
10077-00AO
~~3

NAKED MINI LSI/ALPHA LSI

PROGRAMMING REFERENCE MANUAL

~
COMPUTER AUTOMATION, INC.

the NAKED MINI company
18651 Von Korman. Irvine, Calif. 926611

lel.71l1-833-8830 TWX 9JO.59S.I767

COPYRIGHT 1973. COMPUTER AUTOMATION. INC.

Section

~ 1.1
1.1.1
1.1.2

1.2

1.3

1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7

1.5
1.5.1
1.5.1.1
1.5.1.2
1.5.1.3
1.5.1.4
1.5.1.5
1.5.2
1.5.2.1
1.5.2.2
1.5.2.3
1.5.2.4
1.5.3
1.5.3.1
1.5.3.2
1.5.3.3

COMPUTER AUTOMATION, INC. ~

TABLE OF CONTENTS

Page

Section 1. GENERAL DESCRIPTION

INTRODUCTION. 1-1
Upward Compatibility•..•..• 1-1
General Features. 1-1

THE NAKED MINI 16 LSI CONCEPT. 1-1

THE ALPHA 16 LSI. 1-2

CHARACTERISTICS. 1-2
Processor.. 1-2
Instruction Set 1-2
Memory Addressing. 1-4
I/O Structure... 1-5
Processor Options. 1-5
Plug-In Options .. 1-6
Peripheral Equipment. 1-7

DATA HANDLING CHARACTERISTICS. 1-7
Data Word Format..................................... 1-7

Bit Identification. 1-7
Bit Values '0' • 1-8
Signed Numbers. • 1-8
Positive Numbers. 1- 8
Negative Numbers.................... 1-8

Data Byte Format. 1-9
Byte Mode Processing. 1-10
Register Load. 1-10
Arithmetic Operations. 1 10
Data Packing t.. • • • • • • • • • 1-10

Memory Address Formats. 1-11
Word Addressing. 1-12
Byte Addressing. • . . . • 1-12
Indirect Addressing. 1-13

iii

~

Section

2.1

2.2

2.3
2.3.1
2.3.2
2.3.3
2.3.4

2.4
2.4.1
2.4.2
2.4.3
2.4.4

2.5

3.1
3.1.1
3.1.2
3.1.3
3.1.3.1
3.1.3.2
3.1.3.3
3.1.3.4
3.1.4
3.1.5

3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3

COMPUTER AUTOMATION, INC. ~

TABLE OF CONTENTS (Cont'd)

Page

Section 2. CONSOLE

INTRODUCTION. 2-1

SWITCHES AND INDICATORS. 2-1

MACHINE MODES. • . . . • . . • • 2- 6
Stop Mode. • . . . • • • • • • 2-6
Step Mode. • • . • . • . • . • . 2-7
Run Enable Mode. • 2-7
Run Mode... 2-7

CONSOLE OPERATION. 2-7
Console Preparation. 2-7
Console Data Entry Procedure. 2- 8
Console Display Procedure. , • • • 2- 9
Program Execution. 2-10

UNATTENDED OPERATION. 2-10

Section 3. INSTRUCTIONS AND DIRECTIVES

INTRODUCTION. 3-1
Instruction and Directive Classes. • 3-1
Symbolic Notation , . 3-1
Assembler Source Statement Fields. 3-2

Label Field. • • • • . • . . • . • . • 3-2
Op Code Field. 3- 2
Operand Field ' . . • 3-3
Comments Field. • 3-4

Arithmetic Operations and Overflow. 3-4
Relocatability. 3-5

MEMORY REFERENCE INSTRUCTIONS. .. 3-6
Word Mode Operations and Instruction Format. 3- 6

Word Mode Direct Addressing. 3-6
Word Mode Indirect Addressing. 3-7
Word Mode Direct Indexed Addressing. 3-7

iv

Section

3.2.1.4
3.2.1.5
3.2.2
3.2.2.1
3.2.2.2
3.2.2.3
3.2.2.4
3.2.2.5
3.2.3
3.2.4
3.2.5
3.2.6

3.3
3.3.1
3.3.2

3.4
3.4.1
3.4.2

3.5
3.5.1
3.5.2
3.5.3
3.5.4

3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6

3.7
3.7.1
3.7.2
3.7.3

COMPUTER AUTOMATION,INC. ~.

TABLE OF CONTENTS (Cont'd)

Section 3. INSTRUCTIONS AND DIRECTIVES (Cont'd)

Word Mode Indirect Post-Indexed Addressing•...
Word Mode Summary•.....•..............

Byte Mode Operations and Instruction Format
Byte Mode Direct Addressing ...•...................
Byte Mode Indirect Addressing•..•....•.....
Byte Mode Direct Indexed Addressing
Byte Mode Indirect Post-Indexed Addressing
Byte Mode Summary

Arithmetic Memory Reference Instructions
Logical Memory Reference Instructions•...........
Data Transfer Memory Reference Instructions
Program Transfer Memory Reference Instructions ••••••.•

DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS••.
Format .. .
Instructions .. .

IMMEDIATE INSTRUCTIONS•.....•........•.......•...
Format
Instructions .. .

CONDITIONAL JUMP INSTRUCTIONS•...
Format
Microcoding.
Arithmetic Conditional Jump Instructions•..
Control Conditional Jump Instructions

SHIFT INSTRUCTIONS••....... '
Operand Restrictions and Instruction Format•.•...
Arithmetic Shift Instructions•.•.........•.........
Logical Shift Instructions•.•••..•.•..•.•..••...
Rotate S hilt Instructions
Double Register (Long) Rotate Shift Instructions•....
Double Register (Long) Shift Instructions •...............

REGISTER CHANGE INSTRUCTIONS It ••••••••••••

Format
A Register Change Instructions
X Register Change Instructions•.........

v

Page

3-7
3-8
3-8
3-9
3-9
3-10
3-10
3-10
3-10
3-11
3-12
3-12

3-14
3-14
3-14

3-17
3-17
3-17

3-18
3-18
3-18
3-20
3-20

3-21
3-21
3-21
3-22
3-23
3-24
3-24

3-25
3-25
3-25
3-26

Section

3.7.4
3.7.5
3.7.6

3.8
3.8.1
3.8.2
3.8.3
3.8.4
3.8.5

v3.9
3.9.1
3.9.1.1
3.9.1.2
3.9.2
3.9.2.1
3.9.2.2

3.9.3
3.9.3.1
3.9.3.2
3.9.4

L L- 3.9.5

3.10
3.10.1
3.10.2

3.11
3.11.1
3.11.2

3.12
3.12.1
3.12.2

3.13

3.14

3.15

COMPUTER AUTOMATION,INC. ~

TABLE OF . CONTENTS, (Cont'd)

Page

OV Register Change Instructions. 3- 26
Multi-Register Change Instructions 0 ••• 0 •• 0 • • • • • • 3-26
Console Register Instructions. • • 3-28

CONTROL INSTRUCTIONS 0 ••••••••••••••••••• 0 0 • • • • • • 3-28
Format. .. 3- 28
Processor Control Instructions. • 3-r29
Mode Control Instructions 0 0 0 ••• 0 •• 0 0 • 0 •••• 0 ••• 0 •••• 0 ••••. 3" 29
Status Control Instructions. • 3-29
Interrupt Control Instruction 0 •••••• 0 • • • • • • • • 3- 30

INPUT /OUTPUT INSTRUCTIONS 0 ... 0 3-31
Control Input/Output Instructions. 0 •••••••••••• 0 0 •••• 0 0 3- 32

Sense Instructions 0 0 ••••• 0 •••••• 0 ••••••••• 0 •• 0 •• 0 • 3-32
Select Instructions .. 0 • 0 • 0 •• 0 ••••••••• 0 ••••• 0 • 0 • • • • 3-32

Word Input/Output Instructions 0 • • • • 3-33
Unconditional Word Input/Output Instructions. 0 •• 0 • 0 3-33
Conditional Word Input/Output Instructions. 3- 34

Byte Input Instructions. 0 •••••• 0 0 0 • 0 • • • • • • • • • • • • • • • • • • • 3-35
Unconditional Byte Input Instructions. . . . • 3-35
Conditional Byte Input Instructions 0 ••••••••••••• 0 • • 3-35'

Block Input/Output Instructions 0 • • • • • • • • • • • • • • • 3-36
Automatic Input/Output Instructions 0 • • • • • 3-38

ASSEMBLER CONTROL DIRECTIVES. 3-41
Conditional Assembly Controls. 3-41
Program Location Controls. 3-42

DATA AND SYMBOL DEFINITION DIRECTIVES. 3-43
Formats ' 3-43
Directives. 3-43

PROGRAM LINKAGE DIRECTIVES. 3-44
Formats. 3-44
Directives. 3-45

SUBROUTINE DEFINITION DIRECTIVES. 3-45

LISTING FORMAT AND ASSEMBLER INPUT CONTROLS. 3-46

USER-DEFINED OPERATION CODE DIRECTIVE.... 3-47

vi

Section

4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.1.3
4.1.2
4.1.2.1
4.1.2.2
4.1.2.3

4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

4.3
4.3.1
4.3.2
4.3.3

4.4
4.4.1
4.4.2

5.1
5.1.1
5.1.2
5.1.3
5.1.4
5.1.5

5.2
5.2.1
5.2.2

COMPUTER AUTOMATION. INC. ~

TABLE OF CONTENTS (Cont'd)

t/ Section 4. INPUT/OUTPUT AND INTERRUPT OPERATION

INTRODUCTION .. .
Discussion of Input/Output Operations ...•.......•......

Control .. .
Sense
Data Transmission•.••..••••••.••.•••••.••••

Interrupt Operations•........................
Non-Input/Output
Input/Output
Word and Block Interrupts•.

NON-INTERRUPT INPUT /OUTPUT EXAMPLES
Control Instructions•...........•...........•..
Unconditional Instructions
Conditional Instructions•...........
Block Transfer Instructions
Automatic Transfer Instructions ...•....................

Page

4-1
4-1
4-1
4-2
4-2
4-5
4-5
4-6
4-6

4-6
4-9
4-9
4-10
4-10
4-11

INTERRUPT STRUCTURE EXAMPLES. • . . 4-11
General Interrupt Handling. • 4-11
Examples of Initialization and Enabling Sequences. 4-12
Examples of Interrupt Instructions. 4-13

INTERRUPT LATENCY. 4-15
Interrupt Service. 4-15
Priority Resolution. 4-15

Section 5. PROCESSOR OPTIONS

TELETYPE. • • 5-1
General Discussion '. 5-1
Half-Duplex Usage. 5-1
Table of Half-Duplex Teletype Instructions. • 5-3
Full-Duplex Usage. • . • • • • • • • • . • . 5- 6
Table of Full-Duplex Teletype Instructions. 5-8

REAL-TIME CLOCK. • . . • . . • • • • 5-11
Discussion of Usage. 5-11
Summary Table. 5-13

vii

COMPUTER AUTOMATION,INC. ~

TABLE OF CONTENTS (Cont'd)

Section Page

5.3 AUTOLOAD. 5-13

5.4 POWER FAIL/RESTART. 5-14
5.4.1 General.. 5-14
5.4.2 Power Fail... 5-14
5.4.3 Restart.. 5-14
5.4.4 Interrupt Control Option. 5-15
5. 4. 5 Programming Examples. • 5-15

Appendix A. HEXADECIMAL TABLES

Appendix B. RECOMMENDED DEVICE AND INTERRUPT ADDRESSES

F .1

F .2

F.3
F .3.1
F .3.2
F.3.3
F.3.4
F.3.5
F.3.S
F.3.7
F.3.8
F.3.9
F.3.10
F. 3.11

Appendix C. INSTRUCTION SET IN ALPHABETICAL ORDER

Appendix D. INSTRUCTION SET IN NUMBERICAL ORDER

Appendix E. ALPHA LSI EXECUTION TIMES

Appendix F. SOFTWARE SUMMARY

INTRODUCTION. • F-l

BOOTSTRAP. • F-2

SOFTWARE. • • . . . F-2
Autoload. • . F-2
Binary Load (BLD) . F-3
Binary Dump IV erify (BDP lVER) • F- 3
Object Load ... F-4
BETA-4Assembler... F-4
BET A - 8 Assembler. F- 4
OMEGA Conversational Assembler. F-5
Source Tape Preparation Program. • . • . . . F-S
Debug (DBG). • . • F-7
Concordance (CONe)....... F-8
OS Command Summary. • . F-8

viii

Figure

1-1
1-2
1-3
1-4
1-5
1-6
1-7
2-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34

COMPUTER AUTOMATION,INC. ~

LIST OF ILLUSTRATIONS

Data Word Bit Identification
Byte Storage, Two Bytes Per Word
Data in Memory, One Byte Per Word
Data in Memory, Two Bytes Per Word
Basic Word Address Format
Byte Address Format .. .
Indirect Address Pointer Format
ALPHA 16 LSI Console "
Instruction and Directive Classes
Source Statement Format
Arithmetic Overflow .. .
Word Mode Memory Reference Instruction Format
Word Mode Addressing Summary
Byte Mode Memory Reference Instruction Format
Byte Mode Addressing Summary
Double Word Memory Reference Format.
Divide
Multiply and Add
NRM Shift Path
Immediate Instruction Format
JOC Jump On Condition Format
JOC Microcode Bit Functions
Conditional Jump Format
Single Register Shift Format.
Double Register (Long) Shift Format.
Arithmetic Right Shift
Arithmetic Left Shift
Logical Right Shift .. .
Logical Left Shift .. .
Rotate Right .. .
Rotate Left .. .
Long Left Shift .. .
Long Right Shift .. .
Long Rotate Right
Long Rotate Left
Register Change Format
Control Format .. .
Computer Status Word Format
Single Word Input/Output Instruction Format
Block Input/Output Instruction Format
Automatic Input/Output Instruction Format
In-line Auto I/O Instruction Sequence

ix

Page

1-9
1-9
1-11
1-12
1-13
1-13
1-13
2-3
3-1
3-2
3-5
3-6
3-8
3-9
3-11
3-14
3-15
3-16
3-16
3-17
3-18
3-19
3-19
3-21
3-21
3-21
3-21
3-22
3-22
3-23
3-23
3-24
3-24
3-24
3-24
3-25
3-28
3-29
3-31
3-37
3-38
3-39

Figure

3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
5-1
5-2
5-3
5-4
C.l
C.2
C.3
C.4
C.5
C.6
C.7
C.8
D.l
D.2
D.3
D.4
D.5
D.6
D.7
D.8
D.9
D.lO
D.11

COMPUTER AUTOMATION,INC. ~

LIST OF ILLUSTRATIONS (Cont'd)

Interrupt Location Auto I/O Instruction Sequence
Begin Conditional Assembly Directives Format
End Conditional Assembly Directive Format
Location Control Directive Format
Data and Symbol Definition Directive Format
Program Linkage Directive Formats
Subroutine Definition Directive Formats
Title Directive Format
Initialization and Unconditional Output to Line Printer
Unconditional Character Read from Teletype Paper Tape Reader ..
Initialization and Conditional Control of Line Printer
Conditional Input from Teletype Keyboard with Auto-Echo
Uninterruptable Block Output to Line Printer
Automatic Byte Input from Card Reader
Line Printer Interrupt Initialization Sequence
Real-Time Clock Interrupt Initialization Sequence
Line Printer Interrupt Instructions ;
Real-Time Clock Interrupt Instructions
Standard Interrupt Priorities
Program-Controlled Data Output to Half-Duplex Teletype
Program-Controlled Data Input from TTY Paper Tape Reader
Program-Controlled Data Input from Full-Duplex Teletype
Automatic Interrupt Data Input from Full-Duplex Teletype
Class 1 - Single-Word Memory Reference Instruction Format
Class 2 - Double.i:Word Memory Reference Instruction Format
Class 3 - Byte Immediate Instruction Format
Class 4 - Conditional Jump Instruction Format
Class 5 - Register Shift Instruction Format
Class 6 - Nonvariable Instruction Format
Class 7 - Input/Output Instruction Format
Class 8 - JOC Jump-On-Condition Instruction Format
Single-Word Memory Reference Instruction Machine Code Format..
Double-Word Memory Reference Instruction Machine Code Format ..
Byte Immediate Instruction Machine Code Format
Conditional Jump Instruction Machine Code Format
Single-Register Shift Instruction Machine Code Format
Double-Register Shift Instruction Machine Code Format
Register Change Instruction Machine Code Format
Control Instruction Machine Code Format
Input/Output Instruction Machine Code Format
Automatic Input/Output Instruction Machine Code Format
Block Input/Output Instruction Machine Code Format

x

Page

3-40
3-41
3-41
3-42
3-43
3-44
3-45
3-46
4-6
4-7
4-7
4-8
4-8
4-9
4-12
4-13
4-13
4-14
4-16
5-2
5-2
5-6
5-7
C-1
C-1
C-1
C-2
C-2
C-2
C-2
C-2
D-1
D-1
D-2
D-2
D-3
D-3
D-3
D-3
D-4
D-4
D-4

COMPUTER AUTOMATION, INC. f3!:1

LIST OF TABLES

Table Page

2-1 Console Switches and Indicators. 2-1
A-1 Hexadecimal-Decimal Conversions. A-2
A-2 ASCII Teletype Codes I I I I I I I I • I ••• I I • I I I I I I I II I I I I A-3
B-1 Recommended Device Addresses ... I •• I •••••• I • I •••••• I •••••• I • I B-2
B-2 Scratchpad/Page 0 Recommended Interrupt Address Map I I ••• I • I I B-3
E-1 Standard Core Memory Algorithm Variables I ••••••••••••••••• E-1
E-2 Execution Time Algorithms I • I I I • I I I • I •• I • I I • • •• E-2
F-1 Assembler Directives I •••••••••• I •• I ••••• I •••• I • • • • F-1

xi

COMPUTER AUTOMATION, INC. ~

Section 1

GENERAL DESCRIPTION

1.1 INTRODUCTION

The ALPHA 16 LSI and NAKED MINI 16 LSI (hereafter referred to as ALPHA LSI when
discussed together) are general purpose, stored program digital computers. They are
extensions of the successful and proven 16-bit computer family from Computer Automation.

1.1.1 Upward Compatibility

The ALPHA LSI is upward software and I/O compatible with earlier 16-bit computers
from Computer Automation. Upward software compatibility means that virtually all
programs written for the earlier 16-bit computers will run without change on the
ALPHA LSI .. However, due to the expanded and improved instruction set of the
ALPHA LSI, programs written for these computers may not run on the earlier computers.

1.1.2 General Features

The ALPHA LSI computer features a 16-bit word format and 162 basic instructions. The
instruction set is divided into seven major classes which provide memory-to-register
and register-to-register data movement as well as conditional jump, single and double­
register shift, register change, machine control and Input/Output instructions. The
computer utilizes eight addressing modes for effective and efficient management of
memory resources.

The ALPHA LSI computer has a fully buffered I/O structure coupled with five levels of
interrupts and five I/O modes which permit high speed, low speed, synchronous and
asynchronous data transfers to take place.

The ALPHA LSI may readily accommodate additional memory and I/O by adding expansion
chassis to the basic system .An optional Memory Banking feature permits the user to
extend the upper limit of memory from 32K words to 256K words.

1.2 THE NAKED MINI 16 LSI CONCEPT

The NAKED MINI 16 LSI computer consists of the Processor and first memory module
on one printed circuit board. The NAKED MINI 16 LSI is a complete stand alone
computer without a chassis, motherboard, power supply or operators console.

1-1

COMPUTER AUTOMATION,INC. ~

The NAKED MINI 16 LSI computer is designed to be used as a system component along
with other system components. It depends on the system power supply for a power
source, the system control panel for operational control signals and the system en­
closure for structural and environmental support.

1.3 THE ALPHA 16 LSI

Take a NAKED MINI 16 LSI computer and add a power supply module, a motherboard,
a chassis and an operator's console and you get the ALPHA 16 LSI computer. The
Motherboard interconnects the NAKED MINI 16 LSI computer with additional I/O and
memory modules, the power supply and the operator's console.

1.4 CHARACTERISTICS

The characteristics of the ALPHA LSI are explained in subsequent sections of this manual.
The following is an overview of the characteristics of this computer.

1 . 4 . 1 Processor

Some of the significant characteristics of the computer are:

Parallel processing of full 16-bit words and 8-bit bytes

Seven 16-bit hardware registers, one 8-bit Status Register

Memory word size of 16 bits, with each word addressable as a full 16-bit
word or as two separate 8-bit bytes.

Memory capacity is 1,024 words minimum, expandable to 32,768 words per
bank maximum (Up to 262,144 words with optional memory banking.)

Computer cycle time is 1. 6 microseconds

Direct Memory access (Standard) provides data transfer rates of 625,000
words per second in a single memory bank or 1,250,000 words per second
with inter leaved memory banks

Binary 2' s complement arithmetic processing

Automatic memory scan (standard)

Hardware Multiply and Divide (standard)

1-2

COMPUTER AUTOMATION, INC. ~

1.4.2 Instruction Set

These computers have a very powerful instruction set consisting of 162 basic instructions
divided into seven classes. The instruction classes are:

1 . Memory Reference.

Access memory in either full word or byte mode and perform logical and arith­
metic operations involving data in memory and data in hardware registers. The
hardware multiply, divide and normalize instructions are included in this class.

2. Byte Immediate

Similar to memory reference in that they perform logical and arithmetic operations
involving data in hardware registers. The memory data, however, is contained
within the instruction word so that it is immediately available for processing
without requiring an operand cycle to fetch it from memory.

3. Conditional Jump.

Test conditions within the processor and perform conditional branches depending
on the results of the tests performed. Jumps may be as much as ::!:. 64 locations
from the location of the conditional jump instruction.

4. Shift.

Include single-register logical, arithmetic and rotate shifts; double-register
logical and rotate shifts.

5. Register Change.

Provide logical manipulation of data within hardware registers.

6. Control.

Enable and disable interrupts; suppress status, control word or byte mode data
processing and perform other general control functions.

7 . Input/Output.

Provide communications between the computer and external devices. They
include conventional I/O instructions plus Block Transfer and Automatic
Input/Output instructions. I/O may be to/from register or directly to/from
memory.

1-3

COMPUT£R AUTOMATION, INC. f3]1
1 . 4. 3 Memory Addressing

An important feature of these machines is the ability to access full 16-bit words and 8-bit
bytes (half words) in memory. Memory may be as small as lK x 16-bit words, and as
large as 32K x 16-bit words. Since memory may contain 32K words, and since each
word contains two bytes, provisions are made for addressing up to 64K bytes.

Instructions which access memory may operate in either word or byte mode. Memory
reference instructions are sixteen bits in length (one-word instructions) , with the eight
least-significant bits plus three control bits dedicated to memory addressing. The eight
least significant bits address 256 words or bytes. The ALPHA LSI computer uses the
three control bits to specify several addressing modes. These addressing modes are
discussed briefly below and are explained in detail in Section 3. The addressing modes
used are Scratchpad, Relative Forward, Relative Backward, Indexed, and Indirect.

1 . Scratchpad

Scratchpad addressing accesses the first 256 words in memory in Word Mode, or
the first 256 bytes in Byte Mode. The first 256 words in memory are referred to
as "Scratchpad" memory, because these are common words which can be addressed
directly by instructions located anywhere in memory.

2. Relative

In Word Mode, relative addressing can address an area of memory extending
from the instruction address forward 256 words (+256) or backward 255 words
(-255). In Byte Mode, the range is forward 512 bytes. Bytes cannot be directly
addressed relative backward.

3. Indexed

The Index register (X register) can be added to the address field of memory refer­
ence instructions to form an effective memory word or byte address.

4. Indirect

Indirect addressing uses scratchpad or relative addressing to access a word in
memory which contains the address of a memory operand. The word that contains
a memory address rather than an operand is called an address pointer. In l.vord
Mode, multi-level indirect addressing is possible; i.e., one address pointer may
contain the address of another address pointer rather than the address of an
operand. In Byte Mode, only one level of indirect addressing is possible.

Indirect addressing may also be used in conjunction with indexing. When indexed
indirect addressing is specified, the indirect operation is performed first and then
the contents of the X register are added to the contents of the address pointer. This
process is called Post Indexing.

1-4

COMPUTER AUTOMATION,INC. ~

1.4.4 I/O Structure

The ALPHA LSI computer has a parallel I/O structure that provides both ease of inter­
facing and powerful peripheral control. Some special features of the I/O Structure are:

1 . Vectored Interrupts.

These machines feature vectored hardware priority interrupts. Wherein each
peripheral controller supplies its own unique interrupt address to any location
in memory. There are five standard interrupt levels (two internal and three
external). The third external level with control lines can accommodate a vir­
tually unlimited number of vectored interrupts.

2 . Direct Memory Channels.

Direct memory channels (DMC) provide data transfers between the computer and
peripheral components without affecting the operating registers of the computer.
DMC's are a standard feature of these computers. The maximum data transfer
rate using DMC's under interrupt control is 26,738 words/ sec.

3. Block Input/Output.

The Block I/O feature of these computers dedicates the computer to I/O data trans­
fer at the maximum possible transfer rate. The maximum transfer rate using Block
I/O is 131,579 words/ sec. Block I/O is a standard feature of these computers.

4. Parallel Busses

Separate busses providing device address selection, data transfer, and control
signals are used for ease of interfacing. Busses are not time shared for I/O
functions. This feature alone simplifies interface design considerably.

1 . 4. 5 Processor Options

There are four general options that are offered with the ALPHA LSI computer. They
are: Power Fail/Restart; the Teletype/CRT Interface; Real-time Clock, and Autoload.

The Power Fail/Restart option mounts directly on the NAKED MINI 16 LSI computer
printed circuit board. The other three options mount on a special option board which
plugs into a special connector (in piggyback fashion) on the NAKED MINI 16 LSI
computer printed circuit board. None of these options interface directly with the
motherboard.

1-5

COMPUTER AUTOMATION,INC. ~

1. Teletype/CRT Interface

Interfaces a modified ASR-33 or ASR-35 Teletype or CRT terminal to the computer.
This is a fully-buffered interface that includes remote Teletype motor on/off con­
trol. In addition to the standard TTY baud rate (110 baud) , nine user selectable
baud rates, ranging from 75 to 9600 bauds, are provided for driving a CRT
terminal.

2. Power Fail Restart

This option includes the hardware necessary to detect low input power conditions
and bring the computer to an orderly halt until normal input power is restored.
When normal power is restored, this option will generate an orderly restart. The
Power Fail Restart option allows completely unattended operation of the computer
at locations where power conditions are unreliable.

3 . Real Time Clock

The Real Time Clock option features a crystal controlled internal clock which may
be wired to produce clock rates of 100 microseconds, 1 millisecond, 10 milliseconds,
or twice the input AC line frequency (8.33 or 10 milliseconds -60Hz and 50Hz,
respectively). The 10 millisecond (crystal derived) rate is standard. An
external clock source may also be used. The Real Time Clock provides
time-of-day information to the computer and may be used to time periodic
events that must be controlled by the computer.

4. Multi-Device Autoload

The Multi-Device Autoload option consists of a Read-Only Memory (ROM) pro­
grammed with a complete binary loader which is capable of loading binary programs
from anyone of several input devices. The Autoload hardware consists of the
ROM when the LOAD switch is activated.

1 . 4 . 6 PI ug-In Options

Locations are provided within the ALPHA 16 LSI computer chassis for the installation
of processor options, peripheral interfaces, and memory modules. The options are
mounted on printed circuit boards which plug into the locations within the computer
chassis. Some of the available plug-in processor options are:

1. DTL I/O buffers, up to 64 bits

2. Relay I/O buffers, up to 32 isolated relays

3 . Modem interfaces: non-synchronous and synchronous

4. Memory Banking Controller, extends upper limit of memory to 262,144 words.

5. Read Only Memory (ROM)

1-6

COMPlmR AUTOMATION,INC. ~

1.4.7 Peripheral Equipment

The following is a partial list of the various types of peripheral equipment for which
interfaces to the ALPHA LSI have been developed. This list does not imply that these
are the only devices for which interfaces can be developed. The interface structure of
these computers is such that virtually any peripheral device can be interfaced to the
computer.

1. ASR-33 and ASR-35 Teletypewriters

2. High speed paper tape readers and punches

3. Line printers

4. Card readers

5. Open reel and cassette magnetic tape units

6 . Magnetic disks

7 . AID and D / A converters

8. CRT terminals

9. Plotters

1.5 DATA HANDLING CHARACTERISTICS

1 . 5. 1 Data Word Format

Processor registers and memory word locations are capable of storing data words con­
sisting of 16 binary digits or "bits". A word may be handled as a single 16-bit field
or as two 8-bit bytes. The following paragraphs describe the word format of the
computer. Byte format is described later in this section. I

1.5.1.1 Bit Identification

A data word may contain a single number, or it may contain a string of individual binary
bits, with each bit having a unique meaning. For purposes of explanation and identifica­
tion, each bit within a word is uniquely identified. The identification is accomplished
by numbering each bit within a word from right to left. The bit on the extreme right
of the word is bit 0, and the bit on the extreme left is bit 15. Figure 1-1 illustrates the
format of a 16-bit data word with the bit number shown above the bit position.

1-7

COMPUTER AUTOMATION,INC. ~

1.5.1.2 Bit Values

The ALPHA LSI is a binary computer, therefore numeric information stored in the com­
puter and processed by the computer must be in binary format. Figure 1-1 illustrates
the binary value of a one-bit in each bit position of the 16-bit data word. These values
are expressed as powers of two. For example, a one-bit in bit position 3 has the value
of 23

, or 8. The single exception to this rule is bit position 15 which is the sign bit.

1.5.1.3 Signed Numbers

The ALPHA LSI is capable of performing arithmetic operations with signed numbers. Bi­
nary two's complement notation is used to represent and process numeric information.
Bit 15 of a data word indicates the algebraic sign of the number contained within that
word.

1.5.1.4 Positive Numbers

A positive number is identified by a 0 in bit 15, and the binary equivalent of the magni­
tude of the positive number is stored in bits 0 to 14. The largest positive signed number
which can be stored in a 16-bit word is +32,76710.

1.5.1.5 Negative Numbers

A negative number is identified by a 1 in bit 15 of the data word. A negative number is
represented by the binary two's complement of the equivalent positive number. A neg­
ative number must follow the mathematical rule where:

0- (+n) = -n

For example:

o - (+5) = -5

Negative numbers must also be constructed such that:

(+n) + (-n) = 0

The binary two's complement of some numeric value may be constructed by subtracting
the binary representation of the absolute magnitude of that value from O.

Note that the formation of a binary two's complement negative number from the equivalent
positive number automatically sets the sign bit to a one. The largest negative number
that can be stored in a 16-bit word is -32,76810 .

1-8

COMPUTER AUTOMATlON,INC, ~

1 . 5 . 2 Data Byte Format

A 16-bit data word is capable of storing two 8-bit bytes. Since most data transfers be­
tween mini computers and peripheral devices are in the form of bytes rather than words,
the ALPHA LSI computer provides the capability of addressing individual bytes as well
as full data words. Figure 1-2 illustrates the storage of two bytes within one computer
word.

Bit positions within bytes are identified much the same as in 16-bit words. Figure 1-2
also illustrates the numbering of data bits within a byte. The bits are numbered 0
through 7, where bit 0 is the least-significant bit (LSB) , and bit 7 is the most-signi­
ficant bit (MSB) of the byte.

1& 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 1-1. Data Word Bit Identification

16· BIT WORD ...
f 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 "

BYTE 0

7 II & 4 3 2 1 0
\,. I ...

8· BIT BYTE

BYTE 1

7 II I 4 3 2 1
\,.

"" 8· BIT BYTE

o
I

Figure 1-2. Byte Storage, Two Bytes Per Word

1-9

COMPUTER AUTOMATION,INC. ~

1 . 5 . 2 . 1 Byte Mode Processing

There are two control instructions in the computer which control Word Mode processing
and Byte Mode processing. One of the instructions causes the computer to enter Byte
Mode processing, and the other causes the computer to enter Word Mode.

In Word Mode, all memory reference instructions access full words in memory. In Byte
Mode all memory reference instructions (except IMS, MPY, DIV, NRM, JMP, and JST)
access one byte within a word. The method of addressing individual bytes is discussed
in a subsequent part of this Section. The present discussion is concerned with computer
operations while in Byte Mode as contrasted with computer operations in Word Mode.

Byte Mode affects the operand cycle of the computer only. All other computer functions
operate the same as in Word Mode. In Byte Mode the computer operand cycle reads a
single byte from memory instead of a full word. The following paragraphs illustrate
Byte Mode operations for memory reference instructions.

1 . 5 . 2 • 2 Register Load

In Word Mode, the full word is loaded into the selected register. In Byte Mode, the
selected byte is loaded into the lower eight bits of the selected register and the upper
eight bits are set to zero. Note that the location of the byte within the memory word
does not determine the location the byte will occupy in the register being loaded.

1 . 5.2 . 3 Arithmetic Operations

For arithmetic purposes, bytes are handled as positive numbers only. The reason is that
a byte occupies the lower eight bits of a register, or a data bus, and the upper eight
bits contain zeros.

1.5.2.4 Data Packing

One of the most useful features of byte mode processing is in the packing and unpacking
of data in memory. Since most of the peripheral devices used with mini computers are
byte oriented, high-speed data transfers between the computer and the peripheral de­
vice generally require data to be packed one byte per word. Such an arrangement is
illustrated in Figure 1-3. In this illustration, the upper eight bits of each data word
to be transmitted to a peripheral device contain zeros. A full 16-bit word is transmitted
to the device, but the device discards the upper eight bits and accepts only the lower
eight bits. Data received from a byte oriented peripheral device during high-speed
data transfers is packed in memory one byte per word in the format shown in Figure 1- 3 .
If a software subroutine were required to pack the data two bytes per word, in the
format illustrated in Figure 1-4, it would waste memory and time in performing the
formatting required for high-speed data transfers.

1-10

COMPUTER AUTOMATION, INC. ~

The capability of the ALPHA LSI computer to address individual bytes in memory allows
high speed data transfers using the memory format shown in Figure 1-4 for both trans­
mission and reception of data. Bytes may be addressed sequentially and transmitted
or received sequentially, just as words are transmitted or received sequentially in
conventional unpacked data transfers. This arrangement saves memory space since
none of the memory word is wasted, and it saves time since no software routines are
required to pack and unpack data for internal processing.

1 . 5 . 3 Memory Address Formats

Maximum memory capacity in the ALPHA LSI computer is 32,768 words which means
a byte capacity of 65,536 bytes. A fifteen bit address is required to address 32,768
words, and a sixteen bit address is required to address 65,536 bytes. The following
paragraphs discuss the formats of the addresses that must be presented to memory for
addressing both words and bytes. This discussion is concerned only with address
formats. Section 3 of this manual discusses the memory address modes which form these
addresses.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

WORD 0 I 0 0 0 0 0 0 0 0 I BYTE 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2

WORD 11 0 0 0 0 0 0 0 0 I BYTE I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

WORD 21 0 0 0 0 0 0 0 0 I BYTE 2

15 14 13 12 11 10 9 e 7 6 5 4 3 2

WORO 31 0 0 0 0 0 0 0 0 I BYTE 3

15 14 13 12 11 10 9 8 7 6 5 4 3 2

WO R 0 41 0 0 0 0 0 0 0 0 I BYTE 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

WORD 51 0 0 0 0 0 0 0 0 I BYTE 5

Figure 1-3. Data in Memory, One Byte Per Word

1-11

COMPUTER AUTOMATION. INC. ~

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WORDOI ________ ~_T_E_O ______ _A _______ B_YT_E_l __ ----~

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WOR011~ ______ BY_T_E_2 ______ ~ _______ B_YT_E_3 ______ ~

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WOR021~ ______ B~ __ E_4 ______ ~ _______ B_~_E_5 ______ ~

Figure 1-4. Data in Memory, Two Bytes Per Word

1. 5.3. 1 Word Addressing

Figure 1-5 illustrates the format of an address presented to memory to address a full
word. This is the format that is used to address instructions or full data words. The
address is contained in bits 0 - 14, and bit 15 contains a zero.

1. 5 . 3 . 2 Byte Addressing

Figure 1-6 illustrates the format used to address a byte within a data word. Bits 1-15
contain the address of the memory word, and bit 0 specifies which byte within the word
is to be addressed.

Bit 0 = 0 specifies Byte 0 (Most Significant Byte) .

Bit 0 = 1 specifies Byte 1 (Least Significant Byte) .

If the computer is set for Byte Mode, all operand addresses presented to memory are
assumed to be byte address.es. The computer assumes that the address is in the format
shown in Figure 1-6. If the computer is set for word mode processing, all addresses
presented to memory are assumed to be word addresses in the format shown in Figure
1-5. These assumptions apply to operand cycles only. They do not apply to instruc­
tion cycles or indirect addressing cycles.

1-12

COMPUTER AUTOMATION,INC. ~

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WORD ADDRESS: 15 BITS

. Figure 1-5. Basic Word Address Format

15 14 13 12 11 10 9 8 7 6 5 4 J 2 1 0

WORD ADDRESS: 15 BITS

BYTE INDICATOR: 0 = BYTE 0
(LEFT BYTE)

1 = BYTE 1
(RIGHT BYTE)

Figure 1-6 . Byte Address Format

1.5.3.3 Indirect Addressing

The ALPHA LSI computer is capable of performing single level indirect addressing
for addressing bytes, and multi -level indirect addressing for addressing words. Indi­
rect addressing uses direct addressing to read a word in memory, called an address
pointer, which contains the address of another word. In Byte Mode the address pointer
contains the address of the byte to be addressed. The format of the address in the
address pointer is the same as that shown in Figure 1-6.

In Vvord Mode the format of the address in the address pointer is that shown in Figure
1-7. Bits 0 - 14 contain the address of another word in memory. Bit 15 is a multi-
level indicator. If bit 15 contains a 0 the address in bits 0 - 14 is the address of another
indirect address pointer. The number of levels of indirect addressing which may be
used is limited only by the size of memory.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I ~ WORD ADDRESS, 15 BITS

0= OPERAND
ADDRESS

1 = POINTER
ADDRESS

Figure 1-7. Indirect Address Pointer Format

1-13

2.1 INTRODUCTION

COMPUTER AUTOMATION,INC. ~

Section 2

CONSOLE

The ALPHA 16 LSI Console provides the switches and indicators required to operate,
display and control the computer. This section describes the controls and indicators
on the Console , provides operating procedures and defines machine modes.

2.2 SWITCHES AND INDICATORS

For the convenience of the user, the switches and indicators have been grouped into
the following sections:

1. Status
2. Control
3. Entry and Display

Figure 2-1 illustrates the ALPHA 16 LSI Console. All switches and indicators are
listed and explained in table 2-1.

NOTE

All console switches are momentary contact
touch switches and all indicators are light­
emitting diodes (LED's).

Table 2-1. Console Switches and Indicators

SWITCH OR INDICATOR

System Status Section

ON Indicator

ENABLE Slide Switch
and Indicator

PURPOSE

On when power is applied, off when power is removed. The
main power switch is located on the rear of the computer.

The console enable/disable slide switch is located in a recess
on the edge of the console. When the switch is on, the ENABLE
indicator is on. . Likewise, when the switch is off the indicator
is off. When in the ENABLE state all switches and indicators
are enabled. When in the disabled state the only functions that
are effective are:

2-1

COMPUTER AUTOMATlON,INC. ~

Table 2-1. Console Switches and Indicators (Cont'd)

SWITCH OR INDICATOR

BYTE Indicator

OV Indicator

SENSE Switch and
Indicator

System Control Section

STOP Switch and
Indicator

RE SET S witch and
Indicator

PURPOSE

1. The SENSE switch and indicator
2. The Console Sense register, Register Display indicator

and hex entry keyboard when the SENSE/DATA indicator
is on.

On when the Processor is in Byte Mode. Off when the
Processor is in Word Mode.

On when the Processor overflow flip-flop is on. Off when the
overflow flip-flop is off.

The SENSE Switch toggles the SENSE Indicator.
The SENSE Indicator may be tested by program instructions.
The Sense test will be true if the SENSE Indicator is on.

The STOP Switch toggles the STOP Indicator. The Indicator
is on when the Stop Mode is established. When the indicator,
is off the Run Enable Mode is established.

When the Stop Mode is established and the console is enabled
(ENABLE indicator on) , data entry and display operations may
be performed. In addition, the Processor will fetch and exe­
cute one program instruction each time the RUN switch is
pressed.

When in the Run Enable Mode, data entry and display operations
may not be performed and the Run Mode is enabled but not
entered until the RUN switch is pressed.

The indicator is on when the RESET switch is on and remains
on only as long as the switch is pressed. The RESET switch
generates a system reset signal which causes the Processor
and all interfaces to be initialized.

The RESET switch should not normally be used to stop the
computer. If RESET is pressed while the computer is running,
the instruction currently being executed may not complete.
The STOP switch should normally be used to halt the computer.
The only time that RESET should be used to halt the computer
is in the case where the Processor is hung up in a non­
escapable one instruction loop (e.g. , multi-level indirect
address instruction with closed address chain) .

2-2

• •
. ~.~'\""- "

I ' I
, I I"

Figure 2-1. ALPHA 16 LSI Console

COMPUTER AUTOMATION, INC. ~

Table 2-1. Console Switches and Indicators (Cont'd)

SWITCH OR INDICATOR PURPOSE

AUTO Switch and The AUTO switch is used to initiate an Autoload sequence if
Indicator the Autoload option is installed. The AUTO switch is enabled

only during the Run Enable Mode. Depressing the switch
establishes the Run Mode and initiates the Autoload sequence.
The indicator turns on when the switch is pressed and remains
on until the Autoload sequence is completed.

INT S witch and The INT switch is used to initiate a Console Interrupt. The
Indicator switch is enabled only during the Run Mode. The indicator

turns on when the switch is pressed and remains on until the
Processor honors the Console Interrupt Request.

RUN Switch and The RUN switch is used to establish the Run Mode when the
Indicator STOP indicator is off. When the STOP indicator is on, the

RUN switch causes one instruction to be fetched and executed
when pressed. The WRITE indicator is turned off whenever
RUN is pressed. The RUN indicator is turned on when in the
Run Mode.

Entry /Display Section

Register Display
Indicators (0 thru 15)

The 16 Register Display Indicators display the contents of
either the Console Data register or the Console Sense register
depending on the state of the SENSE/DATA indicator. When the
SENSE /DA T A indicator is off, the contents of the Console Data
register are displayed. The Console Data register contains
either: 1) the most recent contents of the A, X, I or P
register or Memory as requested by the Register Select
switches; 2) the last Processor output to the Console Data
register; or 3) the last keyboard entry to the Console Data
register.

When the SENSE/DATA indicator is on, the contents of the
4-bit Console Sense register are displayed on the Register
Display Indicators. The Console Sense register contains
either the last keyboard entry to the Sense register or the
last Processor output via the Status Output Command. The
upper 12 Register Display indicators are turned off when
displaying. the Console Sense Register.

2-4

COMPUTER AUTOMATION,INC. ~

Table 2-1. Console Switches and Indicators (Cont'd)

Sl\1ITCH OR INDICATOR

Register Select Switches
and Indicators (A, X, I,
P and M)

READ/WRITE Switch
and Indicator

Hexadecimal Entry
Keyboard (0 thru F)

PURPOSE

The five Register Select switches determine which one of four
Processor registers or memory is to be involved in a read/
write operation. Each switch has a corresponding indicator
which turns on when a given switch is pressed. The indicators
are interlocked such that only one indicator is on at a time.
The A, X, I and P switches cause a transfer to occur between
the target register and the Console Data register. The M
switch causes a transfer between the memory and Console Data
register to occur and also causes the P counter to increment
after the transfer. This feature permits manual scanning or
loading of sequential memory locations by repeated pressing of
the M switch.

The READ/WRITE switch is used in conjunction with the Regis­
ter Select switches. When the READ /WRITE indicator is on,
the contents of the Console Data register will be written into
the target register or memory when the appropriate Register
Select switch is pressed. When the READ /WRITE indicator is
off, the contents of the selected register or memory are copied
into the Console Data register and displayed.

The Hexadecimal Entry Keyboard consists of 16 switches which
are used to enter data into either the i6-bit Console Data
register or the 4-bit Console Sense register as determined by
the SENSE/DATA switch and indicator.

When the SENSE/DATA indicator is off, each depression of a
key causes a corresponding 4-bit binary hex code to be
entered into the four least-significant bits (LSB's) of the
Console Data register with the previously entered data shifted
four places to the left. The Console Data register will be
statically displayed as long as the SENSE/DATA indicator is
off and the computer program does not alter the contents of
the Console Data register.

When the SENSE/DATA indicator is turned on, each depression
of a hex entry key causes the corresponding binary hex code
to be entered into the four-bit Console Sense register. The
Console Sense register is statically displayed in the four least
significant Register Display indicators so long as SENSE /DAT A
is in the on state and the computer program does not modify
the contents of the Console Sense register. The upper 12
Register Display indicators are extinguished.

2-5

COMPUTER AUTOMATION. INC. E3!:1
Table 2-1. Console Switches and Indicators (Cont'd)

SWITCH OR INDICATOR PURPOSE

SENSE/DATA Switch The SENSE/DATA switch toggles the SENSE/DATA indicator
and Indicator which determines whether the Console Data register or the

Console Sense register is to be connected to the hex entry key­
board and the Register Display indicators. If the SENSE/DATA
indicator is off, the hex entry keyboard is used to enter data
into the Console Data register and the Register Display indica­
tors are connected to the Console Data register. If the SENSE/
DAT A indicator is on, the keyboard and display are connected
to the Console Sense register.

CLEAR Switch The CLEAR switch, when pressed, clears data from the Console
Data register. The switch does not affect the Console Sense
register.

2.3 MACHINE MODES

There are four machine modes which are controlled from the Console. These modes are:

1. Stop Mode
2. Step Mode
3. Run Enable Mode
4. Run Mode

Mode selection is made by use of the RUN and STOP switches. The RUN and STOP
indicators define the current machine mode as follows:

2.3.1 Stop Mode

STOP

on
on
off
off

RUN

off
on
off
on

MODE

Stop
Step
Run Enable
Run

The Stop Mode unconditionally halts program execution and enables the Entry and Dis­
play section of the Console. The Stop Mode is manually entered from either the Run Mode
or the Run Enable Mode when the STOP switch is pressed " While in the Stop Mode, the
Entry and Display section of the Console is enabled.

COMPUTER AUTOMATION,INC. ~

2.3.2 Step Mode

The Step Mode is a transient condition in which a single instruction is executed. The
Stop Mode is re-entered upon completion of the instruction. A single instruction is
executed each time the RUN switch is pressed while the STOP indicator is on.

2 . 3 . 3 Run Enable Mode

The Run Enable Mode is an intermediate mode between the Stop and Run Modes. Either
the Run or Stop Mode may be entered from the Run Enable Mode. Conversely, the Run
Enable Mode can be entered from the Run Mode by execution of a programmed halt. The
Run Enable Mode can be entered from the Stop Mode by turning off the STOP indicator.
While in the Run Enable Mode, the Entry and Display Section of the Console is disabled.

2.3.4 Run Mode

The Run Mode can be entered only from the Run Enable Mode. When entered, the Run
Mode permits the user's program to execute. The Run Mode can be established manually
from the Console; semi-automatically by means of the Autoload Option; or, automatically
by means of the Power Fail/Restart Option.

The Run Mode is entered manually from the Run Enable Mode by pressing the Console
RUN switch. If the Autoload and Power Fail/Restart options are installed, the Run Mode
is entered from the Run Enable Mode when the AUTO switch is pressed. The Power Fail/
Restart option automatically establishes the Run Mode upon application of adequate power
regardless of Processor or Console status prior to the power failure.

2.4 CONSOLE OPERATION

The ALPHA 16/LSI Console is used for initial start-up, program debug, and trouble­
shooting. The primary functions executed at the console are register display and register
change, and the display and entry of memory data. The following paragraphs discuss
detailed procedures for performing these operations.

2 . 4. 1 Console Preparation

There are several common steps that must be performed before any console operations
may be attempted. These steps prepare the console and the computer for console opera­
tions. The initial steps are:

1. Power On The main power switch for the computer is at the rear of the
power supply module. Place the power switch in the up
position (ON). The ON indicator on the Console will light
and the chassis blowers will run.

2-7

COMPUTER AUTOMATION,INC. ~

2. Enable Console Enable the Console by moving the Console Enable slide
switch (located in the recess on the side of the Console)
to the enable position. The ENABLE indicator is on when
the console is enabled.

3. Press STOP The computer may come up in the Run Mode because of a
previously loaded program. Pressing STOP causes the
computer to leave the Run mode.

NOTE

In some cases the RUN indicator may remain on after
the STOP switch is pressed. This condition may exist
when the computer is attempting to execute certain I/O
instructions. This does not indicate a malfunction of
the computer. When this occurs, step 4 of this pro­
cedure will correct the condition.

4. Press RE SET Pressing RESET puts the computer in word mode and
initializes the computer and peripheral interfaces. It
forces the termination of any incomplete instructions.

2. 4. 2 Console Data Entry Procedure

The Console Data Entry Procedure is used to store data into selected registers or
memory locations from the ALPHA 16/LSI Console. The general procedure is to enter
the data into the Console Data register via the hex keyboard and then transfer the data
to a target register or memory via the Register Select switches. The detailed proce­
dure is as follows:

1. Ready Console

2. Turn SENSE/DATA
Indicator off

3. Turn WRITE/READ
Indicator on

4. Memory Address
-P

Prepare the console and the computer for console operations
as described in paragraph 2. 4. 1 .

Enables Console Data register entry, display and transfer.

Enables writing into a selected target register or memory

Before writing into memory locations, the memory address
where data is to be stored is entered into the Console Data
register and the P switch is pressed to transfer the contents
of the Console Data register to P. This step is not required
to enter data into the A, X, I or P registers only.

2-8

5. Data -Target
Register or Memory

6. Sequential Memory
Stores

COMPUTER AUtOMATION, INC. ~

The data is entered into the Console Data register. The
appropriate register select switch is pressed to transfer
the contents of the Console Data register to the target
register or memory.

The P register is automatically incremented each time the
M Register Select switch is pressed. To store data in
sequential memory locations, go back to step 5 for each
succeeding word. To store data in a new location, go
back to step 4.

2 . 4. 3 Console Display Procedure

The Console Display Procedure is used to display the contents of selected registers or
memory locations. The general procedure is to transfer the data from a register or
memory location to the Console Data register by use of the appropriate Register Select
switch. The detailed procedure is as follows:

1. Ready Console

2. Turn SENSE/DATA
Indicator off

3. Turn WRITE/READ
Indicator on

4. Memory Address
-P

5. Turn WRITE/READ
Indicator off

6. Target Register or
Memory -Console

7. Sequential Memory
Displays

Prepare the console and the computer for console operations
as described in paragraph 2.4.1.

Enables Console Data register, entry, display and transfer.

Enables writing into a selected register or memory location.
(Required only prior to displaying memory locations.)

The address of the memory location to be displayed is
entered into the Console Data register and the P switch is
pressed. (Required only prior to displaying memory
locations.)

Enables reading from a selected register or memory location.

When the appropriate Register Select switch is pressed, the
contents of the target register or memory are copied into
the Console Data register and displayed.

The P Counter is incremented each time M is pressed.
Therefore, to display data in sequential memory locations,
go back to step 6.

2-9

COMPUTER AUTOMATION,INC. ~

2 . 4. 4 Program Execution

Programs to be executed may be entered into memory by a number of different means.
Short programs may be entered using the Console Data Entry Procedure described in
paragraph 2. 4 . 2. Longer programs may be entered using the Autoload feature or
various Loader programs. (Autoload may execute automatically.) Regardless of the
means used to get a program into memory t the method used to execute that program is
generally the same. The Program Counter (P register) must be set to the starting
address of the program t and the computer Run mode must be entered. The following
steps are used to start program execution from the Console:

1. Ready Console

2. Start Address
-P

3. Press STOP

4. Press RUN

Prepare the console and the computer for console operations
as described in paragraph 2. 4. 1 .

Enter the starting address of the program to be executed in
the P register.

NOTE

Enter any required starting information associated with
the program in the A, X or SENSE register as appropriate.

This enables Run mode, but does not cause the computer to
enter Run mode.

Pressing the RUN switch causes the computer to enter the
Run mode. The computer will continue to run until it
executes a Halt instruction, or until the STOP switch is
pressed.

2.5 UNATTENDED OPERATION

If for any reason the computer is left unattended when executing a program, it is
recommended that the Console be disabled by placing the Console Enable switch to
the Disable position.

2-10

COMPUTER AUTOMATION,INC. ~

Section 3

INSTRUCTIONS AND DIRECTIVES

3.1 INTRODUCTION

This section deals with the various instructions and directives recognized by the
assembler. The Beta Assembler translates programs which are written in a symbolic
language (mnemonics, etc.) into an object language (machine code - see Appendices
C and D) which may be loaded into the ALPHA LSI computer. Outputs from the
assembler consist of the program object code (normally a punched paper tape) and
the program assembly listing. The Beta Assembler is a two-pass assembler. A symbol
table for the program is compiled on the first pass and the program object code and
a.ssembly listing are produced on the second pass.

3 . 1 . 1 Instruction and Directive Classes

The instruction and directive classes listed below in Figure 3-1 are discussed in this
section:

CLASS 1
CLASS 2
CLASS 3
CLASS 4
CLASS 5
CLASS 6
CLASS 7
CLASS 8
CLASS 9
CLASS 10
CLASS 11
CLASS 12
CLASS 13
CLASS 14

SINGLE-WORD MEMORY REFERENCE INSTRUCTIONS
DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS
BYTE IMMEDIATE INSTRUCTIONS
CONDITIONAL JUMP INSTRUCTIONS
SHIFT INSTRUCTIONS
REGISTER CHANGE INSTRUCTIONS
CONTROL INSTRUCTIONS
INPUT /OUTPUT INSTRUCTIONS
ASSEMBLER CONTROL DIRECTIVES
DATA AND SYMBOL DEFINITION DIRECTIVES
PROGRAM LINKAGE DIRECTIVES
SUBROUTINE DEFINITION DIRECTIVES
LISTING FORMAT AND ASSEMBLER INPUT DIRECTIVES
USER DEFINED OPERATION CODE DIRECTIVE

Figure 3-1. Instruction and Directive Classes

3. 1.2 Symbolic Notation

The symbolic source code input to the Beta Assembler consists of individual symbolic
statements. All of the statements taken together make up a program which is to be
translated.

3-1

COMPUTER AUTOMATION,INC. ~

All instructions and certain directives generate an object code. Other directives serve
only to control the assembly process.

A source statement represents either an instruction or a directive. It contains four
fields - the Label field, the Operation Code field, the Operand field and the Comm,ents
field. Adjacent fields are separated by one or more spaces, which allows free-form
symbolic input to the assembler. A space in the first character position of a source
statement indicates no label present. The listing output from the assembler is formatted
for ease in reading, with the Operation Code, Operand and the Comments fields beginning
at fixed positions on the listing. Source statements on paper tape are terminated with a
carriage return. Line feeds and "rubouts" are ignored. All source statements are
limited to 72 characters.

3 . 1 . 3 Assembler Source Statement Fields

The following paragraphs discuss the four assembler source statement fields. The
relative positions of the fields are shown below in Figure 3-2 .

LABEL FIELD OP CODE FIELD OPERAND FIELD COMMENTS FIELD

Figure 3-2. Source Statement Format.

3. 1 . 3 . 1 Label Field

The label field may contain a name which can be referenced by other instruction state­
ments. It is identified by an alphabetic (A-Z) character in the first position of the
source statement. This first character may be followed by as many as five alphanumeric
(A-Z, 0-9) or colon (:) characters. This field is terminated by one or more spaces.

At assembly time, the label is assigned the current value and relocation attribute of the
program location counter. The same name should not appear in the label field of more
than one source statement in a given program (except when used with the SET directive) .

3 . 1 . 3 . 2 Op Code Field

The Op Code field contains a legally defined symbolic instruction or directive. In
addition, user-defined operation codes may appear in this field. The Operation Code
field consists of not less than one nor more than four characters, and is terminated
by one or more spaces. The Op Code field of a source instruction statement must be
present.

3-2

COMPUTER AUTOMATION,INC. ~

3. 1 . 3 . 3 Operand Field

The various instructions and directives mayor may not require operands. In any case,
the syntax of the operand field depends on the type of instruction or directive with which
it is associated. The Operand field syntax description is contained in the discussions of
the instructions and directives. If the Operand field is present, it contains an expres­
sion consisting of one of the following:

1. The currency symbol ($), representing the current program location.
2. A single symbolic term.
3. A single numeric term.
4. A combination of symbolic terms, numeric terms and/or the currency

symbol joined by the arithmetic operators plus (+) or minus (-).
5. A text string.
6. A literal (=xx).

The value assigned the currency symbol by the assembler is the value of the program
location counter at the time the currency symbol is encountered. The value is absolute
if an absolute assembly is being performed and relative if a relocatable assembly is
being performed. The currency symbol allows the programmer to reference memory
locations relative to the instruction being written rather than assigning labels to the
referenced location, thus saving space in the symbol table and reducing the probability
of multiple label definitions.

Symbolic terms (names) may be absolute or relative, depending on the assembly mode
under which they have been defined.

Numeric terms are always absolute. They consist of decimal, octal and hexadecimal
numbers. Decimal numbers can be any value in the range -32768 through +32767.
The first digit of the number must be non-zero. Octal numbers can be any octal value
in the range 0 through 0177777. The first - or leading - digit of the number must be
zero to specify octal numbers. Hexadecimal numbers can be any hexadecimal value in
the range: 0 through: FFFF. The number must be preceded by a colon (:). Although
octal and hexadecimal numbers may be signed t they are normally used to generate a bit
pattern or reference a particular memory location rather than to generate a signed
numeric value.

Combinations of terms (including the currency symbol) can be achieved by using the
arithmetic operators plus (+) and minus (-). The value of the final expression must be
in the range : 0 thru : FFFF. Combinations of relative and absolute terms are governed
by additional restrictions (see Sec. 3.1.5).

Text strings consist of any sequence of characters surrounded by single quotes (').
Inclusion of a single quote within the character string is accomplished using two adjacent
single quotes. The object code generated consists of 8-bit ASCII character codes, packed
two characters per word, or one 8-bit ASCII character in the LSB byte of an instruction
(e. g. , the operands of Immediate instructions). When a DATA directive is used, the
text string may consist of one or two characters. When one character is specified, the
8-bit code appears in the LSB byte of the computer word, with the MSB byte set to zero.

3-3

COMPUTER AUTOMATION. INC. ~

If two characters are specified, the code for the first character is put in the MSB byte of
the computer word and the code for the second character is put in the LSB byte of the
computer word. When the TEXT directive is used, the text string may consist of as many
as 57 characters. The characters are packed two per word, with the code for the first
character appearing in the MSB byte of the computer word and the code for the second
character appearing in the LSB byte of the computer word. Trailing character positions
are filled with blanks (:AO) - e~g., TEXT 'A' would generate a value of: CIAO for the
specified computer word.

Literals are designated by preceding the expression in the operand with an equals (=)

sign. This affects the entire expression - not just one term in the expression. When
a literal is encountered by the assembler, a word is reserved in the scratchpad area of
memory to hold the computed value of the expression in the operand field. Memory
addressing is then generated to access the scratchpad location.

3 . 1 .3 . 4 Comments Field

The comments field follows the operand field or, for those instructions which do not
require operands, the op code/instruction field. This field generally contains pro­
grammer's notes, cryptic messages, helpful hints and that sort of thing. Needless
to say, comments appear on the assembly listing, but do not generate object code.

3 .1 . 4 Arithmetic Operations and Overflow

The ALPHA LSI computer performs two's-complement arithmetic. All additions and
subtractions are performed on full 16-bit values. Thus, addition operations involving
byte values place the 8-bit data in the least significant 8 bits of the adder and set the
most significant 8 bits to zero (e. g. , AXI : 50 would add: 0050 to the 16-bit X register) .
Subtraction operations involving byte values similarly obtain a I6-bit two's complement
of the data (e. g. , SXI : 50 would add: FFBO to the I6-bit X register) .

Arithmetic overflow occurs when the result of an arithmetic operation exceeds the
range -32768 through +32767. Specifically, this involves the carry from bit 14 to
bit 15 of the adder, and the carry out of bit 15. If the carries are not equal (0 and 1,
or 1 and 0), an arithmetic overflow has occurred and the OV (overflow) indicator is
set. The operation is described below in Figure 3-3.

3-4

COMPUTER AUTOMATION,INC. ~

Carry In and Carry Out No Carry In and No Carry Out

S S
1 1 111

-5 = ~1 ~111
1111 1111 11-+carries 1 l.-carries
1111 1111 1011 +5 = 0 000 0000 0000 0101

+(-5) = 1 111 1111 1111 1011 +5(+5) = 0 000 0000 0000 0101
Sum - -10 1 111 1111 1111 0110 Sum - +10 = 0 000 0000 0000 1010,

Carry In and No Carry Out Carry Out and No Carry In

S S
1 111 1111 111 111

-32768)
~carries

+32767 o li1 1111 1111 1111 000 0000 0000 0000
+ (+1) 0 000 0000 0000 0001 + (-1) 1 111 1111 1111 1111

Sum=32768 1 000 0000 0000 0000 Sum=-32769 0 111 1111 1111 1111

Figure 3-3. Arithmetic Overflow.

3.1.5 Relocatability

Relative and absolute programming modes are controlled by the REL and ABS directives.
The default condition of the assembler is the relative mode (REL). The programmer
should note that the ORG directive modifies the contents, but not the relocation attribute,
of the program location counter.

An absolute program (or section of coding) can only be loaded and executed in the
memory locations specified by the user at assembly time, whereas a relative (or reloca­
table) program may be loaded and executed in any area of memory specified by the user
at load time. Out-of-range memory references are resolved through the use of the
scratchpad area in the base page (the first 256 words of memory). The user should
refer to the LAMBDA Obj ect Loader documentation.

Multiple-term expressions are reduced by the assembler to a single expression which
may be relocatable or absolute, according to the following rule:

R = (Number of added relocatable terms) - (Number of subtracted relocatable terms)

If R = 1, the expression is relocatable, if R = 0, the expression is absolute, and if R
is not equal to 0 or 1, the expression is illegal. Relocatable expressions are modified
by the load bias entered in the A register when the LAMBDA Obj ect Loader is executed:

Relocated Expression value = Assembled Expression value + Load Bias

In addition, the location of the entire program (or block of coding) is offset by the same
load bias:

Relocated program location = Assembled program location + Load Bias.

3-5

COMPUTER AUTOMATION,INC, ~

3.2 MEMORY REFERENCE INSTRUCTIONS

3.2.1 Word Mode Operations and Instruction Format

Word mode memory reference operations access full 16-bit memory operands. The
default mode of the computer is the Word Mode - i. e., when no mode control
instruction has been executed, the computer is in the Word Mode. SWM is the
mode control instruction which places the computer in the Word Mode. In addition,
the SIN, SIA and SIX instructions force the computer into the Word Mode. The SIN
instruction forces the Word Mode for the number of succeeding instructions specified
by its associated operand. The SIA and SIX instructions unconditionally force the
Word Mode. The format for the Word Mode memory reference instructions is shown
below in Figure 3-4 .

LABEL OP CODE [* I@I *@]EXPRESSION

No Operator = Direct Address
* = Indirect Addressing (multi -level)
@ = Indexed Addressing

*@ = Indirect Post-indexed Addressing (multi -level)

[COMMENTS]

Figure 3-4. Word Mode Memory Reference Instruction Format

All (16-bit) word address pointers (defined by DATA statements) consist of
fifteen bits of address in the least significant 15 bits. The most significant bit
(bit 15) specifies indirect (=1) or direct (=0) addressing.

3.2.1.1 Word Mode Direct Addressing

Word Mode direct addressing allows any memory reference instruction to access the
first 256 words of memory (the base pagel scratchpad area) as well as 512 memory
locations about the instruction itself (relative to P). Relative to P forward addressing
includes 256 words forward (toward higher memory) of the instruction and relative
to P backwards addressing includes the instruction itself and 255 memory locations
backward from the instruction. When direct addressing is desired, the expression in the
operand field should not be preceded by an * or @ character. When the assembler
encounters a direct reference to an out of range memory location, it automatically
generates an address pointer in the scratchpad area and references the associated
memory location indirectly through the pointer.

3-6

COMPUTER AUTOMATlON,INC. ~

3.2.1 . 2 Word Mode Indirect Addressing

Word Mode indirect addressing allows any memory reference instruction to access
any memory location through an address pointer in the first 256 words of memory
(the base page/scratchp'ad area) or an address pointer in the 511 memory locations
about the instruction itself (relative to P). Relative to P forward indirect addressing
allows the address pointer to reside in memory locations as many as 256 words
forward (toward higher memory) of the instruction and relative to P backwards
indirect addressing allows the address pointer to be in any memory, location 255
words or less prior to the instruction. When indirect addressing is desired,' the
expression in the operand field should be preceded by an asterisk (*). Multi-level
indirect addressing is accomplished by accessing address pointers in which the most
significant bit (bit 15) is set. The memory operand is not accessed until an
address pointer with the most significant bit reset (=0) is encountered. Indirect
address pointers can be defined by the programmer through the use of the DATA
directive by preceding the expression in the operand field with an asterisk (*).

3. 2 . 1 . 3 Word Mode Direct Indexed Addressing

Word Mode direct indexed addressing allows any memory reference instruction to
access memory locations by summing the contents of the X register and any offset
value in the range 0 through 255. The offset value is defined by the expression in
the operand field. When direct indexed addressing is desired, the expression in
the operand field should be preceded by an @ symbol. When the assembler encounters
an expression with a value greater than 255 in the operand field of a direct indexed
memory reference instruction, it automatically generates an address pointer in the
scratchpad area and references the associated memory location indirect post-indexed
through the pointer.

3.2.1.4 Word Mode Indirect Post-Indexed Addressing

Word Mode indirect post-indexed addressing allows any memory reference instruc­
tion to access memory locations by summing the contents of the X register and the
contents of an address pointer in the base page/scratchpad area (the first 256
memory locations). If the most significant bit of the address pointer is set, it
contains the address of another address pointer, which in turn may contain the
address of another pointer, and so forth. When an address pointer with the most
significant bit (bit 15) set to zero is found, the contents of the X register are
added to it to form the effective memory address. The memory operand is then
accessed. When indirect post-indexed addressing is desired, the expression in
the operand field should be preceded by an asterisk (*) and an @ symbol.

3-7

COMPUTER AUTOMATION, INC. ~

Because the Scan Memory (SCM) instruction always uses indirect post-indexed
addressing, the assembler automatically generates the necessary machine code
and does not allow @ or * operators on the associated operand expression. The
operand expression for this instruction should reference a user-defined address
pointer in the base page.

3.2.1.5 Word Mode Summary

A summary of Word Mode addressing, including the associated machine code,
is shown in Figure 3-5 .

IX'

r
FF

(XI

INDEXED: 256 LOCATIONS
(M = 101 y'" (X) + (D)
LOCATIONS (X)·(XI + 255

~-------------

(PI+l:FF ---------------

i
RELATIVE TO P, FORWARD: 256 LOCATIONS
(M = 011 Y = (P) + 1 + (D)

(PI + LOCATIONS (PI + 1-(PI + 1 + 255

(!PI I - RELATIVEro;;-SACK"WARil: 2561omION's­
(M=111 Y=(PI·!DI
LOCATIONS (P)+-(PI . 255

(PI·:FF 1--------------

:FF I----~---------

i
SCRATCHPAD: 256 LOCATIONS
(M • 00) Y z (01
LOCATIONS 0 .. 255

:00

Direct Addressing

MEMORY

====_oH@C==== ==== On.RAND ====
= = ::J~RJ!.C"@N: (A]P~S~ = = = = ADDRE!!.POINTER1!jfT5:]1_-= = = AD~ESS POINT!! illT 15 =-11 =::

CD SCRATCH PAO AODRESSING OR RELATIVE TO P ADDRESSING IS
USED TO ADDRESS AN ADDRESS POINTER

CD BITS 0·14 OF THE ADDRESS POINTER CONTAIN A MEMORY ADDRESS. IF BIT 15 OF
THE ADDRESS POINTER CONTAINS A I·BIT, THE MEMORY ADDRESS IN BITS 0·14 IS
THE ADDRESS OF ANOTHER ADDRESS POINTER.

CD IF BIT 15 OF THE ADDRESS POINTER CONTAINS A O·BIT, THE ADDRESS IN BITS 0·14
IS THE ADDRESS OF THE MEMORY OPERAND.

o IF INDEXING IS Sl't:CIFIED BY THE INSTRUCTION, THE ADDRESS IN BITS 0·14 IS
ADDED TO THE CONTENTS OF THE X REGISTER TO FORM THE EFFECTIVE OPERAIfD
ADDRESS.

Indirect Addressing

Figure 3-5. Word Mode Addressing Summary

3.2.2 Byte Mode Operations and Instruction Format

Byte Mode memory reference operations access 8-bit byte operands. The Byte Mode
is established by execution of the Set Byte Mode (SBM) instruction. Byte Mode
memory reference operation is inhibited (the computer is forced into the Word Mode)
by execution of the SIN, SWM, SIA and SIX instructions. The SIN instruction inhibits
Byte Mode operations for the number of succeeding instructions specified by its
associated operand. The SWM, SIA and SIX instructions unconditionally force the
computer into the Word Mode. The format for the Byte Mode memory reference instruc­
tions is shown below in Figure 3-6.

3-8

COMPUTER AUTOMATION,INC. ~

[LABEL] OP CODE [* I@ I, *~lEXPRESSION

No Operator = Direct Address
* = Indirect Addressing (One Level)
@ = Indexed Addressing

*@ = Indirect Post-Indexed Addressing (One Level)

[COMMENTS]

Figure 3-6. Byte Mode Memory Reference Instruction Format

All (16-bit) byte address pointers (BAC directives) consist of fifteen bits of word
address in the most significant 15 bits. The least significant bit (bit 0) specifies
the most significant 8 bits (=0) or the least significant 8 bits (=1) of the word.
Only one level of byte memory reference indirect addressing - specified in the instruc­
tion itself - is possible. Byte operands affecting the register are always right­
justified - i. e. , bytes cannot be loaded into, added to or stored from the most signi­
ficant 8 bits of the A and X registers.

The IMS, MPY, DVD, NRM, JMP and JST instructions are not affected by the Byte
Mode. They always use full 16-bit word operands.

3. 2 . 2 . 1 Byte Mode Direct Addressing

Byte Mode direct addressing allows any byte memory reference instruction to access
the first 256 bytes (128 words) of memory as well as 512 byte locations ahead
(toward high-order memory) of the instruction itself. When direct addressing is
desired, the expression in the operand field should not be preceded by an * or @

character. When the assembler encounters a direct reference to an out of range
byte location, it automatically generates a byte address pointer in the scratchpad
area and references the associated byte location indirectly through the pointer.

3 . 2 . 2 . 2 Byte Mode Indirect Addressing

Byte Mode indirect addressing allows any byte memory reference instruction to
access any byte location through a byte address pointer in the first 256 words of
memory (the base page/scratchpad area) or a byte address pointer in the 511
memory locations about the instruction itself (relative to P). Relative to P forward
indirect addressing allows the byte address pointer to reside in memory locations
as many as 256 words forward (toward higher memory) of the instruction and
relative to P backwards indirect addressing allows the byte address pointer to be
in any memory location 255 words or less prior to the instruction. When indirect
addressing is desired, the expression in the operand field should be preceded by
an asterisk (*). Byte address pointers to be used by indirect byte memory
reference instructions can be defined by the programmer through the use of the
BAC directive. Since a byte address pointer utilizes all 16 bits to specify a given
byte location, indirect byte addressing is limited to one level.

3-9

COMPUTER AUTOMATION,INC. ~

3 . 2 . 2 . 3 Byte Mode Direct Indexed Addressing

Byte Mode direct indexed addressing allows any byte memory reference instruction
to access byte locations by summing the contents of the X register and any base
value in the range 0 through 255. The base value is defined by the expression in
the operand field. When direct indexed addressing is desired, the expression in
the operand field should be preceded by an @ symbol. When the assembler encounters
an expression with a value greater than 255 in the operand field ofa direct indexed
byte memory reference instruction, it automatically generates a byte address pointer
in the scratchpad area and references the associated byte memory location indirect
post-indexed through the byte address pointer.

3. 2.2 . 4 Byte Mode Indirect Post-Indexed Addressing

Byte Mode indirect post-indexed addressing allows any byte memory reference
instruction to access byte locations by summing the contents of the X register and
the contents of a byte address pointer in the base pagel scratchpad area (the first
256 memory locations). When indirect post-indexed byte addressing is desired,
the expression in the operand field should be preceded by an asterisk (*) and an
@ symbol.

Because the Scan Memory (SCM) instruction always uses indirect post-indexed
addressing, the assembler automatically generates the necessary machine code and
does not allow @ or * operators on the associated operand expression. When
performing byte scans, the operand expression for this instruction should reference
a user-defined byte address pointer in the base page.

3.2.2.5 Byte Mode Summary

A summary of Byte Mode addressing, including the associated machine code, is
shown in Figure 3-7.

3. 2 . 3 Arithmetic Memory Reference Instructions

ADD

ADDB

SUB

SUBB

ADD TO A. Adds the contents of the effective memory location to the
A register. OV is set if arithmetic overflow occurs.

ADD BYTE TO A. Adds the contents of the effective byte location to
the A register. OV is set if arithmetic overflow occurs.

SUBTRACT FROM A. Subtracts the contents of the effective memory
location from the A register. OV is set if arithmetic overflow occurs.

SUBTRACT BYTE FROM A. Subtracts the contents of the effective byte
location from the A register. OV is set if arithmetic overflow occurs.

3-10

COMPUTER AUTOMATION, INC. f3!:1
BYTE WORD
AODRESS r--____ .;,;,;;ME;;.;;;M~OR~Y ____ ___. ADDRESS

BYTE OPERAND
(XI + 255 - - - - - - - - - - - - - (X) + 255

-2-
INDEXED: 256 BYTES
(M: 101 Y (BYTEI: (XI + (01
BYTE LOCATIONS (XI·(XI + (01
WORD LOCATIONS (Xln"((XI + (DU/2

BYTE OPERAND

(XI - - - - - - - - - - - - - - - (X1I2

2 ((P) + 1 + 2551 ~ - - - - - - - - - - - - - - - (PI + 1 + 255
RELATIVE TO P, FORWARD: 512 BYTES CD
(M = 01 : BYTEO, M = II : BYTE 11
Y (WORD) = (PI + 1 + (D)
BYTE LOCATIONS 2 ((PI + 11-2 ((P) + 1 + (DU
WORD LOCATIONS (PI + I-(P) + 1 + (D)

ADDRESS POINTER: BYTE

2 ((PI + 11 ~ - - - - - - - - - - - - - - - (P) + 1
CD SCRATCHPAD OR RELATIVE ADDRESSING IS USED TO ADDRESS A FUll WORD ADDRESS

POINTER.
:FF I- - - - - - - - - - - - - - - - : 7F CD IF INDEXING IS NOT REQUIRED, THE ADDRESS POINTER CONTAINS THE EFFECTIVE 16·BIT

BYTE AODRESS.
SCRATCHPAD: 256 BYTES
(M "' 001, Y (BYTEI "' (01
BYTE LOCATIONS 0"255
WORD LOCATIONS ~127

:oo~--------------------~:oo
® IF INDEXING IS REQUIRED, THE BYTE ADDRESS IN THE ADDRESS POINTER IS ADDED TO THE

VALUE IN THE X REGISTER TO FORM THE EFFECTIVE BYTE ADDREss.

Direct Addressing Indirect Addressing

Figure 3-7 . Byte Mode Addressing Summary

3 • 2 • 4 Logical Memory Reference Instructions

AND

ANDB

lOR

IORB

XOR

XORB

AND TO A. Logically AND's the contents of the effective memory location
with the A register.

AND BYTE TO A. Logically AND's the contents of the effective byte
location with the A register. Resets the most significant 8 bits of the
A register to zero.

INCLUSIVE OR TO A. Inclusively OR's the contents of the effective
memory location with the A register.

INCLUSIVE OR BYTE TO A. Inclusively OR's the contents of the
effective byte location with the A register. The most significant 8
bits of the A register are unchanged.

EXCLUSIVE OR TO A. Exclusively OR t s the contents of the effective
memory location with the A register.

EXCLUSIVE OR BYTE TO A. Exclusively OR t s the contents of the
effective byte location with the A register. The most significant
8 bits of the A register are unchanged.

3-11

COMPUTER AUTOMATION,INC. ~

3.2.5 Data Transfer Memory Reference Instructions

EMA

EMAB

LDA

LDAB

LDX

LDXB

STA

STAB

STX

STXB

EXCHANGE MEMORY AND A. Simultaneously stores the A register
in the effective memory location and loads the contents of the effective
memory location into the A register.

EXCHANGE MEMORY BYTE AND A. Simultaneously stores the least
significant 8 bits of the A register into the effective byte location and
loads the contents of the effective byte location into the least signifi­
cant 8 bits of the A register. Resets the most significant 8 bits of
the A register to zero.

LOAD A. Loads the contents of the effective memory location into the
A register.

LOAD A BYTE. Loads the contents of the effective byte location into
the least significant 8 bits of the A register. Resets the most significant
8 bits of the A register to zero.

LOAD X. Loads the contents of the effective memory location into the
X register.

LOAD X BYTE. Loads the contents of the effective byte location into the
least significant 8 bits of the X register. Resets the most signigicant 8
bits of X register to zero.

STORE A. Stores the A register in the effective memory location.

STORE A BYTE. Stores the least significant 8 bits of the A register
in the effective byte location.

STORE X. Stores the X register in the effective memory location.

STORE X BYTE. Stores the least significant 8 bits of the X register
in the effective byte location.

3. 2 .6 Program Transfer Memory Reference Instructions

eMS COMP ARE AND SKIP IF HIGH OR EQUAL. Compares the contents of the
effective memory location with the A register. If the A register is
greater than the contents of the effective memory location, a one-word
skip occurs. If the A register is equal to the contents of the effective
memory location, a two-word skip occurs.

3-12

CMSB

IMS

COMPUTER AUTOMATION,INC. ~

COMP ARE BYTE AND SKIP IF HIGH OR EQUAL. Compares the contents
of the effective byte location with the A register. If the A register
is greater than the contents of the effective byte location, a one-word
skip occurs. If the A register is equal to the contents of the effective
byte location, a two-word skip occurs. All 16 bits of the A register
are compared to the contents of the effective byte location, so the most
significant 8 bits of A register should be zeros.

INCREMENT IVIEMORY AND SKIP ON ZERO RESULT. Contents of the
effective memory location are incremented by one. If the increment
causes the result to become zero, a one-word skip occurs. OV is set
if arithmetic overflow occurs.

NOTE

IMS is often used as an interrupt instruction
(See Sec. 4.3).

JMP JUMP UNCONDITIONAL. The P counter is loaded with the value of the
effective memory location, causing an unconditional branch to that
address.

JST JUMP AND STORE. The contents of the P counter are stored in the
effective memory location and the P counter is then loaded with the
effective memory location plus one.

NOTE

JST is often used as an interrupt instruction
(See Sec. 4.3).

SCM SCAN MEMORY. Compares the A register with area of memory defined
by the Address Pointer in Scratchpad (Base Address of Buffer - 1) and
the contents of the X register (Buffer Length). If a match is found. the
Scan is terminated and the next instruction in sequence is executed.
The X register is decremented once for each word scanned. When a
match is found, the X register contains the number of words remaining
to be scanned. The remainder of the buffer can be scanned simply by
executing the SCN instruction again. If a match is not found by the
time X reaches zero, a one place skip occurs and the instruction
terminates. This instruction operates under both Word and Byte modes,
the Address Pointer in Scratchpad should be constructed accordingly
(DATA or BAC, respectively - See Sec. 3.10).

NOTE

This instruction is interruptable. Upon completion of
interrupt processing, SCM resumes operation at the
point where the interrupt occured.

3-13

COMPUTER AUTOMATION, INC. ~

3.3 DOUBLE-WORD MEMORY REFERENCE INSTRUCTIONS

3.3.1 Format

The Double-Word Memory Reference instructions require two consecutive words of mem­
ory and allow direct and indirect addressing. Indexed addressing is not allowed and is,
in fact, not useful, since these instructions manipUlate both the A and X registers. The
format for Double-Word Memory Reference instructions is shown in Figure 3-8.

[LABELJ OP-CODE [*J EXPRESSION 1 GEXPRESSION 2J [COMMENTS]

No Operator = Direct Address
* = Indirect Addressing (multi -level)
EXPRESSION 1: any absolute or relative expression defining the

effective memory location.
EXPRESSION 2: an optional instruction count in the range 1 through

16 for DVD and MPY and 1 through 31 for NRM.

Figure 3-8. Double Word Memory Reference Format

3 . 3 . 2 Instructions

DVD DIVIDE. Divides the contents of the A and X registers by the contents of
the memory location addressed by the second word of the instruction
(Expression 1). This address pointer may be direct or indirect.

Prior to execution of the instruction, the A and X registers contain the
signed 30 bit dividend (as shown in Figure 3-9) , and the addressed
memory location contains the signed full-word divisor. Both dividend
and divisor must be positive.

The quotient is returned in the X register (sign,plus 15 bits) and the
remainder in the A register (sign plus 15 bits). OV is set if a divide
fault occurs (divisor ~ Most Significant Half (MSH) of the dividend) ,
or else is returned in the same state as entered.

A full divide is performed if no instruction count (Expression 2) is
specified. Partial divides are executed according to the specified
instruction count.

3-14

COMPUTER AUTOMATION. INC. ~

A X

1
0 IDiVidend (MSH) I I

Dividend (LSH)
1

0
1

15 14 0 15 1 0

a. Registers Prior to DVD .

A x

1 ~ S I_Rem_aind_er ~I 1 S 1
15 14 0 15 14

Quotient
1
o

b. Registers after DVD

Figure 3-9. Divide

MPY MULTIPLY AND ADD. Multiplies the contents of the X register by the
contents of the memory location addressed by the second word of the
instruction (Expression 2) and adds the contents of the A register to
the product. The address pointer may be direct or indirect.

Prior to execution of the MPY instruction, the X register contains the
signed full-word multiplicand, the addressed memory location contains
the signed full-word multiplier, and the A-register contains the signed
"offset" to be added. (Refer to Figure 3-10.) Multiplicand
and offset must all be positive or zero.

The result is returned in the A and X registers (sign plus 30 bits). A
full multiply and add is performed if no instruction count (Expression 2)
is specified. Partial multiplication is executed according to the specified
instruction count.

In all cases OV will be reset (=0) at completion of a full multiply.

3-15

COMPUTER AUTOMATION. INC. ~

A X

S Offset I S Multiplicand I
15 14 0 15 14 0

a. Registers Prior to MPY.

A X

S I Result (MSH) I I Result (LSH) I 0 I
15 14 0 15 1 0

b. Registers After MPY.

Figure 3-10. Multiply and Add

NRM NORMALIZE A AND X. Contents of A and X registers are arithmetically
shifted left (see Figure 3-11) until A15 is not equal to A14 or until the
maximum shift count specified (Expression 2) is reached. The exponent,
addressed by the second word of the instruction (Expression 1) , is decre­
mented once for each shift. The address of the exponent may be direct or
indirect.

The NRM instruction treats the A and X register as a combined 31-bit plus
sign register.

OV is reset (=0) if normaliz~tion occurs, otherwise it is returned unaltered
In either case, the exponent will be decremented once for each shift per­
formed.

A full 31-bit normalize is performed if no instruction count (Expression 2)
is specified. Otherwise, the specified count will determine the maximum
shifts performed.

A x

Q)r --"1-0

o o 15

(LOST)
Figure 3-11. NRM Shift Path

3-16

COMPUTER AUTOMATION, INC. §]1

3.4 IMMEDIATE INSTRUCTIONS

3.4.1 Format

Immediate instructions are similar. to Memory Reference instructions in that they per­
form logical and arithmetic operations involving memory data and operating registers.
The memory data, however, is stored within the immediate instruction itself rather
than in a separate operand word or byte. The operands of the instructions may be any
absolute expression which is within the range 0 - : FF (i. e. , any absolute expression
which fits into eight bits). The Immediate Instruction format is shown in Figure 3-12.

[L~BELJ OP-CODE EXPRESSION [COMMENTS]

EXPRESSION: must be absolute and in the range: 0 through: FF

Figure 3-12. Immediate Instruction Format

3 . 4. 2 Instructions

AXI ADD TO X IMMEDIATE. The operand is added to the contents of the X
register. OV is set if arithmetic overflow occurs.

CAl COMPARE TO A IMMEDIATE. The operand is compared to the least
significant 8 bits of the A register. If unequal, a skip of one place
occurs. If equal, the next instruction in sequence is executed. The
contents of A are not disturbed. The most significant 8 bits of A do
not take part in the comparison.

CXI COMPARE TO X IMMEDIATE. The operand is compared to the least
significant 8 bits of the X register .If unequal, a skip of one place
occurs. If equal, the next instruction in sequence is executed. The
contents of X are not disturbed. The most significant 8 bits of X
do not take part in the comparison.

LAM LOAD A MINUS IMMEDIATE. The operand is negated (two's comple­
mented) and loaded as a 16-bit word into the A register.

LAP LOAD A POSITIVE IMMEDIATE. The operand is loaded into the least
significant 8 bits of the A register. The most significant 8 bits of A
are set to zero.

LXM LOAD X MINUS IMMEDIATE. The operand is negated (two's comple­
mented) and loaded as a 16-bit word into the X register.

3-17

COMPUTER AUTOMATION,INC. ~

LXP LOAD X POSITIVE IMMEDIATE. The operand is loaded into the least
significant 8 bits of the X register. The most significant 8 bits of X
are set to zero.

SXI SUBTRACT FROM X IMMEDIATE. The operand is negated (two's
complemented) and added as a 16-bit word to the X register. OV
is set if arithmetic overflow occurs.

3.5 CONDITIONAL JUMP INSTRUCTIONS

3.5. 1 Format

Conditional Jump instructions test conditions within the computer and perform program
branches depending on the results of the test. A Jump occurs if the specified condi­
tions are satisfied. All branches are direct and relative to the P register (location
of the Conditional Jump instruction). The range of Conditional Jumps is:

Forward Jumps:
Backward Jumps:

3.5.2 Microcoding

P+ 1 through P+64
P through P- 63

A general code, JOC, for Jump On Condition, is provided so the programmer can
microcode jump conditions. There are five different conditions which may be tested
either individually or in combination:

1. Sign of A (positive or negative)
2. Contents of A (zero or not zero)
3. Contents of X (zero or not zero)
4. Overflow Indicator (Set or Reset)
5. SENSE Indicator (on or off)

The conditions may be tested individually or in combination. Figure 3-13 shows the
format for the JOC instruction:

[LABEL] JOC EXPRESSION 1, EXPRESSION 2 [COMMENTS]

EXPRESSION 1: must be absolute and in the range: 0 through: 3F
EXPRESSION 2: must represent a location with -63 through +64

computer words.

Figure 3-13. JOC Jump On Condition Format

3-18

COMPUTER AUTOMATION, INC. f3]1

JOC commands consist of two groups. The AND group and the OR group. The AND
test group requires that all of the test conditions specified by bits 0 thru 4 of Expression
1 be true for the jump to take place. The OR group requires that anyone or more
of the test conditions specified be true if the jump is to take place. Expression 1
consists of 6 bits as defined by Figure 3-14. Bit 5 specifies which test group is used.
Bits 0 thru 4 specify inclusion of a specific test condition if set equal to 1. If equal
to 0, the associated test condition is not examined.

JOC :XX,ADR

B5 = 1 for AND test group
B5 = 0 for OR test group

AND GROUP

B4 = 1 XfO
B3 = 1 SENSE on
B2 = 1 OV reset
B, = 1 A#O
Bo = 1 A positive

OR GROUP

X=O
SENSE off
OV set (resets OV)
A=O
A negative

Figure 3-14. JOC Microcode Bit Functions

The following Conditional Jump instructions are special cases of the general JOe
instruction. Since they are more often utilized than the other conditional jumps, they
have been given their own mnemonics. Figure 3-15 illustrates the general format for
the Conditional Jump instructions.

[LABEL lOP-CODE EXPRESSION [COMMENTS]

EXPRESSION: must represent a location within -63 through +64
computer words.

Figure 3-15. Conditional Jump Format

3-19

COMPUTER AUTOMATlON,INC. ~

3.5.3 Arithmetic Conditional Jump Instructions

JAG JUMP IF A GREATER THAN ZERO. Jump occurs if the A register is
greater than zero.

JAL JUMP IF A LESS THAN ONE. Jump occurs if the A register is less
than or equal to zero.

JAM JUMP IF A MINUS. Jump occurs if the A register is less than zero
(A15= 1) .

JAN JUMP IF A NOT ZERO. Jump occurs if the A register is not zero.

JAP JUMP IF A POSITIVE. Jump occurs if the A register is greater than
or equal to zero (A15 = 0) .

JAZ JUMP IF A ZERO. Jump occurs if the A register is zero.

JXN JUMP IF X NOT ZERO. Jump occurs if the X register is not zero.

JXZ JUMP IF X ZERO. Jump occurs if the X register is zero.

3. 5.4 Control Conditional Jump Instructions

JOR JUMP IF OVERFLOW RESET. Jump occurs if the OV equals zero.

JOS JUMP IF OVERFLOW SET. Jump occurs if OV equals one. OV is
reset to zero during jump.

JSR JUMP IF SENSE INDICATOR RESET. Jump occurs if the SENSE Indicator
is off.

JSS JUMP IF SENSE INDICATOR SET. Jump occurs if the SENSE Indicator is
on.

3-20

COMPUTER AUTOMATION,INC. ~

3.6 SHIFT INSTRUCTIONS

3 . 6 . 1 Operand Restrictions and Instruction Format

Shift instructions move bit patterns in the computer registers either right or left.
Shifts may involve a single register (A or X) , a single register and the overflow (OV)
register, or both the A and X registers and the OV indicator. The Processor provides
logical, arithmetic and rotate shifts. The operands (n) for single register and double
register instructions can be any absolute value from 1 through 8 and 16, respectively.
The single register shift instruction format is shown in Figure 3-16 and the instruction
format for double register (long) shifts is shown in Figure 3-17.

[LABEL] OP-CODE EXPRESSION [COMMENTS]
EXPRESSION: must be absolute and in the range 1 through 8.

Figure 3-16. Single Register Shift Format

[LABEL] OP-CODE EXPRESSION [COMMENTS]
EXPRESSION: must be absolute and in the range 1 through 16.

Figure 3-17. Double Register (Long) Shift Format

3.6.2 Arithmetic Shift Instructions

The shift paths for the arithmetic shift instructions are illustrated below in
Figure 3-18 and Figure 3-19.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G I_-:::~~~~~~~~~·_D_A_TA_ -_ -_ -_ -_ -_ -_ -_ -_-_ -_ -_ -_ -_ -_ -1...,1

A OR X REGISTER

Figure 3-18. Arithmetic Right Shift

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G;E-...... _-_-_-_-_-_DA_TA~·~~~~~~~~.:I 0

A OR X REGISTER

Figure 3-19. Arithmetic Left Shift

3-21

ALA

ALX

ARA

ARX

3.6.3

COMPUTER AUTOMATION. INC. f3]:1

ARITHMETIC SHIFT A LEFT. Contents of A Register (bits 0-14) are
shifted left n places. The sign bit (bit 15) is unchanged. Zeros are
shifted into bit 0 and bits shifted out of bit 14 are lost.

ARITHMETIC SHIFT X LEFT. Contents of X Register (bits 0-14) are
shifted left n places. The sign bit (bit 15) is unchanged. Zeros are
shifted into. bit 0 and bits shifted out of bit 14 are lost.

ARITHMETIC SHIFT A RIGHT. Contents of A Register are shifted right
n places. The sign bit (bit 15) is unchanged and is shifted into and
propagated through bit 14. Bits shifted out of bit 0 are lost.

ARITHMETIC SHIFT X RIGHT. Contents of X Register are shifted right
n places. The sign bit (bit 15) is unchanged and is shifted into and
propagated through bit 14. Bits shifted out of bit 0 are lost.

Logical Shift Instructions

The shift paths for the logical shift instructions are illustrated below in Figure 3-20
and Figure 3-21.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0t-------~, DATA -----~ I n_ ~ ____ =ru
A OR X REGISTER OV

Figure 3-20. Logical Right Shift

15 14 13 12 11 10 9 8 7 6 Ii 4 3 2 1 0

OV A OR X REGISTER

Figure 3- 21 . Logical Left Shift

LLA LOGI CAL SHIFT A LEFT. Contents of A Register are shifted left n
places through OV. Zeros are shifted into bit O. Bits are shifted
from bit 15 of A into OV. Bits shifted out of OV are lost. A and OV
act as a 1 7 - bit register.

LLX LOGICAL SHIFT X LEFT. Contents of X Register are shifted left n
places through OV. Zeros are shifted into bit O. Bits are shifted
from bit 15 of X into OV. Bits shifted out of OV are lost. X and OV
act as a 1 7-bit register.

3-22

COMPUTER AUTOMATION,INC. ~

LRA LOGICAL SHIFT A RIGHT. Contents of A Register are shifted right n
places through OV. Zeros are shifted into bit 15. Bits are shifted
from bit 0 of A into OV. Bits shifted out of OV are lost. A and OV act
as a 17-bit register.

LRX LOGICAL SHIFT X RIGHT. Contents of X Register are shifted right n
places through OV. Zeros are shifted into bit 15. Bits are shifted
from bit 0 of A into OV. Bits shifted out of OV are lost. X and OV act
as a 17-bit register.

3.6.4 Rotate Shift Instructions

The shift paths for the rotate shift instructions are illustrated below in Figure 3-22
and Figure 3-23.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

'---------- DATA -------...

A OR X REGISTER OV

Figure 3-2 2 . Rotate Right

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o·

~----- DATA •• ------~

OV A OR X REGISTER

Figure 3-23. Rotate Left

RLA ROTATE A LEFT WITH OVERFLOW. Contents of A Register are shifted
left n places through OV. OV is shifted into bit 0 and bit 15 is shifted
into OV. No bits are lost when this shift is executed. A and OV act as
a 17-bit register.

RLX ROTATE X LEFT WITH OVERFLOW. Contents of X Register are shifted
left n places through OV. OV is shifted into bit 0 and bit 15 is shifted
into OV. No bits are lost when this shift is executed. X and OV act as
a 17-bit register.

RRA ROTATE A RIGHT WITH OVERFLOW. Contents of A Register are shifted
right n places through OV. OV is shifted into bit 15 and bit 0 is shifted
into OV. No bits are lost when this shift is executed. A and OV act as
a 17-bit register.

RRX ROTATE X RIGHT WITH OVERFLOW. Contents of X Register are shifted
right n places through OV. OV is shifted into bit 15 and bit 0 is shifted
into OV. No bits are lost when this shift is executed. X and OV act as
a 17-bit register.

3-23

COMPUTER AUTOMATlON,INC. ~

3.6.5 Double Register (Long) Rotate Shift Instructions

The shift paths for the Long Logical Shift instructions are shown below in Figures
3-24 and 3-25.

15 14 13 12 " 10 \I 8 7 8 5 4 3 2 1 0 15 14 13 12 I I 10 9 8 7 6 5 4 3 2 1 0

BE -.. ------ DATA ... -------.f----f~=__~-_-_-_ _:.._:..-_ _:.._:..-_ _:.._:.DA __ TA---.. ========~~~~=-::tl 0

ov A X

Figure 3-24. Long Left Shift

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

O~I-=--=--=--=--=--=-=======::'_D_AT_A_ -_ -_ -_ -_-_-_-_-_-:.::::~-4--------. DATA ----- ---'1-8-
A x

Figure 3- 25. Long Right Shift

LLL LONG LOGICAL SHIFT LEFT. Contents of A and X Registers are
logically shifted left through OV n places. For each bit position
shifted, zero is shifted into Xo ' X'5 is shifted into Au and A'5 is
shifted into OV. The previous contents of OV are lost. A, X and
OV act as a 33-bit register.

LLR LONG LOGICAL SHIFT RIGHT. Contents of A and X Registers are
logically shifted right through OV n places. For each bit position
shifted, zero is shifted in A,5 ' Ao is shifted into X15 and Xo is shifted
into OV. The previous contents of OV are lost. A, X and OV act
as a 33-bit register.

3.6.6 Double Register (Long) Shift Instructions

Shift paths for the Long Rotate Shift instructions are shown below in Figures 3-26
and 3-27.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0

L..-..------DATA ----_ ----1--+-----------.. DATA ----- --~

ov

A x ov

Figure 3-26. Long Rotate Right

12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

..... ----- DATA --------4--4_- _----- DATA _--------t--'
ov A x

Figure 3-27. Long Rotate Left

3-24

COMPUTER AUTOMATION. INC. ~

LRL LONG ROTATE LEFT. Contents of A and X Registers are shifted left
through OV n places. OV is shifted into Xc> ' ~5 is shifted in~o Ao and
A15 is shifted into OV. No bits are lost when this shift is executed.
A, X and OV act as a 33-bit register.

LRR LONG ROTATE RIGHT. Contents of A and X Registers are shifted
right through OV n places. OV is shifted into A1S ' Ao is shifted
into x's and Xo is shifted into OV. No bits are lost when this shift
is executed. A, X and OV act as a 33-bit register.

3.7 REGISTER CHANGE INSTRUCTIONS

3 . 7 . 1 Format

Register change instructions perform arithmetic and logical operations involving the
A register, the X register and/ or the overflow (OV) indicator. There are no operands
in this class. The Register Change Instruction format is shown in Figure 3-28.

[LABEL] OP-CODE [COMMENTS]

There is no expression in the operand field.

Figure -3-28. Register Change Format

3 . 7 . 2 A Register Change Instructions

ARM A REGISTER TO MINUS ONE. Sets the A register to -1 (: FFFF) .

ARP A REGISTER TO PLUS ONE. Sets the A register to +1.

CAR COMPLEMENT A REGISTER. Performs one's complement of the A
register.

DAR DECREMENT A REGISTER. Subtracts one from the A register. OV
is set if arithmetic overflow occurs.

IAR INCREMENT A REGISTER. Adds one to the A register. OV is set if
arithmetic overflow occurs.

NAR NEGATE A REGISTER. Performs two's complement of the A register.
OV is set if arithmetic overflow occurs.

ZAR ZERO A REGISTER. Sets the A register to zero.

3-25

COMPUTER AUTOMATION. INC. f3!:1

3. 7 . 3 X Register Change Instructions

CXR COMPLEMENT X REGISTER. Performs one's complement of the X
register.

DXR DECREMENT X REGISTER. Subtracts one from the X register. OV
is set if arithmetic overflow occurs.

IXR INCREMENT X REGISTER. Adds one to the X register. OV is set if
arithmetic overflow occurs.

NXR NEGATE X REGISTER. Performs two's complement of the X register.
OV is set if arithmetic overflow occurs.

XRM X REGISTER TO MINUS ONE. Sets the X register to -1 (: FFFF) .

XRP X REGISTER TO PLUS ONE. Sets the X register to +1.

ZXR ZERO X REGISTER. Sets the X register to zero.

3. 7 . 4 OV Register Change Instructions

COY COMPLEMENT OVERFLOW. Complements OV .

LAO LSB OF A TO OVERFLOW. Bit 0 of the A register is copied into OV .
The A register is unchanged.

LXO LSB OF X TO OVERFLOW. Bit 0 of the X register is copied into OV .
The X register is unchanged.

ROV RESET OVERFLOW. Resets OV (to zero) .

SAO SIGN OF A TO OVERFLOW. Bit 15 of the A register is copied into OV .
The A register is unchanged.

SOV SET OVERFLOW. Sets OV (to one) .

SXO SIGN OF X TO OVERFLOW. Bit 15 of the X register is copied into OV .
The X register is unchanged.

3.7. 5 Multi - Register Change Instructions

ANA AND OF A AND X TO A. The A and X registers are logically ANDed;
resul t is placed in A. The X register is unchanged.

ANX AND OF A AND X TO X. The A and X registers are logically ANDed;
result is placed in X. The A register is unchanged.

3-26

COMPUTER AUTOMATlON,INC. ~

AXM A AND X REGISTERS TO MINUS ONE. Sets the A and X registers to
-1 (: FFFF) .

AXP A AND X REGISTERS TO PLUS ONE. Sets the A and X registers to +1.

CAX COMPLEMENT OF A TO X. Performs one's complement of A register and
places result in the X register. The A register is unchanged.

CXA COMPLEMENT OF X TO A. Performs one's complement of the X register
and places result in the A register. The X register is unchanged.

DAX DECREMENT A TO X. Subtracts one from the A register and places the
result in X. The A register is unchanged. OV is set if arithmetic
overflow occurs.

DXA DECREMENT X TO A. Subtracts one from the X register and places
the result in A. The X register is unchanged. OV is set if arithmetic
overflow occurs.

lAX INCREMENT A TO X. Adds one to the A register and places the result
in X. The A register is unchanged. OV is set if arithmetic overflow
occurs.

IXA INCREMENT X TO A. Adds one to the X register and places the result
in A. The X register is unchanged. OV is set if arithmetic overflow
occurs.

NAX NEGATE A TO X. Performs two's complement of the A register and
places the result in X. The A register is unchanged. OV is set if
arithmetic overflow occurs.

NRA NOR OF A AND X TO A. Performs logical NOR of the A and X registers
and places the result in A. The X register is unchanged.

NRX NOR OF A AND X TO X. Performs logical NOR of the A and X registers
and places the result in X. The A register is unchanged.

NXA NEGATE X TOA. Performs two's complement of the X register and
places the result in A. Th X register is unchanged. OV is set if
arithmetic overflow occurs.

TAX TRANSFER A TO X. Transfers the A register to the X register. The
A register is unchanged.

TXA TRANSFER X TO A. Transfers the X register to the A register. The
X register is unchanged.

ZAX ZERO A AND X. Sets the A and X registers to zero.

3-27

COMPUTER AUTOMATION,INC. ~

3 . 7 . 6 Console Register Instructions

ICA INPUT CONSOLE DATA REGISTER TO A. Loads the 16-bit contents of
the Console Data register into the A register.

ICX INPUT CONSOLE DATA REGISTER TO X. Loads the 16-bit contents of
the Console Data register into the X register.

ISA INPUT CONSOLE SENSE REGISTER TO A. Loads the 4-bit contents of
the Console Sense register into the least significant 4 bits of the A
register. The most significant 12 bits of the A register are set to zero.

ISX INPUT CONSOLE SENSE REGISTER TO X. Loads the 4-bit contents of
the Console Sense register into the least significant 4 bits of the X
register. The most significant 12 bits of the X register are set to zero.

OCA OUTPUT A TO CONSOLE DATA REGISTER. Transfers the A register to
the 16-bit Console Data register. The A register is unchanged.

OCX OUTPUT X TO CONSOLE DATA REGISTER. Transfers the X register to
the 16-bit Console Data register. The X register is unchanged.

3.8 CONTROL INSTRUCTIONS

3. 8. 1 Format

Control instructions are used for general status manipulation in the computer. The
general format for these instructions is shown in Figure 3-29. .

[LABEL] OP-CODE [EXPRESSION] [COMMENTS]

There is no expression in the operand field, except for the SIN and STOP
instructions.
For SIN, the expression must be absolute and in the range 1 through 6.
For STOP, the expression must be absolute and in the range 1 through 255.

Figure 3- 29. Control Format

3-28

COMPUTER AUTOMATION. INC. f3!:1
3 . 8 . 2 Processor Control Instructions

HLT

NOP

STOP

WAIT

HALT. Halts the computer

NO OPERATION. Causes a pause in the program

HALT WITH OPERAND. Halts the computer with the specified operand
occupying the least significant 8 bits of the I (instruction) register.
The operand may be any absolute expression in the range 0 through
255. As an example, STOP 5 would halt with: 0805 in the I register.

WAIT FOR INTERRUPT. Executes as JMP $. Program loops on one loca­
tion waiting for an interrupt. After the interrupt is serviced, the
return is made to the WAIT instruction to wait for further interrupts.

3 . 8 . 3 Mode Control Instructions

SBM SET BYTE MODE. Conditions the computer to address byte (8 bit)
operands rather than word operands when executing Memory Reference
instructions (see Sec. 3. 2 . 2) .

SWM SET WORD MODE. Conditions the computer to address word (16 bit)
operands rather than byte operands when executing Memory Reference
instructions (see Sec. 3.2.1). The "reset" condition of the computer
is the Word Mode.

3. 8.4 Status Control Instructions

The format of the 8-bit Computer Status Word is shown in Figure 3-30:
7

SENSE
SENSi REGISTER INDICATOR INTERRUPTS

3 211 0

\
~

\
, ,

All zeros if no console installed. 1 = Enabled
o = Disabled

...
~ ,

1 = SENSE Indicator on
o = SENSE Indicator off

Figure 3-30. Computer Status Word Format

o

ADR
MODE OV

... , ,
1 = OV Set
0= OV Rese t

1 = Byte
0= Word

COMPUTER AUTOMATION, INC. ~

SIA STATUS INPUT TO A. Reads the Computer Status Word into the least
significant 8 bits of the A register. Resets OV and sets the Address
Mode to the Word Mode. The state of interrupts is unchanged. The
most significant 8 bits of the A register are set to zero.

SIN STATUS INHIBIT. Inhibits interrupts and places the computer in the
Word Mode for the number of succeeding instructions specified by the
operand. The operand may be any absolute expression in the range
1 through 6. As an example, execution of the SIN 4 instruction will
force Word Mode operation for the four succeeding instructions and
will inhibit interrupt acknowledgement until after completion of five
succeeding instructions since interrupts are serviced at the end of
instruction execution.

SIX STATUS INPUT TO X. Reads the Computer Status Word into the least
significant 8 bits of the X register. Resets OV and sets the Address
Mode to the Word Mode. The state of interrupts is unchanged. The
most significant 8 bits of the X register are set to zero.

SOA STATUS OUTPUT FROM A. Writes the least significant 8 bits of the A
register into the computer status register. However, this instruction
does not alter the interrupt indicator.

SOX STATUS OUTPUT FROM X. Writes the least significant 8 bits of the X
register into the computer status register. However, this instruction
does not alter the interrupt indicator.

3 . 8 . 5 Interrupt Control Instructions

CID CONSOLE INTERRUPT DISABLE. Disables the Console interrupt.

CIE CONSOLE INTERRUPT ENABLE. Enables the Console interrupt. Console
interrupts are generated each time the INT switch is pressed when the
computer is in the Run mode. Console interrupts are also under the
control of the EIN /DIN instructions. A special jumper option on the pro­
cessor option card allows the console interrupt to be enabled indepen­
dent of the EIN /DIN instructions.

DIN DISABLE INTERRUPTS. Prevents the Processor from responding to
any interrupts. A special jumper option on the processor option card
allows Power Fail, Console and Trap interrupt operation independent
of DIN.

EIN ENABLE INTERRUPTS. Enables the recognition of external interrupts
by the computer. This instruction does not take effect until completion
of the next instruction in sequence.

3-30

COMPUTER AUTOMATlON,INC. ~

PFD POWER FAIL INTERRUPT DISABLE. When the option placing Power Fail
Interrupts outside EIN and DIN control is selected, the Power Fail Inter­
rupt Disable (PFD) instruction inhibits recognition of Power Fail in­
terrupts.

PFE POWER FAIL INTERRUPT ENABLE. When the option placing Power
Fail Interrupt outside EIN and DIN control is selected, the Power Fail
Interrupt Enable (PFE) instruction allows recognition of Power Fail
interrupts. If Power Fail interrupts were disabled at the issuance
of PFE, the PFE does not take effect until after two succeeding in­
structions have been executed.

TRP TRAP. Generates an interrupt to the Console interrupt location
if interrupts are enabled or if the special jumper option placing Power
Fail, Console and Trap interrupts outside EIN /DIN control is in use.
In the latter cElse, there is no enable or disable instruction associated
with the trap interrupt.

3.9 INPUT/OUTPUT INSTRUCTIONS

Input/Output instructions are either single word or multiple word instructions. All
single word instructions use the same format, illustrated in Figure 3-31. Multiple
word formats are described separately in Sections 3.9.4 and 3.9.5. All Input/Output
instructions have 8 bits available for addressing a particular peripheral device and a
particular register or function within a device. These 8 bits are arbitrarily divided
into a 5 bit Device Address field to address one of 32 devices and a 3 bit Function
Code field to specify one of 8 registers or functions within a device. The device
address and function code may be expressed as either one or two self-defined (i. e. ,
numeric expressions) or predefined absolute expressions. If a single expression
is used, it must be in the range : 0 through : FF and it represents both the device
address and function code. If two expressions are used, the first must be the device
address in the range: 0 through: 1F and the second must be the function code in
the range : 0 through : 7 .

[LABEL] OP CODE EXPRESSION 1 [,EXPRESSION 2][COMMENTS]

If EXPRESSION 2 is not present, EXPRESSION 1 must be absolute
and in the range : 0 through : FF .
If EXPRESSION 2 is present, EXPRESSION 1 must be absolute and
in the range: 0 through: 1F.
EXPRESSION 2 must be absolute and in the range: 0 through: 7 .

Figure 3-31. Single Word Input/Output Instruction Format

3-31

COMPUTER AUTOMATION,INC. ~

Both Word and Byte Input/Output instructions are available. Whether a full 16-bit word
or an 8-bit byte is transferred depends upon the instruction used and is not effected
by the word/byte addressing mode flip-flop (SWM/SBM) used by Memory Reference
Instructions.

3. 9. 1 Control Input/Output. Instructions

The Control Input/Output instructions are divided into Sense and Select instructions.
Sense instructions are used to test the status of a function within the addressed peri­
pheral device. Select instructions are used to control the operation of specific functions
within the addressed peripheral device. The functions tested or controlled depend upon
the individual peripheral device. Control Input/Output instructions use the Single Word
Input/Output format as shown in Figure 3-31.

3. 9 . 1 . 1 Sense Instructions

SEN SENSE AND SKIP ON RESPONSE. Tests the specified function in the
specified peripheral device. If a true response is obtained, a one­
word skip is generated. If a false response is obtained, the next
instruction in sequence is executed.

SSN SENSE AND SKIP ON NO RESPONSE. Tests the specified function in
the specified peripheral device. If a false response is obtained, a
one-word skip is generated. If a true response is obtained, the next
instruction in sequence is executed.

3 . 9 . 1 . 2 S elect Instructions

SEL SELECT FUNCTION. Transmits the specified function code to the
specified peripheral device along with a Select Control signal. All
zeros are placed on the Data bus. Any action generated is a function
of the interface design of the peripheral device.

SEA SELECT AND PRESENT A. Transmits the specified function code to
the specified peripheral device along with a Select Control signal.
The contents of the A register are placed on the Data bus. Any
action generated is a function of the interface design of the peripheral
device.

SEX SELECT AND PRESENT X. Transmits the specified function code to
the specified peripheral device along with a Select Control signal.
The contents of the X register are placed on the Data bus. Any
action generated is a function of the interface design of the peripheral
device.

3-32

COMPUTER AUTOMATION,INC. ~

3.9.2 Word Input/Output Instructions

Word Input/Output instructions transmit 16 bits of data at a time. They are divided
into Unconditional and Conditional instructions. Conditional instructions are auto­
matically repeated until a true sense response is obtained, at which time the data
transmission occurs and the next instruction in sequence is executed. Response to an
interrupt may occur "within" a conditional input/output instruction - i. e. , during a
false sense response an interrupt can be acknowledged and the computer will return to
execution of the conditional input/output instruction after servicing the interrupt. If
a word input is requested from an 8-bit device, the upper 8 bits will be input as zeros.
If an output is performed to an 8-bit device the upper 8 bits will be ignored by the
device.

3.9.2.1 Unconditional Word Input/Output Instructions

INA INPUT TO A REGISTER. Unconditionally transfers a full 16-bit data word
from the· addressed peripheral device to the A register.

INAM INPUT TO A REGISTER MASKED. Unconditionally transfers a full 16-bit
data word from the addressed peripheral device to the A register. The
data word is logically ANDed with the previous contents of the A register.
The results are placed in the A register.

INX INPUT TO X REGISTER. Unconditionally transfers a full 16-bit data word
from the addressed peripheral device to the X register.

INXM INPUT TO X REGISTER MASKED. Unconditionally transfers a full 16-bit
data word from the addressed peripheral device to the X register. The
data word is logically ANDed with the previous contents of the X register.
The results are placed in the X register.

OTA OUTPUT A REGISTER. Unconditionally transfers the fulll6-bit contents
of the A register to the addressed peripheral device.

OTX OUTPUT X REGISTER. Unconditionally transfers the full 16-bit contents
of the X register to the addressed peripheral device.

OTZ OUTPUT ZERO. Unconditionally transfers a 16-bit zero word to the
addressed peripheral device.

3-33

COWUtER AUTOMATION. INC. ~

3.9.2.2 Conditional Word Input/Output Instructions

RDA READ WORD TO A REGISTER. Senses the specified data source in the
addressed peripheral device. If a false response is received, the instruc­
tion is repeated (and interrupts may be acknowledged). When a true
response is received, a full 16-bit data word is transferred to the A
register.

RDAM READ WORD TO A REGISTER MASKED. Senses the specified data source
in the addressed peripheral device. If a false response is received, the
instruction is repeated (and interrupts may be acknowledged). When a
true response is received, a full 16-bit data word is transferred to the
A register and logically ANDed with the previous contents of the A
register. The results are placed in the A register.

RDX READ WORD TO X REGISTER. Senses the specified data source in the
addressed peripheral device. If a false response is received, the instruc­
tion is repeated (and interrupts may be acknowledged). When a true
response is received, a full 16-bit data word is transferred to the X
register.

RDXM READ WORD TO X REGISTER MASKED. Senses the specified data
source in the addressed peripheral device. If a false response is
received, the instruction is repeated (and interrupts may be
acknowledged). When a true response is received, a full 16-bit
word is transferred to the X register and logically ANDed with the
previous contents of the X register. The results are placed in the
X register.

WRA WRITE FROM A REGISTER. Senses the specified condition in the
addressed peripheral device. If a false response is received, the
instruction is repeated (and interrupts may be acknowledged) .
When a true response is received, the full 16-bit contents of the A
register are transferred to the addressed peripheral device.

WRX WRITE FROM X REGISTER. Senses the specified condition in the
addressed peripheral device. If a false response is received, the
instruction is repeated (and interrupts may be acknowledged).
When a true response is received, the full 16-bit contents of the X
register are transferred to the addressed peripheral device.

WRZ WRITE ZERO. Senses the specified condition in the addressed
peripheral device. If a false response is received, the instruction
is repeated (and interrupts may be acknowledged). When a true
response is received, a 16-bit zero word is transferred to the
addressed peripheral device.

3-34

COMPUTER AUTOMATION. INC. ~

3. 9 . 3 Byte Input Instructions

Byte Input instructions input 8 bits of data to the 1eastsignificant byte of a target
register leaving the MSB byte unchanged. They are divided into Unconditional and
Conditional instructions. Conditional instructions are automatically repeated until
true sense responses are obtained, at which. time the data transmission· occurs and
the next instruction in sequence is executed. Response to an interrupt may occur
"within" a conditional input/output instruction - i.e., during a false sense response
an interrupt can be acknowledged and the computer will return to execution of the
conditional instruction after servicing the interrupt. Byte Input instructions use
the Single Word· Input/Output Instruction format as shown in Figure 3-31.

3.9.3.1 Unconditional Byte Input Instructions

IBA INPUT BYTE TO A REGISTER. Unconditionally transfers an 8-bit byte
from the addressed peripheral device to the least significant 8 bits of
the A register. The most significant 8 bits of the A register are unchanged.

IBAM INPUT BYTE TO A REGISTER MASKED. Unconditionally transfers an
8-bit byte from the addressed peripheral device to the least significant
8 bits of the A register. The data byte is logically ANDed with the
previous contents of the least significant 8 bits of the A register. The
results are placed in the least significant 8 bits of the A register and
the most significant 8 bits of the A register are unchanged.

IBX INPUT BYTE TO X REGISTER. Unconditionally transfers an 8-bit byte
from the addressed peripheral device to the least significant 8 bits of
the X register. The most significant 8 bits of the X register are
unchanged.

IBXM INPUT BYTE TO X REGISTER MASKED. Unconditionally transfers an 8-bit
byte from the addressed peripheral device to the least significant 8 bits
of the X register. The data byte is logically ANDed with the previous
contents of the least significant 8 bits of the X register. The results are
placed in the least significant 8 bits of the X register and the most signifi­
cant 8 bits of the X register are unchanged.

3 . 9 . 3 . 2 Conditional Byte Input Instructions

RBA READ BYTE TO A REGISTER. Senses the specified data source in the
addressed peripheral device. If a false response is received, the
instruction is repeated (and interrupts may be acknowledged). When a
true response is received, an 8-bit data byte is transferred to the least
significant 8 bits of the A register. The most significant 8 bits of the A
register are unchanged.

3-35

COMPUTER AUTOMATION,INC. ~

RBAM READ BYTE TO A REGISTER MASKED. Senses the specified data source
in the addressed peripheral device. If a false response is received, the
instruction is repeated (and interrupts may be acknowledged). When a
true response is received, an 8-bit data byte is transferred to the least
significant 8 bits of the A register and logically ANDed with the previous
contents of the least significant 8 bits of the A register. The results are
placed in the least significant 8 bits of the A register and the most signifi­
cant 8 bits of the A register are unchanged.

RBX READ BYTE· TO X REGISTER. Senses the specified data source in the
addressed peripheral device. If a false response is received, the instruc­
tion is repeated (and interrupts may be acknowledged). When a true
response is received J an 8-bit data byte is transferred to the least
significant 8 bits of the X register. The most significant 8 bits of the X
register are unchanged.

RBXM READ BYTE TO X REGISTER MASKED. Senses the specified data source
in the addressed peripheral device. If a false response is received J the
instruction is repeated (and interrupts may be acknowledged). When a
true response is received, an 8-bit data byte is transferred to the least
significant 8 bits of the X register and logically ANDed with the previous
contents of the least significant 8 bits of the X register. The results are
placed in the least significant 8 bits of the X register and the most signifi­
cant 8 bits of the X register are unchanged.

3.9.4 Block Input/Output Instructions

The two instructions in this class provide for high-speed J full 16-bit word data transfers.
The Processor is totally dedicated to these instructions until the specified block of data
has been completely transferred - i. e. , no interrupts may be serviced until the instruc­
tions have been executed to completion.

The Block Transfer instructions are double-word instructions. The second word of the
instruction contains the base address minus one of the associated data buffer in memory.
The X register contains the (positive) number of words to be transferred - i. e. , the
length of the data buffer. The memory location of each word transferred is obtained by
summing the base address minus one and the contents of the X register. As each data
word is transmitted, the X register is decremented by one. Thus, the data buffer is
output or input in descending order, beginning with the highest memory location and
ending with the lowest memory location (base address plus length -1). When the X
register is decremented to zero, the next instruction in sequence is executed.

3-36

COMPUTER AUTOMATION. INC. ~

The format for the Block Transfer instructions is shown in Figure 3-32.

[LABEL]

[LABEL]

OP-CODE

OP-CODE

EXPRESSION 1 . [,EXPRESSION 2] [COMMENTS]

EXPRESSION 3 [COMMENTS]

If EXPRESSION 2 is not present, EXPRESSION 1 must be absolute and in
the range: 0 through: FF.
If EXPRESSION 2 is present, EXPRESSION 1 must be absolute and in the
range : 0 through : IF .
EXPRESSION 2 must be absolute and in the range : 0 through : 7 .
EXPRESSION 3 is an absolute or relocatable expression giving the base
address -1 of the buffer.

Figure 3-32. Block Input/Output Instruction Format

The expressions in the operand field of these instructions must be either self-defining
(i. e. , numeric expressions) or predefined absolute expressions. If only one expression
is present, it must be in the range : 0 through : FF. The high-order 5 bits represent
the peripheral device address and the low-order 3 bits represent the function code.
If two expressions are present, the first must be in the range : 0 through : IF and the
second must be in the range : 0 through : 7. The first expression represents a peri­
pheral device address, and the second expression represents a function code.

The expression in the operand field of the DATA statement must not be an indirect
address (no*). It represents the memory location one less than the start (the low­
order memory location) of the data buffer.

BIN BLOCK IN. Senses the specified data source in the addressed peri­
pheral device and inputs a full 16-bit data word from the selected
device each time a true sense response is received. The instruction
executes until all data words have been input. Interrupts may be
acknowledged only after completion of the instruction. The A register
is unchanged.

BOT BLOCK OUT. Senses the specified data source in the addressed peri­
pheral device and outputs a full 16-bit data word to the selected device
each time a true sense response is received. The instruction executes
until all data words have been output. Interrupts may be acknowledged
only after completion of the instruction. The A register is unchanged.

3-37

COMPUTER AUTOMATION, INC. f3!:1
3.9.5 Automatic Input/Output Instructions

The Automatic Input/Output instructions (Auto I/O) provide data transfers directly be­
tween memory and peripheral devices without affecting the A and X registers. These
multiple word instructions effectively constitute complete I/O subroutines, thus facili­
tating their use as interrupt instructions. They increment a (negative) data word or
byte counter ,increment a data word or byte pointer and transfer a data word or byte
between memory and a peripheral device.

Each Auto I/O instruction occupies three words in memory. The first word contains the
instruction itself, the second word contains the two's complement (negative) of the word
or byte count for the data buffer and the third word contains an address pointer speci­
fying the location one less than the first (lower-order memory) location of the data buffer.
The data buffer is input or output in order of ascending memory locations (low-order
to high-order). The format for these instructions is shown in Figure 3-33.

[LABELJ

[LABELJ

[LABELJ

OP-CODE EXPRESSION 1 [,EXPRESSION 2J [COMMENTSJ

DATA EXPRESSION 3 [COMMENTSJ

! BAC I EXPRESSION 4 [COMMENTSJ

;~TA
If Expression 2 is· not present, Expression 1 must be absolute and in the
range : 0 thru : FF .
If Expression 2 is present, Expression 1 must be present and in the
range : 0 thru : IF .
Expression 2 must be absolute and in the range : 0 thru : 7 .
Expression 3 is the negative word or byte count of the buffer.
Expression 4 is an absolute or relocatable expression defining the base
address -1 of the buffer.

Figure 3-33. Automatic Input/Output Instruction Format

The expressions iIi the operand fields of the first two statements must be either self­
defined (i. e . , numeric expressions) or predefined absolute expressions. If only one
expression is present in the operand field of the instruction, it must be in the range : 0
through: FF. The high-order 5 bits represent the device address and the low order
3 bits represent the function code. If two expressions are present, the first must be in
the range: 0 through: IF, and the second must be in the range: 0 through: 7. The
first expression represents a peripheral device address, and the second expression
represents a function code.

3-38

COtMUTER AUTOMATION,INC. ~

The absolute expression for the second word represents the negative (two's complement)
data word or byte count for the buffer being transmitted. This word is incr~mented once
prior to each data word or byte.transfer and must be preset each time a block of data
is to be tr~nsferred.

The expression in the operand field of the third word of the instruction is an address
pointer specifying the byte or word location one less than the start of the data buffer.
This word is incremented once prior to each data word or byte transferred and must
be preset each time a block of data is to be transferred.

Operation of Automatic I/O Instructions differ depending upon usage. When used as
a normal in-line program instruction, the Automatic I/O instruction sequence is as
shown in Figure 3-34. Each time the instruction is executed the word/byte count
and address pointer are incremented, one word or byte of data is transferred and then
the incremented word count is examined. If the word count has not yet reached zero,
the next instruction executed is from location P+4. If the word count reached zero t
the next instruction executed is at location P+3 (End of Block exit location). Since
Automatic I/O instructions do not sense for the peripheral device to be ready prior
to data transfer, a sense instruction should be used prior to each execution (one
word transferred) of the instruction t i. e . , to transfer a block location t P+4 would
normally contain a jump back to a sense instruction prior to location P .

P Automatic I/O Instruction
P+1 Word/Byte Counter (negative)
P+2 Address Pointer (starts address -1)
P+3 End of Block Exit (Word Count = 0)
P+4 Next Instruction (Word Count ;f 0)

Figure 3-34. In-line Auto I/O Instruction Sequence

Automatic I/O instructions may also be used under interrupt control at an interrupt
location to implement a Direct Memory Channel. In this application, the Automatic
I/O instruction is executed once each time the peripheral device indicates that it
is ready for a data transfer by interrupting to the location containing the Automatic
I/O instruction. Since the Automatic I/O instructions do not alter any processor
registers, no jumping to an interrupt subroutine to save registers t status, and re­
turn location is required. The Automatic I/O instruction is, itself, a one word sub­
routine. When executed under interrupts t the skips after execution are suppressed.
Instead, if the word count has not reached zero after a data transfer, control is
passed directly back to the main-line program at the point it was interrupted. If
the word count did reach zero, a special signal (ECHO-) is sent to the peripheral
device to indicate that it should stop requesting further data transfers. The Auto­
matic I/O instruction transfers control back to the main-line program whether ECHO
is set or not. Upon receipt of ECHO, the peripheral device stops data transfer requests,
performs any stop action required (Le. CRC checking or generation for magnetic tape) ,
and then generates an End-of-Block interrupt so that the program can process the
data block input or prepare another block for output. Although the End-of-Block

3-39

COMl'UltR AUTOMATION. INC. ~

interrupt can be vectored to any location by the peripheral controller, it is standard
practice for the controller to vector this interrupt to four locations beyond the data
transfer interrupt location. Figure 3-35 illustrates the typical usage of Automatic
I/O instructions under interrupts.

Data Transfer Interrupt Location I
1+1
1+2
1+3

End-of-Block Interrupt Location 1+4

Automatic I/O Instruction
Word/Byte Counter (negative)
Word/Byte Counter (negative)·
Unused
JST*$-1 (jump and store to END-
of-Block subroutine)

Figure 3-35. Interrupt Location Auto I/O Instruction Sequence

AlB AUTOMATIC INPUT BYTE TO MEMORY. Increments the byte counter and
the byte address pointer and unconditionally inputs one 8-bit byte from
the specified data source in the addressed peripheral device to the up­
dated byte location in memory addressed by the address pointer .. When
the byte count is incremented to zero, the normal one-word skip after the
data transfer does not take place, or when used as an interrupt instruction,
an Echo signal to the addressed peripheral device is generated.

AIN AUTOMATIC INPUT WORD TO l\ffiMORY. Increments the data word counter
and the address pointer and unconditionally inputs a full 16-bit data word
from the specified data source in the addressed peripheral device to the
updated word location in memory addressed by the address pointer. When
the word count is incremented to zero, the normal one-word skip after the
data transfer does not take place, or when used as an interrupt instruction
an ECHO signal to the addressed peripheral device is generated.

AOB AUTOMATIC OUTPUT BYTE FROM MEMORY. Increments the byte counter
and the byte address pointer and unconditionally outputs one 8-bit byte
from the updated byte location in memory addressed by the byte address
pointer to the specified data source in the addressed peripheral device .
When the byte count is incremented to zero, the normal one-word skip
does not take place, or when used as an interrupt instruction, an ECHO
signal to the addressed peripheral device is generated.

AOT AUTOMATIC OUTPUT WORD FROM MEMORY. Increments the data word
counter and the address pointer and unconditionally outputs a full 16-bit
data word from the updated word location in memory addressed by the
address pointer to the specified data source in the addressed peripheral
device. When the word count is incremented to zero, the normal one­
word skip after the data transfer does not take place, or when used as
an interrupt instruction. an Echo signal to the addressed peripheral
device is generated.

3-40

COMPUTER AUTOMAnON, INC. §!:1

3.10 ASSEMBLER CONTROL DIRECTIVES

The assembler control directives provide for conditional assembly of source statements
and establish and/or alter the value and relocatability of the program location counter.
If a label is present on any of these control directives, it is in general assigned the
current value and relocation attribute of the program location counter. These directives
do not generate computer instruction words.

3.10.1 Conditional Assembly Controls

The IFF (If False) and 1FT (If True) directives are provided to conditionally assemble
subsequent lines of source code. The format for these two instructions is the following:

[LABEL] OP CODE ABSOLUTE EXPRESSION
=O-False
~O-True

[COMMENTS]

Figure 3-36. Begin Conditional Assembly Directives Format

The absolute expression must be previously defined (but not as an external). The last
line affected must be an ENDC directive which signals the end of the conditional assembly.
The ENDC directive has the following format:

[LABEL] ENDC ~OMMENT]
There is no expression in the operand field.

Figure 3-37. End Conditional Assembly Directive Format

IFF and 1FT directives must not be nested - i. e . , no other IFF or 1FT directive can
appear between a given IFF or 1FT directive and its associated ENDC directive. If
the value of the absolute expression is zero, it is defined as false. If it is not equal
to zero, it is defined as true. If the value of the expression satisfies the condition of
the directive (false for IFF and true for 1FT) the source lines between the directive
and its associated ENDC directives are assembled. If the condit.ions 'are not met, the
source lines are deleted (not assembled). The program END directive must not
appear between an IFF or 1FT directive and its associated ENDC directive.

3-41

COMPUTER AUTOMATION,INC. ~

3. 10 . 2 Program Location Controls

The following directives control the contents and relocation. attributes of the program
location counter. The format for these directives is the following:

LABEL OP CODE EXPRESSION COMMENTS

Figure 3-38. Location Control Directive Format

If an expression is present, it must be predefined or self-defined (e. g .• a numeric
expression). It cannot be externally defined. Each program should start with an
ABS, REL or ORG directive and end with an END directive.

ABS ABSOLUTE ASSEMBLY. Sets the relocation attribute of the program
location counter to absolute. If an expression is present, the program
location counter is set to the value of the expression. Otherwise, the
contents of the program location counter are unchanged. Comments may
appear on an ABS directive only if an expression is present. If a label
is present, it is assigned the value of the expression.

REL RELOCATABLE ASSEMBLY. Sets the relocation attribute of the program·
location counter to relative. If an expression is present, the program
location counter is set to the value of the expression. If no expression
is present, the contents of the program location counter are unchanged
and the comments field must be blank. If a label is present, it is as­
signed the value of the expression.

ORG ORIGIN. Sets the program location counter to the value of the expres­
sion. The expression must be present and defined. If a label is
present, it is assigned the value of the expression. The relocation
attribute of the program location counter is unchanged.

END END OF ASSEMBLY. Signifies the end of an assembly. If an expression
is present, it is interpreted by the obj ect loader as the execution
transfer address at the end of a successful load . Since the 9bject loader
does not distinguish between END directives in main programs and sub­
programs, only the main program should include a transfer address.
Comments may appear on an END directive only if an expression is present.
If a label is present, it is assigned the current value of the program loca­
tion counter.

3-42

COMPUTER AUTOMATION. INC. ~

3.11 OATA AND SYMBOL DEr=INITION DIRECTIVES

3.11.1 Formats

The directives discussed in this section define various types of data. including buffers,
address pOinters and character strings. Symbol Definition directives are also dis­
cussed. The various formats involved are shown below in Figure 3t"" 39.

LABEL BAC EXPRESSION COMMENTS

LASEL DATA * EXPRESSION 1 , * EXPRESSION 2.. COMMENTS

LABEL TEXT 'CHARACTER STRING' COMMENTS

LABEL RES EXPRESSION ,EXPRESSION COMMENTS

LABEL EXPRESSION COMMENTS

Figure 3-39. Data and Symbol Definition Directive Format

3.11.2 Directives

BAC BYTE ADDRESS CONSTANT. Generates a byte address constant
(or pOinter). Symbolic items in the expression are assumed to be
"word address" values and numeric items are assumed to be "byte
counts" or "byte address" values. Values of symbolic items are
"doubled" to generate byte address values.

DAT A DATA DEFINITION. Places values of expressions in sequential
memory locations. The operand field contains one or more expres­
sions separated by commas. Any valid expression may be used.
The expressions are evaluated one at a time and generated as
sequential constants. If a label is present, it is assigned the
looation of the first constant generated. Indirect address pOinters
are specified by preceding the expressions in the operand field
with asterisks (*).

TEXT TEXT STRING. Generates an 8-bit ASell character string, packed
two characters per word, for use as data. Characters are packed
left to right in the most significant byte then the least significant
byte of sequential memory· words. Trailing character positions
are filled with blanks (: AO) to complete full words. The character
string must be surrounded by single quotes ('). When a quote is

. .

3-43

COMPtmR AUTOMATION, INC. ~

desired as a character in the string, two contiguous single, quotes
must appear within the str~ng. If a label is present, it is assigned
the location of the first pair of characters generated.

RES RESERVE STORAGE. Reserves storage for the number of words
specified by the first expression. If the . second exp~ession is
present, it defines a constant which is to 'be stored in each of the,
reserved memory locations ..Both 'expressions must b~ either . self-·

,defined (e. g ., a numeric expression), or predefined ~ absolute
expressions. If the second expression is not present, thE;! object
loader will not alter the reserved memory locations at load time.
If a label is present , it is. assigned the location of the first
reserved memory word.

EQU EQUATE SYMBOL. Assigns the value and relocatability of the
expression in the operand field to ,the symbol in the ,label field.
The symbol in the label must not be defined elsewhere. The ex­
pression must be either a self-defined (e. g. , a numer~c expression)
or a predefined expression. N o machine instructions are generated.

SET SET SYMBOL. Assigns the value and relocatability of the expres-
sion in the operand field to the symbol in the label field . This
directive is identical to the EQU directive, except that the. symbol
being defined may be redefined by another SET directive. No machine
instructions are generated.

3.12 PROGRAM LINKAGE DIRECTIVES

3.12.1 Formats

The directives discussed in this section provide for linkages between programs which
have been assembled separately, but are to be loaded and executed together t, The
formats for the three directives ~e shown below in Figure 3~40 t

LABEL

~ABEi1 '
INAM \

E~TR
REF

EXPRESSION 1 , EXPRESSION 2., ••. fcOM~ENT~ •

190MMENTsl

Figure 3-40. Program Linkage Directive For~ats

Expressions must be symbolic names defined within the program s'egment for NAM or
referenced by the program segment for EXTRt, REF may not have an Operand Field
express'ion .

3-44

COMPUTER AUTOMATION, INC. ~

3.12.2 Directives

NAM EXTERNAL NAME DEFINITiON. Defines external entry or reference
points within the current program. The operand field of the NAM
directive contains one or more symbols separated by commas. Each
name (or symbol) appearing in the operand field must be defined in
the body of the program. When this directive is used, it must pre­
cede all data generating statements. If a label is present, it is
assigned a zero value and a relative relocation attribute. No machine
instructions are generated.

EXTR EXTERNAL REFERENCE-SCRATCHPAD. Declares external symbols
referenced by the current program. The object loader links these
declared external symbols through the scratchpad (first 256 words
of memory) at load time. Each name or symbol appearing in the
operand field and also referenced by the current program is output
to the object loader at load time. Since they are not defined within
the current program, these symbols must not be used in multi-term
expressions. References to an EXTR-defined symbol must be
direct, since the assembler automatically generates indirect
references through the scratch pad. If a label is present, it is
assigned the current value and relocation attribute of the program
location counter. No machine instructions are generated.

REF EXTERNAL REFERENCE-POINTER. Defines the current location as
linkage for reference to the external symbol contained in the label
field. At load time, the address at which the external symbol is
loaded is stored in the memory location of the REF directive.

3.13 SUBROUTINE DEFINITION DIRECTIVES

The following directives are provided primarily for documentation purposes. They are
used to facilitate determining the limits of subroutines in assembler output listings.
The formats are described below in Figure 3-41.

LABEL ENT

~ABErJ RTN EXPRESSION

Figure 3-41. Subroutine Definition Directive Formats

(CoMME~Tsl

~OMMENTSJ

No operand field is allowed for ENT. The expression for RTN may be any expres­
sion defining the location of a subroutine return pointer (normally the label for the
subroutine ENT) .

3-45

COMI'U1EII AUTOMAllON.INC. §l1

ENT SUBROUTINE ENTRY. Reserves a word to hold the return address·
from a subroutine call (J~T) .. Th~ assembler generates a HLl'
instruction for this directive. Any source statement which cau'ses
one word to be reserved could be used in its place.

RTN SUBROUTINE RETURN. Generates an indirect Jump via the symbol
in the operand field (JMP *Expression). Note that the expression is
direct.

3.14 LISTING FORMAT AND ASSEMBLER INPUT CONTROLS

The following controls are provided for the purpose of formatting assembler output
listings. With the exception of the TITL directive, these controls are simply special
characters in the first column or position of a source line. The format for the TITL
directive is shown below in Figure 3-42:

TITL (one blank) ANY COMBINATION OF ALPHANUMERIC CHARAC­
TERS NOT EXCEEDING 72 CHARACTERS IN LENGTH

Figure 3-42. Title Directive Format

No label field is allowed for TITL.

TITL PAGE EJECT WITH TITLE. Generates a Top-of-Form to the assembler
listing device. The page number is then printed, followed (on the,
same line) by the character string specified in the operand field.
The same character string is printed with the page number at the top
of each page until a new TITL directive is encountered. If these
directives are to be used throughout a program, the first TITL
directive should appear as the first source line of the program -
ahead of comments, user-defined op code definitions and origin
statements .

. (Period) PAGE EJECT WITHOUT TITLE. Generates a Top-of-Form to the assem­
bler listing device. This control must appear as the first character of
a source statement. The rest of the input line will be ignored.

* (Asterisk) COMMENT LINE. Allows source line comments to be exactly dupli­
cated on the assembler listing device. This control must appear as
the first character of the source statement. All characters following
the asterisk on the source statement are duplicated on the output
listing. Comments may appear before origin statements at the
beginning of a program.

3-46

COMPUTER AUTOMATION, INC. ~

1 (Up arrow) PAUSE. Halts the assembler. Assembly is continued by pressing
the RUN button. This control is most useful when paper tape input
is used. The up-arrow must appear as the first character of a
source line. The rest of the input line will be ignored.

3.15 USER-DEFINED OPERATION CODE DIRECTIVE

User-defined operation code directives allow the user to name or define his own
instruction mnemonics for the current assembly. If included in a program, user­
defined op code directives mu st precede all source statements other than comments
or TITL directives. The user is referred to the applicable Assembler Reference
Manual for a detailed discussion of their usage.

3-47

COMPUTER AUTOMATION, INC. ~

Section 4

INPUT/OUTPUT AND INTERRUPT OPERATIONS

4.1 INTRODUCTION

4.1.1 Discussion of Input/Output Operations

Communication with the standard peripheral devices generally consists of operations
which can be treated as members of three major categories - Control, Sense., and
Input/Output operations. The precise definitions of the various instructions, function
codes and status words depend on the design of the individual peripheral interfaces.

4. 1. 1 . 1 Control

Initialization and model status control of peripheral devices are usually accomplished via
the Select (SEL) and Select-and-Present (SEA and SEX) instructions. When a teletype
is to be used, for instance, the teletype must first be commanded into the Keyboard Mode.
The SEL instruction has the following format:

SEL DA,FC

A given peripheral device (DA) can have as many as eight different function codes
(FC = 0 through 7). The SEA and SEX instructions are useful for devices which con­
tain status or address registers which must be set or initialized by transmitting data
from the A or X registers.

The SEL instruction, in effect, commands the peripheral device and puts all zeros on the
data lines to the devices. The SEA and SEX instructions are used for devices which
require non-zero data values during command sequences (e. g. , the Teletype for
Full-Duplex operation) .

The Control instructions prepare the peripheral devices for data transmission, but do
not necessarily insure a true (device ready) Sense Response.

4-1

COMPUTER AUTOMATION, IN<. 13!:1

4.1.1.2 Sense

Once a peripheral device has been prepared for transmission of data with the proper
commands, it is necessary to determine whether the device is ready to accept or send
the data. This is accomplished using the Sense-Skip-on-Response (SEN) and Sense­
Skip-on-no-Response (SSN) instructions. One or the other of these instructions should
immediately precede an unconditional data transmission sequence such that an appropriate
Sense Response is detected prior to the data transfer

SEN DA,FC
JMP $-1
data transmission

or:

SSN DA,FC
data transmission

In the first example, the Sense instruction is executed until a true Sense Response is
detected and the Jump instruction is skipped. The data transmission is then performed.
In the second example, the Sense instruction is executed only once. If a false Sense
Response is detected, the data transmission instruction is skipped.

4. 1 . 1 . 3 Data Transmission

Unconditional data transmission is accomplished using the Input-to-Register (INA and
INX) and Output-from-Register (OTA, OTX and OTZ) instructions:

SEN DA,FC
JMP $-1
INA DA,FC

4-2

or:

SEN DA,FC
JMP $-1
OTX DA,FC

COMPUTER AUTOMATION,INC. ~

When the Sense Response is true, the Jump instruction is skipped and the data trans­
mission instruction is executed.

In addition, the Sense operations can be combined with data transmission using the
Read-to-Register (RDA, RDX, RBA and RBX) and Write-from-Register (WRA, WRX
and WRZ) instructions:

RBA DA,FC

or:

WRX DA,FC

These instructions are executed repeatedly until a true sense response is received.
The data transmission then occurs and the next instruction in sequence is executed.
The Sense and unconditional data transfer operations can be combined in a conditional
data transfer instruction only when the function codes for the two operations are the
same. The conditional data transmission instructions are interruptable.

Block data transmissions are performed using the Block-Input-to-Memory (BIN) and
Block-Output-from-Memory (BOT) instructions:

4-3

LDX
BIN
DATA

LDX
BOT
DATA

COMPUTER AUTOMATION,INC. ~

.
COUNT
DA,FC
Base Address - 1

COUNT
DA, FC
Base AddreSs ~ 1

These instructions are executed repeatedly, transmitting one word of data each time a
true Sense Response is received, until all data has been transmitted. The data is trans­
mitted in reverse order in order of decreasing addresses. The next instruction in
sequence is then executed. The function code associated with these instructions is the
same as the function code used by the incorporated Sense. The block data transmission
instructions are not interruptable.

In-Line automatic data transmissions are performed using the Automatic-Input-to-Memory
(AiN and AlB) and Automatic-Output-from-Memory (AOT and AOB) instructions:

SENSE

or:

SENSE

SEN
JMP
AIN
DATA
DATA
JMP
JMP

SEN
JMP
AOB
DATA
DATA
JMP

DA,FC
$-1
DA,FC
Negative Data Count (Word)
Base Address -1 (Word)
EOB
SENSE

DA,FC
$-1
DA,FC
Negative Data Count (Byte)
Base Address -1 (Byte)
EOB

JMP SENSE

4-4

COMPUTER AUTOMATION,INC. ~

These instructions unconditionally transmit one word/byte of data each time they are
executed and are therefore preceded by an appropriate sense command. In addition,
the Base Address pointer and the Negative Data Count are incremented, with the Data
Count eventually becoming zero and generating an exit to the End -of-Block processing
routine (EOB). Automatic I/O instructions may be used under interrupts, in which case
the sense instruction is not required and the exits are replaced by a return to the main­
line program. A second interrupt to a different location is generated by the peripheral
controller when the buffer is completely transferred.

4. 1. 2 Interrupt Operations

Interrupts constitute a means of reacting instantly to random, external stimuli without
consuming valuable processing time in a continuous polling environment. Peripheral
devices which are to be operated under interrupt control are assigned reserved memory
locations anywhere in memory. These interrupt addresses are generated by the indivi­
dual peripheral controllers and generally have jumper selectable locations within the
first 512 locations in memory. Appendix B includes a table of standard interrupt address
assignments. When an interrupt is recognized, the instruction at the associated interrupt
location is executed. If the instruction does not modify the program counter, control is
immediately restored to the main program. Otherwise, processing continues at the loca­
tion specified by the new contents of the P register. Any of the instructions in the
ALPHA's repertoire can be used in the reserved locations as interrupt instructions, but
certain of them are more useful than others - IMS, JST and the Auto I/O instructions.
Any memory reference instruction performing relative to P backwards addressing should
not be used as an interrupt instruction (the instruction would reference the location one
less than the location actually programmed - e. g. , $- 9 instead of $-8). Before a given
peripheral device can be operated under interrupt control, the interrupts for that device
must be enabled. This enables the device to generate an interrupt request when the
associated event occurs. In addition, the CPU interrupts must be enabled. This is
accomplished using the EIN instruction and allows the CPU to respond to the interrupt
request of the peripheral device.

4.1.2.1 Non-Input/Output

The Increment-Mernory-and-Skip-on-Zero instruction is used in interrupt programming
as a counter or timer for external events. As interrupt instructions, increment results
of zero do not generate skips. They generate instead a signal (called an Echo) to the
peripheral interface which caused the interrupt. Usually this signal is used by the
device to generate a second interrupt to another reserved location, at which a JST
(Jump-and-Store) instruction to a counter /timer maintenance subroutine would be
located.

The Jump-and Store instruction is used in interrupt programming as a means of trans­
ferring control to an interrupt subroutine in a manner such that return to the main
program at the interrupted location can be accomplished upon completion of the opera-

4-5

COMPUTER AUTOMATION,INC. ~

tions required by the interrupt. JST is the only instruction which disables the CPU
interrupts when it is used as an interrupt instruction. Before returning to the main
program the CPU interrupts should be re-enabled.

4.1.2.2 Input/Output

The Automatic-Input-to-Memory (AIN and AlB) and Automatic-Output-from-Memory
(AOT and AOB) instructions have been specifically designed as interrupt instructions.
U sed to transfer blocks of data between the computer memory and the peripheral
devices, these instructions contain their own word/byte count and memory word/byte
address. They do not affect the A and X registers, the OV indicator or the p' register
when transferring data as interrupt instructions. As each data word/byte is trans­
mitted, the associated pointer and counter are automatically incremented.

4.1.2.3 Word and Block Interrupts

When either the IMS or the Automatic Input/Output instructions are used as
interrupt instructions, increment results of zero (any memory location for IMS and
the negative word/byte count for the Auto I/O instructions) produce "Echo" signals
which are typically used by the various peripheral devices to generate End-of-Block
interrupt :requests to different reserved interrupt locations.

4.2 NON-INTERRUPT INPUT/OUTPUT EXAMPLES

The examples shown in Figures 4-1 through 4- 5 are discussed in the paragraphs
that follow.

LABEL

Optional

INSTRUCTION

SEL

LDA
SEN
JMP
OTA

OPERANDS

4,4

CHAR
4,1
$-1
4,1

COMMENTS

Command Initialize Line Printer

A = Char to Print
Sense Line Printer Ready
(not ready)
Unconditionally output A

Figure 4-1. Initialization and Unconditional Output to Line Printer

4-6 .

COMPUTER AUTOMATION,INC. ~

LABEL INSTRUCTION OPERANDS COMMENTS

Optional

Optional SEN 7,3 Sense Teletype Ready
JIVIP $-1 (not ready)
SEL 7,2 Command Step Read
SEN 7,1 Sense Character Buffer Full
JMP $-1 (not full)
INA 7,0 Unconditionally input character to A

Figure 4- 2. Unconditional Character Read from Teletype Paper Tape Reader

LABEL

Optional

INSTRUCTION

SEL

LXP
WRX

OPERANDS

4,4

:8C
4,1

COMMENTS

Command Initialize Line Printer

Top of Form Character
Output to Line Printer when Ready

Figure 4-3. Initialization and Conditional Control of Line Printer

4-7

LABEL

Optional

INSTRUCTION

SEN
JMP

SEL

RBA

LLA
RBA

SEL

OPERANDS

7,3
$-1

7,0

7,1

8
7,1

7,4

COMPUTER AUTOMATION,INC. ~

COMIVIENTS

Sense Teletype Ready
. (not ready)

Set Auto-Echo

Input a Teletype Character to A
When Ready
Shift to most significant 8 bits
Input another character to least
significant 8 bits
Turn Auto-Echo Off

Figure 4-4. Conditional Input from Teletype Keyboard with Auto-Echo

LABEL

Optional

BUF

INSTRUCTION

SEL

LDX
BOT
DATA

RES

OPERANDS

4,4

COUNT
4,1
BUF-1

COUNT

COMMENTS

Command Initialize Line Printer

x = Word Buffer Length
Block Output to Line Printer
Character Buffer Address Less One

Data Buffer

Figure 4-5. Uninterruptable Block Output to Line Printer

4-8

COMPUTER AUTOMATION,INC. ~

LABEL INSTRUCTION OPERANDS COMMENTS

Optional SEN 5,3 Sense Card Reader Ready
JMP $-1 (not ready)
SEL 5,4 Command Initialize Card Reader
SEL 5,3 Command Card Reader Read Card

LOOP SEN 5,0 Sense Input Character Ready
JMP $-1 (not ready)
AlB 5,0 Automatic Input Character to Buffer
DATA -80 Increment Counter
BAC BUF-l Increment Byte Address
JMP $+2 Zero Counter Results - Exit
JMP LOOP Loop on non-Zero Counter Results

BUF RES 40 80 Character (Byte) Data Buffer

Figure 4-6. Automatic Byte Input from Card Reader

4. 2 .1 Control Instructions

The SEL instruction is the most widely used control instruction for peripheral devices.
It is used both for initializing the devices, as in Figures 4-1, 4- 3, 4- 5 and 4- 6, and
for causing the peripheral devices to perform specific functions, as in Figures 4-2, 4-4
and the second SEL instruction in Figure 4-6. Sometimes special characters are used for
control functions (e. g. , the Line Printer Top-of-Form character in Figure 4-3) .

The SEN instruction is used to test whether the specified data source or destination in
the addressed peripheral device is ready to transmit or receive data. Sometimes both
the peripheral device and a particular buffer within the device must be ready for data
transmission ,as in Figures 4- 2 and 4- 6. In many cases, the Sense function can be
incorporated into the Conditional I/O instructions, as in Figures 4-3 and 4-4.

4. 2 . 2 Unconditional Instructions

Unconditional Input instructions consist of both word and byte instructions. While the
Word input instructions replace all 16 bits of the register (Figure 4-2) , the byte input
instructions affect only the least significant 8 bits of the register. When byte-oriented
peripheral devices are used, these instructions allow the programmer to pack the input
data before storing it in memory.

4-9

COMPUTER AUTOMATION,INC. ~

The unconditional Output instructions are word-oriented instructions. Since byte­
oriented peripheral devices accept only the least significant 8 bits of data output from
a register, there is no need for byte Output instructions.

4. 2 .3 . Conditional Instructions

The conditional I/O instructions incorporate both the Sense and the data transmission
functions into one instruction. These instructions make sense, of course, only when
the function codes for the Sense and data transmission operations are the same.

The conditional Input instructions consist of both word and byte instructions. While
the word input instructions replace all 16 bits of the register, the byte input instruc­
tions affect only the least significant 8 bits of the register. When byte-oriented
peripheral devices are used, these instructions allow the programmer to pack the
input data before storing it in memory, as in Figure 4-4.

The conditional Output instructions are word-oriented instructions. Since byte­
oriented peripheral devices accept only the least significant 8 bits of data output from
a register, there is no need for byte output instructions.

Interrupts may be acknowledged during the execution of a conditional I/O instruction
when the data source or destination in the addressed peripheral device generates false
(not ready) sense responses.

4.2. 4 Block Transfer Instructions

The Block Transfer instructions allow high-speed data transmissions between memory
and peripheral devices. They essentially access each data buffer memory location by
summing the contents of the X register and the data buffer pointer (buffer address - 1)
in the second word of the instruction. Each time the addressed peripheral device
generates a true sense response, data is transmitted and the X register is decremented.
Thus, the data is transmitted from or to the end of the buffer (higher-order memory
locations) first. The last word transmhted accesses the start (low-order memory
location) of the buffer. Interrupts may be acknowledged only after the X register has
been decremented to zero and the instruction has been completed - i. e. , when all data
words have been input or output.

These instructions access word memory operands only (see Figure 4-5). They do not
affect the contents of the A register.

4-10

COMPUTER AUTOMATION,INC. ~

4.2.5 Automatic Transfer Instructions

Although the Automatic Transfer instructions have been designed specifically as interrupt
instructions, they may also be used in non-interrupt, in-line programming. They are
three-word instructions, with the second word containing the negative (two's complement)
word or byte count and the third word containing a word or byte address point (buffer
address - 1). Since they are unconditional transfer instructions, the specified data
source or destination in the addressed peripheral device must generate true sense
responses before data transmission occurs. Each data transmission increments both the
data counter and the address pointer. Non-zero data counter increment results generate
a one-word skip. Zero increment results cause the next instruction in sequence (the
instruction after the address pointer which is skipped by non-zero increment results)
to be executed (see Figure 4-6) .

4.3 INTERRUPT STRUCTURE AND.EXAMPLES

4.3.1 General Interrupt Handling

External interrupts cause the computer to execute one instruction outside of the main
program. If the instruction does not modify the P register, the computer continues with
the main program after executing the interrupt instruction. If the interrupt instruction
modifies the P register (either a JST or JMP) the computer continues processing at the
location specified by the new value in the P register.

If a peripheral device is to operate under interrupt control, reserved locations in memory
are assigned to the device. The computer then executes the instruction at the reserved
location when the peripheral device generates an interrupt to the computer. Each device
may be assigned one or more reserved locations. For example, a device moving blocks
of data to or from the computer may generate one interrupt for each word or byte of data
moved and a second interrupt when the entire block of data has been moved. The interrupt
for each word or byte would require one location and the interrupt indicating the end of
the block of data would require another.

Before any interrupt can be recognized by the computer, several conditions must be met:

1 . The interrupts must be enabled, in general. If any interrupts are to be
recognized, the Enable Interrupts (EIN) instruction must be executed.

2. The specific peripheral device interrupt must be enabled. Specific inter­
rupts are enabled by setting an interrupt enable flag in the peripheral
device interface. Enable flags are generally set by executing a Select
(SEL) instruction with a device address and function code specifying
which interrupt is to be enabled. Using interrupt enable flags, the
programmer can selectively enable and disable interrupts.

4-11

COMPUTER AUTOMATION, INC. ~

3. The interrupt condition must exist (i. e. , the device must be ready to
accept or transmit data). Many peripheral devices "remember" interrupt
conditions generated prior to enabling "the interrupt enable nags .. Care
should be taken to reset the peripheral device interrupts before enabling
the enable flag so" that false interrupts do not occur immediately after
enabling the interrupts.

4. No higher priority interrupt must be waiting. Each periphe~al interface
or computer option has a definite priority assignment. Interrupts are
processed by the computer in the order received, or according to priority
if more than one interrupt is pending.

5 . The computer must be in the RUN mode. Interrupts cannot be recognized
when the computer is halted.

4.3.2 Examples of Initialization and Enabling Sequences

Initialization and interrupt enabling take place prior to the generation and use of the
interrupts. The examples below involving a line printer and the Real-Time Clock
are typical of initialization sequences.

SEN
JMP
SEL
SEL
SEL
EIN

4,1 Wait for Line Printer Buffer ready
$-1 (not ready)
4 , 7 Reset Interrupt Enable flags
4,5 Enable Word Interrupt Enable flag
4,6 Enable Echo/EOB Interrupt Enable flag

Enable CPU interrupts

Figure" 4-7. Line Printer Interrupt Initialization Sequence

The interrupt enable flags may also be reset by the line printer initialization instruction
SEL 4,4. Note that the Word interrupt enable flag is enabled before the Echo/EOB inter­
rupt enable flag. When specific actions in a peripheral device are additionally required
to generate interrupts (e. g. , a card reader must read a card) , the command (SEL)
instruction causing the action must be executed before the interrupt can take place.
The sequence in Example 4-7 is used in conjunction with an AOT or AOB instruction
in the word interrupt location and a JST instruction to an End-of-Block routine at the
Echo/EOB interrupt location.

4-12,

.
SEL
SEL
SEL

EIN

COMPUTER AUTOMATION,INC. ~

8,3 Reset RTC Interrupt Enable flags
8,2 Arm RTC Sync Interrupt Enable flag
8,0 Enable RTC Time and Sync Interrupt Enable

flag
Enable CPU Interrupts

Figure 4-8. Real-Time Clock Interrupt Initialization Sequence

The interrupt enable flags may also be reset by the Real-Time Clock initialization
instruction SEL 8,4. ~ote that the Sync interrupt enable flag is armed before the Time
and Sync interrupt enable flags are enabled. This sequence is used in conjunction
with an IMS instruction in the word interrupt location and a JST instruction to a Sync
maintenance routine in the Echo/Sync interrupt location.

4.3.3 Examples of Interrupt Instructions

The contents of the interrupt locations associated with the above examples are illustrated
below in Figures 4-9 and 4-10.

Location

Main memory

: 42 (Word) AOB 4,1
DATA -80

BAC BUF-l

: 46(EOB) JST SUB

SUB ENT

Automatic Output Byte Instruction
Negative Character Buffer Length
(Byte Counter)
Byte Address Pointer (Start-I)

Jump to End-of-Block Routine

Disable CPU Interrupts

Figure 4- 9. Line Printer Interrupt Instructions

Since the byte counter and address pointer are modified during the data transmission,
they must be preset each time a line of characters is to be printed prior to execution
of the initialization sequence discussed in Sec. 4. 3 .1. When all the characters have
been transferred, the instruction at location : 46 is executed and control is transferred
to the End-of-Block routine beginning at SUB. This routine might output a carriage­
return character to cause the line to be printed, or perform any other line termination
processing required. The last character of the buffer might be a carriage-return (see
Line Printer Driver Documentation) .

4-13

Location : 18 (Time) IMS

: 1A (Sync) JST

Main memory SYNC ENT
SIN

STA
SIA
STA
STX
LAM
STA

LDX
LDA
SOA
SIN

LDA
EIN
RTN

COMPUTER AUTOMATION,INC. ~

COUNT

SYNC

1

ASAVE

STATUS
XSAVE
100
COUNT

XSAVE
STATUS

1

ASAVE

SYNC

Increment RTC counter COUNT

Transfer to Sync Subroutine,
Disable CPU Interrupts

Save Main Program Return Location
Inhibit Status (guarantee Word mode)
to Save A Register
Save A Register
Input Status to A Register
Save Status
S ave X Register
Reset
RTC counter COUNT

Perform specified Maintenance Function
Function

Restore X Register
Load Status into A Register
Restore Status
Inhibit Status (guarantee Word Mode)
to Restore A Register
Restore A Register
Enable CPU Interrupts
Return to Mainline Program

Figure 4-10. Real-Time Clock Interrupt Instructions

Each acknowledgement of a Time interrupt causes the RTC counter COUNT to be incre­
mented. When COUNT is incremented to zero, recognition of the Sync interrupt (at
location: 1A) generates execution of the SYNC interrupt subroutine.

Interrupts are automatically disabled by execution of the JST instruction, but the
addressing mode and the state of the overflow indicator are unchanged. Because the
computer might be in the Byte addressing mode when the interrupt occurs, the Word
mode is forced for one instruction so that the full 16-bit contents of the A register can
be saved. When this is done, the computer status is input, which also sets the ad­
dressing mode to the Word mode and resets the overflow indicator. The Status and
the contents of the X register are then saved. The Real-Time Clock counter COUNT
is reset to a negative value as part of the required maintenance operations.

4-14

COMPUTER AUTOMATION,INC. ~

Restoration of the contents of the X register begins the exit sequence of the subroutine.
The computer status is then restored and byte mode inhibited for one instruction to
insure restoration of the fu1116-bit contents of the A register. The interrupts are
then re-enabled and the subroutine is exited prior to acknowledgement of any other
interrupt (since the EIN instruction inhibits recognition of interrupts for the duration
of the RTN SYNC instruction) .

The save/restore sequences discussed here should be used at the beginning and end
of any interrupt subroutine to which a JST instruction at an interrupt location refers.
The Real-Time Clock counter COUNT should also be set to a negative value before the
initialization sequence discussed in Sec. 4. 3 . 1 is executed.

4.4 INTERRUPT LATENCY

Recognition of an interrupt request from a peripheral device by the computer is not
always instantaneous. The conditions discussed below delay acknowledgement of
interrupts.

4.4.1 Interrupt Service

Interrupt acknowledgement occurs "between" the execution of instructions - i. e. , just
after the completion ofa given instruction. The conditional Input/Output instructions
allow recognition of interrrupts before their completion as long as false (not ready)
Sense responses are obtained from the specified data source or destination. After
the interrupt is serviced, processing is resumed with the conditional Input/Output
instruction. The Scan Memory (SCM) instruction similarly allows recognition of inter -
rupts after each specified word or byte of memory is compared to the contents of the
A register. If interrupts were off prior to issuing an instruction, the EIN delays recog­
nition of any interrupt until after the next instruction in sequence is executed. This
allows return from interrupt subroutines to the mainline program before acceptance
of another interrupt. The Block Input/Output (BIN and BOT) instructions, the Double­
Word Memory Reference instructions and all shift instructions must be completed before
recognition of an interrupt may occur. Since their use in main-line programs may
constitute non-trivial delays in the recognition of interrupts, the programmer should
use such instructions with care. In addition, when Direct Memory Access (DMA) opera­
tions are in progress, recognition of interrupts is delayed for the duration of any con­
current data transmission.

4. 4. 2 Priority Resolution

Occasionally, multiple interrupt requests occur. When this happens, the interrupt
having the highest priority is acknowledged first, then the next, and so forth down
to the interrupt having the lowest priority. One instruction of the main-line program
is executed between each recognition of an interrupt. The standard interrupt priorities
are listed below in Figure 4-11.

4-15

COMPUTER AUTOMATION,INC. ~

ABSOLUTE PRIORITY

1

2

3

4

5

6

,
7

8

9

10

11

12
IUR CHAIN

13

14

15

16

17

18

19

20

~ 21

POWER FAIL

TRAP

CONSOLE

MEMORY PARITY

INTERRUPT LINE 1 (ILl)

INTERRUPT LINE 2 (IL2)

RTC SYNC INTERRUPT (lUR)

RTC TIME INTERRUPT (lUR)

TTY END-OF-BLOCK INTERRUPTS (lUR)

TTY WORD INTERRUPTS (lUR)

SLOT B200

SLOT B100

SLOT C100

SLOT C200

SLOT D200

SLOT D100

SLOT E100

SLOT E200

EXPANSION CHASSIS SLOT A100

EXPANSION CHASSIS SLOT A200

EXPANSION CHASSIS SLOT B200

Slots B200 through E200 accom­
modate plug-in modules (either
memory or I/O). All I/O modules
may use the IUR line and must
provide an interrupt address.
Modules with multiple interrupt
capabilities must have internal
priority resolution and multiple
addresses.
The continuity of the priority
chain must not be broken. If
broken, interrupts below the
break may not be recognized
or may be recognized
erroneously.

Figure 4-11. Standard Interrupt Priorities

4-16

COMPUlfR AUTOMATION,INC. ~

Section 5

PROCESSOR OPTIONS

5.1 TELETYPE

5 . 1 . 1 General Discussion

The Teletype (TTY) option interfaces a modified ASR-33 or ASR-35 to the ALPHA com­
puter. It performs all of the data and control signal conversion required for the computer
to control the TTY. An ASR-33 or ASR-35 Teletype provides four Input/Output features
in one package: keyboard input, page printer, paper tape reader and paper tape punch.

The interface contains a data buffer register which performs parallel-to-serial data con­
version for transferring data from the computer to the Teletype and serial-to-parallel
conversion when transferring data from the Teletype to the computer. In addition, the
interface has provisions for interrupt generation for both Word and Echo/End-of-Block
interrupts.

The TTY Interface option has been assigned a standard device address of 7 .

Output from the computer is printed on the page printer. If the punch is turned on,
the output is also punched. The punch and page printer cannot be separately controlled
by the computer. The operator must turn the punch on or off as desired.

Input to the computer is accomplished via the TTY keyboard and the paper tape reader.
They are controllable separately from the computer. The paper tape reader can read
bytes one at a time or continuously. Automatic Echo is a feature which allows any input
to be echoed back to the TTY for printing.

The Teletype can be operated in either half-duplex or full-duplex mode. The TTY
Initialize instruction (SEL 7,4) puts the Teletype interface in the half-duplex mode.
Execution of the Select-and-Present instructions SEA 7 ,4 or SEX 7,4 with the register
contents equal to 1 puts the Teletype interface in the full-duplex mode.

5. 1. 2 Half-Duplex Usage

Half-duplex Teletype operations involve either input from or output to the Teletype,
but not simultaneously. Use of the Auto Echo feature causes input from the Teletype
to be automatically" echoed" back to the Teletype for printing, thus eliminating the
necessity for echoing characters back under software control.

5-1

COMPUTER AUTOMATION,INC. ~

The following are examples of typical half-duplex teletype I/O sequences:

LOOP

SBM
SEL
LDAB

IMS
WRA
IMS

JMP

7,4
*DATA

DATA
7,1
COUNT

LOOP

Set Byte Addressing Mode
Initialize TTY Interface
Load Byte/ Character into LSB Byte
of Arefister
Increment Byte Address Pointer
Output Byte when TTY is Ready
Increment Negative Number of Characters
to be Transferred
Continue Data Output if Non-zero Increment
Results

Exit

Figure 5-1. Program-Controlled Data Output to Half-Duplex Teletype

LOOP

SBM
SEL
SEL

RBA
STAB
.lMS
IMS

.JMP

SEL

7,0
7,3

7,1
*DATA
DATA
COUNT

. LOOP

. 7,4

Set Byte Addressing Mode
Enable Auto Echo to print data being input
Start the paper tape reader in a continuous
read mode.
Input Byte when TTY is Ready
Store Character in Data Buffer in Memory
Increment Byte Address Pointer
Increment Negative Number of Characters to
be Transferred

· Continue Data Input jf Non~zero Increment
· Results
Initialize the TTY Interface to Stop the Paper

· Tape Reader and Disable the Auto Echo

Figure 5-2. Program-Controlled Data Input from TTY Paper Tape Reader

5-2

COMPUTER AUTOMATION, INC. ~

The standard Word Interrupt Location for half-duplex operation of the Teletype is
location: 0002. The Teletype Interface interrupts to this location when the Word
Transfer Mask is set, interrupts are enabled and the Teletype is ready for either
input or output. A jumper option allows this interrupt location to be relocated to
location: 0022. The standard End-of-Block Interrupt Location for half-duplex opera­
tion of the Teletype is location: 0006. The Teletype Interface interrupts to this location
when the Block Transfer Mask is set, interrupts are enabled and an Echo signal
(from completion of an Auto I/O Interrupt Sequence) is received from the computer.
A jumper option allows this interrupt location to be relocated to location : 0026. An
additional jumper option allows Processor mounted option interrupts to be offset by
: 0100 locations, the standard half-duplex Teletype interrupts can be relocated to
locations: 0102 and: 0106 or : 0122 and: 0126.

5.1.3 Table of Half-Duplex Teletype Instructions

Instruction

SEL 7,0

SEL 7,1

SEL 7,2

SEL 7,3

SEL' 7,4

SEL 7,5

SEL 7,6

Function

Enable Auto Echo. This instruction causes all input from the TTY
keyboard or paper tape reader to be echoed back to the TTY for
printing.

Select Keyboard. This instruction resets the Buffer Ready sense
and puts the teletype interface in the read mode.

Step Read. This instruction causes the character under the read
station on the paper tape reader to be read. The tape is then
advanced one character. The reader switch on the Teletype must
be in the RUN psoition . The Buffer Ready sense is reset.

Select Continuous Read. This instruction causes the paper tape
reader to read continuously until the reader is stopped or the
tape runs out. The reader switch must be in the RUN position.
The Buffer Ready flip-flop is reset. Execution of any other SEL
instruction resets Continuous Read.

Initialize Teletype Interface. This instruction resets the control
flip-flops, stops the oscillator and puts the interface in a static
marking condition. The Buffer Ready sense is set and the half­
duplex mode is entered.

Enable Word Transfer Interrupt. This instruction sets an enable
flip-flop in the interface to enable generation of interrupts by the
B:uffer Ready sense (becoming true) .

Enable Echo/EOB Interrupt. This instruction sets an enable flip­
flop in the interface to allow generation of an EOB interrupt when
an Echo signal is received. (Must be used following SEL 7,5 or
an EOB interrupt will be generated immediately.)

5-3

Instruction

SEL 7,7

SEN 7,1

SEN 7,2

SEN 7,3

SEN 7,5

SEN 7,6

OTZ 7,6

OTZ 7,7

OTA 7,0
OTX 7,0

INA 7,0
INX 7,0

COMPUTER AUTOMATION,INC. ~

Function

Disable Interrupts. This instruction disables both the Word
Transfer and Echo/EOB interrupts in the Teletype interface by
resetting the enable flip-flops.

Sense Buffer Ready. This instruction senses the state of the
Buffer Ready flip-flop and generates a one-word skip if it is
set (true).

Sense Word Transfer Interrupt Enabled. This instruction senses
the state of the Word Transfer Interrupt Enable flip-flop and gen­
erates a one-word skip if it is set.

Sense TTY Not Busy. This instruction senses the state of the
TTY controller and generates a one-word skip if it is not printing,
punching or reading a character.

Sense Teletype Motor On. This instruction senses the state of
the Motor On flip-flop and generates a one-word skip if it is set
(on) .'

Sense No Parity/Framing Error. This instruction senses whether
a parity or framing error occurred during the most recent input
operation and generates a one-word skip if no error occurred.

Turn Motor On. This instruction sets the Motor On flip-flop which
turns the TTY motor on. This instruction can be used only with
Teletype units that have been modified for remote motor on/off
control. Turning the motor on generates a 600 millisecond delay
in all interrupts and ready senses to allow the motor to come up to
speed.

Turn Motor Off. This instruction resets the Motor On flip-flop in
the interface, which turns the Teletype motor off.

Output A or X register to TTY. These instructions unconditionally
transfer the contents of the specified register to the Teletype inter­
face, which causes the character to be printed and punched (if the
punch is on) .

Input Word from TTY to A or X register. These instructions
unconditionally transfer the character in the Teletype interface
buffer to the specified register. The data is placed in the least
significant byte of the specified register and the MSB byte is
set to all zeros.

5-4

Instruction

AIN 7,0
AlB 7,0

BIN 7,1

IBA 7,0
IBX 7,0

RBA 7,1
RBX 7,1

WRA 7,1
WRX 7,1

AOT 7,0
AOB 7,0

BOT 7,1

COMPUTER AUTOMATION,INC. ~

Function

Input Word/Byte from TTY to Memory Automatically. These
instructions unconditionally transfer the character in the Teletype
interface register to memory, automatically. The AIN instruction
causes the TTY character to be loaded into the LSB byte of the
memory location and forces the MSB byte to zero. The AlB instruc­
tion causes the TTY data to be packed two bytes per word of
memory .

Input Block from TTY to Memory. This instruction senses the
state of the Buffer Ready flip-flop and transfers the character
in the Teletype interface register to memory when Buffer Ready
is true and decrements a word count after each transfer. When
the word count reaches zero, the instruction terminates.

Input Byte from TTY to A or X register. These instructions
unconditionally transfer the character in the Teletype interface
buffer to the specified register. They do not affect the MSB byte
of the specified register.

Read Byte from TTY to A or X register. These instructions sense
the state of the Buffer Ready flip-flop and transfer the character
in the Teletype interface buffer to the specified register when it
is set (true). They do not affect the MSB byte of the specified
register.

Write from A or X register to TTY. These instructions sense the
state of the Buffer Ready flip-flop and transfer the character in the
specified register to the Teletype interface buffer when it is set
(true) .

Output Word/Byte from Memory to TTY, Automatically. These
instructions unconditionally transfer a word or byte from memory
to the Teletype, automatically. In the case of the AOT instruction,
the Teletype uses the LSB byte of the word and ignores the MSB
byte. The AOB instruction automatically unpacks each byte during
subsequent transfers.

Output Block from Memory to TTY. This instruction senses the
state of the Buffer Ready flip-flop and transfers the full 16-bit
memory word to the Teletype interface register when Buffer
Ready is true and decrements a word count after each transfer.
When the word count reaches zero, the instruction is terminated.

5-5

COMPUTER AUTOMATION. INC. 13!:1
5.1.4 Full-Duplex Usage

Full-duplex Teletype operations allow simultaneous input and output. The interface
contains two data buffers in this mode - one for input and one for output. Use of the
Auto Echo feature causes input from the Teletype to be automatically" echoed" back to
the Teletype for printing, thus eliminating the necessity for echoing characters back
under software control. When this feature is used, normal output data and echoed data
can be intermixed but care should be taken to assure that the resulting -sequence of
output characters makes sense.

Full-duplex Teletype operation also allows use of a special "loop-back" diagnostic
feature. This mode is entered by executing the Select-and-Present instructions SEA 7,4
or SEX 7 ,4 with the register contents equal to 3. This feature connects the Output Data
Buffer to the Input Data Buffer, allowing immediate comparison of transmitted data and
received data.

The following are examples of typical full-duplex Teletype I/O sequences:

SBM
ARP
SEA
SEL
RBA
WRA

7,4
7,1
7,0
7,1

Set Byte Addressing Mode
Set A register to Plus One
Initialize TTY Interface to Full-Duplex
Select Keyboard Mode
Output Character When Ready
Output Character Just Input

Process Character

Figure 5 3. Program-Controlled Data Input from Full-Duplex Teletype

The above example is somewhat inefficient in that it does not use the Auto Echo feature
to print the data being input. It is used here primarily to illustrate the different function
codes involved with data input and data output.

5-6 '

Location : 0022 AlB
DATA
BAC

: 0026 JST

Main memory ARP
SEA
SEL
SEL
SEA
SEA
EIN
WAIT

END ENT
ARP
SEA

7,0
-10
BUF-1

END

7,4
7,1
7,0
7,5
7,6

7,7

COMPUTER AUTOMATION, INC. ~

Automatic Byte Input Instruction
Negative Byte/ Character Count
Buffer Address Pointer (Start-1)

Echo/EOB Termination

Set A Register to Plus One
Initialize TTY to Full-Duplex Mode
Select Keyboard Mode
Enable Auto Echo
Enable Input Word Transfer Interrupt
Enable Input Echo/EOB Interrupt
Enable CPU Interrupts
Wait for Echo/EOB interrupt
Entry Point for End-of-Block Processing

Disable TTY Interrupts

Figure 5-4. Automatic Interrupt Data Input from Full-Duplex Teletype

Initialization of the interrupt locations is not shown in the above sequence. The example
transfers ten characters input from the Teletype keyboard to a character buffer in memory.
When the tenth character is input from the keyboard, the counter in the Auto I/O instruc­
tion at the Input Word Transfer interrupt location is incremented to zero and an Echo
signal is transmitted to the Teletype interface. An EOB interrupt is then generated and
control is transferred to the program sequence beginning at location END.

For full-duplex operation of the Teletype, the following standard and offset interrupt
locations are provided:

Output Word Transfer· Interrupt
Output Echo/EOB Interrupt
Input Word Transfer Interrupt
Input Echo/EOB Interrupt

Standard Location Offset Location Priority

: 0002
: 0006
: 0022
: 0026

: 0102
: 0106
: 0122
: 0126

3
1
4
2

The jumper option for relocation to locations: 0022 and: 0026 (or: 01?2 and: 0126) in
the half-duplex has no affect on the interrupt locations for full-duplex operation. Note
that the EOB interrupts have priority over the word interrupts.

5-7

COMPUTER AUTOMATION,INC. ~

5.1.5 Table of Full-Duplex Teletype Instructions

Instruction

SEL 7,0

SEL 7,1

SEL 7,2

SEL 7,3

SEL 7,4

SEA 7,4
SEX 7,4
(A or X = 1)

SEA 7,4
SEX 7,4
(A or X = 3)

SEL 7,5

SEA 7,5
SEX 7,5
(A or X = 1)

Function

Enable Auto Echo. This instruction causes all input from the TTY
keyboard or paper tape reader to be echoed back to the TTY for
printing.

Select Keyboard. This instruction resets ,the input buffer full flip­
flop and puts the Teletype interface in the read mode.

Step Read. This instruction causes the character under the read
station on the paper tape reader to be read into the input buffer.
The tape is then advanced one character. The reader switch on
the Teletype must be in the RUN position. The Input Buffer Full
flip-flop is set.

Select Continuous Read. This instruction causes the paper tape
reader to read continuously until the reader is stopped or the
tape runs out. The reader switch must be in the RUN position.
The Input Buffer Full flip-flop is reset. Execution of any other
Select instruction resets Continuous Read.

Initialize Teletype Interface to Half-Duplex. This instruction resets
all controls and places the Teletype in the half-duplex mode. The
Buffer Ready flip-flop is set.

Initialize Teletype Interface to Full-Duplex. These instructions reset
all controls and place the Teletype in the full-duplex mode . The Input
Buffer Full flip-flop is reset and the Output Buffer Empty flip-flop
is set.

Initialize Teletype Interface to Full-Duplex Diagnostic. These instruc­
tions reset all controls and place the teletype in the full-duplex mode.
In addition, the Output Data Buffer is connected to the Input Data
Buffer. The Input Buffer Full flip-flop is reset and the Output Buffer
Empty flip-flop is set. Any character output by the program
will be received by the TTY input buffer.

Enable Output Word Transfer Interrupt. This instruction sets an
enable flip-flop in the interface to allow generation of interrupts by
the Output Buffer Empty flip-flop being set.

Enable Input Word Transfer Interrupt. These instructions set an
enable flip-flop in the interface to allow generation of interrupts by
the Input Buffer Full flip-flop being set.

5-8

Instruction

SEL 7,6

SEA 7,6
SEX 7,6
(A or X = 1)

SEL 7,7

SEA 7,7
SEX 7,7
(A or X = 1)

SEN 7,0

SEN 7,1

SEN 7,2

SEN 7,3

SEN 7,5

SEN 7,6

SEN 7,7

COMPUTER AUTOMATION. INC. f3!:1

Function

Enable Output Echo/EOB Interrupt. This instruction sets an enable
flip-flop in the interface to allow generation of the Output EOB inter­
rupt when an Echo signal generated as the result of an Output Word
Transfer interrupt is received from the computer (Must be set
after SEL 7, 5 or an EOB interrupt will be generated immediately.)

Enable Input Echo/EOB Interrupt. These instructions set an enable
flip-flop in the interface to allow generation of an Input EOB interrupt
when an Echo signal generated as the result of an Input Word Trans­
fer interrupt is received from the computer (must be set after
SEA/SEX 7 ,5 or an interrupt will be generated immediately.)

Disable Output Word Transfer and Echo/EOB Interrupts. This
instruction disables the two Output interrupts in the Teletype
interface by resetting the corresponding enable senses.

Disable All Word Transfer and Echo/EOB Interrupts. These
instructions disable both the Input and the Output Word Transfer
and interrupts in the Teletype interface by resetting all four enable
senses.

Sense Input Buffer Full. This instruction senses the state of the
Input Buffer Full flip-flop and generates a one-word skip if it is
set (true).

Sense Output Buffer Empty. This instruction senses the state of
the Output Buffer Empty flip-flop and generates a one-word skip
if it is set (true) .

Sense Output Word Transfer Interrupt Enabled. This instruction
senses the state of the.Output Word Transfer Interrupt Enable
flip-flop and generates a one-word skip if it is set.

Sense Teletype Not Busy. This instruction senses the state of the
Teletype controller and generates a one-word skip if it is not
printing, punching or reading a character.

Sense Teletype Motor On. This instruction senses the state of the
Motor On flip-flop ,and generates a one-word skip if it is set (on).

Sense No Parity/Framing Error. This instruction senses whether
a parity or framing error occurred during the most recent input
operation and generates a one-word skip if no error occurred.

Sense Input Word Transfer Interrupt Enabled. This instruction
senses the state of the Input Word Transfer Interrupt Enable
flip-flop and generates a one-word skip if it is set.

5-9

Instruction

OTZ 7,6

OTZ 7,7

OTA 7,1
OTX 7,1

INA 7,0
INX 7,0

AIN 7,0
AlB 7,0

BIN 7,0

IBA 7,0
IBX 7 ,0

RBA 7,0
RBX 7,0

WRA 7,1
WRX 7,1

COMPUTER AUTOMATION, INC. ~

Function

Turn Motor On. This instruction sets the Motor On flip-flop in the
interface which turns the Teletype motor on. This instruction can
be used only with Teletype units that have been modified for remote
motor on/off control. Turning the motor on generates a 600 milli­
second delay in all interrupts and ready senses to enable the motor
to come up to speed.

Turn Motor Off. This instruction resets the Motor On flip-flop in the
interface which turns the Teletype motor off.

Output A or X Register to TTY. These instructions unconditionally
transfer the contents of the specified register to the Output Data
Buffer, which causes the character to be printed and (if the punch
is on) punched.

Input Word from TTY to A or X Register. These instructions uncon­
ditionally transfer the characte~ in the Teletype interface buffer to
the specified register. The data is placed in the least significant
byte of the specified register and the MSB byte is set to all zeros.

Input Word/Byte from TTY to Memory Automatically. These instruc­
tions unconditionally transfer the character in the Teletype interface
register to memory, automatically. The AIN instruction causes the
TTY character to be loaded into the LSB byte of the memory location
and forces the MSB byte to zero. The AlB instruction causes the
TTY data to be packed two bytes per word of memory.

Input Block from TTY to Memory. This instruction senses the state
of the Input Buffer Full flip-flop and transfers the character in the
Teletype interface register to memory when Input Buffer Full is true
and decrements a word count after each transfer. When the word
count reaches zero, the instruction terminates.

Input Byte from TTY to A or X Register. These instructions uncon­
ditionally transfer the contents of the Input Data Buffer to the
specified register. The MSB byte of the specified register is not
affected.

Read Byte from TTY to A or X Register. These instructions sense
the state of the Input Buffer Full flip-flop and transfer the character
in the Input Data Buffer to the specified register when the flip-flop
is set (true). The MSB byte of the specified register is not affected.

Write from A or X Register to TTY. These instructions sense the
state of the Output Buffer Empty flip-flop and transfer the contents
of the specified register to the Output Data Buffer when the flip-flop
is set (true).

5-10

Instruction

AOT 7,0
AOB 7,0

BOT 7,1

COMPUTER AUTOMATION,INC. ~

Function

Output Word/Byte from Memory to TTY, Automatically. These instruc­
tions unconditionally transfer a word or byte from memory to the
Teletype, automatically. In the case of the AOT instruction, the
Teletype uses the LSB byte of the word and ignores the MSB byte.
The AOB instruction automatically unpacks each byte during sub­
sequent transfers.

Output Block from Memory to TTY. This instruction senses the state
of the Output Buffer Empty flip-flop and transfers the full 16-bit
memory word to the Teletype interface register when Output Buffer
Empty is true and decrements a word count after each transfer. When
the word count reaches zero, the instruction is terminated.

5.2. R.EAL-TIME CLOCK

5 . 2 . 1 Discussion of Usage

The Real-Time Clock (RTC) option provides a means of determining elapsed time and/or
creating a time-of-day clock with software. The RTC keeps time by responding to
electrical pulses of known frequency, such as the output of a crystal oscillator or the
input frequency of an AC power source. The standard configuration uses a 20 MHz crystal
oscillator as the basic timing source. The 20 MHz clock is applied to a counter chain
to produce 10 kHz, 1 kHz and 100 Hz clock sources (timing increments of 100 micro­
seconds, 1 millisecond and 10 milliseconds, respectively). In addition, a 120 Hz clock
source is available (100 Hz when the computer is used with 50 Hz power source). The
desired clock source is selected by a jumper wire, An external timing source may be
applied to the RTC option if some source other than the crystal oscillator or twice the AC
line frequency is desired. This allows the use of almost any timing period, The default
selection if no jumper is installed is the 100 Hz clock source.

If RTC interrupts are enabled, the RTC generates a time interrupt to the computer each
time a clock pulse is detected from the clock source. This interrupt is usually serviced
by an IMS instruction at the interrupt location. Increment results of zero cause the
generation of an Echo signal to the RTC, which in turn generates a Sync interrupt to the
computer. The Sync interrupt is normally serviced by a JST instruction to an interrupt
subroutine. The RTC has been assigned a device address of 8.

In the following examples, an external device must be sampled once a second, using a
10 millisecond clock source:

5-11

Time Interrupt Location
(: 0018 or 0118 if offset)

Sync Interrupt Location
(: 001A or : 011A if offset)

Initialization

Interrupt Subroutine:

INIT

SYNC

IMS

JST

LAM
STA
SEL

SEL

SEL

ENT

LAM
STA

EIN
RTN

COMPUTER AUTOMATION, INC. §]1

COUNT

SYNC

100
COUNT
8,4

8,2

8,0

100
COUNT

SYNC

Increment timing counter

Jump-and-Store to interrupt
subroutine, disable interrupts.

Set timing count to -100.

Ini tialize RT C and clear
un serviced interrupt requests.
Arm sync-allow sync interrupts
when Echo is received.
Enable RTC-allow generation of
Time and Sync interrupts (since
Sync is armed) .

Reserved location for storage
of P register.

Save contents of registers,
status, etc (see Sec. 4. 3)

Reset Timing counter to -100.

Sample external device.
Restore registers and status
(see Sec. 4.3).

Enable interrupts.
Return to mainline program.

The timing counter COUNT becomes zero after being incremented 100 times - after
100 Time interrupts, each 10 milliseconds apart. The RTC responds to the resulting
Echo signal by generating a Sync interrupt which is serviced by the interrupt sub­
routine SYNC. The timing counter COUNT is reset to -100 and the external device is
sampled.

5-12

COMPUTER AUTOMATION,INC. ~

5.2.2 Summary Table

Time Interrupt Location: : 0018 (offset = : 0118)
: 001A (offset = : 011A) Sync Interrupt Location:

Instruction

SEL 8,0

SEL 8,2

SEL 8,3

SEL 8,4
SEL 8,7

5.3 AUTOLOAD

Function

Enable RTC. Allows Time and Sync interrupts to be generated (if
Sync is armed).
Arm Sync. Allows generation of Sync interrupts if RTC is enabled
and Echo received.
Clear RTC interrupts. Resets both Time and Sync interrupt requests.
Does not disable or disarm interrupts, but instead removes interrupt
request history from RTC.
Initialize RTC. Disarms, disables, and clears interrupt requests.
Disarm Sync. Prevents Sync interrupts from being generated without
disabling Time interrupts.

The Autoload (AL) option consists of a read only memory (ROM) preprogrammed with
a binary loader and the necessary logic to execute the loader. The Autoload program
is a complete binary program loader, not just a bootstrap. It includes appropriate
input format and data error checking. Autoload uses locations: 30 through: 3B for
scratch. No program occupying these locations can be loaded correctly with Autoload.

The Autoload option is a multi-device loader which reads programs in standard binary
format and stores them in the computer memory. Autoload may read programs from a
TTY paper tape reader, high speed paper tape reader, 9-track magnetic tape unit or
cassette tape unit.

Device selection, and operation performed, is controlled by entering the appropriate
hex code into the Sense Register prior to depressing the AUTO button. The options
available are:

TTY HSPT Mag Tape Cassette

Load Absolute : 0 : 1 : 2 : 3

Load Relocatable : 8 : 9 :A :B

Verify Absolute : 4 : 5 : 6 : 7

Verify Relocatable :C :D :E :F

5-13

COMPUTER AUTOMATION, INC. ~

The Autoload logic causes all instruction cycles to fetch instructions from the ROM and
all data cycles to access memory. Thus, the loader in the ROM is executed and the
program being read from the peripheral device is treated as data which is stored in
memory.

The presence of the Autoload option can be sensed using device address 0 and function
code o. This instruction is used primarily by diagnostic and executive programs. The
Sense instruction takes the following form:

SEN 0,0 Sense Autoload not installed.

A true response causes a skip to occur (when Autoload is not installed) .

5.4 POWER FAIL/RESTART

5 . 4 . 1 General

Power Fail/Restart (PFR) is an optional feature of the ALPHA computer. It allows the
computer to operate from unreliable AC power sources without the requirement of
human monitors. A low power condition or a temporary power outage is detected in
time for the operating program to prepare for the power loss. When power returns to
normal, the computer is automatically restarted without loss of data or operating
position. Thus, unattended operation is possible.

5.4.2 Power Fail

When a power failure is detected, a power fail interrupt is generated to the Processor.
If the Power Fail interrupt is enabled, the Processor is interrupted to a reserved
location in memory (location: OOIC or : OIIC if offset). The Processor executes the
instruction (usually a JST to a software power-down routine) at that location. The
Processor has 0.9 milliseconds to complete the power-down routine once the PFR Down
Sequence is started before the PFR option halts the computer and protects memory from
transient power conditions.

5.4.3 Restart

When PFR detects power restoration to an acceptable level, a Power Up sequence is
started. PFR re-enables memory, sets the P register to : 0000 and generates a run
signal to the computer. The computer then executes the instruction (normally a JMP
to a software power-up routine) at location : 0000. The computer always undergoes
this sequence when power is applied. The software power-up routine must be com­
pleted within 0.9 milliseconds to allow enough time to process a Power Down interrupt
if one should occur immediately after Power Up.

5-14

COMPUTER AUTOMATION,INC. ~

When the Power Fail/Restart option is installed,
the computer will start running at location : 0000
when power is applied whether the computer was
running. or not (i. e. , independent of prior console
setting) prior to removal of power. To avoid false
starts it is customary for the Power Down subroutine
to save a flag indicating that the computer was in fact
running before power faded.

5. 4.4 Interrupt Control Option

A hardware wiring option may place the Power Fail interrupt outside EIN /DIN control.
Under this option, it is necessary to execute the PFE or PFD instructions to enable or
disable the Power Fail interrupt. Without the option, the EIN or DIN instructions must
be executed and PPE and PFD have no effect.

5. 4. 5 Programming Examples

The following are examples of simple Power Fail/Restart software routines:

Interrupt Location : 0000

Interrupt Location: 001e
(or: 011C if offset)

DOWN

JMP UP

JST DOWN

ENT

SIN 1

STA ASAVE

SIA

5-15

This is the Power Up restart
location. It contains an uncon­
ditional Jump to the Power Up
subroutine.

This is the Power Down interrupt
location. It contains a Jump and
Store to the Power Down sub­
routine. Using a JST automatically
saves the contents of the P register.

Reserved location for storage of
the P register when the JST
instruction at the Power Fail
interrupt location is executed.

Inhibit the Byte Mode if it is set.

S ave the A register

Read the computer status word
to the A register, set the Word
Mode and reset the OV indicator.

COMPUTER AUTOMATION,INC. ~

STA STATUS S ave the computer !Status word.

STX XSAVE S ave the X register.

IMS PSTP Save a flag indicating that the
computer was stopped by a
power failure.

UP ZAR The JMP instruction at the
Power Up restart location
enters here.

EMA PSTP Check flag to see if computer
was stopped by a power failure.

JAN $+2

HLT No - do not restart.

LDX XSAVE This instruction restores the
X register.

LDA STATUS Load the computer status into
SOA the A register, then set the

computer status (Sense Switch,
Data Switches, OV indicator
and Address Mode) .

SIN 1 Inhibit the Byte Mode if it is
set.

LDA AS AVE Restore the A register.

EIN Enable interrupts (including
Power Fail) .

JMP *DOWN Restart the main program by
executing an indirect Jump to
the location specified by the
saved contents of the P register.

AS AVE DATA 0 A register save location.

XSAVE DATA 0 X register save location

STATUS DATA 0 Computer status word save
location.

5-16

PSTP DATA 0

COMPUTER AUTOMATION,INC. ~

Flag indicating Processor
was stopped by a power
failure.

In these examples the contents of the A and X registers, the computer status and the
mainline program location at the time of the Power Fail interrupt are saved during the
Power Down sequence and restored during the Power Up sequence. Note that the
Power Fail interrupt is under EIN /DIN control in this example. If the Power Fail
interrupt were outside EIN /DIN control, the UP routine would have to include a PFE
instruction just prior to the EIN instruction.

5-17

A.1 GENERAL

COMPUTER AUTOMATION. INC. §]1

Appendix A

HEXADECIMAL TABLES

Table A-I and A-2 are quick reference conversion tables that have been included
for the convenience of the user.

A-I

COMPUTER AUTOMATION,INC. ~

Table A -1. Hexadecimal-Decimal Conversions

This table is designed to facilitate conversion of positive hexadecimal integers in standard
single-precision or double-precision format to decimal equivalents. The fourth and eighth
digit positions therefore contain only values in the range: 0 through: 7 .

DECIMAL EQUIV ALENTS
DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT

HEXADECIMAL 8 7 6 5 4 3 2 1

1 134217728 8388608 524288 32768 4096 256 16 1

2 268435456 16777216 1048576 65536 8192 512 32 2

3 402653184 25165814 1572864 98304 12288 768 48 3

4 536870912 33554432 2097152 131071 16384 1024 64 4

5 671088640 41943040 2621440 163840 20480 1280 80 5

6 805306368 50331648 3145728 196608 24576 1536 96 6

7 939524096 28720256 3670016 229376 28672 1792 112 7

8 67108864 4194304 262144 2048 128 8

9 75497472 4718592 294912 2304 144 9

A 83886080 5242880 327680 2560 160 10

B 92274688 5767168 360448 2816 176 11

C 100663296 6291456 393216 3072 192 12

D 109051904 6815744 425984 3328 208 13

E 117440512 7340032 458752 3584 224 14

F 125829120 7864320 491520 3840 240 15

Hexadecimal to decimal conversion is accomplished by summing the decimal equivalents of
the hexadecimal digits. Decimal to hexadecimal conversion involves locating the next lower
decimal number and its hexadecimal equivalent and then taking the difference. Each dif-
ference is treated similarly until the entire hexadecimal number is developed.

A-2

COMPUTER AUTOMATION, INC. ~

Table A-2. ASCII Teletype Codes

Hexadecimal Hexadecimal
SImbol Code Symbol Code

@ CO lS AO
A Cl Al
B C2 " A2
C C3 # A3
D C4 $ A4
E C5 % A5
F C6 & A6
G C7 A7
H C8 (A8
I C9) A9
J CA * AA
K CB + AB
L CC AC
M CD AD
N CE AE
0 CF / AF
p DO 0 BO
Q Dl 1 Bl
R D2 2 B2
S D3 3 B3
T D4 4 B4
U D5 5 B5
V D6 6 B6
W D7 7 B7
X D8 8 B8
y D9 9 B9
Z DA BA
[DB BB
\ DC < BC
] DD = BD

t DE > BE
~ DF ? BF

NULL 00 CR 8D
BELL 87 LF 8A

RUBOUT FF

A-3

COMPUTER AUTOMATION. INC. §]1

Appendix B

RECOMMENDED DEVICE AND

INTERRUPT ADDRESSES

B.1 GENERAL

Table B-1 and B- 2 list recommended Device and Interrupt Addresses to prevent
possible conflict during future expansion to other I/O modules.

B-1

COMPUTER AUTOMATION. INC. ~

Table B-1. Recommended Device Addresses

DEVICE

Power Fall Restart*

Dual TTY/CRT (TTY1/CRT1)
Dual TTY /CRT (TTYO/CRTO)
Line Printer (LP)
Card Reader (CR)
Paper Tape Punch(PTP)
Paper Tape Reader (PTR)
Processor TTY* (TTY)
Real Time Clock* (RTC)
Magnetic Tape (Mag Tape)

Disc
Cassette

16-Bit I/O (A/D System)

Plotter

32-Bit Relay In (RCIM)
Punch Alternate
16-Bit Input/Output (16-Bit I/O)
64-Bit Input (64-Bit In)
64-Bit Output (64-Bit Out)
Priority Interrupt Module (PIM)
32-Bit Relay Out (RCOM)
103 Data Set Controller (103 DSC)

DEVICE ADDRESSES
STANDARD ACTUAL

00

01
02
03
04
05
06(17)
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D

IE
1F

*Processor mounted options. Device Addresses non-alterable.
() Indicates suggested alternate.

B-2

COMPUTER AUTOMATION. INC. ~

Table B- 2. Scratchpad/Page 0 Recommended Interrupt Address Map

o

OO-IF 20-3F 40-5F 60-7F 80-9F AO-BF CO-DF EO-FF
0 ; 00* : 20· ; 80

POWER 64-BIT PIM(O) -
1

I UP OUT -
: 02 : 22 : 42 ; 62 : 82 :A2 2

PIM(l)

3 TTY MAG LP TTYO/CRTO PLOTTER
WORD TAPE WORD WORD WORD

3

4 WORD : 84 4 - PIM(2) -
5

5

6

7

: 06 ; 26 : 46 : 66 : 86 :A6
TTY MAG TAPE LP TTYO/CRTO PIM (3) PLOTTER
EOB - EOB EOB - EOB - -- EOB

6

7

8
.

: 88 8

PIM(4) -
9

9

A

B

:OA :2A :4A :6A :8A :AA
f- M.H. PIM(5)

~ ...
DISC PTR/PTP CR TTYI/CRTI RCIM

A

B

C

WORD WORD
I- WORD WORD

:8C
. -C

D
I- PIM(6) -, D

E : 2E :4E :6E : 8E :A,E E
PTR/PTP CR . TTYI/CRTI PIM(7) RCIM ~ -

F EOB EOB EOB EOB F

- -o : 10· : 30·· : 50 : 90 0

- 64-BIT 103 DSC CAS~ETTE PIM(8) - -IN ANSWER ADDRESS 1

2 :12 : 32·· : 52 : 72 : 92 2
MEMORY PIM(9) -f-
PARITY 103 DSC CASSETTE l6-BIT I/O 3 3

INPUT WORD WORD -4 WORD : 94 4
f- PIM(lO) - - -

5 5

6 : 36·· : 56 : 76 : 96 6
103 DSC CASSETTE 16-BIT I/O PIM(ll) r- -t- t- -7 IN EOB EOP EOB

-
8 :18 :38 : 98 8

- RTC 103 DSC PIM(l2) - ~ -9 CLOCK PAR ERR/FLT 9

A : lA : 3A·· 5A 7A :9A A
RTC 103 DSC RCOM 16-BIT I/O PIM(13)

-B - SYNC OUTPUT - WORD ~ WORD B
WORD ~ . -

C : IC :9C C

POWER PIM(l4)
~ -- DOWN D D

E :lE : 3E·· : 5E :7E : 9E E
I- CONS 103 DSC RCOM 16-BIT I/O PIM(l5) - - -

F INT. TRAP OUT EOB EOB EOB F

xx = Interface Generated Interrupt Address EOB = End-of-Block
• = Non-Alterable Address EOP = End-of-Operation
.. = Locations 30-3F are reserved for Autoload opti.:>n, if used (l03 DSC addresses must be relocated.)

B-3

COMPUTaI AUTOMATION. INC. ~

Appendix C

INSTRUCTION SET BY CLASS

This appendix contains the ALPHA LSI instruction set in alphabetical order. For each
instruction, reference is made to one of the assembler syntax formats listed below.

[LABEL] OP-CODE (COMMENTS]

No Operator = Direct Addressing
* = Indirect Addressing (multi -level)
@ = Indexed Addressing

*@ = Indirect Post-Indexed Addressing
(multi-level)

Figure C-1. Class 1 - Single-Word Memory Reference Instruction Format

[LABErJ OP-CODE [*] EXPRESSION 1, WXPRESSION 2] [COMMENT~

EXPRESSION 1 represents an address to be
stored in the second word of the instruction.
EXPRESSION 2 is an optional absolute instruc­
tion count in the range 0 through 16 for MPY
and DVD and 0 through 31 for NRM.

Figure C-2. Class 2 - Double-Word Memory Reference Instruction Format

[LABEL] OP-CODE EXPRESSION [COMMENTS]

EXPRESSION must be absolute and in the range
: 0 through : FF. This format is also used by the
STOP and SCM instructions.

Figure C-3. Class 3 - Byte Immediate Instruction Format

C-1

LABEL OP-CODE

COMPUTER AUTOMATION, INC. ~

EXPRESSION COMMENTS

EXPRESSION must represent a location within
- 63 through +64 words.

Figure C-4. Class 4 - Conditional Jump Instruction Format

LABEL OP-CODE EXPRESSION COMMENTS

EXPRESSION must be absolute and in the range
1 through 8 (single register) or 1 through 16
(double register). This format is also used by
the SIN instruction with an upper range limit
of 6.

Figure C-5. Class 5 - Register Shift Instruction Format

LABEL

LABEL

OP-CODE COMMENTS

There are no expressions in the operand field.

Figure C. 6. Class 6 - Nonvariable Instruction Format

OP-CODE EXPRESSION 1 ,EXPRESSION 2 COMMENTS

Both EXPRESSION 1 and EXPRESSION 2 must be
absolute.
If EXPRESSION 2 is present, EXPRESSION 1 must
be in the range : 0 through : 1F .
If EXPRESSION 2 is not present, EXPRESSION 1
must be in the range : 0 through : FF .

Figure C -7. Class 7 - Input/Output Instruction Format

LABEL JOC EXPRESSION 1, EXPRESSION 2 COMMENTS

EXPRESSION 1 must be absolute and in the range
: 0 through : 3F .
EXPRESSION 2 must represent a location with -63
through +64 words.

Figure C-8. Class 8 - JOC Jump-On-Condition Instruction Format

C-2

COMPUTER AUTOMATION, INC. ~

LIST OF INSTRUCTIONS

MEMORY REFERENCE (Class 1)

Instruction Reference
Code in Hex Page

Arithmetic
ADD Add to A register 8800 3-10
ADDB Add Byte to A 8800 3-10
SUB Subtract from A register 9000 3-10
SUBB Subtract Byte from A 9000 3-10

Logic
AND AND to A 8000 3-11
ANDB AND byte with A 8000 3-11
lOR Inclusive OR to A AOOO 3-11
IORB Inclusive OR Byte with A AOOO 3-11
XOR Exclusive OR to A A800 3-11
XORB Exclusive OR Byte with A A800 3-11

Data Transfer
LDA Load A BOOO 3-12
LDAB Load A with Byte BOOO 3-12
LDX Load X EOOO 3-12
LDXB Load X with Byte EOOO 3-12
STA Store A 9800 3-12
STAB Store Byte from A 9800 3-12
STX Store X E800 3-12
STXB Store Byte from X E800 3-12
EMA Exchange A and Memory B800 3-12
EMAB Exchange A and Memory Byte B800 3-12

Program Transfer
JMP Unconditional Jump FOOO 3-13
JST Jump and Store P Counter F800 3-13
IMS Increment Memory, Skip on Zero D800 3-13
SCM Scan Memory CDOO 3-13
CMS Compare A with Memory, skip D600 3-12

(high, low, equal test)
CMSB Compare A with Memory Byte, D600 3-13

skip (high, low, equal test)

C-3

COMPU'lER AUTOMATION •. INC. §!:1

DOUBLE WORD MEMORY REFERENCE (Class 2)

Instruction Reference
Code in Hex Page

DVD Divide 1970 3-14
lVIPY Multiply and Add 1960 3-15
NRM Normative A and X 1940 3-16

BYTE IMMEDIATE (Class 3)

AXI Add to X Register Immediate C200 3-17
SXI Subtract from X Register Imrrediate C300 3-18
CAl Compare to A Immediate, skip if COOO 3-17

not equal
CXI Compare to X Immediate, skip if C100 3-17

not equal
LAP Load A Positive Immediate C600 3-17
LXP Load X Positive Immediate C400 3-18
LAM Load A Minus Immediate C700 3-17
LXM Load X Minus Immediate C500 3-17

CONDITIONAL JUMP (Class 4 or 8)

Microcoded (Class 8)
JOC Jump on Condition Specified 2000 3-18

Arithmetic (Class 4)
JAG Jump if A Greater than Zero 3180 3-20
JAP Jump if A Positive 3080 3-20
JAZ Jump if A Zero 2100 3-20
JAN Jump if A Not Zero 3100 3-20
JAL Jump if A less than or equal to 3-20

Zero 2180 3-20
JAM Jump if A Minus 2080 3-20
JXZ Jump if X Zero 2800 3-20
JXN Jump if X not Zero 3800 3-20

Control (Class 4)
JSS Jump if Sense Sense Switch Set 3400 3-20
JSR Jump if Sense Switch Reset 2400 3-20
JOS Jump if OV Set 2200 3-20
JOR Jump if OV Reset 3200 3-20

C-4

COMPUTER AUTOMATION,INC. ~

SHIFT CLASS (Class 5)

Instruction Reference
Code in Hex Page

Single Register

Arithmetic
ARA Arithmetic Right A 1000 3-21
ARX Arithmetic Right X 10A8 3-21
ALA Arithmetic Left A 1050 3-21
ALX Arithmetic Left X 1028 3-21

Logical
LRA Logical Right A 1300 3-22
LRX Logical Right X 13A8 3-22
LLA Logical Left A 1350 3-22
LLX Logical Left X 1358 3-22

Rotate
RRA Rotate Right A with OV 1100 3-23
RRX Rotate Right X with OV 11A8 3-23
RLA Rotate Left A with OV 1150 3-23
RLX Rotate Left X with OV 1128 3-23

Double Register

Logical
LLL Long Logical Left 1BOO 3-24
LLR Long Logical Right 1B80 3-24

Rotate
LRL Long Rotate Left with OV 1900 3-24
LRR Long Rotate Right with OV 1980 3-24

REGISTER CHANGE (Class 6)

Accumulator
ZAR Zero A Register 0110 3-25

ARP Set A Register to Positive 1 0350 3-25

ARM Set A Register to Minus 1 0010 3-25

CAR Complement (l's) A Register 0210 3-25

NAR Negate A Register 0310 3-25

IAR Increment A Register 0150 3-25

DAR Decrement A Register OODO 3-25

C-5

COMPUtER AUTOMATION,IIK. ~

Instruction Reference
Code in Hex Page

Index
ZXR Zero X Register 0108 3-26
XRP Set X Register to Positive 1 0528 3-26
XRM Set X Register to Minus 1 0008 3-26
CXR Complement (1' s) X Register 0408 3-26
NXR Negate X Register 0508 3-26
IXR Increment X Register 0128 3-26
DXR Decrement X "Register 00A8 3-26

Overflow
SOY Set Overflow 1400 3-26
ROV Reset Overflow 1200 3-26
COY Complement Overflow 1600 3-26
SAO Sign of A to OV 1340 3-26
SXO Sign of X to OV 1320 3-26
LAO Least significant bit of A to OV 13CO 3-26
LXO Least significant bit of X to OV 13AO 3-26

Multi-Register
ZAX Zero A and X Register 0118 3-27
AXP Set A and X Registers to Positive 1 0358 3-27
AXM Set A and X Registers to Minus 1 0018 3-27
TAX Transfer A to X 0048 3-27

TXA Transfer X to A 0030 3-27
ANA AND of A and X to A 0070 3-26

ANX AND of A and X to X 0068 3-26
NRA NOR of A and X to A 0610 3-27
NRX NOR of A and X to X 0608 3-27
CAX l' s Complement (A) and put in X 0208 3-27
CXA l' s Complement (X) and put in A 0410 3-27
NAX Negate (A) and put in X 0308 3-27
NXA Negate (X) and put in A 0510 3-27
lAX Increment (A) and put in X 0148 3-27
lXA Increment (X) and put in A 0130 3-27

DAX Decrement (A) and put in X OOCS 3-27

DXA Decrement (X) and put in A OOBO 3-27

Console Register
ICA Input Console Data Register to A 5804 3-28

ICX Input Console Data Register to X 5A04 3-28

ISA Input Console Sense Register to A 5801 3-28

ISX Input Console Sense Register to X 5A01 3-28

OCA Output A to Console Data Register 4404 3-28

OCX Output X to Console Data Register 4604 3-28

C-6

COMPUTER AUTOMATION. INC. ~

CONTROL (Class 6)

Instruction Reference
Code in Hex Page

Processor
NOP No operation 0000 3-29
HLT Halt 0800 3-29
STOP Halt with Operand 0800 3-29
WAIT Wait for Interrupts F600 3-29

Mode Control
SBM Set Byte Operand Mode OEOO 3-29
SWM Set Word Operand Mode OFOO 3-29

Status
SIN Status Inhibit 6800 3-30
SIA Status Input to A 5800 3-30
SIX Status Input to X 5AOO 3-30
SOA Status Output from A 6COO 3-30
SOX Status Output from X 6EOO 3-30

Interrupts
EIN Enable Interrupts OAOO 3-30
DIN Disable Interrupts oeoo 3-30
CIE Console Interrupt Enable 4005 3-30
CID Console Interrupt Disable 4006 3-30
PFE Power Fail Interrupt Enable 4002 3-31
PFD Power Fail Interrupt Disable 4003 3-31
TRP Trap 4007 3-31

INPUT /OUTPUT (Class 7)

Control
SEL Select 4000 3-32
SEA Select and Present A 4400 3-32
SEX Select and Present X 4600 3-32
SEN Sense and Skip on Response 4900 3-32
SSN Sense and S kip on no Response 4800 3-32

C-7

COMPtmR AUTOMATION,INC. ~

Instruction Reference
Code in Hex Page

Unconditional Word
INA Input Word to A 5800 3-33
INAM Input Word to A Masked 5COO 3-33
INX Input Word to X 5AOO 3-33
INXM Input Word to X Masked 5EOO 3-33
OTA Output A 6COO 3-33
OTX Output X 6EOO 3-33
OTZ Output Zero's 6800 3-33

Conditional Word
RDA Read Word to A 5900 3-34
RDAM Read Word to A Masked 5DOO 3-34
RDX Read Word to X 5BOO 3-34
RDXM Read Word to X Masked 5FOO 3-34
WRA Write A 6DOO 3-34
WRX Write X 6FOO 3-34
WRZ Write Zero's 6900 3-34

Unconditional Byte
IBA Input Byte to A 7800 3-35
IBAM Input Byte to A Masked 7COO 3-35
IBX Input Byte to X 7AOO 3-35
IBXM Input Byte to X Masked 7EOO 3-35

Conditional Byte
RBA Read Byte to A 7900 3-35
RBAM Read Byte to A Masked 7DOO 3-36
RBX Read Byte to X 7BOO 3-36
RBXM Read Byte to X Masked 7FOO 3-36

Block
BIN Input Block to Memory 7100 3-37
BOT Output Block from Memory 7500 3-37

Automatic
AIN Automatic Input to Memory--Word 5000 3-40
AOT Automatic Output from Memory--Word 6000 3-40
AlB Automatic Input to Memory--Byte 5400 3-40
AOB Automatic Output from Memory--Byte 6400 3-40

C-8

COMPUTER AUTOMATION,INC. ~

Appendix D

INSTRUCTION SET IN NUMERICAL ORDER

This appendix contains the ALPHA LSI instruction set in machine code in numerical
order. For each instruction, reference is made to one of the machine code formats
listed below. Instructions with variable fields (D, K, etc.) have been appended
with asterisks (*).

115 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D = Address Field (0 to 255)
I = Direct/Indirect Address Bit
M = Address Mode Code

11 I 0. CooE I M II I 0 I
M I Word Mode (Word Operand)

00 0
01 0
10 0
11 0
00 1
01 1
10 1
11 1

Y = (D), Words: 00-: FF
Y = (D) + (P) + 1
Y + (D) + (X)
Y = (P) - (D)
AP = (D), AP = (AP) ,Y = (AP)
AP.= (D) + (P) + 1, AP = (AP) ,Y = (AP)
AP = (D), AP = (AP) ,Y = (AP) + (X)
AP = (P) - (D), AP = (AP) , Y = (AP)

Byte Mode (Byte Operand)

Y = (D) , Bytes: 00-: FF
Y = (D) + (P) 1, Byte 0
Y = (D) + (X)
Y = (D) + (P) + 1, Byte 1
AP = (D), Y = (AP)
AP = (D) + (P) + 1, Y = (AP)
AP = (D), Y = (AP) + (X)
AP = (P) - (D), Y = (AP)

Figure D-1. Single-Word Memory Reference Instruction Machine Code Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o 0 I 0 11 11 1 0 I 0 11] 0 I OP CODE I K

AODRESS

Op Code = 100 for NRM 16 through 31
= 101 for NRM 0 through 15
= 110 for MPY
= 111 for DVD

I = Indirect Addressing
1 = Indirect Address
o = Direct Address

K = Instruction Count

Figure D-:-2. Double-Word Memory Reference Instruction Machine Code Format

D-l

Bits

12

7-11

6

0-5

COMPUTER AUTOMATION,INC. ~

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 11 H 0 I 0 I OP CODE I 0

D = 8-Bit Immediate Operand

Figure D -3. Byte Immediate Instruction Machine Code Format

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field

G

Conditions

R

D Field

o FIElD

Definition

Test Group Indicator:

G = 1 for AND Group
G = 0 for OR Group

Microcode of Test Conditions:

Bit AND Group OR Group

7 A Positive A Negative
8 A#O A=O
9 OV Reset OV Set (Resets OV)

10 Sense Indicator Sense Indicator
on off

11 X#O X = 0

Jump Direction:

R = 0 for Forward Jump
R = 1 for Backward Jump

Jump Distance (-63 to +64)

Figure D-4. Conditional Jump Instruction Machine Code Format

D-2

COMPUTER AUTOMATION,INC. ~

" 14 13 12 11 10 II , 7 • I • 3 2 I 0

1
0

I 0 1 01 1 10 1 OP CODE K

K = Shift Control Count, Shift Will Move 1 + K Bit Positions.
Op Code = Shift Control Code Which Selects Source, Type of Shift,

and Location of Results

Figure D-5 Single-Register Shift Instruction Machine Code Format

I~. I. I J 12 " 10 II • 7 6 5 3 2 I 0

OP CODE K

Op Code = Shift Control Code Which Selects the Type of Long Shift to be Executed
K = Shift Count. Shift Will Move 1 + K Bit Positions

Figure D-6 Double-Register Shift Instruction Machine Code Format

16 " 13 12 11 10 II 8 7 tJ 5 4 3 2 1 0

OP CODE

Op Code = The Register Change Control Code which specifies the Source, Operation,
and Location of Results

Figure D 7. Register Change Instruction Machine Code Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP CODE OP CODE, H or SC

H = Halt ID Indicator
SC = Sin Instruction Count - 1

Figure D -:-8. Control Instruction Machine Code Format

D-3

COMPUTER AUTOMATION,INC ~

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP CODE I DEVICE
ADDRESS I FUNCTION J

CODE

Function Code =Specifies which device function or register
Device Address = The device's assigned address

Opcode = Operation Code Specifying One of the I/O Instructions

Figure D-9. Input/Output Instruction Machine Code Format

p

15 14 13 " 11 10 II • 7 II 5 4 3 , 1 0

DEVICE
ADDRESS I FUNCTION

CODE

P+1 1 BYTE/WORD COUNTER, we (2'S COMPLEMENT)

P+2 0 ADDRESS POINTER, AP (START LOCATION -1>

Opcode; 01 = Input, 10 = Output
B = 0: Word Transfer
B = 1: Byte Transfer
Byte/Word Counter = Number of Executions Until Skip or Echo
Address Pointer = Memory Location of I/O Transaction

Figure D-I0 Automatic Input/Output Instruction l\Iachine Code Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

o

OP CODE I DEVICE
ADDRESS

BASE ADDRESS - 1

I FUNCTION
CODE

Figure D -11. Block Input/Output Instruction Machine Code Format

D-4

COMPUTER AUTOMATION, INC. ~

Instruction Instruction Machine Code Reference
Code In Hex Mnemonic Description Format Page

0000 NOP NO OPERATION ,7 3-24

0008 XRM X REGISTER TO MINUS ONE 7 3-26

0010 ARM A REGISTER TO MINUS ONE 7 3-25

0018 AXM A AND X REGISTERS TO MINUS ONE 7 3-27

0030 TXA TRANSFER X TO A 7 3-27

0048 TAX TRANSFER A TO X 7 3-27

0068 ANX AND OF A AND X TO X 7 3-26

0070 ANA AND OF A AND X TO A 7 3-26

00A8 DXR DECREMENT X REGISTER 7 3-26

OOBO DXA DECREMENT X TO A 7 3-27

00C8 DAX DECREMENT A TO X 7 3-27

OODO DAR DECREMENT A REGISTER 7 3-25

0108 ZXR ZERO X REGISTER 7 3-26

0110 ZAR ZERO A REGISTER 7 3-25

0118 ZAX ZERO A AND X 7 3-27

0128 IXR INCREMENT X REGISTER 7 3-26

0130 lXA INCREMENT X TO A 7 3-27

0148 lAX INCREMENT A TO X 7 3-27

0150 IAR INCREMENT A REGISTER 7 3-25

0208 CAX COMPLEMENT OF A TO X 7 3-27

0210 CAR COMPLEMENT A REGISTER 7 3-25

0308 NAX NEGATE A TO X 7 3-27

0310 NAR NEGATE A REGISTER 7 3-25

D-5

COMPUTER AUTOMATION. INC. §!:1

Instruction Instruction Machine Code Reference
Code in Hex Mnemonic Description Format Page

0350 ARP A REGISTER TO PLUS ONE 7 3-25

0358 AXP A AND X REGISTERS TO PLUS ONE 7 3-27

0408 CXR COMPLEMENT X REGISTER 7 3-26

0410 CXA COMPLEMENT OF X TO A 7 3-27

0508 NXR NEGATE X REGISTER 7 3-26

0510 NXA NEGATE X TO A 7 3-27

0528 XRP X REGISTER TO PLUS ONE 7 3-26

0608 NRX NOR OF A AND X TO X 7 3-27

0610 NRA NOR OF A AND X TO A 7 3-27

0800 HLT HALT 8 3-29

0800 STOP* HALT WITH OPERAND 8 3-29

OAOO EIN ENABLE INTERRUPTS 8 3-30

OCOO DIN DISABLE INTERRUPTS 8 3-30

OEOO SBM SET BYTE MODE 8 3-29

1028 ALX* ARITHMETIC SHIFT X LEFT 5 3-21

1050 ALA* ARITHMETIC SHIFT A LEFT 5 3-21

10A8 ARX* ARITHMETIC SHIFT X RIGHT 5 3-21

10DO ARA* ARITHMETIC SHIFT A RIGHT 5 3-21

1128 RLX* ROTATE X LEFT WITH OVERFLOW 5 3-23

1150 RLA* ROTATE A LEFT WITH OVERFLOW 5 3-23

11A8 RRX* ROTATE X RIGHT WITH OVERFLOW 5 3-23

11DO RRA* ROTATE A RIGHT WITH OVERFLOW 5 3-23

1200 ROV RESET OVERFLOW 5 3-26

D-6

COMPUTER AUTOMATION. INC. ~

Instruction Instruction Machine Code Reference
Code in Hex Mnemonic Description Format Page

1320 SXO SIGN OF X TO OVERFLOW 5 3-26

1328 LLX* LOGICAL SHIFT X LEFT 5 ·3-22

1340 SAO SIGN OF A TO OVERFLOW 5 3"!'26

1350 LLA* LOGICAL SHIFT A LEFT 5 3-22

13AO LXO LSB OF X TO OVERFLOW 5 3-26

13A8 LRX* LOGICAL SHIFT X RIGHT 5 ~ -3-22

13CO LAO LSB OF A TO OVERFLOW 5 3-26

13DO LRA* LOGICAL SHIFT A RIGHT 5 3-22

1400 SOV SET OVERFLOW 5 3-26

1600 COV COMPLEMENT OVERFLOW 5 3-26

1900 LRL* LONG ROTATE LEFT 6 3-24

1940 NRM NORMALIZE A AND X 2 3-16

1960 MPY MULTIPLY AND ADD 2 3-15

1970 DVD DIVIDE 2 3-14

1980 LRR* LONG ROTATE RIGHT 6 3-24

1BOO LLL* LONG LOGICAL SHIFT LEFT 6 -3-24

1B80 LLR* LONG LOGICAL SHIFT RIGHT 6 3-24

2080-3F80 Forward JOC* JUMP ON CONDITION 4 3-18
20CO-3FCO Backward

2080 Forward JAM * JUMP IF A MINUS 4 3-20

20CO Backward

2100 Forward JAZ* JUMP IF A ZERO 4 3-20

2140 Backward

2180 Forward JAL* JUMP IF A LESS THAN ONE 4 3-20
21CO Backward

D-7

COMPU1£R AUTOMATION,INC. ~

Instruction Instruction Machine Code Reference
Code in Hex Mnemonic Description Format Page

2200 Forward JOS* JUMP IF OVERFLOW SET 4 3-20
2240 Backward

2400 Forward JSR* JUMP IF SENSE SWITCH RESET 4 3-20
2440 Backward

2800 Forward JXZ* JUMP IF X ZERO 4 3-20
2840 Backward

3080 Forward JAP* JUMP IF A POSITIVE 4 3-20
30CO Backward

3100 Forward JAN * JUMP IF A NOT ZERO 4 3-20
3140 Backward

3180 Forward JAG* JUMP IF A GREATER THAN ZERO 4 3-20
31C 0 Backward

3200 Forward JOR* JUMP IF OVERFLOW RESET 4 3-20
3240 Backward

3400 Forward JSS* JUMP IF SENSE SWITCH SET 4 3-20
3440 Backward

3800 Forward JXN* JUMP IF X NOT ZERO 4 3-20
3840 Backward

4000 SEL* SELECT FUNCTION 9 3-32

4002 PFE POWER FAIL ENABLE 9 3-31

4003 PFD POWER FAIL DISABLE 9 3-31

4005 CIE CONSOLE INTERRUPT ENABLE 9 3-31

4006 CID CONSOLE INTERRUPT DISABLE 9 3-31

4007 TRP TRAP 9 3-31

4400 SEA* SELECT AND PRESENT A 9 3-31

4404 OCA OUTPUT A TO CONSOLE REGISTER 9 3-28

4600 SEX* SELECT AND PRESENT X 9 3-32

D-8

COMPUTER AUTOMATION,INC. ~

Instruction Instruction Machine Code Reference
Code In Hex Mnemonic Description Format Page

4604 OCX OUTPUT X TO CONSOLE REGISTER 9 3-28

4800 SSN* SENSE AND SKIP ON NO RESPONSE 9 3-32

4900 SEN* SENSE AND SKIP ON RESPONSE 9 3-32

5000 AIN* AUTOMATIC INPUT WORD TO MEMORY 10 3-40

5400 AIB* AUTOMATIC INPUT BYTE TO MEMORY 10 3-40

5800 INA* INPUT TO A REGISTER 9 3-33

5800 SIA STATUS INPUT TO A 9 3-30

5801 ISA INPUT SENSE REGISTER TO A 9 3-28

5804 ICA INPUT CONSOLE REGISTER TO A 9 3-28

5900 RDA* READ WORD TO A REGISTER 9 3-34

5AOO INX* INPUT TO X REGISTER 9 3-33

5A01 ISX INPUT SENSE REGISTER TO X 9 3-28

5A04 ICX INPUT CONSOLE REGISTER TO X 9 3-28

5BOO RDX* READ WORD TO X REGISTER 9 3-34

5COO INAM* INPUT TO A REGISTER MASKED 9 3-33

5DOO RDAM* READ WORD TO A REGISTER MASKED 9 3-34

5EOO INXM* INPUT TO X REGISTER MASKED 9 3-33

5FOO RDXM* READ WORD TO X REGISTER MASKED 10 3-34

6000 AOT* AUTOMATIC OUTPUT WORD FROM 10 3-40
MEMORY

6400 AOB* AUTOMATIC OUTPUT BYTE FROM 10 3-40
MEMORY

6800 OTZ* OUTPUT ZERO 9 3-33

D-9

COMPUTER AUTOMATION, INC. ~

Instruction Instruction Machine Code Reference
Code In Hex Mnemonic Description Format Page

6800 SIN* STATUS INHIBIT 8 3-30

6900 WRZ* WRITE ZERO 9 3-34

6COO OTA* OUTPUT A REGISTER 9 3-33

6COO SOA STATUS OUTPUT FROM A 9 3-30

6DOO WRA* WRITE FROM A REGISTER 9 3-34

6EOO OTX* OUTPUT X REGISTER 3 3-33

6EOO SOX STATUS OUTPUT FROM X 9 3-30

6FOO WRX* WRITE FROM X REGISTER 3 3-34

7100 BIN* BLOCK IN 11 3-30

7500 BOT* BLOCK OUT 11 3-37

7800 IBA* INPUT BYTE TO A REGISTER 9 3-35

7900 RBA* READ BYTE TO A REGISTER 9 3-35

7AOO IBX* INPUT BYTE TO X REGISTER 9 3-35

7BOO RBX* READ BYTE TO X REGISTER 9 3-36

7COO IBAM* INPUT BYTE TO A REGISTER MASKED 9 3-35

7DOO RBAM* READ BYTE TO A REGISTER MASKED 9 3-36

7EOO IBXM* INPUT BYTE TO X REGISTER MASKED 9 3-35

7FOO RBXM* READ BYTE TO X REGISTER MASKED 9 3-36

8000 AND* AND TO A 1 3-11

8000 ANDB* AND BYTE TO A 1 3-11

8800 ADD* ADD TO A 1 3-10

8800 ADDB* ADD BYTE TO A 1 3-10

D-I0

COMPUTER AUTOMATION,INC. ~

Instruction Instruction Machine Code Reference
Code In Hex Mnemonic Description Format Page

9000 SUB* SUBTRACT FROM A 1 3-40

9000 SUBB* SUBTRACT BYTE FROM A 1 3-10

9800 STA* STORE A 1 3-12

9800 STAB* STORE A BYTE 1 3-12

AOOO IOR* INCLUSIVE OR TO A 1 3-11

AOOO IORB* INCLUSIVE OR BYTE TO A 1 3-11

A800 XOR* EXCLUSIVE OR TO A 1 3-11

A800 XORB* EXCLUSIVE OR BYTE TO A 1 3-11

BOOO LDA* LOAD A 1 3-12

BOOO LDAB* LOAD A BYTE 1 3-12

B800 EMA* EXCHANGE MEMORY AND A 1 3-12

B800 EMAB* EXCHANGE MEMORY BYTE AND A 1 3-12

COOO CAI* COMPARE TO A IMMEDIATE 3 3-17

C100 CXI* COMPARE TO X IMMEDIATE 3 3-17

C200 AXI* ADD TO X IMMEDIATE 3 3-17

C300 SXI* SUBTRACT FROM X IMMEDIATE 3 3-18

C400 LXP* LOAD X POSITIVE IMMEDIATE 3 3-18

C500 LXM* LOAD X MINUS IMMEDIATE 3 3-17

C600 LAP* LOAD A POSITIVE IMMEDIATE 3 3-17

C700 LAM * LOAD A MINUS IMMEDIATE 3 3-17

CDOO SCM* SCAN MEMORY 1 3-13

DOOO CMS* COMP ARE AND SKIP IF HIGH OR EQUAL 1 3-12

D-11

COMPUTER AUTOMATION,INC. ~

Instruction Instruction Machine Code Reference
Code In Hex Mnemonic Description Format Page

DOOO CMSB* COMP ARE BYTE AND SKIP IF HIGH OR 1 3-13
EQUAL

D800 IMS* INCREMENT MEMORY AND SKIP ON 1 3-13
ZERO RESULT

EOOO LDX* LOAD X 1 3-12

EOOO LDXB* LOAD X BYTE 1 3-12

E800 STX* STORE X 1 3-12

E800 STXB STORE X BYTE 1 3-12

FOOO Jl\IP* JUMP UNCONDITIONAL 1 3-13

F600 WAIT WAIT FOR INTERRUPTS 1 3-29

F800 JST* JUMP AND STORE 1 3-13

D-12

COMPUTER AUTOMATION, INC. f3!:1
Appendix E

ALPHA LSI EXECUTION TIMES

E.1 GENERAL

The Appendix defines the execution time of each instruction in the ALPHA LSI instruction
set. A variety of memories, with varying access times, are offered with the ALPHA LSI.
The variation in memory access time makes a tabulation of execution times difficult. For
this reason time calculation algorithms are provided. These algorithms are useful with
any memory access time by making the appropriate sUbstitution. Table E-llists the
standard core memory variables that are used in the execution time algorithms. Table
E- 2 provides a complete tabulation of instructions by class and subclass along with the
time calculation algorithm and representative standard core memory timing.

Table E-l. Standard Core Memory Algorithm Variables

c = Memory Cycle Time + 1.6 #J. s
m = Memory Access Time, Effective = 0.6 #J. s
t = Processor Microcycle Time + 1. 6 #J.S

i = Number of Indirect Address Levels
w = Number of Words or Bytes Transferred or Scanned
n = Number of Shifts
A = Address Calculation Time for Memory Reference Instructions:

DIRECT SCRATCHPAD t+m
DIRECT RELATIVE t+m
DIRECT INDEXED 2t + m
INDIRECT SCRATCHPAD (2t + m)i
INDIRECT RELATIVE t + (2t + m)i
INDIRECT INDEXED t + (2t + m)i

E-l

2.2
2.2
3.8
3.8i
1.6 + 3.8i
1.6 + 3.8i

COMPUTER AUTOMATION, INC. ~

Table E-2. Execution Time Algorithms

MEMORY REFERENCE

ARITHMETIC

LOGICAL

ADD
SUB

AND
lOR
XOR

DATA TRANSFER
EMA
LDA
LDX
STA
STX

PROGRAM TRANSFER
CMS
IMS
JMP
JST (Non-Interrupt)
JST (Interrupt)
SCN

DOUBLE WORD MEMORY REFERENCE

MPY

BYTE IMMEDIATE

DVD
NRM (count expires)
NRM (count does not

AXI
CAl
CXI
LAM
LAP
LXM
LXP
SXI

expire)

TIME CALCULATION
ALGORITHM

4t + m + A
4t + m + A

4t + m + A
4t + m + A
4t + m + A

5t + 2m + A
3t + m + A
3t + m + A
3t + m + A
3t + m + A

St+m+A
6t + 2m + A
3t + A
5t + m + A
4t + m + A
(St + m + A)w

69t + 3m + (2t +m)i
74t + 3m + (2t +m)i
lIt + 4m +6nt + (2t + m)i
13t + 4m + 6nt + (2t +m)i

3t + m
4t + m
4t + m
3t + m
3t + m
3t + m
2t + m
3t + m

E-2

REPRESENTATIVE
TIMING (t=l. 6 j.ts)

in microseconds

7 + A
7 + A

7 + A
7 + A
7 + A

9.2 + A
4.S + A
4.S + A
4.S + A
4.S + A

13.4 + A
10. S + A
4.2 + A
S.6 + A
7 + A
(13.4+A)w

112.2 + 3. Si
120.2+ 3. Si
20.0 + 9.6n +3.Si
23 . 2 + 9. 6n + 3. Si

4.8
7.0
7.0
4.S
4.S
4.S
4.S
4.S

COMPUTER AUTOMATION. INC. ~

Table E- 2. Execution Time Algorithms (Cont'd)

DOUBLE REGISTER LOGICAL SHIFTS

LLL }
LLR

DOUBLE REGISTER ROTATE SHIFTS
LRL }
LRR

REGISTER CHANGE

A REGISTER CHANGE
ARM
ARP
CAR
DAR
IAR
NAR
ZAR

X REGISTER CHANGE
CXR
DXR
IXR
NXR
XRM
XRP
ZXR

OVERFLOW REGISTER CHANGE
COV
LAO
LXO
ROV
SAO
SOV
SXO

TIME CALCULATION
ALGORITHM

2t + m + 2nt

2t + m + 2nt

3t + m

3t + m

3t + m
4t + m
4t + m
3t + m
3t + m
3t + m
3t + m

E-3

REPRESENTATIVE
TIMING (t=l. 6 ,",s)
in microseconds

3.8+ 3. 2n

3.8 + 3.2n

5.4

5.4

5.4
7.0
5.4
5.4
5.4
5.4
5.4

COMPUTER AUTOMATION,INC. ~

Table E72. Execution Time Algorithms (Cont'd)

CONDITIONAL JUMP

MICROCODED
JOC

TIME CALCULATION
ALGORITHM

ALL Double Register 9t + m
Tests

ALL Others 4t + m

ARITHMETIC

CONTROL

SHIFT

JAG
JAL
JAM
JAP
JAZ
JXN
JXZ

JOC
JOR
JOS
JSR
JSS

ARITHMETIC SHIFTS
ALA
ALX
ARA
ARX

LOGICAL SHIFTS
LLA
LLX
LRA
LRX

ROTATE SHIFTS
RLA
RLX
RRA
RRX

4t + m

4t + m

2t + m + nt

2t + m + nt

2t + m + nt

E-4

REPRESENTATIVE
TIMING (t=l. 6 ~s)
in microseconds

15.0

7.0

7.0

7.0

3.8+ 1. 6n

3.8+ 1. 6n

3.8+ 1. 6n

COMPUTER AUTOMATION,INC, ~

Table E-2. Execution Time Algorithms (Cont'd)

MULTI-REGISTER CHANGE
ANA
ANX
AXM
AXP
CAX
CXA
DAX
DXA
lAX
lXA
NAX
NRA
NRX
NXA
TAX
TXA
ZAX

CONSOLE REGISTER
ICA
lex
ISA
ISX
OCA
OCX

CONTROL

PROCESSOR CONTROLS !
HLT (STOP)
NOP

MODE CONTROLS
SBM
SWM

STATUS CONTROLS
SIA
SIN
SOA
SOX

TIME CALCULATION
ALGORITHM

E-5

3t + m
3t + m
4t + m
4t + m
3t + m
3t + m
3t + m
3t + m
3t + m
3t + m
3t + m
3t + m
4t + m
4t + m
3t + m
3t + m
4t + m

3. 375t + m
3. 375t + m
3.375t + m
3. 375t + m
3. 375t + m
3. 375t + m

3t + m

3t + m
3t + m

3.375t + m

REPRESENT ATIVE
TIMING (t=l. 6 J.Ls)
in microseconds

5.4
5.4
7.0
7.0
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
7.0
7.0
5.4
5.4
7.0

6.0
6.0
6.0
6.0
6.0
6.0

5.4

5.4
5.4

6.0

COMPUTER AUTOMATION,INC. ~

Table E-2. Execution Time Algorithms (Cont'd)

INTERRUPT CONTROLS
CID

CONTROL

CIE
DIN
EIN
PFD
PFE
TRP

SEN
SEA
SEL
SEX
SSN

UNCONDITIONAL WORD
INA
INAM
INX
INXM
OTA
OTX
OTZ

CONDITIONAL WORD
RDA
RDAM
RDX
RDXM
WRA
WRX
WRZ

UNCONDITIONAL BYTE
IBA
IBAM
IBX
IBXM

TIME CALCULATION
ALGORITHM

E-6

3. 375t + m
3. 375t + m
4t + m
3t + m
3.375t + m
3.375t+m
3.375t + m

4. 375t + m
3. 375t + m
3.375t + m
3. 375t + m
4. 375t + m

3.375t +m
4.375t + m
3. 375t + m
4.375t + m
3. 375t + m
3. 375t + m
3. 375t + m

4.375t+m
6.375t + m
4.375t + m
6 .375t + m
4.375t+m
4.375t + m
4.375t + m

4.375t + m
5.375t + m
4.375t + m
5.375t + m

REPRESENTATIVE
TIMING (t=1.6#-,s
in microseconds

6.0
6.0
7.0
5.4
6.0
6.0
6.0

7.6
6.0
6.0
6.0
7.6

6.0
7.6
6.0
7.6
6.0
6.0
6.0

7.6
10.8
7.6

10.8
7.6
7.6
7.6

7.6
9.2
7.6
9.2

COMPUTER AUTOMATION, INC. ~

Table E-2. Execution Time Algorithms (Cont'd)

TIME CALCULATION REPRESENTATIVE
ALGORITHM TIMING (t=l. 6 IlS)

in microseconds

CONDITIONAL BYTE
RBA 6.375t + m 10.8
RBAM 7 .375t + m 12.4
RBX 6. 375t + m 10.8
RBXM 7.375t + m 12.4

BLOCK
BIN 7t + 2m +(4.375 +m)w 12.4 + 7.6w
BOT 7t + 2m + (4.375 +m)w 12.4 + 7.6w

AUTOMATIC
AlB 14.375t + 5m 26.0
AlB (Under Interrupts) 12.375t + 5m 22.8
AIN 14 .375t + 5m 26.0
AIN (Under Interrupts) 12.375t+5m 22.8
AOB 14.375t + 5m 26.0
AOB (Under Interrupts) 12. 375t + 5m 22.8
AOT 14.375t + 5m 26.0
AOT (Under Interrupts) 12 .375t + 5m 22.8

E-7

COMPUTER AUTOMATION. INC, f3]:1

Appendix F

SOFTWARE SUMMARY

F.1 INTRODUCTION

This appendix contains short usage summaries of the standard system support
software offered by Computer Automation, Inc.

Table F-l. Assembler Directives

ABS
DATA
EQU
ORG
REF
RES
TEXT
NAM
ENT
RTN
1FT
IFF
ENDC
REL
END
BAC
SET
EXTR
TITL
. (Period)
* (Asterisk)
t (Up Arrow)

Define Absolute Assembly
Data Definition (:Hex, 0 Octal, 'ASCII', Address)
Equate Symbol
Define Origin
External Reference - Pointer
Reserve Storage
'AS CII Message'
External Name Definition
Subroutine Entry
Subroutine Return
Conditional Assembly if True
Conditional Assembly if False
End of Conditional Assembly
Define Relocatable Assembly
End of Assembly
Byte Address Constant
Set Symbol Redefinable
External Reference = Scratchpad
Page Eject with Title
Page Eject without Title
Comment Line
Pause

F-l

COMPUlER AUTOMATION, INC. §!:1

F.2 BOOTSTRAP

To Enter:

Set P = : nFF8
Set WRITE mode

Enter Data} Once per word
Depress M

To Display:

Set P = : nFF8
Set READ mode
Depress M} Once per word

Loc TTY HSPT

:nFF8 403B 4033
:nFF9 7939 7931
:nFFA 1357 1357
:nFFB 7939 7931
:nFFC 9COO 9COO
:nFFD 0128 0128
:nFFE 3145 3145
:nFFF 0800 0800

F.3 SOFTWARD OPERATION SUMMARY

F . 3 . 1 Autoload

RESET
To relocate, set X = load address
Enter sum of options in Sense Register:

~ Mode TTY HSPT
Load ABS : 0 : 1
Load ReI : 8 : 9

For Load and Go, set SENSE Switch
Ready Device
AUTO

F-2

MT
: 2
:A

Cassette Disk
: 3 : 4
:B :C

COMPUTER AUTOMATION. INC. f§,]1

F . 3 .2 Binary Loader (BLD)

Load BLD; set P = BLD reI. zero
To relocate; set X = load address, enter : 8 into Sense register:
Ready tape in reader (TTY or HSPT)
RUN

F. 3.3 Binary Dump/Verify (BDP /VER)

Load BDP; set P = BDP reI. zero
Set A = Initial location
Set X = Last location
Enter sum of options in Sense register:

~ Mode TTY HSPT

Punch Abs : 0 : 1
Punch ReI : 8 : 9

To verify, add : 4
To suppress EOF, add : 2
For transfer address, set SENSE switch
RUN
If Halt (I = : 0802), set A = transfer address, RUN

F-3

COMPUTER AUTOMATION,INC. ~

F . 3. 4 Obj ect Loader (LAMBDA)

Load LAMBDA; set P = LAMBDA zero
Set A = Relocation Bias or zero
Set X = Base Page Bias or zero
Enter sum of options in Sense register:

~ntSymbols

LoadMo~

Library
Unconditional

Defined and
Undefined

: 0
: 8

Ready tape in reader (TTY or HSPT)
RUN

F. 3.5 BETA-4 Assembler

Defined
Only

: 2
:A

Load BETA-4; set P = : 0100; RUN
Enter sum of options in Sense register:

~List
~~ TTY LP

TTY : 0
HSP : 4

For Error Only list f add : 1
To repeat Pass 2 f add: 8

: 2
: 6

Ready source in reader (TTY or HSPT)
RUN

F. 3.6 BETA-8 Assembler

Load BETA-8; set P = : 0100; RUN
Select Options

~ Enter SI= LO= BO=

B BATCH Error Error
L Error Error Library
0 Punch EOF No Listing No Binary
1 Keyboard TTY TTY
2 TTY D.P. Error
3 HSPT Cent. HSPT
4 C.R. Cent. TTY
5 C.R. Cent. TTY

F-4

Undefined
Only

: 4
:C

SD=

Error
Error
No Save
Core
Unit 0
Unit 1
Unit 2
Unit 3

Neither

: 6
:E

P#=

Error
Error

1
1
2
1
1
1

COMPUTER AUTOMATION, INC. f3]1

F . 3. 7 OMEGA Conversational Assembler

Load OMEGA; Set P = : 0100; RUN
Command Summary:

>AF.
>An.
>B.
> CInLnOn.
> CIO.
>DF.
>Dn.
>Dn@m.
>Eh.
>1.
>LF.
>Ln.
>Ln@m.
>PLT@1@F .
>PL@n@m.
>p@n@m.
>PT@n@m.
>Rn.
>Sn.
>Sn@m.

>T.
>Tn.
>XA.
>XE.
>XA2. or XE2.

Device Selection

Input: (I)

o = none
1 = Teletype Keyboard

Add keyboard lines to buffer after last line.
Add keyboard lines to buffer after line n.
Clear the buffer.
Connect devices.
Punch EOF.
Delete the last buffer line.
Delete buffer line n.
Delete buffer lines n through m.
Set end of buffer to h (hexadecimal) and intialize OMEGA.
Initialize OMEGA
List the last buffer line.
List buffer line n.
List buffer lines n through m.
Punch the buffer with leader and trailer.
Punch buffer lines n through m with leader.
Punch buffer lines n through m .
Punch buffer lines n through m with trailer.
Read source to line n and add to buffer.
Read source to line n-1, add to buffer, and skip line n.
Read source to line n-1, add to buffer and skip lines n
through m.
Reset tape line count to zero.
Reset tape line count to n.
Assemble.
Assemble with ERROR only listing.
Assemble starting with Pass 2.

Object: (0) List: (L)

o = none o = none
1 = Teletype

2 = Teletype Paper Tape
1 = Teletype Paper Tape
2 = N/A 2 = Data Products Printer

3 = Centronics Printer 3 = High Speed Paper Tape
4 = Card Reader
5 = Core (assemble)

3 = High Speed Paper Tape

F-5

COMPUmt AUTOMA11ON, INC. ~

F . 3 . 8 Source Tape Preparation Program

Load STP; set P = : 0100; RUN
Command Summary:

> AF.
> An.

> B.

> CTT.
> CRT.
> CRP.
> CTP.

> DF.
~ Dn.
> Dn@m.

> Eh.

>1.

~ LF.
~ Ln.
.:: Ln@m.

~ PLT@l@F
~ PL@n@m.
~ p@n@m.
~ PT@n@m.

> Rn.

> Sn.
> Sn@m.

> T.
> Tn.

Add keyboard lines to buffer after last line.
Add keyboard lines to buffer after line n.

Clear the buffer.

Connect teletype reader and teletype punch.
Connect high speed reader and teletype punch.
Connect high speed reader and high speed punch.
Connect teletype reader and high speed punch.

Delete the last buffer line.
Delete buffer line n.
Delete buffer lines n through m.

Set end of buffer to h (hexadecimal).

Initialize STP (clear buffer and set T to zero) .

List the last buffer line.
List buffer line n.
List buffer lines n through m .

Punch the buffer with leader and trailer.
Punch buffer lines n through m with leader.
Punch buffer lines n through m .
Punch buffer lines n through m with trailer.

Set ADD function termination character to n.

Read tape to line n and add to buffer.

Read tape to line n-1, add to buffer, and skip line n.
Read tape to line n-l, add to buffer, and skip lines n
through m.

Reset tape line count to zero.
Reset tape line count to n.

F-6

COMPUTER AUTOMATION,INC. ~

F .3.9 Debug (DBG)

Debug is a 'binary relocatable' program and, as such, may be loaded any place in
memory by the ALPHA LSI Binary Loader program (BLD). Transferring to the first
location in Debug (enter start location of Debug into the P register and depress RUN)
will initialize Debug to accept any of the Debug commands summarized below:

COMMAND SUMMARY

> A.
> Av.

> Ba.
> Ba, b.
> Ba@b.
> Ba@b,c.

> Ca@b@C.

> Fa@b@V.

> Ia.

> Ja.

> Ma .

.:: O.
~Ov.

~ Pa@b.

~Rn.

~ Rn@n.

~ Sa@b@V.
~ Sa@b@V@m.

~ T.
~ Tn.

> X.
> Xv.

Display pseudo A register
Set pseudo A register to value v.

Continue breakpoint to location a.
Continue breakpoint to location (8 or b) .
Breakpoint from location a to b.
Breakpoint from location a to location (b or c).

Copy locations a through b at c and following.

Fill locations a through b with value v .

Inspect location a.

Jump to location a.

Modify memory starting at location a.

Display pseudo 0 register.
Set pseudo 0 register to value v.

Print locations a through b.

Display relocation register Rn.
Set relocation register Rn to value v.

Search locations a through b for value v.
Search for value v using mask word m.

Enable console interrupt (TRAP).
Enable console interrupt and enable interrupts

Display pseudo X register.
Set pseudo X register to value v .

F-7

COMPUTER AUTOMATION, INC. §!:1

F. 3 .10 Concordance (CONe)

Load CONC; set P = CONC zero; RUN
Select Options:

SI= SI=

B BATCH 5 Unit 0
1 Keyboard 6 Unit 1
2 TTY 7 Unit 2
3 HSR 8 Unit 3
4 CR

F. 3 .11 OS Command Summary

COMMAND RESPONSE

LO=

L
1
2
3

1. /ASSIGN unit=device G unit=device

2. /BATCH device

List
TTY
D.P.
Cent.

. · .J

3. /BEGIN address [, parameters .. ~
4. /CANCEL

*program-name, base page ,limits ,core limits ,flag, time
P register, A register, X register, CPU status

5. /COMMENT

6.

7.

s.

/DATE
*date

/DECLARE
*time

/EXEC

9. /JOB
*date, time

10. /LIST
*date, time

[mm/dd/YY]

device t {UP, DOWN}

program-name Cparameters .. J

*lu pu UP /DOWN errors

11. /NJOB
*JOB/NJOB time, current time

F-S

,12. /RESUME
*time

13. /STATUS

COMPUTER AUtOMATION,IN<. ~

[parameters ... J

*program-name ,base page limits, core limits ,flag, time
P register, A register, X register, CPU

14. /TIME
*time

15. /TYPE

[hh: mm: ssJ

F-9

COMPUTER AUTOMATION, INC.
~he NAKED MINI company

18651 Von Korman. Irvine, Calif. 9266'1
leI. 71'1·833·8830 TWX 910·595·1767

