CONTROL DATA®

6400/6500/6600 COMPUTER SYSTEMS
SCOPE 3.1 Reference Manual

M 1550n4 N 3’,%%‘_1

g

601894004 REVISION RECORD
REVISION NOTES
1 Chapter 11 added; Contents adjusted accordingly.
(2-29-68)
B SCOPE 3 changes in Chapters 1, 2, 3, 9 and Appendix C. SCOPE 4 will retain
(3-28-68) these changes except in certain cases noted as applicable only to SCOPE 3 and

designated by brackets [] in this revision.

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

Pub. No. 60189400A

February 1968

©1968, Control Data Corporation
Printed in United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION

Software Documentation
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA 94304

or use comment sheet in the
back of this manual.

INTRODUCTION

The 6400/6500/6600 SCOPE 3.1 Operating System provides the user with
easy access to and control of all the advanced capabilities of the CONTROL
DATA® 6400/6500/6600 computers.

The basic computer includes one or two central processors, 10 peripheral
processors, and 12 channels to which I/O devices can be connected. (The
hardware is described in detail in the Computer Systems Reference Manual,
Publication No. 60100000.)

The operating system is in constant control of all jobs, handling storage
allocation, job scheduling, accounting, input/output control, and operator
communication. When used on the dual processor 6500, the system allows
automatic scheduling of dual central processors within the multi-programming
environment.

iii

CONTENTS

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

INTRODUCTION

SYSTEM DESCRIPTION
1.1 Hardware/Software Integration

1.2 Multiprogramming
1.3 TFiles

1.4 Random Access
1.5 Tile Labels

JOB PROCESSING

2.1 Job Flow

Control Cards
Program Execution
Equipment Assignment

N NN
B W N

OBJECT PROGRAM-SYSTEM COMMUNICATION

File Environment Table
Labeled Tape Files
FET Creation Macros

W W www
T W N

System Communication Macros

LOADER OPERATION

Loading Sequence
Segmentation
Overlays

Loader Directives
Memory Allocation
Memory Map

B
Sy U W N

SYSTEM LIBRARY MAINTENANCE

5.1 EDITLIB Call Card
5.2 EDITLIB Function Cards
5.3 EDITLIB Examples

UPDATE.

Calling UPDATE

Structure of Program Libraries
UPDATE Control Cards
Listable Output from UPDATE

xR« Rl =)
SOV

Central Program Control Subroutine (CPC)

(T
=
N

WoWw W W W W
| 1

= o

© -1 o

I
[\
=

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

Overlapping Corrections
Files Processed by UPDATE
UPDATE Examples
UPDATE Messages

[orJer W or R ey
[e s BES B e I &)

EDITSYM

7.1 Program Library Format
7.2 Compile Output

7.8 Control Cards

7.4 EDITSYM Examples

CHECKPOINT/RESTART

8.1 Checkpoint Request

8.2 Restart Request

8.3 TUnrestartable Checkpoint Dumps
8.4 Roll-Out/Roll-In

SYSTEM/OPERATOR COMMUNICATION

9.1 Processing Modes
9.2 Console and Display Scopes

UTILITY PROGRAMS

10.1 Copy Routines

10.2 Loading Routines
10.3 Input/Output Routines
10.4 Request Field Length
10.5 Dump Storage

10.6 COMPARE

DEBUGGING AIDS

11.1 TRACE

11.2 SNAP

11.3 DMP

11.4 DEBUG

11.5 Sample Deck Structures

10-1

10-2
10-6
10-8
10-9
10-10
10-10

11-1

11-1
11-6
11-11
11-14
11-1¢

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

APPENDIX K

CHARACTER SET

FET EXTENSION FOR COBOL AND SORT/MERGE USAGE
STANDARD LABELS

RELOCATABLE SUBROUTINE FORMAT

CARD FORMAT

INSTALLATION PARAMETERS (IPARAMS)

CVRT AND CVDEL

ERROR MESSAGES

SYSTEM SYMBOL DEFINITIONS

PROGRAM LIBRARY COMMON DECKS

SCOPE 2B

INDEX

Index-1

SYSTEM DESCRIPTION 1

1.1
HARDWARE/
SOFTWARE
INTEGRATION

When the computer is deadstarted, all the peripheral processors (PP's) are
forced to read, and can be filled with programs from a system tape. Once
this has been done, each of the PP's is completely sovereign; other com-
ponents of the machine cannot force PP activity; they can neither put
information into its memory nor read information out of its memory, A PP
can be requested to receive, transmit, or process information only.

(Every PP must contain a program for receiving and responding to requests.)

A central processor (CP), though a main component from the user's view-
point, is completely in the power of every PP at all times. Any PP, by
executing one of its own instructions, can alter all the registers of a CP,
write new information into central memory (CM), or read information out of
CM. A CP, on the other hand, cannot directly affect a PP in any way.

One PP is in permanent, supreme control of the system; the other PP's
cannot perform any function not approved in advance by the controlling PP.
A communication area in central memory is assigned to each PP. The first
word of each communication area is the input register of the associated PP;
the second word is the output register, and the remainder is the message
buffer.

PP number 0 contains the monitor program (MTR) that oversees or controls
all other activities. PP number 9, under the supervision of MTR, is perma-
nently assigned to the console typewriter and display scopes. The other PP's,
1to 8, are initially assigned to read their input registers over and over.

The monitor makes a request of a PP by putting a significant word into the
input register of that PP. Upon finding the request, the PP obeys it (or
determines that it cannot do so), indicates to the monitor via its output
register that it has finished, and returns to its idling state of continually
reading its input register. Thus all requests to a PP other than the monitor
are communicated through the input register of that PP.

Each PP (other than MTR) uses its output register for requests to the
monitor and for completion status of the requests. The monitor periodically
reads the other PP output registers in turn, looking for requests, and zeros
them whenever the requests have been satisfied.

1-1

1.2
MULTI-
PROGRAMMING

1.2.1
CENTRAL
MEMORY USAGE

1.2.2
CONTROL POINTS

Although the primary task of a PP is to act on request from MTR, on
occasion a PP must request the cooperation of other PP's. Such requests
are routed through the monitor. Furthermore, a PP must request per-
mission from the monitor before using an I/0 chamnel. Since every PP is
capable of connecting itself to any channel, it is essential in preserving
order that only one PP at a time try to use any one channel. To avoid an
attempt by two PP's to use the same channel (which would disrupt both PP's
and the channel), the monitor maintains a list of channels and their status.
Before a PP can use a channel, it must request the monitor to assign that
chamnel for its exclusive use. When finished with the channel, the PP re-
quests the monitor to note that the channel is free.

CM low core called the Central Memory Resident is reserved for various
system tables and is never accessible to a user's CP program. The re-
mainder of CM is allocated by the monitor to user jobs as they are selected
on a priority basis for execution. SCOPE can supervise as many as seven
separate CP jobs.

Eight areas, numbered 0 to 7, are designated as control points within
Central Memory Resident (CMR). Every CP program is assigned to a
control point; control point 0 is used for system functions.

When a job is in CM, the control point area to which it is assigned includes
the following information: job name, length, starting address in CM, time
used so far, I/O equipment assigned to joh, and its control statements.

The control point area also contains an exchange package, a 16-word section
consisting of the contents of all CP registers used in executing a program.
This information is necessary to start or resume a program. The format
of the exchange package follows:

Words

Program A0 (Address 0
Address (P) Registers)
Reference Al B1 (Increment 1
Address (RA) Register)
Field
A B2 2
Length (FT) 2
Exit
A3 B3 3
Mode (EM)
RA-ECS [000000 |A4 B4 4
FL-ECS [000000 |A5 B5 5
A6 B6 6
AT B7 7
X0 (Operand Registers) 10
X1 11
= ~
X7 17

A central memory program can be easily relocated by moving the program
in memory and resetting the reference address (RA) in the exchange jump
area. All central processor reference addresses to central memory in-
structions or data are relative to the reference address. The RA and field
length (FL) define the central memory limits of a program (RA plus FL).
Field length is the total program length. The program address register (P)
defines the location of a program step. Each reference to memory is made
to the address specified by P + RA. In starting a program for the first time,
the monitor provides the values for RA, FL, and P in the exchange area.

To make CP execute a program, the monitor causes the program to be
stored in central memory, and then executes an Exchange Jump instruction.
This PP instruction exchanges the information in the CP registers with the
contents of the exchange package. When the instruction is issued, the initial
address of the exchange package is contained in the PP's A-register.

To illustrate multiprogramming on the 6400/6500/6600 a simple situation is

described below in which the monitor causes the CP to execute two programs
alternately, for one second at a time. All numbers are octal.

1-3

1-4

Program One is stored in cells 1000 through 1777 of CM, and Program
Two in cells 2000 through 2777. Each program is to begin at its first
location; at this point the contents of the A, B, and X registers are not
significant. The exchange areas are cells 0100 to 0117 for Program One;
cells 0300 to 0317 for Program Two. To start Program One, the monitor
stores:

xx000000xxxxxxxxxxxx in cell 0100
xx001000 90:0.0.0:9:0: in cell 0101

xx001000xxxxxxxxxxxx in cell 0102

Then the monitor puts 0100 in its own A register and executes an exchange
jump. This puts the current contents (which are irrelevant) of the P, RA,
and FL registers into cells 0100, 0101, and 0102, respectively, and sets

the P register to 000000, the RA register to 1000, and the FL register to
1000. The central processor begins to function as a computer with a memory
of 1000 words (set by FL register), with location 0 at address 1000 in central
memory (set by RA register) and 0 initially in the program counter (set by

P register). The 1000 CM cells that any PP can access, with addresses 1000
to 1777, are now the only memory that CP can access; it numbers them 0000
to 0777.

The monitor prepares to start Program Two by storing:

xx000000xxxxxxxxxxxx in cell 0300
xx002000xxxxxxxxxxxx in cell 0301
xx001000xxxxxxXXxxXXxx in cell 0302

It waits until Program One has run for one second (according to the hardware
clock) and then puts 0300 in its own A register and executes an exchange jump.

When an exchange jump interrupts the central processor, several hardware
steps insure that the interrupted program is left in a state for re-entry:

1. Instructions cease after all instructions from the current instruction
word in the stack are issued.

2. P is set to the address of the next instruction word to be executed.

3. Issued instructions are executed.

4. The two programs are exchanged.

1.3
FILES

1.3.1
ACTIVE

FILES

CP register contents are relevant now because they will be needed to
resume running Program One a second later. The exchange jump stores
the current contents of all CP registers in CM cells 0300 to 0317, and in
exchange puts 000000 in the P register, 2000 in the RA register, and 1000
in the FL register of the central processor. The CP begins to function
as a computer with a memory of 1000 words, with location 0 at address
2000 in central memory and 0 initially in the program counter. The

1000 cells that any PP can access, with addresses 2000 fo 2777, are

now the only memory that the CP can access; it numbers them 0000 to
07T,

After another second has elapsed, the monitor has only to put 0300 in its
A register and execute an exchange jump to restore the CP to exactly the
condition it was in when the running of Program One was discontinued at
the end of the first second. Program One is resumed as if there had been
no interruption. At the same time, the registers, as they stand at the
end of the first second of processing Program Two, are stored in CM
cells 0300 to 0317. One second later, the monitor can again interrupt
Program One and resume Program Two.

In the control point system, a 3-bit number is enough to identify a job in
process. For instance, a user program may request the reading of magnetic
tape which gives rise to several requests passed back and forth among the
PP's. Each of these requests needs only 3 bits to connect it with the user
program. When information about that program is needed during the proc-
essing of any of these requests, it is located easily.

SCOPE is a file-oriented system: all information contained within the system
is considered to be either a file or part of a file. Active files — those
immediately available to the system at any moment — are defined to be any
of the following:

All jobs (each job is a file) waiting to be run. This set of files is
called the job stack or input queue.

Output files from jobs which have been run and are waiting to be
disposed of by printing, punching, etc.

Jobs (files) presently in some state of execution.
Files currently being used by the jobs in execution.

Common files, which maintain active status by specific request.

1-6

The monitor keeps a list of active files in the file name/status table which
is part of Central Memory Resident. This table stores the following infor-
mation: the name of a file, the control point to which it is assigned if in
use, its type, the kind of I/0 equipment to which it is assigned, and
information ahout the progress of reading or writing the file.

The four types of active files are: input, local, output, and common. As a
job progresses, the job file goes through several type changes.

When a job file is read from the card reader, it is copied onto disk storage
and becomes an input file; it is not assigned to any control point. The file
name is that name given on the job control card. The file name/status table
contains a priority (from the control card) for the file which becomes the
priority for the jobh.

When the job is assigned to a control point, the input file becomes a local
file; and its name is changed to INPUT. The original name of the input file
is saved in a word of the control point as the name of the job. New local
files named OUTPUT, PUNCH, and PUNCHB will be established, if
referenced, and given disposition codes of print, punch coded and punch
binary, respectively.

INPUT, OUTPUT, PUNCH and PUNCHB are all local files in disk storage.
They are the immediate source of card input and the immediate destination
of printer output and coded and bhinary card output. Because several jobs
may run concurrently at different control points, several local files called
INPUT, several called OUTPUT, and several called PUNCHB are in the
file name/status table simultaneously. When a local file is sought in the
table, both the name and the control point number are used to identify it.

When a job terminates, the local file called INPUT for the assigned control
point is released. Entries in the file name/status table for the local files
called OUTPUT, PUNCH, and PUNCHB for that control point are altered so
that their names are changed to the name of the job itself, which is found

in the control point area. The control point is then released.

Other local files can be created by the job. For instance, the first time a
job references a file called RASP, the system consults the file name/status
table entries for a local file of that name assigned to the job's control point.
If one does not exist, a file is immediately created, initially consisting only
of an end-of-information mark. This file is named RASP and entered into
the file name/status table as a local file assigned to that control point, and
the job references the RASP file. When the job terminates, all local files
created in this manner are completely eliminated from the system.

1.3.2
LOGICAL RECORDS

The fourth type of active file — the common file — is a local file for which
active status is maintained by a control card request, so that the file does
not disappear when the job originating it is terminated.

Example:
A job contains the control statement:
COMMON RASP.

If the control statement generates a local file called RASP, that file
does not disappear when the job terminates. The entry in the file name/
status table for the local file RASP is altered so that it no longer belongs
to any control point, and its type will be common.

It is assumed that the file name/status table did not already contain an
entry for a common file called RASP. However, if it did contain such
an entry, when a job is processed that contains the control statement
COMMON RASP., file RASP would be assigned to the control point of
that job. : RASP would then be available to that job just as if it were a
local file.

If a third job contained the control statement COMMON RASP. and if,
when this card was processed, it was found that the common file RASP
had been assigned to the control point of a running job, the earlier job
would have to terminate and file RASP be released from its control
point before RASP would be available to the latest job.

To eliminate a common file like RASP from the system, a job must contain
the control statement COMMON RASP. and a later control statement:

RELEASE RASP.

When the latter control statement is processed, RASP is converted from a
common file to a local file, but not otherwise altered. When the job is
terminated, the local file RASP is destroyed.

All files within the SCOPE system, regardless of type, are organized into
logical records: for input files, through the ordering of control cards; for
output files, through the language translator or other program producing
the output; otherwise, logical record genération is up to the user.

1-7

LEVEL NUMBERS

Since the logical record concept is defined for all devices, files may be trans-
ferred between devices without losing their structure. The physical format

of a logical record is determined by the device on which the file resides.

The physical record unit size (PRU) is the smallest amount of information
that may be transferred during a single physical read or write operation

for each device within the system. Logical records are written as one or
more PRU's, the last of which is short or zero-length. A zero-length PRU

is written if the logical record is an even multiple of the PRU size or if a
write operation was requested with no data in the buffer. A zero-length PRU
contains fewer bits than a CM word.

Coded files on 1/2~inch magnetic tape receive special treatment. Within the
SCOPE system, all coded information is carried in display code; therefore,
a conversion to external BCD must be made before writing on the tape.
Translation is character-for-character.

The display code end-of-line mark (12-bit zero byte) is converted to the
external BCD characters 1632g. The display code end-of-line mark is
recognized only when it appears in the lower 12 bits of a central memory
word.

PRU Sizes (decimal)

6638 disk [64 CM words SCOPE 3 onlil
6603 disk 64 CM words

863 and 865 drum 64 CM words SCOPE 3 only
854 disk pack 64 CM words SCOPE 3 only
coded 1/2 inch tapes 128 CM words

all other tapes 512 CM words

Related logical records within a file may be grouped by the user into an
organized hierarchy. The level number (0-17g)T of a logical record is con-
tained in the short or zero-length PRU which terminates the record. This
PRU is the level mark. The level number is declared in the write request.

If no number is specified, a level of 0 is assigned. If, when no data is in

the buffer, a level number is specified in a write request, a zero-length PRU
containing the level number is written. A write end-of-file request causes

a zero-length PRU of level 17 (logical end-of-file mark) to be written. The
level mark appended to each logical record is not placed in the circular buffer
when the file is read; but it is returned as part of the status information.

tLevel number 16 should not be used for a job which includes a request for a
checkpoint dump as this level number is used in a unique way by the check-
point dump program.

601894008

The lowest level within a file is associated with a single logical record.
A higher level defines a set of records consisting of the logical record at
that level plus all preceding records at a lower level.

For instance, a file might be regarded as a multi-volume book; level 0
would be equivalent to a page, level 1 to a chapter, and level 2 to a volume.
In the following example, the lowest level 0 is associated with a single
logical record called a page; level 1 marks delimit a group of pages called
chapters; chapters are grouped by level 2 marks into volumes. A reference
to a logical record of level 1 includes all information between the referenced
level 1 mark and the succeeding one. Included, therefore, will be several
logical records as shown in the diagram. :

Logical Record Level Mark | Page Chapter Volume
1 0 1
2 1 2 1
3 0 3 I
4 0 4 2
5 2 5
6 0 6
7 0 7 3
8 1 8
9 0 9
10 0 10
11 0 11 4 I
12 1 12
13 0 13
14 2 14 5
15 0 15
16 1 16 6
17 0 17 IIT
18 0 18 7
19 2 19
End of Information

The format of the level mark varies depending on the device type on which
file resides, as follows:

Card Files

Each logical record is terminated by a card with 7, 8, 9 punches in column 1.
Columns 2 and 3 may have an octal integer, 00-17, to denote level number.
Level zero is assumed in the absence of punches in columns 2 and 3.

The end of information is signaled by a card with 6,7, 8,9 punches in column 1.

1-inch Magnetic Tape Files, Disk Files,
and Binary Mode 1/2-inch Magnetic Files

Each logical record is terminated by 8 characters (48 bits) as follows:

blank; reserved for future system use
47 310

level number, in binary

If the last information in the logical record does not fit exactly into a physical
record unit, the 8-character marker is appended to the last written PRU;
otherwise, the marker is written as a single PRU of zero length.

Coded Mode 1/2-inch Magnetic Tape Files

Each logical record is terminated by 8 characters as follows:

blank; reserved for future system use
47 11 0

level number base, 8, in External BCD

If the level number is zero, an external BCD blank is used as the value.

If the last information in the logical record does not fit exactly into a physical
record unit, the 8-character marker is appended to the last written PRU;
otherwise, the marker is written as a single PRU of zero-length.

1-10

1.4
RANDCM ACCESS

Random access files can be created: Records within a disk file can be
addressed directly. A disk address refers to pointers to system tables.
When random file processing is requested, the disk address is returned
when a logical record is written. A disk address is accepted from the
user when a logical record is read.

Generally, the disk addresses returned when the file is written are gathered
into an index. SCOPE 3.1 provides a routine (IORANDM) which automatically
formats one of two types of indexes containing either named or numbered
records. In either case, the first word is an indicator of the index type:

+1 or -1. If the file contains only numbered records, sequencing of disk
addresses in the index corresponds to the record numbering; the first
address belongs to record one, the second to record two, and so on. The
index need be only n + 1 words in length, where n is the maximum number

of logical records in the file. The first word of such an index is set to +1

the first time the file is written.

If the file includes named records, the index containsg a two-word entry for
each record. The length of this index is 2n 4 1 words. The first word of
the index entry contains the record name, one to seven display code char-
acters, left justified with zero fill. The sccond word of the entry contains
the disk address of that record. K a given record has no name, the first
word of its index entry contains zero, and the record must be accessed by
its sequence number. The first word of a name index is sct to -1 the [irst
time the file is written.

When a record is written with a name that already appears in the index, the
new record is substituted for the existing record. When a record is written
with a name that does not appear in the index, IORANDM places the new
name in the index at the lowest unoccupied position and assigns the number
of that position to the record. When there is no space in the index for a
new name, the request is rejected and index full status is returned.

When a record is written by number and the records for that file can he
named, the name is not disturbed.

Other forms of indexes may be defined with a central processor subroutine
which sets fields in the file environment table (FET) and locates the records
within the index.

When files contain many logical records, multiple levels of indexes can be
defined to conserve central memory space. When a multi-index file is
written, logical record disk addresses are directed to a subindex buffer.
When the buffer becomes full, the subindex itself can be written as a logical
record in the file: the subindex disk address is directed to a main, or
primary, index. The forms of the primary and subindexes can be that
supplied by IORANDM or hy a user-supplied routine. They need not be the
same type.

1-11

1.5
FILE LABELS

1-12

Random files which are to endure between runs in a job or between jobs should
be declared as common files. At the end of a run which creates such a file,
the user should close the file with an unload option. The system then automat-
ically appends the contents of the index buffer specified in the FET to the end
of the file. When the file is to be read, the user must initially open the file
with an index area specified in the FET. The system then reads the index
record into the specified area.

SCOPE system file labels are defined for files recorded on 1/2-inch magnetic
tape only [For SCOPE 3 only, a system device label is defined for private
disk packs '_'] The labels are described and designed to conform to the
Proposed USA Standard, Working Paper Magnetic Tape Labels and File
Structure for Information Interchange, produced by ISO, the International
Organization for Standardization, Technical Committee 1SO/TC 97, Sub-
Committee 2.

Tapes containing a system label are recognized as labeled tape. All other
tapes are considered unlabeled. Label processing is not provided for non-
standard labeled (non-labeled) tapes. Tape labels are recorded at 556 bpi.
All system labels are 80 characters. Labeled tapes are checked by the
system for file name, reel number, creation date, expiration date, and
edition number. ILabeled tapes are protected from accidental destruction by
checking the creation and release dates in the file header label. This label
is delivered to the circular buffer for an input file, so that the program may
check it further as required. Unless the UP bit is set in the FET, reel
swapping for a multi-reel tape file is automatic. The system executes two
function calls: CLOSER, 1fn, UNLOAD and OPEN, 1fn, REEL. Since
these calls are issued by the system, the file header label is delivered for
the first reel only.

The following terms are defined in conjunction with the SCOPE system file
labels.
Volume: Synonymous with reel of magnetic tape.
Volume Set: A collection of related volumes in which one or more files are
recorded. A volume set may consist of:
A single volume containing one file
A single volume containing several files
Several consecutive volumes containing one file
Several consecutive volumes containing several files

Tape Mark: A one-character record, 17g, plus check character recorded in
even parity. The tape mark separates label information for file information.

601894008

The first four characters of labels identify the type.

Type Identifier
Volume header label VOL1
Volume trailer label EOV1
File header label HDR1
File trailer label EOF1
Device header label DEV1 I

Label formats are described in Appendix C.

1.5.1

TAPE FILE STRUCTURE SCOPE standard system labels and tape marks establish the tape file structure
according to the following rules. Required labels are indicated by a 4-char-
acter identifier, and tape marks are indicated by asterisks.

Single-Reel File

VOL1 HDR1*...Data Blocks...* EQOF1%*

Multi-Reel File

- VOL1 HDRI1*. .. First Volume Data...* EQV1¥*
VOL1 HDR1*. ., Last Volume Data...* EQF1%*

Multi-File Reel

VOL1 HDR1*..,.File A...*EOF1 * HDR1*,..File B...*,..EQOF1%*

Multi-Reel Multi-File

VOL1 HDR1*,..File A...* EOF1 * HDR1*. ., File B...* EQV1**
VOL1 HDRI1*, .. Continuation of File B........... * EQV1**
VOL1 HDR1*. ., Last of File B...* EOF1 * HDR1*...File C...* EQF1**

60189400B : 1-13

1.5.2
PRIVATE DISK PACK
FILE STRUCTURE

1-14

Volume Header Label

The first PRU in the volume must be a volume header label; it may not
appear elsewhere.

File Header Label

Every file must be preceded by a file header label and every file header
must be preceded by a tape mark. When a volume ends within a file, the
continuation of that file in the next volume must also be preceded by a file
header.

File Trailer Label

A file trailer label is required as the last block of every file. A file
trailer must be followed by a tape mark, and if it is the last file trailer
in the volume, two tape marks are required.

Volume Trailer Label

When a volume ends within a file, the last PRU of the file in that volume
must be followed by a volume trailer label which must be preceded and
followed by tape marks.

When end-of-volume and end-of-file coincide the labeling configuration is one
of the following:

...File A...* EQV1* *

VOL1 HDR1* * EOF1 * HDR1*,.,File B...
(&) (A) (B)

...File A...* EOF1 * HDR1* * EQV1* *

VOL1 HDR1*. .. File B...
(B)

SCOPE 3 only

Disk packs privided for the 854 disk drives, are designated as shared system
devices or as privately assigned, dismountable devices.

Shared packs are dedicated to the system as long as any active files are
assigned partially or totally to them. Recording and retrieval of data from
these files is handled entirely by the system. Shared packs containing active
files may not be removed from the system; an operator-controlled function is
defined to protect them. T

T The structure of shared system files is defined in Section 9. 2.

60189400B

60189400B

For SCOPE 3 only

A gingle file, sequential or random, is assigned to each private disk pack by
a user. File overflow to a second pack is not possible; the entire file must
be contained on a single pack. A private pack cannot be removed while its
file is active to the system. A private pack is associated with a single job.
Access is not shared with jobs active at control points other than the assigned
control point. At unloading, the recorded data of a private pack consists of
four parts if it is sequential, or five parts if it is random:

Device label

Copy of record block reservation (RBR) table

Copy of record block assignment chain, taken from record block table
(RBT)

Recorded data of the file

Index of the file (random file only)

When the file is mounted and made active, the recorded data is restored in
central memory tables. Copies defined on the packs are rewritien prior to
removal of the pack.

Defined on a disk pack are 200010 record blocks of five PRU's each. Each
record block is recorded on a single track of the disk pack; two revolutions
are required to read or write the entire record block. PRU sector assign- °
ments for a full track are shown below; sector 15 of each track is unused.

Record Block Structure (854)

PRU Sectors

0 0,1, and 2

1 6, 7, and 8

2 12, 13, and 14
3 3, 4, and 5

4 9, 10, and 11

The first two record blocks of private packs record the device label, the RBR
copy, and pointers to the RBT chain. The 12-bit byte contents of the system
RB's for the first two record blocks are shown below:

1-15

1-16

For SCOPE 3 only

RB PRU Bytes Contents

0 0 0-39 Device label

0 0 40-229 RBR table copy

0 0 230-318 Zeros - reserved for future use by the system
0 0 319 Check-sum

0 1 0-9 First RB address chain entry

0 1 10-19 Second RB address chain entry

Sequentially ordered RB address chain entries define record blocks in the
order data was recorded. An RB address entry has the format: 10 * cylinder +
head group. The first RBT entry defines a minimum of four record blocks;

the remaining entries define at least eight record blocks. There are 32

entries per PRU; the nine remaining PRU's are sufficient to define the entire
disk pack surface.

Data recording begins physically (not necessarily logically) at RB 2. When an
index is included, it is stored at the logical end of data.

601894008

JOB PROCESSING 2

2.1
JOB FLOW

A job consists of one file of punch cards or card images. The first logical
record of a job file consists of the control cards which identify the programs
and data files and control the sequence of program executions (runs). Con-
trol cards specify how the job is to be processed; they determine all operations
performed on subsequent logical records of the job file.

SCOPE begins processing by reading the job card. It copies the job file on
disk storage and adds the name of the job to the list of input files.

When a control point is available for the job and the required amount of
memory is free, the job is brought to the control point through the following
steps:

® Memory is allocated; jobs already in the computer may be moved
forward or backward in central memory.

® The first record (or part thereof) of the job deck (control card
record) is copied into the control statement buffer of the control
point, and a pointer is initialized to indicate the first control card.

.® All data following the control card record in the job deck is made
available to the control point as a file called INPUT.

° The first control statement in the huffer is executed, and the
pointer moves to the next control statement. This begins the first
run within the job. When that run is completed, the next control
statement is executed, beginning the second run. When control
statements are depleted or an EXIT card occurs, the job is
terminated.

Each job must begin with a job card and end with a file separator card. All
control cards must appear between the job card and the first record separator.
The end of the control cards is signified by a 7, 8, 9 punch card (end-of-
record) or a 6,7, 8,9 punch card (end-of-information) if the job consists of
control cards only.

2-1

2.2

CONTROL CARDS

2-2

JOB CARD

Control cards have two fields. The first contains the flag word, beginning
in column 1. Flag words described in this section are reserved for the
system and may not be used as program call names. The second field is
optional; it may contain one or more parameters, separated by commas.

The two fields are separated by a comma or left parenthesis; a blank
separator is also recognized on the REQUEST, COMMON, RELEASE,
SWITCH, and MODE cards. The parameter field is terminated by a period
or right parenthesis, and a terminator must be present even when no param-
eters are specified.

n, Tt, CMfl, ECfl, Pp. T

The first control card of a job must indicate the job name, priority, central
processor time limit, and memory requirements. Fields are separated by
commas and the last field is terminated by a period. Blanks are ignored in
a job card. Fields other than n may appear in any order as they are identi-
fied by leading characters indicated above by capital letters.

n Alphanumeric job name (1-7 characters); must begin with a letter.
To assure unique job names, SCOPE replaces the last two characters
with a system generated value. If only a job name is specified,
installation-declared values are assumed for the remaining fields.

Tt t = central processor time limit for the job in seconds; a maximum
of 5 octal digits. Value may not exceed 32767;,. Time limit must
suffice for the whole job including all compilation and execution.

CMil fl = total central memory field length of the job; a maximum of 6
octal digits. The field length (storage requirement) is rounded up
to a multiple of 100 8 by the system. Length cannot exceed:

360, OOO8 on a 131K machine

163, OOO8 ona 65K machine

61, 0008 on a 32K machine

ECI1 fl = total extended core storage field length given as the number of
10008—Word blocks required. Value may not exceed 77778.
Pp p = priority level, in octal, at which job enters the system.
l=p= zk—1; k is an installation option =8; 1 is the lowest priority.

TCompatibility with job card formats used by previous systems may be ob-
tained at installation option.

SWITCH CARD SWITCH n.

Pseudo sense switches 1-6 may be set for reference by a subsequent program.
Settings are preserved at the control point and copied to RA for use by the
central program. Switches may be changed by console commands, OFFSW
and ONSW.

MODE CARD MODE n.

MODE is used to select exit or stop conditions for a central processor pro-
gram. The exit selections (n) are loaded into the exchange jump package.
Upon an exchange jump, the selections are stored in the central processor
and the exit occurs as soon as the selected condition is sensed. The exit
mode is set to 7, if not otherwise specified.

n value Exit Condition
0 Disable exit mode - no selections made
1 Address is out of range because of:

Attempt was made to reference central memory or
extended core storage outside established limits

Word count in extended core storage communication
instruction is negative

Attempt was made to reference last 60-bit word (word 7)
in relative address FL ECS.

2 Operand out of range, floating point arithmetic unit received
an infinite operand.

3 Address or operand is out of range.

4 Indefinite operand, floating point arithmetic unit attempted
to use an indefinite operand.

5 Indefinite operand or address is out of range.
§ Indefinite operand or operand is out of range.
7 Indefinite operand or operand is out of range or address is out
of range.
Example:
MODE 3. Selects address out of range and

operand out of range as stop conditions.

RESTART CARD

COMMENT CARD

EXIT CARD

RESTART, pckp, CLEAR, *

When a job which has taken checkpoint dumps terminates abnormally, it
may be restarted from the last checkpoint dump with this control card.
pekp is the unique file name included on the REQUEST card for the run.
CLEAR is included when no restart is required. The * is acknowledged
only when CLEAR is given. The * indicates that although the original job
is not to be restarted, all files associated with the job should be processed
according to their disposition code. If only certain files are to be so
processed, they may be listed in place of the *, for example:

RESTART, pckp, CLEAR, lfn, 1f112, 1ﬁ13, .

COMMENT. comments
The period must appear in this card. Characters following the period
through column 80 are entered into the dayfile and displayed.

EXIT.
The EXIT card can be used to separate the control cards for normal exe-
cution from a group of control cards to be executed in event of error exit

as listed below:

Error Flag Condition

1 Time expired Job has used all CP time it requested.
Further attempts to use the CP in any
way will cause termination.

2 Arithmetic error CP error exit has occurred.
3 PPU abort PP has encountered an illegal request
such as illegal file name or request

to write outside the job field length.

4 CPU abort Central program has requested that
the job be terminated.

5 PP call error Monitor has encountered a PP call
entered in RA+1 by a central program.

6 Operator drop Operator requested job to be dropped.

Conditions 3 and 5 can occur if a program accidentally
writes in RA+1.

2.3
PROGRAM
EXECUTION

When the above conditions occur, an error flag is set at the control point.
For flags 1, 2, 5 and 6, a dayfile message is issued; for 3, the fault-finding
PP issues a message.

When an error flag is set, a search is made for the next EXIT control card.
If none is found, the job is terminated. If an EXIT card is found, the error
flag is cleared and succeeding control cards are processed. If an EXIT card
is encountered when no error flag is set, the job is terminated normally at
that point.

Example:

MYJOB, P1, T400,CM50000. Job card

REQUEST TAPE5, WT. Request scratch tape
RUN. Compile and execute
EXIT.
DMP. Dump exchange package
DMP, 1000. Dump first 10008 words of storage
78

9 Record separator
(program)
78

9 Record separator
(data)
678

9 End of information

Dumps are made only when an error condition occurs.

These control cards are used to load and execute files. The SCOPE control
card format described below pertains to the EXECUTE and program call
cards. All numbers used are decimal. The card may be a unit record of up
to 80 characters including freely interspersed blanks. The general SCOPE
format is:

Name List Comment

2-5

2-6

LOAD CARD

EXECUTE CARD

Name and list are required fields; comment is optional. Name is a string
of one to seven alphanumeric characters beginning with a letter. Comment
is a string of Hollerith characters composed from the set defined in
Appendix A.

List contains parameters to be used by the program being loaded. The con-
tents of list can vary greatly. I parameters are not required, list is simply
a period. Parameters may be enclosed in parentheses or preceded by a
comma and concluded by a period. The list may contain as many parameters
as fit on a card expressed in one of three forms: P, P =10, or P = Q where
P and Q are strings of one to seven alphanumeric characters. P may
specify one to four types of information flow: input, BCD output, binary
output, or special information. Q specifies the name of the file involved.

In all cases, the program to which P only is transmitted will take the action
defined for P; the program to which P = 0 is transmitted will negate the
action defined for P; and the program to which P = Q is transmitted will

take the action defined for P using the file named Q in place of an otherwise
assumed file.

LOAD (lfn)

This card directs the system to load the file named 1fn into central memory.
If Ifn is INPUT, loading begins from the current position of the file. All
other files are rewound by the system prior to loading. Loading terminates
when the end-of-information or an empty record is encountered. All loader
directives must appear in the named file before any subprogram. These
directives specify whether overlay, segment, and section processing is
required. Overlays, segments, and relocatable binary decks may be loaded
with the LOAD control card. The first record of the file 1fn specifies the kind
of loading operations to be performed.

If subprograms are to be loaded from more than one file, more than one
LOAD card is needed; but the first record of the first file always determines
the kind of loading for all subsequent LOAD cards.

XECUTE (11ame,pl,p2, pn)
Name is the entry point of the program to be executed once loading is com-
pleted. If name is absent, the last transfer address (XFER, appendix D)
encountered is used. The parameters pi are passed to the program to he
executed.

The EXECUTE card causes completion of loading. This process includes
filling out all unsatisfied references with entry points from the system library
except where inhibited by segment parameters.

For segment or overlay operations, program execution begins in the first seg-
ment or the main overlay. Subsequent segments or overlays must be loaded
by user calls from these programs.

PROGRAM

CALL CARD name (pl,pz, e ,pn)
Initially, the file name/status table is searched for this name. If found, sub-
programs are loaded from the named file, bypassing with a message on
OUTPUT, any routines already loaded by LOAD cards. The file is rewound
before loading. If name does not appear in FNT/FST, the system library is
searched and matching subprograms are loaded. Loading is completed; if no
fatal errors are found, execution begins at the specified name. The parameters
p; are passed to the program to execute.
Example: LOAD (BTGN) _

EXECUTE, } = BTGN.

To replace one subprogram with a subprogram of the same name from another
file, a possible sequence is: LOAD (HOO45)
LAU36.

The subprograms will be loaded from the file HOO45 and those of the same
name on LAU36 will be bypassed.

NOGO CARD NOGO.

When NOGO is encountered, the loader processes the loaded program in the
same manner as for an EXECUTE card; however, the program is not executed.
This card permits mapping a program, bypassing execution, and continuing
other portions of the job.

2.24

EQUIPMENT

ASSIGNMENT If a file is not specifically assigned by a REQUEST card or REQUEST function,
the system assigns that file to disk storage. A job need not assign the card
reader, printer or punch for normal input/output from compilations, assemblies,
etc., as this is done automatically by the system. In addition, any file named
OUTPUT, PUNCH or PUNCHB will always be printed, punched, or punched
binary, respectively, by the system when the job is completed.

A REQUEST card or function must be given to assign a file directly to a private
device. The device assigned to the requesting control point becomes the private
source or destination of files for that job. As job control cards are processed
in order, required private equipment assighments must precede any reference
to the corresponding private file.

601894008 2-17

REQUEST CARD

REQUEST, lin, dt,dc, x.

This card requests the operator at the system display console to assign a
peripheral unit to a file and declares properties of the file and unit. The

job waits for operator action before proceeding. With the exception of a
disk, any equipment to be used must be specified on a REQUEST card or in a
REQUEST function.

Because the control cards of a job are processed in order, equipment assign-
ments must be made before the file is referenced. The parameters after the
first may appear in any order. Successive blanks, commas, periods, left

or right parentheses are ignored. If a parameter is listed more than once

or isin error, a message is issued and the job is terminated.

1fn Logical file name (1-7 digits or letters) must begin with a letter.
This is the name of the file to which equipment is to be assigned and
the name by which the user refers to the file within his program.
A REQUEST card must have at least one parameter, and the first
parameter is assumed to be 1lfn.

dt Designates the type of device to which the file is to be assigned. If the
dt parameter is absent, any equipment may be assigned by the operator.
I dc is specified, the operator must assign the proper type of device.
dt is written as yxx. xx is the mnemonic for the equipment type as

listed below:
cP card punch
LP line printer

MT 1/2" magnetic tape

LO 1/2" magnetic tape at density 200 bpi
HI 1/2" magnetic tape at density 556 bpi
HY 1/2'" magnetic tape at density 800 bpi
wWT 1" magnetic tape

Dnnnn disk; nnnn may be one of the codes under device
type field in the FET (section 3. 1.1)

CR card reader

When the equipment type is MT and the tape has SCOPE system

labels, the volume header label is set to indicate density as follows:
Input tape is read at density specified in volume header label.

Output tape is written at density specified by an installation
parameter.

Code and Status (CS) (18 bits)

The CS field is used for communication of requested functions and resulting
status between the central processor program and the peripheral processor
input/output routines. This field is set to the request code by CPC when a
request is encountered for this file. The request codes are defined in the
file action request descriptions. The code and status bits have the following
significance:

Bits 14-17 Record level number. On skip and write record requests,
this subfield is set by CPC as part of the function code. On
read requests, it is set by CIO as part of the status when an
end-of-record is read. Initially the level subfield is set to zero
when the FET is generated.

Bits 9-13 Status information upon request completion. Zero indicates
normal completion. Non-zero indicates an abnormal condition,
not necessarily an error; an OWNCODE routine, if present,
will be executed. Status codes are described under OWNCODE
routines. Initially, this subfield is set to zero when the FET is
generated.

Bits 0-8 Used primarily to pass function codes to a peripheral processor.
Function codes are even numbers (bit 0 has a zero value). When"
the request has been processed, bit 0 is set to one. When the
FET is generated, bit 0 must be set to one to indicate that the
file is not busy. Bit 1 specifies the mode of the file (0 = coded,

1 = binary). Bit1 is not altered by CPC when a request is
issued.

Bits 2-8 are used to pass function codes to a peripheral proc-
essor (file action requests).

Bits 3 and 4 may be altered by the peripheral processor routine
when the request is completed if an end-of-record (102) or

end-of-file was read (11 2).

The initial value of bits 2-17 is irrelevant.

Device Type (DT) (12 bits)
The device type field may be used in one of two ways:
The file may be assigned to a specific type of allocatable device when an

OPEN function is given. Such an assignment is effective only if no prior
reference to the file has been made.

3-4

The hardware type portion of the field will be set by SCOPE upon return
from any other file action request, if the FET is more than five words
-long (the field length in word 2 of the FET is nonzero).

The device type field contains two 6-bit fields; the left 6 bits specify a hard-
ware device and the right 6 bits declare a type within the device. When the
code is 00, SCOPE selects the most easily accessible allocatable device.
Other codes are shown below in octal:

Hardware Type (record block size)
01 6603 disk 00 alternate sector half-track both zones
01 alternate sector half-track, inner
zone only
02 alternate sector half-track, outer
zone only
03 reserved for system
fo4 sequential sector, full-track; both
zZones
105 sequential sector, full-track; inner
zone only
o6 sequential sector, full-track; outer
zone only
07 reserved for system
10 eight sector allocation

11-77 reserved for system

02 6638 disk 00 alternate sector, half-track
01-07 reserved for system
10 eight sector allocation

11-77 reserved for system

03 data cell 00-77 reserved for system

04 6603 with field XX same assignments as unmodified 6603
option 10124
installed

05-06 reserved for
system

T SCOPE provides only the method for allocation; not the drivers.

601894008

60189400B

Hardware Type (record block size)

07 3234/854 disk pack 00
fo1
02-77

10 reserved for
system

11 3637B/863 drum 00

01-77
12 3637/B 865 drum XX

13-77 reserved for
system

T40 1/2" magnetic tape 00
01
02

03-77

41 1" magnetic tape 00-77

42-49 reserved for
system

50 line printer 00-77

50-57 reserved for
system

60 card reader 00-77

61-67 reserved for
system

70 card punch 00-77
71 6612 display console 00-77

72-77 reserved for
system

Random Access (r) (1 bit)

normal system allocation
private user allocation

reserved for system

For SCOPE 3 only, standard allocation;
64 words per PRU, 5 PRU's per record
block, 8 records per track

reserved for system

same as 863 drum; 1 PRU = 3 sectors

high density

low density

hyper density
reserved for system

reserved for system

reserved for system

reserved for system

reserved for system

reserved for system

The r field is set to one if the RFILEB or RFILEC macro is used; otherwise,
r is zero. This field indicates a random access file and that record position
information should be returned. If the file does not reside on a random access
device, the r field is set to zero when the first reference is made to it.

T Device codes of 40 or greater may not be assigned from an FET, these
devices require a REQUEST card or function. A private disk pack also
requires a REQUEST card or function.

3-5

3-6

Release Bit (n) (1 bit)

A release bit set to one when a file action request is issued has the following
effects for read and skip operations; it is meaningless on any other operation.

After a read or a skip forward operation, record blocks will be released.

After a skip backward operation, record blocks subsequent to the position
of the file will be released.

User Processing (UP) (1 bit)

The UP bit is set to one when the calling program is to be notified when an
end-of-reel condition is encountered during a 1/2" magnetic tape operation.
If the field is set to zero, tape switching proceeds automatically without
notification to the calling program; the function in process when end-of-reel
is detected will be completed on a subsequent reel of tape.

When the UP field is set to one and an end-of-reel is detected on 1/2"" mag-
netic tape, the end-of-reel status is set, 028 in bits 9-13 of the code and
status field. This is the only point at which the end~of-reel status is re-
turned.

All functions that do not transfer data from the circular buffer will be com-
pleted; those which transfer data may be re-issued as indicated by examination
of the buffer pointers. CPC detects the end-of-reel status and transfers to

the EOI OWNCODE routine, if present. At this juncture, the calling program
may perform any action subject to the following restrictions:

CLOSER and OPEN, REEL functions must eventually be issued for the
file in that order.

No file action requests other than CLOSER and OPEN, REEL may be
issued for a labeled tape file.

The following decision table indicates action taken by the system and per-
mitted in the CP program.

End-of-Reel Detected

Labeled Tape Y| N|Y |N

Up bit Set NIN|Y |Y

1. Automatic switching of tapes with SCOPE labels. CP program is not
aware of the operation. Control returns to the CP program after the
request obstructed by the end-of-reel condition has been completed on
the new tape.

2. Automatic switching of tapes without SCOPE labels; otherwise as in 1.

3. OWNCODE routine entered, if present. Only CLOSER and OPEN,REEL
requests may be issued, in that order. These requests should be
issued with recall to simplify processing. When the OPEN,REEL re-
quest is issued for an input tape, the system will deliver the file header
label for the new reel to the circular buffer.

4. OWNCODE routine entered, if present. Any file action request is
honored. Thus, the user may effectively put his own labels at the
beginning or end of the tapes. Eventually a CLOSER function must be
issued for the current reel of tape to terminate processing. Also,
eventually an OPEN,REEL request must be issued for the subsequent
reel of tape to restore the system to its proper status. If data is
written prior to issuing the OPEN,REEL function for the new reel of
tape the OPEN,REELNR option should be used so that this data is not
overwritten.

The OPEN function delivers an input label only if labels corresponding
to the SCOPE Standard are declared on the REQUEST card or function.

Routines which should be executed before and after the first volume file
header label and the first volume trailer label may be written before and
after the OPEN function or the file. Routines which should be executed
before and after the last volume file trailer label may be written before
and after the CLOSE function for an output tape. For an input tape such
routines may be written in conjunction with the OWNCODE routine
which processes the end of information status 01 8 in hits 9-13 of the
code and status field.

Error Processing (EP) (1 bit)

The EP bit is set when the calling program wants to be notified of error
conditions. If EP=0, the job will be aborted.

3-8

Disposition Code (dc) (12 bits)

The value in this field indicates the disposition to be made of the file when the

job is terminated or the file is closed.

Value
(Octal)
0000

0001

0002
0003-0007
0010

0011
0012

0013
0014
0015-0017

0020

0021
0022

0023-0027
0030

0031-0037

Disposition

No special action required
Checkpoint file

Multi-file tape

Reserved for system

File is punched on Hollerith cards when job is complete.
If the disposition code of a PUNCH file is initially 0000, the
file is assigned code 0010 before job completion

Reserved for system

File is punched on standard binary cards when job is com-
plete. If the disposition code of a PUNCH B file is initially
0000, the file is assigned code 0012 before job completion.

Reserved for system

File is punched on hinary cards when job is complete;
sixteen 10-character words per card (80 columns)

Reserved for system

Tile is sent to a filming device when job is complete. If
the disposition code of a FILMPR file is initially 0000, the
file is assigned code 0020 before job completion.

Reserved for system

Tile is sent to a filming device when job is complete. If the
disposition code of a FILMPL file is initially 0000, the file is
assigned code 0022 before job completion.

Reserved for system

File is sent to a plotting device when job is complete. If the
disposition code of a PLOT file is initially 0000, the file is
assigned code 0030 before joh completion.

Reserved for system

Value

(Octal) Disposition
0040 File is printed when job is complete. If the disposition code

of an OUTPUT f{ile is initially 0000, the file is assigned code
0040 bhefore jobh completion.

0041-1777 Reserved for system

2000-7777 A one in the leftmost bit indicates that the file is being
processed by EXPORT/IMPORT; a one in the next bit means
that the file is being processed by RESPOND; therefore,
codes 2000-7777 are not used in normal SCOPE processing.

Length of FET (0) (6 bits)

The system FET length is determined as follows: FET first word address +
5+ ¢ = last word address + 1. The minimum FET length is five words

(£= 0). If the minimum FET is used, only the logical file name, code and
status field, FIRST, IN, OUT, and LIMIT are relevant. No other field will
be set or checked by SCOPE. A length of six words (£=1) is used if a
working storage area is needed for blocking/deblocking. A length of eight
words (L= 3) is used if the r bit is set, indicating an indexed file. Length
is nine words ({= 4), if OWNCODE routines are declared. The maximum
system FET length is 13 words (£ = 8. The maximum size is used if a
labeled tape file is declared.

FNT Pointer (12 bits)

The FNT pointer is set by SCOPE, upon return from a file action request,
to the location of the file in the FNT/FST. The pointer is placed in the FET
to minimize table search time and does not affect the program. The pointer
will not be set if a minimum FET is used.

Physical Record Unit Size (PRU) (12 bits)

The physical record unit size of the device to which the file is assigned is
returned in this field at OPEN time. It is given as the number of central
memory words. The PRU size is used by CPC to determine when to issue
a physical read or write. PRU size will not be returned if a minimum FET
is used.

3-9

3-10

Record Block Size (15 bits)

If the file resides on an allocatable device, the size of the device record
block is returned in this field at OPEN time. It is given as the number of
physical record units in a record block. If the number of PRU's is not de-
fined or is variable, the field is set to zero. Record block size is not re-
turned if a minimum FET is used.

FIRST, IN, OUT, LIMIT

Data is transmitted in physical record units, the size of which is determined
by the hardware device. For example, the 6603 disk has an inherent PRU
size of 64 CM words; binary mode magnetic tape files are assigned a PRU
size of 512 words.

For each file, the user must provide one buffer, which can be any length
greater than a PRU size. This is called a circular buffer because it is
filled and emptied as if it were a cylindrical surface in which the highest
addressed location is immediately followed by the lowest.

The FET fields FIRST, IN, OUT and LIMIT control movement of data to
and from the circular buffer.

FIRST and LIMIT never vary; they permanently indicate buffer limits to the
user and to SCOPE. During reading, SCOPE varies IN as it fills the buffer,
and the user varies OUT as he removes data from the buffer. During
writing, the user varies IN as he fills the buffer with data, and the system
varies OUT as it removes data from the buffer and writes it out — the
program that puts data into the buffer varies IN, and the program that takes
it out varies OUT. The user cannot vary IN or OUT automatically except
when using READIN and WRITOUT functions; he must do this within the pro-
gram by inserting a new value into lfn + 2 (IN) or lfn + 3 (OUT). For the
user's as well as for the system's convenience, the words containing IN

and OUT contain no other items; this eliminates the need for masking
operation.

The system dynamically checks the values of IN and OUT during data trans-
fers, making continuous read or write possible.

If IN = OUT, the buffer is empty; this is the initial condition. If IN > OUT,
the area from OUT fo IN - 1 contains available data. If OUT > IN, the
area from OUT to LIMIT - 1 contains the first part of the available data,
and the area from FIRST to IN - 1 contains the balance.

To begin buffering, a READ function may be issued. SCOPE will put one
or more PRU's of data into the buffer beginning at IN, resetting IN to one
more than the address of the last word filled after each PRU is read. Data
may be processed from the buffer beginning with the word at OUT, and
going as far as desirable, but not beyond IN - 1. The user must then set
OUT to one more than the address of the last word taken from the buffer.
He sets OUT = IN to indicate that the buffer is empty.

When a READ request is issued, if the buffer is dormant (no physical read
occurring), CPC determines how much free space the bufier contains.

If OUT > IN, OUT - IN words are free. If IN > OUT, (LIMIT - IN) +

(OUT - FIRST) words are free. The system subtracts 1 from the number of
free words, because it must never fill the last word; this would result in

IN = OUT, which would falsely indicate an empty buffer. If the number of
free words, minus 1, is less than the PRU size, CPC does not issue a
physical read request; control is returned normally.

The example below illustrates the way IN and OUT pointers are used.
Speed of operation is not considered and simultaneous processing and physical
I/0 is not attempted.

The initial buffer pointer position is:

FIRST = BCBUF
IN = BCBUF
OuUT = BCBUF
LIMIT = BCBUF+500

The user issues a READ with recall request.

Neglecting the possibilities of an end-of-record or end-of-file, the
system reads as many PRU's as possible (if PRU size is 64 words,
7 X 64 = 448 words) and leaves the pointers:

FIRST = BCBUF

IN = BCBUF+4438

OUT = BCBUF

LIMIT = BCBUTF+ 500

3-11

3-12

The user is processing items of 110 words. He takes four items from
the buffer, leaving the pointers:

FIRST = BCBUF

IN = BCBUF+448

OUT = BCBUF+440

LIMIT = BCBUF+500
The user issues another READ request, since he knows the buffer does
not contain a complete item. The system is aware that IN > OUT, so

that the vacant space amounts to LIMIT - IN + OUT - FIRST = 492 words;
since it must not fill the last word, it must read fewer than 492 words.

The nearest lower multiple of 64 is 7 x 64 = 448, so it reads 52 words
into IN through LIMIT - 1, and then 396 more words into FIRST through
FIRST + 395. It then resets IN so that the pointers look like:
FIRST = BCBUF
IN = BCBUF+396
OUT = BCBUF+440
LIMIT = BCBUF+500
The system has just used the circular feature of the buffer; now the user
must do so. The next time he wants an item, he takes the first 60 words
from OUT through LIMIT - 1, and the remaining 50 from FIRST through
FIRST + 49. Then he resets OUT, making the pointers:
FIRST = BCBUF
IN = BCBUF+396
OUT = BCBUF+50
LIMIT = BCBUF+500
On input, this can continue indefinitely, with OUT following IN, around the
buffer. The system stops on encountering an end-of-record, and sets the
code and status bits accordingly. The system may, or may not, have read

data before the end-of-record, so it is up to the user to examine the pointers
before taking end-of-record action.

In writing, the process is similar, but the roles are reversed. The user
puts information into the buffer and resets IN; and when he calls the system,
it removes information from the buffer and resets OUT. For writing, the
system removes data in physical record units and empties the buffer if
possible. The user must be careful not to overfill the buffer — IN must not
become equal to OUT. During the process of emptying the buffer, SCOPE
resets OUT after each PRU has been written and checked for errors.

Working Storage Area

The two fields in word 6 of the FET specify the first word address (fwa)
and last word address + 1 (lwa + 1) of a working storage area within the
program field length. Logical records may be deblocked into or blocked
from this area into the circular buffer. (See READIN and WRITOUT.)

File ndexing Fields

The file indexing fields (record request/return information, record number
index length and index address) are used for communication between the
indexing functions (READIN and WRITOUT) and the peripheral processor
input/output routines. mndex address and index length fields are declared
when the FET is generated; they specify the fwa of the index buffer within
the program field length and length of the index buffer. The record request/
return information field is set to zero when the FET is generated; both the
indexing functions and the peripheral processor input/output routines set

the field during random file processing.

FFor an indexing method other than that offered by SCOPE, the following
information is pertinent. When writing of a new logical record begins, if
the random access bit and the record request/return information field are
both nonzero, the latter is assumed to contain the address of a location
within an index. The PP routine inserts into that location (in bits 0-24),

the record block and PRU address of the logical record. To read the record
again, the random access hit should be set to nonzero and the record block
and PRU address should be entered in the FET in the record request/return
information field.

OWNCODE Routines

Addresses of user-supplied routines may be given in the FET. These routines
are executed by CPC as indicated below. A zero value indicates that no
routine is supplied.

3-13

An OWNCODE routine should be set up like a closed subroutine with execution
beginning in the second word of the routine. CPC calls an OWNCODE routine
by copying the exit word of CPC into the first word of the OWNCODE routine,

putting the contents of the first word of the FET into X1, and branching to

the second word of the OWNCODE routine.

Termination of an OWNCODE routine by a branch to its first word causes a
branch to the point in the program to which CPC would have returned if the
OWNCODE routine had not been called. The A, B, and X registers may
have been changed by CPC before control gets back to the routine that called
CPC. Therefore, an OWNCODE routine which is terminated by a branch

to its first word should not rely on passing information to the main program
in the registers.

EOI Address Field

CPC enters the end-of-information (EOI) routine under the following
circumstances:

Bits 9-13 of Code and Status:

01 g End-~of-information encountered after forward read

02 3 End-of-reel reached during magnetic tape forward operation
Just before entering an end-of-information OWNCODE routine, CPC zeros
bits 9 and 10 of the first word of the FET. However, as the routine is

entered, X1 still contains the first word of the FET as it appeared before
those two bits were zeroed.

Error Address Field

This field specifies an address to receive control if an error condition occurs
after a file action request. The FET code and status field will reflect the
error condition. If processing can continue, the error routine should exit
through its entry point; otherwise, an ABORT request may be issued.

If the error address field is zero, the run continues normally. The FET
code and status bits reflect the error condition upon normal return to the
program.

3.2
LABELED
TAPE FILES

Bits 9-13 of Code and Status:

048 Unrecoverable parity error on last operation

lO8 Device capacity exceeded on write, or tape physical record
size greater than circular buffer on read, or unrecoverable
parity error on last write (lost data)

20 OPEN function redundant

212 CLOSE function redundant

22 8 Illegal function

23 8 Index full

248 FNT full

258 An attempt was made to read or write record number n of a

random file, but the index of the file is full.

26 An attempt was made to read a named record from a random
file, but the name does not appear in the index.

27 An attempt was made to write a named record on a random
file, but the name does not appear in the index, and there is
no room to add a new name.

In the event that both EOI and error routine execution are needed, the error
routine is executed.

Just before entering an error OWNCODE routine, CPC zeros bits 11-13 of
the first word of the FET. However, as the routine is entered, X1 contains
the first word of the FET as it appeared before those hits were zeroed.

File Label Name (17 characters)

This field contains from 1 to 17 alphanumeric display-coded characters,
starting with a letter, left justified; if less than 17 characters are declared,
the unused characters are binary zero-filled. The file label name appears
in field 3 of the file label header (appendix C). It ensures that the correct
file is being referenced. Checking is accomplished when the file is opened
providing a labeled tape was specified on a REQUEST card or by a REQUEST
function.

3-15

3.2.1
MULTI-FILE TAPES

Edition Number (2 characters)

The two-character edition number of the file is stored in field 8 of the file
header label (appendix C) of an output tape and verified against this field
for an input tape. If this parameter is omitted, 01 is written in the label
of an output tape and in the FET, and no checking is done for an input tape.

Reel Number (4 characters)

The reel number of the file is stored in field 5 of the file header label
(appendix C) of an output tape and verified against this field for an input
tape. If this parameter is omitted, 0001 is written in the label of an output
tape and in the FET. For each reel, this field is increased by one at the
conclusion of the processing of the file trailer label and the tape mark is
written on the tape. When the file is closed, this field is set to 0001.

Creation Date (5 characters)

The first two characters specify the year and the remaining three the Julian
day within the year. This data is stored in field 10 of the file header label
for an output tape and verified against this field for an input tape. If this
field is omitted, today's date as stored in the SCOPE system is written in
this format in the label of an output tape and in the FET. For an input tape,
this field is read from the label and stored in the FET.

Retention Cycle (3 characters)

Three digits specify the number of days a tape is to be protected from
accidental destruction. This field is added to the value of the creation date
field to obtain the expiration date which is written on an output tape label or
verified against an input tape label. Field 12 of the file header label is
used (appendix C).

Multi-file Name (6 characters)

This field contains from one to six alphanumeric display-coded characters,
starting with a letter, left justified; unused characters are hinary zero-filled.
This field identifies all files of a multi-file volume (appendix C) and must be
the same for all files on a particular volume. If this field is omitted, only a
single file may be generated or read in a volume set. A multi-file tape must
be so declared by stating its disposition on a REQUEST card/function.

3.3
FET CREATION
MACROS

In such a REQUEST, the multi-file name is given as the lin, for example:
REQUEST, mfn,dt, MF, x.

Only one file on a multi-file tape may be open at any given time:

Position Number (3 digits)

This field is ignored unless a multi-file name is specified. If this param-
eter is absent for a multi-file output tape, the file is assigned in the

sequence in which it is written and this position number will be returned to

the FET. Overwriting a file on a multi-file volume set destroys the remaining
files it contains. If this parameter is absent for a multi-file input tape, the
value determined in the search for the file will be stored in the FET.

System macros in the COMPASS language facilitate generation of the system
FET, as follows:

Coded File - Sequential

Ifn FILEC fwa, f,(WSA = addrw, lw), (OWN = eoi, err), LBL, DTY =dt,
DSC = dec, UPR, EPR

Binary File - Sequential

lin FILEB fwa, f, (WSA = addr, , 1_), (OWN = eoi, err), LBL, DTY = dt,
DSC = de, UPR, EPR

Coded File - Random

Ilfn RFILEC fwa, f, (WSA = addrw, 1), (IND = addr., 1),
(OWN = eoi, err), LBL, DTY = dt, DSC = de, UPR, EPR

Binary File - Random

Ifn RFILEB fwa, f, (WSA = addrw, lw), (IND = addr;, 11),
(OWN = eoi, err), LBL, DTY = dt, DSC = dc, UPR, EPR

3-17

The last seven subfields (WSA, DTY, DSC, UPR, IND, OWN, LBL) are

order-independent; within the subfield, order is fixed. Upper case characters

designate actual subfield content, lower case characters indicate parameters

to be supplied by the user.

WSA

IND

OWN

DTY

DSC

UPR
LBL

EPR

Examples:

1fn file name
fwa substituted in FIRST, IN, and OUT
f fwa + f substituted in LIMIT

Working storage area parameters
addrw first word address of working storage area

IW addrw + lW = last word address + 1 of working storage
area

Index buffer parameters

addri first word address of index buffer

1i length of index buffer

OWNCODE routines

eoi end-of-information address

error error address

Device type parameter

dt a 12-hit code described in FET field descriptions
Disposition code parameter

de a 12-hit code described in FET field descriptions
User desires processing at end-of-reel

Label information will follow. The LABEL macro which provides
label information, must be written immediately following the
FILE macro to which it pertains. It has the form:

1fn LABEL lfn, ed, ret, create, reel, mfn, pos

User desires to handle error conditions

To create a minimum FET for the standard INPUT file:
INPUT FILEC BUFFER, LBUFFER

To create an FET for a binary random file:

FILEABC RFILEB BUFFER, LBUFFER, (IND = INDEX, LINDEX)

3-18

All parameters except Ifn, fwa, and f are optional.

To create an FET for a labeled tape file with user processing at end-of-
reel condition. OWNCODE routine is supplied:

TAPEl FILEB BUFA, LBUFA, LBL, UPR, (OWN=PROCEOR)
TAPEl LABEL SORTINPUTTAPE, 32, 90

To create an FET for a list file. OWNCODE routines are supplied
and the working storage area is used:

PRINT FILEC BUFB, LBUFB, WSA=LINE, 14), DSC=40B,
(OWN=ENDING, ERRORS)

To create an FET for a file to be written on a 6603 Disk, using only
inner zones:

FILE1l FILEB BUFD, LBUFD,DTY=0101B

3.4

CENTRAL

PROGRAM CONTROL

SUBROUTINE (CPC) The central program control subroutine (CPC) provides the linkage between
user programs and the SCOPE system. All file action requests and system
action requests are processed by the CPC library subroutine which is loaded
with the user program within the field length of the job. The program
communicates with CPC through macro requests and the file environment
table (FET). Communication with SCOPE is handled by CPC setting and
checking RA + 1.

CPC may also cause the execution of one or more user subroutines for
which addresses are specified in the FET. Such a subroutine is entered at
the address given in the FET + 1. The exit from the CPC is stored at the
OWNCODE routine given in the FET; (X1) = the first word of the FET.

A normal exit from CPC returns control to the object program at the point
following the macro request. A normal exit is made if the request is honored
and no error conditions occur. X1 contains word 1 of the FET upon exit if
the status is other than request completed. CPC does not save registers.

3.4.1
CALLING SEQUENCE Format of the calling sequence to the central program control subroutine:

59 41 39 29 17 0
X RJ CPC

yyy n|r A

3-20

RJ Return jump instruction
CPC Entry point to the CPC subroutine
n=0 File action request

yyy Display-coded name of the PP program to be inserted
by CPC in RA + 1 or one of the following:

000001 if only a file RECALL is wanted

000007 for CLOSE or EVICT

000004 for OPEN

000002 for READ or WRITE (without end-of-record)
000003 for other functions

X SAl <base address of FET>
Z Request code
n=1 BSystem action request
Vyy Display-coded name of the called PP program
X not relevant
Z parameters as required
r=1 Issue request and enter RECALL
r=0 Issue request and return control to the program

A file action request to the SCOPE monitor is formatted by CPC in RA + 1
as follows:

59 41 39 17 0

yyy Ojr base address of FET

A system action request to the SCOPE monitor is formatted in RA + 1 as
follows:

59 41 39 35 0

VALY Or 4

z appears in the buffer code and status field of the FET.

Bits not specified in the calling sequence are reserved for future system use.

3.5

SYSTEM
COMMUNICATION
MACROS

3.5.1
FILE ACTION
REQUESTS

REQUEST

In the following descriptions the system macro is followed by the macro
expansions.

File action requests result in a return jump to the central program control
subroutine. Subsequent actions depend on the state of the file. An OWNCODE
routine may be executed and/or a request to SCOPE may be posted. In

either case, control returns to the calling program after SCOPE accepts the
request if the recall bit, r, is equal to zero, or after SCOPE completes the
request if r is equal to one. In macros specifying the optional final param-
eter recall, r is set to one when recall is present.

READ lin, recall

REQUEST addr

59 41 39 29 17 0

RJ CPC

yyy 1t param

With the REQUEST function, a CP program can assign equipment during
execution without requiring a REQUEST control card. param is the first
word address of a two-word list of parameters, as shown below.

59 27 23 17 11 0

logical file name status

Pygx. de dt

The values for dc and dt are given in section 3.1.1 (Basic File Environment
Table). The 4-bit parameter pygx applies only when dt specifies 1/2-inch
magnetic tape. pygx is interpreted as follows:

3-21

OPEN

p=
p=20
y=1
y=0
q=1
q=0
x=1
x=0

External tape

SCOPE tape

2 tapes

1 tape

SCOPE system labels for this file
Unlabeled

Existing file

New file

If the 1fn designated in REQUEST parameters is already associated with a
file, the REQUEST function is ignored and control is returned normally.
Therefore, the REQUEST function should be issued prior to any reference
to the logical file name, since a reference to a nonexistent lfn will cause
the name to be associated with an empty file.

The status field should contain zero when the REQUEST function is issued.
Bit 0 is set to one when the function is completed. In addition, the following
values may be returned in bits 9-13:

228

248
258

26

Illegal function; REQUEST function was issued without the
recall bit.

FNT full

No equipment logically available. All equipment of the requested
type is assigned; at least one unit is assigned to some other
control point.

No equipment available. Either the requested equipment does not
exist in the configuration or all equipment of this type is already
assigned to this control point.

OPEN 1fn,x,RECALL

59 47 41 39 29 17 0
SAl 1fn RJ CPC
000004 0lr Z

The OPEN function readies the file for brocessing. The x parameter
specifies the operation to be performed: READ, WRITE, READNR,
WRITENR, ALTER, REEL or REELNR. The OPEN function causes infor-
mation to be returned to the user via the FET. (See File Environment Table,
p 3-1.) Unless the no rewind option is specified (READNR, WRITENR,
REELNR), the file is rewound and the buffer pointers (IN and OUT) are set
equal to FIRST.

This function is optional except in the following cases:
Indexed file: The OPEN function is required to read the index into

the index buffer.

File recorded on 1/2-inch magnetic tape with standard SCOPE system
labels: The OPEN function is required to process the label and position
the tape. The label is delivered to the circular buffer for an input file.

Device type other than 0000 is to be assigned to the file.
x = READ (Z =140)

I the file has a system label, it is read into the circular buffer and positioned
at the first data record. If the file does not exist, an end-of-information
status is returned. The file may be read only until it is closed.

x = WRITE (Z = 144)

If the file has a system label, it is written using the parameters in the FET.
The lile remains positioned after the tape mark following the tape label. The
tile may be written only until it is closed.

x = ALTER (Z = 160)

Checking insures that the file resides on a random access device. If it does
not, the random access bit (r) in the FET is set to zero.

A file is normally rewound when the OPEN function is issued. If it is not to
be rewound, options of x may be issued:
x = READNR (Z = 100) Open as in READ; do not rewind.

x = ALTERNR (Z = 120) Open as in READNR; do not rewind. Security
code is SET OPEN.

x = WRITENR (Z = 104) Open as in WRITE; do not rewind.

3-23

Swapping for multi-reel, labeled tapes may be controlled by setting the UP
bit in the FET and using the following option:

x = REEL (Z = 340)

x = REELNR (Z = 300)
CLOSE

59 47 4l 39

Tape is rewound; for labeled tape beginning
label is processed. Reel is initialized.

Tape is not rewound. Reel is initialized.

29 I7 o

SA1 1fn

RJ CPC

000007 011

Z

The CLOSE function sets the file to closed status. The x parameter specifies
additional action to be performed. An end-of-information mark is written on
an output file. If the file resides on 1/2-inch magnetic tape and standard
SCOPE system labels are used, ending label procedures are performed.

Unless the no rewind option (NR) is used, the file is rewound and the buffer
pointers (IN and OUT) are set equal to FIRST.

X is absent (Z = 150)

x = NR (Z = 130)
x = UNLOAD (Z = 170)

File is set to beginning—of—informatioﬁ or
beginning of current reel.

File is not rewound.

Job termination procedures for the file are exe-
cuted using disposition code in FET. ILocal files
are dropped. Common files are dissociated from

' job. If present, index is written as suffix to out-

put file. A tape file is rewound and unloaded.

For a local file on a private disk pack, device label, RBR record, and RBT

chain are written on the pack.
The disk pack remains:in a private mode until unloaded by operator

point.
and a new pack is added.

CLOSER CLOSER Ifn,x,recall

59 47 4l 39

The unit assignment is dropped from control

29 I7 0

SA1 1fn

RJ CPC

000007 Ofr

601894008

The CLOSER function is used for files on 1/2-inch magnetic tape to
terminate processing prematurely on a given reel of a multi-reel tape or
to control labeling. If standard SCOPE system labels have been used,
ending label procedures are performed for the reel.

The x parameter specifies file position after CLOSER action.

x is absent (Z = 350) Current reel is rewound.
x = NR (Z =330) Reel is not rewound.
x = UNLOAD (Z = 370) Tape is rewound and unloaded.

EVICT EVICT 1lin, recall
59 47 41 39 29 17 0
SA1 1fn RJ CPC
000003 Olr 000114

EVICT releases to the system all space occupied by a file on disk and makes
it available for use by either the releasing program or other programs.
The logical file name is retained.

3.5.2
DATA FUNCTIONS

READ READ lfn, recall
59 47 41 39 29 17 0
SA1 1fn RJ CPC
000002 Olr 000010

This function reads information into the circular buffer if the specified file
is open. If there is room in the circular buffer for at least one physical
record unit, reading is initiated and continues until:

READSKP

RPHR

Buffer is full
End-of-record or end-of-file is encountered

End-of-information is encountered
The mode is determined by bit 1 in the first word of the FET.

If the end-of-record (bit 4) is set upon entry to CPC, no operation is per-
formed.

READSKP 1fn,?, recall

59 47 41 39 29 17 0

SA1 1fn RJ CPC

000003 S0 |r J 00020

READSKP functions as a READ, except that if the buffer is filled prior to an
end-of-record, information is bypassed until the end-of-record is read. The
file is positioned ready to read the next logical record. If a level parameter
() is specified, information is skipped until an end-of-record with a level
number occurs that is greater than or equal to that specified.

Executing a READSKP sets the end-of-record (bit 4) to 1, since an end-of-
record is encountered. If the next operation on the file is READ, the EOR
bit must first be zeroed by the calling program.

RPHR lfn, recall

59 47 41 39 29 17 0

SA1l fn RJ CPC

000003 Ofr 000000

The RPHR function causes any information already in the buffer to be dis-
carded by setting the OUT pointer equal to the IN pointer; then the next
physical record on the input device, which must he magnetic tape, will be
read into the buffer. The mode is determined by bit 1 in the first word of
the FET. Only conversion from external to internal BCD is performed.

If the data read does not exactly fill an integral number of CM words, the
last word is filled with zeros.

If the physical record is too big for the circular buffer, or if it is longer
than 51210 words, as many words as possible are put into the buffer, and
the error response is 108 for device capacity exceeded.

An end-of-file response is given if the physical record is an end-of-file
mark, and the buffer will be empty. An end-of-record response is never
given.

A RPHR function is ignored for any device other than 1/2-inch magnetic
tape, and an illegal function status (228) is returned.

READIN With this function reading depends on file mode and the presence or absence
of a file index, a working storage area, and the x parameter. In the following
paragraphs n represents the number of words in the working storage area.

READIN takes the next n words from the circular buffer of file lfn and stores
them in the working storage area; a READ request is issued if the buffer is
empty. If the file is binary mode, READIN attempts to fill the worlking
storage area until end-of-record or end-of-information is encountered.

For a coded file, information is moved to the working storage area until a
zero byte (end-of-line) is encountered or until the working storage area is
full. When a zero byte is encountered, two blanks are substituted and the
remainder of the working storage area is filled with blanks. If a zero byte is
not encountered before the working storage area is full, the remainder of the
line is skipped and a subsequent READIN request reads the next line.

The status of the request is returned in X1 as follows:

+0 Requested number of words was read and the function
completed normally.

positive Fewer than n words remained in the logical record when the

nonzero request was issued. When control is returned to the user
program, X1 contains the last address + 1 of the data trans-
ferred to working storage or first word address if no data
was transferred. For coded files, this is always the first
word address.

negative If end-of-information is encountered, X1 contains a negative

nonzero number. No information is transferred into the working
storage area.

3-27

3-28

If a working storage area is not specified, a READIN request has no effect
and no error indication is given unless it addresses a file with a name or
number index. In that case, the effect of the request will be to terminate
any previous action on the file, locate the specified logical record, and set
up the pointers so that the next request to continue reading the current
record on that file will begin with the first word of the specified record.

X is absent: READIN lfn

59 29 17 0

RJ IOREAD

1fn

This form of the READIN request transfers data to the working storage area.

x is of the form /name/: READIN lfn, /name/

59 29 i7 0

RJ IORR

Ifn

name

This form of the READIN request causes logical record /name/ on the file
named lfn to be read into the circular buffer. n words are transferred to
the working storage as described above. The file must have a name index.

x is of the form m where m is a logical record number: READIN Ifn, m

59 29 17 0

RJ IORR

1fn

m

WRITE

WRITER

This form of the READIN request causes logical record number m of the file
named lfn to be read into the circular buffer. n words are transferred to
the working storage area as described above. The file must he indexed by
name or number. If m is zero, the next record is read, where next record
is defined to be the first logical record of the file if this is the first request,
or the last logical record read + 1 if it is the second or subsequent READIN.

WRITE lfn, recall

59 47 41 39 29 17 0
SA1 1fn RJ CPC

000002 O 000014

This function writes information from the circular buffer if there is sufficient
information to fill one or more physical record units. Writing continues until
the buffer is empty, or there is not enough data in the buffer to fill a PRU.

The mode is determined by bit 1 in the first word of the FET. If the device
type is MT and the tape is at load point, a check is made before writing to
insure that the tape does not contain a SCOPE system label with an unexpired
expiration date. If it does, a message to the operator at the system console
indicates the condition. The operator then has three options:

Request another check either on the same type or a new one.

Drop the jobh.

Indicate that checking is to be ignored, i.e., the mounted tape may be
written upon.

WRITER lIfn, {, recall

59 47 41 39 29 i7 0
SA1l 1fn RJ CPC

000003 0|r 2 00024

WRITEF

WPHR

This function is processed the same as WRITE, with the following exceptions.
Data in the circular buffer is written out and terminated by a short or zero-
length PRU to indicate end-of-record. I no information is in the buffer, a
zero-length PRU is written.

If the level parameter (f) is present, the short or zero-length PRU will

reflect the level number. In the absence of the level parameter, thel field
is set to 0 and level zero is assumed.

WRITEF 1fn, recall

59 47 41 39 29 17 0
SA1 Iin RJ CPC

000003 Ofr 000034

The WRITEF function causes a logical end-of-file mark to be written. A
logical end-of-file is written as a zero-length physical record unit of level
17_. When a WRITEF function is issued, any data present in the buffer is
first written and terminated with a level zero end-of-record.

WPHR l1fn, recall

59 47 41 39 29 17 0

SA1 1fn RJ CPC

000003 Olr 000004

The WPHR function causes the information in the circular buffer to be
written as a single physical record on the output device, which must be
magnetic tape. The mode is determined by bit 1 in the first word of the
FET.

If the buffer contains less than 512 woxrds the IN and OUT pointers in the FET
are set equal to indicate an empty buffer when writing is completed. Only
conversion from external to internal BCD is performed.

WRITOUT

If the buffer contains more than 512, words when the request is issued, the
first 512 words are written out and the IN and OUT pointers are set to show
that words remain in the buffer. The device-capacity-exceeded status (10 8)
is returned.

A WPHR function igssued for any device other than 1/2-inch magnetic tape is
ignored and an illegal function status (22_) is returned. Labels are checked

)
as for WRITE. 8

With this function, writing depends on file mode and the presence or absence
of a file index, a working storage area, and the x parameter. In the following
paragraphs, n represents the number of words in the working storage area.

WRITOUT takes n words from the working storage area and transfers them to
the circular buffer, thereby adding them to the logical record currently being
constructed. If there is no current record, they become the first words of

a new logical record. K the file is indexed, however, such a request is
rejected, because the system has no way of knowing which record of the file
is being addressed. A WRITE request is issued automatically when the buffer
is full.

-If the file is in binary mode, the entire working storage area is transferred to

the circular buffer. If the file is in coded mode, trailing blanks are removed
and a zero byte (end-of-line) is inserted as the data is transferred to the buffer.

The WRITER function may be requested to terminate writing of a record.
If the file is indexed, and no record is currently being written, a WRITER
request is rejected.

If a working storage area is not specified, execution of a WRITOUT request
has no effect and gives no error indication, unless it addresses a file with

a name or number index. In that case, the effect of the request will be to
terminate any previous action on the file, locate the specified logical record,
and set up the pointers so that the next request to continue writing the current
record on that file will begin with the first word of the specified record.

X is absent: WRITOUT lin

59 29 17 0

RJ IOWRITE

1fn

3-31

3-32

This form of the WRITOUT request transfers data from the working storage
area.

x is of the form /name/: WRITOUT lfn, /name/

59 29 17 0
RJ IORW

Ifn

name

This form of the WRITOUT request begins writing the /name/ record on the
file named lfn, using the words in the working storage area as the first n
words of the record. The file must have a name index; i.e., on the first
occasion that anything was written on the file, the record was addressed by
name.

x is of the form m, where m is a logical record number: WRITOUT lfn, m

59 29 17 0
RJ IORW

1fn

n

This form of the WRITOUT request begins writing logical record number m
on the file named 1fn using the words in the working storage area as the first
words of the record. The file must be indexed, either by name or by number.
I m = 0, the request will address the record with a number one higher than
that of the record most recently addressed, or record number 1 if the file
has not been addressed. The first record of an indexed file is number 1;
there is no record number 0.

3.5.3
POSITION FUNCTIONS

SKIPF SKIPF 1fn,n, ¢, recall
59 47 41 39 29 17 13 0
SA1 1fn RJ CPC
000003 Oflr n 4 00240

SKIPF causes one or more logical records to be bypassed in a forward
direction. The request may be initiated at any point in a logical record.

The number of logical records or record groups to be skipped is specified

by the n parameter; the value 1 is assumed if n is absent. The maximum value
ofnis 7777778; ifn= 7’777778, the file is positioned at the end-of-information.
If the level parameter (f) appears, logical records are skipped until an end-
of-record with a level number greater than or equal to the requested level is
reached; the file is positioned immediately following the end-of-record

mark. This positioning process will be performed n times. For example,

a SKIPF lfn, 2, 1 issued while positioned at page 6 would cause repositioning

to the beginning of chapter 5 (Level Numbers, 1-3).

If the level parameter is absent, the £ field is set to zero and the file is
positioned forward n logical records (or partial logical records if the SKIPT
is issued in the middle of a logical record).

If the end-of-information is encountered before an end-of-record with the

specified level is found, the end-of-information status bit will be set.
Parity errors encountered during a SKIPF operation are ignored.

Backspace Functions

Backspace functions will not go beyond the beginning of the current reel of
magnetic tape.

3-33

3-34

BKSP

BKSPRU

SKIPB

59

BKSP 1fn, recall

47

41 39

29

17

SA1

1fn

RJ

CPC

000003

0fr

000040

The BKSP function causes one logical record to be bypassed in a reverse
direction. The request may be issued at any point in a logical record. This
function is a subset of SKIPB,; it is included for compatibility with previous
systems.

BKSPRU lfn, n, recall

59 47 41 39 36 29 17 0

SA1 1fn RJ CPC

000003 Olr n 000044

One or more PRU's are bypassed in a reverse direction. The request may be
issued at any point in a logical record. If n appears, n PRU's are bypassed.
If n does not appear one PRU is bypassed. Parity errors encountered during
a BKSPRU are ignored.

SKIPB lIfn,n,f, recall

59 47 41 39 356 29 17 13 0

SAl Ifn RJ CPC

000003 0fr n 4 00640

SKIPB causes one or more logical records to be bypassed in a reverse

direction. The request may be initiated at any point in a logical record.
The number of logical records or logical record groups to be skipped is
specified by the n parameter; the value 1 is assumed if n is absent. The

maximum value of n is 7777778; ifn= 7777778, the file is rewound.

REWIND

If the level parameter is used, logical records are read backwards until a
short PRU of the specified level has been read. A forward read is issued,
leaving the file positioned after this short PRU. If the file is positioned
initially between logical records, the level number immediately preceding
the current position is ignored in searching for a logical record of the
specified level. This positioning process is performed n times.

Consecutive logical records within a file may be organized into a group by
using level numbers. The file will be composed of one or more groups of
logical records. This may be done by choosing a minimum level number
2 # 0 and assigning a level number greater than or equal to { to the last
logical record of each group, and a level number less than fto all other
logical records.

Then SKIPB 1fn, , ¢ will skip the file backward to the beginning of the logical
record group which immediately follows a logical record of level £. In the
example of level numbers shown in section 1. 3.2, the minimum level
number was 1; a SKIPB 1fn, 2,1 issued while positioned at page 14 would
cause repositioning to the beginning of chapter 4.

If the level parameter is absent, the { field is set to zero and the file is
positioned backward n logical records (or partial logical records if the
SKIPB is issued in the middle of a logical record).

If the beginning-of-information is encountered hefore the requested level

number is found, the beginning-of-information status bit is set. Parity
errors encountered during a SKIPB operation are ignored.

REWIND lfn, recall

59 47 41 39 29 17 0
SAl 1fn RJ CPC
000003 Olr 000050

REWIND positions the file at the beginning of the first data record or at the
beginning of the current reel. A REWIND function on a file already rewound
has no effect. A REWIND function issued for a device not capable of being
repositioned causes an illegal function status (22 8) to he returned.

3-35

UNLOAD UNLOAD lfn, recall

59 47 41 39 29 i7 0
SA1 1fn RJ CPC
000003 Ofr 000060

UNLOAD functions the same as REWIND. If the file resides on magnetic
tape, the tape is unloaded.

3.5.4
SYSTEM
ACTION REQUESTS

MEMORY MEMORY t, status, recall
59 41 39 29 1817 0
RJ CPC
MEM 1jr t status

The field length assigned to a job may be obtained or changed by the MEMORY
request. Control will not be returned until the request is complete.

t=0 CM I central memory field length is to be referenced.

t=1 ECS If extended core storage field length is to be referenced.
If the location addressed by status initially contains zero, no field length is
altered: the current field length is returned in the upper half of the location

and bit 0 is set to one.

If the upper half of the location initially contains a number, the field length
is altered to equal the value of the number and bit 0 is set to one.

Bits 0~29 of the location addressed by status should initially contain zero in
either case.

3-36

CHECKPOINT CHECKPT

i7 0
RJ CPC

param

A checkpoint dump may be requested from an executing program. A check-
point dump is taken when this function is issued. The object program must
have checked for conditions conducive to a checkpeint dump, such as end of
reel, x logical records processed, etc. Checkpoint requests may appear
more than once in an object program.

Param is the address of a parameter list, in the following format:

59 17 0
lfnl 0
lng 0
| |
!
| |
l I
I i
lfnn 0
0

lfnl to lin specify names of files from which contents are to be writfen on
the checkpoint file. The list is terminated by a zero word; if the list is
empty, the first word contains zero.

When the request is completed, bit 0 of the first word is set to one. If 1fni
cannot be found in the FNT/FST, hits 9-13 will be set to 228 (illegal function)
upon return.

RECALL The RECALL request generates one of two calling sequences depending on
the presence or absence of the lfn parameter. Execution of either function
causes the job to relinquish the central processor.

3-37

3-38

MESSAGE

RECALL lfn

59 47 41 39 29 17 0

SA1 Ifn RJ CPC

000001 o1 TTTTTI

Ifn is the base address of a file environment table. Control is not returned
to the program until hit 0 of the code and status field becomes a one,
indicating that an input/output request has been completed for that file.
Error checking is performed and an OWNCODE routine executed, if nec-
essary, hefore control is returned. Since recall may he entered when

the operation is initiated if the recall parameter is used, RECALL is needed
only in the event that some useful processing can be done between initiating
and completing an input/output operation.

RECALL

59 41 39 29 17 0

RJ CpPC

RCL 110 000000

If 2 RECALL request is issued without the 1fn parameter, the central proc-
essor will be relinquished only until the next time around the monitor loop.
The user must determine whether the condition that required a recall is
still present.

MESSAGE addr, x, recall

59 41 39 36 29 23 17 0
RJ CPC

MS G 1lr X addr

Execution of the MESSAGE function puts a message, which has been stored in
display code beginning at location addr, into the job dayfile. Maximum
message length is 60, characters. SCOPE considers the message to end
either at the first word with all zeros in the rightmost 12 bits or at the 60th
character, whichever comes first. If the x parameter is non-blank, the
message is displayed but not entered into the dayfile.

ENDRUN ENDRUN

RS CPC

END 1|1

Execution of the ENDRUN function is the normal way of ending a run. SCOPE
examines the control card record of the job deck, and begins execution with
the next unused control card. If there are no more control cards or if the
next card is an EXIT card, the job is terminated.

ABORT ABORT

59 41 39 29 17 0
RJ CPC

ABT 111

Execution of this function causes the monitor to terminate the job, just as if
an error, such as out-of-bounds memory reference, had occurred. If the
control card section of the job deck contains an EXIT card, the system con-
tinues processing the job with the next control card after the EXIT card.

TIME TIME status, recall
59 41 39 35 29 23 17 0
RJ CPC
TIM 1ir 0000 status

59 41 24

3-39

3-40

With this function, the central processor time used by the job is returned
in status, in the following format:

59 AT 35 11 0
0077 Zeros seconds milliseconds
CLOCK
59 41 39 35 29 23 17 0
' RJ CPC
status
With this function, the current reading of the system clock is returned in
status, in the following format:
59 0
* hh . mm . E *
DATE DATE status, recall
59 41 39 35 29 23 17 0
' RJ CPC
status
With this function the current date, as typed by the operator, with one
leading blank and one trailing blank, is returned in status.
JDATE

41 39 35 29 23 17 0
RJ CPC

status

With this function, the Julian date is returned in status, in the following
format; yyddd is in display code:

59 41 11 0
blanks yyddd blanks
LOADER LOADER param
i7 0
RJ LOADER
param

A program may request service from the loader with this function. Param
is the location at which the user has established a parameter list for the
load sequence. Only the parameters are described below. The loader is
described in Chapter 4.

When a job area is initially loaded with program material, a small resident
is placed within the user's field length. LOADER is an external symbol
which is satisfied by the loader and which will ultimately reference an entry
point in this resident.

Unlike control card requests for LOADER activity, user requests do not)
cause the specified file to be rewound. Instead it is the user's responsibility
to position all files properly before issuing a user request. Upon a requést
for a full file load, LOADER loads programs only to the end-of-file. In all
other cases, the file is searched for the specified programs end~around.

If all programs are located, the file will be positioned immediately following
the last program loaded. If not all programs are located, the file will be
positioned at its original starting point and a fatal error flag returned to the
user.

The load sequence parameter list begins at address param. The list consists

of one or more 2-word entries, the last of which is followed by a full word
of zeros. The format of an entry is shown below.

3-41

3-42

59

17 0

1fn (logical file name) sl

[

1

r(plu|vimk|sif |c lwa fwa

59

1fn

sf

59

53

47 43 41 39 37 35 17 0

One of the following:
Name of the file from which programs will be loaded
Name of an entry point in a program
Subprogram name
Zero

Location of a list of sections, a segment, or a list of subpro-
grams to be loaded as a segment; or if segment loading is not
requested, a list of subprograms to be loaded from file 1fn.
Names may not exceed seven characters. The list may be
empty. It is terminated by a zero word.

Each entry in the sflist has the following format:

17 0

sub program nanle

r

18]

u

m

k

Segment level (0-63) if s = 0; v=0. Overlay level if s = 0;
v# 0. £, is the primary overlay level and the secondary over-
lay level.

Reset bit. If r # 0, all loader tables are cleared hefore loading;
normal loading only.

Partial map hit. If p # 0, an on-line partial core map is given.

Library flag. When u # 0, sfrefers to a list of externals that
are to be satisfied by loading from the system library. When
v=20and u# 0, an overlay will be loaded from the system library.

Overlay flag. If v # 0, an overlay load operation is requested.

NOMAP flag. If m # 0, all maps of segment or overlay load
are suppressed. Otherwise a map is written on the OUTPUT
file.

Search key. If k # 0, lin is the name of an entry point. The
search key is used to find the address of a previously loaded
entry point, and no loading is performed.

lwa

fwa

Segment flag. I s # 0, a segment loading operation is requested.

Fill flag. If f # 0, unsatisfied external symbols are filled with
out-of-bounds references.

Complete flag. If ¢ # 0, loading is to be completed by loading
necessary subroutines from the system library. The origin
and length of blank common will be established. Until loading
has been completed, the length may vary between subprograms.

Last location, relative to RA, available for the loading operation.
If lwa = 0, the limit of program loading is the first word of
LOADER tables stored in core descending addresses starting

at fwa LOADER. For blank common declarations, lwa is
designated as RA + ﬂ—208.

Initial location, relative to RA, at which to begin loading. If
fwa = 0, loading begins at the next available location as de-
termined by the current state of the loading operation.

Reply from LOADER

When LOADER has completed the requested operation (loading is not neces-
sarily complete) LOADER signals the caller by setting the parameter list as

follows:
59 37 36 35 17 0
Word 1 0
Word 2 g nelfe aa ea
L Level at which segment was loaded. £ = 0 if segment loading
not recquested.
ne Non-fatal error flag. ne # 0 if the following loading errors

are detected by LDR:
Unsatisfied externals if ¢ = 1.

Duplicate occurrences of a named program; second and
subsequent occurrences are ignored.

3-43

3-44

fe

aa

ea

Fatal error flag. fe # 0 if the following loader errors are
detected by LOADER.)

Improper deck structure
Improper parameter specification

Requested file name, program name, or entry point not
found

Entry address. aa = 0 if less than two named XFER's were
encountered. aa = address of next to last name if more than
one named XFER was encountered.

Entry address. If k = 0, ea is the location (relative to RA) of
last encountered named entry specified in a XFER table. If
more than one named XFER is encountered, the last one is in
ea, and the earlier entry in aa. Ifk =1, ea is the location
(relative to RA) of the named entry fn. If v # 0, ea is the
entry point to the overlay. If ea = 0, no name was found.

If s¢ # 0, the list of entry points and/or subroutines to be
loaded from the library contains the address at which each
name is loaded. If the name was not loaded, the address is
zero. The list then has the form;:

17 0

name 1 addr

name 2 addr

User Request Processing

Examples of parameter lists to be processed by the loader are given below:

Load from File:

1fn
sl

= name of file

Subprograms will be loaded from Ifn until end-of-information is en-
countered. (isignored. If ¢ # 0, loading will be completed.

Load Named Entry:

Ifn = name of entry point in a subprogram or the name of a subprogram.

st =0
v =0
k =0
s =0

The named routine will be loaded from the system library. { is
ignored. If ¢ # 0, loading will be completed.

Load Segment from File:

The segment defined by the list at sf will be loaded from 1fn at level £.
If £ > current segment level, the segment will be loaded at the current
level + 1. If = current level, segments at a higher level will be re-
moved. If a subprogram specified in the segment list is not located on
1fn before the entire file has heen searched, the fatal error flag will be
set. lin is not rewound prior to loading.

1fn = name of file

sl = address of list, contains a segment name or section names and
subprogram names only

L = desired level
v =90
k =0
s =1

If ¢ = 0, loading will be completed in that the origin and length of blanlk
common will be established. If ¢ # 0, loading will be completed normally.
f # 0 will cause unsatisfied external references to be set to out-of-bounds
references.

3-45

Load Named Subprograms from File:
The list of subprograms specified by the list at sf will be loaded from
lin and the System library.
1fn = name of file
sf = address of list

£ is ignored

v =0
k =0
s =0

If ¢ # 0, loading will be completed.

Load Overlays:

lfn = name of file

st =0

f1 = primary level

f2 = secondary level

v =1

s, f, ¢ and k are ignored

The overlay file (built during the initialload from overlay cards and
binary text) is searched for the unique identifier £1, £2. The overlay

is then loaded into its absolute locations. The absence of such an over-
lay will cause the loader to set the fatal error flag.

LOADER OPERATION 4

4.1
LOADING
SEQUENCE

6400/6500/6600 SCOPE version 3.1 includes a relocatable loader which pro-
vides high speed transfer from input or storage devices to central memory.
Initially the loader is called by SCOPE control cards; later it may be called
from the text of an object program.

Subprograms assembled or compiled independently, in absolute or relocatable
binary, may be loaded and linked to one another or to library subprograms

by the loader. The loader issues diagnostic messages on the dayfile and
prints memory maps when requested.

A number of subprograms may be grouped together as a segment to be loaded,
linked and, upon request, later delinked and removed as a unit by the loader.
The loader can also generate overlays which are written out to a specified
file in absolute format. These overlays may then be loaded by a smaller,
faster version of the loader.

These features are governed by control cards, loader requests from object
programs, and a standard relocatable subprogram format.

The loading operation proceeds in the followjng general manner:

1. The loader may be called as a result of control card requests for
loading or by the user program.

2. The initial control card results in loading of the PPU routines, LOD,
LDR, and a CPU routine, LOADER,

3. LDR handles all loader input/output and relocation to central
memory; LOADER handles all bookkeeping, routine linking and
delinking.

4. The combination of these two routines, hereinafter referred to as
the loader, processes specific requests in the parameter list on the
control card or in the user program. These may be:

a. Build segment definition tables
. Build section tables
€. Prepare overlays and write them out to a defined file

d. Load ahsolute programs

4.2
SEGMENTATION

10.

e. Load relocatable program texts
f. Load segments
g. Load overlays

(d and e are subset functions of g and f, respectively.)

Programs can be loaded from more than one file (including the
system library) for a single job.

During loading, all external reference points and entry points are
linked together.

At completion of load and at the user's discretion, all unsatisfied
references are filled from the system library or by out-of-bounds
references.

During loading, a memoryA map is created for all programs other
than main programs loaded from the system library (such as
FORTRAN, etc.).

Loading is completed upon appearance of an EXECUTE or NOGO card.
NOGO inhibits program execution and is used primarily to provide

a map of the program. Subsequent loading following the NOGO will
begin as if no programs had been loaded prior to NOGO. An
EXECUTE card causes control to transfer directly to the loaded
programs.

Loading of OVERLAYS by normal or segment jobs, or the converse,
is not prohibited by LOADER. However, extreme care must he
exercised in the allocation of core and communication between
component programs. The loading of absolutely "original' code is
also permitted but can result in complex situations when accom-
plished in overlays and segments.

A segment is a group of relocatable subprograms which are to be treated as
a unit by the loader. Segmentation allows the user to add programs as they
are required and to eliminate those no longer required during the execution
of his job. The user defines the subprograms to be included in a segment
gither with control cards or with parameters included in the object program
loader call. To facilitate reference to groups of programs, a segment de-
finition may contain both program names and section names. A section is a
convenience in the loader scheme to reduce the number of program names
appearing in segment calls.

Segments are loaded at levels ranging from 0-77g. Level zero is reserved
for the initial, or main, segment. Segment zero must be the first segment
defined; thereafter segments may be defined and loaded at any level.

When a segment is loaded, external references within the segment are linked
to entry points in segments previously loaded at a lower level. Unsatisfied
external references may be linked to entry points in segments loaded sub-
sequently. Optionally, the user may specify that unsatisfied external re-
ferences be satisfied, if possible, from the system library, thereby
nominally including certain library subprograms within a given segment. If
the level requested for loading a segment is less than or equal to the level
of the last loaded segment, the loader performs a delinking operation. All
segments previously loaded at a level equal to or greater than the presently
requested level are removed and all linking of external references to entry
points within these segments is eliminated, causing the external references
involved to become unsatisfied again. Once delinking is complete, the seg-
ment is loaded at the requested level.

Ordinarily, only one occurrence of a given subprogram or entry point is
loaded since all segments are linked to that subprogram. However, a user
may force subsequent loading of an already loaded subprogram by explicitly
naming it in another segment to be loaded at a higher level. Thereafter,
all external references in higher level segments would be linked to the last
loaded subprogram.

Example:

The SINE routine is loaded in a segment at level 1. To try an experi-
mental version of SINE, the user loads a new segment containing SINE
at level 3. Now, although any references to SINE occurring at level 2
will be linked to the entry point in level 1, all segments loaded at level
4 or higher will be linked to SINE at level 3. This will occur until level
3 is delinked and removed as described above or until yet another SINE
is loaded at a higher level.

Labeled common block references are established between programs in a
given segment but not between segments. Therefore, delinking is not re-
quired. Blank common references are established between programs within
a segment and also between segments. The origin and maximum bhlank
common length is established in the first segment which declares blank
common. If this segment is ever delinked, blank common will be re-estab-
lished in the next segment loaded which declares blank common. The
following diagram shows the storage allocation in core resulting from the
loading of several segments:

4-3

4.3
OVERLAYS

4-4

Loading Segment Contents of User's Area After the
Order Level Loaded Segment is Loaded

1 0 0

2 2 0 2

3 4 0 2 4

4 7 0 2 4 7

5 2 0 24

6 1 0 1

7 2 0 1 29

8 5 0 1 29 5

9 7 0 1 29 1

The loader provides the facility to subdivide a large task into portions, called
overlays, and write them out in absolute form. These overlays can then be
loaded at execution time without a relocatable loading operation. The resident
loader for overlays is substantially reduced in size and may be easily retained
with the job for subsequent loading. Overlays are generated through control
cards processed directly by this loader (loader directives).

Each overlay is identified by an ordered pair of octal numbers, 0-77. The
first number denotes the primary level; the second denotes the secondary level.
A secondary overlay (non-zero secondary level) is associated with a sub-
ordinate to the primary which has the same primary level and a zero second-
ary level. Overlays (1,1), (1,2) and (1,3) are secondary overlays of the
primary (1, 0).

The initial, or main overlay, must be primary with level 0,0. It cannot have
any associated secondary overlays; overlays numbered 0,1; 0,2; etc., are
illegal. The main overlay remains in memory throughout the job. For any
given program execution, all overlays must have unique identifiers.

" Primary overlays all begin at the same point immediately following the main

overlay (0,0). The loading of any primary overlay will destroy any other
primary overlay. For this reason, LOADER will not return CP control to the
instruction following the LOADER call. Instead, control will be transferred
to the entry point of that overlay.

4.4
LOADER
DIRECTIVES

The origin of secondary overlays immediately follows their associated
primary overlay, and they may be loaded only by their primary overlay or by
the main overlay. The loading of a secondary overlay destroys any previously
loaded secondary overlay. No more than three overlays are available to

the user at one time: the main overlay, one primary, and one secondary.

When the loader detects l'llegal overlays during preparation, because of
erroneous identification or size, an abort flag is set which causes the system
to bypass the next EXECUTE or NOGO card.

The following example shows the storage allocation in core during an overlay
loading operation:

Loading Primary Secondary Contents ‘of User's Area After this
Order Level of Level of Overlay has heen Loaded
Overlay Overlay

1 0 0 0,0) Must be first loaded overlay

2 1 0 (0,0) (1,0)

3 1 1 (0,0) (1,00 | (1,1)

4 1 3 (0,0) (1,0 | (1,3)

5 2 0 (0,00 [(2,0

6 2 2 (0,0) (2,0 2,2)

7 2 1 (0, 0) 2,0 2,1)

8 4 0 (0,0) 4,0

The following control cards are interpreted by the loader as directives for
the loader execution. They may be interspersed with tables but may not bhe
interspersed with cards making up a table.

4.4.1

OVERLAYS

OVERLAY DECKS

OVERLAY FORMAT

OVERLAY (lfn, 11, 12, Cnnnnnn)

1fn is the file name on which the overlay is to be written; the first overlay
card must have a named lfn. Subsequent cards may omit it, hldiCatillg' that
the overlays are related and are to be written in the same 1fn. A different
1fn on subsequent cards results in generation of overlays to the new lfn.

11 is the primary level number in octal; 12 is the secondary level number in
octal. 11, 12 for the first overlay card must be 0, 0.

Cnnmunn is an optional parameter consisting of the letter C and a six-digit
octal number. If this parameter is present, the overlay will be loaded

nnnnnn words from the start of blank common. This provides the programmer
with a method of changing the size of blank common at execution time.

Cnnnnnn cannot he included on the overlay 0, 0 loader directive. If this
parameter is omitted, the overlay is loaded in the normal manner.

The data, relocatable binary decks immediately following OVERLAY up to the
next OVERLAY control card or an end-of-file, comprise the overlay deck.
When the overlay deck has been loaded, loading is completed by satisfying
undefined external references from the system library. The overlay and its
identification are written as the next logical record in the file.

Each overlay has a unique entry which is the last transfer address (XFER)
encountered in the overlay subprograms during preparation. External re-
ferences which cannot be satisfied, even by the system library, result in
job termination after loading is completed and maps are produced for all
overlays. References to entry points in the main overlay may be made from
primary and secondary overlays. References to entry points in a primary
overlay may be made only from an associated secondary overlay.

Each overlay consists of a logical record in absolute format. The first word
is an identification. Words 2 through end of logical record are data words.

Contents 5000 12 11 fwa ea
Bits 59 47 41 33 17 0
11 primary overlay level
12 secondary overlay level
fwa first word address of overlay (overlay is loaded at FWA).
ea entry point to the overlay

4.4.2
SECTIONS

4.4.3
SEGMENTS

4.5
MEMORY
ALLOCATION

4.5.1
SYSTEM USAGE

This card defines a section within a segment. Segments are loaded by user
calls during execution or by MTR during initial load.

SECTION (sname,pnl, Pn ce pnn)

2"
sname is the name of the section (7 characters maximum). pn; are names of
subprograms belonging to the section. If more than one card is necessary

to define a section, additional cards with the same sname may follow con-
secutively.

All subprograms within a section are loaded whenever the named section is
loaded. All section cards must appear prior to the SEGMENT cards which
refer to the named sections.

All programs requiring segmentation loading must contain a SEGZERO card
prior to any of the binary text.

SEGZERO (Sn’Pnl’Pnz’ R ,pnn)

sn is the segment name and pn, are names of subprograms or section names
which make up the mainor zero level segment. Defining other segments in a
similar mamner reduces the list of subprograms in the loader call.

SEGMENT (sn,pnl, pn ., pnn)

2"
The parameters are defined as in SEGZERO. In a segment, all programs
must reside on the same file. A segment defined in the user's program
need not be defined by a SEGMENT card; however, a SEGZERO card is
always required.

Storage areas are allocated within the user's declared field length in contig-
uous memory locations. The first 100 8 locations of the area are automatically
assigned as follows:

RA+0 Reserved for use during execution
RA+1
RA+2 .
. Parameters from the program call card upon entry. Avail-
. able to user during execution for file names or other usage.
RA+63
RA+64 0-17 Number of parameters
RA+65 0-17 Next available core location
FWA of object program
+ —
RA+66 36-53 Pointer to first word of loader tables
RA+67 0-17 Address of first word of LOADER
RA+T0 P .
. Upon initial entry from a named routine call or an EXECUTE
. card, these locations will contain the card image, in display
RA+TT codes, of the card which called for execution.

If 2 SECTION card appears prior to an initial loading operation, a section
definition table (SDT) is originated at RA+100g otherwise the user's first
loaded subprogram is originated at RA+100. The origin of the user's area
can be found in hits 0-17 of RA+66.

The system establishes loader tables at the high end of the user's field
length area. The user must provide space for the loader and the loader
tables in his field length declaration. Blank common may overlay the loader
and its tables. Conversely, if the loader is called again it may overlay
blank common. It is the user's responsibility to assure that his field length
is long enough to accommodate the loader, its tables, and blank common

if he is concerned with preservation of data,

There are no gnarantees that the programmer cannot destroy the loader or
loader tables. Both areas are checksummed and the checksum is verified
upon initial entry into LOADER. If this initial verification routine is
destroyed the results of RJ LOADER are meaningless.

The PPU portion of the loader (LOD) contains a further safeguard. Before
LOD will honor any LOADER requests for actual input, key LOADER areas
are checksummed. If the user program accidentally enters LOADER, the job
can be terminated before any more data is loaded into the job area, thereby
destroying clues as to the program bug.

4.5.2 .

USER ALLOCATIONS ‘The subprogram and associated labeled common blocks are assigned memory
as they are encountered. Blank common relocation information is preserved
until loading is completed, at which time it is allocated following the last
loaded program and/or labeled common hlock.

The initial declaration of a labeled common block establishes the maximum
length for that data block. Length declarations in subsequent programs must
be less than or equal to the original declaration. A diagnostic occurs if this
rule is violated.

Declarations of blank common may vary between subprograms, and the
largest declaration determines the memory allocation.

4.5.3

SEGMENT

ALLOCATIONS After a segment is loaded, the current loader tables are moved to a point
immediately following the last loaded subprogram/common block.
The user must allow for the space consumed by the loader table within his
field length definition.

4.6

MEMORY MAP Following completion of loading, an optional map of the user's area may be

produced in the OUTPUT file. The map includes:
Names, lengths, and locations of entry points with a sublist of all
programs referencing the entry point
Names and locations of common blocks
Total length of all loaded programs and common blocks
Length of the loader and its tables
Unsatisfied external references
During execution of a segmented or overlay job, a record of a new segment

or overlay load is provided each time a call is made to LOADER. This map
can be suppressed by setting the NOMAP bit in the LOADER parameters to 1.

4-9

SYSTEM LIBRARY PREPARATION AND MAINTENANCE 5

The SCOPE system library includes system, library maintenance, and the
SORT/MERGE programs, language processors such as COMPASS, FORTRAN,
and COBOL, and coded records.

The EDITLIB program creates and maintains the SCOPE library. Modifica-
tions may be applicable to only the currently operating environment or they
may be permanent changes to a system library deadstart load tape.

The library material may be in three forms:

] System library tape, which may be deadstart loaded.

° File called SYSTEM on disk storage, which is virtually a copy of
a system library tape after deadstart loading is completed. Parts
of SYSTEM will also have been copied into central memory. In
particular, library programs that are to be available from CM will
have heen copied there from the disk file SYSTEM.

® Files containing one or more logical records in a form suitable for
insertion into SYSTEM or a system library file.

A system library tape is written as three groups of records.

° System Records: The first five records on a system library tape may
be altered only through a deadstart load. These records of a
currently operating system are as follows:

PLR preloader
STL system dead start loader
CMR central memory resident
MTR system monitor
DSD system display
° Directory: The library directory is written as two records.

(] Library Records: The remainder of the library consists of the
compilers, assemblers, PP programs, etc.

5-1

5.1
EDITLIB CALL
CARD

5.2

EDITLIB
FUNCTION
CARDS

EDITLIB is called into operation when an EDITLIB card appears in the
control card record of a job. This card may assume one of two forms
which affects only the initial processing (thereafter processing is identical
for the two forms).

EDITLIB.

With this form, the current system directory is saved on a common file
called SSSSSST.

EDITLIB (RESTORE)

With this form, the current system directory is replaced by the contents of
the common file called SSSSSST.

The EDITLIB program initially reads one record from file INPUT and copies
it to a scratch file. This file contains the function cards to control the run
initiated by the EDITLIB call card. The first card image read informs
EDITLIB of an action to be performed. When the action is complete, the
next card image is read, and the action it calls for is performed. When the
record is exhausted, EDITLIB returns control to SCOPE.

A function card begins with the name of the function, which may start in any
column. Parameters may be separated by blanks or any characters other
than period, dollar sign, right parenthesis, minus sign, or asterisk. A
period or right parenthesis terminates the card, and the minus sign and
asterisk have special meanings for the ADD function. In a word that begins
with a letter, a dollar sign is treated as a letter; elsewhere, a dollar sign
acts as a separator.

ADD (A, B,CM) and ADD A+B,,,CM. have the same meaning,.

A function card requesting a condition that already exists is ignored. Errors
in function cards result in a message. For some errors the function card
is ignored, for others the job is terminated.

The following notations are used in the descriptions of the function cards:

s Source file; name of a file from which data is to be read. The
name SYSTEM is reserved for the current operating system.

d Destination file; the name of a file onto which data is to be written.
The name SYSTEM is reserved for the current operating system.

P Name of record to he processed.

T Residence. The device from which a particular record is to be
loaded when that record becomes part of SYSTEM. All records
are written on disk (DS). In addition, some records may be kept
in central memory (CM) for faster access. In the latter case,

! the residence is central memory.

e Edition. A number, 0-63, attached to a record by the ADD function.
5.2.1
SYSTEM
MODIFICATION
FUNCTIONS The following functions may be requested without a preliminary READY
function.
MOVE MOVE (p,r)

The residence of a record is changed in the SYSTEM directory. If a record
is moved into or out of central memory, the body of the recordis added to
or removed from the directory. Storage is moved accordingly.

DELETE DELETE (p)

Record p is to be deleted from the SYSTEM directory. If recordp was
resident in central memory, the body of the record is removed and storage
is moved accordingly. The disk copy of the record is not affected.

LIST LIST (s)

List causes file s to be rewound, the first five records are skipped and the
sixth and seventh records are read on the assumption that they are the entry
point table and program name table for the system which the file constitutes.
The name of the file is written on OUTPUT, and the two tables are used to
write, on OUTPUT, a list of the records in the file. For each record the
following information is given:

Name

Deseription (PP PROG, CP PROG, OVERLAY or COS)
Residence (CM or DS)

Edition number (2 decimal digits)

Length (5 octal digits); length is in CM words, excludes the prefix of
the record.

If the recordis a program with entry points, they are listed immediately
below, indented.

%3]
|
w

w

5.2.2

LIBRARY REVISION
FUNCTIONS

READY

TRANSFER

In response to the READY function, EDITLIB prepares to create a system
library on file d. A READY function is required for any modification more

complex than deleting or changing residence of one or more programs from
SYSTEM.

READY (d)

If d # SYSTEM, a model of an empty directory and an empty scratch file is
prepared. Subsequent function cards cause information to be written into
the directory and scratch file.

READY (SYSTEM)

The directory of the presently operating SYSTEM is to be manipulated.
The current directory is copied within the field length of the EDITLIB pro-
gram for subsequent modifications.

READY (SYSTEM, *)

An empty directory is created. This form is used when SYSTEM is to be
completely replaced from sources other than the currently operating
SYSTEM.

With the above forms, any records added are written into a common file
called SSSSSSU. This file is not rewound between one dead start and the
next. It is used as a scratch file of indefinite length. Directory entries
for programs added since dead start will point to SSSSSSU.

PLR, STL, CMR, MTR and DSD records are not indexed in a system file
directory. This function is used to add such records to a system file.

TRANSFER (s,n)

If n is a number, the next n records are copied from file s to the new file. If
any records have a prefix,the run is aborted.

If n is not a number, the prefix of the next record name on file s is verified
against n; the prefix is discarded and the remainder of the record is copied

to the new file. If the name in the prefix is different from n or if the record
has no prefix, the run is terminated.

TRANSFER (s) and TRANSFER (s,1) are equivalent statements.

ADD

TRANSFER (s,n, 9

In this form of the TRANSFER statement, n is a name. The next record on
file s is checked for a prefix containing name n. The prefix is discarded and
the rest of the record is copied to the new file. The file record is finished
by adding, without checking prefix, all of the next record on file s.

TRANSFER (s,n, 2) is used to put the PLR and STL records on the beginning
of a system file. Both records include PP and CP programs which must be
assembled separately. TRANSFER combines the PP and CP programs unless
PLR or STL are being copied from one system file to another.

ADD (p,s,r,€)

Record p from file s is added to the system library currently under con-
struction. The record is assigned residence r. If r is absent, and file s is
a system library, the residence p is taken from file s; otherwise, disk
residence is assumed. The edition number attached to each record added
is e, 0-63. If e is absent and s is a system library, the record is trans-
ferred with its same edition number. If e is absent and s is not a system
library, the edition number will be 0. Since r is never a number, and e

is always a number, they cannot be confused, and any of the following is
acceptable:

ADD (p, s) ADD (p,s,e) ADD (p,s,r,e€)
ADD (p,s, 1) ADD (p,s,e, 1)

If s # SYSTEM, s must be positioned at the beginning of record p; if file s
is not properly positioned, a diagnostic is given and the function card
skipped. If s = SYSTEM, pre-positioning is not necessary.

In addition to a single record name, the p parameter may assume the
following forms:

Records Py through b, are added to the system library under

1 2
construction. by must appear after Py in the file s.
p-* All records on file s from record p to the end of the file
are added to the system library under construction.
* All records on file s from the present position to the end of

the file are added. If s = SYSTEM, all records listed in the
directory are added.

The following two functions are needed only to add special records from a
file other than a system library.

5-5

5-6

ADDBCD

ADDTEXT

ADDCOS

DELETE

COMPLETE

ADDBCD (p,s,r,e)

Parameters have the same meaning as for ADD; however, p is the name of

a coded record. An overlay is created and written on the new system library.
The first card of a coded record to be added to a system library must contain
the name p, beginning in column 1. p must be the name of a single record;
the formats pl - 1)2, pl - *_ and * are not allowed.

ADDTEXT (p,s,Tr,e)
This is like ADDBCD except that file s is presumed to he a coded file for-
matted as the COMPILE file output by EDITSYM. Even though there is a
serial number after column 80 on each line, ADDTEXT discards everything

after column 72 to save space in the overlay. p must be the name of a single
record; formats P~ Py P *, and * are not allowed.

ADDCOS (p,s, T, €)
Parameters have the same meaning as for ADD; however, p is the name of
a record without a prefix. ADDCOS is used to add the Chippewa Operating
System RUN compiler and object routines to a SCOPE system library.
DELETE (p)
This function used after a READY function causes record p to be deleted
from the new directory and system library under construction.
COMPLETE
This function causes the file d initialized by a READY function to be com-
pleted. A COMPLETE function without a preceding READY is meaningless

and the job will be terminated.

If d = SYSTEM, the revised directory prepared since READY was executed
replaces the current system directory.

If d # SYSTEM, the new directory and scratch file is written on file d.

LENGTH

523
POSITION FUNCTIONS

REWIND

SKIPB

SKIPF

LENGTH (p)

If p is a digit between 4 and 9, this function causes EDITLIB to request a
field length sufficient to accommodate a directory model of p times 10000g
words. Before any function cards are obeyed, EDITLIB must have obtained
a field length for a directory model of a minimum of 300008 words.

The directory models to be accommodated are the directory of the running
system as EDITLIB finds it initially and any modifications of it that EDITLIB
may make between obeying a READY (SYSTEM) card and the next following
COMPLETE. card. The length of the directory is 2+2p+e+r, where p is the
number of programs and overlays in the library, e is the number of entry
points in the CP programs in the library, and r is the number of words in
the bodies of all the CM-resident programs. Normally a directory of more
than 30000, words is not required; however, a larger field length can be
established by using an appropriate LENGTH (p) card as the first function
card read by EDITLIB.

A position function may appear anywhere within an EDITLIB deck.

REWIND (s)

File s is rewound.

SKIPB (s,n)

1
n logical records are backspaced on file s. nmay be 1l to 2 7—1.

SKIPF (s,n)

If n is numeric (1 to 217—1), n logical records on file s are skipped in a
forward direction. If n is a name, the skip is forward to the end of logical
record n. If the end-of-information is reached before n can be satisfied,
the job is terminated.

5-7

5.3
EDITLIB EXAMPLES

5-8

The running system includes program FORTRAN, a resident on disk only.

Bring into central memory residence, run a batch of compilations, and return
the program FORTRAN to disk residence:

job card

EDITLIB. Control card begins an EDITLIB run.

7
89

MOVE (FORTRAN,CM) Function card read by EDITLIB,

6
78
9 Ends EDITLIB run and job.
job card Begins batch of compilations.
Cards for the compilation jobs.
6
78
9
job card
EDITLIB. Control card begins an EDITLIB run.
7
8

MOVE (FORTRAN,DS) Function card read by EDITLIB.

G
78
9 Ends EDITLIB run and job.

Construct a file called NEWSYS on tape, which duplicates the system now
running:

job card
REQUEST NEWSYS. Operator will assign a tape.
EDITLIB. Save current directory and begin EDITLIB run.
7
89

REWIND (SYSTEM)
READY (NEWSYY)
TRANSFER (SYSTEM, 5) Copy the first five records of the system.

ADD(*,SYSTEM) Copies to a scratch file all programs found in

directory.
COMPLETE. Copy tables and scratch file to NEWSYS.
678
9 Ends EDITLIB run and job.

Same as preceding example, except that the program in the present system
called 2TS is to be replaced in NEWSYS by another program called 2TS,
which is at hand as a deck of cards; 2TS is to have disk residence:

job card
REQUEST NEWSYS. Operator will assign a tape.
EDITLIB. Save current directory and begin EDITLIB run.
7
89

REWIND (SYSTEM)
READY (NEWSYS)
TRANSFER (SYSTEM,5) Transfer the five system records.

ADD (*, SYSTEM) Copy to a scratch file all the programs found in
the directory.

DELETE (2TS) Remove program called 2T8S from new directory.
ADD (2TS,INPUT, DS) Add a new 2TS from INPUT,
COMPLETE.

7
89

the new 27T8 binary deck

Replace, temporarily, the program called 2TS; try it out by runs within
the same job; and finally restore the original system:

5-9

job card
EDITLIB.

Control cards for runs
that will test new 2T8S

EDITLIB (RESTORE)

7
89

READY (SYSTEM)
DELETE (2TS)

ADD (2TS, INPUT, DS)
COMPLETE.

7
89

New 2TS binary deck

7
89

Input cards for runs that
will test new 2TS

6
78
9

Saves present directory and, therefore, system.

Restores what was saved by EDITLIB.

Function cards for EDITLIB.

Produce a new system file called MYTAPE which is a copy of the presently
running system except that MTR is to be replaced:

job card
REQUEST MYTAPE.
EDITLIB.

7
89

REWIND (SYSTEM)
READY (MYTAPE)
TRANSFER (SYSTEM, 3)
TRANSFER (INPUT, MTR)

Transfer PLR, STL, and CMR to MYTAPE.
Transfer the new MTR to MYTAPE.

SKIPF (SYSTEM, i) Skip over the old MTR.
TRANSFER (SYSTEM, 1) Transfer DSD to MYTAPE.
ADD (*,SYSTEM)

COMPLETE.

7
89

New MTR binary deck
G,

7

%

Simulate the dead start loading of a system tape called MAYBE, assuming
its first five records to be the same as on file SYSTEM:

job card
REQUEST MAYBE.,

EDITLIB.

7
89

SKIPF (MAYBE, 7) Skip over the 5 system records and the 2
directory records.

READY (SYSTEM, *)
ADD (*, MAYBE)
COMPLETE.

6
7
8
9

Any following jobs, provided they do not call EDITLIB, will use the system
from MAYBE. Then the original system can be restored by:

job card
EDITLIB (RESTORE)

678
9

UPDATE 6

6.1
CALLING: UPDATE

The UPDATE program enables the user to organize a collection of programs
into a file and operate upon them with updating facilities. The primary
feature in UPDATE which differs from other symbolic updating programs is
the invariance of card identification: a given card receives a sequence
identification which never changes and which is used as a reference when
making modifications. Thus, barring overlapping corrections, symholic
corrections to the program library can be keyed to any version of the file.

UPDATE exists as a program within the SCOPE Operating System. The
UPDATE call card contains information which directs UPDATE to specific
files and modifies the operation of the program. The parameter specifications
listed below may occur in any order. Each parameter must be specified hy

a character string of the form:

ident=value

ident is any character string not containing a comma, period, or parenthesis.
The first letter is one of those specified for parameter names. value is a
string of characters following an equal sign (blanks ighnored) which specifies

a file name and is subject to file name format rules. If no value is specified,
a default value is assumed.

6-1

PARAMETERS ON THE UPDATE CALL CARDS

Parameter

P =0OLDPL

N = NEWPL

I =INPUT
L =ouTPUTT

¢ = COMPILETT

S = SOURCE

Special Options

F

Value

File containing old program
library.

Meaningful only for corrections.

TFile containing new program
library.

File containing control cards.

Listable output file.

File onto which is written the
card images to he assembled.

File on which a copy of the
source deck is written. Contains
a copy of the cards necessary

to regenerate the existing
library minus the inactive cards.

Selective assembly feature is
to be ignored. All decks are
to be written onto compile

file. 71T

Speeds updating process by
specifying information on
routines which will be updated;
modifies the updating operation.
(Section 6.3.6)

Default Value

OLDPL is assumed.

No new program
library is written.

INPUT is assumed-

OUTPUT is
assumed.

COMPILE is
assumed.

No source deck
file written.

Only modification
decks and those
cards containing
modifications are
written.

Tt

T The L option does not list the card images of a program deck and their

sequence identifiers.

be copied onto OUTPUT.

To obtain such a listing, the COMPILE file must

it COMPILE output depends upon the mode of updating. If C=0, no compile

file is written.

111 In effect, during initial program library creation the T parameter is

always on.

111 This option is effective only if correction runs are heing performed.

6.2

STRUCTURE OF

PROGRAM .

LIBRARIES Program libraries, usually stored on magnetic tape, contain symbolic cards
of the programs being maintained. They are divided into decks by the
insertion of *DECK and * COMDECK cards into the text stream. Although
the deck division is arbitrary, the specific division has ramifications in the
selective assembly feature when updating and in the original serialization
when creating a program.

The program library file consists of three sections:

® Directory List of all identifiers used

® Deck list - List of all decks on the file including those no
longer current

® Text stream Card images and control information known as
‘ correction history bytes (CHB's)

The first word of the program library file is composed of two counters: the
count of the identifiers contained in the first section (hits 35-18), and the
count of the deck names contained in the second section (bits 17-00).

The identifiers, each left justified, follow the first word. The 42 high-order
bits of an identifier are filled with trailing zeros; miscellaneous data is
stored in the low-order 18 hits.

Deck list words are structured in a similar manner.

In the text stream, each card image is preceded by at least one word of
control information arrayed as follows:

Bit

59 Activity bit; contains a 1 if the text card, which immediately
follows the control information, was active at the time the
program library is written.

58-54 Unused (zero value).

53-36 Number of words used by the compressed card image. This
information speeds up input operations.

35-18 Primary CHB; identifies the deck or correction set under

whichthis card was introduced and thus gives the card its
alphanumeric name.

Secondary CHBs, recorded in bits 17-00 of the first word,
continue in subsequent 18-bit bytes in the low order 54 hits
of each word and terminate with a zero-value CHB.

6-3

6-4

CARD
IDENTIFICATION

CHBs record the effect of a correction set on a given card. The primary
CHB in the control word assigns an alphanumeric name to the card by
identifying the deck or correction set under which the card is introduced.
The 18-hit CHB field is divided as follows:

Bit

17 Not used.

16 Activity bit; contains a 1 if the correction set activated the
cards.

15-00 Identify the correction set which performed the action.

Provide the ordinal into the identifier table.

The compressed card image begins in the word subsequent to the one which
contains the zero-value CHB. 00 characters represent consecutive blank
columns. A two-character field of 00xx represents xx+1 blank columns; the
value 0000 represents end-of-card. The value of 55 is retained for one
blank column.

Card identifiers are composed of the following elements:

Alphanumeric identifier Maximum length of seven characters. The
first CHB on the card corresponds to this
identifier. It is defined on the *DECK and
*COMDECK card for program library
creation or on the *IDENT cards in the
case of correction runs.

Period Separates the two elements of an
identification.,
Sequence number Obtained by counting the number of cards

with the same identification.

Once assigned, an identification is permanent: it cannot be removed or
changed.

Example:
SC12.42 refers to the 42nd card (sequence number) with the identifier SC12.

In this example, the identifier is composed of a reference symbol (5C) which
is combined with a reference number (12).

6.3
UPDATE
CONTROL CARDS

Control and data cards (processed by UPDATE from the input file unless
otherwise specified) are grouped into the following categories:

File manipulation cards:

*REWIND
*SKIP
*READ
*LABEL

Creation directive control cards:

*DECK
*COMDECK
*END

Correction directive control cards:

*IDENT
*PURGE
*DELETE
*RESTORE
*INSERT
*YANK

*/
*ADDFILE

Assembly directive control card:
*COMPILE
Output directive control cards:

*DECK
*COMDECK
*WEOR
*CALL

Text cards:

Any card not included above.
All control cards are punched on an 80-column card. The control word is
signified by an asterisk in column one; the word begins in column 2, and

terminates with a blank or comma. Parameters may begin in any column
after the control word with any number of intervening blanks. No embedded

6.3.1

FILE MANIPU-
LATION CARDS

6-6

REWIND

SKIP

READ

LABEL

blanks are permitted in the parameter string (except for the *LABEL card).
All identifiers, both for decks and correction identifiers, are one to seven
alphanumeric characters. All numeric fields contain decimal numbers.

The following control cards may be inserted at any point in an input record.
File manipulation allows text and other control cards to he read from files
other than the main input file. Except for *LABEL, they may not appear on
other than the main input file. File manipulation cards may not reference
any of the files UPDATE is controlling.

*REWIND fname

This card causes the file indicated by fname to be rewound.

*SKIP fnéme ,rent

The SKIP card causes the named file, fname, to be spaced forward the
number of records specified in the numeric field, rent. If the record count
is zero or absent, the file is spaced forward one logical record.

*READ fname

UPDATE derives input data from the named file. UPDATE reads from this
file until an end-of-record is encountered, at which point it returns to the
main input file. Any cards, except SKIP, REWIND, ADDFILE and READ,
may occur on the fname file.

*LABEL label name

The LABEL card is meaningful only in a creation operation. It precedes the
first DECK or COMDECK card; it specifies the 20-character label name
which will be given to the program library being created. The UPDATE
program automatically updates the edition number and labels program
libraries generated as a result of corrections. The label must he punched
in columns 11-30.

6.3.2
CREATION DIRECTIVE
CONTROL CARDS

DECK

COMDECK

END

DECK GROUPING

The following control cards are used to create a new program library.

*DECK dname

dname Name of deck being introduced

This name must be different from that of any previously introduced deck or
correction identifier. A deck is terminated by the first occurrence of
another *DECK, *COMDECK or end-of-record. All intervening cards com-
prise text. They are identified with the deck name and numerically sequenced
starting at 00001 for the *DECK card itself. File manipulation control cards
may be embedded within the data cards, but they are not included in the
numbering scheme. Cards introduced as a result of *READ, however, are
included in the numbering scheme. - Output directive control cards other than
*DECK and *COMDECK may also be introduced and numbered.

*COMDECK dname
The COMDECK card introduces a common deck. This card is subject to the
same rules as the DECK card concerning naming and numbering; however,
it is not output in the same manner (section 6. 3.5).

*END
The *END card is provided for EDITSYM compatibility; it is ighored and

suppressed. If the S option is selected, UPDATE regenerates *END cards.

In the usual application, a *DECK or *COMDECK card would precede the
definition of each deck or common deck in a system. However, more than
one subprogram may he included in a deck.

Example:

DECK FIRST
IDENT FIRST
END
IDENT SECOND
END

6-7

Deck grouping is chiefly a function of the output section of UPDATE. Normally,
two decks are grouped together if modification of one requires reassembly of
both decks. Deletion of a DECK card, however, removes the deck division

and groups two or more decks together. Similarly, insertion of a DECK card
in a later updating run will introduce a division. If, as in the above example,
two subprograms are joined into one deck, all cards are identified by the

first deck name regardless of later insertion of a DECK card for the second

deck.
6.3.3
CORRECTION
DIRECTIVE
CONTROL CARDS The following control cards are used for correcting and updating program

libraries. In the descriptions:

a and b represent identifiers, normally of a card or correction set.

n and m represent decimal numbers corresponding to card numbers.

IDENT *IDENT idnam

The IDENT card introduces a correction set. All corrective operations
except PURGE and ADDFILE must occur after an IDENT. All cards
introduced in this correction set are identified by idnam, which is subject
to the rules for identifiers. This identifier must not be the same as any
identifier currently in effect, such as the original deck names and any later
identifier names. Presumably, the identifier would be a correction set
number, such as SC12, or some other unique name. This identifier holds
until the next IDENT or PURGE card.

PURGE *PURGE idnam

The PURGE card may appear in the place of an IDENT card. It causes the
complete purging of any reference to the correction set idnam. Idnam must,
therefore, reference an identifier already present in the correction set.

All cards introduced under the specified identification are physically removed
from the new program library; all corrections performed in the named
correction set are removed by squeezing out the correction history bytes of
that identification. Since permanent sequencing information is affected, the
PURGE card must be used with care.

PURGE simulates the effect of YANK described below; however, the r1es:'ts
of PURGE cannot be undone, the results of YANK can be altered. PURGE
can be used to remove completely a deck of cards. Assume that routine
CIO is initially introduced with the deck name CIO. All cards of CIO (and
only those cards) have identifier CIO. To remove CIO completely from the

deck, two modifications are required:

*IDENT XXXKKK
*DELETE C10.1,CI0. 978 (indicates 978 cards)
*PURGE CIO

The first statement deactivates all inserts made to CIO and the second
removes all CIO cards.

A purged identifier may no longer be used or referenced.
PURGE idnam,

This alternate form of the PURGE statement is used to purge all correction
sets introduced on or after the introduction of the one identified by idnam.
Since all modifications introduced are recorded in the library, this form is
order-dependent and may be used to return a program library to an earlier
level. Purged items cannot be restored, however.

DELETE *DELETE a.n.
*DELETE a.n,b.m

Cards may be deactivated with the DELETE card. The first form of the
statement specifies one card; the second, an inclusive range of cards. This
range may include cards already deleted, which are deleted again by appending
a correction history byte. In the second form the b.m card must occur after
the a.n card; in both forms all referenced cards must exist. Text cards may
be inserted after the last card deleted.

RESTORE *RESTORE a.n
*RESTORE a.n,b.m
Specified cards are reactivated with the RESTORE card. The first form of
the statement specifies one card; the second an inclusive range of cards.
Cards are restored by appending a correction history byte. Text cards may
be inserted after the last card restored.

INSERT *INSERT a.n

Cards may bhe inserted with this card. a.n specifies the card after which the
insertion is to be made.

6-9

YANK

/(slash)
ADDFILE
6.3.4
ASSEMBLY
DIRECTIVE

CONTROL CARDS

6-10

*YANK a

All effects of a correction set may be removed with the YANK card. This
correction set, identified by a, must be extant at the time the YANK card is
encountered. YANK restores the library to a form it had before the correction
set occurred. In effect, all CHB's referring to the correction set are ignored.
If a YANK card was included in the correction set, its effect is nullified.
Insertions may not follow the YANK card.

*/ any comments

Comments to be listed with the correction set may be included with this card.
It has an asterisk in column 1, a slash in column 2, and a comma or hlank

in column 3. This cardis ignored by UPDATE; it is simply copied onto the
report.T

*ADDFILE fname,a.n

When ADDFILE is encountered, UPDATE reads creation directive control
cards and text card data from the named file, fname, and inserts this
information after the a.n card on the old program library. The first card
on fname must he *DECK or *COMDECK. UPDATE reads from this file
until an end of record, which returns UPDATE to the main file. The
ADDFILE card can appear only on the main input file. The ADDFILE card
camot appear when the UPDATE (Q) option is being used.

The selective assembly feature is handled by the control cards described
below. Normally, only modified decks are written onto the assembly output
file. To control this process at the deck level, * COMPILE cards are
introduced following all correction directives. After the first such card,
only *COMPILE cards mayappear until the beginning of the next correction
set or end-of-record.

TIf this card occurs within an ADDFILE it will not be recognized.

COMPILE

6.3.5

OUTPUT
DIRECTIVE
CONTROL CARDS

DECK

COMDECK

WEOR

*COMPILE a,b,c...,d
*COMPILE a.d

The COMPILE card causes the specified decks to be assembled. With the

first form shown above, all decks are specially mentioned. In the second form,
decks to be assembled include the two specified as well as all decks listed
between them in the list of deck names produced by UPDATE. All decks
affected by these statements are assembled regardless of the existence of

any modifications within them.

If the full assembly feature is selected, the *COMPILE cards have no effect,
although such cards are legal and are processed.

Output directive control cards control the compile file output. The DECK
and COMDECK cards have additional functions during program library creation.
These control cards are included in the program library.

*DECK dname

DECK delimits a deck for compile output. This division is meaningful during
a correction run when the selective assembly feature is employed. Under
this mode of operation, the only decks included on the assembly files are
those in which one or more cards have been changed. In selecting the cards
to be assembled, the UPDATE program compares card activities in the
current run with those which existed when the program library was created.
If any common deck called within a deck has been changed, that deck is
considered to be changed.

*COMDECK dname

This card introduces a common deck. Common decks are not written onto
the compile file but are saved by UPDATE and introduced into the compile
file as a result of a CALL statement. The common deck must precede the
call.

*WEOR n

This statement writes an end-of-record of level n onto the COMPILE file, If
n is greater than or equal to 15, an end-of-file is written. The WEOR card
does not appear on the compile file. WEOR must be inserted into a deck on
the program library and is effective only when that deck is written onto the
compile file.

CALL *CALL dname

The CALL card is used to insert the text of a previously encountered common
deck, dname, into the compile file. Common code, such as system symbol
definitions, may bhe declared in the common deck and used in subsequent decks
(or assemblies) without replicating the data cards. The CALL card does not
appear on the assembly output file. The contents of the common deck,
excluding the COMDECK card, follow immediately. The CALL card cannot
occur within a common deck.

6.3.6

Q OPTION EFFECTS The Q@-option must be specified on the UPDATE call card and has effect only
if corrections are being performed. If the Q option is used incorrectly, the
UPDATE operations result in job termination.
The following modifications of the updating operation take effect under this
option:

1. Only routines named within *COMPILE statements are written onto
the COMPILE file. The set of names in the *COMPILE statements
must include all routines to be modified.

2. I corrections are to be made to common decks, UPDATE will not
automatically include onto *COMPILE the decks which call the
common deck. Propagation of these modifications is left to the
user.

3. If corrections are specified to routines not included in the *COMPILE
statements, UPDATE will abort because of unprocessed corrections.

4. At the end of the updating pass, positioning of the old program
library is unpredictable.

5. The selective assembly feature has no effect.

6. A new program library cannot be produced; if so specified, it is
ignored.

7. If a source file is requested (8), all the common decks as well as
those decks specified only on the * COMPILE cards will be produced.

6.4
LISTABLE OUTPUT
FROM UPDATE When a new program library is created, the list file contains a copy of all

file manipulation and creation directive cards, as well as diagnostics.

6-12

During a correction pass, the listings are more detailed. The first listing
is a printout of the correction sets as encountered. Each IDENT (or PURGE)
appears on a titled page. A printout of each card on the input file follows.
All cards read in by the READ command are included; they are identified on
the right by the file from which they were read.

The second set of listings, a continuous commentary of all effective changes
introduced to the file, includes all purged cards as well as cards for which
the activity status changed since they were placed on the program library.
Cards inserted by the ADDFILE statement are not listed.

Diagnostics are listed as they occur. Whether or not the updating process is
successfully accomplished, an appropriate dayfile message appears.

6.5

OVERLAPPING

CORRECTIONS A correction set can be re-modified by a later correction set. Corrections
which modify a card more than once in one correction set are marked in the
output listing by the word OVERLAP. Modifications for each correction set
are performed by UPDATE in the order in which the sets were introduced.
Provided that no correction is dependent on another, the order in which they

- are specified is irrelevant. If a dependent velationship exists, however, the

order is crucial.

For example, if a numbered insertion appears in a correction set which is
subsequently deleted, the insertion card is present but inactive. If, however,
the deletion occurs first, by specifying a range of cards and then indicating
the point at which the insertion is to be made, the numbered insertion will

be active.

An INSERT statement can be used to verify that an earlier correction is
present on the file. In such a case, the insertion will be empty.

6.6

FILES PROCESSED
BY UPDATE Several files are processed by UPDATE, some of which may he assigned to
tape or positioned at the conclusion of the updating process.

File

Input

Output

Compile

Old Program
Library

New Program
Library

File Name

CMPSCR

COMDKS
FTEXT

FILES PROCESSED BY UPDATE

Control Card
Identification

Function
of File

Provides control
information

Produces listings

Produces images
for assembly or
compilation

Contains old
program library

Contains new
program library

Type
of File

Coded

Coded

Coded

Binary
Coded

Binary
Coded

Status After
Update Call

Unpositioned. Left at end of
record terminating update
control card stream T

Appended to current position
of output file

Rewound bhefore and after
UPDATE operation

Rewound hefore UPDATE
operation; left at end-of-record
terminating program library

FILES USED BY UPDATE IN PROCESSING

Functions

Seratch file. During library creation, holds

entire symbolic source.

During correction

runs, holds programs as they are updated. If
decks are to be written on the COMPILE file,
COMPSCR is used to copy the decks to the

compile file. T

Used by UPDATE internally

Used by UPDATE internally

Comments

Binary file. Rewound prior to
and after updating. Not used
if the full assembly mode is
selected although it is address
by UPDATE.

Must be disk files.
Files are evicted before and
after the updating operation.

Files mentioned in *READ, *REWIND and *SKIP operations are left as defined by the latest
directive encountered on the input stream.

t If UPDATE aborts, the input file is at an unpredictable location.

11 To avoid disk conflicts, tape assignment is often desirable if large volume files are involved.

6.7
UPDATE EXAMPLES (1) Generating a program library by calling UPDATE:

File A contains:

CARDA1
CARDAZ2
*COMDECK SETZ2
CARDAS3
CARDA4

File B contains:

*LABEL EXAMPLE
*DECK, SET1
CARDB1
CARDB2
*READ, A
CARDB3
*END
*DECK SETS
*WEOR
CARDB4

the call UPDATE(I=B, N) results in the library EXAMPLE with the
identifiers (deck names):

SET1 SET2 SET3

Active cards in EXAMPLE are:

*DECK, SET1 SETL 00001
CARDB1 SET1 00002
CARDB2 SET1 00003
CARDA1 SET1 00004
CARDA2 SET1 00005
*COMDECK SET2 SET2 00001
CARDA3 SET2 00002
CARDA4 SET2 00003
CARDB3 SET2 00004
*DECK SET3 SET3 00001
*WEOR SET3 00002

CARDB4 SET3 00003

(2) Creating a new edition of an established library.
Apply the following correction set to EXAMPLE by the call UPDATE(N):

*IDENT, CORR1
*INSERT, SET3. 1
*CALL, SET2
CORR11
*DELETE, SET1. 3
*DECK, SET1A
CORR12
*IDENT, CORR2
*DELETE, SET2. 2,SET2.3
*IDENT, CORR3
*DELETE, SET1. 2
*INSERT, SET1.3
CORR31
CORR32

COMPILE file contains decks:
SET1 SET1A SET3

With contents:

CORR31 CORR3 00001
CORR32 CORR3 00002
CORR12 CORR1 00002
CARDAl SET1 00004
CARDAZ2 SET1 00005
CARDB3 SET2 00004
CORR11 CORR1 00004
CARDB4 SET3 00003

with an EOR after CORR11.

Identifiers for this edition of EXAMPLE:

SET1 SET2 BSET3 CORR1 CORR2Z CORR3

6-16

(3)

Active cards in the new edition of EXAMPLE:

*DECK, SET1

CORR31
CORR32
*DECK, SET1A
CORR12
CARDA1
CARDA2
*COMDECK SET2
CARDB3
*DECK, SET3
*CALL,SET?2
CORR11
*WEOR
CARDB4

SET1
CORRS3
CORR3
CORR1L
CORR1
SET1
SET1
SET2
SET2
SET3
CORR1
CORR1
SET3
SET3

00001
00001
00002
00001
00002
00004
00005
00001
00004
00001
00003
00004
00002
00003

Modifying a corrected library by calling UPDATE

Apply the following correction set to the edition of the EXAMPLE tape
produced by the call UPDATE(N):

*IDENT, CORR4

*RESTORE,SET1.3,SET2.2

CORR41
YANK, CORR3

COMPILE file contains the decks:

SET1 SET3 (SET1A is not present as it was not altered.
SET3 is present as SET2 was altered.)

With contents:

CARDBI1
CARDB2
CARDA3
CARDB3
CORR11
CARDB4

SET1
SET1
SET2
SET2
CORR1
SET3

with an EOR after CORR11.

Identifiers for this edition of EXAMPLE:

SET1 SET2 SET3

CORR1 CORR2

00002
00003
00002
00004
00004
00003

CORR3

CORR4

6-18

*DECK, SET1

CARDB1
CARDB2
*DECK, SET1A
CORR12
CARDAL1
CARDA2
*COMDECK SET?2
CARDA3
CARDB3
*DECK, SET3
*CALL, SET2
CORR11
*WEOR
CARDB4

JOB, CM50000,T60000.
REQUEST OLDPL.
UPDATE.

7
8
9

*IDENT,S8C17

*DELETE, 2TS. 454, 2TS. 457
EXI1 LDD D.CPAD
ADN W.CPERT

CRD CM

LDN P.ZERO

*IDENT,CP21

Active cards in new edition of EXAMPLE:

SET1
SET1
SET1
CORR1
CORR1
SET1
SET1
SET2
SET2
SET2
SET3
CORR1
CORR1
SETS3
SET3

(4) Modifying routines by calling UPDATE

00001
00002
00003
00001
00002
00004
00005
00001
00002
00004
00001
00003
00004
00002
00003

OLD PROGRAM LIBRARY
UPDATE 2TS AND COMPASS
COMPASS (I=COMPILE, S=SCPTEXT, L=0)

*DELETE, COMPASS. 1535, COMPASS1538

BX6 -X1*X0

X2 X6-X0
ZR X2,8CLIST
SX7 Bl
6
7 8

Corrective code
for SC17

Corrective code
for CP21

(5) Constructing a new program library from the old program library and
adding a new routine, a new common deck, and a new SYSTEXT deck
by calling UPDATE

JOB
REQUEST OLDPL.
REQUEST NEWPL.
UPDATE(N, F)
7
89
*IDENT,AAA AAA=same name as deck to be added.
*INSERT,BBB.nun BBB.nnn=identifier of card to precede added deck

(last card of deck to precede new deck)

*COMDECK, AAA

text cards for common deck AAA
*IDENT, DDD DDD=name of the new system text.
*INSERT,EEE.nun EEE.nnn deck=last card of deck to precede DDD
*DECK, DDD deck.
*WEOR
DDD Name card necessary for EDITLIB text cards for system text
*IDENT, FFF IFFF=name of new routine

*INSERT, GGG.nnn
*DECK, FFTF
text cards for routine FFF

6-19

6.8
UPDATE
MESSAGES

6-20

Listing Messages

*** ADDFILE INVALID FROM *READ FILE

*#*ADDFILE INVALID WITH Q-OPTION

***DECK NAMES SEPARATED BY PERIOD IN WRONG ORDER
***DUPLICATE DECK NAME

**+*DUPLICATE IDENT NAME

*¥**FIRST CARD MUST BE *DECK OR *COMDECK
***INVALID NUMERIC FIELD

**+*NO SUCH COMMON DECK

***NOT ALL MODS WERE PROCESSED

***ONE OF THE ABOVE DECKS DOES NOT EXIST
***PREMATURE END OF RECORD ON OLD PROGRAM LIBRARY
***RESERVED FILE NAME

**TERMINAL LIMIT EXCEEDS FIRST LIMIT ON DELETE OR RESTORE
CARD

¥ UNKNOWN IDENTIFIER

Display Messages

CORE OVERTI.OW

DECK STRUCTURE CHANGED

ONE OR MORE OVERLAPPING CORRECTIONS

UPDATE ERRORS, JOB ABORTED

UPDATING

UPDATING FINISHED

IMPROPER UPDATE PARAMETER, UPDATE ABORTED

EDITSYM 7

7.1
PROGRAM
LIBRARY
FORMAT

The EDITSYM program enables the user to organize symbolic information
into program libraries and to make symbolic corrections or alterations to
existing program libraries. Data in a program library may be source
cards for a compiler or assembler run, data cards, line images for a
document, or any other symbolic information desired. Once the symbolic
material has been put into the program library format, EDITSYM provides
a two-level editing capability.

Primary edit operations result in permanent alterations to the program
library; secondary edit operations allow the user to keep track of changes.
All primary level editing operations result in physical rearrangement of

the program library and resequencing of the primary sequence numbers.
Secondary level operations do not result in resequencing; they do not alter
the arrangement of cards with primary sequence numbers. Primary and
secondary levels are associated with two sets of decimal sequence numbers.
Primary sequence numbers are decimal integers 1-n. Secondary sequence
numbers are decimal numbers in the form j.k where j is the primary se-
quence number of the preceding card and k is a secondary sequence number.

For example, in a program library containing a deck of cards numbered

one to five, a primary level edit operation would be used to delete card

three. The new file would not contain card three, and the sequence numbers
would be changed to one through four. If, however, a secondary level edit

is performed to delete card three, the card image would still exist on the

new file but it would be marked as cancelled. Similarly, new cards added

in a primary edit would be inserted where requested and given appropriate
primary sequence numbers. If new cards were added in a secondary edit,

for instance, after card three, they would be assigned the numbers, 3.1, 3.2,
3.3, etc., and the primary numbers would remain as they were.

A program library may consist of two sections: common and text, but it

need not contain both. Each section may contain one or more logical records.
In both sections the first two words of a logical record, the prefix, contain
deck name identification information. The format of the prefix is as follows:

Word 1

59 53 47 35 11 0
778 0 1 0 N

N 2-digit display code number

= 02 common section

Il

03 text sections

= 99
Word 2 of common and text sections

59 17 11 0

deck name 00 |fedition number

The deck name may not exceed seven characters. The edition number is a
display coded integer which is increased by one each time a new program
library is requested.

7.1.1

COMMON DECKS The first section of a program library contains the common decks. Each
common deck consists of one logical record with a two-word prefix. The
remainder of the record contains the packed images of the deck. The last
card image is *END. I there are no common decks, there is no common
section.

7.1.2

TEXT DECKS The second section of a program library contains an arbitrary number of text

decks. Each consists of one logical record identical in format to a common
section record, except that in the first prefix word N is equal to or greater
than 3.

7.13

COMPRESSED

DECK FORM Both common and text decks exist in the program library in compressed form
with blank characters removed. Blanks are replaced by the character 55
followed by a 6-bit count. Thus, the character pair 5500 represents one
blank, 5501 represents two blanks, etc. If more than 64 blanks are to bhe
represented, two character pairs are needed. 55775502 as a consecutive
character string represents 67 blanks. The end of a card is recorded by a
00 character followed by a 00, 01, or 02 depending upon the editing status
of the card.

00 indicates card to be used.
01 indicates card logically deleted by secondary editing.

02 indicates card added by secondary editing.

7.2

COMPILE OUTPUT The main function of EDITSYM is to produce, from selected portions of a
program library, a file of information in a format that can be processed by
FORTRAN, COMPASS, or other processor. When a compile file is re-
quested, the procedure is as follows:

Card marked as cancelled by secondary editing is
not written on the compile file.

EDITSYM control cards are not written on the compile
file, with one exception. Control card *CALL,dn, when
encountered within the text of a deck on the program
library, is retained as a comment card. The common
deck named dn is found and written immediately after
the *CALL card.

Text decks are written into the compile file as a single
logical record until or unless a *WEOR card appears in
the EDITSYM control card deck. Cards are represented
by 90 display code characters, terminated by a zero byte
(end-of-line), as follows:

Columns

1-72 Supplied on the source

73-79 Deck name

80-84 Primary sequence number

85 Period for a secondary text card

86-90 Secondary sequence number

7-3

7.3
CONTROL CARDS

7.3.1
EDITSYM
CALL CARD

7-4

The call for EDITSYM is as follows:

EDITSYM(I=input file, C=compile file, L=list file,
OPL=old program library, NPL=new program library)

Parameters may appear in any order.

Input

Compile

List

Old Program Library

New Program Library

ahsent

I

INPUT
I=lfn
INPUT=lfn

absent

C

COMPILE
C=0
COMPILE=0
C=lfn
COMPILE=lfn

absent

L
LIST=L
LIST
L=0
LIST=0
L=lfn
LIST=Ifn

absent
OPL=0
OPL
OPL=lin

absent
NPL=0
NPL
NPL=lfn

corrections on INPUT
corrections on INPUT
corrections on INPUT
corrections on 1lfn
corrections on lfn

no compile output

compile output on COMPILE
compile output on COMPILE
no compile output

no compile output

compile output on lfn
compile output on Ifn

no list

list on OUTPUT
list on OUTPUT
list on OUTPUT
no list

no list

list on lfn

list on Ifn

no old program library

no old program library

old program library on OPL
old program library on lfn

no new program library

no new program library

new program library on NPL
new program library on lfn

The following cards control the addition and deletion of entire decks and local
corrections within decks. All control cards referencing common decks must
precede any control cards referencing text decks. This is necessary hecause
all of common must exist in its final form before any text processing is done
to insure correct processing of common references within text decks.

7.3.2
NEW DECKS New decks may be introduced by placing
*COMDECK, dn
or
*DECK,dn,n
in front of the deck, and
*END
at the end of the deck.
The deck name to appear in the prefix is dn. All cards introduced in this way
are considered primary cards and are given a 00 editing status terminator.
*COMDECK card specifies the introduction of a common deck.
If common decks are to be introduced, *COMDECK cards must precede any
control cards which introduce or reference text decks.
*DECK identifies the subsequent cards as a deck belonging to the text
section of the new program library.
The n parameter specifies the value of N to be used in the prefix. n may
be 3 to 99; the value 3 is assumed if n is absent. Values 4-99 may he used
as special flags for other routines which process program libraries.
7.3.3
DECK SEQUENCE
CONTROL *COPY, dnl,dnz

When this card is encountered, EDITSYM copies the entire text decks from
the old program library to the new one and/or to the compile file. Copying
begins at deckname dnj and continues up to and including the deck name dn_.
If an is absent, only dnl is copied. If dn 1 is * copying hegins at the

7.3.4
EDIT CONTROL

present position and continues through dng. If dns is * copying begins at dnj
and continues through the end of the program library.

*WEOR

The WEOR card causes EDITSYM to terminate the logical record being
written on the compile file.

*CATALOG,Ifn

Common and text deck names from the program library, lfn, are listed on
OUTPUT.

*COMPILE, lin

A compile file will be written on Ifn. A *COMPILE card overrides the
compile parameter on the EDITSYM call card; the *COMPILE card applies
only to the deck specified on the following *EDIT, *DECK, or *COPY card.
Once a *COMPILE card has been encountered, compile files for any re-
maining text decks must he requested by 2 *COMPILE card.

The user can make corrections to a program library deck with edit control
cards. Primary and secondary numbers specify cards in the deck to be
altered or after which new cards are to be entered. Sequence numbers are
not contiguous from one program library deck to another; therefore, the
name of the deck must also be specified.

*EDIT,dn

dn is the name of the deck to be edited. This card must terminate the set
of edit control cards which modify the deck dn.

Primary Level Edit Control

*INSERT,n

Corrections are inserted following card n. The corrections terminate

with the EDIT control card. All text introduced is considered primary text
and thus will cause resequencing if a new program library is requested.

n must be an integer.

*DELETE,m,n

Cards m through n, inclusive, are deleted. If n is omitted, only card m is
deleted. Source cards may follow the *DELETE control card and are in-
serted following the last deleted card, The cards deleted are removed from
the new program library. Any cards inserted are primary corrections.

n and m must be integers.

*RESTORE,m,n

This card restores to its original state a portion (m through n inclusive) of
a deck altered by secondary editing. All primary text cards cancelled as
a result of a secondary editing operation (all cards with a 01 editing status
terminator), are restored as normal primary text cards. All added
secondary text cards appearing within this range are removed.

Secondary Level Edit Control

*CANCEL,m,n

Either m or n may be of form j.k where j is a primary number, and k is

a secondary sequence number. This card will cause cancellation of all

cards from m to n inclusive. Primary cards are not removed; they are
marked as cancelled; however, secondary cards are removed. Source
cards may follow the *CANCEL control card and are inserted following the
last cancelled card. The insertions are marked as secondary text. Cancel-
lation does not cause resequencing of the primary cards when a new program
library is requested.

*ADD,n
n may be of the form j.k as defined above. The ensuing cards are inserted

as secondary text. Addition does not resequence primary cards when a
new program library is requested.

7.4
EDITSYM
EXAMPLES

7-8

Create a program library.

REQUEST NPL.
REWIND (NPL)
EDITSYM (NPL, L)

7
89

*COMDECK, MACROS

*END
*COMDECK, DIMENS

*END
*DECK, PROGA

*END
*DECK, PROGB

*END
*DECK, FTNPROG

*END
*DECK, FTNSUBR

macro definitions

dimension statements

COMPASS subprogram
containing *CALL, MACROS

COMPASS subprogram
containing *CALL, MACROS

FORTRAN program con-
taining *CALL, DIMENS

FORTRAN subroutine
containing *CALL, DIMENS

Modify and assemble PROGB from the program library created in the
preceding example.

REQUEST OPL.

REWIND (OPL)

EDITSYM (OPL, C)

COMPASS (I=COMPILE , B=PUNCHB)

7
8
9

*INSERT, 300
*DELETE, 2,3

*EDIT, PROGB

Modify and assemble/compile the program library in the preceding examples;
also add two decks and create a new program library. Catalogue the new
program library.

REQUEST, OPL,
REQUEST, NPL,
REWIND, NPL.
REWIND, OPL.
EDITSYM (NPL, OPL)
COMPASS (I=ASSEM)
RUN(S, ,,COMPL)

7
89 ’
*COMPILE, COMPL

Correction deck

7-9

7-10

*EDIT, FTNPROG
*COMPILE, COMPL
Correction deck
*EDIT, FTNSUBR
*COMPILE, ASSEM
Correction deck
*EDIT, PROGA
*COMPILE, ASSEM
Correction deck
*EDIT, PROGB
*DECK, PROGC
Source deck
*END
*DECK, PROGD
Source deck
*END
*CATALOG, NPL

CHECKPOINT /RESTART 8

The programmer may take checkpoint dumps during job execution. When a
checkpoint dump is taken at some point in the program, a file is written con-
taining all information needed to restart the job at that point. This procedure
allows the programmer to restart his job from the point of the last checkpoint
dump rather than from the beginning of the job in case of machine malfunction
or operator error. The checkpoint file is made available to the programmer
only in event of abnormal job termination.

8.1

CHECKPOINT

REQUEST Every central processor program which uses the CHECKPT function must
provide a REQUEST control card or function to identify the name and storage
device of the checkpoint file as follows:

REQUEST, cname, dt, CK, n

cname Unique name for the checkpoint file

dt MT, LO, HI, HY, WT, Dxxxx

CK Disposition code identifying cname as the checkpoint
file

n File declaration code indicating checkpoint on 1/2"

magnetic tape should be labeled and is initially an
output tape.

This parameter should be included if the checkpoint tape
is to be labeled. BSuch a tape will have cname as the file
label name. The creation date field in the label will be
the current date as stored within CM resident. The
retention cycle is an installation option.

CHECKPT function requests are honored only if the checkpoint file is
defined by a REQUEST. Position information is saved for all files. File
contents are saved if the file name is given in the checkpoint function
parameter list.

8-1

CHECKPOINT
PROCEDURE

8.2
RESTART
REQUEST

Checkpoint is an unconditional request which results in a checkpoint dump
when the request is encountered. The checkpoint program (CKP) is loaded
and a dayfile message is written acknowledging the request. A delay allows
all input/output requests in progress to be completed. The FNT/FST is
scanned for the checkpoint file, cname. If a checkpoint file is not found,
CKP will issue a dayfile message to indicate an invalid function and then
release its PP, allowing the job to continue execution.

If the checkpoint file is located, an identification record is constructed and
written. This record contains information from all central memory resi-
dent tables associated with the job.

A second record is written containing the central memory area assigned

to the job (defined by RA and fl). Record groups are written, one group

of logical records for each file named in the checkpoint function parameter
list. Each group contains the contents of a logical file specified in the param-
eter list. Also each group of records is terminated by a zero length PRU

of level 16. Level 16 should not be used in any files, designated in the
checkpoint parameter list; to be copied. The checkpoint file is rewound, the
central processor is requested for the job, and the PP containing program
CKP is released, allowing the job to continue execution.

Upon abnormal job termination, all uncopied associated local disk files are
placed on locked status to protect the disk records from being overwritten.

A job may be restarted from a checkpoint dump by the RESTART control
card:

RESTART, cname

cname is the unique file name included on the REQUEST card for the run in
which the checkpoint request was made.

When the job is restarted, file disposition is the same as when the checkpoint
was taken. Thus, for example, a file with CK disposition in the checkpoint
run will still have CK disposition for the restart run.

After reading the checkpoint file, the restart program leaves it as a local,
unlocked file, so that it will be replaced if a checkpoint is taken after the
job is restarted. Some consequences are:

If a restarted job writes no new checkpoint files and terminates
normally, the old checkpoint file is released.

If a restarted jobh writes no new checkpoint files and terminates
abnormally, the old checkpoint file is retained.

If a restarted job writes new checkpoint files and terminates
normally, the old checkpoint file is lost because the current
one was written over it, and the current checkpoint file is released.

If a restarted job writes new checkpoint files and terminates
abnormally, the current checkpoint file is retained and, since
it was written over the old one, the old checkpoint file is lost.

When a restarted job terminates abnormally, at least three possibilities
must be considered:

The program may have an error that caused both the original
and the restarted jobs to terminate abnormally. Then, generally,
nothing is gained by another restart.

The checkpoint dump may not be restartable.

A machine error may have caused abnormal termination of
the restarted job.

If the decision is made not to restart from a checkpoint file, the user must
release all locked disk files, by submitting a RESTART control card with
the following format:

RESTART, cname, CLEAR,*

The FNT/FST is searched for the checkpoint file. If this file is not found,
a dayfile message is issued and the job is terminated. If the file resides

on magnetic tape, the operator is requested to provide the checkpoint file
as tape input. The checkpoint records are read and used to restore the
control point area and to restore and reposition files. For each tape in use
by the program when the checkpoint dump was taken, a message is issued to
the operator to mount the tape. The central memory field length (FL) is
obtained from the control point area and used in the MTR request storage
function to obtain FL words of central memory. The central processor
program is read into this area. A dayfile message is written to indicate

8.3

UNRESTARTABLE

that the restart is completed. The MTR function request for central
processor is issued and the PP containing the restart program is released.

CHECKPOINT DUMPS A checkpoint dump may not be restartable in the following cases:

8.4
ROLL-OUT/
ROLL-IN

8-4

A file necessary for restarting the program was overwritten after
the checkpoint dump was taken.

A checkpoint file was on a disk involved in a subsequent machine
failure.

A machine error propagated bad results but did not cause abnormal
termination until after another checkpoint dump.

Disk files necessary for restarting the program were closed after
the checkpoint dump was taken. This action releases the allocation
for these records, allowing overwrite.

The first and last cases may be guarded against'by listing all such files as
parameters to the CKP function request. In addition, CKP functions may be
issued after each file is closed.

The operator may request that a job which has control of the central proc-
essor at a specified control point be rolled out so that all of the memory
assigned to the job except its control point area is released. Neither the
control point nor the equipment assigned to the job will be relinquished.
Later, the operator can request that the rolled out job be restored and its
execution resumed.

SYSTEM/OPERATOR COMMUNICATION 9

9.1

PROCESSING MODES After deadstart loading is completed, no activity will be displayed at control
points 1 to 7. A keyboard message at the console is needed to initiate the
mode of job processing. The SCOPE operating system provides two modes
of operation: automatic and manual. The operator may override the auto-
matic mode and call individual programs to each control point.

9.1.1

AUTOMATIC MODE After deadstart loading, the system awaits input from the operator. A key-
board entry AUTO. selects the mode for automatic processing. Under this
mode, input from the card reader is assumed. The read package is assigned
to the first available PP (assigned to control point 1), and then assigns output
to the next available PP (assigned to control point 2). The read package
reads, converts the information to display code, and forms input files on the
disk until cards are depleted.

The NEXT package is assigned to all available control points, other than 7.
Input files are executed according to the priority designated on the job card.
As each job produces output, the records are packed and sent to the disk.
When a job is completed, output is disposed of by the output package in the
order of job priorities.

In normal operation, job processing is initiated with the type-in AUTO.,
which brings the following activities to control points.

Control Point

Number Job Name Activity

1 READ Load jobs from card reader and store
on disk.

2 OUTPUT Transfer job output from disk to
printer or punch.

3 NEXT Search FNT for a job to process at

4 NEXT this control point.

5 NEXT

6 NEXT

7 —— No activity.

9-1

9.1.2
MANUAL MODE

9-2

The jobs brought to control points are system jobs which process various
phases of ohject jobs.

Example:
AUTO. is equivalent to keying:

READ.
OUTPUT.
NEXT.
NEXT.
NEXT.

S W W N

NEXT.

Activities may also be dropped.
Example:

2. DROP. Printing ceases and output accumulates on the
disk until output or dump is introduced.

AUTO.operation leaves control point 7 free, but an activity may be initiated
at that point.

Example:

7. NEXT. Enables control point 7 for object jobs.

7. LOAD, Brings to control point 7 a package for loading jobs
from magnetic tape to the disk.

Manual operation is similar to automatic except that each operation must be
requested by the operator. For example, after the deadstart load has been
executed, the operator may enter on the keyboard the control point number
and the read statement, n. READ. This will load the read package in the
next available PP and assign it to the designated control point, n.

If an input job stack is prepared on magnetic tape, the operator enters on the
keyboard the control point number and the load statement, n. LOAD; the load
package is loaded into the next available PP; the package requests the tape
unit number and continues.

To execute, the operator types n. NEXT. for each control point to be
assigned a job. As each job is executed, output files are entered on the
disk. No output processing results until the operator enters the control
point number and the output statement, n. OUTPUT.

An alternate method is to enter n. DUMP. on the keyboard; the accumulated
output files are dumped on magnetic tape in the order of job priorities for
printing off-line. The operator may enter n. DROP. on the keyboard, which
drops the job at the designated control point. After all input is read, the
read or load routine may be dropped to allow another job to use the control
point. This operation may be used in both automatic and manual mode.

9.2
CONSOLE AND
DISPLAY SCOPES The operator and the system communicate through the console keyboard

entries and two or more console display scopes. The operator may intro-
duce jobs, change priorities, and so forth. SCOPE also allows the operator
to examine selected portions of memory and keeps a permanent record of
job history which can be called at any time.

The system communicates with the operator through the two console display
scopes. Data is assembled and disassembled by individual routines in
SCOPE. At the request of the operator, all portions of job or system status
may be displayed. Data entered at the console keyboard is also displayed

on one of the scopes. A permanent record of system/console communication
is retained in the dayfile and ultimately printed at operator request.

The operator communicates with the system through the console keyhoard.

Asg they are being typed, keyboard type-in messages are shown in the lower
left-hand corner of the left display scope. The operator may check entries
prior to initiating execution.

Each keyboard-initiated command to DSD or DIS is a single line. Back-
spacing causes the last character keyed to be blanked. Each command

should end with a period followed by a carriage return, at which point the
message is interpreted. If the command is acceptable, it is acted upon and
the line on the screen is cleared; if not acceptable, an error message appears
above the erroneous line. A blank type-in can be used to clear an entire
command. These messages or diagnostics can appear above the line of
keyboard input:

9-3

9.2.1
SYSTEM
DISPLAY (DSD)

FORMAT ERROR Keyboard type-in contains a formatting

error.
ILLEGAL ENTRY Keyboard input is unrecognizable.
WAIT MTR FCN xx System is in step mode (or MTR is

busy) and DSD is waiting for MTR
when processing keyboard input. xx
is the number of the monitor function.

System Display (DSD)

The system display program (DSD) is permanently located in PP 9. DSD
maintains a display on the two screens of the main console for all currently
running jobs. The keyboard is used to initiate and control equipment assign-
ment and job progress. During normal job processing, operators need not be
concerned with the data or program storage displays. However, the displays
give an accurate picture of system progress, and can be used for on-line
debugging.

The console screens may be assigned any combination of two displays listed
below.

Codes Display

Dayfile

Job status

Data storage

Data storage

Data storage

Program storage

Program storage

Job backlog

Equipment status SCOPE 3 only]

I H =3 O o w e

-

DAYFILE (A) DISPLAY A file named DAYFILE is maintained on disk; it contains the job history for

all jobs. The records called dayfile messages are added to DAYFILE when
whenever:

A control card statement is executed.

System action with respect to a job is not in direct response to a control
card statement.

601894008

DAYFILE DUMPS

An error is recognized.

A comment is entered either by control card or by the MESSAGE
function.

End of job is encountered; two dayfile messages record the amounts
of CP and PP time charged to the job. CP time includes compilation
time as well as execution time.

The job history consists of all dayfile messages for a given job. When a job
terminates, its dayfile entries are printed at the end of its listing. The
total dayfile, which normally includes entries for different jobs intermixed
since the jobs share the computer, is available to the system as a record of
all action taken since deadstart. Usually the most recent 30 (approximately)
entries in this total dayfile are displayed on a console screen for the
operator.

Dayfile messages on the A display have the format: hh. mm. ss. jobname.
message.

The time given in hours, minutes, and seconds is the actual time since
deadstart or the real time if this was entered into the system by a TIME
command to DSD. The time is followed by the name of the job and the
message itself.

As a job is processed, dayfile messages are sent to the dayfile by PP
programs or by central programs of the job. Each control card, including
the job card, is listed at the time of execution. The dayfile messages
may be inspected as follows:

On a console screen (display A). The file is moved up the scope
screen as messages are generated.

At the end of job's printed output. All dayfile messages associated
with that job name are printed.

The dayfile is preserved on disk storage. The entire contents
of the dayfile can be accessed for logging purposes.

The operator may request that the dayfile be dumped and the disk space
released. The operator initiates this action by freeing a control point and
typing n. DAYFILE, xx. n is the control point number and xx is an equipment
type: LP, CP, or MT.

JOB STATUS
(B) DISPLAY For the Job Status (B) display, DSD provides the status of all control points,
each in the format:
n.jobname priority, time limit, runmning time s-------
RA, FL, equipment numbers.
last dayfile message or message to operator
n is the control point number, s the central processor status of the job.

If PP's are running at the control points, their numhbers are entered in the
first line. All other numbers of the display are in octal.

Example:

3.AJOB 5037, 100, 37 X~-2~--~-T~
30000,40000,51,72,
RUNS
In this display, the job has used 37, seconds of central processor

time so far, and is not using the central processor at present while
PP's 2 and 7 are working.

The OUTPUT control point display is as follows:

2.ourTpPUT , , , , -2---G67-

15100,6100, 20. 21, 22. 23. 24.

1.PRINT 2.IDLE 3.PUNCH 4.PRINT 5.PRINT 6.PRINT

JOBNAME JOB001 JOB002 JOB003 JOB0O04
On the third line each number refers to a buffer point. Buffer points are
assigned as needed, and the number of output devices in the equipment status

table determines the number of buffer points set up. Because the assignment
is dynamic, each is labeled with the operation in process.

STORAGE (C-G)

DISPLAYS A storage display of type C through G has 4 groups of central memory words,
numbered 0 to 3. Each group consists of 8 central memory words, each dis-
played in octal on a separate line, preceded by its address. The address is
ahsolute for DSD, relative for DIS. For data display (C,D,E) words are
divided into 5 groups of 4 digits; for program display (F,G),words are divided
into 4 groups of 5 digits.

JOB BACKLOG

(H) DISPLAY
—
EQUIPMENT
STATUS (1)
DISPLAY
60189400B

The address of an 8-word group follows the display type and group number
in a command:

D2,1020. Set words 001020-001027 in group 2 of D.

Group number 4 is used to set all four groups at once, to display 32 con-
secutive words: '

D4,1020. Set words
Group
001020-001027 0
1 001030-001037 1
001040-001047 2
001050-001057 3

The H display under DSD shows a list of input, output, locked, and common
files with the name and priority of each file. Input files are jobs waiting on
disk; output files are the output of completed jobs awaiting printing or
punching; locked files are those associated with a checkpointed job which
terminated abnormally; common files are those which may be passed from
one job to another. The progress of any job not at a control point can be seen
by using the H display.

H, C. Display Common Files
H,I. Display Input Files

H, L. Display Locked Files
H,O. Display Output Files
H,P. Display Punch Files

SCOPE 3 only

The I display shows a list of defined system equipments and indicates the
status of each. There are four entries per line; each entry has the form:
ee-hhuu sss.

ee equipment status table ordinal used by the operator in keyboard
entries which affect equipment status.

hh hardware mnemonic code. Only the following equipments are
displayed: N

9-7

SCOPE 3 only

AA 6603 Disk File
AB 6638 Disk File
AC 6603 II Disk File (option 10124 installed)
AD 3637B/865 Drum
AE 3637B/863 Drum
AP 3234/854 Disk Pack
CP Card Punch
CR Card Reader
DS Console Display
LP Line Printer
MT 1/2 inch magnetic tape
wWT 1 inch magnetic tape
uu physical unit address
588 status mnemonic. The following mutually exclusive conditions

are displayed:

App Equipment is assigned to control point pp.

SYS Equipment was assigned to the system at deadstart.

PVT Equipment was assigned for private allocation but is
inactive.
PBS Equipment was assigned for private allocation, has an

active file allocated, but is not currently assigned to a
control point.

UNL Equipment-is logically unloaded to the system, but is not
"off" to the system.

BSY Equipment has active files allocated on it; it may be "off"
to the system but may not be made physically not ready.

AVL Equipment is not off, is not assigned to a control point,
and no active files are allocated on it.

OFF Equipment is "off'" to the system; it is not assigned to a
control point; no active files are allocated on it; the
device may be physically not ready.

SYSTEM DISPLAY
KEYBOARD ENTRIES The keyboard, during the display of the overall system status, is used to
initiate and control equipment assignment and job progress. The following
table describes the keyboard codes and formats.

9-8 601894008

601894008

Type-In

AUTO.

STEP.

OF Fxx.

ONxx,

n.STEP

TIME.hh.mm. ss.

ONCPUx.

OFFCPUx.
MCH. nn.
DCNnn.

FCNnn.

ENPR, xxxx,f,y.

X,¥-.

n.DROP.
n. DIS.

n.ASSIGNuu.
n.READ.

n.OUTPUT.

Action Initiated

Used after dead-start to initiate automatic job
processing with card input and printer output.

Selects a step mode for the SCOPE monitor in
PP0. Requests from other PP's are processed
when the keyboard space bar is pressed. High-
speed operation may be resumed by entering a
period.

Indicates to the system that equipment number
xx must not be used, for example, during
maintenance.

Returns equipment xx to the pool of available
equipment.

Selects a STEP mode for a specific control
point.

Resets the current time in hours, minutes,
seconds for 24-hour clock. Only eight characters
may be entered.

Turns on CPUx provided it is turned off or
delegated but not if it is not locked off.

Turns off CPUx if it is on.

Master clears channel nn.
Disconnects channel nn.

Enters a zero function on channel nn.

yis I or O indicating input or output file. If y
is absent, I is assumed. Changes the priority of
file f to xxxx.

Changes contents of word at x (absolute) to y.
Leading zeros may be dropped in both address (x)
and data (y).

Drops the job at control point n.

Assigns DIS package to control point n. If there is
no other console, DSD may relinquish the main
console.

Assigns equipment uu to control point n.

Brings READ package to control point n for loading
jobs from cards.

Brings OUTPUT package to control point n;
normally initiated by AUTO, but may be brought
in separately.

9-10

Type-In

n.LOAD.

n. DUMP.

n.BLANK.

n. LOADx.

n.NEXT.

Action Initiated

Brings LOAD package to control point n to load
jobs from tape (prepared by SCOPE) to end-of-
information.

Brings DUMP package to control point n to dump
output files on tape.

Brings BLANK package to control point n to write
a blank label on a tape.

Brings LOADx package to control point n to load
jobs from an externally prepared tape, n, to end-
of -information.

Brings job NEXT to control point n to look for a
job for the control point.

(READ, OUTPUT, LOAD, LOADx, BLANK, DUMP, and NEXT have no
effect if the control point already has a job name,)

(LOADx, BLANK, LOAD, and DUMP request assignment of a tape unit.)

n.USECPUx.

n.RELCPU.

n.GO.

n.ONSWx.

n, COMMENT.c.
n, OFFSWx.
n.ENPR, xxxx.

n. ENTL, xxxx.

n.ROLLOUT.
n.ROLLIN.

Delegates CPUx to control point n. Only jobs
operating at control point n will use CPUx, and
they will use only that CPU. Delegation of a
CPU is indicated on the B display.

Releases the CPU delegated to the system, making
it available to all control points.

Continues job at control point n if it has come to
a pause (usually as a result of a FORTRAN pause
statement, or if repeated tape transfers after
parity failure are not effective).

Sets sense switch x for FORTRAN program at
conirol point n. Settings are preserved at RA and
at a word in the control point area.

Enters a comment c into dayfile.
Turns off sense switch x for control point n.

Changes priority of job at control point n to
XXXX.

Changes time limit of job at control point n to
xxxx, the new time limit in octal seconds.

Rolls out the job at control point n.

Rolls in the job at control point n.

601894008

Output operations commands to DSD follow. The print file may cause the
printer to stop and a message to appear at the fourth line of the control point.

x.LPnn message x is buffer point number, nn is printer number.
After specified action, print operation may be
resumed by typing x.GO.

For repeating listings or changing printer forms, pseudo format characters
PM cause printer to stop, and up to 30 characters following the format char-
acters will be transmitted to console message area for operator action.

Type~In Action Initiated

n.ENDm. Terminates operation at buffer point m.

n.REPEATm. Repeats current operation at buffer point m.

n.SUPPRESSm. Suppresses page control of printer at buffer
point m.

If m =7, for END and REPEAT, all buffer points concerned with printers
will be affected. After equipment malfunction, operation is restarted by
typing: n. REPEATm. n.ENDm.

SCOPE 3 only
PRIVATE DISK
PACK OPERATION
COMMANDS A REQUEST card or function is used to obtain access to a private disk pack.

The operator must assign available equipment and initiate removal of in-
active private packs and mounting packs. The keyboard entries, described
below allow the system to protect private pack integrity and to maintain
system tables. Both functions must be assigned to an empty control point.

Type-In Action Initiated
n. UNLOADxx. Requests assignment of an equipment through

MTR to allow the operator to unload a disk
pack on equipment xx. The tables are examined.
If active files are assigned to this equipment
FILES ACTIVE ON xx is typed and no other
action occurs. (The equipment status (I)
display may also be examined to see if there
are active files on the disk pack.) The
UNLOAD function must be dropped from the
control point to be cleared. If the equipment
is not active, it is set in a logically unloaded
status to prevent further assignment and the
UNLOAD function drops automatically.

60189400B 9-11

9.2.2
JOB DISPLAY (DIS)

9-12

SCOPE 3 only
Type-In

n. DEVADDxx, P, B

Action Initiated

Requests system to recognize that the operator
has readied a pack on equipment xx.

P indicates a private pack; if P is not present,

the pack becomes a system allocatable equip-
ment. H the pack is private and B is present,

the pack is blank labeled and ready for assign-
ment to a new private file. The pack is considered
empty. Before tables relative to the private and
blank labeling options are processed, the DEVADD
function requests assignment of a disk pack
through an MTR function and checks the resulting
assignment. If the assigned equipment is already
active, the message UNIT xx ALREADY ACTIVE
is displayed and the control point is dropped to
clear the activity. Otherwise assignment is
made, unload status is cleared, and P, B options
are processed. A system allocatable device

may be redesignated as private by the DEVADD
function with P, B options. New packs must be
blank labeled.

A job display (DIS), similar to DSD, is used for information more relevant to
a single job. Using DIS, the B display can show the exchange jump area of
the job; central memory addresses relative to the job's reference addresses
are used for data and program displays.

The job display package (DIS) can be called from a control card (DIS) or by a
command to DSD at any time during job execution. DIS stops automatic
advance of job control cards. This display covers data pertaining to a par-
ticular job only. The keyboard is used to advance job control cards and
provide any two of the following displays in the same manner as for DSD
display. The B display shows only the condition of the control point to which
DIS is attached; it includes the next control statement, and a picture of the

job's exchange package.

The exchange package is displayed only while the

job is in W, X, or blank status. The operator may change priorities and
suspend job execution with DIS.

601894008

JOB DISPLAY

KEYBOARD ENTRIES

601894008

Codes

8 &8 O QW »

ENP, xxxxxx.
ENA1, XxXxXxXxX.

ENBI, xxxxxx.

Dayfile

Job status
Data storage
Data storage 5 groups of 4 octal digits per group
Data storage
Program storage

Program storage } 4 groups of 5 octal digits per group
Set P = xxxxxx (next instruction address).

Set Ai = xxxxxx in exchange jump area.

Set Bi = xxxxxx in exchange jump area.

ENXi, XXXX XXXX XXXX XXXX X¥xX. (Spacing is unimportant.)

ENFL, x.

ENTL, x.
ENPR, x.
DCP.

RCP.

BKP, x.

RNS.
RSS.
ENEM, x.

ENS, XXxXXxxxX.

GO.
ONSWx.
OFFSWx.

Set Xi = XXXXXXXXXXXXXXXXXXXX in exchange jump area.

Set FL = xg in exchange jump area. (Storage will be moved
if necessary.)

Set central processor time limit = xg seconds.
Set job priority = xg.

Drop central processor and display exchange jump area
(in display B).

Request central processor. ¥ the priority of the job is
sufficient, execution will begin at the next program address
for a job suspended by a DCP request.

Breakpoint to address x in the program. Central processor
execution begins at the current value of P and stops when
P =x. DIS clears x to stop the program at that point, and
restores the original word when the stop occurs.

Read and execute next control statement.
Read next control statement and stop prior to execution.
Enter exit mode x.

Allows the entry of any control statement xxxxxxxx as if it

had been entered on a control card. The statement can then

be processed using RNS. or RSS.
Restart a program which has paused.
Set sense switch x for the job.

Turn off sense switch x for the job.

HOLD. DIS relinquishes the display console, but the job is held at
the present status. A console must be reassigned to con-
tinue use of DIS.

DROP. DIS is dropped and normal execution of the job is continued;
it does not drop the job.

DMP (x,y) Dump storage from x to y in the output file (relative to RA).

DMP (dxxxxx, Dump absolute storage from x to y in the output file.

4yyyyy)

DMP (x) Dump storage from the job reference address to x.

DMP. Dump exchange jump area to output file (DMP formats are
the same as if used on control cards).

X.y Change the contents of the word at x (relative to RA) to y.
Leading zeros may be dropped in both the address (x) and
the data (y).

ASSIGNxx. Assign equipment xx to the job.

DEADSTART
PROCEDURES AND
DISPLAYS Deadstart procedures do not require deadstart cards. The system may be

deadstarted from iape to any one of the allocatable devices. A single system
tape will deadstart on all allocatable devices. ¥ Upon request the operator
types characters indicating the type of deadstart. Defined type-ins are:
Deadstart dump

Normal preload

Pre-address 6603-II device

Recovery start

v W ooy oz O

Special preload

When the requested deadstart routine has been loaded from the tape, the tape
is rewound.

TThe tapes should be on channels 0, 12g or 13g. If the tapes are not located
on those channels, the deadstart panel alone will not be able to rewind the
tape. The installation may choose to use deadstart cards to bootstrap the
tape rather than deadstarting directly from the panel.

9-14 601894008

DEADSTART DUMPS

PRELOAD AND
LOAD

PREADDRESSING

601894008

Both console displays are used during deadstart to inform the operator of
activity status and to request information from the operator.

When a printer is available, the channel, equipment, and converter number
are defined by the installation and assembled into the procedure, unless the
E option is used. After the procedure is loaded, the console displays WHAT.
The operator may input any one of the three following options:

E,cc,s,e E overrides a previous assignment by defining:

cc = channel
s = converter number
e = equipment number

Pppp...p P calls for dump of PP memory, PP number p.
p=01...9
Cm,n C calls for an absolute central memory dump:

m = starting address
n = terminating address

Wrap around is possible so that m may be greater than n.

Central memory resident tables and system must be preassembled to define
installation options and configuration. The allocatable device onto which the
system is loaded is defined by this data. When loading is completed, the
following message is displayed:

MM/DD/YY

The current date is input and the system is ready to process.

Option 10124 is installed on a 6603 disk; each sector on the disks must be
pre-addressed to use this option. Pre-addressing, which takes approximately
three minutes, is required only if a nonstandard system was writing on the
6603-1II disks. The channel and synchronizer numbers are defined by the
following displays:

THE 6603 CHANNEL IS
THE 6603 SYNCHRONIZER 18

9-15

The requested number is input after each display and pre-addressing has
begun. Progress is monitored by maintaining the following display:

PREADDRESSING 6603
CHAN xx SYNCx
TRACK xxx

The x values are defined and updated. When the process is completed, the
third line is changed to display:

COMPLETED

The operator may push the deadstart switch and continue to the next step.

RECOVERY
RESTART This routine is the same as the recovery restart routine under SCOPE 3.1
except that MTR, DSD, and PP resident are reloaded from the system's tape
rather than from the allocatable device.
SPECIAL

PRELOAD Deadstart is the same as normal preload and load procedure, but the
allocatable device used as systems storage must be specified by display output
and operator input as follows:

Display: THE DEVICE TYPE IS
Input one of the following device mnemonics:
AA(6603), AB(6638), AC(6603-1I), AD(865 drum), AE(863 drum), or
AP (854 disk pack), followed by a carriage return.
For 6603 or 6638:

. 6603
Display: THE 6638 CHANNEL IS

Input: cc (channel, followed by carriage return).

Deadstart can now proceed.
For 865, 863, or 854:
865

Display: THE 863 CHANNEL IS
8564

Input: cc (channel, followed by carriage return).

9-16 601894008

865
Display: THE 863 CONVERTER IS
854

Input: s (6681 converter number, followed by a carriage return).

865
Display: THE 863 EQUIPMENT IS
854

Input: e (3000 equipment controller number, followed by a carriage return).
865

Display: THE 863 UNIT IS
854

Input: uu (unit number, followed by a carriage return).

Deadstart will be ready to proceed.

60189400B 9-17

UTILITY PROGRAMS 10

The SCOPE library contains a set of PP and CP utility programs which can
be called by control cards or by keyboard entries.

Card-to-tape, tape-to-tape, tape-to-print, card-to-central storage, and
central storage-to-punch operations as well as general file manipulation
are possible.. Utility operations can be performed with named files, each of
which designates a specific peripheral device, such as a card reader, tape
unit, printer, card punch or disk.

Before the first reference to any named file, an equipment should be assigned
to it by the operator with the ASSIGN statement or by the programmer with
the REQUEST statement; otherwise, the system assigns the file to a disk unit.
All files, except disk, specify a unique peripheral equipment and all refer-
ences to a specific equipment are made through the file name.

Utility jobs conform to the normal deck structure. The job deck contains the
following cards:

Job card first control card
Request cards equipment assignment
Program cards data operations
6,7,8,9 end of job

The job card includes name, priority, time limit and field lengths. If only
utility programs are to be executed, a short field may be specified. In all
copy operations, the central memory buffer is automatically set up to use

the entire field length of the job. Some operations between high speed devices
may be accelerated with a larger field length.

The operator should be requested to assign equipment to all necessary files
which do not reside on the disk. Tapes can be rewound and positioned upon
request. Each utility program is called by specifying its name starting in
column 1. Parameters for execution of the program appear in parentheses
after the name.

Example:

To print the third and fourth coded files from a tape:

TAPEPRT, T520,CM 1000,P6. (Job Card)

10-1

10.1
COPY ROUTINES

10-2

Assign unique file names, PRINTER and MAGTAPE, with REQUEST
control cards to a printer and tape unit:

REQUEST PRINTER.
REQUEST MAGTAPE.
REWIND(MAGTAPE)

COPYCF (MAGTAPE, XX, 2)

COPYCF (MAGTAPE,
PRINTER, 2)

COPY TO END-OF-INFORMATION

COPY (file 1,file 2)

(Operator would assign available
printer e.g., 3.ASSIGN20.)

(Operator would assign specific tape
unit e.g., 3.ASSIGN13.)

Rewind tape unit to be sure of position.

Skip tape to beginning of third file by
copying first two files to an unused
dummy file XX.

Copy the two coded files to the printer.

An end-of-file card completes the job.

The named file 1 is copied onto file 2 until a double end-of-file or end-of-
information is detected on file 1. Both files are then backspaced over the
last file mark. If parameters are omitted, INPUT, OUTPUT are assumed.

This routine may be used to copy a tape even if the number of files on the
tape is not known. A sample deck structure would be as follows:

5
7 7

8 |8 /COPY(TAPE 1, TAPE 2)
o |9 /REWIND (TAPE 2)

/REQUEST TAPE 2, MT.

REWIND(TAPE 1)

/REQUEST TAPE 1, MT.

JOB, P17, T100, CM3000.

COPY BINARY TFILE

COPYBF(file 1,file 2,n)

The number of binary files specified by n (decimal) are copied from file 1 to
file2. If the first and second parameters are omitted, INPUT and OUTPUT
are assumed. If the third is omitted, one file is copied.

COPY BINARY RECORD

COPYBR(file 1,file 2,n)

The number of hinary records specified by n (decimal) are copied from file 1
to file 2. If the first and second parameters are omitted, INPUT and OUTPUT
are assumed. If the third is omitted, one record is copied.

This operation terminates on reading a file mark from file 1 or when the

required nmmber of records has been read. A file mark is not written on
file 2.

COPY CODED (BCD) FILE

COPYCF(file 1,file 2,n)

The number of coded (BCD) files speéiﬁed by n (decimal) are copied from
file 1 to file 2. If the first and second parameters are omitted, INPUT and
OUTPUT are assumed. If the third is omitted, one file is copied.

10-3

10-4

COPY CODED RECORD

COPY CR(file 1, file 2,n)

The number of coded logical records specified by n (decimal) are copied from
file 1 to file 2. If the first and second parameters are omitted, INPUT and
OUTPUT are assumed. If the third is omitted, one record is copied.

This operation terminates in reading a file mark from file 1 or when the

required number of records has been read. A file mark is not written on
file 2.

COPY SHIFTED BINARY FILE

COPYSBF(file 1, file 2)

A single binary file of coded information is copied from file 1 to file 2, shifting
each line one character and adding a leading space. If parameters are
omitted, INPUT, OUTPUT are assumed.

This routine is used in formatting a print file where the first character of
each line is not a control character and is to be printed. The space charac-
ter added will result in single line spacing when the file is printed.

Example:
Control cards to print a Hollerith card file. The Hollerith card file read by

the operator-assigned card reader will be printed on OUTPUT file of job
CARDCPY.

7
8
9 /COPYSBF(CARDS, OUTPUT)

w oo 3D

REQUEST CARDS.

CARDCPY, P1,T100,CM3000.

COPYL

COPY L(file 1,file 2,file 3)

This program allows for selective replacement of one or more routines. File
1 contains the old set of decks; file 2 contains the routines to be replaced, and
file 3 contains the updated set of routines. Files 1 and 2 are not rewound, and
processing continues until the end-of-file on file 1. Routines on file 2 need
not be in any order.

Example:

COPYL(OLD, CORR, NEW)

The following job will update 1AJ, 1BJ, and 2TS from a tape (OLD) which
presumably contains the binary decks of these and other system routines.
CORR will contain the new 1AJ, 1BJ, and 2TS and the new file will be written
on a tape file called NEW,

JOB, CM60000,T1000.

REQUEST OLDPL. (UPDATE LIBRARY TAPE)
REWIND(OLDPL)

UPDATE (Q)

COMPASS (I=COMPILE, B=CORR, S=SCPTEXT)
REQUEST OLD.

REWIND(OLD)

REQUEST NEW.

REWIND(NEW)

COPYL(OLD, CORR, NEW)

UNLOAD(NEW)

REWIND(OLD)

7
8
9

Example continued on next
page.

10-5

(Continuation)
*IDENT, TEST

Mods TO 1AJ, 1BJ and 2TS *COMPILE 1Ad, 1BJ, 2T8S

COPYL Messages

Listing Messages: COPYL DONE
ILLEGAL COPYL PARAMETER
Display Message: UPDATING XXXXXXX.
10.2

LOADING
. ROUTINES UNLOAD FILE

UNLOAD(file 1)

File1 is rewound and unloaded. This does not release the file assignment
to the control point.

REWIND FILE

REWIND(file 1)

This central program rewinds file 1.

10-6

BACKSPACE LOGICAL RECORD

BKSP(file 1,n)

This program allows backspacing of multiple logical records as specified by
the decimal n. Backspacing terminates if file becomes rewound.

LOAD BINARY CORRECTIONS

This peripheral program may be called with a control card or from a display
console. Binary corrections are read from the INPUT file and entered in
central storage. If a parameter is specified in the program call, binary
cards are loaded beginning with that address; otherwise, loading begins at
the reference address + 100. Only one record is read from the INPUT file.
A call must be made for each block of data to be loaded. This program may
be called with either of the following formats:

LBC.
LBC, 2300.

This program is intended for loading cards punched through PBC.

LOAD OCTAL CORRECTIONS

This peripheral program may he called with a control card or at a display
console. Octal corrections are read from the INPUT file and entered in
central storage. The octal correction cards must be in the following format:

|1 |7
[23001 |45020 04000 00042 00044

Address begins in column 1; leading zeros may be dropped in the address.
The data word begins in column 7; spacing in the data word is not important
but the word must contain 20 digits.

LOC. Reads all correction cards in the next INPUT file record
and modifies central storage accordingly.

LOC, 1000. Clears central storage from the reference address to the
specified address; correction cards are then read from
the INPUT file.

10-7

LOC (2022, 3465) Clears central storage from the first specified
address to the second; correction cards are then
read from the INPUT file. This program may he
called to clear storage by providing an empty
record in the INPUT file.

10.3
INPUT/OUTPUT
ROUTINES PUNCH BINARY CARDS

Only a control card may be used to call this peripheral program which punches’
a deck of hinary cards directly from central storage. Storage is not modified
by this operation. '

PBC, 2000. A binary deck is punched from the reference
address to the specified address.

PBC (2000, 3000) A binary deck is punched from the first specified
address up to but not including the second.

PBC. Punches a binary deck using the contents of
RA+117'8 as a control word for deck length. The
deck always begins at the reference address
+ 1008 and contains the number of words specified
in the lower 18 hits of RA+11’78. This call may he
used for punching any central or peripheral
program in standard format.

READ BINARY RECORD

One binary record may be loaded from a file specified by the user.

RBR, n.

n Specifies fifth character of file name, 1~7. (first
four characters are TAPE)

Loading begins at RA+100. If the record cannot fit into central memory, a
dayfile message RECORD TOO LONG appears. RBR uses central memory
locations f1-5 through f1-1 for buffer parameters; the original contents of
these locations are destroyed.

10-8

WRITE BINARY RECORD

A binary record may be written from central memory to a file specified by
the user.

WEBR, n, rl.
n Specifies fifth character of file name, 1-7. (first four characters
are TAPE)
rl Record length in words. If omitted, length is taken from the
lower 18 hits of RA+117_.

8

WBR begins writing from RA+100. The contents of central memory locations
f1-5 through f1-1 are used by WBR for buffer parameters; original contents
of these locations are destroyed.

Example:

To write a program on tape after patching it:
REQUEST TAPES.

REQUEST TAPE2,

REWIND(TAPESD).

REWIND(TAPE2).

RBR,5.

LOC.

WBR, 2.

10.4
REQUEST FIELD

LENGTH The field length for the execution of a program may be changed.
RFL,nfl.
nfl New field length (octal)

This routine is also used internally by the compile (RUN). For a short
50008 word program, storage would be used most efficiently by specifying
RFL.

10-9

Example:

JOB, T300, CM45000, P7.
RUN(S)
RFL, 5000.

SAM. (execute program with FL=5000)

10.5
DUMP STORAGE This peripheral program may be called with a control card or from a display
console in any of the forms shown below:

DMP, Will dump the entire exchange package and 100
locations before and after a stop location.

DMP,x. Will dump from the reference address to the
parameter address.

DMP (x,y) Will dump from the first specified address to
the second. The entire control point area is
also dumped.

DMP (4xxxxx, 4yyyyy) Produces absolute core dumps. xxsox defines
the lower bound, yyyyy defines the upper bound
of absolute core locations.

10.6
COMPARE Using a control card heginning with COMPARE, one or more consecutive

records on one file may be compared with the same number of consecutive
records on another file to determine if they are identical. The pattern for
the control card is:

COMPARE(f1,f2,n,1,e,1)

f1,f2 Files to be compared

n Number of records in f1 to be compared to f2

1 End-of-record level number

e Number of non-comparison records to be written to the

OUTPUT file

T Number (octal) of counted records to he processed during
the comparison. Included in non-comparison record
OUTPUT file if e parameter is given.

10-10

The comparison hegins at the point where each file is currently positioned
and continues until the number of ends-of-records of the level specified or
a higher level has been passed over.

If the comparison shows that all pairs of records are identical, a dayfile
message GOOD COMPARE is given; otherwise, the message is BAD
COMPARE. Discrepancies may be listed on file OUTPUT depending on the
parameters on the COMPARE card.

Examples:
COMPARE(RED, BLUE)

This will compare the next record on file RED with the next record on file
BLUE.

COMPARE(RED, BLUE, 6)

This will compare the next six records, whatever may be the level of their
end-of-record marks. But each end-of-record on file RED must have the
same level as the corresponding end-of-record on file BLUE.

COMPARE(RED, BLUE, 3, 2)

This will compare the two files from their current positions up to and in-

cluding the third following end-of-record whose level number is at least 2.
Both the records and the levels of their end-of-record must match to give

GOOD COMPARE.

The only indication of bad comparison hetween corresponding records will
be the message BAD REC.n on OUTPUT, where n is the record number,
counting the first one read on each file as number 1. If more information
is wanted, errors and records must be specified as parameters.

Example:
COMPARE(GREEN,BLACK,3,2,5,1000)

This will do the same comparison as the previous example, but for the first
five discrepancies of a word in one file with the corresponding word in the
other file, the words from each file will be listed in OUTPUT, together

with their position in the record. The position will be indicated by an octal
number, counting the first word as number 0. This will be done only for the
first 1000 records read on each file in which discrepancies are found. 1000
is chosen as an indefinitely large number, because the number of records to
be compared is rather small, and details are wanted about all discrepant
records. If two long files were to be compared, something like 20 might

be given as the records parameter, so that a reasonably large number of

10-11

10-12

discrepancies would be described in detail; but if through an error the two
files were completely different, an enormous and useless listing would not
be produced. TFurthermore, the comparison will be abandoned if this limit
is exceeded, and the files will be left positioned where they stand.

A discrepancy between the levels of corresponding ends-of-records will be
listed on OUTPUT, and the comparison will be abandoned, leaving the files
positioned immediately after the disagreeing ends-of-records.

Mode need not he specified in the COMPARE card. It is handled in the
following manner.

The first record of the first-named file (GREEN) is first read in the binary
mode. If this produces a redundancy check, it is backspaced and re-read

in coded mode. If this still produces a redundancy check, the fact is noted
in file OUTPUT, the corresponding record of the second-named file (BLACK)
is skipped over, and the process begins again. If the coded readis success-
ful, the corresponding record of file BLACK is read in coded mode. If this
record of BLACK gives a redundancy check, the fact is noted in file OUT-
PUT, and nothing further is done with that record. Each record of file
BLACK will be read in the same mode as that in which the corresponding
record of GREEN was successfully read; but if the record of GREEN was
unsuccessfully read in both modes, the record of BLACK will he read in

the same mode as the preceding record of BLACK. Once a record of
GREEN has been read without redundance in one mode or the other, following
records of GREEN are read in the same mode until a change is forced by a
redundancy check.

Disk records can be read indifferently in either mode, so that the above
strategy imposes no difficulty if a tape file is being compared with a disk
file.

DEBUGGING AIDS 11

11.1
TRACE

11.1.
SCOPE
CONTROL CARD

60189400A

Debugging aids include SNAP, TRACE, and DUMP and are submitted as
normal jobs.

The tracing capability provides an analysis of program execution. Instructions
based on storage references, operand references, register usage and branch
instructions are analyzed. Output is written on a local file named SNACE.

If TRACE output is to be listed, SNACE must be rewound and copied to the
standard output file (OUTPUT). TRACE output always includes a dump of

the contents of the P register, all operand registers involved and the result
register. An initial message indicates where tracing begins and the range
involved. A terminal message is written when tracing stops.

Each instruction within a designated range is scanned for triggers, established
by TRACE control card parameters. Traps are placed at instructions which
contain triggers. As each trap is encountered during execution, the designated
instruction is executed and the specified output is written on SNACE. TRACE
continues until the specified parameters are satisfied and as long as the
program remains inside the designated range.

Return jump instructions outside the range must be calls to simple subroutines,
and they must return through the subroutine's entry point. Tracing stops when
the subroutine is entered and resumes when the subroutine returns to the
range.

Tracing ranges can overlap and multiple outputs can be triggered.

TRACE may be used with all system loading schemes except that programs
loaded entirely from the library cannot be traced. OVERLAY/SEGMENT
mode has special requirements (section 11.1.3). When TRACE cards are
encountered, the system prepares TRACE tables to be referenced during
subsequent loading. Calls for SNAP features cannot be traced.

The following SCOPE control card initiates TRACE.

(TRACE,pl,pZ, ...,p0.

11-1

11-2

The order of parameters is not significant except as noted below. TRACE
cards must be loaded contiguously.

Parameter Description
Range Identification: i is an optional, alphanumeric identifier (1-7
ID=i characters) printed on TRACE output. If con-

tinuation cards are used, it must appear some-
where on the first card and on all continuation
cards as the first parameter.

Initial address: e is an entry point name.
IA=e or e+n ¢ is a labeled common block name.
JAl=e-n n is an octal integer = T77777.

TAC=c or ctn

IACl=c-n

Last address: The tracing range includes all instructions
from IA to LA (LA must be greater than I14).
LA=e or e
LAl=e-n
LAC=c or c+n

LACl=c-n

Branches outside range JIA-LA terminate trace output. It resumes when
control passes back into the range. Tracing for the specified range terminates
until control passes back through the address at which tracing begins.

The IAT flag, set when IA is encountered, is turned off only when LAT is
encountered. When a trigger is encountered, only the output specifications
with a set JAT flag are processed. The first time IA is passed through, the
trace counter is changed to 1. The counter is incremented only if control
passes through LAT of the range prior to passing through IA again. Returning
to IA before LA is encountered does not affect the frequency parameter count.
Output is dependent upon the frequency parameters.

TReferences to IA apply to IA1, TAC, TAC1 also; references to LA apply to
LAl1, LAC, LACI1 also.

60189400A

Parameter

Frequency:
Fl=n
F2=mn
F3=n

Description
n is an octal integer; it must not be 0. If
parameter is not specified, 1 is assumed.
F1 Tracing begins Flst time IA is encountered.

F3 Thereafter, tracing takes place every
F3rd time IA is encountered.

F2 Tracing stops F2nd time IA is encountered.

Three trigger specification parameters are described below; at least one
must appear on a TRACE card.

Register trigger:
TR=P,An,Bn, or Xn

Masking trigger:

TM= L.k
—m,kl,kz, 0

Location trigger:
TL=e or e+n
TLl=e-n

TLC=c or c+n
TLCl=c-n
TLB=b

Register dump:
RD

n is the register number 0-7.

Each instruction is examined to determine
whether or not the specified register is used as
a result register. The P register measures
satisfactory completion of a conditional jump.
It must be placed before other triggers; other-
wise, traps are set for previously set traps.

m is an octal mask. (5 or 10 digits)

k is a match key associated with mask m. A

mask (Boolean AND) of each instruction in the
range is compared with all k's for that mask.

If equality to any k is found, the instruction is
used as a trigger.

e is entry point name
c is labeled common block name
n is octal integer =777777

b is nth location in blank common

Each instruction making an A-register reference
to the location is used as a trigger.

If RD is specified immediately following a trigger,
(TR, TM, or TL) an octal dump of all A, B and
X registers is included in the output.

The two output specification parameters are activated when one of the trigger

parameters is encountered.

11-3

Parameter

Storage location
reference:

OL~e,i or etn,i
OLl=e-n,i
OLC=¢,i or cin,i
OLCl=c-n,i
OLB=h,i

Register designator:

OR=r,1i

Description

i is an octal integer less than 100

When a trigger is encountered, i words beginning
with the specified location are written in octal
format on SNACE. i must be specified.

When a trigger is encountered, i words beginning
at the location specified in the designated
register are written in octal format on SNACE.

i must be specified.

r is a register designator: An, Bn, Xn

n=0-7

11.1.2

TRACE EXAMPLES

AND OUTPUT
ID=AA
IA=ST
LA=NT
TL=NT,RD
OL=ST,77
F2=10

11-4

(TRACE, ID=AA,IA=ST, LA=NT, TL=NT, RD,OL=8T, 77, F2=10.

AA is the range identifier in messages produced
each time the start or end of range is encountered
and each time output results from trap execution.

ST is an entry point in user's program; it
designates beginning of range.

NT is an entry point in user's program; it
designates end of range.

Trigger which causes trap to be set each time
NT is referenced within the stated range.

At execution time, the trap in the instruction
referencing NT causes TRACE output.

RD causes a dump of the registers each time an
instruction referencing NT is executed.

Output trigger. FEach time the instruction
referencing NT is executed, 77g words are
dumped beginning at the entry point ST.

Output is produced the first eight times the
instruction is executed. (F parameters are
assumed to equal 1 if not present on a trace
card; therefore, F1 and F3=1.)

60189400A

OUTPUT

Assume: ST=4567 (IA)

NT=4577 (LA)

The instruction SA5 NT is present at location 4571.
AA STARTS IN LOCATION 004567
TRAP FOR AA AT 4571
OPERAND REGISTERS, B0=000000

K=004577

RESULT REGISTER IS A5=004577
B0=000000
B1=054520
B2

X7=01040422000000000000
004567 data data data data
004573

data
004663 data data data
AA ENDS IN LOCATION 004577

TRACE,ID=REGS,IA=START, LA=NEXT, TR=P, RD, TR=X6, OR=B4, 6.

ID=REGS range identifier

IA=START i Timit

LA=NEXT range limits . . ‘
Each time a jump occurs, a trap is set

TR=P,RD tran trigeers and the registers are dumped (RD).

TR=X6 b irigg Each time X6 is used? as a result
register, a trap is set.

OR=B4, 6 Output consists of six words starting at

the address in B4.

TIn this case, only once: no frequency parameters are specified;each is assumed
to be 1.

60189400A 11-5

11.1.3

TRACE IN OVERLAY
OR SEGMENT
MODE

11.2
SNAP

11-6

TRACE,ID=Q,IA=S, LA=E, F1=3,F2=7,F3=2, TM=00700,00600, OR=B4,7.

ID=Q range identifier
IA=S range limits
LA=E &
TM=00700
! X wl " 0700=
00600 trap trigger 00700=octal mask
00600=match key
Whenever the third digit of an instruction
is six, the designated output (OR=B4,7)
occurs if the frequency requirements
are met.
F1=3,F2=1, frequency Output is not to begin until the third
F3=2 requirements time the range is passed through. It
is to be repeated each second time
thereafter through the seventh time
the trap is encountered.
OR=B4,7 output trigger Output consists of seven words of data

starting at the address in B4 register.

In overlay or segment mode, the DEBUG card (11.4.1) with the T parameter
must be present when the overlay file is generated. As the TRACE routine
is loaded with SEGZERO or with the (0,0) level overlay, TRACE cards must
appear just prior to the program call card which causes loading of the (0,0)
level overlay or SEGZERO (section 11.5, Sample Deck Structures).

When TRACE cards are encountered, the system prepares TRACE tables to be
referenced during subsequent loading. The loader tables for overlays are
read from the overlay file. As each overlay is loaded, TRACE's which

apply to it are established. Similarly, segment loading causes TRACE traps
to be inserted. .

The SNAP dump capability provides selective area printouts upon execution
of specified instructions. Printing frequency is established by parameters.
The dump format is variable.

60189400A

11.2.1
SCOPE
CONTROL CARD

60189400A

When SNAP cards are encountered the system prepares SNAP tables (which
extend toward the reference address). During subsequent loading SNAP's
are inserted which apply to the newly loaded programs. The SNAP control
card may specify an entry point to a user supplied routine which is entered
before the SNAP output is written.

Prior to execution, the instruction at a SNAP triggered address (I4) is
replaced by a return jump to the SNAP routine or a user routine if specified.
The replaced address is saved. When the trapped address is encountered
during execution, the SNAP routine stores all registers. Routine parameters
are contained in arrays; the addresses of the arrays are passed to the
specified routine. The arrays contain: the saved registers, the parameters
from the SNAP card, and the address at which the SNAP occurs. Tollowing
return from the routine, the SNAP dump is written on the local file SNACE
or on an alternate file if an FET address is specified by the routine. To
obtain listings, the dump written on local file SNACE must be copied onto
the file OUTPUT. A user routine may set a flag to suppress output.

Following the dump, saved instructions are executed before passing control
to the trapped location + 1. If an alternate address is placed in the communi-

cations area, SNAP will return to it after executing the saved instructions.

SNAP cannot be used for programs loaded entirely from the library.

The following SCOPE control card initiates SNAP:

SNAP, P3Py ouP .

Parameters may appear in any order except as noted below. All SNAP
cards must appear contiguously.

Parameter Description
SNAP identifier: i is an optional 1-7 character alphanumeric

identifier printed with the dump. If continuation
cards are used, ID must appear somewhere on
the first card and as the first parameter on
continuation cards.

ID=i

11-7

11-8

Parameter
Address where trap
is planted:
IA=e¢,etn, or a
IAl=e-n

IAC=c or c*tn
IACl=c-n

First word address
of area dumped:

FWA=e,e+n,n, ora
FWAl=e-norn
FWAC=¢c, ctn, orn
FWACl=c-norn
FWAB=b

Last word address
of area dumped:

LWA
LWA1L
LWAC
LWAC1
LWAB

Interval between
words dumped:

INT=n
Dump format:

F=code

Description

e is an entry point name
c is a labeled common block name
n is an octal integer

a is an absolute address (relative to RA)

b is bth location in blank common; other
symbols are as in IA,

n is assumed if e (or ¢) has appeared as a
previous parameter on the card. Thus,
address will be e+n, e-n, c¢+n, or c-n, as
appropriate. a is assumed if e has not
appeared yet on this card.

Formatis the same as for FWA.

LWA must be = FWA.,

n is a positive octal integer; if not specified,
1 is assumed. For a D dump, n is doubled.

Designated by one or two of the following codes:
One only of the characters may be:

(0] Octal dump

M Octal dump with mnemonic operation codes

I Integer dump

S Single precision floating point

F If exponent = 0, I format; otherwise, S
format.

D Double precision floating point dump (two
words)

Cc Display code dump

60189400A

Parameter Description

The second character is optional; it may suffix
or prefix any other designator.
R Register dump.

If FWA and LWA are present and F is not
specified, octal (O) and register (R) dumps
are given. If FWA and LWA are not present
and F is not specified, a register dump is
given,

Frequency: n is an octal integer. It cannot be zero; 1 is
assumed if n is not specified.

F1 Tracing begins the Flst time IA is

F2=n encountered.

F3 Therafter, tracing takes place every F3rd

Fl=n

F3=n time IA is encountered.
F2 Tracing stops the F2nd time IA is
encountered.
User's entry point: Optional parameter; must be last on the card.
UR=p,rl,...Tn p specifies the user's entry point to be called

before SNAP dump is taken. r parameters,
passed to the routine, may be of two forms:

Alphanumeric string, 1-10 characters, termi-
nated by a zero byte. If the string contains 9'
or 10 characters, an extra word is required.

Decimal integer, converted to binary, stored
right justified.

The parameter list is terminated by a -0 (word
filled with sevens) which is used optionally by
the user's routine. It has no meaning for SNAP.

SNAP enters the user entry point in the following manner:

L RJ P (user entry address)
L+1 TADR (FWA of loader SNAP tables)

User parameters begin at FWA-10B and extend
toward the reference address.

L+2 RBO (FWA of register storage area)
L+3 Return to user routine

The user program must increment the return
address by two so that return to SNAP will be
at L+3,

60189400A 11-9

11.2.2
SNAP CONTROL
CARD EXAMPLES

11-10

Registers are stored one per word in the first 24 words of the register
storage area as follows:

B0-B7, A0-A7, X0-X7

RB0+24 has the following format:

Bits

59 No-dump flag; if bit 59 is set, SNAP output is suppressed.
This bit is cleared on entry to the user routine.

18-58 Not used

0-17 FET address can be inserted to designate an alternate file

for SNAP output.

RB0+25 has the following format:

Bits
18-59 Not used
0-17 Address to which SNAP returns (address+l of trapped

instruction). Address return can be changed by replacing
the address in these bits.

(SNAP (ID=AX,1A=L, FWA=B, LWA=B+150, F1=10, F2=35, F3=2, F=0)

Produces a dump in octal format labeled AX consisting of all locations from
B to B+150g. The dump starts the 8th time the instruction at location L is
encountered, and is taken every 2nd time thereafter through the 34t118 time.

(SNAP(ID=AX, 1A=L, FWA=B, LWA=B+150,INT=5, F1=10, F2=35, F3=2, F=0)

Same as above, except every 5th word is dumped startiﬁg at location B and
ending at location B+1448.

60189400A

11.2.3
SNAP IN OVERLAY
OR SEGMENT MODE

11.3
DMP

60189400A

(SNAP(ID=AX,1A=L, FWA=B, LWA=B+150,INT=5)

Continuation card:

(SNAP(ID=AX, F1=10,F2=35,F3=2, F=RO)

Each dump begins with the contents of all registers at the time of entry to
SNAP,

(SNAP(IA=TAG)

The first time location TAG is executed, a dump is produced of the contents
of all registers as they appeared upon entry to SNAP.

(SNAP(IA=HOOK, F=M, FWA=C, LWA=C+30,ID=SYM, UR=IN, 1, A, 2)

When location HOOK is executed, control passes to a user subroutine (entry
point=IN). If the user routine returns control to SNAP, and if the no-dump

flag is not set (in RB0+24, bit 59), a mnemonic dump is taken (labeled SYM

of locations C through C+30g. Parameters 1, A, and 2 are appended to the

loader SNAP tables.

SNAP declarations are inserted as each segment is loaded. The SNAP routine
is loaded with SEGZERO and with the (0,0) level overlay. The DEBUG card
with the S parameter must be included when the overlay file is prepared. The
DEBUG(S) card must appear immediately before the initiation of a segment
load (section 11.5). With normal loads, the DEBUG card is not necessary.

Upon normal or abnormal job termination, three dump formats are available:
octal, labeled, change.

11-11

11-12

Octal

Standard DMP option. If a DEBUG control card (section 11.4) is not present
in a job, an octal core dump is produced when the DMP control card is
encountered.

Labeled

If a DEBUG control card with no parameters is present, a labeled dump is
produced when the DMP control card is encountered, TFormat of the dump is
the same as for the octal dump; except as the origin of a common block or
subprogram is encountered, the associated name is printed. Also, a relative
address counter indicates the position of the first word on the line relative

to the last encountered subprogram or common block. The DEBUG file is
used to locate the origin and names of the subprogram and common blocks.

The DMP card uses symbolic names as well as octal numbers; the two may
be combined. (A common block name is preceded by an empty parameter.)
The dump begins at the origin of the first parameter name and continues
through the space occupied by the subprogram (or common block) mentioned
as the second parameter. The second parameter origin must be greater than
the first parameter origin.

Example:

(DMP(ALPHA, CAT)

Produces a labeled dump of the program ALPHA and all locations through
program CAT. Intermediate programs encountered are identified.

If a job is in overlay or segment mode, the DEBUG file is updated with the
loading of each overlay or segment,

Change

If parameter C is present on a DEBUG control card, a list of core locations
which have changed from their initial values is produced when the DMP
control card is encountered. When a job begins an execution phase, a core
image of the entire field length is written on the DEBUG file. The image is
compared with the contents of memory at the time of termination. The
contents of changed locations are listed. A labeled dump always precedes a
change dump.

60189400A

11.3.1
DMP
CONTROL CARDS

60189400A

Change dumps permit a swift analysis of subprograms entered, changed data,

and modified instructions.

Large areas of instructions or data which have

remained constant need not be considered.

A change dump will not be produced during overlay or segment mode.

DMP.

DMP , xxxxxxX.

DMP (xotxxxx, Yy VYY)

Dumps the exchange package and P-77 through

P+77 onto OUTPUT. The exchange package dump
consists of P, RA, FL, RAECS, FLECS, EM,
A0...A7, BO...B7, X0...X7 and the contents of
locations A0-A7. Each line of the storage dump
contains an address and the contents of from one to
four central memory words starting at that address.

Dumps from the reference address through the
parameter address, XxXXxX.

Dumps from address xxooox through yyyyyy. I
the high-order bit of each 18-bit address is set,
an absolute dump is given. (For example, DMP
(400300, 400450) causes absolute locations 300
through 450 to be dumped, not RA+300 through
RA+450). If a DEBUG file is created, xxxxxx and
yyyyyy may be symbolic. Printing of a central
memory word is suppressed when that word is
identical to the last word printed. Its location is
printed and marked by a right arrow.

11-13

11.3.2
DMP EXAMPLES

11.4
DEBUG

11-14

DMP(1000) or DMP(100, 200)

Interpreted as a standard DMP request

except it can be labeled (with or without
a change dump) if appropriate DEBUG

cards are present.

The following dumps must be labeled:

Call
DMP(CPC,IO)

DMP(COPYL)

DMP(100, COPYL)
DMP(COPYL, 2000)
DMP(COPYL, COPYL)
DMP(, RED)
DMP(, RED, , WHITE)
DMP(, RED, , RED)
_DMP(100, , RED)
DMP(IDA, , RED)

DMP(, WHITE, ELLA)

DMP(, WHITE, 70000)

Dump Beginning

Start of program CPC

Reference address

RA+100

Beginning of COPYL

Start of program COPYL
Reference address

Start of common block RED
Start of common block RED
RA+1008

Start of program IDA

Start of common block WHITE

Start of common block WHITE

Dump End

End of program
107

Beginning of
COPYL

End of COPYLT
RA+2000g

End of program
copPYLT

Start of common
block REDT
End of common
block WHITET
End of common
block REDT
End of common
block REDT
End of common
block REDT
End of program
ELLAT
RA+70000g

The DEBUG control card is required when debug aids are used with overlay
or segment jobs or when a labeled or change dump is requested. The DEBUG
control card applies to all subsequent loading and executions within a job.
Any program loaded completely from the system library, however, cannot

use the debugging aids.

loaded from a user file.

T One word beyond dump end is dumped also.

Such routines can be debugged only when they are

60189400A

11.4.1
DEBUG
CONTROL CARD

11.4.2
DEBUG USE

60189400A

DEBUG,C,T,S. (Parameters are optional.)

C Labeled dump is followed by a change dump when the DMP card
is encountered; if C is absent, only a labeled dump is produced.

T In overlay mode, loads TRACE and SNAP routines with the (0, 0)
overlay; in segment mode, loads TRACE with SEGZERO.

S In overlay mode, loads TRACE and SNAP routines with the (0,0)
overlay; in segment mode, loads SNAP with SEGZERO.

DEBUG cards with both C and T parameters (or with both C and S parameters)
cannot appear in the same job: a change jump is not allowed in overlay or
segment jobs. If such cards do appear, the job is not terminated, but the
change dump is not produced. DEBUG(T) or DEBUG(S) does not signal a
labeled dump, A DEBUG card with no parameters must be present to obtain
a labeled dump without a change dump.

Overlay loading T

If a DEBUG card is included when an overlay is prepared, the loader inserts
a record on the overlay file following the overlay. This record consists of the
loader table information necessary for traces, and for snapshot and formatted
dumps. When the overlay is loaded, the table information is extracted from
the overlay file and placed on the DEBUG file.

Normal loading/segment loading i

Upon completion of loading, a local file is created. This file, named DEBUG,
contains the loader table information necessary for formatted dumps. It is
updated as each segment is loaded. During user loading, execution does not
affect or is not affected by the DEBUG card except for user segment loading.

TThe change dump does not apply to overlay or segment loading.

11-15

11.5
SAMPLE

DECK STRUCTURES TRACE run:
job card
COMPASS.
TRACE (params) TRACE and SNAP cards appear immediately
LGO. before program call card that initiates the
run.,

REWIND (SNACE)
COPYCF (SNACE, OUTPUT)

7
89

(COMPASS SOURCE DECK)

11-16 60189400A

Combined TRACE/SNAP run:
job card ‘
COMPASS,
COPYBR(INPUT, LGO)
TRACE(params) TRACE and SNAP cards appear immediately

before program call card that initiates the

TRACE (params) ran.

SNAP(params)

.SNAP (params)

LGO.

REWIND(SNACE)
COPYCR(SNACE, OUTPUT)

7
89

" (COMPASS source deck)

7
8
9

(Binary of previously assembled program)

60189400A ' 11-17

11-18

Normal execution with labeled dump if job aborts:

job card

DEBUG. DEBUG card remains in force throughout
COPYBR(INPUT, LGO) the job.

COMPASS.

LGO.

EXIT,

DMP(6000) Dumps locations occupied by program PA.
DMP(PA, PA) fi:;ll:;have been loaded for this card to be
7 89

(Binary of previously assembled program)

7
89

(COMPASS source decks including program called PA)

f COMPASS terminates abnormally, the labeled dump produces labels
reflecting programs loaded for COPYBR. COMPASS, a library overlay,
has no loader tables to update the DEBUG file.

60189400A

60189400A

SNAP run with labeled and change dump:

job card
DEBUG(C) DEBUG card must appear before the SNAP card.
SNAP(params) SNAP cards apply only to next load; they must
INPUT appear immediately before the card initiating

) that load. (SNAP and TRACE cards do not
DMP(1000, 2000) signal the end of the current load.)
REWIND(SNACE)

COPYCF(SNACE, OUTPUT)
EXIT.

DMP(5000) .
REWIND(SNACE)
COPYCF(SNACE, OUTPUT)

7
89

(Binary decks to execute)

11-19

Overlay run using both SNAP and labeled dumps:
job card
DEBUG.
DEBUG(S)
LOAD(FILE)
NOGO.
SNAP({params)
OVFILE.
DMP(1000)
REWIND(SNACE)
COPYCF(SNACE, OUTPUT)
EXIT.
DMP(10000)
REWIND(SNACE)
COPYCF(SNACE, OUTPUT)

FILE contains overlay directives and binary decks which comprise the overlays
to be written on file OVFILE when LOAD(FILE) is processed. Once execution
of the overlay file begins, dumps will be labeled because of the DEBUG card.
The following rules apply:

The DEBUG(S) card must precede the LOAD(FILE) cards so that the
loader tables will be placed on the overlay file as it is generated and
so that in (0, 0) overlay the debugging routines will be loaded.

The NOGO card must appear; otherwise, the SNAP routine is loaded in
the last overlay.

The SNAP cards must appear just before the card which initiates loading
of the (0,0) overlay.

11-20 60189400A

Segment run using both TRACE and labeled dumps:

job card

DEBUG. The DEBUG cards must appear before any
DEBUG(caxds mst sppeas jmmediately before the
TRACE(params) load to which they apply.

INPUT.

DMP(40000)

REWIND(SNACE)

COPYCF(SNACE, OUTPUT)

7
89

(Segmentation loader directive cards)

(Binary decks)

60189400A 11-21

11-22

job card

REQUEST SNACE.
REWIND(SNACE)
SNAP(params)
INPUT.

COPYBF(X, SNACE)
EXIT.

COPYBF(X, SNACE)

7
89

object deck

6
78
9

job card
REQUEST SNACE.
REWIND(SNACE)

SNAP run with SNACE output going to tape;
tape to be listed at a later time:

The COPYBF(X, SNACE) cards write an end-
of-file on the tape. Normally, this is a faster
method of running SNAP and TRACE when
output to SNACE is extensive.

COPYCF(SNACE, OUTPUT)

60189400A

APPENDIX SECTION

CHARACTER SET

CHAR DIis- HOLLERITH EXT CHAR DIS- HOLLERITH EXT
(printed) PLAY (punched) BCD (printed) PLAY (punched) BCD
A 01 12-1 61 0 33 0 12
B 02 12-2 62 1 34 1 01
C 03 12-3 63 2 35 2 02
D 04 12-4 64 3 36 3 03
E 05 12-5 65 4 37 4 04
F 06 12-6 66 5 40 5 05
G 07 12-7 67 6 41 6 06
H 10 12-8 70 7 42 7 07
I 11 12-9 71 8 43 8 10
J 12 11-1 41 9 44 9 11
K 13 11-2 42 + 45 12 60
L 14 11-3 43 - 46 11 40
M 15 11-4 44 * 47 11-8-4 54
N 16 11-5 45 / 50 0-1 21
o) 17 11-6 46 (51 0-8-4 34
P 20 11-7 47) 52 12-8-4 74
Q 21 11-8 50 3 53 11-8-3 53
R 22 11-9 51 = 54 8-3 13
S 23 0-2 22 blank 55 space 20
T 24 0-3 - 23 , 56 0-8-3 33
U 25 0-4 24 . 57 12-8-3 73
A% 26 0-5 25 = 60 0-8-6 36
W 27 0-6 26 [61 8-7 17
X 30 0-7 27] 62 0-8-2 32
Y 31 0-8 30 : 63 8-2 00
Z 32 0-9 31 # 64 8-4 14

CHAR DIS- HOLLERITH EXT

(printed) PLAY (punched) BCD
- 65 0-8-5 35
v 66 11-0 527
N 67 0-8-7 37
4 70 11-8-56 55
¥ 71 11-8-6 56
< 72 12-0 72171
> 73 11-8-7 57
= 74 8-5 15
= 75 12-8-5 75
- 76 12-8-6 76
; 77 12-8-7 77
end-of- 0000 1632
line

111-0 and 11-8-2 are equivalent

T112-0 and 12-8-2 are equivalent

FET EXTENSION FOR COBOL AND SORT/MERGE USAGE

B

14

15

16

17

18

19

20

13 WORDS of SCOPE-FET

NN NN

59 56 53 47 41 29 23 17 13 8 5 0
Blocker Address Deblocker Address
D Recorcji Length ST U Record
(logical) Type
" I
Rlacaj*lkd Maximum Record Blocker Size of Single
ul Bytes - ! e
Value Length (logical) Ylt Occurrence of Trailex
I
Deblocker
M 1. it
BCP Key Position Bylt s Key Length
|
10
t| INU Spacing Control Label Address
T

Record Count

Fixed record Length

(Logical)

Record Count Rerun Period

ffor Depending on

BLOCKER ADDRESS (18 hits)

‘This is the address of a routine which packs logical records into an output buffer. The routine
determines if there is room in the buffer to receive the logical record. If so, the BLOCKER

routine transfers the logical record to the buffer and updates OUT. I not, the BLOCKER routine
calls SCOPE to write the buffer area onto an external device hefore transferring the logical records

to the output buffer.

transfer.

BLOCKER routines go into RECALL status while SCOPE is processing the data

DEBLOCKER ADDRESS (18 hits)

This is the address of a routine which unpacks logical records from an input buffer into a user's
record area, or which supplies the user with the record's address in the input buffer. This routine
determines if the input buffer already contains another logical record. If so, the DEBLOCKER
processes it as required; if not, the DEBLOCKER calls SCOPE to fill the buffer. DEBLOCKER
goes into RECALL status during the SCOPE operation.

D = Disposal Code

This field for magnetic tape files assumes the following values:

100 REWIND (release)
010 LOCK (save)
001 NO REWIND

RECORD LOGICAL LENGTH (18 hits)

This field is the number of 6-bit bytes in the records for fixed length records; for OCCURS (trailer)
records, it is the size of the fixed portion (length if no trailer items exist); for all other types of
variable length records, this field contains the minimum record size.

ST = Logical Status (4 bits)

This field indicates the logical status of a file:

1IXXX file is currently open

X1XX file is an optional file

XX10 records must be counted to control restart dump
XX01 end of reel condition controls restart dump

U = Use Code (3 bits)

This field used by SORT/MERGE, contains an indicator as to the use of the file described by this
FET. Its values are:

001 sort input
010 merge input
100 output

RECORD TYPE (6 hits)
This field describes the kind of records in the file:

000001 fixed length record

000010 variable length records (length controlled by key field)
000100 variable length records (length determined by presence of a record mark character)
001000 variable length records (fixed portion plus a variable number of fixed length trailer

items). This is the COBOL OCCURS DEPENDING ON type of variability.

010000 universal record. The BLOCKER prefixes each logical record with one word
containing the number of 6-bit bytes in the record and the DEBLOCKER removes this
word. Each of the other record types can be mapped into the universal record format.

RECORD MARK VALUE (6 hits)
This field contains the octal value of the record delimiter for record mark types.

MAXIMUM LOGICAL RECORD LENGTH (18 hits)

This field contains maximum size for variable records of all types as the number of 6-bit bytes in
the record. It is not used for fixed length records.

BLOCKER/DEBLOCKER BYTES (12 hits)

Used in combination with IN (word 3) and OUT (word 4) to specify the next logical record position in
the CIO buffer to he blocked or deblocked.

SIZE OF SINGLE OCCURRENCE (18 bits)
size of one trailer item

This field contains the number of 6-bit bytes in a single occurrence of the trailer item. It is
meaningful only for trailer type variable length records.

M = Mode (2 hits)

This field indicates the recording format of the length key field:
0 binary number
1 decimal number
2 floating point integer

BCP

Beginning character position for variable length records.

KEY POSITION (18 hits)

This field is interpreted by SORT/MERGE as the position of the first 6-bit byte in the length key
field. If the length key field begins in the first 6-bit byte of the record, this field contains the value
of 1.

This field is interpreted by COBOL as the CM address of the length key field.

KEY LENGTH (18 hits)

This field contains the number of 6-hit bytes in the length key field. The length key field contains the
number of 6-bit bytes in the record for key field variable records and it contains the number of trailer
items with the record for variable trailer records (OCCURS DEPENDING ON records). This field
must begin within the first n 6-hit bytes when n is MINIMUM LOGICAL RECORD LENGTH less the
KEY LENGTH.

t = label type (2 hits)

0 standard labels
1 non-standard lahels
2 omitted lahels

IN (1 hit)

Set if file is opened for input or input-output processing.
OUT (1 hit)

Set if file is opened for output or input-output processing.
SPACING CONTROL (18 bits)

This field contains the count of the number of lines to advance the pointer when the WRITE BEFORE
ADVANCING or the WRITE AFTER ADVANCING option is used in COBOL.

LABEL ADDRESS (18 bits)

The address of a 120-character area where the user places the value to be checked against the value
in the first physical record of a file declared as having a non-standard label.

RECORD COUNT (42 bits)
This field is used to count the records that have been processed in the file described by this FET.
FIXED RECORD LENGTH (Logical) (18 hits)

Contains zero for variable length records or the number of characters in fixed length records.

FIXED COUNT RERUN PERIOD (30 hits)

When the ST (logical status field) indicates that a restart dump is to he taken every n records (speci-
fied by user), this field contains n (the number of records to be processed between restart dumps).

The following macro generates the FET appendix.
RECORD T, O, C, E, L, D, U

The RECORD macro generates FET +13 and FET +14.

T Record type =F, V, T, R, S
I fixed length records
AY variable length records (key field type)
T trailer item variable length records (OCCURS DEPENDING ON)
R record mark variable length records
S systems record format
0] Optional file indicator
hlank mandatory file

non-blank optional file

C Restart dumps controlled by record count
blank not controlled hy

non-blank controlled by record count

E Restart dumps controlled by end of reel condition
blank not controlled by end of reel condition

non-blank controlled by end of reel condition

L Record length, number of 6-bit bytes in the record
D Disposal Code

R REWIND (release)

L LOCK (save)

N NO REWIND
U Usage

S sort input

M merge input

0] output

VARIABLE L, M, P, K, S, R

The VARIABLE macro creates FET +15 and FET +16.

L Maximum record length as the number of 6-bit bytes in the largest record
M Key mode
B bhinary
D decimal
F floating point integer
P Key position, position in record of leftmost 6-bit byte in the key field
K Key length as the number of 6-bit bytes in the key field
S Size of a single trailer item as number of 6-bit bytes in item
R Record mark value as octal representation of delimiting character

CONTROL P, t, LA

The CONTROL macro creates FET +17, +18, and +19,

P Number of records to be processed between restart dumps
t Label type
LA Lahbel address for files with non-standard labels

STANDARD LABELS C

Standard Labels are all recorded in the BCD mode at 556 bpi, they are 80 characters in length.

Eor SCOPE 3 only

The standard disk pack device label is 80 characters in length and it is recorded with the RBR
table copy in bytes 0 through 321 of sectors 0, 1 and 2 of cylinder zero, head group zero. Data
is formatted like a standard allocatable device PRU.] The labels, as described, are designed to
conform to the proposed USA Standard for Magnetic Tape Labels and File Structure for
Information Interchange submitted by the x.3.2/457 Committee on November 28, 1966.

In this appendix, "n'" means any numeric digit, 0 through 9; and "a" means any of the 6-bit charac-
ters of the character set in Appendix A.

An optional field may, but does not necessarily, contain the information described. If an optional
field does not contain the designated information, it should contain blanks. Fields not described as
optional are considered to be mandatory and must be written as specified.

For SCOPE 3 only
DISK PACK DEVICE LABEL PRU

Field Name Length Position Description
1 Label identifier 3 1-3 Must be DEV
2 Label number 1 4 Must be 1
3 Reserved 6 5-10 Must be 000000
4 Visual identifier 10 11-20 Optional, unused
5 Reserved 60 21-80 Optional, unused
6 RBR table 380 81-460 Formatted RBR entry -
7 Reserved 178 461-638 Optional, unused
8 Checksum 2 639-640 Logical sum of fields 1-7

60189400B C-1

VOLUME HEADER LABEL

Field Name Length Position Description
1 Label Identifier 3 1-3 Must be VOL
2 Label Number 1 4 Must be 1
3 Visual Reel 6 5-10 Six n characters
Number
4 Security 1 11 Blank = not security protected
Non-blank = security protected
5 Volume Density 1 12 Density of file information on tape
blank or 00 = 556 bpi
1 = 200 bpi
2 =800 bpi
6 Reserved for 19 13-31 Must be blank
operating system
7 Reserved for 49 32-80 Must be blank
future standard-
ization

c-2 601894008

FILE HEADER LABEL

Field Name

1 Label identifier

2 Label number

3 File label name

4 Multi-file
identification

5 Reel number

6 Multi-file
(position-number)

7 Reserved for future
standardization

8 Edition number

9 Reserved for
future standard-
ization

10 Creation Date

11 Reserved for future
standardization

12 Expiration date

15 Security

14 Block Count

]

Reserved for future
standardization

Length

17

by

20

Position Description

1-3 Must be HDR

4 Must be 1

5-21 Any a characters to identify this file

22-27 Any a characters to identify the set of
files that includes this onc. This
ID must be the same for all files of a
multi-file set (mfn)

28-31 4 n characters. Incremented by one
immediately after trailer label is
written on the volume

32-35 4 n characters denoting position
number of file within the sct of files.

36-39 Must be blank

40-41 Two n characters distinguishing
successive iterations of same file

42 Must be blank

43-47 Date file was created; YYDDD, which
is 2 n characters for year and 3 n
characters for Julian date (001 io 366)

42 Must be space

49-53 Same format as Field 10. This file is
regarded as expired when today's date
is equal to or later than the date given
in this field. When this condition is
satisfied, the remainder of this volume
may be overwritten. To be effective on
multi-file volumes therefore, the ex-
piration date of a file must be less than
or equal to the expiration date of all
previous files on the volume

54 Same as field 4 of the Volume Header
Label

55-60 Must be zeros .

60-80 Must be spaces

FILE TRAILER LABEL

Field

Name

1
2
3-13

14

15

Label Identifier
Label Number

Same as corres-
ponding fields

in File Header
(optional)

Block Count

Reserved for future
standardization

VOLUME TRAILER LABEL

Field

Name

1
2
3-12

13

14

Label identifier
Label number

Same as corres-
ponding fields in
File Header
(optional)

Block count

Reserved for future
standardization

Length

50

Length

50

20

Position

1-3
4
5-54

55-60

61-80

1-3
4
5-54

55-60

61-30

Description
Must be EQOF
Must be 1

Same as corresponding fields in
File Header

Six n characters, number of data
blocks (including labels and tape
marks) written since last File Header
Label

Must be blank

Description
Mustbe EOV
Must be 1

Same as corresponding field in
file header

6 n characters, number of data blocks
(excluding labels and tape marks)
written since preceding volume

label

Must be blanks

The volume trailer label format is identical to file trailer label format except for the third
character.

RELOCATABLE SUBROUTINE FORMAT . D

The deck of one subprogram (subroutine) as it is output from COMPASS or one of the other language
translators comprises one logical record. Each logical record is made up of an indefinite number
of tables. Each table is preceded by an identification word which specifies to the loader the proce-
dure to be followed in loading the table. The identification word has the format:

CN WwC IR L
59 53 47 35 26 17 0

CN Code number identifying type of data in table (text, entry points,
external references, etc.)

WwWC Word count in table excluding identification word
LR Method of relocation for the load address
L Load address, 18-bits as defined in the following table formats:

LR and other relocation fields in the tables are nine bits long. Six of the nine are used currently;
the other three are reserved for future expansion.

Prefix Table
The prefix table, if present, is the first table in a subroutine. It is bypassed by the loader. The
prefix table is used by EDITLIB in constructing or modifying the SCOPE library. The format of

the table is:

CN 77 LR and L are ignored.

word 1 name of subprogram
59 17 0

PIDLE

Program Identification and Length table contains the subprogram identification and declarations
concerning common block allocation.

Identification Word

CN 348

LR Unused
L 0

word 1 name of subprogram PL

59 17 0

PL Program length

words 2-WC name of common block BL
59 i7 0

Name may be 7 display code blank characters.
BL Block length

If WC =1, no common references appear in the program. Subprogram length is relevant only in

the first PIDLE table. All PIDLE tables must appear before any other tables for a given subprogram.
The names of common blocks may not be duplicated in PIDLE. The list of common hlock names is
called the Local Common Table (LCT). Since relocation of addresses relative to common blocks

is designated by positions in LCT, the order of the common block names is significant.

The first word in the LCT is referred to as position 1.

ENTR

The entry point table contains a list of all the named entry points to the subprogram and its
associated labeled common blocks. The ENTR table must immediately follow the PIDL tahle.

Identification Word

CN 36
LR ignored
L ignored

Words 1 through WC

Each entry in the table is 2 words long. The first word
contains the name of the entry point. The second word
contains the location of the entry point.

first word name entry point
59 17 0

d
secon RL LOC
word
59 26 17 0

RL relocation of the address specified by LOC; value is absolute zero.

1 program relocation

3—778 relative to common block M, where M is in position LR-2 of LCT. M must not refer

refer to blank common.

LOC address of data word to be modified

TEXT

Text and data tables contain data comprising the subprogram and information necessary for properly
relocating the data. The table consists of: an origin for the data, the data itself , and indicators
describing relocation (if any) of the three possible locations in a data word which may refer to
addresses in memory. TEXT tables may appear in any order and any numbers.

WC must be in the range 2 through 20 g

Identification word

CN 4-08

LR relocation of load address (L)

0 absolute, relative to RA
1 relative to program origin

3-77, relative to labeled common block M; M is in position LR-2 of LCT. Values of
2 and n, where n refers to blank common, are not permitted.

L load address. Initial location of data appearing in the second
word of the table. L will be relocated using LR.

First Word

Relocation word consists of a series of 4-bit bytes describing the relocation of each of the three
possible address references in a 60-bit data word. The first byte (bits 56-59) describes the re-
location for the data word in the second word of the TEXT table, etc. The number of relevant

bytes and data words is determined by WC. Relocation is relative to program origin or the comple-
ment of the program origin (negative relocation). The value and relocation for each byte follows:

000X no relocation

10XX upper address, program relocation
11XX upper address, negative relocation
010X middle address, program relocation
011X middle address, negative relocation
1X10 lower address, program relocation
1X11 Jlower address, negative relocation
0010 same as 1X10

0011 same as 1X11

The above designations permit independent and simultaneous relocation of both upper and lower
addresses.

Words 2 through WC

Data words are loaded consecutively beginning at L, their addresses are relocated as specified
by the corresponding byte in the relocation word.

Special attention must be paid to code relocated into labeled common, since all addresses are
relocated absolute or relative to program origin, never relative to a labeled common block.
Addressing relative to labeled common for text must be accomplished through FILL tables.

FILL
The FILL table contains information necessary to relocate previously loaded address fields.

References to common are relocated through this table. Program relocation may also be effected
using the FILL table, although the usual method (with fewer words) is to use the TEXT table.

Identification Word

CN 428
LR 0
L 0

Words 1 through WC

All remaining words are partitioned into sets of 30-bit contiguous bytes, each set is headed
by one controlbyte and followed by an indefinite number of data bytes. The last byte may be
zero. The control hyte contains information concerning each of the subsequent data bytes until

another control byte is encountered.

A zero byte is treated as a control byte in the format:

0

AR

29

AR is the relocation of the value in the address position of a word specified in the succeeding data
bytes. AR has the value:

0

1
2

3—778

One control byte suffices for several data bytes.

absolute, relative to RA (no relocation)

program relocation

negative relocation

relative to common block M where M is in position AR-2 of LCT,

The format of the data byte is:

P RL LOC
29 26 17
P Position within word of address specified by RL and LOC.
10 upper
01 middle
00 lower
RL Relocation of address specified by LOC.
RL has the same range of values as AR in the control
byte except that 2 and any reference to blank common
are illegal.
LOC Address of data word to be modified.

The contents of address field position (P) at location
LOC relative to RL is added to the origin as specified

by AR in the control byte.

LINK

The LINK table indicates external references within the subprogram. Each reference to an external
symbol must appear as an entry in LINK.

Identification Word

CN 448

LR ignored
L 0
All remaining words are partitioned into sets consisting of one 60-bit name word and a series of

30-bit contiguous data bytes indicating address positions which refer to the external symbol described
in the name word. It is possible for the name word to be split between two computer words.

name of external symbol

59 17 0

Names of external symbols (7 characters) must begin with a character for which the display code
representation has a high order bit equal to zero. The data bytes have the form:

1|P| RL LOC
29 26 17 0
P Position within the word of the reference to the external symbol:
10 upper
01 middle
00 lower
R Relocation of address specified by LOC
0 absolute, relative to RA
1 program relocation

3-778 relative to common block M where M is in position RL 2 of LCT

LOC Address of the word containing the reference to the external symbol

REPL - Replication Table

The REPL table permits the repetition of a block of data without requiring one word per location in
a TEXT table.

Identification Word

CN

43 8 LR and L are ignored

Words 1 through WC

Each entry in the table consists of two words in the format:

word 1

word 2

SR

LCT

DR

ICc=0
IIB=0
¥I1=0

D=0

59

41 26 17

Initial address of the source data, must be non-zero

Relocation of the address specified by S.

0 Absolute, relative to RA

1 Program relocation

3—’778 Relative to common block M where M is in position SR-2 of
Must not refer to blank common

Initial address of destination of data

Relocation of address specified by D; range of values come as SR-
Size of data block

Number of times data block is to be repeated

Increment to be added to D before each data block is repeated,
first repetition of block is at D, second at D+I, etc.

The data block (B-long) with origin at S is repeated C times
beginning at D the first time, and beginning at the previous
origin plus I thereafter.

C is interpreted as 1

B is interpreted as 1

I is interpreted as B

D is interpreted as S+B

XFER - Transfer Table

The XFER table indicates the end of a subroutine and a pointer address.

Identification Word

CN 46 LR and L are ignored
Bits 0 to 35; an optional date, mmddyy in display code

entry point name

59 17 0

The entry point name need not he in the subprogram. I name is blank, there is no named XFER.

The location of the entry point is returned following a loader request. If a named XFER is en~
countered prior to an EXECUTE, control is transferred to that entry point. Otherwise, the job
is aborted with the comment NO TRANSFER ADDRESS, If more than one subprogram has a
named XFER, control is given to the last encountered XFER name.

CARD FORMAT E

Column 1
7,8,9 End of logical record
6,7,8,9 End of file
7,9 Binary card
7 and 9 not hoth in column 1 Coded card
Columns
1 2 3 4 b 77 80
12 /|
11| | < < 5
0% Column Binary Information - g
2l a
5]
1 O g N
2 [B]% g
= o) 0
B g § = < < g
g £ ololZ
~m o4 { = nlwn|l o
. o /48 g
5 5 IR
6 | _\024 =} = g
® @
<
7 5 ' ',g(
8 < 5 &)
9

A binary card can contain up to 15 central memory words starting at column 3. Column 1 also
contains a central memory word count in rows 0, 1, 2 and 3 plus a check indicator in row 4. If
row 4 of column 1 is zero, column 2 is used as a checksum for the card on input; if row 4 is one,
no check is performed on input.

Columns 78 and 79 of a binary card are not used, and column 80 contains a binary serial number.
If a logical record is output on the card punch, each card has a checksum in column 2 and a serial
number in column 80, which orders it within the logical record.

Coded cards are translated on input from Hollerith to display code, and packed 10 columns per
central memory word. A central memory word with a lowest byte of zero marks the end of a coded
card (it is a coded record), and the full length of the card is not stored if it has trailing blanks. A
compact form is thereby produced if coded cards are transferred to another device.

Card Files

All card reading is done by program 2RC, both for normal job input, and for local files that have
been assigned to a card reader.

Any punched cards can be read: standard types or free-form cards.
Four types of cards are considered standard:

A card with 0017 octal in column 1 is recognized as an end-of-file marker.

A card with 0007 octal in column 1 is recognized as an end-of-record marker. The level is
assumed to be zero unless columns 2 and 3 contain a level number punched in Hollerith form.
The level number is read as octal. The following are valid punches (b represents a blank):

00 or Ob 04 or 4b 10 14

01 or 1h 05 or 5b 11 15

02 or 2h 06 or 6b 12 16

03 or 3b 07 or 7b 13 17
Any card other than the above with 7,9 punches in column 1 is assumed to be binary. It must
contain 0105, 0205, 0305....... 1605, or 1705 in column 1 and a correct checksum in column
2; or 0145, 0245...... 1645, or 1745 in column 1, in which case column 2 is ignored. The

first two digits, 01 or 17, give the word count of the card. Each word occupies 5 columns, and
the first word of information begins in column 3. Columns after the last word of information,
up to and including column 78, are ignored. The lower 5 bits of column 79, and all 12 bits of
column 80 constitute a 17-hit serial number for the card within its record. If the cards of a
binary record do not have these numbers in correct sequence (beginning at 1 for the first card),
a message is given but the cards are accepted. The checksum is the one's complement of the
sum of all information columns, this sum is formed as if in a 12-bit accumulator with circular
carry.

Any card that does not have 7 and 9 punched in column 1 is assumed to contain Hollerith-punched
information, one 6-hit character per column, or eight 60-bit words per card. Any column that
does not contain a valid Hollerith combination is read as a blank, and a message containing the
record mumber and the card number within the record is given. To be a valid Hollerith combina-
tion, a column must contain one of the following:

12 and 0, or 11 and 0, and no other punches
or
Not more than one of the punches 12, 11, and 0, with
No additional punch, or any one punch from 1 to 9
or
An 8 punch with one more punch from 2, 3, 4, 5, 6, 7

Binary and Hollerith-~punched (coded) cards may be mixed within one record, but a message is
given containing the number of any record containing one or more mode changes.

Free—form cards

It is also possible to set up a record of one or more cards that will be read as sixteen 60-hit words
per card (80 12-bit columns), with no format checking; except that a card with octal 0017 in column 1
with no other punches, will be interpreted as an end-of-file no matter where it occurs. This rule
prevents the separator between jobs in the input stack from being accidentally missed., A card with
0017 in column 1, if it has at least one punch in at least one other column, can he read as 16 words
without format control, though normally it would be an end-of-file separator.

Such a special record can be set up as follows:

1. A cardwith octal 7777 in column 1, and 7777 in column 2, and no other punches. No
information is read into memory from this card; it signals that free-form cards will follow.

2. Any number of cards punched in any manner, except that none must be identical to the
above card, and none must be an absolute end-of-file card. These cards are read as
binary cards, each containing 16 words of information.

3. A cardidentical with card 1. No information is read into memory from this card; it
signals the end of free-form cards. Normal binary or coded cards, or an end-of-record,
should follow.

4. An end-of-record card. This is interpreted normally, because free-form reading has

terminated.

If it should be necessary for the record of free-form cards to include a card identical to the card
described in 1 above, a slightly different card could be chosen to begin and end free-form reading.
Any card with octal 7777 in column 1 and in one other column with no other punches is recognized
as signalling that free-form cards follow until an identical card or an absolute end-of-file is read.
Therefore, there are 79 possibilities to choose from.

A series of free-form cards will normally be organized into one record; however, it can be preceded
and/or followed by binary and/or coded cards within the same record. The information will he
read but 2 mode-change message will be issued for the record. Thus a record might validly consist
of the following:

1. A series of Hollerith punched cards. Read as 10 words each.

2. A start-free-form card, €.g., 7777 in columns 1 and 80, and no other punches.

3. A series of cards not including an absolute end-of-file, nor any card identical with 2. Read
as 16 words each.

4. A cardidentical with 2, acting as a close-free-form card.
5. A start-free-form card, which might be either the same as or different from 2 and 4.,

6. A series of cards not including an absolute end-of-file, nor any card identical with 5.
Read as 16 words each.

7. A cardidentical with 5, acting as a close-free-form card.

8. A series of standard binary cards. Each card contains 1 to 15 words, established by the
word count in column 1. A serial number check message would be given unless the serial
number in columns 79-80 of each hinary card correspond with the position of that card in
the record as a whole, not merely with its position in the current group of binary cards.

9. An end-of-record card, closing the record. The record would produce a mode-change
message.

Cards can be punched by programs under SCOPE 3.1 in three different formats, corresponding with
the modes of reading described above. If the disposition code of an output file is octal 0010, each
record will be punched as one or more cards, with 80 valid Hollerith coded characters per card.
Unused columns at the end of the last card will be blank, and an end-of-record card will close the
record. Such a record could be read in by 2RC without producing any messages. If the disposition
code of 2 file is octal 0012, each record will be punched as a standard-format binary record, which
could be read in by 2RC without producing any messages; the serial numbers in columns 79 and 80
of the cards would all he correct. (Since a deliberate mixture of standard binary cards with other
types of cards inside a single record is rare, as is the deliberate withdrawal or rearrangement of
standard binary cards in one record, the serial number check message will normally indicate that
the cards of a standard binary record have been accidentally misarranged.)

If the disposition code of an output file is octal 0014, each record is punched as one or more cards,
with 16 words of information, five columns to a word, on each card. If the record does not contain
an exact multiple of 16 words, the unused columns on the right of the last card remain blank, An
end-of-record card follows the last information card; but such a record probahly could not be read
in by 2RC. It would be necessary:

® To make certain that the record contained no absolute end-of-file card (0017 in column 1
and 0000 in all other columns). Such a card cannot be read by 2RC as anything but an end-
of-file. '

® To put a start-free-form card ahead of the first card of the record, and an identical end-
free-form card between the last information card and the end-of-record card. The punches
for these two cards must not be identical with any of the information cards.

INSTALLATION PARAMETERS

(IPARAMS)

6€E000
BEOOO
LEOOO
9£000
SE000
YE000
EE000Q
2eovo
1g000
0gV00
62000
82000
L2000
§2000
Se000
%2000
£2000
22000
12000
vzo00
61000
81000
20000
91000
S1000
¥1000
ET000
10000
11000
01000
60000
80000
L0000
90000
50000

10000
€0000

SHVHVYd]
SWVYHYdI
SKHYHYJI
SWVYHVdI
SWvHdvdl
SWvHvdl
Swydvydl
SWydvdl
SWvdvdl
SWYYvYdl
SWYdvdl
Shvuvdl
SWYHVYd]
SWVvHvdl
SWVYvYdl
SWvdvydl
SWYHVYd]
SWVHYdI
SWYHVdI
SWVHYdl
SWyyvdl
SWYHYgI
QlE4028
Swhvuvdl
SWYYvdl
SHYHVdl
Swvdvdl
31£d03S
SWyavdl
SWYyvdl
SWVHYdI
Swvdvdl
SWYHvdI
SWvavdl
SWvavdl

QIEdOOS
SWydvdl

goul no3

HUY nNo3

4001 no3

H00T nod

HOO0T nO3

HO0TI no3

d001 no3a

guy NB3

GAUNGCEST QMIIwW

U no3

8001 no3

T nus

qU00uy no3

U no3

U0UsE nUd

2 noud

& No3

L9LdE no4

8Ivl noa

Z noud

goouoyl no3

0 no3

1 nod

[VE]

811 no3

£ no3

9 no3

I nos

U no3

RV
2t
I
1
L

-

nu3
nod
L no3
8¢l nNo3
S No3

1 no3a
3113 NOWWOD u3L3WvHvd NOILVIIVLSNL T14£3400S

084037
Lgd4d*3
9440* 341
SH40°31
L4- IV
ed4yean
2440° 371
194037
UWA*di
N301*dl
aLsedi
dds*dl
48 di
§23s8*dl
JADY*dl
msuedl
avo*tdl
TLnWtdl
108K dl
Hdwedl
RETTAN-PS
S33W*dl
NdoW*dl
dATdl
ANuritdI
N3UN*dI
avleqgl
3dAlardl
nisudedl
31sd dl
215Q°dI
3asaedI
J0s0*dl
20sQ°dl
ddo*dl

9Nd3a0

0OTOOOY
0900000
001000u
Q010000
0010000
GoT0000
QOLOODY
000000

0000U0U
0010000
10ovo000
00uUROU
gouvYLL
EEEEEEL
2000U00
010000V
LiLliou
1010000
20000Uu
00Ul¥YLL
0000000
1000000
£000000
Tlooouo
£000000
9000000
1000000
g00uV000
G000000
210000y
1000000
[0u0ooU
zZiutoow
g000000

100000u

F-1

H9000
L9000
99000
59000
#9000
£9000
25000
19000
09000
645000
85000
15000
95000
65000
95000
£5000
25000
15000
05000
69000
44000
L9000
94000
S%000
Y9000
E4000
249000
7000
0000

SWvdvdl
Shvuvdl
SWydvdl
Swydvdl
SWVHVdI
SWydvdl
SWydvdl
ShVdvdl
Shydvdl
Shydvdl
SWyHdvdI
SWvdvdl
SKYHYdI
SWydvdl
SWYdVdl
SWVHVYd]
SWvuvdl
SWyyvdl
Swvivdl
ShYdvVdl
SHyuvdl
SHvHvdl
SWYHvdl
Shvdvdl
SHVHVYLI
SWvyvdl
SkVHVdI
Shvdavdl
Srvdvdl

e

$S54Hv LS
WOND $S31uVLES
HdU $4% HIN
SNI $HE ddU
1ds $u% Sl
LYY $d% 1dS
SHy 4% Lvd
Hdd $4% sVd
INd $d% 4Hd
1S3 $8% IN4d
S3YdU $H% 154
3A0W®dD NU3 S3udi L
BERHBY*N NO3 duyel
99+ L*
H40°3149840° 31+ GHAU* 3T+ 9HAU IN+EHSQ* IV1+28 40 I+ 104U 41+0840° 37 no3 8407
HLE+SOAW dI/SUdn " dI#HUE NOI s3ddI" T
WONS $Y%
BaB/sHeZ"L NU4d AL
L+Z*7 L3S sy

ZOASEYS OHOVIW
0dI9n $S31dvLs
v nod FEERN
€ NO3 30IA3U*N
0 noi Lvoe1
U nod SNI*T
g009 nosi INERN!
HOOT NO4 1S3*1
U nos IdS*7
HUUE NO4 suye

“ON 39Vd LYy/90/11

$00000u
goouoou
poouuovy
0ouLooy
009000
00T000U
000uo0u
UUEUOOU

0000

ussal

[

L ET

F-2

Assigned values are shown in parentheses.

DEBUG (0)
If set to one, designates that MTR, 1SP and 18Q run in diagnostic mode. Recommended mode during
initial testing of PP routines.

IP,CPD (control point delay) (5)

Specifies the interval hetween recomputation of each control point's priority sublevel. The interval is
defined as 2**(IP. CPD+6) milliseconds. IP.CPD must fall in the range, 0 =IP, CPD=12; therefore
the interval between sublevel recomputation ranges from 64 to 262, 144 milliseconds (about 4
minutes).

The following TPARAM symbols are used on the dead-start cards to specify equipment configurations:

IP,. DSCC Card reader channel

IP.DSDC Channel of device on which the system is to reside

IP. DSDE Controller number of this device

IP,.DSTC Channel of the tape on which the system tape is mounted

IP, DSTE Equipment (controller) number of the tapes

IP, DSTU Unit number of the tape unit on which the system tape is mounted

IP.DTYPE (1)
Allocatable device type on which the system library resides. The values correspond to device type
numbers used elsewhere in the system; possible values are:

1 = 6603 disk
2 = 6638 disk

IP.IQD (6)
Determines delay before incrementing sublevels of a job in the input queue.

IP.LDEN (3)
Specifies density for the standard SCOPE 1/2" magnetic tape labels.
3 = 556 bpi

4

200 bpi
6 = 800 bhpi

IP. LJBUF (11)
Length in octal hundreds of central memory buffer used by READ and the LOAD packages; ranges
from 2 upwards.

IP.LVF (3)
Lowest fixed priority level (0 to 7777B). All priority levels greater than or equal to IP. LVF are
fixed. Their priority level sublevels will not be recomputed.

IP.MCPU (1)
Installation option to define maximum number of CPU's to be used by the system. Will cause variations
in the assembly of MTR.

The value 1 will produce the most efficient code for use on a single CPU. The system will run on a
6500 but will use only one CPU.

The value 2 will produce an MTR which will run on a 6500 using hoth CPU's or on a 6400 or 6600
using one CPU. .

IP.MECST (0)

Maximum number (0 to 7777B) of 1000g-word ECS bhlocks which may he assigned to a single job. The
value of IP. MECS is used to determine whether sections of code are to be assembled within the system
to handle ECS allocation.

IP.MFL (140000)
Maximum number of central memory words which may be assigned to a single job; from 1004 to the
size of the machine less CMR size.

IP.MPR (2
Maximum priority (0 to 7777g) which may be assigned by declaration on the job card.

IP.MSCT (101)
Maximum number of messages (1 to 7777g) which may be entered into the dayfile by a single job. Only
messages sent through MSG are counted.

IP.MTL (32767)
Maximum time limit in seconds (1 to 777778) which may be assigned to a job.

IP.OQD (10)
Determines delay before incrementing sublevel of a job in the output queue.

IP.OSW (2)

When priority sublevel of a job is re-computed, the old priority sublevel is assigned a weight of
(2*¥*¥1P. OSW) -1 which controls the rate at which a priority sublevel changes when character of job
changes. A higher value will cause a slower reaction. Possible values of IP. OSW range from 0 to 6.

IP.RCYC (3R000)

Retention cycle to be used in calculating expiration date for a tape label when no retention cycle is
given by the program. Values range from 0 to 999 indicating permanent retention. The address
field of the symbol definition contains character data, i.e., 3Rxxx where xxx defines the retention
cycle; leading zeros need not he written.

IP.SECST (0)
Default number of ECS blocks to be assigned to a job if not declared. Ranges from 0 to IP. MECS.

TThese parameters are presently being developed and checked out.

IP,SFL (40000)
Default central memory field length to be assigned to a job if not declared. Values range from 100g
to IP. MFL.

IP.SPR (1)
Default priority to he assigned to a job if not declared. Values range from 1 to IP. MTR,

IP.STL (100)
Default time limit in octal seconds (1 to IP. MTL) to be assigned to a job if not declared on the job
card.

IP.TDEN (0)
Density of 1/2" magnetic tape when not declared by the user:

0 = 556 bpi
1 = 200 bpi
2 = 800 bpi

IP.YMD MICRO 1,3,MDY (-)

Format of data typed in at deadstart. The six possible permutations of the letters MDY hetween the
dollar signs constitute the possible variation of this parameter. A slash is always displayed as the
separator of these fields at deadstart, but any of the display coded characters 50 through 57 will be
accepted.

LE.DFBX symbols ()

Lengths of the individual dayfile buffers. The length of the total dayfile buffer is the sum of LE. DFB0
through LE.DFBY7 plus 100g. The length of the dayfile buffer on the release version of SCOPE 3

is 1000g. This length may be varied from 360g to 1100g by varying LE. DFB1 through LE. DF'B7.
Legal values for the control point dayfile buffers (LE. DFBL through LE. DFB7) range from 20g to
1008. The system dayfile buffer size (LE. DFB0) may not be varied.

LE.DFB0 (100) Length of system dayfile buffer; must be equal to one sector's length.
LE.DFB1 (40) Léngth of dayfile buffer for control point 1. Since this control point is typically
used for the READ package, no loss is involved in shortening the buffer; READ does not write
messages to its own dayfile.

LE.DFB2 (100) Length of the dayfile buffer for control point 2. Since this control point is
typically used for the OUTPUT package, no loss is involved in shortening the buffer; OUTPUT
does not write messages to its own dayfile.

LE.DFBx (3=x S'6) (100) TLengths of the dayfile buffers for control points 3-6.

LE.DFB7 (40) Length of dayfile buffer for control point 7. Since control point 7 is typically
vacant, no loss is involved in shortening the buffer.

L.CATT (0)
Length of a table.

L.CPRES (37)

Length of central processor resident program area. L.CPRES is varied automatically depending on
the value of IP, MECS, i.e., whether or not there is ECS in the system. If the length of the resident
program code assembled in CMR should increase, the IPARAM cards defining the value of L. CPRES
must also be changed.

L.DFB (1000)
Sum of LE, DFB0 through LE. DFB7 plus 100B. (See LE, DFBx for instructions on varying L. DFB.)

L.EST (100)
Length of equipment status table (n to 100g).

L.FNT (600)

Length of the file name table; each entry consists of three words, so the 200g files are allowed. The
first two entries (six words) are used by SCOPE for the DAYFILE and SYSTEM entries, the next
seven for each of the control point dayfiles. These entries are preset when CMR is assembled.
Posgsible values must be determined according to the installation job mix, with the restriction that
the FNT Iwa may not go beyond 7777g.

L.INS (0)
Length of a table for installation use. A pointer word is also provided (P.INS).

L.RBR (230)
Automatically assumes the value N. RBR*38 (N.RBR is number of record block reservation tables).

L.RQS (300)

Length of request stack and device status table entries. Possible values range from twice the
number of allocatable devices plus two, upwards. For a one-disk system, L.RQS may be made
considerably smaller than 300, since only two words are required for the disk DST entry and the
number of requests outstanding at any one time seldom rises above six or seven (1219 to 1444 words).

L.SPIT (0)
Length of a table.

N.DEVICE (3)

Number of allocatable devices present; used when CMR is assembled to compute length of some tables.
Must be adjusted when an allocatable device is addedor deleted.

N.RBR (4)
Number of record block reservation tables present, used in computation of RBR table lengths,

T.CATT (3530)
First word address of a zero-length central memory table.

TThese parameters are presently being developed and checked out.

T.DFB (3530)
First word address of central memory dayfile buffer area.

T.EST (2040)
First word address of central memory equipment status table.

T.FNT (2150)
First word address of central memory file name table.

T.INS (3530)
First word address of a zero-length table reserved for installation use.

T.LIB (4540)
First word address of the library directory.

T.RBR (2760)
First word address of the record hlock reservation table area.

T.RQS (3220)
First word address of request stack area, the first section of which is the device status table. Actual
request stack begins at T. RQS + 2*N. DEVICE.

T.SPIT (3530)
First word address of a zero-length central memory table.

SCPTEXT is a deck which contains a *CALL, CPSYS, the symbol definitions of most of the symbols
which used to be in COMFILE (with the exception of the Installation Parameters) and also the various
macros which used to be in COMFILE. The symbol definitions have one of the following forms:
Name EQU absolute expression
Name = absolute expression
where the = is the shorthand equivalent of the EQU instruction and the absolute expression is either

an absolute value or an expression in which all the symbols have previously heen assigned an
absolute value. Numbers which appear have a decimal default value.

T These parameters are presently being developed and checked out.

SCPTEXT SYMBOLS ¥

CH.FNT (15)
File name table pseudo-channel; possession of this channel provides an interlock of word one of the
FNT.

CH.FST (14)
Tile status table pseudo-channel; possession of this channel provides an interlock of words two and
three of the FNT (alternatively called FST).

CH.LIB (16)
Library directory pseudo-channel. This channel is not used by SCOPE 3. 1; it is present only because
of a historical quirk.

CH.RBT (17)
Record block table pseudo-channel.

CP.ECSM (2034)
Entry point for ECS storage move program. Not used if system has no ECS (IP. MECS=0).

CP.IDLE (2000)
First word address of exchange package for idle program.

CP.JOBN (2020)

Location containing current job count in display code (presently reference address of idle program).
Job count is a three-character quantity, left justified in bytes 0 and 1 of CP.JOBN. Assembled as
000 (333333) and updated by 2TJ each time a job enters system. Progression of job numbers is
01-09, 1A-1%, 10-19,...9A-9Z, 90-99, AA-AZ, Al-A9,...

CP.MOVE (2000)
First word address of exchange package for storage move program.

CP.SM (2023)
Entry point for central processor storage move program.

C.CPAR (1)

Byte within a word in control point area containing the low order portion of the auto recall pointer.
Auto recall pointer is a relative address of a word within the program field length; the program
remains in recall status until the low order hit of that word becomes 000 (=1), indicating operation
completed.

T Symbols representing sequential locations in PP low core and the PP routine name in OV.xxx format
are omitted in this description.

C.CPECFL (4)
Byte within a word in control point area containing the number/1000B of ECS words assigned to the
control point.

C.CPEF (1)
Byte within a word in control point area which contains error flag. If C.CPEF contains zero, there
is no error at this control point; otherwise, C. CPEF may contain one of the values defined by the

F.x symbols.

C.CPERT (4)
Byte within a word in control point area which contains an internal error flag used by 2T8S.

C.CPFL (4)
Byte within a word in control point area which contains central memory field length/100B assigned to
this control point.

C.CPFP (3)
Third 12-bit byte position in a CM word—the third byte of the 40th word in control point area.
Content of this byte indicates to 1BJ whether the PRU of control card data just loaded is the first.

C.CPFST (2
Second 12-bit byte within central memory words—second byte of the 40th word in control point area.
This byte contains the pointer to the FST entry of the INPUT file assigned to the control point.

C.CPNCSP (4)
Pointer to the fourth 12-bit byte in word 21 of assigned control point area; fourth byte of this word
contains pointer to next control statement to be processed.

C.CPNUM (1)
Byte in PP input register word which contains control point number originating request.

C.CPOUT (3)
Pointer to 12-bit byte in CM word—C. CPOUT points to the third byte in word W. CPOUT (153rd
word in control point area).

C.CPPRI (0)
References zero byte of the 22nd word in assigned control point area. This byte denotes priority of
job at this control point.

C.CPRA (3)
Byte in word in control point area which contains reference address (RA)/100B of control point.

C.CPSM (2)

Byte in a word in control point area which contains storage move flag. MTR sets this field nonzero
when storage attached to a control point is to be moved; all PP's operating at this control point should
pause if C, CPSM is nonzero.

C.CPSTAT (0)
Byte in a word in control point area which MTR uses to note status of control point (recall, wait, or
active) and which PP's are currently assigned.

C.CPTIML (2)
Byte in word in control point area which contains job time limit.

C.DFBMS (1)
Byte in P. DFB which is not now used.

C.DIRCMA (1)

Byte in each word of library directory which contains central memory address of that library routine.

C.DIRFWA (0)
Leftmost of two bytes in P. LIB which contains first word address of library directory.

C.DIRPRU (4)
Byte in second word of a directory entry which contains number of first PRU assigned to record.

C.DIRPTR (0)
Byte within each word of library directory which contains program type and residence.

C.DIRRBA (2
Byte in second wordof a directory entry containing linkage to RBT word pair defining record in which
the record starts.

C.DIRRBN (3)
Byte in second word of a directory entry containing original RBT word pair and byte defining block

in which record starts.

C.DIRUNT (1)
Byte in second word of directory entry containing physical unit number (DST ordinal).

C.FCIB (0)
Leftmost of two bytes in word 3 of the file name table planned for future system use.

C.FCPNUM (3)
Byte in word 1 of a file name table entry containing file's control point assignment.

C.FCS (3)
Leftmost of two bytes in word 3 of file name table entry containing code and status field.

C.FDC (2)
Byte in word 3 of file name table entry containing file disposition code.

C.FEQP (0)
Byte in word 2 of file name table entry containing file equipment code .

I-10

C.FFRBA (1)
Byte in word 2 of file name table entry containing address of first RBT word pair for a file on
allocatable device.

C.FLBL (3)
Byte in word 2 of FNT entry. For magnetic tape, byte C. FLBL contains upper 12 bits of current
physical record unit (PRU) count; lower 12 bits of PRU count are in hyte C. FLBL+1.

For punched cards, byte C. FLBL is 12-bit byte containing upper 5 bits of card count within a record
being punched; lower 12 bits of card count are in byte C. FLBL+1.

C.FLOCK (3)
Byte in word 1 of file name table entry containing the lock bit.

C.FLPRU (4)
Byte in word 2 of file name table entry containing current physical record unit (PRU) position of a file
on an allocatable device,

C.FLRBEB (3)
Byte in word 2 of file name table entry containing RBT entry and byte at which a file on allocatable
device is currently positioned.

C.FLRBWP (2)
Byte in word 2 of file name table entry containing address of current RBT word pair for file on
allocatable device.

C.FNAME (0)
Leftmost of four bytes in word 1 of FNT entry containing seven-character file name.

C.FPDEV (2)
Byte in FNT word 2 of tape file entry containing primary device number (EST ordinal).

C.FPRI (4)
Byte in FNT word 1 containing priority of input or output file.

C.FSC (3)
Byte in FNT word 3 containing file security code, indicates whether or not file is open.

D.FSDEV (1)
Byte in FNT word 2 of a tape file entry containing secondary device number (EST ordinal).

C.FTYPE (3)
Byte in FNT word 1 containing file type field.

C.PPFWA (1000)

Location in PP memory at which PP resident is to begin execution of a primary overlay. Used both
as the second parameter on IDENT card and in address field of ORG on all primary PP overlays.

F-11

C.PPSWA (2000)
Tocittion in PP memory al which to begin exceution of a secondary overlay. Uscd same as is
C.PPI'WA.

C.PPTWA (3000)
Location in PP memory at which to hegin exccution of a tertiary overlay. Used same as C. PPI'WA.

C.DPPAWA (4000)
Location in P> memory at which to begin exccution of a fourth level overlay.

C.PP5WA (5000)
Location in PP memory at which to begin execution of a fifth level overlay.

C.PPTWA (7000)
Location in PP memory at which to hegin execution of a seventh level overlay.

C.RBRA (3)
Byte in RBR header containing permissible allocation.

C.RBRAD (0)
Byte in the RBR/RBT pointer word containing address of first word.

C.RBRLAV (3)
Byte in second word of each RBR header containing count of unassigned record blocks defined in the
RBR.

C.RBRTPA (0)
Byte in first word of each RBR header defining device type referenced.

C.RBRUNT (1)
Byte in word one of RBR header containing DST ordinal.

C.RBTAL (2)
Byte in first word of RBT word pair containing allocation type of file.

C.RBTFB (1)
Byte in first word of RBT word pair containing byte number of first record block address.

C.RBTLPR (0)
Byte in second word of an RBT word pair containing the terminal PRU number + 1 used in last edition
of a random file.

C.RBTLRB (4)
References fourth byte of central memory word in record block table. Denotes byte that contains
last record block in previous generation. ’

C.RBTPRU (3)
Byte in first RBT word assigned to each file defining last + 1 PRU assigned to that file.

F-12

CoRBTRBR (D
Byte in fivst word of RBT word pair containing RIB3R ordinal for the lile.

C.RBTWDPL (O
Byte in cach RBT word pair containing linkage to next RBT word pair for that file.

C.RQBCS (M
Byte in stack pointer word (. RQS) containing a count of the stack entry word pairs.

C. RQSE

S (D)
Biyte in st

tack pointer word (. RQS) containing address of lirst stack entry.

C.RSTA (2
Jyte in M. EREQS monitor function containing PP available flag.

C.RSTRA (1)
Byte in M. EREQS monitor function containing request accepted field which is used for monitor-PP
resident communication.

C.RSTU (4
Byte in M. EREQS monitor function contains unit number (DST ordinal).

C.RSTWP (3)
Byte in M. EREQS monitor function containing request stack word pair address.

C.RWPPCC (3)
Byte in READP/WRITEP control word into which stack processor for control phase 1 places’channel
number to be used in data transmission.

C.RWPPCF (0)
Byte containing phase control flag in control word for READP/WRITEP. Phases: 0 = request in

stack, 1 = set channel, 2 = channel set, await transmission, 3 = transmission in progress, 4 = order
completed.

C.RWPPLW (2)
Byte in READP/WRITEP control word containing lwa + 1 of data transmitted. It is updated by PP
resident during order each time it completes phase 3.

C.RWPPST (3)
In READP/WRITEP control word, operation status available in phase 4 is contained in this byte.

C.RWPPWC (4)
In READP/WRITEP control word, word count for transmission during phase 3 is contained in this byte.

C.RWPPWT (1)

In READP/WRITEP control word, total number of words transmitted during all phase 3's is cumulated
by PP resident in this byte.

F-13

C.STATCP (2

Byte used by 3.1 MTR to record current status of CPU ON/OFF/DELEGATION. Contents are nnex
where nn = control point address of the delegated control point. The control point number can be
obtained by SHN - 7.

1 CPU x is turned off
¢ 2 CPU x is delegated to control point nmn
3 CPU x is not in existence. Locked off

1 = CPUA 2 = CPUB

C.STCPU (4)
Byte in word 1 of stack request containing control point and unit number.

C.STEI (4)
Empty entry indicator in word 1 of a stack entry. If 0, entry is not in use.

C.STFB (3)
Flag byte in word 2 of a stack request.

C.STO (3)
Specific order in word 1 of a stack request; high order 6 bits are a record level number when relevant
(order = O. 8K¥).

C.STPFW (2)
Next address in PP memory for data in word 2 of READP/WRITEP stack request. Used by PP
resident to compute byte count and as fwa for data transmission in a call to R. READP or R.WRITEP.

C.STPLW (4)
Last address in PP memory for data in word 2 of a READP/WRITEP stack request. Used by PP
resident to compute byte count in call to R. READP or R.WRITEP.

C.STPMS (1)
Location of message buffer of PP in word 2 of a READP/WRITEP stack request. First 3 words are
used for communication with stack processor.

C.STPPRU (2)
PRU number at which to begin data transmission in word 1 of a stack request with flag set for no FNT.

C.STPRBA (0)
RBT address of word pair containing record block at which to begin data transmission in word 1 of
stack request with flag set for no FNT,

C.STPRBN (1)

RBT ordinal of record block at which to begin data transmission in word 1 of stack request with flag
set for no FNT.

Ir-14

C.STPWC (0)
Count of bytes to be transmitted in word 1 of READP/WRITEP stack request.

D.BA (40B)
D. BA through D.BA+4 contain first word of file environment tahle (FET) located by relative address
in low order 18 bhits of input register.

D.CPAD (74B)
Typically contains address of control point area currently in use by PP. A primary overlay usually
stores the address as part of its initialization.

D.DTS (37B)

High order 6 bits of D. DTS contain device type found in high order portion of byte 0 of second word of
FNT. Low order 6 hits of D. DTS contain allocation type found in low order portion of byte 0 of
second word of FET.

D.EST (32B)
D. EST through D.EST+4 contain EST entry in process.

D.FA (57B)
Contains address of second word of FNT entry in process.

D. FIRST (60B)
D. FIRST and D. FIRST+1 contain 18-hit CM address specifying heginning of a circular buffer (contents
of FIRST pointer (word 2) from a FET).

D.FL (56B)
Central memory field length/100B of control point to which PP is currently attached. Primary
overlay usually stores field length as part of initialization.

D.FNT (20B)

D.FNT through D.FNT+9 contain words 2 and 8 of FNT entry for file in process. Words 2 and 3 are
referred alternately to as the FST entry.

D.HN (71B)
Constant 100g: generally, D.HN is preset by a primary overlay for use by a secondary overlay.

D.IN (62B)
D.IN and D.IN+1 contain FET.

D.JECST (45B)
Used by 2TJ to return ECS field length requirement to calling program.

D.JFL (37B)
Used by 2TJ to return CM field length requirement to calling program.,

T These parameters are presently being developed and checked out.

D.JPR (46B)
Used by 2TJ to return computed priority to calling program.

D.JTL (47B)
Used by 2TJ to return job time limit (in 8 second units) to calling program.

D.LIMIT (66B)
D.LIMIT and D. LIMIT+1 contain 18-bit CM address specifying lwa + 1 of circular buffer (contents
of LIMIT pointer (word 5) from FET).

D.OUT (64B)
D. OUT and D. OUT+1 contain OUT pointer (word 4) from FET.

D.PPIR (75B)
Contains CM address of PP input register. Initialized at deadstart time and must never be altered.

D.PPIRB (50B)
D. PPIRB through D.PPIRB+4 hold the contents of PP input register. Primary overlay usually stores
input register contents as part of initialization.

D.PPMES1 (77B)
Contains CM address of first word of PP message buffer. Initialized at deadstart time and must
never be altered.

D.PPONE (70B)
Contains constant 1. Generally, D.PPONE is preset by a primary overlay for use by a secondary
overlay.

D.PPOR (76B)
Contains CM address of PP output register. Initialized at deadstart time and must never be altered.

D.RA (55B)
Contains central memory reference address /100B of control point to which PP is attached. Primary
overlay usually stores address as part of initialization.

D.TH (72B)
Contains constant 1000g. Generally, D.TR is preset by a primary overlay for use by a secondary
overlay.

D.TR (73B)
Contains constant 3. Generally, D.TRis preset by a primary overlay for use by a secondary
overlay.

F.ERAR (2)

Value of error flag set for CP arithmetic error abort. Sensed by MTR; error message is written
by 2EF.

IF-16

F.ERCP (4)
Value of ervor flag set for CP abort. F.ERCP used if CP program aborts execution; program must
write a message to dayfile.

F.EROD (6)
Value of error flag set for operator drop type-in. 2EF writes a message to dayfile.

F.ERPCE ()
Value of error flag set for PP call error abort. Sensed by MTR; error message is written by 2EF,
Used when central program requests PP program with name that does not begin with a letter.

F.ERPP (3)
Value of error flag set for PP abort. PP requesting abort is responsible for writing message.

F.ERTL (1)
Value of error flag set for CP time limit abort. Sensed by MTR; error message is written by 2EF.

LE.FNT (3)
Number of central memory words in one FNT entry.

L.CPNUM (7)

Mask of ones equal to the length in bits of highest numbered control point. Definition of this symbol
is only an initial action toward varying the number of control points; altering the value of L. CPNUM
would have mno effect on changing the number of control points.

L.PPHDR (5)
Number of PP words comprising header information appended by assembler. Loading of all PP
overlays begins at C. PPxWA minus L. PPHDR.

M.ABORT

(13B-ABORT CONTROL POINT)

(0013,0000,0000,0000,0000)

Job associated with requesting PP is terminated. Requesting processor is responsible for message
in dayfile. This function is identical with function M, DPP except that error flag 3 (F. ERPP) is set
for abort function in control point area.

M.AEQP (33P)
No longer used.

M. CCPA

(35B-CHANGE CONTROL POINT ASSIGNMENT)

(0035,0000,0000,000C, 000N)

Requesting PP is released from current control point assignment in same manner as if it had issued
an M, DPP function, except that input register is not cleared. PP is then assigned to control point
N with new control point number placed in input register. Stack processor may specify control point
number C to indicate that a stack request has been completed and the control point entry count
should be reduced by one.

M. CDF
(11B-COMPLETE DAYFILE) (0011,0000,0000,0000,0000)
MTR ignores this function; DSD processes it and clears the output register.

M. CPUST
(36B-CHANGE CPU STATUS) (0036,000X,0000,0000,0000)
Turn CPU X off. X is 1 or 2 to indicate CPU A or B.

(0036,000X,0000,0000, 000N)

Delegate CPU X to control point number N. No other control point may use a CPU delegated to
control point N. Control point N will be charged for 100 percent of the time that the CPU is delegated
whether it is being used or not.

(0036,0000,0000,0000,0000)
If either CPU is off or delegated, it is returned to on status. This does not effect a CPU that was
locked off at deadstart load time.

M. DCH

(03-DROP CHANNEL) (0003,00NN,0000,0000,0000)

If channel NN is reserved for requesting PP, reservation will be cancelled. Otherwise MTR will
not reply and requesting PP will hang up waiting for its reply.

M. DCP

(16B-DROP CENTRAL PROCESSOR) (0016,0000,0000,0000,0000)

Central processor job at PP control point is dropped; X and W flags are turned off. Auto-recall
pointer is not modified. Central program status prior to M. DCP is returned in D.T1. Possible
values are:

0 Central program inactive
1 Central program in RECALL status

2 Central program in execution or waiting for central processor

M. DEQP

(23B-DROP EQUIPMENT) (0023, 00NN, 0000,0000,0000)

MTR drops equipment number NN from control point and updates EST to indicate equipment is free
for reassignment. Monitor does not check to insure that equipment number dropped from EST was
assigned to this control point.

M. DFM
(01-PROCESS DAYFILE MESSAGE) (0001, 0000, 0000, 0000)
MTR ignores this function; DSD processes dayfile message and clears output register.

M, DPP

(12B-DROP PP) (0012, 0000, 0000, 0000, 0000)

MTR clears PP control point assignment, computes PP ruming time, adds it to accumulated PP time,
provides new PP starting time for subsequent requests, and clears PP input register. If central
program is in recall, attempt is made to restart it.

F-18

M.DTAPE

(32B-DROP TAPE) (0032, 00NN, 0000, 0000, 0000)

Set lockout (0) bit for equipment NN in EST. Turns equipment logically off; equipment may not be
assigned-to a control point until it is turned on again.

M. EREQS

(34B-ENTER REQUEST STACK) (0034, 000R, 00AA, SSSS, 0000)

If bits 0-11 of CM word ((C. RQSFS+SSS8)*2) are not zero, the specified word pair is already in use
and the request is refused by setting R=1 and clearing byte zero of output register. If word pair is
available, stack request is taken from PP message buffer and stored in available word pair. R set
to zero indicates that request was accepted. Physical unit number from hits 0-5 of first word of
stack entry is used to locate DST entry. Entry count in the DST is increased by one. Bits 6-11 of
first word of stack entry are used to identify control point of entry and count (W. CPENC) for that
control point is increased by one. If AA is zero, control is returned to the requesting PP normally.

If AAis not 77 or 00, requesting PP is available for reassignment. It is released in the same C
manner as if a M. DPP were requested. Then, if a PP is not already assigned to that device, the
stack processor name from DST is assigned to the PP.

AA =77 identifies a special request from stack processor to increase entry count in DST and control
point area without inserting a new entry in stack. DST and control point to be updated are identified
by an entry that is already in stack. T

M.NTIME

(14B-TIME LIMIT) (0014, TTTT, 0000, 0000, 0000)

Central processor job time limit of TTTT (8-second) increments is entered at control point. Any
previous time limit is superseded.

M. OPDROP
(30B-OPERATOR DROP) (0030, 0000, 0000, 0000)
See M. SEF.

M. PAUSE

(L7B-PAUSE FOR RELOCATION) (0017, 0000, 0000, 0000, 0000)

Allows monitor to move central storage for job. As long as move flag at control point is set, this
function inhibits any further action of requesting PP. When move flag is cleared, PAUSE function
is ended. (See M.RSTOR.)

Requesting processor should check reference address for control point after completion of this
function to determine if central storage for job has been moved. (See PP resident function R. PAUSE.)

M. PPTIME

(04-ASSIGN PP TIME) (0004, 0000, 0000, 0000, 0000)

MTR adds current time minus PP starting time, in locations 041-051 of central resident, to
accumulated time in control point area. MTR also sets new PP starting time (seconds and milli-
seconds).

M.RCH
(02-REQUEST CHANNEL) (0002, BBAA, DDCC, 0000, XXXX)

AA 1st choice channel number
BB 2nd choice channel numbef
cc 3rd choice chamel number
DD 4th choice channel number

XXXX 0000 request immediate reply
0002 = no reply until requested channel has been granted

When channel zero is requested, it must be field AA. When BB, CC or DD is zero, it is assumed
that this is not a channel request and that there are no alternate choices beyond it.

When a channel is granted, the number is returned in the PP output register byte one; byte four is
set to 7777B.

M.RCLCP

(21B-RECALL CENTRAL PROCESSOR) (0021, 0000, 0000, 0000, 0000)

Central program associated with requesting PP is restarted if central recall flag (X) is set and auto-
recall pointer is not pointing to incomplete status.

M. RCP

(15B-REQUEST CENTRAL PROCESSOR) (0015, 0000, 0000, 0000, 0000)

MTR sets central waiting flag (W) at control point and searches for job priorities to initiate central
processor action. Ignored under following conditions:

Error flag is set
(RA + 1) = END request.

If auto-recall pointer still points to incomplete status, X flag is set instead of W flag, returning
control point to recall status.

M.REM

(25B-ASSIGN ERROR EXIT MODE) (0025, 00NN, 0000, 0000, 0000)

MTR drops central processor execution for job at control point and assigns value N to exit mode field
in control point exchange jump information area.

M. REQP

(22B-REQUEST EQUIPMENT) (0022, NNNN, 0000, 0000, 0000)

NNNN is two display-coded characters. If numeric, they directly define equipment request. If
alphabetic, MTR searches the EST for an equipment of type NNNN and assignes it to control point.
EST is updated and MTR places equipment number in first byte of PP message buffer. If equipment
is not available, a zero byte is returned. If availability (Z) byte of EST contains 4000g, equipment
number is returned but availability byte is not modified.

F-20

M. RPJ

(37B-REQUEST PERIPHERAL JOB) (0037, DDDD, DDDD, BBBB, 0000)

Peripheral job request is placed infirst word of message huffer of requesting PP in exact form in
which it is to be placed in input register of PP to which it is assigned.

DDDD, DDDD, is a time delay feature. This 24-bit number represents the number of 250-microsecond
delay units requested. This figure is rounded upward to the next larger millisecond and added to the
current time. The job is then placed in the PP delay stack to be assigned to a PP at the computed
time. The following sample delay values help to compute the proper 24-bit parameter. Accuracy

is guaranteed to be within a range of two milliseconds.

0000 0004 =1 millisecond
’0000 0400 = 64 milliseconds
0000 1750 = 250 milliseconds
0000 7640 =1 second

0072 4700 = 1 minute

6673 0500 = 1 hour

Output register of requesting PP is cleared immediately. When delay parameter is nonzero, BBBB
is assumed to be zero.

If BBBB contains output register address of requesting PP, first byte of output register is not set to
zero until a PP has been assigned. The reply from MTR contains input register address of assigned
PP in place of BBBB. If no PP is immediately available, the reply is delayed while the job request
advances through PP job queue. During this delay time MTR forces requesting PP into a pause for
storage relocation. Therefore, a request containing BBBB parameter should be followed by
R.PAUSE to obtain new RA.

If no space is available in delay stack/PP job queue buffer, entire request is ignored until a space is
emptied. However, central processor is denied access to job queue buffer when there are fewer
than seven empty spaces.

M.RPP

(20B-REQUEST PP) (0020, 0000, 0000, 0000, 0000)

This function requests initiation of another PP. First word of requesting PP message buffer contains
input register data for new PP including control point to which it should be assigned by MTR. Input
register address of new PP is placed in first byte of requesting PP message buffer. If no PP is
available, a zero byte is returned.

This function should not be used in new programs. It will be replaced by the function M. RPJ.

F-21

M. RPRI
(24B~-REQUEST PRIORITY) (0024, NNNN, 0000, 0000, 0000)
Assigns priority NNNN to control point, and searches priorities to initiate central processor action.

M.RSTOR
(10B-REQUEST STORAGE) (0010, CCCC, EEEE, 00XX, 0000)
OPTION 1 XX =00 CM only

XX =01 ECS only
XX =02 CM only

Assigns CCCC hundred octal words of central memory and/or EEEE thousand octal words of extended
core storage to control point of requesting PP if none of the following conflicts exist.

PP is waiting for previous storage request.
Storage requested exceeds that available in either CM or ECS.
CM is fully allocated and no change is requested; no requested change of ECS will be processed.

Monitor replies to this request by setting CCCC and/or EEEE to the values actually assigned to the
control point and by setting byte 0 to zero. These values should he compared with the original requests
to determine whether these requests have been honored; either part might have been honored with-

out honoring the other.

Option 2 XX = 10B

Request storage for RBT area of storage. 100 (octal) *CCCC (octal) is address of lowest word
memory requested by stack processor. Monitor replies with address actually allocated, which is
equal to or greater than address requested. EEEE is ignored.

M.RTAPE
(31B-READY TAPE) (0031, 00NN, 0000, 0000, 0000)
Clear lockout bit for equipment NN in EST. Turns equipment NN logically on.

M, SEF
(30B-SET ERROR FLAG) (0030, 000N, 000E, 0000, 0000)
Drop job at control point N and set error flag E at control point.

M.STEP

(05-MONITOR STEP CONTROL) (0005, 0000, 0000, 0000, 0000)

Initiated by a keyboard request. MTR sets an internal step control flag and at each subsequent
request, MTR pauses for console keyboard input. A space from the keyboard causes MTR to process
the request. A period from the keyboard causes MTR to process the request and clear the step
control flag to resume high speed operation. When N is nonzero, the corresponding control point

is the only one to he placed in step mode.

N.CP (7)

Specifies number of control points within the system. Altering the value of N.CP alone has no effect
on the system.

F-22

O.BPRU (16)

Backspace n PRU's. Number of PRU's to be backspaced is given in third byte of second word of the
order. O.BPRU requests repositioning defined by physical rather than logical units. No data is
transmitted.

O.RCHN (17)

Release chain. All record blocks assigned to a file and the RBT word pairs containing them are
released. FNT is reset to an empty condition if its address is supplied in the order. Requests 16
and 17 require no communication with the device and, therefore, are given highest priority in the
search for the next order to be executed. All other requests are assigned priority based on
repositioning requirements.

O.RCMPR (2)

Read into central memory after dropping first three CM words of first PRU. Used by STITCH for
loading program for system library eliminating the three word header added to system programs by
EDITLIB.

O.RDP (10)
Read into requesting PP's memory until a short PRU is encountered or until input area is full.

O.RDPNP (11)
Read into requesting PP after dropping first three CM words of first PRU. Used for all PP system
program calls.

O.RDSK (1)

Read into central memory until a short PRU is encountered or until buffer is full. Set FNT to
reference first PRU following first end-of-record of level x or greater. ILevel is given in high-order
6 bits of the order byte.

O.READ (0)
Read info central memory until a short PRU is encountered or huffer is full (IN=0OUT).

O.SKB (13)

Skip backward n records of level x or greater. Level is specified in high 6 hits of the order hyte;
number of records to be skipped is given in third byte of second word of the order. No data is
transmitted.

O.SKF (12

Skip forward n records of level x or greater. Level is specified in high 6 bits of the order byte;
number of records to be skipped is given in third byte of second word of the order. No data is
transmitted.

O.WRP (14)
Write from requesting PP, full PRU's only.

O.WRPR (15)

Write from requesting PP, ending with a short PRU of level specified in high order 6 hits of order
byte. If EOF flag bit is set in this order, a zero length PRU of level 17 is written following short
PRU terminating record.

F-23

O.WRT (4)
Write full PRU's from central memory.

O.WRTR (5)

Write from central memory, ending with a short PRU of level specified in high order 6 hits of the
order byte. If EOF flag bit is found in this order, a zero length PRU of level 17 is written following
short PRU terminating record.

P.CAT (11)
Pointer word to be used for future development.

P.CST2 (15)
Address of second word of CST. Contains bytes for channels 1, 5, 11, 15 (CH.FNT), and one unused

byte.

P.CST3 (16)
Address of third word of CST. Contains bytes for channels 2, 6, 12, and two unused bytes.

P.CST4 (17)
Address of fourth word of CST. Contains bytes for channels 3, 7, 13, 17 (CH.RBT), and one
unused byte.

P.DFB (3)
Address of dayfile buffer pointer word. Only the first byte (byte 0) is used; it contains CM address/
10B of dayfile buffer.

P.EST (5)
Address of EST pointer word., Byte 0 contains 12-bit first word address; byte 1 contains 12-bit
last word address plus one.

P.FNT (4)
Address of FNT pointer word. Byte 0 contains 12-hit first word address; byte 1 contains 12-bit
last word address plus one.

P.INS (7)
Address of a pointer word to an installation area; content is unspecified.

P.LIB (1)

Address of library directory pointer word. Bytes 0 and 1 contain right justified 18-hit first word
address of library directory. Bytes 2 and 3 contain right justified 18-hit last word address plus one.
Byte 4 contains a deadstart load flag; it must always be zero when a disk or recovery deadstart is
attempted.

P.RBR (2)

Address of RBR pointer word. (Also serves as RBT pointer word—see P. RBT.) Bytes 0 and 1
contain right justified 18-hit first word address of RBR table area.

F-24

P.RBT (2

Address of RBT pointer word. (Also serves as RBR pointer word—see P. RBR.) Byte 2 contains
first word address/2 of RBT empty chain. Byte 3 contains current length/100B entire RBT area.
Byte 4 contains (Iwa + 1)/100B of central memory.

P.RQS (13)

Address of request stack area pointer word. Byte 0 contains stack entry word pair count. Byte 2
contains first word address/2 of actual request stack. Byte 3 contains number of allocatable devices
(N.DEVICE). Byte 4 contains fwa/10B of DST entries. All DST entries appear at beginning of
request stackarea,followed immediately by actual request stack.

P.SPI (12)
Pointer word for future development.

P.ZERO (0)

Address of central memory word containing all zeros. Used by most PP routines as a quick means
of zeroing five successive PP locations. The system is destroyed by setting contents of P, ZERO
to nonzero.

R.CPFL (627)
Location within PP resident containing field length/100B of control point to which PP is attached.
R.CPFL is reset each time R. PAUSE routine is entered.

R.CPRA (631)
Location in PP resident containing reference address/100B of control point to which PP is attached.
R.CPRA is reset each time R, PAUSE routine is entered.

R.DCH (714)
Calling Sequence: ILOAD channel number
RIM R.DCH
R. DCH will cause the specified channel to be dropped.
R.DFM (650)
Calling Sequence: LOAD L (message)+flag hits
RIM R. DFM

Message from PP memory is written to dayfile and/or console. Flag bits are contained in high order
6-bits of A register upon entry to R. DFM; they determine message destinations. Flag bit values are
given below; one or more bits may be on; all are optional.

1 Dayfile only (A display)
2 control point 0 (system) message

4 no A display

R.EREQS (300)
Calling Sequence: Store L (requests) in D,TO0

RIM R.EREQS

Adds the control point number to the already formatted request and searches the central memory
request stack for an empty entry. The monitor function, M. EREQS, is called and PP resident
iterates until the monitor accepts the request.

R.ERQ (334)
A word in R. EREQS modified by LDR.

R.IDLE (100)
Calling Sequence: LJM R.IDLE
Idle loop; PP resident continually scans its input register for something to do.
R.MTR (450)
Calling Sequence: Store function parameters in D.T1 to D.T4
Load function code
RIM R.MTR
Places the function code in D.TO0, writes D.T0 through D. T4 to the output register and waits for
the output register.
R.OVL (124)
Calling Sequence: Load A register Load Address
RIM R.OVL

Causes an overlay whose name appears in D.T6 and D. T7 (left justified) fo be loaded into the PP
beginning at the address specified in the A register. R.OVL is used both by PP overlays to load higher
level overlays and by PP resident to load the overlay named in the input register. PP resident does
not reference the disk directly to load disk resident overlays but makes a call to the stack processor.

R.OVLJ (111)
Calling Sequence: Store name of overlay in D.T6, D.T7

LJM R.OVLJ

Go to R.OVLJ to load a new primary overlay and transfer control to it.

F-26

R.PAUSE (430)
Calling Sequence: RJM R.PAUSE

STD D.RA

Exits if PP is attached to control point zero or if storage move flag is not set. Otherwise, the
monitor function M. PAUSE is issued and PP pauses until monitor has completed storage move for
that control point. In any event, before an exit is made from R. PAUSE, the following information
is set:

(D.T0 + C.CPST) control point status
(D.TO + C.CPEF) control point error flag
(D.T0 + C.CPRA) control point RA (hundreds)
(D.TO + C.CPFL) control point FL (hundreds)
A register control point RA
D. RA and D. FL (if significant) should always he reset after a jump to R. PAUSE.

R.PROCES (450)
Identical with R. MTR.

R.RCH (704)
Calling Sequence: ILoad channel number
RIM R.RCH

Channel numbers in A register are stored in byte D.T1,monitor function M. RCH inserted in D. TO,
and D, T0-D. T4 written to output register for that PP. Channels are assigned by MTR on the
following priority basis:

D.TO D.T1 D.T2 D.T3 D.T4

If alternate channels are specified, MTR stops looking for alternate channels upon sensing 6 hits of
zero. Thus, if one alternate channel is desired, the programmer must clear D. T2 before entering
R.RCH so the search terminates at that point. Procedure for requesting channel 12 with alternate
channel 13:

LDN 0

STD D.T2
LDC 1312B
RJIM R.RCH

Monitor will stop looking for alternate channels after four channels have been investigated.

When R.RCH is used, D.T4 is automatically set nonzero; the function is not considered complete
(output register is not cleared) until a channel can be assigned. When complete, byte 0 of output

register is cleared and byte 4 is set to 7777B. A channel request may be made directly to monitor
(M.RCH). One other option is allowed in this case: monitor cannot assign the channel, it moves byte
4 of output register to byte 0. R.RCH stores M. RCH in byte 4 of output register to wait until the
channel is assigned.

R.READP (R.WRITEP) (460(470))
Calling Sequence: Load L(request)
RIM R.READP(R.WRITEP)

Computes PP word count from first and last word addresses given in already formatted request and
adds computed word count, address of PP message buffer, and control point number to request.
Request is entered in stack and data is transmitted via channel directly to(from) PP memory. Upon
exit from R.READP (R.WRITEP), the following information is set:

(D.T3 + C.RWPPLW) lwa + 1 of data transmitted
(D. T3 + C. RWPPST) status
(D. T3 + C. RWPPWT) number of PP words transmitted

R.RWP (505)
Special entry point to R. READP used by LDR.

R.RWPP (530)
Word in R. READP modified by LDR.

R.STB (620)
Calling Sequence: Load L (list)
RIM R.STB

where list has the form:

L (byte)
L (word 1)
L (word 2)

L (word n)
Zero

An entry point to R. STB called R. STBMSK is the address of the mask "anded'" with each word in the
list before the word is "exclusive ored'" with the byte. This mask is initially 7700B and this value
should be restored by any routine which substitutes an alternate mask. R.STB is used primarily to
substitute channel numbers in driver overlays.

R.STBMSK (611)
Address within PP resident of a location used by R.STB routine.

F-28

R.TFL (634)
Calling Sequence: Load relative address

RIM R.TFL

Insures that a relative address is within field length; 18-bit address is added to control point reference
address (RA) and compared with field length. If address is out of range, R. TFL exits with a negative
A register; if address is legal, A register contains absolute CM address (RA + relative address) upon
exit. Control point RA and FL are kept locally within PP resident at R. CPRA and R. CPTL, respect-
ively; these locations are reset whenan entry to R. PAUSE is made.

R.WAIT (410)
Calling Sequence: RJM R, WAIT

PP idles until byte 0 of output register is clear.

R.WRITEP (470)
See R.READP.

S.DIRPR (8)
Number of hit positions to right shift in PP word to right justify program residence to bit zero.

S.DIRPT (4)
Number of bit positions to right shift in a PP word to right justify the program type to bit zero.

S.FNTEQP (6)
Right offset of equipment code field in FNT. Equipment code field is positioned in bits 6-11 of byte
ZEero.

S.FNTLK (5)
Right offset of lock hit in FNT. Lock hit is positioned in bit 5 of byte 3.

S.FNTTYP (3)
Right offset of file type field in FNT. File type field is positioned in bits 3-4 of byte 3.

S. RBRUNT (6)
Right offset of DST ordinal field in RBR header.

S.RBTRBR (3)
Right offset of RBR ordinal field in RBT word pair.

S.RBTREL (7)
Right offset of release bit in flag field of RBT word pair.

S.RBTRND (6)
Right offset of random hit in flag field of RBT word pair.

S.STF (6)
Right offset of flag field in a stack request.

F-29

S.STFA (0)
Right offset (in the flag field) of PP-available bit in a stack request.

S.STFEOF (4)
Right offset (in flag field) of end-of-file bit in stack request.

S.STFETP (2)
Right offset (in flag field) of FET-present bit in stack request.

S.STFNTP (3)
Right offset (in flag field) of FNT-present hit in stack request.

S.STFPRI (5)
Right offset (in flag field) which specifies high priority for this stack request.

S.STFRCL (5)
Right offset (in flag field) of recall bit in stack request.

S.STFREL (4)
Right offset (in flag field) of release hit in stack request.

T.CIDLE (23)
Location of accumulated CP idle time (time spent at control point zero). Also includes time used to
move storage.

T.CLK (30)

Location in which clock is kept, in form *HH.MM.S8S. T.CLK is updated by MTR and displayed on
top line of left scope. Time will be time of day, if a TIME entry to DSD was made; otherwise, it
will be the time since deadstart.

T.CPAx (1=x=7) (200, 400, 600, 1000, 1200, 1400, 1600)

T.CPAx symbols represent first word addresses of control point areas 1~7. These symbols should
be used only by MTR since other PP programs are usually given a control point number from which
the address can be computed. Only T.CPA1 is used by MTR as a control point area length.

T.CPS (40)
Used by MTR as a base address to reference CM words 41-51. (PP starting times for PP1-9)

T.CPT1 (56)
Location of current CP status bytes. CPUA status is in byte 4. CPUB status is in byte 3. Status
is the control point address of program using CPU, 0000 for idle or 2000 for storage move.

T.CPZ (20)
Address of control point zero status word. Not referenced. MTR uses the word as W. CPSTAT for
control point zero.

T.CP8 (2000)

Used by MTR as a limiting address in control point scans and also as alternate name for CP, MOVE
and CP.IDLE.

F-30

T.CST (14)
Address of first word of CST. Contains bytes for channels 0, 4, 10, 14 (CH.FST), and one unused
byte.

T.DATE (31)
Location of today's date in the form entered by operator at deadstart time. Date is displayed on top
line of left scope.

T.JDATE (27)
Location of today's date in Julian format. Value is computed from date entered by operator at dead-
start time.

T.MON (21)
Address of control point zero job name. Contains display code constant *MONITOR*. It is not used.

T.MSC (40)
Contains the time to the millisecond since deadstart.
byte 0 (not used)
bhyte 1 time in seconds (reset each 2**12 seconds)
byte 2 milliseconds since updating the seconds
bytes 3-4 time in MSEC (reset each 2**%24 MSCC)
T.MSP (37)

Location of monitor step flag used for communication between DSD and MTR while system is in step
mode.

T.PLIDLE (24)

Location of accumulated PP idle time (time spent at control point zero). Includes time spent at
control point zero by programs such as 1SP while scanning for activity to be pursued. If DSD changes
control point assignment, its time will be added here also.

T.PPCx (1=x=9) (60, 70, 100, 110, 120, 130, 140, 150, 160)
Symbols represent first word addresses of communication areas for PP's 1-9,

R.PPR (25)
Not used.

T.PPSx (0=x=9) (41-51)

Locations of accumulated PP times for PP0-9. These symbols are not used and are deceptive. No
time is kept for PP0. Time is kept for PP 1-9 in 41B through 51B. 52B is not used. 51B is only
used when DSD changes its control point assignment.

T.SLABx (3x) (where x=1+06)
Locations containing system label displayed on top line of left scope.

F-31

T.STATCP (56)
Word containing current status of CPU ON/OFF/DELEGATION. (See C.STATCP.)

T.STO (22)
Not used.
T.TMP (55)

Location of temporary location used hy MTR as a scratch pad memory.

T.UAS (56) ‘

Location of unassigned storage length. MTR keeps tally of size of the "holes'" between control points
in T,UAS; 1BJ uses this size to determine whether or not there is adequate central memory to bring
a given job to a control point. This test does not insure that space will be there when a storage
request is made, since T.UAS is tested by all copies of 1BJ without an interlock; however, it
provides a reasonable figure.

Byte 0 Central memory UAS
Byte 1 ECS TUAS

W.CPAR (157)
Relative word in a control point area which contains the auto-recall pointer.

W.CPCAF (51)
Relative first word address in a control point area of the 100g word buffer containing current PRU
of control card statements.

W.CPCAL (150)
Relative Iwa in a control point area of a 100g word huffer containing current PRU of control card
statements.

W.CPDFM (30)
First of seven words in a control point area containing dayfile message currently on the B display.

W.CPECS (22)
Relative word in a control point area containing ECS field length/1000B assigned to job.

W.CPEF (20)
Relative word in a control point area containing error flag for job.

W.CPENC (155)
Relative word in a control point area containing a count of number of stack requests pending at this
control point.

W.CPERT (40)
Relative word in a control point area containing internal error flag used by 1AJ and 2TS.

W.CPFL (20)
Relative word in a control point area containing central memory field length/100B assigned to the job.

F-32

W.CPIJNAM (21)
Relative word in control point area containing seven-character job name.

W.CPOAE (153)
Relative word in control point area containing byte used to communicate operator-assigned equipment.
MTR sets EST ordinal of equipment requested by DSD in this byte for subsequent testing by REQ.

W.CPOUT (153)
Pointer to word 153 in assigned control point area. This word in byte C. CPOUT (3) flags to DSD
that the job at this control point is an OUTPUT file.

W.CPPRI (22)
Relative word in control point area containing current job priority.

W.CPRCL (25)
Relative word in control point area containing PP recall register. This word is being replaced with
the M. RPJ function with a delay.

W.CPRES1L (156)
Relative word in control point area used by RESPOND,

W.CPRES2 (160)
Relative word in control point area used by RESPOND.

W.CPSM (20)
Relative word in control point area containing storage move flag.

W.CPSTAT (20)
Relative word in control point area containing status byte.

W.CPTBUF (41)

First word of eight-word buffer in control point area containing a partial control card image. The
W. CPTBUF huffer is used in event that reading of another PRU of control cards is required and the
current PRU does not end on a control card boundary.

W.CPTBUL (50)
Last word of eight-word buffer in control point area containing a partial control card image. (See
W.CPTBUF)

W.CPTIME (23)
Relative word in control point area containing CP time accumulated hy job.

W.CPTIML (22)
Relative word in control point area containing CP time limit imposed on the job.

W.CPVRNO (154)

Relative word in control point area which transmits visual reel number typed by operator to tape
labeling routine.

F-33

W.EQP (27)
Relative word in control point area containing bits indicating equipments currently assigned to this
control point.

W.FSTCC (151)
Relative word in control point area containing FST entry (FNT word 2) for job input file. Contents
of this word designate position on device at which next PRU of control cards may he found.

W.FSTNR (152)
Not used.

W.FTYPE (0)
Relative word in FNT entry containing file type field.

W.PPIR (0)
Relative word in a PP communication area containing PP input register.

W.PPMESx (1=x=6) (2-T)
Relative word in PP communication area containing six words PP message buffer.

W.PPOR (1)
Relative word in PP communication area containing PP output register.

W.PPTIME (24)
Relative word in control point area containing PP time accumulated by job.

W.RBRLAV (1)
Relative word in RBRT containing count of record blocks logically available.

W.RBRTPA (0)
Relative word in RBR header containing count of unassigned record blocks defined in RBR.

W.RBRUNT (0)
Relative word in RBR header containing unit number (DST ordinal).

W.RWPPCW (2)
Relative position of READP/WRITEP communication word in message buffer of PP communication
area.

W.SSW (26)
Relative word in control point area containing sense switch settings for job.

W.STCPU (0)
Relative word in stack request containing control point and unit number (DST ordinal) of request.

W.STEI (0)
Relative word in stack request containing empty indicator. If this fieldis 0, the entry is not in use.

F-34

W.STFB (1)
Word in stack request which contains flag byte.

W.STO (0)
Word in stack request which contains stack processor order.

W.STPFW (1)
Word in stack request which contains next address in PP memory for data transmission. TIieldis
used in this manner only on calls to R. READP or R. WRITEP,

W.STPLW (1)
Word in stack request which contains Iwa + 1 in PP memory for data transmission. Field is used
in this manner only on calls to R. READP or R.WRITEP.

W.STPMS (1)
Word in stack request which contains PP message buffer address.

W.STPPRU (0)
Word in stack request which contains PRU number at which to begin data transmission if no-FNT is
specified.

W.STPRBA (0)
Word in stack request which contains address of RBT word pair containing record block at which to
begin data transmission if no-FNT is specified.

W.STPRBN (0)
Word in stack request which contains RBT ordinal of record hlock at which to begin data transmission
if no-FNT is specified.

W.STPWC (1)

Word in stack request which contains number of PP words (bytes) to be transmitted during a READP
or WRITEP request.

SCPTEXT MACROS

LDK Macro
Generates LDN or LDC instruction, depending on size of address field. Any symbols in address field

must have been previously defined. This macro is recommended for referencing SCPTEXT symbols
for CM pointer words.

ADK Macro

Generates ADN or ADC instruction, depending on size of address field. Any symbols in address
field must have been previously defined. This macro is recommended for referencing SCPTEXT
symbols for control point additives (W.x symbols).

F-35

UJK Macro

Generates UJIN or LJM instruction, depending on length of jump. In general, the jump must be
bhackward, since symbols used in address field must have heen previously defined. Macro is useful
for exiting from small subroutines subject to expansion.

BIT Macro

Generates no code; merely defines a symbol in the location field. Value assigned to symbol is a

1-bit mask where the bit is positioned according to value of address field. Bits are counted from
right to left, beginning with zero. Thus, the statement MASK BIT 2 would set MASK equal to 4.

Macro is useful for generating 1-hit flag values with the S.x SCPTEXT symbols.

ENM Macro

Generates standard subroutine entry and exit lines. The name of the subroutine is that declared in
location field of ENM; the subroutine may he entered by an RJM to that name. If address field of
ENM is blank, no exit symbol is defined; otherwise, contents of address field are appended to location
symbol to generate subroutine exit symbol. (Typically, address field contains only an X.) An exit
from subroutine may then be made by jumping directly to the generated symbol.

PPENTRY Macro
Used as first instruction following ORG in a primary level overlay. PPENTRY generates code to
set up low core parameters as follows:

D.PPIRB through D. PPIRB-+4 Input register contents
D.CPAD Control point address
D.RA Reference address/100B
D.FL Field length/100B

Address field of the PPENTRY macro should contain: D, PPIRB,T. TO,

LDCA Macro

Load PP A register with absolute 18-hit central address. Relative CM address is obtained from two
consecutive PP low core locations, the first of which is specified in address field of LDCA macro;
CM address is assumed to he right justified within these two words. Contents of D. RA are added to
CM address. Macro is useful for loading many different CM addresses. Space may he conserved
by using a subroutine rather that the macro if the same address is to be loaded three or more times.

CRI Macro
Reads contents of a CM word the address of which is contained in a central memory pointer. Address
field of CRI macro contains X, Y, and Z subfields, in that order.

X 6-bit CM pointer word address
Y First of five PP low core cells which will contain the desired CM word
Z Byte within CM pointer word containing 12-bit CM address of desired word.

I-36

JOBCARD Macro

SCPTEXT contains a definition of a macro called JOBCARD. The release version is empty, consisting
of a macro definition header and a terminator. System characteristics may be altered by insertion
(between header and terminator) of one or more cards described helow.

If the symbol SCOPE 2.0 is defined within JOBCARD, SCOPE 3.1 is altered to accept only SCOPE 2.0
job cards. The value to which the symhol SCOPE 2,0 is equated is irrelevant.

SCOPE 3.1 may be altered to accept a decimal value on one or more of the job card parameters by
inserting a card or cards in the following form:

DECIMAL field

Fieldis one of the terms EC, CM, T, or P. Currently, all values are assumed to be octal: however,
it may be declared specifically that a parameter is to he interpreted as octal by inserting a cardin
the following form:

OCTAL field
Field is as defined ahove.
Priority sublevel computation may be tailored by installation as described helow.

This procedure combined with the (installation partitioned) 12-bit priority is used to order jobhs within
priority levels upon entry to the input queue.

The installation partitions the priority byte by specifying a maximum priority level, IP. MPR. The
user-supplied priority value from the job card specifies the high order hits (level) of a job's
priority. The other job card characteristics may be used as data for priority sublevel computation
algorithm. This algorithm is specified by the installation by inserting a set of statements of the
form:

WEIGHT field, relation value additive

Field is one of the terms EC, CM, T signifying ECS storage allocation (in 10008 word blocks),
CM storage allocation (in 100g word blocks) and T is Time limit (in 8 second units).

relation is GE (greater than or equal) or LE (less than or equal)

value is a comparison quantity

additive is to be added to the sublevel if the job card field bears the stated relation to value.
The installation may tailor this algorithm to give high priority sublevel to particular classes of jobs
(express type jobs). User specified priority may be relegated to its proper role of distinguishing
urgent jobs from the great majority of batch jobs which may enter the system at an installation

specified standard level (IP. SPR) and be fanned out along a priority spectrum by the input scheduling
procedure.

F-37

CVRT AND CVDEL G

The CVRT and CVDEL programs are designed to convert an EDITSYM program library plus its
correction deck into a source for UPDATE and a correction deck for UPDATE.

CVRT is called to convert a program library:

CVRT(COSY, SOURCE)

COSY is the file name which contains the EDITSYM program library (COSY is assumed if no
name is specified), and SOURCE is the file onto which the source lines will be written (SOURCE
is assumed if no name is specified). CVRT processes the COSY file from the beginning until

a double end-of-file. :

CVDEL is called to convert a correction deck:

CVDEIL(TAPE1l,TAPE2, TAPE3,OUTPUT)

the file assignments are:

TAPE1 File which contains the EDITSYM correction deck
TAPE2 File which will contain the UPDATE correction deck
TAPE3 A scrateh file for CVDEL

OUTPUT File which will contain a copy of FORTRAN diagnostics (none expected)

Conversion starts at the current position of TAPE] and continues until an end-of-record. *COPY,
*WEOR and *COMPILE cards are ignored. So that card numbering is consistent, the correction
deck which results from the CVDEL run should be run against the UPDATE program library created
from the EDITSYM library via CVRT.

The CVRT program, in changing from EDITSYM to UPDATE format, regenerates a source file which
is given to UPDATE via a *READ control card. In the EDITSYM numbering scheme, the *DECK
cards are not included in the numbering whereas in UPDATE they are; the CVRT program will
compensate for this inconsistency by discarding the first card in the EDITSYM deck with an asterisk
in column 1 and a blank in column 2. By placing a comments card (asterisk) at an early place in
each deck, the numbering of the cards will be unchanged and the CVDEL program will convert
corrections properly and consistently.

ERROR MESSAGES H

The system messages produced hy SCOPE 3.1 are listed below, in alphabetic order, together with
the names of the routines which produce the errors.

Message Routine
A DOUBLE EOF WAS FOUND BEFORE Al COPYN
A NUMERIC EXTENDS BEYOND AN END OF FILE COPYN
A PARAMETER BEGINS BEYOND AN EOF-EOF COPYN
A PARAMETER IS GREATER THAN 7 CHARACTERS COPYN
ABOVE IS ILL-FORMED AND IGNORED EDITLIB

Preceded by reproduction of the control card in question. EDITLIB does not abort, but proceeds
to the next control card. Possible reasons for rejection of a control card are given below:

Contains more than 30 elements (words and/or numbers).

First element is not an EDITLIB function.

Any other element exceeds seven characters.

An element begins with two or more digits and contains a letter.

An element which should be a name is a number.

An element which should be a residence code is not CM or DS.

On a SKIPB card, the file name is nbt followed by a number.

On a SKIPF card, the file name is followed by an asterisk or dash; it should be a name or

number.
AN ID(P1) IS REQUIRED ON ALL TEXT CARDS COPYN
ARG ERROR LOC

Occurs if the lwa of the area to be cleared (via LOC control card) exceeds the field length or if
lwa is less than fwa. The job is aborted.

Message Routine
ARITH ERROR 2EF

CP program terminated because of arithmetic error.

BAD COMPARE COMPARE

Displayed on console, system dayfile, and joh dayfile if a discrepancy occurs when COMPARE
control card is executed. The operator may drop the job if discrepancies are fatal to the job.

BAD NAME CHECK xxx EDITLIB
Program name xxx read from input file is not same as first program name on ADD, ADDEBCD,

ADDCOS, or ADDTEXT control card. If running system library is the source, xxx is name of
requested program which cannot be found in directory.

BINARY CARD READ AS FUNCTION CARD EDITLIB
The first record from input file must contain all and only the control cards for EDITLIB. If a

character other than a letter, digit, or special characters+~=. , () / * $ and blank appears
in this record, the card is assumed to be binary.

BINARY RECORD MISSING FROM INPUT COPYN
BKSP(TAPE) 1TD, 1DF
BKSP HIT EOF EDITLIB
BLANK 1BT

1BT was called to write a blank label on a tape.
BLANK COMMON EXCEEDS AVAILABLE CORE, TRUNCATED LOADER

During blank common allocation, no length is established which would exceed FL or overlap the
20-word LOADER residence. No reference is truncated; only the allocation for core map purposes.

BUFFER ARG ERROR 2BP

FET address is not in field length, or buffer parameters are not within limits given below; the job
is aborted.

FET(1) + 4+L < FL OUT < LIMIT OUT =z FIRST
LIMIT = FL IN < LIMIT IN = FIRST

Message Routine
BUFFER IN/OUT POINTER ERROR 18X
Called by error code 11. Buffer pointers IN or OUT are less than FIRST or not less than LIMIT.
BUFFER PARAMETER ERROR 18X
Called by error code 10. FIRST is not less than LIMIT, or LIMIT is greater than field length.
CALL IGNORED, COMMON DECK NOT IN DICTIONARY EDITSYM
*CALL, dn is encountered but dn is not a common deck.

CANNOT COMPLETE LOAD, JOB ABORTED LOADER
Intended to correct fatal error conditions which occur in control card mode when LOADER requests
LDR to load library routines. Since a request of this type appears to LDR as a user request, 2LE,
a fatal error message does not abort, but returns to LOADER. An error message from 2LE appears
before this message.

CANNOT COMPLETE THIS OVERLAY, BAD INPUT LOADER
During overlay generation, if LDR encounters difficulty in loading text or tables, it produces a
message such as USER ERROR, BAD TEXT TABLE. When LOADER attempts to complete the
overlay, the fatal error bit (set by LDR) is detected, the above message is output, and the job
aborted. Core map will contain the last good overlay generated.

CANT (ADDTEXT) FROM SYSTEM EDITLIB
ADDTEXT reads records from a file and formats them into an overlay for a system file. This is
not possible if input file specified is SYSTEM, as it would require running the system as defined
by the current CMR directory. A simple ADD can probably get the relevant record from SYSTEM.

CANT ADD WITHOUT READYING EDITLIB

ADD, ADDBCD, ADDCOS, or ADDTEXT control cards cannot be executed by EDITLIB unless a
file has been named by a preceding READY card with no intervening COMPLETE card.

CANT FIND DIRECTORY RECORDS ON INPUT FILE EDITLIB

EDITLIB cannot locate records that comprise the directory on a system file (should be in 6th and
7th records); presumably this is not a system file.

Message Routine
CANT LIST BETWEEN READY AND COMPLETE EDITLIB

EDITLIB cannot list programs in a file while it or another file is being constructed (READY card
has been executed more recently than COMPLETE card).

CANT MOVE WHILE READY PENDING EDITLIB

After a READY card is read by EDITLIB, the residence of a program in the ruming system caunnot
be changed by a MOVE card before the file named in READY is written out by a COMPLETE card.

CANT TRANSFER WITHOUT READYING EDITLIB

EDITLIB cannot execute a TRANSFER card unless a file has been named by a preceding READY
card with no intervening COMPLETE card.

CHECKPOINT COMPLETED CKP
CHECKPOINT REQUESTED | CKP
Every call to CKP enters this message in the dayfile.

CHECKSUM ERROR DEAD-START FROM TAPE STL

Checksum error occurred during loading from disk. Indicates information on disk is not intact.
Load the system from tape.

CIiI0 ERROR. n 1RI

Followed immediately on console display, system and job dayfiles by ROLLIN ABORTED. 1RI,
called by a type-in or roll in, is about to abort job. If n=1, file named QROLOUT not at the control
point; presumably it had not been properly rolled out. If n=2, 3, or 4, file QROLOUT was there,
but did not read correctly (see program 1RI).

CKP FILE INCOMPLETE OR INVALID RST

CKP FILE UNKNOWN RST
CKSUM ERROR RC.xxxx, CD.yyyy 2RC

Appears at the beginning of OUTPUT file if input card has invalid checksum and checksum suppress
punch in row 4 of column 1. Job will have been aborted as soon as it was brought to a control point.
Record number is decimal xxxx, counting first record (control card) in file as 0000; card number
is decimal yyyy, counting first card of record as 0001.

Message Routine
CODED INF EDITLIB
COMMON DECK EDITING MUST PRECEDE TEXT EDITING EDITSYM

*COMDECK control card occurred after text deck correction or a *DECK control card in the
correction input. EDITSYM run is terminated.

COMMON SECTION TOO LARGE EDITSYM
Space available for common decks has been exceeded.

COMPARISON ABANDONED BECAUSE OF E-O-R LEVEL COMPARE
DIFFERENCE AFTER RECORD n FILE x LEVEL p FILE y LEVEL g

COMPARE puts this message on its OUTPUT file and ends the run, if the nth pair of records
compared in the two files do not both terminate with the same level end-of-record. The level
numbers in octal appear after the file names in the message.

((COMPLETE)) FINDS REC.MSG. IN FILE sssssss EDITLIB
A fault occurred in disk-file use by EDITLIB; sssssss is a local file used by EDITLIB.

CONF LICTING RECORD COUNT EXHAUSTED COMPARE

COMPARE puts this message on its OUTPUT file and ends the run if the control card specified a
number such that if a higher number of record pairs compared were found to conflict, comparison
would be abandoned; if that number has been exceeded, (for instance, if the CONFLICT IN RECORD
n is written for five pairs of records), the ahove message is given and comparison is abandoned.

If there is no sixth parameter on the control card, it would be done after CONFLICT IN RECORD n
has been written 30000 times.

CONFLICT IN RECORD n COMPARE

COMPARE puts this message on its OUTPUT file when the nth pair of records are not identical,
word-for-word. (If one of records is longer than the other, a separate message appears. Word-
by-word comparison is made to the end of the shorter record.) Depending on parameters, this
message may be followed by listing of some or all words in which the two records differ. For
instance,

00020, 00000000000000000000/00000000000000000001

The 17th word of record n of the file named first on the COMPARE control card was 0, and the
corresponding word in the file named second on the control card was 1. 00020 is octal representa-
tion for 17, and the first word of the record would be numbered 00000, The words are printed as
20 octal digits each. Comparison continues normally after the message.

Message Routine
CONTROL CARD ERROR COMPARE
Put on the console display, system dayfile, and job dayfile. The COMPARE control card contains
fewer than 2 parameters or a parameter that is required to be a number, implied by fewer than 2,
contains a non-numerical character. The job is aborted.

CONTROL CARD ERROR COPYBCD

Displayed on console, system and job dayfiles if a parameter that begins with a digit contains a
non-digit character.

CONTROL CARD ERROR COPYBF
CONTROL CARD ERROR 2TS
Displayed, preceded by card in error.

CONTROL CARD ERROR ATS
Improper format card.

CONTROL CARD REWIND (INPUT) IS ILLEGAL COPYN
CONTROL POINT OCCUPIED 1DF

Operator tried to dump dayfile from occupied control point. A control point must be vacant (have
no job name).

COPYBCD (DAYFILE, TAPE) 1DF
COPYBCD (xxxxxxx, TAPE) 1TD
COPYL DID NOT FIND Xxxacxxx. COPYL
COPYL DONE COPYL
COPY REQUESTED BUT NO OLD PROGRAM LIBRARY EDITSYM

*COPY read from correction input but no old program library requested on EDITSYM call card.
EDITSYM run is terminated.

CORE OVERFLOW UPDATE

Message Routine
COS EDITLIB

CPnn COMPARE ERROR 2PC

Displayed on console and system dayfile. Card punch with nn EST ordinal mispunched a card.
Operator action not required, as the card punch offsets the bad card and the one after it, and
repunches the two cards.

CPnn NOT READY 2PC

Displayed on console only. Card punch with nn EST ordinal is not ready; when ready, punching
begins.

CPnn REJECT 2PC

Displayed on console when card punch with nn EST ordinal rejects a function code. No operator
action.

CP 00000, 000 SEC 1AJ
CPnn XMSN PARITY ERROR 2PC

Displayed on console and system dayfile when card punch with nn EST ordinal finds a function
transmission parity error. No operator action.

CP PROG EDITLIB
CRnn CKSUM ERROR RC.xxxx, CD.yyyy 2RC

Appears in system and job dayfiles. User local file assigned to card reader with nn EST ordinal
contains binary card with bad checksum and no checksum suppress punch in row 4 of column 1.
Job is aborted. Record number is decimal xxxx, counting first record as 0000, card number

is decimal yyyy, counting first card of record as 0001.

CRnn COMPARE ERROR 2RC

Appears on system dayfile and console display; on the display, it is followed by CR nn RE-READ
LAST CARD. The card reader with nn EST ordinal misread last card in output stack and stopped.

Message Routine
CRnn FORMAT ERROR RC.xxxx, CD.yyyy 2RC

Appears in system and job dayfiles. User local file assigned to card reader with nn EST ordinal
contains 7-9 card, presumably binary, of no recognizable format, and not included in a group of
cards for 80-column hinary reading. Job is aborted. Record number is decimial xxxx, counting
the first record in the file as 0000; card number is decimal yyjfy, counting the first card of the
record as 0001.

CRnn FUNC XMSN PARITY ERROR 2RC, 1LJ

Displayed on console and system dayfile. Card reader with nn EST ordinal found function code-
parity error. No operator action.

CRnn HOLL. CHECK RC.xxxx, CD.yyyy : 2RC

Appears in system and job dayfiles. User local file assigned to card reader with nn EST ordinal
contains a card without 7-9 in column 1, presumably Hollerith, with invalid punch combination in
at least one column. It has heen read as a blank column. Record number is decimal xxxex,
counting first record in file as 0000; card number is decimal yyyy, counting first card of record
as 0001.

CRmn MODE CHANGE RC.xxxx, CD.yyyy 2RC

Appears in system and job dayfiles. User local file assigned to card reader with nn EST ordinal
found mixed cards (binary, Hollerith, 80-column) in a single record. Record number is decimal
xuxx, counting first record as 0000; card number at which first change of type occurred is
decimal yyyy, counting first card as 0001.

CRun NOT READY 2RC

Displayed on console only. Card reader with nn EST ordinal is not ready. When ready, cards
are read.

CRnn REJECT 2RC, 11J

Displayed on console and system dayfiles. Card reader with nn EST ordinal rejected a function
code. No operator action.

CRnn RE-READ LAST CARD 2RC

Displayed on console when CR mn COMPARE ERROR is sent to system dayfile. Card reader with nn
EST ordinal misread last card in output stack and stopped. Operator should back up the card,

if any, now waiting in the jaws of the reader; back up the last card in output stack to head of input
gueue and press CLEAR MEMORY and START buttons on the card reader. Card reading will
continue.

Message Routine
CRmn RE-READ 2 CARDS, TYPE GO. 2RC

Follows CR nn 6681 XMSN PARITY ERROR. Both messages will be written on the system dayfile,
but only this one will persist on the console display. The operator should: back up the card now
waliting in the jaws of the reader, move the last two cards in the output stack back to the head of the
input queue of cards, and type x.GO. (x is relevant control point numbers). Card reading will
resume. nn is card reader EST ordinal, in octal.

CRnn SERIAL CHK, RC.xxxx, CD.yyyy 2RC

Appears in system and job dayfiles. User local file assigned to card reader with nn EST ordinal
has at least one bhinary card with a serial number that does not agree with its position in the record.
Record number is decimal xxxx, counting first record of file as 0000; position of first card in
record is yyyy, counting first card in record as 0001.

CRnn 6681 XMSN PARITY ERROR 2RC
Appears on system dayfile and console display, it is succeeded on console by CR nn RE-READ 2

CARDS, TYPE GO. Indicates a transmission parity error between the 6681 and card reader with
nn EST ordinal.

DAYFILE 1DF
DAYFILE DUMPED 1DF
DEAD START RECOVERY STL

Appears in system dayfile when recovery is successfully completed.

DECK DOES NOT END WITH *END : EDITSYM
Text deck ended, but no *END card appeared. Run is terminated.

DECK NOT ON OLD PROGRAM LIBRARY EDITSYM

Deck specified on *EDIT or *COPY card is not on old progrﬁm library. Run is terminated.

DECK STRUCTURE CHANGED UPDATE
DELETION EDITSYM
DEVICE CAPACITY EXCEEDED IN CKP CKP

Since there is no provision for multi-reel checkpoint file, this message is given at end of disk or
tape.

Message Routine

DIRECTORY UNDER CONSTRUCTION GETS TOO BIG — TOO EDITLIB
MUCH CM RESIDENCE

EDITLIB is constructing a directory to replace SCOPE system directory in central memory. It is
too large for field length of EDITLIB's control point. This field length allows a directory at

least 3000008 words long. Too many programs are assigned to CM residence. To allow a larger
directory, try EDITLIB again with LENGTH(n) as first control card. n is 4-9, calling for 4000008B,
11000008 words.

DISK PARITY ERROR STL
Parity error encountered when loading from disk; loading terminates.

(DISK) 6638 CONNECT FAILED 18X

Called by error code 02. 15Q attempt to connect to a unit of the 6638 failed; disconnected
alternate unit repeated attempt and failed again,

DISPOSITION CODE ERROR 2TS
Disposition code on REQUEST caxd is not recognized. Job will terminate.

DOUBLE EOF WAS FOUND BEFORE A / COPYN
Double EOF encountered before zero length record was copied.

DMP ARG ERROR DMP
Displayed on console, system and job dayfiles. Starting address for CM dumps is higher than
final address or they are relative to RA, rather than absolute, and final address is higher than
field length.

DUP COMMON FILES OF xxxxxxx 2TS

Both local and common file in FNT have same name as on COMMON card.

DUPLICATE CKP FTN FOUND REQ
EDIT CONTROL CARD SET MUST BE FOLLOWED BY A EDITSYM
*EDIT CARD

*INSERT, *DELETE, *ADD, *CANCEL, or *RESTORE control card sets follow a *DECK,
*COMDECK, *COPY, *WEOR instead of a *EDIT card. Run is terminated.

EDITION EDITSYM

H-10

Message Routine
EDITLIB-CTS FAULT IN INITIALIZING COMMON FILES EDITLIB
Program fault in EDITLIB, or CTS that is not expected.

EDITLIB PROG.FAULT IN SUBRT.MAKE EDITLIB
EDITLIB is trying to ADD a record which begins like a binary CP program, but is badly formatted.

Such a binary program must be organized in tables, and EDITLIB checks organization to get entry
point names. If record appears to end in middle of a table, this message is issued.

EDITLIB PROGRAM FAULT I SUBRT. SQB EDITLIB
EDITSYM CONTROL CARDS EDITSYM
EDITSYM ERRORS EDITSYM

Dayfile message.

EDITSYM LIST EDITSYM
sfckktokkk END OF FILE Stk EDITSYM
EOF was read on lfn specified by a *CATALOG, 1fn control card.

END OF FILE IMPROPERLY READ ON INPUT FILE EDITLIB

TRANSFER card directed copying one or more records from input file to system file. End-of-file
was read before all records were found.

END-OF-INFO ON FILE x AS RECORD y COMPARE

Program compared y-1 pairs of records from two files, but read end-of-information on x file before
specified number of record pairs was reached. Written on job output file, and run is terminated.

END OF TAPE 2RT
ENTER DATE mm/dd/yy DSD

Appears at deadstart time. Operator must type in current date in specified format hefore
beginning operation.

EQOF TAPE MARK READ AT OPEN 1IMF

End-of-file tape mark read while positioning logical byte on multifile tape.

H-11

Message

EOR APPEARS BEFORE *END IN *DECK ADDITION
EOR read before *END in *DECK addition. Run is terminated.

EOR REQUESTED BUT COMPILE FILE NOT REQUESTED

*WEOR read, but compile file not requested on EDITSYM call card.

EQ xx NOT READY

EQ xx PARITY ERROR

EQ xx REJECT

Card reader comnect function is rejected.

EQ xx RESERVED

EQ xx XMSN PARITY ERROR

Transmission parity error during card reader connect function.

EQUIPMENT IS PHYSICALLY UNAVAILABLE

Run is terminated.

More equipment is requested than is connected to the system. Job terminates.

ERROR IN LOADING LOADER
LOADER routine has been destroyed on the system.

ERROR IN JOB FILE READING IN 1BJ

Routine

EDITSYM

EDITSYM

21LP

1LJ

2LP

2LP

1LP, 2LP

REQ

LOD

1BJ

1. After reading PRU of control cards, bytes 1 and 2 of first FST word are not identical.

2. Prior to reading PRU of control cards, byte 1 of first FST word currently in CM table does
not correspond to byte 1 of FST entry presently stored in word W. FST NR of the control

point area.

3. After reading a PRU of control cards, IN-OUT = 0.
Job is aborted.

FET MULTI-FILE POSITION INVALID

Specified position number is less than first position number on first reel of file.

H-12

1MF

Message Routine

FIELD LENGTH NOT SUFFICIENT FOR OVERLAY GENERATION LOADER

Field length minimum: of 26000g for the loader plus sufficient additional length to accommodate
loader tables and core map.

FIELD IS NON NUMERIC ILLEGAL TEXT CARD COPYN
FILE DEVICE NOT ALLOCATABLE IORANDM

Displayed on eonsole, system and job dayfiles. IORANDM was called to read or write beginning of
random access record; but FET shows file is assigned to non-allocatable equipment. Job is ahorted.

FILE NAME ERROR 2BP
Name in FET does not start with a letter or all characters are not alphanumeric.
FILE NAME ERROR ON EDITSYM CALL CARD EDITSYM

Parameter error on EDITSYM call card. The first character must be alphabetic. The job is
aborted.

FILE x RECORD y HAS PHYS. REC. LONGER THAN 1024 WORDS COMPARE
Appears on job output file and run ends when record y on file x contains too long PRU. Condition
is detected by a PP program (not by COMPARE). Limit accepted by PP program is probably 512
words; but COMPARE buffer limit is 1024 words.

FILE xxooxx RECORD xxxxxxx HAS PHYS. REC. LONGER THAN 1024 WORDS COMPARE
FILE RECORDS NOT NAMED IORANDM
Displayed on console, system and job dayfiles. IORANDM has been called to read or write heginning
of a random access record, identified by record name. If the record was first written by number
it must be addressed by number. The job is aborted.

FL ON NEW JOB CARD INSUFFICIENT RST

FL TOO SMALL FOR LOADER LOD

A minimum of about 4000 (octal) CM words is required for CM LOADER and a small relocatable
program.

FNT FILLED, DAYFILE DROPPED 2CJ

FNT IS FULL REQ

Message Routine

*#**¥*FORMAT CONTROL SUPPRESSED**** 30T

Format control is suppressed by operator type~in. First character of each line is not printed; all
succeeding lines are single-spaced.

FORMAT ERROR RC.xxxx, CD.yyyy 2RC
Appears at beginning of job output if a 7-9 card, presumably binary, has no recognizable format and
is not included in a group of ecards for 80-column binary reading. Job will have been aborted as soon

as it was brought to a control point. Record number in input file is decimal xxxx, counting first
(control card) record as 0000; the card number is decimal yyyy, counting first card of record as 0001.

FWA-LWA ERROR 10

Displayed on console display and system job dayfile. A READIN or WRITOUT macro is being
executed. The workspace, according to sixth word of the FET, has a negative length. Job terminates.

GOOD COMPARE COMPARE

Displayed on console display, system and job dayfiles just hefore run is ended. COMPARE
control card is completely executed and no discrepancies found.

HDR REC MISSING ON FILE INCORRECTLY POSITIONED 1MR
Lahbeled tape file has a missing header. File may be improperly positioned to call to OPEN.
HOLL. CHECK RC.xxxx, CD.yyyy 2RC
Appears at the beginning of job output file. If an input card did not contain 7-9 in column 1, pre-
sumably Hollerith, with invalid punch combination in at least one column, which was read as blank

column. Record number is decimal xxxx, counting first (control card) record as 0000; card number
is decimal yyyy, counting first card of record as 0001.

ID NAME NOT IN INPUT FILES SEARCHED COPYL
IDLE _ 1BJ
ILLEGAL ARG TO TIM TIM

Occurs if request is not for CP elapsed time, today's date, current clock reading, or Julian date;
job is terminated.

ILLEGAL COPYL PARAMETER COPYL
ILLEGAL DEVICE TYPE SPECIFIED OPE

Specified device not found in table of valid types.

H-14

Message Routine
ILLEGAL EOF EDITSYM
EOF appears before EOR in common section. Run is terminated.

ILLEGAL EOR OR EOF EDITSYM
EOR or EOF appears before *END in attempting to copy a deck — Input error. Run is terminated.
ILLEGAL EQUIPMENT REQUEST 1DF
Operator did not request MT, CP, or LP on a request to dump the dayfile.

ILLEGAL FUNCTION LFN CLO
Function code in the FET is not processed by CLO.

ILLEGAL FUNCTION CODE CIO

Function code in FET is not allowed in assigned device, the file is closed, or a read was requested
immediately following a write on a sequential device.

ILLEGAL FUNCTION REQUEST CKP
Request is not in recall status at CP or irrelevant bits are nonzero in a specific sequence.
ILLEGAL PARAMETER LIST CKP
Parameter address is not within field length, or low order bit of parameter first word is ON.
ILLEGAL PRU COUNT AT OPEN REEL OPE
PRU count not zero or minus at call to OPEN REEL rewind.

ILLEGAL REQ FUNCTION REQ

Either completion bit was set before REQUEST was processed, or the automatic recall bit was
not set.

ILLEGAL REQUEST 2ES

1. Function code is illegal on allocatable device.

2. Erroneous disk address specified for a random read.
3. Read with release issued on a random file.
4

Device type is unrecognizable.

Message Routine
ILLEGAL SEQUENCE NUMBER ON EDITSYM CONTROL CARD EDITSYM
Sequence number contains alphabetic or special character.

ILLEGAL TERMINATOR 1DF

Operator did not use period to end dayfile dump request.

INCORRECT OPERATOR ACTION REQ
INDEX ADDRESS NOT SPECITIED ON RANDOM FILE OPE
INDEX ADDRESS NOT INFIELD LENGTH OPE
INDEX FULL AT OPEN OPE
INPUT FILE ENDED BEFORE ((ADD)) CARD SATISFIED bEDITL'[B

EDITLIB is trying to execute ADD, ADDBCD, ADDCOS, or ADDTEXT programs to a system file;
input file ended before last or only program named in control card was found.

INPUT FILE ENDED PREMATURELY EDITSYM
EOR appears before *END in a *COMDECK addition. Run is terminated.
INPUT REC. FOR ((ADDBCD)) HAS IMPROPER NAME CARD - EDITLIB

EDITLIB is trying to add record to system file. Input record must begin with Hollerith card contain-
ing record name in columns 1 £f. Either it does not, or the name is not acceptable.

INPUT REC. MISPREFIXED FOR ((TRANSFER)) EDITLIB

EDITLIB is trying to copy records from input file to new system file. TRANSFER card specified
program name and input record had no prefix or a prefix contained different name, or control card did
not specify a program name but input record did have prefix.

INVALID CONTROL CARD ‘ LOD

Program call card for a PP program did not meet all requirements: Program name must not exceed
three characters; first character must be alphabetic; no more than two parameters.

INVALID DEVICE TYPE FOR OPEN ALTER . OPE
Non-allocatable device type specified.

INVALID DEVICE TYPE FOR OPEN READ OPE

Used for line printer, card punch, etc.

H-16

Message Routine
INVALID DEVICE TYPE FOR OPEN WRITE OPE
Used for card reader.

INVALID FET ADDRESS Nxxxx 2CA
INVALID FILE NAME LFN | CLO
CLOSE or CLOSER request was given for file not in FNT. Illegal function code (228) is returned.
INVALID OPEN PARAMETER ' OPE

Z parameter not recognizable,

INVALID PARAMETER | SCOPE2B
Number of fields in parameter c’ard is in error.

INVALID RECORD READ 1MPF
Invalid record was read where a label was expected while positioning on a multifile tape.

INVALID REQUEST TO CPC CpC

CPC has been called to pass a request to mon’itor.‘ Bits 54-59 of the request word are 0, so that it
cannot contain the name of a PP program in bits 42-59. The only other allowable entry in bits 42-59
is a number below 0000108, put there as part of the file action macro. If the number in this field
is not below 000010B, displayed on console, system and job dayfiles. dJob terminates.

INVALID STACK ENTRY 18X
Called by ervor code 22. Stack entry contains an undefined order code.

I/0 ERROR IN CHE CKPOINT CKP

All other I/0O errors are covered by this message.

1/0 ERROR, RST CANNOT BE COMPLETED R8T

JOB CARD ERROR (20 characters) 2TJ

Error on job card when 1BJ called 2TJ. The first 20 characters of the job card are included. Job
terminates.

H-17

Message Routine
JOB FILE READING ERROR IN 1BJ 1BJ
JOB PRE-ABORTED 2RC

Appears at beginning of job output file if input card caused either CHSUM ERROR RC.xxxx, CD.yyyy
or FORMAT ERROR RC.xxxx, CD.yyyy. Job aborted as soon as it was brought to a control point.

LABEL MISSING ON DECLARED LABELED TAPE UNIT xx : 1MR
LABELED TAPE NOT DECLARED ON MULTIFILE OPE
Multifile request entry did not contain label parameter.

LEVELS NOT PERMITTED IN STANDARD CALL LOADER

If S and V bits are not ON in user call, load is interpreted as normal. If L1 and L2 are nonzero, the
call may have been intended as overlay or segment call but appropriate bit is missing. Processing
continues as for normal load.

LIST OF PROGRAMS IN FILE EDITLIB
LOAD 1LT

1LT has been called to load johs from a standard SCOPE 3 tape.

LOADER CONTROL CARD OUT OF SEQUENCE LOD

NOGO or EXECUTE card bhefore the LOAD card.

LOADX 1LT

1LT has been called to load jobs from external tape.

LOADER NOT FOUND IN LIBRARY LOD

CM LOADER cannot be found in library directory.

LOADER TABLES GARBAGE, OR OVERLAY SEQ@ ERROR LOADER
LOADER tables ai*e threaded in a list below the LOADER in CM. If tables are destroyed by a user
program (in normal mode only) and job terminates or if attempt is made to generate secondary over-

lay without first generating corresponding primary overlay (or zero level) the THREAD routine
cannot execute properly.

H-18

Message Routine
LOADER, xxxx ERROR FLAG SET. LDR-2LA

Precedes all error messages issued by LDR or 2LA. (The 2LE overlay is called to issue the
message.) xxxx is FATAL or NON-FATAL.

ERI1, ER41: xxxx ERROR, CANNOT FIND FILE NAME- LDR-2LA

xxxx is USER or CARD. If LDR was called by LOADER a user call is being processed. ER1 is
produced when no file name appears in required parameter. ER41 is produced when a user or
system referenced file cannot be found.

ER42: xxxx ERROR, FIELD LENGTH TOO SMALL- LDR-2LA
xxxx is same as ER1. ER42 is detected by 2LA and LDR. Field length for user's program is too
small (storage available between starting point in user area and highest available location below
GPSL produced tables will not accommodate user's program).

ER43: BAD TEXT- . LDR-2LA

Illegal TEXT table entry; relocation code is illegal. No image is produced following the error
message.

ER44: FILE INITIALLY POSITIONED WRONG- LDR-2LA
Input file is initially positioned at an end-of-file mark. Image being processed (EOTF) is not sent to
dayfile; however, the remaining error messages will cause the image heing processed to be sent
to the dayfile. If the image appears to be binary, it is unpacked and converted to octal display.
ER45: FIELD GREATER THAN 80 CHARACTERS- LDR~2LA
Loader directive is improperly implemented.

ER46: ONLY ONE PARAMETER- LDR-2LA

Overlay loader directive has only one level parameter.

ER47: INVALID CARD FORMAT- LDR-2LA

Produced termination character, . or), permaturely implemented on loader directive. Also
produced when word count in a text table greater than 20.

ER50: INVALID LOADER DIRECTIVE- LDR-2LA

First seven characters on a loader directive card do not match one of the following words:

SEGZERO SECTION SEGMENT OVERLAY

H-19

Message Routine
ER51: SEG OR OVERLAY CARD PREV PROCESSED- LDR-2LA
A SECTION card cannot be used in overlay mode. In segmentation mode, it must precede all
segment cards. Sent to dayfile when 2LA determines that rules in the above paragraph have

not been followed.

ER52: SEGZERO HAS NOT BEEN PROCESSED- LDR-2LA
Appears when a SEGMENT card occurs before the required initial segment card (SEGZERO) has
been processed and when a SEGZERO card occurs when OVERLAY card has been processed.
(Segments and overlay may not be mixed.)

ER53: SEGZERO SEGMENT NAMES DIFFER- | LDR-2LA
Appears on dayfile when the segment names differ for contiguous SEGZERO cards.

ER54: NAME GREATER THAN 7 CHARACTERS~ LDR-2LA
Naine on a loader directive card is greater than seven characters.

ER55: NO TERMINATION FOUND- LDR-2LA
Sent to dayfile when loader directive card does not have a legal terminator, ., or).

ER56: INVALID CHARACTER- LDR-2LA
Illegal character on a loader directive card.

ER57: SEGMENT OR SECTION CARD PROCESSED- LDR-2LA
ERGO: 1ST OVERLAY CARD HAS NO FILE NAME- LDR-21LA
First character of first parameter on initial overlay card is not alphabetic.

ER61: 1ST OVERLAY CARD LACKS 0,0~ LDR-2LA
First overlay card does not designate a level (0,0) overlay.

ER62: C OPTION USED ON OVERLAY (0, 0)- , LDR-2LA

Option to load overlay a designated number of words above blank common is used on a level 0,0
overlay card.

ER63: 1ST PARAMETER MAY NOT EQUAL ZERO- LDR-2LA

Zero level overlay may not have secondary overlay levels (0,1 is illegal).

Message Routine
ERG4: ONLY 1 OVERLAY DESIGNATOR USED- | LDR-2LA
OVERLAY card does not specify both primary and secondary levels.

ERG5: C OPTION NOT LAST PARAMETER- LDR-2LA
Termination character does not follow C option on OVERLAY card. |

ERGG: TOO MANY CHARACTERS IN PARAMETER- LDR-2LA
Level number on OVERLAY card is greater than 77 g
ERG67: C OPTION DOES NOT START WITH C- LDR-2LA

Option which alldws user to designate how many words above blank overlay should be loaded, must
have C as first character.

ER70: DIGIT IS NOT OCTAL- ~ LDR-2LA
ER71: TEXT HAS BEEN PROCESSED- LDR-2LA
SECTI@N card occurs after text has ‘been pi‘ocessed.)

ER73: ERROR IN ABS. OVERLAY FILE FORMAT- LDR—ZLA

Identification code of subroutine does not equal 50 g

ER74: REQUESTED OVERLAY PROG. NOT FOUND- ILDR-2LA

Overlay program (of given level) cannot be found on the file. Produced by LDR when absolute
overlays are being input from a file; by 2LA when absolute overlays are heing loaded from a file.
File is searched in end-around fashion; it is searched up to EOF mark, file is rewound, then
searched up to where searching hegan.

LOC ARG ERROR LOC
LOD The following messages can occur only when the CM LOADER is disk resident.

LOD SYSTEM WAIT To load LOADER from disk, LOD references the FNT/FST entry for
the file SYSTEM (SSSSSSU if LOADER has been modified by EDITLIB). I LOD finds that
SYSTEM (or SSSSSSU) is associated with a control point other than control point zero, it is
assumed that EDITLIB is modifying the system. LOD displays this message and pauses until
the file SYSTEM (or SSSSSSU) is returned to control point zero.

H-21

Message Routine

LOD ERR 1, BAD EOR, TAKE DUMPY Occurs if end-record status is returned after CM read
resulting from improper read of LOADER. In loading LOADER from disk, LOD reads as
much of the binary text into CM as will fit in LOADER area after it has been relocated. How-
ever, hinary text is always longer than the length of LOADER. LOD reads remainder of text
into its upper PP memory.

L.OD ERR 2, NO EOR, TAKE DUMPT Issued if end-record status is not returned after PP
read; end-record must occur if end of LOADER text is read properly.

LOD ERR 3, BIG, TAKE DUMPT Occurs if 3500 or more PP words were read. After the
PP read, if end-record status is correctly returned, a check is made of the amount of data
read.

LOD ERR 4, XFR, TAKE DUMPT{ In central memory, LOADER is relocated so that the last
word is stored at the highest word in the user's field length. Message is issued if the XFER
table is encountered before RA+FL-1 has been written.

LOD CANNOT FIND SYSTEM IN FNT LOD

If a program declares SYSTEM as common file, the control point assignment of SYSTEM changes.
1.OD uses the FNT entry for SYSTEM when CM LOADER is read from disk. To determine that it
has a match on the correct FNT entry, the entry association with control point zero is verified.

LP nn NOT READY 30T, 2LP

Displayed on console when the printer with nn EST ordinal is not ready. When it becomes ready,
printing will continue.

LP mn REJECT 30T, 2LP

Displayed on console when the printer with nn EST ordinal rejects a function code. ' No operator
action.

LP nn XMSN PARITY ERROR 30T, 2LP
Displayed on console and system dayfile when printer with nn EST ordinal shows transmission

parity error. No operator action of a local file was being printed directly for a job (2LP), message
also appears in job dayfile.

T Fatal to the system.

H-22

Message Routine

MESSAGE FORMAT ERROR MSG

Message contains a character 608 or greater. dJob is terminated.

MT xx RESERVED 4LB, 2TF, 2TB,
2TW,2TR

Displayed until condition is corrected or job is dropped if attempt is made to connect to tape xx
which is reserved by another channel.

MT xx WPE BAD SPOT TP

A record was written successfully following a badspot skip, but a parity error was encountered in
re-reading the record preceding the badspot skip. Job can be continued by typing n. GO, but record
containing parity error will not be rewritten. Job can be dropped by typing n. DROP.

MT xx WPE RECOVERED 7TP

Write parity error was encountered and recovered; job continues.

MT xx WPE UNRECOVERED 7TP

Write 'parity error was unrecoverable; job can be continued by typing n. GO or terminated by typing
n. DROP.

MT xx WPE WRITE FILE MARK ERROR 7TP
Unable to write file mark on an external tape.

MT xx XMSN PARITY ERROR 4LB, 2TF, 2TB
2TW, 2TR

Transmission parity error in 6681 data channel converter.

MULTI-FILE DISPOSITION ON UNLABELED FILE ; REQ
MESSAGE LIMIT MSG
Number of messages issued by a job exceeds installation declared maximum. Job terminates.
MF DISPOSITION OF UNLABELED TAPE 1RQ

Request card specifies multifile disposition of unlabeled tape.

H-23

Message] Routine
MODE CHANGE RC.xxxx, CD.yyyy 2RC
Appears at beginning of output file for job if input record contained cards of mixed format (binary,
Hollerith, 80-column). Record number is decimal xxxx, counting first (control card) record of
file as 0000; card number at which the first change of type occurred is decimal yyyy, counting
first card as 0001.

MOUNT REEL SHOWN ON UNIT xx ‘ 1IMF
MOVE ROUTINE FINDS CANT READ PROG. IN SYSTEM FILE EDITLIB
Fault in disk file use by EDITLIB; not expected to occur.

MT xx EOT , CLO
Processing on magnetic tape xx is terminated because of end-of-reel condition or CLOSER request.
MT xx 1111 BLOCK COUNT SHOULD BE xxxxxx, IS XXXXXX. 41.B
Number of physical records written on tape does not agree with number read. The 1111 is lahel ID.
MT xx 1111 CREATION DATE SHOULD BE xxxxxX, IS XXXXXX. 41L.B
Indicates the creation date which should be found in the tape label is not the one found therein.

The first xxxxxx is obtained from central memory; the second xxxxxx is taken from the label.
Operator may type in n. RECHECK or n. GO or n. DROP. ‘

MT xx 1111 EDITION NUMBER SHOULD BE xx, IS xx. 4L.B

Tape label does not contain expected expiration date. The first number is from FET, the second
from label. Operator may provide another tape and type in n. RECHECK or n. GO or n. DROP.

MT xx 1111 EXPIRATION DATE SHOULD BE xxxxx, IS xxxxx 41.B
Tape label does not contain expected expiration date. First xxxxx is from FET; second is from
tape label. Operator may accept tape by typing n. GO; he may mount a different tape and type
n.RECHECK, or he may drop the job n. DROP.

MT xx 1111 FILENAME READ WAS xxxX...XX ' 41LB
xxxx. . .xx is label name of first file.

MT xx 1111 FILENAME SHOULD BE xxx...xX, IS XXX...xxX. 4LB

File name error. First 20 characters are FET file name entry and second set are tape label's
file name entry; n. GO, n. DROP, or n. RECHECK may be typed.

Message » Routine
MT xx 1111 FILENAME WRITTEN WAS xxx. . . XX. 4LB
XXX...xx is the name in the tape label for this file.

MT xx 1111 MULTIFILE NAME SHOULD BE xxx, IS xxx 4LB
Indicates multifile name of assigned tape does not agree with that requested. First xxx is in FET;
second is in tape label. Tape may be accepted, n. GO; different tape may be mounted and checked,
n.RECHECK; or job may be dropped, n. DROP.

MT xx 1111l REEL NUMBER WAS xxxxxx 4LB
xxxxxx is visual reel numbers for tape being read.

MT xx 1111 REEL NUMBER SHOULD BE xxxx, IS xxxx 4LB
Requested tape reel number does not agree with that specified in tape file label.

MT xx 1I11l REEL NUMBER WRITTEN WA S xxxxxx 4L.B
xxxxxx is visual reel number in tape volume header.

MT xx LABEL UNRECOGNIZABLE CLO

Trailer label of MT xx is not EOF1 or EOV1 as expected. Operator action is requested by
additional message.

MT xx ENTER VISUAL REEL NO. ON UNIT xx 4L.B
Operator should respond with n. URN, xxxxxx. xxxxxx is the sticker number pasted on tape reel.
MT xx LABEL INFO ERR IN FET k 4LB

A numeric field in 33 label area of the FET contains non-numeric data.

MT xx LABEL PARITY ERROR 4L]§
Unrecoverable parity error while trying to read tape label.

MT xx NO WRITE ENABLE 4LB, 2TW

Message is displayed until ring is inserted or job is dropped.

H-25

Message Routine

MT xx NOT READY 41LB, 2TF, 2TB,
2TW, 2TR

Message is displayed until unit is readied or job is dropped.

MT xx REJECT 4LB, 2TF, 2TB,
2TW, 2TR

Tape unit xx cannot he connected. Compare xx entry with site provided equipment select code. If
possible, change equipment or unit select code; otherwise type, n. DROP.

MULTIPLY DEFINED OUTPUT xzoooxxx

LDR has loaded this routine previously and cannot load it again.

NEXT 1BJ
NO CKP FILE IN FNT CKP
NO CP AVAILABLE 1LJ

Card punch cannot be assigned to PBC. The PP loops until punch is available or job is dropped.
NO CR AVAILABLE 1LJ
Card reader is unavailable to the READ control point.

NO FNT SPACE 2BP

Parameter in FET is zero and no space is available in FNT to create requested entry; job
terminates. If parameter is nonzero, FNT full code (248) is returned to FET.

NO INDEX POINTER IN FET, OR 0 LGTH. INDEX IORANDM

Put on the console display; system dayfile and job dayfile. IORANDM has been called by a READIN
or WRITOUT macro to read or write the beginning of a randomly located record. But the FET is
either too short to contain pointers to the record index or apparently points to an index of length
zero. The job is aborted.

NO INPUT FILE ON THE COPYN CONTROL CARD , COPYN

NO OUTPUT FILE ON THE COPYN CONTROL CARD COPYN
NO PROGRAM LIBRARY INPUT TO BE EDITED EDITSYM

Correction input is found but no old program library is given on EDITSYM control card. Run is
terminated.

Message Routine
NO PROGRAMS FOUND FOR SEGMENT ' LOADER
Not one of the programs requested by a user call could be found.

NO READY EDITLIB
A READY card did not precede this control card.

NO REQUEST ENTRY OPE

No request entry was made for a file with a device type 240. (No FNT entry found in search.)

NO REQUEST ENTRY FOR MULTIFILE OPE

No request entry was made for specified multifile name (FNT entry not found).

NO ROOM IN INDEX FOR NEW NAME IORANDM
Displayed on console, system and job dayfiles. IORANDM has been called by a WRITOUT macro to
write the beginning of a random access record, identified by name. Name is not already in file
index and no vacant slot is available. Job terminates.

NO TRANSFER ADDRESS LOADER
At completion of a load, no program provides a transfer address. Error condition is overridden
by completing load with a NOGO. card or an EXECUTE, ent. card, (ent. specifies an entry point).
Job terminates.

NON-EXISTENT RBR REQUESTED 18P
Called by error code 05. An RBR pointer read in RBT is greater than number of RBR's in system.
ONE OR MORE OVERLAPPING CORRECTIONS UPDATE
OPEN REEL CALLED ON UNOPENED OR CLOSED FILE OPE

File must have been opened before OPEN REEL call.

OPERATOR DROP 2ETF

OVERLAY EDITLIB

H-27

Message Routine

OVERLAY CALL FROM RELOCATABLE LOADER
Relocatable program made a user call for overlay load. A redundancy check is made to validate
user calls. Illegal, since once overlay loading is initiated, control is taken away from user call
and returned to called overlay. This is possible if file named in user call contains all absolute
overlays. If OVERLAY 0,0 has not been called, control will return to the user call.

P2 IS NOT IN THE FILE OR IS UNDEFINED COPYN
PACKED CARD LONGER THAN 13 WORDS EDITSYM

- Input error - pack 80 column card is longer than 13 words. Run terminates.

PAGE NO. EDITSYM
PARITY ERROR 2RT
PARITY CHECK FILE x RECORD y COMPARE

If x is first file named on COMPARE control card, y record cannot be read without a parity check
in either mode. If x is second file named, record camnot be read without a parity check in mode
corresponding to record of other file already read without a parity check. In either case, com-
parison of that record pair is abandoned. COMPARE outputs message and continues with the next
record pair.

PARITY ERROR IN CHECKPOINT CKP
Parity error detected in CKP.

PAUSING FOR OPERATOR ACTION CLO, 1MW, 1IMR, -
1SX, 1MF

Occurs after error is detected in processing file label. Operator can enter n. GO, n, RECHECK or
drop the job; routine pauses for operator decision.

PBC RANGE ERROR , PBC

lwa is outside field length.

POSITIONING A MULTIFILE IMF
PREVIOUS FILE NEVER CLOSED OPE
PP CALL ERROR 2EF
PP PROG EDITLIB

H-28

Message Routine
PP xxxx ‘ 1LJ
Amount of PP time used in loading a job from tape.

PROGRAM NOT ON DISK ATS, EXU
PROGRAM NOT IN SYSTEM EDITLIB

MOVE or DELETE control card named a program that is not in system file. EDITLIB passes to
the next function card.

Ps xxxx KILLED MTR MTR

s = PP.NO. =xxxx =name of program communicating with monitor.

RANDOM CALL, NONRANDOM FILE IORANDM
Displayed on console, system and job dayfiles. IORANDM called by a READIN or WRITOUT macro
to read or write beginning of a random access record. FET shows file is not random. Job
terminates.

RANGE ERROR PBC

lwa exceeds field length; job terminates.

RANGE ERROR LBC
Record length exceeds field length; job terminates.

RBR RB PRU 18X

Parity error; device type, half-track, and sector of parity error are printed.

RBT FULL 2ES
READY FOR RESTART 2CA

READY TWICE WITHOUT COMPLETE EDITLIB

EDITLIB can construct only one system file at a time; therefore, a second file cannot he readied
before a COMPLETE card is encountered on the first file.

H-29

Message Routine
RECORD n IN FILE x p WORDS LONGER THAN SAME RECORD IN FILE y COMPARE
If the nth record read from file x is k+p words long, the corresponding record of file y is only k
words long, the first k words of both records are compared normally, and message is put on
COMPARE's output file. Comparison continues after skipping extra p words of file x.

RECORD NAME NOT IN FILE INDEX JIORANDM

Displayed on console, system and job dayfiles. IORANDM was called to read beginning of random
access record, identified by name which is not in file index. Job terminates.

RECORD NUMBER TOO HIGH JORANDM
Displayed on console, system and job dayfiles. IORANDM was called to read or write beginning of
a random access record, identified by record number, the length of which would fall beyond the
end. Job terminates.

RECORD TOO LONG RBR
End-of-record not reached before field length filled. Job continues.

RECOVERY RISKY PLR

Displayed if it appears that central memory resident may not be intact. Operator action is awaited.
Type GO if recovery is to proceed; type LOAD if system should be reloaded from disk.

REDUNDANT CLOSE LFN CLO

CLOSE or CLOSER is requested for file in closed status; CLOSE function redundant code (218)
is returned to FET.

REEL ONE IMF

A following message requests mounting of reel shown on unit xx.

REPLICATION EXCEEDS AVAILABLE CORE LOADER
During replication, receiving address is in conflict with loader or its tables.

REQ DEVICE TYPE ERROR REQ
REQ FUNCTION - DISP CODE ERROR - xxxx REQ

Disposition code is incorrect or cannot be recognized.

H-30

Message Routine
REQ FUNCTION LFN ERROR REQ

File name is incorrect, greater than seven characters or does not start with alphabetic character.
xxxxxxx is displayed.

REQUEST CARD LFN ERROR -~ XXXXXXX REQ
Displayed if file name on request card is incorrect.

REQUEST DISPLAY DIS

DIS is in HOLD, waiting for operator assignment of display console.

REQUEST lin REQ
Displayed when processing the request function or card before the operator has made the assign-
ment. Operator is expected to assign equipment for file lfn. If device type is specified (dt),

the proper equipment type must be assigned.

REQUEST FUNCTION - RECALL NOT SET REQ
Displayed if recall bit of PP input register is not ON when REQ is entered.

REQUEST FUNCTION ADDRESS ERROR REQ

Displayed if parameter address is not within program field length.

REQUEST LFN ERROR REQ
REQUEST TAPE 1BT, 1DF
REQUEST TAPE 1LT

In response to this message, operator must type in assigned tape. n.ASSIGNxx,n is control point
number and xx is EST ordinal for assigned tape.

REQUESTED SEGMENT INCOMPLETE LOADER

Results from a user call for same reasons as SEGZERO INCOMPLETE. This message does not
result from unsatisfied externals, rather some programs explicitly requested cannot he located.

RESTART CANNOT BE COMPLETED RST

RESTART COMPLETE RST

H-31

Message Routine
RESTART CONTROL CARD ERROR RESTART

RESTART control card has two or more parameters and the second is not CLEAR, or there are
no parameters on the card.

RESTART IMPOSSIBLE, SEND RST/CLEAR RST
ROLLIN ABORTED 1RI

Called by a type-in of ROLLIN, 1RI is about to set control point error flag to 3 and abort job.
This message is always preceded hy CIO ERROR. n, console, system and job dayfiles.

ROLLIN COMPLETED 1IRI

Displayed on console, system and job dayfiles. 1RI has finished rolling in a job, and is about to
request CP and drop PP.

ROLLIN INITIATED 1RI

Displayed on console display and system and job dayfiles. 1RI is about to request original field
length of control point and start reading file QROLIIN.,

ROLLIN STOPPED BY SYSTEM 1RI

Displayed on console, system and job dayfiles. Called by a type-in of ROLLIN. Error flag of
control point is already nonzero.

ROLLOUT ABORTED 1RO
Displayed on console, system and job dayfiles. Error occurred in writing file QROLOUT.
ROLLOUT COMPLETED 1RO
Displayed on console, system and job dayfiles. Control point has been successfully rolled out,

and its field length is reduced to 100B. 1RO will keep recalling itself until control point is dropped
or rolled back in.

ROLLOUT INITIATED 1RO

Displayed on console, system and job dayfiles. Other PP activity appears to have died down, and
1RO is about to write out file QROLOUT.

ROLLOUT STOPPED BY SYSTEM 1RO

Called by a type in of ROLLOUT, error flag of control point is already nonzero.

H-32

Message Routine
ROLLOUT WAITING ON ALL QUIET 1RO

Displayed on console, system and job dayfiles. 1RO is waiting for other PP activity at the control
point to cease before writing file QROLOUT.

RST/CLEAR COMPLETED RST
SEGMENT CALL, BUT NO SEGZERO PRESENT LOADER
If segment load, called by user, is accomplished from normal or overlay program, it is impossible
to establish the necessary delinking point, since certain pointers are established for all segment
loading during the initial loading of segzero. Probably results from erroneous setting of S bit.
SEGMENT CALL NOT IN SEGMENT MODE LOADER
User called for segment load, but first program loaded for this file did not contain SEGZERO card.
SEGMENT REQUEST WHILE IN OVERLAY LOADER
Loading of segments and overlays is mutually exclusive, although normal loading may be done by
both. OVERLOAD has called for loading of a segment; not possible since original pointers to
segment tables will not have been preset by the SEGZERO processor.

SEGZERO INCOMPLETE, JOB ABORTED LOADER
Not all programs specified on SEGZERO card can be found on input file. Job terminates. No
error comment is made if not all external references from these programs can be satisfied since
this is normal for a segmented jobh.

SERIAL CHK.RC.xxxx, CD.yyyy 2RC
Appears at the beginning of job output file if a record in input file contained at least one binary card
with serial number of which did not correspond to its position in record. Record number is
decimal xxxx, counting first (control card) record of file as 0000; position of the first card that
showed discrepancy is yyyy, counting first card in record as 0001.

SKIPF FUNCTION MET END OF FILE EDITLIB
Before a SKIPF request could be satisfied, an end-of-file was encountered.

SL LIST 1S EMPTY, FATAL ERROR LOADER

User call contained SL pointer which gives address at which there is a zero word (vacuuous
selective load). Fatal error bit is returned in the user reply.

H-33

Message Routine
SOURCE AND DESTINATION BOTH SYSTEM EDITLIB

Most recent READY card was READY(SYSTEM); now an ADD card names SYSTEM as source
program to be added to current system library.

SOURCE IS ZERO IN REPL LOADER

No address is given for source stream. Source is then set to location RA+1 (usually contains zero)
and replication is initiated.

STOPPED AT IMPROPER RECORD EDITSYM
Record specified by *CATALOG lin control card is not common or text section record.
SYSTEM COMMUNICATION ERROR (18P-18X) 1sX

SYSTEM ERROR IN LOADER...HELP...CALL CDC LOADER

LOADER is designed to FAIL SAFE; all communications with the system are checked out and edited.

If an interface degenerates or a new bug appears in LOADER, checking can produce this error
comment.

SYSTEM COMMUNICATION ERROR (1S8P...18X) 18X
18P processed an error code that 158X does not recognize (usually system error).

TAPE xx NOT DECLARED ON MULTIFILE OPE
Tape (xx) not ready (2BT, 2RT, 2WT).

TAPE xx PARITY ERROR PLR, 2BT,
2RT

Parity error in loading system tape. Loading terminates. Also occurs when 2BT encounters
parity error during backward motion on 1-inch tape.

TERMINAL NUMBER BEYOND LAST IN DECK EDITSYM

Number of *INSERT, *DELETE, *ADD, *CANCEL, or *RESTORE card is greater than last
sequence number in deck.

TERMINAL NUMBER NOT FOUND, FUNCTION WENT TO EDITSYM
NEXT PRIMARY

Second sequence number on *INSERT, *DELETE, *ADD, *CANCEL, or *RESTORE card does not
occur in deck to be edited.

H-34

Message

TEXT AFTER COMMON IN FIRST FILE
Text decks appear in common section; run is terminated.
TEXT CARD AN ILLEGAL SEPARATOR

THIS CARD COULDNT BE OBEYED

Routine

EDITSYM

COPYN

EDITSYM

First sequence number on *INSERT, *DELETE, *ADD, *CANCEL, *RESTORE card does not

occur in deck to be edited.

THIS REC.NAME ALREADY IN OUTPUT FILE - xxx

EDITLIB

Represents the name of a program EDITLIB has been instructed to add to file xxx; program with
same name already in file. ADDCOS does not produce this message, as STITCH programs are not
checked for duplication; nor will the existence of a STITCH program already in the file cause the

message.
TIME ARGUMENT OUT OF RANGE
Status word not within field length. Job is terminated.

TIME LIMIT

Jdob exceeded requested CP time limit. Job is terminated.

TOO MANY CORRECTION CARDS

Space available for correction cards for one deck exceeded.

TOO MANY EDITSYM CONTROL CARDS
Space available for EDITSYM control cards exceeded.
TOO MANY INPUT FILE NAMES ON COPYN

TOO MANY NEW COMMON DECKS

Names of new common decks exceeds space available in CMNAME.

TOO MANY TEXT CARDS IN THE INPUT RECORD

TRIED TO ADD PROG. WITH ENTRY PT. WITH DUPL. NAME

TIM

2EF

EDITSYM

EDITSYM

COPYN

EDITSYM

COPYN

EDITLIB

Program to be added to system file contains entry point with same name as an entry point of

program already in file.

Message Routine
TRUNCATED LABEL COMMON xxxxXxXX 2LE

Previous declaration of label common is less than present declaration of same label common.
Length and address of previous declaration is used.

UNABLE TO OPEN file-name OPE, 1MF,
IMR

Job is terminated.
UNAVAILABLE ‘ CTS

Displayed on console, system and job dayfiles. PP program CTS called to get common byte
assigned to control point. Common file has been assigned, but it belongs to nonallocatable equip-
ment, which cannot be assigned. un is EST ordinal of equipment, as shown by primary device
number in FNT entry.

UNCORRECTABLE PARITY ERROR 18X
Called by error code 04. Disk read attempted three times (after varying timing margins for 6603
or repositioning heads on 6638); all attempts failed. Read is complete, and information is
immediately available Y # go # option is selected. This message also includes identity of the
last unreadable PRU encountered.

UNIDENTIFIED ERROR 18X

Called by any error code other than 2, 4, 5, 6, 10, 11, or 22. Indicates failure of stack processor
program or 15X.

UNEXPIRED SCRATCH TAPE ON UNIT xx 1MW
UNRECOGNIZABLE EDITSYM CONTROL CARD EDITSYM
Card image at beginning of correction input or following *EDIT card is not EDITSYM control card.
UNRECOVERABLE FILE, RESTART IMPOSSIBLE RST
UNSAT BIT NOT PERMITTED, EXCEPT IN OVERLAY MODE LOADER
A single program can be loaded by putting RSL or CLD name in Fn and setting 81=0. To load
absolute overlay from library, LOADER must be informed by setting overlay bit and unsatisfied -
external bit. Setting this bit at any other time will override error flags returned by LDR and
could cause LOADER to begin loading ahsolute overlays on top of proper programs. This condition

is prohihited.

UPDATE ERRORS, JOB ABORTED UPDATE

H-36

Message Routine

UPDATING FINISHED UPDATE

UPDATING XXXXXXX. COPYL,
UPDATE

WAITING FOR CKP STORAGE CKP

No storage available for buffer needed by CKP.
WAITING FOR EQUIPMENT REQ

Displayed when equipment is logically unavailable (all equipment of type requested is assigned and
at least one is assigned to a different control point).

WAITING FOR FNT/FST SPACE RST, 2CA
WAITING FOR STORAGE 1LJ
Occurs if MTR does not immediately grant a request for ECS or CM storage. PP enters recall.
WAITING FOR STORAGE | 1LJ

Required storage not available. 1LJ is dropped in recall status.

WAITING FOR STORAGE 2CA, 10T,
1BT, RST,
1RI, 1DI,
1BJ, RFL

WAITING FOR COMMON FILE 2TS

Displayed under control point assigned to job when common card is processed and file desired is
assigned to another control point or is not in FNT.

WAITING FOR COMMON FILE , RST
WAITING FOR PP RST
WAITING FOR xx : 2TS

Displayed when common card for a file of equipment type other than MT, WT, CR, 2CP, or LP
is processed and equipment assignment cannot be made.

WAITING ON STORAGE LDR

Program is being loaded from tape. LDR's request for additional storage has not been fulfilled.

H-37

Message Routine
WARNING BLANK COMMON GREATER THAN PREVIOUS DECL LOADER
If hlank common has been previously established in a set of programs (segment, overlay or a file
loaded as result of control card) subsequent references cannot be greater than already allocated.-
This warning does not terminate job. However, as none of the references to blank common are
truncated, it is possible for a program to destroy itself.

WARNING NO MATCHING ENTRY FOR XFER LOADER

If a nonzero or nonhlank entry point oceurs in XFER table, all available entries in LOADER table
are searched. If a matching entry point cannot be found, this warning is issued. If the warning

was resulted from EXECUTIVE or PROGRAM CALL card,job is terminated; otherwise, nonfatal
error bit is returned to user.

WRITE WITHOUT FNT REQUESTED 18X

Called by error code 06. A write order has been read with NO-FNT flag bit set.

xxxx KILLED MTR MTR

xxx NOT IN PPLIB PP Resident

Occurs if resident is called to load an overlay for which the name is not in library. dJob is
terminated.

xx NOT READY REQ
xx REJECT REQ
xx RESERVED REQ
xx XMSN PARITY ERROR REQ
#* ADDFILE INVALID FROM *READ FILE UPDATE
***ADDFILE INVALID WITH Q-OPTION UPDATE
***DUPLICATE DECK NAME UPDATE
***DUPLICATE IDENT NAME UPDATE
#+#FIRST CARD MUST BE *DECK OR *COMDECK UPDATE
*¥*INVALID NUMERIC FIELD UPDATE

H-38

Message { Routine

**xNO SUCH COMMON DECK UPDATE
***NOT ALL MODS WERE PROCESSED ' UPDATE
*#**%*PREMATURE END OF RECORD ON OLD PROGRAM LIBRARY UPDATE
**#*RESERVED FILE NAME UPDATE
*F*TERMINAL LIMIT EXCEEDS FIRST LIMIT | UPDATE

ON DELETE OR RESTORE CARD

*UNKNOWN IDENTIFIER UPDATE

H-39

SYSTEM SYMBOL DEFINITIONS |

System symbols (for installation parameters, CMR table lengths, locations, pointers, PP resident
entry points and monitor functions) consists of three parts:

e Identifier of one or two characters, denoting the group to which it belongs

® A period following the identifier to indicate that it is a system symbol

® Mnemonic of 1-6 characters which suggest the meaning of the symbol

When SCPTEXT and IPARAMS are to be used, the definition of symbols of the above form is to be

avoided.

System
Symbols

Definition

CH.x
CP.x
C.x

Psuedo-channel numbers
Locations within the central processor resident program area

Byte positions (12-hbit) within central memory words; bytes are numbered from left
to right as 0-4. x represents the name of a field within the specified byte. For
example, a central memory word containing a field called QQQ has been read into
PP memory at location fwa. The following instruction would load QQQ into the A
register:

LDD FWA+C. QQQ

This symbol form is used when the specified location is either a scratch cell or a
location used in a typical manner.

Each of the 100g core (direct) locations within PP memory is assigned at least one
symbolic label in the form:

D.mn
m Locations
Z 00-07
T 10-17
™ 20-27
TH 30-37
FR 40-47
FF 50-587
8X 60-67
sV 70-77

The value of n may range from 0 to 7. Thus location 278 is referred to as D. TWT7.

I-1

System
Symbols

Definition

F.x
IP.x
LE.x
L.x
M.x

N.x
O.x

R.x
S.x

I-2

Error flag values

Miscellaneous values which may vary each installation within certain limitations
Length of entries within tables

Table length

Monitor functions such as values transmitted to MTR through PP resident to cause
MTR action

Quantities

Stack processor orders (commands). These orders do not correspond to values used
in the code and status FET field; stack processor orders are designated for ease of
use by the stack processor.

Locations of central memory pointer words. Most such words contain initial and
terminal addresses of tables located elsewhere in central memory.

Entry points within PP resident

Right offset of a field within a PP word (byte). The number of hit positions which
must be right shifted to right justify the field to bit 0. Six symbols may also be used
in the address field of the BIT macro to generate a 1-bit mask.

First word addresses of central memory tabhles. When a table has a pointer word,
the address of the table should be obtained from the pointer rather than directly from
the T.x symbol value. A pointer word has the same name as the table except that
the identifier is P rather than T.

Equated to values representing the relative position of central memory words within
tables. For example, if the address of a control point area is contained in the PP
A register, the following code would obtain the word containing the job name.

ADN W. CPJNAM
CRD D.TO

PROGRAM LIBRARY COMMON DECKS J

The SCOPE 3.1 program library contains several common decks which are used by one or more of
the SCOPE subprograms. These common decks contain symbol definitions, macro definitions, or
subroutines which are inserted by UPDATE in any subprogram which contains a card of the form:

*CALL,deck-name

deck-name is the common deck name. The *CALL card is processed by UPDATE and passed
intact to the compile file; COMPASS treats such a card as a comient.

The SCOPE 3.1 Program Library common decks are described below:

C.1

1SP18SQ

To minimize duplication in system maintenance, the common code for the routines 1SP and
18Q has been combined and resequenced into one common deck called 18P1SQ. This common
deck is called by each of the routines 18P and 18Q, which are reduced to skeletons containing
the calls to SCPTEXT, IPARAMS and several equates which establish the particular character
of the calling routine.

RELOC

The common deck RELOC causes a set of macros to be defined during assembly of a PP pro-
gram. These macros will cause the assembled code to be relocatable: it may be loaded and
executed at addresses other than the origin at which it is assembled. The macro definitions

may be added to a PP overlay by the statement:

*CALL, RELOC

The macro definitions are activated by the following statement which replaces the normal
entry/exit line of the overlay.

ENTRY INITIAL RELATIVE, BLOCK, SKIPC
Entry is a name to be attached to an LIJM 0, the first generated instruction.

RELATIVE is the name of a direct cell which is free during the execution of the overlay. The
absolute address of a base point in the generated code is stored in this cell to be used in
relocating memory and address constant reference instructions. The two cells following
RELATIVE are altered by the generated code at object time, but they may be used by the over-
lay for any purpose therafter.

BLOCK, if supplied, generates the instruction USE BLOCXK. Otherwise the instruction USE
(local symbol) is generated. The code following the call to INITIAL will be in the block
specified by the use statement until the next use statement is encountered in the normal code. -
This allows the programmer to force his own code and a portion of the generated code into a
specified block. One portion of the generated code, including a table which may be fairly
lengthy, is forced into two locally defined blocks which follow all blocks previously declared.
This code's space may be reused after the first entry to the overlay via the instruction

RIM FWA+L of the overlay.

SKIPC, if present, specifies that only memory reference instructions are to be modified, and
that constant reference commands such as LDC, ADC, etc. are not to be altered. This
feature is convenient in the process of conversion to relocatable form, but it should not be
used thereafter.

Only RELATIVE is mandatory. The other parameters are optional, although, normally,
ENTRY will he used.

The macro replaces the normal definitions of all memory and constant (however, see SKIPC
above) reference commands by macro definitions which cause the address fields of such

commands to be analyzed. If relocatable, the address field is decremented by a base address.

For memory reference commands, if no index is specified, the direct cell address RELATIVE
is inserted in the index field. Otherwise, code is generated to add the contents of RELATIVE
to the memory cell containing the address field when the overlay is first entered. This latter
action is taken for all relocatable addresses in constant reference commands. Although the
value of RELATIVE is refreshed at each entry to the overlay, the generated initialization

code just described is executed only at the first entry (see comments under BLOCK above).

If the address field is not relocatable (a constant, a PP resident entry point) the instruction
retains its normal form and no additional code is generated.

Some cautions must be observed in the use of this macro.

® No symbol should be attached to the END card. References to such a symbol are
treated as nonrelocatable. The equivalent effect can be obtained by the statements:

USE ENDBLOCK
SYMBOL EQU *
END

Replacing the statement:
SYMBOL END

(However, see comments under BLOCK above to recover most of the space used by
the macro generated code.)

L] In an indexed memory reference or constant reference command, a reference to a
memory address prior to the base address of the routine (such as SYMBOL-large
constant, ENTRY) will result in improper relocation.

L Do not use negative address expressions resulting in negative relocation (-SYMBOL).
Negative relocation is not attempted.

A sum or difference of addresses in blocks other than block 0 is treated as relocatable,
whether it is or not.

L Use of the pseudo operation HERE results in code overlapping if relocatable
addresses, undefined at time of reference, appear prior to the HERE operation in a
block other than the one in use when HERE appears,and the block is next entered with
a USE command.

L * is relocatable, except that LJM* is treated specially as LIM*,0 so that the value
of * after the initial entry to the overlay is its absolute location.

Two auxiliary macros called VAM and VRM have been defined. They are called by:

VAM expression

VRM expression
If expression is relocatable these calls have the effect of:
VFD expression-base address

In addition, VRM is treated in the same way as are constant reference or indexed memory
reference commands (a table entry is generated to cause the contents of RELATIVE to be
added into the memory cell at first entry to the overlay, giving the absolute address of
the symbol). If expression is nonrelocatable, the effect of either macro is:

VFD expression

VAM is useful for transfer tables, where the transfer address is to be plugged into an

unindexed LIM or RFM address field (use LJM SYMBOL or LJM 0, RELATIVE for the
command).

VAM may be used to economize on generated relocation table entries for long lists.

Three other auxiliary macros OPC, OPM, and ANALYZE should not be redefined.

C.3 FNTSRCH

* FNTSRCH contains two closed subroutines (FNTSRCH and CHKINP) which may be inserted
into a PP program by UPDATE when the following card appears:

*CALL, FNTSRCH

J-4

FNTSRCH searches the file name table for a file with a specified name, type, and control
point. FNTSRCH uses the subroutine CHKINP during the course of the search.

Procedure:
® Store the seven-character file name to be located in D. TW5 through D, THO, left
justified with zero fill.

® Store the file type in bits 3-4 and the control point number in bits 0-2 of D. TH1. The
remainder of D. THI should contain zero.

° Execute a return jump to FNTSRCH.
If the file is not found, FNTSRCH exits with D. FNT containing zero. Otherwise, the following
locations are set:

D.FNT through D.FNT + 9 - FNT words 2 and 3

D.FA - address of FNT word 2

The file is set to busy status to prevent any other use.

CHKINP is referenced by FNTSRCH, but may also be used separately to compare the current
FNT entry with a file- specified name, type, and control point.

Procedure:
° Store the seven-character file name to be compared in D, TW5 through D. THO, left

justified with zero fill.

© Store the file type in bits 3-4 and the control point number in bits 0-2 of D. TH1.
The remainder of D, TH1 should contain zero.

© Store the address of the current FNT entry (word 1) in D. TWO.
® Execute a return jump to CHKINP.

Upon exit, the A register indicates whether or not the FNT entry agrees with the specified file.

A=90 FNT entry = specified file
A #0 TFNT entry # specified file

D.TO through D. T4 are used to read in word 1 of the current FNT entry.

BUFINIT

BUFINIT contains a closed subroutine (BUFINIT) which may be inserted into a PP program by
UPDATE when the following card appears:

*CALL, BUFINIT

BUFINIT may be used to format a 105 PP word area (REQ) which becomes a stack request
entry. The routine assumes that this area is defined elsewhere in the program and that the
first word is named REQ@. It is also assumed that fields other than those listed below are
set elsewhere in the program.

Procedure:

. Store word 2 of the FNT entry for the file to be processed in D. FNT through
D.FNT + 4,

° Execute a return jump to BUFINIT,
Upon exit from BUFINIT, the following fields are set into the stack request (REQ) buffer:

Unit number (DST ordinal)
Control point number
Current disk address from FNT entry (current word pair address, RBT ordinal, and

PRU)

DX6 through D. TO are used as scratch locations.

""" C.5 READPP

READPP contains a closed subroutine (READPP) which may be inserted into a PP program hy
UPDATE when the following card appears:

*CALL, READPP

READPP may be used to read data from an allocatable device through the stack processor and
into PP memory. The stack request must already be formatted in a 10, PP word buffer, the
first location of which is called REQ. D.FNT through D. FNT + 9 is assumed to contain words
2 and 3 of the FNT entry for the file being read.

The following conditions pertain when an exit is made from READPP:

[] The PP buffer in the stack request is either full (to the nearest PRU) or an end-of-
record was read. In either case, the PP last word address + 1 of data read is in
D.IN,

e The FNT entry (in D. FNT through D.FNT + 9) is updated to reflect the status of the
completed request and the new position of the file.

. The stack request (in REQ through REQ + 9) is updated to reflect the new position of
the file. The PP first word address given in the REQ buffer is reset to the value
BUFFER. BUFFER is assumed to have been defined elsewhere into the program.

When proper conditions are set up, READPP may he re-entered without further initializing.

READPP may also be used to write (O. WRP) or write record (O.WRPR) from PP memory.

SCOPE 2B K

A FORTRAN program compiled under version 2.0 in binary form may experience incompatibility
with version 2.3 FORTRAN if the minimum buffer size was specified. With 2.0 the minimum buffer
size 1s 1001g words plus 10g words for FET, or a total of 1011g words; under 2.3 the minimum
buffer size is again 1001g but the FET size is 21g words, for a total of 10228 words. Such a
FORTRAN program in binary form using the minimum size buffer will have had only 1011g words
allocated for each file; however, when run under version 2.3, the FET uses 21g words leaving 7708
words for the buffer. ‘This is not enough buffer to contain a PRU for a binary tape, although it is
sufficient for BCD tape files or disk file. If a file with the minimum buffer size is assigned to a
binary tape, the job will be aborted with the message:

BUFFER NOT BIG ENOUGH TO HANDLE BINARY TAPES,
RECOMPILE UNDER 2.3 COMPILER.

The solution is to recompile the program under the 2.3 compiler or, alternately, to use the program
SCOPE2B.

SCOPEZB generates a labeled common block, named SCOPEZ2, large enough to contain the FET's
for all files in the FORTRAN program. Q8NTRY then places the FET's in this common block and
uses for just the buffers the combined storage previously allocated for hoth the FET's and the
buffers. ThL_ts, the full 1011g words will be used for the buffer and 21g words in the common hlock
will be used for the FET. All files in a given program are treated in this manner under SCOPE2B.,
The procedure cannot be applied selectively.

SCOPEZ2B is called from a control card as follows:

SCOPE2B (n,1{n)
n = number (octal) of files specified on the PROGRAM card of the main program

fn = name of file to receive the loader tables generated for the common block

If no parameters or more than two parameters are specified, the job will be aborted with the
message:

BAD PARAMETER.

n must be specified; if Ifn is not specified, LGO is assumed. n must be at least as large as the
number of compiled file names or the job will be aborted by QSNTRY with the message:

/SCOPE2/TOO SMALL

If nis one or two digits, it will be accepted as is. If it is more than two digits, only the leftmost
two will be used. SCOPE2B will write a PIDLE table and a TEXT table on 1fn completely specifying
a labeled common hlock SCOPE2 of length 21g*n. However, the user is responsible for loading it

from ln.

The following examples illustrate some of the possibilities.

Normal Loading
REQUEST TAPE. -
TAPE.
might become
REQUEST TAPE.
SCOPE2B (5,X)
LOAD (X)
TAPE,
A common block of 1254 words is loaded at RA+1008 and the original program is loaded
starting at RA+2258.
OVERLAY Loading

The common block SCOPE2 must be made a part of the (0,0) overlay, so the overlays must
be regenerated. For example, if the file TAPE contains:

(0] (@]

vV v

E Progs E Progs
R in R in
L 0,0 L (1,0)
A A

Y Y
(0,0) (1,0)

then
REQUEST TAPE.
TAPE,

might become
REQUEST TAPE,
COPYBR (TAPE, LGO)
SCOPE2B (7)
COPYBF (TAPE, LGO)
LGO.

(Will not work with an absolute overlay file.)

3. SEGMENT Loading

The common block SCOPE2 T must be a part of the level zero segment and the SEGZERO
card must be changed accordingly. This may be difficult to do, and, may not even be
possible without involving more work than is required for a complete recompilation which
would eliminate the original problem.

The following special set of circumstances must exist before SCOPE2B is required as an
expedient:

There must be a FORTRAN program in binary form, compiled under version 2.0,
which it is either impossible or undesirable to recompile.

The program must have specified the minimum buffer size for at least one of its files.

At least one of the files with the minimum buffer size must be assigned to a hinary tape.

Other circumstances may make the use of SCOPE2B desirable. For example, if the first
condition above is satisfied, the program when run under 2.3 will still have its buffer size
reduced by 11, words because of the increased FET size., A normal size buffer of 20014
would become 1770g words; with SCOPE2B it would be 20118. However, decreasing the
buffer size by 118 words will not reduce the I/0 efficiency appreciably, since the I/0
routines make dynamic use of the buffers. The desirability of using SCOPE2B is dependent
on the circumstances of each possible application.

A final expedient to avoid recompilation is suggested. Input data tapes can be copied to disk

read from disk, and then output data can be written to disk and copied from disk to tape.
Since the PRU size of the disk is 1008 words, the original problem does not occur.

T When using SCOPE2B, the user is prohibited from using his own labeled common block with a
name of SCOPE2.

K-3

INDEX

A Display 9-4 Checkpoint, unrestartable dumps 8-4
ABORT macro 3-39 CLOCK macro 3-40
Access, random 1-11 CLOSE macro 3-24
Active files 1-5 CLOSER macro 3-24
ADD (EDITLIB) 5-5 Code and status field (FET) 3-3
*ADD (EDITSYM) 7-7 *COMDECK
ADDBCD (EDITLIB) 5- EDITSYM 7-5
ADDCOS (EDITLIB) 5-6 UPDATE 6-7; 6-11
*ADDFILE (UPDATE) 6-10 COMMENT card 2-4
ADDTEXT (EDITLIB) 5-6 COMMON card 2-10
Assembly directive control cards Common decks, program library 7-2; J-1
(UPDATE) 6-5 BUFINIT J-4
Automatic mode 9-1 FNTSRCH J-3
READPP J-5
B Display 9-6 RELOC J-1
BKSP macro 3-34 1SP18SQ J-1
- BKSP routine 10-7 COMPARE routine 10-10
BKSPRU macro 3-34 COMPARE, utility program 10-10
BUFINIT common deck J-4 *COMPILE :
EDITSYM 7-6
C-G Display 9-6 UPDATE 6-11
*CALL (UPDATE) 6-17 Compile output,
Call cards program library 7-3
EDITLIB 5-2 COMPLETE (EDITLIB) 5-6
EDITSYM 7-4 Compressed deck,
Calling sequence, CPC 3-19 program library 7-3
*CANCEL (EDITSYM) 7-7 Control card fields 2-2
CARD Control cards
control 2-2 *ADD (EDITSYM) 7-4
files E-2 *ADDFILE (UPDATE) 6-10
format E-1 Assembly directive (UPDATE) 6-5
free-form E-3 BKSP (Utility) 10-7
identification, program library 6-4 Call (EDITSYM) 7-4
Cards, program, utility 10-1 Call (job) 2-7
*CATALOG (EDITSYM) 7-6 *CALL (UPDATE) 6-11
Central memory usage, multiprogramming 1-2 *CANCEL (EDITSYM) 7-7
Central program control CARDCPY (Utility) 10-6
subroutine 3-19 *CATALOGUE (EDITSYM) 7-6
calling sequence 3-19 *COMDECK (EDITSYM) 7-5
Character set A-1 *COMDECK (UPDATE) 6-7, 11
CHECKPT macro 3-37 COMMENT 2-4
Checkpoint REQUEST 8-1 COMMON 2-10

Index~-1

Control cards (continued) Control points,

COMPARE (Utility) 10-6 multiprogramming 1-2
*COMPILE (EDITSYM) 7-6 Control statements

*COMPILE (UPDATE) 6-11 COMMON 1-7

*COPY (EDITSYM) 7-5 RELEASE 1-7

COPY (Utility). 10-2 *COPY (EDITSYM) 7-5

Correction directive (UPDATE) 6-8 COPY routines

Creation directive (UPDATE) 6-7 COPY 10-2

*DECK (EDITSYM) 7-5 COPYBF 10-3

*DECK (UPDATE) 6-7, 11 COPYBR 10-3

Deck sequence (EDITSYM) 7-5 COPYCF 10-3

*DELETE (EDITSYM) 7-7 COPYCR 10-4

*DELETE (UPDATE) 6-9 COPYL 10-5

DMP (Utility) 10-10 COPYSBF 10-4

*EDIT (EDITSYM) 7-6 Correction directive control cards
EDITSYM 7-5 (UPDATE) 6-8
Edit control (EDITSYM) 7-6 Corrections, overlapping (UPDATE) 6-13
*END (EDITSYM) 7-5 CPC 3-19

*END (UPDATE) 6-7 Creation directive control cards (UPDATE) 6-7
EXECUTE 2-6 CVDEL G-1

EXIT 2-4 CVRT G-1

File manipulation (UPDATE) 6-6

*IDENT (UPDATE) 6-8 Data function macros 3-15

*INSERT (EDITSYM) 7-6 DATE macro 3-40

*INSERT (UPDATE) 6-9 Dayfile 9-4

Job 2-2 display 9-4

*LABEL (UPDATE) 6-6 dumps 9-5

LBC (Utility) 10-7 *DECK

LOAD 2-6 EDITSYM. 7-5

LOC (Utility) 10-7 UPDATE 6-7, 11

MODE 2-3 Deck grouping (UPDATE) 6-7

New decks (EDITSYM) 7-5 Decks 7-2

NOGO 2-7 Common, program library 7-2;dJ-1
Output directive (UPDATE) 6-11 Compressed program library 7-3
OVERLAY 4-6 - New (EDITSYM) 7-5

PBC (Utility) 10-8 Overlay 4-6

Program 2-5 Sequence control cards (EDITSYM) 7-5
*PURGE (UPDATE) 6-8 Text, program library 7-2

RFL (Utility) 10-9 Definitions, system symbols I-1
*SKIP (UPDATE) 6-6 DELETE card (EDITLIB) 5-3, 6
*Slash (UPDATE) 6-10 *DELETE

SWITCH 2-3 EDITSYM 7-7

UNLOAD (Utility) 10-6 UPDATE 6-9

UPDATE 6-5 Device type (FET) 3-3

Utility 10-1 Directives, loader 4-5

WBR (Utility) 10-9 DIS display 9-10

*WEOR (EDITSYM) 7-6 Display characters A-1

*WEOR (UPDATE) 6-11
*YANK (UPDATE) 6-10

Index-2

Display keyboard entries
Job display 9-11
System display 9-7

Disposition code (FET) 3-8

DMP routine 10-10

DSD Display 9-4

Dump storage, utility program 10-10

Dumps
Dayfile 9-5
Unrestartable checkpoint 8-4

*EDIT (EDITSYM) 7-6
Edit control cards (EDITSYM) 7-6
Edition number 3-16
EDITLIB 5-1
Call card 5-2
Examples 5-8
EDITLIB function cards 5-2
ADD 5-5
ADDBCD 5-6
ADDCOS 5-6
ADDTEXT 5-6
COMPLETE 5-6
DELETE 5-3, 6
LENGTH 5-7
Library revision 5-4
LIST 5-3
MOVE 5-3
Position 5-7
READY 5-4
REWIND 5-7
SKIPB 5-7
SKIPF 5-7
System modification 5-3
TRANSFER 5-4
EDITSYM 7-1
Call card 7-4
Control cards 7-4
Deck sequence control 7-5
Edit control 7-6
Examples 7-8
Effects, @ option 6-12
*END
EDITSYM 7-5
UPDATE 6-7
ENDRUN macro 3-39
ENTR table D-2
EQI address (FET) 3-14

Equipment assignment control cards 2-7

Equipment type mnemonics 2-8
Error address (FET) 3-14
Error messages H-1
Error processing bit (FET) 3-7
EVICT macro 3-25
Examples

EDITLIB 5-8

EDITSYM 7-8

UPDATE 6-15
EXECUTE card 2-6
Execution

Loader 4-5

Program 2-5
EXIT card 2-4

FET creation macros 3-17
Random hinary file 3-17
Random coded file 3-17
Sequential binary file 3-17
Sequential coded file 3-17

FET extension B-1

Field length request, utility program 10-9

Fields, control card 2-2
Fields, File Environment Table 3-1
File Environment Table Fields 3-1
Code and status field 3-3
Device type 3-3
Disposition code 3-8
EOI address 3-14
Error address 3-14
Error processing bit 3-7
File indexing 3-13
FIRST 3-10
FNT pointer 3-9
IN 3-10
Length 3-9
LIMIT 3-10
ouT 3-10

OWNCODE routine activity 3-10

Physical record unit size 3-5
Random access bit 3-9
Record block size 3-6
Release bit 3-6

User processing bit 3-6
Working storage 3-10

Index-3

Files 1-5 JDATE macro 3-40

Action request macros 3-22 Job
Active 1-5 Backload display 9-~7
Edition number 3-16 Card 2-2
File Environment Table 3-1 Control cards 2-1
Header label 1-14; C-2 Display 9-10
Indexing (FET) 3-13 Flow 2-1
Label name 3-15 . Status display 9-6
Labels 1-12
Manipulation control cards (UPDATE) 6-6 Keyboard entries, display 9-7, 11
Random access 1-11
Reel number 3-16 *LABEL card (UPDATE) 6-6
Trailer label 1-14; C-3 Label
Files, card E-2 File 1-12
FILL table D-4 : File header 1-14; C-2
FIRST (FET) 3-10 File trailer 1-14; C-3
Flag words 2-2 Standard C-1
Flow, job 2-1 Volume header 1-14; C-1
FNT pointer 3-9 Volume trailer 1-14; C-3
FNTSRCH common deck J-3 Labeled tape files 3-15
Format v Creation date 3-16
Card E-1 Edition number 3-16
Program library 7-1 Label name 3-15
Relocatable subroutine D-1 Multi-file name 3-16
Free—form cards E-3 Multi-file tapes 3-16
Function, position (EDITLIB) 5-7 Reel number 3-16
Function cards (EDITLIB) 5-3 Retention cycle 3-16
Functions (EDITLIB) Labels tape file
Library revision 5-4 File header 1-14; C-2
System modification 5-3 File trailer 1-14; C-3
Volume header 1-14; C-1
H Display Volume trailer 1-14; C-3
Hollerith punched characters A-1 LBC routine 10-7
Length (FET) 3-9
*IDENT card (UPDATE) 6-8 LENGTH card (EDITLIB) 5-7
Identifiers, structure 6-3 Level 1-8
IN (FET) 3-10 Marks 1-10
Input/output routines, utility 10-8 Numbers 1-8
*INSERT Library revision functions (EDITLIB) 5-4
EDITSYM 7-6 Library tape structure 5-1
UPDATE 6-9 LIMIT (FET) 3-10
Installation parameters F-1 LINK table D-6
IPARAMS F-1 LIST card (EDITLIB) 5-3

Index-4

Listable output, (UPDATE) 6-12
Logical file name (FET) 3-2
Logical records 1-7
Level marks 1-10
Level numbers 1-8
Termination 1-10
LOAD card 2-6
Loader directives 4-5
Overlays 4-6
Sections 4-7
Segments 4-7
Loader execution 4-5
LOADER macro 3-41
Loading
Routines (Utility) 10-6
Sequence 4-1
LOC routine 10-7

Macros, FET creation 3-17
Macros, system communication 3-21
ABORT 3-39
BKSP 3-34
BKSPRU 3-34
CHECKPT 3-37
CLOCK 3-40
CLOSE 3-24
CLOSER 3-24
Data functions 3-21
DATE 3-40
ENDRUN 3-39
EVICT 3-25
File action requests 3-21
JDATE 3-40
LOADER 3-41
MEMORY 3-36
MESSAGE 3-38
OPEN 3-22
Position functions 3-33
READ 3-25
READIN 3-24
READSKP 3-26
REQUEST 3-21
REWIND 3-35
RPHR 3-26
SKIPB 3-34
SKIPF 3-33
System action requests 3-36
TIME 3-39

Macros, system communication (continued)

WPHR 3-30
WRITE 3-29
WRITEF 3-30
WRITER 3-29
WRITOUT 3-31
Manual mode 9-2
Map, memory 4-9
Marks, level 1-10
Memory allocation 4-7
Segment 4-9
System 4-7
User 4-9
MEMORY macro 3-36
Memory map 4-9
MESSAGE macro 3-38

Messages
COPYL 10-6
Error H-1

UPDATE 6-20
Mode card 2-3
Modes, processing 9-1
Automatic 9-1
Manual 9-2
MOVE card (EDITLIB) 5-3
Multi-file 3-16
Names 3-16
Reel 1-13
Tapes 3-16
Multiprogramming 1-2
Central memory usage 1-2
Control points 1-2
Multi-reel file 1-13
Multi-reel multi-file 1-13

OPEN macro 3-22
OUT (FET) 3-10

Output directive control cards (UPDATE) 6-11

Output, listable (UPDATE) 6-12

Overlapping corrections (UPDATE) 6-13

OVERLAY 4-6
Decks 4-6
Format 4-6
Overlays 4-4
OWNCODE routine activity (FET) 3-10

Index-5

Parameters
Call (UPDATE) 6-1
Installation F-1
PBC routine 10-8
PIDLE table D-1
Physical record unit size (FET) 3-5
Position function (EDITLIB) 5-7
Prefix table, subroutine D-1
Printed character sets A-1
Procedure
Checkpoint 8-2
RESTART 8-3
Processing modes 9-1
Program call card 2-7
Program cards (Utility) 10-1
Program control cards 2-5
Call card 2-7
EXECUTE card 2-6
LOAD card 2-6
NOGO card 2-7
Program execution 2-5
Program library
Common decks J-1
Compile output 7-3
Program library format 7-1
Common decks 7-2
Compressed decks 7-3
Text decks 7-2
Program libraries, structure 6-3
Card identification 6-4
Identifiers 6-3
Deck list 6-3
Text stream 6-3
*PURGE card (UPDATE) 6-8

@ option effects (UPDATE) 6-12

Random access 1-11

Random access bit (FET) 3-9
Random hinary file macro 3-17
Random coded file macro 3-17
RBR routine 10-8

*READ (UPDATE) 6-6

READ macro 3-28

READIN macro 3-29
READPP common deck J-5
READSKP macro 3-26
READY card (EDITLIB) 5-4
RECALL macro 3-37

Index-6

Record block size (FET) 3-6

Reel number, file 3-16

Release bit (FET) 3-6

RELEASE 2-10

RELOC common deck J-1
Relocatable subroutine format D-1
REPL table D-6

REQUEST 2-8

Request cards (Utility) 10-1
REQUEST checkpoint 8-1
REQUEST macro 3-21

Request macros, file action 3-21
Request, RESTART 8-2

Request, utility program field length 10-9
RESTART card 2-4

RESTART procedure 8-3
RESTART request 8-2

*RESTORE
EDITSYM 7-7
UPDATE 6-9

Retention cycle 3-16
REWIND card (EDITLIB) 5-7
*REWIND (UPDATE) 6-6
REWIND macro 3-35
RFL routine 10-9
ROLL-OUT/ROLL-IN 8-4
RPHR macro 3-26
Routines, utility
COPY 10-2
Field length request 10-9
Input/output 10-8
Loading 10-6

SCOPE 2B K-1

Scopes, console and display 9-3
Sections 4-7

Segment memory allocation 4-9
Segmentation 4-2

Sequence, loading 4-1
Sequential binary file macro 3-17
Sequential coded file macro 3-17
Single reel file 1-13

*SKIP (UPDATE) 6-6

SKIPB card (EDITLIB) 5-7
SKIPB macro 3-34

SKIPF card (EDITLIB) 5-7
SKIPF macro 3-33

*#8lash card (UPDATE) 6-10

Software, integration,hardware/I-1
1SP1SQ common deck J-1
Standard labels C-1
Storage, utility program dump 10-10
Storage display 9-6
Structure
Identifiers 6-3
Library tape 5-1
Program library 6-3
Tape file 1-13
Text stream 6-3
Subroutine
Central program control 3-19
Format, relocatable D-1
Prefix table D-1
Tables D-1
SWITCH card 2-3
Symbol definitions, system I-1
System display program 9-4
System memory allocation 4-7
System modification function (EDITLIB) 5-3
System symbol definitions I-1

Table, File Environment 3-1
Tables, subroutine D-1
ENTR D-2
FILL D-4
LINK D-6
PIDLE D-1
Prefix D-1
REPL D-6
TEXT D-3
XFER D-8
Tape file labels 1-14
Tape file structure 1-13
Labels 1-14
Multi-file reel 1-13
Multi-reel file 1-13
Multi-reel multi-file 1-13
Single reel file 1-13
Tapes, multi-file 3-16
Termination, logical records 1-10
Text deck, program library 7-2
Text stream, structure 6-3
TEXT table D-3
TIME macro 3-39
TRANSFFR card (EDITLIB) 5-4

Unrestartable checkpoint dumps 8-4
UPDATE 6-1
Call parameters 6-1
Control cards 6-5
assembly directive 6-10
correction directive 6-8
creation directive 6-7
file manipulation 6-6
output directive 6-11
Examples 6-15
Files 6-13
Listable output 6-12
Messages 6-20
Q option effects 6-12
User memory allocation 4-9
User processing bit (FET) 3-6
Utility programs 10-1
COMPARE 10-10
DUMP 10-10
Program cards 10-1
Request cards 10-1
Routines 10-2
COPY 10-2
field length record 10-9
input/output 10-8
loading 10-6

Volume header label, tape file 1-14; C-1
Volume trailer label, tape file 1-14; C-3

WBR routine 10-9
*WEOR

EDITSYM 7-6

UPDATE 6-11
Words, flag 2-2
Working storage (FET) 3-10
WRITE macro 3-29
WRITEF macro 3-30
WRITER macro 3-29
WRITOUT macro 3-31
WPHR macro 3-30

XFER table D-8

*YANK card (UPDATE) 6-10

Index-7

CONTROL DATA

COMMENT AND EVALUATION SHEET
6400/6500/6600 SCOPE 3.1

Reference Manual

Pub. No. 60189400 A February 1968
THIS FORM IS NOT INTENDED TO BE USED AS AN ORDER BLANK. YOUR EVALUATION
OF THIS MANUAL WILL BE WELCOMED BY CONTROL DATA CORPORATION. ANY
ERRORS, SUGGESTED ADDITIONS OR DELETIONS, OR GENERAL COMMENTS MAY
BE MADE BELOW. PLEASE INCLUDE PAGE NUMBER REFERENCE.

FROM nawme:

on
nz

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S, A.

FOLD ON DOTTED LINES AND STAPLE

FOLD

STAPLE

STAPLE

STAPLE

FIRST CLASS
PERMIT NO, 8241

MINNEAPOCL IS, MINN,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U,S.A,

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Documentation Department
3145 PORTER DRIVE
PALO ALTO, CALIFORNIA 94304

I
I
I
I
L]
L
[]
IR
I
.
L
IR
I
T
FOLD
STAPLE

