60497700

@ @ CONTROL DATA
CORPORATION

PASCAL
VERSION 1
REFERENCE MANUAL

cDC® OPERATING SYSTEM:
NOS 2

REVISION RECORD |

D R

Revision Deseription
01 (12/01/82) Preliminary release at PSR level 580.
i

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manuwal to:
CONTROL DATA CORPORATION
Publicatlons and Graphics Division
215 MOFFETT PARK DRIVE

©coPYRIGHT CONTROL DATA CORPORATION 1982 SUNNYVALE, CALIFORNIA 54086

All Rights Reserved

Printed in the United States of America or use Comment Sheet in the back of this manual

i 60497700 01 -

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margine or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Papge Revision

Front Cover -

Title Page -
ii 01
ilifiv 01
v/vi 0l
vii/viit 01
ix 01
1-1 i 01
2-1 thru 2-4 01
3-1 thru 3-21 0l
4-1 thra 4-24 01
5-1 thru 5-10 01
6-1 thru 6-7 01
A-1 thru A-3 01
B-1 thru B-3 01
c-1 o1
Index-1 01
Index-2 01
Comment Sheet 01
Mailer -

Back Cover -

60457700 01 ildfiv

PREFACE

L o e]

This manual describes the CONTROL DAIAngascal Version 1 language. It 1s intended to be used as
a reference, not as a tutorial for users who are unfamiliar with a version of Pascal.

Pascal Vereion ! is available under control of the NOS 2 operating system on the coc® cyBER 170
Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 Series Computer Systems,

This manual is based on the RECAU Pascal Manual (RECAU-80-117-M, revision C 801001, editiom
October 1980) and has beem published with the writtenm comsent of RECAU, Jorgen Staunstrup, aad
Ewald Skov Jensgen.

This release of the Pascal compiler does not fully comply with Internaticnmal Standard
Organization standard Pascal. You can expect to make substantial changes to your compilation
control statement and source code once the compiler is released under the IS0 standard.
This manual is organized in the following manner:

Section 1 provides an overview of Pascal Version 1 language concepts.

Section 2 contains the basic elements that describe the Pascal Version 1 language.

Section 3 describes the program heading and the declaration and definition of data using the
language elements from section 2.

Section 4 describes the statements that manipulate the declared and defined data from
section 3.

Section 5 describes the statements that compile, load, and execute a Pascal program under the
NOS 2 operating system.

Section 6 shows some complete Pascal programs.
Appendix A describes available character sets.
Appendix B describes compilation error messages.
Appendix C 1ists the reserved words.

Related material is contained in the NOS Version 2 Reference Set Volume 3, System Commands,
publication number 60459680.

60497700 01 v/vi

CONTENTS

NOTATIONS ix

1. LANGUAGE CONCEPTS

—
|
—

2. PASCAL SYMBOLS
Identifiers
Regerved Symbols
Literals
Integer Literal
Real Literal
Character Literal
String Literal
Boolean Literal
Separators
Comment
Nonprinting Symbols

[X]
1
—

Ea R P T

3. PROGRAM HEADING AND DECLARATION AND
DEFINITION PARTS

w
1
o

Program Heading Part
Declaration and Definition Part
Label Section
Const Section
Type Section
Simple Types
Structured Types
Pointer Types
Type Compatihility
Var Section

Value Section

~l thhin

WR LWL WL WL e w
b bt b 00 P L3RI RS

Routines Section -19
Formal Parameters 3-20
Blocks 3-20
Scope Rules 3-21
4. STATEMENT PART 4-1
Expressions -

41
Assignment Statement L EX]
IF Statement b=4
WITH Statement 4-5
WHILE Statement 46
REPEAT Statement 4-~6
FOR Statement L]

60497700 Q1

CASE Statement
Jumps
Labeled Statement
GOTD Statement
Routines
Actual Parameters
Binding a Value
Binding a Variable
Binding a Procedure or Function
Dynamic Parameters
File Parameters
Packed Parameters
Predefined Routines
Files
Textfiles
Predefined Textfiles INPUT and OUTPUT
Segmented Files

5. COMPILIKG, LOADING, AND EXECUTING

Organization of a Compiled Program
Compiling a Program

Overview of the Runtime System
Loading and Executing a Program

Understanding Runtime Error Messages
FORTRAN and Pascal Incompatibilities

6. SAMPLE PROGRAMS

APPENDIXES
A Character Sets

B Compilation Error Messages
C Reserved Symbols

INDEX

TABLES

5-1 Corresponding Pascal and FORTRAN
Routine Parameter Types

vii/viii

- NOTATIONS

Certain notations are used throughout the manual with consistant meaning. These notations are:

_—

C D

UPPERCASE

indicates the permissible direction of traversal.

containg a reserved symbol in a syntax diagram. Alphabetic characters must
appear in uppercase in your source code. A complete list of reserved symbols
can be found in appendix C.

contains the general name of a counstruct that you must define; refer to the
description of the named item for definition rules.

indicates a reserved symbol in the text. Alphabetic characters must appear in
uppercase in your source code., A complete list of reserved words can be found
in appendix C.

indicates statements that are not shown and are not
relevant to the example.

All program statements in this manual are shown in the internal Pascal character set

representation,

You can translate special characters into the character set used at your site by

referring to appendix A, Character Sets,

60497700 01

ix

LANGUAGE CONCEPTS 1

A Pascal program consists of three parts:

Program heading
Declarations and definitions
Statements
The program heading part names the program and lists the parameters that are used in the program.

The declarations and definitions part describes the data objects that are to be manipulated.
This part contains the following sectilons:

Label declarations

Constant definitions

Type definitions

Variable declarations

Value declarations

Procedure and function declarations

The statements part defines the flow of program execution and manipﬁlates the declared and
defined data objects.

60497700 01 1-1

PASCAL SYMBOLS

A Pascal program conslsts of a sequence of the Pascal symbols that are described in this section.

The set of symbols is divided into four categories: identifiers, reserved symbols, literals, and

saparators.

IDENTIFIERS

Identifiers are names that denote guantities that you have declared, such as constants, types,
variables, values, procedures, and funetionz, An identifier must begin with a letter followed by

any combination of letters and digits,

e identifier

Y

——»{ Leiter |

A letter mugt be in the set:
{A’B,CID’E’F,G’H)I’J’K!L’M’NloiP’QIR,SITIU’V’w!x’Y’Z}
A digit must be in the set:

{0,1,2,3,4,5,6,7,8,9}

A number of identifiers are reserved symbols that cannot be used in other contexts. You can find

a list of reserved words In appendix C.

A number of identifiers have a predefined meaning. Predefined identifiers are not reserved
symbols and can be redefined.

Identifiers can be arbitrarily long, however, only the first 10 characters are significant.
Identifiers that denote distinct objects must differ in their first 10 characters.

The following are examples of legal, illegal, and predefined identifiers:

Legal

SUITS
DAY
NO1

Illegal

1A
ASPACE (Where A 15 an embedded space.)

SALES TAX
Predefined
INTEGER

REAL
TEXT

60497700 01

RESERVED SYMBOLS

Reserved symbols are symbols that are defined within the Pascal languapge to have a distinct

meaning. Thils meaning cannot.be changed. . R

You can find a list of reserved symbols in appendix C.

LITERALS

Literals denote values. There are five kinds of literals: integer, real, character, string, and
Boolean.

INTEGER LITERAL

An integer literal is a decimal or octal integer.

inieger lileral

W »l decimal integer | J -
-—a ocial integer

decimal integer

A U GRS
[
T

The digits in an octal integer must all be fess than 8.

Y

L -m——j——-@a

The following are examples of an integer literal:

=714
7778

22 60497700 01 -

REAL LITERAL

A real literal is a real number with an optional scale factor.

real literal

Y

real number

L—(scule factor pari |—j

decimal integer

real number

decimal integer {__) [digit]

scale factor part

—(»{ scale factor |————

scale factor

Y

»l decimal inieger |

The following are examples of a real literal:

3.14
0.314E1
J14E-2

CHARACTER LITERAL

A character literal i1s a character enclosed by single quote (") symbols,

char literal

—»{") »] character o —»

The following are examples of a character literal:

lcr
I+l

rrry

Note that inside a character literal a single quote (‘) symbol is denoted by two quote .("")

symbals.

60497700 01

STRING LITERAL

A string literal is a sequence of characters enclosed -by single quote (') symbols.

siring literal

< | character | | character |)

The following are examples of é string literal:

*EQUALS’
‘*"LOOKLIKE'’’

Note that iInside a string literal a single quote (') symbol is denoted by a two quote {"°)
gymbols. .

BOOLEAN LITERAL

A Boolean literal is ome of the predefined identifiers TRUE and FALSE.

boolean literal

-l »{ true)} J— >~
' »{ false)—

SEPARATORS

A separator is a comment or nonprinting symbol. A separator can occur between any pair of
consecutive Pascal symbols. A separator may appear between any pair of consecutive identifiers
or literals. A separator cannot ocecur within a reserved symbol, identifier, or literal.

COMMENT

A comment is a string of explanatory text. You can improve the readability of your program b
adding comments, without affecting the results produced by the program., .

comment

characler

end of line

—®

D>

If the first character after the (* is a dollar sign ($), the comment is interpreted as a list of
compiler options. See section 5 for a description of available compiler options.

NONPRINTING SYMBOLS

Nonprinting symbols are the space and the end-of-line.

224 : 60497700 01

PROGRAM HEADINGAND 3
DECLARATION AND DEFINITION PARTS

A Pascal program must contain a program heading part, a declaration and definition part, and a
statement part. This section describes the program heading part and the declaration and

definition of data using the Pascal symbols described in section 2. Section 4 describes the
statement part.

PROGRAM HEADING PART

The program heading part names the program and lists the files that are used in the program.

program keoding

——+(program }——»{_program identifier } (O
extarnal files

program ideniifier

»{ identifier | »

external files

g

d)

file name

—]"‘ identifier

Y

The files denoted by file names must be declared as file variables in the statement part of your
program, with the exceptions of INPUT and OUTPUT.

If the predefined files INPUT and OUTPUT are to be used as segmented files, a plus sign (+) must
follow their names in the program heading.

If a file is to be used interactively, a slash (/) must follow the file name in the program
heading.

Kinds of files and how to manipulate them are described under the heading Files in section 4.

DECLARATION AND DEFINITION PART

The declaration and definition part deseribes the data that will be manipulated in the statements
part, BSeven sections can appear in this part, although any of them may be empty. The section
headings are: label, const, type, var, value, procedure, and function. The description of the
procedure and function sections is combined under the heading Routines.

60497700 01

LABEL SECTION

The label declaratiom section conslsts of a number of definitions of nonnegative numbers that are
used as statement labels.

You must declare all labels in the label declaration part of the routine or program where 1t is
defined.

label declaration pari

—»(JabeD) [»{Tabel] J »G—

* tabel |

label

[={digit§ J

Y

Labels follow the same rules of scope as other quantities, which 1s that they can only be used in
the program or routine in which they are declared.

Two labels that denote the same number are considered identical.
The following is an example of a label declaration sectlon:

LABEL
100, 200;

A label is defined in the statement part of your program by prefixzing a statement with the label
and a colon (:). For example,

100 : A := SUCC{THURSDAY);
The statement after the colon (:) cannot be a labeled statement.

You can define a label that is referenced by a GOTO only once in the compound statement of the
program or routine where it is declared. For example, the statement

GOTO 200

can only appear once in the path of execution taken by your program.

CONST SECTION
The constant definition section consists of a number of definitions of constant ldentifiers.

Each definition introduces an identifier as a synonym for the value of a literal or as a synonym
for an enumeration constant from a scalar type.

3-2 60497700 01

constant definition part

constant_identifier |

constant identifier

I g sy e | -
| identifier — >~
constant
- »{ constant identifier | i
h— w{ enumeration constant j———)
- » integer literal; -
PO ey prr g |
M ™ Teal literal o
.
3 »{char literall —
I » siring literal } —]
- »{ boolean literal |- ~

The following is an example of a constant definition part:

CONST
UPPERLIMIT = 100;
HEADING = "TABLE PROGRAM N = 100°;

TYPE SECTION

The type declaration section defines sets of values that can be assumed by variables and

expressions (operands)} of that type. There are three kinds of types: simple, structured, and
pointer.

type definition part

—(:E)—(——0(type ideniifier |

type identifier

R oy | i -
> identifier | -

type
—]“’ simple type] >

struciured fype

—1"J pointer type |

o fype ideniifier

60497700 01 3.3

The following 1s an exazmple of a type definition section:

TYPE

SULTS = (CLUB,DIAMOND,HEART,SPADE);
DAYS = (MONDAY,TUESDAY,WEDNESDAY,THURSDAY, =
FRIDAY, SATURDAY, SUNDAY) ;

- WEEKEND = FRIDAY..SUNDAY;
MONTHS = (JANUARY ,FEBRUARY,MARCH,APRIL,MAY,JUNE,JULY,AUGUST,
SEPTEMBER ,0CTOBER , NOVEMBER , DECEMBER } ;
SEASONS = (WINTER,SPRING,SUMMER,AUTUMN);
COLORS = {BLACK,RED); '

Given the above type definition section, the follewing relatlons are true:
DIAMOND <= HEART
MONDAY < SUNDAY
DECEMBER >= APRIL

WEDNESDAY = SUCC(TUESDAY)
NOVEMBER = PRED({DECEMBER)

The following relatioms are all false:

CLUB >= DIAMOND

JANUARY = FEBRUARY

SUCC(NOVEMBER) = QCTOBER
The following expressiongs have undefined values:

SUCG(SPADE)

PRED(MONDAY)

SUCC(DECEMBER)
You can also define new data types in the type definition section.
In a type identifler type definition, the new type identifiler takes the same type as the old type
identifier.
Simple Types

There are sixz data types that are called.simple types: Boolean, char, Integer, real, scalar, aand
subrange.

simple type
l »{ enumeration fype | J -
—1“J real }

The following operators apply to operands of simple type and yield a Boolean result:

<> The operands are evaluated, then the resulting values are compared. The cutcome is true
if the resulting values are not equal and false if they are equal.

= The operands are evaluated, then the resulting values are compared. The outcome is true
if the resulting values are equal and false if they are unot.

Five of the simple types are also called emmeratlon types because they consist of a finite,
totally ordered, set of values,

3-4 60497700 01

enumeralion type

=§char =
R gy gy |
boolean

| boolean |
h.I ;S l

» inleger |
[s e v

» scalaT_type |

» subrange fype

The following operators apply te operands of enumeration type; they take operands of compatible

type and yield a Boolean result:

The type Boolean is a predefined enumeration type.

< Less than

{= TLess than or equal to

= Equal to

<> HNot equal to

> Greater than

»= Greater than or equal to
Boolean

Its values are true and false.

The following operators apply to operands of type Boclean and yield a Boolean result:

Operator

Description of Operation

AND

OR

NOT

Logical conjunction of the two operands.
Logical disjunction of the two operands,

Logical nepation of the operand.

The following shows the value of some Boolean expressions:

Expression

TRUE AND TRUE
TRUE AND FALSE
FALSE AND TRUE
FALSE AND FALSE

NOT TRUE
NOT FALSE

TRUE < TRUE
TRUE < FALSE
FALSE < TRUE
FALSE < FALSE

TRUE
TRUE
FALSE
FALSE

TRUE

FALSE
TRUE
FALSE

o

TRUE <> TRUE

TRUE <> FALSE
FALSE <> TRUE
FALSE <> FALSE

Result

TRUE

FALSE
FALSE
FALSE

FALSE
TRUE

FALSE
FALSE
TRUE

FALSE

TRUE
FALSE
FALSE
TRUE

FALSE
TRUE
TRUE
FALSE

Expregsion

TRUE OR TRUE
TRUE OR FALSE
FALSE OR TRUE
FALSE OR FALSE

TRUE <= TRUE
TRUE <= FALSE
FALSE <= TRUE
FALSE <= FALSE

TRUE >= TRUE

TRUE >= FALSE
FALSE >= TRUE
FALSE »>= FALSE

The value of TRUE is greater than the value of FALSE.

60497700 01

Result

TRUE
TRUE
TRUE
FALSE

TRUE
FALSE

TRUE

TRUE
TRUE
FALSE
TRUE

Char

The type char is a predefined enumeration type.. Its values are the character set used at your
site. Appendix A shows the translations between Pascal characters and CDC Scientific and CDC
ASCITI character sets.

The characters in any character set are numbered; the ordinal number of a character can be
obtained from the following Pascal character table by adding the row and column number for the
character in question. The ordering of the character is definmed by their ordinal values.

0 1 2 3 4 5 6 7 8 9
0 A B C D E T G H I
10 J K L M N 0 ? Q R 5
20 T Lif v W X Y A 0 1 2
30 3 4 5 6 7 8 9 + - *
40 / () 5 = s . # [
50 1 : n _ 1 & : < >
60 e \ t 3

The identifier COL is a predefined constant of type CHAR:

ORD(COL)=51

The identifier PER is a predefined constant of type CHAR:

ORD(PER)=47
You can produce the table with the following program:

PROGRAM TABLE(OUTEUT);
VAR
CHARACTER: CHAR;
BEGIN
WRITELN(’ 0
WRITE(D:3," ":3);
FOR CHARACTER :=
BEGIN
'IF ORD(CHARACTER) MOD 10 = 0 THEN
BEGIN
WRITELN;
WRITE(ORD(CHARACTER):3)

1 2 3 4 5 6 7 8 9');

IAI' TO l;l —])_0.

END;
WRITE(CHARACTER:3)

END.

This statement will always be true for any two characters Cl and C2:

(€1 ¢ C2) = (ORD(C1) < (ORD{C2})

3-6 60497700 01

Integer

The type integer is a predefined enumeration type.. Its values are the finite set

[-2484]1,,248-1].

Actually, imtegers ia the range [-259+1..259—l] can be stored, but the

only operations that are executed correctly in this range are: addition, subtraction, taking th
absolute value, comparisons, and multiplication and division by certain constants. These
constants must be either a power of two or the sum or difference of two powers of two.

The following operators apply to operands of type integer and yield an integer result:

Cperator
+

+

DIV

MOD

Real

Description of Operation

Integer addition of the values of the two operands.
Monadic plus (redundant).

Integer subtraction of the walue of the right operand from the value of the
left operand.

Monadic minus; negation,
Integer multiplication of the values of the two operands.

The value of the left operand is divided by the value of the right operand.
The result is the quotient truncated {not rounded) to integer,

A MOD B is defined as: A - ({A DIV B) * B).

The type real is a predefined enumeration type, Its values consist of a finite subset of real
numbers in the range [-10322 -10-29%4 ¢, 107294,,10322], 4 value of type real is

represented in the CDC floating point format: the mantissa has 48 bits and a sign and the
exponent has 11 blts. Therefore, there are at least 14 significant decimal digits.

Real data types are ordered according to the natural ordering of real numbers.

The followlng operators apply to operands of type real:

Operator
+

+

(']

TV AAVYA
v

60497700 01

Description of Operation

Floating point addition of the values of the two operands.
Monadic plus (redundant).

Floating point subtraction of the value of the right operand from the value
the left operand.

Monadic minus.

Floating point multiplication of the values of the two operands.

of

Floating point division of the value of the left operand by the value of the

right operand.

The Boolean result is true if the specified relation holds between the two
operands, otherwise it is false,

Scalar

The type scalar is defined by listing all the enumeration constants (all the possible values) in
increasing order as a list of identifiers.

- ‘scalar type

e

)
AF(D——L—-D[enumeration constant

enumeration constont

\j

» identifier |

Subrange

An enumeration type can also be defined as a subrange of another emumeration type by specifying
its minimum and maximum values separated by a double period (..). :

subrange iype

min bound () mazx bound

min bound

[|
» constant

Y

maz bound

N e y—
» constant |

Y

The min bound must not exceed the max bound and they must be of the same enumeration type.

Structured Types

A structured type is a composition of simple types. The definition of a structured type
specifies the structuring method and the component types.

There are four kinds of structured types: array, file, record, and set.

_structured type
| sei type |

"'-1 file type

——
Y

record Iype

3-8 60497700 01

Array

An array consists of a fixed number of compoments that all have the same type. The number of
components is specified by an enumeration type, which is called the index type.

array type

index type

»{ enumeration fype |

A

component type

The index type is static and cannot be varied dynamically. This implies that the index type must
be known at the compilation time.

A shorthand notation for the type
ARRAY[T1] OF ARRAY[T2] OF T3
is the notation
ARRAY[T1,T2] OF T3

This 1s called a multi-dimensional array. The number of index types is called the dimension of
the array. The array with index type T2 is called the innermost array.

" You can use arrays either whole or component wise., A whole array is selected by its array
variable. A component of an array is selected by the array variable followed by an index
enclosed in brackets. The total number of index expressions must not exceed the dimension of the
array. Furthermore, the value of each index expression must be an enumeration type that is
compatible with the corresponding index type.

indexed variable

—»| array variable (D (D

array varicble

P |
> variable }

Y

index
£ g

[S]
ﬁJ N
| expresston

4

The notations NAME{Al][A2] and NAME[Al,A2] can be used interchangeably.

60497700 01 3-9

The following are examples of array declarationms:

TYPE :
HOURS = 8..16; ;
MATRIX = ARRAY[1..N,1..N] OF REAL; (* N IS AN INTEGER CONSTANT *)
COUNTER = ARRAY[‘A‘.."Z’] OF INTEGER; ' :

- NAMEOFDAY = ARRAY[DAYS] OF ALFA;
OCCUPIED = ARRAY[DAYS,HOURS] OF BOOLEAN;

VAR

A,B,C : MATRIX;
The following statements show array denotations:

A := B; (*# THE ENTIRE MATRIX B IS COPIED INTO A *)

C[I] := A[I]; (* ONE ROW OF A IS COPIED INTO THE CORRESPONDING ROW IN C *)
C[I,J] := A[K,L]; (¥ ONE COMPONENT OF A IS COPIED INTO ONE COMPONENT OF C %)
OCCUPIED [WEDNESDAY,9] := TRUE;

OCCUPIED[FRIDAY,15] := FALSE;

The following statements initialize B to the identity matrix:

FOR I := 1 TO N DO :
T BEGIN _
FOR J := 1 TO N DO
B[1I,J] := 0;
"B[1,I] =1
END;

These statements provide an alternate way of initializing B to the identity matrix:’

FOR J := 1 TO N DO
B[1][J] := O3

FOR I := 2 TO N DO
B[I] := B[1];

FOR I := 1 TO N DO

BII,I] := 1;
File

The declaration of a file variable introduces a file buffer to the component type. The file = .. _
buffer is denoted by the file variable followed by an arrow (t). : :

file type

- »(file of)— [type |

3-10 60497700 01 -

The file buffer can be considered a window through which compenents can be inapected {read) or
new components can be appended (written). A file position i1s implicitly associated with this

window (the file buffer). The window is moved by certain file operations. It is, however, mot
possible to alternate between reading and writing a file; a file can be either read or written.

Jfile buffer

————={ file varisble | " Do—

file variable

;s
“'!—; variable %

Y

The sequential processing and the existence of a file buffer suggests that files are associated
with secondary storage and peripherals. Exactly hew the components are allocated varies.
Usually only a few components are present in primary storage at a time and only the component
e, denoted by the file buffer is accessible.

A special mark is placed after the last component of the file. This mark is called the
end-of-file mark (EOF).

Record

A record consists of a fixed number of components called fields. A field identifier and type
must be specified for each field.

Tecord {ype
ield list (end }

field list

ized part -
J L

() [variani par? |
#_variant par! |

variant par

fized part

™
LS
T N\
L
—[—K—-‘ field ideniifier

A record can be divided into a fixed part and a variant part, either or both of these parts may
be empty.

60497700 01 3-11

variant pari

» variant

tag field

T

teg field -{idenitifier

» type identifier | : s

tag field type

Y

» type identifier]

variant

case label list € (O [field Listh)

A field list can have a number of variants. 1In this case, you can designate a tag field that
contains a value that indicates which variant is assumed by the field list at a given time. The
tag field may be empty. .

The tag field type must be an enumeration type. Eaech varilant must be labeled with one or more
constants whose type is compatible with the tag field type. All labels must be distinck.

Records can either be used as a whole or as a component. A component of a record is selected by
the record varlable, followed by the field identifier of the component, separated by a period.

The following lines show examples of record types:

TYPE
CARDTYPE = (NORMAL,WILD);
COMPLEX = REGORD
T R,I : REAL
END;
DATE = RECORD
ORDINAL : 1..31;
DAY : DAYS;
MONTH : MONTHS;
YEAR : 1900..2000
END;
PLAYINGCARD = RECORD
CASE T : CARDTYPE OF
T NORMAL : (SUIT : SUITS;
RANK : 2..14);
WILD : (FACE : (BLANK,JOKER))

3-12 60497700 01

If you assume the following declarations,
VAR
8,X,¥ : COMPLEX;
HAND : ARRAY[1..13] OF PLAYINGCARD;

then the fellowing are examples of record denotations:

S.R := X.R + Y.R; (* THE REAL COMPONENT OF S BECCMES THE SUM OF THE REAL PARTS OF X AND Y *)

HAND[1].T := NORMAL;
HAND[1].SUIT := CLUB;
HAND[1].RANK := B; -
HAND[2].T := WILD;
HAND[2].FACE := JOKER;

Note that the tap field is used as any other field is.

Set

A set type consists of the set of all subsets of some enumeration type.

set type

——»{set of) » Base fype b—r

base type

»{ enumeration iype | »-

The ordinal number of the largest element must not exceed 58 and the ordinal number of the
smallest element must not be negative. It follows that a set type can contain at mest 59
elements.

set value

—D

| element |

element

I S —— Y |

» _pzpression »
expression, {.) eXPTESSIOnN; :

A set value denotes a set consiating of the expression values. The form [M..N] denotes the set
of all elements i of the base type such that M ¢&= I <= N. If M > N then [M..N] denotes the empty
set. The set expressions must all be of compatible enumeration types. The empty set is denoted

[] and is compatible with any set type.

60497700 01

3-13

An example of a set type, asgume A and B are of type T and T is a set type, then the following
expression is true:

(A-B)+(B-A)=A+B-A*B

A B

A-B A* B B - é)

If you assume the following declarations,

IYPE

VAR

then the following lines are examples of epplications of:set and set. operators:

WORKINGDAYS = SET OF DAYS;
CHARACTERS = SET OF ‘A’.."+";

WORKINGDAY : WORKINGDAYS;

LETTERS, DIGITS, FIRST, FOLLOWING: CHARACTERS;

LAZY : BOOLEAN;

WORKINGDAY := [MONDAY..FRIDAY];

LAZY :=

NOT{SATURDAY IN WORKINGDAY);

LETTERS := [‘A’..°2'1;

DIGITS := ['0°..79°];

FIRST := LETTERS:

FOLLOWING := FIRST + DIGITS + [+’],

The following relatlons are all true:

FIRST * DIGITS = []

FOLLOWING - (DIGITS + [‘+’]) = LETTERS
FOLLOWING * FIRST = LETTERS

ORD([MONDAY, TUESDAY, THURSDAY]) =1 + 2 + 8

The following operators take two operands of compatible set types.and produce a result that is of
a set type compatible with the operand types. :

Operator Deacription of Operation

+

*

The following

The result is the union of the two operand sets.

The result is the intersectionm of the two operand sets.

The result is the set difference of the two operand sets (the elements that

belong to the left operand, but not to the right operand).

Operator Description of Operation

operators take two operands of compatible set type and produce a Boolean result.

The result is true if the left operand is equal to the right operand.

The result is true if the left operand is not equal to the right operand.

The result is.true if the:left operand: is:included:in the right operand and

false if it is not..

The result is true if the right operand is included in the left operand and

false if it is not.

60497700 01

The following operator takes two operands and produces a Boolean result. The right operand is a
set type. The left operand must be of an enumeration type compatible with the base type of the

right operand.

Operator Deseription of Operation
IN - The result is true if the left operand is a member of the set specified as the

right operand.

Pointer Types

Pointers are used for constructing dynamie data structures.

pointer type

——{t) » fype identifier ———————————m

The type identifier cannot demote a type containing a file type. The type identifier may be
defined textually after the pointer type.

The value of peinter variable is either nil or a reference to a variable of the specified type.

The pointer nil belongs te every pointer type; it pointe to no variable at all. The variable
referenced by a pointer is denoted by the pointer variable followed by an arrow (%).

referenced wvarioble

———»| pointer variable | (—»

pointer variahle

T -
» variable ; »

For example, a 1ist structure can be declared as follows:

TYPE
PLIST = }LIST;
LIST = RECORD
INF : . . . 3
NEXT : PLIST
END;
yAR

HEAD : PLIST;
A list structure with two elements can be created as follows:

NEW(HEAD);

HEAD$.INF := . . . ;
NEW(HEAD$.NEXT);
HEADY.NEXTH.INF := . . . ;
HEAD +.NEXT $.NEXT := NIL;

The declaration of a pointer variable causes the computer to allocate gpace for the pointer,
hence me space is allocated for any referenced variable before this is explicitly denoted by
calling the predefined procedure new,

The type of a reference variable is the type specified in the declaration of the pointer type.

60497700 01 3-15

The following operators apply to operands of pointer type and yield a Boolean result:

<» The operands are evaluated, then the resulting values are compared. The outcome is Lrue
if the resulting values are not equal and false if they are equal.

= The operands are evaluated, them the resulting values are compared. The outcome is true
if the resulting values are equal and false if they are not.

Type Compatibility
Two operands must Be compatible in type. In general,
Two types are compatlble if they are the same type.
A subrange type 1s compatible with the type it is a subrange of.
Two subrange types of the game type are compatible.
Two string types are compatible if they have the same length.
Two set types are compatible if their bazse types are compatible.
The type of the empty set [] is compatible with any set type.

The type of the pointer value nil is compatible with any pointer type.

The type INIEGER and any subrange type of INTEGER are compatible with the type REAL except in the
following cases: .

An operand of type REAL cannot be assigned to a variable or function identifier of type
INTEGER.

An actual parameter of type REAL cannof be passed to a formal parameter of type INTEGER.

VAR SECTION

The varlable deeclaration section defines the name and type of a variable. ZEach variable in the
gtatements part must be declared in the variable declaration section prior to its use.

variable declavalion part

e
L
(war) variabie identifier ‘—)——AQ—]

(._l't_l o g |
g

variable ideniifier

Y

R o
! ideniifier |

3-16 60497700 Ol -

You can declare several variables of the same type in a single list of identifiers followed by
the type.

If a variable is of array type or record type, a single component is denoted by the identifier
followed by a selector specifying that component.

The following 1s an example of both a type and a variable declaration section:

TYPE

WEEKEND = FRIDAY..SUNDAY;
VAR

GOODDAY : WEEKEND;

If the variable GOODDAY has the value FRIDAY, then the following relations are true:
PRED(GOCDDAY) = THURSDAY
SUCC({THURSDAY) = GOODDAY

VALUE SECTION

The value declaration section initializes the variables declared in the statements part.

value pari

-uu.n'nb!e identifiar)——-@—3 ' |,-
Lﬁl value specification

value specificaiion

> » consiant | i
»{_nil }
—,"J set value E
o siructured valu

siruciured value

» structured unlue specificai{on [—»
o type identifier |

siructured valus specificafion

¥ . P

repetition faclor

——»|constant | (o)—>

60497700 01 3-17

A variable of a simple type can be initialized with a constant of the same type.

A variable of pointer type can only be ilnitialized with nil.

A variable of set type can be initialized with a set value.

A vardable of array or record type can be initialized with a structured value.

A structured value consists of a number of component values, one for each component of the
structured type. Each component value must be of the same type ag the corresponding component
type. If the component type is simple, pointer, or set type, the corresponding component value
must follow the rules just given, If a component type is itself an array or record type, the
corresponding component value must be a structured value (this rule 1s used recursively). A

multi-dimensional array is considered to be an array of arrays.

A type identifier can be present in a structured value. If it is present, 1t must denote the
same type as the type of the variable being initialized.

The type identifier cam be omitted, in which case the rules just glven apply.

The followlng is an example of CONST, TYPE, VAR, and VALUE section declarations:

3

VECTOR = ARRAY[1..N] OF INTEGER;

NAME = PACKED ARRAY[1,.8] OF CHAR;
NODE = RECORD
1D : NAME;
NEXT = % NODE;
END;

MATRIX = ARRAI[I‘.SIZE 1..5IZE] OF INTEGER;
DOUBLEVECTOR = ARRAX{I..Z] OF VECTOR;

VAR
X,Y :VECTOR;
P,5 : NAME;
N : NODE;
M1 ,M2 : MATRIX;
D : DOUBLEVECTOR;
I : INTEGER;
VALUE
X = VECTOR(1,1,2,2,3);
Y = (N OF 0);
P= (' PETER ')
s = ("J ,JH ,’N",4 OF * “);
= NODE(DUMMY ',NIL)'
Ml = MATRIX{((2,3,5),(7,9,13),(17, 19 »23));

= ({3 QF 0}, (3 OF 1), (1 2,3));° _
= DOUBLEVECTOR(Z OF VECTOR(N OF 0));

HU

Repetition factors can be used to initialize many array elements with the same value. The
constant of a repetition factor must be of intepger type. '

Packed variables can be initialized with a string literal,
A variable of string type can also be initialized with a string literal.
A record with a variant part can be initialized; the tag field value determines which variant is

followed. Even if the tag field has no field identifier the tag field value must be specified to
gselect a wvariant.

3-18 60497700 01

ROUTINES SECTION

The routine declaration section defines a block of statements that can be executed by a procedure
of Ffunction call within the statements part. The block of statements are bounded by a BEGIN and
END.

routine declaration

1tj;v:rr‘c:mecf.u.'re heading
function heading [

procedure heading

procedure ideniifier)—) r
O g

L .

»{_formal parameters]

Junciion heading

Ffunciion identifier ’——]

L.I formal paramelers —»{: —»{ {ype identifier

procedure identifier

"'—] identifier |

A

SFumnciion identifier

-]"J ideniifier

Y

Routine is a generic term for procedures and functions. The difference between a procedure and
function is that while both are subprograms, a function returns a result value and, therefore,
can be used in an expression.

A value part is only allowed in the declaration of a program and not within routines.

Routines can be called recursively. At most, ten levels of routines cam be declared inside each
other. At runtime, however, dynamic routine calls can be nested to any level.

The type in the fumction heading is the function type, it specifies the range of the functiom.
The function type must be a simple or a polmnter type.

The following are examples of routine headings:
FUNCTION MYOWNSQRT(X: REAL): REAL;
FUNCTION ZERO{LOWER, UPPER: REAL; FUNCTION F(¥X: REAL): REAL}: REAL;

PROCEDURE INSERT(ELEMENT: COMPONENTTYPE);
PROCEDURE UPDATE(VAR ELEMENT: COMPONENITYPE});

60497700 01 3-19

You can change the current value of a function within the statements that make up the function by -
writing the function name as the left hand side of an assignment. The value return by the
function is the dynamically last value assigned to it.

Formal Parameters

Formal parameters speclfy the interface between the block and its surroundings., Each formal
parameter is given its kind and its formal name. There are four parameter kinds: variable,
value, procedure, and function. The kind value is assumed if nothing else is specified.

Formal parameters are denoted by formal names in the block of a routine. A formal parameter of
kind variable denotes a variable of the specified name and type. The denoted variable is the
actual parameter, A formal parameter of kind value can be used as a local variable of the
specified name and type; its Initial value is the value of the actual parameter. A formal
parameter of kind procedure or function can be used as if it 1s a locally declared routine,

The reserved word DYNAMIC can only precede an array type.
Further differences between the four parameter kinds are given under the heading Actual

Parameters in section 4.

Blocks

A block is a group of statements that is bound by a begin and end. " There are three classes of
blocks: forward, external, and internal.

block

Y

o internal block |

o] external block |

:%fnrtuurd block

Forward Block

The scope rules at the end of this section state that a routine must be declared before it is
used. The declaration of a block as a forward block i an announcement of a routine declaration
that will be given textually later. - When the. routine-declaration is given, the formsl parameters
are omitted in the heading.

Fforward block’

»{(forward }

¥

External Block

The declaratlon of a block as an extermal block is an announcement of a separately compiled
routine. The linking of external routines is done.by.the NOS operating system.. Refer to section
5 for a more detailed description of the NOS interface. . .

external block

Y

lk —»{extern } - J

»{ fortran }

3~20 60497700 01

Internal Block

" internal block

compound statement|—»

declaraiions

(ﬂ—‘ label declaration port Je——-——r

M consiant definition part
h————] tyne definiltion part j&———
M————{variable declaration part je——
[vaiue part e g

——— 1 routine declaraiion port j&————

Y

Scope Rules
A Bcope is one of the following:
A field 1list (excluding inner scopes)
A routine heading
A bloek (excluding inner scopes)
A name can be declared once in each scope only., All names must be declared bhefore they are
used. If a name is declared both in a scope and in an inner scope, 1t is always the inner

declaration that is effective in the inner scope.

Generally, the declaration of a name is effective in the rest of the bleock where it is declared,
however, details for each kind of name are given below.

- Constant identifier, type identifier, variable identifier, enumeration constant, lahbel, and
routine identifier:

The declaration of these identifilers i effective in the rest of the block.
Pointer type identifier:

In the definition of a pointer type, the type identifier on the right hand slde of the
arrow (t)} can be defined textually after the pointer type definitionm,

Field identifier:

The declaration of a field identifier is effective in the rest of the block, but the
field identifier can be used in RECORD variables and WITH statements only,

Routine parameter name:
The name is effective 1n the rest of the block.
Program identifier:

The program identifier has no significance within the program.

60497700 01 3-21

STATEMENT PART 4

This section describes the statements that manipulate defined and declared data items.

A collection of statements can be grouped together as a compound statement by enclosing them
within BEGIN and END.

The statement(s) in the statement part are executed sequentially In the same order as they appear.

EXPRESSIONS

Expressions are often a fundamental part of a statement. An expression defines a rule of
computation for obtaining a value by application of operators to operands. An expression is
P evaluated from left to right using the following precedence rules (highest to lowest precedence):

NOT
%/, DIV, MOD, AND

, O, <, &=, >, =, IN

Expressicns are written in infix notation.

expression

——————| simple expression |-

(

L_@_f——.{ simple expression }—j
L.@_/
;_.@_/

<=

g_...@_J
(=)

simple expression

Y

60497700 O1 41

term

Jacior
~ »{ constant | >

» varinble -

Y ey p—— |

o function call | d
- o(D————>{ezpression } -D—
not » factor |1

o o7 value | -
P » sef value 1

. »{nil) -

A\

The feollowing relations are trues

2%3-4%5= (2% 3)-1(4%25)
15 DIV 4 % 4 = (15 DIV 4) * 4
8075/3=0(80/5)/3

b4+ 2% 3 =4+ (2 %3)

For any Bl, B2, B3 of type Boolean,.t_he following relation is true: .
BI%MBZA_MQB3=BIE((_NO_TBZ):A_§_D_B3) | |

The following is an ambiguous expression:
0<XANDX<I10

It should be written as
(0 < X) AND (X < 10)

The following two statements are different:

IF (I <= N) AND (TABLE[I] = KEY)} THEN §;
IF I <= N THEN IF TABLE[I] = KEY THEN §;

All factors Iin an expression are evaluated and therefore should be defined.
If an expression contains a function whose evaluation causes side effects on other factors in the

expression, the left to right evaluation does not always hold; such side effects should be
avoided. .

4-2 60497700 01

The following table gives all valid combinations of dyadic operators and operand types:

Operator(s) Left Operand Right Operand Result
+, =, * INTEGER INTEGER INTEGER
) INTEGER REAL REAL
- REAL INTEGER REAIL
REAL REAL REAL
any type compatible with T any type compatible with T set type T
DIV, MOD, / INTEGER INTEGER INTEGER
INTEGER INTEGER REAL
INTEGER REAL REAL
REAL INTEGER REAL
REAL REAT REAL
OR, AND, £, > BOOLEAN BOOLEAN BOOLEAN
any string type T any type compatible with T BOOLEAN
any simple type T any type compatible with T BOOLEAN
(=, >=, =, O any string type T any type compatible with T BOOLEAN
any simple type T any type compatible with T BOOLEAN
any set type T any type compatible with T BOOLEAN
I8 any enumeration type SET OF T BOOLEAN

compatible with T

The following table gives all wvalid combinations of monadic operators and operand types:

Operator(s) Operand Result

+, - INTEGER INTEGER
REAL REAL

NOT BOOLEAN BOOLEAN

During evaluation of an expression, intermediate resulte are kept in a fixed number of
registers. If the number of intermediate results exceeds the capacity of the registers, the
expression cannot be translated and the compiler issues the error message: expression too
complicated., To remedy this, you must either rewrite the expression with a less complicated
parenthesls structure or be split inte two or more expressions.

ASSIGNMENT STATEMENT

The assignment statement replaces the current value of a variable or function with the value of
an expression.

assignment siatement

variable (=) eTPTeSSIoR

function identifier

The variable or function and expression must be of compatible types. Assignments caen be made to
variables of any type except file variables (assigmment to the file buffer of a file is legal}. -

An assignment can be made to a function identifier within its own statement block. The value
returned by the function is the dynamically last value that was assigned to it.

60497700 01 4-3

IF STATEMENT

The IF statement defines two paths that can be taken during program execution. The path that is
taken depends upon the result of the Boolean expression contained in the statement.

. if statement

(i) expression] trug part] [>

true part
—»{(then) »{Statement, |——
Jalse part
——{(else) »{statement, |———»

Statement 1 will only be executed if the value of the expression is true.

The statement

following statement 1, in this case statement 2, will be executed if the value of the expression

is false.

The ambiguity that arises from the construction.
IF El THEN IF EZ THEN Sl ELSE S2

can be resolved by writing it as

IF E1 THEN
BEGIN
IF E2 THEN S1
“ELSE §2 -
END

The following are examples of IF statements:

IF DAY = SUNDAY THEN NEXT := MONDAY

ELSE NEXT := SUCC(DAY)

IF X > Y THEN
BEGIN

MIN

MAX

¥
= X

END
ELSE
BEGIN
MIN
MAX
END;

ks

The following IF statements are not equivalent: -
IF (I <= W)} AND (TABLE[I]} = KEY) THEN 5;

IF I <= N THEN IF TABLE[1] = KEY THEN S;

In the case where I > N, the first statement will evaluate TABLE[I] = KEY and

index error.

probably cause an

60497700 01

A frequent misuse of the IF statement i1s the following:

IF A = B THEN FOUND := TRUE
ELSE FOUND := FALSE;

A much simpler statement is:
FOU';TD t= A = B;

The following IF statement:
IF B THEN Sl ELSE S52;

is equivalent to:

CASE B OF
TRUE : S1;
FALSE : 52

END;

WITH STATEMENT

The WITH statement facllitates manipulation of record components.

with staiement

'IIIIIII|CIIIIIIIIIII
(with) | record varicble] (do) [statemnent |

record wvariable

The fields of the record variable(s) within the statement can be denoted by writing their field
identifiers without preceding them with the denotation of the entire record variable.

The following is an example of a WITH statement:

WITH HAND[1] DO

BEGIN
T := NORMAL;
SUIT := CLUB;
RANK := 8
END;

You can nest WITH statements, as in the example

WITH V1 DO S1
WITH V2 DO Sl

WITH Vo DO 51;
A shorter way to write the same nested WITH statement is the following:
WITH V1, V2, V3, ..., Vo DO 51;
The record variahle selects a record; this selection cannot be changed in the statement. If the

record varlable has array indexes or pointers, changes to them within the WITH statement will not
affect the gselection. :

60497700 01 ' 4-5

WHILE STATEMENT

The WHILE statement specifies that a statement is to be executed a number of times.

while statement

(rhile) (do) statement

The expression must yileld a result of type Boolean. The statement following DO will be executed
zero or more times. The expression is evaluated before each execution,

The WHILE statement continues until the evaluation of the expression yields a false result, If
the evaluation of the expression iz false before execution of the WHILE statement, the statement
following DD is not executed.

REPEAT STATEMENT

The REPEAT statement specifies that a sequence of statements is to be executed repeatedly.

repeal sialement

(e
(repeat)

The expression must yield a result of type Boolean. The sequence of statements between the
symbols REPEAT and UNTIL are executed ome or more times. Every time the sequence is executed,
the expression is evaluated, When the resulting value becomes true the REPEAT statement is
completed.) . —_—

FOR STATEMENT

A value of an enumeration type can be used to execute a statement repeatedly with a consecutive
sequence of enumeratiom values.

Jor statemeni

—»(for)———{ conivol_variable }—»@ﬁ

control variable

I gy |
™ identifier | -
for list
downto

4-6 60497700 01

The two expressions must be of the same enumeration type and the type of the control variable
must be compatible with this type. The control variable must be declared im the same block as
the FOR statement, Assignment to the controel variable is not allowed within the statement.

The FOR list expresses the size of the interval and the order of progression. The control
variable can either be incremented {in stepa of 1) from expression l_zg expression 2, or
decremented (in steps by 1) from expression 1 DOWNTO expression 2. The expressions are only
evaluated once before the repetition. If expression 1 is greater than expression 2 and increment
is specified (T0) then the statement is not executed at all., If expression 1 is less than
expresslon 2 and decrement iz specified (DOWNTO), the statement 1s not executed.

The value of the control variable is undefined after the completion of the FOR statement.

The expression in the FOR list may contain variables. The selection of these variables cannot be
changed in the statement. If the varlables have array indexes or pointers, changes to them in
the FOR statement will not affect the selection.

The value of I = J in the following FOR statement is undefined:

FOR I := 1 TO N DO

CASE STATEMENT

The CASE statement specifies that the value of an enumeration type 1s to be used to select one of
several statements for execution.

case statement

(of)

case list element (— :

end part

end

—-

tatement

case list element

—Tﬁase label port ()

case label pari

(il)
»_constont | -

60497700 01 4-7

A CASE list element is a statement labeled by one or more constants. These constants must all be.
of the same type as the expression. All labels (constants) in a CASE statement must be

distinct. The statement labeled by the current value of the expression is selected for

execution. If no such label is present, the statements following OTHERWISE are selected for
execution. If OTHERWISE is not included in the CASE statement, the effect of the CASE statement
is defined as follows: if the compiler option T+ (see sectlon 5) is gpecified, the runtime error
message INDEX OR CASE EXPR OUT OF BANGE is given and program executlion terminmated; if the
compller option T- is specified, no statement is selected for execution, Upon completion of the
selected statement, the CASE statement is also completed. ' :

If you assume the following declarations:
VAR .))
MONTH : MONTHS; : :)) : 7
SUIT : SUITS;

SEASON : SEASONS;
COLOR : COLORS;

then the following are valid examples of a CASE statement:

CASE MONTH OF
DECEMBER , JANUARY ,FEBRUARY : SEASON := WINTER;
MARCH ,APRIL ,MAY : SEASON := SPRING;
JUNE ,JULY ,AUGUST : SEASON := SUMMER;
SEPTEMBER,OCTOBER ,NOVEMBER : SEASON := AUTUMN;
END;
CASE SUIT OF
CLUB, SPADE : COLOR := BLACK
OTHERWISE
COLOR := RED;
END;

The CASE statement is translated into a jump table. The size of this table is limited; no two
labels L1 and L2 can be chosen so that ABS{ORD{Ll) - ORD{L2)) > 1000.

JUMPS

Complicated control structures can be constructed using jumps. A jump is a means of transferring
control to an arbitary place in a program. It should be noted that any control structure can be
constructed using the WHILE and IF statemente only (and auxiliary boclean variables).
Furthermore, it is not considered good programming style to use jumps.

A jump consists of a destination (label) and transfer of control (the GOTO statement).

LABELED STATEMENT

A labeled statement is the destination of a GOTO statement.

A labeled statement is defined by prefixing a statement with a label and a colon {:}. The
statement after the colon cannot be a labeled statement.

labelled statement

4-8 60497700 01

Labels follow the same rules of scope that other declared quantities do: the innermost declared
label will be effective in the case of neated routines that nse the same label.

All labels must be declared in the LABEL section of the declaraction and definition part of the

program or routine in which it Is defined. A label that is referenced by a GOTC statement can be
used only once in the statements part.

GOTO STATEMENT

Control is transferred to a labeled statement by a GOTO statement,

goto stalement

o ooto) goto =§ label I—‘——>

The innermost declared label will be effective in the case where nested routines use the same
label. The result of jumping into an inner statement of an IF, WHILE, REPEAT, WITH, FOE, or CASE
statement is undefined.

ROUTINES

Routine is a generic term for procedures and funetions. The differsnce between procedures and
functions is that while both are subroutines, a function returns a result, therefore, a function
name can be a part of an expression.

procedure call

——»{ procedure name I—T——-(actual parameters]——T—b

Sfunction call

—» funciion name I—T——.(cctual perameters I-————Tb

A routine call binds actual parameters to formal parameters, allocates local variables, and
executes the block of statements that make up the routine. When the block 1s completed, lacal
variables are deallocated and execution is resumed with the statement immediately after the
routine call.

The variables of a routine are assoclated with a specific call; they exist from the routine call
until the block of statements is completed. When a routine is called recursively, several -
varsione of the wariables exist simultaneously, one for each uncompleted call,

60497700 01 49

The scope rules of Pascal lead to a conflict in a sitwation where two routines call:each other. -
{Which one should be declared first?) The conflict can be removed by substitwting the identifier
FORWARD for the body of the first routine and postponing the specification of the routine body.
For example, o : .

FIUNCTION G(X : REAL) : REAL;
FORWARD;
FONCTION F(X : REAL)

B
E

END;

FUNCTION G;
BEGIN

ACTUAL PARAMETERS

There must be an actual parameter for each formal parameter.

actual parameters

(R j
—{ »{ ezpression } »{)) —>

routine ideniifier

variable

The binding of an actual parameter to a formal parameter depends on the parameter kind. There
are four parameter kinds: value, variable, function, and procedure.)

Binding a Value

The type of the actual parameter must be compatible with the type of the formal parameter. The
value of the actual parameter 1s evaluated, then this value becomes the imitial value of the
formal parameter. Assignments to the formal parameter within the bloeck do not affect the actual
parameter (call by value). '

4-10 60497700 01 e

Binding a Variable

The type of the actual and formal parameter must be the same. The actual parameter must be a
variable. The value of this variable becomes the initial value of the formal parameter. Changes
to the value of the formal parameter within the block affects the actual parameter directly. The
actual parameter selects a variable; this selection cannot be changed in the block. 1If the
variable contains array indexes or pointers, changes to them do not affect the selection (call by
reference).

A component of a packed structure can only be used as an actual VAR parameter if it occupies a
whole multiple of 60-bit machine words.

An element or a field of a packed variable cannot be an actual VAR parameter. The whole packed
variable can, however, be an actual VAR parameter.

Binding a Procedure or Function

The parameter Iist of the actual and formal parameters must match. Two parameter lists match if
they have the same number of parameters and if the parameters match pairwlse. Two parameters
match if either of the following conditions are true:

Value and variable parameter types are the same

Routine formal parameters match

Note the following guidelines for choosing between value and varlable specification of parameters:
If a parameter 1s not used to tramsfer a result from the routine, value specification is
generally preferred. But for each value parameter is allocated a storage area for holding

the entire value. The value of the actual parameter is transferred to this area. In case of
a large structure type, value specification can therefore be very inefficient.

DYNAMIC PARAMETERS

If the formal parameter is specified as DYNAMIC, it must be an array type T. The actual
parameter 1s then required to:

Have the same dimension as T
Have index types that are palrwlse compatible with the index types of T
Have the same element type as T

Note that the gecond condition implies that actual parameters with different index types {for
example, size) can be passed as actual parameters to a routine.

Dynamic parameters can only be manipulated componentwise. This means that assignments and
comparisons of dynamic parameters must be done componentwise. Furthermore PACK and UNPACK can
only be applied to components of a dynamic parameter. Dynamic parameters can be passed as
parameters to other routines. ’

60497700 01 4-11

-
The following is an example of a function with dynamic parameters:

TYPE

LIST = ARRAY[1..100] OF INTEGER;

FUNCTION

MAXIMUM(VAR I, : DYNAMIC LIST) : INTEGER;
(* L IS OF KIND VARTABLE TQ :SAVE TIME AND SPACE *)

VAR

I, MAX

BEGIR

INTEGER;

MAX := HIGH(L);

FOR I

:= LOW(L) + 1 T0 HIGH(L)

IF MAX < L[I] THEN

MAX := L{I];

MAXIMUM :=

END;

FILE PARAMETERS -

A parameter of a file type must be passed as a variable.

If the type of a formal parameter is T or SEGMENTED T, where T ias a file type, the actual
parameter i1s allowed to be both of type T ot of type SEGMENTED T.

PAGKED PARAMETERS

Only the innermost array can be packed when a packed array is passed as a dynamic parameter.

PREDEFINED ROUTINES ~

The following discussion describes all predefined routines except those that apply te files,
which are diacussed under the heading Files Iin this section.

ABS

ARCTAN

CHR

CLOCK

Ccos

DATE

4-12

Takes a single Integer argument and returns an integer result that is the
absolute value of the argument.

Takes a single real arpgument aond returns the result of applying the specified
mathematical function to the argument.

Takes a single argument of set type and returns am integer that is the
cardinality of the argument (the number of elements in the set).

Takes a single integer argument and returns a character result that has the
ordinal value of the argument. As a consequence, CHR is only defined in the
subrange [0..63].

This i a parameterless Integer function. It gives the current used CPU-time in-

milliseconds.

Takes a single real argument and returns the. result of applying the specified:
mathematical function to the argument, i '

Takes a single parameter of type alfa and assigns the current date to it in the
form: YY/MM/DD. (year/month/day.).

60497700 01

DISPOSE

EOF
EQLN
EO5

EXP
EXPO

GET
GETSEG

HALT
HIGH

LINELIMIT

LOW

LN

MESSAGE

NEW

60497700 01

Releases the variable referenced by P. If the associated type contains variants
and NEW(P?,Cl,. . .,Cn) has been usaed to allocate the variable, then
DISPOSE(P,Cl,. . .,Cn) must be used to release the variable.

Described under Files.
Described under Files.
Described under Files.

Takes a single real argument and returns the result of applying the specified
mathematical function to the argument.

Takes a single real argument and returns an integer result that is the exponent
of the argument in binary representation.

Described under Files.
Described under Files.

Takes & single argument of type string and terminates the program {(after closing
external files) with a CPU abort, places string in the dayfile of the job and
produces a dump.

Takes an array variable or parameter of index type and returns the max bound of
the nth index type of A, 1 { N { dimension of A. HIGH(A) is a shorthand for HIGH
(A,1).

Described under Files.

Takes an array variable or parameter of index type and returns the min bound of
the nth index type of A, 1 { N ¢ dimension of A. LOW(A) is a shorthand for
LOW(A,L1).

Takes a single real argument and returns the result of applying the specified
mathematical function to the argument.

Takes a single argument of type string and places it in the dayfile of the job.

Allocates a new variable of the same type as the argument and assigns a reference
to the argument.

In the case where the type associated with P is a record type and the field has
variants, the form NEW(P,Cl,. . .,Cn) can be used. Cl,... .,Cn is a list of
constant selectors used to determine the size of the allocated variable. The
size is as if the variable was declared a racord type with the field 1ist formed
by the following rule of selection: first, the variant corresponding to the
selector Cl is selected, then, the field list of this variant is formed by using
the selectors C2,. . .,Cn (by a recursive applicatien of this rule), finally, the
so-far-formed field 1list is prefixed by the tag field (if nonempty) and is
substituted for the wvariant part.

The above dascription does not imply any assignment to the tag fields.
The variant of the allocated variable must not be changed, and assignment to the

entire variable is not allowed. However, the value of single components can be
altered.

45-13

4~-14

oDD

ORD

If you assume the following declaratioms: -

CONST
MAXVAL = 50;
TYPE
PATOM = $ATOM;
ATOM =
RECORD
NAME : ALTA;

NUMBER : INTEGER;
WEIGHT : REAL;

OCCUPIED : SET OF l.. MAXVAL;
BINDINGS : ARRAY[1..MAXVAL] OF PATOM;
CHARGE : (PLUS,MINUS,NEUTRALY;

SATURATED : BOOLEAN
END;

VAR
A : ATOM;

then the following statements give all the names of the atoms to which A is bound:

WITH A DO -
FOR I := 1 TO MAXVAL DO
IF I IN OCCUPIED THEN
WRITELN{I,BINDINDS[I] }.NAME);

If you amssume the following declarations:

VAR
P : } PLAYINGCARD;

then NEW(P,WILD) allocates a variable whose size is as if the variable had been
of the type Q defined as

TYPE
Q = RECORD
T : CARDTYPL;
FACE : (BLANK,JOKER)
END;
Takes a single integer argument and returns a Boolean result that is true if the
argument is odd and false 1If the argument is even.

Applies to operands of any enumeration type. Takes a single argument and returns
a result that is the number of the argument in the set of values defined by the
type of the argument. When applied to a poilnter’the result is the integer
representation of the pointer. When applied to a Boolean value, the result is

-~ the following: '

ORD(FALSE) = 0

ORD{TRUE) = 1
Ord can alsc be applied to a subrange type:
VAR

A : INTEGER;

B : MIN..MAX;

In this case, A = B implies ORD(A) = ORD(B).

60497700 01

PACK

PAGE

PRED

PUT
PUTSEG
READ
READLN
RESET
REWRITE

ROUND

SIN

SQR

SQRT

60497700 0L

Packs array values. Assume that A and P are variables of the followlng types:

A: ARRAY [M..N] OF T;
P: PACKED ARRAY [U..V] OF T;

When {ORD(N) - ORD(I)) >= (ORD(V) - ORD(U)); M <= I; and the index types of the
arrays A and P and the type of I are compatible, then PACK(A,T,P) is equivalent
to:

K = I;
FOR J =1 T0 V DO
BEGIN
PLJ] := A[K];
K := SUCC({K)
EXD

Described under Files.

Applies to operands of any enumerétion-type. Takes oﬁe argument and returns the
predecessor of the argument, which ie the same type as the argument. If the
argument is the first (smallest) value of the type the result may be undefined.
Deseribed under Files.

Described under Files.

Described under Files.

Described under Files.

Described under Files.

Degcribed under Files.

Takes a single real argument and returns a result that 1s the argument rounded
(not truncated) according to standard mathematical conventions.

The difference between round and trunc is illustrated by the following examples:
TRUNC(1.6} = 1

TRUNC(-1.6) = -1
TRUNG(2.4) = 2

ROUND(1.6) = 2
ROUND(-1.6) = -2
ROUND(2.4) = 2

The operators = and <> should be used with great care on real #rguments because
of round-off errors that often result from the representation of real values, as
in the following examples:

(1.00000 - 0.00001) = 0.99999 FALSE
SQR{SQRT{2)) = 2 FALSE
(4.0 * 0.25) =1 TRUE
(10000 * 0.0003) = 3 ‘TRUE
(1000000 * 0.000003) = 3 FALSE

Takes a single teal argument and returns the result of applying the specified

mathematical function to the argument.

Takes a single inteper argument and returns an integer result that is the square

of the argument.

Takes a single real argument and returns the result of applying the specified

mathematical function to the argument.

4-15

succC Applies to operands of any enumeration type. Takes one argument and returns the
Buccessor of the argument, which is the same type as the argument. If the
argument is the last (greatest) value of the type the result may be undefined.

TIME Takes a single argument of type alfa and assigns the curent time to it in the
form: HH.MM,.S3S, (hour,minute.seconds.). '

TRUNGC Takes a single real argument and returns an integer whose sign is the same as the
argument and whose absolute value is the greatest among the integers less than or
equal to the absolute value of the argument.

Trunc can also be applied to two arguments the first argument must be of type
real, the second argument must be of type integer. TRUNC(X,I) is equal to
TRUNC(X * Y} where Y is 2 to the power I.

The difference between round and trumc is illustrated by the following examples:

TRUNC(1.6) = 1 ROUND(1.6) = 2
TRUNG(-1.6) = -1 ROUND(-1.6} = -2~
TRUNC(2.4) = 2 ROUND(2.4) = 2

UNDEFINED Takes a single real argument and returns a Boolean result that is true if the
argument is out of range or indefinite 1f a division by 0 was made.

UNPACK Unpacks array values. Assume that A and P are variables of the following types:

A: ARRAY [M..N] OF T;
P: PACKED ARRAY [U..V] OF T;

When (ORD(N) - ORD(I)) >= (ORD(V) - ORD(U)); M <= I; and the index types of the
arrays A and P and the type of I are compatible, then UNPACK(A,I,P) is equivalent’

to:
K = 13
FOR J := U 10 V DO
BEGIN
A[R] := P[J];
K := 5UCC(K)
END;

Where J denotes an auxiliary varlable that is not used elsewhere in the program.
WRITE Described under Files.

WRITELN Described under Files.

FILES

A file is a structure that consists of a sequence of components that are all of the same type.

fite type

file of type
1-———-IEEHEHIEDP————I :

A file type can be defined as the number of components (the length of the file} is not fixed. At
any time, only one component of the file 1s accessible. The other components can be.reached by
sequencing through the file. A file without any components is said to be empty.

4-16 60497700 01

The declaratiom of a file variable introduces a file buffer to the componment type. The file
buffer is denoted by the file varilable followed by an arrow (1t).

file buffer

———{_file varioble | >

file variable

Y oo |
» varicble

Y

The file buffer is like a window through which components of the file can be inspected (read) or
new compounents appended (written). A file position is implicitly associated with this window
(the file buffer). The window is moved by certain file operations. It is, however, not possible
to alternate between reading and writing a file. In a single pass the file can be either read or
written.

The sequential processing and the existence of a file buffer suggests that files are associated
with secondary storage and peripherals. Exactly how the components are allocated varies, but
usually only a few components are present ln primary storage at any given time, and only the
component decoted by the file buffer is accessgible.

A special mark is placed after the last component of the file, This mark is called the
end-of-file mark (EOF).

Tha-predefined routines for file handling are given below. It is assumed that F is a file
variable and X is of a type compatible with the type of the components in the file F.

EOF(F) Takes a file name as an argument and returns a Boolean true value if the file
1s positioned at the end-of~file mark and false if it is not.

GET{F) Advances the position of the file to the next component. The value of the
file buffer becomes the content of this component, If no next component
exists, EOF(F) becomes true and the value of Ft is undefined. If EOF(F) is
true prior to the execution of GET(F}, the eall results in the runtime error
message: TRIED TO READ PAST EOS/EOF.

PUT(F) Appends the value of the buffer variable Ft to the file F. The value of Ft
becomes undefined, If the value of EQF(F) or E0S(F) is false prior to the
execution of the PUT(F), the call results in the runtime error message: TRIED
TO WRITE WHILE NOT EOS/EQF., Otherwise the value of EQF remains true.

READ(F,X) A READ statement 1s exactly equilvalent to:

X = Fi;
GET(F);

X must be of a type compatible with the type of the components in the file F.
If F is a textfile, see the description under the heading Textfiles.

RESET(F) Repositions the file at the start; the file buffer F! contains the first

component of the file. The file can now be read. . If the file is empty, the
value of Ft is undefined and EOF(F) is true.

-

60497700 01 . ' ‘ 4-17

REWRITE(F)

WRITE(F,X)

Pogitions the file at the start fof'rewriting. The value of F becomes the
empty file, F! becomes undefined, and EOF(F) becomes true,

A WRITE statement is exactly equivalent to:

¥t = X;
PUT(F);

X must be of a type compatible with the type of the components in the file F.
If F is a textfile, see the description under the heading textfiles.

By using the B option described im section 5, the size of the main storage area holding part of
the file around the current position can be varied. In this way, an exchange of time for space
(or vice versa) can be obtained.

TEXTFILES

A file of characters is called a textfile. Accordingly, the predefined type TEXT is defined as:

TEXT : FILE OF CHAR;

Texts can be subdivided into lines. However, the mark indicating a line boundary is not a
character included in the set of char values. The following predefined routines are provided for
manipulating this end-of-line mark (EOL)., It is assumed that T 1s a variable of type TEXT.

EOLN(T)

READLN(T)

WRLITELN(T) -

The result of this Boolean function is true if T is positioned at an
end-of-line mark, and false otherwise. If true, Tt contains a blank.

Skips to the beginning of the next line of T. Subsequently, T! becomes the
first character of the next line if any. READLN(T) has the same effect as the
following statements:

WHILE NOT EOLN(T) o GET(T);
GET(T);

Terminates the current iline of T; writes an end-of-line mark.

WRITELN may append some extra blanks to the line because of some peculiarities
in the representation of end-of-line mark in the NOS operating system.

Two additional predefined routines are provided:

. LINELIMIT(T,N) Associates a linecounter with the file T and resets this linecounter to N.

4-18

PAGE(T)

The first parameter must be a textfile and the second an integer expression.

Each time an end-of-line mark is writtem onto T the assoclated linecounter is
decremented by 1. The program is terminated if the linecounter reaches zero

and the following message is given: LINELIMIT EXCEEDED.

LINELIMIT(OUTFUT,1000) is automatically executed before the program is
executed.

Positions the lineprinter. The arpgument must be a textfile. PAGE(T) is
equivalent to the statements:

WRITELN(T);
WRITE(T, 1°);

The “1” forces the lineprinter to the top of a new page.

60497700 01

A textfile T, subdivided into lines, can be scanned by the following piece of program:

RESET(T);
WHILE NOT EOF(T) DO
BEGIN
WHILE NOT EOLN(T) DO
BEGIN
READ(T,CH);
Q(CH) (* PROCESS SINGLE CHARACTER *)
LEND;
READLN(T);
R (* PROCESS LINE *)
END;

A textfile T, subdivided into lines with a maximum of N significant characters in each line, can
be scanned by the following piece of program:

RESET(T);
WHILE NOT EOF(T) DO
BEGIN -
- I 1= 0g
WHILE (I < N) > EOLN(T) bo
BEGIN
I:=1+ 1;
READ(T,LINE[I])};
END;
READLN(T) ;
R (% PROCESS LINE *)
END:;

To facilitate the manipulation of textfiles, the predefined procedures READ and WRITE have some
built—in transformation procedures. These translate numbers from the internal binary
representation into a character sequence of decimal digits and vice versa. These procedures are
called in 2 nonstandard way because they can be called with a variable number of parameters of
various types.

Let T denote a textfile and V,V1,. . .,Vn variables of type CHAR, INTEGER, or REAL.

READ(T,V) Reads a sequence of characters Erom the file T through the file buffer T using
GET(T). The first significant character is the character in T?.

If V is of type char, then READ(T,V) is exactly equivalent to:

V := T#%;
GET(T);

If V is type integer, a sequence of digits is transformed inte a (decimal) value
and then assigned to V. ZLeading blanks and leading end-of-line marks are
skipped. The character sequence that follows must be consistent with the syntax
for decimal integers given in section 2. If not, execution 1s terminated and a
runtime error message is given. Trailing blanks are skipped (if the file buffer
T4+ is left at the first nonblank character after the number or is left at the
end-of-line mark).

If V is of type real, a sequence of characters is transformed into a real value
and then assigned to V. Leading blanks and leading end-of-line marks are
skipped. The charaeter sequence that follows must be consistent with the syatax
for real literals given in section 2. If not, execution is terminated and a
runtime error message is given. Trailing blanks are gkipped (if the file buffer
is left at the first nonblank character after the real number or is left at the
end-of-line mark}.

60497700 01 4-19

READ(T,V1l,. . .,Vn) is a shorthand notion for:

BEGIN
READ(T,V1);
READ(T,V2);

READ(T,Vn)
END;

READLN(T,V) is a shorthand notation for:

BEGIN
READ(T,V);
READLN(T)

END;

READLN(T,Vl,. . .,Vn) is a shorthand notation for:

BEGIN o
READ(T,VI,. . «,V0);)
READLN(T)
END;

The predefined procedure WRITE is extended in a similar way. Let P,PI,. . .,Pn be parameters of
the form defined below and T be a textfile.
WRITE(T,P) Transforms the parameter P into a sequence of characters

(according to the rules
given below). This sequence 1s writtem on T. '

. WRITE(T,Pl,. . .,Pn) is a shorthand notation for:

BEGIN
WRITE(T,Pl);
WRITE(T,P2);
WRITE(T,Pn)

END;

WRITELN(T,P},. « .,Pn) is a shorthand notation for:v

BEGIN
WRITE(T,Pl,. . .,Pn);
WRITELN(T) '
END;

4-20 60497700 01

The parameters im the predefined procedures WRITE and WRITELN must have the-following form:

paramater

(:) 1eld width

L—@————.{ Fraction length }—j

field width

expression |

Y

hex

sy P
L erpressian | el

fraction length

The first expression, which is the value to be written, must be of type: INTEGER, BOOLEAN, -CHAR,
REAL, or STRING. The fraction length can be gilven only when the expression is of type REAL. The
field width indicates the minimum number of characters to be writtem. If the expression in the
field width is followed by one of the identifiers OCT or HEX, the value to be written must be of
type integer; the value is ocutput in octal or hexadecimal form., Integers only can be written in
octal form, If the field width is longer than needed, the value is written right justified, The
field width must be an integer expression with value greater than or equal to 0. If omitted, a
default value is chosen, in accordance with the following table:

Default
Type Field Width Remarks

Integer 10 If the field width is too short, the necessary number of additional
character positions 1is used,

Boolean 10 If the field width is 5 or more either of the strings ” TRUE’ or
‘FALSE’ is written. :

If the field width is 0, 1, 2, 3, or 4 either of the characters ‘T’
or ‘P’ is written. : :

char 1 If the field width is 0, the default field width 1 is used.

real 22 If fraction length ies not specified the value will be written with 1
digit before the decimal point; 13 digits after the decimal point;
and a scaling exponment written as Et+ddd (floating point notation)}.

If fractlon length is specified, the fraction length must be at
least two less than the field width. The fraction length specifies
the number of diglits to follow the decimal point. If the fractiom
length is specified no exponent is written (fixed point notatiomn).
If the field width is too short the necessary number of additiomal
character positions 1z used.

string length of If a nonzero field width less than the length of the

string string 1 specified, the right part of the string is truncated. If
a field width equal to 0 is specified the entire string is written.

60497700 01 4-21

Predefined Textfiles INPUT and OUTPUT
Two textfiles named INFUT and OUTPUT are predefined:

VAR o
INPUT,OUTPUT : TEXT;

The ecall LINELIMIT(OUTPUT,1000)} is automatically executed before the program is executed.

The first parameter to READ, READLN, WRITE, WRITELN, EOF, EOLN, or EOS5 can . be omitted, in which
cagse INPUT or OUTPUT respectively is used.

Let V denote a variable of type CHAR, INTEGER, or REAL and E denote an expression of type CHAR,
INTEGER, REAL, BOOLEAN, or STRING.

WRITE(E) is equivalent to WRITE(@UTPUT,E)
WRITELN(E) is equivalent to WRITELN(OQUTPUT,E}
READ(V) is equivalent to . READ(INPUT,V)
READLN(V) is equivalent to READLN(INPUT,V)
EOF is equivalent to = EOF({INPUT)

EOLN is equivalent to EOLN{ INPUT)

EOS 15 equivalent te EOS{INPUT)

The predefined textfiles INPUT and OUTPUT correspond to the NOS files INPUT and QUTPUT
respectively. Section 6 shows how other external files are declared.

If a file 1s to be printed, the first character of each line can be used as a carriage control
character (depending on the printing device) and the line length can be limited as well.

If a Pascal file is assigned to a terminal, you should be aware that when output is printed (the
buffer emptied), the job is swapped out - because it is waiting for lnput data. '

To ensure that all cutput generated up to the present moment is sent to the terminal, you should
use the standard procedure WRITELN. Only whole lines will be wrikten because each empty terminal
line is treated as an end-of-file mark.

If an external file is used for interactive input, a slash (/) following the file name in the
program heading makes it possible to write output to the terminal before any input is read.
READLN skips a new line of input and in the case of interactive input agk the user for input by
writing a question mark.

The following is an example of interactive use of INPUT and QUTPUT:

PROGRAM IO(INPUT/,OUTPUT);
VAR
T ID : INTEGER;

CH : CHAR;
BEGIN
_ WRITELN('PLEASE ENTER YOUR IDENTIFICATION’): °
READLN; '
READ(ID};

WRITELN(‘NOW GIVE YOUR CONTROL CHARACTER’);
READLN; S : :
READ(CH);

4-22 60497700 01

SEGMENTED FILES -

A segmented file makes it possible to manipulate lopiecal records, which are a subdivision of a
file into segments of varying length. A segmented file type is defined by prefixing a.usual file
type definition with the reserved symbol SEGMENTED.

1

segmented file {ype
———————»{segmented file of) — »_type

The predefined files INPUT and OUTPUT can be specified as segmented files in the program heading,

A number of routines are provided for ﬁauipulating segmented files. Assume that F is of a

SEGMENTED file type.

EO5(F) Returns a Boolean true if the file is positioned at an end-of-record mark and a
false if it is not. The value of the file buffer F! is undefined if EOS(F) is true.

GETSEG(F) Positions the file at the start of the next segment., The file buffer F{ becomes
the first component of the next segment. If no next segment is present executien
is terminated and the runtime error message: TRIED TO READ PAST EOS/EOF is given.
GETSEG can only be applied to a file that is being read.

PUTSEG(F) Closes the current segment (an end-of-record mark is written onto F). PUTSEG ig
only allowed if EOF(F) is true.

4 pegmented file makes it possible to move the file {ralatively) quickly to any segnent in the
file. For the purpose of reading and (re)writing a segmented file, the predefined procedures

GETSEG and REWRITE are extended to accept two arguments, Assume that F is of a segmented file
type and F an integer expression.

GETSEG(F,N} Positions the file at the start of Nth segment counting from the current
.position of the file.

The file buffer F! becomes the first compoment of the Nth segment.
N > 0 implies counting segments in the forward direction,
N = 0 means the current segment.

If no Nth segment (N >= 0) is present, EOF(F) becomes true and F! becomes
undefined.

N < 0 implies counting segments in the backward direction.

If the file is positioned at segment number M, M ¢ -N, then GETSEG(F,N) is
equivalent to RESET{F}.

REWRITE(F,N) Initiates the file for (re)writing F at the Nth segment counting from the
current position. EDS(F) becomes true.

N > 0 implies counting segments in the forward direction.
N = 0 means the current segment,

If no Nth (N >= 0) segment is present the file is initiated for the writing of
F after the last segment and EOF(F) bacomes true.

N <€ 0 implies counting segments in the backward directien.

If the file is positioned at segment number M, M ¢ -N, then REWRITE(F,N) is
equivalent to REWRITE(F).

Current segment number R, R >= N, counted from the current position is not
accessible after the execution of REWRITE(F,N).

60497700 01 4-23

Because flles are organized for sequential forward processing, GETSEG and REWRITE are not as
efficient for N <=0 as for N > 0.

The following- poiuts about! BEgmentE& files should be noted
EOF(F) always implies EQS(F).
GET&F) is only applicable when E0S(F) is false.
PUT(F) and PUTSEG(F) are only applicable when EOS5(¥) is true.
fhe routines fUTSEC, GETSEG, and EOS can only be applied to segmented files,
Files denoted by file names must be declared as file variables in the bloek of the program; an

exception to this igm INPUT and QUTPUT. The files listed in the program heading are called
external files. - - I

4~24 60497700 01

COMPILING, LOADING, AND 5
EXECUTING

A Pascal job usually passes throvgh the following steps:

1. The source code {program} is compiled. The compller generates object, or relocatable, code
and a listing of the source code if the L compiler option is selected.

2. The object code is loaded and linked with pre-compiled routines (for example, routines for
input and output and routines predefined by the user).

3. The loaded code is executed.

You initiate these steps with appropriaﬁe control statements to the NOS 2 operating system. The
following segquence shows the basic control statements to compile, load, and execute a program:

. « . ,CM50000,510,P3.
USER, « + o) o o = =
CHARGE, . - v, + = « -
PASCAL, < Step 1
LGO. € Steps 2 and 3
ECR
PROGRAM SAMPLE
BEGIN

END

EOR
data

EQF

ORGANIZATION OF A COMPILED PROGRAM

The cbject code that is generated by the compiler is relocatable binary code separated intc named
logieal records, or modules, Each module contains the code for a block in the program. - The
modules occur in the same order as their corresponding compound statements. Global variables are
placed in a separate module, The modulé names depend on the E compiler option. See the
description of the E option under the heading Compiling a Program for an explanation of the entry
point names in the object code modules.

60497700 01 ' 5-1

Here are two examples. of source code and

Source code

(*$E+%)
PROGRAM A(OUTPUT);
PROCEDURE B;

BEGIN

END;
PROCEDURE C;
PROCEDURE Dj;
BEGIN

END;
PROCEDURE F;
BEGIN

- Spurce code

(*$E+%)

PROGRAM K(OUTPUT)};

PROCEDURE L; :
BEGLN
END;

PROCEDURE M;

FORWARD;

PROCEDURE N3
BEGIN

END;
PROCEDURE M;
BEGIN

.thélobject code

o Object code

Record:

1

2 .

Object code

Record:
1

2

'thej-proﬁuce:.

=

=

=opR =

s

60497700 01

COMPILING A PROGRAM
To initiate compilation of your program, ﬁse the control statement

PASCAL{gfn,1fn,bfn/opts)

where
afn Program source file name; the default name is INfUT.
1fn Program listing file name; the default name is QUTPUT.
bfn Binary object file name; the default name is LGO.
opts One or more compiler cptions.

The parameters sfn, 1fn, and bfn are order—dependent; two consecutive commas within the parameter
list request the compiler to use the default valve for the missing parameter. For example,

PASCAL(SS, ,BB)

This control statement requests the compiler to compile source file 55 and to produce both a
program listing file named OUTPUT, the default program listing file, and a binary object file .
named BE.

At least 50000 octal words of common memory are needed to rum the compiler.

You can control the compilation mode with compiler directives. For example, you can request the
comnpiler to insert or omit runtime test instructions with compiler directives.

Compiler directives are written as comments, but with a dollar sign ($§) as the first character.

Compiler directives can be placed anywhere in a program, which enables you to activate options
over specific parts of your program.

Each option consists of an option letter followed by the new value of the optlon setting. The
value may be a + or — which turns some options on and off like switches. Alternately, the value
may be a decimal or octal (indicated by a radix B) integer for numeric options, or a literal
string for string optiocns (see the E, I, and L options). The rules for these strings are the
pame as those for character strings appearing in a Pascal program. Finally, for all options
except the I option, if the value iz an equals sign (=), the option is set to its previous
value. However, only one previous value is remembered.

Option scanning terminates when any entry that is not an appropriate option letter or option
value is entered. TFor example, setting a switch option to a numeric value, will cause option
scanning to end with no error messages produced (except with the I option}. Errors also

terminate optilon scanning.

v

The following options are available:

B Determines the size of flle buffers. If the value of the B option is less than 64, it is
a buffer factor and the actual buffer size (in words) is at least 128 times the buffer
factor. If the value is larger than 64, it specifies the actual buffer size.

The compiler adds one to B, then rounds the value to the next multiple of the file
element size, Buffer sizes must be adjusted to fit the requirements of peripheral
hardware devices. Disk files need at least Bl (or B128). Tape files need at least B4
(or B512}.

The buffer size for a file is bound to its type. The type text is predefined at the time
the compller reads the reserved symbol program. Therefore, to change the buffer size for
textfiles (including INPUT and OUTPUT), the B option must be set prior to the program
heading.

Default is B2.

60497700 01 5~3

Allows you to control the entry-point names generated by the compiler for the main
program, main variables block, procedures, functlons, and labels. Entry points are
required by the operating system loader; the E optlion is of special iaterest to you if
you want to create a library of complled, relocatable procedures and functions. The
following paragraphs describe the effect of the E optilon: '

- a) Procedures and functions declared as EXTERN or FORTRAN get an entry-point name equal-:

to the first seven characters of the procedure or function name. Other routines get
an entry-point name depending on the value of the E optlon.at the moment of
analyzing the routine name:

E- Creates a unique name of the form PRCnnnn (where nnan is an octal number
from 0001 to 7777) 1s generated by the compiler.

E+ Uses the first seven characters of the-routine-name as the entry-point
name.

An extended form of the E option may be used to create an eﬁtry—point unrelated to
the name of the routine. The following example illustrates this form for procedures
and functions: : :

FUNCTION (*$E‘P.RND'#) ROUND(X: REAL): REAL;

The entry-peint for function round is actually P.RND. This gives the ability to
define any entry point accepted by the loader, even ones that include special
characters (such as a period)., This form of the E option applies equally to EXTERN,
FORTRAN, and local routimes, but E must be specified between the word function or
procedure and the routine name.

b) The maln program and main varlables block get an entry-point name depending on the
value of E, as follows:

E- Uses P.MAIN as the main program and main variables block entry-point -
name.
E+ Uses the first seven characters of the program name as the main program

entry-point name and the first six characters of the program name
followed by a semicolon as the main variables block entry-point name.

The extended form of the E option may be used for the main program, but two names
should be specified for the main program block and the main variables block. For
example,

PROGRAM (*$E’P.MAIN‘/’P.VARS’ *) MYPROG(CUTPUT);

¢} Labels that are used by goto statements that exit a block are automatically assigned
an entry-point name of the form PASCL.X {(where X is. a letter or digit). The
entry-point name of any label may be explicitly assigned with the extended E
option. In this case, the E option must Immediately precede the declaration of the
label. Tor example,

LABEL (*3E‘L.1° %) 1,2, (*$E’L.LOOPS’ *) 13;

Tt is your responsibility to ensure that duplicate entry-point names are not created when
you specify the E- option. You must avoid creating duplicate entry-point names and must
ensure that creatéd entry-poilnt names are acceptable to the system loader when you
specify the extended form of the E option. .The extended form of the E option exists
mainly for the Pascal library.

Default is E-.

60497700 01

G Selects the automatic load and go feature, which allows a program to be compiled and

executed in a single job step with one control statement.

If G+ 15 selected when the

program header is scanned, the binary object file 1s rewound before compilation. If G+
is selected at the end of compilation and the program is error~free, the binary object

file is loaded and executed automatically.

-Default is G-.

I Controls the Inclusion of external text. The I option includes source code from an
external file. This directive has the following twe forms:

{*$1'PACKAGE’/'FILE *)}

(*$1’PACKAGE’ *)

The first form attempts to find an entry named PACKAGE on the file named FILE. The
second form attempts to find the entry named PACKAGE on the default file, which is
PASCLIB for NOS 2. The Included text is not restricted to declarations. It can also
contain full procedures and functions. Because the text entry is simply inserted into
the text of your program, the inelude facility can be used to create full source

libraries.

The included text is written on the program listing if L+ was selected, thereby giving
you an accurate record of what was compliled. A complete record is important 1f you plan
to transport the program to another implementation of Pascal. Compiler options embedded
within included text will change previous option settings unless they are explicitly

restored with an equal sign (=) in the text itself.

L Controls the listing of the program text. The L option turns the listing con and off
during compillation, specifies the size of each printed page, and sets page titles and

subtitles, L+ turns the listing on and L~ turns it off.

If the L is followed by a

number, the number definmes the page size by specifying the last line to be printed on
each page. L »? 1000 selects nc pagimation. If L is followed by a character string, the
page title or subtitle is set. The first such specification zets the main title, while
subsequent specifications set the subtitle and cause a page eject. To set the title on
the first printed page, the L option must appear on the first line.

Default is L+,

P Directs the compller to gemerate a Post Mortem Dump (PMD)

listing in the event of a

runtime error. P+ requests the PMD facility to provide a description of each procedure
or function that was active at the time of the error, including the line mumber of the
statement which was currently being executed, and the names and values of all
unstructured lecal variables. Values of pointer variables are printed as 6-digit octal
addresses, and values of ALFA variables are printed as 10-character strings. A wvalue of
UNDEF means undefined., P+ 1s recommended until you are sure that your program is
correct. P- suppresses most of the PMD information; it includes emough information to
list the name of the procedure in which the error occurred. PO is an option setting

designed especially for the Pascal compiler and library.

Procedures compiled with PO are

transparent to PMD. Compiling an entire program with P0O deletes the minimal information
(3 words per procedure), which includes the name of the procedure and the locations of
the entry point and constants. PO can be used for production programs to delete all

unnecessary traceback information.

Default is P+.

R Controls reduce mode. R is used in conjunction with the W option to control execution

field length.

Default is R+.

60497700 01

5-5

Directs the compiler to generate extra code that can be used to perform runtime tests to
check the following: ° o e .

a) That the index used for array-indexing operations lies within the specified array
bounds.

-b) That the value that is agssigned to a variable of a subrange type lies within the

specified range. This check is also performed when reading such variables.
c) That no divide-by-zero operations were performed.

d) That the absolute value ¢f the result of an automatic real-to-integer conversion is
less than MAYINT.

e) That there was no overflow or underflow from a real expreasion.

f) That.the evaluated exprassion in a CASE statement corresponds to a constant in a
cage list element (unless OTHERWISE is used).

2) That P is a valid pointer when it 1s referenced as P or DISPOSE(P). The T+ option
must be selected when the pointer type 1is declared and when the pointer is
referenced.

h) That SET elements are within the declared range after assipgnments to set variahles
are made.

Also, the control variable in all FOR statements is set to an undefined wvalue upon normal
exit from the statement 1if T+ is selected. T4+ is recommended until you are sure that
your program is correct.

Default is T+,

Restricte the number of characters that are scanned by the compiler in every source

line. U+ restricts the number of characters to 72. This is convenient when using the
default widths under the UPDATE or MODIFY text malntenance programs., U~ sets the number
of relevant characters to 120. U may be set to any specific numeric value between 10 and
120. The remainder of the line (past the width specified by this option) is treated as a
comment, The U option is best used on the first line of the Pascal source program.

Default is U-.

Controls the workspace size. W is used in conjunction with the R option to control
runtime fileld length.

Default is WO.

Determines the number of X registers used for passing parameter descriptors. If the
value of the X option is in the range {0 £ N £ 5), the first N parameter descriptors are
passed in the registers X0 to X(N-1) (the first inm X0, the second in X1, and so on).
Extra paramaters are passed through a table in memory.

N > 0 reduces the size of the code produced by the compiler and usually decreases the
execution time. However, you must be aware that with the first parameter and with N > 0,
the compiler cannot use regilsters X0 to XJ (where J is the minimum of (N-1) and (I-2))
for its computation. It 1s possible for the compiler to give the message: EXPRESSION TOO
COMPLICATED where N > 0.

Default 1is X4.

60497700 01

OVERVIEW OF THE RUNTIME SYSTEM

Code and data are separated from each other at runtime, The local data from each executed
routine 18 united In a data segment and is addressed by an offeet relative to the segment origin
{the so-called BASE address) from this time on. At runtime, a stack containing the data segments
of all executed routines iz provided. Because the base addresses of the data segments vary
during runtime, variable addressing is nontrivial. However, this way of organizing data
guarantees maximum storage economy. Every data segment exists only during the routine execution;
the data segment is created at routine entry and discarded at routine exit.

To allow stacking and unstacking of data segments, a link is needed, This link, called the
dynamic link (DL), chains every data segment to its immediate predecessor in the stack. Variable
addressing is dome through a second link, called the static link (SL), which chains only those
data segments which are ecurrently accegsible, SL and DL are incorporated in the head of every
data sepment.

For example, refer to the fellowing source code:

(*$E+*)
PROGRAM RSTS(OUTPUT);
PROCEDURE P
PROCEDURE Q;
BEGIN

END;
PROCEDURE R;
BEGIN

60497700 01 ‘ 5-7

This is the stack of data segments that corréspond to the pi:d'gram. :

FL
r heap elements) o) _ R .
runtime, created by NEW : S ST
heap “or by DISPOSE |-) ’ .
- o €—B4
<— B INEXT)
UsEer Gata segment of the | .. : .
area< " runtime routine actually
stack | in exscution <— BS{BASE)
data seqgment of .
the main program | €— {MAIN)}
l code and
global variables
L 0
dynamic data static
chain: segments: chains:
r= =™
I |
| IR < B6 (NEXT)
q
— DL
SL < B5 (BASE)
T
s DL
SL =~
p
— DL
S SL =
st
DL
SL [C Is - {MAIN) e

The stack, growing upwards, originates from the calling sequence: RTST —P ~—R— Q. BASE isg’

the base address of the most recently created data segment. It is the head of the chains. NEXT
defines the base address of the next data segment to be stacked.

LOADING AND EXECUTING A PROGRAM

To- initiate loading and execution of your program, use the control statement:
0C(fl,£f2, . . . ,fn)

where
OC The file that contains the object code, or relocatable binary code.

£fi The names of flles that contain routines that are extermal to the program, but that are
used during execution.

60497700 01

Routines that are referenced, but not included in file OC, are searched for in the PASCLIB system
library.

Routines that are referenced, but not included either in the file 0C or in the PASCLIB system
library, are searched for in the system library.

It is possible to load and Initiate execution in several other ways.
After completion of the loading process, a contiguous plece of unused memory remains at the upper
end of the user area. This area is called the work space and is used for the runtime stack and

runtime heap during execution. The runtime stack grows upward from the lower end while the
runtime heap grows downward from the upper end.

FL

~ runtime heap

user area 4 work space

!

runtime stack

code and
giobal variables

.The W compiler option controls the calculation of the work space (WS) value.

Wn sets the number of words to be used for the WS (n is a string of digits with an optional
post-radix B).

W0 requests the Pascal compiler to calculate an appropriate WS size. Pascal sume the lengths of
all nongobal variables declared in the program, thenm adds a safety factor of 2000 octal {1024
deeimal)} words. The value that the compiler estimates for the W option is printed at the bottom
of the compiler listing, ' S

The R compiler option controls what is done with the WS value. R requests that the user program
be given the right amount of memory for both the code including global variables (CS) and the WS,
even if this is a reduction. R~ requests that the memory be Increased only if it is necessary to
satisfy the sum of the CS and WS. In other words, the memory allecation will never be decreased

-if BR- is set, This option has an effect which is analopous to the REDUCE control statement.

The default settings are WO,R+. This causes Pascal to calculate the WS value and requests that
memory allocation be set to refleet this, regardless of whether or not an increase or decrease is
required. These option settings will always allocate enough memory for programs that de not use
recursion or dymamic allocation, which is the case for most programs, In some cases, however,
the defaults may not be appropriate.

When setting the Work Space value explicitly, you should note that there is hidden data
(temporary space for anonymous variables) that is used by Pagcal program itself. Therefore, you

should increase your WS estimate to provide a margin of safety. A good rule of thumb is to add
about 10 words per procedure plus an additional several hundred words.

UNDERSTANDING RUNTIME ERROR MESSAGES

When & runtime error occurs, a dayfile message explaining the error is glven topether with a Post
Mortem Dump.

60497700 01 3-9

FORTRAN AND PASCAL INCOMPATIBILITIES

Some incompatibilities exiat ‘between the Pascal and FORTRAN languages. Two of these are the
representation of values and the method of storing multidimensional array values. You may be
forced to do some extra programming Yo get around these incompatibilities.

Table 5-1 shows parameter types in a Pascal routine that correspond to parameter types in a
FORTRAN routine. The Pascal compller does not test for illegal parameter types as in FORIRAN
As ' in FORTRAN, trailing parameters can be omitted.

Alternate returns from a FORTRAN routine are not allowed.

TABLE 5-1. CORRESPONDING PASCAL AND FORTRAN ROUTINE PARAMETER TYPES

Parameter Type Parameter Type :
in a FORTRAN in a Pascal | Remarks
Routine Routine
INTEGER INTEGER With wvariable parameters of integer, real, double,
and complex types, a negative zero (-0) may be
returned by the FORTRAN routine. To eliminate this
. possibility, you should add a zero to the value upon
" returning to the Pascal routine.
REAL REAL
DOUBLE RECORD
P1:REAL;
P2:REAL
COMPLEX -
i END
LOGICAL INTEGER Return a negative value for true and a positive
value for false.
DIMENSION ARRAY - You must either transpose multidimensional array
o values before enterimg a FORTRAN routine or remember
that array values are stored rowwise when manipulat—
ing them in the FORTRAN routine. Always set the
lower array bound to 1.
SUBROUTINE PROCEDURE
FUNCTION ' FUNCTION The result returned to the Pascal routine cannot be
" complex, double, or a negative zero. To eliminate
the possibility of a negative zero, you should add
a zerc to the value upon returning to the Pascal
module.

5-10 60497700 01

SAMPLE PROGRAMS 6

This section poses scome problems and provides a solution,

The first problem deals with placing a elass of three steers.

In a2 judging contest, the official judges the steers on qualities such as. Height, straightness
along the back, and amount of muscle. The steers are numbered 1, 2, and 3, so it is possible for
the official to determine the correct placing as: 3, 1, 2.

After the official determines the correct placing, students judge the same class to determine
what they feel is the correct placing (the official’s placing is unknown to the students),

A student can place the class as one of the following combinations:

Ll A PR
(I VSRR LR -
W Wk b

A perfect match between the official’s and a student’s placing is awarded 50 points. A student
whose placing does not match the offiecial’s is penalized for each incorrect declsion that was
made, The penalty is calculated using a number called the degree of difficulty or cut. The cut
between a pair of steers 15 alsc determined by the official. An example of a cut assigmment is:

0fficial placing: 3 1 2

Cuts: 5 1
If the official assigns a cut of 5 between steers 3 and 1, ther there is a clear difference in
quality in the two steers; switching the placing of this pair results in a large penalty. If the
official assigns a cut of 1 between steers 1 and 2, then there 1s a small difference in quality
in the two steers; switching the placing of this pair results in a lesser penalty. The following
are sample penalty calculatlions:

0fficial placing: 3 1 2

Cuts: 5 1

Student placing: 1 3 2
The score would be calculated as 50 — 5 = 45 because the top pair was switched.

Official placing: 1 2 3

Cuts: 1 3

Student placing: 3 2 1

The score would be calculated as 50 — (2*cut2 + 2*eut2) = 42 because the top and bottom placing
was switched.

- The problem is te write a Pascal program that accepts as input the official’s placing, cuts, and
student’s placing, calculates the score, and outputs the score.

60497700 01 6-1

This solution uses arrays to hold the data, ;2 statqneﬁpskﬁo:perform_the

labeled statements to control the flow of execution.

PROGRAM JUDGE{INPUT/,OUTPUT);
TYPE :
- PLACINGS = ARRAY[1l..3] OF INTEGER;
CUTS = ARRAY[1..2] OF INTEGER;
VAR
0,J : PLACINGS;
CUT : CUTS;
.- 'I,RESULT : INTEGER;
LABEL '
50,75;
BEGIN
(** INPUT: OFFICIAL PLACING. *%)
WRITELN(‘INPUT OFFICIAL PLACING');
FOR T := 1 TO 3 DO READ{O[I]);
(#**% INPUT CUTS. *%)
WRITELN(“INPUT OFFICIAL CUTS‘);
FOR I := 1 TO 2 DO READ{CUT[I]);
{** INPUT JUDGE’S PLACING OR ZERQ. *%*)
50 : WRITELN(’INPUT JUPGES’’ PLACING OR TFOUR ZEROS');
FOR I := 1 TO 3 DO READ(J[I]);
IF (J[1] = 0) THEN GOTO 75;
(#* BEGIN CALCULATION OF SCORE. PERFECT SCORE. *%)
IF ((0[1]=Ji1]) awND (o[2]=J[21})
- THEN RESULT := 50;
(%% TOP AND BOTTOM PAIR SWITCHES. *%)
IF ({0[1]=1[2]) AND (0[2}=0[1]))
THEN RESULT :=- 50 - CUT{1);
IF ((0[2]=7[3]) AND (0[3]=J[21))
THEN RESULT := 50 -~ CUT[2];
(** TOP TO BOTTOM. *%)
IF ((0[1]=J[3]> anD (o[2]=3[1]0)
THEN RESULT := 50 - (2*%CUT[1] + CUT[2]);
(** SIMPLE BUST. *%*) :
IF ((0[1]=J[2]) AND (O[2]=J[31))
THEN RESULT := 50 - (CUT[1] + 2*CUT[2]);
{** MAJOR BUST. *%)
IF ((o[1]1=313]) AND (0[2}=J[2]))
THEN RESULT := 50 - (2*COT{1] + 2*CUT[2]);
(** QUTPUT SCORE. #*%)
WRITELN(’SCORE IS °,RESULT:2);
GOTO 50;
75 : WRITELN('END OF PROGRAM’)
END.

calculations, and

60497700 01

This solution decodes the student’s placing to match the placing: 1 2 3 using WHILE and REFEAT.
statements and then calculates the penalty using a CASE statement and a function. The use of
WHILE or REPEAT statements to control execution of a program is preferred over the use of labeled
gtatements because the regult is a more structured program.

PROGRAM JUDGE(INPUT/,OUTPUT);

TYPE
PLACINGS = ARRAY[1..3] OF INTEGER;
CUTS = ARRAY[1..2] OF INTEGER;

VAR
0,J,R : PLACINGS;
CUT : CUTS;
I,M,N,SCORE : INTEGER;

FUNCTION RESULT(X,Y : INTEGER) : INTEGER;
BEGIN

RESULT := 50 — {(X*CUT[1] + Y*CUTI{Z])

END;

BEGIN

(** INPUT OFFICIAL PLACING. #%)

o WRITELN{ INPUT OFFICIAL PLACING');

FOR I := 1 TO 3 DO REAP(O[I]);

{** INPUT CUTS. ¥%%*)
WRITELN('INPUT OFFICIAL CUTS');
FOR I := 1 TO 2 DO READ(CUT[I]);

(*#* INPUT JUDGE'S PLACING. *%)
WRITELN(INPUT JUDGES’’ PLACING"};
FOR I := 1 TO 3 DO READ(J[I]);

(** CREATE ARRAY R AS IF OFFICIAL PLACING WERE 1 2 3, %%)
FOR N := 1 T0 3 DO

BEGIN
_____ M := 03
' REPEAT
M:=M+ 1;
DNTIL J[M] = O[N];
R[M] =N
END;

(#* CALCULATE RESULT. *¥)
CASE (100+%Rf1] + 10*R[2] + R[3]) OF
123 : SCORE := RESULT(D,0);

132 : SCORE := RESULT(0,1);

213 : SCORE := RESULT(1,0):

— 231 : SCORE := RESULT{2,1);
: : 312 : SCORE := RESULT(1,2):
321 : SCORE := RESULT(2,2)

END;

(%% QUTPUT SCORE, **);

WRITELN(’SCORE IS ’,SCORE:2);

WRITELN('END OF PROGRAM')
END.

60497700 01 6-3

The second problem:.deals with building a linked list.
lagt-in—first-out (LIFO) linked 1list of four nodes.-
character 1o the alphabet.’
entry to the first entry.

node.

PROGRAM INKLIST(INPUT/,OUTPUT);

TYEE
FPOINTER = { NODE;
NODE = RECORD
NEXTPNTR : POINTER;
DATA : CHAR
END;
VAR

BASE,PNTR : POINTER;
I : INTEGER;
BEGIN
(** CREATE A POINTER THAT POINTS TO NIL. *%)
BASE := NIL;
(*% CREATE NODES AND LINK THEM. *%)
FOR I := 1 TO 4 DO
BEGIN
{(** CREATE A NEW NODE. *%)
NEW(PNTR) ;
(** PUT DATA INTO THE NODE DATA AREA, **)
READLN(PNTR!.DATA);
(*# PUT THE BASE POINTER VALUE INTO THE NODE POINTER. *)
PNTR!.NEXTPNTR := BASE;
{#* POINT THE BASE POINTER TO THE NODE. *%)
BASE := PNTR
END;
PNTR := BASE;
WHILE PNTR <> NIL DO
BEGIN
(*#* VERIFY ORDER OF NODES. *%)
WRITELN(PNTR .DATA);
{*% POINT TO THE NEXT NODE. *%)
PNTR := PNTRt.NEXTPNTR
END;
WRITELN('END OF PROGRAM')
END.

The following program creates a
.The data area in each node 1s assigned a
After the linked 1ist is constructed, it i1s traversed from the last
Traversal is verified by writing the contents of the data.area-in each

60457700 01

If you insert A, B, C,'D as data for the nodes, the resulting limked list would appear as follows:

BASE |

60497700 01 6-5

The followlng program is.a variation of the linked. list program..:A linked list of four nodes is
again created, but the first node is pointed to by a pointer named BEAD and the last node by a
pointer named TAIL. The advantage of creating the 1ist this way is that modifying the list is

much easier.

The list wust contain at least one node..--

PROGRAM HEADTAIL(INPUT/,OUTPUT);
POINTER = {NODE;
NODE = RECORD
NEXTPNTR : POINTER;
DATA : CHAR
END;
VAR
HEAD,TAIL,PNTR : POINTER;
I : INTEGER;
(** CREATE FIRST NODE AND POINT HEAD AND TAIL TO IT. **)
NEW(ENTR);
READLN;
READ{PNTR{.DATA);
PNTR t .NEXTPNTR := NIL;
HEAD := ENTR;
TATL := PNTR;
{** CREATE OTHER THREE NODES. **)
FOR I :=1 T0 3 DO R
BEGIN
NEW(PNTR);
READLN; .
READ(PNTR.DATA) ; .
PNTR!.NEXTPNTR := TAIL{.NEXTPNTR;
TAIL!.NEXTPNTR := PNTR!.NEXTPNTR;
TAIL := PNTR :
END; .
(** VERIFY ORDER OF NODES. %)
PNTR := HEAD;
REPEAT
WRITELN(PNTR!.DATA);
PNTR := PNTR!.NEXTPNTR
UNTIL PNTR!.NEXTPNTR = WIL;
WRITELN(PNTR f.DATA);
WRITELN(’END OF PROGRAM’)
END.

6-6

60497700 01

If you insert A, B, C, D as data for the nodes, the resulting linked list would. appear as follows:

HEAD
A

B

c

TATL]
. »| NIL
D

60497700 0L _ 6-7

CHARACTER SETS

This appendix describes character correspondence between the internal Pascal character set and
the CDC Scientific and CDC ASCII character sets.

All program statements in this manual are shown in the internal Pascal character representation.

You must translate this representation into the character set used at your site.

Ordinal Pascal CDC Sedentifie CDC- ASCII

Number Character Character Set Character Set

0 undefined End of Line in 63 End of Line in 63
: (colon) in 64 -t (colon) in 64.

1 A A A

2 B B 3

3 c .C c

4 D ‘D D

5 E E E

6 F F F

7 G G G

B H H H

9 I I I

10 J J J

11 K K K

12 L L L

13 M M M

14 N N N

15 o 0 0

16 P P P

17 Q Q Q

18 R R R

19 5 5 5

20 T T T

60497700 01

Ordinal Pascal _ CDC ‘Sclentific " . CDC ASCIT
Number Character Character Set Character Set
21 u U U

22 v v v

23 W W W

24 X X X

25 Y Y X

26 Z Z L

27 0 0 0

28 1 1 1

29 2 2 2

30 3 3 3

31 4 4 4

32 5 5 5

33 6 6 6

34 7 7 7

35 8 8 8

36 9 9 9

37 + + +

38 - - -

39 * . *

40 / / /

41 (((

42)))

43 $ $ $

44 = = =

45 (space)} (space) (space)
46 .3 (comma} , (comma) , (comma)
47 . {period) . period . period

48 ‘= (equivalence) # (aumber sign}
49 [(left bracket)_ [(left bracket) [(lLeft bracket)

60497700 01

Ordinal Pascal CDC Scilentific CDC ASCII
Number Character Character B8et Character Set
30 1 (right bracket) 1 (right bracket) 1 {right bracket)
51 : (colon) : (colon) 1in 63 : (colon) in 63

% (percent) in 64 % (percent) in 64
52 # (not equal} " (quote)
53 —{(right arrow) _ (underiine)
54 v {logical OR) ! {exclamation)
55 A {logical AND) & (ampersand)
56 * (apostrophe} t (up arrow) * {apostrophe)
57 { {down arrow) ? (question)
58 ¢ (less than} ¢ (less than} ¢ (less than)
59 > (greater than) > (greater than) > (greater than}
60 <€ (less equal) @ (commercial at)
61 2> (greater equal) \ (back slash)
62 t (up arrow) — (logical not) A (circumflex)
63 ; (semicolon) ; (semicolon) ; (semicolon)

60497700 01

COMPILATION ERROR MESSAGES B

The compller indicates an error by printing an arrow that points to the place in the text where
the error 1s detected. This is not always the place where the error is made. The arrow 1s
followed by a number, which indicates what kind of error was detected. & list of numbers used in
error messages and theilr corresponding messages 1s given at the end of the compilation. The list
is given on the file containing the compiler listing.

At most 10 errors will be indicated on one line.

MESSAGES

1: ERROR IN SIMPLE TYPE

2: IDENTIFIER EXPECTED

3: ‘PROGRAM’ EXPECTED

43 ’)" EXPECTED

5: ‘1’ EXPECTED

6: UNEXPECTED SYMBOL

7: ERROR IN PARAMETER LIST

B: ‘OF’ EXPECTED

9: “(’ EXPECTED

10: ERRCR IN TYPE

11: ‘[’ EXPECTED

12: ‘1" EXPECTED

13: ‘END" EXPECTED

14: *3’ EXPECTED

15: INTEGER CONSTANT EXPECTED
16: "=’ EXPECTED

17: BEGIN’ EXPECTED

18: ERROR IN DECLARATION PART
19: ERROR IN FIELD-LIST

20: *,’ EXPECTED

21: ‘s’ EXPECTED
40: VALUE PART ALLOWED ONLY IN MAIN PROGRAM
41 T00 FEW VALUES SPECIFIED
42 TO0 MANY VALUES SPECIFIED
43: VARTABLE INITIALIZED TWICE
44 ; TYPE IS NEITHER ARRAY NOR RECORD
45: REPETITION FACTOR MUST BE GREATER THAN ZERRO
50: ERROR IN CONSTANT

51: ":=' EXPECTED
52: ‘THEN’" EXPECTED

53: "UNTIL’ EXPECTED
54: ‘D0’ EXPECTED
55: ‘TO’ OR ‘DOWNTO’ EXPECTED

57 ‘FILE’ EXPECTED

58: ERROR IN FACTOR

59: FRROR IN VARTABLE

60: FILE TYPE IDENTIFIER EXPECTED

101: IDENTIFIER DECLARED TWICE

102: LOWBOUND EXCEEDS HIGHBOUND

103: IDENTIFIER IS NOT OF APPROPRIATE CLASS

104: IDENTIFIER NOT DECLARED
105: SIGN NOT ALLOWED

106: NUMBER EXPECTED

107 INCOMPATIBLE SUBRANGE TYPES
108: FILE NOT ALLOWED HERE

109: TYPE MUST NOT BE REAL

60497700 01 B-1

'MESSAGES

110:
111:
112:

I13:

114
115:
116:
117:
118:
119:
120:
121:
1223
123:
124
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144
145:
146
147:
148:
150:
151:
152:
155:
156:
157:
158:
159;
160:
161:
164;
165
166:
167:
168:
169:
170:
172:
173:
174:
175:
176:

TAGFIELD TYPE MUST BE AN ENUMERATION TYPE
INCOMPATIBLE WITH TAGFIELD TYPE

INDEX TYPE MUST NOT BE REAL

INDEX TYPE MUST BE AN ENUMERATION TYPE -

BASE TYFE MUST NOT BE REAL

BASE TYPE MUST BE AN ENUMERATION TYPE

ERROR IN TYPE OF PREDEFINED PROCEDURE PARAHETER
UNSATISFIED FORWARD REFERENCE

IDENTIFIER USED PRIOR TO DECLARATION]

FORWARD DECLARED; REPETITION OF PARAMETER LIST NOT ALLOWED -
FUNCTION RESULT TYPE MUST BE A SIMPLE OR POINTER TYPE
FILE VALUE PARAMETER NOT ALLOWED ‘

FORWARD DECLARED FUNCTION; REPETITION OF RESULT TYPE NOT ALLOWED

MISSING RESULT TYPE IN FUNCTION DECLARATION
FIXED-POINT FORMATTING ALLOWED FOR REALS ONLY
LRROR IN TYPE OF PREDEFINED FUNCTION PARAMETER
NUMBER OF PARAMETERS DOES NOT AGREE WITH DECLARATION
INVALID PARAMETER SUBSTITUTION

PARAMETER PROCEDURE/FUNCTION IS NOT COMPATIBLE WITH DECLARATION
TYPE CONFLICT OF OFERANDS

EXPRESSION IS NOT SET TYPE

TESTS ON EQUALITY ALLOWED ONLY

“¢" AND ‘>’ NOT ALLOWED FOR SET OPERANDS

FILE COMPARISON NOT ALLOWED

INVALID TYPE OF OPERAND(S)

TYPE OF OPERAND MUST BE BOOLEAN

SET ELEMENT MUST BE AN ENUMERATION TYPE

SET ELEMENT TYPES NOT COMPATIBLE

TYPE OF VARIABLE IS NOT ARRAY

INDEX TYPE IS NOT COMPATIBLE WITH DECLARATION
TYPE OF VARIABLE IS NOT RECORD

TYPE OF VARIABLE MUST BE FILE OR POINTER

INVALID PARAMETER SUBSTITUTION

INVALID TYPE OF LOOP CONTROL VARTABLE

INVALID TYPE OF EXPRESSION

TYPE CONFLICT

ASSIGNMENT OF FILES NOT ALLOWED

LABEL TYPE INCOMPATIBLE WITH SELECTING EXPRESSION
SUBRANGE BOUNDS MUST BE OF AN ENUMERATION TYPE
ASSIGNMENT OF THIS FUNCTION IS NOT ALLOWED
ASSIGNMENT TO FORMAL FUNCTION IS NOT ALLOWED:

NO SUCH FIELD IN THIS RECORD

CONTROL VARTABLE MUST NOT BE DECLARED ON AN INTERMEDIATE LEVEL.
MULTIDEFINED CASE LABEL

RANGE OF CASE LABELS IS TOO LARGE

MISSING CORRESPONDING VARIANT DECLARATION

REAL OR STRING TAGFIELDS NOT ALLOWED

PREVIOUS DECLARATION WAS NOT FORWARD

MULTIPLE FORWARD DECLARATION

SUBSTITUTION OF PREDEFINED PROCEDURE/FUNCTION NOT ALLOWED
MULTIDEFINED LABEL

MULTIDECLARED LABEL

UNDECLARED LABEL

UNDEFINED LABEL IN THE PREVIOUS BLOCK

ERROR IN BASE SET

VALUE PARAMETER EXPECTED

UNDECLARED EXTERNAL FILE

FORTRAN PROCEDURE OR FUNGCTION EXPECTED

PASCAL PROCEDURE OR FUNCTION EXPECTED

MISSING FILE ‘INPUT’ IN PROGRAM HEADING'

MISSING FILE ‘QUTPUT’ IN PROGRAM HEADING

60497700 01

MESSAGES

177:
178:
179:
180:
181:
182:
183:
1B4:
198:
199:
201:
202:
203:
204:
205:
206:
207 :
250:
251:
255:
256:
258:
259:
260:
261:
262;
263:
264
300:
302:
303:
304:
305:
350:
351:
352;
353:
3G4:

395:
396:

397:
398:

60497700 Q)

ASSIGNMENT TO FUNCTION ALLOWED ONLY IN FUNCTION EODY
MULTIDEFINED RECORD VARIANT

X-DPTION OF ACTUAL PROCEDURE/FUNCTION DOES NOT MATCH FORMAL DECLARATION
CONTROL VARIABLE MUST NOT BE FORMAL

ARRAY SUBSCRIPT CALCULATION TOO COMPLICATED
MAGNITUDE OF CASE LABEL IS TOO LARGE

SUBRANGE OF TYPE REAL IS NOT ALLOWED

ASSIGNMENT TO CONTROL VARTABLE IS NOT ALLOWED
ALTERNATE INPUT NOT FOUND

ONLY ONE ALTERNATE INPUT MAY BE ACTIVE

ERROR. IN REAL CONSTANT: DIGIT EXPECTED

STRING CONSTANT MUST BE CONTAINED ON A SINGLE LINE
INTEGER CONSTANT EXCEEDS RANGE

8 OR 9 IN OCTAL NUMBER

STRING OF LENGTH ZERQ ARE NOT ALLOWED

INTEGER PART OF REAL CONSTANT EXCEEDS RANGE

REAL CONSTANT EXCEEDS RANGE

TOO MANY NESTED SCOPES OF IDENTIFIERS

TOO MANY NESTED PROCEDURES AND/OQR FUNCTIONS

TOO MANY ERRORS ON THIS SOQURCE LINE

TO0 MANY EXTERNAL REFERENCES

TOO MANY LOCAL FILES

EXPRESSION TOO COMPLICATED

T0O MANY EXIT LABELS

TCO MANY LARGE VARTIABLES

NODE TO BE ALLOCATED IS TOC LARGE

TOO MANY PROCEDURE/FUNCTION PARAMETERS

T00 MANY PROCEDURES AND FUNCTIONS

DIVISION BY ZERO

INDEX EXPRESSION OUT OF BOUNDS

VALUE T0 BE ASSIGNED IS OUT OF BOUNDS

ELEMENT EXPRESSION OUT OF RANGE

FIRST CHARACTER OF ENTRY POINT MiIST BE A-Z, 0-4
ONLY THE LAST DIMENSION MAY BE PACKED

ARRAY TYPE IDENTIFIER EXPECTED

ARRAY VARTABLE EXPECTED

POSITIVE INTEGER CONSTANT EXPECTED

COMPARISON OF DYNAMIC PARAMETERS NOT ALLOWED
ASSIGNMENT TO/FROM DYNAMIC PARAMETER NOT ALLOWED
MULTI-WORD VALUE PARAMETERS ARE NOT IMPLEMENTED FOR FORTRAN ROUTINES
PACK AND UNPACK ARE HOT IMPLEMENTED FOR DYNAMIC ARRAYS
IMPLEMENTATION RESTRICTION

B-3

RESERVED SYMBOLS

The following are reserved symbols that have a predefined meaning that cannot be changed.
Throughout this manual reserved symbols are depicted in boldface type in the syntax diagrams and

in underlined uppercase letters in the text.

in your source program.

60497700 01

-+

R

~ ey W w

CONST
DIV

Do
DOWNTO

DYNAMIC
ELSE

END

FTLE

FOR
FUNCTION
GOTO

IF

IN
LABEL
MOD

NIL

NOT

OF

OR
OTHERWISE

All alphabetic characters must appear in uppercase

PACKED
PROCEDURE
PROGRAM
RECORD
REPEAT
SEGMENTED
SET

THEN

TO

TYPE
UNTIL
VALUE
VAR
WHILE
WITH

INDEX

ABS 4-12

Actual parameters 4-10
ARCTAN 4-12

Array type 3-9
Assignment statement 4-=3

Binding
A procedure or functiom &4-11
A value 4-10
A variable 4-11
Blocks
External 3-20
Forward 3-20
Internal 3-21
Boolean 1iteral 2-=4
Boolean type 3-3

Call by reference 4-11
Call by value 4-10
CARD 4-12
CASE statement &4-7
Char type 3-6
Character literal 2-3
Character sets A-l
CHR 4-12
CLOCK 4-12
Comment 2-4
Compiler
Compand 5-3
Error messages E-1
Opticns 5-3
Compiling a program 5-3
CONST sBection 1-1, 3-2
CoS 4-12

DATE 4-12
Declarations and definitions part
CONST section 3-2
Description 1-1, 3-1
FUNCTION section {see Routines section)
LABEL section 3-2
PROCEDURE section (see Routines section)}
TYPE Bection 3-3
VALUE section 3-17
VAR section 3-16
DISFOSE 4-13
Dynamic parameters 4-11

End-0f-Line (EOL) 2-4

EQF 4-17

EOLN 4-18

EOS 4-23

Error messages, compiler B-]
Executing a program 5-8

Expressions -4-1
External block 3-20

60437700 01

File parameters 4-12
File type 3-=10
Files

Definition 4-16

Segmented 4-23

Textfiles 4-18, 4-22
FOR statement 4-6
Formal parameters 3-20 :
FORTRAN and Pascal incompatibilities 5-10
Forward block 3-20 .
Function binding 4-11
FUNCTION section (see Routines section}

GET 4-17
GETSEG 4-23
GOT0 statement 4-9

HALT 4-13
HIGH 4-13

Identifiers 2-1
IF statement 4-4

Incompatibilities, Pascal and FORTRAN 5-10 -

Integer literal 2-2
Integer type 3-7
Internal block 3-21

Jumps 4-8

LABEL section I-1, 3-2
Labeled statement 4-8

Language concepts I-1

LINELIMIT 4&4-~18

- Literals

Boolean 2-4
Character 2-3
Definition 2-2
Integer 2-2
Real 2-3
String 2-4
LN 4-13
Loading a program 5-8
LOW 4-13

MESSAGE 4-13

"NEW 4-13

Nonprinting symbols 2-4

Notations ix

opD 4-14
Options, compiler 5-3
ORD 4-14

" Organization of a compiled program 5-1

Overview of the runtime system 5-7

Index-1

PACK 4-15
Packed parameters 4-12
PAGE 4-18
Parameters

Actual 4-10

. Dynamiec 4-11-

File 4-12

Formal 3-20

Packed 4-12
Pagcal

Compile command

Language concepts 1-1

Symbels 2-1

Pascal and FORTRAN {ncompatibilities 5-10° -

Pointer types 3-15
PRED 4-15
Predefined
Identifisrs 2-1
Routines 4-12, 4-17, 4-18
Textfiles 4~22
Procedure binding 4-11
PROCEDURE section (see Routines section)
Program
Compilation 5-3
Declarations and definition part 1-1, 3 -1
Execution 5-8
Heading part 1-1, 3-1
Loading 3-8
Samples 6-1
Statements part 4-1
Program parts
Declarations and definitions 1-1, 3-1
Heading 1-1, 3-1 : :
Statements 1-1; 4-1
PUT 4-17 -
PUTSEG. 4-23

READ 4-17
READLN 4-18
Real literal 2-3
Real type 3-7
Record type 3-11
REPEAT statement 4-6
Reserved symbols 2-2, C-1
RESET 4-17
REWRITE 4-18, 4-23
ROUND 4-135
Routine, predefined 4-12, 4~17, 4 lB
Routines 4-9 .
Routines section 3-19
Rules of scope 3-21
Runtime
Error messages 5-9
System overview 35-7

Sample programs 6-1
Scalar type 3-8
Scope rules 3-21
Segmented files 4-23
Separators

Comment 2-4

Nonprinting symbols 2-4
Set type 3-13
Simple types

Boolean 3-5

Char 3-6

Index-2

" 'gimple types (Contd)

Integer 3-7
Real 3-7
Scalar 3-8
Subrange 3- 8
SIN- 4-15
SQR 4-15
SQRT 4-15
Statements
Assignment 4-~1
CASE 4-7
FOR 4-6
GOTC 4-9
IF 44
Labeled 4-8
REPEAT 4-6
WHILE 4-6
WITH 4-5
Statements part 1-1, 4-1
String literal 2-4
Structured types
Array 3-9
File 3-10
Record 3-11
Set 3-13
Subrange type 3-8
5UCC 4-16
Symbols
Pascal 2-1
Reserved C-1

Textfiles 4-1B, 4-22
TIME 4-16

TRUNGC 4-16

Type compatiblility 3-16

TYPE section 1-1, 3-3

Types

Pointer 3-13

Simple
Boolean 3-5
Char 3-6
Integar 3-7
Real 3-7
Bcalar 3-8
Subrange 3-8

Structured
Array 3-9
File 3-10
Record 3-11
Set 3-13

UNDEFINED 4-16 :
Understanding runtime error meaaages 5-9
UNPACK 4-16 o

Value binding 4-10
VALUE section 1-1, 3-17
VAR section I-1, 3 16
Variabhle binding 4-11

WHILE statement 4-6
WITH statement 4-5

WRITE 4-1B8, 4-20
WRITELN 4-18

60497700 01

COMMENT SHEET

MANUAT, TITLE: Pascal Verslon 1 Reference Manual

PUBLICATION NO.: 60497700 : REVISION: 0Ol

NAME:

COMPANY :

STREET ADDRESS:

CITY: STATE: ZIP CODE:

Thiz form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of

this manual. Please indicate any errors, suggested additions or deletions, or general comments below {please
include page number references).

Please reply No reply necessary

KO POSTAGE STAMP NECESSARY IF MATLED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

TAPE

FOLD

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division

215 Moffett Park Drive
Sunnyvale, California 94086

NO POSTAGE
MNECESSARY
{F MAILED
IN THE
UNITED STATES

CUT ALONG LINE

