MAN-105000-000 Rev. 1.0 June 1993

CRD-5000

SCSI RAID Controller OEM Manual

CMD Technology, Inc. 1 Vanderbilt Irvine, California 92718 (714) 454-0800

Copyright

This manual is copyrighted and all rights are reserved. No portion of this document may be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior written consent from CMD Technology, Inc. (CMD).

CMD, CMD Technology and CRD-5000 are all trademarks of CMD Technology, Inc. All other product and company names are trademarks and registered trademarks of other manufacturers.

Copyright © CMD Technology, Inc. June 1993. All rights reserved.

Disclaimer

CMD reserves the right to make changes to this manual and the equipment described herein without notice. CMD has made all reasonable efforts to insure that the information in this manual is accurate and complete. However, CMD shall not be liable for any technical or editorial errors or omissions made herein or for incidental, special, or consequential damage of whatsoever nature resulting from the furnishing of this manual, or operation and performance of equipment in connection with this manual.

FCC Notice

Class A Computing Device: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Table of Contents

1	Special Vendor Parameters	1-1
	Accessing Vendor Parameters	1-1
	Main Menu	1-2
	Mode Parameters	1-2
	Vendor Parameters	1-4
2	SCSI Commands	2-1
	Test Unit Ready (00h)	2-1
	Rezero Unit (01h)	2-2
	Request Sense (03h)	2-3
	Extended sense data format	2-3
	Sense Data Explanations	2-4
	Sense Keys	2-6
	Sense and Subsense Codes	2-7
	Format Unit (04h)	2-14
	Read (08h)	2-15
	Write (0Ah)	2-16
	Seek (6) (0Bh)	2-17
	Inquiry (12h)	2-18
	Data Descriptions	2-19
	Mode Select (15h)	2-23
	Header	2-25
	Block Descriptor	2-26
	Page Descriptors	2-26
	CRD-5000 Mode Select Parameters	2-26
	Reserve Unit (16h)	2-28
	Logical unit reserve function	2-28
	Reservation right and third party reserve function	2-28
	Superseded Reserve	2-29
	Release Unit (17h)	2-30
	Third party release	2-30
	Mode Sense (1Ah)	2-31
	Header	2-34

	Block descriptor	2-34
	Page descriptor	2-34
	Start/Stop Unit (1Bh)	2-36
	Send Diagnostic (1Dh)	2-37
	Prevent Allow Medium Removal (1Eh)	2-38
	Read Capacity (25h)	2-39
	Read Extended (28h)	2-40
	Seek (10) (2Bh)	2-41
	Write and Verify (2Eh)	2-42
	Verify (2Fh)	2-43
3	SCSI Messages	3-1
	Command Complete (00h) T	3-1
	Save Data Pointer (02h) T	3-1
	Disconnect (04h) T	3-2
	Initiator Detected Error (05h) I	3-2
	Abort (06h) I	3-2
	Message Reject (07h) I/T	3-3
	No Operation (08h) I	3-3
	Message Parity Error (09h) I	3-4
	Bus Device Reset (0Ch) I	3-4
	Abort Tag (0Dh) I	3-4
	Clear Queue (0Eh) I	3-5
	Queue Tag Messages	3-5
	Head of Queue Tag (021h) I	3-6
	Ordered Queue Tag (022h) I	3-6
	Simple Queue Tag (020h) I/T	3-6
	Identify (80h to FFh) I/T	3-6
	Synchronous Data Transfer Request (I/T)	3-7
	Data transfer mode parameters	3-7
	Message exchange procedures for initiator	3-9

Index

Validity of data transfer mode

3-10

Chapter 1 Special Vendor Parameters

his chapter describes special CRD-5000 parameters designed to be used by vendors rather than end users. The following vendor parameters are available:

- SCSI Mode Parameters: Configure the CRD-5000 to conform with the requirements of a particular host system.
- System Display: Have your own name and model number appear on the opening screen of the monitor or front panel utilities.
- ✤ Inquiry Response: Have the CRD-5000 respond with your own name and model number when issued a SCSI inquiry command.

These parameters can be changed only through the monitor utility and only after you enter a special vendor password. In fact, they are hidden from view unless you have "vendor privileges," granted by entering the vendor password.

Accessing Vendor Parameters

To gain access to the vendor parameters, enter your vendor password instead of your user password when prompted on the monitor utility's title screen. You must use a keyboard for the vendor password. Unlike the user password, the vendor password may be as long as nine characters and include any keyboard character.

The default vendor password is "CMDTECH." Use the default password the first time you access the vendor parameters. Once you have "vendor privileges," you can change your vendor password by selecting in succession "System Functions," "Change Password" and "Vendor Password" in the monitor utility. The steps for changing your password are the same as those described in the CRD-5000 User's Manual for changing the user password. The only difference is that you may use up to nine characters and any character on the keyboard, not just the numbers one through four.

If password protection is disabled, you may force the CRD-5000 to prompt you for a password at the title screen by pressing Ctrl-P. Enter your vendor password, and you will have immediate access to the vendor parameters. This saves the extra steps involved in entering the monitor utility to enable password protection and then backing out to the title screen to enter your vendor password.

If password protection is disabled, use the Ctrl-P keyboard shortcut to force the CRD-5000 to prompt you for a password. Once you have modified the vendor parameters, you may restore the monitor utility to its standard user level by pressing Ctrl-Z until the title screen reappears. At this point, any user who enters the monitor utility without providing the vendor password will not have access to the vendor parameters.

Maın Menu

Upon entering the correct vendor password, you will be presented with the following main menu screen:

	CRD-5000 Monitor Utility MAIN MENU									
	04/24/93 07:58:45	, ,								
	System Functions									
	Raid Set Statistics									
	I/O Statistics									
	Rebuild Status									
	Disk Parameters									
	Host Parameters									
	Mode Parameters									
	System Parameters									
	Vendor Parameters									
	Raid Set Parameters	S								
r	1		·							
UP ARROW: CURSOR UP	DOWN ARROW: CURSOR DOWN	ENTER: SELECT	CTRL-Z: EXIT							

This screen is identical to the user-level main menu, except for the additional options "Mode Parameters" and "Vendor Parameters."

Mode Parameters

The Mode Parameters screen provides a means to change the saved SCSI mode parameters related to the physical attributes and data format of the disk array or the SCSI bus disconnect/reconnect process timing and error recovery procedure to the host. The default values are designed to be compatible with the majority of host systems; however, there is the possibility that some hosts will not communicate properly with the CRD-5000 unless these parameters are modified. Please do not attempt to change any values on this screen unless you are familiar with SCSI mode parameters, or you are directed to by a CMD Technology technical support representative. When you select Mode Parameters from the main menu, two small submenus will appear, prompting you for the logical unit number and host channel to be modified. Once you have responded to these prompts, the Mode Parameters screen will appear.

CRD-5000 Monitor Utility MODE PARAMETERS (Saved) LUN 0 CHANNEL 0 04/24/93 07:58:45

			Byte																				
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	1	0C	00	00	00	00	00	00	00	00	00												
	2	00	00	00	00	00	00	00	00	00	00	00	00										
P	3	00	00	00	00	00	00	00	00	00	40	02	00	00	00	00	00	00	00	00	00	00	00
a	4	00	00	10	10	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
g	7	00	00	00	00	00	00	00	00	00	00												
е	8	04	00	00	00	00	00	00	00	00	00												
	9	00	00	00	00	00	00																ţ
	A	10	00	00	00	00	00																
	в	00	00	00	00	00	00																
	С	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
						-													1				

To modify a parameter value, use the arrow keys to position the cursor over the byte value you want to change and press Enter (Return). The status bar at the bottom of the screen will change to the following.

S: SAVE PAGE

CTRL-Z: EXIT

ARROW DOWN: PAGE DOWN

ARROW UP: PAGE UP

UP ARROW: INC DOWN ARROW: DEC	ENTER: SAVE	CTRL-Z: NO SAVE
-------------------------------	-------------	-----------------

Use the " \uparrow " key to increase the value or the " \downarrow " key to decrease the value. When you reach the value you want, press Enter (Return) to save it. Press Ctrl-Z to cancel the change.

For more information about SCSI mode parameters, see the discussion of the SCSI Mode Select command on page 2-22.

Vendor Parameters

The Vendor Parameters option takes you to a screen where you can enter your own name and model number for the CRD-5000. Once you change these parameters, the information you enter will be displayed on the title screens of the front panel and monitor utility. It will also be returned whenever the host sends a SCSI inquiry command to the CRD-5000.

	CRD-5000 Monitor Utility Vendor Parameters									
	04/	24/93 07:58	:45							
		System Display								
	Vendor									
	Model	Model CRD-5000								
	[
		Inquiry Response								
	Vendor	CMD TECH								
	Model	CRD-5000								
ARROW KEYS: MO		ENTER: SELECT	CTRL-Z: NO SAVE	≡						

Use the arrow keys to move to the parameter that you want to modify and press Enter. Type the new information and press Enter. You are allowed 16 characters in each system display field. The SCSI specification limits the Inquiry Response vendor field to eight characters and the model field to 16 characters.

Chapter 2 SCSI Commands

Test Unit Ready (OOh)

Byte ^{\Bit}	7	6	5	4	3	2	1	0			
0	-	00h									
1		LUN				0					
2	0										
3				. ()						
4	0										
5	0										

The Test Unit Ready command confirms that the logical unit is ready. If the logical unit is ready, the CRD-5000 returns a GOOD status. Otherwise, the CRD-5000 reports a CHECK CONDITION status. The sense data that is generated indicates the current status of the CRD-5000.

Rezero Unit (Olh)

Byte ^{\Bit}	7	6	5	4	3	2	1	0		
0				lh						
1		LUN		0						
2	0									
3				. ()					
4	0									
5				()					

The CRD-5000 does not implement the rezero unit command. When issued this command by the host, the CRD-5000 takes no action and responds with a GOOD status.

t Sens	se LUJh	J						
7	6	5	4	3	2	1	0	
03h								
LUN 0								
			()			н -	
			()				
Allocation length in bytes								
			()				
		7 6	7 6 5 LUN	7 6 5 4 03 LUN (Allocation lea	7 6 5 4 3 03h LUN 0 0 0	7 6 5 4 3 2 03h LUN 0 0 0 0 0 Allocation length in bytes	03h LUN 0 0 0 Allocation length in bytes	

The REQUEST SENSE command enables the initiator to request sense data resulting from a CHECK CONDITION status on the prior command. The CRD-5000 retains the sense data until the initiator requests it or until the same initiator issues another command to the same logical unit, at which time the sense data will be cleared.

The CRD-5000 does not send a CHECK CONDITION status in response to a request sense command made in error, unless the error was a fatal error. Examples of fatal errors include a nonzero reserved bit in the command descriptor block, an unrecovered parity error on the data bus, or a CRD-5000 malfunction that prevents the return of sense data. Sense data may be invalid following a fatal error on a request sense command.

Byte four of the command specifies the allocation length, which is the number of bytes the initiator has allocated for returned sense data. In the case of the CRD-5000, the allocation length should always be at least 18 bytes for the initiator to receive all sense data. Any other value indicates the maximum number of bytes that shall be transferred. The CRD-5000 terminates the Data In phase when allocation length bytes have been transferred or when all available sense data have been transferred to the initiator, whichever is less.

Extended sense data format

. .

Coni J

The CRD-5000 is capable of sending 18 bytes of extended sense data, and sends 18 bytes if the allocation length of the request sense command is equal or greater than 18 bytes (otherwise, the number of bytes specified by the allocation length will be sent). The extended sense data format is summarized in the following table.

Byte ^{\Bit}	7	6	5	4	3	2	1	C		
0	Valid Bit	1	1	1	0					
		Er	ror Cla	ISS						
1		0								
			Segr	nent Nu	umber					
2	0 Filemark									
3		In	format	ion By	te (MS	B)				
4			Infor	mation	Byte					
5			Infor	mation	Byte					
6		Ir	nformat	tion By	te (LSI	3)				
7		Ac	ditiona	al Sens	se Leng	gth				
8				0						
9				0						
10				0						
. 11	7			0						
12		Addit	tional S	Sense	Code (ASC)				
13	Ado	ditional	Sense	Code	Qualifi	er (AS	SCQ)			
14			F	RU Co	de	•		-		
15	FPV	C/D		0	BPV	E	Bit Point	er		
16		Field Pointer (MSB)								
17	Field Pointer (LSB)									
18-n		Product Unique Sense Data								

Sense Data Explanations

Valid Bit: This bit will be one if the information bytes (bytes 3-6) are valid and zero if they are not valid.

Error Class: Ones in these three bits indicate that extended sense is in use.

Segment Number: All bits contain zeros.

Filemark: This bit is always set to zero for the CRD-5000.

CRD-5000 Disk Array Controller

EOM: This is the "end of medium" indicator and is always set to zero for the CRD-5000.

ILI: The "incorrect length" indicator is always set to zero for the CRD-5000.

Sense Key: Indicates the CRD-5000's general error categories, which are listed in the next table. The additional sense code in byte 12 gives additional information about errors.

Information Bytes: When the valid bit is one, the information bytes will contain the the sense key's unsigned logical block address associated. The information bytes will contain the address of the current logical block unless otherwise specified.

Additional Sense Length: The length in bytes of additional sense data to follow. The allocation length in the command descriptor block must be sufficient to accommodate the additional sense data to avoid truncation.

Additional Sense Code/Additional Sense Code Qualifier: When the sense key is valid, gives additional information about errors.

FRU Code: The field replaceable unit code is for the use of field service personnel only.

FPV: When the field pointer valid bit is set to one, the C/D bit and bytes 16 and 17 are valid. These fields will be ignored when the FPV bit is zero.

C/D Bit: When the command/data bit is set to one, the value in the field pointer bytes identifies the byte number in the CDB that prompted an illegal request sense key. When the C/D bit is zero, the value reported in the field pointer bytes identifies the byte number in the data phase that prompted an illegal request sense key.

Field Pointer (MSB & LSB): When an illegal request sense key is issued due to an illegal parameter, this field gives the parameter's location in the command descriptor block or the data block. The next table provides detailed information about this field.

BPV: When the bit pointer valid bit is one, the next field—the bit pointer field—is valid.

Bit Pointer Field: This field pinpoints the bit that caused the illegal request sense key. A value of seven means the leftmost bit caused the error, and a zero means the rightmost bit caused the error. The byte in which the bit lies is identified by the field pointer field.

Sense Keys

Sense	Name	Explanation
0	NO SENSE	No particular sense key is present.
1	RECOVERED ERROR	The last executed command completed successfully with some recovery operation performed by the CRD-5000. When two or more errors occur and are recovered during processing of a command, the last is reported.
2	NOT READY	The disk drive is not accessible.
3	MEDIUM ERROR ERROR	An unrecoverable error was detected due to a defect in the medium or an error in the recorded data.
4	HARDWARE ERROR	The CRD-5000 detected the hardware error to which the recovery process cannot be applied during command execution or self-diagnostic test.
5	ILLEGAL REQUEST	An illegal value was detected in the CDB, in the parameter transferred, or the LUN is incorrect. When the CRD-5000 detects an illegal parameter in the CDB, the CRD-5000 terminates the command without rewriting the disk.
6	UNIT ATTENTION	The UNIT ATTENTION condition occurred.
В	ABORTED COMMAND	The CRD-5000 abnormally terminated the command being executed. Normally, the initiator can try recovery by reissuing the command.
E	MISCOMPARE	Source data did not match the data read from medium.

Sense and Subsense Codes

ASC	ASCQ	Name	Explanation	Sense Key
00	00	No additional sense information	No particular sense code is present	0
			An attempt was made to read the read prohibited area.	7
00	06	I/O process terminated	The I/O process has been terminated by a "Terminate I/O Process" message.	0
01	06	06 No index/sector The index or sector signal was not detected in the specified period.		4
02	00	No seek complete	The seek or rezero seek operation did not complete in the specified period.	4
03	00	Peripheral device write fault	Write operation to the disk abnormally terminated.	4
04	00	Logical unit not ready, cause not reportable	The disk drive is not accessible.	2
04	04	Logical unit not ready, format in progress	The drive is not accessible because it is being formatted.	2
08	01	Logical unit not ready, format in progress	A timeout occurred on a drive's internal interface.	2
08	02	Logical unit communication parity error	A parity error occurred on a drive's internal interface.	2
09	00	Track following error	The track crossing pulse was detected during the track following state.	4

ASC	ASCQ	Name	Explanation	Sense Key			
0C	01	Write error recovered with auto reallocation	The error at write operation was recovered by the automatic alternate block allocation.	1			
0C	02	Write error, auto reallocation failed	The automatic alternate block allocation process failed during the write operation.	3, 4			
10	00	ID CRC or ECC error					
11	00	Unrecovered read error					
11	04	Unrecovered read error, auto reallocation failed.	3				
12	00	Sync byte not found for ID field	Sync byte of the ID field cannot be detected.	1, 3			
13	00	Sync byte not found for data field	Sync byte of the data field cannot be detected	3			
14	01	Record not found	The desired data block (sector) could not be found	3			
15	00	Random positioning error	Cylinder switching does not complete in the specified period.	1, 4			
15	01	Mechanical positioning error	A seek error occurred on the drive.	1, 4			
15	02	Positioning error detected by read or medium	The cylinder address of the ID field did not match.	1, 4			
15	80	Settling error	After track switching/cylinder switching, the CRD-5000 is not in an on-track state.	1, 4			

ASC	ASCQ	Name	Explanation	Sense Key			
15	F0	Calibration error	The calibration seek or cylinder serve has failed.	4			
17	01	Recovered data with retries	The data error was recovered by read retry.	1			
17	02						
17	03	Recovered read data with negative head offset	ered read The data error was th negative recovered by read retry				
18	00	Recovered read data with errorThe data error was immediately recovered by ECC correction.					
18	01	Recovered read data with error correction and retries applied	The data error was recovered by the ECC correction after retry applied.	1			
18	02	Recovered read data with error correction and/or retries, data auto- reallocation	with error recovered by ECC ection and/or correction and the automatic alternate block				
18	80	Recovered read data with error correction and/or retries, rewrite applied	The data error was recovered by ECC correction and rewriting to the same block.	1			
19	00	Defect list error	An error was detected when the defect list (G list) was read	3			

ASC	ASCQ	Name	Explanation	Sense Key			
1A	00	Parameter list length error	The initiator sent a parameter of incorrect length	5			
1B	00	Synchronous data transfer error	An error was detected in synchronous data transfer—either an abnormal period of ACK signal or an ACK signal response broken REQ/ACK offset.	4			
1C	01	Primary defect list not found	mary defect list An error was detected				
1D	00	COMPARE ERROR	E				
20	00	Invalid command operation code	CDB byte 0 (operation code) is invalid	5			
21	00	Logical block address out of range	A logical block address exceeding the maximum value of the drive was specified.	5			
24	00	Invalid field in CDB	Setting in the CDB is incorrect.	5			
25	00	Logical unit not supported	Invalid LUN was specified.	5			
26	00	Invalid field on parameter list	Setting of the parameter list transferred from the initiator during command execution is invalid.	2			
27	00	Write protected	An attempt was made to write in the write- prohibited area.	7			
29	00	Power-on, RESET, or BUS DEVICE RESET occurred	State immediately after power-on, state after RESET condition, or BUS DEVICE RESET message.	6			

CRD-5000 Disk Array Controller

ASC	ASCQ	Name	Explanation	Sense Key			
2A	00	MODE parameters changed	Another initiator changed the MODE SELECT parameter value.	6			
2A	02	Log parameters changed	Log parameters have changed by another initiator.	6			
31	00	Medium format corrupted	dium format rupted The medium format is different from the original one. (Formatting was not performed after the data format setting was changed with the MODE SELECT command.) defect spare No useable alternate block				
32	00	No defect spare location available					
32	01	Defect list update failure	Updating of the defect list (G list) failed.	4			
37	00	Rounded parameter	The MODE SELECT parameter specified by the command was rounded.	1			
3D	00	Invalid bits in IDENTIFY message	1 was specified for the reserve bit of the IDENTIFY message.	5			
3E	00	Logical unit has not self-configured yet	The CRD-5000's initial setup operation is not complete.	2			
3F	01	Microcode has been changed	The CRD-5000's microcode has been changed by another initiator.	6			
40	nn	Diagnostic failure on component "nn"	An error was detected in self-diagnostic test.	4			

ASC	ASCQ	Name	Explanation	Sense Key		
43	00	Message error	The message sent from the CRD-5000 was rejected.	В		
44	00	Internal target failure	A hardware error was detected in the CRD-5000.	4		
45	00	Select/reselect failure	Response waiting timeout for the initiator was detected in RESELECTION phase.	1, B		
47	00	SCSI parity error				
48	00	INITIATOR DETECTED ERROR message received	The INITIATOR DETECTED ERROR message was received from the initiator.	1, B		
49	00	Invalid message Unsupported or illegal message was received.		В		
4C	00	Logical unit failed self-configuration	The CRD-5000's initial setup failed. (System space information could not be read).	4		
4C	80	Initial seek failed	Initial seek failed and the initial setup of the CRD- 5000 cannot be performed.	4		
4E	00	Overlapped commands attempted	A new command was issued from the same initiator to the same logical unit before execution of a command was completed with tagged queing disabled.	В		
5B	01	Threshold condition met	Log parameter threshold condition has been met.	6		
5C	00	Rotational Position Locking (RPL) status changed	Status of the spindle synchronization function has changed.	6		

ASC	ASCQ	Name	Explanation	Sense Key
5C	01	Spindles synchronized	All spindles have synchronized. (In an array environment).	6
5C	02	Spindles have lost synchronization	All spindles in an array did not achieve synchronization in the required time or at least one spindle lost synchronization.	6

format	Unit	(04h)						
Byte\ ^{Bit}	7	6	5	4	3	2	1	0
0				04	1 h			
1		LUN				0		
2				()			
3				()			
4				()			
5				()			

The CRD-5000 does not implement the format unit command. When issued this command by the host, the CRD-5000 takes no action and responds with a GOOD status.

Read (O	Bh)								
Byte ^{\Bit}	7	6	5	4	3	2	1	0	
0		08h							
1	LUN Logical block address (MSB)						B)		
2			Lo	gical blo	ck addre	ess			
3			Logica	al block a	address	(LSB)			
4		Transfer block count							
5				()				

The read command transfers data from the CRD-5000 to the initiator. The first block of data read is specified in the logical block address field of the CDB. The command continues transferring data in contiguous logical blocks until it reaches the transfer block count specified in byte 4.

If the transfer block count field is set to zero, the read command returns 256 logical data blocks. If the field is set to a number other than zero, the command transfers that number of logical blocks.

Write (OAh)

Byte\ ^{Bit}	7	6	5	4	3	2	1	0		
0	-	0Ah								
1		LUN Logical block address (MSB)								
2		Logical block address								
3			Logica	al block :	address	(LSB)				
4		Transfer block count								
5		0								

The write command instructs the CRD-5000 to write data sent by the initiator to the array. The data is written in contiguous logical blocks, starting with the logical block specified in the logical block address field of the CDB and comprising the total number of blocks specified in the transfer block count field.

If the transfer block count field is set to zero, the command transfers 256 logical data blocks to the array. If the field is set to a number other than zero, the command transfers that number of logical blocks.

Seek (6) (OBH]								
Byte ^{\Bit}	7	6	5	4	3	2	1	0		
0		0Bh								
1		LUN Logical Block Address (MSB)								
2			Log	gical Blo	ck Addr	ess				
3	Logical Block Address (LSB)							LSB		
4				()					
5				()					

The CRD-5000 does not implement the seek (6) command. When issued this command by the host, the CRD-5000 takes no action and responds with a GOOD status.

mquiry	נונוון									
Byte ^{\Bit}	7	6	5	4	3	2	1	0		
0		12h								
1		LUN 0								
2				()					
3				()					
4		Allocation Length in Bytes								
5)					

The Inquiry command requests information about the identity and characteristics of the CRD-5000.

This command executes successfully even in the presence of a Unit Attention condition. It also executes if the CRD-5000 is not ready or if the specified LUN is invalid.

The following situations will cause a CHECK CONDITION status to be reported and an abnormal termination:

♥ The CDB contains a specification error in other than the LUN field.

♦ A CRD-5000 hardware error makes the inquiry data inaccessible.

 \clubsuit An unrecoverable error is present on the SCSI bus.

 \clubsuit The overlap command's exception conditions are applied.

	•	iry Data	3						
Byte ^{\Bit}	7	6	5	4	3	2	1	0	
0		Qualifier		Device type code					
-		0				0			
1	RMB	RMB Device type qualifier							
	0				0				
2	ISO Vers ECMA Version ANSI Version						ion		
	(0 0 1						0	
3	AENC	TmIOP		Response Data Format					
	0	0	0	0	0	0	1	0	
4			1Fh (/	Additiona	al data le	ength)			
5				()				
6				()				
7	Reladr	WB32	WB16	Sync	Linkd		Cmd Que	SfRe	
	0	0	0	1	0	0	1	0	
8 15		"(CMD TE	CH" (Ve	ndor ID	in ASCI)		
16 31			CRD-50	00" (Pro	duct ID	in ASCII)		
32 35					rsion in A sion in A				

Data Descriptions

Qualifier

000

The type of I/O device represented by the specified logical unit matches the "device type code" field. The logical unit does not need to be ready for this code to be sent.

Qualifier

The type of I/O device represented by the specified logical unit matches the "device type code" field
The specified logical unit is not being supported. The "device type code" field indicates 1Fh when this code is sent.
code
Direct access device
Undefined device
When equal to 1, the storage medium is replaced. The CRD-5000 acts as a fixed disk, so this bit is always 0.
qualifier
All bits are set to 0.
rd version
The second byte in the data block represents the SCSI standard recognized by the CRD-5000. Since the CRD-5000 is a SCSI-2 device, it reports "010" for ANSI X3T9.86.
Always set to zero.
on
Always set to zero.
Asynchronous Event Notification Capability. The CRD- 5000 does not support this function.
Terminate I/O Process message. The CRD-5000 does not support this message.

Response da	ta format
0010	The format of the Inquiry data is identified by this field. The CRD-5000 reports all data in SCSI-2 format, so this field will always equal "0010."
Additional da	ta length
1Fh	The length of bytes of additional inquiry data to follow.
RelAdr	
0	Relative Logical block addressing. The CRD-5000 does not support this function.
WBus32	
0	Data transfers take place on a 32-bit-wide bus. The CRD-5000 does not support this function.
WBus16	
0	Data transfers take place on a 16-bit-wide bus. The CRD- 5000 does not support this function.
Sync	
1	Synchronous-mode data transfer. The CRD-5000 supports this function.
Linked	
0	Command linking. The CRD-5000 does not support this function.
Cmd Que	
1	Command queuing with tag. The CRD-5000 supports this function.
SftRe	
0	Soft RESET condition. The CRD-5000 does not support this function.
Vendor ID	
CMD TECH	This field indicates the product supplier's name in left- justified ASCII code and will always contain "CMD TECH."

Product ID

CRD-5000 This field indicates the product model name in leftjustified ASCII code and will always contain "CRD-5000."

Product revision

This field contains the CRD-5000 microcode revision number in ASCII code.

וווחה זבוברר (וזוו)										
Byte ^{\Bit}	7	6	5	4	3	2	1	0		
0		15h								
1		LUN PF 0 SP								
2		0								
3		0								
4	Parameter list length									
5		0								

Mode Select (ISh)

The Mode Select command allows the initator to configure various CRD-5000 parameters.

When the page format bit in byte 1 of the CDB is 1, the initiator is signaling that is transferring parameters in the page descriptor format.

The save pages (SP) bit in byte 1 of the CDB controls whether the parameters in the command will be saved on the disk array. An SP bit of 1 will prompt all parameters to be saved on the execution of the command. If the SP bit is 0, the parameters will not be saved.

The parameter list length field specifies the length in bytes of the parameter list being transferred from the initiator. When this field is 0, no data is transferred and the command terminates with no error reported. All parameter lists must conform to the format and length specified in the "Mode Select Parameters" table later in this section.

A parameter list length that does not exactly equal the actual length of the parameter list being transferred causes the command to terminate. All parameters that were transferred before the termination are invalid, and the CRD-5000 reports a CHECK CONDITION status (ILLEGAL REQUEST Invalid Field in CDB).

There are three types of mode select parameter values: current values, save values and default values. The current values are the parameters that actually control the CRD-5000 and are what the mode select command changes. The save values are those parameters that have been specified by the mode select command and saved on the disk array. The default values serve as current values immediately after power-up and until any saved values can be read. If there are no saved values, the default values remain in effect until a mode select command is issued.

The current values are initialized to the saved values at power-on, when a RESET occurs, or when the CRD-5000 receives a BUS DEVICE RESET message. If there are no saved values, the current values are initialized to the default values.

If the mode select command modifies a parameter page that is common to all initiators, UNIT ATTENTION conditions (MODE parameters changed) occur for all the initiators except the initiator issuing the command.

If the mode select command seeks to change an unchangeable parameter, the command will terminate with a CHECK CONDITION status (ILLEGAL RE-QUEST Invalid field in parameter list). In this case, all parameters specified by the initiator will be invalid.

The next three tables show the proper configuration of a mode select parameter list. A complete parameter list comprises a four-byte header, an eightbyte block descriptor, and one or more page descriptors. Also acceptable are parameter lists consisting of only a four-byte header and one or more page descriptors. The initiator may transfer the header only or the header and block descriptor only.

Header	1		·						
Byte ^{\Bit}	7	6	5	4	3	2	. 1	0	
0	00h								
1	00h (medium type)								
2	device-specific parameter (00h)								
3	00h/08h (block descriptor length)								

	Block Descriptor									
Byte\ ^{Bit}	7	7 6 5 4 3 2 1 0								
0	00h									
1	Data block count (MSB)									
2	Data block count									
3		Data block count (LSB)								
4	00h									
5	Data block length (MSB)									
6	Data block length									
7	Data block length (LSB)									

Page Descriptor									
Byte\ ^{Bit}	7	6	5	4	3	2	1	0	
0	0 Page Code								
1	Page length								
2 n	Parameter field								

Header

Medium Type: 00h (default type) must be specified in this field. Device-Specific Parameters: 00h must be specified in this field. Block Descriptor Length: The length (in bytes) of the block descriptor to follow is specified in this field. Do not include the length of the page descriptors. The CRD-5000 recognizes only one block descriptor. When a block descriptor is included, specify 08h in the block descriptor length field. When the initiator is sending a parameter list containing only a header followed by page descriptors, specify 00h in the block descriptor length field.

Block Descriptor

The logical characteristics of the data on the array may be specified in the eight-byte block descriptor.

Data Block Count: Specify the total number of logical blocks allocated to the user space on the disk array. When this field is zero, all user spaces set by the format parameter and drive parameter are configured with the logical data blocks. This field must be zero.

Data Block Length: The length (in bytes) of the logical data blocks on the disk is specified in this field. The CRD-5000 requires that the logical data block length be equal to the physical data block length.

Page Descriptors

A page descriptor comprises a page code byte, the page length byte, and a parameter field. Each parameter function attribute is specified on a separate page. The initiator can use the MODE SELECT command to specify one page descriptor or two or more page descriptors in an arbitrary order.

Page Code: Specifies the page descriptor type indication code (page number).

Page Length: Specifies the length (in bytes) of the parameter field. The length excludes the page header, so measurement begins from byte 2. The value that the initiator specifies for this field must equal the page length sent by the CRD-5000 in response to a MODE SENSE command.

CRD-5000 Mode Select Parameters

The following table lists the contents and length of the parameter list that is transferred from the initiator to the CRD-5000 with the MODE SELECT command. If the initiator specifies a page descriptor that is not supported by the CRD-5000, the command will terminate with a CHECK CONDITION status (IL-LEGAL REQUEST Invalid field in parameter list) and all parameters specified in the command will be invalidated.

Parameter (page number)	Length
Header (Mode Select/Mode Select Extended)	4
Block descriptor	0/8
Read/write error recovery parameter (01)	12
Disconnect/reconnect parameter (02)	16
Format parameter (03)	24
Drive parameter (04)	24
Verify error recovery parameter (07)	12
Caching parameter (08)	12
Peripheral device page (09)	8
Control Mode page (0A)	8
Medium support page (0B)	8
Notch page (0C)	24
All page descriptors supported (3F)	152/160

Reserve Unit (16h)

Byte ^{\Bit}	7	6	5	4	3	2	1	0		
0		16h								
1	_	LUN 3rd pty 3rd pty Dev ID 0								
2	0									
3		0								
4		0								
5	0									

The reserve unit command enables individual initiators in a multiple initiator environment to reserve logical units in the disk array. An initiator may also use this command to reserve a logical unit for another SCSI device.

Logical unit reserve function

This command reserves the entire logical unit specified in the CDB for the exclusive use of the initiator until the reservation is superseded by another reserve unit command, the initiator issues a release unit or priority reserve command, a bus device reset message is issued by any initiator, a reset condition occurs, or power to the CRD-5000 is recycled.

When an initiator issues this command for a LUN that is already reserved by another initiator, the command terminates with RESERVATION CONFLICT status.

Once an initiator has reserved a LUN, the CRD-5000 rejects any commands other than INQUIRY, REQUEST SENSE and RELEASE UNIT from any other initiator and reports a RESERVATION CONFLICT status. The INQUIRY and RE-QUEST SENSE commands execute normally. The RELEASE UNIT command terminates with a GOOD status, but the CRD-5000 ignores the command if the initiator does not have the reservation right.

Reservation right and third party reserve function

If the 3rd Pty bit of CDB byte 1 is 0, the initiator reserves the specified LUN on the CRD-5000 and claims the reservation right for the same LUN.

If the 3rd Pty bit is 1, the initiator reserves the specified LUN on the CRD-5000 for another SCSI device, which is identified by its SCSI ID in the 3rd Pty Dev ID bit of the CDB. The reservation right always stays with the initiator, even though the LUN on the CRD-5000 is reserved for another device. The CRD-5000 maintains the LUN reservation until it is superseded by another valid

Reserve command from the initiator that made the reservation or until it is released by the same initiator, by a Bus Device Reset message from any initiator, or by a "hard" Reset condition.

Superseded Reserve

An initiator may modify the reservation it holds by issuing another, superseding Reserve command for the same logical unit. Upon the successful execution of the superseding Reserve command, the reserved state of the CRD-5000 will conform to the new command. If the superseding Reserve command cannot be executed, the reserved state is unchanged. The superseding Reserve command permits the initiator to reserve the CRD-5000 for another SCSI device, without relinquishing its reservation right.

The following examples will help to further explain reservation rights and third party reservations.

Example 1: When initiator-A gives the RESERVE UNIT command without setting the 3rd Pty bit to 1, it exclusively reserves the CRD-5000 and holds the reservation right to the CRD-5000. Any other initiator's commands, except for INQUIRY, REQUEST SENSE, and RELEASE UNIT, are rejected by the CRD-5000 with a RESERVATION CONFLICT status. The RELEASE UNIT command terminates successfully, but the CRD-5000 takes no action in response.

Example 2: Initiator-A gives the RESERVE UNIT command containing a 3rd Pty bit of 1 and the 3rd Pty Dev ID for target/initiator-1, initiator-A reserves the CRD-5000 for target/initiator-1 but retains the reservation right for the CRD-5000. In this situation, if target/initiator-1 tries to send a RESERVE UNIT command, the CRD-5000 rejects the command with a RESERVATION CONFLICT status. A RELEASE UNIT command from target/initiator-1 terminates normally, but the CRD-5000 disregards it. Initiator-A can issue the IN-QUIRY, REQUEST SENSE, RELEASE UNIT or RESERVE UNIT commands to the CRD-5000, but other command from initiator-A clears the reserved state of the CRD-5000, and a RESERVE UNIT command changes the reserved state of the CRD-5000. If any other initiator attempts to issue any commands other than INQUIRY, REQUEST SENSE or RELEASE UNIT, the CRD-5000 will respond with a RESERVATION CONFLICT status. A RELEASE or RELEASE UNIT, the CRD-5000 will respond with a RESERVATION CONFLICT status. A RELEASE or RELEASE UNIT command from any other initiator terminates normally, but the CRD-5000 will respond with a RESERVATION CONFLICT status. A RELEASE or RELEASE UNIT, the CRD-5000 will respond with a RESERVATION CONFLICT status. A RELEASE or RELEASE UNIT command from any other initiator terminates normally, but the CRD-5000 disregards it.

Release Unit (17h)

Byte\ ^{Bit}	7	6	5	4	3	2	1	0				
0		17h										
1		LUN 3rd Pty 3rd Pty Dev ID 0										
2	х	х	Х	x	х	х	x	×				
3				00	Dh							
4		00h										
5				()							

The RELEASE UNIT command ends the initiator's reservation of a CRD-5000 logical unit. If an initiator attempts to release a logical unit that it has not reserved, the CRD-5000 just disregards the command and returns a GOOD status.

Third party release

When the 3rd Pty bit of the CDB is 0, the command releases the specified logical unit that the initiator reserved with a previous RESERVE UNIT command that also had a 3rd Pty bit of 0.

When the CDB's 3rd Pty bit is 1, the command releases the specified logical unit, but only if the reservation was made using the third party reservation option by the initiator that is requesting the release, and for the same SCSI device specified in the third party ID field.

Mode Se		IHNJ									
Byte ^{\Bit}	7	6	5	4	3	2	1	0			
0	_	1Ah									
. 1		LUN 0 DBD 0									
2	Ρ	С			Page	Code					
3				(ט						
4		Transfer byte length									
5				()	-					

The mode sense command returns the values of various parameters related to the physical attributes and data format of the disk array or the SCSI bus disconnect/reconnect process timing and error recovery procedure to the initiator.

The data the CRD-5000 sends to the initiator in response to this command consists of a header, block descriptor, and one page descriptor for each parameter specified.

The Disable Block Descriptors (DBD) bit of byte 1 in the CDB controls whether the mode sense data returned will contain a block descriptor. If this bit is 0, the response will contain a header, block descriptor and one or more page descriptors. If this bit is 1, everything *but* the block descriptor will be sent.

The page code of the page descriptor is specified in the page code field in byte 2. The following table lists the parameters supported by the CRD-5000 and their page codes.

Parameter (page number)	Length
Header (Mode Select/Mode Select Extended)	4
Block descriptor	0/8
Read/write error recovery parameter (01)	12
Disconnect/reconnect parameter (02)	16
Format parameter (03)	24
Drive parameter (04)	24
Verify error recovery parameter (07)	12
Caching parameter (08)	12
Peripheral device page (09)	8
Control Mode page (0A)	8
Medium support page (0B)	8
Notch page (0C)	24
All page descriptors supported (3F)	152/160

If the value of the page code field is 3Fh, all page descriptors supported by the CRD-5000 are sent to the initiator. If the value is not 3Fh and is associated with a parameter supported by the CRD-5000, the page descriptor for that parameter is sent. If the value identifies a parameter that the CRD-5000 does not support, the command terminates with a CHECK CONDITION status (ILLEGAL REQUEST Invalid field in CDB).

The Page Control (PC) field of CDB byte 2 specifies the type of page descriptor parameter value sent by the mode sense command. The following table lists the PC values supported by the CRD-5000.

PC	Type of parameter sent to initiator
00	Current value: The CRD-5000 responds with the current value of each parameter. The current values can be set in three ways: 1) by a successful execution of the mode select command; 2) by retrieving the saved values of the mode parameters if a MODE SELECT command has not successfully completed since the last power-on, hard RESET condition, or BUS DEVICE RESET message; 3) or by being initialized with the default values at power up if no saved values are present.
01	Changeable value: This value indicates the parameter field/bits that may be changed on the CRD-5000. A changeable field/bit position will be indicated with a 1. A field/bit that cannot be changed will be represented with a 0.
10	Default value: The CRD-5000 responds with the default value of each parameter.
11	Saved value: The CRD-5000 responds with the saved value of each parameter.

CRD-5000 Disk Array Controller

The transfer byte-length field specifies the total number of bytes of mode sense data transferred. The CRD-5000 transfers the number of bytes of mode sense data set by the page code field, or the amount of mode sense data that is specified in the transfer byte-length field, whichever is smaller to the initiator. When the transfer byte-length field is set to 0, no data is transferred and the command terminates.

The following table illustrates the configuration of the parameter list resulting from a mode sense command. Each parameter lists comprises a 4-byte header, 8-byte block descriptor and one or more page descriptors. If the DBD bit is set to 1, the block descriptor is not sent. The page descriptor is not sent when the page code is set to 00h.

Header										
Byte ^{\Bit}	7	6	5	4	3	2	1	0		
0		Sense data length								
1	00h (medium type)									
2		0								
3		00h/08h (block descriptor length)								

	Block descriptor											
Byte ^{\Bit}	7	7 6 5 4 3 2 1 0										
0	00h											
1		Number of data blocks (MSB)										
2	Number of data blocks											
3		Number of data blocks (LSB)										
4				0	Dh							
5			Data	a block I	ength (N	ISB)						
6	Data block length											
7	Data block length (LSB)											

Page descriptor												
Byte ^{\Bit}	7	6	5	4	3	2	1	0				
0	PS	0	Page Code									
1				Page	Length		·					
2 n		Parameter Field										

Header

Sense data length: This field gives the length (in bytes) of the parameter list compiled in response to the mode sense command. The length is measured from byte 1 of the header and does not include the length of the sense data length field itself. The CRD-5000 reports the length of the parameter lists required to fully satisfy the mode sense command. To ensure that all parameter lists have been received, the initiator should compare the value of this field with the transfer byte-length field of the sense data length field itself is greater than the transfer byte-length value, then the initiator received a truncated mode sense parameter list.

Medium type: 00h (default type) is always reported to this field.

Block descriptor length: This field denotes the length in bytes of the block descriptor. The measurement does not include the header or page descriptor. When the DBD bit is 0, the CRD-5000 reports 08h in this field to inform the initiator that a set of block descriptors follows the header. When the DBD bit is 1, the CRD-5000 reports 00h in this field.

Block descriptor

Number of data blocks: This field indicates the number of logical blocks available to the user in the logical unit. Any spare sectors set aside for the alternative block process will not be included in this value.

Data block length: This field denotes the length in bytes of each logical block.

Page descriptor

The descriptor for each page of mode parameters begins with a 2-byte header, followed by the parameter field.

PS bit: When set to one, the Parameters Savable (PS) bit denotes that the page has savable parameters. When set to 0, the PS bit indicates that none of the parameters contain within the page are savable. All page parameters supported by the CRD-5000 can be saved.

Page length: This field denotes the length in bytes of the parameter field, excluding the page header and page descriptor.

Parameter field: Byte 2 and succeeding bytes indicates the parameter values corresponding to the type requested in the page control field of the CDB.

Start/Stop Unit (IBh)

Byte ^{\Bit}	7	6	5	4	3	2	1	0	
0		-		16	3h				
1		LUN			(D		Immed	
2		0							
3				. (ט				
4				0				Start	
5				()				

When issued this command by the host, the CRD-5000 takes no action and responds with a GOOD status.

Send Diagnostic (10h)

Byte ^{\Bit}	7	6	5	4	3	2	1	0			
0		1Dh									
1		LUN				0					
2		0									
3	·			()						
4				()						
5				()						

The CRD-5000 does not implement the send diagnostic command. When issued this command by the host, the CRD-5000 takes no action and responds with a GOOD status.

Prevent Allow Medium Removal (ICh)

[]				1				
Byte\ ^{Bit}	7	6	5	4	3	2	1	0
0				16	Ξh			
1		LUN				0		
2				()			
3				(C			
4				0				Prevent X
5				(C			

The CRD-5000 does not implement the prevent allow medium removal command. When issued this command by the host, the CRD-5000 takes no action and responds with a GOOD status.

Read Capacity (25h)

Byte\ ^{Bit}	7	6	5	4	3	2	1	0			
0		25h									
1		LUN		0							
2				()						
3				()						
4				()						
5				()						
6				()						
7				()						
8				()						

The Read Capacity command permits the initiator to request information about the capacity of a CRD-5000 logical unit.

The format of the data returned by the read capacity command is as follows:

Byte ^{\Bit}	7	6	5	4	3	2	1	0					
0		Logical block address (MSB)											
1		Logical block address											
2		Logical block address											
3		Logical block address (LSB)											
4				Block siz	e (MSB)							
5				Block	size			· .					
6		Block size											
7		Block size (LSB)											

Read Ex	tende	ed [58h						
Byte ^{\Bit}	7	6	5	4	3	2	1	0
0		28h						
1		LUN 0						
2	Logical block address (MSB)							
3	Logical block address							
4	Logical block address							
5	Logical block address (LSB)							
6	0							
7	Transfer block count (MSB)							
8	Transfer block count (LSB)							
9				(כ			

.

Like the read command, the read extended command transfers data to the initiator; however, the read extended command accepts a four-byte logical block address and a two-byte transfer block count. The logical block address field indicates the first logical block in the transfer. The command transfers a contiguous set of logical blocks, the number of which is determined by the transfer block count field.

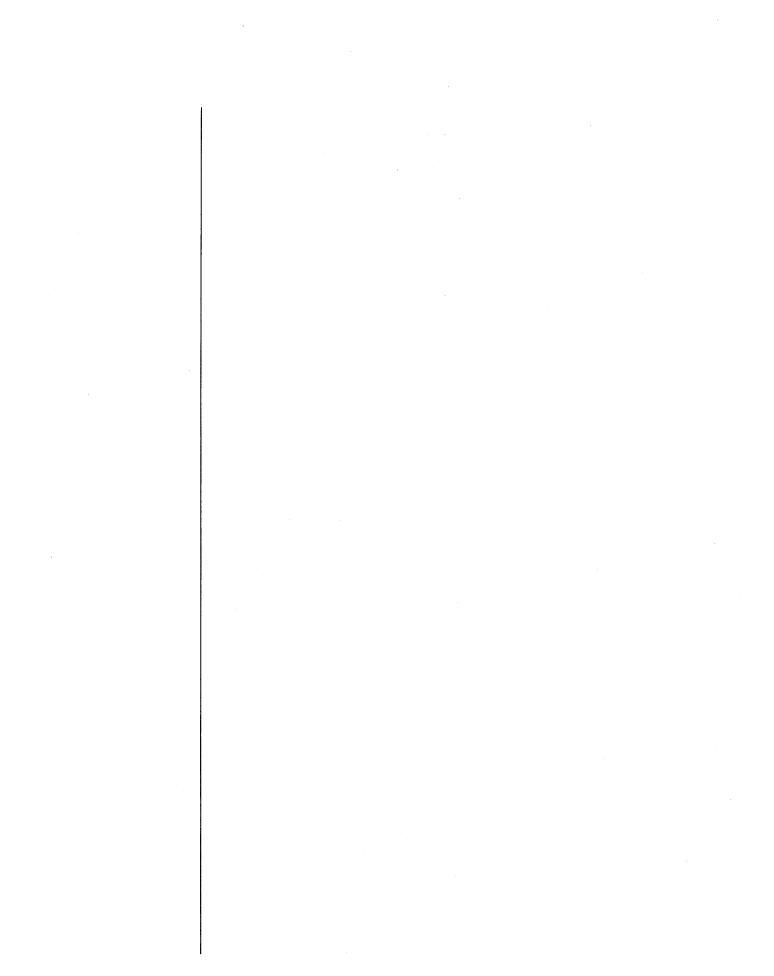
If the logical block address and transfer block count fields describe a transfer that exceeds the maximum number of logical blocks on the CRD-5000, the command terminates with a CHECK CONDITION status (ILLEGAL REQUEST Logical block address out of range) and abort the disk read operation.

Seek (10) (2Bh)

Byte ^{\Bit}	7	6	5	4	3	2	1	0		
0		2Bh								
1		LUN 0								
2	-	Logical Block Address (MSB)								
3	Logical Block Address									
3	Logical Block Address									
5	Logical Block Address (LSB)									
6		0								
7	0									
8	0									
9		0								

The CRD-5000 does not implement the seek (10) command. When issued this command by the host, the CRD-5000 takes no action and responds with a GOOD status.

Write and Verify (26h)


Byte\ ^{Bit}	7	6	5	4	3	2	1	0	
0		2Eh							
1	LUN 0								
2	-	Logical block address (MSB)							
3	Logical block address								
4	Logical block address								
5	Logical block address (LSB)								
6	0								
7	Transfer block count (MSB)								
8	Transfer block count (LSB)								
9	0								

The CRD-5000 does not support verification of data. This command is treated like a write extended (2Ah) command.

Verıfy	[2Fh]							
Byte ^{\Bit}	7	6	5	4	3	2	1	0
0				2F	⁼h			
1		LUN			0		Bytchk 0	0
2	Logical block address (MSB)							
3	Logical block address							
4	Logical block address							
5	Logical block address (LSB)							
6	0							
7	Block count (MSB)							
8		Block count (LSB)						
9				C)			

The verify command instructs the CRD-5000 to verify the data stored in one or more logical data blocks. The logical block address field defines the first block to be verified, and the block count field defines the number of contiguous logical data blocks to be verified. No data is transferred.

The bytchk bit must be set to zero. The CRD-5000 will perform a medium verification (CRC and ECC) only.

Chapter 3 SCSI Messages

he following messages are classified into three groups: messages from an initiator to a target (I), messages from a target to an initiator (T), and messages that can be sent or received by a target or initiator (T/I).

Command Complete (OOh) T

This message signals the initiator that the execution of an I/O process has been completed and that a valid status has been sent to the initiator. The target transmits this message after the STATUS phase when the specified command execution has been completed.

This target will send this message even if the I/O process was not successfully executed. The status of the I/O process will be indicated in the status byte sent during the STATUS phase.

After sending this message, the target releases the BSY signal and enters the BUS FREE phase. The target considers the message transmission to be successful if the ATN signal is false at the time the ACK signal for this message is negated.

Save Data Pointer (02h) T

This message instructs the initiator to store the active data pointer into the saved data pointer for the current I/O process. The target will sometimes send a SAVE DATA POINTER message during disconnection, as described in the next section.

Disconnect (04h) T

With the disconnect message, the target informs the initiator that it intends to break the current connection temporarily and reconnect later to complete the I/O operation. When the target confirms that the initiator received message, it disconnects from the SCSI bus by going to BUS FREE phase. The target will deem the message transmission to be successful if the ATN signal is false at the time the ACK signal for this message is negated.

This message does not prompt the initiator to save the active data pointer. When the target disconnects during data transfer, it sends a SAVE DATA POINTER message before sending this DISCONNECT message.

Initiator Detected Error (OSh) I

With this message, the initiator signals the target that it has detected an error that does not preclude the target from retrying the operation. The error may be due to previous SCSI bus operation or the operation inside the initiator.

Abort (06h) I

This message directs the target to clear the active I/O process and any queued I/O process for the selecting initiator on the specified logical unit. When the target receives this message, it immediately performs the following (regardless of the ATN signal status):

- If the LUN is specified prior to this message, the target clears the I/O process that is being executed or is queued on that logical unit and has been activated by the initiator that has sent this message, and enters the BUS FREE phase. All of the currently retained data and status related to the I/O process are cleared, and the retained sense data (if any) related to the logical unit for that initiator is also cleared. The initiator is not informed of the status byte and completion message regarding the I/O process cleared by this message. This message does not affect I/O processes which have been activated by other initiators.
- If the LUN has not been specified prior to this message, the target enters the BUS FREE phase without any other operation. Therefore, this message does not affect the I/O process that is being executed or is queued.

The target enters the BUS FREE phase without generating error conditions even if this message has been issued to the logical unit in which there is no active or queued I/O process, or no pending sense data. After selecting the target (by the SELECTION phase), the initiator can send this message following the IDENTIFY message to clear the I/O process which is currently DISCONNECTed.

Previously established conditions, including MODE SELECT parameters, reservations, and synchronous data transfer agreement are not changed by the ABORT message.

Note: The BUS DEVICE RESET, CLEAR QUEUE, ABORT and ABORT TAG messages provide a means to clear one or more I/O processes prior to normal termination. The BUS DEVICE RESET message clears all I/O processes for all initiators on all logical units. The CLEAR QUEUE message clears all I/O processes for all initiators on the specified logical unit. The ABORT message clears all I/O processes for the selecting initiator on the specified logical unit. The ABORT TAG message clears the current I/O process only.

Message Reject (07h) I/T

This message indicates that the last message or message byte received was inappropriate or has not been implemented.

When the initiator sends this message, it must assert the ATN signal before negating the ACK signal for the message byte to be rejected that was received in the MESSAGE IN phase to permit the target to IDENTIFY the rejected message byte. If the target receives this message under any other circumstance, it must reject this message.

When the target sends this message, it must enter the MESSAGE IN phase and send this message prior to requesting additional message bytes in the MES-SAGE OUT phase to permit the initiator to IDENTIFY the rejected message byte.

After a target sends this message and if the ATN signal is still asserted, then it must return to the MESSAGE OUT phase. The subsequent MESSAGE OUT phase must begin with the first byte of the message.

No Operation (08h) |

This message does not result in any operation. The initiator sends this MES-SAGE IN response to the message request from the target (in the MESSAGE OUT phase) when the initiator does not currently have any other valid message to send.

For example, if the target does not respond to the ATTENTION condition until a later phase and at that time the original message is no longer valid, the initiator may send this message when the target enters the MESSAGE OUT phase.

Message Parity Error (09h) |

This MESSAGE INforms the target that the message byte received last by the initiator had a parity error.

To permit the target to IDENTIFY the message byte in which an error was detected, the initiator must assert the ATN signal before negating the ACK signal that corresponds to the message-byte containing the parity error in the MES-SAGE IN phase. The target must negate the BSY signal to enter the BUS FREE phase without executing any further INFORMATION TRANSFER phase when it receives this message under any other circumstance.

Bus Device Reset (OCh) |

This message directs a clearing of all I/O processes on that target. The target which receives this message clears not only I/O operations initiated by the connected initiator, but also I/O operations related to all initiators and then the target must enter the BUS FREE phase (regardless of the ATN signal status).

Abort Tag (ODh) |

The ABORT TAG message is implemented in support of tagged queuing. The target will go to the BUS FREE phase following successful receipt of this message. The target will clear the current I/O process, and the execution will be halted. The medium contents may have been modified before the execution was halted. In either case, any pending status or data of the I/O process will be cleared and no status or ending message will be sent to the initiator. Pending status, data and commands for other active or queued I/O processes will not be affected. Execution of other I/O processes queued for the initiator will not be aborted.

Previously established conditions, including MODE SELECT, parameters, and reservations will not be changed by the ABORT TAG message.

Clear Queue (OEh) |

The CLEAR QUEUE message is implemented in support of tagged queuing. The target will go to the BUS FREE phase following successful receipt of this message. The target will perform an action equivalent to receiving a series of ABORT messages from each initiator. All I/O processes, from all initiators in the queue for the specified logical unit will be cleared from the queue. All active I/O processes will be terminated. The medium may have been altered by partially executed commands. All pending status and data for the logical unit or target routine for all initiators will be cleared. No status or message will be sent for any of the I/O processes. A unit ATTENTION condition will be generated for that logical unit or target routine. When reporting the unit ATTENTION condition, the additional sense code will be set to COMMANDS CLEARED BY AN-OTHER INITIATOR.

Queue Tag Messages

QUEUE TAG message format								
Byte ^{\Bit}	7	7 6 5 4 3 2 1 0						
0	Message Code (20h, 21h, 22h)							
1	Queue Tag							

The preceding table defines the format for queue tag messages. Tagged queuing is defined only for logical units, not target routines.

The queue tag messages are used to specify an identifier, called a queue tag, for an I/O process. The queue tag field is an 8-bit unsigned integer assigned by the initiator during an initial connection. The queue tag for every I/O process for each initiator should be unique. A queue tag becomes available for re-assignment when the I/O process ends. The numeric value of a queue tag has no effect on the order of execution.

Whenever an initiator connects to a target, the appropriate queue tag message will be sent immediately following the IDENTIFY message and within the same MESSAGE OUT phase to establish the tag for the I/O process. Only one tag may be established during a connection. If a queue tag message is not sent, then the I/O process is treated as an untagged command.

Whenever a target reconnects to an initiator to continue a tagged I/O process, the SIMPLE QUEUE TAG message will be sent immediately following the IDENTIFY message and within the same MESSAGE IN phase to revive the initiator connection for the I/O process. Only one I/O process may be revived during a reconnection. If the SIMPLE QUEUE TAG message is not sent, then an untagged command is revived for the I/O process.

Head of Queue Tag (02lh)

The HEAD OF QUEUE TAG message specifies that the I/O process be placed first in that logical unit's command queue. An I/O process already being executed by the target will not be pre-empted. A subsequent I/O process received with a HEAD OF QUEUE TAG message will be placed at the head of the command queue for execution in last-in, first-out order.

Ordered Queue Tag (022h)

The ORDERED QUEUE TAG message specifies that the I/O process be placed in that logical unit's command queue for execution in the order received. All queued I/O processes for the logical unit received prior to this I/O process will be executed before this I/O process is executed. All queued I/O processes received after this I/O process will be executed after this I/O process, except for I/O processes received with a HEAD OF QUEUE TAG message.

Simple Queue Tag (020h) I/T

The SIMPLE QUEUE TAG message specifies that the I/O process be placed in that logical unit's queue. The order of execution is determined by the CRD-5000.

identify (80h to FFh) I/T

Bit	7	6	5	4	3	2	1	0
	1	D	0	0	0		LUN	

This message specifies the LUN for the device under the target and establishes a logical connection among the initiator, target and logical unit.

Bit 6: DISCONNECT Privilege—Only the initiator can set this bit to one. When this bit is one, it indicates that the initiator permits the target to execute DISCONNECTion processing. When this bit is zero, the target must not execute DISCONNECTion operation. When the target sends this message, this bit must be zero.

Bit 2 to 0: LUN—These bits specify the LUN for the device under the target.

Function of message—This message is normally sent immediately after the SELECTION phase from the initiator to the target; it specifies the logical unit number for the I/O process. The target must send this message immediately after the RESELECTION phase to inform the initiator of the logical unit number to be reconnected.

When one SELECTION or RESELECTION sequence has successfully established an I/O operation path between the initiator and the target, only one LUN can be specified and another IDENTIFY message specifying a different LUN must not be issued until the SCSI bus is released (generating a BUS FREE phase).

When the initiator receives this message from the target in the reconnection sequence, it must store the saved pointers of the specified logical unit into the active pointers before completing the transfer phase of this message (before negating the ACK signal).

Byte	
0	01h (Extended MSG)
1	03h (Extended MSG length)
2	01h (Sync Data Request)
3	Transfer Period [4 x m (ns)]
4	REQ/ACK Offset

Synchronous Data Transfer Request (I/T)

Parameters for synchronous mode data transfer are defined by exchanging this message between two SCSI devices.

When a SCSI device with the synchronous mode transfer implemented is connected to another SCSI device for the first time after it receives the BUS DEVICE RESET message, encounters the RESET condition ("hard" RESET), or power is turned on, data transfer mode between the two SCSI devices is negotiated by exchanging the SYNCHRONOUS DATA TRANSFER REQUEST message. Each SCSI device must respond to this message initiated by another SCSI device. (The SCSI devices may exchange this message to set or change the data transfer mode at a time other than first connection.)

Data transfer mode parameters

This message exchange establishes the permissible Transfer Period and REQ/ACK offset for data transfer between the two SCSI devices. These values are applicable for all logical units on the two SCSI devices.

The Transfer Period is the minimum repetition cycle for REQ and ACK pulses that is permissible for data reception operation of the SCSI devices. (It is the minimum time between the leading edge of a REQ pulse and the leading edge of the next REQ pulse, or between the leading edge of an ACK pulse and the leading edge of the next ACK pulse.)

The REQ/ACK offset is the maximum number of REQ pulses (offset value) which can be sent by the target before receiving an ACK pulse response (leading edge of the ACK signal) from the initiator. The selected value must not cause an overflow of a SCSI device data reception buffer and offset counter. A REQ/ACK offset of zero indicates asynchronous data transfer mode, and a value of FFh indicates unlimited REQ/ACK offset.

When the SCSI device sends the SYNCHRONOUS DATA TRANSFER RE-QUEST message the first time, the device specifies the Transfer Period and REQ/ACK offset values within the range where data can be received successfully. After receiving the SYNCHRONOUS DATA TRANSFER REQUEST message, the SCSI device sends bACK the message with the same Transfer Period and REQ/ACK offset values if it is possible to receive data with the specified parameter values (or smaller Transfer Periods or larger REQ/ACK offsets or both). If a greater Transfer Period or smaller REQ/ACK offset value is required to receive data successfully, the SCSI device substitutes only the parameter value required to be changed to a value which satisfies the SCSI device condition and sends back the SYNCHRONOUS DATA TRANSFER REQUEST message.

When executing data transfers, SCSI devices must not send REQ or ACK pulses that exceed the parameter values specified by the other SCSI device at the SYNCHRONOUS DATA TRANSFER REQUEST message exchange. Data transfer with a greater Transfer Period value and/or a smaller REQ/ACK offset value is allowed.

After the completion of the SYNCHRONOUS DATA TRANSFER REQUEST message exchange, both SCSI devices must set the data transfer mode as shown in the following table by the response (sending back the message) of the SCSI device that received the message the first time.

Responded Message	Data Transfer Mode
SYNCHRONOUS DATA	Synchronous mode: Each SCSI
TRANSFER REQUEST	device executes data transfer using the Transfer Period value
REQ/ACK offset	equal to or greater than the
does not equal zero	specified value in the
	SYNCHRONOUS DATA TRANSFER
	REQUEST message from the
	other SCSI device, or using the REQ/ACK offset value equal to or
	smaller than the specified value in
	the SYNCHRONOUS DATA
	TRANSFER REQUEST message
	from the other SCSI devices.
SYNCHRONOUS DATA	Asynchronous mode
TRANSFER REQUEST	
REQ/ACK offset equals zero	
MESSAGE REJECT	Asynchronous mode

Message exchange procedures for initiator

When the initiator recognizes that a synchronous data transfer has to be negotiated, it asserts the ATN signal to initiate the message exchange and requests the target for the SYNCHRONOUS DATA TRANSFER REQUEST message. When the MESSAGE OUT phase is successfully completed, the target must respond with the SYNCHRONOUS DATA TRANSFER REQUEST message or the MESSAGE REJECT message to the initiator. If the ATN signal is still true at the completion of receiving the SYNCHRONOUS DATA TRANSFER REQUEST message, the target can terminate the MESSAGE OUT phase and enter the MESSAGE IN phase to return the message. If the target fails to return the message, both SCSI devices must go to asynchronous transfer mode for data transfers.

When the initiator asserts the ATN signal in the MESSAGE IN phase and sends the MESSAGE PARITY ERROR message or the MESSAGE REJECT message to the target, data must be transferred in the asynchronous mode even if the target has returned the SYNCHRONOUS DATA TRANSFER REQUEST message with the REQ/ACK offset greater than 0, because both the initiator and the target regard this outcome as a failed synchronous transfer negotiation.

If the MESSAGE PARITY ERROR message is sent from the initiator, however, the target can retry to return the message (SYNCHRONOUS DATA TRANS-FER REQUEST message) for the data transfer mode negotiation. If the retry is successful, the initiator and target must assume that synchronous mode transfer has been negotiated. If the MESSAGE PARITY ERROR message is still sent from the initiator after executing as many retries as defined, the target must terminate the retry operation by either entering another INFORMATION TRANSFER phase and transferring at least one byte of information or entering the BUS FREE phase. (If the CRD-5000 operates as the target, it enters the BUS FREE phase.) The initiator considers this condition a message exchange failure. Therefore both SCSI devices must go to asynchronous transfer mode for data transfers between the two devices.

Validity of data transfer mode

The data transfer mode and the synchronous mode transfer parameters established as a result of the SYNCHRONOUS DATA TRANSFER REQUEST message exchange must be kept valid until any of the following occur.

- Seception of the BUS DEVICE RESET message
- Soccurrence of the RESET condition ("hard" RESET)
- Change of the parameter or the transfer mode between the same SCSI devices
- Solution Power off

Default mode for data transfer is the asynchronous mode. The mode for data transfer must be initialized to the asynchronous mode after power on, the BUS DEVICE RESET message was received, or the RESET condition occurred.

When the data transfer mode is changed from synchronous to asynchronous mode on the SCSI device that has completed the setting of synchronous mode transfer for some reason that the other SCSI device cannot find, the SCSI device must re-negotiate the transfer mode by sending the SYNCHRONOUS DATA TRANSFER REQUEST message.

Re-negotiating the data transfer mode at every SELECTION is not suggested, due to negotiation's negative impact on performance.

Index

Inquiry response 1-4 Field length 1-4

Μ

Mode Parameters 1-2

Ρ

Password Ctrl-P shortcut 1-1 Default 1-1 Legal characters 1-1 Length 1-1

S

SCSI commands Format Unit 2-14 Inquiry 2-18 Mode Select 2-23 Mode Sense 2-31 Prevent Allow Medium Removal 2-38 Read 2-15 Read Capacity 2-39 Read Extended 2-40 Release Unit 2-30 Request Sense 2-3 Reserve Unit 2-28 Rezero Unit 2-2 Seek 2-17, 2-41 Send Diagnostic 2-37

Start/Stop Unit 2-36 Test Unit Ready 2-1 Verify 2-43 Write 2-16 Write and Verify 2-42 SCSI Messages Abort 3-2 Abort Tag 3-4 Bus Device Reset 3-4 Clear Queue 3-5 Command Complete 3-1 Disconnect 3-2 Identify 3-6 Initiator Detected Error 3-2 Message Parity Error 3-4 Message Reject 3-3 No Operation 3-3 Queue Tag Messages 3-5 Save Data Pointer 3-1 Synchronous Data Transfer Request 3-7 System display 1-4 Field length 1-4

3

Q