e

CRAY-1°
COMPUTER SYSTEM

CRAY-1 FORTRAN (CFT)
REFERENCE MANUAL

2240009

CRAY-1 FORTRAN LANGUAGE

EXECUTABLE

ASSIGNMENT
o Arithmetic assignment

e Logical assignment
o ASSIGN (statement label)

Formatted data assignment statements

e ENCODE
e DECODE o« .« ..

CONTROL

GO TO statements
e Unconditional GO TO

e Assigned GOTO
o Computed GOTO

IF statements
Arithmetic IF statements

o Three-branch arithmetic IF . . .
e Two-branch arithmetic IF

Logical IF statements
e Direct logical IF
e Indirect Togical IF
Recursion statement

eDO e

Program unit control statements

O CALL . . . v v v v e e e e e

INPUT/QUTPUT
Direct input/output statements

e Formatted READ
Unformatted READ

Unformatted WRITE
PRINT
PUNCH
Buffered input/output statements

e BUFFER IN

)
o Formatted WRITE
®
)

@ BUFFER QUT « « + « « « o « & « o =

Media control statements
e ENDFILE
¢ BACKSPACE

O REWIND « o v o v v v ot

OTHER

o CONTINUE e e e e e e e e

2240009

STATEMENT INDEX

NON-EXECUTABLE

PROGRAM UNIT SPECIFICATION

e PROGRAM e e e e e e 3-116
FUNCTION statements -
o FUNCTION . . .+ 3-123
o INTEGER FUNCTION 3-123
o REAL FUNCTION 3-123
o DOUBLE PRECISION FUNCTION . . 3-123
o DOUBLE FUNCTION 3-123
e COMPLEX FUNCTION 3-123
e LOGICAL FUNCTION 3-123
e SUBROUTINE 3-126
e ENTRY 3-128
o EXTERNAL 3- 67
e BLOCK DATA 3-135
DATA SPECIFICATION
Declaration statements
e PARAMETER 3- 66
o DIMENSION 3- 58
Typing statements
e IMPLICIT 3- 65
o INTEGER 3~ 64
e REAL 3- 64
e DOUBLE PRECISION 3- 64
e DOUBLE 3- 64
e COMPLEX 3- 64
e LOGICAL 3- 64
Association statements
e EQUIVALENCE 3- 58
o COMMON 3- 60
Initialization statement
e DATA 3- 68
OTHER SPECIFICATION
e FORMAT 3- 92
e Statement function definition . . 3-120

CRAY-1°
COMPUTER SYSTEM

'CRAY-1 FORTRAN (CFT)
REFERENCE MANUAL

2240009

Copyright® 1976, 1977, 1978 by CRAY RESEARCH, INC.

This manual or parts thereof may not be reproduced in any -

form without permission of CRAY RESEARCH, INC.

R ANY

wm

RECORD OF REVISION PUBLICATION NUMBER 2240009

Revision Print Date Description

July, 1976 Preliminary distribution, Xerox copies.

A February, 1977 First printing. Since changes are very
extensive, they are not noted by change bars.

B November, 1977 Second printing. Since this represents a
complete rewrite, changes are not noted by
change bars.

C April, 1978 Updates the manual to be in full agreement
: with the April, 1978 release of the CRAY-1
FORTRAN Compiler (CFT) Version 1.01.

Each time this manual is revised and reprinted, all changes issued against the previous version in the form
of change packets are incorporated into the new version and the new version is assigned an alphabetic level.
Between reprints, changes may be issued against the current version in the form of change packets. Each
change packet is assigned a numeric designator starting with 01 for each new revision Tevel. Every page
changed by a reprint or by a change packet has the revision Tevel and change packet number in the lower right-

hand corner. Al1l changes are noted by a change bar along the margin of the page.
Requests for copies of CRAY RESEARCH, INC. publications should be directed to: CRAY RESEARCH, INC.
7850 Metro Parkway

Suite 213
Bloomington, MN 55420

ii

PREFACE

The CRAY-1 FORTRAN Compiler (CFT) transforms CRAY-1 FORTRAN Language
statements into the highly efficient computer programs required for
effective use of the CRAY-1l Computer System. This manual describes
the CRAY-1 FORTRAN Language in its entirety, the use of the CRAY-1
FORTRAN Compiler, and related CRAY-1 Operating System characteristics.

This publication results from a high degree of cooperation and dedication
on the part of many at Cray Research. Notable among these are Richard
Nelson, Head FORTRAN Programmer, and Irene Mallgrave and Richard
Hendrickson of FORTRAN Compiler Development. Editorial and graphics
support were provided by Janet Robidoux, Head Publications Editor, and
Chad Jewett of Technical Communications. The manuscript was typed by
Mary Huber and Arlene LaBounty.

Cray Research is especially grateful for the invaluable general and
technical critiques of this material by:

® Mostyn Lewis of the European Centre for Medium Range Weather
Forecasts at Bracknell, Berkshire, England;

® Robert Cave of Princeton, New Jersey; and

® Russell Rew of the National Center for Atmospheric Research,

Boulder, Colorado.

The final measure of this manual's worth lies in its usefulness to you,
the reader. Cray Research invites your comments and criticisms as
essential to the continued improvement of this publication.

Neill T. Ward
November, 1977

2240009 iii C

CONTENTS

CONTENTS

.

.

(CFT)
(Cos)

.

.

PREFACE . + v & v o o o o o o o
1. INTRODUCTION . & & & = o o o o .
1.1 GENERAL . +« « « & « o o « .
1.2 THE CRAY-1l COMPUTER SYSTEM
1.3 THE CRAY-1 FORTRAN LANGUAGE
1.4 CRAY-1 FORTRAN PROGRAMMING
1.5 THE CRAY-1 FORTRAN COMPILER
1.6 THE CRAY-1 OPERATING SYSTEM
2. THE CRAY-1l COMPUTER SYSTEM
2.1 GENERAL . . . v « « « « . .
2.2 SYSTEM OVERVIEW
2.3 THE CENTRAL PROCESSING UNIT
3. THE CRAY-1 FORTRAN LANGUAGE . . .
3.1 GENERAL DESCRIPTION
3.1.1 The CRAY-1l FORTRAN compiler
3.1.2 Conformance to the ANSI Standard
3.1.3 Syntax description .
3.2 FUNDAMENTALS

2240009

3.2.1 Notation e e e e e .

Character sets . . .
Sequences
Syntactic items . .
Lists and list items

Statements

The FORTRAN coding form

FORTRAN coding form format

Lines . ¢« « « « + .

Program units . . .
Procedures

Data representations

Data types
Data specification .

The executable program

.

Variables, arrays, array

Definition
Reference

Storage
Association
v

elements,

-

-

.

functions

.

-

.

L
I T
'_l.

o e
]

=
|

I LI | [
WN NN O WWwWw W w DHEEFE FH FHF WHEHFHF B DNNHEFHFRERE

[

I
[
(@)

[}
=
N O

|
'—J
o

'—l
w

3.2.6 Order of statements and lines ,
3.2.7 Normal execution sequence . . .,

3.3 DATA. ¢ o 4 v v o i e e e v e s e s e e e e e e e e e

3.3.1 Typesofdata
3.3.2 Data identifiers . .,
3.3.3 Comstants ¢ . i i i et e e e e
Integer constants.
Real constants ey e e e e e e e .
Double-precision constants, e e e e
Complex constants =« « « ¢« « o ¢ o« & o o &« o o .
Togical constants « - « ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ 4 4 4 . .
Boolean constantsS « « o ¢ o o o s s o o & e e o
Hollerith constants .« -« « « « ¢« « ¢ ¢« ¢« o « « . .
3.4 BRRAYS o o = o o o o o o o o o o o o o o« o« o o o o o o
3.4.1 Array declarators « « « + « « ¢« o o o o o o o o
Form of an array declarator =« . « ¢« « « « « .« . .

Kinds of array declarators . . « « . « « « « « . .
3.4.2 Properties of an array « « « » « o ¢ o o o « o o

Data type of an array and an array element
Dimensionality of an array - « « « « « « « « o « .
Size of a dimension .« - . <« ¢+ 4 4 o ¢ e . .

Size Of an array =« « + ¢ « o o o o o o o o o o .
Array element order « + « + 4 ¢ o 4 4 e o o+ e .
Array storage Sequence . - e« « « - & o o s . e . .

3.4.3 Array element names ¢ ¢ ¢ ¢ o o o ¢ . . .

Subscript expression . - - .« ¢ ¢ 4 ¢ ¢ 4 . 4 . . .
Subscript values 4 4 44w o4 e .

3.4.4 Dummy and actual arrayS. v v . o . . .
3.4.5 Adjustable arrays and adjustable dimensions , , .
3.4.6 Use of array names 4 v ¢ v o o o o .

3.5 EXPRESSIONS & & v 4 4 v 4 o o o o o o e« o o o .
3.5.1 Arithmetic expressions , ., ., . , 4 e e e e e e e

Arithmetic Operators + v v o o o o o o .
Form and interpretation of arithmetic expressions
Types and interpretation of arithmetic expressions
Integer quotients
Type conversion ¢ ¢ v 4 4 4 4 4 4 4 e W .

Hollerith expressions v ¢ v & o o o o .
Relational expressions «

[$2 809,
.
w N

Relational operators v v v v« v o o o o o«
Arithmetic relational expressions
Hollerith relational expressions - e e .
Values of logical factors, terms, dlsjuncts, and
eXPressions 4 e 4 e e e e e e e ..

2240009 vi

3.6

2240009

Logical expressions

Logical operators

Form and interpretation of logical expressions

Boolean expressions
Precedence of all operators
Summary of rules of interpretation .
Evaluation of expressions

Order of evaluation of functions. . .
Parentheses and expressions
Evaluation of arithmetic expressions.
Evaluation of Hollerith expressions .
Evaluation of relational expressions.
Evaluation of logical expressions . .
Evaluation of Boolean expressions . .

STATEMENTS ¢ ¢ v ¢ o« ¢ o o o o =

3.6.1
3.6.2

3.6.3

Statement classification.
Data specification

DIMENSION statements
EQUIVALENCE statements
COMMON statements
Type statements
IMPLICIT statements
PARAMETER statements.
EXTERNAL statements

Data initialization

Form of a data statement
DATA statement restrictions

Data assignment

Arithmetic assignment statements. . .

Logical assignment statements

ASSIGN statements
Program control

Unconditional GO TO statements . . .
Computed GO TO statements
Assigned GO TO statements
Three-branch arithmetic IF statements
Two-branch arithmetic IF statements .
Direct logical IF statements.
Indirect logical IF statements. . . .
DO statements
CONTINUE statements
STOP statements
PAUSE statements
END statements

Input/output operations

Input/output records, files, units, and formats
READ, WRITE, PRINT, and PUNCH statements . . .

vii

3-47
3-47
3-48
3-51
3-51
3-52
3-52

3-53

. 3-54

3-54
3-55
3-55
3-55
3-55

3-56

3-56
3-56

3-58
3-58
3-60
3-64
3-65
3-66
3-67

3-68

3-68
3-69

3-70

3-70
3-71
3-71

3-72

3-72
3-73
3-74
3-75
3-75
3-76
3-77
3-717
3-81
3-81
3-82
3-82
3-82

3-83
3-85

Execution of data transfer input/output statements
BACKSPACE, ENDFILE, and REWIND statements. . .

Restrictions on input/output statements .
3.6.7 Format specification

FORMAT statements. « « « « « « « &
Form of a format specification
Edit descriptors - « « « « « + o + o o -
Interaction between input/output lists and
specifications . .« - -+ < - o o o o o . .
Positioning by format control. . - . . . -
‘Editing. e e o o s e e e s e & e o e e o =

3.6.8 Buffered input/output operations . . - - .

The BUFFER IN and BUFFER OUT statements. .
The UNIT function. « « « « « « o « o « « =«
The LENGTH function. « « « « ¢ s « « « =«

3.6.9 Formatted data assignment . - . . .« . - .

ENCODE and DECODE statements . - =«
The ENCODE statement « - « « =« + ¢ « o < ¢

The DECODE statement « « - « ¢ « « =« =« &
3.6.10 The main program . « « « « « « « « « « -«
The PROGRAM statement. - « « + =« « « =« = =

Main program restrictions. - « « << « -
3.6.11 Functions and subroutines. . « + « .« - - .

Categories of functions and subroutines. .

Referencing functions. « « « « « « « < -
Intrinsic functions. - « « « o « « « « o .
Statement functions. < < « . .
External functions « « « « o o .
Subroutines . . < . ¢ ¢« « o o e o . e .
ENTRY statements « . « ¢« « « ¢ « =
RETURN statements., « « « « « . .
Arguments and common blocks.
Common blockS. . . « ¢ o o o « o o o o + =
3.6.12 Utility procedures « « « « & « -

3.6.13 Block data subprograms ... « . « « + o« «

Block data statement form =« . « « « « « -

Block data subprogram restrictions . - - -
3.7 ASSOCIATION AND DEFINITION « « o« « « « =
3.7.1 Storage and association.
Storage sequences. o 4 s s e e s e
Association of storage sequences
Association of entities.
3.7.2 Defining entities
3.7.3 Undefining entities
° 2240009 viii

.

format

.

.

-

3-88
3-91
3-91
3-92
3-92
3-92
3-93

3-95
3-96
3-97

3-111

3-112
3-113
3-114

3-115

3-115
3-116
3-116

3-116
3-116

3-117

3-117

3-117
3-118
3-119
3-120
3-123
3-126
3-128
3-129
3-130
3-134

3-135
3-135
3-135
3-135
3-137
3-137
3-137

3-137
3-137

3-138
3-139

3.8 SCOPE AND CLASSES OF SYMBOLIC NAMES
3.8.1 Scope of symbolic names.
Global entities.
Local entities « « < « o .« . .
3.8.2 Classes of symbolic names.
Common blocks. «
External functions
.Subroutines. e e e
The main program « « « o « + &

" Block data subprograms
AYTAYS v v o o o o o o o s o o o s o o o
Variables. . . ¢ ¢ ¢ « 4 ¢ o o o o + o o
Constants. « .«
Statement functions.
Intrinsic functions. - e .
4. CRAY-1 FORTRAN PROGRAMMING. ¢ v v o« o« o o o « «
4.1 GENERAL . ¢ ¢ 4 ¢ ¢ o o o o o o o o o o o o o o =«
4.2 FORTRAN PROGRAMMING FOR CRAY-1 VECTOR OPERATIONS.
4.3 FORTRAN PROGRAMMING FOR CRAY-1 MEMORY OPERATIONS.
5. THE CRAY-1 FORTRAN COMPILER . . . v v ¢ o o o « o « o« =«
5.1 GENERAL . . . o ¢ ¢ ¢ o o o o o o o o o = « e e
5.2 INPUT TO CEFT. & « ¢« ¢ e o o « o s o « o o o s o =
5.3 OUTPUT FROM CFT . . ¢ ¢ ¢ o o o o o o a o o o o =
5.3.1 Binary output. o o o ..
5.3.2 Listable output.« + + & .+ . .
Source statement listings.
Symbol table and common block name list. .

Statement label list
Warning messagesS . « « o o o o o o o o o
Fatal error messages . . .« e . .
5.4 COMPILER DIRECTIVES . +v ©v « o o o o o o o o = .

2240009

5.4.1 Compiler directive lines
5.4.2 Listable output control directives

EJECT directives
LIST directives
NOLIST directives

CODE directives

NOCODE directives
5.4.3 Vectorization control directives .

VECTOR directives
NOVECTOR directives
IVDEP directives

5.4.4 Integer control directive

ix

3-140
3-140

3-140
3-141

3-141

3-141
3-142
3-142
3-142
3-142
3-143
3-143
3-143
3-144
3-144

|

oo, o, L{\U'IU'IU'l»buh»hob
b bdNND DN HFHEFEHE OHF O OEHEREP

11

1

U'IU1U1U1(J1U1('J1U1U'IU1 [S2 00 RS]
O ONN N NNNNOY OO W

6. THE CRAY-1 OPERATING SYSTEM

6.1
6.2
6.3

6.4

APPENDIXES

ToOHdEB0oO0wy

FIGURES

TABLES

2240009

GENERAL . . . & & o ¢ ¢ & o o o o o o o o =
JOB PREPARATION < « « &« « « =
REQUIRED JOB CONTROL STATEMENTS

Job identification
Assign dataset characteristics . .
CRAY-1 FORTRAN compiler executlon.

Set or clear sense switch.
Relocatable loader
The job control statement file . . -

() I e) W o) W) W) Wi e)}
L) LI B]
(oI5, V- UV NI =

3
3
.3
.3.
3
3

ERROR MESSAGES DURING PROGRAM EXECUTION .« .

CHARACTER SET =« ¢ « ¢ ¢ o o o o o o o o o &
CRAY-1 FORTRAN INTRINSIC FUNCTIONS,
CRAY~1 FORTRAN UTILITY PROCEDURES _ , . . .
CFT ERROR MESSAGES. « ¢« « « « .
COS ERROR MESSAGES.
CREATING NON-FORTRAN PROCEDURES e e e e e
CRAY-1 CENTRAL PROCESSING UNIT . ., ., . . .
RANDOM INPUT/OUTPUT OPERATIONS .,

The CRAY-1l Computer System. .,

The CRAY-1l central processing unit, , ., ., .
FORTRAN coding form .,
The executable program
The computation section, . .
Numeric data representation

Special characters
Required order of lines and statements, . .
Subscript values
Arithmetic operators. « « « « . .
Interpretation of operators in expressions,
Precedence of arithmetic operators.
Arithmetic operand, expression, and result

typing relationships.
Relational operators « « . .
Logical operators « « ¢« « ¢« + . .
Precedence among all operators.
Statement classification
Print control characters.
ON and OFF options. ¢« v & ¢« « « o .
Functional unit relationships

Significant exponent value ranges

X

O\O\OC\O'\C?\O\ [e)IKe)Ie) BN e)}
N O NOOww N M

EOMM?GWD’
e S T A L P R

G-12

1 INTRODUCTION

INTRODUCTION 1

1.1 GENERAL

CRAY-1 FORTRAN provides the CRAY-1 Computer System programmer with a means of
specifying computer programs in a high-level language while retaining
control of the performance and capabilities of the CRAY-1l Computer.

This is made possible by the CRAY-1 FORTRAN Compiler, .CFT, which transforms
CRAY-1 FORTRAN Language statements into highly efficient machine-language
instruction sequences, or programs. Programs created by CFT exploit CRAY-1
features without special consideration by the FORTRAN programmer.

The CRAY-1 Operating System (COS) supports CFT and the programs created by
CFT by initiating and monitoring their execution.

A working knowledge of CRAY-1 FORTRAN demands an understanding of certain
aspects of: :

e The CRAY-1 Computer System,
© The CRAY-1 FORTRAN Compiler (CFT), and
e The CRAY-1 Operating System (COS).

1.2 THE CRAY-1 COMPUTER SYSTEM

Section 2 describes the fundamentals of CRAY-1 Computer System organization,
capabilities, and use. It emphasizes those areas of greater significance
to the CRAY-1 FORTRAN programmer such as memory size, data formats and
vector processing capabilities.

1.3 THE CRAY-1 FORTRAN LANGUAGE

Section 3 fully describes the CRAY-1 FORTRAN language. The presentation

is progressive, proceeding from the identities and forms of basic syntactic
elements through the full range of CRAY-1 FORTRAN statement types and
applications. Examples reinforce more formal explanations and confirm

the reader's correct understanding of the material.

1.4 CRAY-1 FORTRAN PROGRAMMING

Section 4 identifies characteristics of the CRAY-1l Computer System, the
consideration of which would improve the performance of computer programs
written in the CRAY-1 FORTRAN Language. Additionally, this section defines
CRAY-1 Operating System (COS) methods for organizing and referencing these
programs and related data.

2240009 1-1 c

1.5 THE CRAY-1l FORTRAN COMPILER (CFT)

During the transformation of CRAY-1 FORTRAN Language statements into
executable machine language programs, the CRAY-1 FORTRAN Compiler (CFT)
produces symbolic listings and other information for the user. Addition-
ally, the user may control these and certain other compiler actions. Section
5 describes. CFT operations supporting the CRAY-1l FORTRAN programmer.

1.6 THE CRAY-1 OPERATING SYSTEM (COS)

Section 6 presents those features of the CRAY-1l Operating System (COS)
 provided for use by the CRAY-1l FORTRAN programmer. It describes the creation,
loading and execution of computer programs compiled by CFT.

2240009 1-2

2 THE CRAY-1 COMPUTER SYSTEM

THE CRAY-1 COMPUTER SYSTEWM 2

2.1 GENERAL

This section provides an overview of the CRAY-1l Computer System. Emphasis
is on those features of the central processing unit of significance to

the CRAY-1 FORTRAN programmer. A complete description of the CRAY-1 is
documented in the "CRAY-1 Reference Manual" (2240004).

The CRAY-1 Computer System is a large-scale, general-purpose, scientific
digital computer designed for high-speed computation on large volumes of
data. It is capable of storing over a million binary computer words of
instructions and data and of providing computational results in excess of
100-million per second. The CRAY-1 has twelve high-speed input/output
channels for data transfers to and from its mass storage subsystem, one or
more computer systems, and its Maintenance Control Unit.

The CRAY-1 FORTRAN Compiler (CFT), while closely adhering to the "ANSI
FORTRAN X3.9-1966" FORTRAN Language standards, draws upon capabilities
unique to the CRAY-1 Computer System. Machine language programs produced
by CFT are capable of highly efficient use of the CRAY-1l's resources without
the user specifying more than standard FORTRAN constructs. There are,
however, certain fundamental characteristics of the CRAY-1l, as with any .
computer programmed in FORTRAN, that may enhance the effectiveness of
FORTRAN program specification. These include memory size and speed and
data word length and format.

2.2 SYSTEM OVERVIEW

The CRAY-1l Computer System serves as an extremely powerful computational
resource for one or more "host" processors. BAlthough capable of operating
in a stand-alone mode, the CRAY-1 is normally dedicated to computation
with a host processor controlling low-speed peripheral equipments.

The configuration of the CRAY-1 Computer System consists of:

° The central processing unit (CPU),

® The mass storage subsystem,

® The external interface unit(s),

e The maintenance control unit (MCU),

e Local input/output stations (optional), and
e The CRAY-1 operating system (COS).

As illustrated in figure 2-1, the Central Processing Unit (CPU) is the
nucleus of CRAY-1 Computer System operations. The CPU not only receives,
transmits, and processes all information entering or leaving the CRAY-1
but also controls the operation of all other system components supporting
these CPU activities.

2240009 2-1 c

THE CRAY-1 COMPUTER SYSTEM

MAINTENANCE CONTROL UNIT LOCAL INPUT/OUTPUT STATION (OPTIONAL)
¢ CHANNEL~-CONNECTED TO CPU ¢ CHANNEL~CONNECTED TO CPU
« MINICOMPUTER CONTROLLER « MINICOMPUTER CONTROLLER REMOTE
¢ DISK STORAGE » DISK STORAGE < INPUT,/OUTRUT
» MAGNETIC TAPE STORAGE e MAGNETIC TAPE STORAGE : STATIONS
¢ LINE PRINTER o LINE PRINTER (OPTIONAL)
« CARD READER « CARD READER
 CRT/KEYBOARD CONSOLES CRT/KEYBOARD CONSOLES

* COMMUNICATION WITH REMOTE STATIONS

CENTRAL PROCESSING UNIT

e MEMORY SECTION — UP TO 1,048,576 64-BIT WORDS

e COMPUTATION SECTION — OVER 100 MILLION OPERATIONS PER SECOND

e INSTRUCTION CONTROL SECTION — 128~INSTRUCTION REPERTOIRE; INTERRUPT
e INPUT/OUTPUT SECTION — 12 INPUT AND 12 OUTPUT CHANNELS

e CRAY-1 OPERATING SYSTEM (COS) SOFTWARE

MASS STORAGE SUBSYSTEM EXTERNAL INTERFACE UNIT
el TO 4 DCU2 DUAL-ACCESS o CHANNEL~-TO-CHANNEL CRAY-1/HOST
DISK CONTROL UNITS COMPUTER PROGRAMMABLE INTERFACE
2 TO 32 DD19 DUAL-ACCESS e ERROR DETECTION/CORRECTION
DISK STORAGE UNITS CIRCUITRY
e OPTIONAL LONG-LINE ADAPTORS

HOST COMPUTER

Figure 2-1. The CRAY-1 Computer System

The Mass Storage Subsystem consists of from one to four DCU-2 Disk Control
Units, each capable of interfacing four DD-19 Disk Storage Units to the
CPU. Each DD-19 Disk Storage Unit can hold 37 million 64-bit words and
can transfer these to and from the CPU at a sustained rate of 500,000 words

per second.

During operational use, one or more external interface units control the
high-speed transfer of program and data information between the CRAY-1
Computer System and one or more host processors. These units support
intercomputer data transmission protocol, compensate for differences

in data representation between the two systems, and perform extensive
data validation and correction operations.

The Maintenance Control Unit (MCU) is a minicomputer connected to the
CPU to support field engineering in their maintenance of the CRAY-1

Computer System.

2240009 2-2 C

One or more local input/output stations may be channel-connected to the
CPU to control card readers, line printers, magnetic tape drives, and
similar peripheral equipments to be used for data input and output.
Additionally, each can control communications with one or more remote
input/output stations.

The CRAY-1 Operating System (COS) resides in the CPU during operation of
the CRAY-1 Computer System. COS coordinates all system components. COS
activities depend upon information accompanying the jobs it processes,
conditions in the CRAY-1l, and commands received from one or more host
computer systems. The multiprogramming environment in which jobs are
processed by the CRAY-1 is established and maintained by COS.

2.3 THE CENTRAL PROCESSING UNIT

The Central Processing Unit (CPU) of the CRAY-1 Computer System (Figure 2-2)
consists of:

o The memory section,

® The instruction control section,
e The computation section, and

e The input/output section.

The CRAY-1 Operating System maintains constant control of the CPU and its
interaction with other system components during normal operation. The CPU
is described further in Appendix G.

MEMORY SECTION

® 262,144 OR 524,288 OR 1,048,576
64-BIT WORDS

© 80,000,000 WORDS PER SECOND MAXIMUM
TRANSFER RATE

o SINGLE ERROR CORRECTION/DOUBLE ERROR
DETECTION (SECDED)

o MEMORY PROTECTION

INSTRUCTION CONTROL SECTION @:D COMPUTATION SECTION
® 256 INSTRUCTION INTERRUPT CONTROL CRAY=1 ® 658 OPERATING ® SCALAR, VECTOR, AND
BUFFER REGISTERS ¢ 17 5 NANOSECOND IMULTIPROGRAMMING] REGISTERS ADDRESS COMPUTATION
© 128-INSTRUCTION CLOCK PERIOD AND OPERATING /o ovER 100,000,000
REPERTOIRE REAL-TIME CLOCK SYSTEM OPERATIONS PER SECOND

INPUT/OUTPUT SECTION
e 12 INPUT AND 12 OUTPUT CHANNELS
® 10,000,000 WORDS PER SECOND MAXIMUM
CHANNEL TRANSFER RATE
o ERROR DETECTION AND INTERRUPT

Figure 2-2. The CRAY-1l central processing unit

2240009 2-3 c

3 THE CRAY-1 FORTRAN LANGUAGE

THE CRAY-1 FORTRAN LANGUAGE 3

3.1 GENERAL DESCRIPTION

FORTRAN is a system of notation devised for easy and accurate computer
program specification. As such, it is a language in which the clarity
of a mathematically oriented grammar is readily learned and applied.
Ordered sets of alphabetic, numeric, and special characters are used

to construct FORTRAN statements which, in turn, are ordered to describe
a computer program. FORTRAN permits computer program specification with
little dependence upon the characteristics of the computer system to be
used.

This section progressively develops the means for program specification
using the CRAY-1 FORTRAN language. The fundamentals of its notation and
syntax are introduced first, then are used as a basis for progressing
into the complete range of capabilities afforded by CRAY-1l FORTRAN.

3.1.1 THE CRAY-1 FORTRAN COMPILER

The CRAY-1 FORTRAN Compiler (CFT) converts statements in the FORTRAN
language to the binary machine language of the CRAY-1l Computer. In so
doing, CFT constructs machine-language instruction sequences that cause
the full range of CRAY-1l features and capabilities to be applied during
proéram execution. As long as the same standards of FORTRAN language
expression are adhered to, FORTRAN compilers of other computer systems
will accept and convert the same statements into machine-language
instruction sequences for those systems.

3.1.2 CONFORMANCE TO THE ANSI STANDARD

Specifications for the CRAY-1 FORTRAN language are based upon standards
established in 1966 by the American Standards Association and documented
in the American National Standards Institute (ANSI) publication "ANSI
FORTRAN X3.9-1966". Extensions to these standards afford the CRAY-1
FORTRAN language programmer a broader range of capabilities. Most

have been developed to correspond to many of those proposed by the
American National Standards Committee X3J3 as part of a new FORTRAN
standard. Notes are included at appropriate points throughout this
section identifying deviations from the 1966 ANSI Standard.

2240009 3-1 c

3.1.3 SYNTAX DESCRIPTION

A conventional notation is used in this publication to describe the
syntax of FORTRAN statement forms. It consists of ordered sequences
of the following elements:

® The square brackets,[] , indicate the optional use of the items
they enclose.

e An italicized lower-case letter or letters, thus, identifies the
use of a certain type of item.

e Numbers, symbols, and upper-case letters (e.g., E+23) indicate
their actual use.

@ The ellipsis, ... , indicates the optional use of the preceding
item one or more times in succession.

Except where specifically stated otherwise, blank characters are ignored
and may be used to enhance readability.

For example,
prINT f[, tolist]

where f is a FORMAT statement identifier and
tolist is an I/0 list
describes the syntactical construct that begins with the letters "PRINT"
followed by those symbols identifying a FORMAT statement identifier

and, optionally, a comma and one or more sets of symbols identifying
I/0 list items separated by commas. The FORTRAN language statements

PRINT 88

PRINT 1234,A,B,C,X,Y,Z

PRINT6,VALUE

PRINT 0054,ALPHA,BETA,GAMMA,DELTA,ETCETERA

thus comply with this form assuming the use of FORMAT statement
identifiers and I/O list items is proper.

2240009 3-2 C

3.2 FUNDAMENTALS

Many of the basic terms and concepts used throughout this section are
introduced below. Words and phrases appearing in italics indicate
their being defined at that point.

3.2.1 NOTATION

The FORTRAN language embodies a syntax described in the following
paragraphs. Components of this notation are numbers and letters and
the special characters identified in the character sets below. Certain
sequences of these are called syntactic items and may be grouped into
FORTRAN statements which, in turn, are ordered into program units.

Character sets

Two sets of characters are used in CRAY-1 FORTRAN language notation.
Upper-case letters, digits, and certain special characters belong to the
FORTRAN character set. All other characters representable in the CRAY-1
computer belong to the auxiliary character set. Appendix A describes
these characters and their internal codes.

The FORTRAN character set - The FORTRAN character set consists of: the
twenty-six upper-case letters, A-Z; the ten digits, 0-9; and the fourteen
special characters described in table 3-1. An alphanumeric character is
any letter or digit.

The internal code for each of these characters is described in Appendix A.
The relative magnitudes of these character codes establishes their
collation sequence. Note that digits precede letters in this collation
sequence.

The auxiliary character set - Appendix A contains the complete CRAY-1 set
of characters and the codes used for the internal representation of each.
Those characters not in the FORTRAN character set are members of the
auxiliary character set and are of limited use.

The ANSI FORTRAN Standard does not specify an auxiliary character set or a collation sequence.

Sequences

A sequence is a set of n elements ordered in a one-to-one correspondence
with the ordinals 1,2, ... ,n. An empty sequence contains no elements.

2240009 3-3 C

Table 3-1. Special characters

Symbol Name

Blank or space
= Equals

+ Plus

- Minus or hyphen
Asterisk

/ Slash
(Left parenthesis

) Right parenthesis

’ ’ Comma

. Decimal point

$ Dollar sign or currency symbol
Apostrophe

Quotation mark
Colon

The ANSI FORTRAN Standard does not provide for apostrophes, quotation marks, or colons.

Syntactic items

Syntactic items of the FORTRAN language are formed with sequences of
FORTRAN character set elements, and include:

e Constants,

® Symbolic names,
e Statement labels,
e Keywords, and

® Operators.

Constants - A comstant is a syntactic item representing an unvarying value.

Several types of constants are illustrated below and are more fully"
described in 3.3.3.

2240009 3-4

Examples:

Representation . Type _ Value
1024 Integer 1024
10.E1 Real 100
1.5) Real 1.5
.FALSE. Logical false
.TRUE. Logical true
72. Real 72
6HCRAY -1 Hollerith CRAY-1
75.63D-2 Double precision .7563 .
(6.1,-3.2) Complex 6.1+ (=3.2/-1)

Symbolic names - A symbolic name declares or references a program unit,
procedure, or value. It is composed of from one to eight alphanumeric
characters the first of which must be a letter. Leading, trailing, and
embedded blank characters are ignored.

The ANSI FORTRAN Standard limits a symbolic name to a maximum of six characters, and does not provide for
the symbolic name of constants.

ExamEles:

DATAONE F293 . SIN ALPHA
DATA1 U 238 TEST1234
DATA1T ARRAY TWO MAIN PROG

Statement labels - A statement label uniquely identifies a statement in a
program unit to permit its being referenced by other statements in the

same program unit. A statement label is composed of from one to five digits.
Leading zeros and leading, trailing, and embedded blank characters do not
alter the identity of a statement label. They are counted as part of a

five character maximum only when the statement label appears with the state-
ment it identifies.

Examples:
12345 6681
12345 470
12 345 00673
96 673
8277 2 2

2240009 3-5 c

Keywords - A keyword is a prespecified sequence of letters having special
significance in FORTRAN language statements. Leading, trailing, and em-
bedded blanks occurring in a keyword are ignored. Examples of keywords
used in FORTRAN statements appear in table 3-11. The possible similarity

of a keyword and a symbolic name poses no problem because of the context
in which each is used.

Operators - An operator is expressed as one or two special characters
augmented, in certain cases, with letters. Leading, trailing or embedded
blanks do not affect the identity of an operator. Operators are used to
specify arithmetic, relational, and logical operations within program units.

Examples:
Representation ' Type Meaning
+ Arithmetic Addition
*k - Arithmetic Exponentiation
.AND. Logical Conjunction
JOR. Logical Disjunction
.EQ. Relational Equal
.GT. Relational Greater than

Additional syntactic items -~ Certain special characters can be used in a
manner that defines their being syntactic items. Their forms and uses

will be described at appropriate points. Adjacent blank characters have
no effect on their interpretation.

Iists and list items

A list is a sequence of syntactic items separated from each other by the
special character comma. The syntactic items appearing in a list are called

list items. Blank characters preceding and following list items do not
affect their interpretation.

Examples:

A,B,C,D,E 701,55,100
ARRAY1, VALUE2,X,ABC UNO,DOS, TRES

2240009 3-6

3.2.2 STATEMENTS

A FORTRAN statement is a sequence of syntactic items beginning, in most
cases, with a keyword. It serves as a fundamental component in a FORTRAN
program specification by describing either the form of data and program
elements or the actions to be taken by the program. A statement label

may precede a statement, but is not a part of the statement itself. The
type of a statement is indicated by the keyword it contains or by its

form. Examples appear throughout 3.6. The total number of characters
used to express a statement is limited to 1,320 and includes blank
characters. Aside from this character-count limitation, leading, trailing,
and embedded blank characters do not affect statement interpretation.

A statement is classified as either an executable statement or a non-

executable statement. An executable statement is one that specifies an
action. A non-executable statement is an inactive descriptor of data or

program form.

3.2.3 THE FORTRAN CODING FORM

A FORTRAN coding form is a convenience in expressing FORTRAN language
‘notation and facilitates its transcription into punched cards or some other
computer input medium. Figure 3-1 illustrates this form.

FORTRAN coding form format

Each horizontal row on the form provides 80 positions (or columns) for
the specification of 80 characters from the character set. Only the
leftmost 72 columns (columns 1 through 72) are used to specify a FORTRAN
program. The content of the remaining eight columns. is commonly used for
identifying and sequencing punched cards but may be unused or used for
other purposes.

The first 6 columns have positional significance in FORTRAN and are
delimited on the form by heavier vertical lines.

All or part of a FORTRAN statement can be expressed in columns 7 through
72 of the form.

2240009 3-7 c

6000%¢2¢

8-t

R AN

FORTRAN

Coding Form

PROGRAMMER

DATE

PAGE

FORTRAN STATEMENT

[AFIENEEE) (3 E8 1NN S IEN KT uIu[uln[u[wl:olz-]nlu]uh;lulvh:{n[»l?ﬁﬂ:uulnluInl)llnuv]n14)[43]«]41[:1[:7Ialn[u]nlsﬂn[ul”[ulﬂTuls']uI

afofule]oulojaloinininln]uln]e[n{minid

| N T T S T T i L !
NS S T T T DU N N S T ! !
S S T Y N T 1
[T S B . L

i : T S S Y S | Lot
Lol O S T S S S B !

SR TS T S T T TS O A T O Loy
N S T S S WY T T S T I B O | SR
N T S S S T SN N T WO T NN | L
T N S T T Y YT T SO S N S
SO TS I SO T U T O T Y S M 1t
I UL S S T TS N S S A L]
Lo i1 F I N | PR B |
R B Lol I |
| F N N N | I 1 1

I S B R B S L Lo
L4y TR U T W N N A SR A I
I BRI B B A Y B I ISR

L1
L1
T
L1 |
-
I
L1
T
11 |
It
T
I
11y
T
11 4
L
Lt
1 1 1
T
T
Lg)
1 1
Lt
111

Lol
[
|1
1ot
gt
L1
11
Lt
Lt
L1
L4l
L1
11
[
IR
111
11}
L1
Lt
IS
L1
1L
L1l
TR

PROGRAM

ROUTINE |

NO. J¥
I T N B TS IS S S SO U N S N T B N
i Ll I Ly R N 1t
j I - T N U S S S | 1 S S S T N T B
L 4 1 M L Ly N
TR It . : L i
i L . R . 1o
Ll T T T S B B O T SR O N B S W B B
[PR SO IO T N B B B T S T S S N SOV
144y N T O N T W N Y S S B S A S Y A R O
L1 IS T T Y B T WO A B S T N S A PR I
FEN B [L TN S Y S T 0 A T T N N T B
|11t U S T S T T T T T Y Y S S S S S S A
[N I OO T T SO0 S O S O DA S S S R S S B A S N BTN
N B I | TS U TN TR N A S Y TS N A U S-S SO NN N NN WA N A |
11 T S U S S W S Y S S R TR R B
T | | T I b S EN0O0 NS T S TR S NS N SN U N |
oLt VAR N S T S N S S N W N O S S Y S S OO B N O |
L) T B B R S S S S R S B W R I
L1t N T OO T T S OO 0 TN S S S G Y S T T N AT O
L1 L1 I CING T T T T S SO0 S T S W Y SO HT SN
IR FENN R S R B R T R N A R I
L4l I VO S SO S T T RNV U S TV DO A B W S M
L Ldb N S S T O T Y N S T SO0 W S O B ST SN
1t T N S | [T N S A R
1 T O DU A TS S Y U R SN S N ST W
‘Llrl)lnls‘ rlsdelulululoblululobulntandalnlnlenlris o]

[R |
ol 31152 {o1faa [as o0

T B S R T It
Lorboeloelao larlaa o leatas TeaTorTeatan oI5 sz 153 [oa s | sel 32 138 | v Lo o1 a2] o3 Lo es [os {or Toa Lov Iom

e

Il [t
velrsinlninin

Figure

FORTRAN coding form

Lines

A single row of information on a FORTRAN coding form is referred to as a
line. A line contains a sequence of 72 characters. (Note that an unentered
position of the row and an unpunched column of the card represent the
special character "blank".) All notation required to describe a FORTRAN
program is expressed as an ordered sequence of lines of which there are five
types:

e Comment

® Initial

® Continuation

©® Terminal

° Compiler directive
Comment lines - A line having the letter C or an asterisk in column one
may be a comment line. The content of columns 2 through 72 of a comment
line has no effect on the FORTRAN program being created. These columns

typically contain descriptive commentary and are inserted before and after
relevant lines of the program (See also "Compiler directive lines" below.)

The ANSI FORTRAN Standard does not provide|for the use of an asterisk in column 1 to denote a comment line.

Initial lines - The initial line expresses all or the initial part of a
single FORTRAN statement in columns 7 through 72. It may have a state-
ment label of five digits and/or blank characters in columns 1 through 5.
An initial line has neither the letter C nor an asterisk in column 1, and
must have either the digit O or a blank character in column 6. A terminal
line is a special form of initial line.

Continuation lines - One or more continuation lines may be used to extend
the capacity of an initial line when expressing a single FORTRAN statement.
A continuation line has neither the letter C nor an asterisk in column 1,
has a character other than zero or blank in column 6, and contains a portion
of a FORTRAN statement in columns 7 through 72. A sequence of one initial
line followed by up to nineteen continuation lines may be used for a single
FORTRAN statement. This sequence of lines may have any number of comment
lines interspersed. The initial line of such a sequence must not appear to
be a terminal line.

Terminal lines - A single terminal line must be used as the last line of every
program unit. A terminal line is a special form of initial line that com-
pletely contains an END statement (i.e., the letters "E", "N", and "D"
appearing in that order anywhere in columns 7 through 72).

Compiler directive lines - A line having the characters CDIRS in columns
1 through 5 is a compiler directive line and may be used to contain one or
more compiler directives. These lines and the compiler directives they
contain are described in Section 5.

2240009 3-9 C

3.2.4 THE EXECUTABLE PROGRAM

An executable program is an ordered set of FORTRAN statements grouped into
one or more program units. Certain program units are capable of referencing
pre-established procedures. Thus, computer program specifications are
established from two sources:

o The FORTRAN statements comprising the executable program, and
® Pre-established procedures referenced from certain of these

FORTRAN statements.

Figure 3-2 illustrates these program units, the procedures they reference,
and the overall organization of these entities in the executable program.

The ANSI FORTRAN Standard separately provides for basic external functions; CRAY-1 FORTRAN includes these
in its set of intrinsic functions. The ANSI FORTRAN Standard categories of function procedure, subroutine pro-
cedure, and external subroutine have also been eliminated.

Program units

The set of program units used in an executable program must include one
main program and may also include one or more subprograms.

The main program - An executable program must have one and only one
main program. Execution of an executable program begins with its main
program. The main program may reference none, one, or more than one
procedure during its execution provided each is defined prior to main
program initiation.

The main program usually, but not necessarily, terminates the execution
of an executable program. The first statement of a main program's
specification may be a PROGRAM statement., The last line must contain
an END statement.

The ANS! FORTRAN Standard does not provide for the use of a PROGRAM statement.

Subprograms - The two types of subprograms are: specification and
procedure. Specification subprograms are non-executable; procedure
subprograms are executable.

Specification subprograms

The only form of a specification subprogram is the block data
subprogram. '

Block data subprograms - Block data subprograms associate data with

a type, form, name, and initial value prior to executable program
execution. The use of block data subprograms does not preclude

other means by which an executable program might be provided data prior
to its execution. Block data subprograms cannot contain any execut-
able statements except the END statement. Its first statement must

be a BLOCK DATA statement; the last line must contain an END statement.

2240009 3-10 c

THE EXECUTABLE

~ PROGRAM
|
| I TTTTTT T 1
1
PROGRAM UNITS PROCEDURES
T T I
. | I
MAIN PROGRAM | | |
| | |
| | |
| [|
STATEMENT | _ _ _ _ _ _ J l
FUNCTIONS , |
SUBPROGRAMS : !
CINTRINSIC | | [
FUNCTIONS I
|
1
SPECIFICATION BLOCK DATA EXTERNAL
SUBPROGRAMS SUBPROGRAMS PROCEDURES
T]
]
| SUBROUTINE i
SUBPROGRAMS 1 |
SRR —— '
SUBROUTINES |
|| I I
PROCEDURE Pl |
SUBPROGRAMS ROUTINE
— SUBPROGRAMS |
I
[
| FUNCTION |
SUBPROGRAMS |
ACTUAL : EXTERNAL
SPECIFICATIONS - FUNCTIONS -
-FORTRAN [~
— - — REFERENCED N%TJNE?‘ION
SPECIFICATIONS SUBPROGRAMS
Figure 3-2. The executable program

2240009

Procedure subprograms

Procedure subprograms are of two types; subroutine subprograms and
function subprograms. Both types are executable, but differ in the
manner by which they are defined and referenced.

Subroutine subprograms - Subroutine subprograms establish a common set

of executable code that can be referenced from a main program or a pro-
cedure subprogram. The first statement must be a SUBROUTINE statement;
the last line must contain an END statement. A subroutine subprogram must
be referenced through use of a CALL statement in the referencing program
unit. A subroutine subprogram is classified as a procedure as well as a
program unit in the hierarchy of an executable program.

Function subprograms - Function subprograms also establish a common set

of executable code that can be referenced from a main program or a pro-
cedure subprogram. The first line must contain a FUNCTION statement; the
last line must contain an END statement. A function subprogram, unlike

a subroutine subprogram, is referenced by the appearance of its identifier
in certain types of statements. A function subprogram is classified as

a procedure as well as a program unit in the hierarchy of an executable
program. ‘ '

Procedures

Procedures are optional in an executable program and include statement
functions, intrinsic functions, and external procedures.

Statement functions - Statement funmctions can be specified within a main
program, a function subprogram, or a subroutine subprogram. A given state-
ment function can only be referenced from a statement within the same program
unit containing its specification.

Intrinsic functions - Numerous commonly-used operations called intrinsic
functions have prespecified identities and functions. An intriusic
function may be reference by a main program or a procedure subprogram.

The entire set of operations called for by the ANSI FORTRAN Standard is
included. Appendix B summarizes this set. CRAY-1 FORTRAN also provides
for utility procedures. These procedures are classified as intrinsic func--
tions, are described in 3.6.12 and in Appendix C, and perform numerous
utility operations not called for in the ANSI Standard.

The ANSI FORTRAN Standard Basic External Functions are included in the CRAY-1 FORTRAN set of Intrinsic
Functions. The ANSI FORTRAN Standard does not provide for Utility Procedures.

2240009 3-12 c

External procedures - An external procedure is named for its ability to
be specified external to any other procedure referencing it. The two
types of external procedure are subroutines and external functions.

Subroutines

Subroutines are of two types; the subroutine subprogram, and the
non-FORTRAN subroutine subprogram.

Subroutine subprograms - As stated earlier, the subroutine subprogram
is categorized as both a program unit and a procedure. Its descrip-
tion in both cases is the same.

Non-FORTRAN subroutine subprograms - The non-FORTRAN subroutine
subprogram is a set of executable code that functions the same as

a subroutine subprogram. It is prepared by some means other than
FORTRAN. Typically, the non-FORTRAN subroutine subprogram is
written in CRAY-1 assembly language, in a high-order language other
than FORTRAN, or in a version of FORTRAN not compatible with the
one in use. Such are separately compiled or assembled and are
available in binary form upon reference during program execution.
(Appendix F describes the creation of non-FORTRAN subroutine sub-
programs using CAL, the CRAY-1l Assembly Language.)

External functions

External functions are of two types; the function subprogram, and
the non-FORTRAN function subprogram.

Function subprograms - As stated earlier, the function subprogram
is categorized as both a program unit as well as a procedure.
Its description in both cases is the same.

Non-FORTRAN function subprograms - The non-FORTRAN function
subprogram is a set of executable code that functions the

same as a function subprogram during execution of the executable
program, but which is prepared by some means other than FORTRAN.
The non-FORTRAN function subprogram is typically written in CRAY-1
assembly language, in a high-order language other than FORTRAN, or
in a version of FORTRAN not compatible with the one in use. Such
are separately compiled or assembled and are available in binary
form upon reference during program execution. (Appendix F describes
the creation of non-FORTRAN function subprograms using CAL, the
CRAY-1 Assembly Language.)

2240009 3-13 C

3.2.5

DATA REPRESENTATIONS

The following are fundamentals of data representation and processing. A
complete description of data types, their specification, and other
characteristics are further developed in 3.3.

Data types
The seven types of data that can be specified in CRAY-1 FORTRAN are:

e Integer data, which are whole, signed values;

e Real data, which are signed mixed-value approximations (whole
number plus fraction);

e Double-precision data, which are signed, mixed-value approximations
extended to approximately twice the precision of real data;

e C(Complex data, which approximate complex values as pairs of signed,
mixed-value approximations (the first member of a pair for the real
part, the second for the imaginary part);

e ILogical data, which represent the truth values "true" and "false";

e DBoolearn data, which are octal values representing the binary contents

of CRAY-1l computer words; and

e Hollerith data, which are sequences of characters.

The ANSI FORTRAN Standard does not provide for Boolean data specification.

Data specification

Data are specified as constants in a FORTRAN program. The form in which
a constant is expressed identifies the type of datum it represents, and
is described in 3.3.

Variables, arrays, array elements, and functions

Data may be contained in entities known as variables, arrays, and array
elements. A variable or an array element contains a single datum. An
array contains one or more array elements arranged into as many as seven
dimensions.

All data in an array are of the same type. A function creates a datum
when referenced.

The ANS| FORTRAN Standard permits a maximum of three dimensions in an array.

2240009 3-14 C

Definition

During program execution, the content of a given variable or array element
is either defined or undefined. A defined variable or array element
contains a value. An undefined variable or array element does not contain
a predictable value. Once defined, a variable or array element contains

a specific value until it is undefined or is redefined with a different
value. All variables and array elements are initially undefined and remain
so until action prior to or during program execution defines them. Variables
and array elements defined prior to program execution are known as being
initially defined. Constants are always defined and are never redefined.

A function's value is defined only at that point in program execution

where it is required. :

Reference

A constant, variable, array element, or function referernce occurs when

its symbolic name appears in a context where a value is required. A
reference to a variable or array element provides the value currently
contained by that entity without modifying that value. Reference to a
constant provides its invariant value, which cannot be modified. Reference
to a function causes a value to be defined.

Storage

A étorage sequence is a sequence of storage units. A storage unit
corresponds to a 64-bit CRAY-1l computer word. An integer, real, or
logical datum occupies one Storage unit; a double precision or complex
datum occupies two storage units. Datum requiring more than one storage
unit in a storage sequence occupies consecutive locations in memory.

The ANSI FORTRAN Standard does not specify the relationship between storage units and computer words.

The term storage sequence describes relationships that associate
variables, array elements, arrays, and common blocks.

Association

Association occurs when a datum may be identified by different symbolic
names or from different program units.

2240009 ' 3-15 c

3.2.6 ORDER OF STATEMENTS AND LINES

The first statement of a main program may be a PROGRAM statement. The
first statement of a subprogram must be a FUNCTION, SUBROUTINE, or BLOCK
DATA statement.

Within a program unit permitting them:
e FORMAT statements may appear anywhere,

e All specification statements must precede all DATA statements,
* statement definition function statements, and executable statements,

® All statement definition function statements must precede all
executable statements, and

e DATA statements may appear anywhere after the specification
statements.

e Within the specification statements of a program unit, IMPLICIT
statements must precede all specification statements other than
PARAMETER statements.

® A PARAMETER statement must precede all other statements containing
the symbolic names of constants that it specifies.

o The last line of a program unit must contain an END statement.

Table 3-2 illustrates the required order of statements and lines for a
program unit. Vertical lines delimit varieties of statements that may

be interspersed. For example, FORMAT statements may be interspersed

with PARAMETER, DATA, executable, and statement function definition state-
ments. Horizontal lines delimit varieties of statements that must not be
interspersed. For example, statement function definition statements must
not be interspersed among executable statements. The top-to-bottom order
indicates the first-to-last appearance of lines and statements in a program
unit. ©Note that an END statement must appear in the last line of a program
unit and cannot be followed by a comment line intended as a part of that
same program unit.

2240009 3-16 C

Table 3-2. Required order of lines and statements

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK DATA statement

IMPLICIT
‘ _ statements T
Comment - PARAMETER her specifi
and , Othe -
compiler ' Egggy statements™ . cation state-
directive FORMAT ments
lines statements Statement func-
DATA tion definition
statements statements
Other
executable
statements

END statement

t+ Note the restrictions described for the interspersing of
IMPLICIT and PARAMETER statements and for compiler direc-
tive lines (see Section 5).

3.2.7 NORMAL EXECUTION SEQUENCE

A normal execution sequence is an execution of executable statements in

their order of appearance in a program unit. Executable program execution
begins with the first executable statement of the main program. When a
subprogram is referenced, execution begins with the first executable statement
of that subprogram. When a subprogram entry is referenced, execution

begins with the first executable statement following the ENTRY statement
named in that reference.

Statements that may alter the normal execution sequence are:

° Unconditional; assigned, and computed GO TO,

e Two- and three-branch arithmetic IF,

® RETURN,
e PAUSE,
e STOP,

e Indirect logical IF,

e Direct logical IF statements containing any of the above forms,

2240009 3-17 C

e DO,

e The terminal statement of a DO-loop, and

e END.

The ANSI FORTRAN Standard does not provide for a two-branch arithmetic IF statement, an indirect logical IF statement,
or for a DO statement altering the normal execution sequence. The direct logical IF statement is identical to the logical IF

statement described in the ANSI FORTRAN Standard. The three-branch arithmetic |F statement corresponds to the
ANS! arithmetic IF statement.

Normal execution sequence is not affected by the interspersing of non-
executable statements or comment lines among exXecutable statements.

A procedure subprogram must not be referenced twice without the execution
of a RETURN or END statement in that procedure.

2240009 3-18

3.3 DATA

3.3.1 TYPES OF DATA
The types of data are:

e Integer,

® Real,

® Double precision,

e Complex,

e Logical,

® Boolean, and

e Hollerith.

The specification and internal representation differs for each type.

The ANSI FORTRAN Standard does not provide for Boolean data.

3.3.2 DATA IDENTIFIERS

The symbolic name of a constant, variable, array, array element, or
function identifies its data type. Once a name is identified with a
particular type, that type is implied for all references to that name.

A constant, variable, array, external function or statement function

may have its type specified by the appearance of its symbolic name in

a type statement. Otherwise, the type is implied by the first letter

of its name. A first letter of I, J, K, L, M, or N implies type integer;
any other first letter implies type real. An IMPLICIT statement can be
used to change implied typing.

The data type of an array element is the same as the data type of the
array within which it exists. An array name is the initial part of the
names of each of its array elements.

The data type of a function establishes the type of datum provided when
the function is referenced in an expression.

The name of an intrinsic function is (1) prespecified to agree with the
type of datum provided, (2) cannot be retyped, and (3) is defined in
Appendix B for each function.

The correspondence between an external function name and the type of
datum provided when it is referenced is established the same as for array
and variable names.

2240009 3-19 c

The data type of a function subprogram can be specified by its name, in a
type statement, or in the FUNCTION statement used to name the subprogram.
An IMPLICIT statement within a function subprogram may affect the type of
the subprogram name.

A PARAMETER statement can assign a symbolic name to a constant. The
initial letter of a constant name specifies its type.

Examples:
The symbolic ldentifies of if also appearing in
name ... a(n) ... type ... the following statement:
FLOAT6 Constant Real ‘ PARAMETER
NUMBER1 Constant Integer PARAMETER
COUNTER Variable Real - = -
INDEX4 Variable Integer - - -
ARRAY Array Real COMMON, DIMENSION, or REAL
MATRIX Array Integer COMMON, DIMENSION, or INTEGER
ARRAY(2,4) Array element Real -- -
MATRIX(6,100,2) Array element Integer - -
CM(IN) Function Real FUNCTION or statement function
METERS (YDS,FT) Function Integer FUNCTION or statement function

3.3.3 CONSTANTS

Within an executable program, all constants expressed in the same form
have the same invariant value. The value zero is considered neither
positive nor negative. A signed zero has the same value as an unsigned
zero.

The form of the character sequence representing a constant specifies

both its value and its data type. A PARAMETER statement allows a constant
to be given a symbolic name. The first letter of a constant name specifies
its type.

Except within Hollerith constants, blank characters occurring in a constant
have no effect on its value.

Integer, real, double precision, and complex constants are arithmetic
constants.

2240009 3-20 c

An unsigned constant is an arithmetic constant without a leading sign. A
signed constant has a leading plus or minus. An optionally signed constant
may be either signed or unsigned. Arithmetic constants are optionally
signed except where otherwise specified.

Integer constants

An integer datum is always an exact representation of an integer value.
It may assume a positive or negative integral value or a zero value. An
integer datum occupies one numeric storage unit in a storage sequence.

The form of an integer constant is an optional sign followed by a nonempty
sequence of digits specifying a decimal integer value.

Integer constants are represented in the CRAY-1 computer by integral
binary values (I) in the range

_o63

<1< 283
This is approximately the decimal range
19
o<|1|<10 .

(A special form of integer constant is discussed in Section 5 under
"Compiler directives".)

See examples on page 3-22.

The ANSI FORTRAN Standard does nat specify a range of values for integer constants.

Real constants

A real datum is an approximation to the value of a real number. It may
assume a positive, negative, or zero value. A real datum occupies one
numeric storage unit in a storage sequence.

A real constant may be expressed as:

© A basic real constant,
® A basic real constant followed by a real exponent, or

e An integer constant followed by a real exponent.

The ANSI FORTRAN Standard does not provide for this use of an integer constant.

A basic real constant consists of an optional sign, an integer part, a
decimal point, and a fractional part, in that order. Both the integer
part and the fractional part are sequences of digits representing integral
and fractional decimal values, respectively. Either but not both of these
parts may be omitted. A basic real constant may be written with more
digits than can be used to approximate its value.

2240009 3-21 C

Examples:

INTEGER REAL DOUBLE-PRECISION COMPLEX
VALUE CONSTANT CONSTANT CONSTANT CONSTANT
10 0 0. 0D (0.,0.)
692 - 692. (692.,0.)
692.0 (692.0,0.)
692E0 692D0 (692€0,0.)
692 692.E0 692.00 (692.€0,0.)
692.0E0 692.0D0 (692.0E0,0.)
6920E-1 6920D-1 (6920E-1,0.)
.692E3 .69203 (.692E3,0.)
6.92E2 6.92D2 (6.92E2,0.)

(6.128547472,0.)
(6.128547472€0,0.)
(6128547472€-9,0.)
(6128547472.0E-9,0.)
(.6128547472E1,0.)
(612.8547472E-2,0.)

6.128547472
6.128547472E0
6128547472E-9
6128547472, 0E-9
.6128547472E1
612,8547472E-2

6.12854747200
6128547472D~9
6128547472 .00-9
.6128547472D1
612.8547472D-2

6.128547472

(0.,.875)
(0.,875€-3)
875/~ (0., .875E0)
(0.,8.75E-1)
(0.,.000000875E6)
(692.,.875)
{692E0,0.875),
692+.875-/~T. (69.2E1,875E-3)

(.692E3,875.E-3)
(6.92E2,8.75E-1)

NOTE: The negative of a non-zero constant, exponent value, or complex
portion is formed by preceding its expression with a minus (-).
The use of a plus (+) in this position or the absence of either
sign denotes a positive.

2240009

The form of a real exponent is the letter E followed by an optionally
signed integer constant. A real exponent denotes that power of ten by
which the basic real constant is to be multiplied during its interpreta-
tion as a decimal value. The decimal point in a basic real constant is
optional if there is no fractional part and if a real exponent is specified.

Non-zero real constants are represented in the CRAY-1l computer by normalized
floating-point binary values (R) in the range .

78192 8192
2 -(%)<|R] <2 - (%)

and with 48 significant binary digits of precision. This approximates to

the decimal range
-2500 2500
10 <|Rr|<10

and to 15 decimal digits of precision.

See examples on page 3-22.

The ANSI FORTRAN Standard does not specify a range of values for real constants.

Double-precision constants

A double-precision datum is an approximation to the value of a real number
and has approximately twice the precision of a real datum. A double-
precision datum may be positive, negative, or zero, and occupies two
consecutive numeric storage units in a storage sequence.

A double-precision constant may be expressed as:
® A basic real constant followed by a double-precision exponent, or

e An integer constant followed by a double-precision exponent.

The ANSI FORTRAN Standard does not provide for this use of an integer constant.

The form of a double-precision exponent is the letter D followed by an
optionally signed integer constant. A double-precision exponent denotes
that power of ten by which the basic real constant is multiplied during
its interpretation as a decimal value.

Non-zero double-precision constants are represented in the CRAY-1 computer
by normalized floating-point binary values (D) in the range

-8192 8192
22 -(4)s<|p| <2 " (%)

2240009 3-23

and with 96 significant binary digits of precision. This approximates
to the decimal range '

-2500 2500
10 <|p|<1o0

and to 29 decimal digits of precison.

See examples on page 3-22.

The ANSI FORTRAN Standard does not specify a range of values for double-precision constants.

Complex constants

A complex datum approximates the value of a complex number and is repre-
sented by a pair of real data. The first member of the pair represents
the real part and the second the imaginary part of the datum. A complex
datum occupies two consecutive numeric storage units in a storage sequence;
the first for the real part and the second for the imaginary part.

The form of a complex constant is a left parenthesis followed by an ordered
pair of optionally signed real constants separated by a comma, and followed
by a right parenthesis. The first real constant of the pair is the real
part of the complex constant and the second is the imaginary part.

Non-zero complex constant components (where C=Cr+i-Ci)‘are represented in
the CRAY-1 computer by two normalized floating-point binary values (Cr'ci)
in the. range ’

-8192 8192
2 - glc |, e, <2 * (%)
X 1

and with 48 significant binary digits of precision for each. This approx-
imates to the decimal range)

10-2500<|c_|, |4 | <102500

and to 15 decimal digits of accuracy for each.

See examples on page 3-22.

The ANSI FORTRAN Standard does not specify a range of values for complex constant components.

2240009 3-24 C

Logical constants

A logical datum may assume only the logical values true and false. A
logical datum occupies one numeric storage unit in a storage sequence.

The forms, values, and internal representations of a logical constant
are: ’

F Internal
orm Value representation
.TRUE. or .T. _true a negative value
.FALSE. or .F. false a zero or positive value

The ANS! FORTRAN Standard does not provide for the .T. or .F. form of logical constant.

Boolean constants

A Boolean datum is a non-numeric set of binary zeros and ones that accounts
for the content of each bit position in a single storage unit (64-bit CRAY-1
computer word).

The ANS!I FORTRAN Standard does not provide for Boolean constants.

The form of a Boolean constant is from 1 to 22 octal digits (0 through 7)
followed by the letter B. When all 22 octal digits are used to express a
Boolean constant, their binary equivalents directly establish the content

of every bit position in the storage unit (64-bit word). In this case, the
first octal digit can only be a zero or one and specifies the content of the
leftmost bit position (0). Each successive octal digit specifies the contents
of the next three bit positions until the last octal digit specifies the
contents of the last three bit positions (61, 62 and 63). Fewer than 22
octal digits can be used to directly specify the contents of the right-
most bit positions and to place zeros into those (leftmost) bit positions
not directly specified.

Examples:
Boolean constant Internal representation(octal)
127L46533125726761137458 1274653312572676113745
0B 0000000000000000000000
17777777777777777777778 1777777777777777777777
777408 0000000000000000077740
007768 0000000000000000000776

2240009 3-25 C

Hollerith constants

A Hollerith datum is a sequence of any characters capable of internal
representation as specified in Appendix A. Its length is the number of
characters in the sequence, including blank characters. Each character
occupies a position within the storage sequence identified by one of the
numbers 1, 2, 3, ... indicating its placement from the left (position 1).
A Hollerith datum must contain at least one character.

A Hollerith constant is expressed in either of two forms. The first of
these is specified as a non-zero integer constant followed by the letter

H and as many characters as equal the value of the integer constant. Thus,
the character sequence, ABC 12, would be represented as: 6HABC 12. The
second form of Hollerith constant specification delimits the character
sequence between a pair of apostrophes. The letter H may optionally follow
the second delimiting apostrophe but has no effect on the constant. The
character sequence, AB Cl2, could be represented 'AB Cl2' or 'AB Cl2'H.

Two adjacent apostrophes appearing within the bounds of two delimiting
apostrophes are interpreted and counted as a single apostrophe within the
sequence. Thus, the character sequence, DON'T USE "*" would be specified
as '"DON''T USE "*"' or 'DON''T USE "*"'H.

The ANSI FORTRAN Standard does not provide for the apostrophe form of Hollerith constant expression.

Each character of a Hollerith constant character sequence is represented
internally by its unique eight-bit code (see Appendix A) with up to eight
such codes contained in a single 64-bit CRAY-1 computer word. The codes
corresponding to character positions one through eight of a Hollerith
constant are sequentially represented from left to right in a CRAY-1 word.
Successive groups of eight codes are similarly represented in as many
successive CRAY-1 computer words. When the last position of a sequence
is not an even multiple of eight, the unused portion of the computer word
it occupies is to its right and contains up to seven blank character
codes (0408) .)

The ANS! FORTRAN Standard does not specify the characteristics of Hollerith constant placement in computer
words, or the content of unused computer word portions.

When the number of characters in a character sequence is fewer than eight,
the single CRAY-1 computer word used can be caused to have its unused
portion contain up to seven null character codes (000). This is accom-
plished by substituting the letter L for the letter H in the first form
of Hollerith constant expression, or by suffixing the second apostrophe
delimiter with the letter L in the second form.

2240009

53]
i

N

[o)]
Q

When fewer than eight characters appear in a Hollerith constant, the
single CRAY~1l computer word used can be caused to have its unused portion
contain up to seven null character codes (000) to the left of the one or
more codes representing the character sequence. This is accomplished by
substituting the letter R for the letter H in the first form of Hollerith
constant expression or by suffixing the second apostrophe delimiter with
the letter R in the second form.

The following Hollerith constant expressions all yield the same Hollerith
constant and differ only in specifying the content and placement of the
unused portion of the single CRAY-1 computer word containing the constant:

Hollerith
constant Internal representation (64-bit CRAY-1 computer word)
(bit position) (0-7 8-15 16-23 24-31 32-39 40-47 48-55 56-63)

6HCRAY-1 c R A Y - 1 (0403g) (040s)
'CRAY-1" c R A Y - 1 (040g) (0408)
'"CRAY-1'H C R A Y - 1 (0403g) (04038)
6LCRAY~1 C R A Y - 1 (000) (000)
'CRAY-1'L C R A Y - 1 (000) (000)
6RCRAY-1 (000) (000) C R Y - 1
'CRAY-1'R (000) (000) C R Y - 1

The ANSI FORTRAN Standard does not provide for this use of the letters L or R or for the apostrophe form of Hollerith
constant expression.

A Hollerith constant is limited to a maximum of eight characters except
when specified in a CALL or DATA statement. An all-zero computer word
follows the last word containing a Hollerith constant specified as an
actual argument in a function reference or in a CALL statement.

The ANSI FORTRAN Standard does not provide for a limit on the number of characters per Hollerith constant,
or for their use in other than CALL and DATA statements.

2240009 3-27 ’ c

3.4 ARRAYS

An array contains a sequence of data represented in an ordered set of
array elements. Each array element provides storage for one datum of
this sequence. An array name identifies an array and the type of datum
it contains. An array element name is an array name suffixed by a sub-
script that indicates the placement of an element in the array. 1In
certain instances, an array name denotes its entire set of array elements.
An element of an array can be designated only by its array element name.
The name of an array and the names of its elements are local to the
program unit in which each appears.

3.4.1 ARRAY DECLARATORS

An array declarator specifies an array's name and properties. An array
can be specified only once within a given program unit. Array declarators
are expressed as list items in certain non-executable FORTRAN statements.

Form of an array declarator

The form of an array declarator is

a (d[,d]...)

where a 1is the name of the array, and
d 1is a dimension declarator.

The number of dimensions of. an array is the number of dimension declarators
appearing in its array declarator. The minimum number of dimensions is
one and the maximum is seven.

The ANSI FORTRAN Standard provides for a maximum of three dimensions.

A dimension declarator specifies the number of array elements in one
dimension -of an array and is expressed as a non-zero, positive integer
constant or variable.

Kinds of array declarators

Each array declarator is either a constant array declarator or an adjust-
able array declarator. A constant array declarator is an array declarator
in which each dimension declarator is expressed as an integer constant. An

adjustable array declarator is an array declarator containing one or more
dimension declarators expressed as variables. Adjustable array declarators

are only specified in procedure subprograms. The arrays they describe are
defined upon procedure subprogram entry with suitable arguments for
establishing array association and dimensionality.

2240009 3-28 C

An array declarator is either a dummy array declarator or an actual array
declarator. A dummy array declarator is a constant or adjustable array
declarator that appears only in function or subroutine subprograms. A
dummy array declarator is permitted in a DIMENSION or type statement but
not in a COMMON statement. An array name used as a dummy array declarator
in a function or subroutine subprogram must also appear as an argument in
its FUNCTION, SUBROUTINE, or ENTRY statement.

An actual array declarator is a constant array declarator having an array
name that is also an actual argument. An actual array declarator is
permitted in a DIMENSION, COMMON, or type statement.

3.4.2 PROPERTIES OF AN ARRAY

The data type of an array and of its array elements is identified by its
name. The properties of an array specified by its array declarator are the
number of its dimensions, the size of each dimension and, thereby, the
number of array elements it contains.

Data type of an array-and an array element

The name of an array identifies the type of data it contains. This same
name, when suffixed to become an array element name, implicitly identifies
all elements of that array as being of the same data type as the array.

Dimensionality of an array

The number of dimensions of an array is called its dimensionality and is
equal to the number of dimension declarators in the array declarator.

Size of a dimension

The size of a dimension is the non-zero value of its dimension declarator.

Size of an array

The size of an array is the number of elements in the array and is equal
to the product of the sizes of all dimensions (or to the product of all
dimension declarators) for that array.

Technically, a maximum array size corresponding to 4,194,304 CRAY-1 computer
words is provided for. Of significance to a practical maximum array size
are considerations of memory capacity in the particular CRAY-1l being used,
memory required for other than executable program and related data storage
purposes, and the size of the executable program itself.

The ANSI FORTRAN Standard does not specify a maximum for array size.

2240009 3-29 C

Array element order

The subscript portion of an array element name has a value that identifies
its placement in that array. Subscript values are ordinal and are in one-
to-one correspondence with the storage units containing array elements.
Thus, a subscript value of one corresponds to the first array element,

two corresponds to the second, etc. The last element of the array has a
subscript value equal to the size of the array.

An array name used to designate an entire array implies the sequential
specification of all subscripts and the processing of all elements in
that order.

Array storage sequence

An array has a storage sequence defined by the storage sequence of its
elements. The number of storage units (words) in an array is the product
of the number of the elements in the array times the number of storage
units required for each element.

Examples:
ONE DIMENS [ON TWO DIMENSIONS 3 THREE DIMENSIONS
1 1
2 2 2
3 3 1
y 4 : -
5 ¥ 5 2 -
6 6 + 3 ¥ -
7 4 —
8 5 -
9 6 —
1 2 3 4 7
' 1 2 3
NAME : VECTOR TWO DIM ' 111D
DATA TYPE: REAL REAL ’ INTEGER
DECLARATOR: VECTOR (6) TWO DIM (9,4) 1 (7,3,3)
DIMENS |ONALITY: 1 2 3
DINENS 10N 6 ELEMENTS 9 ELEMENTS AND 4 ELEMENTS 7 ELEMENTS,
3 ELEMENTS, AND
3 ELEMENTS
ARRAY SIZE: 6 ELEMENTS - 36 ELEMENTS 63 ELEMENTS
EX:ZTAY ELEMENT yecToR (5) T™O DIM (6,2) 1o (3,2,1)

2240009 3-30 C

3.4.3 ARRAY ELEMENT NAMES

The form of an array element name is

a(sls] ...)

where * a 1is the array name,
(s [,s] ...) is a subscript, and
8 1s a subscript expression.

The number of subscript expressions must equal the number of dimension
declarators in the array declarator for that array.

Subscript expression

A subscript expression yields a positive integer value when evaluated and
may contain references to constants, variables, functions, and array elements
of type integer. The evaluation of a subscript expression must not alter the
value of other expressions within the same statement.

The ANSI FORTRAN Standard does not provide for specifying integer functions, integer array elements, division or
exponentiation in subscript expressions.

Subscript values

The value of a subscript identifies an array element. A subscript value
depends on the values of all subscript expressions in the subscript, and
on the dimensions of the array as specified in the corresponding array
declarator. If the subscript value is k, the kth element of the array
is identified. Table 3-3 describes the evaluation of a subscript for k.

See example on page 3-33.

3.4.4 DUMMY AND ACTUAL ARRAYS

A dummy array is declared by a dummy array declarator. An actual array
is declared by an actual array declarator.. A dummy array is permitted
only in function or subroutine subprograms. Each array in a main program
is an actual array specified by a constant array declarator. Actual
arrays may also be specified in function and subroutine subprograms.

In a reference to a subprogram containing a dummy array, the actual argu-
ment corresponding to the dummy array name must be either an array name
or an array element name. If it is an array name, the size of the dummy
array must not exceed the size of the actual array. If the actugl argu-
ment is an array element name with a subscript value of & in an array of
size 7, the size of the dummy array must not exceed n-s+l. Each dummy
array must be associated through one or more levels of external procedure
references with an actual array or an actual array element.

2240009 3-31 c

Table 3-3.

Subscript values

Dimen- Dimension Subscript Maximum
sionality declarator(s) Subscript value (k) subscript value
1 A (a) a A
2 A,B (a,b) a+A- (b-1) A-B
3 A,B,C (a,b,c) a+A- (b-1) A-B-C
+A-B- (c-1)
4 A,B,C,D (a,b,c,d) a+A- (b-1) A*B*C*D
+A-B- (c-1)
+A-B-C- (4d-1)
5 A,B,C,D,E (a,b,c,d,e) a+A- (b-1) A-B-C-D-E
+A:B- (c-1)
+A-B-C- (d~-1)
+A-B-C~D-(efl)
6 A,B,C,D,E,F (a,b,c,d,e,f) a+a- (b-1) A.-B-C-D-E-F
+A-B- (c-1)
+A-B-C- (d-1)
+A-B-C-D- (e-1)
+A.B.-C.D-E. (f-1)
7 A,B,C,D,E,F,G (a,b,c,d,e,f,qg) a+A- (b-1) A-B-C.D-E-F.G
+A-B- (c-1)
+A-B-C- (d-1)
+A+B-.C-D- (e-1)
+A-B-C-D-E. (£-1)
+A-B-C-D-E-F- (g-1)
Notes: a,b,c,d,e,f and g are subscript expressions.
A,B,C,D,E,F and G are dimension sizes.
The ANS!I FORTRAN Standard provides for no more than three dimensions.
2240009 3-32 c

Example:
ARRAY STORAGE

SEQUENCE
ARRAY ELEMENT NAME = "\ RAY + SUBSCRIPT
v
. ——
SUBSCRIPT VALUE 1| X(1,1,1)
2| x(2,1,1)
ARRAY CHARACTERISTICS
' 31 Xx(3,1,1)
NAME : X 41 X(4,1,1)
DATA TYPE: REAL 51 x(5,1,1)
DECLARATOR: X(5,3,2) 6| Xx(1,2,1)
DIMENS IONALITY: 3 7 x(2,2,1)
8| x(3,2,1)
DIMENSION SIZES: 5 ELEMENTS,
- 3 ELEMENTS, AND 9] x(4,2,1)
2 ELEMENTS 10| x(5,2,1)
ARRAY SIZE: 30 ELEMENTS 11 x(1,3,1)
12| x(2,3,1)
SUBSCRIPT VALUE FORMULA: 13 x(3,3,1)
SUBSCRIPT VALUE = a+5-(b=1)+5-3- (c-1) 4] x(4,3,1)
WHERE a = FIRST SUBSCRIPT TERM, 15 x(5,3,1)
b = SECOND SUBSCRIPT TERM, AND 16] x(1,1,2)
c = THIRD SUBSCRIPT TERM.. 7 Xz 2)
18| Xx(3,1,2)
ARRAY AL1ZATION 19| x(4,1,2)
CONCEPTU F 200 XG.1.2)
2 21| x(1,2,2)
x(1,1,2) 18] x(1,2,2) 21 x(1,3,2) 26 22| x(2,2,2)
X 171 x(2,2,2)22| x(2,3,2) 27 23| X(3,2,2
ARRAY DECLARATOR: (2’]’2) () (2,3,2) 3 (3)
X(5.3,2) x(3,1,2)18] x(3,2,2) 23| x(3,3,2)28 24| x(4,2,2)
X(4,1,2)19| x(4,2,2)24] x(4,3,2)29 25| x(5,2,2)
! x(5,1,2)20] x(5,2,2)25] x(5,3,2)30 26| x(1,3,2)
1] xa,,n Y oxa,2,1 8 xa,3,n M 271 X(2.3.2)
2 | x(2,1,1) 2| x(2,2,1) 7| x(2,3,1) 12 ARRAY ELEMENT: 28] X(3.3,2)
30 x(3,1,0 3] xG,2,1) 8] x(3,3,1) 13 29[x(4.3,2)
B ox(,1,1) 4 x(,2,10) 9] x(4,3,0 ™ ioupscripT vaLuE 30| x(5,3,2)
5| x(5,1,1) 2| x(5,2,1)19 x(5,3,1)15
1 2 3
2240009 3-33

3.4.5 ADJUSTABLE ARRAYS AND ADJUSTABLE DIMENSIONS

An adjustable array is declared by an adjustable array declarator in
which dimension declarators may be specified as variables. Such are
called adjustable dimensions. The name of an adjustable array must
appear in the dummy argument list of a subprogram. Its adjustable
array declarators must be dummy array declarators. A variable used as

a dimension declarator must be named in the dummy argument list contain-
ing the array name or in a COMMON statement in the same subprogram.

The ANSI FORTRAN Standard does not provide for a dimension declarator variable being named in a COMMON statement.

Each actual argument corresponding to a dummy argument and each variable
in common must be defined with an integer value before being used. The
values of those dummy arguments or variables in common and any constants
appearing in the dummy array declarator determine the size of the corres-
ponding adjustable dimension for that execution of the subprogram. The
sizes of the adjustable dimensions and of any constant dimensions appear-
ing in an adjustable array declarator determine the number and order of
elements . in the array. Each reference to a subprogram may define different
properties (size of dimensions, number of elements, element ordering) for
each adjustable array in that subprogram. These properties depend on the
values of any actual arguments and variables in common when the subpro-
gram is referenced.

Adjustable array properties of dimension number and array size do not
change during subprogram execution. Variables defining an adjustable
dimension may be redefined or become undefined during execution of the
subprogram with no effect on these properties.

3.4.6 USE OF ARRAY NAMES

In a program unit, each appearance of an array name must be as part of an
array element name except:

@ In a list of dummy arguments,
e In a COMMON statement,_
e In a type-statement,)

In an array declarator,

In an EQUIVALENCE statement,

e In a DATA statement,

@ In the list of actual arguments in a reference to an external
procedure,

@ In the list of an input/output statement, and

® As the format identifier in an input/output statement.

2240009 3-34 C

3.5 EXPRESSIONS

An expression calls for the evaluation of one or more operands and may
include operators and parentheses to specify the manner and order of their
concatenation in yielding a single value. Operands are constants, symbolic
names of constants, variables, array elements and function references. The
type of an operand is implicit to or defined for its name or form. Oper-
ators specify the arithmetic, relational, or logical operations to be
performed on these operands. Their sequence of presentation among operands
combines with the use of parentheses to specify the desired manner and
order of evaluation.

The ANSI FORTRAN Standard does not provide for symbolic names of constants.

Expressions are of five types:

e Arithmetic,
e Hollerith,
e Relational,
e Logical, and

© Boolean.

3.5.1 ARITHMETIC EXPRESSIONS

An arithmetic expression specifies a numeric computation. Its evalua-
tion produces a single numeric value.

The simplest form of arithmetic expression is an unsigned constant or
the symbolic name of a constant, variable, array element, or function.
More complicated arithmetic expressions are formed by using one or more
arithmetic operands with arithmetic operators and parentheses. Arith-
metic operands must be of type integer, real, double precision, or
complex.

2240009 3-35 C

Arithmetic operators

The arithmetic operators are given in table 3-4.

Table 3-4. Arithmetic operators

Operator Operation
*% Exponentiation
/ : Division
* Multiplication

- Subtraction or negation

+ Addition or identity

Each arithmetic operator can operate on a pair of operands and is written
between them. Additionally, either of the operators + and - can operate
on a single operand when it precedes that operand.

Form and interpretation of arithmetic expressions

The interpretation of expressions formed with each arithmetic operator
is shown in table 3-5. (X and Y are operands.)

Table 3-5. Interpretation of operators in expressions

Use of operator Interpretation
X**y Exponentiate X to the power Y
X/Y Divide X by Y
X*Y Multiply X by Y
X-Y Subtract ¥ from X
24 Negate Y
X+Y Add X to Y
+Y (Same as Y)

The interpretation of a division may depend on the data types of the
operands.

A precedence among arithmetic operators determines the order in which
operands are to be combined (unless changed by the use of parentheses).
This precedence is shown in table 3-6.

2240009 3-36 C

Table 3-6. Precedence of arithmetic operators

Operator Precedence
E Highest
* and / Intermediate
+ and - Lowest

For example, in the expression
-A ** 2

the exponentiation operator (**) has precedence over the negation operator
(-). Therefore, the operands of the exponentiation operator are combined,
then used as the operand of the negation operator. Thus, the interpretation
of the above expression is the same as the mathematical interpretation of
the expression

- (A**z) .

Arithmetic operands are:
® Primaries
e Factors,
® Terms, and
® Arithmetic expressions.
The following describes the forms of combining operands and operators in
arithmetic expressions.
Primaries are:
e Unsigned arithmetic constants,
® Symbolic names of arithmetic constants,
® Variable references,
e Array element references,
@ Function references, and

® Arithmetic expressions enclosed in parentheses.

2240009 3-37 c

Examples:

PRIMARY DESCRIPTION

23b9 Unsigned double-precision constant

KVALUE Integer constant name if named in a
PARAMETER statement

COUNTERS ' Real variable name

IMAG(3,52,75) ~ Complex array element name if declared

" in a COMPLEX statement
EVAL(A,B,C) Real function name-if declared in a

FUNCTION or statement function statement

(arithmetic expression) Parenthesized arithmetic expression

The forms of a factor are:

e primary

e primary ** factor

Thus, a factor is a sequence of one or more primaries with its elements
separated by the exponentiation operator. The second form indicates that
in interpreting a factor containing two or more exponentiation operators,
the primaries must be combined from right to left. For example, the factor

2%%k3%%)
has the same interpretation as the factor
2%% (3%%2) ,
The forms of a term are:
e factor
e term / factor

e term * factor

Thus a term is a factor or a sequence of factors with its elements
separated by a multiplication or a division operator. The last two forms
indicate that the factors are combined from left to right in interpreting
a term containing two or more multiplication or division operators.

2240009 3-38 C

The forms of an arithmetic expression are:

term

+ term

- term

arithmetic expression + term

arithmetic expression - term

Thus an arithmetic expression is a term or a sequence of terms with its
elements separated by an addition (+) or a subtraction (-) operator.
The first term in an arithmetic expression may be preceded by an iden-
tity (+) or negation (-) operator. The last two forms imply that terms
are combined from left to right in interpreting an arithmetic expres-
sion containing two or more addition or subtraction operators.

These formation rules do not permit expressions containing two consec-
utive arithmetic operators such as A**-B or A+-B. However, expressions
such as A**(-B) and A+(-B) are permitted.

2240009 ‘ 3-39 C

Examples:

PRIMARIES FACTORS

5 i 5
CON ' CON
CON**5

|

| TERMS

5

CON

CON#**5

TBL(7,10) TBL(7,10) TBL(7,10)

2240009

ARITHMETIC EXPRESSIONS

5
+5
-5

CON
+CON
-CON

5+CON
- CON-5

CON**5
+CON**5
-CON#**5

5+CON-CON#**5
~CON#*#5+5

T8L(7,10)
+TBL(7,10)
-TBL(7,10)

’CON**S/TBL(7,10) CON**5/TBL(7,10)

+CON**5/TBL(7,10)
~CON**5/TBL(7,10)

CON*%5%TBL(7,10) CON**5%TBL(7,10)

3-40

+CON**5%TBL (7,10)
-CON**5%TBL(7,10)
CON**5/TBL(7,10)+CON
-CON#*%5%TBL(7,10) -TBL(7,10)

Type and interpretation of arithmetic expressions

The form of a constant determines its data type. The data type of a
named constant, variable, array element, or function reference is deter-
mined by its name. The data type of an arithmetic expression containing
one or more arithmetic operators is determined from the data types of
the operands.

Integer expressions, real expressions, double-precision expressions, and
complex expressions are arithmetic expressions having values of type
integer, real, double precision, and complex, respectively.

When a + or - operates on a single operand, the data type of the result-
ing expression is the same as the data type of the operand.

The data types of arithmetic expressions are given in table 3-7. In
this table, each letter designates the type of operand or result as
integer (I), real (R), double precision (D), or complex (C).

To use the table, locate the types of the first and second operands in
the first and second columns, respectively. The third column contains
the type of the expression formed when these operands are processed by
an arithmetic operator or when there is only one operand in the expres-
sion. The remaining columns of the table relate to the possible re-
typing of the value of these expressions upon assignment to variables
and array elements of different types.

For example, using the integer variable I with the double-precision array
element D(1,2,3) in the expression

D(1,2,3) « I

yields a result of type double precision as specified in the ninth row
of table 3-7.

Except for a value raised to an integer power, table 3-7 specifies that

if two operands are of different types, the one differing in type from the
prescribed result is first converted to the type of the result, then the
concatenation called for by the operator is effected. When a primary of
real, double-precision, or complex type is raised to an integer power, the
integer operand is not converted.

The ANSI FORTRAN Standard relationships are a subset of those illustrated in table 3-7.

2240009 3-41 o]

Table 3-7. Arithmetic operand, expression, and result
typing relationships

I_? o317 j@ INTEGER REAL P;EOSIB;'IEON COMPLEX
11 |1 (1) (1) (1)
I R R R (R) (R)
I D D (D) (D) D (D)
I C c (C) (c) (c) C
R I R (R) R (R) (R)
R R R (R) (R) (R)
R D D (D) D (D)
R C C (c) (c) (c) c

pb— ———

D I D (D) (D) D (D)
D R D (D) (D) D (D)
D D D (D) (D) (D)
D C + T T + T
c I C (C) (C) (C) C
C R C () (C) (C) C
C D + t + + +
cilc|fc- (c) () ()

Arithmetic operands

Arithmetic operator

Arithmetic expression or single arithmetic operand

Arithmetic result

Conversion required before assignment to result.

No conversion required; operands and result agree in type.

Prohibited

2240009 3-42 c

The type and interpretation of an expression that consists of an operator
operating on either a single operand or a pair of operands are independent
of the context in which the expression appears. In particular, the type
and interpretation of such an expression are independent of the type of
any other operand of any larger expression in which it appears.

Integer quotients

An integer quotient is the integer portion of a mathematical quotient
having an integral divisor and dividend. For example, the expression
-5/2 yields an integer quotient of -2.

Type conversion

Type conversion of operands may occur during an expression's evaluation
or when the results of an expression's evaluation are to be stored into
a variable or array element. Type conversion may be based upon the
following two operations:

(a) Integer to real conversion creates a real value from an integer
value. The maximum absolute wvalue of the integer must be less
than 2%6. There is no warning if the value exceeds this range.

(b) Real to integer conversion creates a 64-bit integer value from
a real value. The maximum absolute value of the number being
converted must be less than 2"6. The fractional part is trun-
cated. There is no warning if the value exceeds the range.

Zero values are of identical form in both types of data and do not
require conversion.

Type integer - Type integer conversion to:

o Type real occurs as described in (a) above.

o Type double precision occurs as described in (a) above but with
48 binary zeros added to extend the precision.

® Type complex occurs as described in (a) above. The result
becomes the real portion of the complex value and zero is
established as the imaginary portion.

Type real - Type real conversion to:

o Type integer occurs as described in (b) above.

o Type double precision is accomplished by extending the preci-
sion of the real value through the addition of 48 binary zeros.

®© Type complex is accomplished by establishing the real value as
the real portion of the complex value and by establishing zero
in the imaginary portion.

Type double precision - Type double precision conversion to:

@ Type integer creates a 64-bit integer value of less than 263

from the integral portion of the double precision value. Any
fractional portion is lost and no rounding occurs.

2240009 3-43 C

® Type real is accomplished by eliminating the least significant
48 bits of the double-precision value and establishing the
result as the real value. No rounding occurs.

® Type complex is accomplished by eliminating the least signifi-
cant 48 bits of the double-precision value, establishing the
result as the real portion of the complex value, and establishing
zero as the imaginary portion of the complex value. No rounding
occurs. :

Type complex - Type complex conversion to:

e Type integer is accomplished by converting the real portion
of the complex value as described for the real value. in (b)
above.

® Type real is accomplished by establishing the real portion of
the complex value as the real value.

e Type double precision is accomplished by extending the precision
of the real portion of the complex value through the addition of
48 binary zeros. '

3.5.2 HOLLERITH EXPRESSIONS

Hollerith expressions contain no operators and only a single operand. A
Hollerith expression is evaluated to yield a sequence of characters. Its
value is that sequence. The forms of a Hollerith expression appear below:

A Hollerith constant
The name of a variable containing a Hollerith datum
The name of an array element containing a Hollerith datum

The name of a function that provides a Hollerith datum
when referenced

A Hollerith constant comprising a Hollerith expression is limited to
eight characters.

The data type of the name referencing a variable or array element con-
taining a Hollerith datum may affect its evaluation during program execu-
tion. A variable or array element of type integer or real contains eight
Hollerith characters. A variable or array element of type double precision
or complex contains eight characters in its first storage unit (computer
word) and may contain the value zero or an additional eight characters in
its second. A variable or array element of type logical cannot contain
Hollerith characters.

2240009 3-44 cC

A Hollerith datum provided when a function is referenced contains as many
characters as a variable or array element of corresponding type.

3.5.3 RELATIONAL EXPRESSIONS

A relational expression compares the values of two arithmetic or Hollerith
expressions, producing a result of type logical with a value of true or
false. »

Relational expressions can appear within logical expressions.

Relational operators

The relational operators are shown in table 3-8.

Table 3-8. Relational operators

Operator Operation (comparison)
_ —

.LT. ’ Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GE. Greater than or equal to
.GT. Greater than

Arithmetic relational expressions

The form of an arithmetic relational expression is

e'l reZop ey

where e) and eo are each integer, real, double-precision, or complex
expressions, and

relop is a relational operator.

A complex expression is permitted only when the relational operator is
.EQ. or .NE. ’

The ANSI FORTRAN Standard does not provide for relational expressions containing complex expressions.

An arithmetic relational expression is interpreted as the logical value
true if the values of the expressions satisfy the relation specified by
the operator; false if they do not.

2240009 3-45 c

If the two arithmetic expressions are of different types, the types of
the operands are converted as if the expression were

(e)-(e)) relop O
1 2

(See table 3-7.)

ExamEIes:

INDEX.EQ.ENDVALU
J(1,6,6)*C0S (ALPHA/10.) .GT.Z
A.LE.B

3.1415927.LT. (22./7.)
CMPLXM. NE . COMPLXN

Hollerith relational expressibns

The form of a Hollerith relational expression is

e1 relop en

where e; and e2 are Hollerith expressions, and

relop is a relational operator.

A Hollerith relational expression is interpreted as the logical value
true if the values of the operands satisfy the relation specified by the
operator; false if they do not.

The Hollerith expression e_ is considered less than e, if its value pre-
cedes the value of e, in tﬁe collating sequence or is considered greater
if its value follows the value of €, in the collating sequence. If the
operands are of unequal length, the shorter operand is considered as if
it were extended on the right with blanks to the length of the longer
operand. .

ExamEles:

The following are eyaluated as true if the integer yariable LOCK
contains the Hollerith characters K, E, and Y in that order and
left justified with five trailing blank character codes :

3HKEY.EQ.LOCK
'KEY'.EQ.LOCK
LOCK.EQ.LOCK
'KEY1'.GT.LOCK
'KEYO'H.GT.LOCK

2240009 3-46 C

3.5.4 LOGICAL EXPRESSIONS

A logical expression expresses a logical computation. Evaluation of a
logical expression produces a result of type logical with a value of
true or false.

The simpiest form of a logical expression is the specification of a:

o Logical constant,

e Logical constant name,

@ Logical variable reference,

e Logical array element reference,
© Logical function reference, or
® Relational expression.

More complicated logical expressions are formed by using one or more
logical operands with logical operators and parentheses.

Logical operators

Table 3-9 presents the logical operators and their order of precedence.

Table 3-9. Logical operators

Operator Operation Precedence
.NOT. or .N. Logical negation Highest
.AND. or .A. Logical conjunction Higher
.OR. or .0. Logical inclusive disjunction Lower
- .XOR. or .X. Logical exclusive disjunction or
L) A D Logical non-equivalence Lowest
.EQV. Logical equivalence

The ANSI FORTRAN Standard does not provide for .XOR., .EQV.,..NEQV., .N,, .A,,.O., or .X. .

Note that the logical operators .XOR., .X., and .NEQV. perform the same
logical operation.

2240009 3-47

Form and interpretation of logical expressions

A set of formation rules establishes the interpretation of a logical
expression containing two or more logical operators. The precedence
among the logical operators determines the order in which they are

to be combined (unless changed by the use of parentheses). For example,
in the expression

A .OR. B .AND. C

the .AND. operator hés higher precedence than the .OR. operator. There-
fore, the interpretation is the same as the interpretation of

A .OR. (B .AND. C)

Logical operands are:
e Logical primaries,
e Logical factors,
e Logical terms,
e Logical disjuncts, and
e Logical expressions.

The following paragraphs describe the forms of combining operands and
operators in logical expressions.

Logical primaries are:
® Logical constants,
e Symbolic names of logicai constants,
® Logical variable references,
e Logical array element references,
® Logical function references,
® Relational expressions, and

® Logical expressions enclosed in parentheses.

The forms of a logical factor are:
° [.NOT.] logical primary
° [.N.] logical primary

The forms of a logical term are:
] [logical term .AND.] logical factor
° [logical term .A.] logical factor

2240009 3-48 c

Thus, a logical term is a sequence of logical factors separated by an
-AND. or .A. operator. The form indicates that in interpreting a logical
term containing two or more .AND. or .A. operators, the logical factors
are combined from left to right.

The forms of a logical disjunct are:

e [logical disjunct .OR.] logical term

o [logical disjunct .0.] 1logical term
A logical disjunct is, therefore, a sequence of logical terms separated
by an .OR. or .0. operator. The form indicates that in interpreting a

logical disjunct containing two or more .OR. or .0. operators, the logical
terms are combined from left to right.

The forms of a logical expression are:

ﬁogical expression .XOR.] {logical disjunct
[logical expression -X.] 1logical disjunct
ﬁogical expression .EQV.]'{logical disjunct
[}ogical expression .NEQVJ ilogical disjunct

A logical expression is, therefore, a sequence of logical disjuncts
separated by .XOR., .X., .EQV., or .NEQV. operators. These forms indicate
that in interpreting a logical expression containing two or more .XOR.,
.X., .EQV., and/or .NEQV. operators, the logical disjuncts are combined
from left to right.

Note that these forms allow the logical operator .NOT. to follow
immediately after any other logical operator. For example, the logical
term

LOGICALX .AND. .NOT. LOGICALY

is permitted.

Values of logical factors, terms, disjuncts, and expressions

The value of a logical factor involving .NOT. or .N. is shown below:

NOT.X

X ToN. X
true false
false true

2240009 3-49 C

: X1 .AND. X,
X1 X2 X1 .A. X,
true true true
true false false
false true false
false false false

X1 -OR. Xy
Xl Xz Xl .0. X2
true true true
true false true
false true true
false false false

The value of a logical term involving .AND. or .A. is shown below:

The value of a logical disjunct involving .OR. or .0. is shown below:

The values of logical expressions involving .XOR., .X., .EQV., and .NEQV.
are shown below:

X1 X .X§1'§QF'X§2 X] .EQV. X X; .NEQV. X,
true true false true false
true false true false true
false true true false true
false false false true false

2240009

Note that the logical operators .XOR.,
logical operations.

3-50

-Xoy

and

.NEQV. perform identical

3.5.5

BOOLEAN EXPRESSIONS

The ANSI FORTRAN Standard does not provide for Boolean expressions.

Boolean expressions contain no operators and only a single operand.

Boolean expression is evaluated to yield a string of 64 binary digits

A

representative of bit positions in a storage unit (64-bit CRAY-1 computer

word) .

The forms of a Boolean expression appear below:

A Boolean constant

The name of a variable containing a Boolean datum
The name of an array element containing a Boolean datum

The name ‘of a function that provides a Boolean datum
when referenced

Boolean expressions may be combined with expressions of other types by
using arithmetic, relational, and logical.operators.
is never converted to a different type.

A Boolean datum
Evaluation of an arithmetic or

relational operator processes a Boolean expression with no type conver-
sion, but as though it were of integer type.

A logical operator processing a Boolean expression performs a bit-by-

bit (masking) operation. The result of such operations may be of type

integer, real, logical or Boolean depending on other operands in the
The values of logical factors, terms and expressions
described in 3.5.4 apply, but with results of binary one and zero

expression.

corresponding to the logical results of true and false, respectively,
These values are summarized in the

and in each of 64 bit positions.

chart below:

< « i .NOT.X; | X].AND.X, | X;.0R.X | X].XOR.Xp | X;.EQV.X5 | X;.NEQV.X,
1 2 .N.X1 X1.A.Xp X1.0.X9 | Xj.X.Xp
1100 | 1010 0011 1000 1110 0110 1001 0110
3.5.6 PRECEDENCE OF ALI OPERATORS

The foregoing has established precedences within groups of arithmetic and

logical operators.

own group.
3-10.

2240009

Relational operators have no precedence within their
Precedences among all types of operators are presented in table

Table 3-10. Precedence among all operators

Operator Precedence
Arithmetic Highest
Relational Intermediate
Logical Lowest

An expression may contain more than one kind of operator. For example,
the logical expression

L .OR, A+ B .GE. C

where A, B, and C are of type real and L is type logical, contains an
arithmetic operator, a relational operator, and a logical operator. This
expression would be interpreted the same as the expression

L .OR. ((A + B) .GE. C)

3.5.7 SUMMARY OF RULES OF INTERPRETATION
The order in which primaries are combined using operators is determined
by the:

e Use of parentheses,

® Precedence of operators,

® Right-to-left interpretation of exponentiations in a factor,

® Left-to-right interpretation of multiplications and divisions
in a term, :

e Left-to-right interpretation of additions and subtractions in
an arithmetic expression,

) LeftQto—right interpretation of conjunctions in a logical or
Boolean term,

e Left-to-right interpretation of inclusive disjunctions in a
logical or Boolean disjunct, and

® Left-to-right interpretation of exclusive disjunctions, equi-
valences and non-equivalences in a logical or Boolean
expression.

3.5.8 EVALUATION OF EXPRESSIONS

Any variable, array element, or function referenced as an operand in an
expression must be defined at the time the reference is executed. Any
names of constants must have been established in a PARAMETER statement
preceding the statement of first reference.

2240009 3-52 c

Any arithmetic operation whose result cannot be defined mathematically
produces unpredictable results in an executable program. Examples are
dividing by zero, raising zero to a zero or negative power, and raising
a negative value to a non-integer power.

The execution of a function reference in a statement must not alter the
value of any other entity within the same statement. Nor may it alter
the value of any entity in common that affects the value of any other
function reference in that same statement. If a function reference in a
statement causes definition of an actual argument of the function, that
argument or any associated entities must not appear elsewhere in the same
statement. For example, in the statements

A(I) = F(I) and
Y = G(X) + X
where F and G are functions, unpredictable results occur when the

reference to F defines I or the reference to G defines X.

The data type of an expression in which a function reference appears
neither affects nor is affected by the evaluation of the actual arguments
of the function.

The data type of an expression in which an array element is referenced
neither affects nor is affected by the evaluation of the subscript

There are certain conditions under which evaluation of an expression may
differ from evaluation according to the interpretation rules stated thus
far. These are described in the following paragraphs.

Order of evaluation of functions

The order of evaluation of multiple function references within a single
statement is fixed only within a direct logical IF statement and within
nested function references.

Examples:

e In the statement IF(F(Y))A=F(Y) where F is a function name,
the function reference in the conditional statement A=F(Y)
is evaluated last.

e In the statement A=F(G(X)) where F and G are functions, G
is evaluated first.

2240009 3-53 c

In other statements that contain more than one function reference, the
value provided by each function reference may be unpredictably affected
by the order in which the other function references are evaluated.

Example:

In the statement A=F(G(H(X)),E(Y)) where E, F, G, and H are functions
H is evaluated before G, and E and G (and H) are evaluated before F,
but H is not necessarily evaluated before E.

Parentheses and expressions

Any parenthesized expression is treated as an entity. For example, in
evaluating the expression A* (B*C), the product of B and C is evaluated

and then multiplied by A. Parenthesized expressions may contain one or
more parenthesized expressions, each of which may contain one or more
parenthesized expressions, etc. This nesting of parenthesized expressions
can be specified to 63 levels.

The ANS| FORTRAN Standard does not limit the number of levels of nested parentheses.

Evaluation of arithmetic expressions

The rules for the form and interpretation of arithmetic expressions
(3.5.1) describe the interpretation of an arithmetic expression.

Two arithmetic expressions are mathematically equivalent if, for all
possible values of their primaries, their mathematical values are equal.
However, mathematically equivalent arithmetic expressions may produce
different computational results.

The mathematical definition of integer division is described in 3.5.1.

The difference between the value of the expression 5/2 and 5./2. is
mathematical and is not a computational difference. The difference between
5./10. and 5.*.1 is computational.

In addition to parentheses required for the desired interpretation, other
parentheses may be included to control the magnitude and accuracy of
intermediate values developed during the evaluation of an expression.

For example, in the expression

A+ (B-C)

the term (B-C) is evaluated and then added to A. Including parentheses
could change the mathematical value. . For example, the two expressions:

A*I/J
A* (1/J)

may have different mathematical values if I and J are integer factors
and if A is real. '

2240009 3-54 C

Evaluation of Hollerith expressions

The rules of 3.5.2 describe the interpretation of Hollerith expressions.
Two Hollerith expressions are equivalent if their values are equal for all
possible values of their specification.

Evaluation of relational expressions

The rules of 3.5.3 describe the interpretation of relational expressions.
Two relational expressions are relationally equivalent if their logical
values are equal for all possible values of their primaries.

Evaluation of logical expressions

The rules of 3.5.4 describe the interpretation of a logical expression.
Two logical expressions are logically equivalent if their values are
equal for all possible values of their primaries.

Evaluation of Boolean expressions

The rules of 3.5.5 and 3.5.4 describe the interpretation of a Boolean
expression. Two Boolean expressions are equivalent if their values are
equal for all possible values of their primaries. -

2240009 3-55 C

3.6 STATEMENTS

3.6.1 STATEMENT CLASSIFICATION
Every statement is classified as either executable or non-executable.

An executable statement specifies an action. When compiled with other
executable statements, an execution sequence is produced.

A non-executable statement:
e Contains input/output editing information,
e Specifies statement functions,
® Classifies program units, or

e Specifies the characteristics, arrangement, and initial
values of data.

A non-executable statement forms no execution sequence. Statement labels
associated with non-executable statements must not be referenced to
control the execution sequence.

Statements are recognized by keyword or form as executable or non-
executable (see table 3-11).

Any statement of either classification may be identified with a statement
label which must be unique among all statement labels used in that program
unit. .

3.6.2 DATA SPECIFICATION

The kinds of specification statements are:
e DIMENSION;
e EQUIVALENCE;
e COMMON;

e INTEGER, REAL, DOUBLE PRECISION, DOUBLE, COMPLEX, and LOGICAL
type statements; '

e TIMPLICIT;
e PARAMETER; and
e EXTERNAL.

All are non-executable.

The ANSI FORTRAN Standard does not provide for IMPLICIT, PARAMETER, or DOUBLE statements.

2240009 3-56 c

Table -3-11.

Executable statements

Arithmetic assignment
Logical assignment
ASSIGN

Unconditional GO TO
Computed GO TO
Assigned GO TO
Three-branch arithmetic IF
Two-branch arithmetic IF
Direct logical IF
Indirect logical IF
DO

CONTINUE

STOP

PAUSE

Formatted READ
Unformatted READ
Formatted WRITE
Unformatted WRITE
PRINT

PUNCH

BACKSPACE

ENDFILE

REWIND

BUFFER IN

BUFFER OUT

ENCODE

DECODE

CALL

RETURN

END

Statement classification

Non-executable statements

DIMENSION

EQUIVALENCE

COMMON

INTEGER type

REAL type

DOUBLE PRECISION type
DOUBLE (precision) type
COMPLEX type

LOGICAL type

IMPLICIT

PARAMETER

EXTERNAL

DATA

FORMAT

PROGRAM

Statement function definition

FUNCTION
INTEGER FUNCTION

REAL FUNCTION

DOUBLE PRECISION FUNCTION
DOUBLE FUNCTION

COMPLEX FUNCTION

LOGICAL FUNCTION
SUBROUTINE

ENTRY

BLOCK DATA

The ANSI FORTRAN Standard does not provide for the following statements:

o PRINT e DOUBLE
e PUNCH e IMPLICIT
e END o PARAMETER

The three-branch arithmetic IF statement is the arithmetic IFstatement in the ANSI FORTRAN Standard. The direct
logical IF statement is the logical IF statement in the ANSI FORTRAN Standard.

e PROGRAM e DOUBLE FUNCTION
e ENCODE e BUFFER IN
e DECODE e BUFFER OUT

e ENTRY
® Two -branch arithmetic IF

e Indirect logical IF

2240009

DIMENSION statements

DIMENSION statements specify the symbolic names and dimension specifications
of arrays.

The form of a DIMENSION statement is

DIMENSION a(d) [, ad)] ...

where each a (d) is an array declarator (3.4.1).

Each symbolic name q appearing in a DIMENSION statement declares a

to be an array in that program unit. An array name can appear only once
as an array declarator in a program unit. Array declarators may also
appear in COMMON statements and in type statements.

Examples:

DIMENSION ARRAY (34,24,34), VECTOR (64), z7144x (10,20)
DIMENSION MATRIX (ROWS,COLUMNS)
DIMENSION TABLE (3,IVAL, MATRIX,2,2)

Note that in the last tWo examples, the use of variables defines
adjustable dimensioning as permitted only in procedure subprograms.

EQUIVALENCE statements

An EQUIVALENCE statement specifies the sharing of one or more storage
units by two or more entities in a single program unit. This causes
the association of those entities.

If associated entities are of different data types, the EQUIVALENCE
statement does not cause type conversion or imply mathematical equivalence.
If a variable and an array are associated, the variable does not assume the
properties of an array and the array does not assume the properties of a
variable.

Form of an EQUIVALENCE statement - The form of an EQUIVALENCE statement is

EQUIVALENCE (nlist) [(nlist)] ...

where nlist is a list of two or more variable names, array element
names, and/or array names separated by commas.

Names of dummy arguments of a subprogram cannot appear in #nlist. A variable
name that is also a function name cannot appear in nlist.

Each subscript expression in nlist must be an integer constant
expression.

2240009 3-58 c

Equivalence association - An EQUIVALENCE statement specifies that the
storage sequence of each entity in a list nlist shares the same first
storage unit. This causes the association of all entities in the list
and may also cause indirect association of other entities.

Array names and array element names - If an array element name appears
in an EQUIVALENCE statement, the number of subscript expressions must
equal the number of dimensions in the array declarator for the array.

The use of an array name in an EQUIVALENCE statement has the same effect
as using the name of the first array element.

Restrictions on EQUIVALENCE statements - An EQUIVALENCE statement must not
specify that the same storage unit is to occur more than once in a storage
sequence. For example,

DIMENSION A(2)

EQUIVALENCE (A(1),B), (aA(2),B)
is prohibited, because it would specify the same storage unit for A(1)
and A(2).

An EQUIVALENCE statement must not specify that consecutive storage units
are to be non-consecutive. For example, the following is prohibited:

REAL A(2)
DOUBLE PRECISION D(2)
EQUIVALENCE (A(1),D(1)),(A(2),D(2))

An EQUIVALENCE statement must not associate the storage sequences of two
different common blocks in the same program unit. EQUIVALENCE statement
association must not cause a common block storage sequence to be extended
by adding storage units preceding the first storage unit of the first
entity specified in a COMMON statement for the common block. For example,

COMMON /X/A
REAL B(2)
EQUIVALENCE (A,B(2))

is not permitted since it would attempt association of array element
B(l) with a storage unit preceding A in common block X.

2240009 3-59 c

Examples

The appearance of
DIMENSION A(15,15) ,M(5,25),X(2,25,2)
EQUIVALENCE (A,M), (A(6,9),X)

in a program unit causes the first 125 array elements of A to coincide
with the 125 array elements of M, and the last 100 array elements of

A to coincide with the 100 array elements of X.

STORAGE
SEQUENCE

< A(1,1) or M(1,1)

M .

(125)
. A <+—A(6,8) or M(5,25)

A(6,9) or X(1,1,1) —— (225)
X
(100)

A(15,15) or X(2,25,2)

COMMON statements

The COMMON statement associates entities in different program units.
This allows different program units to share storage units and to

define and reference the same data.

Form of a COMMON statement - The form of a COMMON statement is

comuon [/[eb] /1 niist [/[eb] / niist] ...

where eb is the symbolic name of a common block, and

is a list of variable names, array names, and array
declarators separated by commas. Names of dummy
arguments of a subprogram cannot appear in the list.

nlist

2240009 3-60 c

In each COMMON statement, the entities occurring in nlist following

a block name cb are declared to be in common block ¢b. The blank
(unnamed) common block is specified when a ¢b does not appear between
slashes. If the first ¢b is omitted, its enclosing slashes are optional
and all entities in the nlist are specified to be in blank commor.

Any ¢b (or an omitted e¢b for blank common) may occur more than once

in one or more COMMON statements in a program unit. The nlist following
each successive appearance of the same common block name continues the
preceding list for that common block name.

Common block storage sequence - For each common block, a common block
storage sequence is formed as follows:

® A storage sequence is formed consisting of the storage sequences
of all entities in the lists nlist for the common block. The
order of the storage sequence is determined by the order of the
appearance of the lists nlist in the program unit.

® This storage sequence is extended to include all storage units of
any storage sequence associated with it by EQUIVALENCE statement
association. The sequence may be extended only by adding storage
units beyond the last storage unit. Entities associated with
an entity in a common block are considered to be in that common
block.

Size of a common block - The size of a common block is the size of its
common block storage sequence, including any extensions of the sSequence
resulting from EQUIVALENCE statement association.

Within an executable program, the size of a named common block is establishe
ed during compilation of the first program unit specifying its name.

This size cannot be exceeded in specifying the same named common block in
subsequent program units, but may be the same or less. Blank common blocks
within an executable brogram are not required to be of the same size and

may increase, decrease or remain the same as each program unit is compiled.

Common association - Within an executable program, the common block storage
sequences of all common blocks with the same name share the same first
storage unit. The same is true of all blank common blocks. This results
in the association of entities among different program units.

Differences between named common and blank common - A blank common block
has the same properties as a named common block, except that only entities
in named common blocks may be initially defined by DATA statements.

2240009 3-61 c

Restrictions on COMMON and EQUIVALENCE statements - An EQUIVALENCE
statement must not associate the storage sequences of two different
common blocks in the same program unit. EQUIVALENCE statement
association must not attempt to extend common block storage sequence
by adding storage units preceding the first storage unit of the first
entity specified in a COMMON statement for the common block.

Example:

Two program units in the same executable program each contain the
following statements:

COMMON /C1/X,Y,Z(10,10)
DIMENSION C1(1,2,3)

Common block C1 contains the variables X and Y and 100-element

array 2. Since all were declared in identical COMMON statements
appearing in both program units, each program unit may access

the same data. Additionally, identical DIMENSION statements appear-
ing in both program units declare two identical but completely
independent six-element arrays, C1, each accessible only to the
program unit in which it was so declared. Note that the common
block containing X, Y, and Z has the name C1 and that this name

in no way conflicts with or pertains to the array name C1 specified
‘in the DIMENSION statement.

2240009 3-62

Example:

The following illustrates a more complex example of COMMON statement

use in which three program units in the same executable program share
four common blocks:

PROGRAM UNIT A

COMMON/AB/TEST1,TEST2,TEST3,MATRIX(6,5,24) ,NET(16,16)
COMMON/AC/COUNTA, COUNTB,GRID (100, 100)
COMMON/ABC/INDEX ,, TABLE(3,8,3) ,X,VECTOR(12)

&

COMMON BLOCK

ABC
A INDEX IX
COMMON BLOCK i TABLE TAB COMMON BLOCK
AB ié AC _
T1 COUNTA ACOUNT
T2 DCOUNTB BCOUNT
T3 “GRID G
M
1 1
T T
X Y
A VECTOR v A L
o-r -r -+~
N
"[T COMMON BLOCK
BC
AVALU AVALU B
BVALU BVALU 4id
¥ CODE CODE
XREF XREF
PROGRAM UNIT B v PROGRAM UNIT ¢
COMMON/AB/T1,T2,T3,M(6,5,24), N(8,32) A | | COMMON/AC/ACOUNT , BCOUNT, G (1000,10)
COMMON/BC/AVALU,BVALUE , CODE ,XREF (70, 70) ot —F COMMON/BC/AVALU ,BVALU, CODE , XREF (70, 70)
COMMON/ABC/ INDEX, TABLE (3,8,3) ,X,VECTOR(12) COMMON/ABC/1X,TAB(3,8,3),Y,v(3,2,2)
2240009 3-63

Type statements

A type statement either overrides or confirms implicit typing and may
specify dimension information.

The appearance of the symbolic name of a constant, variable, array, or
function in a type statement specifies the data type for all appearances
of that name in the program unit. Within a program unit, a name must not
have its type explicitly specified more than once.

Subroutine names, main.program names, and block data subprogram names
must not appear in a type statement.

If a specific intrinsic function name appearing in a type statement
conflicts with that function's type as specified in Appendix B, the

name loses its intrinsic function property in the program unit containing
that type statement.

The forms of type statements are:

INTEGER v[,v]...

REAL o[,v]...

DOUBLE PRECISION v[,v]...
DOUBLE , v[,v]...

coMpPLEX v[,v]...

LoGICAL v[,v]...

where - INTEGER, REAL, DOUBLE PRECISION (or DOUBLE), COMPLEX,
or LOGICAL specifies the desired data type, and

v is a constant, variable, array, function, or dummy

procedure name, or is an array declarator.

Either DOUBLE PRECISION or DOUBLE causes double-precision typing. Note
that the space between DOUBLE and PRECISION is optional.

The ANSI FORTRAN Standard does not permit the use of DOUBLE instead of DOUBLE PRECISION «. -

(A special form of integer typlng is discussed in Section 5 under
"Compiler directives".)

ExamEles:

INTEGER NPAK(60,230) ,RTEST,XREF(20,2) ,ARRAY
REAL FSTOP,PH(103),IMG(2,69) ,FUNCTION
DOUBLE PRECISION ANG(1014,8) ,KLIM,PTEST(10)
COMPLEX IMAG,COMARR(30,3),ZREF,KITEMS (64)
LOGICAL KEY2,BOOLSET(64,64) ,TTABLEB(2,20,15)

2240009 3-64 c

IMPLICIT statements

The ANSI FORTRAN Standard does not provide for an IMPLICIT statement.

An IMPLICIT statement changes or confirms the data typing of constants,
variables, arrays, and functions according to the first letter of their

symbolic names.

The form of an IMPLICIT statement is

IMPLICIT type (a , a ...) L.type (@ , a ...

where type is INTEGER, REAL, DOUBLE PRECISION (or DOUBLE),
COMPLEX, or LOGICAL to specify the desired data
type, and

a 1is a single letter or is a range of single letters
denoted by the first and last letter of the range
separated by a hyphen. Writing a range of letters
ay - an has the same effect as writing a list of the
single letters aj, @2,...,2,_ and where a; precedes an
in this alphabetically ordered sequence.

An IMPLICIT statement specifies a type for all constant, variable, array,
and function (except intrinsic function) names that begin with any letter
appearing singly or within a range in the specification. IMPLICIT
statements do not change the types of intrinsic functions. An IMPLICIT
statement applies only to the program unit containing it. Note that the
hyphen is syntactically significant.

The appearance of a constant, variable, array, or function name in a
type statement overrides or confirms type specification by an IMPLICIT
statement. An explicit type specification in a FUNCTION statement
overrides IMPLICIT statement typing for the name of that function sub-
program.

Within the specification statements of a program unit, IMPLICIT statements
must precede all specification statements other than PARAMETER statements.
A PARAMETER statement must follow an IMPLICIT statement for it to affect
the typing of constants named in the PARAMETER statement.

A letter can be specified (or implied within a range of letters) only
once in all of the IMPLICIT statements in a program unit.

Examples:
IMPLICIT INTEGER(A,B,F-K),REAL(M-W,Z2)
IMPLICIT LOGICAL(L),DOUBLE(D,E)
IMPLICIT DOUBLE PRECISION(X,Y),COMPLEX(C)

2240009 3-65 C

PARAMETER statements

The ANSI FORTRAN Standard does not provide for the PARAMETER statement.

A PARAMETER statement assigns a symbolic name to a constant.

The form of a PARAMETER statement is

PARAMETER (p = e[,p = e]...)

where p is a symbolic name and

e is an expression containing only constants and
symbolic names of other constants

A symbolic name in a PARAMETER statement can be specified as to type by
its appearance in a previous type statement, by a previous IMPLICIT state-
ment specifying its first letter, or by default if not so specified. A
symbolic name p of type integer, real, double precision, or complex can
only be followed by an arithmetic expression e containing arithmetic con-
stants or the names of arithmetic constants that have been previously
defined in the same or an earlier PARAMETER statement. The evaluation of
arithmetic expressions in a PARAMETER statement yields results that are
made to agree in type with the corresponding symbolic names. A symbolic
name p of type logical can only be followed by a logical expression. A
symbolic name can be assigned an arithmetic or logical value only once in
a program unit. Constants named in a PARAMETER statement may be referenced
in any subsequent statement in the same program unit except for a FORMAT
statement. Symbolic names of constants cannot be used in format specific-
ations or to form a part of any other constant.

Examples:

IMPLICIT LOGICAL(A-B)

PARAMETER (P1=3.1415926, C=1.86E5)
PARAMETER (JOULE=10000000,KELVIN=-273)
PARAMETER (BOOLEAN=.TRUE.,ABOOLEAN=.FALSE.)

2240009 3-66 C

EXTERNAL statements

An EXTERNAL statement identifies a symbolic name as representing an
‘external procedure and permits its use as an actual argument.

The form of an EXTERNAL statement is

EXTERNAL proc [rproc]...

where proc is the name of an external procedure.

The appearance of a name in an EXTERNAL statement declares that name to

be an external procedure name. If an external procedure name is used

as an actual argument in a program unit, it must appear in an EXTERNAL
statement in that program unit. A statement function name must not appear
in an EXTERNAL statement.

If an intrinsic function or utility procedure name appears in an EXTERNAL
statement, that name becomes the name of some external procedure and the
intrinsic function or utility procedure of the same name is not available
for reference in that program unit. If this external procedure is not
available during loading of the executable program, the intrinsic function
or utility procedure will be loaded in its place.

A given symbolic name may appear only once in all of the EXTERNAL statements
of a program unit.

Example:

MAIN is the main program of an executable program that includes the
functions STAT, STDEV, and MEAN. Considering just the main program, the
syntax in which the symbolic name STAT appears defines its being the name of
a function. The names STDEV and MEAN, however, appear in a syntax incap-
able of defining their being function names. This definition is established
by the EXTERNAL STDEV, MEAN statement in the second line.

PROGRAM MAIN FUNCTION STDEV(S)
EXTERNAL STDEV,MEAN :

. ’ STDEV = RMSD
X = STAT(STDEV,SIGMA) END
Y = STAT(MEAN,S I GMA) REAL FUNCTION MEAN(S)
EN

D , MEAN = AVG
FUNCTION STAT(OP,VALU) END

.
2

STAT = OP(VALU)
END

. 2240009 3-67 c

3.6.3 DATA INITIALIZATION

A DATA statement provides initial values for variables, arrays, and array
elements. A DATA statement is non-executable and may appear in a
program unit following any specification statements. Only those entities
named in DATA statements become defined prior to executable program
execution. All other entities are undefined at this time.

Form of a DATA statement

The form of a DATA statement is

DATA nlist /elist /[[Inlist / clist] ...

where nlist is a list of variable names, array names, array element
names, and implied-DO lists separated by commas, and

elist is a list of the form

[r*] c [,[P*]G]...

in which ¢ is a constant or the symbolic name of a constant, and
y 1is a nonzero, unsigned, integer constant or the symbolic
name of such a constant.
The r*c form is interpreted to provide r successive appearances of the

constant c.

An implied-DO list in a DATA statement has the form

(dlist,i=e1,e2 [,es])

where dlist is a list of array element names and implied-DO lists
separated by commas,

2 is the name of an integer variable called the implied-
DO variable :

e1, e2, and €3 gre each integer expressions containing only integer
constants, the names of integer constants, and implied-
DO variables of other implied-DO lists containing this .
implied-DO list within their ranges. If omitted, es3
is assumed specified as 1. '

The range of an implied-DO list is the list dlist. The iteration count

and values of the implied-DO variable 7 are established the same as for a
DO-loop except that the iteration count must be greater than zero. Inter-
pretation of an implied-DO list in a DATA statement causes each item in the
list dlist to be specified once for each iteration, and for appropriate

2240009 , 3-68

values to be substituted where implied-DO variables are referenced. Each
subscript expression in the list dlist must contain only integer constants,
integer constant names, and implied-DO variables of implied-DO lists con-
taining the subscript expression within their ranges. Names of implied-DO
variables are local to the implied-DO lists containing them.

DATA statement restrictions

Names of constants, dummy arguments, functions, and entities in blank
common (including entities associated with an entity in blank common)
must not appear in nlist. Names of entities in a named common block
may appear in nlist.

The same number of items must be specified by each nlist and its
corresponding clist. The initial values of the entities are defined
by this correspondence. There must be one constant for each element
of an array whose name appears in the list without subscripting unless
named as the last item of an nlist. In this case, the values in cligt
may specify any number of consecutive array element values, beginning
with the first. The type of each nlist entity and the type of the
corresponding clist constant must agree when either is of type complex
or logical. When the nlist entity is of type integer, real, or double
precision, the corresponding clist constant is converted, if necessary,
to the type of the nlist entity according to the rules for arithmetic
conversion. A Hollerith constant can be specified to correspond to
entities of any type except logical.

Any variable or array element may be initially defined except for:
o An entity that is a dummy argument,

® An entity in blank common, which includes’ an entity associated
with an entity in blank common, or

© A variable in a function subprogram whose name is also the name
of the function subprogram.

If a variable, an array element, or an entity associated with either is
defined by a DATA statement more than once in an executable program,
that nearest its end is the only definition to apply.

The ANSI FORTRAN Standard does not permit nlist to contain an unsubscripted array name, or for a DATA statement
to initialize entities in named common blocks except in block data subprograms.

Examples:

DIMENSION GRID (2,3),KBUF(10,200,2)

PARAMETER (XCON=6.0)

DATA GRID /11.0,21.0,12.0,22.0,13.0,23.0/,KBUF/4000*XCON/
DATA 1/1/J/0/K/2000/

2240009 3-69 , c

3.6.4 DATA ASSIGNMENT

Data assignment defines variables and array elements during execution of
the executable program. The four kinds of data assignment statements are:
e Arithmetic,
e Logical,
e Formatted, and
e ASSIGN (statement label),

Assignment statements defines entities. Formatted assignment statements
are described in 3.6.9.

Arithmetic assignment statements

The form of an arithmetic assignment statement is

vV = e

where v is the name of a variable or array element of type integer,
real, double precision, or complex, and

e is an arithmetic, Hollerith, or Boolean expression.

Execution of an arithmetic assignment statement causes the evaluation of
the expression e, qonversion of e to the type of v (if required), and
definition of v with the resulting value. Once evaluated, an arithmetic
expression may require conversion to the data type of the entity v. Table
3.7 relates such conversions to the data types of arithmetic operands,
expressions and evaluations.

Examples:
The statement ... Assigns to a(n) ...
L =12 Integer variable
¢c = (0.8,16.5) - (16.32,-6.1) Complex variable
X = =B +(B#%2-4*xA%C)**0.5 Real variable
A=B+1L Real variable
ROOT = SQRT(65536.0) Real variable
ARRAY (6,2,1)=0 Real array element
MATRIX(1,J,K) =MATRIX(1,J,K)+1 Integer array element

2240009 3-70 Cc

Logical assignment statements

The form of a logical assignment statement is

vV=e

where v is the name of a logical variable or array element, and

e 1is a logical expression.

Execution of a logical assignment statement causes the evaluation of the
expression e and the definition of v with the value of e. ¢ must either
be evaluated as true or false.

ExamEles:

All variable and array element names are assumed to be of type logical
except for E and F which are type real.

T .FALSE.
A=8B
c
T

(A .AND. B) .OR. (C .AND. D)
NOT. T
TRUTAB(1,J,K,L) = .T.

1

T = E.GE.F .OR. E/F .LT..4

ASSIGN statements

The form of an ASSIGN (statement label) statement is

ASSIGN 8 TO <

where 8 1is a statement label, and

7 1is an integer variable name.

An ASSIGN statement assigns the statement label s to the integer variable
7. S must be the label of an executable statement or a FORMAT statement
in the same program unit as the ASSIGN statement.

Execution of an ASSIGN statement is the only way to define a variable
with a statement label.

A variable defined with a statement label can be referenced only in an
assigned GO TO statement, or as a FORMAT statement identifier in an input/
output statement, a formatted assignment statement, or an argument. While
so defined, the variable 7 cannot be referenced for any other purpose. It
may be redefined with the same or a different statement label or with an
integer, Hollerith, or Boolean value.

2240009 3-71 C

Note that "TO" is a keyword extension in the ASSIGN statement and is not

a part of the keyword "ASSIGN" itself.
statement.

Examples:

ASSIGN 910 TO JUMPTO
ASSIGN 6 TO NEXTPATH
ASSIGN 12345 TO NUFORMAT

3.6.5 PROGRAM CONTROL

Both must appear in an ASSIGN

The following statements control an execution sequence:

® Unconditional GO TO

e Computed GO TO

@ Assigned GO TO

e Three-branch arithmetic IF
e Two-branch arithmetic IF

e Direct logical IF

e Indirect logical IF

e DO

e CONTINUE
e STOP

e PAUSE

e END

e CALL

e RETURN

Unconditional GO TO statemenfs

} described in 3.6.11

The form of an unconditional GO TO statement is

GO TO s

where s
program unit.

2240009

is the statement label of an executable statement in the same

Execution of an unconditional GO TO statement causes a transfer of control
to the statement identified by the statement label.

Note that the space between GO and TO is optional.

Examples:

GOTO 910
GO TO 6
GO TO12345

Computed GO TO statements

The form of a computed GO TO statement is

co to (s[,sl...)[,]e

where e 1is an integer expression, and

8 1is the statement label of an executable statement that appears
in the same program unit as the computed GO TO statement. A
given statement label may appear more than once in a computed
GO TO statement.

Execution of a computed GO TO statement causes the expression e to be
evaluated for an integer result, Z. A transfer of control to the statement
identified by the Zth statement label in the list of # statement labels

is then executed if 1< Z < n. If 2 <1 or ¢ > n, the execution sequence
proceeds as though a CONTINUE statement were executed. If the evaluation
of ¢ for 7 produces a non-integer result, the fractional portion is dis-
carded without rounding.

The ANSI FORTRAN Standard does not specify the action of a computed GO TO statement when <1 or i>n ,and
requires that e be an integer variable preceded by a comma. T

Note that the space between GO and TO is optional and that an optional
comma may precede e.

Examples:

A =3.

GO TO (2,4,8,16)A

IX=MSIZE/2

GO TO (0031,59,728)1X

GO TO (0031,59,728)MSI1ZE/2
NBRANCH =4

GoTo (6,3,6,6,7,2,7) ,NBRANCH

2240009 3-73 c

Assigned GO TQ statements

The form of an assigned GO TO statement is

co o 2[[,] (sl,s]...)

where 7 1is an integer variable name, and

s is the statement label of an executable statement that
appears in the same program unit as the assigned GO TO

statement. A given statement label may appear more than
once in this statement.

Execution of an assigned GO TO statement causes that value of %, as
assigned by prior execution of an ASSIGN statement, to define a statement
label of an executable statement. Execution of the assigned GO TO
statement causes a transfer of control to the statement identified

by that statement label. Definition of the variable used in an assigned

GO TO statement must occur through use of an ASSIGN statement previously
executed in the same program unit.

The optional parenthesized statement label list should, in principle,
contain at least one specification of the statement label assigned to <.
If this is not the case, transfer of control will still occur to that
statement identified by the label in 7.

Note that the space between GO and TO is optional and that an optional
comma may follow 7 if a list of statement labels is specified.

The ANSI FORTRAN Standard requires the parenthesized statement label list and the comma preceding it, and does not
specify what action is taken if there is no s to match .

Examples:

ASSIGN 76 TO LAB
GO TO LAB
ASSIGN 999 TO KFIN

GO TO KFIN (997,997,999)
ASSIGN 1 To JAIL

GO.TO JAIL, (1,2,3,4,5)

2240009 3-74

Three~-branch arithmetic IF statements

The form of a three-branch arithmetic IF statement is

IF (e) 81,892,853

where e 1s an integer, real, or double-precision expression, and

81,82, and s3 are statement labels of executable statements that appear
in the same program unit as the three-branch arithmetic
IF statement. The same statement label may appear more
than once in this statement.

Execution of a three-branch arithmetic IF statement causes evaluation of
the expression e followed by a transfer of control to one of the state-
ments identified by 83, S, or 83, as the value of ¢ is less than zero,
equal to zero, or greater than zero, respectively.

The ANSI FORTRAN Standard arithmetic IF statement and the three-branch arithmetic IF statement are the same.

Examples:

IF (VTEST) 20,21,20
IF (B**2-4*A%C) 70,80,90
IF (SIN(ALPHA)) 6L482,4826,8264

Two~branch arithmetic IF statements

The form of a two-branch arithmetic IF statement is:

IF (e) 81,892

where € 1s an integer, real, or double-precision expression, and

81 and 8, are statement labels of executable statements that
appear in the same program unit as the two-branch
arithmetic IF statement.

The ANSI FORTRAN Standard does not provide for the two-branch arithmetic IF statement.

Execution of a two-branch arithmetic IF statement causes evaluation of
the expression e followed by a transfer of control to the statement iden-
tified by 87 if e is non-zero or to the statement identified by s, if e
is zero.

2240009 3-75 ' c

Examples:

IF (1+J*K) 100,101
IF (SIN(ALPHA)) 31,49627
IF (2+3-M) 44,20

Direct logical IF statements

The form of a direct‘logical IF statement is

IFr (e) st

where e 1is a logical expression, and

st is any executable statement other than a DO statement, an END
statement, or another direct logical IF statement and is called
a conditional statement.

Execution of a direct logical IF statement causes evaluation of the expres-
sion e for a logical value. If the value of e is true, statement st is
executed. If the value of ¢ is false, statement 8t is not executed and
the execution sequence proceeds as though a CONTINUE statement were
executed. The execution of a function reference in the expression

of a direct logical IF statement may affect related entities in the
statement st.

The ANSI FORTRAN Standard refers to the direct logical IF statement as the logical IF statement.

Examples:

LOGICAL K
IF(K) K=.NOT.K

INTEGER A,B
IF (A.EQ.B) GO TO 100

LOGICAL M,N,P,Q
IF (M.AND.N.OR.P.AND.Q) M=P.OR.Q.OR.N

2240009 3-76

Indirect logical IF statements

The form of an indirect logical IF statement is

IF (e) 51,321

where e is a logical expression and
s} and s, are statement labels of executable statements appearing
in the same program unit as the indirect logical IF
statement.

The ANS| FORTRAN Standard does not provide for the indirect logical IF statement..

Execution of an indirect logical IF statement causes evaluation of the
expression ¢ for a logical value followed by a transfer of control. If
the value of ¢ is true, the statement identified with statement label

81 is executed next. If the value of e is false, the statement identified
with statement label s, is executed next. '

Examples:
X and Y are numeric variables; all others are logical

IF((A.OR.B) .AND.C) 210,220
IF(X.GE.Y)148,9999
IF(L1.EQV.L2)3,L44

DO statements

A DO statement specifies a DO-loop. A DO-loop enables repeated
execution of the set of executable statements within its range.

The form of a DO statement is

DO s[,]Z = e; se, [> e3]

where 8§ 1is the statement label of an executable statement
called the terminal statement that physically follows
the DO statement in the same program unit;

7 1is the name of an integer, real, or double-precision
variable, called the DO-variable; and

€1, €2 ,and 23 are integer, real, or double-precision expressions.

The ANSI FORTRAN Standard requires that £ be an integer variable, that e be an integer variable or integer constant, and
that both Z and e be greater than zero when the DO statement is executed. The ANSI FORTRAN ‘Standard does not provide
for a comma between g and z .

2240009 3-77)

The terminal statement of a DO-loop must not be an unconditional GO TO,
assigned GO TO, indirect logical IF, two- or three-branch arithmetic IF,
RETURN, PAUSE, STOP, END, or another DO statement.

The ANSI FORTRAN Standard specifies that the terminal statement of a DO-loop may not be a DO, PAUSE, STOP,
RETURN, unconditional GO TO, assigned GO TO, computed GO TO, or arithmetic IF. Nor is a (direct) logical IF.
statement permitted if its conditional statement is one of these.

Range of a DO-loop - The range of a DO-loop consists of all executable
statements between and including the first executable statement following
the DO statement, and the terminal statement of the DO-loop.

A DO-loop may appear within a DO-loop and must be entirely contained
within the outer DO-loop range. More than one DO-loop may have the same
terminal statement.

Active and inactive DO-loops - A DO-loop is either active or inactive.
A DO-loop is initially inactive and becomes active only when its DO
statement is executed.

An active DO-loop becomes inactive when:
e Its iteration count is zero,

@ A RETURN, PAUSE, STOP, or END statement is executed in the same
program unit,

e It is in the range of another DO-loop that becomes inactive, or.

® It is in the range of another DO-loop whose DO statement is
executed.

Note that transfer of control out of the range of a DO-loop does not
inactivate the DO-loop. However, the DO-loop becomes inactive if the
DO-variable becomes undefined or is redefined while outside the range.

When a DO-loop becomes inactive, the DO-variable retains its last defined
value unless it became undefined due to earlier action.

Executing a DO statement - Executing a DO statement initiates the follow-
ing sequence of steps: ’ :

e The initial parameter my, the terminal parameter my, and the
inerementation parameter msz are established by evaluating ej,
e,, and e3, respectively, including any necessary conversion
to the type of the DO-variable according to the rules for
arithmetic conversion. If e; does not appear, m3 is assigned
a value of one. m3 may be positive or negative but must not be
Zzero.

2240009 3-78

@ The DO-variable 7 becomes defined with the value of the initial
parameter m;.

® The iteration count is established as an integer value equal to
the integer portion of the expression

(mg = my + m3) / m3
or as zero in the event that
. My >my, and m3>0 or

my< mg, and m3<Q.

Once the iteration count is established, the DO-variable and entities
named in the initial, terminal, and incrementation parameters (ej, €n,
and e3) may be redefined with no effect on loop control processing.

At the completion of DO-statement execution, loop control processing
begins.

Loop control processing - Loop control processing determines if execu-
tion of the range of the DO-loop is required. If the iteration count
is not zero, control transfers to the first statement in the range of
the DO-loop. If the iteration count is zero, the DO-lo0p becomes
inactive. If, as a result, all DO-loops sharing the terminal statement
of this DO-loop are inactive, control is transferred to the first
executable statement after the terminal statement. However, if any
DO-loops sharing the terminal statement are active, execution resumes
with incrementation processing as described in the third paragraph
following.

The ANSI FORTRAN Standard specifies that the test for a zero iteration count is to occur at the conclusion of
incrementation processing.

Execution of the range - Statements in the range of a DO-loop are executed
until the terminal statement is reached.

Terminal statement execution - Execution of the terminal statement occurs
during a normal execution sequence or through transfer of control. If
execution of the terminal statement does not cause a transfer of control,
execution continues with incrementation processing, as described below.

2240009 3-79 c

Incrementation processing - Incrementation processing has the effect of
performing the following steps in sequence:

@ The value of the DO-variable is incremented by the value of mg.

® The iteration count is decremented by one.

The ANSI FORTRAN Standard specifies the tests for iteration count at this point. A non-zero iteration count results in
continuation as described below; a zero iteration count is processed as already described for such.

® Execution continues with loop control processing of the same
DO-loop whose iteration count was decremented.
Note that a DO-variable may increase or decrease in value during increment-
ation processing.

The ANSI FORTRAN Standard does not permit the value of the DO-variable to decrease.

Examples:
PARAMETER (N=50) ‘ PARAMETER (1=2,J=200)
DIMENSION TABLE (N) DIMENSION GRID(I,J), PGRID(1,J)
DO 2 I=1,N DO 22 K=1,1,-1
IF(TABLE(1))2,2,1 DO 22 L=J,1,-1
1 TABLE(1)=-TABLE(}) PGRID(K,L) = GRID(K,L)
2 TABLE(1)=-TABLE(1) IF(PGRID(K,L))21,22,22

21 PGRID(K,L) = -PGRID(K,L)
22 GRID(K,L) =0

M=0
DO 100 1=1,10
J=1
DO 100 K=1,5
L=K

100 M=M+1

In the tast example, I=11, J=10, K=6, L=5, and M=50 after the last
statement is executed for the last time.

2240009 3-80 C

Transfer into the range of a DO-loop - Control must not transfer into the
range of an inactive DO-loop. Control may transfer to any executable
statement in the range of an active DO-loop.

CONTINUE statements

The form of a CONTINUE statement is

CONTINUE

Execution of a CONTINUE statement has no effect.

A CONTINUE statement is commonly used as the terminal statement of a
DO-loop. As with any statement so used, the next statement executed
depends on the result of DO-loop incrementation processing. Note that
this action is the result of DO-loop processing and not of CONTINUE
statement execution.

Examples:

PARAMETER (N6=5050) ’
DIMENSION ARRAY6(16)
DO 22,1=16,1,-1
, IF(ARRAY6 (1) .NE.O) ARRAY6(1)=1.0/ARRAY6(1)
22 CONTINUE

STOP statements

The form of a STOP statement is

stop[Zd]

where Zd, if used, must be:
® A string of up to eight digits,

@ A Hollerith constant of up to eight characters contained in
parentheses, or

© The symbolic name of a variable, array element, or function
containing (or providing) eight Hollerith characters.

The ANSI FORTRAN Standard limits the string id to five octal digits ’

A STOP statement is used in a main program, subroutine subprogram, or
function subprogram to terminate execution of the executable program.
Specification or non-specification of Zd has no effect on the executable
program. The Hollerith characters specified by Zd appear in a logfile
message to identify the STOP statement encountered during executable
program execution.

2240009 3-81 C

PAUSE statements

The form of a PAUSE statement is

pause[Zd]

where 7d, if used, must be:
e A string of up to eight digits,

e 2 Hollerith constant of up to eight characters contained in
parentheses, or

e The symbolic name of a variable, array element, or function
containing (or providing) eight Hollerith characters.

The ANSI FORTRAN Standard limits the string 7d to five octal digits.

A PAUSE statement is used in a main program, subroutine subprogram, or
function subprogram to terminate execution of the executable program.
Specification or non-specification of 1d has no effect on the executable
program. The Hollerith characters specified by 1d appear in a logfile
message to identify the PAUSE statement encountered during executable
program execution.

The ANSI FORTRAN Standard provides for continuation of executable program execution following
a PAUSE statement conditional upon external factors. .

END statements

The ANSI FORTRAN Standard provides for an END line, but not for an END statement.

The form of an END statement is

END

An END statement is required at the physical end of the sequence of
statements and lines of every program unit. When executed in a sub-
program, it has the effect of a RETURN statement. When executed in a
main program, it has the effect of a STOP statement.

No other statement in a program unit may be expressed with an initial line
that appears to contain an END statement. :

The last line of every program unit must be an initial line that contains
a complete END statement. This special form of initial line is called a
terminal line. Note that a single END statement can appear with one or
more STOP statements or with one or more RETURN statements in the same
program unit.

2240009 3-82 c

3.6.6 INPUT/OUTPUT OPERATIONS

Input statements provide the means of transferring data from the mass
storage subsystem to the memory section of the CPU. This process is
called reading. Output statements provide the means of transferring
data from memory to mass storage. This process is called writing.
Editing of the data may also be performed.

In addition to statements that transfer data, auxiliary input/output
statements are provided for the manipulation of external media.

Input/output records, files, units, and formats

Records - A record is a sequence of values or characters. For example,
a punched card is usually considered to be a record. A record may or may
not correspond to a physical entity.

The three kinds of records are:
o Formatted,
® Unformatted, and

® End-of-file or endfile.

Formatted records

A formatted record consists of a sequence of characters. 1Its length
is measured in characters, depends primarily on the number of char-
acters transferred when written. The length may also depend on

" characteristics of the peripheral device (i.e., line printer, card
reader) serving as the origin or ultimate destination for the data.
Formatted records may be read or written by formatted input/output
statements, or may be prepared by means other than FORTRAN. Unfor-
matted and buffered input/output statements can also read and write
formatted records, but do so in a manner that ignores their for-
matted characteristics.

Unformatted records

An unformatted record consists of a sequence of character and/or
noncharacter data. The length of an unformatted record is measured
in storage units (words).

Unformatted records can be read or written by unformatted and
buffered input/output statements.

" End-of-file (endfile) records

An endfile record is written by an ENDFILE statement, must occur
only as the last record of a file, and has no length property.

2240009 3-83 c

Files - A file is a sequence of records.

File existence

A set of files exists for an executable program when each can be
identified and/or referenced by name. A file may be present yet
not exist for an executable program at a particular time. A file
may also exist that contains no records.

Creating a file causes a file to exist that did not previously
exist. Deleting.a file terminates its existence.

All input/output statements may refer to files that exist.
output statements may also refer to files that do not exist.

Record and file positions - Because records and files both exist as
elements in sequences, the position of a record or a file may be des-
cribed in terms of its position in a sequence. Certain circumstances
can cause this position to become indeterminate.

In a sequence, the initial point is the position just before the first
element. The terminal point is the position just after the last element.

If a sequence is positioned at a point within an element, that element
is the current element; otherwise, there is no current element.

A preceding element is that element preceding the current element or
terminal point. No preceding element exists for the initial point of
a sequence or for the terminal point if the sequence is empty.

The next element of a sequence immediately follows the current element.
No next element exists for the terminal point of a sequence or for the
initial point if the sequence is. empty.

Each file contains all formatted or all unformatted records and is
terminated with an endfile record.

Datasets - A dataset is a sequence of all files associated with a
particular unit during execution of the executable program. Assoc-
jation of a dataset with a particular unit is not under control of
the executable program. Datasets are described in Cray Research
publication 2240011, "CRAY-0S Version 1.0 External Reference Speci-
fication".

Internal records, files and datasets - Intermal records, internal
files, and internal datasets are analogous to records, files, and
datasets except for there being no associated unit and their per-
taining only to formatted data assignment operations performed by
the ENCODE and DECODE statements.

Sequential and random input/output operations - All input/output
operations are based upon the sequential storage in memory of
files within datasets and records within files. Random input/
output operations access these entities in a non-sequential order.
The two utility procedures enabling random input/output operations
and techniques for their use are described in Appendix H.

2240009 3-84 c

Units - A unit is a means of referring to a file.

Unit existence

At any given time, a set of units exists for an executable program.
All input/output statements may refer to units that exist.

Unit identifiers

The form of a unit identifier is

u

A unit identifier is specified as an integer expression or as a
Hollerith expression of up to eight characters.

The ANSI FORTRAN Standard does not provide for « being specified as an expression, and allows only an integer
constant or variable to be used.

The assignment of unit identifiers to specific files is not under
the control of the executable program. u is converted to an integer
value to correspond with an assigned identifier. The unit so identi-
fied is the same for all program units of the executable program.

Formats - The form of a format identifier is

f

A format identifier must be either an array name or the label of a FORMAT
statement in the same program unit.

READ, WRITE, PRINT and PUNCH statements

The READ statement is the data transfer input statement. WRITE, PRINT,
and PUNCH statements are data transfer output statements. The forms of
these statements are: ’

READ (cilist) [Zolist]
READ f [,Zolist]
WRITE (eilist) [Zolist]
PRINT f [, Zolist]
PUNCH f [, Zolist]

where c¢ilist is a control information list that includes a reference to
the source or destination of the data to be transferred and
an optional format identifier for editing processes,

f 1is a format identifier, and

tolist is an input/output list specifying the data to be transferred.

The ANSI FORTRAN Standard does not provide for READ f[,Z0%ist], PRINT and PUNCH statements.

2240009 3-85 C

Control information lists - The form of a control information list
clist is

u[sf']

A control information list contains one unit identifier and may contain
a format identifier.

If the control information list contains a format identifier, the statement
is a formatted input/output statement; otherwise, it is an unformatted input/
output statement.

Examples:

READ (98,12345) ...
WRITE (K-1,306) ...
READ (5,ARRAYF) ...
WRITE ('$OUT',99)
PRINT 22

Input/output lists - An <nput/output list, iolist, specifies entities
whose values are transferred by input/output statements. This list is
composed of one or more input/output list items separated by commas and
may include one or more optional implied-DO lists. An <nput/output list
item is either an input or an output list item.

An array name appearing as an input/output list item is treated as if all
elements of the array were specified in the order given by array element
ordering. .

Input list items

An input list item must be:
® A variable name,
e An array element name, or

@ An array name.

Only input list items may appear in an input statement.

Output list items

An output list item must be:
® A variable name,
@ An array element name,
e An array name,.or

® An expression

2240009 3-86 c

Input/output lists are specified with ENCODE and DECODE
the same as for input/output statements.

Examples:

1066

1067

1068

1069

READ (23)

READ(23,1066)
FORMAT ...

READ (23 ,FARRAY)

READ(ZB) BINDATA1,BINDATAZ,...

READ(23,1067) A,B,C,
FORMAT ...
READ(23,FVECTOR) X1,X2,
READ 1068

FORMAT ...

READ 1069,A,X,B,Y,
FORMAT ...
READ('$INPUT')

Implied-DO lists

An implied-DO list is of the form

2066

2067

2068

2069

(ditst, i =ey, e,

[,€3JA)

statements

WRITE(7)

WRITE(7,2066)
FORMAT ...

WRITE(7,FMATRIX)

WRITE(7)BINDATA1,BINDATA2,. ..

WRITE(7,2067)A,B,C,...
FORMAT ...

WRITE(7,FVECTOR) X1,X2,

PRINT 2068
FORMAT ...

PUNCH 2069,A,X,B,Y ...
FORMAT ...

WRITE('BINOUT')

where 7, e}, e, and e3 are as specified for the DO statement, and

The range of an implied-DO list is the list dlist.
may itself contain one or more implied-DO lists.

dlist is an input/output list.

Note that dlist

and the value of the DO-variable 7 are established from e;, €5, and

e3 exactly as for a DO-loop.

Once the values of 7 and of the

iteration count are established, <, ej, €5, and e3 may be redefined

with no effect on the loop control process.

The DO-variable 7 may

be specified as a subscript to array elements named in dlist for

both input and output list items.

When an implied-DO list appears

in an input/output list, it is treated as if dlist were specified
once for each iteration of the implied-DO list.

2240009

The iteration count

Examples:

_PRINT 311, (VECTOR(1),1=1,100)
311 FORMAT ...

READ(12,345) ((XREF (M,N) ,M=1,2) ,N=1,3)
345 FORMAT ...

WRITE (6,350) (M, (N,XREF (M,N) ,N=1,3) ,M=2,1,-1)
350 FORMAT ...

~

Execution of data transfer input/output statements

The effect of executing a data transfer input/output statement must be as
if the following operations were performed in the order specified:

e Determine the direction of data transfer.

e Identify the unit.

© Establish the format (if specified).

e Transfer data between the file and the entities specified by the

input/output list (if any).

Direction of data transfer - Execution of a READ statement causes values
to be transferred from a file to the entities specified by the input list,

if present.

Execution of a WRITE, PRINT or PUNCH statement causes values to be trans-
ferred to a file from the entities specified by the output list and format
specification (if any). The WRITE, PRINT, and PUNCH statements are treated
identically in this regard. Execution of a WRITE, PRINT, or PUNCH state-
ment for a file that does not exist creates that file.

Identifying a unit - A READ statement that does not contain a control
information list specifies a particular predetermined unit. PRINT and
PUNCH statements similarly specify separate and unique predetermined
units. Unit prespecification is not under the control of the executable

program.

The unit identified by a data transfer input/output statement must be
associated with a file when the statement is executed.

Establishing a format - The presence of a format identifier in a control
information list identifies a format specification.

2240009 3-88 C

File position prior to data transfer - The position of a file is not
changed prior to data transfer. The next record becomes the current
record during the transfer or during positioning caused by T or X edit
descriptors (as described in later paragraphs).

Data transfer - Data are transferred between records and entities specified
by the input/output list. List items are processed in the order of their
left-to~-right appearance in the input/output list.

All values needed to determine which entities are specified by an input/
output list item are determined at the beginning of the processing of that
item. In the example,

N(1L) = 3
READ (8) N(N(1))

a value reads into N(3). Note that the array element item is a single
input/output list item.

All values are transmitted to or from the entities specified by a list
item prior to the processing of any succeeding list item. In the example,

READ (3) N, A(N)

the first value read is assigned to N, and the second is assigned to
A(N) where the new value of N is used as the subscript.

A DO-variable in an implied-DO list becomes defined at the beginning of
processing the implied-DO list as an input/output list item.

Reading an endfile record causes the contents of input list items spécified
in the READ statement to become undefined.

An input list item, or any entity associated with it, must not affect
any portion of the established format specification.

Unformatted data transfer

During unformatted data transfer, data are transferred without
editing between the current record and the entities specified by the
input/output list. Exactly one record is read or written.

On input, the file must be positioned so that the record read is an
unformatted record or an endfile record. The number of values re-
quired by the input list must be less than or equal to the number
of values in the record and must not require more values than the
record contains.

2240009 - 3-89 c

Formatted data transfer

During formatted data transfer, data are transferred with editing
between the entities specified by the input/output list and the
file. The current record and possibly additional records are read
or written.

On input, the record read must be a formatted record or an endfile
record.

The input/output list and format specification must not require more
characters than a record contains.

On output, the output list and format specification must not specify
more than 152 characters per record.

The ANSI FORTRAN Standard does not provide for a maximum number of characters per record.

The transfer of formatted record information to certain devices is
termed printing. The first character of a formatted record is not
printed. The remaining characters of the record, if any, are
printed in one line beginning at the left margin.

The first character of such a record determines the vertical spacing
to occur before printing. The character codes specifying vertical
spacing (carriage) control are shown in table 3-12.

Table 3-12. Print control characters

Character - Vertical spacing before printing
Blank Advance one line
0 Advance two lines
1 Advance to first line of next page
+ No advance
All other Advance one line

If there are no characters in the record, an advance of one line
occurs. Nothing is printed in that line.

Note that a PRINT statement does not necessarily result in a printing
operation.

L.

2240009 3-90 C

File position after data transfer - If an error condition exists, the
position of the file is indeterminate.

If an end-of-file condition exists as a result of reading an endfile
record, the file is positioned after the endfile record.

If no error condition or end-of-file condition exists, the file is
positioned after the last record read or written.

BACKSPACE, ENDFILE, and REWIND statements

The forms of the BACKSPACE, ENDFILE, and REWIND statements are:

BACKSPACE u
BACKSPACE (u)
ENDFILE u
ENDF ILE (u)
REWIND ‘U
REWIND (u)

where % is a unit identifier.

The unit specified by a BACKSPACE, REWIND, or ENDFILE statement must be
associated with a file. Parentheses must delimit a unit identifier speci-

fied as a Hollerith constant.

BACKSPACE statements - A BACKSPACE statement causes the file related to
the specified unit to be positioned before the preceding record. If there
is no preceding record, the position of the file is not changed. Note
that if the preceding record is an endfile record, the file is positioned
before it.

ENDFILE statements - An ENDFILE statement writes an endfile record as the
next record of the file. The file is then positioned after the endfile
record. Execution of an ENDFILE statement for a file that does not exist
creates that file.

REWIND statements - A REWIND statement causes the specified file to be
positioned at its initial point. If the file is already positioned at
its initial point, execution of this statement has no effect on the
position of the file.

Restrictions on input/output statements

A function must not be referenced in an input/output statement if it
causes an input/output statement to be executed.

An input/output statement must not reference a unit or file not having
all the properties required for its execution.

2240009 3-91 C

3.6.7 FORMAT SPECIFICATION

A format specification provides explicit editing information to formatted
input/output and formatted assignment statements to direct the editing of
data between its internal representation and the corresponding character
strings required. Format specifications may be given in FORMAT state-~
ments or as character values in arrays.

A FORMAT statement is not required if the format identifier in a formatted
input/output or formatted assignment statement is an array name. The
initial and following elements of that array must be defined with character
data that constitute a format specification when the input/output state-
ment is executed. The specification is considered to be contained in a
concatenation of all elements in the array in the order given by array
element ordering. The opening parenthesis must be in the first or ninth
array element. If in the ninth array element, the content of the first
eight elements has no effect on program execution.

A format identifier that is a statement label must be the label of a
FORMAT statement in the same program unit. The format specification
contained in that FORMAT statement is applied when the formatted input/
output or assignment statement is executed.

In either case, a format specification begins with a left parenthesis and
ends with a right parenthesis. A complete format specification may contain
a format specification which, in turn, contains a format specification.
Deeper nesting of format specifications must not be specified. Character
data following the right parenthesis of a complete format specification is

ignored only when the specification is contained in an array.

FORMAT statements

The form of a FORMAT statement is

FORMAT ([flist])

where flist is a format specification.

FORMAT statements must always be labeled.

Form of a format specification

The form of a format specification is

([fiist])

where flist 1is a list in which each list item has one of the forms:

ned

ed
[r] (flist)

2240009 3-92 C

and where
ned is a nonrepeatable edit descriptor,

ed is a repeatable edit descriptor,

r is a nonzero, unsigned integer constant called a
repeat specification, and

flist is a format specification with a non-empty list.
Commas may separate list items in flis? but are required only between:

e Two adjacent digits where each belongs to different list items,
and

@ Between two adjacent apostrophe or quotation mark delimiters of
separate edit descriptors.

The ANSI FORTRAN Standard does not provide for the optional use of commas except before and after the slash edit
descriptor.

Examples:
1999 FORMAT (1H1,5X,6F6.2)

1234 FORMAT (6HABC123,2X,"=",D15.5,2X,16)

Array form:
FMT1 (6HABC12
3,2X,”=”
,D15.5.2
X,16)

Edit descriptors

An edit descriptor is either a repeatable edit descriptor ed or a non-
repeatable edit descriptor ned.

2240009 3-93

The forms of repeatable edit descriptors are:

[r]iw
CrlFw.d
Crlew.d
[row.d
Crlcw.d
[rJow
LrJzw
[rJiw
Crlaw

Cr]rw

where; I, F, E, D, G, O, Z, L, A, and R indicate the manner of editing,

w and r are nonzero, unsigned integer

constants, and

d is an unsigned integer constant.

The repeat specification, r, optionally precedes any repeatable edit’

descriptor.

The ANSI EORTRAN Standard does not provide for the O, Z, or R edit descriptors.

Examples:

13 F8.5 E19.12 D8.1 G13.3 023 6 L7
519 2F6.0 12E7.2 3D10.0 29G5.0 6023 2Z10 7L7

The forms of nonrepeatable edit descriptors are:

'hlhz---hn' (apostrophe)
*ho. .. . (asterisk)
"hiho... n" (quotation mark)
thlhz...hn
Te
[p] x
[p] / (slash)
: (colon)
| kp
2240009 3-94

A8 R6
3A5 4RA4

_where; apostrophe, asterisk, quotation mark, H, T, X, slash, colon,
and P indicate the manner of editing,

h is one Hollerith character,
b, ¢, and n are nonzero, unsigned integer constants, and

kK is an optionally signed integer constant.

The ANSI FORTRAN Standard does not provide for the apostrophe, asterisk, quotation mark, or T edit
descriptors, or for the 5/ and X forms of the slash and X edit descriptors.

Examples:

'AN APOSTROPHE EDIT DESCRIPTOR'
AN ASTERISK EDIT DESCRIPTOR

""A QUOTATION-MARK EDIT DESCRIPTOR"
20HAN H EDIT DESCRIPTOR

T112

55X
/
6/

3P

Interaction between input/output lists and format specifications

The beginning of execution of a formatted input/output statement or a
formatted assignment statement initiates format control. Each action
of format control depends on information from:

® The next edit descriptor provided by the format specification,
and :

@ The next item in the input/output list, if one exists.

If a statement has an input/output list, at least one repeatable edit
descriptor must exist in the format specification.

2240009 3-95

An empty format specification of the form () may be used unless contained
within another format specification. An empty format specification causes
one input or internal record to be skipped or one output or internal record
containing no characters to be written. There must be no input/output
list items corresponding to an empty format specification. Except for
repeated edit descriptors and embedded format specifications, a format
specification is interpreted from left to right. BAn embedded format spec-
ification or edit descriptor preceded by an r is processed as a list of »r
format specifications or edit descriptors identical to that preceded by
the r. An omitted repeat specification is treated the same as a repeat
specification whose value is one.

Each repeatable edit descriptor interpreted in a format specification
corresponds to one item specified by the input/output list, except that

an item of type complex requires the interpretation of two F, E, D, G,

A, or R edit descriptors. An input/output list contains no items correspond-
ing to non-repeatable edit descriptors.

when format control encounters a repeatable edit descriptor, it determines
whether there is a corresponding item specified by the input/output list.
If there is, format control transmits appropriately edited information
between the item and the record, then proceeds. If there is not, format
control terminates.

If a colon edit descriptor is encountered and if there -are no more input/
output list items to be processed, format control is terminated. If there
are more input/output list items, the colon edit descriptor is ignored.

Format control also terminates if it encounters the rightmost parenthesis

of a complete format specification and if no additional input/output list
items are specified. If another list item is specified, the file is
positioned before the next record and format control reverts to the beginning
of that format specification terminated by the next-to-last right parenthesis.
If there is none, format control reverts to the left parenthesis of the
complete format specification. If reversion occurs, the reused portion of
the format specification must contain at least one repeatable edit descriptor.
If format control reverts to a parenthesis that is immediately preceded by

a repeat specification, the repeat specification is reused. Reversion of
format control, of itself, has no effect on the scale factor (see P editing).

Positioning by format control

If a T or X edit descriptor is the first edit descriptor encountered after
format control is initiated, its action causes the next record to become
the current record.

After processing each repeatable edit descriptor or an H, apostrophe,
asterisk, or quotation mark edit descriptor, the file is positioned after
the last character read or written in the current record.

2240009 3-96 cC

After processing a T, X, slash or colon edit descriptor, the file is
positioned as separately described for each.

If format control reverts, the file is positioned in a manner identical
to that when a slash edit descriptor is processed.

After a read operation, any unprocessed characters of the record read
are skipped.

When format control terminates, the file is positioned after the current
record.

Editing

Edit descriptors specify the form of a record and direct the editing
between characters in a record and their corresponding internal represent-
ation.

A field is a part of a record that is read or written when format control
processes a single repeatable edit descriptor or an H, apostrophe, asterisk,
or quotation mark edit descriptor. Field width is the size of the field

in characters.

The internal representation of a datum corresponds to the internal
representation of a constant of similar type.

Apostrophe, quotation mark, and asterisk editing - An apostrophe, gquotation
mark, or asterisk edit descriptor has the form of a character constant

and causes characters to be written from the delimited characters (including
blanks) of the edit descriptor itself. These edit descriptors only apply

to output. The width of the field is the number of characters contained
between (but not including) the delimiting guotation marks, asterisks,

or apostrophes. Within the field, two adjacent apostrophes or quotation
marks are counted as one and not as members of a delimiting apostrophe

or quotation mark character pair, respectively. Note that this does not
apply in the case of asterisks used as a delimiting character pair.

The ANSI FORTRAN Standard does not provide for apostrophe, quotation mark, or asterisk editing. (The proposed
ANSI FORTRAN Standard provides only for apostrophe editing:i.e., the use of quotation mark and asterisk editing may
seriously affect FORTRAN program transportability.)

Examples:

WRITE(6,13)
13 FORMAT (' ISN''T 's'' BETTER'," THAN ""'H'"' IS")

2240009 3-97 c

H editing - The #H edit descriptor causes character information to be
written from the 7 characters (including blanks) following the H of the
edit descriptor. BAn H edit descriptor can be used only for output.

The ANSI FORTRAN Standard provides for use of the H edit descriptor in input as well as output.

Examples:

PRINT 22
22 FORMAT (27H ABCDEFGHIJKLMNOPQRSTUVWXYZ ,10H1234567890)

WRITE (41,16)
16 FORMAT(*' LABEL',5H UNIT,* 41%)

Positional editing - The T and X descriptors specify the position at
which the next character will be transmitted to or from the record.

An X edit descriptor specifies a position beyond the current position,

T edit descriptors may specify a character position in either direction
from the current position. This allows portions of a record to be read
more than once, possibly with different editing.

T or X edit descriptors may cause a character already in the record to be
replaced. During transmission to the record, undefined positions are
filled with blanks. The result is as if the entire record were initially
filled with blank characters. On output, an X descriptor that specifies

a move to position ¢ causes the length of the record to be at least c-1
characters. T edit descriptors by themselves do not affect the length

of an output record. Positions beyond the last character of the record

may be specified if no characters are to be transmitted from such positions.

T editing .

The Te edit descriptor indicates that the transmission of the next
character to or from a record is to occur at the ¢th character
position.

X editing

During transmission from a record, the bX edit descriptor causes
the skipping of b character positions following and including the
current character position. During transmission to a record,
blank characters are placed into b character positions beginning
with the current character position. In both cases, the record
becomes positioned to the first character following the last
character processed.

2240009 3-98 C

Examele:

EXECUTION OF -
PRINT 12345 ‘
12345 FORMAT (1X, "'ONE'*,17X,*FIVE*,T5, 'TWO",8X,4HFOUR,T9,"T"" ,*HR*, 'E', 1HE)

RESULTS [N THE PRINTING OF - ;
POSITION 1 2 3 4.5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
CONTENT 0 N E T W O T H R E E F 0 U R F I vV E

(Note that the first character output is used for vertical spacing
control and is not printed.)

Slash editing - The slash edit descriptor indicates the end of a record.
During transmission from a file, the remaining portion of any current
record is skipped and the file is positioned before the next record. If
there is no current record, the file is positioned after the next record.
During transmission to a file, an empty record is written as the last record
of the file. Thus, an empty record may be written on output and an entire
record may be skipped on input.

Slash edit descriptor processing of adjacent records may be specified by
the appearance of as many consecutive slashes (optionally separated by
cdmmas) or by preceding a single slash with a b whose value is equal to
the number of records to be processed.

Examples:

PRINT 39

39 FORMAT(*1LINE 1%,/,% LINE 2%/" LINE 3''///7H LINE 6)
READ(99,42) RECORD3

42 FORMAT (2/,...)

Colon editing - When encountered in a format specification, a colon edit
descriptor terminates the formatted transfer of data if no input/output
list items remain to be processed. If there are unprocessed input/output
list items remaining, the colon edit descriptor has no effect on format
control. Termination of format control by a colon edit descriptor causes
the record being processed to become the preceding record.

The ANSI FORTRAN Standard does not provide for colon editing.

P editing - A scale factor is specified by a P edit descriptor of the
form kP, where Xk is an optionally signed integer constant called the
scale factor. kP represents 10K as a multiplier.

2240009 3-99 C

The scale factor is zero at the beginning of each input/output statement.
It applies to all subsequently interpreted F, E, D, and G edit descriptors
until another scale factor is encountered and established. Note that
reversion of format control does not affect the established scale factor.

The scale factor, k, affects editing in the following manner:

With ¥, E, D, and G input editing (provided that no exponent
exists in the field) and with F output editing, the scale factor
causes the externally represented number to correspond to the
internally represented number multiplied by ten to the kth power.

On input with F, E, D,'and G editing, the scale factor has no
effect if there is an exponent in the field.

On output with E and D editing, the basic real constant part
of the quantity to be produced is multipled by the kth power-
of ten and the exponent is reduced by k.

On output with G editing, the effect of the scale factor is
suspended unless the magnitude of the datum to be edited
requires the use of E editing. 1In this case, the scale factor
has the same effect as with E output editing.

Examples:

Input
field

FORMAT

statement

Internal

9876.54 98.7654E2 9876.54 987.654 .864786D-4 86.4786E2

FORMAT (2PF8.3, -2PE9.hL, F9.h, OPG9.4, D9.4, -2PE9.4)

98.7654 9876.54 987654. 987.654 .0000864786 8647.86

representation

Internal

9.87654 9876.54 9876.54 987.654 86L.786 8647.86

representation

FORMAT

statement

Output
field

2240009

FORMAT (2PF12.2, -2PE12.4, F12.4, 1PG12.2, DI12.4, -2PE12.4)

987.65 .0099E+06 98.7654 9.88E+02 8.6479D+02 .0086E+06

3-100 c

Numeric editing - The I, F, E, D, and G edit descriptors specify input/
output editing of integer, real, double-precision, and complex data.
The following general rules apply:

e On input, leading blanks are not significant. Plus signs may
be omitted. A blank character is interpreted as the character
zero. A field of all blanks is considered to be zero.

@ On input with F, E, D, and G editing, a decimal point appearing
in the input field overrides that portion of an edit descriptor
specifying the decimal point location. The input field may have
more digits than are used in approximating the value of the datum.

® On output, the representation of a positive or zero internal value
in the field is prefixed with blank characters. The representation
of a negative internal value in the field is prefixed with blank
characters followed by a minus.

® On output, the representation is right-justified in the field. If
the number of characters produced by the editing is smaller than
the field width, leading blanks will be inserted in the field.

@ On output, if the number of characters exceeds the field width,
the entire field is filled with asterisks.

Integer editing

The Iw edit descriptor indicates that the field to be edited occupies

w positions. The specified input/output list item must be of type
integer. On input, the specified list item becomes defined with an
integer datum. On output, the specified list item must be defined with
an integer datum.

In the input field, the character string must be in the form of an
optionally signed integer constant. Leading blanks in the input field
are ignored.

The output field for the Iw edit descriptor consists of zero or more
leading blanks followed by a minus if the value of the internal datum
is negative, followed by the magnitude of the internal value in the
form of an unsigned integer constant without leading zeros.

An integer constant consists of at least one digit, which may be zero.

2240009 3-101 c

Examples:

The record at unit 94 contains the following characters -

POSITION 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22
CONTENT 3 7 L 4 - 6 9 7 1 2 2 2 4 2 6 - 9 6

EXECUTION OF -
READ(94,102) (MATRIX(1),1=1,7), INDEX
102 FORMAT(713,11)
PRINT 103, INDEX, (MATRIX(I),1=7,1,-1)
103 FORMAT(12,713)

RESULTS IN -
POSITION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
CONTENT 6 -9 4 2 6

2 27 1 2 - 6 9 L 4 3 7
EXECUTION OF -

PROGRAM IEDIT
PARAMETER (N=6)
DIMENSION M(N)

M(1)=1
DO 1 I=2,N

1 M(1)=2%M(1-1)
WRITE (66,2)M
PRINT 2,M

2 FORMAT(6(13))
END

RESULTS IN -

POSITION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PRINTED 1 2 I 8 1 6 3 2
RECORDED 1 2 I 8 1 6 3 2
(unit 66)

2240009 3-102

Real, Double-precision, and complex editing

The F, E, D, and G edit descriptors specify editing for real-double-
precision, and complex data. Input/output list items corresponding
to F, E, or G edit descriptors must be real or complex. The D edit
descriptor is applied only to double-precision input/output list
items. An input list item becomes defined with a datum whose type
is the same as that of the list item.

F editing - The Fw.d edit descriptor indicates that the field occupies
w positions, the fractional part of which consists of d digits.

The input field consists of an optional sign followed by a string of
digits optionally containing a decimal point. This basic form may be
followed by an exponent of 10 having one of the following forms:

o Sighed integer constant.
e E followed by an optionally signed integer constant.
o D followed by an optionally signed integer constant.

An exponent containing a D is processed identically to an -exponent
containing an E.

The output field consists of blanks, if necessary, followed by a
minus if the internal value is negative, followed by a string of
digits that contains a decimal point and represents the magnitude
of the internal value. This representation is modified by the o
established scale factor and is rounded to d fractional digits.

If the output field value is less than one,; a single zero is
written immediately to the left of the decimal point, space
permitting. If the output field value is zero and d is zero, a
single zero is written. In no other cases are leading zeros
written.

Examples:
Input field positions F edit Internal

1 2 3 4L 5 6 7 8 9 10 descriptor '~ ‘representation
1776 .19 76 F9.4 1776.1976
-1 7 7 6 .1 7 F10.4 -1776.1976
- 17 7 6 . 1 9 7 F9.4 -1776.197
19 7 7 F&.0 ’ 1977.
19 7 7 Fh.h .1977
9 7 7 F2.0 19.
-1 4L 9 2 E - 3 F8.0 -1.492
6 . 0 2 3 D 2 3 F8.3 602300000000000000000000'.

2240009 3-103 c

Internal F edit - OQutput field positions

representation descriptor 1 2 3 L 5 6 7 8 9 10
3.1415926 F10.5 3 .1 4 1 5 9
-3.1415926 F7.4 - 3 . 1 4 1 6
747 F4.0 7 4 7 . .
F8.6 0 . 0O 0 0 O
F8.5 0 . 0 0 O 0 O
F7.6 ‘ .. 00 0 0 0 O

E editing - The Ew.d edit descriptor indicates that the external field
occupies w positions, the fractional part of which consist of d digits.

The form of the input field is the same as for F editing.

The form OEAfhe output field for a scale factor of zero is
- L] Lo een
[-1[0].z1 =2 Tg-1 %q €xP

where &2 ... ©; are the d most significant digits of the
rounded datum, and

exp is a decimal exponent of one of the following
forms:

Output form
of exponent
(y is a digit)

Absolute value
of exponent exp

exp = 0 E+00
0<|exp|<100 E+Y1Y2
100<|exp|<1,000 +1Y2Y3
|exp|>1,000 - tY1Y2Y3Yn

An Iexp|'<l,000 causes the entire field to be shifted
left one-bosition to provide for yy. Unless blank, ‘the
initial character of the field replaces the last
character of the previous field or is lost if no
previous field exists. Appropriate specification

of field width w circumvents this problem.

The ANSI FORTRAN Standard does not provide for more than three digits in the output form of exponent.

2240009 3-104 c

The scale factor k controls decimal normalization. If -d < k < O,
there are |k| leading zeros and d -|k| significant digits after the
decimal point. If 0<k<(d+2), there are k significant digits to the
left of the decimal point and d-k+1 significant digits to the right
of the decimal point. Other values of kK are not permitted.

Examples:
Input field positions E edit Internal
1 2 3 4 5 6 7 8 9 1011 12 descriptor representation
+ 1 0 4 8 5 7 5 7 5 E11.2 1048575.75
- 10 4 8 5 7 5 7 5 E11.0 -1048575.75
3 8 E11.11 .00000000038
1 5 9 2 E 3 E12.3 1592.
5 6 E - 5 E8.3 .00065536
5 6 . - E9.3 .65536
- 2 7 6 8 D 0 4 E10.3 f327680
Internal E edit Output. field positions
representation descriptor 1 2 3 4L 5 6 7 8 9 10 11
365.26 E10.2 0 . 3 7 E + 0 3
-365.26 E11.5 - . 3652 6FE + 0 3
.000000099 E11.3 0 9 9 0 E - 07

D editing -~ D editing is identical to E editing with the following two
exceptions:

@ The list item corresponding to a D edit descriptor must be of
type double precision, and ’

o The output form of the exponent begins with the letter D
.instead of the letter E when 0 <|exp|< 100.

2240009 3-105 c

Examples:

Input field positions D edit Internal
1 2 3 4 5 6 7 8 9 1011 12 descriptor representation
-9 2 9 6 1 2 7 9 D11.3 -929612.791
8 2 4 E o0 D5.0 824,
8 2 4 D4.0 824,
- 7 5 D7.4 -.75
1 8 7 2 1 4 1 9 6 7 D12.9 1.872141967
4 1 0 D10.2 497100000000.
8 L D3.3 .824
Internal D edit Output field positions
representation descriptor 1 2 3 4L 5 6 7 8 9 .10 11 12
.793351 D11.6 7.9 3 3 51D+ 00
-7607. D12.3 - 0. 7 6 1 D + 0 4
1. D12.1 0 1 D + 0 1

] editing - The Gw.d edit descriptor indicates that the field
occupies w positions with d significant digits.

G input editing is the same as F input editing.
Representation in the output field depends on the magnitude of the

datum being edited. If N is the magnitude of the internal datum,
“its value determines the editing as follows:

Magnitude of datum Equivalent edit descriptoré
; —
0.1<N<1 F(w-4) .d,4X
1<N<10 F(w-4).(d-1) ,4X
lOd_2§N<1Od_1 F(w-4) .1,4X
10d_15N<10d F(w-4).0,4X
N <0.1 or Nglod kp,Ew.d
where kX is the scale factor in effect.
2240009 3-106 c

The scale factor is effective only if the magnitude of the datum "
exceeds the range for effective F editing.

Examples:
Input field positons G edit Internal
3 4 5 6 7 8 9101112 descriptor representation
6 9 G5.1 6290.
- .6 2 9 0 0 00 G10.2 :;629
+ 8 7 8 L 9 2 1 G9.4 878.4921
L7 21 . 0 E - 2 G12.1 L7.21
7 2 D 1 0 G5.0 720000000000 .
Internal G edit Output field positions
representation descriptor 1 2 3 4L 5 6 7 8 9 1011 12
-324.876 612.6 - 324 .87 6
-487295343397 G10.5 . 4 87 30
-72.59 G10.3 -7 2 . 6
.000000000019 G12.2 . 1.9 E - 1 0
.000000000019 G9.1 . 2 E - 1 0
100. G12.2 . 1 E 0
100.0001 G12.2 .10 0 0 0 0 1 E

Complex editing - A complex datum consists of a pair of separate
real data. Its editing must be specified by two successively
interpreted F, E, or G edit descriptors. The first of the edit

~ descriptors specifies editing for the real part; the second for
the imaginary part. The two edIE'descriptoré may differ. Note
that nonrepeatable edit descriptors may appear between two suc-
cessive F, E, or G edit descriptors.

O editing - The Ow edit descriptor indicates the processing of a
list item of type integer, real, Hollerith, Boolean, or logical
and a field width of w positions.

The ANSI FORTRAN Standard does not provide for O editing.

On input, the field must contain a string of from one to twenty-two
octal digits representing a precise binary value to be stored into
the list item. This value is right-justified in the list item if
fewer than-twenty-two octal digits are contained in the field.

Unspecified bit-positions are cleared to zero. A blank field is
considered a field containing all zeros. If the first nonblank character
in the field is a minus, the one's complement of the value is stored.

2240009 3-107 c

On output, the internal representation of the list item is converted
to octal and the rightmost w octal digits are right-justified in the
field. TIf the field is larger than twenty-two positions, leading
blank characters are output.

Z editing - The Zw edit descriptor indicates the processing of a
list item of type integer, real, Hollerith, Boolean or logical and
a field width of w positions.

The ANSI FORTRAN Standard does not provide for Z editing.

On input, the field must contain a string/of from one to sixteen
hexadecimal characters representing a zero or positive integral
value (in the base-16 number system) to be stored into the list
item. This value is right-justified in the list item if fewer
than 16 hexadecimal characters are contained in the field; leading
zeros are assumed. A blank field is assumed a field of all zeros.
If the first nonblank character in the field is a minus, the one's
complement of the value is stored.

On output, the internal representation of the list item is converted
to a zero or positive hexadecimal value and the rightmost w digits
are right-justified in the field. If the field is larger than 16
positions, leading blank characters are output.

L editing - The Lw edit descriptor indicates the processing of a
logical list item and an input or output field width of w positions.
The specified input/output list item must be of type logical. On
input, the list item becomes defined with a logical datum. On output,
the list item must be defined with a logical datum.

The input field consists of a T for true or an F for false optionally
followed by additional characters. The field may contain leading blank
characters.

If w<5, the output field consists of w-1 blanks followed by a T or F
depending on the value of the internal datum. If w >5, the output
field contains the letters TRUE or FALSE preceded by w-4 or w-5 blank
characters, respectively.

2240009 3-108 C

Examples:

Input field positions L edit Internal
1 2 3 4 5 6 7 8 9 1011 12 descriptor representation
T L1 (true)
T R U E L4 (true)
F 4 L3 (false)
F AL S E L12 (false)
T 1 2 3 L7 (true)
F A B C L9 (false)
T L12 (true)
F L12 (false)
Internal L edit Qutput field positions
representation descriptor 1 2 3 L4 5 6 7 8 9 10 11 12
(true) L6 T R U E |
(false) L12 FALS E
(true) : L10 ‘ T R U E
" (false) L1 F
(true) L1
(false) L3 F

A editing - The Aw edit descriptor is used with an input/output list
item of type logical, integer, real, or complex. On input, the input
list item becomes defined with Hollerith data. On output, the output
list item must be defined with Hollerith data. Integer, real, and
logical input/output list items can contain up to eight Hollerith
characters; complex up to sixteen. w specifies a field of one to
eight characters. '

If the specified field width w for A input is greater than or equal to
eight, the rightmost eight characters of the input field form the
internal representation. If the specified field width w is less than
eight, the w characters from the input field are left-justified with

8-w trailing blank characters added to form the internal representation.

2240009 3-109 c

If the specified field width © for A output is greater than eight, the
output field consists of w-8 blanks followed by the eight characters
from the internal representation. If the specified field width w

is less than or equal to eight, the output field consists of the left-
most w characters from the internal representation.

Input/output list items of type complex may contain up to sixteen char-
acters in two storage units (computer words). Two A edit descriptors
are required when eight or more characters are to be transferred. 1In
this case, both are applied to a single input/output list item; the
first to the first storage unit, the second to the second storage unit.

Examples:
Input field positions I tem A eait Internal
1 2 3 4 5 6 7-8 9 101112 type descriptor(s) representation
A B CDETFGH I J K L Integer A8 8HABCDEFGH
A B 1 2 : Real A7 8HAB 12
I NDE X 6 Complex A8,A3 16HINDEX. 6
R T C Integer A3 8HRTC
Internal | tem A edit Output field positions
representation type descriptor 1 2 3 4 5 6 7 8 9
8HABCDEFGH . Integer A8 A B CDEF G H
8HABCDEFGH Real A9 A B C D E F G H
16HA1B2C3D4ES Complex A8,A1 A1 B 2 C 3 D 4 E
8HA-FORMAT Integer A3 A - F

R editing - The Rw edit descriptor is used with.an input/output list

item of type integer, real, or complex. On input, the input list item
will become defined with w-characters of Hollerith data. On output, the
output list item must be defined with w characters of Hollerith data.

Rw edit descriptor actions are identical to those of the Aw edit descriptor
with two exceptions.

e Characters in an incompletely filled ihput list item are right
justified with the remainder of that list item containing binary
zeros.

@ Partial output of an output list item's characters is from its
rightmost character positions.

The ANSI FORTRAN Standard does not provide for an R edit descriptor.

2240009 3-110 C

ExamEIes:

Input field positions I tem R edit Internal

1 2 3 4 5 6 7 8 9101112 type - descriptor representation

AB CDETFGH 1 Jg K L Integer R 8HABCDEFGH

A B 1 2 Real R7 7RAB 12

R T C Integer R3 3RRTC
Internal I tem R edit Output field positions

representation type descriptor 1 2 3 4 5 6 7 8 9

8HABCDEFGH Integer R8 A B C D E F G H
8HABCDEFGH Real R9 A B CDEF G H
8RA-FORMAT Integer R6 F O RMAT

3.6.8 BUFFERED INPUT/OUTPUT OPERATIONS

The ANSI FORTRAN Standard does not provide for buffered input/output operations or for the BUFFER IN or
BUFFER OUT statements.

Buffered input/output operations differ from those described in 3.6.6 in
several respects. First, the two statements that initiate a transfer of
data allow the subsequent execution sequence to proceed simultaneously
with the actual transfer. Next, certain utility functions may be refer-
enced to cause a delay in an execution sequence pending completion of a
buffered input/output operation, and to determine certain characteristics
of that operation upon its termination. Finally, the amount of data is
specified in terms of CRAY-1 computer words with no consideration given
the type or format of 1nformat10n contained.

2240009 3-111 c

The BUFFER IN and BUFFER OUT statements

The two statements used for buffered input/output operations are the
BUFFER IN and BUFFER OUT statements. Their forms are

BUFFER IN (u,m) (bloe,eloc)
BUFFER OUT (u,m) (blocseloc)

where: U is a unit specifier expressed as an integer or as a
Hollerith expression of up to eight characters.

m is a mode specifier expressed as an integer expression
indicating full record processing if zero or greater and
partial record processing if less than zero.

bloc is the symbolic name of that variable or array element
marking the beginning location of the buffered I/0 transfer,
and :

eloc is the symbolic name of that variable or array element
marking the ending location of the buffered I/0 transfer.

BUFFER IN causes information to be read; BUFFER OUT causes information to
be written. Execution of either statement attempts initiating the transfer
of (eloe - bloc + 1) CRAY-1 computer words between the current record at
unit u and those contiguous memory locations beginning with bloc and
concluding with eloc. If unit u is completing a buffered input/output
operation initiated earlier, the execution sequence is delayed at the

onset of BUFFER IN or BUFFER OUT statement execution until that earlier
operation terminates. Upon termination, execution of the BUFFER IN or
BUFFER OUT statement completes as though no delay occurred.

In determining the number of computer words to be transferred, consideration
must be given the data type of the symbolic name used for eloe. 1If this

name is of type double precision or complex, the location of the first word
in its two-word form of representation will mark the ending location of the
data transfer. » e

The mode specifier, m, controls the position of the record at unit u after
the data transfer has taken place. If the value of m is greater than or
equal to zero, full record processing is called for. The record position
following this mode of transfer is always between the current record (the
record to or from which the transfer occurred) and the next record. For a
value of m less than zero, partial record processing takes place. 1In a
BUFFER IN statement, this specifies that the record being transferred from
will be positioned ready to transfer its (n+l)th word if the nth word was
the last transferred. 1In a BUFFER OUT statement, this specifies that the

2240009 3-112 c

record will be left positioned to receive additional words. A special
buffered output operation concludes a series of partial record buffered
output transfers. 1In this case, a BUFFER OUT statement is used in which
bloc equals eloc+l to produce a zero word transfer that also concludes
the record being created.

File and record positioning for buffered input/output operations are as
described for non-buffered input/output operations (see 3.6.6).

Examele:

A BUFFER IN statement initiates the transfer of 1000 words from unit
32. Computation then proceeds on data not related to that being
transferred. A second BUFFER IN statement is encountered upon com-
pletion of this computation, causes a delay in the execution sequence
until the last of the 1000 words has been received, then initiates

a transfer of another 500 words from unit 32. Whlle these words are
being transferred, the execution sequence proceeds. A BUFFER OUT
statement initiates the transfer of the first 1000 words to unit 22.
Full record processing is called for by the mode specifier being zero
in all cases.

PROGRAM XFR
PARAMETER (INUNIT=32)
DIMENSION A(1000), B(2,10,100), C(500)
BUFFER IN(INUNIT,0) (A(1),A(1000))
DO 10 1=1,100
10 B(1,1,1)=B(1,1,1) + B(2,1,1)
BUFFER IN(INUNIT,0) (c(1),c(500))
BUFFER 0UT(22,0) (A(1),A(1000))

.
.

END

The UNIT function

Once a BUFFER IN or BUFFER OUT statement has been executed, the normal
execution sequence continues concurrent with the actual transfer of data.
If the utility function UNIT is referenced in this execution sequence,
continuation of the sequence is delayed pending completion of the transfer
at that unit designated by its single integer argument.

2240009 3-113 c

Upon completion of the transfer, the UNIT function provides one of the
following real data type values to the expression in which it is referenced:

® -2.0 to indicate successful completion of a partial record read
operation (BUFFER IN with m <0) without encountering the end of the
current record,

e -1.0 to indicate successful completion of all other transfers,

® 0.0 to indicate reading of an end-of-file or end-of-data record,

1.0 to indicate occurrence of a disk parity error during reading, or

® 2.0 to indicate other disk malfunctions during reading or writing.

Example:

PROGRAM TESTUNIT
DIMENSION M(200,5)
10 BUFFER IN (32,0) (M(1,1),M(200,5))
IF (UNIT(32))11,13,13
11 D012 J=1,5 |
D012 1=1,200
12 M(1,d)=-M(1,J)
. BUFFER OUT (22,0) (M(1,1),M(200,5))
IF (UNIT(22))10,13,13
13 END

The LENGTH function

If the utility function LENGTH is referenced while a buffered input/output
operation is in progress at that unit designated by its single integer
argument, the execution sequence will be delayed until the transfer is
complete. LENGTH will then provide to the expression in which it is refer-
enced an integer value reflecting the number of CRAY-1 computer words
successfully transferred. This value is zero if an end-of-file or end-
of-data record is read.

2240009 3-114 c

Example:

PROGRAM PGM
DIMENSION V(16384)
10 BUFFER IN (32,-1) (v(1),v(16384))

X= UNIT(32)
K= LENGTH(32)

LF(X)11,14,14

11 D0 12 I=1,K,1

12 IF(V(1).EQ.'KEY') GO TO 13
IF(X.EQ.-2.0) 10,14

13 .

14 END

3.6.9 FORMATTED DATA ASSIGNMENT

The ANSI FORTRAN Standard does not provide for formatted data assignment operations.

Formatted data assignment operations define entities by transferring data
between input/output list items and internal records. Like other assign-
ment statements, formatted data assignment statements only perform internal
data transfers. Like formatted input/output statements, formatted data

assignment statements specify an input/output list and invoke format
control during their operations.

The two formatted data assignment statements are ENCODE and DECODE.

ENCODE and DECODE statements

The forms of the ENCODE and DECODE statements are:

ENCODE (n,f,dent) [folist]
DECODE (n,f,sent) [Zolist]

where n is the number of characters to be processed, must not
exceed 152, and is specified as a non-zero integer
expression;

f is a format identifier specified as the name of an array
containing a format specification, the statement label
of a FORMAT statement, or an integer variable containing
the statement label of a FORMAT statement;

2240009 3-115 C

dent is the symbolic name of a destination variable, array
element, or array that contains the n characters processed
by the ENCODE statement;

sent 1is the symbolic name of a source variable, array element,
or array from which the n characters to be processed by the
DECODE statement originate; and

1oli8t is an input/output list specified the same as for formatted
input/output statements (see 3.6.6), contains input list items
in a DECODE statement, and contains output list items in an '
ENCODE statement.

The ENCODE statement

The ENCODE statement produces a sequence of n characters from values
contained in the output list items specified in Zol%st under control
of the format specification identified by f. The character sequence
is stored into a variable, array element or array identified by dent.

The DECODE statement

The DECODE statement processes a sequence of 7 characters contained in
the variable, array element, or array identified by sent under control
of the format specification identified by f. The resulting values
define the input list items specified in Zolist.

3.6.10 THE MAIN PROGRAM

A main program is a program unit that does not contain a FUNCTION, SUB-
ROUTINE, or BLOCK DATA statement. An optional PROGRAM statement may be
the first statement of a main program. There must be exactly one main
program in an executable program. Execution of an executable program
begins with the first executable statement of the main program.

The PROGRAM statement

The form of a PROGRAM statement is

proGrRAM pgm [([hikg... k J)]

where pgm is the symbolic name of the main program in which the PROGRAM
statement appears, and

hlhz---hn is a character string of n characters.

Use of the PROGRAM statement is optional and, if used, it must be the
first statement of the main program.

2240009 3-116 c

The symbolic name pgm is global and must not be the same as the name

of an external procedure, block data subprogram, or common block in the
same executable program. The name pgm must not be the same as any local
name in the main program. It may be followed by a parenthesized character
string that has no effect on the executable program. '

The ANSI FORTRAN Standard does not provide for a block data subprogram name or for the PROGRAM statement.

Main program restrictions

A main program may contain any statements other than BLOCK DATA, FUNCTION
SUBROUTINE, or RETURN statements. It may contain a single PROGRAM

statement. A main program must not be referenced from a subprogram or from
itself.

Examples:

PROGRAM A1B2C3D4

PROGRAM X (INPUT,OUTPUT)
PROGRAM MAIN
PROGRAM 21234567

3.6.11 FUNCTIONS AND SUBROUTINES

Categories of functions and subroutines

Procedures - All functions and subroutines are procedures. The four
categories of procedures are:

® Intrinsic functions,
® Statement functions,
® External functions, and

® Subroutines.

Intrinsic functions, statement functions, and external functions are

generally referred to as funcetions. (Utility procedures are separately
described in 3.6.12.)

2240009 3-117 C

External functions

The categories of external functions are:

e TFunction subprograms, which are program units specified
in the FORTRAN language, and

e Non-FORTRAN function subprograms which are not specified
in the FORTRAN language.

Subroutines
There are two categories of subroutines:

e Subroutine subprograms, which are program units specified
.in the FORTRAN language, and

e Non-FORTRAN subroutine subprograms which are not specified
in the FORTRAN language.

BAppendix F describes the method for programming non-FORTRAN function and
subroutine subprograms using CAL, the CRAY-1 Assembly Language.

Referencing functions

A function is referenced in an expression and supplies a value to the
expression. This value is the value of the function at the'time that the
expression containing its reference is evaluated.

An intrinsic function may be referenced in the main program or in any
procedure subprogram of an executable program.

A statement function may be referenced only in the program unit in which
the statement function statement appears.

An external function may be referenced by function or entry name within
any other procedure subprogram oOr the main program of the executable
program. A subprogram must not reference itself, either directly or
indirectly.

Form of a function reference - A function reference is used to reference
an intrinsic function, statement function, or external function. The
form of a function reference is

fn (Lalod ... 1)

where fun is the symbolic name of a function or of an entry to a
function, and

a is an actual argument.

2240009 3-118 c

The type of the result of a statement function or external function refer-
ence is the same as the type of the function name and is specified in the
‘same manner as for variables and arrays. The type of the result of each
intrinsic function is specified in Appendix B. The type of each actual
argument g and the number of actual arguments specified in a function
reference must agree with the (dummy) arguments defined in the specification
of the function being referenced.

Execution of function references - A function reference appears only as a
primary in an arithmetic or logical expression. Execution of a function
reference in an expression causes the evaluation of the function identified

by fun.

Return of control from a referenced function completes execution of the
function reference. The value of the function is then available to the
expression containing the reference and being evaluated. Actual and dummy
arguments associated during a function reference remain associated after-
wards.

Examples:
REFERENCE » COMMENTS
SIN(ALPHA) Intrinsic function reference .
FUNCTION(INT,REAL,DBL,COMP,LOG) Statement or external function reference
RANF() Intrinsic function reference

Intrinsic functions

Intrinsic functions are prespecified and have special meanings. Their
specific names, function definitions, and types of arguments and results
appear in Appendix B. In this table, integer, real, double-precision and
complex data types are denoted by the letter I, R, D and C, respectively.

The ANSI FORTRAN Standard "’Basic External Functions’ are incorporated into the list of intrinsic functions
presented in Appendix B, and are not separately identified.

Referencing intrinsic functions - An intrinsic function is referenced by
using its name, fun, as a primary in an expression. An intrinsic function
reference produces results dependent on the values of the actual arguments.
The resulting value is available to the expre551on that contains the func-
tion reference.

2240009 , 3-119

The actual arguments that constitute the argument list must agree in type,
number and order with those described in Appendix B and may be any
expression of the specified type.

Intrinsic function restrictions - Arguments that would cause an undefinable
result or a result that would exceed the maximum numeric representation
permitted cause the result of the function to become undefined.

Examples:

AMEDIAN = (AMIN1(A,B,C,D)+AMAX1 (A,B,C,D))/2.0

SIN(THETA) /C0S (THETA)
TAN (THETA)

T
T

Statement functions

A statement function is a procedure specified by a single statement that is
similar in form to an arithmetic or logical assignment statement. This is
a statement function definition statement and can only appear after the
specification statements and before the first executable statement of the
program unit in which it is referenced. Since it is not a part of the
normal execution sequence, a statement function definition statement is
classified as a non-executable statement.

Form of a statement function definition statement - The form of a state-
ment function definition statement is

fun ([d[ad]...]) =e"

where fun is the symbolic name of the statement function,
d is a statement function dummy argument, and
e is an expression.

The relationship between fun and e must conform to the assignment rules in
table 3-7. The type of the expression ¢ may be different from the type of

the statement function name fun.

Each d is a variable name called a statement function dummy argument. The
names of variables that appear as dummy arguments of a statement function
have a scope of that statement only. A given symbolic name may appear

only once in a single dummy argument list. Statement function dummy argu-
ments serve only to indicate the order, number, and type of arguments for

a single statement function. The same symbolic names may be used to identify
dummy arguments of the same type in a different statement function definition
statement and variables of the same type appearing elsewhere in the program
unit including dummy arguments of a subprogram. They must not be used to
identify any other entity in the program unit except a common block.

2240009 3-120 c

Each primary of the expression e must be:
® A constant,
e The symbolic name of a constant,
® A statement function dummy argument referenced as a variable,
e A reference to a variable used elsewhere in the same program unit,
® An intrinsic funtion reference,

® A reference to a statement function for which the statement
function definition statement appears in preceding lines of the
program unit,

® An external function reference, or

® An expression enclosed in parentheses.

If a statement function dummy argument name is the same as the name of
another entity, the appearance of that name in the expression portion of
a statement function definition statement is a reference to the statement
function dummy argument. A dummy argument that appears in a FUNCTION or
SUBROUTINE statement may be referenced in the expression of a statement
function statement within that subprogram.

Exameles:

ROOT(A,B,C,S1GN)=(~B+SIGN*SQRT (B**2-4.%AxC)) /(2.*A)
DISCRIM(A,B,C)= B#*%2-L4 A%

CIRCUM(R)=6.2831852+R

AREA (R)=3.1415926*R**2

VOL (R)=4.1887901%R**3
VOL {)=k.1887901%R**3 (where R appears elsewhere in the same program unit)

Referencing statement functions - A statement function is referenced by
using its function reference as a primary in an expression.

Execution of a statement function reference results in:
e Evaluation of actual arguments that are expressions,

® Association of actual arguments with corresponding dummy
arguments, and

® Evaluation of the expression e.

2240009 , 3-121 c

The resulting value is available to the expression that contains the func-
tion reference.

The actual arguments, which constitute the actual argument list, must
agree in order, number, and type with the corresponding dummy arguments.
An actual argument in a statement function reference may be any expression
involving | one or more operands.

When a statement function_reference,is executed, its actual arguments must
be defined.

Statement function restrictions - A statement function may be referenced
only in the program unit that contains the statement function definition
statement. '

A statement function definition statement can reference another statement
function that precedes the reference, The symbolic name used to identify

a statement function must not appear as a symbolic name in any specification
statement other than a type statement (to specify the type of the functlon)
or as the name of a common block in the same program unit.

An external function reference in the expression of a statement function
definition statement must not cause a dummy argument of the statement
function to become undefined or redefined.

The symbolic name of a statement function is a local name and must not be
the same as the name of any other entity in the program unit other than
that of a common block. The symbolic name of a statement function may not
be an actual argument and must not appear in an EXTERNAL statement.

A statement function definition statement in a function subprogram must
not reference that function subprogram.

Examples:
DISCRIM(A,B,C)=B**2-4 *A*C
ROOT(A,B,C,S1GN)=(-B+SIGN*SQRT(DISCRIM(A,B,C))) /(2.*A)
IF(DISCRIM(TERM1,TERM2 ,TERM3)) 25,15,15
15 ROOT1 = ROOT(TERM1,TERM2,TERM3,+1.0)
ROOT2 = ROOT(TERM1,TERM2,TERM3,-1.0)
.25 END

2240009 3-122 c

PARAMETER (M=100,N=k4,P1=3.11415926)
DIMENSION RADTAB(M,N)
VOL(R) = (4.*PI*R%%3)/3,

AREA(R) = PI%R%%*2

CIRCUM(R) = 2 .%P|*R

DO 20,I=1,M

IF(RADTAB(1,1))30,20,10

10 RADTAB(I,2)
RADTAB(1,3)
RADTAB(1,4)

20 CO@TINUE

30 END

External functions

An external function is specified external to the‘program unit that refer-
ences it. An external function is a procedure specified by a function

subprogram or some other means.

Function subprograms - A function subprogram has a FUNCTION statement as
its first statement. It may also contain one or more ENTRY statements.

FUNCTION statement forms - The forms of a FUNCTION statement are:

CIRCUM(RADTAB(1,1))
AREA (RADTAB(1,1))
VOL (RADTAB(1,1))

INTEGER

REAL

DOUBLE PRECISION
DOUBLE

COMPLEX

LOGICAL

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION

Funl([dL,d]...7 1]
Funl([dL,d]...0)]
f'un[([d[ld]. . .]):I
funl([d[,d]...])]
Funl([d[,d]...]0)]
Fun[([dL,d]...])]
Funl([dC,d]...]01]

where: fun is the symbolic name of the function subprogram in

which the FUNCTION statement appears and

d is a dummy argument representing a variable, array, or’

external procedure name.

2240009

3-123

The symbolic name of a function subprogram must appear as a variable name
in the function subprogram. During every execution of the subprogram, this
variable must become defined and, once defined, may be referenced or be-
come redefined. The value of the function is the value of this variable
when a RETURN or END statement is executed in the subprogram. The type

of this value is implicit to the function name, fun, unless INTEGER, REAL,
DOUBLE PRECISION or DOUBLE, COMPLEX, or LOGICAL is specified to cause its
being overridden.

The ANSI FORTRAN Standard does not provide for the DOUBLE FUNCTION statement.

A function subprogram may define one or more of its dummy arguments to
return values in addition to the value of the function.

Referencing external functions - An external function is referenced by
using its reference as a primary in an expression. A reference to an
entry in a function may be similarly used.

Execution of external function references - Execution of an external
function reference or a reference to an external function entry results
in:

® The evaluation of actual arguments that are expressions,

e The association of actual arguments with the corresponding
dummy arguments, and

e The actions specified by the referenced function.

The type of the function or function entry name in the reference must be
the same as the type of the function or function entry name in the refer-
enced function.

Actual arguments for external functions - The actual arguments in an
external function reference must agree in order, number, and type with

the corresponding dummy arguments in the referenced function or function’
entry. The use of a subroutine name as an actual argument is an exception
to the rule requiring agreement of type because subroutine names do not
have a type.

An actual argument in an external function reference must be one of the
following:

® An expression,

® An array name,

® An array element name,

® An intrinsic function name, or

® An external procedure name.

The ANSI FORTRAN .Standard does not provide for intrinsic function names as actual arguments.

2240009 3-124 ' C

Note that an actual argument in a function reference may be a dummy
argument that appears in a dummy argument list within the subprogram
containing that reference.

Function subprogram restrictions-- A function subprogram may contain any
statement other than a BLOCK DATA, SUBROUTINE, PROGRAM, or a second

FUNCTION statement.

The symbolic names of external functions and external function entries
are global names and must not be the same as any other global name.

The symbolic name of a function specified by a FUNCTION statement must
not appear in any other non-executable statement except for a type state-
ment, and must only appear as a variable in executable statements.

If the type of a function is specified in a FUNCTION statement, the
function name must not also appear in a type statement. (Redunant
type specifications are not allowed.)

In a function subprogram, the symbolic name of a dummy argument is
local and must not appear in an EQUIVALENCE, PARAMETER, DATA, or
COMMON statement except as a common block name.

A function specified by a subprogram may be referenced within any other
procedure subprogram or the main program of the executable program. A
function subprogram must not directly or indirectly reference itself.

Examples:

PROGRAM MAIN ,
PARAMETER (M=6 ,N=1000,KEY=6123386684)
DIMENSION MATRIX(M,N)
READ 2, ((MATRIX(1,J),1=1,M),J=1,N)
2 FORMAT(110)
IF(MATCH (MATRIX,M,N,KEY))9,9,3
3 PRINT 4,KEY
FORMAT ("' THE VALUE ",110," EXISTS IN THE INPUT DATA.")
END
'FUNCTION MATCH(INTTBL,K,L, ITEM)
DIMENSION INTTBL(K,L)
MATCH = 0
DO 1 I=1,K
DO 1 J=1,L
1. IF(INTTBL(!,J).EQ. ITEM) MATCH=MATCH+1
END

2240009 3-125 C

Subroutines

A subroutine is a procedure that may be specified by a subroutine subprogram
or some other means. It is specified external to the program unit that
references it.

One or more dummy arguments of a subroutine subprdgram may become defined
or redefined to return results. Note that entities specified in a COMMON
statement in the subroutine may also be defined for this purpose.

Subroutine subprograms ~ A subroutine subprogram is a program unit that
has a SUBROUTINE statement as its first statement. It may also contain
one or more ENTRY statements. '

SUBROUTINE statement form - The form of a SUBROUTINE statement is

suBrROUTINE sub [(d[,d] ...)]

where sub 1is the symbolic hame of the subroutiné, and

d is a dummy argument representing a variable name, an
array name, or an external procedure name.

Subroutine reference - A subroutine is referenced by a CALL statement.

Form of a CALL statement - The form of a CALL statement is

catL sub [(a [,’a] ce) 1

where sub is the symbolic name of a subroutine or a subroutine entry, and

a is an actual argument.

Execution of a CALL statement - Execution of a CALL statement results in:

e The evaluation of actual arguments that are expressions;

‘@ The association of actual arguments with the corresponding dummy
arguments, and

® The actions specified by the referenced subroutine.

Return of control from the referenced subroutine to thekfirSt executable
statement following the CALL statement completes the execution of the CALL

statement. Actual and dummy arguments associated during CALL statement
execution remain associated afterwards.

A subroutine may be referenced within any other procedure subprogram
or the main program of the executable program. A subprogram must not
directly or indirectly reference itself.

2240009 3-126 C

When a CALL statement is executed, the referenced subroutine must be one
of the subroutines in the executable program.

Actual arguments for subroutines - The actual arguments in a subroutine
reference must agree in order, number, and type with the corresponding
dummy arguments in the dummy argument list of the referenced subroutine.
The use of a subroutine name as an actual argument is permitted and is an
exception to the rule requiring agreement of type.

An actual argument.in a subroutine reference must be one of the following:
® An expression,
® An array name,
; An array element name,
® An intrinsic function name, or

® An external procedure name.
Note that an actual argument in a subroutine reference may be a dummy
argument that appears in a dummy argument list within the subprogram
containing the reference.

Subroutine subprogram restrictions - A subroutine subprogram may contain
any statement other than a BLOCK DATA, FUNCTION, PROGRAM, or a second
SUBROUTINE statement.

The symbolic names of subroutines and subroutine entries are global names
and must not be the same as any other global name or any local name in the
referencing program unit.

In a subroutine subprogram, the symbolic name of a dummy argument is
local and must not appear in an EQUIVALENCE, PARAMETER, DATA, or COMMON
statement. It can be the same as a common block name.

Example:
PROGRAM RKN

DIMENSION TABLE(1226)

CALL SORT(TABLE,1226)

END

2240009 3-127 C

SUBR6UTINE SORT(VECTOR,LENGTH)
DIMENSION VECTOR(LENGTH)

5 K= -1
DO 10 1=2,LENGTH,1
IF(VECTOR(!).GE.VECTOR(1-1)) GO TO 10
TEMP = VECTOR(I-1)
VECTOR(1-1) = VECTOR(I)
VECTOR(1) = TEMP

K =1 ‘
10 CONTINUE
) IF(K)15,15,5
15 END

ENTRY statements

The ENTRY statement is used only in a procedure subprogram to permit its
being entered at any executable statement not within a DO-loop range. A

procedure subprogram may contain one or more ENTRY statements following
its FUNCTION or SUBROUTINE statement.

The ANSI FORTRAN Standard does not provide for ENTRY statements.

Form of an ENTRY statement - The form of an ENTRY statement is

ENTRY en [([d[,dJ...])]]

where en 1is a function or subroutine name used as an entry in the
procedure subprogram, and

d is a variable, array, or dummy procedure name used as a
dummy argument.

Referencing a procedure subprogram entry - Referencing an en in a func-
tion or subroutine subprogram is the same as referencing the function or
subroutine subprogram name. Execution begins with the first executable
statement following that ENTRY statement.

2240009 3-128

The order, number, and types of names appearing as dummy arguments in an
ENTRY statement must agree with the actual arguments in any reference to
that ENTRY statement. They need not agree with those specified in a
FUNCTION, SUBROUTINE, or other ENTRY statement in the same subprogram.
Agreement of type is not required where a dummy argument corresponds to
an actual argument specifying a subroutine name.

Entry association in function subprograms - The function name en specified
in an ENTRY statement in a function subprogram is associated with all
variables in that subprogram which are associated with the function name
appearing in the FUNCTION statement. When any one of these variables
becomes defined, all associated variables and function names of the same
type also become defined; those not of the same type becoming undefined.

A function name appearing in a FUNCTION statement may differ in type from
function names appearing in ENTRY statements in the same subprogram.

ENTRY statement restrictions - A function or subroutine name specified
in an ENTRY statement cannot be the same as any name specified in
PROGRAM, BLOCK DATA, FUNCTION, SUBROUTINE, or ENTRY statements in the
same executable program.

The function name specified in an ENTRY statement must not appear as a
variable in any statement preceding that ENTRY statement except for a
type statement.

A name appearing as a dummy argument in an ENTRY statement cannot appear
in an executable statement preceding that ENTRY statement unless it also
appears in a FUNCTION, SUBROUTINE or ENTRY statement that precedes the
executable statement.

In a subprogram, a dummy argument specified in an ENTRY statement cannot
be referenced in a statement function statement unless it also appears

as a dummy argument in the statement function statement or in a preceding
FUNCTION, SUBROUTINE or ENTRY statement.

If a dummy argument name is referenced in an executable statement, it
must also be specified in that FUNCTION, SUBROUTINE, or ENTRY statement
referenced prior to execution of the executable statement.

RETURN statements

A RETURN statement causes return of control to the referencing program unit
and may appear only in a function or subroutine subprogram.

2240009 3-129

Form of a RETURN statement - The form of a RETURN statement in a subprogram
is

RETURN

Execution of a RETURN statement - Execution of a RETURN statement terminates
a reference to a function or subroutine subprogram. Such subprograms may
contain more than one RETURN statement. A subprogram need not contain a
RETURN statement since execution of an END statement in a function or sub-
routine subprogram has the same effect as executing a RETURN statement.

In the execution of an executable program, a function or subroutine sub-
program must not be referenced twice without the execution of a RETURN or
END statement in that procedure having intervened.

The value of function must be defined prior to its execution of a RETURN
or END statement. Execution of a RETURN or END statement in a procedure
subprogram causes return of control to the current referencing program
unit.

Return of control to the referencing program unit completes execution of
the CALL statement.

Note that if a named common block appears in the main program, the entities
in the named common block do not become undefined upon execution of any
RETURN or END statement in the executable program.

Arguments and common blocks

Arguments and common blocks provide a means of communication between a
referencing program unit and a referenced procedure.

Data may be communicated to a statement or intrinsic function by an
argument list. Data may be communicated to and from an external pro-
cedure by an argument list or by common blocks. Procedure names may
be communicated to an- external procedure only by an argument list.

A dummy argument appears in the argument list of a procedure. An actual
argument appears in the argument list of a procedure reference. The
number, type, and order of actual arguments must be the same as the
number, type and order of dummy arguments in the procedure referenced.

Dummy arguments - Statement functions, function subprograms, and sub-
routine subprograms use dummy arguments to indicate the types of actual
arguments and whether each is a single value, an array of values or a
procedure. Note that statement function dummy arguments are limited

to variables.

Each dummy argument is classified as a variable, array, or procedure.
Dummy argument names may appear wherever an actual name of the same
class and type may appear, except where explicitly prohibited.

2240009 3-130 C

Dummy argument names of type integer may appear as adjustable dimension
declarators in dummy array declarators. Dummy argument names may not
appear in EQUIVALENCE, DATA, or PARAMETER statements or in COMMON state-
ments except as common block names. A dummy argument name must not be
the same as the procedure name appearing in a FUNCTION, SUBROUTINE, or
statement function statement in the same program unit.

Actual arguments - Actual arguments specify the entities that are to be
associated with the dummy arguments of a referenced subroutine or function.
An actual argument must not be the name of a statement function in the
referencing program unit. Actual arguments may be constants and expressions
involving operators if the associated dummy argument is a variable that

is not defined during execution of the referenced external procedure.

The type of each actual argument must agree with the type of its associated
dummy argument, except when the actual argument is a subroutine name.

Association of dummy and actual arguments - Upon execution of a function or
subroutine reference, an association is established between the correspond-
ing actual and dummy arguments. The first actual argument becomes associated
with the first dummy argument, the second actual argument becomes associated
with the second dummy argument, etc.

All appearances within a function or subroutine of a dummy argument become
associated with the corresponding actual argument when a reference to that
function or subroutine is executed.

A valid association occurs only if the type of the actual argument is the
same as the type of the corresponding dummy argument. A subroutine name
has no type and must be associated with a procedure.

If an actual argument is an expression, it is evaluated just before the
association of arguments takes place.

If an actual argument is an array element name, its subscript is evaluated
just before the association of arguments takes place. Note that the sub-
script value remains constant as long as that association of arguments
persists, even if the subscript contains variables that are redefined during
the association.

If an actual argument is an external procedure name, the procedure must be
available at the time a reference to it is executed.

If an actual argument becomes associated with a dummy argument that appears
in an adjustable dimension declarator, the actual argument must be defined
with an integer value at the time the procedure is referenced.

2240009 _ 3-131 C

A dummy argument is undefined if it is not currently associated with an
actual argument. An adjustable array is undefined if the dummy argument
array is not currently associated with an actual argument array or if any
variable appearing in the adjustable array declarator is not currently
associated with an actual argument or is not in a common block.

Argument association may be carried through more than one level of pro-
cedure reference. A valid association exists at the last level only if

a valid association exists at all intermediate levels. Note that argument
association endures between repeated references to a subprogram.

Variables as dummy arguments - A dummy argument that is a variable may be
associated with an actual argument that is a variable, array element, or
expression.

If the actual argument is a variable name or array element name, the
associated dummy argument may be defined or redefined within the sub-
program. A dummy argument must not be redefined within the subprogram
if the associated actual argument is:

e A constant,

® The symbolic name of a constant,

e A function reference,

e An expression involving operators, or

® An expression enclosed in parentheses.

Arrays as dummy arguments - Within a program unit, the array declarator
given for an array provides all array declarator information required for
execution of the program unit. The number and size of dimensions in an
actual array declarator may be different from the number and size of

the dimensions in an associated dummy array declarator.

A dummy argument that is an array name may be associated with an actual
argument that is either an array name or an array element name.

If the actual argument is an array name, the size of the dummy argument
array must not exceed the size of the actual argument array, and each
actual argument array element becomes associated with that dummy argument
array element that has the same subscript value as the actual argument
array element.

2246009 3-132

If the actual argument is an array element name, the size of the dummy
argument array must not exceed the size of the actual argument array

Plus one minus the subscript value of the array element. When an actual
argument is an array element name with a subscript value of p. the dummy
argument array element with a subscript value of q becomes associated with
the actual argument array element that has a subscript value of ptq-1l.

Procedures as dummy arguments - A dummy argument that is a procedure may
be associated only with an actual argument that is a procedure.

If a dummy argument is used as if it were a function, the associated actual
argument must be an intrinsic function or an external function. A dummy
argument that becomes associated with an intrinsic function never has any
automatic typing property, even if the dummy argument name is the same as
the intrinsic function name. Therefore, the type of the dummy argument
must agree with the type of the result of all specific actual arguments
that become associated with the dummy arqument. If a dummy argument name
is used as if it were an external function and that name also appears as

an intrinsic function name, the intrinsic function is not available for
referencing within the subprogram.

A dummy argument that is used as a procedure name in a function reference
and is associated with an intrinsic function must have arguments that agree
in number and type with those specified for the intrinsic function.

If a dummy argument appears in a type statement and an EXTERNAL statement,
the actual argument must be the name of a function.

If the dummy argument is referenced as a subroutine, the actual argument
must be the name of a subroutine and must not appear in a type statement
or be referenced as a function.

Restrictions on the association of entities - If a subprogram reference
causes a dummy argument in the referenced subprogram to become associated
with another dummy argument in the referenced subprogram, neither dummy
argument may become defined during execution of that subprogram. For
example, if a subroutine is headed by

SUBROUTINE XYZ (A,B)
and is referenced with

CALL XYZ (C,C)

then the dummy arguments A and B each become associated with the same
actual argument C and, therefore, with each other. This rule prohibits
both A and B from becoming defined during this execution of subroutine
XYZ or by any procedures referenced by XYZ.

2240009 3-133 C

If a subprogram reference causes a dummy argument to become associated

with an entity in a common block in the referenced subprogram, neither

the dummy argument nor the entity in the common block may become defined

within the subprogram. For example, if a subroutine containing statements
SUBROUTINE XYZ (A)

COMMON C
is referenced by a program unit that contains the statements

COMMON B
CALL XYZ (B) -
the dummy argument A becomes associated with the actual argument B. B

and C are associated in a common block. The rule states that neither A

nor C may become defined during the execution of subroutine XYZ or by any
procedures it references.

Common blocks

A common block provides a means of communication between external procedures
or between a main program and an external procedure. The variables and
arrays in a common block may be defined and referenced in all subprograms
that contain a declaration of that common block. Because association is

by storage rather than by name, the names of the variables and arrays may
be different in the different subprograms. A reference to a datum in a
common block is proper if the datum is defined and of the same type as the
type of the name used to reference the datum. However, an integer variable
that has been assigned an executable statement label must not be referenced
in any program unit other than the one in which it was assigned.

The only difference in data type permitted between that defined and that

referenced is that either part of a complex datum may be referenced as a
real datum.

In a subprogram that has declared a named or blank common block, the

entities in the block remain defined after the execution of a RETURN
or END statement.

Common blocks also may be used to reduce the total number of storage units
required for an executable program by causing two or more subprograms to
share some of the same storage units. This sharing of storage is permitted
if the rules for defining and referencing data are not violated.

2240009 3-134 C

3.6.12 UTILITY PROCEDURES

The ANSI FORTRAN Standard does not provide for utility procedures.

The CRAY-1 FORTRAN programmer can reference a number of predefined func-
tions, subroutines, and other procedures as described in Appendix C.
These utility procedures extend program control capabilities in the areas
of:

e CRAY-1 Operating System .(COS) features,
® Input/output operations, and

® Boolean, masking, shifting, and related operations.

3.6.13 BLOCK DATA SUBPROGRAMS

Block data subprograms are used to provide initial values for variables
and array elements in named common blocks.

A block data subprogram is a program unit that has a BLOCK DATA statement
as its first statement. A block data subprogram is non-executable.

BLOCK DATA statement form

The form of a BLOCK DATA statement is

BLOCK DATA [sub]

where sub is the symbolic name of the block data subprogram in which the
BLOCK DATA statement appears.

The optional name sub is a global name and must not be the same as the
name of an external procedure, main program, or other block data sub-
program in the same executable program. The name sub must not be the
same as any local name in the subprogram.

The ANSI FORTRAN Standard does not provide for block data subprogram names or main program names.

Block data subprogram restrictions

The BLOCK DATA statement must appear only as the first statement of a block
data subprogram. The only other statements that may appear in a block data
subprogram are IMPLICIT, PARAMETER, DIMENSION, COMMON, EQUIVALENCE, DATA,
type, and END statements.

2240009 3-135 c

If a named common block has an entity initialized, all entities having
storage units of the common block storage sequence must be specified

even if they are not all initialized. More than one named common block
may have entities initialized in a single block data subprogram. Entities
not in a named common block must neither be initialized nor appear in a
DIMENSION, EQUIVALENCE, or type statement in a block data subprogram.

A given named common block may be specified in more than one block data
subprogram in an executable program.

There may be any number of unnamed block data subprograms in an execut-
able program. Any number of differently named block data subprograms
may be specified in an executable program.

An END statement must be contained in the last line used in specifying a
block data subprogram.

Example:
BLOCK DATA BD1

CORMON/NAME1/TABLEA,TABLEB,TEST1,TESTZ
DIMENSION TABLEA(10,10) ,TABLEB(6,2,2)
DATA TABLEA/100%123./,TABLEB/12%0.,12%1./
DATA TEST1/72.35E-20/,TEST2/"EXAMPLES '/

END

2240009 3-136

3.7 ASSOCIATION AND DEFINITION

3.7.1 STORAGE AND ASSOCIATION

Storage sequences are used to describe association among variables, array
elements, common blocks, and arguments.

Storage sequences

A storage sequence is a sequence of storage units. Each array and common
block has a storage sequence. The size of a storage sequence is the number
of storage units it contains. A storage unit contains one variable or
array element of type integer, real, or logical.

A double-precision or complex variable or array element has a storage
sequence of two storage units. In a double-precision storage sequence,
the most and least significant parts of a datum are contained in the first
and second storage units, respectively. In a complex storage sequence,
the real and the imaginary parts of a datum are contained in the first

and second storage units, respectively.

A storage unit in the CRAY-1 computer corresponds to one 64-bit memory
location; a storage sequence to a contiguously addressed set of memory
locations.

The ANSI FORTRAN Standard does not relate storage units and memory locations.

Association of storage sequences

Two storage sequences are associated if they share at least one storage
unit.

Association of entities

Two entities are associated if their storage sequences are associated
Totally associated entities share the same storage sequence. Partially
associated entities share part but not all of a storage sequence.

The definition status and value of an entity affects the definition status
and value of any associated entity or entities. An EQUIVALENCE statement,
a COMMON statement, or argument association in a procedure reference may
cause the association of storage sequences.

An EQUIVALENCE statement causes association of entities within a program
unit unless one of the entities is also in a common block.

Arguments and COMMON statements cause entities in two or more program units
to become associated.

2240009 ' 3-137 c

Partial association may exist only between a double-precision or complex
entity and a second entity of type integer, real, logical, double precision,
or complex. Partial association may occur only through the use of COMMON or
EQUIVALENCE statements. Partial association must not occur through argument
association.

In the example
INTEGER I
REAL R(4)
COMPLEX C(2)
DOUBLE PRECISION D
EQUIVALENCE (C(2), R(2), I), (R,D)
the third storage unit of C, the second storage unit of R and the storage

unit of I are specified as the same. The storage sequences may be illus-
trated as:

Storage unit
1| 2 3J 4 | s J
—_—
COMPLEX C(1) C(2)
REAL [R(1) | R(2)[R(3)| R(4)]
INTEGER
DOUBLE PRECISION D]

R(2) and I are totally associated. The following are partially associated:
R(1) and C(l), R(2) and C(2), R(3) and C(2), I and C(2), R(l), and D, R(2)
and D, I and D, C(1l) and D, and C(2) and D. Note that although C(l) and
C(2) are each associated with D, C(1l) and C(2) are not associated with each
other.

3.7.2 DEFINING ENTITIES
Variables and array elements become defined as follows:

e Execution of an arithmetic or logical assignment statement cause
the entity that precedes the equals to become defined.

® As execution of an input statement proceeds, each entity that is
assigned a value of its corresponding type from the input medium
is defined at the time of such assignment.

® Execution of a DO statement causes the DO-variable to become defined.

A

2240009 3-138

© Beginning of execution of actions specified by an implied-DO list
in an input/output statement causes the implied-DO-variable to be-
come defined.

e A DATA statement causes entities to become initially defined at the
beginning of execution of an executable program.

® Execution of an ASSIGN statement causes the variable in the state-
ment to become defined with a statement label value.

e When an entity of a given type becomes defined, all totally assoc-
iated entities of the same type become defined.

® A reference to a subprogram causes a dummy argument to become
defined if the corresponding actual argument is defined.

© When a complex entity becomes defined, all partially associated
real entities become defined.

e When both parts of a complex entity become defined as a result of
partially associated real or complex entities becoming defined, the
complex entity becomes defined.

3.7.3 UNDEFINING ENTITIES
Variables and array elements become undefined as follows:

o All entities are undefined at the beginning of execution of an
executable program except those entities initially defined by
DATA statements.

© When an entity of a given type becomes defined, all totally
associated entities of different type become undefined.

o Execution of an ASSIGN statement causes the variable in the state-
ment to become undefined as an integer. Entities of type integer
that are associated with the variable are also undefined as integers.

e When an entity becomes defined, all partially associated entities
|become undefined. However, when an entity of type real is partially
associated with an entity of type complex, the complex entity does
not become undefined when the real entity becomes defined and the
real entity does not become undefined when the complex entity be-
comes defined. When an entity of type complex is partially assoc-
iated with another entity of type complex, definition of one entity
_does not cause the other to become undefined.

e When an error condition or an end-of-file condition occurs during
execution of an input statement, all items in the input list of
the statement become undefined.

o When an entity becomes undefined as a result of conditions described
in the two preceding items, all totally and partially associated
entities become undefined.

2240009 3-139 C

3.8 SCOPE AND CLASSES OF SYMBOLIC NAMES

A symbolic name consists of from one to eight alphanumeric characters, the
first of which must be a letter. Some sequences of characters, such as
format edit descriptors and keywords that uniquely identify certain state-
ments (GO TO, READ, FORMAT, etc.) are not symbolic names nor do they form
the first characters of symbolic names in such occurrances.

The ANS! FORTRAN Standard provides for symbolic names of up to six alphanumeric characters.

3.8.1 SCOPE OF SYMBOLIC NAMES

The scope of a symbolic name is an executable program, a program unit, or
a statement function statement.

The name of the main program and the names of block data subprograms, exter-
nal functions, subroutines, and common blocks have a scope of an executable
program and are said to be global to that program.

The names of variables, arrays, constants, statement functions and intrinsic
functions have a scope of a program unit.

The names of variables that appear as dummy arguments in a statement func-
tion statement have a scope of that statement.

Global entities

The main program, common blocks, subprograms, and external procedures are
global entities of an executable program. A symbolic name that identifies
a global entity must not be used to identify any other global entity in
the same executable program.

A symbolic name in one of the following classes identifies a global entity
in an executable program:

Common block.
e External function.
e Subroutine.
@ Main program.

® Block data subprogram.

The ANSI FORTRAN Standard does not provide for main program or block data subprogram names.

2240009 3-140 c

Local entities

A symbolic name of a local entity identifies that entity in a single program
unit. A symbolic name that identifies a member in one class of entities
local to a program unit must not also identify a member in another class

of entities local to that same program unit. However, a symbolic name

that identifies a local entity may, in a different program unit, identify

an entity of a different class that is either local to that program unit

or is global to the executable program. A symbolic name that identifies

a global entity in a program unit must not be used to identify a local
entity in that program unit except as noted in 3.8.2 for common block

and external function names.

The symbolic name of an entity in one of the following classes identifies
it as a local entity in a program unit:

@ Array

@ Variable.

o Constant

@ Statement function

® Intrinsic function

The ANSI FORTRAN Standard doss not provide for the symbolic names of constants.

A symbolic name used as a dummy argument in a procedure is classified as
identifying a variable, an array, or another procedure. This specification
and usage must not violate the respective class rules.

3.8.2 CLASSES OF SYMBOLIC NAMES

In a program unit, a symbolic name must not correspond to more than one
class except as noted in the following paragraphs. All restrictions on
the appearances of the same symbolic name in different program units of
an executable program are also noted here.

Common blocks

A symbolic name is the name of a common block if and only if it appears
as a block name in a COMMON statement. A common block name is global to

the executable program.

2240009 3-141 c

A common block name in a program unit may also be the name of any local
entity. If a name is used for both a common block and a local entity,
the appearance of that name in any context other than as a common block
name in a COMMON statement identifies only the local entity.

External functions

A symbolic name is the name of an external function if it:

e Appears immediately following the keyword FUNCTION or ENTRY
in a FUNCTION or ENTRY statement, or

e Is not an array name, statement function name, intrinsic
function name, subroutine name, or dummy argument and every
appearance is immediately followed by a left parenthesis
except in a type statement, in an EXTERNAL statement, or as
an actual argument.

The name of a function subprogram that appears immediately after the
keyword FUNCTION or ENTRY in a FUNCTION or ENTRY statement must be the
name of a variable in that subprogram. An external function name is
global to the executable program.

Subroutines

A symbolic name is the name of a subroutine:

e If the name appears immediately following the keyword
SUBROUTINE or ENTRY in a SUBROUTINE or ENTRY statement, or

e If the name appears immediately following the keyword CALL in a
CALL statement and is not a dummy argument.

A subroutine name is global to the executable program.

The main program

A symbolic name is the name of a main pfogram if and only if it appears
in a PROGRAM statement in the main program. A main program name is
global to the executable program.

The ANSI FORTRAN Standard does not provide for the PROGRAM statement or a main program name.

Block data subprograms

A symbolic name is the name of a block data subprogram if and only if
it appears in a BLOCK DATA statement. A block data subprogram name is
global to the executable program.

The ANSI FORTRAN Standard does not provide for a block data subprogram name.

2240009 3-142

Arrays

A symbolic name is the name of an array if it appears as the array name
in an array declarator in a DIMENSION, COMMON, or type statement. An
array name is local to a program unit and may be the same as a common
block name.

Variables

A symbolic name is the name of a variable if it meets all of the following
conditions:

® It does not appéar in a PARAMETER or EXTERNAL statement,

e It is not the name of an array, subroutine, main program, or
block data subprogran,

® It is not the name of an array, subroutine, main program, or
subprogram, '

® It appears other than as the name of a common block, the name of
an external function in a FUNCTION statement, and

@ It can be immediately followed by a left parenthesis (only when
immediately preceded by the word FUNCTION in a FUNCTION statement).

The ANSI FORTRAN Standard does not provide for the PARAMETER statement nor for a main program name.

A variable name is local to a Program unit. A variable name in the dummy
argument list of a statement function statement is local to the statement
function statement in which it occurs. Note that the use of an intrinsic
function name as a dummy arqument of a statement function removes it from
the class of intrinsic functions within the program unit containing that
statement function.

A statement function dummy argument name may also be the name of a variable
or common block in the same program unit. The appearance of the name in
any context other than as a dummy argument of the statement function
identifies a local variable or common block. The statement function dummy
argument name and local variable name have the same type.

Constants

A symbolic name is the name of a constant if it appears as a symbolic
name in a PARAMETER statement. A constant name is local to a program
unit.

2240009 3-143 ¢

Statement functions

A symbolic name is the name of a statement function if it is not an
array name and a statement function statement exists that specifies
that symbolic name. A statement function name is local to a program
unit. A statement function name may be the same as a common block

name.

Intrinsic functions

A symbolic name is the name of an intrinsic function if it appears in
Appendix B and:

® Does not appear in a conflicting type statement,

® Is not an array name, statement function name, subroutine name, or
dummy argument name, and

® Every appearance of the symbolic name, except in a type statement
or as an actual argument, is immediately followed by an actual
argument list enclosed in parentheses.

An intrinsic function name is local to a program unit.

2240009 3-144 c

4 CRAY-1 FORTRAN PROGRAMMING

CRAY-1 FORTRAN PROGRAMMING 4

4.1 GENERAL

The CRAY-1 FORTRAN Compiler (CFT), in producing CRAY-1l machine language
instructions from FORTRAN language statements, does so with run-time
efficiency as a prime objective. Its operations include:

® Providing the most effective instruction sequence for each
FORTRAN statement compiled,

® Making full use of all CRAY~1l capabilities and techniques enhancing
the speed with which these sequences execute, and

® Analyzing FORTRAN statements to accomplish the foregoing.

Of particular significance is the compilation of statements describing
iterative operations amenable to vector processing. When properly

applied, vector processing affords dramatic decreases in computation time
over equivalent scalar processing methods. Also significant is the structur-
ing of data in memory to take advantage of its potential for 80-million
words-per-second transfers during computation. The CRAY-1 FORTRAN pro-
gramming techniques described in this section address both considerations.

4.2 FORTRAN PROGRAMMING FOR CRAY-1 VECTOR OPERATIONS

CFT analyzes the innermost loops of the FORTRAN programs it compiles to
determine whether vector processing methods can be applied to improve
overall program efficiency. If so, the execution sequence of the code

it produces contains vector instructions to drive the high-speed vector

and floating-point functional units and the eight vector registers in their
.integrated processing of the specified operation. This feature of CFT

is automatically activated through compiler analysis of statements contained
in certain DO-loops in the program without special notation on the part

of the programmer. Thus, no special provisions are required that would
encumber the programmer or affect the transportability of the programs
produced or used.

Not all DO-loops are vectorizable. In determining the qualifications of

a loop for vectorization, CFT examines each statement and its relationship
to others in that DO-loop range. The CRAY-1 FORTRAN programmer can enhance
the performance of his programs by avoiding certain constructs known to
inhibit DO-loop vectorization.

To be vectorizable, a DO-loop must manipulate or perform calculations on
the contents of one or more arrays. Loops containing a GO TO, IF, or CALL
statement are not vectorizable. A vectorizable DO-loop may contain refer-
ences to any of the CRAY-1 FORTRAN intrinsic functions and may contain
expressions having arithmetic, relational and logical operators. Any
procedures named in an EXTERNAL statement cause the inhibiting of vector-
ization of an inner DO-loop referencing it. N

2240009 4-1 c

Further loop analysis is performed to determine that all variables defined
or referenced in the DO-loop range are in one of three categories:

e Invariants,
e Constant increment integers (CII's), or

e Vector array references.

A loop that contains one or more variables outside these categories,
cannot be vectorized.

An invariant is a variable that is referenced but not defined in the
course of DO-loop execution.

A constant increment integer (CII) is an integer variable that is incre-
mented by a constant value on each pass through the loop and at only one
point in the DO-loop range. At this point, the expression used to define
the CII may, itself, reference a single CII variable. The expression
must not use operators other than plus and minus.

A vector array reference is an array element name in which one subscript
expression contains a CII and all others, if any, are invariants. A’
vector array reference subscript expression containing a CII must be of
the form:

¥ invariant *] CII [i‘ invariant expression]

In the following example, I, J, and K are CII's; A, B, and C are vector
array references, and KDELTA, X, and D are invariants. The DO-loop is
vectorizable.

DO 10 I = 3,101,2

K = K - KDELTA

J =107 - 1T

A(3,I-2) = COS(B(J)) **C(M-2*K+L*M/7,L,M/L) *X*D (L,M)
10 CONTINUE

One common FORTRAN practice, that of using temporary variables to contain
repeated subexpressions, clearly inhibits inner DO-loop vectorization.
For example, the appearance of the statements

TEMP
D(I)

A(I) + B(I) * C(1)
TEMP + 1. / TEMP

in a DO-loop will disqualify it for vectorization since TEMP is not an
invariant, a CII, or a vector array reference. The additional memory
references required in substituting TEMP(I) for TEMP to eliminate this
problem offset the advantage gained. CFT examines DO-loops for repeated
subexpressions. Those encountered are evaluated only once. Consequently,
their repetition does not cause an increase in execution time. Another
alternative is to reference statement functions which are analyzed for
possible vectorization.

2240009 4-2 c

Hence the statements

ASF(X,Y,2) =X +Y *Z

D(I).

ASF(A(I),B(I),C(I)) + 1. / ASF(A(I),B(I),C(I))

or the statement

D(I)

]

C(I) * B(I) + A(I) + 1. / (A(I) + B(I) * C(I))

are vectorizable, involve only one evaluation of A(I) + B(I) * C(I),
and do not involve any unnecessary memory references.

Attention to the structure of statements within nested DO-loops often
improves execution time by permitting vectorization. For example, the
common matrix multiplication method specified in the statements

DO 10 I = 1,N
DO 10 J = 1,M
A(IIJ) = 0.
DO 10 L = 1,K
10 A(r,J) = A(I,J) + B(1,L) * C(L,J)

does not vectorize because A(I,J) is independent of the inner DO-loop index.
By rewriting this execution sequence as

DO 10 I = 1,N

DO 5J=1,M
5 A(I,J) = 0.

DO 10 L =1,K

DO 10 J = 1,M

10 A(1,J) = A(1,J3) + B(I,L) * C(L,J)

vectorization ,occurs and the loop, in actual tests, has proven to
require only 15% of the original loop execution time.

Interdependencies among the elements of a vector can be expressed in FORTRAN
statements, but.cause CFT to inhibit the vectorization of any DO-loop
in which they are encountered. A DO-loop such as

po 10 I = 2,100
10 T(I,J) = (T(I-1,J3) + T(I+1l,J) + T(I,J+1) + T(I,J3-1)) / 4.

does not vectorize since the vector operations of the CRAY-1 CPU cause
T(I-1,J) to be calculated at the same time it is required for the calculation
of T(1,J).

2240009 4-3 c

The same dependency problem can occur among separate statements in a DO-
loop. Multiple-statement dependencies pose far more complex problems for
CFT analysis since the form and value range of subscripts, the order of
references, and the sign of the control variable must be considered in
various combination to determine whether vectorization is permissible.
In the following sets of statements, positive incrementation of the control
variable, I, inhibits vectorization:

A(I)=A(I-1) B(I)=A(I-1) A(I)=...

A(I)=... _ B(I)=A(I+1)

In the last case, the simultaneous calculation of A(I) and A(I+1l) would

cause B(I) to be defined with the just-calculated value of A(I+1l) if
vectorization were permitted.

Under the same circumstances, the following sets of statements are vector-
izable:
A(I)=A(I+1) B(I)=A(I+1) A(D)=...
A(I)=... B(I)=A(I-1)
Note that in both sets of examples, applying a negatively incremented

control variable reverses the dependency situation. If, for example,
the DO-loop were initiated with a

DO 10 I = 100,1,-1
then the first set of examples above would be vectorizable while

the second set would not.

The inhibiting of vectorization due to such dependencies can be relaxed

in the case of multiply-dimensioned array processing. CFT must be able to

determine that the specified array elements are in different vectors

(i.e., rows, columns, planes, etc.) of the array. For example, the loop
DO 10 I = 2,100

- 10 A(I,J) = A(I-1,J-1)
is vectorizable, while the similar loop

DO 20 I = 2,100
20 A(I,J)

A(I-1,JMINUSL)

cannot be vectorized since CFT cannot determine whether J and JMINUS1 are
equal.

2240009 4-4 C

The following summation loop cannot be vectorized:

SUM = 0
DO 10 T = N,M
10 SUM = SuM + A(I)

(where A is an array or an expression involving arrays).

Rewritten in the following form, the summation loop becomes highly
vectorizable:

DO 10 I = 1,MINO(64,M-N+1),1
10 HELPER(I) = A(N+I-1)

JS = I+N-2

KOUNT = (M-JS)/64

LAST = (M-JS)-64*KOUNT

DO 20 J = 1,KOUNT

DO 15 I = 1,64
15 HELPER(I) = HELPER(I)+ A(I+JS)
20 JS = JS + 64

DO 30 I = 1,LAST
30 HELPER(I) = HELPER(I) + A(M+1-I)

SUM = HELPER(1)

DO 40 I = 2,MINO(64,M-N+1),1
40 SUM = SUM + HELPER(I)

\

The first loop does a vector transfer of the first elements of array A to
array HELPER. (Note the use of the intrinsic function MINO.) The value

of KOUNT is the number of 64 word blocks remaining and LAST is the number
of words in the last partial block. Note that if M-N+1 is less than 129,
KOUNT will be zero (or negative) and the loop initiated by the DO 20 ...

statement will not execute. Also note that if M-N+l is less than 64

or is a multiple of 64, LAST will be less than or equal to zero and the -
loop initiated by the DO 30 ... statement will not execute.

2240009 4-5 c

The following are comparative timings in microseconds for the simple and
rewritten summation loops: :

- Simple Rewritten

M-N+1 summation summation Ratio
1 3.2 6.4 2.0

3 4.2 7.2 1.7

10 7.6 10.8 1.4

30 17.3 21.1 1.2
100 51.5 40.1 .78
300 149.0 53.1 .36
1000 490.2 97.9 .20
3000 1465.2 225.2 .15
10000 4877.7 673.3 : .14
30000 14627.7 1949.8 .13
100000 48752.7 6421.0 .13

The compiler directive IVDEP can be specified in advance of an inner DO-
loop DO statement to cause vector dependencies to be ignored in determin-
ing whether or not to vectorize that loop. (See Section 5 for a descrip-
tion of IVDEP and other compiler directives.)

2240009 4-6 C

DO loops containing IF statements will not vectorize. The utility pro-
cedures CVMGP, CVMGM, CVMGZ, and CVMGN can often be used in lieu of IF
statements to produce vectorizable loops.

The simple case
DO 10 I = N,M
X(I) = A(1)
10 IF(B(I).GT.C(I))X(I) = D(I)
could be rewritten as
DO 10 I = N,M
10 Xx(I) = CcvMGM(D(I),A(I),C(I)-B(I))
or as
DO 10 I = N,M
10 X(I) = CVMGP(A(I),D(I),C(I)-B(I))
to produce vectorizable loops.
Similarly,
DO 10 I = N,M
10 IF(X(I).GE.10.)X(I) = X(I) + 1.0
could be rewritten as
DO 10 I = N,M
10 X(I) = CVMGP(X(I)+1.0,X(I),X(I)-10.)

to do the same.

2240009 4-7

The two possible drawbacks to vectorizing IF statements in this way are
extra work and illegal operations.

Extra work occurs when the computer evaluates both true and false
expressions before deciding which value to use. The loop

Do 10 I = 1,1000
10 IF(X(I).GE..9999)X(I) = ASIN(X(I))

might never invoke the ASIN routine if X contains random numbers in the
range from O to 1. However, the equivalent vector loop

Do 10 I = 1,1000
10 X(I) = CVMGP(ASIN(X(I)) ,X(I),X(I)-.9999)

requires 1000 evaluations of ASIN. Whether or not there is a speed
advantage to vectorizing IF statements in this manner depends in a
complicated way on the complexity of the expressions and on the prob-
ability of their evaluation being required.

The second problem is possible illegal operations. A loop such as
DO 10 I = N,M
IF (X(I) .NE.O)X(I) = 1./X(I)
10 IF (Y(I).GE.0.)Y(I) = SQRT(Y(I)X

should not be rewritten using the preceding methods. In the rewritten loop

DO 10 T = N,M

X(I)
10 Y(I)

CVMGN (1./X(I),X(I),X(1))
CVMGP (SQRT(Y (I)) ,Y(I),Y(I)) "

both division and use of the intrinsic function SQRT would produce errors
when processing unneeded cases.

2240009 4-8 Cc-

The general guidelines below can be followed to promote vectorization
of DO-loop operations:

e Keep subscripts simple and explicit.

® Do not use temporary variables to contain repeated subexpressions.
e Do not use IF, GO TO, or CALL statements.

e Use the CRAY-1l FORTRAN intrinsic functions where appropriate.

e Make judicious use of the CRAY-1 FORTRAN utility procedures
CVMGP, CVMGM, CVMGZ, and CVMGN in lieu of IF statements.

® Rewrite large loops that contain a few unvectorizable statements
as two or more loops, one or more of which will vectorize.

4.3 FORTRAN PROGRAMMING FOR CRAY-1 MEMORY OPERATIONS

The memory section of the CRAY-1 CPU can operate at a maximum transfer
rate of 80-million words per second. This high speed owes in large
measure to the location of consecutively addressed memory locations in
separate memory banks. Since each bank operates independently, the 50
nanosecond period required to access a single memory location can
overlap the 50 nanosecond period required to access the next-higher-
addressed memory location, and so on. This method of accessing memory for
a set of consecutively addressed memory locations is such that only the
first word accessed requires 50 nanoseconds to become available with re-
maining words available at each 12.5 nanosecond interval thereafter.
Addresses 0 through 15 refer to memory locations in banks 0 through 15,
respectively; addresses 16 through 31 to memory locations in banks O
through 15; etc. Thus, every sixteenth address references a memory
location in the same memory bank.

Data can be organized without attention to this characteristic of the
CRAY-1 memory section and be fully compatible with FORTRAN processing
methods and with the storage sequences established by CRAY-1 FORTRAN.
Avoiding certain storage sequence patterns will, however, ensure the best
possible timing of transfer rates to and from memory.

A general rule would be to avoid specifying storage sequences which, in
the course of common transfer operations, would cause a given memory bank
to be accessed more often than once every four clock periods.

2240009 4-9 C

5 THE CRAY-1 FORTRAN COMPILER

THE CRAY-1 FORTRAN COMPILER 5

5.1 GENERAL

The CRAY-1 FORTRAN Compiler (CFT) transforms a CRAY-1 FORTRAN language
program into a executable program in relocatable binary that can be
loaded and executed on the CRAY-1 Computer System.

The CRAY-1 Operating System (COS) calls upon the system loader (LDR)

to load CFT from the Mass Storage Subsystem. Compiler operation responds
to information in a COS job deck to locate and compile the FORTRAN program.
Both binary and symbolic information are output from its operation.

This section describes CFT in terms of the input and output characteristics
that the CRAY-1l FORTRAN programmer must understand to produce correct
and effective programs.

5.2 INPUT TO CFT

CFT, when initiated, seeks two types of information; the program to be
compiled and instructions on controlling the compilation.

A FORTRAN program to be compiled by CFT must be specified in punched-card
or other form using the ASCII character codes in Appendix A and the format
specified in Section 3. The result is a source deck. This source deck

is not directly usable by CFT and must be converted to a CRAY-1l dataset and
stored on disk before CFT can process its content. The means and manner

of this conversion and storage occurs external to CFT.

Other information required by CFT for its operations is provided through
COS and from compiler directives specified in (but not a part of) the
program being compiled. This includes identification of the input dataset
containing the source deck, identification of datasets to receive the
binary and listable output from CFT during compilation, and specification
of which CFT options are to be exercised. Much of this information is con-
tained in the CFT job statement card and other cards in the user's job

deck (see Section 6). Compiler directives are described in 5.4.

5.3 OUTPUT FROM CFT

The two forms of compiler output are:

e The compiled FORTRAN program in relocatable binary form, and

@ A printable record of the compilation including each FORTRAN
statement compiled, the assembly-language (CAL) equivalent of
the machine language produced, and a cross-reference of all
symbolic names and statement labels within the program being
compiled.

2240009 5-1 C

5.3.1 BINARY OUTPUT

The relocatable binary program created by CFT compilation provides

for the complete executable program including the reservation and possible
initiallization (via DATA statements) of all data storage sequences. out-
put is onto a pre-identified dataset in a format required by the system
loader routine, LDR. Addresses in this output are relocatable. Addition-
ally, LDR loads and links routines required from the system library (SFTLIB) .

5.3.2 LISTABLE OUTPUT

CFT optionally produces a dataset containing a source statement listing,
a symbol table, and a listing of generated code for each program compiled.
Additionally, diagnostic information may be interspersed.

Listable output is written on a dataset. The CFT control statement and
compiler directives allow the user to control this output and the dataset
to receive it.

Source statement listings

The source statement listing records all FORTRAN statements comprising the
program as they are sequentially read and interpreted from the source input
dataset. A sequence number is listed for each statement to identify its
position in the program. Errors encountered while compiling a statement
are flagged by lines subsequent to that statement or are recorded at the
end of the source statement listing.

Symbol table and common block name list

A symbol table may follow each CFT-compiled program unit. After this
table is a list of names and lengths (in octal) of all common blocks
used in the subroutine. ‘

The printing of a symbol table and/or a common block name list can be
suppressed through an option on the CFT job control statement card.

CFT provides for an optional cross-reference listing of statement number
usage.

Information in the symbol table is presented in seven fields:
e Warning flags

@ Address

e Name
e Block
e Type
e Use

e Dummy argument/equivalence flag

Fields other than the warning flags field are identified by titles.

2240009 5-2 C

Warning flags - Warning flags may precede the address field of variables
and arrays.

Flag Significance
N NULL. The variable or array is neither

assigned a value (defined) nor referenced
in the program unit.

U UNDEFINED. The variable or array is refer-
enced but is not defined. 1Its content is
unpredictable.

C COMMON UNDEFINED. The variabe or array

is in common and is referenced but not
defined. (Since it is in a common block,
it may be assigned a value in a different
program unit.)

Address field - Addresses in this field are relative to the beginning
of the program or to a named common block.

Name field - The name field contains an alphabetized list of all symbolic
names specified in the program unit. If there is no PROGRAM statement

in the executable program, CFT identifies the main program with the name
$MAIN.

Common block field - The block field identifies the common block containing
a variable or array. If no common block name appears, the variable or
array is local to the program unit.

Type field - The type field gives the type of array, variable, or program
unit and can contain the following:

Type Significance

LOG Logical

INT Integer

REAL Real

CPLX Complex

DOUB Double precision

(BLANK) Typeless function or subroutine

2240009 5-3 C

Use field - An entry in the use field describes the use of the corresponding
symbolic name and may contain the following:

Use Significance

ARn Array with #n dimensions (1 < n < 7)
ASF Arithmetic statement function
ENT Entry

EXT External function or subroutine
INT Intrinsic function

VAR Simple variable

Dummy argument and equivalence flags - The characters DA appear in the
field following the use field if the symbol is a dummy argument to the
subroutine or function. The characters EQ appear if the symbol is an

equivalenced variable or array.

Statement label list

Statement labels are listed in a separate table. A statement label may
be identified as FORMAT, ***UNDEF, INACTIVE, or DO TERM. DO TERM is

used if the statement is only referenced as the termination statement of

a DO-loop. If a statement label is active and defined, the parcel

address at which it is defined is given. Parcel addresses of instructions
that refer to the statement label are optionally listed.

Internally generated statement labels are used for logical IF statements,
for implied DO statements, or to mark the start and end of a DO-loop.

In the first two cases, a 6-digit number in sequence from 000001 is
generated with leading zeros present and significant. The beginnings
and ends of DO-loops are labelled with pairs of compiler-generated
statement labels. These are constructed by suffixing a DO terminator
statement label with a letter. The first lettered label of a pair

marks the beginning of the DO-loop; the second marks the end.

Warning messages

Warning messages are produced by CFT for statements or statement sequences
that might cause error conditions during program execution. Their
appearance does not affect compilation. Warning messages are listed in
Appendix D. The following general form is used (seq. no. represents

the number of the statement at which the problem was detected):

seq. no. WARNING message

Warning messages can be suppressed through parameters on the CFT job
statement card.

2240009 5-4 c

Fatal error messages

When CFT determines the presence of one or more fatal errors, it continues
to check subsequent statements for syntax errors but does not generate
valid object code. CFT is a two-pass compiler. Errors detected during
pass one are flagged immediately after the line containing the error.
Errors detected during pass two are flagged at the end of each program
unit. A fatal error message is listed in the following general form where
seq. no. represents the CFT-assigned sequence number of the staFement at
which the error was detected and ERROR NO. 7n provides a sequential count

of errors as encountered:

seq. no. ERROR NO. 7 message

Fatal error messages are listed in Appendix D.

5.4 COMPILER DIRECTIVES

The CRAY-1 FORTRAN Compiler (CFT) may be directed in certain of its
actions by information specified in:

e The CFT control statement that appears in the job control file
for the job being processed, and

e Compiler directives expressed in compiler directive lines that
may be interspersed among the lines of statements and comments
comprising the FORTRAN program units being compiled.

Compiler options expressed by the user in the CFT control statement (see
Section 6) establish particular methods for application throughout the
compilation of all related FORTRAN program units. Compiler directives
encountered in the program units being compiled may change or reinstate
this set of methods at predetermined points in the compilation. Certain
other compiler actions are enabled and disabled only by compiler
directives.

The CFT control statement E (enable compiler directives) option must be
specified ON for compiler options to be recognized by CFT. Else, the
lines containing compiler options are treated as comment lines.

The following paragraphs describe:
® Compiler directive lines,
o Listable output control directives,
e Vectorization control directives, and

@ Integer control directives.

2240009 5-5 ¢

5.4.1 COMPILER DIRECTIVE LINES

A compiler directive line (or card) contains the characters CDIR$ in
columns 1 through 5. Generally, column 6 must be blank or contain the
character zero, and columns 7 through 72 contain one or more compiler
directives separated by commas. Spaces may precede, follow, or be embedded
within a compiler directive. Columns 73 through 80 may be used for any
purpose. Continuation of compiler directive information beyond a single
line may be accomplished by:

® Entering a blank or zero character in column 6 of the initial
line,

e Entering any other character in column 6 of up to 19 subsequent
lines,

e Entering the characters CDIR$ in columns 1 through 5 of all lines
in the sequence, and

® Entering compiler directives in columns 7 through 72 of each
line in the sequence as though a single field of up to 1,320
columns were provided.

Note that the character C in column 1 identifies these lines as comment
lines to all but the CRAY-1 FORTRAN Compiler; a feature maintaining the
transportability of programs using compiler directives.

Compiler directive lines are listed in the source statement listing.

5.4.2 LISTABLE OUTPUT CONTROL DIRECTIVES
The five listable output control directives (and their forms) are:

EJECT
LIST
NOLIST
CODE
NOCODE

The CFT control statement L (listable output control directives) option
must be specified ON to cause this set of compiler directives to be
recognized.

EJECT directives

A compiler directive line containing an EJECT directive will be printed
as the last line of the current page of source statement listing being
produced. If the EJECT directive is contained in a continuation set of
compiler directive lines, the last of these becomes the last line of the
page. In either case, a new page is begun having as its first line the
line following the last one printed on the preceding page. The EJECT
directive has no effect if production of the source statement listing
has been suppressed.

I 2240009 5-6 C

LIST directives

The LIST directive causes resumption of listable output production as
was suppressed by a NOLIST directive. The LIST directive either results
in the production of a source statement listing or is ignored if one is
already being produced.

1

NOLIST directives

The NOLIST directive suppresses the production of all listable output.
If no listable output is being produced, the NOLIST directive is ignored.

CODE directives

‘The CODE directive causes the production of CFT-generated code listings

if suppressed by a NOCODE directive or by CFT control statement action.

A complete CFT-generated code listing is produced for a program unit contain-
ing a CODE directive, and for all subsequent program units to, but not
including, that containing the next NOCODE directive.

NOCODE directives

The NOCODE directive suppresses the production of CFT-generated code
listings. The entire CFT-generated code listing of a program unit contain-
ing a NOCODE directive is suppressed, as are the listings for all subsequent
program units to, but not including, that containing the next CODE directive.
If no CFT-generated code listings are being produced, the NOCODE directive
is ignored.

5.4.3 VECTORIZATION CONTROL DIRECTIVES

The three vectorization control directives (and their forms) are:
e VECTOR
e NOVECTOR

e IVDEP

VECTOR directives

The VECTOR directive causes the compiler to resume its attempts to
vectorize inner DO-loops if such were suppressed by a NONVECTOR directive.
Attempted vectorization is resumed for all inner DO-loops in that program
unit containing the VECTOR directive. When attempted vectorization of
inner DO-loops is not called for by CFT control statement option action,
the VECTOR directive is ignored.

NOVECTOR directives

The NOVECTOR directive suppresses the compiler's attempts to vectorize
all inner DO-loops beginning with those in the program unit containing
the NOVECTOR directive. If inner DO-loop vectorization is not being
attempted, the NOVECTOR directive is ignored.

2240009 5-7 C

IVDEP directives

The IVDEP directive is specified in advance of a DO statement to cause

the compiler's attempts to vectorize the corresponding DO-loop to ignore

any vector dependencies encountered. The IVDEP directive affects only

the single DO-loop it precedes. Note that conditions other than vector

dependencies may cause the inhibiting of vectorization whether or not an

IVDEP directive is specified.

5.4.4 INTEGER CONTROL DIRECTIVE

The form of the single integer control directive, INT24, is:

iNt24 v [,v] ...

where INT24 specifies a 24-bit integer data type and

v is the symbolic name of a variable or array.

The specification of INT24 in a program unit causes all variables and
arrays named in its argument list to be identified as entities of type
integer that provide 24-bit (instead of the usual 64-bit) values when
referenced. The INT24 directive is not a CRAY-1l FORTRAN language
statement. It must, however, be specified in a program unit according
to the rules for specifying type statements. Unlike other compiler
directives, INT24 must be the only compiler directive specified in the
compiler directive line(s) containing it.

2240009 5-8

¥}

6 THE CRAY-1 OPERATING SYSTEM

THE CRAY-1 OPERATING SYSTEM 6

6.1 GENERAL

The CRAY-1l Operating System (COS) consists of programs that control the
operation of a CRAY-1l Computer System. All jobs are processed under COS
in a multiprogramming environment. In this environment, COS allocates
system resources in a manner that attempts to optimize the use of these
resources and that resolves conflicts among jobs requiring them. '

The CRAY-1l FORTRAN programmer communicates the way in which his job is

to be processed by preparing instructions to COS in the form of job control
statements. These, along with the FORTRAN program and/or data to be pro-
cessed, are presented to COS as a job. This section describes only those
features and capabilities of COS essential to the creating and processing
of FORTRAN jobs. A more detailed treatment of COS is beyond the scope

of the manual and is the subject of Cray Research publication 2240011,
"CRAY-0S Version 1.0 External Reference Specification".

6.2 JOB PREPARATION

In preparing his job for COS processing, the CRAY-1l FORTRAN programmer must
specify the complete procedure COS is to follow; from the initial establish-
ing of his work as a job through the disposition of all datasets supporting
or resulting from its operation.

The first step in this task is typically the transcription of all program,
data, and COS instruction information into punched-card or other suitable
form. Instructions to COS are expressed as job control statements. Each
statement is placed on a punched-card and the set of punched-cards comprise
what is called the COS job control deck. The program is placed on punched-
cards as described in Section 3 and is referred to as the program or source
deck. Data to be referenced in the course of program execution, if any,

is prepared in one or more data decks and in the format required by the
input/output statements in the program.

Step two usually establishes these decks as files in a CRAY-1l dataset.
Software at the host computer or the input/output station being used
provides for creation of this dataset at the CRAY-1l. The methods for
accomplishing this vary according to host computer or station type and
are described in other Cray Research publications. Once established

in the CRAY-1, this dataset, called the job dataset, typically contains
the COS job control deck as its first file, the program deck as its
second file, and the one or more data decks, if any, as its third and
following files. COS, which is in constant control of the CRAY-1l, recog-

nizes this dataset job to be processed. The job control statements com-
prising the first file are stored for job processing control; the remainer
of the dataset (including data for the programs, if any) is placed in a
dataset named S$IN.

2240009 6-1 c

At the conclusion of step two, COS is prepared to begin processing
the job. Control statements in the job control deck govern the sequence
of operations COS performs. They usually describe the following:

e Establishing datasets required for compiler input and output.
e Initiating and controlling CFT execution.

e Establishing any data decks (contained in‘$IN) as datasets.

e Loading and initiating the operation of the compiled program.
e Disposing of datasets output from CFT and from the program.

When COS completes its monitoring of these operations, it terminates the
job and makes available a logfile containing information on its actions.
At this point, the disposition of datasets occurs, including the routing
of all listable output to the host (front-end) processor or input/output

station for printing.

The following paragraphs describe job control statements and resultant
COS actions essential to these basic operations.

6.3 REQUIRED JOB CONTROL STATEMENTS

The first file of a job dataset contains job control statements that are
sequentially read and processed.

Job control statements identify the job to the system, define operating
characteristics for the job, manipulate datasets, call for the loading
and execution of user programs, and call programs that perform a number
of utility functions for the user. Only those job control statements
essential to COS processing of FORTRAN jobs are discussed in this section.
Complete descriptons of each are provided in Cray Research publication
2240011, "CRAY-0S Version 1.0 External Reference Specification".

6.3.1. JOB IDENTIFICATION

The JOB control statement must be the first statement in a control statement
file. It defines the name and characteristics of the job to the operating
system.

2240009 6-2

6.3.2 ASSIGN DATASET CHARACTERISTICS

The ASSIGN control statement creates a new dataset or changes the character-
istics of an existing dataset. :

A FORTRAN program refers to datasets by using a unit number in its I/O
statements. Allowable unit numbers range from O through 99, inclusive.
The CRAY~-1l Operating System recognizes the following three standard
datasets and reserved unit numbers:

Dataset name Unit no. Standard use
$IN 100 Job input
s$ouT 101 List output
$PUN 102 Punch output

These three datasets are referred to implicitly by PRINT, PUNCH, and
certain forms of READ statements appearing in FORTRAN programs.

A user associates a unit number with a dataset name by using the unit
number prefixed by FT as either the dataset name or alias name in the
ASSIGN statement. (The unit number with the FT prefix is sometimes
referred to as the logical file name.)

Using the logical file name with the DN keyword (i.e., DN=FT#nn) causes a
user dataset named FTnn to be created. Using the logical file name with
the A parameter (i.e., A=FTrnn) causes FTnn to be an alias dataset name for
the dataset named by the DN keyword.

If ASSIGN statements are used, they must be placed in the job control
statement file prior to loading and execution of the object program;
that is, they can be placed anywhere before the LDR statement.

Note that if an ASSIGN statement is not used, a dataset open for both input
and output is created when the unit number is first referred to by the
executing programn.

The following ASSIGN statement designates the unit number 11 as an alias
of the standard dataset $OUT:

ASSIGN (DN=$OUT,A=FT11)

All references to unit number 11 in the FORTRAN program are translated
to references to $OUT, which is automatically sent to the station at
job end.

6.3.3 CRAY-1 FORTRAN COMPILER EXECUTION

The CFT compiler is loaded and executed when a CFT control statement is
encountered in the control statement file of the job deck on the $IN
dataset.

2240009 6-3 c

The format of the CFT control statement is:

[cFT (1=idn,L=ldn,B=bdn,C=cdn,0N=string ,0FF=string) |

Options may be in any order. If a keyword and option are omitted from
the statement, the compiler uses a default value. If all options
are omitted, a period may be used in lieu of empty parentheses.

The compiler does not reposition datasets either before or after compilation.

= <dn

L=1dn

B=pdn

C=cdn

ON=string

OFF=string

2240009

Specifies dataset containing source input.

idn Name by which source is known at CRAY-1;
default is S$IN.

Specifies dataset to receive list output.

ldn Name by which list output is known; default is
$OUT. L=0 suppresses all list output except
for-fatal error messages which are written on
$OUT. :

Specifies dataset on which compiler writes binary load
modules.

bdn Name by which binary load files are known to the
CRAY-1; default is $BLD. An end-of-file is not
written.

Specifies CAL dataset. This option provides for the
generation of a text file that contains acceptable input
to the CAL assembler, possibly with minor hand corrections.
It is intended to be used for hand coding of inner loops
for enhanced efficiency.

edn Name of CAL dataset; default is no dataset.

Enables list or compile options; see table 6-1.

string List of characters representing options to be
enabled.

Disables list or compile options; see table 6-1.

string List of characters representing options to be
disabled.

Table 6-1.

ON and OFF options

ON and OFF Default Default Compilation options
options with ON with OFF 3 P

A X Aborts job after compilation
if any of the program units
contains an error.

B X Beginning sequence number of
each vectorized code generation
block (G implies B)

Cc X Common block names and lengths
listed on ldn after each program
unit

E ‘X Enable recognition of compiler
directive lines

G i X Generated code for each program

i unit

I X Symbol table contains internal
compiler-generated statement
labels.

L X Enable recognition of listable
output control directives

N X Symbol table contains null symbols
(defined but not referenced)

0 X Aborts compilation when 100
warning and fatal error messages
counted

S X FORTRAN source code

T X Symbol table after each program

: unit
i
|

W X f Warning messages concerning

| non-standard or unusual code

X X Symbol table with cross refer-
ences after each program unit
(X overrides T)

\Y/ X Vectorization of inner DO-loops
(for timing purposes)

(See Section 5 for a description of compiler directives.)

2240009

6-5

6.3.4 SET OR CLEAR SENSE SWITCH

The SWITCH control statement allows a user to turn on or turn off a pseudo
sense switch.

In a FORTRAN job, any setting of pseudo sense switches must be performed
before the system loader (LDR) is executed (i.e., SWITCH statements should
precede the LDR statement). Pseudo sense switch settings are available

to a FORTRAN program referencing the SSWITCH utility procedure (see
Appendix C).

6.3.5 RELOCATABLE LOADER

The LDR job control statement causes the execution of LDR, the CRAY-1
relocatable loader. LDR executes within the user field and provides for
loading and linking of relocatable modules from datasets on mass storage
into the memory of the CPU. LDR initializes only those entities specified
with DATA statements. All others remain undefined (i.e., are not default-
initialized to zero).

The system relocatable loader is called through the LDR control statement.
Absolute load modules can also be loaded. The design of the COS loader
tables and relocatable loader allows program modules to be loaded, relocated
and linked to externals in a single pass over the dataset being loaded.

This minimizes the time spent in loading activities on the CRAY-1l. The
loader allows the immediate execution of the object module or the creation
of an absolute binary image of the object module on a specified dataset.
Loader features are governed by parameters of the LDR control statement.
Loader input is assumed to be on a dataset named $BLD unless otherwise
specified.

6.3.6 THE JOB CONTROL STATEMENT FILE
A job control statement deck prepared by the CRAY-1l FORTRAN programmer
becomes the first file of the job dataset contained in the CRAY-1l. Below
is a simplified example of a job control deck:

JOB (JN=MYTEST ,M=100,T=70)

ASSIGN (DN=SIN)

ASSIGN (DN=$0UT)

CFT.

LDR.

2240009 6-6 c

6.4 ERROR MESSAGES DURING PROGRAM EXECUTION

While under COS control, the executable program calls upon numerous system
routines to accomplish certain of its mathematical, input/output and
utility operations. These are identified as required during compilation
of the program, are loaded and linked to it by the system loader (LDR),
and are contained in the system library (SFTLIB). When in use, these
routines will respond to discrepancies in programming and/or certain
equipment situations with messages placed on the jobfile and on the $OUT
dataset. Conditions causing these messages also cause the job to abort.

A description of these messages and their meanings appears in Appendix E.

'2240009 6-7 C

APPENDIXES

CHARACTER SET | A

This appendix describes the 128 control and graphic characters comprising
the ASCII character set. Those numbers, letters, and special characters
that form the CRAY-1l FORTRAN character set are identified by the appearance
of the letter C in the fourth column. All other characters are members of
the auxiliary character set. The letter A in the fourth column of the
table indicates those characters belonging to the ANSI FORTRAN character
set. Note that all control characters are grouped on the first page.

2240009 A-1 Cc

CONTROL ASCII ASCII FORTRAN

CHARACTER ?;gﬁ? PUNngg;CARDEézéiiig DESCRIPTION
NUL 000 12-0-9-8-1 Null
SOH 001 12-9-1 Start of heading (CC)
STX 002 12-9-2 Start of text (CC)
ETX 003 12-9-3 End of text (CC)
EOT 004 9-7 End of transmission (CC)
ENQ 005 0-9-8-5 Enquiry (CC)
ACK 006 0-9-8-6 Acknowledge (CC)
BEL 007 0-9-8-7 Bell (audible or attention signal)
BS 010 11-9-6 Backspace (FE)
HT 011 12--9-5 Horizontal tabulation (FE)
LF 012 0-9-5 Line feed (FE)
VT 013 12-9-8-3 Vertical tabulation (FE)
FF 014 12-9-8-4 Form feed (FE)
CR 015 12-9-8-5 Carriage return (FE)
so 016 12-9-8-6 Shift out
SI 017 12-9-8-7 Shift in
DLE 020 12-11-9-8-1 Data link escape (CC)
DC1 021 11-9-1 Device control 1
DC2 022 11-9-2 Device control 2
DC3 023 11-9-3 Device control 3
DC4 024 9-8-4 Device control 4 (stop)
NAK 025 9-8-5 Negative acknowledge (CC)
SYN 026 9-2 Synchronous idle (CC)
ETB 027 0-9-6 End of transmission block (CC)
CAN 030 11-9-8 Cancel
EM 031 11-9-8-1 End of medium
SUB 032 9-8-7 Substitute
ESC 033 0-9-7 Escape
FS 034 11-9-8-4 File separator (IS)
GS 035 11-9-8-5 Group separator (IS)
RS 036 11-9-8-6 Record separator (IS)
us 037 11-9-8-7 Unit separator (IS)
DEL 177 12-9-7 Delete

Legend: CC - Communication control
FE - Format effector
IS - Information separator

2240009 A-2 c

GRAPHIC ASCII ASCII FORTRAN

CHARACTER O AL PUNngg;?ARD zé:égig DESCRIPTION
(Space) 040 (None) A,C Space (blank)
! 041 12-8-7 Exclamation point
" 042 8-7 C Quotation marks (diaeresis)
043 8-3 Number sign
$ 044 11-8-3 A,C Dollar sign (currency symbol)
E> 04c 0-8-4 Percent
& 046 12 Ampersand
' 047 8-5 C Apostrophe (closing single quotation mark)
(050 12-8-5 A,C Opening (left) parenthesis
051 11-8-5 A,C Closing (right) parenthesis
* 052 11-8-4 A,C Asterisk
+ 053 12-8-6 A,C Plus
’ 054 0-8-3 A,C Comma (cedilla)
- 055 11 A,C Minus (hyphen)
. 056 12-8-3 A,C Period (decimal point)
/ 057 0-1 A,C Slant (slash, virgule)
0 060 0 A,C Zero
1 061 1 ,C One
2 062 2 A,C Two
3 063 3 A,C Three
4 064 4 A,C Four
5 065 5 A,C Five
6 066 6 A,C Six
7 067 7 ,C Seven
8 070 8 ,C Eight
9 071 9 A,C Nine
: 072 8-2 Colon
; 073 11-8-6 Semicolon
< 074 12-8-4 Less than
= 075 8-6 A,C Equal
> 076 0-8-6 Greater than
? 077 0~-8-7 Question mark

2240009 A-3 C

GRAPHIC ASCIT ASCIIT FORTRAN
CHARACTER OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION
CODE CODE (C=CRAY)
¢ 100 8-4 Commercial at
A 101 12-1 A,C
B 102 12-2 A,C \1
c 103 12-3 A,C
D 104 12-4 A,C
E 105 12-5 A,C
F 106 12-6 A,C
G 107 12-7 A,C
H 110 12-8 A,C
I 111 12-9 ! A,C
J 112 11-1 A,C
K 113 11-2 A,C
L 114 11-3 A,C
M 115 11-4 A,C
N 116 11-5 A,C — Upper-case letters
0 117 11-6 A,C
p 120 11-7 A,C
Q 121 11-8 A,C
R 122 11-9 A,C
S 123 0-2 A,C
T 124 0-3 A,C
U 125 0-4 A,C
\Y 126 0-5 A,C
W 127 0-6 A,C
X 130 0-7 A,C
Y 131 0-8 A,C
Z 132 0-9 A,C /
[133 12-8-2 Opening (left) bracket
\ 134 0-8-2 Reverse slant (backslash)
] 135 11-8-2 Closing (right) bracket
~ 136 11-8-7 Circumflex
_ 137 0-8-5 Underline
2240009 A-4

ASCII ASCII FORTRAN

ngggg;gR OCTAL PUNCHED-CARD (A=ANSI) DESCRIPTION
CODE CODE (C=CRAY)
N 140 8-1 Grave accent (opening single guotation mark)
141 12-0-1 ~ N\

142 12-0-2
143 12-0-3
144 12-0-4
145 12-0-5
146 12-0-6
147 12-0-7
150 12-0-8
151 12-0-9
152 12-11-1
153 12-11-2
154 12-11-3
155 12-11-4
156 12-11-5
157 12-11-6
160 12-11-7
161 12-11-8
162 12-11-9
163 11-0-2
l64 11-0-3
165 11-0-4
166 11-0-5
167 11-0-6 -
170 11-0-7
171 11-0-8

— Lower-case letters

e = -- ~ NN X £ <& c R QT O B B8 H A W DA HO O T o

172 11-0-9 /

173 12-0 Opening (left) brace

174 12-11 Vertical line

175 11-0 Closing (right) brace

176 11-0-1 Overline (tilde, general accent)

2240009 A-5 c

CRAY-1 FORTRAN INTRINSIC FUNCTIONS B

The CRAY-1 FORTRAN intrinsic functions described in this appendix -have

been grouped according to general purpose (i.e., trigonometric, exponential,
etc.). This grouping is for convenience and is not provided for in the
ANSI FORTRAN Standard. Note that these intrinsic functions include all
"Basic External Functions" as are described separately in ANSI FORTRAN.

2240009 B-1 . C

. ST ‘FUNCTION ARGUMENT(S) * | EEI
FUNCT ION DEFINITION (y) x NOTES
NAME [TYPE| No. | Type | maNGE
TRIGONOMETRIC FUNCTIONS (Angles are in radians)
SIN R R | [x]<2?"
DS IN D p_| |z|<2"®
Sine y=sin(z) ‘ 1 - |zr‘|'<2"’,
. . CSIN [% C . =x +ix:
.) i <22 1m2 || Tt
cos R R | |xf<2®®
L DCOS D | |e|<2*®
Cosine y=cos (x) 1 | |22
ccos c I U Z=xp+iz,
I.’E' l<2 +1n2 !
Tangent y=tan (x) TAN R 1 R Jar| <22" Non=-ANS |
Cotangent y=cot (x) coT R i R |z]<22" Non-ANS |
Arcsine y=arcsin(z) ASIN R 1 R |zl Non-ANS |
Arccosine y=arccos (x) ACOS R 1 R | |=|s1 Non-ANS |
ATAN R R
y=arctan(x) 1 |} <e0
DATAN D D
Arctangent
) (o1 /2) ATAN2 R) R | =y l<=,
yrarctanizy /g DATAN2 | D D | 0<|zyl<w
Hyperbolic 12
sine y=sinh{z) SINH R 1 R | |x|<2"“-1n2 Non=-ANS
Hyperbolic 12
cosine y=cosh (x) COSH R 1 R | |x]<2"“-1n2 Non=-ANS|1
Hyperbolic Y
tangent s=tanh(x) TANH R ! R lzj<2'“ 1n2
LOGARITHMIC FUNCTIONS
ALOG R N o
Natural cxe=
logarithm y=In(x) DLOG 0 ! D
CLOG c C |odr|<m T=x +i-z;
Common ALOG1P R) R O<zee
logarithm u=log(x) DLOG 1@ 0 0
EXPONENTIAL FUNCTIONS
RT R R
Square 54 Osz<=
root =zt DSQRT D 1 D
CSQRT c ¢ |zpzi<= =z +i Ty
EXP R R 1 1zpe2' 12
DEXP D D
s L =eT 1 -
Exponent y=e |.r,,|<2”~ln2,
CEXP C o]$i|<22“ T=xp+i T

The ANSI FORTRAN Standard does not provide for TAN, COT, ASIN, ACOS, SINH or COSH.

2240009

FUNCTION ARGUMENT(S)
FUNCTION DEFINITION (y) (x) NOTES
([naME [TvPE | NO. [TYPE] RANGE I
GENERAL ARITHMETIC FUNCTIONS
1ABS I |
Absolute ABS R : R [} <e
value y=|z] DABS b 0
CABS R €)z, zjlee Y=o iz
Positive y= &2y if 2>z, IDIM |) | e
difference =0 if x1< xy DIN R ; N RENNEARS T12%2
Truncate to INT I) R Fraction
integral y=|z] AINT R || <246 lost; no
value rounding
IDINT I D
Divide for Hob ! I Jzy | <o, Remainder
Inds =gy -x - AMOD R 2 R
reTalnder y=z1-x, tr,/xzj o<|le<m of
only DMOD D D z1/x2
y= x| if 2,20 or. ISIGN ! !
Transfer y=-|z,| if z,<0 SIGN R 2 R |~"—'1|,|x2|<m
sign 1 2
DSIGN D D
Obtain the first or next in
random y=la series of random RANF R 0 - - Non-ANS |
| number numbers {0<y<1)
Obtain
random " th"'dc"""e"“‘/'“sed RANGET | R 0 - - Non-ANS |
numb d random number seed
Establish
random y=x RANSET R 1] |x|<= Non-ANS |
number seed
Conjugate
complex Y=z, ~i-x; CONJG c 1 c |xr|,|xi[<w z=x +ix;
value
Real]
portion of y=x, REAL R 1 ¢ |lzel,lz <= flo=a iz
value
Imaginary
portion of y=xi AIMAG R 1 ¢ |lzellzglee [fz=z +iox;
Lcomplex valye

The ANSI FORTRAN Standard does not provide for RANF, RANGET or RANSET.

2240009

FUNCTION ARGUMENT (S)
FUNCT 1 ON DEFINITION () (z) NOTES
NAME | TYPE | NO. [TYPE | RANGE
MAXIMUM / MINIMUM FUNCTIONS
MAX@ | !
Select AMAX@ R
max i mum y=the largest of all x [[MAX] | >2 R x|
value AMAX1 R
DMAX1 D D
MING | |
Select AMING R
minimum y=the smallest of all x HMINI | >2 R || <o
value AMINI R
DMIN1 D D
TYPE CONVERSION FUNCTIONS
Integer to 46
real y=x FLOAT R 1 | |:c| <2t
Fraction
Real to y=|z] IFtX 1 1 R |[|=]|<2%8 lost; no
integer 3 rounding
Real to Accuracy
double y=x DBLE D 1 R ||z]<e may be
precision extended
Double Accuracy
precision y=x SNGL R 1 D |lz|<= may be
to real reduced
Real to y=z +i-x CMPLX c 2 R ||, |z, | <= =z _+i-z
complex T 2 1 2 F r i
2240009 B-4

CRAY-1 FORTRAN UTILITY PROCEDURES C

The CRAY-1 FORTRAN Compiler (CFT) includes a set of utility procedures
which, like intrinsic functions, are predefined by name and function.

Unlike intrinsic functions, however, utility procedures are not provided
for by the ANSI FORTRAN Standard. They include subroutines as well as
functions, may have arguments of mixed type, and may modify these arguments'
contents.

The following table describes currently available utility procedures.
Entity types in this table are abbreviated: integer (I), real (R), double
precision (D), complex (C), logical (L), and Boolean (B).

The ANSI FORTRAN Standard does not provide for utility procedures.

2240009 c-1 Cc

SUBROUTINE
NAME ARGUMENT TYPE(S)
FUNCTION (y) DEFINITION - 2 N NOTES
NAME | TYPE ! 3
RTC R _ current clock register _ _ _
Y = content
L .
TIMEF R y = ?urr?nt.clocu register content _ _ _
in milliseconds
SECOND _ _ cumulative CPU time for
Ty TYE : R - -
SECOND | R 1 job in seconds
CLOCK . o=y = current time in ASCII
CLOCK [R 1~ 7 " code (hh:mm:ss) R - -
DATE z, o=y = current date in ASCII
paTE | ® 177 code (mm:dd:yy) LR -
JDATE . == current date (Julian) in IR _
JDATE I R 1 =77 asCli code (yydad) ’)
See the '""Exchange
SYSTEM | y = f(x]) zze;; gég ? 3‘:9 select one | - - |Processor' section
unctions of CRI pub. 2240012
. A Does not return
EXIT Job termination - - = | control to job
. The identity of =
Loc | = :i?:rysa:ggi?Zdogo:a;Iable °r g’é'i - - | (and not its content)
vy P 1 1 is the argument
x, = 1 if sense switch x, is ON
SSWITCH x, = 2 if sense switch «; is OFF, if | i -
z, <}, or if xl>6
Writes EOD and, as required, EOF and a unit number
EODW EOR 'record(s) on unit x ! - - | vy =qor a Hollerith
1 unit name
y = -1 if EOD processed at unit e a unit number
IEOF 1 iy =+1 if EOF read at unit N | - - r. ={or a Hollerith
y = 0 otherwise unit name
u = -2.0 if record at unit r, part read Applies only to
4 =-1.0 if unit r, transfer successful buffered input/
= 0.0 if EOF or EOD read at unit x, output operations
UNIT R 4 =+1.0 if disk parity error while ! - - a unit number
reading unit x r, ={or a Hollerith
i =+2.0 if unit x, error indicated 1 lunit name
Applies only to
N buffered input/
LENGTH | # = words transferred to or from unit r output operations
=0 if EOF or EOD read from unit .r, | - B a unit number
x =‘or a Hollerith
unit name
. _ starting address of current record in _ a uni; ??mbgzh
GETPOS | ¢ T dataset associated with unit x, ! - - | £y Tyor @ hollerd
unit name
Set starting address of current record
in dataset associated with unit r, to a unit number
SETPOS beginning address of dataset if &, = 0,to] | | -l ={or a Hollerith
ending address if xy = -1, or to word unit name
address x,

2240009

SUBROUTINE
RAtE ARGUMENT TYPE(S)
DEFINITION
FUNCTION (y) @ | | = NOTES
NAME [TYPE 3
Bit-by-bit logical AND B, 1 B, |
AND B ¥ = (logical product) of z, and x, R:L RiL' -
Bit-by-bit logical OR B. | B.1
OR B ¥ = (logical sum) of z, and x, R:L R:L’ -
_ Bit-by-bit exclusive OR - B, I B, !
XOR B Y = (logical difference) of z, and z, R:L RoL | -
_ Bit-by-bit equivalence B, I B, 1
EQV B Y = (XO0R) of x, and x, R,L R:L’ -
_ Bit-by-bit logical complement B.I
COMPL B Y= of z, R:L - -
z left-justified 1-bits if Osx15 63
MASK B (128-x1) right-justified 1-bits if | - -
6ll_<x]5128
x, shifted left z, positions with
SHIFT B y leftmost x, positions of z replacing ﬁ’i] _ E;Z?Tla;h?;t
those positions vacated
z shifted Teft z, positions with
SHIFTL B Y leftmost <, positions of z lost and :,Il. | - Logical shift
rightmost x, positions set to zero ’
z shifted right Y positions with
SHIFTR B Yy = rightmost z, positions of z lost and g’:_ | - Logical shift
' leftmost z, positions set to zero ’
LEADZ | y = number of leading zeros in x, :,Il_ - -
’
POPCNT | y = number of ones in z :'ll. - -
y=ux, ifx, =20
CVMGP R o if e <0 R R [R
Y 2 ! 3
y ==z, if T3 < 0
CVMGM R ifx >0 R R R
y = x| 32
- y ==z if Xy = 0
CVMGZ RO, 2y if @, £ 0 R R | R
3
y = x if *3 #0
CVUMGN Ry =z ifz. =0 R R | R
2 3
(x,nz,) U (x. nZ. B,l,|8,1,|8,!1 Bit-by-bit
CSMG B Y 273 1 3) R:L R:L, R:L, selective merge
2240009 c-3

CFT ERROR MESSAGES D

Error messages produced by CFT, the CRAY-1l FORTRAN compiler, are described
in this appendix. Errors which might cause faulty execution. of the compiled
program issue warning messages. Errors that would definitely cause program
failure or that make further compilation impossible issue fatal error
messages. Both types of messages are grouped under appropriate headings

in the following pages.

2240009 D-1 c

WARNING MESSAGES

FEWER SUBSCRIPTS THAN DECLARED
A reference to an actual array element has fewer subscript
expressions in its subscript than dimension declarators in the
corresponding array declarator. The missing subscript expressions
are assumed rightmost in the subscript and are each assigned the
value 1 by the compiler.

LAST ARRAY IN DATA LIST NOT FILLED
The last element in a DATA statement variable list is an unsub-
scripted array and there are not enough constants specified to
completely fill the array. Remaining elements of the array are
not initialized.

LOSS OF PRECISION IN DEFINITION
A constant in a PARAMETER statement must be converted to the type
of the corresponding symbolic name resulting in possible loss of
precision.

I.OSS OF PRECISION IN TYPE CONVERSION
The type of a variable and the type of the associated constant
in a DATA statement differ. The constant is converted to the
type of the variable and precision is lost.

MISSING END STATEMENT
The last or only program unit being compiled lacks and END state-
ment in its last line.

NO PATH TO THIS STATEMENT
The previous statement is an unconditional transfer and this
statement has no statement number.

PUNCHES IN COL 1 THRU 5 IGNORED
Punches appear in the statement number field of a continuation
card and are ignored.

STATEMENT IS NONSTANDARD
A statement is not an ANSI FORTRAN statement but is supported
by CFT.

TYPE CONVERSION IN DATA STATEMENT
The type of a variable and the type of the associated constant
in a DATA statement differ. The constant is converted to the
type of the variable.

TYPE CONVERSION IN DEFINITION

A constant in a PARAMETER statement must be converted to the type
of the corresponding symbolic name.

2240009 D-2 C

FATAL ERROR MESSAGES

ARRAY CANNOT BE DECLARED EXTERNAL
An array named in an array declarator is also specified in an
EXTERNAL statement.

COMMA EXPECTED
A required comma has not been specified. The name of a source
or destination variable, array element, or array is not present
in an ENCODE or DECODE statement.

COMMON BLOCK NAME MUST BE // OR /NAME/
The specification of a common block name does not conform to the
rules for constructing symbolic names.

COMPILER ERROR
A known inadequacy in the CFT compiler. (Please show your
listing to a Cray systems analyst.)

COMPILING TERMINATED DUE TO EXCESSIVE ERRORS
Compilation of the current program unit is concluded due to the
large number of errors encountered. This message appears in the
COS logfile.

CONFLICT IN NAME USAGE
A constant name in a PARAMETER statement has been previously
defined.

CONSTANT LIST EXCEEDS VARIABLE LIST
There is not a one-to-one relationship between constants and
variables in a DATA statement.

CONSTANT LIST IN DATA STATEMENT BAD
A DATA statement is missing a constant list or contains an illegal
separator character.

CONTROL CARD ERROR
The compiler cannot interpret information in the CFT control
statement. This message appears in the COS logfile.

COUNT > 8 ONLY WITH H OR L IN DATA OR ARGUMENT LIST
An R-form Hollerith constant is specified with more than 8
characters, or an H- or L-form Hollerith constant is specified
with more than 8 characters in other than a DATA statement or
an actual argument list.

2240009 D-3 c

DATA IN BLANK COMMON IS ILLEGAL
The DATA statement cannot be used to initialize blank common.

DIMENSION EXCEEDED ON DATA STATEMENT
A subscript in a DATA statement element exceeds the corresponding
array declaration.

DIVIDE BY O
Dividing by the constant 0 is illegal.

DO TERMINATOR PRECEDES DO STATEMENT
The statement label that terminates a DO-loop precedes the
corresponding DO statement.

DO VARIABLE ACTIVE OR IMPROPER
The loop control variable is either already active from a
previous loop or is incorrectly specified.

DOUBLY DEFINED FUNCTION
Statement functions cannot be defined more than once in a program
unit.

DOUBLY DEFINED STATEMENT NUMBER
Statement labels cannot be defined more than once in a program unit.

DUMMY ARGUMENT IN EQUIVALENCE STATEMENT
A dummy argument in a procedure subprogram cannot be named the
same as a local variable or another dummy argument.

DUPLICATE COMMON DEFINITION
Common cannot be defined more than once.

DUPLICATE DIMENSION OR FUNCTION DECLARATION
Dimensions and functions cannot be declared more than once.

DUPLICATE DUMMY ARGUMENT NAMES
A symbolic name appears twice in the dummy argument list of a
FUNCTION or SUBROUTINE statement.

DUPLICATE TYPE DEFINITION
Variables cannot be given more than one type.

EBCDIC NOT IMPLEMENTED i
The current version of CFT allows only ASCII characters.

ERROR IN DATA CONSTANT

The elements in the constant list of a DATA statement must be
constants or constant names.

2240009 D-4 C

ERROR IN SFN PARAMETER LIST
The formal parameter list in an arithmetic statement function
definition statement contains an illegal element.

ERROR NEAR >>>ccccccece<<<
An error has been detected within or near the eight listed
characters from a FORMAT statement.

EXTERNAL/VARIABLE NAME CONFLICT
A name has been used for both a variable and an external procedure.

EXTRA ITEM AFTER LEGAL END OF STATEMENT
Characters are specified after the syntactic end of a statement.

FATAL ERROR IN DECLARATIVES
A syntax error in a specification statement, an ambigously
declared entity, or other syntactic or statement sequence error.

FUNCTION MUST HAVE A PARAMETER LIST
A FUNCTION statement lacks a parenthesized list of dummy arguments,
required even if the list is empty (in which case the notation
"()" must be used).

FUNCTION NAME IN COMMON OR DIMENSION STATEMENT
A function name cannot be used as an array name.

FUNCTION OR CALL REFERENCES ITSELF
A reference to the function or subroutine subprogram being compiled
is encountered with that subprogram.

H,L,R COUNT .LE. ZERO
In an nH, nL, or nR specification of a Hollerith value, 7 is
less than or equal to zero.

H,L,R COUNT PAST END OF STATEMENT
In an nH, nL, or nR specification of a Hollerith value, n specifies
more characters than are provided. This message also indicates
that an apostrophe terminating a Hollerith string is not specified.

HOLLERITH CONSTANT > 8 CHARACTERS
A Hollerith constant of more than 8 characters is specified in
other than H- or L-form and in other than an actual argument list
or a DATA statement constant.

ILLEGAL CHARACTER
A nonstandard FORTRAN character, misplaced character, or syntax
error has been encountered.

ILLEGAL CHARACTER IN NAME FIELD
An illegal character is found in a field that must contain a
symbolic name.

2240009 D-5 c

ILLEGAL CHARACTER IN NUMBER FIELD
An alphabetic character appears in what should be a numeric field.

ILLEGAL COMPLEX RELATION
Relational operator for complex operands must be .EQ. or .NE. .

ILLEGAL CONDITIONAL STATEMENT
This type of statement is not allowed as the conditional statement
of a direct logical IF statement.

ILLEGAL CONTINUATION
More than 19 consecutive continuation cards encountered, or the
first card of a program unit is a continuation card.

ILLEGAL DATA REPETITION FIELD
The repetition count in a DATA constant list must be an integer
greater than O.

ILLEGAL DATA TYPE CONVERSION
The type of a variable and associated constant in a DATA state-
ment differ. The type conversion required is illegal or undefined.

ILLEGAL DO TERMINATOR
DO loops must not terminate on unconditional transfer statements.

ILLEGAL FORMAT NAME .
A format identifier cannot be recognized as a statement label
or the name of an array.

ILLEGAL MIXED MODE OR CONVERSION
The types of two operands in an expression are incompatible, or the
type of array element or variable being defined is incompatible
with the type of expression being evaluated.

ILLEGAL STATEMENT SEQUENCE
An improper sequence of statement types has been encountered
(i.e., a GO TO statement followed by a DIMENSION statement).

ILLEGAL STATEMENT TYPE
A statement keyword is misspell (e.g., DIMENSOIN) or is other-
wise unidentifiable.

ILLEGAL SUBSCRIPT IN DATA STATEMENT
Subscripts in a DATA statement must contain only constants or
constant names and must be greater than zero.

ILLEGAL SUBSCRIPT IN DECLARATIVE
A dimension declarator must be an integer constant or constant
name or a dummy argument, and must be greater than zero.

2240009 D-6 C

ILLEGAL TERM IN CONSTANT EXPRESSION
A constant expression in a PARAMETER or DATA statement is specified
with other than constants or the symbolic names of constants. A
constant expression in a DATA statement is specified with other
than constants, the symbolic names of constants, or the names of
implied-DO variables.

ILLEGAL TYPE IN SUBSCRIPT EXPRESSION
A subscript expression is not of type integer or contains a
constant that exceeds 22b-1,

ILLEGAL TYPE NAME
A type or IMPLICIT statement contains a keyword other than INTEGER,
REAL, LOGICAL, COMPLEX, DOUBLE PRECISION, or DOUBLE.

ILLEGAL UNIT NAME
An input/output unit identifier cannot be recognized as an integer
value, a symbolic name, or a Hollerith character string specified
in H-form.

ILLEGAL USE OF ** IN CONSTANT EXPRESSION
A constant expression specifies exponentiation to a non-integer
power.

ILLEGAL V ITEM
The name of a source or destination variable, array element, or
array in an ENCODE or DECODE statement is not recognizable as such.

ILLEGAL VALUE IN CONSTANT EXPRESSION
The evaluation of a constant expression yields a result that is
out of range.

ILLEGAL VARIABLE TYPE
A variable referenced in an ASSIGN or in a computed GO TO state-
ment is not of type integer.

INCORRECT ARGUMENT TYPE
Actual argument is of the wrong type in a function reference.
INCORRECT NUMBER OF DO ARGUMENTS
More than three arguments have been encountered after the
equal sign in a DO statement.

INPUT FILE EMPTY
An end-of-file record was encountered as the first record of
the source input dataset.

LINE LENGTH EXCEEDS 152
One or more lines exceed 152 characters during FORMAT statement
editing.

2240009 D-7 C

MISSING EQUAL SIGN
An equal sign is missing in a PARAMETER or statement function
definition statement. ‘

MISSING LEFT PARENTHESIS
Opening and closing parentheses do not match or required
parenthesis not present.

MISSING PERIOD

A delimiting period is missing from a logical operator or logical
constant.

MISSING RIGHT PARENTHESIS
Opening and closing parentheses do not match or required
parenthesis not present.

MORE SUBSCRIPTS THAN DECLARED
An array reference has more subscripts than were declared.

MORE THAN 7 DIMENSIONS
CFT does not support arrays having more than seven dimensions.

NO CLOSING)
The closing parenthesis in a FORMAT statement is missing.

NON-NUMERIC PUNCH IN COLUMNS 1-5
A statement label specified in columns 1-15 of an initial line
contains other than digits and blanks.

NOT ENOUGH MEMORY TO COMPILE
The program unit is too long to compile in the available memory.

PARAMETER DOUBLE DEFINED
A name may be given only one value in a PARAMETER statement.

RETURN NOT PERMITTED IN MAIN PROGRAM
A RETURN statement is encountered in a main program unit.

SFN REFERENCES ITSELF
A statement function definition statement cannot be recursive.

STATEMENT NUMBER MISSING
An ASSIGN statement lacks a statement label reference.

STATEMENT TEMPORARILY NOT IMPLEMENTED
A statement is recognized but is not implemented as yet in the
CRAY-1 compiler. '

2240009 D-8 C

SUBSCRIPT EXCEEDS DIMENSION BOUNDS
An implied-DO list specified in a DATA statement contains a
subscript which, when evaluated, yields a result that is less than
one or greater than the size of the named array.

SYNTAX ERROR
Illegal element, name where number required, extra or missing
punctuation.

SYNTAX ERROR IN DATA IMPLIED DO
An implied-DO list specified in a DATA statement is of improper
syntactical form, references a variable that is not an implied-DO
variable, or references an array element that does not specify the
implied-DO variable for this implied-DO list in its subscript.

TOO MANY ERRORS IN FORMAT, SCAN STOPPED
CFT attempts recovery from up to three errors before abandoning
the FORMAT statement.

UNBALANCED PARENTHESES
Opening and closing parentheses do not match; required parenthesis

not present.

UNDEFINED ASSIGNED SN
A statement label referenced in an ASSIGN statement is not defined.

UNDEFINED FORMAT
"A referenced FORMAT statement is not defined.

UNDEFINED STATEMENT NUMBER
A referenced statement label is not defined.

UNDEFINED TYPE CONVERSION
A constant expression specified in a PARAMETER statement cannot
be converted to the type of the corresponding constant name.

UNEXPECTED END OF STATEMENT
A statement encountered that is syntactically incomplete.

VARIABLE LIST EXCEEDS CONSTANT LIST

There must be a one-to-one correspondence between constants and
variables in a DATA statement.

I 2240009 D-9 c

COS ERROR MESSAGES E

During COS control of executable program execution, certain messages will
be listed in the logfile and in the $0UT dataset to describe certain
programming and/or equipment discrepancies. These are listed alphabetical-
ly in this appendix.

2240009 E-1 C

ARGUMENT ERROR
An actual argument processed by a specific library routine is out-
side its allowable bounds. The name of the routine appears in the
COS logfile.

BLOCK NUMBER ERROR
Data error encountered in using the mass storage subsystem.

BUFFER IN WORD COUNT < 1
Final transfer location in BUFFER IN statement must be greater
than or equal to initial transfer location.

BUFFER OUT WORD COUNT < 0O
Final transfer location in BUFFER OUT statement must be greater
than or equal to initial transfer location, or one less than initial
transfer location if an end-of-record is to be produced following
a partial write operation

END OF name
An END statement was executed in FORTRAN program unit name.
(Processing continues with the next job control statement.)

ERROR ON OPEN
A called-for dataset cannot be opened.

EXIT CALLED BY name
A CALL to utility procedure EXIT was executed in FORTRAN program
unit name. (Processing continues with the next job control statement.)

FIELD SPECIFICATION MISSING
A required value is missing after a format specification edit
descriptor. The applicable format specification is listed in the
$SOUT dataset.

FILE DOES NOT EXIST
The required file has not been assigned to this job.

FILE NOT OPEN
The required file cannot be written on.

FORMAT MUST BEGIN WITH (

A format specification is incorrect and/or has been destroyed during
program execution.

2240009 E-2 c

ILLEGAL FIELD WIDTH
The field width specified for a format specification edit descriptor
is in error. The applicable format specification is listed in the
$OUT dataset.

ILLEGAL FORMAT CHARACTER
An illegal character has been encountered in a format specification.
The applicable format specification is listed in the SOUT dataset.

ILLEGAL LOGICAL VALUE
A record being input does not have the letter T or the letter F in
a field specified as containing a logical value. The applicable
format specification is listed in the SOUT dataset.

ILLEGAL SEQUENCE OF CHARACTERS
Characters encountered in processing a format specification are not
allowed in the order used. The applicable format specification is
listed in the $0UT dataset.

IOERP UNABLE TO WRITE IN $OUT
The Input/Output Error Processor (IOERP) is unable to write an error
message on the $OUT dataset ;the SOUT DSP is destroyed.

I/0 SYSTEM ERROR - SEE ANALYST
An unidentified system error has occurred.

NUMERIC: EXPONENT OVERFLOW
An exponent value exceeds the range of legal values in the CRAY-1
during the conversion of values input under format control. The
applicable format specification is listed on the $OUT dataset.

NUMERIC: EXPONENT UNDERFLOW
An exponent value exceeds the range of legal values in the CRAY-1
during the conversion of values input under format control. The
applicable format specification is listed on the $OUT dataset.

NUMERIC: ILLEGAL CHARACTER
An illegal character is encountered in a numeric field being converted-
ed under format control. The applicable format specification is list-
ed in the $OUT dataset.

NUMERIC: NULL FIELD
An input field is encountered during format control processing which
illegally contains all blank characters. The applicable format
specification is listed in the SOUT dataset.

NUMERIC: OVERFLOW
A value being input exceeds the range of legal values in the CRAY-1
during its conversion under format control. The applicable format
specification is listed on the $SOUT dataset.

2240009 E-3 c

PAUSE NOT SUPPORTED, STOP SUBSTITUTED
The PAUSE statement is the same as a STOP statement in CRAY-1 FORTRAN.

READ AFTER WRITE
Reading a record immediately after writing a record on the same file
is not permitted. All information following the record written is
destroyed.

READ CALL OUT OF SEQUENCE
A sequence of input operations is improperly structured.

READ PAST END OF DATA
An input operation has been attempted which goes beyond the physical
end of dataset.

RECORD LENGTH EXCEEDED
An input operation has attempted reading more information than
contained in the record being read. The applicable format specifi-
cation is listed on the $0OUT dataset.

STOP nnnnn IN name
A STOP mmnnn statement was executed in FORTRAN program unit name.
Processing continues with the next job control statement.

SYSTEM ERROR - EMPTY INPUT BUFFER
An input operation attempts to read a file that has never been
written or that is missing from the last sector of the mass storage
subsystem.

UNCLEARED END OF FILE
An input operation has attempted reading beyond an end-of-file just
read without an intervening test for its presence.

UNFORMATTED LIST EXCEEDS RECORD LENGTH
An unformatted input operation calls for more data than is contained
in the current record.

UNIT NO. > 102 or<O
An out-of-range unit number has been specified.

UNMATCHED OR TOO MANY PARENTHESIS GROUPS
Parentheses are nested more than two deep within the outer
parentheses of format specification or are improperly paired.
The applicable format specification is listed on the S$OUT dataset.

2240009 E-4 C

VALUE AND SPECIFICATION TYPES DIFFER
A format specification is encountered which has an edit descriptor
that cannot be used with the corresponding input/output list item
(variable, array, etc.) due to data type differences. The appli-
cable format specification is listed on the $OUT dataset.

WRITE AFTER UNCLEARED ERROR
A buffered output operation has been attempted on a unit that was in
error during the previous transfer and was not checked for (by the
UNIT function).

WRITE CALL OUT OF SEQUENCE
A sequence of output operations is improperly structured.

WRITE ON READ ONLY FILE
An output operation has been attempted on a file protected against
such.

WRITE PAST END OF ALLOCATED AREA
An output operation has been attempted which would cause the allocated
mass memory subsystem storage area to be exceeded.

xxxxxxxrr WAS CALLED BY yyyyyyyy AT LOCATION aaaaaaad
This message gives information that aids in locating errors causing
job termination. In the first line, xxxxxxxrxr is name of the (COS)
system routine that detected the error. Similar information is
printed for each previously executed procedure until the name of the
main program appears as yyyyyyyy. aaaaaaaa identifies the location
of the applicable exit from the corresponding procedure or main
program.

2240009 E-5 C

CREATING NON-FORTRAN PROCEDURES F

This appendix describes and exemplifies conventions for the creation
of non-FORTRAN function and subroutine subprograms programmed in

CAL, the CRAY-1 Assembly Language. CAL is documented in Cray Research
Publication 2240000, "CAL ASSEMBLER VERSION 1 REFERENCE MANUAL".

2240009 F-1 C

GENERAL

CRAY-1 Assembly Language (CAL) routines that follow linkage conventions
described in this appendix can be loaded and executed with executable
programs compiled by CFT, the CRAY-1 FORTRAN compiler. Conventional
practices for linking CAL routines with FORTRAN programs are defined in
the following areas:

e Argument transmission
e B and T register use

e Error traceback

ARGUMENT TRANSMISSION

Argument transmission is by one of two methods:
® Call by address
e Call by value

CALL BY ADDRESS

In the call-by-address mode of argument transmission, memory addresses of
arguments are provided to the called procedure in locations immediately
preceding its entry point. The address of the initial actual argument

in the FORTRAN subroutine call or function reference is stored at entry
point -1 of the called procedure; the next at entry point -2; etc. A
maximum of 511 argument addresses may be stored in this manner. The
called procedure must allocate the memory required for this purpose.

Note that these arguments (and not their addresses) may be modified by
the called procedure prior to returning control to the calling FORTRAN
program unit.

CALL BY VALUE

The CRAY-1 FORTRAN Compiler creates a call-by-value sequence of code
upon encountering references to known library functions. This mode of
argument transmission may also be used for entering one non-FORTRAN
procedure from another.

In the call-by-value mode, the calling procedure enters all scaiar ana/

or vector arguments into V, VL, and/or S registers as appropriate. Return
arguments, if any, are conveyed to the calling procedure via these same
registers. 1In the general case, the first scalar or vector argument (or
first result) is passed in Sl or V1, respectively. If a double or complex
value is passed, S2 or V2 is used as well. Up to seven registers can be
used for passing values. These may be a combination of scalar and vector
registers. However, only one of each pair of similarly numbered S and V
registers is used (that is, if S1 is used for the first value and the

next argument to be passed is a vector, it will be passed in V2 rather
than in Vv1).

By convention, procedures developed for call-by-value argument transmission
are assigned names ending with % (e.g., SQRT%).

2240009 - F-2 C

B AND T REGISTER USE

Contents of the first 56 B and T registers (register addresses 00 through
67,) must be saved upon entry to a non-FORTRAN procedure and restored
before control is returned to the calling procedure. By convention, the
last eight B and T registers (register addresses 70_, through 77_) are

work registers that need not be saved and restored even if used by the
called procedure.

ERROR TRACEBACK

Called routines are entered with a return jump. Register B0O, therefore,
contains the exit address for the called routine. Upon being entered, the
called routine should load register BOl with the address of a 3-word error
recovery linkage table. Word 1 of this table contains the called routine
name (up to 8 left-adjusted ASCII characters). Word 2 contains the entry
value contained in BOO (the exit address for the called routine). Word 3
contains the entry value contained in BOl (the linkage table address of
the calling routine).

Example:

The following is an example of a FORTRAN call to a CAL routine:
1 7

CALL TEST (A,B)

The following CAL code corresponds to this call:

LOCATION RESULT OPERAND COMMENT
1 10 20 35
Al A ADDRESS OF FIRST PARAMETER
W.TEST-1,0 Al STORE ADDRESS AT TEST-1
Al B ADDRESS OF SECOND PARAMETER
W.TEST-2,0 Al STORE ADDRESS AT TEST-2
R P.TEST RETURN JUMP TO TEST

2240009 . F-3 C

Subroutine TEST could be coded in CAL follows:

LOCAT I ON RESULT OPERAND COMMENT
1 10 20 35
IDENT EXAMPLE
ENTRY TEST
BCOUNT SET 5 ROUTINE USES B2 through B6
TCOUNT SET 1 ROUTINE USES REGISTER TO
TABLE CON 'TEST'L
BSAVE BSS 2+BCOUNT SAVE BO, B1,...,B6
TSAVE BSS TCOUNT SAVE TO
BSS 1 2ND ARGUMENT ADDRESS
BSS 1 1ST ARGUMENT ADDRESS
TEST A0 BSAVE
Al 2+BCOUNT
,AO BO, Al SAVE B REGISTERS
S0 TO
TSAVE,0 S0 SAVE TO
Al TABLE CURRENT LINKAGE TABLE ADDRESS
B Al
Al W.TEST-1,0 ADDRESS OF FIRST ARGUMENT
S1 A1,0 VALUE OF FIRST ARGUMENT
Al W.TEST-2,0 ADDRESS OF SECOND ARGUMENT
A1,0 $3 RETURN NEW VALUE TO SECOND ARGUMENT
AO BSAVE
A2 2+BCOUNT
BO,A2 ,AD RESTORE B REGISTERS
53 TSAVE, 0
T0 $3 RESTORE TO
J BO RETURN
END
2240009 F-4 C

CRAY-1 CENTRAL PROCESSING UNIT

This appendix highlights those features of the central processing unit
(CPU) of significance to the CRAY-1l FORTRAN programmer in program unit
developing and testing. A complete description of the CPU is documented
in Cray Research publication 2240004, "CRAY-1l Computer System Reference
Manual.

2240009 G-1

G

THE MEMORY SECTION

Depending on the model of CRAY-1 Computer System, the memory section of the
CPU contains 262,144 or 524,288 or 1,048,576 memory locations for retaining
as many 64-bit CRAY-1 computer words. These locations are evenly divided
among sixteen independently operating memory banks. Each word is associated
with a unique address and can be accessed in serially-addressed blocks at a
rate of 80-million per second. Computer words contained in memory can be
received from or transmitted to a single section of the CPU at any given
moment.

Other features of the memory section include:

e Memory protection, which guards specified areas of memory
against inadvertent modification,

e Error detection and correction, which detects and, in most cases,
corrects errors encountered in reading from memory locations,
and

e Conflict detection and resolution, which enables simultaneous
memory bank operations and prevents the loss of information when
memory bank access conflicts occur.

THE INSTRUCTION CONTROL SECTION

The instruction control section performs the interrelated CPU functions
of program and interrupt control. Program control functions obtain and
execute instructions. Interrupt control functions coordinate the orderly
processing of unpredictable error and other conditions occurring during
CPU operation.

Program control

Instruction control registers supporting program control functions include:
e The program register,
e The instruction buffer registers,
e The instruction issue registers, and
e The real-time clock register.

The 22-bit program (P) register specifies the address of that memory
location containing the next instruction required for program execution.

A CRAY-1 instruction is either 16 or 32 bits and is contained in one or
two of the four 16-bit parcels at that address. (A 32-bit instruction can
have its first 16 bits in the last parcel at that address and its last 16
bits in the first parcel at the next higher address.) The P-register also
indicates which instruction in the word executes.

2240009 G-2 c

Each of four instruction buffer registers store 64 1l6-bit instruction
parcels within the instruction control section. If P-register addresses
indicate instructions already in the buffer registers, no reference to
memory occurs. Otherwise, the memory location addressed has its content

and the contents of fifteen adjacently-addressed memory locations read into
an instruction buffer register. Instructions to be executed are transferred
from an instruction buffer register into instruction issue registers.

The instruction issue registers hold an instruction during its decoding.
The first seven bit positions of each instruction identify it among 128
possible CRAY-1 instructions. Instruction execution is complete when the
CPU actions called for have been produced.

All sections of the CPU operate on a 12.5 nanosecond time base. The
instruction control section permits access to a 64-bit real-time clock
register that is incremented every 12.5 nanoseconds.

Interrupt control

The interrupt control functions of the instruction control section provide
for immediate interruption of program execution upon the occurrance of
certain programming and equipment conditions. The CRAY-1 Operating System
(cos) is given instant control of the system bv these functions. It is
provided with information enabling analysis of the situation, selection of
appropriate actions, and restoration of control to the interrupted computer
program, if feasible. The mode (M) and flag (F) registers serve inter-
related functions in accounting for the type of interrupt and the correspond-
ing action to be taken. BAn exchange address (XA) register locates the
sixteen memory locations that contain information required for interrupt
processing and designated to receive the contents of key operating and
control registers from throughout the CPU. The procedure through which
this is accomplished is called an exchange sequence. The content of these
sixteen registers is referred to as an exchange package.

THE COMPUTATION SECTION

The computation section of the CRAY-1l (Figure G-1) consists of operating
registers and functional units that perform three types of processing:
vector, scalar, and address. Certain registers and functional units are
associated with each of these types. For vector processing, there are a
set of 64-bit multi-element registers, three functional units dedicated
solely to vector operations, and three floating-point functional units
shared by vector and scalar operations. For scalar processing, there are
two levels of 64-bit scalar registers, four functional units dedicated
solely to scalar processing, and the three floating-point units shared
with vector operations. For address processing, there are two levels of
24-bit registers and two integer arithmetic functional units.

2240009 G-3 o

Memory

Vector Registers

[v7

V6

r Vs

Va4

I Shift
Logical

77
8

—

Add

Vector
Functional
Units

ecip. Ap.
Multip

VECTOR MASK Jl:

Scalar Registers

T00

through

s

177

Add

Floating-
Point
Functional
Units

logi

53
8 3|

Add

S gman gl

SO

Address Kegisters

BOO
through
B77

6

Scalar
Functional
Units

i

Multi

Add

2240009

Figure G-1.

The computation section

Address
Functional
Units

Registers

The five types of operating registers in the computation section are:
¢ Address (A) registers,
® Intermediate address (B) registers,
® Scalar (S) registers,
® Intermediate scalar (T) registers, and
e Vector (V) registers.

Supporting registers include the vector length (VL) and vector mask (VM)
registers.

A registers - The eight 24-bit A registers are primarily used as address and
index registers for memory references. They are individually designated

A0, Al, ..., A7. Data may be directly transferred between A registers and
memory. '

B registers - The sixty-four 24-bit B registers provide rapid-access
temporary storage for the A registers. They are individually designated
BO, Bl, ..., B77g. Data is transferred between B registers and memory
via high-speed block transfers.

S registers - The eight 64-bit S registers are the principal scalar registers
for the CPU. They are individually designated SO, Sl1l, ..., S7. These
registers serve as source and destination registers during scalar arithmetic
and logical operations. They may also furnish one operand during vector
operations. Data flows between these registers and the A, T, V, and VM
registers and between the S registers and memory.

T registers - The sixty-four 64-bit T registers provide rapid access
temporary storage for the S registers. They are individually designated by
the symbols TO, Tl, ..., T77s. Data is transferred between T registers

and memory via high-speed block transfers.

V registers - The eight 64-element V registers are the operating registers
for vector computations. Each element is 64 bits. The V registers are
individually designated VO, V1, ..., V7. These registers serve as a
source and destination registers for vector arithmetic and logical operations.
Data flows between V registers and S registers, and between V registers and
memory .

The VL register - The 7-bit VL register holds a value in the range of 1-64
Vector computations are performed on vectors of the length specified by the
content of VL.

The VM register - The 64-bit VM register contains a vector mask to control
register selection during the execution of a vector merge instruction. Bits
of the VM register can also be set during the execution of a vector mask
instruction. Each bit of the VM register corresponds to a vector element

in a selected V register.

2240009 G-5 c

Comparison of scalar and vector processing

Scalar instructions apply a function to one or two operands contained in
registers and enter the result into a register. An example would be adding
two integers in S1 and S2, then entering their sum into S3. Vector instruc-
tions apply a function to one or two sets of operands called vectors. The
addend vector is placed into one V register and the augend vector into
another V register. Execution of a single vector addition instruction
would then produce the desired vector sum. In most applications, vector
processing provides significantly higher result rates than are possible
using scalar processing. The CRAY-1 FORTRAN compiler includes vector
instructions at appropriate points in the programs it compiles.

Functional units

Arithmetic, logical, and related operations are performed by twelve
functional units, any number of which may be in operation at once.

A functional unit receives operands from operating registers, operates on
them and delivers the result to a register. Functional units generally
operate in a three-address mode where two source and one destination
operating register addresses are specified.

Each functional unit performs its operations in a fixed amount of time.

The time required between delivery of the operands to a unit and its
completion of operations is termed "functional unit time" and is measured in
12.5 nanosecond clock periods.

Functional units are fully segmented such that a new set of operands

for the next computation may enter a functional unit each clock period
even though the functional unit time may be more than one clock period.

The twelve functional units are described in four groups: address, scalar,
vector, and floating-point. The address, scalar, and vector groups relate
to the A, S, and V registers, respectively. The floating-point group
supports both scalar and vector operations, and accepts operands from and
delivers results to S and V registers.

Address functional units - Each address functional unit performs 24-bit
two's complement integer arithmetic on operands obtained from A registers
and delivers a result to an A register.

Address add unit

The address add unit performs a 24-bit integer addition or subtraction
in two clock/periods.

Address multiply unit

The address multiply unit forms a 24-bit integer product from two
24-bit operands in six clock periods. Rounding is not performed.

2240009 G-6 C

Scalar functional units - Each of four scalar functional units operates
on 64-bit operands obtained from S registers and, in most cases, delivers
a 64-bit result to an S register. Arithmetic is two's complement integer.

Three floating-point functional units are associated with both scalar and
vector operations. When a floating-point functional unit is used for a
scalar operation, the general description of scalar functional units applies.

Scalar add unit

The scalar add unit performs a 64-bit integer addition or subtraction
in three clock periods.

Scalar shift unit

The scalar shift unit shifts the 64-bit content of an S register or
the 128-bit content of two concatenated S registers. A shift count
is obtained from an A register or directly from the instruction. A
single-register shift is executed in two clock periods; a double-
register shift in three.

Scalar logical unit

The scalar logical unit performs bit-by-bit manipulation of 64-bit
quantities obtained from S registers. This operation requires one
clock period.

Population/leading zero count unit

This functional unit counts the number of one bits in an operand in
four clock periods. It also counts the number of leading zero bits

in an operand in three clock periods. 1In either case, a 64-bit
operand is obtained from an S register and a 7-bit result is delivered
to an A register.

Vector functional units - Vector functional units operate on operands
obtained from one or two V registers, or from a V register and S register.
Results are generally delivered to a V register.

One or a pair of register elements is transmitted to a funtional unit each
clock period. The corresponding result is available 7 clock periods
later, where n is constant for a given functional unit. The content of
the vector length (VL) register determines the number of register element
pairs to be processed by a functional unit.

The three vector functional units. are exclusively associated with vector
operations. Three floating-point functional units are associated with
both vector and scalar operations. When a floating-point unit is used for
a vector operation, the general description of vector functional units
applies.

2240009 / G-7 C

Vector add unit

The vector add unit performs a 64-bit integer addition or subtraction
for a vector operation and delivers the result to a V register. The
functional unit time for the vector add unit is three clock periods
per element-pair operation.

Vector shift unit

The vector shift unit shifts the 64-bit content of a V register element
or the 128-bit content of two concatenated V register elements. The
shift count is obtained from an A register. Shifts are end-off with
zero f£ill. The functional unit time is four clock periods.

Vector logical unit

The vector logical unit performs bit-by-bit manipulation of 64-bit
quantities contained in V registers. The functional unit time is
two clock periods.

Floating-point functional units - Three floating-point functional units
perform floating-point arithmetic for both scalar and vector operations.

When executing a scalar instruction, an operand pair is obtained from §
registers and the result is delivered to an S register. Operands for

most vector instructions are obtained from two V registers or from a V
register and an S register; normalized results are delivered to a V register.

Floating-point add unit

The floating-point add unit adds or subtracts two 64-bit floating-
point operands in six clock periods.

Floating-point multiply unit

The floating-point multiply unit performs full- and half-precision
multiplication of two 64-bit floating-point operands and computes
two minus a floating-point product for reciprocal operations. The
floating-point multiply unit also handles integer multiplication as a
special case. The functional unit time is seven clock periods.

Reciprocal approximation unit

The reciprocal appoximation unit approximates the inverse of a 64-bit
floating-point operand. This operation requires fourteen clock periods.

2240009 G-8 C

Functional unit relationships

Table G-1 summarizes the relationships between functional units,
the three computation modes, the three types of arithmetic, and the

operations performed in the computation section of the CPU.

Each

of the twelve functional units is named in the body of this table.

Table G-1.

Functional unit relationships

COMPUTATION MODE VECTOR SCALRAR ADDRES S
ARITHMETIC TYPE
INTEGER FLOATING POINT| INTEGER INTEGER
OPERATION \J| (64-BIT) (64-BIT) (64-BIT) (24-BIT)
ADDITION VECTOR FLOATING-POINT SCALAR ADDRESS
ADD ADD ADD ADD
FLOATING-POINT ADDRESS
MULTIPLICATION MULTIPLY MULTIPLY
RECIPROCAL L FLOATING-POINT . L
APPROXIMATION RECIPROCAL
VECTOR SCALAR
LOGICAL LOGICAL T LOGICAL T
- VECTOR L SCALAR
SH SHIFT SHIFT -
POPULATION AND SCALAR

LEADING ZERO

COUNT

POPULATION AND
LEADING ZERO
COUNT

Data representations

All numeric data in the CPU are represented in one of three forms:

These are illustrated in figure G-2.

24-bit integer

64-bit integer

64-bit floating point

The n bit positions within each

numeric data word are denoted O through n-1 from left to right .

2240009

24-BIT 2's COMPLEMENT

INTEGER "INTEGER
(BIT POSITION) O 23
64-BIT |gq 2's COMPLEMENT INTEGER
INTEGER
(BIT POSITION) O 1 63
64-BIT t
PLOATING POINT |5 EXPONENT COEFFICIENT
(BIT POSITION) O 1 1516 63

A
BINARY POINT

S = Sign bit
st = Sign bit of coefficient

Figure G-2. Numeric data representation

24-bit integer data ~ A 24-bit integer datum is represented as a sign bit
followed by 23 bits. Positive integer values up to 8,388,607 (that is,
223—1) may be represented and are indicated by a zero in the leftmost
(sign) bit position. Negative integer values with magnitudes as large as
8,388,608 (that is, 223) are indicated by a one in the leftmost (sign)
bit position and are represented in two's complement form. Zero is
represented by zeros in all 24 bit positions.

Examples:
Decimal value 24-bit (octal)
representation
14 00000016
-14 77777762
1,624,718 06145216
-1,624,718 71632562
0 00000O0O0CO
£,388,607 37777777
-8,388,607 50000001
-8,388,608 4b00000O0DO

2240009 G-10 C

64-bit integer data - A 64-bit integer datum is represented as a sign bit
followed by 63 bits. Positive integer values up to 2 831 may be represent-
ed and are indicated by a zero in the leftmost (sign) bit position.

Negative integer values with magnitudes as large as 2%% are indicated by a
one in the leftmost (sign) bit position and are represented in two's. comple-
ment form. Zero is represented by zeros in all 64-bit positions.

Examples:

64-bit (octal)

Decimal value representation
14 0000000000000000000O0T1G6
-14 1777777777777 71777771762
7,291,343,192,400,000,615 0624600340022635573147
-7,291,343,192,400,000,615 1153177437755 1422046731
0 0000000D000O0O0OOOOOOOOOOO
9,223,372,036,854,775,807 0777777771777 777777771717
-9,223,372,036,854,775,807 10000000000000O0O0OOOCOOO 1
-9,223,372,036,854,775,808 10000000000O00O0OO0OOOOGOOOQO

64-bit floating-point data - A 64-bit floating-point datum is represented by
a sign bit followed by 15 exponent bits followed by 48 coefficient bits.

As illustrated in figure G-2, the implied binary point for the coefficient
precedes its first bit (position 16) such that the coefficient is always
less than one.

The sign of the coefficient is in the leftmost bit of the word (that is,
position zero), is zero to indicate a positive coefficient and is one to
indicate a negative coefficient. The value of the coefficient is contained

in the rightmost 48 bit positions of the word (positions 16 through 63).
Unlike integer value representations which are expressed in two's complement
form when negative, a floating-point coefficient is the same for both positive
and negative representations of the same value; only its sign bit changes.
This is spoken of as signed magnitude representation. The largest fraction-
al value the coefficient may accurately contain is 1-27"8,

The exponent portion of a floating-point data representation occupies bit
positions 1 through 15 of the word. It contains a value representing that
positive or negative integral power of two by which the coeff1c1ent is to
be multiplied. A biased exponent value of 400008 represents 2" (or a
multiplier of 1). This value may be increased to a maximum of 57777s which
represents 28191

2240009 G-11 C

Correspondingly, it can be decreased to a minimum of 20000 which represents
278192 Exponent values of 60000s or higher, or of 17777 or lower, are
invalid and represent out-of-range situations. An exponent values of zero is
an exception; it is invalid except when used with a coefficient of zero

to represent the quantity zero. Table G-2 summarizes the interpretations

of significant exponent value ranges.

Table G-2. Significant exponent value ranges

Exponent Interpretation
0] Valid only for the value zero
1 - 17777¢ Invalid
200005 - 37777¢ 278192 _ o7t
400003 20
40001g - 57777 2! - 28191
60000g - 77777s Invalid

The appearance of leading zeros in the coefficient portion of a floating-
point value characterizes that value as being unnormalized. The normalized
form has these leading zeros eliminated and the exponent adjusted according-
ly. The CRAY-1 FORTRAN compiler assumes only normalized floating-point
values.

Examples:
Floating-point representation(octal) .
Decimal value Sign | Exponent Coefficient Notes
(0) (1-15) (16-63)
.5 0 40000 4000000000000000 Normalized
-.5 1 Loos57 0000000000000001 Unnormalized
.75 0 40033 |0000000006000000 Unnormal i zed
-1.75 1 40001 7000000000000000 Normalized
1.00 0 L0001 4000000000000000 Normalized
-2.00 1 40002 4L000000000000000 Normalized
281,474,976,710,655 0 koo6o |7777777777777777 Normal ized
-140,737,488,355,327.5| 1 Loos57 7777777777777777 Normalized
562,949,953,421,310 0 Loo61 7777777777777777 Normalized
-.25 1 37777 4000000000000000 Normalized
.000000000001 0 37731 4313631402267520 Normalized
-1,000,000,000,000 i 40050 7215224504000000 Normalized
(1-2 %% 0 koooo |7777777777717777 Normalized
0 0 00000 0000000000000000 Zero

2240009

Floating-point operations deal chiefly with normalized values to provide
for the most accurate representation possible in the 48 coefficient bit
positions. (The CRAY-1 FORTRAN programmer requires an understanding of
unnormalized floating-point values only for certain error analysis
situations.)

The only representation of zero permitted is a word containing zeros in all
64 bit positions.

Arithmetic operations

The three types of arithmetic operation in the CRAY-1 CPU are:

e 24-bit integer,

© 64-bit integer, and

o 64-bit floating point.
Integer arithmetic operations - All integer arithmetic, whether 24-bit or
64-bit, is performed in two's complement. Address add and address multiply

functional units perform 24-bit integer arithmetic. Scalar add and vector
add functional units perform 64-bit integer arithmetic.

Multiplication of two integer operands is accomplished by the floating-
point multiply unit which recognizes zero exponents in both operands as

a special case. The upper 48-bits of the result are returned as an un-
normalized value preceded by fifteen zeros. Division of integers requires
that they first be converted to floating-point format, then processed by
the floating-point functional units.

Floating-point arithmetic operations - Floating-point numbers are represented
as a signed binary coefficient and an exponent or power of two.

In terms of decimal values, the floating-point format of the CRAY-1 allows
the expression of numbers accurate to about 15 decimal digits and in the

- +
approximate decimal range of 10 2500 through 10 2500

Normalized floating point

A non-zero floating-point number is normalized if the most significant
bit of the coefficient (position 16) is one. This condition implies
that the coefficient has been shifted to the left as far as required
to eliminate all leading zeros.

Floating-point range errors

overflow of the floating-point range 'is indicated by an exponent value
of 60000 or greater; underflow by an exponent value of 17777g or less.
Detection of the overflow condition can cause ar interrupt depending
upon the mode (M) register content.

2240009 G-13 C

Floating-point addition

A floating-point add range error condition is generated when the larger
incoming exponent is greater than or equal to 60000g. The floating -
point error flag is set and an exponent of 60000g is sent to the result
register along with the computed coefficient, as in the following
example:

60000.4 (Range error)
+ ©57777.4

60000.6 (Range error)

Floating-point multiplication

In the floating-point multiply unit, if the exponent of either operand
is greater than or equal to 60000g or if the sum of the two exponents
is greater than or egqual to 60000g, the floating-point error flag is
set and an .exponent of 60000g is sent to the result register along with
the computed coefficient.

An underflow condition is detected when the result exponent is less
than or equal to 177774 and causes a zero exponent and coefficient to
be returned to the result register. Underflow is also generated when
either, but not both, operand exponent is zero. Both exponents equal
to zero is treated as an integer multiply.

The floating-point mulitply unit approximates a normalized 48-bit

fractional product. This results in a product variation between
1.16 x 10 1® and 6.66 x 10 16,

Floating-point reciprocal approximation

For the floating-point reciprocal approximation unit, an incoming
operand with an exponent less than or equal to 2000ls or greater
than or equal to 60000g causes a floating-point range error. The
error flag is set and an exponent of 60000g is associated with the
computed coefficient.

Floating-point division is performed by the reciprocal approximation
method.

2240009 G-14 c

The division algorithm that computes S1/S2 to full precision requires

four operations:

1. 83 =1/S; Reciprocal approximation

2. Sy = (2 - S3 - Sp) Reciprocal iteration

3. S5 =851 - S3 Numerator approximation

4. Sg = Sy - S5 Hélf-precision quotient correction

factor

This approximation is based on Newton's method and, at step 1, is

correct to 30 bits.

The additional Newton iteration at step 2

increase this accuracy to 47 bits and is applied as a correction
factor at step 4 in a full-precision multiply operation.

Where 31 bits of accuracy is sufficient, the reciprocal approximation
instruction may be used with half-precision multiplication to produce
a half-precision quotient.

The 18 lowest-order bits of half-precision results are returned as zeros.
Rounding is applied to the 30-bit result.

Logical operations

The scalar and vector logical units perform bit-by-bit manipulation of
64-bit quantities. Operations provide for forming logical products,
logical differences, and logical sums.

A logical product is the AND function:

operahd one 10

10
00

operand two 11

result 10
A logical difference ‘is

operand one 10

00
the exclusive OR function:
10
00

operand two 11

result 01

10

A logical sum is the inclusive OR function:

operand one 10

10
00

operand two 11

result 11

2240009

10

THE INPUT/OUTPUT SECTION

The input/output section of the CPU contains twelve input and twelve output
channels that are divided into four groups of six channels each.

Each input channel consists of a 16-bit data channel, a 64-bit assembly
register, a current address register, and a limit address register. An input
channel can cause a CPU interrupt condition when the current address equals
the limit address or when the input device sends a disconnect signal.

Each output channel consists of a 16-bit data channel, a 64-bit disassembly
register, a current address register, and a limit address register. An
output channel can cause a CPU interrupt condition when the current address
equals the limit address. A disconnect is sent to the output device after
the last word of a transmission has been sent and acknowledged as received.

It is possible to have an I/O memory request every clock period.

Maximum request rates in clock pulses (CPs) are:

e 1 channel 8 CPs (10 million words per second)
® 1 channel group 4 CPs (20 million words per second)
e All channel groups 1 CP (80 million words per second)

2240009 G-16 C

RANDOM INPUT/OUTPUT OPERATIONS H

FORTRAN input/output statements provide for the transfer of information
directly to and from input/output devices. CRAY-1 FORTRAN input/output
statement specification conforms with this provision but is also able
to exploit the presence of these data in memory. This enables random
input/output operations to be performed whereby records can be accessed
directly instead of serially. This appendix describes methods for per-
forming random input/output operations.

2240009 H-1 C

The CRAY-1 FORTRAN Compiler (CFT) associates unit identifiers specified

in input/output statements with datasets assigned to a job. This assoc-
iation permits input/output statements to perform operations on datasets
as though they were actual input/output devices. Thus, the forms of

these statements remain standard. Within a dataset, each of a sequence of
files contains a sequence of records. Input/output statements normally
operate on these files and records in their order of appearance within

the dataset (i.e., perform sequential input/output operations).

CFT provides for non-sequential or random input/output operations on data-
sets through the use of the utility procedures GETPOS and SETPOS (see
Appendix C). Additionally, any dataset to be processed in this manner
must be so identified on the ASSIGN control statement for that dataset

(as described in Cray Research publication 2240011, "CRAY- OS Version

1.0, External Reference Specification").

A dataset can only be created using sequential output operations. It may
be accessed and modified through random input/output operations but only
if the lengths and starting locations of each record in the dataset are
determined initially and kept current.

Using random input/output operations, any record in the datafile can be
replaced by a record of equal length without rewriting the entire datafile.

The following is an example of random input/output programming.

Example:

In the main program below, up to one hundred records containing from zero
to ten words each are written into a dataset associated with input/output
unit 1. A final record of up to 201 words is added and contains length
and location information for each preceding record plus a count of their
number. The dataset is rewound. At a later point in the program, a sub-
routine is called which causes all records to be read in reverse order
and all but the last stored into ten word vectors of a one hundred vector
array. Information in the last record directs this process. The sub-
routine then returns control to the main program.

The following are assumed preset:

e NRECS to the number of records to be processed (1sNRECS<100)

® RLENGTH(Z) to the number of words in the “th record written
(O<RLENGTH(Z)<10)

e RECORD(j) to the jth word to be written in each non-empty record
(1s5<RLENGTH(Z))

2240009 H-2 ‘ c

PROGRAM RANDOMIO
INTEGER RLENGTH (100) ,ADDRESS (100) ,RECORD(10) ,NRECS,LRA,RESULT
COMMON RESULT(100,10)

DO 20 I=1,NRECS
ADDRESS (1)=GETPOS(1)

20 WRITE(1) (RECORD(J),J=1,RLENGTH(I))
LRA=GETPOS (1)
WRITE (1)NRECS, (RLENGTH(1), ADDRESS (1) ,1=1,NRECS)
REWIND (1)

CALL READIN(LRA,T)

END

SUBROUTINE READIN(LRA,UNIT)
INTEGER RCOUNT,RADDRESS(100) ,LNGTH(100) ,RESULT,UNIT,LRA
COMMON RESULT(100,10)

CALL SETPOS(UNIT,LRA)
READ (UN1T)RCOUNT, (LNGTH (1) ,RADDRESS (1), I=1,RCOUNT)
DO 10 I=1,RCOUNT
J=RCOUNT-1+1
CALL SETPOS(UNIT,RADDRESS(J))
10 READ (UNIT) (RESULT(1,K) ,K=1,LNGTH(J))

END

2240009 H-3

INDEX

Actual argument
Actual array declarator
Addition operator
Adjustable array declarator
Alphanumeric characters
ANSI FORTRAN

character set

conformance to standard
Argument

actual

association of

dummy

storage

transmission

3-131
3-29
3-36,3-39
3-28
3-

w

A-
3-

S

3-53,67,131
3-131

3-130

3-137

F-2

Arithmetic assignment statement3-70

Arithmetic constants
Arithmetic expression
Arithmetic IF statement
Arithmetic operations, CRAY-1
Array

actual

adjustable

data initialization

data type

declarator

defined entities

definition

dimensionality

dummy .

dummy arguments

element name

element order

name

properties

size

storage

symbolic name

undefined entities
ASCII character set
ASSIGN control statement
ASSIGN TO statement
Assigned GO TO statement
Asterisks in output
Auxiliary character set

BACKSPACE statement
Blank common

Blank characters in constants
Blanks in input

BLOCK DATA statement
Block data subprograms
Boolean constants
Boolean data

Brackets, square
BUFFER IN statement
BUFFER OUT statement

2240009

3-20
3-35
3-75

3-31
3-132
3-19
3-30
3-19
3-29
3-29
3-30,137
3-143
3-138
A-1
6-3
3-71
3-74
3-101
3-3

3-91
3-61
3-20
3-101
3-135
3-10,135
3-25
3-14
3-2
3-112
3-113

Index-1

Buffered I/0 operations

CAL procedures
CALL . statement

CFT (see Compiler)
CFT control statement
Character, alphanumeric
Character set
ANSI
ASCII
auxiliary
FORTRAN
Characters, control
CODE directive
Coding form
Collation sequence
Columns on coding form
Comment lines
Common block
blank
COMMON association
EQUIVALENCE association
list
named
size
storage sequence
storage unit association
symbolic name
COMMON statement
Compiler
input to
directive lines
directives
output from
Complex constants
Complex data
COMPLEX FUNCTION statement
COMPLEX statement
Computation section
arithmetic operations
data representation
functional units
logical operations
registers
scalar and vector processing
Computed GO TO statement
Constants
array declarator
description
Hollerith
increment integer
name
symbolic names
Continuation lines
CONTINUE statement
Control characters

[} |
O wwkHEH

o

ww P
[RO i
MU OOW YN WS

[
©

9,60

1
0
9

NMWWWWwwwwwuw
]

3-61
3-61
3-61,137
3-61
3-141
3-60,62

]
(]
[}
[}

'

=Y

(¥}
w

Nuuwu;:mwwul
o

1
NOUMHOOVUKRFEFWOAHEENDREOVUYOH

w

w

B
w

U.-’C)OCPOOO

w
1
N
@©

3-4,20
3-44
4-2
3-29
3-143
3-9
3-81
3-90

Conversion
complex
double precision
integer
maximum value
real
type
zero value
COS (see operating system)
CPU
computation section
general description
input/output section
instruction section
memory section
CRAY-1 Computer System
configuration
general description
overview

Data
arithmetic assignment
ASSIGN statement
association
deck
declaration
definition
form
formatted assignment
formatted transfer
identifiers
initialization
logical assignment
name
reference
representation
specification
storage
transfer direction
type
unformatted transfer

DATA statement

Dataset

DD-19 drives

Decimal point in input

Decimal range of constants

Declarator
actual array
adjustable array
array
dimension
dummy array

DECODE statement

Dimension declarator

Dimension limit

DIMENSION statement

Direct logical IF statement

Disjuncts, logical

2240009

3-70
3-71
3-15
6-1
3-58,66
3-15
3-10
3-115
3-90
3-19
3-68
3-71
3-10
3-15
3-14
3-14,19
3-15
3-88
3-10,41
3-89
3-68,69
3-84
2-2
3-101
3-21

3-31
3-34
3-28,58
3-28
3-31
3-115
3-28
3-14
3-58
3-76
3-49

Index-2

Disk storage unit
Dividing by zero
Division operator
DO-1list, implied
DO-loops
active
dependencies
description
DO-variable
execution
inactive
iteration count
loop control processing
range
terminal statement
transfer into
transfer of control
vectorizable
DO statements
Double-precision constants
Double-precision data
DOUBLE PRECISION statement
DOUBLE PRECISION FUNCTION
statement
DOUBLE statement
Dummy arguments
Dummy array declarator

Edit descriptor
A
apostrophe
asterisk
colon
D
description

TOoOtHHIZIOMMm

quotation mark
R
slash
T
X
2

Editing of data
complex
description
double-precision
integer
numeric
positional
real

2-2
3-53
3-36
3-68,87

3-78
4-3
3-77
3-79
3-78
3-78
3-79
3-79
3-78
3-79
3-81
3-78
4-1,9
3-77
3-23
3-14
3-64

3-123
3-64
3-130,132
3-29

3-109
3-97
3-97
3-99
3-103
3-93
3-104
3-103
3-106
3-98
3-101
3-108
3-107
3-99
3-97
3-110
3-99
3-98
3-98
3-108

3-103
3-83

3-103
3-101
3-101
3-98

3-103

EJECT directive
elements of arrays
Ellipses in this publication
ENCODE statement
END statement
Endfile record
ENDFILE statement
End-of-file record
ENTRY statement
EQUIVALENCE statement
Error messages
CFT fatal error
CFT warning
Operating system
Program execution
Error traceback
Execution
end
main program
sequence
Exponentiation
Expressions
arithmetic
arithmetic relational
Boolean :
complex
definition
double-precision
evaluation
equivalent
Hollerith
Hollerith relational
integer
interpretation
logical
real
relational
subscript
type v
External functions
External procedures
EXTERNAL statement

Factors

Fatal error messages
Field width

Files

Floating point values
Format identifier

Format specification
FORMAT statement

Formats, input/output
Formatted data assignment
Formatted record

FORTRAN call to CAL routine
FORTRAN character set
FORTRAN language

FORTRAN programming

2240009

3-35
3-45,54
3-51,55
3-41
3-35
3-41
3-52
3-54
3-44,55
3-46
3-41
3-41
3-47,55
3-41
3-45,55
3-31
3-41

3-13,123

3-13
3-67

3-38
5-5

3-97
3-84

3-23;G-9

3-92
3-92
3-92
3-85
3-115
3-83

Index~-3

Functions
description
dummy arguments
external
intrinsic
name
order of evaluation
reference execution
referencing
subprograms
FUNCTION statement
Functional units in CPU

Global entities

GO TO statements
assigned
computed
unconditional

Hollerith constant
Hollerith data
Hollerith expressions
Host processor

Identity operator
IF statement

direct logical

indirect logical

three-branch

two-branch
IMPLICIT statement
Implicit type
Implied DO-list
Initial line
Input/output

buffered

lists

operations

random

section of CPU

sequential

statement execution
Instruction

in CPU

interrupt control

program control
Integer constants
Integer data
Integer division
INTEGER FUNCTION statement
INTEGER statement
Interpretation rules
Interrupt control
Intrinsic functions

CRAY-1 FORTRAN

description

examples

EXTERNAL statement

referencing

restrictions

symbolic name of

3-14
3-133
3-123
3-119
3-19
3-53
3-53
3-118
3-12
3-123
G-6

3-140

3-74
3-73
3-72

3-26,44
3-14
3-44
2-1

3-36,39

3-76
3-77
3-75
3-75
3-65
3-19
3-87
3-9

3-111
3-86
3-83,111
3-84;H-1
2-3

3-84

B-1
3-12,119
3-120
3-67
3-119
3-120
3-144

Invariant values
Italics in this publication
IVDEP directive

Job control deck

JOB control statement

Job control statement file
Job control statements

Job dataset

Keywords

Labels, statement

LDR control statement
LENGTH function

Less than operator

Lines -

List

List control information
LIST directive

List items

Lists, input/output

Local entities

Logical assignment statement
Logical constants

Logical data

Logical expression

LOGICAL FUNCTION statement
LOGICAL statement

Main program

Mass storage subsystem
MCU

Memory

Memory operations
Multiplication operator

Named common
Names
array element
array use
main program
symbolic
Negation operator
NOCODE directive
NOLIST directive
Notation in FORTRAN
NOVECTOR directive

Operating system

error messages
general description

2240009

Index-4

Operators
addition
arithmetic
consecutive
description
division
equal to
exponentiation
greater than
greater than or equal to
identity
less than
less than or equal to
logical conjunction
logical equivalence

logical exclusive disjunction

logical inclusive disjunction

logical negation
logical non-equivalence
multiplication
negation
not equal to
precedence among types
precedence of arithmetic
relational
subtraction

Operands
arithmetic
logical
relational

Output
common block name list
fatal error messages
source statement listing
statement label list
symbolic table
warning messages

PARAMETER statement
Parentheses

PAUSE statement

Peripherals

Position, record on file
Positional editing
Positioning by format control
Powers of negative values
Powers of zero

Precision of real constants
Primaries

PRINT statement

Printer control

Printing

3-36,39
3-36
3-39
3-6
3-36
3-45
3-36
3-45
3-45
3-39
3-45
3-45
3-47
3-47

3-47

3-47
3-47
3-47
3-36
3-36,39
3-45
3-51
3-36
3-45
3-36,39

3-37
3-48
3-45

u’immt{!mu‘!
BN N

3-20,66
3-54
3-82
2-1
3-84
3-98
3-96
3-53
3-53
3-23,24
3-37,48,52
3-85
3-90
3-90

Procedure

external

utility
Procedure subprograms
Program control
Program, executable
Program specification
PROGRAM statement
Program unit
PUNCH statement

Quotients, integer

Random I/O operations
READ statement

Real constants

Real data

Real exponent

REAL FUNCTION statement
REAL statement

Record

Registers, CPU
Relocatable binary program
Relocatable loader
RETURN statement

REWIND statement

Rows on coding form

Scale factor
Sequence
Source deck
Specification subprogram
Statement
classification of
data specification
description
executable
functions
functions, names of
label
label list
list output
nonexecutable
order of
size
syntax
STOP statement
Storage sequences
Storage units
Subprogram
SUBROUTINE statement
Subroutine subprograms
Subroutines
Subscript values

2240009

3-12
3-67
3-67
3-12
3-72
3-10
3-1
3-117
3-10
3-85

3-43

H-1
3-85
3-21
3-14
3-23
3-123
3-64
3-83
G-5
5-2
6-6
3-129
3-91
3-7

3-99,104
3-3

6-1

3-10

3-56
3-56

3-7
3-7,56
3-12,120
3-144
3-5

57

W wwwwuwm

-4
-2
_'7'
-16
-7
-2
-81
3-15,137
3-15
3-10
3-126
3-12
3-13,126
3-31

Index-5

Subtraction operator
SWITCH control statement
Symbol table

Symbolic names

Syntactic items

Syntax of statements

Temporary variables, use of
Terminal lines

Terms

Terms, logical

Type, change of

Type statements

Unconditional GO TO statement

Unformatted record
UNIT function

Unit identifier
Units, input/output
Unsigned constant
Utility procedures

Value
arithmetic expression
arithmetic relational
expression
Boolean expression
false
Hollerith relational
expression
logi.cal disjunct
logical expression
logical factor
logical term
true
Variables
defined entities
description
dummy arguments
initialization of data
name
storage sequences
symbolic names
undefined entities
Vector array reference
VECTOR directive

Vector operations, programming

Vectorization of DO-loops
Vertical spacing on print
output

Warning messages
WRITE statement

3-12,135;C-1

3-54

3-45
3-51
3-45,46

3-46
3-49
3-49
3-49
3-49
3-45,46

3-138
3-14
3-132
3-68
3-19
3-137

=R Ay TECHNICAL COMMUNICATIONS
7850 Metro Parkway, Suite 213, Minneapolis, MN 55420 « (612) 854-7472

PUBLICATION CHANGE NOTICE
April 15, 1978

TITLE: CRAY-1 FORTRAN (CFT) Reference Manual

PUBLICATION NO. 2240009 REV. C

Revision C obsoletes all previous printings of this publication. This printing
brings the manual into full agreement with the April 1978 release of the CRAY-1
FORTRAN Compiler (CFT) Version 1.01.

Comment Sheet

Publication Number: 2240009 C
Title: CRAY-1 FORTRAN (CFT) Reference Manual

Please feel free to share with us your comments, criticisms, or compliments
regarding this publication. We value your feedback. Thank you.

Comments:

Mail to: Publications
CRAY RESEARCH, INC.

7850 Metro Parkway
Suite 213 G = Y

Minneapolis, MN 55420 RESEARCH; INC.

CFT CONTROL STATEMENT FORMAT

The form of the CFT control statement is:

CFT (l=idn,L=1ldn,B=bdn,C=cdn,0N=string ,0FF=string)

I, L, B, C, ON, and OFF may appear in any order or may be omitted to
cause the default options described below to apply. |If all are omitted,
a period may be used in lieu of empty parentheses.

idn specifies
ldn specifies
bdn specifies
edn specifies

a

a

a

a

source input dataset; default is $IN.

listable output dataset; default is $OUT.

binary output dataset; default is $BLD.

listable output dataset in a form suitable’for
input to the CRAY-1 Assembly Language assembler, CAL; default
is no dataset.

string specifies a string of letters each of which enables or disables a
particular compiler option when specified ON or OFF, respectively.
The default is described with each option in the chart below.

control statement.

2240009

ON OFF c lati .
Letter in| (enables | (supresses ompilation option
string option) option) (t indicates default)
I A + Aborts job after compilation if any of the
program units contains an error.
B + List beginning sequence number of each block of
vectorizable code (G implies B).
C + List common block names and lengths after each
program unit.
I E + Enable recognition of compiler directive lines.
G List code generated for each program unit.
| List CFT-generated statement labels in symbol
table.
l L + Enable recognition of listable output control
directives.
| N T List null statement labels in the symbol table.
Q + Abort CFT when 100 errors have been encountered.
S + List FORTRAN statement.
T + List symbol table for each program unit.
v + Vectorize inner DO loops (for timing analyses).
l W + List warning messages.
X + List cross-references within each program unit's
symbol table (X overrides T).
' Refer to section 6 for additional information on COS and the CFT

Compiler directives are described in section 5.

: =A ' HEADQUARTERS e 7850 Metro Parkway, Suite 213, Minneapolis, MN 55420 e (612) 854-7472

RESEARCH, INC. DEVELOPMENT LABORATORY e P.O. Box 169, Chippewa Falls, W 54729 e (715) 723-0266

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-001
	1-01
	1-02
	2-001
	2-01
	2-02
	2-03
	3-000
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	5-00
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	E-01
	E-02
	E-03
	E-04
	E-05
	F-01
	F-02
	F-03
	F-04
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	G-11
	G-12
	G-13
	G-14
	G-15
	G-16
	H-01
	H-02
	H-03
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	_01
	replyA
	xBackA
	xBackB

