INHOUSE

.é\ .

&

* The Purdue, DUa]fMACE :
Pperating System
V. Abell L
: PurdUe_University'Computfng Center

—/ ‘ _ IEERREA - : | Juhe, 1974

i,

/ S T N PO B

(6/74) LO DMACE

e

TABLE OF CONTENTS

1. Introduction . . . v « v « v .« .

2. System Architecture
Figure 1, Purdue Hardware Conflguratlon .

3. Dead-Start .
Dead-Start Panel
System Bootstrap - BTS
Dead-Start Dump - DSS .
Tape Dump
Printer Dump .
System Loading .

SAVER - SVQ . . . e e e
Dual MACE Option Selectlon - PDM
TYPE - INS . c e e

DEADSTART TYPE ., .
CPU O IS ON or OFF . . .
T - TAPE UNIT IS (0 - 7) . .
X - ECS TABLE STATUS IS LOAD, USE or NONE
S - CMRDECK ORDINAL IS (0 - 3) .
ENTER RIGHT BLANK TO DEADSTART .
Central Memory Resident Construction - SET

Figure 2 - Central Memory Resident - CMR .

Extended Core Storage Set-up - SXC
Figure 3 - ECS Map . .

System Tape Loading - STL . .

Permanent File and Dayfile Proce55|ng - DSI

TAPE Dead-Start - STL .

ECS Library Directory Constructton - STL .

Using ECS Library Directories - STL
MINOR, MAJOR and DISK Dead-Start - REC
Final Dead-Start Activities - STL . .
Special Dead-Start Checkpoint and Restore .

L, System Intra-Communication . . . C e e
Peripheral Processor Resident - PPR .

PPR Idle Loop

Direct Cells . .
Direct Cell Constants .
Direct Cell Variables .
Mass Storage Variables

Program Loading
Program Names . . .
The Peripheral L:brary Loader - PLL .
Searching the PLD . . . e e e
PP Task Initiation

Bl O ol i i R N B (SIS RV RVARVIRVIRVIRVIRVIR VIR VIRVIRVIRUT R VIR VS RVUR U RV R PR VIR VIR VIR VIR VU R VIR FCR WX

5]

.

AT T WWWWNNN— —

N —

W OSIAWVIEVIVIVIUVT B 2 WWwWw N RN e e

(cont.)

PPR Routines .
Function Request - FNT
Pause for Relocation - PRL
Reserve Channel - RCH ..
Drop Channel - DCH . .
Issue Dayfile Message - DFM .
Execute Routine - EXR .

Peripheral Library Loader - PLL .

Set-up Mass Storage Driver - SMS
Mass Storage Processing
Positioning - POS
Write Sector - WDS .

Read Sector - RDS

Error Processing .
Addressing . .
Inter-machine Dlsk Confl|cts

The Peripheral Processor Monitor - MTR

Function Processing

Step Control

Storage Control .

System Monitoring
Checking Absolute Address Zero
Central Processor Monitoring
PPU Deiay Stack Monitoring
Control Point Monitoring
Central Memory Testing

CPU Program Timer Interrupt Control

[/0 Stack Monitoring

Inter-machine Function Transfer .

Top-line Error Stops
Clock and Date Control

Central Processor Monitor - CPUMTR

CPUMTR Access
PPU Access
CPU Access .
PPU Function Processnng
CPU Availability
Checking Step Mode
Function Processing . .
Procéssor Exits . .
The No Operation Exnt
The Normal Exit
The Wait Exit
Repeat-Request Exit
CPU Switching Exit .

Problem Mode Function Proce55|ng

CPU Function Proce55|ng
CPU Control A
Control Point, CPU Status .

g e i o i o S R A S -l ol i i i i i i S S N S - Sl Sl g el Sl S S e R Sl Sl Sl i ~ Sl S e S S o

WO CO0 OO~ O

.10
.10
.10
.10
L1
N
1
L2
.12
.13

.13
L4
.15
.15
.16
.16
16
.17
A7
.18
.18
.18
.18
.19
.19
.20
.20
22
.23
.23
.24
.24
.24
.25
.25
.26
.26
.26
.27
.28
.28

L4, (cont.)
X Status + v v v v v v v v o ¢ 4 e
| and R Status e e e e e
CPU Selection - W Status . e e e e e
CPU Checking . « « ¢« v v v ¢ ¢ v v o o &
ldle CPU
“iJob Advancement v v . v e e
PPU Control . . . « ¢« ¢ v v v v v ¢ « « &
Statistics Mode « . . . ¢« . .
Intra-communication Example

5. Machine Inter-communication e e e e e e e e
ECS Flag Register Usage . . . e e e e e e e
Flag Register Bit Assugnments .

Special Access Flag Register Bit Assugnments .

ECS Track Reservation Table Usage
Inter-machine Function Processing .
Function Overhead . . . e e s
Inter-machine Function Codes e e e e e e
File Transfer

6. Tables e e e e e e e e e e e
Control Pount Zero . e e e e e e e
Control Points One Through N . e

Control Point N+1 ., . e e e e e
Track Reservation Table (TRT) Pointers .
Dayfile Pointers . . . e

Equipment Status Table - EST e e e e e e e e
Equipment Type Code
Equipment Class . . « + « v 4 & v o 4o +
Mass Storage Devices
Mountable Devices . . « « ¢« ¢ ¢ ¢ ¢ v+ .
Driver Parameters . . « ¢« ¢« ¢ « v o 4+ « & o
Equipment Ordinal« ¢ .
EST Pointer . . ¢« v v ¢ v v ¢« v ¢ v v o+ &
On/Off Status . . . e e e v
ECS Equipment Status Table e e e e e

File Name/Status Table = FNT/FST
The FNT Word -
File Type and Control Pount Assngnment .

Queued Files . v v v v v v v v v o o o
Local Files . .

PPU Exchange Areas . . . e e e e e

Track Reservation Tables - TRT' e e e e

Equipment Reservation Table - ERT . .

PPU Program Library Directory - PLD

System, CPU Program Library Dlrectory - SLD . .

Dayfile Buffers

Inter-machine Communlcatlon Buffers . e

ONNN NN — —

soo-ononghnONONONOVNOVNOVNOROVNONONONONOVNONONONONONONONOVNOVN O viviuruiruniviuvitono

ot et et ok ot et et =t OO OO CO OO OOV SN N e

OO~ RN WN—0O0

PR
Y

o
Tak

wy

g

6.

7.

(cont.)

CPU Monitor (CPUMTR) Code .
Mass Storage Allocation Table
File Blocks - . .
The PPU Delay Stack
Channel Reservation Table
The Flag Register Reservation Table
The CPU Request Queue
The Installation Area .
The Disk Pack Pointer Table - DPT
The 1RS Table ..
The System Status Line . . .
The Device Request Block Tab]e - DRB .
The Permanent File Device Table
The Queue Priority Weight Tables .
Job Scheduler Category Tables
Terminal Control Blocks - TCB's
The Input/Output (1/0) Stacks
The MESA Library Directory - MLD
Special TRT's .
Small Permanent F|les TRT - DU .
ECS Swap Space TRT - DX ..
The DRB Reservation TRT - DY .

Single Device, Mountable Equipment Control - DZ

Resident PPU Library - RPL
User Program Space

RA .

RA+1

RA+2 - RA+779

Files

Writing and Readlng Flles . .
CPU Program File Processing - The FET and CIO .
FNT/FST Entry Management e e e e
Entering New Files - @BF .

Releasing Files - @DF

Device Drivers

Stack Processing

Error Processing . . .
Random File Processing
Job Files .

The Rollout Flle . .
Output Files - Print and Punch .

Unit Record Input/Output - BATCHIO

Permanent Files e
Accessing a D:rectory .
Accessing a File or Subdlrectory (Famlly)
Saving a File

-

NN SN SN SN N NN NN N N N N NI NI NN

NN
NN et —

W oo~ ovovuni W N o—

N B —
O OO

NN NN NNNNDNNNDNDNRN
WWOWo~OVITn\n I rwN

VS VS VS R VE R VE VIRV
W NN = — =0

(N}
-

7. (cont.)

Permanent File Interlocks - DDTM and RDTM
854 Disk Packs - MOUNT .
Common Files . .
Small Permanent Flles - PFILES .

Specual File Types

-Special Media .’ .
Access to Special Medta

Tape Schedu]tng .
Card Formats

8. Job Processing . .
Job Scheduler . .
Job Queue Priority .

Job Scheduler, Queue Prlorlty Categorles .

Job Movement
Beginning a Job - ZBJ
Job Rollin - 1Rl
Job Rollout - 1RO . . .
Job Execution and Advancement .

Control Card Advancement - lAJ/ZTS .

Error Processing - 1AJ/2EF .
Timer Interrupt .
Special 1AJ Processes
Job Termination - 1AJ/ICJ .
- Special Job Termination - 1RB .

Job Limit Processing
CPU Time Control
1/0 Transfer Unit Control
Disk Track Control
Line and Card Limits

Security and Authorization
The DEBUG Flag .

Job Origin Code .
Job, Eighth Name Character .
Control Card Loaded Flag .
Sensitive Data Flag

Permission Flags .

Access Flag Management .
Special Authorization Usages .
Console Security . .

Special Job Execution Facxlltles
Conditional Statement Control
Special Control Card Advancement .
Exchange Package Management .
The Control Point Display Buffer .

00 00 00 00 CO 00 00 OO0 OO 0O 0O OO0 00 0O OO0 OO 00 00 CO0 OO 00 OO 0O OO0 O 00 CO CO 0O O 0O OO OO OO NN N NN N

W oo ONUTUNT N — — —

RN N — ——
NN~ O\W 0

NN
w W

9. Remote Devices - PROCSY 2.0
Terminal System Control - MESA
Fitle Table .

LOGON
PLINK

Swapping «
Terminal Control Blocks - TCB's
A Sample LOGON, . . .
Formats .and Device Types

Data
Appendix A
Appendix B
Appendix C
Appendiva
Appendix E
Appendix F

References

PPCOM - PP Systems Communications Definitions
PPU Functions Processed by MTR

PPU Functions Processed by CPUMTR

XJ Functions

MESA Sub-system Action

PPU Programs

L0 WO W0 \0 W W W wWw\Ww

AT WW W NN — —

vi

L4

AR

Introduction

The Purdue, Dual-MACE operating system, Dual MACE, is a twin machine
executive for automatic control of CDC 6000 series computers. It is an
extension of the Purdue Mace Operating System [1], which is, in turn, based
upon the experimental CDC operating system, MACE [2]. The popular CDC KRONOS
time sharing system [3] is also a MACE derivative.

The CDC computers controlled by Dual MACE are multi-processors. At
Purdue the two machines, a CDC 6400 and a CDC 6500, have a total of twenty-
three processors. The basic design philosophy of Dual MACE is to provide
a sufficient but flexible executive that will enable a maximum of resource
sharing, a minimum of system inter-dependence, and a minimum of change in
external functional appearance from Purdue MACE.

To that end the inter-system coupling is extremely loose. |ts basic
hardware device is extended core storage, or ECS [4]. ECS is a fast access
bulk core storage device with a maximum transfer rate of 100 nano-seconds
per sixty bit word. It is designed to permit access to as many as four
CDC 6000 systems, and contains an eighteen bit flag register for use in
inter-machine reservation control.

In Dual MACE, tables describing common system resources are stored in
ECS and accessed by the system monitor programs active in each machine.
Various bits of the flag register, and in some cases, sequencing rules and
table contents provide the necessary interlocks.

The ECS resource tables permit the sharing of system program libraries,
utility disk storage space, and permanent files. In addition the two system
monitor programs communicate with each other via ECS areas in order to
accomplish job location, job file transfers and various other executive tasks.

Because the systems are so loosely coupled, the same system programs,
from compilers through monitors are used in both machines. In a relatively
small number of cases a discrete machine number is employed to describe
the residence of a particular job, the sequence in which system tables
are allocated, or to control the order of initial system loading.

The remainder of this document describes the action of the system program
components, with special emphasis on system control and resource sharing.
A more user-oriented discussion of Purdue MACE, still applicable to Dual
MACE, may be found in the document PMACE [5]. '

8
i
,M
§
M
¥
3

System Architecture

The hardware characteristics of the CDC 6000 series systems are well
known [6]. Briefly the machines of the 6000 series consist of one or two
central processors (CPU's) and a number of peripheral processors (PPU's) all
of which share a large, fast central memory of sixty bit words., The CPU has
a minor cycle time of 100 nanoseconds; the PPU, one miscrosecond,

The PPU's each have a full complement of arithmetic, shift, logical
and input-output instructions, and 4,096, twelve bit words of private memory.
They share access to twelve, one megacycle, twelve bit channels. The
PPU's are primarily designed to provide input-output and executive tasks;
the CPU's bear the computational load.

Five PPU words of twelve bits can be contained in one, sixty bit
central memory word. This is the minimum exchange amount between the PPU
and central memory. A twelve bit group in a central memory is called a byte.
The bytes are labelled from left to right, zero through four. Byte zero is
bits 48-59; one, 36-47; two 24-35; three, 12-23; and four, 0-11,

When a central memory word contains CPU instructions, it is divided into
fifteen bit groups called parcels. The parcels are numbered from left to
right, zero through three. Parcel zero is bits 45-59; parcel one, 30-4k;
parcel two,15-29; and parcel three, 0-14.

The Purdue 6500 consists of two CPU's, ten PPU's and 98,034 words of
central memory. The 6400 has one CPU, ten PPU's and 65,536 words of central
memory. The ECS storage, shared by both machines, contains 503,808 sixty bit
words. In addition, both systems have access to a large variety of peripheral
devices, including retating mass storage devices, magnetic tape units, plotters,
paper tape equipment, and a number of terminal system, front-end processors.
Figure 1 pictures the basic configuration. Note that not all devices are
shared.

System executive control is performed by a number of discrete programs,
most of which share the occupancy of PPU's and shared areas of central memory.
However, two peripheral processors, and a moderate amount of central memory
are reserved enttrely for system executive programs and job control tables.

The central memory required depends to a large extent on changeable parameters,
but typically consists of approximately 18,000 words in each machine.

One of the two dedicated peripheral processors contains the console
driver program, DSD - Dynamic System Display. DSD maintains a dynamic display
of system status on the twin-screen CRT console, and accepts operator key-
board entries. The other dedicated peripheral processor contains the program
MTR - peripheral processor monitor. MTR performs a wide variety of system
monitoring. tasks, which include CPU switching, job request processing, timing
controls, system stability checking, etc.

A portion of the dedicated central memory contains an additional executive
program, CPUMTR - central processor monitor. CPUMTR, in contrast to MTR, is
an event driven executive, processing requests for resource and system activities

upon specific stimulation by the CPU's and the PPU's,
, , 2,1

6400 ECS 6500
Memory 503,808 Memor
v 65,536 60 bit words 98,03
60 bit-words | == 60 bit words- |
Y
6#00 lO‘Peripheralb 10 Peripheral 6500
CPU Processors : Processors CPU's
| { 6638 \
0 \ opisk /J 9
1 (6638) B
\ Disk '
/ 6638 \
z ‘_wW:Disk 2
{ 6638 \
3 __ Disk 3
Comm. o
~ (e H
1/0 7 821 \ ‘ »
Channels > N Disk S 12| o
‘ : : - ‘ Channels
j L, 854 .
6 Chse) s
PROCSY 2.0 »
2N (e oA 7
| ' {2, 8uh)
? ___Disks / I
: PRINTERS

1

(" eon)

_ Tape Units

1|

Figure 1, Purdue Hardware Configuration

2.2

Rapid access to CPUMTR is provided through a hardware exchange jump
feature, available to both the CPU's (XJ) and the PPU's (MXN). Both
operations effect the exchange of all CPU control registers between the
CPU and a sixteen word memory area in two microseconds. Thus CPU and PPU
and CPUMTR can return control to the interrupted CPU process with an ex-
change when the request has been processed.

The sixteen words exchanged between the CPU and memory contain a number
of control and general purpose registers. These include gixteen, eighteen
bit registers (A0 through A7, BO through B7) for program éxecution, addressing
and indexing; and eight, sixty bit registers (X0 through X7) for program
execution, arithmetic and logical operations. The seven control registers
include the following:

Register Usage
P The current (next) instruction address,

relative to RA.

RA ' The current program reference address. This
value is automatically added to all relative
address values - i.e., P, and Al through A7.

FL The relative address limit on field length.
This value is an automatic limit on P and
Al through A7.

EM ‘ Exit mode value = an address and arithmetic
error selection code.

RAX ECS reference and limit addresses.
FLX
MA » The '"monitor address'' register (see Chapter 4).

The remaining system resources - PPU's, CPU time, and memory - are shared
among system and user jobs through a pseudo-machine mechanism called a
control point. A control point is a pivotal area, occupying 128 words of
central memory, through which task execution is controlled, and to which job
execution resources are allocated. The control point may be thought of as the
control element of an individual computer, and the entire set of control
polnts as a division of the hardware machine into a number of separate machines,
each of which can execute an independent job.

The control point jobs, which may include such system tasks as job
stream input/output (printers, card readers, etc.), or terminal subsystems,
as well as user tasks (compilations, program executions, etc.) obtain re-
sources for execution via exchange operations (CPUMTR), resource request
notices (MTR) and through the efforts of a number of job and job segquencing
programs which share the use of the PPU's. '

These programs include ones for job scheduling, initiation, swapping,
2.3

and termination, as well as a wide variety of input-output drivers., Each
PPU program, in turn, makes use of the resource access facilities of
CPUMTR and MTR to perform its specific operations.

Excluding system jobs, generally all jobs which execute at control
points may be interrupted, the job control information (control point area
and program execution central memory) copied to a mass storage (disk) file, and re-
started at a later time, possibly at another control point, or even in another
machine. In the Dual MACE system this process is called auto-roll.

Auto-roll significantly enhances the performance of the system, by
permitting rapid interruption of job execution in order to enable the
execution of a higher priority job, Moreover, it also permits the trans-
ferral of jobs between systems by the passage of the auto-roll file pointers
between machines. Since a large number of resources are shared between
machines, and since system architecture and even system programs are the
same, a rolled-out job can pass between machines with no visible effect on
job execution.

In particular, this structure permits a job to execute on a given
machine until it requests a resource not on that machine (e.g. a paper tape
reader), and then to be transferred to the other machine for further execution.
As another example, since the 6500 has more central memory than the 6400
(98,304 words versus 65,536), a job request for additional central memory can
cause an inter-machine job transfer. - »

2.4

Dead-Start

The operating system programs of the Dual MACE system are initially
loaded with a process called dead-start. The entire process begins with the
execution of a boot-strap sequence from a hardware dead-start panel, which in
turn effects the loading of sufficient additional dead-start programs from
the dead~start tape to complete system loading. These dead-start program
load system program libraries, recover permanent file directories and system
logs, construct central memory and ECS tables, and, in selected cases, re-
cover job files after system failure, provide post-mortem dumps, etc.

Dead-Start Panel

The dead-start panel is a set of 14k toggle switches which are used to
define twelve, twelve bit PPU instructions. When the dead-start switch or
button is activated, these twelve instructions are entered into the memory
of peripheral processor zero in locations one through twelve. At the same
time, the remaining PPU's are assigned to their respective, activated 1/0 channels
(PPU one to channel one, PPU two to channel two, etc.) and set executing a 4096
word channel input operation to PPU word zero.

PPU zero is then allowed to begin execution at location one with the first
instruction of the dead-start panel. The remaining PPU's wait for input on their
respective channels. When they have received input, and after their respective
data channels have been de-activated, the processors begin executlon at the value
loaded in PPU word zero, plus one.

System Bootstrap - BTS

The twelve instructions of the dead-start panel for Dual MACE contain a
small program to rewind a magnetic tape and load the first record of the tape .
into PPU zero memory starting at word 7705s5. This first record contains the
program BTS. It is designed to load a small amount of code into words 77054,
through 7777s, and a location value into word zero. At the end of the transfer
of the record from the tape, the tape unit de-activates the tape channel, and
PPU zero begins executing the record loaded into its memory, startirig at the
word address loaded in word zero, plus one.

BTS saves the entire contents of PPU zero memory, excluding those
words destroyed by the Ioading of the BTS tape record, by writing PPU zero
memory to a predefined area in central memory (50000¢ through 514625). The
saved PPU memory can be used by the next dead-start program (DSS), to form a
system, post-mortem dump. BTS then activates the tape channel and initiates
the transfer of the next tape record into PPU zero memory, again starting at
word 77054, :

3.1

Dead-Start Dump - DSS

The next tape record of the Dual MACE dead-start tape contains the
dead-start dump program, DSS. As its first operation, DSS stops all CPU's
Then it requests the selection of three processing options by displaying the
three options and a single character selection code on the left screen of
the system console. The display takes the form

SELECT DUMP OPTION

T - TAPE DUMP
P - PRINTER DUMP
CR - NO DUMP=*

Tape Dump

When the tape dump option (T) of DSS is selected, DSS will write the
CPU exchange packages, copies of each PPU memory, and central memory to a
magnetic tape. DSS first requests the specification of the tape unit number
with the display

SELECT UNIT (0-7)
Upon entry of a single digit unit number (0-7), DSS copies the CPU exchange
packages and PPU zero memory from central memory to the dump tape. It then
loads each remaining PPU in turn with a small dump program, activates the
PPU, receives a memory copy from the PPU, writes the memory copy to the dump
tape, and resets the PPU to its dead-start condition. Finally, DSS copies all
of central memory to the dump tape. '

Printer Dump

When the printer dump option is selected, DSS requests'the printer channel
and equipment numbers with the messages

LP CH 0O
LP EQ 00

When these two parameters have been entered, DSS permits the selection of
further dump options with the display

P - DUMP PPU

C - DUMP CENTRAL MEMORY

E - DUMP EXCHANGE PACKAGES

T - TAPE DUMP '

S - LOAD SYSTEM A —~

*CR signifies carriage return

3.2

Entry of the single character key (P, C, E, T, or S) effects the
specified operation. The PPU dump operation requests the PPU number with
the display

PP NO 00
The central memory operation requests the address range with the displays

CM FROM 000000
CM TO 000000

The T entry permits a return to the tape dump option; the S entry, to system
loading.

i

System Loading

When the tape dump operation completes, when the printer dump operation
is terminated with the S selection, or if no dump operation was selected, DSS
continues system loading. Two options may be specified. They are requested
with the display

0 -~ PURDUE MACE
1 - SAVER

Selecting option 0 causes DSS to position the dead-start tape to the
record containing the program PDM; option 1, to SVQ. The next record of the
tape is then loaded to PPU zero memory, and given control,

SAVER - SVQ

The dead-start program SVQ can be used to reconstruct central memory
from a dead-start dump tape (written by DSS) after certain cases of system
failure. The tables thus reconstructed are then processed further by the dead-
start recovery programs. SVQ requests the entry of the dump tape unit number
with the display

SELECT DUMP TAPE

and the dump file number with the display

SELECT FILE SKIP, 0 - 7

Dual MACE Option Selection - PDM

The dead-start program, PDM, permits the selection of a set of basic
system dead-start options for Dual MACE. In the same fashion as DSS and SVQ,
PDM displays a single character option code, and a description of the option
3.3

G

selected by the code. In addition, PDM diéplays the value selected. All
options are selected from pre-defined lists, and selected in step fashion by
repeated entry of the option code. The option display has the format

- '"walue' TYPE-INS .

- DEADSTART TYPE ''value'

CPU 0 IS ''value"

- TAPE UNIT 1S ''value'

- ECS TABLE STATUS IS ''value"
S - CMRDECK ORDINAL 1S "value"
ENTER RIGHT BLANK TO DEADSTART

X 4 OO0
!

TYPE - INS

The selection code is a zero.

The default value is NO.

The one optional value is blanks. When this option is selected the dead-
start program SET is instructed to display the entries of the central memory

resident deck (CMRDECK) syntax definitions, and to accept additions or changes
to them through console keyboard entries.

DEADSTART TYPE

The selection code is D,
The values may be

MINOR (default value)
TAPE
DISK
MAJOR

These four options specify the type of dead-start processing to be performed
by the remaining dead-start programs. A TAPE dead-start is a full load; a
MINOR dead-start is a basic recovery; a MAJOR dead-start is a more elaborate
recovery; and a DISK dead-start is an initial dead-start using a system label
file. See the section on dead-start recovery.

CPU O IS ON or OFF

The selection code is C.

The value may be ON or OFF to reflect the status of CPU zero of a two
CPU system (e.g., the 6500).

3.4

P

T - TAPE UNIT IS (0 -~ 7)

The selection code is T.
The value may be an integer from zero through seven. |t defaults to

the value found in bits zero through two of word three of the dead-start panel
program., This option permits the use of an alternate dead-start tape.

X - ECS TABLE STATUS 1S LOAD, :USE 'OR NONE

The selection code is X.

The value may be LOAD to load the Dual MACE, ECS tables, or USE (default
value) to use previously LOADed ECS tables. In general, the ECS tables are
LOADed when a TAPE dead-start is performed and USEed on all subsequent dead-
starts, A third option, NONE, specifies no ECS table processing.

S - CMRDECK ORDINAL 1S (0 - 3)

The selection code is S.

The value may be an integer from zero through three. It specifies which
central memory resident deck (CMRDECK) of syntax declarations is to be used by
the dead-start program SET. The value defaults to that found in bits six and
seven of dead-start panel word three. Normally it is zero for the 6400 and one
for the 6500.

ENTER RIGHT BLANK TO DEADSTART

When all options have been selected, pressing the right most blank
(unmarked) key on the top row of the console keyboard causes PDM to search the
dead-start tape for the program SET, load it into PPU zero memory, and give
execution control to it.

CENTRAL MEMORY RESIDENT CONSTRUCTION - SET

The dead-start program SET constructs (TAPE or DISK dead-start) or resets
(MAJOR or MINOR dead-start) central memory resident tables. |Its functions are
controlled by the entries made to PDM, by syntax declarations in the CMRDECK,
and by additions or changes to the CMRDECK which may be entered to SET through
the console keyboard (provided that the ''blank'' TYPE INS option was selected via
PDM). The central memory resident section (CMR) of the Dual System is pictured Py
in figure 2. The system symbolic 1ibrary (OPL) contains the text deck, ’
PPCOM, which describes CMR in terms of assembler language (COMPASS) declarations.
PPCOM is listed in appendix A. ' 3.5

Address

0
1-177s

2008-377¢

"*008-

450006 (approximately)
H

Figure 2

Central Memory Resident - CMR

Contents

Zeroes

Control Point zero-pointers, PPU communications
areas, etc. ’
Control Point one

200g-2175 Exchange Area

220g-267s Pointers

2708-377s Control Statement Buffer

Remaining Control Point Areas

System, problem-mode exchange area

Disk Reservation Table Pointers

Dayfile Pointers)

Equipment Status Table (EST)

File Name/Status Table (FNT/FST)

PPU Exchange Areas

Track Reservation Tables (TRT's) for disks
Equipment Reservation Table (ERT)

PPU Program Library Directory (PLD) .
System, CPU Program Library Directory (SLD)
Dayfile Buffers

Inter-Machine Communication Buffers

CPU Monitor Code

‘Installation Area

/0 Stacks

MESA Library Directory (MLD)
Special TRT's

Resident PPU Library (RPL)

User
H Program
" Space
177777 ¢ (6400)
277777 (6500)
All of these areas are described in detail in Chapter 6

3.6

Central memory is preset by the dead-start program SET according to
declarations found in a record of the dead-start tape, called CMRDECK.
These declarations specify table sizes (e.g., the length of the file name/
status table), the number of control points, the number and types of
cquipments with their hardware parameters (connect codes, channels, etc.).
The entries of the CMRDECK may be changed or augmented by console keyboard
type-ins to SET. 1In addition, SET will display a deck containing instructions
. for forming type-ins, if requested, by the entry of the '+' character,

Depending on the dead-start type option (TAPE, MINOR, MAJOR or DISK)
declared to PDM, SET will either clear (zero) or leave intact the table
areas of CMR. In all cases, SET reconstructs the basic pointers of control
point zero.

SET performs additional tasks related to CMR construction. [t determines
central memory size and CPU configuration. It loads and relocates the code
of CPU monitor. Finally, it loads the ECS set-up program, SXC from the dead-
start tape into PPU one, waits for SXC to complete, then loads the dead-
start tape loader program, STL, into PPU one, and gives it control. SET then

returns PPU zero to a dead-start condition (4096 word input to location
zero on channel zero).

Extended Core Storage Set-up - SXC

The dead-start program SXC is responsible for Dual System ECS set-up.
It operates in one of the three modes, NONE, LOAD, or USE, declared to the
program PDM. When the NONE option has been selected, SXC returns immediately
to SET. '

When the LOAD option has been selected, SXC constructs Dual System
pointers in ECS, copies selected tables from CMR to ECS and relocates those
ECS areas local to each machine. The constructed pointers reference a shared
equipment status table (EST), the inter-machine communication area, shared
PPU and CPU program libraries, a shared equipment reservation table (ERT) and
shared track reservation tables (TRT's). SXC loads the EST, the ERT and TRT's
from central memory resident. Under the USE option, SXC reads the Dual
System ECS pointers, verifies their consistency with CMR, and then copies the
EST, ERT and TRT tables to central memory resident. Figure 3 maps the usage
of ECS.

in both modes of processing, SXC performs extensive checks on the
validity and consistency of shared declarations. SXC uses the system console
to display messages indicating the discovery of errors during this process.
When SXC completes, it signals that fact to SET through a central memory
communication cell, and returns PPU one to its original dead-start condition
(4096 word input to location zem on channel one).

The system symbolic library (OPL) contains a common deck, COMSECS, which
describes ECS usage in terms of assembler language (COMPASS) declarations.

3.7

Adress

L - L+M-1

L+M -

L - L+77s
L+100s -

Figure 3

ECS Map

Contents

PPU Program Library

" Inter-machine Space

Pointers

Inter-machine Communication
Buffers

Equipment Reservation Table

Equipment Status Tables

. MESA Library Directory

PPU Library Directory

System CPU Program Library
Directory

Track Reservation Tables

Machine one, PPU edit. space
Machine one, MESA swap space

Machine two, PPU edit space

Machine two, MESA swap space (optional)

3.8

System Tape Loading - STL

When SXC completes, and signals that fact to SET, SET loads the next
record of the dead-start tape into PPU one. That record contains the
system tape loader program, STL. STL not only loads the system program
libraries from the dead-start tape, it also loads the remaining run-time
system executives (PPU monitor, PPU resident, and the dynamic display
driver, DSD), and coordinates the remainder of the dead-start process,
including permanent file, dayfile {log) and recovery processing.

For the performance of all of these tasks, STL loads a number of
special programs from the dead-start tape. In order, these include:

1. Control-ware (micro-program) for the 84k disk
unit controller.

2. Peripheral processor resident (PPR). This is
the run-time interface between PPU programs and
the system,

3. The installation defined program, DSl, is loaded in
PPU two., It performs peérmanent file and dayfile
(1og) processing.

4, If the MINOR, MAJOR, or DISK dead-start options
were declared, the job recovery program, REC, is
loaded in PPU three. |[f the TAPE option was de-
clared the mass storage loader program, MSL, is
loaded in PPU three.

5. The date and time program, DTE, is loaded in PPU
four. DTE accepts the current date and time of
day from the console keyboard, verifies their
correctness, and stores them in CMR.

6. The dynamic display driver program, DSD, is loaded
in PPU nine. DSD provides the run time display and
console entry facilities. [8]

7. Peripheral processor monitor, MTR, is loaded in
PPU zero.

STL transmits the various PPU programs to the processors on the re-
spective data channels to which the PPU's are assigned. The unassigned
PPU's (five, six, seven and eight) are loaded with code for entry to the
idle loop of PPU resident.

STL then loads the first two segments of the PPU program library from
the dead-start tape. The first segment contains PPU programs resident in
central memory (CM), the resident PPU library (RPL). These are programs
whose execution mode or frequency requires the rapid and efficient access
provided by CM residence. The second segment contains programs which can

reside in ECS, if available, but must reside in CM if ECS is not available.

3.9

Some programs of these two libraries are used In subsequent dead-start
operations,

After these two library segments have been loaded, STL activates all
PPU's by de-activating their data channels. The next processing of dead-
start 1s performed by DSI., |If a TAPE dead-start is in progress, STL
starts DSI. |If a MINOR, MAJOR or DISK dead-start is in progress, REC
starts DSI. S

Permanent File and Dayfile Processing - DS|

DS| receives a ''go' signal from STL or REC in its central memory
communication area. DSI| performs two major tasks - the processing of
permanent files and dayfiles (]ogs)

DS! can be directed to recover or initialize the permanent file
sub-system of Dual MACE. Recovery includes accessing each device permanent
file directory, as declared in the CMRDECK entries, verifying its accuracy,
and copying the indicated track reservations to the CMR and ECS track re-
servation tables. When DSI is instructed to initialize permanent file
directories, it records new directory labels; and clears their track re-
servation tables.

Whether recovering or initializing permanent file directories, DSI
also constructs a master permanent file directory in a disk area declared
via a CMRDECK entry. This directory contains all permanent file references
declared in all device directories.

DS1 can also be instructed to recover or initialize the system dayfiles.
These dayfiles include a master dayfile (SYSTMDF) which contains all dayfile
entries; an accounting information dayfile (PDUFILE); an equipment error
dayfile (ERRLOG); and a statistics information dayfile (STATDF). Usually
the master dayfile Is activated only for purposes of performance measurement.

A CMRDECK entry declares the location (disk equipment and first track)
and the recoveryfinitialize status for each dayfile. When recovering a day-
file, DSI spaces to the end of the dayfile, insures that all tracks are re-
served in CMR and ECS, and updates the dayfile position pointers in CMR.

When initializing a dayfile, DSI terminates the file with an initial end-of-
information (EOl) sector, drops all reserved tracks except the first one,
and sets the CMR dayfile pointers to indigate that the dayfile is empty.

Separate dayfiles are recorded oh each of the two, Dual System machines.
CMRDECK entries declare their separate locations. The dayfiles are not
merged until processed for accounting or performance measurement.

When DSI finishes, it updates its communication area status. The next
dead-start activity depends upon the dead-start type - TAPE, or recovery
(MINOR, MAJOR, or DISK).

3.10

TAPE Dead-start - STL

if a TAPE dead-start has been selected, DS! returns control to STL.
STL then activates the mass storage loader, MSL, through central memory
communications pointers. Using these pointers, STL communicates the length
and CM location of each library program to be copied to disk by MSL from
central memory. With this structure, STL can overlap the reading of library
records from the dead-start tape with their copying to disk by buffering them to
CM for disk copying by MSL.

If the ECS tables are being LOADed, or if no ECS tables are in use,
the remainder of dead-start consists of this copy operation. STL copies
the remaining PPU library programs and all CPU programs to CM, and MSL
copies them to disk. STL reserves disk space for the copy, in such a
way that the libraries begin at the end of an area reserved for the system
label on disk equipment zero. The label begins at sector zero of track
zero of disk equipment zero. STL also constructs the directories.

When all programs have been copied from tape to disk, MSL writes the
system label file in the area reserved for it by STL. This label file contains
a copy of central memory resident, beginning with the first file name table
entry and endlng with the last CPU program library directory entry. The
label file is referenced by the first file name table entry, named SYSTEM.
Various portions of the label file are used by the recovery processor, REC,
when a MINOR, MAJOR, or disk dead-start is selected.

Each machine of the Dual System has a separate label file. The label
of the first machine TAPE dead-started begins at sector zero on track zero of
disk equipment zero. .The label of the second machine begins at the next free
track on disk zero. |Its location is recorded in the first machine label by
MSL. ‘

ECS Library Directory Construction - STL

At the end of the program library copy, STL copies the PPU program,
CPU program and MESA program library directories to ECS, provided that the
ECS LOAD mode was selected, and that the system device, disk equipment zero,
has been declared a shared device. These ECS directories can be used by STL
in the dead-start of the second machine of the Dual System to bypass all of the
tape to disk library copy.

Using ECS Library Directories - STL

STL uses these ECS library directories when the TAPE and ECS table USE
options are selected, and when the system device, disk equipment zero is a
shared device. In this case, STL reads the directories from ECS and inserts
their entries in central memory. The CPU program and MESA program directories
are copied directly. Only selective portions of the PPU program directory are
copied - those referencing ECS and disk resident programs.

3.1

MINOR, MAJOR and DISK Dead=start - REC

When a MINOR, MAJOR, or DISK dead-start has been selected, STL activates
the recovery program REC. Using selected portions of the system label file and
central memory, REC recovers library directories, track reservation tables,
file entries, and jobs in execution. The extent of the recovery is specified
by the dead-start type.

A MINOR recovery is the simplest level recovery. It assumes that all of
CMR is intact and includes the recovery of the library directories from the
label file, and the return of executing jobs from their assigned control
points to the Input queue, from which they can restart execution. A MAJOR
recovery, at the next level, includes all the steps of a MINOR recovery. In
addition, no assumptions are made concerning the track reservation tables.
They are reloaded from the system label file, thus resetting them to their
TAPE dead-start condition., Then REC reads all disk files recorded in the file
name table and recovers the track linkages as recorded on the files. This
.includes reading files indexed within files, such as rolled-out jobs, and
recovering permanent file accesses.

A DISK dead-start is the equivalent of a TAPE dead-start, using the system
label file rather than the dead-start tape. In this dead-start, REC copies
the entire label file to central memory, thus restoring it to its TAPE dead-
start condition from the file name table through the CPU program library
directory. All activity since the TAPE dead-start is thus erased.

REC locates the system label file by referencing the first label file
sector written on sector zero of track zero of disk equipment zero. REC
verifies the presence of the label, halting the dead-start if an error is detected.
From the contents of a valid label REC can detect which label is to be used,
and the location, if necessary, of the correct, second label. The label file
and central memory resident are constructed in such a way that REC can use the
dead-start type to calculate an increasingly larger skip address at which to
begin copying the system label file to central memory.

Dead-start Skip
Type Address
DISK none
MAJOR First track reservation table
MINOR PPU library directory

Final Dead-start Activities - STL

When the library loading or recovery processes have been completed, STL
terminates the dead-start process by issuing several dead-start messages to
the system dayfiles, and by activating a number of repetitive PPU programs.

3.12

These include

1{M - inter-machine stack processor
RS - the system, repetitive services processor
1SM - the terminal system status monitor

Each of these programs execute for short, repeated periods, using any
of the available pool PPU's (one through eight). Their recall time is pre-
set, and the recall cycle is controlled by a PPU delay stack mechanism of
CPU monitor.

Special Dead-Start - Checkpoint and Restore

A very special dead-start facility of the Dual MACE System permits the
suspension of system activity in one or both machines and later, full resumption.
In the intervening period, all system hardware, except the system disk devices,
can be used for other processing. In particular production activity can be
suspended (checkpoint) for emergency maintenance or for system development, and
then resumed (restore) at a later time. The removable disk devices (e.g. 84l
and 854 disk packs) and alternate CMRDECKs facilitate hardware usage during
checkpoint.

The actual operations of checkpoint and restore are a blend of system and
dead-start processing. Both functions are performed by the system checkpoint/
restore PPU program, 1CK. 1CK is activated after dead-start via an entry at
the console keyboard.

When called to checkpoint, 1CK suspends all control point activity (rollout
or termination) and copies central memory resident tables and selected ECS
tables to a disk file. Pointers to that disk file are stored as a special
FNT/FST entry in the system label file. '

A checkpointed system restoration is started with a disk dead-start.
This brings the checkpoint file FNT/FST entry into central memory. When 1CK
is activated by the appropriate console entry, it reads the checkpoint file
and restores central memory and ECS from the contents of the file. Provided
that none of the disk devices of the checkpointed system have been disturbed,
system processing can resume without further delay.

Both machines of the Dual MACE System may be checkpointed and restored.
The operations must be performed in the same order both times - i.e., the last
machine checkpointed is the last machine restored. |t is also possible to
checkpoint one machine, provided that the other does not disturb the disk files
of the checkpointed system. Generally, when only one machine is checkpointed,
the other is first emptied of all jobs.

A checkpoint operation can also be automatically initiated by an element of
the Purdue, power-down-sequencer. This hardware system is an emergency,
sequenced, power-off mechanism. Among its operations is the sending of a
special signal to the 6400 and 6500 CPU's. This signal raises a status

bit on the system console channel, The system display driver, DSD, activates
1CK when it senses the signal. 1CK in machine two ignores the signal. 1CK
in machine one performs a checkpoint and then sends an inter-machine function
to machine two which activates 1CK for a properly sequenced checkpoint.

After an appropriate delay for the completlion of the checkpoints, the power-
down-sequencer cuts power to the 6400 and 6500 Cpy's, as well as all
peripheral devices, in the proper order.

System Intra-Communic8tion

After the dead-start has been completed, the PPU monitor (MTR), the’
CPU monitor (CPUMTR) and the PPU resident (PPR) combine to provide system
executive functions. In their combined operation they communicate over a
structured 1/0 path which uses the hardware exchange jump features of the
6000 and a set of standard communication cells,

The communication cells consist of eight words of central memory for each
peripheral processor. The ten sets of eight word areas begin at location 504
and end at location 167g. MTR uses location 50g -through 57g; DSD, words
160g through 1674. , :

Peripheral Processor Resident - PPR

From the viewpoint of the PPU executive routine (PPR) the eight words
consist of an input register (word 0); an output register (word 1); and six
message buffer words (2 through 7). PPR receives task assignments in its input
register, in the form of a PPU program name and associated parameters:

Bits Contents

59-42 Program name

Lo-36 Control Point number

35- 0 Routine dependent parameters

PPR makes requests of the other two system executive processors, MTR and CPUMTR,
through its output register:

Bits Contents

59-57 CPUMTR Flags

56-48 Function Number

k7- 0 Function dependent parameters

The Function Number indicates the specific request (memory request,
equipment release, etc.). The 48 parameter bits in the output register may
be augmented with the 360 bits of the six message buffer words for the trans-
mittal of function dependent data (e.g., character format messages). The
CPUMTR flags are set by CPUMTR to indicate various, non-standard responses to
the function request.

In a standard function request, the first twelve bits of the output register
are cleared by MTR or CPUMTR when the requested operation has been performed.
The output register parameter bits and the message buffer words may be used by
MTR or CPUMTR to return function response information.

4.1

PPR Idle Loop

When a pool PPU (normally PPU's one through eight are called ''pool'' PPU's)
is activated by STL, after the execution of a small preset routine its execution
control passes to a resident location called PPR. A small input register scan
loop begins at that location. |Its basic function is to respond to task
assignments placed in its input register by CPUMTR, which makes the assignment
by simply storing a word of the proper format in the input register cell.

Every 128 microseconds the PPR scan code samples the contents of bits
4L8-59 of its input register. (The sampling rate is a compromise between
response time and memory bus load.) When those bits become non-zero, PPR
begins the processing of a task assignment. This processing involves the use
of other, resident routines, and entries from the set of PP memory cells in the
range (0-778). Since these cells can be directly referenced in a twelve bit
(one word) instruction, they are usually called 'direct cells'.

Direct Cells

The economy of reference of direct cells makes their efficient usage
important to the effectiveness of peripheral processor code. In order to
standardize their usage, the direct cells in each pool PP are structured into
several categories: utility cells; standard variable cells; and constant cells.
Moreover, coding standards have been established for naming the direct cells with
two character names, and a set of names has been reserved for all three classes
of direct cells. '

Direct Cell Constants

There are seven direct cell constant locations. They are set at dead-
start and must never be destroyed by any PPU program.

Location Name Contents

70 ON 1

71 TR 3

72 i HN 100¢

73 ' TH 10004

75 . [A The input register
word address

76 0A The output register
word address

77 MA The message-buffer

word address

L. .2

Direct Cell Variables

There are two sets of direct cell variables: those loaded by PPR when it
begins the processing of an assigned task; others associated with various,
standard tasks (e.g., file processing, mass storage processing). The variables
set by PPR include:

Location Name Contents

50-54 |R-{R+4 Input Register

74 CP* The assigned control
point address

55 . ’ RA The control point RA/100sg

56 FL The control point FL/100s

Mass Storage Variables

When mass storage processing is taking place the following four locations
contain mass storage variables

Locatioh Name Contents
L k T4 The Channel
5 75 The equipment ordinal
6 T6 Current logical track
7 T7 Current logical sector

Other, miscellaneous direct cell assignments will be mentioned in dis-
cussions of their associated tasks.

Program Loading

During the input register scan cycle of PPR, the contents of the input
register word in central memory (CM), located at (lA), is transferred to direct
cells 505 through 54g every 128 microseconds. PPR recognizes a non-zero value
in 50g as a task assignment and uses the program loading facilities of PPR,
including MTR/CPUMTR communication and, possibly, mass storage processing.

Program Names

As mentioned, the PPU program name occupies 18 bits of the input register
word. Thus it consists of three, six-bit display code#** characters. The
characters of the name are selected to indicate the load address, usage, and
accessability of the package.

*Note that all control point addresses must be less than 7601g.
**Display code is the CDC binary to alphanumeric code.

4.3

Programs whose names begin with a character in the range (A,Z) may be
accessed by central and peripheral processor routines. . Programs whose names
begin with a number (0,9) can be accessed only by MTR, CPUMTR, or another ppy
Program. The number indicates the load address characteristics of the routine.
Appendix F lists all PPU programs.

Character Load Address Characteristic
0 Location Free or Zero level - loaded and

executed relative to the contents of
direct cell 155 (LA).

1 Primary level - routine loads at 1100g (PPFW).
2 Secondary level - routine usually loads at 2000s.
3 Tertiary level - routine usually loads at 3000s.
4.5 Miscellaneous overlays.
6 Reserved for mass storage drivers and stack
processor routines which load at 556s.
7 Reserved for error processors which normally

load at 75035.
Not normally used. _
9 Reserved for DSD overlays which may have fixed
or variable load addresses.

Whatever the program name, the process of loading it is basically one of
locating the routine and loading it from its storage medium into its assigned
PPU memory locations. To perform these functions, the PPR input scan loop uses
the subroutine PLL.

The Peripheral Library Loader - PLL

PLL is the subroutine in PPR which locates and loads all PPU programs.
its basic input parameter is the program name, which is passed, left justified,
in the 24 bits of direct cells 135 and 14 (CM+3 and CM+4). An optional parameter,
for location free (Zero-level) programs is the load address which is passed in
direct cell 155 (LA). '

PLL Tocates the residence of a program by searching the peripheral library
directory constructed by STL. For reasons of efficiency, PLL requests that
CPUMTR perform the search, and transmit to PLL the program location.

In the first place, the PLD is located in CM, for common access to all
PPU's. Thus the directory can be accessed more effectively by the CPU.
Secondly, the directory is large, and therefore it is sorted by program
name to make use of a binary search. Finally, PPU programs may reside in CM,
on a mass storage device (disk) or in ECS. ECS routines must be moved to CM
before a PPU can load them.

The PLD entries have the form:

b b

,\\'/

Bits Contents

17-0 The program name
59 If one, the program is in CM and:
bits 18-35 = CM address
bits 36-47 = length in CM words
bits 48-58 = PP load address
(0 if location-free)
54-59 If 00 the program is on the disk and:
bits 18-29 = sector '
30-41 = track
42-53 = load address

54-59 if 0lg, the program is in ECS, and:
bits 18-41 = ECS address
42-53 = ECS word length
(note: the PPU program header in
ECS contains the load address in byte 2 of
word 1),

Searching the PLD

PLL requests a PLD search of CPUMTR by placing a request in its output
register and starting CPUMTR (see the description of the FTN routine for more
detall on this process). PLL passes the program name in parameter bits 6-23
of the output register.

When CPUMTR has recognized the request it performs a binary search of the
sorted directory. The search can have several results:

1. The program name cannot be found in the PLD. In this case, PLL
issues an ABTM function, and returns to PPR., ABTM terminates the
task, thus clearing the input register.

2. The program Is in CM (bit 59 of the PLD entry = 1), CPUMTR
returns the CM address, CM word length and PP load address in the
output register (clearing bits 48-59, of course).

3. The program is on the disk. CPUMTR returns the track, sector and
load address.

‘4, The program is in ECS. |f CPUMTR has CM buffer space, it
transfers the program to CM and returns parameters as in case
(2). |If buffer space is not available, CPUMTR requests a function
repeat. (See the CPUMTR section for more detail on function
repetition.)

The CPUMTR response parameters effect a return to PPR (case 1); a loading
of the program to PP memory (cases 2 and 4) and return to the caller; or a disk
load operation (case 3).

4.5

When the program location is disk, PLL makes use of the disk driver
facilities of PP resident. While these facilities are described in more
detail in another section, it is important to note two constraints: (1)
accessing the disk driver may cause a call to PLL, thus PLL is singly
re-entrant; (2) the disk driver must not require a disk driver to be
loaded from the disk, thus the driver must be CM or ECS resident.

Regardless of these factors, the net effect of disk load equals those
of the CM and ECS load with one important exception: since the package is
transferred in disk sectors of 502g PP words, of which 500g are PP instruc-
tions (the other 2 words are disk control bytes), and since the load is
terminated by a sector containing 473 PP words or less, the last word
address of a PPU program transferred from MS cannot exceed 77655 (124 x
500s + 473 + 1073g- - 1).* After completing the load, PLL returns to the
caller with the package load address in LA.

PP Task Ihitiation

If the call to PLL from PPR to load a program is successful, PLL
updates the direct cell variables CP, RA and FL, and enters the package
at (LA) + 5. The cell CP is set to 200g times the control point number in
the input register word. RA and FL are set via a call on the resident
routine PRL (see the description of PRL), which sets those two cells by
reading the control point status word.

Once the program gains control it may make use of any or all of the
routines already mentioned - PLL, FTN, PRL, the disk driver, as well as
several other useful routines. When the package has completed its task, it
notifies CPUMTR via a function call to FTN and returns to PPR.

Occasionally a program will pass control directly to a different program
in the same PPU. It does so by writing a new input register value and trans-
ferring control to PPR, where the PPU load operation can resume. This method
of calling a package is effective in that it shortens system overhead and permits
the passage of many parameters in the direct cells which are not disturbed by the
loading process (only cells 0-17g, CP, RA, FL and IR-IR+k are disturbed). How-
ever, it does bypass CPUMTR control and should not be used to call packages
which are to be regulated by CPUMTR, such as job scheduler, job advancement,
etc. (See PPU Control.)

PPR Routines

There are eight- resident routines in PPR which may be used by PP packages:
FTN, PRL, RCH, DCH, DFM, EXR, PLL and SMS. |In addition there are three routines
of constant address available for access in whichever disk driver might be in
use: POS, WDS, RDS. Entry to all routines is effected via the PPU, RJM in-
struction. ;

*1073s is the normal PPU program load address.

4.6

Function Request - FTN

The most commonly used routine.in PPR is FTN, the routine by which
function requests are transmitted to MTR and CPUMTR. The applicable
parameters are passed in direct cells 11g-1hg (CM+1 - CM+h4); the function
number in the PPU A register. Additional parameters may be passed through
the CM locations of the PPU message buffer ((MA) - (MA) + 5). Function names
and codes are listed in appendices A,B, and C.

FTN completes the output register word in (CM - CM+4) by storing A
in CM, and then transfers the word to the central memory communication area
of the PPU. If the function requested is for MTR processing, FTN samples
the output register word every 128 micro-seconds, and returns to the caller
when bits 48-59 become zero. Note, then, that a function number equal to zero
is a null operation. '

If the function is to be processed by CPUMTR, FTN sets BO of the PPU's
own exchange area (whose address is pre-set at dead-start) non-zero and ex-
changes a CPU via an MXN instruction until B0 becomes zero.

FTN then waits for bits 48-59 of the output register to clear. Occa-
sionally, CPUMTR instead of clearing the bits, will set a repeat request in
bit 2°%, The scan code senses this request, uses bit 2°7 as a CPU number, resets
the output register word, repeats the MXN, and resumes the output register scan.

The FTN routine makes use of the constant cell, ON, and by virtue of the
hardware operation of the CRM instruction, destroys the direct cell 0 (T0).
When FTN exits, the A register is zero, 10 (CM) is zero, and 11g-14g (CM+1 - CM+h)
contain the MTR or CPUMTR reply values.

Pause for Relocation - PRL

The PRL routine of PPR is a storage move wait interface for the periph-
al processor. Any program which enters this routine must be prepared to
wait an indefinite length of time for a possible central memory storage move,
As such, then, it is poor practice for a program to enter PRL with some sys-
tem resource reserved (e.g. a channel, or equipment).

PRL uses the direct cells CM-CM+4, At exit they contain the status
word (STSW) of the control point to which the PPU is assigned. The direct
cells RA and FL are updated and the A register is set to RA.

PRL first reads the control point status word to CM-CM+4. This word

contains a move-storage bit (bit 34). |If this bit is clear, PRL sets FL
and RA and returns.

L.7

If the move bit is set, PRL issues a PRLM function, via FTN. This
function notifies PPU monitor that the PPU can accept a storage move.
When FTN returns, the move is complete. PRL re~reads STSW and re-checks
the move bit, looping through the PRLM-read cycle until the move bit
clears. v

Reserve Channel - RCH

RCH reserves a system channel by issuing an RCHM function request
via FTN. On entry the A register must contain the channel number, which
is stored in CM+1 before entry to FTN.

Drop Channel - DCH

DCH releases a reserved channei by issuing a DCHM function request
via FTN. On entry the channel number must be in the A register, and it
is stored in CM+1 before entry to FTN.

Some dual interface disk drivers may modify code in PPU resident to
link the DCH subroutine to themselves in order to release a unit reserva-
tion. The DCH subroutine is restored after the unit has been released.

It is then importang that any routine which uses the disk drivers drop the
channel reservation through DCH.

Issue Dayfile Message - DFM

The DFM routine of PPR is used for the transmittal of messages to the
system, job or special dayfiles. The PPU can, of course, transfer mes-
sages directly to the control point console lines (MSIW and MS2W) without
monitor assistance with the central write, PPU instructions.

On entry to DFM, bits 0-11 of the A register must contain the ad-
dress of the message characters in PPU memory, and bits 12-17 must con-
tain the message routing code for CPUMTR. DFM stores the routing code in
CM+1, and uses the message address to transfer the message to the PPY-CM
message buffer to a limit of four words or to a zero byte terminator, which-
ever comes first,

If the first word of the message is zero, it signifies an indirect

message. In that case, the PPU must have already stored the message in
central memory.

4.8

The address supplied to DFM references a CM control word (five PPU words)
of the form:

59-48 Zero
47-30 CM message address
29- 0 Unused

DFM merely transmits the control word to its message buffer. Then DFM
calls the PPR subroutine DFD.

DFD is responsible for issuing the DFMM function to CPUMIR via the
FTN routine, and for processing the CPUMTR response. Normally, CPUMTR
will return a '""message processed' response, in which case DFD returns to
DFM, and DFM exits if the message has been fully processed or re-cycles
for messages longer than four words.

I

However, when CPUMTR senses that the CM dayfile buffer being refer-
enced is full, it returns a '"dump-buffer'' response. When DFD recognizes
this response, it transfers a portion of the PPU to CM (the length and
CM address are specified in the response), and executes the program 1DD,
via the routine EXR,

The program 1DD transfers the dayfile buffer from CM to the disk file
containing previous entries for the dayfile. When 1DD has completed, it
restores the dumped PPU memory, in which it executes, from the CM dump
area, and returns to DFD. DFD then exits to DFM, and DFM returns to its
caller,

Note that the dump process, while it involves dumping PPU memory,
loading 1DD, and re-loading PPU memory, is essentially transparent to the
DFM caller. The main caution to the DFM user is the same one that applies
to the PRL caller - calls should not be made when system resources are
reserved.

Whatever the final DFM path, the direct cells 70, T1, T2 and CM -

CM+4 are destroyed.. All other direct cells are preserved, even when a
1DD operation occurs. '

Execute Routine - EXR

The routine, EXR, which is used by DFD to execute 1DD, is a general
purpose, routine execution interface in PPR. The user sets the A register
to the three character program name, sets LA if the routine is location
free, and executes EXR.

EXR loads the routine via PLL, and passes control to the loaded routine,

By transferring its exit address to the exit instruction of the loaded

routine, EXR also makes it possible for the loaded routine to use EXR itself.

4.9

Peripheral Library Loader - PLL

PLL has already been described in the section dealing with the initial
loading of a PP task from the PPR idle loop. As has been noted, PLL is also
used by EXR, and may also be used by routines which wish to load another
program and execute it repeatedly.

Set-up Mass Storage Driver - SMS

SMS is the disk driver preparation interface of PPR. It uses the
standard set of disk direct cells, T4 and T5, already described, in loading
the driver.

On entry, only T5 need be set (to the equipment ordinal). From the
equipment status table (EST) entry for that ordinal, SMS determines the driver
type. It then checks the current resident driver identification at location
MSD against the requested driver. |f the two match, SMS sets T4 to the channel
to which the equipment is connected, executes the driver preset routine, and
returns to the caller.

If the required driver is not resident, SMS forms the driver program
name by prefacing the EST equipment type with a 6, and executes PLL to load
the driver. Note again: the driver cannot be disk resident, otherwise the
conflicting situation will occur in which one dISk driver may be needed to load
a different one to the same locations.

When PLL returns to SMS, the driver identification is re-matched with EST

entry for the equipment, T4 is set to the channel, SMS executes the driver channel
preset routine, and returns to the caller. '

Mass Storage Processing

Once the proper driver has been loaded in the disk driver area (cells 5564
through 1071g) of PPR, a PPU program can reference four disk driver labels for
disk file processing. The cells SLM and SLM+1 contain the sector limits for the
inner and outer zones of the device {(only the 6603 has differing limits for inner/
outer zones). The three labels, P0S, WDS, and RDS are RJM entry points for
positioning, writing, and reading a sector of a disk file. Entry to all three
labels presumes that the channel referenced in T4 has been reserved (by a call
to RCH, or a positive response, CCHM call to FTN).

Positioning - POS

After the disc channel is reserved the positioner of the device must be
moved to the proper spot. While on some devices (821, 844 or 854) the act of
positioning is simultaneous with reading/writing, on others (808) it is a

separate operation. Thus, for uniformity and device independence, all disk file
processors use POS at the beginning of file processing, and every time the track
number (in T6é) changes.

Write Sector - WDS

The entry WDS is used for writing a single sector on a disk device at log-
ical track T6, logical sector T7. The sector buffer address in PPU memory is
supplied in the A register.

Read Sector - RDS

The entry RDS is used for reading a single sector from a disk device at
logical track Té, logical sector T7. The buffer address in PPU memory is sup-
plied in the A register.

Error Processing

Whenever an error is detected during the transfer of a sector to or from
a disk device, the driver makes use of a 7-level error overliay to process the
results of the error condition. Depending on the equipment, one or more 7-level
overlays may be required to process the error. For some devices (the 821 or the
84L) a 7-level overlay may also be required to preset the driver channel instruc-
tions, '

Normally, for the first three errors the erfor processing overlay issues
an error message to console line 2 of the control point and to the error log
dayfile (via DFM) and returns to the driver. When the fourth error occurs, the
error overlay will set the equipment error bit (bit 12 ° of word 26g (SNSW) of
the control point) and will wait operator action. :

If the operator types ''GO', the error overlay will return to the driver,
instructing it to issue the error message to the job dayfile (again via DFM).
If the operator types ''DROP'" the error overlay will issue a DPPM function via
FTN and return to the PPR idle loop. No message will be issued if the original
calling program is 1DD, in order to avoid dayfile lock-up.

The preceding discussion should make it clear that the usage conditions
af DFM, PRL, etc. apply to disk processing. In fact, they apply to all pro-
cessing as a general rule: reserve only the resources needed for as short a
time as possible, and avoid parallel resource requests (including calls to
PPR resident routines.)

Addressing

While the direct cells Th through T7 provide the primary addressing
control of disk file processing, two PP data words (bytes) in the disk
sector itself provide the secondary level of file address linkage.

The first byte of the sector (control byte one, or CB1) contains the
normal, forward file linkage address. Usually, this is simply the number
of the next sector in the file. When the next sector is in a new track,
bit 11 of CB1 will be set and bits 0-10 will be the track address (the
sector number is zero). Thus CBl is normally non-zero.

The second byte of the sector, CB2, is the length of the sector in CM
words. Normaliy it is 100g for a full sector of 100g CM words (5005 PP words).
If it is less than 100g it indicates an end-of-record (EOR) condition. When
both CB2 and CBl are zero, they signal an end-of-information (EOI) condition.

While CBl is normally non-zero it may be set zero to indicate an end-of-
file (EOF) condition. In that case, CB2 must be non-zero, containing the for-
ward file linkage normally found in CBI.

Thus, when a PP package is using the disk driver to read a file, it uses
the CBl and CB2 contents to update the contents of T6 and T7 as the file is
processed. Some general rules are:

1. If CBl = CB2 = 0 there are no more sectors in the file (EOQI)

2, CB2 < 100g signals EOR.

3 If CB1 is non-zero and less than 4000g, it is the next sector address
to be stored in T7. |If CBl is greater than 40003, then it is the next
track to be stored in T6; T7 is to be set to zero; and POS must be
entered before reading the next sector.

b, If CBI is zero, (EOF), CB2 is to be used in place of CBl! in rule 3,

' above.

Inter-machine Disk Conflicts

Several of the system disks (808, 821, 844) can be accessed by both ma-
chines. The reservation conflicts are resolved by routines of the drivers them-
selves, and, as has been mentioned, a unit reservation may be released through
special linkages between the drop-channel subroutine (DCH) and the disk driver.

The contention logic of each dual-interface disk driver is essentially the
same. The driver attempts to connect and reserve the unit for a moderate dura-
tion, usually less than a hundred milliseconds. |If the unit cannot be reserved
within that itme, the driver executes a 7-level overlay. That overlay persists
until the unit is reserved, dropping the channel (DCH), pausing for relocation
(PRL) and sending unit reservation delay messages at appropriate intervals. The
messages take the form

.

"xxyy RESERVED.'

where xx = equfpment type code

equipment number

YY

The dual inter-face types are:

DB = 808 (6638)

DG/RD = 854 pack ¥ |
DH = 821 fﬂ
DJ = 84k pack é

The Peripheral Processor Monitor - MTR

A second system executive processor loaded at dead-start is PPU monitor
(MTR). MTR is loaded in PPU-zero and remains there for the entire duration of
system execution. Its title of monitor is particularly appropriate, since, in
comparison to CPUMTR, its main task is to continually review the status of the
system, and Issue a appropriate stimuli to CPUMTR, where necessary.

In addition to this monitoring activity, MTR, also processes a small num-
ber of PP output register function requests, which, in general require long-term
processing. These include storage control (2 functions), system step control
(2 functions), a time/date function, and an inter-machine communication function.

Function Processing

In @ main scan loop, MTR reads each of the PP output registers in turn,
looking for MTR type functions and CPUMTR step-mode status. When an MTR func-

tion is recognized, the appropriate resident processor is invoked. MTR function
codes are listed in Appendix B.

Step Control

Step control is an important system debugging aid. When it is set, the
system is said to be ''stepped', and each pool PPU function request, either to
CPUMTR or MTR is delayed or stepped until specifically advanced by a keyboard,
space-bar entry. Thus the testing of a system PPU routine can be advanced from

one function request to the next, while the effect of its operation is monitored
in central memory.

4.3

When a CPUMTR stepped function Is recognized, MTR attempts to advance
the processing of the functlion, subject to the step advance control provided
by DSD. (Note: a CPUMTR, stepped function Is signified by a value of 1 in
bit 59 of the PPU output register word.)

Both step advance and step set are invoked through DSD commands, and by
MTR functions (STPM, SMSM). When step mode is set, MTR sets control point
zero word 44g (MSCL) non-zero to signal the step to CPUMTR, CPUMTR. in turn.
recognizes the step mode in this word, and sets the step mode, output register
bit in response to function requests from processors halted by the step mode.
A step advance function from DSD, stimulated by a space-bar entry from the
console, causes MTR to locate a processor eligible for advance, set the pro-
cessor address in MSCL, and re-start the processor via an MXN instruction at
the proper PP exchange address. CPUMTR then responds by processing the func-
tion, and clearing the processor address in MSCL.

When MTR recognizes a stepped CPUMTR function, and step mode is not set,

it uses the same process to advance the stepped processor (e.g., after the
system has been unstepped).

Storage Control

Two MTR functions are reserved for storage control: RSTM, request stor-
age; and PRLM, pause for relocation. Both are issued via the PPR routine, FTN.

When a PPU issues a request for storage, three conditions can exist:

1. The storage is not available and MTR issues a response to that effect.

2. The storage is available and ready for use. MTR assigns it and issues
a response to that effect.

3. The storage is available, but must be re-grouped or relocated.

In both cases two and three, MTR makes calls to CPUMTR to change the contents
of the memory control cells of the control point, (RA and FL in STSW, RA and FL
in the exchange package). In addition, case three requires MTR to calculate and
execute a storage move.

A storage move can be a fairly long-term operation, depending upon the amount
of storage that must be grouped to satisfy the request, and the extent to which
it is scattered between control points. From a table MTR can determine the inter
control point free space amounts, which, in case two provide sufficient data to
satisfy the storage request.

When MTR has located the required storage, it begins relocating the memory
of each affected control point, one control point at a time. The process steps
are: :

TN

-—
.

Set the control point move flag in STSW (via a CPUMTR function call}).
2. Wait for all processors assigned to the control point to issue a PRLM
: function via a call to PRL.

3. Issue the move storage function request to CPUMTR.

L, Update the FL and RA for the moved control point and clear the move
flag (again, via a CPUMTR call).

At the end of this four step cycle, MTR clears the output registers of the
PPU's which were held on the PRLM function in PRL (PRL updates RA and FL and
exits) and advances to the next control point to be moved. Eventually when the
entire move is complete, MTR will signal that fact to the original, requesting
PPU in an output register response. Note that the requesting PPU must update
the RA and FL direct cells via a separate call to PRL.

System Monitoring

In addition to the function processing, MTR maintains a number of other
periodic activities. These include the following: |
Checking Absolute Address Zero j
Central Processor Monitoring ? !
PPU Delay Stack Monitoring l :
Control Point Monitoring i
Central Memory Testing ; } i ‘
CPU Program Timer interrupt Control ! j
1/0 Stack Monitoring ? Lo
Inter-machine Function Transfer i
Top-line Error Stop Monitoring
Clock and Date Control

QW O~ OV W N —

—

Checking Absolute Address Zero

A large number of processes, including the operation of the CPU exit mode
hardware, depend on the fact that the cell at CM address zero (often called
absolute address zero or AAZ) contains zero. To prevent rapid system degen-
eration when a processor erroneously writes a non-zero value in AAZ, MTR fre-~
quently checks AAZ.

When MTR detects a non-zero AAZ, it clears AAZ, steps the system (by set-
ting MSCL), puts '"ERR ZRO" in the topline message word (TLML), writes the non-
zero AAZ in word 57, and clears word 56. As long as byte 4 of word 56 is zero,
the system is effectively stopped. When byte 4 of 56 becomes non-zero, MTR un-
steps the system and permits system activity to resume.

Central Processor Monitoring

MTR monitors the status of the CPU's to provide several important system
control operations: = (1) CPU switching; (2) processor time and status control,
and (3) exit mode control.

The switching of a CPU from job to job is essentially the task of CPUMTR.
MTR assists by clocking the interval of usage, and depending on the setting of
the CPU slice time value in CSTI, stimulating CPUMTR to perform the switch (and,
incidentally, an elapsed time check). Moreover, when two CPU's are available,
a CPU, processing in CPUMTR, which detects the need to switch the alternate CPU,
must request that the switching be stimulated by an external processor (in this
case, MTR).

MTR also maintains a check of processor status. This includes a check for
a zero P register (a sign of an error exit), non-zero values in bits 48-59 of
RA+1 of the memory associated with the control point to which the CPU is assign-
ed (an indication of a CPU call for PPU assistance, for example), and CPU recall
request statuses (RCL and CCR calls).

PPU Delay Stack Monitoring

An important and powerful processing option available to PPU programs is the
ability of the routine to relinquish the assigned processor, and resume processing
after a fixed time interval (as specified by the PPU program) has elapsed. This
process is called ''delayed recall' and is effected by the maintenance of a delay
stack by CPUMTR. Theé delay stack contains the recall, input register (program
name, control point number, and parameters) and the time of recall.

Each time CPUMTR accesses the delay stack it determines the most proximate
recall time and stores the value in word 43 of control point zero (PRTL). MTR
checks the value in this word against the real time clock, and whenever the re-
call time is reached, stimulates CPUMTR to examine the delay stack, to assign
the recalled task to a processor, and to update PRTL accordingly.

Control Point Monitbr[gg

MTR maintains a check on the status of all control points to which active
jobs are assigned. In particular, MTR stimulates CPU recall and job advance-
ment. CPU recall is stimulated on the fixed clock cyclie determined by the CPU
slice time (CSTI), or on the basis of parameters associated with the recall
function (CCR or RCL) located in word RA+l of the memory assigned to the control
point.

MTR stimulates job advancement in cooperation with CPUMTR. stuaIly, the
events which lead to job advancement stimulate CPUMTR directly. In some cases,
however, CPUMTR may be unable to advance the job at the time of stimulus - e.q.
a PPU is required and none are available, or a rollout is requested and some
processor is active. Thus MTR assists CPUMTR in job advancement by re-issuing
the advancement until it can be effected.

Central Memory Testing

Once every 500 milliseconds, MTR attempts to test a section of memory
A section is a group of 1000005 central memory words. CPU monitor checks section
zero (0 through 77777s). In the 6500, MTR tests section one (100000g through
1777776) on one 500 millisecond cycle, and section two (200000g through 277777s)
on another. In the 6400, only section one is tested.

The test is performed only if MTR can locate unused memory in the section.
Since both the 6400 and 6500 memories are interleaved, only eight words need be
tested. Since memory is allocated in 100g word groups, only one group need be
available for testing.

The memory test consists of the writing, reading and comparing of three
values, eight words at a time. The values are all zeroes, all ones, and alter-
nating ones and zeroes (5252 5252 5252 5252 52525). |If a comparison fails, MTR
steps the system, places the message ''-ERR MEM s'' (s = section number) in CM
word TLML, and the failing CM address in CM word 555. ‘

CPU Program Timer Interrupt Control

CPU programs may request time interval interrupts by making appropriate
function calls to the PPU program CPM (control point manager). The call re-
sults in the storing of an interrupt time in word TICW (47s) of the CPU pro-
gram control point area. The word is adjusted appropriately to compensate
for the time during which the program may be rolled out,

MTR scans the timer interrupt words of active control points. When it
detects a control point whose interrupt time has arrived, it sends a function
request to CPUMTR indicating that fact. CPUMTR performs all of the
additional tasks necessary to perform the interrupt, in particular the switch-
ing of CPU control to the interrupt address defined by the CPU program.

1/0 Stack Monitoring

Several 1/0 stack processors are used in the Dual System, in particular
to control the activities of multiple 1/0 devices on single channels. These
include processing for the CDC 604 tape units and the terminal system (PROCSY)
front-end buffer machines. These processors are controlled by 1/0 stacks loc-
ated in central memory resident. Each control point is assigned a stack.

Occasionally a stack processor suspends an operation which it cannot com-
plete immediately (e.g. the unloading of a tape which is being rewound) in
order to continue with another operation. MTR scans the 1/0 stacks for such
suspended operations, and periodically activates the stack processor for the
completion of the operation.

Inter-machine Function Transfer

Function requests are transferred between machines of the Dual System
using ECS and CM buffers. Once a second, MTR activates CPUMTR for the
transfer of new requests and replies to ECS, and the reading of replies and
requests from ECS.

Top-line Error Stops

A single central memory word in control point zero, TLML, (location 153)
is used for storage of critical system message information. MTR scans bits
48-59 of this word for the display code characters ''"*E''. When MTR locates this
value, it steps the system, and changes bits 54-59 of word TLML to a ''-'"" (minus
sign). Thus a PPU program which detects a system error condition can signal
the system operator, step the system, and receive a reply that the system is

-stepped, by appropriate use of TLML. When the system is unstepped, MTR clears

(zeroes) TLML.

Clock and Date Control

MTR maintains two clocks - real time or millisecond and time-of-day. It
also maintains the system date. An MTR function is available (ADTM) for alter-
ing the time-of~day and date values, as well as a bias value on the real time
clock, which, when added to the real time clock, gives the time from midnight
in milliseconds. :

MTR derives all clocking from a hardware channel clock (channel 1l4g) which
has a period of 4.096 milliseconds. Thus MTR routines are coded in such a way
that no process prevents MTR from sampling the clock channel within 4.096 mil-
liseconds. The channel clock is used to maintain a real-time or millisecond
clock, which MTR stores in CM word RTCL (170g). The clock value is multiplied
by four (left shifted two places) in order to enable some PPU programs to use

4.18

bits 12-23 (word position three or byte three of five PPU words) as a second
clock - milliseconds divided by 1,024,

Once every one thousand milliseconds MTR advances a twenty four hour time
of day clock, stored in CM at control paint zero ward TIML (30g). It has the
display code form

hh.mm.ss.

where hh = hours
mm = minutes
ss = seconds

The date is maintained in similar fashion, and is stored in CM control point
zero word DTEL (31g) in the form

mm/dd/yy.

where mm = month number
dd = day
yy = year

Central Processor Monitor - CPUMTR

A third element of the system executive which is Joaded at deadstart is
CPUMTR. Since CPUMTR is stored in relocatable CPl code on the dead-start tape,
it can be stored in any area of central memory resident through the relocation
facilities of SET.

After SET has relocated and loaded CPUMTR, has halted the CPU's and
determined their configuration, it starts all CPU's through a preset routine
of CPUMTR., This preset routine, which overlays the PPU dump area used for 1DD
dayfile dump, establishes the various constants used by CPUMTR, and presets the
exchange areas used by the PPU's to reference CPUMTR facilities.

CPUMTR Access

All access to CPUMTR is based upon the use of the exchange instruction,
and thus, of course, exchange areas. Since access calls to CPUMTR come from
both the PPU's and from CPU's processing user jobs at control points, for con-
venience and flexibility each source of access has a separate exchange area
reserved for it. Thus there are ten PPU exchange areas, an exchange area in
each user control point, and a special exchange area for system usage.

4,19

TN

PPU Access

When a PPU routine issues a function request which requires CPUMTR
action, (appendix C) the FTN subroutine accesses CPUMTR via a monitor exchange
instruction (MXN) addressed to the exchange area reserved for the PPU and
designated for a particular CPU. Several aspects of the MXN instruction and the
exchange operation in general play an important role in regulating the access
to CPUMTR. '

In the first place, the exchange operation effects a complete swap of the 16
words in the exchange area with the operating registers of the CPU. That is, the
registers of the CPU are stored in the exchange area and loaded with the contents
of the area, before the registers are stored, without destroying either set
of information.

Secondly, the MXN instruction is part of @ 6000 hardware option called
""monitor mode''. In this option the MXN instruction and a corresponding CPU in-
struction, the XJ, are added to the existing exchange logic, together with a
monitor mode flip-flop for each CPU., The MXN sets the monitor mode flip-flop.
The XJ clears it, when set, and sets it, when clear. When the monitor mode flip-
flop in either CPU is set, an MXN instruction has no effect.

In particular, once the FTN routine has set BO in the exchange area non-
zero, and has issued an MXN, it can detect the hardware response to the MXN by
checking BO. If BO is still non-zero then the exchange did not take place (of
course, the non-zero BO set by FTN is ignored by the exchange hardware). —

When FTN sets BO non-zero it also must set the P register (the location at
which the execution of CPUMTR will begin) and AO. The P value is set in the
exchange area by the CPUMTR preset routine and stored in PPU memory by the
preset routine of PPR. A0 is set at each.exchange to the CPU number being de-
signated by the MXN instruction.

Other registers are set by CPUMTR breset, and are preserved for the
duration of execution. These include:

RA =0

Fi. = The machine FL

RAX = 0 :

FLX = The machine FLX (bit 23 = 1 for flag .register access)
Bl = The PP output register address

B7 = 1

CPU Access
A central processor program can also access the facilities of CPUMTR. Again,
the operation involves:the exchange operation and the monitor mode option. In

the case of the CPU however, the XJ instruction is the stimulus.

When the XJ instruction is issued by a CPU, the exchange area targeted de-

4L.20

pends. on the setting of the monitor mode flip-flop. The CPU number is, of
course, determined by the processor in which the instruction is executed.

If the monitor mode flip-flop is set, the exchange area address will be
determined by the effective address calculated from the B and K portions of
the instruction. J

This is the normal case for exits from a PPU function call, and the
effective address is the PPU exchange area. The result of the exit is to
return the CPU to the processing which the MXN operation interrupted. |If,
however, the monitor mode flip-flop is clear when the XJ instruction is issued,
(the case for a control point problem access request), then the exchange area
address is taken from a special register in the exchange package, called MA
(the monitor address register). An XJ issued by a CPU whose monitor mode
flip-flop is clear obeys the following rules:

1. The exchange area address is taken from MA,

2. When the exchange completes the monitor mode flip-flop
will be set.

3. The exchange is delayed until the monitor mode fllp flop
of the alternate CPU is clear.

Because of the influence of the MA register on an XJ exchange operation,
its assignment, and the contents of the 16 word area to which it points are
critical to the proper processing of the XJ instruction issued when the
monitor mode flip-flop is clear. (Often the state of the CPU with the monitor
mode flip-flop clear is called ''problem mode''; when set, ''monitor mode''.)

Both the MA value and the exchange area are established by CPUMTR

whenever it assigns a CPU to a control point, or to a system, ''problem mode'

task. The basic assumption is that such an assignment is always made by a
CPU, processing CPUMTR code in monitor mode. Thus some PPU issued an MXN which
triggered the process.

The MA of a control point to which CPUMTR is assigning the CPU is always
set to the address of the exchange area in the control point area (in fact, the
first word of the control point area). CPUMTR starts the CPU for the control
point by issuing an XJ instruction whose effective address is the exchange area
of the control point. The net effects of this operation are:

1. The registers of CPUMTR are swapped with those of the control point.

2, The CPU leaves monitor mode and enters problem mode.

3. The MA register in the running, problem mode CPU contains the control
point exchange area address.

Consider, now, the effect of an XJ issued by the problem mode process. Since the
CPU is in problem mode, the exchange address is taken from MA. Thus the problem
mode registers are stored in the control point exchange area, the CPUMTR
registers are placed in the CPU, and CPUMTR processing resumes, in monitor mode,
with the instruction following the XJ instruction with which CPUMTR previously

4. 21

assigned the CPU to the control point. (This is true, since the P register
stored in the exchange area represents the P register after the RNI cycle
which is part of the processing of the 60 bit, XJ instruction.)

With control returned to CPUMTR, and the problem mode exchange package safe-
ly stored in the control point area, CPUMTR can process the XJ access request
and return to the caller with a single XJ, and can, optionally, choose to
assign the CPU to another problem mode control point.

The function request itself is fully described in the 60 bits of the
XJ instruction. In fact, since only the 9 bit, XJ operation code is used for
a problem mode XJ, there are 51 bits available for passing parameters.

CPUMTR locates the XJ instruction at (P-1) of the control point exchange
package area. The bits of this instruction word have the following assign~-
ment:

Bits Contents

59-5] 013 (the XJ operation ‘code)
50"148 Bg

47-30 Ko

29-21 Function Code (appendix D)
20-18 B;

17- 0 ° Ki

The parameters (B;)+K; form one 18 bit parameter, called Parameter 1;
(B2)+K, form Parameter 2. The function code (Appendix D) serves the same pur-
pose as the PPU function code: it defines the access request.

PPU Function Processing

When a PPU issues an MXN via the routine FTN accessing CPUMTR, the P reg-
ister stored in the exchange area directs the CPU to the special entry point of
CPUMTR, labelled MXN. This entry point pre-processes all function calls. In
effect, this involves the following steps:

1. Checking the status of the CPU which was interrupted (on/off);

2 Checking step mode status;

3. Isolating the function code (from the output register word) and the
control point assignment (from the input register word) of the call-
er, and entering the processor. :

4, Entering statistics measurement data, if that mode is enabled.

4.22

CPU Availability

The FTN routine of PPR targets the MXN to a particular CPU and exchange
area. When PPR executes its preset routine at dead-start, the CPU target is
set to the first available CPU, or CPU 0 if neither is available. FTN con-
tinues to use that CPU, subject to the status check at each MXN entry time;
and miscellaneous repeat requests issued by specific function processors.

The status check made at MXN entry time is simple: if the CPU in use is
logically ''on'', processing can continue; if '"off", the output register, CPUMTR
flags are set to request a repeat on the alternate CPU. Thus a CPU can be
turned "'off'"' and the FTN routine of each PPR will automatically switch to the
alternate CPU. Note that for the above reasons, CPUMTR will not permit both
CPU's to be '"off'" at the same time.

Checking Step Mode

The process of stepping CPUMTR, or permitting the processing of functions
only by an entry of the console keyboard space bar, is controlled by the CM
word, MSCL. If the contents of MSCL are zero, no step mode is set, and MXN
processing can continue. If they are non-zero, they have the following signifi-
cance:

Bits Contents

59-142 The control point in step (0=all)
L1-24 The function in step (0=all)
23-18 Non-zero

17- 0 - The PP address being advanced

Step mode processing follows the rules:

—
.

Neither MTR nor DSD functions can ever be stepped.
2. If the PP address in MSCL matches the address in Bl, bits
0-17 of MSCL are cleared and MXN processing continues.
3. If all functions and all control points are stepped, the
CPUMTR flag in the output register (bit 2°%) is set and
CPUMTR exits from MXN. '
L, If the PP is not assigned to the stepped control point, and/or
not requesting the stepped function process, MXN processing
continues, otherwise the step flag is set as in (3), above.

4.23

Function Processing

The function number in the PPU output register selects the processor to be
invoked. Currently, bits 48-53 constitute the function number, thus permitting
63 functions (0 is not meaningful).

The control point address of the caller's assignment is selected from bits
36-40 of the input register. MXN enters the proper processor through a jump to
a function jump vector, indexed by the function number. At entry time the follow-
ing register contents are meaningful:

Register Contents

A0 » CPU Number

B1 PP output register address

B2 0

B3 Control Point Area address

B5 The function number

B7 [

X0 The function number

X1 The output register, left shifted
circularly 12 bits

X2 A 12 bit mask, left justified

X3 : A L2 bit mask, left justified

Xy A 48 bit mask, left justified -

Processor Exits

Whatever the specific actions of a function processor may be, there are

only five basic paths through which it may exit. All but one of them (the
CPU switching exit) eventually result in the execution of an XJ instruction to

switch the CPU from monitor mode back to the interrupted problem mode process.

The No Operation Exit

The NOP exit is used to process those function requests for which no
processor is defined. It simply consists of the calculation of the PPU ex-
change address, and an exit to the return exchange instruction of MXN.

The exchange address is calculated by the formula

Xa = 2 % Pa + Xk
where
Xa = exchange address —
P, = PP output register address (B1) ,
Xk = The address of the exchange area for PPU-0

minus 2 * PPU-0 output register address.
L. 24

Note that this calculation presumes that the PPU exchange areas are
contiguous, and arranged in ascending order of processor number.

The Normal Exit

In the normal case, the function processor performs a simple task,
forms a response, and returns control to the interrupted problem mode task.
This normal exit routine is used for such processing.

At entry (X6) must be the output register reply. Typically bits 48-59
will be zero, but this exit can be used to transmit other replies, as in the
wait and repeat exit cases. The contents of X6 are stored in the output
register word, the exchange address is calculated by the standard formula
already stated, and the return XJ instruction is issued.

If the statistics mode is enabled, the statistics sampling routine is
also executed. Using data stored at entry time this routine provides a
summary of the access request.

Note that the following register contents will appear in the PPU exchange
area:

B!l = output address

B3 = exchange address
B7 = 1 '

RA =0

FL = Machine FL

RAX = 0

FLX = Machine FLX

The Wait Exit

Occasionally, a function processor cannot complete its task until some
other event occurs. A good example is the processing of a channel request
when the channel is reserved. Rather than simply request that the PPU repeat
the function access, thus incurring a large amount of processing overhead,
selected function processors will set a wait response (bit 57) in the CPUMTR
flag bits. :

Such an action bresumes that some other stimulus will cause a reexamination
of the waiting request. Thus, to extend the previous example, the RCHM pro-
cessor sets the wait response; the DCHM processor checks for it.

After the wait response has been formed in X6 (the low 57 bits of the

original request, plus the 1 flag), the wait exit processor passes control
through the normal exit back to the interrupted problem mode process.

4.25

Repeat-Request Exit

The operation of the repeat request exit is similar to that of the wait
exit and the MXN entry code when it detects that the CPU is ''off'' X6 is
set to the low 57 bits of the request plus the repeat code (bit 56), plus the
repeat CPU number (0 or 1) in bit 55,

This exit is normally used by those function processors which deal with
CPU status. For example, a request to change the exit mode register for a
control point when issued to CPU-0 will cause a repeat-request reply for CPU-1,
if CPU-1 is assigned to the control point.

CPU Switching Exit

Some function processors by nature cannot return CPU control to the inter-
rupted processor (e.g., the drop CPU function processor). In those cases this
exit is used.

This exit effects the copying of the interrputed exchange package contents
to the proper control point exchange area, the restoration of the PP exchange
area, and the selection of a new problem mode usage for the CPU. Prior to
starting the new, problem mode task, the PPU output register is cleared.

Problem Mode Function Processing

Another case in which the CPU is ordinarily not returned to the interrupted
task involves the processing of function requests in problem, rather than monitor
mode.

Such capability is particularly desirable for function processing of long
or indeterminate duration; for example, storage relocation. Since the function
request processing begins in monitor mode, CPUMTR contains a transition
facility by which the processing is completed in problem mode.

This facility makes use of an extra control point called the system
control point, reserved solely for CPUMTR usage and numbered N+1. It contains only
enough space for the exchange area and the CPU scheduling words (status, priority,
time, etc.).

When CPUMTR receives a problem mode request, it first checks the status of
the system control point. |If it is busy, a wait exit response is issued, and
control returns to the interrupted process, which may, in fact, have been the
busy problem mode function processor. '

If the system control point is free, it is set busy, the system control
point status is set to 'W' (waiting) the interrupted package is copied to its
proper area, the PP package is restored, and CPUMTR re-schedules the CPU.
Normally the CPU priority of the system control point is such that the CPU
will be scheduled to the sysfem CP, but this is not an absolute requirement,

4.26

since the 'W' status guarantees that the CPU will be assigned to the system
control point as soon as it becomes available.

The scheduling of the CPU to the system control point is done exactly in
the same manner as that for all other control points: MA is set to the control
point exchange area; and XJ is issued to that address. Thus, when the problem
mode function processing is complete, and the proper response has been stored
in the requesting PPU output register, control returns to CPUMTR via an XJ
operation.

In fact, control returns to the XJ function processor. However, the special
address of -the system control point blocks normal processing. Instead, the PP
output registers are checked for functions waiting for problem mode processing.
Should one be found, the CPU is re-scheduled to process the function at the
system control point. Otherwise, the system control point is set inactive, and
another problem mode process is selected.

A problem mode processor may also return to CPU monitor to process some
interiock operation in monitor mode and then regain control in problem mode.
The problem mode processor simply modifies the return instruction counter (P)
in the system control point exchange area, stores parameters in the X registers
of the exchange area and issues an XJ. When the monitor mode operation completes,
it returns to problem mode by executing the XJ instruction which first transferred
control. This leaves the system exchange area (particularly the P register) set
for the return of control when the problem mode processor has finished.

CPU Function Processing

As already noted,'problem mode CPU processes may make access requeéts to
CPUMTR. The entry location is controlled by the setting of MA and the exchange
area to which MA points.

When an XJ access operation is issued, the function request is decoded
from the contents of the XJ instruction itself. Processing action is very
similar to that for MXN calls; the function code serves as an index to a jump
vector. On entry to the function processor the following register conventions

apply:

Register _ Contents
Bi Control Point FL
B2 _ ' -1
B3 The control point exchange area address
B5 Parameter address one
B6 ' Parameter address two
B7 1 ‘
X0 0
X2 The control point RA
X3 The control point FL
X4 The contents of the XJ word

k.27

I1legal function numbers cause a control point, CPU abort (ABT in RA+1,
for example). Function processors may make use of the parameters of the exchange
word, may change values in the exchange area, etc.

There are two basic methods of exit: back to the caller at the instruction
following the XJ; or to CPUMTR for re~assignment of the CPU. In the first case,
reply conditions, etc., depend upon the processor,

When an XJ function processor returns to CPUMTR, the negative value in B2
signals a return from an XJ call. CPUMTR may choose to assign the CPU to a-
nother job, assign a PPU to the requesting process, and may even return to the
process via an XJ. In any case, the fact that MA is set to the control point
exchange area address means that the problem mode exchange package area need
not be moved, and thus no special processing is necessary to switch to a new
task, or return to the one initiating the XJ.

CPU Control

A large amount of code in CPUMTR is devoted to the control of the CPU's
themselves. Some of it has already been described in the discussions of CPU
assignment and XJ function processing.

The remaining code deals essentially with processes peripheral to the

assignment of a CPU to a particular process. These can be divided into: (1) .
process selection and (2) process checking.

Control Point, CPU Status

The selection of a program for CPU assignment depends directly upon the
CPU status in the control point status word, STSW (21g), of the control point
of the program. The CPU status occupies bits 54-59 and can assume the following
values:

Value Status Meaning -

Log W " The control point is waiting
for a CPU

206 X The control point is on recall

by direction of the CPU.

106 | The control point is waiting

for an |/0 operation or PPU
call to finish
L R The control point is waiting
for an l-type processor to
finish and the processor is in
delayed PPU recall —

L. 28

X Status

The X, R, and | statuses merit some additional explanation. A processor
reaches X status through a voluntary surrender of the CPU. It can do so by
placing "CCR'" or "RCL" in bits 42-59 of RA+!, or by issuing an XJ call.

The '"'CCR' is a general ''check CPU recall' request. Bits 0-17 of the call
reference a function word of the form:

59 = count function if set, test function if clear
58 = bit test value

57-30 = unused

29-18 = bit number

17- 0 = word address or count

Depending on the option requested, CPUMTR will return CPU control after '‘count"
CPU slices or when the addressed bit reaches the specified value.

The '"RCL' call may request that CPU control be returned after bit zero of
the word addressed in bits 0~-17 is set. |f the address is zero, the '‘RCL"
request suspends CPU activity for one CPU slice.

A CPU slice is twenty milliseconds in the Dual System. This
value is stored in CM control point zero word CST! (46g) and may be altered
during system execution. PPU monitor regulates the CPU sliced activities. In
addition, MTR checks the "CCR' and '"RCL' conditions before stimulating CPUMTR
to reassign the CPU.

In rare cases, CPUMTR may set ''X'' status for a program when a request for
PPU access cannot be satisfied. This case rarely océurs, since CPUMTR will
enter as many as four PPU delay stack requests before delaying the CPU program
with '"X'" status. This type of '"X' status is processed in the same fashion as
an "RCL'" call with no address - the delay is at least one CPU slice.

| and R Status

When the CPU requests the assignment of a PPU to perform an 1/0 or control
operation it may surrender the CPU until the operation is completed by setting
bit 40 of the call (RA+1 or the call word passed to the XJ processor). The
processor is assigned, the control point is given | status, and the address of
the assigned PPU is placed in RA+1, right justified.

When the assigned PPU terminates, a match of its address and RA+l causes a
change in the CPU status from | to W, in effect, restarting the CPU. Of course,
RA+1 is also cleared.

Should the assigned PPU be unable to complete its task, and instead, enter
delayed recall, a match of the PP address and RA+1 causes the CPU status to
change from | to R. RA+l is set to the delay stack address of the recalled
processor. When the processor is recalled, the stack address, the R status, and
RA+1 combine to reset the status to |.

4,29

CPUMTR may also set R status when it must place an | status request in
the PPU delay stack because no pool PPU is available. This has.the same net
effect on the CPU program as a transition from | to R status.

This transition from | to R and back again is necessary for the proper
control of CPU assignment when the job is rolled-out (swapped). In that case,
the PP causing R status is noted, and at roll-in time, the processor register
is replaced in RA+1, and the CPU is assigned. Thus the CPU status of a job at
roll-in time is simply W or none at all,.

CPU Selection - W Status

When CPUMTR searches for a program to which to assign a CPU it considers
only these jobs in W status, whose control points do not have move status set
(bit 34 of STSW. The selection is based on a CPU priority value in bits 0-17 of
word JCIW of the control point area, The highest priority program, excluding
the one to which the CPU is assigned, is selected.

Each CPU priority class (zero through three) is represented by a linked-
list queue. Thus the CPUMTR search for a program can be restricted to the non-
empty queues of priority not less than that of the program using the CPU. New
requests enter these queues at their head rather than tail. This tends to give
better service to programs which require the CPU in short bursts, typically
~1/0 bound jobs.

Should more than one control point have W status, and provided that an
alternate CPU is available, the selection of a new job may also activate the
path from CPUMTR to MTR to the alternate CPU for its own selection of a process
for assignment. '

When a new process is selected, and/or an old one terminated, various
clock and time accumulation cells are updated. These reflect all of the values
necessary to regulate and charge CPU time usage, as well as those by which MTR
monitors CPU switching.

CPU Checking

Before CPUMTR returns or assigns initial control to a program, a number of
checks are made on the program status, including: (1) P register status; (2)
RA+1 status; (3) Program Stop status; and (4) time accumulation status.

The P register in the exchange area must be within the range established by FL.
Moreover, it must not be zero, since zero is used by the exit mode hardware to
signal an error exit. The occurrence of either case causes the control point
error status to be set. This in turn triggers job advancement.

If the P register is in range, but the operation code (upper 6 bits) of the

4.30

next instruction is zero, the control point error flag is set to denote a
program stop error. The control point is then eligible for job advancement.

Should the upper 18 bits of RA+] contain a non-zero value, CPUMTR
recognizes a call for CPUMTR or PPU action. CPUMTR action calls include:

RA+1, bits 42-59 Action
ABT End the CPU and set the CPU abort error flag
CCR General, CPU check request
cio Intercept stack processed 1/0 calls. All
. others are passed to the PPU program Ci0
END End the CPU
RCL : Recall the CPU (see the X status discussion)
MSG Process a message
TIM Return a time value

Other values beginning with an alphabetic character, and containing only
alphanumerics are considered to be PPU calls. Remaining values constitute
errors, and result in the setting of the !'PP CALL ERROR' flag.

Finally, before assigning the CPU to a program, CPUMTR checks the accumulated
CPU time of the control point against the job card estimate. Provided the accum-
ulated time does not exceed the estimate, the CPU is assigned. Otherwise, the
"TIME LIMIT" error flag is set, and the job becomes eligible for advancement.

idle CPU

When there is no activity for the CPU - there are no control points with 'W"
status - CPUMTR sends the CPU to a small, memory test program. After a short
memory test is performed, the CPU is stopped.

The memory test is similar to that performed by MTR. Here, only section
zero is tested, again with the zeroes, ones and alternate ones-zeroes tests.
The detection of an error causes a Top-line stop - CPUMTR stores ''"*ERR MEM c"
in TLML (c=CPU number).

When the memory test completes, the CPU is stopped at CM location two. The

upper six bits of this location is zero (a program stop code, PS). Thus when
the CPU is idle the P register value displayed by DSD will be two.

Job Advancement

Normally a job becomes eligible for advancement when the error flag is set
at the control point, This depends to a certain extent upon the action of the
processors assigned to the control point. The CPU is always removed, and CPU
"status is cleared. Most PPU routines drop when they sense the error flag in

L.31

STSW (usually after a call to PRL). All delay stack entries are purged.

The three preceding conditions actually constitute the factors which
affect job advancement: the job must have no processor status active or pending,
including 1/0 stack entries. When the conditions are met, CPUMTR advances the .
job by invoking the processor indexed by bits 30-35 of word JCIW of the control
point. Usually the processor is 1AJ, for primary level, '"Advance Job'. In
special cases it may be: .

Processor Action‘

1CJ, IRB Terminate or re-start Job
fRO Rollout Job

IRI Rollin Job

The action of rolling out a job constitutes one exception to the general job
advancement rule. |f rollout status is pending, 1RO will be called as soon as
all PPU activity ceases.

PPU Control

PPU activity at the control point and in the system is controlled by
CPUMTR exclusively. As already noted, a pool processor is assigned by placing
a request in its input register, and released through one of several different
function calls.

When a processor is assigned to a control point the status word (STSW) of
the control point is changed to reflect the assignment: a count of active
PPU's in bits 48-53 is incremented. When a PPU enters recall, a separate
count fn STSW (bits 24-29) is incremented; when the package is re-assigned, the
count is decremented. :

Using the CPU, PPU and delay status fields of STSW, and the header word
of the control point {/0 stack, CPUMTR or MTR can make a rapid check of job
status. When job advancement is necessary, a fourth field in STSW, bits 30-33,
are set to the index of the processor assigned (1AJ, 1RO, 1CJ, 1RI). Thus
CPUMTR can strictly control and recognize the exact advancement status of the job.

An additional layer of PP control can be added to that of job advancement.
It consists of the control of the number of PPU packages of a given name active.
Thus, for example, CPUMTR can be instructed to limit the number of pool PPU's
assigned to 1AJ, 1RO, 1CJ, etc. in practice only 1RO and 1Rl are regulated
(2 coples each).

A number of other processors, however, are limited to single, active
coples. These are called ''unary' processors, and include those routines whose
proper operations does not permit multiple, simultaneous copies to be in
execution. The job scheduler, 1SJ, is a good example.

4,32

Unary processors form a special class, whose members are regulated by
CPUMTR, whatever their status. Thus, for example, CPUMTR records the whereabouts
of 1SJ, whether in the delay stack, in a PPU, or never active. Several PPU
functions are devoted to the special or general invoking of unary processors.
Several other functions use the status record of unary processors to affect
their processing (job scheduler disabling at a control point, or /0 stack pro-
cessing are examples.)

In regulating job advancement, processor count, unary processors, the de-
lay stack, and in assigning PPU's in response to PPU function requests, CPUMTR
depends upon the eight pool processors. In the pool, a processor is available
if its input register word is zero; not available, if non-zero.

CPUMTR keeps track of available PPU's by maintaining a cell whose contents
point to one of the available PPU's. When a PPU is assigned the cell is changed
to zero If no other PPU is available, or to the address of another available
PPU. Correspondingly, when a PPU is released, the cell is updated, if zero.

The process of releasing a PPU is also interwoven with processor count
and unary processor control, in a manner corresponding to the actions of assigning
a PPU, This includes updating the PP count in the control point status word,
the processor count, and the unary processor status.

Statistics Mode

When CPUMTR Is assembled, it is possible to specify the insertion of per-
formance measurement code. This code is assembled in an inactive state. It
is activated when a properly authorized CPU program at a control point makes
an appropriate function call to the PPU program CPM. That call activates
statistics migde by replacing key instruction sequences with entry calls to
CPUMTR statistics routines, and by linking the memory of the CPU program to
the CPUMTR statistic routine with buffer pointers.

With statistics mode thus activated CPUMTR will transmit variable length
records to the buffer of the sampling CPU program. These records describe
PPU function requests, CPU function requests, and CPU assignments, as well as the
CPUMTR responses to the various requests. The data supplied to the CPU program
can be reduced, filtered or analyzed as it is copied to the program buffer, or

"it can be transferred to a file for later, detailed analysis.

This method of statistics gathering has two important advantages: (1) the
space and time dedicated to statistics sampling is very small when no sampling
is in progress; (2) the sampling program can measure its own impact on system
performance, since it receives statistics records indicating the system re-
sources it uses.

4.33

Intra-communication Example

As an example of the use of the system intra-communications facilities,
consider the sequence of operations required by the following example:

A CPU program at control point two wishes to use the hypothetical PPU
program WIS to record one sector of data on file "LFN'. When CPU zero is
assigned to the program, the program stores the following call in RA + 1 (or
makes an XJ request for PPU assignment):

59-42 = "yis"
Li-4o = 2
39-18 = 0
17-0 = 1004

The CPU then waits for RA+1 to become zerd.

While checking CPU statuses, MTR notes the presence of the RA+1 call and
starts CPUMTR, using CPU zero, at the PPU entry point MXN using an exchange
jump. MTR requests the processing of a check-CPU function (CCPM).

In the processing of the CCPM function CPUMTR detects the RA+1 call.
Since the PPU name starts with 'W', it is a legal call. CPUMTR then locates an
available PPU (assume PPU two, input address 70g), and places the RA+]l value in
the PPU input register with bits 36-41 set to a two (the control point number).
Since bit 40 of the call was set, CPUMTR sets the ''I'' status bit in the status
word and 71y in RA+1 of control point two.

The "' status mode of the call requires suspension of CPU activity at
control point two. So CPUMTR copies the interruped exchange package from the
exchange area of PPU zero (MTR) to control point two, resets the exchange area
of PPU zero, and clears the output register for PPU zero, thus freeing it for
further processing. Assuming no other waiting programs can be found, CPUMTR
sends the CPU to the problem mode memory test and program stop.

Meanwhile the idle loop of PPR in PPU two has copied CM word 70 to PPU
words 50-5kg. Upon detecting the non-zero, 'WI'' characters in 50y, PPR stores
50g in 13g, 51g in 14y and calls the PLL subroutine. PLL makes a call to the
FTN subroutine with the A register set to the search PPU library function
(SPLM). FTN stores the function code in 10gs, copies 10-143 to CM word 70g, sets
the P, A0, BO word in its exchange area, and executes an MXN function on CPU
zero,

As soon as CPU zero enters the problem mode memory test, and possibly
before it has completed the test, the MXN instruction of PPU two interrupts
CPU zero and sends it, in monitor mode, to the PPU function processor. The
SPLM function is decoded, the program WIS is located in the library directory,
and its location is stored in CM word 715 (bits 48-59=0). CPUMTR returns CPU
zero to problem mode in the memory test with an XdJ.

The FTN routine senses the change in 48-59 of CM 71g, and returns with CM

4,34

71 in PPU words 10-14g. Assuming that WIS is resident in central memory,
PLL reads the package to PPU memory using the load address (10733), CM word
length and CM address supplied by the CPUMTR response to the SPLM call, found
in 11-14g. PLL returns to the idle loop with LA (15g) = 1073s.

The idle loop sets CP (74s) = bits 0-5 of 51g (the control point number),2,
times 2005, or 400g, and calls PRL. PRL reads the control point status word at
CM 4215 to PPU words 10-14g. Bit 34 of the word (bit 10 of PPU word 123) is zero,

so PRL stores (14g) in FL (56¢), (135) in RA (555) and returns to PPR ((A) = (RA)).
PPR then enters W1S at 11005 (LA of 1073s + 5) skipping over the header of WIis.

W1S uses 53-54g as a parameter block address. Adding RA*100g to bits 0-17
of 53-54g it reads one CM word (containing 'LFN') to PPU words 40-4hg (FN - FN+4).
The W1S calling convention is that the first parameter block word is a file name,
and the next 100g words are the sector data.

W1S copies 40-4k4ys to CM word 72g the first message buffer word, sets A to
the function SFBM (set file busy) and’/calls FTN. FTN passes the function to
CPUMTR as already described. The SFBM function causes CPUMTR to search the file
name table for the file "LFN'', assigned to control point two. Assuming that the
file exists and is not busy (bit zero of the FST word is set zero) CPUMTR
sets bit zero equal to zero and responds in the PPU two output register with the
file status (FST) word address of the 'LFN'" entry and a flag indicating that
it has been set busy for the PPU. FTN returns to WIS.

WIS notes this response, stores the file address in 57g (FA), and reads the
FST word to 20-2h4g (FS - FS+4). Noting from the FST parameters that the file is
assigned to equipment Olg, track 4401 but is positioned at the last sector of
‘that track, WIS requests a new track to be linked to 4401g by placing 01 in g
4401y in lhg, setting A to RTKM (request track) and calling FTN, FTN passes the
request to CPUMTR. This reserves space in advance for the end-of-information (EO!)
sector of ''LFN'.,

CPUMTR decodes the function. Since RTKM is a '‘problem mode'' function,
CPU zero is reassigned from its idle state to control point N+1, and control
is given to the RTKM processor via an XJ. Once the track is reserved (e.g.,
44025) control returns to CPUMTR in monitor mode, the response is transmitted
to PPU two, and CPU zero returns to the idle state. FTN returns to WIS.

WIS stores the track number, 44025, in PPU word 7000g. It sets 6 (T6) to
L4olg and 7 (T7) to the last sector (60g). It stores the equipment number 1 in
5 (T5) and calls SMS. SMS notes that equipment one is a DB device (808) and
that the DB disk driver (6DB) is not loaded. It loads 6DB with a PLL call,
executes the 6DB preset routine, sets 4 (T4) = 1 (the channel of DBOl) and
returns to WIS,

WIS calls RCH to reserve channel one (A = (Th)). RCH calls FTN, A = RCHM
(request channel), and 11g = 1. FTN calls CPUMTR, which assigns the channel.
FTN returns to RCH; RCH returns to WIS. WIS calls POS in 6DB., POS connects and
reserves DBO1, links the DCH subroutine to its drop channel processor (DCP),
and positions to track (Té6). :

L.35

WIS reads the sector data from CM, starting at 53-54g (0-17) plus
RA times 1004 to PPU memory, starting at 7002g., The 1005 CM words occupy
500s PPU words, 7002-75015. The next track value (4402g) stored in 7000g is
control byte one. It indlcates that track 4402g, sector zero is the next
sector of the file. Control byte two, 7001g, is set to 100g for a full sector
word count. WIS sets A to 7000g and calls WDS, the disk write routine of
6DB. When the sector has been recorded, WDS returns to WIS.

WIS now records the EOl sector. It sets the EOI control bytes (zeros
in 70008 and 7001g). It places the new track (L402g) in T6, zero in T7 and
calls POS. When POS returns WIS sets A to 70005 and calls WDS. WDS records
the EO} sector and returns. ‘

WIS drops the channel reservation by setting A = (T4) and calling DCH.
DCH, in turn, enters DCP in 6DB. The unit reservation is cleared, DCH Is
unlinked from 6DB, and the channel reservation is dropped via a function DCHM
call to FTN. FTN returns to DCP; DCP to DCH; DCH to WIS.

WIS sets bit zero of the FST word to one (bit O of 245) and writes the FST
word to CM at (FA). This sets "LFN'" non-busy. WIS now releases the PPU with
a DPPM (drop PPU) call to FTN and returns to the PPU idle loop at PPR.

The DPPM processor in CPUMTR clears the PPU two Input register word (70g).
It notes the """ status of control point two, to which PPU two was assigned,
and that RA+] of control point two contains 71g (the output register address of
PPU two.) This signals CPUMTR that the CPU is to reassigned to control point
two. CPUMTR clears RA+1, sets the CPU status to 'W' and enters control point
two in its appropriate CPU queue, as determined by the CPU priority found in bits
0-17 of word 225 (JCIW) of control point two.

CPUMTR searches the CPU queues, locates the control point two request and
selects it for assignment. This requires that the PPU exchange area of PPU two
be reset. No exchange area copy is required, since PPU two interrupted an idle
CPU with the DPPM call. After the exchange area of PPU two has been reset, the
PPU two output register is cleared, freeing PPU two for further processing
(i.e., FTN exits to WIS, and WIS returns to PPR).

The CPU is assigned to control point two ("'W" status is cleared). This is
effected with an XJ instruction directed at the exchange area of control point
two. The CPU resumes processing in the RA+1, clear loop, exits from that loop,
and the processing of the example is complete.

L.36

Machine inter~communication

The two machines of the Dual System have no direct inter-connection.
They are connected, however, through a number of dual access devices,
including extended core storage (ECS) and several different types of disk
devices. The two machines depend on the contention reservation logic of
the disk controllers for regulation of access to those devices. ECS ac-
cesses are regulated using the interlock features of a common ECS reserva-
tion control register, the flag register. In some cases, ECS access is
controlled by the reservation of separate areas for each machine. Finally,
the read-only access to the PPU programs stored in ECS needs no regulation.

The processing of disk contentions is performed by each disk driver
program individually. Controller reservation waits are thus transparent
to the user of the driver. |In most cases, once a driver has reserved a
controller, the reservation is held until the calling PPU program drops
the reservation of the local machine, software channel access.

ECS Flag Register Usage

The ECS flag register is used to control access to the disk track
reservation and equipment reservation tables stored in ECS. It is also
used to control access to the system permanent file directories. The ECS
flag register is an eighteen bit register whose bits are managed with a
CPU instruction. That instruction has several options, one of which is
especially useful in reservation control.

That option is called selective test and set. Using a mask supplied
by the CPU, a bit by bit comparison is made between the mask and the flag
register. |If every one bit in the mask is zero in the flag register, those
bits are set to one in the flag register and the instruction exits success-
fully. |If one or more tests fail, the instruction performs a failure exit.

In the Dual System, each ECS controlled resource is assigned a flag
~register bit. A machine of the system reserves a resource with a selective
test and set operation on the flag register using the appropriate single
bit mask assigned to the resource. The machines loop on this test until

it succeeds. Once a resource is reserved, the machine uses it for a brief
duration, and then clears the reservation with a second flag register
operation, a selective clear.

Flag Register Bit Assignments

Twelve flag reglister bits are reserved for access to shared disks or
pseudo-disks. With the current Dual System disk assignments the disk flag
register bits are:

.- Octal
Bit Value Device
0 1 6638, channel zero (DBOO)
1 2 6638, channel one (DBO1)
2 4 6638, channel two (DB02)
3 10 6638, channel three (DBO3)
4 20 844 unit zero (DJOL)
5 Lo 844 unit one (pJos)
6 100 821 disk (DH67)
7 200 Permanent file pseudo-disk (DU74)

Special Access Flag Register Bit Assignments

Two other bits are currently assigned for the regulation of inter-
system access. The first is bit 12 (100003), assigned to the regulation
of the equipment reservation table. This table regulates permanent file
and assignable device accesses (excluding magnetic tapes). The second is
bit 13 (20000g), assigned to the regulation of access to permanent file
directories. This bit is used only when new entries are being added to
the directories, in order to prevent both machines from creating a dupli-
cate entry, or from attempting to use the same open slot for a new entry.

ECS Track Reservation Table Usage

The assigned flag register bits regulate access to the disk track
reservation tables (TRT's) in ECS. A number of other factors related to
the usage of the disk TRT's affect system performance. These include the
ECS access method, the maintenance of a central memory copy, and integrity
checking.

Access to the ECS TRT's is complicated by the fact that all TRT table
processing is performed in problem mode at the system control point (N+1).
Since the FTN routine of PPU resident can interrupt these problem mode proc-
esses, and since an interrupted ECS transfer must be totally restarted, the
transfer length between ECS and central memory is restricted to the largest,
uninterruptible length, eight words.

5.2

In order to make maximum use of the data transferred in eight TRT
words, the track reservation processor searches each entire eight word
block end around, starting with the block containing the last previously
reserved track, if known. This not only minimizes ECS access and maximizes
usage of the data transferred, but, by virtue of the general, sequential
relationship between logical track and physical disk position, it also
tends to cluster tracks of the same file in the same disk area, thus reducing
the amount of intra-file positioning.

4%’ Each eight word ECS transfer goes to or from a central memory TRT image.

"Thus the presence or absence of ECS access is not critical to the basic

. processing of the TRT. It does, however, eventually lead to a patchwork

situation, in which the central memory TRT's of each machine match the ECS
TRT in only selected areas.

Tracks in use by the files of a machine are correctly matched by CMR
and ECS TRT entries. In general, since the ECS TRT is copied to CM eight
words at a time, not all of the tracks in use by files of the other machine
are fully represented by TRT entries. This situation causes no probliem
when tracks are reserved or dropped, since the ECS TRT is referenced in those
operations.

It does cause a problem, however, when a file is moved from one machine
to another. The first problem occurs during the reading of the file EOI
sector. When the disk read PPU program, 2RD, reads an EQIl sector it matches.
the EOIl track and sector with the CMR, TRT linkage data. An error stop is
issued if the two values do not match. A second problem occurs if the file
is to be processed randomly, since the TRT linkage is the basic device of
random file processing.

For these reasons, whenever a file is transferred from one machine to
the other (only the file pointers are transferred, not the file itself),
the PPU program performing the transfer issues the CPUMTR function RTCM
(request TRT change) which copies the entire TRT from ECS to central memory.
The same function is used whenever a new permanent file access is granted
(via the equipment reservation table) in order to insure that the full,
TRT linkage chain is present in central memory.

The RTCM function also generates a track usage count. This count is
stored in ECS, and in the central memory TRT pointer. The count is updated
by the track reserve and drop processors of each machine.

The track reserve and drop processors perform a number of integrity
checks on the TRT's during each access. These include the obvious checks -
dropping unreserved tracks or system library tracks, attempting to link
to unreserved or linked tracks, etc. |In addition, the processors make a
consistency check of each TRT word using two four bit fields - the free
and reserved bit fields.

5.3

Each bit of the free flield is assigned to one of the four tracks repre-
sented by the TRT word. |f the bit is set, the track is free; clear, re-
served. Each bit of the reserved field is assigned to the same, corresponding
tracks. The value usage is Inverted. |If a bit is set the track is reserved;
clear, the track is free. By insuring that both bits have proper values,
the TRT processors can detect TRT destruction at a very early stage, including
the most common type of destruction - the erroneous clearing of TRT words to
zero.

When the TRT processors detect TRT content errors, they make use of the
Top-line error stops to inform the system operator of the error, and to halt
system activity before further damage results. In general, one of the recovery
dead-starts (MINOR or MAJOR) may be performed to restore the system after a
TRT error stop. '

Inter-machine Function Processing

There are two ECS areas reserved for inter-machine communication. From
one machine one area is used for transmitting function requests and receiving
replies (the "OUT' blocks), the other area is used for receiving function
requests and transmitting replies (the "IN'' blocks). The other machine uses
the areas in reverse order: it receives requests and transmits replies in
the first area {"'IN" blocks); it transmits requests and receives replies in
the second ("'OUT' blocks).

Both machines transfer data to and from the ECS inter-communication
areas from.corresponding central memory buffers. The actual transfer of
requests or replies and reception of replies or requests is controlled by
the contents of the central memory buffers in each machine. The processing
of the buffers is performed once a second by CPUMTR at the request of MTR.

An individual function request block in the inter-communication buffers
is eight words long and has the following format:

Word(s) Bit(s) Contents

[Block header word
59 Set if the block is active
58 Set if a reply is waiting to be transmitted
57 Set if processing is in progress
56-48 Assignment status
L7-36 Address of assigned job
17- 0 Function or reply

2-8 Function parameters or reply data

5.4

The '"IN'' and "OUT'" blocks of each machine are cleared at dead-start.
When a PPU program wishes to make an inter-machine request, it first reserves
an "OUT" block by making a RIFM (reserve inter-communication function block)
function call to PPU monitor. MTR locates a free block (bits 48-59 of the
block header word = zero), stores the PPU output register address in 48-56
of the block header and returns the block address to the requesting PPU.
The PPU fills in words two through seven with the function parameter data.
It then updates the block header with the job address (file address or
terminal number) and a non-zero function code.

When CPUMTR is activated for block processing by MTR via an MTRM (MTR
services) function call, it scans the "OUT'" blocks looking for a block
whose active status (bit 59) is clear, and whose function field (0-17) is
non-zero. Such a block represents a function to be transmitted. CPUMTR
sets the active bit and writes the function to ECS.

Block processing also includes a scan of the 'IN' blocks., Consider
the action of CPUMTR in the second machine in processing an ''OUT" block
activated by the first machine (received as an "IN'" block in machine two).
In scanning the blocks, CPUMTR checks the active flag, the reply ready
(bit 58) and the function fields. |If the active flag is clear, CPUMTR
reads the block contents from ECS, looking for a new request. |f the active
flag is set, CPUMTR skips the block until the reply ready flag is set.
The request of such a block is still being processed. Finally, if the block
is active and the reply ready flag is set, CPUMTR sets the function field
zero, clears the reply ready flag, and writes the block to ECS.

The actual task of processing the function requests received in '"'{N"
blocks and routing replies received in ""OUT' blocks is one of the activi-
ties performed by the PPU program 1RS, the system repetitive services proc-
essor. RS is assigned to a PPU once every 250 milliseconds. Using timing
data stored in central memory, I1RS performs a wide variety of repetitive
processes, whose cycles range from once every 250 milliseconds, to once
every eight seconds.

Once every 250 milliseconds 1RS scans the 'IN'" function blocks. From
the contents of the "IN' block header words it can detect hew requests.
IRS performs some requested functions, and passes other functions to the
PPU program ICP, inter-communications processor. When 1RS passes a function
to ICP it sets the processing active flag (bit 57) in order to avoid re-
petitive calls to ICP. The ICP program is activated at control point zero
by an RPJM (request PPU job) function call from 1RS to CPUMTR. Parameters
in the ICP input register identify the block to be processed. When the
function has been processed, 1RS or ICP writes the reply data in words
two through seven of the block, and sets the reply ready flag. On its
next '""IN' block scan, CPUMTR writes the reply block to ECS.

5.5

1RS also scans the '""OUT' blocks every 250 milliseconds. An active
block whose function field is zero signifies that a reply has been received.
IRS uses the job address to locate the CPU program which requested the func-
tion.. A rolled-out caller is readied for rollin by raising its queue pri-
ority, and a terminal caller is scheduled for execution by the setting of
an interrupt flag in the terminal control block (TCB).

A function request is initiated by a CPU program with a call to MTR
(via RA+1) or CPUMTR (via an XJ) for the use of the PPU program ICP. CP
serves double duty: processing ""IN'" blocks at the request of 1RS when
used at control point zero; forming '"OUT' blocks and receiving replies when
used at control points one through N.

The CPU program caller transmits to ICP the address of an eight word
function block of the following form:

Word Bit(s) Contents
1 Block header
59-36 ~ Unused
35-18 Reply code
17- 0 ICP function code
2-8 Parameter/reply data

The I1CP function code in bits 0-17 of the header word is an even-numbered
code, local to ICP. ICP sets the field odd when processing is complete.
If an error is detected during processing, the field is set odd and nega-
tive (bit 17 is set) and an error explanation code is set in bits 18-35.

When ICP has validated the function code and the authorization of the
CPU program to make the request, it reserves an "OUT' function block with
a RIFM function call. It copies the parameter words to the assigned func-
tion block, and completes the block header with job address and function code.

The action of ICP while waiting for the function block depends on the
caller. |If the caller was a terminal program, ICP interrupts the terminal
processor (MESA) and releases the PPU, |f the caller was a normal CPU
program job, ICP lowers the queue priority of the job so that it will be
rolled out, and then enters PPU delayed recall.

When 1RS senses that the reply has been received it schedules the
terminal caller for execution by setting an interrupt flag; the normal
caller by raising its queue priority. The terminal caller reactivates
ICP by requesting its reassignment to a PPU. When the normal caller rolls
in, ICP re-enters a PPU automatically from the PPU delay stack. In either
case, |CP senses the reply and copies the reply data to the caller memory
area. |ICP releases the function block by clearing the header word, sets
the CPU program function block header word odd (bit zero = one) and terminates.

5.6

Function Overhead

The preceding discussion has indicated that a number of programs are
involved in the processing of a single function. The sequence is basically
the following:

1. 1CP forms a request in machine one.

2. MTR activates CPUMTR in machine one and the function is
written to ECS.

3. MTR activates CPUMTR in machine two and the fuhction is
read from ECS.

L, - 1RS in machine two recognizes the request and effects its
processing, possibly involving ICP in machine two.

5. MIR activates CPUMTR in machine two and the reply is written
to ECS.

6. MTR activates CPUMTR in machine one and the reply is read
from ECS. A

7. 1RS in machine one recognizes the reply and informs the
original caller.

8. ICP in machine one is activated for the caller and completes
the processing of the reply.

Since four MTR/CPUMTR cycles (two in each machine), two 1RS cycles
(one in each machine), a possible roll-in and miscellaneous processing by
ICP are required, a normal request/reply cycle can take more than four
seconds to complete. This cycle can be speeded up, but to do so would
involve a high cost in terms of MTR/CPUMTR and ECS/CM traffic. Generally,
the density of data transferred is high enough and the frequency of trans-
fers is low enough that the four second cycle represents ‘a good compromise
between cost and speed.

Iinter-machine Function Codes

There are currently seven inter-machine funetions which are processed
by 1RS or ICP. |
Function 1
Checkpoint System

This function is issued by machine one when the
power-down-sequencer hardware is activated. It
causes an auto-checkpoint of machine two.

5.7

Function 2

Search For Job

The requested machine searches for all occurrences
of a specified job name in the file name table or
at executing control points.

Function 3

Read Central Memory

Seven words of the central memory of the requested
machine are transferred.

Function 4
Request Job File

The FNT and FST words of the first job file (input
or rollout) which can be transferred, and whose job
parameters match those of the request, are trans-

ferred. The FNT/FST entry is deleted in the requested
machine.

Function 5
Request Print File

A print file FNT/FST words are transferred as in
function 4, ’

Function 6
Request Punch File

A punch file FNT/FST words are transferred as in
function 4,

Function 7
Request CMR File

Selected portions of CM are written to a file and the
file pointers are transferred.

File Transfer

Three inter-machine functions effect the transfer of queued (assigned
to control point zero) files. Actual file transfer consists of the transfer
of the two file pointer words, the file name table word (FNT) and the file

status table word (FST). Together these two words fully describe the type,
residence and position of the file.

5.8

When a file is considered for transfer the two function processor
PPU programs, I1RS and [CP, examine a number of file parameters in addition
to those which may be specified in the file transfer request function block
words. These include assignment to control point zero, file residence and
file association. Files assigned to control point zero are queued files
awaiting processing (execution, printing, etc.).

File residence is restricted to shared disks. These disks are ones
having dual hardware access, and for which an ECS TRT was defined at dead-
start. In the case of a rollout file, all the files in use by the job,
indexed in the first record of the rollout file, must also be resident on
shared disks.

The status of the rolled-out files, indexed in the rollout file, is
marked in the rollout file FNT entry at rollout time. When the rollout file
program, 1RO, moves the job files to the rollout index, it checks each file
residency. Bit twelve of the rollout file FNT entry is set to one if any
file resides on a non-shared disk. This same flag may be set artificially
from a control point data field which is, in turn, set by a parameter on
the job card. Thus it is possible for a job to prevent its transfer be-
tween machines. All jobs entered from the system console select this
parameter,

A rollout file may also be ineligible for transfer if the job which
it references is attached to some resource list. Since the attachment is
by absolute, rollout file FST address, transfer of the file cannot be
effected without altering the FST address and destroying the linkage. Jobs
in this class include those using mountable equipment (e.g., tapes), terminal
control blocks, and those waiting for resource access in the equipment
reservation table. '

The parameter words of the requesting function block may apply addi-
tional parameters to the selection of a file for transfer. These include
sixty bit product and difference masks for the FNT word, and pairs of limit
values (lower, upper) for the various file parameters - job time limit,
field length and queue priority. As many as three product/difference masks
may also be supplied for testing the file identification field of the FST
entry.

If a file meets all of the tests specified by the requesting function
block parameters and by 1RS or ICP, its FNT and FST words are removed from
the FNT/FST table and transmitted to the requesting machine. An accounting
dayfile message is issued to record the name of the file transferred, the
file type, and the time of transfer. When the file is received in the
requesting machine it is stored in an open FNT/FST entry and a corresponding
dayfile message is issued to record its arrival.

5.9

In addition, when a file is transferred into a machine, the receiving
program (IRS or ICP) requests a CPUMTR update from ECS for the file resi-
dence disk. |f the file is a rollout file, all TRT's are updated, in order
to assure that all index file device TRT's are current., This operation is
necessary to bring all CM TRT file linkages up to date for random file
linkage processing, and file to TRT linkage checking.

.10

Tables

All of the processes of system intra-communication and machine inter-
communication depend heavily upon central memory and extended core storage
tables. Almost every aspect of the system from library directories through
the control points can be viewed as tables. This chapter discusses in de-
tail all of the essential tables of the system, in order of their appearance
in figures two and three, the CM and ECS diagrams.

Control Point Zero

Control point zero is one of two control points (N+1 is the other)
dedicated to system activity. It has a format unlike that of control points
one through N, using the exchange area, pointers, and control card buffer
areas of the normal control point for basic system table pointers and the
PPU communications areas. '

Word zero always contains zeroes. This value is used by a large number
of PPU programs in forming five PPU words of zeroes. The usage of word zero
is so heavy, in fact, that PPU monitor maintains a constant check on word
zero, and stops the system if a non-zero value is detected.

Words one through 17s contain various table pointers and status flags -
e.g., pointers to the file name/status table, a ''debug' mode flag, etc.
Word 20g is the system status word (STSW) and functions in a fashion similar
to each control point status word to record control point PPU activity and
memory assignment. The activities of the various PPU programs which func-
tion at control point zero for the system - MTR, DSD, IRS, etc. - are re-
corded here. The RA (reference address modulo 100g) field is zero and the
FL field is the size of central memory resident in 100g groups.

Words 215 through 47s contain more pointer words. Words 505-1675,
as already mentioned are the PPU communications area. Words 1705-1775
contain additional pointers. The specific formats of all of these fields
can be found in the machine language (COMPASS) statements of the symbolic
program library file (OPL) common deck PPCOM (Appendix A),

Control Points One Through N

The N control points (N may be specified at dead-start time as a num-
ber from one to twenty one) all have the same format. The first sixteen
words are reserved for an exchange area. Word 20g contains the control
point processor statuses (STSW). Word 214 contains the name of the job
being processed. The name is blank if no processing is enabled at the
control point; 'NEXT" if processing is enabled but not in progress.

6.1

Words 224-27g contain various parameters for the control of Job activity
and CPU usage. Words 30s-343 and 355-37s form two message buffers, console
lines one and two, which are displayed by several different options of DSD.
These lines are used by the executing job, and job activity processors to
signal job progress and unusual activities (e.g., an 1/0 unit failure) to
the system operator,

Word LOg contains input/output activity controls. Words 4lg-47s con-
tain an accounting header created by the system job card transtator when
the input file for the job is written. |t contains job description and
execution limit data derived from parameters of the job card and a system
accounting file. '

Words 50g-67s contain additional job execution control values. The
job queue priority, which controls job scheduling, for example, is stored
in bits 12-23 of word 60g. Words 70s-1775 contain the job control cards.
Room is reserved for one sector (100s words) plus sufficient additional
space (10g words) for the maximum length partial control card. The job
control card processors buffer control cards to this area from the job
input file.

Access to the words of the control point area is controlled by a num-
ber of different conventions. The exchange area is accessible if the CPU
is not assigned to the control point. The status word is changed only by
CPUMTR in monitor mode. The control card buffer and pointers are modified
by job advancement processors whose activation is controlled by CPUMTR.
CPUMTR insures that when job advancement processors are activated, no other
processors are active (e.g., the CPU, PPU's, etc.). Finally access to
other pointer words is regulated by requiring PPU programs to use a CPUMTR
function, request word change (RWCM), to modify them.

Control Point N+!

Control point N+1 is a short control point area for the use of CPUMTR,
problem mode processes. It contains an exchange area (0-173), a control
point status word (20s), a CPU priority word (22) and CPU time control words
(23g-24g). These words permit the scheduling of the CPU to the problem mode
processes in a manner identical to the assignment of the CPU to control
points one through N. :

Track Reservation Table (TRT) Pointers

One, two word TRT pointer is allocated to each disk or pseudo-disk
device. The TRT pointer words are addressed (located) from the equipment
status table (EST) entries by a twelve bit field. Thus they must reside
below 10000s in central memory. The TRT pointer words have the format:

6.2

Word Bits Contents

1 '59-36 The address of the first word of the TRT.
35-24 The length of the TRT in CM words.
23-12 The total number of tracks referenced,

excluding those faulted at dead-
start time.
11- 0 The number of tracks in use.

2 59-48 The current device position (logical
track). This field is not used by
some disk drivers.

47-36 The number of sectors in a logical
: . track for the device.
35-24 The ECS TRT, flag register access code
{zero if none).
23- 0 ECS track count and TRT .address.

Access to the TRT words is regulated by two conventions. Word one may be
changed only by CPUMTR while in problem mode (track counting). Word two may
be changed only by a PPU to thich the disk channel of the device is reserved
(for position information updatnng)

Dayfile Pointers

The dayfile pointers contain buffer control and disk status information
for the dayfiles of the system. Each control point is allocated a dayfile.
In addition there are four special dayfiles allocated: the master dayfile
for control point zero; the accounting dayfile; the error log dayfile; and
the statistics dayfile. Each dayfile pointer has the two word format:

Word Bits Contents

1 59-36 The address of the central memory
resident dayfile buffer,
35-24 The number of words in the buffer.

23-12 The ordinal of the next unused word
in the buffer (the "IN'" pointer).
11- 0 The master dayfile recording status.
2 59-48 The dayfile disk equipment number.

L7-36 The first dayfile track.
35-24 The current dayfile track.
23-12 The current dayfile sector.
11- 0 Unused.

6.3

Word one is the central memory buffer control word and word two is the file
control word. Word two has a format similar to that of disk files in the
file status table (FST).

The buffer control values and some file control values are allocated
at deadstart time. The four special dayfiles are also referenced by the
second, third, fourth and fifth file name/status (FNT/FST) table entries -
SYSTMDF, PDUFILE, EQUIPDF, and STATDF. These FNT/FST entries may be refer-
enced by dayfile analysis programs running as normal, control point jobs.
Their access is controlled, however, by the status of permission data in
the accounting header area of the control point.

When a job is rolled out, its dayfile pointers and dayfile buffer are
recorded in the rollout file. Thus a job can be rolled in at a different
control point without loss of dayfile information. When a job terminates,
the dayfile is copied to the end of the job print (OUTPUT) file, and the
dayfile disk space is released.

A job dayfile is used to record all control card calls, PPU program
messages, and an accounting summary. With various control card options,
a job user can also obtain statistics summary dayfile messages, and may
specify the listing or suppress the listing of library procedure control
cards. The system console operator may also enter messages in the job
dayfile.

The master dayfile contains all messages recorded in the job dayfiles.
The remaining special dayfiles contain some job dayfile information (e.g.,
accounting information), as well as messages routed only to them (e.g.,
performance statistics, equipment errors, etc.). The routing of messages
to one or two dayfiles at a time is controlled by parameters of the PPU,
dayfile message (DFMM) function call to CPUMTR.

Equipment Status Table - EST

All usage and reservation of equipment is managed through entries of
the equipment status table (EST). The EST includes entries for all hard-
ware input/output devices available to the system, as well as a number of
pseudo-device entries which are used to manage special system resources
(e.g., access to individual permanent file directories, access to ECS
paging space, etc.).

Each hardware device EST entry contains values which describe the
device type (tape unit, disk); the class of the device (shared, mountable);
the driving characteristics (channel, unit, select code); the logical on/off
status; and the current device assignment. The general format of the one
word EST entry is: '

6.4

Bits
59
57-48

b7-36
35-24
23

22-12
11- 0

Equipment Type Code

Contents

Mass storage device flag

System resident device flag

Assignment status or shared flag,
depending on device type

Channel

Device parameters

Logical on (zero) or off (one) status

Equipment type code

Device parameters or TRT pointer
address

The equipment type code of the EST entry (bits 12-22) describes the

device type in CDC, Display code.

This code identifies the specific kind

of device. It is used to select input/output drivers, regulate device man-
agement, and to identify special file/device relationships. The following

device type codes are defined:

Code

CR
cP
DB
DG
DH
DJ
DX
DY

DZ

GD
LP
L
M1
MT
NE
PR
PP
RD
sC
TH-
TL
P

TU

Equipment Description

L05 card reader

415 card punch

6638 disk

854 disk pack group

821 disk

844 disk pack

ECS page space pseudo-device

854 mount queue reservation
pseudo-device

mountable equipment queue
pseudo-device

252 display

501 tine printer

512 line printer

729 IV tape drive

604 tape drive

null pseudo-equipment

paper tape reader

paper tape punch

private, 854 pack

film scanner

high-speed front end machine

low=-speed front end machine

pseudo-device for tape mounting
control

unit-record front-end machine

6.5

Equipment Class

The input/output devices of the system are divided into two main classes,
mass storage or mountable. In general, mass storage devices are larger, fixed
surface rotating devices such as the 6638 or 821 disks whose usage is managed
by the system. An exception to this rule, the 854 disk pack, is a mountable,
mass storage device.

Mountable devices, on the other hand, are those on which private storage
media can be mounted (e.g., a reel of magnetic or paper tape) and whose usage,
by the sequential nature of the device, is restricted to a single user., Thus
the device is '"assigned' to a user. Again, the 854 disk pack constitutes an
exception to this rule. Its assignment is controlled with the special, disk
pack pointer table (DPT) and TRT reservation bits.

Mass Storage Devices

A mass storage device [s by its very nature a shareable device. In
the Dual MACE system, mass storage devices are shared among system libraries,
queued files, and local scratch files. When a device contains system librar-
ies as well as other, user oriented files, it is also called a system mass
storage device.

The leftmost bit (bit 59) in the EST entry defines the class of a de-
vice. If it is set, the device is a mass storage device, if not, it is a
mountable device. The next bit (58) for a mass storage device indicates
the presence (1) or absence (0) of a system copy on the device. Bit 48,
if set, indicates ‘that the device is shared by both machines of the Dual
MACE. '

A1l mass storage devices located in the first 8 entries of the EST
are made available for general file usage (if on, of course). Space on
these devices is assigned by the system as needed, in units of one logical
track at a time. The size of a logical track depends on the device itself,
but always consists of an integral number of sectors, each of which contain
1005 central memory, 60 bit words. A logical track of the 6638 disk, for
example, contains 49 sectors. Some of the track sizes include:

Devfce Sectors
'DB L9
DG/RD 25
DH 320

- DJ 114

The logical tracks of each mass storage device are regulated with a
track reservation table, TRT. The EST entry for a mass storage device con-
tains a 12 bit address (bits 0-11) of a pair of pointer words which describe
the TRT for the device.

6.6

Mountable Devices

As already noted, a mountable device entry in the EST is identified
by a zero value In bit 59 of the entry word. When the equipment is assigned
to a user, bits 48-56 contain an index to the user, and bit 57 defines whether
the index references a control point or a device request block (DRB).

0f the two types of assignment, DRB assignment is the more flexible,
since it permits the user process to move from control point to control
point without loss of positioning on. the device. Both types of assign-
ment represent a three step process, to be discussed in a8 later section:

1. The user process must identify and request the item to be
mounted (e.g., the tape reel number).

2. An operator must locate the item, mount it, and signal its
availability to the job.

3. The job must be linked to the item through the device.

Driver Parameters

The remaining bits of an EST entry are reserved for the description
of driver parameters related to the operation of the device itself. This
includes the input/output channel, and hardware identifiers such as equip-
ment code, unit code, and connect code,

Equipment Ordinal

Since the position of each device.entry in the EST is fixed, equipments
in the system are always referred to by equipment ordinal. Thus the 6638
disk, described by the third entry in the EST is called DBO3 or simply equip=
ment 03. ' ‘ :

The EST is limited to a maximum of 64 entries (1005 CM words). When
an equipment is assigned to a control point, its assignment is not only
noted in the EST entry, it is also signified by the setting of a bit in
a word in the control point area. The bits in the word, starting from left
(bit 59) to right (bit 0) represent equipment ordinals 4 through 77s. No
bits are reserved for equipments 0 through 3, since they are usually mass
storage devices, and cannot be assigned to a control point.

6.7

T

EST Pointer

The EST is indirectly addressed through a pointer in word ESTP (5)
of control point zero. Byte 0 (bits 48-59) contains the address of the first
EST entry; byte 1 (bits 36-47), the address plus one of the last entry.
Note two important aspects of this pointer: '

1. It can be accessed in an economical fashion by a PP with the
two instructions: :
LDN ESTP
CRD CM

2. The EST must reside entirely below absolute CM address 10000,
because of the 12 bit addressing.

On/0ff Status

The on/off status of an EST entry (bit 23) is altered by CPUMTR. Two
PPU functions are reserved for this purpose: ONEM to turn on a device;
OFEM to turn off a device. A DSD command entry provides access to these
functions from the system console.

Various PPU programs manipulate the on/off status of devices during
their processing. For example, a tape drive (Ml or MT) is turned off until
a tape, released by a job, has been unloaded. This prevents the system from
scheduling the usage of the drive until it is free. As another, example,
the front-end communications processor, 1IM, turns off a front-end equipment
when it cannot establish communication with the machine.

Because the mass storage devices in the equipment range 0-7 are the
basic system allocatable devices, the DSD command processor will not permit
the console operator to turn all of them off. DSD provides other special
equipment management in the form of general displays (the "E''-display),
as well as special displays on which the status of critical devices, such
as the front-end machines, are noted.

ECS Equipment Status Table

Shared, mass storage device entries of the EST are also recorded in
an ECS, equipment status table. Entries of this ECS, EST have almost the
same format as their CMR counterparts. The only exception is the TRT pointer
address (bits 0-11) which is a table ordinal in ECS.

The ECS, EST is LOADed during an ECS LOAD dead-start. During an ECS USE
deadstart, the entries of the ECS EST are compared to the entries of the CMR EST
by the ECS setup program, SXC. SXC notes any discrepancies via a console dis-
play. The ECS and CMR entries must be identical in equipment number, type S
code, channel number, and the first device parameter (bits 36-47).

6.8

File Name/Status Table - FNT/FST

The file name/status table (FNT/FST) is the system file index. Each
two word entry names a file (word one, the FNT word) and specifies the
status of information on the file (word two, the FST word). The table is
addressed by a control point zero pointer word in location four (FNTP).
Byte zero of FNTP contains the FNT/FST first word address (FWA) and byte
one contains the last word address (LWA), plus one.

The FNT Word

Word one of the FNT/FST entry is the FNT word. It has the following
format:

Bits Contents
59-18 Seven character (Display Code) file name
17-12 Special, type dependent flags. Sometimes
called the 'eighth name character."
11- 6 File type code '
5 Interlock flag
L- 0 Control point assignment
The file name may contain one to seven Display Code characters. |t

is left justified with zero fill, and, except for special system files,
never contains any imbedded zeroes or character larger than 555 (space).
Certain system processors may violate these rules in order to generate
files which cannot be accessed by nonsystem programs (e.g., the system
checkpoint file, rollout files, etc.).

The '"*eighth file name character! contains file type dependent parame-

ters. These may have the following values:

File Type Value of Eighth Name Character
Queued Input Non-dual flag - i.e., the job may not be

processed by the ''other'' machine of the
Dual MACE System

Queued OQutput A single, Display Code character denoting
and Punch file origin (e.g., Batch, Console, etc.)
(01,04,05,06)
Rollout (104) Non-dual flag
or
Tape unit request flag
or
Unavailable resource request flag
Local (03) Open/close flag

Delayed job 0583 Delay-end file type (input or rollout)

6.9

The interlock flag is used in two ways. (1) When set for any local
file it indicates that the file may be read but not written. Thus it is
sometimes called a write-interlock or read-only bit. (2) When set for an
input file or queued rollout/input file, it serves as an interrupt inhibit
flag - i.e., it must be set before an interrupt can be set for a CPU program,
and when it is set, the CPU program may not be interrupted.

File Type and Control Point Assignment

There are seventeen file type codes which can appear in bits 6-11 of
the FNT word. The file type code and the control point assignment field
(bits 0-4 of the FNT word) together divide files into two main classes -
queued and local.

Queued Files

Files whose five bit control point field in the FNT word is zero are
called queued files, assigned to the system, or control point zero. The
queue type is defined by the six bit type field:

Type Description
00 Job Input Files
01 Job Print Files
02 Common Usage Data Files
03 Local To The System
oL Hollerith Punch Files
05 Binary Punch Files
06 Column Image ‘Punch Files
10g Rollout (Swap) Files
154 Delayed Job
178 System Common Usage
204 File-index File

The FST word for queued files contains a combination of file status
and job description. Consider the general FST format:

Bits Contents

59-54 Routing Code (''ID')
53-48 Equipment Ordinal
47-36 First Track

35-24 Parameter 1

23-12 Parameter 2

11- 0 Parameter 3

The three parameters have the following significance with relation to type:

Type Parameter | Parameter 2 Parameter 3

00 Job time limit /10g Job FL /1004 Queue Priority

01 Dayfile Track Dayfile Sector Queue Priority
02,165,178 Current Track Current Sector Last File Status

04,05,06 Current Track Current Sector Queue Priority

10g,1538 Remaining Time /10 Job FL /100s Queue Priority

The job routing code ("iD') may be used to identify the source and destination
device of the job. It is usually transferred from the input device (e.g., a
remote card reader) remains through execution, and is then used to route job
output to the appropriate device (e.g., a remote line printer).

-Local Files

Files whose five bit control point field in the FNT word is non-zero
are called local files - local to active jobs at control points. The files
may include most of the queued file types, as well as several others applica-
ble only to local usage. An important change takes place, however, in the name
of some files which can be both queued and local.

When new job input is placed in the input queue (type 00), the FNT name
is called the job name, This job name is one method by which a job is identi-
fied during its passage through the system from input queue to control point
to rollout queue, back to control point, and eventually to the output queue.
When the job is active at a control point, the control point is named with
the job name of the original input file. In addition the rollout file and
all of the job output files carry the job name.

When the job is still in execution, however, the queued files are essen-
tially local files. They carry the various types (00,01,04,05,06) but their
names are selected from the reserved list.

Type Name Contents

00 INPUT Job Input

01 ' QUTPUT Printer Output

oL PUNCH Hollerith Punch OQutput

05 PUNCHB Binary Punch Output

06 PUNCHS8 Column Image Punch Output

When the job terminates, the output files are renamed with the job name
and queued (assigned to control point zero). The input file is released.

- Other, local file types which.may be used by a job include:

Type Usage
03 Local, scratch file
07,11,12,13 Permanent file types

A local file FST entry has the general format:

Bits Contents

59-54 Device dependent parameters
53-48 Equipment number

L7-36 Device dependent parameters
35-24

22-12

11- 0 Last |/0 code and status

When a file is assigned to a disk, bits 12-47 describe the initial and
current position of the file. These fields take on other values for other
equipment types - e.g., the density, mode and record size for a tape file.

The last 1/0 code and status field describes the last 1/0 function directed

to the file and its result (e.g., end-of-file or record encountered). Bit

0 of this field also serves as a reservation control. When it is clear (zero)
the file is in use; set (one), the file is available for use.

TN

PPU Exchange Areas

Each PPU is assigned a separate exchange area. These ten, sixteen word
areas immediately follow the FNT/FST Table. PPU zero is assigned the first
area, PPU one the second, etc. At dead-start time the preset routine of
each PPU resident program sets the PPU exchange address and the CPUMTR, MXN
entry address in the FTN subroutine of PPR.

When a PPU requests agcess to CPUMTR, it rewrites the P, A0, BO word
of its exchange area, and issues a monitor exchange request (MXN). During
the processing of the PPU request, CPUMTR can use information in the ex-
change area for time accounting, CPU switching, etc. |In some cases, CPUMTR
may even exit without the normal, exchange Jump return.

In any case when no CPUMTR activity is in progress for the PPU, the
exchange area always contains the following values:

6.12

Register ' Contents

RA 0

FL Machine memory size

RAX - - 0

FLX Machine, ECS size, and flag register
access code

B1 The PPU, output register address

B7 One

EM 0

Track Reservation Tables - TRT's

. File space on disk devices is organized into and assigned by units called
logical tracks. The track is both a reservation and a positioning unit (see
Mass Storage Proceéssing), since each track number can be uniquely mapped into
a position on the device.

The track number is a twelve bit integer, of which 11 bits (2° through
21%) are the actual track number and bit 2!! is a flag bit. The flag bit
finds usage in distinguishing a track from a sector in the forward linkage
chain of a file. The size of the track number, and the physical capacity of
the device determine the exact mapping of the track to the device.

For example, in the 821 disk unit, which has 32,768 physical tracks,
each of which have 20 sectors, the total number of sectors, divided by the
capaclity of 11 bits (2,048) determines a logical track size of 320 sectors.

2,768 x 20 _

e = 320

Track reservation, linkage and releasing are managed via a table, called
the Track Reservation Table (TRT) and CPUMTR functions. Each mass storage
device in the EST has a separate TRT (maximum = 1000g words), whose size is
determined by the device capacity. The TRT is located, with respect to the
EST entry, via two pointer words, whose 12 bit address appears in the EST
entry word.

The pointer words have the format:

Word. Bits Contents
] 59-36 TRT address
. 35-24 TRT length (in CM words)

23-12 Total available tracks
11-0 Tracks in use

2 59-48 Current position (logical track)
47-36 Number of sectors per track
35-24 Flag register access code, if the

device Is shared

23- 0 ECS track count and TRT address-

While the length of the TRT is determined by the device capacity, the
11 bit range of the logical track number places an upper limit on the TRT

length. That limit Is equal to the number of tracks divided By four (1000s words),

since each 60 bit word In the TRT can reference four tracks:.

Bits the Contents

59-48 0 Track link 1

47-36 1 Track link 2

35-24 . 2 Track 1link 3

23-12 3 Track link 4

11- 8 b Permanent file write access

7- 4 : Permanent flle access (if track
reserved)

Free bits (if track not reserved)

3 Track 1 reservation flag
2 Track 2 reservation flag
] Track 3 reservation flag
0 Track 4 reservation flag
The address of a track word is the TRT first word address plus the 11 .

bit track address divided by four. The low order two bits of the track

address index the byte within the word (0 through 3, left to right). Bits

%-0 s;gnal that the tracks of the word, 1-4 are assigned (if 1) or unassigned
if 0). '

Bits 4-7, the.free bits, form the analog of the reservation bits (0-3).
If a reservation bit is clear, then the corresponding position in the free
bits must be set. Thus if the track represented by byte zero is free, bit 3
will be zero (unréserved), and bit 7 will be set (free). When the track is
reserved, the free bit is used to indicate that permanent file access has
been granted to the track. In any case, the combined use of the reservation
bits Is such that no TRT word can ever be zero. This condition is used by
CPUMTR in performing TRT integrity checks.

6.14

——

The track bytes themselves contain file forward links., The track byte
corresponding to the first track of a file contains the track number of the
next track of the file and so on. The last track of the file will contain
a link whose 2! bit is zero, thus terminating the chain., The value of this
last link represents the sector number on which file EOl is written,

Since files always begin on track boundries, the position of a given
sector of a file can be expressed in terms of its displacement (ordinal posi-
tion) from the first track. Knowing the number of sectors and using the for-
ward linkage of the TRT it is possible to quickly locate the position of the
sector on the device. This forms the basis of the random file capability.

Of course, the primary value of the TRT structure is that tracks and
track chains can be rapidly updated with the CPU. Five CPUMTR functions
are available for reserving and dropping tracks, reserving and dropping
access to permanent files and modifying specific TRT bytes. In particular
when a file is dropped, the TRT chain can be rapidly purged without reading/
writing on the device.

When a disk device is shared, the master TRT for the disk is stored in
ECS. The ECS address in TRT pointer word two locates a track usage count
for the disk, followed by the TRT itself. Whenever a machine wishes to
modify the ECS TRT, it reserves the TRT by setting the flag register bit
indicated in TRT pointer word two,

The ECS TRT is modified by reading it into its assigned CMR area (ad-
dressed in the TRT pointer word one) eight words at a time. The eight word
transfer is performed by CPUMTR in problem mode, and is the maximum data
block which can be moved from ECS to CM without being interrupted by an
MXN or XJ. Once the eight words have been modified in CM, they are copied
back to ECS. The CM TRT which results is always correct for the files active
in the machine, a fact particularly important to random file processing.

When a file is transferred from one machine to another, the TRT of the
disk on which the file resides is refreshed from ECS to reflect the full
linkage of the file. When a rollout file is transferred, all TRT's are
refreshed, in order to move the linkages of all the files indexed by the
rollout file from ECS to CM.

The ECS TRT is loaded from the CM TRT of the machine dead-started with
the LOAD option. During a USE dead-start, the ECS TRT is coplied to CM. In
addition, selected portions of the CM and ECS TRT's are updated during dead-
start (e.g., during file recovery) through the use of a CPUMTR function
(RTCM). Another optlon of the RTCM function is used to refresh the CM TRT
from ECS. '

In addition to the free versus reservation bit consistency test, CPUMTR
performs a number of additional checks of TRT validity. No track dedicated
to the system library may be dropped. No track may be dropped which is not

reserved. No track chain may be extended 1f the previous track Is not re-
served, or is already linked to another track. Finally, no permanent file
track may be accessed 1f the track is not reserved.

Errors detected during these checks are indicated with top-line error
stops. Use of this emergency system stop procedure is nhecessary to prevent
further system failure, and to take advantage of the early warning which
the TRT consistency checks provide.

Equipment Rese}vatfon Table - ERT

The permanent file access bits of the TRT are used to control usage
of permanent files, This method permits controlling permanent files through
available TRT bits, and removes the necessity of storing large, named reserva-
tion tables in CM. The equipment reservation table (ERT) is used to queue
requests for access to permanent files when the TRT permanent file bits indi-
cate that the requested access cannot be granted.

The ERT is addressed by a control point zero pointer in word seven
(ERTP). This word indicates the CM address (bits 36-53), ECS address (bits
0-23) and word length (bits 24-35) of the ERT. The queued entries of the
ERT have the format: '

T

Bits Contents

59 The entry is deleted (no longer in
‘ use) if this bit is set.

58 When this bit is set, the indicated

equipment/track is available and
, reserved for the indicated jJob.
57 The indicated equipment/track is in
: multiple, read-only use by ''count"
(0-11) users.

54 Zero for read access
One for write access

53-48 Equipment

L7-36 Track

35-24 Job address

23-12 Machine number

11- 0 Priority or count

The ERT is terminated by a full word of zeroes.

The equipment/track may represent an actual disk device or the equip-
ment track of a number of pseudo devices - DU, DY and DZ. Equipment DU is
used for reserving user segments of the small-file, permanent file subsystem
(PFILES). DY and DZ are used for regulating access to single device mountable
equipment (DZ) and to device request blocks describing mountable equipment (DY).

6.16

The ERT queue is used by PPU programs through the processing of two,
CPUMTR functions, request device/track access (RDTM) and drop device/track
access (DDTM). These functions effect the setting of the TRT access bits
and the creation or deletion of ERT queue entries. When a job is scheduled
for access to an equipment/track CPUMTR stimulates the addressed job to
re-request and gain the requested access,

The job address may reference an input or rollout file (bit 24 = one)
or a terminal user (bit 24 = zero). |In the first case, CPUMTR raises the
job priority, and the access is completed by a PPU program after the job
reaches a control point. In the case of a terminal user, the terminal proc-
essor program (MESA) is notified via an interrupt flag in the terminal con-
trol block, and access is completed when MESA resumes processing for the
terminal, '

The machine number is used to distinguish the machine of residence of
the addressed job. This field, in conjunction with the storage of the ERT
and TRT's in ECS, is the basis of Dual MACE control of permanent files.
The ERT is moved between ECS and CM in a block transfer. Its modification
is regulated with an ECS flag register bit.

A periodic check of the ERT is performed by request of the PPU program
1RS, repetitive system services. This eliminates the need for system inter-
communication at the release of requested equipment/tracks - i.,e., a released
resource will be assigned to a waiting, ERT entry in the other machine at
the time of the general check, rather than immediately after its release,

~— as is the case in the same machine. The queue priority value is used to rank
ERT entries and thus to prevent one machine from dominating access to a
particular equipment/track.

PPU Program Library Directory - PLD

The PPU program library directory (PLD) indexes and locates the PPU
programs available for system use, The main method of PLD access is the
CPUMTR, search PPU library function (SPLM). The use and actions of that
function have already been described in the discussion of PPU resident.
The format of the PLD is described in that same section.

When an ECS LOAD dead-start is performed, the completed PLD is copied
from CM to ECS by STL, provided that the system disk is a shared device.
When a USE dead-start is performed, STL copies the disk resident and ECS
resident entries of the ECS PLD to CM. The CM resident PLD entries are loaded
from the dead-start tape to CM by STL.

The PLD entries may be altered by the use of a system library editor
program, EDIT. EDIT, in turn uses the PPU program ESL. EDIT permits the
replacement, insertion or aliasing of PPU programs. It also permits altering
PPU program residence. During PLD changes the PLD is reserved by setting the
sign bit of its first entry. When this bit is set, the CPUMTR function SPLM

— returns a repeat request to all callers.

6.17

System, CPU Program Library Directory - SLD —

All control card called programs and their overlays are indexed and located
by the system, CPU program library directory, SLD. These programs include com-
pilers, assemblers, utility programs, overlays,etc. All programs are disk res-
ident. Entries of the SLD have the format:

Bit Contents

59 One

58-18 Seven character, display code name.
The first character must be less
than 5.

17-11 The first disk sector of the program.

10- 0 The first disk track {minus the 2"

track bit flag) of the program.

The SLD entries are not sorted. They are searched sequentially by the two,
PPU program loaders, 2TS (translate control card statement) and LDR (program loader).
The SLD is terminated by a zero word. Entries may be added or modified using the
programs EDIT and ESL.

Dayfile Buffers

The dayfile buffers are used to contain dayfile messages issued for jobs and fc
system logs (e.g., the error log). The buffers are described and managed with the
use of the dayfile buffer pointers, located in low CM, preceding the EST. The PPU
program 1DD dumps the dayfile buffers to disk files. '

During rollout and rollin the job dayfile buffer is copied between CM and the
rollout file. This is necessary, since the dayfile buffers are associated with control
points. Typically a job may use a number of different control points during its
full execution, and a control point may be used for the partial processing of many
different jobs during the time a job is rolled out.

When a job completes, its dayfile, including the dayfile buffer and what has
been recorded on disk, dre copied to the end of the job output file. Bytes two and
three of the output file FST entry give the track and sector address of this dayfile

copy.

Inter-machine Communication Buffers

Together with corresponding ECS areas, the inter-machine communications buffers
permit the transmission of functions and replies between machines of the Dual MACE
System. The buffers are located by a control point zero pointer word (XIBP, word 27s).

Bits 0-16 give the CM address of the buffers. Bit 17 of XIBP is set if inter-machine
communication is disabled. Inter-machine communication is also disabled if bits

0-16 are zero - i.e., no buffers were allocated by virtue of the dead-start type

(no ECS table LOAD or USE).

The first two words addressed in XIBP are the "'IN'" and ""OUT" buffer pointers.
The "IN'" pointer describes the buffers in which the machine receives requests from
the other machine. The machine transmits function requests .in the "OUT' buffers.
The buffer allocations are reversed from machine to machine - i.e., the "IN'" buf-
fers of one machine are the '"OUT" buffers of the other. The two pointer words have
the format:

Word Bits ' Contents
1 41-24 CM address of the ‘'OUT"
buffers
23- 0 ECS address of the ''OUT"
buffers
2 41-24 CM address of the ''IN"
‘ buffers
23- 0 ECS address of the '"IN"
buffers

These pointer words are followed by two sets of eight word blocks, the "'IN"
and "'OUT" blocks. Each block has a single, fixed format header word, and seven words
used for transmitting function dependent parameters and replies. The header word
has the format:

Bits Contents

59 Set if the block is active

58 ' Set if a reply is waiting to
be transferred

57 Set if function processing is
in progress

56-48 Assignment status (PP output
register address)

47-36 Address of assigned job (FST
address or 2%(TCB number
plus one).

17- 0 Function or reply status

The function blocks are transmitted between CM and ECS by MTR and CPUMTR, based
on the status of the header word fields. The PPU programs jRS and ICP initiate
function requests and form replies. ‘

CPU Monitor (CPUMTR) Code

The relocatable code of CPUMTR is stored in central memory during dead-start
by the PPU program SET. SET reads the relocatable code from the dead-start tape
stores it in CM, relocates all addresses to their correct values and starts the
CPUMTR preset routine.

6.19

In addition to normal, start-up activities, CPUMTR also constructs control point
zero pointers to a number of system tables stored within CPUMTR. These tables
include the mass storage allocation table, file blocks, the. PPU delay stack,

the channel reservation table, the error log table, the flag register reservation
table, and the CPU request queue.

Mass Storage Allocation Table

The mass storage allocation table is used by the CPUMTR function request mass
storage space (RMSM) for the assignment of disk space to files. The one word
entries of this table have the format:

Bits Contents
59 If set the device is not available

17-0 Channel

There are eight entries, one corresponding to each of the eight possible allocatable
disks, equipments zero through seven. A zero entry signifies that no device is defined.

File Blocks

Each terminal control, MESA control point is allocated a block of 30s files in
the FNT/FST table. AIll files used by a terminal controlled by MESA are allocated to
the file block area. When a terminal is interrupted and its control information
is swapped to ECS, the entire 305 entry file block is also swapped A free entry in
the file block has the format:

WOrd' Bits Contents

1 ' 59-54 Zero
53-48 164
47-12 Zeroes
11- 6 164
5 One
4- ¢ Zero

2 59- 0 Zeroes

CPUMTR maintains a file block control table. |Its address is stored in control
point zero word 455 (FBTP), bits 36-53. The file block control table contains 26
entries, one for each possible control point. Each entry has the format:

Bits Contents
59-48 FNT address of block assigned
: to control point
47-36 FNT 1imit of block
35-24 Free entry indicator (e. g- , 0016g) o~
11- 0 Free block address

6.20

A free block may be addressed in any control point table word. It
is signified by an address in bits 0-11 and zeroes in bits 48-59. When
a block is assigned to a control point, the word for that control point

contains the block address (non-zero) in bits 48-59 and zeroes in bits
0-11.

The PPU Delay Stack

The PPU delay stack contains the input registers and recall times of
PPU programs which have voluntarily surrendered execution for a fixed
time interval. Bits 0-17 of control point zero word 424 (PPUP) carry
the address of the PPU delay stack. Bits 0-59 of control point zero word
43, (PRTL) indicate the time at which the next entry of the stack is to
be reactivated. PPU monitor uses PRTL to stimulate CPUMTR to activate
that entry.

The PPU delay stack consists of two, forward linked lists. CPUMTR
carries two pointer words, one pointing to the top active entry; the other,
the top free entry. The delay stack is empty when the active pointer is
zero; full when the free pointer is zero. Each delay stack entry consists
of two words of the following format: :

Word Bits Contents
1 18-59 Time of recall in milliseconds
times four
17-.0 Forward link (zero if end of
chain) .
2 © 59-0 The PPU input register

CPUMTR may also place entries in the PPU delay stack when a CPU program
requests access to a PPU program (via an RA+l or XJ call) and there is no
pool PPU available. |In that case, CPUMTR adjusts the CPU status of the job
to reflect the status of the PPU call (e.g., "R" rather than "I'") and enters
the PPU with a time of recall equal to the current time.

Channel Reservation Table

All hardware and software channel control passes through CPUMTR., A
channel table, addressed in bits 0-17 of control point zero word 455 (CHTP),
reflects channel table status. Each hardware or software channel has the
one word format:

6.21

Bits Contents

59 Set if a request is pending for an assigned
channel o
11- 0 The output register address of the PPU to

which the channel is assigned
A channel is unassigned if the entire word is zero.

When CPUMTR detects a request for a reserved channel, it sets bit 59
of the channel table word. Depending upon its processing mode, the PPU
program to which the channel is assigned may occasicnally test bit 59, and
release the channel if the bit is set. PPU programs of the BATCHIO, card-
reader, line-printer, card-punch driver subsystem share the device channel
in this fashion. When a channel is dropped CPUMTR assigns it to the next
PPU in round-robbin fashion, thus evenly distributing channel access.

There are twelve hardware channels, 0-13s, and two software channels
which are allocated entries in the channel table. Software channel 1hs
(TBCT) is used to reserve portions of the terminal control block table
(TCB). Software channel 155 is used to reserve the FNT/FST table for
manipulation of queued files. Non-queued files are managed with the set
file busy (SFBM), CPUMTR function.

The Flag Register Reservation Table

A PPU may reserve and clear flag register bits with the ECS transfer
(ECSM), CPUMTR function. The flag register reservation table contains
one word for each PPU, indicating the flag register bits reserved for
the PPU. The table is addressed in bits 18-35 of control point zero word
275 (XFRP). :

When a PPU program reserves flag register bits, the reservation is
noted in the table. When it clears the reservation, the table bits are
cleared. |If a PPU program drops usage of the PPU (terminates or enters
delayed recall) without clearing the reserved bits, CPUMTR uses the table
entry to automatically clear the reserved bits.

The CPU Request Queue

The assignment of a CPU to a control point program is controlled by
CPUMTR using a CPU request queue. The CPU request queue consists of three
tables, a linked, control point list and two pointer tables.

Each pointer table contains an entry for each possible CPU priority,
zero through four. There is a head pointer table and a tail pointer table.
A given queue is empty if the pointers are zero. The control point, linked

6.22

T e TR e Thw

e v e W

list contains one word for each control point, including the CPUMTR problem
mode control point, N+1. Control point entries of equal priority are linked
together. The pointer tables have the same format - bits 0-17 comtain the address
of the head or tail entry in the control point list. Entries of the control
point list have the format:

Bits Contents'

59-42 Control point address
35-18 CPU priority

17- 0 Link to next entry

When the CPU is requested for assignment to a control point {(e.g., by a PPU
program), the CPU status of the control point is set to 'W' and the control point
is entered in the proper queue. CPUMTR selects the next control point for
assignment by searching the queues in order from largest to smaliest, stopping
at the priority of the current CPU user or zero, whichever applies.

The Installation Area

The installation area was originally designated by the MACE designers to
provide space for installation dependent tables. As the structure of the Purdue
system has evolved and grown separate froma ''standard' MACE system (now called
KRONOS) the original meaning of the title has lost all significance. A more
appropriate title for this area should be indirect tables, since the area is
devoted to tables whose addresses are formed by adding a displacement value to
the address of the installation area. That address is located in control point
zero word 125 (INSP), bits 36-53.

The tables of the installation area include, in order, the disk pack
pointer table, the 1RS table, the system status line, the device request blocks,
the permanent file device table, the queue priority weight tables, the job
scheduler, category tables, and the stack processor 1/0 stacks.

The Disk Pack Pointer Table - DPT

The disk pack pointer table (DPT) is used to control the mounting and usage
of private, 854 (RD) permanent file packs. |t contains six (NDPC) entries and
starts at displacement zero (DPTi) in the installation area. Entries of this
table, whose usage is controlled by the reservation of channel 155 (FNCT) have
the format: .

Bits) _ Contents

59-18 Pack name

11- 6 Equipment number of RD device
on which the pack is mounted

5 If set, the pack has been logically
dismounted

k- o A count of the number of jobs

using the pack
6.23

The 1RS Table

The system repetitive services PPU program, 1RS, uses a four (RSTC) word
area to store the times which regulate the activities of 1RS. The table begins
at displacement 61 (RST1). It has the format:

Bits . Contents
239-216 Time one
215-192 Time two
23- 0 Time ten

The System Status Line

The dynamic display driver, DSD, maintains a set of basic system displays
at the top of each of the two display screens of the system console. Among
the items displayed at the top of the left screen is a line which describes
the status of various system flags, counts and switches [8]. This line is
constructed by 1RS once every four seconds and stored in the installation area
in three words, displaced 655 (SSL1) words.

The Device Request Block Table - DRB

During the time that a user process is waiting for an operator to locate a
medium (e.g., a reel of tape), mount it, and associate its equipment to the job,
it is most economical of system resources to queue the job on a mass storage
device. Only as much information as is necessary to identify the medium, the
job and the file to be assigned need be kept in central memory.

The entries of the DRB table perform this function. Each four word entry
contains space for linking a job to a file/equipment request, and receiving a
mount indication from the operator. DRB's may be linked together to process
parallel requests, (e.g., two tapes). ‘

The DRB contains 16 (NRBC), four word (LRBC) entries. It is displaced
1545 (DRB}) words from the beginning of the installation area. The DRB is
associated with the requesting job by the address of the job entry in the file
status table. It is associated with the equipment by the equipment ordinal,
and the equipment in turn is associated with the DRB in the EST entry.

The contents of the DRB's may be displayed on one screen of the system
display console. The DRB display informs the operator of requests, and through
the display driver program, DSD, the operator keys entries to indicate the
assignment of requested devices.

6.24

In the case of parallel requests, the job is queued (rolied-out)
until all requests have been assigned. At the entry of the last assign-
ment through the keyboard, DSD makes the job eligible for processing again
(roll-in). '

The Permanent File Device Table

The permanent file device table contains an entry for each fixed
device which contains permanent files. It contains a maximum of 124 (NPFC)
entries, one word per entry. It is displaced 254g (PFT!) words from the
beginning of the installation area. Each non-zero entry has the format:

Bits Contents

59-48 Device equipment number

4L7-36 First track of device directory
35-24 Number of sectors per directory

The Queue Priority Weight Tables

Job execution queue priorities are periodically re-evaluated by various
PPU program job processors - the job scheduler, the job rollout program, etc.
These programs use a common routine ''CQP'' to compute the twelve bit queue
priority. CQP, in turn uses a 265 (QPWC) word table, stored in the in-
stallation area at a displacement of 3303 (QPWI) words to compute the queue
priority. This table has the following format: .

Word - Bits Contents
] 59-48 Zero when the table is
not defined

47-36 "First-pass'' limit
35-24 Minimum queue priority
23~12 Maximum queue priority

2 59-54 Parameter index

. 53-48 Test index

L7-36 Increment value
35-24 Shift instruction
23-12 Test value

Additional, 48 bit fields
of the above format

6.25

The .parameter index, test index, increment and shift value combine to des-
cribe the manner In which a job parameter (e.g., CPU time used) Is to be
tested against the test value (e.g., greater than ten seconds), and the
action to take if the test is true - add the increment and the ''shifted"
(e.g., times 1/2, 2, etc.) absolute difference ltest-value-parameterl to
the[q?eue priority. The use of the queue priority tables is fully described
in (9].

Job Scheduler Category Tables

The job scheduler category tables control the manner in which the
system job scheduler PPU program, 1SJ, assigns jobs to control points for
execution. These tables occupy 15 words of the installation area, starting
at displacement 357s (JSCI). The tables have the format:

Word Bits Contents

1 59-48 Zero If the tables are not
defined

2- 3 119- 0 Ten queue priorities, ter-
minated by a zero byte

k- 5 119- 0 Nine job limit bytes

6- 7 119- 0 Nine candidate table limits

8- 9 119- 0 Nine FL limits

10-11 119- 0 Nine control point counts

12-13 119- 0 Nine candidate counts

14-15 119- 0 Nine FL usage values

The fourteen words, 2-15, form a nine by seven array of twelve bit values.

The first column defines nine queue priority ranges. The remaining six
columns control or describe scheduler activities related to the queue priority
classes.

Briefly, the job scheduler will consider the specified number of candi-
dates in each category for execution. It will schedule no more than the
specified number of control points and FL to the category. Columns 4-7
of the ?rray carry the current category statuses for DSD display (the 'W"
display).

Terminal Control Blocks - TCB's

The terminal control blocks manage all remote 1/0 activity. The TCB's
are manipulated by the inter machine stack processor PPU program 1{M, and
by CPUMTR. The three word TCB has the format:

6.26

Word Bits Contents

1 : 59-48 Device mode flags - on,
' © off, etc.
47-36 Alias - a link of one
TCB to another
35-24 Device physical status -
e.g., end-of-reel, etc.
23- 0 Logical status flags
2 Swapping controls
59 Word interlock
58-54 Page residence - ECS,
active, etc,
53-48 MESA processor index (e.g.,
PIRATE, ALFIE, etc.)
47-36 Swap cause - 1/0, time, etc. -
and page sector size (if
on disk) .
35-24 MESA directive function
23-0 Page residence address in
ECS or on disk
3 59 Class ID flag for batch
~ devices
58-42 User ID or class, ID routing
code :
L1-36 Logical interrupts pending -
message, etc.
35-24 Interrupt enable mask
23-12 Alternate TCB user job FST
address
11- 0 Current TCB user- job FST
address

The Input/Output (1/0) Stacks

Control of input/output devices which are clustered on single channels -
the 604 tape units and the PROCSY 2.0 front end processors - is managed using
1/0 stack processors. The tapes are managed by ITF and the front end proc-
essors are controlled by 1IM. An 1/0 stack area is reserved for each control
point area, in which requests for 1/0 activity are placed, and from which the
stack processors select operations to be performed.

Each 1/0 stack is eight (JLDC) words long. The first /0 stack is dis-
placed 4004 words (JSC|) from the beginning of the installation area. There are
N+2 stacks, one for each control point, 1- N, and two for control point zero
and control point N+1, An |/0 stack has the format:

6.27

Word Blts Contents

I 59-58 A two
57-48 Entry count
47 Buffer actlvity flag
24 Stack processing suspended
' if set
23-18 Suspended operation count
17- 0 Active operation

2-7 Stack entrles

There are a number of different stack entry formats, depending upon the
processor, function, and processing status involved. A normal, 1/0 operation
entry has the format: '

Bits Contents

59 Set if entry active

58 Set if entry suspended pending the completion
of other activity (e.g., the rewinding of
a tape)

51 Operation continued, if set n

50 Operator pause in effect (e.g., after a parity
error failure) ‘

L9 End of reel, If Set

L8 Parity error, if set

Ly-47 Processor dependent

41-36 Processor Index (1TF or 1IM)

35-18 Operatlion count

17 File operation, if set

16- 0 File FET address in job FL

Other entry formats describe 'special (non 1/0) request, suspended operation,
and special system request processing. '

The MESA Library Directory = MLD

The MESA library directory, MLD, indexes and locates programs of the
MESA, CPU program system. A special llbrary is required because of the
unique structure of MESA. Briefly the structure is such that every processor
is actually an overlay to MESA. When any processor is requested (e.g., via
a control card) MESA is loaded and in turn loads the required overlay. The
MLD has the format:

6.28

Word ~ Bits Contents

0 54-48 Disk equipment for MESA
47-37 Disk track for MESA minus
‘ bit 2"
36-30 Disk sector for MESA
1 } 59-48 Program, ECS track in
equipment DX
k7437 Program disk track, minus
bit 2"
36-30 Program disk sector
29-18 Number of entry points
17- 0 Link to next main program -
2 59-18 Main program name
i7- 0 Usage count
3-m Alternate entry point
names
n+l 59-48 Segment ECS track
L7-37 Segment disk track
, 36=30 ‘Segient disk sector
n+2 59-18 Segment name
17- 0 Usage count

The MLD is organized such that an entry for a main program (e.g.,
PIRATE) Is always followed by entries for Its overlays or segments, if any.
The linkages of the MLD are set such that a processor, searching for a main
program, can skip from one main program entry to the next without examining
the segment entries. In addition, the position of each main program and
segment are translated into six bit program indices which are stored in the
TCB and the MESA, data page. These indices assist In the efficient reload-
ing of code segments when a terminal Is swapped in for execution.

Special TRT's

A number of special TRT's .are used in the Dual MACE system to enable
control of resources through TRT-like structures. These include DU, small
permanent file (PFILES) control, DX, ECS page space control; DY, DRB reserva-
tion control; and PZ, single device, mountable equipment control.

Small Permanent Files TRT - DU

The PFILES, permanent file subsystem provides an efficient method of
managing permanent file storage, by artificially segmenting one or more
extremely large permanent files (up to 131,072, 640 character sectors) into

6.29

a large number of user oriented sections. Each section is associated with
a device called a user data block (UDB) which is uniquely identified by
user assigned parameters - account code, user identifier, and password.

To the user, each UDB section appears as a fully indexed file storage
system. To the operating system, it is a number of randomly distributed
data sectors stored within one or more large files. PFILES provides user

access to information stored in the system by copying data between the large
file and local files via "GET''s and 'PUT''s.

Access to an individual, UDB section is controlled by a three character
(A through 5) code and the DU, TRT. PFILES accesses a UDB with a standard,
RDTM call to CPUMTR. The equipment type causes CPUMTR to process the func-
tion in a special fashion. The TRT for DU is considered a list, containing
one access per word. A word takes the form:

Bits Value

59-36 The three character identifier
35-24 The job address

11- 4 Permanent file access flags
3-0 175 (all tracks reserved)

CPUMTR searches the TRT for the indicated UDB. [f none is found, a
new entry is made, and the permanent file access flag is set for track byte
zero. If a reserved UDB is located, the caller is placed in the ERT, queued
for access to the reserved equipment track. Track 4003s is used when the TRT
fills: the caller is queued on access to 40034, and the next PFILES process
which releases a UDB, tests the 4003s queue, and releases access to 4003g,
thus stimulating the PFILES calls which require UDB space.

ECS Swap Space TRT - DX

ECS swap space is allocated in this TRT-like table. Each track represents
2005 words of ECS displaced from the beginning of a fixed ECS address (stored
in the EST entry) by an amount equal to bits 0-10 of the track number, times
200g. Thus the DX equipment allocates 4000g times 200g words of ECS -
10000005 or 262,1h44y,.

One DX track is linked to another via the linkage byte feature of the
TRT. The last track lacks the 2'" bit in its link, the link value instead
indicating the number of words less than 200g allocated at the end of the
chain.

6.30

In order to improve the speed of access to these relatively small units
of ECS space, tracks are allocated from a free chain, rather than with the
standard TRT management facilities. This allocation function is available
to the MESA control point programs through special XJ function calls. PPU
programs may access the functions with the ECS paging services function
~ (XSPM) to CPUMTR.

The DRB Reservation TRT - DY

The DY TRT is used to queue requests for the mounting of a private,
854 (RD) pack behind a single device request block (DRB). Each of the six-
teen tracks of this TRT represents a DRB. When the permanent file process-
ing PPU program, PFM, detects that a request for the mounting of a pack is
already receiving attention via a DRB, it queues the requestor in the equip-
ment reservation table (ERT) using the DY equipment, and the corresponding
DRB track.

When the pack is mounted and assigned the original requestor drops
access to the DY track and the other requestors are rolled in to share ac-
cess to the pack. [If access cannot be shared, the requestors are then
queued in the ERT for access to the equipment and track of the mounted pack.

Single Device, Mountable Equipment Control - DZ

The queueing of requests for all single device, mountable equipments
is managed with the TRT of equipment DZ. These devices include paper tape
equipment, plotters, film scanners, etc. Only one device of each type exist

Each device is assigned a track in equipment DZ corresponding to the 11
bit equipment code - e.g., PR (2022), SC (2303), etc. Requests for the
equipment are queued in the equipment reservation table (ERT) on equipment
DZ, and the equipment code track. The DZ TRT is actually not used. |t is
allocated one word for consistency with all other TRT's and CPUMTR handles
DZ requests in a special fashion not involving the TRT.

Resident PPU Library - RPL

Central memory resident PPU programs are stored in the resident pe-
ripheral library (RPL). These programs are generally located in CM because
of their access frequency. They can be moved to PPU memory with a single,
block read.

S.

6.31

Each program of the RPL begins with the standard PPU program header
word of the format:

Bits Contents

59-42 Program name

35-24 PPU load address

23-12 Optional checksum, used for
DSD overlays

11- 0 Central memory word length

An extra word separates each program of the RPL. This word is allocated
in order to make the loading of CM and ECS programs the same operation for
the PLL subroutine of PPU resident. |In that operation the PPU reads a CM
block using a word count and address supplied in the SPLM, CPUMTR function
reply. The PPU then sets the next CM word non-zero. The latter operation
is a signal to CPUMTR that the CM segment used for reading the PPU program
from ECS is free for other use. The write operation has no significance when
the PPU program is in the RPL.

User Program Space

The remainder of central memory is allocated to user programs, assigned
to control points. The amount and location of the memory allocated to each
control point is indicated in the field length (FL) and reference address
(RA) stored at each control point and in the exchange packages (areas). PPU
monitor manages this space, moving it about as required with CPUMTR assist-
ance and by manipulating RA values to reflect these movements. Memory move-
ment is performed by CPUMTR in problem mode at control point N+I.

RA

. A basic structure is assigned to the first 100s words of the memory
assigned to each control point. This area is sometimes called the ''SYSTEM!
area. The word at (RA) plus zero, also called RA, is used to receive system
information such as sense switch entries, etc., and for exit mode control.

When an automatic CPU error exit is permitted to occur (as defined by
EM, the exit mode register) the CPU stores exit information in RA and stops
with the instruction counter, P, set to zero. MTR and CPUMTR can detect
this condition and initiate error processing.

6.32

RA+1

The location (RA) plus one, RA+1, is used by a control point, CPU
program to request system activity. The program stores the request in
RA+1, and RA+1 is cleared when request processing has been activated (no
auto-recall), or completed (auto-recail). This function can also be per-
formed far more efficiently with an exchange jump (XJ) function request.

The RA+1 call takes the form:

Bits Value v
59-42 CPUMTR request or PPU program name
Lo Auto-recall request, if set

35- 0 Request parameters

CPUMTR recognizes a number of special requests and performs immediate
processing on them. These include:

ABT End the CPU and set the CPU abort
error flag

CCR Conditional CPU recall

clo Intercept stack processed 1/0 calls.

All others are passed to the PPU
program Cl0,

END End the CPU

RCL Recall the CPU (see the X status
' discussion)

MSG Process a message

TIM Return time value

A1l other values in bits 59-42 constitute PPU program calls. The program
name must begin with an alphabetic character. CPUMTR assigns a PPU to exe-
cute the program by replacing bits 36-41 of the RA+1! word with the control
point number and placing the word in the input register of an available pool
PPU. If none are available, the entry is placed in the PPU delay stack.

If the delay stack is filled, or if there are already four entries in the
stack for the control point, the control point CPU status is set to X and

RA+1 is left unchanged. For an XJ call, the only variation is that the call
word may come from RA+l, any word in the central point area, or any X register
of the control point exchange package.

When the auto recall request bit (40) is set, the CPU.is not returned
to the control point until the PPU program has completed. RA+1 is used to
contain the program location - PPU output register address or delay stack
address. '

6.33

A call to the PPU program CIO receives special treatment. CPUMTR
locates the FNT/FST entry referenced by the controlling FET (its address
Is in bits 17-0 of the CI10 call). |If the file Is assigned to a stack-
processed equipment - Ml, MT, SC, TH, TL, TU -~ CPUMTR makes a dlrect stack
entry and activates the appropriate stack processor. No PPU is assigned
to the CIO program call., |If the equipment is not stack processed (or no
FNT/FST is located) a PPU is assigned to execute CI0.

RA+2 - RA+77¢

The remainder of the system area is used to convey program load Informa-
tion. Words RA+2 through RA+63s are a parameter list area. Word 6kg is used
for program name and parameter count. Words 65g, 664, and 675 contain various
load addresses - e.g., the last program space address, loader bits, etc. Words
70g through 775 contain the control card which caused the program load.

The remaining assigned FL is available for any legitimate program usage -
code, tables, buffers, etc. The program may also use RA+2 through RA+774
if required. RA may be used, but s vulnerable to entry of system flags,
as already noted. '

6.34

Files

A file in the Dual MACE System is a structured information set. Files
are used in almost every aspect of system processing. An understanding of
their structure and processing is an important key to an understanding of
the manner in which Dual MACE assists in the management of computational
tasks (jobs). '

The basic unit of a file is the central memory (CM) sixty bit word.
CM words may be grouped into coded (character) images or binary, random
length units. These word groups may be grouped into records, and the rec-
ords into files.

A coded (character) image is a character string in CDC Display Code,
six bits per character. It may contain a variable number of CM words.
Imbedded zeroes (six bits) are avoided. Usually the characters occur in
multiples of two, and trailing blanks (spaces) are removed. The last word
in the string contains zeroes in bits 0-11 of the word. |t may be entirely
zero (bits 0-59) or consist of zero, right fill in bits 12 through 54,

Binary data may be found in variable length units. In a large number
of cases, table header words specify the type and length of the binary data
[10]. In all cases, the first level structure of binary data is controlled
by its content or by the programs processing the data.

CM words, in either coded or binary form, may be organized into records.

A record is signified by the presence of an end-of-record (EQOR) flag. A
record may be null - i.e., contain no data words. The EOR flag may vary
with the medium. On disk it is a sector with a control byte word count
less than 64, On cards, it is supplied by a separate card with rows seven,
eight and nine punched in column one.

CM words, with or without EOR organization, may also be structured
into files. Again, a special separator is used - the end-of-file (EOF)
flag. An EOF flag may terminate a null amount of data. Usually it follows
an EOR, thus signalling the end of a group of records. On disk, the EOF
flag is a sector with a zero link control byte, and a non-zero word count
control byte, which contains the forward linkage usually contained in the
link control byte. On cards, the EOR is supplied by a separate card, whose
first column contains punches in rows six, seven and nine.

An information set, or file, is the entire collection of these groups -
words, records, and files. The entire information set is terminated with an
end-of-information flag (EOI). On disk, the EOl signal is a sector both of
whose control bytes are zero. The EQI card is one with six, seven, eight
and nine punches in column one and none in column two.

N

Writing and Reading Files

The writing and reading of files is a PPU task, since only the PPU's
have access to the data channels. The type of PPU program used to process
a file, and the manner in which the program is invoked, depend to a large
extent on the medium on which the file is recorded. The PPU resident area
contains provision for disk file processing. The processing of other
media (e.g., magnetic tape), is usually left to specific programs (e.g.,
the tape stack processor PPU program, 1TF), or in some special cases, to
code local to the PPU program. In the latter case, programs of the dead-
start sequence - DSS, SET, STL - contain tape input processing code for
reading the dead-start tape.

Each PPU program which uses the resident disk drivers to write or read
a file must follow the general rules for specifying the file organization
in the sector control bytes. As each sector is formed, the PPU program
stores the file linkage and sector length information in bytes one and two
of the 322 byte sector buffer in PPU memory [(64 CM data words times five)
plus two control bytes]. The PPU program supplies the buffer address and
disk address (logical track and logical sector) to the disk driver, which
records the 322 bytes at the addressed location.

The PPU program which writes a file using the resident disk driver
must also contend with space reservation and disk positioning. Space is
reserved using the request track (RTKM) function of CPUMTR. As the file
lengthens, track by track, the sector linkage bytes and the TRT linkage
bytes both reflect the forward file linkage. In addition, each time the
PPU program records a new EQI sector, it must update the last TRT linkage
byte, using the partial drop option of the drop track (DTKM) CPUMTR func~-
tion. Before using the disk driver to record the first sector of a new
logical track, the PPU program must execute the disk driver subroutine
POS, in order to insure that the disk is properly positioned.

The resident disk driver may also be used to read sectors of a file.
In that case, the driver moves 322 bytes from the addressed disk location
to the specified PPU memory buffer. The calling PPU program then uses the
control byte contents to discover the organization of the file, sector by
sector,

Direct, PPU to disk and disk to PPU file processing is used for both
system and CPU- program input/output. The system 1/0 functions performed
cover a wide range of activities - CPU program loading, rollout/rollin,
various levels of job control, and, of course, CPU program |/0 services.

7.2

TN

CPU Program File Processing - The FET and CI10

The processing of files for CPU programs is directed by a central
memory table, resident in the job field length, called the file environ-
ment table (FET). The FET contains a wide variety of parameters [11]
describing all aspects of file manipulation. Basically, however, the
FET describes to the |/0 processing PPU program the name of the file,
the type of 1/0 processing required (function), and a description of the
CM data buffer (location and length).

The PPU program Cl0 (central input and output) performs almost all
CPU program file processing. The CPU program employs Cl0 in a three step
process.

1. Data is entered in the CM buffer (write), and the buffer
pointers are positioned to indicate buffer status.

2. The CPU program stores the file name and 1/0 processing
type in the FET. The processing type is specified by an
even numbered function code.

3. The CPU program calls ClI0 via the RA+l or XJ request mecha-
nisms. When Cl0 has performed the requested operation it
replies by moving the buffer pointers and setting the func-
tion code odd. CIl0 may also return flags to indicate EOR,
EOF and EOIl status conditions (read).

The FET location is transmitted to CiQ in bits 0-17 of the PPU call.
The FET has the following general form:

Word ‘Bits Value
1 59-18 File name
» 17- 0 Function code and status reply
2 17- 0 The address of the first buffer
word =~ FIRST
3 17- 0 The address of the next input
word - I[N
4 17- 0 The address of the next output
word - OUT
5 59-48 Last known FNT address
17- 0 The address of the last buffer

word plus one - LIMIT

The FET contains a number of other parameters, defining additional words
used for random file processing or other special file operations (e.g.,
random positioning).

The FET describes the transfer of data to and from the file. The
residence, position and current status of the file are described by a two
word file name table (FNT) and file status table (FST) entry. The FET and

7.3

FNT/FST entries are linked together by the file name, and the control point
to which the CPU program (hence the file) are assigned. In order to facili-
tate the location of the FNT entry at each CI0 call, the FET carries the
last known address. - Since the FNT address can change as the job is rolled
out and in, €10 uses the last known address as an estimate only.

The buffer pointers describe a CM block which is used for data trans-
fer in a circular fashion. Data is input to the buffer, starting at IN and
ending at OUT minus one. Data is output from the buffer starting at OUT
and ending at IN., Whenever either pointer reaches LIMIT, it is reset to
FIRST.

A CPU program processes input data by removing it at OUT, and signifies
that a word has been processed by advancing OUT until it reaches IN. |[f
OUT reaches LIMIT, it is reset to FIRST. When IN equals OUT, the buffer
is empty, hence the file input processors terminate at IN minus one. A CPU
program enters output data at location IN, and then advances IN to indicate
the presence of data. Again, the CPU program avoids setting IN equal to
OUT (empty buffer) when placing data in the buffer.

The function codes which direct the activity of CI0 have some general

characteristics. The function codes are even numbers, twelve bits in length.

Bit zero is the busy (zero) - not-busy (one) flag. Bit one indicates the
mode for special media such as tape - zero for coded, one for binary., Bit
two is clear for read operations and set for write operations. Function
numbers less than L0g are read/write functions.

When C10 replies to a read function request, it uses three bits of
the function field to indicate the presence of file organization flags
encountered while transferring data. Bits three and four are set to 10,
to indicate an EOR; to 11,, an EOF. Bit nine is set to a one, and bits
three and four to 11, to indicate an EOI.

The values contained in these twelve function field bits form the last
code and status field of the FST entry. Bit zero becomes the FST word
reservation control (busy if zero, not busy if one). The remaining bits
reflect the last /0 function performed on the file, and its resulting
read status (EOIl, EOR, EOF).

Cl0 performs very few functions itself. Instead, it serves as a
housekeeper for specialized device driver overlays. At start-up, Cl0
verifies the FET contents, locates the FNT/FST entry for the file, and
establishes various pointers to the FET and the buffer. Then Cl0 loads
the appropriate device driver, as indicated by the function, the FST equip-
ment number, and the equipment code of the EST entry. The driver performs
the /0 operation, updates the FET buffer pointers and returns to CI0.

The Cl0 clean-up consists of releasing access to the FST entry, setting
the FET function complete, and updating the job, 1/0 transfer count. All
communication between CI10 and the drivers takes place via direct cells.

7.4

FNT/FST Entry Management

One of the most important start-up activities of CI0 is the location
and reservation of the FNT/FST entry of the file. |In the process of per-
forming this task, CI0 makes use of CPUMTR and two PPU overlays. The CPUMTR
function is set file busy (SFBM). This function permits Ci0 to request a
search of the FNT for the specified file, and its reservation, if possible.
Cl10 supplies the file name to CPUMTR; the SFBM function response returns
the file status (reserved or not) and FST address, if reserved.

If CPUMTR cannot locate the file, C10 loads its service overlay, 2CS.
The linkage between CI0 and 2CS is so constructed that the overlay 2CS is
loaded the first time that CI0 references any subroutine of 2CS. Subsequent
calls to 2CS subroutines are linked directly to 2CS. The routines contained
in 2CS are those required on an infrequent basis (once in every twenty Cl0
calls on the average). Their location and method of reference in 2CS greatly
reduces Cl10 load time.

2CS contains a subroutine for creating a new FNT/FST entry. CIl0 uses
this subroutine when the SFBM reply indicates that no entry exists. For
certain functions (e.g., the releasing of an FNT/FST entry) for which the
creation of an entry would be redundant, 2CS simply returns to Ci0. When

. an entry must be created, 2CS loads the location-free (zero-level) routine

@BF, begin file. 2CS supplies the file name and special parameters to @BF
in direct cells.

Entering New Files - @BF

@BF searches the FNT/FST table for an open slot (zero FNT word) and

creates the requested entry. |If a file block is assigned to the control
point of the Cl0 user, @BF locates the file within the 30g entry file block
assigned to the control point. In the latter case, the free entry is signi-

fied by an FNT entry with 00165 in byte zero, zeroes in bytes one, two and
three, and 1640g in byte four. :

@BF sets the file type in the FNT word to 3 (local) unless the file
is named INPUT (type = 0), OUTPUT (type = 1), PUNCH (type = L), PUNCHB
(type = 5), PUNCH8 or P8 (type = 6), or ROLOUT (type = 10s). @BF will
request a track for the file if the equipment is specified in the calling
parameters, or if the file type and mass storage allocation word correspond.
The mass storage allocation word (MSAL) is stored at location 173s in con-
trol point zero. In can be used to direct all files of a specific type to
a specific mass storage device. It has the format:

7.5

Bits Value

59-48 - Local (3) file equipment in bits 48-53,
if the byte is non-zero.
L7-36 Input (0) file equipment in bits 36-41,
: if the byte is non-zero.
35-24 Output (1) file equipment in bits 24-29,
if the byte is non-zero.
23-12 Rollout (10g) file equipment in bits 12-17,

if the byte is non-zero.

@BF interlocks access to the FNT/FST using the software FNT channel, 155 (FNCT).

Releasing Files - @DF

Cl0 uses another location-free (zero-level) overlay to release files -
@DF, drop file. Again, C!0 passes parameters to @DF in direct cells. The
processing of @DF is regulated by the file type of the FNT entry. According
to the file type, @#DF will drop disk tracks, invoke the permanent file up-
date PPU program IPF, and initiate special device release processing for
tapes, terminals, etc. @DF restores file block entries to their special,
non-zero, free status.

Device Drivers

Cl0 passes FET and FNT/FST values to the device drivers in the follow-
ing direct locations:

Location(s) Value

FS-FS+4 The FST entry word
(20g~2L43)

RB (25s) Random file flag bit

PF (27s) Permanent file flag
ES-ES+L The equipment EST entry
(30g-3hs)

TC-TC+1 The 1/0 transfer count
(365-375)

FN-FN+4 (40g-4bLg) FET word one (file name, etc.)
LS (45s) Last FST status '
OF (k46g) The file type

FI (47%) The job input file FST address
FA (57s) The file FST address
FT-FT+1 The FET FIRST pointer
(60g-615¢)

IN=IN+1 The FET [N pointer
(625-635)

0T-0T+1 The FET OUT pointer
(6lig-65¢)

LM-LM+1 The FET LIMIT pointer
(665-674)

7.6

C10 uses the following device driver overlays:

2DS - system console

2EP - electrostatic printer
2LP -~ 501 line printer

2PC - 415 card punch

2PD - Random file positioning
2RC - LO5 card reader

2RD- - read disk

2WD - write disk

2GD - 252 graphics console
2PR - paper tape reader

2PP - paper tape punch

When a driver has completed its processing, It returns to Cl0 with the
1/0 transfer count in TC-TC+1 advanced by the 1/0 amount processed. CI0
completes the FNT/FST entry and the FET, updates the control point 1/0
transfer count, releases the PPU and returns to PPR.

Stack Processing

A number of 1/0 devices are served by stack processors. These devices
are identified by their equipment type (bits 12-22 of the EST entry). For
these devices, CPUMTR and other PPU programs create stack entries directly
(CPUMTR) or with the request stack processing (RSPM), CPUMTR function. The
equipments processed in this manner Include:

Ml - 7291V tapes
MT - 604 tapes
SC - fillm scanner
TL,TH,TU - PROCSY 2.0, front-end processors

On a periodic basis CPUMTR activates the stack processor PPU programs.
They, in turn, scan all control point 1/0 stacks for processable requests.
As each 1/0 function is completed, the stack processors update the FET,
the FNT/FST entry and 1/0 transfer count in exactly the same fashion as
Cl0. The singular advantage of the stack processors is that they maximize
channel usage, while minimizing the PPU capacity required to utilize the
channel. There are currently two 1/0 stack processors in Dual MACE:

ITF - 604(MT) tape processing

1IM - inter-machine processing
‘for MI,SC,TL,TH and TU
devices

7.7

Error Processing

A number of errors may be detected during the processing of a CIi0
request. CIl0 may detect errors In the FET. A device driver may detect
errors during its processing. Finally, CI0 may detect an error after
a return from a device driver. |In these cases, Cl0 stores an error number
in direct cell 46y (EN) and calls its error processor, IlEP.

Cl0 calls 1EP by rewriting the CM, PPU input register word with the
1EP program call and returning to PPR. PPR then causes 1EP to be loaded
without destroying any of the direct cell values stored by ClI0. lEP uses
these values to issue error messages, FET and FNT/FST dumps, and to conclude
processing of the erroneous request.

Random File Processing

Ci0 will perform random positioning for disk resident files. Random
operations are directed by FET parameters. These include:

FET
Word Bit(s) Value

2 L7 Random file flag bit (one)
7 - 59-30 Random return request
7 . 29-0 Random request

TN

In addition to these values, the FET length parameter (bits 18-23 of word
2) must be large enough to contain the random operation parameter words.

When these parameters indicate a legitimate, random file request, CIO
uses the position disk, 2PD, overlay to perform actual positioning. 2PD
uses the direct cell values supplied by CI0, as well as the file linkage
of the TRT to perform positioning. The basic random address is a sector
ordinal, relative to the beginning of the file, Thus to locate a given
address, 2PD threads the TRT chain until it has reached the requested
sector ordinal. 2PD returns the logical track and sector values in the
FST entry direct cells FS+2 and FS+3, '

The random request field (bits 0-29 of FET word seven) are used in
different fashions for reading and writing. When reading, the field al-
ways contains a sector ordinal with bit 17 set. When writing, it contains
a sector ordinal in bits 0-16 if bit 17 is set. This is a random re-write
or write-in place request.

7.8

|f bit 17 of a write, random request field is clear, bits 0-16 contain
a response word address. This is a file extend request, directing Cl0/
2PD/2WD to add the addressed data to the specified file, and to return the
sector ordinal of the data in the response word. The response word is thus
part of the random file index or directory.

2PD may also be called upon to perform a number of random-like opera-
tions. These include mass storage skipping (records or files) and back-
spacing (coded images, records, or files). Cl0 calls 2PD for these opera-
tions as directed by the FET function code. In this case, when 2PD returns
to Cl0, the operation is complete. When CI0 calls 2PD prior to a read or
write disk operation, CI0 calls 2RD or 2WD after 2PD returns, provided that
2PD was able to locate the requested random address. Otherwise, Cl0 calls

1EP. \

Cl0 can also be requested to return a random address (sector ordinal)
without the use of 2PD. |f the random request field (bits 0-29 of word
seven) is zero, but the random return field (bits 30-59) is. non-zero, when
2RD or 2WD return to Cl0, Cl0 advances the return address field by the
number of sectors transferred by 2RD or 2WD. 2RD or 2WD return the sector
count in the PPU, A register. Thus, for example, a CPU program can create
a random file without requiring the extra overhead of loading 2PD for the
file extension operation. Of course, the CPU program must then move the
random address from the FET to the file index or directory itself.

Job Files

A1l the information related to job processing is stored on files. Prior
to execution the job control information and data are recorded on an input
file. During execution the CPU programs used by the job make use of a wide
variety of files. When job execution is temporarily suspended (rollout)

a file is used to contain the job execution status., Finally, all printed
and punched card job output is contained in files.

The job input file may be written by a number of different processors,
depending on its origin - console terminal, local card reader, remote card
reader, etc. In each case the file has a standard structure = words, records
and files - although different PPU programs (C10, 1BP) may be used to record
the file.

The job input file has a preset format. Record one must contain all
control statements for the job. The remaining records and files may con-
tain data for system processors (e.g., FORTRAN statements for a compiler),
binary program modules, or program execution input data. The first six
words of the first record contain basic, job accounting data. These words
are supplied by the system job card transiator, TJC.

7.9

TJC must be called by each Input file creation processor, prior to
the recording of the first input file record. The TJC call addresses a
FET, whose buffer pointers locate a six word area to receive the account-
ing data. The calling program supplies job card data to TJC in a series
of coded images, starting at word seven of the buffer,

The function:Supplied to TJC in word one of the FET defines the num-
ber of coded Images to be processed. There must be at least two. A third
may be used to supply the job name. |If the job name is suppllied on a third
coded image, TJC prefixes that image to the main, Job card coded image.

The maln job card coded image contains a job name, accounting fields
and job execution parameters [12]. At the option of the user to whom the
account is allocated, he may add password protection to the account. |If
he does so, the last coded image supplied to TJC must contaln the correct
password. The job execution parameters define the initial execution FL,
and the limits of resources to be used during job execution - e.g., CPU
seconds, print lines, /0 transfer units, etc.

One of the accounting fields Is a three character user identifier.
TJC uses this identifler to locate an account file validation entry. The
ldentifier consists of three characters from the set (A,5). Each character
covers the range (1,32). Decremented by one to cover the range (0,31),
reduced to five bits, and placed side by side, the three characters form a
fifteen bit random index which directly locates the account file validation —
entry. :

The account file validation entry is a key part of the small permanent
file system, PFILES. |t contains the user account code, password, individual
Jjob resource limits, and default job resource values. The default entries
supply values not entered on the job card coded image. Values specified
on the coded image are matched against the limits in the accounting file
entry.

If errors are detected, TJC returns an error code in the FET, and an
error message in the FET buffer. |If no errors are detected, TJC returns
a six word accounting data block in the FET buffer. These six words contain
the atcount identification, resource limits, and a set of resource access
permission flags. These flags regulate job access to such resources as
permanent files, plotters, etc.

Once TJC has completed job card processing, and assuming that no errors
were detected, the .input file processor can record the input flle. During
this phase, the file is treated and recorded as an ordinary local, disk
file - e.g., CIO may be used to record the file. Once the Job file is com-
.pleted, It is released to the job input queue. : :

T

7.10

Releasing a local file to the job input queue is simply a matter of

manipulating the FNT/FST words. The file type must be changed to input (00).

The control point assignment must be set to zero. The job execution parame-
ters must be placed in the FST word - byte two is the CPU time limit divided
by eight; byte three is the initial FL divided by 100s; and byte four is a
non-zero, queue priority.

The queue priority determines the order in which the job is selected

for execution. Once a job has been selected, the input file becomes assigned

to the selected control point and is positioned to the beginning of the second

record. The location of the first record is recorded in the control point
area (word 675 or CSPW) for use by job control card processors.

The Rollout File

Job execution can be interrupted and restarted using the processes of
rollout and rollin. When a job is rolled out, the PPU program IR0 creates
a file which contains all the information necessary to restart (rollin) the
job at a later time. The rollout is determined by the job scheduler, 1SJ.
CPUMTR and MTR cooperate to assign a PPU to 1RO as soon as the control point
has no PPU activity. :

The rollout file written by 1RO has the following format:

Sectors . Contents

First A1l FNT/FST entries assigned to the

Record job. The file INPUT is the first
entry.

Next The 2005 word control point area

Two

Next The Dayfile buffer pointer

One v

Next The dayfile buffer

One

Next : The job central memory

FL/100g

Next The PPU delay stack entries

One :

Next _ 1/0 stack entries

One

Last EOI

One

7.

11

The rollout file FNT/FST entry replaces the input file FNT/FST entry.
Thus the address of the rollout and input file remains the same during job
execution. This address is sometimes called the job address. It is used

for placing the job in queues (ERT) and assigning resources to the job (e.g.,

a DRB or TCB). The job address can change when a job is transferred from
one machine of the Dual MACE System to the other, but only if the job address
does not appear in any queues or resource lists in the originating machine.

When the rollout is complete, 1RO normally frees the control point for
further usage. The job rollout file FNT/FST entry has the format:

Word Bits Value
1 59-18 Job name
: 17-12 Job control flags
I1- 6 10g :
5 Interrupt inhibit flag
L- 0 Zero
2 59-54 The job ID (routing) code
53-48 -The rollout file equipment
47-36 The rollout file first track
35-24 The remaining CPU seconds
' divided by eight
23~-12 The rollin FL divided by 100s
11- 0 The job queue priority

Again, the queue priority Is used by the job scheduler to determlne the
eligibility of the job for continued execution.

OQutput Files - Print and Punch

Print and punch output produced during job execution is preserved and
directed to output device processors using a set of five, reserved files:

OUTPUT - printer output

PUNCH coded (hollerith) card output
PUNCHB - binary card output

PUNCH8 - column image card output

P8

[3

To the executing job processors, these files are standard, disk files.
They carry special file types to define their special usage. The file types
are established by @BF when the files are entered in the FNT/FST table.

When a job terminates, the job completion PPU program, 1CJ, releases
these files to their respective queues. The files are renamed with the job
name, the file type remains unchanged, and the control point assignment field
is zeroed. The fields of the FST entry depend on the file type:

.12

Bits Value

59-5h Job ID (routing) code

53-48 Disk equipment number

L7-36 First Track

35-24 " Unused for PUNCH, PUNCHB, PUNCH8 and P8.
For OUTPUT, the first dayfile track.

23-12 " Unused for PUNCH, PUNCHB, PUNCH8 and P8.
For OUTPUT, the first dayfile sector.

11- 0 The queue priority - a function of file

volume [9].

Bytes two and three describe the location of the job dayfile within the
OUTPUT file. The dayfile is copied from disk to the end of the OUTPUT file
at job termination. It includes job execution messages and job performance
data. The presence of the dayfile address permits console output processors
to locate and provide a job performance preview without requiring a time
consuming skip over execution print data in the OUTPUT file.

The queue priority field is derived from the file volume and from the
job account number. Three bits describe the account class, the remaining
nine bits describe the volume. The volume descriptor is based on 512 line
groups for OUTPUT files, and 16 card groups for PUNCH files. It is formed
such that the smaller the volume is the larger the volume descriptor will
be - i.e., a value of 7775 is the smallest possible volume descriptor.

Qutput files are routed to the appropriate device processors by the
job ID code. This six bit code is transferred from the job input file at
termination time. |t may have been placed there by the processor which made

the input queue entry, or it may have been placed there during job execution.

In general, the following values are used:

{D Code Routing
00 The job came from and returns to the
system unit record |/0 processor,
BATCHIO
10,40-47 The job came from and returns to
remote |/0 processors
20 The job came from and returns to a

remote console of the PROCSY system

Other codes may be used to indicate special forms requests, etc.

7.13

Unit Record Input/Qutput - BATCHIOQ

The main, direct, system, unit-record (''spooling') processor is the BATCHIO
sub-system. The PPU programs of the BATCHIO sub-system process card reader job
file input and output of job files to printers and card punch. Currently BATCHIO
manages four line printers, two card readers, and one card punch.

The main PPU program of BATCHIO is the combined driver, 1CD. This program
transfers data between the unit record 1/0 devices and CM buffers. The device
and buffer together are called a '‘buffer point''. 1CD calls upon an auxiliary
PPU program, 1BP (BATCHIO file processor) to transfer data between the CM buffers
and disk files. 1BP uses the 2RD and 2WD overlays for disk file processing. 1BP
also performs job card transiation (using TJC) and various other utility functions
(e.g., page banner formation), using various 1BP overlays.

The third PPU program is 110, the BATCHIO manager. This program selects print
and punch files from the queues for processing by 1CD and 1BP. 110 also monitors
the status of idle card readers, activating 1CD processing when it senses that the
readers contain cards for processing.

When BATCHIO is activated at a control point by a type-in from the system
console keyboard, it associates itself with the unit record equipment by scanning
the EST for the equipment types CR (card reader), CP (card punch), and LP/LQ
(1ine printers). 110 attaches these devices to the control point as required.
Thus they may be used by control point jobs when not in use by BATCHIO. In
practice, this is done infrequently, usually only when device diagnostics must be
run during system production time.

Each device can have an ID routing code associated with it. When a job file
is released to the input queue, the ID code of the reader is inserted in the file
FST entry (bits 54-59). When 110 selects a print or punch file for processing,
it matches the file ID code to that of a device. The 1D codes 705 through 77,
are used to denote special processing. When assigned to a card reader, they
specify that the job is to be given express mode handling. When assigned to a
printer, they direct 110 to select only files of specific volumes, using the nine
bit volume field of the queue priority. For example, a line printer device with
an associated ID code of 76g is restricted to the printing of jobs whose queue
priority indicates a volume of 512 lines or less.

A number of console entry commands are available for controlling the actions
of BATCHIO. These permit the suppression of carriage control processing, the
termination of file processing, etc.- These commands are transmitted to BATCHIO
by DSD in the control point area.

DSD recognizes BATCHIO for this -type of processing by the presence of an
eighth job name character of one in bits 18-23 of word JNMW of the control point
area. The presence of this character also stimulates two DSD display overlays
(""I'" and ''0"') to picture special device, buffer point status information.

In addition to its processing of job input and output files, BATCHIO references
an additional special file. This file is called BANMESS. It is a common file (see

7.14

the Permanent Files section), and contains pertinent, up-to-date system an-
nouncements. It is referenced by 1BP and Its contents Included in the first,
print file page, the job banner page. This page, in addition to the banner
file data, contains the job name in block letters, date and time information,
and marker characters, printed across the bottom fold of the face-up banner
page. This banner page format provides easy identification and location of
the beginning of each job output stack.

Permanent Files

Permanent files In the Dual MACE system are those files which can be
stored and retrieved in spite of intervening TAPE dead-starts. There are
three forms of permanent file storage: (1).private, 854 disk packs; (2)
large permanent files; and (3) small permanent files (PFILES). All three
use the same basic mechanisms. The small file system provides for the
separation of a large file (or files) into separate, smaller allocation
units,

The permanent file structure of Dual MACE is based upon the presence
of a track reservation table (TRT) and a directory index In a fixed track
of each permanent file device. The first track is used on 854 packs; it
is specified at dead-start for other disk types. When the system is dead-
started (or an 854 pack is mounted) the reservations of the disk TRT's are
merged with those of the CM and ECS TRT's. The directory index provides the
method of locating an individual file.

The directory of all devices except 854's are copied to a single mas-
ter directory at each dead-start. This facilitates directory searching.
The entries in the device directories, and hence the master directory, refer-
ence only sub-directories. The first reference to a file occurs in these
sub-directories. The sub-directories may themselves reference other directo-
ries. A directory which is subordinate to a first level directory (one
referenced in the device directory) is called a family.

The 854 pack represents a minor exception to this structure. In the
first place, the 854 directory is not referenced by the master directory.
Secondly, the 854 directory can reference files as well as directories (families).

All permanent files and directories must be declared before usage.
Files must be saved after creation. Thus it is not possible to record a
file on a permanent file device and then declare it to be permanent. Files
and directories may be accessed in one of four modes: (1) read, if the file
or directory exists and is to be read only; (2) write, if the file or di-
rectory éxists ahd is to be modified; (3) old/new- if the file or directory
is to be modified, but its existence is not known, and (4) new 1f the file
or directory does not exist.

7.15

Permanent file access and management activities are performed by the
permanent file management PPU program, PFM. PFM, in turn, makes use of other
PPU programs, and the permanent file management facilities of CPUMTR. A
number of CPU programs exist for using the facilities of PFM. They may
be called with the following control cards:

Control Card - Action
FILES (x) locate and obtain access to

. directory x.
FAMILY (x,y) locate and obtain access to

family directory y in directory x.

ATTACH (y,z) locate and obtain access to
v file z in family or directory y.
MOUNT (p) mount 854 pack p.

Others exist for purging files, directories, etc.

A1l PFM activity is performed in terms of files. When a directory is
accessed, PFM creates a file, attached to the control point of type 12g
(directory-read) or 1ig (directory write). An FNT entry for a file at-
tached to a directory or family has a type 133. Even the master di=-
rectory is processed in file fashion, although, in general, no FNT/FST entry
exists for it. Thus most requests for PFM processing refer to two files
(e.g., the directory and the file, or the master directory and the directory,
etc.). A request to mount an 854 pack is a slightly different case and will
be considered separately.

Accessing a Directory

When PFM is called to access a directory (e.g., the FILES control card),
the parameter block addressed in bits 0-17 of the PFM call supplies the name
of the directory in which the named directory is located, the read and write
passwords to the directory, and the type of access - read, write or old/new.
If no directory is supplied, PFM uses the master directory. |f a directory
is specified, PFM must be able to locate the directory file attached to the
control point. The directory file type indicates the access mode permitted
(DR for read, DW for read, write or old/new).

A search of the master directory, if successful, is followed by a search
of the device directory referenced in the master directory. The search must
result in the location of the directory for read or write access requests.

It may or may not result in the location of the directory for old/new access.
It must not result in the location of the directory for a new access request.

All directories, including the master directory have essentially the
same format. The first sector of the directory is a label sector, containing
the directory name and access passwords. The remaining sectors contain the
indexed entries - files or directories - in eight word blocks, eight to a sector.

7.16

Each entry has the format:

Word Bits Value
1 59-18 File or directory name
(0 if none).
11- 6 Entry Type
11g = directory
v 134 = permanent file

2 53-48 Equipment

L7-36 First track

35-24 Current track (0 if file

' not ''saved").
3 59- 0 Read password
4 59- 0 Write password
The access passwords, .if specified, must match. |{f only a write access

password is required and it is not supplied correctly, read-only access is
forced. The type of access granted is indicated by the inserted file type
and write-interlock bit (bit 5) in the FNT entry.

Accessing a File or Subdirectory (Family)

The ATTACH and FAMILY control cards use PFM to access files and sub-
directories. PFM accepts four parameter words, specifying the directory,
file, and passwords. The directory file must be attached to the job con-
trol point. PFM searches the eight word directory entries for the refer-
enced file or directory., A password check is performed. The accessed file
or directory is returned as a file of the appropriate type.

When PFM creates a new file or directory entry, it fills in the eight
word block with the supplied parameters. A single track is assigned. The
label of a new directory is recorded and all index entries are zeroed.

The current track field of word 2 of a file entry is set to zero to indi-
cate that the file is new and not '‘saved'.

Saving a File

A file may be ''saved' by a PFM call through the SAVE control card.
The PFM parameter block has the same four word format-directory, file and
passwords. PFM sets the current track value of the directory entry to
the first track. It then loads IPF into the PPU by re-writing the PPU
input register word in CM and returning to PPU resident. Files which are
not specifically saved-are, in general, automatncal]y saved by {@DF at
job termination.

1PF updates the device TRT. 1t does so by reading the TRT chain from
CM and moving the chain to the device TRT. |IPF Is also used by PFM to
purge a track chain when a file is purged.

Permanent File Interlocks - DDTM and RDTM

All access to existing permanent files is regulated by the TRT access
bits processed by CPUMTR. When PFM has located an existing entry it requests
access to the equipment and track specified in the entry by issuing the
RDTM (request device/track access) function to CPUMTR. The function pa-
rameters indicate the access mode (read or write), the equipment, track and
calling job address.

If CPUMTR cannot grant access - the file is already in conflicting use -
job processing is usually suspended, to awalt granting of access via the
equipment reservation table processing of CPUMTR. The RDTM function places
the job request in the ERT, although the caller may set parameters to avoid
this queueing. While the job is waiting for access PFM can lower the queue
priority and enter PPU delayed recall (normal job), or it can send an in-
terrupt to a terminal user.

When access is granted the job is rolled in and PFM completes the
access. In the case of a terminal user, the MESA terminal processor is
interrupted and a PFM call is reissued for the completion of an access
request. '

When a permanent file is saved or returned, the PPU program returning
the file - @DF or PFM - issues a DDTM (drop device track access) function
request to CPUMTR. CPUMTR clears the access bits from the TRT and examines
the ERT for an eligible, waiting entry. If one is located, the job is
stimulated (queue priority raised or interrupt flag set) to resume and com-
plete the processing of the suspended access request.

854 Disk Packs - MOUNT

With one exception, the 854 disk pack is processed exactly as are fixed
surface permanent file devices. The exception is that the pack directory
is not included in the master directory. A pack is accessed with the MOUNT
control card. Processing of a MOUNT request by PFM requires console operator:
communication for the physical mounting of the pack.

PFM uses the device request blocks (DRB's),the two special equipments
DY and DZ, and a special disk pack pointer table (DPT) in the operator
communication process. PFM first examines the DPT. This table indicates
which packs are already mounted and on what equipment. |f the pack is located
in this table, PFM requests access to the pack directory track with an RDTM
function. :

7.18

If the pack is not located in the DPT, PFM examines the DRB table for
a pending mount request. |If one is located, PFM requests access to the
DRB, using equipment DY and the RDTM function. Job processing is then
suspended via rollout until the pack is mounted.

If no DRB request is located, PFM requests access to a drive with an
RDTM request on equipment DZ. |f the request is granted, PFM fills out a
DRB, thus requesting that the operator mount the pack. PFM then rolls out
the job. [If no drive access can be granted, the job requést is queued in
the ERT, and PFM rolls out the job to await the availability of a drive.

When a new pack is mounted, PFM copies the TRT of the pack to the CM TRT.
Since 854 drives are not shared by the two machines of the dual system, no
ECS TRT manipulation is necessary. Further access to the pack is regulated
by RDTM functions on the pack directory track. PFM also creates a DPT
entry for the pack.

Access to files and directories of the pack are regulated by searches -
of the pack name directory file and RDTM requests. At this point, all PFM
processing for an 85k pack is identical to that for fixed surface permanent
file devices.

Common Files

Common files in the Dual MACE system are files containing frequently
accessed data. These include relocatable subroutines, program source librar-
ies, statistical systems, virtual systems (see Job Processing), etc. These
files are accessed by assemblers, loaders, control card processors, etc.
Every common file is also a permanent file. To simplify and streamline
common file access, the PFM FILES, FAMILY, and ATTACH mechanisms are by-
passed for common file processing.

Instead, common files may be accessed with a single request - e.qg.,
a COMMON control card. The local file manager PPU program, LFM, processes
the request. A common file can be located in the FNT/FST (type = .02, write
protect bit = 1, control point assignment = 0). It may also be indexed by
a special, common file index file. This file, named COMMONX, of type 17s,
indicates the directory name in which the common file is located.

LFM searches the FNT/FST and then COMMONX, the master directory and
the referenced directory on the indicated device. When the file is located,
LFM creates an FNT/FST entry of type 7, and requests read access to the
file with an RDTM function. LFM waits for access via rollout or interrupt
exactly as does PFM., Note that since LFM grants read-only access to common
files, a number of simultaneous accesses to the file can be permitted.

7.19

Small Permanent Files - PFILES

The manner in which disk tracks are allocated to permanent files and
directories is often wasteful of space. The main permanent file device
of the Purdue hardware complex is the 821 disk. Each logical track of the
821 contains 320 sectors. Since each directory and file reside on a sepa-
rate track, the potential for wasting space is very large.

To make more efficient use of disk space, a small permanent file sub-
system, PFILES, is available in Dual MACE. This sub-system divides several
very large, random permanent files into a large number of individual user
segments. PFILES allocates space in these files in four sector units. The
division control is the user data block (UDB) which is addressed with a
three character (A through 5) user identifier.

PFILES maintains a user data block area for each identifier. This
area contains the accounting data used by the job card translator, TJC.
It also contains an index of the files stored for the identifier, includ-
ing passwords, activity counts and file age. Files stored in the PFILES
sub-system must be copied to an utility disk before usage ("'GET') and must
be written on an utility disk in order to be '"PUT" (copied) by PFILES. This
insures that PFILES retains full control of the space allocation of the larae
files.

Since the files are random files, PFILES can make use of the standard,
Cl0/2PD random file functions. Since PFILES manages all space on the file,
it can make use of open sector blocks in the file as files are deleted and
new files stored. The entire PFILES data base is periodically backed-up
on tape. O0On shorter intervals, changes to the data base are dumped to tape.
Thus the file can be fully or partially restored in the event of hardware
or software failures.

Access to individual user data blocks is controllied by a special TRT
and equipment DU. The CPUMTR functions RDTM and DDTM provide access control.
The TRT of equipment DU is handled in a special manner - each TRT word repre-
sents one user data block, and the TRT is used more as a list. than as a table.
When an access to a user data block is in progress, some TRT word will repre-
sent the user data block. Another access request for the user data block
will be queued in the equipment reservation table, and allowed to proceed
when the first program releases access with a DDTM function.

Track 4003¢ of the DU TRT is used to quede access requests when the
TRT is filled. Each time a user data block access is released (and possibly
a TRT word), the PFILES control PPU program, CTL, checks for a queue on
track 4003 and issues a DDTM, if necessary, to stimulate the programs wait-
ing for space in the DU TRT.

7.20

Special File Types

There are a number of special file types. These include:

File Type Usage

1h4g PFILES utility
15¢ Delayed job
1738 System common
20g File index

The PFILES utility file type is used for access to the permanent files
of the PFILES sub-system. Usage of this special type permits PFILES to
bypass some of the complications of permanent file access resulting from
the special functions of PFILES. It also permits the definition of special
handlers for the returning of PFILES access in @DF.

The delayed job type provides a mechanism for the periodic running of
special system tasks. A file of this type represents a job whose execution
is to be resumed at a later time. The time delay is specified in byte two
of the FST entry in units of eight seconds. Once each eight seconds the
repetitive services PPU program, 1RS, decrements the time delay field,

When the delay is completed, IRS returns the job to the input or roll-
out queue. Bits 12-17 of the FNT entry word carry the queue file type -
00 for input, 10 for rollout. One of the system programs which uses this
facility is a CPU program named SIFT. SIFT transfers files between machines
of the Dual MACE System, using the inter-machine function facilities pro-
vided by the PPU programs 1RS and ICP.

The system common file type is used to identify files of special system-
only usage. O0One such file is used to buffer inter-terminal messages. Another
is used as an alternate page swapping device for the terminal system proc-
essor, MESA. Access to system common files is restricted to specially au-
thorized CPU and PPU programs.

The file index file type is used to identify files which index other
job files. Currently this file type is used to queue jobs waiting for
compilation by the batch version of MNF, the Minnesota FORTRAN Compiler
[13]. During dead-start recovery, this file type directs the PPU recovery
program, REC, to recover the files indexed as well as the index itself.
Use of a file index file has the obvious advantage of releasing FNT/FST
table space while the indexed files are waiting for processing.

7.21

Special Media

A number of special media are available for file storage in addition
to disk devices. These include card devices, magnetic tape units, a paper
tape reader and punch, and an electro-static printer. The basic file charac-
teristics of these devices are the same as disk files - coded images, records,
files - but the characteristics of the devices require the introduction of
a recording unit, the PRU or physical record unit.

Actually, a disk file has a PRU value of one sector. Fortunately the
PRU size is so transparent to the disk file user that it is hardly ever
~worth mentioning. Unfortunately, the PRU size of special media usually
has a significant influence on the processing of files on the media. For
example, one must know the physical record length, or number of characters
recorded between gaps on a tape, in order to be able to process it correctly.
As another example, the frame count and size are special characterlstlcs
which must be known for proper paper tape processing.

A1l of these various special characteristics are designated for the
device drivers in fields of the file, FST entry. Bytes one, two and three
(bits 12-47) are used to contain these values. The fields are entered from
parameters supplied on the request to mount the special media (e.g., a tape).

Access to Special Media

All requests to mount a file on a special medium device are processed
by the request processor PPU program, REQ. The REQ call addresses a pa-
rameter block which defines the file name, external identifier (e.g., tape
reel, visual label) and other device processing parameters as required -
tape density, physical record character count, etc.

REQ manages access to the special media devices in two ways: (1) sin-
gle devices such as the paper tape reader, are accessed via equipment DZ
and the RDTM/DDTM facilities of CPUMTR; (2) tape units are allocated in
cooperation with the job scheduler. When a job requests access toc a paper
tape reader, for example, REQ issues an RDTM request to CPUMTR. If the
device is available, REQ fills a device request block (DRB) with mounting
instructions and rolls the job out to await operator action. When the device
is ready, the operator enters the assignment, the job rolls in and processing
can continue. :

When the device is not available, the equipment request is queued in
the equipment reservation table by CPUMTR. REQ rolls the job out. When
the equipment becomes available, CPUMTR raises the job queue priority, rolls
the job in, and REQ posts the mounting instructions in a DRB.

7.22

After a special medium file has been mounted, REQ uses the location
free (zero-level) PPU overlay @AE, assign equipment, to create the FST
entry. Using the parameters supplied to REQ, and the equipment type, BAE
creates the device defined special fields of the FST word.

Tape Scheduling

REQ processes magnetic tape requests in a slightly more sophisticated
fashion, in order to be able to process multiple unit requests efficiently.
The number of possible units required must be specified in advance on the
job control card (the TPn parameter) or by a special call to REQ (e.g.,
with the TAPELIM control card). When REQ detects the first tape unit request,
it rolls the job out and sets the value 4x in bits 12-17 of the rollout file
FNT entry. 'x" is the number of tape units required.

The system job scheduler, 1SJ, regulates the committment of tape units.
Units are scheduled to jobs according to their availability and job queue
priority. After 1SJ has committed a tape unit or units to a job, the job
is rolled in and REQ continues processing. REQ fills in a DRB with the mount-
ing instructions for the first request. It then reads the next control card
of the input file first record looking for another tape request. All such
consecutive requests are posted in DRB's. The DRB's are linked together
circularly.,

When all consecutive requests are posted, REQ rolls the job out, placing
a call for the device manager PPU program, 1DM, in the rollout file delay
stack sector. When all tapes have been mounted and assigned by the operator,
as indicated by the DRB 1linkages, the job is rolled in.

1DM completes the request .processing, using the DRB fields. 1DM uses
@AE to form the FST word from parameters stored in the DRB. In addition,
if any of the tapes are assigned to 7291V units, 1DM sends a function to
the front end, [BM 7094, machine to indicate that processing of the tape has
been initiated. '

Card Formats

As special media, the card punch and card reader are not often used
for direct, file processing. Instead, the devices are usually driven by
thecombined driver PPU program, 1CD, of the BATCHIO sub-system. 1CD proc-
esses three card formats - coded, binary and column images - and a number
of special flag cards - EOR, EOF, EOl and column image escape.

A coded card is one punched in standard, IBM 026 key-punch format [14].

BATCHIO translates these codes to CDC Display Code [7], six bits per charac-
ter, in a coded image. Trailing blanks, in multiples of two, are deleted.

7.23

A binary card is Identified with punches in rows seven and nine of
column one. |t may contain as many as fifteen CM words in columns three
through seventy seven. A binary card also contains a word count (rows
zero through three of column one), a checksum (column two) and a sequence
number. '

The column image card contains sixteen CM words in columns one through
eighty. Column one contains bits 48-59 of word one; column two, bits 36-47;
column five, bits 0-11; column six, bits 48-59 of word two; etc. Row twelve
- contains the high order bit (e.g., 59) and row nine, the low order bit (e.g.,
L8). The beginning of a set of column image cards is signalled with a flag
card, containing punches in rows five, seven and nine of column one, and
rows four, five, six, seven, eight and nine of column two. The end of a
set may be signalled by the same card or an EOl card (punches in rows six,
seven, eight and nine of column one and none in column two).

These three card formats hold for card input and output. BATCHIO
translates the data in the PUNCH file (type 4) to coded. The PUNCHB file
(type 5) ‘is translated to binary. The PUNCH8 or P8 file (type 6) is transla-
ted to column image. ‘

The same flag cards hold for input and output with one exception - no
column image flag cards are punched. An end-of-record (EOR) is a card with
punches in rows seven, eight and nine of column one. Column one of an end-
of-file (EOF) card contains punches in rows six, seven, eight and nine.

7.24

Job Processing

Once a job input file has been recorded and the FNT/FST entry released
to the job input queue, the job is a candidate for execution at a control
point. The actual assignment of the job to a control point depends on a
number of criteria - job field length, memory availability, control point
availability. The selection of a job for execution which satisfies these
criteria is performed by the system job scheduler.

Job Scheduler

The system job scheduler is the PPU program 1SJ. 1SJ is activated at
dead-start by STL. It runs on a four second delayed recall cycle. It may
also be activated with the CPUMTR function RSJM. This function is used by
various programs - e.g., BATCHIO - when they have made a system change which
might affect job scheduling. 1SJ activities are directed by means of tables,
control point status flags, system status data, and job queue priorities,

Job queue priority is the primary factor. It is used to relate jobs in the
input and rollout queues to the queue priority category tables of the in-
stallation area. It determines, in general, the order of selection of jobs
for execution and rollout. ‘

The job queue priority is a twelve bit field, stored in bits 0-11 of
the queued file FNT/FST entry. When a job is executing, the queue priority
is stored in bits 12-23 of word 605 (CPCW) of the control point area. Two
main classes of queue priority exist - first pass and execution. A number
of other queue priority classes are defined for control of interactive jobs,
resource assignment and system job activities [9]. A queue priority of zero
indicates that the FNT/FST entry is being modified - i.e., the entry is
reserved.

Job Queue Priority

The first pass queue priority is assigned to a job when it is placed
in the input queue. The value is generally computed by TJC during job
card translation, but it may also be determined separately by the processor
which releases the job to the input queue. When TJC computes the priority,
it returns the value in the parameter block (FET) controlling the transla-
tion operation.

The first pass value computed by TJC is based on three factors: job
origin, a job card priority field, and estimated job track usage. Job
origin may be a local or remote card reader, remote console, etc. The job
card priority field translates to a six bit value. Queue priorities derived
from these two factors generally fail in the range 60xxg to 63xxg where xx
is the job card priority value. |f the estimated job track usage is large
(over 105) the first pass queue priority will be 2hxxs.

The first pass queue priority remains in effect for '"first-pass'' computa-
tion units (generally “"first-pass'' = 25). A CPU second or sixty five 1/0
transfer units (one 1/0 transfer unit is 1,000 characters transferred to or
from an 1/0 device) constitutes a computation unit. At the end of "first-
pass'' units, the queue priority is re-evaluated using the PPU common deck
program CQP and the queue priority weight tables. This new value is called
the second-pass or execution queue priority.

All execution priorities are limited to the range 1005-5777s. The maxi-
mum and minimum values are stored in the queue priority weight table header
word and can be modified with console entries. The upper limit on the
execution queue priority has been chosen such that all execution priorities
are less than all first pass priorities. This permits new jobs entering
the system to obtain 'first-pass' units of execution very rapidly. As many
as 75% of the jobs processed by the Dual MACE system complete their execution
in "first-pass" units,

A wide range of factors enter into the computation of the execution
queue priority. Essentially they describe the resources in use by a job
(e.g., field length) and the resources required to complete job execution
(e.g., CPU seconds). The parameters of the queue priority weight table des-
cribe the parameter test values and their influence in the queue priority
computation., That influence is reflected by a fixed increment and by a dif-
ference factor. For example, CPU seconds remaining is compared to thirty.
If it is less than thirty a 300g increment is added to the execution priority.
Central memory in use (FL) is compared to 1501005. |If it is less than 1501004,
the execution queue priority is advanced gg the absolute value of the_differ-
ence between FL and 1501004, divided by 2 The difference factor 2 7
in this case is always represented as a power of two - i.e., a PPU shift
operation.

Job Scheduler, Queue Priority Categorfies

The resulting queue priorities - first-pass, execution, interactive, etc.
- can be divided into ranges by virtue of the nature of their computation,
Execution values are in the range 100g-5777s. First-pass values are in the
range 60005-63775. The scheduling strategies of the Dual MACE System are
expressed in terms of these ranges. The job scheduler category tables specify
these strategies.

The category tables define a set of queue priority ranges and the manner
in which the PPU program scheduler, 1SJ, is to consider those ranges. The
tables include control point limits, field length limits and candidate tables.
1SJ maintains corresponding counts in the tables (stored in the installation
area) for display purposes - the DSD 'W' display.

The tables can be viewed as a nine by seven array. The first column
contains the lower queue priority of the defined range. The next three
define the number of jobs of the category to be scheduled to control points
at one time, the total field length to be allocated to the jobs, and a
candidate limit. The remaining three columns of the array are filled by
18J to indicate the current usage of each of the first three values.

The candidate limit value of the category tables is a mechanism de-
signed to prevent a given category from overloading the internal tablies of
1SJ. 1SJ places each candidate in a PPU memory table, ranked by queue .
priority. Currently the table can contain 213 entries. The candidate
limits restrict the number of table entries available to a queue priority
range, thus preventing a range from filling the table. In practice, the
limits are set such that table space is allocated according to the probable
number of jobs of the range in the system at any one time. Entries of the
weight table can be added, deleted or modified by console commands should
Jjob load require it. :

The current job scheduler category table has the following entries:

Queue Priority Control Point Field Length Candidate
Range Limit Limit ~ Limit

77025-7777s i 3000005 - 4
70004-7701¢ | 3000004 10
6700-6777s 1 3000004 L
6330-66773 1 1500004 : 8
63005-63275 1 1000004 17
60005-6277 ¢ 2 3000005 - 50

1005-5777 63 3000004 120

When the table is not defined in central memory, 1SJ copies its default,
assembled values to central memory. A flag in the table area (bits 48-59
of the first word) indicates the table status. When the table is defined
in central memory (and possibly modified by console commands) 1SJ reads
the table into PPU memory in place of the assembled values.

The table is interpreted in the following fashion. Consider, for
example, the entry 63003-63275/1/1000004/17. This entry specifies that
no more than one job, of field length 100000, words (32,768) or less with
a queue priority at least 63003 and not more than 6327 is to be scheduled
to a control point at one time. |In selecting that job, 1SJ is to limit
itself to the top 17 jobs, in order of queue priority.

I? selecting and scheduling jobs in response to job queue priorities and
according to the constraints of the category weights and available system

8.3

resources, 1SJ builds a number of internal tables. These include a table

of candidates, category usage tables, and a memory map. From these tables,

the limits of the category tables, and avallable resources 1SJ constructs a

new memory map. This map may indicate no change in job assignment, or it may
indicate the necessity to roll jobs out, roll jobs in, or to begin the execution
of new jobs. The actual processes required are performed by other programs
(e.g., CPUMTR, 1RO, etc.). 1SJ makes the decisions and initiates the processes.

Job Movement

Job movement processes are initiated by the scheduler with the CPUMTR
function SJAM (set job activity). In response to this function CPUMTR sets
the requested, pending activity flag in word JCIW (224) of the control point.
When the control point has no activity of a given level, as determined by the
pending activity, CPUMTR activates the required process. Thus, for example, if
1SJ asks for a rollout via the SJAM request, CPUMTR sets the rollout pending
flag. When the control point has no PPU's active (the PPU count in bits 48-53
of STSW (20g) is zero), the rollout in progress flag is set and CPUMTR assigns
a PPU to the rollout program, 1RO. '

In addition to the constraints imposed by the category tables, 1SJ recognizes
a number of other constraints. These incliude field length availability, control
point and scheduler activity flags, tape unit usage, etc,. In field length
processing, 1SJ not only recognizes the machine limits, it services requests
for additional field length and obtains the specified field length required to
initiate a new job or roll in an existing one.

Control point and scheduler activities are regulated with a number of flag
bits. in word four of control point zero (JSCL), bit twelve, if set, inhibits
job rollout/rollin; bit thirteen, if set, inhibits all scheduling. In each control
point area, word 60g (CPCW) contains two scheduling control flags. Bit 59, if
set, inhibits all job scheduling activity. This bit is set by DSD when it is
modifying job parameters (e.g., time limit). Bit 48 is set to indicate that the
control point may be used for processing. This bit is called the 'idle'" or
"mext' flag. When it is set and no job is being processed at the control point,
the control point job name will be UNEXT' to indicate that the control point is
available for processing.

The job scheduler regulates tape unit usage by examining bits 12-17 of the
rollout file FST entry. A value of b4x indicates that the job must have x tape
units in order to continue execution. |If the units are available, 18J assigns
x device request blocks (DRB's) to the job before rolling it in. Since queue
priority is the main basis on which jobs are chosen for execution, an available
unit is generally allocated to the waiting job which has the largest queue
priority.

8.4

Beginning a Job - 2BJ

When 1SJ sets a pending job activity with an SJAM function call to
CPUMTR, the type of activity set can be initialization, rollin or rollout. |If
a job is being scheduled from the input queue, initialization is set. CPUMTR
sets this activity in JCIW, and, since no processing activity is present, activates
the job advancement PPU program, 1AJ.

1AJ processes all job advancement. It is activated by CPUMTR whenever a
control point has a job present but has no CPU or PPU activity pending or present,
and no 1/0 stack entries. For job initialization 1SJ sets the control point
in such a status that 1AJ can recognize that it is being activated for the first
time, 1AJ, in turn, alters those statuses so that it will recognize an initialized
job on subsequent calls.

When 1AJ recognizes that it has been called to begin a new job, it executes
its begin-job PPU program segment, 2BJ. 2BJ sets up various control point fields -
e.g., time limit, 1/0 unit limit, accounting header, control card pointers, etc.

It also modifies the INPUT, file FST entry to point to the beginning of the second
record. The location of the first record is stored in word CSPW (67g) of the
control point area. When 2BJ finishes it returns to 1AJ in such a manner that 1AJ
can continue as though it had been called by CPUMTR to advance an existing job.

Job Rollin - 1Rl

When 1SJ has decided to roll a job in at an available control point, the SJAM
function call made to CPUMTIR results in the assignment of the PPU program 1R! to
an available PPU. The PPU is assigned to the control point, and 1SJ indicates
the rollout file address in bits 48-59 of word CSPW (67g).

IRl reverses job rollout by reading the suspended job status data from the
rollout file. Job file entries are moved from the FNT/FST record to the FNT/FST
table. The INPUT file entry replaces the rollout file entry. The control point
area, the dayfile buffer, the job field length, and the 1/0 stack areas are re-
loaded from the rollout file. PPU programs in delayed recall before rollout are
re-entered with zero delay time - the ''R" status PPU call is placed in RA + 1.
The CPU is restarted, if in use at rollout. .

During the reloading of these values from the rollout file, 1Rl checks their
validity in a number of ways. The FNT/FST entries must represent valid files in
name, type and equipment parameters. Each area must be of the expected length.
If any tests fail, IRl stops the system with an "-ERR RI'", top-line stop.

At the end of a successful rollin, 1Rl processes any job modification
commands entered while the job was rolled out. These commands are stored in the
dayfile pointer sector of the rollout file. They are processed by the 1Rl segment
2Rl. The commands are entered in the rollout file in response to console keyboard

8.5

entries. For example, the operator can enter a message, set an error flag,
raise the CPU priority, etc., of a rolled-out job. When the job rolls in 2RI
completes the processing of these operations.

Job Rollout - 1RO

1SJ also initiates job rollout with an SJAM function call to CPUMTR. As
soon as no PPU activity is present at the control point, CPUMTR activates the
job rollout PPU program, 1RO. Note that 1RO can be activated while the CPU is
assigned, PPU's are in the delay stack and while 1/0 stack entries are pending.
CPUMTR blocks further processing (e.g., new PPU calls or recalls) because the
rollout activity flag (bit 43 of STSW (20g)) is set.

1RO writes the rollout file in the format already described. When the roll-
out file is completed, 1RO replaces the INPUT file FNT/FST entry with the rollout
file entry, releases the field length assigned to the control point, and clears
the control point area. Further use of the control point is determined by the
status of the system and control point activity flags, and the processing fules
of 1SJ.

In one unusual case, 1RO may leave the job assigned to the control point.
This case arises when an equipment (e.g., a line printer) is directly assigned to
the control point. This case is unusual, since the mechanisms of device request
blocks and disk pack assignment have been provided for linking equipment to jobs.:
Certain special programs - e.g., a line printer test can, however, attach
equipment directly to the control point, provided they have proper authorization.
Control points having such programs active cannot be fully rolled out without
damaging the equipment-control point linkage. When 1RO processes such a control
point it performs all normal rollout activities except the clearing and releasing
of the control point.

Job Execution and Advancement

Once a job has been assigned to a control point, it makes use of CPU and PPU
resources with control card calls. These calls originate in the coded images of
the first record of the INPUT file. In addition, procedures can be invoked, whose
control cards are stored on a file which may be joined to the INPUT file as an
alternate INPUT file.

The job advancement PPU program, 1AJ, processes all control card calls [15].
1AJ is activated by CPUMTR whenever a job has no processing active. Except as
noted in job initialization, each call to 1AJ consists of two types of processing:
error processing; and control card advancement. Normally, error processing is
followed by control card advancement. Where specified, 1AJ can return control to
a CPU program without control card advancement. '

8.6

Control Card Advancement - 1AJ/2TS

Control card advancement is performed by 1AJ using the control statement
buffer (CSBW) of words 70g - 1778 of the control point area and the INPUT (or
alternate INPUT) disk file. Pointers on word CSPW (67g) control the position
in the INPUT file and within the control statement buffer. An additional
parameter word defines the status of the alternate INPUT file in word ASPW (57s).

Using the values in ASPW and CSPW, and the PPU program segment 2TS (trans-
late statement), JAJ obtains the next coded image from the INPUT or alternate
INPUT file. When only a part of the image is in the statement buffer, 1AJ moves
the partial image to words 70 - 77g of the buffer, reads the next control card
sector and appends it to the partial image. Once an image is obtained it is
separated into two fields: a statement name and statement parameters. The rules
for formation of these fields are given in detail in [15].

1AJ interprets the statement name as a program call, 1AJ searches for the
named program in the following order:

1AJ lTocal processes - e.g. EXIT from errors. :
Local files - user and compiler supplied CPU programs or procedures.
User supplied virtual system directory.

System CPU program library directory (SLD).

PPU program library directory (PLD)

System Procedure Library

NI W N —

Note that, since the search is ordered, a local file may have the name of a system
library program (e.g., the FORTRAN compiler) and it will be selected for execution
rather than the system program,

For the most part the IAJ local processes are related to error exit processing.
They define an error resumption point in the control card stream. They may also
define dump operations. When they define dump operations, LAJ writes a small
portion of the control point field length to a local file, and loads a dump,
CPU program into that area for further dump option processing.

When a control statement names a local file, processing depends on the file
contents. Relocatable or overlay program files are passed to the CPU program
loader, LINK. Absolute CPU programs are loaded by copying them to the central
memory field length. Text records, defining procedures, are passed to the pro-
cedure execution CPU program, XEQ. XEQ, in turn makes use of the alternate
input file facility to effect execution of the control card statements of the
procedure. ' '

When the statement does not name a lAJ process or a local file, 1AJ searches
for a local file named "VSIND', This file can supply an index to a user supplied
system of CPU programs in absolute format. The programs themselves are contained
on other, local, random files. When an index is supplied, and the statement name
is referenced, 1AJ uses the "WSIND" references to locate and load the reguired
CPU program.

8.7

{f none of the first three searches yield the named program, 1AJ searches
the system library directory of central memory resident, the SLD. This library
indexes the CPU programs loaded from the dead-start tape to the system disk by
STL. The library contains compilers, assemblers, editors, utility programs,
etc. Programs of the STL are sometimes called ''Control card processors''.

When the SLD search also fails, 1AJ tests the statement name for a possible
PPU call. The name must be exactly three characters in length. |t must be one
of an authorized list (or the job must have the proper authorization) and it
must be defined in the peripheral library directory (PLD). When all conditions
are met, 1AJ rewrites its input register word with the PPU program name and exits
to PPU resident to effect the loading and execution of the PPU program,

Finally, if all previous searches fail, 1AJ loads the procedure execution
CPU program, XEQ. XEQ searches a standard system procedure library, stored in
the common file SPL. |f XEQ locates the procedure, it is processed via the
alternate INPUT file facility. If it cannot be located, XEQ issues a dayfile
error messages and aborts. Control eventually returns to 1AJ from CPUMTR.

Once 'AJ has located the named program it passes the statement parameters,
enters the control card in the job and master dayfiles and requests CPU assign-
ment with the RCPM, CPUMTR function. CPU assignment is not required for PPU
program execution., Two parameters may be supplied for a PPU call. Parameter
one is stored in bits 0-17 of the PPU call and parameter two is stored in bits 18-35.

The control card statement may supply as many as 49 parameters to a CPU
program. The parameters are stored in RA+2 through RA+635. The list is termi-
nated with a zero word and the parameter count is stored in bits 0-17 of RA+6lLg.
Bits 18-59 of RA+64s carry the statement name, and the entire statement is also
written to RA+70g through RA+77g. The registers of the exchange area are zeroed,
and the control point field length is stored in A0 of the exchange area.

Each parameter may contain seven or less, non-blank characters. Blanks
are simply skipped. The period or the right parenthesis terminate the list.
Separator characters are the non-blark, non-alphanumerics - e.g., commas, equal
signs, etc. When the comma is used as a separator, bits 0-17 of the parameter
word it follows are set zero; all other separators are transmitted in bits 0-17.

Error Processing - 1AJ/2EF

1AJ can also be activated to process errors. Errors are-indicated by a
non-zero value in bits 36-48 of STSW (205) of the control point area. They may
be set by a CPU program ("ABT' in RA + 1), by PPU programs, CEFM (change error
flag) function calls to CPUMTR, or by various error processes of CPUMTR and MTR
(e.g., exit mode control, PPU call errors, etc.). The setting of an error flag
stops most control point processes - CPU, delay stack exit, etc. As soon as all
processes are stopped, CPUMTR activates TAJ.

When 1AJ is activated, and the error flag is set, 1AJ, in turn, activates its
error processing segment, 2EF, This segment performs all error processing in-

8.8

cluding message handling, interrupt control, and advancement to error processing
control statements.

There are two main paths through 2EF, defined by the existence of interrupt
control data in word INTW (475) of the control point area. If non-zero, INTW
specifies the types of errors to be processed, the address in the field length
of the CPU program routine which processes interrupts, and the address of an
interrupt status area.

The error type control includes an "in-progress'' flag, to indicate that the
current error occurred while the CPU program was processing a previous error.
This prevents the occurrence of a loop condition in error processing. The error
type is matched with the error flag. If the type defines processing, the exchange
area and other error status information are copied to the defined status area, as
required. The CPU P register is set to the value indicated in INTW, the ''in
progress'' flag is set, and the CPU is restarted, presumably in the defined inter-
rupt program segment. These interrupt activities are effected by 2EF using the
set interrupt (SINM) CPUMTR function. The interrupt control word itself is
initially defined by a CPU program call to CPM, "the control point manager PPU
program.

If the error type does not select error processing, or if no interrupt
processing is enabled, 2EF issues an error message and skips to the next 1AJ
error exit control card - EXIT, PROCEED, etc. This card may Invoke dump pro-
cessing. Eventually it results in the calling of 1AJ to process the next control
card statement,

Timer Interrupt

One other special interrupt operation is also avallable to the control point,
CPU job - the timer interrupt. In conjunction with the flags of the interrupt
control word, a CPU program may specify a time interval at whose expiration
control is to pass to the CPU program interrupt routine., The interrupt request
is specified in bit 50 of INTW (475). The time value is stored in word TICW (564)
of the control point area.

The time value is stored by CPM, the control point manager PPU program, as
the value of the real time clock at which the interrupt Is required. At rollout
the remaining time is computed, and a new interrupt time is computed when the job
rolls in. PPU monitor, MTR, scans the control point timer interrupt words on-a.
periodic basis. When MTR locates a control point ready for a timer interrupt,
it effects the interrupt by issuing an MTRM (set interrupt) CPUMTR function.

This timer interrupt facility enables the terminal system control program, MESA,
for example, to maintain time slice control over executing terminal processors.

8.9

Special 1AJ Processes

Each time 1AJ is called it performs a number of special processes.
These include the completion of job output files, the destruction of sensi-
tive data, and the releasing of restricted files.

Job output files include OQUTPUT, PUNCH, PUNCHB, etc. 1AJ searches the
parameter list area (RA+2 through RA+635) for these names. CPU programs
which desire job output file completion place the file names in this area
(bits 42-59) together with pointers to the file ervironment tables (FET's)
in the job field length (bits 0-17 contain the FET address). {f 1AJ lo-
cates a valid FET in its search, it calls Cl0 to copy the remaining circu-
lar buffer data to the file. :

A CPU program can indicate . the presence of sensitive field length data
by setting bit 25 of control point word SNSW (265). |If 1AJ detects this
flag, it zeroes all the job field length. This prevents the dumping of
sensitive data by subsequent control cards.

1AJ also searches for special files still assigned to the control
point. Specifically, these include the permanent files of the PFILES sub-
system to which access is highly restricted. Any such files are released
by 1AJ using the location-free (zero-level) overlay #DF (drop file).

Job Termination - 1AJ/I1CJ

At some point 1AJ will be activated and no control statements will
remain - the INPUT and alternate INPUT files are at the end of the control
card records. When 1AJ detects this state, it sets job termination activity
with an SJAM function call to CPUMTR and releases the PPU. CPUMTR then acti-
vates the job compietion PPU program 1CJ.

The job completion activities performed by 1CJ cover two main areas:
(1) the releasing of job resources; and (2) the queueing of job output files.
Among the resources released by ICJ are equipments, disk space, central
memory, terminal control blocks and the control point itself. In releasing
these resources, 1CJ scans the system resource lists - device request blocks,
EST table, FNT/FST tables, etc. - and uses CPUMTR function calls and the drop
file PPU overlay, #DF, to return resources allocated to the job.

Job output, punch and print, is released to the respective queues under
the job name. The 1D code field of the FST entry is set from the correspond-
ing field of the INPUT file FST entry, thus propogating the ID code entered
when the job was placed in the input queue, or the code inserted during
execution. ’ '

8.10

With the help of the CPUMTR function ADFM (accounting dayfile function),
1CJ enters job usage data into the job, accounting and master dayfiles. The
ADFM function processor computes the usage data and stores it in messages
located in the control point, control statement buffer (70s through 177g).
1CJ reads the messages from the buffer and issues them to the dayfiles using
the DFM entry of PPU resident.

" When the job dayfile has been completed, 1CJ copies it from disk (if
necessary) and from the central memory buffer to the end of the output
(print) file. The position of the job dayfile (track and sector) is stored
in bytes two and three of the output file FST entry. 1CJ then releases the
output file to its queue.

All of the job output released by 1CJ, print and punch, carries a queue
priority based on the file volume. - This volume is derived from two control
point words at LCTW and LCTW+1 (525 and 535). The queue priority describes
the volume in complement arithmetic - the larger the queue priority is,
the smaller is the volume it represents.

The releasing of output files to the print and punch queues may be
suppressed at the direction of the job. This is effected with the DISABLE
(OUTPUT) control card. When 1CJ recognizes the flag set by this control
card in bit 27 of control point word SNSW (264) it simply releases all out-
put files. Jobs whose successful completion can be detected by control
cards, and whose output is stored in another form - e.g., a permanent file -

may choose to have its printed and punched output disposed of in this fashion.

When 1CJ has finished releasing all files and equipment, it clears the
control point area, readying it for use by another job. The control point
""idle'" flag in bit zero of CPCW (60g) and other job scheduling factors
determine subsequent control point usage.

Special Job Termination - IRB

In certain unusual cases, the console operator may wish to terminate
a job, with or without restarting job execution. This process is initiated
with a console entry to DSD. DSD, in turn, calls the PPU program IRB, roll-
back job, to perform the requested action.

1RB functions .in much the same manner as 1CJ. There are, however, some
important differences. 1RB releases no files to the output queue. Finally,
if the job being processed is rolled out, 1RB must read the rollout file in
order to be able to release all resources assigned to the job.

To a limited extent the job may control the activities of 1RB. The
DISABLE (RERUN) and ENABLE (RERUN) control cards [12] set and clear bit 26
of control point word SNSW (26s). When this bit:is set, IRB will perform

RE

all termination activities except the releasing of the job to the input
queue for rerun. Instead the job dayfile is glven a message indicating
that the rerun attempt was aborted. Job executlion Is terminated. A job
may use thls option when it is, for example, updating files In such a way
that a rerun of the update process might generate erroneous results. The
no-rerun flag in SNSW is also honored by REC during dead-start recoveries.
If REC locates a job at a control point with rerun disabled, It enters the
rerun attempt aborted message and sends the job to the output queue, rather
than sending it to the input queue for rerun, :

Job Limit Processing

During job execution, the utilization of computing resources is con-
trolled by 1imits defined by the job card, the accounting file default
limits, and their translation into the job accounting header. These limits
constraln CPU time usage, |/0 transfer count usage, disk tracks allocated,
Iines printed and cards punched. The limits are initially stored in the
accounting header of the input file. The header is moved to control point
words ACTW through ACTW+5 (4ls - 46s) by 2BJ. 2BJ then uses the values
to set up special, limit control words for each resource. In addition,
the resource words special, resource reserves may be manipulated during job
execution,

CPU Time Control

: CPU time is managed through two control point words, CPTW (23s) and
CPLW (24g). CPTW is used to contain. the amount of CPU time used in milli-
seconds times four (for display purposes, byte three of CPTW is used as

CPU seconds, although it is actually milliseconds divided by 1,024), CPTW
is updated by CPUMTR whenever the CPU is removed from the control point,
and at the specific stimulation of PPU monitor through the CCPM (check CPU)
function call to CPUMTR.

Word CPLW contains the CPU time limit, also in milliseconds times four.
If bit 59 of CPLW is set, all job limits - CPU time; 1/0 transfer unit tracks,
lines and cards are considered unlimited. |{f bits 48-58 are also set, the
unlimited resource usage permission applies to the entire execution of the
job. If bits 48-58 are clear 1AJ clears bit 59 each time it advances to a
new control card. This 4000g value in bits 48-59 is used by special control
card programs which wish to avoid -1imit error exlts during their execution -
e.g., PFILES.

8.12

When CPUMTR detects that the CPU time used has exceeded the CPU time
limit, it sets the CPU time limit error flag. Eventually 1AJ is activated,
and 1AJ activates 2EF. 2EF restores any reserved CPU time by adding

the value found in bits 36-47 of control point word RRSW (62g) to the
CPU time limit word. 2EF then issues an error message and advances the job
or enters the CPU interrupt routine, as directed by control point word INTW

(475) .

1/0 Transfer Unit Control

/0 transfer units are managed with the control point word 10UW (L40,).
Bits 36-59 of this word contain the limit times 10000s. Bits 0-35 contain
the amount used. CPUMTR updates and checks the vailues in 10UW when proc-
essing the ATCM (advance 1/0 transfer count) function. The caller specifies
equipment, transferred units (sectors, lines, etc.) and file type in vari-
ous combinations. The ATCM processor converts these parameters into a charac-
ter count, which is added to bits 0-35. The accumulation is then compared to
the limit, unless bit 59 of word CPLW is set.

When the limit comparison indicates that the accumulated 1/0 transfer
units exceed the specified limit, CPUMTR sets the 1/0 unit error flag.
1AJ and 2EF are eventually activated. 2EF finds the |/0 transfer unit
reserve, divided by 10000, in bits 18-35 of RRSW (62g). This value is
added to the limit field of 10UW. 2EF then continues in the standard fashion.

Disk Track Control -

Disk track utilization is managed by the CPUMTR track function processors
DTKM (drop), RMSM (reserve mass storage space) and RTKM (reserve). These
processors manipulate track counts in control point word TKLW (65g5). This
word has the format:

Bits Value

59-42 Maximum tracks used
ki-24 Track timit

23- 0 Sector count

Since the various system devices have a differing number of sectors per
logical track, CPUMTR actually counts sectors. The sector count is converted
to a standardized, 64 sector track.

The CPUMTR track function processors update the TKLW word as tracks

are reserved or dropped. Byte one of the second TRT pointer word defines
the sectors per track value. A parameter of the function calls defines

8.13

the type of file for which the track function has been issued. Using this
file type, the CPUMTR function processors can avoid track processing for
special files such as permanent or rollout files.

Comparison of the track count to the specified 1imit is performed by
CPUMTR in monitor mode by the pre-processor routine of the RTKM function.
If this pre-processor finds that the track usage is within limit (or if bit 59
of CPLW is set) it passes the call to the RTKM problem mode processor. When
the track limit is exceeded, the RTKM processor changes the function call to a
CEFM (change error flag) call to set the track limit error flag TKET (15s).
The output register response to this function is all zero, so the response appears
to the RTKM caller as an indication that no tracks are available. Upon checking
the error flag, the caller detects the TKET value, and exits the PPU program.
1AJ and 2EF are activated. The track reserve value divided by eight, is
located in byte zero of RRSW (623) and added to the track count. 2EF processing
then proceeds normally.

The additional, maximum usage field is carried in TKLW in order to provide
the job user with an estimation value. This is important in view of the wide
fluctuation in track count that occurs during job execution, caused by programs
such as compilers, assemblers, etc., which write and return scratch files.

Line and Card Limits

Line and card limits are managed with the two control point words LCTW and
LCTW + 1 (524 and 535) and the CPUMTR, CTLM (count lines) function by the various
output file PPU programs - Ci0/2WD, DMP, etc. Each time one of these PPU pro-
grams records data on an output file the program counts lines - (DMP) or requests
that CPUMTR count the lines (C10/2WD) of the file, central memory circular
buffer. The line and card limit words have the format:

Word Bit Value
LCTW (524) 59-30 Print line limit
29- 0 Line Timit minus the number of lines

written in the OUTPUT file

LCTW + 1 (53s) 59-30 Punch card limit
29- 0 | Card limit minus the number of’cards
written in the PUNCH, PUNCHB, and PUNCH8
or P8 files.

CTLM counts a line or coded (PUNCH) card as one coded image or 14 words, which-
ever is detected first. A binary (PUNCHB) card is considered 15 words; column
image (PUNCH8), 16 words. :

8.14

When the value in bits 0 - 29 of the appropriate count word has been
reduced to zero, the count is exhausted. The CTLM caller (e.g. Cl10/2WD) or the
PPU program which is reducing the count itself (e.g., DMP) is responsible for
setting the control point error flag when the count is exhausted. 1AJ and 2EF
are activated. 2EF adds 100g times the line reserve value in bits 0 - 17 of
control point word RRSW (62g) and proceeds normally. There is no card reserve
value. '

At job termination all the count values - CPU time, 1/0 transfer units,
tracks, lines and cards - are translated into job accounting messages by the
ADFM function processor of CPUMTR. 1CJ sends these messages to the job and
accounting dayfiles. Analysis programs are later run to read the accounting
files for billing functions.

Security and Authorization

The central and peripheral processors are used in Dual MACE at a number of
different levels - system executive, job management, job directed processing,
etc. For system security purposes, the levels are divided into a system level
and a user level. Outside the standard interface areas - RA + 1 calls, XJ
calls, control cards - a user level process must have special authorization
in order to gain access to system level processes.

The most obvious restriction of this kind which has already been mentioned
is the PPU program naming and calling convention. A user level process cannot
call PPU programs whose name begins with a number (e.g. 1AJ) with an RA + 1 or
equivalent XJ call, Thus most of the special system PPU program names begin
with a numeric - TAJ, 1SJ, 1RO, ITF, etc. User callable programs begin with an
alphabetic - Cl0, CPM, etc.

Beyond this elementary level of control there are several other levels which
permit varying degrees of access to system level processes, These accesses are
controlled with a number of special flags.

1. The DEBUG flag is a one in bit zero of control point zero word six.

2. The job origin code is a two character, display code value in bits
48 - 59 of control point word ACTW + 3 (hbg).

3. The job eighth name character is stored in bits 12 -~ 17 of control
point word JNMW (214).

L, The control card loaded flag is stored in bit 24 of control point
word SNSW (263).

5. The sensitive data flag is stored in bit 25 of control point word
SNSW (264) .

6. Job permission flag bits are stored in the job accounting header,
ACTW - ACTW + 5 (41 - 46,).

Special access requests are granted to user level processes only if some

or all of these authorization flags have proper values. The flags tested de-
pend on the access requested. A location-free (zero-level) PPU overlay, @CA,

8.15

is available to PPU programs for testing the flags and taking appropriate
actions. CPU programs ¢an access the control! point area flags of their own
control points with XJ, '""RELREAD' calls to CPUMTR,

The DEBUG Flag

The DEBUG flag is a global, system test status flag. In general when it
is on, all restricted processes are available. This flag permits the performance
of system edits, absolute memory reading via XJ calls, etc. It is usually
turned off when the system is processing user jobs. The DEBUG flag status is
changeable only via console keyboard commands to DSD.

Job Origin Code

The two character job origin code describes the mode of origin of a job.
It is stored in the accounting header of the job input file when it is written.
The job origin code may assume the following values:

Code Significance

1! Batch - e.g., local card reader
net Console - via a DSD command

"G Generated

"ph! PROCSY - remote keyboard console
hx* Remote batch devices

A job obtains console origin if it was created with a console command entry
to DSD. Jobs of this origin generally have access to all system processes.
Other job origin codes carry no authoization privileges.

Job, Eighth Name Character

Special system control point processors are often identified to the system
with the setting of a value in bits 12 - 17 of control point word JNMW (21s).
Since these bits adjoin the seven character job name, they are called the eighth
job name character. Some special values are defined:

Value : Definition

0l) BATCHIO

03 Temporary

2038 System

608 PROCSY 2.0 (MESA)
77 ¢ . Remote batch

S

In general, a non-zero eighth name character authorizes access to most
system level processes. It also prevents the job scheduler, 1SJ, from rolling
the control point out, hence its use for the ''spooling' processors such as
BATCHIO, PROCSY 2.0 or the remote batch executive.

Control Card Loaded Flag

When 1AJ loads a CPU program from the system CPU program library, it
sets the control card loaded flag. Presence of this flag gives the system
CPU program access to many system level processes. Two special cases in
the use of this flag involve the relocatable program loader and the procedure
execution program. Each clears the control card loaded flag before giving
control to the user level process.

Sensitive Data Flag

Processes which store sensitive data in the central memory assigned
to a control point can set the sensitive data flag in the control point area.
When 1AJ detects that this flag is set, it clears (zeroes) all of the central
memory before advancing to the next control card. This feature is used, for
example, by the PFILES permanent file processor when it has transferred por-
tions of the system accounting file to a central memory buffer. The sensitive
data flag effects the destruction of the data before, for example, a subse-
quent control card can dump memory.

Permission Flags

The job accounting header provided by TJC contains a set of single bit

access or permission flags. TJC obtains them from the system accounting files.

They describe processes which are permitted or denied to the account code
user - e.g., usage of permanent files, plotters, graphics devices, etc. The
individual permission bits are tested by the PPU and CPU programs using the
resources regulated by the bits.

Access Flag Management:

These special access flag values are managed at the system process level,
The DEBUG flag and console origin both depend upon console keyboard entries.
Other flags are set by system processors - 1AJ sets the control card loaded
flag. In addition, each time 1AJ advances a control card it manipulates the
authorization flags. It clears memory if the sensitive data flag is set.
It also clears the sensitive data flag, the control card loaded flag, the
temporary indefinite limits flag and the temporary eighth name character.

7

Special Authorization Usages

The following system accesses are some of those controlled by the
system access flags:

1. System PPU and CPU program library edits require that the:
DEBUG flag be on. |If it is not, the console operator must
authorize the edit with a command entry.

2. Sensitive file accesses are regulated. These files include
the system dayfiles, the accounting files, and all perma-
nent files stored in directories whose names begin with
the characters 5, 6, 7, 8 or 9. The authorization depends
on the access mode:

a. FILES, ATTACH, etc. control cards require console
origin or operator authorization.

b. Control card loaded permission or the DEBUG flag
authorize all other requests.

3. CPUMTR requires console origin, control card loaded or DEBUG
flag authorization for absolute memory read, XJ .("'ABSREAD')
requests.

L. Numerous other, CPU program callable PPU programs test the
authorization flags, either globally or function by function.
These include: v

CPM - the control point manager - selected functions
LFM - the local file manager - selected functions
SFP - the system function processor - all functions
In general, these programs require console origin, control
card loaded, or eighth name character authorization.

5. With operator authorization, a CPU program can obtain many of
the special authorization permissions - e.g., the origin code
can be changed to console, a non-zero eighth name character
can be set, etc.

Console Security

Some commands which can be entered at the system console have the
potential to severely damage system operation. For example, one can
alter central memory contents, roll-back all rollout files to the
input queue, checkpoint, etc., with single commands. |n order to
prevent the accidental entry of these commands, the system display
driver operates in two modes - locked and unlocked.

When DSD operates in locked mode, the console operator cannot even
enter prohibited commands. The command syntax definition itself is una-
vailable. When operating in unlocked mode, DSD will accept all command
entries. Among commands legal only in the unlocked mode are those which
manipulate other security access flags - e.g., it is not possible to turn
on the DEBUG flag if DSD is in locked mode.

Special Job Execution Facilities

A number of other special job execution facilities enhance the processing

and sequencing of jobs. Among these facilities not already discussed are
conditional statement control, special control card advancement, exchange
package management, ahd display buffer processing.

Conditional Statement Control

During the execution of a job it is sometimes desirable that the se-
quence of control card processing be altered by the results of key control
card processes. Error dumps are not required, for example, when the error
resulited from compiler detected mistakes. Two facilities of Dual MACE ef-
fect conditional control card usage.

The first is the "if-conditional' control regiéter word (IFCW or 51g)
of the control point area. This word contains six registers of the follow-~
ing format:

Bits Register Value

59-54 . E Last error flag

53-48 Sg Processor error count
L7-42 S1 Six bit register
k1-36 S2 Six bit register
35-24 RO Twelve bit register
23-12 R1i Twelve bit register
11- 0 R2 Twelve bit register

Using appropriate calls to CPM, the PPU program control point manager, CPU

programs can store values in these registers for subsequent programs. Those

programs can read the register with calls to CPM or the "RELREAD" XJ func-
tion to CPUMTR. The special register E always contains the last error flag
value. It is set by 1AJ/2EF. Most compilers and assemblers report their
error count in S@. '

CPU programs may use these registers by directly storing, reading and
testing them. In addition, a control card language processor, MCL (MACE
Conditional Language) [18] 'is available for manipulating the registers.
MCL processes the GOTO, '*-label', SET (register) and IF control cards.
They permit testing and control sequencing operations. The |F control
card also permits the testing of values other than the registers - the
DEBUG flag, the time or date, line count, etc.

8.19

Special Control Card Advancement

MCL makes use of a special CPM function which permits a CPU program
to advance through its control card statements in much the same manner as
1AJ advances through them. Thus MCL can skip to the '""-label!' cards as
directed by GOTO statements. Another CPM function permits MCL to send a
control card statement to IAJ for execution. Thus, for example, the I|F
control card may also contain a statement to be executed if the tested
condition is true, in much the same manner that the FORTRAN, IF statement
functions. For example, a job wishes to execute a compiled program on file
LGO if no compiler errors were detected., The following control card ef-
fects that operation:

IF(S@.EQ.0) LGO.

The control card advance function of CPM is also used by CPU programs
which process a number of different control card calls. . For example, the
system CPU program UTILITY, contains entry points for the processing of
forty-seven different control cards (REWIND, RETURN, COPY, FILES, ATTACH,
etc.). By reading the next control card with CPM, UTILITY can process a
series of its own calls in a much more rapid fashion than can be achieved
with individual reloads of UTILITY by 1AJ. System overhead is also reduced.

Exchange Package Management

A number of the XJ function calls (Appendix D) processed by CPUMTR
for control point CPU programs permit the manipulation and management of
exchange packages. These operations are useful in effecting register dumps,
subroutine linkage, interrupt processing, etc. The exchange package can
be stored in an area, swapped with an area (a pseudo-exchange. jump) or
swapped with the insertion of a new value for the instruction counter, P.

A word of the control point area, PRPW (555) also enables CPUMTR to
maintain exchange package stacks in the calling program field length. PRPW
contains three, eighteen bit values which define the beginning (bits 36-53),
end (bits 0-17) and current position (bits 18-35) of the stack. Three XJ
functions are available for defining the stack, putting exchange packages
on the stack, or removing them from the stack. These functions enable re-
cursive processors to save the twenty four operating registers from level
to level. : : :

8.20

TN

N

The Control Point Display Buffer

CPU programs can communicate with the system console operator with
two message lines of the control point area - MSIW (30s-3k4g) and MS2W
(355-375). Special system utility programs often require a larger commu-
nication area. This area is provided by the DSD, control point display
buffer feature.

Control point word DBAW (665) defines three display buffer control
addresses. One address defines the beginning of a right screen buffer
(bits 18-35); another, a left screen buffer (bits 0-17); and the third,
a keyboard entry buffer (bits 36-53). With appropriate console command
entries (the "K' and '"L'" display commands) DSD will display the contents
of the defined buffers on the right and left screens of the system con-
sole, and will direct operator entries to the addressed keyboard entry
buffer.

Display buffer control words select character size (64 or 32 per line)
and mode (vector or character). The CPU program which uses this display
facility can enter data in the buffer directly and scan the keyboard entry
buffer for incoming data. Optionally, the program can use a PROCSY inter-
face which defines one special TCB as a console display buffer terminal.
When the program uses the facility it communicates with the buffers in its
field length with CIO calls. CI0 uses the 2DS overlay to perform data trans-
fers. While this process is somewhat cumbersome, it does permit the stan-
dard, MESA terminal processors to communicate with the system console in
exactly the same fashion as a remote device. The PROCSY master terminal
is assigned to the system console in this fashion.

8.21

Remote Devices - PROCSY 2.0

A large share of the work performed by the Dual MACE system depends upon
communication with remote input/output devices. These range from slow (10
characters per second) teletypes to very fast (90,000 characters per second)
tape drives. All of this remote communications is managed and directed through
a multi-level system called the Purdue Remote On-line Console System, PROCSY
“[17]. Currently version 2.0 is in use.

The PROCSY system is divided into two main hardware levels. The 6400 and
6500 systems, controlled by Dual MACE, are responsible for the computing, on-
line storage, and active control functions. Three front end computers perform
the input-output communications tasks. These include an [BM 7094 which commu-
icates with as many as 64 low speed (10 to 30 characters per second) keyboard
devices. A second 7094 communicates with a high speed batch station at 20,000
characters per second; a small number of keyboard devices, and four 90,000
characters per second 729 IV tape drives. Third, a Modular Computer Systems
MODCOMP |11 communicatés with a number of high speed, 1,000 character per second
devices (display consoles, line printers; card readers) a number of low speed
keyboard devices and with remotely located computer systems (DEC PDP 11/45, IBM
360/22) over both synchronous and asynchronous communications facilities.

The three front end computers are coupled to one channel of the 6500 with
channel-to-channel couplers. The /0 on this channel is serviced by the inter-
machine communications stack processor PPU program, 1IM. The control programs
of each of the three front end machines present a standard software interface
to 1IM,

Two software mechanisms in the Dual MACE system control the activities of
the remote devices: The terminal control block (TCB) table, contains, one,
three word entry for each remote device. The words of this TCB entry provide
for device status and function activities, processor scheduling (swapping),
interrupts, and device reservation. The processing of the TCB's, for the most
part, is strictly controlled by the terminal systems CPU program, MESA,
assigned to one or more dedicated control points. In certain special cases -
the 729 1V tapes, for example - TCB control is managed by 1IM and other CPU
programs. A special CPUMTR, XJ function supports MESA swapping activities
(Appendix E).

Terminal System Control - MESA

The MESA system runs at one or more control points that must remain dedicated
so long as there is any associated terminal activity. 150005 words of main mem-
ory are allocated to a MESA control point. About 2000s words make up the MESA
resident executive routines. Another 40003 words are used for MESA processor
program overlays that are normally loaded from ECS. The remaining 70005 words
make up the user page area. The page area contains information that is specific
to an individual user. Information in the area may be data or user program or
a combination of program and data. The user page also contains any tables or

9.1

other information specific to the individual user that are created by either
the resident executive or the processor programs. The user page is the area
that must be swapped when the user is temporarily interrupted, and that must be
reloaded when that user's processing is resumed.

Because of the small size of the MESA main memory, the processors that
operate in the MESA system are carefully designed and structured so0 as to consist
of sequences of relatively small overlays. An active MESA processor program is
stored as a set of segments in a segment library in ECS (the MLD). All processor
program code is reentrant,

Since ECS storage is limited and system performance is directly related to
the speed of swapping, the amount that is to be swapped is kept to a minimum.
Only that part of the user area that is actually in use (i.e., the user page)
is swapped out when a program is interrupted. Within the user page there is a
list of the names of the segments that were in the program area at the time of
interruption., Since the program segments are all pure procedure segments, the
program area can be reloaded from ECS when the interrupted program is to be re-
sumed and there is no need to swap out the contents of the program area.

File Table

A program that is running at a MESA control point may have up to 24 local
files. In order to speed up swapping to and from ECS, a fixed block of 24
entries in the File Name Table (FNT/FST) is permanently allocated to each MESA
control point. These entries are always associated with the job's active data
page. The local file block is swapped out along with the user page when the job
is interrupted, and is swapped back in when it is resumed.

LOGON

Every terminal that is logged on in the system has an active data page.
The active data page is initialialized by the LOGON processor. The LOGON
processor first performs validity checks on name, .account number and optional

password, using a call to the job card translator PPU program TJC. |f the user's
access is valid, it places the user name and account number information in the '
data page along with the address of the user's primary file storage block. It

also initializes to zero the cells in which the user's processor time and 1/0
utilization will be accumulated. This LOGON and accounting information area

remains with the user's active page throughout his terminal session until he

logs off.

After the LOGON processor has finished its initialization of the data page,
it asks the user for a processor name, verifies that it is a valid one and pro-
ceeds to load it and to give it control. LOGON links to the processor with a
procedure called PLINK, ‘

9.2

