60496200

(G CONTROL DATA

DMS-170

FORM VERSION 1
REFERENCE MANUAL

~ CDC® OPERATING SYSTEMS:

NOS 2
NOS/BE 1

(GB) CONTROL DATA

60496200

DMS-170

' FORM VERSION 1
REFERENCE MANUAL

CcDC® OPERATING SYSTEMS:

NOS 2
NOS/BE 1

REVISION RECORD

Revision
A (11/01/75)

B (04/28/78)

C (10/31/80)

D (07/25/83)

E (12/16/85)

Description
Original printing.

Rewritten to reflect FORM Version 1.1 at PSR level 472. Major changes include revised
directive syntax, single control statement copies, RT=S requirement when reading or
writing IBM files, and requirement of FILE control statement for input and output files
whenever block and record type differ from the CRM default. The multiple pass feature is
not supported, and FORM is no longer callable from a user program.

Rewritten to reflect FORM Version 1.2 at PSR level 528, Major changes include
implementation of relational operators, implementation of FORM handling of variable
length records, and enhancement of the MAX parameter. Entire manual has been reprinted.

Revised to reflect FORM Version l.2 at PSR level 587, This revision supports NOS Version
2 and includes miscellaneous technical corrections.

Revised to reflect FORM Version 1.2 at PSR level 647. This revision deletes all
references to operation under NOS 1, incorporates miscellaneous technical changes, and
reflects release under NOS 2,4.3.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

©copPYRIGHT CONTROL DATA CORPORATION P. 0. BOX 3492

1975, 1978,

1983, 1985 SUNNYVALE, CALIFORNIA 94088-3492
All Rights Reserved

Printed in the United States of America or use Comment Sheet in the back of this manual

ii

60496200 E

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision
Front Cover - B-1 C
Title Page - B-2 thru B-6 D
ii E B~6.1/B=6.2 D
idi/iv E B-~7 thru B-ll [
v E C-1 thru C-5 C
vi E D-1 D
vii D D-2 E
viii D D3 D
ix C E-1 thru E-6 c
1=-1 B F~1 C
1=2 C F-2 C
1-3 C F=3 thru F-5 D
2=-1 c G-1 D
2=2 thru 2-6 D G-2 thru G-5 c
2-7 C G=6 D
3-1 D H~1 thru H-3 c
3-2 D H-4 E
3-3 E H-5 o
3-4 c I-1 B
3-5 thru 3-12 D J=-1 C
3-12.1/3-12.2 D K=-1 D
3~13 thru 3~19 C K=2 E
b4=1 E K=3 ¥
4=2 E K=4 E
4=3 thru 4=5 D K=5 C
4-6 E L=1 thru L-4 C
5-1 D M-1 E
5-=2 thru 5-5 [M~=2 E
5=-6 D M-3 D
5~7 c N=1 D
A-1 D N-2 D
A=2 E Index—~1 E
A=-3 D Index=-2 E
A-4 E Index~-3 D
A~5 E Comment Sheet/Mailer E
A-6 D Back Cover -
A-7 thru A-20 D

60496200 E iii/iv

PREFACE

The File Organizer and Record Manager (FORM) system is
a comprehensive, general purpose utility designed for use
with the following operating systems:

e NOS 2 for the CONTROL DATA® CYBER 180
Tomputer Systems; CYBER 170 Series; CYBER 70
Models 71, 72, 73, 74; and 6000 Series Computer
Systems

® NOS/BE 1 for the cpbCc® CYBER 180 Computer
Systems; CYBER 170 Series; CYBER 70 Models 71, 72,
73, 74; and 6000 Series Computer Systems

FORM can be used to manipulate records and reorganize
files in formats the same as or different from the
originals. By warking through the CYBER Record Manager
facilities of the NOS 2 or NOS/BE operating system,

The following manuals are of primary interest:

FORM can be used to create files with sequential, indexed
sequential, actual key, or direct access organization.
FORM is called through control statements.

The NOS system Information Manual is an online manual
that includes brief descriptions of all NOS and NOS product
manuals. To access this manual, log in to NOS and enter
the command EXPLAIN,

The FORM user is expected to have some familiarity with
the listed publications. The publications are listed
alphabetically within groupings that indicate relative
importance to the reader.

Information necessary for a complete understanding of
FORM usage is contained in the publications listed below.
The applicable operating systems are also indicated.

Publication
Publication Number NOS 2 NOS/BE
CYBER Record Manager Basic Access
Methods Version 1.5 Reference Manual 60495700 X X
CVYBER Record Manager Advanced Access
Methods Version 2 Reference Manual 60499300 X X
INTERCOM Version 5 Reference Manual 80455010 X
Network Products Remote Batch Facility
Reference Manual 60499600 X
NQOS Version 2 Reference Set, Volume 3,
System Commands 60459680 X
NQOS Version 2 Reference Set, Volume 4,
Program Interface 60459690 X
NOS/BE 1 Reference Manual 60493800 X
8-Bit Subroutines Reference Manual 60495500 X X
The following manual is of secondary interest:
Publication
Publication Number NQS 2 NOS/BE
CYBER Loader Version 1 Reference Manual 60429800 X X

60495200 =

vV e

@ vi

Sites within the United States can order CODC manuals from Control Data Corporation,
Literature and Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

Other sites can order CDC manuals by contacting the local country sales office.
This product is intended for use only as described in this document.

Control Data cannot be responsible for the proper functioning of
undescribed features or parameters.

60496200 E

CONTENTS

NOTATIONS ix 4, EXECUTION 4-1
Control Statements 4-1
1. INTRODUCTION 1-1 FORM Control Statement 4-1
IBM Tape Files 4-1
Directive Overview 1-1 CYBER Record Manager Interface 4-1
FORM Execution 1-2 Owncode Interface 4-2
RX Exit 4-3
CX Exit 4-5
2. DIRECTIVE ELEMENTS 2-1 IX Exit 4-5
FEX Exit 4-5
Directive Format 2-1 DCA, CPA, HRL, LX, DX, DCT, EX Exits 4-6
Equating Logical File Names 2-1
Character Set 2-1
Keywords 2-2 5. SAMPLE PROGRAMS 5-1
Literals 2-2
String Literals 2-2 CDC File Refarmatting 5-1
Numeric Literals 2-2 [BM-CDC Conversion 5-3
Item Descriptors 2-3
Search Descriptors 2-4
Selector Expressions 2-5 APPENDIXES
A Character Data Input, Output, and Central
3. DIRECTIVES 3-1 Memory Representation A-1
B Diagnostics B-1
Ordering of Directives 3-1 C Glossary C-1
Input Directive (INP) 3.1 D IBM Tape File Record and Blocking Formats D-1
Output Directive (QUT) 3.3 £ DataFormats E-1
IBM 360/370 Conversion Directive (CON) 3-3 F Internal Data Representation F-1
Byte L.ength 3-6 G Conversion Rules G-1
Field Alignment 3-6 M Summary of Keywords and Directives H-1
Conversion Items 3-6 [Maintaining 8-Bit Significance [-1
Repeat Count 3-6 J FORM/B-Bit Subroutine Comparison J-1
Simple Item Conversion 3-6 K FORM Handling of Variable Length Records K-1
Conversion Strings Used as Conversion L. Comparison of FORM 1.2 and FORM 1.0 - L-1
[tems 3-7 M FORM Handling of ASCII Data M-1
Conversion Specifications 3-7 N Collating Sequences N-1
Conversian Strings 3-7
Conversion String Punctuation 3-7
Nested Conversion Strings 3-7 INDEX
Q Specification 3-9
Special Conversion Rules 3.9
Bit to String . 39 FIGURES
Bit to Numeric 3-9
String to Numeric 3-9 1-1 FORM-CRM Functional Configuration 1-2
Character Skipping and Blank/Zero Fill 3-10 1-2 Example of FORM Job Decks 1-2
Floating-Point to Integer 3-10 1-3 FORM Logical Flow 1-3
Binary Data ’ 3-11 2-1 Directive Format 2-1
Qualification Directive (QAL) 3-11 2-2 Equating Logical File Names 2-1
Reformatting Directive (REF) 3-12.1 2-3 Examples of [tem Descriptors 2-4
Reformat Items 3-12.1 2-4 Examples of Search Descriptors 2-6
Simple Reformats 3-13 2-5 Selector Expression Formats 2-6
Reformat Strings Used as Reformat Items 3-14 3-1 INP Directive Format 3-1
Reformat Specifications 3-14 3-2 Examples of INP Directive 3-3
Reformat Strings 3-15 3-3 QOUT Directive Format 3-4
Reformat String Punctuation 3-15 3-4 Examples of OUT Directive 3-5
Nested Reformat Strings 3-15 3-5 CON Directive Format 3-6
Q Specification 3-15 3-6 Elements of a Conversion Specification 3-8
Additional Natation Techniques 3-15 3-7 Elements of a Conversion String 3-9
Sequencing Directive (SEQ) 3-16 3-8 Example of CON Directive 3-11
Page Directive (PAG) 3-16 3-9 QAL Directive Format 3-11
Execute Directive (XEQ) 3-16 3-10 Examples of QAL Directive 3-12

60496200 D vii @

3-11 REF Directive Format 3-13 5-8 CDC COBOL Record Format 5-5
3-12 Elements of a Reformat Specification 3-15 5-9 Sample CDC Records 5-5
3-13 Elements of a Reformat String 3-16 5-10 Record Reformatting 5-5
3-14 Examples of REF Directive 3-17 5-11 Job Decks for Conversion Example 5-6
3-15 SEQ Directive Format 3-17 5-12 Printout of a F ORM Conversion Example 5-7
3-16 Examples of SEQ Directive 3-17

3-17 PAG Directive Format 3-18

3-18 Examples of PAG Directive 3-18 TABLES

3-19 XEQ Directive Format 3-18

3-20 Examples of XEQ Directive 3-19 1-1 FORM Directives 1-2
4-1 FORM Control Statement Format 4-1 2-1 Valid T and m Values for Item Descriptors 2-3
4-2 Sample Deck Structures 4-3 2-2 Examples of Search and Item Descriptors 2-5
4-3 RXFunction Format 4-4 2-3 IBMFormat Comparison Modes for Selector

44 Pointer Format for RX Function 4-4 Expressions 2-6
4-5 Example of RX Owncode Routine 4-4 2-4 CDC Format Comparison Modes for Selector

4-6 CXFunction Format 4-5 Expressions 2-6
4-7 IXFunction Format 4-5 2-5 Examples of Selector Expressions 2-7
4-8 Example of IX Owncode Routine 4-6 3-1 Default Conversions If Tm2 Is Not

4-9 FEX Subroutine Format 4-6 Specified 3-7
5-1 Input Record Format and Sample Records 5-1 3-2 Examples of Simple Item Conversions 3-8
5-2 Output Record Format 5-2 3-3 Conversion String Examples 3-10
5-3 Record Reformatting 5-2 3-4 Examples of Reformat Items 3-14
54 Job Decks for Reformatting Example 5-3 4-1 Summary of FIT Field Default Values 4-2
5-5 Printout of a FORM Run Under NOS 5-3 4.2 Parameters Required in the FILE Control

5-6 IBM COBOL Record Structure 5.4 Statement for IBM Tape Files 4-2
5-7 5-4 4-3 Owncode Exits 4-4

Sample IBM Records

® viii 60496200 D

NOTATIONS

Each FORM directive is described in terms of a reference
format. The following conventions are used:

UPPERCASE
lowercase

[] Brackets

60496200 C

words are keywords and must appear
exactly as shown.

words represent the words or
symbaols supplied by the user.

enclose optional portions of a
reference format. All of the format
within the brackets can be omitted
or included at the user's option. If
items are stacked vertically within
brackets, only one of the stacked
itens can be used.

{ } Braces

... Ellipses

A

enclose two or more vertically
stacked items in a reference format
when only one of the enclosed items
must be used.

immediately follow a pair of
brackets or braces to indicate that
the enclosed material can be
repeated at the user's option.

indicates a space (blank).

Punctuation symbols shown within the formats are required
unless otherwise noted. Unless otherwise specified all
references to numbers are to decimal values.

INTRODUCTION 1

File Organizer and Record Manager (FORM) is a file
management utility callable by control statements. The
user specifies a single source of input records, either a
tape or disk file or a user-supplied owncode routine from
which records are delivered individually. FORM then
operates on this input to produce wp to twenty restructured
output files. Detailed processing is controlled by FORM
directives through which the user specifies the functions to
be performed. The FORM functions can be used to:

e Perform conversions between IBM sequential B8-bit
tape files and CDC internal format, maintaining 8-bit
significance where necessary. Once an IBM file has
been converted to CDC format, any of the functions
valid for CDC files can be performed.

e Convert files from one organization type to ancther;
for example, from sequential to indexed sequential.

e Perform simple file copying.

e Copy selected records from an input file to an output
file with specified data conversions taking place.

e Reformat records in terms of data fields, including:
field reordering, data conversion, literal insertion,
zero or blank suppression, data packing and expanding,
and data truncation. These operations can occur in
various combinations.

[Sequence number a file.

e Reformat a file for printing.

The user also can specify error processing and collating
sequence options as well as owncode subroutines to be
executed at various points during execution of FORM,

All input/ouput is handled by cDC® CYBER Record
Manager (CRM). The user must supply proper CRM
descriptions of files being used, as outlined in section 5.
The FORM-CRM functional configuration is shown in
figure 1-1.

DIRECTIVE OVERVIEW

The user communicates with FORM through directives,
each of which performs a specific function. A directive is
specified by means of a 3-letter mnemonic. The eight
directive mnemonics and their associated functions are
listed in table 1-1.

The directives are passed to FORM either as part of the
job deck (file INPUT) or as a separate file of card images
specified on the FORM control statement.

Input Records
{From File or
QOwncode)

CRM

Reads
Input File

FORM
Directives

Specify
Functions
To be
Performed

N

Manipulates [nput
Records to Produce
Output Records

CRM

Writes
Qutput File

S

Reformatted
Qutput File

Figure 1-1. FORM-CRM Functional Configuration

60496200 B

1-1

TABLE 1-1. FORM DIRECTIVES
Directive Directive s
Function Mnemonic Description

Input INP Declares an
existing file to
be used as a
source of input
records.

Output ouT Declares a single
output file to be
generated by FORM.

File CON Performs conver-

Conversion sions between IBM
and CDC files.

Record QAL Selects records

Qualification from the source
file to be sent to
an output file.

Record REF Reformats input

Reformatting records for output.

Record SEQ Places a sequence

Sequencing number into any
position of an
output record.

Print PAG Formats a file for

Formatting printing.

Execute XEQ Specifies entry
point names of
owncode routines
to perform error
processing and to
supply input
records.

Typical uses of FORM directives include using INP to
specify an input file to be modified; OUT (and PAG if the
file is to be printed) to specify an output file; and using
QRAL, REF, SEQ, and CON to specify how the output file
records are to differ from the input file records. As an
alternative to the INP and OUT directives, an input and an
output file can be specified on the FORM control
statement, or input records can be passed to FORM via a
user-supplied routine. FORM can process only one input
file but can generate up to twenty output files.

FORM EXECUTION

When FORM is called, it reads all directives, whether they
exist as part of the job deck or in card images on another
file, and scans for syntax errors. If errors are detected,
appropriate diagnostics are written to file OUTPUT. If no
syntax errors have occurred, execution of the directives
begins when an end-of-record is encountered in the
directive stream. FORM does not relinquish control, other
than at user-defined owncode exits, until the run
terminates.

A FORM run consists of a single call to FORM. During a
run, functions are performed according to the directive
parameters. When all directives have been executed, the
run terminates. FORM executes all directives in a

1-2

predetermined order, regardless of the order in which they
are specified.

An example of a sequence of control statements and
directives comprising a FORM run is illustrated in
figure 1-2. Control statements are included to attach the
input file and to make the output files permanent. In this
example, the input and output files are assumed to have
other than default record and blocking types; these
characteristics are specified to CRM by the FILE
statements. The file containing the input records, FILEL,
is identified to CRM by the FILE control statement and to
FORM by the INP directive. Two output files, FILEZ and
FILE3, are declared by the OUT directive. The QAL
directive specifies that FILEZ is to contain only those
records from FILEl that satisfy condition-1. The records
are to be reformatted according to format-1 of the first
REF directive. FILE3 is to contain all of the records of
FILE1l, reformatted according to format-2 of the second
REF directive. The 7/8/9 card (end-of-record) initiates
execution of the preceding directives.

NOS:

Job statement

USER statement
CHARGE statement
ATTACH(FILE1=PFILE1)
FILE(FILE1, . ..}
FILE(FILEZ, ...)
FILE(FILE3, ...)
DEFINE(FILE2=PFILE2)
DEFINE(FILE3=PFILE3) }
FORM

7/8/9 in column 1
INP(FiLE1)

OUT(FILE2)
OUTI(FILE3)
QAL(FILEZ2,condition-1)
REF(FILE2, format-1)
REF(FILE3,format-2)
7/8/9 in column 1

Attach input file
Define files to CRM

Make output files
permanent

FORM directives

NOS/BE:

JOB statement
Account statement

ATTACH(FILE1,PFILE1,ID=MYID) Attach input file

FILE(FILE1, . ..)
FILE(FILE2, . . .) Define files to CRM
FILE(FILES, . . .)

Assign output files

REQUEST(FILE2,*PF) }
to storage device

REQUEST(FILE3,*PF)
FORM.
CATALOG(FILE2,PFILE2,1D=MYID) } Make output files
CATALOG(FILE3,PFILE3,ID=MYID) { permanent

7/8/9 in column 1
INP(FILET)
OUT(FILE2)
OUT(FILE3)
QAL(FILE2,condition-1)
REF(FILE2 format-1)
REF(FILE3, format-2}
7/8/9 in column 1

FORM directives

Figure 1-2. Example of FORM Job Decks
FORM functions always are executed in the order shown in

figure 1-3. . User owncode exits are indicated to show the
point in processing at which they are called.

60496200 C

XEQ e o e o e e —| _ Begin
Execution
I t
INP e] L S — Label Processing (LX)
Positioning
‘ Supply Input Record {IX)
Error Processing {EX)
———————— - | Key Hashing (HRL)
Rtecc’rd End-of-File (DX)
ni"” Decryption/Decompression {DCA}
Conversion)
CON e e e e e e From = —— = wm e e Conversion Error (CX)
1BM 360/370
OAL e e e e e o e - Record
Selection
|31 = S —— Record e —) — —jee we .. Reformatting Error {RX)
Reformatting
J For each output file
SEQ e e e e e e e o Sequencing
l [wer—emme F o1 each input record
PAG cm won e o s e o e e Print
Formatting
CON et e e e e ~{ Conversion TOle e =} = —|— — —. Conversion Error (CX)
IBM 360/370
Error Processing (EX)
OUT s s e e o Record e — {— —] — — —)} Encryption/Compression (CPA)
Output Key Hashing {(HRL)
e — Display/Collating Conversion (DCT)
!
End
Processing Abnormal Termination

at any point in execution (FEX)

60496200 C

Figure 1-3. FORM Logical Flow

DIRECTIVE ELEMENTS 2

Elements comprising the FORM directives include
characters, literals, keywords, item descriptors, and
selector expressions, organized according to the directive
format. FEquating of logical file names is a shorthand
method of duplicating directive specifications.

DIRECTIVE FORMAT

A FORM directive consists of a directive mnemonic
followed by a logical file name and a parameter list. The
directive format is shown in figure 2-1. The directive
mnemonic and the logical file name must precede the
parameter list. Parameters can be specified in any order.
The logical file mame and the parameter list must be
enclosed by parentheses. Parameters must be separated by
commas.

EQUATING LOGICAL FILE NAMES

Directive specifications for files can be duplicated in a
FORM run by equating logical file names. FORM copies
the specifications of the directive for the logical file name
on the left of the equals sign from the specifications of the
identical directive for the logical file name on the right.

The technique of equating logical file names is illustrated
in figure 2-2. In the first example, two output files,
OUTFILY1 and OUTFIL2, are created, each centaining the
same records selected by the QAL directives but differing
in the formats specified by the REF directives. The
equating of logical file names in the QAL directive causes
the same record selection criteria to apply to CUTFIL1 and
OUTFIL2. The directive containing the specifications must
precede the directive which equates the file names.

fnc(ifn, param-list)

fne 3-letter mnemonic for the directive.

Ifn Logical file name consisting of 1 through 7
letters or digits, beginning with a letter;
required in all directives except XEQ.

For the INP, OUT, PAG, SEQ, and XEQ
directives, a list of options in the format:

param-list

ke;Iword— 1=opt-1,keyword-2=opt-2,

Figure 2-1. Directive Format

The XEQ directive is the only directive that does not
require a logical file name. If an XEQ directive appears
without a parameter list, it must be terminated by a
period. Blanks are significant only when used in literals
and when preceding and following logical operators;
otherwise, blanks are ignored and can be included to
improve readability.

FORM directives are coded in the first 72 columns of
80-column cards or as card images. A directive can begin
in any column and can span more than one line. The first
72 characters of a line are scanned. Only literals can
extend beyond column 72. Literals that extend beyond
column 72 are treated as if they continue in column 1 of
the next line. All other characters extending beyond
column 72 are ignored. Continuation lines are valid and
can begin in any column; however continuation and
terminating characters must not be placed beyond
column 72.

Refarmat-items, qualification-items, and conversion-items
cannot be split across lines. Literals can be split across
lines. Each FORM directive must begin a new line;
characters appearing after the right parenthesis
terminating the parameter list are ignored by FORM and
can be used for comments.

60496200 C

Example 1.

INP(INFILE)
OUT(OUTFIL1)
QUT{OUTFIL2)
QAL{OUTFIL1,condition-1)
QAL(OUTFIL2=0QUTFILT)
REF{OUTFIL1,format-1)
REF{OUTFIL2, format-2)
7/8/9 in column 1

Example 2.

INP{INFILE)}
OUT(OUTFIL3)
QUT({OUTFIL4)
QAL{OUTFIL3,condition-1)
QAL(QUTF!L4,condition-2)
REF(OUTFIL3,format-1)
REF(QOUTFIL4=0QUTFIL3)
7/8/9 in column 1

Figure 2-2. Equating Logical File Names

This technique can be used with any directive in which a
logical file name is required. In the second example, the
files OUTFIL3 and OUTFIL4 each contain different records
as selected by the QAL directives but are reformatted the
same way by the REF directives.

CHARACTER SET

For constructing parameters of a directive, the following
characters are recognized by FORM:

e digits O through 9
e letters A through Z

e special characters + * /. $,()=:; blank

2-1

The following characters are recognized as delimiters:
$or* Delimit literals.
) Clarify selector expressions; enclose
directive parameters (reformat strings,
conversions strings, and qualification strings).

, Separates parameters within directives.

Separates selector expressions from reformat
items and conversion items.

-

H Separates reformat specifications and
conversion specifications.

= Acts as a replacement operator.

blank Separates operands and operators within
selector expressions.

Orne or more blanks adjacent to a valid separator are
ignored; blanks can be used for clarity. Elsewhere in this
book the symbol A indicates a space or a blank.

KEYWORDS

A keyword is a 2- or 3-letter mnemonic that has a
predefined meaning to FORM. Parameters of certain
directives are expressed in the following keyword format:

keyword=value

The order in which keywords are specified within a
directive is not fixed. To illustrate the keyword notation,
assume that processing of the input file INFILE is to be
limited to a maximum of 100 records. The directive is:

INP(INFILE,MAX=100)

Keywords associated with each directive. are discussed in
section 3, and a complete list of keywords and directives
appears in appendix H.

LITERALS

In certain directive formats, a literal is required as part of
the option specification. A literal is a string of characters
that represents an actual value. Two types of literals are
recognized by FORM: string literals and numeric literals.

STRING LITERALS

A string literal is written as a string composed of any
symbol or symbols in the character sets in appendix A and
enclosed by identical delimiter characters. The characters
* or $ are used as delimiters and are not considered part of
the literal. Blanks are valid within string literals. When
the literal contains either * or $, the other character
should be used as the delimiter pair. If the delimiter
character must be part of the string, each enclosed
occurrence must be doubled. Assume the character string

ABC*DEF
The character string can be represented by the string literal

$ABC*DEF$

Alternatively, the character string can be represented by
the string literal

*ABC**DEF*

A literal must not exceed 255 characters, excluding
delimiters, when used with the REF or QAL directive and
can contain any character in the display code character
set. A literal must not exceed B0 characters when used
with the CON directive.

Examples:
Literal Character 5String
A,B C AB C
ABSCDS AB$CD
*I23X**RL56% 123%%456
$$59$ $

A literal symbal within a string must not be doubled unless
the same symbol is used as the literal delimiter.

Examples:
L.iteral Character String
$AB*CD$ AB*CD

*ABC$**$DEF* ABC$*$DEF

NUMERIC LITERALS

Numeric literals represent actual numeric values. Numeric
literals are written in a form similar to the numeric
notation of FORTRAN. The permissible forms of numeric
literals are the following:

N 4+n.n o+, +nE+s +n.nE+s +unEds

The numeric value is represented by n, an integer of up to
27 significant digits. The value of the exponent is
represented by s. The exponent value for a numeric literal
must be an integer and cannot exceed 511. If the sign is
omitted, a positive value is assumed.

Examples:
0 124.E-4 (represents .0124)
-3.5 -56.2E+3 (represents -56200.)

+16. 314E1 (represents 3.14)
NOTE

" Numeric literals are valid in the CON directive
only. When the user wishes to specify a numeric
value as an operand in any other directive, the
value must be expressed as a string literal; that
is, it must be enclosed by a $ or * delimiter pair.
FORM performs the necessary conversion from
character to numeric format.

When an item descriptor with B format is used, only
ones and zeros for the bits can be in the literal. Item
descriptors are described later in this section.

60496200 D

ITEM DESCRIPTORS

Item descriptors are symbolic representations of data
items to be manipulated by FORM. Item descriptors are
required to describe data items involved in record selection
(QAL directive), record reformatting (REF directive), and
IBM conversion (CON directive) functions.

Item descriptors describe data fields in terms of starting
position within the record, data format, and length. For
purpases of data description, each record is considered to
be a string of bytes with the byte length determined by the
storage device in use: when the field is stored internally,
the string contains 6-bit bytes; when stored on IBM tape,
the string contains 8-bit bytes. Bits within each byte are
numbered 1 through 6 or 1 through 8, from left to right.

The item descriptor formats are as follows:

Tm iTm
+#Tm i/wTm
+i/wTm

i is a byte index dencting the initial byte position
of the data field; i can have two interpretations:

absolute i denotes a byte position relative to

index the beginning of the record and must
be written as an unsigned decimal
integer. The initial byte is numbered
1.

relative 1 denotes a byte position relative to

index the current byte and must be written
as a signed decimal integer. The sign
indicates the direction of the move (+
forward, - backward). The -current
byte is the one next in sequence to the
byte previously indicated in a string of
descriptors. The initial current byte is
the first byte of the record.

If i is omitted, the current byte is assumed. The
byte index, i, is used for all data types. In a
CDC record, each byte contains 1 character (6
bits), with 10 characters equivalent to an
internal word of 60 bits.

i/w is a byte and bit index separated by a slash,
indicating the starting position for a bit string
(data type B) only. In the format i/w, i is a byte
index as described previously, and w is an
absolute bit position within the byte (the
leftmost bit is numbered 1). The value given for
w must not exceed the size of the byte in the
source medium: 6 bits for CDC records, 8 bits
for IBM records.

T is a one-chararacter mnemonic code indicating
the format of the data field.

m is either a decimal integer or the word ALL.

decimal m specifies the length in bytes

integer (bits if a type B item) of the data
item; m must be omitted for data
types H, W, G, F, L, E, I, U, D. A
default of 1 is assumed if m is omitted
for data types B, X, P, 5; N, Z.

ALL m specifies that the remaining data in
the source field (everything to the
right of the position specified by i) is
to be moved to the destination data
field.

Valid values for T and m are listed in table 2-1. Data type
X can be any member of the character set in use. §, N, Z,
and P are subsets of X and can contain numeric characters
only. These data types, along with type B, describe
variable length data fields; m indicates the length of the
field. All other data types describe fixed length fields; m
cannot be used with these types. Examples of item
descriptors are shown in figure 2-3.

TABLE 2-1. VALID T AND m VALUES FOR ITEM DESCRIPTIONS

T Description mt
1BM FormatfT
B Bits Size of field in bits
X 8-bit alphanumeric characters Size of field in 8-bit characters
H Half-word (16-bit) integer -
W Whole-word (32-bit) integer --
G Double-word (64-bit) integer --
F Floating-point (32-bit) --
L Long floating-point (64-bit) --
E Extended-precision floating-point (128-bit) -
P Packed decimal (IBM COMP-3 COBOL items) Size of field in 8-bit bytes
S Decimal signed numeric Size of field in 8-bit bytes

60496200 D

TABLE 2-1. VALID T AND m VALUES FOR ITEM DESCRIPTIONS (Contd)

Unnormalized floating-point (60-bit)

T Description mi

CDC Format
B Bits Size of field in bits
X 6-bit alphanumeric characters (Display Code) Size of field in 6-bit characters
A 12-bit alphanumeric characters (ASCII) Size of field in 12-bit characters
I Integer (60-bit) --

E Normalized floating-point {60-bit) --

D Double-precision floating-point (120-bit) --

S Numeric, signed overpunch (Display Code) Size of field in 6-bit characters
Numeric, unsigned (Display Code) Size of field in 6-bit characters

z Numeric, leading zeros suppressed (Display Code) Size of field in 6-bit characters

t-- indicates that m must be omitted.

TTIBM 360/370 ASCII and EBCDIC 8-bit sequential tapes can include all these data items.

i Tm

20 X 5 describes a character field 5 bytes long
starting at byte 20 of the record.

i T

1 E describes a (60-bit) floating-point word
starting at byte 11 of the retord.

i/wTm

16/4B2 describes a 2-bit binary field starting at
the fourth bit position of byte 16.

i T m

+5 X 10 describes a character item 10 bytes

(characters) long, starting at the byte
position 5 bytes forward from the
current byte position.

Figure 2-3. Examples of Item Descriptors

Additional examples of item descriptors are shown in table
2-2.

SEARCH DESCRIPTORS

The use of item descriptors presumes that the user knows
the exact size and location of all data items within a
record. Frequently, however, this is not the case,
particularly with regard to variable length records. When
variable length fields are referenced, the iTm method of
item description must be modified, since exact values of
the initial character position and measured length of the
item are unknown. A search descriptor can be substituted
for an unknown i or m or both.

2-4

The search descriptor format is as follows:

oln

o is a byte index denoting the initial byte position
(origin) of the data field; o can have the following
two interpretations:

absolute index

o denotes a byte position relative to the
beginning of the record and must be written
~as an unsigned decimal integer. The initial
byte is numbered 1.

relative index

o denotes a byte position relative to the
current byte and must be written as a signed
decimal integer. The sign indicates the
direction of the move (+ forward, -
» backward). The current byte is the one next
in sequence to the byte previously defined in
a string of decriptors. The initial current
byte is the first byte of the record. If o is
omitted, the current-byte is indicated.

1 is a literal that delimits the field. The literal
cannot exceed 255 characters.

+n is the ordinal (occurrence) of the delimiter L A
plus sign preceding n indicates that the literal is
part of the field and is to be moved with it. A
minus sign preceding the value n indicates that
the literal is not part of the field. Omission of
the sign is the same as +n.

60496200 D

TABLE 2-2. EXAMPLES OF SEARCH AND ITEM DESCRIPTORS

De;g:&zior Example Description
iTm iTm Starting at byte 1, entire data field is moved.
1XALL
Starting at byte 3, field is as follows:
iTm
kYo 4 characters (alphanumeric)
3B4 4-hit string
31 60-bit integer
3E 60-bit normalized floating-point
£}] 120-bit double-precision floating-point
3u 60-bit unnormalized floating-point
354 4-character signed numeric
3N4 4-character numeric {leading zeros)
374 4-character numeric (leading zeros changed to blanks)
i/wTm ;éng Byte 2, bit 5, 4 bits, bits numbered left to right starting with 1.
B4
oln Tm 01 nTm 4-character field starting with the second occurence of a comma from byte 3;
3%, *2X4 comma is included.
o 1 nTm 4-character field following the third comma that appears after byte 21.
21%,*%-3X4 ’
01 nTm 6-bit field starting after the first occurrence of a / after byte 2.
23/3-1B6
Tm I% 4 alphanumeric characters starting with the next character.
X
iToln iTo 1 n Alphanumeric field beginning with byte 6 and ending with the byte immediately
6X6*F $*-1 preceding the Tliteral $3.
iTo 1 n Alphanumeric field beginning with byte 6 and terminating before the first
6X10*$ $*1 occurrence of the Titeral $$ occurring after byte 10. 3 is included in the
field.
oln T oln 01 nToln Alphanumeric field beginning after the first $ that appears after byte 3 and
IFGFIXI5*, *1 ending with the first period character (.) appearing after byte 15. The
terminating period character (.) is included.

When FORM encounters a search descriptor, FORM
searches for the nth occurrence of the literal 1, beginning
the search at the byte designated by o. When a search
descriptor is substituted for i in iTm, the beginning
delimiter of the data field is indicated; when a search
descriptor is substituted for m, the terminating delimiter is
indicated. Examples of search descriptors are shown in
figure 2-4.

Additional examples of search and item descriptors are
shown in table 2-2.

60496200 D

SELECTOR EXPRESSIONS

Selector epressions are used by the REF, QAL, and CON
directives to specify conditions under which records are to
be selected for manipulation by these directives.

A selector expression tests one attribute of one data field.
If the result of the test is true, the associated operations

are performed. [f the result is false, the associated
operations are ignored.

The format for selector expressions is shown in figure 2-5.

2-5

o | nTm

16%/$2X6 Search for the 6-character field
beginning with the second / occur-
ring from byte 16 of the record.
The / is considered part of the

field.

o | nTO | n

20*$*-1X20*$*-2 Starting at byte 20, search for a
character string bounded by the
first and second occurrence of a
$: the $ is not part of the field.

o | nALL
108*$1ALL Search for the first * occurring
after byte 10 of the record. The
entire data field after the first *

is moved.

Figure 2-4., Examples of Search Descriptors

item-descriptor-1 relation item-descriptor-2
. . . string literal
item-descriptor-1 relation numeric literal

"Valid in CON directive only.

Figure 2-5. Selector Expression Formats

Blanks are not significant and can be used to improve
readability. The relational operators for which data fields
in a selector expression can be compared are as follows:

LE less than or equal to

LT less than

EQ equal to

NE not equal to

GT greater than

GE greater than or equal to

Before the operands in a selector expression can be
compared, both operands must be reduced to a commaon
mode. FORM performs the necessary conversions to either
a character string or a numeric value according to the
procedures outlined in tables 2-3 and 2-4. For example:

X3 EQ $123% Comparison is in string literal mode.

X3 EQ 123 Comparison is in numeric literal mode

(valid in CON directive only).
N3 EQ $123%4 Comparison is in numeric mode.

E EQ $123.04 Comparison is in numeric mode.

2-6

TABLE 2-3. IBM FORMAT COMPARISON MODES
FOR SELECTOR EXPRESSIONS

Item- Item-Descriptor-2 Data Type
Descriptor-1 . .
String | Numerict H,W,G,F,
Data Type Literal | Literal B,X L,E,P,S
B,X String | Numeric | String | Numeric
mode mode mode mode
H,W,G,F, Numeric | Numeric | Numeric | Numeric
L,E,P,S mode mode mode mode

Yalid in CON directive only.

TABLE 2-4. CDC FORMAT COMPARISON MODES
FOR SELECTOR EXPRESSIONS

Item- Item-Descriptor-2 Data Type
Descriptor-1 : .
String Numerict I,E,U,D,
Data Type | |iteral| Literal |BsXsA S,N,Z
B,X,A String | Numeric |String | Numeric
mode mode mode mode
I1,E,U,D, Numeric | Numeric [Numeric | Numeric
S,N,Z mode mode mode mode
Tvalid in CON directive only.

Numeric quantities are kept to an accuracy of at least 96
bits. Uppercase and lowercase alphabetic characters are
mapped to a single upbpercase character set. In appendix A,
tables A-5 -and A-6 provide the translations for display
code, EBCDIC, and ASCIl characters that occur during
mapping. ‘

Shorter strings are treated as if extended on the right with
blanks so that both strings are the same length.
(Exception: a string derived from a bit string is extended
with zeros.)

Some examples of selector expressions are shown in table
2-5.

60496200 D

TABLE 2-5. EXAMPLES OF SELECTOR EXPRESSIONS

Example

Explanation

X3 EQ $ABCS

10X6 NE SABCDEFS

L LT *-4,67E+02*

6X1 EQ 10X1

41 EQ 141

6/4B2 EQ $10%

A string of 3 characters is
compared with the literal
ABC.

The condition is satisfied
if the string of characters
starting at byte 10 of the
record is not equal to the
string ABCDEF.

The long floating-point
field beginning at the
current byte of the record
is compared with the numeric
value -467.0.

The condition is satisfied
if byte 6 of the record is
equal to byte 10. °

The condition is satisfied
if the integer starting at
byte position 4 is equal to
the integer starting byte
position 14.

The condition is satisfied
if the 2-bit field starting
with bit 4 of byte 6 is
equal to the Titeral value
10.

60496200 C

2-7

DIRECTIVES

Directives allow the user to communicate with FORM.
Through the FORM directives, the user can specify input
and output file characteristics, record selection criteria,
reformatting and conversion to be performed, and printed
page options.

ORDERING OF DIRECTIVES

FORM directives are always executed in the order
indicated in figure 1-3 of section 1. The directives can be
specified in any order, within the following constraints:

& The INP or OUT directive for a file must precede all
other directives for that file in the directive sequence.

e When logical file names are equated, the directive
containing the parameter list must precede the
directive equating the file names.

@ Files are written in the order in which they are
specified in the OUT directives.

INPUT DIRECTIVE (INP)

The INP directive declares a source of input records to be
processed by FORM. A single source of input records is
required far a FORM run. Input records can be supplied by
owncode, by a file specified in the INP parameter of the
FORM control statement, or by a file specified in the INP
directive. The INP directive must be specified when this
directive is a source of input records. If the user specifies
an alternate input source (either owncode ar the INP
parameter of the FORM control statement) the INP
directive must be omitted. The format of the INP
directive is shown in figure 3-1.

Examples of the INP directive are illustrated in figure 3-2.

If a file contains variable length records, appendix K should
be consulted for determination of input record length.

n/P Partition countT
n/S Section countﬁ

1/P Processing of exactly one file

n, n/P, n/S, n/R
+n, +n/P, +n/S, +n/R

INP (L fn,MAX=nP0S=+n,REW=r HRL=ept ,DCA=ept ,LX=ept ,DX=ept ,EX=ept ,RFM=r ,BLK=b,LRL=n,IRL=len,COD=c,CX=ept)

With the exception of Lfn, all parmeters are optional and order independent.

Lfn Logical file name of file containing input records.

MAX=n Max imum number of records to be processed. Default_is no Limit; all records in the file are
processed. Value can be from 1 through 16777215 (224 - 1), Both n and n/R refer to record
count. . -

n Record count
n/R Record count

POS=*n Number of partitions/sections/records to skip from present position prior to processing. Value
can be from + 1 to * 2047. Both n and n/P refer to partitions.

}Skips n partitions/sections/records in a forward direction

-n, -n/P, -n/S, -n/R Skips n partitions/sections/records in a backward direction

REW=r Action to be taken on file at end of run.
N No rewind (default)
R Rewind only
u Rewind and return (disk files) or unload (tapes)

Figure 3-1. INP Directive Format (Sheet 1 of 2}

60496200 D

3-1

The following parameters specify user-supplied owncode routines that are loaded from the file specified in
the OWN parameter of the FORM control statement.

HRL=ept Entry point name of routine to perform key hashing for an input file with direct access
organization.

DCA=ept Entry point name or standard routine ordinal (1 <n 5_64) of routine to perform record
decompression/decryption for indexed sequential, direct access, and actual key files.

LX=ept Entry point name of routine to perform label processing for tapes.

DX=ept Entry point name of routine to receive control whenever end-of-partition, end-of-section, or
end-of-data is encountered on the input file.

EX=ept Entry point name of routine to receive control when an error is detected on the input file.
I The HRL, DCA, LX, DX, and EX routines are called directly by CRM at the appropriate times.
The following parameters are used only when the input file is an IBM format file being converted to CDC

format through the CON directive. The presence of any of these parameters causes the input file to be
processed as an IBM format file.

RFM=r IBM record/blocking format.
F Variable format (default)
v Variable format
u Unspecified format
FB8 Fixed blocked format
Ve Variable blocked format

VS8 Variable spanned blocked forhat

IBM record formats are described in appendix D.
1

BLK=b Block size measured in 8-bit bytes; value can be from 1 through 32767. 1If the block size is
greater than 3840, the LABEL statement for the file must specify an L tape.

LRL=n Maximum record length measured in 8-bit bytes. Value can be from 1 through 32760.

IRL=len Internal length of record after conversion, in 6-bit bytes. Default is LRL. For IBM tapes
containing variable length records, the default is &4%LRL.

3
Cob=¢ IBM data code.
A ASCII
é } EBCDIC (default)
CX=ept Entry point name of routine to be entered whenever a conversion error occurs while processing

the file.

RFM, BLK, and LRL are required for processing IBM tapes; COD, IRL, and CX are optional.

TPartition refers to an internally recorded end-of-file mark in the data. (See CYBER Record Manager
Basic Access Methods reference manual.)

TTSection refers to an internally recorded end-of-record mark.

I TTTPOS=n is implemented by means of a Record Manager SKIPAF macro, where d is the direction of the skip.
This means that POS does not function properly for files with RT=W.

Figure 3-1. INP Directive Format (Sheet 2 of 2)

3-2 60496200 D

Example 1.
INP{INFILE)
Declare INFILE as the source of input records.
Example 2.
INP{TAPE1,POS=+2,REW=U)
Declare TAPE1 as the input source, skip two par-

titions prior to processing, rewind and return the
file at end of run.

Figure 3-2. Examples of INP Directive

OUTPUT DIRECTIVE (OUT)

The OUT directive declares an output file to be generated
by FORM. This directive can be omitted if an output file
is declared in the OUT parameter of the FORM control
statement. Up to twenty output files can be processed in a
single FORM run; each output file requires an OUT
directive. Files are written in the order in which they are
declared in the OUT directives.

The format of the OUT directive is shown in figure 3-3.

The KEY parameter is used to describe the key field for
indexed sequential and direct access output files. This
parameter is overridden by the KA parameter of the FILE
control statement.

If the input file is sequential, the KEY parameter Iis
required only if the output record key is not contained
within the record (nonembedded). The user should specify
KEY=+k to designate the field at location k as the record
key (k is an item descriptor of the format iTm).

If the input file is indexed sequential, extended indexed
sequential actual key, or direct access, the KEY parameter
is required only if the output record key is nonembedded
and the output key is different from the input key.

e The user should specify +k if the key is to be retained
in the output record at location k.

® The user should specify -k if the key at loecation k of
the input record is to be extracted from the record
prior to output. The specification of -k decreases the
size of each output record.

The user should omit the KEY parameter if the key
location does not change or if neither input records nor
output records contain keys.

For actual key output files CYBER Record Manager (CRM)
returns the key after each record is written. Files are
written by FORM in the same order in which they are
declared in the OUT directives; therefore an OUT directive
for an actual key output file must precede an OUT
directive for a file that is to receive the key via a REF
directive.

When creating an actual key file, CRM assigns the key to
the output record. The key is saved in the item KEYA
where it can be referenced by a REF directive for a
subsequent output file. The user cannot supply a key for
actual key files when using FORM.

60496200 E

Information concerning the use of the OUT directive and
variable length records is in appendix K.

Figure 3-4 illustrates some examples of the OUT directive.

IBM 360/370 CONVERSION

DIRECTIVE (CON)

The CON directive is used to perform conversions between
IBM 360/370 8-bit sequential 7- or 9-track tapes and CDC
internal format files. An IBM file can be manipulated by

FORM directives only when a CON directive is also
specified to convert the input file data to CDC format.

CON is not always needed for conversions between IBM
tapes and CDC files. Section 4, under IBM Tape Files,
gives examples where simple conversions are performed
without CON or other directives.

IBM tape files can contain the following: ’
e EBCDIC character string data

® Bit stream data

e Arithmetic data in IBM form

@ ASCIH character string data

NOTE

ASCII does not refer to NOS ASCII 6/12 data;
ASCII refers to ASCII 8/8 data.

The EBCDIC and ASCIH codes are listed in appendix A.
IBM tape files can be in any one of the record/block format

types described in appendix F.

The internal CDC format used in conjunctior:n with the CON
directive can contain the following data types:

® 6-bit display code character string data
® Bit stream data

e Arithmetic data in CDC format

The 6-bit data format and CDC format arithmetic data are
defined in appendix F.

Both IBM tapes and CDC files must be described to CRM in
terms of CRM parameters; CRM descriptions for COC files
are always needed except when the file has W type records
in I type blocks. File descriptions are discussed In section

The format of the CON directive is shown in figure 3-5.

Conversion strings are used as input to the CON directive.
The conversion string specifies how data items in a record
are to be translated. Through the conversion string, the
user can specify conversion between any IBM data format
and CDC internal data format listed in table 2-1 of section
2.

Except when used in literal string parameters, blanks are
ignored and can be used to improve readability.

3-3

OUT{lin,MAX=n REW=r,KEY=+k,BG D=b,NOSEC,DCT=ept,CPA=ept,HR L=ept, LX=ept,EX=ept,R X=ept, RFM=r BLK=len, LR L=len,
IR L=len,COD=c,CX=ept)

With the exception of Ifn, all parameters are optional and order independent.

I1fn

MAX=n

REW=r

KEY=+k

BGD=b

NOSEC

The foliowing
statement.
DCT=ept

CPA=ept

HR 1 =ept
L.X=ept
EX=ept

R X=ept

Logical file name; can also be written as Ifn/R, in which case the file is rewound before use.

Maximum number of records to be processed. Default is no limit. Value can be from 1 through 16777215
(224 - 1). Both n and n/R refer to record count.

n Record count
n/R Record count
n/P Partition count!
n/S Section count’’

1/P Processing of exactly one file
Action to be taken on file at end of run.
N No rewind (default)

R Rewind only

U Rewind and return (disk files) or unload (tapes)

Location of key for an indexed sequential, actual key, or direct access file being written; k is an item
descriptor of the form iTm.

Record background of the output record prior to execution of the REF directive. Causes any record fieids
not described by a REF directive to contain one of the following:

X Blank (octal 55)

z Display code zero (octal 33)
B Binary zero
[Same as input record (default)

- Causes section boundaries in input file to be ignored. Applicable only to sequential output files created from

sequential input files.

parameters specify routines that are loaded from the file specified by the OWN parameter of the FORM control

Entry point name of display-collating conversion table for indexed sequential files.

Entry point name or standard ordinal (1<n<64) of routine that is to perform record compression/encryption
for indexed sequential, direct access, and actual key files.

Entry point name of routine to perform key hashing for a direct access output file.
Entry point name of routine to perform label processing for tapes.
Entry point name of routine to receive control when an error is detected on the output file.

Entry point name of routine to be entered whenever an error is detected while reformatting the record for
output.

The following parameters are used only when the output file is an IBM format file being converted from CDC format. The
presence of any of these parameters causes the output file to be processed as an [BM format file.

RFM=r

IBM record/blocking format.

F Fixed format
Variable format

U Unspecified format

FB Fixed blocked format

34

Figure 3-3. OUT Directive Format (Sheet 1 of 2}

604596200 C

VB Variable blocked format
VSB Variable blocked spanned format

BLK=len Block size measured in 8-bit bytes; value can be from 1 through 32767. |If block size is greater than 3840,
the LABEL statement for the file must specify an L tape.

LR L=len Maximum record length measured in 8-bit bytes. Value can be from 1 through 32767.

IRL=ifn Internai length of record, in 6-bit bytes, before conversion. Default is LRL.

COD=c IBM data code.
A ASCII

C
E } EBCDIC (default)

CX=ept Entry point name of routine to be entered whenever a conversion error is encountered while processing the
file.

RFM, BLK, and LRL are required for processing iBM tapes; IRL, COD, and CX are optional.

TPar’cition refers to an internally recorded end-of-file mark in the data. (See CYBER Record Manager Basic Access Methods
reference manual.)

TTSection refers to an internally recorded end-of-record mark.

Figure 3-3. OUT Directive Format (Sheet 2 of 2)

A conversion string can contain one or more conversion
E le 1 - specifications. A conversion specification consists of an
R ° optional selector expression followed by one or more
_ conversion items. A conversion item can consist of a

88¥E§S&IIE:EH';AAX_SO) simple item conversion or a conversion string. A simple

item conversion causes actual data translation. Since a

OUT(OUT21,MAX=100,REW=U,EX=ERRMS) conversion item can consist of a conversion string, nested
conversion strings are legal. Nesting can occur to a

Threzou_tputgiles are degined:dAF;ILE, V‘F,’ilt’?\la(?li-ii"'m °f. 50 maximum depth of seven levels. Nested conversion strings
records, is to be rewound at end of run. is a file must be enclosed in parentheses.

with an associated punch disposition, OUT21, with a

limit of 100 recordsf is to be rewoun.d and unloa@ed at Multiple conversion specifications are separated by

end o_f run; the routine ERRMS receives control if a parity semicolons. A selector expression is separated from its
error is encountered on OUT21. conversion items in a conversion specification by a colon.
Multiple conversion items are separated by commas. The

Example 2. scope of a selector expression is a single conversion

specification and is terminated by a semicolon; when the
selector expression is true, the semicolon causes the rest
of the conversion string, up to the matching right

The 10-character field starting at the first character parenthesis, to be ignored. Selector expressions are
" . . , .
position of the output record is designated as the key defined in section 2.

field.

OUT(OUTFILE,KEY=+1X10)

£ e 3 A conversion item can comprise part or all of a conversion

EXamoie <. specification or a conversion string. The most basic form

o _ is a conversion item that specifies only one conversion; this
OUTI(SISOUT,KEY=-17X8,RX=RFERR) farm is a simple item conversion.

The key from each record of the indexed sequential
output file SISOUT is extracted from character

positions 17-22 prior to writing the file; the routine
RFERR is entered if a reformatting error is detected.

Conversions specified in the CON directive are executed
until either end-of-record in the input file or a Q
specification in the directive (described later in this
section) is encountered.

Information relating to FORM conversion of variable
Figure 3-4. Examples of OUT Directive length records can be found in appendix K.

60456200 D 3-5

CON({lfn,conversion-string)
Ifn logical file name of the IBM file.

conversion-string

conversion-specification

conversion-item

[repeat-count]
(conversion-string)

simple-item-conversion

Tm1[{Tm2]

repeat-count

conversion-specification [; conversion-specification] . . .
[selector-expression:] conversion-item [, conversion-item] . . .

simple-item-conversion l

|

decimal integer indicating the number of times the conversion item is to be executed.

Figure 3-6. CON Directive Format

BYTE LENGTH

Each record in a file is considered to be a string of bytes,
with the byte length determined by the source computer.
Bytes within IBM-format files contain 8 bits; bytes within
CDC-format files contain 6 bits. In 6-bit or 8-bit bytes,
bits within each byte are numbered 1 through 6 or 1
through 8, from left to right.

FELD ALIGNMENT

When data conversion is initiated, internal pointers are
established for the source and destination record areas,
each initially pointing to bit 1 byte 1 of its record string.
These bits are the initial field positions.

When a source item is converted to a destination item,
these pointers are modified as follows:

e Prior to conversion, if the bit pointer for a byte does
not equal 1, it is set to 1, and character position is
rounded up to the next byte by adding 1 to the byte
pointer. If the destination pointer is so affected,
skipped bit positions are filled with binary zeros.

Exception: No rounding takes place for a type B (bit)
source or destination item.

e When conversion is complete, the pointers are updated
to point to the bit succeeding the last bit read or
written; this is the current field position. When
conversion terminates mid-word, the remainder of the
word is unchanged.

Alignment never is forced to a boundary more significant
than a byte position. If word boundary or other alignment
is needed, the proper fill items must be supplied explicitly.
Data alignment requirements are given in appendix F.

f 3¢

CONVERSION ITEMS

Conversion items provide directions for translating data
items from a source record to a destination record. The
format is one of the following:

n simple-item-conversion

n(conversion-string)

Repeat Count

The optional repeat count, n, is a decimal integer that
indicates the number of times the conversion is to be
repeated. Specifying a repeat count is equivalent to
writing the conversion item n times, separated by
commas. If n is 0, 1, or omitted, the simple
item-conversion or conversion-string is executed only once.

Simple ltem Conversion

A simple item conversion specifies how the current . source
record field is to be translated to the current destination
record field. Only a simple item conversion specification
causes data to be converted. Other parts of the conversion
string provide control information that determines the kind
of conversions to be performed.

A simple item conversion must be written in one of the
following formats:

TmlTm2
Tml

60496200 D

Tml and Tm2 must be valid item descriptors; Tml
describes a source data field and Tm2 describes a
destination data field. Execution of a simple item
conversion causes data to be moved from the source field
to the destination field and transliated to the destination
field format. CON treats each data field of a record in
sequence; data fields must be described in the order in
which they appear in the record, so that FORM can adjust
for word or byte boundaries. Therefore, the position
specification i is not used in the item descriptors. The
length specification m must be omitted for certain data
types, as indicated in table 2-1 of section 2.

If Tm2 is omitted, CON uses a default value, as specified
in table 3-1.

TABLE 3-1. DEFAULT CONVERSIONS IF
Tm2 IS NOT SPECIFIED

Default Default

Tml Tm2 Tml Tm2
Tape Internal Internal Tape
Bm Bm Bm Bm

Xm Xm Xm Xm

H 1 Am Xm

W 1 I W

G I u F

F E E F

L E D L

E D Sm Sm

Pm Sn (n=2m) Nm Sm

Sm Sm m Xm
Note: Refer to appendix G for conversion rules.

Translation rules for all possible combinations of data
types are outlined in appendix G.

Some examples of simple item conversions are shown in
table 3-2.

Conversion Strings Used as Conversion Items

A conversion string can be used wherever a simple item
conversion is allowed. This feature allows specification of
alternative conversions at interior positions of a record,
such as where a fixed initial record segment is followed by
a variable format segment, or where certain alternatives
can themselves have alternatives.

Conversion strings can occur as items within conversion

strings to a maximum depth of seven levels. Examples of
nested conversion strings appear later in this section.

60496200 D

CONVERSION SPECIFICATIONS

A conversion specification consists of an optional selector
expression followed by a list of one or more conversion
items. A selector expression uses relational operators to
specify conditions under which records are to be selected
for manipulation by the CON directive. The selector
expression must be true for the associated conversion
items to be executed; if the selector expression is false,
the conversion items are ignored. If the selector
expression is missing, the conversion items are executed.
The selector expression is separated from its associated
list by a colon; conversion items within the list are
separated by commas.

The conversion items of a conversion specification are
executed in sequence, left to right. The format of a
conversion specification is:

selector-expression: conversion-item
, conversion item ...

Elements of a conversion specification are illustrated in
figure 3-6.

CONVERSION STRINGS

A conversion string consists of one or more conversion
specifications, separated by semicolons. The format of a
conversion string is:

conversion-specification
;conversion-specification...

When a conversion string is encountered during execution,
each conversion specification is tested in turn, from left to
right, until one is found with a selector expression that is
true. That conversion specification is executed and all
specifications to its right are ignored. If none are true, no
conversion is performed.

Conversion String Punctuation

A colon separates a selector expression from its associated
conversion items in a conversion specification; multiple
conversion items are separated by commas. The scope of a
selector expression is a single conversion specification that
is terminated by a semicolon. When the selector
expression is true, the semicolon causes the rest of the
parenthesized conversion string, up to the matching right
parenthesis, to be ignored. This feature is of special
significance when items are nested in parentheses in a
conversion string. When a conversion specification is
executed, all remaining parts of the conversion string are
ignored.

Nested Conversion Strings

A conversion string can be used wherever a simple item
conversion is allowed in a conversion item. Conversion
strings can occur within conversion items to a maximum
depth of seven levels.

3-7

TABLE 3-2. EXAMPLES OF SIMPLE ITEM CONVERSIONS

Example Explanation
X5%5 Translates five 8-bit characters on an ASCII tape to five 6-bit internal
/ \ display code characters.
Tml Tm2
X120X150 Translates a 120-character field to a 150-character field blank-filled on
S x
/ \ the right.
Tml Tm2
X4H Translates four display code characters to an IBM half-word integer.
Tmi/ T%Z
GU Translates one IBM 64-bit integer to a 60-bit word containing a CDC unnor-
/ malized floating-point number.
Tml Tm2
B6OI Translates a 60-bit stream on tape to an internal GO-bit integer field.
Tﬁ{ T%Z
6086810 Moves 60 consecutive internal 6-bit fields to consecutive 10-bit fields on
/SN tape. Each 10-bit destination field will contain 4 bits of binary zero
repeat ‘count Tml Tm2 i1l on the right.
_4Xx10P6 Translates 4 consecutive 10-character display code fields to 4 consecutive

T 6-byte packed decimal fields.
repeat ‘count Tml Tm2

6EF Translates 6 CDC floating-point numbers to 6 IBM floating-point numbers.
=
repeat’é;unt\\?ﬁi“TmZ
B60 Moves a 60-bit field to a 60-bit field.
‘T-‘
Tml
U Translates a 60-bit internal COC unnormalized floating-point number to an
i IBM 32-bit floating-point field.
Tml
X5 Translates 5 characters to 5 characters.
T%l
40P5 Translates 40 consecutive IBM packed decimal fields to internal CDC 10-

/ digit signed overpunch numeric 6-bit display code fields.
repeat count Tml

X80X80 X5X10, X10X5
S - e, —— gt —
conversion~item-1 conversion-item-1 conversion-item-2
conversion-specification conversion-specification
P5 EQ -456 : P5S9 P3 GT 0 : 6P3Z210, 60B8B6
. S “— oo e e

. . selector expression conversion-item-2
selector expression conversion-item-1)
e SN Y,

conversion-item-1

conversion-specification conversion-specification

Figure 3-6. Elements of a Conversion Specification

f 3-8 60496200 D

This feature permits specification of alternate conversions
at various positions within a record, such as where a fixed
initial record is followed by a variable format segment, or
where certain alternatives can themselves have
alternatives.

Figure 3-7 illustrates elements of a conversion string.

Q Specification

The Q specification terminates all conversion for a recordj
as a result, the output record contains only converted
data. Q can be inserted wherever a conversion item is
valid.

The Q@ specification is useful when performing alternative
conversions within a conversion string. Assume the
conversion string:

10x4 EQ $STOP$:Q; X20X20

FORM stops converting if the 4-character field starting at
byte 10 of the input record contains the string STOP;
otherwise, 20 characters are copied from the input record
to the output record.

Table 3-3 contains additional
strings.

examples of conversion

An example of the CON directive is illustrated in figure
3-8.

SPECIAL CONVERSION RULES

Rules pertaining to all possible conversions appear in
appendix G. Some general principles are described in the
following paragraphs.

Bit to String

When a bit field is converted to a character string, the
number of characters in the character string is the same as
the number of bits in the original string. Each bit becomes
the character 0 or the character 1. Conversion is from left
to right.

‘Bit to Numeric

When a bit field is converted to a numeric value, no
changes occur in the field; rather, the bit field is
interpreted as a positive integer. The binary point is
assumed to follow the rightmost bit of the field.

String to Numeric

Literal strings or X items to be converted to numeric items
must conform to the rules described in section 2 under
Numeric Literals. An error results if the source string is
not in this format. Spaces in the string are ignored.

4B6B8

X1 EQ %A% X1X0 ,
e A W
selector conversion-
expression item-1

conversion-specification-1

X1 EQ 1 10W1

'

conversion-
specification-1

X20

R

v

conversion-item-1
conversion-specification-1

conversion-string

conversion-string

B Sy

_’—\/\—/

conversion-string

\-,\

X80
—_—

X0X10

.

50H1 ; X1X0 10H1
N e, mn’ Nt
conversion- conversion- conversion-
item-2 item-3 item-4

conversion-specification-2

conversion-string

X1 EQ 2 20W1 ; 50W1
S o
conversion- conversion-

specification-2 specification-3

(X4 EQ *MASH* X10X0 ; X10)
conversion-string used as conversion-item-2
conversion-specification-2

conversion-string

Figure 3-7.

60496200 D

Elements of a Conversion String

.

TABLE 3-3. (CONVERSION STRING ExampLEST

Example Explanation
X5X6 Moves the 5 characters ABCDE from tape to the 6-character internal
field. The rightmost character is a blank.
X5 Converts five 8-bit EBCDIC characters to five 6-bit display code

characters.
X1 EQ *A* : X5X6 Because the first character on the tape is A, the first 5 characters
ABCDE are moved from the 8-bit EBCDIC tape record to the 6-bit display
code internal format record. The rightmost character of the internal
field is a blank.

X1 EQ *1* : X5X6 Since the first character on the tape is not 1, the conversion item is
ignored.

X1 EQ *1* : X5X6 ; X1 EQ *A* : X3 Since the first selector expression is false, the X5X6 conversion item
is ignored. The second selector expression is true; therefore, the
characters ABC are moved.

X3,(X1 EQ $D% : Q ; X3),X5X6 The first 3 characters ABC are moved. Since the fourth character is D,
the Q conversion item terminates conversion string execution at that
point. The selector expression refers to the current byte of tne
source record which contains the character D. If the fourth character
was not D, 3 more characters would have been moved. In either case,
the next 5 characters are moved to a 6-character field.

3X1 EQ *C* : X5X6 Since the third character in the source record is C, the first 5 char-
acters ABCDE are moved from tape to the 6-character internal field.
+3X1 EQ *D* : X5 The selector expression is true, as D is the fourth character in the
record; therefore, the first five characters ABCDE are moved.
X3,(-3X1 EQ *A* : X23X24) The first 3 characters on tape record ABC are moved before the first
character on the record is tested. Since the first character is A, the
selector expression is true; and the remaining 23 characters in the
alphabetic sequence are moved to a 24-character field.

X26,(-26X26 EQ X26 : 2X26 Moves one entire alphabet group from the tape to the internal record,
then compares the next 26 characters with the first 26. Since they
match, two more entire alphabet groups are moved to the internal
record.

TThese examples assume a 9-track tape containing only 8-bit EBCDIC characters as the input source to be con-
verted to internal CDC records. The tape contains multiple repetitions of the alphabet in uppercase only.

Character Skipping and Blank/Zero Fill e BOB60 causes 60 bits of zero to be placed in the
destination field.

To specify bit or character skipping, the source field length

must be specified as greater than the destination length in e X10X100 causes 10 characters to be transferred to the

the conversion items. For example: destination field with 90 blanks on the right.

e Bl0BO causes 10 bits to be skipped.
e X5XO0 causes 5 characters to be skipped. Floating-Point to Integer

e X10X5 causes 5 characters to be transferred and the
next 5 to be skipped.

Conversion is possible for the formats listed in table 2-1 of
section 2. The restrictions for each conversion are noted
in table 2-5 of section 2. For example, conversion can be

To insert blanks or zeros in the destination record, performed between the IBM floating-point formats of 32,

destination field size must be greater than the source field
size in the conversion item. For example:

e XOX5 causes 5 EBCDIC spaces to be placed in the
destination field.

-0

64, or 128 bits and the CDC floating and double-precision
floating formats of 60 or 120 bits. Conversions to
single-precision floating-point are rounded to 4B-bit
precision; conversions to double-precision are rounded to
96-bit precision.

60496200 D

INP{AFILE,RFM=F BLK=3000,L.RL=1000,COD=A,CX=CNERR)
CON(AFILE,25B2 EQ 01: X24X24,B4,P8S16;2582 EQ 10: 3P8I,B4,Gl)
The IBM file AFILE is converted to CDC format. AFILE has the following characteristics:

Input records are of fixed length

Maximum block length is 3000 8-bit characters
Record length is 1000 8-bit characters

Records contain ASCll coded data

Control transfers to entry point CNERR if a conversion error occurs.

The conversion string performs the following conversions:

25B2 EQ 01 If the bit string of length 2 beginning at byte 25 has the value 01, only the followmg conversion items are
executed:

X24X24 translate 24 8-bit characters to 24 6-bit display code characters

B4 copy 4-bit field to 4-bit field
P8S16 translate 8-byte packed decimal number into 16 numeric characters (sign is overpunched in low-order
digit)

2582 EQ 10 If the 2-bit string beginning at byte 25 is equal to the binary string 10, only the following conversion items are executed:

3P8I translate 3 packed decimal numbers into 60-bit integer format
B4 copy 4-bit field to 4-bit field
Gl translate a full-word fixed-point binary number into a 60-bit binary integer

If the bit string does not have either of the values 10 or 01, no conversion is performed and the record is not sent to the
output file.

Figure 3-8. Example of CON Directive

Conversion from the internal record to an external IBM e 2/5B1 NE $1%: X1X0; X1X1 translates the second [
floating-point format yields a minimum precision of 21 bits character to the destination record only if its fifth bit E
for floating-point, 53 bits for long floating-point, and 109 is 1. If the fifth bit is not 1, the character is skipped. |
bits for extended-precision floating-point. If the fifth bit is 1, the character is converted. When J
a record is referenced using data type B, references
must be based on 6-bit bytes for CDC records and
8-bit bytes for IBM records.

Binary Data

Any data can be considered binary and manipulated on a
bit-by-bit basis. Bits can be copied in strings, or they can
be copled selectively by skipping bits or replacmg bit

groups in a string with zeros.

Bit strings can be converted to any other valid format
within the limitations expressed in appendix G.

Item descriptors in selector expressions can address any bit
in a character or bit string. For examples

e 2/5B1 references the fifth bit of the second byte in
the source record.

QUALIFICATION DIRECTIVE (QAL)

The QAL directive specifies the criteria by which records
from the input file are selected to be sent to an output
file. The selection criteria are expressed in the form of a
qualification string that consists of one or more selector
expressions joined by logical operators. The format of the
QAL directive is shown in figure 3-9.

Numeric literals must be enclosed by $ or * delimiter pairs.

QAL (Hfn,qualification-string)

Ifn logical file name of the output file to receive records satisfying the criteria specified in the qualification string.

quélification—string

INOT] | selector-expression | [{AND)

| quatification-string | | {OR |

INOT | selector-expression)J

| qualification-string |

Figure 3-9. QAL Directive Format

60496200 D

3-11

A qualification string can be substituted where a selector
expression is valid. Qualification strings can be nested to a
maximum depth of seven levels. Blanks are ignored and
can be used freely to improve readability.

The QAL function is executed in sequence preceding the
REF, CON, PAG, and SEQ functions. Records from the
input file satisfying the criteria established by the
qualification string are selected for further processing.
Subsequent directives apply only to those records that have
been selected by QAL; records not meeting the criteria
receive no further processing and are rot sent to the
output file.

Logical operations are executed in the following order:
NOT, AND, OR. However, this precedence can be altered

by the use of parentheses. Expressions within the
innermost level of parentheses are evaluated first.

All CDC internal data types can be processed by the QAL
directive. QAL performs the necessary conversion of data
types prior to comparison of values. Conversion and
comparison are performed according to procedures outlined
in table 2-3 of section 2.

Search descriptors in the oln format are permitted in iTm
specifications used in qualification strings.

Examples of the QAL directive are shown in figure 3-10.

Example 1.

QAL(FILEA,S5E EQ $256.1%)

has a value of 256.1.

Example 2.

QAL(FILEB,11E 6T 32X 10)

Conversion is performed in numeric mode.

Example 3.

QAL (FILEA,10X EQ $AS AND 20X EQ $AS)

Example 4.

contains the character C.

Example 5.

Example 6.

QAL (FILEA,11X4 NE 20%,$-2X20%,%-3)

Selects and copies to FILEA those records in which the 60-bit floating~point number starting at byte 5

Selects and copies to FILEB those records in which the 60-bit floating—-point number starting at byte 11
is greater in algebraic value than the 10-character string starting at character position 32.

Selects for output to FILEA records that contain the character A in the tenth and twentieth bytes.

QAL(OUTFILE,32X E@ $AS OR 32X EQ $BS AND 36X EQ C)

The AND operation is executed before the OR operation. Hence, this directive selects records for out-
put to OUTFILE if byte 32 contains the character A or if byte 32 contains the character B and byte 36

QAL(MYFILE, (32X EQ $AS OR 32X EQ $B%) AND 36X EQ C)

In this example, precedence has been established by the use of parentheses. Records are selected for
output to MYFILE if byte 32 contains an A or B character, and byte 36 contains the character C.

This example illustrates the use of the oln search descriptor. QAL selects for output to FILEA those
input records in which the 4 character alphanumeric field starting at byte 11 is not equal to the
variable length character field bounded by the second and third commas occurring after byte 20. The
commas are not included in the comparison. Search descriptors are substituted for both i and m in iTm.

Figure 3-10., Examples of QAL Directive

3-12

60496200 D

REFORMATTING DIRECTIVE (REF)

The REF directive controls arrangement and format of
data fields in the output records. The REF directive can

be used to insert literals at any position within records, to .

place keys in output records, and to convert data fields
from one data type to another. REF supports all CDC
internal data types, and can perform conversions between
any of those data types. When overlapping fields are
specified, the last specification establishes the final
format.

A separate REF directive is required for each output file
to be reformatted. Only one REF can be used for an
output file. The format of the REF directive is shown in
figure 3-11.

A reformat string can contain one or more reformat
specifications. A reformat specification consists of an
optional selector expression followed by a list of one or
more reformat items. A reformat item consists of a
simple reformat or a reformat string prefixed by an
optional repeat count. Simple reformats are composed of
iten descriptors that describe the input and output data
fields. A reformat item can comprise all or part of a

60496200 D

reformat string. Since a reformat item can contain a
reformat string, nesting is legal and rcan occur to a
maximum depth of seven levels. With the exception of
literal strings, blanks within reformat stings are ignored
and can be used to improve readability. Appendix K has
information about reformatting variable length records.

REFORMAT ITEMS

Reformat items provide directions for reformatting data
items and moving them from an input record to an output
record. A reformat item can consist of one of the three
following formats:

simple-reformat

n(simple-reformat)

n(reformat-string)
The optional decimal repeat count {n} indirates the number
of times the reformat item 1is to be repeated.

Specification of a repeat count is equivalent to writing the
item n times, separated by commas.

REF(Ifn,reformat-string)

Ifn logical file name of output file

reformat-string:
reformat-specification:

reformat-item:

j simple-reformat

l repeat-count {

simple-reformat:

iTm=iTm

Trm= {$literal$}

*literal *
iTm=KEY
iTm=KEYA
iTm

repeat-count:

reformat-specification [;reformat-specification] . . .

[selector-expression:] reformat-item [, reformat-item] . . .

{simple-reformat)
{reformat-string)

decimal integer specifying the number of times the reformat item is to be repeated.

|

Figure 3-11.

Simple Reformats

A simple reformat causes a data field in an input record to
be reformatted and moved to an output record. A simple
reformat is written in one of the following forms:

iTm=iTm
$literal$

ar
literal

iTm=

iTm=KEY
iTm=KEYA
iTm
iTm=o0lnTm
iTm=iToln
iTm=0lnToln

A simple reformat causes the data field described by the
specification on the right of the equal sign to be
reformatted and moved to the data field described by the
specification on the left. The descriptor on the right of
the equal sign describes a data field in the input file; the
descriptor on the left decribes a data field in the output
file. The item descriptor iTm is as defined in section 2,
with the exception that the oln search descriptor can be
substituted for i and m only for source items; oln is not

valid in destination items.

The length of the output field takes precedence over the
length of the input field. Literals exceeding the length of
the output field are truncated on the right. If the length of
the output field exceeds the length of the input field, the
string is left-justified and blank filled.

60496200 C

REF Directive Format

If m is omitted from either the source or destination side,
a value of 1 is assumed. :

When the data type of the source field differs from that of
the destination field, the data is converted to the
destination field format. Data can be converted between
any two of the CDC internal data types listed in table 2-1
of section 2. Table G-1 of appendix G summarizes the
rules for all valid conversions.

When a signed numeric field (data type S) is converted to a
character field (data type X), a positive sign is dropped. A
negative sign is inserted as the first character of the
receiving field, and, if the receiving field cannot
accommodate the sign, the number is truncated on the left.

If the input file is one of the CYBER Record Manager
Advanced Access Methods (AAM) file organizations
(indexed sequential, direct access, or actual key), the
source item KEY can be used to insert the key into the
output records. KEY cannot be used for ORG=NEW files
that contain embedded keys, as CRM does not return the
key to FORM.

KEY is an X (character) item with length specified by the
KL parameter of the FILE control statement. Assume the

reformat item:

1X10=KEY

The key from the input record is inserted starting at the
first byte of the output record.

The source item KEYA is an I (integer) item. FORM sets
KEYA to the value of the last key returned by CRM for an
actual key output file. KEYA can then be used in the REF
directive to insert the key in another output file.

When a reformat item is written in the form iTm,
specifying a single item descriptor instead of a source and
destination item descriptor, the item describes a data field
in the source record. Data is moved from the indicated
source field to a field of the same format in the output
record. This is equivalent to the form iTm=iTm with the
destination descriptor having the following values:

i The current byte (bit for data type B) in the
destination record. The current byte is defined as
the one that fallows the last byte referenced in a
reformat string. Initially i points to the first byte
in the record.

T Same as T for the source field.

m Same as m for the source field.
This form is especially useful when referencing fields of
variable length, because it allows the destination field to

assume the length of the source field. Assume the
reformat item:

1%, %] X1%,%2
The character field in the input record bounded by and
including the first and second commas is moved to the field
starting at the current byte of the output record. The
output field length is equal to the input field length.

Some examples of reformat items are shown in table 3-4.

Reformat Strings Used as Reformat items

Wherever a simple reformat is allowed, a reformat string
can be used. This feature allows specification of alternate
reformats within a record, and in situations where
alternatives can themselves have alternatives.

Reformat strings can occur as items within reformat
strings to a maximum depth of seven levels.

REFORMAT SPECIFICATIONS
The format of a reformat specification is:
[selector-expression:] reformat-item

[,reformat-item...]

A reformat specification consists of an optional selector
expression followed by a list of one or more reformat
items. The selector expression is suffixed by a colon. The
selector expression must be true for the associated
reformat items to be executed. If the selector expression
is false, the list of reformat items is ignored. If the
selector expression is omitted, all reformat items in the
reformat specification are executed. Selector expressions
are defined in section 2.

TABLE 3-4. EXAMPLES OF REFORMAT ITEMS

2X4 = 20X4, 24X4

put record.

20X10 = 64X10
byte 20 of the output record.

1E=21E,4(E=E)

table 2-1 of section 2).

Example Explanation
1E = 1510 Converts first ten signed numeric characters of the input record to floating-point and
places them in the output record starting at the first character position.
21X10 = 111 Converts the integer at word 2 (character position 11) of the input record to alphanum-
eric characters and inserts them in the 10-character field of the output record starting
at character position 21.
111 = $4.56% Truncates the numeric literal 4.56 and converts it to integer 4, then inserts it into
the 60-bit output field starting at character position 1l.
10(x3) Copies ten contiguous data fields three characters long from the input record to the

output record, starting at the first character position.

Moves the 4-character data field starting at byte 20 of the input record to the 4-
character field starting at byte 2 of the output record. Then moves the 4-character
field starting at byte 24 to the field starting at the current byte (byte 6) of the out-

Moves 10 characters starting at byte 64 of the input record to the field starting at

Starting at word 3 (byte 21) of the input record, moves 5 contiguous 60-bit floating-
point data items to the field starting at byte 1 of the output record. Since E-type
data items have a fixed length, the length m is omitted from the iTm specification (see

32X2 = $ABCS Places the string AB in the field of the output record starting at character position
32.
32X4 = $ABCS Places the characters ABC and one trailing blank in the output record starting at byte
32.
20%4 = § $ Places 4 blanks in the field of the output record starting at character position 20.

3-14

60496200 C

Numeric values used as operands in selector expressions
must be written as string literals enclosed by $ or *
delimiter pairs; numeric literals are not valid in reformat
specifications.

Elements of a reformat specification are illustrated in
figure 3-12.

16X4=3ABCD$
RSN\ g
reformat-specification
16X4=SABCDS, 1N6=91S6
N, ot m—
reformat- reformat-
item-1 item-2

-~
reformat-specification

X1 EQ $A%: E=65E
T gy N~
selector reformat-
expression item
~
reformat-specification

B2 GT 0: 11X3=$ABCS$, 21X3=XYZ

— . S~
selector reformat- reformat-

expression item-1 item-2

B

reformat-specification

Figure 3-12. Elements of a Reformat Specification

REFORMAT STRINGS
The format of a reformat string is:
reformat-specification

[sreformat-specification... |

A reformat string consists of one or more alternative
reformat specifications. When a reformat string is
encountered during execution, each reformat specification
within the string is tested in turn, from left to right, until
one is found with a selector expression that is true. That
reformat specification is executed, and all specifications
to its right are ignored. If none are true, no reformatting
is performed.

Reformat String Punctuation

A colon separates a selector expression from its associated
reformat items in a reformat specification; multiple
reformat items are separated by commas. The scope of a
selector expression is a single reformat specification; the
scope is terminated by a semicolon. When the selector
expression is true, the semicolon causes the rest of the
parenthesized reformat string, up to the mateching right
parenthesis, to be ignored. This feature is of special
significance when items are nested in parentheses in a
reformat string. When a reformat specification is
executed, all remaining parts of the reformat string are
ignored.

60496200 C

Nested Reformat Strings

A reformat string can be used wherever a simple reformat
is allowed in a reformat item. Reformat strings can occur
within reformat strings to a maximum depth of seven
levels. This nesting feature permits the specification of
alternate reformatting at various positions within a record.

Q Specification

The Q specification causes all reformatting for a record to
terminate. The contents of the unreformatted portion of
the output record are determined by the BGD parameter of
the OUT directive. Q can be inserted wherever a reformat
item is valid.

The Q specification is useful when performing alternative
reformats. Assume the reformat string:

10X4 EQ $STOP$:Q; 1X20=1X20

FORM stops reformatting if the 4-character field starting
at byte 10 of the input record contains the string STOP;
otherwise, 20 characters are copied from the input record
to the output record.

Figure 3-13 illustrates elements of a reformat string.

ADDITIONAL NOTATION TECHNIQUES

The value of i in the iTm specification determines the
position within the record of the data field FORM
maintains internal pointers for the source and destination
records, each initially pointing to byte 1 bit 1 of the
record. After a reformat item is executed, the pointers
are set to the sum of i and m, to point to the byte (bit for
data type B) following the field just processed. If i is
omitted, FORM uses these pointers to find the next field in
the record. Assume the reformat string:

10X2=25X2, X4=X4, X7=X7

From a starting position of 25 in the input record, three
fields of sizes 2, 4, and 7 characters are moved to a
starting position of 10 in the output record.

The i need nat be omitted from both sides of the equal
sign. If the byte index is omitted on the left, FORM
accesses the next position in the output record. If the byte
index is omitted on the right, FORM accesses the next
position in the input record. FORM maintains current
position pointers for both records. For example:

10X2=*AB¥,12X3=*GHI*,15X4=*QRST*
could be written as:

10X 2=*AB*,X3=*GHI*,X4=*QRST*
Prior to reformatting, the pointers are rounded up to the
next byte, except for data type B; no rounding takes place
for a type B source or destination item.
Alignment is never forced to a word boundary. If word
boundary or other alignment is needed, the user must

supply the proper fill items explicitly.

A specification of X=literal can be shortened by omitting
X=. The previous string becomes:

10X 2=*AB*,*GHI*,*QRST*

315

10X4

X4 EQ $1238

———T

11E

selector expression

~ B1EQO 10X2

reformat-specification-1

B1 EQ 0: (2X EQ $AS 10X3

456.2

reformat-item-1

|

reformat-string

reformat-specification-

TAP1

reformat-item
S ——

reformat-string

21E 5.12E2

reformat-item-2

16X2; 10X2 25X2

e U i S

reformat-specification-2

reformat-string

$ABCS), 20X3=8DEF$; 20X3=XYZ
e ~————

reformat-string used as simple-reformat

1 reformat-specification-2

reformat-string

Figure 3-13. Elements of a Reformat String

In summary;

i can be omitted, causing the next position in the

®
record to be used.
e X = can be omitted when a literal is to be inserted.

'vaamples of the REF directive are illustrated in

figure 3-14.

SEQUENCING DIRECTIVE (SEQ)

The SEQ directive places sequencing information in each
record of an output file. The sequence number replaces
the current contents of the designated field in the record.
The sequence number can have a maximum value of
24B.1, A separate SEQ directive must be specified for
each output file to be sequenced. The format of the SEQ
directive is shown in figure 3-15.

Some examples of the SEQ directive are illustrated in
figure 3-16.

PAGE DIRECTIVE (PAG)

The PAG directive provides page formatting options for an
output file to be printed. A separate PAG directive must
be included for each file to be printed. Each PAG
directive requires an OUT directive declaring the print file.

3-16

The PAG directive causes a page number to be printed on
line one of all pages, except when formatting is controlied
by the user with the FMT=A option. The PAG directive
format is shown in figure 3-17.

A print line is 136 characters long (excluding the carriage
control character); records are truncated if necessary. An
appropriate carriage control character is inserted in the
first character position of each record, except when
FMT=A is specified. No checks are made on record types
or content; the user is responsible for providing printable
data. Examples of the PAG directive are illustrated in
figure 3-18.

EXECUTE DIRECTIVE (XEQ)

The XEQ directive specifies the names of the IX and FEX
owncode routines to FORM. This is the only function of
XEQ; if no IX or FEX routines are to be used, this directive
can be omitted. XEQ can appear anywhere in the directive
sequence. The format of the XEQ directive is shown in
figure 3-19.

If an IX exit is specified, the INP directive must be
omitted from the directive sequence.

Examples of the XEQ directive are illustrated in

figure 3-20.

60496200 C

Example 1. SEQ(Ifn,NBR=d,BEG=n,ADD=n)

OUT({OUTFILE,BGD=C) With. the exception of Ifn, the parameters can be
REF(OUTFILE,1E=$67.58, SXYZS) specified in any order.

The 60-bit floating-point number 67.5 is placed in Ifn Output file name.
the first word of the output record of OUTFILE; NBR=d
the characters XYZ are placed starting at the next
consecutive position in bytes 11, 12, and 13. The
remainder of the output record is identical to the
input record.

Item descriptor of the form iTm that
specifies where in the record the sequencing
information is to be written.

i Beginning character position of sequenc-
ing field in the output record; i can be

Example 2. expressed as i/w for data type B.
OUT(MYFILE,BGD=N) T Data type of sequence field; can be any
REF(MYFILE,l EQ $03: 5(l); 5(510=I)) CDC data type.T The sequence numbers |

are translated to the data type represented
The output record is initially set to zero. If the by T.
integer in the first word of the input records is zero,
five 60-bit integers are copied to the output record m Length of sequence field; must conform
starting at word 1. If the first word is nonzero, to rules.T I
the first five consecutive integers of the input
record are converted to signed numeric fields BEG=n Initial value (decimal) of sequence number;
10 characters in length and moved to the output any value from O through 248 _ 1,
record starting at word 1. Default is 1.
Example_ 3. ADD=n Sequence increment (decimal); any value from

1 through 248 - 1. Default is 1.
REF(OUTFILE,20X=48%,$-2X483,33)

This example illustrates the use of the oln search TRefer to table 2-1 of section 2. I
descriptor. Input records are reformatted for the i
variable iength character field delimited by commas.
The field moved starts immediately after the second Figure 3-15. SEQ Directive Format
comma appearing after character position 48 and
continues through the third comma found after

position 48. The field is moved to the output

record of QUTFILE starting at character position 20. Example 1.
The length m of the destination field is omitted,
since it is unknown. The search descriptor is sub- SEQ(EMPLNR,NBR=1X6,ADD=5)

stituted for both i and m in the source field.
Records of EMPLNR are assigned a 6-digit sequence

Example 4. number, starting in the first character position of
each record. The sequence number has an initial
REF{FILEA, 10X=KEY) value of 1 (default) and an increment of 5.
The key from the indexed sequential input file is Example 2.
inserted into the output record starting at character
position 10, thereby increasing the size of the SEQ(FILE1,NBR=19B6,BEG=0)
record.

Records of FILE1 contain a 6-bit binary sequence
number starting in character position 19. The
Figure 3-14. Examples of REF Directive sequence number has an increment of 1 (default),
starting at O.

Figure 3-16. Examples of SEQ Directive

60496200 C 3-17

PAG(lfn, FMT=f,PGL=n,TOP=n,TTL=lit)

With the exception of Ifn, the parameters can be
specified in any order.

Ifn Logical file name of output file in print
format.

FMT=f Line spacing. FORM inserts the necessary
carriage control character when f is 1, 2, or'D.

1 Single space (default).
2 Double space.

D Dump option; output records are single-
spaced in 100-character lines {or record
length if less than 100 characters). A
decimal record number and character
count are printed for each record. The
character count reported is the record
length as returned by CRM.

A Character one of each record is used for
carriage control; and page numbering is
suppressed. The user must supply the
carriage control character for the A option.
The operating system reference manuais
contain a complete list of these characters.

PGL=n Number of print lines per page including the
title line and any blank lines. The maximum
value is 511. |f omitted, default is 60. Must
be omitted when FMT=A is specified.

TOP=n Top margin in lines. Title or first print line
occurs immediately after the margin. Maximum
value is 511. [f omitted, default is 2. Must be
omitted when FMT=A is specified.

TTL=lit Character string to be used as page title. Must
be expressed as a literal, enclosed by the
characters * or . The title follows the top
margin and is followed by a blank line. If
omitted, a blank line is generated. If FMT=A

‘ is specified, the title appears on the first page
only, and is not followed by a blank line.
Maximum string length is 115 characters.

NOTE

For the convenience of FORM 1.0 users, PRT is accepted
as PAG. However, the FORM 1.0 and FORM 1.2 direc-
tives are not identical in effect, and might produce
different output.

Example 1.

OUT(LIST}

PAG(LIST,FMT=2,PGL=25TOP=4,
TTL=$ EMPNO NAME SALARYS)

The output file LIST is formatted for double spacing;

printing begins with the title on the fifth line of
each page. 25 lines per page are printed.

Example 2.

OUT(OUTFILE)
PAG(OUTFILE,FMT=D)

Records of QUTFILE are printed in dump format.

Example 3.

OUT(PRINTA)
PAG(PRINTA,FMT=A)

File PRINTA is printed with format controlled by’
the file. The first character position of each record
is assumed to contain a carriage contro! character.

Figure 3-18. Examples of PAG Directive

Figure 3-17. PAG Directive Format

3-18

XEQ(IX=ept,FEX=ept,FIN)

iX=ept Entry point name of owncode routine to
transmit input records to FORM. This
option can be used in place of the INP
directive; it must be used when an INP
directive is not included and the INP
parameter is not specified in the FORM
control statement.

FEX=ept Entry point name of owncode routine to
which control transfers whenever an error
occurs during execution which would cause
FORM to terminate abnormally. The
FORM run terminates immediately after
execution of this routine.

FIN Signals the end of run. This option is
not required; it is included for FORM
1.0 compatibility.

The IX and FEX parameters are optional and order
independent.

Figure 3-19. XEQ Directive Format

60496200 C

Example 1.
XEQ{IX=INREC,FEX=FERR}

FORM receives input records from entry point
INREC. If an unrecoverable error occurs during
execution, control transfers to entry point FERR
prior to termination.

Example 2.

OUT(OUTPUT)
PAG(OUTPUT,FMT=D)
XEQ(FEX=MYCODE)

Records supplied at entry point MYCODE are written
to the file OUTPUT in dump format.

Figure 3-20. Examples of XEQ Directive

604696200 C 319 l

EXECUTION 4

A FORM job deck must contain control statements
necessary for communicating with the operating system, as
well as statements describing input and output files to
CYBER Record Manager (CRM). If owncode routines are
to be used during execution, the user must make certain
information available to FORM.

CONTROL STATEMENTS

A control statement must be included to make input files
available to FORM, call for execution of FORM, and
provide for proper disposition of output files. Refer to the
appropriate operating system reference manual for
detailed information on operating system control
statements.

FORM CONTROL STATEMENT

FORM is called with an operating system control state-
ment. The control statement format is shown in figure 4-1.

FORM({I=lfn,OWN=Ifn, L=t{n)

1=1fn Name of file containing input directives in
card image format (CRM record type Z with
C blocking). Default is I=INPUT. A specifi-
cation of | alone is equivalent to
I=COMPILE.

OWN=Ifn Name of file containing binary decks for
owncode routines. This file is loaded by
FORM. Default is OWN=LGO.

L=Ifn Name of file to receive summary of the
FORM run, including diagnostic messages.
Default is L=QUTPUT.

All parameters are optional and can be specified in any
order.

Figure 4-1. FORM Control Statement Format

If the I, L, and OWN parameters are omitted, then the
following form of the control statement is used:

FORM,

Alternatively, the following special call can be made if
only a simple file copy is desired:

F ORM(INP=input-file,OUT=output-file)
where

INP=input-file Name of input file

OUT=output-file Name of output file
No I or OWN file can be specified and no directives can be

fl included. A summary report is not generated. This form
of the call is equivalent to

FORM.

60496200 £

with input directives
INP(input-file)

OUT(output-file)

IBM TAPE FILES

ASCIl or EBCDIC files on either 7-track or 9-track IBM
sequential tapes can be processed by the CON directive.
The user should refer to the appropriate operating system
reference manual for the correct method of requesting 7-
and 9-track tapes to be processed by FORM.

The programmer should be familiar with the LABEL
statement. Complete decriptions of the 7- and 9-track
tape paramsters are in the appropriate operating system
reference manual.

Input tape files can be copied to disk or other devices that
can be substituted for tapes, provided the data format of
the copied files is identical to that of IBM tapes when the
files are read by CRM.

The CON directive is not always needed for IBM-to-CDC
or CDC-to-BM conversions. The following examples
demonstrate simple conversions using FORM without CON
or any other directives. The tape used in this example is a
single-file tape that contains only alphanumeric data.

If only a read of an IBM tape into a CDC file is required,
the following control statements are sufficient:

LABEL, IBMTAPE, F=5, CV=EB
FILE, BMTAPE, BT=K, RT=F, FL =80, RB=20, CM=YES
FILE, CDCDISK, BT=C, RT=Z, MRL=80
FORM, INP=IBMTAPE, OUT=CDCDISK

Note that, when this conversion is made, lowercase
characters are converted to uppercase.

The following example shows how a CDC file can be
converted to a blocked EBCDIC tape.

LABEL, CDCFILE, PO=W, NT, D=PE, F=5, CV=EB
FILE, CDCFILE, BT=C, RT=F, FL=136, CM=NO

FILE, BMTAPE, BT=K, RT=F, FL=182, RB=10, CM=YES
FORM, INP=CDCFILE, OUT=IBMTAPE

This approach can be used to create ASCII tapes.

Information concerning use of FORM and variable length
records on IBM tapes can be found in appendix K.

CYBER RECORD MANAGER INTERFACE

CYBER Record Manager (CRM) performs all the
input/output functions of FORM, Before CRM can process
a file, it must establish a file information table (FIT) to
define all record, blocking, and file organization
characteristics. All file processing is based on the
contents of this table.

4-1

The user is responsible for adequately describing the
structure of each file to be processed. For any given FIT
field, the value can be provided either by a parameter in
the FILE control statement or by acceptance of the CRM
default. The FILE control statement can be used to change
any default without affecting any other values or defining
the entire FIT. This statement overrides any default
values when the named file is opened. The user must
supply all FIT values for which the default is not to be
used. Refer to the Advanced Access Methods (AAM)
reference manual or the Basic Access Methods (BAM)
reference manual for detailed information about file
descriptions and CRM.

Appendix K has information about determination of input
record length and output record length when using CRM
files with variable length records.

FORM overrides some CRM defaults. Table 4-1
summarizes the default FIT field values provided by CRM
and FORM, The user can change any of these values
through the FILE control statement.

TABLE 4-1. SUMMARY OF FIT FIELD DEFAULT vALUEST

Field and .
Value Default Meaning

F0=SQ File organization is
sequential. T

RT=WTT Record type is W.

gr=1TT Block type is I.

ERL=0 Unlimited nonfatal errors are
allowed.

MRL No release default is allowed

FL for FORM; user must specify a
nonzero MRL or FL for each
file.

M8L=0, 640, Maximum block size for BT=I is

1280, or 5120 5120; for BT=C with NOS/BE SI
coded, MBL=1280; with all other

systems, MBL=5120; for other

BT, MBL=0.

OF=N File is not rewound before
open.

CF=N File is not rewound after
close.

VF=U Tape file is unloaded if volume
is closed.

CM=NO No code conversion is performed

for tape read or write.

TRefer to CYBER Record Manager Basic Access
Methods or Advanced Access Methods reference
manuals for more information about CRM

defaults.

TtFor files named INPUT, OUTPUT, or PUNCH:
RT=Z,8T=C. When RT is set to S, any block
type setting on BT is disregarded.

4.2

Since CRM cannot block or deblock records in IBM format,
it is necessary to include a FILE control statement
describing each IBM B-bit sequential tape file to be
processed by FORM in terms of CRM parameters. The
parameters required in the FILE control statement for IBM
tape files are shown in table 4-2.

TABLE 4-2, PARAMETERS REQUIRED IN THE FILE
CONTROL STATEMENT FOR IBM TAPE FILES

Required Parameter for
IBM Tapes CRM Parameter

RT=S Record type (only when
the CON directive is
used)

MBL=nnnn Maximum block size

MRL=nnnn Maximum record length

CM=NO Conversion mode

nnnn=(BLK*8)/6 since BLK refers to 8-bit char-
acters, and CRM expects sizes in terms of 6-bit
characters. A fraction must be rounded up to
the next highest integer. .

For 9-track tape input/output, two additional parameters
are necessary for noise record skipping:

MNR=24 Minimum Record Length

MNB=24 Minimum Block Length
Any block containing fewer than MNR or MNB frames is
considered noise and discarded by the system.

For 7-track tapes the operating system can discard blocks
prior to passing them to CRM. A block of less than 7
frames (NOS) or 14 frames (NOS/BE) is considered noise
and ignored.

Under NOS, the noise size of a tape file is set to 7 frames
(by default) and can be overridden by the NS parameter of
the LABEL control statement.

A sample deck structure is shown in figure 4-2. In this
example, FORM is to read an input file and create two
output files. Control statements are included to attach the
input file, request permanent file device residence for the
output files (NOS/BE), and make the output files
permanent. The FILE statements override the CRM
defaults for record type and block type.

OWNCODE INTERFACE

The FORM user can specify subroutines to be executed at
any or all of eleven owncode exits during FORM
execution. The exits are listed in table 4-3. The entry
points to the user-supplied routines are specified in the
directive that corresponds to the appropriate exit.
Figure 1-3 of section 1 shows the point in processing at
which the exits occur.

60496200 E

/ FILE(INFILE,RT=F,BT=C,FL=80)
/ REQUEST(OUT2,*PF)
/REQUEST(OUT1,*PF) °

/ ATTACH(INFILE PERMF,ID=MYID)
/ ACCOUNT Statement

Job Statement

6
7
8
9 /
/ FORM Directives
7
8
9 -
/ CATALOG(OUT2,PERM2,ID=MYID)
// CATALOG(OUT1,PERM1,1D=MYID)
FORM.
/ FILE(OUT2,RT=F BT =C,FL=80)
FILE(OUT1,RT=F,BT=C. FL=80) |

[{=3¥s o BN o))

/
/

/ FORM Directives

~/ FORM.

/ DEFINE(OUT2=PERM2)
DEFINE(OUT1=PERM1)
/ FILE(OUT2,RT=F BT=C,FL=90)
FILE(OUT1,RT=F BT=C,FL=80)

/ FILE(INFILE,RT=F BT=C,FL=80)
[ATTACH(INFILE=PERMF)
/CHARGE Statement

/USE R,username,password,family name.

Job Statement

NOS/BE

NOS

Figure 4-2. Sample Deck Structures

Owncode routines to be executed during a FORM run must
be stored in relocatable binary form in a single file. The
easiest way to do this is to compile the source code into a
single binary file. The file name is then specified in the
OWN parameter of the FORM control statement. FORM
loads the routines from the specified file via the user-call
loader. Owncode routines cannot originate from a library.
Owncode routines can, however, call library routines.

The IX, CX, and RX owncode routines are coded in
function format; the FEX routine is coded in subroutine
format. Each routine consists of an initial function or
subroutine statement followed by the function or
subroutine body. The initial statement contains the name
that is used as the entry point name in the FORM

directive, and a parameter list through which the user

communicates with FORM. With the exception of the IX
routine, FORM passes information to the user; the IX
routine passes infaormation to FORM.

In most cases, the user must assign a return code to the
function name at some point within the function body.
When FORM regains control, it tests the return code and
takes the appropriate action.

60496200 D

Areas used as function arguments must be of sufficient
size, specified according to the rules of the language in
which the function is coded. Refer to the appropriate
reference manual for additional information on the coding

of functions.

FORTRAN Version 5 is used to illustrate the function
formats described in the following paragraphs.

RX EXIT

The routine speicfied by the RX parameter in the OUT
directive is called whenever a reformatting error occurs
during REF directive processing.

The FORTRAN function format for the RX routine is
shown in figure 4-3. The arguments, passed by FORM to
the routine, consist of a 60-bit word with the pointer
format shown in figure 4-4.

Upon regaining control, FORM tests for the following
return code values:

0 continue execution

terminate

#0

TABLE 4-3. OWNCODE EXITS

Exit

Explanation

LX
DX

EX

CX

DCA

CPA

HRL

IX

FEX

RX

DCT

Performs tape label processing.

Receives control whenever an end-of-
partition, end-of-section, or end-of-
data is encountered in the input or
output file.

Transfers control to a user recovery
routine when an error {fatal or trivial)
occurs.

Receives control whenever a conversion
error is encountered while reading or
writing an IBM file. This exit is used
only when a CON directive is active.

Performs record decompression/decryption
for AAM input files. This exit can be
an owncode or a standard CRM routine.

Performs record compression/encryption
for AAM output files. This exit can be
an owncode or a standard CRM routine.

Performs key hashing for direct access
files.

Supplies input records to FORM., This
exit is valid only when the INP direc-
tive is omitted.

Receives control whenever an error
occurs that would cause the FORM run
to terminate abnormally. Termination
occurs when FORM regains control.

Receives control when a reformat error
occurs during REF processing.

Makes user-supplied collating seguence
conversion table available for indexed
sequential files.

INTEGER FUNCTION fn(inptr,outptr,strptr}
function body

RETURN

END
fn function name
inptr pointer to input record area
outptr pointer to output record area
strptr pointer to reformat string

Figure 4-3. RX Function Format

59 36 17 0

length of record/ 0 address of
string in bits record/string

Figure 4-4. Pointer Format for RX Function

A FORTRAN function for the RX exit is illustrated in
figure 4-5. Logical operators are used to mask the length
and address fields from the pointers passed by FORM. A
value of one is assigned to the function name; this value
tells FORM to terminate immediately after regaining
control.

INTEGER FUNCTION RXFUNCCIPTIN,IPTOUT,IPTSTR)
DATA MASKA/O"777777"/ ,MASKB/Q"77777777"/

C.... FETCH ADDRESS AND LENGTH OF QUTPUT RECORD

C....ASSIGN RETURN CODE AND RETURN CONTROL TO FORM

c
C.... FETCH ADDRESS AND LENGTH OF INPUT RECORD
C
IADDI=IPTIN.AND.MASKA
LENIN=SHIFTC(IPTIN,24).AND.MASKB
c
c
IADDO=IPTOUT.AND.MASKA
LENOUT=SHIFT(IPOUT,24).AND.MASKB
C
¢
RXFUNC=1
RETURN
END

4-4

Figure 4-5. Example of RX Owncode Routine

60496200 D

CX EXIT

The function associated with the CX exit has the format
shown in figure 4-6. The entry point name is specified by
the CX parameter in the INP directive. This exit is taken
whenever an error occurs while converting to or from IBM
format. FORM tests for the following return code values:

>0 terminate
0 continue execution
-1 ‘process as end-of-section
-2 process as end-of-partition
=3 process as end-of-information

IX EXIT

The IX routine supplies input records to FORM. The entry
point name is specified by the IX parameter in the XEQ
directive. A single source of records is required for a
FORM run; therefore the IX exit can be used only if the
INP directive is omitted for a FORM run. The format of
the associated function is shown in figure 4-7.

INTEGER FUNCTION fn({wsa,rec,constr,ierr,len)
fu;;ction body

RETURN

END
fn Function name.
wsa Working storage area used by FORM. Size is

determined by the RFM parameter in the INP
directive, as follows:

RFM=F,FB,U,V, and reading of VB
space = 6 + I’BLK-| wordst

7.5
RFM = VSB, and writing of VB

space = 6 + I’LRL] + "BLK‘l words
7.5 75

rec IBM record area.

constr Area containing conversion string that was input
to CON directive.

jerr Error code from FORM:
1 conversion error
0 no error
-1 end-of-section encountered on input file
-2 end-of-partition encountered on input file
-3 end~of-information encountered on
input file
len IBM input record length, in 8-bit bytes. Must

be omitted when conversion is from CDC to IBM.

T A fraction is always rounded up to the next higher
integer.

INTEGER FUNCTION fn{iaddr,len)
fur'lction body

RETURN

END
fn function name
iaddr address of input record
len length (characters) of input record

Figure 4-6. CX Function Format

60496200 D

Figure 4-7. 1X Function Format

The values for the address and length of the input record
must be assigned within the function and passed to FORM.
On regaining control, FORM tests for the following return

code values:

1 1/O error

8] no error, data record supplied
-1 end-of-section

-2 end-of-partition

-3 end-of-information

An example of a FORTRAN routine, executable under
NOS, that reads card images and passes them to FORM, is
illustrated in figure 4-8. The FTN5 control statement
compiles the FORTRAN program. The resulting binary
resides on the LGO file where it is accessed by FORM,
The function IXFN reads cards and stores them in the array
INREC. A $ in columnl of the input data indicates
end-of-input.

FEX EXIT

The routine specified by the FEX parameter on the XEQ
directive is called whenever an error occurs that would
otherwise cause FORM to terminate abnormally. The FEX
routine is written in the format of a subroutine. The
FORTRAN format is shown in figure 4-9. No information
is passed to or received from FORM, and no argument list
need be specified. When FORM regains control, the run
terminates.

4-5

JOB statement
USER statement
CHARGE statement
FILE(OQUTF,RT=Z,BT=C,MRL=80)
FTNS.
FORM(OWN=LGO)
REWIND ,OUTF.
COPYBF,OUTF,OUTPUT.
7/8/9
c
C.... IXFN READS CARD IMAGES AND
C.... PASSES THEM TO FORM.
C
INTEGER FUNCTION IXFNCIADDR,LEN)
DIMENSION INREC(8)

C

C.... LOCF FETCHES THE ADDRESS
C.... OF INREC

C

IADDR=LOCFCINREC)

LEN=80

READ 100, INREC
100 FORMAT(8A1D)

IXFN=0

C.... A $ IN COLUMN 1 MEANS
C.... THE END OF DATA
IFCINREC(1).EQ.'$') IXFN==-3
RETURN
END
7/8/19
OUT(OUTF)
PAG(OUTF,TTL=8~-0UTF~--8%)
QAL(OUTF,30X1 EQ $+%)
XEQUIX=IXFN)

7/81719
THIS IS THE FIRST RECORD +
THIS IS THE SECOND RECORD
THIS IS THE THIRD RECORD +
THIS IS THE FOURTH RECORD

$

6/7/8/79

SUBROUTINE subname

subroutine
body

RETURN
END

4-6

Figure 4-8. Example of |X Owncode Routine

Figure 4-9. FEX Subroutine Format

DCA,CPA HRLLX,DX,DCT,EX EXITS

The routines specified by the DCA, CPA, HRL, LX, DX,
and EX parameters are called by CRM. DCA, HRL, LX,
DX, and EX exits are specified in the INP directive; CPA,
HRL, LX, DCT, and EX exits are specified in the OUT
directive. Specifying these parameters causes the proper
FIT field to be set; if any are not specified, CRM default
action is taken. Refer to the AAM and BAM reference
manuals for details on the function and usage of these

routines.

60496200 E

SAMPLE PROGRAMS

This section contains two sample programs illustrating the
use of FORM.

CDC FILE REFORMATTING

FORM can be used to select, reformat, and write records
from a CDC file to an output file.

The original file contains information about a group of
university students. The file contains one record for each
student; each record contains the following information:

name (20 characters)
number (6 characters)
age (2 characters)
sex (1 character)

department code (2 characters)

year in school (1 character)
level (2 characters)

address (46 characters)

The input record format and some sample records are
illustrated in figure 5-1.

A new file is to be created containing records only for
senior (SR) level students. The remaining records are to be
reformatted to contain the following information:

name (20 characters)
number (6 characters)

year in schoaol {1 character)

department code (2 characters)

blank field (3 characters)

city of residence (30 characters)

A test score is to be inserted into the blank field at a later
date. In addition, all students in department 2 are being
transferred to department 4. Output records are to be 62
characters in length. The output record format is shown in
figure 5-2. The record reformatting is shown in figure 5-3.

The deck setups for running under NOS and NOS/BE are
shown in figure 5-4. The OUT directive specifies BGD=X
so that unreformatted portions of the output record will
contain blanks. The QAL directive selects those records
from the input file in which the level field contains SR.
The REF directive reformats the selected records: the
selector expression causes a 2 in a department code field
to be changed to a 4; the expression X3=% $ inserts
three blank characters; search descriptors are used to
extract the city name from the address field of the input
records.

Control statements are included to attach the input file
STDNTF, to describe input and output file characteristics
to CYBER Record Manager (CRM), and to assign the
output file GRADF to a permanent storage device.
Numeric parameters refer to character position or count.

A-NT- %y Ao To
ATND Ye Ra Lo
K=TTh-y Ve e
MEKI-y Mo Ra

1 21 27 35 80
Address
Name No. (Street, City, State)

Level (33, 34)

Year (32)

Dept. (30, 31)

L Sex (29)
Age (27, 28)

Input Record Format

12345621 H023JK123 £ STer P020s CALIF,
H1236524F0453R45%A NCRTA STes» 30CNEVILLES CALIF,
95123422M034SR33 MAIN STes SAN JOSts Callf.
45Kh12325F0G243F2216 BuSH 3T.» BcoaR vallLeYs CALTF,

Sample Input Records from File STDNTF

Figure 5-1. Input Record Format and Sample Records

60496200 D

1 21 27 33 62

Name No. City
blank (30, 31, 32)
Dept. (28, 29)
Year (27)

62 characters
Output Record Format

B:NDZRy R. Lo 012245504 BCONEVILLE

KETTLEs Ve He 561234403 SAN JOS:

MCKELs No R 456123604 BEAR VALLEY

Sample Output Records from File GRADF

Figure 5-2. Output Record Format

—

26 35

80 characters

Age {27)

Sex (29)

Dept. (30, 31)
Year (32)

Level (33, 34, 35)

80

Name No.

Address
(Street, City, State)

Name No.

City

26 33

U ——

62 characters

62

blank (30, 31, 32)
Dept. (28, 29)
Year (27)

Figure 5-3. Record Reformatting

The parameters in the FILE control statements have the
following meaning:

RT Record type (Z-type for cards)
BT Block type (C-type for cards)
MRL Maximum record length

5-2

Refer to the AAM and BAM reference manuals for more
information on FILE control statements.

An output listing of the FORM run under NOS is shown in
figure 5-5. FORM directives are listed with a summary of
action taken by FORM during the run. The reformatted
output record is printed. The dayfile includes control
statements encountered by the operating system.

60496200 C

NOS:

J 0B statement

USER statement

CHARGE statement

GET,STDNTF.

FILE(STDNTF,BT=C,RT=Z,MRL=80)

FILE(GRADF,BT=C,RT=Z,MRL=62)

FORM.

REWIND ,GRADF.

COPYBF,GRADF ,QUTPUT.

7/8/9 in column 1

INP(STDNTF)

OUT(GRADF ,BGD=X)

QAL (GRADF,33X2 EQ $SRS)

REF(GRADF ,X20=X20,N6=N6,N1=32N1,
(30N2 EQ $02%: N2=$0435;N2=30N2),
X3=% $,35%,%5-1X35%,%-2)

6/7/8/9 in column 1

NOS/BE:

MY J OB statement

ACCOUNT statement

ATTACH(STONTF,ID=MYID)

FILE(STDNTF,BT=C,RT=Z,MRL=80)

FILE(GRADF,BT=C,RT=Z,MRL=62)

FORM.

REWIND ,GRADF.

COPYBF,GRADF ,QUTPUT.

7/8/9in column 1

INP(STDNTF)

OUT(GRADF,BGD=X)

QAL (GRADF,33X2 EQ $SRS)

REF(GRADF,X20=X20,N6=N6 N1=352N1,
(30N2 EQ 302%: N2=3%043;N2=30N2),
X3=% $,35%,%5-1X35%,3%-2)

6/7/8/9in column 1

Figure 5-4, Job Decks for Reformatting Example

IBM-CDC CONVERSION

FORM can be used to convert an IBM payroll file to two
reformatted CDC files.

The original payroll file is to be converted to a CDC file.
The unlabeled CDC tape has the blocking structure and
record format defined in FILE statements, and is written in
coded mode on a 7-track tape.

IBM records are supplied to FORM by the INP directive.
The files CDCPAYR and OUTC are specified in the OUT
directive. The CON directive converts the IBM type data
file to the CDC type data file, CDCPAYR. The REF
directive equates OQUTC to CDCPAYR. OUTC is then
printed using the FMT parameter of the PAG directive.

The IBM tape maximum block size is 3960 characters,
arrived at by multiplying the number of 8-bit bytes in the
block by 4/3 to convert to the 6-bit equivalent needed for
CRM descriptions.

Figure 5-6 shows the data records definition and structure
as created by IBM COBOL. Some sample IBM records are
shown in figure 5-7. Figure 5-8 illustrates the
corresponding CDC data record structure as it would be
output by FORM, and the CDC COBOL definition of this

60496200 C

INP(STDNTF)

QUT(GRADF ,BGD=X)

QAL (GRADF ,33X2 EQ SRS)

REF(GRADF,X20=X20,N6=N6,N1=32N1,
(30N2 EQ 502%: N2=$%043%;N2=30N2),

X3=% $,35%,%-1X35%,%-2)

SUMMARY
INPUT FILE - STONTF 5 RECORDS READ’
QUTPUT FILE - GRADF 5 RECORDS WRITTEN

END OF RUN.
N\/\M

BENDER,R.L. 612345504 BOONEVILLE
KETTLE,V.H. 561134403 SAN JOSE
MCKEE,N.R. 456123604 BEAR VALLEY

P N N N N N
ACMAAMF, 80/01/31.(22) SVL SN614 NOS

07.41.03.BINOT4G.
07.41.03.UCCR, 6145,
07.41.035.USER,COSXXXX, .
07.41.03.CHARGE,591X,693XXXX.
07.41.03.GET,STDNTF.
07.41.03.FILE(STDNTF,BT=C,RT=Z,MRL=80)
07.41.04.FILECGRADF,BT=C,RT=Z,MRL=62)
07.41.04.FORM,

07.41.07.REWIND,GRADF.
07.41.07.COPYSBF,GRADF ,QUTPUT.
07.41.07. EOL ENCOUNTERED.
07.41.07.UEAD, 0.002KUNS .
07.41.07.UEPF, 0.010KUNS.

0.016KCDS.

07.41.07.UEMS, 0.770KUNS.
07.41.07.UECP, 0.537SECS.
07.41.07.AESR, 2.766UNTS.
08.06.37.UCLP, 6141, 0.320KLNS.

Figure 5-5. Printout of a FORM Run Under NOS

record. Figure 5-9 shows some sample CDC records.
Figure 5-10 shows the record reformatted from an IBM
input record to a CDC output record. The deck setups for
the NOS and NOS/BE operating systems are illustrated in
figure 5-11.

The parameters in the FILE control statement for the input
file IBMPAYR have the following meaning:

LT Label type; UL indicates unlabeled
RT Record type; S indicates system record type
MBL Maximum block length in characters

MRL Maximum record length

CM Conversion mode; NO indicates no conversion

8 12
FD PAYROLL-MASTER
BLOCK CONTAINS 30 RECORDS
RECORD CONTAINS 89 CHARACTERS
LABEL RECORDS OMITTED
DATA RECORD IS MASTER-RECORD
RECORDING MODE IS BINARY.
01 MASTER-RECORD.
02 SOC-SEC PIC 9{9).
02 NAME PIC X(28).
02 DEPT PIiC 9{4).
02 EMPLOYEE-NUMBER PIC 9(5).
02 DATE-OF-BIRTH.
03 YY PIC 99.
03 MM PIC 99.
03 DD PIC 99.
02 SEX PIC X.
02 RATE PIC 99V99 COMP-3.
02 HRS-WORKED PIC 99V9 COMP-3.
02 FICA PIC 9(4)V99 COMP-3.
02 SALARY-LAST-MO PIC 9{4)V99 COMP-3.
02 SALARY-TO-DATE PIC 9(5)V99 COMP-3.
02 HOURS-VACATION PIC 9(5).
02 OVERTIME-HISTORY.
03 OVERTIME PIC 99 OCCURS 7 TIMES.
Social . s Hr. Sal. | Sal. .
Security Employee Name Dept. E[{an_ %'rih E |Rate \‘Iy Fical Last | 1o Crs. O};/.e;tlme
Number O- L k. Mo. | Date] Vo Istory
1 10 38 42 47 6354 57 59 63 67 72 76
89 Bytes
Figure 5-6. IBM COBOL Record Structure
55870070)JROSCOE 222212345040647M0525350000156905250020255000400 50
55870056080SCOE 45675123412074340450490001237006000029503532070 0
563087551BRISCOE 4567451230606844FC500400001100005950028000002910 16
57738B0302BREE 222234512092551F0350250000850003500015000020015 240

Figure 5-7. Sample IBM Records

The parameters in the FILE control statement for the
output file CDCPAYR have the following meaning:

LT Label type; UL indicates unlabeled

BT Block type; K indicates RB records per block

MBL Maximum block length

RB Records per block in a sequential file K type
block

RT Record type; F indicates fixed length

5-4

FL Number of characters in the F-type record
(CRM expands the actual record with blanks
if necessary)

CM Conversion mode; YES indicates the tape file

is BCD coded because it is a 7-track tape

Figure 5-12 shows an output listing of the FORM run. The
output records are printed using the FMT parameter of the
PAG directive. The dayfile indicates NT57 has been
assigned to the tape containing IBMPAYR; MT52 has been
assigned to CDCPAYR. Refer to the appropriate
reference manual for information on accessing tapes.

60496200 C

12
FD PAYROLL-FILE
RECORD CONTAINS 86 CHARACTERS
BLOCK CONTAINS 30 RECORDS
LABEL RECORDS OMITTED
DATA RECORD IS PAY-MASTER.
01 PAY-MASTER.
02 EMPLOYEE-NUMBER PIC 9(5).
02 EMP-NAME PIC X(30}.
02 SOCIAL-SECURITY-NR PIC 9(9).
02 DATE-OF-BIRTH.
03 YEAR PIC 99.
03 MONTH PIC 99.
03 DAY PIC 99.
02 SEX PIC X.
02 DEPT PIC 9(4).
02 RATE PIC 99V99.
02 HRS-WORKED PIC 99V9.
02 FICA PIC 9(4)V99.
02 SALARY-LAST-MO PIC 3(4}V99.
02 SALARY-TO-DATE PIC 9(5)V99.
02 HOURS-VACATION-ACCRUED PIC 9(5).
Social . s Hr. Sal. Sal.
El\r‘np. Employee Name Security %ri:‘ E |Dept.] Rate V,\—’ FICA | Last to \?arc
o Number a k. Mo. Date :
1 6 36 45 5152 56 60 63 869 75 82 86
86 Chars.
Figure 5-8. CDC COBOL Record Format
123645RQSLCE £5870070004044Tr2222052535000015690525002€25500040
£12248N0SC0C £58700€660120743M4567045C4000012370060000255035C007
451233R15CO¢E £69C87£51060844F4567050C4C000110000595002€00000001
345129%9€% £77380502092551F2222035C25000085000350001£500000001
Figure 5-9. Sample CDC Records
IBM
Input Record
Format
99 Bytes
1 10 38 42 47 5364 5861 67 73 80 85
Social . S Hr. Sal. | sal. .
Security Employee Name Dept. E,(l“p' %'rth E [Rate Vly FICA| Last | to \"/"S' ngrtlme
Number 0. ate Iy k. Mo. | Date| V3¢ History
cDC
Output Record
Format
Social . S Hr. Sal. Sal. -
E'\T;p' Employee Name Security BD';: E |Dept.| Rate Vy FICA| Last to \I/—!r.
i Number X K. Mo. Date ac.
1 6 34 36 45 51652 56 60 63 69 75 82 86
86 Chars.

60496200 C

Figure 5-10. Record Reformatting

5-5

NOS:

JOB statement

USER statement

CHARGE statement

RESOURC (HD=1,HY=1)

LABEL(IBMPAYR,D=HD,F=S,PO=R,VSN=3996)

LABEL (CDCPAYR, MT,F=S,P0=W,VSN=SCRATCH)

FILE(IBMPAYR,LT=UL,RT=S,MBL=3960,MRL=3960,MRL=3960,CM=NO)

FILE(CDCPAYR,LT=UL,BT=K,MBL=2580,RB=30,RT=F,FL=86,CM=YES)

FILE (QUTC,BT=C,RT=Z,MRL=90)

FORM.

REWIND ,OUTC.

COPYCF,OUTC ,QUTPUT.

RETURN(CDCPAYR,IBMPAYR)

7/8/9 in column 1

INP (IBMPAYR,REW=U,RFM=F ,BLK=2970,LRL=90)

QUT(CDCPAYR)

ouT (0UTC)

CON(IBMPAYR,X53,P3X4,P2X3,2P4X6,P4XT7,X20)

REF(CDCPAYR,1N5=42N5,X30=10X28 ,N9=1N9,X6=47X6,X1=53X1 ,N4=38N4,
N&=54N4 ,N3=58N3 ,N6=61N6,N6=67N6,N7=73N7 ,N4=BON4)

REF(OUTC=CDCPAYR)

PAG(OUTC, FMT=D)

6/7/8/9 in column 1

NOS/BE:

JOB,NT1,MTT.

ACCOUNT statement

LABEL (IBMPAYR,NT ,HD,S,NORING,VSN=3996)

LABEL (CDCPAYR,MT,S,RING,VSN=SCRATCH)

FILE(IBMPAYR,LT=UL,RT=S,MBL=3960,MRL=3960,CM=N0)

FILE(CDCPAYR,LT=UL,BT=K, MBL=2580,RB=30,RT=F,FL=86,CM=YES)

FILE (OUTC,BT=C,RT=Z,MRL=90)

FORM.

REWIND,OUTC.

COPYCF,OUTC,OUTPUT.

7/8/9 in column 1

INP (IBMPAYR,REW=U,RFM=F ,BLK=2970,LRL=90)

OUT(CDCPAYR)

ouT(oUT)

CONCIBMPAYR,X53,P3X4,P2X3,2P4X6,P4XT7,X20)

REF(CDCPAYR, 1N5=42N5,X30=10X28,N9=1N9 ,X6=47X6,X1=53X1 ,N&t=38N4 ,
N4&=54N4 ,N3=58N3,N6=61N6,N6=67N6, N7=T3N7 ,N4t=80N4)

REF(QUTC=CDCPAYR)

PAG (OUTC,FMT=D)

6/7/8/9 in column 1

5-6

Figure 5-11. Job Decks for Conversion Example

60496200 D

INP(IBMPAYR,REW=U,RFM=F ,BLK=2970,LRL=90)

QUT(CDCPAYR)

ouT(ouUTC)

CONCIBMPAYR ,X53,P3X4,P2X3,2P4X6,P4X7,X20)

REF(CDCPAYR,1NS5=42N5,X30=10X28 ,N9=1N9 ,X6=47X6,X1=53X1 ,Nst=38N4,
N4=54N4 ,N3=58N3,N6=61N6 ,N6=67N6 ,N7=73N7 N4=8ONS&)

REF(OUTC=CDCPAYR)

PAG(OUTC,FMT=D)

SUMMARY

INPUT FILE - IBMPAYR 4 RECORDS READ
QUTPUT FILE - CDCPAYR 4 RECORDS WRITTEN
OUTPUT FILE =~ QUTC & RECORDS WRITTEN

END OF RUN.

I e N N S i i e N N i W

RECORD 1 90 CHARS
12345R0SCOE 558700700040447M2222052535000015690525002025500040
RECORD 2 90 CHARS
51234B0OSCOE 558700660120743M4567045040000123700600002950350007
RECORD 3 90 CHARS
45123BRISCOE 569087651060844F4567050040000110000595002800000001
RECORD 4 90 CHARS
34512BREE 577380902092551F22220350250000850003550001500000001

I e N e N N N N g e

ACMACKV. 80/02/01.(22) SVL SN614 NOS

14.47.59.8BIN0146G.

14.47.59.UCCR, 6145, 0.029KCDS.
14.47.59.USER,CDSXXXX, .
14.48.00.CHARGE,59XX,693AXXX.
14.48.02.RESOURC(HD=T ,HY=1)

14.48 .02.LABELCIBMPAYR,D=HD,F=S,P0O=R,VSN=3996)
14.52.07.NT57, ASSIGNED TO IBMPAYR, VSN=3996 .
14.52.07 .LABELC(CDCPAYR ,MT, F=S,PO=W, VSN=SCRATCH)
15.10.58.MT52, ASSIGNED TO CDCPAYR, VSN=****55.
15.10.58.FILECIBMPAYR,LT=UL RT=S,MBL=3960,MRL=3960,
15.10.58.CM=NO)

15.11.00.FILE(CDCPAYR,LT=UL ,BT=K,MBL=2580,RB=30,RT=F,
15.11.00.FL=86,CM=YES)
15.11.04.FILECOUTC,BT=C,RT=Z,MRL=90)

15.11.05.FORM.

15.11.21.REWIND,OUTC.

15.11.21.COPYCF,0UTC,O0UTPUT.

15.11.21. EOI ENCOUNTERED.

15.11.21.RETURN(CDCPAYR ,IBMPAYR)

15.11.21.UEAD, 0.005KUNS.
15.11.21.UEPF, 0.089KUNS.
15.11.21.UENT, 0.029KUNS.
15.11.21.UEMS, 3.009KUNS.
15.11.21.UECP, 1.179SECS.
15.11.21.AESR, 6.210UNTS.
15.22.21.uUCLP, 6141, 0.320KLNS.

Figure 5-12. Printout of a FORM Conversion Example

60496200 C

CHARACTER DATA INPUT, OUTPUT, AND CENTRAL A
MEMORY REPRESENTATION

This appendix describes the code and character sets used
by the operating system local batch device driver
programs, magnetic tape driver programs, and network
terminal communication products. This appendix does not
describe how other products associate certain graphic or
control characters with specific binary code values for
collating or syntax processing purposes. The main text of
this manual describes such associations that are relevant to
the reader. CDC and ASCII character set -collating
sequence tables are located in appendix N.

CHARACTER SETS AND CODE
SETS

A character set differs from a code set. A character set is
a set of graphic and/or control character symbols. A code
set is a numbering system used to represent each character
within a character set. Characters exist outside the
computer system and communication network; codes are
received, stored, retrieved, and transmitted within the
computer system and network.

When this manual mentions the ASCII 128-character set or
the 7-bit ASCII code set, it is referring to the character
set and code set defined as the American National
Standard Code for Information Interchange (ASCII, ANSI
Standard X3.4-1977). References in this manual to an
ASCII character set or an ASCII code set do not necessarily
apply to the 128-character, 7-bit ASCII code set.

GRAPHIC AND CONTROL
CHARACTERS

A graphic character can be displayed or printed. Examples
of graphic characters are the characters A through Z, a
blank, and the digits 0 through 9. A control character is
not a graphic character; a control character initiates,
modifies, or stops a control operation. An example of a
control character is the backspace character, which moves
the terminal carriage or cursor back one space. Although a
control character is not a graphic character, some
terminals use a graphic representation for control
characters.

CODED AND BINARY
CHARACTER DATA

Character codes can be interpreted as coded character
data or as binary character data. Coded character data is
converted by default from one code set representation to
another as it enters or leaves the computer system; for
example, data received from a terminal or sent to a
magnetic tape unit is converted. Binary character data is
not converted as it enters or leaves the system. Character
codes are not converted when moved within the system; for
example, data transferred to or from mass storage is not
converted.

60496200 D

The distinction between coded character data and binary
character data is important when reading or punching cards
and when reading or writing magnetic tape. Only coded
character data can be properly reproduced as characters on
a line printer. Only binary character data can properly
represent characters on a punched card when the data
cannot be stored as display code.

The distinction between binary character data and
characters represented by binary data (such as peripheral
equipment instruction codes) is also important. Only
binary noncharacter data can properly reproduce

characters on a plotter.

CHARACTER SET TABLES

The character set tables in this appendix are designed so
that the user can find the character represented by a code
(such as in a dump) or find the code that represents a
character. To find the character represented by a code,
the user looks up the code in the column listing the
appropriate code set and then finds the character on that
line in the column listing the appropriate character set. To
find the code that represents a character, the user looks up
the character and then finds the code on the same line in
the appropriate column.

NETWORK OPERATING
SYSTEMS

NOS and NOS/BE support the following character sets:

e CDC graphic 64-character set

@ CDC graphic 63-character set

e ASCII graphic 64-character set

® ASCII graphic 63-character set

@ ASCII graphic 95-character set

® ASCII 128-character set

Each site selects either a 64-character set or a
63-character set. The differences between the codes of a
63-character set and the codes of a 64-character set are
described under Character Set Anomalies. Any reference
in this appendix to a 64-character set implies either a 63-

or 64-character set unless otherwise stated.

NOS supports the following code sets to represent its
character sets in central memaory:

e 6-bit display code
@ 12-bit ASCII code

® 6/12-bit display code

A-l

NOS/BE supports the following code sets to represent its
character sets in central memory:

e 6-bit display code
e 12-bit ASCII code

Under both NOS and NOS/BE, the 6-bit display code is a
set of octal codes from 00 to 77, inclusive.

Under both NOS and NOS/BE, the 12-bit ASCII code is the
ASCII 7-bit code right-justified in a 12-bit byte. The bits
are numbered from the right starting with 0; bits 0 through
6 contain the ASCII code, bits 7 through 10 contain zeros,
and bit 11 distinguishes the 12-bit ASCII 0000 code from
the 12-bit 0000 end-of-line byte. The octal values for the
12-bit codes are 0001 through 0177 and 4000.

Under NOS, the 6/12-bit display code is a combination of
6-bit codes and 12-bit codes. The octal values for the 6-bit
codes are 00 through 77, excluding 74 and 76. (The
interpretation of the 00 and 63 codes is described under
Character Set Anomalies in this appendix.) The octal
12-bit codes begin with either 74 or 76 and are followed by
a 6-bit code. Thus, 74 and 76 are escape codes and are
never used as 6-bit codes within the 6/12-bit display code
set. The octal values of the 12-bit codes are: 7401, 7402,
7404, 7407, and 7601 through 7677. The other 12-bit codes,
74xx and 7600, are undefined.

CHARACTER SET ANOMALIES

The operating system input/output software and some
products interpret two codes differently when the
installation selects a 63-character set rather than a
64-character set. If a site uses a 63-character set: the
colon (:) graphic character is always represented by a 6-bit
display code value of 63 octal; 6-bit display code 00 is
undefined (it has no associated graphic or punched card
code); the percent (%) graphic does not exist, and
translations produce a space (55 octal).

However, under NQS, if the site uses a 64-character set,
output of an octal 7404 6/12-bit display code or a 6-bit
display code value of 00 produces a colon. In ASCIH mode,
a colon can be input only as a 7404 6/12-bit display code.
Undefined 6/12-bit display codes in output files produce
unpredictable results and should be avoided.

Under NOS/BE, if the site uses a 64-character set, output
of a 6-bit display code value of 00 produces the colon (:)
graphic character. A colon can be input only as a 00 code.

Under both NOS and NOS/BE, two consecutive 6-bit display
code values of 00 can be confused with the 12-bit 0000
end-of-line byte and should be avoided.

Translation of 12-bit ASCII to 6-bit display code causes
character set folding from the 128-character ASCII set to
the 63- or 64-character ASCII subset, with the special
character substitutions shown in figure A-1.

INTERACTIVE TERMINAL USERS

NOS and NOS/BE systems support display consoles and
teletypewriters that use code sets other than 7-bit ASCII
codes for communication or use graphics other than those
defined in an ASCII character set. Data exchanged with
such terminals is translated as described under Terminal
Transmission Modes in this appendix. The following
description applies only to terminals which use 7-bit ASCII
codes and the ASCII character set.

ASCH Data Exchange Modes

Table A-1 shows the character sets and code sets available
to an Interactive Facility (IAF) or INTERCOM user. Table
A-2 shows the octal and hexadecimal 7-bit ASCII code for
each ASCII character, and can be used to convert codes
from octal to hexadecimal. (Under NOS using network
product software, certain terminal definition commands
require hexadecimal specification of a 7-bit ASCII code.)

IAF Usage

IAF supports both normalized mode and transparent mode
transmissions through the network. These transmission
modes are described under Terminal Transmission Modes in
this appendix. For additional information refer to the NOS
Version 2 Reference Set, Volume 3 System Commands.

IAF treats normalized mode transmissions as coded
character data. IAF converts these transmissions to or
from either 6-bit or 6/12-bit display code.

IAF treats transparent mode transmissions as binary
character data. Transparent mode input or output uses
12-bit bytes, with bit 11 always set to 1; for ASCII
terminals, transparent mode input and output occurs in the
12-bit ASCIlI code shown in table A-1, but the leftmost
digit is 4 instead of 0.

When the NORMAL command is in effect, IAF assumes the
ASCII graphic 64-character set is used and translates all
input and output to or from display code. When the ASCII
command is in effect, IAF assumes the ASCI
128-character set is used and translates all input and
output to or from 6/12-bit display code.

63— or 64-Character Subset

12-Bit ASCII (Octal)

6-Bit Display Code (Octal)

12-Bit ASCII (Octal)

0140 (%)
0173 (O
0174 ()
0175 (3
0176 ™)

Input —

@ 0100 (@
) 0133 (D)
(\) ——e Qutput 3= 0134 (\)
(@)} 0135 (D
QY 0136 ™

Figure A-1. ASCII Character Folding

A-2

60496200 E

The IAF user can convert a 6/12-bit display code file to a
12-bit ASCIl code file using the NOS FCOPY control
statement. The resulting 12-bit ASCII file cen be routed to
a line printer but the file cannot be output through IAF.

INTERCOM Usage

INTERCOM supports only normalized mode transmissions
through the network. This transmission mode is described
under Terminal Transmission Modes in this appendix.
Refer to the INTERCOM Version 5 Reference Manual for
additional information.

INTERCOM treats normalized mode transmissions as coded
character data; INTERCOM converts these transmissions
to or from 6-bit display code unless the ASCII-128 or
ASCII-256 option is used. All communication between
INTERCOM and ASCII terminals using any parity setting
occurs in the 12-bit ASCII code shown in table A-1.

COMPASS and FORTRAN users can send or receive a
12-bit code byte if their terminal supports the code set
contained in the byte. In ASCII-128 mode, INTERCOM
assumes the ASCII 128-character set is used and does not
translate to or from display code. In ASCII-256 mode,
INTERCOM assumes the ASCII 12B-character set is used
and does not translate to or from display code, or set and
clear the eighth bit of the 12-bit byte.

BASIC users can send and receive lowercase and uppercase
characters or control codes using the 12-bit ASCI code if
the terminal supports such characters; BASIC represents
coded character data in central memory using 6/12-bit
display code under both NOS and NOS/BE.

Terminal Transmission Modes

Coded character data can be exchanged with an interactive
terminal in two transmission modes. These two maodes,

normalized mode and transparent mode, correspond to the
types of character code editing and translation’ performed
by the network software during input and output operations.

Under NOS, the terminal operator can change the input
transmission mode by using a terminal definition command
(sometimes called a Terminal Interface Program
command). The application program providing the terminal
facility service can change the input or output transmission
mode.

Under NOS/BE, the input and output transmission modes
are both fixed as normalized mode, but an application
pragram with a connected input or output file can control
character set mapping and parity bit settings.

Normalized Mode Transmissions

Normalized mode is the initial and default mode used for
both input and output transmissions. The network software
translates normalized mode data to or from the
transmission code used by the terminal into or from the
7-bit ASCII code shown in table A-2. (Tables A-1 and A-3
through A-7 are provided for use while coding a program to
run under the operating system; they do not describe
character code conversions within the network.)
Translation of a specific terminal transmission code to or
from a specific 7-bit ASCIlI code depends on the terminal
class in which the network software places the terminal.

60496200 D

The following paragraphs summarize the general case for
translations. The reader can extend this generalized
description by using the other tables to determine
character set mapping for functions initiated from a
terminal. For example, the description under Terminal
Output Character Sets can be used to predict whether a
lowercase ASCII character stored in 6/12-bit display code
can appear on an EBCDIC or external BCD terminal; if an
ASCII character passes through the network represented in
7-bit ASCII code as normalized mode data, it probably can
be represented on an EBCDIC terminal, but it is always
transformed to an uppercase character on a mode 4A ASCII
terminal.

Table A-2 contains the ASCIl 128-character set supported
by both NOS and NOS/BE network software. The ASCII
96-character subset in the rightmost six columns minus the
deletion character (DEL) comprises the graphic
95-character subset; the DEL is not a graphic character,
although some terminals graphically represent it. The
graphic 64-character subset comprises the middle four
columns. Only the characters in this 64-character subset
have 6-bit display code equivalents.

Terminals which support an ASCII graphic 64-character
subset actually use a subset of up to 96 characters,
consisting of the graphic 64-character subset and the
control characters of columns 1 and 2; often, the DEL
character in column?7 is included. Terminals which support
an ASCI graphic 95-character or 96-character subset
actually might use all 128 characters.

The hexadecimal value of the 7-bit code for each character
in table A-2 consists of the character's column number in
the table, followed by its row number. For example, N is
in row E of column 4, so its hexadecimal value is 4E. The

octal value of the code when it is right-justified in an 8-bit
byte appears beneath the character graphic or mnemonic.

The binary value of the code consists of the bit values
shown, placed in the order given by the subscripts for the
letter b; for example, N is 1001110.

Terminal Output Character Subsets -- Although the
network supports the ASCIl 128-character set, some
terminals restrict output to a smaller character set. This
restriction is supported by replacing the control characters
in columns 0 and 1 of table A-2 and the DEL character in
column 7 with blanks to produce the ASCI graphic
95-character subset, and replacing the characters in
columns 6 and 7 with the corresponding characters from
columns 4 and 5, respectively, to produce the ASCII
graphic 64-character subset.

Terminal Input Character Subsets and Supersets --
Although the network supports the ASCII 128-character
set, some terminals restrict input to a smaller character
set or permit input of a larger character set. A character
input from a device using a character set other than ASCII
is converted to an equivalent ASCII character; terminal
characters without ASCIl character equivalents are
represented by the ASCII code for a space.

Under NOS, site-written terminal-servicing facility
programs can also cause input or output character
replacement, conversion, or deletion by exchanging data
with the network in 6-bit display code.

Input Restrictions -- Under bath NOS and NOS/BE, the
network software by default automatically deletes codes
associated with terminal communication protocols or
terminal hardware functions. These codes usually
represent the cancel, backspace, linefeed, carriage return,
and deletion characters. If device input control or paper
tape support is requested, the device control 3 and device
control 1 codes also are deleted. Some of these code
deletions can be suppressed under NOS by using editing
options (refer to the FA and SE terminal definition
parameters in the NOS Version 2 Reference Set, Volume 3
System Commands).

NOS Output Restrictions -- All codes sent by an
application program are transmitted to the terminal.
However, the 12-bit ASCII code 0037 (octal), the 6/12-bit
display code 7677 (octal), and the 7-hit ASCII code 1F
(hexadecimal) should be avoided in normalized mode
output. The network software interprets the unit separator
character represented by these codes as an end-of-line
indicator. The processing of application program-supplied
unit separators causes incorrect formatting of output and
can cause loss of other output characters.

NOS/BE Output Restrictions -- The 7-bit ASCII null code
cannot be distinguished from the 12-bit 0000 end-of-line
byte and cannot be transmitted.

NOS Input Parity Processing -- The network software does
not preserve the parity of the terminal transmission code
in the corresponding ASCII code. An ASCII code received
by the terminal-servicing facility program always contains
zero as its eighth bit.

NOS/BE Input Parity Processing -- The network software
does not preserve the parity of the terminal transmission
code in the corresponding 12-bit ASCII code unless the
ASCII-256 option of INTERCOM is used. When the
ASCII-128 option is used, the 12-bit ASCII code received by
an application program always contains a zero as its eighth
bit.

Output Parity Processing -- Under NOS, the network
software provides the parity bit setting appropriate for the
terminal being serviced, even when the software is
translating from ASCIl characters with zero parity bit
settings. Under NOS/BE using either display code or the
ASCII-128 option, the network software provides the parity
bit setting appropriate for the terminal being serviced,
even when the software is translating from ASCIH
character codes with zero parity bit settings.

Transparent Mode Transmissions

Transparent mode is selected separately for input and
output transmissions.

During transparent mode input, the parity bit is stripped
from each terminal transmission code (unless the N or I
parity option has been selected by a terminal definition
command), and the transmission code is placed in an 8-bit
byte without translation to 7-bit ASCIl code. Line
transmission protocol characters are deleted from mode 4
terminal input. When the B-bit bytes arrive in the host
computer, a terminal servicing facility program can
right-justify the bytes within a 12-bit byte.

During transparent mode output, processing similar to that
performed for input occurs. When the host computer
transmits 12-bit bytes, the leftmost 4 bits (bits 11 through
8) are discarded. The code in each B-bit byte received by
the network software is not translated. The parity bit
appropriate for the terminal class is altered as indicated by

A-4

the parity option in effect for the terminal. The codes are
then transmitted to the terminal in bytes of a length
appropriate for the terminal class. Line transmission
protocol characters are inserted into mode 4 terminal
output.

LOCAL BATCH USERS

Table A-3 lists the CDC graphic 64-character set, the
ASCIl graphic 64-character set, and the ASCIl graphic
95-character set available on local batch devices. This
table also lists the code sets and card keypunch codes (026
and 029) that represent the characters.

The 64-character sets use 6-bit display code as their code
set; the 95-character set uses 12-bit ASCII code. The
95-character set is composed of all the characters in the
ASCIl 128-character set that can be printed at a line
printer (refer to Line Printer Output). Only 12-bit ASCIH
code files can be printed using the ASCII graphic
95-character set. The octal 12-bit ASCIlI codes 0040
through 0176 represent the 95-character set. An octal
12-bit ASCII code outside of the range 0040 through 0176
represents an unprintable character.

To print a 6/12-bit display code file, the user must convert
the file to 12-bit ASCII code. The FCOPY command can
change the 6/12-bit display codes shown in table A-3 to the
12-bit ASCII codes shown.

Line Printer Output

The printer train used on the line printer to which a file is
sent determines which batch character set is printed. The
following CDC print trains match the batch character sets
in table A-3:)

Character Set Print Train

CDC graphic 64-character set 596-1
ASCII graphic 64-character set 596-5
ASCII graphic 95-character set 596-6

The characters of the default 596-1 print train are listed in
the table A-3 column labeled CDC Graphic (64-Character
Set); the 596-5 print train characters are listed in the table
A-3 column labeled ASCII Graphic (64-Character Set); and
the 596-6 print train characters are listed in the table A-3
column labeled ASCII Graphic (95-Character Set).

Under NOS

If an unprintable character exists in a line, NOS marks the
condition by printing the number sign (#) in the first
printable column of the line. A space replaces the
unprintable character within the line.

When a transmission error occurs during the printing of a
line, NOS makes up to five attempts to reprint the line.
The CDC graphic print train prints a concatenation
symbol{r*) in the first column of the repeated line
following a line containing errors. The ASCII print trains
print an underline (_) instead of the concatenation symbol.

After the fifth attempt, the setting of sense switch 1 for
the batch input and output control point determines further
processing. NOS either rewinds the file and returns it to
the print queue, or ignores the transmission errors.

60496200 E

Under NOS/BE

If an unprintable character exists in a line, NOS/BE marks
the condition by printing a diagnaostic message on the next
line. A space replaces the unprintable character within the
line.

When a transmission error occurs during the printing of a
line, NOS/BE stops the printer and alerts the system
console operator. The console operator can either ignore
the condition and continue printing the file, or the operator
can rewind the file and return it to the print queue.

Punched Card Input and Output

A character represented by multiple punches in a single
column has its punch pattern identified by numbers and
hyphens. For example, the punches representing an
exclamation point are identified as 11-0; this notation
means both rows 11 and 0 are punched in the same column.

A multiple punch pattern that represents something other
than a character is identified by numbers and slashes. For
example, the punches representing the end of an input file
are identified as 6/7/8/9; this notation means rows 6
through 9 are punched in the same column.

-'F

Under NOS

Coded character data is exchanged with card readers or
card punches according to the transiations shown in table
A-3. As indicated in the table, other card keypunch codes
are available for input of the ASCIl and CDC characters[
and]. NOS cannot read or punch the 95-character set as
coded character data.

Each site chooses either 026 or 029 as its default keypunch
code. NOS begins reading an input deck in the default code
(regardless of the character set in use). The user can
specify the alternate keypunch code by punching a 26 or 29
in columns 79 and 80 of any job card, 6/7/9 card, or 7/8/9
card. The specified translation continues throughout the
job unless the alternate keypunch code translation is
specified on a subsequent 6/7/9 or 7/8/9 card.

A 5/7/9 card with a punch in column 1 changes keypunch
code transiation if the card is read immediately before or
after a 7/8/9 card. A space (ne punch) in column 2 of such
a 5/7/9 card selects 026 translation mode; a 9 punch in
column 2 selects 029 translation mode. The specified
translation continues until a similar 5/7/9 card or a similar
7/8/9 card is encountered, or the job ends.

The 5/7/9 card also allows literal input when 4/5/6/7/8/9 is
punched in column 2. Literal input can be used to read
80-column binary character data within a punched card
deck of coded character data.

Literal cards are stored with each column represented in a
12-bit byte (a row 12 punch is represented by a 1 in bit 11,
row 11 by a 1 in bit 10, row G by a 1 in bit 9, and rows 1
through 9 by 1's in bits 8 through 0 of the byte), using 16
central memory words per card. Literal input cards are
read until another 5/7/9 card with 4/5/6/7/8/9 punched in
column 2 is read. The next card can specify a new
conversion made.

60496200 £

If the card following the 5/7/9, 6/7/9, or 7/8/9 card has a 7
and a 9 punched in column 1, the section of the job deck
following it contains system binary cards (as described in
the NOS Version 2 Reference Set, Volume 3 System
Commands).

Under NOS/BE

Coded character data is exchanged with card readers or
card punches according to the translations shown in table
A-3. As indicated in the table, other card keypunch codes
are available for input of the CDC characters v and < or
the ASCII characters ! and <. NOS/BE cannot read or
punch the ASCII 95-character set as coded character data.

Each site chooses either 026 or 029 as its default keypunch
code. NOS/BE begins reading an input deck in the default
code (regardless of the character set in use). The user can
specify the alternate keypunch code by punching a 26 or 29
in columns 79 and 80 of the job statement or in columns 79
and 80 of any 7/8/9 card. The specified translation
continues throughout the job unless the alternate keypunch
code translation is specified on a subsequent 7/8/9 card.

A card with all 12 rows of column 1 punched and all of one
other column punched can be followed by 80-column cards
of free-form binary data. These binary data cards are read
as described for NOS literal data until another card with 12
punches in column 1 and in one other column occurs, or
until the job ends. The next card is interpreted as coded
data.

If the card following the job card or 7/8/9 card has a 7 and
a 9 punched in column 1, the section of the job deck
following it contains standard binary cards (as described in
the NOS/BE Version 1 Reference Manual).

REMOTE BATCH USERS

Remote batch console input and output is restricted to
normalized mode transmission. Normalized mode is
described under Terminal Transmission Modes in this
appendix.

The abilities to select alternate keypunch code
translations, to read binary cards, to output plotter files,
and to print lowercase characters depend upon the remote
terminal equipment.

Remote batch terminal support under NOS is described in
the Remote Batch Facility Version 1 Reference Manual.
Remote batch terminal support under NOS/BE is described
in the INTERCOM Version 5 Reference Manual.

MAGNETIC TAPE USERS

The character and code sets used for reading and writing
magnetic tapes depend on whether coded or binary data is
read or written and on whether the tape is 7-track or
9-track.

Coded Data Exchanges

Coded character data to be copied from mass storage to
magnetic tape is assumed to be stored in a 63- or
64-character 6-bit display code. The operating system
magnetic tape driver program converts the data to 6-bit
external BCD code when writing a coded 7-track tape and
to 7-bit ASCII or 8-bit EBCDIC code (as specified on the
tape assignment statement) when writing a coded 9-track
tape.

Coded character data copied to mass storage from
magnetic tape is stored in a 63- or 64-character 6-bit
display code. The operating system magnetic tape driver
program converts the data from 6-bit external BCD code
when reading a coded 7-track tape and from 7-bit ASCII or
8-bit EBCDIC code (as specified on the tape assignment
statement) when reading a coded 9-track tape.

To read and write lowercase character 7-bit ASCI or 8-bit
EBCDIC codes or to read and write control codes, the user
must assign a 7-track or 9-track tape in binary maode.

Seven-Track Tape Input and Output

Table A-4 shows the code and character set conversions
between 6-bit external BCD and 6-bit display code for
7-track tapes. Because only 63 characters can be
represented in 7-track even parity, one of the 64 display
codes is lost in conversion to and from external BCD code.

Figure A-2 shows the differences in 7-track tape
conversion that depend on whether the system uses the
63-character or 64-character set. The ASCII character for
the specified character code is shown in parentheses. The
output arrows show how the display code changes when it is
written on tape in external BCD. The input arrows show

how the external BCD code changes when the tape is read

and converted to display code.

63-Character_Set

Display Code External BCD Display Code

00 16(%) 00
33(0) Output 12(0) Input 33(0)
63(:) - 12{0) _—" 33(0)

64-Character Set

Display Code External BCD Display Code |
00(:) 12(0) 33(0)
33(0) Output 12(0) Input 33(0)
63(%) ’ 16(%) ’ 63(%)

Figure A-2. Magnetic Tape Code Conversions

Nine-Track Tape Input and Output

Table A-5 lists the conversions between the 7-bit ASCII
code used on the tape and the 6-bit display code used
within the system. Table A-6 lists the conversions between
the B-bit EBCDIC code used on the tape and the 6-bit
display code used within the system.

When an ASCII or EBCDIC code representing a lowercase
character is read from a 9-track magnetic tape, it is
converted to its uppercase character 6-bit display code
equivalent. Any EBCDIC code not listed in table A-6 is
converted to display code 55 (octal) and becomes a space.
Any code between BO (hexadecimal) and FF (hexadecimal)
read from an ASCII tape is converted to display code 00.

Binary Character Data Exchanges

Binary character data exchanged between central memory
files and magnetic tape is transferred as a string of bytes
without conversion of the byte contents. The grouping of
the bytes and the number of bits in each byte depend on
whether 7-track or 9-track tape is being used.

Seven-Track Tape Input and Output

Each binary data character code written to or read from
7-track magnetic tape is assumed to be stored in a 6-bit
byte, such as the system uses for 63- or 64-character 6-bit
display code. Seven-bit ASCII and 8-bit EBCDIC codes can
only be read from or written to 7-track magnetic tape as
binary character data if each code is stored within a 12-bit
byte as if it were two character codes.

Nine-Track Tape Input and Output

Each binary data character code exchanged between
central memory files and 9-track magnetic tape is assumed
to be stored in an 8-bit or 12-bit byte. During such binary
data transfers, the 6/12-bit display codes and 12-bit ASCII
codes shown in table A-1, the.7-bit ASCII codes shown in
table A-2, or or the B8-bit hexadecimal EBCDIC codes
shown in table A-7 can be read or written. The 7-bit ASCII
codes and B-bit EBCDIC codes can be exchanged either in
an unformatted form or right-justified within a zero-filled
12-bit byte of memory.

When 9-track tape is written, every pair of 12-bit memory
bytes becomes three 8-bit tape bytes; when 9-track tape is
read, every three B-bit tape bytes become a pair of 12-bit
memory bytes. Because of the 12-bit byte pairs, codes not
packed in 12-bit bytes are exchanged in their unpacked
form, while codes packed in 12-bit bytes are exchanged in
packed form.

When an odd number of central memory words is read or
written, the lower four bits of the last B-bit byte (bits O
through 3 of the last word) are not used. For example,
three central memory words are written on tape as 22 8-bit
bytes (7.5 pairs of 12-bit bytes) and the remaining four bits
are ignored.

60496200 D

CODE CONVERSION AIDS

Table A-7 contains the octal values of each 8-bit EBCDIC
code right-justified in a 12-bit byte with zero fill. This
12-bit EBCDIC code can be written or read using the
FORM and the 8-Bit Subroutines utilities.

SCOPE 2 OPERATING
SYSTEM

Interactive terminal and remote batch operations through
HELLO7 under SCOPE 2 affect character data in the
manner described for INTERCOM under NOS/BE.
Magnetic tape and line printer operations affect character
data in the manner described for NOS/BE. Refer to the
SCOPE Version 2 Reference Manual for details.

Coded character data is exchanged with local batch card
readers or card punches according to the translations
shown in table A-3. As indicated in the table, other card
keypunch codes are available for input of the CDC
characters v and <, or the ASCI characters ! and<.

SCOPE 2 cannot read or punch the 95-character set as
coded character data.

When SCOPE 2 reads an input deck, no keypunch code

default exists (regardless of the character set in use). The
026 or 029 keypunch code translations are specified by a 26

60496200 D

or 29 punched in columns 79 and 80 of the job statement or
in columns 79 and B0 of any 7/8/9 card. The specified
translation continues throughout the job wunless the
alternate keypunch code translation is specified on a
subsequent 7/8/9 card.

A job card or 7/8/9 card with blanks in columns 79 and 80
indicates that the following section of the job deck is
either coded or binary data, as indicated by the subsequent
card.

If the subsequent card has all of column 1 punched (that is,
12 punches in column 1) and all of one other column
punched, it can be followed by 80-column cards of
free-form binary data. These binary data cards are read in
the manner described for NOS literal data cards until
another card with 12 punches in column 1 and in one ather
column occurs, or until the job ends. The next card is
interpreted as coded data.

If the card following the keypunch-code changing card has
a 7 and a 9 punched in column 1, the section of the job
deck following it contains. SCOPE2 binary cards (as
described in the SCOPE Version 2 Reference Manual).

If the card following the keypunch-code changing card is
anything other than a free-form binary or SCOPE 2 binary
indicator card, the section of the deck contains cards
punched in the code last selected.

A-7 @

TABLE A-1. [INTERACTIVE TERMINAL CHARACTER SETS

Character Sets Code Sets

Octal - Octal Octal

ASCII Graphic ASCII Character 6-Bit 6/12-Bit 12-Bit
(64~Character Set) (128-Character Set) Display Display ASCII
Code Codef Code

: colon't oott
A A 01 0l 0101
B B 02 02 0102
C c 03 03 0103
D D 04 04 0104
E E 05 05 0105
F F 06 06 0106
G G 07 07 0107
H H 10 10 0110
I I 11 1l Olll
J J 12 12 0li2
K K 13 13 0113
L L 14 14 0ll4
M M 15 15 0115
N N 16 16 glle6
0 0 17 17 0117
P P 20 20 0120
Q Q 21 21 0121
R R 22 22 0122
S S 23 23 0123
T T 24 24 0124
U U 25 25 0125
v v 26 26 0126
W W 27 27 0127
X X 30 30 0130
Y Y 31 31 0131
Z 4 32 32 0132
0 0 33 33 0060
1 1 34 34 0061
2 2 35 35 0062
3 3 36 36 0063
4 4 37 37 0064
5 5 40 40 0065
6 6 41 41 0066
7 7 42 42 0067
8 8 43 43 0070
9 9 44 44 0071
+ plus : + plus . 45 45 0053
- hyphen (minus) - hyphen (minus) 46 46 0055
* asterisk * asterisk 47 47 0052
/ slant / slant 50 50 0057
(opening parenthesis (opening parenthesis 51 51 0050
) closing parenthesis) closing parenthesis 52 52 0051
$ dollar sign $ dollar sign 53 53 0044
= equals = equals 54 54 0075
space space 55 55 0040
, comma , comma 56 56 0054
. period . period 57 57 0056
number sign # number sign 60 60 0043
[opening bracket [opening bracket 61 61 0133
1 closing bracket] closing bracket 62 62 0135
% percent sign % percent sign 63TT 63TT 0045
" quotation mark " quotation mark 64 64 0042
_ underline _ underline 65 65 0137
! exclamation point ! exclamation point 66 66 0041
& ampersand & ampersand 67 67 0046
‘ apostrophe ’ apostrophe 70 70 0047
? question mark ? question mark 71 71 0077
® A-8 60496200 D

TABLE A-1. TINTERACTIVE TERMINAL CHARACTER SETS (Contd)
Character Sets Code Sets
Octal Octal Octal
ASCIL Graphic ASCLI Character 6-Bit 6/t2-Bit 12-Bit
(64-Character Seat) (128~Character Set) Display Display ASCI{
Code CodeT Code
{ less than { less than 72 72 0074
> greater than > greater than 73 73, 0076
@ commmercial at @ commercial at 74Tt 740117 0100
\ reverse slant \ reverse slant 75 75 0134
A circumflex 76
; semicolon ; semicolon 77 77 0073
~ clrcumflex 767 7402 0136
: colontt 741 76041t 0072
' grave accent 1407 0140
a 7601 0141
b 7602 0142
c 7603 0143
d 7604 0l44
e 7605 0145
£ 7606 0l46
g 7607 0147
h 7610 0150
i 7611 0lL51
i 7612 0152
k 7613 0153
1 7614 0154
m 7615 0155
n 7616 0156
o 7617 0L57
p 7620 0160
q 7621 0l61
r 7622 Ol62
s 7623 0163
t 7624 0l64
u 7625 0165
v 7626 0l66
w 7627 0167
X 7630 0170
y 7631 0171
z 7632 0172
{ opening brace 6177 7633 0173
| vertleal line 751 7634 0174
} closing brace 6217 7635 0175
~ tilde 76T 7636 0176
NUL 7640 4000
SOH 7641 0001
STX 7642 0002
ETX 7643 0003
EOT 7644 0004
ENQ 7645 0005
ACK 7646 0006
BEL 7647 0007
BS 7650 0010
HT 7651 0011
LF 7652 0012
VT 7653 0013
FF 7654 0014
CR 7655 0015
S0 7656 0016
SI 7657 0017
DEL 7637 0177
DLE 7660 0020

60496200 D

A-9 @

TABLE A-1. INTERACTIVE TERMINAL

CHARACTER SETS (Contd)

Character Sets Code Sets

Octal Octal Octal
ASCII Graphic ASCII Character 6-Bit 6/12-Bit 12-Bit
(64~Character Set) (128~Character Set) Display Display ASCII

Code Codet Code

DC1 7661 0021

DC2 7662 0022

DC3 7663 0023

DC4 7664 0024

NAK 7665 0025

SYN 7666 0026

ETB 7667 0027

CAN 7670 0030

EM 7671 0031

SUB 7672 0032

ESC 7673 0033

FS 7674 0034

GS 7675 0035

RS 7676 0036

us 7677 0037

Tavallable only on NOS.

TTCharacter or code interpretation depends on context. Refer to Character Set Anomalies in the text.

® A-10

60496200 D

TABLE A-2. 7-BIT ASCIL CODE AND CHARACTER SETS

i‘ 128-Character Set
l‘*-*—*—--—'96—Character Subset ———r————i>
e-Graphic 64-Character Subset—-l

by > | 0 0 0 0 3 1 1
b6 > 0 0 1 1 0 0 1 1
b5 > 0 1 0 1 0 1 0 L
Colunmn
Bits b b b b 0 1 2 3 4 5 6 7
4 —
' ‘3 ‘2 ‘1 Row '
0 0 0 0 0 NUL DLE SP 0 @ P * P
000 020 040 060 100 120 140 160
0] 0 1 1 SOH DCL ! 1 A Q a q
001 021 041 061 101 121 141 161
0 0 1 0 2 STX DC2 " 2 B R b r
002 022 042 062 102 122 142 162
0 0 1 i 3 ETX DC3 # 3 c S c s
003 023 043 063 103 123 143 163
0 1 0 0 4 EOT DC4 $ 4 D T d t
004 024 044 064 104 124 144 164
0 1 0 1 5 ENQ NAK 4 5 E U e u
005 025 045 065 105 125 145 165
0 1 1 0 6 ACK SYN & 6 F v £ v
006 026 046 066 106 126 146 166
0 1 1 1 7 BEL ETB ’ 7 G W g w
007 027 047 067 107 127 147 167
1 o] 0 0 8 BS CAN (8 H X h X
010 030 050 070 110 130 150 170
1 0 0 1 9 HT EM) 9 I Y i y
011 031 051 071 1Ll 131 151 171
1 0 1 Q A LF SUB * : J Z i z
012 032 052 072 112 132 152 172
1 0 1 1 B vT ESC + ; K | k {
) 013 033 053 073 113 133 153 173
1 1 0 0 c FF FS , < L \ 1 |
014 034 054 074 114 134 154 174
1 1 0 1 D CR GS - = M] o }
015 035 055 075 115 135 155 175
1 1 1 0 E S0 RS . > N ~ n ~
016 036 056 Q76 116 136 156 176
1 1 1t F SI us / ? 0 I peLf
017 Q037 057 077 117 137 157 177
TThe graphic 95-character subset does not include DEL; refer to Terminal Transmission Modes in the text.
LEGEND:
Numbers uander characters are the octal values for the 7-bit character codes used within the network.
60496200 D A-11 @

TABLE A-3. LOCAL BATCH DEVICE CHARACTER SETS

Character Sets Code Sets
Card Keypunch Code
cbC ASCII ASCII Octal Octal Octal
Graphic Graphic Graphic 6-Bit 6/12-Bit | 12-Bit 026 029
(64—~Character (64-Character (95-Character Display | Display ASCII
Set) Set) Set) Code Codet Code
: colonf? : colonTT OOTT 8-2 8~2
A A A 01 01 0101 12-1 12-1
B B B 02 02 0102 12-2 12-2
C c c 03 03 0103 12-3 12-3
D D D 04 04 0104 12-4 12-4
E E E 05 05 0105 12-5 12-5
F F F 06 06 0106 12-6 12-6
G G G 07 07 0107 12-7 12-7
H H H 10 10 0110 12-8 12-8
I 1 I 11 11 0il1 12-9 12-9
J J J 12 12 0112. 11-1 11-1
K K K 13 13 0113 11-2 11-2
L L L 14 14 0114 11-3 11-3
M M M 15 15 0115 11-4 11-4
N N N 16 16 0116 11-5 11-5
0 0 0 17 17 0117 11-6 11-6
P P P 20 20 0120 11-7 11-7
Q Q Q 21 21 0121 11-8 11-8
R R R 22 22 0122 11-9 11-9
S S S 23 23 0123 0-2 0-2
T T T 24 24 0124 0-3 0-3
u U U 25 25 0125 0-4 0-4
\Y \' v 26 26 0126 0-5 0-5
W W W 27 27 0127 0-6 0-6
X X X 30 30 0130 0-7 0-7
Y Y Y 31 31 0131 0-8 - 0-8
A Z Z 32 32 0132 0-9 0-9
0 0 o] 33 33 0060 0 0
1 1 1 34 34 0061 1 - 1 1
2 2 2 35 35 0062 2 2
3 3 3 36 36 0063 3 3
4 4 4 37 37 0064 4 4
5 5 5 40 40 0065 5 5
6 6 6 41 41 0066 6 6
7 7 7 42 42 0067 7 7
8 8 8 43 43 0070 8 8
9 9 9 44 44 0071 9 9
+ plus + plus + plus 45 45 0053 12 12-8-6
- hyphen (minus) | - hyphen (minus) -~ hyphen (minus) 46 46 0055 11 11
* asterisk * asterisk * asterisk ’ 47 47 0052 11-8-4 11-8-4
/ slant / slant / slant 50 50 0057 0-1 0-1
(open. paren. (open. paren. (open. paren. 51 51 0050 0-8-4 12-8-5
) clos. paren.) clos. paren.) clos. paren. 52 52 0051 12-8-4 11-8-5
$ dollar sign . $ dollar sign $ dollar sign 53 53 0044 11-8-3 11-8-3
= equals = equals = equals 54 54 0075 8-3 8-6
space space space 55 55 0040 no punch | no punch
, comma , comma , comma 56 56 - 0054 0-8-3 0-8-3
. period . period . period 57 57 0056 12-8-3 12-8-3
= equivalence # number sign # number sign 60 60 0043 0-8-6 8-3
[open. bracket [open. bracket [open. bracket 61 61 0133 8-7 12-8-2
or
12071t
] clos. bracket] clos. bracket] clos. bracket 62 62 0135 0-8-2 11-8-2
oottt
% percent signTT % percent signTT % percent si.gnTT 63TT 63TT 0045 8-6 0-8-4

® A-12 60496200 D

TABLE A-3, LOCAL BATCH DEVICE CHARACTER SETS (Contd)
Character Sets Code Sets
Card Keypunch Code
CcbC ASCII ASCII Octal Octal Octal
Graphic Graphic Graphic 6-Bit 6/12-Bit 12-Bit
(64=Character (64~Character (95-Character Display | Display ASCII 026 029
Set) Set) Set) Code Codel Code
not equals " quotatlon mark " quotation mark 64 64 0042 8-4 8-7
I concatenation. underline underline 65 65 0137 0-8-=5 0-8-5
v logical OR T exclamation pt. | | exclamation pt. 66 66 0041 11-0 12-8-7
or or
11-8-28 11-08
A logical AND & ampersand & ampersand 67 67 0046 0-8-7 12
% superscript ’ apostrophe ’ apostrophe 70 70 0047 11-8-5 8-5
4 subscript ? questlon mark ? questlon mark 71 71 0077 11-8-6 0-8-7
< less than < less than < less than 72 72 0074 12-0 12~-8-4
' or or
12-8-28 12-08
> greater than > greater than > greater than 73 73 0076 11-8-7 0~8~6
< less/equal @ commercial at @ commerclal at 7417 760117 0100 8~5 8-4
> greater/equal \ reverse slant \ reverse slant 75 75 0134 12-8-5 0-8-2
= logical NOT A circumflex 76 12-8-6 11-8-7
: semicolon ; semicolon ; semicolon 77 77 0073 12-8~7 11-8-6
A~ clrcunflex 76 TT 7402 0136
: colon : 760411 | o072
* grave accent 74171 7407 0140
a 7601 0141
b 7602 0142
c 7603 0143
d 7604 0144
e 7605 0145
£ 7606 0146
g 7607 0147
h 7610 0150
i 7611 0151
j 7612 0152
k 7613 0153
1 7614 0154
m 7615 0155
n 7616 0156
o 7617 0157
P 7620 0160
q 7621 0161
r 7622 0162
s 7623 0163
t 7624 0164
u 7625 0165
v 7626 0166
W 7627 0167
X 7630 0170
y 7631 0171
z 7632 0172
{ open. brace 61T 7633 0173
| vertical lime 751t 7634 0174
} clos. brace 6277 7635 0175
~ tilde 761t 7636 0176
TAvallable only on NOS.
TTCharacter or code interpretation depends on context. Refer to Character Set Anomalles in the text.
TTTAvailable for inmput only, on NOS.
8 Available for input only, on NOS/BE or SCOPE 2.
60496200 D

A-13 @

TABLE A-4. 7-TRACK CODED TAPE CONVERSIONS
Octal Octal
External ASCTI 6-Bit External ASCIIL 6-Bit

BCD Character Display BCD Character Display

Code Code
01 1 34 40 - hyphen (minus) 46
02 2 35 41 J 12
03 3 36 42 K 13
04 4 37 43 L 14
05 5 40 44 M 15
06 6 41 45 N 16 |
07 7 42 46 0 17
10 8 43 47 P 20
11 9 44 50 Q 21
121 0 33 51 R 22
13 = equals 54 52 ! exclamation point 66
14 " quotation mark 64 53 $ dollar sign 53
15 @ commercial at 74 54 * asterisk 47
16T % percent sign 63 55 ’ apostrophe 70
17 [opening bracket 61 56 ? question mark 71
20 space 55 57 > greater than 73
21 / slant 50 60 +-plus 45
22 S 23 61 A 01
23 T 24 62 B 02
24 U 25 63 c 03
25 v 26 64 D 04
26 W 27 65 E 05
27 X 30 66 F 06
30 Y 31 67 G 07
31 Z 32 70 H 10
32] closing bracket 62 71 I 11
33 , comma 56 72 < less than 72
34 - (opening parenthesis 51 73 . period 57
35 __underline 65 74) closing parenthesis 52
36 # number sign 60 75 \ reverse slant 75
37 & ampersand 67 76 " caret 76

77 ; semicolon 77
TAs the text explains, conversion of these codes depends on whether the tape is read or written.
e A-14 60496200 D

TABLE A-5. ASCII 9-TRACK CODED TAPE CONVERSION
ASCIIT
b-Bit
Code Character and Display CodeTTT
ConversionT Code Counversion i
(Rew) Character (he) Character Chatac ter (Getal)
20 space 00 NUL space ‘ 55
21 ! exclamation point 7D } closing brace ! exclamation pnint 66
22 " quotation mark 02 STX " quotation mark 64
23 # number sign 03 ETX # number sign 60
24 $ dollar sign 04 EOT $ dollar sign 53
25 % percent sign§ 05 ENQ % percent sign§ 638
26 & ampersand 06 ACK & ampersand 67
27 ’ apostrophe 07 BEL " apostrophe 70
28 (opening parenthesis 08 8S (opening parenthesis 51
29) closing parenthesis 09 HT) closing parenthesis 52
2A * asterisk 0A LF * asterisk 47
2B + plus 0B vT + plus 45
2C , comma oc FF , comma 56
2D - hyphen (minus) oD CR ~ hyphen (minus) 46
2E . period OE SO‘ . period 57
2F / slant OF SI / slant 50
30 0 10 DLE 0 33
31 1 11 DCl 1 34
32 2 12 DC2 2 35
33 3 13 DC3 3 36
34 4 14 DC4 4 37
35 5 15 NAK 5 40
36 6 16 SYN 6 41
37 7 17 ETB 7 42
38 8 - 18 CAN 8 43
39 9 19 EM 9 44
3A : colonf 1A SUB : colond oo§
3B ; semicolon 1B ESC ; semicolon 77
3c < less than 78 { opening brace < less than 72
3D = equals 1D GS = equals 54
3E > greater than 1E RS > greater than 73
3F 7 question mark 1F us ? question mark 71
40 @ commercial at 60 * grave accent @ commercial at 74
41 A 61 a A 01
42 B 62 b B 02
43 c 63 c c 03
44 D 64 d D 04
45 E 65 e E 05
46 F 66 £ F 06
60496200 D A-15 @

TABLE A-5. ASCII 9-TRACK CODED TAPE CONVERSION (Contd)
ASCIX
6-Bit
Code Character and Display CodeTTT
ConversionT Code Conversion

Code Character Code Character ASCLI Code

(Hex) (Hex) Character (Octal)

47 G 67 g G 07

48 H 68 h H 10

49 I 69 i 1 1l

4A J 6A j J 12

4B X 6B k K 13

4C L 6C 1 L 14

4D M 6D m M 15

4E N 6E n N 16

4F o] 6F o 0 17

50 P 70 P P 20

51 Q 71 q Q 21

52 R 72 r R 22

53 S 73 s] 23

54 T 74 t T 24

55 U 75 u U 25

56 v 76 v v 26

57 W 77 w W 27

58 X 78 b4 X 30

59 Y 79 y Y 31

5A Z 74 z Z 32

5B [opening bracket 1C FS [opening bracket 61

5C \ reverse slant 7C | vertical line \ reverse slant 75

5D] closing bracket 01 SOH] closing bracket 62

SE " caret 7E ~ tilde ™ caret 76

5F __underline 7F DEL _ underline 65

TWhen these characters are copied from or to a tape, the characters remain the same and the code
changes from or to ASCII to or from display code.

TTThese characters do mot exist in display code. When the characters are copied from a tape, each
ASCII character is changed to an alternate display code character. The corresponding codes are also
changed. Example: When the system copies a lowercase a, 6l (hexadecimal), from tape, it writes an
uppercase A, 01 (octal).

TTTA display code space always translates to an ASCII space.
§Character or code interpretation depends on context. Refer to Character Set Anomalies in the text.

® A-16

60496200 D

60496200 D

TABLE A-G. EBCDIC 9-TRACK CODED TAPE CONVERSLON
EBCDIC
p~Bit
Code Character and Display Code Tt
Conversionf Code Conversinn
() Charscter (e Chacacter Charactec (oetal)
40 space 00 NUL space 55
4A ¢ cent sign 1C IFS | opening bracket 61
48 . period 0E S0 . period 57
4C < less than co { opening brace < less than 72
4D (opening parenthesis 16 BS (opening parenthesis 51
4E + plus 0B VT + plus 45
4F | vertical line Do } closing brace ! exclamation point 66
50 & ampersand 2E ACK & ampersand 67
5A ! exclamation point ol SOH } closing bracket 62
5B $ dollar sign 37 EOT $ dollar sign 53
5C * asterisk 25 LF * asterisk 47
5D) closing parenthesis 05 HT) closing parenthesis 52
SE ; semicolon 27 ESC ; semicolon 77
5F —1logical NOT Al ~ tilde " caret 76
60 - hyphen (minus) oD CR - hyphen (minus) 46
61 / slant oF S1 / slant 50
6B , comma [+]9} FF , comma 56
6C % percent sign§ 2D ENQ % percent si.gn§ 638
6D _ underline 07 DEL _ underline 65
6E > greater than 1E IRS > greater than 73
6F ? question mark 1F 1US ? question mark 71
7A : colon$ 3F SUB : colon$ 00§
78 # number sign 03 ETX # number sign 60
7C @ commercial at 79 \ reverse slant @ commercial at 74
D ‘ apostrophe 2F BEL ' apostrophe 70
7E = equals 1D 1GS = equals 54
7F " quotation mark 02 STX " quotation mark 64
Cl1 A 81 a A o1
c2 B 82 b B 02
c3 c 83 c C 03
o} D 84 d D 04
C5 E 85 e E 05
Cé F 86 £ F 06
c7 G 87 g G 07
c8 H 88 h H 10
c9 I 89 i I i1
Dl J 91 i J 12
D2 K 92 k K 13
D3 L 93 L 14

A-17 @

TABLE A-6. EBCDIC 9-TRACK CODED TAPE CONVERSION (Contd)
EBCDIC
6-Bit
Code Character and Display CodeTTT
Conversion Code Conversion

(Rew) Character (Rew) Character Character (Getet)

D4 M 94 m M I3

D5 N 95 n N 16

D6 ¢ 96 o 0 17

D7 P 97 p P 20

D8 Q 98 q Q 21

D9 R 99 r R 22

EO \ reverse slant 6A | vertical line \ reverse slant 75

E2 s A2 s S 23

E3 T A3 t T 24

E4 U A4 u i} 25

E5 v A5 v v 26

E6 W A6 Y] W 27

E7 X A7 x X 30

E8 Y A8 y Y 31

E9 A A9 z Z 32

FO 0 10 DLE 0 33

Fl 1 11 DCl 1 34

F2 2 12 DC2 2 35

F3 3 13 ™ 3 36

F4 4 3C DC4 4 i 37

F5 5 3p NAK 5 40

Fé 6 32 SYN 6 41

F7 7 26 ETB 7 42

F8 8 18 CAN 8 43

F9 9 19 EM 9 44

tWhen these characters are copied from or to a tape, the characters remain the same (except EBCDIC
codes 4A (hexadecimal), 4F (hexadecimal), 5A (hexadecimal), and 5F (hexadecimal)) and the code changes
from or to EBCDIC to or from display code. ’

T These characters do not exist in display code. When the characters are copied from a tape, each
EBCDIC character is changed to an alternate display code character. The corresponding codes are also
changed. Example: When the system copies a lowercase a, 81 (hexadecimal), from tape, it writes an
uppercase A, 01 (octal).

ita display code space always translates to an EBCDIC space.

SCharacter or code iﬁterpretation depends on context. Refer to Character Set Anomalies in the text.

® A-18

60496200 D

TABLE A-7. FULL EBCDIC CHARACTER SET

Hexa- Octal EBCDIC Hexa- Octal EBCDIC Hexa- Octal EBCDIC
decimal 12-Bit Graphic or decimal 12-Bit Graphic or decimal 12-Bit Graphic or
EBCDIC EBCDIC Control EBCDIC EBCDIC Control EBCDIC EBCDIC Control

Code Code Character! Code Code Character? Code Code Character

00 0000 NUL LA olLl12 ¢ cent sign A7 0247 X

01 0001 SOH 4B 0113 . period A8 0250 y

02 0002 STX 4C 0114 < less than A9 0251

03 0003 ETX 4D 0115 (open. paren. AA 0252 undefined

04 0004 PF 4E 0116 + plus thru thru

05 0005 HT 4F 0117 { logical OR BF 0277 undefined

06 0006 LC 50 0120 & ampersand co 0300 { open. brace

07 0007 DEL 51 0121 undefined Cl 0301 A

08 0010 undefined thru thru c2 0302 B

09 0011 undefined 59 0131 undefined c3 0303 c

0A 0012 sM S5A 0132 ! exclam. point c4 0304 D

0B 0013 VT 58 0133 $ dollar sign c5 0305 E

oc 0014 FF 5C 0134 * asterisk Cé 0306 F

(Y] 0015 CR 5D 0135) clos. paren. c7 0307 G

OE 0016 SO 5E 0136 ; semicolon c8 0310 H

OF . 0017 SL 5F 0137 -1 logical NOT c9 0311 1

10 0020 DLE 60 0140 - minus CA 0312 undefined

11 0021 DC1 61 0141 / slant CB 0313 undefined

12 0022 DC2 62 0l42 undefined _ cc 0314 I

13 0023 ™ thru thru ’ CD 0315 undefined

14 0024 RES 69 0151 undefined CE 0316 Y

15 0025 | NL _ 64 0152 | vertical line CcF 0317 undefined

16 0026 BS 6B 0153 , comma Do ~ 0320 } clos. brace

17 0027 IL 6C 0154 % percent sign Dl 0321 J

18 0030 CAN 6D 0155 __ underline D2 0322 K

19 0031 EM 6E 0156 > greater than D3 0323 L

1A 0032 cc 6F 0157 ? question mark D4 0324 M

1B 0033 cul 70 0160 undefined D5 0325 N

1C 0034 IFS thru thru D6 0326 0

LD 0035 IGS 78 0170 undefined D7 0327 P

1E 0036 IRS 79 0171 * grave accent D8 0330 Q

\F 0037 IUs 7A 0172 : colon D9 033t R

20 0040 DS 78 0173 # number sign DA 0332 undefined

21 0041 S0S 7C 0174 @ commercial at thru thru

22 0042 FS 7D 0175 ’ apostrophe DF 0337 undefined

23 0043 undefined 7E 0176 = equals EO 0340 \ reverse slant

24 0044 BYP 7F 0177 " quotation mark El 0341 undefined

25 0045 LF 80 0200 undefined E2 0342 S

26 0046 ETBB 81 0201 a E3 0343 T

27 0047 ESCE 82 0202 b E4 0344 U

60496200 D A-19 @

TABLE A-7. FULL EBCDIC CHARACTER SET (Contd)
Hexa- Octal EBCDIC Hexa~ Octal EBCDIC Hexa- Octal EBCDIC
decimal 12-Bit Graphic or decimal 12-Bit Graphic or decimal 12-Bit Graphic or
EBCDIC EBCDIC Control EBCDIC EBCDIC Control EBCDIC EBCDIC Control
Code Code Character? Code Code Character Code Code Character
28 0050 undefined 83 0203 c E5 0345 \Y
2 0051 undefined 84 0204 d E6 0346 W
2A 0052 SM 85 0205 e E7 0347 X
2B 0053 Ccu2 86 0206 £ E8 0350 Y
2C 0054 undefined 87 0207 g E9 0351 Z
2D 0055 ENQ 88 0210 h EA 0352 undefined
2E 0056 ACK 89 0211 i EB 0353 undefined
2F 0057 BEL 8A 0212 undefined EC 0354 f
30 0060 undefined thru thru ED 0355 undefined
31 0061 undefined 90 0220 undefined thru thru
32 0062 SYN 91 0221 3 EF 0357 undefined
33 0063 undefined 92 0222 k FO 0360 0
34 0064 PN 93 0223 1 Fl 0361 1
35 0065 RS 94 0224 m F2 0362 2
36 0066 uc 95 0225 n F3 0363 3
37 0067 EOT 96 0226 o F4 0364 4
38 0070 undefined 97 0227 P F5 0365 5
39 0071 undefined 98 0230 q F6 0366 6
3A 0072 undefined 99 0231 T F7 0367 7
3B 0073 cu3 9A 0232 undefined F8 0370 8
3C 0074 DC4 thru thru F9 0372 9
3D 0075 NAK AO 0240 undefined FA 0372 | vertical line
3E 0076 undefined Al 0241 ~ tilde FB 0373 undefined
3F 0077 SUB A2 0242] thru thru
40 0100 space A3 0243 t FF 0377 undefined
41 0101 undefined Ab 0244 u
thru thru A5 0245 v
49 0111 undefined A6 0246 W
TGraphic characters shown are those used on the IBM System/370 standard (PN) print train. Other devices
support subsets or variations of this character graphic set.

@ A-20

60496200 D

DIAGNOSTICS

FORM issues diagnostic messages during both the scanning
and execution of the FORM directives. The 8-bit
swbroutines, which perform many of the FORM functions,
also produce execution diagnostics.

This appendix lists the diagnostics issued both by FORM
and by the 8-bit subroutines.

SCAN DIAGNOSTICS

A diagnostic issued by FORM during the directive scan
appears in the program listing immediately after the
directive containing the error. Either an arrow or an
apostrophe (on an ASCIH-64 printer) indicates the
approximate location of the error. When an error is
detected, scanning continues to the end of the directive
sequence, but execution does not accur; the run stops when
the scan is complete.

A typical set of error messages is illustrated in figure B-l.
The FORM scan diagnostic messages are listed in table B-1.

INP(STCNTF,EX=)
*
ENTRY NAME EXPECTE)D
*

MISSING TZRMINATOR

OUT(OUTL,2X=1C0,48X=10G4d)
IS

MAX SPECIFIED TWISE

UT(DUT2,0GD=A)
®

INVALIC BGD OPTION

Figure B-1. Examples of Scan Diagnostics

EXECUTION DIAGNOSTICS

During directive execution, diagnostics can be produced
both by FORM and by the 8-bit subroutines.

FORM EXECUTION DIAGNOSTICS

Diagnostic messages issued by FORM during execution
appear in the program listing immediately after the
directive list. Wherever possible, the parameter list of the
executing directive is printed and the character being
processed at the time of the error is indicated. When an
error occurs, FORM finishes processing the record, if
possible, and then stops.

An example of a set of execution diagnostics, including
both FORM and 8-bit subroutine messages is illustrated in
figure B-2. The execution diagnostic messages are listed
in table B-2.

8-BIT SUBROUTINE DIAGNOSTICS

The B-bit subroutines produce messages during execution of
the FORM directives. These messages are intermixed with
the FORM messages and often provide more detailed
information. The format of the message is as follows:

ERROR DETECTED BY xname - cause - message

xname Name of subroutine that detected the
error

cause Probable cause of the error

message Diagnostic message as listed in table B-2

The 8-bit subroutine diagnostic messages are listed in
table B-3.

ERROR DETECTED 8Y XRIA) = COMVERT- BAD SYNTAX IN Z4S,N OR P FIZLD
CALLED FROM FM3RUN AT LINE 397
CALLED FROM FOM AT LINE 397

[y

UNREGOVERABLE INPUT FILZ ERROR

Figure B-2. Examples of Execution Diagnostics

60496200 C

TABLE B-1. FORM SCAN DIAGNOSTICS

Message

Significance

Action

ADD SPECIFIED TWICE

BEG SPECIFIED TWICE

BGD SPECIFIED TWICE

BLK NOT SPECIFIED

BLK OUT OF RANGE
BLK SPECIFIED TWICE

CANT DUMP TO IBM FORMAT

CANT OPEN FILE;
POSSIBLE CRM ERROR

CANT SPECIFY INP=

OR QUT= WITH I=

COD SPECIFIED TWICE

CON AND PAG NOT VALID IF
FT NOT SQ

CON SPECIFIED TWICE

CPA SPECIFIED TWICE

CX SPECIFIED TWICE

DCA SPECIFIED TWICE

DCT SPECIFIED TWICE

DUPLICATE FILENAME

DX SPECIFIED TWICE

ENTRY NAME EXPECTED

ERROR WRITING TITLE

EX SPECIFIED TWICE

The ADD parameter can appear only once in a SEQ
directive.

The BEG parameter can appear only once in a SEQ
directive.

The BGD parameter can appear only once in an
OUT directive.

The BLK parameter must be specified in the INP

or OUT directive when a CON directive is active.

The maximum value is 32760.

The BLK parameter can appear only once in an
INP or OUT directive.

The FMT=D parameter is invalid when print file
is IBM format.

A CRM error condition was detected during a CRM
file open operation.
If INP= or OUT= is used in the FORM control

statement, I= cannot be specified.

The COD parameter can appear only once in an
INP or OUT directive.

The CON and PAG directives are valid only for
sequential files.

Only one CON directive can appear in a FORM run.

The CPA parameter can appear only once in an
OUT directive.

The CX parameter can appear only once in an INP
or QUT directive.

The DCA parameter can be specified only once in
an INP directive.

The DCT parameter can appear only once in an
OUT directive.

Multiple occurrences of a directive must
specify unique file names.

The DX parameter can appear only once in an
INP directive.

An owncode entry point name has been incor-
rectly specified.

An 1/0 error occurred while writing the file
specified in a PAG directive.

The EX parameter can appear only once in an
INP and OUT directive.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Dump to the CDC format file.

Check validity of file
control statement parameters
and data file format.

Specify only one parameter
set and rerun.

Correct the error and rerun.
Check the FO parameter of
the FILE statement.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Specify unique file names;
check for redundant
directives; use selector
expressions to combine
reformatting operations.

Correct the error and rerun.
Specify the correct subpro-
gram name.

Follow site-defined proce-
dures for reporting software
errors or operational
probiems.

Correct the error and rerun.

60496200 D

TABLE 8-1. FORM SCAN DIAGNOSTICS (Contd)

Message

Significance

Action

FEX SPECIFIED TWICE
FILE ALREADY SPECIFIED
FILE NOT DEFINED

FMT SPECIFIED TWICE
HRL SPECIFIED TWICE

I= ALREADY SPECIFIED
IBM FILE ORGANIZATION
INVALID IF FT NOT = SQ
INVALID BGD OPTION

INVALID COD OPTION
INVALID FILENAME

INVALID FMT OPTION
INVALID REW OPTION
INVALID RFM OPTION
IRL OUT OF RANGE

IRL SPECIFIED TWICE

IX SPECIFIED TWICE

KEY LOCATION MISSING

KEY SPECIFIED TWICE

KEYTYPE MUST BE *I, F, X*

L= ALREADY SPECIFIED

LRL OUT OF RANGE
LRL SPECIFIED TWICE

LX SPECIFIED TWICE

MAX OUT OF RANGE

MAX SPECIFIED TWICE

60496200 D

The FEX parameter can appear only once in an
XEQ directive.

The file name has been specified more than once
in the FORM control statement.

The file name has not been specified in an INP
or QUT directive.

The FMT parameter can appear only once in a PAG
directive.

The HRL parameter can be specified only once in
an INP or OUT directive.

The I parameter has been specified more than
once in the FORM control statement.

Word addressable or AAM organization types are
not permitted with IBM organizations.

Valid options are X, Z, B, C.
Valid options are A, C, E.

A file name must contain 1 through 7 letters or
digits, beginning with a letter.

Valid options are 1, 2, A, D.

Valid options are N, R, U.

Valid options are F, V, U, FB, VB, VSB.
The maximum value is 2.

The IRL parameter can appear only once in an
INP or OUT directive.

The IX parameter can appear only once in an
XEQ directive.

The iTm descriptor is missing in KEY=iTm.
The KEY parameter can appear only once in an
OUT directive.

Data types other then I, F, or X are invalid
for record keys.

The L parameter has been specified more than
once in the FORM control statement.

The maximum value is 32760.

The LRL parameter can appear only once in an
INP or OUT directive.

The LX parameter can be specified only once in
an INP or OUT directive.

The MAX parameter value exceeds 16777215.

The MAX parameter can appear only once in an
INP or QUT directive.

Correct the error and rerun.

Correct the error and rérun.

Specify the correct file name.

Correct the error and rerun.
Correct the error and rerun.
Correct the error and rerun.
Convert file to sequential
format.

Correct the error and rerun.

Correct the error and rerun.

Correct the file name and
rerun.

Correct the error and rerun.
Correct the error and rerun.
Correct the error and rerun.
Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Supply the iTm descriptor
and rerun.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Eliminate the excess LRL
parameter.

Correct the error and rerun.

Reduce the value of MAX and
rerun.

Correct the error and rerun.

B-3

TABLE B-1. FORM SCAN DIAGNOSTICS (Contd)

Message

Significance

Action

MISSING FILENAME

MISSING TERMINATOR

NBR SPECIFIED TWICE

NO INPUT FILE SPECIFIED

NO OUTPUT FILE SPECIFIED

NO SEQ FORMAT SPECIFIED

NOSEC SPECIFIED TWICE

NUMERIC FIELD EXPECTED

ONLY ONE INPUT FILE

ALLOWED

OWN= ALREADY SPECIFIED

PARAMETER MISSING

POS OUT OF RANGE

POS SPECIFIED TWICE

QAL SPECIFIED TWICE

REF SPECIFIED TWICE

REW SPECIFIED TWICE

RFM NOT SPECIFIED

RFM SPECIFIED TWICE

RX SPECIFIED TWICE

STRING DELIMITER MISSING

STRING TERMINATOR MISSING

B-~4

The file name has been omitted from the
parameter list.

© A directive must be terminated by a right

A termination or continuation
Only

parenthesis.
character was placed beyond column 72.
the first 72 characters are scanned.

The NBR parameter can appear only once in a
SEQ directive.

A FORM run requires a source of input records.

At least one output file must be declared for a
FORM run.

The NBR=iTm parameter is missing in the SEQ
directive.

The NOSEC parameter can appear only once in an
OUT directive.

Nonnumeric characters appear in a numeric field.

Only a single input file is allowed per FORM
run,

The OWN parameter appears more than once in
the FORM statement.

A required parameter was not found when the
directive was scanned.

The POS parameter value exceeds 2047.
The POS parameter can appear only once in an
INP directive.

Only one QAL directive can be specified for a
given file.

Only one REF directive can be specified for a
given file.

The REW parameter can appear only once in an
INP or OUT directive.

The RFM parameter must be specified when a CON
directive is active.

The RFM parameter can appear only once in an
INP or OUT directive.

The RX parameter can appear only once in an OUT
directive.

Literal strings must be delimited by enclosing
*or $

Conversion, qualification, or reformat string
must be terminated with a right parenthesis.

Correct the

Correct the

Correct the

Use the INP

error and rerun.

error and rerun.

error and rerun,

directive, the

INP parameter in the FORM
control statement, or the

IX exit.
Use the OUT

directive or the

OUT parameter in the FORM
control statement.

Supply NBR=iTm and rerun.

Correct the

Correct the

Correct the

Correct the

Correct the
rerun.

error and rerun.

error and rerun.

error and rerun.

error and rerun.

directive and

Reduce the value of the POS
paraneter and rerun.

Correct the
Correct the
Correct the
Correct the
Correct the
Correct the
Correct the

Enclose the

with * or §,

Correct the

error and rerun,

error and rerun.

error and rerun.

error and rerun.

error and rerun.

error and rerun.

error and rerun.

literal string

error and rerun.

60496200 D

TABLE B-1. FORM SCAN DIAGNOSTICS (Contd)

Message

Significance

Action

TO0 MANY QUTPUT FILES
TOO MANY OWNCODE ENTRIES
TOP SPECIFIED TWICE

TTL SPECIFIED TWICE
UNRECOGNIZED DIRECTIVE
UNRECOGNIZED OPTION
UNRECOGNIZED PARAMETER

ZERO MRL/FL ILLEGAL

The 1limit is 20 output files.
The limit is 50 unigue entry points.
The TOP parameter can appear only once in a PAG

directive.

The TTL parameter can appear only once in a PAG
directive.

The directive mnemonic is misspelled.

The indicated keyword is misspelled.

A keyword is misspelled or misplaced.

The CRM default for the MRL or FL parameter
cannot be used.

Reduce the number of output
files to 20.

Reduce the number of entry
points and rerun.

Correct the error and rerun.
Correct the error and rerun.
Correct the spelling and

rerun.

Correct the spelling and
rerun.

Correct the spelling or the
placement.

Correct the FILE control
statement and rerun.

TABLE B-2. FORM EXECUTION DIAGNOSTICS

Message

Significance

Action

AND, OR, NOT MISPLACED
BIT NUMBER > 6

BIT POSITION ONLY VALID
WITH TYPE -B-

BIT SPECIFIER NON-NUMERIC
CANNOT -QUIT- TEST

CANT LOAD CAPSULE

CANT SEARCH WITH BIT

OFFSET

CANT UNLOAD CAPSULE

COLON NOT VALID
CONVERSION ERROR

60496200 D

Logical operator in qualification string is not
in proper order.

The bit position indicator w in i/wTm must not
exceed 6 for CDC files or 8 for IBM files.

The i/wTm format cannot be used to describe
data items other than bit strings (type B).

The w must be a digit in an i/wTm descriptor
for a bit field.

The Q specification is invalid in this context.

An unrecoverable loader error has occurred.

The starting position specification n of the
oln search descriptor must be a decimal integer
character count.

An unrecoverable loader error has occurred.

A colon cannot be used in the indicated format.

The type of data found in the input record does
not match the type of data expected.

Correct the error and rerun.

Correct the error and rerun.

Use the iTm descriptor
format.

Correct the error and rerun.

Remove the Q specification
and rerun.

Follow site-defined
procedures for reporting
software errors or
operational problems.

Correct the error and rerun.

Follow site-defined
procedures for reporting
sof tware errors or
operational problems.

Correct the error and rerun.

Correct the error and rerun.

B-5

TABLE B-2. FORM EXECUTION DIAGNOSTICS (Contd)

Message

Significance

Action

CONVERSION NOT ALLOWED
HERE

DIGIT DOES NOT FOLLOW +/-
FIELD BEYOND RECORD ON
LEFT

FIELD BEYOND RECORD ON
RIGHT

FIELD NOT IN RECORD ON
LEFT

FIELD NOT IN RECORD ON
RIGHT

INVALID LOGICAL TERM

INVALID M VALUE FOR
DATA TYPE

INVALID -T- TYPE IN
IN ITM

K- NOT KEY OR KEYA

KEYA NOT DEFINED AT THIS
POINT

LITERAL FOLLOWED BY -T- ~
CODE

LITERAL REPLACEMENT > 80
CHARACTERS

MISSING AND, OR, NOT
CONNECTOR

MISSING -N- SPECIFIER IN
OLN

MISSING OPERATOR

MISSING RIGHT PARENTHESIS

MISSING RIGHT-SIDE OF
SPECIFICATION

MISSING SEPARATOR
NO CONVERSION SPEC SEEN

PARENTHESIS MISPLACED

A conversion or reformat item was encountered
in a QAL directive or in a selector expression.

A + or - must not precede a nonnumeric
character.

A descriptor references a data field that
begins before the beginning of the record. -

A descriptor references a data field that
extends beyond the end of the record.

A descriptor references a data field that
precedes the first character of the record.

A descriptor references a character beyond the
end-of-record.

The selector expression contains an invalid
operand. A logical operand must be a ltiteral
or jtem descriptor.

M value in the iTm item descriptor is invalid.
See table 2-1 for valid -T- types.

The KEY or KEYA parameter is misspelled.
The OUT directive for an actual key (specifying

FO=AK) file does not precede the OUT directive
associated with this REF directive.

A Tliteral must not precede T -in an iTm
specification.

A literal used in a conversion item must not
exceed 80 characters.

Logical operator not found between two
selector-expressions or qualification-strings.

The starting position specification'n of the
oln search descriptor is missing.

A+ - = or a logical operator was expected at
the indicated position.

Right and left parentheses must balance.

The source field item descriptor is missing
from the reformat item.

FORM parameters must be separated by a comma.

The directive format requires a conversion
specification at the indicated position.

Parenthesis is mispositioned in the
qualification-string.

Correct the error and rerun.
Correct the error and rerun.
Decrease the magnitude of i

orm in -iTm.

Decrease the magnitude of i
orm in iTm or +iTm.

Decrease the magnitude of i
in -iTm.

Decrease the magnitude of i
in iTm or +iTm.

Change the logical operand
to a literal or an item
descriptor.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Specify an OUT directive for
the actual key output file
before specifying an OUT
directive for a file that is
to receive the key via a REF

directive.

Change the literal to a byte

index.

Correct the error and rerun.

Correct the error

and rerun.

Insert the starting
specification n and rerun.

Correct the error

Correct the error

Correct the error

Correct the error

Correct the error

Correct the error

and rerun.

and rerun,

and rerun.

and rerun.

and rerun.

and rerun.

60496200 D

TABLE B-2. FORM EXECUTION DIAGNOSTICS (Contd)

Message

Significance

Action

POSITION OR REPEAT COUNT
NOT VALID WITH Q

REPEAT COUNT NOT VALID

SEARCH INVALID ON
DESTINATION SPEC

STRING LITERAL NOT
ALLOWED LEFT OF RELATION
SYNTAX ERROR AT COMMA
TEST CONVERSION ERROR
TEST NOT ALLOWED HERE
TOO MANY PARENTHESIS
LEVELS

UNRECOGNIZED DATA TYPE

UNRECOGNIZED OPERATION

UNRECOVERABLE ERROR
WRITING TITLE

UNRECOVERABLE INPUT FILE
ERROR

+ITM AND -ITM ILLEGAL
IN SELECTOR

+/~ INVALID ON REPEAT
COUNT

+/- INVALID ON SIZE
SPECIFIER

A Q specification must not be preceded by a
repeat count.

The repeat count cannot be specified in the
indicated format.

An oln search descriptor must not be used in
the destination field item descriptor of a
reformat item.

String literals are allowed only on the right
side of relational operators.

A fatal error occurred near the indicated
comma,.

The data types in the selector expression
cannot be reduced to a common mode.

The selector expression is invalid in this
context.

The 1imit is seven levels.

An invalid T code is specified in an iTm
descriptor.

An invalid operation is specified or an

operator is misspelled.

A parity error has occurred on the print file.

A parity error has occurred on the input file.

A + or - preceding the iTM descriptor in a QAL
directive is illegal.

A conversion item or reformat item repeat count
cannot be preceded by a + or -.

The field length specification m of an iTm
descriptor must not be preceded by a + or -.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

Correct the data type and
rerun.

Remove selector expression
and rerun.

Correct the error and rerun.

Correct the data type and
rerun.

Specify the correct
operation for the applicable
directive.

Follow site-defined
procedures for reporting
software errors or
operational problems.

Follow site-defined
procedures for reporting
software errors or
operational problems.

Correct the error and rerun.

Correct the error and rerun.

Correct the error and rerun.

60496200 D

B-6.1/8-6.2

TABLE B-3. 8-BIT SUBROUTINE DIAGNOSTICS
Message Significance Action Issued By
BAD OFFSET IN PARAMETER I1legal bit or byte position - Check position specifica- XREAD,
DESCRIPTOR specified. tion in iTm or i/wTm. XWRITE
BAD SYNTAX IN Z, S, N, OR Data being converted is in Correct the format and XREAD,
P FIELD illegal format. rerun. XWRITE
BIT SPECIFICATION ILLEGAL w in i/w item locator format Change position specifica- XREAD,
FOR NON-BIT FIELD in a selector expression can tion to i form to indicate XWRITE
be specified only if the character position.
T field is B.
BLKSIZE EXCEEDS 32760 BLK parameter in an INP or OQUT Correct the error and rerun. XREAD,
BYTES directive is too big. XWRITE
BLKSIZE NOT SPECIFIED BLK parameter in an INP or OUT Specify BLK parameter. XFILE
directive has been omitted.
BLOCK SHORTER THAN Input IBM record is in the Check for tape error or in- XREAD
V-HEADER wrong format. Block descrip- correct RFM specification.
tor word contents or record
descriptor word contents do
not agree with actual block/
record size.
CONVERSION STRINGS Can be nested only to depth Reduce number of levels. XREAD,
NESTED TOO DEEPLY of seven levels. XWRITE
DOUBLY SPECIFIED PARAMETER Duplicate parameter specified Delete or correct parameter. XFILE
IN FILE STRING in an INP or OUT directive.
EMPTY BLOCK IN No data in input block. Rewrite file. XREAD
VS-RECORD
FILE NOT DECLARED File name not specified in Correct the error and rerun. XFILE
INP or OUT directive.
FILE NOT SPECIFIED File not deciared in INP Correct the error and rerun. XREAD
AS READ MODE directive.
FILE NOT SPECIFIED File not declared in OUT Correct the error and rerun. XWRITE
AS WRITE MODE directive.
FILE PARAMETER IS NOT A File name is misspelled. Check file name. XFILE
FILE NAME
FILE STRING DOES NOT Parameter Tist must always be- Insert left parenthesis. XFILE
BEGIN WITH -(- gin with a left parenthesis.
FILE STRING DOES NOT Parameter list must always Insert right parenthesis. XFILE
TERMINATE WITH -)- terminate with a right paren-
thesis.
FILE TYPE NOT SPECIFIED Internal error. Follow site-defined proce- XFILE
dures for reporting soft-
ware errors or operational
problems.
FILE USAGE NOT SPECIFIED Internal error. Follow site-defined proce- XFILE
dures for reporting soft-
ware errors or operational
probiems.
FIRST CHARACTER OF Conversion strings must always Insert left parenthesis. XREAD,
CONVERSION STRING begin with a left parenthesis. XWRITE
IS NOT -(-
B-7

60496200 C

TABLE B-3. 8-BIT SUBROUTINE DIAGNOSTICS (Contd)
Message Significance Action Issued By
FIRST ITEM IN SELECTOR- The iTm field in the selector Specify the correct iTm XREAD,
EXPRESSION NOT RECOGNIZED expression is specified incor- field. XWRITE
rectly.
ILLEGAL FIRST ITEM TYPE T in the Tml field is speci- Check the T specification in XREAD,
fied incorrectly. the Tml field. XWRITE
ILLEGAL SECOND ITEM TYPE T in the Tm2 field is speci- Check the T specification in XREAD,
fied incorrectly. the Tm2 field. XWRITE
INCOMPLETE VS-RECORD AT Data is missing from input Rewrite file. XREAD
END-OF -DATA file. Length specified in the
header information of the last
record does not agree with ac-
tual length.
INCONSISTENT PARAMETERS File description parameters Correct the FILE description XFILE
IN FILE STRING are inconsistent in INP or OUT parameters.
directive.
INDEFINITE SOURCE VALUE Floating-point source item has Check source record for bad XWRITE
NOT REPRESENTABLE indefinite value. data.
INDEFINITE VALUE FOR Item to be stored in integer Check source record for bad XWRITE
INTEGER DESTINATION FIELD destination field has indefi- data.
nite value,
INFINITE SQURCE VALUE Floating-point source item has Check source record for bad XWRITE
NOT REPRESENTABLE infinite value. data.
INFINITE VALUE FOR Ttem to be stored in integer Check source record for bad XWRITE
INTEGER DESTINATION FIELD destination field has infinite data.
value,
INTEGER VALUE TOO LARGE Receiving field does not Increase length specification XREAD,
FOR FIELD contain enough characters to of receiving field descrip- XWRITE
represent all digits in the tor.
source field.
INVALID DATA TYPE Legal data types are A for Change T in iTm to proper XREAD,
ASCII, C for EBCDIC, and X for type. XWRITE
Display Code.
INVALID PARAMETER VALUE File description parameter in Change the FILE description XFILE
IN FILE STRING INP or OUT directive is incor- parameter.
rect.
KEYWORD NOT FOLLOWED BY An = sign must follow KEYWORD Insert an = sign after XFILE
= IN FILE STRING in parameter list. KEYWORD,
LITERAL STRING IS TOO Literal strings in selector Correct literal string. XREAD,
LONG expression are limited to 80 XWRITE
characters.
LRECL NOT SPECIFIED Necessary LRL specification Specify LRL parameter. XFILE
in parameter 1ist of an INP
or OUT directive was omitted.
LRECL TOO SMALL FOR Actual record length does not Check for incorrect LRL XREAD
V-RECORD HEADER agree with length specified in specification.
record descriptor word (RDW).
LRECL TOO LARGE FOR If the blocking type is not Correct LRL or BLK specifi- XFILE
BLKSIZE spanned LRL must be less than cation.
BLK.
B-8 60496200 C

TABLE B-3. 8-BIT SUBROUTINE DIAGNOSTICS (Contd)
Message Significance Action Issued By
M SPECIFICATION ILLEGAL The m in Tml or Tm2 is incor- Specify correct m and rerun. XREAD,
FOR DATA TYPE rectly specified. XWRITE
MISSING PARAMETER Directive requires a parameter Specify parameter list. Any
LIST list. 8-bit
sub-
routine
MISSING RELATIONAL Relationship must be stated Supply a relational operator XREAD,
OPERATOR 1IN between two items in a selec- in selector expression. XWRITE
SELECTOR-EXPRESSION tor expression
MISSING RIGHT Parameter 1ist must always end Insert right parenthesis. XFILE,
PARENTHESIS with a right parenthesis. XREAD,
XWRITE
MISSING RIGHT Missing punctuation in conver- Insert necessary punctuation. XREAD,
PARENTHESIS OR sion string. XWRITE
SEMICOLON
MISSING RIGHT STRING Literal string terminator * Insert required string XREAD,
DELIMITER or $§ is missing. delimiter. XWRITE
MISSING SEPARATOR AFTER Conversion item must be fol- Insert necessary separator. XREAD,
CONVERSION ITEM lowed by a comma, semicolon, XWRITE
or right parenthesis, depen-
ding on circumstances.
MISSING SOURCE-1 Directive parameter Tist is Correct parameter 1ist. XCOMP,
PARAMETER incomplete. XMOVE
MISSING SOURCE-2 OR Directive parameter Tist is Correct parameter 1ist. XCOMP,
DESTINATION PARAMETER incomplete XMOVE
MISSING LEFT STRING Missing * or $ in a literal Insert required string XREAD,
DELIMITER string. delimiter. XWRITE
MORE DATA AFTER RECORD Actual record length in input Check for incorrect RFM XREAD
IN V-UNBLOCKED FILE file exceeds that specified in specification - should be
record descriptor word (ROW). VB.
MORE DATA AFTER Actual segment record length A bad file copy could have XREAD
VS-RECORD SEGMENT in the input file exceeds that occurred. Recopy file.
specified in the segment de-
scriptor word (SDW).
NO FILE STRING GIVEN File description parameters Specify file-string. XFILE
are missing in an INP or OUT
directive.
NO PARAMETERS Necessary parameters were not Specify required parameters. Any
specified. 8-bit
sub-
routine
NO PARAMETERS SUPPLIED Parameters are missing from Specify parameters. Any
TO SUBROUTINE directive. 8-bit
sub-
routine
NO STATUS PARAMETER Directive parameter list con- Specify correct parameter. XCOMP
tains an error or a parameter
is missing.
NO WORKING STORAGE Parameter list contains an Specify RFM parameter in XFILE
AREA PROVIDED error. the INP directive.
B-9

60496200 C

TABLE B-3.

8-BIT SUBROUTINE DIAGNOSTICS (Contd)

Message

Significance

Action

Issued By

NUMERIC LITERAL EXPONENT
.GE. 512

NUMERIC LITERAL OUT OF
RANGE (INFINITE)

PARAMETER IS NOT A DATA
ITEM

RECFM NOT SPECIFIED

RELATIONAL OPERATOR NOT
RECOGNIZED

SECOND SELECTOR- ,
EXPRESSION ITEM NOT
RECOGNIZED

SELECTOR-EXPRESSION
NOT TERMINATED BY COLON

SOURCE CHARACTER NOT O
OR 1, TO BIT STRING

SOURCE EXPONENT TOO LARGE,
NOT REPRESENTABLE

STRING NOT IN NUMERIC
SYNTACTIC FORM

STRING RELATION IS NOT
.EQ. OR .NE.

SYNTAX...NO DIGIT AFTER
-E- IN NUMERIC LITERAL

TEST FIELD EXTENDS PAST
END OF RECORD

TEST FIELD NOT IN RECORD,
ON LEFT

TEST FIELD NOT IN RECORD,
ON RIGHT

@ B-10

Exponent value cannot exceed
511.

Numeric literal has infinite
value.

A literal was supplied for a
data-item in COBOL.

RFM parameter was omitted from
an INP or OUT directive.

I1legal relationship mnemonic
specified in a selector ex-
pression.

The second iTm field in a
selector expression is in
illegal format.

The selector expression must
be terminated by a colon.

In a character-to-bit conver-
sion item, the source charac-
ter must be 0 or 1.

The exponent of the floating-
point number in the source
field is too large, and the
conversion cannot be per-
formed.

The character string is not in
the proper format for conver-
sion to numeric type.

Only the relationships .EQ.
or .NE. are legal for string
value fields in selector
expressions.

Numeric literals used as
operands in selector expres-
sions must fit the numeric
literal definition.

The item descriptor specified
in a selector expression begins
within the record but extends
beyond its logical length.

The locator field specified in
a selector expression refer-
ences a character preceding
the first one in the logical
record.

The locator field specified in
a selector expression refer-
ences a character beyond the
last one in the logical record.

Decrease exponent value
and rerun.
Correct the literal.

Replace with a variable or
array name.

Specify RFM parameter.

Specify valid operation and
rerun.

Specify correct iTm field.

Insert required colon.

Specify source character of
0orl.

Correct the error and rerun.

Correct the format and rerun.

Correct the relationship.

Place digit after E in
numeric literal.

Reduce length specification
of the item descriptor.

Decrease magnitude of i in
-iTm.

Reduce value of i in iTm.

XREAD,
XWRITE

XWRITE

Any
8-bit
sub-
routine

XFILE

XREAD,
XWRITE

XREAD,
XWRITE

#READ,
XWRITE
XREAD,
XWRITE

XREAD,
XWRITE

XREAD,
XWRITE

XREAD,
XWRITE

XREAD,
XWRITE

XREAD,
XWRITE

XREAD,
XWRITE

XREAD
XWRITE

60496200 C

TABLE B-3.

8-BIT SUBROUTINE DIAGNOSTICS (Contd)

Message

Significance

Action

Issued By

TOO MANY DIGITS IN
Z, S, N, OR P FIELD
-- OVERFLOW

TOO MANY PARAMETERS

UNRECOGNIZED CODE SET
SPECIFIED

UNRECOGNIZED KEYWORD IN
FILE STRING

UNRECOVERABLE ERROR ON
WRITE FILE

V-BLOCK HAS SHORT
RECORD FRAGMENT

V-RECORD LENGTH
EXCEEDS BLOCK SIZE
V-RECORD LENGTH LESS
THAN 4 BYTES

VALUE TOO LARGE FOR
FIELD WIDTH

VS-RECORD FINAL
SEGMENT MISSING

VS-RECORD FOUND IN
TYPE V FILE

VS-RECORD INITIAL
SEGMENT MISSING

WORKING STORAGE AREA
TOO SMALL

WSA NOT ALIGNED ON
WORD BOUNDARY

The magnitude of the number to
be stored in the field exceeds

the number of digits specified.

Extraneous parameters appear
in the parameter list.

ga1 code sets are ASCII (A),
DIC (C), or Display Code

(X)

A parameter in an INP or OUT
directive is misspelled.

Parity error.

The actual record size is less
than that specified in the
record descriptor word (RDW).

The actual record size exceeds
the specified block size.

Variable records must contain
4 bytes for the record de-
scriptor word (RDW).

Numeric value contains too
many digits and/or symbols
for the receiving field.

The final segment of a vari-
able spanned Tlogical record
is missing from the input
file.

A segment descriptor word
(SDW) was found in a file
that was not spanned.

The first segment of a spanned
logical record is missing from
the input file.

The size of the workspace
buffer specified in the XFILE
call is too small.

The workspace parameter in a
COBOL calling sequence to
XFILE must have a beginning
character position of 0.

Increase length specifica-
tion of the destination
field descriptor.

Specify valid parameters.

Specify correct code set.

Correct spelling and rerun.

Follow site-defined proce-
dures for reporting software
errors or operational prob-
blems.

Probable file error - rewrite
file.

Specify larger block size in
BLK parameter.

Rewrite tape.

Increase length specification
of the receiving field de-
scriptor.

Rewrite tape.

Rewrite tape.

Rewrite tape.

Follow site-defined proce-
dures for reporting soft-
ware errors or operational
problems.

Declare working storage area
(WSA) as Tlevel 01 item or use
SYNCHRONIZE clause for proper
alignment.

XREAD,
XWRITE

Any i
8-bit
sub-
routine

XMOVE,
XCOMP

XFILE

XWRITE

XREAD

XREAD

XREAD
XREAD,

XWRITE

XREAD

XREAD

XREAD

XFILE

XFILE

60496200 C

B-11

GLOSSARY C

Actual Key File -
A mass storage file in which each record is stored at
the location specified by the block and record slot
I number in the primary key associated with that record.

Advanced Access Methods (AAM) -
A file manager that processes indexed sequential,
direct access, and actual key file organizations and
supports the Multiple Index Processor. (See CYBER
Record Manager.)

ASCII -
The American Standard Code for Information
Interchange, used wunder NOS as the ASCI
128-character set with either 6- or 12-bit characters
and under NOS/BE as the ASCIl 95-character set with
12-bit characters stored eight bits right-justified in a
12-bit byte.

ASCI Graphic 63-Character Set --
A subset of the ASCIl 128-character graphic and
control set. The % character and related card code do
not exist. .

ASCII Graphic 64-Character Set -
A subset of the ASCIH 128-character graphic and
control set.

ASCII Graphic 95-Character Set -
Consists of all the characters in the ASCIH
128-character set that can be printed at a line
printer. Only 12-bit ASCIH code files can be printed
using the ASCIl graphic 95-character set. The
95-character set is represented by the 12-bit ASCI
codes 0040g through 0176g.

ASCII Graphic 128-Character Set - .
Consists of all letters (uppercase and lowercase),
digits, special symbols, and device control characters.

ASCII 8-Bit Code -
Eight bits stored in an B-bit byte. IBM data can be

ASCII 8/8.

ASCII 12-Bit Code -

The ASCII 7-bit code (as defined by ANSI Standard
%3.4-1977) right-justified in a 12-bit byte. Assuming
that the 'bits are numbered from the right, bits 0
through 6 contain the ASCII code, bits 7 through 10
contain zeros, and bit 11 distinguishes the 12-bit
ASCII 0000g code from the end-of-line byte. The
12-bit codes are 0001g through 0177g and 4000g.

Basic Access Methods (BAM) -
A file manager that processes sequential and word
addressable file organizations. (See CYBER Record
Manager.)

Beginning-of-Information (BOI) -
The start of the first user record in a file. System
information, such as tape labels of sequential files or
indexes of indexed sequential files, does not affect the
beginning-of-information.

60496200 C

Block -
The term block has several meanings depending on
context. On tape, a block is information between
interrecord gaps on tape. CYBER Record Manager
defines several blocks depending on organization, as
shown in table C-1.

TABLE C-1. BLOCK TYPES

Organization . Blocks

Indexed seguential Data block; index block

Direct access Home block; overflow block

Actual key Data block

Sequential Block type I, C, K, E

Byte -

Y A group of bits. Unless prefixed (for example, a 6-bit
byte), the term implies B8-bit groups. When used for
encoding character data, a byte represents a single
character.

CON Directive -
The FORM directive that performs conversions
between CDC and IBM files.

Conversion Item -
A conversion string component that causes a data item
in a CDC or IBM input record to be converted to IBM
or CDC format and transmitted to an output record.
Also refers to a nested conversion string.

Conversion Specification -
A component of a conversion string. A conversion
specification consists of an optional selector
expression and a list of associated conversion items.

Conversion String -
A string of one or more conversion specfications; used
as input to the CON directive.

CYBER Record Manager -
A generic term relating to the common products AAM
and BAM that run under the NOS and NOS/BE
operating systems and that allow a variety of record
types, blocking types, and file organizations to be
created and accessed.

Direct Access File -

In the context of AAM, a direct access file is one of
three file organizations implemented according to
AAM initial direct or extended direct files. A direct
access file is characterized by the system hashing of
the unique key within each file record to distribute
records randomly in blocks called home blocks of the
file.

In the context of NOS, a permanent file is a direct
access file that is accessed and modified directly.

Directive -
A statement consisting of a 3-letter mnemonic and a
parameter list through which the user specifies
processing to be performed by FORM. The directive
mnemonics are: INP, OUT, CON, GAL, REF, SEQ,
PAG, and XEQ.

End-of-Information (EQI) -

CRM defines end-of-information in terms of the file
organization and file residence, as shown in table C-2.

TABLE C-2. END-OF-INFORMATION BOUNDARIES

File File Physical
Organization Residence Position
Mass storage After the last

Sequential
. user record.

After the last
user record and
before any file
trailer labels.

Labeled tape
in SI, I, S,
or L format

Unlabeled
tape in SI
or I format

After the last

user record and
before any file
trailer labels.

Unlabeled Undef ined.
tape in S or
L format
Word Mass storage After the last
Addressable word allocated
to the file,
which might be
beyond the last
user record.
Indexed Mass storage After the record

Sequential,
Actual Key

with the highest
key value.

Direct Mass storage After the last
Access record in the
most recently
created overflow
block or home
block with the
highest relative
address.

End-of-Record (EOR) -
The end of a logical record of data.

Entry Point -
A location within a program to which control can be
transferred from another program. Each entry point
has a unique name.

Extended -
A term used in conjunction with indexed sequential,
direct access, and actual key files to denote a specific
type of internal processing by AAM. Contrast with
Initial.

Field -
A portion of a8 word or record; a subdivision of
information within a record; also, a generic entry in a
file information table identified by a mnemonic.

File -
A logically related set of information; the largest
collection of information that can be addressed by a
file name. It starts at beginning-of-information and
ends at end-of-information. Every file in use by a job
must have a logical file name.

FILE Control Statement -

A control statement that supplies file information
table values after a source language program is
compiled or assembled but before the program is
executed. In applications such as those with a control
statement call to the FORM utility, FILE control
statements must be used. Basic file characteristics
such as organization, record type, and description can
be specified in the FILE control statement.

File Information Table (FIT) -

A table through which a program communicates with
CRM. For direct processing through CRM, a user
must initiate establishment of this table. All file
processing executes on the basis of information in this
table. The user can set FIT fields directly, or
indirectly by using parameters in a file access call
that sets the fields indirectly.

File Organizer and Record Manager (FORM) -
A file management utility callable by control
statements.

Hashing -
The method of using primary keys to search for
relative home block addresses of records in a file with
direct access storage structure.

Home Block -

A block in a file with direct access storage structure
whose relative address is computed by hashing keys. A
home block contains synonym records whose keys hash
to that of the relative address. If all the synonym
records cannot be accommodated in the home biock,
an overflow block can be created by the system. A
user creating a direct access file must define the
number of home blocks with the HMB parameter in the
FILE control statement.

Indexed Sequential File -
A file organization in which AAM maintains files in
sorted order by use of a user-defined primary key,
which need not be within the record. Keys can be
integer, floating-point (initial indexed sequential files
only) or symbolic; access is random or sequential.
Files contain index blocks and data blocks.

Initial -
A term used in conjunction with indexed sequential,
direct access, and actual key files to denote a specific
type of internal processing by AAM. Contrast with
Extended.

INP Directive -
The FORM directive through which the user specifies
the input file name "and certain input file
characteristics. One input file can be declared for a
FORM run.

Item Descriptor -
A FORM element that describes a data field in an
input or output record in terms of starting position,
data type, and field length.

60496200 C

Key -
A group of contiguous characters or numbers the user
l defines to identify a record.
Keyword -

A word that has a special meaning to FORM when used
in a specific context.

Logical File Name (LFN) -
The name given to a file being used by a job. The
name must be unique for the job, and must consist of
one to seven letters or digits, the first of which must
be a letter.

Longest Logical Record (LRL) -
A parameter specified in the INP and OUT directives.
L.RL describes length, in number of 8-bit bytes, of the
longest logical record expected.

OUT Directive -
The FORM directive through which the user specifies
the name of the output file to be generated by FORM
and certain output file characteristicss. Up to 20
output files can be generated in a FORM run.

Owncode -
A routine written by the user to process certain
conditions. Control passes automatically to user
owncode routines defined for:

LX Tape label processing

DX End-of-partition, end-of-section,
end-of-data

EX Error condition

CX -IBM conversion error

DCA Record decompression/decryption
CPA Record compression/encryption
HRL Key hashing

IX Transmitting input records

FEX Fatal error condition

PAG Directive - :
The FORM directive through which the user specifies
page formatting options for a file to be printed.

Partition -
CRM defines a partition as a division within a file with
sequential organization. Generally, a partition
contains several records or sections. Implementation
of a partition boundary is affected by file structure
i and residence, as shown in table C-3.

Q Specification -
A character input to the REF and CON directives that
terminates reformatting or conversion.

60496200 C

TABLE C-3.

PARTITION BOUNDARIES

Device

Record
Type
(RT)

Block
Type
(BT)

Physical Boundary

PRU
device

SorlL
format
tape

Any
other
tape
format

C,K,E

A short PRU of
level 0 containing
a one-word deleted
record pointing
back to the Tast I
block boundary,
followed by a con-
trol word with a
flag indicating a
partition boundary.

A short PRU of
Tevel 0 containing
a control word
with a flag indi-
cating a partition
boundary.

A short PRU of
level 0 followed by
a zero-length PRU
of level 17g.

A zero-length PRU
of level number 17g.

A separate tape
block containing as
many deleted rec-
ords of record
length 0 as re-
quired to exceed
noise record size,
followed by a de-
leted one-word
record pointing
back to the last I
block boundary,
followed by a con-
trol word with a
flag indicating a
partition boundary.

A separate tape
block containing as
many deleted rec-
ords of record
Tength 0 as re-
quired to exceed
noise record size,
followed by a con-
trol word with a
flag indicating a
partition boundary.

A tapemark.

A tapemark.

Undefined.

QAL Directive -
The FORM directive through which the user specifies
criteria by which records are selected from an input
file for inclusion in an output file.

Qualification String ~
A string of selector expressions joined by logical
operators and used as input to the QAL directive.

Random File -
In the context of CRM, a file with word addressable,
indexed sequential, direct access, or actual key
organization in which individual records can be
accessed by the values of their keys.

Record -
The largest collection of information passed between
CRM and a user program in a single read or write
operation. The wuser defines the structure and
characteristics of records within a file by declaring a
record format. The beginning and ending points of a
record are implicit in each format.

Record Type -
CRM defines eight record types established by the RT
field in the file information table.

REF Directive -
The FORM directive through which the user specifies
record reformatting options.

Reformat Item -
A reformat string component that causes a data field
from an input record to be reformatted and
transmitted to an output record; can also refer to a
nested reformat string.

Reformat Specification -
A component of a conversion string consisting of an
optional selector expression and a list of one or more
associated reformat items.

Reformat String -
A string of one or more reformat specifications; used
as input to the REF directive.

Search Descriptor -
A FORM element used in conjunction with item
descriptors to describe data fields of unknown length
or starting position.

Section -
CRM defines a section as a division within a file with
sequential organization. Generally, a section contains
more than one record and is a division within a
partition of a file. A section terminates with a
physical representation of a section boundary, as
shown in table C-4.

The NOS and NOS/BE operating systems equate a
section with a system-logical-record of level 0
through 16g.

TABLE C-4.

SECTION BOUNDARIES

Device

Record
Type
(RT)

Block
Type
(BT)

Physical
Representation

PRU
device

Sorl
format
tape

Any
other
tape
format

C,K,E

A deleted one-word
record pointing
back to the last 1
block boundary
followed by a con-
trol word with
flags indicating a
section boundary.
At least the con-
trol word is in

a short PRU of
level 0.

A control word with
flags indicating a
section boundary.
The control word

is in a short PRU
of level O.

A short PRU with a
level less than
17g.

Undefined.

A separate tape
block containing
as many deleted
records of record
length 0 as re-
quired to exceed
noise record size,
followed by a de-
leted one-word
record pointing
back to the last I
block boundary,
followed by a con-
trol word with
flags indicating a
section boundary.

A separate tape
block containing
as many deleted
records of record
length 0 as re-
quired to exceed
noise record size,
followed by a con- -
trol word with
flags indicating a
section boundary.

Undefined.

Undef ined.
Undefined.

60496200 C

Selector Expression -
An expression used in the QAL, CON, and REF
directives to perform a relational test on a data field;
if the test is satisfied, the associated operations are
performed; if not, the associated operations are
ignored.

SEQ Directive -
The FORM directive through which the user specifies
sequence numbering to be performed on output records.

Sequential File -
A file with records stored in the physical order in
which they were written. No logical order exists other
than the relative physical record position.

Simple Item Conversion -
A conversion string component that performs data
conversions to or from IBM format. (See Conversion
Item.)

60496200 C

Simple Reformat -
A reformat string component that performs data
reformatting. (See Reformat Item.)

Word Addressable File -
A mass storage file containing continuous data or
space for data. Words within a word addressable file
are numbered from 1 to n, each word containing 10
characters. Retrieving or writing of data at any given
word within the file is specified by the word number,
called the word address.

Working Storage Area (WSA) -
An area within the user's field length intended far
receipt of data from a file or transmission of data to a
file. :

XEQ Directive -
The FORM directive that specifies the names of the
IX and FEX owncode routines to FORM.

IBM TAPE FILE RECORD

AND BLOCKING FORMATS

Files can be written and read in IBM format by FORM,
Parameters are specified in the INP and OUT directives to
describe the record and blocking format to be used. These
parameters, described below, correspond to the data
control block (DCB) subparameters RECFM, BLKSIZE, and
LRECL on a data definition (DD) statement in IBM job
control language (JCL).

BLK PARAMETER

The BLK parameter specifies length, in number of B8-bit
bytes, of the longest tape block expected, regardless of
format. For variable (V) format records, the specification
must include space for a 4-byte block header. The value
for BLK must not exceed 32760.

LRL PARAMETER

The LRL parameter specifies length, in number of B-bit
bytes, of the longest logical record (LLRL) expected. For V
format records, the specification must include space for a
4-byte record header. The value for LRL must not exceed
32756 for V format and 32760 for fixed (F) and unspecified
(U) formats. LRL must not exceed BLK for all formats
except variable spanned blocked (VBS).

RFM PARAMETER

The RFM parameter describes the physical arrangement
for records in blocks and in files. The record formats are
fixed (F), fixed blocked (FB), variable (V), variable blocked
(vB), variable spanned blocked (VSB), and unspecified (U).

FIXED RECORD FORMATS

The two type of fixed format records are F and FB.

F RECORD FORMAT

For F record formats, every record is exactly LRL bytes
long. Each block contains exactly one record. F format is
shown in figure D-1.

Record

LRL

BLK

Figure D-1. F Format Record

FB RECORD FORMAT
For FB record formats, every record is exactly LRL bytes
long. Each block contains an integral number of records.

Total block length must not exceed BLK. FB format is
shown in figure D-2.

VARIABLE RECORD FORMATS

The variable formats are V, VB, and VSB.

Block e o o
"Logical Logical o s o Logical
Record Record Record
LRL { LRL LRL:
BL<BLK

‘F-igure D-2. FB Format Block

SU896200 O

f vV RECORD FORMAT

The maximum record length for V record formats is
LRL-4 bytes. Each record is prefixed by a 4-hyte record
descriptor word (RDW) as shown in figure D-3. Each block
contains exactly one record and is prefixed by a block

descriptor word (BDW) as shown in figure D-4.

VB RECORD FORMAT

The maximum record length for VB record formats is

LRL-4 bytes. This format is identical to V, except that

RL<LRL

RDW

| T
RL
|

|
00

|

Record

L_Z bytes of binary zero

]
Lbinary length of this record

several records can occupy the block. The block length
must not exceed BLK. VB format is shown in figure D-5.

Figure D-3. V Format Record

Block

BL<BLK

BDW
| | |
BL 00 RDW + Record
| |
L 2 bytes of binary zero
binary length of this block
Figure D-4. V Format Block
Block e e
BL 00 RL4 00 Record, °e e RL, 00 Record,,
e [—
BDW RDW RDW
I__._RL1<LRL i .o } RL,<LRL
* O

‘_—_—-BL<BLK

Figure D-5. VB Format Records

VSB RECORD FORMAT

I In the VSB record format, several record segments can
occupy a block (as in VB). At most, one segment of a
record can occur in a black, An attempt is made to fill the
block to BLK; the attempt fails if the remaining space is
less than 4 bytes, since at least one data byte must be
written. If the attempt fails, the current block is ended
and a new block is started. VSB format is shown in
figure D-6.

UNSPECIFIED RECORD FORMAT

The unspecified format is U. Undefined length records can

Block

Record

<LRL

<BLK

be any nonzero length, up to LRL. Each record occupies
I exactly one block. U format is shown in figure D-7.

Figure D-7. U Format Record

I— - | T 0 01 G ———

Record

BL | 00 | [RLyJcqfo | oot

NS e S e

AL, |

*-———-——BLQBLK—-————-——-—:V o o

Record
Segment,,

RL

Figure D-6. VSB Format

60496200 D

Records

0-3

DATA FORMATS

An IBM tape file created by an IBM FORTRAN or COBOL
source program can differ in data type from a CDC file
created by a CDC FORTRAN or COBOL source program.
This section shows the relationship between the various
data type declarations, the storage allocations for the
various data types, and the corresponding Tm values for
conversion use with the various data types.

IBM FORTRAN DATA FORMATS

IBM FORTRAN programs can utilize six types of constant
data and four types of variable data. The constant type
determines the number of B-bit byte storage locations
needed to represent the data. A default and optional
length specification for each variable type determines the
number of bytes reserved for that type. Table E-1 gives
the associated length specifications for constants and
variables.

An IBM tape file created by an IBM FORTRAN program
can contain combinations of the following data types:

8-bit characters x)
half-word integers, 16 bits (H)
whole-word integers, 32 bits)
32-bit floating-point F)
64-bit floating-point (]

The letters in parentheses are the corresponding T values
as described in table 2-1 of section 2. An IBM FORTRAN

program cannot create 64-bit double-word integers or
128-bit extended-precision floating-point data. All of the
above can be processed as bit string data (B).

Table 2-1 of section 2 should also be consulted to
determine the appropriate m value for each T selected. A
more complete description of IBM data format types
appears in appendix F.

Table E-2 shows the relationship between IBM FORTRAN
data type declarations, byte storage allocation, and the
corresponding Tm values for conversion use.

Table E-2 contains only examples of explicit type
declarations. COMPLEX declarations do not appear since
the complex variable is composed of two real data items
and follows the conventions for REAL data types. The user
determines conversion of LOGICAL data types.

60496200 C

i
TABLE E-1. [IBM FORTRAN - CONSTANT
AND VARIABLE SIZES
Type 8-Bit Bytes Allocated
Constant
Integer 2, 4, or 8
Real 4 (single-precision)
8 (double-precision)
16 (long-precision)
Complex 8 (two single-precision)
16 (two double-precision)
Logical lord
Literal 1<n (nis string
Tength)
Packed Decimal 1 byte for each 2 digits
Variable
Integer 4 (default)
2 or 8 (optional)
Real 4 (default)
8 or 16 (optional)
Complex 8 (default)
16 {optional)
Logical 4 (default)
1 (optional)
E-1

TABLE E-2. IBM FORTRAN - Tm VALUES
1BM 8-Bit
IBM FORTRAN
; Boundary T Bytes
Type Declaration Alignment Used!
Integer*2 Half-word H 2
Integer
Integer*4 Full-word W 4
Integer*8 Double-word G 8
Real 4
Full-word F (Single-
Real*4 Y s
precision)
Real 8 Double-word | L (0 b1
Double-precisjon |°0UD!&-WOr oub le-
precision)
Real*16 Double-word E 16
: Usage
Logical Full-word defined 4
. Usage
*
Logical*l None defined 1
"The value used for m is determined by the number
of bytes used.

CDC FORTRAN DATA FORMATS

The type of constant or variable determines the number of
central memory words needed to represent it. Table E-3
shows the constant and variable types and the associated
6-bit byte length specifications for CDC FORTRAN
Extended Version 4 and CDC FORTRAN Version 5.

Records written by a CDC FORTRAN program can contain
combinations of the following data types. The letter in
parentheses is the corresponding T value as determined
from table 2-1 of section 2:

6-bit characters (X)
whole~word integer, 60 bits n

single-word floating~-point, 60 bits ()
doubie-word floating-point, 120 bits (D)

E-2

All of the preceding data types can be processed as type B
bit string data. Table 2-1 of section 2 should be consulted
to determine the appropriate m value. While a whole-word
integer is a data type, integers used in multiplication and
division operations are truncated to 48 bits. More
complete information on this subject appears in appendix D
and in the appropriate FORTRAN reference manual.

Table E-4 shows the relationship between CDC FORTRAN
data type declarations, storage allocation for each type,
and corresponding Tm values for conversion use.

COMPLEX type declarations do not appear in the table;
the complex variable is composed of two real data items
and follows the conventions for REAL data types. The user
determines the manner in which LOGICAL data items are
to be converted.

IBM COBOL DATA FORMATS

A tape file created by an IBM COBOL program can contain
any combination of the following data types (the letters in

parentheses are the T values given in table 2-1 of
section 2):
8-bit characters X)
half-waord integers, 16 bits (H)
whole-word integers, 32 bits W)
double-word integers, 64 bits (G)
32-bit floating-point (7
64-bit floating-point (L)
packed decimal (internal decimal) P
decimal signed numeric (external ()

decimal)

An IBM COBOL program cannot create 128-bit
extended-precision floating-point data. Any of the
preceding data types can be considered to be bit string
data (B). To select the appropriate m value for each of
the data types, refer to table 2-1 of section 2. A complete
description of IBM data type formats is given in appendix F.

If IBM computational items are mixed with other
elementary items in the data record description, slack
bytes might be present on IBM tape files to assure the
proper byte alignment for each COMPUTATIONAL,
COMPUTATIONAL-1, and COMPUTATIONAL-2 item. For
instance, the byte address of the first byte of a half-word
binary item must be divisible by 2; the byte address of a
full- or double-word binary item must be divisible by 4; the
byte address of a COMPUTATIONAL-1 item must be
divisible by 4; the byte address of a COMPUTATIONAL-2
item must be divisible by 8.

Table E-5 shows the relationship between IBM COBOL
USAGE clauses, picture clauses, IBM byte storage
allocation, and the corresponding B-bit Tm values to be
used in converting such data types.

60496200 C

TABLE E-3. CDC FORTRAN - CONSTANT AND VARIABLE SIZES

Type GEgﬁlegtg:tE?$ggaged 6-Bit 52525A21?0cated
Constant
Complex 20 20
Double-Precision 20 (two real constants) 20 (two real constants)
Hollerith 1 n {n is string length) 10
Integer 10 ’ 10
Logical 10 10
Octal 10 10
Real 10 10
Boolean' Tt 10
Character tt 1 per character up to length of string;
minimum string length 1, maximum string
length 215-1
Hexadecimal tt 10
- Variable
Complex 20 20
Double-Precision 20 20
Integer 10 10
Logical 10 10
Real 10 10
Boolean' tt 10
Character tt User defined

"The use of boolean data types and operations (SHIFT, MASK, and so forth) should be avoided
where possible because boolean data types can be processor dependent.

"applies only to FORTRAN 5.

60496200 C

TABLE E-4. CDC FORTRAN - Tm VALUES

. CDC Boundary FORTRAN Extended 4 FORTRAN 5
Type Declaration Alignment T 6-Bit Bytes Used' 6-Bit Bytes Used'
Integer Full-word I 10 10
Real Full-word E 10 10
Double-precision Double-word D 20 20

. Usage

Logical Full-word defined 20 20
Boolean'! Full-word I or B60 Tt 10
Character Character X Tt User defined

TThe value used for m is determined by the number of bytes used.

The use of boolean data types and operations (SHIFT, MASK, and so forth) should be avoided where
possible, because boolean data types can be processor dependent.

instead, if working with character data.

™ ppplies only to FORTRAN 5.

Type character should be used

CDC COBOL DATA FORMATS

FORM recognizes the following data types written by a
CDC COBOL program:

E-4

6-bit characters x)
unnormalized floating-point, 60 bit (L)
numeric display signed overpunch (s
numeric display, unsigned (N)
numeric display, leading zeros (2)

suppressed

The letters in parentheses are the corresponding T values
as described in table 2-1 of section 2 under CDC Format.
A CDC COBOL program cannot create or process 60-bit
integer data. Any of the above data types can be
considered as bit string data (B). To choose the
corresponding m value for the conversion items, refer to
the right half of table 2-1 of section 2. A more complete
description of the CDC internal format types appears in
appendix F.

Table E-6 shows the relationship between CDC COBOL
USAGE clauses, PICTURE clauses, CDC storage allocation,
and the corresponding 8-bit Tm values used in processing
such data types.

60496200 C

TABLE E-5.

IBM COBOL - Tm VALUES

IBM .
IBM COBOL : IBM 8-Bit Bytes Used
Picture Format Boundary T
USAGE Category Alignment (m)
DISPLAY Alphabetic None X 1 per character or digit (except
for V in external floating-point),
limit 18
DISPLAY Alphanumeric None X 1 per character or digit (except
for V in external floating-point),
1imit 18
DISPLAY Report format None X 1 per character or digit (except
for V in external floating-point)},
Timit 18
DISPLAY External None X 1 per character or digit (except
floating-point for V in external floating-point),
form 1imit 18
DISPLAY Numeric None or X 1 per digit, limit 18
unsigned
DISPLAY Numeric signed None S 1 per digit, limit 18
COMP {binary) 1 to 4 digits Half-word H 2
COMP (binary) 5 to 9 digits Full-word W 4
COMP (binary) 10 to 18 Full-word G 8
digits
COMP-1 (internal Not applicable Full-word F 4 (short-precision)
floating-point)
COMP-2 (internal Not applicable Double-word L 8 {long-precision)
floating-point)
COMP-3 (packed Numeric None P 1 byte per 2 digits plus
decimal) unsigned or 1 byte for low-order digit and sign
signed

60496200 C

TABLE E-6. CDC COBOL 5 - Tm VALUES
. CDC 6-Bit Bytes Used in
CbC COBOL Picture Boundary >
Usage Format Alignment T Storage(gglocat1on
DISPLAY Alphabetic None X 1 per character or
digit (except for V)
DISPLAY Alphanumeric None X 1 per character or
. digit (except for V)
DISPLAY Edited report None X 1 per character or
form, leading digit (except for V)
zeros suppressed
COMPUTATIONAL Unsigned numeric None N 1 per digit, limit 18
or DISPLAY X
COMFUTATIONAL Signed numeric None S 1 per digit, Timit 18
or DISPLAY
DISPLAY Edit, leading None z 1 per digit or space,
zeros suppressed Timit 18
COMP-1 1 to 14 digits Word I 10
coMp-2 1 to 14 digits Word E 10
COMP-4 1 to 14 digits, Byte B Number of bits required
unsigned numeric to store the maximum
decimal value that can
be represented by the
specified number of
digits in the PICTURE
clause, divided by 6
and rounded up
CoMpP-4 1 to 14 digits, Byte B Number of bits required
signed numeric by unsigned items pius
1, divided by 6 and
rounded up

60496200 C @

INTERNAL DATA REPRESENTATION F

IBM and CDC internal data representation is explained in
this appendix.

IBM DATA FORMATS

IBM data formats consist of character and numeric data
formats. There are four forms of numeric data:
fixed-point binary, floating-point hexadecimal, packed
decimal, and decimal signed numeric.

CHARACTER DATA

EBCDIC character codes are stored in IBM systems in 8-bit
bytes. Bit numbers are assigned from high to low for each
bit position within a byte. By IBM standards, the numbers
assigned are EO through E7, as shown in figure F-1.

EO E1 E2 E3 E4 E5 E6 E7

Figure F-1. IBM EBCDIC Bit Numbers

ASCII character codes are stored in IBM systems in B-bit
bytes. Bit numbers 1 through B8 are assigned to each bit
position within a byté from low-order to high-order, as
shown in figure F-2.

AB A7 A6 A5 A4 A3 A2 Al

Figure F-2. 1BM ASCIi Bit Numbers

NUMERIC DATA

In IBM systems, B8-bit bytes are grouped to represent
numeric data. A double byte (16 bits) is referred to as a
halfword; four bytes comprise a wholeword (fullword);
eight bytes are a doubleword.

IBM uses four forms of numeric data: fixed-point binary,
floating-point hexadecimal, packed decimal, and decimal
signed numeric. The numeric data formats are shown in
figure F-3.

Fixed-Point Binary

Fixed-point values can be written in halfword, fullword, or
doubleword format consisting of a single sign bit followed
by the binary field. On occasion, these formats are
referred to as signed integer format. Negative values are
represented in two's complement form.

60496200 C

Floating-Point Hexadecimal

Floating-point data occupies short, long, and
extended-precision formats. Each form uses the first bit
as the sign of the fraction, the next seven bits to represent
a characteristic, and the remaining bits to represent the
fraction expressed in hexadecimal digits. The value
expressed is the product of the fraction and the number 16
raised to the power of the exponent.

The greatest precision is achieved when a floating-point
number is normalized. The fraction part of the
floating-point number has a nonzero, high-order,
hexadecimal digit produced by shifting the fraction left
until the high-order, hexadecimal digit is nonzero and
reducing the characteristic by the number of hexadecimal
digits shifted. A zero fraction cannot be normalized.

Normalization applies to hexadecimal digits; thus the three
high-order bits of a normalized number can be zero.

Packed Decimal

Because decimal numbers may be expressed by four bits, it
is possible to pack two 1-digit decimal values into one 8-bit
byte. Variable length fields are used to contain packed
decimal values; the rightmost four bits of the low-order
byte of the field contain the sign of the value:

e The EBCDIC sign code generated is 1101 for minus and
1100 for plus.

e Packed decimal data is not the same as 8-bit
character data and cannot be treated as such.

Decimal Signed Numeric

Also known as a Zoned Decimal Format, this
representation is required for character set sensitive 1/O
devices. A Zoned Decimal Format number carries its sign
in the leftmost four bits of the low-order byte. The zoned
format is not used in decimal arithmetic operations.

CDC DATA FORMATS

CDC data formats consist of internal 6-bit display code,
internal 8/12-bit ASCII code, and arithmetic data. The
CDC arithmetic data types are integer and floating-paint.
CDC also stores data that is display code numeric sign
overpunched.

INTERNAL 6-BIT DISPLAY CODE
In the central memory unit of the CDC system, 6-bit coded
information is represented in 6-bit bytes, ten bytes in a

60-bit word. Bytes are numbered as shown in figure F-4.

Within a word, 6-bit bytes are stored as shown in figure F-5.

F-1

Fixed-point
binary

S

01 15
Half-word binary - 2 bytes (16 bits)

S

01 31
Full-word binary - 4 bytes (16 bits)

S
01 63
Double-word binary - 8 bytes (64 bits)
Floating-point
hexadecimal Charac- Fraction (24 bits)
teristic
01 7 31
Fioating-point — 4 bytes (32 bits}
Charac- . .
teristic Fraction (56 bits)
01 7 63
Long floating-point — 8 bytes (64 bits}
Charac- .
s teristic 56 bits
01 7 high-order part 63
unused B6 bits
0 7 low-order part 63
Extended-precision {or double-precision) floating-point
Packed high-order byte low-arder byte
decimal
T R
Digit Digit Digit / / Digit Digit Digit Sign
Decimal byte byte
signed - ~
numeric - =
Zone Digit Zone / / Digit Zone Digit Sign Digit
Figure F-3. {BM Numeric Data Formats
F-2 60496200 C

5 4 3 2 10

A8 A7 AB A5 A4 A3 A2 A1l

Figure F-4, CDC Display Code Bit Numbers

50 64 48 42 36 30 24 18 12 6 0

Figure F-6. CDC 8-Bit ASC!I Bit Numbers

EQ E1 E2 E3 E4 E5 EB E7

Figure F-5. CDC Display Code Byte Numbers

INTERNAL REPRESENTATION OF 8-BIT DATA

The eight bits in a string representing an ASCI code are
numbered from left to right (A8 through Al) as shown in
figure F-6. The ASCII 8/12 data format consists of the
ASCII 7-bit code right-justified in a 12-bit byte. Byte AB
is always set to zero. The eight bits in a string which
represent EBCDIC code are numbered from left to right
(E0 to E7) as shown in figure F-7.

The CDC 12-bit byte data format is shown in figure F-8.
The unused four bits are set to zero when the byte is stored
in a word and ignored when the character code is used._

In ASCII or EBCDIC codes, 8-bit data can be represented in
central memory as 12-bit bytes, stored five bytes to a
word. Character data must be aligned on the byte
boundaries as shown in figure F-9.

ARITHMETIC DATA

The CDC arithmetic data types are integer and
floating-point. The data formats are shown in figure F-10.

Figure F-7. CDC 8-Bit EBCDIC Bit Numbers

Integer

Integer data is stored in a 60-bit central memory word.
The binary representation of the integer is right-justified
in the word. The sign is in bit 59; the binary point is at the
right of bit 0. Negative numbers are represented in one's
complement notation.

Floating-Point

Floating-point data is stored in either single-precision or
double-precision format, as shown in figure F-10.

The binary point is considered to be to the right of the
integer coefficient; therefore, the 48-bit integer
coefficient is equivalent to a 14 digit value. The sign of
the coefficient is in bit 59. Negative numbers are carried
in one's complement notation. The 11-bit exponent carries
a bias of 210 (2000 octal). As the coefficient is stored in
unnormalized form, the bias is removed when the word is
normalized for computation and restored when the word is
returned to floating-point format.

bit position 11 10 9

I

unused

character

ASCIl bit number
EBCDIC bit number
CDC bit number

A8 A7 A8 A5 A4 A3 A2 A1

EO
b1

E1 E2 E3 E4 E5 E6 E7
b2 b3 b4 b5 b6 b7 b8

Figure F-8. CDC 12-Bit Byte Format

60496200 D

59 48 36 24 12

byte 1 byte 2 byte 3 byte 4

byte 5

Figure F-8, CDC 5-Byte Word Format

58 0
Integer
L sign (Bit 59) Binary ——,
Point
CDC Integer Format
58 47 0
Biased

Exp Integer Coefficient

L sign of Coefficient (Bit 59)

CDC Single-Precision Floating-Point Format

Binary e
Point

58 47 0
BIEa:Sd Integer Coefficient
L Sign of Coefficient (Bit 59) Most Significant Half Binary —
Point
58 47 0
Biased -
Exp-48 Integer Coefficient
L_..Sign of Coefficient (Bit 59) Least Significant Half

CDC Double-Precision Floating-Point Format

fre

Figure F-10. CDC Numeric Data Formats

60496200 D

In double-precision format, two adjacent memory words
{n and n+l) are used. The sign of the coefficient is carried
in bit 59 of both words. The 96-bit integer coefficient is
split, and the most significant 48 bits are stored in word n;
the least significant 48 bits are in word n+l. The binary
point is at the right of bit 0 in word n. Since the biased
exponent of the least significant half of the coefficient is
48 less than the exponent of the most significant half, the
two exponents are used to locate the true position of the
binary point. If the exponent in word n represented 56, the
exponent in word n+l would be +8, indicating that the true
position of the binary point is in the least significant half,
eight bits to the right of the biased exponent in word n+l.
Conversely, if the exponent in word n represented 32, the
exponent in word n+l would be -16, indicating that the true
position of the binary point is in the significant half, 16
bits to the left of bit 0 in word n.

Display Code Numeric Sign Overpunch

A string of display code decimal digits forms a display code
sign overpunch number.

When the item is displayed in output or is received in input
as a card image, the signed digit appears as specified in the
second column of table F-1. When the item is to be
received as input from a card, the signed digit must be
punched as specified in the third column of table F-1.
When input data is positive or unsigned, output data is the
same as the input data. The negative sign is represented
by a - overpunch in row 11; the positive sign by the
absence of an overpunch or the presence of a + overpunch
inrow 12.

The sign overpunch numeric is CDC COBOL.-defined, and
insertion of the plus sign into the units digit is not
automatic; therefore, all unsigned, signed, and positive
numbers appear to have the same format. In the A sign
overpunch numeric, the 8-bit subroutines always insert the
plus sign into a positive value and transform the units digit.

60496200 D

TABLE F-1. DISPLAY CODE NUMERIC
SIGN OVERPUNCH REPRESENTATION
. Qutput
Sa;gn Repre:eitation Hollerith
Digit coc ASCII Punch
+9 I [12-9
+8 H H 12-8
+7 G G 12-7
+6 F F 12-6
+5 E E 12-5
+4 D D 12-4
+3 C C 12-3
+2 B B 12-2
+1 A A 12-1
+0 < < 12-0f
-0 v ! 11-0f
-1 J J 11-1
=2 K K 11-2
-3 L L 11-3
-4 M M 11-4
-5 N N 11-5
-6 0 0 11-6
-7 p o 11-7
-8 Q Q 11-8
-9 R R 11-9

Tunder NOS, the 029 keypunch cannot be used
to make the Hollerith punch patterns that
represent +0 or -0.

CONVERSION RULES G

Table G-1 shows conversion rules for the REF directive.
Table G-2 shows conversion rules for the CON directive
when converting from IBM format data to CDC format
data, Table G-3 shows the conversion rules for the CON

directive when converting from CDC format data to IBM
format data. The numbers in the tables refer to notes
following the tables. A hexadecimal-octal conversion table
is provided at the end of this appendix.

TABLE G-1. CONVERSION RULES FOR REF DIRECTIVE
OQutput
Format
B X I £ u D S N Z
Input
Format
=
B 1 2 3,4 3,6 3,5 3,7 3,8 3,9 3,10
X 11 12 13,4 13,6 13,5 13,7 13,8 13,9 13,10
I 14 15 4 6 5 7 8 9 10
E 14 15 4 6 5 7 8 9 10
u 14 15 4 6 5 7 8 9 10
D 14 15 4 6 5 7 8 9 10
S 14,26 15,26 13,4 6,13,26 5,26 7,26 8,26 9,26 10,26
N 14 15 13,4 6,13 5 7 8 9 10
14 15 13,4 6,13 5 7 8,26 9 10
TABLE G-2. CONVERSION RULES FOR CON DIRECTIVE: IBM TO CDC
coc
B X I U E D S N z
18M
B 1 2 3,4 3,5 3,6 3,7 3,8 3,9 3,10
X 11 12 13,4 13,5 13,6 13,7 13,8 13,9 13,10
H 14 15 4 5 6 7 8 g 10
W 14 15 4 5 5 7 8 9 10
G 14 15 4 5 6 7 8 a 10
F 14 15 4 5 6 7 8 9 10
L 14 15 4 5 2 7 8 e 10
E 14 15 4 5 6 7 8 9 10
P 14,25 15,25 4,25 5,25 6,25 R7,25 8,25 9,25 10,25
S 14,26 15,26 4,26 5,26 6,26 7,26 8,26 9,26 10,25

60496200 D

G-1

TABLE G-3. CONVERSION RULES FOR CON DIRECTIVE: CDC TO IBM

1o B X H W G L E P S
cbc
B 1 2 3,16 3,17 3,18 3,19,20 3,19,21 3,19,22 3,23,25 3,24,26
X 11 | 12 | 13,16 | 13,17 | 13,18 | 13,19,20 | 13,19,21 | 13,19,22 ' 13,23,25 | 13,24,26
1 14 | 15 16 7 18 19,20 19,21 19,22 23,25 24,26
U 14 ;15 16 17 18 19,20 19,21 19,22 23,25 24,26
E 14 | 15 16 17 18 19,20 19,21 19,22 23,25 24,26
D 14 | 15 16 17 18 19,20 19,21 19,22 23,25 24,26
S 14 | 15 16 17‘ 18 19,20 19,21 19,22 23,25 24,26
N 14 | 15 16 17 18 19,20 19,21 19,22 23,25 24,26
YA 14 115 16 17 18 19,20 19,21 19,22 23,25 24,26
NOTES FOR CONVERSION RULES, 6. Applies when converting to E. The source field is

TABLES G-1, G-2, G-3

1.

Applies Bm to Bn. The leftmost [min,(m,n)] bits are
copied from the source field to the destination field.
f m>n, the rightmost (m-n) bits of the source field
are ignored. If m<n, the rightmost (n-m) bits of the
destination field are set to zero.

BmB0 can be used to skip m bits of the source record.
BOBn can be used to zero an n-bit field in the
destination area.

Applies Bm to Xn. The source field is copied to the
destination field one bit at a time from the left.
Convert each zero bit to the character 0, and each
one bit to the character 1. If m>n, the rightmost
(m-n) bits of the source field are ignored. If m<n, the
rightmost (n-m) characters of the destination field are
set to O.

BOXn can be used to set an n-character field in the
destination area to all Os.

Applies Bm to Xn numeric. The source field is treated
as an m-bit positive binary integer.

A B0 source field is treated as zero.

Applies when converting to I. The source field is
rounded (if necessary) to an integer, and the low-order
59 bits are the value. If the magnitude is >259 (i.e.,
more than 59 bits required), an error condition is
flagged.

Applies when converting to U. The source field is
rounded (if necessary) to an integer, and the
high-order 48 bits are the value. The result is kept as
a single-precision floating-point number. However,
this number is denormalized (COBOL COMP-1
definition), if necessary, to keep the biased exponent
22000g.

7.

rounded to 4B-bit precision and the result is kept as a
single-precision floating-point number.

Applies when converting to D. The source field is
rounded to 96-bit precision and the result is kept as a
double-precision floating-point number.

Applies when converting to Sn. The source field is
rounded (if necessary) to an integer. If the magnitude
is >10N, high-order truncation occurs. The value is
converted to a display code string of decimal digits,
with leading zeros if necessary. The sign of the
number is indicated by amending the low-order (units)
digit as shown in figure G-1. The 11-0 and 12-0 card
punch is not supported on NOS in a manner that
translates as signed numeric overpunch.

0—< {corresponds to 12-0 card punch)

Positive:

1-9—»A-J (corresponds to 12-1—12-9 card punch) .

o—V (corresponds to 11-0 card punch)

Negative:

1-8—+J-R {corresponds to 11-1—»11-9 card punch)

Figure G-1. Amending of Low-Order Digits

Applies when converting to Nn. The source field is
rounded (if necessary) to an integer. If the magnitude
is 210N, an error is flagged. The value is converted
to a display code string of decimal digits, with leading
zeros if necessary. The sign of the field is lost
(magnitude only saved).

60496200 C

10.

11.

12.

13.

Applies when converting to Zn. The source field is
rounded (if necessary) to an integer. If the magnitude
is 2107, an error is flagged. The value is converted
to a display code string of decimal digits. Leading
zeros are suppressed and replaced by blanks. If the
number is negative, a - replaces the rightmost blank.
If the number is negative and no blanks are in the
field, an error is flagged.

Applies Xm to Bn. The source field is copied to the
destination field ore character at a time from the
left. Each O is converted to a single zero bit, and each
1 is converted to a single one bit. If any character
besides 0 or 1 is encountered, an error is flagged. If
m>n, the rightmost (m-n) characters of the source are
ignored. If m<n, the rightmost (n-m) bits of the
destination are set to zero.

Applies (string)m to (string)n. The source field is
copied to the destination field from the left, with
conversion according to appendixes A, B, and C if
necessary. If the source field corresponds to card
(Hollerith) input, and if the card punches for any
character position are invalid, the eight-ones
character (hexadecimal FF) is used for that position.
If m>n, the rightmost (m-n) characters of the source
string are ignored. If m<n, the right-most (n-m)
characters of the destination are set to blanks.

Using an n value of 0, m characters of the source can
be skipped. Using an m value of 0 allows setting a
destination field to all spaces.

Applies (string) to numeric type. A source character
string which is to be converted to numeric type must
have one of the following forms:

n n.n . one nanE+s .nE+s nE+s nE+s
where:
n is a coefficient of £15 decimal digits.

] is the exponent
(base 10).

Numbers are kept to a precision of at least 96 bits.
Spaces are ignored; they can be embedded anywhere
within the field. If any other character appears in the
field, or if the syntactic form is incorrect, an error is
flagged. If the source field width is zero, the value is
taken to be zero. If E is present, a decimal point also
must be present.

14. Applies numeric to Bn. If necessary, the source field

15.

is converted to binary and rounded to integer form.
The rightmost n bits, with sign extended, are moved to
the destination field. The binary representation is in
the form appropriate to the destination: twao's
complement for IBM format and one's complement for
CDC format. If n bits are insufficient to contain the
result, the rightmost n bits are placed in the
destination field. If the source field width is zero, or
the value is infinite or indefinite, the value is taken to
be -0 (+0 if the destination is IBM format).

Applies numeric to (string)n. The conversion of
numeric fields to alphanumeric (string) fields depends
upon several factors, including the size of the
destination field, magnitude and sign of the source
field, and maximum precision of the source item. The
receiving field format can be determined by the
following subrules (headings refer to the source field
format).

AlL

A. If the destination field width s
conversion takes place.

zero, no

B. If the source item is indefinite or infinite, the
destination field is filled as shown in table G-4.

C. Determine the maximum precision, p, of the
source item from table G-5.
D. Set a variable, d, to n. If the source value is

negative, set d to n-1 (dis the available

destination field width).

E. If the source value is an integer (units bit
represented and fractional part equal to zero),
follow the rules under Integer; otherwise, follow
the rules under Floating-Point.

Integer

A. If the magnitude of the value is >10d, follow

the rules under Type E.

B. The value is converted to a decimal integer and
placed in the destination field, right-justified. All
leading zeros are replaced (except in the units
position) by spaces.

If the value is negative and n>1, a - is placed
immediately to the left of the leftmost digit.
Otherwise {(must be -0 in a l-character field) the
0 is replaced by a -.

TABLE G-4. DESTINATION FIELD FOR INFINITE OR INDEFINITE ITEMS
Condition 1 2 3 4 or More (Right-Justified in Field)
+ F NF INF INF
- F -F ~-NF -INF
+? D ND IND IND
-7 D -D -ND -IND

60496200 C

TABLE G-5. MAXIMUM PRECISION OF SOURCE ITEMS

Source Computer Source Item Type p (digits) A@gﬂﬁeogeggﬁg?nﬁg?u
1BM H 5 4
W 10 9
G 19 18
F 8 7
L 17 16
E 34 33
Pm 2m-1 ’ Zm-1
Sm m m
coc 1 18 17
U 15 14
E 15 14
D 29 28
Sm m m
Nm m m
m m m
Floating-Point Type E

A.

Determine r, the minimum number of digit
positions required to use this representation as
follows:
If lvaluel 21, then r=K,

where 10X-1 <value| <10K
1f |value| <1, then r=K-1+min(p,d-5),

where 10-K <|value} <10-K+1

If r<(d-1), proceed to step C; otherwise, follow
steps under Type E.

The value is converted according to one of the
following formats and the result string is placed,
right-justified, in the destination field. The value
is rounded, if necessary, to the indicated number
of places.
(1) 1 (x21) and [(r=d-1) or (c2p)]:
dldZ..di. i=r
(2) If (x21) and (r<d-1) and {r<pk
dld2...didi+1..dj i=r, j=min(p,d-1)
(3) 1f (x<1) and [(d-1)>(k-1+p)]:
0.d1d2...dj j=K-1+p
(&) 1f (x<1) and [(d-1)<(k-1+p)]:
.d1d2...dj j=d-1

If the value is negative, place a - immediately to
the left of the leftmost nonblank character.

A. I d>6 and |valuel 2.95x10-99, proceed to
step B. Otherwise, the receiving field is not wide
enough to represent the value; the destination
field is filled with all asterisks. If the value is
negative, the leftmost * is replaced by a -.

B. The value is converted according to the following
format:

dl.d2...djEeee j=min(p,d-5)
where eee is -99 to -01, +00 to +99, or 100 to 305.

If a negative exponent of less than -99 is required,
the following format is used:

dl.d2...djE-nnn j-min{p,d-6)

Similar to FORTRAN scientific notation, the
value is rounded to the indicated number of digits
and placed, right-justified, in the destination field.

C. If the value is negative, a - is placed immediately
to the left of the leftmost nonblank character.

16. Applies when converting to H. The source value is
rounded, if necessary, to a two's complement integer,
and the low-order 16 bits are taken as the value. If
significance is lost, an error is flagged.

17. Applies when converting to W. The source value is
rounded, if necessary, to a two's complement integer,
and the low-order 32 bits are taken as the value. If
significance is lost, an error is flagged.

18. Applies when converting to G. The source value is
rounded, if necessary, to a twao's complement integer,
and the low-order 64 bits are taken as the value. If
significance is lost, an error is flagged.

60496200 C

19.

20.

21.

22.

23.

24.

25.

Applies when converting to F, L, E. The source value
is converted to an IBM format floating-point number,
rounded to the indicated number of bits. If the source
magnitude is too large (>~5x1075), the largest
possible number is supplied. If the source magnitude is
too small (<~5x10- 5) but not zero, the smallest
nonzero number is supplied.

Applies when converting to F. The resultant value is a
4-byte field of 21- to 24-bit precision (IBM short
floating-point).

Applies when converting to L. The resultant value is
an B-byte field of 53- to 56-bit precision (IBM long
floating-point).

Applies when converting to E. The resultant value is a
16-byte field of 110- to 112-bit precision (IBM
extended-precision floating-point). The low-order 14
to 16 bits might not be accurate, since only 96-bit
precision is guaranteed.

Applies when converting to Pm. The source value is
rounded, if necessary, to an integer and converted to
packed decimal form. If |value|>102Zm-1 gverflow
has occurred and an error is flagged.

Applies when converting to Sm. The source value is
rounded, if necessary, to an integer and converted to a
decimal string. If !value|ZlUm, overflow has
occurred and an error is flagged.

For P fields, the sign of the field and low-order (units)
numeric place are contained in the low-order
(rightmost) byte as shown in figure G-2.

TABLE G-6. SIGN POSITION FOR EBCDIC FIELDS

Lo e tares

+ (sign) -
0 { {
1 A J
2 B K
3 c L
4 D M
5 E N
6 F 0
7 G P
8 H Q
9 I R

Units

Digits Sign

For S fields in ASCII data, the sign of the field and
low-order {units) numeric digits are contained in the
low-order byte as shown in table G-7.

TABLE G-7. SIGN POSITION FOR ASCII FIELDS

26.

Figure G-2. Location of Sign and Numeric
Place for P Fields

Valid sign codes used when a P field is read are as
follows:

Bit Pattern Sign

1010
1011
1100
1101
1110
1111

+ 4+ +

The EBCDIC sign code generated is 1101 for a
negative sign and 1100 for a positive sign.

For S fields in EBCDIC data, the sign of the field and
low-order (units) numeric places are contained in the
low-order (rightmost) byte as shown in table G-6.

60496200 C

Character Placed in

Low-Order That Position
g + (sign) -
0 @ p

—
Q0

2 B

3 C S
4 D T
5 E U
6 F v
7 G W
8 H X
9 I Y

G-5

HEXADECIMAL-OCTAL CONVERSION

® G-6

TABLE G-8. HEXADECIMAL-OCTAL CONVERSION TABLE
First Hexadecimal Digit
0 1 2 3 4 5 6 7 8 9 A B c D E F
Second 000 | 020 §{ 040 | 060 | 100 } 120 | 140 | 160 | 200 | 220 | 240 | 260 | 300 | 320 | 340 | 360
Hexadecimal
Digit 001 | 021 | 041 | 061 | 101 | 121 | 141 | 161 | 201 | 221]| 241 | 261 | 301 | 321 341 361
002 | 022 | 042 | 062 | 102 | 122 | 142 | 162 | 202 | 222] 242 | 262 | 302 | 322 | 342 | 362
003 | 023 | 043 | 063 | 103 | 123 | 143 | 163 | 203 | 223 | 243 | 263 | 303 | 323 343. 363
004 | 024 | 044 | 064 | 104 | 124 | 144 | 164 | 204 | 224 | 244 | 264 | 304 | 324 | 344 | 364
005 | 025 | 045 | 065 | 1056 1125 | 145 | 165 | 205 | 225 | 245 | 265 | 305 | 325 | 345 | 365
006 | 026 | 046 | 066 | 106 | 126 | 146 | 166 | 206 | 226 | 246 | 266 | 306 | 326 | 346 | 366
007 | 027 | 047 | 067 | 107 | 127 | 147 | 167 | 207 | 227 | 247 | 267 | 307 | 327 { 347 | 367
010 | 030 | 050 {070 | 110 | 130 | 150 | 170 | 210 230 | 250 | 270 | 310 | 330 | 350 | 370
011 { 031 | 051 | 071 111 [131 {151 | 171 | 211 | 231 | 251 | 271 { 311 | 331 | 351 | 371
012 1 032 | 052 1072 | 112 | 132 | 152 | 172 | 212 | 232 | 252 | 272 | 312 | 332 | 352 | 372
013 1033|053 {073 | 113 {133 | 153 | 173 | 213 | 233 | 2563 | 273 | 313 | 333 | 353 | 373
014 {034 | 054 | 074 | 114 | 134 | 154 | 174 | 214 | 234 | 254 | 274 | 314 | 334 | 354 | 374
015 | 635 | 055 | 075 | 115 | 136 | 1656 | 175 {215 | 235 | 255 | 275 | 315 | 335 | 355 | 375
016 | 036 | 056 | 076 [116 {136 | 156 | 176 | 216 | 236 | 256 | 276 | 316 | 336 | 356 | 376
017 | 037 | 057 {077 | 117 [137 | 157 | 177 | 217 | 237 | 257 | 277 | 317 | 337 | 357 | 377
Octal 000 — 040 — 100 — 140 — 200 — 240 - 300 — 340 -
037 077 137 177 237 277 337 377
60496200 D

SUMMARY OF KEYWORDS AND DIRECTIVES H

The user communicates with FORM by indicating the The FORM directives are summarized in table H-1.

desired functions and associated options. Each function is
specified by a directive. The INP, OUT, SEQ, PAG, and
XEQ directives have the following general format: Options and associated values are described in table H-2.

aaa(lfn,p Lp2,p3,...,pn)

Conversion strings, qualification strings, and reformat

The CON, QAL, and REF directives have the following strings are described in figures H-1, H-2, and H-3.
general format:
‘ aaé(lfn,string)
TABLE H-1. SUMMARY OF DIRECTIVES
g;;;g:;ze Parameters
INP(1fn, MAX=n, REW=r, HRL=ept, DCA=ept, LX=ept, RFM=f, BLK=n, LRL=n, COD=c, CX=ept, EX=ept, DX=ept,
POS=+n, IRL=n)
oUT(1fh,T MAX=n, REW=r, HRL=ept, CPA=ept, LX=ept, RFM=f, BLK=n, LRL=n, COD=c, CX=ept, EX=ept,
DCT=ept, BGD=g, KEY=+d, RX=ept, IRL=n)
CON(1fn, conversion~-string)
QAL(1fn, qualification-string)
REF (1fn, reformat-string)
SEQ(1fn, NBR=d, BET=n, ADD=n)
PAG(1fn, FMT=a, PGL=n, TOP=n, TTL=1)
XEQ(1fn, IX=ept, FEX=ept)
Legend:
a 1 = single space, 2 = double space, A = use lst character carriage control, D = dump format
c A = ASCII, C = EBCDIC, E = EBCDIC
d jtem descriptor (see section 2)
f F = fixed, V = variable, U = unspecified, FB = fixed blocked, VB = variable blocked,
VSB = variable spanned blocked
g X = blank, Z = display code zero, B = binary zero, C = copy input record
1 Titeral ($....5 or *....%)
n decimal integer
r R = rewind, N = no rewind, U = rewind and return (disk) or unload (tape)
ept entry point name
1fn Togical file name
T]ogical file name 1fn/R = rewind before use.

60496200 C

TABLE H-2. SUMMARY OF KEYWORDS AND DESCRIPTORS
Associated .

Format Directives Keyword Meaning Values Default Value
ADD = n SEQ Increment BEG 1 through 2%8-1 1
BEG = n SEQ Initial value of 0 through 248-1 1

- sequence number
SX) X (blank)
z\ Qutput record back- Z (display code zero)
BGD B ot ground B (binary zero) ¢
C C (copy input record)
BLK = n INP, OUT (with CON) Block size in 8-bit 1 through 32760 None
bytes
‘A) A (ASCII)
B co e ouT IBM character code ¢ (EBCDIC) E
13 E (EBCDIC)
CPA = ept ouT Record compression/ Applicable entry point None
encryption exit name
CX ept INP, OUT Conversion error exit Applicable entry point None
name
DCA = ept INP Record decompression Applicable entry point None
decryption exit name
DCT = ept ouT Display-collating con- Applicable entry point None
version table name
DX ept INP End-of-partition, end- Applicable entry point None
of-section, end-of-data name
exit
EX ept INP, OUT Error exit Applicable entry point None
name
FEX = ept XEQ Execution error exit Applicable entry point None
name
FMT = a PAG Print format 1 {single space) 1
2 (double space)
A (lst character
carriage control)
D (dump format)
HRL = ept INP Key hashing exit Applicable entry point None
name
IRL INP, OUT (with CON) Internal record length 1 through BLK External record
length (LRL)
for variable
length records
4* RL
3
H-2 60496200 C

TABLE H-2. SUMMARY OF KEYWORDS AND DESCRIPTORS (Contd)
Format Associated Keyword Meanin Values Default Value
Directives Y g
iTm REF, QAL, CON Describes a data field:
i starting char- 1 through record size None
acter position
T data type X,I,E,D,U,B,S,N,Z CDC? None
B,X,I,U,E,D,S,N,Z (IBM
m field length Number of characters 1
or bits; omit if fixed-
Tength
i/w QAL, REF, CON Initial bit position:
i initial 6- or 1 through 999 None
8-bit byte
w initial bit 1 through 6 or 8 1
within byte
IX = ept XEQ Input record exit Applicable entry point None
name
KEY = +iTm ouT Actual key or indexed
sequential key field
description:
i starting char- 1 through record size None
acter position
T data type X, F, I None
m field length Number of characters 1
+ 1include key in
record
- omit key from
record
LRL = n INP, OUT (with CON) Record length (8-bit 1 through BLK None
bytes)
LX = ept INP, OUT Nonstandard label exit Applicable entry point None
name
MAX = n INP, OUT Max number of records 1 through 16777215 A1l records in
file
NBR = iTm SEQ Sequence field

60496200 C

description:

i starting char-
acter or bit
position

T data type

m field length

1 through record size

X or B

1 through 10 (char-
acters)
1 through 60 (bit)

None

None

TABLE H-2.

SUMMARY OF KE YWORDS AND DESCRIPTORS (Contd)

Associated

Format Directives Keyword Meaning Values Default Value
oln REF, QAL, CON Describes search cri-
teria for variable
length data fields in
input record:
o character Max is record length None
position where
search is to
begin
1 delimiting Character stiring not to None
literal for exceed 255 characters
which a match
is sought
n ordinal of the +1 through +record None
Titeral delimiter Tength
PG =n PAG Page line limit 1 through 60 60 if FMI=1
specified
30 if FMT=2
specified
_ +n Initial position par- ..
POS = {_n} INP e st ot +1 through +2047 No skipping
R R (rewind)
REW = U INP, OUT Rewind option U (unload) N
N N (no rewind)
F F (fixed) F
FB FB (fixed blocked)
"] : : U unspecified)
RFM v INP, OUT (with CON) IBM record blocking v Evar1ab1e
VB VB (variable blocked)
VSB VSB (variable spanned
blocked)
RX = ept out Reformatting error Applicable entry point None
exit name .
TOP = n PAG Lines in top margin 2 through 60 2
of page
TTL = 1it PAG Contents of page title Character string not to Blank
exceed 115 characters
H-4 60496200 E

conversion string:

conversion-specification [; conversion-specification]. . .

conversion-specification:

[selector-expression:] conversion-item [, conversion-item]. . .

conversion-item:
[repeat-count] simple-item-conversion
(conversion-string}
simpie-item-conversion:

{Tm1 [TmZ]}

repeat-count:

decimal integer indicating the number of times the conversion item is to be executed.

Figure H-1. Conversion String Format

qualification string:

j selector-expression }
[NQOT] [NOTI]

selector-expression } 5 AND
l qualification-string

l OR qualification-string ‘

Figure H-2. Qualification String Format

reformat string:

reformat-specification [;reformat-specification]. . .

reformat-specification:

[selector-expression:] reformat-item [, reformat-item] . ..

reformat-item:
s simple-reformat l
repeat-count 4 {(simple-reformat) :
l i {reformat-string) 3

simple-reformat:
iTm=iTm
iTm=literal
iTm=KEY B
iTm=KEYA
iTm

repeat-count:

decimal integer specifying the number of times the refor-
mat item is to be repeated.

Figure H-3. Reformat String Format

60496200 C

MAINTAINING 8-BIT SIGNIFICANCE , i

e e e

Maintaining B8-bit significance in data converted from
IBM 360/370 tape files is necessary when such files contain
character codes not included in the CDC 6é4-character
graphic set. Lowercase characters and several special
characters, such as @ ? ! and # are included in the IBM
EBCDIC and ASCII character sets but are not in the CDC
64-character set. These characters can be processed by
FORM, but such characters cannot be printed on CDC
equipment. The user must decide the necessity of
maintaining special character codes. In many cases, the
uppercase equivalent will suffice. Appendix A contains
standard CDC character sets.

60496200 B

In a number of cases, B-bit significance need not be
maintained. Files containing only characters that appear
in the CDC 64-character set will convert to CDC 6-bit
display codes. Files containing packed decimal data, in
which each digit occupies four bits, will convert to CDC
6-bit numeric display fields. IBM files containing binary
arithmetic data can be converted to CDC binary
arithmetic or display numeric data per user specification.
Accuracy is maintained for. IBM data that does not exceed
CDC double-precision format. " When double-precision
significance is exceeded, accuracy can be maintained by
using bit image conversion; however, user routines must be
provided to process such data.

FORM/8-BIT SUBROUTINE COMPARISON

B S R e s s s i e s

FORM utilizes the 8-bit subroutines te perform IBM/CDC
conversions; hence, FORM has most of the capabilities of
the B-bit subroutines, including the capability of
maintaining 8-bit significance in converted data. FORM
handles the same character sets as the 8-bit subroutines.
Differences include management of print files, ease of
usage, and minor functional differences.

FORM has the same conversion capabilities as the B-bit
subroutines, including identical conversion string syntax.
However, conversion strings can be changed from record to
record when using 8-bit subroutines, whereas FORM record
specifications are set once per output file and can be
varied from record to record only by comparing a record
field to a literal quantity. FORM has an automatic data
reformatting capability (REF directive) that allows the
user to reorder data fields and insert literals; in the 8-bit
subroutines, data fields in a record are only reformatted
sequentially. FORM has a record selection capability (QAL
directive) that allows the user to select certain records for
inclusion in an output file; when the B8-bit subroutines
process a file, all input records are included in the output
file. FORM is primarily file oriented and can be used to

60496200 C

process random files; the B-bit subroutines are primarily
record oriented and their use is restricted to sequential
files.

Print files are handled differently by FORM than by the
8-bit subroutines. FORM allows automatic organization of
print file functions, such as paging, line spacing, and
titling, through the PAG directive. Also, FORM print files
can contain only CDC display code characters. Print files
processed by the B-bit subroutines must be organized by
the user, but any characters in the 95 graphic ASCII set
can be used. A utility program, COPYB8P, is provided in
the 8-bit subroutines to print automatically IBM print files
using the CDC 595-6 Print Train.

Other minor functional differences between FORM and the
8-bit subroutines include the following:

e FORM provides automatic sequencing of records
through the SEQ directive; the 8-bit subroutines have
no such provision.

e The 8-bit subroutines process IBM card files as
free-form binary input and output; FORM does not.

J-1

FORM HANDLING OF VARIABLE LENGTH RECORDS

Files containing variable length records consist of records
with differing record lengths. Figure K-1 shows the data
formats and some sample records for EMPFIL]1, a file
containing variable length records. The longest records
(type A) inthe file contain the following information:

Social security number (9 characters)

Employee name (27 characters)

Employee number (6 characters)

Yearly wage (6 characters)

(if salaried)
Hourly rate (5 characters)
(if nonsalaried)

Sex (1 eharacter)

Date of birth (6 characters)

Division number (4 characters)

Job description (21 characters)

Managerial position (18 characters)

(if any)

The shortest records (type B) in EMPFIL1 contain all of the
preceding information excluding the 18-character field

that describes the managerial position of the employee.
This field is absent if the employee does not hold a
managerial position.

When handling variable length records, FORM keeps track
of the input and output record lengths. Determination of
input record length is dependent on the source of the input

record. Determination of output record length is
dependent on the occurrence of a reformat in the record

and the type of output record written by FORM,

DETERMINATION
RECORD LENGTH

FORM receives input from three sources:

OF INPUT

CYBER Record Manager (CRM) files

®
e IX exit return parameters
e IBM tape format files

CYBER RECORD MANAGER FILES

If the input file is a CRM file, the input record length is
taken directly from the file information table (FIT) after
each read. The record length must be less than or equal to
the maximum record length (MRL).)

54
1 910 3B 37 4243 4849 53{55 60616465 =3} 103
Sesc’:ocit Empioyee Name Empl. Salar Hr. Doa;te Job Managerial
urity ptoy No. aY| Rate . Description Position
No. ‘ Birth ‘
|—Sex I——Division Number
Type A
54
1 910 3B3I7 4243 4849 53{55 60616465 85
Se?:?ﬁit Employee Name Empl. Salar Hr. Doa;ce Job
Y ptoy No. arY] Rate h Description
No. ‘ Birth ‘
I_Sex |—Division Number
Type B
934627900J0HNSON, P. T. 9a7734 35000 FO401305320ENGINEER, MANAGER
572396245ABERCROMBIE, M. L . 604436 27000 MD128445321PROGRAMMER
562325798STANFIELD, R. J- 704993 7.50F0906495913SECRETARY
439784231SHRADER, F. G. 3a4453 40000 M0909326312PROD ENGINEER, HEAD ENGINEER
693276941MILLER, S. P. 4a7769 37950 FO621514392RESEARCH SCIENTIST
673942183CHRISTMANO, P. A. 5Q3378 45000 F1020396118STRUCTURAL ENGINEER, HEAD MANAGER
572394671CHANDLER, A, P. 304770 8.50M0719547391MACHINE OPERATOR
Figure K-1. Data Format and Sample Records From Empfill
60496200 D K-1

1X FILES

If input is provided via the IX exit, the values for the
address and length of the input record must be assigned
within the function and passed to’FORM. The input record
length is taken from the IX return parameters. The
maximum possible record length must be declared by the
internal record length (IRL) parameter in the INP directive.

IBM FORMAT FILES

If input is an IBM format file to be converted by the CON
directive, the input record length is dependent on the tape
record length as well as on the conversions desired. To
provide an area large enough for the conversion, the IRL
parameter should be specified in the INP directive. (If IRL
is not specified, IRL={4*_RL)/3 rounded up is used.)

IRL specifies the maximum record length for IBM tape
files in 6-bit bytes, and functions like MRL for CRM files.
When IBM tape is converted by the CON directive, FORM
keeps track of the converted record size. This size, as long
as it is less than or equal to IRL, is used as the length of
the input record. If the converted record size is larger
than IRL, IRL is used for input record length.

If the IBM tape file record type is V, VB, VS, or VSB, the
tape record length can be shorter than the longest logical
record (LRL). If the tape length is shorter than LRL,
conversions are terminated when the end of the input
record is reached. No source field in a conversion item can
extend beyond the end-of-record, with the following
exception:

An X or B field can extend beyond the end-of-record if
the field is being reformatted to consist of X or B
items. The source item m value is reduced to the
remaining record size and the destination m value is
unchanged.

EFFECT OF REFORMATTING
ON OUTPUT RECORD LENGTH

When a reformat is performed with the parameter BGD
equal to C, the output record length is initialized to either
the input record length or the MRL value, whichever is
smaller, for the particular file. If any other BGD is
specified, the output record length is initialized to zero.

During the reformat, the output record length is updated
whenever a reformat item places data beyond the current
output record length value. The updated output record
length reflects the last character written to the output
recard being built.

Assume the following REF directive is used:
REF(EMPFIL3,100(x=x))

FORM examines each character and determines whether
the character is valid data. Those characters that lie
within the input record length are valid data. Assuming
the actual record length of each input record is unknown, a
program can be written to determine the length of each
record. The FMT parameter of the PAG directive can be
used to print out the record length of each record. MRL in
the FILE control statement can be set to the longest
possible record length of any record in the file. Figure K-2
shows the job deck for such a program. Figure K-3 shows
EMPFIL3, the output resulting from a reformat of
EMPFIL 1.

NOS:

USER statement

CHARGE statement

GET,EMPFILT.
FILECEMPFIL1,BT=C,RT=Z,MRL=200)
FILECEMPFIL3,BT=C,RT=Z,MRL=200)
FORM.

SAVE ,EMPFIL3.

REWIND ,EMPFIL3.

COPYSBF,EMPFIL3 ,0UTPUT.

7/8/9

INP(EMPFILT)

OUTC(EMPFIL3,BGD=X)
REF(EMPFIL3,100(X=X))
PAG(EMPFIL3,FMT=D)

6/7/8/9

J OB statement I

NOS/BE:

J 0B statement l
ACCOUNT statement

ATTACH,EMPFIL1.
REQUEST,EMPFIL3 ,*PF.
FILECEMPFIL1,BT=C,RT=12,MRL=200)
FILECEMPFIL3,BT=C,RT=Z,MRL=200)
FORM,

CATALOG,EMPFIL3,1D=MYID.
REWIND ,EMPFIL3.

COPYSBF,EMPFIL3 ,0UTPUT.

7/81/19

INP(EMPFILT)

OUT(EMPFIL3,BGD=X)
REF(EMPFIL3,100(X=X))
PAG(EMPFIL3,FMT=D)

6/7/8/79

Figure K-2. Example of a Reformat Where BGD=X

If a reformat item specifies a source field outside of input
record length (but within MRL or IRL) the output record
length is not updated and the input field is treated as
though it were zero filled or blank filled according to the
default value shown in table K-1.

A new file, EMPFIL4, is to be created. Figure K-4 shows
the data format of type B records for both EMPFIL1 and
EMPFIL4. After the reformat, EMPFIL4 contains the
following information:

Employee number (6 characters)

Employee name (26 characters)

Saocial security number (9 characters)

Managerial position (18 characters)

(for A type records)
Blank field

(for B type records)
Blank field (3 characters)
Sex (1 character)
Blank field (3 characters)
Job description (20 characters)

60496200 E

RECORD 1 92 CHARS

934627900J0HNSON, P. T. 9@7734 35000
RECORD 2 74 CHARS
$72396245ABERCROMBIE, M. L . 624436 27000
RECORD 3 73 CHARS
562325798STANFIELD, R. J. 7Q4993
RECORD 4 98 CHARS

439784231SHRADER, F. 6. 3424453 40000
RECORD 5 82 CHARS

693276941MILLER, S. P. 4Q7769 37950
RECORD & 97 CHARS
673942183CHRISTHANO, P. A. 5Q3378 45000
RECORD 7 © 82 CHARS

572394671CHANDLER, A. P. 34770

7.50F0906495913SECRETARY

8.50M0719547391MACHINE OPERATOR

FO401305320ENGINEER, MANAGER

MO12B445321PROGRAMMER
MO909326312PROD ENGINEER, HEAD ENGINEER
FO621514392RESEARCH SCIENTIST

F1020396118STRUCTURAL ENGINEER, HEAD MANAGER

Figure K-3. Exampie of Job Decks for Reformatting Where BGD=X

TABLE K-1. DEFAULT, PADDING AND ERROR MESSAGES FOR ALL DATA TYPES
Data Type Default Padding of Error Message
8 Binary zero Binary zero
X Blanks Blanks
H Binary zero FIELD EXTENDS BEYOND END-OF-RECORD
W Binary zero FIELD EXTENDS BEYOND END-OF-RECORD
G Binary zero FIELD EXTENDS BEYOND END-OF-RECORD
F Binary zero FIELD EXTENDS BEYOND END-OF-RECORD
L Binary zero FIELD EXTENDS BEYOND END-OF~RECORD
E Binary zero FIELD EXTENDS BEYOND END-OF-RECORD
P Positive zero FIELD EXTENDS BEYOND END-OF-RECORD
S Character zero FIELD EXTENDS BEYOND END-OF-RECORD
I Binary zero FIELD EXTENDS BEYOND END-OF-RECORD
U Binary zero FIELD EXTENDS BEYOND END-OF-RECORD
D Binary zero FIELD EXTENDS BEYOND END-OF-RECORD
Display coded zero FIELD EXTENDS BEYOND END-OF-RECORD
Display coded zero FIELD EXTENDS BEYOND END-OF-RECORD

The job decks for both the NOS and NOS/BE operating
systems are shown in figure K-5. Figure K-6 shows the
FORM directives, EMPFIL 4, and the dayfile for the
reformat.

Source items extending beyond the input record length are
invalid unless the source and destination items are each an
X or B type. If the source and destination items are not X
or B types, FORM terminates with an error message
indicating a reference beyond the end-of-record as shown
in table K-1. If the source and destination items are an X
or B type, the source item length is reduced to the
remaining input record length, the destination item length
is unchanged, and output record length is updated.

60496200 C

DETERMINATION OF OUTPUT
RECORD LENGTH

If no reformat is performed, the output record length
(which is determined for each record in each output file) is
set to the value of the input record length or the value of
the MRL (whichever is smaller) for the particular file.
FORM output files are either CRM files or IBM format
files.

For CRM files, output record length is the record length
given to CRM when the record is written by FORM. File
structure must be adequately described through a FILE
control statement so that the output record length
determined by FORM is compatible with the CRM record
type for the particular file.

Type B record from EMPFIL1
54
1 910 3637 4243 4849 53‘55 60 6164 65 8
Soc. Empl Hr. ' Date Job Beyond inpur;c
Security Employee Name " | Salary of N record lengt
No. No. Rate Birth A Description bplt within MRL.
“~—Sex L—Division Number /
Soc. No Managerial [B S F Job
Empl. Employee Name Security Position alel a b ob
No. No. (Blanks, default) | D ’4‘ n escription
1 67 B3P 4243 eoe1sa|ess763 87
64
Reformat of type B record (EMPFIL4)
Figure K-4. Data Formats of Type B Records in EMPFIL1 and EMPFiL4
NOS:
JOB statement
USER statement
CHARGE statement
GET,EMPFIL1T.
FILECEMPFIL1,BT=C,RT=Z,MRL=120)
FILECEMPFIL4,BT=C,RT=Z,MRL=120)
FORM.
REWIND ,EMPFIL4.
COPYSBF EMPFIL4 ,OUTPUT,
7/8/9
INP(EMPFILT))
OUT(EMPFIL4 ,BGD=X)
REF(EMPFILL,X6=37X6,X27=10X27,X9=1X9,X18=86X18,
X3=% $,X1=54X1,X3=$% $,X20=65%20)
PAG(EMPFILL,FMT=D)
6/7/8/9
NOS/BE:
JOB statement
ACCOUNT statement
ATTACH,EMPFIL1,ID=MYID.
FILECEMPFIL1,BT=C,RT=Z,MRL=120)
FILECEMPFIL4,BT=C,RT=Z,MRL=120)
FORM. B
REWIND ,EMPFIL4.
COPYSBF,EMPFIL4,0UTPUT.
7/8/9
INPCEMPFILT)
QUTC(EMPFIL4,BGD=X)
REF(EMPFILG4,X6=37X6,X27=10X27,%X9=1X9,X18=86X18,
X3=% $,X1=54X1,X3=% $,X20=65%x20)

PAGCEMPFIL4,FMT=D)
6/7/8/9 :

Figure K-5. Example of Job Decks for Reformatting

K-4 60496200 E

INPCEMPFIL)

QUT(EMPFIL4,BGD=X)

REF(EMPFIL4,X6=37X6,X27=10X27,X9=1X9,X18=86X18,
X3=% $,X1=54X1,X3=% $,X20=65%X20)

PAG(EMPFIL4,FMT=D)

SUMMARY
INPUT FILE - EMPFIL1 7 RECORDS READ
OUTPUT FILE - EMPFIL4 7 RECORDS WRITTEN

END OF RUN.

1

ORECORD 1 87 CHARS

9Q7734JO0HNSON, P. T. 934627900MANAGER
ORECORD 2 87 CHARS

6Q4436ABERCROMBIE, M. L . 572396245
ORECORD 3 87 CHARS

7QA4993STANFIELD, R. J. 562325798
ORECORD 4 87 CHARS

3Q@4453SHRADER, F. G. 439784231HEAD EN
QRECORD 5 87 CHARS

4Q7769MILLER, S. P. 693276941
ORECORD 6 87 CHARS

5A3378CHRISTMANO, P. A. 673942183HEAD MA
ORECORD 7 87 CHARS '
3Q4770CHANDLER, A. P. 572394671

ACMABVI. 80/04/23.€(22) SVL SN112 NOS

13.26.21.EMP4.,

13.26.21.UCCR, 7631, 0.014KCDS.
13.26.21.USER,CDSXXXX,.
13.26.21.CHARGE,5912,693XXXX.
13.26.21.GET ,EMPFILT.
15.26.22.FILECEMPFILY ,BT=C RT=Z, MRL=1201)
13.26.22.FILE(EMPFIL4,BT=C,RT=Z,MRL=120)
15.26.22.F0RM.

13.26.25.REWIND ,EMPFIL4.
13.26.25.CO0PYSBF EMPFIL4,0UTPUT.
13.26.25. EOI ENCOUNTERED.

13.26.25.UEAD, 0.002KUNS.
13.26.25.UEPF, 0.010KUNS.
13.26.25.UEMS, 0.749KUNS.
13.26.25.UECP, 0.219SECS.
13.26.25.AESR, 2.426UNTS.
13.644.27.UCLP, 7634, 0.256KLNS .

e e i N N e N i e N o P N i

R P e W o i W W o e N N N i

F ENGINEER,

M PROGRAMMER

F SECRETARY
GINEER M PROD ENGINEER,

F RESEARCH SCIENTIST
NAGER F STRUCTURAL ENGINEER,

M MACHINE OPERATOR

Figure K-6. Example of Reformatting of EMPFIL1 to Form EMPFIL4

For IBM format files, output record length contrals the
size of the record to be converted by the output CON
directive. Conversion stops when the entire output record
has been used. No source field in a conversion item can
extend beyond output record length, with the following
exception:

60496200 C

An X or B field can extend beyond the end-of-record if
the field is being reformatted to consist of X or B
items. The source item m value is reduced to the
remaining record size. The destination m value
remains unchanged.

K-5

COMPARISON OF FORM 1.2 AND FORM 1.0

FORM 1.2 is a file copy and conversion utility written to
replace FORM 1.0. FORM 1.2 has most of the capabilities
of FORM 1.0 to reformat and to convert data fields.
FORM 1.2 has the capability of maintaining 8-bit
significance in converted data; FORM 1.0 does not have
this capability. FORM 1.2 is primarily record oriented;
FORM 1.0 is primarily file oriented. FORM 1.2 interfaces

with Basic Access Methods 1.5 and Advanced Access
Methods 2; FORM 1.0 interfaces with CYBER Record
Manager 1.0.

External differences between FORM 1.2 and FORM 1.0 are
shown in table L-1.

TABLE L-1. EXTERNAL DIFFERENCES BETWEEN FORM 1.2 AND FORM 1.0

External
Feature FORM 1.2 FORM 1.0
Directive INP/OUT directives INP/OUT directives optional;
Order required; must appear can be in any order.
before other directives.
XEQ, XEQ (FIN) XEQ directive required.
directive optional.
File -
Information g?:gq
Table None. RT=Z
Default -
Values MRL=140

File Formats

Initial and extended format
for indexed sequential,
actual key, and direct
access files,

Initial format for indexed
sequential, actual key, and
direct access files.

Interfaces

CYBER Record Manager

Basic Access Methods (1.5),
CYBER Record Manager
Advanced Access

Methods (2).

Not supported.

CYBER Record
Manager (1.0).

CREATE utility.

Output Record

Fixed length records:
output record length=MRL.

Variable length records:
see appendix K.

Equates to length of input
record.

Not supported.

Owncode

File-error oriented.

Run-oriented.

Performance

Small minimum field length
(< 20K) required.

More features available in
qualification and reformat
directives, but execution
time is slower.

Large minimum field length
(>60K) required.

Fewer features available in
qualification and reformat
directives, but execution
time is faster.

Runs Per Call

Single run per call only.

More than one IBM type file
handled per run.

Multiruns per call.

Only one IBM type file
handled per run.

60496200 C

L-1

Functional differences between FORM 1.2 and FORM 1.0 e
include the following:

FORM 1.2

conversions;

triple-precision
FORM 1.0

arithmetic in conversions.

FORM 1.2 does not print
prints a title page in block letters.

FORM 1.2 reads to end-of-information, end-of-record,

end-of-section, or end-of-partition; FORM 1.0 reads
one partition only.

arithmetic in
single-precision Py

a user callable version.

a title page; FORM LO Other functional

differences between FORM 1.2

FORM 1.0 are shown in tables L-2 and L-3.

FORM 1.2 has no user callable version; FORM 1.0 has -

and

®L-2

TABLE L~2. DIFFERENCES IN USAGE OF DIRECTIVE PARAMETERS BETWEEN
FORM 1.2 AND FORM 1.0
Directive Parameter FORM 1.2 FORM 1.0
INP BLK Block size: 32767, required Record format, required
for IBM tape files. for IBM tape files.
CX Conversion error exit. Not supported.
DCA Record decompression/ Not supported.
decryption exit.
DX End-of-partition, Not supported.
end-of-section,
end-of-data exit.
EX Error exit. Not supported.
HRL Key hashing exit. Not supported.
IDS Not supported. Alternative CON directive,
required for IBM tape files.
IRL Record size (6~bit), required Not supported.
for IBM tape files.
LRL Record size (8-bit), reguired Not supported.
for IBM tape files.
LX Label exit. Not supported.
MAX Maximum number of records: Maximum number of records:
16777215. 8388607.
POS Initial position partition Initial position record
skip count. skip ‘count.
RECFM Record format, required Not supported.
for IBM tape files.
RX Reformatting error exit. Not supported.
SIZ Not supported. Block size: 16383, required
for IBM tape files.
NON LBL Not supported. Label value.
LEN Not supported. Label length.
ORD Not supported. File skip count.
ouT BLK Block size: 32767, required Record format, required

for IBM tape files.

for IBM tape files.

60496200 C

60496200 C

TABLE L-2. DIFFERENCES IN USAGE OF DIRECTIVE PARAMETERS BETWEEN
FORM 1.2 AND FORM 1.0 (Contd)
Directive Parameter FORM 1.2 FORM 1.0
QUT (Contd) CPA Record compression/ Not supported.
encryption exit.
CX Conversion error exit. Not supported.
DCT Display-collating conversion Not supported.
table exit.
EX Error exit. Not supported.
HRL Key hashing exit. Not supported.
IDs Not supported. Alternative CON directive,
required for IBM tape files.
IRL Record size (6-bit), required Not supported.
for IBM tape files.
LRL Record size (8-bit), required Not supported.
for IBM tape files.
LX Label exit. Not supported.
MAX Maximum number of records: Maximum number of records:
16777215. 8388607.
RECFM Record format, required Not supported.
for IBM tape files.
S1Z Not supported. Block size: 16383, required
for IBM tape files.
PRT/PAGT FMT Print formats 1, 2, D, A Print formats 1, 2, 3, D, A
supported; format 3 not supported.
supported.
PGL Page size. Number of print lines equals
page size/f.
TOP Margin size. Title Tline; margin is n-1
lines.
TTL Prints title for all Ignores title when FMT=D.
FMT values.
REF KEY, KEYA Actual key or indexed Not supported.
sequential key field
descriptor.
SEQ RDX Not supported. Sequence radix: 2, 8, 10 or
16 possible.
XEQ AX Not supported. After input record read
' exit.
DX Not supported. End-of-data exit.
EX Not supported. Parity error exit.

L-3 ®

TABLE L-2. DIFFERENCES IN USAGE OF DIRECTIVE PARAMETERS BETWEEN
FORM 1.2 AND FORM 1.0 (Contd)

Directive Parameter FORM 1.2 FORM 1.0

XEQ (Cont) FEX Execution error exit. Not supported.
IX Input record supply exit. Input record supply exit.
KX Not supported. After record output exit.
LX Not supported. Nonstandard label exit.
NX Not supported. Unqualified record exit.
Qx Not supported. Qualified record exit.

TDirective name PAG applies only to FORM 1.2.

TABLE L-3. DIFFERENCES BETWEEN FORM 1.2 AND FORM 1.0
DIRECTIVE SPECIFICATIONS
Directive Specification FORM 1.2 FORM 1.0
CON Alternatives Nested alternatives possible. Single level alternatives only;
selected by IDS in INP state-
] ment.
Condition Seven levels of nesting possible. Only one level of nesting
Nesting possible.
Data Types A1l type combinations legal. Many type combinations legal.
String Maximum length of replacement Maximum length of all tliterals
literals is 80 characters; is 255 characters.
maximum length of comparison)
literals is 10 characters.
QAL Condition Seven levels of nesting Two levels of nesting possible.
Nesting possible. :
Data Types A11 type combinations legal. Many type combinations illegal.
REF Alternatives Multilevel alternative Single level alternative re-
- reformat specifications format specification possible;
possible. selected by IDS in INP direc-
tive.
Data Type A1l type combinations legal; Many type combinations illegal;
Combinations allows checking of same type allows no checking of same type
transfers. transfers.
iTm Default ml value is 1. Default ml value is m2 size.
i/w Character/bit. Not supported.
w/p Not supported. Word/bit.
SEQ Data Types A1l types legal. Only X and B types legal.

60496200 C

FORM HANDLING OF ASCIli DATA M

B FORM can be used to reformat ASCII data. NOS 2 and
NOS/BE process ASCIlI data differently. Differences
between operating system handling of character sets,
codes, input, and output include the following:

e The 6-bit and 12-bit ASCI codes can be used in
combination under NOS 2 only.

e The 12-bit ASCII code used by NOS 2 is not the same
as the 12-bit ASCII code used by NOS/BE; the former
uses 12 bits but the latter uses the 8 rightmost bits of
a 12-bit byte.

e 5/7/9 cards are allowed only under NOS 2.

A character set differs from a code set. A character set is
a set of graphic and/or control characters. A code set is a
set of codes used to represent each character within a
character set. Characters exist outside the computer
system and communication network; codes are received,
stored, retrieved, and transmitted within the computer
system and network.

Character codes can be manipulated as coded data or as
binary data. Coded data is converted from one code set
representation to another as the coded data enters or
leaves the computer system. Binary data is not converted.
The distinction between coded data and binary data is
important when reading or punching cards and when
reading or writing magnetic tape. Only coded data can be
properly reproduced as characters on a line printer.

NOS 2

NOS 2 supports the 6/12 ASCII code set. The 6-bit ASCIL
codes represent the uppercase ASCII character set. The
12-bit character codes represent the ASCII lowercase
character set, which includes special symbols and device
control characters. The 12-bit codes begin with either
74g or 76g, which signal NOS 2 that the next six bits
contain ASCII data. The 74g or 76g is followed by a
6-bit code that represents lowercase ASCI data. The
12-bit codes are 7401g, 7402g, 7404g, 7407g, and
7601lg through 7677g. All other 12-bit codes (74xxg
and 7600g) are undefined.

The ASCII 8/12 data format consists of the ASCII 7-bit
code (as defined by ANSI Standard X3.4-1977) right-
justified in a 12-bit byte. Assuming that the bits are
numbered from the right starting with 0, bits 0 through 6
contain the ASCII code, bits 7 through 10 are reserved for
CDC usage, and bit 11 is used to distinguish the ASCII code
from the end-of-line indicator for NUL (ASCII 00y ¢) only.

NOS 2 INTERACTIVE FACILITY

When in normal interactive mode (specified by the IAF
NORMAL command), the Interactive Facility (IAF)
assumes that the ASCII graphic 64-character set is used
and translates all input and output to or from display code.

60496200 E

When in ASCII interactive mode (specified by the IAF l
ASCII command), IAF assumes that the ASCII
128-character set is used and translates all input and
output to or from 6/12 display code.

The IAF user can convert a 6/12 code file to an 8/12 ASCII
code file that is compatible with NOS/BE by using the NOS
FCOPY control statement. The resulting 12-bit ASCII file
can be routed to a line printer but cannot be output
through IAF. FORM does not recognize ASCII 6/12 data.
The FCOPY utility must be used before ASCII 6/12 data is
presented to FORM.

Figure M-1 shows DATAL2, an ASCII 6/12 file containing
records consisting of uppercase and lowercase letters. The
FCOPY control statement is used to convert DATA612 to
FORMFIL, a file containing ASCII 8/12 data. The job deck
for the reformat is shown in figure M-2,

J. Brown ,1422 East St. ,Charge No. 1111
S. Apple ,3434 Cherry St.,Charge No. 2211
R. Redi ,7896 Algo Ave. ,Charge No. 1660

S. Sneade ,234 Redding Dr.,Charge No. 1429

Figure M~1. DATAB612, an ASCII 6/12 File

J 08 command

USER command

CHARGE command

GET,DATAb12.

FCOPY(P=DATA612 ,N=FORMFIL)
FILE,FORMFIL,BT=C,RT=Z,MRL=300.
FILE,DATA6,BT=C, RT=Z,MRL=300.
FORM.

REWIND,DATAG.

COPYSBF ,DATAG6,0UTPUT.

7/8/9

INP(FORMFIL)

QUT(DATAG6,BGD=X)
REF(DATA6,300(X=A))

6/7/8/9

Figure M-2. Job Decks for the Reformat of an ASCIl File

The following REF directive is used:

REF(DATAE,300(X=A))

FORM examines each character and determines whether
the character is valid data. To determine the correct
index for an 8/12 ASCII file, the maximum record length of
the file must be multiplied by 2. The maximum record
length of FORMFIL is 150. Any other format of the REF
directive would convert the zero byte delimiter of Z type
records to display code M. DATAS, the file resulting from
the reformat, is shown in figure M-3. DATA6 uses the
6-bit display code character set.

BROWN ,1422 EAST ST. ,CHARGE NO. 1111
APPLE ,3434 CHERRY ST.,CHARGE NO. 2211
REDI ,7896 ALGO AVE. ,CHARGE NO. 7660
SNEADE ,234 REDDING DR.,CHARGE NO. 1429

[720 I 74 R
P

Figure M-3. DATAGB, a File Containing Records
Coded in Display Code

| NOs 2 LOCAL BATCH

Card decks consisting of characters from the 64-character
ASCIl subset can be processed as input, but cannot be
punched out unless the operating system is installed in
ASCII mode (IP CSET).

To create an input file in 80-column binary format from an
ASCIl deck under the NOS 2 operating system, the deck
must be preceded and followed by cards with a 5/7/9 punch
in column 1 and a 4/5/6/7/8/9 punch in column 2. The deck
must be in a record by itself (preceded and followed by a
7/8/9 card).

A file that is created using this procedure is punched by
specifying a disposition code of P8 on a ROUTE or
DISPOSE control statement. For more detailed infor-
mation comsult the NOS 2 Reference Set, Volume 3, System
Commands.

If binary information is to reside in either the file INPUT
or the file PUNCH, a FILE control statement must be used
to override the default block type and record type for
these files. The FILE statement must specify F type
records and C type blocks.

MAGNETIC TAPE

Coded data to be copied from mass storage (via the
COPYCR or COPYCF control statement) to magnetic tape
is assumed to be represented in display code.

7-Track Tape

NOS converts the coded data to external BCD code when
writing a coded 7-track tape. However, if the COPYCR or
COPYCF control statement is not used, the CM parameter
of the FILE control statement determines the conversion
mode when the file is processed by CYBER Record
Manager. CM=NO indicates that no conversion is to take
place. CM=YES indicates that all coded data is to be
converted to external BCD code.

9-Track Tape

The CV parameter of the ASSIGN, BLANK, LABEL, or
REQUEST control statement determines the conversion
mode for 9-track tapes. CV=AS and CV=US indicate ASCII
conversion of the tape label (if any) and ASCII conversion
of the data if the data is in coded form. CV=EB indicates
ECBDIC/display code conversion. For unlabeled 9-track
internal (I) or sytem internal (SI) format tapes, conversion
is always forced to ASCIL The CM=YES parameter of the
FILE control statement also ensures that conversion takes
place if coded data is present.

If lowercase ASCI! is read from a 9-track coded tape via
the COPYCR or COPYCF control statement, the coded
data is converted to the uppercase 6-bit display code

equivalent. Any character lacking a display code
equivalent is converted to a blank., To read and write
lowercase ASCII characters, the user must assign the tape
in binary mode. Either the COPYBR or COPYBF control
statement or the CM=NO parameter of the FILE control
statement must be used. The binary data must then be
converted by either a user-written program or by FORM.

Data on a 9-track tape is ASCII 8/8 data. FORM can be
used to convert ASCI! 8/8 data to ASCII 8/12 data. The
conversion must be done byte by byte. FORM can be used
to insert the 4 leftmost bits of the ASCII 8/12 data format
before the ASCII 8/8 data.

NOS,/ BE

NOS/BE supports the 12-bit ASCII code set composed of
the ASCIl 7-bit code (as defined by ANSI Standard
X3.4-1977) right-justified in a 12-bit byte. Assuming that
the bits are numbered from the right starting with 0, bits O
through 6 contain the ASCII code, bits 7 through 10 contain
zeros, and bit 11 distinguishes the 12-bit ASCII 0000g
caode from the end-of-line byte. The 12-bit codes are
0001g through 0177g and 4000g.

Figure M-4 shows an ASCI file (DATAB12) that was
created by a BASIC program. The file is reformatted
under NOS/BE to form a file (DATA6) coded in display
code (6/6). The input directives and dayfile for the
reformat are shown in figure M-5. Figure M-6 shows
DATAS.

THIS PROGRAM IS USED TO ILLUSTRATE
THE ASCII CONVERSION CAPABILITY OF
THE FORM UTILITY.

THE EXECUTION RESULTING FROM THE PROGRAM
IS GENERATED IN ASCII 8/12 MODE AND
PLACED INTO FILE DATA812.

THEN FORM IS INVOKED TO CONVERT THE
ASCII 8/12 DATA FILE INTO ANOTHER ONE
WHICH CONTAINS DISPLAY CODE [6-BIT]
INFORMATION.

THE ASCII 8/12 FILE IS SEPARATELY SENT
TO THE ASCII PRINTER.

this line will appear as lowercase
alphabetic information on the

ascii printer.

alphabet abcdefghijkimnopgrstuvwxyz

Figure M-4. An ASCII 8/12 File

INTERCOM TERMINALS

Display code is the default character set when
communicating through a terminal. COMPASS users and
FORTRAN users (via the CALL CONNEC subprogram) can
elect to use ASCII with a 64~, 95-, or 256~character set
selected. Additional information is provided in the
INTERCOM reference manual and the appropriate compiler
reference manual.

When card decks are read from remote batch devices
through INTERCOM, the ability to select alternate
keypunch code translations depends on the remote terminal
equipment. Remote batch terminal line printer and
punched card character set support is also described in the
INTERCOM reference manual.

60456200 E

ATTACH, NEW812,1D=MYID.

FORM I=INPUT,L=0UTPUT.
DISPOSE ,DATAG,*PE.
REWIND , INPUT.

COPYSBF,INPUT ,OUTPUT.
INP(NEW8B12,REW=N)
OUT(DATA6,REW=N,NOSEC,BGD=8B)
REF(DATAG,82(X=A))

ACCOUNT. 014G6,5912,693A415,

FILE NEW812,F0=5Q,RT=Z,BT=C,
FILE DATA6,F0=SQ,RT=Z,BT=C,0F=N,CF=R,FL=200,ERL=0.

BOBBIE.

QF=N,CF=R,FL=2U0,ERL=U.

Figure M-5. Reformat of an ASCII 8/12 File Under NOS/BE

THIS PROGRAM IS USED TO ILLUSTRATE

THE ASCII CONVERSION CAPABILITY OF

THE FORM UTILITY.

THE EXECUTION RESULTING FROM THE PROGRAM
IS GENERATED IN ASCII 8/12 MODE AND
PLACED INTO FILE DATA812.

THEN FORM IS INVOKED TO CONVERT THE
ASCII 8/12 DATA FILE INTO ANOTHER ONE

WHICH CONTAINS DISPLAY CODE [6-BIT]
INFORMATION,

THE ASCII 8/12 FILE IS SEPARATELY SENT

TO THE ASCI1 PRINTER.
THIS LINE WILL APPEAR AS LOWERCASE

ALPHABETIC INFORMATION ON THE

ASCII PRINTER.
ALPHABET ABCDEFGHIJKLMNOPQRSTUVWXYZ

Figure M-6. Qutput Resulting From a
FORM Run Under NOS/BE

NOS/BE LOCAL BATCH

To create an input file in free-form binary format from an
ASCII deck under the NOS/BE system, the deck must be
preceded and followed by cards with punches in all 12 rows
of bath column 1 and column 2 (ar any other column as long
as the cards are identical). The deck must be in a record
by itself (preceded and followed by a 7/8/9 card).

A file created using this procedure is punched by specifying
a disposition code of P80C on a ROUTE control statement
or P8 on a DISPOSE control statement. For more detailed
information consult the NOS/BE reference manual.

If binary information is to reside in either the file INPUT
or the file PUNCH, a FILE control statement must be used
to override the default block type and record type for
these files. The FILE statement must specify F type
records and C type blocks.

MAGNETIC TAPE
Coded data to be copied from mass storage (via the

COPYCR or COPYCF control statement) to magnetic tape
is assumed to be represented in display code.

60496200 D

7-Track Tape

NOS/BE converts the coded data to external BCD code
when writing a coded 7-track tape. However, if the
COPYCR or COPYCF control statement is not used, the
CM parameter of the FILE control statement determines
the conversion mode provided CYBER Record Manager
processes the file (as with FORM). CM=NO indicates that
conversion is to take place. CMs=YES indicates that ail
coded data is to be converted to external BCD code.

9-Track Tape

The N parameter of the ASSIGN, BLANK, LABEL, or
REQUEST control statement determines the conversion
mode for 9-track tapes. N=AS indicates ASCII conversion
of the tape label (if any) and ASCI conversion of the data
if the data is in coded form. N=EB indicates
ECBDIC/display code conversion. For unlabeled 9-track
internal () or sytem internal (S) format tapes, conversion
is always forced to ASCIL. The CM=YES parameter of the
FILE control statement also ensures that conversion takes
place if coded data is present.

If lowercase ASCII is read from a 9-track coded tape via
the COPYCR or COPYCF control statement, the coded
data is converted to the uppercase 6-bit display code
equivalent. Any character lacking a display code
equivalent is converted to a blank. To read and write
lowercase ASCII characters the user must assign the tape
in binary mode with the N parameter omitted. Either the
COPYBR or COPYBF control statement or the CM=NO
parameter of the FILE control statement must be used.
The binary data must then be converted either by a
user-written program or by FORM.

Data on a 9-track tape is ASCII 8/8 data. FORM can be
used to convert ASCII 8/8 data to ASCII 8/12 data. The
conversion must be done byte by byte. FORM can be used
to insert the 4 leftmost bits of the ASCII 8/12 data format
before the ASCII 8/8 data.

COLLATING SEQUENCES N
Table N-1 shows the CDC character set collating sequence. Table N-2 shows the ASCII collating sequence.
TABLE N-1. CDC CHARACTER SET COLLATING SEQUENCE

Collating Collating
Sequence cDC Display | External Sequence cbc Display | External

Decimal/Octal Graphic Code BCD Decimal/Octal Graphic Code BCD

m e ettt . e — e e |

00 00 blank 55 20 32 40 H 10 70
01 01 < 74 15 33 41 ! 11 71
02 02 % 637 16t 34 4 v 66 52
03 03 (61 17 35 43 J 12 41
04 04 — 65 35 36 44 K 13 42
05 05 = 60 36 37 45 L 14 43
06 06 A 67 37 38 46 M 15 44
07 07 ! 70 55 39 47 N 16 45
08 10 } 71 56 40 50 0 17 46
09 1 > 73 57 41 51 P 20 47
10 12 > 75 75 42 52 Q 21 50
1 13 — 76 76 43 53 R 22 51
12 14 . 57 73 44 54] 62 32
13 15) 52 74 45 55 S 23 22
14 16 ; 77 77 46 56 T 24 23
15 17 + 45 60 47 57 U 25 24
16 20 $ 53 53 48 60 \Y 26 25
17 21 ¢ 47 54 49 61 W 27 26
18 22 - 46 40 50 62 X 30 27
19 23 / 50 21 51 63 Y 31 30
20 24 , 56 33 52 64 2 32 31
21 25 (51 34 53 65 : o0t nonet
22 26 = 54 13 54 66 0 33 12
23 27 #* 64 14 55 67 1 34 01
24 30 < 72 72 56 70 2 35 02
25 31 A 01 61 57 71 3 36 03
26 32 B 02 62 58 72 4 37 04
27 33 C 03 63 59 73 5 40 05
28 34 D 04 64 60 74 6 41 06
29 35 E 05 65 61 75 7 42 07
30 36 F 06 66 62 76 8 43 10
31 37 G 07 67 63 77 9 44 11

TIn installations using the 63-graphic set, the % graphic does not exist. The : graphic is display code 63,

External BCD code 16.

N-1@

60496200 D

@ N-2

TABLE N-2. ASCII CHARACTER SET COLLATING SEQUENCE
Collating ASCI.I Display | ASCII Collating ASCI.I Display | ASCII
Sequence Graphic Code Code Sequence Graphic Code Code
Decimal/Octal Subset Decimat/Octal Subset
ot
00 00 blank 55 - 20 32 40 @ 74 40
01 01 ! 66 21 33 41 A 01 41
02 02 " 64 22 34 42 B 02 42
03 03 # 60 23 35 43 C 03 43
04 04 $ 53 24 36 44 D 04 44
05 05 % 637 25 37 45 E 05 45
06 06 & 67 26 38 46 F 06 46
07 07 ' 70 27 39 47 G 07 47
08 10 { 51 28 40 50 H 10 48
09 11) 52 29 41 51 | 11 49
.10 12 ' 47 2A 42 52 J 12 4A
11 13 + 45 2B 43 53 K 13 4B
12 14 56 2C 44 54 L 14 4C
13 15 - 46 2D 45 55 M 15 4D
14 16 . 57 2E 46 56 N 16 4E
15 17 / 50 2F 47 57 (o) 17 4F
16 20 0 33 30 48 60 P 20 50
17 21 1 34 31 49 61 Q 21 51
18 22 2 35 32 50 62 R 22 52
19 23 3 36 33 51 63 S 23 53
20 24 4 37 34 52 64 T 24 54
21 25 5 40 35 53 65 U 25 55
22 26 6 41 36 b4 66 \Y 26 56
23 27 7 42 37 55 67 w 27 57
24 30 8 43 38 56 70 X 30 58
25 31 g 44 39 57 71 Y 31 59
26 32 : 00+ 3A 58 72 Z 32 5A
27 33 ; 77 38 59 73 [61 68
28 34 < 72 3C 60 74 \ 75 5C
29 - 35 = 54 3D 61 75] 62 5D
30 36 > 73 3E 62 76 -~ 76 5E
31 37 ? 71 3F 63 77 _ 65 5F
TIn installations using a 63-graphic set, the % graphic does not exist. The : graphic
is display code 63.

60496200 D

INDEX

Actual key 3-3, 3-13

f Advanced Access Methods (AAM) 3-13; 4.2
Arithmetic data formats F-1, F-3
ASCII data M-1

§ Basic Access Methods (BAM) 4-2
Binary data 3-9
Bit position 2-3
Bit to numeric 3-9
Bit to string 3-9
Blanks
As background 3-3
In directives 2-1
As padding 3-10, K-3
BLK parameter 3-2, 3-5, 4-2
Block format D-1
Byte 3-6

CDC
COBOL data formats E-&
COBOL T formats E-6
Conversion from IBM files 3-3; 4-1
FORTRAN data formats E-3
FORTAN Tm values E-4
Character
Set 2-1, A-1
Skipping 3-10
String comparison 2-6
Collating sequence N-1, N-2
Comparison
FORM 1.2 and FORM 1.0 L-1
FORM and 8-bit subroutines J-1
Modes 2-6
Selector expressions 2-5, 3-8, 3-14
String length 2-3
CON directive 3-3
Control statements
FILE 1-2,4-1,5-1
FORM 4-1
Conversion
CDC to IBM example 4-1
Defaults 3-6
Directive 3-1
IBM to CDC example 4-1, 5-3
[tems 3-5, 3-6
Rules 3-9, G-1
Simple item 3-5, 3-6
Specification 3-7
Strings 3-7
Conversion string
Examples 3-10
Nested 3-7
Punctuation 3-7
Syntax 3-8
Used as conversion item 3-7
CPA exit 4-4, 4-6
CYBER Record Manager
FILE control statement 4-1
Defaults 4-2
Interface 4-1
f Cxexit 4-3,4-5

60496200 E

Data formats
CDC E-2, E-4
IBM E-1
Internal F-3
DCA exit 4-4, 4-6
DCT exit 4-4, 4-6
Decimal
Packed E-1, F-1
Signed numeric E-2, F-1
Default conversions
CON 3-7
REF 3-13
Descriptors
Item - 2-3
Search 2-3
Summary H-1
Diagnostics
FORM scan B-1
FORM execution B-1, B-5
8-bit subroutines B-1, B-7
Direct Access 3-3, 3-13
Directive format 2-1, H-1
Directives
Execute (XEQ) 1-2, 2-1, 3-16
Conversion (CON) 1-2, 3-3
Input (INP) 1-2, 3-1
Ordering 1-2, 3-1
Output (OUT) 1-2, 3-3
Page (PAG) 1-2, 3-16
Record formatting (REF) 1-2, 3-12
Record qualification (QAL) 1-2, 3-11
Record sequencing (SEQ) 1-2, 3-16
Summary H-1
DX exit 4-4, 4-6

Entry points, owncode 1-2
Equating logical file name 2-1
Error

Execution 4-2, 4-6

Exits 1-3, 4-2, 4-4

Messages B-1
Execute directive (XEQ) 1-2, 3-16
EX exit 4-4, 4-6

Field alignment 3-6

File
Control statement 4-1
Definition 4-1
Equating logical names 2-1, 3-1
Information table 4-1
Limit 1-2, 3-1
Logical name 2-1
Print 3-16, 3-18

Floating-point
Conversion to integer 3-10
Hexadecimal F-1
Octal F-3

FORM
Definition of 1-1
Handling of ASCII data M-1
Handling of variable length data K-1

Index-1

FORM 1.2/FORM 1.0 comparison L-1
F ORM/B-bit subroutines comparison J-1
FORTRAN
Data formats E-1
Tm values E-2, E-4
FEX exit 4-6

Hexadecimal to octal conversion G-6
HRL exit 4-6

IBM
Conversion to CDC files 3-3, 4-1, 5-3
Data formats E-1
Tape file 4-1
Tm values E-1, E-5
Variable length records K-2
Indexed sequential 3-3, 3-13
INP directive 1-2, 3-1
Interface
CYBER Record Manager 1-1, 4-1
Operating system 4-1
Owncode 1-2, 4-2
Internal data format F-1
Item
Conversion 3-6
Descriptors 2-3
Reformat 3-12
Simple conversion 3-6
IX exit 4-3, 4-5

KEY data item 3-13

KEY description 3-3, 3-13
KEY parameter 3-3, 3-13
KEVYA data item 3-13
Keywords 2-2, H-2

Literal
Insertion 3-15
Numeric 2-2
String 2-2
Logical
File name 2-1
Equating file names 2-1, 3-1
Operations 3-11
LRL parameter 3-2, 3-5, D-1

Maintaining 8-bit significance I-1

Numeric to bit G-1
Numeric to string G-1

Operating system interface 1-2, 4-1, 5-1
Operators
Logical 3-11
Relational 2-6
Ordering of directives 1-2, 3-1
OUT directive 1-2, 3-3
Owncode
Entry points 1-3, 4-2
Examples 4-4, 4-6
Exits 1-3, 4-2, 4-4
Interface 4-2

Index-2

Packed decimal E-1
Padding

Blanks 3-10, 3-13

Default K-3

For CON 3-10

For REF 3-13
PAG directive 3-16, 3-18
Page formatting directive 1-2, 3-16, 3-18
Parameters

FORM 4-1

For INP 3-1, 3-2

For OUT 3-4, 3-5

For PAG 3-18

For QAL 3-11

For REF 3-13

For SEQ 3-17

For XEQ 3-18

Summary H-1
Partition 3-1, 3-2, 3-5
Position of data within a record 2-3, 3-6
Print files 3-16, 3-18

Q control specification
In CON directive 3-9
In REF directive 3-15
QAL directive 3-11

Record
Format D-1
Manager interface 4-1
Qualification directive 1-2, 3-11
Reformatting directive 1-2, 3-12
Sequencing directive 1-2, 3-16
Variable length K-1

REF directive 1-2, 3-12

Relational operators 2-6

RFM parameter D-1

Rules for conversions G-1

RX exit 4-3

Sample programs 5-1
Search descriptors 2-3, 3-11, 3-13
Section 3-1, 3-2, 3-5
Selector expressions
Defined 2-5
In CON directive 3-8
In REF directive 3-14
Separators 2-2
SEQ directive 1-2, 3-16
Simple item conversion 3-6
Skipping characters
In CON directive 3-10
In REF directive 3-14
Specifications
Conversion 3-7
Reformat 3-14

Statements
FILE 4-1
FORM 1-2, 4-1
String
Comparison 2-6
Literal 2-2
Strings

Character 2-2
Conversion 3-7
Conversion items 3-6

60496200 E

Strings (Contd)
Nested conversion 3-7
Nested reformat 3-15
Reformat 3-15
Reformat items 3-12

Tape conversion 3-1, 4-1
Tm values
CDC COBOL E-6
CDC FORTRAN E-4
Default 3-6
For item descriptors 2-4
IBM COBOL E-5
IBM FORTRAN E-2

60496200 D

Variable length records
BM K-2
ChC K-1

Word and bit positions 2-3, 3-6
Working storage area (WSA) 4-5

XEQ directive 1-2, 3-16

8-bit subroutines J-1

Index-3 @

INIT ONOTY 1ND

COMMENT SHEET

MANUAL TITLE: FORM Version 1 Reference Manual
PUBLICATION NO.: 60496200

REVISION: E

This form is not intended to be used as an order blank. Control Data Corporation
welcomes your evaluation of this manual. Please indicate any errors, suggested

additions or deletions, or general comments on the back (please include page number
references).

Please reply No reply necessary

FOLD FOLD

I " " | NO POSTAGE |
NECESSARY

IF MAILED
IN THE
UNITED STATES|

BUSINESS REPLY MAIL

FIRST CLASS

PERMIT NO. 8241 MINNEAPOLIS, MN.

POSTAGE WILL BE PAID BY ADDRESSEE

(G P CONTROL DATA

Technical Publications
SVLF45

5101 Patrick Henry Drive
Santa Clara, CA 95054 -1111

FOLD FOLD

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

NAME:

COMPANY :
STREET ADDRESS:

CITY/STATE/ZIP:

TAPE TAPE

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN 55440 LITHO IN U.S.A
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD =

(G2 CONTROL DATA

