

~
Burroughs

XE 500 B10S
Debugger
Operations
Guide
Copyright © 1986. Burroughs Corporation. Detroit. Michigan 48232

Relative To Release Level 6.0
Priced Item
November 1986

Distribution Code SA
Printed in U S America
1207750

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any
product and related material disclosed herein are only furnished pursuant and subject
to the terms and conditions of a duly executed Program Product license or Agree
ment to purchase or lease equipment. The only warranties made by Burroughs, if any,
with respect to the products described in this document are set forth in such license
or Agreement. Burroughs cannot accept any financial or other responsibility that may
be the result of your use of the information or software material, including direct,
indirect, special or consequential damages.

You should be very careful to ensure that the use of this information and/or software
material complies with the laws, and regulations of the jurisdictions with respect to
which it is used.

The information contained herein is subject to change without notice. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this publication should be forwarded, using the Product
Improvement Card at the back of this manual, or remarks may be addressed directly
to Burroughs Corporation, Corporate Product Information East, 209 W. lancaster
Ave., Paoli, PA 19301, U.S.A.

v

About This Guide

Purpose
This manual describes the XE 500 BTOS Debugger and
provides the programmer with a listing and explanation of the
commands used in program debugging.

Scope
This guide describes the specific features of the XE 500
BTOS Debugger and explains what commands control the
Debugger and how to use them. It does not explain how to
interpret Debugger responses or offer guidance on how to
best use the Debugger.

Audience
This manual is written for experienced programmers with an
extensive knowledge of system structures, assembly
language, the BTOS assembler, and linker/librarian functions.

Prerequisites
The programmer using this guide should be familiar with
system structures and have experience with reading, writing,
and interpreting assembly language. Some familiarity with the
BTOS Debugger is helpful.

How to Use This Manual
Users who are not familiar with the BTOS Debugger would
find it helpful to read this entire manual before trying to use
the Debugger. Users who are familiar with the BTOS
Debugger should use this manual as a reference guide.

Organization
Section 1: Overview of the XE 500 BTOS Debugger introduces the
Debugger and tells where to find information concerning
operating system generation for the Debugger.

1207750

vi About This Guide

Section 2: Debugger Concepts provides an explanation of the
command parameters used by the Debugger and how to
display the user screen.

Section 3: Debugger Connection and Activation explains how to
connect a terminal or workstation to the Debugger and how
to activate the Debugger. It also explains how to interpret
the Debugger prompts and what the modes are for using the
Debugger.

Section 4: Symbolic Values describes symbols files and how to
open them for the Debugger.

Section 5: Memory and Registers describes how to examine and
modify memory, how to change the open location and
change the contents of a memory location, defines the
process register, how to examine andmodify registers, how
to use register mnemonics, and how to display a trace of a
stack and the status of processes and exchanges.

Section 6: Forcing a Crashdumpfile explains how to force a
crashdump on another processor board from the one on
which you are currently debugging.

Section 7: Breakpoints describes the addresses (breakpoints)
that are set for suspending processes by the Debugger and
the commands used to control them.

Section 8: Command Summary is a listing of all the commands,
their parameters, and meanings for both Burroughs
workstation and RS232-C terminal users.

Appendix A: Status Codes provides a listing of the XE 500
BTOS Debugger staus messages.

Appendix 8: Quick Reference to Debugger Commands is a single
page listing of Debugger commands that can be used as a
handy reference when actually using the commands.

A glossary and index follow Appendix B.

About This Guide vii

Conventions Used in This Manual
The examples containing commands and references to
commands in the text of this manual are those that would be
used on a Burroughs workstation (for example, CODE-X
executes and opens the next instruction from the
workstation and CONTROL-X executes the same command
from an RS232-C serial terminal). A command summary
appears in Section 8 which shows the corresponding
commands for RS232-C serial terminal users and a quick
reference guide appears in Appendix B.

Text in italics represents variables.

All numbers are decimal unless otherwise specified.

Related Product Information
Bros Assembler Programming Reference Manual

This manual provides descriptive and operational information
for the Burroughs assembler and assembly language used in
Burroughs BTOS systems applications.

BrOS Linker/Librarian Programming Reference Manual

This manual contains introductory, procedural, and reference
information on the Linker and librarian (Language
Development Software).

BrOS Reference Manual, Volumes 1 and 2

This manual is a two volume guide that details the Burroughs
operating system (BTOS). It explains the services for
managing system processes, messages, memory,
exchanges, tasks, video, disk, keyboard, printer, timer,
communications, and files.

XE 500 BrOS Programming Reference Manual

This manual describes XE 500 BTOS Programming. It
provides information supplemental to the BTOS Reference
Manual, Volumes 1 and 2 concerning Burroughs XE 500
operating system software for systems and applications
programming.

1207750

viii About This Guide

XE 500 BTOS Customizer Operations Guide

This manual outlines the procedures necessary to customize
an XE 500 BTOS operating system and to generate a
Debugger operating system.

XE 500 BTOS Operations Guide

This manual provides basic information required to perform
routine operations in the XE 500 BTOS environment. It
should be used as a supplement to the BTOS Standard
Software Operations Guide.

XE 500 BTOS Administration Guide

This manual describes the administrative tasks for the
XE 500 BTOS system, such as managing files, system
security, archiving, and so on.

XE 500 BTOS Operations Reference Manual

This manual provides a listing and description of all master
commands that can be run in XE 500 BTOS.

XE 500 BTOS Installation and Implementation Guide

This manual presents the procedures used to install,
configure, and implement the BTOS software on the XE 500.

BTOS Standard Software Operations Guide

The manual presents introductory, procedural, and reference
information for using the standard features of BTOS.

ix

Contents
About This Guide v
Purpose .. v
Scope. v
Audience ... v
Prerequisites .. v
How to Use This Manual v
Organization ... v
Conventions Used in This Manual vii
Related Product Information vii

Section 1: Overview of the XE 500 BTOS Debugger 1-1
Generating a Debugger Operating System 1-1

Section 2: Debugger Concepts 2-1
Command Parametars 2-1
Constants: Numbers, Ports, and Text 2-2

Numbers .. 2-2
Ports ... 2-2
Text ... 2-3

Symbols .. 2-3
Address Expressions .. 2-4
Symbolic Instructions .. 2-4

Section 3: Debugger Connection and Activation 3-1
Connecting a Terminal to the Debugger 3-1
RS232-C Serial Terminal Direct Connection (Method 1) 3-2
RS232-C Serial Terminal Indirect Connection (Method 2) 3-3
BTOS Workstation Indirect Connection (Method 3) 3-5
Activating the Debugger 3-6
Debugger Prompts .. 3-7
Exiting the Debugger 3-7
Deactivating the Dabugger 3-7
Debugger Modas ... 3-8
Simple Mode ... 3-8
Multiple Process Mode 3-8
Interrupt Mode .. 3-9

1207750

x Contents

Section 4: Symbolic Values 4-1

Section 5: Memory and Registers 5-1
Examining and Modifying Memory 5-1
Examining Memory ... 5-1
Changing the Contents of a Memory Location 5-2
Changing the Open Location 5-2
Process Register ... 5-3
Current Value ... 5-3

Changing the Output Radix 5-3
Examining and Modifying Registers 5-4
Using Register Mnemonics 5-4
Displaying Additional Memory 5-5
Reading and Writing To Ports 5-6
Displaying Linked-List Data Structures 5-6
Displaying a Trace of the Stack 5-6
Displaying the Status of Processes and Exchanges 5-7

Section 6: Forcing a Crashdumpfile 6-1

Section 1: Setting and Processing Breakpoints 7-1
Setting and Querying Breakpoints 7-1
Clearing Breakpoints 7-1
Proceeding From a Breakpoint 7-2
Executing Instructions Individually 7-2
Starting a Process at a Specified Address 7-3
Setting Breakpoints In Interrupt Handlers 7-3
Debugger Relations to Other Program Steps 7-4

Section 8: Command Summary 8-1

Appendix A: Status Codes A-1

Appendix B: Quick Reference to Debugger Commands 8-1

Glossary

Index .. .

III ustrations

3-1
3-2
3-3
7-1

1201750

RS232-C Serial Teminal Direct Connection
RS232-C Serial Terminal Indirect Connection
BTOS Workstation Indirect Connection
The Debugger in Relation to Other Steps in Executing
a Program

xi

3-2
3-4
3-5

7-4

Section 1 1-1

Overview of the XE 500 BIOS Debugger
The XE 500 BTOS Debugger is a programming tool for
helping programmers find problems in user or system
software. The Debugger is an operating system process with
the capability of stopping any other concurrently executing
user or system process for the purpose of examining the
progress of its execution. The user may subsequently find
errors in the code or execution of the code which may cause
a process to fail. The Debugger can assemble symbolic user
input into binary machine instructions and it can disassemble
the contents of memory into assembly language source
instructions. It responds to commands as they are entered
and stops at specified addresses, called breakpoints, until it
receives further commands. The Debugger allows you to
examine and modify memory, to set and clear breakpoints,
and to produce formatted displays of memory.

Generating a Debugger Operating System
The Debugger is part of the standard software release
package; however, to use the Debugger, a separate
operating system must be generated containing the
Debugger process. Generating a Debugger operating system
follows procedures similar to those used for customizing an
operating system; see the XE 500 BTOS Customizer
Operations Guide for specific Debugger operating system
generation procedures.

1?n77~n

Section 2 2-1

Debugger Concepts

Command Parameters
All Debugger commands have the same format: from zero to
two parameters followed by a single command character.
When a command has two parameters, they must be
separated by a comma. The command characters are:

o Up arrow

o Down arrow

o Left arrow

o Right arrow

o MARK

o RETURN

o

o The CODE and the alphabetic or symbol key pressed
simultaneously.

Note: The references to commands and examples containing
commands in the text of this manual are those that would be
used on a Burroughs workstation (for example CODE-X on a
workstation is CONTROL-X on an RS232-C serial terminal). A
command summary appears in Section 8 showing the
corresponding commands, parameters, and meanings for
RS232-C serial terminal users.

The Debugger accepts parameters similar to the parameters
permitted in assembly language. These parameters are:

o Constants (numbers, ports, and text).

o Symbols.

o Composite parameters formed with parentheses, the unary
operators - and PTA, and the binary operators :, +, -, .,
and /.

o Address expressions.

o Symbolic expressions.

1?n77l\n

2-2 Debugger Concepts

Constants: Numbers, Ports, and Text

Numbers

A numeric constant is a sequence of hexadecimal digits (0
through 9 and A through F), ending with an optional period,
"." or h. If a numeric constant ends in h or omits the ending,
it is a hexadecimal number. A numeric constant can begin
with the characters A through F only if it is prefixed by zero.
Examples of numeric constants are:

123h A hexadecimal parameter.

123 The same parameter.

123 The decimal number 1 23.

OAF A hexadecimal parameter with the required prefix of O.

Ports

A port constant is a number followed by the character "i" or
"0." An "j" indicates that the port is a microprocessor
hardware input port. An "0" indicates that the port is an
output port. Examples of port constants are:

12i is the input port that has port address 12.

OA20 is the ouput port that has the address OA2.

The Debugger can read and write an input port constant.
However, the Debugger can only write an output port
constant. The .- and .. commands open
output ports for modification without reading them.

Debugger Concepts 2-3

Text

A text constant is a sequence of characters enclosed in
single quotation marks. To include a single quotation mark
within a text constant, precede it with another single
quotation mark. Text constants of one or two characters can
be used anywhere a number is allowed. Text constants of
more than two characters can only be used with CODE-F.
Examples of text constants are:

'abed' A four-character constant.
"a' A two-character constant (a single quotation mark and a).

Symbols
A symbol is a sequence of alphanumeric characters that
cannot begin with digits 0 through 9. There are four kinds of
symbols:

o User-defined public symbols in a symbol file produced by
the Linker from a source program.

o Standard processor register mnemonics.

o Names of internal state variables of the Debugger.

o The period (.) indicates the currently opened location.

2-4 Debugger Concepts

Address Expressions

Address expressions have the same structure and semantics
as in assembly language. Examples of address expressions are:

SYM

Rqlnterface ... 22C3:0
Rqlnterface + (100/2)
Rqlnterface - 22C3:80

bx 8468
[8X + 5]

ES: [8X + 5][SI]

Symbolic Instructions

The simplest address expression is a symbol.

A more complex expression involving a symbol.

An indexed parameter.

A doubly indexed parameter with a segment
override prefix.

Symbolic instructions have the same structure and semantics
as in assembly language. Examples of symbolic instructions are:

MOV AX, WORD PTR [BX+5]

LOCK INC [BX]

Section 3 3-1

Debugger Connection and Activation

Connecting a Terminal to the Debugger
There are a number of ways to activate the Debugger, as
well as a number of ways to make a connection to the
Debugger. Before you can activate the Debugger to debug
your programs or operating system, you must connect your
terminal or workstation to it. The following is a list of key
terms used when connecting your terminal or workstation to
the Debugger:

o Destination Processor: the processor in which the Debugger
will execute. This processor must be executing an
operating system that contains the Debugger. (For more
information on generating a Debugger operating system,
see the XE 500 BTOS Customizer Operations Guide.)

o Debug Console: a device which allows the operator to
provide keyboard input to and view output data from the
BTOS Debugger. This can be a BTOS workstation or an
RS232-C serial terminal.

o Associate Processor: the processor which will provide a
logical connection between the Debug Console and the
Destination Processor. It cannot be the same processor as
the Destination Processor.

o Direct: a physical connection from the Debug Console to
the Destination Processor.

o Indirect: a non-physical connection from the Debug Console
to the Destination Processor.

The three methods by which a Debug Console can be
connected to a BTOS Debugger are as follows:

1 Direct connection through an RS232-C serial terminal.

2 Indirect connection through an RS232-C serial terminal.

3 Indirect connection through a BTOS workstation.

The procedures for using each of these three methods are
outlined in the following subsections.

1'07750

3-2 Debugger Connection and Activation

RS232-C Serial Terminal Direct Connection (Method 1)
This method is only applicable for debugging Cluster
Processors (CPs) and Terminal Processors (TPs). Figure 3-1
illustrates this connection.

1 Ensure that CLI.run is running in the primary partition on the
Destination Processor.

2 The Destination Processor's CPnn.cnf or TPnn.cnf
configuration file must contain a "Connect=CTOS"
parameter for the CLI port. Add this parameter at the end
of the asyncn line of the configuration file by typing:
,connect = ctos

where asyncn is async3 on a CP and async lOon a TP. If
the particular asyncn line is missing, you will have to add it
to the paramter list.

3 The RS232-C serial terminal must be connected to the
Destination Processor's CLI port through a crossed RS232
cable.

Figure 3-1 RS232-C Serial Terminal Direct Connection

LOGICAL
CONNECTION

ClI.run

E7643

CROSSED
RS232
CABLE

PHYSICAL
CONNECTION

RS232-C
SERIAL TERMINAL

Debugger Connneection and Activation 3-3

RS232-C Serial Terminal Indirect Connection (Method 2)
This method is applicable to debugging all BTOS Processors.
The Associate Processor must be a CP or a TP. Figure 3-2
illustrates this connection.

Ensure that CLI.run is running in the primary partition on the
Destination Processor.

2 The Associate Processor's CPnn.cnf or TPnn.cnf
configuration file must contain a "Connect=CTOS"
parameter for the CLI port. Add this parameter at the end
of the asyncn line of the configuration file by typing:
,connect=ctos

where asyncn is async3 on a CP and async 10 on a TP. If
the particular asyncn file is missing, you will have to add it
to the parameter list.

3 The RS232-C serial terminal must be connected to the
Associate Processor's CLI port through a crossed RS-232
cable.

4 Execute the MCDTIO command at your terminal. This
replaces the CLI.run file with the MCDTIO.run file in the
Associate Processor's primary partition. To execute
MCDTIO, type:
run <admin>mcdtio.run, xPnn

where xPnn is the Destination Processor. This will return a
message that MCDTIO is connected or "talking" to the
Destination Processor. Respond with a carriage return.

3-4 Debugger Connection and Activation

Figure 3-2 RS232-C Serial Terminal Indirect Connection

~ :HA_'_'N_l1_sys_rE II!

~ ~ .nl'RI

r
I
I
I

LOGICAL
CONNECTION

I
I
I
I
I
I

1
CLI run

OESTINA TION
PROCESSOR

E 7644

~:i.

...
LOGICA

CONNECTION

~~OPERATING SYSTEM

MCDTlO.run

ASSOCIATE
PROCESSOR

CROSSED
RS232
CABLE I RS23H I I SERIAL TERMINAL

Debugger Connneection and Activation 3-5

BTOS Workstation Indirect Connection (Method 3)
This method is applicable to debugging all BTOS processors;
it is shown in Figure 3-3. Note that all BTOS workstation
connections are indirect and that the Debug Console can be
connected to any CPo For this connection, the Associate
Processor can be any BTOS Processor.

Ensure that CLI.run is running in the primary partition on the
Destination Processor.

2 Ensure that Associate Processor has MfAdminAgent.run or
SlvAdminAgent.run running in the primary partition.

3 Execute the MCDIIO command at your workstation. This
replaces MfAdminAgent.run or SlvAdminAgent.run with the
MCDIIO.run file in the primary partition of the Associate
Processor. To run MCDTIO, type:
mcdtio

On the CPU line of the mcdtio menu, enter xPnn, which is
the Destination Processor to which you wish to connect.
This will return a message that MCDTIO is connected or
"talking H to the Destination Processor. Respond with a
carriage return.

Figure 3-3 BIOS Workstation Indirect Connection

I
l.OGICAL

c~T~

t

~~~~~.--,~ f--. OPER~.TlNG SYSTEM • ~ 

~: : ~ 
~! . ~ 
z' • '" z· : ~ 

~ l L~~""'~~-~O-;~A--:--:'~-~~-(~~:-;'~-r~~""'~-t 
:): 

t------t-I 

OPERATING SVSTEM 

Cli fUn -.. MCOTlt) ,,,n _1 
l!)(;ICAl 

OESTINATlO:~ (ONI>I[(TI\)" 
PROCESSOR 

ASSlIC!.\1! 
PH, \Cl 5S, lH 

ClUSTER 
PROCESSOR 

'NOTE THE CLUSTER PROCESSOR CAN ALSO BE THE ASSUCIA TE PROCESSUR 



3-6 Debugger Connection and Activation 

Activating the Debugger 
Once your terminal or workstation is connected to the 
Debugger, you can activate the Debugger in four ways: 

1 When an executing process encounters a previously placed 
breakpoint. 

2 When DEB (for debug) is substituted for RUN in the 
Command Line Interpreter (CLI). 

3 When you press the CODE, SHIFT key, and A keys 
simultaneously (referred to in this manual as 
CODE-SHIFT-A) on a workstation or CONTROL-A on an 
RS232-C terminal. 

4 When you press the CODE, SHIFT key, and B keys 
simultaneously (referred to in this manual as 
CODE-SHIFT -B) on a workstation or CONTROL -B on an 
RS232-C terminal. 

When the Debugger is active, it displays its most recent 
dialog with you, followed by the Debugger prompt. 

When the Debugger is activated because a breakpoint is 
encountered, it displays a description of the break (the 
breakpoint address and a corresponding process number), 
issues the Debugger prompt, and waits for your commands. 
While the Debugger is waiting, all keyboard input is treated 
as part of its command input. 



Debugger Connneection and Activation 3-7 

Debugger Prompts 
When you are using the Debugger, the display screen shows 
your most recent dialog with the Debugger and it also shows 
a Debugger prompt. The Debugger prompt is an asterisk (*), 
a pound sign (#), a space ( ), an exclamation point (!), or a 
greater than sign (», depending on the type of debugging 
you are doing. Their meanings are as follows: 

• 

# 

The Debugger has suspended the current process. 

The Debugger has not suspended the current process. 

The Debugger is at an interrupt level. 

> The system has abnormally terminated. 

Exiting the Debugger 
To dismiss the Debugger, press the GO or ESCAPE key. The 
Debugger responds by displaying the message: 

Exiting Debugger 

All input is now directed to the executing process. 

Deactivating the Debugger 

CODE-K exits and deactivates the Debugger. After pressing 
CODE-K twice, you can only reenter the Debugger by 
rebooting the XE 500. 



3-8 Debugger Connection and Activation 

Debugger Modes 
There are three basic modes for using the Debugger: simple, 
multiple-process, and interrupt. 

D Simple mode is for debugging a single-process user task 
and is the most common mode to use. 

D Multiple process mode is for debugging multiple process 
user tasks whose functional behavior depends on the 
continued execution of all processes except those 
explicitly suspended at breakpoints. 

D Interrupt mode is for debugging interrupt handlers or 
debugging that requires the setting of breakpoints in the 
operating system kernel. 

Simple Mode 
This mode results from CODE-SHIFT -A or the execution of a 
CODE-B breakpoint encountered after a CODE-SHIFT-A 
invocation of the Debugger. 

In this mode, all user processes are suspended when you or 
the program enters the Debugger. The operating system 
services and interrupt handlers are not affected. 

In simple mode, the Debugger prompt is an asterisk (*). 

Multiple Process Mode 
This mode results from CODE-SHIFT -B or the execution of a 
CODE-B breakpoint encountered after an CODE-SHIFT-B 
invocation of the Debugger. 

User processes that have not executed breakpoints continue 
concurrent execution; user processes executing CODE-B 
breakpoints are suspended. The operating system services 
and interrupt handlers are not affected. 



Debugger Connneection and Activation 3-9 

If the current process in mUltiple-process mode is suspended, 
the CODE-P command causes that process to resume. 
However, in mUltiple-process mode, the CODE-P command 
does not exit from the Debugger; you must press GO to exit. 

The Debugger prompt is the pound sign (#) if the current 
process, as defined by PR, is executing and the asterisk if it 
is not executing. 

The Debugger goes into interrupt mode whenever it 
encounters a CODE-I breakpoint. 

Interrupt Mode 

This mode results from the execution of a CODE-I breakpoint. 
When a breakpoint is encountered, the Debugger takes 
control of the interrupt system, freezing the entire state of 
the processor. 

The Debugger prompt is the exclamation point (I). 

1207750 





Section 4 4-1 

Symbolic Values 
The Linker produces symbol table files that contain the 
locations of public symbols and line numbers in a program. 
(See the BrOS Linker/Librarian Programming Reference Manual 
for more information about the Linker.) There is one such 
symbol file for each run file. You must Hopen" a symbol file 
before the Debugger can refer to it. To open a symbol file, 
type CODE-F with the file name of the symbol file as the 
parameter. This opens the symbol file for your program and 
allows you to refer to its public symbols. The Debugger can 
refer to only one symbol file at a time; when a CODE-F is 
issued, the Debugger discards any previously opened symbol 
file. 

The Debugger attempts to decode absolute addresses into 
symbolic names. For example, when an appropriate symbol 
table is in use, the instruction: 

CALL OFFEF:336 

might appear as: 

CALL ErrorExit 

To suppress symbolic output, type: 

CODE-F 

and the message: 

Symbols off 

appears. 

To re-enable symbolic output, type: 

CODE-F 

again and the message: 

Symbols on 

appears. 

CODE-F suppresses only symbolic output. Symbolic names 
can be used as input any time a symbol file is in use . 

. 1207750 



4-2 Symbolic Values 

There are three ways to specify the offset when you are 
loading symbol files: 

o If you are debugging an operating system process, the 
offset is O. 

o If you are debugging in the primary partition, no offset is 
specified. 

o If you are debugging in a background partition: 

Run MPartition Status with verbose to get SaLow Bound for 
the Partition. 

2 SaLowBound:O is the pointer to the Partition Configuration 
Block (the third two byte entry is the offset of the ASCB). 

3 SaLowBound:oASCB = 18h is oLastTask (the number 
which goes into the symbol file). 

4 oLastTask, 'Symbol File' CODE-F. 

For example, type: 

1234, 'Fred.sym' 

to debug a program whose base address is hexadecimal 
1234 (paragraph hex 1234). You do not need to specify the 
program base address when debugging a primary task, since 
the Debugger can determine it. 



Section 5 5-1 

Memory and Registers 

Examining and Modifying Memory 

Examining Memory 
When the Debugger is active, you can examine memory by 
typing a parameter that designates a machine address, 
followed by one of the commands, left arrow, right arrow, or 
MARK. The Debugger displays the contents of the 
designated address and opens it for modification; this is 
known as the open location. 

To display a single byte, type: 

addneft arrow 

To display a single word, type: 

rightarrow 

To display a symbolic instruction, type: 

addrMARK 

Some examples are: 

AL -+-- 1 F one byte 

OS: 1 00 ---+ 1 F20 one word 

CreatelSAM + 10 • MOV AX, WORD PTR [8X] 
one instruction 

The MARK key echoes as • . You can also use the 
memory examination commands to display several locations 
by preceding the parameter with a repeat number. The 
specified number of parameters are displayed and the last of 
them remains open. For example, to see the next three 
words, type: 

3,DS:100 
OAF:102 
OAF:104 

1207750 

----+- 1 F20 
~ 2F30 
--.~ 30FA 



5-2 Memory and Registers 

The Debugger always prompts when it is ready for input. 
How it prompts depends on the location: 

o If there is no open location (which happens when the 
Debugger was just activated or if the previous command 
closed all open locations), then a Debugger prompt is given. 

o If there is an open location, then the prompt is a space. 

Changing the Contents of a Memory Location 
When the Debugger prompts with a space, you can type in a 
new value to change the contents of the open location to 
any value. For example, in response to the OS: 1 01 prompt 
to change the contents OS: 1 01 to 2F37, type: 

DS:101 
DS:101 ~ 2F30 

Remember that instructions in the processor vary in length. 
The entry of an instruction can modify bytes of memory 
beyond those of the instruction previously displayed or can 
leave some final bytes of the original instruction dangling 
after the end of the new instruction. 

Changing the Open Location 
The open location is changed in each memory modification 
command, according to the command. There are three 
commands: 

o RETURN: the formerly open location is closed and no new 
location is opened. 

o Up arrow: the previous location is opened. 

o Down arrow: the next location is opened. 



Memory and Registers 5-3 

Process Register 
The Debugger internal register, PR, always identifies the 
current process. PR is automatically set to the process 
number of the process that most recently encountered a 
breakpoint. When you invoke the Debugger just before the 
execution of an application system begins, PR is set to the 
number of the initial user process. It should be noted that PR 
is not an actual register, but is a pointer to an address for 
the Debugger. 

All commands concerned with processes refer implicitly to 
the current process. To debug a single process program, you 
do not need to refer to PRo To debug a mUltiple-process 
program, you must be aware of which process is current. 

Current Value 
The Debugger retains a special value known as the current 
value. The current value is either the value most recently 
displayed by the Debugger or the most recent value typed by 
you, whichever occurs last. You can type = to redisplay the 
current value. You can also display a value in a different 
number system if you change the output radix with CODE-R. 

Changing the Output Radix 

CODE-R changes the output radix or numerical base. All 
memory displays are in terms of current output radix, which 
is initially hexadecimal. CODE-R also causes the current value 
(=) to be displayed. To set the output radix to k, type: 

k CODE-R 

To reset the output radix to hexadecimal, type: 

16. CODE-R 

You can reset the output radix to hexadecimal by omitting 
the parameter to CODE-R. You can also type: 

CODE-R 

1207750 



5-4 Memory and Registers 

If the output radix is hexadecimal when CODE-R is typed with 
no parameters, then it is set to decimal. 

The output radix only applies to numbers displayed by the 
Debugger; the interpretation of numeric constants you type 
in is independent of the output radix. 

Examining and Modifying Registers 
The processor register mnemonics name the current machine 
registers associated with the current process. For example, 
IP and FL name the instruction pointer and flags associated 
with the current process. You change PR to examine the 
registers of other processes by following the previously 
defined procedure. 

Examine and change PR as any other word location: open it 
and enter a new parameter. For example, change the current 
process to process number 7, type: 

PR ->47 

The current process, originally 4, changes to number 7. 

The Debugger interprets the words "next" and "previous" 
according to the mode in which a location is open. For 
example, next can mean next byte, next word, or next 
instruction. 

Using Register Mnemonics 
You can read and write to all of the registers listed below: 

CS Code Segment 
OS Data Segment 
ES Extra Segment 
SS Stack Segment 



Memory and Registers 

The following are general registers: 

AX Accumulator (has a high and low byte, AH and AL). 

BX Base (has a high and low byte, BH and BU. 

CX Count (has a high and low byte, CH and CL). 

OX Data (has a high and low byte, DH and DL). 

The following are pointers and index registers: 

SP Stack Pointer 

BP Base Pointer 

01 Destination Index 

SI Source Index 

The l6-bit FL register contains flags and the IP register 
contains the instruction pointer. 

5-5 

You can use register mnemonic symbols (AX, SI, and so on) 
on either side of an expression; however, the symbols must 
be the left-side values if you are making a change in a register. 

Displaying Additional Memory 
CODE-O provides additional memory display facilities. 
CODE-D takes two parameters and can display many bytes 
of memory, along with ASCII equivalents formatted into 
columns . To display k bytes of memory starting at location 
addr, type: 

k, addr CODE-D 

1207750 



5-6 Memory and Registers 

Reading and Writing To Ports 
Use the left arrow and right arrow commands with port 
constants to read from and write to ports. For example, to 
read from the byte port 17i, type 

17i ..... ~~-

To read from the word input port 31 i, type 

31i • 

In either case, the port becomes an open location and you 
can specify a new parameter that will be written to the port. 
Unlike reading from memory, reading from a port can change 
the state of the system. For example, reading a character 
from the keyboard removes the character from the keyboard. 

Displaying Linked-List Data Structures 
The CODE-N command displays linked-list data structures. 
Use CODE-N with the internal Debugger registers CB and DB. 

To display blocks of memory that are k bytes long and have 
a DS-relative link word at the jth byte f first set CB equal to k 
and DB to j. To display the first block, type: 

addr CODE-N 

To display each subsequent block, type: 

CODE-N 

Or, to display n blocks at the same time, type: 

n, addr CODE-N 

Displaying a Trace of the Stack 
The CODE-T command displays the procedure-invocation 
stack for the current process. To display the entire stack, type 

CODE-T 

To display the stack for the k most recent active procedure 
invocations, type 

k CODE-T 



Memory and Registers 5-7 

Displaying the Status of Processes and Exchanges 
CODE-S gives the status of processes and exchanges. To 
display all of the processes and exchanges, type: 

CODE-S 

To see the list of processes or pointers to messages waiting 
on exchange k, type: 

k CODE-S 

When you list the processes, the following information appears: 

id The process identifier number. 

oPcb The address of the process control block for that process. The address 
relative to the operating system's data segment. 

cs:ip The address of the next instruction to be executed by the process. 

link A link address used by BTOS to keep processes threaded. 

st A byte containing status flags. 

pr The priority of the process. 

ss:sp The address of the top of the stack for the process. 

exch For the particular process, the default exchange for responses. 

1201150 





Section 6 6-1 

Forcing a Crashdumpfile 
Occasionally it is necessary to get information from other 
parts of the system while you are debugging a process on a 
particular board. Since the Debugger only allows you to see 
one board at a time, you may need to force a remote board 
crash. This generates a crashdumpfile that will help you 
determine what other boards are doing while your process is 
executing. Setting CODE-Y and rebooting the system will 
produce the crashdumpfile, which records everything in 
memory at the point designated. If you use this, further 
debugging is possible without having to reboot the system. 
To set CODE-Y, enter: 

slot number CODE-Y 

You can force a crashdump on a local board; however, doing 
so will lock out the keyboard and you will have to reboot the 
system to continue debugging. 

1207750 





Section 7 7-1 

Setting and Processing Breakpoints 
Breakpoints are addresses that the programmer sets within 
the code of a program to designate where to suspend a 
process. Generally, the user sets breakpoints in areas of 
program code which may be suspected of having execution 
problems. When these points are encountered during 
process execution, the process suspends and the Debugger 
is activated. Within the Debugger, the user can look at what 
is happening in memory at this address as this piece of code 
executes. A breakpoint stays in effect until it is explicitly 
removed. 

If the debugger is operating in simple mode, all user 
processes are suspended whenever a breakpoint is 
encountered. If the Debugger is in mUltiple process mode, 
only the process that has encountered a breakpoint is 
suspended. 

Setting and Querying Breakpoints 
To set a breakpoint, type CODE-B, preceded by one 
parameter. For example, to set a breakpoint at the address 
add" type 

add, CODE-B 

To obtain a display of the list of all of the breakpoints that 
are set at any given time, including CODE-I breakpoints, type 

CODE-B 

without an address parameter. 

Clearing Breakpoints 
To clear a breakpoint, type a parameter, followed by 
CODE-C. For example, to clear the breakpoint at address 
add" type: 

add, CODE-C 

To clear all of the breakpoints at once, type 

CODE-C 

without an address parameter. 

1207750 



7-2 Setting and Processing Breakpoints 

Proceeding From a Breakpoint 
To proceed from the most recently found breakpoint in the 
current process, type 

CODE-P 

The breakpoint remains in place and the suspended process 
continues. If the process was not broken by the breakpoint, 
the Debugger ignores the CODE-P command. (In this case, 
because the process is still running, you cannot logically 
command it to resume running.) 

To proceed, and to break the kth time the breakpoint is 
reached (instead of the next time it is reached), type 

k CODE-P 

where k is a decimal number. 

Note: CODE-P with no parameters is equivalent to CODE-P with 
a parameter of 1. 

To remove the breakpoint before proceeding, type 

o CODE-P 

In simple mode, CODE-P causes the Debugger to become 
dormant until the next breakpoint is encountered or you 
reactivate it with either CODE-SHIFT key. Pressing the GO 
key is equivalent to pressing CODE-P. 

In multiple process mode, CODE-P causes the Debugger to 
remain active; however, pressing GO causes the Debugger to 
become dormant. 

Executing Instructions Individually 
When you encounter a breakpoint, you can execute the next 
individual instruction in the current process and then break 
again by typing 

CODE-X 



Setting and Processing Breakpoints 7-3 

After the system executes this instruction, it opens and 
displays the next instruction. From any breakpoint, you can 
type CODE-X repeatedly to see a series of instructions 
displayed and executed one by one; this is also known as 
single stepping through a process. 

Use CODE-P to resume normal execution after using 
CODE-X. 

Starting a Process at a Specified Address 
To begin process execution at a different breakpoint at 
address add" type 

add, CODE-G 

The address add, should be an expression that includes a 
user-defined public symbol (for example, "RgParam+ 5"), or 
have the form x:y where x is an appropriate CS parameter 
and y is an appropriate IP parameter. CS and IP are the 
address of the instruction currently executing. 

The commands 

10:0 CODE-G 

and 

100 CODE-G 

both start execution at absolute address 100. However, the 
command "10:0 CODE-G" sets CS to 10, and the command 
"100 CODE-G" sets CS to O. 

In simple mode, CODE-G causes the Debugger to become 
dormant until the next breakpoint is encountered or you 
press CODE-SHIFT -A or CODE-SHIFT -B. 

In mUltiple-process mode, CODE-G causes the Debugger to 
remain active. GO causes the Debugger to become dormant. 

Setting Breakpoints In Interrupt Handlers 
If you are debugging the operating system kernel or an 
interrupt handler, the previously discussed breakpoints are 
not sufficient to break processing. To set a breakpoint in the 
operating system kernel or in an interrupt handler at address 
addr, type 

add, CODE-I 

1207750 



7-4 Setting and Processing Breakpoints 

The standard keyboard and video facilities of the operating 
system support your interaction with the Debugger, except 
when the as kernel or an interrupt handler is broken . At 
these breakpoints, all processes (including as processes) are 
suspended, and the Debugger then works by direct access 
to the physical keyboard and the screen. 

The Debugger uses hardware interrupts 1 and 3. Therefore, 
user programs should not use hardware interrupts 1 or 3. 
Other parts of the operating system use other hardware 
interrupts. 

Debugger Relations to Other Program Steps 
Figure 7-1 provides a diagram of the relationship between 
the Debugger and other steps in a program. 

Figure 7 -1 The Debugger in Relation to Other Steps in Executing a Program. 

PROGRAM 

l 
COMPILER 

~ 
l OBJECT MODULE I 

~ 

SYMBOL FILE I. LINKER ~ LIBRARY 

1 

~ 
RUN ~ EXECUTIVE/ ! CONTEXT MANAGER 

L ___________ • DEBUGGER 

E7529 



Section 8 8-1 

Command Summary 
The Debugger parameters and commands and their effects 
are summarized in the following table. 

Command Command Parameters Effect 
(workstation) (RS232-C) 

CODE-8 CONTROl-8 Displays a list of all 
breakpoints. 

CODE-8 CONTROl-8 add, Sets a breakpoint at 
addr when in simple or 
mUlti-process mode. 

CODE-C CONTROl-C Clears all breakpoints. 

CODE-C CONTROl-C add, Clears the breakpoint 
at add,. 

CODE-D CONTROl-D k, addr Displays k bytes 
starting at add, 
CODE-E. 

CODE-F CONTROl-F Turns symbolic output 
ON and OFF. 

CODE-F CONTROl-F 'filename' Uses the symbol file. 
CODE-F CONTROl-F paragraph. Use symbol file with 

filename load offset. 

CODE-F CONTROl-F 'filename' Uses the symbol file 
with load offset. 

CODE-G CONTROl-G add' Starts the current 
process at add,. 

CODE-I CONTROL-I Displays a list of all 
breakpoints. 

CODE-I CONTROL-I add, Sets a breakpoint at 
add, in interrupt 
mode. 

1207750 



8-2 Command Summary 

Command Command Parameters Effect 
(workstation) (RS232-C) 

CODE-K CONTROl-K Exits from and 
deactivates the 
Debugger. 

CODE-N CONTROl-N Displays the next entry 
in a linked list. 

CODE-N CONTROl-N addr Displays the first entry 
in a linked list. 

CODE-N CONTROl-N k, addr Displays k entries in a 
linked list. 

CODE-P CONTROl-P Proceeds from the 
current breakpoint. 

CODE-P CONTROL-P k Proceeds k times from 
the current breakpoint. 

CODE-P CONTROL-P 0 Proceeds after 
removing the current 
breakpoint. 

CODE-R CONTROL-R Sets the output radix 
to hexadecimal (or to 
decimal, if the current 
radix is hexadecimal) 

CODE-R CONTROl-R k Sets output radix to k. 

CODE-S CONTROL-E Displays status of all 
processes and 
exchanges. 

CODE-S CONTROL-S k Displays status of 
exchange k. 

CODE-T CONTROL-T Displays a trace of the 
stack. 

CODE-T CONTROL-T k Displays a trace of k 
levels of the stack. 



Command Summary B-3 

Command Command Parameters Effect 
(workstation) (RS232-C) 

CODE-X CONTROL-X Executes an 
instruction, and opens 
the next instruction. 

left arrow < add' Opens add' as a byte. 

left arrow < k, addr Opens k successive 
bytes. 

right arrow > add' Opens add, as a 
word. 

right arrow > k, addr Opens k successive 
words. 

MARK CONTROL-] add' Opens addr as an 
instruction. 

MARK CONTROl-] k, addr Opens k successive 
instructions. 

value RI-displays the current 
value. 

up arrow CONTROl-W Opens the previous 
location. 

up arrow CONTROl-W value Changes the current 
location, and opens the 
previous location. 

down arrow CONTROl-V Opens the next 
location. 

down arrow CONTROl-V value Changes the current 
location, and opens the 
next location. 

GO ESCAPE Exit the Debugger and, 
if in simple mode, 
proceed from current 
breakpoint. 

RETURN RETURN Close the open 
location. 

1207750 





Appendix A A-l 

Status Codes 

Decimal Value 

1001 

1002 

1003 

1004 

1207750 

Meaning 

Cannot convert from simple mode to multiple process mode. 
To enter multiple process mode, first exit the Debugger and the 
press CODE-SHIFT-B. 

Not enough memory for multiple process mode or CODE-I 
breakpoint. 

Cannot deactivate the Debugger. 
You cannot deactivate the Debugger while CODE-I breakpoints 
are set or while a breakpoint has just executed. To deactivate 
the Debugger, first remove all CODE-I breakpoints and/or 
proceed (single step) from the breakpoint. 

Breakpoint already there. 
The Debugger allows only one breakpoint per location. 





Appendix B 8-1 

Quick Reference to Debugger Commands 

820 RS232-C Effect 

CODE-8 CONTROl-8 list all breakpoints 

CODE-C CONTROl-C clears all breakpoints 

CODE-D CONTROl-D displays k bytes 

CODE-F CONTROl-F turn symbolic output on/off 

CODE-G CONTROl-G with parameter, start current process at add, 

CODE-I CONTROL-I set interrupt breakpoint 

CODE-K CONTROl-K exit and deactivate Debugger, press twice 

CODE-N CONTROl-N next entry in linked list 

CODE-P CONTROl-P proceed from breakpoint 

CODE-R CONTROl-R set output radix 

CODE-S CONTROl-E display status 

CODE-T CONTROl-T display trace of stack 

CODE-X CONTROl-X execute and open next instruction 

left arrow < open as bytes 

right arrow > open as words 

MARK CONTROl-] open as instruction 

redisplay current value 

up arrow CONTROL-W open previous location 

down arrow CONTROl-V open next location 

GO ESCAPE exit the Debugger 

RETURN RETURN close open location 





Glossary-1 

Glossary 
Address expression. Description of a location in memory. The description 
consists of one or more symbols, or an indexed or nonindexed parameter. 

Breakpoint. A user-defined point in the code for a process. Execution stops 
when a process reaches a breakpoint. 

Byte pattern. User-defined group of byte specifiers. The specifiers are 
separated by commas and enclosed in double quotation marks. 

Byte specifier. Sequence of two-digit hexadecimal numbers, or a string of 
characters enclosed in single quotation marks. 

Clear. Remove a breakpoint from a particular location in memory. 

Code listing. English-language display of code generated by a compiler or translator. 

Crash dump. Output (memory dump) caused by a system failure. 

Current process. The process identified by the PR register in the Debugger. 
Any registers that are read or written by the Debugger are for the current process. 

Current value. The value most recently typed by the user, or the value most 
recently displayed by the Debugger. 

Echo. Repetition on a line printer, in a file or on a screen of instructions entered 
by the user and/or material displayed by the Debugger. 

Exchange. Path on which a process waits for or receives messages or 
communications from another process or processes. 

Indexed address. Address expression that uses index registers. 

Interrupt mode. Debugger operating mode used to debug interrupt handlers or 
to set breakpoints in the Operating System Kernel. 

Link word. Word address, a l6-bit address) pointing to the next block of data. 

Linked-list data structure. Data structure containing elements that are linked 
by l6-bit addresses (link words) or by 32-bit addresses (link pointers). The 
CODE-N command uses link words. 

Linker. Software system that loads and connects together the object programs 
output separately by a compiler or assembler, and from them produces a run file. 

Multiple Process Mode. Debugger operating mode used in debugging a user 
task that involves more than one process and that depends on continuous 
execution of all processes except the ones stopped at breakpoints. 

1?n77l\n 



Glossary-2 

Offset. The number of bytes from the beginning of a segment to a specified 
memory location. 

Output radix. The base of the notation in which Debugger output is expressed 
(binary, decimal, hexadecimal, or any other base from 2 to 16, inclusive). 

Parameter. A constant (number, port, or text), a symbol, unary or binary 
operators, address expressions, or symbolic instructions. 

Physical address. An address that does not specify a segment base, and is 
relative to memory location O. 

Pointer. See "segmented address". 

Port constant. Number followed by an "i" or an "0" (indicating an input port 
and an output port, respectively). 

Public symbol. An ASCII character string associated with a public variable, a 
public value, or a public procedure. 

Public variable. Variable whose address can be referenced by a module other 
than the module in which the variable is defined. 

Public value. Value whose address can be referenced by a module other than 
the module in which the value is defined. 

Public procedure .. Procedure whose address can be referenced by a module 
other than the module in which the procedure is defined. 

Register mnemonic. Two-letter symbolic name for a register in the processor 
(for example, AX, Bl, SI). 

Run file. File created by the linker. The run file contains the initial image of 
code and data for a program. 

Segment. A discrete portion of memory, of a routine, or of a program. 

Segment address. Address of a segment base. 

Segmented address (pointer). Address that specifies both a segment base 
and an offset. 

Segment override. Operating code that causes the system to use the segment 
register specified by the prefix when executing an instruction, instead of the 
segment register that it would normally use. 

Set. Place a breakpoint at a particular location in memory. 

Simple mode. Debugger operating mode used in debugging a single-process 
user task, for example, debugging a Pascal run-file. 



Glossary-3 

Stack. A region of memory, accessible from one end by means of a stack pointer. 

Stack frame. Region of a stack corresponding to the dynamic invocation of a 
procedure. Consists of procedural parameters, a return address, a saved-frame 
pointer, and local variables. 

Stack pointer. The indicator to the top of a stack. The stack pointer is stored 
in the registers SS:SP. 

Stack trace. Debugger display of a stack, organized bV stack frames. 

State variable. Symbolic name of a register that contains data indicating the 
state of the Debugger (for example, PR, IP, or Fl). 

Symbol. A series of alphanumeric and other characters (underscore, period, 
dollar sign, pound sign, or exclamation mark). 

Symbolic instructions. Instructions containing symbols, which are mnenomic 
characters corresponding to assembly-language instructions. (These instructions 
cannot contain user-defined public symbols.) 

System process. Anv process that is not terminated when the user calls Exit. 

Text constant. Sequence of characters enclosed by quotation marks. 

User process. Any process that is terminated when the user calls Exit. 





Index 
A 
absolute addresses, 4-1 
accumulator register, 5-5 
activating the Debugger, 3-5 
address expressions, 2-4 
assembly language, 2-1 
assembly language source instructions, 1-1 
Associate Processor, 3-1 
asterisk, 3-7 
AX register, 5-4 

B 
base register, 5-5 
binary machine instructions, 1-1 
BP register, 5-4 
Breakpoints, 3-6, 7-1 

setting and processing, 7-1 
clearing, 7-1 
proceeding from, 7-2 
setting in interrupt handlers, 7-3 

BX register, 5-4 

C 
changing the contents of a memory location, 5-2 
changing the open location, 5-2 
changing the output radix, 5-3 
clearing breakpoints, 7-1 
Code Segment, 5-4 
CODE-B, 3-8, 7-1, 8-1 
CODE-C, 7-1, 8-1 
CODE-D, 5-5, 8-1 
CODE-F, 2-3, 4-1, 8-1 
CODE-G, 7-3, 8-1 
CODE-I, 7-4, 8-1 
CODE-I breakpoint, 3-9, 7-1, A-1 
CODE-K, 3-7, 8-2 
CODE-N, 5-5, 8-2 
CODE-P, 3-9, 7-2, 8-2 
CODE-R, 5-3, 8-2 
CODE-S, 5-6, 8-2 
CODE-SHifT-A, 3-5 
CODE-SHIFT-B, 3-5, 7-3 
CODE-T, 5-6, 8-2 
CODE-X, 7-2, 8-3 
CODE-V, 6-1 

1207750 

Index-1 



Index-2 

C Cont.) 
Command Line Interpreter, 3-5 
connecting a terminal to the Debugger, 3-1 
count register, 5-5 
crashdumpfile, forcing a,6-1 
CS register, 5-4, 7-3 
current value, 5-3 
CX register, 5-5 

o 
data register, 5-5 
Data Segment, 5-4 
Deactivating the Debugger, 3-7 
Debug Console, 3-1 
Debugger commands, 2-1 
Debugger modes, 3-8 

simple mode, 3-8 
multiple process mode, 3-8 
interrupt mode, 3-9 

Debugger prompts, 3-7 
pound sign #, 3-7 
asterisk ., 3-7 
exclamation point I, 3-7 
greater than sign >, 3-7 

Debugging 
all BTOS processors (RS232-C), 3-3 
all BTOS processors (workstation), 3-4 
cluster processors, 3-2, 
operating system kernel, 7-3 
an operating system process, 4-2 
in a background partition, 4-2 
in the primary partition, 4-2 

Destination Processor, 3-1 
01 register, 5·5 
OS register, 5-4 
OX register, 5-5 

E 
ES register, 5-4 
exclamation point, 3·7, 3·9 
Exiting the Debugger, 3·7 
Extra Segment, 5-4 



G 
general registers, 5-5 
Generating a Debugger operating system, 3-1 
greater than sign, 3-1 

H 
hardware interrupts, 1-4 

id,5-1 
index registers, 5-5 
input port, 2-2, 5-6 
instruction pointer, 5-5, 5-1 
internal register, 5-2 
intenupt handlers, 3-8 
intenupt mode, 3-8 
interval state variables, 2-3 
IP, 5-4, 5-6 

L 
link addreu, 5-1 
linked-list data structures, 5-6 
Linker, 2-3,4-1 

M 
machine address, 5-1 
MCDTIO,3-3 
multiple process mode, 3-8 

N 
numeric constant, 2-2, 5-4 
numerical base, 5-3 

o 
open location, 5-1, 5-5, 8-5 
operating system kernel, 3-8, 1-3 
output port, 2-2 
output radix, 5-3 

1207750 

Index-3 



Index-4 

p 

Parameters 
command, 2-1 
examining memory, 5-1 
examining registers, 5-4 
reading and writing to ports, 5-6 
Code-P,7-2 

percent sign, 3·7 
port constants, 2·2, 5·6 
pound sign, 3·7, 3·9 
PH, 5·3 
process control block, 5·7 
process identifier number, 5-7 
process number, 5-3 
process register, 5-3 
process register mnemonics, 5-4 
public symbols, 2-3, 4-1 

R 
register mnemonic symbols, 5-5 
registers, 5-3 
HS232-C terminal, 3-1 

S 
SI,5-5 
simple mode, 3-8, 7-1 
single stepping through a process, 7-3 
space prompt, 3-6, 5-2 
specifying the offset when loading symbol files, 4-2 
SS,5-4 
Stack Segment, 5-4 
status flags, 5-7 
Symbols 

parameters, 2-1 
four types of, 2-3 
public, 4-1 
user-defined public, 7-3 
table files, 4-1 

symbol files, 4-1 
symbolic instructions, 2-4 
symbolic names, 4-1 
symbolic output, 4-1 
symbolic user input, 1-1 
symbolic values, 4-1 

T 
text constant, 2-3 

U 
user-defined public symbols, 2-3 















Title: __________________________ _ 

Form Number: ____________ _ Date: 

Burroughs Corporation is interested in your comments and sugg-3stions regarding 
this manual. We will use them to improve the qual ity of your Product Information. 

Please check type of suggestion: D Addition D Deletion D Revision 
D Error 
Comments: ____________________________ _ 

Name 
Title ___________________________ _ 

Company 

Address ___ ~~------~~---_=~---~~---
Street City State Zip 

Telephone Number ( ) __________________ _ 
Area Code 

Title: _____________________________ _ 

Form Number: Date: 

Burroughs Corporation is interested in your comments and suggestions regarding 
this manual. We will use them to improve the quality of your Product Information. 

Please check type of suggestion: D Addition D Deletion D Revision 
D Error 

Comments: ~-----------------------------

Name 
Title __________________________ . ________ _ 

Company 

Address ____ ~---------~=_----~------~~-----
Street City State Zip 

Telephone Number ( ) __________________ __ 
Area Code 



BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO. 817 DETROIT, MI48232 

POSTAGE WILL BE PAID BY ADDRESSEE 

Burroughs Corporation 
Production Services - East 
209 W. Lancaster Avenue 
Paoli, Pa 19301 USA 

ATTN: Corporate Product Information 

1.1 •• 11 •• 111.1.111 1111 .1.11.1111.111111.1.1.1"11111 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO. 817 DETROIT, MI4B232 

POSTAGE WILL BE PAID BY ADDRESSEE 

Burroughs Corporation 
Production Services - East 
209 W. Lancaster Avenue 
Paoli, Pa 19301 USA 

ATTN: Corporate Product Information 

1.11111 •• 111.1.1. 11111. 1.11. 1111.1111 ••• 1.1.1111.111 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 

NO POSTAGE 
NECESSARY 

IF MAILED 
INTHE 

UNITED STATES 


