DTC
Extended Basic

DTC EXTENDED BASIC
VERSION 3.2
DATA TERMINALS & COMMUNICATIONS
1190 Dell Avenue

Campbell, CA 95008
(408) 378-1112

March 29, 1978

TABLE OF CONTENTS

INTRODUCTION 1
FOR THOSE NEW TO BASIC 3
ENTERING PROGRAMS ‘ 28
COMMANDS 29
EXPRESSIONS 35
VARIABLE AND CONSTANT TYPES 42
BASIC STATEMENTS 46
INTRINSIC FUNCTIONS 56
ERROR AND BREAK OETECTION AND PROCESSING 62
DISK I/O SECTION 67
SEQUENTIAL ASCII FILE I/0 69
RANDOM FILE I/0 75
PRINT USING 85
BASIC ERROR MESSAGES-ALPHABETIC LISTING 91
BASIC ERROR MESSAGES-NUMERIC LISTING 96
EDIT COMMAND 97
EXPANDED ASSEMBLY LANGUAGE 103
DERIVED FUNCTIONS FEATURES 106
HELP 108
HEXADECIMAL MICROFILE DISPLAY CONVERSION 109

INDEX 110

INTRODUCTION

Before a computer can perform any useful function, it must be "told"
what to do. Unfortunately, at this time, computers are not capable of
understanding English or any other "human" language. This is
primarily because our languages are rich with ambiguities and implied
meanings. The computer must be told precise instructions and the
exact sequence of operations to be performed in order to accomplish
any specific task. Therefore, in order to facilitate human
communication with a computer, programming languages have been
developed.

DTC BASIC is a programming language both easily understood and simple
to use. It serves as an excellent "tool" for applications in the
areas such as business, science, and education. With only a few hours
of using BASIC, you will find that you can already write programs with
an ease that few other computer languages can duplicate.

Originally developed at Dartmouth University, BASIC language has found
wide acceptance in the computer field. Although it 1is one of the
simplest computer languages to use, it is very powerful. BASIC uses a

small set of common English words as it "commands". Designed
specifically as an "interactive" language, you can give a command such
as "PRINT 2 + 2", and DTC BASIC will immediately reply with "4". It
isn't necessary to submit a card deck with your program on it and then
wait hours for the results. Instead the full power of the DTC

MICROFILE is "at your fingertips”.

Generally, if the computer does not solve a particular problem the way
you expected it to, there is a "Bug" or error in your program, or else
there 1is an error in the data which the program used to calculate its
answer. If you encounter any errors in BASIC itself, please 1let us
know and we'll see that 1it's corrected. Write a 1letter to us
containing the following information:

1) System Configuration

2) Version of BASIC

3) A detailed description of the error
Include all pertinent information
such as a listing of the program in
which the error occurred, the data
placed into the program and BASIC's
printout.

All of the information 1listed above will be necessary in order to
promptly evaluate the problem and correct it as quickly as possible.
We wish to maintain as high a level of quality as possible with all of
our software.

We hope that you enjoy BASIC, and are successful in using it to solve
all of your programming needs.

In order to maintain a maximum quality level in our documentation, we
will be continuously revising this manual. If you have any
suggestions on how we can improve it, please let us know.

If you are already familiar with BASIC programming, the following
section may be skipped. Turn directly to the Reference Material on
page 28.

FOR THOSE NEW TO BASIC

This section 1is not intended to be a detailed course in BASIC
programming. It will, however, serve as an excellent introduction for
those of you unfamiliar with the language.

When the MICROFILE 1is powered ON, insert the BASIC program diskette
into drive zero. Enter BA carriage return after the system level
prompt (*). The system will load BASIC and print out the number of
free bytes in your system and DTC BASIC 3.2 followed by the BASIC
prompt OK.

We recommend that you try each example in this section as it is
presented. This will enhance your "feel" for BASIC and how it is
used.

Once your I/O device has typed "OK", you are ready to use BASIC.

NOTE: All commands to DTC BASIC should end with a carriage
return. The carriage return tells BASIC that you have finished
typing the command. If you make a typing error, type a backspace
(Control H), to eliminate the last character. Repeated use of
backspace will eliminate previous characters. A rubout will
delete a whole word. A Control X will eliminate the entire 1line
that you are typing.

Now, try typing the following:

PRINT 10-4 (end with carriage returns, "-" means subtract)

DTC BASIC will immediately print:

OK

The print statement you typed in was executed as soon as you hit the
carriage return Kkey. BASIC evaluated the formula after the "PRINT"
and then typed out its value, in this case 6.

Now try typing in this:

PRINT 1/2,3*10 ("*" means multiply, "/" divide)

DTC BASIC will print:
.5 30

OK

As you can see, DTC BASIC can do division and multiplication as well
as subtraction. Note how a "," (comma) was used in the print command
to print two values instead of just one. The comma divides the 1line
into columns, each 14 characters wide. The result is a "," causes

BASIC to skip to the next 14 column field on the terminal, where the
value 30 was printed.

Commands such as the "PRINT" statements you have just typed in are
called Direct Commands. There is another type of command called an

Indirect Command. Every Indirect Command begins with a Line Number.
A Line Number is any integer from 0 to 65529.

Try typing in the following lines:

10 PRINT 2+3
20 PRINT 2-3

A sequence of Indirect Commands is called a "Program". Instead of
executing indirect statements immediately, BASIC saves Indirect
Commands in the MICROFILE memory. When you type in RUN, BASIC will
execute the lowest numbered indirect statement that has been typed in
first, then the next highest, etc. for as many as were typed in.

Suppose we type in RUN now:
RUN

DTC BASIC will type out:

OK

In the -example above, we typed in line 10 first and line 20 second.
However, it makes no difference in what order you type in Direct
Statements. BASIC always puts them into correct numerical order
according to the Line Number.

If we want a listing of the complete program currently in memory, we
type in LIST. Type this in:

LIST

DTC BASIC will reply with:

10 PRINT 2+3
20 PRINT 2-3

OK

Sometimes it is desirable to delete a line of a program altogether.
This is accomplished by typing the Line Number of the line we wish to
delete, followed only by a carriage return.

Type in the following:

10
LIST

DTC BASIC will reply with:

20 PRINT 2-3

OK

We have now deleted line 10 from the program. There is no way to get
it back. To 1insert a new line 10, just type in 10 followed by the
statement we want BASIC to execute.

Type in the following:

10 PRINT 2*3
LIST

DTC BASIC will reply with:

10 PRINT 2*3
20 PRINT 2-3

OK

There 1is an easier way to replace line 10 than deleting it and then
inserting a new line. You can do this by just typing the new line 10
and hitting the <carriage return. BASIC throws away the old line 10
and replaces it with the new one.

Type in the following:

10 PRINT 3-3
20 PRINT 2-3

OK

It is not recommended that lines be numbered consecutively. Tt may
become necessary to insert a new line between two existing lines. An
increment of 10 between line numbers is generally sufficient.

If you want to erase the complete program currently stored in memory,
type in "NEW". TIf you are finished running one program and are about
to read in a new one, be sure to type in "NEW" first. This should be
done in order to prevent a mixture of the old and new programs.

Type in the following:
NEW
DTC BASIC will reply with:

OK
Now type in:

LIST

DTC BASIC will reply with:

OK

Often it is desirable to include text along with answers that are
printed out, in order to explain the meaning of the numbers.

Type in the following:

PRINT "ONE THIRD IS EQUAL TO",1/3
DTC BASIC will reply with:

ONE THIRD IS EQUAL TO .333333

OK

As explained earlier, including a "," in a print statement causes it

to space over to the next fourteen column field before the value
following the "," is printed.

If we use a ";" instead of a comma, the value next will be printed
immediately following the previous value

NOTE: Numbers are always printed with at least one trailing space
Any text to be printed is always to be enclosed in double quotes.
Try the following examples:
A) PRINT "ONE THIRD IS EQUAL TO";1/3
ONE THIRD IS EQUAL TO .333333
OK

B) PRINT 1,2,3

OK

C) PRINT 1;2;3

OK

D) PRINT -1;2;-3
-1 2 -3
OK

We will digress for a moment to explain the format of numbers in DTC
BASIC. Numbers are stored internally to over six digits of accuracy.
When a number is printed, only six digits are shown. Every number may
also have an exponent (a power of ten scaling factor).

The largest number that may be represented in DTC BASIC is
1.70141*1038 while the smallest negative number is 2.93874*%10739,

When a number 1is printed, the following rules are used to determine
the exact format:

1) If the number is negative, a minus sign (-) is printed. If
the number is positive, a space is printed.

2) If the absolute value of the number is an integer in the range
of 0 to 999999, it is printed as an integer.

3) If the absolute value of the number is greater than or equal
to .1 and less than or equal to 999999, it is printed in fixed
point notation, with no exponent.

4) If the number does not fall wunder categories 2 or 3,
scientific notation is used.

Scientific notation is formatted as follows: SX.XXXXXESTT. (Each X
being some integer 0 to 9).

The leading "S" is the sign of the number, a space for a
positive number and a "-" for a negative one. One non-zero
digit is printed before the decimal point. It 1is followed
by the decimal point and then the other five digits of the
mantissa. An "E" is then printed (for exponent), followed:
by the sign (S) of the exponent; then the two digits (TT) of
the exponent itself. Leading zeroes are never printed; i.e.
the digit before the decimal is never zero. Also, trailing
zeroes are never printed. If there is only one digit to
print after all trailing zeroes are suppressed, no decimal
point is printed. The exponent sign will be "+" for
positive and "-" for negative. Two digits of the exponent
are always printed; that is zeroes are not suppressed in the
exponent field. The value of any number expressed thus is
the number to the 1left of the "E" times 10 raised to the
power of the number to the right of the "E".

No matter what format is used, a space key is always printed following
a number. BASIC checks to see if the entire number will fit on the
current line. 1If not, a carriage return/line feed is executed before
printing the number.

The following are examples of various numbers and the output format
DTC BASIC will place them into:

NUMBER OUTPUT FORMAT
+1 1

-1 -1

6523 6523

-23.460 -23.46

1E20 1E+20
-12.3456E-7 -1.23456E-06
1.234567E-10 1.23457E-10
1000000 1E+06

999999 999999

0.1 .1

0.01 1E-02
0.000123 1.23E-04

A number input from the terminal or a numeric constant used in a BASIC
program may have as many digits as desired, up to the maximum length
of a line. However, only the first 7 digits are significant, and the
seventh digit is rounded up.

PRINT 1.2345678901234567890
1.23457

OK

The following 1is an example of a program that reads a value from the
terminal and uses that value to calculate and print a result:

10 INPUT R

20 PRINT 3.14159*R*R
RUN

? 10

314.159

OK

Here's what's happening. When BASIC encounters the input statement,
it types a question mark (?) on the terminal and then waits for you
to type in a number. When you do (in the above example 10 was typed),
execution continues with the next statement in the program after the
variable (R) has been set (in this case to 10). In the above example,
line 20 would now be executed. When the formula after the PRINT
statement is evaluated, the value 10 is substituted for the variable R

each time R appears in the formula. Therefore, the formula becomes
3.14159*10*10, or 314.159.

If you haven't already guessed, what the program above actually does
is to calculate the area of a circle with the radius "R".

If we wanted to calculate the area of various circles we could keep
re-running the program over each time for each successive circle.

But, there's an easier way to do it simply by adding another line to
the program as follows:

30 GOTO 10

RUN

?2 10
314.159

?2 3
28.2743

? 4.7
69.3977

OK

By putting a "GOTO" statement on the end of our program, we have
caused it to go back to line 10 after it prints each answer for the

10

successive circles. This could have gone on indefinitely, but we
decided to stop after calculating the area of three circles. This was
accomplished by typing a carriage return to the input statement (thus
a blank line). Press the BREAK key to stop the program.

The letter "R" in the program we just used is termed a "variable". A
variable name can be any alphabetic character and may be followed by
any alphanumeric character.

Any alphanumeric characters after the first two are ignored. An
alphanumeric character is any letter (A-Z) or any number (0-9).

Below are some examples of legal and illegal variable names:

LEGAL ILLEGAL

TP TO (variable names cannot be reserved
PSTG4S FOR words however reserved words can
COUNT be imbedded as in FEND).

PRUN 3X (Must start with alphabetic char.)

The words used as BASIC statements are "reserved" for this specific
purpose. You cannot use these words as variable names or inside of
any variable name. For instance, "FEND" would be 1illegal because
"END" is a reserved word.

The following is a list of the reserved words in BASIC:

ABS AND AS ASC ATN AUTO BINS BKSP BYE CAR CDBL CHRS$
CINT CLEAR CLOSE CONT COS CSNG CVD CVl Cvs DATA DEF
DEFDBL DEFINT DEFSNG DEFSTR DEL DELAY DELETE DIM EDIT

ELSE END EOF EQV ERASE ERL ERR ERROR EXIT EXP FIELD FN
FOR FRE GET GOSUB GOTO HEX$ IF IMP 1INP INPUT INSTR INT
KILL LABEL$ LCHRS LEFT$ LEN LET LINE LINPUT LIST LLINE
LLIST LOAD LOC LOF LOG LPOS LPRINT LSET MAX MIDS MIN

MKD§ MKI$ MKS$ MOD MON NEW NEXT NOT NXTR OCT$ ON OPEN OR

11

ouT PEEK POKE POS PRINT PUT RANDOMIZE READ REM REN
RESTORE RESUME RETURN RIGHT$ RND ROL ROR RSET RUN SAVE
SGN SHL SHR SIN SLEEP SPACE$ SPC SQR STEP STOP STRS
STRINGS SWAP TAB TAN THEN TLOAD TO TRIM$ TRIML$ TRIMRS

TROFF TRON UNLOAD USING USR VAL VARPTR WAIT XOR

Besides having values assigned to variables with an input statement,

you can also set the value of a variable with the LET or assignment
statement.

As can be seen from the examples, the "LET" 1is optional in
assignment statement.

BASIC "remembers" the values that have been assigned to

using

Try the following:
A=5
OK

PRINT A,A*2
5 10

OK
LET z=7

OK

PRINT Z, z-A
7 2

OK

an

variables
this type of statement. This "remembering" process uses space

in the MICROFILE's memory to store the data.

12

The values of variables are thrown away and the space in memory used
to store them is released when one of three things occur:

1) A CLEAR command is typed in
2) A RUN command is typed in
3) NEW is typed in

Another important fact 1is that if a variable is encountered in a
formula before it is assigned a value, it 1is automatically assigned
the value zero. Zero is then substituted as the value of the variable
in the particular formula. Try the example below:

PRINT Q,Q+2,Q%*2

0 2 0
OK
Another statement is the REM statement. REM 1is short for remark.

This statement 1is used to insert comments or notes into a program.
When BASIC encounters a REM statement the rest of the line is ignored.

This serves mainly as an aid for the programmer himself, and serves no
useful function as far as the operation of the program in sclving a
particular problem.

Suppose we wanted to write a program to check if a number is zero or
not. With the statements we've gone over so far this could not be
done. What 1is needed is a statement which can be used to
conditionally branch to another statement. The "IF-THEN" statement
does just that.

Try typing in the following program: (Remember, type NEW first)

10 INPUT B :
20 IF B=0 THEN 50
30 PRINT "NON-ZERO"
40 GOTO 10

50 PRINT "ZERO"

60 GOTO 10

13

When this program is typed into the MICROFILE and run, it will ask for
a value for B. Type any value you wish in. The MICROFILE will then
come to the "IF" statement. Between the "IF" and the "THEN" portion
of the statement there are two expressions separated by a relation.

A relation is one of the following six symbols:

RELATION MEANING
= EQUAL TO
> GREATER THAN
< LESS THAN
<> NOT EQUAL TO

LESS THAN OR EQUAL TO
GREATER THAN OR EQUAL TO

v A
il

The IF statement is either true or false, depending upon whether the
two expressions satisfy the relation or not. For example, in the
program we just did, if 0 was typed in for B the IF statement would be
true because 0=0. In this case, since the number after the THEN is
50, execution of the program would continue at line 50. Therefore,
"7ZERO" would be printed and then the program would jump back to 1line
10 (because of the GOTO statement in line 60).

Suppose a 1 was typed in for B. Since 1=0 is false, the IF statement
would be false and the program would continue execution with the next
line. Therefore, "NON-ZERO" would be printed and the GOTO in line 40
would send the program back to line 10.

Now try the following program for comparing two numbers:

10 INPUT A,B

20 IF A<=B THEN 50

30 PRINT "A IS BIGGER"

40 GOTO 10

50 IF A<B THEN 80

60 PRINT "THEY ARE THE SAME"
70 GOTO 10

80 PRINT "B IS BIGGER"

90 GOTO 10

When this program is run, line 10 will input two numbers from the
terminal. At line 20, if A is greater than B, A<=B will be false.
This will «cause the next statement to be executed, printing "A IS
BIGGER" and then line 40 sends the computer back to line 10 to begin
again.

14

At line 20, if A has the same value as B, A<=B is true so we go to
line 50. At line 50, since A has the same value as B, A<B is false;
therefore, we go to the following statement and print "THEY ARE THE
SAME". Then line 70 sends us back to the beginning again.

At line 20, if A is smaller than B, A<=B is true so we go to line 50.
At 1line 50, A<B will be true so we then go to line 80. "B IS BIGGER"
is then printed and again we go back to the beginning.

Try running the last two programs several times. It may make it
easier to understand if you try writing your own program at this time
using the IF-THEN statement. Actually trying programs on your own is
the quickest and easiest way to understand how BASIC works. Remember
to stop these programs, just press the BREAK key.

One advantage of computers is their ability to perform repetitive
tasks. Let's take a closer look and see how this works.

Suppose we want a table of square roots from 1 to 10. The BASIC
function for square root is "SQR"; the form being SQR(X), X being the
number you wish the square root calculated from. We could write the
program a follows:

10 PRINT 1,SQR (1)
20 PRINT 2,SOQR(2)
30 PRINT 3,SQR(3)
40 PRINT 4,SQR(4)
50 PRINT 5,SQR(5)
60 PRINT 6,SQR(6)
70 PRINT 7,SQR(7)
80 PRINT 8,SQR(8)
90 PRINT 9,SQR(9)
100 PRINT 10,SQR(10)

This program will do the job; however, it is terribly inefficient. We
can improve the program tremendously by using the IF statement just
introduced as follows:

10 N=1

20 PRINT N,SQR(N)
30 N=N+1

40 IF N<=10 THEN 20

When this program is run, its output will look exactly like that of
the 10 statement program above it. Let's look at how it works.

15

At line 10 we have a LET statement which sets the value of the
variable N at 1. At line 20 we print N and the square root of N using

its current wvalue. It thus becomes 20 PRINT 1,SQR(1l), and this
calculation is printed out.

At line 30 we use what will appear at first to be a rather unusual LET
statement. Mathematically, the statement N=N+1 is nonsense. However,
the important thing to remember is that in a LET statement, the symbol
"=" does not signify equality. 1In this case "=" means "to be replaced
with". All the statement does is to take the current value of N and
add 1 to it. Thus, after the first time through line 30, N becomes 2.

At line 40, since N now equals 2, N<=10 is true so the THEN portion
branches us back to line 20, with N now at a value of 2.

The overall result is that lines 20 through 40 are repeated, each time
adding 1 to the value of N. When N finally equals 10 at line 20, the
next line will increment it to 11. This results in a false statement

at line 40, and since there are no further statements to the program
it stops.

This technique is referred to as "looping" or "iteration". Since it
is used quite extensively 1in programming, there are special BASIC
statements for using it,. We can show these with the following
program.

10 FOR N=1 TO 10
20 PRINT N,SQR(N)
30 NEXT N

The output of the program listed above will be exactly the same as the
previous two programs.

At line 10, N is set to equal 1. TULine 20 causes the value of N and
the square root of N to be printed. At line 30 we see a new type of
statement. The "NEXT N" statement causes one to be added to N, and
then if N<=10 we go back to the statement following the "FOR"
statement. The overall operation then is the same as with the
previous two programs.

Notice that the variable following the "FOR" is exactly the same as
the variable after the "NEXT". There is nothing special about the N
in this case. Any variable could be used, as long as they are the
same in both the "FOR" and the "NEXT" statements. For instance, "z1"
could be substituted everywhere there is an "N" in the above program
and it would function exactly the same.

16

Suppose we wanted to print a table of square roots from 10 to 20, only
counting by two's. The following program would perform this task:

10 N=10

20 PRINT N,SQR(N)
30 N=N+2

40 IF N<=20 THEN 20

Note the similar structure between this program and the one listed on
page 15 for printing square roots for the numbers 1 to 10. This

program can also be written using the "FOR" loop just introduced.

10 FOR N=10 TO 20 STEP 2
20 PRINT N,SQR(N)
30 NEXT N

Notice that the only major difference between this program and the
previous one using "FOR" loops, 1is the addition of the "STEP 2"
clause.

This tells BASIC to add 2 to N each time, instead of 1 as in the
previous program. If no "STEP" is given in for a "FOR" statement,
BASIC assumes that one is to be added each time. The "STEP" can be
followed by any expression.

Suppose we wanted to count backwards from 10 to 1. A program for
doing this would be as follows:

10 1=10

20 PRINT I

30 I=I-1

40 IF I>=-1 THEN 20

Notice that we are now checking to see that I is greater than or equal
to the final value. The reason is that we are now counting by a
negative number. In the previous examples it was the opposite, so we
were checking for a variable less than or equal to the final value.

The "STEP" statement previously shown can also be used with negative
numbers to accomplish this same purpose. This can be done wusing the
same format as in the other program as follows:

10 FOR I=10 TO 1 STEP -1
20 PRINT I

17

30 NEXT I

"FOR" loops can also be "nested". An example of this procedure
follows:

10 FOR I=1 TO 5
20 FOR J=1 TO 3
30 PRINT I,J

40 NEXT J

50 NEXT I

Notice that the "NEXT J" comes before the "NEXT I". This 1is because
the J-loop 1is 1inside of the 1I-loop. The following program is
incorrect; run it and see what happens.

10 FOR I=1 TO 5
20 FOR J=1 TO 3
30 PRINT I,J

40 NEXT I

50 NEXT J

It does not work because when the "NEXT 1I" is encountered, all
knowledge of the J-loop is lost. This happens because the J-loop is
"inside" of the I-loop.

It is often convenient to be able to select any element in a table of
numbers. BASIC allows this to be done through the use of matrices.

A matrix is a table of numbers. The name of this table, called the
matrix name, is any legal variable name, "A" for example. The matrix
name "A" is distinct and separate from the simple variable "A", and
you could use both in the same program.

To select an element of the table, we subscript "A"; that is to select
the I'th element, we enclose I in parenthesis "(I)" and then follow
"A" by this subscript. Therefore, "A(I)" is the I'th element in the
matrix "A".

NOTE: In this section of the manual we will be concerned with
one-dimensional matrices only. (See Page 48 for additional
information).

"A(I)" is only one element of matrix A, and BASIC must be told how
much space to allocate for the entire matrix.

18

This is done with a "DIM" statement, using the format "DIM A(15)". 1In
this case, we have reserved space for the matrix index "I" to go from
0 to 15. Matrix subscripts always start at 0; therefore, in the above
example, we have allowed for 16 numbers in matrix A.

If "A(I)" is used in a program before it has been dimensioned, BASIC
reserves space for 11 elements (0 through 10).

As an example of how matrices are used, try the following program to
sort a list of numbers with you picking the numbers to be sorted.

10 DIM A(8)

20 FOR I=1 TO 8

30 INPUT A(I)

50 NEXT I

70 F=0

80 FOR I=1 TO 7

90 IF A(I)<=A(I+l) THEN 140
100 T=A(I)
110 A(I) =
120 A(I+1)
130 F=1
140 NEXT I
150 IF F=1 THEN 70
160 FOR I=1 TO 8
170 PRINT A(I),
180 NEXT I

A(I+1)
=T

When line 10 is executed, BASIC sets aside space for 9 numeric values,
A(0) through A(8). Lines 20 through 50 get the unsorted list from the
user. The sorting itself is done by going through the list of numbers
and upon finding any two that are not in order, we switch them. "p"
is used to indicate if any switches were done. If any were done, line
150 tells BASIC to go back and check some more.

If we did not switch any numbers, or after they are all in order,
lines 160 through 180 will print out the sorted list. Note that a
subscript can be any expression.

Another wuseful pair of statements are "GOSUB" and "RETURN". TIf you
have a program that performs the same action in several different
places, you could duplicate the same statements for the action in each
place within the program.

The "GOSUB"-"RETURN" statements can be used to avoid this duplication.
When a "GOSUB" is encountered, BASIC branches to the line whose number

19

follows the "GOSUB". However, BASIC remembers where it was in the
program before it branched. When the "RETURN" statement is
encountered, BASIC goes back to the first statement following the last
"GOSUB" that was executed. Observe the following program.

10 PRINT "WHAT IS THE NUMBER";

30 GOSUB 100

40 T=N

50 PRINT "WHAT IS THE SECOND NUMBER";

70 GOSUB 100

80 PRINT "THE SUM OF THE TWO NUMBERS IS", T+N
90 STOP

100 INPUT N

110 IF N = INT(N) THEN 140

120 PRINT "SORRY, NUMBER MUST BE AN INTEGER. TRY AGAIN".
130 GOTO 100

140 RETURN

What this program does is to ask for two numbers which must be
integers, and then prints the sum of the two. The subroutine in this
program is lines 100 to 130. The subroutine asks for a number and if
it is not an integer, asks for a number again. It will continue to
ask until an integer value is typed in.

The main program prints "WHAT IS THE NUMBER", and then <calls the
subroutine to get the value of the number into N. When the subroutine
returns (to 1line 40), the wvalue input is saved in the variable T.
This is done so that when the subroutine is called a second time, the
value of the first number will not be lost.

"WHAT IS THE SECOND NUMBER" is then printed, and the second value 1is
entered when the subroutine is again called.

When the subroutine returns the second time, “THE SUM OF THE TWO
NUMBERS 1IS" is printed, followed by the value of their sum. T

contains the value of the first number that was entered and N contains
the value of the second number.

The next statement in the program is a "STOP" statement. This causes
the program to stop execution at line 90. If the "STOP" statement was
not included in the program, we would "fall into" the subroutine at
line 100. This 1is wundesirable because we would be asked to input
another number. TIf we did, the subroutine would try to return; and
since there was no "GOSUB" which called the subroutine an RG error
would occur. Each "GOSUB" executed in a program should have a
matching "RETURN" executed later, and the opposite applies, i.e. a
"RETURN" should be encountered only if it 1is part of a subroutine
which has been called by a "GOSUB".

20

Either "STOP" or "END" can be used to separate a program from its
subroutines. "STOP" will print a message saying at what line the
"STOP" was encountered.

Suppose you had to enter numbers to your program that didn't change
each time the program was run, but you would like it to be easy to
change them if necessary. BASIC contains special statements for this
purpose, called the "READ" and "DATA" statements.

Consider the following program:

10 PRINT "GUESS A NUMBER";

20 INPUT G

30 READ D

40 IF D=-999999 THEN 90

50 IF D<>G THEN 30

60 PRINT "YOU ARE CORRECT"

70 END

90 PRINT "BAD GUESS, TRY AGAIN."
95 RESTORE

100 GOTO 10

110 DATA 1,393,-39,28,391,-8,0,3.14,90
120 DATA 89,5,10,15,-34,-999999

This is what happens when this program 1is run. When the "READ"
statement is encountered, the effect is the same as an INPUT
statement. But instead of getting a number from the terminal, a
number is read from the "DATA" statements.

The first time a number is needed for a READ, the first number in the
first DATA statement is returned. The second time one is needed, the
second number in the first DATA statement 1is returned. When the
entire contents of the first DATA statement have been read in this
manner, the second DATA statement will then be used. DATA is always
read sequentially in this manner, and there may be any number of DATA
statements in your program.

The purpose of this program is to play a little game in which you try
to guess one of the numbers contained in the DATA statements. For
each guess that is typed in, we read through all of the numbers in the
DATA statement until we find one that matches the guess.

If more values are read than there are numbers in the DATA statement,
an Out of Data (OD) error occurs. That is why in line 40 we check to
see if -999999 was read. This is not one of the numbers to be
matched, but is wused as a flag to indicate that all of the data

21

(possible correct guesses) has been read. Therefore, if -999999 was
read, we know that the guess given was incorrect.

Before going back to line 10 for another guess, we need to make the
READ's begin with the first piece of data again. This is the function
of the "RESTORE". After the RESTORE is encountered, the next piece of
data read will be the first piece in the first DATA statement again.

DATA statements may be placed anywhere within the program. Only READ
statements make use of the DATA statements in a program, and any other
time they are encountered during program execution they will be
ignored.

A list of characters is referred to as a "STRING". DTC MICROFILE and
THIS IS A TEST are all strings. Like numeric variables, string
variables can be assigned specific values. String variables are
distinguished from numeric variables by a "$" after the variable name.

For example, try the following:

A$="DTC MICROFILE"

OK

PRINT AS

DTC MICROFILE
OK

In this example, we set the string variable A$ to the string value
"DTC MICROFILE". Note that we also enclosed the character string to
be assigned to A$ in quotes.

Now that we have set AS$ to the string value, we can find out what the
length of this value is (the number of characters it contains). We do
this as follows:

PRINT LEN(AS$),LEN ("DTC")
13 3

OK

The "LEN" function returns an integer equal to the number of
characters in a string.

22

The number of characters in a string expression may range from 0 to
255. A string which contains 0 <characters 1is called the "NULL"
string. Before a string variable is set to a value in the program it
is initialized to the null string. Printing a null string on the
terminal will cause no characters to be printed, and the print head or
cursor will not be advanced to the next column. Try the following:

PRINT LEN(Q$);Q$;3
0 3

OK

Another way to create the null string is: Q$="" Setting a string
variable to the null string can be used to free up the string space
used by a non-null string variable.

Often it is desirable to access parts of a string and manipulate them.
Now that we have set A$ to "DTC MICROFILE", we might want to print out
only the first three characters of A$. We would do so like this:

PRINT LEFTS (AS,3)
DTC

OK

"LEFT$" 1is a string function which returns a string composed of the
leftmost N characters of its string argument. Here's another example:

FOR N=1 TO LEN (A$) :PRINT LEFTS (AS$,N) :NEXT N

D

DT

DTC

DTC

DTC M

DTC MI

DTC MIC

DTC MICR

DTC MICRO
DTC MICROF
DTC MICROFI
DTC MICROFIL
DTC MICROFILE

23

OK

Since AS$ has 13 characters, this loop will be executed with N=1,2,
3,...,12,13. The first time through only the first character will be
printed, the second time the first two characters will be printed,
etc.

There is another string function called "RIGHT$" which returns the
right N characters from a string expression. Try substituting
"RIGHTS" for "LEFTS$" in the previous example and see what happens.

There 1is also a string function which allows us to take characters
from the middle of a string. Try the following:

FOR N=1 TO LEN(AS$):PRINT MIDS (AS$,N) :NEXT N

DTC MICROFILE
TC MICROFILE
C MICROFILE
MICROFILE
MICROFILE
ICROFILE
CROFILE
ROFILE

OFILE

FILE

ILE

LE

E

OK

"MIDS" returns a string starting at the Nth position to the end (last
character) of AS. The first position of the string is position 1 and
the last possible position of a string is position 255.

Very often it is desirable to extract only the Nth character from a
string. This can be done by calling MID$ with three arguments. The
third argument specifies the number of characters to return.

For example:

FOR N=1 TO LEN (A$) :PRINT MIDS$ (A$,N,1), MIDS$ (A$,N,2) :NEXT N

24

DT
TC

MI
IC
CR
RO
OF
FI
IL
LE

HOHT™OWOHR QO30

o
=

See the Reference Material for more detail on the workings of "LEFTS$",
"RIGHTS" AND MIDS".

Strings may also be concatenated (put or joined together) through the
use of the "+" operator. Try the following:

B$="THE "+AS$

OK
PRINT BS$
THE DTC MICROFILE

OK

Concatenation is especially useful if you wish to take a string apart
and then put it back together with slight modifications. For
instance:

C$=LEFTS$ (BS,3)+"-"+MIDS$ (BS,4,3)+"-"+RIGHTS (B$,10)

OK
PRINT C$
THE-DTC-MICROFILE

OK

Sometimes it is desirable to convert a number to its string

25

representation and vice-versa. "VAL" and "STR$" perform these
functions.

Try the following:

NUM$="567.8"

OK
PRINT VAL (NUMS)
567.8

OK
NUM$=STRS (3.1415)

OK

PRINT NUMS$,LEFTS (NUMS,5)
3.1415 3.14

OK

"STR$" can be used to perform formatted I/0O on number. You can
convert a number to a string and then use LEFT$, RIGHTS, MIDS and
concatenation to reformat the number as desired.

"STR$" can also be used to conveniently £ind out how many print
columns a number will take. For example:

PRINT LEN(STRS (3.157))
6

OK

If you have an application where a user is typing in a question such
as "WHAT IS THE VOLUME OF A CYLINDER OF RADIUS 5.36 FEET, OF HEIGHT
5.1 FEET?" you can use "VAL" to extract the numeric values 5.36 and
5.1 from the question.

The following program sorts a list of string data and prints out the
sorted list. This program is very similar to the one given earlier
for sorting a numeric list.

26

100
110
120
130

140
150
160
170
180
185
187
188
190
200
210
220
230
240

DIM A$ (15) :REM ALLOCATE SPACE FOR STRING MATRIX

FOR I=1 TO 15:READ AS$(I):NEXT I:REM READ IN STRINGS
F=0:I=1:REM SET EXCHANGE FLAG TO ZERO AND SUBSCRIPT TO 1
IF AS$(I)<=A$(I+1) THEN 180:REM DON'T EXCHANGE IF
ELEMENTS IN ORDER

T$=AS$ (I+1) :REM USE T$ TO SAVE AS$ (I+1)

AS$ (I+1)=A$ (I):REM EXCHANGE TWO CONSECUTIVE ELEMENTS

A$ (I)=T$

F=1:REM FLAG THAT WE EXCHANGED TWO ELEMENTS

I=I+1l: IF I<15 GOTO 130

REM ONCE WE HAVE MADE A PASS THROUGH ALL ELEMENTS,

REM CHECK TO SEE IF WE EXCHANGED ANY.

REM IF NOT, DONE SORTING.

IF F THEN 120:REM EQUIVALENT TO IF F<>0 THEN 120

FOR I=1 TO 15: PRINT AS$(I):NEXT I: REM PRINT SORTED LIST
REM STRING DATA FOLLOWS

DATA APPLE,DOG,CAT,DTC,MICROFILE,RANDOM

DATA MONDAY,"***ANSWER***" "FQOO"

DATA COMPUTER, FOO,ELP,MILWAUKEE,SEATTLE,SAN FRANCISCO

27

ENTERING PROGRAMS

Programs may be typed directly into BASIC at the terminal or they may

be

composed with the EDITOR Program and "TLOADed". Either way the

following rules apply.

1.

8.

28

All program lines (as opposed to command or direct statement
lines) begin with a unique statement number between 1 and 65529.

Statements may be entered 1in any order, but they are stored by
BASIC in numerically increasing order.

Lines may be up to 255 characters in 1length, including the
statement number. Leading blanks are preserved.

Multiple BASIC statements may appear on the same line. They are
separated by ":".

Comments may appear at the end of a line. Comments are preceeded
by a single quote ('), which is equivalent to ":REM...".

Spaces may delimit words. Spaces cannot appear within key words
or names (eg: GOTO, not GO TO).

To execute BASIC programs, load the systems disk containing BASIC
in Drive 0. When the prompt "*" occurs, enter "BA" carriage
return.

DTC MICROFILE
*BA

18793 BYTES FREE
D.T.C. BASIC 3.2

OK

The prompt OK indicates BASIC is loaded and ready to be used.

COMMANDS

Command Syntax:

In the

descriptions below, and throughout this manual, certain

notations are used to help describe command and statement formats.

1. Anything in capital letters stands for itself, that is
something you type in directly. For instance, GOTO, BYE,
CLEAR, NEW.

2. Anything in lower <case letters stands for an argument or
parameter of the specified type to be supplied as necessary.
If the lower case name has a "$" following it, the parameter
must be a string or a string expression. For instance:
"filenames$" is a string or string expression representing a
file name (e.g. "MASTR"); "disk"™ 1is a numeric value or
expression representing a disk number.

3. Optional fields are shown surrounded by "{" and "}".

NAME EXAMPLE PURPOSE/USE

AUTO {N,I} AUTO 100,10 The AUTO command numbers the input
program line automatically
beginning with the 1line number
specified. Each successive
statement 1is incremented by the
value specified. Default wvalues
are 10,10.

BYE . Exits BASIC and returns to the DTC
MICROFILE monitor. Any open files
are closed.

CAR {width} Sets the width of the output line

(the point at which a carriage
return is automatically inserted by
BASIC) to the specified value. The
size must lie in the range 15 to
225. If a size of 0 is specified,
lines are presumed to be infinitely
long. That 1is, carriage returns
are never inserted. This mode is

29

CLEAR {space}

CONT

DELETE DELETE linel

DELETE -line?2

30

especially useful when plotting at
the terminal. However, in this
case the POS function will return
inacurate results for true
positions in excess of 225.

CAR without an argument resets the
carriage width to the default value
of 132 characters. CAR applies to
the terminal and line ports only.
Lines on disk are always infinitely
long.

CLEAR deletes all variables, but
preserves the program in memory.
If an argument value is given, it
sets the amount of space to be used
by strings and string variables to
the number of bytes specified. If
no argument is given, the amount of
string space remains unchanged.
When BASIC 1is first started, the
string area size is 1000 bytes.

Continues program execution after a
BREAK is typed or an END or STOP
statement is executed. You cannot
continue after any error, after
modifying your program, or before
your program has been run. You
can, however, execute direct
statements that print or change the
value program variables. CONT
always continues at the next
statement to be executed. If you
wish to continue at some other
statement, use a direct GOTO
statement. If an INPUT statement
has been stopped (by typing a blank
line), CONT will resume execution
with that same input statement.

Deletes program line numbered
"linel".

Deletes all program lines up to and
including line2.

DELETE.

DELETE
linel-line2

EDIT EDIT line
EXIT
LIST LIST linel

LIST or LIST -
LIST linel-
LIST.

LIST -line?2

LIST linel-line2

LLIST

LOAD filename${,disk

{R}}

LOAD"Filename"{,disk{,R}}

Deletes the current line.

Deletes program lines linel
through line2 (inclusive).

Allows intra-line editing of a
program line. EDIT is
automatically entered if a syntax
error is encountered during program
execution. The EDIT command is
described in detail on page 97.

Exits BASIC and returns to the DTC
Microfile monitor. This command is
identical to the BYE command.

Lists line "linel" of the program
if there is one.

Lists the entire program.

Lists all lines beginning at linel

Lists the current line.

Lists all 1lines up to (including)
line?2.

Lists from linel to line2,
inclusive.

This command 1is 1identical to the
LIST command, and takes the same
parameters. The listing, however,
is directed to the data coupler
(line) EIA port on the Microfile
rather than to the terminal.

Load a compressed BASIC program
file (file type B). The file name
may be any legal string or string
expression. The second parameter

31

LOAD AS$,1,R

or

LOAD"PAYRO",1,R

MON

NEW

32

string$

is the disk number and may be any
expression that evaluates to a
legal disk number.

If the disk parameter is not
present, the file 1is loaded from
disk 0. If ",R" is present the
program is automatically run, and
the variables from the previous
programs are retained. If the ,"R"
is not present, the variables are
erased and BASIC returns to the
command level. Any previous
program 1is erased when LOAD is
performed. If the file name is a
literal instead of a string, then
the name must be enclosed 1in
quotes. The user files which were
open with the previous program will
remain open and positioned.

MON takes one parameter, a string
expression, This string is passed
to the Microfile monitor as if it
had been typed in from the
terminal. (Example: MON "FI DO")
This allows you to use some of the
commands of the DTC Microfile from
within BASIC, without exiting from
BASIC.

No restriction is placed on the
Microfile command that can be sent.
However, if the program loaded by
the Microfile monitor is too large,
it might not be possible to return
to BASIC. Programs run by the MON
command must reside in the area
below address 2800H. Monitor
commands that can be run in this
way are: CWL, PR, LA, SP, FI, RN,
MD, PA, RAT, RAL, and the system
commands HT, HL, SA, RU, and LO.

Clears all variables, erases all
program lines, and closes all
files. In other words, allows you
to start fresh.

REN

RUN

SAVE

SLEEP

start Renumbers your BASIC source

,increment}} program. The first value given is
the starting number and the second
is the increment to be used to get
the next 1line number from the
current one. If no increment value
is given, a value of 10 is used.
If no starting value is given, a
value of 10 is used. Line numbers
used within GOTO, GOSUB, THEN,
ELSE, and RESTORE are also changed
to reflect their new values.

{statement Runs the program. All variables
-number} are cleared before the program is

run. If a statement number. is
given, RUN will start at the
specified statement. A running
program may be stopped by
depressing the BREAK key at the

terminal.
SAVE Saves the current program on the
filenames$ disk specified, under the name
{,disk {,P}} specified by the string file$. The
"T" forms of SAVE save the program
SAVE as a type T file, which can be be
filenames$ printed or edited by the Microfile

{,disk,T{linel-line2}}editor. The other forms of SAVE
save the program as a type B file
which contains a compressed form of
the program. Type B files are much
faster to load and require less
disk space. If a file already
exists of the specified name and
type, SAVE will erase the old copy
before saving the new copy. The P
form of SAVE saves the file in a
"Protected” mode. Such a progranm,
when subsequently loaded, cannot be
LISTed, EDITed, or SAVEd. Also,
any commentary material (such as
REM text) is deleted when the
program is saved, making it
somewhat shorter.

This command shuts off all disk
motors until a disk activity, MON
request or BYE restarts them.

33

TLOAD filenameS$
{,aisk {,r}}
or
TLOAD "Filename"{,disk{,R}}

TRON
TROFF

STEP

UNLOAD dn(dn...)

34

TLOAD works like LOAD, except that
the file to be loaded must be type
T. Also, TLOAD does not erase the
current program so that it may be
used to compose a single program
from several files, each containing
say, some subroutines. Lines are
not renumbered during a TLOAD, so
line number conflicts will cause
replacement of the old line by the
new line, just as though the lines
had been typed in from the
terminal.

TLOAD of programs with literal
names requires quote marks to be

added with the filename. The
variables will be saved if the R
parameter is given with the
command. The ",R" option causes

the program to be run after
loading, otherwise the terminal
returns to command level.

Turns tracing of a program on and
off. This is a very useful feature
during debugging because you can
see the exact sequence of
statements that were executed.
When tracing 1is turned on, each
time a new program line is started,
that line number is printed
enclosed in "[]". No spaces are
printed between statement numbers
on a line.

STEP is 1like TRON except that
execution pauses after typing the
statement number and before the
statement 1is executed. Typing any
non-break character allows the
statement to execute. To exit the
STEP function, depress break then
enter TROFF carriage return.

This command will eject the
specified disks if the disk drive
is so equipped. Unload without
parameters will eject all disks.

BASIC

allows

given below.

EXPRESSIONS

both arithmetic and string expressions. The rules are

String Operators

String Concatenation

" AB " + 1] CD" = n ABCD"
OPERATORS
SYMBOL SAMPLE STATEMENT PURPOSE/USE
= A=100 Assigns a value to a variable.
LET Z72=2. The LET is optional
- B=-A Negation. Note that O-A is subtraction,
while -A is negation.
~ 130 PRINT X3 Exponentiation (equal to X*X*X in the
sample statement) 070=1 0 to any other
power = 0 A"B, with A negative and B not
an integer gives an error.
* 140 X=R* (B*D) Multiplication
/ 150 PRINT X/1.3 Division
+ 160 Z=R+T+Q Addition
- 170 J=100-1 Subtraction
\ 180 J=5\2 Integer Division (Truncates, so 5\2 = 2)

35

MOD 190 J=A MOD 4 Integer Modulus

RULES FOR EVALUATION EXPRESSIONS:

1) Operators of higher precedence are performed before operators of
lower precedence. This means the multiplication and divisions are
performed before additions and subtractions. As an example,
2+10/5 equals 4, not 2.4. When operations of equal precedence are
found in a formula, the left hand one is executed first: 6-3+5=8
not -2.

2) The order in which operations are performed can always be
specified explicitly through the use of parentheses. For
instance, to add 5 to 3 and then divide that by 4, we would use
(5+3) /4, which equals 2. 1If instead we had used 5+3/4, we would
get 5.75 as a result (5 plus 3/4).

The precedence of operators wused in evaluation expressions is as
follows, in order beginning with the highest precedence: (NOTE:
Operators listed on the same line have the same precedence).

1) FORMULAS ENCLOSED IN PARENTHESES

2) " or © EXPONENTIATION

3) NEGATION -X WHERE X MAY BE A FORMULA

4) * / MULTIPLICATION AND DIVISION

5) N\ INTEGER DIVISION

6) MOD MODULUS

7)) + - ADDITION AND SUBTRACTION

8) MIN and MAX MINIMUM/MAXIMUM OF TWO FACTORS

9) SHL,SHR,ROL,ROR SHIFTS LEFT, RIGHT - ROTATE LEFT, RIGHT

10) RELATIONAL = EQUAL

36

OPERATORS <> NOT EQUAL

(equal < LESS THAN
precedence for > GREATER THAN
all six) <= LESS THAN OR EQUAL

v

GREATER THAN OR EQUAL

(These 6 below are logical operators)

11) NOT LOGICAL AND BITWISE "NOT" LIKE NEGATION, NOT
TAKES ONLY THE FORMULA TO ITS RIGHT AS AN
ARGUMENT

12) AND LOGICAL AND BITWISE "AND"

13) OR LOGICAL AND BITWISE "OR"

14) XOR A EXCLUSIVE OR B

15) EQV A EQUIVALENT TO B

16) IMP A IMPLICATION WITH B

Relational Operator expressions will always have a value of True (-1)
or a value of False (0). Therefore, (5=4)=0, (5=5)=~1, (4>5)=0,
(4<5)=-1 etc.

The THEN clause of an IF statement is executed whenever formula after
the IF is not equal to 0. That is to say, IF X THEN... 1is equivalent
to IF X<>0 THEN...

SYMBOL SAMPLE STATEMENT PURPOSE/USE

= 10 IF A=15 THEN 40 Expression Equals Expression

<> 70 IF A<>0 THEN 5 Expression Does Not Equal Expression
> 30 IF B>100 THEN 8 Expression Greater Than Expression
< 160 IF B<2 THEN 10 Expression Less Than Expression

37

<=,=< 180 IF 100<=B+C Expression Less Than Or Equal To
THEN 10 Expression
>=,=> 190 IF Q=>R THEN 50 Expression Greater Than or Equal
To Expression
AND 2 IF A<5 AND B<2 If expression 1 (A<5) AND expression 2
THEN 7 (B<2) are both true, then branch
to line 7.
OR IF A<l OR B<2 If either expression 1 (A<1l) OR
THEN 2 expression 2 (B<2) is true, then branch
to line 2.
NOT IF NOT Q3 THEN 4 If expression "NOT Q3" is true (because
Q3 is false), then branch to line 4.
NOTE: NOT -1=0 (NOT true=false)
XOR IF A XOR B THEN 60 If A and Not B or B and Not A then the
expression is true.
EQV IF A EQV B THEN 12 If A and B or Not A and Not B then the
expression is true.
IMP IF A IMP B THEN 30 The expression of implication is true

if Not A or B.

AND, OR and NOT, XOR, EQV and IMP can be used for bit manipulation,
and for performing boolean operations.

These six operators convert their arguments to sixteen bit, signed
two's, complement integers in the range -32768 to +32767. They then
perform the specified 1logical operation on them and return a result
within the same range. If the arguments are not in this range, an
error results.

The operations are performed in bitwise fashion, this means that each
bit of the result is obtained by examining the bit in the same
position for each argument.

The following truth table shows the logical relationship between bits:

38

OPERATOR ARG. 1 ARG. 2 RESULT

AND 1 1 1
0 1 0
1 0 0
0 0 0
OR 1 1 1
1 0 1
0 1 1
0 0 0
NOT 1 - 0
0 - 1
XOR 1 1 0
0 1 1
1 0 1
0 0 0
EQV 1 1 1
1 0 0
0 1 0
0 0 1
IMP 1 1 1
0 1 1
1 0 0
0 0 1

EXAMPLES (In all of the examples below, leading zeroes on binary
numbers are not shown).

63 AND 16=16 Since 63 equals binary 111111 and 16 equals binary
10000, the results of the AND is binary 10000 or 16.

15 AND 14=14 15 equals binary 1111 and 14 equals binary 1110, so
15 AND 14 equals binary 1110 or 14.

-1 AND 8=8 -1 equals binary 1111111111111111 and 8 equals binary
1000, so the result is binary 1000 or 8 decimal.

39

4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the
result is binary 0 because none of the bits in either
argument match to give a 1 bit in the result.

4 OR 2=6 Binary 100 OR'd with binary 10 equals binary 110, or
6 decimal.

10 OR 10=10 Binary 1010 OR'd with binary 1010 equals binary 1010,
or 10 decimal.

-1 OR -2=-1 Binary 111111111111111 (-1) OR'd with binary
1111111111111110 (-2) equals binary 1111111111111111,
or -1,

NOT 0=-1 The bit complement of binary 0 to 16 places is
sixteen ones (1111111111111111) or -1. Also NOT
-1=0.

NOT X NOT X is equal to - (X+1l). This is because to form

the sixteen bit two's complement of the number, you
take the bit (one's) complement and add one.

NOT 1=-2 The sixteen bit complement of 1 is 1111111111111110,
which is equal to -(1+l1) or =-2.

The operators MIN and MAX return the numeric data which meets the
operator type. For example 3 MIN 7=3 or PRINT A MAX B. The greater
number will be printed out using the MAX operator. The MIN function
returns the lesser of the two.

The shift operators will perform shifts on 16 bit integers by the
following operators:

A SHL B shifts A left B bits, zeros shifted into right end.

A SHR B shifts A right B bits, the sign bit is extended to the
right.

A ROL B rotates A left B bits, bits shifted off the 1left end
cycle into the right end.

40

A ROR B rotates A right B bits, bits shifted off the right end
cycle into the left end.

The manipulation is against the integer in a 16 bit register. One
example: PRINT 5 SHL 2 which gives 20. A program to discover the bit
action which occurs, may have SHL,SHR,ROL and ROR interchanged for the
study, is as follows:

10 INPUT A

20 INPUT B

24 PRINT BINS (A)

30 PRINT BINS (A SHL B)
40 GOTO 10

OK

RUN

? 16

? 2
10000
1000000

41

VARIABLE AND CONSTANT TYPES

There are four types of values used in EXTENDED BASIC programming:

NAME SYMBOL # OF BYTES/VALUE
STRINGS (0 to 255 $ 3
characters)
INTEGERS (must be % 2
-32768 and =<

32767)
DOUBLE PRECISION # 8

(exponent: -38
to +38) 16 digits

SINGLE PRECISION ! 4
(exponent: -38
to +38) 6 digits

The type a variable will be is explicitly declared by appending one of
the four symbols 1listed above to its name. Otherwise, the first
letter of the variable is used to look into the table that indicates
the default type for that letter. 1Initially (after CLEAR, after NEW,
or after modifying a program), all letters are defaulted to SINGLE
PRECISION.

The following four statements can be used to modify the DEFAULT table:

STATEMENT DEFAULTS VARIABLE TO
DEFINT r INTEGER

DEFSTR r STRING

DEFDBL r DOUBLE PRECISION
DEFSNG r SINGLE PRECISION

These are described further in the section on Statements.

4?2

TYPING OF CONSTANTS

The type that a particular constant will be is determined by the
following:

1) If it 1is more than 7 digits or "D" is used in the exponent,
then it will be DOUBLE PRECISION.

2) If it is >32767 or <-32768, a decimal point (.) 1is used, or
an "E" is used, then it is SINGLE PRECISION.

When a + or * or a comparison is performed, the operands are converted
to both be of the same type as the most accurate operand. Therefore,
if one or both operands are double precision, the operation is done in
double precision (accurate but slow). If neither is double precision
but one or more operands are single precision floating point, then the
operation will be done in single precision floating point. Otherwise,
both operands must be integers and the operation is performed in
integer representation.

If the «result of an integer + or * is too big to be an integer, the
operation will be done in single precision and the result will be
single precision. Division (/) 1is done the same as the above
operation, except it is never done at the integer level. If both
operands are integers, the operation is done as a single precision
divide.

The operators AND, OR, NOT, \, and MOD force both operands to be
integers before the operation is done. TIf one of the operands is
>32767 or <-32768, an overflow error will occur. The result of these
operations will always be an integer. (Except -32768\-1 gives single
precision).

No matter what the operands to ~ are, they will both be converted to
single precision. The functions SIN, COS, ATN, TAN, SQR, LOG, EXP,
and RND also convert their arguments to single precision and give the
result as such, accurate to 6 digits.

Using a subscript >32767 and assigning an integer variable a value too
large to be an integer gives an overflow error.

43

TYPE CONVERSION

When a number is converted to an integer, it is truncated (rounded
down). For example:

I%=.999 A%=-.01
PRINT I% PRINT A%
0 -1

I% will perform as if the INT function was applied.

When a double precision number is converted to single precision, it is
rounded off. For example:

D#=77777777
I!=D#

PRINT 1!
7.77778E+07

No automatic conversion is done between strings and numbers. See the
STR$, NUM, ASC, and CHR$ functions for this purpose.

CONSTANTS AND CONVERSIONS

Binary, Hexadecimal and Octal constants and conversions to decimal
equivalents may be accomplished. The conversions are specified from
the respective base with the ampersand followed by a capital letter
indicating the input form. Examples are as follows: (&Bnnn Binary,
&Onnn Octal and &Hnnn Hexadecimal)

PRINT &B101101001001
2889

OK

PRINT &0174 OR &174
124

OK

PRINT &H3FA

1018

The O for Octal may be omitted and the input form is then assummed to

be octal. A sample program for the conversion of hexadecimal to
decimal is as follows:

44

10 READ N

20 PRINT VAL ("&H"+TRIMLS (STRS (N)))
30 DATA 651,12,14270

40 GOTO 10

The conversion of decimal numbers to their respective Binary, Octal or
Hexadecimal equivalent may be done using the following forms:
BINS (nnn), OCTS$ (nnn) and HEXS$ (nnn).

Examples are: OK
PRINT BINS (7630)
1110111001110
OK
PRINT OCTS (345)
531
OK
PRINT HEXS$(931)
3A3
OK

A simple program:
10 READ N
20 PRINT HEXS (N)
30 DATA 265,306,2179
40 GOTO 10

45

BASIC STATEMENTS

Just as a command may be used as a program statement, so can program
statements be used as "commands". When entered without a statement

number, a statement line, which may have multiple statements on it, is
executed immediately.

Most statements are described below. Disk I/O statements are
described in the section on DISK I/0.

DATA x1 {,x2...} The DATA statement provides values to be used
xl is a numeric by the READ statement. It 1is not itself
or string constant executable and if encountered in the program

flow is simply skipped. All statements taken
together in a program define the data block
for READ. They need not be contiguous. The
RUN command resets the data block pointer so
that the next READ statement will get the
first value from the first DATA statement.
The pointer is then advanced by READ until
all data is read.

String constants may be quoted or unquoted.
Quoted strings terminate at the ending quote
(or end of statement, if that occurs first).
Unquoted strings terminate at a comma or end
of statement. Strings may not contain a
quote (") within them.

DEF FNa {(V1{v2,...})} - The user can define functions like the
Function Definition built-in functions (SQR, SGN, ABS, etc.)
through the wuse of the DEF statement. The
name of the function is "FN" followed by any
legal variable name, for example: FNX, FNJ7%,
FNKO, FNR2S. User defined functions are
limited to one statement. A function may be
defined to be any expression. The variable
names V1, V2, etc. are called formal
parameters. When the function is used, the
formal parameter names are replaced by the
actual expression values in the call. So
that:

DEF FNX2 (A,B) = SQR(A"2+B"2)

when called as:

46

DEF USRn

=

address

R = FNX2 (25,P*Q+R)
would be evaluated as:
R = SQR((25)72 + (P*Q+R)"2)

Any variables having the same name as formal
parameter names are not affected. User
functions may call other user functions.

If the same variable names used in the
argument list are used in the call, then they
must be in the same sequence. The program
below shows the results of using the same
variables in the <call as the original
definition, but out of sequence.

10 DEF FNA(A,B)=SQR(A"2+B"2)
30 PRINT "INPUT X":INPUT X
40 PRINT "INPUT Y":INPUT Y
45 LET H=FNA(X,Y)

50 PRINT H

65 PRINT "INPUT B":INPUT B
70 PRINT "INPUT A":INPUT A
75 LET P=FNA(B,A)

80 PRINT P

85 END

OK
RUN
INPUT X
? 5
INPUT Y
? 6
7.81025 - (CORRECT)
INPUT B
?2 5
INPUT A
2 6
7.07107 - (INCORRECT)

Users may also call separately compiled
assembly language subroutines. The DEF USR
statement tells BASIC the starting address of
the subroutine. "n" may be any digit from 0
- 9, thereby defining 10 user routines. USR

47

DEFDBL

DEFSNG r

DIM vi{(si{s2,...}

48

r{-s} -double

precision
DEFINT r{-s -integer

-s} —-single

precision
DEFSTR r{-s} -string

{,v2{(s3{,s4...}H

-

is equivalent to USRO. The address given 1is
the true address for values in the range <=
address <=32767. For true addresses between
32768 and 65535 the complement address must
be given (true address - 65536). :

In these four statements the default type of
all variables beginning with letters 1in the
range r to s inclusive is changed. These
four statements also allow multiple ranges if
required for efficiency. Specification of
only those variables necessary for definition
within the range of variables may be stated
e.g. DEFINT A,E,I-0,U. The statement has no
effect on wvariables specified with an
explicit type suffix (#,%,!,$). Initially
after CLEAR, RUN, NEW, or any program
modification, DEFSNG A-Z 1is assured. Care
should be taken when using these statements
since variables referred to without type
indicators may not be the same after the
statement 1is executed. It 1is recommended
that these statements be used only at the
start of a program, before any other
statements are executed.

Example:
10 1% = 1 'Integer
20 1! = 2 'Single precision
30 I# = 3 'Double precision
40 I$ ="ABC"'String
50 PRINT I 'Gives 2
60 DEFINT I
70 PRINT I 'Gives 1
80 DEFSTR I

90 PRINT I 'Gives ABC
100 DEFDBL I
110 PRINT I 'Gives 3

Allocate space for matrices. Matrices can
have up to 255 dimensions (subscript
positions). Vl, V2,... are variable names;
s1, sS2,... are expressions giving the
maximum value of the subscript in .that
position. The minimum subscript value at any
position is 0, so for example

ELSE

END

ERASE array{,array...}

FOR

(SEE IF)

ERASE J%

ERASE X%,1/#%
ERASE AS$

ERASE D/#,NMS%

var=start TO
ending value

[STEP increment}

DIM A(3),B$(2,5)

creates two arrays. A has 4 elements, A(0),
A(l), A(2), and A(3). B has 18 elements,
from B(0,0) through B(2,5). If a matrix is
not explicitly dimensioned with a DIM
statement, it is assumed to be dimensioned
(10).

Unlike some versions of BASIC, it is not

necessary to dimension strings. The
statement
DIM C$(30)

does not create one string of 30 characters,
but sets up an array of 31 strings, each of
which can be up to 255 characters long.

Terminates program execution without printing
a BREAK message (see STOP). CONT after an
end statement causes program execution to
resume at the statement after the END
statement. END can be used anywhere in the
program, and is optional. An END is assumed
to follow the last line of the program.

Eliminates an array. If no such array exists
an "ILLEGAL FUNCTION CALL" error will occur.
ERASE must refer to an array, not an array
element [ERASE B(9) would be ILLEGAL]. The
space the array is using is freed up and made
available for other uses. The array can be
dimensioned again, but the values before the
ERASE are lost.

The variable (var) 1is set equal to the
starting value expression following the equal
sign. Then statements are executed until a
NEXT 1is encountered. When NEXT is executed
the increment value is added to "var" and the
result tested against the ending value. If

49

the increment was postive and the new value
is <= the ending value or the increment is
negative and the new value is >= the ending
value the program jumps back to the first
statement following the FOR, otherwise it
continues in line.

The index variable must be an integer or
single precision variable. 1Integer variables
are much faster to execute. If the STEP
clause is absent, an increment of +1 is used.

The expressions for starting and ending
values are executed only once, at the entry
to the loop. All loops are executed at least
one time, even in cases like

FOR I =1 TO 0 STEP + 5

FOR loops may be nested to any depth (limited
only by the available memory). The only
requirement is that all active FOR loops must
have different index variables. An attempt
to begin a FOR loop with an index variable
the same as an already active loop has the
effect of terminating the active loop as well
as any loops nested under it.

GOSUB statement number Branches to the specified statement. When a
RETURN is encountered control resumes at the
statement following the GOSUB. GOSUB may be
nested to any depth. RETURN always returns
to the innermost active GOSUB in the nest.

GOTO statement number Branches to the statement specified. Note
that GOTO is one word.

IF test GOTO statement number
IF test THEN statement {:statement...} -
[ELSE statement{:statement...}}

If the test expression is true (non-zero),
statements are executed following THEN., 1If
false, statements are executed following
ELSE. The only restriction is that all of

50

INPUT {prompt$;}

varl{

,var2...}

the THEN-clause or ELSE-clause statements
must fit on the same line. Any of the
statements may also be IF-THEN-ELSE
statements. In the case of nested IF-THEN
and IF-THEN-ELSE statements, an ELSE is
assumed to belong to the nearest IF on its
left that does not already have an ELSE.

The clause "...THEN GOTO statement number..."
may be replaced by "...GOTO statement

number..." or "...THEN statement number...".
Likewise, "...ELSE GOTO statement number..."
may be replaced by "...ELSE statement

number...".

Requests data from the terminal (to be typed
in). Each value must be separated from the
preceeding value by a comma (,). The last
value typed should be followed by a carriage
return. Only constants may be typed in as
response to an INPUT statement, and the type
(numerical string) of the constant must match
the type of the variable that is to receive
it. 1If a prompt string is specified, it |is
typed out preceeding the type in. If no
prompt is specified, BASIC prompts with "?
" If more data was requested than was typed
in, a prompt of "?? " is typed. 1If more
data was typed in than was requested, the
extra will be ignored. Strings may be quoted
or not, as in the DATA statement.

If a carriage return alone 1is typed in
response to an INPUT statement, BASIC returns
to command mode. Typing CONT after an input
command has been interrupted will cause
execution to resume at the INPUT statement.

{LET} variable = expression Assigns a value to a variable. "LET"

LINE INPUT

var$

is optional.

Requests data from the terminal, without a
prompt. A prompt will be added if enclosed
in quotes. The entire 1line, up to the
carriage return, 1is returned as a string to
var$. In this form of input, typing carriage
return alone returns a blank string and does
not stop the program.

51

LINPUT {prompt$;} varl
var2...

LLINE INPUT vars$

LPRINT value {,value}
{;valuel...

NEXT {var{,var}}

ON expression GOTO
stmt. no.
{,stmt. no. ...}

ON expression GOSUB
stmt. no.
[,stmt. no. ...}

INP(I) 25 PRINT INP(I)

OUT port, byte

52

Requests data from the auxiliary line to be
typed in. In all other respects it behaves
like INPUT from the terminal.

Works Jjust 1like LINE INPUT, except that the
line is input from the auxiliary 1line or
second terminal port on the MICROFILE.

See PRINT. This works like PRINT except that
the output is directed to the auxiliary 1line
or second terminal ort of the MICROFILE.
LPRINT USING string$; {value;{,value...}}

NEXT marks the end of the FOR loop with the
matching variable name. If no value is
given, the innermost FOR is matched. This is
the fastest form. All FOR loops nested under
the matched one are closed. NEXT with
multiple variables may be used to match
multiple FOR statements, eg:

NEXT V,W is equivalent to
NEXT V: NEXT W

Performs a GOTO or GOSUB to the i'th
statement number in the list, depending on
the value of the expression. If the value is
1, the first statement number is used. If 2,
the second statement {,stmt. no. ...} number
is used, etc. A value of 0 or a wvalue
greater than the number of elements in the
list causes the ON statement to be ignored.
A value <0 or >255 is an error.

Gives the status of (reads a byte from) input
port I. Result is =>0 and <=255.

Puts the type out on MICROFILE port "port".
Both port and byte must be >=0 and <=255.
This can be used to set the front panel
display lights as follows:

The front panel line display port number is
66. The byte format is:

POKE 1location, byte

PRINT value {,value}
{;value}

or

bits: Xx X X X VvV VYV

Xx(1l) select digit
x(2) select digit
X(3) select digit
x(4) select digit

W N

v(l,2,3,4)
digit 0-9,A,B,C,D,E,F,
(hexadecimal)

Digit values 0-9 give the digits 0-9. A
value of 10 gives A, 11 gives B, 12 gives C,
13 gives D, 14 gives E, and 15 gives F.
Multiple digit places can be selected
simultaneously, so that

OUT 66, (8+4+2+1)*16+0 will clear the
display to 0

OUT 66, (8)*16+10 will set the 1leftmost
digit to "a".

The POKE statement stores the byte
(0<=byte<=255) in the memory location
specified. For 1locations between 0 and
32767, give true location. For true

locations between 32768 and 65535, give the
complement location (true location- 65536).

Prints the value of expressions on the
terminal. If the list of values does not end
with a comma (,) or a semicolon, (;), then a
carriage return/line feed is put out after
all the wvalues have been printed. A value
may be any expression, including string
expressions, or literal strings (enclosed in
quotes). If a semicolon separates two
expressions in the 1list, their values are
printed next to each other. If a comma
appears after an expression in the list, the
printer is spaced to the start of the next 14
column field (until the carriage is at column
14, 28, 42, 56, 70,...). If printing would
continue past the end of line as defined by
the CAR command, a carriage return/line feed
is inserted at the end of line point.

53

PRINT USING string$;
{value {,value...}}

READ var{,var}

REM comments

The special functions SPC and TAB may only be
used within a print statement. SPC (i) will
print i spaces at the terminal (0<=i<=255).
TAB(i) moves the printer to column i
(0<=i<=255). 0 is the 1leftmost column
number. If infinite 1lines are being used
(CAR 0), TAB positions past column 255 may be
inaccurate.

The PRINT USING statment can be used in
situations where a specific output format is
desired. This situation might be encountered
in applications such as printing payroll
checks or an accounting report. See Page 85
for a complete description of this command.

READ 1is exactly like INPUT, except that the
data comes from DATA statements within the
program (see DATA). Attempting to read
beyond the end of data will result in an
error.

Allows the wuser to put comments 1in the
program. REM statements are not executed,
but can be branched to. A REM statement is
terminated only by end of line, not by ":".

RESTORE {statement number } Allows the re-reading of DATA

RETURN

STEP (See FOR)

STOP

54

statements. After a RESTORE, the next piece
of data read will be the first value 1listed
in a DATA statement at or beyond the
specified statement number. If no statement
number is specified, the first statement of
the program will be used.

Causes a return to the statement after the
most recently executed GOSUB.

Causes a program to stop execution and to
enter command mode. The message

BREAK IN LINE nnnn

SWAP varl, var?2

THEN
TO

WAIT port, mask
{,select}

is printed. Programs may be continued after
a STOP. (See END).

Exchanges the values of two variables. Both
must be of the same type (integer, single
precision, double precision, or string).
Either or both may be array elements.

(See 1IF)

(See FOR)

This statement reads the status of MICRO-
FILE input port "port", exclusive OR's
"select" with the status, and then AND's the
result with "mask" until the result of that
is non-zero. All three parameters must be
>=0 and <=255. This should only be used to
support special hardware of your own, as most
other MICROFILE input ports are monitored by
the system.

55

INTRINSIC FUNCTIONS

ABS (X) 120 PRINT ABS (X) Gives the absolute value of the
expression X. ABS returns X if X>=0, -X
otherwise.

ASC (SS) Returns the ASCII numeric value of the
first character of the string expression
SS. The parity bit is removed. An
error will occur if S$ 1is the null
string.

ATN (X) 10 PRINT ATN (X) Gives the arctangent of the argument X.
The result 1is returned in radians and
ranges from -PI/2 to PI/2.
(PI/2=1.5708).

CDBL (X) Converts the argument to a double
precision number.

CHRS (I) Assigns the I'th character of the ASCIT
set.

CINT (X) Converts the argument to an integer
number.

COS (X) 20 PRINT COS (X) Gives the cosine of the expression X. X

is interpreted as being in radians.

CSNG (X) Converts the argument to single
precision.

CVD (SS$) See DISK I/0
CVI (SS) See DISK I/0
CVS (58$) See DISK I/O
EOF (I) See DISK I/0

56

EXP(X) 15 PRINT EXP(X)

FRE(X) 70 PRINT FRE(0)

FRE (S$)

INSTR (I%,S1$,S2$)

or

INSTR (S1$,S2$)

INT (X) 10 PRINT INT (X)

LCHRS (1)

Gives the constant "E" (2.71828) raised
to the power X. (E"X) The maximum
argument that <can be passed to EXP
without overflow occurring is 87.3365.

Gives the number of memory bytes
currently unused by BASIC. Memory
allocated for program.

STRING space is not included in the
count returned by FRE. To £find the
number of free bytes in STRING space,
call FRE with a STRING argument. (See
FRE under STRING FUNCTIONS).

A function has been provided to search
one string for an occurrence of another
string as a substring. This 1is the
INSTR function. It takes one of two
forms.

In the first form the string S1$ is
searched for the substring 2$ starting
at character position 1I%. The second
form is identical, except that the
search starts at character 1 of 8S18.
INSTR returns the character's position
of the first occurrence of S2$ in S18.
If S1$ 1is null, 0 is returned. If S2$
is null then I% is returned, unless I% >
LEN(S1$) in which case 0 is returned.

Returns the largest integer less than or
equal to its argument X. For example:
INT (.23)=0, INT (7) =7, INT (-1)=-1,
INT(-2)=-2, INT(l.1)=1.

The following would round X to D decimal
places:

INT (X*10°D+.5) /107D

If 1I=0, this function reads the next
character from the auxiliary 1line or
second terminal port of the MICROFILE.

57

LEFTS$ (S$,I)
30 PRINT LEFTS$ (S$,1I)

LEN (S$)

LOC(I)

LOF (I)

LOG (X) 160 PRINT LOG (X)

LPOS (X)

MIDS (S$,I)
330 PRINT MIDS$ (S$,I)

MIDS (S$ 7 L,J) =AS$
120 PRINT MIDS$(S$,10,6)=A$

58

All 8 bits are returned. This function
reads without interpreting or attempting
line editing. If I>0, LCHRS reads one
character from file I (See DISK I/0).

Gives the leftmost I characters of the
string expression S$. If I<=0 or >255
an FC error occurs.

Gives the length of the string
expression S$ in characters (bytes).
Non-printing characters and blanks are
counted as part of the length.

See DISK I/0

See DISK I/0

Gives the natural (Base E) logarithm of
its argument X. To obtain the Base Y
logarithm of X use the formula
LOG (X)/LOG(Y). Example:

7 = LOG(7)/ LOG(10).

Gives the current column position of the
auxiliary 1line or second terminal
printer. X is a dummy variable and is
ignored. For true positions 1in excess
of 255 (infinite lines) LPOS will give
erroneous results.

MIDS$ called with two arguments returns
characters from the string expressions
S$ starting at character position I. 1If
I>LEN(IS), the MIDS returns a null (zero
length) string. 1If I <=0 or >255, an FC
error occurs.

MID$ with three arguments that returns a
string composed of the characters of AS
starting with the 1Ith character of S$
and continuing for J characters of AS.
Nulls are returned for non-existent
locations and lengths in the string.

MIDS (S$,I,J)
340 PRINT MIDS$(S$,I,J)

MIDS$ (T$,I,J)=MIDS (AS,K,)

MID$ called with three arguments returns
a string composed from the characters of
the string expression S$ starting at the
Ith character for J characters 1If
I>LEN(S$), MID$ returns a null string.
If I or J <=0 or >255, an FC error
occurs. If J specifies more characters
than are left in the string, all
characters from the Ith on are returned.

MIDS, three Ffunction argument that

510 MIDS(TS$,14,3)=MIDS$(A$,8,3)causes T$ to be changed beginning at the

520 PRINT T$

MKDS$ (X)

MKIS$ (I)

MKS$ (X)

NXTR(I)

PumK (I)

POS (X)

RIGHTS (S$,1I)
30 PRINT RIGHTS (S$,1I)

RND (X) 170 PRINT RND (X)

Ith character of T$ and continuing for J
characters. The characters changed
inside T$ are from A$ beginning at the
Kth character of A$ and continuing for L
characters.

See DISK I/0

See DISK I/0

See DISK I/0

See DISK I/O

The PEEK function returns the contents
of memory address I, The value returned
will be >=0 and <=255. For addresses
greater than 32767, call PEEK with the
complement address (I - 65536).

Gives the current column position of the
terminal's printer. Otherwise this is
like LPOS.

Gives the rightmost I characters of the
string expression S$. When I<=0 or >255
an FC error will occur., If I>=LEN(SS)
then RIGHTS returns all of SS.

Generates a random number between 0 and
1. The argument X zontrols the
generation of random numbers as follows.

59

SGN (X) 230 PRINT SGN (X)

SIN(X) 190 PRINT SIN(X)

SPACES (nn)

SPC(T)

SQR(X) 180 PRINT SQR(X)

STR$ (X) 90 PRINT STRS (X)

STRINGS (String,nn)

60

X<0 starts a new sequence of random
numbers using X. Calling RND with
the same X starts the same random
number sequence. X=0 gives the 1last
random number generated. Repeated
calls to RND(0) will always return
the same random number. X>0
generates a new random number between
0 and 1.

Note that (B-A) *RND (1) +A will
generate a random number between A &
B.

RID(-PERX(83197)) is a good random number
pres=t, since memory cell 8197 is
constantly changed by a system timer
routine.

Gives 1 if x>0, 0 if X=0, and -1 if X<0.

Gives the sine of the expression X. X
is interpreted as being in radians.
Note: COS (X)=SIN(X+3.14159/2) and that
1 Radian=180/PI degrees=57.2958 degrees;
so that the sine of X degrees =
SIN(X/57.2958).

Returns string of spaces equal to number
specified.

Prints I spaces. See PRINT.

Gives the square root of the argument X.
An FC error will occur if X is less than
zZero.

Gives a string which is the character
representation of the numeric expression
X. For instance, STR$(3.1l)= "3.1".

Returns the first character of string
specified, the length equal to nn. Also
a specific character can be specified by

TAB (I)

TAN (X) 200 PRINT TAN (X)

USRn (2)

VAL (S$) 20 PRINT VAL (SS$)

an alternate method: PRINT
STRINGS (CHRS (65) ,50) which returns a
string of fifty A's,

Moves the terminal printer to column I.
See PRINT.

Gives the tangent of the expression X.
X is interpreted as being in radians.

Calls a user's assembly language
subroutine with an argument, Z. Any of
10 different routines may be called, by
setting n to 0,1,...,9 (e.g.: USRO,
USRS) . The starting address of the
user's routine must have been defined in
a DEF USRn statement. Details of the
calling sequence are given on page 103.

Returns the string expression S$
converted to a number. For instance,
VAL("3.1")=3.1. 1If the first non-space
character of the string is not a plus

(+) or a minus (-) sign, a digit or a
decimal point (.) then =zero will be
returned.

61

ERROR_AND BREAK DETECTION AND PROCESSING IN BASIC 3.2

BASIC 3.2 has 42 defined error messages which occur as a result of
errors in programming or operations with input data. The standard
error and break routines print out the abbreviated error message and
leave the program in the BASIC command mode. (OK is typed). The user
may now detect errors and provide his own error message and recovery
action and continue in the program.

Commands for ERROR and BREAK Detection and Processing:

ON ERROR GOTO nnn This statement must be given in program prior
to the occurrence of any errors. nnn equals
line number of the error test.

ON BREAK GOTO nnn This statement must be given in program prior
to a situation where a break may be given by
the operator.

ERR=nn and ERL=nn The error and error 1line variables where
ERR=nn is equal to the expected error number
and ERL=nn is the expected line number of the
program statement, The ERL statement is
optional in the trap subroutine.

ON ERROR GOTO 0 The on error go to zero statement is used
and whenever the error trap subroutine has not
ON BREAK GOTO 0 correctly specified the error. It restores

system handling of errors.

RESUME The RESUME statement must occur in the error
RESUME NEXT trap routine and the error handling routine
RESUME nnn to return to the program. An omission of the
resume statement causes a NO RESUME statement
to be output. The resume without

specification causes a return to the program
line where the error occurred. The resume
next statement causes program execution to
begin at the first program statement after
the error line. The resume nnn allows
program operation to continue at the
specified line.

62

Rules For Using the Error and Break Detection Processing

The BASIC error and break handling routines must be preceded by
the ON ERROR GOTO nnn or ON BREAK GOTO nnn statement prior to
program execution where an error can occur. The "nnn" is equal to
the program 1line number of the error or break processing trap.
See the examples for clarification.

The error or break processing trap must use an error number for
the logical test of the error. The line that the error occurred
on may be given to further isolate the error. The program must
not execute the error or break trap unless there is an error.

The error trapping subroutine must contain the ON ERROR GOTO 0
statement after all of the desired error and break possibilities
have been tested to allow the system to print out the error that
was not found in the subroutine.

The error trapping subroutine must contain a RESUME statement that
points to the ON ERROR GOTO 0. The error handling subroutine must
also contain a RESUME statement at its completion to return to the
program.

MULTIPLE ERROR TRAP EXAMPLE

A separate statement for error and break must be given as shown in
line 10 and 1line 20 below. The four lines 100 to 130 comprise the
error trapping. The error and break test specify an error line number
therefore the RESUME statement can be numbered. When the error trap
maybe entered from multiple points in the program, omit the ERL
variable and use the RESUME in the error handling routine without a
line number. Resume next could be used depending on the error and the
recovery technique. The break and error detection processing allows a
more complete description of errors to program users.

LIST

10
20
30
40
50
60
70
90

ON ERROR GOTO 100
ON BREAK GOTO 100
FOR I=1 TO 5000
NEXT I

INPUT A
INPUT B

PRINT A/B
END

63

100 IF ERR=0 AND ERL=30 OR ERL=40 THEN 200

110 IF ERR=12 AND ERL=70 THEN 250

120 RESUME 130

130 ON ERROR GOTO 0

200 PRINT "YOUR BREAK ACKNOWLEDGED PLEASE BE PATIENT"

210 RESUME 30

250 PRINT "DIVISION BY ZERO NOT LOGICAL IN THE MICROFILE"
260 PRINT "PLEASE RE-ENTER YOUR FACTORS"

270 RESUME 50

OK
RUN
YOUR BREAK ACKNOWLEDGED PLEASE BE PATIENT
? 23
? 00
DIVISION BY ZERO NOT LOGICAL IN THE MICROFILE
PLEASE RE-ENTER YOUR FACTORS
? 34
? 6
5.66667

OK

ERROR TRAP AND RECOVERY EXAMPLE

The example below shows how useful the error handling can be. Program
line 100 checks for error 27, FILE NOT FOUND, and provides a suitable
error message and a return to the input line for another try. The

example also shows how TLOAD overlays when RUN is part of the load
command.

OK
LIST

10 ON ERROR GOTO 100

20 MON "f1"

30 INPUT "Input program name to be TLOADED in BASIC: ";A$

40 TLOAD A$,0,R

50 STOP

100 IF ERR=27 AND ERL=40 THEN 130

110 RESUME 120

120 ON ERROR GOTO 0

130 PRINT "THE NAME ";AS$" IS NOT A T TYPE FILE,PLEASE RESPECIFY."
140 RESUME 30

OK

64

RUN
SFLS P
SBA P PRG2 B SYSCOT FS P PRGl T

Input program name to be TLOADED in BASIC:PRG2

THE NAME PRG2 IS NOT A T TYPE FILE,PLEASE RESPECIFY.
Input program name to be TLOADED in BASIC:PRG1

THIS IS A TLOAD BASIC PROGRAM FILE

END OF THE PROGRAM

IST

5 GOTO 200

10 ON ERROR GOTO 100

20 MON "f1"

30 INPUT "Input program name to be TLOADED in BASIC: ";AS
40 TLOAD AS$,0,R

50 STOP

100 IF ERR=27 AND ERL=40 THEN 130

110 RESUME 120

120 ON ERROR GOTO 0

130 PRINT "THE NAME ";AS$" IS NOT A T TYPE FILE,PLEASE RESPECIFY."
140 RESUME 30

200 PRINT "THIS IS A TLOAD BASIC PROGRAM FILE"

210 PRINT "END OF THE PROGRAM"

220 END

OK

DEFINING A NEW ERROR STATEMENT

This program shows how to define a new error number, 1In line 35 if T$
is not equal to MID$ of A$ as specified this is called error 43. The
program checks the 1label of the disk against the password. The
maximum error number that can be used is 255. The UNPRINTABLE ERROR
message will occur for an error number that is not defined.

LIST

10 ON ERROR GOTO 100

20 INPUT "INPUT THE PASSWORD ";AS

30 T$=MIDS$ (LABELS (0),9,4)

35 IF (T$=MID$(A$,9,4)) THEN 40 ELSE ERROR 43
40 PRINT "THE DISK IS CORRECT "

65

50 END

100 IF ERR=43 AND ERL=35 THEN 200

110 RESUME 120

120 ON ERROR GOTO 0

200 PRINT "I AM SORRY THE PASSWORD IS WRONG, TRY AGAIN"
210 RESUME 20

OK

RUN

INPUT THE PASSWORD SYSTEMS DISC WITH BASIC
I AM SORRY THE PASSWORD IS WRONG, TRY AGAIN
INPUT THE PASSWORD SYSTEMS DISK WITH BASIC
THE DISK IS CORRECT

LISTING CURRENTLY DEFINED ERRORS IN BASIC

To get a description of an error number in BASIC enter ERROR nn, where
nn is the number in question. ERROR 0 to ERROR 42 are currently
described in BASIC 3.2

ERROR 1
NEXT WITHOUT FOR

OK
ERROR 34
BAD RECORD NUMBER

OK
ERROR 41
OUT OF DISK SPACE

Any error not defined causes the UNPRINTABLE ERROR message. For
example; ERROR 57, if entered will give the message.

66

DISK I/O SECTION

In previous material, facilities have been described for reading and
writing information to the terminal (INPUT, PRINT) and auxiliary line
(LINPUT, LPRINT), and for imbedding information in a program (READ,
DATA). These techniques are useful when a small amount of information
is required. When more data is needed, disk files are needed.

All files in the system have associated with them a name and type.
File names are 1-5 characters in length. The first character cannot
be NUL or DEL. File types are single characters:

Text file - sequential

Random file

Compressed BASIC program

MICROFILE machine language program

0w oA
|

File types T and R may be manipulated by a BASIC user. The SAVE and
LOAD commands use file types T and/or B. Type T files are compatible
with the EDITOR and may be printed at the terminal.

Some commands require a disk number. The disk number to wuse 1is
determined by the slot you have inserted the desired floppy disk into.
It is not associated with the file itself, as name and type are.

In the commands below, "filename" may be a quoted string or any string
expression that yields a 1-5 character name. Lower case letters 1in
the filename are converted to upper case before use. "Disk" is any
numeric expression evaluating to a legal number (0,1,...). File type
is determined by the type of OPEN request. All sequential user files
are type T. All random files are type R.

When a program wishes to read and write data to a disk file, it must
first OPEN the file on the appropriate disk in one of several modes.
The general form of the OPEN statement is:

OPEN<mode>{4}<file number>,<file name>{,<disk number>}

<mode> is a string formula whose first character 1is one of the
following:

O Specifies sequential mode, positioned to end of file (appending
output)

67

I Specifies sequential mode, positioned to beginning of file
(input)
R Specifies random Input/Output mode

Sequential means that the file is a stream of characters that will be
read or written in order much like an INPUT statement reads from the
terminal and PRINT writes to the terminal. Random files are divided
into groups of 128 characters called records. The nth record of file
may be read or written at any time. Random files have other
attributes that will be discussed in detail later.

<file number> 1is a formula that evaluates to an integer between one
and sixteen and is used to associate the file being OPENed with a
number that will be used to refer to the file in later I/0 operations.

Examples:

OPEN "O",1,"OUTPT",O
OPEN "I",1,"INPUT"

The above two statements would open the files. OUTPT for sequential
output and the file INPUT for sequential input on disk zero.

OPEN M$,N,F$,D

The above statement would open the file whose name was in the string
F$ in mode M$ as file number N on disk D.

68

SEQUENTIAL ASCII FILE I/0

Sequential input and output files are the simplest form of disk input
and output as they involve the use of the INPUT and PRINT statements
with a file that has been previously OPENed.

To use an INPUT to read data from a file instead of the system
console, use:

INPUT #<file number>,<variable list>

Where <file number> represents the number of the file, and <variable
list> is a 1list of the variables to be read, as in a normal INPUT
statement.

When data is read from a sequential input file using an INPUT
statement, no question mark (?) is printed on the terminal. The
format of data in the file should appear exactly the same way that it
would be typed to a standard INPUT statement to the terminal.

Input and output may be mixed on sequential files. Output will be
inserted at the current file position, which may be the middle of a
line.

When reading numeric values, leading spaces are ignored, as are
carriage returns and line feeds in the file. When a non-space,
non-carriage return, non-line feed character is found, it 1is assumed
to be part of a BASIC format number. The number terminates on a
space, a carriage return, line feed, or a comma.

When scanning for string items, leading blanks, carriage returns, and
line feeds are also ignored. When a character which is not a leading
blank, carriage return or line feed is found, it is assumed to be the

start of a string item. 1If this first character is a quote sign (")
the item is taken as being a quoted string, and all characters between
the first double quote (") and a matching double quote are returned as

characters 1in the string value. This means that a quoted string in a
file may contain any characters except double quote, e.gq. carriage
returns, line feeds and commas.

If the first character of a string item is not a double quote, then it
is assumed to be an unquoted string literal. The string returned will
terminate on a comma, carriage return or line feed.

69

Scanning both numeric and string items stops at the start of the next
item or at end of line. Subsequent reads pick up where a previous
read left off, even in the middle of a line.

In the case of either a quoted or unquoted string item if the 1length
of the string exceeds 255 characters, the string immeiately terminates
at 255 characters.

Also for both numeric and string items, if end of file (EOF) 1is

reached when the items are being INPUT, the item will be terminated
whether or not a closing quote was seen.

Example of sequential I/O (NUMERIC ITEMS):

500 OPEN "O",1,"FILE",0
510 PRINT #1,X,Y,Z

520 RESTORE #1

530 INPUT #1,X,Y,Z

PRINT #<file number>,<expression list>
or

PRINT #<file number>,
USING <string expression>;<expression list>

are used to write data to a sequential file. Example of sequential
I/0 (quoted string items):

500 OPEN "O",1,"FILE"

510 PRINT #1,CHRS$ (34);XS$;CHRS (34);

515 PRINT #1,CHRS (34);Y$;CHRS (34);CHRS (34);2$;CHRS (34)
520 RESTORE #1

540 PRINT #1,XS$,Y$,2$

In this example, the strings being output (X$, ¥Y$, Z$) are surrounded
with double quotes through the use of the CHR$ function to generate
the ASCII value for a double quote. This technique must be used if a
string which is being output to a sequential data file contains

commas, carriage returns, 1line feeds, or 1leading blanks that are
significant.

70

When leading blanks are not significant and no commas, carriage
returns or line feeds exist in the strings to be output, it is
sufficient to insert commas between the strings being output, as in
the following example:

500 OPEN "I",1,"FILE"

510 PRINT #1,X$;",";¥$;",";2$
520 RESTORE #1

530 INPUT #1,X$,YS$,7Z$

Print lines on files are always assumed to be infinitely long. That
is, carriage returns are never automatically inserted.

RESTORE

The format of the RESTORE file statement is:
RESTORE #<file number>{#}<file number>...}

The first "#" is mandatory in order to distinguish this statement from
the RESTORE data statement. RESTORE is used to reposition a file to
its start ("rewinding" the file). It may be used to reread a file or
to read a file that has just been written.

CLOSE
The format of the CLOSE statement is as follows:
CLOSE {#}<file number>{,{#}<file number>...}

CLOSE 1is wused to finish I/0O to a particular BASIC data file. After
CLOSE has been executed for a file, the file may be reOPENed for input
or output on the same or a different <file number>. A CLOSE to an
unOPENed file has no effect. A CLOSE for a sequential output file
writes the final buffer of output. A CLOSE to any OPEN file finishes
the connection between the <file number> and the <file name> given in
the OPEN for that file, and allows the <file number> to be used again
in another OPEN.

A CLOSE with no argument CLOSEs all OPEN files.

71

NOTE

A FILE with a given name can be OPENed for
sequential or random access with only one
<file number> at a time.

DELETING DISK FILES

To delete a disk file, the user should use a KILL statement:
KILL {#}<file number>{,{#}<file number>...}
The KILL statement closes a file and deletes the file from the disk.

CLEAR and NEW always CLOSE all disk files automatically,
LINE INPUT

Often it is desirable to read a whole line of a file into a string
without wusing quotes, commas or other characters as delimiters. This
is especially true if certain fields of each line are being used to
contain data items, or if a BASIC program saved in ASCII mode is being

read as data by another program. The facility provided to perform
this function is the LINE INPUT statement:

LINE INPUT #<file number>,<string variable>

LINE INPUT from a data file will return all characters up to a
carriage return in <string variable>. LINE INPUT then skips over the
following carriage return/line feed sequence so that a subsequent LINE
INPUT from the file will return the next line. If the line is longer
than 255 characters, only the first 255 are returned.

BACKSPACING SEQUENTIAL FILES

The statement:

BKSP {#}<file number>

72

Causes a sequential file to be backspaced one line. If the current
position is in the middle of a line, the file 1is backspaced to the
start of the current line. A BKSP issued when at the beginning of a
file has no effect. BKSP may be used to reread a line or to position
a file prior to deleting a line.

DELeting Lines

DEL {#}<file number>

This function deletes a line starting at the current file position and
continuing through an end of 1line (CR/LF) or end of file. The
sequence:

100 LINE INPUT #1,AS

210 BKSP #1
220 DEL #1
230 PRINT #1, "NEW LINE"

will replace one line with a new one. If much deleting is done, disk
space may be inefficiently used. File space may be compactd by

copying the file to a new file, then erasing (KILLing) the old file.
The new file may be renamed via a MON request if desired.

LOCating Records

The function:

LOC (<file number>)

will return the current position on a significant file. It counts the
number of CR/LF sequences passed over, thus giving the current line
number. The first line is numbered 0.

End of File (EOF) Detection

When reading a sequential data file with INPUT statements, it is

73

usually desirable to detect when there is no more data in the disk
file. The mechanism for detecting this condition is the EOF function:

X=EOF (<file number>)

EOF returns TRUE (-1) when there is no more data in the file and FALSE
(0) if there is more. If an attempt is made to INPUT past the end of
a data file, an INPUT PAST END error will occur.

Example:

100 OPEN "I",1,"DATA",0
110 I=0

120 IF EOF (1) THEN 160
130 INPUT #1,A(I)

140 I=I+1

150 GOTO 120

160.......

In this example, numeric data from the sequential input file DATA is
read into the matrix A. When end of file 1is detected, the IF
statement at line 120 branches to 1line 160, and the variable I

"points" one beyond the last element of A that was INPUT from the
file.

Suppose one wishes to have a program that will calculate the number of
lines in a BASIC program file that has been SAVEd and in TEXT mode:

10 INPUT "WHAT IS THE NAME OF THE PROGRAM";P$
20 OPEN "I",1,PS,0

30 I=0

40 IF EOF (1) THEN 70

50 I=I+1:LINE INPUT #1,LS$

60 GOTO 40

70 PRINT "PROGRAM";PS$;" IS ";I;" LINES LONG"
80 END

This example uses the LINE INPUT statement to read each 1line of the
program into the "dummy" string L$, which is used essentially just to
INPUT and ignore that part of the file.

74

RANDOM FILE I/0

Previously, we have discussed how data may be PRINTed or INPUT from
sequential data files.

However, it is often desirable to access data in a random fashion, for
instance to retrieve information on a particular part number or
customer from a 1large data base stored on a floppy disk. If
sequential files were used, the whole file would have to be scanned
from the start until the particular item was found. Random files
remove this restriction and allow a program to access any record from
the first to the last in a speedy fashion.

Also, random files transfer data from variables to the disk output
records and vice versa in a much faster, more efficient fashion than
sequential files.

Random file I/O is more complex than sequential T1/0, and it is
recommended that beginners try sequential I/0 first.

OPENing a FILE for Random I/O

Random I/O files are OPENed just like sequential data files, except
the <mode> is R:

OPEN<"MODE">, <FILE NUMBER>,<FILE NAMES$> [,DISK NUMBER]

OPEN "R",1,"RAND",O0

CLOSING Random Files

Random files must be closed when I/O operations are finished, just
like sequential files. To CLOSE a random file, use the CLOSE operator
as described previously.

CLOSE {#}<file number>{{#},<file number>...}

CLOSE #1,#7

75

READING & WRITING DATA TO A RANDOM FILE - GET & PUT

Each random file on disk has associated with it a "random buffer",
described by a FIELD statement, of 128 bytes. When a GET or PUT
operation is performed, data is transferred directly from the buffer
to the data file (PUT statement)or from the data file to the buffer
(GET statement).

The syntax of GET and PUT is as follows:
PUT {#}<file number>{,<record number>}
PUT #4,1
GET {#}<file number>{,<record number>}
GET #4,2

If <record number> is omitted from a GET or PUT statement, the record
number that is one higher than the previous GET or PUT is read into
the random buffer. 1Initially a GET or PUT without a record number
will read or write the first record (record 0). The largest possible
record number is 4095. If an attempt is made to GET a record which
has never been PUT, all zeros are read into the record, and no error
occurs.,

It 1is not necessary to maintain contiguous record numbers. A single
disk will support about 2000 random records. No sectors are allocated
for unused numbers.

MOVING DATA IN AND OUT OF THE RANDOM BUFFER

So far we have described techniques for writing (PUT) and reading
(GET) data from a file into its associated random buffer. Now we will
describe how data from string variables is moved to and from the
random buffer itself. This is accomplished through the use of the
FIELD, LSET and RSET statements.

76

FIELD

The FIELD statement is wused to associate some or all of a file's
random buffer with a particular string variable. Then, when the file
buffer is read with GET or written with PUT, string variables which
have been FIELDed into the buffer will automatically have their
contents read or written. The format of the FIELD statement is:

FIELD {#} <file number> {,<field size> AS <string variable>...}
FIELD #3,128 AS A$

<File number> is used to specify the file number of the file whose
random buffer is being referenced. If the file is not a random file,
a BAD FILE MODE error will occur.

<Field size> 1is wused to set the length of the string in the random
buffer. :

<String variable> 1is the string which 1is being associated with a
certain number of characters (bytes) in the buffer.

Multiple fields may be associated with string variables in a given
FIELD statement. Each successive string variable is assigned a
successive field in the random buffer:

FIELD #5, 10 AS AS$, 20 AS BS$, 30 AS C$

Thus, the above statement would assign the first 10 characters of the
random buffer to the string variable A$, the next 20 characters to BS
and the next 30 characters to the variable C$.

It 1is important to note that the FIELD statement does not cause any
data to be transferred to or from the random buffer. It only causes

the string variables given as arguments to "point" into the random
buffer.

Often it 1is necessary to divide the random buffer into a number of
sub-records to make more efficient use of disk space. For instance,
it might be desirable to divide the 128 character record up into two
identical sub-records. To accomplish this, one need only place a
"dummy" variable at the start of the FIELD statement to skip over the
first sub-record in the record:

77

FIELD #1,64 AS DS$, 20 AS NAMES,
20 AS ADDRESSS$, 24 AS OCCUPATIONS

Then, the dummy variable D$ is used to skip over the first 64
characters in the record. Another way to do this would be to have a

variable I that would select whether the first or second sub-record of
a record was to be selected:

FIELD #1,64*(I-1) AS D$
20 AS NAMES$, 20 AS ADDRESS$, 24 AS OCCUPATIONS

Here, if the variable I is one, (I-1)*64 = (0 characters will be
skipped over, selecting the first sub-record. If I 1is two, 64
characters will be skipped over, selecting the second sub-record.

Another technique that is very useful is to use a FOR...NEXT loop and
a matrix to set up sub-records in the random buffer:

1000 FOR I=1 TO 16

1010 FIELD #1, (I-1)*8 AS D$, 4 AS AS$(I), 4 AS BS (I)
1020 NEXT I

In this example, we have divided the random buffer up into 16
sub-records, each composed of two fields, the first 4-character field

in A$(X) and the second 4-character field in B$(X) where X is the
sub-record number.

The FIELD statement may be executed any number of times on a
given file. It does not cause any allocation of string
space, the only space allocation that occurs is for the
string variables mentioned in the FIELD statement. These
string variables have a one byte count and two byte pointer

set up which points into the random buffer for the specified
file.

LSET and RSET

When a GET operation is performed, all string variables which have
been FIELDed into the random buffer for that file automatically have
values assigned to them. The CVI, CVS and CVD functions may be used
to convert any numeric fields in the record to their numeric values.

When going the other way, i.e. inserting strings into the random

78

buffer before performing a PUT statement, a problem arises. This is
because of the way string assignments wusually take place. For
example:

LET A$=BS$S

When a LET statement is executed, the character string assigned to the
left hand variable (A$) is created in string space. However, for
assignments into the random we don't want this to happen. Instead, we
want the string being assigned to be stored where the string variable
was FIELDed.

In order to do this, two special assignment statements have been
provided, LSET and RSET:

LSET <string variable>=<string formula>
RSET <string variable>=<string formula>

LSET A$=MKSS$ (V)
RSET B$="TEST"
LSET C$=MKDS$ (D#)

The difference between LSET and RSET determines what happens if the
string value being assigned is shorter than the length specified for
the string variable in the FIELD statement. USET left-justifies the
string, adding blanks to pad out the right side of the string if it is
too short. RSET right-justifies the string, padding on the left. If
the string value is too long, the extra characters at the end of the
string are ignored.

NOTE

Do not use LSET or RSET on string variables which have
not been mentioned in a FIELD statement, or a SET TO NON
DISK STRING error will occur.

LOC, LOF, NXTR

LOC is used to determine what the current (next) record number is for
random files. 1In other words, it returns the record number that will
be used if a GET or PUT is executed with the <record number> parameter
omitted.

79

LOC (<file number>)

PRINT LOC (1)
15

LOC is also valid for sequential files, and gives the current line
number of the file.

LOF is used to determine the highest record number ever written to a
random file:

LOF (<file number>)

PRINT LOF (2)
200

An attempt to use LOF on a sequential file will cause a BAD FILE MODE
error.

A random file may have large gaps of unused record numbers. It is
time consuming to GET every possible record number to check for this.
NXTR returns the next index in the file that actually has a real
record on disk.

NXTR (<file number>)
200 GET #5,NXTR(5)
If there are no more real records, NXTR returns 4096.

DELETING RANDOM RECORDS

A random record may be deleted from a file using the statement:
DEL {#}<file number>{,<record number>}

When a record is deleted, its disk space is returned to the system and
any subsequent attempt to read it will return all zeros.

80

USING NUMERIC VALUES IN RANDOM FILES

As we have seen, data is always stored in the random buffer through
the use of string variables. 1In order to convert between string and
numbers, a number of special functions have been provided.

To convert between numbers and strings:

MKIS$ (<integer value>) Returns a two type string error if
value is not >=-32768 and <=+32767.
Fractional part lost.

MKSS$ (<single precision value>) Returns a four byte string.
MKD$ (<double precision value>) Returns an eight byte string.

To convert between strings and numbers:

CVI (<two byte string>) Returns an integer value.
CVS (<four byte string>) Returns a single precision value.
CVD(<eight byte string>) Returns a double precision value.

Cvi, CVS, and CVD all give an error if the string given as the
argument is shorter than required. If the string argument is 1longer
than necessary, the extra characters are ignored.

These functions are extremely fast, as they convert between BASIC's
internal representation for integers, single and double precision
values and strings. Conventional sequential TI/0 must perform time
consuming character scanning algorithms when converting between
numbers and strings.

RANDOM FILE PROGRAM EXAMPLES
LIST
10 OPEN "R",1,"RAND",0

81

20 FIELD #1, 128 AS F$
30 INPUT R$

40 LSET F$=R$

50 PUT #1,1

60 GET #1,1

70 R$=F$

80 PRINT RS

90 CLOSE #1

OK

RUN

? NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR COUNTRY
NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THEIR COUNTRY

OK

82

LOAD "RONL1"

OK
LIST

10 FOR I=1 TO 10: INPUT BS$(I) : NEXT I
20 OPEN "R", #2,"RAND",0

30 FOR J=1 TO 10

40 FIELD #2,10*J-10 AS D$, 10 AS A$(J)

45 FOR I=1 TO 10:LSET AS$ (I)=B$ (I):NEXT

50 PUT #2,1

60 NEXT J

70 CLOSE #2

80 END

OK

RUN

? PRNTR
? LINE2
PLOT
AUTO LF
TOF
SCROLL
LPI
PITCH
VIDEO
FORMAT

o J D))) U)

OK
LOAD"RON2"

OK
LIST

10 OPEN "R", #2,"RAND",0

20 FOR J=1 TO 10

30 FIELD #2,10*%J-10 AS D$, 10 AS AS$(J)
40 NEXT

50 GET #2,1

60 FOR J=1 TO 10

70 PRINT AS$(J);

80 NEXT J

90 CLOSE #2

100 END

OK
RUN

83

PRNTR
VIDEO

OK

84

LINE2
FORMAT

PLOT

AUTO LF

TOF

SCROLL

LPI

PITCH

PRINT USING

The PRINT USING statement can be employed in situations where a
specific output format is desired. This situation might be
encountered in such applications as printing payroll checks or an
accounting report. Other uses for this statement will become more
apparent as you go through the text.

The general format for the PRINT USING statement is as follows:

(line number) PRINT USING <string>; <value list>

The "string" may be either a string variable, string expression or a
string constant which is a precise copy of the line to be printed.
Characters in the string will be printed just as they appear, with the
exception of the formatting characters. The "value list" is a list of
items to be printed. The string will be repeatedly scanned until:

1) The string ends and there are no values in the value list.

2) A field is scanned in the string, but the wvalue 1list is
exhausted.

The string should be constructed according to the following rules:

STRING FIELDS

! Specifies a single character string field. (The
string itself is specified in the value list).

\n spaces\ Specifies a string field consisting of 2+n characters.
Backslashes with no spaces between them would indicate
a field of 2 characters width, one space between them
would indicate a field 3 characters in width, etc.

In both cases, if the string has more characters than the field width,
the extra characters will be 1ignored. If the string has less
characters than the field width, extra spaces will be printed to fill
out the entire field.

Trying to print a number in a string field will cause a TYPE MISMATCH
error to occur.

85

Example: 10 AS$S="ABCDE":BS$="FGH"
20 PRINT USING "\ \";BS$,AS$
30 PRINT USING "!";AS$,BS

(the above would print out)

FGH ABCD
AF

Note that where the "!" was used only the first letter of each string
was printed. Where the backslashes were enclosed by two spaces, four
letters from each string were printed (an extra space was printed for
BS which has only three characters). The extra characters in the
first case and for A$ in the second case were ignored.

NUMERIC FIELDS

With the PRINT USING statement, numeric printouts may be altered to

suit almost any applications which may be found necessary. This
should be done according to the following rules:

Numeric fields are specified by the # sign, each of which
will represent a digit position. These digit positions are
always filled. The numeric field will be right Jjustified;
that 1is, 1if the number printed is too small to fill all of
the digit positions specified, leading spaces will be
printed as necessary to fill the entire field.

The decimal point position may be specified in any
particular arrangement as desired; rounding is performed as
necessary. If the field format specifies a digit 1is to
precede the decimal point, that digit will always be printed
(as 0 if necessary).

The following program will help illustrate these rules:

10 INPUT A$,A

20 PRINT USING A$;A
30 GOTO 10

RUN

2 ##,12

2 hHEkE, 12

86

* %

$$

**$

12
244 44,12
12.00
? ###.,12
12.
2 #.##4#,.02
0.020
2 ##.4#,2.36
2.4

This sign may be used at either the beginning or end of the
numeric field, and will force the + sign to be printed at
either end of the field as specified, if the number is
positive. If it 1is used at the end of the field, and the
number is negative, a - sign will be forced at the end of the
number.

The - sign when wused at the end of the numeric field
designation will force the sign to be trailing the number, if
it is negative. If the number 1is positive, a space is
printed.

NOTE: There are cases where forcing the sign of a
number to be printed on the trailing side will
free an extra space for 1leading digits. (See
exponential format).

The ** placed at the beginning of a numeric field designation
will cause any unused spaces in the leading portion of the
number printed out to be filled with asterisks. The ** also
specifies positions for 2 more digits. (Termed "asterisk
£ill"y.

When the $$ 1is wused at the beginning of a numeric field
designation, a $ sign will be printed in the space immediately
preceding the number printed. Note that the §§ also specifies
positions for two more digits, but the $ itself takes up one
of these spaces. Exponential format cannot be used leading $
signs, nor can negative numbers be output unless the sign is
forced to be trailing.

The **$ used at the beginning of a numeric field designation
causes both of the above ** and $$ to be performed on the
number being printed out. All of the previous conditions
apply, except that **$ allows for 3 additional digit
positions, one of which is the $ sign.

87

AAAAN

A comma appearing to the left of the decimal point in a
numeric field designation will cause a comma to be printed
every three digits to the left of the decimal point in the
number being printed out. The comma also specifies digit
position. A comma to the right of the decimal point in a
numeric field designation is considered a part of the string
itself and will be treated as a printing character.

Exponential Format. If the exponential format of a number is
desired in the print out, the numeric field designation should
be followed by ~""" (allows space for E+-XXX). As with the
other formats, any decimal point arrangement is allowed. In
this case, the significant digits are left justified and the
exponent is adjusted.

If the number to be printed out is larger than the specified
numeric field, a % character will be printed and then the
number itself in its standard format. (The user will see the
entire number). If rounding a number causes it to exceed the
specified field, the % character will be printed followed by
the rounded number. (Such a field= .##, and the number is
.999 will print %1.00.)

If the number of digits specified exceeds 24, a FUNCTION CALL error
will occur.

Try going through the following example to help illustrate the
preceding rules. A single program such as follows is the easiest
method for learning PRINT USING.

Examples: Type the short program into your machine as it is listed

Program:

below. This program will keep looping and allow you to
experiment with PRINT USING as you go along.

10 INPUT AS,A

20 PRINT USING AS;A
30 GOTO 10

RUN

The computer will start by typing a 2. Fill in the numeric field
designator and value list as desired, or follow along below.

88

? +#,9
+9

? +4,10
$+10

? ##1-2

-2

? +,-2

-2

?2 #,-2

%-2

? +.%#4,.02

+0.02

? ###%.#,100

100.0

? ##+,2

2+

? THIS IS A NUMBER 4,2

THIS IS A NUMBER 2

? BEFORE ## AFTER,12

BEFORE 12 AFTER

? ##44,44444

$44444

? Ok 44,1

***l

? kkgd,12

**12

? *E44 123

*123

? Okx44 1234

1234

? k*i4,12345

%$12345

2 kx|]

*]

? k% 22

22

2 k* _44,12

12.00

[£ 3 5 P01

kx|
(note: not floating $) ? SHEHE.H##,12.34

$ 12.34

(note: floating $) ? SSHH#H.#4,12.56

$12.56

? $S.##,1.23
$1.23
? $S.#4#,12.34
$$12.34
? $S#44,0.23

S0
? SSHEHE. #4,0

$0.00
2 **SEEH.#4,1.23
kxkkk$] .23
? F*S L #4,1.23
*$1.23
? KRS HEE, 1

Kkkk$]

#,6.9

#.4,6.99
0

ANV Y

##"12

2

? ##"1-2

2_

2 $4+,2

2+

? $§+,-2

2_

? 47777, 2

2E+00

2 #4777, 12

1E+01

? HEH44. 4447777 ,2.45678
2456 .780E-03

? #.#447°7°77,123
0.123E+03

?2 #4777, -123
-.12E+03

2 O"HEREE, H4H.4",1234567.89
1,234,567.9

BASIC ERROR MESSAGES-ALPHABETIC LISTING

(See Page 96 for Numeric Listing)

ERROR

05

35

28

36

26

34

00

16

19

38

BAD DATA FORMAT

BAD DISK NUMBER

BAD FILE MODE

BAD FILE NAME

BAD FILE NUMBER

BAD RECORD NUMBER

BREAK

BREAK DURING STRING

COMPACTION

CAN'T CONTINUE

DIRECT STATEMENT IN
FILE

The DATA format does not match the READ
statement.

The disk number is not 0,1,2 or 3.

Attempt to perform a PRINT to a random
file, or to perform a PUT or GET on a
sequential file. An OPEN statement
where the file mode is not I, O, or R.

A file name of 0 characters (null) or a
file name whose first byte was 0 or 377
octal (255 decimal) or a file name with
more than 5 characters was used as an
argument to LOAD, SAVE or OPEN.

An attempt was made to use a file number
which specifies a file that is not OPEN.

PUT or GET statement, record number is
either greater than allowable maximum
(4095) or less than zero.

Break detected.

A Dbreak was detected during string
compaction, type CONT so that operation
is finished.

Attempt to continue a program after
modification or an error, or before it
was RUN.

A direct statement was encountered
during a LOAD of a program in TEXT
format. The load is terminated.

91

32
41

12

24

29

27

33

25

30

13

06

42

92

DISK FULL or
OUT OF DISK SPACE

DIVISION BY ZERO

FIELD OVERFLOW

FILE ALREADY OPEN

FILE NOT FOUND

INPUT PAST END

INTERNAL ERROR

I/0 ERROR

ILLEGAL DIRECT

ILLEGAL FUNCTION CALL

LOAD FILE VERSION
MISMATCH

All disk storage 1is exhausted on the
disk. Delete some o0l1ld disk files and
retry.

Attempt to allocate more than 255
characters worth of string variables in
a single FIELD statement.

A sequential output mode OPEN for a file
was 1issued for a file that was already
OPEN and had never been CLOSED.

Reference was made in a LOAD, or OPEN
statement to a file which did not exist
on the disk specified.

An INPUT statement was executed after
all the data in a file had been INPUT.
This will happen immediately if an INPUT
is executed or a null (empty) file. Use
of the EOF function to detect End of
File (EOF) will avoid this error.

Internal error in BASIC. Report
conditions under which error occurred to
the DTC software department, along with
all relevant data. This error can also
be caused by certain kinds of disk I/O
errors.

A disk error occurred during the last
I/0 statement.

You cannot wuse an INPUT or DEF FN
statement as a direct command.

The parameter passed to a math or string
function was the wrong type or out of
range.

An attempt was made to LOAD a program

37

01

21

04

08

15

07

39

11

22

MODE-MISMATCH

NEXT WITHOUT FOR

NO RESUME

OUT OF DATA

OUT OF MEMORY

OUT OF STRING SPACE

OVERFLOW

PROTECTED FILE

REDIMENSIONED ARRAY

RESUME WITHOUT ERROR
OR BREAK

file (type B) SAved under a previous
version of BASIC.

A NEXT statement was encountered but a
FOR was active.

An error or break detection processing

trap without a RESUME statement.

A READ or file INPUT statement was
executed but no more data is available.

Program too 1large, too many variables,
too many FOR loops, too many GOSUBS, too
complicated an expression or any
combination of the above.

Not enough string space was allocated.
CLEAR with a large value.

The result of a calculation was too
large to be represented 1in BASIC's
number format. TIf an underflow occurs,
zero is given as the result and
execution continues without any error
message.

An attempt was made to LIST, EDIT, or
SAVE a protected program.

After a matrix was dimensioned, another
dimension statement for the same matrix
was encountered. This error often
occurs 1if a matrix has been given the
default dimension of 10 because a
statement like A(I)=3 is encountered and
then 1later in the program DIM A(100) is
found.

An error trapping subroutine was entered
without an error or break in process.

93

03

31

18

17

10

02

40

14

09

20

94

RETURN WITHOUT GOSUB

SET TO NON DISK STRING

STRING FORMULA TOO
COMPLEX

STRING TOO LONG

SUBSCRIPT OUT OF RANGE

SYNTAX ERROR

TOO MANY FILES

TYPE MISMATCH

UNDEFINED STATEMENT

UNDEFINED USER FUNCTION

A RETURN statement was encountered
without a previous GOSUB being executed.

An LSET or RSET was given for a string
variable which had not previously been
mentioned in a FIELD statement.

A string expression was too complex.
Break it into two or more shorter ones.

An attempt was made by use of the
concatenation operator to create a
string more than 255 characters long.

An attempt was made to reference a
matrix element with a subscript out of
bounds or with the wrong number of
subscripts.

The statement is not a 1legal BASIC
statement. Missing parentheses, illegal
character, incorrect punctuation, etc.
Unless this is a protected program, EDIT
is entered for the offending line. The
start of EDIT is indicated by the 1line
number typed out. If a function was
called (FNx) in the line, the error may
lie in the function definition.

An OPEN was attempted for a file number
>=8 or >0.

The left hand side of an assignment
statement was a numeric variable and the
right hand side was a string, or vice
versa. Or a function argument was the
wrong type.

An attempt was made to GOTO, GOSUB,
THEN, or ELSE to a statement that does
not exist.

Reference was made to a user function
with an undefined address.

23 UNPRINTABLE ERROR An error was detected without an error

description to match it from within the
existing error statements.

95

LIST OF ASSIGNED ERROR CODES IN BASIC 3.2

96

ERROR NUMBER

=
ONBWNHOWOLAU B WN O

NN
WNhHhHFOWO

WWWWWWWWwWWwNhNhNDNDDNND
WCONOU & WNHFOWOJO U &

>
N = O

MESSAGE

BREAK

NEXT WITHOUT FOR

SYNTAX ERROR

RETURN WITHOUT GOSUB

OUT OF DATA

BAD DATA FORMAT

ILLEGAL FUNCTION CALL
OVERFLOW

OUT OF MEMORY

UNDEFINED STATEMENT
SUBSCRIPT OUT OF RANGE
REDIMENSIONED ARRAY
DIVISION BY ZERO

ILLEGAL DIRECT

TYPE MISMATCH

OUT OF STRING SPACE
BREAK DURING STRING COMPACTION
STRING TOO LONG

STRING FORMULA TOO COMPLEX
CAN'T CONTINUE

UNDEFINED USER FUNCTION
NO RESUME

RESUME WITHOUT ERROR OR BREAK
UNPRINTABLE ERROR

FIELD OVERFLOW

INTERNAL ERROR

BAD FILE NUMBER

FILE NOT FOUND

BAD FILE MODE

FILE ALREADY OPEN

I/0 ERROR

SET TO NON-DISK STRING
DISK FULL

INPUT PAST END

BAD RECORD NUMBER

BAD DISK NUMBER

BAD FILE NAME
MODE-MISMATCH

DIRECT STATEMENT IN FILE
PROTECTED FILE

TOO MANY FILES

OUT OF DISK SPACE

LOAD FILE VERSION MISMATCH

EDIT COMMAND

The EDIT command is for the purpose of allowing modifications and
additions to be made to existing program lines without having to
retype the entire line each time.

Commands typed in the EDIT mode are, as a rule, echoed. Most commands
may be preceded by an optional numeric repetition factor which may be
used to repeat the command a number of times. This repetition factor
should be 1in the range 0 to 255 (0 is equivalent to 1). If the
repetition factor is omitted, it is assumed to be 1. 1In the following
examples a lower case "n" before the command stands for the repetition
factor.

In the following description of the EDIT commands, the "cursor" refers

to a pointer which 1is positioned at a character in the line being
edited.

To EDIT a line, type EDIT followed by the number of the line and hit
the carriage return. The line number of the 1line EDITed will be

printed, followed by a space. The cursor will now be positioned to
the left of the first character in the line.

NOTE: The best way of getting the "feel" of the EDIT command
is to try EDITing a few lines yourself. Commands not
recognized as part of the EDIT commands will be ignored.

MOVING THE CURSOR

A space typed in will move the cursor to the right and cause the
character passed over to be printed out. A number preceding the space
(nS) will cause the cursor to pass over and print out the number (n)
of characters chosen.

INSERTING CHARACTERS

I Inserts new characters into the line being edited. After
the I 1is typed, each character typed in will be inserted
at the current cursor position and typed on the terminal.

To stop inserting characters type "escape" (or ALT mode on
some terminals).

If an attempt is made to insert a character that will make

97

98

the line longer than the maximum allowed (255 characters),
a bell will be typed (control G) on the terminal and the
character will not be inserted.

A backspace (or underline) typed during an insert command
will delete the character to the 1left of the cursor.
Characters up to the beginning of the line may be deleted
in this manner, and a backspace will be echoed for each
character deleted. However, if no characters exist to the
left of the cursor, a bell 1is echoed instead of a
backspace.

The "backspace" character used is the same as specified by
the MICROFILE CWL command, and may be changed if desired.

If a carriage return is typed during an insert command, it
will be as if an escape and then carriage return was
typed. That is, all characters to the right of the cursor
will be printed and the EDITed 1line will replace the
original line. ‘

X is the same as I, except that all characters to the
right of the cursor are printed, and the cursor moves to
the end of the line. At this point it will automatically
enter the insert mode (see I command).

X is very useful when you wish to add a new statement to
the end of an existing line. For example:

Typed by User EDIT 50 (carriage return)
Typed by MICROFILE 50 X=X+1:Y=Y+1
Typed by User X :¥=Y+1 (carriage return)

In the above example, the original line #50 was:

50 X=X+1

The new EDITed line #50 will now read:

50 X=X+1:Y=Y+1

H is the same as I, except that all characters to the

right of the cursor are deleted (they will not be typed).
The insert mode (see I command) will then automatically be
entered.

H is most useful when you wish to replace
the last statements on a line with new ones.

DELETING CHARACTERS

SEARCHING

nD deletes n number of characters to the right of the
cursor. If less than n characters exist to the right of
the cursor, only that many characters will be deleted.
The cursor 1is positioned to the right of the last
character deleted. The characters deleted are enclosed in
backslashes (\). For example:

Typed by User 20 X=X+1:REM JUST INCREMENT X
Typed by User EDIT 20 (carriage return)

Typed by MICROFILE 20 \X=X+1:\REM JUST INCREMENT X
Typed by User 6D (carriage return)

The new line #20 will no longer contain the characters
which are enclosed by the backslashes.

The nSy command searches for the nth occurance of the
character y 1in the 1line. The search begins at the
character one to the right of the cursor. All characters

passed over during the search are printed. If the
character is not found, the cursor will be at the end of
the line. If it is found, the cursor will stop at that

point and all of the characters to its left will have been
printed. For example:

Typed by User 50 REM INCREMENT X
Typed by User EDIT 50

Typed by MICROFILE 50 REM INCR

Typed by User 2SE

nKy is equivalent to S, except that all of the characters
passed over during the search are deleted. The deleted
characters are enclosed in backslashes. For example:

99

Typed by User 10 TEST LINE

Typed by User EDIT 10
Typed by MICROFILE 10 \TEST\
Typed by User KL

TEXT REPLACEMENT

A character in a line may be changed by the use of the C
command. Cy, where y is some character, will change the
character to the right of the cursor to y. The y will be
typed on the terminal and the cursor will be advanced one

position. nCy may be used to change n number of
characters in a 1line as they are typed in from the
terminal. (See example below.)

If an attempt is made to change a character which does not
exist, the change mode will be exited. Example:

Typed by User 10 FOR I=1 TO 100
Typed by User EDIT 10

Typed by MICROFILE 10 FOR I=1 to 256
Typed by User 251 3C256

ENDING AND RESTARTING

Carriage
Return

100

Tells the computer to finish and print the remainder of
the line. The edited line replaces the original line.

E is the same as a carriage return, except the remainder
of the line is not printed.

Quit. Changes to a line do not take effect until an E or
carriage return is typed. Q allows the user to restore
the original line without any changes which may have been
made, if an E or carriage return has not yet been typed.
"OK" will be typed and BASIC will await further commands.

Causes the remainder of the line to be printed, and then
prints the 1line number and restarts EDITing at the
beginning of the line. The cursor will be positioned to
the left of the first character in the line.

In the

L is most useful when you wish to see how the changes in a
line 1look so that you can decide if further EDITs are
necessary. Example

Typed by User EDIT 50
Typed by MICROFILE 50 REM INCREMENT X
Typed by User 25M L

Typed by MICROFILE 50

Causes the original copy of the line to be restored, and
EDITing to be restarted at the beginning of the line. For
example:

Typed by User 10 TEST LINE
Typed by User EDIT 10

Typed by MICROFILE 10 \TEST LINE\
Typed by User 10D A

Typed by MICROFILE 10

above example, the user made a mistake when he deleted TEST

LINE. Suppose that he wants to type "1D" instead of "10D". By using
A command, the original line 10 is re-entered and is ready for further

EDITing.

101

IMPORTANT

Whenever a SYNTAX ERROR is discovered during the execution of a source
program, BASIC will automatically begin EDITing the line that caused
the error as if an EDIT command had been typed. For example:

10 APPLE

RUN

SYNTAX ERROR IN 10
10

Complete editing of a line causes the line edited to be re-inserted.
Re-inserting a 1line causes all variable values to be deleted,
therefore you may want to exit the EDIT command without correcting the
line so that you can examine the variable values.

This can be easily accomplished by typing the Q command while in the

EDIT mode. TIf this is done, BASIC will type OK and all variable
values will be preserved.

102

EXPANDED ASSEMBLY LANGUAGE FEATURES

(DEF USR)

BASIC has the facility to call up to 10 different assembly language
subroutines, numbered USR0O-USR9. (USR is equivalent to USRO).

A statement, DEF USR, has been provided to allow the user to specify
the starting address in memory of any of his assembly language
routines. Statement:

DEF USR{<digit 0 through 9>}=<numeric formula>
Example:

DEF USR1=&100000
DEF USR2=31096
DEF USR9=ADR

The numeric formula specifies the starting address of the USR routine
specified.

Another important feature is the facility to pass string arguments,
integer arguments, single precision arguments to a USR routine. When
the USR subroutine is entered, the [H,L] register pair contains a
pointer to the floating point accumulator where all arguments are
stored, and the A register contains the value type.

The Floating Accumulator (FAC) has the following format:

Single (Arg=4) and Double Precision (Arg=8) Values.

[HL] Exponent

[HL]-1 Sign and bits 2-8 of mantissa

[HL]}-2 Bits 9~-16 of mantissa

[HL]1-3 Bits 17-24 of mantissa

[HL] -4 Low order mantissa bytes [Double Precision]
[HL]-5 Low order mantissa bytes [Double Precision]
[HL] -6 Low order mantissa bytes [Double Precision]
[HL]-7 Low order mantissa bytes [Double Precision]

Floating point quantities are always normalized so that bit 1 of the

103

mantissa is 1. The mantissa is always positive, regardless of the
sign. The binary point 1is to the 1left of bit 1 (fractional
representation). The sign is where bit 1 of the mantissa ought to be.

The exponent 1is a biased signed value. That 1is, the indicated
exponent is the true exponent (-127 to +127) plus 128. An indicated
exponent of 0 means the value is zero.

Integer Values: (Arg=2)

[HL]-2 Most significant byte - signed 16 bit value
[HL]-3 Least significant byte signed 16 bit value

String Values: (Arg=3)

[HL]1-2 Most significant byte
descriptor

[HL]-3 Least significant byte
descriptor

address of string

address of string

String Descriptors have the following form:

[Desc] String size (0-255)
[Desc]+1 Least significant byte - address of string
[Desc]+2 Most significant byte - address of string

Upon return, the USR function must leave a value in the FAC of the
same type.

104

LOADING USR ROUTINES

User routines can be loaded either below BASIC or above BASIC. Below
BASIC, between 2700H and 27FFH, is the area from which MON commands
are executed. Loading routines there precludes use of most MON
commands. The "LO" command may be used to load the user subroutine.

Loading above BASIC requires that the stack be moved, if BASIC is not
yet running. To load above BASIC with BASIC running:

1. Execute CLEAR <size> with enough size to hold programs.

2. Execute MON "PA 2803 yy xx" where the address xxyyH is the new
ceiling for BASIC. It must be in the reversed area and below
your programs.

3. Execute CLEAR <string size> to reserve string space with respect
to the new ceiling. The parameter MUST be present to force BASIC
to reset its stack pointers.

4. Now load the programs with MON "LO file".

The stack 1is maintained within BASIC, and only a limited amount of
space may be available, depending on program and non-string variable
size. A direct jump to location 2800H can be used to return BASIC to
command mode, and clear all variables.

105

DERIVED FUNCTIONS

The following functions, while not intrinsic to MICROFILE BASIC, can
be calculated using the existing BASIC functions.

Function Function Expressed in terms of BASIC functions
SECANT SEC(X) = 1/COS(X)

COSECANT CSC(X) = 1/SIN(X)

COTANGENT COT(X) = 1/TAN(X)

INVERSE SINE ARCSIN (X) = ATN(X)/SQR(-X*X+1))

INVERSE COSINE ARCCOS (X) = —-ATN(X/SQR(-X*X+1))+1.5708

INVERSE SECANT ARCSEC(X) = ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708
INVERSE COSECANT ARCCSC (X) = ATN(1/SQR(X*X-1))+(SGN(X)-1)*1.5708
INVERSE COTANGENT ARCCOT(X) = -ATN(X)+1.5708

HYPERBOLIC SINE SINH (X) = (EXP(X)-EXP(-X))/2

HYPERBOLIC COSINE COSH (X) = (EXP(X)+EXP(-X))/2

HYPERBOLIC TANGENT TANH (X) = -EXP(-X)/(EXP(X)+EXP(-X))*2+1
HYPERBOLIC SECANT SECH (X) = 2/ (EXP (X)+EXP (-X))

HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)-EXP(-X))

HYPERBOLIC COTH (X) = EXP(-X)/ (EXP(X)-EXP(-X))*2+1
COTANGENT

106

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

ARGSINH (X)

ARGCOSH (X)

ARGTANH (X)

ARGSECH (X)

ARGCSCH (X)

ARGCOTH (X)

LOG (X+SQR (X*X+1))

LOG (X+SQR (X*X-1))

LOG((1+X)/(1-X))/2

LOG((SQR (-X*X+1) +1) /X)

LOG((SGN (X) *SQR (X*X+1) +1) /X)

LOG ((X+1)/(X-1))/2

107

HELP

If you drop out of BASIC back to MICROFILE's system monitor (the *
prompt signifies this condition) you can return to BASIC without
losing your program in memory by typing GO 2800. BASIC will respond

with OK.

108

HEXADECIMAL
MICROFILE DISPLAY CONVERSION

L FFF

Hex. Dec. Hex. Dec. Hex Dec. Hex Dec.
0 0 0 0 O 0 O 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 C 3072 C 192 C 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

This chart may be used to convert the Microfile hexadecimal display to
a decimal value. Simply add the decimal value of the hexadecimal
figure from its associated column with the other column values. For
example the display above shows a hex address of BFFF or
(b=45056) (F=3840) (F=240) (F=15)=49151

109

ABS (X)

ASC (S$)

ATN (X)

BACKSPACING SEQUENTIAL FILES
BAD DATA FORMAT

BAD DISK NUMBER

BAD FILE MODE

BAD FILE NAME

BAD FILE NUMBER

BAD RECORD NUMBER
BASIC ERROR MESSAGES
BASIC STATEMENTS
BREAK

BREAK DURING STRING COMPACTION
BYE

CAN'T CONTINUE

CAR

CDBL (X)

CHRS (I)

CINT (X)

CLEAR

CLOSE

CLOSING RANDOM FILES
COMMANDS

CONT

COs (X)

COSECANT

COTANGENT

CSNG (X)

CVvD(SS$)

CVI(SS)

CVS (S$)

DATA

DEF

DEF USR

DEFDBL

DEFINT

DEFSNG

DEFSTR

DELETE

DELETING CHARACTERS
DELETING DISK FILES
DELETING LINES
DELETING RANDOM RECORDS
DERIVED FUNCTIONS
DIM

DIRECT STATEMENT IN FILE
DISK FULL OR OUT OF DISK SPACE
DISK I/O SECTION
DIVISION BY ZERO
EDIT

110

INDEX

56
56
56
72
91
91
91
91
91
91
91
46
91
91
29
91
29
56
56
56°
30
71
75
29
30
56
106
106
56
56
56
56
46
46
47
48
48
48
48
30
99
72
73
80
106
48
91
92
67
92
31

EDIT COMMAND
ELSE
END

END OF FILE (EOF) DETECTION

ENDING AND RESTARTING
ENTERING PROGRAMS

EOF (1)

ERASE

EXIT

EXPANDED ASSEMBLY LANGUAGE FEATURES (DEF USR)

EXPRESSIONS

FIELD

FIELD OVERFLOW

FILE ALREADY OPEN
FILE NOT FOUND

FOR

FRE (S$)

FRE (X)

GOSUB

GOTO

HELP

HYPERBOLIC COSECANT
HYPERBOLIC COSINE
HYPERBOLIC COTANGENT
HYPERBOLIC SECANT
HYPERBOLIC SINE
HYPERBOLIC TANGENT
I/0 ERROR

ILLEGAL DIRECT
ILLEGAL FUNCTION CALL
INP(I)

INPUT

INPUT PAST END
INSERTING CHARACTERS
INSTR

INT (X)

INTERNAL ERROR
INTRINSIC FUNCTIONS

INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
INVERSE
LCHRS (1)
LEFTS
LEN(SS$)
LET

COSECANT
COSINE

COTANGENT

HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC
HYPERBOLIC

SECANT
SINE

LINE INPUT

COSECANT
COSINE
COTANGENT
SECANT
SINE
TANGENT

97
49
49
73
100
28
74
49
31
103
35
77
92
92
92
49
57
57
50
50
108
106
106
106
106
106
106
92
92
92
52
51
92
97
57
57
92
56
106
106
106
107
107
107
107
107
107
106
106
57
58
58
51
72

111

LINE INPUT

LINPUT

LIST

LLINE INPUT

LLIST

LOAD

LOAD FILE VERSION MISMATCH
LOADING USER ROUTINES
LOC(I)

LOC, LOF ,NXTR
LOCATING RECORDS
LOF (I)

LOG (X)

LPOS (X)

LPRINT

LSET

MIDS$

MKDS$ (X)

MKIS (I)

MKSS$ (X)
MODE-MISMATCH

MON

MOVING DATA IN AND OUT OF RANDOM BUFFER
MOVING THE CURSOR
NEXT WITHOUT FOR
NEW

NEXT

NO RESUME

NUMERIC FIELDS

NXTR (I)

OCTAL CONSTANTS

ON

OPENING A FILE FOR RANDOM I/0
OPERATORS

our

OUT OF DATA

OUT OF MEMORY

OUT OF STRING SPACE
OVERFLOW

PEEK (I)

POKE

POS (X)

PRINT

PRINT USING

PRINT USING
PROTECTED FILE
RANDOM FILE I/O
READ

REDIMENSIONED ARRAY
REM

REN

RESERVED WORDS
RESTORE

RESTORE

112

51
52
31
52
31
31
92
105
73
79
73
80
58
58
52
78
58
59
59
59
93
32
76 -
97
93
32
52
93
86
80
44
52
75
35
52
93
93
93
93
59
53
59
53
54
85
93

=
54
93
54
33
11
54
71

RESUME WITHOUT ERROR OR BREAK
RETURN

RETURN WITHOUT GOSUB
RIGHTS

RND (X)

RSET

RULES FOR EVALUATION EXPRESSIONS
RUN

SAVE

SEARCHING

SECANT

SEQUENTIAL ASCII FILE I/O
SET TO NON DISK STRING
SGN (X)

SIN (X)

SLEEP

SPACES

SPC(I)

SQR (X)

STEP

STOP

STRINGS

STRS (X)

STRING FIELDS

STRING FORMULA TOO COMPLEX
STRING TOO LONG
SUBSCRIPT OUT OF RANGE
SWAP

SYNTAX ERROR

TAB(I)

TAN (X)

TEXT REPLACEMENT

THEN

TLOAD

TO

TOO MANY FILES

TROFF

TRON

TYPE CONVERSION

TYPE MISMATCH

TYPING OF CONSTANTS
UNDEFINED STATEMENT
UNNDEFINED USER FUNCTION
UNPRINTABLE ERROR

USING NUMERIC VALUES IN RANDOM FILES

USRn

VAL (S$)

VARIABLE AND CONSTANT TYPES
WAIT

93
54
94
59

78
36
33
33
99
106
69
94
60

33
60
60
60
34
54
60
60
85
94
94
94
55
94
61
61
100
55
34
55
40
34
34
44
94
43
94
924
95
81
61
61
42
55

113

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113

