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TIMING CODES ON THE CRAY-1: PRINCIPLES AND APPLICATIGCNS

ABSTRACT

Complete instruction-timing infcrmation for the CRAY-1 computer is
prasented together with a method of recording the minimum necessary details
for praecise pradictiosn of the running time of various algorithms. Several
examples of optimum assembly language coding are listed, with comments that
illustirate the timing details. Usage of the code CYCLES which predicts
timing of actual CAL, CFT, or CIVIC programs is described. Usage of codes
TIMER @ndd TALLY is dascribed.

[. INTREEDUCT 1 GN

The aim of this document is to show how to locate and analyze the
segimznts of a code that are important from a timing viewpoint. Computer
o TIMER and TALLY are usaeful for this purpcese. Then, having identified
@l s2ctions, we consider how toe perform tham optimally. Computer code
is of value in obtaining such performance.

Gn the CRAY-1, optimum programming consists of finding the best

algorithm and aveoiding conflicts in implementing it. Usually the best
algerithm can be characterized as a "parallel vector" algorithm.

Once an algorithm has been decided upon, one must consider how it can be
implemented with actual hardware instructions. The algorithm may have to be
charng if it causes unavo ble conflicts due to the shared nature of the
CRAY -1's data paths, regis? s, functional units, and mamory. Avoiding
conflicts i primarily a matter of understarnding the timing details involved.

g

Several examples of improved performance achieved through timing
anzlysis will be given. (For @ description of the enviromment at LLNL in
which your code will run, see Appendix B.)



[I. OVERALL TIME ANALYSIS GN THE CRAY-1

The first step in improving the performance of a code is to find out

whewﬂ it is spending its time. In mcst programs there is some small
iterative algor ithm that uses the majority of the CPU time. Thus,
improvoemaents to & very limited nunber of lines of code can result in dramatic

recuctions in the amount of time required to perform a calculation. In
particular, if you have & FORTRAN preogram in which, say, 70% of the time is
spent in one inmer DO loop, vou can limit vour effort, initislly, to making
improvoments to that loop. In such cases, obviously, the us2 of assembly
lLarg e should be considered. Much of this report will be concerned with
time analysis of relatively snall assembly langusge routines. Hoviever,
initially we look at Tull cods analveis,

Code Timing with TIMER and TALLY

The LASNEX code group, primarily Jim Kohn and Georgs Zimmerman, has put
imple set of toels to do code timing on the CRAY-1 (and 7600).

s are similar te BEGINMAP-ZRNUMAP but are simpler to use. The
A by this set of tools is much less extensive than BEGINMAP but
sential ingredients teo do timing analysis for almost any code.

containg the

. TIMER is a subroutine which vou must call in your code. The call looks
ike:

CALL TIMERC(!IGC, ‘FMAME’ ,BUFFER, LBUFFER, ‘HEADER’ , LHEADER)
where,

1ac is an 1/0 Connector (10C) available for 1/0. However, if this ldC
ever becomss unavailable, TIMER tries to find another one. The
IGC is active only during actual writes to disk by TIMER. 1GC=0
is satisfactory.

FNAME is a file sequence name. A sequenced name is formad from this by
appanding a Jdigit (usually 0) on the right end of the name
truncat ing the laefimost character if necessary. I FNAME already
ends with a decimal digit, FNAME is used as is for the first file
in the soguencs, [f any file in the sequence already exists it
will be destiroyed.

BUFFER is an 1/0 buffer. [t must be permanently available and reserved
for TIMER's use only. Otherwvise garbage could be written to disk.
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LBUFFER is the length of the 1/0 buffer. It may be any size convenient
for the user. 512 words seems to work quite well.,

HEADER is an ASCII string which will be written into the beginning of the
dizk file to identify this timing file (in case multiple runs are
mada) . Date, time, code name, problem name are some possible

items that you may wish tco put in th2 header.

LHEADER  is the ward length of HEADER. [t must be at least ohe word long,
even if the hoader itself is klank.

TIMER oparates by interr upting your code every 4 milliseconds and
finding out w L the p-counter is, [t stores the p-counter in the buffer,
RN A buffer if necessary, and then returns from interrupt. TIMER itself
peiform any actual timing analysis. It just creates a timing file
ountaers in it. The aciual aralysis is done by the TALLY code.

To obtain & PoMp‘ete timing analysis of your code, TIMER should be
cﬂll@d a8 war 2 pessible during the ﬁxeruuloh of your code, Once the call
e cmlls are required until your code wants to
Your corp should not be affected by the

The overhead is approxlmately 5 microseconds per

in it.
IR, which should net be detectalyle. IMER contains only about 100
lines of FORTRAN so it is vaery small,

To terminate the timing analysis, a call must be made to TIMEND. TIMEND
is called with no arguments. It shuts down the timing, flushes the buffer,

clo the filz and Truncates it. TIMEND is an entry point inside TIMER.
Mo externals are reguired by TIMER (or TIMEND). It is self-contained,
It is available by loading your ceode with ALIBCRAY. If you cannot access

ALTBIRAY, the scurce for TIMER may be extracted from file CLASS, and compiled
to praduce a binary file for LDR

TIMER stores one_other piece of information in the timing file along

with the p-ccunter, This is a process index. This ind2x is read from common
block /QLDBKX/ which is on:: word long. By default this word is set to 1.
Your code may set this word at any time to cdesignhate the current process
which is astive. The only roason to e this would ba to obtain a mor

detailed breakdown of the usage of utility subroutines (=.g. SQRT, LﬁG, EXP,
BASEL IR routines, etc.) awcordlng to the structure of your code

example, you could fFind out which logical process in your code is usihg SQART
the most. This festure is usually used in overlayed (or segmented) codes
wheire the overlay (or sagment) number can be stored into this common block.
But any sxrgle leval code could use this equally well, Max imum value for
this proo index is 235 on CRAY.

el dulel o bed Bgedel bgeiefelofob f feb it LEBEEL E PR B Dot d 1t



The TALLY code reguires 2 files in order to do a timing analvsis. The
first is the set of timing files (usually 1 file) produced by the TIMER
rout ing. The second filz is the symbol table Tile produced by the loader.
The symbol takle is usually comtainad in your controllee file so you may
noirmal ly use your exccuting code name as the symkol table file. A copy of
TALLY can be extrao 2l from public file "NELSGN", at LLNL.

The execute line to run TALLY is:
TALLY timing-file-name symbol-table-file [optionsl 7/ t v

wharz the following options aire available,

none (i.e., Nno options specified). This does a short timing analysis.
Histograms on a subroutine by subroutine basis are not produced.

AL, This cdues a complete timing analysis producing all of the output
TALLY carn. Most people use this option.

BS. n Set the Bin Size to n parcels. Tally accumulates timing information
irnto bhins. Emch bin represents n parcels of your code, Default is

Nn=32 (8 words) which works very nicely.

The timing analysis produced by TALLY is fairly straightforward to
understand ., It is broken into 3 logical sa2ctions. Each sections includes
parcantage braskdowns as well as actual numbers of hits. The term "hit"
Seaigﬁates an instance of the p-counter being in a given routine or a given

in.

The first section does on overall timing analysis, The number of hits
in each subprogram as well as the percent of the total time the subprogram
used is listed. A subprogram sppears in this list only if at least 1 hit was

recordaed within its bounds,

The second section does a similar kKind of analysis but by process index.
Thus this is a bit more detailed. The usage of commonly used utility
subpragrams is broken up by process index.

The third section (if requested with ALL.) is a detailed analysis (via
histogram) of each subprogram for which hits were recorded, The breakdown is
by bins whare a bin represents a small section of code. The number of hits
within a bin is printed along with a ‘bar’ indicating graphically the
relative time spent within thz bin. Note that tihe algorithm determining the
lerngth of the ‘bar’ is non-lingar, The actual hit count must be used for an
acourate, detailed aralvsis.,

Elet bbb bbbt PR LR LE PR E R D Ukl L LR E ol L



Example of output from TALLY.

First, for a GRAFLIB ‘typical’ test problem written to identify those
routines in which time was being spent.

PAK ki
00113633 00000041 IZR@STAT 2 . 2004

Second, after akbhout one personal month of effort spent recording the
three main time-consuming routines into CALL.,

]
]
B
]
]
01/27/781 L]
]
NHIT= ©98 =
LOCATIGN LENGTH SUBRGUTINE NHIT PERCENT ]
2]
00061626 00000635 MAIN., 3 . 3006 ]
00063560 QOUO0NC0D1S  RNFL 3 . 3006 ]
Cc00647534 00000515  JPPLZA 1 1002 ]
000E7425  QN000106 ZMOVEBIT 7 7014 &
00G71430 00009634 KXDRPL 2 2004 ]
00072275 00000040 ZMUVEWRD 3 3006 L]
00073725 00000146 KXVT2D 126 6253 ]
Q00740728 000Q0230 KACL2D 444 44.48390 [
00075740 00002450 KPFRLN 356 .6713 ]
00110614 00000070 QBP 51 ©.1102 &
-]
B
]
a

03/16/81 =

NHIT= 218 g

LGCATION LENGTH SURRGUTINE NHIT PERCENT g

00061653 Q0000635 MAIN., 2 .9174 &

00063805 00000015  RNFL. 4 1.8349 i}

Q00E2E22 00000121 ZCITOA 1 4587 A

00065276  CO00CER268 JPPILL2A 1 4587 El

Q0070173 QOCQ108 ZMOVEBIT 4 1.8349 H

00074424 00000620 KXDRPL 1 .4587 B

00075255 QUON0040 ZMOVEWRD 4 1.8349 ]

00077130 00000040 HKXVT2D 7 3.2110 a

00077170 0COOOQ076 HCL2D 128 58.7156 ]

oN1013835 00002410  KPFRLN 6 2.7523 B

00114365 00000525 KFRVEC 10 4.5872 B

N011%112 Q6GOON070  QBRPAK 49 22.4771 0

00115202 00000050 KWRFFN 1 4587 =

Anothar month spont devaeloping and coding vector versions of HCL2D and 7]
QABFAK reduced them to 3834 and 19 hits respectively, and raesulted in a final ]
tenfold improvemert for this heavily used LLNL utility, (NHIT= 97), M

_5_



FLOWTRACE

Often one would like to find out which subroutines of a large code are
frequaently called and gain an overall knewledge of its flow. CFT users can
accompplish this by using FLOWTRACE. This is a compile-tim2 option, which,
gl?hough expensive, does produce a rather nice kreakdown of a code’s

ehavior.

An example of the output from FLOEWTRACE is shown bolow. Full details
and assistance are available from the local CRAY representatives.

ROUT I NE TIME % CALLED AVERAGE T
1 FENBTV 0.058817 1.18 1 0.058817
CALLS THGEN
2 THGEN 0.067451 1.33 23 0.002933 CALLED BY FENBTV
3 BCOND 0. 04305 0.68 1 0.034805 CALI.ED BY FENBTV
4 ICOND 0.023:386 0. 46 1 0.023386 CALI.LED BY FENBTV
5 PREFRON 0.001754 0.03 1 0.001754 CALLLED BY FENBTV
6 VSTRAP 0.087725 1.72 1 0.087725 CALLED BY FENBTV
CALLS OUTSOL
7 OUTSOL. 1.190628 23.41 46 0.025883 CALLED BY VSTRAP
8 FRONT 1.455088 28.60 22 0.066138 CALLED BY VSTRAP
CALLS QVSET
9 QVSET 0.010048 0.20 94 0.000107 CALLED BY FRONT
10 MAKEI 0.035852 0.70 6 0.0035975 CALLED BY FRONT
CALLS QVSET
11 BASIS 0. 000900 0.02 9 0.000100 CALLED BY MAKEL
12 MAKEQ 0.226627 4.45 132 0.001717 CALLED BY FRONT
CALLS NLMAT
13 NLMAT 0.117850 2,32 132 0.000824 CALLED BY MAKEQ
CALI.S ENCGM
14 ENCOM 0.017083 0.34 132 0.000128 CALLED BY NLMAT
15 NLRHS 0.001008 0.02 6 0.000168 CALI.ED BY MAKEQ
16 BACSUB 0.679884 13.37 22 0.030304 CALLED BY FRONT
17 ITER 0.0%58392 1.15 21 0.002781 CALLED BY VSTRAP
CALLS QVSET
*OK K TGTAL 5.087028
axk OVERMHEAD 0.033295
SUBROUTINE LIMKACE OVERHEAD SUMMARY 922 CALLS
MIMNIMUM MAXTMUM AVERAGE CYCLES SECGNDS %
T o] 22 6.2 28594 3.57e-04 0.0070
B 2 8 4.3 26306 3.292-04 0.0065
0 S5 0.8 2876 3.60e-05 0.0007
57776 7.22e-04 0.0142

total
MAXITMUM SURRISBUTINE DEPTH = 7



Call Second(0)

Gathering timing information can be made an integral part of a routine.
A basic tool 1 recommend for this use within a specific FERTRAN subroutine is
the FUORTLIBR function SECOND. Cn the CRAY-1, SECOND returns the total
unwe icghtad CPU time charged against your code since execution began. Calls
To SECON re relatively cheasp (approximatsly 5 microseconds per call) and
are not subject to variations due to the current time-sharing load on the

achine. Uther techniquas may be used for finer analysis of small code

qentlonw, bt Ffor overall purposces SECOND is adeqgquate. An example of its use
is shown in the coda below.

PROGRAM MF301IT(UNITSS=TTY)
CapMaN DC1325)
DIMENS I CGN (13%?

)
Se=TERMINAL// ")

CALL LINK(LUN]

E = SECUND(O)

TM = SELCND(0) -E

TT = TMx878. x25.%x4

TS = 0

T2 = 0

X = .125

Y = .015625%

A = 15.5

WRITE(SS,58) A, X,Y
58 FORMAT (' CHECKING FOR A = ' ,F7.4,"° X = ‘,F7.85," Y = ‘,F8.86)

DO 4 K = 1,25

B o= A+XxK

DG 1 M=1,1325
1 D(M) = BxB-M

DG 3 J = 1,978

C = YxJ

TA = SECEND(0)

DO S5 I1=1,1024

F(I) = (C-BxD(r))/s2
5 CCMTI NUE

TR = SECSNL(Q)

TS = TS+TB-TA-T™

TA = SECIND(OQ)

DO 2 1=1,1024

IF(F(1).NE.0) 63 To 2
E = SECGND(O)
NRITE(‘Q 6N) B8,C D(I)JE,I,J,K
60 FORMAT (“HIT AT’ Fa.4,318)
2 CﬁNTIﬂUF
TB = SECOND(0)
T2 = T2+78-TA-TH
3 CONT I NUE
4 CONTINUE



E = SECGMND(O)
WRITE(SS9,59) A E,1,J,K
WEITE(SS,81) TS, T2,7TT
FORMAT(VLOLMS TIME =7 ,F9.4,3X, 'LEEP2 TIME =',F9.4, 3%
% , ‘CLOCK CALL VIME = ,F9.4)
STGPR 1
FORMAT( A TIME 1 J K*,7,"NG HIT,
% 2F9.4,315%)
FEIND
1 i
INote: The sourca code for this example, MF301T, as well as the!
lsources for all other examples in this writeup are resident on |
ithe CRAY-1 in public LIB file CLASS. Cne can extract and run i
ithis examplse using the CIVIC compiler as follows (lower case i
Ityping reprasents user input; uppsr case s computer output): H
lib class
C 08/13/79 09:41:03 644400
OK. x mf301t
oK., end
ALL DGNE
civic mF301t mfc
¥x%  CRAY LOADER VERSION - C120 03/08/79
ALL. DONE
mfe
CHECKIMNG FOR A = 15.5000 X o= 0.12500 Y = 0.015825
HIT AT 1%.7500 0.9844 0.0823 1.6408 248 63 2
HIT AT 16.2500 1.0158 0.0625 7.8015 2€4 65 [
HIT AT 16.5000 4. 1250 0.2500 11.1936 272 264 8
HIT AT 16,7500 9.4219 0.5625 14.8102 280 603 10
HIT AT 17,2300 9.,7031 0.56285 20.9958 297 621 14
HIT AT 17.500G 4.3750 0.2500 23.5364 306 280 16
HIT AT 17.75%00 1.1094 0.0625 26.2874 315 71 18
HIT AT 18&. 2300 1.1406 0.0625% 32.4474 333 73 22
HIT AT 18&.5000 4.6250 0. 2500 35.8796 342 296 24
A TIME J J
NEHIT  15.500 38.49F2 1025 977 26
LOaES TIME = 15. 6641 I_AEP2 TIME = 18. 4826 CLOCK CALL TIME = 4.2944



The follewing, for comparison,
vectorized Tor loop 5@
rcft i=mfR01t, go
CFONQ - CFT VERSION - 01/28
CFQU1 - CCMPILE TIME = Q.Q
CFOonz2 - 5ﬂ LINES,
xxx CRAY LEGATER VERSION - cl1z
CHECKING FER A = 15.5000 X
HIT AT 15,7500 0.9844 Q.
IT AT 16,2500 1.0158 0.
HIT AT 16,5000 4.1250 0.
HIT AT 16.7300 Q.4219 0.
HIT AT 17.2300 9.,7031 0.
HIT AT 17.5000 44,3750 (o
HIT AT 17.7300 1.1094 0.
HIT AT 18.2500 1.1406 0.
HIT AT 18.5000 4.6250 0.
A TIME 1
NO HIT 15.5000 22.4518 (025
L.OGPS TIME = 1.1869 LOoP2
From thess numbers, we can

is the CFT version, whi

ch is

automaticall

>/81 1.08k
346 SECCNDS

44 STATEMENTS
0 03/08/79

= 0.12%00 ¥ = 0.015625
0625 0.9592 248 63 2
0625 4.5498 264 65 6
2500 6.5256 272 264 8
5625 8.6349 280 603 10
582% 12.2467 297 621 14
2500 13.7301 306 280 16
0625 15.3368 315 71 18
262% 19.9301 333 73 22
2509 20k9280 342 296 24

Q77 26

TIME = 16,9523 CLOGCK CALL TIME = 4.1

see that (for the CFT

improvement efforts should be directed toward loop 2.
calls to SECOND will be eventually removed. )

version, at least)

(And,

of course,

v

968
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IRTC and/ar Q8RTC

The CRAY-1 has a cycle counter as ane of its hardwzsre features. This is

a counter which steps by one h machire clock pariod of 12.5 nanoseconds.
Detailed timing of code sectioms can b2 done using this counter. However,
the counter steps whaethar or not your program is running, so care must be
talken with its use in the time-sharing environmant. The counter, called RTC
(for real-time clock), is directly readable using FORTRAN, With CFT, one
uses the construct. N = IRTC(O), and with CIVIC, N = Q&RTC(Q), where N is an
integer variable name. The compiler gererates only the code necessary for
reading ‘the RTC armvd storing the reading in memory location N, a total of 48

its of code, rnormally reguiring only 3 extra clock periods to perform. (In
cain casaa 8 longaer tims is required bocause of an S-register, path, or
memory conflict,)

Tha use of IRTC is illustrated in the sessicn below. In the example, a
FORTRAN routine calls a CAL assembly routine, which adds the first 51
elenents of arravs A and B and places the result into array C by use of a
scalar loop.

Here, it was possible to improve the performance of the machine on this
exanple by about 6% by merely reordering the modules in memory. There are
(zadmittedly pathological) examples of ithis type of thing where a change in
running time of 100% occurs, Such changoes are due to thz avoidance of (or
introduction of) conflicts.

First, the saurce codos for the example are extracted.
lib class
C 07/06/79 13:19.51 844400
OK. x abes abosf
GK. end

ALL DONE

_’IO_



trixgl olabes
19 LIMES ( 808)
.
1 % CAL [ =ABCS B=RBABCS,L=LSC
2 IDEMT ABCS
3 COMMIIN ABCOMMON
4 BSS S7
5 B BSS 56
6 C BSS 56
7 BLACK ABCS
8 ENTRY ABCS
9 ABCS Al o]
10 A2 51
11 L.ooP S1 A, A1
12 s2 B, Al
13 S3 S1+FsS2
14 C,Al S3
15 Al Al+1
16 AQ Al1-A2
17 JAN LOOP
18 J BOO
19 END
L run
CAL I=ARC3 B=BARCS,L.=LSC
ZFC3
L3, 0001
CcADT2 - 0062K MEMORY + 0117K 1/0 BUFFERS USED
ALL DUNE
o!abcsf

17 LINES (  808)

* X

LD 1=(B3F,
® XBS

D1 1 =1,
1 ACl) =1
CUTRANGE =
M = TRTC(O)
CALL. ABCS
N = IRTC(O)
N-M

4]
[{o]

FORMAT{7F6,
STOP
END

NOGARN=OLRENOUARN—

RPN N

BABCS

169

CFT 1=pBCSF,ON=G,L=LSF, B=BS

=
), ML=MSF, X=XBS, ORDER=CLNB, FIRST=BSF

COMMON /ABCOMMEN/ A(S56) ,0UTRANGE,B(56) ,C(56)
CAILLL. LINKC( UNITSS=TERMINAL// ")
Yoo= MORMOR MR MK R KY %X

&600004000000000000000B

WRITE(S9,59) C,X

Q)

-11-



TUR

CFT 1=ABCSF,ON=G,|.=l.SF,B=RBSF

FT004 - CFT VERSIGON - 04/06/79 S
FTOO1 - COMPILE TIME = 0.0195

ALL DONE
LDR 1=(BSF,BABCS),ML=MSF,X=XBS, ORDER=CLMNB, FIRST=BSF

ALL DENE
XBS

CH

HEDULER
SEC

CONDS

59. 61. 63. 65. 67. 69, 71

73. 75, 77. 79, 81. 83. 85

&§7. 89. 91. 93. 95. 7. 99
101, 103. 1085, 107, 109. 111. 113
115. 117. 119. 121. 123. 125, 127
129. 131. 133. 135. 137. 139. 141
143. 145. 147. 149, 151, 153. 155
157. 159. 185. 166, 167. 168. 169
1773.

STOP

The last number listed (17723) is the number of machine cycles elapsing
betwean the two uses of IRTC in the code ABCSF.

Notice, next, the result of an zpparently innocucus change to line 2.
rp2! =BSF ! =RDARCS
.hflrun

17 LINES (  808)
CFT I=ABCSF,CN=G, L=L=.8F,R=FSF

FT004 - CFT VERSICGH - 0G4/06/79 SCHEDUILER
FTo0o1 - COMPILE TIME = 0.0181 SECHONDS
AlLL. DONE
LDR T=(BSF,BABCS) , ML=MSF, X=XRS,ORDER=CLNB, FIRST=BABCS
ALL DONE
XBS
5% 61. 63. 65. 67. 69 71.
73 75, 77. 79. 81. 83 85,
87 89. 1. 83. 8%, 97 9.
101. 103. 105. 107. 109. 111. 113.
115, 117. 119. 121. 123. 125 127.
129. 131. 133, 135. 137. 139 141.
143, 145, 147. 149. 151. 153 155,
157. 159. 165, 166. 167. 168 169,
1659.
STOP
ALL DCGNE

_12_



One can use the 072 machine
timing details related to hardwa
made @vailakle to the CRAY-1 pro
“CYCLES". Sea Section 1V for mo

Other Methods

instruction directly to discover ultra-fine
re and special code loops. This detail is
grammer through use of the public file
re information.
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Irr. PREDICTING TIMING

The rest of this paper will be used to demonstrate (and, 1 hope, teach
you) a method for explicitly predicting timing. The method can haelp in
aveoiding unnecsssary conflicts in assembly-language-coded subroutines or in
loops which ohe expacts to Utilize considerable machine time and for which,
therefore, ons is justified in spending considerasble human time to obtain top

performance. Since the method outlined is almost completely mechanical, a
praogram using these ideas has been written to gonerate timing charts such as
Thosa shown below. The piregram is called CYCLES. Its usage is described in

Section IV of this raport.

I will assume that the reader is familiar with the CRAY-1 Hardware
Manual and CAL assembly language. Iri perticular, the five pages of our
Appendix A, taken from ths CRAY-1 Hardware Manual, list much of the
information readed Tor timing purposes. Examples will be either given in CAL
or, on oaccasion, taken directly from the long listing of CFT or CIVIC.

GCereral Remarks

In general, the time required tc perform an algorithm depends on the
spzcific instructions used to perform it and on the relationships among those
inatiructions. A comprlete understanding of the relevant conditions affecting
the execution of a particular instruction can be gained only by considering
its relation to surrcunding instructions. In particular, vector instructions
recuire socnewhat more analysis than scalars.

rding at most five easily computed numnbers per .
2 the necessary information for determining conflicts and

vl rg wa avoid thoem, For a scalar (or register) instruction one
s to ke k of: (1) when it issues, and (2) when it completes., For
a vector iy sion one has to note:! (1) its issue tim=2, (2) its chain

time, and the
registers, (4)

forent) tines when it has finishoed using: (3) its input
functional unit, and (5) its output register.

In all cases, except for scalar memory-refarencing instructions (and
normally it is true then, alsce), once the issue cycle has been detarmined,
all the other timing nunbzrs fo~ that instruction are computable. The rules
for doing theze computations sre stated on page 25 of this report, and the
exceptions are noted in appropriate examples.

Table 1 (adepted from Appendix D of the CRAY-1 Hardware Manual) lists
the entire set of timing numbars (first column) needed for most purposes.
These specify the number of 2.5 nanosacond machine cyacles required by the
CRAY-1 to deliver a result to the appropriate register. (0 means no result
geoes to = register,) Further detail is available in Chapter 4 of the Cray-1
Hardware Manual in conjunction with each specific instruction description.

Note. All instructions using the Memory Functgonal Uhit are subject to
possibhle additional delays dus to memory bank conflicts with 1/0.

_14_
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Table 1. Instructich and Tlmlng Summary

Cy- 1 : H ]
cles :CRAY"1 iCAL mnemonics :Uhlt.Desnrlptloh
o ! 00C0xxx 1ERR I {Errror exit
50 Txx000i jk 1ERR axn I iError exit
o} o x001T000 INOP V- iNo operation
1 X001 0jke 1CA, A Ak V- 1Set the channel (Aj) current address
H 1 | ito (AK) and begin the [1/0 sequence
1 H Tjk 1CL,Aj Ak I 1Set the channel (Aj) limit address to (Ak)
1 H 2ix 1Cl,Aj I iClear channal (Aj) interrupt flag
1 H Biv T XA Aj I TEnter YA register with (AJ)
1 ) 4jx RT SJ I tEnter real-time clock register with (Sj)
1 { 454 1PCI SJ I tEntaer 11 with (8j§)
1 ! 4i5 1CCT To- iClear clack interrupt
1 § 43€ 1ECI HE iEnable Clock interrupt
1 i 437 1DCI H— iDisable clock interrupt
1 1 Goz20xk VL Ak - I Transmit (AKk) to VL register
1 PR OD20x0 VL. 1 V- iTransmit 1 to VL register
1 i 0021Txx 1EFI HE iEnable interrupt on flt pt error
1 i QO22x»x 1DFI I iDisable interrupt on fl1t pt error
3 1 O03xjx VM SJ V- iTranamit (8j) to VM register
3 T x003%0x VM 0] I iClear VM register
< H C04xxx TEX I iNormal exit
50 PRk 044 ik TEX [ iNormal exit
ASS I QO jlose i Jd Bjk - PJump to (BJK)
S{+) | OO jkmiJd 2% I PJump to exp
SCy 0 0O7ijkmiR 251 ) HE IRaturn jump to exp; set BOO to P
5(+) OIOi,km.Jﬁ7 EXP Po- iBranch to exp if (A0) = O
Sy | O1Tijkm! JAN [=hd el I iBranch to axp if (AQ0).NE.O
S(+) | OIEiNImHJAP [=30s] T iBranch to exp if (A0) positive
S{+) 0131 jkm!.JAM [=Pea] V- iBranch to exp if (AQ) negative
S5{+) | Q14§ jlkmiJsSZ exp I iBranch to exp £ (SQ) = 0
S(+) 018§ jlkm! JEN 2Xp I iBranch to exp if (S0).NE.O
S(+) | 0161 jkim JSP axp - iBranch to exp if (S0) positive
S50+) | Q171 jlamt JEM SXE I iBranch to exp if (S0) negative
1 H 0201 jkum! HE i Transmit exp = jkm to Ai
1 ) O021ijkmiAi exp Po- iTransmit exp = 1’'s complement
1 1 i 1of jkim to Ai
| C22ijk 1A exp I iTransmit exp = jk to Ai
i Q23ijx 1Ai 3SJ V- i Transmit (Sj) to Al
H G24ijk 1Ai Bjk HE iTrarmsmit (Bjk) to Ai

* Spg@lﬁl CaL. syntax form.

X K 1O monitor moede,
% that the field is not used by the hardware; the assembler
a zero in this position.
+ instructiong take longer if branched-to address is not already

truct ion buffer. Thay thaen use the memory functional unit.
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Cy- H H | H
cles 1CRAY-1 I CAL mhemOhicsEUnit iDescription
1 | 025ijk IBjk Ai i - i Transmit (Ai) to Bjk
4 H 026ix0 1Ai PSj iPop/L.2 iPopulation count of (S$j) to Ai
4 1 026ij1 1Ai QSj 1Pop/LZ iPop count parity of (Sj) to Ai
3 | Q27ijx 1Ai ZSJ {Pop/LZ iLeading zero count of (Sj) to Ai
2 | O30ijk 1AI Aj+AKk 1A Int Add iInteger sum of (Aj) and (Ak) to Ai
2 P XCB0i0k 1A Ak 1A Int Add iTransmit (AK) to Ai
2 I X030ij0O 1Aj Aj+1 1A Int Add [lInteger sum of (Aj) and 1 to Ai
2 H 031ijk 1Al Aj-Ak 148 Int Add :lntﬁger difference of (Aj) less (Ak)
H | H ito Al
2 T 031100 1A -1 1A Int Add Transmit ~1 te Ai
2 i x031i0k [Ai -Ak 1A Int Add 1 Transmit the negative of (Ak) to Ai
2 P x031ijO0 1A| Aj-1 A Int Add ilnteger difference of (Aj) less 1 to Aj
6 i 032ijk 1A AjJxAl 1A Int Multilnteger product of (Aj) and (Ak) to Ai
4 i X033i0x 1A Cl 1 - iChanrel number to Ai (j=0)
4 T x033ij0 1A CA,Aj | - iAddress of chanrnel (Aj) to Ai (j.NE.O)
4 i 033ij1 1Ai CE,Aj | - :ErrﬁE Siag of channel (Aj) to Ai
1 i H V0. .
14(+){  034ijk {Bjk,Ai ,AO  iMemory {Rad (Ai) words to B register jk from
14¢+) | %0341 jk {Bjlk,Al 0,A0 {Memory 5?23? (Ai) words io B register jk from
L} 1 1 )
6(+) E 03%1i jk EJAO BijAiEMemory E?Rg?e (Ai) words at B register jk to
] 1 1
6(+) E *0351i jk EO,AO Bjk,AiEMemory i?que (Ai) words at Be register jk to
14(+)} 0361k iTik,Ai ,AO iMemory i?ﬁgﬁ (Ai) words to T register jk from
14(+) | x036ijk {Tjk,Al 0,A0 |Memory {Road (Ai) words to T register jk from
6(+) | 087ijk i,AD Tik, A {Memory f%xgge (Ai) words at T register jk to
1 1 1 1
6(+) E x037ijk 10,AQ Tik,Ai iMemory i%zgge (Ai) words at T register jk to
1 ! 040ijkmiSi exp | - {Transmit jkm to Si
1 1 041ijkmiSi exp i - :Tragsmit exp = 1’'s complement of jkm
i | | ito i
1 | 042ijk iSi <exp 1S Logical (Form 1°’s mask exp = 64-jk bits in Si
i i | ifirom the right
1 P x042ijk 1Si #>exp 1S Legical (Form 0’'s mask exp = jk bits in Si from
1 H i ithe lefi
1 T x042i00 1Si -1 1S Logical 1Enter -1 into Si
¥ Special CAL syntax form.
+ The cycles needed = this number + (Ai). Also, ho issues allowed

till completion.
Field not used.
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*04?1?7
043i jk

*0431i jk
x043iQ0

*x047i0k
x047ij0O

*x047i00
0301 jk

—_

x030i jO

051ijk
*051 10k

0541 jk
0551k
0561 jk

*x058ij0

W OWNN NN———-—

X  Special CAL

F#
A
0
X
T

nomne 0 0
0o
oo
24
N

#SK&SJ

#SB&Sj
Sj\Sk

Sj\sSB
SB\Sj
#3J\8K

#SkK
#3j\SB

#SB
Sj!SissSk

w nh v

»w »n wn O

Sj!sSi&sB

Sj!sk
Sk
Sj!'SB
sSB

Sic<exp
Siraexp

O O e v e e

Si<exp
Si>exp
Si,S8j<Ak

Si,8j«1

w wnn whnnhnn o

-

asyntax form.

w0 Onh 0 0 O O uende

0 wuorn nuounnnhn o

Logical
Leogical

lLogiical
Loegical
Logical
lLogical
Logical

Logical
lLogical

Logical
Logical
Logical

l.ogical
Logical

l.ogical

Logical

Logical

L.ogical
lLogical
Logical
Logical
Shift
Shift

Shift
Shift
Shift
Shift

iDescription

iEnter 1 into Si
iForm 1's mask exp = jk bits in Si
ifrom the left
iFerm 0's mask exp = 64-jk bits in Si
ifrom the right
Clear Si
ogical product of (S$j) and (Sk) to Si
ign bit of (8j) to Si
gical product of (Sj) and 1°'s
mplement of (Sk) to Si

cleared to Si

of (Sj) and (Sk)

o
)

Sj) with sign bit
ogical ddifference
o)

ogql: sign bit of 3j, then enter

nto Si
froggle sign bit of 8j, then enter
into Si (j.NE.O)

ogéqal equivalence of (Sk) and (Sj)
o Si

ransmit 1’s complement of (Sk) to Si

ogical aquivalence of (Sj) and sign
it to Si
nter 1's complement of signh bit

into Si
ogical product of (Si) and (Sk)
omplement ORed with logical product

1
i
11
i
]
i
1
i
]
1
Il
1
[l
'
1
1
1
1
1
1
Il
[
'
1
[l
I
]
1
1
1
]
'
)
]
1
]
1
1
[l
1
1
1
1
1
]
'
1
1
]
r
1
1
1
1
1
1
1
1
1
1
1
1
1
ll
]
]
1
]
1
'
1
i
]
i

d(ndounwr*mcnnr=4r'~mo(7r—4ﬂ0'=4dr=-4-4&r—~nr-mr

_‘]7_

f (Sj) and (SKk) to Si

calar merge of (Si) and sign bit of
$j) to Si

ogical sum of (3j) and (Sk) to Si
ransmit (Sk) to Si

ogical sum of (Sj) and signh bit to Si
nter sign bit into Si

hift (Si) left exp = jk places to SO
higg (Si) right exp = 64-jk places

[}

hift (Si) left exp = jk places

hift (Si) right exp = 64-jk places
hlgt (Si and Sj) left (Ak) places

o Si

hlgp (Si and Sj) left one place

o Si



Cy | H

cles 1CRAY-1 iCAL. mnamonics
3 ! x056i0k !Si 3i<Ak
3 E OB71 jk ESi Sji,SixAk
3 { x057ij0 Esi Sj,Si>1
3 | x057i0k 1Si Si>Ak
3 i 060ijk 18] Sjrsk
3 P O6TiJk iSi Sj-sk
3 ! X061i0k iSi -Sk

6 P 0820k 1Si Sj+FSk
6 b ox062i0k 13i +ESk

& 0831k isi Sj-FSk
6 | X063 0k isi -FSK

7 i 0B4ijk isi SjxFSk
7 E 0651 jk iSi Sj*HSk
7 {0661 jk IS Sj*RSk
7 E 0671k {Si SjxISk
14 i 070ijx isi /HS j

2 i o71iok s i Ak

2 E 07111k éSi +Ak

2 Poo7iliak isi +FAK

2 ! 071i3x !Si 0.6

2 P071i4x iSi 0.4

2 !071i5% iSi 1.

2 ! 071i6x 1Si 2.

2 i 071i7% iSi a

1 ! 072ixx iSi RT

1 ! 073ixx iSi VM

1 L 074ijk i8i Tik

1 P075i0k 1T k si

* Spacial CAL syntax form.

Y Field not used,

Shift
Int Adg
Int Add

| I S O N N A A Y |

Al
Add
Mult
Mult
Mult
Mult

Repl

-18-

hift (Si) left (Ak) places to Si
hift (8] and Si) right (Ak) places

ft (Sj and Si) right one place

o)
hi

hift (Si) right (Ak) places to Si

nteger sum of (8j) and (Sk) to Si

ntggar difference of (8j) and (Sk)
]

r

ansmit negative of (Sk) to $i
loating sum of (Sj) and (Sk) to Si
ormalize (8Sk) to Si

logpihg diffaerance of (Sj) and (Sk)
o Si

ransmit normalized negative of (Sk)
o

1

ZT -t ——=0o Hhd®n

Si
ogting product of (Sj) and (Sk)

If precision rounded floating

oduct of (Sj) and (Sk) to Si

11 precision rounded floating

roduct of (&5j) and (Sk) to Si
-SFIOatlhﬁ praocduct of (Sj) and (Sk)

o Si

loating reciprocal approximation of
(Sj) to Si

Transmit (AK) to Si with no sign

lextension

iTransmit (AK) to Si with sign

iextension

iTransmit (Ak) to Si as unnormalized

ifloating poinmt number

iTransmit constant 0.75%2x%x48 to Si

iTransmit cornstant 0.5 to Si

i Transmit constart 1.0 to Si

iTransmit constant 2.0 to Si

iTransmit constant 4.0 to Si

iTransmit (RTC) to Si

iTransmit (VM) to Si

iTranasmit (TJk) to Si

iTransmit (Si) to Tjk

Tt NT MO Tt Tk kT
cCI3I00

iH#ﬁﬂﬂﬂHﬁﬂﬁEﬂﬁuﬂHﬂﬂﬂﬁlﬁﬁiﬁﬂﬂﬂﬂl%ulﬂﬂaﬂl‘aﬂm&%@ﬂﬂﬁﬁﬂﬁuﬂ%ﬁm



Unit Description
5 H 0781 jlk 1381 VJ,AK | - :rhan :mit (Vj, element (Ak)) to Si
1 1 QO77i1jk Vi, Al J i - iTransmit (Sj) to Vi element (Ak)
1 T x077i0k iVi,Ak O 1 - !Cleaw Vi element (AK)
i1 H TO0hijkmiAi 2, Ah {Memaory iRead Trom ((Ah) + exp) to Ai (A0=0)
11 %1000 jlmitAd axp, Q iMemory iRead from (exp) to Ai
11 H #1001ka:ﬁn exp, Memory iRead from (exp) to Ai
11 ToxT0hINOQTAL , Ah tMermory iRead from (Ah) to Ai
Q 1 TThijlkmiexp, Alv Al Memory iStore (Ai) to (Ah) + exp (A0=0)
Q PoxE100 jlkmiexp, 0 Al ‘Memory iSteore (Ai) to exp
0 Vo110 Km.e*p Al Memory iStore (Ai) to exp
9] ! x11hi0C00!, Ah Ai iMemory iStore (Ai) to (Ah)
11 1 I2h13km.$n exp, Ah iMemory iRead Trom ((Ah) + exp) to Si (A0=0)
11 T x120ijkmiSi exp, 0 i Memory iRead from exp to Si
11 oxi201§kmi S exp, iMemory tRead from exp to Si
11 P x12R1000151 , Al 'Memory iRead from (Ah) to Si
0 1 13hijmiexe, Ah Si iMemaory iStore (8i) to (Ah) + exp (A0=0)
] : *13013km.e%p,0 Si Memory 1Store (Sl) to exp
[¢] TR IB01 Jkmitexp, Si Memory i1Store (Si) to exp
Q i *Tehaﬁjo.,Ah Si iMemory iStore (Sl) to (Ah)
4 1 1401 Vi SjéVk 'V o Logical :log¢031 products of (Sj) and (Vk)
i H H ito Vi
4 1 141ijk Vi VjaVi iV Logical :LOQ¢6“1 products of (VJj) and (Vk)
i i 1 it i
4 H 142ijk 1vi Sjlvk i1V Logical ilLegical sums of (Sj) and (Vk) to Vi
4 Vo x142i0k Vi Vi 1V Logiical Tranamit (VK) to Vi
4 1 143ijk Vi Vitvk iV Logical lLogical sums of (Vj) and (VK) to Vi
4 H 144ijk Vi Si\Vk iV Logical ldifferences of (Sj) and (Vk) to Vi
4 Vox145iii Vi o] W Logical iClear Vi
4 i 145ijk Vi VJizVk 1V Logical ILog&cﬁl differences of (Vj) and (Vk)
H i i ito i
4 H 146ijl Vi SjIVREVMIV Legical (Transmit (Sj) if VM bit = 1;
] ! i i (VK) if VM kit = 0 to Vi
4 i %x146i0k Vi HVMEVIK 1V o Legical 1Vector merge of (Vk) and O to Vi
4 | 147ijk Vi VJiITVRKEVYMIV Logical Transmit (Vj) if VM bit = 1;
H i H T(VR) if VM bit = 0 to Vi
6 H 150§k 1Vi VJj <Al 'V Shift iShift (Vj) left (Ak) places to Vi
6 Pox1501iJ0 Vi VARS 1V Shift i€hift (VJj) left one place to Vi
<] 1 151Tijk Vi Vi>Ak vV Shift iShift (VJj) right (AK) places to Vi
6 oI5 T110 Vi VARA iV Shift iShift (Vj) right one place to Vi
5] ] 152ijk Vi VJ,VJ<ALEV Shift :Dou@le shift (Vj) left (AK) places
H i H ito Vi

¥ Special CAlL syntax form.
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Shift iDouble shift (Vj) left one place

Q0 e W W W W W Ve oaua auua o O

0o =
o

*¥1B82i1j0

1531 jk

Xx183ij0

1541 jKk
1551 jk
15613k

1641 jk
1651 jk
1661 jk
1671k
1701 jk

x 17010k

1711 jKk
1721 jk

#1721 0k

173ijk
174ij0

174ij1
174i &

% Special CAL

< € € K€k € € € € € <K<K << LKL

<<

Vi,Vj>1

Sj+Vk
V J Vi
$J-Vk

=~V
Vi-Vk

Sj*FVik
Vi *FVIC
WV *HVIe
SJ*RVk
V. j *RVK
Si*1Vk
VixIVk
Sj+FVk
+FVic

Vj+FVie
Sj-FVk
-FVk

Vj-FVk
/HV

PV j
Qv j

form.

F Shift

w9 UV U U VVOVTVT ©V UV TV Y OV VIO

tto Vi

f Shift IDouEIe shift (Vj) right (AK) places
tto i
iDouble shift (Vi) right one place
Eto Vi

Addi Integer sums of (Sj) and (Vk) to Vi

AddiInteger sums of (VJj) and (Vk) to Vi

Add:[ntsger differances of (Sj) and (VK)
ito i

AddiTransmit negative of (Vk

Aodi Integer differernces of (
ito Vi

to Vi
)

) .
Vi) and (VK)

MultiFloating products of (Sj) and (VK) to Vi

MultiFloating products of (VJj) and (Vk) to Vi

MultiHall precision rounded floating
iproducts of (8j) and (VK) to Vi

MultiHalf precision roundaed floating
iproducts of (Vj) and (Vk) to Vi

Mult i Rounded floating products of (Sj) and
V(VK) to Vi

MultiRounded floating products of (Vj) and
1 (VK)Y to Vi

Multiz - floating products of (Sj) and
H(VK) to Vi

Multi2 ~ floating products of (Vj) and
HVK)Y to Vi

Add iFloating sums of (Sj) and (Vk) to Vi

Add iNormalize (VK) to Vi

Acdd iFloating sums of (Vj) and (VK) to Vi

Add iFlovtihg differences of (Sj) and (VKk)
ito i

Acld :Traosmit normatized negatives of (VK)
ito i

Acld :Floatihg differences of (Vj) and (Vk)
tto i

RepliFloating reciprocal approximations of
1(VJi) to Vi

ReopliPopulation courts of (Vj) to Vi
RepliPop count parity of (Vj) to Vi



fincremented by

3 ! 1785%xj0 VM Vi, 2 iV Logical iVM=1 where (Vj) = 0

6 , 178xi1 VM Vi,N IV LogicaliVM=1 where (Vj).NE.O

13 i 17%x iz VM Vj,P iV Logical iVM=1 whare (V]j) positive

6 ! 179%xJi3 VM Vi,M 1V Logiical iVil=1l where (VJj) negative

9 H 1768ixk Vi ,AQ, AR TMamory iRaead (VL) words to Vi from (AO0)
| 1 1 Pincremented by (Ak)

9 T X176ix0 (Vi ,AQ 1 | Memory iRead (VL) words to Vi from (A0)
i i H Vincremented by 1

0] i 177xjk 1,A0, Ak Vj ‘Memory iStore (VL) words from Vj to (AO0)
i 1 H Vincremented by (AK)

0] E *¥177%3jQ E,A0,1 Vj iMemory iStore (VL) words from Vj to (AQ)

X  Special CAL syntax form.
x Field not used.
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In general we have the following scenario: in order to perform some
alieration of the conternts of one or more of tho machine’s registers or
memsry, an instrection must: first, wait to be brought into one of the
instruction buffers; second, wait until prior instructions have started;
rd, wait till its operands are available; and fourth, wait until all
e companants (such as pathe along which information may flow, registers
at may be needed, and functicnal units that may be employed) will be
ilable during vhe cycle(s) required. The CRAY-1 hardware maintains
ervation tables, updated each oycle, for each register and all other
~ad comeorents., It rele or issuss an instruction only when it can be
coimploted without interference from other previcusly issued instructions.

Generally, timing analysis beging when the first instruction of interest
issues, but it is naive rmot to consicler its placement in an instruction
buffer and the route by which it resched issuable conditior. For many

lagorithms, spead changas on the crder of 10%2 occzur depending on their
2m2nt relative to the start of ar instructi« buf fer. Details about the
instraction fetch mechaunism fourd in Appendix C.

All of the information used to decide about the issue of an instruction
is conteined in its 16 bits aor, in ths cass of & 32-bit instruction, in its
uppeir 16 bits, Noirmally the decision to issue can be made in one cycle.
Whern an instruction jissues, the comgonents it will use zre reserved in the
appirop s iate table for the appropriats time period.

) Ore type of 32-bit instruction, which makes a scalar memory reference,
is allowed to issue when all of the components it will need are available

ibly the appropriate memory bank. If the bank is available at the
d wll procoeds normally. If not, completion of the instruction is
delayaed and the next instruction requesting memory is not allowed to issue

untit the previous one has oktained the proper memory access, Instructions
not raquiring memory, however, may procesd normally.

Until & specific instruction issuss, the machine cannot look bevond it
to devermine that something further down in the instruction sequence could be
dore. It is the task of the programmar and compiler to so order the
“Et i on that unmeos sy delavs are avoided. When you program in

languages, it is important (and not difficult) to maintain an
arding »f the resources of the machine called into play by each
struction aind of the cyalas in which they are usad, in order to approach
opt imum utilization of the hardware.

During the issue cyvcle, paths are opened so that information can flow
gisturs to functional units; during the completiasn sycle, paths are
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recuir

d for informatior to flaow from functional units to registers. Only

h is svailable to service all results being returned to any of the
@ight S registors. There is also one path for the A-registers. Possible
corflicts over the use of thase paths are resolved before an instruction is
allowsd Lo issue. A separa rath into and out »f each vector register is
provided, Morcover, infermaticn arriving at any register in a given cycle
may also be redirectaed by a subseguent instruction, in that same cycle, to
serve as input for another opesration. That is, a subsecuent instruction may
issue on the same cyole in which its operands first beccne available. This
rediraction information arriving at & vector iegister is called chaining,
and it may k in only during the particular cycle when the first element of
i ceturnaed from s functicnal unit. [+ two different functional

the result
uni@a raturn their first results in the same cycle, a third instruction may
chain from both of them,

. An exception to this "same cycle rule” occurs for conditional branch
instructions, which require that their cperand register becomes available
somewhat before issue.

Two Short Examples

. Let us consider what the hardware must take into account to decide when
to issue a couple of typical instructions,

First, a scalar floating point acdd! 62312, S3 S1+Fs2.
2n the instruction semuance reaches such an instruction, the hardware

checks its ressrvation tables to see that none of the following conditions
s CRe (1) the floatimg point add functional unit isc busy (i.e.,

aarved) in this cyele, (2) regisier 33 is busy, (3) register S1 is busy,
(4) ragister 52 is busy, (8) a reservation exists for the S-register input

L P cycles hernace. 1¥ any of these conditions are true, the instruction
does noet issue. In the next oycle (the machine having updated all its
tables), the same conditions =2re tested. Eventually, all the necded

porants will be free ard the instruction will issue. When it does, the

will have: (1) & busy condition placed on S3 for 6 cycles (i.e.,
0,1,2,3,4, and 8) and (2) a reservation placed on the S-register input
cyvelas hense (cvels 6) . (No resarvation is put on a functional unit
Yar insteustion,) In the next cycle, the next instruction will be

2d For issue, =nd thae components it needs will be checked for

MNow consider @ vactor instruction: 171312, V3 VI1+Fv2,

Whan this floating point vector add is reached, the hardware checks its
rescrvation tablas for the following conditions: (1) floating point adder

reserved, (2) vector register V3 busy, (3) V1 busy, and (4) V2 busy. It does
not peaed to chack for paih raservations since each V-register has its own

[SEzkA e Whaen nome of the conditions are true, the instruction issues. When
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it doss, (1) the tables have a busy condition placed on V1 and v2 for,
mﬂ”(’V!) 9) cwelas, where (VL) is the current value of the vector length

Hister (Lthus for shory vectors a minimum reservation of 5 cycles occurs),
(?) a busy is placed on the floating point adder for (VL)+4 cycles, (3) a
hus s plased on V3 for cycles 1 through 7 and cycles 2 through
7+ma:!(VL),5§. Cvele 8 is the "chain" cycle.

The Timing Chart

We can kesp track of important cycles by listing them in a timing chart,.
Then, when we want to consider whether a particular lnstructloh can issue, we
have the informmation @t hand. In pracitice, it is easier to list the cycles
when z componrnent will mext become ready for use than to record those in which
it i3 busy.

In such a chart, 1 and C refer to issue cycle and completion cycle for
scalars, respectively, while 1,C,06,F, and R refer to issue cycle, chain
cycla, operand reg Ter ready cycle, functional unit available cycle, and
result regict roady cvcle for vectors.

Thus we have! I cC © F R

62312 S3 S1+Fs2 o 6

while, UDWOGIHG the following instruction comes in sequence with the above
and that (VL) = 641

171812 V3 VI+Fv2 1T @ 65 89 73.

The numbers recordaed in the various columns represent the cycles in
which certain important chengss will occur @s a result of the issue of the
instrruction in guestion. (3ince for scalar instructions, the last three
colunns are not particularly informetive, cone may omit them.) Different
TV of imstructions tie wup Jdifferent machine resources for differing
rnumbers of cyeles, as indiocated in Table 1. (See also Appsndices A and D of
The © AY~1 Vardwearea Marnual., ) In the examples that follow, we will

wmtrate the practical wse of these timing numbers., In general, the entry
in the © column is the I number plus the appropriate instruction
axecution-complats time from the first column of Table 1.

Preliminary Considerations

Consicaer the first add mentioned above: 62312, with I = 0 and C = 6.
The 6 has two meanings. First, it is the cycle on which the result will be
returned to S3 via the Swregle1er output path. This means that this number
carnot appesr as the C cycle for any other (later issued) instruction whose
result is destined fTor any S"Peﬂister. For example, if the next instruction

i}
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were 76587, transmit a V-register element to 85, which takes 5 cycles, then

the machine must delay its issue. [f you are recording the I and C numbers
for a series of instructicns, you should notice when you record two identical
numbzars in the C column. I[f the second is a result for the same set of

registors as the first, it will be delaved, and vou must adjust the issue
cyvcle accordingly.

Secondly, the 6 has another meaning. Cycle 6 is also the cycle on which
the register becomas available for use (either as an operand or a result) by
anoths instruction. For exsmple, in coding a set of instructions, one might

attenpt to reuse an Soragister before it has completed a previous operation.
Thus, one might do a raciprocal into S6 and then read the time clock inte S6.
The timing is then:

1 o]

70610 0 14
72600 14 15

since the result of the clock read is not allowed to use S6 until the

reciprocal is through with it. This assures that the result of the

reciproecal will be overwritten by the later instiruction.

It is pzrhaps moere comnon that a later instruction which would use the

result of the reciprecal as an cperand, would have to wait for it. Thus:
I c
70810 0 14
67561 14 21

would be the timing for these two instructions,

For vector instructions, the relations among the numbers I, C, O, F, and R, !
are found as follows!: When the issue time I becomes known, then C will be |
2qgual to I + the chain tims for this instruction (the chain time being the !
functional unit time + 2), 6 will equal I +(VL), F = [+4+(VL) (thus F will !
nermally be O+4) (here, however, onhe exception exists, for vector store F =!
[+#5+(VL)), and finally R = C + (VL). For short vectors, where (VL) £ 4, C |
and ¥ are a3 before, while 0 = [+5 and R = C+5, E

]

Thus if (VL) = 2, we have:
I
171312 1 9 6 7 14

All five vector timing numbers depend only on the chain (C) cycle (from
Table 1), (VL), and issue (1),
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Two Basic Examples and Comiments

In the twn examples below, taken from (more or less) real programs,
nearly all of the main ideas surrounding accurate timing of code are
ment ioned., Examine the imnstruction sequence and refer to the notes for an
explanation of tha timing numbers listed.

Exammsle 1

First, we consider the earlier example, ABC:

CFT 1=ABCSF,O0N=G,L=I_.SF,B=BSF
XB;DR [=(BSF,BABCS) ,ML=MSF, X=XBS, ORDER=CLNB, FIRST=BABCS
COMMOGN  /ABCOMMON/ A(S6) ,6UTRANGE,B(55),C(56)
CALL LINKC UNIT39=TERMINAL// ")
Y o= X0 MR Y %X
DO 1 1 = 1,168
1 ACl) =1
DUTRAMGE = 600004000000000000000B
M = IRTC(Q)
CALL ABCS
N = IRTC(O)
X = N-M
WRITE(S9,89) C,X
FORMAT (VF6.0)
3T0P

EE

NGURMON=CLOONOCGRWON=
o0
0

ABC consists of a FURTRAN part, ABCSF (MAIN.), where the RTC is read,
and & CAL part ABRCS, whare adds are done. We note that we are timing the
car2 whare the assenbly porticn is loaded first.

Listed below is ithe set of six assembly instructions generated by CFT
for the portion of the code where the RTC rcad occurs (extracted from the
long listing). The =addiress listed is after the load. Rzcall that I and C
refar to the machine cycle on which instruction issue and completion,
respeaectively, oscour (see Table 1), (The small letters refer to notes
following.)
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Machine code Mremonics

(octal) (decimal) I o] Comment
072300 S3 RT Oe 1f Read RTC
130300 000225 M,0 83 19 -h Save RTC
022700 A7 o] 3i 4j Arg count
QO7000 0010600 R ABCS 4 19k Call subroutine
120100 000225 S1 M, 0 1657m 1668n Get saved RTC
072700 s7 RT 1659 1660 Read new RTC

(a,b,c,d at the left refer to the parcel address in the word where

the instruction is losated.)

Assume all resources of the machine are available, initially.
A "72" instruction reguires one cvcle to complete after issue (see

Table 1). If any previcusly issuad instruction had needed to put a
result into any S-register during cycle 1, the issue of this
instruction would have to be delaved by the machine. B

The instruction following a 16-bit instruction may issue on the next
cycle (i{ thore is no conflict, as is the case h=zre), 383 being now
available.

A store instruction uses an S or A register only during the issue
cycle. The result actually reachos memory several cycles later, but
for purposes of subsegquent fetch instructions, vactor loads, or
memery busy conditions, the mamory is essentially free after four
cycles, whilae the register itself remains free.

The i1 rustion follewing a 32-bit instruction may not issue until
after & dalay of one cycle (to byprass the lower 18 bits).

A "z2" instruction requires ona cycle to complete after issue. If a
previously issuad instruction needed to put a result into any
A-register during cycle 4, this issuve would be dzlayed. (But an
S-reg result could complete then without delaying this,)

This instruction, which would normally complete at cycle 18, is
delayed for one cycle by memory busy from ithe previous store, since a
mamory -busy ondition is not allowved when starting the fetch of the

next 18-waord fer-load of instructions, If this "007" instruction
addressed an instruction from code already in a buffer, it would

cominlete at cycle 9. In the cass of =a Jump instruction, completion
means that the jumped-to instruction may issue. .
This fetch instruction cannot issus until the called subroutine

returns to it. See the analysis of ABCS below.
When it doegs issue it will require 11 cycles for the contents of
memnory to reach the S$S-register. The memory bank will be free after

only four cycles,

Mow consider the CAL portion of our exaemple, called by the FOGRTRAN

portion

above.
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X CAL [=ABCS,B=BABCS, L=LSC
ABCS

IDENT
COMMON  ABCUOMMON
71 BSS 57
70 B BSS 56
70 C BSS 56
BLOCK ABCS
ENTRY ABCS
Q22100 ABCS Al Q
0?9363 A2 51
12 11 [elalelslelnlole] LOOP S1 A,A1
1212 0GaI0071C s2 B,Al
0323!” S3 S1+FSs2
1313 D00AGisIC C, A1 S3
[elcial] 10 Al Al+1
Q31012 AQ Al1-A2
011 00GOG™O0c+ JAN LOOP
QG3000 J BOO
END
Since the instructions hers form @ loop to be performed 51 times, we
must mons idar qen more thisn chse. Tiw: instrucitions for pass 1 are:
Machine code Mnemonics
Addiress (octal) (decimal) I C
200a 022100 Al 0] 19k 20
200 G2R263 A2 51 20 21
200 121100 025511 S1 A, Al 21 32
201a 121200 028802 s2 B, Al 23 34
201c 082312 Sa S1+FS82 34p 409
201d 131300 025662 C,At S3 40 -r
202b 030110 Al Al+1 42 44s
202¢ 0213012 AQ Al-A2 44 46
202 011000 001002 JAN LOCP 48t S3u
(203k ousSnNGo) (J B0OO) (50 S7)v
Notes for pass 1:
K. See previous note K.
p. The issue of 1the add instruction is delaved until bkoth operands (S1 and
$2) have arvived from menmory. The crmpletion cycle of the S2 fetch is

the start cyvele of +ihe add.
A fleating point add requires six cycles to complete (from Table 1).

r. Normally, we don’t need to consider memaory. S3 is available to start the
store at ocyvcle 40, and remains available for ciher use in the next cycle.



3, An acddress add requires two cycles.
L)

really an add of

(So does an A to A move, which

t. A conditional jump instruction do2s not issue until two cycles after the
(AQ is returned at 46; 47 is skipped;

neaded operard bacomnes available.
instructions,
issue at 47,

(to 200c)

48 s issue.) Seher

result into AC) could

This in-stack branch

The numbers haere refer to the cyeles on which this

issued and completed,

even one using AQ (but not putting a
arnd ths jump would still go at 48,

reguires five cycles.

if the program did not branch back.

The instructicons and timing for passes 2 and 51 are as follows

instruction would have

Machine code

Mnemonics

Adclrass (octal)
Pass 2

200c 121100
202d 011000
(2028h

Pass §1

202d 011000
2038b Q05000
252c 120100
253a 072700
253b 120200
233d 120300

025511

001002

oo1002

000225

000225
000225

(decinal) I
S1 A, A1 53u
(add 32 to Pass 1 numbers)
JAN LGOP 70
J  BOO 72

(add 1600 to Pass 1. number)

JAN LOOP 1648
J BOO 1650w
S1 M, 1657
S7 RT 1658
52 M, 1660
53 M, 1663y

75
79)v

Noetes for Passces 2 through 51

u. The in-stack branch complatss and
53.

this instruction issues during cycle
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V. Bnce again, these are the "if it didn’t" times.

w. This time it doesn’t,

X . The return jump requires only seven cycles to complete because the code
that called this routine is still in a buffer.

V. Conse@utive scalar loads (or stores) may issue as few as 2 cycles apart
and, if thoy do not address the same memory bank, finish in 11 additional
cycles. If the second does address the same bank, it will require one or

two extra cycles to finish, and & third consecutive scalar load (or
store) will be delayed from issue until memory is free (at most four
cyclas later).

In general, a scalar load or store thal encounters a memory conflict

(which could come from 1/0), issuves as usual. This allows subsequent
nonmemory instiructions to proceed normally, while delaying mamory
instructions until the cenflict is resolved. On the other hand, vector
loads or stores (and instruction-buffer loading) wait until memory is
entirely free befora issuing (or starting). Such delays usually last no

more Tthasm tTwo Cyﬂ';l(%f‘.

The cycles listed above ars the astual machine cycles on which the
events happen for the sequence of instructions given, It should be clear,
howevar, that we could predict these numbers from the timing information 1n
Table 1, together with a minimal understanding of the material from
Appendix A (wi ths exception, perhaps, of the memory conflict details).

Ohe siﬁply proceeds line by line, recording the five columns of numbers, left
o ight.

Thus, given the task of writing an efficient scalar loop to compute
C =AtD, we can try a few alternate ways to do it, timing each one as we dgo,
until we have identified the ore with the lowest last-issue <ycle.

For example, changing the three lines

C, Al S3

Al Al+1

AO Al-AZ
to

Al Al+]

AO Al-A2

c-1,41 S3

would cut six cycles from the loop time and thus result in nearly a 20%
saving in the measured execution time, (26 rather than 32 cvcles per loop).

While it is actually possible to accomplish this loop by a scalar method

in 14 cyclies por pass, the parallel, nonrecursiva nature of the loop allows a
much crester saving by using vector instructlions. Seo, let us nhow consider
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code ABCV, and list its timing details. For an alternate view, we use CIVIC
for uhis compilation.

3 civic ABCVF CVF BVF LVF P24 L
% XVLDR I =(BABCVY ,BVF ), ML.=MVF, X=XVF
%
COMMON /ABCCMMOEN/ A(S6) , BUTRANGE ,B(58),C(586)
QO0000A CAILL LINK( UNITES=TERMINAL// ")
[plelelelen s} Deg 1 1 = 1,168
onooG2c 1 ACL) =1
[VIaloloNNelb] GUTRANGE = &00004000000000000000B
Qo001 1D M = QERTC(O)
anaaiac CALL ABCY
000138 M = Q8RTC(Q)
0000148 X = N-M
00001 4A WRITE(S3 59) C,X
59 FORMATI7FS. 0)
200037C STAP
END
*  CAL. I=ABCV,E=X00,B=BABCV, LL=LVC
IDENT ABCV
COMMCIM ARCOMMON
71 A BSS 57
70 B BSS 56
70 C BSS 56
BLGOCK ABCV
ENTRY ABCV
022363 ABCV A3 51
0200 0020U000C AO A
002003 V0L A3
176100 V1 , AD, 1
0200 0000GO71C AQ B
176200 va2 , A0, 1
171312 V3 V1+Fva
0200 0ONNUISIC AQ c
177030 , A0 1 V3
005000 BOO
END
Again, we consider the code from one read RTC to the next. Mote that

since this particular se2t of adds is not more than 64 in length, it can be
done without lorping instiructions,

We will now record the full five columns of numbers. The I, C, @, F,
and R refer to issue cyele, chain cycle for vector instructions (or
completion ayclae for scalars), operand register(s) free cycle, functional
unit Trae ovele, and result register free cycle, respectively.
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Machine code Mnemonics

Address (octal) (decimal) 1 c (9] F R

5013d 072300 53 RT 0 1

501 4da 130300 aGBos3 M, 33 1 5

501 4c 022700 A7 Q 3 4

501 4d 007000 024000 R ABCV 4 Qe

5000a 022363 A3 51 9 10

5000k 020000 000200 AO A 10 11

S000c] 002903 VL A3 12 13

5001a 176100 V1 L, A0 13f 22g -h 68i 73]

S0C1b 020000 000271 AO B 14k 15

SON1d 176200 v2 , A0, 1 681 77 - 123 128

B002a 171312 V3 Vvi+Fve 77m 85n 1280 132n 136n

5002b 0203000 000361 AQ 78 7

S002d 177030 LAO0, 1T V3 136 - 187r 192s -

5002a [s]e151010]al J B300 13 144

015k o72100 S1 RT 144t 145

5015c¢ 130100 05054 N, S1 192u -

Notes

(a, b, c, and d are parcel addresses, after the load, as before.)

e, For this compilation the destination of the return jump is already loaded
into a buffer, so the branch instruction executes in only five cycles.

f. To begin execution, this vector instruction needs A0 and VL to be ready,
V1 to bhe free, arnd memory to be frees. Since they ara, it issues.

g. The first result will be arriving from memory nine cycles after the issue
cycle. This cycle (cvcle 22) is the chain cycle for this memory load.

(More on chaining in note m,)

h. When this instrucstion issuss (cycle 13) it transmits as operands the

contents of thae VL regis

cer, the special value 1, and register A0 to the

memory functiosnal unit., (Some vector memory loads use a second
A-register for the incremsnt.) All these scalar transmissions occur
during the iszus cycle and are held by the functionmnal unit thereafter,
[Whan A0 and SO are used as special values their reservation is not

chacked, and so thay do not delay issue. Here, however, AO is also used
to hold an address, and i it had not been free when ncaeded, the issue.
would be adrlayed.l For a vector load inrstiruction, nho vector register is

usaed as input, 8¢ RO entry is mads in column O,

i. For this instruction, the functional unit involved is memory. As with
scmlar memory raforences, a memory bhank will be busy for four cycles with

_32-



sach word read. If the vector locad moves through at least three other
banks before returning to a previous one (as is the case here), no
conflicts will arise, and a new word will be read each cycle. The first
word is reguesiead cycle 13 and the Sist at cycle 63. The memory will
be busy for 4 mor veles, through cycle 87, and free for another memory
refaerence in the next cycle. We record 88 = 13+51+4 undeir the functional
unit free column. NMotice that mamory is freo five cycles before register
V1 is reaeady.

When this instruction issues (cyele 13), it puts a hold, or reserve, on
register VI in order to kesp it available for the words coming in from

EmOry | Tha reserve will be lifted after the last word arrives. Since
the (VL) is 91, the last (51st) word will arrive in cycle 72. (The first
arrives in cvele 22.) In the next cycle the V1 register may be used for
arother purpoese; thorafore we record 73 = 22+51 under the result register
£ LAY . The CRAY hardware has one element poinmter Tor each
V-register, and it is uzed o selact one of the 64 positions in the

g ister. Thae pointer for register V1 is automatically stepped from 1

through ©1 during cycles 22 through 72.

Since the previous vector instruction read out A0 and (VL), saving them
in the functional unit at the start of the vector load, subseguent
instructions may modify them immediately without affacting the previous
instruction.

Here a major delay is encountered. This instruct;on also transmits words
from memory to a V-register, The register is available but the memory is
busy, so issuz is delaysed Till it is free (in cycle 68),

This instruction chains. At cycle 69, it is first considered for issue.
Howaver, bhaefore it can begin executing, this vector add needs to have the
vector length ragister, register V1, register V2, the floating point add
functional unit, and register V3 free. V1, as noted, becomes free at
cycle 73; V2 will not bhe free until 128; but the first element will
arrive at cycle 77 and during that one cycle, it can be redirected, or
chained, to serve as input to the add unit as well as being put into V3.
The conditions for chaining are thus satisfied during cycle 77, and so
the instruction issues.

The first result exits from the floating point adder ecight cycles after
The first operands were sent over. For this instruction, then, its chain
cycle is &5 = 77+8. Similarly its result register (V3) free cycle is

136 = 85+51, and its functional unit free cycle is 132 = 77+51+4, The
four extra cycles heres are eguivalent to the four extra cycles needed for
memory free by tha2 mamory functional unit. All functional units remain
reserved for four extra cycles after the last element arrives during
vector instrustions. This means that a subsequent scalar (or vector)
Floating point add =arnast issue until cycle 132, since it shares this
unit.

Since this instruction requires that vector register operands be sent to
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the adder for the next 51 cyvecles, a resarve is placed on registers V1 and
Ve until cvela 128, at which time thay will both be freoce and able to be
used by @ subsaaquent operation.

[« This vector store does net chain from the add. In the first place, at
cycle 83, thse chain oycle for V3, the memory is busy completing the load
of Va. In the second place, store instructi:ons are barred by the
hurdware from chaining even if the menory functional unit is free. The

store doaun’t begin at cycle 128 (whan the nemory bocomes free) either.
It can’ issue at 123 bacause the «lement pointer for V3 is not pointing
to V33 first element, which the store needs, but rather at element 39,
which is boing returned by the fleating-point adder. It finally issues
when register V@ is not otherwise busy and can have its element pointer
reset, nam2ly cvcle 136, the result register firee cycle for the earlier

acid .,

=8 A store doesn’t chain to anything, eithear.

r. Register V3 will be fres after the store at cycle 187 = 136+51,

s, Finally, the memory functicnal unit will beco»me fres from the store five
cyacles after the oparand register, V3, is free. All other instructions

free their functional units four cycles after their operand registers but
store requires one extra cycle.,

t. Sirnce the return from subroutine did not require memory, as the address
is already in a buffer, the next instruction, which for CIVIC is the read
of the RTC, gets iszuad well before the vectior store completes.

u. Finally, we note that the final store of the RTC value to memory is
delayaed by tha memory busy condition from the vector store, and issues
when the mencry funchional unit ready cycle occurs,

Conclusions

It should be clear from the timing chart ahove that the CRAY-1 is not
really very busy during this vector add routine. For example at cycle 78,
its busiest cvele, V-registers 0,4,5,6, and 7 are free along with the shift,
fixed add, multiply, reciprozal, and legical functichal units. Moreover, the
i rcles (as well as most of the previous €0) could be used to issue
v o instructions for a related calculation, if one needed to be done.
3 actually decrease the time for ABCV by four cycles by using
Ae resourcas, )

-

Frequently, parallel use of available resources can be made, especially
in tiw no of veootor loops. Three examples of actual code are presented in
Sention V to ashow whis: ZVSEFEK, QVvDIVO, and QVIORTH.
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IV. THE COMPUTER CODE CYCLES

CYCLES is public file on the CRAY-1 computers at LLNL. It was written
by Rollinm Harding. A Fortran versien of it has beern madz available to Cray
Research ITnoorporataed and is being medified for use under their system.

CYCLES is not a simulator and does not have knowledge of the values in
all machine registers., [t cloes, however, try to keep track of the values in
the YL and A r@giﬁtows. ﬂptioms allow these register valuass to be specified
for CYCLES’ usea.

The rest of this section is taken from the documentation for CYCLES. A
iv&l wiriteup, CYCLEWUP, can be extracted from the CYCLES public file using

Cycles Writeup

CYCLLEES was designad for detailed analysis of instruction scheduling in

compiled or 287 sexinby Led) WRAY codes . Tha timing analysis is presented in the
spiwit of Harry Melson” epart, UCID-30179, Rev. 1, "Timing Codes on the
CRAY-1", Harrf QUDD]I%H addntnunal timing ﬂetails and tested the code

exLen*xvcly aduring the debugging period.
Input te CYCLES is any HSP file from CAL, CIVIC, CFT, or DDT which

contains the machine codse listing. CYCLES =« 1cgapfs slngle or double column
listings frem CIVIC (M or L option) and the four instructions per line format
from CFT (onm=gl). Sequanrces of octal parcels may be entered from TTY or by
specifying octal word limits in a coentrollee or other binary file. In TTY or

binary modss CYClI ES adds the equivalent CRAY assembly language instructions
to the output, i.e. cdoss a CRAY UNDJ. CYCLES will also accept the history
file prodicad by DDT in the MNE outpur format mocle. This form has the
acvantage of uzing correct symbols for variables in thz program being undone.

6utpuT consists of a copy of the input file with up to seven columns of

Timing informaticn added for cach machine instruction line. (This overwrites
the commant £ 'a2ld in CAL listings.) The NOCCPY . option will suppress most
nen-instruction lines from being output. The seven timing columns are:

W numbar of cycles this instruction waited to issue

D octal codn% 1dcntxrv1ng any delays

I 1 le for the current instruction

c n cycle or scalar completion cycle

s} and register ready time

F zhinral unit ready time

R vectar resyult ready t©ime
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. The I column is always given; others are suppressed if null or
irrelevant for the current instruction. Alternate definitions for columns C,
O, F, and R for jump instructinns are given below.

CYCLES is very fast and is easily run as a controllee under TRIXGL.
OJuitput can be viewed without line wraparound by using TUBE command S or
TRIX3L command TV, 1 for small characters. Effecis of altering instruction
secences can ba chaecked =esily by rearranging lines in CYCLES’ infile and

rerunning it withoun reassambling your code. One may also rearrange lines in
CYCLES outfile and then use that as the infile. CYCLES CIVIC output is

compatible with single column CIVIC ocutput. CYCI ES’ CFT, CAL, and binary
Bgﬁput are compatible with CAL cutput. CYCLES’ DNDT output is compatible with
P ooutput .

Abilities and limitations

CYCLES is aware of most of the fine points of CRAY instruction
scheduling:

- chaining reguirements

- recursive vector operations

- no waits for special A0 and SO0 operands

- memcry functional unit reguirements

- vactor memory conflicts due to 8%n increments

- A and S register trurk conflicts.

- extra delay afiter A0 or SO ready for conditional jumps.
- scalar memory bank conflicts (with limitations)

- instruction buffer fetches, conflicts, and delays.

- other spacial cases

CYCLES has to make assumptions about loader dependent conditions such as
instruction buffer delays and ssalar memory bank conflicts. Bank conflicts
may not be detocted if memory addresses are indeiinite. Addresses are
indefinite if they involve undafined A register values or unspecified
relocsiion flaygs. Opticns are provided to specify that the current code
block (local relocation) is loaded on a 20b-word buffer boundary or that all
extarnal blocks (subroauvtines or commons) are loacled on 20b-word boundaries.
Th relevant option rames are +., x., and tx. to set relocation flags, and
MBGFT . 1o turn of ¥ bank conflict checking. IBGIFF, turns off instruction
buffoar checking.

VL and A registers

Many instruction timings depend on values of the vector length register
and A regisiers. 5 sttempts to keep VL and A regs current as
instructions are procesased that set those registers, A registers set from
menory or from S registers are considered indefinite. Rzsults of A register
caloculations invelvirg incdaefinites are alse indefinite. VL will be set to 64
if it is set from an indefinite A register. Register changes are reported in

o

Y CL.

~-36-

b b el oo b Lo bl bR P bR EEE o fel B Rbobeli o]

&
a2
o]
]



The sutput. Automatic register setting can be disabled by the NOVLA.
axecute line option,

You may explicitly reset values for VL, A, or NI (next issue) by
ingerting contirol limes into CYCLES’ input file or as commz2nts in a CAL

source file, In column 1 of the input file use ILn to set VL to n (decimal),
use Zn to reset counters and force the next issue to cycle n (decimal), and
use An,m to st register An to m (decimal). CAL comments xLn, *xCnh, and XAn,m

would have the same effects,

Jump instructions

For conditional jumps, CYCLES assumes drop through timing. Normally,

the cysle counter is reset to zero after each unconditional jump. However,
if the following instruction is recoghized (by its address) as the target
instruction, then timing continuos without reset. This can be accomplished

by comrtrol cards (CYCLE GOFF/IN/GUT or REPEATN deszcribed below) or by
rearranging the input file.

For a jump instruction certain columns are redefined:

o] Earliest isaus for the jump target if the jump is taken
o] Target instruciion buffer coda (see I-buff smction)

F Target issue time for an in-buffer jump

R Target issus time for an out-of-buffer jump

An out-of-buffer jump can be significantly delayed if memory is busy,
for instance, completing & vector store.

You can control ths output for a jump to a later instruction by
inserting a coentirol line CYCLE OFF immediately &fter the jump and a CYCLE IN
or CVCLE OUT line immediately before the target instruction. CYCLES will
stop timing after the OFF and will resume by issuing the target instruction
at the proper TN buffer or OUT of buffer issun time. Comments, xCYCLE OFF,
etc., can be used in a CAL source as well,

A REPEATNn line can be used for continuous timing over a jump to an
carlier instruction. The REPEAT line is inserted immediately before the
targat instruction. From then on, each jump instruction is checked to see if
its target has an active repeat line. I+ it doas, the count n is
decronented, and timing continues at the target line using the in buffer time
plus any appropriate delays for registers or functicnal units. Up to ten
repeat lines maoy be active at any time. Repeats may be nested,

Instruction buffer (I-buff) delays

The CRAY has 4 instruction buffers. They are loaded in rotation. Each
holuds 20b words (84 parcels) of instructions. I-buff delays occur each time
execution shifts from one buffer to ansther due to a jump instruction or
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simply when crossing from one 20b block to the next. Additional delays
result when memory operations conflict with instruction fetches or when a
two-parcel i truction straddies a buffer boundary. For 1-buff checking
CYCLES asswues that relative word zero iz loaded on a 20b-word boundary .

I-buff delays are indicated in th2 usual way, using dolay code 200b, but
additisnal information is alse given:

B The first instruction from a buffer is marked (between the W and D columns)
by a letter a,b,¢, or d for buffer 0,1,2, or 3. Uppar case means the
instructions were fetched from memory; lower case means the buffer was
already lcaded.

B For jump instructions the target instruction buffer is given under the ©
column, Again, upper casa is out-of -buffer; lower case is in-buffer. A
jump to am external (x reloc) address is always considered out-of-buffer.
An unconditional jump ocut-of-kuffer clears one instruction buffer unless
the MNOICLR. option is used. A Bn line can be used to clear n additional
instruction buffers.

Bl Delay code 10000b shows that an instruction fetch was delaved because
memory was hbusy. Beceuse of lock-shsad, this does not cause an immediate
delay of issue, but it does signal a possible delay for a subsequent issue
(usually)the target instruction of an out-of-buffer jump appearing in
column F).

4 Delay code 27000h indicates that the parcel address for the current
instruction was not in a current [-buff or one that had been fetched. No
delay is assessad,

B Delay codes 40000b indicates the possibility of a delay that this version of
CYTZLES couldn’t determine. The marksed instruction is varcel 17c of the
current instruction buffer. I the next instruction (17d) happens to be a
two-parcal instruction (this is what the timing subroutine didn’t know)
thern 17¢ would be delayed until one cvele before the issue time indicated

on %he next line for 17d.  This delay of parcel 17¢ could causes further
dalnayvs not shown for 17d, 20b, or latar instructions, Correct timing can
e prod I im the cursent version by inserting an "In" control card before

17c, whare n (decimal) is the correct issue time for 17c.

ty of CYCLES

Avalila

The latest version of CYCLES is maintained in CRAY public file CYCLES.
The HEI P pac ac are roproduced below. The output file is named Hinfile and
i laeft on o Are edisting file will be cverwritten. If the file

flows, 2 numbers will ke added: G0, etc.

This writeup is available as CYCLEWUP in public file CYCLES. It will be
revised as suggestions are made or changes made %o CYCLES. The revision date
is given on line 1.

]
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Please send sunggestions for enhancements to CYCLES or listings of any
bugs you encountar to Rollin Harding in A-Division (L-18).

CYCLES HELP:

execute lines!:
cycles hspfile type <nocopy. novla, e noiclr. &> / t v
cycles tity / t v
cycles binfile fwa lwa <abs., end> / t v (binary input mode)
type is cal cft civiec or ddt
<> shows opticns. kesp in order. no comma for dropouts.

nocopy . suppressss non-instruction lines

novia. defsats automotic setting of vl and a registers

mbof . suppresses mem bank conflict checlking

X Aassumes both +. and x. (increases mem bank checking)

+, assumes prasent routine is loaded on a 20b boundary

. assumas externals are loaded on 20b-word bhoundaries
txreloc, oct sets both +reloc. and xreloc. (affects i-buff chks)
treloc, oot =roffset=oct for local word 0 in i-buff and mem bank
xreloc, oct =roffset=zoct for external reloc vars and subrs
iboff. suppressaes insgtruction buffer checking

noiclr., suppress clearing an i-buff afier out-buf uncond jmp

i to continue evecute line

fwa, lwa are octal; may have a,b,pa,pb,etc. parcel tags

abs ., changaes assumed 3400b minus word offset to O

end sayas don’t aslk for additional fwa lwa pairs

outfile namz will be h+intile name
type delaved for list of delay codes

CEEEEEEINRED TSN ES BN CEEEE D NNEETEEESE 88

tvpe haelpoce for list of infile control card options
HELPCC:
in col 1 of cycles’ input file (cal,civic,cft,ddt) use:
1 to set veactor length to n (decimal)
= to reset registers and set next issue time to n (decimal)
ks to clesr n additional insmtruction buffers
in to 7 " ue to h (dec) without resetting registers
am, n to ister am 1o value n (decimal)
repeat n baf gt Tnstr to time n jumps back to target
cyecle of v d able cycle counting, use after conditional jump

cycle on resumne counting 2t the “in buffer’ jump time

cycle in same as aycla on

cvecle out resume counting at the ‘out of buffer’ jump time A
use any of these as comments in your cal infile: xam,n etc. i ]
in TTY mode us in cn in an,m a@s above, and use H

piloci to s parcal to word ‘loc’ and parcel i=za,b,c,d,pa, i |
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Talble of Delay Coddes

DELAYCD:

octal
7k

ab

10k
20b
4Qb
100b
200b
400k
1000k
2000k
4000k
10000k
200000
40000k

delay codes!

functional unit not ready

result register not ready

opaerand raogister not ready

waiting for chain cycle

@ or s register trunk conflict

scalar moncry opaeration bank conflict

corditional june delaved by a0 or s0 busy last 2 cycles
instruction Hhuffer delay

operand chain cyeles don’t match, can’t chain.

mi o chmain oyvele

for all instructions to complete

waiting for roegister block transfer to Finish
instruction ¢ ch delaved by memory busy

current instr in unexpectaod buffer. no delay added
possibla twe parcel split delay of 17c

WE
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V. EXAMPLES

1 As mentioned above, source code for all theze examples is in public LIB i
I file CLASS on the CRAY-1. The timing numbers are from code CYCLES. H

ZVSEEK is a BASELIB function designhed to find a target value in an
unorJdaered list, The eoriginal version was written abocut a yvear before the
LLNL. machine arrived and has since been upgraded by use of timing analysis to
run more than twice as fast. Most of the speaed increase was obtained through
a simple algoritkm change: replacement of a logical vector instruction by a
fixed add, avever, an additional healthy gain came through improved
handling of the vector looping technigue. The main loop of the original
rout ine consists of 10 instrucctions,

Mein Loop of ZVYSEEK (31d Version).

This version prestores the target at the end of the search array, so
that it must eventually exit on a hit.

Timing of original version: VL = 64,

Instruction 1 C o F R Comment

VO , A0 0 ] - 63 73 Cet next 64 values

V1 SA\NVQ ] 13 73 77 77 XOR wach with target

VM V1,2 77a b 141 1485 i47c Check for hit

31 VM 147c 148 VM to S for count

SO VM 148 149 VM to S for test

A4 Z381 149 182 Count left zeroes
(needed if hit)

JSN HIT 151d 156 Exit if hit

AOQ AS+HAG 153 155 .LGC. of next 64 values

AS ADHAG 154 156 Up A5 by 64

J L&4 155 160e Go check next 64 values

Notes:

a. Since the VM is set by the logical functional unit, this instructiocn,
which also usas the logical unit, delaye until the unit is free and does

not chain,
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The vector mask instruction never chains its output to anything.

While another logical vector operation using the VM-register could start
at cycle 145 (for example, m2rge), the VM cannot be read out to an
S-register until two cycles later (see the CRAY-1 Hardwarz Manual,

p. 4-69 or page 122 of the online version, LCSD-158). Thus, we record
147 as the register free cvcle.

d. This instruction is delayed c¢he cycle since SO has not been ready for the
necessary unused cycle.

e, As written, this loop iz taking 160 cycles for each 64 elements searched.

Improved Version with XOR Replaced by Fixed Subiract

Address Instiruction I C 9] F R Comments
.64 VO , A0, 1 0 ] - 68 73
AQ AS+AB 1 3 No reason to wait
Vi S4-V0 ] 14 73 77 78 Subtract each from
target
AS ASTAG 10 12 Get it out of the way
VM v1,2 14f - 78 82 84
SO VM 84 85
S1 VM 85 86
Ad ZS1 86 89
JEN HIT 87 Q2
L&4 89 Q4h
Motes:
f. Since the fTixed subtract was used in place of the logical difference, the
vector mask instruction can now chain its input operands.
d. Exchanging the order of the VM transmits to 8 saves a cycle later on.
h. The loop is now performing the same service s before but using only 94

cycles for each €4 elemsnts searched.

This latter loop represents approximately a 40% improvement over the
former ., However, becatuse: (1) no functional unit is used for more than 68
cyclaes, (2) no register is used for more than 73 cycles, and (3) there are
plentg of unuserd raegisters, one would expect that additional savings may be
possikle,

Another item that should be taken into consideration is that this method
is rather inefficient for those scarches in which the target value is found
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in the first portion of a sat of 84 elaments searched. For example, suppose
the list we are searching has 64 entries. 0On the averages, we would expect to
find the target value in the first half of the list as often as in the last
h&lﬁj but Fgr all these cases, the locp a3 writiten will require the full list
te s tested.,

In fact, there is a clever (almost herocic) method available which can go
through this particular search loop in exactly 68 cycles per 64 elements
searchaed. The treatment below, however, is somewhat easier to code (and
debug) and offers an improvement in the time used to find the target over
even the harcic methoed, on the aversge, for searches up to 12 in length.

The main tricks emplovad are: (1) breaking the array into vectors of
length 82 exnch; (2) replicating the loop but using a different set of
V-iregisters for each half, (3) loading and subtracting a second set of 32
elemants while waiting for the VM instruction for the first 32 to finish, and
(4) loading extra unnecdad 2laments in the first half of the loop and using
an otherwvise unnsedsd vector operation in the second half to maintain the
coirrect tTiming so that the losd-asubtract-VM chain will not be broken.

The timing chart for the main loop is given below. The notes following
are referenced by line number.,

Address Instruction [ o] 5] F R
; First half of main loop
3 A2 35
4 AD ADDRESS
g sS4 TARGET,
7 &4 AO AS 0 2
] VL0 AZ 1 2
] VO ,A0, 1 2 11 - 41 46
10 AB 32 3 4
11 56 A6 4 6
12 Vi A6 5 6
18 A6 A4 6 8
14 \al $4-V0 11 16 43 47 48
15 Si VM 15 16
16 VM vi1,2 16 - 48 52 54
17 S0 S1 17 18
18 A4 281 18 21
19 JSBN HIT 20 25
20 SO S6-83 22 25
21 AG 32 23 24
22 ASD AG+AB 24 26
23 83+S6 25 28
24 J3P DUN 27 32
2%
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Second half of main loop

AQ AS 29 32

Va2 , A0, 41 S50 - 77 82 @&
V3 S4-va 50 55 82 86 87
A4 15 51 52

S1 VM 54 55

VM V3,2 55 - 87 a1 93
SO S1 56 57

VL A4 57 58

A4 281 58 61

VO VB<AD 59 65 74 78 80
JSH HIT 60 65

SO S56-83 62 65

AS AS+AB 63 65

S3 S$3-56 64 67

A4 32 65 66

JSM .64 67 72

AS AS-AB 69 71

Lirne

L.ine

Line

Line

Line

16.

29.

Although we are only going to check 32 elements, we take care to
load 35, The reason for this will appear at line 33,

Since there are 35 eloments being loaded, F = 2+35+4,

Now we cut the V0L back to 32. Reducing the vector length in the
mickile of @ chain is perfectly safe. However, increasing it while
chaning can lead to wrong answers (i.z,, the answers may differ
depending on external happenings such as 1/0 activity, system
intaerrupts, and operands out of range).

The chain continues, with the functional unit becoming free at
cycle 2, while the VM itself is not transmittable to S1 until 54.

When we reasch here we are simply waiting for the previous vector
masly irnstruction at line 16 to finish. Since the memory functional
unit is free, we may a2s well start to lead the next 32 elements.

We choose not to leoad 35 elements this time.

The Tixed adder is also free so we may as well start the next
subtract at chain time.

We must rescue the previous VM register setting before we can form
a hew ohe. Cycle 54 is the earliest this can be done.

The cycle following the move of the VM to S1 is the first cycle in
which we can start & naw VM instruction. Happrily, cycle 55 is also
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LLine 35.

l.ine 7.

Line 38,

Lines 37

l.ine 43,

the chain cvcle for the subtiact at line 30, so the chaining
continuas. Notice what would have happened if we had loaded only
32 elements at line 9. First, for that instruction, the functional
unit would have gone free ot cycle 38. Second, the load at line 29
would have then begun at cycle 38, Third, the subtract at line 30
would have chained a1t cycle 47. Finally, the VM at line 33 would
hava missed the chain oycle (52), since we had to hold it up for
the mova of the ol VM to S1. Thus, it would not have issued till
cvele 87,

But since the loop will normally continue back to the VM at line
16, and since we have not loaded 8% elaments this time, we must do
something +o holal © the load at line 9 in the next pass, or the
VM &t lirne 16 will sgnin miss its chain cycle.

-~

Herz we start to pull another trick, which will delay the load at
ling @ in the next pass ard at the same time protect this loop
against a praoblam (in timing, not corirectness) that may arise if
there is an interrupt during its execution. The protection is free
in terms of the cycles recuired to do it, but it does require extra
instructions.,

This is the proatection instruction. Since it is putting 15 results
into VO using the iTt functioral unit, which has a chain time of
6, it will tie up register VO until cycle 8&0. This in turn will
cause the next lead at line 9, which uses VO, to be held until
cycla &0, This is the exact cycle desired, since it will bring the
chain cycle from the subtract at line 14 to cycle 94, the cycle
immediately aftar th2 one in which we carn first save the VM (93).
At the same time, regardless of whether or hot some interrupt has
comer along and boliixed our careful timing, this will force the
next load (at ling 9) to hold long enough relative to the previous
VM so that we will e back in synch thereafter.

In this program address HIT has already been put into an
instrucrtion buffer. I'f this were not the case, the jump would
complate at cycle 91,

through 40, ) . .
Several instructions are completing in cyscle 65; ecach uses a
different register set.

After jumping back, we will be holding at line 9 for the completion
of the instruzhion at line 37. The loop time will be 78 cycles for
each 64 elements tested, but, on the average, we will exit in the
upper half of the loop half the time, which provides a further
specd increass, especially valuable forr shori arrays.
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QvDIVvVO

As another example, we present the coding for QVDIVO, the CRAY-1
STACKLIB dividge routine.

On the CRAY, the vector divide algorithm used to accomplish the FORTRAN
vector statenent C = A/B, where A, B, and C are vectors with arbitrary
(linzar) strid reguires three vector memory operations, thiree vector
multiply opear fons, and ocne vector reciprocal approximation instruction for
esch B4 ¢ nies . Thz currant CFT implementation of the genseral vector
divide loop requires 445 cycles psr 84 cloments stored plus some startup
time, which bri the most for such o divide to roughly 7 cycles per
elemant . Howoave by overlaying the storing of the result for the first pass
through the loop ard the leading of the operands for the third pass through
the loop with the moltiplving still beang caririad out for ithe second pass,
ore can expect to achieve something on the ordsr of twice CFT's performahce

In the theorgtical minimum, 2035 cycles (88 + 68 for loads + 68 for
stora) = 64 e s (afier suitable startup tima) is achieved in this
rout ine. The nlmung chart for the main loop is given with notes below.
Line Instruction 1 c v} F
-3 ve vaxIvi -137 -128 -73 -69
-2 V4 VI*FV6 -64 -55 0 4
-1 AOQ S5 -63 -2
o] JSP TWITRIP -62 -48
* B UFFER BOUNDARY
1 va ,AO0,AS -48 -39 16 20
2 LP VL0 A4 -44 =43
3 A3 ADXAT ~-43 -37
4 S3 A2 -42 -40
S Vi SO+VS 0 5 64 68
6 S3 33<6 1 3
7 s2 S$3+82 3 6
8 ve V7ZxIV1 5 14 69 73
] S3 A3 6 8
10 S5 S5+83 8 11
11 AQ 5 11 12
12 VO AO AS 20 29 - 88
13 VL 21 22
14 V3 VA*RVZ 73 82 137 141
15 VL A4 74 75
16 AO s2 75 76
17 v7 ,AO, A2 88 97 - 156
18 v5 /HV7 Q7 113 161 165
19 v2 VO&VO 137 141 201 205
20 V] V1I*FV6 141 150 205 209
21 VL A7 142 143
22 AO S6 143 144

69

78

Q93
146
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23 3 ABGXA7 144 130
24 ,AD, AG V3 156 - 220 225 -
25 S3 A3 157 159
26 S0 S1-384 158 1€1
27 S1 St1-84 159 162
28 AT Ad 160 162
29 57 sS4 162 183
30 sS6 S6+53 163 169
31 JSN LP 164 169
Notes
Line -3. We choose to begin the timing chart somewnat before the loop. We
& to stary thae timing somevwhere. Arbitrarily, we may take the
start of this instruction as any cycle, Cycle -137 will be
convaniant.
Line -2. At this point, it is clear that the state of the machine prior to

line -3 will have no effect on the issue time of this instruction.
(Actually, & vector reciprocal instruction whose result register
was V4 cou'ld still be in progress and would delay this issue by a
few cycles. but that is not the case.)

Lines 0 and 1,
The jump here to TWITRIP is not taken. However, a 16-word buffer
boundary (20 ocial) occurs after the JSP instruction, and this
delays th2 next instruction until the new buffer can be loaded from
mamory . Notice that the time of issue of the instruction at line 1
after the buffer load is the same as it would have been had a jump
boen takoen to it.

Line 5. This move instruction is the first vector instruction in the loop.
We have arranged to make it issue at cycle O. It will wait to

until V1 has delivered all the operands for the multiply
instiruction a2t line -2.

Line 8. This multiply chains with the fixed add (move) at line 5. We have
insured chaining by delaying the move long encugh to have the
multiply functicnal unit free from line -2

Line 12. This load will issue as soon as the previous one at line 1 releases
the maemory (cycla 20).

Line 14. V2, V3, and V4 have been available for many cycles before this
instrustion can issue,. It has to wait for the use of the multiply

lso that the A-register multiplies do not interfere
irg-point multiplies since they are done in a
cional unit.

unii, Note
with the flo
separat func!

Lines 17 and 18,
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Line

Lime 2

Lines

*
)

s
R

24.

These instructions chain.

This is another move instruction. The release of VO by this
irstrustion determines the length of the loop (20% cycles).

This deoes not chain with the move at Line 19, It issues at cycle
141 bocause it can’t get at the multiply unit from line 14 before
when.,

This is the final store instruction. It is released for issue by
the availability of the memory from line 17, The memory functional
unit also rminas the time for the loop since we are using it
Ffor G634aH] 05 cvcles,

The fellowing is & timing and accuracy test for QVDIVO:

LDR

RCFT 1=TESTAVD, ON=G,B=RQVD, C=C00
1= (BEYDIV, BOYD) , X= XGVD, GRDER=CLNB, FIRST=BAVDIV

AV

COMMUMN /ZQVCOM/ X (48000),W(48000),U(48000),2(48000)
CALL LIMK{ UNITSG=(TTY,TEST)// ")

DG 3 L = 1,12000,64
Do 2 I=1,3*L+
Z(1) = 4+L
2 Ul = 4+
K = IRTC(O)
CaLL QvDIVO(W(1),U(1),2(2),1.,4,38,2)
N = IRTC(O)
N = N-K
K = IRTC(O)
DO 1 I1=0,L-1
X(4xT+1) = U(3xI+1)/2(2%x1+2)
1 CONTINUE
M = IRTC(O)
M = M-K
DO 4 1=0,L-1
[F(XxI+1) ME. W(4xI+1)) GO T 5
4 CONTINUE
WRITE(US,80) L, M,N
60 FURMAT(1&,218)
CONTINUE
STOP i
5 CONTINUE
WRITE(D9,59) WiAxI+1) X(4x1+1)
WRITEIDSO,81) (WD), I=1,4%xL-3,4),(X(1),1=1,4%xL.-3,4)
58 FORMAT(3:186.14)
61 FORMAT(Z622)
3TCiP
END
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QVSQRTH

Ve conclude our examples with the code for QVSARTH, a half precise

(28 -bit-ancurate) sguare root raoutine for arrays, available in STACKLIB. The
rocision roubine QVSART is quite similar, requiring one additiocnal
an but needing, also, a full precisicn divide during this final
i s ion., The code 15 perbaps remarkable in that maximum speed is obtained
by breaking the srray up into vectors of length 31, and because every vector
; cion is chained Lo the previous one. A total of 21 consecutive chained

operat iong occur.

Essentially, the idea is to compuie an initial guess X0 and then to
thres times by the formula: Xi+1l = (Xi + ¥Y/Xi)/2, where Y is the
numks2r whese squars raoot is desired. The iterative loop can be managed by
the four CAL instrucstions:

VO /HVI
V2 VOxFV3
V4 V2+FV1
VS S4+V4

The halving operation is performed by adding minus one to the exponent.
Chaining will end for long veciors at the (4F) instruction since there wiltl
be & conflict over the use of register V1. However, by adding one auxiliary
NA-8P instruction (& shift of zero), we can achieve the following timing for
vectors of length 31, since the +F is delayed until V1 is free.

1 c ] F R

VO  /HVI1 0 16 31 35 47
V6 VOxFV3 16 25 47 51 56
V2 VB>A7 25 31 56 60 62
V4 VZ2+FV1 31 39 62 66 70
VS S4+V4 3¢ 43 70 74 75

Mow, @&t cycle 43, we can issue another reciprocal coperation (to register
V7)) and continue the procadure without any breaks in the chain. Moreover,
since the initial guess can be generasted by a similar set of chained
oparations, the entire calculation may proceed from the initial load, with
earh successive vector instruction issuing at the chain cycle of the previous
one ., (In the full-precision routine, the chain is broken during the
caloulation of the full-precision reciprocal.)

The timing chart for this half-precise square root is given next (for

the main loop). A full iteration hegins at label ITER. The complete routine
is available in file CLASS.
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Instruction 1

NOLGD

ITER

RTMZ2

VS VOxFV1 0
13 VS>A7 9
A7 24 10
A7 VE+FV7 15
AQ Al1+A7 17
A7 A7-A6 18
V3 S5+v2 23
S0 +A7 24
A7 -A7 2%
S$7 VM 26
V4 /HV3 28
JSP NGLGD 29
V0L A7 31
VO , AQ, A3 32
VM Vo, 2z 41
VL AB 42
v5 VAXFV1 44
A7 0 45
VO V5>A7 53
S7 S6&S7 54
A7 ABGXA3 55
32 VM 56
Ve VO+FV3 58
S2 8$2>24 60
S7 S2!87 62
VM S7 63
Al Al1+A7 64
ve S4IVE&VM 67
AO AB-AD 68
A7 ABxA4 69
AS AS-AG6 70
V7 35+v2 71
JAP DUN 72
AO AG-ADS 74
JAP SHORT2 78
Al 1 80
AOQ Al 82
V1 , AO, AG 84
VO S1%FV1 93
S2 >2 94
82 S2>15 a5
V2 S2!1V0 102
V3 V2>A0 106
AO A2 107
A2 A2+A7 108
V4 S3+V3 112

/HV4 117
,AD, A4 V7 118

59

39
48

75
84
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Ve VSxFV1 133 142 164 168 173
A7 24 134 135
V0L A7 135 136
VM Vo, 2z 137 169 161 165 167
V0L A6 138 139
AT 0 140 141
va VB>A7 142 148 173 177 179
V3 V2+Fv4 148 156 179 183 187
V7 S55+V3 1586 i61 187 191 182
VO /HV7 161 177 192 196 208
J L.OoP 162 167
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APPENDIX A AN ABRIDGEMENT OF THE SUMMARY OF CPU TIMING INFORMATION
FURNISHED BY CRAY RESEARCH INC.

When sue condition§ are satisfied, an instruct!on completes in a fixed
amnount of timeg, Insvruction issue may cause reservations to be placed on a
functional unit or registers. Knowledge of the issue conditions, instruction

exscution times and reservations permit accurate timing of code sequences.
Meriory bark conflicts due to 170 activity are the only =lement of
urpradictal i Lity.

SCALAR INSTRUCTICNS

Four conditions must be satisfied for issue of a scalar instruction:

T. The functional unit must be free. No conflicts can arise with other
scalar instructions. However, vector floating point instructions reserve
the floating point units. Memory references may be delayved due to
conflicts,

2. The result register must bs free.
The operand ragister must be free.
Issue is delayed 1 clock period if a result register group input path
conflict would exist with a previously issued instruction. gne input
path axists Tor oach of the four register groups (A, B, S and T).
Scalar instrustions place reservations only on result registers. A

result register is resaerved for the exccution time of the instruction. No
reservations are placed on tha functional unit or operand registers.

A transmit scalar mask instruction to Si (0738) instruction is delayed by
* 6 clock periods from the issue of @ previous vector mask (175)
wihruction, and is delayed by 8 clock pericds from the issue of a preceding
tramsmit (8§) to VM (O03) instruction.

Execution timas in clock periods are given bslow. An asterisk indicates
L issue may bs delaved because of a functional unit raservation by a
Lo instruntion. Memory may ka2 considered a functional unit for timing

conzidaerations,
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“registor, M=Mamory, B=B-repister, S=S-register, I=Immediate,
ranmael, T=T-register, V=V-register, X see previcus page)

24-bit results:

A<--M 11x% A<--C 4

M< -~ A 1% AL--A+A 2

A<--B 1 A<~ -AxA [

B<--A 1 A<~ -pop(S) 4

A<--5 1 A<--1zc(8) 3

A<--1 1 VL<--A 1

€d-bit results:

Sa--M 11% S§<~-8+8 3

M<--8 1% S<-S(Ff.add)sS 6%
S<--T 1 S<=--8S(F.mult)S 7%
T<-~-38 1 S<--(r.5.)8 14x%
S<--1 1 S<--V 5

S<-&(log) S 1 V<~--8 1

S<-8(shift)l 2 S<~-VM 1

S<-S(shift) 3 S8<--RTC 1

S<--8(mask) 1 S<--A 2

RTC<-~8 1 VM< - -8 3

Vector Instruczlohs

A

for

Four conditions must be satisfied for issue of a vector instruction:

The functional unit must be free, (Conflicts may occur with vector
osparations, ) . . .
The result register must bhe free. (Conflicts may occur with vector

operations. ) . .
e operand registers must be free or at chain slot time.
Memory must bo guiet if the instruction reforences memory.

Vector instructions place reservations on functional units and registers
the duration of exaecution.

Functional units are resaerved for (V0L)+4 @lock periods. Memory is
reserved Ffor (VL)+5 ~lock periods on a write operation, (VL)+4 clock
periods on @ read operation.

The result register is reserved for the functional unit time +(VL+2)
clock poriods. The result register is reserved for the functional unit
+7 clock periods if the vector length is less than 5. At functional unit
tTime +2 (chain slot time) a subsequant imstruction, which has met all
other issue conditions, may issue. This process is called "chaining."
Several instructions using different funstional units may be chained in
this marner to attain a significant enhancemcnt of processing speed.
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3. Vector operand registers are reserved for (VL) clock periods. Vector
operand rogisters are reserved for 5 clock periods if the vector length
is less than 5. The vector register used in a block store to memory (177
instruction) is reserved for (VL) clock periasds. Scalar operand
registers are not resorved.

Vector instructions produce one result per clock period. The functional
unit timas are given below. The vector read and write instructions (176,
177) produce results more slowly if barnk conflicts arise due to the increment
value (Ak) being o multiple of 8. Chaimning cannot occur for the vector read
cperation in this case.

If (Ak) is an odd multiple of 8(x), results are produced every 2 clock
peaeriods, [f (Ak) is an even multiple of 8(x), results are produced every 4
clock periods.

Memory must be quiet before issue of the B and T register block copy
instructions (034-037). Subsequent instructions may not issue for 14+(Ai)
clock pericds if (Ai}.NE.QO and 5 clock pericds if (Ai)=0 when reading data to
the B and T registers (034,038), They may not issue for 6+(Ai) clock periods
when storing data (035%,037),

The B and T register block read (034,036) instructions require that
there be ne register reservation on the A and S registers, respectively,
bafore issue.

Branch instructions cannot issue until the A0 or SO operand register has
been free for two clock periods. Fall-through in buffer requires two clock
periocds, Brarch-in~buffer requires five clock periods, When an "out of
buffer" condition occurs the exscution time for a branch instruction is 14
clock periods. (18 clozk periocds for 8-bank phasing option.)

A two parcel instruction takes two clock paeriods to issue.
Instruction issue is delayed 2 clock periods when the next instruction
parcal is in a different instruction parcel buffer. Instruction issue is

dalaved 12 clock periocds if the next instruction parcel is not in an
instruction parcal buffer.

¥ Multiple of 4 for 8 bank phasing option.
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HOL.D MEMORY

A delay of 1, 2, or 3 CP will
conflict occurs with rank C, B, or
network . A conflicit ocaurs if ths
in rank C, B, or A. Conflicts can
The scalar instruction sensses

the conflict condition at
enters ranke A
instruction addrass

be added to a scalar memory read if a banrk
A, respectively, of the memory access
address is in the sams bank as the address
occur only with scalar or 1/0 references.
issu2 time + 1 CP,

of the memory access network at
enters rank B at issue + 2
enters rank C at issue + 3 CP.

conflict):

The scalar instructicor address

issua time + 1 CP. The scalar

CP. The scalar instruction address
Scalar lead instruction timing (no

CP n Issue, ressrve register .
CP n+i Addrass rank A, asense conflict
CP n+2 Addreaess rank B

CP n+3 Addiress rank C

CP n+10 Clear register reservation

CP wn+11 Coenplatse and issue waiting

instruction
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AFPENDIX B. WHAT HAPPENS WHEN YOU RUN OGN THE CRAY?

You twpe your LEGEN at a terminal; then: (x)

1. The LOGOM line goes to the COMBO checker, which verifies it, appends some
bits of information and sends it on.

2. The line next arrives at the TMDS concentrator, which notes that it is
destined for the CRAY and routes it to the A410.

3. NQ? 24]0 performs the appropriate protocol and drops the line onto the
NEC bus,

4. The A130, which is attached to @ CRAY channel, picks up the line from the
bus and sends it along the CRAY channel to an LTSS memory buffer.

5. LTSS, which is frequaently polling all CRAY channels, notices the
achtivity, sees that this is a LOGON line, and verifies that you are an
authorized user.

6. LTSS then prepares an index of private and public disk files to which you
have access and associatos it with your user number.

7. LTSS returns an appropriote acknowladament of your LAGAN and sends it on
the reverse route te your teletype.

The acknowledgnent response and all subsequent message lines bypass the COMBO
chiacker . In fact, if COMBU checker was down at initial LOGGON time, the
LOGIN line would go direstly to the TMNS concoantrator.

¥  For the MFE natwork, replace items 1 through 4 above by the following:

M1 . The LOGEN line ¢goes via a mocdem and telephone lines to a VADIC modem
multiplexor, which sends it on (or it may go directly to step M2).

Mz . A PDP-11 concentrator then notes that it is destinaed for the CRAY and
woute? the line to & 7800 PPU (12). (In the future, another PDP-11 will be
usad.

M3, The PPU performs the nocessary protocol and sends the lines to the

CRAY -760Q0 Adawmtor.,
Md . The adaptor, which is attached to a CRAY Channel, picks up the line and
sends it alorng to a CTSS memory kuffer.
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Next, vou type in an EXECUTE line, say, CLASS / 1 .7, which goes to CRAY

LTSS,

1. A search is made of your private file index to determine whether you have
a file by thz2 name of CLASS

2. If not, a search is mada of your PUBLIC file index %o see if it has a
file by that name.

3. I¥ hot, the message "NIJ FILE" is sent tc your terminal.,

4, When CLASS is found, vour PRIGRITY is checked (V/TL = .7), and if
necessary, changed to conform to the current limits, or, if your account
hes mo time laft, changod to $ (standby).

5. The job is then assigned to an approprists ltoading queus and, when memory
space is railable, a nunber of words egual to the load length of this
file is brought ints mamory.

6. When the file is in memory, LTSS performs a sequence of validity checks
on the minus words. If any check fails, an appropriate message is
returned to vour terminal, and execution ceases.

7. if all sesms well, the job is placad in an appropriate queue and
scheduiad foir CPU wime,

8. When the propor time arrives, LTSS relinguishes control of the CRAY CPU
TO VouUr progr by exchanging from MONITOR to JOB mode, putting the
contents o L minus w 1o into tha CRAY registers, and requesting the
16~-word buffe load of instructions containing the instruction addressed
by wvour p ogram counter to be fetched to an instruction buffer.

9. Finally, then, the first instruction will be perrformed and the program
counter advanced teo the next instruction.

10. In general, your program centinues in contrel of the CPU until it makes a

racoghized error, gives cortirel back to LTSS, or is interrupted by LTSS.

Howaver, while it is in contrel of the CPU, LTSS may have ocn-going 1/0
activity, which will share the use of memery with your program,
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APPENDIX C. THE DETAILS GF INSTRUCTIIN FETCH TIMING

All this detail is incorporated in the code CYCLES.

. There are essantially five registers to consider, a few flags and a few
time positions,

! BOO [<-=--=>1 P te-=t
___________________ 1
v :
b e
:
E Irnstruction E E
! Buffers | le------ > ILATCH  {->! NIP to> CIP :
i : L A S S S|
E ! : !
——————————————— ! ——eme>
E Execution
"--->1 LIP fommmmmmmmmm o >

An instruction which issuss at cvcle x must have entered the CIP at
cycle x-1 or kefore, the MIP @t cycle x-2 or before, and the ILATCH at x-3 or
before, Some time prior to cycle x-8, the instruction must have been located
in one of the four Bd-parcel instruction buffers, and before that, it was in
memory .

In general, instructions coming from the instruction buffers are able to
reach the CIP at a rate of one per cycle; however, when the end of a buffer
is reached, delays are encountered in lecating The next instruction to be
procasseaed, Similarly, whenever Branch instructions causa the orderly flow of
sequential instructions te be interruptsd, delays are to be expected.

The chart (pages 60-61) illustrates details of the flow of instruction
parcels in the CRAY-1. Registers invelved in this flow are described in the
"Ihatruction [ssus and Comntrol"” section of Chapter 3 of the CRAY Hardware
Reference Manual.

In general, the P register is incremented by ohe each time an

instruction is Issued, If the instruction parsel correspording to the new P
value in sequence is ir the current instruction buffer, then that parcel goes
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to the I[LATCH register during the same cycle. [f the parcel is hot in the
currant I-buffer, then the [ILATCH INVALID flag is set.

If the required parcel is not in any I-buffer, then a memory instruction
fetch requaest (IFR) is issuad. Normally, four instruction words (16 parcels)
including the reauirad parcel will arrive in the next I-buffer eleven cycles
alftaer the 1FR. If memory is alroady busy then the IFR must wait. The other
twelve instruction words to fill the I-buffer will be requested in groups of
four during the next three cvcles. The required parcel reaches [LATCH in the
same cycle it reaches the | -buffer. I-buffers are loadz2d in strict rotation
regardless of when the buffer was used last.

[f the required parcel is already in a different |-buffer, then CHANGE
R is set and on the follewing cyale the current [ -buffer designator is

vl The corract parcel will reach TLATCH onh the following cycle, two
delaved. A jump within the current 1-buffer takes as long as a jump
to a Aiffaerernt 1 -buffer,

An instruction issues from the CIP (current instruction parcel)
reglster., Tha second parcel of a two-parcel instruction issues from the LIP
(lower instruction parcel) register. In the same cycle a new parcel moves
into CIP from the NIP (next instruction parcsl) register unless blocked by
the PSS (two parcel split) flag. The TPS flag is set whaen [LATCH is invalid
arncd NIP cortains the first parcel of a two parcel instruction. (17d)

I'n the same cycle that a parcel moves from NIP to CIP, a parcel moves
from TLATCH to NMIP wiless blocked by the ILATCH INVALID flag described above.
If NIP contained the first parcel of a two parcel instrustion, then the
parcal in [LATCH goss o LIP instead, and a NAP is plac>d in NIP.

With thesas rules we are now ready to ue2 the chart below which
illustrates the cycle-by-cycls progress of instruction parcels for the
follawing code sodquence:

acidr parcel CAL mr2monics

17a Q72700 s7 rt
17k Q20100 al two
17¢ Qooon2

Xrepaat 1
17d Q31110 al al-1
20a [efcielalel] a0 al
20k 011060 Jan x-2
20c 000Q77
20c 072600 s6  rt
2la GO40G0 ex

two = 2
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Assume that completion of an exchange sequence results in setting the P
cycle

register to 17a in

IFR means "instruction fetch request” =
invalid data in

shows nip entry blocked because

irrelevant deata.

IFR words
cycla words raady

14-17
0o- 3
4- 7

10-13

LI I N S S A A |
LI T S T R R A A ]

N
1
W

- 10-1
20-23 -
24~27
30-33
34-37

N=QBRENOUARN—-COONOULAON—

NN ——m—m—m
E I IR N RO S N B B

]

20-23
24-27
30-33
34~37

[
o
LI T T T T Y T T TN T N S N T T O O B B
'

LI B R R A A |

rag

17a
17a
i 7a

~
v

R i N BN ENEN]
OTCOB OO0

17d

ilatch

| T T T T TS SR BEN E N S T T T T S SR S S T
[oNeRoN]

XXXXXXXXXXX XXXXXXXXXXX X

XX XX

nip

dj_h-—t
P et NOSNSN L
QT TR

N
O
v}

20b
nop
nop
nop
nop

17d

20a

(lip)

0

~
NN

LA T N N B I = Yo Yo Yo 2 I I T T T T O T T T TN SN TN T ST TN T Y T SN W T B N A |
0000
— e
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issued for these words, X column

ilatch.
instr.
cip issued
17a -
17b 17a
nop 17b
17d nop
- 17d
20a -
20b 20a
20b -
20b -
20b -
nop 20b
- nop
17d -
- 17d

- means invalid or

comments

IFR for 14a-17d
(ready in I-buffer
11 cycles after
memory request)

waiting
for
instructions
to
arrive
from
memory
11 cycles after IFR

s7 = rtc at this cyvcle
IFR for 20a-23d

al now set to 2

al-1 to address adder

al now set to 1
waiting for
instructions
to
arrive
from
memory
11 cycles after IFR

O+al to address adder
a0 ready (=1)
a-branch flags set
17d goes to p-counter
change buffer request

al-1 to address adder



41 - - 20c 20c 20b - 20a
42 - - 20d 20d nop (20¢) 20b
43 - - 20d 20d nol: (2Cc) 20b
44 - - 204 20 nop (20c) 20
45 - - 20d 20d nop (20c¢) 20b
46 - - 2la 21a 20d - nop
47 - - 21b 21b 21a - 20d
48 - - 21c 21c 21b - 21a
49 - - 21d 21d 21c - 21b
oy e notes
1 worcds 14-17 are raguasted from memory.

12 words 14~17 r
15 parcel 17a issue
16 17b issues @nd

o

old buff . ]
issue afiter fourt

a8

NNS N
=000 11101

ceach [ -buffer 0 and parcel 17a enters

fourteen cycles after boing requested from memory.

cal 20a (words 20-23) is requestzd from memory.

In genaral, the next buffer is requested when 17b
i~ I 20a is not in an 1-buffer then

O+al to address adder
al ready (=0)
a-branch flags set
(drop through)

85 = pritc = s7+33
exit

ILATCH.

issues from the

it will be ready to

i mora cycles, unless further dalaved by memory busy.
issued and 1FR

30 ! 1 20m issues fourteen cycles atiter 17b .
32 ¢ ster afN=0+a! is ready. The result is sent to the AD branch flag

orn AO Tnstrustions.,
3% the A0 bLrarch flags are set.

Lt ing unit. This would not delay instrucitions other than jump

34 now the Jump on A0 Non-zero can issuz which resets the P register.
A Jjump to a parcel already in an [ -buffer tukes 5 cycles for the target

parcel to issue.

37 parcel Z0a is recguested when 17d leaves 1LATCH.

arnd will be in ILATCH in two cycles.

39 target parcel 17d issuss and 202 reoaches TLATCH.

42 parcsl 20a issues as in cycle 30.
46 JAN
hirough

20a is in an I-buffer

isnaues but this time the P register is not reset and we drop

48  the real-time clock reading would be 33 cycles greater than cycle 15,

CYCLES’® output fTor this code sequence!

loc instr res op=2rand w b delay
00N17a 072700 s7 rt A20000
00U 7k 0201 00000002 al two
QON17d 031110 &l al-1
00020a Q30001 an al 11800204
oozl 011 9CroOni7Zd jan 17d 3 00100

Jump back to ropeat at 17d

00017 031110 al al-1 a
0002 030001 a0 al 200204
OQG20k: C11 Q00000174 jan 17d 3 00100
QOO2:0) 072300 86 rt
QOC? 1o Q04000 ex 1 02000
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17 2=al
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39 a 39 48
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TTY input to CYCLES for this example:

cycles tty htty.
p};a c1S 72700 20100 2 g 110 30001 11000 77
o]

1 3
@ 31110 20601 11000 77 72800 4000 end

Summary

Instrustion lock ahead is effectively three parcels (CIP, NIP, and
TLATCH) . Whern instruccion 17b of a kuffer is issued, the first parcel (20a)
of the rnext [-buffer load is ssught. If parcel 20a is slready in an [ -buffer
then it is delayed only 2 cycles; if it is not in a buffer, then it should be
ready to issue fourteen cycles after it was reguested (ie. after 17b
issued) . The request is delaved until memory is not busy. After the reguest
is acceptad memory is busy for six additional cycles.

Therz are four excespitional casss to consider:
1. 17c is a branch instruction, then the instruction fatch request (IFR)
delayved until the jump =ddress is decided. The address is decided in
e jump issue cyvcle except for "J Bjk" in which it is decided two cycles

-

s ime
<

2, If 17c is a scalar load or store which issues immediately, then it gets
memory service first and the instruction fetch is delaved four cycles.

3. [f 17¢c is a vector load or store or a block register transfer and it
issues immediately, then the instruction felch is delaved until 17c is
done with memory. The delay will be VL+4 for & load and VL+5 for a
store.

4. [f 17c is_a one parcel instruction follewed by a two parcel instruction,
then if 17c does not issue immediately, it will be held from issue until
the second parcel of 17d raaches ILATCH. The hold is caused by the
setting of the TPS (twoe parcel split) flag after 17d resches NIP.

The following sequsnces, which differ only by the second instruction
issuad (a2t cycle 2 or 1), illustrates this effect:
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loc instr res operand w b delay i [ [} f r g
0001 7:a 061106 s1 -56 A 0 3 B
00017 054521 s5 85<17 1 00020 2 4 B
000 17¢ 070210 s2 /hsi 3 17 =
00017« 1305 ON017000  10000H,0 85 11B002090 15 B
O00Z0 0644372 s4 a3xfs2 17 24 ]
00020 1304 00010001 10001b,0 s4 6 00004 24 =
loc instr res operand w b delay i (] o f r z
00017 081106 s1 -s6 A 0 ]
Q001 7k 042521 s5 <47 1 2 B
00017 070210 s2 /hsi 11 00204 13 27 B
000174 1305 00010000 10000L,0 s5 B 14 B
Q0020 084432 s4 s3xfs2 11 00004 27 34 B
00020 1304 00010001 10001b,0 s34 6 00004 34 =
In the first case, parcel 17b was delayved one cycle by an S-reg path B
conflict, so parcel 17¢ was able to issue immaedizstely and beat the TPS hold. B
In the second case, parcel 17b had no trunk conflict and issued on cycle 1. B
Parcel 17c was, as before, ready to issua on cycle 3, but by then the TPS ]
hold was on. Thus, 17c had to wait for 20z to reach [LATCH before the hold ]
was released permitting it to issue. ]
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