60429800

(G® CONTROL DATA

CYBER LOADER
VERSION 1
REFERENCE MANUAL

CDC®OPERATING SYSTEMS:
NOS 2
NOS/BE 1

QUICK REFERENCE SUMMARY AND INDEX

CONTROL STATEMENTS

CAPSULE(pname,...)
EXECUTE(eptname, P, «ss)
- GROUB(groupname)
LDSET(option,.«s)
COMMON
COMMON=1cbname/...

EPT=eptname/...

ERR=p (ALL,FATAL,NONE)
FILES=1fn/...
LIB=1ibname/...

MAP=p/1fn (N or combination

of'S, B, E, X)
NOEPT=eptname/s ..
NOREWIN
OMIT=eptname/. ..

PD=p.

PRESET=p

PRESETA=p

PS=p

REWIND

STAT=1fn/...

SUBST=pair/...

USE=eptname/...

USEP=pname/.s.
LIBLOAD(1libname,eptname,.«:)
LIBRARY(1libname,..+)
LIBRARY(1libname,.../p)
LOAD(Clfn,.ss)
MAP(p) (OFF, PART, ON, FULL)
NOGO(1lfn,eptname,...)
REDUCE.
RFL(CM=n,EC=m)
‘SATISFY(libname,...)
SEGLOAD(I=1fn,B=1fn,L0=DT)
SLOAD(1fn,name,...)
TRAP(I=1fn,L=1fn):

USER CALL LOADER MACROS

LOADER paddr,CMM
LDREQ option,p,sse

BEGIN, fwasc,lwasc, fwalc,lvalce

CMLOAD, fwa,end
DMP,pl,p2

ECLOAD, fwa,end

END

ENTRY, (eptname, +.s)
EXECUTE,eptname, (Pysse)
FILES,(1fn,...)
LIB,(libname,...)

LIBLOAD,libname,(eptname,.s.)

LOAD, (1fn,..3)
MAP,p,lfn

NOGO

OMIT, (eptname,.s.)
PASSLOC, ((id,t,b,a);ees)
PD,p

PRESET;p

PRESETA;p

PS,p

SATISFY, (libname,«ss)
SLOAD,1fn, (name,...)
SUBST,(pair,««.)

USE, (eptname,ses)
USEP, (pname,.ss)

60429800 K

Page

8-1
2-4
8-1
2-7
2-10
2=10
2-10
2-9
2-10
2-8

2-8
2=10
2=-9
2-10
2=10
2-8
2-8
2=10
2-9
2-10
2=-10
2-10
2-9
2=3
3-1
3-1
2-3
3-1
2=5
3-2
3-3
2=-6

2-4
5-1

4-1
4=2
4=2
4ty
4-5
4=t
4=t
4-5
4=4
4-3

- 4-3

4-3
4-3
4-3
4=5
4-3
4=5
4-3
4-3
4-3
4-3
4-3
4-3
4-3
4=3
4-3

FAST DYNAMIC LOA
ENTHDR

DER MACROS

~ ENT eptname,addr

OVERLAY

OVCAP.

OVCAP(1fn)
OVERLAY(1fn,1;,1
OVERLAY(1fn,1;,15

,0V=n)
sorigin)

LOADREQ paddr,rcl,flag

~ FAST OVERLAY LOADING

FOL.LOV
CMM.LOV

FOL.LOD
FOL.GDE

£ E E

load overlay

(CMM inactive)

load overlay

(CMM active)

load overlay as data
get directory entry

SEGMENTATION DIRECTIVES

END eptname;oes
bname EQUAL bname, ...
segname GLOBAL bname, <.,
segname INCLUDE Program;ss.

LEVEL
tname TREE: expression

bname, .«

COMMON

CAPSULE AND OVCA
UNLOADING

FDL.LDC
FDL.ULC
FDL.CDG
FDL.UGD
FDL.LOC
FDL.UOC
FDL.REL
FDL.UNR

EEEEEEER

TRAP DIRECTIVES

FRAME
AT addr
EVERY n
FOR n
FROM addr
REG
START n
UNTIL n
TRACK
EVERY n
FROM addr
START n
TO. addr
UNTIL n
WHEN addr
WHEN reg

P. LOADING AND

load capsule

unload capsule

compact group directory
unload group directory
load OVCAP

unload OVCAP

relocate and link
delink

8-6

64
=4
6-6

6-10

6-10
6-10
6-11

7=15
1-14
7=12
=9
7-9
7-8
1-14

8-3
8-4

8=4

8-4
8-7
8=7
8-5
8=5

5=1
5=3
5-3
5=3
5-3

53
5-3
3=1

5=4

5-4
5-4
5-4

5-4

5-4
5-4

E@5) CONTROL DATA

60429800

CYBER LOADER
VERSION 1

REFERENCE MANUAL

CDC®POPERATING SYSTEMS:
NOS 2
NOS/BE 1

REVISION RECORD

Revision Description

A

(10/01/75) Original printing. This manual is successor publication to publication number 60344200,
for users of NOS 1.0, NOS/BE 1.0 and SCOPE 2.1 operating systems.

B (03/01/76) This revision documents Version 1.1 of the CYBER loader. Features documented include
CP139, 5400 tables, and CPl47, COMPASS LDSET instruction.

C (07/16/76) This revision documents Version l.2 of the CYBER loader. The Common Segment Loader,
feature 149, is included in this release.

D (10/29/76) This revision to Version 1.2 of the CYBER loader documents default library changes,
feature CP146A, and the loader interface with Common Memory Manager. This revision is
effective with release of PSR level 439.

E (03/25/77) This revision documents Version 1.3 of the CYBER loader, which introduces the Fast
Dynamic Loading capability, feature CP161l. (References to SCOPE 2 have been deleted from
this manual.) This revision is effective with release of PSR level 446.

F (04/15/78) This revision documents Version 1.4 of the CYBER Loader, which introduces the Fast
Overlay Loader and multiple entry points in main overlay, extends FDL and SEGLOAD
directive syntax, and adds new DEBUG PRESET option, and 8 lines/inch on map. This

revision is effective with release of PSR level 472,

G (06/15/79) This revision documents Version 1.5 of the CYBER Loader which introduces SEGLOAD common
blocks, the PTEXT table, and supports FORTRAN Version 5 SAVE option. This revision is
effective with release of PSR level 498.

H (02/26/82) This revision documents Version 1.5 of the CYBER Loader which introduces interactive use
of the loader under the batch subsystem of NOS and includes changes to the LIBRARY
control statement under NOS 2. This revision is effective with release of PSR level
552. This is a complete reprint.

J (09/07/84) This revision documents Version 1.5 of the CYBER Loader. It includes miscellaneous
corrections and modifications to the PD and PS options of the LDSET statement, LOADREQ
macro, and OVERLAY directives. Revised at PSR level 601.

K (04/04/86) This revision documents Version 1.5 of the CYBER loader. It includes miscellaneous

corrections and modifications. Revised at PSR level 647. With this revision, the manmual
no longer applies to NOS Version 1.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

C)COPYRIGHT CONTROL DATA CORPORATION P. O. Box 3492

1975, 1976, 1977, 1978, 1979, 1982, 1984, 1986 SUNNYVALE, CALIFORNIA 3%4088-3492

All Rights Reserved

Printed in the United States of America or use Comment Sheet in the back of this manual

ii 60429800 K

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision

D-1

D-2

D-3 thru D=5

D-6

D-7

D-8

D-9 thru D-15
D-16 thru D-28
E-1

E-2

E-3 thru E-22
Index—~1 thru -3
Comment Sheet/Mailer
Inside Back Cover
Back Cover

Front Cover
Inside Front Cover
Title Page
ii

iii/iv

v thru ix
1-1 thru 1-9
2-1

2-2

2-3

2-4

2-5 thru 2-7
2-8

2-9

2-10

2-11 thru 2-13
3-1 thru 3-3
b1

4~2 thru 4-5
46

5-1

5-2

P ARARARED AR GGGUAR TR

6-8 thru 6-11

7=4 thru 7-15
8-1

8~2 thru 8-3
8-4 thru 8-7
A-1

A-2

B~1

B~2
B-2.1/B-2.2
B-3

B-4 thru B-6
B-7

B-8 thru B-18
C-1 thru C-~3

w
]
(=)}
DEARDARAROTEDR R ODmRED AR CGENAEMEEEARARREARGEHGARARCARERODGRRARARARI R

60429800 K iii/iv

PREFACE

This publication describes features of CYBER Loader
Version 1.5, which is included as part of the
following operating systems:

® NOS 2 for the CONTROL DATA® CYBER 180 Series;
CYBER 170 Series; and CYBER 70 Models 71, 72,
73, and 74

e NOS/BE 1 for the CDC® CYBER 180 Series; CYBER

170 Series; CYBER 70 Models 71, 72, 73, 74; and

6000 Series Computer Systems

Extended memory for the CYBER 170 Model 176 is
large central memory (LCM) or large central memory
extended (LCME). Extended memory for all other NOS
or NOS/BE computer systems is extended core storage
(ECS) or extended semiconductor memory (ESM). In

The following manuals are of primary interest:

this manual, the acronym ECS refers to all forms of
extended memory unless otherwise noted. Program—
ming information for the various forms of extended
memory can be found in the COMPASS reference manual
and in the appropriate computer system hardware
reference manual.

You might also want to consult the NOS System
Information manual. It is an online manual that
includes brief descriptions of all NOS and NOS
product manuals. You can access this manual by
logging into NOS and simply entering the command
EXPLAIN.

The following publications are listed alphabeti-
cally within groupings that indicate relative
importance to the reader.

Publication
Publication Number NOS 2 NOS/BE
Common Memory Manager Reference Manual 60499200 X X
COMPASS Version 3 Reference Manual 60492600 X X
INTERCOM Version 5 Reference Manual 60455010 X
NOS Version 2 Reference Set, Volume 2
Guide to System Usage 60459670 X
NOS Version 2 Reference Set, Volume 3
System Commands 60459680 X
NOS Version 2 Reference Set, Volume 4
Program Interface 60459690 X
NOS/BE Version 1 Reference Manual 60493800 X
NOS/BE Version 1 System Programmer”s
Reference Manual 60494100 X

The following manuals are of secondary interest:

Publication
Publication Number NOS 2 NOS/BE
CYBER Record Manager Advanced Access
Methods Version 2 Reference Manual 60499300 X X
CYBER Record Manager Basic Access
Methods Version 1.5 Reference Manual 60495700 X X

60429800 K

v e

@ vi

United States sites can order CDC manuals from Control Data Corporationm,
Literature and Distribution Services, 308 North Dale Street, St. Paul,
Minnesota 55103. Other sites should order CDC manuals through their local

country sales office.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

The last page of this manual is a comment sheet. Please use it to give
your opinion on the manual”s usability, to suggest specific improvements,
and to report any errors., If the comment sheet has already been used, you
may mail your comments to:

Control Data Corporation
Publications and Graphics Division
P.0. Box 3492

Sunnyvale, CA 94088-3492

Additionally, if you have access to SOLVER, an online facility for
reporting problems, you can use it to submit comments about the manual.
Use LDR as the product identifier.

60429800 K

CONTENTS

1. INTRODUCTION 1-1 4. USER REQUESTS 4-1
Input Requirements 1-1 Calling the Loader 4-1
Types of Load Operations 1-1 Request Tables 4=2
Relocatable Load 1-1 LDREQ Macros 4=-2
Absolute Load 1-1 BEGIN Option 4~2
Basic Load 1-1 END Option 4=4
Segmentation 1-2 CMLOAD Option 4t
Overlays 1-2 ECLOAD Option bl
Capsules 1-2 EXECUTE Option 4=4
OVCAPs 1-2 NOGO Option 4-5
Calling the Loader 1-3 ENTRY Option 4-5
Control Statement Loads 1-3 DMP Option 4-5
Name Call Statements 1-3 PASSLOC Option 4-5
Loader Statements 1-3 User Call Loader Example 45
Completion Statements 1-3 LOADREQ (Request Basic Load) 45
Loader-Related Control Statements 1-3
User Calls 1-4
Loader Object Directives 1-4 5. DEBUGGING AIDS 5-1
The Loading Process 1-5
Loading and Relocation 1-5 TRAP Control Statement 5-1
Linking Programs and Satisfying Externals 1-5 TRAP Directives 5-1
Weak Externals 1-5 FRAME Directive Parameters 5-1
Field Length Determination 1-5 TRACK Directive Parameters 5-2
Load Map 1-5 TRAPPER Call Inserted Into User”s Program 5-5
Program Initiation 1-5 TRAP Error Conditions 5-6
Debugging Aids 1-5
Library Searching 1-5
Field Length Control 1-6 6. OVERLAYS 6~-1
. Control Statement Loads 1-6
Programs Loaded by CYBER Loader 1-6 Overlay Generation 6-1
NOS/BE System Programs 1-8 Overlay Levels 6-1
NOS System Programs 1-8 OVERLAY Directives 6-3
User Call Loads 1-8 Overlay Modules 6-3
Overlay Loads 1-8 Error Processing During Overlay Generation 6-5
Capsule and OVCAP Loads 1-8 Overlay Loading and Execution 6-5
Memory Allocation Rules 1-8 LOADREQ (Request Overlay Load) 6-5
Basic Loads and Capsule Generation Loads 1-8 Request Processing 6-7
User Call Loads and Overlay Generation Making LOADREQ Calls Compatible for
Loads 1-9 NOS and NOS/BE 6-8
Segment Generation Loads 1-9 Recommended Procedure for Overlay
Capsule and OVCAP Loads 1-9 Loading 6—9
Fast Overlay Loader 6-9
Fast Overlay Loading 6-10
2. LOADER CONTROL STATEMENTS 2-1 Load Overlay as Data 6~-10
Get Directory Entry 6-10
Statement Descriptors 2~1 Processing by the FOL Resident 6-11
Name Call Statement 2-1
LOAD Statement 2-3
LIBLOAD Statement 2-3 7. SEGMENTATION 7-1
SLOAD Statement 2-4
EXECUTE Statement 2-4 Organizing Segments 7-1
NOGO Statement 2-5 Assignment of Programs to Segments 7-2
SATISFY Statement 2-6 Assignment of Fixed Programs 7-2
SEGLOAD Statement 2-7 Assignment of Labeled Common Blocks 7-2
LDSET Statement 2-7 Assignment of Movable Programs 7-2
Internal LDSET Specifications 2-12 Segment Loading 7-3
Interactive Use 2-12 Duplication of Names 7-3
Segment Names 7-3
Program Names 7-3
3. LOADER-RELATED CONTROL STATEMENTS 3-1 Entry Point Names 7-4
LOCAL SAVE Block 7-4

MAP Statement 3-1 Rules for Referencing Common and Absolute

LIBRARY Statement 3-1 Blocks 7-4
REDUCE Statement 3-2 Satisfying of Externals 74
RFL Statement 3-3 SEGLOAD Control Statement 7-6

60429800 K vii

Directives

TREE Directive
INCLUDE Directive
LEVEL Directive
GLOBAL Directive
EQUAL Directive
COMMON Directive
END Directive

8. CAPSULES

Generating Capsules
GROUP Statement
CAPSULE Control Statement
Entry Point Control
Dynamic Loading and Unloading of Capsules
Loading Capsules
Unloading Capsules
Freeing Unused Memory
User Loading of Capsules
Linking User~Loaded Capsules
Delinking User-Loaded Capsules
OVCAP
OVCAP Directive
Loading and Unloading OVCAPs
Entry Table Generation
ENTHDR Macro

ENT Macro
APPENDIXES
A Standard Character Sets
B Error Messages and Codes
C Glossary
D Binary Tables
E Load Maps
INDEX
FHGURES

1-1 Examples of Valid Linkage Symbols
1-2 Field Length Algorithm for Nonsegmented
Programs
1-3 Field Length Algorithm for Segmented
Program
1-4 Normal Load Diagram
1-5 Load Diagram Containing TRAPPER
2-1 NOS and NOS/BE Control Statement
Processing
2-2 Name Call Statement Formats
2-3 Examples of Name Call Statements
2-4 LOAD Statement Format
2-5 LIBLOAD Statement Format
2-6 Examples of the LIBLOAD Statement
2~7 SLOAD Statement Format
2-8 EXECUTE Statement Formats
2-9 Examples of the EXECUTE Statement
NOGO Statement Formats
Examples of the NOGO Statement
SATISFY Statement Format
Examples of the SATISFY Statement
LDSET Statement Format
Examples of the LIB Option of the LDSET
Statement
Example of the NOREWIND Option of the
LDSET Statement
Example of the MAP Option of the LDSET
Statement

viii

R RO L

[L]

oooooocooooaooooo‘ooooooooooaoooom
OO UL S EWWN

A-1
B-1
c-1
D-1
E-1

o —
! i |
~ et

—
I T [
OO

NN LWLWWN

[

O\O\O\G\?\O\U\U\U‘
AP W N O

1

T
~i

6-8

Example of the USE Option of the LDSET

Statement 2-11
Examples of the SUBST Option of the

LDSET Statement 2-11
Examples of the OMIT Option of the

LDSET Statement 2~12
COMPASS LDSET Psuedo Instruction Format 2-12
Example of the LDSET Psuedo Imstruction 2-12
NOS/BE CCL Interactive Procedure File 2-13

MAP Control Statement Formats

LIBRARY Statement Formats

Examples of the LIBRARY Statement

REDUCE Statement Formats

RFL Control Statement Formats

Example of the RFL and REDUCE Statements

COMPASS LOADER Macro Call Formats

General Format of an LDREQ Macro

LOAD, LIBLOAD, SLOAD, and SATISFY
Option Formats

LIB, MAP, PRESET, PRESETA, USEP, USE,
SUBST, OMIT, FILES, PD, and PS
Option Formats

BEGIN Option Format

END Option Format

CMLOAD Option Format

ECLOAD Option Format

EXECUTE Option Formats

NOGO Option Format

ENTRY Option Format

DMP Option Format

PASSLOC Option Format

User Call Loader Example

LOADREQ Macro Format

TRAP Statement Format

TRAP Directive Format

FRAME Directive Examples

TRACK Directive Examples

TRAPPER Call Internal Format

Tracked Subroutine

Overlay Structure

OVERLAY Directive Formats

Examples of Overlay Generation

LOADREQ Macro Format (Overlay Load)

LOADREQ Table Internal Format

LOADREQ Table Internal Format After

J-\-:-\ucfwuww
N s L2 LN PO e

B~
§
W

!

[U L UL

G\G\G\O\O\knu\mmwwli\#\#\#\bbb#\b#\bb
~N~NOUMSsoOOTOUVMN O OO WMULWU S DWW

Overlay Load Under NOS 68
LOADREQ Table Internal Format After

Overlay Load Under NOS/BE 6-8
Calling Sequence for Loading Overlays

by the FOL 6-10
Calling Sequence for Loading Data

Overlays 6—10

Calling Sequence for Obtaining a

Directory Entry 6-1
Sample Tree Structure 7-1
Examples of LOCAL SAVE BLOCK Creation 7-4
Example of Satisfying Externals 7-5
SEGLOAD Statement Format 7-6
Example of a Segmented Load 7-6
TREE Directive Format 7-8
Diagram of Sample Expressions Used

in the Specification Field of the

TREE Directive 7-9
Example TREE Directives 7-9
Grouping of TREE Directives 7-10
INCLUDE Directive Format 7-11
Example TREE Directive Showing

Assignment of Subroutine SUB 7-11
Example of the INCLUDE Directive 7-11
LEVEL Directive Format 7-11
Example of the LEVEL Directive 7-12
Example of Several Segments Loaded

at the Same Level 7-12
GLOBAL Directive Format 7-14

60429800 K

8-8 Calling Sequence for Linking and TRACK Directive Parameters

Relocating Capsules Phrases for TRACK Parameters

8-5
8-9 Calling Sequence for Delinking Capsules 8-5 Parameter Area Fields Changed by
8-10 OVCAP Directive Format 8-6 Overlay Load Under NOS/BE
8-7
8-7

Example of the GLOBAL Directive 7-14 8~13 ENTHDR Macro Option Format
EQUAL Directive Format 7-14 8-14 ENT Macro Option Format
COMMON Directive Format 7-15
END Directive Format 7-15
GROUP Statement Format 8-1
CAPSULE Statement Format 8-1 TABLES
Examples of Capsule Generation 8~2
Calling Sequence for Loading Capsules 8-3 1-1 LDSET Option Summary
Calling Sequence for Unloading Capsules 84 1-2 LDREQ Option Summary
Calling Sequence for Compacting Group 2-1 LDSET Options
Directories 84 5-1 TRAP Directive Syntax
8-7 Calling Sequence for Unloading Group 5~2 FRAME Directive Parameters
Directories 8-4 5~3 Phrases for FRAME Parameters
5-4
5-5
6-1

1
DN —

8-11 Calling Sequence for Loading OVCAPs SEGLOAD Directive Syntax
8-12 Calling Sequence for Unloading OVCAPs Segment Status Using LEVEL Directive

~1 ~J

60429800 K

[o e}
~~

Lot o o=
AW NN S

INTRODUCTION 1

Compilers and assemblers generate object code that
needs further processing before it can be executed.
The loader is the system program that provides for
the placement of object code into memory and makes
the object code ready for execution. The loader
also performs load-related services such as
generation of a load map, presetting of unused
memory to a user—specified value, and generation of
overlays, segments, capsules, and OVCAPs.

INPUT REQUIREMENTS

Loader input is obtained from one or more local
files and/or libraries. File names beginning with
Zs (for example, ZZZZZDF) are reserved by the
operating systems for system use., The user should
refrain from using file names beginning with Zs.

It should be noted that parts of both the operating
system and the product set use special characters
such as the $ (dollar sign), the = (equals sign) and
the . (period). TUse of these symbols can cause
naming conflicts. To avoid this conflict, it is
recommended that names for entry points, common
blocks, and program modules (a main program, sub-
program or function) follow the appropriate oper—
ating system conventions used for local file names.

Entry point names, common block names, and program
names used during load operations are often
referred to as Linkage Symbols. In addition to
conforming to any syntax requirements for the
operating system and compiler or assembler which
generates the object code, they must also conform
to the loader requirements for such symbols. The
loader requirements are as follows:

® A name must be no longer than seven characters
in length.

[The first character must be alphabetic.

® If a name contains any special characters, such
as non-alphanumeric, then the entire name must
be delimited with dollar signs.

® If there are any dollar signs as part of the
name, then two dollar signs must appear in the
name where each dollar sign is to appear, and
the entire name must be delimited by dollar
signs.

Figure 1-1 shows examples of valid linkage symbols.

Example | represents the symbol SYMOOOl. Example 2
represents the symbol CTL.RM. Example 3 represents
the symbol CTL$VAL.

TYPES OF LOAD OPERATIONS

The type of loading that takes place during a load
operation is dependent upon program size and
program organization. For example, the input to

60429800 K

Example 1:
SYM0OOO1

Example 2:
$CTL. RS

Example 3:

SCTLSSVALS

Figure 1-1. Examples of Valid
Linkage Symbols

the loader can be either one or more relocatable
programs or a single absolute program. When the
input to a load operation is one or more
relocatable programs, the loading operation that
takes place is called a relocatable load. When the
input to a load operation is a single absolute
program, the loading operation that takes place is
called an absolute load.

A program can be too large to be efficiently loaded
into central memory at one time. A user might,
therefore, wish to divide a program into either
overlays, segments, OVCAPs, or capsules to utilize
central memory (CM) more efficiently.

RELOCATABLE LOAD

A relocatable load involves the allocation of one
or more contiguous storage areas known as blocks.
These blocks are defined by object programs and
contain machine instructions that require
relocation. They do not, however, specify origin
addresses. During loading, the loader establishes
origins for all the blocks and adjusts all
addresses accordingly. It is, therefore, possible
to load together object programs produced by
independent compilations and assemblies.

ABSOLUTE LOAD

An absolute load consists of loading one or two
blocks, one of which must reside in central memory
and one of which is optional, and, 1if present,
resides in extended core storage (ECS). The
origins of the blocks are specified in the absolute
program. Absolute loading involves no relocation
of addressesor linking of externals because this is
done when the absolute image is built.

BASIC LOAD

A basic load is ome in which all of the object code
is loaded into memory at the same time, resulting
in a single core image. Most programs are loaded
in this manner because they are relatively small
compared to the amount of available memory.

SEGMENTATION

For very large programs, basic loading might use

memory inefficiently because much of central memory
could be occupied by programs not currently in

execution. Also, a program could be too large to
fit in the available memory. For these reasons, a
user might decide to divide a program into several
small portions called segments.

With segmented loading, only certain portions of
the executing program need to be in central memory
concurrently because the total program consists of
more than one segment. Different segments reside
in the same area of memory at different times.
Depending on execution requirements, different
segments are loaded and/or unloaded automatically.

Segmented loading is initiated by the execution of
a SEGLOAD control statement that causes SEGLOAD
directives to be processed. The SEGLOAD directives
contain information necessary for segmentation.

Some features of segmentation are:

e After segments are generated, their loading is
automatic.

e References between segments can be either
upward or downward in memory.

] Object programs that are to be included in
segments can be selected from wmore than one
file.

[} The job field length can be adjusted
dynamically during program execution as
segments are loaded and unloaded if the user so
desires.

OVERLAYS

Overlays are an alternative to segmentation.
Overlay generation 1is initiated when an OVERLAY
directive is encountered on a load file. Loading
of overlays resulting from overlay generation 1is
not automatic. A currently loaded overlay must
explicitly request the loading of other overlays as
needed.

Some features of overlays are:

® Three levels of overlays are possible. One
main overlay 1is allowed at the lowest level.
Up to 64 overlays are allowed at the primary
level. Up to 64 overlays are allowed at the
secondary level for each overlay at the primary
level.

® The main overlay can be loaded in various ways;
higher level overlays must be loaded by an
explicit call from a currently loaded overlay.

® Memory references between one overlay and
another can be downward only (except for the
initial entry to a just-loaded overlay). That
is, programs in the main overlay cannot
reference entry points in any other overlay;
programs in a primary overlay can reference
entry points in the main overlay; and programs
in a secondary overlay can reference entry
points in either the main overlay or the
associated primary overlay.

B2

The NOS user should be aware of a condition that
can occur when using 1libraries in the global
library set. When a main overlay is loaded from a
library, all subsequent overlay loads are from that
same library.

If multiple main overlays (and their associated
primary and secondary overlays) reside on the same
library, a request to load an overlay for program A
could result in the load of a primary or secomdary
overlay belonging to program B. This load could
occur because LIBGEN does not diagnose duplicate
program names during library generation. Thus,
duplicates could be created unknowingly. Knowledge
of this condition is especially inportant for NOS
users of libraries containing execute~only files
because the load map is always suppressed for such
files.

CAPSULES

The Fast Dynamic Loading (FDL) capability provides
a way for the COMPASS user to load specially
processed relocatable code during program
execution. Before routines can be loaded by FDL,
the relocatable code must be formed into capsules
that can be loaded at arbitrary addresses. The
process of forming routines into capsules is called
capsule generation. Capsule generation takes place
during a load operation when one or more load files
are read and grouped according to directives
provided by the user.

Some features of capsules are:

® Every capsule must be a member of a group,
which provides a means of assoclating related
capsules with each other.

® Capsules must be placed in libraries before
they can be loaded by an executing program.

[An executing program must call an FDL
subroutine, specifying a group name and a
capsule name, to load or umload a capsule.

] Entry points and external references of
capsules in the same group are automatically
linked or delinked when the capsule is loaded
or unloaded by the FDL subroutine.

® Statically 1loaded «code can interface with
dynamically loaded code through the wuse of
PASSLOC and/or ENTRY tables.

[) A capsule can also be loaded by the basic
loader in a relocatable load sequence.

OVCAPS

A special type of capsule called OVCAF (overlay-
capsule) provides a way for overlayed programs to
load specially processed relocatable code during
program execution via FDL. An OVCAP is analogous
to a primary overlay because common block and entry
points of the preceding main overlay are used for
linking. An OVCAP, therefore, is not a standalone
entity; it requires an assoclated main overlay to
be in central memory for proper execution.

60429800 K

OVCAP generation takes place during a load sequence
that is already known to be an overlay generation
load sequence. Object directives encountered in
the load input stream instruct the loader to
generate OVCAPs.

OVCAPs have the same features as capsules except
that they cannot be loaded by the basic loader in a
relocatable load sequence.

CALLING THE LOADER

A load operation is initiated by control statements
executed within a job stream or by user calls exe-
cuted within a running program. A load operation
can be further affected by loader object directives.

CONTROL STATEMENT LOADS

Most loads are initiated by control statements that
are executed within a job stream. These statements
must conform to the syntax requirements of the oper-
ating system defined in its reference manual. The
types of control statements are name call state—
ments, loader statements, and completion statements.

Name Call Statements

A name call statement specifies, as its keyword,
either a file to be loaded or an entry point in
some program to be loaded. If the initial
statement in a sequence 1Is a name call statement,
it is the only statement in the loader sequence.

Loader Statements

A loader statement specifies an explicitly defined
loader command that is to be performed. When a
loader statement is encountered, the system reads
and translates into loader requests all subsequent
control statements until it encounters a completion
statement. The loader statements are as follows:

e LOAD

Specifies files from which object programs are
to be loaded

® SLOAD

Specifies a local file from which selected
programs are to be loaded

® SEGLOAD
Specifies that the load 1is to be a segmented
load

e LIBLOAD

Specifies a 1library from which one or more
programs are to be loaded

] SATISFY
Specifies libraries that are to be used to

satisfy externals prior to normal satisfaction
at load completion

60429800 K

@ LDSET
Specifies user control of a variety of load

operations for the current load only; the
options are summarized in table 1-1

L] GROUP

Specifies the name of a capsule group that is
to be generated

e CAPSULE

Specifies the name of a capsule that is to be
generated

Completion Statements

The loader completion statements cause completion
of a load operation initiated by a loader
statement. The loader completion statements are as
follows:

e EXECUTE

Specifies that execution of the loaded program
is to take place after load completion

e NOGO

Specifies that execution of the loaded program
is not to take place after load completion

When a name call statement is encountered within a
load sequence, it has the same effect as a load
completion statement; that is, it causes completion
of the preceding load operation.

LOADER-RELATED CONTROL STATEMENTS

Some control statements that are processed by the

operating system can also affect loader
performance. These control statements are as
follows:
e MAP

Specifies the default option for load maps for
load sequences requested by the job

® LIBRARY
Specifies a set of global 1libraries to be
searched for externals and name call

statements, and the order in which the
libraries are to be considered

[} RFL

Specifies central memory (CM) field length for
program execution

[REDUCE

Controls automatic reduction of execution field
length

] TRAP
Specifies that the debugging aids execution

time routine, TRAPPER, is to be loaded with the
next relocatable load sequence

1-3 fi

TABLE 1-1. LDSET OPTION SUMMARY

Option Function

MAP Specifies the type of load map to
be generated

PRESET, Specifies the values to which un-

PRESETA used memory is set prior to exe-
cution of the loaded program

ERR Specifies method of handling
loader errors

REWIND, Alters the default option for re-

NOREWIN winding of files prior to loading

USEP Specifies that the indicated
object programs are to be loaded
whether or not they are needed to
satisfy external references

USE Forces loading of programs con-
taining the indicated entry
points to assure that specified
entry points are included in the
load

SUBST Changes external references to
entry point names to use other
entry point names instead

OMIT Specifies entry point names that
are to remain unsatisfied whether
or not the module containing
these entry point names is loaded

FILES, Permits CYBER Record Manager

STAT users to ensure that library
programs are loaded for the
processing of specified files

EPT, Controls the availability of

NOEPT entry points within capsules and
OVCAPs

LIB Specifies libraries that are to
make up the local library set

PD Specifies print density for load
map

PS Specifies page size for load map

COMMON Specifies common blocks to be
made available to all segments
which reference them in a SEGLOAD

USER CALLS
User calls allow for the initiation of load

operations from within a running program.
to call the loader directly,

the necessary request tables.

The request tables are formatted by use of

COMPASS LOADER macro and
LDREQ

allowable
table 1-2.

| B

the LDREQ macros.

macro options are listed

In order
the user must format

the
The
in

TABLE 1-2. LDREQ OPTION SUMMARY

Option Function

BEGIN Specifies the beginning of a sequence
of LDREQ calls

END Specifies the end of a sequence of
LDREQ calls

LOAD See corresponding control

LIBLOAD statements

SLOAD

EXECUTE

NOGO

SATISFY

LIB See corresponding LDSET options

MAP in table 1-1

PRESET/

PRESETA

USEP

USE

SUBST

OMIT

FILES/

STAT

CMLOAD Specifies that load input is to be
fetched directly from central
memory

ECLOAD Specifies that load input is to be
fetched directly from extended core
storage (ECS).

ENTRY Specifies entry point names that are
currently being loaded and/or have
been loaded previously for which an
address is to be supplied

PASSLOC Specifies addresses needed by the
load during execution of overlayed,
segmented, or encapsulated programs

LOADER OBJECT DIRECTIVES

Loader requests encountered within the load input
stream are referred to as loader object
directives. These requests are processed as they
are encountered during the physical loading process.

Object directives can appear either in the form of
LDSET loader tables or in the form of card images

in the same manner as their control statement
equivalents. The following directives are
permitted:
e OVERLAY

Specifies overlay generation
® OVCAP, GROUP, CAPSULE

Controls capsule or OVCAP generation

60429800 K

THE LOADING PROCESS

The input to the loader ecan be either absolute
overlays or relocatable object code. The input is
fetched from local files and libraries.

The loading process involves the following sequence
of events:

1. Read and check all control statements in the
load sequence.

2. Process all control statements in order
(includes loading and relocating programs).

3. Search libraries to satisfy externals.
4, Determine execution field length.
5. Write load map.

6. Initiate program execution.

LOADING AND RELOCATION

The loading process by which the loader assigns a
portion of memory to each program and adjusts the
addresses accordingly is called relocation.

For absolute overlays, memory was allocated at the
time the absolute image was built. Thus, loading
of absolute overlays does not require relocation.

Relocation is necessary for relocatable object code
because the object code coansists of independent
programs that have no fixed origin and no addresses
in references to common blocks.

LINKING PROGRAMS AND SATISFYING
EXTERNALS

A program can reference common blocks and other
externals. The loader must match up, by name,
external references with entry points prior to
program execution. In the process, addresses of
external references are set accordingly. This
operation is known as satisfying externals.

The loader uses entry points that were loaded from
the load files to satisfy external references.
Then, the loader searches libraries for entry
points that are still unsatisfied. For example,
the loader might sedrch the FORTRAN library for the
entry point SQRT. (See the detailed discussion of
library searching later in this section.)

WEAK EXTERNALS

Normal externals force the loading of routines to
satisfy their requirements. Under certain
circumstances, it might be desirable to link to a
routine only if another external forced it to
load. When this is the case, a weak external is
used instead of a normal one. The program can
check the presence or absence of the external
linkage by checking the 217 bit in the
referencing instruction. If the bit is set, the
external was not satisfied.

This mechanism is used, for example, in utility
routines which allow the user (via LDSET,USE) to

60429800 K

determine the routines actually loaded. Such
routines can test for the presence or absence of
loaded modules and react accordingly.

FIELD LENGTH DETERMINATION

The field length (FL) is the amount of central
memory available for execution of a program. Field
length assignment is normally the function of the
operating system; however, there are circumstances
in which the user might wish to override this
facility. (See the detailed discussion of field
length assignment later in this section.)

LOAD MAP

The load map is a printout showing how memory is
allocated by the loader. The load map can be
printed out automatically, depending on the
installation option, or under control of the MAP
options of the LDSET statement and LDREQ macro call.

Load maps are available only on relocatable loads.
Under NOS, the load map is always suppressed for
execute-only files.

PROGRAM INITIATION

After writing the load map, 1if any, program
execution is begun automatically, unless the load
sequence 1s terminated by a NOGO control statement.

DEBUGGING AIDS

The loader provides an execution time routine,
TRAPPER, that can be loaded with the user”s program
and used as an aid to debugging.

The TRAP control statement requests that TRAPPER be
loaded. The statement constitutes a separate load
sequence and affects the next relocatable 1load
sequence; it must, therefore, precede all the
statements in the load sequence to which it
applies. The TRAP statement has two directives
that specify the type of debugging information that
is to be supplied to the user., These directives
are FRAME and TRACK.

The FRAME directive requests snapshot dumps of
registers and areas of memory at selected locations
within the program.

The TRACK directive requests information needed to
analyze a series of instruction executions within a
program. This information comsists of the contents
of locations and registers after execution of
instructions in the designated range.

The TRAPPER routine is discussed in section 5.

LIBRARY SEARCHING

libraries are searched either to satisfy externals
or to locate programs called by name call
statements. (Weak externals are ignored.) Two
lists of 1libraries are used by the loader: the
global library set and the local library set. One
additional library SYSLIB can also be searched.

1-5

Global 1libraries are introduced by a LIBRARY
statement (see section 3). They remain in effect
from the time a LIBRARY statement is first
encountered until a new LIBRARY statement is
encountered.

Local libraries are introduced by the LIB parameter
on the LDSET loader statement, or the LIB parameter
on the LDREQ macro, or a LIB directive in LDSET
tables contained within programs being loaded.

The order of search for externals is as follows:
1. The global library set
2. The local library set

3, SYSLIB (not searched by default for capsule or
OVCAP generation)

The loader”s order of search for name call
statements is as follows:

1. Local files

2. The global library set

3. The local library set

4. NUCLEUS library (NOS/BE only)

Other components of the operating system process
name call statements differently, as discussed in
section 2.

When a library search begins, the first library in
the library set is searched for programs needed to
satisfy all externals that can be satisfied from
the library. These programs are loaded. If new
unsatisfied externals are generated by this
loading, the same library is searched again in an
attempt to satisfy any new unsatisfied externals.
The loader continues to search the same library
until no new externals are loaded. The process is
repeated for each library in turn.

After the last library is searched, the loader goes
back to the first library automatically if all
externals are not yet satisfied. This circular
search continues as long as necessary. The loader
stops searching, however, as soon as either all
externals are satisfied, or a complete circular
search establishes that no more externals can be
satisfied from any of the libraries.

If an internal LDSET(LIB=xxx) table is encountered
while loading a program, the search of the current
library is completed in the normal way. At the end
of the search of the current library, however, the
library set is altered by adding the new library at
the end of the local library set (if it is not
already a part of the set) before the search
continues with the next library.

If an LDSET(LIB) table with no library 1list is
encountered while loading a program, the search of
the curreant library is completed in the mnormal
way. However, at the end of the search of the
current library, the local libraries are removed
from the library set and the search continues from
the beginning of the remaining (global) library
set, Under NOS, if the load consists of a name
call statement that specifies an execute-only file,
all wuser libraries are skipped during library
searches.

1-6

The following rules for duplication of program or
entry point names apply to loading in general.

[Duplicate programs:

Are skipped, causing a nonfatal error, when
the second or subsequent occurrence is from
a load file

Are loaded, causing a nonfatal error, when
the second or subsequent occurrence is
during the satisfying of externals under
NOS/BE

Are skipped, with no message being issued,
when satisfying externals under NOS

e Duplicate entry point names are ignored; the
loader issues a nonfatal error.

When a user library is created under NOS with the
NX=n parameter of the LIBGEN control statement
either omitted or specified as zero, the satisfying
of externals from libraries can result in duplicate
entry points. These duplicate entry points occur
because all dependent programs are cross-linked.
This ecross-linkage causes the loader to load all
dependent programs without checking for duplicate
entry points. Refer to the NOS reference manual ,
volume 1 for more information about the NX
parameter of the LIBGEN control statement.

FIELD LENGTH CONTROL

Normally, the user need not worry about the amount
of central memory assigned to the job because this
is automatically handled by the loader. The
following subsections describe how the loader
assigns memory for job execution.

CONTROL STATEMENT LOADS

For control statement loads, the loader
automatically obtains the memory necessary for the
loading operation. (NOS/BE users should mnot use
RFL statements that specify 1less than 14000g
words because this prevents initiation of the
loader.)

Programs Loaded by CYBER Loader

When the loader transfers control to a program to
begin execution, it sets the field length according
to the algorithm illustrated in either figure 1-2
(for nonsegmented programs) or figure 1-3 (for
segmented programs).

If a job is in REDUCE mode, the setting of field
length is controlled. All jobs start in REDUCE
mode except jobs running under NOS/BE that have (M
on the job statement. A job gets out of REDUCE
mode by issuing a REDUCE(-) statement for NOS, or
an RFL or REDUCE(OFF) statement for NOS/BE. The
use of REDUCE{(-) is inefficient and is not
recommended . The job returns to REDUCE mode by
issuing a REDUCE statement for NOS and NOS/BE batech
jobs, or a REDUCE(ON) statement for NOS/BE INTERCOM
jobs.

60429800 K

Reduce
mode

: Legend:
START
PFL Program field length, as read
NOS/BE_PATH NOS PATH from the Library.
= 0 or nonexistent FLO Field length ov?rr1de bit, as

read from the Library.

RFL Running field length (also
called nominal field length).

EFL Execution field length; deter-—

mined by taking the last word
address of the load, including
btank common, and rounding up
to a 100g-word multiple by
adding 102g and truncating

the two rightmost octal digits.

F HHA Highest high address; maximum
X = PFL \ field length needed for execu-
tion; always specified in 5400
(EACPM) table.
X = RFL MFL Maximum field length allowed
this job.
Absolute Relocatable
HHA E
available
Loaded Library
frtf///’,
X = HHA File =1
= ‘\\\\\ifo
1= 0 or nonexistent
X = MAX
(EFL, RFL)

This flowchart defines the algorithm used to
determine the field length used for execution
of a loaded program. The PFL and the FLO
parameters exist only for NOS/BE.

X = EFL
\
Set FL to
MIN (X, MFL)

END

Figure 1-2.

60429800 K

Field Length Algorithm for Nonsegmented Programs

START

Reduce :?;:g; FL = Lwa+1
Mode used No of root
FL is
. adjusted
FL = RFL F:}'f‘bt“a? automatically
value commgz as segments
are loaded
and unloaded

‘ = END

Figure 1-3. Field Length Algorithm
for Segmented Program

The field length is also controlled by either the
value of the last RFL statement or the CM parameter

on the job statement, if no RFL statement is
present. (A default is used if neither an RFL
statement nor the CM parameter is present.)

Under NOS, do not use REDUCE(-) without an RFL
statement because the RFL value is zero if no RFL
statement is present and there is no CM parameter
on the job statement.

The MFL statement sets the RFL value to zero and
the maximum available field length for loading.

NOS/BE System Programs

The NOS/BE operating system uses the same algorithm
as the loader (see the flowchart in figure 1-2)
except that the test for HHA is always false
because HHA is not recognized.

NOS System Programs

For an operating system load under NOS, the first

of the following values that is available is used

for field length assignment:

@ *FL value from LIBDECK or SYSEDIT input

@ Value of either the RFL= or MFL= entry point
(see the NOS reference manual, volume 2, for a

detailed discussion)

e RFL value from CM omn the job statement or RFL
statement

@ HHA value from the 5400-table header

@ System default value

USER CALL LOADS

Normally, adequate field 1length for a user call
load must be provided by a MEMORY macro call prior
to calling the user call loader. This is not
necessary, however, if the Common Memory Manager
(CMM) is used to allocate memory (as explained in
section 4).

OVERLAY LOADS

If the CMM parameter is present oun the LOADREQ
macro call, CMM ensures that adequate wemory 1is
available to load the overlay. Otherwise, enough
memory must be available prior to the LOADREQ
call. This normally requires no special action by
the user because when the loader sets the execution
field length for the main overlay, it ensures that
there is enough central memory to load all higher
level overlays.

CAPSULE AND OVCAP LOADS

Memory assigmment is always handled by MM for
capsule and OVCAP loads.

MEMORY ALLOCATION RULES

The discussion in the following subsections applies
to relocatable loads only. Memory is allocated for
absolute programs when the ABS image is built.

BASIC LOADS AND CAPSULE
GENERATION LOADS

For basic loads and capsule generation loads,
programs are assigned memory in the order in which
they are encountered. This means that the programs
from load files are assigned memory first, followed
by programs from libraries. Programs from
libraries are loaded randomly, and the order in
which the object programs are loaded can vary from
run to run.

Labeled common blocks are interspersed within the
program. Each block is placed before the first
program that references the block. Blank common is
placed at the end of all programs.

Figures 1-4 and 1-5 show how programs can be
assigned in memory. Figure 1-4 shows a normal load
diagram of a nonsegmented program. Figure 1-5
shows a load diagram of a nonsegmented program in
which the TRAPPER debugging aid is included.

NOTE

Data is normally loaded into labeled common
blocks by only one of the programs
declaring the block. The data is normally,
but not necessarily, loaded by the first
program declaring the labeled common block
(for example: a COBOL or FORTRAN main
program) . If more than one program
contains text to be loaded into the same
COmMmOTL block and the text contains
addresses to be relocated, then the
addresses are relocated each time the text
is loaded. This relocation causes
unpredictable (such as areas being
overwritten) and usually fatal results.

60429800 K

CHM~Managed Memory
Blank Common
PROGD
PROGC

Labeled Common
(Referenced in PROGC)

PROGB
PROGA

Labeled Common
(Referenced in PROGA)

RA + 111g
EACPM Table Header HWords
RA + 100g
Communication Area
RA

Figure 1-4. Normal Load Diagram

USER CALL LOADS AND OVERLAY
GENERATION LOADS

Memory allocation for user call loads and overlay
generation loads is the same as described for basic
loads, except for the assignment of common blocks.
If a common block is first declared on the original
basic load (for a user call load) or in a lower
overlay (for overlay generation load), a new copy
of the common block is not created. The first copy
of the common block is used by all programs.

SEGMENT GENERATION LOADS

For segment generation loads, programs are assigned
to various segments according to directives
supplied by the user. These rules are discussed in
section 7.

60429800 K

CMM=Managed Memory
Blank Common
PROGD
PROGC

Labeled Common
(Referenced in PROGC)

PROGB
PROGA

Labeled Common
(Referenced in PROGA)

TRAPPER
RA + 111g
EACPM-Table Header Words
RA + 100g
Communication Area
RA

Figure 1-5. Load Diagram Containing TRAPPER

Labeled common blocks are duplicated in every
segment from which they are referenced unless they
are declared as COMMON or GLOBAL. If declared as
GLOBAL, labeled common blocks are assigned to the
segment that specifies labeled common blocks;
however, they are addressable by all segments other
than those that actually overwrite them. 1f
declared as COMMON, labeled common blocks are moved
to the nearest common ancestor of all segments that
reference them. Blank common 1is assigned at the
end of all segments.

CAPSULE AND OVCAP LOADS

Any capsule or OVCAP that is loaded during
execution 1is placed in the area of memory
controlled by CMM.

LOADER CONTROL STATEMENTS 2

Most 1loads are initiated by control statements.
These statements wmust conform to the syntax
requirements of the operating system defined in the
appropriate reference manual.

STATEMENT DESCRIPTORS

The three types of control statements are name call
statements, loader statements, and completion
statements. (The completion statements, EXECUTE,
and NOGO are also loader statements; name call
statements also function as completion statements.)

If the initial statement in a sequence is a name
call statement, it is the only statement in the
loader sequence; the system is able to initiate and
complete the 1load operation without additional
control statements.

If the initial statement is a loader statement, the
system reads and translates into loader requests all
subsequent control statements until it encounters
one of the following completion statements:

® EXECUTE
® NOGO
° name call

The name call statement is a completion statement
when it occurs within a load sequence. It causes
completion of the load sequence in effect at the
time it is executed.

During the search for a load sequence completion
statement, control statements that are normally
operating system control statements (for example,
LIBRARY, COMMENT, REWIND) are interpreted as name
call statements. That is, if an operating system
control statement 1is encountered during a load
sequence, the system attempts to complete the load
sequence as if a name call statement were executed.
Exceptions are MAP and REDUCE, which the system
recognizes inside the loader control statement
sequence for compatibility with previous systems.
The DMP statement is also recognized; however, it
is ignored and a dayfile message is issued. (The
MAP, LIBRARY, REDUCE, and RFL control statements
are discussed in section 3.) An EXIT statement
must not appear inside a load sequence.

Upon encountering the last loader control statement
in the sequence, the loader performs the requested
load operations by interpreting the table of loader
requests resulting from control statements. Figure
2-1 shows how control statements are processed by
both the operating system and the loader.

NAME CALL STATEMENT

A name call statement specifies either a file, or
on NOS/BE, an entry point name within a program
that is to be loaded into central memory. In
response to a name call statement, the system is

60429800 K

able to initiate and complete a load operation.
The format of the name call statement is shown in
figure 2-2.

The loader determines the name type, as follows:

l. The 1loader searches the 1list of local files
belonging to the job., If it finds the name in
the 1list, it processes the call, On inter-
active name call loads where the name is the
same as a system routine, the system routine is
loaded and executed.

2. The loader checks the local library set for an
entry point identical to that on the name call
statement. If any library in the local library
set contains a program that has an euntry point
the same as the name call, the loader loads the
program, completes the load, and begins
execution at the entry point name.

The loader searches the libraries in the
sequence specified for the library set. 1If the
name is in more than one of the libraries, the
loader uses the first one it encounters. On
NOS/BE, this process is continued for the
global library set.

3. The loader checks the system library NUCLEUS on
NOS/BE, and the central library directory omn
NOS, for an entry point or a program name
identical with that on the name call statement.
If it finds the program containing the entry
point, the loader loads the program, completes
the load, and begins execution at the entry
point,

Characteristics of the load differ according to
whether the call is for a file name or an entry
point name.

The file name call completes a loading process and
initiates execution. The call can be interpreted
as specifying a basic load, an overlay generation,
or a segment generation.

The entry point name call statement causes loading
and execution of a program containing the named
entry point. The loader sequence results in a basic
load; no overlay generation, capsule generation, or
segmentation is possible.

Parameters on name call load statements are passed
to the loaded program. Figure 2-3 shows examples
of name call statements.

On NOS, if the LOAD involves an execute-only file,
the loading of that file must be specified by a
name call statement, and the load sequence must not
include any other statements which specify loading.

In example 1, object programs from the files X and
LGO are loaded. The resulting combined program is
executed. Execution begins at the last transfer
address encountered in the loading of object pro-
grams from files X and LGO.

(smarT)
O—

Read
control
statement

Special Perform
name Yes function

No

NOS/BE
INTERCOM
user?

OPERATING SYSTEM

CYBER LOADER

Is
program
in system No
2
Yes
Local Load and
file? Yes execute
No
PP
Yes zatLTT under Perform
NOS/BE function
2
No
Load and
execute Was
LoaderTﬁ it NOGO or
Statement Yes EXECUTE
No

Read

Operating control

NOS system NoS/BE statement
Is . Was l
program global Librar¥:>
in system No <‘\set decLared?Yesl Load and
2 i execute
Yes No I
Is
ERR
toad and (Or) program I, Loader
in system
execute { Nof Yes statement?TT
2
Yes i .
No
i
Load and i
execute H Load and
i execute
TSpeciaL names: l
NOS: CTIME, RTIME, STIME i
NOS/BE: ACCOUNT, COMMENT, LIMIT, LOGIN, i program _| Load and
MACHINE, MODE, RFL, SUMMARY, SWITCH, and jn system Yes fexecute
Tt all permanent file control statements = i o ?
NOS/BE PP calls: ABS, APR, CKP, DIS, DMP, i I o f
4 and LOC 208 °
Loader statements: CAPSULE, EXECUTE, GROUP, o] -
LBSET, LIBLOAD, LOAD, NOGO, SATISFY, i ERROR
SEGLOAD, and SLOAD §

Figure 2-1. NOS and NOS/BE Control Statement Processing

60429800 K

name.

name (pq o a.,Pp)

name Standard file name, or entry point
name; one through seven characters.

P Parameters to be passed to the
Lloaded program. Specific require—
ments are according to the needs of
the program. Specific parameter
formats depend on the language that
generated the program; they are
described in the language reference
manual.

Figure 2-2. Name Call Statement Formats

Example 1:

LOAD (X)
L60.

Example 2:

HIJ (A,B)

Figure 2-3. Examples of Name Call Statements

In example 2, a utility routine in the library is
in absolute form and has HIJ as an entry point.
The name call statement causes the loader (on
NOS/BE) to load the associated absolute overlay
and, after passing parameters A and B, to begin
execution at entry point HIJ.

LOAD STATEMENT

In response to a LOAD statement (figure 2-4), the
loader performs a load of object programs from each
of the files specified in the sequence. If the
LOAD statement specifies loading of an absolute
overlay, only one file can be specified. Loading
of an absolute overlay must be followed by an
EXECUIE statement. The loader terminates reading
of programs from a file when it finds an empty
record (except under NOS), an end-of-file, or an
end-of-information.

Consider the following LOAD statement:
LOAD(REDDOG, LOG/R, PLUM/NR)

This statement requests that object programs be
loaded from files REDDOG, LOG, and PLUM. File
REDDOG is either rewound or remains at its current
position, depending on the rewind default; file LOG
is initially rewound; file PLUM is loaded from its
current position. Following the load, the next
operation that takes place (possibly execution)
depends on the next control statement in the loader
sequence.

60429800 J

LOAD(LfNq puaa, Ling)

Lfn; Name of file, optionally accompanied
by a rewind indicator. Specifica-
tion of a nonexistent or empty file
results in a fatal error.

Lfn The rewind indicator is
absent. Except for the
INPUT file, the file is
rewound unless this default
is changed, either by an
LDSET(NOREWIN) or by instal-
lation option. INPUT cannot
be rewound by default.

Lfn/R Forces rewind prior to
Loading. If rewind of INPUT
is explicitly requested (by
the R subparameter), the
Loader rewinds INPUT and
makes no attempt to skip
over the control statements.

Lfn/NR Inhibits rewind prior to
Lloading.

Figure 2-4. LOAD Statement Format

LIBLOAD STATEMENT

The LIBLOAD statement (figure 2-5) specifies that
the loader is to load one or more programs from a
particular library. Programs are specified through
entry point names.

LIBLOAD(Libname,eptnameq,...,eptname,)

Libname The name of the Llibrary containing
object programs having the specified
entry point names. The Llibrary must
exist as either a user Llibrary
(Local file) or a system Library.

eptname; Entry point names. If more than one

entry point name refers to the same
object program, fewer programs than
names specified are loaded.

Figure 2-5. LIBLOAD Statement Format

The LIBLOAD request can specify entry points of
either relocatable programs or absolute programs.
However, relocatable programs and absolute programs
cannot be loaded together; and for an absolute
load, only one program can be loaded. Loading of
an absolute overlay must be followed by an EXECUTE
statement.

The loader allows LIBLOAD to be used for capsule
generation, overlay generation (except as initial
loader input), overlay execution, and segment
generation. When wused for capsule generation,
LIBLOAD must be preceded by either a LOAD or a
SLOAD statement. LIBLOAD cannot be used to load
any of the programs named on the CAPSULE statement.

In processing a LIBLOAD statement, the entry point
names are saved in a list. The library directory
is scanned and each entry in the directory is
compared against the list of entry points. The
programs containing the specified entry points are
loaded. If the loader fails to find an entry point
in the library, a nonfatal error results.

Examples of the LIBLOAD statement are shown in
figure 2-6.

Example 1:

LIBLOAD(ALGOL ,AL77 ,AL78)
HEIDI.

Example 2:

LIBLOAD (XXXLIB,BUN)
EXECUTE(BUN)

Figure 2-6. Examples of the LIBLOAD Statement

In example 1, programs on library ALGOL containing
the entry points AL77 and AL78 are loaded. The
loader then processes the name call for file HEIDI,
completes loading, and begins execution.

In example 2, the 1loader 1loads the program
containing entry point BUN from the 1library named
XXXLIB. Loading is completed and execution begins
at the entry point BUN, as specified by the EXECUTE
statement.

SLOAD STATEMENT

The SLOAD statement (figure 2-7) specifies that the
loader is to load selected programs from a local
file. Only programs specified on the request are
loaded; all others are bypassed. Programs are
loaded in the sequence encountered on the file.
Searching takes place, as follows:

1. The file is rewound or not rewound, depending
on the optional rewind subparameter or default.

2. EBach requested program is loaded as it is
encountered.

3. When all the specified programs have been found
or when the loader encounters an empty record
(except under NOS), end-of-file, or end-of-
information, processing of the SLOAD statement
is terminated. The file is left at its current
position.

All programs on load files specified on SLOAD
requests must contain prefix tables. When the file
is read, the program name is extracted from the
prefix table to determine whether the program
should be loaded or discarded.

2-4

SLOAD (Lfn,nameq,...,namen)

Lfn Local file name, optionally accom-
panied by a rewind indicator:

Lfn The rewind indicator is
absent. Except for the
INPUT file, the file is
rewound unless this default
is changed by an
LDSET (NOREWIN) or by in-
stallation option. INPUT
cannot be rewound by
default.

Lfn/R Forces rewind prior to load-
ing. If rewind of INPUT is
explicitly requested (by the
R subparameter), the loader
makes no attempt to skip
over the control statements.

Lfn/NR Inhibits rewind prior to
toading.

name; Program names. At least one program
must be specified.

Figure 2-7, SLOAD Statement Format

SLOAD ignores object directives; however, SLOAD can
be used for overlay or capsule generation if the
necessary object directives are established prior
to the SLOAD request. If possible, the object
directives should be included in the control
statements of the load sequence. If the object
directives cannot be included in the control
statements of the load sequence, the SLOAD
statement must be preceded by a LOAD statement.

If a SLOAD statement specifies loading of an
absolute program, only one program can be
specified. Loading of an absolute program must be
followed by an EXECUTE statement.

A fatal error occurs if the file specified does not
exist. A nonfatal error occurs if any of the
programs specified are not on the file. For all of
the formats, the file must be a sequential file; it
cannot be a library file.

Consider the following example of the SLOAD
statement:

SLOAD(MOONDOG/R,SIN,COS,GETBA)

File MOONDOG is rewound and object programs SIN,
COS, and GETBA are loaded from MOONDOG.

EXECUTE STATEMENT

The EXECUTE statement (figure 2-8) causes
completion of the 1load followed immediately by

execution of the loaded program at an entry point
optionally specified. Optionally included are
execution parameters that are to be passed to the
loaded program.

60429800 H

EXECUTE.
EXECUTE (eptname)

EXECUTE (eptname,pq, s« ,Pp)

EXECUTE(,pq, -~ -,Pp)

The name of the entry point in one
of the loaded modules at which
execution is to begin.

eptname

P Execution-time parameters to be
passed to the loaded program.

Figure 2-8. EXECUTE Statement Formats

For relocatable programs, processing of EXECUTE
involves the following steps:

1. Subroutines are first loaded from the global
library set and then the local library set to
satisfy as many wunsatisfied externals (not
counting weak externals) as possible.

2. If any externals other than a weak external
remain unsatisfied, a nonfatal error results.
Any address field containing an unsatisfied
external reference is filled with
addr+400000g, where addr is the address of
the reference.

3. If blank common is declared by any program, its
origin is established and references to it are
satisfied.

4, If requested, a map of the completed core image
is generated. Default map generation is an
installation optiom.

5. Execution parameters, if any, are set up for
the loaded program. Parameters are stored im
the job communication area according to
specifications defined in the appropriate
operating system reference manual.

6. The field length is set to the amount needed
for execution, according to the algorithm
illustrated in figure 1-3 in section 1l.

7. Any unused memory is preset if so requested by
an LDSET option in the loader sequence. If
presetting is not specified, it is controlled
by the installation default,

8. Execution begins at an entry point determined
as follows:

If the EXECUTE statement specifies an entry
point, execution begins at that entry
point. If the loader is unable to locate
the specified entry point, a fatal error
results.

If the EXECUTE statement does not specify
an entry point, execution begins at the
last transfer address encountered in the
object program processed for a basic load
or the first entry point on an END segment
directive. In this case, at least ome such
symbol must have been encountered. If the

60429800 K

loader is unable to locate the entry point, a
fatal error results.

At the time the EXECUTE statement is processed, at
least one object program must have been loaded;

otherwise, a fatal error results. This means that
at least one request for loading must precede the
EXECUTE statement.

For an absolute program, processing of EXECUTE
involves steps 5 through 8 as previously described
for relocatable program processing.

Examples of the EXECUTE statement are shown in
figure 2-9.

Example 1:

LOAD (RED)
EXECUTE (ALTERN, INPUT ,QUTPUT)

Example 2:

LOAD (GREEN)
EXECUTE(, INPUT ,OUTPUT)

Example 3:

LOAD (NUTS ,,BOLTS)
EXECUTE(START ,A7,25)

Figure 2-9. Examples of the EXECUTE Statement

In example 1, the pair of LOAD and EXECUTE
statements causes execution to begin at entry point
ALTERN with execution parameters INPUT and OUTPUT,
In example 2, the pair of LOAD and EXECUTE
statements causes execution to begin at the last
encountered transfer symbol. A transfer symbol is
required for execution. The sequence in example 3
causes files NUTS and BOLTS to be loaded, and also
passes parameters A7 and 25 to the loaded program.
Execution begins at the euntry point named START.

NOGO STATEMENT

The NOGO statement (figure 2-10) causes completion
of the load, but program execution is inhibited.

NOGO.

NOGO(Lfr)

NOGO(Lfn,eptname1,...,eptnamen)

Lfn The name of the file on which the
absolute overlay is to be written;
cannot be used for segmentation.

eptname; The names of entry points to be

included in the overlay header as
program entry points., Names are
ignored if either capsules are
being generated or OVERLAY
directives control overlay
generation.

Figure 2-10. NOGO Statement Formats

2-5

Completion of a load using a NOGO statement is
similar to steps 1 through 4 of the EXECUIE
statement. It differs from the EXECUTE statement
in the following ways:

e Execution of the loaded program does not take
place.

] For relocatable 1loads, the memory image is
optionally written and saved as a single
absolute program. This occurs 1if the NOGO
statement specifies a file on which the memory
image is to be written. One or more entry
point names can also be specified for inclusion
in the program.

e For a segmented load, no file is specified
because the output file for segments is
specified on the SEGLOAD statement. The only
allowable form is NOGO.

] For overlay generation, the output file for
overlays can be specified either on the NOGO
card or on the overlay directives. If both are
present, the file name on the NOGO card is
used. If neither is present, the file name ABS
is used.

[For capsule generation, the output file can be
specified on the NOGO card; if not, the file
name ABS is used.

® A DMP following a NOGO does not produce a dump
of the loaded program (as it did with some
earlier loaders), because the loader does not
build the image of the program in place.

Each absolute overlay written to a file by NOGO is
a binary record with no end-of-file marker.

Entry points in addition to those specified on the
NOGO statement can be included in the header; entry
points in the LDSET EPT table encountered in the
load file are added to the header. See section 6
for details.

Examples of the NOGO statement are shown in
figure 2-11.

Example 1:

LOAD (TWICE)
NOGO (OVER)
OVER.

Example 2:

LOAD (FREIGHT)

NOGO (OVER,ALTA ,ALTB,ALTC)
LOAD (OVER)

EXECUTE(ALTB)

Figure 2-11. Examples of the NOGO Statement

In example 1, the load sequence causes the object
program on file TWICE to be loaded and written out
as an absolute program. Then, the absolute program
is loaded and executed through the name call
statement OVER. The sequence shown in example 2
causes execution to begin at ALTB. The program
saved on file OVER can be loaded subsequently with
execution beginning at any of the entry points:
ALTA, ALTB, or ALTC.

SATISFY STATEMENT

The SATISFY statement (figure 2-12) provides for
satisfaction of unsatisfied externals before normal
satisfaction at load completion The statement also
provides satisfaction of externals from user-—
specified libraries. The search takes place when
the request is processed.

SATISFY.
SATISFY(Libname1,...,Libnamen)
Name of a system or user library.

If the Libname is unknown, a non—
fatal error occurs.

libname;

Figure 2~12. SATISFY Statement Format

SATISFY with no parameters causes the current
library set to be searched in a circular fashion
until no more externals can be satisfied. When
libraries are specified, they apply to currently
unsatisfied externals only. Each library 1is
searched once, in the order specified.

SATISFY cannot be used with segmented load
sequences. During overlay generation, a SATISFY
applies to only one overlay, the one begun by the
last OVERLAY directive read from the last or only
file named by the most recent LOAD statement.

Note that map information, as it pertains to the
entire load, might be incomplete if the map
selection is changed during the load sequence.
Specifically, if the default MAP option for the job
is null (no MAP), and SATISFY precedes
LDSET ,MAP=BSEX..., certain information is lost from
the LOAD MAP. These omissions are:

[Relocatable module descriptions on the block
map -DATE, PROCSSR, VER, LEVEL, HARDWARE,
COMMENTS.

® List of weak and unsatisfied external
references on the entry point map.

e Cross references in the entry point map.

60429800 X

Examples of the SATISFY statement are shown in
figure 2-13.

Example 1:

LOAD (BEFORE)

SATISFY(MINE,YOURS)
LGO.

Example 2:

LOAD (MOONDOG)
SATISFY(LIB1,LIB2,LIB3)
UTOPIA.

Example 3:

LIBRARY (XYZ)
LOAD (AREOFIL)
SATISFY(ABCD)
EXECUTE.

Figure 2-13. Examples of the SATISFY
Statement

In example 1, after loading BEFORE but before
loading LGO, the loader searches libraries MINE and
then YOURS for externals. After loading from LGO,
the loader searches the currently defined library
set during load completion.

In example 2, file MOONDOG is loaded. As many
externals as possible are satisfied from LIBl. If
unsatisfied externals remain, LIB2 is searched for
externals, and finally LIB3 is searched. UTOPIA is
then loaded and its externals are satisfied from
the library set, not from the libraries given on
the SATISFY statement.

The sequence shown in example 3 illustrates how a
user library is used for satisfying externals. The
user library ABCD is searched before XYZ. 1f,
while satisfying externmals for AREOFIL, another
unsatisfied external (contained in both XYZ and
ABCD) is encountered, the external is satisfied
from ABCD.

SEGLOAD STATEMENT

The SEGLOAD control statement specifies that
segmentation is to take place during the loading
process. The SEGLOAD statement is discussed in
section 7.

LDSET. STATEMENT

The LDSET statement (figure 2-14) provides user
control of a variety of load operations. Options
specified through LDSET apply for the current load
sequence only. A loader completion statement (name
call, EXECUTE, or NOGO) terminates the effects of
the LDSET options. Each LDSET statement can be
used to set several optioms, or several LDSET
statements can be used.

60429800 K

LDSET(option1,...,optionn)

Each option is specified in one of the following
forms:

key
key=param
key=paramq/.../paramg

Figure 2~14. LDSET Statement Format

The LDSET options are explained in table 2-1.
Unless otherwise noted, if either a key is repeated
in the table or a second LDSET in the sequence
resets an option, the loader uses the most receantly
encountered setting. The loader ignores LDSET
options other than LIB, PRESET, PRESETA, ERR,
REWIND, and NOREWIND when loading an absolute
program. Installation-defined parameters are used
as defaults for any of the LDSET options not
specified. The following paragraphs explain
examples of some of the LDSET options.

Examples of the LIB option are shown in figure 2-15.

Example 1:

LOAD (A)
LDSET(LIB=LI1B1/LIB2)
LOAD (LGO)

LDSET(LIB=LIB3)
EXECUTE.

Example 2:

LOAD (LGO)
SATISFY.

LOAD (A}
LDSET(LIB)
SATISFY(USER)
LOADGO.

Figure 2-15. Examples of the LIB Option
of the LDSET Statement

In example 1, file LGO contains an intermal LDSET
table with a LIB request to add a system library
called RUNSON. Libraries are searched din the
following order during load completion:

l. Libraries specified by the global library set

2. LIBI1
3. LIB2
4, TRUNSON
5., LIB3
6. SYSLIB

TABLE 2-1. LDSET OPTIONS

Key

Parameters

Description

LIB

LIB

libname;/
«++/libnamey

This form of the LIB option specifies one or more libraries comprising the local
library set. The loader searches for unsatisfied externals from the local
library set if unsatisfied externals remain after searching all libraries in the
global library set. Each use of LIB causes the specified names to be added to
the end of the local library set previously defined, if not already in the list.
Any name already in the global or local library set is ignored.

LIB with no parameters causes the local library set to be cleared. It causes
externals to be processed as if no LIB request were encountered during the cur—
rent load.

NOTE

The global library set is altered by use of
the LIBRARY control statement (see section 3).

p/1fn or
/1fn or p

This option controls the generation of the load map.

1fn Specifies the file to receive the map. The default is OUTPUT. The file is
not rewound, either before or after the map is written.

P Specifies map contents:

p omitted Current job default, as set by the last MAP statement or by
installation default

N No map

S Statistics

B Block map

E Entry point map

X Entry point cross-references

Any of the options S, B, E, and X can be combined by concatenation; for
example, LDSET(MAP=SB).

PRESET
and
PRESETA

The PRESET and PRESETA options specify the values to which unused memory is set
before execution of the load program. The loader presets memory at various times
during loading, always using the most recent preset selection. Memory is preset
as acquired-by the loader, not at the start of each program block. For this
reason a new preset directive does not have an immediate effect during a load.

For PRESETA, the lower 17 bits (central memory) or lower 24 bits (ECS) of each
word contain its address. For example, if PRESETA=ONES were specified with
locations RA+1000g and RA+1001g unused, they would be set to:

7777 7777 7777 7740 1000

and
7777 7777 7777 7740 1001

60429800 H

TABLE 2-1. LDSET OPTIONS (Contd)

Key Parameters Description

Under NOS/BE, p can be an octal number of 1 to 20 digits, optionally prefixed by
+ or ~ and optionally suffixed by the letter B. Under all operating systems, P
can be one of the following keywords:

P Octal Preset Value
NONE No presetting for ECS; same as ZERO for CM
ZERO 0000 0000 0000 0000 0000
ONES 7777 7777 7777 7777 7777
INDEF 1777 0000 0000 0000 0000
INF 3777 0000 0000 0000 0000
NGINDEF 6000 0000 0000 0000 0000
NGINF 4000 0000 0000 0000 0000
ALTZERO 2525 2525 2525 2525 2525
ALTONES 5252 5252 5252 5252 5252
DEBUG 6000 0000 0004 0040 0000
ERR P The ERR option selects one of three methods of handling loader errors. ILf no ERR

option is specified, the installation default is used.

Catastrophic errors always result in job abortion. There are also informative
errors, which never result in job abortioms.

P Significance

ALL The program is aborted for the following types of errors:
Fatal
Nonfatal
Catastrophic

FATAL The program is aborted for the following types of errors:
Fatal
Catastrophic

NONE Only catastrophic errors cause job abortion. For any other type of

error, processing continues if possible.

REWIND The REWIND and NOREWIN options alter the default option for rewind of files by LOAD
and and SLOAD statements. The selection of /R and /NR on the statements takes
NOREWIN precedence over these options.

These options, however, do not alter the action of a name call statement
specifying a file name. Such a file is always rewound.

USEP pnameq/ The USEP option causes the indicated object programs to be loaded whether or not
... /pname, they are needed to satisfy external references. The loader loads the programs on
the next occasion that it satisfies externals, either as a result of a SATISFY
statement or as a result of a load completion statement.

If the loader is unable to find an object program name in the libraries searched,
it flags a nonfatal error.

During overlay generation, a USEP applies to only one overlay, the one begun by
the last OVERLAY directive read from the last or only file named in the most
recent LOAD directive. If the USEP occurs before the first LOAD directive, it
applies to the very first overlay.

60429800 K 2-9

TABLE 2-1. LDSET OPTIONS (Contd)

Parameters

Description

USE

eptnameyj/
.../eptnamey

The USE option forces the loading of object programs to assure that specified
entry points are included in the load. The loader loads the programs on the next
occasion that it satisfies externals, either as a result of a SATISFY statement
or as the result of a load completion statement.

If the loader is unable to find an entry point name in the libraries searched, it
flags a nonfatal error.

During overlay generation, a USE applies to only one overlay, the one begun by
the last OVERLAY directive read from the last or only file named in the most
recent LOAD directive. If the USE occurs before the first LOAD directive, it
applies to the very first overlay.

SUBST

pairy/, .,
/pair,

pairi Pair of entry point names in the form:

eptnamej-eptname?

The SUBST option changes external references to entry point names to other entry
point names. This feature can be used to cause loading of object programs other
than those that would normally be loaded.

As a result of SUBST, a reference to external eptname; becomes a reference to
external eptnamep.

OMIT

eptname;/
.../eptname,

The OMIT option directs that the specified entry point names are to remain
unsatisfied, whether or nmot the program containing these entry point names is
loaded. The specified entry point names are processed the same as other
unsatisfied names but do not result in errors. Some programs containing these
entry point names can be loaded to satisfy other externals, but the specified
entry points are not linked.

An OMIT request takes effect from the time encountered until the end-of-load or
until superseded by a USE; for example, OMIT(XYZ) later followed by USE(XY¥Z).

FILES
or STAT

lfnl/
eeo/1fny

The FILES/STAT option permits CYBER Record Manager to ensure that library
programs are loaded for the processing of specified files.

FILES/STAT is treated as a no—op in segment generation. In overlay generationm,
its application is the same as in USE.

EPT
and
NOEPT

eptname;/

.../eptname;

The EPT and NOEPT options provide control over the entry points of capsules,
overlays, and OVCAPs. (See sections 6 and 8.)

PD

The PD option provides control over the print density of the load map. Valid
densities are 6 and 8 lines per inch. The density cannot be changed once
printing has started.

If an invalid option is specified, it is ignored; the job default is used
instead.

PS

The PS option provides control over the page size of the load map. The map is
printed at p lines per page. p must be at least 10 and at most 1000000. The
page size cannot be changed once printing has started.

If an invalid option is specified, it is ignored; the job default is used
instead.

COMMON

lcbnamej/
«««/lcbnamey

The named labeled common blocks are moved to the nearest common ancestor of all
segments that reference them. Applies to SEGLOAD only. (See section 7.)

COMMON

COMMON with no parameters specified causes all labeled common blocks to be
moved to the nearest common ancestor of all segments that reference them.

60429800 J

In example 2, the global library set is empty. In For FILE6, the same items are listed on the map as

addition, file LGO has an intermal LIB request to in the load for FILE4, but the map dis written on
select a system library called SMALGOL. File LGO MAPFILE instead of OQUTPUT (the default file).
is loaded. The SATISFY statement specifies that
the currently defined library set (SMALGOL) is An example of the USE option of the LDSET statement
searched for externals, and then SYSLIB is is shown in figure 2-18. In the example, none of
searched. File A is loaded. As a result of the the entry points has been encounterd during the
LDSET(LIB) request, the local library set is load. Library program NED contains the entry
emptied. The library called USER is searched for points ENT! and ENT2. Library program RED contains
externals. File LOADGO is loaded, load completion the entry point ENT3. Programs NED and RED are
is performed, and execution begins. Because the loaded when encountered during library satisfying.
library set is empty, only SYSLIB is available to Under NOS/BE, the loading occurs even if a program
satisfy any unsatisfied externals introduced by the named NED or RED has been loaded from a load file,
loading of LOADGO. but a nonfatal error is mnoted. Under NOS,
duplicate program names are skipped with no
Figure 2~16 shows an example of the NOREWIND option message. A nonfatal error is also noted if ENTI,
of the LDSET statement. The example assumes the ENT2, or ENT3 cannot be found in any library
installation default is set for rowind. A is programs.

rewound and loaded; B is loaded without rewinding.
C, D, E, and F are loaded without rewinding; G is
rewound and loaded. H is rewound, loaded, and
executed. (A file called by name is always
rewound.) J is rewound, loaded, and executed. For
a new load, the original default applies.

LDSET(USE=ENT1/ENT2/ENT3)

Figure 2-18. Example of the USE Option
of the LDSET Statement

LOAD (A,B/NR) Examples of the SUBST option of the LDSET statement
LDSET (NOREWIN) are shown in figure 2-19. In example 1, any
LOAD(C,D,E,F,6/R) reference to MEAT is treated as a reference to
H. BEANS, and any reference to either CORN or PEAS is
LOAD (J) treated as a reference to RICE.

EXECUTE.

Figure 2-16. Example of the NOREWIND Option

of the LDSET Statement Example 1:

LDSET (SUBST=MEAT-BEANS)

Figure 2-17 shows an example of the MAP option of LDSET(SUBST=CORN-RICE)

the LDSET statement. The example assumes the map LDSET(SUBST=PEAS-RICE)
default option is off. No map is produced for LGO.

FILEl and FILE3. For FILE2, a block map is

produced. For FILE4, statistics, blocks, entry Example 2:

points, and cross—references are listed; however,

only referenced entry points are listed because LDSET(SUBST=TAN=-SEC/SEC-TAN)
MAP(ON) selects the X option but not the E option. LDSET(SUBST=SIN-CSC)

LDSET(SUBST=CSC-SIN)
LDSET(SUBST=A~B/A-C)

LOAD(FILED)
FIEE1' LDSET(SUBST=A-D)
FILE2.
tgﬁ:ngAP—B) Figure 2-19. Examples of the SUBST Option
of the LDSET Statement
. Example 2 illustrates how conflicts with use of
FILE3. SUBST are resolved. So that the most recent SUBST
" requests can take precedence in the case of a
- conflict, the entry pairs given in a request are
- stored at the front of the substitution table in
MAP (ON) the order they occur. For example 2, they are
FILE4. stored as follows:
. A-D (Most recent SUBST)
LDSET (MAP=/MAPFILE) A-C
FILEG. A-B
CSC-SIN
SIN-CSC
Figure 2-17. Example of the MAP Option SEC-TAN
of the LDSET Statement TAN-SEC (First SUBST)

60429800 K 2-11

During the load of FILEl, any reference to A is
treated as a reference to C. This shows that the
A-B specification is meaningless. During the
loading of FILE2, references to A are treated as
references to D. The first three statements do not
cause any conflicts. The processing of
substitutions is not iterative. Hence, all the
original references to CSC become references to
SIN, while all the original references to SIN
become references to CSC, and so forth.

Figure 2-20 shows examples of the OMIT option of
the LDSET statement. In the sequence in example 1,
the linking of external references to TAN is not
inhibited during the loading of FILEl; however, any
references to TAN loaded subsequently to the OMIT
request remain unsatisfied.

Example 1:

LOAD(FILET)
LDSET (OMIT=TAN)
FILE2.

Example 2:
LOAD(FILET)
LDSET(OMIT=TAN/SEC)
FILE2.

Example 2:

LDSET(SUBST=A-B,0MIT=B)
LGO.

Exampte 3:

LDSET (SUBST=A-B/C-A,OMIT=A)
LGO.

Figure 2-20. Examples of the OMIT Option
of the LDSET Statement

Example 2 assumes that entry point TAN exists on
FILEl] and entry point SEC exists on FILE2.
External references to TAN from programs on FILEL
are satisfied when FILEl is loaded, while external
references to TAN from programs on FILE2 remain
unsatisfied. All external references to SEC remain
unsatisfied.

In example 3, original external references to A are
treated as external references to B. All external
references to B, including the original external
references to A, remain unsatisfied.

In example 4, original external references to A are
treated as external references to B and original
external references to C are treated as external
references to A. At load completion, original
external references to A are satisfied (by B) and
original external references to C remain
unsatisfied.

INTERNAL LDSET SPECIFICATIONS

LDSET information can be provided to the loader
either by control statements or by LDSET (7000)
tables in relocatable binaries. Most compilers
include LDSET tables with their binary output;

212

COMPASS programmers can use the LDSET pseudo
instruction to generate an LDSET table.

A COMPASS program can contain any number of LDSET
instructions. COMPASS collects all LDSET options
and writes a single LDSET (7000) table in the
relocatable binary output between the PRFX (7700)
and PIDL (3400) tables. If there are no LDSET
instructions, no LDSET table is written.

The format of the COMPASS pseudo instruction that
is used to generate an LDSET table is shown in
figure 2-21.

Location Operation Variable Subfields

LDSET option1,...,optionn

Option:

Each option is specified in one of the
following forms:

keyword
keyword=parameter
keyword=parameterq/.../parameterp

The keywords and options are the same as
those described for the LDSET control
statement.

Figure 2-21. COMPASS LDSET
Pseudo Instruction Format

An example of the LDSET pseudo instruction is shown
in figure 2-22, 1In the example, the LDSET option
ERR is set to NONE, A fatal error occurs when the
instruction MACHINE CMU is encountered. Processing
continues if possible.

IDENT
ENTRY A
LDSET ERR=NONE

MACHINE CMU

Figure 2-22. Example of the LDSET Pseudo
Instruction

The internal format of the LDSET table is included
in appendix D.

INTERACTIVE USE

Interactive use is possible only under the batch
subsystem of NOS, where the entry of a loader
control statement begins a dialogue with the loader
as follows:

/load,filel.
LDR>?libload,xxx,a.
LDR> ?execute.

60429800 K

Each time the 1loader receives a loader control
statement that is not a load sequence terminator,
it responds with a prompt requesting the next
statement of the load sequence. When a load
sequence terminator is received, the loader stops
prompting the user and performs the load.

Interactive use can be simulated on both NOS and
NOS/BE by the use of a procedure file. For NOS/BE
users, a CCL interactive procedure could be
specified as shown in figure 2-23.

CYBER Control Language is described in the
appropriate operating system reference manual.

60429800 K

CONNECT ,PROCFIL.
BEGIN,SAM.
.PROC,, SAM.

%EOF

Figure 2-23. NOS/BE CCL Interactive
Procedure File

2-13 §

LOADER-RELATED CONTROL STATEMENTS

Control statements discussed in this section are
processed by the operating system rather than by
the loader. They are described here because they
affect loader processing.

MAP STATEMENT

The MAP statement (figure 3-1) specifies the
default option for load maps for load sequences
requested by the job. The option selected remains
in effect either throughout the job or until
changed by another MAP statement. If no MAP
statement is used with a job, the loader uses a
system—defined default.

MAP.

MAP (p)

p A parameter that specifies the type of map:

Corresponds to:
LDSET (MAP=N)

OFF No map

PART Statistics, block Corresponds to:
map LDSET (MAP=SB)

ON Statistics, block Corresponds to:
map, entry point LDSET (MAP=SBX)
cross~reference

FULL Statistics, block Corresponds to:
map, entry point LDSET (MAP=SBEX)
map, entry point
cross-reference

Specifying the MAP statement with no
parameter resets the lLoad map option back
to the installation default (IP.MAP).

Figure 3-1. MAP Control Statement Formats

The effects of MAP can be overridden on a temporary
basis for specific loader request sequences through
either the MAP parameter on the LDSET statement
(section 2), or the MAP option with the LDREQ macro
(section 4). For compatibility with previous
versions of the operating system, MAP can occur
within a loader control statement sequence. Loader
maps are illustrated in appendix E.

LIBRARY STATEMENT

The LIBRARY statement (figure 3-2) specifies a set
of global 1libraries that are to be searched for
externals and name call statements, and the order

60429800 K

LIBRARY .
LIBRARY (Libnameq, ..., Libnamey)

LIBRARY(Libname1,...,Libnamen/p)

Libname; The name of the Llibrary. If a local
file and system library have the
same name, the local file takes
precedence (except for the NOS/BE
Library NUCLEUS).

Specifying the LIBRARY statement
with no parameters clears the global
Library set. The maximum number of
Libraries allowed is:

24 system Libraries, and
0 user Llibraries

13 system Llibraries, and
1 user Llibrary

2 system libraries, and
2 user Llibraries

p Specifies one of the follouwing
options:

A Add the specified library or
Libraries to the global Library
set.

D Delete the specified Llibrary or
Libraries from the global
library set.

R Replace the global Library set
with the Library set specified
on the control statement.

The default is Ra

Figure 3-2. LIBRARY Statement Formats

in which the libraries are to be .considered. Weak
externals are ignored.

Under NOS, libraries are built by the LIBGEN
utility and can contain relocatable, absolute,
capsule, OVCAP, overlay programs, and CCL pro-
cedures. Relocatable programs can be loaded either
to satisfy externals or in response to a name call
statement. Additionally, a name call statement can
load an absolute program or a CCL procedure. Over-—
lays must be referenced by overlay name and not by
level number.

Under NOS/BE, libraries are built by the EDITLIB
utility and can contain both relocatable and
absolute programs (except for segmented programs).
Relocatable programs can be loaded either to
satisfy externals or in response to a name call
statement. Additionally, a name call statement can
load an absolute program.

LIBGEN is described in the NOS reference manual;
EDITLIB is described in the NOS/BE reference manual.

Because it is not a loader control statement,
LIBRARY cannot occur within a loader control
statement sequence. Libraries introduced through
the LIBRARY statement are global; that is, the
statement applies from the time it is encountered
until the end of the job or until another LIBRARY
statement is encountered. If the user desires that
a set of libraries be used for only a single load
sequence, the LIB parameter on either the LDSET
loader statement (section 2) or the LDREQ macro
(section 4) should be used.

The order of search for externals is:

1. The global 1library set specified by LIBRARY
statements

2. The local library set defined on LDSET(LIB=...)
directives

3. SYSLIB (not searched by default for capsule or
OVCAP generation)

The order of search for name call statements is:
1. The list of local files

2. The global library set

3, The local library set

4, NUCLEUS library (NOS/BE only)

Examples of the LIBRARY statement are shown in
figure 3-3. In example 1, the library set consists
of only SYSLIB; therefore, only SYSLIB is searched
for externals unless other libraries specified by
the object directives on file A are generated by
the compiler.

In example 2, file LGOl is loaded, the library set
is empty except for the default system library,
SYSLIB. Therefore, SYSLIB is the only 1library
searched to satisfy externals for file LGOl.

The LIBRARY(FORTRAN) control statement specifies
that the global library set 1is to consist of
FORTRAN. The IDSET(LIB=USER) loader statement
specifies that the current sequence will use a
local library named USER. Thus, when file LGO02 is

loaded, libraries are searched in the following
order to satisfy externals: FORTRAN, USER, and

SYSLIB.

When file LGO3 is loaded, only FORTRAN and SYSLIB
are searched to satisfy externals. (USER no longer
exists because it was local to the load sequence
completed by LGO2, FORTRAN is still in the global
library set because mno mnew LIBRARY control
statement was encountered.)

3-2

Example 1:

LIBRARY.
LOAD (A)
EXECUTE.

Example 2:

LGO1.

LIBRARY (FORTRAN)
LDSET (LIB=USER)
LGozZ,

LGO3.

LIBRARY.

LGO4 .
LIBRARY (AX ,USER2)
LDSET (LIB=ALGOL)
L605.

Figure 3-3. Examples of the
LIBRARY Statement

The LIBRARY control statement creates an empty
library set except for the default system library.
Therefore, when LGO4 1is loaded, only SYSLIB is
searched to satisfy externals.

The control statement LIBRARY(AX,USER2) specifies
that the global library set consists of AX and
USER2. The LDSET(LIB=ALGOL) loader statement
specifies a local library named ALGOL. When file
LGOS is loaded, 1libraries are searched in the
following sequence to satisfy externals: AX,
USER2, ALGOL, and SYSLIB.

Under NOS, the no—auto—drop status is set for any
file inserted in the global library set and cleared
when a library is removed from the global library
set.

REDUCE STATEMENT

The REDUCE statement (figure 3~4) specifies whether
or not the loader is to determine field length
assignment. When the loader determines field
length assignment, the job is said to be in REDUCE
mode.

REDUCE. NOS/BE batch and NOS only
REDUCE (ON) NOS/BE Intercom only

REDUCE (-) NOS only

REDUCE (OFF) NOS/BE Intercom onL;

REDUCE. Specifies that the loader assigns
REDUCE (OND field length.

REDUCE (- Inhibits reduction of the field

REDUCE(OFF) Llength by the loader.

Figure 3-4. REDUCE Statement Formats

60429800 K

Examples of the use of the REDUCE control statement
are shown under the discussion of the RFL control
statement. See section 1 for a detailed discussion
of field length control.

RFL STATEMENT

The RFL statement (figure 3-5) controls the amount
of field length that is used to execute programs.

RFL(n)
RFL(n,m)

RFL(M=n,EC=m)

n The new central memory field length in
octal. The maximum value for NOS is
377777g. The maximum value for NOS/BE
is set by installation option.

m The new ECS field Length in octal. The
maximum value for NOS is 7777g. The
maximum value for NOS/BE is set by
installation option.

The valtue specified for n or m cannot exceed
the value specified on the lLast MFL statement
nor can it exceed the maximum allowed for the
joba

Figure 3-5., RFL Control Statement Formats

60429800 K

The RFL statement remains in effect until another
RFL statement is executed, An dinstallation
parameter defines the maximum field length that can
be requested. User validation limits can further
restrict the maximum field length.

For NOS/BE, the RFL statement sets REDUCE mode to
off. See section 1 for a detailed discussion of
field length control.

Figure 3-6 shows the use of the RFL and REDUCE
statements. The job starts off in REDUCE mode.
The program is compiled, loaded, and executed in
the minimum required field length. The field
length is then set to 30000g words, and the job
is loaded and executed a second time, using
30000g words of central memory. The job is then
returned to REDUCE mode. If the job is run under
NOS/BE 1, the REDUCE(~) statement should not be
included because the RFL card inhibits field length
reduction automatically and the REDUCE(-) is
considered an error statement.

FTNS.

LGO.

RFL (30000)
REDUCE (-
LGO.
REDUCE.

Figure 3-6. Example of the
RFL and REDUCE Statements

USER REQUESTS 4

This section describes how the user can call the
user call loader during program execution, how to
format request tables, and how the loader processes
the loader call. (The portion of the loader that
handles user requests is sometimes referred to as
the user call loader.) Processing of a loader
request table differs from processing of control
statements in one major respect; that is, externals
are not automatically satisfied during completion
of a loader request sequence.

Request tables are used for vrelocatable loads
only. Also, debugging aids, overlay generation,
segmentation, and capsule generation cannot be
requested during this type of load.

The COMPASS language wuser can either format
requests and issue loader calls directly, or take
advantage of the loader macros provided with the
operating systems to facilitate loader use. The
LOADER and LDREQ macros are available through macro
definitions supplied on the system text overlay
LDRTEXT. The LOADREQ macro is available through
macro definitions supplied on the system text
overlay CPUTEXT. The source of system macro defi-
nitions can be changed through the S or G option on
the COMPASS control statement, (See the COMPASS
reference manual for further details.)

CALLING THE LOADER

A program calls the 1loader either through the
COMPASS LOADER macro or through an expanded form of
the macro call. The LOADER macro call loads
relocatable programs; the LOADREQ macro call
(section 6) should be used to load absolute
overlays. The formats of the COMPASS LOADER calls
are shown in figure 4-1. 1In both calls shown in
the figure, paddr is required and points to the
first word address of a table of formatted loader
requests. This is the symbol in the location field
of an LDREQ BEGIN call.

The loader does mnot normally perform automatic
field length management during user call loads; the
user should first obtain sufficient memory through
use of the MEMORY macro or via an RFL control
statement. (The RFL statement should be followed
by a REDUCE(-) statement under NOS.) However, if
Common Memory Manager (CMM) is specified on the
LOADER call, and fwasc and lwasc are absent from
the LDREQ BEGIN, memory is allocated automatically
through CMM. (See the Common Memory Manager
reference manual for more details on this feature.)

External references in programs loaded by a user
call can be satisfied by entry points loaded in
earlier user call loads or the original basic load;
the loader saves linkage information on a scratch
file. An entry point is not available, however, if
it is within the loadable area of the current load
because it can be overwritten.

60429800 J

Location Operation Variable Subfields
LOADER paddr
LLOADER paddr ,CMM

paddr The address of LDREQ BEGIN.

CMM Indicates that the Common Memory

Manager (CMM) is to be used during
loading. It must be specified if CMM
is active at the time of the call.

The first format causes the following COMPASS
code to be generated:

Location Operation Variable Subfields
RJ =XLOADER=
VFD 42/0,18/paddr

The second format causes the following COMPASS
code to be generated:

Location Operation Variable Subfields
+ RJ =XLOADER.
- VFD 12/0,18/paddr

Figure 4-1. COMPASS LOADER Macro Call Formats

Entry points are also not automatically available
if the program is segmented or overlayed because
the scratch file is not available. If the entry
points are needed, their addresses can be made
available to the loader through use of a PASSLOC
request. Entry points loaded by a user call will
not satisfy externals that were unsatisfied on a
previous load.

The loadable area either is specified in the
request table or is assumed, by default, to be the
remaining unloaded area available to the job.
Loading can be specified so as to overwrite the
previously loaded area, but this must be done with
care, Yor this purpose, words RA+65g and
RA+66g in the job communication area give the
default central memory and ECS load limits. Upon
completion of the user call, the loader updates
these fields to reflect the new limits unless the
CMM parameter is specified.

Unlike control statement sequences, internal
requests need mnot be terminated by EXECUTE or
NOGO. The way the loader processes requests
specified in the table and performs load completion
depends on whether or not the load sequence is
terminated by EXECUTE.

For a load sequence not terminated by EXECUTE:

1. The loader is initialized and performs requests
specified in the load sequence.

2. The memory image is generated in the loadable
area.

3. Execution of the calling program continues.

For a load sequence terminated by EXECUTE:

1. The loader is initialized and performs requests
specified in the load sequence.

2. The memory image is generated in the loadable
area.

3. The job communication area is set with the
parameters passed in the EXECUTE request.

4, Execution of the loaded program is initiated at
the specified entry point. If no entry point
is specified, execution begins at the last
encountered transfer symbol.

REQUEST TABLES

A request table must accompany each loader call.
It consists of a header followed by one or more
loader requests in internal form. An END request
terminates the requests. The table can either be
generated directly by the programmer or through a
sequence of three or more LDREQ macros. The
internal format of the request table is shown in
appendix D.

LDREG MACROS

The following subsections describe the set of LDREQ
macros used to facilitate generation of request
tables. The LDREQ macros are not contained in the
default system text (SYSTEXT) used by COMPASS. A
separate text called LDRTEXT is available, which
contains the LOADER and LDREQ macros. A COMPASS

call specifying that both texts are to be used is

as follows:
COMPASS (S=SYSTEXT,S=LDRTEXT)

The general format of the LDREQ macroc is shown in
figure 4-~2. The LOAD, LIBLOAD, SLOAD, and SATISFY
options provide the same capability and have the
same parameters as their corresponding loader
statements, which are described in section 2. The
formats of these options are shown in figure 4-3.

The LIB, MAP, PRESET, PRESETA, USEP, USE, SUBST,
OMIT, FILES, PD and PS options provide the same
capability and have the same subparameters as their
corresponding parameters on the LDSET statement
described in sectiom 2. The format of these
options is shown in figure 4-4.

4-2

Location Operation Variable Subfields

symbol LDREQ option,pq,-+«,Pp

symbol For the BEGIN option, the symbol is
assigned the first word address
(paddr) of the request table. For
any other option, the symbol is
assigned the first word address of
the entry in the table.

option Required; specifies the table entry.
The first LDREQ macro in a sequence
must have BEGIN as the option. The
Last LDREQ macro must have END as the
option.

The options that can be specified are:

BEGIN PRESET
END PRESETA
LOAD USEP
LIBLOAD USE
SLOAD sSuBST
CMLOAD ENTRY
ECLOAD OMIT
EXECUTE FILES
NOGO DMP
SATISFY PASSLOC
LIB PS
MAP PD

P Parameters required by the option

selected.

Figure 4~2. General Format of an LDREQ Macro

Each sequence of LDREQ macros must begin with the
BEGIN option and end with the END option. The
BEGIN option generates the request table header,
and the END option generates a terminal zero word.
No check is made when the table is assembled, but
the loader issues error messages if it is unable to
use the table during execution.

BEGIN Option

A sequence of LDREQ calls must start with BEGIN as
the option, which causes generation of the loader
request table header. The format of the BEGIN
option is shown in figure 4-5.

If the CMM parameter is specified on the LOADER
macro call and both fwasc and 1lwasc are not
specified, then CMM is used to allocate a default
area., The CMM reference manual provides further
information about this feature.

If fwasc and lwasc are absent and the CMM parameter
is not specified, the loadable area used by default
is that between the lwasctl in bits 17 through 0 of
RA+653 and the end of the currently assigned
field length. Similarly, if fwalc and lwalc are
absent, the 1lwalc in bits 58 through 36 of RAt+65g
and the currently assigned ECS field length are
used as defaults.

60429800 H

Location Operation Variable Subfields

LDREQ LOAD, (Lfnq,..a,Llfny)

LD&EQ LIBLOAD, Libname, (eptnameq, ... ,eptnamen)

LD&EG SLOAD, Lfn, (nameq, ... name,)

LDéEQ SATISFY, (Libnameq,...,Libname,)

Figure 4~3. LOAD, LIBLOAD, SLOAD, and SATISFY Option Formats
Location Operation Varijable Subfields
LDREQ L1B,(libnameq, ..., Libnamey)
LD&EQ LIB
LD&EQ MAP,p,Lfn
LD&EG PRESET,p
LD&EQ PRESETA,p
LD&EQ USEP,(pname1,...,pnamen)
LD&EQ USE, (eptnamey, ..., ,eptnamey)
LD&EQ SUBST, (pairq, ..« pairy)
LD&EQ 0MIT,(eptname1,...,eptnamen)
LDREQ FILES,(Lfnq,...,Lfn)
LD&EQ PD,p
LD&EQ PS,p
Figure 4-4. LIB, MAP, PRESET, PRESETA, USEP, USE, SUBST, OMIT, FILES, PD, and PS Options Formats

Location Operation Variable Subfields

paddr LDREQ BEGIN,fwasc,lwasc,fwalc, lwalc

paddr First word address of the Loader request table.

fwasc First word address of the central memory loadable area.

Lwasc Ending address+1 of the central memory loadable area. lwasc must be <FL-3.
fualc First word address of the ECS loadable area.

twalc Ending address+1 of the ECS loadable area.

60429800 H

Figure 4-5.

BEGIN Option Format

4-3

END Option

A sequence of LDREQ calls must terminate with an
END option (figure 4-6), which causes generation of
a zeroed word at the end of the loader request
table.

Location Operation Varjable Subfields

LDREQ END

Figure 4~6. END Option Format

CMLOAD Option

The CMLOAD option (figure 4-7) specifies that load
input is to be fetched directly from central
memory; it is available only as a user call loader
request.

Location Operation Variable Subfields

LDREQ CMLOAD ,fwa,end

fua An absolute or relocatable expression,
specifying the first word address of
Load input in central memory.

end An absolute or relocatable expression,
specifying the last word address+1
of Load input in central memory.

Figure 4-7. CMLOAD Option Format

Physical loading is performed similar to loading
for the LOAD request. Instead of specifying a file
name and vrewind indicator, the request supplies
first word and last word addresses.

The area specified in central memory must be within
the job’s field length but must be outside of the
specified loadable area.

ECLOAD Option

The ECLOAD option (figure 4-8) specifies that load
input is to be fetched directly from extended core
storage; it is available only as a user call loader
request.

Location Operation Variable Subfields

LDREQ@ ECLOAD, fwa,end

fwa An absolute or relocatable expression,
specifying the first word address of
load input from ECS.

end An absolute or relocatable expression,
specifying the last word address+1
of Lload input from ECS.

Figure 4-8. ECLOAD Option Format

Physical loading is performed similar to loading
for the LOAD request. Instead of specifying a file
name and rewind indicator, the request supplies
first word and last word addresses in ECS. The
area specified in ECS (between fwa and end on the
ECLOAD option) must contain object text consistent
with the type of load being performed.

The area specified in ECS must be within the job's
field length, but must be outside of the specified
loadable area.

EXECUTE Option

The EXECUTE option (figure 4-9) has the same
parameters and provides similar capability as the
EXECUTE statement described in section 2. The
EXECUTE option differs from the EXECUTE statement
as follows:

@ Libraries are not searched automatically.

® Blank common is established only if it is
declared in the load for the first time.

® Field length is not altered.

Location Operation Variable Subfields
LDREQ EXECUTE
LDREQ EXECUTE ,eptname
LDREQ EXECUTE ,eptname, (Pq,..,Pp)
LDREQ EXECUTE,, (P, nea,Pp)

Figure 4~9, EXECUTE Option Formats

44

60429800 B

The SATISFY request is required before an EXECUTE
request if libraries are to be searched to satisfy
external references.

NOGO Option

The NOGO option (figure 4-10) requests load
completion. Control is returned to the calling
program, not the newly loaded program. Unlike the
NOGO control statement, externals are not satisfied
unless a SATISFY request precedes the NOGO request.

Location Operation Variable Subfields

LDREQ NOGO

Figure 4-10. NOGO Option Format

ENTRY Option

The ENTRY option (figure 4-~11) allows an executing
program to obtain the addresses of entry points
that are currently being loaded and/or have been
loaded previously. The loader replaces the entry
point names in the table with their addresses.

The ENTRY option is available only as an LDREQ
option. A user call that includes an ENTRY request
must not specify limits of the loadable area such
that the user call request area is overwritten.
The updated request table must be available to the
program after the user call is completed.

DMP Option

The DMP option (figure 4-12) allows a user to
request a dump within a loader sequence. When the
loader encounters a DMP request, it issues an RA+]
DMP call to the operating system. The DMP option
is intended primarily for the wuse of system
analysts.

PASSLOC Optien

The PASSLOC option (figure 4-13) allows an'

executing program to supply addresses to the
loader. It is available as an LDREQ option only.

PASSLOC is not needed for a Dbasic relocatable
program because the loader retains such information
in its tables during execution; however, for either
an overlay, a segmented program, or a memory image
that was previously saved, the loader tables are
not available during execution. Such an absolute
program can use PASSLOC to supply information for
the loader to add to its tables.

Location Operation Variable Subfields
LDREQ DMP,p1,p2
<51 Consult the appropriate operating

system reference manual for a
description of DMP parameters.

Figure 4-12. DMP Option Format

USER CALL LOADER EXAMPLE

An example of the use of the user call loader is
shown in figure 4-14. After file A is loaded,
libraries LIBlL and LIB2 are added to the local
library set. After LGO is loaded, library LIB3 is
added to the local 1library set. The SATISFY
request causes the global library set, then the
libraries in the local library set, and finally
SYSLIB to be searched for externals. EXECUTE
causes load completion and transfers control to the
newly loaded program.

LOADREQ (REQUEST BASIC LOAD)

The loader provides an alternate means for running
programs to initiate a basic load from an initial
state, completely discarding anything loaded at the
time. The LOADREQ macro (figure 4-15) specifies
that the relocatable loader is to be loaded to
perform a function indicated by the contents of the
RA communication area.

Before issuing the call, the user should set the
contents of RA+64g to perform one of the
following functions.

The first function specifies that the relocatable
loader is to load and execute a local file. The
function is specified as follows:

RA+64g=42/1£n,18/0

The parameter 1fn identifies the local file to be
loaded. The local file name must be specified as
left—justified and zero filled.

The second function specifies that loading and
execution is to be performed as directed by a
user—specified table of 1loader requests. The
request table should contain control statements in
internal form as generated by the LDREQ macro (see
appendix D). Any LDREQ options that have a
corresponding control statement can be used. Any

Location

Operation

Variable Subfields

LDREQ

eptnameq Entry point names.

ENTRY, (eptnameq,...,eptname,)

Figure 4-11.

60429800 H

ENTRY Option Format

Location Operation Variable Subfields
LDREQ PASSLOC,((id1,t1,b1,a1),...,(idn,tn,bn,an))
id; The name of the program block, entry point, or common block.
ty The type of name:
0 Entry point
A null id; is illegal
1 Program block
2 Central memory
common block
A null id; designates a blank common block
3 ECS common block
by The block Length in words; ignored if t is zero.
a; The address of the entry point or first word address of the program or common block.
Figure 4-13. PASSLOC Option Format
LDREQ options that apply only to the user call
. . . . loader should not be wused. The function 1is
Location Operation Variable Subfields specified as follows:
LDREQ BEGIN
+64g=
LDREG LOAD, (A) RA+64g=12/0,18/length,12/0,18/fwa
LDREQ LIB, (LIB1,LIB2)
LDREQ LOAD, (LGO)
LDREQ L18, (LIB3) Loading begins at fwa and continues to length. The
LDREQ SATISFY request table is restricted such that RA+2 is less
LDREQ EXECUTE than or equal to fwa, and fwatlength is less than
LDRE®Q END or equal to RA+54g,

If an explicit EXECUTE or NOGO is not specified, a
NOGO is assumed. There is no internal form for
SEGLOAD; thus, only overlay and relocatable loads
are permitted. The calling program is responsible

for ensuring the validity of the request table

because the loader does not check the table for
errors.

Figure 4-14. User Call Loader Example
Location Operation Variable Subfields
LOADREQ

The calling program is overwritten by loading of

4-6

Figure 4-15.

LOADREQ Macro Format

the relocatable loader; therefore, control cannot
be returned to the calling program.

60429800 J

DEBUGGING AIDS S

The loader provides the TRAPPER routine as an aid
to execution time debugging. The TRAPPER routine
is requested by the TRAP control statement and is
the first program loaded in its applicable load
sequence, TRAP can only be used with basic loads;
it cannot be used with overlayed programs. CYBER
Interactive Debug cannot be used with programs
using the TRAPPER routine.

TRAP CONTROL STATEMENT

The TRAP statement (figure 5-1) causes the TRAPPER
routine to be loaded with and become applicable to
the next load sequence.

TRAP(I=Lfnq ,L=Lfny)

Lfnq The input file that contains the TRAP
directives. If omitted, directives com-
prise the next section on the INPUT file.

Lfny The output file on which the Llisting of
directives and the resulting dumps is
written. This file should not be a file
being written on by the trapped program.
If omitted, output is written on the file
named TRAPS.

Figure 5-1. TRAP Statement Format

The TRAP control statement is a separate load
sequence and affects the next relocatable load
sequence. The TRAP statement must, therefore,
immediately precede the first statement in the load
sequence to which it applies.

TRAP DIRECTIVES

TRAP directives specify output to be written on the
TRAP output file. The types of directives are:

® FRAME

Requests snapshot dumps of registers and areas
of central memory at selected locations within
the program.

[TRACK

Provides information to analyze a series of
instruction executions in a program. This
information consists of the contents of
locations and registers after execution of
instructions in the specified range.

The syntax for TRAP directives 1is shown in

table 5-1. The format of the directives is shown
in figure 5-2.

60429800 K

Label | Verb Specification

FRAME parameterq...parametery
or
TRACK

See tables 5-2 and 5-4 for
parameters that can be used
with FRAME and TRACK direc-
tives.

parameter;

Figure 5-2. TRAP Directive Format

<
FRAME DIRECTIVE PARAMETERS

Parameters for the FRAME directive are summarized
in tables 5~2 and 5-3. Any parameter other than AT
is optional and has a default value. AT is
required; it must be used in all FRAME directives.

Rules for use of the FRAME directive are as follows:

@ The first phrase encountered in a directive
(for example, PROGRAM, PROG, BLOCK, ABS)
becomes the default wuntil another omne is
encountered.

e If specified, a parameter must be complete;
that is, keyword, phrase (if applicable), and
value must be present. If no parameter is
specified, the item listed in the default
column is substituted.

@ Multiple specification of any given parameter
(for example, FROM) causes FRAME to ignore all
but the last specification of that parameter.

e The octal address fields are limited to ten
digits, including leading =zeros. Also, they
are limited to a maximum value of 131,071,
Otherwise, the fatal diagnostic "ILLEGAL NUMBER
ON ABOVE TRAP" occurs. {(See appendix B).

FRAME output consists of a dump of all the
registers (if requested; if not, only the contents
of the P register appears in the dump), and a
central memory dump of the area specified in the
directives. Both the octal and display code
representations of the area are included in the
central memory dump.

The beginning address of a dump 1is the closest
multiple of four that is less than or equal to the
requested fwa. The ending address plus one is the
FL or the closest multiple of four that is greater
than the lwa, whichever is less. Any n line(s)
that contains four times n identical words is
compressed into one line indicating the range.

TABLE 5~1. TRAP DIRECTIVE SYNTAX

Specification Meaning

Comment When column 1 of a line contains an asterisk, the line is considered a comment
statement. It is copied to the output file, but has no effect on the type of
output produced during execution.

Page eject A slash in column 1 causes a page eject in the listing of the TRAP directives.
The line itself is not listed with the directives. Continuations are not allowed.

Label field The label field of the TRAP directive is an identifier of one to seven characters
that starts in column 1. It is terminated by one or more blanks, a comma, hyphen,
left parenthesis, or right parenthesis. A label can contain any character not
mentioned as a terminator. A longer label is truncated to seven characters but
does not generate an error. A blank in column 1 indicates an empty label field.

The label, if present, is printed with any output related to the directive.

Verb The verb field begins with the first nonblank character following the label
field. If the label field is empty, this field begins with the first nonblank
field of the line. The terminators for the verb field are comma, hyphen, right
parenthesis, left parenthesis, or ome or more blank characters. The verb can be
FRAME or TRACK.

Specification field The specification field begins with the first nonblank character following the
verb field. This field consists of a list of parameters separated by commas or
blanks. A parameter consists of a keyword and its associated phrase and value
(if these are applicable). A phrase is a keyword and value that have meaning
only when associated with another keyword. Multiple delimiters are permitted
between parameters. Parameters can appear in the specification field in any
order.

Continuation A comma in column 1 of a line indicates continuation of the previous line. The
rest of the line is treated as if column 2 immediately followed column 72 of the
preceding card image. Any number of continuations is allowed. Any line without
a comma in column 1 terminates the directive or comment statement being defined
by the preceding line. A keyword or value cannot be split between lines.

Figure 5~3 shows examples of the FRAME directive.
Example 1
In example 1, a dump is produced every other time
location 20 of program HOOK is executed, starting Lab v Py :
the 10th time, and ending the 35th time. The dump abel erb Specification
consists of locations 10g through 235g of
common block B, and is labeled SYM. No register SYM FRAME | AT PROGRAM HOOK 20, FROM
dump is produced. P BLOCK B 10, FOR 150,
, START 10, EVERY 2, UNTIL
In example 2, a dump is produced every time 3
location 75 of program TAB 1is executed. The first
l44g locations of central memory blank common are E le 2
dumped, and a full register dump is produced. The xampte
dumps are labeled AX. Label | Verb Specification
I i i
n example 3, no 1§bel is printed with du?ps AX FRAME EROM BLOCK // O FOR 100
because the label field is enmpty. Every time AT PROG TAB 75 REG
location RA+2147g is executed, a full register ?
dump and a dump of 28 ECS words, starting at
absolute ECS address 100010, is produced. Example 3
Label | Verb Specification
TRACK DIRECTIVE PARAMETERS adALELLLL
Parameters for the TRACK directive are summarized FRAME ?505137’ FROM ABS ECS
in tables 5-4 and 5-5. When the program reaches a s » FOR 25, REG
tracking range, as set by the FROM parameter on the
TRACK directive, TRAPPER gains control. TRAPPER
interprets the code from this point on, picking up Figure 5-3. FRAME Directive Examples

fo2 60429800

TABLE 5~2, FRAME DIRECTIVE PARAMETERS

Default
Keyword Opticnal PhraseT Parameter (No Parameter Description
Specified)
AT BLOCK name octal CM address None (Parameter Specifies the address of the
PROGRAM name octal CM address is required.) instruction at which the
PROG name octal CM address dump is to be taken.
ABS CM (default) octal CM address
FROM BLOCK name octal address 0 First word address for snap-
PROGRAM name octal address shot dump.
PROG name octal address
ABS M (default) octal address
ABS ECS (default) octal address
FOR None Decimal number fl-fwa (used only Specifies the number of
if the first word words to be dumped.
address is in
central memory).
No default for
ECS.

START None Decimal number 1 Iteration of AT imstruction
at which the first dump is
to be taken.

EVERY None Decimal number 1 Interval after which the
dump is to be repeated.

UNTIL None Decimal number 131071 Last interaction at which
the dump is to be taken.

REG None None No register dump. Presence of REG specifies

that the dump is to include
the contents of registers.

TIf the optional phrase

is specified, the name portion of the phrase can be omitted.

60429800 H

TABLE 5-3. PHRASES FOR FRAME PARAMETERS
Phrase
Value Type Description

Keyword Value

PROGRAM name Alphanumeric program block name, Name of the program block containing the

or PROG one to seven characters. address specified by AT or FROM.

BLOCK name Alphanumeric block name, one to Name of the block containing the address
seven characters. For blank specified by AT or FROM. //L applies to
common : FROM only.

/1 608
//L ECS (FROM only)
ABS type Core memory type: Type of memory containing the absolute
address specified by AT or FROM. If type is
cM omitted, CM is assumed.
ECS
5-3

TABLE 5-4. TRACK DIRECTIVE PARAMETERS
Default
Keyword Optional PhraseT Parameter (No Parameter Description
Specified)
FROM PROGRAM name octal address Entry point (XFER First instruction in tracing
PROG name octal address address). range.
BLOCK name octal address
ABS CM (default) octal address
TO PROGRAM name octal address Last word address Last instruction in tracing
PROG name octal address of the program. range.
BLOCK name octal address
ABS CM (default) octal address
WHEN PROGRAM name octal address (optional) A change to any Dump condition: a dump is
> PROG name octal address (optional) location or reg- taken if the contents of the
BLOCK name octal address (optional) ister causes a specified location or regis-
ABS CM octal address (optional) dump . ter change value. (P) must
ABS ECS (default) octal address (optional) change through a jump. Nor-
Ai mal incrementation of P does
Bi T not cause a dump.
Xi
P
START None Decimal number 1 Iteration through the trac-
ing range at which to take
the first dump.
EVERY None Decimal number 1 Interval after which the
dump is to be repeated.
UNTIL None Decimal number 131071 Last iteration at which the
dump is to be taken.

TTi refers to a register, where (0 { i < 7).

TIf the optional phrase is used, the name portion of the phrase can be omitted.

TABLE 5-5. PHRASES FOR TRACK PARAMETERS
Phrase
Value Type Description
Keyword Value
PROGRAM name Alphanumeric program block name, Program block referred to by the FROM, TO,
or PROG one to seven characters. or WHEN parameter.
BLOCK name Alphanumeric block name, one to Common block referred to by the FROM, TO, or
seven characters. Blank common is WHEN parameter.
indicated as follows:
1/ cM
//L ECS
ABS type Core memory type: Type of memory containing absolute address
specified by the FROM, TO, or WHEN parameter.
M If type is omitted, CM is assumed.
ECS

5-4

60429800 H

one instruction at a time and simulating its
effect. TRAPPER also prints a trace of the
instructions executed. This interpreting process
is complex and proceeds much more slowly than
direct execution of the same instructions.

Rules for use of the TRACK directive are as follows:

@ The first phrase encountered in a directive
(for example, PROGRAM, PROG, BLOCK, ABS)
becomes the default wuntil another one is
encountered.

) If specified, a parameter must be complete;
that is, keyword, phrase (if applicable) and
value must be present. If no parameter is
specified, the item listed din the default
column is used.

e With the exception of the WHEN parameter, which
is processed each time it is encountered, no
more than one value for a given parameter is
processed for a given TRACK directive. A
maximum of 15 WHEN parameters can be used in a
single directive. Multiple specification of a
parameter causes all but the last specification
to be ignored.

] The octal address fields are limited to ten
digits, dincluding =zeros. Also, they are
limited to a maximum value of 131,071.
Otherwise, the fatal diagnostic "ILLEGAL NUMBER
ON ABOVE TRAP DIRECTIVE" will occur. (See
appendix B.)

Qutput from TRACK consists of a dump of any
registers or memory locations changed by the
instruction, the COMPASS image of the instruction,
and full register dumps at the beginning and the
end of each range.

Examples of the TRACK directive are shown in
figure 5-4.

Example 1

Label Verb Specification

Q TRACK FROM PROGRAM S 60, TO
’ PROGRAM E 70, START 3,
, EVERY 2, UNTIL 7, WHEN

B4, WHEN B7
Example 2
Label Verb Specification

TAG TRACK FROM PROG MAIN 100 TO
, PROG MAIN 150

Example 3

Label Verb Specification

JUMP TRACK WHEN P

Figure 5-4. TRACK Directive Examples

60429800 K

In example 1, all output is labeled Q. Tracing
extends from location 60g of program 5 to
location 70g of program E. If register B4 or B7
changes value during the third, fifth, or seventh
times through the range, output is produced.

In example 2, tracing extends from location 100g
through location 150g of the program MAIN.
Output is produced whenever any instruction in this
range changes the value of a memory location or a
register.

In example 3, the entire program is traced. A dump
is produced each time a jump is executed. P must
change by more than 1 for a dump to be taken.

TRAPPER CALL INSERTED
INTO USER'S PROGRAM

The TRAP control statement causes a TRAPPER call to
be automatically inserted in the user”s program.
The TRAPPER call replaces the instruction within
the user”s program specified by either the FRAME AT
(addr) or the TRACK FROM (fwa) parameter. The
replaced instruction is saved in a TRAPPER
execution—time table and executed, as follows:

® For FRAME, the replaced instruction is executed
after the TRAPPER dump is taken

® For TRACK, the replaced instruction is the
first traced instruction

The internal format of the TRAPPER call is shown in
figure 5-5.

Neither the TRACK FROM location nor the FRAME AT
location should be the destination address of a
return jump instruction. If so, the TRACK or FRAME
is not executed.

TRAPPER also adds an RJ TRAPPER to the destination
of an RJ instruction that jumps outside a simulated
TRACK. If the program modifies the destination
word or uses the calling address for an argument
list (such as CPC), TRAPPER does not Function
properly. The destination word must be included
with the TRACK that references it. Blocks
containing absolute program relocation can cause
TRAPPER to be overwritten. In addition, a FRAME is
not taken correctly if the location being framed
contains a return jump instruction where the next
location is a parameter. This means that return
jump calls to CPC should not be framed.

TRACK output does not begin wuntil the word
specified by the TRACK FROM is executed. A jump
into the TRACK range does not cause TRAPPER to
generate output. To generate a TRACK of a
subroutine where the entry appears within the
middle of the TRACK range, two TRACKS are needed.
For example, the TRACK directives needed to track
the subroutine shown in figure 5-6 are:

TRACK FROM PROG SUB 0 TO PROG SUB 1

TRACK FROM PROG SUB 3 TO PROG SUB 4

5-5

59

30

18 00

RJ TRAPPER

RJ Level r table pointer

t Type of call:

r Return flag:

5-6

0 TRACK 0 Normal call
1 FRAME 1 Return from RJ within a track
table pointer Identifies the TRAPPER execution-time table containing output specifications for
the call.
RJ level Number of return jumps within active TRACKS (initially zero).
Figure 5-5. TRAPPER Call Internal Format
A jump, other than a return jump, outside the
. . Variable tracking range turns off TRACK, and it can only be
Location | Operation | o ... s | COMments restarted by reentering at the FROM address. If a
return jump jumps outside the tracking range,
IDENT SuB however, tracking resumes if return to the
subroutine is through the normal exit.
ENTRY SUB
SUBA sB1 2 word 0 of sub
o0 . TRAP ERROR CONDITIONS
The TRAP directive translator converts FRAME and
+ SA2 d b
SUBA word 1 of su TRACK directives into internally formatted tables.
SuB Ps word 2 of sub The syntax of a directive is checked and if an
error is detected, the directive is skipped and an
¥ sB2 1 word 3 of sub error message is written in the output file. 1In
addition, dayfile messages and execution time
BxX1 X2 errors are generated as applicable (see appendix B).
¥ EQ SUBA word & of sub For both FRAME and TRACK, buffers are flushed
END before control is passed to user code; therefore,
no loss of output is possible on a mode error. If
TRACK detects a mode error during a tracking
operation, a message is issued and the job aborts.
Figure 5-6. Tracked Subroutine

60429800 H

OVERLAYS 6

A user can divide a large program into sections,
called overlays, to reduce the amount of memory
required for job execution. Different overlays can
occupy the same storage locations at different
times.

Each overlay contains data and instructions needed
at different times during job execution. However,
commonly used routines should be placed in the main
overlay, which is in memory throughout job execu-
tion, to reduce time required for loading overlays.

A user should be aware of the following:

® Overlays, other than the main overlay, are
loaded by an explicit user call. The main
overlay can either be loaded into memory by
terminating the overlay generation run with an
EXECUTE statement, or by issuing a name call
statement that references the file to which the
generated overlays were written.

® Main overlays can have multiple entry points
and execution can begin at more than omne entry
point in the main overlay.

@ Each higher level overlay must have a single
entry point designated as a transfer address.

] The main overlay cannot reference entry points
in any other overlay; primary overlays can ref-
erence entry points in the main overlay; and
secondary overlays can reference entry points
in either the associated primary overlay or the
main overlay if the entry points have not been
overwritten. See OVERLAY Directives later in
this section.

Segments and capsules provide other means of divid-
ing large programs into sections to better utilize
memory and time during job execution. A special
type of capsule, OVCAP, is designed to be used with
overlays (see section 8).

OVERLAY GENERATION

Overlays are generated from programs as directed by
OVERLAY directives. These programs are loaded and
relocated, and images of the programs are created
in absolute form. These images are written on a
designated file as overlays. Later, the overlays
can be reloaded from the file for execution without
requiring relocation.

OVERLAY LEVELS

Each overlay is identified by an ordered pair of
octal level numbers, O through 77. The three lev-
els of overlays that are possible are the main,
primary, and secondary levels of overlays.

60429800 H

The main overlay must be level (0,0). It remains
in memory throughout job execution.

The primary level is subordinate to the main over-
lay. It is denoted by a nonzero primary Ilevel
number and a zero secondary level number. For
instance, (1,0), (2,0), and (3,0) are examples of
primary level numbers. Primary overlays are loaded
in respomse to a request issued by the main over-
lay. Up to 63 (decimal) primary levels can exist

in a structure.

A hierarchy exists between primary and secondary
overlays. The secondary overlay (both level num-
bers are mnonzero) is subordinate to the primary
overlay having the same primary level number.
Thus, secondary overlays associated with primary
overlay (1,0) could be (1,1), (1,2), and (1,3). A
secondary overlay can be called into memory by its
associated primary overlay or by the main overlay.
Up to 63 (decimal) secondary levels can exist for
each primary overlay. '

During overlay generation, a primary overlay is
assigned an origin at the next location immediately
following the main overlay (0,0), unless an origin
parameter on the OVERLAY directive is specified.
If the main overlay includes blank common, loading
begins after blank common.

The origin of a secondary overlay immediately
follows its associated primary overlay (including
any blank common), unless an origin parameter is
specified. No wmore than three overlays can be
loaded concurrently: the main overlay, one primary
overlay, and one secondary overlay associated with
the primary overlay.

Figure 6~1 illustrates a possible sequence of over-
lay generation. The loader prepares 12 overlays in
this example. The sequence of generation does not
imply that the programs are loaded in memory in the
same sequence, or that they remain in memory for a
set period of time when they are executed.

In figure 6-1, the main overlay (0,0) is always in
mEemory. Primary overlays (1,0), (2,0), (4,0),
(6,0), and (7,0), and/or secondary overlays (1,1),
(1,2), (2,1), (4,1), (4,2), and (4,3) are in memory
as needed. The main overlay can call either a pri-
mary overlay or secondary overlay into memory. A
primary overlay once in memory can call an associ-
ated secondary overlay.

In figure 6-1, overlay (6,0) is assigned an origin
within the blank common area because it has a
nonzero origin parameter. This example also illus-
trates that the numbers assigned to primary overlays
need not be consecutive.

84n1onJdig A Jdang

*1-9 24nBL4

m
uLey
T 17 1
07, 079 0% 0‘2 0L

711 |

€y 2 Ly L2 2L

1

11

(3L S8Je799p 3eUl AB(JBAO 3SJl4 2y} J493je paubLsse) uowwod juelg

4%

113 oL

asuanbag

uowwod pajageT

DN

_

(0°0) Aetdang utey

wn
Aaeutdd

(€
Aaepuosag

@'
AJepuoosg

(1))
Adewtdd

w2
Adewtdd

w2

14585
Asepuosag

Adepuodag

0L
Adewtdd

@D
AJepuodag

[{RSH]
AJepuoaag

X // N NN ///// / 5 // X
\ NNN ,Mﬂﬂ/ N \ N N \ /ﬂ/,,ynw \
0’9
Adewtdd

yBuan
pPiatd
AJowsy
jed31ua)

60429800 F

OVERLAY DIRECTIVES

The loader is instructed to create overlays by
OVERLAY directives encountered as separate records
in the load input stream to the loader. An OVERLAY
directive must precede the first binary table of
the series of one or more records that comprise the
overlay. The formats of the overlay directive are
shown in figure 6-2.

An OVERLAY directive must be a distinct record in
its file within the load input stream to the loader.
Some rules for the use of OVERLAY directives are:

@ So that the load operation can be recognized
from the beginning of an overlay generation,
the first loader input encountered must be an
OVERLAY directive. It must specify a main
(0,0) overlay.

@ The hierarchy of overlay levels must be adhered
to in the loader input. That is, any programs
composing a group of secondary overlays must
appear immediately after the programs for the
corresponding primary overlay.

More than one directive can specify the same
overlay level. This results in more than one
overlay of the same level; it does not cause
information to be added to the previously gen-—
erated overlay. More than one main (0,0) over-
lay can be generated; which, in effect, results
in more than one separate overlay structure.

® A common block in an overlay is defined to be
not overwritten for a subsequent overlay if the
common block first-word—-address (fwa) is lower
than the origin of the subsequent overlay. An
entry point in an overlay is defined to be not
overwritten for a subsequent overlay if the fwa
of the block in which the entry point is de-
fined is lower than the origin of the subse-
quent overlay. Otherwise, the common block or
entry point is defined to be overwritten. Once
a common block or entry point is overwritten,
it no longer exists (and therefore can be rede—
fined).

References to entry points or common blocks in
the main overlay can be made from that main
overlay or from any associated primary of sec—
ondary overlays for which the entry point or
common block is not overwritten.

References to entry points or common blocks in
a primary overlay can be made from that primary
overlay or from any of its associated secondary
overlays for which the entry point or common
block is not overwritten.

References to entry points or common blocks in
a secondary overlay can be made only from that
secondary overlay.

Data can be preset into a labeled common block
only by the lowest level overlay that declares

it.

@ The writing of each overlay resembles a normal
relocatable load completion, except that execu-
tion does not begin. At least one transfer
symbol must occur in the load input for each
overlay.

60429800 H

® An empty (zero-length) logical record termi-
nates the reading of programs during overlay
generation on both NOS and NOS/BE.

® Absolute relocation is not permitted during
overlay generation.

In processing overlay directives, the following
sequences are illegal:

e 1,0 0,0 2,0

Illegal because the main overlay must be first.

e 0,0 1,0 2,2 2,0

Illegal because the secondary overlay 2,2
should follow primary overlay 2,0.

The following sequences are legal:

e 0,0 1,0 77,0 77,44 77,12 3,0

e 0,0 1,0 0,0 1,0 1,0 1,1 1,1

OVERLAY MODULES

The object programs immediately following one
OVERLAY directive record and up to the next OVERLAY
directive record or end-of-file form an overlay.
As with basic loads, the request terminating an
overlay generation load is either EXECUTE, NOGO, or
a file name call.

A NOGO merely causes the completion of the Ilast
overlay. An EXRECUTE causes load completion, fol-
lowed by loading and execution of the first main
(0,0) overlay. All subsequent overlays to be loaded
must be loaded by user calls. (See the discussion
of overlay loading and execution later in this sec-—
tion.) Overlays can be loaded at execution time
without regard to the sequence used during their
generation, except that secondary overlays should
be loaded only after loading the associated primary
overlay.

After the object programs that comprise the overlay
have been loaded, the loader completes loading by
satisfying undefined external references from the
library set. It then writes the overlay on the
file.

Each overlay generated is composed of a 7700 (PRFX)
table followed by a 5400 (EACPM) table. The 5400
table can contain multiple entry points for a main
(0,0) overlay. These multiple entry points are
generated by including COMPASS LDSET pseudo in-
structions (EPT option) in the first relocatable
program after the (0,0) OVERLAY directive. If no
such LDSET instructions are encountered, then a
single entry point is generated whose name is the
same as the overlay name, and whose address is that
of the last transfer symbol (XFER table, appendix D)
encountered. Primary and secondary overlays can
only have a single entry point whose name is the
same as the overlay name; its address is that of
the last transfer symbol encountered.

OVERLAY(1fn,0,0,0V=n)

OVERLAY (Lfn, g, Ly, origin)

Lfn

L

L2

origin

oV=n

The file name on which the overlay is to be written.

1f a file is specified on a NOGO statement, it overrides the file named on any overlay directive.
1f a file is specified on a previous directive but not on the current directive, theq ?he pre=
viously specified file is used. If neither the directives nor a NOGO statement specified a file
name, the file ABS is used.

1f the Load input file is specified, a fatal error occurs and the load is aborted.

The primary level number, in octal (O through 77). For the first OVERLAY directive, lq and L3
must be 0,0 (main Llevel number).

The secondary ltevel number, in octal (0 through 77). The number must be zero for primary over=
Lays.

An optional parameter specifying the origin of the overlay; not allowed for the (0,0 overlay.
The parameter specifies the address of the first EACPM table header word; the actual program and
common blocks begin five words beyond this address. The loader accepts any of the following
forms:

The overlay is lLoaded nnnnnn words from the start of blank common. nnnnnn must be an
octal number, up to six digits. If this overlay is a primary overlay, blank common
must be declared in the (0,0) overlay. If this overlay is a secondary overlay, blank
common must be declared in the primary overlay, and not the (0,0} overlay.

Cnnnnnn

The overlay is loaded at the address specified; nnnnnn must be an octal number
greater than or equal to 110g.

O=nnnnnn

O=eptname The overlay is lLoaded at the address of the entry point specified, which must have
been declared in a lower level overlay, in a block whose fwa has not been overlayed.

O=eptname Same as above, but the address is biased by the amount of the offset.

nnonnn

Be very careful when specifying the origin for an overlay. If the fwa of an overlay is less than
the lwa+1 of an associated lower tevel overlay, the overlapping area will be overwritten at
overlay load time. The overwritten area must not contain data or subroutines needed later; no
attempt is made to save or restore the content of the overwritten area. Note that a program or
common block which is partially overwritten is defined to be not overwritten (see OVERLAY Direc~
tives rule 3).

If the origin parameter is omitted, the preceding comma must also be omitted.

An optional parameter specifying that the overlay generator is to generate an overlay structure
suitable for Fast Overlay Loader (FOL). OV=n can only be specified on the 0,0 overlay. n speci=-
fies the decimal number of higher Llevel overlays and OVCAPs in the overlay structure; it must
fall in the range of 0 n 20000.

If OV=0 is specified, a FOL directory is not generated.

Figure 6-2. OVERLAY Directive Formats

When any program in an overlay structure is modi-
fied, the entire overlay structure should be re-
processed through the loader. If an attempt is
made to rebuild only a subset of the overlay struc—
ture, the overlays not rebuilt might still contain
references to entry points in the original main
overlay. These references could be different even
if no code is changed in the main overlay because
programs that are loaded to satisfy externals are
loaded in random, and possibly changing, order.

overlay shown in

Examples of generation are

figure 6-3.
Example 1 illustrates the creation under NOS of a

permanent file containing a single overlay binary
program file. The most common reasocn for doing

6-4

this is to eliminate the need to relocate and link
the program each time it is used. The FORTRAN 5
compiler copies the OVERLAY directive onto the
binary object deck written on file OVERBIN., LOAD
directs the loading from OVERBIN. The loader reads
OVERBIN and encounters the OVERLAY directive in-
structing it to create a main overlay (0,0) and to
write it on file ABCD. The NOGO statement inhibits
execution of the program after loading is complete.

Example 2 shows a COMPASS example of multiple over-

lay generation and execution on NOS/BE. COMPASS
assembles the source decks and writes them on file

LGO (the system default file for binary output).

The binary output is interspersed with records
containing OVERLAY directives resulting from LCC
pseudo instructions.

60429800 K

Example 1:

Job statement
USER statement
CHARGE statement
DEFINE ,ABCD.
FTN5 ,B=0VERBIN.
LLOAD ,OVERBIN.
NOGO,ABCD.

7/8/9

OVERLAY(ABCD,Q,
FORTRAN 5 Source Deck

6/7/8/9

Example 2:

Job statement
ACCOUNT statement
COMPASS.

LGO.

FRANK.

7/8/9

COMPASS source deck containing the following
LCC pseudo instructions:

LCC OVERLAY(FRANK,0,0)
LCC OVERLAY(JOHN,1,0)
LCC OVERLAY(JOHN,1,1)
7/879
Data to be used during execution
7/8/9

Data to be used during execution

6/7/8/9

Figure 6-3. Examples of Overlay Generation

The LGO control statement causes loading from the
LG0O file, and the loader processes the OVERLAY
directives. The main overlay is written on file
FRANK. Primary overlay (1,0) and secondary over-
lay (1,1) are written on file JOHN. Both files,
FRANK and JOHN, are local to the job and are re-
leased when the job terminates. This type of job
might be used for preliminary overlay creation and
checkout.

After all overlays have been created, execution
begins by using the first data file in the job.
Because a second LGO statement would cause the
entire process to be repeated, including unnec-
essary recreation of all overlays, the second run
is expedited by using name call statement FRANK
instead of a second LGO. Name call statement FRANK
causes the main overlay to be loaded without re-
location from file FRANK. It can then process
the second data file and call for loading of the
overlays.

60429800 H

ERROR PROCESSING DURING OVERLAY
GENERATION

The following processing occurs during overlay
generation:

1. If a fatal error occurs during overlay genera-
tion, the loading process terminates at the
completion of that overlay.

2. If a map is requested, it is written, reflect-
ing the overlay being generated at the time the
fatal error occurred.

3. If ERR=NONE is not selected on the LDSET state-
ment or as an installation default, the job is
aborted after supplying the above information.
If ERR=NONE is selected the load operation is
terminated, but the job is not aborted.

As with basic loading, nonfatal errors do not
interrupt the progress of the load, although their
eventual effect might lead to a fatal error.

OVERLAY LOADING
AND EXECUTION

After overlays are generated, they reside on the
files specified. Unlike segments, there is mno
provision for automatic loading of overlays.

When the program is to be executed, the main over-
lay is brought into memory either as a result of an
EXECUTE request terminating the load sequence or as
a result of a name call statement in the job deck.
Thereafter, additional overlays are called 1into
memory by the executing program. Overlays can be
loaded at execution time without regard to the se-
quence used during their generation, as long as the
hierarchical structure is observed.

FORTRAN-compiled programs commonly use the CALL
OVERLAY statement described in the FORTRAN refer-
ence manuals. A user call in a COMPASS language
program comsists of a LOADREQ macro. The Fast
Overlay Loader provides an alternative to the
COMPASS LOADREQ macro.

LOADREQ (REQUEST OVERLAY LOAD)

The LOADREQ macro (figure 6-4) requests that an
overlay be loaded into memory. Word paddr is the
first word address of a table of parameters. No
macro exists for generating this table. The user
must generate the table by using COMPASS code. The
internal format of the table is shown in figure 6-5.

The operation performed depends on the values of
the parameter words. LOADREQ call processing is
not fully compatible for the NOS and NOS/BE oper-
ating systems.

For LOADREQ calls on NOS, the following processing
is performed:

1. If u is gero, n is ignored and name is the name
of the file containing the overlay. The over-
lay is 1loaded by level number (level 1 and
level 2 are required), and ovliname and eptname
are ignored if present.

6-5

7.

For LOADREQ calls on NOS/BE,

If u is 1, the overlay is loaded by entry point
name from the system. If n is =zero, name is
the entry point name. If n is 1, ovlname is
the entry point name and name is ignored. If
n is 2, eptname is the entry point name and
ovlname and name are ignored.

If fwa is zero, the overlay is loaded at the
address specified by the overlay.

If fwa is nonzero, the overlay is loaded at the
specified address.

If level l=level 2=0 on the request, or e is 1,
control is transferred to the called overlay;
otherwise, control is returned to the caller
with fwa=entry address.

iwa is ignored. The last word address to which
the overlay can extend is assumed to be FL-1.

v=1 must be specified for an overlay load.

the following proc-

essing is performed:

1.

If u is zero and n is zero, name is a local
file name and the overlay is loaded by levels 1
and 2.

If u is zero and n is 1, name is the name of
the file containing the overlay and ovlname
specifies the overlay name. The overlay is
loaded by ovlname. Level 1 and level 2 are
used if ovlname is zero.

if u is zero and n is 2, name is the logical
file name, ovlname is the overlay name, and

eptname is the entry point name. Level 1 and
level 2 are optional but are used by default if

ovlname is zero; otherwise, the overlay indi-
cated by ovlname is loaded and the entry point
name indicated by eptname is used. If eptname
does not exist in the overlay, the first entry
point in the overlay header is used.

If u is 1 and n is 2zero, name is the overlay
name to be searched for in the global library
set, followed by the default library NUCLEUS.
Level 1 and level 2 are ignored.

If u is 1 and n is 1, name is the library name
and ovlname is the overlay name. Level 1 and
level 2 are ignored.

If u is 1 and n is 2, name is the library name,
ovlname is the overlay name, and eptname is the
entry point name. Level 1 and level 2 are
ignored. If eptname does not exist in the
overlay, the first entry point in the overlay
header is used.

If fwa is zero, the overlay is loaded at the
address specified in the overlay header.

If fwa is nonzero, the overlay is loaded at the
specified address. It is recommended that fwa
be specified whenever possible as this yields
more efficient processing. If fwa is not spec-
ified, the reading of directories and overlay

10.

11.

12.

13.

headers takes place at an area in central mem-
ory that the user might not want destroyed.
That is, the location specified in bits 17
through 0 of RA+65g is used until the first
word address from the overlay header is ob-
tained.

If lwa is zero, the default last word address
to which the overlay can extend is assumed to
be FL-3.

1f 1lwa is nonzero, it specifies the last
address+l to which the overlay can extend. 1In
this case, lwa is less than or equal to FL-3.

v=1 must be specified for an overlay load.

If e is zero, control is returned to the

calling program.

If e is one, control is transferred to the
loaded overlay. This should not be used when
auto-recall is specified in the LOADREQ macro.

Location Operation Variable Subfields

f

paddr

rct Auto-recall indicator (optional):

LOADREQ paddr,rct,flag

An address expression, specifying the
first word of the parameter area.

null Control returns immediately

Control returns after the
call is completed

not null

Lag A keyword indicating special action.
Required if the Common Memory Manager
(CMM) is active at the time of the

call. The keywords are:

null No special action; CHMM
must not be active.

CMM Indicates an overlay load
by a job that uses CHM.
This call activates CMM if
it is not already active.

DATA Indicates that the loaded

overlay is to be treated
as data, such as a system
text. This call can be
made when CMM is either
active or inactive, and
neither activates nor
deactivates it if it is
present. Both fwa and lwa
must be supplied in the
parameter area, and the e
bit must not be set.

Figure 6-4. LOADREQ Macro Format
(Overlay Load)

60429800 J

59 53 47 41 35 17 0
paddr name 0
I8
paddr+1 L L n|esduv| res |e Lwa fua
il

paddr+2 ovlname reserved

paddr+3 eptname reserved

name A library name, overlay name, or entry point name (see below), left-justified with zero fill.
Lq Primary overlay level.

L Secondary overlay Llevel.

n Number of words=2 in the request (bits 47 and 46).

s,d Used by (MM.

u Load option (bit 42).

v Overlay load flag (bit 41).

e Automatic execute flag (bit 36).

LwaT The Llast word address available for load. For NOS/BE, lwa is the last word address

available +1.

fwa The first word address available for load.

ovlname The overlay name, left-justified with zero fill.

eptname The entry point name, left-justified with zero fill.

:::erved} Fields that can be used only by CDC.
TUnder NOS/BE, Lwa should be specified whenever possible. If lwa is not specified, then the reading of
Library directories and/or overlay headers can take place in an area of (M (from fwa to FL-3) which the
user might not want destroyed.

Figure 6-5. LOADREQ Table Internal Format

Error processing and return information from
LOADREQ processing differs for the NOS and NOS/BE
operating systems.

Under the NOS operating system, errors encountered
during LOADREQ processing cause the job step to
abort. If no errors occur and the parameter words
are not destroyed by the loaded overlay, the param—
eter words are updated as shown in figure 6-6.

Under the NOS/BE operating system, information
is returned in the parameter area (as shown in
figure 6-7), if the parameter words are not over—
written by the loaded overlay.

‘For both NOS and NOS/BE, fields other than those
shown in table 6-1 are unchanged.

60429800 K

Request Processing

The loading of the requested overlay takes place by
execution of the peripheral processor program LDV
under NOS/BE or the peripheral processor program
LDR under NOS. The LOADREQ macro always calls LDV;
NOS translates an LDV call into an LDR call.

When auto-recall 1is specified, control is not
returned to the user program until loading of the

requested overlay is completed.

If the e bit is set in the request, it is assumed
that the overlay being loaded will overwrite the
overlay making the call. Here, no updating of the
request takes place. Upon completion of the load,
the specified entry address is entered directly. A
fatal error causes job abortion.

59 53 47 17 0
paddr name 0
paddr+1 14 %} 0 eptaddr
paddr+2 ovlname 0
paddr+3 eptname 0
L4 overlay level number 1
5} Overlay level number 2

eptaddr Entry point address of the overlay; if n is 2, eptaddr is the address of eptname.

Figure 6-6. LOADREQ Table Internal Format After Overlay Load Under NOS

59 53 47 41 35 17 0

paddr name status ¢
|

paddr+1 Lq Lo |n|gsduv| res 2; Lwa eptaddr
l

paddr+2 oviname reserved

paddr+3 eptname reserved

Lq Overlay Level number 1

L Overlay level number 2

Figure 6-7. LOADREQ Table Internal Format After Overlay Load Under NOS/BE

Making LOADREQ Calls Compatible for
NOS and NOS/BE

Because some differences exist in LOADREQ proc-
essing on NOS and NOS/BE, it is wise for programs
that must run on both systems to make LOADREQ calls
that are compatible. The compatible calls are:

Two-word calls (n=0) to load overlays from non—
library local files by level number.

Two-word calls (n=0) to load single entry point
overlays from the default system library.
(Here, the entry point name is the same as the
overlay name.)

Three-word calls (n=1) and four-word calls
(n=2) to load overlays from the default system
library.

The wuser should also be aware of the following
notes and recommendations:

e Under NOS, LOADREQ calls to load from local
files are always treated as two-word calls
(n=0).

® Under NOS, a LOADREQ call specifying a (0,0)
level overlay (level 1l=level 2=0) results in
control being passed to the loaded overlay,
regardless of the setting of the e bit.

@ When issuing LOADREQ calls, ensure that both
the overlay name and level numbers are correct.

e When issuing LOADREQ calls, completely reset
the parameter words, as LDV/LDR return in-
formation overwrites different parts of the
parameter words.

@ Two-word calls (n=0) to load from the default

system library must specify the overlay name
under NOS/BE and entry point name under NOS.

60429800 H

TABLE 6-1. PARAMETER AREA FIELDS CHANGED BY OVERLAY LOAD UNDER NOS/BE
Word Bits Field Significance
paddr 17 through 1 status Contents of the field depend on ne and fe, as follows:
ne fe Contents of Status Field
0 0 Zero
0 1 Fatal error code
1 0 Error code for first nonfatal error
1 1 Fatal error code
Refer to appendix B for error codes.
0 c Completion flag:
1 Call is completed
paddr+1 37 ne Nonfatal error flag:
0 No nonfatal errors have occurred
1 One or more nonfatal errors has occurred
36 v fe Fatal error flag:
0 No fatal errors have occurred
1 A fatal error has occurred
17 through O eptaddr Address of the entry point of the overlay.
If n is 2, this field contains the address of the eptname in
word 3, except if the specified eptname was not found, in
which case the field contains the address of the first entry
point.

Recommended Procedure for Overlay Loading

To make a program most flexible, a single subrou-
tine should be used for all overlay loading. The
subroutine should be written by using the following
rules:

@ Set v to 1, e as desired, and n to 1 (three—

word call).

@ Set both ovliname and level 1 and level 2

correctly.
® Set fwa and lwa if known.
® Set name from top 42 bits of RA+64g.
® Set u from bit 18 of RA+65g.

® If name is NUCLEUS and u is 1,
SYSOVL.

change name to

If the preceding steps are followed, the program
can be either run from a local file, run from a
NOS/BE user library, or installed as part of either
operating system without requiring any changes to
the program.

60429800 H

FAST OVERLAY LOADER

The Fast Overlay Loader (FOL) provides an alternate
method of loading primary and secondary overlays.
The FOL overlay structure is generated with an
overlay directory built into the main (0,0) over-
lay. Specifying the OV parameter on the (0,0)
OVERLAY directive (figure 6-2) initiates generation
of the directory; if OV=0, then mno directory is
generated. All higher level overlays are required
to be writtem onto the same file as the main over-
lay. The structure of the overlay file is required
to remain unchanged for proper functioning of the
FOL; FOL overlay structures can be put onto librar-
ies provided that the order of the programs is
unchanged.

A small resident loader, FOL.RES, loads the primary
and secondary overlays; it is a part of the main
overlay.

When the main overlay is loaded, its file and
random address are known and are placed in the 5400
table of the (0,0) overlay. When a call to the FOL
resident occurs, the higher level overlay is loaded
from the same file that the main overlay resides
on. The random address of the overlay is calcu-
lated by the random address of the main overlay and
a relative address bias to the desired overlay;
hence, the requirements to preserve the order of
the overlay structure and to write all overlays
onto the same file.

Fast Overlay Loading

If an FOL overlay structure has been built, then
the higher level overlays can be loaded by calls to
the FOL resident. LOADREQ calls are still wvalid
but are discouraged due to performance considera-
tions and incompatibilities of NOS and NOS/BE.

The entry point FOL.ILOV is called to load an over-—
lay if CMM is not active; the entry point CMM.LOV
is called if CMM is active. The following parame-
ters should be passed to FOL.LOV or CMM.LOV by the
calling program:

® The name of the overlay

@ The level numbers of the overlay (level numbers
are used if and only if the overlay name is set
to zero)

The exact calling sequence for loading higher level
overlays is shown in figure 6-8.

Automatic execution of the loaded overlay does not
occur. Upon return from the FOL resident, the
entry point address is in B7; the user must jump to
this address to begin execution. (Note that B7 is
negative if an error occurred.)

Load Overlay as Data

The FOL resident provides a facility to load an
overlay at an address that is specified at execu-
tion time. Such an overlay is a data overlay which
contains no executable code and can reside anywhere
in memory.

The entry point FOL.LOD is called to load data
overlays. The following parameters should be
passed to FOL.LOD by the calling program:

e The overlay name

© The address at which to load the overlay

The exact calling sequence for loading data over-
lays is shown in figure 6-9.

The user is responsible for enmsuring that the over-
lay does not destroy needed parts of memory.

Get Directory Entry

The FOL resident provides a facility for the user
to obtain a directory entry for a higher level
overlay from the FOL directory of the currently
loaded main overlay.

The entry point FOL.GDE is called to obtain direc-—
tory entries. The following parameters should be
passed to FOL.GDE by the calling program:

® The overlay name

® The level numbers of the overlay (level numbers

are used if and only if the overlay name is set
to zero)

The exact calling sequence for obtaining directory
entries is shown in figure 6-10.

6-10

RJ
RJ

Entry:

Exit:

If error:

Saves:
Calls:

ovlname

L, L2

fua

epta

XFOL.LOV (if CMM is not active)
XCMM.LOV (if CMM is active)

(X1) = 42/oviname,6/0,6/14,6/17.
@31 =1.
(B6) = fwa.
(B7) = epta.
(B6) = (B7) = Error code:
777001 = OVERLAY NOT IN
DIRECTORY.
7771nn = ERROR nn RETURNED
FROM LOADQ.
7772nn = ERROR nn RETURNED

FROM LOADREQ.
A, X0, B2, B3, X5.
SYS=.

The name of the overlay, left-
justified with zero fill.

The level numbers of the higher
Llevel overlay. Level numbers are
used if and only if ovlname=0.

The address of the first word of the
5400 table for the loaded overlay.

Address of the first entry point.

Figure 6-8. Calling Sequence for Loading

Overlays by the FOL

RJ = XFOL.LOD

Entry:

Exit:

If error:

Saves:
Calls:

ovlname

fua

epta

(X1) = 42/oviname,18/fuwa.
(B1) = 1.

(B6) = fua.

(B7) = epta.

(B6) = (B7) = Error code:

777001 = OVERLAY NOT IN
DIRECTORY.

7771nn = ERROR nn RETURNED
FROM LOADQ.

7772nn = ERROR nn RETURNED
FROM LOADREAQ.

AD, X0, B2, B3, XS.
SYS=.

The name of the overlay, left-
justified with zero fill.

The address at which to load the
overlay which is the address of the
first word of the 5400 table for the
Lloaded overlay.

Address of the first entry point.

Figure 6~9. ¢€alling Sequence for lLoading

bata Overlays

60429800 H

RJ = XFOL.GDE
Entry:

Exit:

If error:

Saves:

oviname

L.L2

fwa

Lwa

(X1) = 42/oviname,6/0,6/1L4,6/12
(B1) = 1.
(X6) = 42/ovlname,18/fua
(X7) = 6/14,6/12,30/undefined,
18/ Lua+t
(X6) = 60/0 = error code; entry not

found.
A0, X0, B2, B3, X5.

The name of the overlay, Left-
justified with zero fill.

The level numbers of the overlay.
Level numbers are used on entry if
and only if ovlname=0.

The address of the first word of the
overlay.

The . address of the Last word of the
overlay (lwa+! must be < FL-3).

Figure 6-10.

60429800 H

Calling Sequence for Obtaining a
Directory Entry

Processing by the FOL Resident

How the FOL resident loads higher level overlays
depends on certain conditioms. The FOL checks
these conditions in the order that follows; as soon
as one 1is met, the FOL resident takes the appro—
priate action:

1. If the main overlay comes from the NUCLEUS
library (NOS/BE), then LOADREQ is used to load
higher level overlays from the SYSOVL library.

2. If the (0,0) directory information is avail-
able, then the FOL directory and LOADQ are used
to load higher level overlays from the same
file as the main overlay.

3. If the main overlay comes from the Central
Library Directory (CLD) then LOADREQ from the
CLD is used (NOS).

4. If none of the above conditions are met, then
the file name from RA+64 is wused; the main
overlay 1s assumed to be at PRU 1. The FOL
directory and LOADQ are used to load the higher
level overlays from the same file as the main
overlay.

 SEGMENTATION 7

Segmentation provides an alternative to overlays
for dividing large programs into sections to reduce
the amount of memory required for job execution.

Segmentation is more flexible than overlays because
of the following:

® Each segment can have more than ome entry point

® Segment loading is done automatically, as
needed, under control of a resident program
(SEGRES)

@ Up to 4096 segments can be specified in a
segmented program

® Up to a combined total of 8192 program names,
common block names, and levels can be specified
by segment directives in a segmented program

] Up to a combined total of 8192 program names
and common block names can be defined through
object program input to the segment loader in a
segmented program

e The job field length can be adjusted dynami-
cally during program execution as segments are
loaded and unloaded if the user so desires

Segmentation cannot be used for system programs, and
segmented programs cannot be placed in libraries.
A segment must be less than 400000g words.

Capsules provide an alternate means to segmentation
and overlays for dividing large programs into sec—
tions to better utilize memory and time during job
execution.

ORGANIZING SEGMENTS

A program can have up to 4096 segments. One main
segment called the root segment must always remain
in memory; it is never reloaded and no other seg-
ment can overwrite it. (The root segment is similar
to a main overlay.)

Segments are organized in a structure resembling a
tree. That is, segments branch out from the root
segment in a fanwise (upward in memory) direction
of higher numbered addresses. A sample tree struc-—
ture is shown in figure 7-1, where A is the root
segment.,

The structure of a tree is defined by the user
through the TREE directives. Each segment in the
tree contains programs assigned to the segment,
either by the user through directives or by the
loader while satisfying external references.

60429800 K

S\\\ ///J
N P
Level 2
M P Q
T
{\\\ ///F
Level 1 G T
F H
Level 0 contains
D E only the basic
\\\\ /// tree
Level O B ///C
\A
(Root Segment)

Figure 7-1. Sample Tree Structure

Segments are organized within the tree structure by
levels. In figure 7-1, segments A, B, C, D, and E
are in the first level (lowest addresses in mem—
ory). This level constitutes the basic tree.
Immediately above the topmost point of the basic
tree, a new ground level is established from which
two more trees spring: one tree 1is composed of
segments F and G; the other tree is composed of
segments H, I, J, K, and L.

A third level is also included in the example from
which three new trees spring.

Any two segments that can be loaded into memory at
the same time are called coexisting segments.
Segments can coexist if either:

® They belong to two different trees springing
from two different ground levels. (For exam-
ple, segments in the tree springing from H can
coexist with segments from the tree springing
from Q.)

¢ They are in the same tree but are not comnnected
by a path that involves moving down and then up
in the branch structure. (For example, segment
J can coexist with segment L.)

In figure 7-1, it is possible for segments A, C, E,
and H to be in memory at the same time. Segments B
and C, D and E, and F and H cannot be in memory at
the same time because they occupy the same memory
space. Segments and programs within segments are
said to be compatible if they can coexist in memory.

Any set of segments has a nearest common ancestor,
defined as follows:

@ If the set contains a single segment, that
segment is the nearest common ancestor of
itself.

@ If one of the segments in the set is the ances—
tor of all the others, it is the nearest common
ancestor of itself and all the others. In
figure 7-1, I is the nearest common ancestor of
I and L.

@ If the segments of the set are all in the same
tree, but no one segment is the ancestor of all
the others, their nearest common ancestor is,
among all of their common ancestors (at least
the root segment of the tree 1s such a common
ancestor), the one closest to the set. In
figure 7-1, C is the nearest common ancestor of
D and E, although A is also a common ancestor.

@ If the segments of the set are in different
trees, the root segment of the bottom tree is
their nearest common ancestor. In figure 7-1,
A is the nearest common ancestor of either G
and H, or G and P.

In addition, a segment can have either a direct
ancestor or a direct descendant. For example, A is
a direct ancestor of B and C; B and C are direct
descendants of A.

ASSIGNMENT OF PROGRAMS TO SEGMENTS

The loader reads programs from the load files and
divides the programs into fixed programs and mov-
able programs.

Fixed programs are those assigned to segments by
the user through TREE or INCLUDE directives.

Movable programs are programs not explicitly
assigned to segments that are encountered by the
loader while either loading programs or satisfying
external references. The loader then has the task
of assigning each movable program to a segment that
can be accessed by all the segments referencing the
program.

General rules for the assignment of programs to
segments are:

1. The specification field of a TREE directive
defines the structure of a tree, using the
names of segments and/or other trees. Each
name is a tree name if it is used in the label
field of another TREE directive; otherwise, it
is a segment name. The program named segname
is implicitly included in the segment named
segname only if the program named segname does

7-2

not appear in the specification field of another
INCLUDE directive; the program named segname
must be explicitly listed if it appears inm the
specification field of another INCLUDE
directive.

2. A copy of each program named on an INCLUDE
directive is placed in the segment specified.
If several INCLUDE directives name the same
program, a copy of the program is placed with
each of the segments indicated.

Assignment of Fixed Programs

A program named on a TREE directive is sought first
among the programmer—defined load files and then in
a library. If the loader is unable to find the
program, a fatal error is generated.

The 1loader makes the lists of entry points and
externals of all programs, and discards any exter—
nals for which there are matching entry points.
Externals between incompatible fixed programs are
not discarded.

Next, the loader searches the libraries for fixed
programs that were not located on programmer-
defined load files, and for unsatisfied externals
of programs that were found on load files. As pro-
grams are loaded from the library, they are divided
into fixed and movable programs and thereafter
treated like programs from load files.

When all the programs have been read, the loader
makes new lists of entry points and externals and
begins the task of assigning movable programs to
segments.

Assignment of Labeled Common Blocks

A labeled common block not declared GLOBAL or
COMMON is assigned with the program that defines
it. A labeled common block declared GLOBAL is
assigned to the specified segment. A labeled com~
mon block declared COMMON 1s assigned to a segment
which is the nearest common ancestor of all seg-
ments which reference the block. When a labeled
common block is assigned in this manner, it is
processed as a GLOBAL-SAVE block. If a labeled
common block is declared both GLOBAL and COMMON,
the GLOBAL specification overrides.

Assignment of Movable Programs

Assigonment of movable programs is carried out in
three steps, of which the second might be repeated:

1. The loader, whenever possible, satisfies exter-
nals of fixed programs with matching entry
points in compatible fixed programs.

2, Step 2 has three parts, which are repeated until
an iteration results in no reassignments of
movable programs. Observe that these assign-
ments are provisional until that stable itera-
tiom. A movable program might be initially
unassigned, might then be assigned to a seg-
ment, later reassigned to a lower segment, and
then ultimately assigned to the root segment if
that is the only common ancestor. Reassignment
is always along the ancestral chain toward the
root segment.

60429800 H

a. On each iteration, the list of movable
programs is scanned and each program is
assigned or reassigned to the nearest com-
mon ancestor of the segments containing
that program and any programs that call it.

b. If a movable program calls a fixed program
that is incompatible with the segment to
which the movable program 1is currently
assigned, the movable program is reassigned
to the nearest common ancestor of the seg-
ments containing the movable program and
the program it calls.

¢c. Labeled common blocks declared COMMON (and
not GLOBAL) are assigned to the nearest
common ancestor of all segments which ref-
erence the block. Then all movable pro-
grams which preset the labeled common block
but are assigned to an incompatible segment
are assigned to the same nearest common
ancestor.

During an iteration, an unassigned program
remains unassigned if all the programs calling
it are unassigned. (Iterations of the second
step eventually terminate, because an iteration
either results in no reassignments, or it
approaches the point of having all the movable
programs in the root segment, at which time
iteration must stop.)

3. Any program that is unassigned when step 2
terminates is assigned to the root segment.

The final assignments of movable programs are such
that a call to a movable program never causes load-
ing; thus, 1t never causes part of memory to be
overwritten unexpectedly. A call from a movable
program to a fixed program can cause loading, but
because all fixed programs are foreseen by the
programmer, the effects of the loading are also
foreseen (presumably).

SEGMENT LOADING

Any word containing an external reference to an
entry point in another segment is replaced with a
call to the segment loader resident while the other
segment is not loaded. Execution of the word con-
taining the jump to the resident causes the resi-
dent to load the needed segment and replace the
original word.

This method of loading segments implies that
external references between segments should only
appear in executable code. For example, use of
pointer words contalning external references does
not cause segment loading and leads to incorrect
results. FORTRAN and SYMPL programs should not
pass external references as parameters in subrou-
tine or function calls. {(These restrictions apply
only to references between segments. References
within a given segment are unrestricted.)

This method of loading segments can cause a segment
to be loaded and not executed if within a single
word there is a conditional jump followed by a jump
to another segment. (This will not happen with
FORTRAN programs because the compiler does not gen—
erate such code.) In the following COMPASS code

60429800 H

sequence, for example, the segment containing the
entry point SEG2 is loaded whenever CHECK is exe-
cuted, regardless of the result of the ZR test.

CHECK ZR XL,MISS
RJ =XSEG2
MISS BSS O

A user must be sufficiently aware of segment struc-—
ture to avoid such problems as the following:

Consider segment A as the root segment having
two branches, B and C. A is loaded automati-
cally and execution begins at an entry point in
A. The first reference outside of A is a non-
return jump to an entry point in segment B.
The loader traps this reference, loads segment
B above segment A and executes the jump to B.
B, however, contains a return jump to segment
A. The execution of this return jump embeds in
A an exit jump back to an address in B. Before
this exit is taken, the loader encounters a
jump reference to segment C, which causes C to
be loaded automatically in memory formerly
occupied by B. When A attempts to return to B,
it cannot do so but, instead, actually jumps to
an irrelevant location in segment C.

The preceding paragraphs describe the way in which
central memory is assigned to and used by seg-
ments. The purpose of SEGLOAD is to allow segments
to share central memory without requiring the user
to do the necessary loading and reloading. How-—
ever, the programs that comprise a segment can
include blocks assigned to ECS as well as blocks in
central memory. ECS is handled by SEGLOAD in a
much less elaborate way. All the ECS belonging to
a segment is gathered into a continuous block, and
the blocks for all the segments are assigned space
in ECS, beginning at RA(ECS)+0, with no overlap-
ping. ECS blank common begins immediately after
the last ECS block. At execution time, before any
loading into central memory is done, all these
blocks are read into ECS. Thereafter, they are
never reloaded because the resident and the system
do nothing to destroy them.

DUPLICATION OF NAMES

Restriction on the duplication of segment names,
program names, and entry point names is explained
in the following subsections.

Segment Names

Each segment in a tree must have a unique segment
name, but these names need not differ from progranm,
entry point, and common block names.

Program Names

Object programs need not have unique names, but the
loader must be able to determine the segment to
which a program is to belong. Thus, a program name
that is not unique must not be in the list of pro-
grams on an INCLUDE directive because the loader
has no way of knowing what program is meant. Any
duplication of a program name causes a warning
message.

Entry Point Names

The following rules govern the use of duplicate
entry point names:

@ All entry point names in fixed programs in one
segment of a tree structure must be different;
otherwise, an error message is issued and the
first entry encountered is used.

°® Duplicate entry point names are allowed in
fixed programs in different segments of a tree
structure.

e Fixed program entry point names can be dupli-
cated in movable programs. The loader attempts
to satisfy externals first with entry point
names in fixed programs, and second with entry
point names in movable programs. Thus, movable
programs are searched only to satisfy externals
not previously satisfied by fixed programs.

e Duplication of entry point names in movable pro-
grams on the load file or library is permitted
when satisfying externals. The first occurrence
of duplicate entry points in movable programs
is used for satisfying external references not
satisfied by a fixed program. Duplicate entry
points in other movable programs are ignored.

LOCAL SAVE BLOCK

A special labeled common block named S$ASVSE is
recognized as the LOCAL SAVE block. It is special-
cased by the segment loader and treated as a
GLOBAL-SAVE block for the program that declares
it. Multiple occurrences of this block name are
allowed; each occurrence generates a unique block.

Figure 7-2 shows examples of LOCAL SAVE block
creation.

Example 1:
FTN5 program:

SUBROUTINE SUB

SAVE /COMM/
COMMON /COMM/ VAL . . .

Example 2:

COMPASS program:

IDENT SuB

USE /S$ASVSE/
VAL B8Ss 1

USE *

Figure 7-2. Examples of LOCAL SAVE Block
Creation in FORTRAN and COMPASS

Example 1 shows a LOCAL SAVE block creation in a
FORTRAN5 program. Example 2 shows a LOCAL BSAVE
block creation in a COMPASS program. In both cases,
a common block of name S$ASVSE is created, and the
Segment Loader treats it as a LOCAL SAVE block.

RULES FOR REFERENCING COMMON
AND ABSOLUTE BLOCKS

The following rules apply when referencing common
and absolute blocks.

e Blank common can be referenced freely.

® Labeled common that has been declared on a
COMMON directive, and not on a GLOBAL direc-
tive, can be referenced freely.

e Labeled common cannot be referenced by a seg-
ment other than the one that defines it unless
it is made global through a GLOBAL or COMMON
directive. If it is not made global, an attempt
to reference the block results in a new common
block in the referencing segment.

® A GLOBAL common block can be referenced by the
segment to which it belongs and by all segments
in higher branches of the tree structure that
contain the segment as a base. Such references
are safe if the GLOBAL block has been marked
~SAVE; that is, the contents of the common
block are not disturbed by segment loading.
Such references are not necessarily safe if the
GLOBAL block has not been saved, but the risk
is entirely the user”s.

e A GLOBAL common block can be referenced by a
segment that is in a direct path between the
block”s owning segment and the root segment, or
by a segment on a different level from the own-
er. This is risky because the owning segment
might not be resident when the referencing
segment is loaded. This differs from the case
of a jump to an external symbol, which causes
loading of the segment containing the exter-
nal symbol (if necessary) before instruction
execution.

e A GLOBAL common block should not be referenced
by a segment that cannot be loaded legally at
the same time as the segment that owns it.
Such a reference results 1in unpredictable
results. The same case applies to a reference
to an external symbol; a fatal error occurs if
the referencing and referenced segments cannot
coexist.

@ Absolute information is not permitted within
segments.

SATISFYING OF EXTERNALS

When a segment 1is generated, all externals are
considered to be unsatisfied. The unsatisfied
externals are satisfied from the various segments
in the tree structure according to the following
order:

1. From a segment that is a direct ancestor,
closest to the root segment, of the segment
with the external reference

2. TFrom the segment with the external reference

60429800 X

a direct descendant,
of the segment

3. From a segment that is
closest to the root segment,
with the external reference

4, From a segment that is in a different level,
beginning with level O and continuing wup
through all levels

The following references refer to figure 7-1. Im
generating segment L, segment L has an external
XL. Segments J, I, and K all have an entry point
XL. The external XL in segment L is linked to
entry point XL in segment I, Entry point XL in
segment K is an invalid reference, and segment I is
closer to the root segment than segment J. The
satisfying segment is the valid reference that is
closest to the root segment. If there is no valid
entry point in the tree structure (in levels 0, 1,
and 2), the external remains unsatisfied, which
causes a nonfatal error.

that remain unsatisfied after all the
segments in the family have been considered are
satisfied from the library, if possible, in
accordance with loader control statements. (See
the discussion of library searching in section 1.)
For each library in succession, the following steps
are carried out:

Externals

1. If all the fixed programs are found on load
files, the loader continues with step 2. If
there are fixed programs unaccounted for from
load files, the loader consults the list of
programs in the library; if no object programs
match, none of the fixed programs are on the
library and the loader continues with step 2.
If some of the fixed programs are on the 1i-

brary, the loader reads them from the library
and thereafter treats them as if read from a
load file. This can cause additions to the

list of unsatisfied externals, and it could al~
low some previously unsatisfied externals to be
satisfied immediately and removed from the list.

2. The 1loader matches the 1list of unsatisfied
externals against the list of entry points in
the library. It marks the externals that do
not appear in the library 1list as wunsatisfi-
able, and those that do appear in the list as
satisfiable. The satisfiable externals are
satisfied from the current library; the unsat-
isfiable externals must be matched against the
next library, if any.

3. The loader uses the external reference table of
the library to add to the list of satisfiable
externals, as necessary. Suppose that the
satisfying of extermal W by using this library
means that program Y will be added to the load
(figure 7-3), and that Y has an external Z that
can be satisfied by an entry point in program V
in the library. Further suppose that V has an
external U that can be satisfied by an entry
point in program T in the library. T, however,
has no externals to be satisfied from the li-
brary. Then, a consultation of the external
reference table, along with the list of satis—
fiable externals in the family so far, and the
list of entry points in the family so far ena-
bles the loader to enter the table with W, find
Z, and stop the process if there is already a Z
in the family. Otherwise, it adds Z to the list
of satisfiable externals and reenters the table

60429800 K

with Z. On the second pass through the table,
the loader finds U and adds it to the list of
satisfiable externals unless there is already an
entry point named U in the family of segments.

Having completed the 1list of externals to be
satisfied by this library, the loader consults
other tables of the library to locate the pro-
grams that are to be read from the 1library,
and does a first-pass read on them just as for
programs from input files.

Library programs are assigned to segments on
the same basis as nonlibrary programs, for which
the rules are given above in the description of
program assignment. The assignment of movable
programs 1is done after all the relevant 1i-
braries have been consulted. It is done in such
a way as to accommodate calls as much as pos-—
sible (the connections of externals with entry
points)., But, mno attention is paid in this pro-—
cess to the labeled common blocks that might be
named by the movable programs, so you must con-
sider the rules for referencing common blocks.

A library program can have externals that are
not provided for in the external reference
table of the library, because they cannot be
satisfied by any program in the library. Dur-
ing the first pass read of a library program,
these are either satisfied by entry points al-
ready known to be in the family, or else are
added to the list of unsatisfiable externals.

When a library has been completely processed,
if there are no remaining unsatisfiable exter-
nals, and no remaining program names from
INCLUDE and TREE statements for which object
programs have not yet been found, no further
libraries are used. Otherwise, the unsatisfi-
able tag 'is removed from the remaining list of
unsatisfied externals, and the next library (if
any) is processed.

W
W
z

Program Y
Z
1]

Program V
u

Program T

Figure 7-3. Example of Satisfying Externals

SEGLOAD CONTROL STATEMENT

The presence of a SEGLOAD statement (figure 7-4) in
the loader control statement sequence specifies
segmentation.

Other statements that can be used in the same
sequence to augment the SEGLOAD statement are:

[name call

] LOAD

® LIBLOAD

] SLOAD

® EXECUTE

[NOGO

® LDSET

SEGLOAD (pq,p2,P3)

p; Represents the following optional parameters
in any order:)

Identifies the name of the Llocal
file containing the segload direc-
tives. If this parameter is omit—
ted, directives are assumed to be
the next record on INPUT.

I=Lfn

Identifies the Local file to receive
segmented binary output. If this
parameter is omitted, segments are
written on ABS. If Lfn is assigned
to a magnetic tape device, the seg-
mented binary output will be written
at the current file position; other-
wise, Lfn will be rewound.

B=Lfn

Identifies List options for the seg-
ment loader. The characters cq and
co» control the directive list and
tge tree diagram. cqcp values are:

LO=cqcp

0 Neither tree diagram nor
directive Llist

D Directive List only

T Tree diagram only

DT . . .

™ Both directive list and
omitted tree diagram

If the LO parameter is omitted,

the List options depend on the
Load map produced. If MAP(OFF) or

LDSET(MAP=N) is specified, LO=0 is
assumed; otherwise, LO=DT is
assumed.

Figure 7-4. SEGLOAD Statement Format

SEGLOAD accepts programs from files as long as the
following are true:

® No program spans record boundaries.

e Any embedded directive occurs in a separate
record (an OVERLAY directive is legal and
ignored if it is in a separate record).

SATISFY is not to be used with SEGLOAD; if present
in the control statement sequence, it causes a
nonfatal error.

Entry points defined by ENTRYC are treated as if
they were defined by ENTRY.

LDSET options such as MAP, ERR, and PRESET work
differently for SEGLOAD. Regardless of where they
occur in the load sequence, they are treated as if
they all appeared at the beginning of the se-
quence. If there is more than one option of a
given type (for example, two MAP specifications),
the last one encountered is the one that takes
precedence. Because SEGLOAD does not use the files
and libraries in a sequential manner, it cannot
respond to changes of MAP or PRESET specifications
from file to file. Similar conventions apply to
the entire SEGLOAD operation.

If the sequence is completed with a NOGO statement,
the segments are written on the binary output file
specified on the SEGLOAD statement. The file name
and entry points specified on the NOGD statement
are ignored.

An EXECUTE statement, or a name call, builds the
file as in the case of NOGO with the exception that
loading and execution are initiated. If an entry
point is not specified on EXECUTE, execution begins
at the first entry point named on the END direc-
tive. If a file name call completes the SEGLOAD
sequence, the file specified contains additional
programs to be loaded as specified by directives.

An example of a segmented load i1s shown in
figure 7~5. The loader reads the directives from
the INPUT file. The loader then reads each of the
load files A, B, G, H, X, U, and W, and copies each
object program on these files with the exception of
B. From B, only programs Bl, B3, and BLlO are
copied.

Job statement
USER statement
CHARGE statement
MAP (ON)

SEGLOAD (B=L1B)
LOAD (A)

SLOAD (B,B1,B2,83,810)
LDSET(PRESET=NONE)
LOAD(G,H XU, W)
EXECUTE(PN,10,26)
7/8/9

Directives

6/7/8/9

Figure 7-5. Example of a Segmented Load

60429800 X

As the loader reads each of the load files, it
determines which external references are not matched
by corresponding entry points and satisfies exter-
nals from the selected library set. It them deter-
mines the structure of the segmented program and
generates absolute programs. The absolute programs
are written on file LIB.

The EXECUTE statement results in the loading of the
root segment. Parameters 10 and 26 are passed to
the root segment, and execution 1s initiated at
entry point PN, which must be in the root segment
and named by the END directive.

DIRECTIVES

A SEGLOAD directive consists of four fields: label,
verb, specification, and comment. A directive uses

columns 1 through 72 of a line. A line with any
character other than comma, slash, or asterisk in

column 1 is considered to be the first or only line
of a directive. The syntax for SEGLOAD directives
is shown in table 7-1.

The following verbs are allowed in SEGLOAD direc-
tives:

e TREE

Describes the segmentation structure
° INCLUDE

Forces inclusion of a program into a segment
e LEVEL

Prevents trees from conflicting in memory

TABLE 7-1. SEGLOAD DIRECTIVE SYNTAX

Specification

Meaning

Continuation

A comma in column 1 of a line indicates continuation of the previous line. The rest of
the line is treated as if column 2 immediately followed column 72 or the special char-
acter of the last specification field of the preceding line. Any number of continu-
ation lines is allowed. Any line without a comma or slash in column 1 terminates the
directive or comment statement defined by the preceding lines.

Comment If column ! contains an asterisk, the directive is considered a comment. It is copied
on the output file but has no effect on the type of output produced during execution.

Page eject

A line with a slash in column 1 causes a page eject in the listing of the SEGLOAD
directives. This line has no other meaning.

Label field

The label field begins in column 1, or in column 2 if column 1 is blank, and is termi-
nated by one or more blanks. If columns 1 and 2 are blank, the label field is con~
sidered empty. A label is onme through seven alphanumeric characters. Characters other
than comma, right and left parentheses, minus, and blank are considered alphanumeric.
If a label exceeds seven characters, the superfluous characters are disregarded and a
nonfatal error message is given.

acters terminates a subfield.

$C08) 5% .

signs in addition to delimiters.

Verb field The verb field begins with the first nonblank character following the label field. If
the label field is empty, this field begins with the first nonblank character of the
line. This field must contain one of the legal directive verbs described in this
section. One or more blanks terminates this field.

Specification The specification field begins with the first nonblank character following the verb

field field. A specification consists of one or more subfields, and possibly one or more of
the following special characters: , - ()

A subfield contains one through seven characters; however, any of the special char-

If a subfield exceeds seven characters, additional
characters are disregarded and a nonfatal error is issued. If a subfield is to contain
any of the special characters , — () or has a dollar sign ($) as its first character,
the subfield must be writtem as a literal; that is, a character string delimited by

dollar signs. Within a literal, each dollar sign is represented by two adjacent dollar
For example, the program name COS)$ is written

The specification field is empty if only blanks follow the verb to the last column of
the directive. Although directive syntax does not restrict the contents of subfields,
certain directives require that the entries be the names of programs, entry points, and
common blocks, and will be subject to the requirements for these symbols.

field or more blanks.

Comment The comment field begins after a specification field special character followed by one

The specification field must be terminated by a special character and one or more
blanks for the comment field to be recognized.

60429800 K

e GLOBAL

Renders the labeled common block addressable by
all segments that can coexist with the common
blocks

e EQUAL
Makes common block names synonymous
e COMMON

Renders the labeled common block addressable by
all segments

[] END

Signifies the end of directives and, optionally,
specifies entry points at which execution can
begin

Directives can be in any order preceding the END
directive.

TREE DIRECTIVE

The TREE directive (figure 7-6) organizes segments
into tree structures.

The pseudo-algebraic expression in the specifica-
tion field denotes a program structure that, when
viewed in time-memory coordinates, resembles a tree.
The following examples illustrate how expressions
are diagrammed.

Figure 7-7 shows how expressions are diagrammed.
The expression A-B is diagrammed in example l. As
shown in the diagram, segments A and B can be in
memory at the same time.

In example 2 the expression A,B is diagrammed.
Segments A and B cannot be in memory at the same
time. The comma used in this expression cannot be
used outside of parenthesis.

The expression A-B-(C,D) is diagrammed in example 3.
Either segments A, B, and C, or segments A, B and D
can be in memory at the same time. Segments C and
D cannot be in memory at the same time.

The expression A-(B-C,D), which illustrates the
precedence of the hyphen over the comma is shown in
example 4. Either segments A, B, and C, or seg-
ments A and D can be in memory at the same time.

The expression A-(B,D-(D,E)) is diagrammed in
example 5. The tree structure produced by this
expression can be thought of as a combination of
two trees; segments A, B, and C with the expression
A-(B,C), and segments C, D, and E with the expres-—
sion C-(D,E), where segment C is the same in both
expressions. Segment names cannot be duplicated;
therefore assigning a separate tree name (for exam—
ple Z) to the tree formed by segments C, D, and E
prevents segment name duplication. Figure 7-8
shows the tree directives that could be used if a
separate tree name was assigned.

Label Verb Specification
tname TREE expression
tname Optional name assigned to the tree

structure by which the tree can be
referenced. Directives referring
to this name in the expression can
precede or follow the TREE direc~
tive assigning the name. Tree
names must differ from actual
segment names. An implicit INCLUDE
of the form segname INCLUDE segname
is made for each segment name in a
TREE directive.

expression A character string composed of
segment names and/or tree names
Linked by the operators. The
operators and their significance
are:

- Resembles an AND; components on
the Left of the hyphen can
coexist with components on the
right. The hierarchy moves
from left to right with the
root segment as the leftmost
possible component of a chain.

, Resembles an EXCLUSIVE OR; each
comma indicates mutually
exclusive residence. That is,
components separated by comma
cannot coexist.

() Algebraic grouping; each pair
of parentheses follows a hyphen
and delineates a subset
separated by commas. A subset
consisting of a single compo-
nent need not be enclosed by
parentheses. In the absence of
parentheses, the hyphen takes
precedence over the comma.

Figure 7-6. TREE Directive Format

The following rules apply to TREE directive expres-—
sions:

® Segment and tree names must be unique. Dupli-
cation of names in a segmentation program
results in a fatal error.

® One or more TREE directives can be used in a
segmentation program.

[-] Segment and tree names can be used only once in
TREE directives. (A tree name appears once in
the label field of one TREE directive and once
in the specification field of another TREE
directive.) Multiple use of a name results in
a fatal error.

60429800 K

Example 1 :

Expression A-B

B
Memory
A
Time
Example 2:
Expfession A,B
A B
Memory \\\\\/////
Time
Example 3:
Expression A-B-((C,D)
\ c D
\B/
Memory
A
Time o

Example 4:
Expression A-(B-C,D)

C

.
N/

Memory

Time
Example 5:

Expressfon A-(B,C-(D,E))
b E
B \C/
Memory \\\\ ///
A

Time

Figure 7-7. Diagram of Sample Expressions
Used in the Specification Field
of the TREE Directive

60429800 K

Label Verb Specification
z TREE c-(D,E)
TREE A-(B,2)

Figure 7~8. Example TREE Directive

e A tree at any level must begin with one seg—
ment. Use of an expression such as A,B or
A-B,C is illegal when not enclosed in paren-
theses and preceded by one or more segment
names .

The examples of the TREE directives shown 1in
figure 7-9 show how TREE directives can be grouped.
In example 1, segments A through O are organized
into a tree structure by one TREE directive. In
example 2, segments A through O are organized into
a tree structure by a group of TREE directives.
(The label PLUM is given to the tree, but no label
is necessary if the tree is not to be gathered into
a larger tree by another TREE directive.) In exam-
ple 3, segments A through M are gathered into one
tree structure; in example 4 these segments are
gathered into a group of tree structures.

NOTE

Where 1label names are used in a TREE
directive to combine secondary trees into a
larger tree, the label names cannot be used
as in-line items followed by a hyphen. A
label name of a secondary tree must be the
final item in a given branch of the primary
tree. A tree cannot be contained inside
another tree but must be appended as a
terminating element.

INCLUDE DIRECTIVE

The INCLUDE directive (figure 7-10) forces I
inclusion of object programs into a specific
segment, thus overriding the assignment rules
{refer to Rules for Assignment in this section).
It allows duplicate copies of object programs to be
placed in segments.

The TREE directive illustrated in figure 7-11
defines a tree in which segments A, C, and F refer
to a subroutine named SUB. Under the assignment
rules, SUB is assigned to segment A because it is
the nearest common ancestor of A, C, and F.

Addition of the directives in figure 7-12 (either !
preceding or following the TREE directives) forces
copies of SUB into segments C and F. References to
SUB by segments A and C are satisfied by the copy
of SUB in C. References to SUB by object programs
in segment F are linked to the copy of SUB loaded
with segment F. Segments € and F include object
program SUB as a minimum. If the longest branch is
A-D, this procedure reduces the amount of field
length required for program execution by elimi-
nating SUB from segment A.

7-9

Example 1:

Label Verb Specification
PLUM TREE A-(B=~(D-(H,I) ,E-(J,K)) ,C=(F~, (L, M) ,6~(N,0)))
Example 2:
Label Verb Specification
P TREE D-(H, 1)
Q TREE E-(J,K)
R TREE F=(L,M
S TREE G-(N,0)
T TREE B-(P,Q)
U TREE C-(R,S)
PLUM TREE) A-(T, 1
H\\\\ I J\\\\ K L ////y N 0
D / E / \ F \G /
\\\\\\B////// \\\\\\c//////
A
Example 3:
Label Verb Specification
PEAR TREE A=(B—-E-F=(G~J-(K,L,M) ,H,1),C,D)
Example 4:
Label Verb Specification
P TREE G-d- (K, LM
| Q TREE F=(P,H,I)
R TREE B~E-Q
PEAR TREE A-(R,C,D)
K\\\\\\\\\\I///”//’//M
T
G\\\\\\\\\\ji////,/”/ll

F

E

a\\\\\\\\j///////lb

A

Figure 7-9. Grouping of TREE Directive

60429800 K

Label Verb Specification

segname INCLUDE programq,...,programg

Name of the segment in which the
named object programs are to be
included. If segname is omitted,
programs are included in the root
segment. The segment must be
named on a TREE directive; other-—
wise, a nonfatal error occurs.

segname

The program named segname is
implicitly included in the seg-
ment named segname only if the
program named segname does not
appear in the specification field
of another INCLUDE directive; the
program named segname must be
explicitly listed if it appears
in the specification field of
another INCLUDE directive.

Names of object programs to be
included. If any program; is not
found in any load file or Li-
brary, a nonfatal error occurs.

program;

Figure 7=-10. INCLUDE Directive Format

Label Verb Specification
LAB TREE B-(E,F)
TREE A-(LAB,C,D)
E F
\B/\i/b
A

Figure 7-11. Example TREE Directive
Showing Assignment of Subroutine SUB

Label Verb Specification
[INCLUDE suB
F INCLUDE SuB

Figure 7-12. Example of the
INCLUDE Directive

The loader attempts to satisfy an external by
searching the program entry point list from the
bottom of a tree to the top. In the example, if
SUB is included in segment B as well as segment F,

60429800 K

the reference to SUB by object programs in segment
F are linked to SUB loaded in B.

LEVEL DIRECTIVE

The LEVEL directive (figure 7-13) divides memory
and allows trees to be located so that they are
spatially independent and never overlay each
other. Entries in either the label or specifica-

tion fields, if present, are ignored.

Label Verb Specification

LEVEL

Figure 7-13. LEVEL Directive Format

Rules for LEVEL:

] In the absence of LEVEL directives, all seg-
ments are in a single tree structure.

® Each occurrence of a LEVEL directive defines a
new ground level for trees unless the group of
directives divided by the LEVEL directive does
not contain any TREE directives. If no TREE
directives precede the first LEVEL directive,
it is ignored. If no TREE directives occur
between two LEVEL directives, the LEVEL direc-—
tive following the treeless group is ignored.

An example of the LEVEL directive is shown in
figure 7-14, It is possible for any subprogram in
a level to reference any segment in higher or lower
levels. For example, in level 0, A can reference
segment F in level 1, or segment U in level 2. 1If
A references F, loading of segments above A and
below ¥ is not forced. This is possible because
the tree structure is independent between levels,
and there is no downward dependency between the
programsg in level 1 and those in level 0. Within a
level and within a tree, program dependency is
observed. For example, 1if A references an entry
point in program H in level 1, programs G and F are
also loaded in level l.

Another example of the LEVEL directive is shown in
figure 7-15. In this example, loading of one or
more segments on one level does mnot disturb the
segments already loaded on any other level. Within
a level, the loading of a segment causes its re-
lated lower order segments in its tree to be loaded
or remain loaded, and causes all other segments in
the same level to become or remain unloaded. Re-
sults of loading one segment can be tabulated,
on the status of any other segment, as shown in
table 7-2.

There is a row in the table for each segment to be
loaded, with the segment name at the left end. For
each segment that might be affected, there is a
column with the segment name at the top.

Label Verb Specification
sus TREE c~(b,E)
TREE A-(B,SUB)
LEVEL
ALPHA TREE M-(N,0)
TREE K-(L,ALPHA)
BETA TREE G~-(H,I,J)
TREE F~-BETA
LEVEL
TREE U=-(v, W)
TREE P-Q-GAMMA
GAMMA TREE R-(S,T)
w\\\\]////y T S
u T
T
P
J I H

he

Label Verb Specification

TREE A-B-(C,D)
LEVEL
TREE E~F-G
TREE H-I-(K,d=-L)
LEVEL
TREE M
TREE N
TREE P
END

M N P

T T

E I|

H
[+ D
A

X,
T
Y,
T

7-12

Figure 7-14. Example of the
LEVEL Directive

Figure 7-15. Example of Several Segments
Loaded at the Same Level

GLOBAL DIRECTIVE

Labeled common, unlike blank common, is normally
addressable only from the segment within which it
is defined. It is normally destroyed when its seg-
ment is overwritten by another segment. The GLOBAL
directive (figure 7-16) renders a labeled central
memory common block addressable by all segments
other than those that actually overwrite 1it, and
optionally preserves and restores its contents.

A global 1labeled common block 1s allotted the
greatest length specified for it by any programs

60429800 K

TABLE 7-2. SEGMENT STATUS USING LEVEL DIRECTIVE

Segment Affected
Segment Loaded
A B C D E F G H I J K L M N P

A + - - - 0 0 0 0 0 0 0 0 0 0 0
B + + - - 0 0 0 0 0 0 0 0 0 0 0
C + + + - 0 0 0 0 0 0 0 0 0 0 0
D + + - + 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 + - - - - - - - 0 0 0
F 0 0 0 0 + + - - - - - - 0 0 0
G 0 0 0 0 + + + - - - - ~ 0 0 0
H 0 0 0 0 - - - + - - - - 0 0 0
I 0 0 0 0 - - - + + - - - 0 0 0
J 0 0 0 0 - - - + + + - - 0 0 0
K 0 0 0 0 - - - + + - + - 0 0 0
L 0 0 0 0 - - - + + + - + 0 0 0
M 0 0 0 0 0 0 0 0 0 0 0 0 + - -
N 0 0 0 0 0 0 0 0 0 0 0 0 - + -
P 0 0 0 0 0 0 0 0 0 0 0 0 - - +

+ Indicates the segment becomes or remains loaded

- 1Indicates the segment becomes or remains unloaded

0 Indicates the segment remains unchanged

that name it. (This is also the rule for blank would be superfluous, as ECS common blocks never
common.) The size of a mnonglobal labeled common overlay each other and are never written out on the
block is the greatest length specified for it by SAVE file. A mnonfatal error message informs the
programs in that segment. user that the given central memory block was not

encountered.

Labeled common blocks assigned to ECS can be speci~
fied as global with the GLOBAL directive. But —-SAVE

60429800 K 7-13

Optional segment name; it identifies the segment that owns the common blocks declared as global
labeled common. Ouwnership means that when the owning segment is legally unloaded, perhaps be-
cause of the Lloading of some conflicting segment, the owned global common blocks are considered
overwritten and unavailable until the owning segment is again loaded. Whether or not the
contents of the blocks are preserved depends on the presence of ~SAVE on the directive. A
fatal error occurs if segname is specified but does not occur in any TREE directive.

A global common block can be used as an ordinary Labeted common block by programs in the owning
segment. These programs can contain instructions that address the block and Loader tables that
preset data in the block at load time. Programs in other segments can contain instructions
that address the block, but they must not attempt to preset data at load time. An attempt to

If segname is omitted, the root segment is the owner of the common blocks, in which case the

Names of labeled central memory common blocks that are to be addressable from any segment.

A common block name can be defined by more that one segment; if a block name does not appear on
the right side of a GLOBAL directive, it designates a different block for each segment in which
it appears. If it does appear in a GLOBAL directive, it designates a single block. The user
should be careful when using CYBER Record Manager or compiler object Library routines that
contain common blocks as separate segments. If such a common block is referenced by more than
one library subprogram, it should be declared GLOBAL by the user; otherwise, results are
unpredictable. Common block names can be the same as segment, entry point, program, and tree

Optional; if present, the contents of the owned global block are saved on a scratch file
whenever the owning segment becomes unioaded. The contents of the blocks are then restored

Label Verb Specification
segname GLOBAL bname4,...,bname,~SAVE
segname
do so results in a nonfatal error.
use of -SAVE is superfluous.
bname;
names.
~SAVE
when the segment is reloaded.

Figure 7-16. GLOBAL Directive Format

I In figure 7-17 common blocks A, B, C, D, and E all

are to belong to segment Q as global blocks. Only
B and D need to be saved and restored when Q is

unloaded and reloaded. "
Label Verb Specification
bnameg EQUAL bnameq,...,bnamen
Label Verb Specification
Q GLOBAL B,D-SAVE bnameg The name of the global common
Q GLOBAL A,C,E block named in the specifica-
tion field of a GLOBAL direc~
tive. The GLOBAL directive

EQUAL DIRECTIVE

Figure 7-17. Example of the

need not precede the EQUAL di-
GLOBAL Di : rective. If bname _is n9t

irective named on a GLOBAL g1rect1ve,
the directive causes a non-
fatal error message.

bname; Synonyms of bnameg.
The EQUAL directive (figure 7-18) equates names of
common blocks. The blocks named in the specifica-
tion field do not have to be declared as global. Figure 7-18. EQUAL Directive Format

60429800

COMMON DIRECTIVE

Labeled common, unlike blank common, is mnormally
addressable only from the segment within which it
is defined. 1t is normally destroyed when its seg—
ment is overwritten by another segment. The COMMON
directive (figure 7-19) renders a labeled central
memory common block addressable by all segments and
preserves and restores its contents. The length of
such a block is the greatest length specified for
it by any programs that declare it.

Labeled common blocks assigned to ECS can be speci-
fied as COMMON. If a block is specified as both
COMMON and GLOBAL, the GLOBAL specification will
override the COMMON specificatiom.

Label Verb Specification
COMMON bnameq,...,bnamep
bname; Names of labeled central memory

common blocks that are to be
addressable from any segment.

1f no block names are speci-
fied, then all labeled central
memory common blocks are
affected.

If GLOBAL is also specified, it
will override the COMMON speci-
fication.

Figure 7-19. COMMON Directive Format

60429800 K

END DIRECTIVE

The END directive (figure 7-20) signals the end of
SEGLOAD directives and, optionally, names the entry
point where execution is to begin. Any subsequent
statements are assumed to be comments.

If the END directive is omitted, the loader supplies
the directive upon reading end~of-record. If the
END directive is either omitted or does not name an
entry point, the execution address and entry point
name are derived from the last transfer address
encountered in the root segment.

NOTE

Execution must begin at an entry polnt in
the root segment.,

Label Verb Specification
END eptnameq,...,eptnamep
eptname; Optional entry point names in

the root segment at which execu-
tion can begin. A loader con-
trol statement that causes
execution must name one of these
entry points if it names an
entry point. Otherwise, execu-
tion begins at eptnameq.

A label field symbol, if present, is ig-
nored.

Figure 7-20. END Directive Format

CAPSULES

Capsules are a collection of omne or more object
programs bound together in a special format to
allow quick loading by executing programs.
Capsules can also be loaded statically as imput to
basic loads, overlay generation loads, segment
generation loads, and all other situations where
standard relocatables are allowed. When capsules
are used as dinput to a normal load, they are
treated as any other relocatable object programs.

Capsules that are called into memory by executing
programs are loaded by the Fast Dynamic Loading
(FDL) facility. The FDL facility 1loads the
capsules in a similar manner to user call loading
(section 4), in the sense that both involve the
loading of relocatable code at an arbitrary
address. The FDL facility, however, requires
specialized input (capsules), has a very limited
capability, and is more difficult to use. The
advantage of the FDL facility is that it requires
less memory, is faster, and provides an unloading
capability. Before a capsule can be loaded by FDL,
the capsule must be generated and placed in a
library.

Each capsule is a member of a capsule group. The
name of the group is arbitrary and is defined when
the capsule is generated. Groups are used as a
means of associating related capsules with each
other. No relationship exists between groups and
libraries; a capsule group can be split among
several libraries, and a library can contain
several groups.

When an executing program wants to load a capsule,
it calls an FDL subroutine, specifying a group name
and a capsule name. The subroutine obtains storage
for the capsule from the Common Memory Manager
(cMM) . It then reads the capsule into storage,
relocates it, and possibly links it to other
capsules. The capsule is then ready to be used by
the calling program. When the calling program is
through with the capsule, it can call the FDL
subroutine again, this time to unload the capsule.
Unloading the capsule frees memory formerly
occupied by the capsule for other uses.

GENERATING CAPSULES

Capsule generation is signaled by the presence of
one or more CAPSULE control statements or object
directives in a load sequence. Each CAPSULE
statement can be preceded by a GROUP statement that
specifies the name of the capsule group to be
generated.

Multiple occurrences of GROUP and CAPSULE
statements are allowed, although normally a single
GROUP statement followed by a single CAPSULE
statement is sufficient. The GROUP and CAPSULE
statements can be placed either at the beginning of
the first file loaded or in the control statement
stream. If the statements are placed on the load

60429800 F

file, they must all precede the first program
loaded. Placing the directives on the load file
has the advantage of gathering all the information
necessary for capsule generation (structuring
information plus object programs) on a single file.

If the GROUP and CAPSULE statements are placed in
the control statement stream, there is more
flexibility because it 1is easier to change the
statements and, hence, the structure. If ©both
control statements and load file directives are
provided, the control statement specifications are
used. This provides a temporary means for
overriding load file directives until they can be
changed.

GROUP STATEMENT

The GROUP statement (figure 8-1) specifies the name
of a capsule group. It applies to the capsules
specified by the CAPSULE statement following the
GROUP statement, and remains in effect until
another GROUP statement is encountered.

GROUP (groupname)

groupname A name of one to seven characters.
Any valid program name acceptable
to the Loader can be used.

Figure 8~-1. GROUP Statement Format

If the GROUP statement is omitted, the name of the
first capsule generated becomes the group name.

CAPSULE CONTROL STATEMENT

The CAPSULE statement (figure 8-2) specifies the
components of the capsules to be generated.

CAPSULE (pnameq, « «. ,pname,)

pname The names of programs from the load
file, Listed in order, that signal
the start of a new capsule. These
programs must be Loaded by LOAD or
SLOAD statements; otherwise, they
are not checked and capsule genera-
tion is neither initiated nor ter-
minated.

Figure 8-2. CAPSULE Statement Format

Each capsule contains those programs specified by
CAPSULE statements, plus any additional programs
obtained by searching the library set to satisfy
externals. This can be altered through use of the
LDSET options OMIT, SUBST, USE, and USEP. SYSLIB
is not searched by default for capsule and/or OVCAP
generation. A LIBRARY or LDSET statement will
cause the loader to search SYSLIB.

All programs on load files specified on LOAD or
SLOAD requests used in encapsulation load sequences
should contain Prefix tables. When the file is
being read, the program name is extracted from the
Prefix table to determine if the capsule should be
initiated or terminated.

Capsules can contain only central memory text; ECS
text 1is not allowed. All fields requiring
relocation or linking must be 18 bits wide and
aligned with bit 30, 15, or 0 being the rightmost
bit of the field. :

The load sequence must terminate with a NOGO
statement because capsules cannot be executed
directly. If a file name is specified on the NOGO
statement, the capsules are writtem to the
specified file; otherwise, they are written to file
ABS.

All common blocks, including blank common, are
allocated local to the current capsule. Common
blocks can be shared by the various routines within
a capsule; but if the routines in two different
capsules declare common blocks of the same name,
each capsule has its own copy of the common block
and there is no communication between the two.

Some examples of capsule generation are shown in
figure 8-3.

The files used in the examples are the following:

¢ TFILEl contains, in the order specified, pro-
grams A, B, C, D, E, F, and G.

@ FILE2 contains, in the order specified, pro—
grams H, I, J, K, L, M, N, and O.

e FILE3 contains, in the order specified, pro-
grams P, Q, R, §, T, U, V, W, X, Y, and Z.

In example 1 of the figure, the group named MYGROUP
contains one capsule, A. Capsule A contains
programs A through Z and is written to file MYLFN.

In example 2, the group name and the capsule name
are the same because no GROUP statement is
present. Capsule M contains programs M through Z
and is written to file ABS because no file name is
specified on the NOGO statement.

In example 3, group AEI contains capsules A, E, and
I. Capsule A contains programs A through D;
capsule E contains programs E through H; and
capsule I contains programs I through N. Group OU
contains capsules 0 and U. Capsule O contains
programs O through T, and capsule U contains
programs U through Z. The capsules are written to
file YOURLFN.

In example 4, group VOWELS contains one capsule,

A. Capsule A contains programs A, E, I, 0, and U.
The capsule is writtem to file ABS.

8-2

Example 1:

GROUP (MYGROUP)
CAPSULE(R)
LOAD(FILE1,FILEZ,FILE3)
NOGO (MYL.FN)

Example 2:

CAPSULE (M)
LOAD(FILE1,FILEZ,FILE3)
NOGO.

Example 3:

GROUP (AED)
CAPSULE(A,E, I}

GROUP (OU)

CAPSULE(0,U)

LOAD (FILE1,FILE2,FILE3)
NOGO (YOURLFN)

Example &4:

GROUP (VOWELS)
CAPSULE(R)

SLOAD (FILE1,A, E)
SLOAD(FILEZ2,1,0)
SLOAD (FILE3,U)
NOGO (ABS)

Figure 8-3. Examples of Capsule Generation

ENTRY POINT CONTROL

Capsules are linked to each other and to the
calling program through the use of entry points and
external references. An external reference
generated by one of the programs comprising the
capsule becomes an external rteference of the
capsule if it is not satisfied by an entry point of
one of the other programs in the capsule.

The entry points of a capsule are normally those
that are defined by programs within the capsule and
are not referenced within the capsule. This set
can be altered through the use of the following
LDSET options:

e LDSET(EPT=eptname;/.../eptnamey)
e LDSET(NOEPT=eptnamej/.../eptname,)

@ LDSET(NOEPT)

The EPT option specifies one or more entry points
that are to appear as entry points of the capsule,
regardless of whether the entry points are
referenced within the capsule. The NOEPT option
prevents the listed entry points from becoming
entry points of the capsule even if they are not
referenced within the capsule.

The NOEPT request, which lists no entry points,
specifies that the only entry points are to be
those explicitly mentioned by the EPT request and
an entry point whose name is the same as the
capsule name (if any).

60429800 H

DYNAMIC LOADING AND
UNLOADING OF CAPSULES

The loading and unloading of capsules is performed
by a small subroutine that resides on SYSLIB. This
subroutine references CMM and causes a capsule to
be either loaded or unloaded, depending on one of
two entry points referenced by the calling program.

LOADING CAPSULES

The entry point FDL.LDC is called to 1load a
capsule. The following parameters should be passed
to FDL.LDC by the calling program:

@ The group name and capsule name specifying the
capsule to be loaded

@ An optional estimate of the number of capsules
in the given group

@ An optional list of libraries to be searched
for the capsule

e An optional list of addresses of PASSLOC and/or
ENTRY tables for use in linking

The exact calling sequence for loading capsules is
shown in figure 8-4.

When FDL.LDC is called to load a capsule from a
previously unreferenced group, a directory for the
entire group is built and used for all subsequent
loading from the group. The directory is built by
searching first the global library set and then the
list of 1libraries passed with the call, if
applicable. The library list is used only the
first time a capsule group is accessed.

If the number of capsules in the group is known,
this value should be passed to FDL.LDC. This value
is used to determine the amount of memory to
allocate for the directory. If no value is passed,
a default is used. In either case, if the original
value is found to be too small, FDL automatically
keeps trying to load the directory, each time with
a larger value, until it succeeds.

PASSLOC and/or ENTRY tables serve two purposes:

® Provide addresses to be used in satisfying
external references of capsules

@ Obtain addresses of entry points within capsules

The ENTHDR and ENT macros {(described later in this
section) can be used to generate ENTRY tables. The
LDREQ macro (see section 4) can be used to generate
PASSLOC tables. Entries in PASSLOC and/or ENTRY
tables that are to be used by FDL must be in
ascending display code order.

When FDL.LDC loads a capsule, it attempts first to
satisfy external references by checking the PASSLOC
and/or ENTRY tables specified in the call. If it
finds the name of any corresponding entry poiants in
a PASSLOC and/or ENTRY table with nonzero satisfied
addresses, these addresses are used to satisfy the
external references. Any remaining external
references are satisfied, if possible, by checking
the entry points of all other currently loaded
capsules within the same capsule group.

60429800 H

FDL.LDC (Load Capsule Entry Point)

Entry: (X1) = 42/group name, 18/size estimate.

(X2) = capsule name.
(X3) = Llibrary list address.
(X4) = passloc/entry List address.
Exit: (B = 1.
(X6) = error code:
0 = NO ERROR.
1 = BAD LIBRARY LIST.
2 = UNKNOWN GROUP NAME.
3 = UNKNOWN CAPSULE NAME.
4 = BAD CAPSULE FORMAT.
5 = BAD PASSLOC/ENTRY FORMAT.
6 = CAPSULE ALREADY IN MEMORY.
7 = CAPSULE/OVCAP CONFUSION.

Saves: AO, X0, B2, B3, X5.

Calls: CMM.ALF, CMM.CSF, CHMM.FRF,
CHM.SLF, SYS=.

The name of the capsule group,
left-justified with zero fill.

group name

size estimate The number of capsules in the
capsule group; zero if not
known.

capsule name The name of the capsule, left-
justified with zero fill.

Library Llist The address of a List of Llibrar-

address ies. The List contains one
Library name in each word (left-
justified with zero fill) and is
terminated by a zero word.

An address of zero indicates no
Library Llist is given.

passloc/entry The address of a list of passloc/

Llist address entry table addresses. The list
contains the address of a
passloc/entry table in the lower
18 bits of each word. The list
is terminated by a zero word.

This list must be in ascending
display code order.

An address of zero indicates
that no passloc/entry Llist is
given.

Figure 8-4. Calling Sequence for
Loading Capsules

The entry points of a newly loaded capsule are
checked against any remaining unsatisfied externals
of currently loaded capsules in the same group, and
any such externals are now satisfied, if possible.
The PASSLOC and/or ENTRY tables are checked for
entries matching the names of any of the entry
points of the newly loaded capsules. If a matching
PASSLOC and/or ENTRY entry has a zZero or
unsatisfied address, the address of the entry point
is inserted. This is the only method by which the
static code can reference the capsule.

8-3

When FDL.LDC returns control to the «calling
program, error codes are set as indicated in

figure 8-4.

UNLOADING CAPSULES

The entry point FDL,ULC is called to wunload a
capsule. The following parameters should be passed
to FDL,ULC by the calling program:

e The group name and capsule name specifying the
capsule to be unloaded

[A list of addresses of PASSLOC and/or ENTRY
tables (if any)

The calling sequence for unloading capsules is
shown in figure 8-5.

FDL.ULC - UNLOAD CAPSULE.

Entry: X1) 42 /group name, 18/ignored.

{X2) = capsule name.
(X4) = passloc/entry list address.
Exit: (B1) = 1.
(X6) = error code:
0 = NO ERROR.
2 = UNKNOWN GROUP NAME.
3 = UNKNOWN CAPSULE NAME.
4 = BAD CAPSULE FORMAT.
S = BAD PASSLOC/ENTRY FORMAT.

Saves: A0, X0, B2, B3, X5.
Catls: CMM.FRF.

The name of the capsule group,
left-justified with zero fill.

group name

The name of the capsule, left-
justified with zero fill.

capsule name

passloc/entry The address of a List of passloc/

List address entry table addresses. The Llist
contains the address of a
passloc/entry table in the lower
18 bits of each word. The Llist
is terminated by a zero word.

This Llist must be in ascending
display code order to ensure
that entry points are properly
filled in the list.

An address of zero indicates
that no passloc/entry list is
given.

returns control to the calling program, error codes
are set as indicated in figure 8-5.

FREEING UNUSED MEMORY

The FDL.CGD and FDL.UGD entry points are available
for freeing memory.

The entry point FDL.CGD is called to move all CMM
blocks which contain group directories down to the
lowest possible memory locations. If no such
blocks are present, or if it is not possible to
move them any lower, no action is taken. Use of
this entry point is entirely optional; in cases of
bad memory fragmentation, it may result in large
savings of memory. There are no parameters to be
passed to, nor any returned by FDL.CGD.

The calling sequence for compacting group direc—
tories is shown in figure 8-6.

FDL.CDG -~ COMPACT GROUP DIRECTORY.
Entry: None

Exit: (B1) = 1.

Saves: A0, X0, B2, B3, X5.

Calls: CMM.CSF, CMM.FRF, CMM.SLF, MVE=.

Figure 8-5. Calling Sequence for
Unloading Capsules

The entry points and external references of the
identified capsule are checked against emntry points
and external references of other currently loaded
capsules in the group, and all links between the
capsule to be unloaded and other currently loaded
capsules are dissolved.

The address field in any PASSLOC and/or ENTRY table

entries that matches one of the capsule”s entry
points in name and address is zeroed. When FDL.ULC

8~4

Figure 8-6, Calling Sequence for
Compacting Group Directories

The entry point FDL.UGD is called to free the
memory containing the directory for a group in which
all the capsules have been unloaded. The use of
this entry point is entirely optional, but unless
it is used, all group directories, once established,
remain in memory throughout the job step. FDL.UGD
requires that one parameter be passed to it which is
the group name specifying the group directory to be
unloaded. If the group has any capsules currently
loaded, an error is generated.

The calling sequence for unloading group directories
is shown in figure 8-7.

FDL. UGD — UNLOAD GROUP DIRECTORY.

Entry: (X1) 42/GROUP NAME, 18/IGNORED.
1.
ERROR CODE:

0 ~ NO ERROR.

2 = UNKNOWN GROUP NAME.
10B - GROUP HAS CAPSULES.

Exit: (B1)
(X6)

Saves: AQ, X0, B2, B3, X5.
Calls: (MM.FRF.

Group Name The name of the capsule group,

left=justified with zero fill.

Figure 8-7. Calling Sequence for
Unloading Group Directories

60429800 K

USER LOADING OF CAPSULES

The user can optionally load a capsule and then
call the Fast Dynamic Loader to relocate and link
the capsule to PASSLOC and/or ENTRY tables. A
capsule so loaded is not considered to be a member
of a group. It is a stand-alone capsule which can
only be linked to PASSLOC and/or ENTRY tables.

A user—loaded capsule can be linked or delinked
depending on one of two entry points referenced by
the calling program.

The calls to link and delink user~loaded capsules
do not reference CMM and will function properly
whether (MM is active or inactive.

LINKING USER-LOADED CAPSULES

The entry point FDL.REL is called to relocate and
link a user—loaded capsule to PASSLOC and/or ENTRY
tables. The following parameters should be passed
to FDL.REL by the calling program:

® The address of the first word of the capsule

@ A list of addresses of PASSLOC and/or ENTRY
tables

The exact calling sequence for relocating and
I linking capsules is shown in figure 8-8.

RJ = XFDL.REL

Entry: (X2) 42/0, 18/fwa.

(X&) passloc/entry list address.
Exit: (B1) = 1.
(X6) = error code:
0 = NO ERROR.
4 = BAD CAPSULE FORMAT.
S = BAD PASSLOC/ENTRY FORMAT.

Saves: AO, X0, B2, B3, X5.

fwa The address of the first word of the
capsule.

passloc/ The address of a Llist of passloc/

entry entry table addresses. The list con-
List tains the address of a passloc/entry
address table in the Lower 18 bits of each

word. The list is terminated by a
zero word.

This Llist must be in ascending dis-
play code order to ensure that entry
points are properly filled in the
List.

Figure 8~8. Calling Sequence for Linking
and Relocating Capsules

DELINKING USER-LOADED CAPSULES

The entry point FDL.UNR is called to delink a
user-loaded capsule from PASSLOC and/or ENTRY

60429800 K

tables. The following parameters should be passed
to FDL.UNR by the calling program:

-] The address of the first word of the capsule
@ A list of addresses of PASSLOC and/or ENTRY

tables

The exact calling sequence for delinking capsules
is shown in figure 8-9.

RJ = XFDL.UNR

Entry: (X2) 42/0, 18/fwa.

W

(X&) passloc/entry List address.
Exit: (B1) = 1.
(X6) = error code:
0 = NO ERROR.
4 = BAD CAPSULE FORMAT.
5 = BAD PASSLOC/ENTRY FORMAT.

Saves: AO, X0, B2, B3, X5.

fwa The address of the first word of the
capsule.

passloc/ The address of a List of passloc/

entry entry table addresses. The list con-
list tains the address of a passloc/entry
address table in the Lower 18 bits of each

word. The Llist is terminated by a
zero word.

This Llist must be in ascending dis-
play code order to ensure that entry
points are properly filled in the
List.

Figure 8-9. Calling Sequence for
Delinking Capsules

A FDL.UNR does not unload the capsule; the user is
responsible for unloading it (that is freeing the
CMM block).

OVCAP

OVCAPs (overlay~capsules) are capsules that are
logical extensions of (0,0) overlays. They are
similar to a primary overlay in that they require
the presence of a specific main overlay. Unlike
primary overlays, any number of OVCAPs can be
loaded or unloaded in any order and at any time.

OVCAPs are generated, loaded, and unloaded by the
FDL. and FOL facilities. For an OVCAP to be
loadable, the (0,0) overlay must be generated with
an FOL directory.

Each OVCAP must be associated with a (0,0) overlay.
Common blocks and entry point names of the (0,0)
overlay are used and linked into by the OVCAP.
Entry points in the OVCAP must not duplicate entry
points in the (0,0) overlay. Any common blocks
that exist in the OVCAP, but not in the (0,0)
overlay, are processed as being local to the OVCAP.

8-5

The following entry control statements can be used
to control entry point determination for OVCAPs,

just as for capsules:
® LDSET(EPT=eptname1/.../eptnamen)
® LDSET(NOEPT=eptnamel/.../eptnamen)

® LDSET(NOEPT)

OVCAP restrictions, consistent with capsule
restrictions, are as follows:

[} ECS text is disallowed

e Nonstandard relocation is disallowed

The OVCAP load map is similar to the capsule load
map, except that the OVCAP directive is also
listed. (Only blocks local to the OVCAP are listed
in the load map.)

The library set currently defined for the load
sequence 1is searched at load completion time to
satisfy externals that are currently unsatisfied.

OVCAP DIRECTIVE

The OVCAP directive (figure 8-10) specifies that an
OVCAP is to be generated. The file on which the
OVCAP programs are to be written must be the same
one that the main overlay is on.

OVCAP,

OVCAP(Lfn)

Lfn The file name on which the OVCAP is to
be written; must be the same file on
which the (0,0) overlay is written.

1f a file is specified on a NOGO
statement, it overrides the file named
on any OVCAP directive. If a file is
specified on a previous directive but
not on the current directive, then the
previously specified file is used. If
neither the directives nor a NOGO
statement specified a file name, the
file ABS is used.

Figure 8-10. OVCAP Directive Format

Like overlay directives, OVCAP directives are
placed in the load file input stream. At least one
OVERLAY directive, and all OVERLAY directives for
the current overlay structure, must precede OVCAP
directives.

8-6

The OVCAP uses the program name of the (0,0)
overlay as the group name, and the name of the
first program encountered after the OVCAP directive
as the CAPSULE name in the 6000 table header for
the OVCAP (see appendix D). Bit 18 of the 6000
header word is set to distinguish an OVCAP from a
capsule.

The basic loader, user call loader, and segment
loader cannot statically load an OVCAP. Any such
attempts are diagnosed by a fatal loader error.

LOADING AND UNLOADING OVCAPS

OVCAPs are loaded by issuing a call to FDL.LOC and
unloaded by a call to FDL.UOC. FDL.LOC and FDL.UOC
have the same entry conditions, register con-
vention, and processing capabilities as FDL.LDC and
FDL.ULC (capsule loading and unloading), respec~
tively, except that the group name may be zero. If
a zero group name is specified, the first entry
point name of the (0,0) overlay is used. A call to
FDL.LOC causes the FOL directory table to be search
for the OVCAP.

OVCAPs can 1link to supplied PASSLOC and/or ENTRY
tables and to other OVCAPs that are loaded, but not
to capsules. The calling sequence for loading
OVCAPs is shown in figure 8~11; the calling
sequence for unloading OVCAPs is shown in
figure 8-12.

ENTRY TABLE GENERATION

The ENTHDR and ENT macros are used to generate
ENTRY tables to be used by the Fast Dynamic Loader
when loading or unloading capsules. These macros
are not contained in the default system text
(SYSTEXT) used by COMPASS. A separate text called
LDRTEXT is available which contains the ENTHDR and
ENT macros. A COMPASS call specifying that both
texts are to be used is:

COMPASS(S=SYSTEXT, S=LDRTEXT)

The internal format of the ENTRY table is described
in appendix D.

ENTHDR MACRO

The ENTHDR macro initializes a new ENTRY table by
generating the table header word. The format of
the ENTHDR macro is shown in figure 8-13.

ENT MACRO

The ENT macro enters into the table initialized by
the ENTHDR macro a word containing an entry point
name and address. The format of the ENT macro is
shown in figure 8-14. The entry point names in suc—
cessive ENT macros must be in ascending display code
order. If they are not, an assembly error occurs.

60429800 X

Entry: (X1) =
(X2) =
(X3) =
(X&) =
Exit: (B1) =
(X6) =
Saves:

Calls:

group name

size estimate
overlay-
capsule name

Library list
address

passloc/entry
List address

FDL.LOC - LOAD OVERLAY=CAPSULE.

42/group name, 18/size estimate.
overlay-capsule name.

Library Llist address.
passloc/entry list address.

VS UN D =

7

- 2

LI T LI I | S (I B}

or code:

NO ERROR.

BAD LIBRARY LIST.

UNKNOWN GROUP NAME.

UNKNOWN OVERLAY-CAPSULE NAME.
BAD OVERLAY-CAPSULE FORMAT.
BAD PASSLOC/ENTRY FORMAT.
OVERLAY-CAPSULE ALREADY 1IN
MEMORY .

CAPSULE/OVCAP CONFUSION.

A0, X0, B2, B3, X5.

FDL resident and FOL resident.

The name of the OVCAP group,
left-justified with zero fill.

A value of zero indicates that
the name of the first program
entry point is to be used as the

group name.

The use of a zero value is not
advised for general use because
it requires that the first (or
only) program entry point name
match the name of the first pro-
gram in the (0,0) overlay. It is
primarily intended for Llanguages
Like FTN which always satisfy
this requirement,

The number of members in the
OVCAP group; zero if not knouwn.

The name of the OVCAP, Lleft-
justified with zero fill.

The address of a List of Librar-
ies. The List contains one
Library name in each word (Left-
justified with zero fill) and is
terminated by a zero word.

An address of zero indicates no
Library Llist is given.

The address of a list of passloc/
entry table addresses. The list
contains the address of a
passloc/entry table in the Lower
18 bits of each word. The List
is terminated by a zero word.

This Llist must be in ascending
display code order to ensure that
entry points are properly filled
in the list.

An address of zero indicates that
no passloc/entry list is given.

FDL.UOC ~ UNLOAD OVERLAY=-CAPSULE.

Entrys (X2) =
(X4) =
Exit: (B1) =
(X6) =

Saves: A0, X0, B2, B3, X5.

Calls: FDL RESIDENT,

overlay=-
capsule name

passloc/entry
List address

overlay=-capsule name.
passloc/entry list address.

il op -

or code:

NO ERROR.

UNKNOWN OVERLAY-CAPSULE NAME.
BAD OVERLAY-CAPSULE FORMAT.
BAD PASSLOC/ENTRY FORMAT.

#Hown -

The name of the OVCAP, left-—
justified with zero fill.

The address of a List of passloc/
entry table addresses. The List
contains the address of a
passloc/entry table in the lower
18 bits of each word. The list
is terminated by a zero word.

This List must be in ascending
display code order to ensure that
entry points are properly filled
in the List.

An address of zero indicates that
no passloc/entry Llist is given.

Figure 8-12.
Unloading OVCAPs

Calling Sequence for

Location Operation Variable Subfields
Label ENTHDR
Label An optional Label.

Figure 8-13.

ENTHDR Macro Option Format

Figure 8-11.

60429800 K

Calling Sequence for
Loading OVCAPs

Location Operation Variable Subfields
Label ENT eptname,addr
Label An optional Llabel.

eptname Entry point name.

addr Optional; entry point address.

If addr is not specified, then
eptname will be used.

Figure 8-14,

ENT Macro Option Format

STANDARD CHARACTER SETS A

Control Data operating systems offer the following
variations of a baslc character set:

@ CDC 64-character set
® CDC 63-character set
® ASCII 64-character set
@ ASCII 63-character set

The set in use at a particular installation was
specified when the operating system was installed.

Depending on another installation option, the
system assumes an input deck has been punched
either in 026 or in 029 mode (regardless of the
character set in use). Under NOS/BE, the alternate
mode can be specified by a 26 or 29 punched in
columns 79 and 80 of the job statement or any 7/8/9

60429800 H

card. The specified mode remains in effect
throughout the job unless it is reset by
specification of the alternate mode on a subsequent
7/8/9 card.

Under NOS, the alternate mode can be specified by a
26 or 29 punched in columns 79 and 80 of any 6/7/9
card, as described above for a 7/8/9 card. In
addition, 026 mode can be specified by a card with
5/7/9 multipunched in column 1; 029 mode can be-
specified by a card with 5/7/9 multipunched in
column 1 and a 9 punched in column 2.

Graphic character representation appearing at a
terminal or printer depends on the installation
character set and the terminal type. Characters
shown in the CDC Graphic column of the standard
character set table (table A-1) are applicable to
BCD terminals; ASCII graphic characters are
applicable to ASCII-CRT and ASCII-TTY terminals.

TABLE A-1.

STANDARD CHARACTER SETS

cDC ASCII
Display Hollerith External .
Code Graphic Punch BCD Gsragxs Z'tc ?g;g'; (Cotd‘:)
{octal) {026) Code u octa
oo’ : (colon) TT 8-2 00 : (colon) TT 8-2 072
01 A 121 61 A 1241 101
02 B 12-2 62 B 12-2 102
03 Cc 12-3 63 c 12.3 103
04 D 12-4 64 D 124 104
05 E 125 65 E 125 105
06 F 12-6 66 F 126 106
07 G 12-7 67 G 127 107
10 H 128 70 H 128 110
11 I 129 71 | 129 111
12 J 11-1 41 J 111 112
13 K 11-2 42 K 112 113
14 L 11-3 43 L 113 114
15] 114 44 M 114 115
16 N 115 45 N 118 116
17 0 11-6 46 0 116 117
20 P 117 47 P 117 120
21 Q 11-8 50 Q 118 121
22 R 119 51 R 119 122
23 S 02 22 S 0-2 123
24 T 0-3 23 T 03 124
25 V] 04 24 V) 0-4 125
26 A 05 25 \Y) 0-5 126
27 W 0-6 26 w 0-6 127
30 X 0-7 27 X 0-7 130
31 Y 08 30 Y 08 131
32 4 0-9 31 4 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
41 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 11 9 9 071
45 + 12 60 + 12-8-6 053
46 ; 11 40 ; 11 055
47 11-8-4 54 11-84 052
50 / 0-1 21 / 0-1 057
51 (0-8-4 34 (12.85 050
52) 1284 74) 1185 051
53 $ 11-8-3 63 $ 11-8-3 044
54 = 8-3 13 = 8-6 075
b5 blank no punch 20 blank no punch 040
56 , {comma) 0-8-3 33 , {comma) 0-8-3 054
57 . (period) 12-8-3 73 . {period) 12-8-3 056
60 = 0-8-6 36 # 8-3 043
61 [87 17 c 12-8-2 133
62] 0-8-2 32] 11-8-2 135
63 o 11 86 16 9% 11 084 045
64 # 8-4 14 " (quote) 87 042
65 r 085 . 35 _ lunderline) 0-8-5 137
66 v 11-0 52 | 12-8-7 041
67 A 0-8-7 37 12 046
70 { 1185 55 ' {apostrophe) 85 047
71 } 11-8-6 56 ? 087 077
72 < 120 72 < 12-8-4 074
73 > 11-8-7 657 > 0-8-6 076
74 < 85 15 @ 84 100
75 > 1285 75 AN 082 134
76 1 12-8-6 76 ~ (circumflex) 11-8-7 136
77 ; (semicolon) 12-8-7 77 ; {(semicolon) 11-8-6 073

TTwere zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than
N Ttwo colons.
In installations using a 63-graphic set, display code 00 has no associated graphic or card code; display

code 63 is the colon (8-2 punch).

yield a blank (55g).

The % graphic and related card codes do not exist and translations

60429800 H

ERROR MESSAGES AND CODES B

Errors generated during load operations are
described in this appendix according to type of
error and type of loader operation. General errors
occuring during loader sequences in job control
statement streams are discussed first, followed by
errors detected by the user call interface
routines, errors detected by the segment loading
facility, errors detected by the overlay loading
facility, and errors detected during capsule and
OVCAP operations.

LOADER SEQUENCE ERRORS

The following types of errors are diagnosed during
loader sequence operations:

@ Catastrophic errors abort the program
immediately, without waiting for completion of
any loader sequence in progress. These error
diagnostics, shown. in table B-1, are always
written to the dayfile.

@ Fatal errors abort the program as soon as any
loader sequence in progress is completed.
These error diagnostics are shown in table B-2.

e Nonfatal errors do not abort the job, although
subsequent job operations which use the code
that produced the diagnostic can abort the
job. Nonfatal error diagnostics are also shown
in table B-2.

Fatal and nonfatal errors are listed either on the
load map or in the dayfile.

Errors are written to the load map if a load map is
selected either implicitly or explicitly and the
load is not an absolute load. (A dayfile message
indicates that errors occurred.) Errors are
written to the dayfile if no map is selected or the
load is absolute.

Errors coded under 4000 are fatal errors; errors
coded 4000 and above are nonfatal errors.

The letter C under the column headed Issued By
indicates the error is detected by the control
statement loader (includes basic loads and overlay,
OVCAP, capsule, and segment generation loads). The
letter U indicates the error is detected by the
user call loader. CU indicates the error is
detected by both.

On a user call load, one error code is returned in
the LDREQ BEGIN block. (See appendix D.)

The following informative diagnostic message 1s
written to the dayfile under the NOS operating
system only: ’

LOAD SEQUENCE IGNORED
GIVING LAST CONTROL CARD BACK TO SYSTEM

This diagnostic usually occurs when a load sequence

has been initiated by a load statement and the next
statement in the sequence is a control statement

60429800 H

that the loader assumes is a name call statement.
(The statement might be an operating system control
statement, or it could be a misspelled name call
statement.) The loader searches for a local file
with the given name. If the loader does not find
the local file, it issues this diagnostic and
returns the control statement to the operating
system, The operating system then searches the
central library directory and attempts to process
the control statement. Any preceding load
statements are igunored.

ERRORS DETECTED BY
USER CALL INTERFACE

Errors detected by the user call interface are
shown in table B-3. These errors are written to
the dayfile and cause the job to abort.

The loader subroutines UCLOAD and PILOAD provide an
interface between running programs and the user
call loader. UCLOAD is called when the CMM
parameter is absent from the LOADER macro call;
PILOAD is called when the CMM parameter is present.

ERRORS DETECTED BY SEGRES

The errors detected by the segment loader resident,
SEGRES, during initialization or execution of a
segmented program are shown in table B-4.

The errors detected by the £ast dynamic loading
facility during dynamic capsule and OVCAP
operations are shown 1in table B-5. All entry
points used for these operations return error code
values in register X6. A zero value in X6 after
exit from the call indicates no error occured. A
nonzero value indicates occurrence of the error
corresponding to the return code shown in the table.

ERRORS DETECTED DURING
OVERLAY LOADING

The errors detected during overlay loading for NOS
and NOS/BE are discussed in the following
paragraphs. Error processing is partially
dependent on the operating system in use.

The errors detected by the fast dynamic loading
facility during dynamic capsule and OVCAP
operations are shown in table B-5. All entry
points used for these operations return error code
values in register X6. A zero value in X6 after
exit from the call indicates no error occured. A
nonzero value indicates occurrence of the error
corresponding to the return code shown in the table.

NOS

The message LDR ERROR. indicates an error loading
an overlay. A second message indicates the exact
problem. The job is aborted.

The messages are documented in appendix B of the
NOS reference manual, volume 1.

NOS/BE

The error codes listed in table B-6 are returned to
the status field of the parameter area following a
call to LDV to load an overlay. If the e bit is
set in the LOADREQ request indicating automatic
execution of the overlay, then no status is
returned; but if the error is fatal, the job is
aborted. The process is described in section 6.

Errors other than 4001 are also written to the
dayfile.

Errors coded under 4000 are fatal errors; errors
coded 4000 and above are nonfatal errors.

ERRORS DETECTED BY FDL

Error conditions detected by FDL (Fast Dynamic
Loader) are mnormally returned in registers as
described in section 8. However, if FDL detects an
error which 1is unavoidable by the wuser, the
following message is written to the dayfile and the
job is aborted: .

INTERNAL FDL ABORT ~ LD{D} ERR nn
Q

where nn is the error code returned by LDD or LDQ.
If this error occurs, a systems analyst should be
notified.

ERRORS DETECTED DURING
TRAP DIRECTIVE PROCESSING

The errors detected during processing of the TRAP
directives are shown in table B-7.

If the TRAP control statement is im error, the
message TRAP CARD PARAM ERROR, NO DEBUG DONE is
written to the dayfile and the trap directives are
ignored.

If errors are detected in the TRAP directives, they
are listed on the TRAP output file and the message
TRAP DIRECTIVE ERROR(S) is writtean to the dayfile.
If no legal directives are found, the additional
message NO TRAP DIRECTIVES FOUND, NO DEBUG DONE is
also written to the dayfile.

ERRORS DETECTED BY
TRAPPER DURING EXECUTION

The errors detected by TRAPPER at execution time
are shown in table B~-8.

The dayfile message ERROR DETECTED BY TRAPPER
indicates an error discovered during execution of a
trapped program. If the problem is related to a
particular directive, the message DIRECTIVE NOT
PROCESSED - ID=name follows to give the label of
the directive in error.

TABLE B-l. CATASTROPHIC ERRORS DETECTED BY THE LOADER

Message

Significance Action

FDL ERROR x. ABORT.

LOADER ABORT.
ECS LIMITS ERROR ON USER CALL

LOADER ABORT.
ILLEGAL CONTROL STATEMENT

LOADER ABORT.
ILLEGAL REQUEST TABLE

or lwa+1>5hg.

LOADER ABORT.

ILLEGAL TRANSFER ADDRESS or undefined.

LOADER ABORT.
INSUFFICIENT FL FOR LOAD

LOADER ABORT.
LOADER I/0 ERROR nn

LOADER ABORT.
NO TERMINATOR IN ABOVE LOAD
SEQUENCE

@ B-2

See figure 8-4, section 8.

ECS parameters on the LDREQ
BEGIN call are in error.

Illegal characters or
parameters of more than

7 characters were specified
on loader control statement.

On a call to the loader of the

type LOADREQ -~ request for a
basic load (section 4), fwall

Transfer address is negative

Not enough field length is
available to initiate loading.

Loader aborted.
was returned by CIO.

1/0 error an

The load sequence has no com~
pletion statement.
statements are NOGO, EXECUTE or
name call statements.

Completion

Correct the program.

Correct the control
statement.

Correct the program.

Correct transfer address
specification.

Provide at least 140008 words .

Rerun the job. If problem per-
sists, follow site—-defined proce-
dures for reporting software errors
or operational problems.

Correct the load sequence. Use a
procedure file if attempting to
enter load control statements from
a terminal under NOS/BE.

60429800 K

TABLE B-1.

CATASTROPHIC ERRORS DETECTED BY THE LOADER (Contd)

Message

Significance

Action

LOADER ABORT.
SEG+PROGRAM+COMMON BLK TOTAL

GT 8192

LOADER ABORT.
SEGLOAD INPUT FILE EMPTY OR
MISPOSITIONED

LOADER ABORT.
SYSTEM ERR, EQI ON LIBRARY ~ name

LOADER ABORT.
SYSTEM ERROR LOADING - name

LOADER ABORT.
--~LOADER I/0 ERROR xx FILE--—-1fn

LOADER ABORT.
<name> NOT IN LIBRARY SET

The load sequence consists of a
larger total number of segments,
programs, and common blocks than
allowed by the loader.

The file specified as the source
of SEGLOAD directives is empty,
or the SEGLOAD statement is in
the wrong position.

Bad library format.

The loader cannot load one of
its own overlays.

CIO returned error code xx after
a file action request by LOADER
on file 1fnm.

The user library specified by
<{name> is not present on the
library set. This library might
have been returned prior to the
start of the load sequence.

Re-structure the load.

Correct the job structure and
rerun. Rewind the file specified
as the source of the SEGLOAD
directives.

Follow site-defined procedures for
reporting software errors or opera-—
tional problems.

Follow site~defined procedures for
reporting software errors or opera-
tional problems.

See NOS Volumne 4 reference manual
or NOS/BE System Programmer”s
reference manual for description
of CIO error codes. Rerun job.
Follow site-defined procedures

for reporting software errors or
or operational problems.

Correct the job structure and
rerun.

60429800 K

B-2.1/B-2.2 &

TABLE B-2.

FATAL AND NONFATAL ERRORS DETECTED BY THE LOADER

Message

Significance

Action

Issued
By

100 INSUFFICIENT FL FOR LOAD

101 EMPTY LOAD

102 NO TRANSFER ADDRESS

103 ATTEMPT TO LOAD MORE
THAN ONE PROGRAM ON
ABS LOAD

104 INSUFFICIENT ECS FL FOR
LOAD

60429800 K

For a control statement load,
the loader could not obtain
enough memory to complete the
load.

For a user call load, the
caller did not provide (either
explicitly or implicitly)
enough memory for the loading
operation.

No programs were loaded. This
usually is either the result of
another error (such as 220) or
of the accidental omission of
LOAD, LIBLOAD, or SLOAD from
the load sequence.

One main program must occur in
each load (or overlay) to pro-
vide a starting point for
execution.

A L.0OAD, LIBLOAD, or SLOAD
request followed the loading of
an absolute program; but once
an absolute program is loaded,
nothing else can be loaded.
This can also be caused by a
superfluous name call, such as
a LIBRARY statement, within the
load sequence.

Not enough ECS is available to
contain all the ECS blocks de—
clared by the loaded programs.

Increase the limit if set by
the CM parameter on the job
card or by (NOS) MFL statement.
If the program is very large
consider breaking it up into
into segments or overlays.

Modify the calling program to
provide more memory; or, if
the limit is set implicitly by
the job field length, run the
job with more memory assigned.

Correct the load sequence or
other problem.

For COMPASS, add an entry
point name to the variable
field of one END statement.
For other languages, make sure
a main program is included in
the load (or each overlay).

Either remove illegal requests

or move to a separate load
sequence.

Rerun with more ECS requested.

Ccu

Cu

Ccu

TABLE B-2. FATAL AND NONFATAL ERRORS DETECTED BY THE LOADER (Contd)
s s . Issued
Message Significance Action By
106 TRANSFER POINT NOT Entry point to overlay or seg—- Ensure correct name is used as c
FOUND (name) ment was not found. transfer address and that it
is declared to be an entry
point.
107 INSUFFICIENT FL FOR Under NOS/BE, an RFL statement Adjust the RFL statement, or c
EXECUTION specified a value too small to precede the load sequence with
execute the program. a REDUCE. statement to let the
loader automatically set the
correct value.
Under NOS, a REDUCE(-) state- Add an RFL statement to set
ment was present but a suffi- the execution field length or
cient RFL statement was not a REDUCE. statement to reemna-—
provided. ble automatic management.
200 ATTEMPT TO LOAD An attempt was made to load a Correct and recompile the pro- CU
SUPPRESSED BINARY program that has compilation or grams in error.
assembly errors.
202 OVERLAY DIRECTIVE NOT The loader encountered an OVER- Place the OVERLAY directive C
FIRST LAY directive, but not until before the first program, or
after loading one or more pro- remove all OVERLAY directives
grams. I1f overlays are used, if overlays are not wanted.
the first thing loaded must be
an OVERLAY directive.
203 NO SUCH PROGRAM CALL A name call statement called Check for possible misspell- [
NAME - name for a file or a program that ing. If a file call, create
was not found. or attach the file. If a pro-
gram call, add a LIBRARY or
LDSET(LIB=) statement to de-
clare the library after cre-
ating or attaching the file.
204 NOT CONTROL-CARD- (NOS/BE only) library direc- Check for correct usage of the C
CALLABLE-name tory information indicates that program. If it really can be
the program is not usable when used from a control statement
called by control statement; load, correct the library
it can, for example, be a using the SETAL directive of
subroutine. EDITLIB.
205 USER NOT AUTHORIZED (NOS/BE INTERCOM only) the Arrange with the installation C
FOR PROGRAM - name user cannot access this for proper permission.
program.
206 USEP INVALID FOR LDSET(USEP=) cannot be used to Use LIBLOAD instead. LIBLOAD C
ABS LOAD load absolute programs. requires an entry point name
instead of a program name, but
these are often the same for
absolute programs.
210 BAD REQUEST NO. IN USER In an LDREQ table, the number Correct the program. U
CALL indicating the request type
(LOAD, SATISFY, etc.) is
illegal.
211 = CANNOT PROCESS ENTRY The ENTRY request in user call Move the request table out of U
REQUEST ~ PARAM AREA loads asked the loader to the loadable area.
OVERWRITTEN return informatiom in the re-—
quest table; but on this load,
the request table is within the
area used for loading so this
cannot be done.
B-4 60429800

TABLE B-2.

FATAL AND NONFATAL ERRORS DETECTED BY THE LOADER (Contd)

Message

Significance

Action

Issued
By

220

221

222

240

243

244

245

246

250

300

301

EMPTY LOAD FILE -
filename

LOAD FILE NOT SPECIFIED

FILE CONNECTED - name

OVERLAY OR OVCAP CARD
NOT SEPARATE SECTION

SYNTAX ERROR ON
OVERLAY OR OVCAP CARD

ILLEGAL LEVEL NUMBER

PRIMARY OVERLAY NOT
PRECEDED BY (0,0)
OVERLAY

SECONDARY OVERLAY NOT
PRECEDED BY ITS PRIMARY

INCONSISTENT FILE
USAGE - name

INSUFFICIENT FOL
DIRECTORY SPACE

DIRECTIVE OR
UNRECOGNIZABLE INPUT
IN ABS LOAD

BAD LOADER INPUT OR
DIRECTIVE SYNTAX ERROR

60429800 H

An empty record or end-of-file
was the first thing read while
processing a LOAD or SLOAD
request.

No file names were given on a
LOAD or SLOAD request.

The loader was directed to read
binary from, or generate over—
lays or segments to, a con—
nected file.

Each OVERLAY or OVCAP directive
must be the only information in
its record.

The OVERLAY or OVCAP directive
does not conform to the rules
given in sections 4 and 6.

On an overlay directive, one of
the level numbers is greater
than 77g.

The first overlay was not a
main overlay (0,0).

A primary (n,0) overlay must
precede a secondary (n,m) over-
lay with only other secondary
overlays in between.

An overlay generation load
sequence attempted to write an
overlay to a load input file.

The value specified by the OV=n
parameter on the OVERLAY direc-
tive is too small.

Input error.

This message is followed by a
dump of the first 10 words of
illegal input. The message
indicates an attempt to load a
file that is not in the correct
format, such as a source
program instead of an object
program, or that an object
directive does not conform to
the syntax rules.

Check for correct file name,
and that the file was at-
tached or created before
calling the loader. If NR
was specified on the LOAD or
SLOAD request, check that the
file was properly positioned.

Add the needed file names to
the request, or remove the
request if not needed.

Correct the request, or return
the file.

Correct the file structure.
Correct the directive.

Correct the level numbers.
Correct the overlay structure.

Correct the overlay structure.

Change the file name on the
OVERLAY directive or NOGO
statement to differ from the
load input file name.

Correct the directive.
Correct ABS load.

Check for use of the correct
file name, and check that the
programs were compiled or

assembled before loading, or
correct the object directive.

Cu

CuU

Ccu

B-5

TABLE B-2.

FATAL AND NONFATAL ERRORS DETECTED

BY THE LOADER (Contd)

Message

Significance

Action

Issued
By

303

304

305

306

307

310

340

341

342

343

ABSOLUTE INPUT IN USER
CALL

ABS INPUT IN RELOCATABLE

LOAD

ABS INPUT NOT (0,0)
LEVEL OVERLAY

ABS INPUT LOAD
ADR LT RA+100

OVERLAY CARD
ENCOUNTERED DURING
USER-CALL LOAD

BARDWARE DEFICIENCY -
program

BAD LINK BINARY TABLE

PROCEDURE DISALLOWED
IN USER-CALL LOAD

PROCEDURE CALL MUST
BE SINGLE CARD LOAD
SEQUENCE

PROCEDURE DISALLOWED
IN RELOCATABLE LOAD

The user call loader was asked
to load an absolute program,
but only relocatable programs
are allowed.

The loader was asked to load an
absolute program after loading
some relocatable programs. The
two types cannot be mixed. This
can be caused by a superfluous
name call, such as a LIBRARY
statement within the load se-
quence, or by an attempt to use
TRAP with an absolute program.

The loader was asked to load an
absolute overlay that is not a
main overlay. Such overlays
can be loaded only by the cor-
responding main overlay.

The loader was asked to load an
absolute program with a load
address less than 100g. This
indicated an incorrect origin
field on the IDENT statement of
an absolute COMPASS program.

Overlays cannot be generated
by the user call loader.

In order to run correctly, the
program requires a hardware
feature not present.

Internal error in loader.

The user call loader was asked
to load a CYBER Control Lan-
guage (CCL) procedure. This
is prohibited.

The loader was asked to load a
procedure by a LOAD or other
such loader statement instead
of a name call, such as
procname(params); or, the name
call was preceded by LDSET or
other loader statements.

On a name call to load a file,
the loader read first a relo-
catable program and then a
procedure., The two types can-
not be mixed.

Change the program to use the
LOADREQ macro for absolute
loads.

Remove the call of an absolute
program, or move it to a sepa-
rate load sequence; do not use
TRAP except immediately before
relocatable loads.

Correct the job to call the
correct main overlay.

Correct the origin field to be
10lg+n, where n is the num-—
ber of symbols given on ENTRY
statements (if any).

Remove the overlay directive.

If the program is written in
COMPASS, it might need to be
changed. TFor other languages,
recompiling the program should
solve the problem.

Follow site-defined procedures
for reporting software errors
or operational problems.

Check for incorrect entry
point names and file names.

Call the procedure with a name
call, and remove LDSET or
other such statements.

Restructure files to remove
the procedure. Call the
procedure separately.

CU

cu

60429800

TABLE B-2.

FATAL AND NONFATAL ERRORS DETECTED BY THE LOADER (Contd)

Message

Significance

Action

Issued
By

370

371

400

401

402

403

404

405

406

407

410

411

412

420

422

CANNOT PROCESS FILES
REQUEST ~ 1ST RECORD
OF ZZZZZDF TOO BIG

CANNOT PROCESS STAT
REQUEST -~ ILL~FORMATTED
ZZZZ2DG FILE

UNBALANCED PARENTHESES

MISSING PARAMETER.

ILLEGAL SEPARATOR

name — UNRECOGNIZABLE
DIRECTIVE

INCOMPLETE PARAMETER

name ~ USED ON LOWER
LEVEL

name -~ CONFLICTS WITH
EARLIER USAGE

MORE THAN ONE ROOT
SEGMENT

NO ROOT SEGMENT

MORE THAN 4095 SEGMENTS

name -~ UNDEFINED SEGMENT

ABS OR NEG RELOCATION
NOT ALLOWED - PROG name

SEGMENT TOO LARGE

60429800 K

An internal file built by CYBER
Record Manager for communica-
tion with the loader is not in
correct format. All
LDSET(FILES=) requests are
ignored.

An internal file built by CYBER
Record Manager for communica-
tion with loader is not in

correct format.

The parentheses on a seg-—
mentation directive are not
correctly paired.

An expected parameter was
not found on a segmentation
directive.

A segmentatilon directive con-
tained a separator that is

illegal or out of context.

The input file of segmentation
directives contained a state-
ment that is not a legal direc-—
tive. This can be caused by
presenting the wrong file or a
mispositioned file.

A $ indicated a literal as a

segmentation directive param—
eter, but no corresponding $

to terminate the literal was

found.

A segment or program named on
a TREE directive already is
declared to be in a lower level
of the structure.

A segmentation directive
specifies a use of a program,
segment, or tree that conflicts
with other specifications.

Segmentation directives asked
for multiple trees in the

bottommost level.

The bottommost level of a seg-
ment structure is empty.

The maximum number of segments
was exceeded.

A segment named on a GLOBAL
or INCLUDE directive did not
appear in a TREE statement,

A program being loaded in seg-
ment generation used absolute
or negative relocation.

Attempted to generate a segment
greater than 377777g words.

Follow site—~defined procedures
for reporting software errors
or operational problems.

Follow site—~defined procedures
for reporting software errors
or operational problems.

Add the missing parentheses,
or delete extra ones.

Add the missing parameter.

Correct the directive.

Check for incorrect file name
or position; misspelled verb;
label field beginning beyond
column 2; or omission of , or
* in column 1 of a continu-
ation or comment statement,

Insert a second $§ to terminate
the literal.

Correct the tree structure.

Correct the tree structure.

Correct the structure.

Correct the structure,

Combine the segments to reduce
the total number.

Check for misspelling. Add
the segment to the appropriate

TREE directive.

Either correct the program or
do not use in segmented loads.

Restructure seqment.

Ccu

Ccu

B-7

TABLE B-2.

FATAL AND NONFATAL ERRORS DETECTED BY THE LOADER (Contd)

Message

Significance

Action

Issued
By

500 OVERLAY - CAPSULE
DIRECTIVES INCOMPATIBLE

501 CAPSULE DIRECTIVES NOT
ALL AT BEGINNING OF
FIRST LOAD FILE

502 CAPSULE DIRECTIVES
DISALLOWED IN USER-
CALL LOAD

503 ECS TEXT DISALLOWED IN
CAPSULES OR QOVCAPs

504 NON-STANDARD RELOCATION
AT ADDRESS address

505 ENCAPSULATION NOT
TERMINATED BY NOGO

506 ENCAPSULATION AND NO
CAPSULES SPECIFIED

507 CAPSULE WITH NO ENTRY
POINTS

520 OVCAP DIRECTIVE ILLEGAL
IF NOT IN OVERLAY
GENERATION

521 OVERLAY DIRECTIVE
FOLLOWING OVCAP
DIRECTIVE MUST SPECIFY
(0,0) LEVEL

B-8

Both OVERLAY and CAPSULE direc-
tives cannot appear in the same
loading operation.

A CAPSULE directive was encoun-—
tered after loading some pro-
grams. All CAPSULE directives
must precede all programs.

A CAPSULE directive was encoun-
tered during a user call load.
Capsules cannot be generated in
user call loads.

While generating a CAPSULE or
OVCAP, the loader read a pro-—
gram that declares one or more
ECS blocks. Only central memory
blocks are allowed.

The loader read a program con-
taining nonstandard relocation
while generating a CAPSULE or
OVCAP. Standard relocation
requires that the relocated
field be exactly 18 bits wide
with the rightmost bit being
bit 30, 15, or 0. Note that
external references are con-
sidered relocatable and must
also follow these rules.

A capsule generation load
sequence must be terminated by
a NOGO statement, not by an
EXECUTE or name call statement.

A GROUP statement specifying a
capsule generation load was
present, but no CAPSULE state-
ments were present to specify
the contents of the capsules.

A capsule was generated with no
entry points. Such a capsule
can never be referenced.

An OVCAP directive was read but
no overlays were generated;
there is no main overlay with
which the OVCAPs can be linked.

An OVERLAY directive followed
OVCAP generation but did not
specify a new main overlay.
This meant it was part of the
current overlay structure,
violating the restriction that
all overlays in a structure
precede all the OVCAPs.

Break into two load sequences:
one for overlay generation and
one for capsule generation.

Move CAPSULE directives.

Remove. the CAPSULE directive

Change the program to use cen-
tral memory blocks instead; or
for OVCAPs, declare the ECS
blocks in the main overlay.

Correct the program.

Correct the job.

Correct the job.

Add LDSET(EPT=) as necessary
to declare entry points.

Generate overlays along with
the OVCAPs; or change the
OVCAPs to capsules if they do
not depend on a particular
overlay structure.

Correct the overlay structure.

60429800 H

TABLE B-2.

FATAL AND NONFATAL ERRORS DETECTED BY THE LOADER (Contd)

Message

Significance

Action

Issued
By

525

526

4100

4101

4102

4103

4104

4105

4106

4107

OVCAP BINARY NOT
STATICALLY LOADABLE

OVCAP DIRECTIVE ILLEGAL
IN USER-CALL LOAD

UNSATISFIED EXTERNAL
REF - name

COMMON BLOCK
REDEFINITION (name)

DUPLICATE ENTRY POINT
NAME (name)

DUPLICATE PROGRAM
NAME FROM FILE
PROGRAM SKIPPED
—---name

DUPLICATE PROGRAM NAME
PROGRAM LOADED
——-name

CM BLANK COMMON
TRUNCATED BY nnnnnnB
WORDS.

SPECIFIED LARGER BLANK
COMMON THAN DECLARED
AT LOWER LEVEL

ABSOLUTE LOAD NOT
FOLLOWED BY EXECUTE

60429800 H

The loader was requested to
load an OVCAP. OVCAPs can only
be loaded in response to a call
to FDL.LOC issued by a running
program.

An OVCAP directive was encoun-—
tered in a user call load.
OVCAPs cannot be generated in
user call loads.

The loader could not find an
entry point to match an
external reference.

Common block length exceeds
previous definition. Original
length is retained.

Entry point name which dupli-
cates previously encountered
name is ignored.

During a file load, a program
was read that has the same name
as a program that is already
loaded. The duplicate is
‘skipped.

The program being loaded has
the same name as a program
already loaded. Duplicate
program is skipped under NOS.
Both programs are loaded under
NOS/BE.

The execution field length is
large enough for all programs
and labeled common blocks but
is not large enough when blank
common is included. An attempt
to access the last nnnnnn words
of blank common will cause a
job abort. In the case of a
segmented load, SEGRES will
not allow the program to go
into execution, but will abort
during the load process with
the fatal error message CM FL
TOO SMALL.

During overlay generation, a
program declared more blank
common than was declared in a
lower level overlay.

A NOGO statement terminated a

load sequence that loaded an
absolute program.

Correct the job.

Remove OVCAP directives.

Check for possible misspell-
ing either on the reference or
on the entry point definition.
Verify that the name was de-
fined as an entry point; or if
it was on a library, verify
that the library was in the
library set.

Correct common block specifi-
cations.

Check that intended entry
point name was selected.

Change program name.

Change program name.

Enlarge the execution field
length. Refer to section 3
for a discussion of the fac~
tors that affect execution
field length.

Increase the definition in the
lower level overlay.

Change NOGO to EXECUTE, if
desired, or remove the load
sequence if not needed.

cU

cu

Ccu

cu

Ccu

CU

cu

B-9

TABLE B-2.

FATAL AND NONFATAL ERRORS DETECTED

BY THE LOADER (Contd)

Message

Significance

Action

Issued
By

4110

4111

4200

4201

4204

4205

4206

4207

4210

4211

4220

B-10

INTERACTIVE DEBUG
IGNORED ON THIS LOAD

TRAP OVERRIDES
INTERACTIVE DEBUG

LOADER CARD ERROR
FOLLOWING CARD IGNORED

PROGRAM NOT FOUND -
name

ILLEGAL ORIGIN
SPECIFLICATION

NO BLANK COMMON AT
LOWER LEVEL - Cononnnn
IGNORED

ENTRY NAME ON OVERLAY
CARD NOT FOUND - name

OBJECT DIRECTIVES NOT
ALLOWED

FOL GENERATION,
WRITING BINARY TO SAME
FILE AS MAIN OVERLAY

ILLEGAL OV SPECIFICATION

ILLEGAL LOADER REQUEST

CYBER Interactive Debug is
ignored in loads involving
SEGLOAD control statements
or GROUP/CAPSULE object
directives.

When both TRAP and Interactive
Debug are used during a load,
Interactive Debug is ignored.

A loader statement did not con-
form to the syntax rules for
the particular statement.

A program requested by an
LDSET(USEP=), TREE, or INCLUDE
request could not be found.

On an OVERLAY directive, an
origin specification gave an
address less than 110g; the
overlay level was (0,0), for
which an origin specification
is illegal.

An origin specification on an
OVERLAY directive could not be
honored because no blank common

was declared on any lower
overlay.

An origin specification on an
OVERLAY directive could not be
honored because it referenced
an entry point that was not
defined in any lower overlay.

A directive other than OVERLAY,
OVCAP, GROUP, or CAPSULE

was encountered when reading a
load file.

FOL generation requires all
overlays to be written to the
same file.

The OV=n parameter on an
OVERLAY directive must be a
decimal number; it is valid
only on the (0,0) overlay.

A loader request is illegal on
this particular type of load;
for example, PASSLOC is legal
in a user call load but not in
overlay generation.

Request load without CYBER
Interactive Debug.

Reload files; use only one of
the debugging routines.

Correct the syntax.

Check for possible misspell-
ing either on the request or
in the program. Check that
all necessary libraries are in
the library set. For seg-—
mentation, check that all the
necessary files were loaded.

Correct the overlay directive.

Remove the Cnnnnnn parameter
from the OVERLAY directive.

Check for possible misspell-
ing either on the reference
or the entry point definitioun.
Verify that the program con-—
taining the entry point was
loaded in a lower overlay.
Verify that the name was de-
fined as an entry point.

Remove the directive from the
load file. If needed, put it
in the control statement
Stream.

Correct the OVERLAY directive.

Correct the directive.

Correct the job.

Ccu

cU

cu

CU

60429800

TABLE B-2.

FATAL AND NONFATAL ERRORS DETECTED BY THE LOADER (Contd)

Message

Significance

Action

Issued
By

4221 LOAD FILE NAME FORMAT
ERROR - name

4222 NO PROGRAMS SPECIFIED
ON SLOAD

4224 SLOAD PROGRAM NOT
FOUND ~ name

4225 FORMAT ERROR ON
LIBLOAD REQUEST

4227 ENTRY ON LIBLOAD NOT
FOUND - name

4230 FORMAT ERROR ON CMLOAD
OR ECLOAD REQUEST

4231 FORMAT ERROR — SATISFY
REQUEST ~ name

4232 FORMAT ERROR ON LIB
REQUEST - name

4233 FORMAT ERROR ON MAP
REQUEST

4234 FORMAT ERROR ON PRESET
REQUEST

4235 FORMAT ERROR ON USEP
REQUEST - name

4236 FORMAT ERROR ON USE
REQUEST - name

4237 SUBST FORMAT ERROR

4240 FORMAT ERROR ON OMIT
REQUEST - name

60429800 H

File names used by the loader
must be one to seven.alpha—
numeric characters, with the
first character alphabetic.

An SLOAD request did not list
any programs to be loaded.

A program named on an SLOAD

statement could not be found on

the specified file.

The library name is missing
from a LIBLOAD request.

An entry point named on a
LIBLOAD request could not be
found.

Indicates that a request of the
indicated type does not conform
to the format defined for that

request.

Indicates that a request of the
indicated type does not conform
to the format defined for that
request.

Indicates that a request of the
indicated type does not conform
to the format defined for that
request.

Indicates that a request of the
indicated type does not conform
to the format defined for that

request.

Indicates that a request of the
indicated type does not conform
to the format defined for that
request.

Indicates that a request of the
indicated type does not conform
to the format defined for that

request.

Indicates that a request of the
indicated type does not conform
to the format defined for that

request,

Indicates that a request of the
indicated type does not conform
to the format defined for that
request.

Indicates that a request of the
indicated type does not conform
to the format defined for that
request.

Correct the file name.

Correct the request.

Check for a misspelled file or
program name. Verify that the
file was properly created or
attached.

Correct the request.

Check for possible misspell-
ing either on the reference or
on the entry point definition.
Verify that the name was de-—
fined as an entry point.

Correct the program.

Correct the program.

Correct the program.

Correct the program.

Correct the program.

Correct the program.

Correct the program.

Correct the program.

Correct the program.

CU

CcuU

Ccu

cu

cu

Cu

Cu

Cu

cu

co

[o3)

TABLE B-2.

FATAL AND NONFATAL ERRORS DETECTED BY THE LOADER (Contd)

Message

Significance

Action

Issued
By

4241 FORMAT ERROR ON
PASSLOC REQUEST

4242 FORMAT ERR -
COMMON REQUEST - name

4271 TRANSFER NAME NOT
FOUND ~ name

4272 TOO MANY PARAMS IN
EXECUTE REQUEST

4273 NONEXISTENT LIBRARY
GIVEN -~ name

4274 LIBRARY NOT ON MASS
STORAGE - name

4275 ILL-FORMATTED LIBRARY -
name

4310 POTENTIAL HARDWARE
DEFICIENCY —~ program

4340 TRIED TO LOAD INTO BLOCK
BELOW ORIGIN - name

B-12

Indicates that a request of the
indicated type does not conform
to the format defined for that
request.

Indicates that a COMMON request
in an LDSET request specified
an invalid block name.

The name on a COMPASS END
statement or in an LDSET EPT
table does not exist or was not
named as an entry point.

The number of parameters in an
execute request exceeded the
maximum of 42.

No file of the given name was
present, and no system library
of that name exists.

The specified library file is
on magnetic tape or other such
nonrandom device, and is
unusable.

The specified library is not in
the format of a library.

If the program is later exe-
cuted on the same machine, it
will fail because it requires
a hardware feature that is not
present.

During overlay generation, an
attempt was made to load data
into a common block declared by
a lower overlay; the attempt is
ignored.

During a user call load, data
was loaded into a common block
first declared in an earlier
load.

Correct the program.

Correct the program.

Make sure the correct name is
used as the transfer address

and that it is declared to be
an entry point.

Correct the program.

Verify the correct file name
(user library) or library name
(system library). For a user
library, check that the 1i-
brary was created or attached
before calling the loader.

On NOS, use COPYBF to copy the
library onto mass storage. On
NOS/BE, use the SEQTORAN
directive of EDITLIB.

Verify that the correct
library file name was given
and that it was created as a
library by LIBGEN (NOS) or
EDITLIB (NOS/BE). For NOS/BE,
check to see if the library
was copied at any time by any
program other than EDITLIB;
such copies are no good.
Rebuild the library if
necessary.

If the machine on which the
program is to be executed pos-
sesses the required features,
no action is needed. Other-
wise, the program should be
recompiled on its target
machine. A COMPASS program
might need to be changed to
avoid the missing feature.

Remove presetting from the
program being loaded; preset
the common blocks where first
declared.

Ccu

cu

Ccu

CU

CU

60429800

TABLE B-2.

FATAL AND NONFATAL ERRORS DETECTED BY THE LOADER (Contd)

Py

Message

Significance

Action

Issued
By

4341

4400

4401

4402

4420

4421

4422

4450

4500

4501

4502

4503

TRIED TO LOAD INTO
ABSOLUTE BLOCK

PARAMETER NAME
TRUNCATED TO 7
CHARACTERS

END CARD MISSING

name — NOT DECLARED
GLOBAL

COULD NOT FIND COMMON
OR GLOBAL BLOCK - name

SATISFY IGNORED ON
SEGMENT LOAD

TRIED TO LOAD INTO BLOCK
OQUTSIDE SEGMENT — name

CONFLICTING SEGMENTS
CALLED BY SAME WORD
ADDRESS

FORMAT ERROR ON EPT
REQUEST - name

FORMAT ERROR ON NOEPT
REQUEST - name

NOT ALL CAPSULE
DIRECTIVES PROCESSED

EPT REQUEST IGNORED -
name

In an OVERLAY, OVCAP, or
CAPSULE generation load, an
attempt was made to load data
into the absolute block.

A name on a segmentation direc—
tive is too long. Only the
first seven characters are
used.

An end-of-record terminated
segmentation directives because
no END statement was read.

During segmentation, the loader
expected the block to be made
global but it did not appear on
any GLOBAL directive.

During segmentation, a labeled
common block specified on a
COMMON or GLOBAL directive was
not found.

Unlike other types of loads,
segmentation is a two-pass
process with all externals
being satisfied at the end of
the first pass; thus, a SATISFY
statement in a load sequence
serves no purpose.

In a segment generation load,
attempt was made to load data

into a block which is in
another segment or the absolute
block.

A single word in a segment ref-
erences entry points in two
different segments that caanot
coexist.

A name on an EPT request is not
a legal entry point name.

A name on a NOEPT request is
not a legal entry point name.

After loading all specified
files, one or more programs
named on CAPSULE directives
were not found.

In a non-encapsulation load se-
quence, a LDSET EPT request in
a LDSET table was encountered
after physical loading began.
It does not affect the entry
points in the 5400 table header
being generated.

Correct the program.

Correct the name.

Insert an END statement.

Add a GLOBAL statement.

Correct block name spelling.
Verify that programs which
reference block were loaded.

Remove the SATISFY statement.
Add LDSET(LIB=) if necessary
to specify additional
libraries to be searched.

Correct the program.

Ensure correct segment names
are used and that tree is
structured correctly.

Correct the request.

Correct the request.

Verify that all required files
were loaded. Check if CAPSULE
directives are correct.

Move the LDSET table to the
first relocatable program on
the load file.

60429800 H

TABLE B-3. ERRORS DETECTED BY THE USER CALL INTERFACE

A

. Issued
Message Significance Action By
CMM PARAM MISSING FROM A LOADER macro call made while CMM Add the CMM parameter to UCLOAD
LOADER USER CALL was active did not specify CMM on the LOADER macro call.
the macro call.
FWA-LWA ERROR ON LOADER The fwa or lwa parameters in the Correct the program. PILOAD
USER CALL LDREQ BEGIN block are in error. UCLOAD
fwa lwa, lwa f1l, or (for PILOAD
only) fwa is in the user area and
lwa is in the CMM area.
LDREQ BEGIN MISSING The address passed in a LOADER Correct the program. PILOAD
macro was not that of an LDREQ
BEGIN block.
LDREQ END MISSING The list of LDREQ blocks is not Correct the program. PILOAD
terminated by an LDREQ END block. UCLOAD
LDV ERROR LOADING LOADU PILOAD could not load the user call Contact a system analyst. PILOAD
loader.
OLD-STYLE SEGMENTATION The program issued a SCOPE 3.3 Convert the program to use UCLOAD
NOT SUPPORTED format user call specifying CYBER loader facilities.
SCOPE 3.3 type segmentation.
SL LIST TOO BIG - CONSULT The program issued a SCOPE 3.3 type Correct the program to use UCLOAD
UCLOAD IMS : user call, naming too many programs current formats.
to allow conversion by UCLOAD.
TABLE B-4. ERRORS DETECTED BY SEGRES
Message Significance Action

BAD SEGLOAD BINARY

CM FL TOO SMALL

ECS FL TOO SMALL

ECS WRITE ABORT

IGNORING EXTRA
LOAD FILE

MISSING EXECUTE

MISSING LOAD

The file of segments is not in correct
format. The job is aborted.

SEGRES was unable to obtain enough
central memory to run the program.
The job is aborted.

SEGRES was not given enough ECS to run
the program. The job is aborted.

An ECS parity error occurred while
initializing ECS common blocks. The
job is aborted.

The load sequence requested loading
of multiple files. A single file must
contain all the segments.

No EXECUTE statement is present in
the load sequence. The job is aborted.

No LOAD statement is present in the

load sequence, The job is aborted.

Regenerate segments.

Rerun the job with larger limits.

Request sufficient ECS, and rerun the
job.

Follow site-defined procedures for
reporting software errors or opera-
tional problems. Rerun the job.

Correct the load sequence.

Add an EXECUTE statement,

Add a LOAD statement.

60429800 H

TABLE B~4., ERRORS DETECTED BY SEGRES (Contd)

e

Message

Significance

Action

NONEXECUTABLE WORD
LOADING A SEGMENT

NO TRANSFER ADDRESS

SEGRES T0O LARGE

A word in which the top six bits are
zero contains a reference to another
segment that would cause loading.
Only executable words can have such
references. The job is aborted.

The root segment has no transfer
address.

The segment loader resident exceeds
its maximum size of 1000g words.

Also issued when a second SEGLOAD is
performed without rewinding/returning
the ABS file.

Correct the program.

Correct the program.

Check if a second SEGLOAD was encoun-—
tered, or follow site~defined proce-
dures for reporting software errors or
operational problems.

TABLE B-5., ERRORS DETECTED DURING DYNAMIC CAPSULE AND OVCAP OPERATIONS
X6 Code Significance Action Issued By
0 No error occurred. None. FDL.LDC
FDL.ULC
XFDL.REL
XFDL.UNR
FDL.LOC
FDL.UOC
1 Bad library list; either the entries or the Correct the list FDL.LDC
address is incorrect. and rerun the job. FDL.LOC
2 Unknown group name; either the name is Correct the name FDL.LDC
incorrectly stored, or the named group can- and rerun the job. FDL.ULC
not be found. FDL.LOC
3 Unknown capsule or OVCAP name; either the Correct the name FDL.LDC
name is incorrectly stored, or the named and rerun the job. FDL.ULC
entity cannot be found. FDL.LOC
FDL.UOC
4 Bad capsule or OVCAP format. Reformat and rerun FDL.LDC
the job. FDL.ULC
XFDL.REL
XFDL.UNR
FDL.LOC
FDL.UOC
5 Bad PASSLOC or ENTRY table format; either Correct the condi- FDL.LDC
an incorrect address was used, or the tion and rerun the FDL.ULC
addresses in the list reference an incor- job. XFDL.REL
rect table. XFDL.UNR
FDL.LOC
FDL.UOC
6 Capsule or OVCAP is already in memory. Remove the call FDL.LDC
and rerun the job. FDL.LOC
7 Either a capsule is being treated as an Change the call and FDL.LDC
OVCAP, or an OVCAP is being treated as a rerun the job. FDL.LOC
capsule.

60429800 H

B-15

TABLE B-6., ERRORS DETECTED DURING OVERLAY LOADING (LDV UNDER NOS/BE ONLY)

Message

Significance

Action

0001 NONEXISTENT LFN ~ XXXXXXX

0004 INSUFFICIENT FL
INSUFFICIENT FL - nnnnnn
NEEDED

0006 REQUEST FORMAT ERROR

0007 E-BIT WITH AUTO-RECALL

0011 1I/0 ERROR STATUS

0012 TLOADABLE AREA LS 100B

0013 INCONSISTENT CMM USAGE

B-16

0003 OVERLAY NOT FOUND — XXXXXXX
OVERLAY NOT FOUND - (nn,nn)

0005 OVERLAY HEADER NOT CORRECT

The file specified for a non-
library load does not exist.

The specified overlay could
not be found. The format of
the message differs depending
on whether the load was re-
quested by overlay name or by
overlay level.

The loadable area is too
small to contain the overlay.
If a value is given in the
message (possible only on
loads from a library), this
value is the minimum lwa
needed to allow loading. If
lwa is not specified in the
call, FL-3 is used as the
lwa.

A program loaded from a
library was not an absolute
overlay, or a record other
than an absolute overlay was
found during a file search,
or an overlay with ECS text
was found and is not loadable
by LDV.

Some or all of the parameter
words were outside the field
length, or the contents of
the parameter words were
illegal or inconsistent.

LDV was called with automatic
recall and the parameters
specified automatic execution
of the loaded overlay.

LDV received an error status
when trying to read.

The requested ECS-resident
overlay could not be loaded
because no fwa was specified
in the call and the address
in bits 17 through O of
RA+65g was less than 100g.

Either a non-CMM type LDV
call has been made when CMM
is active or a CMM type LDV
call has been made when CMM
is not active.

Verify that the file is correct
and was properly created or
attached before execution.

Verify that the overlay name
or level is correct on the call
and that the overlay is prop-
erly installed in its library,
if any, or is present on the
overlay file.

If lwa is not specified, in-
crease the execution field
length., If lwa is specified,
increase it to an adequate
amount. For overlays built by
the loader, the hha field of
the EASCM table gives the
maximum lwa needed for any
overlay and is present in
RA+104g during execution.

Check to see if the program
attempted a file load from a
file in library format; if so,
change the call to request a
library load. If loading from a
library, rebuild the library.
If loading from a file, make
sure only overlays are present
on the file. If ECS text must
be used, put it into the (0,0)
overlay.

Correct the program.

Remove the recall parameter from
the LOADREQ call.

Check the accompanying message;
if not clear, refer to the
NOS/BE Diagnostic Handbook.

Specify fwa if at all possible;
otherwise, request system an-
alyst to remove the routine
from ECS residency. (ECS
residency is supported only
for system libraries.)

Correct the program.

60429800

TABLE B-6. ERRORS DETECTED DURING OVERLAY LOADING (LDV UNDER NOS/BE ONLY) (Contd)
2
Message Significance Action
4001 (no dayfile message) The fwa in the overlay header Modify the program to supply
and the fwa in the call were a correct fwa.
both nonzero but were differ-
ent. The overlay is loaded
at the address given in the
call.
4002 1ST EPT USED ~ COULDNT FIND An entry point name was spec-— Verify that the entry point
name ified in the call and the name is correct. If the overlay
loaded overlay contains one was generated as a COMPASS ABS
or more named entry points, program, verify that the name
none of which matches the one appeared on an ENTRY statement.
requested. The first entry If the overlay was generated
point name encountered is by the loader, verify that no
used. OVERLAY statements were used
in its generatiom, only
NOGO(1fn,...) where the entry
point is named on the NOGO
statement.
4003 NONEXISTENT LIBRARY - name The specified library does Verify that the library name
not exist. is correct and that it was cor-
rectly created or attached.
4004 FILE NOT A RANDOM RMS USER The file specified is not a If a file load instead of a 1li-
LIB -~ name random mass storage file or brary load is needed, change
is not of library format. the code to request a file load.
The file is ignored. If a library load is indeed
wanted, create a random library
by using EDITLIB.
4006 UNSUPPORTED ECS USER FILE - The file specified resides in Copy the file to omne that is
name ECS and is not loadable by not ECS-buffered, and use the
LDV, The file is ignored. copied file.
4007 UNSUPPORTED TAPE FILE - The file specified resides on Copy the file to mass storage
name a magnetic tape and is not and use the copied file.
loadable by LDV. The file is
ignored.

TABLE B-7.

ERRORS DETECTED DURING TRAP DIRECTIVE PROCESSING

Message

Significance

Action

AT PARAM REQUIRED ON
FRAME DIRECTIVE

ILLEGAL DELIMITER ON
ABOVE TRAP DIRECTIVE

ILLEGAL NUMBER ON
ABOVE TRAP DIRECTIVE

ILLEGAL PARAM ON ABOVE
TRAP DIRECTIVE

60429800 H

No AT parameter is present on a
FRAME directive to indicate the
point when a dump is to be taken.

An illegal character separated two
parameters on a TRAP directive.

A numeric parameter contains a
nonnumeric character.

A parameter that should be a key-

word is not, or it is only valid
for the other (TRACK or FRAME)
type of directive.

Add an AT clause to the directive.

Correct the directive.

Correct the directive.

Correct the directive.

B-17

TABLE B-7.

ERRORS DETECTED DURING TRAP DIRECTIVE PROCESSING (Contd)

Message

Significance

Action

ILLEGAL VERB IN ABOVE
TRAP DIRECTIVE

PARAM(S) MISSING ON
ABOVE TRAP DIRECTIVE

TOO MANY WHENS ON
TRACK DIRECTIVE

UNTIL CANNOT BE LESS
THAN START

The verb is neither TRACK nor
FRAME .

The directive has no verb, or one
of the parameters is incomplete
(such as START not followed by a
number) .

More than 15 WHEN clauses appear.

The START value must be less than
or equal to the UNTIL value to
allow at least one iteration to be
trapped.

Check for a label not beginning in
column 1. Correct the directive.
Correct the directive. Remove any
blank cards.

Either reduce the number of WHEN
clauses or break the tracking range up
and use two separate TRACK directives.

Correct the directive.

TABLE B-8.

ERRORS DETECTED BY TRAPPER DURING EXECUTION

Message

Significance

Action

COULD NOT FIND BLOCK
name

ERROR ON TRAP FILE
27272728

FOR PARAM MUST BE USED
IF FROM IS IN ECS

FRAME AT OR TRACK FROM
OR TO IS IN ECS

INSUFFICIENT BUFFER SIZE

MORE THAN 100 WHEN
CONDITIONS USED

REFERENCE INSIDE TRAPPER

TO ADDRESS IS LESS THAN
FROM ADDRESS

TRAP ADDRESS IS OUTSIDE
FIELD LENGTH

The program or block indicated
could not be found.

The data file written by TRAP for
TRAPPER is incorrect.

The FROM parameter of a FRAME
directive is in ECS but no FOR
clause is present.

The address in the AT clause of a
FRAME directive, or in the FROM or
TO clause of a TRACK directive, is
in ECS. This is illegal because
instructions can only be executed
in central memory.

The buffer in TRAPPER is too small
to read the 277277228 file created
by TRAP.

Over 100 WHEN clauses appeared in
the directives.

User program tried to reference
location inside TRAPPER program.

On a TRACK directive, the TO
clause specified an address less
than that of the FROM clause.

An address specified on a
directive is not within the job’s
allocated memory.

Change the directive to specify the
correct name.,

Follow site~defined procedures for
reporting software errors or opera-
tional problems.

Add a FOR clause.

Correct the directive.

Follow site—~defined procedures for
reporting software errors or opera-
tional problems.

Reduce the number of WHEN clauses.

Remove the reference.

Correct the directive. It might be
necessary to use two TRACK direc-
tives to achieve the desired effect.

Correct the directive.

B-18

60429800

GLOSSARY C

Absolute Load -
A load of an overlay, segment, or COMPASS ABS
program. No relocation or satisfaction of
externals is mneeded because this was done when
the absolute program was generated.

Basic Load -
A load operation in which all of the object

code is loaded into memory at the same time.

Blank Common Block -
A common block into which no data is stored at
load time. The first declaration of a blank
common block need not be the largest
declaration for the common block. Contrast
with labeled common block.

Capsule -
A relocatable collection of one or more
programs bound together in a special format
that allows the programs to be loaded and
unloaded dynamically from an executing program
by the Fast Dynamic Loading facility.

Common Block -
An area of memory that can be declared by more
than one relocatable program and used for
storage of shared data.

Control Statement Load -
A load operation that is initiated by control

statements encountered within a job stream.
Contrast with user call load.

Dymamically Loaded Code -
Code loaded by an explicit request, as needed.
The load is initiated by am executing program.
Contrast with statically loaded code.

Entry Point -
A location within a program that can be
referenced from other programs. Each entry
point has a unique name with which it is
associated.

Execute Only File -

On NOS, a permanent file created with the M=E
option on one of the permanent file state-
ments. The user is granted permission only to
execute the file; read or write permission is
not granted. In order to protect the contents
of such a file when loaded, the loader never
writes a load map (even if a map was selected);
the loader also restricts the satisfying of
externals for execute-only files to system
libraries.

External Reference -

A reference in one object program to an entry
point in another program.

60429800 H

Fast Dynamic Loading -
A facility that provides fast loading and
unloading of specially formatted code, called
capsules. The amount of memory required for
job execution can be greatly reduced because
capsules can be easily loaded and unloaded as
needed, freeing memory for other uses.

Fast Overlay Loading -
A facility that provides for generation of an
overlay structure with an overlay directory
imbedded into the main overlay. It uses the
directory for the loading of a higher level
overlay.

Field Length -
The number of central memory words assigned to
a job.

Global Library Set -
An ordered set of libraries specified on a

LIBRARY statement. The libraries remain in
effect throughout job execution unless
specifically changed by a subsequent LIBRARY
statement.

Global Common Block -
In a segmented load, a labeled common block
that can be referenced by programs in different
segments.

Labeled Common Block -
A common block into which data can be stored at

load time. The first program declaring a
labeled common block determines the amount of
memory allocated. Contrast with blank common
block.

Level -
In a segmented load, a division of memory into
multiple regions so that loading and unloading
of segments can occur independently in the
various regions.

Library -
A file created by either LIBGEN (NOS) or
EDITLIB (NOS/BE) that contains programs and the
tables needed to locate and load the programs.

Library Set -

An ordered set of libraries that the loader
searches to satisfy external references. It is
composed of the global library set, followed by
the local library set, followed by the default
system library SYSLIB. Libraries are inserted
in the order in which they are specified.
Duplicate library names are suppressed.

Linking -
The process of matching external references to
entry points of the same names and inserting
the addresses of the entry points into the
external references.

Loader Statement -

A control statement that begins with one of the
keywords: CAPSULE, EXECUTE, GROUP, LDSET,
LIBLOAD, LOAD, NOGO, SATISFY, SEGLOAD, or
SLOAD. A control statement that begins with a
local file name that duplicates any of the
above keywords is treated as a name call
statement.

Load Map -
A printout showing how memory was allocated by
the loader during a load operation.

Load Sequence -~
One or more consecutive control statements
processed by the loader as a wunit. A 1load
sequence can be a single name call statement,
or it can consist of loader statements, such as
LOAD and LDSET, that are terminated by NOGO,
EXECUTE, or a name call statement.

Local Library Set -~
An ordered set of libraries defined by
LDSET(LIB=) control statements and object
directives and used for a single load sequence.

Main Overlay -
An overlay that mwust remain in memory
throughout execution of an overlayed program.

Name Call Statement -
A control statement that begins with either the
name of a file (such as LGO) or an entry point
in a library (such as FIN). The name call
statement causes the file or program to be
loaded and executed.

Nucleus -
The NOS/BE system library that contains entry
points corresponding to most control statement
keywords. It is searched by the loader if the
keyword on a name call statement does not name
a local file or match any entry point in either
the global or local library sets.

Object Directives -
Loader requests encountered within the load
input stream in the form of loader tables.

Ovcap -
A special capsule designed for use with
overlays. An OVCAP is analagous to a primary
overlay inm that it must be called into memory
by a main overlay, and it can reference entry
points and common blocks in the main overlay.

Overlay -
One or more relocatable programs that were
relocated and linked together into a single
absolute program. It can be a main, primary, or
secondary overlay.

Primary Overlay -
A second level overlay that is subordinate to
the main overlay. A primary overlay can call
its associated secondary overlays and can
reference entry points and common blocks in the
main overlay.

Program~Initiated Load -
Another term for user call load.

Reduce Mode -
A job execution mode in which the loader
automatically sets the field 1length for
executing a program. When a Jjob is not in
REDUCE mode, the user must specify the field
length.

Relocatable Load -
A load operation in which object programs are
placed into memory locations that are not
predetermined. Addresses are established and
external references satisfied during the load
operation.

Relocation -
Placement of object code into central memory in
locations that are not predetermined and
adjusting the addresses accordingly.

Root Segment ~
The main segment of a segmented program that
must remain in memory throughout execution of a
segmented program.

Satisfying External References -
The process of searching one or more libraries
and loading programs that contain entry poiats
matching external references that are currently
unsatisfied.

Secondary Overlay -
The third 1level of overlays. A secondary
overlay is called into memory by its associated
primary overlay. A secondary overlay can
reference entry points and common blocks in
both its associated primary overlay and the
main overlay.

Segment -
An absolute subdivision of a segmented program
that is automatically called into memory as
needed (except for the root segment) .
Different segments can occupy the same memory
locations at different times during job
execution.

Segmentation -
Dividing a program into sections called
segments that can occupy the same storage
locations at different times. The root segment
must be in memory throughout program execution;
all other segments are loaded dynamically
during program execution.

Statically Loaded Code -
Code that 1is loaded 1into memory once and
remains resident throughout job execution.
Contrast with dynamically loaded code.

SYSLIB -
The system library containing general purpose
subroutines. It is searched by the loader if
unsatisfied externals remain after searching
the libraries in the global and local library
sets. It is not used during capsule and OVCAP
generation.

60429800 H

System Library -

A 1library that is dinstalled as part of the
operating system. System library names are
maintained in a system table and can be used in
the library set if the library name is declared
in either a LIBRARY or LDSET(LIB=) statement.
(A system library does not have to be attached
because it is mot a permanent file in the usual
sense.) See Library.

Transfer Address -
The address of the entry point to which the
loader jumps to begin program execution.

Tree -
A verb allowed in SEGLOAD directives that
organizes segments into tree structures.

Tree Structure -
A program structure that, when viewed in
time-memory coordinates, resembles a tree.

Unsatisfied External Reference -

An external reference for which no matching
entry poiant was found. The unsatisfied

60429800 H

external reference is filled with an address
that causes the program to abort if the given
instruction is executed.

User Call Load -
A relocatable load that is initiated by user
requests from an executing program. The
requests are formatted into request tables
before the call 1is issued to the loader.
Contrast with control statement load.

User Library -
A library that exists as a local file attached
to the job. User libraries can be used in the
library set if the library is either created or
attached by a job and declared in either a
LIBRARY or LDSET(LIB=) statement.

Weak External -
An external reference that is ignored during
library searching and cannot cause any other
program to be loaded. A weak external is
linked, however, if the corresponding euntry
point is loaded for any other reason.

c-3

BINARY TABLES D

The binary tables that the loader processes to
place code in central memory are discussed in the
following subsections. The binary tables comnsist
of both object program tables and request tables.

OBJECT PROGRAM TABLES

Every object program, whether relocatable or abso-—
lute, is represented in a file or library as a
sequence of tables. The formats of these tables
are described in this section. They have no
relationship to physical card formats when object
programs are punched into binary cards. (Periph-
eral processor programs and system text overlays
are not processed by the loader but are included
here because no other manual documents their for-
mats.) The first 60~bit word of each table is
a header word with the general format shown in
figure D-1.

A relocatable program ‘unit (subprogram) 1is repre-
sented as the following sequence of tables:

1. PRFX table

2. LDSET table (optional)

3. PIDL table

4., ENTR, TEXT, REPL, FILL, LINK, XTEXT, PTEXT
XREPL, XFILL, XLINK, SYMBOL and LINE NUMBER
tables, any number of each, in any order

5. XPFER table (optional)

An absolute central processor program or overlay is

represented as the following sequence of tables:

1. PRFX table

2. ASCM, EASCM, ACPM, or EACPM table

A peripheral processor program or overlay is repre-

sented as the following sequence of tables:

1. PRFX table

2. 6PPM table

A system text overlay is represented as the follow-
ing sequence of tables:

1. PRFX table

2. ASCM table with
origin=entry=0

level l=level 2=1 and

A capsule is represented as the following sequence
of tables:
1. PRFX table

2. CAPSULE table

60429800 K

59 47 35 0

tn We (depends on table type)

tn A binary number designating the type
of table.

wc The number of 60-bit words in the
table, not counting the header word.

Figure D-1. Header Word Format

A list of the binary tables is shown in table D-1.
The formats of these tables are described as fol-
lows. The tables are listed in ascending order by
table number. In these descriptions, all areas
designated as res can be used only by CDC and are
presently all zeros. Except where noted, all names
are one to seven characters in display code, left-
justified with binary zero fill, and can contain
any character codes except 55g (blank) and 00.

6PPM TABLE

The 6PPM table (figure D-2) contains the memory
image of either a peripheral processor program or
overlay.

59 41 35 23 11 0
0 pname res fuwa res We
1
: ~ twords iy
we |

pname Three letters and/or digits in
display code.

res Reserved for use by CDC.

fua The address of the byte in PPU
memory into which the first byte
of the table header word is to be
toaded; the first text byte is
Lloaded at PPU memory address

fwat5.

We The number of 60-bit text words;
the number of 12-bit bytes is five
times wc.

twords The core image of a peripheratl
processor or overlay.

Figure D-2. 6PPM Table Format

TABLE D-1. BINARY TABLE TYPES

tn(octal)t Mnemonic Table Type
aabb¥T 6PPM 6000 peripheral processor (PP) program or overlay; bits 59 through 42
contain three alphanumeric characters in display code
3400 PIDL Program identification and length
3500 PTEXT Relocatable text
3600 ENTR Entry point definitions
3700 XTEXT Extended relocatable text
4000 TEXT Relocatable text
4100 XFILL Extended relocation f£ill
4200 FILL * Relocation fill
4300 REPL Replication of text
4400 LINK External reference linkage
4500 XLINK Extended external reference linkage
4600 XFER Transfer point
4700 XREPL Extended replication of text
5000 ASCM Absolute CPU program or overlay
5100 - EASCM Absolute CPU program with multiple entry points
5300 ACPM Absolute program or overlay with ECS data
5400 EACPM Absolute program or overlay with ECS data and multiple entry points
5600 SYMBOL Symbol information
5700 LINE Line number information and object code addresses
GOOOTT CAPSULE Relocatable capsule or OVCAP (overlay-capsule)
6600 Reserved for use by installations
6700 Reserved for use by installations
7000 LDSET Object directive
7700 PRFX Prefix
ta binary number designating the type of table.
TTThe header word varies from the general format by not containing a word count. This table must be the
last or only table of its program or overlay and is terminated by an end-of-record.

PIDL TABLE (3400)

block known to the subprogram; there could also be
a descriptor for the subprogram”s local ECS block,

The PIDL table (figure D-3) ~contains the names and if any. The order in which the descriptors occur

lengths of
blocks.

The common block descriptors (figure D-4), if any,

contain the name, and length of each common

type,

relocatable

subprogram”s storage

is dimportant, because this is the basis for the
relocation designators in subsequent tables. A

subprogram”s PIDL table can contain up to 509
descriptors.

60429800 H

59 47 35 17 0

0 3400 We res

1 mod Length

chd

Q
&

We The number of 60-bit words in the
table, not counting the header
word.

res Reserved for use by CDC.

mod The name of the program module,
left-justified with zero fill. A
subprogram name can be the same as
a common block name and/or an en-
try point name without confusion.

Length The number of 60-bit words in the
program module’s local central
memory block; if this is zero, the
blaock length is determined by the
Largest address into which subse-
quent tables load text.

chd The common block descriptors which
contain the name, type, and length
of each common block known t- a
subprogram. There could also be a
descriptor for the program's ECS
block.

Figure D-3. PIDL Table Format

+

cbname Length

cbname The name of the common block.

t The type of common block; t can be
the following:

0 A central memory common
block

1 An ECS common block

Length 1f t is 0, the block size is
Length 60-bit words. If t is 1,
the block size is 8 x length
60-bit words.

Figure D=4. PIDL Table Common Block
Descriptor Format

60429800 K

The subprogram”s local ECS block, if present, is
represented by a descriptor in which the name is
null (42 zero bits) and the type of block (t)
is 1. A blank common block is represented by a
descriptor in which the name is seven blanks. A
subprogram can have two blank common blocks pro-
vided one is central memory and the other is ECS.
Otherwise, no two common blocks can have the same
name. However, a common block name can be the same
as a subprogram name and/or an entry point name
without confusion. The maximum size of a ceantral
memory block is 217-1 (131071) 60-bit words; the
maximum size of an ECS block is 220-8 (1048568)
60-bit words.

PTEXT TABLE (3500)

The PTEXT table (figure D-5) contains text and
an address at which it is to be loaded. The
PTEXT table can also contain optional replication
descriptors.

The text bits are loaded into consecutive memory
locations beginning with word s+B, where s is the
relative first word address and b is the binary
relocation base. The text bits are loaded starting
at the first bit in the first word (£f£fb) that
receives textwords, and extends for the text length
in bits (tlb). The binary relocation base (b) is
determined by the relocation base designator (rb)
as shown in table D-2; however, rb cannot be nega-
tive (negative program relocation) or 0 (absolute
relocation), nor can it refer to a blank common
block. Any bits not overwritten in the affected
words are preserved.

If a replicated PTIEXT table is indicated by the

flag (f), the increment (k) and the count (c) are
processed as in the REPL table.

TABLE D-2. DETERMINATION OF THE
BINARY RELOCATION BASE

rb b
000 0
001 P
002 -p }T
003 Cl
004 ¢ }TT
7773 e509TT

TBase address of the subprogram central memory
local block.

TTBase address of the ith common block listed in
the subprogram PIDL table. 1< i< number of
common blocks.

D-3

59 47 41 35 32 23 20 11 0

0 3500 We Ees cr res
1 tib ffb| fires| rb s
2 res k c
~ text words ~x
tib ffb|fires; rb s
We)
We The number of 60-~bit words in the

table, not counting the header word.
res Reserved for use by CDC.

cr Conditional relocation base desig-
nator. The PTEXT table is ignored
if cr refers to a common block that
was first declared by an earlier
subprogram.

tlb Text length in bits.

ffb First bit in first word to receive
first bit of text words.

f Flag indicating whether PTEXT table
is replicated. Values for f are as
follows:

0 text words follow immediately

1 next word is replication indi-
cator, followed immediately by

text words
rb Relocation base designator.
S Relative first word address; cannot

exceed 377777 octal.

k Increment in bits between replicated
copies of text words. If k=0, loader
assumes increment is tib.

[+ Replication count. If c=0, loader
assumes 1.

Figure D-5. PTEXT Table Format

ENTR TABLE (3600)

The ENTR table (figure D-6) declares and defines
entry point names in a relocatable subprogram,
which can be used to satisfy external references in
other subprograms.

Each entry point descriptor (figure D-7) is two
words and defines one entry point name. The order

in which they occur is immaterial. ©No two entry
points in the same program can have the same name;
however, an entry point name can be the same as a
subprogram name and/or a common block name without
confusion.

The defined value of the entry point name is a
signed binary integer value A+b where:

® A is the relative value of the entry point (al
if rb refers to an ECS block; as if rb does not
refer to an ECS block) with sign extended.

@ b is the binary relocation base designated by
rb as shown in table D-2.

59 47 35 0
0 3600 We res
1
o eptd ~
We AJ
We The number of 60-bit words in the
table, not counting the header word.
res Reserved for use by CDC.
eptd Entry point descriptors. Each is
two words long and defines one entry
point name.
Figure D-6. ENTR Table Format
59 35 26 17 8 0
0 eptname res cr
1 lres| at res rb as

eptname The entry point name in a relocatable

program.
res Reserved for use by CDC.
cr A relocation base indicator, in the

same format as r. The descriptor is
ignored if cr refers to a common
block that was first declared by an
earlier subprogram.

al Relative value of the entry point if
r refers to an ECS block.

rb Relocation base designator.

as Relative value of the entry point if
r does not refer to an ECS block.

Figure D-7. ENTR Table Entry Point
Descriptor Format

60429800 K

XTEXT TABLE (3700)

The XTEXT table (figure D-8) contains text (in-
structions and data) and an address at which the
text is to be loaded. The XTEXT table can also
contain relocation indicators. The XTEXT table
allows a relative starting address greater than
377777g. The text words are loaded into consecu-
tive memory locations beginning with s+b, where s
is the relative first word address and b is deter-
mined by rb as in table D-2. The relative base

designator (rb) cannot be 2 (negative program
relocation) and cannot refer to a blank common
block. Each text group except possibly the last is

16 words long. The text groups and their locations
are the same as described for the TEXT table.

TEXT TABLE (4000)

The TEXT table (figure D-9) contains text (instruc-—
tions and data) and an address at which it is to be
loaded. The TEXT table can also contain relocation
indicators.

The text words (figure D-10) are loaded into con-
secutive memory locations beginning with s+b, where
s is the relative first word address and b is deter-
mined by rb as in table D~2. The relative base

designator (rb) cannot be 2 (negative program
relocation) and cannot refer to a blank common
block. Each text group, except possibly the last,

is 16 words long.

59 47 35 33 23 0 59 47 35 33 26 17 0
0 3700 WC res|cl rb s 0 4000 We res|c|res rb s
1 1
- A~ tarps ~ I~ tgrps ~
We We
we The number of &0-bit words in the We The number of 60-bit words in the
table, not counting the header word. table, not counting the header word.
res Reserved for use by CDC. res Reserved for use by CDC.
c The conditional flag; ¢ can have the c The conditional flag; ¢ can have the
following values: following values:
0 Load text unconditionally 0 Load text unconditionally
1 Ignore this XTEXT table if 1 Ignore this TEXT table if
r refers to a common block r refers to a common block
that was first declared by that was first declared by
an earlier subprogram an earlier subprogram
rb Relocation base designator. rb Relocation base designator.
s Relative first word address; cannot [Relative first word address; cannot
exceed T777777g. exceed 377777g.
tarps Groups of text words to be loaded. tgrps Groups of text words to be loaded.
Each group, except possibly the Each group, except possibly the
Last, is 16 words long. Llast, is 16 words long.
Figure D-8. XTEXT Table Format Figure D-9. TEXT Table Format
59 55 51 47 43 39 35 27 23 19 15 11 7 3 0

be performed for each text word.

1
. text words ~
15

rs Relocation indicator. A 4-bit byte that indicates the kind of relocation that is to

Figure D-10.

60429800 K

TEXT Table Text Group Format

The first text word contains a &-bit relocation
indicator byte for each of the up to 15 text words
in the group. The leftmost byte 1is applied to
the first text word, the next byte to the second
text word, and so on. The bits in the relocation
indicator bytes are interpreted as follows:

000x No relocation

10xx Upper address, positive relocation

11xx Upper address, negative relocation

010x Middle address, positive relocation

0llx Middle address, negative relocation

1x10 Upper lower address, positive relocation
1x11 Upper lower address, negative relocation
0010 Lower address, positive relocation

0011 Lower address, negative relocation

Upper, middle, and lower address refer to the three
positions that a 30-bit central processor instruc-
tion can occupy within a word.

Codes of the form 1xlx specify simultaneous and
independent relocation of both the upper and lower
address fields.

The address fields referenced are 18-bit fields, as
shown in figure D-1l. These address fields are the
three positioms that a 30-bit central processor
instruction can occupy within a word.

The relocation is performed by adding the base
address of the subprogram”s local central memory
block to the content of an address field that is
assumed to contain a relative address. Relocation
using any other base address, or involving address
fields differing in length and/or position from
those shown in figure D-11, can be accomplished
only with the XTEXT and XFILL tables.

A TEXT table can load text into an ECS block,
provided the relative starting address, s, does not
exceed 377777g,

XFILL TABLE (4100)

The XFILL table (figure
purpose as the FILL table,
restrictions eliminated.

D-12) serves the same
but with wmost of the

Each relocation descriptor (figure D-13) is one
60-bit word and specifies the relocation of one
address field in a previously loaded text word.
The values for br are the same as the values for
rb shown in table D-2; the relocation quantity has
the same values as the values of b also shown in
table D-2.

The relocation quantity is added to the content of
the address field of the previously loaded text
word in bit positions (post+size-l) through (pos),
where pos is the bit position of the low-order bit
of the address field in the text word, and size is
the address field length in bits. The location of
the previously loaded text word is given by the
relocation indicator for the text word address (rb)
and the relative address of the text word (a). Im
doing the addition, the relocation quantity is
lengthened to 60 bits by sign extension and then
shortened to the length of the field to be modified
by simple truncation of the bits at the left end.
The relocation quantity is then added to the field
to be modified as if in a register of the same
length as the field to be modified, with end-around
carry; that is, the addend and augend are treated
as having a sign bit and (size-l) magnitude bits.

D-6

59

47

32 29 17 14 0

res

address

lower
address

upper
PP res

res

middle

res
address

Figure D-11.

TEXT Table Address
Field Format

47

35 20

4100

WC

res cr res

rd

Q

we

res

cr

rd

The number of 60-bit words in the
table, not counting the header word.

Reserved for use by CDC.

The conditional relocation base
designator. The XFILL table is
ignored if cr refers to a common
block that was first declared by an
earlier subprogram.

Relocation descriptors; each is one
word and specifies the relocation of
one address field.

Figure D-12.

XFILL Table Format

59

53

29 23 17 8 0

res

pos size br r

res

pos

size

br

Reserved for use by CDC.

Relative address of the text
word; can be as large as
TIT7777g.

Bit position of the low-order
bit of the address field in the
text word.

The address field length in
bits.

Base address designator for the
relocation quantity.

Relocation base designator for
the text word address; r cannot
be 2 (negative program reloca-
tion) and cannot refer to a
blank common block.

Figure D-13.

XFILL Table Relocation
Descriptor Format

60429800 J

Because address fields cannot cross word boundaries,
the following restrictions must be satisfied:

e 0 < pos <59

) 1 { size < 60

@ 1< pos + size < 60

FILL TABLE (4200)

The FILL table (figure D-14) provides for relo-
cating address fields in text words previously
loaded with TEXT, XTEXT, and immediate REPL and
XREPL tables. During the loading process, FILL
tables are saved when encountered and are processed
at load completion.

Each relocation sequence consists of a 30-bit
header byte (figure D-15) followed by any number of
30-bit trailer bytes (figure D-16). These bytes
can be in either the upper or lower half of a word,
although the figures show both in the lower half.

The header byte (figure D-15) specifies a base
address, which is to be added to the contents of
the address fields specified by the trailer bytes.
The base address (b) is a signed integer whose
value depends on br. The values for br are the
same as the values for rb shown in table D-2.

In figure D-16, address a of the text word in which
the content of address field p is to be relocated
is atb, where b is determined by rb, as shown in
table D-2. However, rb cannot be 2 (negative
program relocation) and cannot refer to a blank
common block. Relocation of text words having a
relative address greater than 377777g, or of
address fields having lengths and positions other
than the three normal address fields shown in
figure D-16, can be accomplished with the ZXFILL
table only.

A FILL table can be used to relocate text in ECS
blocks, provided the range restrictions described
for address a, 1in the preceding paragraph, are
satisfied. The br in the header byte could refer
to an ECS block, but this should be used with
caution because the address fields in the text
words are only 18 bits long. Overflow is ignored.

REPL TABLE (4300)

The REPL table (figure D-17) causes replication of
one or more copies of a block of previously loaded
text words so that fewer TEXT and XTEXT tables are
required.

Each replication descriptor (figure D-18) is two
words long.

The starting source address (S) is determined by
as+BS, where as 1s the relative source address and
BS is the relocation base address. BS depends on
the relocation base designator for the source
address (rs). BS can have the same values as b in
table D~2, rs can have the same values as rb in
table D-2. The value for rs cannot be 2 (negative
program relocation), nor can rs refer to a blank
common block.

60429800 J

59 47 35 20 11 0
0 4200 We res cr res
1
. A rs =~
We
We The number of 60-bit words in
the table, not counting the
header word.
res Reserved for use by CDC.
cr The conditional relocation base
designator. The FILL table is
ignored if c¢r refers to a common
block that was first declared by
an earlier subprogram.
rs Relocation sequences; each con-
sists of a 30-bit header byte
(figure D-15) followed by a 30-
bit trailor byte (figure D-16).
Figure D-14. FILL Table Format
29 28 8 0
0 res br
res Reserved for use by CDC.
br Relocation base designator.
Figure D-15. FILL Table Header
Byte Format
29 26 17 0
1 p rb a
P The address field to be reloca-
ted, designated as follows:
00 = Lower address (bits 17
through 0)
01 = Middle address (bits 32
through 15
10 = Upper address (bits 47
through 30)
rb Relocation base designator.
a Relative address; cannot exceed

3777773.

Figure D-16.
Byte Format

FILL Table Trailer

59 47 35 20 1 0

0} 4300 We res cr res |i

1

:z RPD ~

We

We The number of 60-bit words in the

table, not counting the header
word.

res Reserved for use by CDC.

cr Conditional relocation base desig~
nator. The REPL table is ignored
if cr refers to a common block that
was first declared by an earlier
subprogram.

i The flag that determines when REPL
table is processed; the value of i
can be the following:

0 The REPL table is saved when
encountered and processed
when the end of the current
load file or library is
reached.

1 The REPL table is processed
immediately when encoun-—
tered.

RPD Replication descriptors; each is
two words long and is used to copy
a block of previously loaded text.

Figure D-17. REPL Table Format

The starting destination address (D) is determined
by ad+BD, where ad is the relative destination
address and BD is the relocation base address. BD
depends on rd in the same manner as BS depends on
rs. If D is O, D=S+b is assumed.

The loader copies the number of text words deter-
mined by the block size (bs) beginning at § to the
number of text words (bs) beginning at D. The same
text words are then copied to the number of text
words (bs) beginning at D plus the destination
address increment (k), then to D+2xk, and so omn.
The loader continues this process until the block
has been copied the total number of times desig—
nated by the count (c¢).

The values of k and c cannot exceed 3777773, The
value of b cannot exceed 77777g. Source and
destination fields having relative addresses greater
than 3777773 can be specified only with the XREPL
table. The source and destination fields can be in
either type of memory (central memory or ECS),
provided the above range restrictions are satis-
fied, but the two fields must be in the same type
of memory.

D-8

59 PVAA 26 17 0

res k rs as
c bs rd ad
res Reserved for use by CDC.
k Destination address increment: k

is added to destination address (D)
after each copy; if k is 0, the
Loader uses block size (bs) for in-
crement size.

rs Relocation base designator for the
source address (S).

as Relative source address; cannot ex-
ceed 377777g.

c Count; the number of times the
block is copied. I1f ¢ is O or 1,
the loader makes one copy.

bs Block size (number of words to be
copied) in 60~bit words. If bs is
0 or 1, the lLoader copies one word.

rd Relocation base designator for des-
tination address D.

ad Relative destination address; can-
not exceed 377777g.

Figure D-18. REPL Table Replication
Descriptor Format

LINK TABLE (4400)

The LINK table (figure D-19) provides for external
reference linkage. The value of entry points
defined in other subprograms is added to address
fields in text words loaded with TEXT and XTEXT
tables in the present subprogran. During the
loading process, LINK tables are saved when encoun-
tered and are processed when the end of the current
load file or library is reached.

Each linkage sequence consists of a 60-bit header
byte (figure D-20) followed by any number of 30-bit
trailer bytes. The header byte can begin in the
middle of one word and end in the middle of the
next word. If the last trailer byte of a sequence
ends in the middle of a word, it can be followed by
30 zero bits to fill out the word. These 30 zero
bits are ignored rather than being taken as part of
the next header byte.

The first character of the name must have a display
code octal value 01 through 37; that is, it must be
a letter A to Z or a digit 0 to 4, so that the
leftmost bit of the header byte is a 0 to distin-
guish it from trailer bytes. The trailer bytes
have the same format and interpretation as in the
FILL table (figure D-16). The value of the exter—
nal name, defined by an ENTR table in some other
subprogram, is added to the contents of the address
fields specified in the trailer bytes, using 18-bit
signed integer arithmetic with overflow ignored.

60429800 X

=

01 4400 We res cr res

P Ls

2

We The number of 60-bit words in the
table, not counting the header
word.

res Reserved for use by CDC.

cr Conditional relocation base desig~
nator. The LINK table is ignored
if cr refers to a common block that
was first declared by an earlier
subprogram.

Ls Linkage sequences; each consists of
a 60-bit header byte (figure D-20)
fol lowed by any number of 30-bit
trailer bytes.

sign extension and then shortened to the length of
the field to be modified by simple truncation of
the bits at the left end. The relocation quantity
is then added to the field to be modified as if in
a register of the same length as the field to be
modified, with end-around ecarry; that is, the
addend and the augend are treated as having a sign
bit and (size~l) magnitude bits.

Figure D-19. LINK Table Format

59 17 0

external name res W

res Reserved for use by CDC.
W Weak external flag:

0

strong

1 = weak

Figure D~20. LINK Table Header Byte Format

XLINK TABLE (4500)

The XLINK table (figure D-21) serves the same
purpose as the LINK table, but with most of the
restrictions eliminated.

Each linkage sequence (figure D-22) is one or more
words. The all-zero word terminating the linkage
sequence can be omitted for the last or only link-
age sequence in the XLINK table. The first charac-
ter of the external name can be any character code
except 55g (blank) or 00.

Each linkage descriptor (figure D-23) is one word.

The value of the external name, defined by an ENTR
table in some other subprogram, is added to the
content of an address field in a previously-loaded
text word. Imn doing the addition, the relocation
quantity is, in effect, lengthened to 60 bits by

60429800 H

01 4500 We res cr res

cn LS ~
We J

We The number of 60-bit words in the
table, not counting the header
word.

res Reserved for use by CDC.

cr The conditional relocation base des-
ignator. The XLINK table is ignored
if ¢r refers to a common block that
was first declared by an earlier
subprogram.

LS Linkage sequences composed of one
or more Linkage descriptors. Each
linkage sequence is one or more
words long.

Figure D-21. XLINK Table Format

59 17 0

extname res f

linkage descriptors

Q
0

zero word

extname The name of an external, which
is defined by an ENTR table in
another subprogram.

res Reserved for use by CDC.

f The flag which indicates whether
the external is weak or strong.
Values for f can be as follows:
0 strong

1 weak

Figure D-22. XLINK Table Linkage
Sequence Format

59 53 29 23 17 8 0
res a pos|size | res rb
res Reserved for use by CDC.

a Relative address of the text word;

can be as large as 77777773.

pos Bit position of the low-order bit
of the address field in the text
word.

size The address field length in bits.

rb Relocation base designator for the
text word address; rb cannot be 2
(negative program relocation) and
cannot refer to a blank common
block.

59

47 35 17 0

4600

0001 res

Transname res

res

Transname

Reserved for use by CDC.

The name of the transfer point
of the program being loaded;
must have been defined as an
entry point by a program.

Figure b-24.

XFER Table Format

Figure D-23. XLINK Table Linkage
Descriptor Format

XFER TABLE (4600)

The XFER table (figure D-24) specifies the transfer
point for the program being loaded (the address at
which execution is to begin).

The table is ignored if the transfer name is seven
blanks. Otherwise, the name must be defined as an
entry point by some subprogram, not necessarily the
subprogram containing the XFER table.

XREPL TABLE (4700)

The XREPL table (figure
purpose as the REPL table,
restrictions eliminated.

D-25) serves the same
but with most of the

Each replication descriptor (figure D-26) is two
words long.

ASCM TABLE (5000)

The ASCM table (figure D-27) contains the absolute
central memory image of either a central processor
program or overlay with one unnamed entry point.

If level l=level 2=0, the program is a main overlay
and must have fwa=l100. If level 1 is nonzero and
level 2 is zero, the overlay is a primary overlay.
If level 1 and level 2 are both nonzero, the over-
lay is a secondary overlay and is dependent on the
primary overlay with the same level 1 value. An
exception is system text, which has both fwa and
entry set to O.

D-10

59

47 35 20 M 0

4700

We res cr res |f

rd

Q

We

res

cr

The number of 60-bit words in the
table, not counting the header
word.

Reserved for use by CDC.

Conditional relocation base des-
ignator. The XREPL table is ig-
nored if cr refers to a common
btock that was first declared by an
earlier subprogram.

The flag that determines when the
XREPL table is processed. Values
for f can be as follows:

0 The XREPL table is saved
when encountered and proc-
essed when the end of the
current load file or library
is reached.

1 The XREPL table is processed
immediately when encoun-—
tered.

Replication descriptors; each is
two words long.

Figure D-25.

XREPL Table Format

60429800 H

59 50 44 32 23 0
res k rs as
c bs rd ad
res Reserved for use by CDC.
k Destination address increment: k is

added to destination address (D)
after each copy; if k is 0, the
Lloader uses block size (b) for in-
crement size.

rs Relocation base designator for the
source address (S).

as Relative source address; cannot ex-
ceed 7777777g.

c Count; the number of times the
block is copied. If ¢ is 0 or 1,
the loader makes one copy. Cannot
exceed 32767.

bs Block size (number of words to be
copied) in 60-bit words. If bs is
0 or 1, the loader copies one word.
Cannot exceed 4095.

rd Relocation base designator for des-
tination address D.

ad Retative destination address; can-
not; exceed 7777777g.

Figure D-26. XREPL Table Replication
pescriptor Format

59 47 41 35 17 0
01 5000 L9 | L2 fwa entry
1
:25 text words ~
. |

L9 L Overlay level numbers. If L4=l2=0,
the program must have fwa=106.

fwa Address of the word in central mem—
ory into which the table header
word is to be loaded; the first
text word is loaded at central mem-
ory address fwa+i.

entry The address at which execution of
the program or overlay is to begin.

Figure D-27. ASCM Table Format

EASCM TABLE (5100)

The EASCM table (figure D-28) contains the absolute
central memory image of either a central processor
program or overlay, with one or more named entry
points.

60429800 H

59 47 41 35 17 0

o [s10 |y] e k
1
"R epd 5
k

k1
: ~ text words ~
n

L1, Same as in the ASCM table. If
L4=1p=0, the same restrictions on
fwa apply.

fuwa The address of the word in central
memory into which the table header
word is to be loaded. The first
entry point definition is loaded at
central memory address fwat1, and
the first text word at fwatk+1.

k The number of entry point defini-
tions.
epd The entry point definitions; each

provides the name and lLocation of
an entry point to the overlay.

Figure D-28. EASCM Table Format

If level l=level 2=0, the same restrictions apply
as described for the ASCM table.

Each entry point definition (figure D-29) provides
the name and location of an entry point to the
overlay.

59 17 0

entry point name Location

Figure D-29. EASCM Table Entry Point
Definition Format

ACPM TABLE (5300)

The ACPM table (figure D-30) contains the absolute
central memory image of either a central processor
program or overlay, with one unnamed entry point or
one or more named entry points. It can also contain
an absolute ECS image.

The greatest address+l of the fixed ECS area used
by this program (endl) and the greatest address+l
of the fixed central memory area used by this
program (ends) are the origins of the central
memory and ECS areas that can be used for dynamic
storage allocation. The value for ends must not be
less than fwastktwcs, where fwas is the address of
the word in central memory into which the table
header word is to be loaded, k is the number of

entry point definitions, and wcs is the number of overlays originating from the (0,0) overlay. For
central memory text words. The value for ends must non—(0,0) overlays, ends and endl are ignored.

not exceed the central memory field length at

execution time. Similarly, endl must not be less

than fwaltwcl, where fwal is the address of the

word in ECS into which the first ECS text word (if EACPM TABLE (5400)

any) is to be loaded, and wcl is the number of ECS

text words. The value for endl must not exceed the The EACPM table (figure D-31) contains an absolute

ECS field length at execution time. central memory program or an overlay and (option-
ally) an associated ECS image. The loader generates

For a (0,0) overlay, ends and endl contain the all absolute overlays as EACPM tables.

highest high address required to load any of the

Format 1 (one unnamed entry point):
59 47 41 35 23 17 0
0 5300 L Ly fwas 0 entry
1 res : fual wel
: ¥ ECS text words T
wel
wel+l
wel+2 endl ends Wes
Wwel+3 »
: I~ cm text words x
wcL+wcs+é
Format 2 {(one or more named entry points):
59 47 41 35 23 17 0
0 5300 U4 3 fwas 1 -k
1
: ~ entry point definitions ~
k
k+1 res fwal wel
k+2
: ~ ECS text words =~
k+ucL+;
k+wcl+2 endl ends WCS
k+wcl+3
: ~ cm text words ~
k+wcl+ucs+% l
Lz The overlay lLevel number.
fwas The address of the word in central memory into which the table header word is to be
Loaded. For format 1, the first central memory text word is Loaded at address fwast1.
For format 2, the first entry point definition is Loaded at address fwas+1, and the first
central memory text word at fwas+k+i. If Lq+lp=0, fwas must not be less than 100g.

Figure D-30. ACPM Table Format (Sheet 1 of 2)

D-12 60429800 H

entry

res

entry point
definitions

fuwal

wel

endl

ends

HWCS

cm
text words

The address at which execution of the program or overlay is to begin.

Reserved for use by CDC.

The number of entry point definitions. The complement of k is stored in the table to dis-

tinguish format 2 from format 1.

Same as in the EASCM table.

The address of the word in ECS into which the first ECS text word (if any) is to be
loaded.

The number of ECS text words; can be zero.

The greatest address+1 of the fixed ECS area used by this program. If endl is 0,
endl=fwal+wcl is assumed.

The greatest address+1 of the fixed central memory area used by this program. If ends is

0, ends=fwas+wcs+1 is assumed.

The number of central memory text words. If wcs is 0, the central memofy text words com-—

prise all that remains of the ACPM table, which is terminated by an end-of-record.

The absolute central memory image of either a central processor program or overlay.

ECS The absolute ECS memory image of either a central processor program or overlay.
text words ’
Figure D-30. ACPM TablLe Format (Sheet 2 of 2)
59 53 47 41 35 23 17 0
0 number of
5400 L4 ¥ fwas entry points
1 WCS tminfl minfl
2 res fwal wcl
3 res
4 res hha
5
res Lhha 0,0
6 fs dt only
7 ra res
entry point address
entry point address
name addre1
U L2 0 relative PRU addre?2 @,0
only
dl. =~ =~
h !
wel o ECS image (if any) ~
: 1
WCS central memory image ;:
] J

60429800 H

Figure D-31. EACPM Table Format (Sheet 1 of 2)

D-13

L,

fwas

number of
entry points

Wes
tminfl

minfl

res

fwal

wel

hha

Lhha

fs

dL

ra

entry points

address
name

addrel
relative PRU

addre2

Overlay level. Words 4 through 7 of the table header are present only for Level (0,0
overlays.

The address of the word in central memory into which word 0 of the table header is to be
Loaded. The entry point List, the FOL directory, and then the central memory image are
to be loaded immediately following the header. If lq=lp=0, fwa must be equal to 100.

The number of entry points in the absolute central memory program or the overlay.

The number of words in the central memory image.
The minimum ECS field length needed to execute the overlay.

The minimum central memory field length needed to execute the overlay; equivalent to the
Llwa + 1 of the overlay.

Reserved for use by CDC.

The address of the word in ECS, if any, into which the first word of the ECS image is to
be loaded.

The number of words in the ECS image.

The highest high address for central memory; the minimum field Length needed to execute
any legal combination of overlays generated as part of this overlay structure. This num=
ber is derived from the values of minfl specified for each of the overlays.

The highest high address for ECS.

The filte specification entry set into the 5400 table when a FOL overlay structure (0,0)
overlay is loaded.

The fast overlay directory length. Two words are used for each entry.

Ihedrsndom address set into the 5400 table when a FOL overlay structure (0,0) overlay is
oaded.

1f the overlay was generated because of OVERLAY directives in the object stream, or be-

cause of a NOGO control statement specifying a file name only, the overlay will have a
single entry point. Its name will be the same as that of the overlay and its address

Wwill be that of the last transfer address encountered. If the overlay was generated be-
cause of a NOGO control statement (and no OVERLAY directives) specifying a file name and
one or more entry points, the overlay will contain those entry points named on the NOGO
statement with their respective addresses.

The entry point address.

The name of the overlay or OVCAP.

The address of the first word of the overlay. Zero if an OVCAP.

The PRU address relative to the 0,0 overlay.

The address of the last word of the overlay plus 1. Length if an OVCAP.

SYMBOL TABLE (5600)

The

SYMBOL

information for

head

D-14

er word.

table

The SYMBOL table is used for inter-
active debugging.

Figure D-31. EACPM Table Format (Sheet 2 of 2)

LINE NUMBER TABLE (5700)

(figure D-32) contains symbol
the language designated in the
the language designated in the header word.

LINE NUMBER table is used for interactive debugging.

60429800 H

The LINE NUMBER table (figure D-33) contéins line
number information and addresses of object code for

59 47 35 23 0 59 47 35 23 0
0} 5600| wc lo res 0 5700 WC Lo res
1 1
. 2 ~ - z ~
wWe w;
wc The number of 60-bit words in the " wc The number of 60-bit words in the
table, not counting the header table, not counting the header
word. word.
lo Language ordinal, for example: Lo Language ordinal.
2=FTN4 res Reserved for use by CDC.
4=FTN5S
8=BASIC z Line number table entry. The con-
tent of this field is irrelevant to
res Reserved for use by CDC. the loader.
z Symbol table entry. Each entry is
2 words long. The content of this Figure D-33. LINE NUMBER Table Format
field is irrelevant to the loader.
Figure D-32. SYMBOL Table Format 59 0

CAPSULE TABLE (6000)

The CAPSULE table (figure D-34) contains relocatable Code Image
code in a form that allows the code to be quickly
loaded and relocated by the Fast Dynamic Loader.

The CAPSULE table is divided into six parts: the External Reference List
header, code 1image, entry point 1list, external
reference list, reference chains, and the relocation Reference Chains
table.

Relocation Table
. The header (figure D-35) is three words long.

6000 Header Words

Entry Point List

FLAG=0 indicates a capsule; FLAG=l indicates an
overlay-capsule.

Figure D-34, CAPSULE Table Format

v

59 47 35 23 17 0
number of
covo | e ot | Girrerent | resfel gl
yp externals
ne pointer to
group na entry point Llist
le nam pointer to
capsule name relocation table
res Reserved for use by CDC.

The flag that indicates the kind of capsule; f can have the following values:
0 Capsule
1 OVCAP (overlay capsule)

The values of the pointers are relative to the start of the 6000 table.

60429800 H

Figure D-35. CAPSULE Table Header Format

The code image contains the actual executable code
and is relocated so that the first word of the 6000

header corresponds to zero.

The entry poimnt list (figure D-36) is alphabetical
and contains one word for each entry point.

59 17 0

eptname addr

Entry point name; the entry
point names are Listed in
alphabetic order in the
List.

eptname

addr Address of entry point rela-
tive to the first word with-

in this table.

Figure D-36. CAPSULE Table Entry Point

List Format

The external reference list (figure D-37) consists
of an alphabetical list of external names.

59 17 0

addr
reference chain

extname |

H I1f originally a
weak external

extname External name; external
names are listed in alpha-
betic order.

addr Address of reference chain

relative to the first word
within the table.

Figure D-37. CAPSULE Table External
Reference List Format

The reference chain for a particular external
consists of a series of 20-bit fields packed three
per central memory word. The first is zero for use
by the execution-time subroutines. The format of
other reference chains is shown in figure D-38.

19 17 o

relative address of reference

|
LParceL

containing reference (0, 1, 2,

or 3
0 = Termination of reference chain
1 = Upper parcel
2 = Middle parcel
3 = Lower parcel
Figure D-38. CAPSULE Table Reference

Chain Format

The
the

chain is terminated by an entry with zero in
parcel field.

The relocation table (figure D-39) is similar to
the relocation portion of the TEXT table. One
4~bit relocation indicator corresponds to each word
of the header and code image. Refer to the
discussion of the TEXT table (figure D-10) for a
description of the relocation indicator.

LDSET TABLE (7000)

The LDSET table (figure D-40) allows object direc-
tives to be incorporated into a relocatable object
program in an internal format. The objective
directives have the same effect as the corresponding
LDSET control statement options.

Several compilers (for example, FIN and COBOL5) and
the loader generate LDSET tables automatically.
The user is often unaware of the existence of these
tables in the program unit.

In the LDSET table, each object directive begins
with, or consists of, a header word with the same
general format as a table header word. The object
directives, and the names of the LDSET directive
options to which they correspond, are described

below. Any or all of them can be present, in any
order.

LIB Option (0010)

The LIB option (figure D-41) identifies one or more
library names comprising the local library set.

59 0
I ! 1 1 I I I | ! I 1 1 |
T rs T4 rs re r7 rg ™M1 M2 ™3 ™M4& ™5 T16
1 []] \ !] l]]]] 1
] 1 I i i] I 1 I 1 { | I
ri7 ra0 t21 22 rp3 r4 res rge re7 r3m f3f r32 33 34 35
1 1 ! 1 1 1 i] 1 i | 1 1
rj The 4-bit relocation indicator.

TZero, indicating that the three header words are not to be relocated.

Figure D-39.

D-16

CAPSULE Table Relocaticn Table Format

60429800 K

59 47 35 0
0 7000 We res
1
:;5 object directives in internal format a
We
We The number of words in the table,
not counting the header word.
res Reserved for use by CDC.
Figure D-40. LDSET Table Format
59 47 35 17 0
0 0010 We res
1 Libnameq res
Libnamey, res
We
WC The number of library names
Listed in the table.
res Reserved for use by CDC.
Libname The name of the Llibrary to be
added to the local Llibrary set.

Figure D=41. LIB Option Format

§ MAP Option (0011)

The MAP option has two formats as shown in
figure D-42.

Format 1 of the MAP option specifies the type of
map to be written. The map is writtemn on the file
OUTPUT.

Format 2 of the MAP option has the same interpre-

tation of the descriptors s and t. The map is
written on the specified file.

PRESET/PRESETA Options (0012)

The PRESET option has two formats as shown in
figure D-43.

Format 1 of the PRESET option specifies a value to
be stored into each word of the memory image that

60429800 K

Format 1:

59 47 35 18 0
0011 | 0000 res t s
Format 2:
59 47 35 18 0
0| 0011 | 0001 res t s
1 Lfn res

res Reserved for use by €DC.

t The map type octal code. These op-
tions are equivalent to LDSET(MAP=)
options. Any combination of the
following can be specified:

1 (bit 1) = Statistics (S)

2 (bit 2) = Blocks (B)

4 (bit 3) = Entry points (E)
10 (bit 4) = Entry point cross-
references (X)
s Significance of the t flag:

0 = Ignore t and write the de-
fault map type

N
1

Write the map type specified
by t

Lfn The local file that is to receive
the map.

Figure D-42. MAP Option Formats

is not set by TEXT, XTEXT, REPL, and XREPL tables.
If p is zero, the value is used as is. If p is
nonzero (PRESETA), the location of each word is

stored in its lower 17 bits if central memory, or
lower 24 bits if ECS.

Format 2 is the internal form of LDSET(PRESET=NONE).

ERR Option (0013)

The ERR option (figure D-44) specifies the error
severity that causes the loader to abort.

REWIND/NOREWIN Option (0014)

The REWIND/NOREWIN option (figure D-45) specifies
the default dinitial position for all files to be
read by the loader.

D-17

Format 1:

59 47 35 17 0
0012 | o001 res p

value
Format 2:
59 47 35 0
0012 | 0000 res

res Reserved for use by CDC.

p A parameter which specifies whether
the value stored into each word of
the core image is used as is:

p=0 the value is used as is.
p#0 the lLocation of each
word is stored in its
lower 17 bits if central
~memory, or lower 24 bits
if ECS.
val The value to which unused memory is

set before execution of the loaded
program.

Figure D-43. PRESET/PRESETA Option Formats

59 47 35 17 0
0013 | 0000 res p

res Reserved for use by CDC.

p The error severity that causes the

loader to abort; p can be the fol-
Lowing:

0 atl, the program aborts if
any loader error is encoun-
tered.

1 fatal, the program aborts
for fatal and catastrophic
Lloader errors.

2 none, the program aborts for
catastrophic Loader errors
only.

D-18

Figure D-44. ERR Option Format

59 47 35 17 0

0014 | 0DOO res o}

res Reserved for use by CDC.

p Default initial position for all
files to be loaded; p can be the
following:

0 Files are rewound

1 Files are not rewound

Figure D-45. REWIND/NOREWIN Option Format

USEP Option (0015)

The USEP option (figure D-46) identifies one or
more object programs that are loaded whether or not
they are needed to satisfy external references.
The loader loads the programs on the next occasion
that it satisfies externals.

59 47 35 17 0
010015 We res
1 pnameq res
P : ~ . ~
pnamep res
We
We The number of object programs
Listed in the table.
res Reserved for use by CDC.
pname The name of the object program
to be loaded.

Figure D-46. USEP Option Format

USE Option (0016)

The USE option (figure D-47) identifies one or more
object programs that are loaded to assure that
specified entry points are included in the load.
The loader loads the programs on the next occasion
that it satisfies externals.

60429800 K

59 47 35 - 17 0
0] 006 We res
1 eptnameq res
R : ~ ~
eptnamep, res
We
We The number of entry names Llisted
in the table.
res Reserved for use by CDC.
eptname An entry name that is to be in-
cluded in the load.:

Figure D-47. USE Option Format

| suBsT Option (0017)

The SUBST option (figure D-48) supplies entry point
names to be used in place of external names appear—
ing in all subsequent LINK and XLINK tables.

Each substitution descriptor is two words long and
has the format shown in figure D-49.

59 47 35 0
0| 0017 We res
1
:=: sd =~
we
res Reserved for use by CDC.
sd Substitution descriptors, each is
two words long.
Figure D-48. SUBST Option Format
59 17 0
extname res
subept res
extname The external name.
res Reserved for use by CDC.
subept The substitute entry point
name that is to be used in
place of text name in subse-
quent LINK or XLINK tables.

Figure D-49. SUBST Option Substitution
Descriptor Format

60429800 K

OMIT Option (0020)

The OMIT option (figure D-50) identifies one or
more entry point names that are to remain unsatis-—
fied, whether or not the program containing these
names is loaded. The loader processes these
names in the same manner that it processes other
unsatisfied entry points, but no errors result,

59 47 35 17 0
0{ 0020 We res
1 eptnameq res
iy ~ ~
eptnamep res
We
Wce The number of entry points
tisted in the table.
res Reserved for use by CDC.
eptname The entry point name that is to
remain unsatisfied.

Figure D-50. OMIT Option Format

EPT Option (0025)

The EPT option (figure D-51) identifies the entry
point names of capsules, overlays, and OVCAPS.

59 47 35 17 0
0| 0025 WC res
1 eptnameq res
X : ~ x
eptnamen res
WC
We The number of entry points
Listed in the table.
res Reserved for use by CDC.
eptname The entry point name to be used
in a capsule, overlay or OVCAP.

Figure D-51. EPT Option Format

NOEPT Option {0026)

The NOEPT option (figure D-52) didentifies one or
more entry point names that are to be ignored in
capsules, overlays, or OVCAPS.

PD Option (0033
59 47 35 17 0 ption (0033)
The PD option (figure D-54) identifies the print
0| 0026 e res density of the load map.
1 eptnameq res
= . ~ ~ 59 47 35 17 0
0033 | 0000 res p
eptnamep, res
We
res Reserved for use by CDC.
We The number of entry points p Print density for load map (6 or 8
listed in the table. Lines/inch).
res Reserved for use by CDC.
eptname The entry point names that are Figure D-54. PD Option Format
not to be used in a capsule,
overlay or OVCAP.

PS Option (0034)

Figure D-52. NOEPT Option Format
The PS option (figure D-55) identifies the page
size of the load map.

§ COMMON Option (0032)

The COMMON option (figure D-53) identifies the 59 47 35 17 o
labeled common blocks that are to be moved to the

nearest common ancestor of all the segments that 0034 | 0000 res p
reference them.

res Reserved for use by CDC.

p Page size for lLoad map (lines/
>9 47 33 17 0 page). Must be at least 10.
0 | 0032 We res
1 Lebnamey res Figure D-55. PS Option Format
Eﬁ: E x =
PREX Table (7700)
Lcbnamep, res
We The PRFX table (figure D-56) identifies and serves
as a header for all types of object programs. The
table is also used with other types of binary data,
We The number of Labeled common such as system texts. The loader and other programs
blocks Listed in the table. print selected portions of the prefix table, and
ITEMIZE prints the entire table.
res Reserved for use by CDC.
Lcbname The labeled common block that is The word count (bits 36 through 47 of the header
to be moved to the nearest com- word) can be any nonnegative value. l6g 1s
mon ancestor of the segment that standard.

references it.

Unused characters in words 2 through 7 should be
Figure D-53. COMMON Option Format blank-filled to allow them to be printed.

D-20 60429800 K

operating system
identification

processor name
and version
processor
modification

Llevel

target

59 53 47 35 29 17 11 5 Q
0 7700 0016 res
1 name res
2 date blanks
3 time blanks
&4 operating system identification
5 processor name processor version
[} processor modification level target valid *F
7 type hardware instruction requirements
10
1
12 P
13 Comments
14 .
15
16
res Reserved for use by CDC.
name The name of the program or subprogram, Left-justified with zero fill. For
PRFX tables generated by the loader, this is the name of the first program
of the overlay; not necessarily the name of the main program (the one at
which execution begins}
date The date the table was generated, left-justified, in the form yy/mm/dd or
mm/dd/yy depending on the installation option.
time The time the table was generated, lLeft-justified, in the form hh.mm.ss.

The name and version number of the operating system under which the table
was generated (for example, NOSA2.4.2 A or NOS/BE A1.5). (A denotes
blank.)

The name and version number of the program generating the table (for ex-~
ample, FTNAAAAS5.1 or LOADERA1T.5).

The modification lLevel of the program generating the table, such as a PSR
summary number or a Julian date (for example, 647AAor 85310).
Two characters indicating the type of processor for which the program is op-
timized. Recommended values are:

64 = 6400-type CPU

66 = 6600~type CPU

6X = Either of the above

€5 = CYBER 175 CPU

CX = Any of the above

76 = 7600-type CPU

AA= Any of the above, or not applicable

6P = 6000-type PPU

7P = 7000~-type PPU

8P = 180-type PPU

60429800 X

Figure D-56. PRFX Table Format (Sheet 1 of 2)

D-21

The 6200, 6400, 6500, CDC CYBER 70 models 71, 72, 73, and CDC CYBER 170
models 172, 173, 174, 720, and 730 contain one or two 6400-type CPUs and

several PPUs.

The 6600, and CDC CYBER 70 model 74, and the CDC CYBER 170 models 175, 740,
750, and 760 contain a 6600-type CPU and several 6000-type PPUs.

The 6700 and dual—-CPU CDC CYBER 70 model 74 contain both a 6400~type CPU and
6600~type CPU, as well as several 6000-type PPUs.

The 7600, 7700, and the CDC CYBER 170 model 176 contain one or two 7600-type
CPUs.

valid Two characters indicating the type of processor on which the program can be
executeds The recommended values are the same as those listed for the tar-
get field.

*F For COMPASS assemblies, the value of the *F special symbol; blank in all
other cases.

type A Letter designating the type of program:

Relocatable CPU program or subprogram

A = Absolute CPU program or overlay

P = PPU program or overlay

T = System text
hardware A sequence of letters, left-justified, designating optional hardware fea-
instruction tures (if any) required to execute the program:
requirements

C = CMU dinstructions (IM, DM, CC, and CU)

D = Distributive data path

I = Integer multiply instruction (IXi Xj*Xk)

L = ECS instructions (RE and WE)

X = Central and monitor exchange jumps (XJ, MJ, MXN, and MAN)
Comments Comments to be listed by the lLoader, ITEMIZE, and other programs; zero if no

comments are present.

Figure D-56. PRFX Table Format (Sheet 2 of 2)

B p-22 60429800 K

REQUEST TABLES

Fach user call to the loader must be accompanied by
a request table. The request table can be either
generated directly by the programmer or generated
through a sequence of three or more LDREQ macros.
The LDREQ macro and options that can be used to
generate a request table are discussed in section 4.

The general format of a request table is shown in
figure D-57.

Each request table must begin with a header and end
with a zero word. The header can be generated by

the BEGIN option of the LDREQ macro, and the zero
word can be generated by the END option of the

LDREQ macro.

The internal formats of all requests that can make
up a request table follow. Areas of the request
table figures marked reserved or res are fields
that are ignored by the loader and are usually set
to zero.

The LIB (0010), MAP (0011), PRESET and PRESETA
(0012), USEP (0015), USE (0016), SUBST (0017), OMIT
(0020), PD (0033), and PS (0034) options have the
same internal format as their corresponding options
of the LDSET objective directive.

59 0

paddr

paddr+1 header
paddr+2

x requests in internal format x
zero word
Figure D-57. Request Table Format
60429800 K D-23 l

BEGIN (7)

BEGIN generates a three-word header, as shown in
figure D-58.

The first two words contain information passed on
the LDREQ BEGIN macro call. The 7 in paddr+0, bits
59 through 57, identifies the table as being for a
current loader rather than the SCOPE 3.3 loader.

The CYBER loader recognizes the 3.3 form and con-
verts the call to the new form before processing.

The 3.3 form cannot be used if the Common Memory

Manager (QMM) parameter is present on the LOADER
macro call.

The third word contains reply information returned
by the loader upon completion of processing of the

request sequence.

Bits Field
59 fe

Lloading.
58 ne

53 through 36 stat

tected.

35 through 18 ept;

17 through 0 epty

quence. The information is as follows:

59 53 41 35 17 0
paddr 7 res fwasc res Lwasc
paddr+1 : res fwalc res twalc
paddr+2 :: res stat eptp ept1
paddr First word address of the loader request table.
res Reserved for use by CDC.
- fuasc First word address of the central memory loadable area.
Lwasc Lasf word address + 1 of the central memory loadable area.
fuwalc First word address of the ECS loadable area.
Lwale Last word address + 1 of the ECS loadable area.
paddr+2 Reply information returned by the loader upon completion of processing the request se-

Significance

Fatal error flag; set to 1 if a fatal error occurs during
Nonfatal error flag; set to 1 if one or more nonfatal errors
occur during loading.

Status; zero if both fe and ne are zero.

1f fe is 1, stat contains the code of the fatal error de-

If fe is zero and ne is 1, stat contains the error
code for the first nonfatal error detected. (Refer to ap—

pendix B for error codes.)

Secondary entry address; néxt-to—Last transfer symbol encoun-
tered while processing the user call.

Primary entry address; last transfer symbol encountered while
processing the user call.

stat Status; zero if both fe and ne are zero.

Figure D-58.

| D-24

BEGIN Option Format

60429800 K

END

The END option (figure D-59) generates a

word.

zeroed

59

——~‘\‘~",————-~____,,f"‘““-\\‘___’___,_—

0

zero word

Figure D-59.

END Option Format

§ LoAD Option (0000)

The LOAD option (figure D-60) identifies ome or

more files that contain object programs to be
loaded.
59 47 35 17 0
0| 0000 We res 1
1 Lfny ‘ res ﬁr
A . ~ res Céj
: i |
We Lfn, res sir
We The number of words in the entry
not counting the control word.
res Reserved for use by CDC.
Lfn; The logical fite name of the file

to be loaded, left-justified with
zero fill.

Specification of the rewind flag:
0 = Rewind indicator absent
1 = Rewind indicator specified

Rewind indicator:

0 The file is not to be rewound

1 The file is to be rewound

Figure D=-60.

LOAD Option Format

B LIBLOAD Option (0001)

The LIBLOAD
or more programs

option (figure D-61)

that are to be

particular library.

60429800 X

identifies one
loaded from a

59 47 35 17 0
01 0001 We res
1 Libname res
2 eptnameq res
ey . ~ res ~
We eptnamep res
We The number of words in the

entry not counting the con-
trol word.
res Reserved for use by CDC.
Libname The name of the Llibrary,
left—-justified with zero
fill. The library must be
either a user Llibrary or
system library.
eptname; The entry point name, left-
justified with zero fill.

Figure D-61. LIBLOAD Option Format

SLOAD Option (0002)

The SLOAD option (figure D-62) identifies the
selected object programs that are to be loaded from
a local file.

CMLOAD Option (0003)

The CMLOAD option (figure D-63) identifies the
first and last word addresses of an area in central
memory that is to be loaded.

ECLOAD Option (0004)

The ECLOAD option (figure D-64) identifies the
first and last word addresses of an area in ECS
from which the object text is to be entracted for
the loading operation.

EXECUTE Option (0005)

The EXECUTE option (figure D-65) identifies the
completion of the load. Execution of the loaded
program begins at the specified entry point.

NOGO Option (0006)

The NOGO option (figure D-66) identifies completion
of the load, but execution does not take place.

59 47 35 17 0 59 47 35 23 0

0! 0002 We res 0 | 0004 | 0001 res
1 Lfn res 4r 1 res’ lwa fwa
2 nameq res
twa The last word address of the ECS
. - area from which object text is to
s : ~ res R be fetched.
We namep, res fwa The first word address of the cen-

tral memory area from which object
text is to be fetched.

We The number of words in the entry

not counting the control word.
Figure D-64. ECLOAD Option Format

res Reserved for use by CuC.
Lfn The file name, left—justified
with zero fill. 59 47 35 17 0
s Specification of the rewind 0| 0005 We res
flag:
1 ‘eptname res
0 = Rewind indicator absent
2 Pq res s¢q
1 = Rewind indicator speci-—
fied . .
== - ~ S x~ =
r Rewind indicator:
WC o] res sc
0 The object program is n n
not rewound
we The number of words in the entry
1 The object program is not counting the control word.
rewound
res Reserved for use by CDC.
name Names_of the objgct module,
left-justified with zero fill. eptname The entry point name at which

execution is to begin, left-
. . justified with zero fill.
Figure D-62. SLOAD Option Format

<] The execution—time parameter.

SCH The parameter separator. The
- EXECUTE macro treats all sep-
59 47 35 17 0 :::Fors as commas. The values

0003 | 0000 Lwa fwa

)] Comma

17

lwa The last word address of the cen- End of Llist

tral memory area to be loaded.

fwa The first word address of the cen- Figure D-65. EXECUTE Option Format

tral memory area to be loaded.

59 47 35 0

Figure D-63. CMLOAD Option Format
0006 | 0000 res

res Reserved for use by CDC.

Figure D-66. NOGO Option Format

§ p-26 60429800 K

[SATISEY Optien (0007) DMP Option (0022)

The SATISFY option (figure D-67) identifies one or The DMP option (figure D-69) specifies a user
more libraries to be searched for satisfaction of request for a dump. When the loader encounters a
unsatisfied externals. dump Trequest it issues an RA+l1 call to the

operating system.

59 47 35 17 0
0| o007 WC res 50 47 35 17 0
1 Libnameq res 0022 0000 y o2
ca : ~~ res ~~
-) P4 The first dump parameter if two
s parameters are present; zero if
me Libnamen res only one parameter is present.
s p2 The second parameter if two param-
ne The number of w9rds in the eters are present; otherwise, the
entry not counting the con- only parameter
trol word. The number is 0 °
;E the req:efﬁb1s fog :se of Refer to the appropriate operating system
€ curren thrary Set. reference manual for a description of
res Reserved for use by CDC. dump parameters.
Libname; The Llibrary file name, Left- Figure D-69. DMP Option Format

justified with zero filla

Figure D-67. SATISFY Option Format
FILES Option (0023)

| ENTRY Option (0021)
The FILES option (figure D-70) ensures that certain
The ENTRY option (figure D-68) identifies the library programs, needed by CYBER Record Manager
addresses of entry points (that are currently being for processing, are loaded.
loaded or that have been loaded previously) to an
executing program.

59 47 35 17 0 SO 7 0
0 { 0021 l We l res 00023 e res
1 Lf
1 eptnameq eptaddrq M res
E ~ E ~ E ~ :f% - ~ res x~
e Lfnn res
We eptnamep, eptaddry,
. We The number of words in the entry
WC .The number of words in the s
entry not counting the con- not counting the control word.
trol word. res Reserved for use by CDC.
res Reserved for use by CDC. Lfn; The logical file name, Lleft-
eptname; The entry point name, left- justified with zero fill.

justified with zero fill.

eptaddr; Upon completion of request Figure b=70. FILES Option Format
processing, the word is
cleared and the entry point
address is placed in the
Least significant bits of
the word. If the entry
point cannot be found, the
word is unmodified. The en-
try points must be in alpha-
betical order.

Figure D-68. ENTRY Option Format

60429800 K D-27

[PAssLOC Option (0024)

The PASSLOC option (figure D-71)

identifies ad-

dresses supplied by an executing programe.

STAT Option (0027)

The STAT option (figure D-72) performs the same
function as the FILES option.

59 47 35 23 17 0
0} 0024 We res
1 idq t9
2| res bq aq
we—1 idy th
Wwe | res b an
We The number of words in the entry not
counting the control word.
res Reserved for use by CDC.
id; The name of program block, entry
point, or common block.
t3 Type of name:
0 Entry point } A null id;
1 Program block is illegal
A null idy
2 Comtrat meners | esignates
a blank
3 ECS common block common
block
by The block length in words; ignored if
t; is O.
aj The address of the entry point, or
first word address of the program or
common block.

Figure D-71.

D-28

PASSLOC Option Format

59 47 35 17 0
0 ooz7l we | res
1 Lfnq res
= z res ~
We Lfn, res
We The number of words in the entry

not counting the control word.
res Reserved for use by CDC.

Lfn; The logical file name, Left=-
justified with zero fill.

Figure D-72. STAT Option Format

60429800 K

LOAD MAPS

Load maps are illustrated in figures E-1 through

E-6.

The content of the map depends on the map

options as follows:

In addition,

Map
Map Contents Option

Items 1 through 6, 15 through 21 S
Items 1 through 10, 19 through 24 B
Items 1 through 6, 11 E
Items 1 through 6, 11 through 14, 25 X

items 26 and 27 appear on listings

generated by the TRAP directive processor; items 28

through 35
generated by TRAPPER; and

execution—time output
items 36 through 39

appear on the

appear on capsule generation load maps.

1.

Header containing the name of the first
program encountered in the load except for
segmented loads.

Loader update level.

fwa and lwa+l of the area into which text was
loaded. For user call loads, lwatl is always
less than the lwa of the loadable area.

Name of the file containing absolute memory

image of the load. This line appears if the
NOGO (1fn) option was used or if this is a

segment load.

Name and address where execution begins. If,
during a user call load, no name is present,
the address is that of the return to the
program making the user call.

List of entry points in 5400 table header.

nonfatal errors
are prefixed by
prefixed

Ligt of all
encountered.
FEnnnn#*#%;
NEnnon///.

fatal or
Fatal errors
nonfatal errors are

Labeled common block information. This
includes block name, address, and length. If
the block is in ECS, the address and length
are of the format 40000000g+v, where v is
the actual value.

information. This includes
name, address, length, file from which
obtained, and contents of words 2 through
16g of the PRFX (77g) rable, if present.

Program Dblock

Library indicator: SL, system library; UL,

user library.

60429800 H

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Blank common information.

List of entry points and addresses in ascend-~
ing order of address. Entry points are
indicated by an E. The address list for
unsatisfied externals contains *WEAK* for
weak externals, and *UNSAT* for all other
unsatisfied externals.

Name of the program containing entry points
at left. The program name appears only once
for each program.

Name of the program containing one or more
references to the entry point at left.

Absolute addresses of references 1in the
program specified at left. Up to seven
references can appear on a line.

Total central processor seconds used for the
load.

Maximum amount of memory required to perform
the loading operation.

Number of times the managed tables had to be
rearranged. This is primarily of interest
for performance considerations.

Last OVERLAY directive encountered.

Image of the OVERLAY directive that starts a
new overlay.

SEGLOAD directives.

Diagram of the tree structure as defined by
directives. The symbol * indicates a segment
that is the base of a tree or its only
member. The symbol _ indicates that a
segment branches from the segment at the top
of the column from which the symbol ?
extends. The symbols and ? appear when an
ASCII graphic character set is used to print
the tree diagram. The symbol ™ corresponds
to the symbol _ and the symbol ¢ corresponds
to the symbol ? when a CDC graphic character
set is used to print the tree diagram.

The horizontal line results from the LEVEL
directive partitioning the user’s field
length. It indicates a new level from which
additional trees spring.

Segment name.
The segment name delimited by parentheses

defines a block used by SEGRES to control
loading of segments called by this segment.

25.

Name of the labeled common block in central
MEMOTY « If the block was declared on a
GLOBAL directive, a status indicator follows
the name; otherwise, mno status indicator
follows the name. The status indicators are:

G (global) = This block is declared global
within this segment

GS (global saved) = This block is declared
global SAVE within this segment

S (safe) = This global block is assigned to
a segment that is always loaded when this
segment is loaded

B (bad) = This global block is assigned to
a segment that is incompatihle with this
segment

26.
27.

28.

29.

30.

D (doubtful) = This global block is
assigned to a segment that might or might
not be loaded when this segment is loaded

Capsule name.
Group name.

Length of capsule binary, including supple~-
mental tables written at the end (containing
relocation, entry, and external reference
information).

Indication of capsule entry points (E) and
externals (X).

Indication of LOCAL SAVE block for the named
program.

60429800 H

E-3 @

(7 40 | 388yg) dey peoq 1In4 "|~3 a4nbLy
*G3XId SIS IINVHI - T°TA WHD 059 9°€ SSVAWUD €2/60/68 YITSAS-1S 9 9%10T 4S2°3U3
°03xI4 31VIOVIV = T°TA WHD 069 9Y°€ SSVYIWOJ €2/60/68 GIISAS~I1S GLT 1642 ERLALLE
°153INb3¥ HILSAS $5320ud %9 9°E SSYJWOJ €2/60/68 ¥ITSAS-1S 09 TILL SAS*M1d)
*V1IVQ 30 %2014 IAUR 2%9 9°€ SSYdWUD £2/60/68 dI1SAS=1S %9 s29L IMT0dd
*¥0$S53J0¥d NOILINNG O/1 2%9 9°E SSVAWOD E2/60/58 GITSAS-1S 91 L09L [TR B
NOILVZIWILIND A¥3ADOI3Y Luw0ev - 67104 069 9°€ SSVAHU) €2/60/68 ¢€ITGNL4-1S &1 £L5L s pdds0
TUUANGD AN4IND G3133a410 1SI0 069 9°¢ SSVdWOD £2/60/68 &I116Nid-1S 252 12€L =d1HU
3003 INdLIN0 NOWHUD 069 9°E SSVJWOJ €2/60/59 €I16NLi=1S 191 04TL =K0OL10
ONILIVHYDS INdIND GIL1IIVICQ 1SIT 069 9°E SSvdWOI €2/60/68 EI11sNLd=1S SIC £299 = 110017
¥01d14IS30 1INN v N3AI9 LI4 V 31V307 ~ =114439 069 9°€ SSVAWUIJ €2/60/5¢ &IIENLi-1S 902 S199 =i[3139
*SITLITILA °ISIW 123 069 9°€ SSVJHUD €2/60/68 ®ITSNL1d=1S 002 6129 =140180d
*SITLITILN AYVEEI1 123780 NVULu03 069 9°€ SSVJWUD €2/60/68 €ITSNL3=1S £202 2Ty =SASBUS
i ESTH 7°0I°4v/
3609 INdIND SNILVOTd NDHWOD 069 9°€ SSVdW0) €2/60/68 €ITSNI3-1S €2¢ 0E9E =L10474
°39y¥0LS VIVE 03L43ANDD 069 9°E SSVdHOD €2/60/68 EITSNLI=1S E 629¢ =1S4174
*SINVISNOD 3IZITWILINI 069 9°E SSVAWOJ €2/60/68 €I16NL3~1S 1% $95€ =%SHJ34
9NIGYDT 3INS4YI 1I4 0$9 9°t SSVJHOA) £2/60/68 €I14NL3-1S €9 105¢ 10d=124
°SINVISNDGD GNV S3INILNOY O/I Q30U NOWWOD 069 9°€ SSYJWOD €2/60/68 t11SNLI1-1S 2% LEHE =0IHOJ
sl ZYEE 1i03=7347
3LIVNILYINDD ONV FAOW ¥ILIVEVHI 069 9°€ SSVJWUI €2/00/68 €ITGNL4=TS TLT 161¢ sIAUWHD
°A¥YYEIT IWIL NAY 6104 FZTIVILINI - 6123 069 9°€ SSVJWOD €2/60/68 ~p11SNLI=1S 252 6192 =A4LNGO
Amu 913 $0€2 /°CI*sd/
1 £0E2 /0N3°d1S/
9¢ 5922 7°3°134/
°3000 NOTLVZITVYILINI ONY QIV=SAS N33AL3IE MNIY 069 9°€ SSVdWO) £2/60/68 SITSNL14=-1S T 422 sQIVSAS
SkA=9YY U=Fu /S Y =ONNDY®0=L1d03INILNOYENS 1 X999 069 1°§ N1d TT/11/69 091 12 €222 A1 AL
ShAs9uY G=/H 75 /Y =QNNOY0=1d0INTLAOHYNS I %999 069 1°6 Nid TI/TT/48 By 12 2022 HONY 3¢
SHN=9YY =/K /7§ /¥ sONNO¥*0=1d03INILNDYENS I X999 069 1°¢ Nid TI/T1/58 Uyl 12 1912 S3AVIT
SKEA=9YY G=/K /S /Y =ONAGY0=1d03INTLNONENS 1 X999 059 1°¢ Mld4 TT/11/58 091 2z LETZ $31033N
SMIs9 UV U=/W /S /¥ =sONNDYS0=L1d0INILNDUENS 1 X999 059 1°¢ Nid TT/T1/68 091 11 9212 Sq0OH
1 $2T2@QF) S1- Sauos
Skeouy G=/H S /Y =QNNOYS0=1d0HVYO0Ed 1 X999 059 1°6 Nid TT/1T/58 091 €4 Z902 ._mmuEQ
029 FIT A Mves
ysh 996 1A4TADITIHY
01¢ 962 73TdVH/
[T% 21T 73N1d/
T 11t 73ANYY/
SLINIWWO) 3uVAGYYH 13A37T ¥3A 45530¥d 31vq 3114 HI9NIT SS3WaUY xchmAHu
*SANIWNYISSY NIUTY ONV WVi9Udd
SSV4Y ~— J3¥ IVAYILXI USTJSILYSHE ///700T%3N
muu>m<:z=m YOUHD koo &
4902 1$3304 ~- SINIOd AYINI WV4904d
L502 153404 -- SSi¥aQv «uumz<ahmmv
GLEET VG 3HL 47 T+val
111 avol 3uL 44 vhd "
o
Amu 2
1 39v4d *94°6T°¢T °TT1/11/68 069~-6°T 43QVD1 436AD 151454 - dvk c«g;amu m
o
\\=]

(¥ 40 z 189ys) dey peo 1Ing "|-3 24nBiy
9LETT HYSTLD S IELL vAs139
GLETT HASTL3 MIEL I ITED
0T4E 1N3=103 e *N3dU
E141T LELRE R #NV IR vasA3y
€49 =114L39 NEL *AdLNZO
Soy1T WYSTL) TR FVIXWKI
9LL1T WL N ELY IaVdsha
2Te iN3=133 e $00IAdY
29E11 NE$ILI NEL Y5351
0SEE IN3=123 VI I¥3SU1)
22vE 1NI=124 el $ZSAS
OLETT Was1Ld EL VWETaL]
9L9% =SASH04 Ve 1Sn1dve
09€1T WS Y Ihe BSENIHY
€04E LN3=124 Y I * 31
€9T0T 29101 V43°uHI #AVINK VA HAI
49101 47030 NEL 4VATUHD
9E91T £€911 W3STLI AV Ira 45V WU
Love IN3=124 NEL $t3a0
4219 =$AS40d R EL *¥SHIVY
E9ETT Wd$1LD AWV 3% 0S$AS 1D
%0021 HYSTL3 AV OV dsHd
55 9¥ =SASHDA e EL *QWdLuY
00911 Has1Ld N EL WYs THY 1
9LLL 9944 47V 41D AV N2 VGO UKD
ayy11 WYSTLD OV Inx J8dShVY
E49 1T W¥s1L3 VK ACTSHYY
EL9TT 2yl WasTLD 3V Inx COSHYY
19911 (1) W3s11d €D DIVIN4 TS UVY
EFTEFEFER Wyda0ad SSIUALV AdiNa (D)
*SINIOG ARLN3
¥y 1221 11 @
¥39VNVH 3714 207 - 1330dD *62/L0/68 *92/20/28 299 9°€ SSVW0) 91/80/68 WIT1SAS-1S OT tret W31°Nd)
VNV LNIOd 103LNOD - 13¥NdI *62/10/58 °92/20/28 249 9°E SSVAWO) 9T/60/S8 GLISAS-1S § ¥0L21 HdI*0162
*sAdds DL 3IV433INI ¥ISN €0°ZA - ¥ADII¥ 059 9°E SSVAWO) €2/60/58 BIISAS=1S 29€ zzeet *ANIZY
153003 T+vy 1SOd = W3D 069 9°€ SSVAWOJ €2/60/68 I1SAS-1S § s1€2l =SASSHA
$3714 40 1S17 ¥04 30VdS 3LVIOTIY = Wad 069 9°€ SSVAWUD €2/60/S8 EITSAS=1S 19 9zeet HEsLST1
*A¥INI ¥DSS3I0US HOAUT WD 069 9°E SSVAWOJ €2/60/58 4I1SAS-1S &2 1022t TE!
ONIA3Y XD3IA = ¥31I0¥INDD WHd 0S9 9°€ SSVAWDD £2/60/68 ©LISAS=1S L% 2€121 ¥4 ILI
3714/ 1VDISAHd dINS - ¥31I0UINDD WHD 059 9°€ SSVAWUJ £2/60/68 GIISAS=1S LS £5021 d¥$51L3
*INILNOY ONTTIDYLNDD WD 0$9 9°E SSVAWUD £€2/60/58 SITSAS=1S 10§ 26ETT 331D
*30V4¥3LNI ¥ITVNVN AYOWIN 104 09 9°€ SSVJWOJ €2/60/68 BITSAS=1S 20¥ 0$L0T Ihid*104
*IN3QIS3¥ ¥3GYD1 DIHVNAQ LSV3 069 9°€ SSVJWUD €2/60/68 I17SAs~1S 212 9€50T $34° 144
€2 €1501 /W09° 1047
*Q3XI4 VAT LV YNIUHS = T°TA WHD 059 9'€ SSVAWDD €2/60/50 WIISAS=1S 22 12501 415°4K2
*SINILAOYENS INICISTH - T°TA WMI 069 9°€ SSVIWOD €2/60/58 BITSAS-TS 212 L5201 MRt
059 9°€ SSYGWUD €2/60/S8 8ITSAS=1S & 05201 SETLE
*SITASILVLS AYYWWAS 139 = T*TA WWD 059 9°€ SSVIWD) £2/69/58 GITSAS-1S 22 92201 SSu* 31D
*0Ix14 3383 ~ T°TA WWD 059 9°E SSVJWOD £2/60/58 HIISAS=1S 9E 0L 10T 434*3h2
*WHLI097V 3383 Q3XIJ - T°TA W 069 9°E€ SSVAWLI £2/60/68 811SA3=1S ¥1 26101 P
SINIWKDD 3avHO4VH 13A31 w3 4SSI0ud a1va 3104 HLINIT SSIaday ¥IUTd
z 39vd *9ut6T €T *TT/11/58 059-6*T 430V07 ¥34AD 153964 = dVK avu?

60429800 K

® E-4

(7 40 § 323ys) dey peoq 11N4 °|-3 3nbiy

994€ =0IH0J .
60%E LNI=T 24 = JA0UH D LGTE eLE
0459 =114139 2002 4 VLS
009L =NddG0 2692 °AdINSU
G64%¢ *COTNSD
=AYINGD HIEZ *4xQ
TIHe LN3=124 =SASHDd H0€Z “JI°50
GThe IN3=1D3 =AYINGD €0€2 un3aLs
o€z *307843
922 *hIINIT
092z NENEL
Lsez NEd*du
5522 391
w52e *344
€622 *0Td
1522 *hUQNY S

00se =0IH0)
09€E INI=T34 =71nd04 avee °3°124
€592 0160 =UIVSAS 4922 =0IVSAS
€012 153404 WML 0g22 AN gl
1012 153404 HINYEE 1022 KNV 8y
LL02 1S304 S3AV3T 3912 SIAVIT
5202 183904 $110330 vl $31033N
€402 153304 SJYOUHM €ET2 squus
@) 15304 Lyoe 153304
S0%1T Was$ILld ERAELES HasHdd0
LEYTT WA$1L) N ELY 0S$X03h
vEHTT Y$113 NV IM% DSTESHS
y9€EE IN3=133 SELE $353234
ELETT WYSTLI N EL Arsd3d
1€911 Was$T1) ANV IN USSTUNS
TT41T WASTLD N nS$1d3d
90411 HA$1LD ANV Mg S1ind
SEYTT WasTLd ANVINE 05335 A4S
TLETT HY$TLI L hdd3dy
EEHTT Md$1L3 ANV Thx BS5dINS
LLEE iNI=10d LA ELL SUIIIONL
2e511 Wus11d LA FLES 0S449S
1012 153404 1Y SNI 35v¥9
99€1Tl Hd$112 EXAELES VHSWHUD
L1%€E IN3=T0d ER L LTS $33TSAS
5L9% =SASY04 AV s *Ulds0
YLETT W3S 1L L $3179
06411 WESTLD L ¥ 18dhd
29€€ IN3=124d NV Ik $313234
9GEE IN3I=T04 NV IMx *v3i
2IYTT Wa$TL] XA ELES SR T ER
[T4 4 1N3=T724 A ELEY $¢10val
014511 Wd$TIL) LA ELES vAslnd
10511 Ha$1Ll) AV IHA tsslnd
00 %€ iN3=1D3 RIS $ad3ul
€Lt IN3=T0d EEAR LES $dd43134
9LE¢E AN3I=72d E2 AR LES °l3doNl
TLEE IN3=123 Y Ins $1d4d234°
LLETT WASTLY LA ELEY LESKWLdY
$30N3¥247 3 V89044 SSTduav A4LNT
|2 39ovd °949°61°€T °T1/T1/48 069-9°T 430Y07 ¥38AD 183404 « d¥k avul

E-5 ®

60429800 K

(¥ 40 4 333ys) dey peo] 11N

*1=-3 a4nbiyg

39vd

s3aon 37evL s1 (1)

$119
€6LS c91s

§9121

L2121 gtiat €11e1

99121

°gH°6T1°tT *11/11/68

666L
LS1s

6606
€906

E9121
1iet

€9121T

069=-6°T 434v07 u34AD

03sn 39vauLs W) voceze ()

1126
121¢

1664
696y
%06€

%109
H1vE
€992
€v6Yy
€LSY
206¢E

LEGY

90221
LET2T
19021
¥e1et
eg1et
%9021

2121
yL121
L2121

60¢et
9E1¢1

=SASHO0d
=SASY04d

=Jin0
=SASE04
T04=704d

=SAS304d
1N3=TD4d

°gI°ce
=SASd0d
=§AS¥04d
RUFLARE]

=SASHUd
Wysdd3
YASILD
dNS$TL
L LE % B]
dASTILD
d¥SS$ILY

duS$TLI

YHSTL D
¥A$TIL)

HY$Hd 3
-L N B O]

I EPLEREEET

SUNDJ3S d) §5T° (GD)

dH%TLY

dMS31L)

WY¥90ud

2e(21
91121
00121
96021
56021
6021
€6021

25021
91021
61021

To021
LLL1l
2LLTT
CILTT

09L11
S6LTT

25411
EHLTT
2HLTT
THLTT
2ELTT
€0L11
9L9T1

Qhonﬂ
49911

€9911
L6911
52911
§0611
LinTT
TLHTT
L6HTT
56911
Gue 1l
U1l
€LETY

$$ 144y

453dud =

hd$hIY
H3$ THAS
HEE REEN
WesddnuS
LEEEERM
HESdUAS
RELEL RN

TdsHy
Huvdind
X3d4A$H4d

hdslind

T9s%ud
9ydsnd
Wd$139

Hes$LIdS
HESHNGU

Hy$4012
fFinsua
INISHA
dilsdy
UL
AU TSy
Qlusk4d

09 IsHd
1¥38ud

MYELTE
udsdd
rdvs sy
HEs AU
HesdmHD
¥1J4sdd
0IJsHd
W¥s$134U
YV RAD
RER T
34%dwd

AdLNA

4¥h QYL

60429800 K

@ E-6

(2 #0 | 383yg) dey peoy eilded "2-3 2Jnbid

*03XI4 $I34S IINVHI = T°TA WHI 059 9°€ SSYdWO) €2/60/68 ©11SAS-1S § 94101 453° 4K
*03XI3 21VI07W - T°TA WKD 0S9 9°E SSVIWOD €2/60/§8 BI1SAS-1S 64T 1504 R AELE,
*1SINDIY WILSAS S5II0¥d Z%9 9°C SSYAWDD €2/60/68 9ITSAS-1S CY 4L SAS°Ndd
*YIVO 30 ¥I018 IACH 259 9°E SSYJWOD €2/60/68 BITSAS-1S 49 5294 IAK°NdI
*¥DSS3I0¥d NOILINAG O/1 759 9°€ SSYdWOD €2/60/68 BIISAS-1S ST 1092 019°nd2
NDILVZIIVILINI A¥3A0D3y L¥DEV = €124 069 9°€ SSVANOD £2/60/58 BIIENLI=1S 41 €L5L =Ad¥SD
1DYINDD LN4IND 031D3¥I0 ISIT 069 9°€ SSVAWOD E2/60/68 B1ISh1d-1S 262 T2€L =41ND
300 10d1ND NOWKDD 059 9°C SSV4WDD €2/60/68 ©IT16hL3=1S 19T owTL =HDI1NO
ONILIVHYCS 1NN G31I3ATA 4S1T 069 9°€ SSVdWOD €2/60/68 8116N1d-7s STE £299 =10DGY
¥014T¥IS3C 1INA ¥ N3AIS 1T4 V 31V307 - =114139 059 9°€ SSVAWD) €2/60/58 8I1GNLd=1S 902 149 =114139
*S3TLITILA °IS1k 1Dd 059 9°€ SSVdWD) €2/60/68 BI16hII-TS COZ 5129 =71N¥03
*SITLTTILN ANVYEIT 123780 NYYI¥DI 069 9°€ SSVIWOD €2/60/58 UITSAII-1S €202 2Lty =SASYDS
i €Ty 1°01°4dV/
3009 LNAIND ONILYDT4 NOKKOD 059 9°€ SSVJWO) €2/60/58 8IT6NLd~1S E2E 0E9E =100114
*39¥¥01S V1VO 0I1WIANDD 069 9°€ SSVAWD) £2/60/68 HITGhid-1S € SzZ9¢ 154134
*SINYLSNGD 32TIVILINI 059 9°€ SSVJWD) £2/60/G8 8116N13-15 T¢ ¥96¢€ = ¥SHI34
ONIQYOY 3INS4YI 134 069 9°C SSYdWOD €2/60/58 GITShI4=TS €9 Tos¢€ 1042124
*SINVISNDD ONY SINILNOD¥ D/1 G3G0) NOWNDD 059 9°E SSVWOD €2/60/68 BIIGhIJ=TS 24 LENE =0TH0)
se 2vee 71N3=134/
3LYNIIVINGD ONY 3ADN ¥3LIVEVH)D 069 9°€ SSYdWD) €2/60/68 68I16N1d=1S LT 151¢€ = 3ADKH)D
*AYVHEIT IWIL NNY §134 IZIIVILINT - 6134 059 9°€ SSV4WO) €2/60/59 _§116hi3-1S 252 1192 =A4LNGD
® ELE 90€2 7°0I°50/
1 £0£2 /ON3*d1S/
g€ svee 129134/
*3009 NOTLVZIWILINT ONV QIV=SAS N3IAL3 NI 059 9°C SSYJWDD €2/60/68 81716h1d=1S .1 9922 =0IVSAS
SNN=93Y U=/H /S ¢V =ONNO¥¢0=14D3NTINOYENS 1X999 069 T°g N1d 80/TT/68 ERI €222 YNRYL
SNN=93Y Q=/W /S /¥ =GNNOY 0= 14DINTINDUENS 1 X999 089 T°§ N1d 80/11/58 091 12 2022 HONY e
SNN=98Y G=/4 /S /¥ =ONNDY0=1d0INTLADYENS I X999 069 T°6 N1d 80/TT/68 091 12 1912 $3AV3I
SNN =9V Q=/W /S 7V =ONND¥¢0=1d03NTLND¥INS 1X999 069 T°6 Nld 80/TT/58 091 2z LET2 $31033N
SNN=92Y 0-/W /S /¥ =QNNDB¢G=1603NTLNDYENS I X999 069 T°§ Nid 80/TT/58 TER I £ 9212 saoos
1 §212(09 $I- SOOOR
SNN=9YY G=/W /S 7V =ONNDY <O=14DWY 04 1 X999 069 T°G N1d 80/TT/68 091 ¥ 2902 153303
c29 7921 I%VD/
4G4 995 7 AMEHITH/
c1e 962 137dvw/
441 211 /3INTd/
1 Ty 13A0U9/

SINIWWDD FEVAOAVH T3AIT 83IA ¥SSIOUL Lva 3714 RION3T ss3daay woere O
*SINIWNOISSY MIODT9 OGNV WV¥ODUd

SSV¥9 -- 43¥ TYNY3IXZ O3L4SILVSND /7700143 (3)

AUVHHNS YOUH3 wustwstns

1902 153904 == SINIOJ A¥LINI WVY9DU4

1902 152904 — ssauaay wassnvar &
CLEET OV01 3HL 30 T+VAT
11t Qv01 3HL 40 VA3

1 39V4 *HT*9E°ST °90/1T/58 069-6°T ¥3QVO7 ¥3IEAD

153304 - dvi avo1 (D)

E-7 @

60429800 K

(2 40 2 393yg) dey peot jerided "g-3 a4nBLy

s3now 31evi 6 (D) 03sn 39vH0LS WO 8002TE (9D) saNod3s 49 ottTe (&)

45 12121 7
¥IOVNYW 3774 V0T - 13UNdD *62/L0/S8 *92/20/28 299 9°¢ SSVAWD) 91/80/68 BITSAS-TS C1 Lt H41°ndD
VNVW INIDd TTOWINGD - 12¥NdI °*62/L0/68 °92/20/28 2%9 9°t SSYJHOD 91/80/48 8I1SAS-1S € 40121 Hd2°NdY
*¥Adws DL 3DV4¥IINI ¥3SR ¢0°ZA - ¥ADIIY 059 9° SSVAWO) £2/60/58 BITSAS-1S 29€ 2ze2t ¥ADI3Y
1S3N03Y T+vd 1SDd - W¥I 069 9°€ SSV4WD) €2/60/68 811SAS=1S § cTE21 =SAS$hY

S3TT4 40 LSIT 404 3IveS 3LVI0IIY -~ HYD 069 9°E SSVdHDD €2/60/68 8I1SAS=1S 49 92221 HYs1SIT
“AUING WOSSIINH4 ¥O¥¥3 W¥D 069 9°t SSVdJWDD €2/60/68 HITSAS-1S 67 10221 Wasuud
ONIAJY ¢XD3H - ¥3TI0ULNOD WHD 069 9°€ SSVJWD) €2/60/58 6I1SAS-1S Lb 2€T21 ¥$ L)
®3714/IVIISAHD dINS - ¥ITICYINGD WAD 069 9°t SSVAWD) €2/60/68 8171SAS=-1S I6 €602T d%S$71)
' *3INILACY ONITTICEINGD WHd 069 9°€ SSVaWD) €2/60/68 8115SAS-1S 105 26ETT - WasILd
S3IVSUILNTD HIOVNYN A¥UKWIW 04 0589 9°E SSVAWOD £2/60/48 QI1SAS-1S 0% 06401 IWH*T0d
*IN30IS3¥ ¥IAVOT JIWVNAG 1Svd 069 9°¢ SSYJWDD €2/060/68 8I7SAS-1S 212 9€50T $3¥°703

£2 ET60T /HDI° 103/
*U3IXI3 VMT LV NNIUKS = T°TA WWD 069 9°E SSYJHO) £2/760/%8 8I71SAS-1Ss 22 TL%01 315°4WD
"SAINTINGBENS IN3QIS3¥ - T°TA WWI 069 9°t SSVdJHOD £2/60/68 8171SAS=-1S ¢1i2 46201 Y WHD
069 9°c SSVJWDD €2/60/58 $I1SAS-1S L 06201 LELR 1Tk}
®SOTASTIVIS AWVWWAS 139 =~ T°1A WWD 069 9°€ SSVIWDD €£2/60/58 $I11SAS-1S 22 92201 $S9° 4k
°03xl4 F3ud - T°TA WHD 069 G°E SSVdWOD £2/760/68 YI7SAS=T5 SE 0LT01 d¥d° 0D
CHHLIN¥09TVY 23¥d G3IxId - T°TA WWD 069 9°t SSYJWOD €2/60/68 8IISAS=-1S 1 »5101 VI4°HHD
SINIWWOD JAVAGYYH I3AIT ¥3A ¥SSI0Ud Iiva 3714 hiON3T sS3uaav %207¢

2 39vd "H1°9€°cT *80/11/68 069-6°T ¥3QV0T ¥30AD 1534904 - dvk QVv0d

60429800 K

® E-8

(¥ 40 | 199yg) uoLiedausg AelJdang Jo del peo jeLided °=¢-3 S4nbL4
°SINFLNOYENS LNICIS3Y — T°TA WWI 069 9°E SSYdWDI €2/60/68 QITSAS-1S 212 #2111 ¥° HHD
069 9°€ SSVeW0J €&/ 00448 GI7SAS=15 ¢ [244 %¢ WIW® HiWD
®303 VEA AVIY3A0 av01 - I°TA BWd 069 9°€ SSVdWDJ Ec/604au SIISAS-1S 66 05011 ADT°d4u)
°AVI¥3A0 QGV0T = T°TA HWD 069 9°€ SSVAWOI £¢/00/6 GITSAS=TS L2 yee01 AGT°4HD
®SIIASIAVIS ABVWHNS 139 - T°TA wWd 069 9°E SSVAWD) t2/e604ss BITVSAS=1S 22 22601 §89°4nd
°Q3%13 3344 = T°TA HHD 069 9°E SSVdWOD €2/60468 BITSAS~1S %E 49901 EEEAET R
*WH1EY097Y 3344 03XTd = T°TA HWRHI 069 O9°E€ SSVd4WDD) €2/60/6u BITSAS-TS ¢l 06%0T V34 WWD
*g3INIS SIA4S IONVHI = 1°TA HWHI 069 9°¢€ SSVanDJI €2400748 4I78AS-17S 9 evy01 4$23°4Wd
Y3V TYNEIANI FONVHI - T°TA HWd 069 9°E SSVIROI £<200468 9I15AS=-TS GOT SEEQT VIJ®HWHD
°G3XId 31vI0DTTVY - T°TA HWD 069 9°¢ SSVdH0D €240046y gI17SAS~1S < 04101 3I1¢°ddD
°1S3nb3¥ H3ILSAS SS53I0ud 2h9 P°E SSVJWOJ ££/00/68 BITSAS-TS 09 00101 SAS°Ndd
°YivaQ 40 %J078 3A0W 2%9 9°C SSYdWO) 4700448 8ITSAS~-1S %9 $1001 IAH°AdD
°30SS3J0ud NOILINDD O/ 2%9 9°¢ SSVdHDD €2/00468 G175AS-1S 91 LLL 012°ndd
NOIAVZEITWILINI AW3A0J34 L¥08v - §7234 069 9°€ SSVAWDD 62/00/58 HITGNLI~1S &I 29LL =Ad¥50
SINILNOY 9NIAVOT AVIY3AD 069 9°E SSYdHOD €2/60768 HITGNLI=TS G692 Gi6L AY143A0
F04LNOD LAMLND QILI3¥IC LSIT 069 9°€ SSVdHUD €2460/68 QITGNL3I=TS 26°C €¥2L LEPFYN]
3000 LNdAN0 NOWHDD 069 9°€ SSVdkDD €2460468 GITGNL4=1S 191 290¢L =4021N0
ONILLVHEOd ANdINO Q3433¥IC 1SIT 069 9°E SSVdHOJ E2/00/6y QITSNLI=-TS GTE GH49 = LN0DG7
UYDL4IYIS3Q LINM V NIAI9 Ll13 v 3LVI0D -~ =114139 069 9°€ SSVdHD) €2400/68 8ITG6NLI-=TS 902 LEEQ al 14439
°S3ITLITITILN °ISIH 133 0569 9°€ SSVdAHOD €e/00468 HITSNLI=TS Q02 LETO =1ANY0d
°S3TLITVIAN AdVHEIT 103790 NVHLU02 069 9°€ SSVeWOI £2/00/%8 SBITGNLI3-TS €202 1Ty a5A5404
L1 GLOY £°01°dV4
3400 LN4LNOD ONILIVDI4 NOHWODD 069 9°t SSVJHD) E</060s/68 BITGNL4=TS ECE 266E =L 0174
°39Y¥0LS ViVO Q3 1d3ANDD 069 9°t SSVdWOJ €2/06Us6d SGITENLA-IS € L%GE s1S4134
°SINVAISNOY 3ZITWELINI 069 9°€ SSVIHOD €2/00/68 BITENL4=-1S Eb 906€E 2} SHI34
ONIAY0T 3INSIvI 134 069 9°€ SSVdWD) £24060468 BITGNLI-TS €9 -4 2 ARELRkE]
°SLINVASNOD GV S3NILADY O/1 G300 NONWOD 069 9°¢ SSVAHOD €c/700¢68 BITSNLS-TS 2% 19¢€€ =0IHUD
: [73 ¥92€ 2iN3=124/
J1VNILVYINDD ONV 3ADH YILOVHVHI 059 9°€ SSvdu0D) €246046u SIVGNLI-TS TLT ELDE =3A0KHA D
°AYYHBIT IHIL NNY 6133 IZITVILINI - 6123 069 9°€ SSVdW0D €24060468 SITENL4-TS 262 1292 =AYLNGO
ELE 322¢ 71°01°%0/
T [TX {4 4ON3°dLS/
mﬂv 9€E L9112 £°3°124¢4
. °3000 NOXILVZIITVILENI ONY OIVeSAS NH3IIAL3I8 XMNIT 069 2°€ SSVYeWOJ €2/00458 QIISNLI=-IS 1 9912 =3 IVSAS
SNNa9 ¥y Q=/4 1S /Y =QNNO¥CO=1d0KRV4ODYd 1 %999 069 1°¢ NLd 11711464 0913 L %202 pmwxcma
029 9521 4Avoy
86Y 009 S A8ONIIH/
01E 0Le /3VdVi/
¥y1 »21 13N147 (1)
1 €2t /3IADBY4
SINIWHOD JYVAGEUYH T3A37T ¥3A ¥SSI0ue 3LV ERFE] H19N31 ss3jaayv AHJ018
“SLNIKWNDIISSY NIOT18 ONY WV U9D¥d
1012 1S3y404 == SINIDd AWLINI WV I20Ud
1012 1S3404 == SS3¥0QV xwumz<ahmuv
L9€E%T Qvbl 3HL 30 T+VAT
g2l Uvol 3IHL 20 VA4

®

1 39vd GE°TECET °1T1/11/68 069-6°T1 ¥34vVD7 ¥38AD

(G=AU S0 0 SANV 1) AV THIAU emoemem—

@

.m.>c.o.o.cz<,:>3$>:e
1S3dusd - dvd achmuv

E-9 @

60429800 K

(¥ 40 2 1989ys) uolledduag Aejuang jo dey peo jetied “g-3 24nbBL4
SNA=9 YV G-4W 4S IV =0NNDY°0=Ld0WVUI0Yd 1 %999 069 1°¢ Niz 1L/110/68 091 [T YLEYL S3TY33N
SINZWWOD 3JUVAGHYH 13A37 ¥3A ¥SSI0YUd EYLT 3114 AL9N3T SS3s00V #2018
*SLNIWNDISSY %078 ONV WV ¥204d
10941 $31033N =- SSIH0GY ¥IISHYAUL
12451 Gv01 3HL 30 T+vA7
HLEYL avoY 3HL 30 VA4
{09Z9GNY 1IAY THIAD ==owm—wm
SNO=9 4V Q-/u #S /¥ =QNNOYS0=idORVYI0YL 1 X999 069 1°6 NLd 1L/L1/58 091 &2 9LEST sa0DA
SANIMHDD 3JUVAGEVH 13A31 ¥3A 4¥SSI0Ud JLvu 3164 HI9N31 SS3saqv R0
*SINIWNOISSY XIDT8 ANV HVY9DAd
10441 SO00A == SSIH0QY ¥IISNVHL
12951 avol 3HL 40 T+VAT
N YLESL VOl 3HL 30 VA3
(04T SANYTIAV THIAD ~wwmme=n

) 71 ETLET 11 (o)
¥ISVNYH 3713 V301 - 13uNdD 62410468 °92/20428 299 9°C SSYIWOD 91/60468 8ITSAS=1S OT EOLET Hi1°nd)
YNVH 1NIDd 103LNDD ~ 133Nd) °62/20/68 °92420428 2%9 9°C SSVJWOD 9T/u0/Su 8I1SAS=1S § 9L9ET HdI°Ndd
*sAdds 0L 3DVIUILNI ¥3SN “0°2A - ¥ADI3 069 9°€ SSVIWOD €2/60/&6 BITSAS-IS 29€ YIEET 4AQD3Y
153n03¥ T+vy 1S04 = Wad 069 9°€ SSVAHOD ©2/60s6y BIISAS=IS & LOEET sSASSHY
$37I3 40 1§17 ¥03 30VeS 3LVIDIWV = Wid 069 9°E SSVAWOD E24604%8 BITSAS=1S 29 022€1 Nd$LSIY
°A¥iNI ¥0SSII0Y4 #0UUI wdd 069 9°E SSVEHOJ te/oLss8 YIISAS-1S 62 €LIET PPIYTE
ONIA3Y SX03A - ¥3710ULNDD WdD 069 9°E SSVdWUD €2/60/68 QIISAS-1S LY W2IET ansTLI
©3114/IWIISAHA dINS ~ ¥3VIDULNDD W4 069 9°€ SSVJNDU €2/60468 GIISAS=1S LE G50ET ans$II
*INILO0E SNITIUULNOD WHd 069 9°€ SSV4WOJ E2460s%8 BIISAS-TS 106 ¥9E2T A¥$ILI
*AN301S3a ¥3GY0T AVI¥IAD 1SV 069 9°E SSYdWD) E2/60468 BIISAS=1S 621 L2zt sis*10d
°3)¢J¥IANT HIIVNVH AdOW3H 104 069 9°€ SSVAHDD £24004Sy BIISAS~IS 209 61911 INW°® 104
*1430153Y ¥3QVOT IIHVNAQ 1SVd 069 9°¢ SSVdWDJ €2460/58 EI1SAS~1S 212 €0411 S3u°104
€2 0911 16B2°104/
©Q3XI4 VAT LV HNI4HS = T°TA WHI 069 9°C SSVJWOD E€2/604Gs BIISAS=TIS 22 JEETT 418° 30D
SININHOD ¥3A ¥SSI0¥d vy 3114 Wi9N3T ss3wgay %018

JYVAGEYH T13A31

2 39vd sGETE°GT *LT/T1T468 069-6°T ¥3aGV0T ¥30AD

(S=ADC0 00NV TIIAVIuIAD
153803 - dvd GVUY

60429800 K

® E-10

(% 40 € 393yS) uoLleJSUBY AelJanQ jo dey peo jerided °¢-3 aunbiy

SNN=29YV

SNN=9YY

€

Q=24 S v

=0 NA0Y 0= 440NV EI0Yd

SANINKOD

Q=44 4SS 4¥Y =0NNOUSO0=1d0MVYIDYd

39vd

"GE°TE°GT

SAIN3HHKOD

°*Itsit/6e

°SINIHNOLISSY NO018 ONV WYEH0dd

[LAL 28 HNMEL == SS3¥0QV d33SNVYL

12991 gv01 3HL 40 TsavAd

SLENT GV 3JHL 30 VA4

(0% CUNYIIAV I8 3A0

I X999 059 L°s Ni3 11/11/%8 091 62 YLEGT HONVYE
JUVAQYYR T3IA3T ¥3IA USSI0de 31v0 ERE] H19N3T §S3uaayv 42079

°SANIHNOISSY ¥I0T8 GNY HYHIDEL

RULA A HONVYE ~= SSI¥00V H33SHval

12941 av01 3HL 40 T+vAT

HLEYT Gv071 3IHL 40 VA3

(0 CECONVTIIAVTY3IAD

I x999 cnm i°s Nia 1Ls1M/60 091 LT3 9241 S3AVIT
JYVAGEYH T3A3T ¥3A ¥SSI04a PR IT) ERIE] HLON3T sS3uaav #0786

CSLNIWNOISSY MO0 OGNV WY E90Ud

EEGHT SIAVIT ==~ SSIUA0V H3IISNVIL

. EayH1 avol 3HL 30 T1+4vaAd
9Ze%l QY07 3HL 40 VAd
(T526GNVYI)AYI¥3A0

(TS2SaNY I AY TH3A0
.066=-6°1T 430aV01 33840 453803 - dva GVII

E-11 @

60429800 K

(¥ 40 % 3188Yys) uoL}eJdudg AB|J3AQ jo dey peoT jelided

*¢.3 34nbiry

SNN=9YY

Y

S3A0W 318V1 ST ()

Q=/4 4S5 4V =QNNOUSO=LdOHVEO0Yd

3994

°6e°TE"ST

SANIHHOD

°11/114%8

I %999 069 1°6

JuVAGUVH TFIAIT 43A d¥SSO0Ud

069-¢°1 ¥30v07 ¥38AD

Nid TLJB1s68

EFS Y]

a3sn 39vauss wd 00ESE (3)

g9

ERIE

SANDI3S dD oﬁ.@

62 SLEYT ANNEL
HL9NAT ss4d0av HI0TH
C0SHSUNY 1) AV T43A0

1S3404 ~ d¥W UVO1

60429800 K

@ E-12

(S 40 | 193YS) UOLIBJBUID JYIAQ PUE ABJJBAQ 40 dejl peoq 11N4 -3 a4nbLjy
*SINILAOUENS INIGESIY =~ T°TA WHD 069 9°¢ SSVdHOD £2/604%8 BITSAS=15 212 95121 ¥OHKD
059 9°€ SSVIHDD E2/00sse BITSAS=1S £ Ly12t H3H°HWD
*SIILSIAVIS AUVHMAS 139 = T°TA W3 059 9°€ SSYdWDD E2/60468 BIVSAS-1S 22 62121 $59°3u2
*03XI4 3384 = T°TA HWD 069 9°C SSVAHDJ €el60/4u §I1SAS=1S 9E L9021 484° 4w
*WHLI¥09TV 3344 GIXII = [°TA WWD 069 9°E SSVAW0) E2/60J&e BITSAS=1S 71 €5021 V44°WND
*Q3XI3 SI3dS IINVHD - T°TA W) 059 9°C SSYAWOD £2/0L/s6s BITSAS=1S 9 G%021 452°4W)
SQ3XI3 ILVI0IIY — T°TA Wed 059 9°€ SSVdHDD E2/60/48 BLISAS=—1S GLI 06911 47V° 44D
©1S3N03Y WILSAS $SIDDud 299 9°€ SSVdWOD £cde0/58 HITSAS=TS 0% 01911 SAS*NdI
*ylyQ 30 %J078 3ADH 29 9°C SSVAWDD v2/60/64 QITSAS=1S 49 #2611 INKNdD
*¥0S5330¥d NOILINAZ USI 299 9°F SSVdWD) €2seUd6y BITSAS-1§ 91T 90611 QL2°ndd
NOILVZIWILINE A¥3A0I3Y¥ 108V - §72d 059 9°C SSYeWDD 6260458 @I16NLd=15 &1 2Leit =AdHGD
J081ND3 LINdLAD 03LD2¥IQ ASIT 069 9°C SSVaHOD £2/60/6v HITGNLI-TS 262 02211 =310
3000 LNdLAD NOWHDD 069 9°E SSVEHDD €2/00/6u WITGNL3=TS 191 LEOTT 2402100
*04033% NVUL¥O4 3LI¥A QILEVHUOS 069 9°E SSV4HOD t2/60/68 SIIsNLi-1S 242 G601 =2 10U
aNILIVH¥02 LNdLND 03123¥I@ LSI1 059 9°C SSVdHDD £2460/%6 QIIGNLI~1S GIE 09201 =100071
°33134d¥ILNT LVHUO4 LNdLND 069 9°C SSYdHOD E2/6U46y BITSNLI-1S 20L 96EL =3300)
4044149530 LINA V NIALS LI4 V 3AVI0T - =1d139 059 9°F SSV4WOD €2/6U/ky eI15NL3-1S 902 051L 2114139
°$ITLETIILA °ISIH 124 069 9°E SSV4NDD £¢/60/68 BI1SNL4=1S 002 059 «11Na04
°SITLTVILN AUVHEIT LD3FE0 NV¥L804 069 9°€ SSVIWD) €2460/68 BITGNLI=1S €202 G2y =SASHU4
°¥3INVYHN/4I00% 03 LVHEO4 ONY LSITEV XIva)d 059 9°E SSVdHD) €24604%8 BIVSNLA-TS 949 LG0% =4Y LW
L1 0%0% 1°01°av/
300 IN4IN0 9NILVDTS NOWHOD 069 9°E SSVIHDD £24004G8 BITGHLI-1S EZE §1GE =LN0LT4
*39yH0LS VAVO GIL¥IAND)D 059 9°€ SSVdWD) €2460/68 EGITGNLI=1S € 216€ =1$3134
SSINVESNDD 3ZITVILINE D59 9°C SSY4HOD €2460/66 QITGNI3-1S Ts 169€ =) SKI34
9NIGYGT 3INSdYD 134 069 9°C SSVEWDD E2/60/58 EITGNLI=15 €9 99€E 104=124
*SINVLSNDD GWY S3INILADY O/I Q300D NOWHDD 069 9°C SSVIHDJ £2260¢%E BITSGNLI=1S 29 $2EE =01W02
6L L22€ fiNI=T24/
JIVNILVINDS GNV "IADH 43 1IVUVHD 059 9°¢ SSVdHO) £2/60/58 BITGNI-1S TLT 9€0€ =IABHKD
SAWVYAIT 3IWIL NN¥ 6104 FZEIVILIND - 6124 069 9°C SSVAWOD £2460/64 BITGNLI3-1S 262 $962 =AdLNGD
€LE 1212 1°31°60/
® 1 0Li2 /AN2*d1S/
9¢ 2612 £°3°134)
3000 NOILVZITYILIND GNV OIV=5AS N33ALIG WNIT 069 9°C SSYIHOD €2/00/68 QIIGNLI-I5 I 1€12 ®QIVSAS
SNN=9YY Q-4 £S 4¥ =GNADESO»1dOHVEODYd 1 X999 059 1°g NLa BL/E1468 091 1 0L02 153401 (8)
029 062§ 1Y
9G¥ w6 FASONI IR/
o1 %92 VERILTY,
: oy 0zt 13nxas (O
1 L1t FETE LY
SININWDD JUVAGHWH 13A3T ¥IA ¥SSI0¥e 3ivu 34 Hl9N31 ss3daav %3018
*SINIWNIISSY HI01Y ONV HYaoOud
6402 153803 - SINIDd ANINI WV 49044

39vd

°4T°LE°6Y °1T/11/68

6L02

®

069~6°T ¥3Av07 ¥38AD

153403 -- $53¥00v a3asnvaL(9)

94261 Y01 3HL 40 TeVA1

Lit aGvo7 3Kt 40 vAd
Sdv¥d 3714 01 NILLIAA
(E=A0°0°0733 84914)AY THIAD mom———om

®

{E=AUC 003341916)AY Td3AL g
153404 - dVd o<odev

E-13 @

60429800 K

(S 40 2 139YS) UOLIBJBUSD JYIAQ PUE AB1IBAQ 4O dely peoq 1ind “4-3 a4nbiy
GYEET TRV H31°Ndd TTI9%1 LIER
992¢€1 WES MWL)
1926 BSASHUI HWdd°Ndd 0941 =Hd)
GLYTT =AGUs0 LT3 124 *dnias
dA0I3Y DWEST 4ADI3Y
YLEET 99EET Y2EEL Was 1Ly nSASSHE 91241 2§ ASSHY
162¢€1 ' S ¥ HdS$1SET 62181 Was1SIN
0E0%T L2041 PSR]

.
L)
2LGET T9€€T W¥s 1LY 2AVIAS 09SKHVY
0YEET TIRTE) "SIELY T8SHYY
$3INBYI L3 HYH¥O0D4d $S3800V AMLNT

°SINIOd AULNI(LD)

i (11) 02951 4 e
WIOVNYH 3713 TYI01 - 138ndD °62/10/68 °92/20/28 299 9°¢ SSVdHOD 91/80/68 8I75SAS-1S 0L 01951 H31°NdD
YNYH ANIOd 10¥LNOD - 13dndd °62/L0/68 *92/20/28 299 9°E SSVdWOD 91780468 HGITSAS=1S 6 €09%T WdJ°Ndd
*sAd¥s 01 3DVI¥ILANI ¥3SN 60°ZA - HBAODIIY 069 9°€ SSVJHOD E246Gs6H 811SAS=1S 29€E 122v1 FTURET]
1S3AD3Y T+vy LS04 ~ HAED 069.9°E SSVIHOD t2460468 8ITSAS-1S & 1241 =S AS 3 Hd
$3713 30 ASI7 u03 3IJvdS 31vIDTIV - WY) 069 9°€ SSVAWOD €2/00/%8 BIISAS-1S L9 21%1 We$4SIT
*AYLN3 ¥OSS3II04d VDU W) 069 9°¢ SSVJIWOD €2¢60/%8 BITSAS~1S 62 00141 'LELLE]
GNIA3Y SXDIA - ¥ITIDULNDD WED 069 9°E SSVeH0D £E2400/68 BITSAS~IS LY 1€0%1 dRs1L)
°33144IVIISAHd dINS - #3TI0ULNDD WHD 069 9°€ SSV4HOD E€2/60/%8 BITSAS~1IS LS QGLET diS3 LD
°INILADY SNITIDUANDD WED 069 9°¢ SSVJAWDD €2/00/768 @I1SAS-1S 106 162€T HasIL)
°3IV483IANI UIOVNVH ANOWIW 103 069 9°€ SSYAHDD €2400/68 9ITSAS~1S 20% L9921 WK 4
°1N3QES3Y ¥IAVOT DIHVNAG LSV3 069 9°€ SSVIHOD €2460468 HITSAS-=IS 212 GEYZT $33°104
€2 EALTAS /403°104/
*Q3XE3 VAT LV MNI#HS = I°TA WD 059 9°€ SSVdWOD £2460468 BITSAS=1S 22 OLEZT 47841
SINIWHOD 3¥VAOYVH 33A3T ¥3A ¥SSI0Wd 490 3113 Hi9N3T SS3auagy *307d
(E=AL40904334LOT8)AVIYIAD
2 39vd *$1°1€°6T *TE4TT/6a 069-G°1T u3avol ¥38AD 153404 - ave dv01

60429800 K

@ E-14

(S #0 € 183YS) UOLIEJSUSH JYIAQ Pue Ae1Janp 4o dey peo 1INd “y-3 3d4nblLy

SNNeoydy Q=4YW 2SS £V =QNNOY¥°0=1403NILN0OYEAS
SNfi=O YV a=/H 45 /Y =0NNDYS0=1403NILADYENS
SNN=94V a=/W #S IV =0NNDE°0=Ld0INILNOYENS
SINIHHOD

6 39vd "STICTE°GT °T141T/68

Hi1°0d)d

HdI°Ndd

300323

aSASSHY

Hd$1SI

&TIN803

=QIVSAS

153804

SIUNFUuI43Y HY390ud
I X999 069 1°¢ Nid ﬁwsaﬂ\mr 2091 X
1 X999 069 1°6 Hid 11711768 2091 L1
I X999 069 1°¢ Hils 11411468 2091 €1

JYVAQEYH 13A3T H3IA ¥SSIDH4 3ivd ERIE] HAON3

TT941
50941
y66451
IYEYT
912%1
[TAL2

k1314
1e12
sL02

S$S3800V

LLER}
=hd)
°dnias
dA0Dd
=5ASSWY
HASLSIT

°3°704
sQIVSAS
152403

AYiIN3

*SINIDG ABLN3(LD)

+6GE
+91
+E

ss3daav

Liseva
4330

28,_@

w018

SLNIWNOISSY 32078 ONV WYE904d

99 @2

069=6°T ¥3QVO1 ¥3IEAD

-~ H19N31 dVIAD
seva(t) 3714 Ua N3iiisA 1S3W04 anous (@) stoon@) dvano

L L LY P ——

°d¥IA0

1S34903 ~ dvd QvO1

E-15 @

60429800 K

(S 30 4 393YS) UOLIRJAUSY JYIAO PUB Ae1Jeng jo dey peoq 11nd “y-3 3JnbLi
SIAV3T #E2 ERCETVER
$31033n +01 3 $310338 ED
Hi1°Ndd TI9NT =Wd1
HdI°Ndd Y0991 =Hdd
96691 *4n13s
4ADIIY OvEYI 4AUDI3Y
S7IN¥DY 2612 32124
=QIVSAS TETZ =QIVSAS
isivod 5202 153404
s30N3u3332 WY490¥d SSIUOQV AULNZ
*SINIOd AHLANI
SNN=93Y G=/W /S /¥ =QNNOY90sidJDINTANDUENS 1 X999 059 T°§ Hl3 11/11468 2091 22 +91 $3AV21
SNN=93v G~/W /S 4V =ONNDU¢0=1d0INLLNOYENS I X999 069 1°G NL3 1T41T450 2097 et +€ $31033N
SINIWHDD JUVAGUVH 13A31 ¥3A ¥SSI0¥e 34va 37114 HIGNIY SS3s0aY %078
*SINIWN9ISSY ¥JD18 ONV WYy90ud
5y == H19N3T dVIAD
$4v2 3713 UL N3LLleR 153303 dno¥e $37033N dvIAD

el

39vd

°HI°TEET °T11/11/68

FERLERETER]

069-6°T ¥30vVOD1 ¥Y3€AD

*QVIND ——————=n

1168v8 429 3 L184vYa
4330 #€2 3 #330

saoos +0T 3 soooa (£)
HV¥30dd §S3¥00V AYLNI
* ¢¥IAC

154304 - dvd GVO1

60429800 K

@ E-16

(S 30 § 393US) UOLIEUIUSY JVYIAQ PUB ABIJSAQ jo dey Peo 1INi *4-3 aunbiy4

$3A0M 378VL 6% (D) 03SN 39VALLS NI LOO9LE SGNDI3S ¢ 662° ()

9INL 469 a3 9IAL
WNRYL +€2 3 INnuL
HONYYE 0T 3 Honvae €D
Wi1°Ned EI94T =441
=Tlhdud 2ETZ *3°724
=0IVSAS [E12 SUIVSAS
1s3¥Dd sL0Z 153304
S3ON4b343¥ HY¥90¥d SS340QY AULN3

°SINIDd A¥iN3

SHN=9dY Q=74 /S v =QNNOY°0=1dDINILINDYENS I X999 069 1°6 Ni3 Tl41l466 2091 A4 +09 91Inl
SNN=OUY Q=74 /S /¥ =0NNDY°0=1403NT 1n0¥ENS 1 X999 069 1°¢ Nid 18211/ se 2091 2% +91 ANNEL
SNN=OYY Q=/6 /S 1Y =QNNOY°0=Ld03INILADYENS I %999 069 1°§ Ml3a 1T41U768 2027 €T +€ HONVEY

SINIHHOD IYVAQUVH TIAIT ¥3A ¥SSI0dd 31va 3714 H19N37 $S3u0Qyv plth

SANIWNOISSY ®IDT8 ANV WVHOIOdd

€ET == HLON3T dVIAD
Sdv2 3713 Ul N3LLXaA 153804 aN0y9 HONVEE dVIAD

©dVIAD mmmmmmmw

" d¥IAL
LT 39vd °HI°TE°GT °TI/1T/68 069-6°1 ¥20VD1 ¥38AD 1S3¥04 - d¥d QYU

E-17 @

60429800 K

(Y 40 | 383yg) uoLjeuaudn juawbag jo dey peoq jeLided °G-3 aJ4nbiLy

1

39vd

*6E0T YT

SINIHKOD

3YVAOYUVH

T2A3T ¥IA ¥SSIQUd

1 2461 9 /200897

L1 €56 7T §9 /°01°dv/

5L 94T S9 /INE=133/

1 66T €9 /ON2*d1S/

£L€ 290T §9 /°0I*cb/ ()

9€ 5201 €9 /°3°133/

2 220t (s3ved) @
z1vQ 3114 HIONZT ss2veeY %678

*SLNIWNIISSY Y3018 ONV kv¥9Cxd ()

1S3¥03 = INFWITS wewomee=

eL5¢ 153304 -- ss2yoav ¥asnvel (9
sav 3114 04 NPLLT¥R ()

21041 OYG1 IHL 40 T+vP]
2201 01 51 40 ved ()

FONVYEETY
P
WNAELTL
i

ERE-FEJ

E e EEAEGEaSEsENNESENESEESSSESEARRARSSNSNEEaNERAANSsRsEnsRsRNRNEnsnuanaanans (GO)

*T1/1T/68

®

069-6°T ¥ZQVDT ¥38AD

AIeavyTL
4
¥3307¢

4
YHAYSTL
¢
1SE9049

*HvysvIC 3% (1)

aN3

({S3TCIINCSIAVINI~HINVYE ONNNYL)-3340 33¥l INCD
12AZY

((LTREVYYYUIFC)~VYNAVL) -1S U0 EELF! any

HYQSAUOHIIH SV H INTG4IACEY T1va0T8
*SIATLITVIC OVCI93S @D

*avo1 02iNk03S = dvi vl (D)

60429800 K

@ E-18

(% 40 2 3183Yys) uoLieuausn juswbag Jo dey deo] jelided

*g-3 24nbi4g

°Vevg L3S - T°TA &BND

YIOVNVH 3714 V07 - 134NdD °62/10/48 °92/20/28
YNVH LNIOJ TOULNDD = 3N °62/00758 °92/20/28
“eAd¥x 0L FOIVIYILAND ¥3ISN “0°2A - YAODDI3Y

153003 T+VY 1SO4 = WY

$37I4 40 1ST7 ¥0d4 30vdS 3LvIOTTIV = Hud

SAULINI ¥OSS3IIDUd wOHY3 WHD

ONIH3Y SXCIR - ¥ITTIOUINGD HYD

°3FI4/IVIISARd JINS = ¥ITTOHLNOD WYD
°INILINDY ONITIOUINDD H¥D
°AIVHHUILINT YIOVNYH A¥OMIW 104

°LN3QIS38 H¥3QVODT JIHVNAG ASvd

°Q3X14 VAT L1V MNIWHS = T°TIA WHD
°SANIANDHENS INIQISIY = T°TA WHD
®SOILSILVLS AUVHNANS 133 = TI°TA WHD
°03IXIT4 3384 = T°TA WHD

CHHLITU09TY 3384 Q3XId = T°TA HKD
°@3IAId S23¢S FONVHI = T°TIA HKD
°G3XIZ 3LVI0TTV - I°TA KWD

°1$3ND3Y¥ WILSAS SS3I0ud

°Yivg 30 2078 3A0K

°¥0S8S320¥d MOILINNI O/1

NOIAVIIIVILINI A¥3A003Y L¥06Y - 6724

TOYLNDD INdAIND Q3L123MIC 1SIT

3000 INdAnD NOWWOD

ONILLYHYOY LNdINO Q3123810 4S11

YOLdIHISIO LINA V NIAIO LId V 3LvI0T = =834139

°SILLITNIAN °ISIN 124

°SITLITILN AWvy8IT 103080 NVY¥LHODS

3003 LNdAND ONILVOId NOWWODD

°3IVE0LS Y1IYO Q3 L¥IANDD

©SINYASHOD 3ZI1IVILINI

ONIQGVOT 3INSdVI 124

CSINVISHOD QWY S3NILNOW 0/1 G300) NOHWDD

JLYNILVYIONDD QHY 3AOM ¥3LOVEVMD

cAMYVYEIT JHIL NAY 6704 IZIIVILINI - €724

3002 NOILYZITVILINI OGNV QIV=SAS NIIALIE MNIT
SNN =9 8vY Q=/W 7S /V =GNNOU°0=L140KWVYIDYd

SAINIHWOD

Z 39vd °6ECDT®HT °1T/T1/68

069
2%9
299
049
069
059
069
069
069
059
085
069
Q59
(415
059
069
059
069
069
¢69
2%9
249
tAL]
59
069
099
069
069
0G9
0e9
059
069
059
059
0469
0469
059
069

I x9%99 069

JYYHOUYH

0 D90
e o o
™o m

MmAamEoam@aa@mMmammoMmm mm

© 9 8 90 @ ® © @ ¢ @ 9 © ©

VOV o DVOH VOOV ODDDDDDO

9°¢

D O
s o
M@

i°g

SSVdJHDD
SSVdHOD
SSYdkOI
$SYdHOD
SSVdHD)
SSYaklDd
SSVdHOD
SSVdkDJ
SSVdHOD
SSVJKDD
SSYdROD
§5vdkOD
5SVYdHOD
SSVdkOD
SSYdHOJ
SSVdWO I
SSY4NOD
SSVIHOD
SSVdROJ
§SVd4HOD
SSvdRhO2
SSVYdWD D
SSYdHOD
SSV4NDD
SSYdhQD
SSVdHOD
SSYdWOD
SSVdAWOD
SSVdWOJ
S§8VdHOD
SSVdKOD
SSVdw0D
SSYdKROD
S3IVCHOI
SSVYdR0D
SSVdRD D
SSVdHOD
SSYdHOI

N1d

T3A37 ¥3IA ¥SSI0Ud

069=¢°T ¥30Qv0T ¥I€A)D

€2/60/68
9T1/80/68
9T/80/68
€2/60768
€2/60/48
£2/60/68
£2/66/68
€2/60/68
€2/60/¢8
£2/760/58
€2/60/58
€2/60/64Y
€2/60/748
€2/760/48
€2/60/68
€2/60/68
€2/60/6G8
€2/60/68
€E2/60/68
€e/60/68
€2/60/49
€2/60/58
€2/60/768
€2/60/68
€2/60/68
€2/60/68
€2/60/68
€2/760/68
€2/60/68
€2/60/68
€2/60/68
€2/60/ 68
€e/6C/7¢68
£2760748
€2/60/768
€2/60/498
€2/60/68
€2/60/4G8
it/11/768

alva

SLINIWNIISCY X2078 ONY WveoCrd

8ITSAS=1S
8I18A€-1S
gITSAS=TS
8I1SAS=1S
8I715AS=1¢
GI1SAE=-TS
BITSAS-1S
EITSAS-1S
6ITSAS=1S
817SAS=-18
gI7SAS=1S
9I1SAS~-T8
€ITSAS-TS
BITSAS-1S
GIISAS=TS
GITSAS-1S
BI7SAS-1S
8I1SAS-1S
8I7SAS=T¢8
8I15A8=1S
8I7SAS=1S
9I7SAS=1S
6IISAS=1S
gIT6N1d-1S
81716 14=1S
917¢NLd=18
9IT6NLI4=-TS
8IT6NLd=18
g176N1d=18
8IT6NL4=TS
QIT6N14=TS
9IT6NL4=18
8ITGNLZ=TS
8I1GNL4=TS
8I76N1d=TS
SITGNL4=T1S
€IT6014~18
8IT6MHL =TS

) oo

ERRE

Ly
c1
G
?29€
[
L9
62
Ly
Ls
106
20%
212
z2e
<1z
L
22
9¢
51
9
GLT
04
%9
91
1
262
191
G1E
ez
cee
€202
£2€
€
%
€9
2y
LT
c6e
1
33
€2
029
Y6y
"1E
w41

H19R3T]

°avol

VNAVY = INZHDTS memmmmen

creel
CLPET
OLYET
G0TET
TOTET
2TCET
94721
9T1L21
Le921
9eTe1
HE6TT
2CET1
00€ETT
99011
LGCTT
SEDTT
LiLnt
€9.01
66LO0T
09601
2601
YEHNT
91491
20601
0ETOT
L8l
2€8L
heel
$20L
T0046
Gchy
EGhHy
2ThYy
L2€4
692%
5104
229¢
129¢
9QgE
EY6E
€242
iv22
LELT
€41

$sa400v

03INIKOIS -

[S- -1 IS

YOS dkD
H47°0Nd)
Wdl°Ndd
¥ACDSY
=SASSHY
H¥2LSIT
WaE Y3
¥Fe11D
d%5$ 742
H¥$TLD
Th°Qd
€326
ERENE] 1
U HWD
WIWOUWD
$59°4U2
EX-EREL)
AEEM TR
4S3°4HD
ENAAE 1]
SAS°NdI
IAW NdD
012°nd2
s pd¥CD
=31n0
eHLAING
=1ACa7
elI4139
=110E0d
aSASYOA
=101
=1§4173
=XSWITL
R ELRKFE]
=0ThCI
=?A0RH]
=AYINGD
eQI¥SAS
1STyCd
/W0J°ad/
MNver
JA¥ONITH/
/3 1dVH/
/3NId/

%Jole

dYH 0¥

E-19 @

60429800 K

(% 30 ¢ 399yg) uolleaausn juauwbas 40 dey peoT jellded

"g-3 a4nbij

SNN=3 YV

SNA=9 ¥V

SN=9¥Y

SNN=9dV

€

A=/ 7S /V =OGNNOYSO=Ld03INIINOYENS

SINZHHOD

Q=78 /S IV =0NNDYCO=1dDINILNDUENS

SINIHHOD

a=/H 1S /Y =0MI0D20=1d03INILN0OY¥ENS

SINIHKOD

Q=/% /S /¥ =QNNO¥0=1d0INILNOYEBAS

39vd

CHEOT°HT

SINIWHNDD

°11/711/68

I X999 069 1°¢ NLd TT/TT/GE

FYVAGYYH T3A3T ¥IA ¥SSI0Ud alva

1 X999 069 1°¢ NLld TT/1T/¢8

JYVAOUYH 13A37 ¥3A ¥SSI0Yd siva
1 X999 069 1°¢ Nld T1/11/68
JYVAQUVH 13A37 ¥3A YSSJ0¥d 3lva

I %999 Ce9 1°¢ NLd 11711768

FUYVAGHYVH T3A3T ¥IA YSSI0¥d s3iva

066=-6°1 ¥2QV0T ¥IEAD

"SINIHNOISSY NJ018 (ONV KVYYO0Yd

NMAYL - INFHOIS

09l (14 449¢71 A348L
? 2H9ET (2791)
LANS €461 S TELRE Y]
ERBE] H19N3 S§s2yagv »aipTe

*SINIWNOISSY ¥I078 ONV HYyoOudd

32yl = INIHI3S

091 22 A29ET 1194vy
0 029¢€1 (1180VvY¥)
3714 HI9NTT §s3yaqy »J07%

°SLNIWNOISSY NI0T8 ONV HYH90Ud

1I86VY - INZWO3S

091 22 C29€1 ¥3izq
c €29¢€1 [REEIQ)
13 HLON ST ssauaay »3Ce

*SINIWNDSISSY HIOT€ CONV WYEOOUL

Y330 - INZHOIS

091 2% 9cseT YNAVd
2 HG6ET (YNavd)
T °LeT ¢ FZANHS /7
EREE HIONGT SSayaoy *30e

“agval 0ILINTHOIS ~ dVYK Ov0T

o o o

60429800 K

@® E-20

(7 +0 % 1234yg) uoLleJdauan juawbas jo dey peoq jelided “G-3 aJnbLy

2618 = QILLIWYId WAWINVH 1 = Q3ISN SHICTB4+SHYUODYd+SININO3S JD °OM
S3A0H 378VL 1T Q) a3sn 39V¥CLS W) ECOSTE (3p) SONO33S d) €67° (5)
SHA=9 3V Q=/H /7S /¥ =QNNOY‘0=idO3INILNOYENS I %999 069 1°¢ NLld TT/T11/68 091 [T A [£73) $37033N
e G9LET {S31032N)
SINIWNOD JWVACUVH 13A3T ¥3IA ¥SSIO0Nd alva 3714 HI9N31 Ss3¥COV 3018

°SANIHNOISSY HIO0TR ONV HVYEOODUd

S37033N = INIHO3S ——eeco=-

SNN=9YV U=/W 4S5 /Y =0NNOY¥SO=1d03NILNOYENS I X999 069 1°¢ NL3 TT/T1/648 091 114 §9.¢€1 $3AV3T
0 G9LET {S3pvIm

029 €eLe 13 INYQ7

SIN3WKOD JYVROYYH 13A37 ¥IA ¥SSI0¥d 3iva 3714 H19NZT ss3v0av ¥J018

*SININNOISSY %078 ONY WY¥OCUd

S3AV3T = INIHITS emomeces

SNN =04V Q=/W 45 IV =0NND¥ 0= Ld0INILNO¥ENS I X999 069 1°¢ Nld TT/11/688 091 26 ETLET HINVYE
Z TTLET (HINVYE)
b6y L1422 S JAYONITH/

SLININHODID JYVAGYVH TIA3IT ¥IA ¥SSI0Ud 31va 3114 HI9NZ1 ss2ycav plral:]

°SINIHNOISSY M08 OMVY WY¥O0Ud

HINVHE = INFHDIS wevocowe

SNA=9YY Q=#W /S IV =0NNOY¥?0=1403NILINOHEANS I X999 069 1°6 Nl3d T1/11/¢68 091 92 TTLET ANAYL
0 TILEY (%ANYL)
nie LELY S ERLALT)

SINIHKDS JUVAQYYH T3A3T ¥3A USSI0¥d 31va ERRE] HION 21 sSIYO0Y »ee
L 39vd °HE0T°HT °TT/1T/69 069-6°T ¥30YDT ¥38AD *Qv0Y QILNTHOAS = d¥YE CVLT

E-21 @

60429800 K

uotiedsuan ajnsde)y jo dey VmOJ 11Nd "9=3 2J4nbBiLg

1

39vd

anon 3eve 1 (@)

SINIHKOD 3uYKRQuVH

SANIHWOD JUVAQHVYH

"HT°LE*HT °TT/T1/44

069-6°1 ¥IUvUT ¥34AD

a3sn 39vy0Ls W3 80C99T @) SUNUI3S 4 600° (D)

sqoon L 3 SQo0oM

91 sqoos #1VSNN* X =5A5

€T SQUOA #LVSNQI% X wd$lid

L1 SO0 #LVSNU* X ¥3MU14

[*29 $anoA *LVSNi# X 114
CERLEFEEER WY3UUYd $S34aqv AYLING

*SINIOd Adin3

069 9°E SSVJHOI TT/11/48 091 61 € SA00HK
T3A37 ¥3A ¥SS0¥d lva 3114 H19N3T S$S3dauy #3074

CSINTHNOISSY A2078 ONV HvdOUdd

13 -= HI9N31 1NS4VI
Sdvd 3714 OL H3LLTWA ¢HO¥SAH dNOY¥9 $A3CH 717054V
EERT RN 3 EEETY

91 3344 21 VSN# K =SAS

e e i %

()4 3341 #LVSNA* Qx 114
ERNERERER WY¥90¥d §S3duay A¥LN3

°SINIOd Adli3

069 9°€ SSvdWDD TT/T1/68 091 61 € 33d1
13A37 ¥3A Y¥SSI0¥d aLva 3114 HLSNZT §SIHTUV pTIRE:

*SLNIWNOISSY AJ0N9 ONV WAVl dd

g€ @ - HL9N3T INISAVS

Sdvd 3714 04 nNILLIWA dN0uSak _dnuds

@
)

374l - d¥w Qvull

60429800 K

@ E-22

INDEX

Absolute central processor program D-1

Absolute load
Definition C-1
Description 1-1
LIBLOAD 2-3, 4-2
Overlay execution 6-5
Segment execution 7-6
SLOAD 2-4, 4-2

ACPM table D-l11

Address relocation D-6

ASCM table D-10

Basic load 1-1, C-1
BEGIN option of LDREQ 4~2, D-24
Binary tables D-1
Blank common, establishment 1-9, 7-2, 7-4
Block
Blank common 1-9, 7-2, 7-4, C-1
Common 1-9, 7-2, 7-4, C-~1
Global common 7-4
Labeled common 1-9, 7-2, 7-4, C-1
Program 1-1

Capsule
Definition C-1
Description 1-2, 8-1
Generation 8-1
Internal representation D-l
Loading and unloading 8-3
OVCAPs 8-5
Statement 8-}
Table D-15
User loading 8-5
CAPSULE statement 8-1
CMLOAD option of LDREQ 4~4, D-25
Comment
PRFX table D-21
SEGLOAD directive 7-~7
TRAP directive 5-2
Common block descriptors D-1
COMMON directive 7-15
Common Memory Manager 1-6, 4-1
COMPASS macros 4-1
Completion statement 2-1
Continuation
SEGLOAD directive 7-7
TRAP directive 5-2
Control statement load 1-3, C-1

Debugging aids 5-1
Dependencies, hardware instructions D-22
Directives

OVERLAY 6-3

SEGLOAD 7-7

TRAP 5-2
DMP

In loader sequence 2-1
LDREQ option 4-=5
Dynamically loaded code C-1

60429800 K

EACPM table D-12

EASCM table D-11
ECLOAD option of LDREQ 4—~4, D-25
END directive 7-15
END option of LDREQ 4~2, 4-=4, D-25
ENT macro 8-6
ENTHDR macro 8-6
ENTR table D-4
ENTRY option of LDREQ 4-5, D-27
Entry point
Changing name using USE 2-10
Definition C-1
Duplicates 1-6, 7-3
EPT parameter 2-10
EXECUTE parameter 2-4
LIBLOAD parameter 2-3
Name call 2-1
NOEPT parameter 2-10
NOGO parameter 2-5
OMIT option 2-10
ENTRY table generation
ENT macro 8-6
ENTHDR macro 8-6
EPT option of LDREQ 2-10
EPT option of LDSET D-19
EQUAL directive 7-14
ERR option of LDSET 2-9, D-17
Error messages and codes B-1
EXECUTE
Description 2-4, 41
LDREQ option 4-4, D-24
Statement 2-4
Execute only file C-1
Extended fill table D-6
Extended linkage table D-9
Extended replication table D-10
Extended text table D=5
External references
Definition C-1
Satisfying 1-5, 2-6, 3-1, 4-3
Table D-4

Fast Dynamic Loading 1-2, 8-1, C-1
Fast Overlay Loader 6-9, C-1
FDL 1-2, 8-1
Field length
Control 1-6
Definition C-1
Determination 1-5
File
Loader input 1I-1
Name call 2-1
FILES
LDREQ option 4-~2, D-27
LDSET option 2-10
Fill common area table D-7
FILL table D=7
FOL 6-9
FOL resident 6-10
FRAME directive
Description 5-1
Parameters 5-1, 5-3

Index—~1 @

Global common blocks 7-2, 7-12
GLOBAL directive 7-12

Global library set 1-6, 3-1, C-1
GROUP statement 8-1

INCLUDE directive 7-9, 7-11
Input requirements 1-1
Interactive procedure file 2-12

Label field
SEGLOAD directive 7-7
TRAP directive 5-2
Labeled common
Definition C~1
Establishment 1-9, 7-2
LDREQ macros 4-2
LDRTEXT 4~1
LDSET
Description 2-7
Examples 2-7, 2-11
Internal specification 2-12
Options 2-8
Table D-16
LEVEL directive 7-11, C-1
LIB
LDREQ option 4-2
LDSET option 2-8
LIBLOAD
LDREQ option 4-2, D-25
Statement 2-3
Library
Current 2-6
Definition C-1
Global set 1-5, 3-1
Loading from ' 2-3, 4-5
Local set 1-5, 2-7
NUCLEUS 1-5, 3-2
Search for externals 1-5, 2-1
SYSLIB 1-5, 3-2
Library set specification
Global 3-1
Local 2-7
LIBRARY statement
Description 3-1
Inside loader sequence 2-1
LINE NUMBER table D-14
LINK table D-8
Linking programs 1-5, C-1
LOAD
LDREQ option 4~2
Statement 2-3

Load completion 1-3, 2-4, 2-5, 4~1

Load map 1-5, C-2, E-1
Load sequence 2~1, C-2
Loader call
General format 4-1
LDRTEXT 4~1
Options 4-2
Required sequence 4-2
Loader control statements 2-1
Loader input 1-1
LOADER macro 4~1
Loader sequence errors Bl
Loader tables D1
Loading
Absolute 1-1
Basic 1~-1
Capsule 8-3
Fast Dynamic Loading 1-2, 8-~1
Fast Overlay Loader 6-9

@ Index~2

Loading (Contd)
ovcAP 8-5
Overlay 6-5
Relocatable 1-1
Segment 1-1, 7-2
LOADREQ macro (request basic load) 4-5
LOADREQ macro (request overlay load)
Description 6-5
Internal format 6-7
Recommended procedure for loading 6-9
Local library set 2-7, C-2
LOCAL SAVE block 7-4

Main overlay C-2
MAP
Control statement 3-1
Inside loader sequence 2-1
LDREQ option 4-2
LDSET option 2-8, D=-17
Map, load 1-4, C-2, E-1
Memory allocation 1-8
Memory, freeing 8-4
Memory, presetting 2-8, 4-2

Name call statement 2-1, C-2
NOEPT option of LDSET 2-10, D-19
NOGO
Description 2-5, 4-1
LDREQ option 4-5, D-25
Statement 2-5
NOREWIN option of LDSET 2-9, D~17
NUCLEUS library 1=5, 3-2, C-l

Object directives, loader 1-4, C-2
Object program tables D-1
OMIT

LDREQ option 4-2

LDSET option 2-10, D~19
Operating system control statements 2~1, 3-1
OVCAP

Definition C~-2

Description 1-2, 8-5

Directive 8-6

Generation 8-5

Loading and unloading 8-6
Overlay

As data 6-10

Definition C-2

Description 1-2, 6-1

Directive 6~1

Directory 6-10

Error processing 6-5

Errors detected during overlay loading B-1l

Generation 6-1

Loading and execution 6-5

Main 6-1, C=2

Primary 6-1, C-2

Secondary 6~1, C-2
OVERLAY directives 6-3

Page eject
SEGLOAD directive 7-7
TRAP directive 5-2
Parameters, execution 2-4
PASSLOC option of LDREQ 4-2, 4~5, D-28
PD
LDREQ option 4-2, D-20
LDSET option 2-10, D-20

60429800 K

PIDL table D-2
PPM table D-l
Prefix table D-20
PRESET and PRESETA
LDREQ option 4-2
LDSET optiom 2-8, D-17
PRFX table D-20

Program
Assignment to segments 7-2
Fixed 7-2

Initiated load C-2
Movable 7-2
Name duplication 1-6, 7-3
Object 1-1, 1-4, 2-3, 2-4
Program formats 1-8
Program identification and length table D-2
PS
LDREQ option 4-2, D-20
LDSET option 2-10, D-20
PTEXT table D-3

REDUCE

Definition C-2

Field length control 1-6

Inside loader sequence 2-1

Statement 3~2
Relocatable load

Capsule 8-1

Definition C-2

Description 1-1

LIBLOAD 2-3, 4-2

LOAD 2-3, 4-2

Overlay generation 6-1

Segment generation 7-4

SLOAD 2-4, 4-2
Relocatable program D-1
Relocation 1-5, C-2
Relocation base

Entry point D-4

Fill D-7
Replication D~7
Text D=5

REPL table D~7
Request table 4-2, D-23
REWIND option of LDSET 2~9, D-17
RFL
Field length control 1-6
Statement 3-3
Root segment C-~2

SATISFY
LDREQ option 4~2, D-27
Statement 2-~6
Satisfying externals 1-5, 7-4, C-2
SEGLOAD control statement 7-6
Segmentation
Control statement 7-6
Definition (-2
Description 1~-1, 7~1
Directives 7-7
Errors detected by SEGRES B-1
Level 7-1, 7-11
Loading 7-3
Program assignment 7-2

60429800 K

Segmentation (Contd)
Root segment 7~1, C-2
Tree structure 7-1, 7-8
Segments 1~1, 7-1, C-2
SLOAD
LDREQ option 4-2, D=-25
Statement 2-4
STAT option of LDREQ D-28
Statements, loader 2~1
Statically loaded code C=2
SUBST
LDREQ option 4-2
LDSET option 2-10, D-19
SYMBOL table D-14
SYSLIB 1-5, 3-2, C-2
System library C-3
System text overlay D-1

Tables, binary D-1
TEXT table D=5
TRACK
Directive 5-1
Parameters 5-3
Transfer address C-3
Transfer symbol
END directive 7-15
XFER table D-10
TRAP
Call 5-5
Control statement 5-1
Directives 5-1
Error conditions 5-6
Errors detected by TRAP and TRAPPER B-2
Tree
Definition C-3
Level 7-11
Structure 7-8, C-3
TREE directive 7-8

USE
LDREQ option 4=2
LDSET option 2-10, D~18
USEP
LDREQ option 4-
LDSET option 2
User call loader
Definition -3
Description 4-~1
Errors detected by user call interface B-l
LDREQ macro 4-2
LOADER macro 4-1
Request table 4-2
User library C-3

Weak extermals 1-5, C-3

XFER table D-10
XFILL table D-6
XLINK table D~9
XREPL table D-10
XTEXT table D=5

Iadex-3 @

NN ONOTY 1D

COMMENT SHEET

MANUAL TITLE: CYBER Loader Version] Reference Manual

PUBLICATION NO.: 60429800

REVISION: K

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested

additions or deletions, or general comments on the back (please include page number
references).

Please reply No reply necessary

FOLD FOLD

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division ‘

P.O. BOX 3492

Sunnyvale, California. 94088-3492

i e

FOLD FOLD

NO POSTAGE STAMP NECESSARY IF MATLED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY :
STREET ADDRESS:

CITY/STATE/ZIP:

TAPE TAPE

LOADER FEATURES “SUMMARY

{
5,
Corresponding Page Numbers
Mnemonic (gzizl) Page Numbers LoREQ Directive Table Formats
Macro LDSET LDSET
Macro Table -
Loader Control Statement:
name call k A ‘ ' o 2~1
10AD 0000 2-3 4-2 D=25
LIBLOAD 0001 2-3 4-2 D-25
SLOAD 0002 2-4 4—2 D-25
CMLOAD 0003 44 D-25
ECLOAD 0004 4ty D-25
EXECUTE | 0005 2-4 b=y D~25
NOGO _ 0006 2-5 4=5 D-25
SATISFY - 0007 2-6 4-3 D-27
_ LDSET ~ C9ug
LDSET Parameter:

LIB 0010 2-8 4-2 D-16 D-16
MAP ' 0011 2-8 4-2 D-17 D-17
PRESET/PRESETA 0012 2-8 4-2 D-17 D-17
ERR 0013 2-9 D—i7
REWIND/NOREWIN 0014 2-9 D-17
USEP 0015 2-9 4-2 D-18 D-18
USE - 0016 2-10 4-2 D-18 D-18
SUBST 0017 ; 2-10) D-19 D-19
OMIT 0020 2-10 4-2 D-19 . p-19
ENTRY ' 0021 4-5 p-27

' DMP | o022 | 4-5 D-27
FILES/STAT V 0023 2-10 4-2 D-27/28
PASSLOC . 0024 4=5 D-28
EPT 0025 2-10 : ' D-19
NOEPT 0026 2-10 D-19
COMMON 0032 2-10 ~ D-20
B 0033 2-10 4-2 D-20 D-20
PS 0034 2-10 42 D-20 D-20

60429800 K

SORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN 55440
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

E5) CONTROL DATA

LITHO IN U.S.A.

Ty

