e
e

Ko

g

SIMPLIFIED USER’S GUIDE

For Cassette, Diskette, and Disk Systems

DATAPOINT CORPORATION

DATABUS
Simplified User’s Guide

The text in this manual was entered, edited, and typeset using a Datapoint 2200 with a
phototypesetter and the Scribe Text Processing Program.

Manual No. 50004

Revised February 1976

Copyright®1976 by Datapoint Corporation
Printed in U.S.A.

The "D” logo. Datapoint. Datashare, Dataform. Databus, Datapoll. Scribe, and The Leader in Dispersed Data Processing
are trademarks of Datapoint Corporation. Registered in the U.S. Patent Office.

FORWARD

A Universal Language

Datapoint processors are scattered throughout the world, meeting the
needs of thousands of users. Each of these applications is unique, yet
one key element can tie them together -- the DATABUS language.
DATABUS is one of a variety of computing languages, including
DATAFORM, RPG, and BASIC, available for use on Datapoint systems.
DATABUS is a total business programming language that lets you fully
utilize all of the capabilities of your particular Datapoint computing
system. Whether you are using a Cassette 1100, Diskette 1100, 2200
processor, or a 5500 processor, DATABUS is the computing language
that can solve many of your computing problems.

Because DATABUS is a high-level language, many of the detailed
programming aspects of computer usage are taken care of by the
DATABUS compiler, leaving you to code your programming application
in simple, English-like statements. DATABUS enjoys a special status in
the Datapoint family of computer languages because it constitutes a
powerful and sophisticated tool in the hands of a professional
programmer and at the same time permits easy mastery and use by the
non-professional programmer, such as a business executive, for
applications essential to his job duties.

DATABUS is not only one of several languages available for
single-user computing applications, but it also is the computing
language used in all DATASHARE applications. DATASHARE is
Datapoint’s business timesharing system that can enable up to 8 or 16
users to simultaneously access the computing capabilities of a single
2200 or 5500 processor.

This book is written primarily for the once-in-a-while programmers
who find it convenient and useful to be able to solve computing
problems with an easy-to-use small business computer, such as a
Datapoint 2200. However, it also provides a quick introduction to the
language for experienced programmers. The study of this text should,
in a short time, allow you to create and operate your own programs on
a Datapoint system and will, at the same time, give you a much better
"feel” for your company’s total computing operation. Computers are, of
course, such an integral part of today's business world that it is
difficult to function effectively as an executive without knowledge of
how they operate, their potential, and their limitations.

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

—_

Table of Contents

How 10 Use This BOOKcccocviiiiiicicicc e 1
A Word About DATABUS.
About Business Programming

Programs and Files

Programming is Only Half the Jobc.ccocooevennn. 4
The Business Organization............cccccoevevieverieieiececciene 4
People are the Critical Ingredient...........c.coooeeveveeeceeneeen 4
FIOW Chartingco.cooouiiiiiiieeceecseet et s 5
DATABUS Lesson 1 - Displaying on the Screen...........ccoccooveneae. 11
The DISPLAY Instructioncccccoeeenn. .13
Cursor Positioning........... .15
A Few More Examples... .15
Chapter SUMMArY ..ot 18
PrODIEMS .ottt 18
DATABUS Lesson 2 - Using the Keyboard for Data Entry............. 19
The KEYIN INStrUCHION ettt 21
Label RUIES..ccuiiieiici ettt sttt
"Initialized” Labels
More on KEYIN......
Chapter Summary .. .
LR Ce] o= 5o F- TP
DATABUS Lesson 3 - Printing the Data........cccnnininnininnnee 29
The PRINT INSTrUCHON. e 31
A Printing Program ... ennnercecesneneeresesereerensneeseseones 32
Chapter SUMMANY ...t s es e 34
ProDIEMS ... 34
DATABUS Lesson 4 - Arithmetic.................... e 35
FORM Reserves Space for Numbers................ .37

The Arithmetic Operations..................
Constants Can Also be Used

Here are Some Precautions42
Chapter SUMMANYccccoovumrirerreeeeeeseeeseeeseess st sesssssseseenses 43
PTODIBM ..ottt 43
DATABUS LeSSON 5 = LOOPS......ccoviieieieeeieseeeeieee e seseenesseseresssssnens 45

Conditional Loops
COMPARE is Used with NUMErICS........cccoovciviieeeceeeeeeine 49
MATCH is Used with Characters.

Beeping......ccuu....
Chapter Summary .. .53
PrODIEMS ...ttt ettt eas 53
DATABUS Lesson 6 - Disk Operations........c..ccocovevercevereseccenenennnenns 55
Each Disk Contains FileS........ccoiveiiiciiieieciieerereee e 57
A File is a Collection of Records........cccccevecereenrecevrcreensnennen. 57
It’s Easy to Read From and Write t0 DiSKccccoccorecrvnrnnnnnas 58
A Program to Read Data From Disk........cccmercorvcinanennd 61
A Program that Writes and Readscccoomvcnccrnnnennennd 63
Adding Data to the File....c......... .65

Chapter Summary
PrODIEM . ettt 68

CHAPTER 9 DATABUS Lesson 7 - Using Subroutinesccccevvvcinieninnniennnnn§ 69

Linking Up with other DATABUS Programs.......ccceivnienas 72

Common Data Aras.........cccoeiciiiiiiiie e 72

Chapter SUMMAIY.......ccooeiininiieceeree e e 73
CHAPTER 10 Running Your DATABUS Programcccooveeiiinicinicneencinccons

Step 1 - The DBCMP Program.................
If You've Got a Diskette System
If You've Got a Cartridge or Mass Storage Disk

SYSEEM L.ttt 79

Step 2 - Type in the Program ... 80

Step 3 - Compile Your Program Error Messages................... 82

Step 4 - Run Your Programi........ccoeneiiiicenieenneens 83

Step 5 - Fix Your Program...........cccceveevenenieneninieeeeeeeie e 84

General Hints ... 84

CHAPTER 11 For DATASHARE USErScccooviiieiviceee st 85
What is DATASHARE?............. .87

The DATABUS Compiler87

The DATASHARE Interpretercoooveiecvneeeineeeeeee e 87

Put the Programs on Your DisK..........cccovmeriiermnnnnenicnens 88
Set Up ANSWER AND MASTER Programs..........cccoeeeenunen. 89
The ANSWER Program
The MASTER Program

The DSCON Programccceeciieieiieirenierecene e seeecseeeeeiceee
DATASHARE System Operation
Taking Down the Systemi.......cccoicrcnincii i
CHAPTER 12 DATABUS 2 - For Cassettes
Part 1 - Language Differences
Label Differences ...
KEYIN and DISPLAY Differences........ccoovvvviiinnanns 99
Constant Data Values........cocvriiiiiiiiniiiee 100
Data Storage Statements ..., 101
Part 2 - Data Storage on Cassette Tape..........ccciiinee 101
A Few GUIdelineS........ccoviieniiiiiicere e 101
Writing Data to Cassette Tape102
Reading from Cassettes104
How Data is Stored on Cassettes ... 105
Updating the File ..o
Part 3 - Running the Program
Step 1 - Type In and Edit Your Program................. 110
Step 2 - Compiling Your Program ... 113
Compiler Error Messagesccovvrrvecinennen. 114
Step 3 - The Interpreter
File Numbers ...

The Interpreter

APPENDIX A - INSTrUCHION SUMMAIY oottt s r st era s e
Syntactic Definitions
DATABUS 11 Language Summary........ciienannrieiien 120
DATABUS 2 Language SUMMAry ... 122

APPENDIX B - Editor COMMEANAS oottt ettt 125

CHAPTER ONE

How to Use This Book

This book does not cover all of the capabilities of DATABUS, nor is
it intended to make you an expert programmer. Only fundamental
concepts are covered, though enough insights are given to allow
further study by reference to the DATABUS User’s Guide. When you
are through, you should be able to create a program of your own for
any practical business purpose.

Chapters 2 through 9 are basic lessons in DATABUS programming
concepts. Chapter 10 deals with actually typing in and editing and
compiling a program so the Datapoint processor can accept and run it.
It is not necessary to read the entire book, for instance, if all you want
is to display a message on the screen. The first lesson will arm you
with enough knowledge to do that. Then you simply skip over to
Chapter 10 to learn how to type in and compile and run your program.

Chapter 11 is provided for DATASHARE users. It provides you with
the basic knowledge so you can set up and start running a
DATASHARE system.

Read as much as you need. If for some reason you really get
hooked, write for a copy of Advanced Techniques in DATASHARE and
the DATABUS Reference Manuals. This Simplified User’'s Guide is
intended to give you a start towards becoming a more confident and
competent DATABUS user.

The DATABUS language covered in these chapters is the DATABUS
language used in all disk-based systems. Users interested in using
only cassettes should check Chapter 12 for the particulars of cassette
DATABUS.

A Word About DATABUS

DATABUS is a high-level business-oriented programming language
developed by Datapoint. Although similar to other high-level languages
such as COBOL, DATABUS takes advantage of the processor
architecture to provide simple programming and fast running programs.

To run a DATABUS program, you must first type in the English
language style instructions. Then the DATABUS compiler translates
these instructions into machine readable code. The last step involves
the use of the DATABUS interpreter. The interpreter loads the machine
code into the computer’s memory and actually executes your program.

While most languages use only a compiler or an interpreter,
DATABUS takes advantage of the features of both.

About Business Processing

Programs and Files

Business data processing deals primarily with creating files of
information, such as a personnel file, and then creating programs that
act upon those files to provide other information on a report. An
example would be a payroll program that operates in conjunction with
the personnel file to produce paychecks. Other programs may use the
same personnel file to provide reports indicating current personnel
status.

With this in mind, business data processing shouldn’t be considered
as just programming - it is a combination of data files and programs.

The two, while distinct, aren’t separable. The prospective business
programmer should view business processing as two aspects rather
than simply a program. Many business systems are clumsy in
operation due to an inefficient file structure.

PROGRAMS

PROGRAMS USE THE CONTENTS OF FILES TO PRODUCE REPORTS

Programming is Only Half the Job

A professional business programmer will probably admit that 50
percent of a workday is spent discovering what management wants
done. The other half could be accounted for as actual programming.
Why so much non-programming time? A typical request from a
company manager might require a summary of all parts selling for over
$50.00 currently stocked in inventory. The programmer will then ask
how the print-out format should look, does the manager want all the
description of the part, is the quantity on-hand needed and should the
report be alphabetically listed or in order of ascending part number?

If several people are involved in the operation, the programmer
might have to consult with each. Many managers are accustomed to
dealing only with clerks who are familiar with their operations and can
usually guess what type of information is needed. The programmer
generally doesn‘t have this load of familiarity and must investigate the
requirements thoroughly before beginning any programming task.

The Business Organization

Many business operations are informally organized with each
paperwork decision made by a number of administrative or clerical
personnel. Many of these organizations have been shaken when a
computer attempts to learn the various rules and procedures that
weren’t well defined in the first place. People, unlike computers, tend
to learn their tasks almost by osmosis and can handle the internal
politics and exceptions that are inherent to all business paper systems.

People are the Critical Ingredient

As you become an accomplished business programmer, keep in
mind that it's still the people that count the most. Attention to the
needs of the people who operate and make use of your system will be
the factor that makes your system productive or a bust, no matter what
the particular features of either the equipment or software may be.

CHAPTER TWO

Flow Charting

Flow charting is a method of schematically illustrating a thought
process. Flow charting is an essential prerequisite to effective
programming. Using the simple flow charting symbols, a programmer
can outline and visualize how a program should work. Entire books
have been written about flow charting, but we need only deal with the
basics.

You should be able to define almost any task by using five
fundamental flow chart symbols. If your flow chart contains enough
detail, your program should almost be a step-for-step textual replica.
Simple programs do not always require a flow chart but, at the onset
of your programming career, flow chart everything.

FLOW CHART ESSENTIALS

* {

ADD CURRENT -
BALANCE AMOUNT 0
TO AMOUNT OF PQESENT AMOU&T
DEVST (N
; Y
A DECISION VAT /007%7’
DIANMIOND A STATEMENT REZTAMBLE FARALIELOGRAM

2 M/mwAA/méé SHRT A
ND LOOF STOF BALLY
/—’az A/OTES HILOONS

Using these symbols, you can plot, in a step-by-step fashion, any
decision-making process. All possible decisions must be charted along
with all of the factors that add up to those decisions. Note that no
two things can happen at the same time; instead, everything is done in
steps.

The following examples offer some insights into the logical thought
processes that make up a flow chart.

5mmavreoxa‘ LEAVE OFFICE
o] DRWE NORTH
ON HWY [0

DECISION 4MMRS
HOUSE 4 DRIVE
‘ KEEP GoING-)
A
M

e
FARK +

CoME IN !

FRED'S FLOW CHART MAP TO HIS HOUSE

Fred could have added more to his flowchart map to cover someone
getting lost, or a flat tire, or another calamity, but enough detail has
been shown to demonstrate the pains one must take to insure clarity
and to assure that events are taken in their logical order.

Note also that we must take one step after another to make sure
our plan fits the task at hand. If you’re the kind of person who
outlined all his school reports before writing them, you’ll have no
trouble with programming.

Problem: Flowchart the process of withdrawing money from your
checking account. Check for overdrawing. Use decision diamonds and
statement boxes.

Solution

GET CURRENT BALANCE
FRoM FlLg

Checking Account
Withdrawal Flow Chart / EWND OUT AMOUNT /

OF CHECK

15
CYRRENT BALANCE
LARSER THAN

CHecK ¥

/ DIsSPLAY " CHECKL /
Y 15 OK*

DispLAY ' THIS CHECK

Mo

IS’ A BUMMER DO
NOT CASH! SUBTRACT CHECK N@_Awa
FROM BALANCE.
UPDATE BALANCE

DISPLAY AMOUNT
OF NEW LANCE

10

NOTES

CHAPTER THREE

DATABUS Lesson 1
Displaying on the Screen

The DISPLAY instruction allows you to display information on the
screen of your Datapoint processor. These messages are essential to
all DATABUS programs because they provide an easy and effective
method for observing the operation of the computer and they will let
you know what stage of the program you are in.

The DISPLAY Instruction

With this in mind, we’li write a short program to put some text on
the screen, which is 12 lines deep by 80 columns wide. You can put
your message anywhere you like.

Incidentally, you’ll see the word ‘“‘cursor’” frequently. It's shorthand
for the across-and-down position in which the letters will appear on the
screen.

Let's write a short program to put a message on the screen. We
can even flow chart it. By the way, as you study this booklet, leave
lots of flow charts lying around your desk and on lunch napkins.
Before you know it, you’ll be considered the staff expert on computers.

PREFPARE THE DISPLAY
mm

POSITION THE CURSR
To DF’PE\Z u:FT HANI?
E[?ASE mao

DISPLAY "
“THIS 1& THE MESHGE

Now that we have the flow chart, we'll jump ahead and write the
program even before you know the rules.

DISPLAY *ES,”THIS IS THE MESSAGE"
STOP

Not too bad, right? Remember that the computer reads the
instructions from left to right and executes each operation as it comes
to it.

See how obvious DATABUS instructions can be? The cursor
position for the message is defined by the *ES command. *ES tells the

13

14

computer to erase the entire screen and position the cursor at the
upper left hand corner. It's a good idea to erase the screen, or at
least part of it, before you display a message to wipe out old love
letters or whatever was left on the screen when you arrived.

The quotation marks around the message itself tell the computer
what is to be displayed. Since the quotes indicate where to start and
stop displaying, you shouldn’t use them as part of your message.

The following illustration shows what our short program will
produce. Notice that once we have defined the beginning cursor
position, the rest of the message falls into place after it and no further

definition of the cursor position is necessary. S

i go
e
1| THIS IS THE MESSAGE)
the Cursor /oasit/on tels where
the first letter of the messdge.
will appear
v
_ /

THE DATAPOINT PROCESSOR DISPLAY SCREEN

If this is confusing, let’'s compare the program to the flow chart.
The flow chart remains the same except that it's now written
horizontally for easy comparison to the actual program.

PREPARE THE Pos‘wezﬂm i ND DisPLAY “THIS
U
DAy SereeN [T&mfgﬁé‘m 1 1S THE MESHAGE’

Flow charts can be very helpful, as you can see, if you include
enough details. Once you fully grasp the concept, your flow charts will
be more abbreviated.

You’'ll see that the example programs have a STOP instruction at the
end. This tells the computer that there are no more instructions and to
stop running this program.

Cursor Positioning

What if you don't want the cursor positioned at the upper left-hand
corner of the screen? You can move the cursor to any position on the
screen using other cursor positioning controls.

The *P control positions the cursor to a particular place on the
screen. You can specify that position in the following manner:

{dg eolon sepprates e tup valvss
ﬂr/.s /IGQ ‘j
’-"vfé /’%lffm k—- This Specifies the line
C colomn)
1 18 20
I
Ay
3 AR
zhe corsor will
Sppesr here
12

\- J

The *EF control erases the screen from the current cursor position.

So, for example, to erase the bottom half of the screen, use this
DISPLAY statement:

/5 cofumny 6t poro

DISPLAY P |: b, ¥EFw—S ~6vdse therest
of the serees,

The *EL control erases the rest of the line starting from the current
cursor position.

The *N control positions the cursor at the beginning of the next
line.

And, finally, the *R control makes the screen roll up (the characters
in row 12 move up to row 11, the characters in row 11 move up to
row 10, etc., and the characters in row 1 are lost).

A Few More Examples

To see how these controls can be used, let's look at some more
examples.

Let's write a program to display a more complex message. Look at
the program and then look at the resulit.

15

16

DISPLAY *ES,”HELLO THERE!",*P20:6:
“THIS IS THE MIDDLE",*P30:12:
“THIS IS THE END”

STOP

! 20 30 ﬁ\
(n—a.w THeRE |

b THIS 15 THE MIDDLE

12 . THIS 1S THE END
— J

THE DATAPOINT PROCESSOR SCREEN

Did you notice that there was a colon () at the end of the
program’s first sentence? That colon is a handy little device as it
allows you to write instructions that are longer than the space of a
single line. In effect, the colon tells the computer to “keep reading”.

If it weren't for the colon, we would have to write it this way:

DISPLAY *ES,”HELLO THERE!"
DISPLAY *P20:6,THIS IS THE MIDDLE"
DISPLAY *P30:12,THIS IS THE END"”
STOP

Not only is the short method using the colon faster to write, but it
also saves processor time! Use the colon and one lone DISPLAY
statement rather than several short DISPLAY statements.

You're almost finished with DISPLAY, but we should cover one more
thing. Every time the computer finishes a DISPLAY statement, it
automatically sends a carriage return (CR) and line feed (LF) to the
screen. The names imply the same operation that occurs when you hit
the return key on a regular typewriter. Unless told otherwise, the
cursor jumps to the beginning of the next line. This example should
help explain things.

DISPLAY *ES,”MARY"”
DISPLAY "HAD"
DISPLAY "A”
DISPLAY "LITTLE"”
DISPLAY "LAMB”
STOP

1 80

] (MAﬁY A
HAD
A
utne
LAMB
The avtomatic. CRILF of the
DISPLAY instruction pyts each
werd on 3 ned [ine.
12 \ J

THE DATAPOINT PROCESSOR SCREEN

At some time, you might not want this to happen. You might want
to leave the cursor where it was for one reason or another. If this is
the case, end the DISPLAY instruction with the semicolon (;). This
cancels the automatic CR/LF function.

DISPLAY *ES,”"MARY "
DISPLAY "“HAD *;
DISPLAY "A "
DISPLAY “LITTLE
DISPLAY "“LAMB ”

STOP
[20
1 /MAW HAD A LITTLE LAMB \
The semicolon deletes the
automatic, CRILF ynction
" J

THE DATAPOINT PROCESSOR SCREEN

Naturally, we could have written the sentence on the screen
originally by putting the entire thing in one program sentence, but you
can see how the semicolon works. Notice that each word after
DISPLAY has a space after it. This was done so that we wouldn’t end
up with something like MARYHADALITTLELAMB, which is perhaps
economic in space but aesthetically unappealing.

17

18

That's it.

jump to Chapter 10.

Chapter Summary

Problems

DISPLAY
*Pc:d
*ES

*EF

*EL
*N

*R

"MESSAGE"

STOP

If all you want to do is get something on the screen,

The screen instruction

The cursor position in column ¢ line d
Erases screen and positions cursor to
upper left corner

Erases the rest of the screen from the
current cursor position

Erases to end of line

Moves cursor to the beginning of the next
line

Moves all lines up one and the top line is
rolled off the screen

Message must be bracketed by quotes
(programmers call this a literal)

Allows some instructions to continue to
another line

Suppresses automatic carriage return and
line feed in DISPLAY instruction

The end of the program

1. Write a program that will erase the screen and then display your
name in the center of the screen.

2. Problem 1, but erase it after you write it, then write it again.

Solutions

1.

DISPLAY *ES,*P33:6,”ATTILA THE HUN"

STOP

DISPLAY *ES,*P33:6,”ATTILA THE HUN";
DISPLAY *P33:6,*EL,”ATTILA THE HUN"

STOP

or

DISPLAY *ES,*P33:6,”ATTILA THE HUN"
DISPLAY *ES,*P33:6,"ATTILA THE HUN"

STOP

CHAPTER FOUR

DATABUS Lesson 2
Using the Keyboard for Data Entry

If you have ever sat in on any Datapoint demonstrations, you know
that the keyboard provides one of the primary means of communicating
to the processor what it is you wish done. You also know that if the
program running in the Datapoint computer is written so as to ignore
the keyboard, you can pound on the keys forever and still have no
effect on the computer’s actions.

it's evident that, like the display screen, the keyboard must be
recognized by the computer in order to enter data. The Datapoint’s
keyboard is almost identical to that of a standard office typewriter with
the addition of an adding machine keyboard (numeric pad) and five
special function keys. Upper and lower case letters can be used, from
the keyboard and to the display screen.

The KEYIN Instruction

With the DISPLAY instruction, we had our messages all neatly
tucked between the quotes, and we effectively reserved space for the
message when the program was loaded into the computer.

KEYIN - the term for keyboard entered information - is somewhat
different. You don't know exactly what an operator might type in as a
response to a question. But space must be reserved to accommodate
this incoming data. For instance, if the operator was to answer a
query regarding a person’s name via the keyboard, and that person’s
name was Harold Joy Hupmobile when the longest name you had
planned for was Bill Ford, Harold would lose some of his name
because the program would not accept such a long name.

How do we reserve space for incoming data? Simply by staking a
claim on some space and putting a name on it. Many programming
books use the analogy of the mailman’s pigeon hole sorting-case with
addresses indicated for each “hole”.

That's pretty close, and you should keep the idea of a space with a
label on it in mind.

We'll get back to the problem of reserving space after we examine
the KEYIN instruction.

KEYIN shares several traits of the DISPLAY instruction so, aside
from the new concept of storing the incoming keyboard data, much of
this concept will be already familiar to you.

Let’'s write a short program to ask the operator to type in his name.
Since we're still fairly new at this game, a flow chart will help organize
the task and will also impress any onlookers that this must be a very
erudite and technical booklet.

And, for fun, we’ll display back to the operator what his name is, as
if he didn’t know.

21

22

FLOW CHART @

RESERYE SoME SPACE,
40 CHARACTERS LONG;
AND CALL [T NAME

ERAGE THE SCREEN
AND DISPLAY ON THE SCREEN
"NAME PLEASE 7"

ACCEPT THE TYPED-IN
INFORMATION AND STORE,
IT IN NAME

Y

JusT FoR.FUN), DISPLAY THE,
OPERATOR'S NAME IN THE
LOWER. RIGHT 00

You probably have noticed that this program doesn’t accomplish

anything useful but it should serve as a good example. Look at the
instructions:
thisis s NAME DIM 40
/2';5 DISPLAY *ES,NAME, PLEASE?"
’ KEYIN *P15:1,NAME

these are DISPLAY *P40:12,NAME

thstroclions STOP
Now look at the result of the program:

| 5 40 80
! /NAME MEASE? BETSY RosH \

the vser typed this in

the program displayed
thege 757

\ BETSY ROSS

THE DATAPOINT PROCESSOR SCREEN

Let's look at the program and find out what happened. Notice the
NAME DIM 40 statement. This looks complex, but the end result is a
space labeled NAME with room for 40 characters. You might think of
this as ‘’dimensioning’”” a space in the computer called NAME to allow
for a typed input of up to 40 characters.

The DISPLAY instruction should be an old friend by now. Note that
we cleared the screen with a *ES and asked the question.

Look closely at the KEYIN instruciton. *P15:1 should be familiar to
you from the DISPLAY instruction. This tells the computer where on
the screen the user is to enter the data. But, instead of a message in
quotes, we now have the label NAME. Several things happen here and
all are important.

First, the NAME label has been previously defined in the NAME DIM
40 statement. The KEYIN instruction loads the data into that reserved
space.

Secondly, when keyboard data is required from the user, the cursor
actually is visible as a flashing rectangle beginning at the spot defined
by the *P position coordinates. As the user types in his name, the
flashing cursor automatically moves over to indicate the next adjacent
character position.

Thirdly, if the operator attempts to type in more than 40 characters,
including punctuation and spaces, the cursor will halt in the fortieth
space and the Datapoint will emit an audio "beep” to indicate that the
limit of the space allowed has been reached.

Lastly, the user tells the computer that he’'s finished entering the
name by tapping the ENTER Key. The flashing cursor will disappear,
and the name will be loaded into the label NAME. Up until the time
the ENTER Key is pressed, the name can be modified by use of the
CANCEL or BACKSPACE Keys.

HORIZONTAL FLOWCHART AMD PROGRAM FoR KEYIN INGTRUCTION EXAMPLE™

SETOP LABEL ERASE SCREEN YRED- DIspLAY THE
40 CHAR. LoNG- -3/ DiSoLAY “NANE L/ * (S IAA S CONTENTS OF
CAULED NAME PLEASE?” LOAD T IN NAME, NAME

& NAME

AY XES, “NAME,PLEASE?"
KBYIN *PIS: | NAME

DIspPLAY ¥ P40: 12, NAME
sToP

Label Rules

One more thing. Did you notice that the DISPLAY *P40:12,NAME
instruction had no quotes? In this case, we wanted the contents of
NAME displayed. No quotes are necessary. They are only needed
when we want a specific message displayed. More on this later. As
you can see, the use of labels provides considerable power. Here are
some guidelines concerning labels or categories of data, since you'll
undoubtedly want to make up some labels of your own:

23

24

LABEL RULES

No more than 8 characters

Begin with an alphabetic character

c. Don’t use the same name twice - you’ll confuse the
computer

d. All labels must be written at the first part of program

o

GOOD LABELS LABELS THAT WON'T WORK
LOOP 73SKDO (begins with a number)
TESTDATE FIRSTNAME (too long)

C125 HHELP (illegal first character)

If nothing else, labels can save a pile of work, and you should
become familiar with them. We've discussed the DIM or “dimension”
labels, and there’s one more that’s very useful.

MESSAGE INIT ""NAME, PLEASE?”
NAME DIM 40
DISPLAY *ES,MESSAGE
KEYIN *P15:1,NAME
DISPLAY *P40:12,NAME
STOP

“Initialized’’ Labels

This program produces exactly the same result as the earlier
example. The label MESSAGE has been “initialized” by the INIT
statement to contain a specific message. The DISPLAY instruction
finds MESSAGE and displays it’s contents; in this case, the message
"“"NAME, PLEASE?"”

At first glance, it appears that there is only a slight difference
between the DIM and INIT statements. It is an important difference,
however, and bears scrutiny.

If you write NAME DIM 40, the computer saves 40 character spaces,
fills them with the equivalent of blanks and attaches to them a label, in
this case, NAME. We primarily use this when incoming data is to be
stored, such as keyboard inputs.

If we wrote NAME INIT “"GEORGE GORDON", the computer reserves
a space of 13 characters (12 characters plus the blank space which
counts as a character) and places GEORGE GORDON in those spaces.
The INIT statement is very handy when you might want to display one
message many times during a job. By using INIT and the label, you
only have to define it once and then simply call it by its name, which
is the label. Data can be loaded into an INIT space just as with a
DIM, but once you've done that, the original message or data is lost.

More On KEYIN

Most programming languages contain an assortment of shortcuts that
allow a system programmer to produce more work over a given amount
of time. DATABUS is no exception. The following example illustrates
a shortcut that can be done by means previously explained, and if a
substantial task is planned, this technique might save time.

By this time you‘re familiar with our enter-your-name program:

NAME DIM 40
DISPLAY *ES,”NAME,PLEASE?”
KEYIN *P15:1,NAME
DISPLAY *P40:12,NAME
STOP

We can write this same program and save a step by using KEYIN’s
power of display.

NAME DIM 40
KEYIN *ES,”NAME,PLEASE? " ,NAME
DISPLAY *P40:12,NAME
STOP

That's pretty strange, right? But the result is still the same. But
now we have eliminated one of the DISPLAY instructions and made
KEYIN do the work.

To understand this, simplyﬁremember that if you write something
between quotes in the KEYIN instruction, it will be displayed, and the
cursor will appear immediately after the displayed text and await the
user’s response.

Why have this feature in KEYIN? Many application programs involve
a fill-in-the-form technique, and this helps speed up the process.
Here’'s a short program that asks the name and address of the user.

NAME DIM 20
ADDR DIM 20
CiTY DIM 20
STATE DiM 15

KEYIN *ES,"NAME: "“",NAME

KEYIN *P40:1,”ADDRESS: “,ADDR

KEYIN *P40:2,”CITY: “,CITY:
"STATE: ", STATE

STOP

Aside from the labels, the program uses only one type of instruction.
This is confusing but follow through the KEYIN instruction. Notice that
it displays and then waits for the operator to keyin the information.

25

26

The result appears as this:

i 40 80
I (NAN\E: GEORGE JONES ADDRESS: 105 RoCK ST, \
CITY: BOULPER STATE | COLORADO

The KEYIN instructions yield
an elfective olata entry program

G\ Y

THE DATAPOINT PROCESSOR SCREEN

We used the display power of KEYIN to show the operator the
questions. Note that the colon used was inside the quotes - don’t
confuse it with the colon that allows you to write instructions larger
than one sentence. The second and third KEYIN instructions did not
start with a positioning control. Why? The auto CR/LF function put
the cursor at the beginning of the next line.

Chapter Summary

KEYIN Accepts data from keyboard and stores it in
labeled areas.

*Pc:d The cursor position in column ¢ of line d.

*ES Erase screen.

(See DISPLAY -- Chapter 3 -- for more features)
label DIM amount Names and reserves space for data.
label INIT ""message’’ Allows storage of message and later use by label
and name.

Problems:

1. Ask for the data to be typed in as answers to three questions,
month?, day?, year?. Display the date back in a MO/DAY/YR
format.

Solution:

Program:

MONTH
DAY
YEAR

RESERVE SPACE
FoR

MONTH Z CHAR.
DAY 2 CHAR.
HEAR 2 CHAR.

Y

/ CLEAR THE SCREEN /
Y

DIsPLAY “MONTH?" /

Y.

INFUT MONTH /

Y

/
/
b

DisPLAY “DAY 2" 7

y

INPUT DAY /

Y

DISPLAY “YEARZ" /

Y

INFOT YEAR J

/
[
/
/

DISPLAY Mo/ DAY /bta\E/

DIM 2

DIM 2

DIM 2

DISPLAY *ES,”"MONTH?”
KEYIN *P7:1,MONTH
DISPLAY *P10:1,"DAY?"”
KEYIN *P15:1,DAY
DISPLAY *P18:1,”YEAR?”
KEYIN *P24:1,YEAR
DISPLAY *P1:11, MONTH,"/",DAY,"/",YEAR
STOP

27

28

Write problem number 1 using only one DISPLAY instruction.
Also, take advantage of the automatic carriage return and line
feed that each KEYIN and DISPLAY instructions gives to save
some work.

Solution:
MONTH DIM 2
DAY DIM 2
YEAR DIM 2

KEYIN *ES,"MONTH? “,MONTH,*P10:1:
"DAY; ”,DAY? *P18:1,YEAR? ",YEAR
DISPLAY *P1:11,MONTH,”/”,DAY,”/"” YEAR

STOP
| 10 12 80
4)
I [MONTH 79 DAY47 14 YEARZ 76
uz q/1/76
!
- J

THE DATAPOINT PROCESSOR SCREEN

CHAPTER FIVE

DATABUS Lesson 3
Printing the Data

Not every Datapoint user is fortunate enough to have a printer
attached to his system, but for those of you who do, this chapter will
tell you how to go about getting your programming creations to use
the printer.

You need to know one important thing before you design vyour
printing program. You must know the line width of the printer you are
using. The line width can be 80, 120, or 132 columns. Columns are
the number of spaces across a page.

SEVERAL PRINTERS ARE AVAILABLE

So, for the moment, all you have to worry about is the number of
characters across the page format of your printer unit and perhaps the
availability of such goodies as a top-of-form feed, which we’ll cover
later.

The PRINT Instruction

If you have read and digested Chapters 2 and 3, this will be familiar
stuff to you. The instruction PRINT follows this general pattern of
DISPLAY and KEYIN.

For purposes of discussion, we will assume you have a printer with
132 columns, and further that it is an impact printer. Impact means the
printer works like a typewriter - the letters are formed by smashing
metal letters coated with ink (or through a carbon ribbon) onto paper.
Not that this is of serious concern to us but there must be 50 ways of
making data processing printers. Some squirt liquid ink at the paper
while others use a heat technique. Just be happy with what you have.

Before we write a program, consider the printer sitting next to you.
Observe that there will be sprocket-holes along the sides, and the
paper will be fed by moving the sprockets. Or it might have a paper

31

32

feed mechanism with a rubber roller and operate via friction as does a
typewriter. Most of the expensive types with sprocket-holes contain a
feature named “‘top-of-form”. If you tell the printer to find the top of
the form it will advance the paper a certain amount so that the printing
mechanism will start at the upper left hand corner of the page. In
most cases the paper will have perforations to delineate pages.

If you have the rubber roller friction feed type, then the top-of-form
command will be meaningless to it, and you will have to position the
paper manually to guarantee enough space from the tear-off.

One more thing, the last person to use the printer might not have
left the print mechanism in column 1 (the left hand side of the page),
so we will want to make sure we get it over there before doing
anything else with the printer.

A Printing Program
Now let's write a short program to do something with the printer.
First, of course, we'll make a flow chart and then write the program.

WEGER | 5 PRINT #F

ForM PRINT +20,"DATAPOINT "
v sTOP
/ Do crz/Lr-
¥
PRINT, 6’0:12\1% IN
GO S

Taking the program line by line we find the PRINT *F instruction
first. PRINT tells the computer to get ready to do something with the
printer. *F is the command for top-of-form and, like the DISPLAY and
KEYIN commands, it is prefaced with an asterisk. Also, like other
instructions, you get an automatic carriage return and line feed unless
you add the colon or semicolon to suppress them. In this case we get
the CR/LF.

The second line again tells the computer to PRINT and the *20
directs the printer to move to the right 20 spaces before printing the
message. *P is not used with printing for positioning because the
printer can only move across the page, line after line. The message is
“"DATAPOINT".

Printing is probably one of the most common data processing
operations. Here is an example that could be useful to you. In this
case, we want to type in a customer’'s name and his bank balance and
have the printer type out a copy for him. While this example illustrates
a limited operation, we will be adding to it later in the booklet.

FLoulCHART

RecERVE SPACE
2

ERASE SCREEN |
v

DISPLAY *NaME?” [
¥

KeuN NAME /
v

DISPLAY "BALANCE?" /
¥

KeiN BALANCE /
¥

NININ N

PAPER AT
Tov OF FORM

W
NAME
/ PRINT © W&AL&M@E 15"
PRINT BALANCE

NAME
BALANCE

M40
DIM &
KEYIN ¥ES “NAME? “, NAME

KEYIN “BALANCE? ° BALANCE
PNT 4F
PRINT ¥10, NAME,* YoyR BALKCE 15 " BALANCE

L1120

NOTE : Colon Heatvre Can PE vsea inthe PRINT

instryekion 10 CHSAVE space.,
Roles sre ssme 35 v the LISALAY
[nstrvction,

N

KNAMB ? SUE SMITH
BALANCE 7 %023.23

THE DATAPOINT PROCESSOR SCREEN

OF
T 10

PRNTER OUTPUT

7

uaooooooooor&\\

SUE SMITH YOUR BALANCE 1S $023.23

This program uses all of what you have learned up to now, and
hence you should be familiar with all the workings of the program.
The DIM statements are arbitrarily assigned 40 spaces for the NAME
and six spaces for the BALANCE, which means five numbers plus the
decimal point. If you anticipate larger balances for more affluent folk,

33

34

the DIM for BALANCE should be increased.

KEYIN uses no new tricks, but be aware of the use of the automatic
CR/LF on the printer. The next PRINT instruction spaces over 10
columns, and the name is printed beginning in column 10.

If you don't have a top-of-page feature on your printer, the printer
will ignore the *F but you will get the CR/LF anyway.

PRINT has a few other handy features such as line feed and
carriage return. These are listed in the summary. See examples for
proper spacing and placement of commas.

Chapter Summary

PRINT Allows text to be printed. The type of printer to be used
with the Datapoint 2200 can be specified during Compiler
and Interpreter operation. '

“message’’ Literal text must be bracketed in quotes

*F Top-of-page

*L Line Feed

*C Carriage Return

*N Next line (carriage return and line feed)

Problems:

1. Write a program that prints your name at column 20 on the
fourth line of the page.

2. Write a program that asks for the name and social security

number and prints this on the paper.

Solutions:

1. PRINT *F,*N,*N,*N
PRINT *20,"TOM SWIFT"
STOP

2. NAME DIM 40

NUM DIM 9

KEYIN *ES,”"NAME: "",NAME
KEYIN "SOCIAL SECURITY NUMBER:"”",NUM
PRINT *F.NAME,” " NUM
STOP

CHAPTER SIX

DATABUS Lesson 4
Arithmetic

While some computers spend all their time pushing names and
addresses and other such data around, it's nice if they can do

arithmetic too. For instance, if we had known how to add and subtract

in the previous chapter, the problem involving a bank balance could
have been extended to inciude the actual computation.

Arithmetic is especially easy in DATABUS. The four operations -
add, subtract, multiply and divide - are demonstrated in the examples
below:

ADD ONE TO TOTAL (Addition)
SUB CHECK FROM BALANCE (Subtraction)
MULT DISCOUNT BY PRICE (Multiplication)

DIV NUMBER INTO TOTAL (Division)

The operations are virtual English-language instructions. The labels,
such as ONE and TOTAL, must contain only numbers now and are
handled as special cases.

In the previous lessons, space for labels was handied with the DIM
and INIT statements. DIM didn't mind if we loaded it with numbers,
alphabetic characters, or punctuation.

With numeric operations, however, the only items allowed in label
space are numbers and, in some cases, a minus sign.

To accomplish this numbers-only label, a new directive is used,
FORM.

FORM Reserves Space for Numbers

FORM allows space to be reserved for numeric characters only.
The statement AGE FORM 2 allows two digits to be loaded into AGE.
If you try to load any more in, a Beep will be heard and the number
rejected. The statement PRICE FORM 5.2 would allow a number 5
places long to the left of the decimal point, one place for the decimal
point, and two places to the right of the decimal point to be accepted.
The minus sign counts as one place, also. With this in mind, PRICE
FORM 5.2 holds a positive number as large as 99999.99 or a negative
number of -9999.99. If the number to be used did not require a
decimal point then we could have said the PRICE FORM 5. In this
case, the largest value would be 99999.

FORM also allows space to be reserved and preset to some value.
If the program to be written required use of the value of Pi, then we
could write: PI FORM "3.14159” or FIFTY FORM "50”, ONE FORM 1",
and so on. You can replace these predefined numbers by loading
them with other values in the program. Keep in mind the space
limitations. FIFTY FORM "50” would allow a new number to replace
50 that is two numerals in length. If you anticipate replacing a preset
FORM value, leave enough space, i.e., define FIFTY FORM " 50" to
keep the original value the same but open up two spaces to the left of
the decimal point.

The Arithmetic Operations
In most arithmetic operations, one number acts upon another to form
a third number, the answer. Such as:

37

=6
=8

While there are names for the operators and operands, such as
quotient and multiplicand, there’s no real benefit from defining these
unless you're fond of games of ftrivia.

DATABUS acts in the same way except that the answer ends up in
the space where one of the numbers was originally.

Read the example

program:
CAT FORM 2
DOG FORM 3
ADD CAT TO DOG
DISPLAY *ES,DOG
STOP
/5
The comternis of the /abe/
006 15 dispiayed srere
N\ _J

THE DATAPOINT PROCESSOR SCREEN

DOG is suddenly worth five, right?

there. The original

ONE
TWO
THREE
TOTAL

38

value of DOG, 3, is gone.

arithmetic operations the rightmost label contains the answer.
This trait of DATABUS can be handy in carrying totals ahead. The

following example might be used in a checking account application:

FORM
FORM
FORM
FORM
ADD
DISPLAY
ADD
DISPLAY
ADD
DISPLAY
STOP

qr
ro

o

2

ONE TO TOTAL
*ES,TOTAL

TWO TO TOTAL
TOTAL

THREE TO TOTAL
TOTAL

In all

Yes, because now the answer is

DATABUS

4
!)
)
Notice how the valve of
TOTAL. keepe increasing
\§ /

THE DATAPOINT PROCESSOR SCREEN

In this example, we used TOTAL to contain the answer, and the
display screen reflects the changing value of TOTAL. Notice that
TOTAL was not initialized. Uninitialized values are automatically given
a value of zero by the computer.

in some cases, you might need to keep both original numbers. We
use a slightly different technique here involving an instruction called
MOVE. In effect, the value we want to save is moved into another
location (or label), so that the value we need isn't disturbed. The
example below illustrates this technique:

TWO FORM e

THREE FORM 3"

FOUR FORM 4"

ANSWER FORM 2
MOVE TWO TO ANSWER = <
MULT FOUR BY ANSWER - ¢

DISPLAY *ES,ANSWER - g
MOVE FOUR TO ANSWER

3
i

SuB THREE FROM ANSWER
DISPLAY ANSWER /
DISPLAY TWO,THREE,FOUR

STOP

39

40

[
234
The label ANSWER Acted a5 3
Tewporary storage place so
that /abéls Caﬂlé’/'ﬂl'ﬂg needed
rnumbers wevent distivbed.
_ _J

THE DATAPOINT PROCESSOR SCREEN

Notice that none of our preset values, TWO, THREE, or FOUR, were
disturbed by the operations. ANSWER served as a temporary
changeable space. We could store up to a two digit number in
ANSWER, as the FORM 2 set that limit. You’'ll see in the display that
the " 8" appears in column 2 since we said ANSWER will be two
spaces wide.

We can take the previous checkbook balance example and make it
significantly more useful with arithmetic.

PROGRAM

BALANCE FORM 6.2

CHECK FORM 6.2
KEYIN *ES,”PRESENT BALANCE?"”,BALANCE
KEYIN “"AMOUNT OF CHECK?"”,CHECK
SuB CHECK FROM BALANCE
DISPLAY "NEW BALANCE IS $",BALANCE
STOP

FLOW CHART

LABELS:
Arithmetic Example BALANCE
CHECK.

'

CLEAR SCREEN]
¥
DASPLAY " PRESENT /
BALANCE 2*

VEIN BALANCE /

Y

DISPLAY "CHECK
AMOUNT 2"

Y

KEYIN cHECK /

Y

SUBTIRACT CHEQK.
FROM BALANCE™

Y

DISPLAY “YouR
NEW BALANCE |S "
BALANCE

NN DN NS

The results of this flow chart and program are shown in the
following display. Keep in mind the relation of spaces to numbers as
you ask DATABUS to display such things as dollar signs or question
marks. You can make your programs print out as well as your local
bank can!

42

(" PRESENT BALANCE? 680.00)

AMOUNT OF CHECKR? 2424
NEW BALANCE 1S § ©655.76

Result of cheeking accont progranm.

N J
THE DATAPOINT PROCESSOR SCREEN

Constants Can Also be Used

You can also use “constant’” data values in arithmetic instructions.
What this means is that you can include quoted numeric values in
arithmetic statements, in the following manner:

SuB 100 FROM AMT

100 is considered a constant. Instead of initializing some variable
to the value of 100, the value is just included in the instruction. This
means; of course, that the value of 100 cannot be changed, it'll be 100
until you actually change the program. With label-defined numbers, as
explained before, your program can change the number values living
under the label name.

Here are Some Precautions

Occasionally, programmers encounter difficulties in using arithmetic
instructions; two simple precautions should overcome most of these
problems.

First, be certain you have allowed enough room for the result of the
operation. If your resuit is larger than the space you have allowed,
your answer will be misleading. For example, with a result of 1000 in
a FORM 3 space, the stored answer will be 000; the 1 will be lost and
your answer could alarm your company treasurer if you were writing an
accounting program.

Secondly, when using the FORM label, only numeric characters,
including decimal point and minus sign, will be accepted. This is a
handy feature to minimize operator errors.

Thirdly, remember that the rightmost label value is changed to
reflect the result of the computation.

Chapter Summary
label FORM number
label FORM ““number’’
MULT label BY label
DIV labei INTO iabel
ADD label TO label

SUB label FROM label
MOVE labell TO label2

Probiem:

Allows a numeric variable of number to be
stored

Allows a predetermined numeric value to be
stored

Multiplication

Division

Addition

Subtraction

Transfer value from labell to label2. Value
transferred remains intact in first label.

Write a program to figure discount prices. Operator keys in price,
discount rate, and sees new price on screen.

Answer

PRICE FORM 6.2
DSCOUNT FORM 0.3
TEMP FORM 6.2
KEYIN *ES,"PRICE?"",PRICE
KEYIN “DSCOUNT (IN DECIMAL FORM)?",DSCOUNT
MOVE PRICE TO TEMP
MULT DSCOUNT BY TEMP
SuB TEMP FROM PRICE
DISPLAY “DISCOUNTED PRICE IS $”, PRICE
STOP
/PRICE? {00.00 \
DISCOUNT (IN DECIMAL FoRrM)7 . 20
DISCOUNTED PRICE 1S .00
\ J

THE DATAPOINT PROCESSOR SCREEN

43

44

NOTES

CHAPTER SEVEN

DATABUS Lesson 5
Loops

All of the programs we have written up to this point have done their
job and ended. In many cases we might want to have the program
repeat the task over and over. Programmers call this a loop - loops
extend programming capabilities endlessly.

The simplest loop involves directing the program to go to a certain
point and start working from there. The arrow on a flow chart can be
used to indicate a jump or “GOTO” instruction. Look over the flow
chart below and then read the program that follows it.

Frogram 6 end/ess. LABEL NAME
acc“:eépt' and d/'spb; 40 9PACEMS
back name B operator.

FLOW CHART:

/ penagNavez” [

!

/ KeNNeME
¥

/ PRINT/NAVE 15 /

Y
ﬁ G0 To BesiN 7
- (=

47

48

PROGRAM

NAME DIM 40

PRINT *F

DISPLAY *ES ,
BEGIN KEYIN “NAME? “,NAME

PRINT *10 “NAME IS ",NAME
GOTO BEGIN
STOP

NAME ? CATHERINE OF ARAGON
NAME? HELEN OF TROY
NAME? CLEOPATRA

Names dre entered one below
another dve 1o dutomatic C’Z/LF
n KEYN ipstrvetion.

J

-

THE DATAPOINT PROCESSOR SCREEN

et o ARWTERZ AUTAIT .
o

s NANE IS CATHERINE OF ARAGON

° NAME 5 HELEN OF TRoY

lo NAME (S CLEGPATRA

|°

The GOTO instruction tells the computer to go to the place
indicated by the label, in this case, BEGIN. The computer then starts
following the instructions at that point. You can see that our program
is endless. There is effectively no way out of this loop except,
perhaps, pressing the STOP Key (which halts the computer) or by
pulling the plug. Another way to halt it would be to tap the RESTART
Key, which halts our program and reloads the operating system. We’'ll
cover this in a later chapter, so don’t worry about it now.

NOTE: |If you're using a DATASHARE system:you can press the
INTERRUPT Key on the user terminal to halt the program.

Conditional Loops

While endless or unconditional loops are useful in some
circumstances, conditional loops are more practical. A conditional loop
or conditional GOTO has limits, or goals, which must be met before
the task can be done. If the conditions are not met, then the computer
ignores the instruction and goes on to the next one.

One of the classic computer operations is the counting loop. In
this, the programmer defines a limit, and the computer keeps on
counting until the limit is reached.

To determine when the limit has been reached, a compare operation
is used. The computer compares the number against the highest
allowable number, the limit, and determines if they match. After each
compare, the computer can tell if the number is less than, equal to, or
greater than the number compared against. The computer can also
compare characters.

Although other, more complex compare operations are possible in
DATABUS we’li confine our discussion to two types: COMPARE and
MATCH.

Recall that we have used two types of data to store under labels:
general mixed characters and numerics only. The DIM and INIT
statements allow any type of characters to be stored under them while
FORM takes only numerals. Much the same happens with the compare
instructions. MATCH will compare two labels containing general text
(DIM and INIT labels). COMPARE will only work with numeric labels
(FORM labels).

COMPARE is Used with Numerics

The following example illustrates the use of a COMPARE instruction
with a conditional GOTO. Note that the GOTO is ignored unless the
condition is met.

FLOW CHART %

Lovrrter snd /imiit-

c//eck/bj program ONE="1"
LIMIT= "8
CONTER = "0

ADD | TO THE
VALUE OF THE
COUNTER-

Y

/ DiIsPLAY THE
VALUE OF THE
COUNTER.

49

50

PROGRAM

ONE FORM 1
LIMIT FORM 5"
COUNTER FORM 0"
DISPLAY *ES
ADDR ADD ONE TO COUNTER

DISPLAY COUNTER

COMPARE LIMIT TO COUNTER
GOTO ADDR IF NOT EQUAL
DISPLAY "“THEY ARE NOW EQUAL"”

STOP
(, N
2
3
4
5
THEY ARE NOW EQUAL
o _J

THE DATAPOINT PROCESSOR SCREEN

In this program, we started out with the label, COUNTR at zero and
kept increasing it by the value of 1 until the LIMIT is equal to
COUNTR. Next, if the two are not equal, the computer is asked to go
back to another label, ADDR, and keep going. After five loops around
ADDR, the value of five is attained, and the program ends. Remember
that the COMPARE works with numerics only.

MATCH is Used with Characters

While numerics are nice, you might want to use characters in the
form of a name or answer. We could create an imaginary situation
where people passing by are asked to type in their name and ask the
computer to find someone named Hershel.

This use of general mixed characters involves the use of the
MATCH instruction. This instruction can compare the contents of two
character DIM or INIT labels where the COMPARE instruction worked
only with numerals.

FLOW CHART
Frogram vsing character @
MATCH instrvetion

NAME @ SFACES
HERSHL = HERSHEL.

-
sl |

/ CLEAR THE SCREEN

HOME 0P CURSOR.

“WHAT IS
s
Y
/ KEHIN NAME 7

M

1e5

DisPLAY “WE
HAVE FOUND HERSHEL 1

PROGRAM
NAME DIM 7
HERSHL INIT "HERSHEL"

NUNAME KEYIN *ES,"WHAT IS YOUR NAME? " ,NAME
MATCH HERSHL TO NAME
GOTO NUNAME IF NOT EQUAL
GOTO NUNAME IF LESS
DISPLAY "WE HAVE FOUND HERSHEL!”
STOP

51

52

KWHAT 1S YOUR NAME7 HERSHEL \
WE HAVE FOUND HERSHEL !

The. question Keeps on appearing
until the correct name /s kez/ec(—/h.

- _/
THE DATAPOINT PROCESSOR SCREEN

Note that we used the MATCH instruction. This takes the contents
of the two labels and matches the first letter to the first, second to the
second, and so on. But why did we test for both not equal and less?
This is because there really are two things that the MATCH instruction
is testing for. And while this explanation may sound a little tricky, an
example should clear things up. Here’s our instruction:

AD
MATCH ATOB

We have defined A to be "A’” and B to be "AB”. We find that B is
equal to, but not less than A. Here’s another instruction:
A8
MATCH B TO A

We’ll use the same initial values. Here we find that A is equal to and
less than B.

Obviously, MATCH only compares the same number of characters as
are in the shortest character string. Here is only compared the first
character for equality. But it does look at the length of both and uses
the LESS signal if the second one is shorter than the first one.

Beeping

Your Datapoint processor can make quite a racket upon command
by using the BEEP instruction. It can give the user an audio clue as
to what’s happening.

BEEP elicits about a half second’s worth of audio tone from a
hidden speaker inside the processor. This tone can be used for
audibly indicating the end of a job or an error.

Programming a Beep is easy. Just write BEEP.

BEEPER BEEP
GOTO BEEPER

This is a good program to use if you like to be alone. You can
drive everyone screaming out of the office, as the machine will Beep

forever, although you might be kind enough to program in a way to

stop the Beeping.
Chapter Summary

GOTO label

Transfers control to the statement with

the specified label

GOTO iabei iF condition

Transfers control to the statement with

the specified labe! if the condition is
true. Condition can be OVER, LESS,
EQUAL, ZERO, EOS, NOT EQUAL NOT
OVER, NOT LESS, NOT ZERO, NOT EOS

COMPARE num TO num

MATCH var TO var
BEEP

Problems:

Compares two numbers

Compares two character strings
An audible beep

1. Write a program that examines a person’s name and age. Set
the program up to see if a man named GEORGE, age 28, is
using the program.

2. Add the steps necessary for the program to Beep when a wrong

name and age are typed in.

Solutions:

1. GEORGE
NAME
N28
AGE
LOOP1

FOUND

INIT
DIM
FQRM
FORM
KEYIN
MATCH
GOTO
KEYIN

"“"GEORGE"

6

rogr

2

*ES,"NAME? “,NAME

NAME TO GEORGE

LOOP1 IF NOT EQUAL

"WHAT IS YOUR AGE, GEORGE?”,AGE

COMPARE AGE TO N28

GOTO
DISPLAY
GOTO
DISPLAY
STOP

FOUND IF EQUAL

*P1:5,”YOU’‘RE WRONG -- SORRY!”
LOOP1

*P1:5,"GEORGE,YOU'RE GETTING OLD"”

53

54

GEORGE
NAME
N28

AGE
LOOP1

OK

FOUND

INIT

DIM
FORM
FORM
KEYIN
MATCH
GOTO
BEEP
GOTO
KEYIN
COMPARE
GOTO
DISPLAY
BEEP
GOTO
DISPLAY
STOP

"GEORGE"

6

g

2

*ES,"NAME?" NAME
NAME TO GEORGE
OK IF EQUAL

LOOP1

"WHAT 1S YOUR AGE, GEORGE?"AGE
AGE TO N28

FOUND IF EQUAL

*P1:5,"YOU’RE WRONG -- SORRY!"”

LOOP1
*P1:5,"GEORGE,YOU'RE GETTING OLD"”

CHAPTER EIGHT

DATABUS Lesson 6
Disk Operations

Having an attached storage medium such as a diskette, cartridge
disk, or mass storage disk, provides the Datapoint user with the
capability to generate and maintain a group of records called a file
within the system itself. In many business applications, data must be
stored on disk and used by various programs.

With DATABUS, we can easily record and retrieve data without
regard for the usual complexities that are associated with programming
a mechanical storage device. The language takes care of all of the
intricate details for you.

If you want to use cassettes rather than disks for data storage, skip
to Chapter 12.

Your Datapoint processor may have one of three types of disks
attached to it. One outstanding feature of the DATABUS language is
that, though each type of disk is structurally quite different, each is
programmed in exactly the same way. What this means to you is that
you can use the exact same program to write data to diskette, cartridge
disk, or mass storage disk. Your programs are interchangeable between
different Datapoint disk-based systems.

Each Disk Contains Files

Disks are circularly shaped magnetic storage media. Data is stored
in files. For example, your accounting program itself is contained in a
file, and that program may read data from one or more data files.
Each file has a name to uniquely identify it from the other files. You'll
learn more about file names and how to create program and data files
in this chapter and in Chapter 10.

EACH DISK CONTAINS DATA AND PROGRAM FILES

To create or use a data or program file, all you have to do is call it
by name from your program. You never need to be concerned about
where that program actually is on the disk -- that is automatically taken
care of for you by the Disk Operating System.

A File is a Collection of Records
Inside each file, data is grouped into records. A record is a name

57

58

for a smaller grouping of information within one named file.

Let's look at a data file that consists of the names, addresses,
telephone numbers, and ages of all of the students in a class. Each
person’s name, address, telephone number, and age is one record.
There are as many records in that file as there are students in the
class.

eact; logical grovping of
Information 15 CalleA 4 record.

EACH FILE CONSISTS OF RECORDS

Files are divided into records to make life easier for us all. For
example, to find the address, telephone number, and age of Sue Smith,
all we have to do is read the beginning of each record until we find
one that begins with her name.

It's Easy to Read From and Write to Disk

Writing data to disk and reading data from disk are actually very
simple operations. Before we do an example, try to think of these
operations as comparable to recording on audio tape data such
information as your name, address, age, and telephone number, and all
your friends’ names, addresses, ages, and phone numbers. You would
get the first name and details, press the record button, and say “‘Harry
Aardvark, 149 Maple, Sod House, Idaho, 28, 684-1044". Now, release
the record button and look up the next name. Later, when you're
looking for an address, you would listen to the tape until the sought-for
name came up and take note of the information.

In effect, we do exactly the same operation when we write to disk,
except that the recording method uses digital signals rather than audio
signals.

Enough of the analogies -- let's write a name and address program.
First, a program to write the names on disk, then we’ll discuss exactly
how the program works.

FLOW CHART @

Program T wyste

date 16 didk
NAME 40 SPACES
AR 50 SRCES
ANSWER 3 SPaceS
SEQR = -
YeES="VES"
/ OPEN THE DIsK.
DATA FILE
CLEAR THE SCREEN
D\sww MESSAEE
KEH!M THc NAME
Key\N THE ADDRESS
WRITE NAME AND
ADDRESS O\ DISK.
M
Yo
/ CLOSE DATA FILE /
Program:
NAME DIM 40
ADR DIM 50
ANSWER DIM 3
YES INIT "YES"”
SEQ FORM i I

NAMEFILE FILE
PREPARE NAMEFILE,”FRIENDS"”
DISPLAY *ES,”"NAME AND ADDRESS PROGRAM”

LOOP KEYIN "NAME: “,NAME,*N,”ADDRESS: ",ADR
WRITE NAMEFILE,SEQ;NAME,ADR
KEYIN “IS THIS ALL(YES OR NO)?" ,ANSWER

MATCH ANSWER TO YES

GOTO LOOP IF NOT EQUAL
FINISH WEOF NAMEFILE,SEQ

CLOSE NAMEFILE

STOP

60

N

NAME AND ADDRESS PROERAM ,
NAME : HARRY AARDVARK. /”_pf@gwgg;%//s
APDRESS' 149 MAPLE, SoD HOUSE, IDA
15 THIS ALL (YES ORNO)? |~lo<L
NAME: and anowers this question
the program ki Fekipg names
gndpg a’reseeiegjt,/ the ‘Zfek
tells it he /s done

\—_ y

DATAPOINT PROCESSOR SCREEN

Several new things were introduced here, but don’t be scared off.
it's all very easy once you understand what these new instructions do.
Let's look at a few sections of this program:

SEQ FORM "1

Why did we initialize this variable? Notice how it is used in the
WRITE and WEOF instructions. The value of this variable tells the
computer about the type of access method you are using to write your
data to disk.

There are three disk writing and access methods. We're using the
simplest of the three -- physical sequential. This means that the data
is written to the disk exactly as your program presents it, this is,
record by record. It is read back in exactly the same order as it was
written, record by record.

The other two types of access methods, physical random and
indexed sequential, are explained in the DATABUS User’s Guides and
in DATASHARE Advanced Programming Techniques.

NAMEFILE FILE
PREPARE NAMEFILE,"FRIENDS”

In the first line, NAMEFILE is defined as the name of a file. This
name is used throughout the program instructions to reference the file,
yet it is not actually the real name for the file.

The real name for the data file is supplied in the PREPARE
statement. PREPARE tells the computer to open a new file, name that
file FRIENDS, and associate the name NAMEFILE with the file.

Why are there two names for a file -- a logical name (NAMEFILE)
and a real (physical) name (FRIENDS)? DATABUS does this as a
convenience to you, the programmer. Let’s say that you wanted to
create several data files, all with essentially the same program.
Possibly you want one file for your friends in lllinois, maybe another
for your friends in Kansas, and possibly a third for your friends in
lowa. Rather than changing the file name in every reference to it in the

program, all you have to do is change the real name once in the
PREPARE statement. The logical name can still be the same.

This new idea of two names for a single data file may be confusing
but bear with it. Remember that you only need to use the real name
of the file in the PREPARE and OPEN statements. You use the
logically associated name in all the other statements.

WRITE NAMEFILE,.SEQ;NAME,ADR

This tells DATABUS to write one record to the disk file. This record
will contain the preset values for NAME and ADR.

FINISH WEOF NAMEFILE,SEQ
CLOSE NAMEFILE

When you're through entering all of your data, you must write an
End-of-File mark with the WEOF instruction. CLOSE is a signal to the
computer that you're done writing all of the data for that file.

How does DATABUS know where to write the data on disk? That's
the beauty of DATABUS. It takes care of all of the problems of disk
space allocation for you! All you have to do is call the file by name.
If there is any room left on the disk, the file can be created.

A Program to Read Data From Disk

Now that you know how to write data into a data file, you need to
learn how to read that data back again. Let's write a program that
looks in our FRIENDS file and prints out the names and addresses that
we previously wrote on the disk. Reading is a very simple operation.
The data is read in exactly the same order as it is written. Look at
this flow chart and program.

61

62

FLOW CHART

Program:

NAME
ADR
SEQ

@ Frogrom to read

Azta From djsk

NAME 40 SPACES
APR 50 SPACES
seR= |

OPEN THE DIsK
DATA FlLE

CLEMR THE SCREEN
DISPLAY MESSAGE

/ ADYANCE PRINTER TO /
ToP o «—olZ/Vl

/ READ uAnm? /
AND ADDRESS

be5

Z DISPLAY /
STUAT'S ALL
Mo

NT NAME
GRNe, /
|

DiM 40
DIM 50
FORM 0 e

NAMEFILE FILE

LOOP

DONE

OPEN NAMEFILE,”FRIENDS"

DISPLAY *ES,”"NAME AND ADDRESS LISTING PROGRAM"”
PRINT *F

READ NAMES,SEQ;NAME,ADR

GOTO DONE IF OVER

PRINT *N,NAME,*N,ADR

GOTO LOOP

DISPLAY "THAT'S ALL"

STOP

See how easy it is to read data from disk? Let's go over a few
new things introduced here.

SEQ FORM 1 real name
—J\AEFILE FILE [
logicarty OPEN NAMEFILE, "FRIENDS"
ii‘m"é”“" - loglcdfly aAssociated name

Again the variable SEQ is given the value of -1 to tell the computer
that you're using physically sequential access. Note how SEQ is used
in the READ statement.

As with the example that wrote data to disk, NAMEFILE is used as
the logical file name and FRIENDS is the actual physical file name.
While NAMEFILE is the name we use to refer to our data file
throughout our program, FRIENDS is the actual name of the data file.
If we wanted to use this same program to read similar data about
another group of friends from a file named FRIENDS1, all we'd have to
do is change the OPEN statement to OPEN NAMEFILE,”FRIENDS1".

OPEN looks just like the PREPARE statement in the writing example.
We use OPEN to open an existing data file and PREPARE to open and
create a new data file.

10gically assaciated srame. —7 Fcoess method
LOOP READ NAMES,SEQ;NAME,ADR

GOTO DONE |IF OVER
/sAe/./D' Lew(o##//c

Each name and address is read from the disk data file. How can
we tell when we’'ve read them all? When we try to read beyond the
end of the data in the file, the OVER condition is set. That's why the
second statement is included. We check to see if the OVER condition
has been set by the read, and we tell the program to go to the
statement with the DONE label if it is.

In WRITE and READ operations, you get back what you put in, in
the same order. Always check for the End-of-File mark as soon as the
disk is read so you know when you're done reading the data.

A Program that Writes and Reads

You can easily combine the two previous examples to write data to
disk, then read and print it. You can use this program to proofread
the names and addresses you put in the file.

Look at the flowchart -- it's just a combination of the two previous
flowcharts:

63

FLOW CHART @

To Read and Write Rowte 40 nces
Data on a Disk Awauzgzepmeg
VES= g5
Y

PREPARE THE DISK. /
DATA FILE

KEYIN THE NAME
e/

Y

NN I
'
2
i
N

RITE NAME AN
Xé <5 ON DIS?C

/ CLosE le'tlg DATA /

/ OF’EMHTJEE DATA /

CILEAR THE SCREEN
DISPLAY MESSAGE

ADVANCE PRINTER.
To TOP OF FORM

>y
[SEREE /

15
Tihs THE

END OF
FiLE?

\
/ pePLAY "THATS ALL" /.

NAME
/ AN s /
|

Now look at the program:

NAME DIM 40
ADR DIM 50
ANSWER DIM 3

YES INIT “YES"
SEQ FORM ey

NAMEFILE FILE
PREPARE NAMEFILE,"FRIENDS”
DISPLAY *ES,”’NAME AND ADDRESS PROGRAM”

LOOP1 KEYIN "NAME: " ,NAME,*N,”ADDRESS: "“ADR
WRITE NAMEFILE,SEQ;NAME,ADR
KEYIN "'IS THIS ALL (YES OR NO)?"",ANSWER

MATCH ANSWER TO YES
GOTO LOOP1 IF NOT EQUAL

FINISH WEOF NAMEFILE,SEQ
CLOSE NAMEFILE

OPEN NAMEFILE, "FRIENDS"
PRINT *F
LOOP2 READ NAMEFILE SEQ;NAME,ADR

GOTO DONE iF OVER
PRINT *N,NAME,*N,ADR
GOTO LOOP2

DONE DISPLAY "THAT'S ALL"”
STOP

Wasn't it easy to combine the reading and writing programs to make
this program that proofreads the file? Notice how we've already
covered every element of this program in our previous explanations.

Adding Data to the File

Since we all like to think of ourselves as interesting people, we
should make some provisions to add new friends’ names and addresses
to our data file. Let’s think out this process before we flow chart it.

Our data file is full of names and addresses of other friends. We
still want these, so first of all we should read to the end of the file so
we don’t overwrite anyone’s information.

Once we’'ve read to the end of the file, we need to start writing the
names and addresses of our new friends. Once we've added all the
new names and addresses, we need to close the file again.

Here’s a flow chart of our program that adds data to the file.

66

FLOW CHART

Adding Data
to the File

NAME 40 GPACES
AR 50 SPACES
ANSWER 313PACES

SERE >
YES="YES"

/

Y
OPEN THE /
PATAFILE

-

No

Ca

READ NAME
AND ADDRESS

/

CLEAR ScrEEN
DlSPLAlf MESSACE 7

LAY

'

/

\(EHH\I NAUE /
AND ADDRESS

/

WRITE NAME AND
ADDRESS ON DISK

Ves

/

ClosE THE
DATA FPJE 7

Here’'s the program:

NAME DIM 40
ADR DIM 50
ANSWER DIM 3
YES INIT "YES"
SEQ FORM S
NAMEFILE FILE
OPEN NAMEFILE,”FRIENDS"”
DISPLAY *ES,”FILE ADDITION PROGRAM”
LOOP READ NAMEFILE,SEQ;NAME,ADR
GOTO LOOP IF NOT OVER
DONE KEYIN "NAME:” ,NAME *N,”ADDRESS: “,ADR
WRITE NAMEFILE,SEQ;NAME,ADR
KEYIN ”IS THIS ALL(YES OR NO)?”,ANSWER

MATCH ANSWER TO YES
GOTO DONE IF NOT EQUAL
FINISH WEOF NAMEFILE,SEQ
CLOSE NAMEFILE
STOP
Chapter Summary
label FILE
Label is a logical file name.

PREPARE logical,physical

Creates a new file with the specified physical file name and associates
the logical file name with it.

OPEN logical,physical

Opens an existing file with the specified physical file name and
associates the logical file name with it.

CLOSE logical
Close the file.
WEOF logical,access

Write an end-of-file mark on the file, using the specified access
method.

WRITE logical,access;variables

Write one record of the file according to the access method.

67

READ logical,access;variables
Read one record of the file according to the access method.
Problem:

1. Write a program that reads the name and address file and prints
out only selected names and addresses.

Solution:

NAMEH1 DIM 40

NAME DIM 40

ADR DIM 50

ANSWER DIM 3

YES INIT "YES"'

SEQ FORM "

NAMEFILE FILE
PRINT *F

LOOP OPEN NAMEFILE,”FRIENDS"’
KEYIN *ES,"NAME: " ,NAME1

LOOP1 READ NAMEFILE,SEQ;NAME

GOTO BAD IF OVER

MATCH NAME1 TO NAME

GOTO LOOP1 IF NOT EQUAL
PRINT PRINT *N,NAME,ADR

KEYIN "IS THIS ALL?",ANSWER

MATCH ANSWER TO YES

GOTO DONE IF EQUAL

GOTO LOOP

DISPLAY “NOT IN FILE -- TRY AGAIN"
DONE DISPLAY "THANKS”

STOP

CHAPTER NINE

DATABUS Lesson 7
Using Subroutines

Often a user finds that a particular sequence, or grouping, of
instructions crops up quite frequently in the programs he writes. For
instance, in a data entry application a user may frequently want to
erase the screen, display a form, Beep and do related chores. To have
to write out this identical sequence of instructions each time is
burdensome and time consuming. Fortunately there exists a handy
technique for the elimination of this drudgery. This involves the
labeling of these standard sequences that reappear in program writing
with distinctive names and making them available upon request to the
program writer.

These standard sequences of instructions are known as subroutines.
A user can call for a subroutine when required, have the repetitive task
at hand accomplished, then get back to the mainstream of the program.
To do this we make use of the CALL and RETURN instructions.

To demonstrate this useful feature of DATABUS, let's assume that
you‘re writing a program that is quite lengthy and which requires you
to erase and place various messages upon the screen. The example
has no actual application but it will serve to give you the hang of the
subroutine approach. In the following example, note that the CALL
instruction jumps to the instruction containing the label and keeps
working on that line of instructions until it encounters the RETURN
instruction. At that point, the computer jumps back to the instruction
immediately following the CALL instruction. The dotted lines indicate
instructions that are not pertinent to the example.

CALL ERASE
CALL DSPLY1
CALL ERASE ‘\\\
CALL DSPLY1
STOP
ERASE DISPLAY *ES
RETURN
DSPLY1 DISPLAY *P32:6,"SUBROUTINE IN USE NOW"
BEEP
RETURN
STOP

The arrows show the “leaping around” the computer goes through
in finding and executing the subroutines. You can CALL other
subroutines even though you’re in one already. CALLS can be
"nested” eight deep. That is, you can say CALL eight times before
saying RETURN. If you nest the subroutines more than eight times, the
computer will lose track of what's going on and weird things will
happen, so avoid that condition.

Naturally, the advantage of this subroutine feature lies in being able
to write shorter programs and occupy less space in the computer’s
memory. (Memory economy assumes that you use the subroutine more

71

72

than once or the space saving benefit won’t hold true.)

The purpose of a subroutine is to avoid repetition. Instead of
coding a group of the same instructions over and over in your
program, you group those instructions into a subroutine and call that
subroutine whenever you need it. Your subroutines can be as
elaborate as you want, containing any DATABUS instruction.

Linking Up with Other DATABUS Programs

in some applications, DATABUS programs can be so large that they
occupy the entire memory space of the Datapoint processor. Since
Datapoint disk-based systems use a virtual memory technique, the
program can be actually much longer than the physical memory, but
some programs might occupy all this space. In these cases, it is
desirable to have one program fetch another as soon as it is finished.
This eliminates the need for a user to wait around and see if a part of
a job has finished, so that he can proceed with the next part.

To do this operation, called ““chaining’”, we make use of the CHAIN
instruction. To use chaining, just code the CHAIN instruction at the
appropriate part of your program. For example,

CHAIN "PGM2"”

chains to PGM2. PGM2 is the name of the other DATABUS program
you want to execute. This other program must be on the disk in
computer readable form -- but don’t worry too much about that now,
you'll learn how to set up your programs in Chapter 10. This could
also be coded as:

NEXT INIT "PGM2"

CHAIN NEXT

in cases where the name of the program to be chained to is a
variable. Chaining instructs the computer to go out and find and
execute the program name specified.

Common Data Areas

You can even carry forward information in labels as you chain from
one program to another. Let's suppose that your first program asked
for today’s date via a KEYIN instruction and you wanted to use this
date in all other programs you were going to run. Note that asterisks
are used to define what has been carried over from the previous
program.

Program No. 1 Program No. 2

MONTH %DIM ¥ 2

MONTH DIM 2
DAY DIM 2 DAY DIM >
YEAR DIM 2 YEAR % DIM 2
PGM2 INIT "PGM2”
KEYIN MONTH,DAY,YEAR e
CHAIN PGM2 -
STOP STOP

This data that you carry over from one program to another is called
common data, for obviously the values of that data are common to both
programs.

A word of caution about using common data areas between
programs -- notice that the common variables are coded in exactly the
same order in both programs. You must keep the common data area in
both programs in exactly the same order or the computer will confuse
the values of the variables.

Here are the rules for carrying labeled values from one program to
another:

1. The program being chained to must be a compiled
DATABUS program.

2. Be sure the common variables are in the beginning of
each of the programs and in the same order.

3. Use the asterisk in the labels to denote that the
computer is to carry this value along to the next
program.

4. FILE statements cannot be passed in common.

Chapter Summary

CALL label Transfers operation to instruction
indicated by label.

RETURN Label Transfers operation to instruction
immediately following last CALL
instruction.

CHAIN Label Locates, loads, and runs named
DATABUS program.

Label DIM *n Asterisk allows label data to be
carried from one program to
another.

Label INIT *n

Label FORM *n

73

74

NOTES

CHAPTER TEN

Running Your DATABUS Program

If you've gotten this far, you probably have a program scratched out
on the back of an envelope that you would like to try, or perhaps you
might first try one of the examples in this booklet.

In any case, arm yourself with the following items:

1. A Datapoint Processor (1100, 2200, or 5500).

2. Some kind of Datapoint printer (not absolutely
essential, but very handy).

3. The DATABUS compiler. We highly recommend that
you use the latest release of DBCMP. As of this
writing the diskette DBCMP is model code number
20264 and the cassette DBCMP is model code
number 20263 (cartridge and mass storage disk users
should get the cassette version -- we’ll show you how
to load and run it on disk).

4. The DATABUS interpreter. Again, get the latest
version. DB11ASYS, model code number 20217, is
the cassette tape that can be loaded on a cartridge
disk system. DB11BSYS, model code number 20218
is the cassette tape that can be loaded on a mass
storage disk system under DOS.B., DB11SYS, modei
code number 20219 is the diskette containing the
interpreter for diskette systems.

The sequence of events used to take the program from a concept to
an actual running computer program is fairly involved, yet simple.
Read and follow the directions carefully -- success will be yours.

But before fame and glory are yours, we have to get the program in
the machine and running.' The following table lists the sequence of
events.

1. Get the DBCMP compiler and the DB11 interpreter on
disk or diskette.

2. Type in the program. (Editor)
3. Convert your program into computer code. (Compiler)
4. Run it using the interpreter. (Good Luck)
5. Doesn’t run the way you would like? Fix it.(Editor)
Back to Step No. 2.
Step 1

The DBCMP Program

If You've Got a Diskette System....

The DBCMP diskette contains not only the DATABUS compiler, but
also the DOS.C operating system. You’'ll probably want some exira
diskettes to store all of the programs that you will be writing and for
backup copies of those programs.

Turn your diskette system on. |If you are unfamiliar with Datapoint
equipment, see the Guide to Operating Datapoint Equipment. Insert the
DBCMP diskette in drive 0 (the left-most drive).

To insert the diskette, slide the door open on Drive 0 and slide the

77

78

DBCMP diskette in until you hear a faint click and the diskette is
securely locked in. Be sure the diskette faces the correct way (see the
drawing). Then slide the black door over the slot opening. The
diskette is now loaded and ready to use.

AUSITION

EJECT- ’51

BurToN

“ < noor CLasED

INSERT THE DISKETTE IN THE CORRECT POSITION

Before we go any further, here’'s a few words of caution about
diskette handling. Do not lay the diskette down anywhere if it's not in
its envelope, as it picks up dust and lint which could cause errors.

(== .

2. 2 \E

THE ONLY THREE PLACES FOR A DISKETTE

There are only three places for a diskette -- in your hand, in the drive
or in the envelope.

Now, to get your system in working order, press the RESTART Key,
which is located on the far right side of the keyboard. This begins the
"“DOS” program, which enables you to run other programs. After
pressing the RESTART Key the screen will look like this:

DO3.C. DATAROINT CoRFORATIONS P1SK OPERATING SHSTEM VERSION I. 1
READY

I
e
7N

the corspr

DOS is now waiting for input. Keep the DBCMP diskette in drive 0
and put the DB11SYS diskette in drive 1 (the next diskette drive).
You'll need the DB11SYS diskette for Step 4. Go to Step 2 to see how
to create your DATABUS program.

If You've Got a Cartridge or Mass Storage Disk System...

Turn your Datapoint system on, put your disk in place, put a DOS
boot tape in the rear cassette deck, and press RESTART (or RESTART
and RUN on a 5500). If you're unfamiliar with Datapoint equipment,
see the Guide for Operating Datapoint Equipment. You’ll know that the
system is ready when the operating system displays “READY” on the
screen.

To see if you've already got the DBCMP compiler on your disk, type
"CAT DBCMPQ" () means to press the ENTER Key). If the system
responds with ""DBCMP/CMD’” and "“READY”, you have DBCMP on
your disk and you do not have to put it on your disk.

(IZEAW this Foks if OBIMP is on the disk
oAT DBeMP—S 7 7 s

DBCMP/oVe (26) PBCMP/OV((203) DBOMP [oN2.(204) DECMP/oMD (176)
ReADY

Yis response shows Thit
JE is'on the 4Bk

_ W,

DATAPOINT PROCESSOR SCREEN

If, however, DBCMP is not already on your disk, you must put a
copy of the DBCMP cassette in the front cassette deck and type ""MIN
;AO”". This will put a copy of the compiler on your disk.

4 N

g_?_vg BLMO - 1his 755 (f DELMP /s on the dist.

REAY «——= VA

MIN ',AO;
his puts the contents of 1he +roml
casselte dack (PBMP)on the disk

- J

DATAPOINT PROCESSOR SCREEN

Type "“CAT DB112'" to see if the DATABUS interpreter is on your
disk. if the processor responds by displaying a list of files and
""READY", the interpreter is on your disk. If not, put the DB11 cassette
in the front cassette deck, type "MIN ;AOQ”. This will put a copy of

79

80

the interpreter on your disk.
Now you're ready to type in your program.

Step 2
Type in the Program

First of all, you must decide on a name for your program. Pick
something significant so that you can remember it. The name must
start with an alphabetic character and can be a total of eight
characters long. For our examples, we'll call our program NAMES.

We need to use the Editor program to help us create our program.
By the way, the Editor program has nothing to do with green eye
shades and cub reporters. The Editor, in the computer business, is a
program allowing text entry (your program) and the later modification of
the text, in case you blow it.

To call the Editor program, type "“EDIT NAMES;D)”". We need to
supply the name of the program, NAMES, and that we want to write a
DATABUS program, D.

The ;D" tells us that we want to use the DATABUS preset tabbing
facility. To make the job easier, the Editor program has preset tab
stops for labels and instructions. Tab 1 is located at the left edge
where the labels are typed. Tab 2 is located about 9 spaces from the
left edge, where instructions begin. If you tap the space bar while
you're in the first tab area (columns 1-8), you’ll automatically be
skipped over to the ninth column, where you can begin typing your
instructions (see the illustration below).

The screen will clear and there will be an arrowhead pointing at
one of the blank lines. To enter new lines of your program, just type
them in, pressing ENTER after each line. While in the line, you can
use the BACKSPACE Key to correct errors and the CANCEL Key to
start again from the last tab stop.

The drawing below shows how our display screen looked when we
typed in our program:

Freator abels) /«grea o instryctions

j{) NAME DlM 40 \
the ME DIM2
arrowhead| KEHIN “NAME, PLEASE", NAME

DISALAY " YOUR. NAME 1S"| NAME
KEYIN “ AGE, PLEASE" , AGE
DISPLAY “AND 4p ARE" AGE " YEARS OLD"

L
tab 2 (4 gpeoes in)

wb 1 (It epe)

. J
DATAPOINT PROCESSOR SCREEN

What if you make a mistake? Notice the small arrowhead in the
left-most column. Press the KEYBOARD and DISPLAY Keys one at a
time and watch the arrowhead (line pointer) move up and down. By
fiddling with these two keys, you can point out any line with an error.

Now, with the arrowhead pointing to the line containing the error,
you can type in the Editor commands to get at the error. All Editor
commands are prefaced with a colon. Unless you begin each
command with a coion, the Editor will assume it's just another line of
the program. Remember that the arrowhead must be pointing (each
time) to the line which is to be changed and you must press the
ENTER Key after typing in the Editor command. Here are three of the
most versatile Editor commands:

:DEL (Delete) Blots out the entire
indicated line and lets you type it in
again or leave it out entirely.

:INS (Insert) Opens up a space between
two lines so that another line may
be squeezed in.

:MOD (Modify) This command lets you
change individual characters or a
group of characters. Suppose you
accidentally typed DSPLAY and
didn‘t notice it. Point the arrowhead
at the line and type ‘':MOD
DSPLAY <DISPLAY"". The Less
Than (<) Symbol is placed between
the old and new characters. This
line will now contain the proper
word.

:MOD DSPLAY <DISPLAY

Gld) (replaces) (new)

There are several other Editor commands that you can use (see
Appendix B for a complete list). The commands may be shortened to
one letter, if desired, i.e., :MOD can be :M.

All of this will be somewhat hazy until you have some experience at
hammering away at the keyboard. One last step -- when you've got
everything so it looks good, stop and contemplate this opus magnus.
Then type the last and most important Editor command:

:END (End of Program) Indicates to the
Editor that you are done with the
program and that you want to write
a copy of your work on disk or
diskette. If you forget it, the
program will be lost.

81

82

After :END has been typed in, the Disk Operating System message
and "READY’’ will reappear on the screen. Now you’re ready for Step 3.

Step 3
Compile Your Program

Translating your DATABUS instructions into machine instructions is
a very simple process. All you need to do is type “DBCMP namep”
where name is the name of your program. In our case, we’ll type
"DBCMP NAMES) " The compiling operation adds a computer
readable version of the text on the disk or diskette. In effect, there
will be two files on the disk or diskette after compiler operation. One
file will contain the text of the program you typed in; the other file will
contain the computer readable code.

If all goes well and you haven’t made any language mistakes (the
compiler, of course, can not check for logical errors), your Datapoint
processor display screen should look very similar to the following
illustration:

-

A ou Oype this, 1he rest
grgc% NAMEQf 7 s yg, isplaged #or you.
D0S. DATABUS COMPILER -1.1- 29 AU&T5

Pass 1
20.

mes 2
20

PoSA DATAPOINT CORPORATION'S DISK OPERATING SHSTEM L. |
READY

N »

THE DATAPOINT PROCESSOR SCREEN

Error Messages
However, if you’'ve made a mistake an error message will be
displayed.

/DBCMP NAMES A
DoS. DATABUS COMPILER. -l.l- 29 Au6T5
PASS 1 type of error
20. position in program
PASS ///. line i Pre 0%/"&”’]
e —T " ™b. 100120 STAT’E/D\;—\
b
7% 1 eRRORS WERE I
DOS.A DATAPDINT CORPIRATION'S DISK. OFERATING SHSTEM ||
ReADY
_ J

THE DATAPOINT PROCESSOR SCREEN

The error messages are really very easy to understand. In this
case, 6 tells us that the error occurred in line 6 of the program. It
tells us the type of error (an undefined instruction). 00120 tells us the
octal position of that instruction in the program (you can usually ignore
this). And STATE DIN is the instruction in error.

In this case, it is fairly easy to figure out where we went wrong.
We spelled DIM wrong. Now we need to go back to Step 2, to correct
the program using the Editor.

Sometimes, however, the error won't be so obvious. You may need
a printout of your program to find out exactly what your problem is.
To get a listing with the compilation, type “DBCMP NAMES;L)"”. The
L specifies that the entire program should be listed on the printer. The
compiler will ask you for a heading for your listing. The heading can
be up to 70 characters long and say whatever you like. Often it's a
good idea to include the date and time for future reference.

Here’s a copy of our program with the error:

1. 00000 DONE INIT "YES"

2. 00010 ACNT DIM 5

3. 00020 NAME DIM 20

4. 00047 ADR DIM 20

5. 00076 CITY DiM 15

6. 100120 STATE DIN 2

7. 00121 ZIP DIM 5

8. 00131 AFILE FILE

9. 01001 OPEN AFILE,”"SAMPLE1"
18. 01147 FIN DISPLAY *P1:3,THANKS”
19. 01162 STOP
20. 01163 STOP

ERRORS WERE |

There are three basic types of errors. An | error indicates an
undefined instruction. U indicates an undefined variable or label. D
means duplicate label. And E indicates a general syntax error. In the
case of E errors, a number is given on the line with an asterisk.

You can get more information about error messages in the
DATABUS Reference Manual.

Step 4
Run Your Program

Now that your program seems to work (at least all of the syntax
problems have been resolved), you need to execute it. Then you’ll get
to see how your program, which is now compiled into
computer-readable form, really works. If you're using a Diskette system,
be sure that the DB11SYS diskette is in drive 1.

To execute the program, use the DATABUS interpreter. Type “DB11
name)’ where name is the name of your program. In our case, we

83

84

type “DB11 NAMES)".

ReEADY yov type thie

THE DATAPOINT PROCESSOR SCREEN

Soon the display screen will clear and you’ll see any visual displays
from vyour program. If, by chance, you typed in the name of a
nonexistent program, the screen will clear, you’ll hear a Beep, and then
the Disk Operating System message and "READY” will reappear.

Step 5
Fix Your Program

Did your program do what you wanted it to do? Are there any
minor enhancements you would like to make? Now that you've seen
how your program works, do you want to change it?

If you want to change it, go back to Step 2. Edit your program,
compile it again, and then execute it. Hopefully you’ll like it this way.

Congratulations -- it worked! Wasn't it easy? We're sorry that we
had to take a lot of the mystique of the world of computers away from
you, but you really don‘t have to tell your friends how easy it is to use
a Datapoint computer.

General Hints

1. Try an example program in the book to get the hang of all steps.
2. Make sure the printer is turned on if you're going to use it.
3. If you have an unexplainable problem, give your Datapoint

Systems Engineer or Account Manager a call and they’ll help you
with your probiem.

CHAPTER ELEVEN

Eor DATASHARE Users

What is DATASHARE?

DATASHARE is Datapoint’s multi-user, multi-task, business data entry
and processing system. DATASHARE allows many simultaneous users
to share the full capabilities of a Datapoint 2200 or 5500 processor.
Many different programs can be executed simultaneously. One user
may be updating inventory, another running payroll, and still another
doing order entry.

Programs, written in the powerful DATABUS language, can be
shared among some or all users. They can be resiricted to certain
users through the use of security passwords. For example, payroll files
would most likely be restricted to a very limited number of users while
inventory files would probably be available to a wider range of
employees.

DATASHARE allows local or remote users. Some DATASHARE
users may be in the same room as the processor while other users are
located across the country.

A DATASHARE system consists of a Datapoint 2200 or 5500
processor, at least one cartridge or mass storage disk, a printer, and
up to 8 or 16 user terminals. You can't use a Diskette 1100 as a
DATASHARE processor.

Biitis : ..'I ALCONTE PAIABLE
P£ = 7;%5{233 .L SurPnE-
\‘

MAVIFACTORINIE— \ EEENINSG~
L7 ‘
\’
Gystem Crocte Drapley Bydtem [Fimter

Ootspoint Frocessor
A TYPICAL SIX-USER DATASHARE SYSTEM

The DATABUS Compiler

You use DBCMP to compile the DATABUS programs that you will
be running under DATASHARE. This is the same compiler that you
use for DATABUS programs that you don’t want to run under
DATASHARE. What this means is that you do not have to recompile a
DATABUS program to be able to run it under DATASHARE. See
Chapter 10 for instructions on how to use DBCMP.

The DATASHARE Interpreter

The DATASHARE Interpreter is a program that runs on the central
processor and manages the execution of the compiled DATABUS
programs on each user’s port. The DATASHARE Interpreter that you
use for your system depends on the equipment that you have. Use the
following chart as a guide to the Interpreter for your system.

87

88

User
Processor Disk Terminals Interpreter Terminals

2200 Cartridge 3360 DS3A3360 8
1K Controller

2200 Cartridge 3600 DS3A3600 8
1K Controller

2200 Cartridge 3360 DS3B3360 8
4K Controller

2200 Cartridge 3600 DS3B3600 8
4K Controller

2200 Mass Storage 3360 DS3B3360 8

2200 Mass Storage 3600 DS3B3600 8

5500 Any Any DS35500 16

DS3RFILE
PSDS

There are some significant things to note about this chart. First of
all, you cannot mix 3360 and 3600 terminals on a 2200 DATASHARE
system. Also, because of compatiblity problems, we do not recommend
the use of non-Datapoint terminals.

On a 5500 DATASHARE system, however, it is possible to mix
terminals; 3360's and 3600's may be on the same system.

There are three DATASHARE interpreters you can use on a 5500
system. DS35500 is the standard DATASHARE interpreter and is similar
in operation to all of the interpreters used for 2200 systems, discussed
in this book.

The two special 5500 DATASHARE interpreters, DS3RFILE and PSDS,
are not covered here but are covered in their respective user’'s guides
and in Advanced Techniques in DATASHARE -- A Simplified User’'s
Guide. DS3RFILE is used when Diskette 1100's are used as user
terminals and diskette files, as well as DATASHARE files, are accessed.
PSDS, the Partition Supervisor DATASHARE, allows for concurrent DOS
and DATASHARE operations.

Put the Programs on Your Disk

In this section we’ll only cover the software end of setting up a
DATASHARE system. We'll assume that all of the cables have been
connected and that your equipment is ready to get to work. If you are
not acquainted with Datapoint equipment, see the Guide to Operating
Datapoint Equipment.

The previous chapter discussed how to compile (translate your
program into machine readable code) and run DATABUS programs. You
should compile all of the DATABUS programs you have ready now,
before you set up your DATASHARE system. Remember to test these
programs out before you let your operators incorporate them into their
daily routine.

Let's assume that you've got your programs written for the various

departments or offices that will be using your DATASHARE system.
Your inventory control program is flawless and your accounting
programs are works of art.

Now you should be sure that the proper interpreter is on your disk
pack. Choose the proper interpreter for your system and check to see
if it is there by typing "CAT DS3A3600" and press the ENTER Key, or
substitute the interpreter name you chose instead of DS3A3600.

If you don’t have the interpreter on your disk, get a copy of it on
cassette, put the cassette in the front cassette deck, type "MIN ;AQ"”
and press ENTER, as shown below. This will put a copy of the
interpreter program on your disk.

| ReADY type this and
MIN ; AO press ENTER

PUT THE INTERPRETER ON YOUR DISK

Set Up ANSWER and MASTER Programs

But before you can start operating your DATASHARE system, you've
got one more step to take. Before a DATASHARE system can be used,
there must be an ANSWER and MASTER program for every port. Both
of these programs are written in the DATABUS language. From the
lessons in this book you have already learned everything you’ll need to
write these programs.

The ANSWER program is the program that each user encounters
when he first gets on to the system. The ANSWER program gives you
the option of requiring that the user properly identify himself before
using the system.

The MASTER program is executed after ANSWER and after each
DATABUS program is executed. The MASTER program usually
requests the name of the program that the user wants to execute.

WHO ARE Y0UZ SusAN \
M D0 40U WANT Z 0RpeR 1

The ANSWER program C8n
2ok, 4o identifycstion

774! MASTER. p;’oﬂrdmaﬁks
for the name of the program

N y

THE DATAPOINT PROCESSOR SCREEN
ANSWER AND MASTER PROGRAMS

89

90

Some DATASHARE users develop fancy and quite ingenious
ANSWER and MASTER programs, and you may end up being quite
creative yourself. But for starters, it isn’t necessary to be complicated
at all. As a matter of fact, it's really easy to set up simple ANSWER
and MASTER programs.

The ANSWER Program

The user must satisfy the requirements of the ANSWER program
before he can gain access to the DATASHARE system. See Advanced
Techniques in DATASHARE -- A Simplified User’'s Guide for details on
security procedures. We'll just give you an ANSWER program that we
created. Though it’s simple, it should give you a good idea of what
you may want to write.

TERMN FORM vgh g

ID DIM V10’ "

IDCODE INIT "DATAPOINT”
DISPLAY *ES,”DATASHARE PORT’,TERMN
CONSOLE ""ANSWER”,TERMN

LOOP KEYIN “ID:"”,ID
MATCH ID TO IDCODE
GOTO GOOD IF EQUAL
DISPLAY “***|NVALID ID***"
GOTO LOOP

GOOD STOP
STOP

There is one new instruction here - CONSOLE. It works just the
same as DISPLAY, but displays the message at the system console.
The system console is the 2200 or 5500 processor display screen.

What this program does is to display the terminal number at the
user's terminal and at the console, and then ask for a code word. If
the identification matches, the program is satisfied and the MASTER
program is automatically executed. If the identification doesn‘t match,
the user has to try to type it in again.

See how this program displays which user terminal it is? Each port
should have its own ANSWER program. The ANSWER program for
terminal one must be named ANSWER1, for terminal two is ANSWER2,
etc. If an ANSWER program does not exist for a specific terminal, a
program named ANSWER, if it exists, will be executed.

ANCWER S

e T]) @ /,W@

IR 1 K =] m/z/Awa/ges
m——
g \ 2

EACH TERMINAL SHOULD HAVE ITS OWN ANSWER PROGRAM

Letting each user terminal have its own ANSWER program is a good
way to insure system security. The code word that works on one
terminal might not work on another; therefore you can limit system
access.

However, if you aren’t that worried about system security, you can
avoid writing separate programs for each terminal by writing one
universal ANSWER program, naming it ANSWER.

The MASTER Program

The MASTER program is executed after each DATABUS program,
including ANSWER, under DATASHARE. The MASTER program asks
the name of the program that the user wants to execute, then executes
that program.

Just like for the ANSWER program, you should have a separate
MASTER program for each user terminal. The program for terminal
one should be named MASTER1, for terminal two is MASTER2, etc. If
a MASTER program does not exist for a terminal, DATASHARE looks
for a program named simply MASTER.

What should your MASTER program look like? Look at this
program:

PORTN FORM "3,

PROGNAME DIM - DA
RELEASE
CONSOLE ""MASTER”,PORTN

LOOP KEYIN *N,*L,”PROGRAM NAME:"”,PROGNAME
TRAP NONAME IF CFAIL

CHAIN PROGNAME
NONAME DISPLAY “**NO SUCH PROGRAM**"
GOTO LOOP

Once you understand the new instructions we’ve introduced here, it's
easy.

First of all, there's the RELEASE instruction. We included this as a
precaution. In case the last program from this terminal was printing
and forgot to release the system printer, this instruction will release the
printer for another program’s use.

We'll skip the TRAP instruction momentarily, and move along to
CHAIN. CHAIN transfers control from your program to another
DATABUS program. In this case, this is how we get out of the
MASTER program and begin executing a program of the user’s choice.
CHAIN was explained in Chapter 9.

What if the user types in the name of a nonexistent program?
That's why we put the TRAP instruction in. TRAP is a unique
instruction because, rather than taking action at the time it is executed,
it specifies what should be done if a specific event happens later in
the program.

Let’s look closely at the TRAP instruction:

Goro—"Y F—— lobe/ of Inother statonent

TRAP NONAME IF CFAIL
10t on dick

91

92

CFAIL is the event that we are trapping. CFAIL is an abbreviation
for CHAIN FAIL - that is, the program name specified in a later CHAIN
instruction is not on the disk.

NONAME is the label that is on the statement that control is
transferred to if a CFAIL occurs. You can use any label name that you
want. In our program, NONAME is the label attached to the error
message, "**NO SUCH PROGRAM**'",

There are other events that we can TRAP. Because most of these
are rarely encountered by the beginning programmer, we won't explain
them here. They are explained, however, in the DATABUS User's
Guide.

Our MASTER program simply asks for the name of a program and
then executes it. You may want to be more selective, and only let the
user execute one of a specified list of programs. You can find more
detail about the MASTER program in Advanced Techniques in
DATASHARE -- A Simplified User’s Guide.

The DSCON Program
Let’s review the steps you should have taken by now to get your
DATASHARE system ready:

1. You should have compiled all of the DATABUS
programs your operators will be using.

2. You should have tested these programs out to be
sure that they work.

3. You should have picked out the proper interpreter and
made sure it is on your disk.

4. You should have written an ANSWER and MASTER
program for each terminal.

Your next step is to tell the DATASHARE interpreter exactly how you
want your DATASHARE system set up. To do this, you have to run the
DSCON program, which already is on your disk (it came with the
interpreter). DSCON stands for DATASHARE configurator.

DSCON asks you a series of questions about the configuration of
your system. To run DSCON, type “DSCON" and press ENTER.

D yon Lype thig
% ‘,{ am? press ENTER,

START THE DSCON PROGRAM RUNNING

You will then be asked a series of questions about your
DATASHARE system. If your system already has been configured, the
configuration will be displayed on the screen for you, and you will be
asked if you want to change it. If you answer ‘YES”, you will be
asked these questions, too.

Here is the way the screen looked when we answered the DSCON
questions:

/ENABLE ROLLOUT Z YES \
SERVD PRINTER? YES
PorT 1 OM CONSOLE ? YES
BUPASS MULT[-PORT ADAPTOR?Z NO
NUMBER OF PORTS 7 3
EQUAL- DATA AREAS FOR ALL PORTS 7 NO
3823 BITeS LeFT. PRTA DATA AREA SJZE : 2000
1622 BYTES LEFT. PORTZ DATA AREA SIZE: 1000
©2Z3 BiTes LEFT, PORT3 DATA AREA SIZE AL THAT IS LEFT

ReADY

— J
THE DATAPOINT PROCESSOR SCREEN

DSCON QUESTIONS
Let’s look at each question individually.

ENABLE ROLLOUT?

ROLLOUT is a program that allows a DATASHARE user to
temporarily stop DATASHARE execution at all the terminals and execute
DOS commands. Once the DOS commands have been executed,
DATASHARE can be restored to its previous status. ROLLOUT is fully
explained in Advanced Techniques in DATASHARE -- A Simplified
User’'s Guide and in the DATABUS User’s Guide.

You will probably want to answer “YES’ to this question simply
because you rarely will need to use this facility, but when you do, you
won’t have to run DSCON again to change the configuration record.

SERVO PRINTER?

This question asks if you’'ve got a Datapoint Servo Printer attached
to your processor. If you have any other type of printer, such as a 300
line-per-minute printer, or no printer at all, answer “NO”.

PORT 1 CONSOLE?

Do you want to use the Datapoint processor screen as a monitor of
all DATASHARE activities? If not, you can use the processor as
terminal 1 of your DATASHARE system by answering ““YES” to this
question.

BYPASS MULTI-PORT ADAPTOR?

You should answer “NO’ unless you plan to have only one terminal
-- the system console. You will need to use the multi-port adaptor to
connect to other terminals.

NUMBER OF PORTS?
Here you type in the total number of terminals your system will be

93

94

using. This number includes the system console, if you have that
configured as a terminal. This number can be from 1 to 8 if you're
using a 2200 processor, or from 1 to 16 if you're using a 5500
DATASHARE program.

EQUAL DATA AREAS FOR ALL PORTS?

If you answer "YES”, each user will be given the same amount of
space in the processor for data manipulation and storage of declared
variables (the variables you declared in DIM, INIT, and FORM
statements). If you know that certain terminals will be running
programs requiring extremely large data areas, you can individually
assign the amount of data area available to each terminal, as we did in
our example. However, because there is so much data area available,
you probably will just want to divide it equally among all terminals.

DATASHARE System Operation

Now you're ready to start using your DATASHARE system. This
section explains how to initiate DATASHARE using the DS3A3600,
DS3A3360, DS3B3600, DS3B3360, and DS35500 interpreters. See
Advanced Techniques in DATASHARE -- A Simplified User's Guide for
details on the DS3RFILE and PSDS interpreters.

4)

; Lype this % witialize PATASHARE

D53 the Kersiwr of the interrater
DS2AS000 || - SHSTEM BEING INITIALIZED
t_——— The interpreter o) e wing

OPERATOR | PLEASE DEPRESS THE KEYEOARD OR DISPLAY KEY

g Y,

DATAPOINT PROCESSOR DISPLAY SCREEN

This is what the screen of our processor looked like when we
initialized our DATASHARE system. Notice that all we had to do was
type ““DS3” and press ENTER to start running the system. (If you're
using DS35500, type "“DS35500’ instead of “DS3").

Press the KEYBOARD or DISPLAY Key to show DATASHARE that an
operator is present. If one of these keys are not depressed within 30
seconds, the processor will make a series of one second warbles to try
to attract your attention. After 30 seconds of Beeping, the racket will
stop and it will be assumed that DATASHARE is being operated in
unattended mode. You want to operate in attended mode most of the
time so you can interactively relate to DATASHARE.

If there is an operator present, however, there’s one more step.
After pressing the KEYBOARD or DISPLAY Key, your processor screen
should look like this:

[N \

P53A2000 1.1 i—’l’izr Time:-B7
—— the umber o b e corsor
| ports qou have /5 5///7/6//(77
2 Contigured
3 the intespreter
4 youSre vomg
5
)
7
8
\ J

DATAPOINT PROCESSOR DISPLAY SCREEN

Enter the time according to a 24 hour clock and press ENTER. Enter
the DATE as the three digit Julian date, a slash, and the last two digits
of the year. Then press ENTER. Your screen should look similar to
this:

(psaAswo Il 3-PORT TIME ; 0835 DATE: 02871 A
)
2
3
4
2 Messages +rom the ports
7 will be displayed here
8 i the consoje (8 not
weed 25 port 1
. J

DATAPOINT PROCESSOR DISPLAY SCREEN

if terminal 1 is the console, the processor screen will clear and the
ANSWER program for terminal 1 will be executed.

Now all of the terminals can connect to the main processor, using
direct wire connections or telephone connections. Each user will have
to satisfy the ANSWER and MASTER program requirements before he
can start executing his programs.

Taking Down the System

You should use ROLLOUT to temporarily stop DATASHARE
execution and return to DOS. You use ROLLOUT to do such things as
edit programs and index data files. ROLLOUT is explained in Advanced
Techniques in DATASHARE -- A Simplified User’'s Guide. ROLLOUT
allows you to return to DATASHARE operation without reinitializing the
system.

95

96

Before you completely bring your DATASHARE system to a halt,
make sure that each user is done with his programs. If you interrupt a
program in the middle of execution, you won’t do any irrepairable
damage, but you will make life difficult. For example, if you've only let
an operator type in a third of the data for one program, that operator
may have to type it all in again or write a program to let him pick up
from where he stopped.

To stop DATASHARE execution and return to the Disk Operating
System, simply press RESTART at the processor console.

CHAPTER TWELVE

DATABUS 2 - For Cassettes

For those of you without disks attached to your Datapoint processor,
Datapoint has another version of DATABUS that will work with
cassettes.

In this chapter, DATABUS 2 (Version 5) is described. If you are
using an older version of DATABUS 2, we highly recommend that you
order the newest compiler and interpreter available.

The first step in learning how to use cassette DATABUS is to read
all of the lessons in this book except lesson 6. Since lesson 6 covers
disk file structures, and you aren’t using disks, it is unnecessary to
read that lesson.

This appendix covers three major subjects:

1. Language differences between disk DATABUS
(DATABUS 11) and DATABUS 2.

2. Data storage and retrieval on cassette tape.

3. Running a DATABUS 2 program.

Once you've learned the basics described in this appendix, you're
probably going to want to learn more about DATABUS 2. See the
DATABUS 2 User's Guide, model code number 50169, for more details.

Part 1 - Language Differences

This section covers the differences between DATABUS 2 Version 5
and disk DATABUS. The differences covered relate to the subjects
already discussed in this book. Check the DATABUS 2 Version 5
User's Guide for complete language specifications.

Label Differences

DATABUS 2 labels can only be six characters long, while labels can
be up to 8 characters long in disk DATABUS. Other than that, the
rules are the same.

Good Labels Labels That Won't Work
COMP COMPUTER (too long)

A123 123A (starts with a number)
CALBAK IINOTE (illegal first character)

KEYIN and DISPLAY Differences
There are two important differences in the display screen positioning
controls under DATABUS 2:

, 7

1. There is no ¥ES parameter in DATABUS 2. Instead, to position
the cursor to upper left-hand corner of the screen and erase
the screen, uge the following DISPLAY instruction:

DISPLAY *P1:1,°EX V§

Remember that *EF just erases the screen from the current cursor

position -- in this case, the upper left-hand corner. You must
position the cursor via the *P command.
2. In addition to *P positioning, *V and *H can be used to specify

99

100

the vertical and _horizontal cursor positions. The following two
DISPLAY statements have the same results:

DISPLAY *V2,*H10,”HELLO"

DISPLAY *P10:2,"HELLO”

FJM/II”M /0

oz /™ HELLO

_ _J

DATAPOINT PROCESSOR SCREEN

These are some of the valid cursor positioning controls under
DATABUS 2:

Control Function

*Hn Causes cursor to be positioned to column
n (1<n<80).

*Vn Causes cursor to be positioned to row n
(1<n<12).

*Px:y Causes cursor to be positioned to column x
and row vy.

*EL Erases the rest of the line from the current
cursor position.

*EF Erases the rest of the screen from the
current cursor position.

*R Rolls the screen up one line, losing the top

line and sets the bottom line to blanks.
Constant Data Values
Remember how, in the disk DATABUS lessons, you could use this
statement:

ADD 100 TO AMOUNT

to add the 100 to the value of AMOUNT? 100 is considered a

constant value and is never changed by the program.

Well, in DATABUS 2, you cannot use constant data in this way.
Instead, you need to give the value of 100 a labeled name, and use
that label in the arithmetic statement instead of the constant value.
This requires two statements, a FORM statement to initialize the value:

HUND FORM 100"
and the arithmetic statement:
ADD HUND TO AMOUNT

Data Storage Statements

For obvious reasons, the disk data storage statements (discussed in
Lesson 6) are not inciuded in DATABUS 2. Instead, a whole new set
of commands are used to read and write data to and from cassettes.
These are discussed in the next section.

Part 2 - Data Storage on Cassette Tape

Each Datapoint processor has two cassette tape decks. The deck
towards the back of the processor is called deck 1; the deck near the
front of the processor is called deck 2.

THE CASSETTE DECKS ARE NUMBERED

The use of cassette tapes involves only several logical steps and
adherence to three rules.

A Few Guidelines

These guidelines are important to remember for effective data file
reading and writing.

First, the data cassette tape should be rewound before it is used in
order to assure a common beginning place. Otherwise, your program
could begin reading or writing the cassette at a place that will be
troublesome to find again.

Secondly, after writing all your data, be sure to tell the tape that
this is the end of the data. A WEOF (Write-End-of-File) mark should
be written.

Thirdly, controls should be set up while reading data so that the
End-of-File mark can be detected to notify the program that there’'s no
more data.

101

102

Writing Data to Cassette Tape

You use the WRITE instruction to write data to cassette. We'll go
through an actual program example to show how easy writing data to
cassettes is.

Let’s look at the program we used to write data to disk, but this
time we'll write the data to cassette tape. Remember that the program
creates a file with the names and addresses of friends.

Here’'s the flow chart:

FLOW CHART
Program to NAME 40 SPACES
Write Data to A955 SBRSEP_Q(I:IEG
Cassette Tapes AN 3 e

CuRSOR TO UPFER LEFT
CORNER, (LEAR SCREEN
DISELAY MESEAGE
ReviND THE
FrouT TAPE

KEUIN NAME
AND ADPDRESS

WRITE NAME AND ApDRess,
FBETTE

ON FRONT CA

/
DISPLAY " Y00 HAVE
RUN oUT OF TAPE ¥

NoO
Yes
WRITE END OF
FiLE MARKL

And here’s the program:

NAME DIM 40
ADR DIM 50
ANSWER DIM 3
YES INIT "YES"
DISPLAY *P1:1,*EF,”NAME AND ADDRESS PROGRAM”
PREPARE 2 |
TRAP ENDTAP IF EOT2 <<—
WRITER KEYIN “NAME: “,NAME
KEYIN “ADDRESS: “ADR
WRITE 2.NAME,ADR
KEYIN IS THIS THE LAST ENTRY?

“ANSWER YES OR NO”,ANSWER
MATCH ANSWER TO YES
GOTO FINISH IF EQUAL
GOTO WRITER
ENDTAP DISPLAY "YOU’RE OUT OF TAPE"”

BKSP 2
FINISH WEOF 2

BEEP

STOP

Let's look at some of these new instructions:
PREPARE 2

This tells DATABUS to rewind cassette deck 2, the front cassette
deck. If there is already data on the front cassette, this operation will
render it inaccessible and ready the cassette for a new data file.

If your instruction would have been PREPARE 1, a data file would
be opened on the same cassette that contains the interpreter and
program (see Part 3 for instructions on how to run your program).

When you write data on the rear cassette deck, it is put in file 32,
after the interpreter, your programs, and any other files. See the
drawing below.

FILE 2 Fuez |Fuet | cAT | cros |LoapeR| 24
T urites DATA here.

However, when you write to the front cassette deck, the data files
begin right at the beginning of the cassette.

U I PATA DATA | Awnt
FILE 2 FuE | |fek

103

104

TRAP ENDTAP IF EOT2
TRAP was explained under disk file operations. EOT tells the
computer that control should be transferred to the statement labeled
ENDTAP if it runs out of tape on deck 2.
WRITE 2,NAME,ADR
This is very similar to the disk WRITE operations, but here all you
need to specify is the cassette deck where the data should be written
and the values that should be written there.
BKSP 2
This tells the processor to backspace the cassette in deck 2 by one
record. This leaves us just enough room to write an End-of-File mark.
Notice, however, that this destroys the last name and address that we
wrote to cassetie so we'd have room for the End-of-File mark.
WEOF 2

This writes an End-of-File mark on the cassette in deck 2.

Reading from Cassettes
Now, let’s write a program to read the data off the tape.

FLOW CHART @

Program to S
NoAES0EE

Read Data
From Cassettes *
MOVE CURS0R TO
UPPFEE LEF%COMAND
/ rzswpmsmom /

READ NAMFAND
FRDNT CAsseTre

/ ‘THA‘!F ‘S ALL" /
PLAY NAME
/ R Abprese / @

]

PROGRAM

NAME DIM 40

ADR DIM 50
DISPLAY *P1:1,*EF,”TAPE READER”
REWIND 2
TRAP DONE IF EOT2

READER READ 2,NAME,ADR

GOTO DONE IF OVER
DISPLAY NAME,ADR
GOTO READER

DONE DISPLAY "THAT'S ALL”
STOP

That was a short program, wasn’t it? Let’'s look at the few
instructions you might not already be familiar with.

REWIND 2

What this instruction does should be obvious. It rewinds the front
cassette deck. This positions the cassette tape readers to the very
beginning of the data.

GOTO DONE IF OVER

The OVER condition is set when an End-of-File mark is encountered
while reading the data. So what this statement does is to transfer
control to the statement labeled DONE when the program has finished
reading all of the data. The EOF marker that you wrote before alerts
this trap.

TRAP DONE IF EOT2
This is the same instruction used in the writing example. We just
included it in case there was some unusual problem with the cassette
tape and the End-of-File mark is encountered.
READ 2,NAME,ADR
This reads the next name and address from the front cassette deck.
How Data is Stored on Cassettes

Data storage is very simple and direct on cassette tape. Let’s look
at our program as it appears on the display screen as it is executed:

105

106

NAME AND ADDRESS PROGRAM
NAME: HARRY AARDVARIC
ADPRESS | 401 LONELY LANE, NOWHERE, NY

IS THIS THE LAST ENTRY 7 NO
NAME: SUSIE SINGLE

ADDRESS: 2132 ZeRD $TRE€F, OURTTONIN | 1L
& THIS THE LAST ENTRY 7 YeS

N Y,

DATAPOINT PROCESSOR SCREEN

And here’s what our cassette data tape looks like with these data
values stored on it:

BLANK, | END 232ZER0 | ougc |G| 40l LoNEl | ya CLEAR
OF STREET, Al LANE, LEADER.
% P | FLE | oeroun,iL | SNOE P NowHeRE | AARDY

The data values are stored in the exact same order as they are
input! Notice that there are gaps between the groups of information.
Whenever one WRITE statement ends, a gap is left to separate the
information before another WRITE statement is begun.

Likewise, whenever a READ statement starts, it starts at a gap
boundary. This means that with these instructions:

READ 1,NAME
READ 1,NAME

you really read two names. The address between the names is ignored
because after each READ the cassette head is automatically positioned
to the next inter-record gap. To use two READ statements to read one
group of information, you must conclude the first READ statement with
a semicolon (;) to tell the computer that you don‘t want it to space
over to the next gap. To illustrate this, just remember that

READ 1,NAME,ADR

has the same effect as

READ 1,NAME;

READ 1,ADR
whereas

READ 1,NAME

READ 1,ADR

will actually use the next name for the address because it automatically
skipped over to the next gap after executing the first READ statement.

Updating the File

Let's assume that you saw a mistake (maybe several mistakes!)
when the data file was displayed on your processor screen. Now you
need to change your data file. You may want to add data to the file,
also.

This program reads and displays a name and address, offers the
operator the opportunity to change the values, and then writes the
values out to cassette. Let's look at the flow chart:

107

FLOW CHART

NAME 40 SPACES
AR S0 2ACES Program to Update the File

'CURSOR To UPPER,
CORNER., CLEAR scgn/
VISPM‘V MESSAGE

REWIND FRONT AND
ReAR CA%ETTES

> '
READ NAME ANC>
ADPRESS FROM FRONT / ¢ :
CASSETTE]
WRITE NAME AND
APPRESS To REAR.

A

KEYIN NAME
AND ADDRESS

Vo
NO NO
s e / “DiEnA WAE / / WRITE ENDOFFIE /
ND AP REeAR
TA?"E : CA%*‘ET\?
RELWIND BOTH 7
WRTE NAME AND /A0 /
NGE
/TR o
1 ‘ / Cory u?vATeD FLE
168

ya=r:
APDRESS

CoPY VPDATED FILE
/ (::zoﬂ !ZEAST 15 F(lad'/

108

Notice how we plan to read the data from the front cassette,
possibly correct the data, and then write it on the rear cassette. We
can even add data to the file. Then, when we're done, the rear
cassette contains the updated data file. Since the rear cassette also
contains the DATABUS interpreter during execution, we need to rewrite
this new data to the front cassette.

Here’s the program:

NAME DM
ADR DIM
YES INIT
ANSWER DIM
DISPLAY
REWIND
REWIND
TRAP
LOOP1 READ
GOTO
DISPLAY
KEYIN
MATCH
GOTO
WRITE
GOTO
CHANGE ~ CALL
WRITE
GOTO
EOFILE KEYIN
MATCH
GOTO
WEOF
REWIND
PREPARE
LOOP2 READ
GOTO
WRITE
GOTO
EOLOOP ~ WEOF
sToP
ADD CALL
WRITE
GOTO
EOTAPE DISPLAY
BKSP
WEOF
REWIND
KEYIN
MATCH
GOTO
STOP
REWRITE PREPARE

40

50

"YES”

3
*P1:1,*EF,”CORRECTION PROGRAM"
1

2

EOTAPE IF EOT1
2,NAME,ADR

EOFILE IF OVER
NAME,ADR

“"DO YOU WANT TO CHANGE IT?",ANSWER
ANSWER TO YES
CHANGE IF EQUAL
1,NAME,ADR

LOOP1

KEY

1,NAME,ADR

LOOP1

“ADD DATA?”,ANSWER
ANSWER TO YES

ADD IF EQUAL
1

1

2

1,NAME,ADR
EOLOOP IF OVER
2,NAME,ADR
LOOP2

2

KEY
1,NAME,ADR
EOFILE

“END OF TAPE--END OF FILE”

1

1

1

"REWRITE DATA TAPE?",ANSWER
ANSWER TO YES

REWRITE IF EQUAL

2

109

110

GOTO LOOP2

KEY KEYIN “NAME: "“,NAME
KEYIN "ADDRESS: ",ADR
RETURN

The flow chart looked long and involved, but the program actually
was quite direct and simple. The major new thing we've introduced
here is the use of the rear cassette.

During execution, the interpreter cassette is in the rear cassette
deck (deck 1). But there still is room on it for a data file. The data
we write on the rear cassette won’t overwrite the interpreter -- the
interpreter won't let it, as explained before. Instead the data is written
following the last file on the tape. Then it is rewritten to the front
cassette.

Notice also how we used a subroutine, KEY, to avoid repeating
instructions in our program.

Part 3 - Running the Program
There are three steps you will have to go through to get your
program running:

1. Type in and edit your program.

2. Compile your program. The compiler takes your
instructions and translates them into a machine
readable code.

3. Run your program. The interpreter handles your
program’s execution.

To perform these three steps, you’ll need the following cassette
tapes:

1. A tape with the GEDIT program on it. GEDIT is
Datapoint’s general purpose editor, and it lets you
type in your program instructions.

2. DB2PGS 5.1, model code number 20248. This
cassette contains the DATABUS 2 compiler.

3. DB2SYS 5.1, model code number 20249. This
cassette contains the DATABUS 2 interpreter.

4. One extra cassette. We'll refer to this as the data
tape. Use a blank cassette or an old cassette with
information you don‘t need anymore.

To learn how to juggle these four cassettes into the two cassette
drives on your processor, keep reading.

Step 1 -- Type In and Edit Your Program

With your processor turned on and ready to go and your program
written out on paper, you're ready to start entering your program.

Put the GEDIT tape in the rear cassette deck and the data tape in
the front cassette deck. See the Guide to Operating Datapoint
Equipment if you’re not familiar with Datapoint’s equipment. Press

RESTART (or RESTART and RUN on a 5500).

There are two types of GEDIT cassettes. The simplest is a
"load-and-go”’ tape -- all you have to do is press RESTART and soon
the general purpose editor will start running. The second type is a
CTOS tape. |If it is a CTOS tape, it is just a little more complicated,
but using the RESTART Key is the place to start. In a little while
"CTOS” and a version number will appear near the top of the screen
in the middle of the line. "“READY” will appear near the lower left
corner with a flashing cursor (little rectangle of light) under it. To
make sure GEDIT is on the cassette, type "“CAT GEDIT” and press
ENTER. |If the processor responds with GEDIT/CMD, you’ll know it is
indeed on your cassette. Now, type “RUN GEDIT” and press ENTER.
This will start running the GEDIT program.

Whether you asked CTOS to run GEDIT or you have a load-and-go
GEDIT, you will soon know you are in the GEDIT program because you
will get the message "‘OLD,NEW,DUP;PARAMETERS?” displayed, as
shown in the following picture.

0LD, NEW, DUP; PARAMETER SZ NeW ; D

you tyge. this and
pross ENTER

DATAPOINT PROCESSOR SCREEN

In response to the question, type “’NEW;D” and press ENTER.
"NEW" tells the editor that you want to create a new file. ';D” tells
the editor that you are going to type in a DATABUS program and you
have a data tape in the front cassette deck.

Incidently, from now on we’re going to assume that you know to
press ENTER after each line you type in. Until you press ENTER,
though, you can correct characters in the line by using the
BACKSPACE and CANCEL Keys.

Soon the screen will clear, an arrowhead will appear on the left,
and the cursor will blink on the left end of the bottom line. Start
typing in your program. Notice how you can see what you've typed on
the screen. And notice how a tab is set around column 9. Whenever
you hit the space bar before that column, the cursor automatically
jumps the necessary number of spaces to column 9. Look at our
program:

111

(\tab

NAME PM 4p
> ADR DIM 50
gff’,,i,,ejr ABWER. DM 3
s INIT “YES”
DSPLAY ¥ Pi:| ¥ EF " NAME AND ADDRES5 PROSRAM!
PREPARE 2
TRAP ENDTAP IF ECTZ

\'/

>

71\
\ the cureor
- J

Look closely -- we spelled DISPLAY wrong. How are we going to
correct it? The editor has special commands that let us fix up
mistakes like this.

All of the editor commands are prefaced with a colon () so the
editor can tell a command from a normal line of text. These are some
common editor commands:

:DEL Delete. Erases the entire line and lets you try
again.

:[INS Insert. Opens up a space between two lines so
an extra line may be squeezed in.

:MOD Modify. Lets you change individual characters or a
group of characters. In our case, we typed
DSPLAY instead of DISPLAY. To correct it we
type:

:MOD DSPLAY <DISPLAY
The line will now contain the proper spelling.

DSPLAY <DISPLAY

(6t) (replces) (rem)

One last step -- when you've got everything so it looks good, stop.
Contemplate your work of art. Then type in the last and most
important editor command.

:END End of Program. Indicates to the editor that you
are done and to write a complete, perfect copy of
his program to the front tape.

Wait until either the CTOS message or
""OLD,NEW,DUP,PARAMETERS?" reappears, then go on to the next
step.

112

Step 2 -- Compiling Your Program

Leave the data tape that now contains your program in the front
cassette deck. Replace the GEDIT tape in the rear deck with the
DB2PGS tape. The purpose of this step is to let the compiler make
machine readable code out of your statements.

First of all, the compiler must know what type of machine you are
using. Compilers and other programs cannot make intuitive guesses --
they must be told all of the facts about their operation. Configuring is
a word that is used to describe the process of telling the compiler
what type of machine you are using.

if this is the first time you’ve ever run this compiler, the
configuration questions will automatically be asked. So press
RESTART and wait for the questions. If the cassette has been used
before, the configuration values will not be asked. However, if you
depress the KEYBOARD Key while you press ENTER, and hold it down
until a message appears on the screen, you can change or check the
configured values.

Your display screen will look like this:

DBCMP ReLeASE 5|
CONFIGURE PROSGRAM TAPE?

DATAPOINT PROCESSOR SCREEN

Let's go over all of the questions that are asked. Press ENTER
after responding to each question.

CONFIGURE PROGRAM TAPE?

Answer "Y" if this is the first time through or you want to change
the values. Answer “"N” and none of the values you type in will be
recorded.

OBJECT MACHINE SIZE (8,12,16)?
Type in the memory size of the machine you are using. If you're
really unsure, and there’s no readily available means to finding out for
sure what the memory size is, type "“8".

PRINT?

Answer “Y"” to get a copy of your program and any error messages
printed.

LOCAL OR SERVO PRINTER?

This is asked if you responded with a Y to the PRINT question.
Type ’S” for servo or “L” for any other type of printer.

113

114

DISPLAY?

Answer Y to see the results of your program’s compilation on the
screen of your Datapoint processor.

CODE?

If you answered Y to the DISPLAY or PRINT questions, this
question will be asked. You will usually want to answer "N’ so your
time isn’t wasted with the printing or displaying of the machine code
generated by the compiler.

There’s one last question that will be asked every time you use the
compiler if a print out is desired:

HEADING?

Obviously, you should type in an appropriate heading here. You
might want to include the date and time for future reference.

you ype.in a head/hg
D BCMP RELEASE 5)
HEADING-: INVENTORY PROGRAM 4/8/76
oK OBIECT MACHINE

-

DATAPOINT PROCESSOR SCREEN

As soon as you press the ENTER Key after typing in the heading,
the compiler will start working. Sit back and relax while the compiler
is busy. You'll know that it is done when DONE and DB2CMP. 5.1
message reappears. The data cassette in the front deck now contains
an extra file with the compiled version of machine code in it.

If you have other programs to compile, now is the time to switch
front cassettes and compile them. Note that the compiler now is
configured, and you won‘t be asked any of the questions except,
HEADING if a print out is desired.

Compiler Error Messages
The following errors can occur during compilation:

D The D flag means DOUBLE DEFINITION. It
is flagged if a label or variable has been defined
to more than one value during compilation.

| The | flag means INSTRUCTION
UNKNOWN. This means that the instruction you
are using is not understood by the compiler.
Maybe you spelled it wrong?

E The E flag means that there has been an
ERROR in the statement. This can be caused by
any unrecognizable character.

U The U flag means UNDEFINED SYMBOL. It
is used whenever a label is referenced but not
defined.

OVERFLOW This message is given if your program is

too large. Try dividing your program into two or
more shorter programs.

DICTIONARY FULL This message is given if your program is
using too many labels and variables. Try dividing
your program into two or more shorter programs.

What do these error messages look like? Let's take a look at our
cassette data file writing program print out.

17000 NAME DIM 40

17053 ADR DiM 50

17140 ANSWER DIM 3

17146 YES INIT "YES”

E17154 DISPLAY *ES,”NAME AND ADDRESS PROGRAM"
17207 PREPARE 2

17211 TRAP ENDTAP IF EOT2

17214 WRITER KEYIN "NAME: ",NAME

17225 KEYIN ""ADDRESS: " ,ADR

17241 WRITE 2,NAME,ADR

17246 KEYIN “IS THIS THE LAST ENTRY? ", ANSWER
17301 MATCH ANSWER TO YES

17304 GOTO FINISH IF EQUAL

17307 GOTO WRITER

17311 ENDTAP DISPLAY “YOU'RE OUT OF TAPE”

17335 BKSP 2

17337 FINISH WEOF 2

17341 BEEP

17342 STOP

17343 STOP

17344 ENDTAP
17346 WRITER
17350 FINISH

17352 NAME

17354 ADR
17356 ANSWER
17360 YES

ERRORS WERE E

115

116

Notice how the statement with the mistake is flagged with an error.
Also, at the bottom of the print out is a summary of the errors. In this
case, we used *ES in the DISPLAY statement, but cassette DATABUS
doesn’t recognize *ES. You have to use *P1:1,*EF to erase the screen.

Step 3 -- The Interpreter

Your program now is compiled into a form that can be read by the
computer. Now you want the computer to read it and run it. For this
step, you use the interpreter.

Leave the data tape in the front cassette deck and put the DB2SYS
5.1 cassette in the rear cassette deck. Press RESTART (or RESTART
and RUN on a 5500).

Soon the CTOS message and “READY"” will appear on the screen.

The DB2SYS cassette consists of:

1. A cassette loader block

. File 0: CTOS (the cassette tape operating system)

3. File 1 CTOS Catalog (a directory of where all of the
files are on the cassette)

4. File 2 DATABUS 2 Interpreter (DB2INT)

File 3 DATABUS 2 Master Program (DB2MAS)

4

The first thing you will want to do is to add your compiled program
to this interpreter cassette. First, think of a name for your program. It
must begin with an alphabetic character and contain an additional one
to five alphabetic or numeric characters. We’ll call ours NAMES.

To copy the program on the front cassette to the rear cassette, type
“IN NAMES"” and press ENTER. And in just a minute or so "READY"’

will reappear and you should remove the front cassette -- it isn't
needed anymore (unless you need to correct your program later)!
4 N\
CTO0S 3.2

READY 7 s T b/
ype thiz To Lopy the program
!;e NAMEG‘% 1 the mz‘er/o/Zz‘&r agsatte
ADM

- _J
DATAPOINT PROCESSOR SCREEN

File Numbers

NAMES is now File 4 on the DB2SYS cassette. If you wanted to
add another program, ORDERS, and followed the same procedure, it
would be File 5. Files are numbered in octal -- that is , from 01 to 07,
10 to 17, 20 to 27, and 30 to 37. The first 14 of these files (files 01 to

17) also have names. But the last 16 files can only be called and
added by number.

What if you forget what file number your program is? Type "CAT”
and you’ll get a listing of the files on the cassette.

. type this
REAEVI /— these Liles Fe on the crssette

CAT
DBZINT DB2ZMAS NAMES ORDERS

KRea
-

DATAPOINT PROCESSOR SCREEN

Notice that File 0 and File 01 are not listed. DB2INT is File 02,
DB2MAS is file 03, NAMES is file 04, and ORDERS is file 05.

Think for a moment about the program you are about to execute.
Does it write data to the front cassette? Then you should put a
cassette in the front cassette deck. Does it read data from the front
cassette? Make sure that the front cassette deck contains the tape
with the data on it.

The Interpreter

And now you’re ready to run your program. As with the compiler,
the first time ever that you run the interpreter you must configure it
(tell the program what type of computer you are using).

To run the interpreter, type "RUN DB2INT” and press ENTER. If
this is the first time, the configuration questions will be asked.

Type his to rn the interpreter

READY
RUN DBZINT ansuky ﬂ//.? and
DATABUS 2 INTERPRETER. - RELEASE S | %%z@ wation
\wNanze PROGRAM TAPE 7
DATAPOINT PROCESSOR SCREEN

These are the configuration questions that will be asked:
CONFIGURE PROGRAM TAPE?

Answer “Y" to record your answers on the cassette.
INTERPRETER TAPE LGO OR CTOS?

Type “C” to indicate that you are using a CTOS tape.

WRITE VERIFY?

117

118

Answer "Y' if each WRITE operation should be double checked for
accuracy, otherwise answer "N”.

Next, the MASTER program is initialized:
WRITE VERIFYZ N
DATABUS Z INTERPRETER - RELEASE 5.

UTILTY MASTER. - DATABUS 2 RELEASE 5.1

\@EAAD‘{//’Z_’/ the corsor waits ford file
\ -/K\/ nomber 7 execte

DATAPOINT PROCESSOR SCREEN

The cursor is flashing, waiting for you to type in a file number (not
a name!) We want to execute NAMES, which is file 04. So we type in
04, press ENTER, and soon enough we get to see the results of our
labors -- the program is actually running!

When it's done, “READY” will reappear. Take out the DB2SYS
cassette if you're done with the interpreter.

Are you satisfied with your program? [f not, you can delete the one
you just put on the DB2SYS cassette by typing “DELETE NAMES” (use
your program name, of course). If you want to delete a file other than
the last one on the cassette, be sure to put an extira cassette - one
you don‘t need the information from - in the front deck. This exira
cassette is necessary so the files on the DB2SYS cassette can be
rearranged.

Now use the GEDIT program to fix your program, recompile it, and
then load it on the DB2SYS tape again and run it. Hopefully you'll like
it better with the changes you’ve made.

Syntactic Definitions

condition

character string

event

list

name

label

nvar

nval

nlit

svar

sval

slit

nlist
slist

m

APPENDIX A

Instruction Summary

The result of any arithmetic or string
operation: OVER, LESS, EQUAL, ZERO, or
EOS (EQUAL and ZERO are two names for
the same condition).

Any string of printing ASCII characters.

The occurrence of a program trap:
PARITY, RANGE, FORMAT, CFAIL, or |0.

A list of variables or controls appearing in
an input/output instruction.

Any combination of letters (A-Z) and digits
(0-9) starting with a letter (only the first
eight characters are used).

A name assigned to a statement.

A name assigned to a statement defining a
numeric string variable.

A name assigned to an operand defining a
numeric string variable or an immediate
numeric value.

A constant numeric value, enclosed in
double quotes(”).

A name assigned to a statement defining a
character string variabie.

A name assigned to an operand defining a
character string variable or a quoted
alphanumeric character.

A constant character string, enclosed in
double quotes ().

A series of contiguous numeric variables.
A series of contiguous string variables.

A positive record number (<=0) used to
randomly READ or WRITE on a file.

seq A negative number (<0) used to READ or
WRITE on a file sequentially.

key A non-null string used as a key to indexed
accesses.

null A null string used as a key to an indexed
read.

DATABUS 11 Language Summary
For the following summary:
Items enclosed in brackets | |are optional.
Items separated by the |symbol are mutually exclusive (one or the

other but not both must be used).

COMPILER DIRECTIVES

label EQU 10
label EQUATE 100
INC filename | /ext |

INCLUDE filename | /ext |
FILE DECLARATIONS

label FILE
label IFILE

DATA DEFINITIONS

label FORM n.m

label FORM '456.23"

label DIM n

label INIT "character string”’

label FORM *n.m

label FORM *""456.23"

label DIM *n

label INIT *"CHARACTER STRING"”
CONTROL

GOTO (label)

GOTO (label) IF (condition)
GOTO (label) IF NOT (condition)
BRANCH (nvar) OF (label list)
CALL (label)

CALL (label) IF (condition)

120

CALL
RETURN
RETURN
RETURN
STOP
STOP
STOP
CHAIN
CHAIN
TRAP
TRAPCLR
ROLLOUT
ROLLOUT

(label) IF NOT (condition)

IF (condition)
IF NOT (condition)

IF (condition)

IF NOT (condition)
(sval)

(slit)

(label) IF (event)
(event)

(svar)

(slit)

CHARACTER STRING HANDLING

MATCH
MATCH
MOVE
MOVE
MOVE
MOVE
MOVE
APPEND
APPEND
APPEND
CMOVE
CMATCH
BUMP
BUMP
RESET
RESET
RESET
ENDSET
LENSET
CLEAR
EXTEND
LOAD
STORE
STORE
CLOCK
CLOCK
CLOCK
TYPE
SEARCH
SEARCH
REPLACE
REP

(svar) TO (svar)

(slit) TO (svar)

(svar) TO (svar)

(slit) TO (svar)

(svar) TO (nvar)

(nlit) TO (nvar)

(nvar) TO (svar)

(svar) TO (svar)

(slit) TO (svar)

(nvar) TO (svar)

(sval) TO (svar)

(sval) TO (sval)

(svar)

(svar) BY (nlit)

(svar) TO (sval)

(svar) TO (nvar)

(svar)

(svar)

(svar)

(svar)

(svar)

(svar) FROM (nvar) OF (slist)
(svar) INTO (nvar) OF (slist)
(slit) INTO (nvar) OF (slist)
TIME TO (svar)

DAY TO (svar)

YEAR TO (svar)

(svar)

(nvar) IN (nlist) TO (nvar) WITH (nvar)
(svar) IN (slist) TO (nvar) USING (nvar)
(svar) IN (svar)

(slit) IN (svar)

121

ARITHMETIC

ADD
ADD
SuUB
SuB

(nvar) TO (nvar)
(nlit) TO (nvar)
(nvar) FROM (nvar)
(nlit) FROM (nvar)

SUBTRACT (nlitinvar) FROM (nvar)

MULT
MULT
MULTIPLY
DIV

DIV
DIVIDE
MOVE
MOVE
COMPARE
COMPARE
LOAD
STORE
STORE
CHECK11
CK11
CHECK10
CK10

INPUT/OUTPUT

KEYIN
DISPLAY
BEEP
PRINT
PREPARE
PREP
OPEN
CLOSE
WRITE
WRITAB
WEOF
UPDATE
READ
READKS
DELETE
INSERT

(nvar) BY (nvar)

(nlit) BY (nvar)

(nlitfnvar) BY (nvar)

(nvar) INTO (nvar)

(nlit) INTO (nvar)

(nlittnvar) INTO (nvar)

(nvar) TO (nvar)

(nlit) TO (nvar)

(nvar) TO (nvar)

(nlit) TO (nvar)

{(nvar) FROM (nvar) OF (nlist)
(nvar) INTO (nvar) OF (nlist)
{nlit) INTO (nvar) OR (nlist)
(svar) BY (svar)

(svar) BY (slit)

(svar) BY (svar)

(svar) BY (slit)

(list)
(list)

(list)

(file),(svar |slit)

(file),(svar |slit)

(file Jifile),(svar |slit)

(file |ifile)

(file |ifile),rn |seq |key [(list) | |; | |
(file),rn [seq;(list) |; |

(file |ifile),rn |seq

(ifile) |; |(list) | |; | | |
(file |ifile),rn |seq |key |nul;(; |(list |; |))
(ifile);(; |(list [|))

(ifile),(svar)

(ifile),(svar)

DATABUS 2 Language Summary

NOTE: The following two syntactic definitions apply to the DATABUS 2

language:

1. Conditions are OVER, LESS, EQUAL, ZERO, and EOS.
2. Events are EOT1, EOT2, RFAIL1, RFAIL2, FORM1,

122

FORM2, and CFAIL.

DIRECTIVES

CONTROL

STRING

FORM
FORM
DIM
INIT
FORM
FORM
DIM
INIT

TRAP
TRAPCLR
GOTO
GOTO
GOTO
CALL
CALL
CALL
RETURN
RETURN
RETURN
STOP
STOP
STOP
CHAIN
BRANCH

CMATCH
CMOVE
MATCH
MOVE
MOVE
MOVE
APPEND
RESET
RESET
RESET
BUMP
BUMP
ENDSET
LENSET
TYPE
EXTEND
CLEAR

n.m
"'456.23"

n

“character string”’
*n.m

*"'456.23"

*n

*”character string”

(label) IF (event)

(event)

(label)

(label) IF (condition)
(labe) IF NOT (condition)
(label)

(label) IF (condition)
(label) IF NOT (condition)

IF (condition)
IF NOT (condition)

IF (condition)

IF NOT (condition)
(svar)

(nvar) OF (label list)

(sval) TO (sval)

(sval) TO (svar)

(svar) TO (svar) -
(svar) TO (svar)

(svar) TO (nvar)

(nvar) TO (svar)

(svar) TO (svar)

(svar) TO (sval)

(svar) TO (nvar)

(svar)

(svar) BY (literal)
(svar)

(svar)

(svar)

(svar)

(svar)

(svar)

123

124

LOAD
STORE

(svar) FROM (nvar) OF (svar list)
(svar) INTO (nvar) OF (svar list)

NUMERIC VARIABLE ARITHMETIC

ADD

sSuB

MULT

DIV

MOVE
COMPARE
LOAD
STORE

(nvar) TO (nvar)

(nvar) FROM (nvar)

(nvar) BY (nvar)

(nvar) INTO (nvar)

(nvar) TO (nvar)

(nvar) TO (nvar)

(nvar) FROM (nvar) OF (nvar list)
(nvar) INTO (nvar) OF (nvar list)

KEYBOARD, C.R.T., PRINTER 1/0

KEYIN
KEYIN
DISPLAY
DISPLAY
PRINT
PRINT
BEEP
CLICK
DSENSE
KSENSE

CASSETTE TAPE 1/O

READ
READ
READ
WRITE
REWIND
BKSP
PREPARE
WEOF

(list)
(list);
(list)
(list);
(list)
(list);

(unit),(list)
(unit),(list);
(unit)
(unit),(list)
(unit)
(unit)
(unit)
(unit)

APPENDIX B

Editor Commands

The DOS Editor program enables you to create and modify files. All

A full description of
Guide.

:D
:D text

:E
:E*
:EO

:F text

i

L

:L text

‘M old<new
:SC

:SB

Editor commands are prefixed with a colon (:) to distinguish them from
text lines. The pointer must be positioned at the line that needs
correcting (use the KEYBOARD and DISPLAY Keys to do this).

all Editor commands is in the DOS User's
Here is an abbreviated list:

Delete entire line.

Delete all characters from the left edge of
the line through and including the specified
text.

End of file. Write file.

Display last line of file on screen.

Display data continuously on screen
through last line of file.

Find line starting with text.

Insert a line.

Show next line in the file.

Find imbedded text.

Replace old text with new text.

Remove the lines from top of screen down
to and including the pointed line.

Remove the lines through the bottom of the
screen.

125

NOTES

127

DATAPOINT CORPORATION

w
,gﬁ »

The Leader in Dispersed Data Processing™

9725 Datapoint Drive
San Antonio, Texas 78284
5%2/690-7151

NOLVIORIOD INIOdVIVA

3AIND Ss.H3ISN a3idIdWIS sNav.iva

i

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	xBack

