayfile for entries pertaining to
the job and they are written after the job output by 2WT.

10. All PP time charges at the control point are cleared.
11, Again FNT is searched for the highest priority output file.
When no more output files exist, a file mark is written and

then the tape is backspaced over it. The tape is left in
this position so that more dumps may be added.

- 30 -

1T PACKASE
PRASE 3 TAPE DUMP

e——

Ale

RELEASE PPU l

(DCES CONTROL POINT HAVE A JOB NAME ? }YES

imo

|

X

ENTER JOB NAME= DUMP

REQUEST MONITOR ASSIGN FIELD LENGTH OF 100003 | NO

READ RA AND FL FROM CCNTROL POINT
HAS FIELD LENGTH 3IZEN «SSIGNED 7

A

YES

y

ENTER CIRCULAR CUFFER ADORESS (COO3) IN PPU INPUT REGISTER
CLEAR RA THRU RA + 2
ENTER CIRCULAR BUFFCR PARAMITIRS

————>» PAUSE FOR MCNITOR

|
d

CONSOLE MESSAGE ~RZQUEST TAPT

IS ERROA FLAG SE7 ?
8o
1

N

N

NO READ RA FROM CONTRCL POINT
HAS OPERATOR ENTIRED ECUIPMENT AUNESIR ?

|
j

I YES

|
i .

\/

STORE EQUIPMENT NUMGER IN THiRD BYTE OF PFJ INPUT REGISTER

CLEAR OPERATOR ASSIGNMENT IN CONTROL POINT AREA
CLEAR CONSOLE MESSAGE

v

is

REQUEST FNT CHANNEL
@% SEZARCH FNT FOR RIGHEST PRIOAITY COMPLETED OUTPUT FILE

THERE A COMPLETED OUTPUT FILE ?

NO

,{ RELEASE PPU l

1 YES
i

I\

ASSIGN FILE TO CONTROL POINT AS A LOCAL FILE
ASSIGN FILE NAME AS 405 NAME
RELEASE FNT CHANNZIL

i
l
\I/

l DAYFILE MEZSSAGE —DUNP

\/

o

L

ENTER JO5 NAME AS FILE NAME IN CIRCULAR BUFFER

ENTER REQUEST CODED READ STATUS
Caill 2BP OVERLAY

\l
CaLL 2RD OVERLAY
i

Vv

UPDATE FILE STATUS
UPDATE BUFFER STATUS

v
(NEXT PAGE)

- 3] -

RELEASE FNT CMANNEL
ENTER TAPE AS FILE NAME IN CIRCULAR BUFFER
ENTER REQUEST FILE MARK STATUS

CALL 2857 OVERLAY

A\

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2WT OVERLAY
WRITE FILE MARK

i

}

UPDATE FILE STATUS

UPDATEZ BUFFER STATUS

ENTER REQUEST GSACKSPACE STATUS
CatL 2BP OVERLAY

Vi
CALL 2BT OVERLAY
UPDATE FILE STATUS
UPDATE BUFFER STATUS

* RELZASE PPU |

{ITO CONTINUED)

\

{ ENTER TAPE AS FiLE NAMEZ iN CIRCULAR BUFFER
1 CALL 26P OVERLAY

\/

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
CALL 2WT OVERLAY
IS A FILE MARK REQUESTED ?

NO

YES
r——t

[s Tape Tyer WT 2 |LES ["R BiNARY WRITE IN 2WT OVEALAY
RO

|
Ay

[RJ CODED WAITE iN 2WT OVERLAY J
|
b

N UPDATE FIiLE STATUS]

LUPOATE BUFFZIR STATU J

NO

[WAS A FILE MARK REQUESTZD 7

TYES

!
J

vy

ENTER JOB NAME AS FILE NAME IN CIRCULAR BUFFZR
CaLL 20F OVERLAY

T
|
i
i

PRESET TEMPORARY STCAAGE FOR READING DAYFILE
REQUEST MONITCR COMPLETE DAYFILE

|

N

——>i CALL 2RD OVERLAY

J
CALL 250 OVERLAY |

\/
NO - ’
—Fs UAYFILE AT END OF RECO’D ? i
; YES
¥

ENTER TAPE AS FILE NAME IN CIRCULAR BUFFER
Call 2EP OVERLAY

T
l
ENTER EQUIPMENT NUMBER IN FILE STATUS WORD

CALL 2WT OVERLAY
IS A FILE MARK REGUESTED ?

YES

NO
r \/
{ IVIS TAPE TYPE WT ? }YES { RJ BINARY WRITE IN 2WT OVERLAY J
i NO
; .

|
[RJ CODED WRITE IN 2VW/T OVZRLAYJ

]
!
'

3
UPDATE FILE STATUS -

UPDATE BUFFZR STATUS

Vd
t[CLEAR PP TiME CHARGES iN CONTROL POINT AREA J

- 32 -

PROGRAM :

PURPOSE:

GENERAL:

METHOD:

2BP -- Read Buffer Parameter

To examine the buffer arguments for correctness, enter
file name in FNT, and reserve the file.

This routine is called by lay, 1BJ, 1DJ, 1LJ, 1LT, 17D,
CIO to check the buffer arguments for range and validity.
It also enters file name in the FNT, reserves the file
if possible., The following error messages are produced:
BUFFER ARG ERROR, and FNT LIMIT.

10.

11.

12,

13.

Read buffer status and arguments.
Move the arguments to a two word/entry table at P60,

Check for argument region out of field limit range.
If in error, display in dayfile - BUFFER ARG ERROR,
issue a FC of 13B (abort CP), and exit to PP monitor
loop.

Check for LIMIT over field limit and go to the error
procedure if it is.

Check for OUT » LIMIT.
Check for IN3» LIMIT.
Check for OUT < FIRST.
Check for IN <FIRST.

Check each character of file name to first blank for

less than 37. If an error is detected, go through same
error procedure as above, Also senses inserted characters
after the first blank as errors, Finally, it checks

to make certain file name is non-blank.

Searches FNT for the file name and matching CP number.
On a find, it saves FST entry address.

If the file was not found in FNT, it locks out other
PP's from the FNT. A blank entry is found and the name
is entered with its CP, file set as local, and priority
of zero. A blank entry is written into FST. Channel

15 is released thereby allowing other PP's into FNT, and
FST address is saved.

Request channel 14 (FST lock out channel). Check LBS
field of FST for file reserved (even number - reserved).

“If it is not reserved, reserve it (set FST odd), release
channel 14 and exit.

If it is reserved, release chamnel 14, and issue a 17B

- 33 -

14,

function to allow the monitor to move central storage.

Read CP status, Save reference address. If error flag
is not set, go back to No., 12 above and continue., If
flag is set, release PP(12B) and exit to resident PP

program,

- 34 -

2000
2100
2150
2300
2350

2000

2100

2150

2300

2350

2BP Routines

Main Program 2350, 2300, 2150, 2100

Alter File Status 14-740, 14-750, 17-760, 12-760, 100
Search FNT 15-740, 15-750, 530, 13-760, 100
Verify File Name 530, 13-760, 100

Verify Argument Values 530, 13-760, 100

Direct Core Cells

P50/54 Input register (Buffer address)
P40 /44 Status
POl Counter for buffer parameters
P02 Address for storing buffer arguments
P60/70 Buffer arguments (FIRST, IN, OUT, LIMIT)
P10/14 Temporary storage for buffer arguments
P57 File status address
P20/24 File status
P45 Last buffer status from FST
P40/44 Buffer status
P74 Control Point address
P10/14 CP status
P55 Reference address
P20/24 FNT address and limit
P10/14 FNT entry
" PLOJ44 Buffer status (Name of file)
P51 ' Input register (CP for file)
P57 File status address
POl Address of file name
P4O/44 Buffer status (file name)
P53/54 Argument address
P56 Field length
P60/61 FIRST
P62/63 IN
P64/65 ouT
P66/67 LIMIT

- 35 -

[ENTER 2BP OVERLAVJ

READ BUFFER STATUS
READ BUFFER ARGUMENTS

NO
l IS ARGUMENT REGION IN RANGE ? }“—‘——

YES

YES
1S LIMIT OVER FIELD LENGTH ? }'—-————

NO

[Is OUT EQUAL OR GREATER THAN LIMIT ? }"Y—Ei—-—

NO
! ves DAYFILE MESSAGE-BUFFER ARG ERROR
IS IN EQUAL OR GREATER THAN LIMIT ? I ABORY CONTROL POINT
NO . RELEASE PPU

[15 out Less Tan FirsT 2 }—Y—Es——————

NO

YES
l Is IN LESS THAN FIRST ? }———

NO

®

NO
[IS FILE NAME IN VALID FORMAT ?

. YES

REQUEST CHANNEL 14
YES | Is FILE RESERVED 7

IS FILE NAME IN FILE NAME TABLE (FNT) }155—-—--— NO

NO

RESERVE FILE.
5 RELEASE CHANNEL (4

YES | REQUEST CHANNEL |
IS THERE A BLANK ENTRY IN FNT 2

NO

I Exit i

RELEASE CHANNEL 5
DAYFILE MESSAGE—FNT LIMIT.
ABORT CONTROL POINT

H RELEASE PPU

RELEASE CHANNEL 14
PAUSE FOR MONITOR NO
READ RA

1S ERROR FLAG SET ?

ENTER NAME IN FNT AND ENTER YES
A NEW DISK FILE IN FST
RELEASE CHANNEL 15

@ l RELEASE PPU l

- 36 -

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

2BT - BACKSPACE TAPE

To backspace a block of binary or BCD data on tape and set
the buffer addresses accordingly.

2BT is called by CIO when a backspace request on a tape
unit is received. All backspacing over logical records
in the buffer is assumed to be completed by the calling
program.

A, BINARY

1. If a binary backspace is requested, two blocks are
backspaced and then the last one backspaced is read.

2, This block is checked for a short block; if it is
short, IN and OUT are set equal to FIRST,

3. 1If it is not short, the backing of two blocks and
reading of one is continued until a short block is
found.

B. BCD

1. 1If the tape type is MT (%"), one block is backed and
IN and OUT are set equal to FIRST., One BCD record
(normally a card image or print line) will be back-
spaced in this case.

2. A BCD bacKspace on a 1'" tape begins with the computation
of the amount of data left in the buffer as a result of
the last read. This quantity, referred to as D, is equal
to IN-OUT. This data was left in the buffer as a result
of the last read, and may have been stored on the disk
in several sectors, The system assumes that the calling
program will backspace within the buffer, and so, before
beginning a logiecal BCD record backspace on the tape,
2BT will backspace the tape a number of blocks equivalent
to the amount of data contained in the buffer. This
quantity is represented by D,

3. 2BT therefore backspaces over a block and reads that block
into peripheral processor memory. The block length is then
compared with D: if less than D, then this block is assumed
to contain data which already has been read into the buffer.
2BT then decreases D by this amount, backspaces over this
block and the block preceding it, and then reads the block.
The process of backspacing, reading, and reducing D is
repeated until a block is read whose length is greater than
the present value of D;

“ 37 -

4,

5.

6.

2BT transfers this block from peripheral processor
memory to the circular buffer beginning at FIRST. If

D is still non-zero, then part of this block contains
data residing in the buffer at the time the backspace was
requested, and presumably has been searched by the
calling program.: 2BT there fore sets the OUT pointer

to FIRST + block length - D, At the same time, the

IN pointer is set to reflect the transfer of the sector
to the buffer,

2BT then searches each word in the buffer from OUT - 1
down to FIRST until a word with a zero low-order byte is
found, indicating the end of a logical BCD record. When
the end of the record is found, 2BT updates the IN and
OUT pointers in the calling'programs' argument list, and
returns control to CIO.

OUT now points to the first word following the end of
the logical record., If no zero low-order byte was found
then 2BT backspaces two blocks and reads one, and then
repeats the buffer search.

-38-

2BT OVERLAY
BACKSPACE TAPE

[MODIFY OVERLAY FOR EQUIPMENT PARAMETERS]

1 YES
[IS A BINARY BACKSPACE REQUESTED ? |
NO
YES
——{ IS TAPE UNIT TYPE WT ?]
NO

!

BACK ONE BLOCK

SET CIRCULAR BUFFER IN® OUT «FIRST
ExiT

-——-—%{ SET FIRST REFERENCE FLAG]
@————){ CoMPUTE D-INSOUT l
——@E BL:)CK
l READ ONE ex.q.cx

:

I BACK ONE BLOCK l
l READ ONE BLOCK
l 1S BLOCK A SHORT BLOCK ? }E—

YES

SET CIRCULAR BUFFER IN*OUT » FIRST
Exir

M YES
[IS BLOCK A FILE MARK ? ‘}

NO

7] BACK ONE BLOCK !

SEY CIRCULAR BUFFER IN » OUT = FIRST
Exir

Y
[IS BLOCK LENGTH GREATER THAN D ? }——Eé-———e

NO

SET QUT = FIRST + BLOCK LENGTH - D
SET IN=®FIRST + BLOCK LENGTH
STORE BLOCK IN CIRCULAR BUFFER BEGINNING AT FIRST

[REDUCE D BY BLOCK LENGTH I

¢ BACK ONE BLOCK

OUT =QUT -1t

\
YES
——9{ DoES OUT = FIRST E
NO
NO
l IS FIRST REFERENCE FLAG SET 7 }'——-—
YES

CLEAR FLAG

i/

\

NO

[DOES {OUT - I) CONTAIN A BLANK LOWEST BYTE 7 j(—-

YES

Exit

UPDATE CIRCULAR BUFFER iN AND OUT ADDRESSES

-39-

28T SUBROUTINE

BACK ONE BLOCK

IS TAPE POSITIONED AT YES SET CIRCULAR BUFFER IN® OQUTs FIRST
OF FIRST BLOCK ON Tapg ? EXIT FROM OVERLAY
NO

REGUCE BLOCK COUNT CONSOLE MESSAGE - TAPE XX NOT READY

RELEASE CHANNEL
REQUEST CHANNEL FOR TAPE UNIT | NO YES
PAUSE FOR MONITOR RELEASE PPU

READ TAPE STATUS
READ RA

Is TAPE READY 7
i Is ERROR FLAG SET 7
YES

NO

! o

REQUEST CHANNEL FOR TAPE UNIT

e YES
BACKSPACE TAPE 1€ READ YAPE STATUS

Is TAPE READY 7

\'!
RELEASE ~ CHANNEL YES
P4USE FOR MONITOR \{ RELEASE PPUI
READ RA
IS ERROR FLAG SET ?
NO

2BT SUBROUTINE '
READ ONE BLOCK

CONSOLE MESSAGE - TAPE XX NOT READY
REQUEST CHANNEL FOR TAPE UNIT | . RELEASE CHANNEL YES
READ TAPE STATUS PAUSE FOR MONITOR ‘J| RELEASE PPU
1s TaPE READY 7 READ RA
YES IS ERROR FLAG SET P
NO
- NO
Y YES REQUEST CHANNEL FOR TAPE UNIT
READ TAPE READ TAPE STATUS
M IS PARITY CHECK OK 7 NO 1S TAPE READY 7
YES
YE‘s RELEASE CHANNEL
-————-—9{7‘“\5 A FILE MARK READ ?Jlf ADVANCE BLOCK COUNT

RELEASE CHANNEL NO ExiT
ADVANCE BLOCK COUNT
ExiT

DAYFILE MESSAGE - TAPE XX PARITY ERROR

YES RELEASE CHANNEL
£ REA! T ‘}———-_>
rHAS BLOCK BEEN READ 3 TIMES ? ABORT CONTROL POINT

NO RELEASE PPU

BACKSPACE TAPE I

-40-

ROUTINE:

PURPOSE:

GENERAL:

METHOD :

2EF -- Process Error Flag

To determine type of error and set up to execute the group
of control cards after the EXIT. statement if one exits,

2EF is called by the Advance Job routine (1lAJ) when the
error flag is sensed set (non-zero).

1.

Read the control point status word from CP(20).
Cleaxrs the error flag and stores status back to CP(20).

Uses the error flag to pick up address of error message.
(Error Flag 1- Time Limit, 2- Arithmetic Error, 5- PP
Call Error, 6- Operator Drop, 7- Track Limit)

Dayfile message routine is called to enter error message
if the error condition was one of the above.

Control statements are searched untilthe last one is
read or an EXIT. statement is encountered. The state-
ment address at CP(21l) is set to point to either the
end of the statement list or the statement after the
EXIT. card.

-41-

2000

2030.

2100

2000

2100

Main Program

2FF Routines

2030, 2100, 531

Error Table

Search for Exit

P74
P10/14
P01
P74
P20/24
P10/14

Direct Core Cells

CP address

CP status

Error Flag

CP address

Next statement address

CP status

- 42 a

2EF OVERLAY
PROCESS ERROR FLAG

I

v

LCLEAR ERROR FLAG AT THE CONTROL POINT

l 1S A TIME LIMIT INDICATED 7 }Y—ES-———%{ DAYFILE MESSAGE — TIME LIMIT. }———

NO
X YES
IS AN ARITHMETIC ERROR INDICATED ? }-——-—-ﬁ{ DAYFILE MESSAGE ~ARITH. ERROR. }———
NO
YE
IS A PPU CALL ERROA INDICATED 7 £ DAYFILE MESSAGE — PP CALL ERROR. }——
NO

A7

3 YE .
1S AN OPERATOR OROP INDICATED ? }—s-————él DAYFILE MESSAGE —OPERATOR DROP. }—

NO

A

: Y
I IS A TRACK LIMIT INDICATED ? }j——-—-ﬁ{ CAYFILE MESSAGE ~TRACK LlMlT.‘}-——

NO

\!

—%{ﬁt\o NEXT CONTROL STATEMENT i‘/

A\l
L 1S STATEMENT A BLANK P]rYES ,{ EXiT !
NO
\‘/
NO
——{ IS STATEMENT AN EXIT ?
YES

ADVANCE TO NEXT CONTROL STATEMENT
ExIT

« 43

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

2LP -- PRINT

To transfer data from the circular buffer to the line printer,

ZLb is called by the CIO Write Function routine once the file
type has been determined to be a line printer.

1. !A check is made for data left in the buffer. If there

=

b,

7.

is none and the end-of-record was requested, IN and OUT
are set equal to first, and EXIT is taken,

If there is data, a word is read up and copied into the
print line buffer, If the lowest byte of the word is
not zero and 120 characters have not been assembled,
another word is fetched.

If either a zero byte is found or 120 characters have
been assembled, a transfer is made to location 2150
(PRINT LINE). This subroutine finds an available
printer and prints the line,

Three characters are checked in -the first character
position for carriage controly

i (0) - advance paper one extra line after printing.

(1) - advance to top of form after printing line.
(+) - print the last line but do not advance the paper.

If there is a 7X code in column one, the last line is
printed, and then printer carriage control X is selected.

If none of the above mentioned codes are in column one,
the line is printed and the paper advanced.

2LP then returns to its beginning routine to check if any
data is left in the buffer,

ENTER 2LP OVERLAY
PRINT

1 MODIFY OVERLAY FOR EQUIPMENT PARAMETERS]

@ :\‘. 15 THERE DATA IN TRE

CIRCULAR BUFFER P }ﬁQ——-D[I8 AN END RECORD REQUESTED ? }No > ExT

YES

READ ONE WORD FROM CIRCULAR BUFFER
ADVANCE QUT ADORESS

COPY WORD TO PRINT LINE BUFFER

IS LOWEST ORDER BYTE ZERO ?

YES ,

[SET BUFFER PARAMETERS INs OUT =FIRST }

YES

NO

L—Ng'liHAVE 130 CHARACTERS BEEN ASSEMBLED ?1

YES

e

1

[REQUEST CHANNEL FOR Pﬂg?:n }<—-——

"

]

i
READ PRINTER sn*rq ' | ves

RELEASE CHANNEL s/
PAUSE FOR MONITOR.

: RELEASE PPU
>{ meveass peu |

READ RA #
IS ERROR FLAG SET !’.
NO s
l
REQUEST € PRI
Q HANNEL FOR PRINTER N0 5l ConsoLe messAGE-PRINTER NOT READY |
IS PRINTER READY ? H
YES
CLEAR CONSOLE MESSAGE © YES
| R
IS THERE A ZERO N COLUMN ONE ? PRINT LAST LINE AND AODVANCE PAPER
NO

®

{NEXT PAGE)

READ PRINTER STATUS YES @
RELEASE CHANNEL

PAUSE FOR MONITOR .

READ RA

IS ERROR FLAG SET ?
NO

REQUEST CHANNEL FOR PRINTER No——>{ CONSOLE MESSAGE—PRINTER NOT READY]
IS PRINTER READY ?

YES

CLEAR CONSOLE MESSAGE
ADVANCE PAPER ONE LINE

CONVERT CHARACTERS iN PRINT LINE BUFFER
TO PRINTER CODE AND OUTPUT TO PRINTER
RELEASE CHANNEL

UPDATE CIRCULAR BUFFER OUT ADDRESS

- 45 -

(2LP CONTINUVED)

®

1s THERE & ONE IN COLUMN ONE ’—}.15_"’__.__;{ PRINT LAST LINE AND ADVANCE PAPER |
NO
&
READ PRINTER STATUS | ygg
RELEASE CHANNEL RELEASE PPU
PAUSE FOR MONITOR
READ RA
IS ERROR FLAG SET ?
NO
REQUEST CHANNEL FOR PRINTER
QUEST CHANNEL FO N0 5! CONSOLE MESSAGE-PRINTER NOT READY
IS PRINTER READY ?
YES
CLEAR CONSOLE MESSAGE
PAGE SPACE PAPER
CONVERT CHARACTERS IN PRINT LINE BUFFER
70 PRINTER CODE AND OUTPUT TG PRINTER
RELEASE CHANNEL
UPDATE CIRCULAR BUFFER OUT ADDRESS
IS THERE A + IN COLUMN ONE ? }—YE—S——->I PRINT LAST LINE AND DO NOT ADVANCE PAPER
NO
READ PRINTER STATUS YES
RELEASE CHANNEL { RELEASE PPU l
{NEXT PAGE) PAUSE FOR MONITOR
READ RA
IS ERROR FLAG SET ?
NO
REQUEST CHANNEL FOR PRINTER | NO J
——-—>{ N MESSAGE -PRINTER NOT
IS PRINTER READY ? CONSOLE MESSAGE-PRINTER NOT READY
YES

CLEAR CONSOLE MESSAGE

CONVERT CHARACTERS IN PRINT LINE BUFFER
TO PRINTER COOE AND OUTPUT TO PRINTER
RELEASE CHANNEL

UPDATE CIRCULAR BUFFER OUT ADDRESS

- 46 w

(2LP CONTINUED)

©

IS THERE A 7X CODE IN COLUMN ONE ? B

1 YES

NO

[PRINT LAST LINE AND ADVANCE PAPER

|

READ PRINTER STATUS

RELEASE CHANNEL
YES

PAUSE FOR MONITOR
READ RA

1S ERROR FLAG SET ?
NO

REQUEST CHANNEL FOR PRINTER

YES

RELEASE PPU

IS PRINTER READY ?
NO

CONSOLE MESSAGE ~

PRINTER NOT READY

Ca

\{ PRINT LAST LINE AND ADVANCE PAPER]

READ RA

RELEASE CHANNEL
PAUSE FOR MONITOR

1S ERROR FLAG SET ?

READ PRINTER STATUS YES

‘{ RELEASE PPU I

NO

IS PRINTER REA

REQUEST CHANNEL FOR PRINTER NO

py ?

YES

SELECT PRINTER CA

RRIAGE CHANNEL X J

CONSOLE MESSAGE ~
PRINTER NOT READY

CLEAR CONSOLE MESSAGE
CONVERT CHARACTERS IN PRINT LINE BUFFER

> TO PRINTER CODE AND OUTPUT TO PRINTER

RELEASE CHANNEL

UPDATE CIRCULAR BUFFER OUT ADDRESS

47 -

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

2PC ~- Punch Cards

To punch either binary or Hollerith cards.

2PC is called by the CIO Write Function routine once the
file type has been determined to be a card punch.

o

1. A check is made for a request to punch Hollerith. A
return jump is made to either PUNCH BINARY or PUNCH

BCD.

A. PUNCH BINARY

1.

2,

5.

If there is enough data for a full card, the
punch buffer is cleared for 15 words.

a) The data is transferred to the punch buffer.
b) The card length is set in column one.

c) The checksum set in column two.

d) The card count is advanced.

e) The card count is entered in column 80,

A channel is then requested, with a "PUNCH NOT
READY" message displayed if needed. If the
punch is ready, a card is punched, the channel
released, OUT is updated, and a check for the
error flag in RA is made,

If an error exists, the PPU is released.

If there is no error, a check is again made to
see if there is enough data for a full card. 1If
there is not enough data for a full card and an
end-of-record is selected, the partial card will

be punched.

If there is no data, a 7-8-9 card is punched,
and IN and OUT are set equal to FIRST.

B. PUNCH BCD

1.

2,

3.

The punch buffer is cleared for 80 characters.

If there is at least one word left in the buffer,
the word is converted into 10 Hollerith characters.

A check is always made to see if 80 characters
have been assembled. 1If not, a check for a
lowest order byte of zero is made. If it is not
present, another word is assembled.

- 48 -

—~

4,

3.

6.

I1f either 80 characters have been assembled
or a zero byte is found, the card is punched.

The error flag is then checked in RA and the PP

is released if an error exists, If there is

no error, OUT is updated, the card count advanced,

and a return is made to convert another 80 characters.

If there is not another fuil word in the buffer
and a file mark is requested;

a) The card count is cleared.

b) A 6-7-8-9 card is punched,

c) 1IN and OUT set equal to FIRST, and
d) An EXIT taken.

I1f an end-of-record is requested,

a) A 7-8-9 card is punched.

b) The card count is cleared.

c) IN and OUT set equal to FIRST, and

d) EXIT taken,

- 49 -

ENTER 2PC OVERLAY
PUNCH CARDS

MOUDIFY OVERLAY FOR

EQUIPMENT PARAMETERS I

NO
IS THE CIRCULAR BUFFER IN A WRITE CODED MODE ?

YES

r
————————3# CLEAR PUNCH BUFFER FOR 80 CHARACTERS 1
[t

——-{ IS THERE ANOTHER WORD |

YES

CONVERT WORD INTO 10

HOLLERITH CHARACTERS

HAvE 80 CHARACTERS BEEN ASSEMBLED ?

NO

NO
e ——{ WAS LOWEST ORDER BYTE OF WORD ZERO ?AJ

YES

READ PUNCH STATUS
RELEASE CHANNEL
IS PUNCH READY ?

REQUEST CHANNEL FOR PUNCH | NO

(NEXT PAGE)

NO YES
N THE CiRCULAR BUFFER ? }———————){ IS A FILE MARK REQUESTED ? }———é

NO

YES
IS AN END RECORD REQUESTED ? }_—6

NO

Exit I

PAUSE FOR MONITOR

NO | Reao RA

YES

v/

CLEAR CONSOLE MESSAGE
REQUEST CHANNEL FOR PUNCH
PUNCH ONE CARD

RELEASE CHMANNEL

PAUSE FOR
READ RA

iS ERROR FLAG SET ?

MONITOR YES

IS ERROR FLAG SET

CONSOLE MESSAGE - PUNCH NOT READY

YES

?

NO

LADVANCE CARD

UPDATE BUFFER OUT ADDRESS

COUNT

’{ RELEASE PPU !

CLEAR CARD COUNT
PUNCH 6789 CARD

SET BUFFER PARAMETERS
IN=QUT = FIRST

Exiy

CLEAR CARD COUNT
PuUNCH 789 CaRD

SET BUFFER PARAMETERS
INsQUT = FIRST

£xiT

RELEASE PPU

Vs

(2PC OVERLAY CONTINVED)

®

ER PARA RS IN = QUT s FIRST
ArXs THE CIRCULAR BUFFER IN A WRITE BINARY MODE ? JL———> SET BUFFER PARAMETERS v

YES

i IS THERE ENOUGH DATA FOR A FULL CARD ? J

exir

1 NO

Y
ES NO
1 NO
FXS AN END RECORD REQUESTED?J
YES
Y.

YES
IS THERE DATA IN THE BUFFER 7 J———

NO

PUNCH 789 CARD
SET BUFFER PARAMETERS IN®OUT =FIRST

CLEAR CARD COUNT
exr

CLEAR PUNCH BUFFER FOR 15 WORDS
TRANSFER DATA TO PUNCH BUFFER
ENTER CARD LENGTH IN COLUMN ONE

ENTER SUM OF DATA BYTES MODULD 4095 IN COLUMN TWO

ADVANCE CARD GOUNT
ENTER CARD COUNT iIN COLUMN 80

A\

REQUEST CHANNEL FOR PUNCH
READ PUNCK STATUS
RELEASE CHANNEL

IS PUNCH READY 7

—
| IS A FILE MARK REQUESTED 7 |
YES

PUNGK 6789 CARD

SET BUFFER PARAMETERS IN=OUT »FIRST
CLEAR CARD COUNT

Exit

CONSOLE MESSAGE -PUNCH NOT READY

NO

PAUSE FOR MONITOR
READ RA

YES

CLEAR CONSOLE MESSAGE
REQUEST CHANNEL FOR PUNCH
PUNCH ONE CARD

RELEASE CHANNEL

| UPOATE BUFFER OUT ADDRESS
NO | PAUSE FOR MONITOR

READ RA

18 ERROR FLAG SET 7

YES

1S ERROR FLAG SET ?

e 51

;{ RELEASE PPU |

YES

,{ ExiT

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

2RC - Read Cards

To read cards from the card reader and process them either :
as binary or BCD cards,

2RC is called by the CIO Read Function routine once the file
type has been determined to be a card reader.

1. If the End-of-Job flag is set, 2RC clears the flag, sets
the file mark and exits.

2, A check is made to see if the buffer has room for 15‘words
of input. 1If not, an EXIT is taken and no read is performed.

3. A return jump is taken to READ NEXT CARD which requests the
correct channel, makes sure the reader is ready, and reads
the next card.

4, Once a card is read, the card count is advanced in the FST
entry and a check is made for 7-8-9 punches in column one.
If there are only 7-9 punches, a transfer is made to
PROCESS BINARY CARD. If neither condition exists, PROCESS
HOLLERITH CARD is given control.

5. After the card is processed, the IN address of the central
memory buffer is incremented by the number of words read.

6. Another card is then read if the buffer length allows it
and there are no errors.

7. 1If a 7-8-9 card was found, an end-of-record indicator is
set and the card count is cleared. An EXIT is then made.

8. If a 6-7-8-9 card was found:

a) and the last record was not complete, the End-of-Job flag
is set along with End-of-record. The next time through
2RC, the EOJ flag will be cleared and a file mark will be
written,

b) and the last record was complete, the file mark indicator
is set if the buffer is empty.

c) and the last record was complete, the EOJ flag and End-of-
record indicator are set if the buffer is not empty.

A, PROCESS BINARY CARD

l. The number of significant columns is determined from the
word count in column one.

2, If there is a correction punch in column one, the significant

words are copied into the circular buffer, IN is advanced
and an EXIT taken.

-

B.

4,

Otherwise, the checksum is cleared and the column index is
set to 2, Each significant column is then added to the

checksum module 4095. If the checksum is zero, the signi=-
ficant words are copied into the buffer and IN is advanced.

If the checksum is not zero, a binary card error is displayed,
After a 4 second delay, a check is made to see if the card
reader is ready. If it is not, then the operator is given

a chance to reread the card.

If the reader is ready, a check of the error flag in RA is
made. If the error flag is not set, then the binary card
error is displayed again.

PROCESS HOLLERITH CARD

1.

The last significant column is determined.

A table look~up is then done on each character to change the
Hollerith character into display code. The significant
characters are stored in the buffer by advancing IN.

If the last word's last byte has significant data, a cleared

word is stored after it. If not, the last byte will be.
cleared,

- 53 -

f
{l ENTER 2RC OVERLAY]

IS END OF JOB FLAG SET 2]——Y—E—s————é

NO

| MODIFY OVERLAY FOR EQUIPMENT

LPARAMETERS

DOES BUFFER MAVE ROOM FOR 15

NO

NO

CLEAR END OF JOB FLAG
SET FILE MARK
Exit

WORDS OF INPUT DATA 2
YES

—
REQUEST CHANNEL FOR CARD READER

READ EQUIPMENT STATUS.

H
i
H
ll IS CARD READER READY ?

NO

,{ £xIT

RELEASE CHMANNEL

YES

l READ ONE CARD

, RELEASE CMANNEL
ADVANCE CARD COUNT IN FILE STATUS
IS 789 PUNCHED IN COLUMN ONE ?

NO 1

YES

CONSOLE MESSAGE~READER NOT READY

PAUSE FOR MONITOR
READ RA YES
1S ERROR FLAG SEY ?
NO
REQUEST CHANNE
£Ql L NO

READ EQUIPMENT STATUS
IS CARD READER READY P

YES

#{ CLEAR CONSOLE MESSAGE

|

“1

IS 6789 PUNCHED IN COLUMN ONE ? }—&-

[IS 79 PUNCHED IN COLUMN ONE ?4}&——-9{ PROCESS BINARY CARD

NO

[PROCESS HOLLERITH CARD]

UPDATE IN ADORESS IN CENTRAL STORAGE
PAUSE FOR MONITOR

READ RA

IS ERROR FLAG SET ?

YES

RELEASE PPV

—ﬁ-[IS BUFFER EMPTY ? J

YES

[WAS LAST RECORD COMPLETE ?J—E
YES

NO

\

L SET END OF JOB FLAQ }é——

SET END OF RECOROD

CLEAR CARD COUNT
EXIT

SET FILE MARK

-54-

CLEAR CARD COUNT
ExiT

l 2RC PROCESS BINARY CARD]

DETERMINE NUMBER OF SIGNIFICANT
COLUMNS FROM WORD COUNT IN COLUMN ONE

Lls THERE A CORRECTION PUNCH IN COLUMN ONE ?

1 YES

J

NO

CLEAR CHECK SUM
SET COLUMN INOEX TO COLUMN 2

L ADD COLUMN TO CHECK SUM MODULO 4095 }<——'

ADVANCE COLUMN INDEX
WAS THIS THE LAST SIGNIFICANT COLUMN ?

NO

YES

] YES

l IS CHECK SUM ZERO ?I
NO

CONSOLE MESSAGE - BINARY CARD ERROR
DELAY 4 SECONDS

REQUEST CHANNEL FOR CARD READER
READ STATUS

RELEASE CHANNEL

1S CARD READER READY 7

no yes

PAUSE FOR MONITOR l EXIT I

READER RA %
IS ERROR FLAG SET 7
YES NO

RELEASE PPU I

COPY SIGNIFICANT WORDS TO CIRCULAR BUFFER
ADVANCE CIRCULAR BUFFER IN ADDRESS BY
WORD COUNT

I ExiT l

THIS PAYM PROVIDES AN OPPORTUNITY FOR THE OPERATOR TO REREAD THE FAULTY CARD

-55-

e

[2RC PROCESS HOLLERITM CARD J @

Y

SENSE TRAILING SPACES AND DETERMINE IS THIS FIRST CHARACTER IN BYTE ? }-&O———
LAST SIGNIFICANT COLUMN YES

TABLE LOOKUP FOR DISPLAY CODE
[SET COLUMN INDEX TO FIRST COLUMN] NO | STORE CMARACTER IN UPPER HALF OF BYTE

ADVANCE COLUMN INDEX
WAS THIS THE LAST SIGNIFICANT COLUMN 2
YES
[CLEAR WORD suntn]
STORE WORD IN CIRCULAR BUFFER NO
] ADVANCE CIRCULAR BUFFER IN ADDRESS
l SET BYTE INDEX TO FIRST BYTE l DI0 THIS WORD HAVE DATA IN LAST BYTE ?
YES
[CLEAR CHARACTER BUFFER l ‘ STORE CLEARED WORD IN CIRCULAR BUFFER
ADVANCE CIRCULAR BUFFER IN ADDRESS
N
—0] IS ROW 12 PUNCHED 71
L - T ke
YES
T
| Ao 60B TO CHARACTER }-——
TABLE LOOKUP FOR DISPLAY CODE
YES | ADD CHARACTER IN LOWER HALF OF BYTE
ADVANCE COLUMN INDEX
N(;] IS ROW il PUNCHED ? l WAS THIS THE LAST SIGNIFICANT COLUMN ? .
YES . NO
[ADD 40B TO CHARACTER }___ NO | ADVANCE BYTE iNDEX
WAS THIS THE LAST BYTE IN WORD ?
YES
NO | 1S ROW O PUNCHED ?]
YEs STORE WORD IN CIRCULAR BUFFER
CLEAR WORD BUFFER
SET BYTE INDEX YO FIRST BYTE
I ADD 20B TO cunmcrenl/ ADVANCE CIRCULAR BUFFER IN ADDRESS
YES
IS ROW { PUNCHED 7 ADD | TO CHARACTER
NO
YES
IS ROW 2 PUNCHED ? ADD 2 TO CHARACTER l—
NO YES
1S ROW 8 PUNCHED 7 }-——-9{ ADD 10B TO CHARACTER }—-
YES NO
IS ROW 3 PUNCHED ? ADD 3 TO CHARACTER
NO
YES
IS ROW 4 PUNCHED ? ADD 4 TO CHARACTER
NO T
YES - YES
IS ROW 5 PUNCHED ? ADD 5 TO CHARACTER I 18 ROW 9 PUNCHED 7]-—>[ADD 118 TO CHARACTER
NO NO
r YES
{ IS ROW 6 PUNCHED 7 H ADD € TO CHARACTER }-—-—
NO
YES
1S ROW 7 PUNCHED ? ADD 7 TO CHARACTER
NO
Y
YES
IS ROW 8 PUNCHED ? ADD 10B TO CHARACTER
: NO

S

’ Is ROW 9 PUNCHED ADD |18 TO CHARACTER }—'—

~

!

. =<
m

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

2RT =-- Read Tape

To read binary and BCD data from magnetic tape or rewind
the tape.

This package is called by the CIO Read Function when a
magnetic tape is to be read. Control is transferred by
CIO to one of three locations within 2RT:

a) READ BINARY TAPE

b) READ BCD TAPE

c) REWIND

A. READ BINARY TAPE

1.

2.

7.

There must be room in the buffer for a full block
(10008 words) of data or no reading is done.

The requested tape unit status is checked. If it
is not ready, the message "TAPE XX NOT READY" is

sent to the control point display and no further

processing is done until the tape is ready or an

error flag is set.

One block of data is read in odd parity. If the
length is less than 4 bytes (signifying noise) it
is ignored and another record is read.

If an end-of-file was encountered, the buffer status

is changed to reflect it and an EXIT is made.

When a parity error is encountered, the tape is
backspaced one block and reread. The message
"TAPE XX PARITY ERROR" is sent if the parity error
still exists after 3 attempts. A pause bit is set
in RA and is cleared only after "X,GO." is typed
in answer to the display message.

When the pause bit is cleared, the bad data is
stored in the buffer and a new block is read.

The data is read until an end-of-record or end-
of-file is sensed.

B. READ BCD TAPE

1.

The requested tape unit status is checked, If it
is not ready, the message "TAPE XX NOT READY" is

sent to the control point display and no further

processing is done until the tape is ready or an

error flag is set.

~ 57 -

NOTES:

8.

One block of data is read in even parity. If an
end-of-file was encountered, the buffer status is
changed to reflect it and an EXIT is made. If the
length is less than 6 bytes (signifying noise), it
is iznored and another record is read.

If a parity error is sensed, the tape is backspaced
one block and reread. The message "TAPE XX PARITY
ERROR' is sent if the parity error persists after

3 attempts. A pause bit is set in RA and is cleared
only after "X.GO." is typed in answer to the display
message.

When the pause bit is cleared, the normal processing
continues,

The number of significant BCD characters is deter-
mined and trailing spaces are suppressed by a zero
byte.

The BCD characters are converted to display code by
a table look-up. A blank (558) is substituted for
an illegal character.

The data is copied into the central memory circular
buffer until a zero byte is found.

Only one record (120 characters) is read and then
an EXIT is made.

REWIND/UNLOAD

1.

The tape is checked for ready status and if an
unload was requested the tape is rewound and then
unloaded.

If only a rewind was requested, the tape is rewound.

The block count in the FST entry is cleared and an
EXIT is taken.

Noise records in binary is a block less than 4 bytes and
in BCD less than 6 bytes.

BCD characters which do not have a legal dispiay code
counterpart become blanks (558).

- 58 -

ENTER 2RT OVERLAY
BINARY TAPE READ

MODIFY OVERLAY FOR
EQUIPMENT PARAMETERS

IS THERE ROOM IN THE CiRCULAR NO { EXIT l
BUFFER FOR A FULL BLOCK OF DATA ?

YES

REQUEST CHANNEL FOR TAPE UNIT IE NO‘

>

CONSOLE MESSAGE-TAPE XX NOT READY
RELEASE CHANNEL

¥
PAUSE, FOR MONITOR ES >§ RELEASE PPU I

NO READ RA
READ TAPE STATUS IS ERROR FLAG SET ?
Is TAPE READY ?
YES

CLEAR CONSOLE MESSAGE No
READ ONE BLOCK OF TAPE (ODD PARITY)
1S LENGTH AN ODD FRACTION OF WORD ?
YES
Y
——E—s—{ 1S LENGTH LESS THAN 4 BYTES ?
NO
SET FILE MARK
READ TAPE STATUS ADVANCE BLOCK COUNT
WAS FILE MARK READ 7 | YES RELEASE CHANNEL
NO EXiT
l To PARITY CHECK OK 7 |YES ADVANCE BLOCK COUNT '—"@
J RELEASE CHANNEL
NO
DAYFILE MESSAGE —
l HAS BLOCK BEEN READ 3 TIMES 7 |io> TAPE XX PARITY ERROR
RELEASE CHANNEL
No SET PAUSE BIT IN (RA)
———————{ BACKSPACE TAPE ONE BLOCK I ' YES

PAUSE FOR MONITOR _NO—___9{ HAS PAUSE BIT BEEN CLEARED IN (RA) ?

READ RA NO]
1s ERROR FLAG SET ?

YES

| RELEASE PPU |

STORE DATA IN CIRCULAR BUFFER

NO UPDATE BUFFER IN ADDRESS YES SET END OF RECORD
WAS BLOCK A SHORT BLOCK ? Exit
- 59 -

(D

B8CO TaPe

ENTER 2RT OVERLAY

READ

EQUIPMENT

MOOIFY OVERLAY FOR
PARAMETERS

L REQUEST CHANNEL FOR TAPE UNIT] c NO

NO

READ TAPE

IS TAPE UNIT READY ?

STATUS

YES

CLEAR CONSOLE MESSAGE

YES

CONSOLE MESSAGE~TAPE XX NOT READY
RELEASE CHANNEL o

PAUSE FOR MONITOR

READ RA

IS ERROR FLAG SET ?

SET FILE MARK
ADVANCE BLOCK COUNT

READ ONE TAPE BLOCK (EVEN PARITY)
WAS A FILE MARK READ ?
NO

YES [

WAS BLOCK LENGTH LESS THAN 6 BYTES ?]

NO

@

WAS PARITY CHECK OK ?

YES

DETERMINE NUMBER OF
SIGNIFICANT CHARACTERS iN
DATA ELIMINATING TRAILING SPACES

NO
<—£-‘ HAS PAUSE BIT BEEN CLEARED IN (RA) ? }(——-—

CONVERT CHARACTERS TO DISPLAY
CODE 8Y TABLE LOOKUP

COPY DATA INTO CIRCULAR BUFFER
TO A BLANK LOWEST BYTE

Exit

UPDATE BUFFER IN ADDRESS
ADVANCE BLOCK COUNT
RELEASE CHANNEL

RELEASE CHANNEL
Exit

YES

]‘-ELH HAS BLOCK BEEN READ 3 TIMES ? }—YES

NO

BACKSPACE TAPE ONE BLOCK l

®

DAYFILE MESSAGE — TAPE XX PARITY ERROR
RELEASE CHANNEL
SET PAUSE BIT IN {RA)

| wo

PAUSE FOR MONITOR
READ RA

-60-

IS ERROR FLAG SET 7
YES

l RELEASE PPV l

ENTER 2RT OVERLAY
REWIND TaPE

MODIFY OVERLAY FOR
EQUIPMENT PARAMETERS

I REQUEST CHANNEL FOR TAPE um'rl

T NO

NO

READ TAPE UNIT $JATUS
IS TAPE UNIT REAQY 7

YES

LIS UNLOAD REQUESTED p l

NO YES

o

l REWIND l REWIND UNLOAD I

RELEASE CHANNEL
CLEAR BLOCK COUNT
ExXIT

CONSOLE MESSAGE—TAPE XX NOT READY
RELEASE CHANNEL

PAUSE FOR MONITOR

READ RA

IS ERROR FLAG SET ?

- 6] -

YES

RELEASE PPU

ROUTINE:

PURPOSE :

GENERAL:

METHOD:

2TJ -- Translate Job Card

To check the parameters on the job card for errors and
assemble the values for use by other routines.

2TJ is called by 1BJ, 1LJ, or 1LT. The job card is read
from the control card buffer located in the control point
area. Upper entry to 2TJ, the buffer parameters are
passed through the PP's direct core cells. All job card
parameters except the job name are converted from display
code to binary.

1. If the circular buffer contains more than 95 words or
190 characters, the PP is released with a dayfile
diagnostic - "TOO MANY CONTROL CARDS".

2, Otherwise, the job name is assembled in left-justified
display code with trailing spaces. The job name may
not be blank or begin with a number.

3. The priority is extracted and converted to binary.
Only the lowest 4 bits are stored for the job priority.

4. The time limit is extracted and converted to binary.
The lowest order 5 octal digits are rounded to the nearest

108 seconds and stored for the time limit,

5. The field length is extracted and converted to binary.
The lowest order 17 bits are rounded up to the nearest

1008 words,

6. The PPU time charges for the CP area are cleared in
order to assign future PP activity to the job.

7. A dayfile message - JOB CARD ERROR - is caused by:

a) Job name exceeding 7 characters or not beginning
with an alphabetic character.

b) Priority exceeding 7 characters.
c) Time limit exceeding 7 characters.
d) TField length exceeding 7 characters.

8. 1If any parameter is blank, a corresponding value is
inserted.

a) priority - 1
b) time limit - 108 seconds

c) field length - 400008 words

- 62 -

NOTES:

1.

4,

The routine READ NEXT CHARACTER reads one central memory
word (10 characters) whenever the character string is
depleted,

The parameters for the control statement buffer used
by 2TJ, P60-65, are set by the circular buffer I/0
routines.

2TJ and the calling routine 1BJ, 1LJ, or 1LT are released
and control reverts to the idle loop if one of the
following conditions occur:

a) Too many control cards - more than 190 characters
in all control cards, excluding trailing blanks,
About 40 cards can be used and this error usually
occurs when a record separator (7-8-9 card) has
been omitted.

by If the job name field is blank or absent.

c) If the first character of the job name field is not
an alphabetic character,

Comments should not pass column 64 because any word after
that column will be interpreted as a control word.

Location

2000
2100
2140
2200
2300
2340

Entry

P60/61
P62/63
P64/65
P55

Exit

P30/34
P35
P36
P37

2TJ Routines

Routine

Main Program
Assemble Argument
Read Next Character
Decimal Conversion
Assemble Name

Clear PP Time

Direct Core Cells

FIRST
IN
outT

Job Name

Priority

Time Limit (Rounded to Tens)

Calls

2100, 2200, 2300, 2340
2140

531, 12-760

2100

04~760

Field Length (Rounded to Hundreds)

064-

2TJ OVERLAY
TRANSLATE JOB NAME

@

NO
N4

[READ FIRST CONTROL CARD

ASSEMBLE ALPHANUMERIC WORD TO SE
OOES WORD EXCEED 7 CHARACTERS ?

PARATOR | YES

Y - T A
rARE YHERE MORE THAN 95 WORDS IN THE CIRCULAR BUFFER ?‘}_ES——‘§ DAYFILE MESSAGE -TOO MANY CONTROL CARDS

RELEASE PPU

DAYFILE MESSAGE - JOB CARD ERROR

RELEASE PPU

NO
Y
1 NO
Is FIRST CHARAGTER A LETTER ? g
YES
[STORE WORD AS NAME OF JOB
SET PRIORITY |
1 YES

rwu. SEPARATOR A BLANK ?

NO

ASSEMBLE NEXT ALPHANUMERIC WORD TO
DOES WORD EXCEED 7 CHARACTERS 7

SEPARATOR | YES

SET TIME LIMIT ONE MINUTE
SET FIELD LENGTH 40000
Exit

DAYFILE MESSAGE -JOB CARD ERROR

NO

ARE LOWEST ORDER 4 BITS ZERO 7

CONVERT OCTAL CHARACTERS TO BINARY YES

\ SET TIME LIMIT ONE MINUTE

NO
¢

‘ STORE LOWEST Q;nosn 4 BITS AS PRIO

RITY

i

rw,as SERARATOR A BLANK ?
NO

YES

ASSEMBLE NEXT ALPHANUMERIC WORD TO
DOES WORD EXCEED 7 CHARACTERS 7

separaToR | YES

RELEASE PPU

SET PRIORITY |,

SET FIELD LENGTH 40000
BT

SET TIME LIMIT ONE MINUTE
SET FIELD LENGTH 40000
T

DAYFILE MESSAGE - JOB CARD ERROR

NO
Y

CONVERY OCTAL CHARACTERS TO BINARY
ROUND UP LAST OCTAL DIGIT
STORE LOWESY ORDER 5§ OCTAL DIGITS AS TI

ME LIMIT

1Y

ES

RELEASE PPU

o

IS TIME LiMIT ZERO 7
L =

NO

Y

1

YES

] SET TIME LIMIT ONE MINUTEJ

SET FIELD LENGTH 40000

[WAS SEPARATOR A BLANK 7 e

NO

ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES

DOES WORD EXCEED 7 CHARACTERS 7

ExiT

DAYFILE MESSAGE - JOB CARD ERROR

NO

CONVERT OCTAL CHARACTERS TO BINARY
ROUND UP LAST TWO OCTAL DIGITS

STORE LOWEST ORDER 17 BITS AS FIELD LENGTH

YES

RELEASE PPU

SET FIELD LENGTH 40000

l IS FIELD LENGTH ZERO ?)
NO

CLEAR PPU TIME CHARGES TO CONTROL PO
Extit

INT

. =65~

Exiv

[

ROUTINE:

PURPOSE?

GENERAL:

METHOD:

2TS -- Translate Control Statement

To examine each statement in the control card buffer of the
control point area and initiate the execution.

This package is called by 1AJ which was in turn called by
MTR to advance the job status at a control point. Each
time a control statement is initiated the PP is released
and MTR must then reload 1AJ. This process continues until
a blank entry in the control card buffer is encountered and
1AJ can continue subsequent processing.

1.

2,

If the next control statement is blank, all control
cards have been processed so an EXIT is made to 1AJ.

ASSIGN

a)

b)

d)

e)

£)

No separator is required between ASSIGN and equip-
ment type.

If either field is incorrect, an error flag of 3
is set in the control point area and an EXIT made.
A "CONTROL CARD ERROR" message is sent to the day-
file and the next time 1AJ is called the PP will
be aborted,

The file name from the card is stored and a request
is made of MTR for the octal code that the equip=~
ment type designates, If a mnemonic, i.e., WT, CR,
etc., instead of octal digits, i.e., 51, 42, etc.,
was specified, a console message "WAITING FOR XX"
will appear.

The file name is assigned an FNT entry with local
type status. The equipment type is set into the
FST entr}'e ‘

The control statement buffer address is advanced so
that the next statement will be processed when 1AJ
is reloaded.

A dayfile message noting the equipment assignment
(XX ASSIGNED) is sent and the PP released.

COMMON

a)

b)

If the file name exceeds 7 characters, a control
card error exit is made.

The FNT is searched for a file name identical to the
one on the card. It must be assigned to the calling
control point.

If the found file is not on the disk, MTR is requested

- 66 -

3.

d)

e)

to assign the proper equipment. If the request is
not fulfilled, a console message "WAITING FOR XX"
is sent and the PP released,

If there is no file assigned to the control point
with the proper name, a console message '"WAITING FOR
COMMON FILE" is sent and the PP is released.

A file with the correct name and control point assign-
ment is given common status and then the PP is released.

RELEASE

a)

b)

c)

d)

The FNT is searched for a common file with assign-
ment to the requesting control point and a name
identical to the control card., 1If one is found,
the common type is changed to local so that when
this job is logged off the file will be erased.

A dayfile message "RELEASE XXXX" is sent even if
the file was not found,

A common file may be released by a job but still used
by it because the file is not lost until the job is
terminated.’

If this control card is the next to be executed an
exit is made from this overlay.

1AJ checks the error flags before any control is
given to 2TS. 1If such a flag is set, 2EF is called
to read the rest of the control cards in the buffer
and position the buffer parameters to the statement
after an EXIT card, if one is found, or to a blank
word, if no EXIT card was issued.

If no errors have thus far been encountered and an
EXIT card found, 2TS will exit and 1AJ will finish
the rest of its processing.,

An EXIT card will cause job termination when encount-
ered if no errors exist in the job.

REQUEST

a)

b)

If an equipment has not been assigned by the operator
the message "REQUEST XXXX'" is sent,

When the operator does make the assignment, the octal
digits will appear in CP(22). This byte is cleared
and a blank entry in the FNT is searched for.

The requested file will be given an FNT entry with

- 67 =

6.

8.

local type and the equipment number will be set
in the FST.

d) A dayfile message "(XX ASSIGNED)" is sent and the
PP released.
MODE
a) The octal digit is assembled and MIR is requested
to assign the corresponding exit mode.
b) A dayfile message "MODE X" is sent and the PP is
released.
¢) MTR will change the exit mode in the exchange package
for the control point.
SWITCH
a) The octal digit is assembled and if it is between
1 and 6, it is stored in word 26 of the control -
point area. The sense switches occupy bits 6-11.
b) The sense switches are passed to the program
through (RA).
c) The PP is released after a dayfile message of
"SWITCH X" is sent. 1If the digit is not between
1 and 6, no bit is set but the dayfile message is sent.
PROGRAM CALL

a) FNT search

1) The FNT is searched for a file with the name
identical to the one on the card and assigned
to the comtrol point. If none is found, the
library is searched.

2) The file must be on disk O.

3) The file is then read into central memory begin-
ning at RA until an end-of-record or field
length is reached.

4) The exchange area is cleared and P is then set
to the number of arguments + 3 and FL is put
into Ag.

5) The sense switches and lights already set in the
control point area are passed to RA and RA+1 is
cleared.

6) The parameters on the control card are assembled

and replace their corresponding entry in the
argument area. Blank parameters will cause the

- 68 -

b)

c)

7)

8)

CLD

1)

2)

PLD

1)

2)

3)

4)

original vlaue to remain. A period or
closing parenthesis must terminate .the parameters.

If the RSS (read next control statement but
stop before execution) flag is set, the card is
sent to the dayfile and the. PP is released.

Otherwise, the central processor is requested of
MTR to begin execution of the newly loaded program
and the statement is sent to the dayfile.

search

Each entry in the.CLD is searched for the file name
and is it is found it is read into central memory
beginning at RA until an end-of-record or field
length is reached.

The program is read in from the disk in the same
manner as described under FNT search. :

search

If the file name is not found in FNT or CLD,
PLD must contain it or an error results.

If the name does not begin with a letter, an
error message is sent to the dayfile.

Parameters may appear in the call. If they do,
then the first one is assembled into bits 18-35
and the second into bits 0-17 of PP recall
register. If only one parameter is needed, it
resides in the lower 18 bits of the register.
The call is assembled in the PP recall register
at the control point so that when MIR senses
this request, the package will be released to a
free PP.

The statement address is advanced to the next
statement and the PP is released.

- 69 -

2000
2040
2100
2170
2200
2240
2300

2400
2460
2500
2600
2660
3000
3100
3150

3200
3300
3360
3400
3460
3540
3640
3700
3740

2TS Routines

Main Program
Message for ASSI

GN

Unpack Next Statement

EXIT

Search for Special Format

Assemble Name

ASSIGN

REQUEST
MODE
"Assign File
RELEASE
COMMON
Issue Exit
;» Error Exit
%rEnter Arguments

- Program

© Search for Assigned File

Search CLD
Console Message

Read Program

in

Clear Exchange Area

Search PLD
SWITCH

Assemble Data
Assign Equipment

« 70 -

2100, 2200, 3200, 3300, 3540, 3100

3100
2240, 22-760, 3360, 12-760, 2500,
2040, 3100, 3000 |

2240, 2500, 2040, 12-760, 3000
2240, 25-760, 3000

740, 750, 23-760, 12-760

2240, 3000

2240, 740, 750, 3740, 12-760, 3000
01-760, 530, 12-760

3000

2240
2240, 3400, 3460, 3150, 15-760, 3000
2240, 3400, 3460, 3150, 15-760, 3000

740, 700, 400, 750

2240, 3700, 3000
2240, 3000

22-760, 3360, 750, 12-760

L75 OVIRLAY

THRANSLATE CCONTRGL STATEMENT

HIhD NEXT CONTROL STATEMENT
i5 STATEMENT A BLANK ?

\]l £xit

ERROR EXIT

[no
|
\l
‘r—xswrms' WORD ASSIGN 7] YES ASSEMBLE NEXT ALPMANUMERIC WORD TO SEPARATOR | YES »{ Ernor EXIT
L : DOES WORD EXCEED 7 CHARACTERS ? _
NO No
NEXT PAGE
1S WORD A BLANK 7 }YES
NO
\
. [STORE WORD AS EQUIPMENT TYPE DESIGNAT!ONJ
Y/
ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES
DOES WORD EXCEED 7 CHARACTERS 7
NO
] YES
IS WORD A BLANK 7 !
NO
v

YES

STORE WORD AS FILE NAME

REQUEST MONITOR ASSIGN E

QUIPMENT TYPE DESIGNATED

WAS AN EQUIPMENT ASSIGNED 7

NO

CONSOLE MESSAGE
RELEASE PPU

—WAITING FOR XX

—-9{ CLEAR OPERATOR ASSIGNED EQUIPMENT NUMBER

REQUEST FNT CHA

1S THERE A BLANK ENTRY iN FNT ¢

NNEL NO

YES

Y

ENTER FNT WITH NAMED
RELEASE CHANNEL

ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
SET FILE STATUS TO NEW FILE

LOCAL FILE

ISSUE STATEMEN

ADVANCE STATEMENT ADDRESS

T TO DAYFILE

G

rDAYFlLE MESSAGE —

(XX ASSIGNED)]

l RELEASE PPU l

-71-

RELEASE CHANNEL

REQUESY MONITOR RELEASE EQUIPMENT
CONSOLE MESSAGE —WAIT FNT SPACE
RELEASE PPU

(2TS CONTINED)

NO
r lhls FIRST WORD COMMON ? J
k YES

LSSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR YES

DOES WORD EXCEED 7 CHARACTERS ?
NO

ERROR EXIT

REQUEST FNT CHANNEL
SEARCH FNT FOR ASSEMBLED NAME
IS THERE AN AVAILABLE COMMON FILE IN FNT WITH THIS NAME ?

NO

REQUEST MONITOR ASSIGN
EQUIPMENT TO CONTROL POINT

| YES YES
—‘—{IS FILE A DISK FILE ?‘_}-———"—

YES

WAS EQUIPMENT ASSIGNED ?
NO

CONSOLE MESSAGE ~ WAITING FOR XX
RELEASE FNT CHANNEL
RELEASE PPU

ASSIGN FILE TO CONTROL

NO
IS THERE A FILE ASSIGNED TO THIS YES
CONTROL POINT WITH THIS NAME ?

NO

RELEASE FNT CHANNEL

CONSOLE MESSAGE -~ WAITING FOR COMMON FILE
RELEASE PPU

I . l
1 Is FIRST WORD RELEASE ?

NO YES
(NEXT PAGE)

Y
ASSEMBLE NEXT ALPHANUMERIC WORD TO ScParator | YES

POINT IN COMMON STATUS

RELEASE FNT CHANNEL

ISSUE STATEMENT TO DAYFILE
ADVANCE STATEMENT ADDRESS
RELEASE PPU

DOES WORD EXCEED 7 CHARACTERS ?

NO

!

SEARCH FNT FOR A COMMON FILE ASSIGNED
TO THIS CONTROL POINT WITH THIS NAME
15 THERE SUCH A FILE 7 '

NO

YES

CHANGE FILE STATUS TO LOCAL FILE‘J

I55UE STATEMENT YO DAYFILE
ADVANCE STATEMENT AOORESS
RELEASE PPU ’

ERROR EXIT

(27TS CONTINUED)

Y
i
| 15 FIRST WORD EXIT 2 }YES ,{ EXIT FROM OVERLAY l
YT
x ES
[,5 FIRST WORD REQUEST 7 |-V ASSEMBLE NEXT ALPMANUMERIC WORD TO SEPARATOR | YES ERROR EXIT
"o DOES WORD EXCEED 7 CHARACTERS ?
NO
\
NO
HAS OPERATOR ASSIGNED AN EQUIPMENT ?
YES
v/
CLEAR OPERATOR ASSIGNMENT YE ENTER ASSEMBLED NAME AS LOCAL FILE IN FNT
REQUEST FNT CHANNEL 3 S ENTER EQUIPMENT NUMBER IN FILE STATUS WORD
IS THERE A BLANK ENTRY IN THE FNT 2 SET FILE STATUS TO NEW FILE
NO RELEASE FNT CMANNEL
/
RELEASE FNT CHANNEL W
REQUEST MONITOR RELEASE EQUIPMENT ISSUE STATEMENT TO DAYFILE
CONSOLE MESSAGE ~ WAIT FNT SPACE AOVANCE STATEMENT ADORESS
RELEASE PPU
DAYFILE MESSAGE ~ (XX ASSIGNED)
DISPLAY STATEMENT AS CONSOLE MESSAGE RELEASE PPU
RELEASE PPU
IS FIRST WORD MODE ? lYES ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES ERROR EXIT
NG DOES WORD EXCEED 7 CHARACTERS ?
NO
» | REQUEST MONITOR ASSIGN EXIT MODE
AS INDICATED BY ASSEMBLED DIGIT
N ISSUE STATEMENT TO DAYFILE .
ADVANCE STATEMENT ADDRESS
RELEASE PPU
) YES ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR | YES
IS FIRST WORO SWITCH ? A XIT
[DOES WORD EXCEED 7 CHARACTERS ? ERROR Ex1
NO
NO
Y
(NEXT PAGE) [IS WORD A DIGIT BETWEEN | AND 6 ? I.EQ_
YES

A
I SET SENSE SWITCH iN {RA) AS INDICATED l

ISSUE STATEMENT TO DAYFILE
ADVANCE STATEMENT- ADDRESS &
RELEASE PPU

- 73-

(2TS CONTINUED)

Y

SCARCH FNT FOR AN ASSIGNED FILE WHOSE

NAME AGREES WITH THE FIRST WORD
IS THMERE SUCH A FILE ASSIGNED TO TMIS
CONTROL POINT ?

YES
———————9—{ DOES THIS FILE HAVE AN ASSIGNED EQUIPMENT 7 J

YES NO

[}

REQUEST CHANNEL ZERO

POSITION DISK TO FIRST SECTOR OF FILE

READ FILE INTO CENTRAL STORAGE BEGINNING AT RA
UNTIL END OF RECORD OR FIELD LENGTH IS REACHED
RELEASE CHANNEL O

\

CLEAR EXCHANGE AREA FOR CONTROL POINT
SET PROGRAM AODRESS TO LOWEST 6 81TS OF (RA+1} +3

STORE FIELD LENGTH IN AO

SET RA + 2 AS NEXT ARGUMENT ADORESS
CLEAR {RA) aND (RA + 1) .

YES

1S THE NEXT CHARACTER IN THE CONTROL STATEMENT
A PERIOD OR A CLOSED PARENTHESIS ?

NO

ASSEMBLE NEXT ALPHANUMERIC WORD TO SEPARATOR
DOES WORD EXCEED 7 CHARACTERS 7
NO

YES

STORE WORD IN NEXT ARGUMENT POSITION LEFT JUSTIFIED
ADVANCE ARGUMENT ADDRESS

‘f:(ils RSS FLAG SET IN PPU INPUY REGISTER ? l

Y
ES NO

[REQUEST CENTRAL PRCCESSOR TO BEGIN EXECUTION PROGRAM

J

Y
ISSUE STATEMENT TO DAYFILE
ADVANCE STATEMENT ADORESS

RELEASE PPU

NO
-
b CLD FOR A PROGRAM WHOSE YES
NAME AGREES WITH THE FIRST WORD
15 THERE SUCH A PROGRAM 7
NO
(NEXT PAGE)

REQUEST CHANNEL ZERO

POSITION DISK TO FIRST SECTOR OF PROGRAM

READ PROGRAM INTO CENTRAL STORAGE BEGINNING AT RA
UNTIL ENO OF RECORD OR FIELD LENGTH 18 REACHED
RELEASE CHANNEL O

-74-

ERROR EXIT

K

ERROR ExiT

(2TS CONTINUED)

SEARCH PLD FOR A PERIPHERAL PACKAGE
WHOSE NAME AGREES WITH THE FIRST WORD
IS THERE SUCH A PACKAGE ?

NO

Y

ISSUE STATEMENT TO DAYFILE

DaYFILE MESSAGE - CONTROL CARD ERROR
SET ERROR FLAG

ADVANCE STATEMENT ADDRESS

RELEASE PPU

YES
———>{ DOES THE PACKAGE NAME BEGIN WITH A LETTER ?

NO YES

o

NO

ASSEMGLE OCTAL DIGITS TO SEPARATOR
IS SEPARATOR A COMMA ?

YES

ENTER ASSEMBLED NUMBER IN PP RECALL
REGISTER BIT POSITIONS 8 THRU 35

ASSEMBLE OCTAL DIGITS TO SEPARATOR

75 =

ENTER ASSEMBLED NUMBER IN LOWEST
i8 BITS OF PP RECALL REGISTER

ENTER PACKAGE NAME AND CONTROL
POINT NUMBER 1N PP RECALL REGISTER
ISSUE STATEMENT TO DAYFILE
ADVANCE STATEMENT ADDRESS
RELEASE PPU

ROUTINE:

PURPOSE:

GENERAL:

METHOD:

2WT -- Write Tape

o

To write both binary and BCD blocks of data on magnetic tape.

Once a write code is detected in the request parameter, a
call is made to the CIO Write Function routine which then
checks the equipment type of the file., When a file type of
tape is determined, a call is made to load 2WT. When the
mode of binary or BCD is determined, the appropriate trans-
fer is made by CIO.

A. BINARY WRITE

1. The circular buffer is checked to determine if there
is a full block of data, If there is not, and an
end~of-record function is not requested, execution
returns to the CIO Write Function routine.

2. 1If end-of-record is requested, the last partial
record will be written.

3. A transfer is made to subroutine Write Binary Tape
in 2WT to actually write the block. A check is made
for tape ready. If the tape is not ready, a message
is displayed and a pause is executed waiting for
tape to be made ready or the error flag set in RA.

4, Once tape is ready, the data is written and a parity
check is made, If there is parity, a message is
displayed, the tape is backspaced, and rewritten
until either the parity does not exist or the error
flag has been set in RA by monitor.

5. 1If a good write is performed, the OUT address of the
buffer is then updated. If a short block was
written meaning end-of-buffer, IN and OUT are set
equal to FIRST and EXIT is taken to CIO Write Function.

6. If the buffer is not empty, more data is written
until a short record is encountered.

B. BCD WRITE

1. TIf the request is a BCD write request, a jump is
made from CIO Write Function to the subroutine WRITE
BCD TAPE at location 2640,

2. A check is made to see if there is data in the buffer.
If there is none, and the end-of-record is requested,
IN and OUT are set equal FIRST. If end-of-record is
not requested, an EXIT is taken,

- 76 =

NOTES:

3.

3. If the buffer is not empty, one word at a time is read
from the buffer and it is converted from display code
to BCD advancing OUT as each word is read. Whenever
the last byte of a word is zero, the line is padded
with spaces up to 120 characters,

4, When a full line of data is made up, a jump to 3001
is taken (WRITE CODED RECORD) to write the record.
The same write and parity checking operation is done
here as in the binary write.

5. When a good write is completed the block count is

advanced, the channel released, and more data is
written until the buffer is empty.

WRITE FILE MARK

1. 1If a file mark is requested, a jump is taken from
CIO Write Function to WRITE FILE MARK.

- 2., This routine simply finds the tape, makes sure it is

ready, writes a file mark, advances the block count,
and releases the channel.

An end-or-record write must be issued to empty a buffer
which does not contain a full block of data.

Binary tape records has a maximum size of 10008 central
memory words.

BCD tape records are all 120 characters (one print line).

Each record is padded with spaces to maintain the proper
size,

- 77 =

ENTER 2WT OVERLAY
WRITE BINARY TAPE

[MODIFY OVERLAY FOR EQUIPMENT PARAMETERSJ

N .
i 15 THERE ENOUGH DATA IN THE ‘——->{N° IS AN END RECORD FUNCTION REQUESTED p |-

CIRCULAR BUFFER FOR A FULL BLOCK ?
— YES
YES .

CONSOLE MESSAGE—TAPE XX NOT READY

REQUEST CHANNEL FOR TAPE UNIT NO | RELEASE CMANNEL YES
READ TAPE STATUS NO PAUSE FOR MONITOR RELEASE PPU
IS TAPE READY ? READ RA

YES IS ERROR FLAG SET'?

CLEAR CONSOLE MESSAGE
WRITE DATA ON TAPE NO RELEASE CHANNEL
READ TAPE STATUS SET PAUSE BIT IN (RA)
1S PARITY CHECK OK ?
YES
ADVANCE BLOCK COUNT DAYFILE MESSAGE—TAPE XX WRITE PARITY ERROR
NO | RELEASE CHANNEL PAUSE FOR MONITOR YES
UPDATE BUFFER OUT ADDRESS REAO RA
WAS BLOCK A SHORT BLOCK ? IS ERROR FLAG SET ?
YES NO
NO
SET BUFFER IN=OQUT «FIRST ———tus PAUSE BIT BEEN CLEARED IN (RA) ?
ExiT YES
REQUEST CMANNEL FOR TAPE UNIT

BACKSPACE TAPE ONE BLOCK

- 78 -

ENTER 2WT OVERLAY *
WRITE BCD TAPE

YES

[MOOIFY OVERLAY FOR EQUIPMENT PARAMETERS]

[SET BUFFER IN+OUT=FIRST

NO
————-———){ IS THERE DATA IN THE CIRCULAR BUFFER 2 }———-—

READ ONE WORD FROM CIRCULAR BUFFER

————>{ IS AN END RECORD REQUESTED ¢ }-'-‘-9-

CONVERT PLAY T0 BCD TABf KUP YES
ONVERT OISPLAY CODE To BCD cooE BY LE LOOKU ————)‘ PAD LINE WITH SPACES TO 120 CHARACTERS —]
ADVANCE BUFFER OUT ADDRESS
IS LAST BYTE OF BUFFER WORD ZERO ?
NO
NO
___.___{ HAVE 120 CHARACTERS BEEN CONVERTED ?
YES
NO CONSOLE MESSAGE - TAPE XX NOT READY
REQUEST CHANNEL FOR TAPE UNIT RELEASE CHANNEL
READ TAPE STATUS NO PAUSE FOR MONITOR
IS TAPE ReAOY P READ RA
YES IS ERROR FLAG SET 7
Y
CLEAR CONSOLE MESSAGE
WRITE ONE BLOCK { EVEN PARITY) NO RELEASE CHANNEL
READ TVAPE STATUS SET PAUSE BIT IN (RA)
IS PARITY CHECK OK ?
YES
DAYFILE MESSAGE - TAPE XX WRITE PARITY ERROR
ADVANCE BLOCK COUNT PAUSE FOR MONITOR
RELEASE CHANNEL READ RA
UPDATE BUFFER OUT ADORESS IS ERROR FLAG SET ?

NO

NO
——-L HAS PAUSE BIT BEEN CLEARED IN (RA) p 1

YES

REQUEST CHANNEL FOR TAPE UNIT
BACKSPACE TAPE ONE BLOCK

ENTER 2WT OVERLAY
WRITE FILE MARK

MODIFY OVERLAY FOR EQUIPMENT PARAMETERS_]

REQUEST CHANNEL FOR TAPE uniT |.NO

READ TAPE STATUS

Is TAPE READY ?

YES

CLEAR CONSOLE MESSAGE
WRITE FILE MARK
ADVANCE BLOCK COUNT
RELEASE CHANNEL

l Extr l

CONSOLE MESSAGE~—TAPE XX NOT READY
RELEASE CHANNEL *
PAUSE FOR MONITOR

READ RA

IS ERROR FLAG SET ?

- 80 -

YES

RELEASE PPU

CONTROL DATA CORPORATION

Development Division - Applications

CIRCULAR INPUT OQUTPUT

Chippewa Operating System

10/20/65

CIRCULAR INPUT OUTPUT

C10

INTRODUCTION

All input and output for a filé is passed through a circular central
memory buffer. Buffer parameters are initialized by the central memory
program and then the CIO package is called to perform the transfer to or
from the physical medium of the file., These parameters are altered by CIO
or the central program as data is inserted or extracted from the buffer,

A circular effect is achieved by allowing the data to wraparound the buffer

whenever the limit address of the buffer is reached. For example, on an

input request data is inserted into contiguous words until the last address
— of the buffer is encountered. The next piece of data will be stored in

the beginning address of the buffer so that the total capacity of the

buffer may be utilized. All system central memory buffers, i.e. dayfile,

etc., use this circular motion even if CIO is not specifically called to

perform the I/0 operation,

CALLING SEQUENCE

A program requesting I/0 must set up certain buffer parameters. The
location of these parameters is sent to CIO via the lower 18 bits of RA+1.
These parameters, along with the buffer itself must reside within the
field length of the job, and their addresses are relative to RA,

Five central memory words, designated as BA to BA+4, hold the para-
meters. In the first word is the name of the file in left-justified display
code to be acted upon and a six bit code called the buffer status. The
first digit of the buffer status specifies the type of operation: the

second gives the direction (read/write) and the mode (coded/binary).

BA+1 contains the beginning address of the buffer and is called FIRST.
Along with LIMIT, the last address of the buffer plus one, FIRST remains
dormant, i.e. CIO never changes these values, No data is stored in LIMIT.
When LIMIT is reached, the next available addréss for storage is FIRST. The
buffer capacity is referred to as the area between FIRST and LIMIT-1l.

The two remaining words, BA+2 and BA+3, are the actual pointer addresses,
IN (BA+2) defines the next available address for insertion of data into the
buffer. OUT (BA+3) holds the address for removal of data from the buffer,
Therefore, the amount of data residing in the buffer is that between IN and
OUT. 1IN is advanced around the buffer, but never passing OUT so as not to
overstep the buffer capacity, by a 'read! operation. Any fwrite'! request
causes OUT to move in the direction of IN and to pass data from the buffer
to the file in its advance.

Either CIO or the central program may update IN and OUT. By moving IN,
CIO could read data from a file to the buffer and the central program could
remove the data from the buffer for its own use by moving OUT. The opposite
effect would result if the central program inserted data into the buffer by
incrementing IN and CIO transferred the buffer data to the file by moving OUT.

Initially, the buffer parameters are set FIRST = IN =OUT .with IN and
OUT circling the buffer as data is inserted or removed. An empty buffer is
reflected by IN = QUT. This condition is distinguished from a full buffer,
IN = OUT-1l, by an unused word between IN and OUT. The useable data in the
buffer begins at OUT and continues (circling the buffer if necessary) to

IN-1.

SYILINVHYVL OID

TIVDO RVID0dd TVILNED

s 7777

CID

Jag4nd

81

;111:::1:1:11;

SYILINVIVd ¥3440d

SNLVLS ¥AAANd
M o 44

_ ////////////// NN

i

LS¥II

777777

NI

v
I

/7772772

////“

ino

LINIT

81

T1+WVd

vd

T +Vve

z +Vd

£+ vd

¥ + Vv

BUFFER STATUS

The buffer status appears as a 2 digit octal code in the lower 6 bits
of BA. This code indicates thg mode of the buffer and provides an interlock
for peripheral package activity. The buffer status has an even value when
CIO is called, It is set to an odd value when the peripheral package has
completed the I/0 function. This six bit code is also Rept as the last
buffer status in the FST entry for the file. Whenever this value is checked
and found to be even, the file is assﬁmed to have an operation being per-
formed on it, i.e. it is active. An odd value means that the file is not
busy and 1is availa&ie for use.

Normal reads.jnd writes use 'buffer I/0' as the type of operation

“(first octal digigfwith the second digit specifying the mode). This is

rnterpreted by Clégas a request to transfer as many records as possible

5

“etween the file and the buffer. A short record, i.e. end-of-file or

>nd-of-record, or ; full buffer will terminate a read operation and a
‘rite request is séopped whenever OUT = IN, If a read was requested, CIO
'ill alter the code to indicate whether an 'end-of-record' or 'end-of-file!
was read., Whenever the buffer is to be emptied to the file by a write
operation, the central program must issue either an 'end-of-record' or
tend-of-file! write, This causes all of the data to be transferred and an
end-of-logical-record! or 'end-of-file! to be written on the file.
‘*herefore, if the buffer does not contain a full record of data and an
tend record! write was not issued, no data will be transferred.

When MIR accepts the I/0 request by assigning CIO to a PP, RA+l is
cleared. In order for the central program to know when the PP has finished

the I/0 operation, the buffer status must be checked for an odd value.

\\\\ "

.

Vi w

Y7

7

i B

|
If a 'read' was réquested, the first octal digit may have been altered by
CIO, but otherwise, only the second digit is incremented by one. On a
'binary backspace! the first digit 18 a 4 and the second may be either a

2 or 6 because only the second bit in the code is checked for the set

condition.

INTERNAL STRUCTURE

Whenever an I/0 operation is to be performed on a file, the CIO package
is assigned to a peripheral processor. CIO examines the request and passes
control within itself to the proper function., The buffer parameters are
checked for legality to insure that the operation remains within the job's

field definition.

SE—

A file may be of any equipment type - disk, card reader, card punch,
line printer, or magnetic tape. The driver for each operation on a piece
of equipment is written as a separate routine, The CIO function decides
which driver is needed and calls it into the PP as an overlay. These over-
lays do the physical 1/0 and update the buffer parameters accordingly.
Whenever their task is finished, CIO completes the request so that the

calling program may continue its execution.

JPERATION

Each function (read, write, or backspace) within GCIO calls special
wwerlays. These overlays do more specific parameter checking to insure
zhat the buffer can contain the amount of data.requested. Parity error
checking and buffer status updating are also the responsibilities of the

overlay.

The Read function calls 2RD (read disk), 2RT (binary tape read),
2RC (read cards), and 2RT (BCD tape read). 1IN is incremeﬁted to reflect
the number of words read from the file to the buffer and the first octal
digit of the buffer status may be changed if an 'end-record' or 'end-file!
is read.

Data is read by 2RD one sector (100, central memory words) at a

8
time until a short sector is encountered or the buffer is filled, If a
disk parity error is found, the sector is reread with varying margins
three times and if it persists the PP stops. Only dead start will force
reinitialization,

2RC transfers only useable data to the buffer by suppressing trailing
blanks with a zero byte (12 bits). Ten characters per word are translated
from Hollerith to display code and packed until a zero byte is inserted
to signal 'end-of-physical-record!. A 7-8-9 card causes a short sector
to be transferred. Only one file mark may appear within one diskfile, so

when a 6-7-8-9 card is found, an 'end-of-record' sector is copied along

with a second short sector to indicate end-of-file.

A binary record of less then 4 bytes is considered a noise record by
2RT. 1If this overlay discovers that there is not enough room in the
buffer to handle a full block of 512 words, no data is transferred. A
read is tried 3 times before a parity error message is sent to the dayfile,
Only one block of data is read per request. Rewinding is also done by
this overlay.

A BCD tape record is a constant 120 characters long. All trailing
spaces are eliminated by a zero byte and the BCD characters are translated
into display code. A record less than 6 bytes is considered noise and a

record is read 3 times before a parity error message is sent.

- 7 -

The Write function is inecharge-of updating OUT. As data is removed
from the buffer and copied to the file, OUT moves in the direction of IN
until OUT = IN. Only a short record request will cause the buffer to be
completely dumped of information and the appropriate indicator to be
written on the file.

A check is made to see if the last reference to a disk file was a
write., If it was not, the tracks thus far reserved by the file are
dropped by 2DT. This provides multi-use of a file. Data written on a
file can be backspaced and gead and another write request will cause the
beginning of the file to be referenced.

2WD is loaded to write disk data. If there is nét enough data in
the buffer for a full sector (64 words) and an 'end-record! was not
requested, no data is written on the file, Every write is terminated by
an EOF secfor but since none of the parameters are advanced, the next
write request will write over this sector. It prevents a file from ever
running away. Two tracks are requested at once so that time is not wasted
whenever one track is filled and another is needed.

To punch both binary and Hollerith cards, 2PC is loaded. This overlay
is called whenever a file has been assigned to the card punch by a control
card and a write operation requested on the file, Eighty characters or
the number of characters to the first zero byte are assembled from display
code to Hollerith. A 7-8-9 or 6-7-8-9 card is punched if requested. 1In
the case of a binary request, 15 words of data are punched on a card with
the appropriate binary controls - word count, 7-9 punches in column one,

checksum, and sequence number,

2LP is loaded to print the file assigned to a line printer. A print
11ne.consists of either 130 characters or the number of characters to a
zero byte, Page spacing is checked by this overlay.

To write a binary tape 2WT is loaded. This overlay is called into
play to do all writes on 1" tape and binary writes on %" tape. Coded
records on 1" tape are in packed display code and terminated by a zero
byte. A logical record consists of 1000g central memory words. If a
parity error is encountered, the tape is backspaced aﬁd rewritten with
no erasing until a good write is made or an error flag is set. 2WT
also writes a file mark when one is requested.

2WT is loaded to write BCD tape. All BCD tape records are 120
characters long. If a zero byte is found before 120 characters have beezn

" converted from display code to BCD, the record is padded with spaces until
120 characters are reached. The writing continues for full blocks of data
contained in the buffer until an tend-record! or 'end-file! is requested
to empty the buffer,

The Backspace function is called to backspace either binary or coded
records. An end-of-file is considered a record or a coded line in each
mode respectively. This action causes IN to be advanced down the buffer
and a read is not necessary after a backspace to make the data available
for use. A binary disk backspace may be very slow. Since a record can
be written on several tracks, each pointer word before each sector must
be checked for a track change., If a file contains only one record, a
rewind operation is much faster.

2BD does either binary or coded backspacing on the disk. A binary

backspace is done until a short sector is found. The file will be

positioned either in front of the file mark just writ;en or at the
beginning of the last record. Only one coded line is backspaced with
this request. OUT will reflect the address before the last card image
or zero byte. No read is required‘to bring the data back in because the
pointer words are properly adjusted.

2BT is loaded to perform the same backspace operations on tape.

The physical tape is moved.

RECALL

The central program retains control of the central processor while
CIO is performin the I/0 operation. MIR clears RA+l when the CIO request is
accepted informing the central program to continue processing. If no
further processing can be done until the data is transferred, the central
processor should be given to another job. By inserting an RCL call
(recall) in RA+1l, control is taken away from the central program by
MIR and switched to another job., Control is regained when a PP com-
pleting an operation tells monitor to recall the proper central program,
or a time span of near 250 ms. has lapsed. Effective use of recall
allows the central processor to be utilized more efficiently,

A workable sequence of events‘that will allow the central processor
to execute other jobs while an I/0O operation is holding up a central
program is:

1) Send CIO call to RA+1

2) Wait until MTR has accepted the request by clearing RA+1

3) Check buffer status for an odd value.

4) 1If an odd value is found, continue normal processing, otherwise
send RCL call to RA+1

5) Repeat steps 2-4, exiting only if the buffer status is odd

-10-

BUFFER STATUS

i
H

first digit

0X not used
1X buffer I/0§
2X end record
3X file mark

4X backspace

5X rewind

6X rewind/unload

7X not used
EXAMPLE:
request to CIO 10
READ 11
answer from CIO 21
31
14
request to CIO 24
WRITE 34
answer from CIO X5

X0
X1
X2
X3
X4
X5
X6
X7

- 11 -

second digit

request coded read
completed coded read
request binary read
completed binary read
request coded write
completed coded write
request binary write
completed binary write

full buffer
end of record encountered
end-of-file encountered

dump as many complete records as possible
empty buffer and write end of record
empty buffer and write end of file

where X from the call is unaltered

i
i
]
i

BEGIN C10

IN INPUT REOH

BUFFER CONTROL ADDRESS

ISTER OF PPU

RESERVE

CALL 2BP OVERLAY
VERIFY ARGUMENTS
READ BUFFER STATUS

FiLE

LIS A READ FUNCTION REQUESTED

YES
» R

NO

YES —
{ IS A WRITE FUNCTION REQUESTED ? }—-————)(;CIO WRITE FUNCTION I

NO
YES S] YES
IS A BACKSPACE FUNCTION REQUESTED ?]-————)L IS FILE A Disx FLE 2 }
NO NO

NO
_—{ IS FILE A DISK FILE ? J

YES

.|
>} CIO READ FUNCTION

J

]

CALL 2BD OVERLAY

BACKSPACE DISK

I IS FILE A TAPE UNIT ?

YES

NO

CALL 2BT OVERLAY
BACKSPACE TAPE

'LRESET FILE STATUS FOR REWIND ‘L

_>Lls FILE A T

1NO

= SET READ MODE

APE umT 7 |

YES

CALL 2RT OVERLAY
REWIND TAPE

SET IN = OUT « FIRST

—

SET READ MODE](—-

RELEASE FiLE
STORE BUFFER STATUS

-12-

l RECALL CPU

RELEASE PPU

L ENTER CIO READ FUNCTION |

— | NO

[IS FILE A DISK FRLE ? i
YES

NO
_{ HAS FILE BEEN USED ?‘]

YES

CALL 2RD OVERLAY
READ DISK DATA

[3 {}¢

i—%‘ SET FILE MARK I
I ExiT I

Y
>{ IS FILE A CARD READER ?‘IL‘

ES

CALL 2RC OVERLAY

NO

L 1S FILE A

READ CARDS
Exit

SET FILE MARK

N
TAPE UNIT ? JLO
YES -

18 MODE

CALL 2RT ovemLay | NO

ExiT

BINARY 7

YES

L READ BINARY TAPEIP

7‘{_13 TAPE TYPE MT ?]

NO YES

1' READ BCD TAPE l

r ENTER CIO WAITE FUNCTION |

l Is FILE A DISK FILE ?

CALL 2PC OVERLAY

YES

NO
HAS FILE BEEN USED ?

YES

WAS LAST USE IN WRITE
MODE ?

_ero { IS FILE A CARD PUNCH? l-—-—-—)YEs PUNCH CARDS
’ ExiT
NO
YES CALL 2LP OVEALAY
[IS FILE A LINE PRINTER ? J———> PRINT DATA
NO Exit
YES

NO

CaLL 20T OVERLAY.
DROP DISK ' TRACKS.

-—>{ IS A FILE MARK REQUESTED ? I
NO

YES

NO
[WAS LAST RECORD COMPLETED P }‘“——

YES

=

IS THERE DATA IN THE BUFFER ?]

YES

CALL 2WD OVERLAY
WRITE OISK DATA

o

[IS FILE A TAPE UNIT 7
YES

CALL 2WT OVERt.AY NO
IS A FILE MARK REQUESTED ?

YES

I WAS LAST RECORD COMPLETED ? NO

YES

NO
———{ I8 THERE OATA IN THE BUFFER ? I
YES

[IS TAPE TYPE MT p [&—————————

YES No

[1S MODE BINARY 7 }—Y—Es————>ﬁﬂl‘l’£ BINARY DATA J

NO

I WrRITE BCO DaTA l
v

j IS A FILE MARK REQUESTED ? }<—

no YES

l WRITE FILE MARK I

-14-

CONTROL DATA CORPORATION

Development Division - Applications

DAYFILE

Chippewa Operating System

10/20/65

INTRODUCTION

The dayfile is a combination accounting medium and job status record. It appears
as a major display for the system console and is part of every job's output., Any
message a programmer wishes to convey to an operator is passed through the day-

file. All control cards, error diagnoétice, running times, and equipment assign-
ments appear as a console display and are later sorted for a particular job's out-

put. :

A message may enter the dayfile from a central memory program or a peripheral
routine. In the case of a central memory program, a peripheral package (MSG) is
called to transfer the message from central memory to the PP message buffer and
then to inform monitor that dayfile action is required. A peripheral routine
need only put the message in the message buffer and let monitor take the appro-
priate steps. When monitor does sense that a message ié ready, it transfers the
message to the associated control point's dayfile area and then sends the message
to the dayfile buffer in the proper format. This new éntry is then picked up by

the display program (DSD) and shown on the console.

STRUCTURE

The dayfile buffer status (DFB) is contained in word three of central memory. It

points to a 1000, word buffer for dayfile entries and maintains the FIRST, IN,

8
OUT, and LIMIT addresses. Each entry made in the dayfile consists of three parts.

1) The time that a message is sent.
2) The name of the job to which the message beloungs.
3) The message of not more than six words.

All three parts are in separate words. Therefore, every dayfile entry is at
least three words long but not more than nine. The time is read from word thirty
of central resident and is in the form XX.YY.ZZ. where XX is hours, YY is min-
utes, and ZZ is seconds. At dead start this word is zeroed so it will reflect

the time since dead start unless a "TIME" entry is made to DSD via the keyboard.

Monitor changes the spaces in the job name to blanks and terminates the field

with a period. A zero byte ends the message so that word after word is trans-

ferred until the zero byte is found.

UPDATING BY CENTRAL PROGRAMS

In order for a central program to make entries into the dayfile, a peripheral
program (MSG) is called to retrieve the messagé from central memory and inform
monitor of the request. The location of the message and MSG (in left-justified
display code) is inserted in RA+1l of the program. This causes MSG to be assigned

to a PP and the message transferred to the PP's message buffer.

A check is made to insure that every character is a legal display code. If an
illegal character is found, MESSAGE FORMAT ERROR is issued to the dayfile and
the job is abandoned. Every entry made into the dayfile by a particular job ad-
vances a message count by one. In MSG this total is examined for an excess of

iOO8 messages. No more than 6 words may be passed to the dayfile in one message;

If either of these rules is violated, MESSAGE LIMIT is sent to the dayfile.

After the message is residing in the PP's message buffer, MIR is informed so that
the message can be passed to the dayfile buffer. MSG is used by the Fortran com~

piler to enter the name of the program currently being compiled or executed.

UPDATING BY PERIPHERAL PROGRAMS

In a peripheral processor's resident program is a section of coding which copies
a message from a transient program into the PP's message buffer. Each of these
ﬁessages is assumed to have legal display codes and ended by a zero byte. The
location of the message is in the A register upon entry to the routine. A return
jump to location 530 will cause the message to be transferred to the PP's message

buffer and then MIR is told of the request.
All transient programs use this method of making entries into the dayfile and

each request will advance the message count at a job's control point, even though

MSG is the only program which checks for a excess of the limit.

MIR - ISSUE DAYFILE

Whenever a PP has a message for the dayfile, the message is put into the message

»

buffer and 0001 is inserted into the first byte of output register. MIR senses

a request and begins dayfile updating procedures.

The message is passed from the PP buffer to an eight word area in the control
point area. Word 30 of central memory which contains the current time is read
into one word and the name of the job is put into another word. Next the message
is copied until a zero byte is encountered and then all three sections are sent
to the dayfile buffer. The PP output register is cleared to inform the PP that
;he message has been transferred. Only at this pointe is the message count in-

creased by one so that every message is totalled.
IN and OUT are checked to see if 1008 words (a full sector) of information is

contained in the day file buffer. If there is, phase one dump flag is set. No

additions may be made to the buffer when a dump flag is set.

MIR - COMPLETE DAYFILE

This function is issued by 1DJ (print package) or 1TD (tape dump package) when
a job's output is being formatted. "Its purpose is to remove all dayfile infor-
mation from the buffer to the disk so that only the disk need be read when a job's
dayfile is to be printed. The complete dayfile flag and 'dump phase one' flag
are set. If the 'complete dayfile' flag is found to be set, then this is the sec-

ond time through so it is cleared along with the output register.

Only the two MIR functions issue dayfile and complete dayfile, may set phase one

dump flag.

MTR - CLOSE OQUT

The dayfile buffer is dumped into the disk whenever a full sector of data is built
up or whenever a job is to be printed. This process involves several steps, each
of which set a flag for the subsequent phase. No entry may be made to the buffer

when a dump flag is set.

Cn MTR's main loop a check is made to see if a dump flag is set. This
flag is an address of the next phase and each phase is entered by a
return jump. Every disk positioning request constitutes a different

phase so that time is not wasted waiting on the disk.

Phase one requests channel 0 for the disk and phase two dump flag is
set. MTR regains control and will continue its processing until the
dump flag is checked again. This time phase two‘is entered via a
return jump. If channel 0 is ready for use, a request for disk posi=-
tioning to the proper track is issued and phase three dumb flag is set.
The current track and sector to be used by the dayfile is maintained
by absolute coding. The 'update control byte! routines set the value
of the current track and sector into the different dump phase locations

directly.

Phase three checks channel 0 disk file status. The next sector must
correspond to that set by 'update control byte! or an exit is made.
One sector is written on the disk and the buffer parameters are updated

accordingly. Then phase two flag is set. The buffer is dumped one

‘sector at a time until a short sector is encountered. It is written

on the disk but neither the buffer parameters nor the sector number are
advanced. This scheme is used in order to maintain the dayfile as

one record but still have all the information on the disk. Channel O
is released via.the output register and phase six flag is set if a
spare track is assigned. .If no. spare track has been assigned, channel

0 is still released but phase four dump flag is set.

Phase six makes sure that the channel is released and clears the dump
flag. This terminates dumping the dayfile buffer onto the disk so

that normal processing may continue.

Phase four requests a track of MTR and sets phase five dump flag. When
phase five is entered via a return jump, the spare track number is
retrieved from the first byte of the message buffer and then the dump

flag is cleared. This also completes the dayfile dump.

JOB DAYFILE LISTING

At the end of each job!s output a complete history of each run during
one dead start period is printed. 1DJ (print package) or 1TD (tape
dump package) requests MTR to dump the dayfile buffer contents on the
disk in the manner just previously described. Next, one sector of the
dayfile is read and it is searched for the job!s entries by 28D (search

dayfile).

Since the time a message is issued appears in the word before the job
name, every word of the sector is checked for the proper job name. If
the word does not match, it is copied into the peripheral buffer but
its parameters are not advanced. When the name finally matches, the
time has already been copiéd into the peripheral buffer so the job
name is added in the ne#t word. Then the subsequent message is trans-

ferred until the zero byte is encountered.

Control fluctuates between the dump package, i.e. 1DJ or 1TD, which
reads a sector of the dayfile, and 28D, which searches it for a parti=-

cular job néme; The dayfile is searched in this manner until a short

sector is found. When it is encountered, a MTR function requesting
assignment of PP time to the contreol point is made. This computes
the total PP running time and stores it in word 24 of the control point

area. 2SD converts this time to decimal seconds and then sends out a

dayfile message "PP XXXX SEC",

A top of form request is made as the first entry into a circular buffer
in central memory. The peripheral buffer containing the dayfile informa-
tion for this job is copied to the circular buffer. An entry of the

same type, "PP XXXX SEC", that was sent to the dayfile is added to the
circular buffer. Now the job's dayfile is c0mplete‘and ready for

printing.

NOTES

1. The dayfile is the first entry in FNT. It is set from the library
tape and is of common type so that any program may access it.
2. Any message sent to the dayfile also appears as a console message

(line 3 of the control point display)

CONTROL DATA CORPORATION

Development Division - Applications

DISK ROUTINES AND OVERLAYS

Chippewa Operating System

11/1/65

Disk Routines and Overlays

Contents

Introduction

6603 Disk File: Description and Organization

6603 Disk File: Timing Considerations

6603 Disk File: Disk Capacity

Chippewa Operating System Disk Usage

The
The
The
The
2WD
2RD
2DT
2BD

Disk Write Overlay, 2WD
Disk Read Overlay, 2RD
Backspace Disk Overlay, 2BD
Drop Track Overlay, 2DT
Flow Chart

Flow Chart

Flow 9hart

Flow Chart

Page

DISK _ROUTINES AND OVERLAYS

Introduction

In the Chippewa Operating System, there is no single system element used
to perform disk operations for all other elements of the system.
Instead, each system element performs its own disk operations. This,
while requiring additional coding for each of the system elements using
the disk, eliminates the need for a request queueing and priority

scheme required by the use of a single system element to process all
disk operations. In addition, the housekeeping required by a disk
subroutine in one system element can overlap, to some extent, a disk
operation being performed by another system element., Among the system

elements which perform disk operations are:

+ peripheral processor resident (reads transient programs from the
disk library)
« MTR (writes the contents of the dayfile buffer to the disk)

. some transient programs (read overlays from the disk)

Disk operations for external users are performed via the overlays

2WD (write disk), 2RD (read disk), and 2BD (backspace disk). These
overlays are called by CIO when a disk operation is requested by a
central processor program. In addition, these overlays are used by
certain transient programs to perform disk operations. Thus, 1LJ

and 1LT call 2WD when loading jobs from the card reader and a tape unit,
respectively, while 1DJ and 1TD call 2RD when transferring job output to

the printer or a tape unit,

Regardless of where in the system they are performed, disk operations are
similar: this discussion will therefore be limited to the overlays
2WD, 2RD, and 2BD. Before discussing these routines a short review of

the physical characteristics of the 6603 disk file is in order.

6603 Disk File: Description and Organization

The 6603 Disk File contains fourteen disks, each coated on both sides

with magnetic oxide. Thus, there are a total of twenty-eight recording
surfaces. On two of these surfaces timing tracks are recorded, two are
used for spares, and twenty-four are used for recording data (see figure 1).
All fourteen disks are mounted (in a vertical plane) on a common axis and
rotate at a speed of approximately 900 revolutions per minute. Twelve

of the data surfaces are on the right side of the unit, and twelve are

on the left. Information is recorded on the disk in 12-bit bytes:

each bit in a 12-bit byte is recorded on a separate disk surface.

Associated with each disk surface is a set of four read/write heads
(see figure 2)., An assembly consisting of a rocker arm and a head bar
fits between each pair of facing disk surfaces. The head bar holds two
sets of four heads, one set for each of the two facing surfaces. The
read/write heads are mounted on this head bar in a fixed position
relative to each other. The rocker arm-head bar assemblies for all
disks mount on a common bracket which can be rotated. This rotation
moves all the head bars simultaneously (with the exception of the

heads accessing the timing track surfaces: these heads are fixed).

The disk surface is divided into four zones. A zone is that portion of
the disk surface transversed by one of the four heads associated with
that surface as the head (on its head bar-rocker arm assembly) moves
through its maximum angular rotation. A byte may be written on the
twelve data surfaces on the right side of the disk file or on the

twelve data surfaces on the left side of the disk file: on either side,
a byte may be written in any one of four zones. On each side of the disk
file and for each zone on side, a single set of twelve read/write heads
are used to record a byte (see figure 1). This set of twelve heads is
called a head group. There are four head groups for each of the two sets

of twelve disk surfaces: a total of eight head groups.

Each zone contains 128 tracks. A track is the recording path available
to a given head group in a given position as the disk makes a complete

revolution. To move from one track to another requires a physical

-2-

M~) e

S410¥9
aviH

d714 2510 £099

YIHLIOOL FAOH (SAVIH QIXIJ 14IDXI) SAVIAH TIV

Savial
A [~— QIX1d —»=

SAViH vivd

| |

k

.3
A hd

-

dOI0K

| D0TD —»

~
SOSIa viva

W07

TVISHAEd u]

i e

S

N

OGN O

S400¥O
avViH.

1L

'
SJSId viva

Figure 1

a3

movement, or repositioning, of the head bar-rocker arm assemblies. At

a given position, each head group accesses the same track in its zone.
Thus, if head group 2 is positioned to track 125, the other 7 head

groups are also positioned to track 125.

Tracks are divided into sectors: a sector is the smallest addressable
segment of a track., There are 128 sectors in each of the tracks in the
two outer zones. In the two innermost zones, there are only 100 sectors
per track because of the reduced track length near the center of the
disk compared to the track'length available near the outside edge. A
sector contains 351 bytes (each bit in a byte is recorded in one of 12
corresponding sectors across 12 disk surfaces). The first four bytes
recorded are reserved for use by the controller: They provide a time
lag between consecutive sectors and contain all zero bits. After the
last data byte has been written, the controller writes a longitudinal
parity byte, . The sector format is illustrated in figure 3. Of the
351 bytes in a sector, then, five are used by the controller: The
remaining 346 bytes may be used for data. Normally, 320 bytes (the

equivalent of 64 central memory words) are used for data,

The number of words read from or written to the disk is solely a function
of the word count specified in the IAM or OAM instruction. It is
possible to read or write more than one sector at a time; it is

possible to read or write in the group switch gap; it is possible for

a read or write to wrap around on the same track. A read or write
operation always begins at the beginning of a sector. When a write is
initiated, the disk controller inserts four zero bytes before the data
and inserts a parity byte after the last data byte. (The parity byte

is not necessarily in the last byte position in a sector.) When a read
is initiated, the controller assumes that the first four bytes are zero
bytes, and does not pass these on to the data channel. When the word
count in a read has been reduced to zero, the controller assumes that the
next byte to be read is the parity byte. Thus, any attempt to read a
number of bytes different than the number of bytes written will invariably
create problems due to the interpretation of zero bytes and parity bytes
as data and vice_ versa. For this reason, regardless of the amount of

data to be recorded, a fixed number of bytes is written in each sector,

-4~

SECTOR 0 (OUTER)

REFERENCE MARK

GROUP SWITCH GAP —

DISC ORGANIZATION

HEAD — o

HEAD BAR

J714 XMSIJ €099 :LVWNHO4 H0OLD23S

dTT0dINOD ¥SIA A9 JALOVILXH
ANV JILJISNI :SHLAd O¥HZ Y

SHLAD VIVA 9%¢ OL dfl e

LAY VIVA LSVT ¥YHLAV NALLTYM :HI1A9 ALIEVd e

d010ds

SASIA L NO SdOVJIYNS ASIA ¢1

Figure 3

-6

and only one sector is written at a time (i.e., data is recorded in

physical records of one sector).

A reference mark on the disks containing the timing tracks defines the
beginning of sector 0 in all four zones., Beyond this point, the
starting point of sectors in the two inner zones does not coincide with
the starting point of sectors in the two outer zones (see figure 2).

The clock surfaces contain timing tracks for each zone. As the disk
rotates, one of these timing tracks (depending on which head group is
selected) drives a cell counter. This counter in turn triggers a sector
counter, Both counters are initialized when the reference mark is
detected. The cell counter is incremented as the timing track is read:
When it reaches a count of 351, it is reset and the sector count
advanced. The controller compares the sector number specified in a read
or write function code: When equality is obtained, the read or write
operation is initiated. The contents of the sector counter appear in

the low-order 7 bits of the status response.

6603 Disk File: Timing Considerations

The rotational speed of the disk is approximately 900 revolutions per
minute, corresponding to a revolution time of about 66 milliseconds.

The time required to read or write a byte is approximately 1.4 micro-
seconds on the two outer zones and 1.8 microseconds on the two inner
zones. In the outer zomes, then, a sector passes under the heads

every 490 microseconds., It requires a minimum of 325 microseconds to
transfer the 64 central memory words in a sector from peripheral pro-
cessor memory to central memory, and, because of memory and pyramid
conflicts, will probably require longer. A single peripheral processor
cannot maintain a continuous data flow between consecutive sectors on the

disk and central memory.

If the programmer wishes to read or write in a given sector, he simply
issues the appropriate function code and, when the sector comes under
the heads, the operation is initiated. The programmer may prefer to
minimize the time spent waiting for this sector by sensing (via a

status request) the position of the disk. Timing considerations make

-7

it impossible to sense for a given sector and then initiate an operation
in that sector: If one wishes to read or write sector N, then sector
N-2 should be sensed in order to assure that a revolution will not be

lost.

There are two types of delays which are of concern to the disk programmer.

One of these is the positioning delay: The time required to move the

heads to a new track. When a track select function has been received

by the disk controller and positioning initiated, a delay determined by
counting 4 reference marks is provided to permit the head assembly to
stabilize., Thus, depending on when positioning is initiated, up to 264
milliseconds may be required. During positioning, a status request will

receive a '""NOT READY" reply.

The second type of delay is the switching delay encountered when a

different head group is selected. When head group switching is initiated,
the controller provides a one millisecond delay to allow the circuits to
stabilize: TFurthermore, reading or writing cannot be initiated until a
reference mark is detected. Thus, depending on when the head group
select function is issued, up to 66 milliseconds may be required for head

group selection.

Between the last sector in a track (sector 127 in the outer zones, sector
99 in the inner zomes) and the first sector (sector 0) on that track

is an area called the group switch gap (see figure 2). This area is

approximately equivalent to three sectors in size. It is provided to
accommodate the minimum 1 millisecond switching delay. A programmer can
thus read or write the last sector in a track, select a mew head group,
and read or write sector zero of the new track without incurring a

delay.

The function code for head group selection is 160X, where X is the head
group number (0-7). It is possible to vary the second octal digit in this
function code (normally zero) from 1 to 7: In doing so, the manner in
which the data signals from the disk are sampled is varied. Use of the

feature is reserved for error routines.

6603 Disk File: Data Capacity

There are 128 physical positions of the heads: At any one position,

a track may be accessed by selecting one of eight head groups. Thus,

the disk has a total of 8 x 128 = 1024 tracks., Of the eight head

groups, four cover inner zones and four cover outer zones. In the

inner zones, there are 100 sectors per track: 1In the outer zones, there
are 128 sectors per track., Therefore, 512 tracks each contain 100 sectors
while the other 512 tracks each contain 128 sectors. The disk file thus
contains 116, 736 sectors. In normal use, up to 64 central memory words
are recorded in a sector. The capacity of the 6603 disk file is thus

approximately 7.5 million central memory words.

Chippewa Operating System Disk Usage

As we have seen, a single peripheral processor cannot maintain a con-
tinuous data flow from consecutive disk sectors to central memory.
Therefore, the Chippewa Operating System uses a half track scheme in

its disk operations. A half track is compesed of either the odd-numbered
or the even-numbered sectors in a track., In a disk operation, the system
reads or writes alternate sectors, transferring data to or from central
memory while passing over the intervening sector. Since the disk
contains 1024 physical tracks, the equivalent half track capacity is
2048, The allocation of half tracks is controlled by MIR: disk

write routines obtain half track addresses from MTR via the Request

Track function. MTR maintains a table called the Track Reservation

Table (TRT) which contains an entry for each half track om a disk. On
receipt of the Request Track function, MIR searches the table for an
unassigned half track, and returns the half track address to the requestor
in the upper byte of the Message Buffer, If no half track is available,
a zero address is returned to the requestor, A half track is never

split between files: thus, the half track is the smallest unit of

storage allocated on the disk,

The format of the half track address, and its relationship to physical

disk addresses, is illustrated below.

¢ 4010¥90 aviH

Sd040dS QIIIdNNN-NIAT
8

&,.

010000TTTO0TTI

N

820697 :SSHUAAV MOVAL ATVH

A0VYL ATVH HHI NO d0LOdS LXHUN
dHL dvdd 0L AQVIy NHIHL SI WHLSAS HHL

AYOREW TVIINED Ol dygddd
-GNV4L SI avay ISNf VIVA FHL ‘YOIOdIS
TVOISAHd IXIN HHLI YJAO ONISSVd d4TIHM

AJOHAR
YO0SSAD0Yd TVIAHATNAd OINI MOVII ATVH
UL 40 81€ JOLDAS SaAvA¥ WALSAS FHL

FTdNVXT NV :3SN MOVvHL 47TvH

8

HET JdovaLl

TVOISAHd

S¥01LD3S
V01901

Figure &

-10-

ID0:0:0.0:0.0.0000.¢
I_[:——-— head group number (0-78)

"1" if odd sectors, "0" if even sectors

‘oo track number (0-1778)

Sector numbers maintained by the system (éuch as the Current Sector

in an FST entry) are logical sector numbers, and refer to a sector
within a half track. 1In the outer zones, sectors within a half track
are numbered 0-778: In the inner zomes, sectors within a half track are
numbered 0-618. To convert a logical sector number to a physical sector
number, the system shifts the logical sector number left one place and
inserts the 24 bit from the half track address into the low-order bit
position. For example, consider logical sector 778 (6310) in a half
track composed of the odd-numbered sectors in a physical track. 1In this
case, the 24 bit of the half track address will be a "1", By shifting
the logical sector left one place and inserting the "1" bit from the 24
bit position of the half track address, we obtain 1778 (12710) for the
physical sector number. TFor the remainder of our discussion, a reference
to "sector number'" will refer to the logical sector number unless other-

wise described.

For files recorded on the disk, the physical record is, of course, the
sector. A logical record may be composed of several sectors. The

format of the physical record is shown in figure 5. 5028 bytes are

always written in each sector. The first two bytes written are control

bytes: the remaining 500, bytes are data bytes. Control byte 2 contains

8
the number of useful central memory words in this sector: If control byte

2 contains 1008, all 5008

A sector in which control byte 2 contains less than 1008 is called a

short sector, and is interpreted as a record mark. A logical record

bytes in this sector contain useful information.

may comprise several full sectors, but is always terminated by a short
sector. If the data to be recorded as a logical record is a multiple of
100, CM words, the system will write, as the record mark, a sector in

8
which control byte 2 contains zero.

Control byte one points to the next physical record in this file, If

the next sector is on the same half track, then this byte contains the

~1l1la

Vs

LVWEHOS dH023H TVIISAHL F714 HSId

033z

0d4dZ-NON

0ddZ-NON

0ddZ-NON

VR I114d 02-1CVA
VA @¥00dd *¥0LDHAS uIdOHSH 044z

MEVH Q900 I f@¥00EY TVIINOT V 40 I¥vd :YOLDIS uIYOHSu wooﬂuv ‘0¥dZ~NON
@00EY TIVOIDOT V 40 I¥vd ¥0LOdS wTTNdu wooH

aa0ddy ¢ 41A49 'TOYINOD

MOVEL 4TVH ¥4HIONV NO 41

Y4IRON AOVEL ATVH

MOVIL JTVH FWVS NO 41 (874 - 0) WHLWAN JOLDIS

JdO1OdS SIHL NI SA¥OM WD Tn43sn A0

T 31A9 TO¥INOD

JOLDES LX4N 0Ll ¥FINIOd

mmeDzn!llllMN

ZmHHHmWN M SAVMTV SILAL 0OC€

¢ 41LA4
TOYINOD

1 d1Ad
TOYINOD

Figure 5

—_——

-1a2.

number of that sector. If the next sector is on another half track,
then this byte contains the half track address for that half track.
(The file would be continued beginning with sector zero of the new half

track.)

At the end of each write operation, the system writes a file mark. The
Current Sector byte of the FST entry is not incremented to reflect this
file mark sector, so the effect is equivalent to writing a file mark

and backspacing over it. On the disk, a file mark is a sector in which

both control bytes contain zero.

The Disk Write Overlay, 2WD

Disk write requests by users are executed by CIO's overlay 2WD. This
overlay is also used by 1LJ and 1LT in loading jobs on the disk. Before
calling 2WD, CIO calls the 2BP overlay to check the legality of the buffer
parameters FIRST, IN, OUT, and LIMIT. After checking these parameters,
2BP searches the File Name Table for the file name specified in the CIO
call (i.e., in the first word of the argument list). When found, 2BP
stores the address of the corresponding FST entry. Should the file name
not be found in the FNT, 2BP constructs an FNT entry for this file.
Finally, 2BP clears the 20 bit in the buffer status byte of the FST

entry to reserve the file.

CIO then calls 2WD. (Refer to the flow chart on page A-1l.) 2WD reads
the FST entry for the file and extracts the equipment number from byte
one. The equipment number is added to the EST base address, and the

EST entry read. The channel number from byte 2 of the EST entry is then

inserted in the appropriate I/0 instructions.

The output data in the circular buffer may appear as a contiguous block,
or may wrap around the buffer, as illustrated in figure 6. In computing
the total number of sectors in the circular buffer, then, the 2WD routine
first subtracts OUT from IN. If the difference is positive, then this
difference is the total number of words to be written, and ZWD shifts

off the lower six bits of this word count in order to obtain the
equivalent number of sectors. If OUT-IN is negative, the value of

LIMIT is added to the difference and FIRST subtracted to obtain the

-13-

JoLOIS

LITds dHL ONISSHD0dd ¢

d0d SNOILOMILSNI dn 1dS

¥0103S 1I1dS
THI AIITIN0D O YAMIO

NI 1S4Id 1V SNINNIOAL
¥343INg FHL KO¥d avi¥ Id Ol
SQIOM 40 WITHAN 139 OL
8001 WO¥d (S) NI JILNIROD
SAIOM 0 WITWAN 1OVY1dNs

L LIALT ANV
100 NIIMLIL YOLOAS 1I'TdS
FHL J0 I¥vd LVHL NI SQ¥OM
40 YAEWAN FHL SIAID SIHL
:INNOD @EOM IIRIT-100 40
S1I€ 9 WIMIO-MOT IOVYLXZ

SEOVIA 9_IHOIN INNOD
TIOM IIWIT-1OO ONILAIHS
X4 IIWIT ONV INO NAAMLEE
SYOIDES 40 WAAWN FLNWOD

LITWIT ANV 100 NJIMLAd
S@IOM A0 YHIWNAN HLNdWOD

SAOVId 9 IHOIY INNOD
@IOM 'TVIOL ONILJAIHS Ad
V4IV LNdINO NI SY0LOdS

J0 YIERAN TVIOL dLAdWOD

Va4dy LN4LINO NI SqIom
J0 YIGWAN TVIOL JINdKOD

9

‘S

"1

ONISSED0dd YHLIWVIVA dd440d

AVTEIAO dMT

1saNOTY 9714
gNZ ¥O @I0DAY aNd JI ATINO
:90L0dS 'IVILEVd

NILLIEM

JoL2dSs SY0LOHS
LI1dS Ting

- ONISSHO0Ud YALIWVIVd ¥3d4Nd YVINOIIOD

d49Z A9 QI90lS SJIINIOJL

J3d44nd JvIiddId

7

A e T S

_
7

§§

100

LIAIT

Figure 6

“1b-

total word count and, from that, the equivalent number of sectors.

Regardless of whether the data is contiguous or wraps around the buffer,
2WD proceeds on the assumption that the data does wrap around, and
proceeds to compute the values needed to process the wraparound case.

The steps involved are listed in figure 6. These values, although

always computed, are not required in the contiguous case:; in either
case, the terminal path is entered when the total sector count is reduced
to zero. By computing these values regardless of whether the data is
contiguous in the buffer or wraps around the buffer, computations during

the period when the disk is actively in use are reduced.

Next, 2WD picks up the chamnel number from the EST entry and requests
reservation of that channel from MTR. The Current Track byte of the
FST entry for this file is then examined, If this byte is zero, then
this file has not previously been used. A half track assignment is
requested from MTR: MTR returns a half track address to the requestor
in byte one of the first word in the message buffer. If no half track
is available, MTR will return a zero byte to the requestor: 2WD then
inserts an erroxr message in the dayfile and aborts the control point
after dropping the channel reservation. 2WD now has the address of the
half track where the next operation is to be performed, and proceeds

to position the disk to this half track. This half track address’is
compared with byte 2 of the TRT pointer word for this disk, and
repositioning or head group selection performed only if required. Byte

2 of the TRT pointer is then updated.

2WD next requests another half track assignment from MTR, This half
track is a spare: by keeping it available, it is possible for 2WD to
switch head groups within the group switch gap if this action should be

required when the end of the current half track is reached.

The transfer of data from the buffer to the disk then begins. 2WD reads
1008 words from central memory into peripheral processor memory, sets
control bytes one and two, and then writes the completed sector to the
disk. As each sector is written, the number of the sector is examined
to determine if the end of the half track is reached. To do this, 2WD

compares the sector number with byte 4 of the TRT pointer word (if head

~15-

group number = 0-3) or byte 5 of the TRT pointer word (if head group

- number = 4-7), These bytes contain the values 1008 and 628, respectively.

1f the end of the half track has been reached, 2WD positions the disk to
the spare half track: again, the half track address. is compared with byte
2 of the TRT pointer word and positioning or head group selection per-
formed only if required. After initiating any repositioning which might
be required, 2WD requests a spare half track from MIR.

2WD continues reading 100, -word blocks from central memory and writing

them to the disk until it8recognizes that there is not enough data in
the circular buffer for a complete sector. (Some part of a sector ﬁay
still, however, remain.) 2WD then examines the buffer status contained
in byte 5 of the FST entry to see if an end record was requested

(24 bit = 1). If an end record was requested, 2WD writes a short sector
to the disk, If any data remained in the circular buffer, it will be

written in this short sector: otherwise, control byte 2 will simply be

set to zero.

After the last data sector has been written to the disk, 2WD writes a
file mark ~ a sector with both control bytes equal to zero. The Current
Sector byte of the FST entry is not, however, incremented to reflect the
writing of this file mark: +the next write to this file will write over
the file mark sector. After the file mark has been written, 2WD requests
MTR to drop the spare half track assignment and to release the channel

reservation.,

If no end record function was requested, 2WD simply updates the OUT
pointer before returning control to CIO: There may still be some data
in the circular buffer. 1If an end record function was requested, no
data remains in the buffer: 2WD therefore sets IN = OUT = FIRST to
indicate that the buffer is empty.

When control is returned to CIO, CIO sets the 20 bit 6f the buffer
status in the FST entry to 1 to indicate that the file is no longer in
use, and sets the 20 bit of the buffer status in the calling program's
argument list to 1 to indicate to the calling program that the operation

has been completed,

-16-

The Disk Read Overlay, 2RD

Disk read requests by users are executed by CIO's overlay 2RD. This
overlay is also used by 1DJ and 1TD. The processing performed by 2BP

in this case is identical to that performed in the case of 2WD., On

entry, 2RD reads the FST entxry for the file, picks up the equipment number
from byte one, and uses this number to obtain the EST entry. The channel

number from the EST entry is then set in the I/0 instructions.

2RD then proceeds to compute the number of sectors which can be loaded

into the circular buffer. If there is not room for a full sector, control
is returned to CIO. The data to be read may fit in the buffer in a
contiguous block, or may wrap around the buffer. The computation of

the values (total word count, total sector count, etc.) used in controlling
the transfer of data to the buffer is performed in a manner similar to

2WD. Again, the wraparound case is assumed.

The Current Track byte of the FST entry is examined, 1If this byte is
zero, the file has not been used before and so contains no data. 2RD
sets the buffer status to indicate a file mark and returns control to

CIO.

2RD requests a channel reservation from MIR and positions the disk to

the half track address contained in the FST entry's Current Track byte.
As in all disk routines, the half track address is compared with the disk
position specified in the TRT pointer, and repositioning or head group

switching performed only if necessary.

2RD then uses the Current Sector byte of the FST entry to construct the
read function code, and reads the specified sector into peripheral
processor memory., A status request is then issued, and the response

is examined to determine if a parity exrror occurred. In the event of a
parity error, the system rereads the sector three times; once using the
normal sampling method and twice at

varied sampling margins. 1f the parity error re-occurs in each of the
rereads, 2RD inserts an error message in the dayfile and stops (via a

UJN O instruction). Since the halt occurs without the disk channel being

released, all system activity will shortly cease (if this disk is the

-17-

system disk, disk 0), A dead start load will be necessary to reinitiate

processing.

If the read was successful, 2RD examines the high-order six bits of
control byte one: if these bits are zero, then this control byte contains
a sector number, while if these bits are non-zero, this control byte
contains a half track number. In the latter case, 2RD positions the disk
to the new half track address. While any repositioning or head group
switching which might be required is in process, 2RD transfers the

number of words specified in control byte 2 from peripheral processor
memory to the circular buffer, and updates the values used in controlling
the transfer. 1If the sector just read was a full sector (1008 CM words
of data), and if there is enough room in the circular buffer for another
full sector, 2RD loops to read the next sector from the disk.

If the last sector read was a short sector, then the end of a logical
record has been reached, and the buffer status is set to reflect a

record mark. If the end of logical record has been reached, or if there
is not enough room in the circular buffer for a full sector, 2RD requests
MTR to release the channel reservation, updates the IN pointer in the
calling program's argument list, and returns control to CIO. CIO

updates the buffer status in the FST entry to release the file reser-
vation, and updates the buffer status in the calling program's argument

list to indicate that the operation has been completed.

If, after reading the last logical record in a file, the calling program
issues another read to the file, the file mark will be read. The pro-
cessing proceeds as described above: 2RD reads a sector whose address is
specified in the Current Track and Current Sector bytes of the FST entry.
Since control byte 2 is zero, 2RD recognizes this as a short sector, sets
the buffer status to reflect a record mark, and releases the channel.

2RD then examines control byte one; since this contains zero, the file
mark is recognized and the buffer status set accordingly before returning

control to CIO.

The Backspace Disk Overlay, 2BD

Disk backspacing may take the form of a BCD backspace or, more commonly,
a binary backspace. In either case, it is desired to backspace over a
logical record, and it is assumed that any backspacing over logical
records in the buffer has been done by the calling program. Backspacing
over the physical records which may constitute a logical record is
essentially a matter of backspacing over two sectors and then reading a

sector.

2BD uses a subroutine to backspace over a sector. (See flow chart on
page A-5.) This subroutine examines the Current Sector byte of the FST
entry, and, if non~zero, subtracts one from this number and exits.,

This is equivalent to backspacing over one physical record (i.e., one
sector)., If the Current Sector number is zero, then the preceding
physical record is on another half track. 1In this case, the subroutine
stores the Current Track byte from the EST entry for this file, since it
will have to search the file for a sector which has this half track

address contained in control byte one.

The subroutine rewinds the file by picking up the Beginning Track byte
from the FST entry. (Should the Beginning Track byte be equal to the
Current Track byte, the subroutine exits, since this indicates that the
system has backspaced over all physical records in this file.) After
rewinding the file, the subroutiune reads each sector in the file until
it finds a sector with the desired half track address in control byte
one. The number of this sector is then stored, and control returned to
the calling routine. A backspace operation on a file of any size may
take considerable time if it should become necessary to rewind the file

and search forward,

A binary backspace on the disk consists of backspacing over two sectors
(using the subroutine described above) and reading a sector until a

short record is found, indicating the end of a logical record. 2BD sets
the circular buffer pointers IN and QUT equal to FIRST, and returns
control to CIO. CIO updates the buffer status in the FST entry and in the

calling program's argument list.before exiting.

-19-

It is also possible to issue a BCD backspace to the disk., For the disk,
as for 1" tape (but not for 1" tape), a logical BCD record consists of
a series of central memory words presumably containing display code data,

terminated by a central memory whose low-order byte (byte 5) is zero.

The BCD backspace begins with the computation of the amount of data left
in the buffer as a result of the last read. This quantity, referred to

as D, is equal in IN-QUT if the data in the buffer is contiguous, or
IN-OUT + LIMIT-FIRST if the data wraps around the buffer. This data was
left in the buffer as a result of the last read, and may have been

stored on the disk in several sectors. The system assumes that the
calling program will backspace within the buffer, and so, before beginning
a logical BCD record backspace on the disk, 2BD will backspace the

disk a number of sectors.equivalent to the amount of data contained in

the buffer. This quantity is represented by D.

2BD therefore backspaces over a sector (by the same subroutine used in
binary backspacing and described earlier) and reads that sector into
peripheral processor memory. The sector length in control byte 2 is

then compared with D: if less than D, then this sector is assumed to
contain data which has already been read into the buffer. 2BD then
decreases D by this amount, backspaces over this sector and the sector
preceding it, and then reads a sector. The process of backspacing,
reading, and reducing D is repeated until a sector is read whose length
is greater than the present value of D: this sector could not entirely
be part of the read data in the buffer, and so must be searched for a
logical record. 2BD transfers this sector from peripheral processor
memory to the circular buffer beginning at FIRST. If D is still non-zero,
then part of this sector cimtains data residing in the buffer at the time
the backspace was requested, and presumably has been searched by the
calling program: 2BD therefore sets the QUL pointer to FIRST + sector
length - D, At the same time, the IN pointer is set to reflect the

transfer of the sector to the buffer.

2BD then searches each word in the buffer from OUT - 1 down to FIRST
until a word with a zero low-order byte is found, indicating the end of
a logical BCD record. When the end of the record is found, 2BD updates

the IN and OUT pointers in the calling program's argument list, and

-20-

returns control to CIO. OUT now points to the first word following the
end of the logical record. If no zeroc low-order byte was found, then
2BD backspaces two sectors and reads one, and then repeats the buffer

search.

The Drop Track (Qverxrlay, 2DT

When CIO receives a disk write request, it first calls the 2BP overlay
to check the legality of the buffer parameters and to search the FNT for
the file name. CIO then reads the EST entry for this file, and examines
the buffer status in byte 5., If the buffer status indicates that the
last operation performed on this file was a read operation, then an
overlay, 2DT, is called to drop the subsequent portion of the file. In
effect, then, if some part of a file is read and it is then decided to

write to that file, the remainder of the file is erased.

The flow chart for the 2DT overlay is shown on page A-~3 of the attached
flow charts, The routine picks up the Current Track byte and Current
Sector byte from the FST entry for the file, and reads the sector at this
address. If this sector is a file mark, 2DT returns control to CIO.

If control byte one of this sector contains a half track address, 2DT
requests MIR to drop this half track reservation., MIR then clears the
bit in the Track Reservation Table correSpondgng to this half track
address, 2DT positions the disk to this half track address and begins
reading sectors until a file mark is found or the end of the half

track is reached. The process of reading and dropping half tracks

continues until the end of the file is reached,

At the end of a job, all local files associated with the job are

dropped, For disk files, a process similar to that described above is
required to release half track reservations. This is performed for

1AJ by the 2DF overlay. 2DF differs from 2DT in that 2DF drops files
assigned to other equipment as well as those assigned to the disk, and

2DF drops all the half tracks reserved by a file, not just those following
the half track specified inlthe Current Track byte of the FST entry.

2DF is also called by 1DJ and 1TD when printing files or writing files

on tape.

-21-

ENTER 2WD OVERLAY
WRITE DISK FiLE

vy
rMOleV OVERLAY FOR EQUIPMENT PARAMETERS l

[REQUEST CHANNEL FOR DISK FILE J

Y

NO REQUEST A NEW TRACK FROM MONITOR | NO
HAS THIS FILE BEEN USED BEFORE P }————) ::QA TRACK A?/AILABLE DAYFILE MESSAGE~DISK X TRACK LIMIT
YES ? RELEASE CHANNEL
YES ABORT CONTROL POINT .
RELEASE PPU
. .
Y DAYFILE MESSAGE—DISK X TRACK LiMIT
POSITION DISK TO PROPER TRACK WRITE END OF FILE SECTOR
REQUEST A NEW TRACK FROM MONITOR piis RELEASE CHANNEL
IS A TRACK AVAILABLE ? ABORT CONTROL POINT
YES RELEASE PPU
. T
IS THERE ENOUGH DATA IN THE CIRCULAR NO IS AN END RECORD FUNGTION REQUESTED ? Jl NO
>| BUFFER FOR A FULL SECTOR P
YES
YES
WRITE END OF FILE SECTOR .
DO NOT ADVANCE FILE STATUS FOR THIS SECTOR ‘
CALL MONITOR TO DROP SPARE TRACK
NO | WRITE SECTOR ON DISK RELEASE CHANNEL
15 THIS THE LAST SECTOR ON THIS TRACK ?
YES
.
\y DAYFILE MESSAGE—DISK X TRACK LIMIT UPDATE BUFFER CONTROL OUT AODRESS
POSITION DISK TO NEW TRACK o WRITE END OF FILE SECTOR EXIT
REQUEST A NEW TRACK FROM MONITOR RELEASE CHANNEL
IS A TRACK AVAILABLE ? ABORT CONTROL POINT
YES RELEASE PPU
\I
___"Q..l WAS THIS SECTOR A SHORT SECTOR ? l
YES

WRITE END OF FILE SECTOR .
DO NOT AOVANCE FILE STATUS FOR THIS SECTOR .
CALL MONITOR TO DROP SPARE TRACK
RELEASE CHANNEL

STORE BUFFER CONTROL INsOQUT =FIRST
ExiT

Al

ENTER 2RD OVERLAY
0isK FILE READ] .

T

|

i

']

Y
MOOFY OVERLAY FOR
EGUIPMENT PARAMETERS

!

¥
COMPUTE NUMBER OF SECTORS
WHICH CAN BE LOADED INTO THE | YES EExsT
| CIRCULAR BUFFER,
| 15 NUMLER OF SECTORS ZERO ?
NO
W
NO SET FiLE MARK
HAS THIS FILE BEEN USED BEFORE ? ;
ExiT .
YES
Y
[REQUEST CHANNEL FOR DISK FiLE
‘_.Posmon DISK TO PROPER TRACK

\/
LR 10 REREAD SECTOR SELECT MARGIN | SELECT MARGIN 2
| RDAD ONE SECTON
— ’LAD 0 TaT ; NO READ DISK STATUS (o> REREAD SECTOR NO REREAD SECTOR
e 3 S ey
I’] FEAD DISKC STATU 'S PaRITY OK 7 READ DISK STATUS READ DISK STATUS
i3 PARITY < A
. i3 PamTY O ? i IS PARITY OK 7 IS PARITY OK ?
! LYEYD YES
i YES YES NO
Y
1 iS CONTHROL oYTE A NEW TRACK NUWGER '? L'
[YES i NO
|
|
| |
- Y DAYFILE MESSAGE ~
| POSITION UISK TO NEW TRACK J 1 i DISK PARITY ERROR
{ ! : GX TXXX SXXX
: i STOP
W VA
ADVANCE FILE STATUS FOR NEXT SECTOR |
!
4 \‘/
| STORE SECTOR DATA iN CIRCULAR BUFFER
’ = YES [S£T enp oF RECOAD
ADVANCE burFER IN ADDRESS —————?1 RELEASE CHANNEL
[IS THIS SECTOK A SRORT SECTOR 7
NO
|
Vi
YES I8 THERE ROOM FOR ANOTHER SECTON OF
DATA IN THE CIRCULAR BUFFER 2
NC . .
|/

RELEASE € UPDATE CIRCULAR BUFFER IN ADDRESS
L J IS DISK AT FILE MARK ?
YES NO

ey
SET FILE MARK ExIT

A=2

207 OVERLAY
DROP DiSK TRACKS
FILE STATUS IN 20724

\/

MODIFY OVERLAY FOR EQUIPMENT PARAMETERS

Y
1 NO

[HAS FILE BEEN USEOD ?]
YES

A7

HOLD CURRENT TRACK NUMBER AND SECTOR NUMBER
REQUEST CHANNEL FGR DISK FILE

Y
—
'——‘—ﬂ\"‘ PQSITION DISK FOR NEXT SECTOR

EXIT

RELEASE CHANNEL
RESTORE TRACK AND SECTOR NUMBER

Y
READ NEXT SECTOR YES
IS SECTOA A FILE MARK ?
NO
NO \l/

IS SECTOR THE LAST SECTOR
iN THIS TRACK ?
YES

\/
——-—{ REQUEST MONITOR RELEASE NEXT TRACK

EXIT

¢80 OVERLAY
BACKSPACE DiSK

SET CIRCULAR BUFFER [N= OUT* FIRST

X
I] YES
| WAS LAST REFERENCE A FILE MARK 7}
NO
Y

-
|

MGOOIFY OVERLAY FGR EGQUIPMENT PARAMETERS

EXiT

YES
rzs A BINARY BACKSPACE REQUESTED 7 7{

{NO

Y
[SET FIRST REFERENCE FLAG

Y

@—————————e—{ CoMPUTE DxIN=0UT |

f YES
=3 15 NEXT SECTOR THE FIRST SECTOR IN THE FILE P }——-——

REGUEST CHANNEL FOR DiSK
POSITION DISK TO NEXT SECTOR
READ ONE SECTOR

RELEASE CHANNEL

!

Il

|
Y

YES
SECTOR LENGTH GREATER THAN D ?

NO

[DECHEASE 0 8Y SECTOR LENGTHI

¢ BACK ONE SECTOR

BACK ONE SECTOR
BACK GNE SECTOR

REQUEST CHANNEL FOR DISK
POSITION DISK

READ ONE SECTOR
RELEASE CHANNEL

l IS SECTOR A SHMORT SECTOR ? }&

YES

\
SET CIRCULAR BUFFER IN® QUT = FIRST

EXiT

SET
STO

SET OUT = FIRST + SECTOR LENGTH — D

IN = FIRST + SECTOR LENGTH
RE SECTOR IN CIRCULAR BUFFER BEGINNING AT FIRST

X

¥
——>{ DOEs OUT = FIRST ? }YES

NO

/

[IS FIRST REFERENCE FLAG SET ? }-—'39—

YES

CLEAR FLAG

\

NO

[DOES (OUT-1) CONTAIN A BLANK LOWEST BYTE 7 ‘}<—-—

YES

UPDATE CIRCULAR BUFFER IN AND OUT ADORESSES
ExiT

A4

-

280 SUBROUTINE
BACK ONE SECTOR

v
NO REDUCE SECTOR NUMBER ONE COUNT
Is NEXT SECTOR THE FIRST SECTOR OF A TRACK ?}————) ExiT
! YES
\/
HOLD CURRENT TRACK NUMBER NJ
-
] YES
1S N THE FiRST TRACK FOR THME FILE 7 ! ExIT
NO

Vi

REWIND DISK FiLE
REQUEST CHANNEL FOR DISK FILE

A4
™
. POSITION DISK TO NEXT SECTOR J

NO | READ ONE SECTOR
IS THIS THE LAST SECTOR IN THIS TRACK 7

YES

Yy

NO
- IS NEXT TRACK NUMBER N PJ

YES

RELEASE CHANNEL
Exit

	Chippewa Operating System.Part 2
	Alphabetic Peripheral Packages
	Contents
	Introduction
	DMP
	EXU
	CLL
	LBC
	LOC
	MSG
	PBC
	Program Partitioning
	Introduction
	Run Modes
	Fortran Usage
	Machine Language Calls

	Peripheral Packages and Overlays
	Contents
	Introduction
	1AJ
	1BJ
	1DJ
	1LJ
	1LT
	1TD
	2BP
	2BT
	2EF
	2LP
	2PC
	2RC
	2TJ
	2TS
	2WT

	Circular Input Output
	CIO Flowcharts

	Dayfile

	Disk Routines and Overlays
	Contents
	Introduction
	6603 Disk file Description Organization
	6603 Timing
	6603 disk Capacity
	Chippewa Disk Usage
	2WD
	2RD
	2BD
	2DT
	Disk IO Flowcharts

