CTOS DATABUS
User’s Guide

August 1973

Model Code No. 50003

DATAPOINT CORPORATION

D

The Leader in
Dispersed Data Processing

CTOS DATABUS

USER’S GUIDE

AUGUST 1973

INTRODUCTION

PART

TABLE OF CONTENTS

1.0 STATEMENTS
2.0 DATA TYPES

2.1
2.2
2.3
2.4

Defining Variables
Numeric String Variables

Character String Variables
Numeric Indexes

3.0 INSTRUCTIONS

3.1

3.3

Directive Instructions

3.1.1 FORM

3.1.2 NDIM

3.1.3 INIT

3.1.4 Common Data Areas
3.1.5 LENGTH

3.1.6 Line Continuation
Control Instructions
3.2.1 GOTO

3.2.2 CALL

3.2.3 RETURN

3.2.3 STOP

3.2.4 CHAIN

3.2.5 TRAP

3.2.6 TRAPCLR
3.2.7 BRANCH

3.2.8 ACALL

String Instructions
3.3.1 CMATCH

3.3.2 CMOVE

3.3.3 MATCH

3.3.4 MOVE

3.3.5 APPEND

3.3.6 RESET

3.3.7 BUMP

3.3.8 ENDSET

3.3.9 LENSET
3.3.10 TYPE

3.3.11 EXTEND
3.3.12 CLEAR

3.3.13 RANGE

3.3.14 LOAD

3.3.15 STORE
Numeric Variable Arithmetic Instructions
3.4.1 ADD

3.4.2 suB

3.4.3 MULT

3.4.4 DIV

3.4.5 MOVE 28
3.4.6 COMPARE ' 28
3.4.7 LOAD . 28
3.4.8 STORE 29

3.5 Numeric Index Arithmetic Instructions 30
3.5.1 ADD 31
3¢5.2 SUB 31
3.5.3 COMPARE 31
3.5.4 MOVE 31

3.6 Keyboard, C.R.T., Printer I1/0 Instructions 33
3.6.1 KEYIN 33
J.6.2 DISPLAY 34
3.6.4 BEEP 35
3.6.5 CLICK ' 35
3.6.6 DSENSE 36
3.6.7 KSENSE 36

3.7 Cassette Tape I/0 Instructions 36
3.7.1 READ 36
3.7.2 WRITE 38
3.7.3 REWIND 39
3.7.4 BKSP , 40
3.7.5 PREPARE 40
3.7.6 WEOF 40
3.7.7 BSPR _ 41
3.7.8 BSPF 41
3.7.9 ADVR 41
3.7.10 ADVF 41

3.8 Magnetic Tape 1/0 Instructions 42
3.8.1 READ 42
3.8.3 REWIND 44
3.8.4 PREPARE 44
3.8.5 WEOF ' 45
3.8.6 BSPR 45
3.8.7 BSPF 45
3.8.8 ADVR 45
3.8.9 ADVF 46
3.8.10 ADVMW 46
3.8.11 PBOF 46
3.8.12 PEOF , 47
3.8.13 ASCII 47
3.8.14 EBCDIC 47
3.8.15 BCD 48

3.9 Communications I/0 Instructions 48
3.9.1 SEND 48
3.9.2 RECEIVE 48
3.9.3 WAIT 50
3.9.4 DIAL 50
3.9.5 CONNECT 50
3.9.6 DSCNCT 51

4.0 DATABUS SOURCE CODE EDITOR 52

4.1 Databus Check List 52

FILES

L] L] . L]

OO0 O0OOCO0OO

CONFIGURATION

-
HOoOWVW®NOoOWL

DATABUS COMPILER OPERATION
RUNTIME OPERATION

CHAINING TO NON~DATABUS PROGRAMS
INTERPRETER INTERNAL OPERATION

CTOS DATABUS SUMMARIES

CTOS DATABUS DEFINITIONS
DATABUS INPUT/OUTPUT CONTROLS

PROGRAM LENGTH
11.1 DATABUS
11.1.1

11.1.2

11.1.3

11.1.4

11.1.5

11. 1.6

11.1.7

11.2 DATABUS.

11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
11.2.7
11.3 DATABUS
11.3.1
11.3.2
11.3.3
11.3.4
11.3.5
11.3.6
11.3.7
11.4 DATABUS
11.4.1
11.4.2
11.4.3
11.4.4
11. 4.5
11.4.6
11.4.7
11.5 DATABUS
11.5.1
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6
11.5.7
12.0 DATABUS 6

1
Instruction Summary

Conditions

Events

User Area

Dictionaries '
Interpreter Internal Structure
Sample Programs

2

Instruction Summary

Conditions

Events

User Area

Dictionaries

Interpreter Structure

Sample Programs

3

Instruction Summary

Conditions

Events

User Area

Dictionaries

Interpreter Internal Structure
Sample Programs

4 ,

Instruction Summary

Conditions

Events

User Area

Dictionaries

Interpreter Internal Structure
Sample Programs

5

Instruction Summary

Conditions

Events

User Area

Dictionaries

Interpreter Internal Structure
Sample Programs

12.1 Introduction
12.2 Global Features

52
55
58
61

63
65

67
67
69
70
71
70
72
72
72
72
73
74
77
77
78
78
78
79
80
81
94
94
95
96
96
96
97
98
107
107
108
108
108
108
109
110
113
113
114
114
114
114
115
116
118
118
118

12.3 Functional Descriptions 120

12.4 Sample Programs 125
APPENDIX

CTOS DATABUS SYSTEM CHART 128

NT U ON

DATABUS, the Datapoint Business Lanugage, is a family
of high-level programming languages designed especially for
the Datapoint 2200 and its peripherals.

Unlike conventional small computers, which are built
and shipped with little knowledge aforehand of what data
processing devices will bhe attached to them, each Datapoint

2?00 computer leaves the factory with at least video
display, keyboard, dual cassette tape drives and a variable

quantity of solid-state memory. This concept allowed the
Datapoint systems programmers to construct a high-level

language that could take full advantage of the built-in
peripherals that are part of every Datapoint 2200.

The language 1is especially useful in commercial
environments where jobs must be written quicklye. The
programmer may select the DATABUS 1language which contains
features he will need to best accomplish the task. DATABUS
2, for instance, would be considered the best version to do
extensive character manipulation, while DATABUS 3 contains
features for data communications. For applications with
limited memory size, DATABUS 4 will fit into only 4K of
memory. In any case, data tapes generated are compatible
between DATABUS versions.

This means that a DATABUS 2 program may generate a
cassette data tape and a DATABUS 3 program can transmit that

data to another 2200 in a location. All communications
operations are handled in the 1langquage with even error

checking handled automatically.

DATABUS will prove a useful and easily learned
lanquage for systems programming Datapoint users who are

beginning implementation.

HOW TO USE THIS MANUAL

This manual is a complete reference to the DATABUS
programming languages. 1 through 6. It is not, by any

means, a textbook to learning the DATABUS language. A
programmer who has had substantial background in COBOL, RPG,

and other business-oriented language will soon feel familiar
with DATABUS. simply by reading the instruction set and
referring to the examples at the rear of the manual.

Programmers who are relative newcomers to this type of

language would do well to read Iptroductjon to DATABUS, a

comprehensive self-tutoring guide beginning with the

fundamentals of system programming. A copy may be obtained
through any sales office or by writing the home office.

CURRENT RELEASES OF DATABUS

The most recent releases and updates of the DATABUS
program family are listed in the Appendix of this manual.

Each printing of this manual reflects the releases in |use.
If in doubt, contact your local sales office or the
Documentation Department in the San Antonio home office.

OTHER RELATED SOFTWARE

DATABUS versions 1-6 run under the Cassette Tape
Operating System (CTOS) and separate documentation is
available for this Operating System.

Additionally. the source code for a Databus program is

generated on a cassette by use of the General Purpose Editor
program (GEDIT). GEDIT is also documented in a separate
manual. .

Both CTOS and GEDIT documentation may be obtained
through the local or home office. The current releases of

these programs are also listed in the Appendix.

CTOS DATABUS

1.0 STATEMENTS

There are three basic types of statements in CTOS
DATABUS: comment, data definition, and program execution.
Comment lines begin with a period and may occur anywhere in
the program. Comments are most useful in explaining program
logic and subroutine function and parameterization to enable
someone reading through the program to understand it more
easily. Data definition statements must occur before any
program execution statements and are used for setting up all
the variables in the programe. All data definition
statements must have unique labels. Program execution
statements must appear after any data definition statements
and may or may not have labels. The labels on program
execution statements may be the same as labels on the data
definition statements. Program execution always begins with
the first executable statement. The following are examples
of CTOS DATABUS statements.

NAME DIM 35

TITLE INIT “TIME REPORT"

HOURS FORM 5.2

TOTAL FORM 10.2

RATE FORM "2.50"

TAX FORM *10.00"

«THIS IS A COMMENT

START DISPLAY *H1,*V1,*EF,TITLE
PREPARE 2
KEYIN *H1,*V3,“NAME:",NAME
KEYIN *H1,*V4,"HOURS:",HOURS

CALCR MULT RATE BY HOURS
ADD HOURS TO TOTAL
SUB TAX FROM TOTAL

OUTPUT PRINT "NAME:",NAME,*30,"RATE:",RATE;
PRINT *40,"HOURS:",HOURS;
PRINT *50,"TOTAL:",TOTAL
WRITE 2,NAME,RATE, HOURS, TOTAL
GOTO START

Labels for variables and executable statements may
consist of any combination of up to six letters and numbers.

but it must begin with a letter. The following are examples
of valid symbols:

A

ABC
AlBC
B1234
ABCDEF

“he following are examples of invalid symbols:

ABCDEFG (too long)

HI,JK = (contains an invalid character)
3DAS (begins with a number)

Statements other than comments consist of a label
field, an operation field, and a comment field. The 1label
field is considered empty if a space appears in the first
column. The operation field denotes the operation to be

performed on the following operands. In many operations,
two operands may be connected either by an appropriate

preposition (BY, TO, OF, FROM, or INTO) or a comma. One or
more spaces should follow each element in a statement,

except where a comma is used, in which case it must be the
terminating character of the previous element and may be

followed by any number (including zero) of spaces. The
following are all examples of valid statements:

LABEL1 SUB TWO FROM DIFF

LABEL2 SUB TWO OF DIFF

LABEL3 SUB WO, DIFF THIS IS A COMMENT
LABEL4 SUB TWO,DIFF :

Note that any prepositions may be used, even if it
does not make sense in English. The following are examples
of invalid statements:

LABEL1 SUB TWO DIFF (missing connective)
LABEL2 SUB TWO ,DIFF (space before comma)

Certain CTOS DATABUS statements allow a list of items
to follow the operation field. 1In many cases, this list can
be longer than a single line, in which case the line must be
continued. This is accomplished by replacing the comma that

would normally appear in the 1list with a colon and
continuing the list on the following line. For example, the

two statements:

PRINT A,B,C,D:

E.F,G
PRINT A,B,C,D,E,F,G

will perform the same function. Note that the first entry
of the continued line should not begin in the first column.,
the opcode field is the recommended place to begin the
continued line.

2.0 DATA TYPES

There are three types of data used within the CTOS Databus
language. They are numeric strings., character strings, and

numeric indexes. The numeric variable arithmetic
instructions are performed on numeric strings, the string

instructions are performed on character strings, and the
numeric index arithmetic instructions are performed on the
numeric indexes. There are also instructions available ¢to
allow movement of numeric strings into character strings.

character strings into numeric strings. numeric indexes into
character strings, and character strings into numeric

indexes. Each Databus version handles a subset of these
three data types, and has a command set to handle the types

of data it contains.

Numeric strings have the following memory format:
0200 1 2 . 3 0203

The leading character (0200) is used as an indicator that
the string is numeric. The trailing character (0203) 1is
used to indicate the location of the end of the string.
Note that the format of a numeric string is set at
definition time and does not change throughout the execution
of the program. When a move into a number occurs from a
string or differently formatted number. reformatting will
occur to cause the information to assume the format of the
destination number (decimal point position and the number of
digits before and after the decimal point) with truncation
occurring if necessary (rounding occurs if truncation is to
the right of the decimal point). Character strings have the
following memory format:

9 5 THE QUICK BROWN 0203

The first character is called the logical length and points
to the last character currently being used in the string (K
in the above example). The second character is called the
formpointer and points to a character currently being used
in the string (Q in the above example). The use of the
logical and formpointer in character strings will be
explained in more detail in the explanations of each
character string handling instruction. Basically however,
these pointers are the mechanism via which the programmer
deals with individual characters within the string.

2.1 Variable Definition

Whenever a numeric or character string variable is
used in a program, it must be “defined” at the beginning of
the program using either the FORM, DIM, or INIT
instructions. These instrucions reserve the memory space
described above for the data variable whose name is given in
the label field. Note that all variables must be defined
before the first executable statement is given in the
program and that once an executable statement 1is given no

more variables may be defined. Numeric strings are created
with the FORM instruction while character strings are

created with the INIT or DIM instruction. The numeric
indexes are set up for the user in the interpreters which

handle them and do not need to be defined in the user’s
program.

2.2 Numeric String Variables

Numeric string variables are defined with the FORM
instruction as shown in the following illustration:

EMRATE FORM 4.2
XAMT FORM " 382.4 *

In this example EMRATE has been defined as a string of
decimal digits which can cover the range from 9999.99 to

~999.99. The FORM instruction illustrated reserves space in
memory for a number with four Places to the 1left of a
decimal point and two places to the right of a decimal point
and initializes the value to zero. When the number is

negative, one of the places to the left of the decimal point
is used by the minus sign. XAMT, in the example, is defined

with four places to the left of the decimal point and three
to the right but with an initial decimal value of 382.400.

Care should always be taken when defining variables
not to make them larger than will be needed for the values
they will hold in the program. Making them larger than
needed will set aside memory space that cannot otherwise be

used and will reduce the overall space available to the
program.

2.3 Character String Variables

Character strings are defined with either the
dimension instruction, DIM, or the initialization
instruction, INIT. The DIM reserves a memory space for the
given number of characters, sets the length and formpointer
to zero, and initializes all the characters to spaces. For
example:

ANAME DIM 24

A character string can also be defined with some initial
value by using the INIT instruction. For example:

TITLE INIT “PAYROLL PROGRAM"

initializes the string TITLE to the characters shown and
gives it a logical length of 15. Note that in the case of

strings, the actual amount of physical space reserved is
three bytes greater than the number specified in the DIM or

quoted in the INIT instruction (TITLE occupies 18 bytes in
memory, 15 of which hold characters).

2.4 Numeric Indexes

To perform numeric operations in some of the
interpreters:, eight indexes have been set up. These jindexes
are referred to by instructions as I0 through I7. These do
not need to be defined in the user’s program and are
initialized to zero at the beginning of every program. The
indexes may be an integer value between 0 and 127 decimal.

Numeric indexes may only be used in the numeric index
instructions and as indexes in LOAD, STORE, and BRANCH

instructions. They may not be input and output between 1/0
devices.

3.0 INSTRUCTIONS

Every statement other than a comment must contain an
instruction. There are nine classes of instructions to

provide the basic types of operations the Datapoint 2200
must perform. They are:

DIRECTIVES - These instructions are basically instruc-
tions to the compiler. Directives define variables and
establish their initial values and sizes. They may also
establish the size of the user program, or tell ¢the
compiler to continue an instruction from one line ¢to
the next.

CONTROL =~ These instructions control the order in which
a program is executed. They permit transfer of control
from one part of the program to another depending on
the results of other operations, stopping the program,
or loading and running another program stored on the
system tape.

STRING - These instructions perform the various string
handling operations on character strings. The
operations include string move, append, match,
character match and move, and manipulation of the
formpointer.

NUMERIC VARIABLE ARITHMETIC - These instructions
perform the basic arithmetic operations on numeric
variables, transfer of a value from one variable to
another, and comparison of one variable to another.

NUMERIC INDEX ARITHMETIC - These instructions perform
the basic arithmetic operations on string variables,

comparison of indexes, and moving indexes to strings
and back.

KEYBOARD, C.R.T., PRINTER INPUT/OUTPUT - These instruc-
tions perform the basic I/0 functions to the mentioned
devices.

CASSETTE TAPE INPUT/OUTPUT - These instructions perform

the basic cassette tape handling functions for reading
and writing tapes.

MAGNETIC TAPE INPUT/OUTPUT - These instructions perform
the basic mag tape handling functions for reading and
writing 7-Track and 9-Track magnetic tapes.

COMMUNICATIONS - These instructions provide the means
to transmit and receive messages between Datapoint
2200°s using 2200/Communication Adaptors.

Each Databus system contains a subset of these
instructions to perform its functions. For example, Databus
1 contains the numeric variable arithmetic instructions but
not the string variable instructionse. Databus 2 contains

both string and numeric variable arithmetic instructions but
not the numeric index arithmetic or the communications.

Databus 3 has the string, numeric index and communications
facilities, but it does not have numeric variable
arithmetic. Section 3, the Instruction Description Section.
contains the entire CTOS Databus instruction set. See the

individual Databus system sections for the instruction
subset of the Databus system you are using.

The numbers in parentheses to the right of the
instruction indicate which Databus version contains that
instruction.

3.1 Directive Instructions
3.1.1 FORM (1)(2)

The FORM instruction defines the 1length and initial
value of a numeric string variable. The FORM instruction
must be used with a label which is used as the variable name

throughout the program. The maximum length of a numeric
string variable is 22 including the decimal point and minus
sign.

Examples:

RATE FORM "6.5"
AMT FORM 6.2

ZERO FORM 1
PI FORM "3.14159"

If the numeric variable is defined with a quoted item,
the same number of character positions are reserved in
memory as are in the number between the quotation marks and
the variable is initialized to the value given. In the above

example RATE is dimensioned to a number with one place to
the left and one place to the right of the decimal point,

and initialized to a value of 6.5.

If the numeric variable is defined without quotes then
the numbers that appear to the right and left of the decimal
point specify how many positions to the right and left of
the decimal point are reserved in memory. In the above
example AMT reserves space in memory for a number with six
places to the left of the decimal point and two places to
the right of the decimal point and initializes the number to
2ero.

3.1.2 DIM (1)(2)(3)(4)(5)

DIM defines a character string variable, determines

its physical length in memory, and initializes its logical
length and formpointer to zero. The DIM instruction must be

used with a 1label which is used as the variable name
throughout the program. The maximum length of a character

string variable is 127.
Examples:

REFLBL DIM 60
XCODE DIM 6
MAXLEN DIM 127

3.1.3 INIT - (1)(2)(3)(4)(5)

The 1INIT instruction is the same as the DIM
instruction except that the initial value of the character
string is established. This value may be initialized by

either quoted strings or numerics for the old tape format
interpreters. However in all the new tape format

interpreters except DATABUS 3, only quoted strings are
allowed to initialize strings. This is to insure that only

leqal printing characters will appear on the tape. The INIT
instruction establishes physical and 1logical lengths that

are equal, and initializes the formpointer to one.
Examples:

HDING INIT "REORDER FORM"
DSFRM INIT “"NEXT ENTRY PLEASE"*,0101,10,015

The example HDING would be allowed in either old 05
new tape format interpreters. But the example DSFRM woul

not be allowed in all the new tape format interpreters since
the numerics 0101, 10, and 015 are included.

3.1.4 Common Data Areas (1)Y(2)(3)(4)(5)

Since DATABUS has the provision to chain programs so
that one program can cause another to be loaded and run, it
is desirable to be able to carry common data variables from
one program to the next. The procedure for doing this is as
follows:

a. Identify those variables to be used in successive
programs and in each program define them in exactly

the same order and size and at begippning of each
program. This is to cause each common variable to

occupy the same locations in each program.

10

b. For the first program to use the variables, define
them in the normal way.

c. For all succeeding programs place an asterisk in
each FORM, DIM, or INIT statement as illustrated
below to prevent those variables from being
initialized when the program is loaded into memory-.

Great care must be used when incorporating the feature
intc a program. An error in programming can produce strange

results if a common variable is misaligned with respect to
the variable in a previous program.

Example:

MIKE FORM *4.2
JOE DIM *20
BOB INIT *“THIS STRING WON'T BE LOADED"

3.1.5 LENGTH (4) (5)

The LENGTH instruction defines the machine size to the
compiler so that the user program may be tested for OVERFLOW

in the machine size specified. A number must follow the
LENGTH instruction. This number may be a 4, 6, 8, 12, or 16

corresponding to the memory size of the Datapoint 2200 being
used. The LENGTH instruction must appear with the

directives in a user program before the first executable
instruction. This command is only available in Databus 4

and 5. If no length is specified in Databus 4, a 4K machine
is assumed. In Databus 5, an 8K machine is assumed.

3.1.6 LINE CONTINUATION (2)(3)(4)(5)

The KEYIN, DISPLAY, PRINT, READ, WRITE, LOAD, STORE,
and BRANCH instructions allow statements to be continued
from one line to the next.

These instruction statements may be continued to the
next line if a colon (:) is the terminating character of the

instruction. The colon replaces the comma separating the
last entry of the first line from the first entry on the

second line. The first entry of the second 1line should
begin in the instruction field. Examples of each are given
in the instruction section.

11

3.2 CONTROL INSTRUCTIONS
3.2.1 GOTO (1)(2)(3)(4)(5)

The GOTO instruction transfers control to the program
statement indicated by the label following the instruction:

GOTO CALC

causes control to be transferred to the instruction labeled
CALC.

The GOTO instruction may be conditional, however. and
the transfer of control occurs only if a specified condition

is met. Seven possible conditions can be specified and are
OVER, LESS, EQUAL, ZERO, EOS, TIME, and PARITY. The

conditions result from previously executed instructions and
reference should be made to the discussion on the various

operations for their meaning (EQUAL and Z2ERO are two
different names for the same flag).

In the example:
GOTO CALC IF OVER

control is transferred to the instruction labeled CALC if an
overflow occurred with the 1last arithmetic operation,

otherwise, the next instruction following the GOTO is
executed.

The sense of the condition can be reversed as follows:
GOTO CALIC IF NOT OVER

meaning control is transferred only if overflow did not
occur.

3.2.2 caALL (1)(2)(3)(4)(5)

The CALL instruction is very similar to the GOTO
instruction except that when a RETURN instruction is
encountered after a transfer, control is restored to the
next instruction following the CALL instruction. CALL
instructions can be nested up to eight deep. That is, up to
eight CALL instructions may be executed before a RETURN
instruction is executed. Being able to call subroutines
eliminates the need to repeat frequently used groups of
statements, and may be made conditional as discussed in the

GOTO instruction.

12

Examples:

CALL FORMAT
CALL XCOMP IF LESS

3.2.3 RETURN (1)(2)(3)(4)(5)

The RETURN instruction is used to transfer control to

the location indicated by the top address on the subroutine
call stack. This instruction has no operand field but may
be conditional.

Examples:

RETURN
RETURN IF EQUAL

3.2.4 sTOP (1)(2)(3)(4)(5)

The STOP instruction causes the program to terminate

and return to the MASTER Program. If either tape deck is in
write mode, that deck will automatically write an

end-of-file mark before the program terminates.

The STOP instruction may be conditional as discussed
under the GOTO instruction.

Examples:

STOP
STOP IF OVER

3.2.5 CHAIN (1)(2)(3)(4)(5)

The CHAIN instruction transfers control back to the
operating system for the purpose of fetching and running
another program on the operating system tape. There are two
versions of the CHAIN command in CTOS Databus.

In Databus 1,2, and 3 the interpreter is cataloged on
a CTOS tape. Therefore, chaining may be done by program
name. The character string in the referenced variable is
the name that appears in the CTOS catalog for the desired
program. Any characters after the sixth will be ignored and
blanks will be appended if less than six characters are in
the variable. Note that the name used starts at the

formpointer, so if in the following example NXTPGM ‘s
formpointer was 4, the CHAIN command would try to 1load the

program named "ROL%.

13

Example:

NXTPGM INIT "PAYROL"™

CHAIN NXTPGM
causes the program PAYROL to be loaded into memory and run.

In Databus 4 and 5, the interpreter is a LGO system,

and the CTOS catalog is not on the system tape. Therefore,
program chaining must be done by program file number. The

character string in the referenced variable is the file
number of the desired program. Only the first character of

the string is used to determine a program number, and this
number must be between 0 and 7 inclusive.

Example:

NXTPGM INIT "“3*
”

CHAIN NXTPGM

causes file 3 on the interpretive tape to be loaded into
memory and run.

If the specified program is not on the interpretive
system tape or if the program did not load successfully, the
chain failure trap CFAIL will occur.

32.6 TRAP (1)(2)(3)(4)(5)

TRAP is a unique instruction because it does not take
action at the time it is executed in the program but
specifies that a transfer of control should occur later if a
specified event occurs. For example:

TRAP EMSG IF EOF2

specifies that control should be transferred to EMSG if an
end-of-file mark is encountered on cassette deck two (front
deck).

The transfer that occurs on all events except RING is
like the GOTO instruction. On RING the transfer is 1like a

CALL instruction, so that when a RETURN is executed after
the transfer occurs, control is restored to the next

instruction following the instruction executed when the
ringing was detected. :

14

The events that may be specified are:

EOF (n) - End-of-file mark on indicated device

EOT (n) End-of-tape mark on indicated device
FORM(n) Data of wrong type on indicated device -
0l1d tape format

Read fajilure on indicated device -

New tape format

RFAIL(n)

1,2,3:4

cassette deck 1

cassette deck 2

mag tape unit (adr = 264)
mag tape unit (adr = 113)

oWl
W Hann

CFAIL Specified program not in catalog on

chain instruction
RING - A ring detect for communications

On all events except RING, if the specified event
occurs, but the trap is not set, the program will abort with

the appropriate error message. In the case of RING, all
ringing detected will be ignored if the trap is not set.

The ring trap is cleared after a transfer of control
has been made.

3.2.7 TRAPCLR (3)

The TRAPCLR instruction clears the specified trap, so

that a transfer of control will not occur should the
specified event occur.

All events specified in the TRAP instruction

discussion may be cleared by the TRAPCLR instruction. For
example:

RNG TRAPCLR RING

specifies that if ringing is detected no transfer of control
will occur.

3.2.8 BRANCH (1) (2)(3)(4)(5)

The BRANCH instruction transfers control to a
statement specified by an index. In the Databus
Interpreters which have numeric variables the index is a
numeric variable. 1In the Databus Interpreters which do not
have numeric variables, the numeric indexes, 1I0-17, which
have been set up in the Interpreters, may be used.

15

For example:
BRANCH N OF START,CALC,POINT

causes control to be transferred to the label in the 1label

list pointed to by the numeric variable index N. (i.e. START
if N=1, CALC if N=2, and POINT if N=3).

BRANCH Il OF LIST,SUM,ENTER

causes control to be transferred to the label in the 1label

list pointed to by the numeric index Il. (i.e. LIST if Il=1,
SUM if Il=2, ENTER if Il1=3). The index used may be any of

the eight indexes 10 through I7.

If the index is neqative, zero, or larger than the
number of variables in the list, control continues with the

following statement. Note that the numeric variable index
is rounded to the nearest integer before it is used.

The BRANCH instruction statement may be continued to
the next line if a colon (:) is the terminating character of

the instruction. The colon replaces the comma separating
the last entry of the first line from the first entry on the

second line. The first entry of the second 1line should
begin in the instruction field.

Example:

LABEL BRANCH N OF LOOP,START,READ,WRITE:
PRNT,END
BRANCH I3 OF CONF,BUFF,DUMP,ROLL, NAME:
SCAN,EXIT

3.2.9 ACALL (2)(5)

The Assembly Language Call Instruction allows the user

to call assembly lanqguage subprograms to be executed outside
of the interpreter. The assembly language programs should

not overlay any of the interpreter or the Databus user area
which calls it, unless the program reloads the interpreter

or user program before returning, in which case the user
program should be restarted.

Example:
ACALL 010000
calls a subprogram starting at location 10000 octal. The

location to be called may be decimal or octal, but must be a

number. The 1last statement in the subprogram executed
" should be a RET to return to the interpreter to resume

execution of the Databus program. Only one entry in the

16

stack must be preserved by the assembly subprogram, and this
should be at the top of the stack upon return, i.e. no calls
should be made within the subprogram without corresponding
returns. If the stack is destroyed, however, the user may
resume by jumping to the Databus Entry Point for the
interpreter containing this instruction (03500 in Databus 2,
01400 in Databus 5).

There are two ways to 1load these subprograms into
memory. One is to have all the subprograms on one or more

- LOAD & GO tapes and load them into memory before loading the
LOAD & GO Databus Interpretive Tape.

The second method is to use the Databus CHAIN
instruction. With this method, the first instruction of
every program chained to must be a jump to the assembly
subprogram entry point of the Interpreter (i.e., JMP 03500
in Databus 2, JMP 01400 in Databus 5). Jumping back to the
Interpreter will cause execution of the next instruction
after the chain. Using this method, all subprograms are
cataloged on the Interpretive System tape and may be loaded

in by the Databus user program.

ASSEMBLY PROGRAM FOR DATABUS CALL

SET 016000
SUBR JMP 03500 (01400) RETURN TO DATABUS INTERPRETER

ENTRY BEEP ASSEMBLY SUBPROGRAM
HL MESG
LD 40
LE 11
CALL DSPS$
RET
DSPS EQU 016370 (05337)
MESG DC "ACALL TEST MESSAGE’,0203
END SUBR

The above subprogram ENTRY would be called by ACALL 016003.
The locations given are for Databus 2, those in parentheses
are for Databus 5.

17

3.3 CHARACTER STRING HANDLING INSTRUCTIONS

Tach strinag instruction, except LOAD and STORE,

requires either one or two character string variable names
following the instruction. (Note that the MOVE instruction

is capable of moving strings to numbers, numbers to strings,
numbers to numbers, strings to strings, indexes to strings,

and strings to indexes. See sections 3.3.4, 3.4.5, and
3.5.4 for all descriptions of the MOVE instruction. In the

following sections, the first variable will be referred to
as the source string and the second variable will be

referred to as the destination string.

3.3.1 CMATCH (2)(3)(4)(5)

CHIATCH compares two characters, one taken from each of
the source and destination operands. There are two versions
of the CMATCH command in CTOS Databus.

In the Databus 2 and 3 CMATCH 1instruction, the
characters to be compared may be from under the formpointer
of a string variable, a quoted alphanumeric character, or a

number. This number may be octal or decimal but it must
have a value between 0 and 127 decimal.

An EOS condition occurs if the character is taken from
a string which has a formpointer of zero, and no other
conditions are set. Otherwise, the EQUAL and LESS conditions
are set appropriately. The LESS condition is set if the

second strina character 1is 1less than the first string
character.

Examples:

CMATCH XDATA TO YDATA
CMATCH Y.,X

CMATCH "A",DOG

CMATCH DOG TO "B"

CMATCH CAT, 0101

In the Databus 4 and 5 CMATCH, the first operand may be
quoted alphanumeric or a numeric value less than 256. The

second operand must be a string variable. The third operand
must be a number. This number is used as the formpointer of
the second string variable. The character under the
formpointer of the second string is compared to the first

operand character or value. If there is no third operand,
the formpointer is assumed to be one.

The EOS condition is set if the destination strina is
null or if the formpointer specified is qreater than the

logical lenath of the strina, and no other conditions are
set. Otherwise, the EQUAL and LESS conditions are set

18

appropriately.
Examples:

CMATCH “B“ TO XDATA,3
CMATCH 0105, YDATA,15
CMATCH "C",STRING

3.3.2 CHMOVE (2)(3)

CMOVE moves a character from the source operand to
under the formpointer in the destination string. The
character from the source operand may be a quoted
alphanumeric, a number, or the character from wunder the
formpointer of a string variable. 1If either operand has a

formpointer of zero, an EOS condition and no transferral
occurs.

Examples:

CMOVE XDATA, YDATA
CMOVE "A" TO CAT
CMOVE X,Y

CMOVE 0101 TO STRING

3.3.3 MATCH (2)(3)(4)

MATCH compares two character strings starting at the
formpointer of each and stopping when the end of either
string is reached. If either formpointer is zero, the MATCH
operation will result in only Cclearing the LESS and EQUAL
flags and setting the EOS flag. Otherwise, the "length” of
each string is calculated to be LENGTH~-FORMPOINTER+1 and the
LESS flag is set if the destination string length is 1less

than that of the source string. The two strings are then
compared on a character-for-character basis for the number

of characters equal to the lesser of the two lengths. If all
the characters match, the EQUAL flag is set. If they do not
match, the LESS flag’s meaning is changed to indicate
whether the numeric value of the destination character (in

the character pair) is less than the numeric value of the
source character (LESS flag set) or vice versa (LESS flag

reset). Some examples and their results follow:

Source Destination Resylt

ABCDE ABCD EQUAL, LESS

ABC z NOT EQUAL,NOT LESS
222 AAA LESS,NOT EQUAL

ABC ABC EQUAL,NOT LESS

ABCD ABCDE EQUAL, NOT LESS

19

Examples:

MATCH A TO B
MATCH STR1,STR2

3.3.4 MOVE (2)(3)(S)

MOVE transfers the contents of the source string,
starting from under the formpointer, into the destination
strings Transfer into the destination string starts at the

first physical character and when transfer is complete, the
formpointer is set to one and the logical length points to
the last character moved. The EOS flag is set if the ETX in
the destination string would have been overstored and

transfer stops with the character that would have overstored
the ETX.

The MOVE instruction can also move character strings to
‘numeric strings and vice versa. (The movement of numeric
strings to numeric strings is discussed in section 3.4.5.) A
character string will be moved to a numeric string only if
the character string is of valid numeric format (only
digits, spaces, a leading minus sign, and one decimal point
allowed). Otherwise, the numeric string is set to zero.
Note that only the part of the character string starting

with the formpointer is considered in the validity check and
transferred if the string is of valid numeric format. The

number in the character string will be reformatted to
conform to the format of the numeric string. The TYPE
instruction (see Section 3.3.10) is available to allow
checking the character string for valid numeric format
before using the MOVE instruction. When a numeric string is
moved to a character string, all characters of the numeric
item (unless the ETX would be overstored) are transferred
starting with the first physical character in the
destination string. The formpointer of the destination
string is set to one and the logical length is set to point
to the last character transferred.

Examples:

MOVE STRING TO STRING

MOVE A,B |
MOVE STRING TO NUMBER
MOVE NUMBER,STRING

Since Databus 3 has no facility for handling numeric
variables, they allow moving strings to strings, strings to
numeric indexes, and vice versa (see Section 3.5.4 for the
details). This makes it possible for the Interpreters which
have these instructions to PRINT, DISPLAY, and WRITE index
values, as well as initialize indexes to values input from
the keyboard or read from tape.

20

3.3.5 APPEND (2)(3)

APPEND appends the source string to the destination
stringe The characters appended are those from under the

formpointer through under the logical length pointer of the
source string. The characters are appended to the

destination string starting after the formpointed

in the destination string. The source string pointers
remain unchanged, but the destination string pointers both
point to the last character transferred. The EOS condition

will be set if the new string will not fit physically into
the destination string, but all characters that will fit

will be transferred.
Examples:

APPEND SOURCE TO DEST
APPEND NAME,BUFF

3.3.6 RESET (2)(3)

There are two versions of the RESET command in CTOS

Databus. One version works with version 3 interpreters; the
other works with version 4 interpreters.

Version 3 Interpreters:

RESET changes the value of the formpointer of the
source string to the value indicated by the second operand.
If no second operand is given, the formpointer will be reset
to one. The second operand must be a positive number less
than 128. The EOS condition will be set and no change will
occur if the requested position is greater than the string’s
logical length.

Version 4 Interpreters:

RESET changes the value of the formpointer of the
source string to the value indicated by the second operand.
If no second operand is given, the formpointer will be reset
to one. The second operand may be a quoted character, in
which case the ASCII value minus 32 (space gives zero, !
one, " two, etc.) will be wused for the value of the
formpocinter of the source string. The second operand may
also be a character string, in which case the ASCII value
minus 32 of the character under the formpointer of that
string will be used for the value of the formpointer of the
source string. The second operand may also be a numeric
string or a number, in which case the value of the number
will be used for the formpointer of the source string.

21

RESET also has the capability of extending the 1logical
length of the first operand. If the formpointer value
specified is past the logical length of the first operand,
the 1logical 1length will be extended until it will

accommodate the formpointer value. If this would cause the
logical length to be past the physical end of the string,

the logical 1length and formpointer will both be 1left
pointing to the last physical character in the string. This
feature is useful in extracting and inserting information
within a large string. The EOS condition will be set if a
change in the logical length of the first operand occurs.

Examples:

RESET XDATA TO 5
RESET Y

RESET Z2 TO NUMBER
RESET Z TO STRING

Note that:the RESET instruction is very useful in code
conversions and hashing of character string values as well
as large string manipulation.

3.3.7 BUMP , (2)(3)

There are two versions of the BUMP command in CTOS

Databus. One version works with version 3 interpreters; the
other works with version 4 interpreters.

Version 3 Interpreters:

BUMP increments the formpointer if the result will be
within the string (between 1 and the 1logical length). An
EOS condition will occur if the formpointer is equal to or
greater than the length and it will not be incremented.

Version 4 Interpreters:

BUMP increments or decrements the formpointer 1if the
result will be within the string (between 1 and the 1logical

length). 1f no parameter is supplied, BUMP increments the
formpointer by one. However, a positive or negative literal

value may be supplied to cause the formpointer to be moved
in either direction by any amount. An EOS condition will be
set and no change in the formpointer occurs if it would be
less than one or greater than the logical length after the
movement had occurred.

Examples:

BUMP CAT
BUMP CAT BY 2
BUMP CAT,-1

22

3.3.8 ENDSET (2)(3)

ENDSET causes the operand’s formpointer to point where
its logical length points.

Example:
ENDSET PNAME
3.3.9 LENSET (2)

The LENSET ‘command is implemented in Version 4
Interpreters only. LENSET causes the operand’s logical
length to point where its formpointer points.

Example:
LENSET ONAME
3.3.10 TYPE (2)
TYPE sets the EQUAL and ZERO condition if the string is

of valid numeric format (only 1leading minus, one decimal
point, and digits or spaces).

Example:
TYPE ALPHA
3.3.11 EXTEND | (2)(3)

EXTEND increments the formpointer, stores a space in
the position under the new formpointer, and sets the logical
length to point where the new formpointer points if the new
logical length would not point to the ETX at the end of the

character string. Otherwise, the EOS flag is set and no
other action is taken.
Example:
EXTEND BUFF
3.3.12 CLEAR ‘ (2)(3)

CLEAR causes the operand’s logical length and
formpointer to be zero.

Example:

CLEAR NBUFF

23

3.3.13 RANGE | (4)(5)

The RANGE instruction sets the EQUAL condition code if

the operand one string characters are within the 1limits
specified by the second and third operands. Operands two

and three can be quoted alphanumerics or numeric values less
than 256. The RANGE instruction compares each character of

the string variable to see that each 1is greater than or
equal to operand two and less than or equal to operand

three. This instruction is particularly useful to determine
whether a string is alphabetic or numeric.

Examples:

RANGE XDATA,"“0",%9"
RANGE YDATA,"A","Z"
RANGE YDATA, 0101,0132

3.3.14 LOAD ” (2)(3)

LOAD performs a MOVE from the character string pointed
to by the index numeric operand, the second operand, to the

first character string specified. In the Databus
Interpreters which have numeric string variables, the index

is a numeric string variable. 1In the Databus Interpreters
which do not have numeric string variables, the numeric

indexes 10 through 17, which have been set up 1in these
interpreters may be used. The instruction has no effect if

the index is negative, zero, or greater than the number of
items in the list. Note, that the index is truncated to no
decimal places before it is used (e.g. 1l.7=1).
For example:

LOAD AVAR FROM N OF NAME,TITLE,HEDING
causes the contents of one of the variables in the 1list,
based on the value of the numeric variable N, to be moved
into the first operand AVAR.

LOAD ANS FROM 12 OF VENDOR,ACCT,QUAN, ITEM

causes the contents of one of the variables in the list,

based on the value of the numeric index 12, to be moved to
the first operand ANS.

24

3.3.15 STORE (2)(3)

STORE performs a MOVE from the first character string
specified to a character string in a list specified by an

index numeric operand given as the second operand. In the
Databus Interpreters which have numeric string variables.
the index 1is a numeric variable. In the Databus

Interpreters which do not have numeric string variables, the
numeric indexes I0 through I7, which have been set up in
these interpreters may be used.

The instruction has no effect if the index is negative,
zero, or greater than the number of items in the list. Note

that the index is truncated to no decimal places before it
iS Used (eogo 1.731).

For example:
STORE Y INTO NUM OF ITEM,ENTRY,ALINK,LIST

causes the contents of the first operand Y to be moved 1into

one of the variables in the list, based on the value of the
numeric variable NUM.

STORE VAR INTO I3 OF STR1,STR2,STR3,STR4

causes the contents of the first operand VAR to be moved

into one of the variables in the list, based on the value of
the numeric index I13.

The LOAD and STORE instruction statements may be continued
to the next line if a colon (:) is the terminating character
of the instruction. The colon replaces the comma separating
the last entry of the first line from the first entry of the
second line. The first entry of the second line should begin
in the instruction field.

Examples:

LABEL LOAD SYMBOL FROM N OF VAR,CONST,DEC:
CNT,FLAG,LIST

NEXT STORE NAME INTO IO OF A,B,C,D.,E,F.G:
Hl IlJl K' L'M

25

3.4 Numeric String Variable Arithmetic Instructions

All of the numeric variable arithmetic instructions

have certain characteristics in common. Except for LOAD and
STORE, each numeric variable arithmetic instruction 1is

always followed by two numeric string variable names. The
contents of the first variable is never modified and, except

in the COMPARE instruction, the contents of the second
variable always contains the result of the operation.

For example in:

ADD XAMT TO YAMT

the content of XAMT is not changed, but YAMT contains the
sum of XAMT and YAMT after the instruction is executed.

Following each numeric string variable arithmetic
instruction, the condition flags, OVER, LESS, and ZERO

(EQUAL) are set to indicate the results of the operation.
OVER indicates that the result of an operation is too large

to fit in the space allocated for the variable (a result is
still given with truncation to the left and rounding to the

right, however). LESS indicates that the content of the
second variable is negative following the execution of the

instruction (or would have been in the case of COMPARE).
ZERO (EQUAL) indicates that the value of the second variable

is zero following the execution of the instruction.

Whenever overflow occurs, the higher valued digits that

do not fit the variable are lost. For example, a variable
is defined:

NBR42 FORM 2.2

and a result of 4234.67 is generated for that variable,
NBR42 will contain only 34.67.

Whenever an operation produces lower order digits than
a variable was defined for, the result is rounded up. A

variable with the FORM 3.1 would contain:

46.2 for 46.213

812.5 for 812.483
3.7 for 3.666
3.9 for 3.850

Note that if an OVER occurs during an ADD, SUB, or COMPARE

of two strings of different physical lengths, the result and
the LESS condition flag may not be correct.

26

3.4.1 ADD (1)(2)

ADD causes the content of variable one tc be added to
the content of variable two.

Examples:

ADD X TO Y
ADD DOG,CAT

3.4.2 suB (1)(2)

SUB causes the content of variable one to be subtracted
from the content of variable two.

Examples:

SUB RX350 FROM TOTAL
SUB Z,TOTAL

3.4.3 MULT ' (1)(2)

MULT causes the content of variable ¢two to be
multiplied by the content of variable one.

Examples:

MULT DICK BY HARRY
MULT W,2

3.4.4 DIV (1)(2)

DIV causes the content of variable two to be divided by
the content of variable one. The number of decimal places
in the result is equal to the number of decimal places in
variable two minus the number of decimal places in variable
one. And the number of places to the left of the decimal

point in the result is equal to the number of places to the
left of the decimal point in the variable two minus the

number of places to the 1left of the decimal point in
variable one. If the number is negative, it is assumed to
be zero. For example, if a number that is defined by FORM
3.2 is divided into a number defined as FORM 6.5, the result

will be a number of FORM 3.3. Therefore, a user should be
yery careful in defining numeric variables to be used in
divide operations.

Examples:

DIV SFACT INTO XRSLT
DIV X3,HOURS

27

3.4.5 MOVE (1)(2)

MOVE causes the content of variable one to replace the

- content of variable two.

Examples:

MOVE FIRST TO SECOND
MOVE A,B

3.4.6 COMPARE (1)(2)

COMPARE does not change the content of either variable

but sets the condition flags exactly as if a SUB instruction
had occurred.

Examples:

COMPARE XFRM TO YFRM
COMPARE RING,DING

Care should be used in defining variables to be
compared. Comparison of variables in which the 1length of
the first variable is longer than the length of the second
variable results in an overflow condition. The OVER flag |is

set, and the EQUAL or ZERO flag is set to show the result of
the comparison. However, the LESS flag is not set in this

case.
3.4.7 LOAD (1)(2)

The LOAD instruction for numeric s8string variables

selects an operand out of the 1list based on the index
operand. It then performs a MOVE operation from the

contents of the selected variable into the first operand. In
the Databus Interpreters which have numeric variables the

index is a numeric variable. In the Databus Interpreters
which do not have numeric variables, the numeric indexes 1I0
through 17, which have been set up in the Interpreters may
be used. If the index is negative, zero, or dgreater than

the number of items in the list, then the instruction has no
effect, note that the index is rounded to the nearest
integer before it is used (e.g. l.7=1).
For example:
LOAD CAT FROM N OF FACT,MULT, SPACE

causes the contents of one of the variables in the 1list,

based on the value of the numeric variable N to be moved
into the first operand CAT.

28

LOAD SUM FROM I6 OF TOTAL,SUBTOT,PROD,DIFF

causes the contents of one of the variables in the 1list,
based on the value of the numeric index I6, to be moved to
the first operand SUM.

3.4.8 STORE (1)(2)

The STORE instruction for numeric variables selects an
operand out of the list based on the index operand. It then
performs . a MOVE operation from the contents of the first
operand into the selected variable. In the Databus
Interpreters which have numeric variables, the index is a

numeric variable. In the Databus Interpreters which do not
have numeric variables, the numeric indexes, 10 through 17,

which have been set up in these Interpreters may be used.
if the index is negative, zero, or greater than the number

of items in the list, the instruction has no effect. Note
that the index is rounded to the nearest integer before it

is used (e.g. 1.7 =1).
For example:

STORE X INTO NUM OF VAL, SUB,TOT

causes the contents of the first operand X to be moved into
one of the variables in the list, based on the value of the
numeric variable NUM. -

STORE RES INTO IS5 OF DIV,MUL,ADD,SUB

causes the contents of the first operand RES to be moved

into one of the variables in the list, based on the value of
the numeric index I5.

The LOAD and STORE instruction statements may be
continued to the next line if a colon (:) is the terminating

character of the instruction. The colon replaces the comma
separating the last entry of the first line from +the first

entry on the second line. The first entry of the second line
should begin in the instruction field.

Examples:

LABEL LOAD NUMBER FROM N OF N1,N2,N3,N4,N5:
N6,N7,N8,N9

ENTRY STORE COUNT INTO I2 OF TIME,RATE,DIST,SPG:
COSsT,TOT,SUM

29

3.5 Numeric Index Arithmetic Instructions

In the Databus Interpreters which do not have numeric
variables, some numeric indexes have been set up. These

indexes do not need to be set up in the user’s program.
There are eight indexes which are referred to as I0 through

I7. They are initialized to zero at the beginning of every
program.

These indexes have been set up to be used as counters.
They may be any integer value between 0 and 127 decimal.

Each numeric index arithmetic instruction is followed
by two operands. The first may be an index or a number.
This number may be an octal or decimal (octal if it |is
preceded by a 0 (e.ge., 017) number between 0 and 127

decimal. The second operand must be one of the indexes.
The content of the first operand is never modified, and

except in the COMPARE instruction, the contents of the
second variable always contain the result of the operation.

For example in:

ADD I1 TO I3

the content of Il is not changed, but I3 contains the sum of
Il and 13 after the instruction is executed.

Following each arithmetic instruction: three “flags"”
are set within the processor to indicate the results of the

operation. These flags are LESS, EQUAL, and ZERO. LE$S
indicates that the content of the second variable is

negative following the execution of the instruction. EQUAL
and ZERO indicate that the value of the second variable is

zero following the execution of the instruction.

The preposition connecting the two variables can be
replaced with a comma as a shorter means of writing the
statement.

For example:

SUB I1 FROM I3

and
SUB I1,1I3

are equivalent. Note that a space cannot separate the first
variable and the comma or an E-flag will occur during

compilation.

30

3.5.1 ADD (3)(4)(5)

ADD causes the content of operand one to be added to
the content of operand two.

Examples:

ADD I1,15
ADD 1 TO I1
ADD 1,13

3.5.2 SuB (3)(4)(5)

SUB causes the content of operand one to be subtracted
from the content of operand two.

Examples:

SUB Il FROM I2
SuB 1,17
SUB 10 FROM I3

3.5.3 COMPARE (3)(4)(5)

COMPARE does not change the content of either operand

but sets the condition flags exactly as if a SUB instruction
had occurred.

Examples:

COMPARE I3 TO I4
COMPARE 10,I4
COMPARE 35 TO Il

3.5.4 MOVE (3)(5)

The Index MOVE instruction allows the user to move

indexes to strings and strings to indexes. This makes it
possible for the interpreters which have this instruction to

PRINT, DISPLAY, and WRITE index values, as well as
initialize indexes to values input from the keyboard and
read from tape.

Examples:
MOVE I1 TO STRING

moves the index Il to the string variable string. The index
move to a string sets the loaical lenagth of the string to 3

if the physical length is greater than or equal to 3. If
the physical length is less than 3, as much of the index

value is moved as the string will hold starting at the riaht
most digit of the index. The formpointer is set to 1. If

31

the value of the index is 3, a move to a string of length 3

or more will result in the string 003. The resulting string
value will always be decimal.

MOVE STRING,I3

moves the string variable STRING to the index 1I3. The
string value is assumed to be decimal. The string value to
be moved should not be more than 127 decimal.

Note that the name of any variable that is to be used
in an index move instruction should not begin with the
letter I, so as not to be confused with the indexes I0-I7 by

the compiler.

32

3.6 KEYBOARD,C.R.T.,PRINTER INPUT/OUTPUT Instructions

These statements move data between the program variables and
the keyboard, screen., or printer. They each allow a list of
variables to follow the operation mneumonic. This list may
be continued on more than one line with the use of the
colon. The I/0 1list may contain some special control
information besides the names of the variables to be dealt
with. DATABUS has no formatting information other than the
list controls and that which is implied by the format of the

variables. The number of characters transferred is always
equal to the number of characters physically allocated for

the string, therefore, allowing the programmer to set up his
formatting the way he dimensions his data variables.

3.6.1 KEYIN (1)(2)(3)(4)(5)

KEYIN causes data to be entered into either character
or numeric strings from the keyboard. A single KEYIN
instruction may contain many variable names and list control
items. When characters are being accepted from the
keyboard, the flashing cursor is on. At all other times,
the cursor is off.

When a numeric variable is encountered in a KEYIN
statement, only an item of a format acceptable to the
variable (not too many digits to the left or right of the
decimal point and noc more than one sign or decimal point) is

accepted. If a character is struck that is not acceptable
to the format of the numeric variable, the character 1is

ignored and the Datapoint 2200 signals a “beep". Note that
if fewer than the allowable number of digits to the left or
right of the decimal point are entered, the number entered
will be reformatted to match the format of the variable

being stored into. When the ENTER key is struck, the next
item in the instruction list is processed.

When a character string variable is encountered, the
system accepts any set of ASCII characters up to the 1limit
of the physical length of the string. The formpointer of
the string variable is set to one, and characters are stored
consecutively starting at the physical beginning of the
string. When the ENTER key is struck, the logical length is

set to the last character entered, and the next item in the
keyin list is processed.

Other than variable names, the KEYIN instruction may
contain quoted items and list controls. Quoted items are
simply displayed as they are shown in the statement. The
list controls begin with an asterisk and allow such
functions as cursor positioning and screen erasure. The
*H<n> control causes the cursor to be positioned
horizontally to the position specified by n. The *V<n>

33

control causes the cursor to be positioned vertically to the
position specified by n. Note that these numbers are
literals. The horizontal position is restricted by the
interpreter to be from 1 to 80 and the vertical position is
restricted to be from 1 to 12. The *EF control erases the
screen from the current cursor position, the *EL control
erases the rest of the 1line from the current cursor

position, and the *R control causes the screen to be rolled
up one line.

The KEYIN and DISPLAY instructions in Version 4
Interpreters have been expanded to allow *C and *L 1list

controls. The *C control causes the cursor to be set to the
beginning of the current line, and the *L control causes the

cursor to be set to the following 1line in the current
horizontal position. The *H<n> and *V<n> controls have also
been changed so that the numbers specified by n may be
literals or numeric variables. Numbers outside of the

horizontal or vertical position ranges have the effective
value of 1.

Normally, the cursor is positioned to the start of the
next line at the termination of a KEYIN statement. However,
placement of a semicolon after the last item in the list
will cause this positioning to be suppressed, allowing the
line to be continued with the KEYIN or DISPLAY statement.
This feature is also true of the PRINT command.

Examples:

KEYIN *H1,*V1,*EF,"NAME: " ,NAME,*H35,*V2,"ACNT NR: “:
ACTNR, " ADDRESS: "“,STREET, *H10,*Vv3,CITY:
*HX,*V4,"2IP: *,ZIP;

While keying a given variable, the operator may strike
the BACKSPACE key and cause the last character entered to be
deleted. He may also strike the CANCEL key and cause all of

the characters entered for that variable to be deleted.
Whenever an input from the keyboard is expected, the cursor

flashes on and off. It remains off at all other times.

3.6.2 DISPLAY (1)(2)(3)(4)(5)

DISPLAY follows the same rules as the KEYIN except that
when a variable name is encountered in the 1list following
the instruction, the variable’s contents are displayed
instead of keyed in.

In the old tape format interpreters, DISPLAY beqins

displaying at the formpointed character of string variables
and continues through the logical lenqgth.

34

In the new tape format interpreters, character strings
are displayed starting with the first physical character and
continuing through the 1logical 1length. Spaces will Dbe
displayed for any character positions that exist between the

logical length and physical end of the string. Numeric
strings are always displayed in their entirety in both

interpreters.

Examples:

DISPLAY *H5,*V1,"RATE: “,RATE:
*H5,*V2,"AMOUNT: ", AMNT

3.6.3 PRINT (1)(2)(3)(4)(5)

The PRINT instruction causes the contents of variables
in the list to be printed in a fashion similar to the way
DISPLAY causes the contents of variables to be displayed.

The list controls are much the same as DISPLAY except that
cursor positioning cannot be used, column tabulation is

provided: *<n> causes tabulation to column <n> unless that
column has been passed (however, for Servo Printer backward

tabulation is allowed)., *F causes an advance to the top of
the next form, *L causes a line feed to be printed, and *C

causes a carriage return to be printed. The PRINT statement
may be continued on more than one line by use of the colon.

In the o0ld tape format interpreters, PRINT begins
printing at the formpointed character of string variables
and continues through the logical length of the string.

In the new tape format interpreters, PRINT beqgins
printing at the first character of the string and continues
through the physical end of the string. Blanks are printed
for all characters after the 1logical end of the string.
Numeric variables are printed in their entirety in both
interpreters.

Examples:

PRINT *20,"TRANSACTION SUMMARY",*C,*L:
PNAME, *C, *L,*10,RATE, *20,HOURS,*30:
AMNT, *L
3.6.4 BEEP ; (1)(2)(3)(4)(5)

The BEEP instruction causes the machine to produce an
audible tone.

Example:

BEEP

35

3.6.5 CLICK (1)(2)(3)(4)(5)

The CLICK instruction causes the machine to produce an
audible click.

Example:
CLICK

3.6.6 DSENSE (1)(2)(3)(4)(5)

The DSENSE instruction tests the DISPLAY key sense
switch. If the DISPLAY key has been depressed, then the
EQUAL condition flag is set. If the DISPLAY key is not
depressed then the EQUAL condition flag is reset.

Example:
DSENSE
3.6.7 KSENSE (1)(2)(3)(4)(5S)

The KSENSE instruction acts like DSENSE except that it
tests the KEYBOARD key sense switch.

Example:
KSENSE
3.7 Cassette Tape I/0 Instructions
3.7.1 }READ (1)(2)(3)(4)(5)

The READ command causes a record to be read from the
indicated tape deck and the data entered into the variables
appearing in the list following the READ instruction.

For 9ld tape format READ instructions the following is
true: As the data 1is entered into the variables, the
formpointer of each string variable is set to one and the
characters are stored consecutively in the strings starting
at the beginning of the strings The logical lenath is the
same as the physical length of the variable on the tape. 1If
the record contains more items than the list, the remaining
unused variables will be disregarded. If the 1list contains
more variables than were in the record, a format trap
occurs. If any variable from the record contains more
characters than the physical length of the 1list variable
will hold, a FORM trap is set. A FORM trap also occurs if
the data read in is of different type than the variables in
the list.

36

The new tape format records no longer contain the
length, formpointer, 0200, or ETX of variables. Only the
actual data characters are written. Since there are no
delimiters between variables, the entire physical length of
strings starting at the first character is written to tape.
Blanks are written for all characters after the logical end
of the string. When the record is read the data is entered
into the variables starting at the first position in the
string and continuing to the physical end. The formpointer
is set to one and the logical length is set to the length of
the string at the last non-blank character. If the record
contains more items or characters than were in the record,
the extra strings are blank filled, and the numbers are

zeroed. If the variables in the READ instruction are not
the same size as the variables in the WRITE instruction for

that record, some of the characters may be stored into the
wrong variables. However, this may be useful to reformat

variables when they are read.

The only error condition given in the new tape format
is a read failure trap, RFAIL. This will occur if the

record read is more than 249 data characters long, or if a
string is read into a numeric variable.

The number 1 or 2 must appear as the first item in the
READ instruction list to indicate which deck is to be read
(rear or front respectively).

Examples:

READ 1,A,B,TOTAL
READ 2,NAME,ADR,AIP

If a WRITE instruction has occurred to the indicated
deck without a WEOF instruction (the deck is in write mode).
the READ instruction will abort the program in the old tape
format interpreters. In the new tape format this 1is
allowed.

NOTE: It is not necessary to always read every variable
from a record. For example, records of five variables each
were written to tape using the following write instruction.
WRITE 1,NAME,COMPANY,ADDRESS,SSN,POSITION
Another program might use the same tape, but only need
the company name from each record. So this program could
use the following instruction.

READ 1, NAME,COMPANY

37

Every variable up to and including the variables
desired must be in the read statement in the order the

variables appear in the records on tape. Each read
instruction issued, advances the tape one record. To advance

the tape past a record, only the instruction

READ 1
or
READ 2

is needed. This is particularly useful for positioning a
tape to the end of file.

3.7.2 WRITE (1)(2)(3)(4)(5)

The WRITE instruction causes a record to be written to

the indicated deck. The record will contain the variables
indicated in the list following the WRITE instruction.

For old tape format tapes, the record may be any length
up to 240 characters. Each numeric variable will have a

length equal to its defined length plus 2 and each character
string will have a length equal to its logical length plus

3. WRITE begins writing at the formpointed character of
string variables and continues to the logical end of the

string. An attempt to write more than 240 characters will
abort the program.

For new tape format tapes, the record may be any length
up to 249 data characters. Since only the actual data

characters are written to tape, each numeric and character
string variable will have a length equal to its defined

physical length. WRITE begins writing at the first
character of string variables and continues to the physical

end of the string. Blanks are written for all characters
after the logical end of the string. Using this technique,

a WRITE statement will always write the same number of
characters for a variable, no matter what the logical length

of the string variable.

The number 1 or 2 must appear as the first item in the
WRITE instructionllist to 1indicate which deck is to be
written to (1 indicates the rear deck, 2 the front deck).

In the old tape format interpreters, once a WRITE

instruction is issued to a given deck, it is in write mode
and no other instructions can be issued to that deck except

WRITE and WEOF. Once WEOF is issued, it is in the read mode
and any instruction may be issued.

38

Examples:

WRITE 2,TIME, TOTAL, NAME
WRITE 1,FORM1,FORM2,FORM3

The READ and WRITE instruction statements may be
continued to the next line if a colon (:) is the terminating
character of the instruction. The colon replaces the comma
separating the last entry of the first line from the first

entry on the second line. The first entry of the second line
should begin in the instruction field.

Examples:

START READ 1,NAME, POSN,ADDR,SSN, INS:
CODE, ITEM, QUANT

WR WRITE 2,NAME,POSN,ADDR,SSN, INS:
CODE, ITEM, QUANT

3.7.3 REWIND (1)Y(2)(3)(4)(5)

The REWIND instruction list contains only a 1 or 2 to
indicate the rear or front deck respectively. If the rear
deck is indicated, the tape will slew to the beginning of
the file area following the program library on the rear
cassette. If the front deck is indicated, the cassette will
be high-speed rewound to the beginning of the tape and the
head positioned to the beginning of the first data record.

The REWIND instruction will abort the program if there

has been a WRITE instruction to the deck without a following
WEOF instruction.

NOTE

A PREPARE or REWIND instruction must be issued to deck
1 before any other tape instruction can be issued to
that deck. A REWIND instruction is not necessary for
deck 2, but is usually desirable. However, if two or
more programs are being chained, the user may wish to
have each new program continue writing to deck 2 where
the previous program left off. 1In this case a REWIND
instruction would not be desired for deck 2. Note,
however, that a WEOF must be issued before the chain is
performed in the o0ld tape format interpreters. This
will not result in an error in the new tape format
interpreters, but is usually desirable.

Example:

REWIND 1

39

3.7.4 BKSP (1)(2)(4)(5)

The BKSP instruction causes the indicated deck to

backspace one record. If the tape is at the beginning of
the file no backspace occurs and an EOF trap occurs.

A 1 or 2 must follow the BKSP instruction to indicate
the rear or front deck respectively.

If the indicated deck is in write mode, a BKSP will
cause the program to abort.

Example:
BKSP 2
3.7.5 PREPARE (1)(2)(3)(4)(5)

The PREPARE instruction list contains only a 1 or 2 to

indicate the rear or front deck respectively. If the rear
deck 1is indicated, the instruction performs the same
function as REWIND. If the front deck is indicated, the

cassette is rewound and a new beginning-of-file marker is
writtene.
Example:
PREPARE 2
3.7.6 WEOF (1)(2)(3)(4)(5)

The WEOF instruction causes an end-of-file mark to be
written on the indicated deck and causes that deck to be
taken out of write mode. The tape is left positioned before
the file marker.

A 1l or 2 must follow the WEOF instruction to indicate
the rear or front deck respectively.

Example:
WEOF 1
3.7.7 BSPR (3)
The BSPR instruction is the same as the BKSP
instruction. Databus 3 uses this command instead of BKSP to
differentiate the backspace record and backspace file

instructions.

Example:

BSPR 1

40

3.7.8 BSPF (3)

The BSPF instruction causes the indicated cassette deck
to backspace one file. Since only one file is allowed on a

DATABUS Cassette the BSPF instruction for cassette performs
the same function as the REWIND command (see Section 3.7.3).

A 1 or 2 mist follow the BSPF to indicate the rear or
front deck respectively.

In the o0ld tape format interpreters, if the indicated
deck is in write mode, a BSPF will <cause ¢the program to
abort.

Example:
BSPF 2
3.7.9 ADVR : (3)

The ADVR instruction causes the indicated deck to

advance the tape one record. If the tape is at the end of
the file no advance occurs and an EOF trap occurs.

A 1l or 2 must follow the ADVR instruction to indicate
the rear or front deck respectively. If the indicated deck
is in write mode, an ADVR will cause the program to abort.

Example:
ADVR 1
3.7.10 ADVF (3)

The ADVF instruction causes the indicated cassette deck
to advance the tape to the end of file. The tape is
positioned to the end of file 32 on the rear deck and file O
on the front deck.

A 1 or 2 must follow the ADVF instruction to indicate
the rear or front deck respectively.

If the indicated deck is in write mode an ADVF will
cause the program to abort.

Example:

ADVF 2

41

3.8 1Industry Compatible Magnetic Tape I/0 Instructions

Either 7-Track or 9-Track Tapes may now be written with
Databus 3. On 9-Track, either ASCII, EBCDIC, or BCD may be
used. On 7-Track, only BCD may be used. There are two
versions of the Databus 3 1Interpreter. One contains the

EBCDIC tables, the other contains the BCD tables. See
Section 7 for Tape formats.

The tape records differ from cassette records in that
only the actual data characters are written to tape. The
length, formpointer, and ETX (0203) which appear in cassette
records are not written in mag tape records. Since there
are no delimiters between string variables, the characters
from the formpointed character through the physical end of
each variable are written to tape. All characters after the
logical end are written as blanks. When the variables are
read back from tape, the length of each string is set to its
physical length, because the tape READ stores characters in
a variable starting at the beginning of the string and
continuing up to the physical end of the string.

The industry compatible magnetic tape files differ from
cassettes in that there may be many files on one tape. The

files are separated by a single EOF tape mark with two EOF
tape marks indicating the end of data on a tape.

3.8.1 READ (3)

The READ command causes a record to be read from the
indicated tape deck and the data entered into variables
appearing in the list following the READ instruction. As
the data is entered into the variables, the formpointer of
each string variable is set to one and the characters are

stored consecutively into the strings starting at the
beginning of the string. The length is set to the physical

length of the string.

If the record contains more items than the list, the
remaining unused variables will be disregarded. 1If the list

contains more variables than were in a record, an RFAIL trap
occurs. If the total number of characters in the record is

greater than the total number of characters that may be
stored in the string variables in the list, an RFAIL trap is
set. 1I1f the variables in the READ instruction for a record
are not the same size as the variables in the WRITE
instruction for that same record, some of the characters may
be stored into the wrong variables.

The number 3 or 4 must appear as the first item in a
tape READ instruction list to indicate which tape unit is to
be used. (3=adr 264, 4=adr 113) If only one tape is used in
a confiquration, 3 should be the correct tape address..

42

Examples:

READ 3, SUM, PROD,DIFF
READ 4,SSN,COMP, VAR1, VAR2

If a WRITE instruction has occurred to the indicated
deck without a WEOF instruction (the deck in write mode).,
the READ instruction will abort the proagram.

NOTE: It is not necessary to read every variable from a

record. For example, records of five variables each were
written to tape with the following instruction:

WRITE 3,NAME, COMPANY,ADDRESS,SSN,POSITN

Another program might use the same tape, but only need

the company name from each record. So this program could
use the following instruction:

READ 3, NAME, COMPANY

Every variable up to and including the variables
desired must be in the read statement in the order the
variables appear 1in the records on tape. Each read
instruction issued advances the tape one record.

3.8.2 WRITE (3)

The WRITE instruction causes a record to be written to
the indicated tape deck. The record will contain the
variables indicated in the 1list €following the WRITE
instruction. The record may be any 1length up to 1057
characters. The characters from the formpointed character
through the physical length {(up to the ETX (0203)) are
written to tape. An attempt to write more than 1057
characters will abort the program.

The number 3 or 4 must appear as the first item in the
WRITE instruction list to indicate which tape unit is to be
written to (3=adr 264, 4=adr 113). Users with only one tape

in their configuration should use 3 for the correct tape
address.

Once a WRITE instruction is issued to a given deck, it
is in write mode and no other instructions can be issued to
that deck except WRITE and WEOF. Once WEOF is issued, the

deck is in read mode and any instruction may be issued.
Examples:

WRITE 3,TIME,TOTAL,NAME
WRITE 4,CODE,INS,REF,MODEL,MAKE

43

The READ and WRITE instructions statements for magnetic
tape may be continued to the next line if a colon (:) is the

terminating character of the instruction. See cassette READ
and WRITE for examples.

3.8.3 REWIND (3)

The REWIND instruction list for tape contains a 3 or 4

to indicate which tape unit to address (3=adr 264, 4=adr
113). Once the correct unit is addressed, the tape 1is

rewound to the beginning. No positioning is necessary
because the first record on tape is data.

NOTE .

A PREPARE and REWIND instruction issued to the industry
compatible magnetic tape unit is usually desirable
before any other tape instruction is issued to that
deck. However, if two or more programs are being

chained, the user may wish to have each new program
continue writing to the tape where the previous program

left off. In this case, a REWIND would not be desired.
Note, however, that a WEOF must be issued before the

chain is performed.
Example:
REWIND 3
3.8.4 PREPARE (3)

The PREPARE instruction list for tape contains only a 3

or 4 to indicate which tape unit to _address (3=adr 264,
4=adr 113). Once the correct unit is addressed, the tape is

rewound and an end-of-file is written on the tape. The
end-of-file mark consists of two EOF tape marks. The tape
is then backspaced over the two file marks just written.
Example:
PREPARE 4
3.8.5 WEOF (3)
The WEOF'instruction causes two end-of-file tape marks

to be written to the tape. The tape is then backspaced over
the two file marks and left positioned before the first file

mark. The indicated tape unit is taken out of write mode.

44

A 3 or 4 must follow the WEOF instruction to indicate the
tape unit to be addressed (3=adr 264, 4=adr 113).

Example:

WEOF 3
3.8.6 BSPR (3)

The BSPR instruction causes the indicated tape unit to

backspace the tape one record. If the tape 1is at the
beginning of a file no backspace occurs and an EOF trap 1is

set. If the tape is at the beginning of tape no backspace
occurs and the EOT trap is set. If the backspace moves the

tape to the beginning of tape, the EOT trap also is set.

A 3 or 4 must follow the BSPR to indicate which tape
deck to address (3=adr 264, 4=adr 113).

If the indicated drive is in write mode, a BSPR will
cause the program to abort.

Example:
BSPR 3
3.8.7 BSPF (3)

The BSPF instruction causes the indicated tape unit to
backspace the tape one file. If the indicated drive is at
the beginning of tape, no backspace occurs, but no traps are

set. When the backspace does occur, the tape is left
positioned at the beginning of the previous file.

A 3 or 4 must follow the BSPF instruction to indicate
which tape unit is to be addressed (3=adr 264, 4=adr 113).

If the indicated drive is in write mode, a BSPF will
cause the program to abort.

Example:
BSPF 4
3.8.8 ADVR (3)

The ADVR instruction causes the indicated tape to
advance the tape one record. If the tape is at the end of a
file no advance occurs and an EOF trap is set. If the tape

is at the end of tape no advance occurs and the EOT trap is
set. If the advance moves the tape to the end of tape the

EOT trap also is set.

45

A 3 or 4 must follow the ADVR instruction to indicate
which tape unit to address (3=adr 264, 4=adr 113).

If the indicated deck is in write mode, an ADVR will
cause the program to abort.

Example:
ADVR 4
3.8.9 ADVF (3)

The ADVF instruction causes the indicated tape to
advance the tape one file. If the tape is at the end of the
last file no advance occurs and an EOF trap occurs. If the
tape is at the end of tape the EOT trap is set. If the
advance moves the tape to the end of tape the EOT trap also

is set. If the ADVF occurs the tape is left at the
beginning of the following file.

A 3 or 4 must follow the ADVF instruction to indicate
which tape deck to address (3=adr 264, 4=adr 113).

If the indicated deck is in write mode, an ADVF will
cause the program to aborte.

Example:
ADVF 3
3.8.10 ADVFW (3)

The ADVFW instruction causes the indicated tape deck to

advance the tape past the next tape mark so that a new file
may be written. The indicated deck is then put into write

mode. If the tape is at the end of tape, or if the advance
moves the tape to the end of tape an EOT trap occurs.

A 3 or 4 must follow the ADVFW instruction to indicate
which tape unit to address (3=adr 264, 4=adr 113).

If the indicated deck is in write mode, an ADVFW will
cause the program to abort.

Example:
ADVFW 4
3.8.11 PBOF (3)

The PBOF instruction causes the indicated deck to be

positioned to the beginning of the file in which the tape is
currently positioned.

46

A 3 or 4 must follow the PBOF instruction to indicate
which tape unit to address (3=addr 264, 4=adr 113).

If the indicated deck is in write mode, a PBOF will
cause the program to abort.

Example:
PBOF 3
3.8.12 PEOF (3)

The PEOF instruction causes the indicated drive to be

positioned to the end of the file in which the tape is
currently positioned.

A 3 or 4 must follow the PEOF instruction to indicate
which tape unit to address (3=adr 264, 4=adr 113).

If the indicated drive is in write mode, a PEOF will
cause the program to abort.

Example:
PEOF 4
3.8.13 ASCII (3)

The ASCII instruction places the industry compatible

magnetic tape in a mode which will read and write ASCII
tapes. If no tape mode instruction is given, the tape is

assumed to be ASCII.

Example:
ASCII
3.8.14 EDCDIC (3)

The EBCDIC instruction places the industry compatible
magnetic tape in a mode which will read and write EBCDIC
tapes. If no tape mode instruction is given, the tape is
assumed to be ASCII. This command is for 9-Track tape units
only.

Example:

EBCDIC

47

3.8.15 BCD (3)

The BCD command places the industry compatible magnetic
tape in a mode which will read and write BCD tapes. If no
tape mode instruction is given, the tape is assumed to be
ASCII. This command should be used when writing to 7-Track
tape units.

Example:

BCD

3.9 Communications I/0 Instructions

3.9.1 SEND (3)

The SEND instruction causes data to be transmitted from
one 2200 to another over a data line through a 202 internal

modem at 1200 baud. The data sent is from the list of items
following the SEND instruction. The 1list items may be

either string variables or guoted character strings. There
is no limit to the number of characters that may be sent.

Example:

SEND NAME, ADDR, SSN
SEND “ACK"
SEND “NAME",NAME, "POSITION",POSN

The message sent is of the following format:
RO/RO/RO/STX/string/015/string/015/=~-/ETX/LRC/RO/RO

RO=Rubout | ETX=End of Messaqge
STX=Start of Message LRC=Longitudinal Record Parity

A string, in the above example, can be either a string

variable or a quoted character string. Each string variable
or quoted character string except the last is followed by an

015. For string variables only the actual data characters
are sent. The first character sent for each string variable
is the formpointed character. All characters through the
logical length of the string variable will be sent.

Even vertical record parity (VRC) is generated on each
character sent. The LRC parity generated is the exclusive
or sum of every character sent after the STX up to and
including the ETX.

3.9.2 RECEIVE (3)

The RECEIVE instruction receives data transmitted £from

48

another 2200 over a data line through an internal 202 modem
at 1200 baud. The data received 1is entered into string
variables appearing in the 1list following the RECEIVE
instruction. The first item in the list may be a number
between 0 and 255 decimal which indicates how many seconds
the program should wait for an STX (start of message) to be
received. If the number is 0 or if there is no number, the
program will wait indefinitely.

As the data is entered into the variables, the
formpointer of each string variable is set to one, and the

characters are stored consecutively into the strinas
starting at the beaginrning of each string. Any quoted

character strings that are sent must be received as string
variables.

If the message received contains more items than the
list, the remaining unused variables will be disreqgarded
except in checking the LRC. If the 1list contains more
variables than were in the message, the remaining variables
will have their lengths and formpointers set to zero. If
any variable from the message contains more characters than

the physical lethh of the list variable, an EOS condition
is set, but the rest of the message is still received.

Example:

RECEIVE 3,NBR,MSG
RECEIVE O,A,B,C
RECEIVE MSG1,MSG2

As the characters are received, each character |is
checked for even vertical record parity (VRC). Also LRC
parity is generated over every character received after the
STX up ¢to and including the ETX. The sum generated
internally is compared to the LRC received at the end of the
message. If any characters are received that do not have
even VRC, or if the LRC received does not equal the LRC
generated internally, the PARITY and ERROR conditions are
set.

If the STX (start of message) is not received within
the time limit set by the RECEIVE instruction, the TIME and
ERROR conditions are set. If more than 20 milliseconds
elapses between characters after the STX has been received
the TIME and ERROR conditions will also be set. If any of
the TIME, PARITY, or ERROR conditions are set, the entire
list of variables in the RECEIVE 1list will have their
lengths and formpointers set to zero.

The RECEIVE instruction may be aborted by holding down
the KEYBOARD and DISPLAY keys simultaneously.

49

The SEND and RECEIVE instruction statements may be
continued to the next line if a colon (:) is the terminating
character of the instruction. The colon replaces the comma
separating the last entry of the first line from the first
entry on the second line. The first entry of the second line
should begin in the instruction field.

Example:

XMIT SEND NBR,MSG1,MSG2,MSG3,MSG4:
MSG5,MSG6

RECV RECEIVE 4,NAME, POSN,ADR,SSN,CODE:
ITEM,COMP

3.9.3 WAIT . (3)

The WAIT instruction causes the program to wait the

number of seconds indicated by the number following the WAIT
instruction. During the wait loop, the program continues to
look for ringing present and the KEYBOARD and DISPLAY keys.
If ringing is detected, the WAIT is stopped and the RING
trap transfer is executed if it has been set. If the
KEYBOARD and DISPLAY keys are simultaneously depressed, the
program will abort.
Example:

WAIT 5

causes the program to wait 5 seconds.

3.9.4 DIAL (3)

The DIAL instruction causes the program to dial the
number found in the string variable following the DIAL
instruction. An asterisk in the string will cause a delay of
2 seconds. Other than an asterisk, all characters except
the numbers 0 through 9 will be ignored.

Example:

NBR INIT "9*696-4520"
DIAL NBR

3.9.5 CONNECT (3)

The CONNECT instruction causes the program to go
offhook, and then waits for Data Coupler Ready status bit to
come true.

Example:

CONNECT

50

3.9.6 DSCNCT (3)

the DSCNCT instruction causes the program to go onhook.
The program then waits for five seconds before executing the
next instruction.

Example:

' DSCNCT

51

4.0 DATABUS SOURCE CODE EDITOR

The DATABUS mode of GEDIT should be used for
preparation and editing of source data tapes. Some DATABUS

Program Generation tapes have this program cataloged
therein. 1If not, the GEDIT program and instruction manual

should be obtained.

In addition to using GEDIT for DATABUS source code
preparation, the text mode of GEDIT 1.4 and later versions

contains an option which allows the user to generate DATABUS
Write Edit records. These tapes may be read by the new tape

format Databus Interpreters.

4.1 Databus Check List

The following check list may be used before compiling a
program to prevent compile time errors.

Make sure:

1. Labels and variables have only six characters or
less and are valid symbols.

2. There are not too many labels or variables in the
program.

3. All labels and variables are defined, but not doub-
ly defined. (Two labels or two variables must not
have the same name).

4. All common variables are defined in exactly the
same order and length as the variables in the other
Programs.

5. All instructions are spelled correctly.

6. There are no unmatched quote sigqns and no cur-

sor positions off the screen.
7. The program does not exceed the allotted user

space.

5.0 DATABUS COMPILER OPERATION

The Databus Compilers generate object programs which
can be interpreted by the Databus Interpreters. The object

program can also be cataloged by the operating system so
that once a program has been compiled, it can be run any

number of times without being recompiled.

The compiler makes one pass over the symbolic source

code. All statements are checked for syntax and form. I1f
any errors are found, flags are given. As the program is

compiled, a program listing and an object program on tape
are generated.

The compiler assigns numeric values to the various

52

instructions and operands. Each instruction mnemonic has an

octal value assigned to it as do the various conditions,
events, units, variables and labels.

Two symbol tables are generated by the compiler, one
for variables and one for labels. The obiect code values
assigned to variables and the pointers determine in which
table the entry can be found, 1 if variable and 0 if 1label.

The low order seven bits determine the position of the
symbol in the table. The last twoc bytes of each entry are

output as part of the object code, forming lookup tables for
the labels and variables mentioned above.

All variables are defined by directives, that is they
must appear in the label field of directive instructions.
Any symbols which appear in the label field of executable
instructions are placed in the label table. All directives

must appear before the first executable instruction in - the
program. Any directives which appear after the first

executable instruction are given I-flags and their labels
are placed in the label table instead of the variable table.

Therefore, any references to these symbols will be flaagged
undefined.

In short, variables cannot be forward referenced, but
labels can. Since the compiler makes only one pass over the

source code, all labels are entered into the 1label table
when found in the label or operand field of an instruction.

No U-flags are given for undefined labels until the end of
compilation when the symbol tables are output as part of the

object code.

211 undefined variables are entered into the variable
table and flagqged at the end so that the symbol tables

output at the end of the listing will show all undefined
symbols.

The followinag errors can occur during compilation:

1. D The D flag means DOUBLE DEFINITION. It is flag-

ged if a label or variable has been defined to
more than one value during compilation. In that
case, it has the first value.

2.

-

The I flag means INSTRUCTION MNEMONIC UNKNOWN.
The instruction was not an acceptable
instruction code. In this case a 345 is inserted
for the instruction.

3. E The £ flag means that an error has occurred in
the operand field of a statement or some
unrecognizable character appeared in the wrong
place. 1In this case a zero is substituted for

53

the operand or whatever was unrecognizable.

4. U The U flag means UNDEFINED SYMBOL. It is used

whenever a symbol is referenced and 1is not
defined.

OVERFLOW - This message is given if the user program
exceeds its allotted space.

DICTIONARY FULL -~ This message is given if the |user
program has too many labels or variables.

Operating the Compiler:

Place a symbolic source tape generated by the Editor in
the front deck.

Run the Databus Compiler. Several options will be made
available to the user. The following questions will be
asked.

PRINT? Type YES if a hard copy 1listing is desired;
otherwise type NO.

DISPLAY? Type YES if a CRT display is desired: other-
wise type NO.

CODE? Type YES if the object code is desired in the
listing or display; otherwise type NO. (Code
adds 18 columns to the listing.)

HEADING: Type in the heading. (This option 1is aqiven
only when a listing is desired.)

The source tape will be rewound and then compiled. At
the end of compilation the object code block on the rear
tape is copied to the front deck. The operating system is
reloaded and comes up running.

54

6.0 RUNTIME OPERATION

Before running a DATABUS program, two programs must be
cataloged onto a CTOS tape. The first is the interpreter.
It is most convenient to have it as the first program on the
tape because it is a lengthy file and passing over it should
~be avoided as much as possible. The second is a Databus
program whose name must be MASTER, and it is most convenient

to have it as the second program on the tape. The standard
MASTER program will simply ask the operator for the name of

the program he wishes to run, but any DATABUS program could
be put in its place.

To start a run, CTOS must first be loaded (the catalog
information is essential to the interpreter’s operation) and
then the interpreter must be run with the RUN command. This
will cause the MASTER proqram to be 1loaded and executed.
This action also occurs whenever execution of a program is
terminated (a STOP statement executed or proaram fault).
The Databus MASTER program will ask for the name of a
program to be run. Typing a name not in the CTOS catalog

Will cause an error message to be displayed and for the name
to be requested again. Typing the name of a non-DATABUS

program will cause it to be loaded and executed if it does
not overlay the first 28 bytes of the main execution loop of

the interpreter (see the various 1listings for specific
addresses of the label START) overlay of these locations
will either cause execution to begin at START+7 or complete
confusion. Typing the name of a DATABUS program will cause
it to be loaded and executed unless the compiler generated
some error messages, in which case an error abort will be

made.

Once the program is running, execution may be
terminated for a number of reasons. Execution of a STOP

statement is equivalent to a CHAIN to the MASTER proqram.
All other terminations will first print an error message of

the format:
(error message) AT nnnnn

nnnnn will be the statement number (number that appears to
the left of the statement on the compiler 1listina) on the

statement after the one which is at fault. After this
message is displayed, an EOF mark will be written on any

deck which is in write mode and a CHAIN to the MASTER
program will be performed. If an EOF is written on the front
deck, the tape will be left positioned just before it.

55

A list of the error messages and their meanings follows:

CODE

ABORT

BOP

MODE

BAD TAPE

BUFUL

EOF

EOT

FORM

An attempt was made to run an object file
which was generated from a source file that
the compiler found at fault.

Both the KEYBOARD and DISPLAY keys were de-

pressed. The statement before nnnnn was the
last one executed.

An undefined operation code was found at loca-
tion nnnnn. This can happen only if there is a
software error in the DATABUS compiler or
interpreter system, if there is a hardware
error, or 1if the interpreter has been
destroyed by a non=-DATABUS program.

A tape I1/0 statement before statement nnnnn
other than WRITE or WEOF was executed while
the given deck was in write mode. An EOF will
be written on that deck during the abort
procedure.

During the tape 1/0 operation before statement
nnnnn a record of illegqal format was read.
This may be caused by parity errors or by
trying to read a tape generated by some other
program (e.g., the source tape from an EDIT
operation was left in the front deck).

‘During the tape write 1I/0 operation before

statement nnnnn, more than 240 bytes were
written to cassette tape in old tape format
records or 249 bytes in new tape format
records, or 1057 bytes to magnetic tape. The
tape write will not occur but an EOF mark will
be written to the tape during the abort
procedure.

An end-of-file condition arose during the tape
I1/0 operation before statement nnnnn and the
trap was not set.

An end-of-tape condition arose during the tape

I/0 operation before statement nnnnn and the
trap was not set.

During the tape read before statement nnnnn,
either an item of the wrong type was read
(string into number or visa versa) or more
items appeared in the statement list than were
on the tape record, and the trap was not set.
The FORM trap is used in the old tape format

56

RFAIL

CFAIL

interpreters.

During the tape read before statement nnnnn.
either an item of string type was read into a
numeric variable or the tape record contained
more than 249 data characters. The RFAIL trap
is used in the new tape format interpreter.

Execution of the CHAIN statement before state-

ment nnnnn failed to find the requested name
in the CTOS cataloqg. :

57

7.0 FILES

The DATABUS facility includes two sequential files for
mass storage. A single file on each cassette implements

this, with the CTOS system scratch area (file 32) being used
on the rear deck. Usually the rear deck will be used for

temporary storage (as it is attached to the system tape) and
the front deck will be used for changeable data files. The

information on the front deck is contained in a CTOS type
file zero (the same that is used by the editor in storing
source information).

OLD TA 0

In the o0ld cassette tape format records, the variables
on tape look like they do in memory. That is, the 1length,
formpointer, and ETX of string variables and the 0200 and
ETX of numeric variables are written in the tape records.

The maximum length of the o0ld format record is 244
characters - 4 CTOS header and 240 data characters. The
format is CTOS numeric and appears as follows:

/(303)/(074) /XP/CP/datacecsces/

The data consists of one or more variables, of string
or numeric type.

A string variable in the old format may look 1like one
of the following two:

a) /LENGTH/FORMPOINTER/STRING(UP TO 127 CHARS)/ETX(203)/

The LENGTH is between 1 and 127 and equals the number of
characters in the string on tape.

b) /(000)/(000)/ETX(203)/
This is a null string.

For example, a string variable dimensioned to 15 with
JOHN P BROWN entered into it looks as follows:

/(014)/(001)/3/0/4/N/ /P/ /B/R/O/W/N/ETX(203)/

A numeric variable in the old format will look like the
following:

/(200)/number/ETX(203)/

For example, a numeric variable dimensioned to 8
characters as FORM 5.2 looks as follows:

/(200)/3/9/5/7/4/+/9/8/ETX(203)/

58

A new tape format has been introduced to Databus. This
format will be wused in GEDIT, ASM, and the terminal

emulators. The new format interpreters should be wused in
new applications. Since GEDIT can read Databus tapes now,

the data tapes may be edited.

NEW_TAPE FORMAT

The new cassette tape format lcoks like the o0ld GEDIT
format, except that every physical record is terminated by a

3. The Databus version of the new tape format is called the
"Write-Edit" format. The maximum 1lenqgth of the new tape

format record is 255 characters - 4 CTOS header, 249 data
characters, an 015 (Logical End of Record - LEOR), and a 003

(Physical End of Record - PEOR). The record is CTOS numeric
and appears as follows: .

/(303)/(074)/XP/CP/dataeceeses/(015)/(003)/

The data consists of one or more variables, of string

or numeric type. Since only the data characters of the
variables are written to tape (length, formpointer, 0200,

and ETX are deleted), each string variable will have a
length equal to its defined physical 1lenath. WRITE beqgins

writing at the €first character of string variables and
continues to the physical end of the string. Blanks are

written for all characters after the 1logical end of the
string.

A string variable dimensioned to 15 characters looks as
follows on tape:

/3/0/H/N/ [P/ /B/R/O/M/N/ /[/ /

A numeric variable dimensioned to 8 characters as FORM
5.2 looks like the following on tape:

/3/9/5/1/4/-./9/8/

When writing to tape in either old or new tape format.
all list items are transferred into a buffer and the parity

sums are generated. Then the block 1is written to tape.
Writing larger blocks is advisable as increased tape

efficiency results.

In Databus 3, 4, and 5 there 1is no facility for
handling numeric variables internally. 1In these systems all

numeric variables read from cassettes must be read' into
string variables and only string variables may be written.

This is true for both old and new cassette tape formats.

59

INDUSTRY COMPATIBLE MAGNETIC TAPE FORMAT

In addition to the cassete mass storage, Databus 3
allows mass storage on two 7-Track or two 9-Track tape

gnits- Each tape may have many sequential files. Each file
is separated by an EOF mark and has no file number.

A tape unit with multiple files would appear as follows:
/File/EOF/File/EOF/File/EOF~-~-~/EOF/EOF/
EOF - End Of File.
Two EOF marks indicate the end of data on a tape.
A file looks as follows:
/Data/IRG/Data/IRG/Data/.../EOF/
IRG - Interrecord Gap. |

Each data record is written by one WRITE statement, and
read by one READ statement. In reading and writing to tape
the hardware buffer in the tape controller is used so that
1057 characters is the maximum number of characters that may
be written in one record.

Only character strings may be written and read on tape.
The strings are written much 1like the new cassette tape
format. The entire physical length of strings is written,
except that writing begins at the formpointed character.
Blanks are written for all characters after the logical end.
Only the actual data characters are written to tape. There
is no CTOS-provided header or parity, and there are no
delimiters between strings. The tape controllers write and
check a hardware generated parity, but this function is
automatic and does not affect the program or format in any
way.

60

8.0 CHAINING TO NON-DATABUS PROGRAMS

CTOS Databus uses the CTOS symbolic loader to perform
the actual loading function. A CALL is made to MLOADS.
After a return is made from this call, Databus checks the
user program starting location in RUNS of the Loader. Each
compiler always generates an object file with the same
starting location. This location varies in the different
compilers. The Interpreter then assumes that if the object
file just loaded has this starting location, then the object

file must be Databus object code. 1If the starting location
was something different, Databus simply Jjumps to RUNS.

Therefore, to CHAIN to a non-Databus program, make a CHAIN
to that program, providing that its starting location is not
the Databus user program starting location, and that it does
not overlay the routine residing in the first 28 bytes
(START thru START+28) of the 1Interpreter. This is the
section which checks the user proaram starting location.

Example:

NONDAT INIT "“NONDAT"
CHAIN NONDAT

If the non-Databus program resides within the Databus
user area, then it can chain back to a Databus program by
simply loading DE with the address of the program name
string (using MLOADS rules) and jump back to START+4 for

Databus 1, 2, and 3 and START+2 for Databus 4 and 5.
Example:

RETDAT DC "RETDAT"
DE RETDAT No Interpreter Overlay
JMP START+4 Load Databus 2 Program
START EQU 03500

If the non-Databus program does not reside in the
Databus wuser area, then it must relecad the Databus
Interpreter and jump to START (which will cause the MASTER
program to be executed) or load DE with the address of the
program name string and jump to START+4 for Databus 1, 2,
and 3 or START+2 for Databus 4 and 5.

61

Databus User Program 017044
Starting Location

Example:

DB2INT

START

RETDAT
DB2INT

START

CALL
JMP

EQU

DC
DE
CALL
JMP
EQU

START-Interpreter

Starting Location

See the indivi

each.

“DB2INT"
DB2INT
MLOADS
START
03500
“RETDAT"
“DB2INT"
DB2INT
MLOADS
START +4
03504

BBl

05000

Interpreter Overlayed

Load Interpreter
Load and Execute MASTER

Interpreter Overlavyed

Load Interpreter
Load Databus 2 Program

bDB2 bB3 bB4
017044 02266 05744
03500 02350 01000

62

DBS
06654

01400

dual Databus Sections for the user areas of

9.0 INTERPRETER INTERNAL OPERATION

The interpreter fetches and executes instructions

(statements) much like a computer. It contains within its
working storage area the equivalent of the program counter,

cqndition register, instruction register, and other
miscellaneous items. The basic instruction format is one

byte broken into two fields:

N N |0 0 0 0 0 0

The NN bits indicate the number of bvtes in the
instruction. For 1/0 operations, this number is either one

or two and the rest of the instruction is read by scanning
for the list terminator. This number is never zerxo.

The 000000 bits indicate which operation is to be
performed. This number provides an index into an address

table which causes the interpreter to execute the proper
subroutine to perform that instruction.

Operands and labels are addressed by single bytes.
Labels have their sian bit clear and operands have them set.

The remaining seven bit numbers index into address tables
(one for labels and a different one for operands) which are
generated by the compiler at the end of compilation.
Because of this, the compiler only needs to be a one pass

process. Since these tables are placed after the user’s
code, they may be located anywhere, so the compiler cranks

out two other addresses in the interpreter working storaqe
area which point to the beginning of each table. Thus, a

typical instruction execution sequence would be as follows:

a) Get the byte pointed to by the PC and increment
the PC.

b) Get the operand pointed to by the PC and increment
the PC.

c) Branch to the correct routine based on the value of
the right six bits of the opcode. The correct
address is obtained by multiplying the right six
bits by two and adding the result to the execution

routine address table. Load the address of the
routine from the table and jump to it.

d) The instruction would take the operand number,
isolate the riaht seven bits, multiply it by 2, add
it to the base address of the operand table, load
the address of the variable or label from the table

and perform some operation upon the variable or
label pointed to.

63

In DISPLAY, KEYIN, PRINT, and SEND, immediate

characters (quoted items) are denoted by not having their
sign bit set. These characters are simply printed unless

they have a special control function for the instruction in
which they appear. The controls fall in the group between 0

and 37 octal.

64

10.0 CONFIGURATION

The Databus Interpreters and Compilers may be
configured to run with a local or remote printer at any
speed in different size and version machines. The
configquration programs are named DBnCC and DBnIC, where n is
the number of the Databus compiler or interpreter to be
configured. DBnCC is the compiler confiqurator, and DBnIC
is the interpreter confiqurator.

Execution of these programs causes a request for a
series of responses from the user. After the questions have
been answered, the first block of the corresponding
interpreter or compiler will be overlayed. The compiler
cataloged must be named DBnCMP and the interpreter must be
named DBnINT in the CTOS catalog for the overlay to occur.

The "n" in these names must match the “n" in the
configurator names.

Any oy all of the following questions may be asked by
the various configurators.

QUESTION RESPONSE

For DBnIC:

1) Object Machine Answer 1 or 2 if Interpreter
Version (1,2)? and user proqgram is to be run
in a Version 1 or 2 respectively.

2) Local or Remote Printer? Answer L for Local Printer, i.e.,
2200/P or 2200/LP. Answer R for
Remote Printer, i.e., 3300/pP,
teletype, or any printer which
requires a communications interface.
Answer either if no printer is
available.

3) Remote Printer Speed? Asked only if R was the response
to the previous question. Type in
the required baud speed of the
printer used. Type 300 for 3300/pP,
110 for 100 w.p.m. Teletype.

4) Local or Servo Printer? Answer L for Local Printer, or S

for Servo Printer. Answer either
if no printer is available.

65

For DBnCC:

5) Object Machine Size
: (8,12,16)?

6) Compiler Machine Size
(8,12,16)?2

7) Local or Remote Printer?

8) Remote Printer Speed?

9) Local or Servo Printer?

The following shows which

Type in the size of the machine
in which the Interpreter and user
program will be run. This will
define the user area.

Type in the size of the machine
in which the user program will be

compiled. This will define the
number of labels and variables
allowed.

Answer L for Local Printer, i.e.,
2200/P or 2200/LP. Answer R for
Remote Printer, i.e., 3300/P,

teletype, or any printer which
requires a comm interface. Answer
either if no printer is available.

Asked only if R was the response

to the previous question. Type in
the required baud speed of the
printer used. Type 300 for 3300/P,
110 for teletype. Baud speed
equals 10 times the number of
characters/second.

Answer L for Local Printer, or S
for Servo Printer. Answer either
if no printer is available.

of the above questions the

different Databus Configqurators ask:

Databus 1 - (2)(3)

Databus 2
Version 3
Version 4

Databus 3

Databus 4

(1)(2)

(2)(3)

(2)(3)
Databus 5 - (2)(3)

(5)(6)(7)(8)

(5)(6)(7)(8)
(4) (5) (6) (9)
(5)(6)(7)(8)
(6)(7)(8)

(7)(8)

When the configurator is completed, it will display

DONE on the screen. The time before DONE is displayed may
be considerable. After the message is displaved, CTOS will

be reloaded.

66

11.0 CTOS DATABUS SUMMARIES

The following lists of definitions and input/output
controls are referred to in each Databus instruction
summary.

DATABUS DEFINITIONS:
address Refers to the location in memory of assembly
lanquage subprogram to be called. May be
octal or decimal.
character Any string of alphanumeric characters.
string '
condition The result of operations used in conditional
transfer of control operations.
LESS,EQUAL,ZERO,OVER - result of any
arithmetic operation
LESS,EQUAL,ZERO,EOS - result of any string
operation
PARITY,TIME,ERROR,EOS- result of any RECEIVE
operation
event The occurrence of end of file, end of tape,
data type error, tape read error, program
chain failure, or ring detect.
EOF (unit)
EOT(unit)
FORM(unit)
RFAIL(unit)
CFAIL
RING
index Refers to one of the eight possible one byte
indexes, used for all arithmetic operations,
I0 through 17.
label A name assigned to a statement.
list A list of variables, quoted character strings,
or controls appearing in an input/output type
of instruction.
literal A quoted alphanumeric character or a number.
The number may be octal or decimal as lont as
it is between 0 and 127 decimal.
n Refers to an integer between 0 and 127
decimal.

67

nvar

size

sval

svar

unit

456.23

Refers to any number octal or decimal. Octal

if it is preceded by a zero, up to 22 total
digits including the decimal point.

A label assigned to a directive defining a
numeric string variable.

A number defining the memory size of the
Datapoint 2200 in which the user program and
interpreter will be run. It may be 4, 6, 8,
12, or 16.

A label assigned to a directive defining a
character strina variable, or a quoted
alphanumeric character, or a number. This
number may be octal or decimal as long as it

is between 0 and 127 decimal.

A label assigned to a directive defining a
character string variable.

A number defining a tape deck.
1 = Deck 1 (rear)
2 = Deck 2 (front)
3 = Mag Tape Deck (addr=226 octal)
4 = Mag Tape Deck (addr=113 octal)

Refers to any octal or decimal number, up to
22 total digits.

68

DATABUS INPUT/OUTPUT CONTROLS:

CONTROL

*Hn

*Vn

*EF

*R

*n

-

*F

*L

*C

APPLICABLE
INSTRUCTION

KEYIN
DISPLAY

KEYIN
DISPLAY

KEYIN
DISPLAY

"KEYIN

DISPLAY

KEYIN
DISPLAY

PRINT

KEYIN
DISPLAY
PRINT

KEYIN
DISPLAY
PRINT
SEND

PRINT

PRINT

PRINT

FUNCTION

Causes cursor to be positioned horizon-

tally to the column indicated by the
literal or numeric variable n, 1<n<80.

cursor to be positioned
indicated Dby
l1<n<i2.

Causes the
vertically to the row
literal or numeric variable n,

Causes the c.r.t. screen to be erased

from the current cursor position to the
end of the line.

Causes the c.r.t. screen to be erased
from the cursor position to the end of
the screen.

Causes the c.r.t. screen to roll up one

line, losing the top line and setting
the bottom line to blanks. (The cursor

position does not move.)

Causes horizontal tab to the column in-
dicated by the number n. (No action
occurs on the 1local printer if the
carriage is past the column indicated
by n.)

Suppresses a new line function
occurring at the end of a 1list, i.e..

the cursor or print carriage remains
in the position indicated by the

completion of the last list element.

when

Any characters appearing between quotes
are displayed, printed, or sent when
encountered.

Causes the printer to be positioned to
the top of form.

Causes a linefeed to be printed.

Causes a carriage return to be printed.

69

a)

b)

c)

da)

e)

f)

PROGRAM LENGTH

Numeric String Variables use two words plus one
word for each string character (including decimal
point and sign if negative).

Character String Variables use three words plus one
word for each string character.

String 1Instructions except LOAD and STORE use

two or three words depending on whether one or two
variable names are required for the instruction.

N
Arithmetic Instructions except LOAD and STORE
use three words. LOAD and STORE fall into the
Control category for space allocation.

Control and Input/Output Instructions require one
word for the command plus one word for each label,
condition, event, variable, or unit used. Strings
found in 1I1I/0 instructions add one word per
character. 1/0 controls which begin with an
asterisk add one or two words for each occurrence
(*C, *L, *F, *EL, *EF, *R use one word, all others

use two). Every instruction which contains a 1list
uses one additional word for the list terminator.

Two additional words are used for each 1label or
variable.

70

11.1 Databus 1
1l1.1.1 Instruction Summary

Directives
FORM n.m
FORM "456.23"
DIM n
INIT "character string"®
FORM *n.m ’
FORM *"456.23"
DIM *n
INIT *“CHARACTER STRING"

Control
TRAP (label) IF (event)
GOTO (label)
GOTO (label) IF (condition)
GOTO (label) IF NOT (condition)
CALL (1label)
CALL (label) IF (condition)
CALL (label) IF NOT (condition)
RETURN
RETURN IF (condition)
RETURN IF NOT (condition)
STOP
STOP IF (condition)
STOP IF NOT (condition)
CHAIN (svar)
BRANCH (nvar) OF (label list)

Numeric Variable Arithmetic
ADD (nvar) TO (nvar)
SUB (nvar) FROM (nvar)
MULT (nvar) BY (nvar)
DIV (nvar) INTO (nvar)
MOVE (nvar) TO (nvar)
COMPARE (nvar) TO (nvar)
LOAD (nvar) FROM (nvar) OF (nvar list)
STORE (nvar) INTO (nvar) OF (nvar list)

KEYBOARD, C.R.T., PRINTER I/0
KEYIN (list)
DISPLAY (list)
PRINT (list)
BEEP
CLICK
DSENSE
KSENSE

Cassette Tape 1/0

READ (unit),(list)
WRITE (unit).,(list)

71

11.1.2

11.1.3

11.1.4

11.1.5

REWIND (unit)
BKSP (unit)
PREPARE (unit)
WEOF (unit)

Conditions

OVER
LESS

EQUAL

ZERO
EOS

Events

EOF1

EOF2

EOT1

EOT2

FORM1 0ld Tape Format
FORM2 " " “

RFAIL1 New Tape Format
RFAIL2 * . "

User Area

Interpreter Machine

8K - 3400g bytes (1000 - 4377g)
12K - 10000 bytes (20000g - 27777g)
16K - 20000g bytes (20000g - 37777g)

Dictionaries

8K - 100 labels, 100 variables
12K or 16K - 125 labels, 125 variables

72

1l1.1.6 Interpreter Internal Structure

Databus 1 is layed out in memory as follows:

37777
USER AREA
16K
277177
USER
12K & 16K
17777
CTOS
SYMBOLIC LOADER
17400
WORKING STORAGE
117000
INTERPRETER
5000
TAPE BUFFER
4400
USER AREA
8K
1000
LOADER
0

73

11.1.7

DATABUS

01000
01004
01010
01014
01023
01110
01175
01262

01347
01351

01423
01433
01443
01453
01476
01532
01535
01540
01543
01547
01551
01554
01567
01601

Sample Programs

FILE INPUT PROGRAM
File Input Program '

Sample Databus 1 Program

This is a File Input and Updat Program.

It preps the front tape if it is a new file or
positions the front tape to after the last file
record input if it is an old file.

Allows user to type in file records, and then
writes the records to tape. Four items plus a
command may be input. The command is interpreted
as follows:

0 -- The items are correct, so write them to
tape
1 -- All records have been input, so end the
program
<0 or >1 -- The items are incorrect, reinput
them

When all information has been input, an end-of-
file is written to tape and execution returns to
the MASTER program.

ZERO FORM "0."

ONE FORM "1."
CMND FORM 1.

LNBR FORM 4.
ITEM1I DIM 50

ITEM2 DIM 50
ITEM3 DIM 50
ITEM4 DIM 50

FILIN REWIND 2

DISPLAY *V1,*H1,*EF,"FILE INPUT PROGRAM"
DISPLAY *V4,*H1,"LABEL NUMBER:*

DISPLAY "ITEM1:*

DISPLAY “ITEM2:"

DISPLAY "ITEM3:"

DISPLAY “ITEM4:",*V9,*H45,"CHECK:*"
KEYIN *V3,"NEW TAPE (0=NO,1=YES):",CMND
COMPARE ONE, CMND

GOTO PREP IF EQUAL

TRAP INPUT IF EOF2

SKIP READ 2, LNBR

GOTO SKIP

INPUT ADD ONE, LNBR
REPEAT DISPLAY *V4,*H15,LNBR,*V5, *HS8, *EL:

*V6,*EL, *V7,*EL, *V8, *EL

KEYIN *V5,*H8,ITEM1,*V6,*H8, ITEM2,*V7, *H8, ITEM3

74

DATABUS 1 FILE INPUT PROGRAM

01622 KEYIN *H8,ITEM4,*V9,*H52,CMND
01634 COMPARE ONE, CMND

01637 GOTO TERM IF EQUAL

01642 COMPARE ZERO, CMND

01645 GOTO REPEAT IF NOT EQUAL

01650 WRITE 2,LNBR, ITEM1,ITEM2, ITEM3, ITEM4
01660 GOTO INPUT

t

01662 TERM WRITE 2,LNBR,ITEM1,ITEM2,ITEM3, ITEM4
01672 WEOF 2

01674 REWIND 2

01676 STOP

01677 PREP MOVE ZERO, LNBR
01702 PREPARE 2
01704 GOTO INPUT
01706 STOP

01707 FILIN
01711 PREP
01713 INPUT
01717 REPEAT.
01721 TERM

01723 ZERO
01725 ONE

01727 CMND
01731 LNBR
01733 ITEM1
01735 ITEM2
01737 ITEM3
01741 ITEM4

75

DATABUS 1 FILE DISPLAY PROGRAM

01000
01006
01073
01160
01245

01332
01334
01366
01410
01435
01450
01464
01467
01477
01514
01523
01541
01542
01545
01547
01551

01552

01554
01556

01560

01562
01564
01566
01570
01572

- PROGRAM FILE DISPLAY

- DISPLAYS FILE FROM FILE INPUT PROGRAM

LNBR
ITEM1

ITEM2
ITEM3
ITEM4

START

LooP

DWAIT

END

START

END
LOOP

DWAIT

LNBR

ITEM1
ITEM2
ITEM3
ITEM4

FORM 4
DIM 50

DIM 50
DIM 50
DIM 50

REWIND 2

DISPLAY *H1l,*Vl1,*EF,"FILE DISPLAY PROGRAM":
*H1l,*V4,"LABEL NUMBER:"

DISPLAY *Hl,*V5,“ITEM1:",*H1l,*V6,"ITEM2:":
*H1l,*V7,“ITEM3:"

DISPLAY *H1l,*V8,"ITEM4:"

TRAP END IF EOF2

READ 2,LNBR, ITEM1,ITEM2, ITEM3, ITEM4

DISPLAY *H15,*V4,*EL,LNBR,*H8,*V5,*EL, ITEM1:
*H8,*V6,*EL, ITEM2

DISPLAY *H8,*V7,*EL,ITEM3, *H8,*V8,*EL, ITEM4
DSENSE

GOTO DWAIT IF NOT EQUAL

GOTO LOOP

REWIND 2

STOP

76

11.2 DATABUS 2
1l1.2.1 1Instruction Summary

Directives
FORM n.m
FORM "456.23"
DIM n
INIT "character string"
FORM *n it
FORM *"456.23"
DIM *n
INIT *"CHARACTER STRING"

Control
TRAP (label) IF (event)
GOTO (label)
GOTO (label) IF (condition)
GOTO (label) IF NOT (condition)
CALL (label)
CALL (label) IF (condition)
CALL (label) IF NOT (condition)
RETURN
RETURN IF (condition)
RETURN IF NOT (condition)
STOP
STOP IF (condition)
STOP IF NOT (condition)
CHAIN (svar)
BRANCH (nvar) OF (label list)

String
CMATCH (sval) TO (sval)
CMOVE (sval) TO (svar)
MATCH (svar) TO (svar)
MOVE (svar) TO (svar)
MOVE (svar) TO (nvar)
MOVE (nvar) TO (svar)
APPEND (svar) TO (svar)
RESET (svar) TO (sval)
RESET (svar) to (nvar)
RESET (svar)
BUMP (svar) by (literal)
BUMP (svar)
ENDSET (svar)
LENSET (svar)
TYPE (svar)
EXTEND (svar)
CLEAR (svar)
LOAD (svar) FROM (nvar) OF (svar list)
STORE (svar) INTO (nvar) OF (svar list)

71

Numeric Variable Arithmetic
ADD (nvar) TO (nvar)
SUB (nvar) FROM (nvar)
MULT (nvar) BY (nvar)
DIV (nvar) INTO (nvar)
MOVE (nvar) TO (nvar)
COMPARE (nvar) TO (nvar)
LOAD (nvar) FROM (nvar) OF (nvar list)
STORE (nvar) INTO (nvar) OF (nvar list)

Keyboafd. C.R.T., Printer 1/0
KEYIN (list)

DISPLAY (list)
PRINT (list)

BEEP
CLICK
DSENSE
KSENSE

Cassette Tape 1/0
READ (unit),(list)
WRITE (unit).,(list)
REWIND {unit)

BKSP (unit)
PREPARE (unit)
WEOF (unit)

1i.2.2 Conditions

OVER
LESS
EQUAL
ZERO
EOS

11.2.3 Events

EOF1
EOF2

EOT1

EQT2

FORM1 0ld Tape Format
FORM2 " " "
RFAIL1 New Tape Format
RFAIL2 " . "
CFAIL

11.2.4 User Area

8K - 2500g bytes (1000g~-34773)

12K - 100008 bytes (20000g-27777g)
16K - 20000g bytes (20000g-37777g)

78

11.2.5 Dictionaries
Compiler Machine

8K - 100 labels, 100 variables
12K or 16K - 125 labels, 125 variables

79

11.2.6 Interpreter Internal Structure

Databus 2 is layed out in memory as follows:

37777
USER AREA
16K
27777
USER AREA
12K & 16K
177717
CTOS
SYMBOLIC LOADER
17400
WORKING STORAGE
17000
NUMERIC OPERATIONS
12000
TAPE BUFFER
11400
INTERPRETER
3500
USER AREA
8K
1000
LOADER
0

11.2.7 Sample Programs

The sample Databus 2 programs included make up a simple

file handling system. It is by no means complete, but
serves to give an idea of what can be done with Databus 2.

A brief summary of each program will be given to aid in
tracing through the programs. These programs include an
update file entry program, a two tape mergqe of the update
file into the master file, as well as programs to display
and copy the two files.

UPDATE PROGRAM

l. Positions rear deck to Update File.

2. Allows user to type in the 5 fields of information
for the update records.

3. As each field is input, it is appended to a buffer.
Slashes are used as field delimiters.

4. Writes out the packed record to the update file.

5. If more update files need to be input goes to 2.

6. Otherwise writes a dummy record to indicate the end
of the update file, and a physical end of file.

7. Chains back to the MASTER proaram.

UPDATE FILE DISPLAY PROGRAM

1. Reads update file records from the rear deck.

2. Displays each record exactly as it was written to
tape, rolling up the screen as each entry is
displavyed.

3. When all records have been displayed, execution
returns to the MASTER programe.

TWO TAPE MERGE PROGRAM

l. Asks if front tape is a new master tape.

2e If the master is new, the front deck is prepped.
The rest of the program treats the front deck the
same whether it is an o0ld or new master.

3. The rear deck is positioned to the update file.

4. Five records are read from the wupdate file. The
records were written with the name field first, and
the merge is done in alphabetical name order.

5. The rear deck is then positioned to the end of
the update file.

6. The smallest of the five update records is found.

7. The smallest record is then meraed into the master
tape. This is done in the followina manner:

a. The master tape records are read in one at

a time.
b. The master record is compared to the up-

81

8.

9.

10.

11.
12.

date record. If the master record is
smaller it is written to the update tape
(now positioned after the end of the update
file), and a new master record is read in
and compared.

c. If the update record 1is smaller, it is
written to the update tape.

d. Execution then returns to 6 where the next
smallest update record is found until all 5
update records have been merged.

Once all 5 are merged, the rest of the master tape
is copied to the rear deck.

The rear new master is copied back to the front
tape.

The wupdate file is then positioned after the
last five update records are read in, and then five
more records are read (or as many as are left).
Execution then returns to 5.

Once all update records are merged and the final
master copied back to the front tape, the tapes are
rewound, and execution returns to the MASTER
programe.

MASTER FILE DISPLAY PROGRAM

CoPY

l. Rewinds the front master tape.

2. Reads in a record.

3. Unpacks the record into five fields. The unpacking
is done by a character match, searching for a
slash, the field delimiter.

4. When all fields are unpacked, the information is
displayed on the screen.

5. Execution then returns to 2 until all records have
been read and displayed.

6. Execution returns to the MASTER program.

PROGRAM

l. Copies records (maximum of 127 chars) from front
deck to rear, and rear deck to front. The records
are written to file 32 on the rear deck, and file 0
on the front deck.

2. When all records have been copied, execution re-

turns to the MASTER programe.

82

MASTER FILE DISPLAY PROGRAM

01000
01027
01070
01106
01135
01145
01150
01304
01345
01351
01354
01357
01370
01424
01454
01457
01461
01464
01470
01473
01475
01500
01503
01505
01510
01513
01515
01520
01522
01525
01533
01536
01541
01544
01547
01551
01553

01556
01574

01614
01646

01666
01714

+ PROGRAM LIST

- DISPLAYS MASTER FILE

« READS IN RECORD FROM TAPE, UNPACKS THE
- DATA INTO FIVE FIELDS, AND DISPLAYS THE
. FIELDS ON THE SCREEN.

NAME DIM 20

ADDR DIM 30

SSN DIM 11

BUSNES DIM 20

CCODE DIM 4

SLASH INIT "“/"

BUFF DIM 89

TEMP DIM 30

COUNT FORM “01"

ONE FORM “1*

SIX FORM "6"

EXIT INIT “MASTER"

START DISPLAY *H1,*V1,*EF,*H15,"MASTER FILE DISPLAY"
DISPLAY *H1l,*V2,“FRONT TAPE MASTER?":
KEYIN TEMP
REWIND 2
TRAP END IF EOF 2

RD READ 2,BUFF
MOVE ONE, COUNT
CLEAR TEMP

LOOP CMATCH BUFF,SLASH

GOTO NEXT IF EQUAL
EXTEND TEMP
GOTO NEXT IF EOS
CMOVE BUFF, TEMP
BUMP BUFF
GOTO NEXT IF EOS
GOTO LOOP

NEXT RESET TEMP
STORE TEMP INTO COUNT OF NAME,ADDR,SSN:
BUSNES,CODE
ADD ONE, COUNT
COMPARE COUNT,SIX
GOTO DISPLY IF EQUAL
CLEAR TEMP

BUMP BUFF
GOTO LOOP IF NOT EOS

. DISPLAY ALL FIVE FIELDS ON SCREEN

DISPLY DISPLAY *H1l,*V5,*EF, "NAME: ", NAME
DISPLAY *H1l,*V6,"ADDRESS:",ADDR
DISPLAY *H1l,*V7,“SOCIAL SECURITY #:",SSN
DISPLAY *H1,*V8,"COMPANY:",BUSNES

DISPLAY *H1l,*V9,“CUSTOMER CODE:",CCODE
CLEAR NAl

83

MASTER FILE DISPLAY PROGRAM

01716
01720
01722
01724
01726
01730

01732

01733
01735
01737
01741
01743
01745

01747
01751
01753
01755
01757
01761
01763
01765
01767
01771
01773
01775

CLEAR ADDR
CLEAR SSN
CLEAR BUSNES
CLEAR CCODE
GOTO RD
CHAIN EXIT

STOP

END

START
END

RD
LOOP
NEXT
DISPLY

NAME
ADDR
SSN
BUSNES
CCODE
SLASH
BUFF
TEMP
COUNT
ONE
SIX
EXIT

84

DATABUS TWO TAPE MERGE PROGRAM

01000
01134
01270
01424
01560
01714
02050
02204
01240
02367
02402
02413
02416
02422
02425
02431
02434
02437
02444
02452

02456
02461

02465
02524
02557
02617
02646
02670
02673
02675
02700
02703
02705
02707

02711
02714
02720
02723
02726
02737
02742

- PROGRAM DATABUS SORT PROGRAM

- MERGE PROGRAM

- READS IN UPDATE TAPE ON REAR DECK 5 RECORDS AT

- A TIME AND MERGES THEM INTO MASTER ON FRONT DECK.

- IF THE MASTER TAPE IS NEW, THE UPDATE TAPE IS
« SORTED AND WRITTEN TO THE MASTER.

N1
N2

N3
N4

N5

NS
MASTER
TST

NL
DUMMY

EXIT
FLAG

COUNT
SMALL

CNTSV
ONE

ZERO
TEMP

RECORD
CNT
SIX
TEN

START

ASK

REWD

SORT
RD

DIM 89
DIM 89

DIM 89

DIM 89

DIM 89

DIM 89

DIM 89

DIM 89

INIT L Ralaleladadkad ladalalodalalel tiaiatakok ol "
INIT “**WEQF**"
INIT “MASTER"
FORM "0"

FORM "01"

FORM "“0O"

FORM "00"

FORM "“1"

FORM "O*

DIM 2

FORM "0000"
FORM *“00"

FORM "6*"

FORM "10"

DISPLAY *H1,*V1,*EF,*H15,"TWO TAPE MERGE PROGRAM"

DISPLAY *H1l,*V3,"READS IN UPDATE TAPE *;
DISPLAY "AND MERGES IT INTO MASTER TAPE “;
DISPLAY "IN ALPHABETICAL ORDER"

DISPLAY *H1l,*V4,*EL,"NEW MASTER?";

KEYIN TEMP

REWIND 1

CMATCH TEMP,"Y"

GOTO REWD IF NOT EQUAL

PREPARE 2

WEOF 2

REWIND 2

MOVE NL,N5

READ 1,TST

MATCH DUMMY,TST

GOTO SETFLG IF EQUAL

STORE TST INTO COUNT OF N1,N2,N3,N4,NS
ADD ONE,COUNT

COMPARE SIX,COUNT

85

DATABUS TWO TAPE MERGE PROGRAM

02745

02750
02753
02756
02761

02764
02770
02773
02776

03000
03003

03014
03017
03021
03024
03027
03032

03035
03040
03043
03046
03052
03055

03060
03064

03066
03072
03075
03106
03111
03117
03122
03125
03130
03133
03137
03143
03147

03151
03153
03155

03157
03163
03166

03171

CNT

FEOF

M1l
FIND

MERGE
MRG

MOVSTR

TRNSFR
o10) 3 4

SRCH

GOTO RD IF LESS

COMPARE COUNT, ONE
GOTO END IF EQUAL

MOVE COUNT,CNTSV
SUB ONE,CNTSV

READ 1,MASTER
MATCH MASTER,DUMMY

GOTO FEOF IF NOT EQUAL
CLEAR MASTER

MOVE ONE,COUNT
LOAD TST FROM COUNT

MATCH N5, TST

CALL MOVE

ADD ONE,COUNT
COMPARE CNTSV,COUNT

GOTO FIND IF LESS
GOTO FIND IF EQUAL

TRAP MOVSTR IF EOF2
RESET MASTER

GOTO MRG IF NOT EOS
READ 2,MASTER

MATCH N5,MASTER

GOTO MOVSTR IF NOT LESS

WRITE 1,MASTER
GOTO MERGE

WRITE 1,NS5
MOVE NL,NS5S

STORE NL INTO SMALL
ADD ONE,CNT

COMPARE CNTSV,CNT
MOVE ZERO,CNT

TRAP COPY IF EOF2
RESET MASTER

GOTO TRNSFR IF EOS
WRITE 1,MASTER
READ 2,MASTER
WRITE 1,MASTER

GOTO TRNSFR

WEOF 1
REWIND 1
PREPARE 2

READ 1,MASTER
MATCH MASTER,DUMMY
GOTO SRCH IF NOT EQUAL

TRAP SETUP IF EOF1

86

DATABUS TWO TAPE MERGE PROGRAM

03174
03200
03204

03206
03201
03212
03214
03217
03222
03225
03230
03234
03237
03242
03245
03250
03252

03254

03256
03260
03262
03273
03276

03277
03302
03304
03306

03307
03311
03313
03315
03317
03321
03323
03325
03327
03331
03333
03335
03337
03341
03343
03345
03347
03351
03353
03355
03357

RDWR

SETUP

RECRD

END

MOVE

SETFLG

START
ASK
REWD
SORT
RD
SETFLG
CNT
END
FEOF
M1
FIND
MOVE
#AOVSTR
MRG
MERGE
coPY
TRNSFR
SRCH
SETUP
RDWR
RECRD

READ 1,MASTER
WRITE 2,MASTER

GOTO RDWR

WEOF 2

REWIND 2

REWIND 1

COMPARE FLAG,ONE
GOTO END IF EQUAL
ADD CNTSV,RECORD
MOVE ZERO, COUNT

READ 1,MASTER

ADD ONE,COUNT
COMPARE COUNT,RECORD
GOTO RECRD IF NOT EQUAL
MOVE ONE,COUNT

CLEAR MASTER

GOTO SORT

CHAIN EXIT

-RETURN IF NOT LESS

RETURN IF EQUAL

LOAD N5 FROM COUNT OF N1,N2,N3,N4,N5

MOVE COUNT TO SMALL
RETURN

MOVE ONE.,FLAG
BKSP 1

GOTO CNT
STOP

87

DATABUS TWO TAPE MERGE PROGRAM

03361
03363
03365
03367
03371
03373
03375
03377
03401
03403
03405
03407
03411
03413
03415
03417
03421
03423
03425
03427
03431
03433

N1

N2

N3

N4

N5

NS
MASTER
TST
NL
DUMMY
EXIT
FLAG
COUNT
SMALL
CNTSV
ONE
ZERO
TEMP
RECORD
CNT
SIX
TEN

88

UPDATE FILE DISPLAY PROGRAM

. PROGRAM LIST

- LIST UPDATE FILE
. READS IN RECORDS FROM SCRATCH FILE ON REAR DECK
. AND DISPLAYS THEM ON THE SCREEN

01000 BUFF DIM 89
01134 EXIT INIT "MASTER"

01145 TART REWIND 1

01147 TRAP END IF EOF1

01152 RD READ 1,BUFF

01156 DISPLAY *H1,*V12,*EL,BUFF
01166 GOTO RD

01170 END CHAIN EXIT

01172 STOP

01173 START

01175 END

01177 RD

01201 BUFF
01203 EXIT

89

DATABUS UPDATE PROGRAM

01000
01027
01070
01106

01135
01144

0l1le1
01172
01200
01211
01215
01351
01364
01413
01464

01466
01521
01524
01527
01547
01552
01555
01614
01617
01622
01642
01645
01650
01676
01701

01704
01710

01712
01740
01743
01746

« UPDATE PROGRAM

- ALLOWS USER TO TYPE IN DESIRED INFORMATION.

- THE DATA IS THEN PACKED AND WRITTEN OUT TO TAPE.
- THE SCRATCH FILE ON THE REAR DECK IS USED FOR

« THE UPDATE FILE.

NAME DIM 20
ADDR DIM 30

SSN DIM 11
BUSNES DIM 20

CCODE DIM 4
TEMP DIM 10

UPDTE' INIT “UPDATE"

END INIT “END"

EXIT INIT “MASTER"

SLASH INIT “/*

BUFF DIM 89

DUMMY INIT “**WEOF**"

START DISPLAY *H1,*V1,*EF,*H15,"UPDATE PROGRAM"
DISPLAY *H1,*V2,"TYPE IN THE REQUESTED INFO."
PREPARE 1 '

- KEYIN INFORMATION FOR UPDATE RECORDS

UPDAT KEYIN *H1l,*V5,*EF,"“NAME (LAST,FIRST):",NAME
APPEND NAME,BUFF
APPEND SLASH, BUFF
KEYIN *H1l,*V6,“ADDRESS:",ADDR
APPEND ADDR,BUFF
APPEND SLASH,BUFF
KEYIN *H1,*V7,"SOCIAL SECURITY NUMBER:",SSN
APPEND SSN,BUFF
APPEND SLASH,BUFF
KEYIN *H1,*V8,"COMPANY:",BUSNES
APPEND BUSNES, BUFF
APPEND SLASH,BUFF
KEYIN *H1l,*V9,"CUSTOMER CODE:"“,CCODE
APPEND CCODE,BUFF
RESET BUFF

- WRITE BUFFER TO UPDATE FILE

WRITE 1,BUFF
CLEAR BUFF

- SEE IF END OF UPDATE OR MORE INFO

ASK KEYIN *H1l,*V11,“UPDATE OR END?“,TEMP
MATCH TEMP,UPDATE

GOTO UPDAT IF EQUAL
MATCH TEMP,END

90

DATABUS UPDATE PROGRAM

01751 GOTO ASK IF NOT EQUAL

- IF END THEN WRITE DUMMY END OF FILE AND EOF
+ TO UPDATE FILE

01754 WRITE 1,DUMMY
01760 WEOF 1

01762 CHAIN EXIT
01764 STOP

01765 START
01767 UPDAT

01771 ASK

01773 NAME
01775 ADDR
01777 SSN
02001 BUSNES
02003 CCODE

02005 TEMP
02007 UPDDTE

02011 END
02013 EXIT

02015 SLASH
02017 BUFF

02021 DUMMY

91

DATABUS COPY PROGRAM

- PROGRAM COPY

- COPY FILE FROM FRONT DECK TO REAR OR REAR
« DECK TO FRONT

01000 EXIT INIT "MASTER"
01011 BUFF DIM 127

01213 TEMP DIM 10

01230 FRONT INIT "FRONT"
01240 BACK INIT “BACK"

01247 START DISPLAY *H1,*V1,*EF,"COPY FRONT OR BACK TAPE?":
01307 KEYIN TEMP

01312 MATCH TEMP, FRONT

01315 GOTO COPYF IF EQUAL
01320 MATCH TEMP,BACK

01323 GOTO START IF NOT EQUAL

« COPY BACK DECK TO FRONT DECK

01326 COPYB REWIND 1

01330 PREPARE 2

01332 TRAP ENDB IF EOF1
01335 LOOPB READ 1,BUFF

01341 WRITE 2,BUFF
01345 GOTO LOOPB

01347 ENDB WEOF 2

01351 CHAIN EXIT

. COPY FRONT DECK TO BACK DECK

01353 COPYF REWIND 2

01355 PREPARE 1
01357 TRAP" ENDF IF EOF2
01362 LOOPF READ 2,BUFF

01366 WRITE 1,BUFF
01372 GOTO LOOPB

01374 ENDF WEOF 1

01351 CHAIN EXIT

« COPY FRONT DECK TO BACK DECK

01353 COPYF REWIND 2

01355 PREPARE 1

01357 TRAP ENDF IF EOF2
01362 LOOPF READ 2,BUFF

01366 WRITE 1,BUFF
01372 GOTO LOOPF

01374 ENDF WEOF 1

01376 CHAIN EXIT

01400 STOP

92

DATABUS COPY PROGRAM

01401
01403
01405

01407
01411

01413
01415

01417
01421

01423
01425

01427

START
COPYF
COPYB
ENDB

LOOPB

ENDF
LOOPF

EXIT
BUFF

TEMP
FRONT

BACK

93

11.3 DATABUS 3

1l.3.1 Instruction Summary

Directives
DIM n
INIT "character string"
DIM *n
INIT *"CHARACTER STRING"

Control
TRAP (label) IF (event)
GOTO (label)
GOTO (label) IF (condition)
GOTO (label) IF NOT (condition)
RETURN
RETURN IF (condition)
RETURN IF NOT (condition)
STOP
STOP IF (condition)
STOP IF NOT {(condition)
CHAIN (svar)
BRANCH (index) OF (label list)

String
CMATCH (sval) TO (sval)
CMOVE (sval) TO (svar)
MATCH (svar) TO (svar)
MOVE (svar) TO (svar)
APPEND (svar) TO (svar)
RESET (svar)
BUMP (svar)
ENDSET (svar)
EXTEND (svar)
CLEAR (svar)
LOAD (svar) FROM (index) OF (svar list)
STORE (svar) INTO (index) OF (svar list)

Numeric Index Arithmetic
ADD (index) TO (index)
ADD n TO (index)
SUB (index) FROM (index)
SUB n FROM (index)
COMPARE (index) TO (index)
COMPARE n TO (index)
MOVE (move) TO (svar)
MOVE (svar) TO (index)

Keyboard, C.R.T., Printer I/O
KEYIN (list)
DISPLAY (list)
PRINT (list)
BEEP

94

CLICK
DSENSE
KSENSE

Cassette Tape 1/0

READ (unit),(list)
WRITE (unit),(list)
REWIND (unit)
PREPARE (unit)
WEOF (unit)

BSPR (unit)

BSPF (unit)

ADVR (unit)

ADVF (unit)

Mag Tape 1/0

READ (unit),(list)
WRITE (unit).,(list)
REWIND (unit)
PREPARE (unit)
WEOF (unit)

BSPR (unit)

BSPF (unit)

ADVR (unit)

ADVF (unit)

ADVFW (unit)

PBOF (unit)

PEOF {unit)

ASCII

EBCDIC

BCD

Communications I/0

11.3.2

SEND (list)
RECEIVE n,(list)
WAIT n

DIAL (svar)
CONNECT

DSCNCT

Conditions

OVER
LESS
EQUAL
ZERO
EOS
PARITY
TIME
ERROR

95

11.3.3

11.3.4

11.3.5

Events

EOF1

EOF2

EQOF3

EOF4

EOT2

EOT2

EOT3

EOT4

FORM1 014 Tape Format
FORM2 " " "

FORM3 ™ " "
FORM4 . " "

RFAIL1 New Tape Format

RFAIL2 " " "
RFAIL3 " " v
RFAIL4 * " "
CFAIL

RING

User Area

Interpreter Machine
8K - 30008 bytes (144008-174008)
12k - 10000g bytes (20000g-27777g)

16K - 20000g bytes (200008-37777g)
Dictionaries
c i Machi

" 8K = 100 labels, 100 variables
12K or 16K - 125 labels, 125 variables

96

11.3.6

Databus 3 is layed out in memory as

Interpreter Internal Structure

USER AREA
16K

USER AREA
12K or 16K

CTOS
SYMBOLIC LOADER

USER AREA
8K

INTERPRETER

WORKING STORAGE

TRANSLATE TABLES

TAPE BUFFER

LOADER

97

follows:

37777

27777 .

177717

17400

14400

2350
1777
1400

1000

11.3.7 SAMPLE PROGRAMS

The sample DATABUS 3 programs included demonstrate a
MASTER~-SLAVE communications system with logically complete
error control. Use of a serial number (modulo two) insures
that no message will be lost or repeated. One can completely

lose the connection (e.q. telephone disconnects) and
subsequently restore it to continue data transfer without

losing a bit.

The master station dials the slave station to obtain a
tape file of information. The master program displays the
information it receives but could be modified to print it or
write it to tape. The MASTER-SLAVE station discipline 1is
designed to be easily modified for wuse in a multi-drop
environment using dedicated communications lines. The
contents of the ADR variable of each slave station (DATABUS
6 simulator) would be unique and the master station would
address a particular station by setting the value of its ADR
variable to correspond to the address of the desired slave
station.

Message flow diagrams are included to clarify the
functions of the programs. The heavy 1lines indicate the
normal sequence of operations while the other lines indicate
paths taken to handle special conditions invoked by errors
in transmission. Capitalized items indicate messages sent
while parenthesized items indicate actions taken.

98

MASTER STATION (MESSAGE RECEIVED) DISCIPLINE:

SENDS RECEIVES

{

(DIAL)
|
'

INQ

t

kR

OTHER R

(nswmo) (N

!
J

|
1+

NAK ACK ACK

t | S |

TR

ERROR MSGIN) MSG{3-N)

I AN

(NE3-N)
SPECIAL
(MESSAGE)
ACTION

PR SpN e Y T R R BRI N B

99

SLAVE STATION (MESSAGE TRANSMITTER) DISCIPLINE:

RECEIVES \ SENDS
[]
|]
(REWIND) :
!
1 i f '
REW ACK INQ OTHER !
OR '
I NAK I 1

1

(REWIND)

e E STATUS
: I
— T
:] aem’npg —
(HAu}sup) E thlrus Mssl(n) MsI(N)
“ip "?Q "l" "CK uix ‘ Enion 5 » »
R -

NOTES : |, ANSWER IF RINGING DETECTED WHILE WAITING FOR A MESSAGE
2 HANG UP IF A VALID MESSAGE IS NOT RECEIVED FOR 45 SECONDS

100

DATABUS 3 MASTER STATION FOR DATABUS 6

. TESTS DATABUS 6 COMMUNICATIONS WITH DATABUS 3

14400 INQ INIT 5
14404 REW INIT 010
14410 HUP INIT 033
14414 ACK INIT 6
14420 EOF INIT 020
14430 PARITY INIT 021
14434 =0T INIT 022
14440 NUMBER DIM 15
14462 MSG DIM 100
14631 ADR INIT "A"
14635 TWO INIT "2"
14641 ONE INIT "1°*
14645 ALT INIT “1°*
14651 RXALT INIT "0"
14655 CALL DIAL
14657 GOTO START

14661 REWIND SEND REW,ADR
14665 START SEND INQ,ADR

14671 RECEIVE 2,MSG

14675 GOTO STAR IF ERROR

14700 DISPLAY *H1,*V12,"STATUS:",MSG
14717 CMATCH MSG,"R"

14722 GOTO REWIND IF EQUAL

14725 CMATCH MSG,"N"

14730 GOTO REWIND IF EQUAL

14733 CMATCH MSG,"L"

14736 GOTO START IF NOT EQUAL

14741 SACK SEND ACK.,ADR
14745 GOTO GETHUP
14747 SHNAK SEND NAK,ADR
14753 GETHUP DSENSE

14754 GOTO GETMSG IF NOT E£QUAL
14757 RECEIVE 2,RXALT,MSG
14764 SEND HUP, ADDR

14770 CALL DIAL1L

14772 GETMSG RECEIVE 2,RXALT,MSG
14777 GOTO SNAK IF ERROR
15002 CMATCH RXALT, ALT

15005 GOTO SACK IF NOT EQUAL
15010 CMATCH PARITY TO I4SG
15013 GOTO PFAIL IF EQUAL
15016 CMATCH EOF TO MSG
15021 GOTO DONE IF EQUAL
15024 CHMATCH EOT TO HMSG
15027 GOTO EOM™ IF EQUAL
15032 DISPLAY *H1,*V12,MSG

101

DATA3US 3 MASTER STATION FOR DATABUS 6

15041
15044
15047
15052
15054
15057
15060
15063
15065
15127

15130
15132
15163
15214
15220
15221

15222
15223
15224
15251
15274
15276
15277
15302
15305
15311
15315
15317
15322
15325
15326
15331
15333

15334
15336
15340
15342
15346
15350
15352

15354
15356
15360
15362
15364
15366
15370

15372

15374
15376

FLIP

ALTWO
TFW

PFAIL

EOTM
DONE

DIAL

DIAL1

DIAL2

DIAL
START

REWIND

SACK
SNAK

GETMSG

DIAL1
PFAIL
DONE
EOTM
FLIP
ALTWO
TFW
DIAL2

INQ

REW
HUP

MATCH ALT,ONE

GOTO ALTWO IF EQUAL
MOVE ONE,ALT

GOTO TFW

MOVE TWO, ALT

KSENSE

GOTO REWIND IF EQUAL
GOTO SACK

DISPLAY *H1,*Vv12,"*** PARITY ERROR ON TAPE***"

BEEP
GOTO FLIP

DISPLAY *H1l,*V12,"*** END OF TAPE ****"
DISPLAY *H1,*V12,*R,"END OF TRANSACTION"

SEND HUP, ADR
DSCNCT

STOP

DSCNCT
BEEP

KEYIN *H1,*V12,"PHONE NUMBER:",NUMBER
DISPLAY *H1,*V12,*R,"I'M DIALING",*R

DIAL NUMBER
CONNECT

sUB I1,11

ADD 1 TO I1

SEND INQ,ADR
RECEIVE 2,MSG
RETURN IF NOT ERROR
COMPARE 10 TO Il
GOTO DIAL2 IF LESS
KSENSE

GOTO DIAL IF EQUAL
GOTO DIAL1

STOP

102

DATABUS 3 MASTER STATION FOR DATABUS 6

15400 ACK
15402 NAK
15404 EOF
15406 PARITY
15410 EOT
15412 NUMBER
15414 #SG
15416 ADR
15420 TWO
15422 ONE
15424 ALT

15426 RXALT

103

DATABUS 6 SIMULATOR

- PROGRAM DATABUS 6 SIMULATOR
+ SIMULATES DATABUS 6 SEND FUNCTION WITH DATABUS 3

14400 1INQ INIT 5

14404 REW INIT 010

14410 Hup INIT 033

14414 ACK INIT 6

14423 NAK INIT 025

14424 EOF INIT 020

14430 RDY INIT “R“

14434 Lp INIT “L"

14440 ADR INIT “A“

14444 ONE INIT “1*

14450 TWO INIT “"2*

14454 sTATUS DIM 1

14460 MSG DIM 100

14627 RESPM DIM 10

14644 ADRR DIM 1

14650 MSGNR DIM 1

14654 TRAP EOF IF EOF2
14657 TRAP ANSWER IF RING
14662 REWIND CALL REWND2

14664 MOVE TWO TO MSGNR
14667 GOWAIT RECEIVE 45,RESPM, ADRR
14674 : CALL HANGUP IF TIME
14677 GOTO GOWAIT IF ERROR
14702 CMATCH ADR TO ADRR
14705 GOTO GOWAIT IF NOT EQUAL
14710 CMATCH ACK TO RESPM
14713 GOTO GETREC IF EQUAL
14716 CMATCH NAK TO RESPM
14721 GOTO GETREC IF EQUAL
14724 CMATCH REW TO RESPM
14727 CALL REWND2 IF EQUAL
14732 CMATCH INQ TO RESPM
14735 CALL SSTAT IF EQUAL
14740 GOTO GOWAIT

14742 GETREC MOVE RDY TO STATUS
14745 READ 2,MSG

14751 FLIP MATCH ONE TO MSGNR
14754 GOTO FLIP2 IF EQUAL
14757 MOVE ONE TO MSGNR
14762 GOTO SNDREC

14764 FLIP2 MOVE TWO TO MSGNR

14767 SNDREC SEND MSGNR,MSG
14773 GETRSP RECEIVE 45,RESPM,ADRR
15000 CALL HANGUP IF TIME

104

DATABUS 6 SIMULATOR

15003
15006
15011
15014
15017
15022
15025
15030
15033
15036
15041
15044

15047
15052

15054
15055
15056
15057
15060
15062
15065
15066
15071
15072
15075
15077

15100
15102
15104
15106
15110
15112
15114
15116
15120
15122
15124
15126

15130
15132
15134
15136
15140
15142
15144
15146
15150
15152
15154
15156

HANGUP
ANSWER

REWND2

EOF

EOF
ANSWER
REWND2
REWIND
GOWAIT
HANGUP
GETREC
SSTAT
FLIP
FLIP2
SNDREC
GETRSP

INQ
REW
HUP
ACK
NAK
EQOF
RDY
LP
ADR
ONE
™O0
STATUS

GOTO GETRSP IF ERROR
CMATCH ADR TO ADRR
GOTO GETRSP IF NOT EQUAL
CMATCH ACK TO RESPM
GOTO GETREC IF EQUAL
CMATCH NAK TO RESPM
GOTO SNDDREC IF EQUAL
CMATCH REW TO RESPM
CALL REWND2 IF EQUAL
CMATCH HUP TO RESPM
CALL HANGUP IF EQUAL
CMATCH INQ TO RESPM

CALL SSTAT IF EQUAL
GOTO GETRSP

DSCNCT
RETURN

CONNECT

RETURN

REWIND 2

MOVE LP TO STATUS

RETURN
SEND STATUS

RETURN
MOVE EOF TO MSG

GOTO FLIP
STOP .

105

DATABUS 6 SIMULATOR

15160
15162
15164
15166

MSG
RESPM
ADRR
MSGNR

106

11.4 DATABUS 4
11.4.1 Instruction Summary

Directives
DIM n
INIT "character string*
DIM *n
INIT *"CHARACTER STRING"
LENGTH (size)

Control
TRAP (label) IF (event)
GOTO (label)
GOTO (label) IF (condition)
GOTO (label) IF NOT (condition)
CALL (label)
CALL (label) IF (condition)
CALL (label) IF NOT (condition)
RETURN
RETURN IF (condition)
RETURN IF NOT (condition)
STOP
STOP IF (condition)
STOP IF NOT (condition)
CHAIN (svar)

String
MATCH (svar) TO (svar)
CMATCH (literal),(svar),n
RANGE (svar).,(literal),(literal)

Numeric Index Arithmetic
ADD (index) TO (index)
ADD n TO (index)

SUB (index) FROM (index)
SUB n FROM (index)

COMPARE (index) TO (index)
COMPARE n TO (index)

Keyboard, C.R.T., Printer I1/0
KEYIN (list)
DISPLAY (list)
PRINT (list)
BEEP
CLICK
DSENSE

KSENSE

Cassette Tape 1/0
READ (unit),(list)
WRITE (unit),(list)
REWIND (unit)

107

11.4.2

11.4.3

11.4.4

110405

PREPARE (unit)
BKSP (unit)
WEOF (unit)

Conditions

LESS
EQUAL
ZERO
EOS

Events

EOF1

EQOF2

EOT1

EOT2

FORM1 0ld Tape Format
FORM2 " " "
RFAIL1L New Tape Format
RFAIL2 " " "
CFAIL

User Area

I M
4K - 1400g bytes (6400g-7777g)
6K - 54008 bytes (6400g-13777g)
8K - 11400g bytes (6400g-17777g)
12K - 15400g bytes (6400g-27777g)
16K™- 214008 bytes (64008-377778)

Dictionaries

Compiler Machine
BK - 100 labels, 100 variables
12K or 16K - 125 labels, 125 variables

108

11.4.6 Interpreter Internal Structure

Databus 4 is layed out in memory as follows:

37771
ADDITIONAL USER AREA
16K
277717
ADDITIONAL USER AREA
12K
17777
ADDITIONAL USER AREA
8K
13777
ADDITIONAL USER AREA
6K
7777
USER AREA
4K
6400
TAPE BUFFER
6000
WORKING STORAGE
5700
INTERPRETER
1000
LOADER
0

109

11.4.7

06400
06410
06444
06452
06460
06465
06503
06507
06513
06524
06535
06550
06561
06572
06603
06614
06625
06631

06637
06677
06714
06720
06723
06725
06745
07001
07024

07045
07055
07061
07064
07074
07104
07110
07113
07123
07132
07137
07142
07152
07156
07161
07171
07175
07200

Sample Program

- PROGRAM PAYROLL DATA ENTRY PROGRAM

ENUM
ENAM
TITL
DEPT

DEPN
SSN
EN
SEX

DATE
HOUR

LSI
DLSI

BIRTH
STAX

CTAX
INS

FICNE
RESP

START

INPUT

INUM
ITITL

IDEPN

ISSN

IEN

DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM
DIM

w

Ll

WHE OOV O VO O = N WWwihw

KEYIN *H1,*V3,*EF,*H8, *PAYROLL DATA ENTRY":
*45, “"DATE (MMDDY) : “DATE

RANGE DATE, 060,071

GOTO START IF NOT EQUAL

PREPARE 2

DISPLAY *H1,*V3,*EF,“EMP #:",*H1,*Vv4:

“EMP NAME:",*H1l,*V5,"TITLE:",*H1,*V6,"DEPT:":
*H1,*V7,"# DEPN:",*H1,*V8,"SSN:":
*H1,*V9,"N/E:",*H1,*V10,“SEX:"

KEYIN *HS8,*V3,*EL,ENUM
RANGE ENUM,060,071

GOTO INUM IF NOT EQUAL
KEYIN *H11,*V4,*EL,ENAM
KEYIN *H8,*V5,*EL,TITL
RANGE TITL,060,071

GOTO ITITL IF NOT EQUAL
KEYIN *H7,*Vé6,*EL,DEPT
KEYIN *H9,*V7,*EL,DEPN
RANGE DEPN,060,071

GOTO IDEPN IF NOT EQUAL
KEYIN *H6,*V8,*EL,SSN
RANGE SSN,055,071

GOTO IDEPN IF NOT EQUAL
KEYIN *H6,*V3,*EL,EN
CMATCH "E",EN

GOTO IMF IF EQUAL
CMATCH "N",EN

110

DATABUS 4 PAYROLL DATA ENTRY PROGRAM

07204 GOTO IEN IFTNOT EQUAL

07207 IF KEYIN *H6,*V10,*EL,SEX

07217 CHMATCH "M",SEX,1

07223 GOTO INPT IF EQUAL

07226 CMATCH "F",SEX,1

07232 GOTO IMF IF NOT EQUAL

07235 INPT DISPLAY *H40,*V3,"RATE/HR:",*H40,*V4:
07256 “LAST INCR:",*H40,*v5,"DATE LAST "“:
07306 “INCR:",*H40,*V6,"BIRTH:",*H40,*V7:
07331 “STATE TX:",*H40,*V8,"CITY TX:",*H40:
07360 *Vg,"INS:",*H40,*V1O0,"FICA N/E:"
07404 TIHOUR KEYIN *H49,*V3,*EL, HOUR

07414 RANGE HOUR,056,071

07420 GOTQO IHOUR IF NOT EQUAL

07423 1ILSI KEYIN *H51,*V4,*EL,LSI

07433 RANGE LSI, 056,071

07437 GOTO ILSI IF NOT EQUAL

07442 IDLSI KEYIN *H47,*V6,*EL,BIRTH

07452 RANGE DLSI, 060,071

074556 : GOTO IDLSI IF NOT EQUAL

07461 IBRTH KEYIN *H47,*V6,*EL,BIRTH

07471 RANGE BIRTH,060,071

07475 GOTO I[3RTH IF NOT EQUAL

07500 KEYIN *H50,*V7,*EL, STAX

07510 KEYIN *H49,*V8,*EL,CTAX

07520 KEYIN *H45,*V9,*EL, INS

07530 1IFIC KEYIN *H50,*V10,*EL,FICNE

07540 CHMATCH "N",FICNE,1

07542 GOTO IRSP IF EQUAL

07547 CHMATCH “E",FICNE,1

07553 GOTO IFIC IF NOT EQUAL

07556 IRSP KEYIN *H45,*V12,"CORRECT?",RESP:
07575 CMATCH "N",RESP

07601 - GOTO INPUT IF EQUAL

07604 CMATCH “Y*,RESP

07610 GOTO IRSP IF NOT EQUAL

07613 WRITE 2,ENUM,ENAM,TITL,DEPT,DEPN,SSN,EN, SEX:
07625 HOUR, LSI,DLSI,BIRTH,STAX,CTAX,INS,FINCE
07636 WEOF 2 :

07640 ASK KEYIN *H45,*V12,*EL,"CONT?",RESP:
07650 CMATCH "Y",RESP

07661 GOTO INPUT IF EQUAL

07664 CMATCH "N",RESP

07670 GOTO ASK IF NOT EQUAL

07673 STOP

07674 START
07676 INPUT

111

DATABUS 4 PAYROLL DATA ENTRY PROGRAM

07700 INUM
07702 ITITL
07704 1IDEPN

07706 ISSN
07710 1IEN
07712 IMF
07714 INPT
07716 IHOUR
07720 1LSI

07722 1DLSI
07724 1IBRTH

07726 1IFIC
07730 1IRSP
07732 ASK
07734 ENUM
07736 ENAM
07740 TITL
07742 DEPT
07744 DEPN
07746 sSsN
07750 EN
07752 SEX
07754 DATE
07756 HOUR
07760 LsSI
07762 DLSI
07764 BIRTH
07766 STAX
07770 cTAX
07772 1INS
07774 FICNE
07776 RESP

112

11.5 DATABUS 5
11.5.1 1Instruction Summary

Directives
DIM n
INIT “"character string"
DIM *n
INIT "“CHARACTER STRING"
LENGTH (size)

Control
TRAP (label) IF (event)
GOTO (label)
GOTO (label) IF (condition)
GOTO (label) IF NOT (condition)
CALL (label)
CALL (label) IF (condition)
CALL (label) IF NOT (condition)
RETURN
RETURN IF {condition)
RETURN IF NOT (condition)
STOP
STOP IF (condition)
STOP IF NOT (condition)
CHAIN (svar)
ACALL (address)

Strina
MATCH (svar) TO (svar)
CMATCH (literal).,(svar),n
RANGE (svar),(literal),(literal)

Numeric Index Arithmetic
ADD (index) TO (index)
ADD n TO (index)

SUB (index) FROM (index)
SUB n FROM (index)
COMPARE n TO (index)
MOVE (index) TO (svar)
MOVE (svar) TO (index)

Keyboard, CRT, Printer I/0
KEYIN (list)
DISPLAY (list)
PRINT (list)
BEEP
CLICK
DSENSE
KSENSE

Cassette Tape 1/0
READ (unit).,(list)

113

11.5.2

11.5.3

11.5.4

11.5.5

WRITE (unit),(list)
REWIND (unit)
PREPARE (unit)

BKSP (unit)

WEOF (unit)

Conditions

LESS
EQUAL
ZERO
EOS

Events

EOF1

EOF2

EOT1

EQT2

FORM1 01d Tape Format
FORM2 " . »
RFAIL1 New Tape Format
RFAILZ2 " " "
CFAIL

User Area

I M
& - 1100g bytes (6700g-7777g)
6K - 5100g bytes (6700g-13777g)

8K - 111008 bvtes (67008-177778)
12K - 151008 bytes (67003-277778)
16K - 211003 bytes (67008-377778)

Dictionaries
Com Ma ine

8K - 125 labels, 125 variables
12K or 16K - 125 labels, 125 variables

114

11.5.6 Interpreter Internal Structure

Databus 5 is layed out in memory as follows:

37777
ADDITIONAL USER AREA
16K
2771717
ADDITIONAL USER AREA
12K
177717
ADDITIONAL USER AREA
8K
13777
ADDITIONAL USER AREA
6K
7177
USER AREA
4K
6700
WORKING STORAGE
6600
INTERPRETER
1400
TAPE BUFFER
1000
LOADER
0

115

11.5.7 Sample Programs

See the Databus 4 Sample Program.

PAGE 1 SAMPLE ASSEMBLY PROGRAM FOR ACALL INSTRUCTION

402 LABELS LEFT

LABELS NOT USED WERE: ENTRY
03534 DSPS
14003 ENTRY
14020 MESG
14000 SUBR

116

PAGE 2

140600

14000

14003

14004
14010
14012

14014
14017

03534

14020
14025

14032
14037

14000

SAMPLE ASSEMBLY PROGRAM FOR ACALL

104

020

066
036
046

106
007

101

040

040
101

000

020
050
013

134

103
124
115
107

003

056

007

101
105
105
105

030

114
123
123
203

+« ASSEMBLY
SET
SUBR JMP

ENTRY BEEP

HL

LD
LE

CALL
RET

DSPS EQU

114 MESG DC
124

123

END

117

INSTRUCTION

PROGRAM FOR DATABUS 5 CALL

014000

01400 FIRST STATEMENT MUST
BE JUMP BACK TO
INTERPRETER ENTRY POINT
THIS IS THE ASSEMBLY
SUBPROGRAM ENTRY POINT

MESG

40

11

DSPS
RETURN TO DATABUS INTER-
PRETER AT END OF SURBR-
PROGRAM

03534 DISPLAY ROUTINE IN
INTERPRETER

"ACALL TEST MESSAGE‘,0203

SUBR

12.0 DATABUS 6
12.1 1Introduction

DATABUS 6 is a system of programs designed to perform
data capture functions. It consists of an operating system,

which is run subsequent to depression of the RESTART key,
and a set of programs which perform the various functions.

12.2 Global Features

The PUNCH, APPEND, VERIFY, and EDIT programs run with a
similar appearance and use. A card column counter appears
in the middle of the top line of the screen and indicates in
which column the next character will be entered. There are
two lines of significant data on the screen. The bottom
line displayed will be referred to as the “"punch station”
and the one above it as the "read station" because of the
closeness of their functional analogqy to a conventional
keypunch. All data is entered in the "punch station“ which
is transferred to the "read station" when the end of the
line is reached. Data that is rolled out of the "read
station” is written on tape unless the DISPLAY key is
depressed at the time when the data is rolled out, in which
case it is discarded. This latter action is similar to a
‘conventional keypunch operator reaching up with his left
hand and removing the card as it is rolled up into the
stacker. Formatting of the input data 1is controlled by a
program control card in a manner similar to a conventional
keypunch. Control cards are generated through the use of
the PROGRAM command and are stored on the system tape. Up
to ten control cards may be kept on the system at one time
and all may be displayed by issuing the DISPLAY command. Any

one of the ten control cards may be selected for use at any
point by the PUNCH, APPEND, and VERIFY programs.

Control functions in PUNCH, APPEND, VERIFY, and EDIT
are achieved using the SHIFT key in conjunction with certain
letter keys. The letter used usually has mnemonic value (R
for release, D for duplicate, etc.) for easy recollection by
the operator. The shift key wused on the characters
UIOJKLM,.P will produce the diaits 1234567890 respectively
in emulation of a conventional keypunch numeric pad. Some
other keys will produce functions as denoted in the
following table. Any keys not mentioned above or below will
be ignored with a beep, letting the operator know he struck
an invalid key. The function of the following control keys
will become clear in the descriptions of the various
proagrams. If program names appear in parenthesis after a
control key description, it is implied that the control key
has validity only in those proarams. The EDIT program has an
implied program control card consisting of a field delimiter
in every zero modulo ten column (10,20,...,80).

118

_ Contreol Characters

R

D

n

Release the card.
Duplicate the next column only.

Copy to the next field delimiter on the program
control card.

Copy the whole card from the current column on.
Quit (ignored unless the column counter equals 01).

Wwaits for another character to be entered from the
keyboard. This must be a shifted “g*, Entering any
other character causes return to normal mode.
Entering an E will cause the program to quit without
reading the rest of the data from the front tape.
This is useful if the front tape has no end of file
mark or is deviant from the normal format in some
other manner. (EDIT)

Search for a record that matches the search key
(ignored unless the column counter edquals 01).
(EDIT)

Get the next data record from the front deck
(ignored unless the column counter edquals 01).(EDIT)

Turn on the program control card control. Program
control ON is the mode assumed when the proagram is
started. (PUNCH, APPEND, VERIFY)

Turn off the program control card control.(PUNCH,
APPEND, VERIFY)

Waits for another character to be entered from
the keyboard. This must be a diait or a space.
Entering a space returns to the normal entry mode
(an escape from program selection), whereas,
entering some digit will <cause the correspondina
program control card image to be read from the
system tape and used as the program control <card.
(PUNCH, APPEND, VERIFY) Note that if the PROGRAM
command has never been given for a specific control
card, the card will be empty (no field delimiters).
When the PUNCH, APPEND, or VERIFY proqram is
started, a program control card of all field
delimiters is assumed.

7 - Allow correction in the followina field. (VERIFY)

119

In addition to the above, the ENTER and ; keys perform
the SKIP function of the conventional keypunch. The BSP key
Will backspace one column unless the column counter is 01,
in which case a beep 1is sounded. The CANCEL key will
backspace until either the beginning of the card or a field
delimiter in the pProgram control card is reached. One may
enter a semicolon by striking the ° key (lower case to the
right of the P key), the < character by striking a {, and
the > character by striking the }.

12.3 Functional Descriptions

The DATABUS 6 operating system has a command
interpreter with syntax rules similiar to CTOS. There are
nine commands that may be issued. Entering an illegal
command will cause a response of "What?* after which a valid
command should be issued.

PUNCH allows data to be entered directly on the front
Cassette. The operating system will ask "New tape
in front deck?". At this point or before, the
operator should place in the front deck of the
machine a tape upon which there is no valuable
information. He should then depress the Y
followed by the ENTER key. Depressing N instead
of Y will return control to the operating system.
When the column counter appears on the screen,
the program is ready for data entry. If, upon
entering many records, the physical end of the
front cassette is reached, a logical end of file
mark will be written over the last record
written, the front tape will be rewound, and
control will be returned to the operating system.
To terminate the PUNCH operation, the operator
issues the Q command which will write the record
resting in the read station, follow it with a
logical end of file mark, rewind the front
cassette and return control to the operating
system.

APPEND performs the same function as PUNCH except the
operating system will ask "01d tape in front
deck?". At this point or before, the operator
should place in the front deck of the machine a
tape upon which data has previously been entered.
He should then depress the Y followed by the
ENTER kev. The operating system will position
the front tape after the 1last data record and
then pass control to the PUNCH programe. This
function allows the operator to append more
records to a tape already containing data.

120

VERIFY

EDIT

allows the nperator to verify information on a
data tape in the conventional manner. Upon

issuance of the command, the operating system
will ask “0ld tape in front deck?". At this
point or before, the operator should place in the
front deck of the machine a tape upon which data
has been previously entered. He should then
depress the Y followed by the ENTER Kkey. The
operating system will position the front tape to
the first data record. The first data record is
then read and displayed in the “read station”.
The operator then enters the same line from the
keyboard. Any discrepancy with the line obtained
from the front tape will be greeted with a beep
and rejection of the character from the Kkeyboard-
will occur. Correction of a field will be
allowed if the 2 command is 1issued. If a
character is changed, a beep will be sounded.
Chanqing characters will once again be disallowed
upon entering the next field. When the end of
the line is reached, the line entered will be
compared to the record obtained from the front
deck. If a change is detected, the record on the
front tape will be overwritten to reflect the
change. The next record is then read from the
front tape and the process is repeated until the
end of the front tape 1is reached (logical or
physical) or the Q command is issued. (Note that
two successive VERIFY’s must not be performed
without an intervening EDIT for physical record
realignment purposes.)

allows corrrection, addition, and deletion of
records that are on tape already containina data.
Operator action is similar to that required for
the APPEND function until the program beagins to
run. The program will position the front tape to
the first data record and the rear tape to a
scratch area. As the operator aqoes throuah the
records, they will be read from the front tape
and written on the rear tape. If the end of data
is found on the front tape (logical or physical
end of file), a blank line will be assumed for
the data. When the operation is concluded with
the Q0 command, the program will make sure that
all of the data has been copied from the front
tape to the rear tape (if the X command is given,
the rest of the data on the front tape 1is
discarded) and then rewind both tapes back to the
first record and copy the rear tape back tec the
front tape. If it is desired to have the updated
data put on a fresh cassette, the operator may
remove the old data tape from the front deck and

121

insert a new tape (need not be rewound or
prepared in any way) while the program is
rewinding the rear tape (performed with a slew
causing a considerable delay with long files).

The EDIT program uses a search key when it is
desired to search down the tape for a certain
record. The key is entered as a normal data line
except that two characters have particular
significance. The underline character (to the
right of the equals sign) will cause the
corresponding column in the record obtained from
the front tape to be assumed to match the key.
The vertical bar (shifted key to the right of the
P key) will cause the corresponding column and
all that follows in the record obtained from the
front tape to be assumed to match the key. After
the search key is entered, it will be resting in
the “read station“. At this point the operator
issues the S command (can be issued only when the
column counter is equal to 0l1) and the EDIT
program reads the front tape lookina for a record
that matches the search key. If a record does

not match, it is written on the rear tape and the
next record is read from the front tape. When an

unrecoverable parity error (in which case the
first column is set to a percent sign) or the
desired record is found, it will be displayed (in
the case of a parity error, whatever was read
will be displayed and the tape will be positioned
after the faulty record) and left resting in the
"read station" with the search key being
discarded. If the loagical or physical end of
file is reached, the tape will be left sitting
before the end of file marker and a blank 1line
assumed for the data. Note that the G command is
edquivalent to entering a search key consisting of
a vertical bar in the first column. At this point
the record may be corrected. If it is desired

that it be discarded, the operator must depress
the DISPLAY key when the record is rolled out of

the "read station”. Lines may be inserted at this
point by simply entering them. Lines may be

deleted by issuing the G command while depressing
the DISPLAY key.

Note that if the physical end of the rear tape is
reached while the edit is being performed,

control will be returned to the operating system.
If the operator wishes to recover the data on the

rear tape, he may use the DUPLICATE function.

122

DUPLICATE

PROGRAM

DISPLAY

allows the operator to transfer t he data
from the scratch area on the rear tape to a tape
in the front deck. If the end of tape is reached
on the rear deck, it will appear identically to a
logical end of file mark. If the end of tape is
reached on the front deck, control will be
returned to the operating system.

allows the operator to create up to ten different
program control cards for use in the PUNCH,
APPEND, and VERIFY programs. Upon enterina the
PROGRAM command, the operating system will ask
for a program number. Numbers allowed are the
digits 0 throuah 9. Note that characters
following the first will be ignored. The diait
entered will correspond to the one used following
the V command in the PUNCH, APPEND and VERIFY
programs. If it is decided that a new prodgran
control card entry is not desired, just striking
the ENTER key for the program number will cause
control to be returned to the operatina system.
After receivina a wvalid digit, the PROGRAM
function will position the system tape to the
location of the particular proaram control card
image involved and then display a form on the
screen which allows the operator to see in which
column he is entering his control information.
At this point, six entries are allowed:

SPACE - no control information

F - field delimiter

D - auto-duplicate

S - auto-skip

BSP - erase previous character entered
ENTER - end of card entry

F, D, and S have the same meaninqg as for a
conventional card punch but note that only one
may go in any particular column. At any point in
entering the control information, depression of
the ENTER key will cause any followina columns to
be assumed as spaces and the card to be written
on the system tape. Control will then be
returned to the operating system.

displays the contents of all the program
control cards on the screen. Two formatting
lines are written on the screen to enable the
operator to determine in which columns the
characters reside. Card zero is displayed as the
first line, one as the second, and so forth to
card nine as the last.

123

SEND

ADDRESS

sends the data contained on the tape in the front
deck over a communications line using DATABUS 3
discipline. Either a direct connection or the
switched network may be used for this - and the
system 1is capable of muti-drop operation on
direct connections. A sample DATABUS 3 program
is included which shows the coding necessary to
communicate with the DATABUS 6 program. Since
the SEND program accepts DATABUS format tapes,
any tape generated by any DATABUS may be sent by
it. Note that numeric items on the tape will be
converted to strings in the transmission process.
Error control is loagically complete (e.aq., the
telephone connection can be 1lost and -restored
without 1losing any information) and either
point-to-point or multi-drop operating procedures
can be used. The SEND program has an address for
multi-drop purposes which can be changed using
the ADDRESS function in the DATABUS 6 operating
system. When the SEND command is agiven, the
operating system will ask "0ld tape in front
deck?". At this point or before, the operator
should place in the front deck of the machine a
tape upon which data has previously been entered.
He should then depress the Y followed by the
ENTER key. The operating system will position the
tape to the first data record and then pass
control to the SEND program. The SEND program
will wait until it receives a command over the
communications line, answering the telephone if
ringing is detected and hanging up if no valid
messages are received within a period of 45
seconds. If an unrecoverable parity error on the
tape 1is encountered during the transmission
process, a special message will be sent in place
of the record to indicate that the error has
occurred. The tape is left after the bad record
so the other station may continue reading the
tape if so desired. Similar special messages are
generated for end of tape and end of file
conditions. The SEND proaram may be commanded to
hang up the telephone or rewind the tape and may
be requested to return a status message
indicating the state of the tape (positioned
before the first record or not).

allows the operator to change the address of
the communications routine (SEND program). The
letters A through 2 are valid addresses.
Depressing only the ENTER key will cause escape
from the ADDRESS function.

124

DATABUS 6 COMMUNICATIONS PROGRAM
12.4 Sample Programs
«DATABUS 3 PROGRAM
:TESTS DATABUS 6 COMMUNICATIONS WITH DATABUS 3

14400 1INQ INIT 5

14404 REW INIT 010
14410 HUP INIT 033
14414 ACK INIT 6

14420 NAK INIT 025
14424 EOF INIT 020
14430 PARITY INIT 021
14434 EOT INIT 022

14440 NUMBER DIM 15
14462 MSG DIM 100

14631 ADR INIT "A"
14635 TWO INIT "2"
14641 ONE INIT "1"
14645 ALT INIT "1"
14651 RXALT INIT "O"
14655 CALL DIAL
14657 GOTO START

14661 REWND SEND REW,ADR
14665 START SEND INQ,ADR

14671 RECEIVE 2,MSG

14675 GOTO START IF ERROR

14700 DISPLAY *H1,*V12,"STATUS: “,MSG
14717 CMATCH MSG, "R*"

14722 GOTO REWIND IF EQUAL

14725 CMATCH MSG, "N"

14730 GOTO REWIND IF EQUAL

14733 CMATCH MSG,"L"

14736 GOTO START IF NOT EQUAL

14741 SACK SEND ACK,ADR
14745 GOTO GETHUP
14747 SNAK SEND NAK, ADR
14753 GETHUP DSENSE

14754 GOTO GETMSG IF NOT EQUAL
14757 RECEIVE 2,RXALT,MSG
14764 SEND HUP, ADR

14770 CALL DIAL1

14772 GETMSG RECEIVE 2,RXALT,MSG
14777 GOTO SNAK IF ERROR
15002 CMATCH RXALT,ALT

15005 GOTO SACK IF NOT EQUAL
15010 CMATCH PARITY TO MSG
15013 GOTO PFAIL IF EQUAL
15016 CMATCH EOF TO MSG
15021 GOTO DONE IF EQUAL

125

DATABUS 6 COMMUNICATIONS PROGRAM

15024
15027
15032
15041
15044
15047
15052
15054
15057
15060
15063
15065
15127
15130
15132
15163
15214
15220
15221

15222

15223
15224
15251
15274
15276
15277
15302
15305
15311
15315
15317
15322
15325
15326
15331
15333

15334
15336
15340
15342
15344
15346
15350
15352
15354
15356
15360
15362
15364
15366
15370

FLIP

ALTWO
TFW

PFAIL

EOTM
DONE

DIAL

DIAL1

DIAL2

DIAL
START
REWIND
SACK
GETHUP
SNAK
GETMSG
DIAL1
PFAIL
DONE
EOTM
FLIP
ALTWO
TFW
DIAL2

CMATCH EOT TO MSG

GOTO EO™ IF EQUAL

DISPLAY *H1,*V12,MSG

MATCH ALT,ONE

GOTO ALTWO IF EQUAL

MOVE ONE,ALT

GOTO TFW

MOVE TWO,ALT

KSENSE

GOTO REWIND IF EQUAL

GOTO SACK ,
DISPLAY *H1,*V12,"*** PARITY ERROR ON TAPE ***"
BEEP

GOTO FLIP

DISPLAY *H1,*V12,"*** END OF TAPL ***%
DISPLAY *H1,*V12,*R,"END OF TRANSACTION"
SEND HUP, ADR

DSCNCT

STOP

DSCNCT
BEEP ‘

KEYIN *H1,*V12,"PHONE NUMBER: " ,NUMBER
DISPLAY *H1,*V12,*R,"I°M DIALING",*R
DIAL NUMBER

CONNECT

SuB I1,I1

ADD 1 TO Il

SEND INQ,ADR

RECEIVE 2,MSG

RETURN IF NOT ERROR

COMPARE 10 TO Il

GOTO DIALZ2 IF LESS

KSENSE

GOTO DIAL IF EQUAL

GOTO DIAL1

STOP

126

DATABUS 6 COMMUNICATIONS PROGRAM

15372
15374
15376
15400
15402
15404
15406
15410
15412
15414
15416
15420
15422
15424
15426

INQ
REW
HUP
ACK
NAK
EOF
PARITY
EOT
NUMBER
MSG
ADR
T™O
ONE
ALT
RXALT

127

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127

