 (G® CONTROL DATA

60450100

_ MppiEy
 REFERENCE MANUAL

CDC® OPERATING SYSTEM:

NOS 2

iyt S omkaw

. -

Name

*BKSP
*CALL
*¥CALIALL
*CALLC
*COMMENT
*COPY
*COPYPL

ACREATE

*CSET

*CWEOR

*DECK

_ *DEFINE
*DELETE
D
*EDIT
#EISE
*ENDIF
#IDENT

AIF

*®IFCALL
*TIGNORE
#INSERT

* INWLDTH

Name

*CSET
*EDIT
#QPLEDIT

v

L. v

_Page Number

6—-2
7-2
7-2
7-3
7-3
4-1
4-2
4-3
7-4
7-4
5-2
8-1
5-2
5-2
5-3
6-2
7-4

- 5-3
7-5
/=6
5—4
5=5
5-5
8-2

OPLEDIT DIRECTIVES INDEX

Page Number

A4
A-4
A-1

AODIFY DIRECTIVES INDEX

Name

*MODNAME

AMOVE

*NIFCALL

*NOSEQ

 *OPLFILE

*PREFIX
APREFIXC
#PURDECK

-~ *READ

AREADPL

*RESTORE

ARETURN

_ *REWIND

*SEQ
*SORSEQ
XSKIP
*SKIPR
XUNYANK.
*UPDATE

AWEOF

*WEOR
*WIDTH
*YANK
*/

Name

*PULLALL
*PULIMOD
*PURGE

Page Number

5-5
8-2
7-6
7-6
4-3
8-3
8-3
5-6
6-2
- 6-2
5-7
6-3
64
 7-7
7-7
6-4
6-4
5-7
8-3
7-7
7=7
7-8
5-8
8=4

Page Number

A-5
A-6
A-6

(GB) CONTROL DATA

86450100

MODIFY
REFERENCE MANUAL

CDC® OPERATING SYSTEM:
NOS 2

.. REVISION RECORD

L

REVISION | -

DESCRIPTION
A Manual released. This manual reflects NOS 1.1 at PSR level 419.
(03-08-76)
i L h“; R) Revisei,to &pda;g the manual to NOS 1.2 at PSR level 439, and to make typographical and technical
(12-03-76) corrections. New directives IF, ELSE, ENDIF, and NIFCALL are added. The previous DEFINE

D
(02-03~78)

E
(06-22-79)

F
(12-05-80)

G
(09-30-85)

r~~(07’15_}75~«~-w

directive has a new parameter added that allows a value to be assoclated with a defined name.
This-edition obsoletes the previous edition.

 Revised to update the manual to NOS 1.2 at PSR level 452, to reformat error messages, and to

make typographical and technical correcticms. Support of CDC CYBER 170 Series, Model 171 is
also included.

Revised to update the manual to NOS 1.3 at PSR level 472; to add new information regarding common
decks; to add examples of the IF, ELSE, ENDIF, and NIPCALL directives; to change the type font

of the terminal sessions; and to make typographical and technical corrections. This edition
obsoletes all previous editions.

Revised to update’ the manual to NOS 1.4 at PSR level 498, and to make typographical and
technical corrections. New error messages INITIALIZATION DIRECTIVE OUT OF ORDER and INVALID CS
ON INPUT are added. Support of CDC CYBER 170 Series, Model 176 is also included. This edition
obsoletes all previocus editions.

Revised to update the manual to NOS 1.4 at PSR level 530, and to make typographical and technical
corrections. Sections 1, 2, and 8 have been reorganized. List Option feature is enhanced and
expanded. This edition obsoletes all previous editions.

Revised to update the manual to NOS 2.4.2 at PSR level 642 and to incorporate extensive usability
changes. Sections 1, 3, 4, 5, 6, 7, 8, and appendix A have been reorganized and rewritten.
Section 2 is nmew. Support of the CALLC, CSET (for both Modify and OPLEDIT), and SORSEQ
directives has been added. Other new features include support of mixed ASCII and DISPLAY code

on OPLs, maximum 150-character line length for source files, and nested common deck calls. This
edition obsoletes all previous editions.

Publication No.

60450100
Address comments concerning this
manual to:
Control Data
Technical Publications
©1976, 1977, 1978, 1979, 1980, 1985 4201 North Lexington Avenue
by Control Data Corporation St. Paul, Minnesota 55126-6198
All rights reserved
Printed on the United States of America or use Comment Sheet in the back of

this manual.

LIST OF EFFECTIVE PAGES

R Py ppriisd B [SR TN

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins obr by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination:rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV
Front Cover G 6-4 G B-4 G
Inside Front 6=5 G Index-1 G

Cover G 6-6 G Index~2 G
Title Page G 7-1 G Comment Sheet G
2 G 7-2 G Inside Back
3/4 G 7-3 G Cover G
5 G 7-4 G Back Cover -
6 G 7-5 G
7/8 G 7-6 G
9 G 7-7 G
10 G 7-8 G
1-1 G 7-9 G
1-2 G 7-10 G
1-3 G 7-11 G
1-4 G 7-12 G
1-5 G 7-13 G
1-6 G 7-14 G
2-1 G 8~1 G
2-2 G 8-2 G
2-3 G 8-3 G
2~4 G 8-4 G
2-5 G 85 G
2-6 G 8-6 G
2-7 G 9-1 G
2-8 G 9-2 G
2-9 G 9~-3 G
2-10 G 9-4 G
2-11 G 9-5 G
2-12 G 9-6 G
2-13 G 9-7 G
2-14 G 9-8 G
2-15 G 9-9 G
2-16 G 9-10 G
3-1 G 10-1 G
3-2 G 10-2 G
3-3 G 10-3 G
3-4 G 10-4 G
3-5 G 10-5 G
3-5 G 10-6 G
3-6 G 10-7 G
41 G 10-8 G
42 G 10-9 G
4=3 G 10-10 G
4-4 G 10-11 G
4=5 G 10-12 G
4-6 G 10-13 G
5~1 G 10-14 G
5-2 G 10~-15 G
5-3 G A-1 G
5=4 G A~2 G
5=5 G A-3 G
5-6 G A~b G
5-7 G A=-5 G
5-8 G A6 G
5-9 G A7 G
5-10 G A-8 G
6-1 G B-1 G
6-2 G B-2 G
6-3 G B-3 G

60450100 G 3/4

g

PREFACE

This manual describes the program library maintenance utility Modify. Modify 1s part of the
Network Operating System (NOS) Version 2., Modify is used to maintain and update source
files that are on libraries in a compressed format. NOS can operate on the following
computer systems:

e cpc® cyBER 180 Computer Systems
Models 810, 830, 835, 840, 845, 850, 855, 860, 990

® CDC CYBER 170 Computer Systems
Models 171, 172, 173, 174, 175, 176, 720, 730, 740, 750, 760, 815, 825, 835, 855,

865, and 875

e CDC CYBER 70 Computer Systems
Models 71, 72, 73, and 74

e 6000 Computer Systems

AUDIENCE

Because the advantages of Modify are best utilized by a programmer with a large volume of
source program text or symbolic data, the manual is written for the experienced NOS
applications or systems programmer.

ORGANIZATION

Section 1 describes the purposes and features of the Modify utility, and Section 2 provides
a tutorial overview of basic Modify concepts. Section 3 decribes the MODIFY command. The
remaining sections describe Modify directlves and file formats. Appendix A describes the
OPLEDIT utility, which is used to manage modificatlon sets created by Modify.

SUBMITTING COMMENTS

The last page of this manual is a comment sheet. Please use it to give your opinion on the
manual's usability, to suggest specific improvements, and to report any errors. If the
comment sheet has already been used, you can mail your comments . to:

Control Data

Technical Publications

4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

60450100 G 5

Additionally, if you have access to SOLVER, which is an online facility for reporting
problems, you can use it to submit comments about the manual. Use NS2 as the product
identifier.

CONVENTIONS

CONTROL STATEMENT

The manuals of many NOS products use the term control statement instead of the term
command. This manual uses the term command almost exclusively. You can consider the two

synonymous.

EXAMPLES
The folldwing conventions apply to examples that appear in this manual:

® Examples of actual terminal sessions that appear in this manual were produced on a
display terminal in NORMAL character mode unless otherwise specified. Uppercase
characters represent terminal output; lowercase characters represent user input
unless otherwise noted. (However, user input that is displayed within the text of
this manual is shown in uppercase characters). The vertical spacing in examples
does not necessarily coincide with the spacing that appears on your terminal.

[Program examples are written either in FORTRAN 5 or in COMPASS.

COMMAND FORMAT

Interpret uppercase characters within command formats literally. Lowercase characters
indicate variable values which are described immediately following the line that shows the
command format.

RELATED PUBLICATIONS

The following is a list of NOS operating system manuals and NOS product set reference
manuals.

Control Data publishes a Software Publications Release History of all software manuals and

revision packets it has issued. This history lists the revision level of a particular
manual that corresponds to the level of software installed at the site.

These manuals are available through Control Data sales offices or Control Data Literature
Distribution Services (308 North Dale, St. Paul, Minnesota 55103).

6 60450100

Control Data Publication Publication Number

NOS Version 2 Reference Set, Volume 3, System

Commands 60459680
NOS Version 2 Reference Set, Volume 4, Program .

Interface 60459690
FORTRAN Version 5 Reference Manual 60481300
COMPASS Version 3 Reference Manual 60492600

You might also want to consult the NOS System Information Manual. This is an online manual
that includes brief descriptions of all NOS operating system and NOS product set manuals.
You can access this manual by logging into NOS and entering the command EXPLAIN.

DISCLAIMER

This product is intended for use only as described in this document. Control Data cannot be
responsible for the proper functioning of undescribed features or undefined parameters.

60450100 G 7/8

1. INTRODUCTION

Additional Features
Input and Output Flles
Modify Input Files
Source Files
Program Libraries
Directives File
Qutput Files
Compile File
New Program Library
Source Qutput File
Statistical List File

2. MODIFY EXECUTION

Modify Directives
Directive Placement
Directive Format
Modify Execution
Initialization Phase
0ld Program Libraries
Source Files
Modification Phase
Line Identifiers
Modification Sets
Line Modifications
Insertion Lines
Editing Decks
Using Alternate Directives Files
Compile Phase
Compile File Expansion
IF Directive
Common Deck Calls

3. MODIFY COMMAND
4, INITIALIZATION DIRECTIVES

COPY Directive

COPYPL Directive

CREATE Directive

OPLFILE Directive

Examples of Initialization Directives

5. MODIFICATION DIRECTIVES

DECK Directive

DELETE (or D) Directive
EDIT Directive

IDENT Directive

IGNORE Directive

INSERT (or I) Directive
MODNAME Directive
PURDECK Directive
RESTORE Directive
UNYANK Directive

YANK Directive

Examples of Modification Directives

60450100 G

CONTENTS

1-1

1-1
1-2
1-3
1-3
1-3
1-4
1-5
1-5
1-5
1-5
1-5

2-1

2-1
2=-2
2~-2
2-3
2-3
2-3
2-3
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-11
2-11
2-12
2-13

3-1

4-1
4-2
4~3
4-3
4-3

5-1

52
5-2
5~3
5-3
5-4
5=3
5=5
5-6
5~7
5-7
5-8
5-8

6. FILE MANIPULATION DIRECTIVES

BKSP Directive

READ Directive

READPL Directive

RETURN Directive

REWIND Directive

SKIP Directive

SKIPR Directive

Examples of File Manipulation Directives

7. COMPILE FILE DIRECTIVES

CALL Directive
CALLALL Directive
CALLC Directive
COMMENT Directive
CSET Directive
CWEOR Directive
ELSE Directive
ENDIF Directive
IF Directive
IFCALL Directive
NIFCALL Directive
NOSEQ Directive
SEQ Directive
SORSEQ Directive
WEOF Directive
WEOR Directive
WIDTH Directive
Compile File Directive Examples

8. SPECIAL DIRECTIVES

DEFINE Directive

INWIDTH Directive

MOVE Directive

PREFIX Directive

PREFIXC Directive

UPDATE Directive

/ Directive

Examples of Special Directives

9, MODIFY FILE FORMATS

Source Decks and Files
User~Prepared Input Source File
Modify-Generated Source Files
Program Library Files
Deck Records
Prefix Table Format
Modification Table Format
Text Format

Directory Record
Prefix Table Format
Directory Table Format

Directives File

Compile File
Compressed Compile File Format

[+2)
i
[

Lo 0o NN« W« W e W, e,
[U
PPN

~
[}
[

U L L

]
DOoNNN~NOTOTOD B UL PLLON

SN N SN NN SN N SN SN SN N N SN NN NN

@
[
[N

TETTTICS
PSP LWL PE

{¥e]
i
[N

V) xo\9\0\0\0\0\f\0~o\o~0\0\o
O OB~ PIN

I
[t

Statistical List File
Scratch Files

10. BATCH JOB EXAMPLES

Create Program Library
Modify Program Library

A. OPLEDIT UTILITY

1 Modify Execution Flow
2 Modify Execution from Batch Job
-3 Modify Execution from Interactive Job
1 Modify Source Deck
1 Initialization Directives Examples
2 Batch Job Creating Program Libraries

Initialization Directives
Modification Directives
File Manipulation Directives

NIT’N
W~

10

10-1
10-3

APPENDIXES -

A-1

FIGURES

2-14
2=14
2-15

TABLES

Move Text 10-5
Read Directives from an Alternate File 10-7
YANK and UNYANK Modification Sets 10-8
Purge Decks 10—-8
Change the Directives Prefix Character 10-9
Use of the Z Parameter 10-11
Sample FORTRAN 5 Program 10-11
B. DIAGNOSTIC MESSAGES B~1
5-1 Modification Directive Examples 5-9
6-1 File Manipulation Directives Examples 6-5
7-1 Compile File Directives Examples 7-9
7-2 NOS Procedure File With ASCII Deck 7-12
8-1 Special Directive Example 8~4
9-1 Library File Format 9-3
2-4 Compile File Directives 2-15
2-5 Special Directives 2-16
60450100 G

INTRODUCTION 1

Modify is a NOS system utility used to maintain large source program files. Modify's
primary functions are as follows:

To store program source files in a speclal, compressed library format. These
library files are called program libraries.

To maintain status information and modification history information for each line of
code or text in a program library.

To allow direct modification of program libraries through the use of Modify
directives.

To output various types of files including program libraries, compiler or assembler
input files, and statistical listing files.

The Modify utility is called by the MODIFY command, described in section 3. On the MODIFY
command, you specify the old program library you want to modify, the output files you want
Modify to generate, and the processing options for the Modify rum.

You can run Modify as a batch or interactive job. When you enter an interactive MODIFY
command and do not specify an input directives file, Modify prompts you to enter directives
interactively.

ADDITIONAL FEATURES

Other features of Modify include:

Formatting of lines to facilitate line-by-line modification of the file,

Insertion, deletion, deactivation, or reactivation of individual lines within the
file.

Deactivation or reactivation of one or more groups of changes (called modification
sets) previously made to the text.

Replacement of often—used groups of lines (called common decks) by one-line calls
for thelr insertionm.

Inclusion of both DISPLAY code (uppercase only) and ASCII code (upper and lowercase)
decks on the same program library.

Generation of an output file in a format suitable for input to an assembler or
compiler.

Limiting the range of modifications to specified records (decks).

60450100 G 1-1

Output of statistical information regarding program library status and lines

modified.

Support of 63—~ and 64-character sets.

INPUT AND OUTPUT FILES

Figure 1-1 is a block diagram showing the executlon flow of a Modify run in terms of the
files used during the run.

MERGED PROCESS
oLD oLD NEW
PROGRAM PROGRAM COMPILE [5] COMPILE
LIBRARY A PROGRAM 271 LiBRARY* FILE FILE
LIBRARY® DIRECTIVES
SOURCE NEW PROGRAM
FILE LIBRARY FILE
SPECIAL AND FILE
<€ MANIPULATION [- cg%‘éﬁflf_e
DIRECTIVES
STATISTICAL
INITIALIZATION MODIFICATION » LISTING OF
DIRECTIVES DIRECTIVES MODIFY RUN
*INTERNAL FILE
Figure 1-1. Modify Execution Flow

60450100 G

MODIFY INPUT FILES

As shown in figure 1-1, there are three types of Modify input files:
® Source files
® Program libraries

@ Directives file

-Source Files

Input source files for Modify are program files, NOS procedure files, or text files to be
converted to program library format. A file must be converted to program library format
before Modify can perform any other operations on it.

In program library format, a logical record is referred to as a deck. In creating a source
input file for Modify, it is usually advantageous to place each program, subroutine, or
procedure in a separate deck. This practice allows you to modify, reassemble, or recompile
the program library in smaller, individual units.

The only special preparation required for source files before being input to Modify are the
addition of one or more header lines in each deck. The first line 1s required and specifies
the name of the deck. You can include other lines to designate a deck as a common deck or
to define the code set (lowercase only or uppercase and lowercase) of the deck. Section 2
describes source file preparation in greater detail.

Program Libraries

One of the key features of Modify is the use of program libraries for storage and modifi-
cation of source files. A program library is a source file that has been converted to
program library format during a previous Modify rum. A program library has the following
special characteristics: '

e It is compressed: Modify has replaced three or more consecutive blanks within a
line with special compression codes.

® It is sequenced: Modify has assigned a sequence number and modification name to
each line of the file. This information is printed on the
compile output file.

® It is indexed: Modify has built a directory of the decks (records) on the
program library file.

Modify uses program libraries for both inmput and output. By convention, input program
libraries are referred to as old program libraries (OPLs). The primary OPL file 1s defined
on the MODIFY command P parameter. Additional OPLs can be specified using ome of the Modify
directives, the OPLFILE directive.

60450100 G 1-3

A deck containing a frequently used group of source statements, such as a group of DATA or
COMMON statements in a FORTRAN program, can be designated as a common deck. Modify has
special compiler directives that allow you to call a common deck from anywhere in the
program library. A call to a common deck causes Modify to insert the common deck into the
compile output file at the point from which it was called. This eliminates the need for
duplicate sequences of lines at multiple points within a library.

Section 9 describes the file structure of a program library file.

Directives File

You initiate the Modify utility by entering a MODIFY command. Most of the operations that
Modify performs, however, are controlled by Modify directives that you enter from a
directives file.

The directives file is a file containing the directives that define the operationms to be
performed in a particular Modify run. You have a number of options in creating the
directives file.

For batch jobs, you have three options:

® You can place directives and insertion text in a NOS file. The name of the
directives file is then specified on the MODIFY command I parameter (I=filename
format).

] The Z parameter of the MODIFY command allows you to append directives to the MODIFY
. command following the command terminator.

@ If both the I and Z parameters are omitted from the MODIFY command, Modify looks for
the directives file in the next record following the job from which Modify was
called.

For interactive jobs, you can use the I and Z parameters in the same way they are used in
batch jobs. A third option is to enter directives interactively. If you do not specify
either the I or Z parameter on the MODIFY command, Modify prompts you to enter directives
from file INPUT.

There are numerous examples of directive files contained in the examples in sections 4
through 9 of this manual.

1-4 60450100 G

OUTPUT FILES

Modify produces four types of output files:
® Compile file
® New program library file
e Source output file

[Statistical list file

Compile File

The compile file is a program text file that contains the edited OPL decks with modifi-
cations incorporated by Modify. Each line of the compile file has line-sequencing
information used to identify individual lines for modification. You can use the compile
file as input to the COMPASS assembler or to a compiler. You can also send the compile file
to an output device for printing. The MODIFY command C parameter selects compile file
output, Other MODIFY parameters control various processing options that you can select when
the compile file is to be input directly to.a language processor.

New Program Library

The new program library file contains the same updated information as the compile file
except in program library format. You can use the new program library as input to a
subsequent Modify run.

Source Output File

This file contains the same updated text as the compile file except that compile file
directives have not been processed or removed from the file., Line-sequencing information
does not appear on the source output file unless you explicitly request it using the SORSEQ

directive,

Statistical List File

The statistical list file lists information on the Modlfy run. This information includes
details of program text changes, file status, errors, and other significant events that
occur during the run.

Figures 1-2 and 1-3 provide examples of a batch job and an interactive job executing a
Modify rum.

60450100 G 1-5

JOBMOD.

USER,USERNUM, PASSWRD,FAMILY.
GET,MAINP.

MODIFY,P=0,F,N.

SAVE, NPL=MAINPL.

-=EQR=-- .
*REWIND MAINP \ Input directives for MODIFY command.
*CREATE MAINP J
—-=EQIl—~ - End=of=-information.
Figure 1-2. Modify Execution from Batch Job
/old,mainp <& After logging in, user requests batch subsystem.
/scopy,mainp
DECK1

*kk MAIN PROGRAN
PROGRAM MAIN
PRINT*,'BEGIN MAIN PROGRAM.®
CALL suB1
PRINT®,*END MAIN PROGRAM.®
STOP
END
~<EQR==
DECK3
* k% EMPTY DECK
==EQR==
==EQF ==
/modify,p=0,f,n, =0 1=0 specifies no Modify output.
? %create mainp Input directives are requested and entered
? immediately following MODIFY command. Null

.MODIFICATION COMPLETE. input line (carriage return only) terminates input.
/replace,npl=mainpl \

Modify lists a completion message.

Figure 1-3. Modify Execution from Interactive Job

60450100 G

MODIFY EXECUTION 2

Section 2 provides an overview of Modify concepts and the basic information you need to know
to run a Modify job. Topics discussed include: how to create and use Modify imput files,
how to use Modify directives, how to create and use modification sets, and how to control

expansion of the compile file.

MODIFY DIRECTIVES

Most of the control you have over Modify execution is through the use of Modify directives.
There are five kinds of Modify directives:

[] Initialization

Directives

® Modification Directives

° File Manipulation
Directives

] Compile File
Directives

® Special Directives

These directives specify additional program libraries or
source files to input to Modify. The MODIFY command P
parameter specifies the primary OPL to be modified. If
additional files are to be merged with the primary OPL,
these are gpecified by initialization directives.

These directives define the actual changes to be made to
individual lines or groups of lines in the OPL.

These directives perform file positioning functions and
specify alternate files from which Modify directives and
insertion text are to be read.

These directives allow you to control which decks of the
modified OPL are written to the compile file. Common deck
calls and conditionmal expansion directives control the
selection and ordering of decks written to the compile file.

These directives perform miscellaneous functions such as
redefining the directive prefix character, moving decks
within a program library, and defining the line length of
input files.

Tables 2-1 through 2-5 at the end of this section provide a brief description of each of the
Modify directives. You may want to refer to these tables as you read through this section.

60450100 G

DIRECTIVE PLACEMENT

As stated in the previous section, there are a number of ways you can enter directives for a
Modify run: interactively from file INPUT; from a directives file; from the command line,
using the Z parameter; or from a record following a batch job file.

The following rules describe the sequence and placement of Modify directives within the
directives file:

e All initialization directives must precede all modification directives.
® File manipulation directives can be placed anywhere within the directives file.

® File manipulation directives cannot be placed in an alternate directives file (as
specified by a READ or READPL directive).

® Compile file directives are not processed until the compile phase when Modify
expands the compile output file. When encountered in the directives file, Modify
does not recognize the compile file directives, but simply processes them as text
lines. (The WIDTH, SEQ, SORSEQ, and NOSEQ compile file directives are exceptions to
this rule.)

] The WIDTH, SEQ, SORSEQ, and NOSEQ compile file directives can be placed anywhere in
the directives file, or they can be inserted as text lines as part of a modification
set,

e Special directives can be placed anywhere in the directives file.

DIRECTIVE FORMAT
A Modify directive has the following format:

*dirname P1,p2;.00,Pn

Where:

* The directive prefix character is in column 1. The asterisk (*) is the
default. The PREFIX and PREFIXC directives are used to change the
prefix character.

dirname The directive name,

Pi A directive parameter.

The directive name and parameters can be separated by any display code character having a
value of 55g or greater; this includes all alphanumeric characters and any of the
following special characters: : + — % / () s =

Some directives require specific separators, as noted in the directive descriptiomns. No
embedded blanks are permitted within a parameter. However, any number of blanks can be
placed between the directive name and the first parameter or between two parameters,
provided the directive does not exceed the maximum line length.

2-2 60450100 G

MODIFY EXECUTION
Modify execution takes place in three phases:

® Initialization phase Modify reads the initializatlion directives, converts source
files to program library format, and merges all input
program libraries onto a single file.

e Modification phase Modify reads the modification directives and ilnsertion text
from the directives file,

® Compile phase Modify incorporates modifications, expands the compile
file, and writes edited decks to the selected output files.

INITIALIZATION PHASE

During the initialization phase, Modify reads the initialization directives and merges all
the specified input files into a single program library. This library is the internal file
referred to in figure 1-1 as the merged old program library. The merged old program library
consists of all decks written from the input program libraries and source files and a
directory to those decks. It is the merged old program library that is later modified by
the modification directives.

Figure 1-1 shows two types of input files: old program libraries and source files.

Old Program Libraries

An old program library (OPL) is a program library created by a previous Modify run. The
primary OPL is the file specified on the MODIFY command P parameter. In many cases, this is
the only file input to Modify, but you can specify up to 50 additional OPLs. These
additional OPL input files are specified on an OPLFILE directive placed in the input
directive file.

OPL files on tape or without a directory require special handling. The COPYPL directive is
used to copy an OPL from tape to a local NOS file. The COPY command copies decks from omne
program library to another, creating a new directory for the copled decks. Thus, COPY can
be used to create a directory for an OPL that does not have a directory, to create a new
directory to replace an old one, or to copy selected decks from one program library to
another.

Source Files

The input file marked source file in figure 1-1 refers to source program or data files that
are not yet converted to program library format. Source files to be converted must be
specified in a CREATE initilalization directive included in the directive file. If no OPL
files are specified for a Modify run, the CREATE directive essentially creates a new program
library from the original source file. If one or more OPLs are specified for the rum,
CREATE converts the source file and merges it with the existing program libraries.

60450100 G 2-3

Modify allows line lengths up to 150 characters. The 150 characters may be all uppercase,
all lowercase, or mixed uppercase and lowercase. Modify assumes a default input line length
of 72 characters. If you have a source file containing text lines longer than 72 char-
acters, you should enter an INWIDTH directive specifying the maximum line length. Modify
requires this information when writing files in compressed format.

Note that compile file sequence numbers, by default, are written starting in colummn 73 of
the compile file. You can use the WIDTH compile directive to change the location of line
sequence numbers on the compile and source output files.

For decks containing NOS procedures, line sequence numbers must be inhibited on the compile
file for the procedures to execute properly. A NOSEQ compile file directive entered for the
deck accomplishes this purpose. To obtain a listing that includes the line sequence
numbers, you can perform a separate Modify run that includes the sequence information on the
compile file. You can also include a SORSEQ directive which causes the line sequence
information to be included on the output source file.

Source files must be properly formatted before they are input to Modify. Formatting of
source files may include the following steps:

e A deck name must be assigned to each record on the file.

® Common decks must be marked as such.
® Decks may be marked for expansion as DISPLAY code (uppercase only) or ASCII code
(uppercase and lowercase) decks.

e Compile file directives may be inserted in the source file.
Figure 2-1 illustrates the organization of a source file containing two decké°

Except for assigning deck names, all of the listed steps are optiomal. Each record of the
source file must have a deck name that begins in column 1 of the first line of the record.
Deck names can be from one to seven characters long and can consist of alphanumeric
characters and any of the following special characters:

+-%/ ()%=
Common decks must have the word COMMON written on the second line beginning in column 1.

If the deck is to be marked as an ASCII or DISPLAY code deck, the code designation must
appear either on the line following the deck name or on the line following the COMMON header
line. The word ASCII written from column 1 of this line indicates that the deck will be
expanded in uppercase and lowercase characters (6/12-bit display code) on the compile file.
For uppercase characters only (6-bit display code), write the word DISPLAY on this line. If
a code set is not specified, DISPLAY is assumed.

The source file may contain embedded compile file directives, or you may insert conpile file
directives later as part of a modification set. Generally, the compile file directives are
ignored (that is, treated as text lines) during the initialization and modification phases
of execution. However, there are four exceptions to this rule: the WIDTH, SEQ, NOSEQ, and
SORSEQ compile file directives. When Modify encounters one of these directives during the
initialization phase, the directive applies to all decks output to the compile file. When
encountered during the modification phase or when embedded within program library decks,
however, these directives affect only the decks with which they are explicitly associated.

'

2-4 : 60450100 G

DECK T -t Name of deck.

COMMON - Declares deck as common.
ASCII g
COMMON/A/A Declare deck as ASCII deck.
. J‘ Source déck.
-EOR~ =& End~of-record terminates deck.
DECK2 - Name of deck.
PROGRAM X
#*CALL DECK1
- gt Source deck.
END
~EQI- & End-of~information terminates final deck.

Figure 2-1. Modify Source Deck

MODIFICATION PHASE

Entry of the first modification directive ends the initialization phase and begins the
modification phase of execution. During the modification phase, Modify reads the rest of
the directives file and makes changes to the internal new program library (NPL) as specified
by the modification directives.

During the modification phase of a Modify run, there are three major tasks to be performed:
e Defining a modification set.
@ Making individual line modifications as part of a modification set.
e Activating or deactlivating a modification set or sets.

It is not necessary to perform all three of these major tasks during every Modify run. In
fact, it is not necessary to perform any of them. For example, if you just want to extract
certain decks from the OPL without making any changes to the OPL, you can enter an EDIT
directive specifying the selected decks. Those decks are then written to the output files
with no changes made to the original OPL.

The following paragraphs tell you how to define-and manipulate modification sets and how to
modify individual lines of the OPL. Also described are the use of the EDIT directive to
select decks for editing and the use of the READ and READPL directives, which allow you to
define alternate files from which to read Modify directilves.

60450100 G 2-5

Line Identifiers

Modify assigns a line identifier to each line of code or text in a program library. 1In
sequenced output files, the line identifier comprises the line-sequencing information
printed beginning in column 73 of the file. (You can change this position using the WIDTH
directive.) The modification directives also use the line identifier to specify the point
within a deck at which a line is to be inserted, deleted, or replaced.

The complete form of the line identifier is as follows:

modname .number

Where:
modname The name of the modification set to which the line belongs or, if the
line is not assoclated with a modification set, the name of the deck
contalning the line.
number The sequence number of the line within the modification set or deck;

must be a decimal ordinal from 1 to 162143. A blank or any character
other than 0 through 9 terminates the sequence number. Normally, the
numbering of lines belonging to a modification set is reset to 1 at the
beginning of each deck; however, you can select continuous sequencing of
line numbers by specifying the UPDATE directive.

In practice, you will probably use the abbreviated form of the line identifier more often
than the complete form. The abbreviated form uses a default modname determined by a DECK or
MODNAME directive. Default modnames are discussed under Line Modifications. The abbrevi-
ated form of the line identifier is as follows:

number

Where number is the same as above.

Example:
IF(XVALUE.LE.O) GO TO 84 PROCR.130
XVALUE=XVALUE=-1 PROCR.131
CALL XRTN (XVAL) MOD12.18
84 CONTINUE PROCR.136

This. example gives you an idea of what sequenced compile file output looks like. The
example represents four lines extracted from the compile file listing for a deck called
PROCR. Three of the lines use the deck name for the modname portion of the line
identifier. These lines belonged to the original source deck. Since lines PROCR.132
through PROCR.135 are missing, we can assume that they were deleted from the deck by a
subsequent modification set.

The line marked MOD12.18 was inserted as part of a modification set called MOD12. Normally,
the sequencing of lines inserted by a modification set 1s reset at the beginning of each
deck; therefore, we might assume that deck PROCR contains 17 prior lines inserted by
modification set MOD12. This is not always the case, however, since the UPDATE directive
allows you to specify continuous sequencing of line identifiers without regard to deck
residency.

2-6 ' 60450100 G

Modification Sets

The modification directives control source file modifications at two different levels:
individual lines and modification sets. Modification of individual lines is
self-explanatory; the INSERT, DELETE, and RESTORE directives insert new lines of program
code and delete or replace old lines of code.

The term modification set refers to a group of individual line modifications considered as a
single set. The Modify utility allows you to group individual line changes together into
modification sets and to assign a unique name to each set., For each line affected by a
modification set, Modify enters a modification history byte in the modification table of the
deck containing the line (Refer to section 9 for more information on the program library
format). Using modification sets is advantageous for at least two reasoms:

e Modification sets simplify the task of keeping a historical record of changes made
to a program. At any time, you can obtain an output listing identifying the lines
affected by a particular modification set.

e Modification sets can be manipulated as a whole. You can activate, deactlvate, or
purge an entire modification set using a single modification directive.

You define a new modification set by entering an IDENT directive specifying the name of the
modification set. For example, the following IDENT directive establishes a modification set
with the name NEWMOD:

*IDENT NEWMOD

Once you have entered an IDENT directive, any modificatioms you make to the file belong to
that modification set until you enter another IDENT directive. Lines inserted or changed as
part of the modification set are ldentified as such on the output files; the modification
name appears as the modname portion of the line identifier.

The IDENT directive is not required. If you do not enter an IDENT directive, the default
name ***%xx%* ig used for the modification set. It is recommended, however, that you define
a unlique name for each modification set you create.

Once you have created a modification set, you can manipulate lines wilthin it as a set, using
the YANK and UNYANK directives. By specifying a particular modification set in a YANK
directive, you remove the effects of the entire modification set from the program library.
Any lines inserted or activated by the modification set are deactivated, and any lines
deactivated by the modification set are reactivated by the YANK directive. Similarly, the
UNYANK directive restores the effects of an entire modification set.

The OPLEDIT utility, described in appendix A, provides some additional tools for
manipulating modification sets.

60450100 G 2-7

Line Modifications

Modification of lines in a program library is done on a deck=by-deck basis. Before you can
enter any modifications for a particular deck, you must enter a DECK directive to identify
the deck. The entry of a deck directive also establishes the default modname for line
identiflers in subsequent modification directives.

Example:

*DECK OPT/134
*DELETE 6

The first line of this example opens for modification a deck called OPT/134. The first line
also establishes that deck name as the default modname for subsequent modification
directives. Since OPT/134 is the default modname, the second line of the example is
equivalent to line:

*DELETE OPT/134.6

The default modname established by a DECK directive remains in effect until another DECK
directive is entered or until a MODNAME directive is entered.

The MODNAME directive is used to explicitly change the default modname for subsequent line
identifiers. The modname specified by MODNAME can be the name of any modification set
previously in effect for the deck being modified. Once the default modname has been changed
in this way, MODNAME can also be used to reestablish the current deck name as the default
modname.

Example:

*DECK OPT/134
*DELETE 6
*MODNAME MOD3A
*DELETE 27
*INSERT 33
Insert this Line after Line MOD3A.33
*MODNAME OPT/134

The third line of this example establishes the default modname MOD3A. MOD3A is the name of
a modification set created during a previous Modify run. The following DELETE directive
then deletes line MOD3A.27 from deck OPT/134. The fifth line instructs Modify to add an
insertion line following lime MOD3A.33 of the deck; the INSERT directive is followed by the
line to be inserted. The last line of the example reestablishes deck name OPT/134 as the
default modname.

2-8 60450100 G

The use of the MODNAME directive is convenient if you have several lines to be changed for
the named modification set. However, since there were only two lines to be changed for
MOD3A in the above example, it probably would have been more efficient to omit both MODNAME
directives and simply specify the full form of the line identifier for the MOD3A lines to be
changed as follows:

*DELETE MOD3A.27
*INSERT MOD3A.33

Do not confuse the default modname specified by DECK or MODNAME with the name of the current
modification set as specified by the IDENT directive. DECK and MODNAME affect only the line
identifiers used by the modification directives to locate changes in the deck to be
modified. When the changed lines are printed in the compile file at the end of the Modify
run, the modname portion of their line identifiers reflects the modification set name
defined by the IDENT directive in effect at the time the changes were made.

After you have defined a DECK using the DECK directive, you can begin making modifications
to individual lines in the deck. Line modifications are made using the INSERT, DELETE, and
RESTORE directives.

The INSERT directive inserts one or more lines of text into a program library. The lines to
be inserted are placed in the directive file following the INSERT directive.

The DELETE and RESTORE directives deactivate and reactivate, respectively, one or more lines
of the program library. DELETE and RESTORE can also insert lines of text. Any text lines
following DELETE or RESTORE in the directive file are inserted following the deactivated or
reactivated lines in the program library.

Example:
*DELETE OPT/134.84
c Insert two
" comment Lines.

*DECK NEWDECK

The DELETE directive in this example deletes line 84 of deck OPT/134 and inserts two comment
lines immediately following the deleted line.

Insertion Lines

Modify continues reading insertion lines following an INSERT, DELETE, or RESTORE directive
until it encounters an end~of-record or another modification directive. Modify does not
process compile file directives embedded in insertion lines; they are treated as insertion
lines. File manipulation directives embedded in insertion lines are processed and may
change the source of insertion limes (See Alternate Directive Files below), but do not
terminate insertion. In other words, if a file manipulation directive specifies an
alternate directive file, Modify immediately begins reading the alternate file, but
continues reading insertion text from the current file once the alternate file is exhausted,

60450100 G 2-9

Editing Decks

To be written to any of the output files, an OPL deck must be selected for editing, either
on the MODIFY command itself or on an EDIT directive placed in the directive file. If you
include directives to modify a deck in a Modify run but do not specify the deck as an edited
deck, the modifications are not reflected in the output files.T Even if a deck is not
modified during a Modify run, you must select the deck asg an edited deck 1f you want to
include it in the output files.

Modify has three edit modes:

] Full Edit Edits all decks on the OPL; selected by specifying the F
parameter on the MODIFY command.

] Update Edit Edits only the OPL decks named in DECK directives in the
directives file; selected by specifying the U parameter on the
MODIFY command.

(] Selective Edit Edits only the OPL decks named in EDIT directives in the
directives file; selected if the F and U parameters are omitted
from the MODIFY command.

The full and update edits ignore any EDIT directives in the directives file. The full edit
creates a new program library by editing all decks on the OPL. The update edit is normally
used to generate a compile file listing of only those decks that were modified during a
Modify rum.

For both the full edit and update edit, decks are edited in the order they occur in the
OPL. However, if any decks are added or replaced, the new or replacement decks are written
to the end of the program library. If you want to restore the original deck order, you can
do so by using the MOVE special directive in a followup Modify run. The MOVE directive
moves a specified deck from one position in a program library to another.

When using a full or update edit, the placement of common decks in the program library is
significant since decks are edited in the order they appear. If a common deck is modified
during a Modify run and is also called by another deck, the calling deck receives the
modified version of the common deck only if the common deck precedes the calling deck in the
program library. If the calling deck precedes the common deck, then the common deck will
not have been modified at the time the call is processed. For this reason, it is usually
best to place the common decks at the beginning of the program library.

In a selective edit, decks are edited in the order in which the EDIT directives are
encountered in the directive file unless you specify otherwise using the UPDATE special
directive. The UPDATE directive tells Modify to ignore the order of the EDIT directives and
edit decks in the order they appear on the OPL.

T If a common deck is called from another deck, the compile file output for the calling deck
will include the common deck lines regardless of whether or not the common deck was
selected for editing. However, for common deck itself to be written to the source file or
new program library, the common deck must be selected for editing.

2-10 60450100 G

Using Alternate Directives Files

There are two file manipulation directives, READ and READPL, that direct Modify to
temporarily stop reading directives from the primary directives file (specified by the I
parameter of the MODIFY command) and begin reading directives from an alternate file. When
Modify finishes reading directives from the alternmate file, it returns to the primary
directives file to read the remainder of it. -

The READ directive directs Modify to begin reading directives from a specified local file.
The READ directive has an option that allows you to read directives either from a single
record on the file or to read the entire file.

The READPL directive directs Modify to begin reading directives from a specified deck in the
OPL. This directive allows you to copy lines from one position to another within the OPL.

Modify directives placed in an alternate directives file are processed as they would be in
the primary directives file with one exception: fille manipulation directives may not be
placed in an alternative directive file and cause Modify to abort if they are encountered
there. Modification and special directives placed in an alternate file are processed
normally, and compile file directives are treated as text limes.

Note that if Modify is reading insertion lines (that is, text lines following am INSERT,
DELETE, or .RESTORE modification directive) from the primary directives file when READ or
READPL is encountered, the READ or READPL directive does not terminate insertion. When
Modify finishes reading the alternate file and returns to the primary file, insertion
continues until Modify encounters another modification directive.

COMPILE PHASE
During the compile phase of execution, Modify incorporates changes specified during the
modification phase and writes the selected output files. Any compile file directives

encountered in the OPL or in the directives file are processed at this time, and the
expanded decks are written to the compile file.

Compile File Expansion

The compile file directives provide a number of ways of controlling the composition and
format of the compile file output.

e Various types of call directives call common decks to be writtem to the compile file.

® The IF directive performs a true or false test for a specified condition to
determine whether a block of lines is included or deleted from the compile file.

e You can insert file marks in the compile file using the WEOR, CWEOR, and WEOF
directives.

e WIDTH, NOSEQ, and SEQ control the line length and inclusion of line sequence
information.

60450100 G 2-11

The process of removing compile file directives and replacing them with the specified
insertion or deletion operations is referred to as expansion of the compile file. Most of
these expansion options are self-explanatory; however, a word about common deck calls and
the IF directive might be helpful.

First of all, the IFCALL, NIFCALL, and IF directives are dependent on the previous
specification of a symbolic name using the DEFINE speclal directive. The DEFINE directive
defines a symbolic name to Modify and can also associate a numeric value with the name.
Defining a symbolic name in this way is like setting a software flag that Modify checks when
processing an IFCALL, NIFCALL, or IF directive.

IFCALL calls a common deck if a specified name was previously defined by a DEFINE directive,
while NIFCALL calls a common deck only if the specified name was not defined.

IF Directive

The IF directive works in conjunction with ENDIF and ELSE to set off a block of lines for
conditional inclusion in the compile file. The IF directive is always followed by a block
of lines terminated by an ENDIF or ELSE directive. If the condition tested by IF is true,
the block of lines is included in the compile file, and if the condition is false, the limes
are not included.

There are two ways the IF directive can use the symbolic name defined by DEFINE. If the IF
directive specifies only a symbolic name, the condition is considered to be true if the name
is defined, false if the name has not been defined. The IF directive can also compare the
symbolic name to a numeric value. In this case, the IF condition is either true or false
depending on whether the symbolic name and the specified value were assoclated in a previous
DEFINE directive.

2-12 60450100 G

Common Deck Calls

The common deck calls, CALL, CALLALL, CALLC, IFCALL, and NIFCALL provide a number of
different options for calling commen decks. The individual directives are described in
section 6. The following are some general rules you should keep in mind when using common
deck calls.

Common deck calls (except CALLALL, which is ignored when encountered as a nested call) can
be nested; that is, a common deck can contain a call to another common deck. The
conditional common deck call, CALLC, is useful in nested calls. CALLC performs a common
deck call only on the condition that the specified deck has not already been called from the
deck being edited. The entry of a new DECK resets this condition.

Common decks can be designated as either ASCII (6/12-bit display code) or DISPLAY code
(6=bit display code) decks by including the code set header line as the second or third line
of the deck. An ASCII commmon deck can be called from a DISPLAY code deck and vice versa.
Unless overridden by a CSET directive, common decks are expanded according to their ASCII or
DISPLAY code designation. In other words, if an ASCII common deck is called by a DISPLAY
code deck, the common deck lines are inserted into the calling deck as uppercase and
lowercase lines, even though the calling deck is written in uppercase characters only.

The CSET compile file directive allows you to override the code set designation of a common
deck. If a CSET ASCII or CSET DISPLAY directive is entered prior to a common deck call, the
common deck is expanded in the code set specified by CSET, regardless of the code set
defined for the deck. If the common deck contains nested calls to other common decks, all
nested calls are also governed by this CSET directive.

The CSET directive remains in effect until another CSET is encountered or until the end of

the deck. A CSET encountered within a common deck is ignored, and the line 1s placed in the
compile file as a comment.

60450100 G 2-13

Table 2-1. Initialization Directives'

Directive Description

COPY Copies one or more records from one program library file to another;
normally used to copy a program library from tape to system file.

COPYPL Coples one or more decks from a program library file to the internmal OPL
scratch file. Ignores the original file directory and creates a new one
for the copied decks.

CREATE Converts a properly formatted source file to program library format.

OPLFILE Declares additional imput OPL files (that is, in addition to the file

specified by the MODIFY command P parameter).

T The initialization directives are described in section 4.

Table 2~-2. Modification DirectivesT

Directive Description
DECK Jdentifies the next deck to be modified and establishes the default deck
name for subsequent line identifiers.
DELETE Deactivates lines and optionally inserts replacement lines in their place.
or D
EDIT Specifies a deck or decks to be edited and written to the selected output
files; valid only if neither the F (Full edit) nor U (Update) parameter
was specified on the MODIFY command.
IDENT Defines a new modification set.
IGNORE Specifies that subsequent modifications for the current deck are to be
ignored.
INSERT Inserts lines after a specified line.
or I
MODNAME Specifies the name of a modification set previously defined for this deck.
The specified name becomes the default modification set name for
subsequent line identifiers.
PURDECK Permanently removes a deck from the program library.
RESTORE Reactivates lines and optionally inserts lines following the reactivated
lines.
UNYANK Reactivates a modification set.
YANK Deactivates a modification set.

¥ The modification directives are described in section 5.

2-14

60450100

Table 2-3. File Manipulation DirectivesT

Description

Directive

BKSP Backspaces a specified number of records'on a file.

READ Reads a record or group of records from a specified file.

READPL Reads a deck or portion of a deck from within the program library file.
RETURN Returns the named file to the system.

REWIND Rewinds the named files.

SKIP Skips a specified number of records on a file.

SKIPR Skips past a specified record on a file.

T The file manipulation directives are described in section 6.

Table 2-4, Complle File Directives (Sheet 1 of 2)T

Directive Description

CALL Writes a specified common deck to the compile file.

CALILALL Writes all decks to the compile file that have a deck name beginning with
a specified character string.

CALLC Writes a specified common deck to the compile fille only if the deck has
not already been called.

COMMENT Generates a COMMENT pseudo instruction for COMPASS.

CSET Specifies the code set (ASCII or DISPLAY) for subsequently called common
decks; overrides the code set defined for a common deck.

CWEOR Writes an EOR to the compile file only if information has been written
since the last EOR was written.

ELSE Reverses an IF directive conditional range; that is, it terminates
insertion if the IF directive was true and initiates insertion if the IF
directive was false.

ENDIF Terminates insertion of lines initiated by an IF or ELSE directive.

IF Inserts lines in the compile file 1f a specified attribute is true;
insertion continues until an ELSE or ENDIF directive 1s encountered.

IFCALL Writes a specified common deck to the compile file if a specified name has

been defined (by a DEFINE special directive).

T'I’he compile file directives are described in sectiom 7.

60450100 G

2-15

Table 2-4, Compile file Directives (Sheet 2 of 2

Directive Description
NIFCALL Writes a specified common deck to the compile file only 1f a specified
name has not been defined (by a DEFINE special directive).

NOSEQ Inhibits inclusion of line sequence information on the compile file.

SEQ Specifies inclusion of line sequence information on the compile file.
SORSEQ Specifies inclusion of line sequence information on the source output file.
WEOF Writes an EOF to the compile file.

WEOR Writes an EOR to the compile file.

WIDTH Defines the number of columns preceding sequence information on the

compile file,

T The compile file directives are described in section 7.

Table 2=5. Special Directives’

Directive Description
DEFINE Defines a name to be used by conditional compiler directives (IFCALL,
NIFCALL, IF) to determine the appropriate action to take.
INWIDTH Defines the line length for Modify input files.
MOVE Moves decks within a program library; used to reorder library decks.
PREFIX Changes the prefix character for directives other than compile file
directives.
PREFIXC Changes the prefix character for compile file directives.
UPDATE Specifies continuous sequencing of program library decks and forces
editing of decks in the order they occur in the program library.
/ Inserts a comment line in the Modify statistical list file.

TThe special directives are described in section 8.

2-16

60450100

[»]

MODIFY COMMAND

The MODIFY command inititiates execution of the Modify system utility. Using Modify
parameters, you specify the input files, output files, and directives file for the Modify
run, as well as the processing options you want to select. Processing options include a
direct call to the COMPASS assembler or to a program compiler. When selected, assembler or
compiler call takes place at completion of the Modify rum.

For output listing files not connected to your terminal, the MODIFY command honors the page
length and print demsity set for your job using the SET command and the PL and PD symbolic
names (Refer to the NOS Reference Set, Volume 3 for more information on the SET command and
PL and PD symbolic names.)

For interactive users, if the I and Z parameters are omitted from the MODIFY command, the
system prompts you to enter directives ilnteractively. The interactive prompt for Modify
directives 1s the ? character. To terminate prompting for directives, enter a carrilage
return in response to the Modify prompt.

Format:

MODIFY, P1,p2,...,Pne

You can specify parameters (pi) in any order; valid parameters are as follows:

Parameter Description
A Specifies whether the compile file (as defined by the G parameter)
is in normal or compressed format. .
QBEEEB Description
A Speciflies compressed compile file format.
omitted Specifies normal compille file format.
C Defines the compile file to be generated.
922&25 Description

C or omitted Compile output is written on default file COMPILE.
C=filename Compile output is written on file filename.

c=0 No compile file is generated.

60450100 G

Parameter

CG

CL

cS

Ccv

Description

Defines the file from which systems text is to be loaded; valid only
if the Q or X parameter is also specified. If both CG and CS are
specified, CS is ignored.

Option Description

CcG Loads systems text from file SYSTEXT (same as
G=SYSTEXT parameter on COMPASS or compiler call).

CG=filename Loads systems text from file filename (same as
G=filename parameter on COMPASS or compiler call).

CG=0 or loads systems text from overlay named in CS optiom.
omitted

Defines the COMPASS listing file; valid only if the Q or X parameter
is also specified.

Option Description

CL Lists output on file OUTPUT (same as COMPASS
1L=0UTPUT parameter).

CL=filename Lists output on file filename (same as COMPASS
L=filename parameter).

CcL=0 Writes short list, rather than full 1list, to file
OUTPUT (Same as COMPASS L=0 parameter).

Defines overlay from which systems text is to be loaded; valid only
if the Q or X parameter is also specified.

Option Description

CS or omitted Loads systems text from SYSTEXT overlay (same as
S=SYSTEXT parameter on COMPASS or compiler call).

CS=filename loads system text from file filename (same as
S=filename parameter on COMPASS or compller call).,

Ccs=0 No systems text (same as S=0 parameter on COMPASS or
compiler call).

Specifies character set conversion required for program library
input files. Conversion is recommended if the character set of the
OPL is not the same as the character set in use at the time the OPL
is modified. Use the CATALOG command to determine the character set
of the OPL (Refer to Volume 3 for a description of the CATALOG
command). Check with your site administration to determlne the
character set in use at your site.

60450100 G

Parameter Description

Option Description
Cv=63 Converts 64—character OPL to 63—-character set.
CV=64 Converts 63-character OPL to 64-character set.
Cv=0 or No conversion occurs.
omitted '

When either CV=63 or CV=64 is selected,
Modify forces the C parameter to C=0
(e.g., no compile file is generated).

D Specifies whether a directive error will abort the job; used for
debugging purposes.

Option Description
D Job is aborted on fatal error, but not on directive
error.
omitted Either a fatal error or a directive error aborts the
job.
F Specifies whether a full edit is to be performed (that is, whether
all decks on the OPL are to be edited).
Option Description
F All decks on the OPL are edited and written to the

NPL listing, the compile file, and the source file
(if these files are generated).

omitted Decks to be edited are determined by the U parameter
or by EDIT directives.

I Defines the directive input file.
Option Description
I or omitted For interactive jobs, directives are on file INPUT.

For batch jobs, directives are in the next record of
the job file.

I=filename Directives are contained in the next record of file
filename.,
I=0 No directive input.

60450100 G 3-3

Parameter Description

L Defines the Modify statistical list file. (List optlons for this
file are specified by the LO parameter.) It is the job's
responsibility to save the named file after the Modify rum is
completed.

Option Description

L or omitted Modify statistical list is written to file OUTPUT,
which is automatically printed.

L=filename Modify statistical list is written to file filename.
=0 No statistical 1list file is generated.
Lo Defines the list options to be selected for the Modify statlstical

list file (as defined by the L parameter).
Option Description

LO or omitted For an output file connected to an interactive
terminal, list option E is selected; otherwise,
options C, D, E, M, S, T, and W are selected.

L0®cyc2...Cn The list options (ci); up to seven of the
following options can be specified:

A List active lines in deck.,
C List directives other than INSERT, DELETE,
RESTORE, MODNAME; I, OR D.

D List deck status.

E List errors.

I List inactive lines in deck.

M List modifications performed.

S Include statistics on listing.

T List text input.

W List compile file directives.

Example:

LO=ADEMS
N Defines the new program library output file. It i1s the job's
responsibility to save the file after the Modify run is completed.
Option Description

N New program library is written on file NPL.
N=filename New program library is written on file filename.

60450100

Parameter

60450100 G

Description
Option Description

=) or omitted No new program library file is generated.

If a local file already exists with the same name as
the new program library file, an EVICT command is
issued for the local file before the new file is
written. (Refer to the NOS Reference Set, Volume 3
for a description of the EVICT command.)

Specifies whether the compile file is rewound at the beginning and
end of the Modify rum.

Option Description
NR The compile file 1s not rewound.
omitted The compile file is rewouné at the beginning and at

the end of the Modify rum.
Defines the input (old) program library file (OPL).
EEEEEE Description
P or omitted File OPL is the input program library file.
P=filename _ File filename is the input program library file.
P=0 There 1s no input program library file.

Defines a call to an assembler or compiler at the end of the Modify
run., The directives file and statistical list file are not rewound.

Option Description

Q Calls the COMPASS assembler. At the beginning of
the Modify run, Modify sets LO=E and sets the A
parameter. At the end of the rum, Modify calls the
COMPASS assembler. Assembler input is assumed to be
file COMPILE. All other assembler parameters are
set by default. If CL is not specified with Q,
comment lines beginning with an asterisk in column 1
are not written to the compile file; however,
compile file directives are still processed.

=comp Calls the specified compiler or assembler., At the
beginning of the Modify rum, Modify sets LO=E and
sets the A parameter. At the end of the run, Modify
calls the compiler or assembler specified by comp.

Q=0 or omitted Modify makes no assembler or compiler call.

Parameter

Description
Option Description
Specifies the file on which source output listing is written;

invalid if A, Q, or X is specified. Your job must explicity save
the output file. -

Option Description
S Source output is written on file SOURCE.
S=filename Source output 1s written on file filename.

S=0 or omitted No source output is generated.

Specifies that an update edit is to be performed. If the F para-
meter is also specified, U is ignored.

Option Description

i) Update edit; only decks defined by a DECK directive
are edited and written to the compile file, new
program library file, and source file.

omitted If the F parameter is specified, a full edit is
performed. Otherwise,; only decks defined by EDIT
directives are edited.

Same as the Q parameter except that the directives input file and
Modify output listing file are rewound before processing.

Specifies that the input directives follow the MODIFY command
terminator; there is no input directives file. This parameter
eliminates the need for a separate directilves file when all
directives fit on the same line as the command.

The first character following the terminator defines the separator
character that separates the subsequent directives. The separator
character can be any display code character not used in one of the
directives, including a space. Directives can extend to column 72
of the line; continuation lines are not permitted. Do not place a
terminator character after the directives.

Example:

MODIFY,Z./*EDIT,DECK1/*EDIT,DECK2

60450100 G

INITIALIZATION DIRECTIVES 4

[s s e e e e e s e

Initialization directives define files to be used as input files for the Modify run in
addition to the program library specified on the MODIFY command P parameter. All files
specified by the P parameter and by the initialization directives are merged into a single
program library file for modification by subsequent Modify directives.

In the case where files defined by the initialization directives contain two or more decks
by the same name, only the most recently defined deck is retained on the internal OPL. In
other words, whenever a deck is written to the OPL, that deck logically replaces any
previous deck with the same name.

Initialization directives are placed on the directlves file, and all initialization
directives must precede all modification directives. The initialization directives are as
follows:

] COPY

® COPYPL
e CREATE
® OPLFILE

COPY DIRECTIVE

The COPY directive copies one or more decks from a named file to the file specified by the
MODIFY command P parameter. Before the copy operation begins, Modify performs an EVICT
operation on the file to receive the copy; therefore, any information previously contalned
in this file (if it exists) is lost. (Refer to the NOS Reference Set, Volume 3 for a
description of the EVICT command.) If P=0 was specified on the MODIFY command, you cannot
use the COPY directive.

With the exception of file manipulation directives, COPY must be the first directive
processed during the Modify run. Only one COPY operation is allowed per Modify runm.

COPY can copy all or part of the original file. Any records on the file that are not in
program library format are ignored. COPY creates new directory entries for decks copied,
ignoring the directory on the origimal file,

COPY is useful when copying all or part of a program library residing on magnetic tape to a
mass storage file. You can then save the copied file without having Modify create a new
program library. ’

60450100 G 4-1

Format:

#COPY filename,deckname

Where:
filename Specifies the name of a local file containing records in program
library format. The file need not have a directory and may contain
records not in program library format.
deckname Specifies the last deck to be copied. If deckname is omitted, or if

the named deck is not found, Modify coples all records from the
current file position to end-of-file, excluding any records not in
program library format.

COPYPL DIRECTIVE

The COPYPL directive coples one or more decks from a file already in program library
format. The decks are copied to the Modify internal OPL file where they are merged with any

other input files you have specified.
COPYPL can copy all or part of the original file. The file may reside on disk or on

magnetic tape. Any records on the file that are not in program library format are ignored.
COPYPL creates new directory entries for decks copied, ignoring the directory on the

original file,
Format:

*#COPYPL filename,deckname

Where:
filename Specifies the name of a local file containing records in program
library format. The file need not have a directory and may contain
records not in program library format.
deckname Specifies the last deck to be copied. If deckname 1s omitted, or if

the named deck is not found, Modify copies all records from the
current file position to end-of-file, excluding any records not in

program library format.

4-2 60450100 G

CREATE DIRECTIVE

The CREATE directive creates a program library file, with a directory, from a properly
formatted source file. (Refer to section 3 for a description of the source file format.)
You can use CREATE to create a new program library, to add decks to an existing program

library, or to replace decks on an existing program library.

Format:

*CREATE filename

Where:

Specifies the name of the source file to be converted to program

filename
library format. filename must be a local file.

OPLFILE DIRECTIVE

The OPLFILE directive specifies one or more program library files to be edited during the
Modify run, in addition to the file specified by the MODIFY command P parameter.

The total number of files declared by OPLFILE directives cannot exceed 50 files. If more
than 50 files are specified, the excess files are ignored, and a directive message is issued.

Format:

*QPLFILE filenameq,filename2,...,filenamep

Where:

filenamey Specifies the name of a local program library file (with a
directory) to be merged onto the internal OPL scratch file.

EXAMPLES OF INITIALIZATION DIRECTIVES

Figure 4-1 shows an interactive Modify run that creates two program libraries and uses
several initialization directives. Figure 4-2 shows the same Modify run to be submitted as

a batch job.

4-3

60450100 G

/old,mainp
/scopy,mainp

DECK1
ek k MAIN PROGRAM
PROGRAM MAIN Listing of source file, showing end-of-record
PRINT*,'BEGIN MAIN PROGRAM.°® marks, to be used to create program library.
CALL suB1 Notice required deck names.
PRINT*,'END MAIN PROGRAM.' R
STOP
END
~=EQR==
DECK3
*dk EMPTY DECK
~=EQR==
~=EQF== MODIFY command to create program library with name
/modify,p=0,l=0,f,n=mainpl,c=0 MAINPL. MAINPL is the result of converting the
?7 *create mainp source text file MAINP to program library format.

i d

MODIFICATION COMPLETE.
/catalog,mainpl,r

CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE

1 DECK1 oPL (64) 27 1457 85/07/30

2 DECK3 OPL (64) 4 1725 85/07/30

3 oPL OPLD 5 1310 85/07/30

4 x EOF * suM = 40
CATALOG COMPLETE.
/get,subl The CATALOG command is a convenlent means of
/copyctf,subl determining the decks and their types that were
DECK?2 written on the program library.

*ok % SUBROUTINE 1
SUBROUTINE SUB1
PRINT*,'ENTER SUBROUTINE 1.°

CALL suB2

PRINT*,'EXIT SUBROUTINE 1.°

RETURN

END & IDECK 2 is another source deck maintained on a
EOI ENCOUNTERED. jseparate program library.

/rewind,subi

REWIND,S5UB1.

/modi fy,p=0,1=0,f,n=altpl1,c=0 <@————— MODIFY command to create program library ALTPLI.
7 *create sub1 .

i

MODIFICATION COMPLETE.

/catatog,altpli,r

CATALOG OF ALTPL1 FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECK?Z2 oPL (64) 30 3217 85/07/30.
2 oPL OPLD 3 2117 85/07/30.
3 * EQF * SUM = 33
CATALOG COMPLETE. [ALTPLZ is an alternate program library created
/get,altpl2 =& lat an earlier session.
/catalog,attpl2,r
CATALOG OF ALTPL2 FILE 1
REC _ NAME TYPE LENGTH CKSUM DATE
1 DECK3 oPL (64) 25 2116 85/06/18.
2 OPL OPLD 3 2517 85/06/18.
3 * EOF * sum = 30

CATALOG COMPLETE.
/

Figure 4-1, Initialization Directives Examples (Sheet 1 of 2)

60450100

Program library MAINPL is renamed OPL, the default
/rename,opl=mainpl - filename for the P parameter. The P parameter is
RENAME ,OPL=MAINPL. lthen omitted from the MODIFY command.
/modify,f,l=0,n=mainpl

7 xoplfile altpl1 Modify run to merge OPL with program library ALTPL1
? xcopypl altpi2,deck3 and then use -ALTPL2 to replace deck DECK3 on OPL.
? The compile output of MAINPL is written on the
MODIFICATION COMPLETE. default file COMPILE.
/catalog,mainpl,r
CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE

1 DECK1 oOPL (64)) 27 1457 85/07/30.

2 DECK3 oPL (64) 25 2116 85/06/18.

3 DECKZ2 OPL (64) 30 3217 85/07/30.

4 oPL OPLD 7 5011 85/07/30.

S * EQF * sun f 113

CATALOG COMPLETE.
/replace,mainpl
/copycf,compile

ke MAIN PROGRAM DECK1 1
PROGRAM MAIN DECK1 2
PRINT*,'BEGIN MAIN PROGRAM.' DECK1T 3
CALL suB1 DECK1 4
PRINT*,'END MAIN PROGRAM.® DECK1T 5
STOP DECK1T 6
END DECK1T 7

*kk SUBROUTINE 2 DECK3 1
SUBROUTINE SUB2 Listing of compile DECK3 2
PRINT*,'ENTER SUBROUTINE 2.° file created by DECK3 3
PRINT*,'EXIT SUBROUTINE 2.°' Modify. Notdce DECK3 4
RETURN sequencing information. DECK3 ‘5
END DECK3 6

*kk SUBROUTINE 1 DECK2 1
SUBROUTINE SUB1 DECK2 2
PRINT*,'ENTER SUBROUTINE 1.° DECK2Z 3
CALL SuB2 DECK2 4
PRINT*,'EXIT SUBROUTINE 1.°' DECK2 5
RETURN DECK2 6
END DECK2 7

EOI ENCOUNTERED.

/rewind,compile

REWIND,COMPILE.

/ftn5,i=compile, | =0~ [compile file is used as input to FORTRAN 5
0.034 CP SECONDS COMPILATION TIME. compiler.,

/Llgo

BEGIN MAIN PROGRAM.

ENTER SUBROUTINE 1.

ENTER SUBROUTINE 2.

EXIT SUBROUTINE 2.=% Execution of FORTRAN 5 program.
EXIT SUBROUTINE 1.

END MAIN PROGRAM.

STOP

0.015 CP SECONDS EXECUTION TIME.

Figure 4-1. Initialization Directives Examples (Sheet 2 of 2)

60450100 G

4-5

JOB1.
USER,USERNUM,PASSWRD,FAMILY.
GET,MAINP.

MODIFY,P=0,F,N=MAINPL,C=0, ———""""

““§\“““-~

GET,SUB1.
MODIFY,P=0,F,N=ALTPL1,C=0.
GET,ALTPL2.
RENAME,OPL=MAINPL.

MODIFY,F,N=HMAINPL.
REPLACE,MAINPL.
FTNS,I=COMPILE.
REPLACE,LGO.

--EOR--
*CREATE MAINP
-=EOR-~-

*CREATE sUB1

-=EOR==

*OPLFILE ALTPL1
*COPYPL ALTPL2,DECK3
~=E0I~~

Creates new program library MAINPL. Since no
directive file is specified, Modify reads
directives from the first record following the
job file.

Creates new program library ALTPL]. Directives
are specified in the second record following the
Jjob.

Merges MAINPL, ALTPLl, and ALTP12 through DECK3.
Directives are specified in the third recbrd
following the job.

Figure 4-2,

Batch Job Creating Program Libraries

60450100 G

MODIFICATION DIRECTIVES 5

The modification directives are used to define new modification sets and to specify changes
to existing lines or modification sets.

Modification directives are placed on the directives file following the last initlalization
directive. The appearance of the first modification directive terminates the initialization
phase.

The modification directives are as follows:

® DECK

e DELETE or D

@ EDIT
® IDENT
] IGNORE

® INSERT or I

e MODNAME
e PURDECK
e RESTORE
® UNYANK

] YANK

60450100 G 5~1

DECK DIRECTIVE

The DECK directive identifies a deck to be modified as a part of the current modification
set (refer to the IDENT directive description). This directive also establishes the default
deckname (that is, the modname portion of the line identifier) for line identifiers in
subsequent modification directives.

The DECK directive does not affect line identifiers assigned to insertion lines. The IDENT
directive defines the modification set name (modname) for insertion lines.

A DECK directive is required for each deck associated with a modification set. The default
deck name established by a DECK directive continues until the next DECK directive is
processed., You can override the default deck name by specifying the full form of the line
identifier (refer to Line Identifiers in section 2).

Format:

*DECK deckname
Where:

deckname Specifies the 1= to 7-character name of the deck to be modified;
deckname can consist of alphanumeric characters and any of the
following special characters: + =%/ () § =

DELETE (OR D) DIRECTIVE

The DELETE or D directive deletes a specified line or block of lines and optionally inserts
replacement lines for the deleted lines. Lines named in a DELETE directive are logically
deleted (that is, deactivated) from the program library. In other words, they remain in the
program library and retain their sequencing, but they do not appear on output compile or
source files. You can restore deleted lines using the RESTORE directive.

Insertion of replacement lines following a DELETE operation continues until another
modification directive or an end-of-record is encountered. File manipulation directives
within the insertion lines are processed and may change the source of insertiom lines, but
do not terminate insertion and are not inserted into the deck. Compile file directives are
treated as insertion lines and are not processed.

Format:

*DELETE c¢cq,c2
or

*D cq,c2
Where:

ci Specifies a line identifier (refer to Line Identifiers in section 2).
If only ¢ is specified, it identifies a single lime to be deleted.

If ¢ and cp are both specified, they identify the first and last
lines of a range of lines to be deleted.

Any lines occurring within the range of lines specified that are already
deactivated are not affected by this directive.

5-=2 60450100 G

EDIT DIRECTIVE

The EDIT directive identifies decks to be modified and written to the selected output
files. A deck named in an EDIT directive is written to the output files regardless of
whether or not any lines within that deck were actually modified. EDIT directives are
ignored if either the F (full edit) or the U (update edit) parameter was specified on the
MODIFY command. -

Format:

*EDIT p1’p2,___’pn

Where:
Pi Specifies either a single deck name or a range of deck names to be
edited. If a range of deck names is specified, pj has the following
format:

decknamej ,deckname)

where deckname] gpecifies the first deck and deckname) specifies the
last deck in a series of decks to be edited.

Decks are edited in the sequence encountered on EDIT directives unless an UPDATE directive
specifies otherwise. If decks are being replaced or if new decks are added, the new decks
are placed at the end of the library, thus changing the sequence of decks oun the library.

This should be taken into account when specifying an edit sequence.

IDENT DIRECTIVE

The IDENT directive establishes a new modification set and defines the name of the set,
Subsequent DECK directives are associated with this modification set until another IDENT
directive 1s encountered. The entry of a PURDECK directive also terminates processing of a

modification set established by an IDENT directive.

The IDENT directive 1s optional; however, it is recommended that you include an IDENT
directive each time you modify a program library. If you do not include an IDENT directive,
Modify assigns the characters **¥%*** a5 a default modification name.

Format:
*IDENT modname

Where:

modnane Defines the 1= to 7-character name of the modification set. modname can
consist of alphanumeric characters and any of the followlng specilal
characters: +-*/ () §$ =

60450100 G

You can use one IDENT directive for several decks, or you can use multiple IDENT directives
within a deck. Within the directives file, an IDENT directive defining a modification set
must precede any other directives that reference that modification set.

For each DECK directive following an IDENT directive, a new entry 1s created in the
modification table for that deck. The entry contains the name and status (active or
inactive) of the new modification set. Likewise, for each line affected by the new
modification set, a new modification history byte 1s created. The modification history byte
marks the line as being associated with that modification set. (Refer to section 9 for
information on program library format.)

IGNORE DIRECTIVE

The IGNORE directive suspends processing of modification directives (except IDENT, DECK, and
EDIT) for a specified deck. If the specified deck is already selected for editing (that is,
if the F or U option is specified on the Modify command or if an EDIT directive is already
entered for the deck), the deck is written to the selected output files in its originmal,
unmodified form.

If the deck is not already selected for editing and is named in a subsequent EDIT directive,
Modify deletes the deck name from the EDIT directive, and the deck is not writtem to the
output files. If an ignored deck is named in an EDIT directive in the following format, a
directive error is issued, and the Modify run is aborted:

EDIT decknamea .decknamep
When Modify encounters an IDENT, DECK, or EDIT directive following an IGNORE directive, the
IGNORE condition is terminated. Normal processing of modification directives resumes with
the IDENT, DECK or EDIT directive.
Format:

*IGNORE deckname

Where:

deckname Name of the deck to be ignored.

5-4 60450100 G

INSERT (OR 1) DIRECTIVE

The INSERT directive inserts new text lines into the program library after a specified
line. Lines to be inserted must immediately follow the INSERT directive.

Insertion of lines continues until another modification directive or an end-of-record is
encountered. File manipulation directives within the insertion lines are processed and may
change the source of insertion lines, but do not terminate insertion and are not imserted
into the deck. Compile file directives within the insertion lines are treated as text lines
and are not processed.

Format:

*INSERT ¢
or
*I ¢

Where:

c Specifies the line ldentifier of the line after which insertion lines
are to be inserted.

MODNAME DIRECTIVE

The MODNAME directive changes the default modification set name (modname) for line identi-
fiers in subsequent modification directives. The modification set name specified by the
MODNAME directive must be the name of a modification set previously defined for the program

library.

The MODNAME directive does not affect line identifiers assigned to insertion lines. The
default modificatlon set name for insertion lines is defined by the IDENT directive.

The default modification set name established by MODNAME remains in effect until another
DECK or MODNAME directive is processed. To return to the default name established by the
last DECK directive, you can enter another MODNAME directive speclfying the name of that
deck.

Format:
*MODNAME modname
Where:
modname Defines the 1~ to 7-character name of the modification set, modname can

consist of alphanumeric characters and any of the following special
characters: + - %/ () § =

60450100 G 5=5

PURDECK DIRECTIVE

The PURDECK directive permanently removes a deck or group of decks from a program lihrary.
Every line of a deck is purged, regardless of the modification set it belongs to. You
cannot rescind a PURDECK operatiom.
You can place a PURDECK directive anywhere in the directives file. It terminates any
previous modification set; therefore, PURDECK cannot be followed by an INSERT, RESTORE, or
DELETE directive until another IDENT directive 1is processed.
PURDECK has two formats. The first format defines a list of one or more decks to be
purged. The second format defines the first and last decks of a serles of consecutlve decks
to be purged. i
Format one:

*PURDECK deCkname1,deckname2,...,decknamen

Where:

decknamej Specifies the name of a deck to be purged. !

Format two:

*PURDECK decknameq.deckname>

Where:

decknamej decknamej specifies the first deck and decknamey specifies the
last deck of a series of decks to be purged.

5-6 60450100 G

RESTORE DIRECTIVE

The RESTORE directive reactivates a line or block of lines previously deactivated by a
DELETE or YANK directive. RESTORE also inserts text lines into the program library
following the reactivated line or lines. Lines to be inserted must immediately follow the

RESTORE directive.

Insertion of lines following a RESTORE operation continues until another modification
directive is encountered or until EOR. File manipulation directives within the insertlon
lines are processed and may change the source of insertion lines, but do not terminate
insertion and are not inserted into the deck. Compile file directives are treated as
insertion lines and are not processed.

Format:

*RESTORE cq,c2

Where:

cy ‘" Specifies a line identifier (refer to Line Identifiers in section 2).
If only c¢1 is specified, it identifies a single line to be restored.

If ¢1 and c2 are both specified, they identify the first and last
lines of a range of lines to be restored. If any lines within the

specified range of lines are already active, they are not affected by
this directive.

UNYANK DIRECTIVE

The UNYANK directive rescinds a previous YANK directive. Like the YANK directive, UNYANK
can specify either a single modification set or a series of modification sets beginning with

the named set.

Format:

UNYANK modname,

Where:
modname Specifies the name of the modification set to be reactivated.
i Specifies that modname and all subsequent modification sets are to

reactivated; applicable only to decks in which modname appears in the
deck's modification table.

60450100 G

YANK DIRECTIVE

The YANK directive deactivates a modification set or sets. You can use this directlve to
deactivate a single modification set or a series of modification sets. When deactlvating a
series of sets (by specifying the * option), YANK deactivates all modification sets
subsequent to the named set for all decks in which the named modification set is listed in
the deck's modification table. (Refer to section 9 for more information on the modification
table format.)

A YANK directive causes Modify to search the edited decks for all lines affected by the
named modification set or sets. If a line was activated by the modification set, Modify
deactivates it. If a line was deactivated by the modification set, Modify reactivates it.

Modify generates a new modification history byte for every lime that changes status as a
result of the YANK operation. The edited decks are effectively restored to the status they
had prior to the original modification.

YANK affects only those decks that are edited by EDIT directives or by specification of the
F or U parameter on the MODIFY command. This allows the use of the YANK directive on
selected decks.

Format:

YANK modname,

Where:
modname Specifies the name of the modification set to be deactivated.
d Specifies that all modification sets subsequent to modname are also to

be deactivated; applicable only to decks in which modname appears in the
deck's modification table.

EXAMPLES OF MODIFICATION DIRECTIVES

Figure 5-1 contains a number of examples of modification directive usage.

5-8 60450100 G

/get,opl=mainpl
/modify,f,l=0,n=mainpl

d

3 e e D e 2D v e e e e ed 0D axd ed -

*ident mod1 -

«*deck deck3

*delete deck3.1

*dk subroutine 2, deck deck3.
*deck deck2

*d 1

This modification set is given name MODL.

[Refer to listing of compile file in figure 4-3 to

Tk subroutine 1, deck deck2.
*insert 3 :

* call subroutine sub?2

* in deck2.

*delete 7

LA L] end deck2.

*deck deck1

+d 1

sk main program, deck deckl.

MODIFICATION COMPLETE.
/copycf,compile
LA MAIN PROGRAM, DECK DECK1.

PROGRAM MAIN

PRINT«,'BEGIN MAIN PROGRAM.'
CALL SsuB1

PRINT*,'END MAIN PROGRAM.®
sTOP

END

x%% SUBROUTINE 2, DECK DECK3.

SUBROUTINE suB2
PRINT*,'ENTER SUBROUTINE 2.'
PRINT#,"EXIT SUBROUTINE 2.°'
RETURN

END

*kk SUBROUTINE 1, DECK DECKZ2.

SUBROUTINE SUB1
PRINT*,*ENTER SUBROUTINE 1.°
CALL SUBROUTINE SUB2

IN DECKZ2.

CALL suB2

PRINT*,*EXIT SUBROUTINE 1."
RETURN

*hk END DECKZ. -agt—

lreference line sequence numbers.

MmMop1 1

DECK1 2

DECK1 3

DECK1 4

DECK1 5

DECK1 é

DECK1 ?

MOD1 1

IListing of compile DECK3 2
file created by Modify. DECK3 3
DECK3 4

DECK3 5

DECK3 6

MoD1 1

DECK?2 2

DECK?2 3

Mop1 2

MOD1 3

DECK2 4

DECK2 5

DECK2 6

ster inadvertently MoD1 4

EOI ENCOUNTERED.

/modify,Ll=0,p=mainpl,n=mpli,c=comt

SRR R]

*jdent mod2
*deck deck2
*restore 7
*d mod1.3 ~<@—

deleted END statement.

f Modification run to restore deleted

*edit deck2

.MODIFICATION COMPLETE.
/copycf,coml

* kK SUBROUTINE 1, DECK DECKZ. Compile file contains MoD1 1
SUBROUTINE SuB1 only edited deck(s). DECK2 2
PRINT*,'ENTER SUBROUTINE 1.' DECK2Z2 3
CALL SUBROUTINE suB2 MoD1 2
CALL SUB2 - Note deleted line. DECK2 4
PRINT*,"EXIT SUBROUTINE 1.' DECK2 5
RETURN DECK?2 é
END - END statement restored. DECK2 7

*xk END DECKZ2. MOD1 4

‘41 line and delete line MODl.3.

EQI ENCOUNTERED.

/modify,l=0,p=mpl1,n=mpl2,c=com2

?
?
?
?
?
2

*jdent mod3
*deck deck?2
*modname mod1

*restore 3-&
*edit deck?2

"MODIFICATION COMPLETE.

Line deleted in previous Modify run is restored.

60450100 G

Figure 5-1. Modification

Directive Examples (Sheet 1 of 2)

copy,com2

*kk SUBROUTINE 1, DECK DECKZ MoD1 1
SUBROUTINE suB1 DECK?2 2
PRINT#,"ENTER SUBROUTINE 1.°' DECK2 3

* CALL SUBROUTINE suB2 MoD1 2

* IN DECK2. - Restored line. oD 3
CALL suB2 DECKZ 4
PRINT*,'EXIT SUBROUTINE 1.° . DECK2 5
RETURN DECK?Z2 6
END DECKZ2 7

LEA END DECK2. MOD1 4

EOI ENCOUNTERED.

/rewind,mainpl,mpl2

REWIND ,MAINPL,MPL2.

/libedit,i=0,p=mainpl,1=0,b=mpl2,c The LIBEDIT utility provides a convenient means

EDITING COMPLETE. of replacing or adding records on a file.

/catalog,mainpl,r

CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE

1 DECK1 oPL (64) 36 1221 85/08/14.
MoD1

2 DECK3 OPL (64) 34 1075 85/06/18.
MOD1

3 DECK2 orPL (64) 55 3330 85/08/14.
MOD1 MoD2 MOD3

& oPL oPLD 11 7477 85/08/14.

5 * EOF = SUN = 160

CATALOG COMPLETE.
/replace,mainpl Temporary modification run to deactivate
/modify,l=0,p=mainpl,c=com3,n=nplx modification set MOD3 and selectively
? *jdent modx edit deck DECK2.

w#deck deck?2

P

? *xyank mod3
?7 xedit deck?2
”

’ MODIFICATION COMPLETE.
/catalog,nplx,r

CATALOG OF NPLX FILE 1
REC NAME TYPE LENGTH CKSUM DATE
1 DECKZ2 oPL (64) 55 5530 85/08/14.
MOD1 Mop2 (MoD3)
2 orL OPLD \2117 85/08/14.
Yanked modification set is enclosed in parentheses.
3 * EQF =* SUM = 60
CATALOG COMPLETE.
/copy,com3
Jokk SUBROUTINE 1, DECK DECK2. MOoD1 1
SUBROUTINE suB1 DECK2 2
PRINT*,*ENTER SUBROUTINE 1.°' DECK2 3
* CALL SUBROUTINE SuB2 MOD1 2
CALL suB2 Compare with previous DECK2 4
PRINT®*,"EXIT SUBROUTINE 1.° compile file of DECKZ. DECK?2 5
RETURN DECK?2 6
END DECKZ2 7
* %k END DECK2. MOD1 4

E0I ENCOUNTERED

5-10

Figure 5-1. Modification Directive Examples (Sheet 2 of 2)

60450100 G

FILE MANIPULATION DIRECTIVES 6

B e s e

File manipulation directives provide control of flle positioning and the use of alternate
input files during the initialization and modification phases of a Modify run. File
manipulation directives can be inserted in the directives file defined by the MODIFY command
I parameter; they cannot be placed in alternate input file as specified by a READ or READPL
directive. The file manipulation directives are as follows:

e BKSP
e READ
e READPL
e RETURN
e REWIND
] SKIP
e SKIPR

Note that the manipulation of the following files by these directives is restricted:

INPUT NPL
OUTPUT SCR1
COMPILE SCR2
SOURCE SCR3
OPL

When specified on the MODIFY command, these file names are regerved and cannot be named in a
file manipulation directive. For example, 1f the S parameter is specified, file name SOURCE
is reserved and should not be used, File names SCR1l, SCR2, and SCR3 are always reserved.

60450100 G 6-1

BKSP DIRECTIVE

The BKSP directive repositions the named file one or more logical records in the reverse
direction. It does not backspace beyond the beginning—-of~information.

Format:

*BKSP file,n

Where:
file Specifies the name of the file to be repositiomed.
n Specifies the number of records to backspace. If n is omitted, a value

of 1 is assumed.

READ DIRECTIVE

The READ directive instructs Modify to temporarily stop reading directives and insertion
text from the primary directives file and to start reading from a specified alternate input
file. The alternate file can be in either directives file format or in source file format.
Modify reads the alternate file until an end-of-record or end-of-file is encountered
(depending on the READ directive format specified), then returns to the original input file
and begins reading the next directive following the READ directive.

The READ directive has three formats. The first format reads an entire file in directives
file format. The second format reads a specified record (until end-of-record) in source
file format. The third file reads an entire file (until end-of-file or a zero-byte record
i1s encountered) in source file format. Note that the second and third formats of READ
assume that the first line of each record is the record name. This line is discarded

without processing.
Format 1:
*READ filename
Where:
filename Specifies thé name of a file in directive file format.

Format 2:

*READ filename,deckname

Where:
filename Specifies the name of a file in source file format.
deckname Specifies the name of the deck to be read from file filename.

6-2 60450100

Format 3:

READ filename,

Where:
filename Specifies the name of a file in source file format.
* Instructs Modify to read all records of file filename.

READPL DIRECTIVE

The READPL directive instructs Modify to temporarily stop reading the directives file and to
start reading from a specified deck within the OPL. This directive allows you to copy text
lines from one point in the OPL to another.

Note that READPL cannot read the new version of a deck that has been modified during the
same Modify run. If you want to modify a deck and copy it to another part of the program
library, these two operations must be done in separate Modify runs; otherwlse, READPL copies
the old version of the deck.

Format:
*READPL deckname,cq,c2
Where:

deckname Specifies the name of the OPL deck from which text is to be read.

c1,e2 Specifies the portion of deckname to be read. If omitted, the entire
deck 1s read. ¢j and c) specify the first and last lines of a range
of lines to be read. If cj is specified, c2 must also be specified
(that is, at least two lines must be read).

RETURN DIRECTIVE
The RETURN directive returns the specified file or files to the system.
Format:

*RETURN fileq, filep,...,filen

Where:

fileg Specifies the name of a file to be returned.

60450100 G 6-3

REWIND DIRECTIVE

The REWIND directive repositions one or more files to beginning-of-information.
Format:

*REWIND fileq,filep,..., filen

Where:

filey Specifies the name of a file to be rewound.

SKIP DIRECTIVE
The SKIP directive repositions a file forward a specified number of records. If an

end~of-information is encountered before the specified number of records has been skipped,
the file is positioned at end-of-information.

Format:
*SKIP filename,n
Where:
filename Specifies the name of the file to be repositioned.

n Specifies the number of records to be skipped. If omitted, a value of 1
is assumed.

SKIPR DIRECTIVE

~The SKIPR directive repositions the named file forward past a specified record. It does not
position the file past end-of-information. If Modify is unable to locate the specified
record in the forward search, it positions the file at end-of-information and issues an

error message.

Format:

*#*SKIPR filename,recname

Where:
filename Specifies the name of the file to be repositiomed.
recname Specifies the name of the record after which the file is to be

positioned.

EXAMPLES OF FILE MANIPULATION DIRECTIVES

Figure 6-1 shows several examples of the file manipulation directives.

64 60450100

fold,dirfil -
/scopy,dirfil

Alternate directives file.

PRINT*,'LINE 1 ADDED BY MODIFICATION SET MODX.'

--EOR-~

PRINT%,'LINE 2 ADDED BY MODIFICATION SET MODX.'

“~=EQOR==
DECKX

PRINT*,'LINE 3 ADDED BY MODIFICATION SET MODX.'

-=-EQR--

*EDIT DECK1

*EDIT DECK2

*EDIT DECK3

~=EQR~-

~«EQF ==
/old,opl=mainpl
/get,dirfil
/modify,Ll=0,n=newpl,c=comx
? xskip dirfil,2
*ident modx

*deck deck2

*i 2

*read dirfil,deckx
*bksp dirfil,2
*deck deck3

*i 3

*read dirfil
*rewind dirfil
+deck deck1l

*i &4

*read dirfil
*skipr dirfil,deckx
«*read dirfil
*return dirfil

3 e e} 2 e s s

WD 0D e) oD 4) ed

MODIFICATION COMPLETE.

/copycf,comx

*kk MAIN PROGRAM, DECK DECK1.
PROGRAM MAIN
PRINT*,'BEGIN MAIN PROGRAM.'
CALL 5SuB1

Directive file.

PRINT*,"LINE 1 ADDED BY MODIFICATION SET MODX.'

PRINT*,'END MAIN PROGRAM.'
STOP
END

* %k SUBROUTINE 1, DECK DECKZ2.
SUBROUTINE suU31

PRINT*,'LINE 3 ADDED BY MODIFICATION SET MODX.'

PRINT#*,'ENTER SUBROUTINE 1.°
* CALL SUBROUTINE SuB2
* IN DECK2Z.
CALL suB2
PRINT*,"EXIT SUBROUTINE 1.°
RETURN
END
*kk END DECK2.
k% SUBROUTINE 2, DECK DECK3.
SUBROUTINE suB2
PRINT*,'ENTER SUBROUTINE 2.°

Compile file containing
modifications from
alternate directives
file.

PRINT*,'LINE 2 ADDED BY MODIFICATION SET MODX.'

PRINT*,'EXIT SUBROUTINE 2.'
RETURN
END

EOI ENCOUNTERED.

MOD1
DECK1
DECK1
DECK1
MODX
DECK1
DECK1
DECK1
MOD1
DECK2
MODX
DECKZ
Mnoo1
Mnop1
DECK?Z2
DECK?2
DECK2
DECK2
Mmop1
Mnop1
DECK3
DECK3
MODX
DECK3
DECK3
DECK3

VP2 WNRR PN WNWANGNGWM A W=

Figure 6-1. File Manipulation Directives Examples (Sheet 1 of 2)

60450100 G

6-5

/catalog,newpl,r

CATALOG OF NEWPL

REC NAME
1 DECK1
MOD1
2 DECKZ
MOD1
3 DECK3
MOD1

& oPL

5 * EOF *

CATALOG COMPLETE.
/rewind,comx
REWIND,COMX.
/ftn5,i=comx,L=0

TYPE

oPL (64)
MODX

oPL (64)
MobD2

oPL (64)
MODX

OPLD

SUM =

FILE

LENGTH

MOD3

L6

65

L4

206

0.040 CP SECONDS COMPILATION TIME.

/lgo
BEGIN MAIN PROGRAM.

LINE 3 ADDED BY MODIFICATION SET MODX.

ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.

LINE 2 ADDED BY MODIFICATION SET MODX.

EXIT SUBROUTINE 2.
EXIT SUBROUTINE 1.

LINE 1 ADDED BY MODIFICATION SET MODX.

END MAIN PROGRAM.
STOP

0.016 CP SECONDS EXECUTION TIME.

CKSUM DATE
14641 85/07/30-
7103 85/07/30.

MODX

0054 85/06/18.

7403 85/07/30.

Execution of modifled program.

Figure 6-1. File Manipulation Directives

Examples (Sheet 2 of 2)

60450100 G

COMRPILE FILE DIRECTIVES 7

The compile file directives provide control over the formatting of the compile file,
including the insertion of common decks into the complile file. You can embed complle file
directives in the source deck when you originally create a program library, or you can
insert compile file directives into a deck as part of a modification set. Wien in¢luded in
the directives file, compile file directives are not recognized as directives during the
modification phase of Modify processing; they are simply treated as text lines to be
inserted.

The compile file directives are as follows:

® CALL

e CALLALL
® éALLC

e COMMENT
® CSET

] 'CWEOR

] ELSE

e ENDIF

] IF

® IFCALL
e NIFCALL
e NOSEQ

® SEQ

e SORSEQ
e WEOF

e WEOR

[WIDTH

60450100 G 7-1

CALL DIRECTIVE

The CALL directive writes a copy of a common deck to the compile file. The CALL directive
itself 1s not written to the compile file, but it is written to the new program library and
source output files. Common deck calls may be nested; that is, a common deck may itself
contain a call to another common deck. However, a common deck may not call itself.

Format:

*CALL deckname

Where:

deckname Specifies the name of the common deck to be written to the compile
file.

CALLALL DIRECTIVE

The CALLALL directive writes all decks to the compile file that have a deck name beginning
with a specified character string. CALLALL cannot be used in a common deck. If encountered
in a common deck, it is ignored.

Format:

*CALLALL string

Where:

string A 1= to 7=character string that specifies the initial characters of
decks to be called.

Example:

The following call calls all common decks whose names begin with the characters CMD:

*CALLALL CHMD

60450100 G

CALLC DIRECTIVE

The CALLC directive performs a conditional call to a common deck. The deck called by CALLC
is written to the compile file only if that deck has not already been called from the deck
being edited. Entry of a new DECK directive resets this condition. The use of CALLC for
nested common deck calls inhibits the inclusion of duplicate copies of a common deck within
the same compile file deck.

Format:

*CALLC deckname

Where:

deckname Specifies the name of the common deck to be written to the compile file.

COMMENT DIRECTIVE

The COMMENT directive creates a COMPASS language COMMENT pseudo instruction in the following
format:

LOCATION OPERATION | VARIABLE SUBFIELDS

COMMENT crdate moddate comments

Where:
crdate Creation date in the format yy/mm/dd.
moddate Modification date in the format yy/mm/dd.
comments Comment string up to 70 characters long.

The comment begins in column 3. Modify obtains the dates from the operating system.

Format:
#* COMMENT comments .
Where:
comments Comment string up to 70 characters long.

60450100 G 7-3

CSET DIRECTIVE

The CSET directive overrides the code set designation for subsequently called common decks.
When a CSET directive precedes a common deck call in the directive file, the common deck is
expanded in the compile file in the code set specified by CSEI, regardless of the code set
defined for the common deck.

When in effect, the CSET directive also governs the code set for nested common deck calls.
CSET remains in effect until the end of the deck containing CSET or until another GCSET

directive is encountered. A CSET directive encountered in a common deck is ignored and is
written to the compile file as a comment.

Format:
*CSET charset
Where:
charset Can be either of the following:

ASCII Specifies expansion of common decks in 6/12-bit display
code (uppercase and lowercase characters).

DISPLAY Specifies expansion of common decks in 6-bit display code
(uppercase characters only).

CWEOR DIRECTIVE

The CWEOR directive conditionally writes an end-of-record (EOR) to the compile file. The
EOR is written on the condition that information has been written since the last EOR. The
CWEOR directive inhibits writing of successive EORs to the compile file. :

Formats

*CWEOR

ELSE DIRECTIVE

The ELSE directive reverses the effect of the preceding IF directive. When the IF directive
causes the following lines to be written to the compile file, ELSE terminates the
insertion. If the lines following IF were skipped, ELSE terminates the skip and begins
inserting the lines immediately following the ELSE directive. ENDIF terminates the
insertion of lines initiated by ELSE.

Format:

*ELSE

7-4 60450100

ENDIF DIRECTIVE

The ENDIF directive marks the end of the conditional insertion lines controlled by an IF
directive. If lines are being skipped as a result of the IF or ELSE directive, ENDIF
terminates skipping and resumes normal processing with the line following ENDIF. If lines
are not being skipped when ENDIF is encountered, ENDIF has no effect and processing
continues with the next line. -

Format:

*ENDIF

IF DIRECTIVE

The IF directive provides for the conditional insertion of lines into the compile file. The
IF directive defines a true or false condition to be tested by Modify. When Modify
processes an IF directive and finds the condition to be true, all text lines following the
IF directive are written to the compile file until an ELSE or ENDIF directive terminates the
insertion. If the condition is false, all lines following the IF directive are skipped
until an ELSE or ENDIF directive terminates skipping and resumes normal processing.

Format:

*IF attr,tname,tvalue

Where:
attr Defines the test attribute; must be one of the following:
DEF tname is defined by a DEFINE
directive.
UNDEF tname is not defined by a DEFINE
directive.
EQ tname equals tvalue.
NE tname does not equal tvalue.
tname Specifies a 1~ to 7-character name to be compared to names previously
defined by a DEFINE directive.
tvalue Specifies a numeric value to be compared to the value set by a DEFINE

directive. This parameter is not valid when the DEF or UNDEF attribute
is specified.

60450100 G : 7-5

IFCALL DIRECTIVE

The IFCALL directive conditionally writes a common deck to the compile file.
deck is called only if a specified name has been defined by a DEFINE directive during the

The common

modification phase.

Format:

*IFCALL cname,deckname

Where:
cname Specifies the name to be checked for definition by a DEFINE directive.
deckname Specifies the name of the common deck to be written to the compile file.

NIFCALL DIRECTIVE

The NIFCALL directive conditionally writes a common deck to the compile file.
deck is called only if a specified name has not been defined by a DEFINE directive during
The NIFCALL directive itself is not written to the compile file but

The common

the modification phase.
i{s written to the new program library and source output files.

Format:

*NIFCALL cname,deckname

Where:
cname Specifies the name to be checked for definition by a DEFINE directive.
deckname Specifies the name of the common deck to be written to the compile file.

NOSEQ DIRECTIVE

The NOSEQ directive inhibits the inclusion of line sequencing information on the compile
file.

Format:

*NOSEQ

60450100 G

SEQ DIRECTIVE

The SEQ directive instructs Modify to write line sequencing information to the compile
file. SEQ is usually used to reverse the effect of a previous NOSEQ directive.

Format:

*SEQ

SORSEQ DIRECTIVE

The SORSEQ directive specifies that compile file line sequencing information is to be
printed on the source output file (specified by the MODIFY command. S parameter). The
sequence information appears in columns 81 through 95 of the source output file.

Format:

*SORSEQ

WEOF DIRECTIVE
The WEOF directive writes an end-of-file (EOF) to the compile file.

Format:

*WEOF

WEOR DIRECTIVE

The WEOR directive writes an end—of-record (EOR) to the compile file.

Format:

*WEOR

60450100 G

WIDTH DIRECTIVE

The WIDTH directive sets the maximum line length for lines written to the compile file. The
line length set by this directive refers to the length of the line up to, and excluding, the
line sequencing information written to the compile file.

A WIDTH directive can be entered either during the initlalization phase or during the
compile phase. A WIDTH directive entered during the compile phase applies only for the deck
containing the WIDTH directive. A WIDTH directive entered during the initializatlon phase
is applicable for all decks except those containing a compile phase WIDTH directive. An
initialization WIDTH directive is overridden by a WIDTH directive entered for a particular
deck during the compile phase.

If no WIDTH directive is entered, Modify uses a default value of 72 columns for compile file
output.

Format:

*WIDTH n

Where:

n Specifies the length of complle file lines excluding line sequencing
information. The maximum value for n 1is 150 columns.

COMPILE FILE DIRECTIVE EXAMPLES

Figure 7-1 shows several examples of complle file directive usage.

7-8 60450100 G

/otd,opl=mainpl
/get,csub
/copycr,csub
DECK4

program library.

IDENT SUB3
ENTRY SUB3
*COMMENT CALL DECK DECKS

Copy of source file to be ilncorporated into

[T CALL COMMON DECK. [Notice call to common deck DECK5. If MYTEXT is
*NIFCALL MYTEXT,DECKS <& defined during the modification run, DECK5 is
SUB3 DATA 0 ENTRY/EXIT [not written on the compile file.

ORIGIN JOT

EQ sue3 RETURN

USE 17
JoT BSS 1

END

COPY COMPLETE.
/copycr,csub

DECKS

COMMON

ORIGIN MACRO A
SA1 468 GET JOB ORIGIN
MX0 24
Bxé ~X0*X1
AX6 24
SA6 A STORE JOB ORIGIN
ENDM

COPY COMPLETE.
/modify,f,p=0,L=0,n=mainpl,c=com1,s=mainp
*oplfile optl
*rewind csub
*create csub
*ident mod4
*deck deck1
*i 2
common jot

*1 3
call sub3
if(jot.eq.3)printx,'interactive job.'
if(jot.ne.3)print*,'batch job.'

*deck decké

*i 0

*yeor

#deck deck3

*yeor

*deck deck2
*d modl.4
*i 0

*weor

O 1D e tD ed oD end o] oD o) +d ed =D axd +d N sd oD o e 0 0

MODIFICATION COMPLETE.
/catalog,mainpl,r

CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE

1 DECKT oPL (64) 60 4621 85/08/14.
MoD1 MOD4

2 DECK3 OPL (64) 37 4355 85/06/18.
MOD1 moD4

3 DECK2 OPL (64) 61 7616 85/08/14.
Mop1 MOD2 MoD3 MOD4

4 DECK4 OPL (64) 50 1677 85/08/14.
MOD4

5 DECKS OPLC (64) 27 6354 85/08/14.

-] OPL OPLD 13 4046 85/08/14.

7 * EQF =« SUM = 312

CATALOG COMPLETE.

Modify run to create new program library
conslsting of source file and OPL.

*i 0 Addition of combile file directives,

Since no modifications
are made to the common
deck (DECKS), it is
acceptable to have the
common deck after the
calling deck (DECK4) on
the program library. The
next section shows how to
arrange the decks on the
program library.

Figure 7-1. Compile File Directives Examples

60450100 G

(Sheet 1 of 3)

/scopy,comi

* ok ok MAIN PROGRAM, DECX DECK1. MoD 1t 1
PROGRAM MAIN DECK1 2
COMMON JOT MOD4 1
PRINT#,"BEGIN MAIN PROGRAM.' DECK1 3
CALL SUB3 . MOD4 2
IF(JOT.EQ.3)PRINT#*, " INTERACTIVE JOB.' M0D4 3
IF(JOT.NE.3)PRINT*,'BATCH J0B.' MOD4 4
CALL suB1t DECK1 4
PRINT*,"END MAIN PROGRAM.® DECK1 S
STOP DECK1? -}
END DECK1? 7

-=«EQR==

s ik SUBROUTINE 2, DECK DECK3. MoD1 1
SUBROUTINE SuUB2 Listing of compile file. DECK3 2
PRINT*,*'ENTER SUBROUTINE 2.°' Notice separation into DECK3 3
PRINT#,'EXIT SUBROUTINE 2.°' records. DECK3 4
RETURN DECK3 5
END DECK3 -1

==EOR==

*kk SUBROUTINE 1, DECK DECK2. MOD1 9
SUBROUTINE SuUB1 DECK2 2
PRINT*,'ENTER SUBROUTINE 1.° DECK2 3

* CALL SUBROUTINE suB2 MOD1 2

* IN DECK2. MOD1 3
CALL SuB2 DECKZ2 4
PRINT*,'EXIT SUBROUTINE 1.°' DECK2 5
RETURN DECK2 6
END Modify has replaced DECK2 7

-=EOR== . #COMMENT directive with

IDENT suB3 COMPASS COMMENT state- DECKSL 1
ENTRY SUB3 ment on compile file. DECK& 2
COMMENT 85/08/14. 85/08/14. CALL DECK DECKS DECK4 3
[T Y] CALL COMMON DECK. DECK4 4
ORIGIN MACRO A DECKS 1
SA1 668 GET JOB ORIGIN MYTEXT was not DECKS 2
MX0 24 defined during the DECKS 3
BX6 =X0*X1 modification run. DECKS 4
AXb 24 Thus, the contents DECKS S
SA6 A STORE JOB ORIGIN of DECK5 have been DECKS]
ENDM written on the DECKS 7
SUB3 DATA O ENTRY/EXIT compile file. DECK& 6
ORIGIN JOT DECK& 7
EQ sus3 RETURN DECK4 8
USE 11 DECK4 9
JoT B8SS 1 DECK4& 10
END DECK& 11
==EQR=-
«=EQF==

/replace,mainpl
/pack,comt
PACK COMPLETE.
/ftnS,i=comt, =0
0.108 CP SECONDS COMPILATION TIME.
/lgo
BEGIN MAIN PROGRAM.
INTERACTIVE JOB.
ENTER SUBROUTINE 1.
ENTER SUBROUTINE 2.
EXIT SUBROUTINE 2.
EXIT SUBROUTINE 1.
END MAIN PROGRAM.
STOP

0.016 CP SECONDS EXECUTION TIME.

Figure 7-1. Compile File Directives Examples (Sheet 2 of 3)

7-10 60450100 G

/scopy,mainp

DECK1

* ol MAIN PROGRAM, DECK DECK1.
PROGRAM MAIN
COMMON JOT
PRINT*,"BEGIN MAIN PROGRAM.'
CALL SuB3

IF(JOT.EQ.3)PRINT*,'INTERACTIVE JOB.'

IF(JOT.NE.3)PRINT*, 'BATCH JOB.'
CALL suB1
PRINT*,"END MAIN PROGRAM.'
SToP
END

~~EQOR=~

DECK3

*WEOR

* ke SUBROUTINE 2, DECK DECK3.
SUBROUTINE SuB2
PRINT#*,"ENTER SUBROUTINE 2.'
PRINT#,'EXIT SUBROUTINE 2.°
RETURN
END

~=EQOR==

DECK2

*WEOR

Hdx SUBROUTINE 1, DECK DECK2.
SUBROUTINE SuB1
PRINT*,*ENTER SUBROUTINE 1.'

* CALL SUBROUTINE suB2
* IN DECKZ2.
CALL suB2
PRINT*,'EXIT SUBROUTINE 1.°'
RETURN
END
-=EQOR~=~
DECK4
*WEOR

IDENT suB3
ENTRY SUB3
#COMMENT CALL DECK DECKS

* ek CALL COMMON DECK.
*NIFCALL MYTEXT,DECKS
suB3 DATA o] ENTRY/EXIT
ORIGIN JOT
EQ suB3 RETURN
USE /7
JOoT BSS 1
END
-<EQR~~
DECKS
COMMON
ORIGIN MACRO A
SA1 648 GET JOB ORIGIN
Mxo 24
BX6 ~X0*X1
AX& 24
SA6 A STORE JOB ORIGIN
ENDM
~<EOQR==-
-~EQF==

Contents of source file created by Modify.

Source file contains call to common deck.

60450100 G

Figure 7-1. Compile File Directives Examples (Sheet 3 of 3)

7-11

lascii
ASCII.
/get , commsg
/copy,commsg
COMMSG
COMMON
ASCII
NOTE./This common deck could be used to store\{COMSG 18 an ASCII common deck called
NOTE./an informative message regarding the from common deck CPARMS.
NOTE./common parameters in deck CPARMS. Because
NOTE./this deck is called by the CALLC directive,
NOTE./only one copy of the message Wwill be
NOTE./include in the calling deck.
EQI ENCOUNTERED.
/get ,cparms
/copy,cparms

CPARMS CPARMS contains a set of parameters commoa
COMMON to both procedures stored in deck PRCDECK.
DISPLAY CPARMS also contains a call to deck
,P1"PARAMETER 1"=(*N=T01) COMMSG. A conditional call (CALLC) 1is
,P2"PARAMETER 2"=(*N=T02) used to ensure that only one copy of the
SP3"PARAMETER 3"=(*N=T03) message 1s written to the compile file.

*CALLC COMMSG
EOI ENCOUNTERED.
/get,tprocs
/copy,tprocs
PRCDECK |
*NOSEQ
sPROC,TPROCI*I
*CALL CPARMS
NOTE.//TPROC1 PARAMETERS = #P1=P1,#P2=P2,#P3=P3./
BEGIN, TPROC2,TPROCS.

REVERT,NOLIST.TPROCT

EXIT. PRCDECK contains two procedures, TPROCL
REVERT,ABORT.TPROC1 and TPROC2. TPROCL contains a nested
*WEOR procedure call to TPROC2.
<PROC,TPROCZ2*I

*CALL CPARMS
NOTE.//TPROC2 PARAMETERS = H#Pi=Pi1,#P2=P2,#P3=P3./
REVERT,NOLIST.TPROCZ
EXIT.
REVERT,ABORT.TPROC2
EOI ENCOUNTERED.
/rewind,*
17 FILES PROCESSED.

/modify,p=0,f,c,n
? *gcreate commsg Creates a program library contalning
? *create cparms COMMSG, CPARMS, and TPROCS.

? *create tprocs
2

.MODIFICATION COMPLETE.

Figure 7-2. NOS Procedure File With ASCII Deck (Sheet 1 of 3)

7-12 60450100

/catalog,npl,r

CATALOG OF NPL FILE 1
REC NAME TYPE LENGTH CKSUM
1 COMMSG OPLC (A64) 67 2546
2 CPARMS OPLC (64) 22 1316
3 PRCDECK OPL (64) 67 7332
4 OPL OPLD 7 1714
5 * EQF =* sSumM = 207

DATE
st CATALOG of NPL.

85/08/12.
85/08/12.
85/08/12.
85/08/12.

]COMMSG is marked as an ASCII

CATALOG COMPLETE.
/copy,compile
.PROC,TPROCT*I
SP1"PARAMETER 1"=(*N=T01)
,P2"PARAMETER 2"=(*N=T02)
~,P3"PARAMETER 3"=(*N=T03)

NOTE./This common deck could be used to store
NOTE./an informative message regarding the
NOTE./common parameters in deck CPARMS. Because
NOTE./this deck is called by the CALLC directive,
NOTE./only one copy of the message will be
NOTE./included in the calling deck.

NOTE.//TPROC1 PARAMETERS = #P1=P1,#P2=P2,#P3=P3./
BEGIN,TPROC2,TPROCS.

REVERT,NOLIST.TPROC1

EXIT.

REVERT,ABORT.TPROC1

.PROC,TPROCZ2*I

,P1"PARAMETER 1"=(%N=T01)

,P2"PARAMETER 2"=(*N=T02)

,P3"PARAMETER 3"=(*N=T03)

NOTE.//TPROC2 PARAMETERS =~ #P1=P1,#P2=P2,#P3=P3./
REVERT,NOLIST.TPROCZ
EXIT. :
REVERT,ABORT.TPROC2
EOI ENCOUNTERED.

lDECK.

[The compile file is renamed
TPROCS and is followed by a

/rename,tprocs=compile &

RENAME, TPROCS=COMPILE.

/tprocs

This common deck could be used to store

an informative message regarding the

common parameters in deck CPARMS. Because
this deck is called by the CALLC directive,
only one copy of the message will be
included in the calling deck. -

lcall to the procedure file.

fOutput from execution of file

TPROC1 PARAMETERS -~ P1=T01,P2=T02,P3=T03.

TPROC2 PARAMETERS - P1=T01,P2=T02,P3=T03.

44*1 TPROCS.

Figure 7-2. NOS Procedure File With ASCII Deck (Sheet 2 of 3)

60450100 G

7-13

/rename ,opl=npl
RENAME ,OPL=NPL.
/modify,f,c,n

29

D a3 3 e -

MODIFICATION COMPLETE.
/rename,tprocs=compile
RENAME ,TPROCS=COMPILE.

*ident csmod
*deck prcdeck
*i 2

*cset display-g

IInserts a CSET DISPLAY
directive as the third line

/tprocs

THIS COMMON DECK COULD BE USED TO STORE
AN INFORMATIVE MESSAGE REGARDING THE

COMMON PARAMETERS IN DECK CPARMS. BECAUSE [The CSET DISPLAY directive
THIS DECK IS CALLED BY THE CALLC DIRECTIVE, =g— causes contents of COMMSG to
ONLY ONE COPY OF THE MESSAGE WILL BE be printed in uppercase
INCLUDED IN THE CALLING DECK. characters.

TPROCT1 PARAMETERS - P1=T01,P2=T02,P3=T03.

TPROC2 PARAMETERS - _P1=T01,P2=T02,P3=T03.

lof deck PRCDECK.

7-14

Figure 7-2.

NOS Procedure File With ASCII Deck (Sheet 3 of 3)

60450100 G

SPECIAL DIRECTIVES 8

The speclal directives control miscellaneous operating features of Modify. You can place
special directives anywhere in the directives file.

The special directives are as follows:

® DEFINE

® INWIDTH
] MOVE

] PREFIX

® PREFIXC
® UPDATE

e /

DEFINE DIRECTIVE

The DEFINE directive defines a name and associated value to be used by conditional compiler
directives, IF, IFCALL, and NIFCALL. The IF directive uses a defined name to test for a

true or false condition. IFCALL calls a common deck if a specified name has been defined by
a DEFINE directive. NIFCALL calls a common deck if a specified name has not been defined by

a DEFINE directive.

Format:

*DEFINE dname,dvalue

Where:
dname Defines a 1= to 7-character name consisting of alphanumeric characters
and special characters: +-%/ () § =
dvalue Defines a numeric value assigned to dname. The maximum value for dvalue

is 1777773, If dvalue is omitted, a value of 0 is assumed.

60450100 G

INWIDTH DIRECTIVE

The INWIDTH directive defines the maximum line length of Modify input files. Since Modify
program libraries use a compressed format, Modify must know the maximum line lengths of
files to be compressed., The INWIDTH directive can be placed anywhere in the directives file.

Format:
*INWIDTH n

Where:

n Number of characters per line on input files. The maximum value that
can be specified for n is 150 characters; 72 characters is the default
line length.

MOVE DIRECTIVE

The MOVE directive repositions (reorders) one or more decks within a program library. For a
deck to be repositioned by a MOVE directive, it must have been selected for editing by
selection of the F or U parameter on the MODIFY command or by specification of an EDIT

directive.

The MOVE directive repositions decks by placing them after a specified deck within the
program library. The first parameter of the MOVE directive (deckname,) defines the deck
after which the repositioned decks are to be inserted. The remaining parameters define the
decks to be moved and the order in which they are to be positioned.

Format:
*MOVE decknamep, decknameqi,deckname2,...,decknamep
Where:

deckname,. Specifies the deck following which the repositioned decks are to be
placed.

decknamej Specifies the decks to be moved in the order they are to be reinserted
following decknamey,

60450100 G

PREFIX DIRECTIVE

The PREFIX directive changes the prefix character for subsequent Modify directives except
compile file directives. (To change the prefix character for compile file directives, use
PREFIXC.) The asterisk (*) is used for the prefix character if no PREFIX directive is

entered.
Format:

*PREFIX ¢

Where:

c Defines the prefix character; c can be any graphic character except a blank.

PREFIXC DIRECTIVE

The PREFIXC directive changes the prefix character for compile file directives. The
asterisk (*) is used for the prefix character if no PREFIXC directive is entered.

Format:
*PREFIXC ¢

Where:

c Defines the prefix character; c can be any graphic character except a blank.

UPDATE DIRECTIVE

The UPDATE directive affects the sequencing of lines in the compile file and the order in
which Modify edits decks.

With respect to line sequencing, UPDATE instructs Modify to sequence lines continuously from
one deck to the mext in the edit sequence. Normally, Modify resets the line sequence number

to 1 at the beginning of each deck.

With respect to the editing sequence, UPDATE instructs Modify to edit decks in the order
they appear in the OPL. This directive overrides the sequence determined by the EDIT
directives if the EDIT directives occur in some other order.

The UPDATE directive remains in effect until the end of the Modify run.

Format:

*UPDATE

60450100 G

/ DIRECTIVE

The / directive inserts a comment line into the Modify statistical list file; otherwise,
this directive is ignored. The / directive can occur anywhere in the directives file.

Format:
*/ comment"
Where:
comment Defines a comment string of up to the maximum line length.
Example:

*/ *kkkxkMODIFICATIONS* *k%x%%

EXAMPLES OF SPECIAL DIRECTIVES

Figure 8-1 shows several examples of speclal directives usage. Note that compile file
directives can be ignored (depending on the language processor) by changing the compile file
directive prefix character.

/old,oplt=mainpl
/modify,f,c=coml,n=mainpl,L=0
7 #/ c¢hange prefix character to #

7 wprefix # - \{Change Modify directive

?7 #ident modé prefix character.

? #deck decké

T #i b

? space & Change compile file prefix
7?7 #prefixe # <& character so directives on
? #move deckS5,decki,deck2,deck3 decké program library will be

2

? interpreted as comments.
MODIFICATION COMPLETE.
/catalog,mainpl,r

CATALOG OF MAINPL FILE 1
REC NAME TYPE LENGTH CKSUM DATE
The common deck (DECK5) now

1 DECKS OPLC (64) 27 6354 85/08/14. comes before any deck that
2 DECK1 oOPL (64) 60 6621 85/08/14. might call it.

MOD1 MOD4&
3 DECK2 OPL (64) 61 7616 85/08/14.

MOD1 Mob2 MOD3 MOD&
4 DECK3 oPL (64 37 4355 85/06/18.

MOD1 MOD4
5 DECK& OPL (64) 54 3334 85/08/14.

MOD4& Mopé
[} oPL OPLD 13 1535 85/08/15.
7 * EQF * SUM = 316

CATALOG COMPLETE.
/replace,mainpl

Figure 8-1. Specilal Directive Examples (Sheet 1 of 3)

8-4 60450100

/scopy,coml

*Akk MAIN PROGRAM, DECK DECK1.
PROGRAM MAIN
COMMON JOT
PRINT*,'"BEGIN MAIN PROGRAM.'
CALL suB3

IF(JOT.NE.3)PRINT*,"BATCH JOB.'
CALL suB1
PRINT*,'END MAIN PROGRAM.'
STOP
END
*WEOR
* Rk SUBROUTINE 1, DECK DECK2.
SUBROUTINE suB1
PRINT*,'ENTER SUBROUTINE 1.'

* CALL SUBROUTINE suBs2
* IN DECKZ2.
CALL suB2
PRINT*,'EXIT SUBROUTINE 1.°
RETURN
END
*WEOR

& kK SUBROUTINE 2, DECK DECK3.
SUBROUTINE suB2
PRINT%,'ENTER SUBROUTINE 2.°'
PRINT*,'EXIT SUBROUTINE 2.°'

«*deck deck1?
*modname modé
*insert 2
*if def,example
printx,'example has been defi

*ident mod? [

*else
'print*,'example has not been
*xendif

B R L]

MODIFICATION COMPLETE

/copycf,com2

*x A MAIN PROGRAM, DECK DECK1
PROGRAM MAIN
COMMON JOT R
PRINT*,'BEGIN MAIN PROGRAM.'
CALL SUB3
PRINT#*,'EXAMPLE HAS BEEN DEFINE
IF(JOT.EQ.3)PRINT*,'INTERACTIVE
IF(JOT.NE.3)PRINT*,'BATCH Jo0B.'
CALL suB1
PRINT*,'END MAIN PROGRAM.'
STOP
END

EOI ENCOUNTERED.
/

IF(JOT.EQ.3)PRINT*,'INTERACTIVE JoOB.'

Listing of compile file.
Compile file directives
have been ignored.

RETURN
END
*WEOR
IDENT SuB3
ENTRY SUB3
«COMMENT CALL DECK DECKS
*kk CALL COMMON DECK.
SPACE 4
*NIFCALL MYTEXT,DECKS
sue3 DATA 0 ENTRY/EXIT
ORIGIN JOT
EQ SUB3 RETURN
USE /17
JoT BSS 1
END
-=EQR~--
=-=EQF == EXAMPLE is defined before
/modify,c=com2,Ll=0,n=mainpl,u modset MOD7 is identified. Thus,
?7 *define example g when modset MOD7 goes into effect

during this wodification rum,
EXAMPLE will be defined but not
as part of modset MOD7.

ned.’

defined.'

D,'-%-— Inserted line.
JoB.'

M0D1
DECK1
MoD4
DECK1
MOD4&
MOD4&
MOD4
DECK1
DECK1
DECK?
DECK1
MOD4
MobD1
DECK2
DECK?Z2
Mon1
MOD1
DECK2
DECK2
DECK2
DECK2
MOD4
MOD1
DECK3
DECK3
DECK3
DECK3
DECK3
MoD4
DECK4
DECK4
DECK&
DECK4
MOD6
DECK4
DECK4
DECK4
DECK4&
DECK4
DECK4
DECK4

MOoD1
DECK1
MOD&
DECK1
MOD4&
MOD7
MOD4
MOD4
DECK1
DECK1
DECK1
DECK1

SOV NV 2P HNDLOOVNPUWHND DNV PHNWNAS NN AP WENWN2N

Y

NO WM PP WNON W AN

Figure 8-1.

60450100 G

Special Directive Examples (Sheet 2 of 3)

8-5

modify,c=com3,L=0,p=mainpl

EXAMPLE is not defined during this modification

? %edit deck1 run. The ®ELSE path in modset MOD7 will be taken.
2

MODIFICATION COMPLETE.
/copycf,com3

xx% MAIN PROGRAM, DECK DECK1. MOD1 1
PROGRAM MAIN DECK1 2
COMMON JoOT MOD& 1
PRINT*,'BEGIN MAIN PROGRAM.® . DECK? 3
CALL sus3 . MOD4 2
PRINT*,'EXAMPLE HAS NOT BEEN DEFINED.' <¢—— Inserted line. MOD7? 4
IF(JOT.EQ.3)PRINT*, ' INTERACTIVE JOB.' MOD4 3
IFCJOT.NE.3)PRINT*,*BATCH JOB." MOD& 4
CALL SUB1 DECKT 4
PRINT*,'END MAIN PROGRAM.' DECK1 5
STOP DECK1 6
END DECK? 7
£0I ENCOUNTERED.
/
Figure 8-1. Special Directive Examples (Sheet 3 of 3)
8-6 60450100 G

MODIFY FILE FORMATS 9

Types of Modify files significant to Modify execution are as follows:
e Source files
° Program library fileé
@ Directives file
] Compile file

® Statistical list file

SOURCE DECKS AND FILES

A source file is a collection of information either prepared by the user or generated by
Modify (MODIFY command S option).

USER-PREPARED INPUT SOURCE FILES

You prepare a source deck for input to Modify by imserting the appropriate header lines at
the beginning of the deck. The first line of a deck must always contain the deck name. If
the deck is to be designated as a common deck or as an ASCII or DISPIAY code deck, this
information is placed on the lines following the deck name. Section 2 gives detailed
information on header line formats. You may also insert compile file directives into the
source language deck to control compile file output from Modify. An end-of-record
terminates each source deck. An end-of-file or end-of-information terminates a group of
decks. The deck name, COMMON statements, and code set designator are not placed on the
program library.

Modify source decks should not be confused with a compiler or assembler program. A Modify
source deck can contain any number of FORTRAN programs, subroutines, or functions; COMPASS
assembler IDENT statements; or sets of data. Typically, each Modify deck contains one
program for the assembler or compiler or one set of data.

60450100 G 9-1

MODIFY-GENERATED SOURCE FILES

The source file generated as output by Modify contains a copy of all active lines within
decks written on the compile file and new program library. The source file is optional
output from Modify and is controlled through use of the S option on the MODIFY command.

Once generated, the source file can be used as source input on a subsequent Modify run. The
file is a coded file that contains 150~column images. Any sequencing information beyond the
150th column 1s truncated unless the SORSEQ directive has been entered. When the F para-
meter is selected on the MODIFY command, the source file contains all lines needed to
recreate the latest copy of the program library.

When the U parameter is selected, the source file contains only those decks named on DECK
directives; that is, only the decks updated during the current Modify run.

When neither F nor U is selected, the source file contains only those decks explicity
requested on EDIT directives.

PROGRAM LIBRARY FILES

Program library files (figure 9-1) provide the primary form of input to Modify. When a
program library file is input, it is an old program library and has a default name of OPL.
When it is output, it is a new program library and has a default name of NPL. During
execution of Modify, the program library files must reside on disk.

Before writing the new program library, an EVICT is performed on the file. Refer to NOS
Reference Set, volume 3, for a description of the EVICT command .

A program library consists of a record for each deck on the library. The last deck record
is followed by a record containing the library directory. EDIT directives and the MODIFY

command options determine the contents of the new program library. Only edited decks are

written on the new program library.

9-2 60450100 G

prefix table

modification table)

Deck (record);

text

End-of-record,

prefix tablep

modification tablep

Deck (record)p

fexto

End-of-recordp

prefix tabley

— !
=0

End -of~—recordp-|

prefix tabien

modification tablep

Deck (record)p

textin

End-of-record,

prefix tablen 4

directory table

End -of -record 4

End-of-information

60450100 G

Figure 9-1. Library File Format

9-3

DECK RECORDS

Each deck record consists of a prefix table, a modificatiom table, and text.

Prefix Table Format

59 47 35 |7 11 0
) 7700 | 18 | o
[deckname] reserved
2 creation date
3 lost modification date
°
LJ zeros
7
10g
: commenis
\6g T
i8]
Word Bits Field Description
0 59-48 Table type Identifies table as prefix table.
47-36 wc Word count; length of table is 16g words.
35=-00 none Reserved for future systém use.
1 59-18 deckname Name of deck obtained for source deck identification line;
1 to 7 characters.
17-00 none Reserved for future system use.
2 590-00 creation date Date that deck was created.
Format of date is as follows:
yy/mm/dd
3 59-00 latest Date of most recent entry in modification table. Format
modification of the date is the same as for creation date.
date
1l6g 11-06 code set Identifies code set used to create this deck.
01 ASCII (6/12~bit display code)
00 DISPLAY (6-bit display code)
1l6g 05-00 char set Identifies character set used to create this deck.

00g 63-character set
64g 64-character set

60450100

Modification Table Format

59 47 7 I o]
ID Word O 700x reserved 1 7
| modname | //‘ y]
2 modname Y 0
3 °
Q-.\ ° At
gy . '7-.
-1 modname 4 _ | Vy o]
¢ modname ¢ y o}
D
Word Bits Fileld Description
0 59-48 Table type Identifies table as modification table. The least
significant digit indicates whether the deck is common
not as follows:
1 Deck i3 not common.
2 Deck 1s common.
47-12 none Reserved for future system use.
11-00 ¢ Number of modification names in table,
wordy 59-18 modnamej 1- to 7-character modification set name. Each modifi-
cation to a deck causes a new entry in this table.
16 i YANK flag is as follows:
0 Modifier is not yanked.
1 Modifier is yanked.
60450100 G

or

9-5

Text Format

Text is an indefinite number of words that contaln a modification history and the compressed
image of each line in the deck. Text for each line is in the following format:

59 53 35 I7 0
ul we seq. no. mhb mhba
W A mhbx mhbg mhbg
= . o
compressed text
Bits Field Description
59 a Activity bit is as follows:
0 Line is inactive.
1 ILine 1s active.
58=54 we Number of words of compressed text.
53-36 seq no Sequence number (octal) of line according to position 1n deck
or modification set. ’ '
35-18 mhby Modification history byte. Modify creates a byte for each
and modification set that changes the status of the line. Modifi-
subsequent cation history bytes continue to a zero byte. Since this zero
18-bit byte could be the first byte of a word and the compressed
bytes line image begins a new word, the modification history

9-6

portion of the text could terminate with a zero word. The
format of mhby is as follows:

16]

([e |

NN

a Activate bit 1is as follows:

0 Modification set deactivated the line.
1 Modification set activated the line.

mod Index to the entry in the modification table that

no contains the name of the modification set that
changes the line status. A modification number of
zero indicates the deck name.

60450100 G

Bits Field ‘ Description

compressed The compressed image of the line is display code. Omne or two

text spaces are each represented by 55g; they are not compressed.
Three or more embedded spaces are replaced in the image as
follows:

3 spaces replaced by 0002
4 spaces replaced by 0003

64 spaces replaced by 0077g

65 spaces replaced by 007755g
66 spaces replaced by 00775555g
67 spaces replaced by 00770002g

Trailing spaces are not considered as embedded and are not
included in the line image. On a 64-character set program
library or compressed compile file, a 00 character (colon) is
represented as a 0001 byte. A 12-bit zero byte marks the end
of the line.

DIRECTORY RECORD

The library file directory contains a prefix table followed by a table containing a two-word
entry for each deck in the library. Directory entries are in the same sequence as the decks
on the library.

Prefix Table Format

59 47 35 17 0
0 7700 | 16 | 0
| name I reserved
2 date
[
-]
L] Zeros
7
10g
L3 comments
-]
18g
name A Modify-generated directory has the name OPL. However, if the name of the

directory is changed (by LIBEDIT, for example), that name 1s retained on new
program libraries then generated.

60450100 G 9-7

Directory Table Format

59 47 29 17 [+
ID Word 0 7000 | o t
| deckname type,
2 o] l random address)
3 deckname » typep
4 o I random addressp
£ decknome g /o type g /2
1 [e] . random address g /o
ID
Word Bits Field Description
0 59-48 Table type Identifies table as program library directory.
17-00 & Directory length excluding ID word.
1, 3, 59-18 decknamej Name of program library deck; 1 to 7 characters,
ooy left~justified.
-1
17-00 typey Type of record:
6 01d program library deck (OPL).
7 01d program library common deck (OPLC).
10 01d program library directory (OPLD).
“NOTE
Other record types are defined for NOS but
are ignored by Modify (refer to NOS
Reference Set, volume 3, for a complete
description of record types).
2, 4, 29-00 random Address of deck relative to beginning of file.
coes |l addressy

9-8 60450100

DIRECTIVES FILE

The directives file contains the Modify directives record., This record consists of
initialization, file manipulation, and modification directives, and any source lines
(including compile directives) to be inserted into the program library decks. An option of
the MODIFY command designates the file from which Modify reads directives. Normally, the
directive file is the job INPUT file. READ and READPL directives cause Modify to stop
reading directives from the directives file named on the MODIFY command and to begin reading
from some other file containing directives or insertion lines.

COMPILE FILE

The compile file is the primary form of output for Modify. It can be suppressed by the C=0
parameter of the MODIFY command if compile file output is not required.

If a compile file 1s specified on the MODIFY command, Modify writes the edited programs on
it in a format acceptable as source input to an assembler, compiler, or other data proces-
sor. Through MODIFY command parameters and directives, you can specify whether the text on
the file is to be compressed or expanded, sequenced or unsequenced. If the text is expanded,
you can also specify the width of each line of text preceding the sequence Informationm.

Expanded compile file format for each line consists of x columns of the expanded line (where
x is the width requested), followed by 14 columns of sequence information, if sequencing
information is requested, and terminated by a zero byte. An end-of-record terminates the
decks written on the compile file.

COMPRESSED COMPILE FILE FORMAT

59 47 35 i 1" o
1D Word 0 00 | oo | chor sat { o

| modname | #84Q. 10, |

2
compressed line)

{L
37

{L
37

modname l 36q. NO.pp

comprassed linep

char set Character set of record. 0000g signifies 63~character set.
0064g signifies 64-character set.

seq noj Sequence number of the line relative to the modification set
identified by modname.

compressed A line in compressed form. Refer to the compressed text descrip-
line tion on the previous page for text formats of deck records.

60450100 G 9-9

STATISTICAL LIST FILE

Depending on list options selected on the MODIFY command, statlstical list output for Modify
contains the following items:

e Input directives
® Status of each deck
Modifiers are listed first, followed by a list of activated lines, deactivated
lines, active lines, and inactive lines as they are encountered. To the left of
each line are two flags: a status flag and an activity flag. The status flag can
be I (inactive) or A (active). The activity flag can be D (deleted) or A
(activated). Following these lines are the unprocessed modifications and errors, if
any. The last line contains a count of active lines, inactive lines, and inserted
lines.
e Statistics
This includes lists of the following:
- Decks on program library’
-~ Common decks on program library
~ Decks added by initialization directives
- Decks on new program library
- Decks written on compile file
A replaced deck is enclosed by parentheses. Completing the statistics is a line
containing counts of the number of lines on the compile file and the amount of
storage used during the Modify rum.
] Errors
Modify prints the line in error, if any, above the diagnostic message. Error

messages other than those identified as fatal can be overridden through selection of
the MODIFY command D (debug) option.

SCRATCH FILES °
Modify uses scratch files in the following situations:
e Scratch File 1 Used when common decks are modified and no new program library is
(SCR1L) requested.
® Scratch File 2 Used when insertions overflow memory.
(SCR2)

e Scratch File 3 Used when a CREATE or COPYPL directive is processed. This file is
(SCR3) in program library format.

These files are returned by Modify at the end of the Modify run.

9-10 60450100 G

BATCH JOB EXAMPLES ‘ 10

CREATE PROGRAM LIBRARY

EXAMPLE 1

This example illustrates how Modify can be used to construct a file in program library
format from source decks. This example contains only one source deck (PROG), consisting of
a FORTRAN 5 program. The deck is terminated by an end-of-flle mark. The next record om the
job file contains the directives. It 1s the job's responsibility to save the newly created
program library (TAPE) for use in future Modify rums.

" Unless C=0 is specified, a compile file 1s generated., This example shows the compile file
(COMPILE) being used as input to the compiler. The compiler places the compiled program on
file LGO. The LGO command calls for loading and execution of the compiled program.

MOoDJOB.
USER,USERNUM,PASSWRD,FAMILY.
COPYBF,INPUT,SOURCE.
MODIFY,P=0,N=TAPE,F.
FTN5,I=COMPILE.

. File-related commands.

LGO.
--EOR--
PROG

(SOURCE DECK)

-~EQF=-~

*REWIND SOURCE

*CREATE SOURCE <<@®————— Directives Input.
-=-EQI~-~-

60450100 G 10-1

EXAMPLE 2

This example illustrates creation of a library from source decks on a source file other than
the job file. After the library has been created, it can be modified, edited, and written
on a compile file for use by an assembler or compiler.

Contents of File SALLY:
TOM
COMMON

(SOURCE DECK FOR TOM)

--EOR--
JACK
COMMON

@

(SOURCE DECK FOR JACK)

--EOR-~-
RON

(SOURCE DECK FOR RON)

*CALL TOM
*IFCALL REQ,JACK
-=E0I--

10-2

Job Decks:
Job command

e

MODIFY, N,F,P=0.

-~EOR-~
*REWIND SALLY
*CREATE SALLY

*DEFINE REQ

File-related
commands.

Directives Input.

60450100 G

MODIFY PROGRAM LIBRARY

EXAMPLE 1

In this example, Modify uses all default parameters. The- sequencing information shown for

inserted lines is assigned during modificatiom.

MODIFY. File-related commands.

=-~EQR=~

*IDENT MOD10

*DECK BOTTLE

*/ *%x%x%**MODIFICATIONS

*D 10

*D 4

(TEXT LINE TO BE INSERTED IS ASSIGNED MOD10.1)
*D 20,22

(TEXT LINES TO BE INSERTED ARE ASSIGNED TO MOD10.2 THROUGH MOD10.4

*1 M0D9.30

(TEXT LINE TO BE INSERTED IS ASSIGNED M0D10.5)
*EDIT BOTTLE

--EQ0I--

60450100 G

\ Modification
set MOD1O0.

10-3

EXAMPLE 2

This job modifies deck EDNA for replacement on the program library. No complle file is
produced.

MODIFY,N,C=0. File~related commands.
==EQR==-
*IDENT A2 . Modification set A2,
*DECK EDNA
*MODNAME A1
%/ %*%%*%**MODIFICATIONS
*D 30 Delete line Al.30.
TAG RJ CHECK Insert line A2.1.
*MODNAME EDNA
*I 7011
ERR SA1 LIST1 3
ZR X1,ABORT Insert lines A2.2 through A2.5
PRINT (D**%* ERROR 131 *%%) after EDNA.7011.
EQ ABORT
*D 7644,?650} < { Delete lines EDNA.7644 through
*EDIT EDNA EDNA.7650.
==EQLl=~

10-4 60450100

3]

MOVE TEXT

EXAMPLE 1

The following job calls Modify twice.

On the first call,-Modify deactivates all but lines

32 through 54 and writes the source for these lines on source fille FRANK. On the second
call, Modify deletes the remainder of the lines and reinserts the saved lines at the

beginning of KEN.

MODIFY,S=FRANK,C=0.
MODIFY,N,C=CAL.

-=-EOR=--
*IDENT MOV1
*DECK KEN
*D 1,31
*D 55,63
*EDIT KEN
~=EQOR=--
*IDENT MOvV2

*REWIND FRANK

*DECK KEN
*D 32,54
*I 0

*READ FRANK,KEN

*EDIT KEN
--E0I--

60450100 G

File-related commands.

Modification set MOV1.

Delete lines before line KEN,32.

Delete lines ' KEN.55 through KEN.63.
Transfer remaining lines (KEN.32 through
KEN.54) to source file FRANK.,
Modification set MOV2,

Delete remainder of lines in KEN.

Insert lines at beginning of KEN.

Read insertion text from deck KEN on file
FRANK.

10-5

EXAMPLE 2

This job moves text lines from one deck to another.

On the first call to Modify, lines 32

through 54 of deck KEN on file OPL are saved on source file FRANK. On the second call, the

saved lines are inserted into deck WILL.

10-6

MODIFY,S=FRANK,C=0.
MODIFY,N,C=MEL.

==EQR=-
*IDENT
*DECK
*D

%D
*EDIT
=-=EQOR="-
*REWIND
*IDENT
*DECK

* 1
*READ
*EDIT
==EQI--

F1

KEN
1,31
55,63
KEN

FRANK

F2

WILL

25
FRANK,KEN
WILL

File-related commands.

Modification set Fl.

Delete lines KEN.1l through KEN.31l.
Save lines KEN.32 through KEN.54 on source
file FRANK.

Insert text after line WILL.25.
Insertion text taken from deck KEN on file FRANK.
Deck WILL is written on NPL aud compile file MEL.

60450100 G

READ DIRECTIVES FROM AN ALTERNATE FILE

This job illustrates how the READ directive can be used to change the source of directives

and correction text from the primary input file (in this case INPUT) to some

<«@—————— File-related commands.

MODIFY.
COMPASS,I=COMPILE.
LGO.
--EOR--
*IDENT JAN
*READ DIR Read contents of DIR.
*DECK (
*DECK A

Corrections for A.

-=EQR-- *DECK B
Corrections for B.

Return to INPUT file

60450100 G

other file.

10-7

YANK AND UNYANK MODIFICATION SETS

This example illustrates a job that deactivates modification set JULY and all subsequent
modification sets. The change is not incorporated into the library; it is for the purposes
of this run only.

. - File-related commands.

MODIFY,P=LIB,F.
COMPASS,I=COMPILE.
LGO.

-=EOR~--

*IDENT NEGATE
*DECK MASTER
YANK JULY,
==EQI~=

To incorporate the preceding change on a new program library, add the N parameter to the
MODIFY command.

The effects of a YANK can be nullified in future runs and, consequently, the effects of the
yanked modification sets can be restored through the UNYANK directive. Such a modification
night appear as follows:

*IDENT RESTORE
*DECK MASTER
UNYANK JULY,

PURGE DECKS

Decks BAD, WORSE, and WORST are no longer needed. The following job removes them from the
library. They could alsoc be removed through a selective edit using EDIT directives. In
elther case, the removal is permanent.

MODIFIY,N,C=0,F.

. > File-related commands.

--EOR=--
*PURDECK BAD,WORSE,WORST
--E0I--

10-8 60450100 G

CHANGE THE DIRECTIVES PREFIX CHARACTER

EXAMPLE 1

This example illustrates how to maintain directives input on a library.

Because * 1is the

prefix used on the library, a different prefix is required when modifying the library. In
this case, / becomes the prefix character.

‘The

After file 7 is produced, the deck GRMITD is modified by the contents of Z.

ATTACH,OPL.

GET,FIX.
MODIFY,P=FIX,(=Z,N=FIX2.
REWIND,Z.
COPYSBF,Z,0UTPUT.,
REWIND,Z.

MODIFY,I=Z.
COMPASS,I,S,B=LT01.

~=EQR==-

*PREFIX /
/WIDTH 58
/IDENT F1

/DECK CORR

/1 873

*1 1007
Lpc 77778
STHM STMA+1

/D 880

/EDIT .CORR

-=EQI--

contents of deck CORR on compile file Z are as follows:

*IDENT NIX CORR 1
*DECK GRMI1TD CORR 2
*1 MHD2.19 CORR 3
*D 997,1000 CORR 873
*1 1007 F1 1
LbC 77778 F1 2 Inserted lines.
STHM STMA+1 F1 3
LJM STM CORR 879 < Instruction CORR.880
*D 980,984 CORR 881 has been deleted.

The resulting

compile file (COMPILE) contains COMPASS language PP code and is assembled using COMPASS.

60450100 G

10-9

The job produces a new program library (FIX2) incorporating the changes made to deck CORR.
The resulting COMPASS listing appears as follows:

Corrections . Contents of
. on File Z COMPILE
o (Correction IDs) (Deck IDs)
STD SM GRMI1TD 1007
LDC T77778B F1 2 NIX 11
STM STMA+1T F1 3 NIX 12

Since the comments go through the correction identification, the INWIDTH directive must be
deleted 1f a new program library is generated. However, for maintenance purposes, there is
an advantage of seeing the correction identifiers with the deck identifiers.

EXAMPLE 2

This example illustrates changing the compile file prefix character so that when Modify
produces the compile file, it recognizes only directives using the specified prefizx. The
directives prefix, in this case, is unaltered.

ATTACH,OPL.
MODIFY.
COMPASS,I,5,B.
==EOR=-
#*IDENT TESTI
*DECK TEST
*PREFIXC /
*EDIT TEST
-~EQI~--

10-10 60450100 G

Deck TEST contains the following:

LDM TCLT
STD CM
*CALL PCC
/CALL PPCA

Modify ignores the common deck call to PPC. COMPASS interprets it as a comment. Modify
acts on the common deck call to PPCA and replaces the /CALL directive with a copy of common
deck PPCA.

USE OF THE Z PARAMETER

EXAMPLE 1
The following MODIFY command creates a compile file from an alternate OPL:

MODIFY,Z./*OPLFILE,OPLZ/*EDIT,DECK1

EXAMPLE 2
This MODIFY command write two decks to the compile file:

MODIFY,Z./*EDIT,DECK1,DECK2

SAMPLE FORTRAN 5 PROGRAM

This set of Modify exzamples illustrates how you can use Modify to maintain a FORTRAN 5
program in program library format. The FORTRAN 5 program calculates the area of a triangle
from the base and heilght read from the data record.

60450100 G 10-11

EXAMPLE 1

The following job places the FORTRAN 5 program and subroutine as a single deck (ONE) on the
new program library (NPL) and on the compile file (COMPILE). Following Modify execution,
FORTRAN 5 is called to compile the program. The LGO command calls for execution of the
compiled program. This program does not execute because of an error in the SUBOUTINE
statement. The name of the subroutine should be MSG, not MSA.

COPYBF,INPUT,S.
MODIFY,P=0,N,F.
FTN5,I=COMPILE.
LGO.

File-related commands.

==EQR==
ONE =% Deck name.
PROGRAM ONE (TAPE1)
: PRINT 5
5 FORMAT (1HT)
10 READ 100,BASE,HEIGHT,I
100 FORMAT(2F10.2, I1)
IF (I.6T.0) GO TO 120
IF (BASE.LE.O0) GO TO 105
IF (HEIGHT.LE.D) GO TO 105
GO TO 106
105 CALL MSG
106 AREA= .5%*BASE*HEIGHT
PRINT 110,BASE,HEIGHT,AREA
110 FORMAT(///,? BASE=",F20.5,°% HEIGHT=",
+F18.5,/,"' AREA=',F20.5)

WRITE(1) AREA Should be SUBROUTINE MSG.
GO TO 10
120 STOP
END
SUBROUTINE MSA
PRINT 400
400 FORMAT (///,'FOLLOWING INPUT DATA NEGATIVE OR ZERO")
RETURN
END
--EOF-- = End of source deck.
*REWIND S - Directives input.
*CREATE S
-=EQR==-
200.24 500.76
300.24 600.76
400.00 700.00
326.32 425.36
500.00 600.00 } Data record.
000.00 150.00
700.43 800.00
100.00 300.00
050.00 100.00
150.00 200.00 |
1
--EQ0I-~

10-12 60450100

EXAMPLE 2

Examination of Modify output from the creation job reveals that the erroneous SUBROUTINE

statement has line identifier ONE.20.
new program library.

MODIFY,N,F.
FTN5,I=COMPILE.
LGO.

==-EOR~--

*IDENT MOD1
*DECK ONE

*DELETE 20 ’

SUBROUTINE MSG -#f————— Jdentified as MOD1l.1l on NPL.

-=EOR~-- 1
200.24 500.76
300.24 600.76
400.00 700.00
326.32 425.36
500.00 600.00 >
000.00 150.00
700.43 800.00
100.00 300.00
050.00 100.00
150.00 200.00]
1
--E0I--

60450100 G

The following job corrects the error and generates a

Data record.

10-13

EXAMPLE 3

This job uses the same input as the flrst job but divides the program into two decks:

and MSG. DECK MSG is a common deck.

ONE
A CALL MSG directive is inserted into deck ONE to

ensure that MSG is written on the compile file whemever deck ONE is edited.

COPYBF,INPUT,S.
MODIFY,P=0,N,F.
FTN5,I=COMPILE.
LGO.

- g
==EQOR~-~
MSG
COMMON
SUBROUTINE MSG
PRINT 400
FORMAT (///,"FOLLOWING
RETURN
END
==EQOR==
ONE

400

PROGRAM ONE (TAPET)
PRINT 5
5 FORMAT (1H1)
10 READ 100,BASE,HEIGHT,I
100 FORMAT(2F10.2, I1)
IF (I.6T.0) G0 TO 120

File-related commands.

INPUT DATA NEGATIVE OR ZERO')

IF (BASE.LE.O0) GO TO 105
IF (HEIGHT.LE.D) GO TO 105

GO TO 106
CALL MSG
AREA= .5*BASE*HEIGHT
PRINT
FORMAT (///,"
+F18-5’/"
WRITE(1)
GO 70 10
sTOP
END
*CALL MSG =

AREA

120

110,BASE,HEIGHT,AREA
BASE="',F20.5,"
AREA=',F20.5)

HEIGHT="',

Replaced by common deck MSG on compile file.

--EOF~-~
*REWIND S
*CREATE S
--EOR-~
200.24
300.24
400.00
326.32
500.00
000.00
700.43
100.00
050.00
150.00

500.76]
600.76
700.00
425.36
600.00 ’
150.00
800.00
300.00
100.00
200.00

--E0I--

10-14

Data record.

60450100 G

EXAMPLE 4

This example adds a deck to the library created in the previous example. With no new
program library generated (N is omitted from MODIFY command), the addition is temporary.

COPYBF,INPUT,S.
MODIFY.

FTN5,I=COMPILE.
LGO.

File-related commands.

--EOR--
TWO
PROGRAM TWO

END :
*CALL MSG - Replaced by common deck MSG on compile file.
--EOF--

*REWIND S

*CREATE S

*IDENT MopD2

*DECK MSG

*DELETE MSG.3

400 FORMAT (///,'FOLLOWING INPUT DATA POSITIVE?®)
*EDIT TWO

==EQR==

data record

--E0I--

60450100 G 10-15

OPLEDIT UTILITY

OPLEDIT is a NOS utility used to manage modification set entries for decks in Modify-~

formatted old program libraries (OPLs). Using OPLEDIT, you can purge a modification set,
reconstruct an earlier modification set, or consolidate a number of modification sets into a
single set.

The OPLEDIT utility consists of the OPLEDIT command and the following directilves:

CSET Specifies the code set (ASCII or DISPLAY) used to create ome or more
specified Modify decks.

EDIT Defines the decks to be edited and written to the new program library.

PULLALL Consolidates two or more modification sets into a single modification
set.,

PULLMOD Reconstructs the effects of one or more modification sets incorporated

prior to the most recent modification set.

PURGE Eliminates one or more modification sets from the OPL.

OPLEDIT COMMAND

The OPLEDIT command initiates execution of the OPLEDIT utility.

Format:

OPLEDIT,Pl’pz, sooyPn

Parameter (py) Description
I Specifies the directive input file for the OPLEDIT rumn.
Option Description

I or omitted Directives are taken from file INPUT.
I=filename Directives are on file filename,

I=0 There is no directive input for this rum,.

60450100 G

A-1

Parameter (pj) Description

P Specifies the input old program library file.
922322 Description
P or omitted Use default file hame OPL as the old program library
file.
P=filename The 0ld program library is on file filename.
P=0 There is no old program library for this run.
N Defines the name of the new program library to be created.
925122 Description
N Use default file name NPL as the new program library
file.
N=filename Write the new program library on file filename.

N=0 or omitted No new program library is created.
L Specifies the list output file.

Option Description

L or omitted List output of file OUTPUT.

L=filename List output on file filename.
=0 List no output.
M Specify file to receive output directive file from PULLALL or

PULIMOD directive.
Option Description
M or omitted Write output to default file MODSETS.

M=filename Write output to file filename.

60450100 G

Parameter (py)

Lo

60450100 G

Description
Select list options.
925325 Description
10 or omitted List option E is selected if the list output file is

assigned to an interactive terminal. Otherwise,
options C, D, E, M, and S are selected.

List

QBEEEE Description

c Iist input directives

D List deck status
E List errors
M List modifications
S List directory
L0=c1c2...c5 ¢y selects one of the above options. Up to five

options can be listed. Options must not be separated.

Specifies that all decks on the OPL are to be writtem to the
selected output files.

Specifieé debug mode; errors are listed on the output file but do
not abort the OPLEDIT rum.

Instructs OPLEDIT to automatically insert a Modify EDIT directive
into all decks included in a consolidated modification set generated
by PULLALL or a reconstructed modification set generated by

PULIMOD, This parameter ensures that all decks assoclated with a
PULLALL- or PULLMOD-generated modification set an edited during a
subsequent Modify run (that is, if the OPLEDIT new program libary is
used as input to Modify).

Option Description
U Generate EDIT directives for all decks.
omitted Generate EDIT directives for common decks only.
U=0 Generate no EDIT directives.

Specifies that OPLEDIT directives are included on the OPLEDIT
command following the command terminator. If Z is specified, the I
parameter is invalid.

Use of the Z parameter eliminates the need to use a separate imput
file when only a few directives are needed. The first character
following the command terminator is the separator character for all
directives on the command., Any display code character (including
the space) not used in any of the directives can be used as the
separator character.

A-3

CSET DIRECTIVE
The CSET directive determines the code set bit setting (bit 2*%*6 of word 0+16B) in the
modification table of all subsequently edited decks. (Refer to section 9 for more

information on the modification table format.) CSET works in conjunction with the EDIT
directive; only decks specified on EDIT directives following the CSET directive are affected.

The purpose of CSET is to facilitate converslon of program library decks created prior to
the addition of the ASCII-DISPLAY code option of Modify. The code set bit of the
modification table was not used by previous versions of Modify. The only recommended use of
CSET is to set or clear this bit to reflect the code set actually used in the specified

deck(s).

Format:
CSET,codeset
Where:

codeset Specifies the code set used to create the decks to be comverted.
Options that can be specified for codeset are as follows:

Option Description

ASCII Specifies 6/12-bit DISPLAY code. This option sets bit 2%¥%6
of word 0416B of the modification table for affected decks.

DISPLAY Specifies 6-bit DISPLAY code. This option clears bit 2%%6
of word 0+16B of the modification table for affected decks.

EDIT DIRECTIVE

The EDIT directive instructs OPLEDIT to edit a program library deck and transfer it to the
new program library. The deck names specified normally are the decks that contain the
modification identifiers.
Format:

*EDIT P1,P2,c22+Pn

Where:

Pi Specifies a deck or range of decks to be edited. If a range of decks is
specified, pj must be in the following format:

deckname, ,decknamey

deckname, and deckname}, are the first and last decks, respectively,
of the range of decks specified.

A4 60450100 G

PULLALL DIRECTIVE

The PULIALL directive consolidates two or more modification sets into a single modification
set, PULLALL has two formats, as shown below. Format 1 consolidates all active
modification sets into a single set. Format 2 creates a consolidated modification set from
all modification sets subsequent to, and including, a specified set.

PULLALL produces two types of output files, a new program library and a directives file.
Both of these files include only edited decks; that is, decks selected for editing by an
EDIT directive or by the OPLEDIT command F parameter., All decks assoclated with the
consolidated modification set are writtem to the new program library specified by the
OPLEDIT command N parameter., You can use this file as the OPL for a subsequent Modify runm.

The directives file is written to the file defined by the OPLEDIT M parameter. This file
contains all the directives and insertion lines necessary to produce the net effect of the
consolidated modification set. The IDENT directives that defined the original modification
gsets are deleted from this file and are replaced by a single IDENT ****%*%* djirective at the
beginning of the file.

The directives file is written in a format (that is, with the name of the record appearing

as the first line of the file) suitable to be read by the Modify READ directive in either of
the following formats:

READ,file,=
or
*READ,file,deckname
Format 1:
*PULLALL
Format 2:
*PULLALL modname

Where:

modname Specifies the first (earliest) modification set to be included in
the consolidated modification set.

60450100 G A-5

PULLMOD DIRECTIVE

The PULLMOD directive reconstructs one or more modification sets previously incorporated in
a program library. Unlike the PULLALL directive, the structure of the original modification
sets is not changed; the original IDENT directives are neither changed nor deleted.

PULLMOD produces two types of output files, a new program library and a directives file.
Both of these files include only edited decks; that is, decks selected for editing by an
EDIT directive or by the OPLEDIT command F parameter. All decks associated with the
reconstructed modification set are written to the new program library specified by the
OPLEDIT command N parameter. You can- use this file as the OPL for a subsequent Modify run.

The directives file is written to the file defined by the OPLEDIT M parameter. This file
contains all the directives and insertion lines necessary to produce the net effect of each

reconstructed modification set. Each reconstructed set is written to a separate record on
the file.

The directives file is written in a format (that is, with the name of the record appearing
as the first line of each record) suiltable to be read by the Modify READ directive in either
of the following formats:

READ,file,

or

READ,file,deckname
Format:

*PULLMOD modnameq,modname2,...,modnamep

Where:

nodnamey Specifies the name of a modification set to be reconstructed.

PURGE DIRECTIVE

The PURGE directive removes the effects of one or more previously incorporated modification
sets from edited decks in the program library. All information pertaining to purged
modification sets is removed from the modification table of affected decks (refer to section
9 for a description of the modification table).

Format:

PURGE modname,

Where:
modname Specifies the name of the modification set to be purged if the *
parameter is not included. If * is included, modname specifies the
first of a series of modification sets to be purged.
* Specifies that modname and all modification sets subsequeant to

modname should be purged.

A-6 60450100 G

OPLEDIT EXAMPLES

Figure A-1 illustrates the use of the OPLEDIT directives.

/get,mainpl
/catalog,mainpl,r

CATALOG OF
REC NAME
1 DECKS
2 DECK1
MoD1
3 DECK2
MOD1
4 DECK3
M0D1
5 DECK&
MOD4
6 oPL

7 * EOF =*

CATALOG COMPLETE.
/opledit,p=mainpl,m=
purge modé&,
*pullmod mod2,mod3
*pullall mod1
*edit deckl.decké

D 1D D D)

OPLEDIT COMPLETE.
/catalog,newpl,r

CATALOG OF
REC NAME
1 DECK1
MoD1
2 DECK2
MoD1
3 DECK3
Mmon1
4 DECK4
5 oPL

é * EOF #

CATALOG COMPLETE.

MAINPL FILE
TYPE LENGTH
OPLC (64D 27
OPL (64) 60

MOD4
OPL (64) 61

non2 MOD3
oPL (64) 37

MOD4&

OPL (64) 54

Mopé
OPLD 13

sum = 316

mods ,n=newpl

NEWPL FILE
TYPE LENGTH
oPL (64) 36
OPL (64) 55

MoD2 MoD3
oPL (64) 34
oPL (64) 45
OPLD 11

sun = 225

CKSUM
6354
4621
7616

MOD4
4355
3334

1535

1

CKsum

1221

3330

1075

4105
2101

DATE
85/08/14.
85/08/14.
85/08/14.
85/06/18.

85/08/14.

85/08/15.

DATE

85/08/14.

85/08/14.

85/06/18.

85/08/14.
85/08/716.

60450100 G

Figure A-1l.

OPLEDIT Examples (Sheet 1 of 2)

/scopy,mods

khkkhhkk

*IDENT sk ke kR Kk

*DECK DECK1

*D,1

*#%x% MAIN PROGRAM, DECK DECK1.

*1,2
COMMON JOT

*I1,3
CALL SUB3
IF(JOT.EQ.3)PRINT*, ' INTERACTIVE
IFCJOT.NE.3)PRINT*,"BATCH JOB."

*DECK DECK2

*1,0

*WEOR

*D,1

xx* SUBROUTINE 1, DECK DECK2.

*1,3

* CALL SUBROUTINE SUB2

* IN DECK2.

*DECK DECK3

*1,0

*WEOR

*D,1

x#%+* SUBROUTINE 2, DECK DECK3.

«=EOR==

M0D2

*IDENT MOD2

*DECK DECK2

*#D,MOD1.3

*RESTORE,7

--EOR=~

MOD3

*IDENT A0D3

*DECK DECK2

*RESTORE,MOD1.3 Cord—

-=EOR-~

--EOF--

JoB."*

(4)<@&—— These numbers indicate the

location of directive affecting
a modset. They are the last
active sequence number in the
deck from which the directive
was copled (refer to figure 5=1).

LResults of the PULLALL directive.

Results of the
PULLMOD directive.

Figure A-l.

OPLEDIT Examples (Sheet 2 of 2)

60450100 G

DIAGNOSTIC MESSAGES B

This appendix contains an alphabetical listing of the messages that may appear in your
dayfile. ILowercase characters are used to identify variable names or fields, All messages
are sorted according to the first nonvariable word or character. Messages beginning with

special characters (such as hyphens or asterisks) are sorted as if the special characters
were not present.

If you encounter a diagnostic or informative message that does not appear in this appendix,
consult the NOS 2 Diagnostic Index. This publication catalogs all messages produced by NOS

and its products and specifies the manual or manuals in which each message 1s fully
documented.

60450100 G B-1

MESSAGE

COLUMN OUT OF RANGE.

COPY FILE EMPTY.
CREATION FILE EMPTY,
CSET ~ UNKNOWN CHARACTER SET.

CV OPTION INVALID.

DIRECTIVE ERRORS.

DIRECTIVE NOf REACHED.
DUPLICATE MODIFIER NAME,
ERROR IN ARGUMENTS.

ERROR IN DIRECTORY.

ERROR IN MODIFY ARGUMENTS.

FILE NAME CONFLICT.
FILE NAME CONFLICT.

FIRST SOURCE LINE IS AFTER SECOND SOURCE
LINE.

FORMAT ERROR IN DIRECTIVE.

IDENT NAME PREVIOUSLY REFERENCED.

INCORRECT ATTRIBUTE.

INCORRECT CS ON INPUT.

deckname - INCORRECT CS, 63 ASSUMED.
INCORRECT DIRECTIVE.

INCORRECT NUMERIC FIELD.

deckname - INCORRECTLY NESTED CALL OR COMMON

DECK.

INITIALIZATION DIRECTIVE OUT OF ORDER.

8«2

SIGNIFICANCE

Requested width exceeds maximum allowed
(150) .

No information on program library being
copied.

No source decks on file being used for
creation.

The character code set on the CSET
directive is missing or an unknown code
set was specified.

A CV option other than 63 or 64 was
specified.

Dayfile message indicating that one or more
input directives were in error.

Sequence number exceeds deck range.

Modifier on IDENT has been used previously
for the deck.

An invalid parameter has been encountered
en the OPLEDIT command.

The program Library contains an error.

Invalid parameter on MODIFY command.

The same file cannot be used for both
applications without conflict.

The same file cannot be used for both
applications without conflict.

Either an error in parameters or Lines are
out of order.

This message is returned as a result of a
directive format error, a format error in a
source input file, or the inclusiocn of an
ignored deck in an EDIT directive
specifying a series of deck names.

A modification directive or a different
IDENT directive refer to the current
modname .

Attribute specified on IF directive is
other than EQ, NE, DEF, or UNDEF.

The input data uses the 64=character set,
but the PL uses the 63~character set.

The Lower byte of word 168 of the prefix
table for the named deck on the program
Library does not contain 0000 or 0064,

Directive is out of sequence. An example
would be a CREATE directive after a
modification directive for Modify.

Incorrect parameter on MODIFY or OPLEDIT
command.

A redundant nested call was found. A CALL,
NIFCALL, or IFCALL calls a common deck
which has already been called in the
current nesting sequence.

A non=initialization directive was
encountered before the initialization
directive.

ACTION

Change width to 150 or
tess.

Verify that copy file
exists and is properly
positioned at BOI.

Verify that creation
file contains proper
source decks.

Specify either ASCII or
DISPLAY code.

Specify 63 or 64 for
conversion option.

Examine output file to
determine reason for
error.

Use correct sequence
number.

Choose unique name for
deck.

Correct command and
FetFYo

Use COPY or COPYPL to
create new program
Llibrary.

Consult manual for
correct command syntax.

Use different file name
for one of the
applications.

Use different file name
for one of the
applications.

Verify that correct line
sequence is used.

Consult manual for
correct format.

Choose a different
modification name for
the IDENT directive.

Use correct attribute.

Convert either the input
data or the PL so both
use the same character
set.

If b4~character set is
desired, the deck must
be recreated.

Use correct sequence.

Verify parameters and
retry.

Remove the redundant
call.

Consult manual for
correct directive order.

ROUTINE

MODIFY

MODIFY

MODIFY

MODIFY

MODIFY

MODIFY
OPLEDIT
LIBTASK
MODVAL
PROFILE
SYSEDIT

MODIFY

MODIFY

OPLEDIT

MODIFY
OPLEDIT

MODIFY

- MODIFY

OPLEDIT

MODIFY
OPLEDIT

MODIFY

MODIFY

OPLEDIT

MODIFY

MODIFY

MODIFY

MODIFY
OPLEDIT

MODIFY
OPLEDIT

MODIFY
OPLEDIT

MODIFY

MODIFY

60450100 6

MESSAGE

LINE NOT FOUND.

=.0-ERROR, MUST BE in ~ECTMWDSIA=-.

MEMORY OVERFLOW.

deckname - MIXED CHARACTER SET DETECTED.

MIXED CHARACTER SET OPL.

MODIFICATION COMPLETE.

MODIFICATION/DIRECTIVE ERRORS.

MODIFICATION ERRORS.

NAMES SEPARATED BY #.* IN WRONG ORDER.

NO DIRECTIVES.

NO *IF IN PROGRESS.

OPERATION INVALID FROM ALTERNATE INPUT.

OPLEDIT COMPLETE.

OPLEDIT ERRORS.

OVERLAPPING MODIFICATION.

PL ERROR IN DECK deckname.

PROGRAM LIBRARY EMPTY.

RECORD NOT FOUND.

RECURSIVE #IF,S ILLEGAL.

REDUNDANT CONVERSION IGNORED.

RESERVED FILE NAME.

60450100 6

SIGNIFICANCE

An EOR was reached in the program library
before finding the specified command.

Incorrect list option requested. Fatal
errar.

Insufficient field length has been
specified for OPLEDIT to execute.

Upon editing the named deck on the program
Library, the character set (43- or
64=character) was different from the
character set of previously edited decks.

OPLEDIT detected decks on the program
Library that are in different character
sets (63~ and é4-characters).

Modify has completed execution of the
directives.

Modification and/or directive errors are
encountered when debug mode is selected.

Modify has detected errors during the
modification phase; fatal if D option is
not selected.

Requested decks not in correct seguence.

Directives file empty.

An ELSE or ENDIF directive was encountered
without a previous IF directive.

File manipulation attempted from other than
original directives file,

Informative message indicating that OPLEDIT
has completed processing.

Errors were encountered during OPLEDIT
execution.

More than one modification was
attempted for a single line.

An error was detected in the program
Library format during processing of deck
deckname,

No information on file specified as program
Library.

Modify was unabte to locate requested
record on file specified.

An IF directive was encountered while a
previous IF range was still active (no ELSE
or ENDIF 'encountered).

An attempt was made to convert the program

Library file to a Like character set (63 to
63 or 44 to 64). Conversion option set to

zero.

A reserved filename was incorrectly used.

ACTION

Verify the command
exists and remove the
extra EORs from the
source file.

Specify €, C, T, M, W,
D, S, I,orAora
combination of these
characters for list
option. The characters
must not be separated.

Increase field Length
with RFL command and
retry.

Recreate the deck under
the desired character
set.

Use MODIFY to recreate
erroneous decks under

one character set and

retry.

None.

Consult listing and

correct specified errors.

Consult listing and

correct specified errors.

Determine correct
sequence and retry.

Verify that directives
file exists and is
correctly positioned at
80I.

Check for omitted IF

directive or unnecessary
ELSE or ENDIF directive.

Move file manipulation
directives to original
directives file.

None.

Consult output Listing
for description of
errors.

Remove redundant Line
modification.

Replace or re-create
erroneous deck.

Verify that program
Library file exists
and is positioned at
BOI.

Verify that record

exists on specified file.

Check for missing ENDIF
or ELSE directive or

unnecessary IF directive.

Verify conversion mode
desired.

Choose a non-reserved
file name.

ROUTINE

MODIFY

MODIFY

MODIFY

MODIFY

MODIFY

MODIFY

MODIFY

MODIFY

MODIFY
OPLEDIT

MODIFY
OPLEDIT

MODIFY

MODIFY

MODIFY

OPLEDIT

MODIFY

MODIFY
OPLEDIT

MODIFY
OPLEDIT

MODIFY

MODIFY

MODIFY

OPLEDIT
EDIT
DATADEF
TAFEX

B-3

MESSAGE

S OPTION ILLEGAL WITH A, X, OR Q.

TOO MANY OPL FILES.:

UNKNOWN DECK.

UNKNOWN MODIFIER

VALUE ERROR.

X OR Q INCORRECT WITHOUT COMPILE.

B=4

SIGNIFICANCE

Source option not Legal when A, X, or Q
option is selected.

More than 50 program Library files declared.

Unable to locate requested deck on program
Library.

Modifier not in modification table for deck.
Value specified on IF or DEFINE directive
is greater than 1777778.

Selection of X or @ option requires that a
compile file name be selected.

ACTION

Remove S option from
MODIFY command and
specify on separate
Modify run.

Specify excess program
libraries on subsequent
Modify runs.

Verify that deck name is
correct.

Determine correct
modifier.

Select value less than
or equal to 177777B.

Specify € option on
Modify command (not C=0).

ROUTINE

MODIFY

MODIFY

MODIFY

MODIFY

MODIFY

MODIFY

60450100 6

ASCII code 1-1; 2-4,13; 7-4; 9-1; A-4
Assembler call 1-5; 3-1
Q parameter 3-5
X parameter 3-6
BKSP directive 6-2
CALL directive 2-13; 7-2
CALLALL directive 2-13; 7-2
CALLC directive 2-13; 7-3
Character set conversion 3-2
Code set 2-4,13; 7-4; 9-1; A-4
COMMENT directive 7-3
Common decks
Calling 1-4; 2~13; 7-2
Code set 2-4,13; 7-4; 9~1; A-4
Conditional call 2-13; 7-3,6
Definition 1-4
Format 9-1
Nested calls 7-2
Placement in PL 2-10
(See also Decks)
COMMON header line 2-4; 9-1
COMPASS 9-1
Listing file 3-2
Compile file
C parameter 3-1
Compressed 3-1; 8-2
Conditional insertion of lines 7-5
Definition 1-5
Format 9-9
Compile file directives 2-1,2,15; 7-1,2; 9-1
Compile phase 2-3,11
Compiler call 1-5; 3-1
Q parameter 3-5
X parameter 3-6
Compressed files 8-2; 9-7
COPY directive 2-3; 4-1
COPYPL directive 2-3; 4-2
CREATE directive 2=3; 4-3
CSET directive (Modify) 2~13; 7-4
CSET directive (OPLEDIT) A-4
CWEOR directive 7-4
Debugging 3-3; 9-10
Deck
Copying 6-3
Definition 1-3
Moving 8-2
Name conventions 2-4; 5-2
Purging 5-6; 10-8
(See also Common decks)
Status 9-10
DECK directive 2-6,8; 5-2
DEFINE directive 2-12; 8-1
DELETE directive 2-7,9; 5-2,6
Diagnostic messages 9-10; B-1
/ directive 8-4
Directive format 2-2
Directives file
Alternate 2-11; 6-2; 9-9; 10-7
Definition 1-4
Directive sequence 2-2
I parameter 1-4; 3-3
Z parameter 1-4; 3-6; 10-11
Directory, library file 2-3; 4-1,2; 9-7,8

60450100 G

INDEX

DISPLAY code 1-1; 2-4,13; 7-4; 9-1; A-4
EDIT directive 2-5,10; 5-3
Editing decks 2-10; 3-3,6; 5-3; 8-3
ELSE directive 2-12; 7-4
End-of-file 7
End~-of-record 4,7
ENDIF directive 2-12; 7-5
Error messages 9-10; B-1
EVICT command 9-2
Expansion, compile file 2-12
File formats 9-1
File Manipulation Directives 2-1,2,11,15; 6-1
Files, reserved 6~1
FORTRAN 9-1
Full edit 2-10
IDENT directive 2-7; 5-3,6; A-6
IF directive 2-12; 7-5; 8-1
IFCALL directive 2-12; 7-6; 8-1
IGNORE directive 5-4
Initialization directives 2-1,2,14; 4-1
Initialization phase 2-3
INSERT directive 2-7,9; 5-5,6
Insertion lines 2-11
INWIDTH directive 2-4; 8-2; 10-10
Line
Activation 2-9
Deactivation 2-9
Modification 2-8
Line identifier 2-4,6; 5-2,5
Line length, maximum
Compile file 7-8
Input file 2=4; 8~2
Line sequencing 1-5; 2-4,6,8; 7-7; 8-3; 9-9
Modification directives 2=-1,2,14; 5-1
Modification history byte 5-4,8; 9-6
Modification phase 2-3,5
Modification set 2-5
Consolidation A-5
Creation 5-3
Deactivation 5-8
Deck modifications 5=2
Definition 2-7; 5-3
Management through OPLEDIT A-1
Name conventions 5-3
Purging A-6
Reactivation 5-7
Reconstruction A-6
Modification table format 9-5
MODIFY command
Format 3-1
Input files 4-1
Interactive entry 3-1
MODNAME directive 2-6,8,9; 5-5
MOVE directive 2-10; 8-2
New program library
Definition 1-5; 9-2
File 1-5
N parameter 3-4
(See also Program library)
NIFCALL directive 2-12; 7-6; 8-1
NOS procedures 2-4
NOSEQ directive 2-2,4; 7-6
NPL (See New program library)

-7
7

Index-1

0ld program library
Copying 2-3
Definition 1-3; 2-3; 9-2
P parameter 2-3; 3-5
(See also Program library)
OPL (See 0ld program library)
OPLEDIT command A=l
OPLEDIT utility A-1
OPLFILE directive 2-3; 4-3
PD symbolic name 3-1
PL symbolic name 3-1
Prefix character 2-2; 8-3; 10-9
PREFIX directive 2-2; 8-3; 10-9
Prefix table format 9-4,7
PREFIXC directive 8-3; 10-10
Procedures (See NOS procedures)
Program library
Characteristics 1-3
Copying 4-1,2
Creation 2=3; 4~3; 10-1,2
Definition 1-3
File format 9-2
PULLALL directive A-5
PULIMOD directive A-6
PURDECK directive 5-3; 10-8
PURGE directive A-6

READ directive 2-11; 6-2; 9-9; 10-7; A~5,6

READPL directive 2-11; 6-3; 9-9
Reserved files 6~1

RESTORE directive 2-7,9; 5-6,7
RETURN directive 6-3

REWIND directive 6-4

Scratch filles 9-10

Selective edit 2-10

Index-2

SEQ directive 2-2,4; 7-7
SET command 3-1
SKIP directive 6-4
SKIPR directive 6=4
SORSEQ directive 2-2,4; 7-7
Source input file
Conversion to PL format 2-3; 4-3
Definition 1~3; 2-3
Format 2=43 9-1
Source output file
Format 9-2
S parameter 3-6
Special directives 2-1,2,16; 8-1
Statistical list file
Comment lines 8-=4
Definition 1-5
Format 9-10
L parameter 3-4
List options 3-&
Systems text
Loading 3=2
Overlay 3=2
SYSTEXT 3-2
Tape files, copying 2-3; 4~1
UNYANK directive 2-7; 5-7; 10-8
UPDATE directive 2-6,10; 8-3
Update edit 2-10
WEQF directive 7=7
WEOR directive 7-7
WIDTH directive 2-2,4,6; 7-8
YANK directive 2-7; 5-7,8; 10-8
6-bit display code 2-4,13; 7-4; A=4
6/12-bit display code 2-4,13; 7-4; A-4

60450100 G

Comments (continued from other side)

Please fold on dotted line;

seal edges with tape only. FOLD
FOLD I e FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
e]
BUSINESS REPLY MAIL R
First-Class Mail Permit No. 8241 Minneapolis, MN)
i]
POSTAGE WILL BE PAID BY ADDRESSEE E—
P
f e
CONTROL DATA T
Technica.l Publications T
ARH219 e
4201 N. Lexington Avenue —

Arden Hills, MN 55126-9983

COMMENT SHEET

MANUAL TITLE: cDC® Modify Reference Manual
PUBLICATION NO.: 60450100 REVISION: G
NAME:

COMPANY:

STREET ADDRESS:

CITyY: STATE: Z1P CODE:

This form is not intended to be used as an order blank. Control Data Corperation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

£J Piease Reply [0 No Reply Necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

,,,,,,,

CcB

cG

cL

Ccs

Cv

'MODIFY COMMAND PARAMETERS

MODIFY (Pl ,P1

Presence of A causes‘compressed conpile
file.

Compile file output; COMPILE if C or
omitted. No compile file 1f C=0.
Otherwise, output on file name (C=1fn).

COMPASS binary output file; used with Q
and X options only. Output on LGO if
CB. No binary if CB=0. Otherwise,
output on the file named (CB=lfn).

COMPASS get text option; used with Q and
X options only. Systems text on SYSTEXT
if CG. No system text if CG=0. Defined
by CS option if CG is omitted. Other-
wise, systems text on file named (CG=lfn).

COMPASS list output; used with Q and X
options only. Short list if CL=0 or
omitted. OQutput on file OUTPUT if CL.
Otherwise, list output on file named
(CL=1fn).

COMPASS system textj; used with Q and X
options only. Systems text on SYSTEXT
overlay if omitted or CS. No systems
text if CS=0; otherwise, systems text on
file named (CS=1fn).

Program library character set conversion.
None if CV is omitted; 63 to 64 if CV=64;
64 to 63 if CV=63.

Debug option. Directive error or fatal

. error causes job step abort if D is

omitted. No job step abort for direc—
tive errors if D is used.

Full edit. If omitted, deck editing
determined by U option or by EDIT direc—
tives., If F is specified, all decks are
edited and written on compile file, new
program library, and source file.

Directives input. If omitted, directives
and corrections on INPUT. If I=0 there
is no input file. Otherwise, on named
file (I=1fn).

List output. Omitted or L, listings on
OUTPUT. L=1fn, output to named file.
1=0, no list output. o

seesspn)

L0. List options. Omitted or LO, option E

if 1ist output file is assigned to a
terminal; options E; C, T, M, W, D, and
S if not assigned to a terminal. Other-
wise, L0=C1c2...cn to a maximum of

seven options (ACDEIMST or W).

Omitted or N=0, no
N=1fn,

New program library.
new library. N, output on NPL.
output to named file, :

No rewind on compile file. Omitted,
compile file rewound before and after
Modify run.

Program library input. Omitted or P,
library on OPL. P=lfn, library on named
file, P=0,-no program library input file.

Execute assembler or compller; no rewind
of directives file or 1list output file.
Omitted or Q=0, assembler or compiler
not automatically called. Q, Modify
sets A parameter and LO=E and calls
COMPASS. This option enables CB, CG,
CL, and CS options. If Q=1fn, Modify
calls assembler on 1fn.

Source output (invalid if A, Q, or X
selected). Omitted or S=0, no source
output, S, output on SOURCE, S=1fn,
output on named file.

Update edit. Omitted, editing set: by F
or by EDIT directives., F takes
precedence over U. If U, only decks
changed (named on DECK directives) are
edited and written on compile file, new
program library, and source file.

Execute assembler or compiler; same as Q
except directives file and list output
are rewound.

Directives on MODIFY command. Omitted,
directives are next record on INPUT or
identified by I option. Z, directives
follow the MODIFY command terminator.
Each:directive must be preceded by a
gseparator character,

CORPORATE HEADQUARTERS, P.0. BOX O, MINNEAPOLIS, MINN 55440 LITHO IN US.A.
SALES. OFFICES AND SERVICE CENTERS IN'MAJOR CITIES THROUGHOUT THE WORLD

(@5) CONTROL DATA

