DISK OPERATING SYSTEM

DOS.
User’'s Guide

February, 1975

Model Code No. 50127

DATAPOINT CORPORATION

D

The Leader in
Dispersed Data Processing

TABLE OF CONTENTS

page
PART |
1. GENERAL BACKGROUND INFORMATION 1-1
1.1 Hardware Support Required ‘ ' 1-2
1.2 Software Configurations Available ‘ 1-2
2. OPERATOR COMMANDS 2-1
3. FILES o . 3-1
3.1 FILE NAMES 3-1
3.2 FILE CREATION 3-1
3.3 FILE DELETION ‘ } 3-2
3.4 PROGRAM EXECUTION : 3-2
PART Il
1. GENERAL BACKGROUND INFORMATION : . ' 1-1
2. DOSGEN FROM CASSETTE. , 21
PART il
1. APP COMMAND = 11
2. AUTO COMMAND 241
3. AUTOKEY COMMAND . 3-1
3.1 Introduction to AUTOKEY. , 3-1
3.2 The Hardware Auto-Restart Facility. . 3-1
3.3 Automatic Program Execution using AUTO. ' 3-1
3.4 Auto-Restart Facilities using AUTOKEY. 3-2
3.5 Detailed Use of AUTOKEY. , 3-2
38 A More Complicated Example. o 3-3
3.7 Special Considerations 3-5
3.8 AUTOKEY and DATASHARE. 3-6
4. BACKUP COMMAND 4-1
4.1 INTRODUCTION : 4-1
4.2 PROGRAM INITIALIZATION 4-1

4.3 MIRROR IMAGE COPY 4-2

4.4 REORGANIZING FILES
441 COPYING DOS TO OUTPUT DISK
4.42 COPYING UNNAMED FILES
4.4.3 DELETING NAMED FILES
| 4.4.4 COPYING NAMED FILES
45 USE OF KEYBOARD AND DISPLAY KEYS
46 ERROR MESSAGES
4.7 REORGANIZING FILES FOR FASTER PROCESSING

5. BLOKEDIT COMMAND

5.1 INTRODUCTION

5.2 FILE DESCRIPTIONS : !
52.1 COMMAND FILE:
5.2.2 SOURCE FILE:
523 NEW FILE:

5.3 USING BLOKEDIT.

5.4 BLOKEDIT APPLICATION EXAMPLE:

5.5 '‘ADDERX’' command file for BLOKEDIT creation of 'ADDER’ program.

5.6 'CONVERT' subroutine package subroutines.
5.7 'ASMD’ subroutine package ‘ADD’ subroutine.
5.8 Assembly listing of ADDER"

5.9 BLOKEDIT execution-time messages.

6. BOOTMAKE COMMAND
7. CAT COMMAND

8. CHAIN COMMAND

8.1 INTRODUCTION

8.2 ELEMENTARY CHAIN USAGE

8.3 ADVANCED CHAIN USAGE
8.3.1 Tag definition
8.3.2 Phases of execution
8.3.3 Tag existence testing
8.3.4 Comment lines
8.3.5 Tag value substitution
8.3.6 Additional CHAIN operators
8.3.7 Resuming an aborted CHAIN

9. CHANGE COMMAND
10. COPY COMMAND

10.0 PURPOSE
10.1 USE

4-2
4-2

4-2
4-3
4-3
4-3
4-4

5-1
5-1
5-1

" 5-3

5-3
5-3
5-3
5-6
5-8
5-11
5-13
5-13

6-1
7-1

8-1
8-1
8-2
8-3
8-3
8-4
8-5
8-6
8-8
8-9
8-10

9-1
10-1

10-1
10-1

22.3 ERRORS

23. MOUT COMMAND
23.0 PURPOSE
23.1 PARAMETERS
23.2 OPTIONS
23.3 FILE NAMES
23.4 WRITING
23.5 VERIFYING

24. NAME COMMAND

25. REFORMAT COMMAND
25.1 INTRODUCTION
25.2 SYSTEM REQUIREMENTS
25.3 OPERATION
25.4 OUTPUT FILE FORMATS
25.5 REASONS FOR REFORMATTING
256 REFORMAT MESSAGES
257 TEXT FILE FORMATS

26. REWIND COMMAND
27. SAPP COMMAND

28. SORT COMMAND

28.0 INTRODUCTION

28.1 GENERAL INFORMATION
28.1.1 Physical requirements

28.2 FUNDAMENTAL SORT CONCEPTS
28.2.1 What the files look like
28.2.2 The key options
28.2.3 How to sort a file

28.3 THE OTHER OPTIONS
28.3.1 Generalized command statement format
28.3.2 Keys-overlapping and in backwards order
28.3.3 Collating Sequence File
28.3.4 Ascending and Descending sequences
28.35 Input/output file format options
28.3.6 Limited output format option.
28.3.7 TAG file output format option.
28.3.8 HARDCOPY output option.

28.3.9 PRIMARY/SECONDARY sorting considerations.

28.3.10 Key file drive number.

28.3.11 Disk space requirements.

28.3.12 LINK into SORT from programs.
28.4 THE USE OF CHAIN WITH SORT

28.4.1 How to set up a chain file for sort

22-7

2341
23-1
23-1
23-1
23-4
23-6
23-7

24-1

25-1
25-1
2541
25-1
25-2
25-3
25-3
25-6

26-1
271

28-1
28-1
28-1
28-1
28-1
28-1
28-2
28-2
28-3
28-3
28-7
28-7
28-8
28-8
28-8

28-11

28-13

28-14

28-14

28-15

28-15

28-19

28-19

28.4.2 Naming a repetitive sort procedure
28.4.3 Initiating a sort from another program
28.4.4 Using CHAIN to cause a merge
28.5 SORT EXECUTION-TIME MESSAGES.
28.6 DATABUS 7 LINKAGE TO SORT
28.7 EXAMPLE OF USE OF TAG FILE
28.8 EXAMPLE OF SOPHISTICATED ASSEMBLER
28.9 SORT OPTIONS COMBINATIONS
28.10 SELECTED EXAMPLES OF SORT PARAMETERIZATION
AND RESULTANT OUTPUT

29. SUR COMMAND
29.0 Purpose
29.1 About Subdirectories
29.2.1 Creation of Subdirectories
29.2.2 Deletion of Subdirectories
29.2.3 Being ‘in a Subdirectory’
29.2.4 Scope of a File Name
-+ 29.2.5 About Subdirectory SYSTEM
29.26 Files vs. the User Being ‘in. a Subdirectory’
29.2.7 Getting a File into a Subdirectory
29.3 USAGE
29.31 Establishingl a ‘Current Subdirectory’
29.3.2 Creating a Subdirectory
29.3.3 Deleting a Subdirectory
29.3.4 Renaming a Subdirectory
29.3.5 Displaying Subdirectories

PART IV

1. INTRODUCTION .
1.1 General Background Information
1.2 Operator Commands
1.3 System Structure
1.4 Interrupt Handling
1.5 System Routines
1.6 Physical Configuration Requirements
1.7 Program Compatibility with Different DOS

2. OPERATOR COMMANDS

3. SYSTEM STRUCTURE
3.1 Disk Structure
3.2 Disk Data Formats
3.3 Memory Mapping
3.4 Memory Tables
3.5 The Command Interpreter

Vi

28-19
28-20
28-20
28-21
28-28
28-31
28-32
28-33

28-34

29-1
29-1
29-1
29-2
29-2
29-2
29-2
29-3
29-3
29-4
29-4
29-4
29-4
29-4
29-5
29-5

1-1
1-1
1-1
1-1
1-2
1-2
12
1-3

2-1

3-1
3-1
3-6
3-7
3-8
3-9

4. INTERRUPT

HANDLING

4.1 Scheduling
4.2 Process Initialization
4.3 Process State Changing

4.4 Timing

Considerations

4.5 DOS Usage

5. SYSTEM ROUTINES

-

5.1 Parame

terization

5.2 Exit Conditions

3 Error H

andling

5.4 Foreground Routines

541
54.2
543
544
55 Loader
551
552
553
554
555
556
557
558
559

CS$ - change process state

TP$ - terminate process

SETI$ - initiate foreground process

CLRI$ - terminate foreground process
Routines

BOOTS$ - reload the operating. system
RUNXS - load and run a file by number
LOADXS$ - load a file by number

INCHL - increment the H and L registers
DECHL - decrement the H and L registers
GETNCH - get the next disk buffer byte
DR$ - read a sector into the disk buffer
DWS$ - write a sector from the disk buffer
DSKWAT - wait for disk ready

5.6 File Handling Routines

56.1
56.2
56.3
564
56.5
56.6
56.7
56.8
56.9
56.10
56.11
56.12
5.6.13
56.14
56.15
56.16
56.17
56.18
56.19

PREPS - open or create a file

OPENS - open an existing file

LOADS - load a file’

RUNS$ - load and run a file

CLOSES$ - close a file

CHOPS - delete space in a file

PROTES - change the protection on a file
POSITS - position to a record within a file
READS$ - read a record into the buffer
WRITES - write a record from the buffer
GETS$ - get the next buffer character
GETRS$ - get an indexed buffer character
PUTS - store into the next buffer position
PUTRS$ - store into an indexed buffer position
BSP$ - backspace one record

BLKTFR - transfer a block of memory
TRAPS - set an error condition trap
EXITS - reload the operating system
ERRORS$ -- reload the operating system

5.7 Keyboard and Display Routines

vii

4-1
4-2
4.2
4-4
4.6

5-1
5-1
5-1
5-1
5-2
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-5
5-5
5-6
5-7
5-7
58 -
5-9
5-9
5-10
5-10
5-11
5-12
5-12
5-13
5-13
5-14
5-14
5-15
5-15
5-16
5-16
5-17
5-19
5-19
5-19

5.7.1 DEBUGS$ - enter the debugging tool 5-19

5.7.2 KEYIN$ - obtain a line from the keyboard 5-22

5.7.3 DSPLY$ - display a line on the screen 5-23

5.8 DOS FUNCTION Facility o 5-23
59 Cassette Handling Routines 5-27
59.1 TPBOFS$ - position to the beginning of a file ‘ 5-28

59.2 TPEOF$ - position to the end of a file 5-29

5.9.3 TRWS - physically rewind a cassette ‘ 5-29

59.4 TBSP$ - physically backspace one record : 5-29

59.5 TWBLKS - write an unformatted block 5-30

596 TR$ - read a numeric CTOS record 5-30

5.9.7 TREADS - TR$ and wait for the last character 5-31

598 TWS$ - write a numeric CTOS record " 5-31

59.9 TWRITS - TWS and wait for the last character 5-31
59.10 TFMRS$ - read the next file marker record 5-32
59.11 TFMWS$ - write a file marker record 5-32
5.9.12 TTRAPS - set an error condition trap 5-32
5.9.13 TWAITS - wait for 1/O completion 5-33
59.14 TCHKS$ - get I/O status ' 5-33

510 Command Interpreter Routines ' 5-34
5.10.1 DOS$ - return to command interpreter . 5-35
5.10.2 NXTCMD - return to command interpreter 5-35
5.10.3 CMDAGN - return to command interpreter 5-35
5.10.4 GETSYM - get the next symbol from MCR$ 5-36
5.10.5 GETCH - get the next character from MCR$ 5-36
5.10.6 GETAEN - Get auto-execute physical file number 5-37
5.10.7 PUTAEN - set or clear a file to be auto-executed 5-37
5.10.8 GETLF1 - Open the user-specified data file 5-37
5.10.9 PUTCHX - store the character in ‘A’ 5-38
5.10.10 PUTCH - Alternate version of PUTCHX 5-38
5.10.11 PUTNAM - format a filename from directory 5-38
5.10.12 MOVSYM - Obtain the symbol scanned by GETSYM 5-39

5.11 User Supported Input/Output 5-39
6. ERROR MESSAGES ' 6-1
7. ROUTINE ENTRY POINTS . 7-1

8. EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT DOS 8-1

viii

PART |

INTRODUCTION

SECTION 1.0 GENERAL BACKGROUND INFORMATION

Datapoint Corporation's Disk Operating System, (usually abbreviated DQOS), is a
comprehensive system of facilities for sophisticated data management.

The DOS provides the operator with a powerful set of system commands by which the
operator can control data movement and processing from the system console. These
commands allow the system operator to accomplish in a very short time things which would
ve substantially more difficult on much larger computing systems. Sorting a large file. for
Instance, can generally be accomplished in one single command tine: compare this with the
cewildering pile of system commands required to perform the similar function on other
machines! In spite of the simplicity of operation, even the most sophisticated users will be
surprised at the wide range and versatility of features provided.

To the programmer, DOS offers a large set of facilities to enable programs to execute
without detailed knowledge of the particular disk in use. Such advanced concepts as
completely dynamic disk space allocation allow programs to efficiently operate without regard
12 the amount of space required for the data files they are using. In addition, the very
efficient disk file structure used by the DOS allows for direct random access to data files at
speeds comparing very favorably with even the largest mainframes. The standard use of fully
space-compressed text files allow source programs and many data files to fit in half or less of
the disk space that would normally be required on larger systems.

For the systems analyst and systems designers, DOS provides the solid foundation for

powertul and sophisticated packages such as Datapoint Corporation’s highly successtul
DATASHARE system.

Programmers and Operators alike will appreciate the automatic program chaining facility
provided by the CHAIN command of the DOS. Programmers will enjoy using CHAIN because
t enables the creation of complete, sophisticated job files which allow the automatic execution
of an almost unlimited number of job steps, all without operator iritervention at the
keyboard. Ease of assembling or compiling a large system of programs is just one of the
many benefits achieved by chaining. Operators wiil appreciate CHAIN because entire data

processing tasks can be queued for execution and invoked with only a single command line to
the system.

These features, combined with the ability to support up to 200 million bytes of

high-speed random access disk storage. provide the Datapoint user with a full range of data
processing capabilities unmatched by any comparable business-oriented system.

SECTION 1.0 GENERAL BACKGROUND INFORMATION 11

1.1 Hardware Support Required

The minimal.configuration required to run the DOS is a.-Datapoint computer, (any of
series 5500, 2200, or 1100) with minimum 16K of memory, and one disk storage unit (any of
series 9370, 9350 or 9380). For backup and support purposes, users with the Diskette 1100
computer are required to have at least one system with more thar one diskette drive. Users
with the other processors can operate with only a single disk drive unit in conjunction with
the integral tape cassettes, but for backup and system support purposes a two-drive system is
a strongly recommended minimum.

1.2 Software Configurations Available

The DOS is provided in serveral different versions. Different versions are used
depending upon the type of disk in use at an installation. Specific versions are indicated by a
letter after a period in the name of the DOS. As an example, the following versions of the
DOS are currently defined:

DOS.A -- Supports 9350 series disk drives on Datapoint 2200 and 550C series computers.
DOS.B -- Supports. 9370 series disk drives on Datapoint 2200 and 5507 series computers.

DOS.C -- Supports 9380 series disk drives on Datapoint 1100, 2200 ard 5500 series
computers.

This manual describes the compatible set of facilities availablz to the DOS user within
the the Disk Operating System. Programs written in any of the supported higher level
languages (Databus 7, DOS Databus, Datashare, RPG 1l. BASIC. etc.) will generally run
unmodified on any of the Datapoint Corporation DOS. Programs written in Assembler
Language will also run under any of the DOS, without reassembly.

Basically, in only a few isolated cases will another program need to be changed when
it is transferred from one DOS to another. The need for program inodification, which should
obviougly be avoided whenever possible, will usually stem from one or more of the following

LRVILUS! vioIivTe Wo LSSias T [ERei e}

types of situations:

1) Programs which make assumptions regarding the size of the file they are dealing
with. For example, programs originally written for the 9350 series disks might assume that
the size of the biggest possible file could be expressed as four ASCli digits. Under DOS.B.
this assumption is invalid since files under DOS.B may be up to 3C,238 data sectors long.

2) Programs which make assumptions regarding the physical structuring of the data on
the disks. For example, different DOS allocate space on the disk in pieces of different sizes,

and may place their system tables in different locations on the disk.

3) Programs which generate or modity physical disk addresses themselves. Since the
disks are each organized somewhat differently to take advantage of the particular

1-2 PART | ' INTRODUCTION

characteristics of the speci'fic type of drives involved, the physical disk address formats
naturally vary among different DOS.

4) Programs which rely upon other characteristics of the DOS which are not
documented in this manual. A possible situation would be where a user might look at the
values in the registers following the return from a system routine and determine, for instance.
that some routine always seemed to return with the value '1" in one of the registers. If he
then constructs his program in such a manner that it will not function correctly if the "1’ is
not present upon return from the routine, then he is obviously likely to find that his program
will not work properly on a different DOS.

All of the above situations except for the first will usuatly only occur in Assembler
Language. programs operating at the very lowest levels. Users which for their application
require programs which operate with this level of detailed knowledge about the DOS will find
the information specific to that DOS in the DOS System Manual corresponding to the DOS
they are using.

The DOS System Manual for a specific DOS is also the place where a user will
normally turn for operational details and information about the hardware and software specific
to his particular DOS. For example, the commmand INIT9370 (fo format a disk volume for
use in the 9370 series disk drives) is described in the DOS.B System Manual, since it is
clearly not applicable to users of the 9380 series flexible diskette drives.

SECTION 1.0 GENERAL BACKGROUND INFORMATION 1-3

SECTION 2.0 OPERATOR COMMANDS

All Datapoint computers include, as a standard feature, an integral CRT display unit by
which the internal computer communicates with the user. The system console also includes
2 typewriter-style keyboard which the user employs to communicate with the computer. The

Disk Operating System is normally controlled by commands typed by the user at this system
consoie.

When the DOS first ‘comes up’, (computer jargon for 'become ready for commands’.) it
displays a message on the CRT and says ‘READY’. At this peint the DOS is ready to accept
a command line. - This command line, typed by the user, tells the DOS which program the
user wants to run and will generally also name one or more files on disk which the program
is to use. These files could be program files (files containing programs in one form or
another) or data files (files containing data to be used by executing programs). If. as an
example. the user wished to edit a program file on his disk, he would simply type:

EDIT PROGNAME

where '‘PROGNAME’ is the name of his program. EDIT is a standard DOS command which
allows the user to edit files stored on the disk.

A large assortment of useful commands is provided with the DOS. These include the
DOS editor and many useful disk file handling commands. . A complete set of CTOS
compatible cassette handling commands are also provided. allowing the user to transfer files
between the disk and cassettes.

Since the commands are actually programs which the system loads and executes to
perform the task required, the command language is naturally extensible to include any
program the user may desire, thus leading to a powerful keyboard facility. See Part Ili for
information on the commands supplied with the system.

SECTION 2.0 OPERATOR COMMANDS 2-1

SECTION 3.0 FILES

Each of the DOS-supported disks stores information in the form of sectors, each of
which contains 256 bytes of information. Each byte is capable of storing one ASCII (or
EBCDIC) coded character. Information stored in these sectors is usually grouped with a

number of other sectors containing related information, and together this group is referred to
as a fiie.

3.1 FILE NAMES

Files are identified from the console by a NAME, EXTENSION, and LOGICAL DRIVE
NUMBER. The NAME must start with a letter and may be followed by up to seven
alphanumeric characters. Examples of typical file names are:

EDIT
PAYROLL
EMPLOYEE
JUL1075
MONDAY
LEDGER
etc.

The EXTENSION must start with a letter and may be foliowed by up to two
alphanumeric characters. It further defines the file, usually indicating the type of information
contained therein. For example, TXT usually implies user data files or source information
(e.g. DATASHARE, ASM, DOS DATABUS, or SCRIBE source lines), ABS usually implies
program object code records that can be loaded by the system loader, and CMD usually
implies programs that implement commands given the DOS from the keyboard. Most
commands have default assumptions concerning the extensions of the file names supplied to
them as parameters. However, extensions may otherwise be c¢onsidered as an additional part
of the name. The LOGICAL DRIVE NUMBER specifies which logical drive is to be used. It
is given in the form DR(n), where (n) is zero through the maximum supported within the
. user's configuration and the specific DOS he is using. If the drive is not specified. the
system searches all drives starting with zero. Note that each logical drive contains its own
directory structure. Specifying the drive number enables one to keep programs of the same
NAME and EXTENSION on more than one drive. In addition, specifying a logical drive
allows the user to place files on any logical drive of his choice.

3.2 FILE CREATION

Files are always created implicitly. That is, the operator never specifically instructs the
system to create a given file. Certain commands create files from the names given as thein
parameters. Since space allocation is dynamic, the operator never specifies how many
records his file will contain.

SECTION 3.0 FILES 3-1

3.3 FILE DELETION

Deleting files is made somewhat more difficult to protect the user from accidentally
destroying valuable data. Files can be protected against deletion or both deletion and
writing. In addition to this, the operator must always explicitly name the file he is deleting
and even then must answer a verification check stop before the actual deletion occurs.

For example, assume the user wished to delete an old copy or a program on his disk
named OLDPROG/ABS. Although he would of course type his commands and replies in
upper case, they are shown in lower case for clarity in the following example:

kill oldprog/abs

ARE YOU SURE? yes
*FILE DELETED *
READY

3.4 PROGRAM EXECUTION

The system has no explicit RUN command since, to execute his program. the user
simply mentions its name as the first file specification on the command line. This is the
mechanism via which both commands and user programs alike are cxecuted. The first file
specification may be followed by up to three more, depending upon the requirements for
parameterization of the program being run. A file specification is of the form:

NAME/EXTENSION:DRIVE

where any of the three items may be null (except the NAME must be given in the first
specification which denotes the program to be run). Note that the / indicates that an
extension foliows and the : indicates that a drive specification follows. If either of these
items is not given, the corresponding delimiting character is not used For example:

NAME/ABS:DRO NAME/ABS

NAMDE.NON

TNV TN

NAME

are all syntactically correct. File specifications may be delimited by any non-alphanumeric
that would not be confused with the extension and device indicators. For example:

COPY NAME/TXT,NAME/ABS
COPY NAME/TXT NAME/ABS
COPY NAME/TXT/NAME/ABS

will all perform the same function. If an extension is not supplied in the first file
specification, it will be assumed to be CMD. In the above exampizs, COPY/CMD will be
used for the complete file name sought in the directory for the command program name.
Note that if one wanted to run a file he had created with extension ABS. he would simply

3-2 PART | INTRODUCTION

enter
NAME/ABS

and his program would be loaded and executed. If the name given cannot be found in the
directory or directories specified, the message

WHAT?

will be displayed. Note that the DOS can load any object code at or above iocation 01000
(octal). However. if any use has been made of the interrupt handling facility. loading must
be above 01400 or the system must be bootstrapped (by pushing RESTART) before 01000
through 01377 may be overstored. This restriction arises from the fact that once the intem{pt
facility has been activated, a JUMP to a routine between 01000 and 01377 has been stored ‘in
locations 0, 1 and 2 and if this routine is overstored, the system will go astray upon
occurrence of the next interrupt.

See Part Il of this manual for a full description of the cemmand prcgrams supplied
with the DOS.

SECTION 3.0 FILES 3-3

PART I

SYSTEM GENERATION

SECTION 1. GENERAL BACKGROUND INFORMATION

Upon initial installation of a new Datapoint disk-oriented dispersed processing system, the
user will generally start off with several brand new disks. Before these disks can be used by
the Disk Operating System, however, the disks must be prepared; this process is known as
DOS generation or DOSGEN-ning the new disk.

Some types of disks require special treatment even before a DOSGEN can be properly
done on them. One example is disks that are used with the Datapoint 9370-series disk
drives.On these disks, formatting information must first be written onto the disk. Such special
treatment to be done before the DOSGEN process is described in the DOS System Manua! for
the specific DOS in use; only the general-case DOSGEN process will be described here.

There are two methods for doing a DOSGEN on a disk. They differ primarily by whether
the DOS is generated from the very beginning (e.g. from a casseite tape running under CTOS)
or from an up and running DOS system. Users doing their very first DOSGEN or having only
one physical disk drive wili have to DOSGEN using the cassette DOSGEN
approach: otherwise they will be able to use the generally faster disk DOSGEN command
supplied with the DOS and described later.

SECTION 1. GENERAL BACKGROUND INFORMATION 1-1

SECTION 2. DOSGEN FROM CASSETTE.

Cassette DOSGEN requires that the user have a DOS Generation cassette package,
which contains the DOS to be generated, and a disk to generate the DOS onto.

Each physical disk drive has a number associated with it, which is called the physical
drive number. At the time the hardware is installed, the Datapoint Customer Service engineer
will instruct the user in the proper technique for inserting and removing disks from the user's
disk drives and will indicate which numbers are associated with which physical disk drives.

The two cassette tape drives on top of Datapoint computers (that are so equipped) are
usually referred to as the front deck and the rear deck. The rear deck is the one physically
closer to the row of cooling slots on the top of the computer and toward the back. In disk
oriented systems, this rear deck is almost invariably used to hold a tape known as the DQOS
boot tape, use of which will be described later on in this part of the manual. The front
deck is the deck physically closer to the user as he sits at the processor keyboard. In disk
oriented systems, this front deck is almost invariably used to hold cassettes which either
contain data to be input into the system through the use of one or more of the available
system commands, or blank cassettes to which data can be output via appropriate system
commands.

Another of the important hardware things a person needs tc know about before his first
DOSGEN is the read—ohly switch present on the 9350 and 9370 series disk drives. (There is
such a switch on the 9380 series drives also, but on these the switch is internal to the
controller and for Service Engineering use only). This switch is usually labelled with
something descriptive such as ‘Read-write/Read only’ or '‘Protect’. These switches physically
prevent the disk controller from writing on the disk. Since the DOSGEN process obviously
needs to write on the disk (as do most operations under the DOS) 1t is. important that these
switches be set to allow writing. in order to allow writing on the 9370-series drives, the
switch must be pushed to 'Read-write’. For the 9350-series drives, pressing the ‘Protect’
switch will cause the light inside it to be extinguished indicating that writes will be permitted.
(More information on the slightly unorthodox behavior of the write disable switch on the 9370
disks will be given in the DOS.B System Guide). '

After the disks are in place and spinning and the DOSGEN cassette is in place in the
rear deck, load the DOSGEN program from the rear deck by pressing the key on the computer
Keyboard marked ‘Restart’. (Datapoint 5500 users must also press '‘Run’ at the same time as
‘Restart’ for the ‘Restart’ key to have effect). If the tape stops mcving and the ‘Stop’ light
comes on {the light at the left side of the ‘Stop’ key) then the tape probably did not load
correctly. Usually this will occur within about 5-10 seconds after the tape is rewound and
starts moving forward. If this halt occurs, the procedure should e repeated as necessary. If
after several tries the DOSGEN program still does not come up. the tape may be bad and
should be replaced. ' :

When the program has loaded. it will display a message identifying itself and ask the

SECTION 2. DOSGEN FROM CASSETTE. 2-1

user several questions to determine that the user is not going to accidentally overwrite a disk
containing valuable information. As each question is asked, the user is required to key in his
answer (usually "Y' or ‘N’ is sufficient) and terminate his response with the 'Enter’ key. (By

DOS convention almost all entries to questions posed by programs are terminated by ‘Enter’).

After a time the program will ask if the user wants to lock out any cylinders. If the user
wants to set aside an area of the disk for abnormal use, (or wishes to prevent the use of a
portion of the disk which may be bad) then he should reply 'Y’ tc this message. In this case
the user is asked which cylinders he wishes to lock out; the replv should be of the format
described for the DOSGEN command as detailed in Part 1ll of this manual. However. the
normal answer to this question will be 'N’.

Following this, the disk is checked for obvious bad spots and these places are then
automatically locked out.” When the surface checking has finished, the DOS and a few
commands are copied. to the disk. When 'enough of the DOS has been copied to the disk to
bring the system up, the DOS .is brought up and the standard DOS signon message and
'READY’ are displayed.

Important: The DOSGEN procedure is not completed until the commands have been
_loaded onto the disk. Specifically, one of the files on the commands tape, named
SYSTEM7/SYS. must be loaded before the DOS will operate properiy.

Before loading the commands, first place a blank cassette in the front deck and type
'BOOTMAKE' at the console. Follow the instructions that are subsequently displayed and a
DOS ’'Boot block’ will be written onto the front tape. It is probably a good idea to repeat this
process several times to ensure .getting a good boot tape before proceeding. These boot
tapes are the mechanism by which the DOS is ‘brought up’.

The next step is to load the commands. Place the first of the commands tapes into the
front deck. The message 'READY’ should at this point appear on th=2 display. If it does not.
take one of the boot tapes generated in the previous step, place it.inte the rear deck and load
it just like the DOSGEN tape. After several seconds the DOS signon and '‘READY’ should
appear. |f they do not and the 'Stop’ light comes on. try another of the boot tapes you have
just made until the 'READY’ message is displayed. Then, with the commands tape in the front
deck, enter:

‘MIN ;AO

at the consofe. The MIN program will be loaded from the disk into memory and will proceed
to load the commands into the system and store them onto the disk. When the tape has been
fully loaded and the message 'MULTIPLE IN COMPLETED’ and 'READY’ are displayed. remove
the front tape (turning it over if necessary) and proceed to load the second tape of commands
(which in some cases will be the second side of the same tape. or ccuid be a completely _
separate tape; the labels on the cassettes will indicate which is the case with your particular
tapes). When all the commands have been loaded (usually two or perhaps three cassette
sides) the DOS generation procedure on the specified /logical drive is complete.

Note that on some types of drive, notably the 9370-series (‘Mass Storage’) disk drives.

2-2 PART 1l SYSTEM GENERATION

each of the two /ogical disks on each disk pack must be DOSGEMed individually (ie. the
DOSGEN procedure must be done twice before the physical disk is completely DOSGENed).

The second DOSGEN for such users should be done after generating the boot tapes and
before using MIN to load the commands.

After a disk has been fully DOSGENed in this manner, the user can then (assuming he
has two physical disk drives) use the faster DOSGEN command to DOSGEN subsequent
disks.The use of the DOSGEN command is described in Part Ill of this manual.

The DOSGEN program allows the user to specify on which disk the DOSGEN is to take
place. In spite of this, it is important to recognize that the DOS must be resident on logical
drive zero at an intermediate point in the DOSGEN procedure; therefore, the first DOSGEN
done must be onto drive zero in order that a DOS be there when required. Subsequent
DOSGENSs can be onto any other drive, as long as drive zero then contains a fully DOSGENed
disk. '

SECTION 2. DOSGEN FROM CASSETTE. 2-3

SECTION 1. APP COMMAND

APP - Append two object files creating a third

APP <file spec>,{<file spec>},<file spec>

The APP command appends the second obiject file after the first and puts the result into
the third file. If extensions are not supplied, ABS is assumed. The first two files must e>.<|st.
It the third file does not already exist, a new file will be created. The first file's end of file

record is discarded and the copy is terminated by the end cf file mark in the second file.

Omitting the second file specification causes the first file to be copied into the third file.
=or example:

APP DOG,,CAT

will copy the file DOG/ABS Into the file CAT/ABS. Note that naeither of the first two files will
be disturbed.

The first and third file specifications are required. If either is omitted the message
NAME REQUIRED

will be displayed. The second and third file specifications must not be the same.

SECTION 1. APP COMMAND 1-1

SECTION 2. AUTO COMMAND

AUTO - Set Auto Execution

AUTO <file spec>

- The AUTO command specifies which program is to be automatically executed upon initial
Ioading of the system. If no extension is supplied, ABS is assumed. |If there is already a file
set for auto execution, the message

AUTO WAS SET TO NAME/EXTENSION (PFN).
will be displayed (where PFN is the physical file number). Regardiess, the name specified will
be recorded in the directory location reserved for the auto-execution name. No check is made

to see if the file is an object file.

If no file spec if given in the commmand line, then the setting of the file to be
AUTO-executed is not changed. However, if a file spec was present, then the message:

AUTO NOW SET TO NAME/EXTENSION (PFN).

will be displayed after the new AUTO-execution setting has been made;
If no <ftile spec>is entered and AUTO is not set, the message
NAME REQUIRED

will be displayed. If the <file spec>does not exist, the meséage
NO SUCH NAME

will be displayed. Note that if a program has been set to auto-execute, its execution can be
inhibited by depression of the KEYBOARD key when the system is reloaded. -

Note that the AUTO command does not make provision for file specifications to be given
to the program which is to be automatically executed. This makes it impossible to use AUTO
for programs requiring such parameters. For more information, refer to the section describing
the AUTOKEY command.

SECTION 2. AUTO COMMAND 2-1

SECTION 3. AUTOKEY. COMMAND

3.1 Introduction to AUTOKEY.

Many users allow their Datapoint computers to run in an unattended mode. This allows
large data processing tasks, perhaps running via the DOS command chaining facility (see
CHAIN), to be run during the evening hours when no operator is present. (An example might
be the creation of several new index files for one or more large, ISAM-accessed data bases).
However, the momentary power failures which data processing users are being forced to
contend with during times of shortage, thunderstorms and the like can bring down any
computer not having special, uninterruptible power supplies. When this happens to a computer
running in unattended mode, the office staff will generally return the next morning to find their
computer sitting idle and its work unfinished.

The Datapoint computers are all equipped with an automatic-restart facility which can be
used to cause them to automatically resume their processing tasks foliowing such an
interruption. The purpose of the AUTOKEY (and AUTO) commands in the DOS are to provide
a software mechanism for use by programmers who wish to handie such unusuat
circumstances and provide for the restarting of a processing task. ’

3.2 The Hardware Auto-Restart Facility.

There are two little tabs on the back edge (the edge directly opposite from the edge the
tape is visible on) of each cassette tape. The leftmost of these (as you look at the top side of
the cassette) is the write protect tab, which prevents writing on the topmost side of the tape.
The right-hand tab is the auto-restart tab.

Users who frequently use both sides of cassettes will probably immediately notice that if
one turns over the tape, the assignments of these two tabs switch around, the tab which had
been write protect now being auto restart and vice versa. This in fact is precisely what
happens. '

If the auto-restart tab on the rear cassette is punched out (or slid to the side on the
newer cassettes), then the computer will automatically re-boot, just like it does when RESTART
is depressed, whenever it detects that it has halted. Assuming that the rear cassette drive
contains a DOS boot tape, this will cause the DOS to come up and give its familiar message,
‘READY’. '

3.3 Automatic Program Execution using AUTO.

In order to provide a mechanism for programs to resume automatically following an
interruption (such as a DATASHARE system, for instance, which might be running unattended)
the DOS has a comparable facility to enable a program to be automatically executed whenever
the DOS comes up. (Note that any loading and running the DOS, whether by an auto-restart,
hitting the RESTART key, or under program control, will activate this facility).

SECTION 3. AUTOKEY COMMAND 3-1

The AUTO command is used to establish a program to receive control when the DOS
comes up. This setting can be cleared with the MANUAL command. For some applications,
the AUTO and MANUAL commands are adequate to allow a programmei restart of a lengthy
data processing task. However, some programs require parameters be specified on the
command line, and these are obviously not present if no command line has been typed in.

3.4 Auto-Restart Facilities using AUTOKEY.

AUTOKEY is simply a command program which can be AUTO'd. The way in which it
works is very simple. |f it is run via the DOS auto-restart facility, AUTOKEY supplies a
command line just as if the same one line were typed at the system console. If AUTOKEY is
run from the system console (or likewise from an active CHAIN), it simply displays the
command line it is currently configured to supply and offers the user the option of changing
that stored command line.

The command line supplied to AUTOKEY could do anything specifiable in one command
line to the DOS; DATASHARE could be brought up, a SORT invoked, a user's own special
restart program started or even a CHAIN begun. AUTOKEY, when ussd with AUTO, MANUAL,
and CHAIN can therefore provide a very powerful facility.

3.5 Detailed Use of AUTOKEY.
To specify a command line to be used during automatic system restart, simply type:
AUTOKEY

at the system console. AUTOKEY will display a signon message and display the current
autokey line if there is one. [t then asks if this line is to be changed. If ‘N’ is answered,
AUTOKEY simply returns to the DOS and the familiar DOS 'READY’ message is displayed. |f
'Y’ is answered, AUTOKEY requests the new command line to be corfigured and then returns
to the DOS and 'READY". '

Alternately, it the user wishes to simply specify a new command line to be configured
regardless of the current setting of that command line, he can merely piace the new command

- ' T P Yo I ¥ "U S Sy P Y™
i the 'AUTOKEY' command that invokes

An example or two are in order. First, a simple one. Assume that XYZ Company has
several of their sales offices on-line to their home office DATASHARE system, which is running
completely unattended. Lightning strikes a powerline outside of XYZ Company’s home office,
and power is cut off for 15 seconds. As soon as power is restored, their Datapoint 5500
computer re-boots its DOS (since the right-hand tab on the boot tape has been punched out)
and warmstarts the DATASHARE system. One command sequence tu accomplish this would
dook like the following:

AUTOKEY

DOS AUTOKEY VERSION n.n

NO AUTOKEY LINE CONFIGURED.
CHANGE THE AUTOKEY LINE? Y

3-2 PART Il SYSTEM COMMANDS

ENTER NEW AUTOKEY LINE:

Ds3

READY

AUTO AUTOKEY/CMOD

AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

An alternate form of the above would be the following:

AUTCKEY DS3

DOS AUTOKEY VERSION n.n

NO AUTOKEY LINE CONFIGURED.

ENTER NEW AUTOKEY LINE:

DS3 <--- (this is supplied automatically)
READY '

AUTO AUTOKEY/CMD

AUTO NOW SET TO AUTOKEY/CMD (nnn)
READY

Once a program has been set for auto-execution, the only way one can bypass this is to
hold down the KEYBOARD key while the DOS is booting up. This will cause the program set
to be automatically executed to not be invoked, and the normal command interpreter is
entered. The user then can use the MANUAL command to clear the auto-execution option.

3.6 A More Complicated Example.

The following example uses many of the features of other facilities in the Datapoint
system besides simply AUTOKEY. Explaining all of these in detail is beyond the scope of this
section. The intention here is just to demonstrate the sophistication possible using AUTOKEY
in conjunction with the other facilities within the DOS.

Let's assume that XYZ Company is running an eight-port Datashare system. Each of the
company’'s seven sales offices around the country has a Datapoint 1100 computer which is
connected up to the home office Datashare system as a port. (Yhe eighth port is used by the
home office’s secretary, Susie, to maintain scoring for her bridge club). During the day, each
of the seven sales offices makes inquiries of the central inventory, price, and model code files
through a system of Datashare programs, and another Datashare program lets them key orders
nto a file called 'ORDERSN’ where n is their port number. At the end of each business day,
XYZ Company wants to process these orders. First they put the seven files all into one large
file, sort it, and use a Datashare program to make corresponding entries into the master order
file. The master order file is then reformatted and the index reconstructed. The final step is
to create a second copy of the master order file onto magnetic tape, which will then be saved
for backup purposes.

Since the operation just described is fairly lengthly, one of the more clever programmers
at XYZ Company decided to allow it to run unattended after everyone else has gone home.
They even set up Susie’s MASTER program so that it automatically takes down the Datashare
system and starts up the end-of-day processing one-half hour after the company's Los Angeles

SECTION 3. AUTOKEY COMMAND 3-3

sales office (two time zones behind the Chicago mai office) closes for the afternoon. When
the daily processing is completed, Datashare is brought back up again so that it will be up by
the time the first people start arriving at the New York sales office the next morning, an hour
before the Chicago main office opens.

In the event of an unanticipated power failure, the system will recover and bring itself
back up, resuming operations at the last checkpoint established by AUTOKEY. Notice that the
system is also left in a state such that after the chain completes, Datashare will automatically

_restart in the event of any possible system failure.

The following chain file accomplishes the preceding, assuming tha: subdirectory
‘SYSTEM' is used throughout the chain. The chain file could be modified easily to eliminate
this assumption. However, the chain file can be made almost arbitrarily complicated; the
point here is simply to show one of many possible techniques for handling unattended
operations which wish to restart automatically in the case of some failure. Notice that the
chain file might have to be modified depending on the particular version of DSCON an
installation is using.

// {FS S1

/l.-FIRST SET UP FOR AUTO RESTART IF REQUIRED.
AUTOKEY CHAIN OVERNITE;S1

AUTO AUTOKEY/CMD

/1. NEXT APPEND TOGETHER THE SEVEN DAILY FILES.
SAPP SALES1,SALES2,SCRATCH

SAPP SCRATCH,SALES3,SCRATCH

SAPP SCRATCH,SALES4,SCRATCH

SAPP SCRATCH,SALES5,SCRATCH

SAPP SCRATCH,SALES6,SCRATCH -

SAPP SCRATCH,SALES7,SCRATCH

/l. NOW SCRATCH CONTAINS THE DAILY FILES.
AUTOKEY CHAIN OVERNITE;S2

/1 XIF

// IFS §1,82

/l. PHASE TWO SORTS FILE 'SCRATCH' INTO 'ORDERDAY".
SORT SCRATCH,ORDERDAY;1-5

/1. NEXT CHECKPOINT HAVING BUILT '‘ORDERDAY’.
AUTOKEY CHAIN OVERNITE;S3

/1 XIF

/1 IFS §1,82,83

/. PHASE THREE PROCESSES THE FILE WITH A DS3 PROGRAM.
DSCON

- <<z <

DS3 PROCESS
//. THE MASTER ORDER FILE 'ORDERMAS’ NOW IS UPDATED.

3-4 PART Il SYSTEM COMMANDS

AUTOKEY CHAIN OVERNITE:S4

;XIF

/" IFS $1,52.83,54

//. PHASE FOUR REFORMATS THE MASTER ORDER FILE.
REFORMAT ORDERMAS,SCRATCH:DR2;R

/l. 'SCRATCH’ NOW IS A REFORMATTED COPY OF 'ORDERMAS’.
AUTOKEY CHAIN OVERNITE:S5 ‘

/l XIF '

/! IFS $1,52,53,54,55 :

/1. PHASE FIVE COPIES "SCRATCH’ BACK TO '‘ORDERMAS’
COPY SCRATCH:DR2,0RDERMAS

//. 'ORDERMAS’ IS NOW READY FOR INDEXING.

AUTOKEY CHAIN OVERNITE:S6

/Il XIF

!/ IFS $1,52,58,54,85,56

//. PHASE SIX RECREATES THE INDEX FOR 'ORDERMAS’

INDEX ORDERMAS:1-16

/7. THE INDEX HAS NOW BEEN REBUILT.

AUTOKEY CHAIN OVERNITE;S7

/fXIF

/I IFS $1,82,83,54,85,36,57

//. NOW DUMP MASTER FILE TO 9-TRACK MAGNETIC TAPE.

/I \FS TAPE

TAPE ORDERMAS/TXT;I/E

8 -

0
200X4
X

/; XIF

7. NOW THE BACKUP COPY OF ‘ORDERMAS’ IS ON TAPE.
DSCON :

< ® Z z <<

AUTOKEY DS3

//. AND START UP DATASHARE FOR NEXT DAY.
DS3

/1 XIF
3.7 Special Considerations

When building long chain files that allow for automatic restart, several perhaps obvious
considerations must be made. Among these are that a file must not be changed in such a

way that the change cannot be repeated if the previous checkpeint is actually used.‘ To
accomplish this, frequently the file being updated must be copied out to a scratch file. and the

SECTION 3. AUTOKEY COMMAND 3-5

scratch file then updated. Following the completion of the update is wnen another checkpoint
would be taken: following that the next phase would copy the updated file back over the
original. Note that a checkpoint (i.e. resetting the AUTOKEY command line) would have to be
before the creation of the dummy copy to be updated; putting a checkpoint between the
creation of the copy to update and the actual updating process could result in the updating of
a partially updated copy. A little thought when choosing places to update the AUTOKEY
command: line is called for to ensure that the chain may be resumed from any of them without
incorrect results.

3.8 AUTOKEY and DATASHARE.

Some users who make frequent use of the Datashare ROLLOUT feature will notice that
AUTO-ing AUTOKEY with the AUTOKEY command line set to DS3BACK will mean that
whenever any port rolls out to any program or chain of programs, Datashare is automatically
brought back up when that program or chain of programs finishes, regardless of whether or
not DSBACK was included at the end of the port's chain file.

3-6 PART Il SYSTEM COMMANDS

PART Il

SYSTEM COMMANDS

SECTION 4. BACKUP COMMAND

4.1 INTRODUCTION

BACKUP is a program for making disk copies of DOS disks. The user can make either
an exact mirror image copy of the input disk or can select reorganization which will group
files by extension and file name, remove unnecessary segmentation and allow deletion of
unnecessary files. Reorganization also allows copying of DOS disks onto disks with locked out
cylinders that differ from those on the input disk. Some special considerations apply for
specific disk: configurations; these considerations, if any, are discussed in the System manual
for the specific DOS being used.

4.2 PROGRAM ‘INITIALIZATION

Program execution is initiated by the operator typing the following command:

BACKUP <input drive>,<output drive>

Input drive .and output drive are specified as :DRn: The drive selected as the INPUT
DRIVE MUST BE ‘WRITE PROTECTED; that is, it must be in 'read only’ mode or have its
‘protect’ light on' for 9370 and 9350 series drives respectively. The requirement for the input
drive to be write protected is absent on the 9380 series flexible diskettes. The program will
respond by displaying the message: '

DRIVE n SCRATCH?

If the disk on drive n is scratch (note that the operatibn deals with logical drives), type
'Y' and press the enter key. Any other reply will cause the program to return to DOS. If you
do reply 'Y’, the program will display the message:

ARE YOU SURE?

If you are absolutely sure that you want to write over the output disk, type 'Y’ again and
press the enter key. Any other reply will cause the program to return to DOS. If the output
(logical) disk has not been DOSGENed or the DOS file structure on it has been damaged, the
message:

DOSGEN YOUR DISK FIRST-

will appear and control returns to DOS. If the output (logical) disk has been DOSGENed and
seems in reasonable shape, the following message is displayed:

FILE REORGANIZATION?

Note that the option to reorganize during the copy is mandatory if the output disk has

SECTION 4. BACKUP COMMAND 4-1

any bad cylinders on it locked out. If this is the case, the 'FILE REORGANIZATION?’ question
1s bypassed completely and the reorganization option is assumed.

It you wish to reorganize the files being transferred to the output disk. type 'Y’ and
press the enter key. If you have replied 'Y’, see section 4.4. for instructions regarding

reorganizing files.

If you do not wish to reorganize your files and desire a mirror image copy of your input
disk, type ‘N’ and press the enter key. 'Y’ and ‘N’ are the only repiies that will be accepted!

4.3 MIRROR IMAGE COPY

It you have typed 'N’ in response to the file reorganization question, the program will
ask the question:

DO YOU WANT TO COPY UNALLOCATED CLUSTERS?

Type 'Y’ and press the enter key if you want all data on the disk copied regardless of
whether or not it is in an area allocated by DOS. This option is preferred in cases where you
suspect that your DOS files may be partially destroyed or the output disk has never been fully

initialized with data.

Type ‘N’ and press the enter key if you wish to copy your disk as quickly as possible
without copying unused areas of the input disk. ‘Y’ and 'N’ are the only replies allowed!

4.4 REORGANIZING FILES
4.4.1 COPYING DOS TO OUTPUT DISK

Various program status messages will appear during the copying of DOS.
4.4.2 COPYING UNNAMED FILES

i any files on the input disk have been allocated by Physical FFile Number (PFN) and do
not have a name in the system directory. they will be copied during the sort phase using the
same PFN. If unnamed files exist, the following message will be displayed temporarily
overlaying the SORTING DIRECTORY NAMES message:

COPYING PFN (nnn)
4.4.3 DELETING NAMED FILES

When all directory names have been sorted into file extension fcilowed by file name
sequence and all unnamed files have been copied, the following question will be displayed:

DELETE ANY FILES DURING REORGANIZATION?

Type ‘N’ and press the enter key if all files are to be copied. Type 'Y’ and press the

4-2 PART Ili SYSTEM COMMANDS

enter key if you wish to delete any files. If you reply 'y’ a message asking which files are
NOT to be copied will appear. The lower screen will be filled by a numbered list of files
for you to choose from. Type the number or range of numbers (nn or nn-nn) found next to
names of individual files you wish deleted. Type 'ALL’ and press the enter key if wish to
delete all of the files in the list. The files selected for deletion will be erased from the list.
When all desired deletions have been made from a list, type " and press the enter key to
advance to the next list of file names.

When all file name lists have been examined, the program will advance to the copy
named files phase.

4.4.4 COPYING NAMED FILES

Files with names in the system directory are copied in alphameric file extension, file
name sequence. The name of each file is displayed as it is copied. Programs written in
DATASHARE are indicated by an asterisk to the right of the file name. All files are written as
close together as possible with an absolute minimum of segmentation.

4.5 USE OF KEYBOARD AND DISPLAY KEYS

Tﬁe keyboard and display keys are' active anytime messages are being displayed.
Depressing the display key will hold the current display untii the key is released. Depressing
the keyboard key will cause the program to terminate and return to DOS.

4.6 ERROR MESSAGES
During the execution of BACKUP the following error messages may appear:
***PLEASE PROTECT YOUR INPUT DISK *#**

Action: Write-disable the input drive.

INVALID DRIVE SPECIFICATION!

Action: Retype the BACKUP command with correct <input-drive > and
<output-drive > specification. (See section 3.)

ILLEGAL OUTPUT DRIVE!

Action: < input-drive >and <output-drive>>have been specified as the same drive! Retype
BAGKUP command with correct specification.

BAD CLUSTER ALLOGC TABLE!

Action: A bad Cluster Allocation Table has been detected on the input disk. The Cluster
Allocation Table may be able to be fixed using the REPAIR command.

CYLINDER 0 OF BACKUP DISK IS UNUSABLE!

SECTION 4. BACKUP COMMAND 4-3

Action: Your scratch disk cannot be used for a system disk due to surface defects in cylinder
0. Use another output disk and start over.

SYSTEMn /SYS IS MISSING!

Action: Your DOS disk cannot be reorganized due to a miss:ing system file. Catalog the
missing system file on your input disk and start over.

PARITY- :DRn . address

Action: An irrecoverable parity error has been detected on drive n during the BACKUP
operation. The address is shown for each error. If drive n is your output disk, DOSGEN must
be rerun to lockout the bad addresses or use a different scratch disk for mirror image copy. If
drive n is your input disk, new parity will be computed and the record will be copied. Note the
error address and check for errors when copy is complete.

4.7 REORGANIZING FILES FOR FASTER PROCESSING

After a DOS disk has been used for awhile, the file structure becomes fragmented and
related files become scattered. The more the disk is used the more total system performance is
degraded due to increased disk access time. System degradation is especially noticeable when
DATASHARE is being used. File reorganization using the BACKUP program is one way to
clean up DOS disks and improve their efficiency.

BACKUP reorganization improves system efficiency by making the following changes:

. File segments are consolidated

. Files are packed more closely together.

. Related files are clustered together

. Unused trash files are removed (optionally)
. Fiies are rewritten reducing marginal parity errors
Care should be exercised in naming files so that related files have the same file

extensions and similar file names that will allow them to be grouped when the system
directory is sorted.

4-4 PART Ill SYSTEM COMMANDS

SECTION 5. BLOKEDIT COMMAND

BLOKEDIT - BLOCK EDIT program.

5.1 INTRODUCTION

The BLOKEDIT program is a DOS text file manipulation program. The program copies
lines of text from any DOS text file(s) to create a new text file.

The BLOKEDIT program is useful for such things as:

New program source file generation by copying routines from
existing program source files;

Existing program source file re-arranging by copying the lines of
source-code into a new sequence (into a new source file);

Re-arranging lines or paragraphs of a SCRIBE file into a new file.

In this USER'S GUIDE, the following applies:
Text file means a DOS EDIT-compatible file.

Line means one line of a text file as displayed by the DOS EDIT
program.

The BLOKEDIT program deals only with. text files. For any given application
there will be one text file called the COMMAND FILE which will hold the controlling
commands for BLOKEDIT, there will be one or more text files called SOURCE FILES
from which lines of text will be copied, and there will be one text file called the
NEW FILE which will be the desired end result for the application.

5.2 FILE DESCRIPTIONS

5.2.1 COMMAND FILE:

The COMMAND FILE is the controlling factor in BLOKEDIT execution. The
COMMAND FILE specifies which SOURCE FILES will be used and which lines of text
will be copied from them. A COMMAND FILE must be created by the DOS EDIT
program before BLOKEDIT can be used.

There are three kinds of lines that are meaningful in a COMMAND FILE;
COMMENT lines, COMMAND lines, and QUOTED lines.

SECTION 5. BLOKEDIT COMMAND 5-1

A COMMENT line is a line which has a first character of period.

This is an example of COMMENT LINES:
. THESE THREE LINES ARE COMMENT LINES.
As in program source files, a comment line may have explanatory notes or

nothing at all following the period.

A COMMAND LINE is a line which has a SOURCE FILE NAME and/or source
file LINE NUMBERS, or begins with a double quote symbol (’).

This is an example of COMMAND LINES:

FILENAME/EXT:DRO NAME THE SOURCE FILE
1-100 COPY LINES 1 THRI; 100
350-377 ~ COPY LINES 350 THRU 377

A COMMAND LINE must have a first character of an upper-case alphabetic
character, or a digit, or a double quote symbol.

A COMMAND LINE that begins with an upper-case alphabetic character
indicates that a new SOURCE FILE is being named. A new source file can be named
only by putting the name of the file at the very beginning of the COMMAND LINE.
Optionally, the extension and/or drive number for the file may be mcluded with the
SOURCE FILE name.

A COMMAND LINE that begins with a digit indicates that the COMMAND LINE
will have one or more numbers, which are the numbers of the lines tc be copied from
the SOURCE FILE into the NEW FILE.

A COMMAND LINE that begins with a double quote symbol indicates the

beginning/ending of QUOTED LINES. The only information used oy BLOKEDIT in a

COMMAND LINE that begins with a () is the (') itself, therefore the rest of the line
can be used for comments.

A QUOTED LINE is a line between a pair of COMMAND LINES which begin
with a double quote symbol.

This is an example of QUOTED LINES:

" THIS IS THE BEGINNING OF.QUOTED LINES COMMAND LINE.

INCMNT HL COUNT . POINT TO COUHNTER
LAM LOAD TO “A’ REGISTER
AD 1 INCREMENT BY 1
LMA RESTORE TO MEMORY

" THIS IS THE ENDING OF QUOTED LINES COMMAND LINE.

5-2 PART Il SYSTEM COMMANDS

There may be more than one QUOTED LINE between the COMMAND LINES that
begin with (). A QUOTED LINE will be copied directly from the COMMAND FILE to
the NEW FILE. QUOTED LINES enable the BLOKEDIT user to include original lines
of text in a NEW FILE along with iines copied from SOURCE FILES.

5.2.2 SOURCE FILE:

A SOURCE FILE is a DOS EDIT-compatable text file from which lines will be
copied. SOURCE FILEs are named in the COMMAND FILE for a BLOKEDIT
application, and the lines to be copied from the SOURCE FiLE will also be specified
in the COMMAND FILE. It will be useful to have a listing of a SOURCE FILE with

line numbers, as produced by the LIST command, when creating the COMMAND FILE
for a BLOKEDIT application.

5.2.3 NEW FILE:

A NEW FILE is a DOS EDIT-compatable text file produced by the BLOKEDIT
command. The NEW FILE is named at BLOKEDIT execution time by the second file
specitication keyed to the DOS keyboard facility (see below).

5.3 USING BLOKEDIT.

Before the BLOKEDIT command can be used the user must create a COMMAND
FILE as described above and in the BLOKEDIT APPLICATION EXAMPLE. When the
BLOKEDIT command is to be executed, the operator must key:

BLOKEDIT <filespec>, <filespec>

to the DOS keyboard facility. The first file specification refers to a COMMAND FILE
and the second file specification names the NEW FILE. If no extension is supplied
with the first file specification, TXT (text) is assumed. If no extension is supplied with
the second file specification, the extension given or assumed for the first file is used.
If no drive is given for the first file, all drives are searched. If no drive is given for
the second file, the drive given or assumed for the first file is used. The NEW FILE
name must not exist on any drive on line.

5.4 BLOKEDIT APPLICATION EXAMPLE:

The following example of a BLOKEDIT application demonstrates the use of the
functions of BLOKEDIT.

The example is of the creation of a new assembly language program source file
from both new source code lines and source code lines copied from (hypothetical)
existing subroutine packages.

The program to be created is ADDER. ADDER will accept two numbers (each a

maximum of four digits) from the keyboard and calculate and display the sum of the
numbers. The normal DOS KEYIN$ and DSPLY$ routines are used for Input/Output,

SECTION 5. BLOKEDIT COMMAND 5-3

the main loop of the program is created in the BLOKEDIT COMMAND FILE ADDERX,
and the formatting and arithmetic subroutines are copied from the (hypothetical)
existing subroutine packages CONVERT and ASMD (Add, Subtract, Multiply, and
Divide).

Subsection 5.5 shows the COMMAND FILE ADDERX as printed by the LIST
command.

Lines 1 thru 3 of the COMMAND FILE are COMMENT LINES. They inform the
reader of the purpose of the file; in this case to create the program source file for
the ADDER program.

Line 4 of the COMMAND FILE is a COMMAND LINE which has a first character
of double quote symbol (). Line 4 indicates that lines following it are to be copied
to the NEW FILE, until but not including the next line that begins with a double quote
(') symbol. Since the only information used by BLOKEDIT in a COMMAND LINE that
begins with (') is the (') itself, the rest of the line can be used for coraments. The
comment in line 4 notes that the main loop of the NEW FILE source <ode is
contained within the (‘) lines.

Lines 5 thru 98 of the COMMAND FILE are QUOTED LINES. These lines will be
copied directly into the NEW FILE. In this example, the QUOTED LINES are standard
assembler language source code lines. f the COMMAND FILE is created with the
EDIT command in the assembler mode, then the tab stops will be conveniently set for
the creation of assembly code lines.

Line 99 of the COMMAND FILE is a COMMAND LINE which begins with a ('),
and indicates that the QUOTED LINES are ended.

Line 100 of the COMMAND FILE is a COMMAND LINE and indicates to
BLOKEDIT that a new SOURCE FILE is being named. That is, line 10 indicates to
BLOKEDIT that it is to prepare to copy lines from the file named ‘CONVERT’ into the
NEW FILE. Since no extension is specified, the extension TXT is assumed.

Since no drive is specified, all drives will be searched for a file name CONVERT/TXT.
Note that after at least one blank character in a COMMAND LINE comments may be

included.

Subsection 5.6 shows the SOURCE FILE CONVERT lines to be copied as
printed by the LIST command. For the purpose of example, the hypothetical file
CONVERT is a subroutine package of string numeric conversion routines.

The lines of source code for the subroutines MOVEN (move a numeric field),
ZSUPRS (zero suppress), BCD (convert to Binary Coded Decimal), arnd ASCH (convert
to American Standard Code for Information Interchange) are shown. These are the
lines of source code to be copied and used by the ADDER program.

Lines 101 and 102 of the COMMAND FILE are COMMAND LINES and indicate
to BLOKEDIT that it is to copy lines 191 thru 259, 311 thru 325, 407 thru 420, and 472

5-4 PART Ill SYSTEM COMMANDS

thru 485 inclusive from the currently named SOURCE FiLE (which is now CONVERT)
into the NEW FILE.

Line 103 of the COMMAND FILE is a COMMAND LINE which indicates that a
new SOURCE FILE is being named. This time the SOURCE FILE is '"ASMD’. The
extension TXT will be assumed since no extension is specified, and all drives will be
searched since no drive is specified.

Subsection 5.7 shows the SOURCE FILE ASMD lines to be copied as printed by
the LIST command. For the purpose of example, the hypothetical file ASMD is a
subroutine package of string numeric routines Add, Subtract, Multiply, and Divide.

The lines of source code for the subroutine ADD (add two BCD numbers) are
shown. These are the lines of source code to be copied and used by the ADDER
program.

Line 104 of the COMMAND FILE is a COMMAND LINE and indicates to
BLOKEDIT that it is to copy lines 101 thru 137 inclusive from the currently named
SOURCE FILE (which is now ASMD) into the NEW FILE.

Line 105 of the COMMAND FILE is a COMMAND LINE which begins with a ('),
indicating that QUOTED LINES follow.

Lines 106 and 107 of the COMMAND FILE are QUOTED LINES, and will be
copied directly to the NEW FILE. : : :

Line 108, the last line of this COMMAND FILE, is a COMMAND LINE which
begins with ('), indicating the end of QUOTED LINES. Note that no special-ending
line is required in-a COMMAND FILE, the normal DOS EDIT-generated End-Of-File
mark terminates the file.

When the COMMAND FILE has been constructed, BLOK‘EDIT can be executed.
To cause BLOKEDIT to generate the NEW FILE 'ADDER’ in this example, the operator
would key:

BLOKEDIT ADDERX,ADDER
to the DOS keyboard facility. This calls up the BLOKEDIT command, and names the
file ADDERX as the COMMAND FILE and specifies that the NEW FILE will be named
ADDER.

Subsection 5.8 is an assembled listing of the NEW FILE ADDER source code
created by BLOKEDIT.

SECTION 5. BLOKEDIT COMMAND

5-5

5.5 'ADDERX’ command file for BLOKEDIT creation of ‘ADDER’ program.

The following lines make up the COMMAND FILE used by the BLOKEDIT
command to create the NEW FILE source code for the program ‘ADDER’. The lines

are are shown as listed by the ‘LIST’ command.

1. . THIS IS THE COMMAND FILE TO CREATE THE PROGRAM SOURCE

FILE :
2. . FOR THE 'ADDER’' PROGRAM.
3. .
4. ’ THE MAIN LOOP WILL BE IN
THE QUOTES
5. . DOS 21 ADDER JUNE 15, 1973 PAD
6. . »
7. . THIS PROGRAM ACCEPTS TWO NUMBERS FROM THE KEYBOARD
AND ' .
8. . PRODUCES THEIR SUM.
9. . THE NUMBERS MAY BE A MAXIMUM OF FOUR DIGITS LONG.
10. . ‘ :
11 . DOS EQU'S:
12. .
13. BOOT$S EQU 01000
14. DSPLY$ EQU 01162
15. KEYIN$ EQU 01157
16. INCHLS EQU 01011
17. .
18. . DATA STORAGE:
19. .)
20. INPUT SK 10 UP TO TEN CHARACTERS
21. .
22. F1 DC 0,0,0,0 FIRST NUMERIC FIELD
23. F2 DC 0,0,0,0 SECOND NUMERIC FIELD
24. DC 3 STOP THE DISFLAY
25. .
26. . SCREEN MESSAGES:
27. .
28. M1 DC 011,0,013,0021'A D D ER PROCGCRAM
29. DC 011,0,013,2FACTOR 1.’
30. DC 011,0,013,3,FACTOR 2
31. DC 011,100134,
32. DC 011,5,013,5, 'SUM:'.3
33. .
34. M2 DC 011,20,013,5;OVERFLOW '3
5-6 PART tll SYSTEM COMMANDS

35.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49,
50.
OK
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
MESSAGE
76.
77.
78.
79.
80.
81.

M3

START

GETF1

GETF2

ADDIT

DC

HL
CALL
LC
LD
LE
HL
CALL
LC
DE
HL
CALL
JFC

EX
JMP

LC
LD
LE
HL
CALL
LC
DC
HL
CALL
JFC

- EX

JMP

LC
HL
CALL
LC
HL
CALL

CALL
HL

CTC

LC
HL
CALL
LC

011,10,013,2,022,01 3.3,022,013,4,022,013,5,022,3 36.*

M1
DSPLY$
5.

10

2
INPUT
KEYINS
4
INPUT
F1
MOVEN
GETF2

BEEP
GETF1

10

INPUT
KEYINS

INPUT
F2
MOVEN
ADDIT
BEEP
GETF2

4
F1
BCD
4

F2
BCD

ADD
M2

DSPLY$

4
F2
ASCH
3

DISPLAY THE SIGN-ON

GET THE FIRST NUMBER

EDIT AND MOVE TO FIELD 1

GET NEXT NUMBER IF FIRST

ELSE MAKE A NOISE
TRY AGAIN

GET THE SECOND NUMBER

EDIT AND MOVE IT TO F2

COMPUTE SUM IF OK
ELSE MAKE A NOISE
TRY AGAIN

CONVERT F1 TO BCD

CONVERT F2 TO BCD

ADD F1 TO F2 GIVING F2

DISPLAY THE OVERFLOW

IF CARRY FLAG SET

CONVERT F2 TQ ASCII

SUPPRESS LEADING ZEROS

SECTION 5. BLOKEDIT COMMAND

5-7

82. HL F2 LEAVE AT LEAST ONE DIGIT

83. CALL ZSUPRS
84. :
85. LD 10 DISPLAY THE SUM
86. LE 5
87. HL F2
88. CALL DSPLY$
89. .
90. LC 2 WAIT FOR OPERATOR READY
91. HL INPUT
92. : CALL KEYINS$
93. MLA INPUT QUIT IF XIT COMMAND
94. cP X
95. JTZ BOOTS
96. HL M3 CLEAR THE SCREEN
97. CALL DSPLY$
98. JMP GETF1 DO IT AGAIN
99. ‘ :
100. CONVERT USE '‘CONVERT/TXT' AS
SOURCE FILE _
101. 191-259,311-325,407-420 COPY THESE LiNES
102. 472-485 '
103. ASMD NOW USE 'ASMD‘ AS SOURCE
FILE
104. 101-137 : \ COPY THESE LINES
105. ' , NOW PUT THE ‘END’
STATEMENT
106. .
107. END START
108.

5.6 'CONVERT' subroutine package subroutines.

The following excerpts from the (hypothetical) subroutine package '‘CONVERT'
show the source code lines to be copied into the 'ADDER’ program. The lines are
shown as listed by the ‘LIST' program.

1

191. *

192. . MOVE A FIELD OF CHARACTERS TERMINATED BY A 015 INTO
193. . AN ASCII FIELD AND EDIT THE SOURCE FIELD TO BE SURE
194, . IT 1S ONLY LEADING BLANKS OR DIGITS AND IS NOT LONGER
195. . THAN THE ASCIl FIELD.

5-8 PART Il SYSTEM COMMANDS

196. . C = NUMBER OF DIGITS IN ASCIt FIELD.

BEGINNING ADDRESS OF FIELD TERMINATED BY 015

SAVE THE BEGINNING

OF THE ASCII FIELD
EDIT AND DETERMINE THE

OF THE FIRST FIELD
SCAN OFF THE LEADING

GET A CHARACTER
LEADING BLANK IS OK
END OF BLANKS
DECREMENT THE LENGTH

'CATCH SOURCE FIELD TOO

BUMP THE SOURCE FIELD

LOOP :
SCAN TO END OF SOURCE

GET A CHARACTER
CATCH END OF STRING

ELSE MUST BE '0’ THRU '¢’

BUMP MEMORY POINTER
DECREMENT THE COUNTER

LOOP IF MORE TO GO
CATCH SOURCE FIELD TOO

PAD ASC!l FIELD ZEROS
RESTORE ASCII POINTER
C REGISTER IS HOW MANY

DO CONVERT IF END OF PAD
PAD ASCII ZERO

197. .. DE =

198. . HL = BEGINNING OF ASCIi FIELD.
199. o '

200. MOVEN PUSH
ADDRESS

201. .

202, LHD

LENGTH

203. LLE

204.

BLANKS

205. MLOOP1 LAM

206. cPp
207. ‘ JFZ MLOOP2
208. ' LAC
COUNTER

209. , sU 1
210. LCA

211. JTC MERROR
LARGE

212. CALL INCHLS$
POINTER

213. JMP MLOOP1
214,

FIELD

215. MLOOP2 LAM

216. CP 015
217. JTZ MLOOP3
218. » cP 0
219. JTC MERROR
220. CP '9'+1
221. JFC MERROR
222. CALL INCHLS
223. LAC

224. ' suU 1
225. LCA -

226. JFC MLOOP2
227. JMP MERROR
LARGE '

228. .

229. MLOOP3 POP

230. MLOOP4 LAC

TO PAD

231. sU 1
232. LCA

233. JTC MLOOP5
234. LA 0’

SECTION 5. BLOKEDIT COMMAND

5-8

235, LMA
236. CALL INCHLS BUMP MEMORY POINTER
237. JMP MLOOP4 LOOP
238. .

239. MLOOP5 PUSH SAVE ASCIl POINTER
240. LHD POINT TO SOURCE FIELD
241. LLE
242. LBM GET CHARACTER
243. CALL INCHLS BUMP SOURCE POINTER
' 244, LDH '
245, LEL
246. POP POINT TO ASCH
247. LAB
248. CP 015 CATCH END OF SOURCE
STRING
249. RTZ QUIT IF THERE
250. CP
251. JFZ MLOOPS& CONVERT BLANK TO ZERO
252. LA 0
253. MLOOPS LMA PUT DIGIT IN ASCII FIELD
254. CALL INCHLS BUMP ASCIl POINTER
255. JMP MLOOPS LOOP
256. .
257. MERROR LA 1 EXIT WITH ERROR FLAG
258. SRC
259. RET
311. . SUPPRESS LEADING ZEROS IN AN ASCIl FIELD.
312. . C = NUMBER OF ZEROS TO SUPPRESS
313. . HL = FIRST DIGIT IN FIELD
314. .
315. ZSUPRS LB INITIALIZE THE SUPRESSION
CHAR.
316. ZSLOOP LAM GET A DIGIT
317. T cP O SEE IF IT'S ZERO
318. RFZ QUIT IF NOT
319. LMB ELSE OVERSTORE WITH
BLANK :
320. CALL INCHLS BUMP THE MEMORY POINTER
321. LAC DECREMENT THE COUNTER
322. sU 1
323. LCA
324. JFZ ZSLOOP LOOP IF MORE TO GO
325, RET ELSE QUIT
5-10 PART Il SYSTEM COMMANDS

407. - CONVERT A FIELD OF ASCI| DIGITS TO BCD.

408.) C = NUMBER OF DIGITS TO CONVERT

409. - HL = FIRST DIGIT ADDRESS

410. .

411, BCD LB 0 INITIALIZE THE XOR BITS
412 BCDLUP LAM GET A DIGIT

413 XRB STRIP THE ASCII BITS
414, LMA RESTORE DIGIT TO MEMORY
415, CALL INCHLS POINT TO NEXT DIGIT
416. LAC DECREMENT TO COUNTER
417. Su 1

418. LCA ,

419. JFZ BCDLUP LOOP IF MORE TO GO
420. RET ELSE DONE

472. - CONVERT A FIELD OF BCD DIGITS TO ASCH.

473. , C = NUMBER OF DIGITS TO CONVERT

474. - HL = FIRST DIGIT ADDRESS

475. o .

476. ASCI| LB 0 INITIALIZE THE OR BITS
477. ASCLUP LAM GET A DIGIT

478. ORB PUT IN THE ASCIl BITS
479. LMA - RESTORE TO MEMORY
480. CALL INCHLS POINT TO NEXT DIGIT
481. LAC DECREMENT THE COUNTER
482. Su 1 ‘

483. LCA

484, JFZ - ASCLUP LOOP IF MCRE TO GO
485. RET ELSE DONE

5.7 "ASMD’ subroutine package ‘ADD’ subroutine.

The following excerpt from the (hypothetical) subroutine package '‘ASMD’ shows

the source code lines to be copied into the 'ADDE

as listed by the ‘LIST' command.

101. *

SECTION 5. BLOKEDIT COMMAND

R’ program. The lines are shown

5-11

102. . ADD TWO FOUR-DIGIT BCD NUMBERS TOGETHER, PUTTING THE

103. . RESULT IN THE SECOND NUMBER.

104. . THE FIRST NUMBER IS IN F1 (FIELD 1).

105. . THE SECOND NUMBER IS IN F2 (FIELD 2).

106. . THE CARRY FLAG WILL BE ON IF OVERFLOW.

107. .

108. ~ADD LC -10 INITIALIZE THE CARRY BIAS
109. ADD4 MLB F1+3 . WORK FROM RIGHT TO LEFT
110. MLA F2+3

111. ADB

112. LMA

113. ADC

114. JFC ADD3

115. LMA

116. ADD3 MLB F1+2

117. MLA F2+2

118. ACB

119. LMA

120. ADC

121. JFC ADD2

122. LMA

123. ADD?2 MLB F1+1

124. MLA F2+1

125. ACB

126. LMA

127. ADC

128. JFC ADD1

129. LMA

130. ADD1 MLB F1+0

131. MLA F2+0

132. ACB

133. LMA

134. ADC

135. RFC EXIT CARRY FALSE IF NO
OVERFLOW

136. LMA

137. RET EXIT CARRY TRUE i¥
OVERFLOW

5-12 PART Il SYSTEM COMMANDS

5.8 Assembly listing of ADDER

5.9 BLOKEDIT execution-time messages.

This appendix describes the operator messages that BLOKEDIT may dispiay on
the CRT screen during execution. Some of the messages are monitor messages to

keep the operator informed of the progress of the program, while other messages are
error messages.

BLOCK EDIT

This message is the BLOKEDIT sign-on and is displayed when the COMMAND
FILE name and the NEW FILE name keyed by the operator have been accepted and
BLOKEDIT is ready to begin construction of the NEW FILE:
PROCESSING COMMAND LINE ... CURRENT SOURCE FILE iS .../...DR.
This message is the BLOKEDIT monitor message. This message is displayed while
BLOKEDIT is writing lines of text to the NEW FILE. The monitor message displays

the COMMAND FILE line number currently being processed and the name, extension,
and drive number of the last named SOURCE FILE.

If BLOKEDIT detects an error in the COMMAND FILE the monitor message is
rolled up the screen one line, an appropriate error message is displayed, and the
monitor message is re-displayed. In this way a screen-log of where errors in the
COMMAND FILE occur is maintained.

COMMAND AND NEW FILE NAMES REQUIRED

This message is displayed if the operator did not name both a COMMAND FILE
and a NEW FILE when the BLOKEDIT command was called.

COMMAND FILE DRIVE INVALID

This message is displayed if the operator specitfied for the COMMAND FILE a
drive number that is invalid.

NEW FILE DRIVE INVALID

This message is displayed if the operator specified for the NEW FILE a drive
number that is invalid.

COMMAND AND NEW FILE NAMES MUST NOT BE IDENTICAL.

SECTION 5. BLOKEDIT COMMAND 5-13

This message is displayed if the operator specified COMMAND FILE and NEW
FILE names the same and the extension and the drives for the files were specified or
assumed to be the same.

If no extension is given for the first file (the COMMAND FILE) specification, TXT
(text) is assumed. If no extension is given with the second file (the NEW FILE)
specification, the extension given or assumed for the first file is used. If no drive is
given for the first file, all drives are searched. If no drive is given for the second
file, the drive given or assumed for the first file is used.

COMMAND FILE NOT FOUND.

This message is displayed if the COMMAND FILE name was not found on the
drive(s) specified or assumed.

NAME IN USE.

This message is displayed if the NEW FILE name was found on the drive(s)
specitied or assumed. BLOKEDIT will not write into an existing file.

BAD FILE SPECIFICATION ?

This message is displayed if the first charécter of a COMMAND FILE line other
than a QUOTED LINE is an upper-case alpha character but a valid DOS file
specification was not recognizeable.

Here are some examples of valid DOS file specifications:

FILENAME File name may have up to 8 characters.
X Only one alpha character also legal.
A123 Digits legal if after alpha character.
NAME/TXT Extension specified after /' symbol.
NAME:DR2 Drive specified after :* symbol.
NAME/TXT:DR1 Extension and drive specitied.

Here are some examples of invalid DOS file specifications:

FILENAMEONE Over 8 characters.

2ABC First character not upper-case alpha.
NAME*TXT Unrecognizeable delimiter.
NAME:DV2 Invalid drive specification.

SOURCE FILE NOT FOUND.

This message is displayed if a SOURCE FILE was not listed in the DIRECTORY
of the disk pack in the drive(s) specified or assumed.
BAD LINE NUMBER SPECIFICATION ?

5-14 PART Ill SYSTEM COMMANDS

This message is displayed if a COMMAND FILE line other than a QUOTED LINE
began with a digit but contained an unrecognizeable line number specification.

Here are some examples of valid line numbers:

4 A single digit is legal.

9999 A number may have up to four digits.
100-364 . Two numbers may be seperated by a '-.
34,55-78,100-147 Commas may seperate numbers.

Here are some examples of invalid line numbers:

1A Only *-’, ', or space after a digit.
12345 Number too large.
17-34-77 Only two numbers seperated by ’-’.

LINE NUMBER ZERO IGNORED.

This message is displayed if a line number of zero is specifed in a COMMAND
FILE line. ’

START LINE NO. >END LINE NO. IGNORED.

This message is displayed if the first number of a line number pair is larger
than the second number of the pair, as in: 235-176.

BAD DATA IN. SOURCE FILE LINE ...

This"message is displayed if BLOKEDIT discovers non-ASCIl characters in a
source file. The line number will be displayed following the message.

SOURCE FILE WENT TO E.OF.

This message is displayed if the SOURCE FILE from which lines were being
copied ended before the specified lines were finished.

TEXT TRANSFER DONE.
NEW FILE'S LINE COUNT IS ...

This message is displayed when all of the COMMAND FILE lines have been
executed. The number of lines in the NEW FILE is displayed following the second
line.

SECTION 5. BLCKEDIT COMMAND 5-15

PAGE 1 ADDER/TXT BLOKEDTIT SAMPLE PRUGRAM FEBRUARY, 1975

BG5S ASSEMeLEN B, 663 LAHELS

CONFIDENTIAL PHUPRIETAKY INFOXMATION

TH]8 IYEM I3 ThE PROPERTY OF DATAPOINT CORPORATIUN, SAN ANTOMIO, TEXAS, AND CONTAINS CONFIUENTIAL AND
TRAGE SECRET INFORMATION, THIS ITEM MAY NOT BE TRANSFERRED FROM THE CUSTODY OR CUNTRUL OF DATAPOINT EXCEPT
AS AUTHORIZED BY DATAPOINT AND THEN ONLY BY wAY OF LOAN FOR LIMITED PURPOSES, IT HUST NOY BE REPRODUCED
IN wrOLE OR IN PARY AND MUST BE RETURNED TO DATAPOINY UPON REQUEST AND IN ALL EVENTS UPON COMPLETION UF

THE PURPOSE OF THE LOAN,

NEITHER THIS ITEM NOR THE INFORMATION IT CONYAINS MAY BE USED OR DISCLOSED YO PERSUNS NOT HAVING A NEED
FOR SUCH USE OR DISCLOSURE CONSISTENY WITHW THE PURPOSE OF THE LDAN, WITHOUT THE PRIQOR WRITTEN CONSENT OF

DATAPOINT,

DATAPOINT CONFINENTIAL INFONMATION = SEFE PAGE)

PAGE 2 ADDER/TXT s L uUKEQIT SAMPLE PHUGRANM FEBHUARY, 1975

UNUSED LABELSI ADUA

PAGE

36,

3e,

3

hluee

‘@e1162

21187
p1eyl

18000

10000
10004
10010

19g1t
10032
1pe67
toie4
10415

10126
10144

101563
19167
18172
10174
10176
18200
{v204
10207
10211
1b215%
1v221
10224
19227
18239

10233
1v235%
1v237
102414
19243

ADDER/TXY

eo0
2e8
043

011
611
a1
211
o111

el
11

[-1.]1.]
186
226
236
246
266
106
226
246
266
196
100
151
10a

v2b
36
846
466
186

a6e
e

eue
(1L
2ae
612
¢es

we4
p12

el
162
ees
212
ge2
vae
187
804
1]
511
229
233

172

Qes
232
ae3
oo
137

11
gee

213
213
wid
213
213

213
013

856
ege

238
PR

©36
256
(23}
0ze

ven

€56
*neg

e
aee

dve
22
283
god
285

CLE]
av2

eze

pee

e2e0
aze

az2e

21
106
186
835
123

117

w22

GETFL LE

DATAPOINT CONFIDENTIAL INFORMATION = SEE PAGE 1

BLOUKEDIT

DOS 2,1

.

80078 EQU
DSPLYS EQU
KEYINS EQU
INCHLS EQU

DUS EQU'SS

SAMPLE PROGRAM FEBRUARY, 1975

A DUV ER 1e}

THIS PROGRAM ACCERYTS TaU ~UMBERS FROM THE REYBOARD AND
PRODUCES THEIR SuUmM,
THE NUMBERS MAY BE A MAXImUm OF FOUR DIGITS LOMNG,

. 2igRY

w162
Y14
P11}

: DATA STORAGES

e
INPUT K

Fi e
F2 oc
DC

My oC
DC
oc
oc
oc

Mz ne
M3 e

START WL
CALL

Lo
LE
RL
CALL
Le
DE
S
CaLl
JFC
EX
JMP

GETF2 LC
LD
LE

CALL

@ UP TD TEN CHARALTERS
6,8;0,0 FIRABT NUMERIC FIELD
#,9,8,0 SECOND NUMERIC FIELD
3 STOP THE DISPLAY

SCREEN MESBAGESS

B11,0,013,8,821,'A 0D D E R PROBGR AM 3!
P14,0,013,2,'FACTOR {18!

0i1;,0,013,3,'FACTOR 23

231,10,813,4, sexea!

B11,5,013,5,°8uUumMet,3 .

811,20,613,5, 'OVERFLOW ',3
811,19,9013,2,022,013,3,022,0335,4,0622,013,5,0822,3

Mi DISPLAY THE SIGN=ON
USPLYS

3 GET THE FIRST NUMBER

1@

2

INPUT

KEYInS :

4 EDIT AND mDVE TU FIELD 1
INPUT

Fi

MOVEN

GETF2 GEY NEXT NUMBER IF FIRST OK
BEEP ELSE MAKE A NOISE

GETF1 TRY AGAIN

5 . GET THE SECOND NUMBER
10

3

INPUT

KEYInNS

PAGE

55,
56,
57,
58,
59,
6@,
61,
62,
63,
64,
65,
66,
67,
68,
89,
7e,
71,
72,
73,
ve,
75,
76,
77,
78,
79,
8e,
8!.
82,
83,
84,
83,
86,
87,
88,
ag,
9y,
0i.
g2,
93.
94,
95'
T
97,

99.
1909,
141,
162,
143,
{va,
193,
196,
1e7,
108,

4

Iars-14
1252
1¢256
1re62
14265
14278
19271

18274
19276
18302
18303
1e307
10313

18316
18321
16323

16330
18332
10336
1834y
19343
18347

18332
18354
12356
18362

18365
18367
19373
10370
10461
10403
10496
10412
1041d

1n42?

1vd2]
14422

ADDEKR/TXT

826
¢4s
46D
146
iea
151
104

vasd
266
180
226
266
186

166
866
142

@26
866
1ed
gas
266
186

836
246
068
186

226
266
166
[1.1.]
27a
150
866
in3
jcé

87¢

353
364

(Y]
“wrn
Y]
na2e
274

233

we4

Boe

LH]
L]
bud
2ed

249
126
162

#o4
and4
228
eed
2e4
163

et2
283
204
162

gu2
208
157
- LX)
130
eve
144
162
172

236
256
w21
624

ez2e

086
hel

¢56
821

ray
a56
en2

856
e21

256
821

:E-1.]
eeve2

256
eng
3Jn?

va2
or

eu2
nay

e
420

229

2@

429

229

@2y

020

429

w22

OATAPOINT CONFIUENTIAL INFURHMATION = SEE PAGE |}

BLOXEDI]IT SAMPLE PROGRAM FEBRUANY, 1975
LC 4 EOIT AND MOVE IT 10 F2
DE INMRUT
HL r2
CALL HOVEM :
JFC ADDITY CUMPUTE 8Sum IF UK
EX BEEP ELSE MAKE A NOISE
JMP GETF2 TRY AGA]IN

L

ADDIT LC 4 CONVERT F1 TO BCR
HL F1
CALL 8CD
LC 4 CUNYERT F2 TO BLD
i, F2 :
CTaLL BCO

1]
CALL ADD ADD F1 TOD F2 GIVING F2
M, m2 DISPLAY THE OVERFLOW MESSAGE
CTC NSPLYS IF CARRY FLAG SETY

|]
LE 4 CUNVERT F2 TO ASCl1
Hi, Fe
CatlL ASCII
LC 3 SUPPRESS LEADING 2ERDS
Ml Fe LEAVE AT LEAST ONE DIGIT
CALL, ZSUPRS)

. .
LD 1@ DISPLAY THE SumM
LE S
i F2
CaLlL DSPLYS

[]
LG 2 WAIT FOR UPERATOR READY
Hi, INPUT :
ChlLlL XEYINS
ML A INPUT QUIT IF XIT COMMAND
cp lxl
41z B00TS
ML “3 CLEAR THE SCRFEEN
CALL DSPLYS
JHp GETFY DO IT AGAIN

-

MOVE A FIELD UF CHARACTERS TERMINATED BY A ¢15 INTO

1]

o AN ASCIYT FIELU AND EDIT THE SOURCE FIELD TU 8k SURE

o IT 18 ONLY LEADING BLANKS OR DIGYITS AND IS NOT LUNGER

« THAN THE ASCII FLELD,

. C = NUMBER OF DIGITS IN ASCII FlELD,

. DE ® BEGINNING ADORESS OF FIELD TERMINATED BY a15,

R HL ® BEGINNING OF ASCII FIELD,

[

MOVEN PUSH SAVE THE BEGINNING ADDRESS

. OF THE aASCII FIELD
LMD EDIT AND DETERMINE THE LENGTH
LLE OF THE FIRST FIELD

N SCAN UFF THE LEADING BLANKS

PAGE

149,
11e,
11t
112,
119,
tta,
119,
116,
117,
118,
119,
12a@.
121,
12¢,
120,
124,
128,
126,
127,
126,
129,
130,
131,
1328,
133,
134,
138,
136,
137,
138,
1390,
140,
141,
142,
143,
144,
148,
146,
147,
148,
149,
159,
154,
158,
153,
154,
155,
156,
187.
158,
139,
188,
164,
162,

5

10428
jva2a
12426
10431
10432
10434
18435
10449
10443

10446
10447
10458}
10454
10458
1046}
10463
144686
1047}
10472
10474
10473
18580

10383
18804
1e%e8
1e%@7
10912
10514
18548
10520

18522
16524
18825
10526
19527
12532
10533
12934
10538
12536
10540
10541
10543
10548
10550
10551
10554

10957
19561
1n362

ADDER/TXT

de?
074
119
Jna
424
2w
149
106
104

307
874
152
974
140
Q74
100
106
3a2
224
320
100
104

1.1
Jo2
024
140
U1-1)
aze
106
104

are
353
364
317
106
338
346
069
30!
2y 4
233
274
110
easd
37e
196
104

206
412
827

bde
waeo

#ul

157
811
w23

213
193
ese
157
ere
157
213

a1

046
157

go!
Y]
v609

011
104

o1t

815
040
1350
"1.1']

01l
123

I3}

eel

021
e
621

e21
w2t

eel
pee

ez}
eas

221

ee2
821

peg

13}

gez
0el

DATAPOINT CONFIDENTIAL INFORMATION = SEE PAGE 1

B LOKEDIT

MLOOPY

L]
mLO0OR2

#LOOP3
MLOOP4

MLOOPS

ML O0PS

v
MERROR

LAM
CP
JFl
LAC
sy
LCA
J1¢
CaLl
JMP

CALL
LOH
LEL
POP
LAB
cp
RYZ
cP
Jrz
LA
LMA
CaLL
Jup

LA
SRC
RET

[
ML 00R2

1

MERROR
INCHL S
MLOOPY

215
ML00P3
1920
MERROR
197}
MERROR
INCHLS

1,

MLOOPR
MERROR

RESTORE
1
MLOOPS
1
INCHLS
MLOOP4
POINT

INCHLS

i

MLOOPG
FY

INCHLS
MLOOPD

i

SAMPLE PROGRAM

FEBRUARY, 1975

GET A CHARACTER

LEADING BLANK IS (K

END OF 8L ANXKS

DECREMENT THE LENGTH COUNTER

CATCH SOURCE FIELD TOO LARGE
BUMP THE SOURCE FIELD POINTEN
LOOP

SCAN Y0 END OF SOURCE FIlELD
GET A CHARACTER

CATCH ENO DF STRING

ELSE MUST BE '2' THRU 19!

BUMP MEMORY POINTER
DECREMENT THE COUNTER -

LOOP IF MORE TO GO

CATCH SOURCE FIELD TOO LARSE
PAD ASCII FIELD IEROS

ASCII POINTER

C REGISTER 18 HUN MANY TO PAD

DO CONVERY IF END OF PaAD
PAD ASCI1 ZEROD

BUMP MEMORY POINTER
LOOP :

SAVE ASCII POINTER
70 SOURCE FIELD

GET CHARACTER .
BUMP SOURCE POINTER
POINT TO ASCII

CATCH END OF SOURCE STRING
GUIT IF THERE

CONVERT BLANK TO ZERQ
PUT DIGIT IN ASCII FIELD
BUMP ASCI1 POUINTER

LOOP

EXIT wWITH ERROR FLAG

DATAPDINT CONFIDENTIAL INFUN“ATION « 3tF PAGE 1§

PAGE 6. ADDER/TXT BLOKEDILI?Y SAMPLE FPROGHAM FEBRUARY, 1978
163, .
164, ¢ SUPPRESS LEADING ZEwROS IM~ A~ ASCI] FIELOD,
105, . C s NIMBEK DF ZERUS TG SUPPRESS
1606, N HL 8 FIRST DILIT I~ FIELD
167, »
168, 19863 916 V4@ LSUPRS LB LI INITIALIZE THE SUPPRESSION CHAR,
169, 12865 Je7 ZSLDUP LAM GET a DIGI1Y
17¢, 10566 74 ¥68 cP gt SEE IF IT'S A leRO
17, 18572 013 RFZ QuIT IF NOT
172, 18574 374 Lme ELSE OVExSTORE wlTH BLANK
173, 12572 1u6 o911 @Pp2 CALL INCHLY BUMP THE MEMORY PUINTER
174, 10575 Je2 LAC DECREMENT THE CUUTNER
178, 10576 ¢24 8p!l Su 1
176, 18600 329 LCA
177, 10601 110 165 v21 JFZ 18L00P LOOP]F MQORE TO0 GO
178, 1664 @0y RET ELSE QUIT
179, .
189, e CONVERT A FIELD OF ASCII DIGITS TO 8CD,
103, . C s NUMBER UF DIGITS TO CONVERY
182, . HL = FIRST DIGIT ADDRESS
183, .
164, 14683 0216 28P 8co L8 gt INITIALIZE THE XOR BITS
185, 10697 37 BCOLUP LAM GET A DIGIT
186, 10618 251 XRB8 STRIP THE ASCII BITS
187, 10611 37 LMA RESTORE DIGIT TO MEMmMORY
188, 14612 16 011 Q@2 CALL INCHLS® POINT TO NEXT DIGIY
189, 102615 Ju2 LAC DECREMENT THE COUNTER
19e, 19616 924 0¥} Sy 1
191, 1¥62e 320) LCA
192, 10821 1i@ 207 e21t JFl BCOLUP LOGP 1F MORE TO 6O
183, 124624 Va7) REY ELSE OONE
‘9‘. L]
195, o LONVERT A FIELD OF B8CO VIGLITS YO ASCII,
196, . C =& NUMBER OF DIGITS TO CONVERT
197, " H, & FIRSY OIGIT ANDRESS
198, .
199, 102625 2315 62 ASCII LB fp! INITIALIZE THE OR BJITS
222, 19627 2u? . ASCLUP L &M GET A DIGIT
2y, 18839 261 ORB . PUT IN THE AST11 BITS
202, 16631 379 LA : RESTORE DIGIT TO MEMDRY
293, 19632 106 011 ewe CALL INCHLS POINT TO NEXT DIGIT
284, 1v0635 Je2 LAC DECREMENT THE COUTTER
208, 12636 224 2wt sy 1
206, 12640 329 LCA
2e7, 1Pr64) 1190 227 val JFZ ASCLUP LU0P [F MORE TU GU

268, 17644 W7 RET ELSE DOnNE

DATAPOINT CONFIDENTIAL INFORMATION = SEE PAGE |

PAGE 7 ADDER/TXTY R LOKEDTIT SAMPLE PROGRAM FEBRUARY, 1875
209, "
21v, « ADD TwWw0 FOUR=DIGIT HLD NUMBERS TOGETHER, PUTTTING TwE mEdULT IN ThE
21i. + SECOND NUMBER,
212, . THE PIRST NUMBER I8 IN Fi (FIELD 1),
213, . THE SECOND NUMBER 18 In F2 (FIELD 2),
214, . THE CARRY FLAG wILL BE ON IF OVERFLOW,
215, .
216, 12645 @26 366 ADD WC =10 INITIALIZE THE CARRY BlAS
217, 19647 966 pad 317 ADD4 mLB Fied WORK FROM RIGMT TO LEFT
218, 108652 @66 vey 347 ML A Fa+d
219, 10655 201 ADB
220, 18686 370 LMA
221, 19657 282 ADC
222, 10662 106 264 021 JFC ADD3
223, 18663 379 LMa
224, 190664 9066 B2 M7 ADDD L8 FieR
228, 310667 968 806 39y ML A Fae2
208, 10672 211 ACB
227, 190673 378 LMa R
228, 1P674 202 ADC
229, 10675 169 Joy eay JFC ADD2
232, 19700 37 LMA
231, 19¢7@1 Q66 20} 37 ADD2 - MLB Fiel
232, 107¢4 066 aes 397 ML A F2el
233, 19787 21} ACB
234, 10710 7@ LMA
235, 18711 202 ‘ ADC
2356, (9712 120 316 P2y JFC ADDE
2%7, 19713 378 LMa
238, 10716 0266 029 317 ADD1 MLB Fi+®
239, 1@721 @66 @04 307 MLA F2e0
240, 10724 231 ACB
241, 10725 370 LMa
242, 18726 202 ADC
243, 10727 eed RFC EXIT CARRY FALSE IF NO OVERFLOw
244, 10732 370 LMA
24%, 1473y @97 RET EXIT CARRY TRUE IF UVERFLOw
240, .
247, .

248, 10183 END 8TART

PAGE

16645
19716
1874}
10664
10647
18274
10623
10627
jesed
10607
21eee
01162
tegeoe
12004
12172
fe2d’d
21811

12980
”1137
el

1p126
12144
10597
10423
12446
19503

12524

8

ADU
ADD1
ADDR
ADOJ
ADDa
ADOIT
ASCII
ASCLUP
8co
BCoLULP
BOUTS
DSPLYS
Fi

F2
GETFY
GETF2
INCHL3
INPUY
AFYINS
nNy

-2

>3
NMERRCR
ML00PY
",00P2
ML O0PJ

= COP4

AQGER/TXT

7e
236
229
222
w217
59
76
*200
83
w185
9
i@
w18
19
*37
46
v12
16
vil
*24
LRI
“31
118
*129

121
*134

v216
*238
*231

*#224

83
*199
2087
68
192
91
36
a4
87
48

39

35
71
92

123

*119
133

140

DATAPUOINT CONFIDENTYIAL INFURMATION o SEE PAGE

g L-0KEDIT SAaMPLE PrOGRAM FEBRUARY,
“184 .
72 L] 93
64 217 224 2314 238
67 78 78 89 218 225
94
61
126 139 146 157 173 188
a3 53 36 87 89
54 88
128 131 *16v
180

197%

232

2¢3

239

PAGE

18523
105%¢
10420
1@163
12565
1@563

9

MLOUPRPS
MLOOPS
MOVEN
START
18L00P
ZSUPRS

AQDER/TX1?

136
154
. 45
»35
*169
7%

33 LABELS UBED

*142
*136
58
248
177
*168

OATAPOINT CONFIDENTIAL INFORMATION = SEE PAGE I

8LOKEDIT

158

vi194

SBAMPLE PROGRAM

FEBRUARY,

i875

SECTION 6. BOOTMAKE COMMAND

BOOTMAKE - Generate a DOS bootstrap cassette

The BOOTMAKE command writes a DOS bootblock onto the cassette tape in the front
tape deck. BOOTMAKE accepts no operands. To use it, the user simply enters:

BOOTMAKE

At the system console. The command asks if the cassette in the front deck is
scratch.lf it is, the tape is rewound and a DOS bootblock written onto it.

The BOOTMAKE command does not reread the bootblock to insure that the cassette is
good. On the other hand, the bootblock checks its own parity immediately upon loading and
halts if it finds it has not been loaded properly. Therefore, the easiest way to check a DOS
boot tape is to place it into the rear deck and boot from it. If the machine halits upon
booting repeatedly and other boot tapes work on the same machine, then the boot tape
which causes the boot operation to halt is not a good tape and should not be used.

SECTION 6. BOOTMAKE COMMAND 6-1

SECTION 7. CAT COMMAND

CAT is a program which selectively displays DOS filenames. The user may choose to
display all cataloged filenames on al| drives online or specific filenames on specific drives.

CAT - Di'splay the contents of the directory
CAT {<name>}{</ext>}{:DR<n>}{,L}

where: <name>specifies the filename or a portion of the filename, <ext>specifies the

extension, <n>specifies the logical disk drive number, L specifies list only those files in the
user's current subdirectory.

Directory entries are displayed in the form:
NAME/EXTENSION (PFN)P

where PFN is the physical file number in octal (0-0377) and P is the protection on the file (D
for deletion, W for write, and blank for none). If the file displayed is in a subdirectory other
than system, the directory entry is dispiayed in the form '

NAME/EXTENSION-(PFN)P

with the dash indicating a‘subdirectory entry. All drives are searched, unless a specific drive
is keyed, and as each drive is scanned, the line:

---- DRIVE n (subdirectory name):

is displayed. (This line is not displayed if the drive is not on line, or if no files from it are
to be displayed).

Depressing the display key causes the catalog display to pause at the end of the line
as long as the key is held. Depressing the keyboard key causes the catalog display to
terminate at the end of the line.

It the CAT command is parameterized by only an extension, only files of that extension
will be displayed. If the CAT command is parameterized by only a name, only files of that
name (all extensions) will be displayed. If the CAT command is parameterized by a name
and an extension, only files of that name and extension (all drives) will be displayed. If the
CAT command is parameterized by only the drive number, only files on that drive will be
displayed. If only a portion of the filename is entered, all files beginning with the letters
keyed will be displayed.

SECTION 7. CAT COMMAND 7-1

SECTION 8. CHAIN COMMAND

8.1 INTRODUCTION

CHAIN is a command which enables a user to employ a disk file in defining job
procedures in terms of any sequence of other DOS programs. - This file can also supply
parameters to the DOS programs invoked, allowing automatic control of execution
options. For example, CHAIN could be used to run the SORT utility on several files and
then to print listings of these files. The headings on the listings could contain a date which
was entered as a parameter to the CHAIN command. Another common use of CHAIN
includes program generation of large systems where one must often execute a number of
assemblies, create g complex of files by appending together combinations of the object files
created b'y the assemblies, and then make an LGO tape containing the combined files. In
this application, one usually wants to be able to enter the date to be printed in each
assembly listing heading and restrict assembly to only a subset of the entire system of
programs. This can all be performed by the CHAIN program.

Basically, CHAIN replaces the DOS keyboard entry routine with a routine which reads a
line froma file each time the keyboard entry routine is called. Therefore, each time any
program would normally request a line to be entered by the operator it will get the line from

the file. The DOS program has no idea that the input is coming from the file instead of
from the operator.

Since CHAIN only replaces the DOS keyboard entry routine (KEYINS), only DOS
programs that use this routine for data entry may be used, thus excluding the general
purpose DOS Editor. Also note that the CHAIN program cannot be called from within the
CHAIN procedure unless it is the last command to be executed in that procedure. If
recursion is attempted, an error message is given and the procedure is aborted. The
procedure is also aborted when programs being run make an exit to the DOS that implies
that an error of some kind has been made. The error message given by the program
expressing the error will be seen on the screen after the procedure is aborted.

In a sense, CHAIN is a procedural macro facility. It allows the operator to define a
macro procedure under a name (the CHAIN file name) in terms of other smaller operations
(other DOS programs). This procedure can then be invoked by simply giving the name of
the procedure file to the CHAIN program. The additional facilities of decision making within
the procedure through conditional statements (including logical operations and micro
substitution of strings from the CHAIN command line) allow an almost unlimited extension of
this concept.

SECTION 8. CHAIN COMMAND 8-1

8.2 ELEMENTARY CHAIN USAGE

As mentioned in the introduction, CHAIN really does nothing more than simulate the
operator when the standard DOS keyboard entry routine is called. The data to be entered is
obtained from a file whose name is given on the same line as the CHAIN command. For
example, one could edit a file called APPFILES using the standard DOS Editor. It could
contain the following lines:

APP TSDWS,TSDSTATH.DS/OV1
APP DS/OV1,TSDSKED,DS/OV1
APP DS/OV1,TSDINT,DS/OV1
APP DS/OV1,TSDINIT,DS/OV1

When one then entered the DOS command:
CHAIN APPFILES

the above lines would be entered in the sequence shown whenever the DOS requested
another command line. The conceptual simplification and reduction in probability of operator
error is obvious. Instead of having to remember the names of ail the files each time the file
DS/OV1 is to be created, the operator need only remember the file name APPFILES.

When the last line of the CHAIN file has been exhausted, and a new DOS command is
desired by the system, the DOS ‘is reloaded and commands are again accepted from the
. operator at the keyboard. However, if the file is exhausted while a DOS program is
‘requesting data, the CHAIN ABORTED! message is given and the prcgram currently being
executed is abandoned.

\ i

Although the above example showed only DOS commands being given by the CHAIN
program, it should be remembered that all keyboard entries requested through the standard
DOS keyboard entry routine will obtain their data from the CHAIN file. For example, if in the
above example the files not needed after the appending had taken place were to be killed.
the file would have contained the following additional lines:

KILL TSDWS/ABS

Y

KILL TSDSTATH/ABS
Y

KILL TSDSKED/ABS
Y

KILL TSDINT/ABS

Y

KILL TSDINIT/ABS

Y

Note that the 'Y' given after each KILL command is not another DOS command but is the

8-2 PART Il SYSTEM COMMANDS

response to the message 'ARE YOU SURE?’ that the KILL command displays. Another
example would be one of an assembly. When obtaining listings, the assembler requests the

entry of a heading. Thus, the CHAIN file would need to contain the heading as well as the
assembly command: -

ASM TSDWS;XL | ~
DATASHARE 2.1 WORKING STORAGE

Some DOS programs can go through a rather complex set of requests for input which can
make them hard to use with the CHAIN program without making a mistake. For example, the
old DOSASM4 used to ask for program options one at a time with a message for each. This
is a nice feature if one is entering the data from the keyboard but, on the other hand, makes
it almost impossible to use the program with CHAIN without making an error in the
procedure file. The problem is aggrevated by the fact that the number of options requested
varies depending upon the response to certain options. For this reason, most DOS programs
allow almost all options to be specified on the command line and keep the variation in the
number of keyin requests to a minimum. It is good practice for all DOS programs to be
written with this in mind to facilitate their use with CHAIN.

An additional item to keep in mind is the fact that some DOS programs use their own
keyboard eniry routine as well as the one provided by the DOS. This enables the program
to avoid the use of the CHAIN procedural lines when special operator intervention is
required. An example is the TAPE program (industry compatible 9-track tape handler) which
requests operator intervention if the end of the reel of tape is reached while a file is being
written. In this case, the program asks if the writing is to be continued on another reel of
tape and if so waits for the operator to change reels. After the operator indicates to the
program that the reel has been changed, the program can continue writing files, getting the
names from the CHAIN procedural file. If the TAPE program had used the standard DOS
keyboard entry routine, the file names would have been given for reel change responses and,
needless to say, the order of program execution would have been incorrect.

8.3 ADVANCED CHAIN USAGE

8.3.1 Tag definition

The CHAIN command line can be parameterized by tags given after the procedural file
specification. If tags are given, the file specification must be followed by a semicolon. Tags
may be from one to eight characters in length and have values from zero to eight characters
in length. A tag's name must start with a letter and contain only letters or or digits. A
tag's value can contain any character except the <#>symbol. A tag is given a non-null
(non zero length) value by enclosing the value to be assigned between <# >symbols. For
example, in

CHAIN MAKETEST,;LIST,DAY#17# TIME#02:304#
the tag LIST has a null value, the tag DAY has the value 17, and the tag TIME has the value

02:30. CHAIN allows two uses to be made of tags. Tests can be made to determine
whether a tag of a given name has been entered on the CHAIN command line and the value

SECTION 8. CHAIN COMMAND 8-3

of a tag can be substituted for part of a line within the procedural file.

8.3.2 Phases of execution

~ CHAIN executes a compilation phase and an execution phase. In the compilation
phase (CHAIN/CMD), the specified procedural file is read and a new file is created (always
named *CHAIN/SYS) and deleted at the successful completion of the procedure. This new
file consists of only the lines to be used in the particular procedure to be executed. All
compilation comment lines and conditional items not to be used are eliminated, all
substitutions of tag values are made where indicated, and the space compression in the file
1s eliminated to make it easier on the routine that overlays the DOS KEYINS.

The execution phase (CHAIN/OV1) overlays the DOS KEYIN$ with a routine which fits
in the same space and appears the same upon exit (the HL and DE registers are the same
as if data had been entered from the keyboard and the display and cursor positioning on the
screen is the same) except the input line is obtained from the *CHAIN/SYS file instead of
from the keyboard. |f the line read in is longer than the maximum specified by the calling
program, the procedure is aborted.

After the KEYINS routine is overlayed, the execution phase reads in one line and
supplies it to the DOS as if the line had been keyed in as a DOS command. If this
produces an ‘execution time comment line, the line is simply displayed and another line is
read (which may also be an execution comment). Execution time comments are denoted by
having a //. as the first three characters in the line. There is a variation on the execution
time comment called an operator break point. This line is denoted by having a //*as the first
three characters in the line. This line is displayed as in an execution time comment except
afterward the machine wait for an operator to depress the KEYBOARD or DISPLAY key. Aifter
one or the other of these keys is depressed, the machine will continue to the next line as in
an execution time comment. ‘

If the end of the *CHAIN/SYS file is reached while a DOS command is being sought,
the procedure is determined to be finished. At this point the *CHAIN/SYS file is deleted and
the DOS is reloaded (restoring the KEYIN$ routine to its normal state). Otherwise, the DOS
is entered just after the point where it calls KEYIN$ to read the ccmmand with the command
line set up in MCRS$. This latter action causes the next DOS commard to be off and -
running.

When the DOS program jumps to the DOS EXIT$ entry point or to the label NXTCMD
in the command interpreter, which indicates that the program is finished and the next DOS
command should be accepted, the routine overlaying KEYIN$ loads and executes the
CHAIN/OV1 file which reloads the DOS, restores the CHAIN KEYINS routine, and then reads
the *CHAIN/SYS file for the next DOS command.

8-4 . PART {iIl SYSTEM COMMANDS

8.3.3 Tag existence testing

CHAIN contains an IF operatbr which allows a test to be made for the existence of one
or a number of tags in the CHAIN command line. If the test proves positive, then the lines
following the one the IF operator is on will be inciuded in the *CHAIN/SYS file. If the test
proves negative, then the lines will be deleted. This will hold true until either the ELSE or
XIF operators discussed below are reached. Note that all CHAIN operators are denoted by
having a // appear as the first iwo characters in the line. if the third character is
additionally a period, then an execution time comment is indicated. Otherwise, any number
of intervening spaces (including zero) are scanned until an operator is reached. |If the
operator scanned in is not one of the defined operators, an error message will be given and
the procedure aborted. The examples all show one space between the two slashes and the
operator in order to make them more readable.

The IF operator has two variations, IFS and IFC which stand for if-set and if-clear. The
IFS operator proves positive if any of the tags listed exist. For example:

/! IFS FLAG1,FLAG2FLAGS

will prove positive it FLAG1 or FLAG2 or FLAGS was mentioned in the CHAIN command
line.The IFC operator proves positive if any of the tags listed were not mentioned. For
example:

/I \FC FLAG2,FLAG3 FLAG7

will prove positive if FLAG2 or FLAG3 or FLAG7 was not mentioned in the CHAIN command
line. One can test to see if all of a group of tags exist by having multiple IF statements in
sequence. For example:

/! \F8 FLAG1,FLAG3
/! IFS FLAG?2
/! \FS FLAG7

will allow the following lines to be used in the procedure if FLAG1 or FLAG3 is set AND if
FLAG2 is also set AND if FLAG7 is also set. Note that the comma between tag names on
an IF line actually performs the logical OR function. The logical AND function may also be
perfored by putting a period between tag names. For example:

// \FS FLAG1.FLAG2FLAG3,FLAG4.FLAG5.FLAGE

will allow the following lines to be used in the procedure if FLAG1 and FLAG2 exists or it
FLAG3 exists or if FLAG4 and FLAGS and FLAGS exists. Note that the”IF operators are
scanned only if procedure lines are being used. Thus, if one of the |F operators has proven
negative and has inhibited the use of procedure iines, all following IF operators will be
ignored until one of the following two operators are reached.

SECTION 8. CHAIN COMMAND 8-5

As mentioned in the first paragraph of this section, the two CHAIN operators that can
cause procedure lines to be put back into use are ELSE, which reverses whether or not the
procedure lines are being used, and XIF, which unconditionally turns on the usage of
procedure lines. For example, if the CHAIN file MAKETEST contzined the following:

/I TFS LIST

ASM TEST;XL

TEST PROGRAM

// ELSE

ASM TEST

/1 XIF

APP DATA TEST,TEST/CMD

and the CHAIN command was given as follows:
CHAIN MAKETEST;LIST
then the procedure followed would be:

ASM TEST;XL
TEST PROGRAM
APP DATA TEST,TEST/CMD

However, if the; chéin command was given as follows:
CHAIN MAKETEST
then the procedure followed would be:

ASM TEST
APP DATATEST TEST/CMD

Actually; ELSE and XIF can be inhibited by the use of the BEGIN and END operators
discussed in Section 8.4.5. '

8.3.4 Comment lines
¢
CHAIN allows for two types of comment lines within the procedural file. One type
already mentioned is the execution time comment. This type may appear only before a DOS
command entry and will not appear until just before that command is to be executed. For
example, the procedure file containing:

/l. ASSEMBLY OF THE TEST PROGRAM

ASM TEST;XL
TEST PROGRAM

would cause the first line to be displayed before the assembly was executed. A variation on
the execution time comment is the operator break point.

8-6 PART Ill SYSTEM COMMANDS

For example, the procedure file contining:

/I*INSERT TAPE Z12548 INTO THE FRONT CASSETTE DECK
LGO

TEST
DATA

L]

would cause a BEEP and the first line to be displayed. At this point the machine would wait
for the operator to depress e!ther,the KEYBOARD or DISPLAY key and then continue with the
LGO process.

The second type of comment line is a compilation time comment. This line is not
included in the procedure but is displayed on the CRT screen immediately after it is read
from the procedural file. This is useful in communicating to the operator what procedure is
about to be followed by CHAIN.

Both types of comment lines will be ignored (not displayed or written) just as the other
pracedure lines if a test has proven negative and an ELSE or XIF operator has not been
reached. For example, if the following procedure file MAKETEST was created:

- ANTIDISCOMBOOBERATOR TEST PROGRAM
// IFS LIST

- YOU ARE GOING TO GET A LISTING

ASM TEST:XL

TEST PROGRAM

// ELSE

- YOU AREN'T GOING TO GET A LISTING
ASM TEST ‘

and the CHAIN command:
CHAIN LIST
was given, then only the lines:

- ANTIDISCOMBOOBERATOR TEST PROGRAM
- YOU ARE GOING TO GET A LISTING

will appear on the CRT screen before the procedure is executed. If, however, the CHAIN
command:

CHAIN MAKETEST

SECTION 8. CHAIN COMMAND 8.7

was given, then only the lines:

- ANTIDISCOMBOOBERATOR TEST PROGRAM
. YOU AREN'T GOING TO GET A LISTING

will appear on the CRT screen before the procedure is executed.

8.3.5 Tag value substitution

So far in the discussion the value of a tag has not been used. Note that the existence
of a tag can be tested regardless of its value. Thus the procedure file can test to see if any
tags with values have been forgotten by the operator. A tag value is simply substituted
wherever a pair of <# >symbols are found with a syntactically valid tag name between
them.An example will eliminate a large number of words. Lets assume that the procedural
file MAKETEST looked as follows: »

ASM TEST;XL

TEST PROGRAM ASSEMBLED ON #DATE#
ASM ASDF;L

THE ##FLAG1##PROGRAM #FLAG2#

/1. ##FLAG1##FLAG3#FLAG2#

A CHAIN command of:
CHAIN MAKETEST

would produce a *CHAIN/SYS file that looked exactly the same since if the tag between
< # >symbols does not exist, then no substitution at all is
performed. However, a CHAIN command of:

CHAIN MAKETEST;DATE#17JAN74# FLAG1#QWER# FLAG2#ZXCV#
would produce a *CHAIN/SYS file as follows:

ASM TEST;XL

TEST PROGRAM ASSEMBLED ON 17JAN74
ASM ASDF;L

THE #QWER#PROGRAM ZXCV

/l. #QWERH#FLAG3#FLAG2#

Observe, for a moment, how the <# >symbols were handled in the next to the last

line. The first two < # >symbols did not enclose a syntactically vaiid tag name. Therefore,
the first < # >was simply passed through and a pairing <# >for the second <# >was
sought. This was found and a syntatically valid name (FLAG1) was found to be

between. So the value of FLAG1 was substituted for the characters #FLAG1#in the line and
then the scan continued. The following pair of <# >enclosing the word PROGRAM was not
used as a tag name because the word PROGRAM was terminated by a space. To be used
for a tag name, the substitution specitication must be terminated by the <# >symbol.

8-8 PART Il SYSTEM COMMANDS

Now observe the last line in the example above. The first three <# >symbols were
handled in the same way as for the next to the last line. However, #FLAG3#did make up a
syntatically valid substitution specification so it was used. FLAG3 did not exist so
#FLAG3#was simply passed through. At this point however, the only
characters remaining to be scanned were FLAG2#which did not make ‘a matching set of
<# >symbols so FLAG2#was simply passed through also.

Also observe how the above example eliminated a large number of words. Imagine
what the explaination would have been like if an example had not been used. All of the
above may seem a bit far fetched but the features explained are very useful when one wants
to use the CHAIN command from within a CHAIN procedure. For example, one could pass
the date from one procedure to the next by having the procedure file:

" ASM TEST:XL ' ,
TEST PROGRAM ASSEMBLED ON #DATE#
CHAIN CHAINF2;:DATE##DATE##

Note that if a tag is mentioned in the CHAIN command line but given no value and if the
value is called for substitution, a nuil value will be substituted for the # <tag> #within the
line. The effect is that the # <tag> #characters simply disappear from the line. For
example, a CHAIN command:

CHAIN MAKETEST;DATE
made for the procedural file shown above (’assume it was called MAKETEST) would result in
a *CHAIN/SYS file containing:

ASM TEST;XL
TEST PROGRAM ASSEMBLED ON
CHAIN CHAINF2;DATE##

8.3.6 Additional CHAIN operators

In addition to the ones mentioned in previous sections, CHAIN contains ABORT, BEGIN7
and END operators. The ABORT operator simply causes CHAIN to return instantly to.the
DOS without any further action. |f any messages are to be given to the operator, it is the
responsibility of the procedural file to contain the appropriate compile time comments before
the ABORT operator. This operator makes it easy to terminate the procedure if a critical tag
is missing or some other problem with the procedural file or its parameterization is detected.

The BEGIN and END operators allow groups of IF/ELSE/XIF operators to be
parenthesized. A counter called the BEGIN/END counter is initialized to zero when CHAIN is
started. If the use of procedural lines is turned off and a BEGIN operator is encountered,
then the BEGIN/END counter is incremented. If an END operator is encountered, then the
BEGIN/END counter is decremented unless it is already zero. The ELSE and XIF operators
have no effect if the BEGIN/END counter is not equal to zero.

SECTION 8. CHAIN COMMAND 8-9

For example

/i IFS FLAG1

ASM TEST1;XL

TEST PROGRAM ONE
/1 ELSE

// BEGIN

/I {FS FLAG2

ASM TEST2;XL

TEST PROGRAM TWO
/1 ELSE

ASM TESTTEST;XL
TEST TESTER

/I XIF

// END

1 XIF

/I lFS FLAG3.FLAG27
LIST SCRATCH;L

THE SCRATCH FILE AT FLAG 27
/1 XIF

The 6th through the 12th lines will not be used if FLAG1 exists, not withstanding the fact
that there is an ELSE and XIF operator within those lines, because the BEGIN/END pair
prevented these operators from having any effect.

8.3.7 Resuming an aborted CHAIN

Before the CHAIN overlay fetches the next DOS command it stores the *CHAIN/SYS file
pointers for the line to be used. If something goes wrong during the DOS command which
follows and the procedure is aborted, CHAIN still knows where it was in the *CHAIN/SYS file
when the problem occurred. Since CHAIN does not delete the *CHAIN/SYS file unless the
procedure completes successfully, it can pick up where it stopped in the *CHAIN/SYS file if
the operator can correct the condition which caused the procedure to abort in the first
place.Often, the reason for the abort is something correctable like the disk running out of

files or an attempt to delete a non-existent file. In this case, the opeiator need only correct
the condition and then enter:

CHAIN *

and the procedure wili pick up with the command which failed before. This action can be
applied even if the RESTART key has been depressed. Thus, one can recover from jammed
paper in a printer half way through an assembly by simply depressing RESTART, fixing the
printer, and then typing the CHAIN *command.

8-10 PART Il SYSTEM COMMANDS

SECTION 9. CHANGE COMMAND

CHANGE - Change a file’s protection
CHANGE <file spec>/p

The CHANGE command enables the user to write protect, delete protect, or clear the
protection. If a file is delete or write protected, a KILL command (or program generated kill)

cannot affect it. If a file is write protected, it cannot be written into by the standard system
routines.

The second specification is used to indicate the protection for the file specified. The
extension portion of the specification is used to present the parameter:

D - delete protect
W - write protect
X - clear protection.

For example:

CHANGE NAME/EXTENSION /D
CHANGE NAME /X

will delete protect the file in the first case, and remove all 'protection in the second case. If
a first specification is not given, the message

NAME REQUIRED.

will be displayed. If the file indicated by the first file specification cannot be found, the
message

NO SUCH NAME.

will be displayed. If the second specification does not follow the above syntax rules, the
message '

INVALID PROTECTION SPECIFICATION.

will be displayed. .

SECTION 9. CHANGE COMMAND 9-1

SECTION 10. COPY COMMAND

COPY - Copy a file from one place to another

10.0 PURPOSE

It is frequently useful to make a copy of a disk file. It may be desired, for example, to
make a copy on a separate volume for backup or distribution purposes.

It 1s possible to copy a disk file using more specialized commands such as SAPP and
APP. However, since these commands make assumptions regarding the internal details of the
contents of the file they are copying, they require the user to distinguish between standard
DOS TEXT-type files and OBJECT files (files whose contents are in the standard format
acceptable to the DOS loader). Additionally, SAPP and APP cannot correctly copy certain
unusual types of files, for example those with imbedded end-of-file records, DATABUS 7 and
DATASHARE physical random data files, and the like.

Because the COPY command does not make assumptions about the format of the
sectors being copied, but merely copies the file sector-for-sector, it can copy most types of
disk files which previously were not possible to copy using the SAPP and APP commands.
Some particular types of file are still unmovable, however. The outstanding example are
Index files, usually with extension /ISI. (These cannot be moved because index files contain,
internal to themselves, pointers indicating their actual physical location on the disk volume,
which are made invalid when the file is moved to another place on the disk).

Another advantage of the COPY command is that since sectors are not examined for

content, the command can copy files much faster (particularly .under DOS.B) than is possible
using APP or SAPP,

10.1 USE

The COPY command is invoked by entering at the system console:
COPY <input file spec>,<output file spec >

The COPY operation causes the first specified file to be t:opied into the second one.
Attributes of the first file, such as its protection, are copied to the second file as well.

The only portion of the operands that is specifically required is the name of the input
file. The extension of the input file, if none is specified, is assumed to be /TXT. If a drive
specification is entered for the input file, then only that specific drive is searched for the
indicated file. {f no drive specification for the input file is given, all drives are searched. |f
the name of the output file is omitted, it is assumed to be the same as that of the input file.
If the output file's extension is not given, it is also assumed to be the same as that of the
input file. All drives are searched for the output file before creating it unless a particular

SECTION '10. COPY COMMAND 10-1

drive is specified.

For example, to copy file PAYROLL/TXT from drive two to drive one. it is only
necessary to enter at the system console:

COPY PAYROLL:DR2,:DR1

As another example, to make another copy of PROGRAM/ABS on drive zero, but to be
named MYPROG, all that is required is:

COPY PROGRAM/ABS MYPROG:DRO

10-2 PART (Il SYSTEM COMMANDS

SECTION 11. DOSGEN COMMAND

DOSGEN - Prepare a disk for use by DOS

11.1 PURPOSE

Before any disk can be used by the DOS, certain tables and other information must be
placed onto it to establish the basis DOS requires for the support of its file structure. These
tables include the skeleton of the DOS directory, where the names of the files contained on
the disk are stored, as well as a map showing which places on the disk are bad and should
not be used. '

The purpose of the DOSGEN command is to provide the user with a simple and
efficient way of accomplishing this.

11.2 USE

To DOSGEN a disk, the user enters at the system console:
DOSGEN <drive spec>

The drive spec field is a standard DOS drive specitication which specifies which drive
contains the disk to be prepared for DOS use. Since the command during the directory
initialization process will effectively KILL any files that might be on the disk, the command
asks the user several times to make sure that he is aware of the potential seriousness of the
operation he has invoked.

After the user has acknowledged that he does not mind the overwriting of the new
disk, the command asks if any cylinders on the volume are to be locked out. Normally, the
answer to this question is NO. However, by answering YES, it is possible to cause the DOS
to lock out one or more cylinders of the disk from DOS access. This can be useful in some
special applications where it is desired to not allow DOS programs access to a file stored in
unusual format, for example. In general, locking out cylinders from DOS access is to be
discouraged since it makes it more difficult to make use of the useful features of the DOS.
If the user does wish to lock out any cylinders, he may do so by specifying one or more
cylinder numbers, in the format:

12,14,16,25-28,40
The above example would cause cylinders 12, 14, 16, 25, 26, 27, 28, and 40 to be
locked out. Note that the cylinder numbers to be locked out are given in decimal as

opposed to octal.

After the user has specified that no, or which, cylinders are to be locked out, the
DOSGEN command checks for bad sectors on the disk and issues a message indicating any

SECTION 11. DOSGEN COMMAND 1141

cylinders it finds which contain bad sectors. The remainder of the operation is completely
automatic and indicates its completion with the familiar DOS mescage, '‘READY".

Upon completion of the DOS generation process, the only files on the new disk are the
eight system files SYSTEMO/SYS through SYSTEM7/SYS and the CAT command. -

11.3 SPECIAL CONSIDERATIONS

It is important to remember that on disk packs for use with DOS systems recognizing
more than one logical drive per physical disk pack, for example the 9370 series disk system,
two DOSGENs must be done before the physical pack is fully initialized. This allows the
user to DOSGEN either logical disk on the pack without disturbing files he wishes to keep
that may be stored on the other logical disk.

Another important thing to remember is that both the 9370 and 9380 series disks must
be formatted before DOSGEN can be used on them. Diskettes (for the 9380 series drives)
come pre-formatted from the manufacturer; disk packs for the 9370 series drives do not. It
1s therefore necessary to format all disk packs for the 9370-series drives using the program
INIT9370 before attempting to use DOSGEN on them. '

11-2 PART IIf SYSTEM COMMANDS

SECTION 12. DUMP COMMAND

DUMPF - Display sectors from disk in octal

12.0 PURPOSE

Occasionally while writing into files on disk (in particular, during the program debugging
stage) it is useful to be able to verify that the formatting of the information into the standard
text format is being done correctly. Or, perhaps an assembler language program (/ABS file)

that previously loaded correctly no longer will, as indicated by the DOS just coming back up
when the program is run.

The DUMP command gives the user a simplified mechanism for examining the entire
contents of physical sectors on the disk. The display includes both the octal and ASCI!
contents of every byte on the sector. No exa’mi'nation for control bytes of any kind is made,
allowing the'user to see the precise contents of every physical location in the disk sector.

Another good use for the DUMP command is to clarify any questions regarding the
standard DOS file formats. Using DUMP it is possible to examine a file and see just how it is
formatted on the disk. DUMP is frequently useful for DATASHARE programmers who are using
tabbed reads and writes and encounter problems with their programs, since these problems are
usually caused by a lack of complete understanding of the format of DOS standard text files
and how this interacts with tabbed disk operations in DATASHARE.

12.1 USE

The DUMP command is invoked by entering at the system console:

DUmMP

The DUMP command operates with basically four separate levels of control. These
levels are:

LEVEL ONE - Logical drive level

LEVEL TWO - File level

LEVEL THREE - Logical record number level
LEVEL FOUR - Physical disk address level

When the DUMP command is used, the top line on the display is the control line. .AH
input is accepted on this line. This line is broken into four basic areas, one correspondmg
with each of the four control levels. The control level at any given time during the operation

of the DUMP command can be determined by the position of the flashing cursor on the control
line.

SECTION 12. DUMP COMMAND 12-1

For example, if the flashing cursor is positioned after the ‘DRIVE:’ legend on the control
fine, the DUMP command is operating at level one. If the cursor is positioned after the ‘FILE:’
tegend on the control line, the DUMP command is operating at level two. And so forth.

12.2 INFORMATIONAL MESSAGES PROVIDED

The second line on the display is used for sector informational messages. These serve
both to indicate any special significance of the sector just read and to describe any unusual
occurrences associated with reading the sector. These messages are generally
self-explanatory. Among the messages that can be displayed are the following, along with an
explanation of the meaning of each.

RETRIEVAL INFORMATION BLOCK (RIB). This message indicates that the sector being
displayed is the primary RIB for the currently opened file.

RETRIEVAL INFORMATION BLOCK BACKUP. Each RIB is maintained in duplicate for
backup purposes and to allow recovery in the event of a progfam erroneously destroying the
primary RIB. This message indicates that the sector being displayed is the secondary RIB for
the currently opened file. Note that this does not mean that the primary RIB has necessarily
been damaged; it simply means that the sector requested happens to be the secondary,
backup copy of the RIB.

CLUSTER ALLOCATION TABLE. This message indicates that the sector being displayed
is the primary Cluster Allocation Table (normally referred to as the CAT) for the current logical
drive. .

CLUSTER ALLOCATION TABLE BACKUP. This message indicates that the sector being
displayed is the secondary, backup CAT for the current logical crive. This implies that the
CAT is also maintained in duplicate just as is the RIB.

LOCKOUT CLUSTER ALLOCATION TABLE. Associated with each logical drive is a
sector that indicates which areas have been locked out, prohibiting their use by the DOS.
This message indicates that the sector being displayed is the Lockout CAT for the current
logical drive.

LOCKOUT CLUSTER ALLOCATION TABLE BACKUP. This message indicates that the
sector being displayed is the secondary, backup copy of the sector just described above.

SYSTEM DIRECTORY SECTOR. This message indicates that the sector being displayed
is one of the DOS directory sectors. The directory sector number (in decimal) immediately
follows the message.

USER DATA SECTOR. This message indicates that the sector is not one of the above
special system sectors.

DISK SECTOR CRCC ERROR. This message indicates that the sector requested for ‘
display either was not found on the disk or that a CRCC error repeatedly occurred during the
read operation. The sector displayed is the data as it was read from the disk, unless the

12-2 PART Ill SYSTEM COMMANDS

sector was not found.

DISK OFFLINE. This message indicates that the currently specifi‘ed logical drive is not
on line.

DISK SECTOR FORMAT ERROR. This message is displayed when DUMP notices that
the sector being displayed does not correspond to standard DOS file conventions (the first byte
of each sector is its physical file number, and the two following bytes are the logical record
number). The appearance of this message does not necessarily indicate that the sector of the
file has been destroyed, since unwritten sectors at the end of a file and older version
DATASHARE object code files normally will fall into this class. It merely means that if the
sector were read with the DOS READS$ routine, a format trap would occur.

SECTOR OUT OF RANGE. This message is displayed if the sector requested (by logical
record number) is not within the range of the currently opened file.

FILE NOT FOUND. This message indicates that the file requested could not be found.
This does not necessarily mean that the file does not exist. For example, the user and the file
could be in two different subdirectories. If the user has not requested non-specific volume
mode (to be described), this message might mean simply that the file desired is on a different
logical drive.

INVALID PHYSICAL ADDRESS. This message indicates that the physical disk address
specified is invalid. '

The remainder of the display contains the contents of the current half of the sector most
recently read. The display is arranged as eight groups of sixteen bytes each. Each of these
groups is preceded by the three octal digit offset of that group within the sector. Each
sixteen byte group consists of the octal and ASCIl contents of each of the sixteen bytes in
that group. Each byte's contents form a column one byte wide and four lines high, where the
first three lines are the value of the byte, in octal, and the fourth line is the ASCII value of
that character. Notice that the character is not examined for special significance before it is
displayed, so that users with computers having the high speed RAM display option (which is
strongly recommended for all DOS systems) may display characters other than the normal
ASCIl set.

12.3 LEVEL ONE COMMANDS TO DUMP

When the flashing cursor indicates that DUMP is functioning at level one, the following
commands are accepted:

<enter>- The CAT on the current drive is displayed and control transfers to level two.
In addition, the non-specific drive mode is enabled.

number - The drive number indicated becomes the currently selected drive. The CAT
from that drive is displayed and control is transferred to level two. Non-specific drive mode is

- disabled.

*. DUMP command returns control to the DOS.
>- The second half of the current sector is displayed.

SECTION 12. DUMP COMMAND 12-3

<- The first half of the current sector is displayed.

12.4 LEVEL TWO COMMANDS TO DUMP

When the flashing cursor indicates that the DUMP command is functioning at control
level two, the following commands are accepted:

<enter>- If a file is currently opened, the secondary RIB for the file is displayed and
control transfers to level three. If no file is opened, control transfers to level four.

name/ext - The named file is opened on the current drive, or any drive if non-specific
drive mode is enabled. The primary RIB for the file is displayed and control transfers to level
three. .

pfn - The file indicated by the octal physical file number given is opened on the current
drive. The primary RIB for the file is displayed and control transfers to level three.

I - The current physical file number is incremented and the new file thus indicated is
opened. If no file corresponding to that physical file number exists on the current drive, the
PFN is incremented repeatedly until a file corresponding to the PFN is found. The primary
RIB for the file is dispIaYed and control transfers to level three.

D - D works just like | just described except that instead of incrementing the PFN, it is
decremented.

#pfn - Show the directory sector containing the entry corresponding to the file indicated
by the specified physical file number. Since only the last four bits of the PFN are relevant,
the pfn specifier is equivalent to a relative directory sector number. Al directory sector
numbers are always specified in octal.

- Return control to level one.

>- Show the second half of the current sector.

<- Show the first half of the current sector.

12.5 LEVEL THREE COMMANDS TO DUMP

When the cursor indicates that DUMP is functcomng at level three, the LRN level, the
following commands are accepted.

<enter>- Show the current sector and transfer control to levei four.

number - Access and display the record indicated by the LRN specified. |f the number
given has a leading zero, it is assumed to be octal; otherwise it is assumed to be in decimal.
The number specified is the user (as opposed to system) LRN. The system LRN, the one in
bytes one and two in the sector, is always two less than the user LRN. The two numbers
displayed at level three in the control line are the LRN in decimal (the one with leading zeros
suppressed) and octal (the one in parentheses, with leading zeros).

I - Increment the current logical record number, access it and display the sector.

D - Decrement the current logical record number, access it and display the sector.

- Return to the File level of control (level two).

>- Show the second half of the current sector.

<- Show the first half of the current sector.

12-4 PART Il SYSTEM COMMANDS

12.6 LEVEL FOUR COMMANDS TO DUMP

Level four of the DUMP command requires more detailed understanding of DOS physical
disk addresses, and as such is not usually as useful as the LRN level. However, when access
to a specific sector on the disk is desired, it can be achieved using DUMP level four. It is
important to realize that the physical disk addresses specified are logical physical disk
addresses, i.e. the same format as is given to the DR$ and DWS$ routines in the DOS. They
are not necessarily the same as actual physical locations on the disk. For example, with
DOS.C for the 9380 series diskettes, the logical disk addresses are remapped onto the diskette
into different hard physical sector numbers than those indicated by the logical physical disk
address. The important thing to understand here is that the disk addresses used in the level
four control of DUMP are those that would be used to parameterize DR$ and DWS.

The commands accepted at level four of DUMP are as follows.

msb,Isb - Access and display the sector indicated at the given physical disk address on
the current logical drive. The most significant byte is assumed to be in decimal unless a
leading zero is supplied. The second byte is always considered to be in octal, regardless of
whether a leading zero is supplied or not.

*- Return control to level two if no file is opened, or level three otherwise.

>- Show the second half of the current sector.

<- Show the first half of the current sector.

12.7 ERROR MESSAGES

Only one genuine error message is issued by the DUMP command. It is:

ERROR IN DOS FUNCTION. DUMP ABORTED.

If this error message occurs, it means that the DOS FUNCTIONs are probably incorrect
on the disk, generally indicating that the disk in drive zero has not been completely (or

correctly) DOSGENed. If this is the case, SYSTEM7/SYS should be loaded using the latest
copy of the DOS as distributed by Datapoint.

SECTION 12. DUMP COMMAND 12-5

SECTION 13. EDIT COMMAND

13.1 INTRODUCTION

The DOS Editor enables the user to create and to update source data files on the disk.
The editor, through the use of initialization parameters, will enable the user to create files in a
variety of formats: text files, assembler code files, DATABUS source code files, or user
designed data files.

A GLOSSARY of the many terms and phrases used throughout this manual is provided in
subsection 13.8 and a list of commands and brief definitions is provided in subsection 13.9.

Throughout the section these ‘conventions will be used:

Square brackets - {}- indicate optionai fields.
Pointed brackets - < >- indicate required fields.

Caution: Although virtually any Datapoint format file may be ‘edited’, files structured with
respect to physical records or those containing strings longer than 79 characters may find that
organization coflapsed as the editor compresses the file into sequential format. In such cases
the editor should not be used.

13.2 OPERATION
13.2.1 DOS INITIALIZATION
The EDIT program, catalogued EDIT/CMD on your disk, is parameterized as follows:

EDIT <f1>{,f2}{,13}(;parameter list)

13.2.2 Files

<f1>is the source file, <f2>is the scratch file and <{3>is the configuration overlay
file. The source file <f1>is assumed to have an extension of 'TXT' if none is provided. If
there is no file of the specified name, one will be opened. If no scratch file <f2>is specified.
a file 'SCRATCH/TXT' will be used. The configuration file <f3>is assumbed to be
EDIT/OV1 unless otherwise specified.

If parameters are indicated by the presence of the semi-colon, the question:

RECORD PARAMETERS?

SECTION 13. EDIT COMMAND 13-1

will be displayed. If ‘N’ is entered, the editor will begin execution with the indicated
parameters and the configuration file will not be changed. If 'Y’ is entered, the question:

NEW TABS?

will be asked. If 'Y is entered, the standard tab initialization line of numbers will be displayed
(see :T command description). After the new tabs are entered, the parameter information and
tabstops are recorded in <f3>. : ‘

If no parameter list is provided, <f3>, if present, is automaticaliy loaded, causing the
recorded parameters to be used.

13.2.3 PARAMETER LIST

A parameter list, indicated by the SEMI-COLON (;) following the file specification may be
included. That kst may include up to seven parameters which are order independent. The
possible parameters are:

i:{marginjitab key}{mode}!shift}|line}|update}|format)

If no parametér list is provided, Assembler mode with a margin at 7§ and SPACE bar for
tabbing is assumed.

13.2.3.1 Margin Bell

A number in the parameter list will be taken to be the margin designator; this causes
the margin 'bell’ to ring at the designated margin. (Text may always be input up to column
79 regardless of the margin setting.)

For Example ;30 will cause the bell to ring in column 30.

13.2.3.2 Tab Key Character

A tab key character encountered in the parameter list, ie., a r.on-alpha, non-numeric,
non-colon, will replace the assumed tab key character. (SPACE in Assembler, DATABUS and
Comment mode, SEMI-COLON in Text mode.)

For Example; {will cause the tab key caret (1) to replace the assumed character.

13.2.3.3 Mode

A new set of assumptions will be used if one of the 'mode’ parameters is set. If no
mode is listed or ‘A’ is typed, Assembler mode will be used. DATABUS (D) mode simply
changes the tab stops. Comment mode (C) changes the nature of the DELETE and SCRATCH
commands to facilitate adding or changing comments on assembly code files.

Text mode (T) sets no tabstops, does no shift inversion and enables the word wrap
around feature (see the glossary). To activate line truncation instead of word wrap around in

13-2 PART Il SYSTEM COMMANDS

Text mode, enter 'L’ in the parameter list. To enable shift key inversion (see glossary) in Text

mode, enter the parameter 'S’ in the list. Text mode is especially useful for generating
SCRIBE input files.

See the glossary for complete definitions of the various modes.

13.2.3.4 Update

During editing, the source file is transferred into the scratch file as the text is updated.
The physical source file may be used as the scratch file as the edit proceeds. When the edit
is terminated, the physical source file is updated.

To inhibit source file update, the 'ONE-PASS’ OPTION' O' may be set in the parameter

list. A flag is set which prevents writing on the physical source file. Then, at the completion

of the edit, the scratch file will contain the updated information and the source file will be
unchanged.

13.2.3.5 Key-click
If the "K' parameter is set, a click will sound each time a key is struck.
13.24 EXAMPLES
To perform standérd Assembler code editing, enter the command:
EDIT <source>
To edit a file for input to tﬁe text processor, SCRIBE, the command:
EDIT <source>;T
is adequate. To change the margin bell to ring at column 35 (e.g. for labels) the command:
EDIT <source>;35T

would set the bell and use the Text mode assumptions. Note that the parameters are order
independent; therefore, the command: EDIT <source>;T35 would achieve the same results.

To generate a second, slightly different, file (without updating the original file), the
command: .

EDIT <source>,<new file>;0T

protects the source. If the file is Assembler code instead of text, simply omit the T' if
DATABUS, replace 'T' by D

A second file, with the same name as <f1>but with a different extension, may be used
by entering:

SECTION 13. EDIT COMMAND 13-3

EDIT <f1>./<extension>

Once the initial command (and parameter list) has been entered. The DOS Editor signon
message will appear on the screen. This message will be rolled up anrd the screen cleared
with the cursor left on the ‘command line'. From this position data may be entered, lines may
be fetched from the source file, or editor commands may be executed.

13.2.5 DATA ENTRY

To enter text, simply type on the bottom line, when the ENTER key is pressed the screen
rolls up one line. The command line is once again blank and the cursor is at the beginning
of the command line, ready to accept more input.

If wrap around is in effect, when a SPACE is typed within the last 10 columns of the
line or typing proceeds past the end of the line, the same action occu:s. If a non-space
character is typed into the last column, the last word on the line is removed and, after the
screen is rolled up, that word is place on the command line, where data entry may proceed.

When typing on a ‘'screen line' (as the result of a command), the ENTER key causes the
cursor to return to the command line. To continue data entry at the same screen area, the
Pseudo-ENTER key may be used. This key (DEL shifted) causes (in all but command mode), a
new blank line to be inserted at that point on the screen so that data entry may proceed.

It word wrap around is enabled, and data is being entered on a screen line, a new line
will automatically be inserted at that point when, as on the bottom line. a space is entered
within the last 10 columns or a character is typed past column 79.

The BACKSPACE key erases the last character and moves the cursor back one position.
The CANCEL key erases the line back to the previous tabstop (in text mode this would erase
the entire line). . '

Typing the tab key character causes the cursor to move to the next tab stop to the right.
If there are no tab stops to the right of the cursor, the tab key character is accepted as a
normal data character.

13.2.6 DATA RETRIEVAL

To fetch data from the source file, press the KEYBOARD and DISPLAY keys
simultaneously. As long as the two keys are depressed, data will be fetched, displayed on
the command line and rolled up the screen. If end of file is reachzd, no more data is fetched
and the machine beeps.

To fetch a single line, the DEL key may be pressed (in the first column of the command
line). Using this key insures that only one input line will be fetched.

13-4 PART 1l SYSTEM COMMANDS

13.2.7 EDITOR COMMAND FORMAT

The text appearing on the eleven screen lines (i.e. the lines above the command line)
may be edited using a set of 'commands’. A ’pointer’ (>) in the left hand column of the
screen indicates the line which the command will affect.

To move the pointer up, press the KEYBOARD key. The DISPLAY key moves the pointer
down. The pointer wraps around from the top to the bottom and vice versa.

Commands allow the user to delete a single line (:D) or part of the screen (:SC and
:SB), insert (:I) a new line between the current lines on the screen and to modify parts of a
line by replacing text or inserting new text. Commands are also available to search the file
for specific text (:F and :L) or for the end of the file (:EO or :E*).

An editor command is always preceeded by a COLON (:). To enter a command, type, in
the first column of the command line, a colon and the appropriate command character and any
necessary parameters. The command is always typed with the machine in lower case; thus,
with shift inversion on (as in Assembler, Databus and Comment modes), the command
character wiil appear upper case; whiie with shift inversion off (as in Text mode), it wili appear
lower case.

13.3 COMMANDS

The following commands are a subset of those available.. The user can get started
without worrying about complex command forms. Remember that the ’pointer’ on the screen
indicates the line affected by the command.

:D - DELETE - in all but Comment mode this command deletes the entire pointed line.
(iIn Comment mode, only the comment field is deleted. The CANCEL key may however be
used to delete the preceeding fields in the line.)

The cursor is left on the now null line where new text may be entered. If no replacement text
is needed, be sure to press the ENTER key in the first column of the pointed line, since
trailing blanks will not generally be truncated.
Pseudo-ENTER may be used to generate additional lines at this area of the screen. Word
wrap around, if in effect, will apply to text entered on a deleted line. Pressing the ENTER key
will return the cursor to the command line. '
See the section on modification for more information.

:E*- EOF without display - searches for the end of the file and, when it is reached,
displays the last screen of text. The search may be aborted by pressing the KEYBOARD and
DISPLAY keys simultaneously.

:EO - EOF with display - causes the data to be displayed on the screen continuously

SECTION 13. EDIT COMMAND 13-5

until end of file is reached. The display may be stopped at any hime by pressing the
KEYBOARD and DISPLAY keys.

'F <old text>- FIND match - the screen is cleared and the input file is searched for
a line starting with the specified \<ola text>. Leading spaces in the input lines will be
ignored and should not be entered as part of <old text>(note that this command should be
typed exactly :F<SPACE> <old text>).

‘A FIND will wrap entirely around the file (or up to the end of file if the one-pass option is
set). If the requested text is not found, the last line on the screen when the FIND was
executed will be displayed. A FIND may be stopped by pressing the KEYBOARD and DISPLAY
keys.

:l - INSERT - Perform a line insert at the pointed line. This command causes the
lines from the top of the screen to the pointed line, inclusive, to be rolled up and a blank line
to be inserted. The cursor is left at the beginning of the new blank line where data entry may
proceed.

It the pointed line or the line immediately below it is empty no insert will occur, and the null
line will be used as the inserted line where data entry may proceed.

To make complex changes to a line already on the screen, the operator may INSERT a line
immediately below the original and then retype the line - with changes. The original line may
then be DELETED.

The pseudo-ENTER key may be used to generate additional blank lines at the same point on
the screen.

‘L - LOCATE next - typed exactly :L<ENTER>. clears the screen and finds the next
line of text. |if positioned at the end of the file, the 'next’ line will be the first line of the file.

‘L <old text>- LOCATE match - similar to FIND match except that the locate
command searches for imbedded text matching <old text>. Leading spaces should be

supplied if meaningful.
For additional forms of the FIND and LOCATE commands see the 'FILE SEARCH' section.
‘M <old text> <command separator> <new text>- MODIFY - a modify command
allows the operator to replace <old text>by <new text>, insert <new text>after <old
text>or append (i.e., truncate and add) <new text>after <old text>. For the
various forms of this command see the 'MODIFICATION’ section.
:SC - SCRATCH above - in all but Comment mode this command erases the lines

from the top of the screen down to the pointed line, inclusive. (In Comment mode, only the
comment fields are erased.)

The cursor is left on the pointed line where data entry may proceed.

13-6 PART Il SYSTEM COMMANDS

:SB - SCRATCH below - in all but Comment mode this command erases the lines
from the pointed line to the bottom of the screen, inclusive. (In Comment mode, only the
comment fields are erased.)

The cursor is left on the pointed line, where data entry may proceed.

:E - END - the end command causes the remainder of the logical source file to be
copied to the logical scratch file and then, if the logical scratch is not the physical input file,
the scratch file is copied back to the source file.

The command line will be left on the screen as long as the copy from source to scratch is in
progress; it is erased during the final copy from scratch back to source.

The end may be terminated as long as the command line is still displayed, by pressing the

KEYBOARD and DISPLAY keys. When the final copy is completed, control is returned to the
D.O.S.

Note that if the one-pass option was selected in the parameter list, no copy from scratch back
to source will be performed.

:E/ - END/DEL - this command causes the remainder of the source file to be deleted
(the lines currently on the screen will be written out), and, it the logical scratch file is not the
physical source file, the scratch file is copied back to the source file. When the file is
completely updated, the system is reloaded.

No copy back is done if the one-pass option is set.
13.4 MODIFICATION COMMANDS
13.4.1 DELETE COMMAND

Modification of a line may be achieved in a variety of ways. The DELETE command
enables the user to remove leading information while the MODIFY command may be used to
replace imbedded information, insert text into a line or field, or truncate and add new text at a
specified point or in a specified field.

:D <old text>- DELETE through - this command deletes all character from the left
edge of the pointed line through (and including) the specified <old text>. The remaining
characters will be left justified and re-displayed. The cursor returns automatically to the
command line,

13.4.2 MODIFY COMMAND
The general form of the MODIFY command is:

‘M{#}[old text}<sep>{new text}

where [#lis a number which extends the meaning of the command and <sep>is the

SECTION 13. EDIT COMMAND 13-7

tened.

command separator which defines the action of the command. Both [o!d textjand {new
textjfields are optional. If |old text}is omitted. the command will take effect at the

left most edge of the pointed line (or at the left edge of the specifiec field). If the {new
textjfield is omitted, a null field will be used to execute the modification.

13.4.2.1 LINE MODIFICATION

The following descriptions are of the line modification version ot the MODIFY command
‘M {old text] <|new text]- MODIFY (replace) - replace the specified {old text)by the

specified [new text]. The less than character (<) is a command separator which indicates
replacement and, therefore, the {old text)may not contain this character. If |new text}field is
omitted, the old text will simply be deleted and the line will be compressed to the left.
For example to modify the text line:
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK.
The command: :M BROWN<RED would cause the line to be redispiayed like this:
THE QUICK RED FOX JUMPED OVER THE LAZY DOG'S BACK.
The e ocommand: :M .<1234 TIMES. to the original line would generate a line like:
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG'S BACK 1234 TIMES.
If the replacement causes the line to become longer than 79 characters, the trailing word, in
text mode only, will be wrapped around and a new line will be inserted containing the entire
LMLAST WORD. If the {new text)is shorter than the [old text]it replaces, the line will be shor-

After the pointed line is redisplayed, the cursor is returned to the command line.

‘M lold text}>[new text}- MODIFY (insert) - the command separator greater than (>)
causes the |new text{to be inserted in the pointed line immediately &iter the [old text}.

If the line becomes longer than 79 character, and word wrap around is not in effect, the

trailing characters are truncated. If, however, word wrap around is on, the trailing character
and last word are inserted on a new line.

‘M {old text) {new textjor

‘M fold text| (new text]- MODIFY (z2ppend) - the vertical bar (
by the {new text}.

As in all MODIFY commands, it the pointed line becomes longer than 79 characters, truncation
occurs if word wrap around is not implemenied.

‘M{#]- MODIFY repeat - typed exactly :M<ENTER>, uses the <old

13-8 PART Il SYSTEM COMMANDS

text> <sep> <new text>from the last MODIFY

command. This is useful when making the same change repeatedly. Note that the field
number is not saved, and must, therefore, be supplied if necessary.

:M*- MODIFY display - display the expression entéred for the last MODIFY. After the
saved command is displayed, the cursor is turned off and the operator must press ENTER to
proceed. No MODIFY is actually performed.

13.4.2.2 FIELD MODIFICATION

In tield modification mode, the MODIFY command acts'only on a specific field and does
not expand or contract the entire line but maintains the integrity of all fields before and after
the affected field. o

‘M<#>{old text}<sep>{new text}- MODIFY field - where the pound sign <#>is a
number from 1 to 6 designating the field to be modified (or the starting point to search for
matching {old text}). Field 1 is always the left hand margin, thus, in Assembler mode, field 1
is the label, field 2 is the op code, field 3 is the expression and field 4 is the comment. This
command may be executed in any of the previous Modify forms. However, modification is
performed within the specified field only. As long as the text being modified is unique, field 1
may be specified, since the field number indicates only where to start looking for matching
text. (Note that if the field number is omitted, line modification is assumed.)

Thus, a replacement or append shqrter than the original field will be blank filled and
subsequent fields will maintain their position and content. An insertion longer than the
specified field will be truncated (with the exception of the last field whenever word wrap
around is in effect). ‘
For example, in Assembler mode, the line:
LABEL OoP EXP COMMENT _
+FC4'# ;
the label may be deleted by the command:
‘M1
with the resultant line:
oP EXP COMMENT
+FCa'#)

Or, the expressidn field (EXP) could be changed to EXP+1 without disturbing the comment
field position, by the command:

‘M3 EXP > +1

SECTION 13. EDIT COMMAND 13-9

which generates:

LABEL OoP EXP+1 COMMENT
+FC4 #

Note that in the above example, :M1 EXP. would also have worked, since EXP occurs only in
the third tab field.

To add a comment to a line previously containing none or to replace an existing comment
field, enter:

‘M4

NOTE: Remember when using the repetitious form of the MODIFY command that the
field number must be supplied.

13.5 FILE SEARCH COMMANDS

The FIND and LOCATE commands have several forms and have teen separated from the
basic command set to better describe them.

Manual, operator controlled, searches may be performed by depressing the KEYBOARD _
and DISPLAY keys simultaneously to cause data to be fetched from the file and displayed (as
long as the keys are pressed) on the screen. To fetch a single line use the Pseudo-ENTER
key (DEL shifted). The :EO command performs the same function automatically, i.e., it causes
lines to be fetched and displayed until the end of file is reached. To terminate a :EO
command, press the KEYBOARD and DISPLAY keys.

To find the end ‘of a file, without displaying the entire file (since the display is time
consuming) use the :E*command. This will search for the end of file and display the last
eleven lines of data.

:F <old text>- FIND match - the screen is cleared and the input file is searched for
a line starting with the specified <old text>. Leading spaces in the input lines will be

ignored and should not be entered as part of <old text>(note that this command should be
typed exactly :F<SPACE> <old text>).

A FIND will wrap entirely around the file (or up to the end of file if the one-pass option is
set). If the requested text is not found, the last line on the screen when the FIND was

executed will be dlsplayed A FIND may be stopped by pressing the KEYBOARD and DISPLAY
keys.

The <old text>specmed for a FIND (or locate) command is saved. The saved match ‘may be
redisplayed or used again.

‘F<SPACE> - FIND same match - if the FIND command is followed by exactly one
space and the ENTER key, the previous FIND (or LOCATE) <old text>will be used for this

13-10 PART Illl SYSTEM COMMANDS

FIND. In this manner, severai occurrences of the same text may be searched for.

-:F*— FIND display - the asterisk (*) after the FIND command causes the <old text> of
the previous FIND or LOCATE command to be displayed. The cursor is turned off and the
operaFor must press ENTER to proceed. No FIND is performed.

| ‘L - LOCATE next - typed exactly :L<ENTER>, clears the screen and finds the next
line of text. If positioned the end of the file, the 'next’ line will be the first line of the file.

‘L <old text>- LOCATE match - similar to FIND match except that the locate
command searches for imbedded text matching <old text>. Leading spaces should be
supplied if meaningful.

‘L<space> - LOCATE same match - typed exactly :L<SPACE> <ENTER>, uses the
<old text>specified by either the previous LOCATE or FIND command to perform a search.

‘L*- LOCATE display - display the <old text>entered for the previous LOCATE or
FIND command. As in the FIND display, the cursor is turned off and the operator must press
ENTER to continue. No LOCATE is actually performed.

13.6 MISCELLANEOUS COMMANDS

‘B - BYPASS - fetch a line from the file, bypassing end of file or record format error
(which would normally be treated as an end of file). Subsequent lines (if not
also record format errors) may then be fetched by the normal mechanisms. This
command is intended as a recovery tool for use only if the file has been
accidentally shortened or contains badly formatted records.

:C - COPY - copies the pointed line to the bottom of the screen, deletes the pointed
~line and rolls the screen up one line. This command cannot be executed on
the top screen line.

The cursor is left on the now null pointed line. Text may be entered at this
point (the Pseudo-ENTER and word wrap around, if in effect, will apply). When
the ENTER key is finally pressed, the pointer is automatically moved to the
following screen line so that a group of lines may be easily copied to another
part of the screen.

:T - TAB set - this command enables the user to reset the tab stops during execution.
(Not available in Comment mode.) The command causes a line of numbers to
be displayed across the bottom of the screen.

The operator should space over to each position where a tabstop is desired and
type any non-blank character. These tab stops are meaningful during data entry
and field modification (:M#) since data within a field may be modified without
disturbing the rest of the line. A maximum of 10 tab stops may be set.

SECTION 13. EDIT COMMAND 13-11

‘RH - RPG Header - sets tab stops for RPG header specification at columns 6 and 15.

‘RF - RPG File - sets tab stops for RPG file description specification at columns 6.,
15, 24, 33, 40, 54, 66 and 70.

‘RE - RPG Extension - sets tab stops for RPG extension specification at columns 6,
11, 19, 27, 33, 36, 40, 46, 52 and 58.

‘RL - RPG Line - sets tab stops for RPG line counter specification at columns 6, 15
and 20.

‘Rl - RPG Input - sets tab stops for RPG input specification at columns 6, 15, 21, 44,
53. 59 and 65. '

‘RC - RPG Calculation - sets tab stops for RPG calculation specification at columns
6. 18, 28, 33, 43, 49, 54 and 60.

‘RO - RPG Output - sets tab stops for RPG output specification at columns 6, 15, 23,
32, 38, 40 and 45.

‘RS - RPG Summary - sets tab stops for RPG summary specitication at columns 6, 14
and 23.

:X - TEXT - this command implements word wrap around and disables shift key
inversion and space insertion after leading periods. It automatically enters the
tab set command (:T), so that tab stops may be cleared by the operator. The
tab key character is not changed; therefore, the :<tab key>command must be
used to set a new tab key character if one is desired.

:<tab key>- change tab key character to any non-alpha, non-numeric, non-COLON,
non-ENTER character typed after a leading colon on the command line.

13.7 RECOVERY PROCEDURES

A 'FORMAT TRAP' occurs when a record not belonging to the current file is
encountered. This can be caused either by a physical misalignmert of the disk read head or
because a record has erroneously been written into that file by some other program.

A 'RANGE TRAP’ occurs when the physical limit of the file is reached and no end of
file is present.

13.7.1 Bypassing Errors or End of File
When a format or range error occurs, an appropriate message appears on the
command line and the cursor is turned off. In order to proceed, the operator must first press

the DISPLAY key. The effect of either a format or range trap is the same as an end of file
and no further data will be read from the file.

13-12 PART Il SYSTEM COMMANDS

To read past a format error or past an end of file, use the BYPASS command, :B,
repeatedly if necessary.

13.7.2 File Recovery

If the source file is lost (e.g., erroneously KlLLed), the scratch file may contain a useful
copy. The scratch file (SCRATCH/TXT) contains a copy of the last file edited, it may be used
to recover only that file.

13.8 GLOSSARY

Assembler mode - assumed mode of execution. Tab stops at 9, 15 and 30 (may be changed
during execution). The space bar is assumed as the tab key character (this
may be changed in parameter list or during execution). Shift key inversion and
no word wrap around are assumed. Leading period () generates period space
(.) for comment lines. Pseudo-ENTER does line-insert.

Command - characters typed at the left edge of the command line following a COLON (:)
which have special meaning to the editor.

Command line - the twelfth line of the screen where most data is entered, lines are fetched
and commands are typed.

Command separator - the character in a MODIFY command which indicates what is to be
done (>means insert, <means replace and or mean append).

Comment field - in assembler code the area of the screen from columns 30 to 79 is generally
‘ used for programmer comments. :

Comment mode - executed if 'C' in parameter list. Facilitates changing or adding comments
to assembler code. Tab stops at 9, 15 and 30 (may not be changed during
execution). The space bar is assumed to be the tab key character (this may be
changed in parameter list or during execution). Shift key inversion and no word
wrap around are assumed. Leading period (.) generates period space (.) for
comment lines. Pseudo-ENTER positions to comment field of following line and
deletes the comment. Delete and Scratch commands affect only the comment
field. Trailing blanks are truncated when data is output.

DATABUS mode - executed if ‘D’ in parameter list. Tab stops at 9 and 15 (may be changed
during execution). The space bar is assumed to be the tab key character (this
may be changed in the parameter list or during execution). Shift key inversion
and no word wrap around are assumed. Leading period (.) generates period
space (.) for comment lines. Pseudo-ENTER does line-insert. Input lines are
blank filled and trailing blanks are truncated on- output.

- Field number - a digit used in the MODIFY command to designate characters between two

tab stops. Field "1’ is always from column 1 to the first tabstop; thus, in
Assembler mode, 1’ designates the label field, '2° the opcode field, 3" the

SECTION 13. EDIT COMMAND 13-13

expression field and ‘4" the comment field. During field modification, trailing
fields are preserved.

Format trap - bad record encountered on disk. See 'RECOVERY PRCCEDURES', subsection
13.7.

Line insert - results from an INSERT command, data entry or modification when word wrap
around is in effect or a Pseudo-ENTER key in any mode other than Comment.
The lines above the pointed line are rolled up and a new, blank line is
~ geherated at the pointed line. ‘

Logical scratch file - current output file.
Logical source file - current input file.

New text - a group of characters, typed immediately after a command -separator in a modify
command, which will become part of the line being modified.

Old text - a group of characters, including spaces, which are searched for, either in the
pointed line (as in the MODIFY command) or in the file {as in the FIND or
LOCATE commands).

One-pass option - a flag may be set in the parameter list which inhibits updating of the
original source file. The FIND, LOCATE and END, END/DEL commands will not
write back into the input file if this option is set. '

Parameter list - initialization information provided when the editor is first executed. Following
file specifications, a SEMI-COLON (;) indicates the presence of a parameter list.
The mode, one-pass option, tab character, margin bell column and (in text
mode) 'no shift inversion’ (S) and 'no word wrap around' (L) may be set.

Pointed line - a pointer (>) in the left hand margin is used to reference lines for

modification by command. The line to the right of the pointer is the pointed
lin

Physical scratch file - specified (or implied SCRATCH/TXT) output file.

Physical source file - specified input file .

Pseudo-ENTER - the key marked DEL (always shifted) is referred tc as the Pseudo-ENTER
key. If pressed in the first column of the command line, one line of text will be
fetched from the source file.

In comment mode, if pressed on any but the bottom screen line or command
line, it will cause the cursor to be positioned to the comment field of the

following line and that field will be erased.

in all other modes, the Pseudo-ENTER key causes a new line to be inserted so

13-14 PART Il SYSTEM COMMANDS

that data entry may proceed in the same area of the screen. |f pressed on the
last screen line, the Pseudo-ENTER key simply places the cursor on the
~command line.

Range trap - attempt to read or write past allocated space on disk - see 'RECOVER
PROCEDURES’ in subsection 13.7.

Scratch file - at any point in time, the logical scratch file is the output file. It may, however, .
physically be the original input or the assigned 'scratch’ file. '

Screen line - any of the eleven lines on the screen which may be referenced by the
command pointer. The command line is not, therefore, included.

Shift key inversion - reverse the function of the shift key for all alpha characters so that, in
lower case, alpha characters will appear upper case.

Source file - originally this is the input file specified at initial execution. The term source
file refers to the current input file; thus, at any point in time, the logical source
file may be either the specified input file or the file specified as the scratch fite.

Text mode - executed by a ‘T’ in the parameter list. No tab stops are set (tabs may be set
during execution). The SEMI-COLON (;) is the assumed tab character (the tab
key character may be changed in the parameter list or during execution). No
shift key inversion is performed (this may be selected in the parameter list).
Word wrap around is performed (this feature may be turned off by an 'L’ in the
parameter list).

Word - a word is defined as any group of less than 50 characters preceeded by a space.

Word wrap around - a feature of text mode. During data entry a space within the last 10
columns of the screen cause an immediate carriage return. |f this occurs on a
screen line, a line insert is performed so that data entry may proceed at the
same area of the screen. If a character is typed over the last column of the
screen, the last word is removed, a line insert performed and the removed word
is placed at the beginning of the inserted line where data entry may proceed.
If a modify command causes the line to becomeé longer than 79 characters, the
trailing characters, including the last word on the line, will be moved to a new
line which will be inserted below the original line. Control will then return to
the command line. g

Write edit format - A DATABUS compatible cassette format selected in the parameter list.
This tape format creates one 80-character tape record per screen line. Spaces
are not compressed and trailing spaces are supplied to fill the line out to 80
characters.

SECTION 13. EDIT COMMAND 13-15

13-16

13.9 COMMAND LIST

B

.C

D

‘D <old text>

E

‘EO

E/

E*

‘F <old text>

‘F<SPACE>

F*

‘L <old text>

‘L<SPACE>

L*

‘M {old text] <|new text}- MODIFY replace old text by new text, adjusting the entire line

‘M Jold text}>|new text}- MODIFY insert new text after old text, adjusting the entire line

‘M lold

PART I

BYPASS end of file

COPY pointed line to command line and roll up
DELETE entire line

DELETE from left thru <old text>

END edit - copy remainder of file and update source
EOF display - fetch and display data unti|b end of file
END/DELETE update without copying remainder

EOF search - find end of file and display last full Ascreen
FIND match - search file for matching leading text
FIND repeat - Qse previous find/locate <old text>

FIND display - display previous find/locate <old text>
INSERT a blank line below pointed line

LOCATE next - clear screen and get next line

LOCATE match - search file for matching imbedded text
LOCATE repeat - user previous fiﬁd/locate <old text>

LOCATE display - display previous find/locate <old text>

LINE MODIFICATION

-

text)

SYSTEM COMMANDS

old text adjusting the entire line

FIELD MODIFICATION

‘M<#>|old text}<[new text}- field MODIFY replaces old text within specified field with new
text without disturbing the remainder of the line.

‘M<#>|old text}>{hew text}- field MODIFY inserts old text after new text within specified
field, without disturbing the remainder of the line.

M<#>(old text) the new text after the old text within the specit
disturbing the remainder of the line.

M MODIFY displays the previous modify {old} <sep> (new]

M{#) MODIFY repeats the previous modify {old]<sép>{new}

:SB SCRATCH BELOW deletes the pointed line and all screen lines below it
:8C SCRATCH ABOVE deletes the pointed line and all screen lines above it
T TAB SET permits the user to set Qp to five tab stops

X . TEXT mode (DOS only) switches to text mode with word wrap around

and no shift key inversion.

:<character> changes the tab key character to <character>.

SECTION 13. EDIT COMMAND 13-17

SECTION 14. FILES COMMAND

FILES is a program which selectively prints or displays DOS file descriptions in file
name sequence.

The user may select information pertaining to all DOS files or only those files with
_names and/or name extensions beginning with the characters specified by the operator.
Selected directory entries are sorted into ascending file name sequence. If desired, information
from associated Retrieval Information Blocks is also extracted for each Directory entry.
Extracted data is interpreted and displayed on the CRT or listed on a Local or Servo printer.

Program execution is initiated by the operator typing in the name FILES followed by
selection criteria and display options (if option codes are to be used).

COMMAND DESCRIPTION: (Parameters in brackets are optional)

FILES {file-nm}{/file-ext}{:DRn}, {<subdir—nm>}
{,<output-file> }{;options}

file-name: Select entries for files with names beginning with the 1-8 characters
specified.
file-ext: Select entries for files with name extensions starting with the 1-3

characters specified. This criterion must be preceded by a slash.

DRn: Specifies the disk drive to be selected. This criterion must be
' preceded by a colon. If this criterion is omitted, drive 0 will be
selected.
options: The following option codes must be preceded by a semi-colon but

may be entered in any order:

N - Suppress file allocation map.

D - Display on CRT.

L - List on local printer.

S - List on servo printer.

F - Write output to disk as DOS text-type
file.

if options are keyed and D, L, S are omitted, then D is assumed. If <output file spec>is
not present in the command line, one is requested by the message:

-

SECTION 14. FILES COMMAND 14-1

DOS OUTPUT FILE SPEC:
DEFAULT MESSAGES

If no option codes are entered, the following messages will be displayed on the CRT:
'SUPPRESS FILE ALLOCATION MAP?

If 'Y" or 'YES' is entered in response to this message, the display of file allocation
information from Retrieval Information Blocks (RIB) will be suppressed. If any other response
is entered, file allocation information will be displayed for each selected file.

After the user has replied to the map selection message, the program will test to see if
there is a servo printer connected to the processor that is ready for printing. If a servo
printer is attached and ready, the following message will be displayed:

LIST ON SERVO PRINTER?

If the user enters a 'Y’ or 'YES' in response to this message, the servo printer will be
selected to display output. |f any other response is entered or the program cannot find an
available servo printer, the program will test to see if a local printer is connected and ready
for printing. If the program finds that a local printer is available, the following message will
be displayed:

LIST ON LOCAL PRINTER?

If the user enters 'Y' or 'YES' in response to this message, the local printer will be
selected for output.

If the program cannot find an available printer, or the operaior fails to select a printer

with an option code or in response to a message, the program will display file descriptions

on the CRT screen. FILE DESCRIPTIONS

If a printer has been selected for output, the following mesSage will be displayed:
ENTER HEADING:

Up to 32 characters can be entered that will be displayed at the top of each page ot
listed output. -

File descriptions are sorted into ascending file name sequence for easy reference and
displayed or printed in the foliowing format:

FILENAME/EXT (PFN) DW

14-2 PART Il SYSTEM COMMANDS

DW flags following the Physical File Number (PFN) indicate if the file is deiete
protected (D), or write protected (W). If the file allocation map was not suppressed, disk

dependent messages describing the file’s size and location will be included in the file
description.

Depressing the DISPLAY key during display or printing of file descriptions will cause
the program to pause until the key is released. Depressing the KEYBOARD key will cause
the program to terminate and return control to the operating system.

It FILES detects any abnormalities during program execution, an error message will be
displayed on the CRT followed by a BEEP. -

ERROR MESSAGES

*PARITY ERROR *

FILES can not continue due to an irrecoverable parity error encountered while trying to read
data from the disk.

*DRIVE OFFLINE *

FILES is unable to connect to the disk drive selected by operator (drive 0 if not otherwise
specified). :

FILE(S) NOT FOUND.

No Directory entries have been found.that meet tﬁe users selection criteria.
INVALID DRIVE |

The user has entered data breceded by a colon that is not a valid disk drive.
CONFLICTING OPTIONS SPECIFIED

Optioné specify output on more than one device.
UNRECOGNIZABLE OPTION CODE

An unrecognizable code has been entered in the option field.
PRINTER NOT AVAILABLE

An option code specifies a printer that does not respond when tested for status.

SECTION 14, FILES COMMAND 14-3

SECTION 15. FIX COMMAND

FIX <file spec>

This will cause a set of five zeros two spaces and three more zeros to be displayed on the
bottom line. (The zeros represent the current address and its contents.)

00000 000

The screen is then rolled up. The program is waiting for a command from the operator.

Commands are in the form {number}{characterjwhere the number is assumed to be octal. If
the number is omitted, a value of zero is used.

The following is a list of command characters with their effect:

ENTER - If no block of object code is currently in

KEY memory (as at the beginning or after a block has been rewritten), search the
object file forward until a block containing the given location is found, then
display the contents of that location.

If a block of code is in memory and the location given is within the limits of the
block, the contents of the location will be displayed.

If a block is in memory and the location given is not within the block limits, the
current address will be set to the minimum or maximum address of that block,
its contents will be displayed and a beep will sound.

M - Change the contents of the displayed address to the number given.
i - Increment the current address (up to the maximum address in the current block).
- Change contents of displayed address to number given and automatically
increment the current address and display the contents of that location.

D - Decrement the current address (down to the minimum address in the current
block).

T - Transter the modified block back to disk - rewritting it in place. After the block
is written, the current address is set back to zero, so that all searches always
start from the beginning of the file.

A - Abdrt processing the current block, set the current address back to zero.

0] - Return to the operating system - if there is a block of object code in memory, it

SECTION 15. FIX COMMAND 15-1

is not written back into the file.

It the command character is not one of the above, it is ignored and regarded as if only
the ENTER KEY had been pressed. If the <filespec>is not an ABS file, the message

RECORD FORMAT ERROR

is displayed. If the <filespec>is not on an online pack or have the correct extension, the
message

NO SUCH NAME

is displayed.

15-2 PART 1l SYSTEM COMMANDS

SECTION 16. FREE COMMAND

FREE - Free space display- command
16.0 PURPOSE

The DOS supports 256 files per logical drive. This limit is dictated by the use of a
single 8-bit quantity for the storage of the physical file number, which must uniquely identify
any file on a given logical drive.

As a disk becomes full, it is frequently useful to know how many 256-byte sectors
remain available for allocation. Another useful bit of knowledge on the larger disks is how
many empty slots in the directory remain for the allocation of file names. This is precisely
the function of the FREE command. ’

16.1 USE

The FREE command accepts no operands. It is entered simply as:

FREE

The command scans all drives that it finds on-line and displays (1) the number of

available file names (representing possible files to be created) and (2) the number of
available 256-byte sectors that it finds on each.

SECTION 16. FREE COMMAND 16-1

SECTION 17. INDEX COMMAND

17.1 INTRODUCTION

The DOS INDEX command is used to create the tree structure required by programs
using the indexed sequential access method (ISAM).

The INDEX command has the capability of creating index files from any DOS text-type
files. The indexed access method can then rapidly access records in this file either in
sequential or random order. Records in files to be indexed must contain a single record key
up to 100 characters long contained in the first 249 bytes of each record.

The format of the key is mmm-nnn where mmm is the beginning character position of
the key field in each logical record and nnn is the ending position of the key field. It is
required that the second key specification (nnn) be greater than the first specification
(mmm).Note that each record must have a unique key.

It is possible to build many independent indices to permit access to records of the
same file by many separate, unrelated keys. There are no restrictions on the number of
indices that may be built, or on the relationship or lack of relationship among the various
keys used. .

As a special option, INDEX will generate index files keyed by the EBCDIC cpllatiqg
sequence. Default collating sequence is ASCIl. If EBCDIC sequence is required, version 3
of Sort is required. If only ASCIl sequence is to be used, version 2 or later may be used.

17.2 SYSTEM REQUIREMENTS

INDEX runs under the DOS operating system and requires a DOS-supported direct
access device. In addition, INDEX uses the DOS SORT command, which must be resident on
an online disk at the time INDEX is used. If the index command is to pre-process the text
file, the REFORMAT command must be available. (See 17.5 PREPROCESSING).

17.3 OPERATION
When the Index command is to be executed, the operator'must enter:
INDEX <file-spec > {,<file-spec>}; <parameters>
where only the first file specification and key field description are mandatory, and specify the
file to be indexed. Default extension is /TXT. The second file specification is the name of

the INDEX file to be created. If no file is specified, the name of the first file is used with
default extension /ISI. Note that INDEX files may have any names at all - and be located on

SECTION 17. INDEX COMMAND 17-1

physically different drives from the file being indexed..

17.3.1 PARAMETERS

In addition to the parameters that INDEX itself recognizes, the user may specify any
parameters acceptable to the REFORMAT utility (if preprocessing is to be done) or a primary

record specification to be passed to SORT. Parameters recognized by INDEX are as
follows:

F -- Preprocess the input file

p -- Display the SORT and REFORMAT parameters
{Note that this is a lower case 'p’)

E -- Index in EBCDIC collating sequence.

The primary record specification is an option that allows the user to create the ISAM
index file from a subset of the data file. The format of the primary record specification is
Pnnn]C. The P must always appear. The field following P, denoted by nnn, represents the
place in each logical record where a one position field exists that differentiates records in
the file. The location of this one character field must be less than or equal to 249. The
caret (]) can have one of two values. It can be either an equal sign (=) or a pound sign
(#). If the former, it means create the ISAM index file from all records that
contain the ASCII character C in position nnn. If it is a pound sign, it means that the
ISAM file will be created from all records that do not contain the value of C in position nnn.

In general the barameters for INDEX can be specified in any order and may optionally
be separated from each other by one or more blanks. The only exception to this is when a
primary record specification exists, it must precede the key field specification and be
separated from the key by a blank or a comma.

17.4 CHOOSING A RECORD KEY

Since the speed of access to an indexed file varies according to how much file space
and thus how many levels of index are required for the index tree, the choice of what to use
for a record key becomes highly important. Of course, you must choose a key which will
uniquely determine the record you wish to access, but you shouid scrupuiousiy avoid
including information in the key which is not absolutely necessary. For example, a file could
be keyed according to automobile license plate numbers. Typically, these numbers will
include a hyphen or other punctuation, which could easily be excluded from the record’'s key.
The indexed access method will perform more efficiently if all non-significant characters are
removed from the record’s key.

17.5 PREPROCESSING THE FILE

in file structures such as an indexed file where records are randomly inserted and
deleted, the file tends to become non-optimum for searching. In addition, due to the method
with which the indexed access method inserts records, each inserted record exists in a
separate disk sector. This means that for records that are 80 characters long, two-thirds of
the disk space for each additional record is wasted. This results in a reduction of the

17-2 PART 1ll SYSTEM COMMANDS

performance of the indexed access method.

In order to reclaim space vacated by deleted records and padding bytes in inserted
records, the file may be processed by the REFORMAT utility prior to indexing. It should be
noted that if any deletions have been performed since the data file was created or last
reformattted, the file must be reformatted before indexing. If this is not done, one or more of
the records in the file will be incorrectly indexing making them inaccessible via ISAM
access.(In some cases wehre this is a problem, the error message ‘DUPLICATE KEY.." may
occur. If only one record has been deleted prior to INDEXing, a duplicate key error message
will usually not be issued, but the resulting index will generally incorrectly index one of the
records in the data file! if there is any doubt as to whether or not records have been
deleted, specify reformatting for the data file.

17.5.1 INVOKING REFORMAT

The INDEX utility will automatically invoke REFORMAT if the 'F’ option is present when
INDEX is invoked. You must have specified the options that REFORMAT will need to
process the file.

Note that if multiple indices are to be created, reformatting need only be specified for
the first INDEX step, and MUST not be specified later if it was not specified in the first step.
Although REFORMAT will not destroy the file, specifying reformatting will invalidate any
previously built indices.

Basically, you must tell REFORMAT what format the records of the file are to have
after reprocessing. You may select record compression, space and record compression, or
blocking. For additional details on the REFORMAT utility, see the REFORMAT section of this
guide.

17.5.2 SPECIAL CONSIDERATIONS FOR UNATTENDED INDEXING

Users who use the INDEX command from a CHAIN file (see the section on the CHAIN
command for more details) and used AUTOKEY to restart. their chain in the even of a failure
should generally avoid using REFORMAT directly from INDEX. The reason why is that
REFORMAT as invoked by INDEX uses the REFORMAT-in-place mode of the REFORMAT
command. (The reason for this is that it is faster to do so, and also allows the indexing
with reformatting of a file which is too big to REFORMAT in the available scratch space on
a single-drive, almost full disk). Although REFORMAT is very careful not to damage the file
being processed, if the file is actually in the process of being reformatted when a power
failure occurs, the results can be undesirable.

This potential problem during unattended INDEX chaining can be avoided by setting a
checkpoint (see the AUTOKEY command description for details), copying the original file to a
scratch file, setting another checkpoint, reformattting the scratch file back into the original
(using the COPY mode of REFORMAT), setting a further checkpoint, and finally INDEXing the
file using INDEX. In this way there is always an undamaged file with which execution can
resume if necessary.

SECTION 17. INDEX COMMAND 17-3

17.6 INDEX MESSAGES

The INDEX command produces several messages on the operator's console. The
content and meaning of these messages follow:

I NDE X VERSION n.n
This identifies the program and current version.

FILE PREPROCESSING WILL BE DONE BY REFORMAT COMMAND
This message indicates that the user has requested -preprocessing of his file
by the REFORMAT command.

COMMAND STRING ERROR - TERMINATOR MISSING
This is an internal error - report to DATAPOINT.

INDEX/OV1 IS MISSING
The second INDEX overlay is not on disk and should be loaded.

REFORMAT/CMD 1S MISSING
The user has requested preprocessing, but the REFORMAT command is not
present on disk. You must load it.

INDEX PARM ---->
This is the parameter string that will be passed to the INDEX overlay and
used to build the index file.

REFORMAT PARM ----> .
This is the parameter list passed to the REFORMAT command.

INFILE NAME MISSING
This indicates that you have omitted the first, and mandatory file
specification. Put it there.

KEY SPECIFICATION MISSING
You have not given index information on the location of the key in the
record.

TOO MANY DIGITS IN KEY SPECIFICATION
The key field must be no more than 6 digits long.

ERROR IN FIRST COLUMN OF KEY
The first key field specification is invalid.

17-4 PART IIl SYSTEM COMMANDS

KEY SPECIFICATION NOT TERMINATED BY 015
The key fieid specification must be the last field in the parameter string.

SORT MUST BE PRESENT

INDEX has discovered that the SORT command is not resident. It must be
loaded.

KEY TOO LONG ,
The key is over 100 characters in length,

INFILE DISAPPEARED AFTER SORT
This is an internal error - notify DATAPOINT.

TAG FILE NOT GENERATED BY SORT
This is an internal error - notify DATAPOINT.

ILLEGAL CHARACTER IN KEY: XXX
The character whose octal form is displayed was found in a record key.
Only ASCIl text characters are permitted.

DIGIT PRECEDING PRIMARY FIELD SPECIFICATION
INDEX has found a digit where it doesn’t belong - remove it.

PRIMARY SPECIFICATION INVALID
The Primary record specification passed to SORT has invalid syntax.

INVALID TAG RECORD - SOFTWARE OR DISK ERROR
‘The tag file has an invalid record. Possible hardware fault, notify
DATAPOINT.

MORE THAN ONE RECORD HAS THE KEY: key . A
Duplicate keys exist in the file to be indexed. The offending key field is
displayed. :

INDEX WILL USE EBCDIC SORT
The user has requested an index using the EBCDIC collating sequence.

LAST COLUMN OF KEY LESS THAN FIRST COLUMN OF KEY .
The first key field specification must be less than the second specification

17.7 ISI FILE FORMATS

The DOS indexed file structure consists of a multi-level radix tree structure based on
the record keys, and contains pointers to the location of the keyed records. Note that since
many of these pointers are physical disk addresses, the IS| file cannot be moved without
re-invoking INDEX. The text file may be moved so long as it is unchanged in any way.
Moving the ISI file will destroy it.

SECTION 17. INDEX COMMAND 17-5

The different levels of indices all have the same content, except for the iowest level
Index levels are built up until the highest level of index will fit in a single disk
sector. This requirement is the reason for the 100 character limitation on key length.

index.

The 1SI files have the following format:

Offset Length Description

000 003 PFN and LRN bytes as per DOS convertion - see DOS
Advanced Programmer’'s Guide (Part V).

This is a KEY entry where nn is key length+7 for a lowest
level index, and key length+3 for a higher level index. The

first sector of an ISI file after the RIBs is a special header
record.

003 Onn

Note that as many key entries are put in a sector as will fit.

Each KEY entry for a higher level index has the following format:

Offset Length Description

000 KEYLEN The highest key in the next lower level index sector.

KL 001 Octal 012 - This indicates the end of the key and that this is
a higher level index entry.

KL+1 002 Sector and Cylinder of the entry in the next lower level of
index.

KL+3 001 Octal 0377 - This indicates that this is the last entry in this
sector.

Each KEY entry for a lowest level index entry has the following format:

Offset Length Description

000 KEYLEN The key for this particular record.

KL 001 Octal 015 - This indicates that this is a lowest level index
entry and delimits the end of the key.

KL+1 003 Buffer Offset, address for the logically next lowest level index
entry.

KL+4 003 Buffer Offset, and logical record number of the text file

; record having this key.
KL+7 001

Octal 0377 - Indicates that this is the end of the lowest level
index.

The first data sector in an IS| file is a header record used to locate the file from which

the index was built. In this way, it is only necessary to specify the name of the index to
DATASHARE

Oftset Length Description

17-6 PART Ill SYSTEM COMMANDS

000 003 PFN and LRN indicators as per DOS convention. See DOS
Advanced Programmer’s Guide (Part 1V).

003 013 Name of the data file that goes with this index file.

016 003 PFN, RIB sector, and RIB cylinder of this file. This field is
used to check that the index file has not been moved.

021 003 PFN, RIB sector, and RIB cylinder of the file indexed.

024 002 Offset, in bytes, of the start of the key in the indexed file.

026 001 Length of the key in this index.

027 003 Buffer address and LRN of the last record used in the data
file. .

032 003 Buffer address and LRN of the first free index entry.

17.8 EXAMPLES OF THE USE OF INDEX

~ First, a simple example in which only a single ISl file is created, with the same name
and on the same device as the text file it indexes. The file is a list of bad checks presented
at a local grocery chain, and now each store has a DATASHARE terminal to inquire on the
current status of each deadbeat. Thus, while the file is accessed often, additions and
deletions are fairly infrequent, so the file will not be reformatted. The file is keyed by bank
number (8 digits) and account number (7 digits) concatenated and in positions 1 to 15 of
each record. '

In order to create (or recreate) the index file. the operator must type:
INDEX DEADBEAT;1-15

The INDEX program will then create a ’ﬁAle DEADBEAT/ISI which DATASHARE can use
to access the DEADBEAT/TXT file.

Now, this same grocery chain has expanded its operations, so it desires to include
more information on the location and date of each NSF check presented. Therefore, they
have expanded the file to include the old key in positions 1 to 15, a store location number in
positions 16 to 18, and a date field in positions 19 to 24. As an afterthought, the manager
decides to tack on the name of the person passing the bad check in positions 193 to 216.

In order to create the indices required for access by any of these keys, the operator
must type: '

INDEX DEADBEAT,BANK;1-15
INDEX DEADBEAT,DATE;19-24
INDEX DEADBEAT,STORE;16-18
INDEX DEADBEAT,NAME;193-216

The INDEX program will create four files with names BANK/ISI, DATE/ISI, STORE/ISI,

and NAME/ISI. Each file is logically separate, yet all are on the same volume as
DEADBEAT/TXT.

SECTION 17.-INDEX COMMAND 17-7

Now the store owners have uncovered a hitch - first, the pumber of bad checks is
becoming so large. there is no room on one disk for all the index files and the text file. In
addition, access has ‘been slowing way down as the frequency of additions and deletions
increases. . The store owners have cailed DATAPOINT to complain, and their local systems
engineer has told them they need to reformat the files when they re-index, and has sold them
another disk drive.

The operator now types:

INDEX DEADBEAT,BANK/ISI:DR1;F1-15
INDEX DEADBEAT,DATE/ISI:DR1;19-24
INDEX DEADBEAT,STORE/ISI:DR1;16-18
INDEX DEADBEAT ,NAME/ISI:DR1;193-216

Note that the reformatting is done only once at the beginning. While it does no harm
to reformat each time, it will waste much time and accomplish nothing. If reformatting had
not been done when the first index was built, it could not be correctly done later without
invalidating the previously built indices.

17-8 PART Il SYSTEM COMMANDS

SECTION 18. KILL COMMAND

KILL - Delete_ a file from the directory
KILL {file spec)

The KILL command deletes the specified file from the system if the file is not protected.
It the file is protected in any way, the message

NO!

will be displayed. If the file specification is not given on the command line (file names which

contain special characters cannot be given on the command line), the request for the file
name:

WHAT FILE? EXAMPLE: SCRATCH /TXT:DR1
/ DR

will appear. The user must keyin an eight character filename (including spaces), a slash, a
three character extension (including spaces), a colon, the letters ‘DR’ and the drive

number on which the file resides. If the entire filename specification is not entered properly,
the message:

NO SUCH NAME.

will appear. If the specified name cannot be found (both a name and an extension must
always be supplied if specified on the command line), the message:

NO SUCH NAME.

will be displayed. If the file is found and is not protected, the operator must additionally
answer the message:

ARE YOU SURE?

with a 'Y’ before the actual deletion of the file is achieved. After the deletion has occured the
following message is displayed:

*FILE DELETED *

SECTION 18. KILL COMMAND 18-1

SECTION 19. LIST COMMAND

19.1 PURPOSE

The DOS LIST program wiil iist any DOS standard format text file on the CRT display, a

local or

servo printer.

The DOS LIST program can be used for such things as:

In this

A quick scan of a file by displaying it on the screen (LISTing a file is faster than
EDITing it); '

Producing a hardcopy listing of a file for permanent records;

Listing a file for use in preparation of a BLOKEDIT COMMAND FILE.

Section, the following terms apply:

Text file means a file with records containing only ASCi! characters, except for
space-compression bytes and the End-Of-Record and End-Of-File marks. - Files created

by DOS EDIT and those produced by DATABUS 7 and DATASHARE are in the class
of text files.

Line means one record of a text file. When displayed on the CRT display, only the
first 68 characters of a record will be displayed; when listed on a local or servo
printer only the first 120 characters will be printed. (The remaining twelve characters
contain a line number.)

Record. means the logical record number (LRN). The first LRN of a file is zero..

19.2 PARAMETERS

When the LIST program is to be executed, the operator must type:

LIST <filespec>{,spec2){;(P}.{X}}

The square brackets ({}) indicate optional fields and the pointed brackets (< >) indicate a
required field.

SECTION 19. LIST COMMAND 19-1

19.3 FILE SPECIFICATION

The file specification (<filespec>) must refer to a DOS text file. If no extension is
supplied with the file specification, an extension of TXT (text) is assumed. If no drive is
supplied with the file specification, all drives will be searched for the filename/ext. If
< filespec >is omitted, the message

NAME REQUIRED

is displayed. |f the file indicated by <filespec>is not found on an nnline volume, the
message

NO SUCH NAME
is displayed.
19.4 STARTING POINT

The operator may specify a line number, or logical record number, in the file at which
the list should begin by including an optional second parameter |,spec2}with the file
specification. For example:

LIST <filespec>,L400
would list the specified file beginning with the line 400 of the file.

LIST <«filespec>,R18

would directly access logical record 18 of the specified file and list, starting at line number
1. If a logical end of file is detected, the message:

EOF - NEXT RECORD NUMBER:
will be displayed. At this time the operator may specify. another LRN in the specified file, or,
by typing 'O’, return control to the DOS. Similarly, if range or format errors occur, the error

type is indicated and another record number is requested.

If the line number specification exceeds the number of lines in the file, LIST returns to
DOS. |If the record number specification exceeds the number of records, the message

RANGE - NEXT RECORD NUMBER
is displayed.

The DEFAULT value for the second parameter is line 1 and record 0.

19-2 PART IlI SYSTEM COMMANDS

19.5 OUTPUT DEVICE

The operator may specify an output device {P]other than the CRT display by including
an optional third parameter (S or L) with the file specification. For example:

LIST <filespec>,L400;S

would list the specified file on the Datapoint servo printer starting at line 400. If no starting

line number is required, the printer options should be specified following the semi-colon. For
example:

LIST <filespec>;L

would list the specified file on a Datapoint local printer beginning at line number one. Any
other entry will cause the CRT to be used. ’

The DEFAULT device for the third parameter is the CRT display.

19.6 OUTPUT FORMAT

A second parameter {X}is available to suppress line numbers. If the 'X’ is entered, lines
of up to 132 characters will be printed. For example:

LIST <filespec>;SX
would put the output on the servo printer without line numbers, whereas,

LIST <filespec>
would put the line numbered listing on the screen.

19.7 OPERATOR CONTROLS

The listing consists of a continuous stream of the listed file’s text, preceded by the .
line’s number in the file. To cause the listing to pause, the operator may hold down the
DISPLAY key. To abort the listing, the operator may depress the KEYBOARD key.

It the output device is the local or servo printer, the output will be listed at 54 lines
per page on continuous form paper, with each page numbered and titled by the file
specification and an optional heading. The heading is entered by the operator when the
LIST program displays the message:

ENTER THE HEADING:

before printing begins. The number of each line in the file will be printed at the left margin
of the page.

SECTION 19. LIST COMMAND 19-3

SECTION 20. MANUAL COMMAND

MANUAL - Clear Auto Execution
MANU{\L

If the auto-ekecution name has not been set the message
AUTO NOT SET.

will be displayed. Otherwise, the directory location reserved for the auto-execution name will
be cleared and the message

AUTO CLEARED.

will be displayed.

SECTION 20. MANUAL COMMAND 20-1

SECTION 21. MASSACRE COMMAND

MASSACRE - KILL all non-system files on a disk

21.1 PURPOSE

The MASSACRE command is provided to ease the user's job of removing all files from
a scratch disk. It deletes all files on the specified logical drive without regard to whether or
not delete or write protection is set. When MASSACRE completes, the only files remaining
on the MASSACREd drive are the eight system files, SYSTEMO/SYS through SYSTEM7/SYS.

21.2 USE
MASSACRE <drive spec>

Before the specified disk is MASSACREM, the user is asked several times to
acknowledge his request before actual deletion of the files begins. A typical console dialog
would look something like the following:

MASSACRE :DR2 :
KILL ALL NON-SYSTEM FILES ON :DR2? Y
ARE YOU SURE? Y

REALLY? Y

After the MASSACRE operation completes, only the eight system files will remain on
the MASSACREd drive. Note: Users should consider regenerating the disk in lieu of using
MASSACRE. MASSACRE maintains locked out areas of the disk but regeneration provides a
thorough check of the disk during its process. The opportunity to recheck the disk hould
not be overlooked.

SECTION 21. MASSACRE COMMAND 21-1

SECTION 22. MIN COMMAND

MIN - Read in Multiple Files

22.0 PURPOSE

The Multiple In (MIN) command is useful for reading multiple files (source, object, and
Datashare object) from the front casette drive to disk. it will handle all standard single file
(OUT, SOUT, and DSOUT), double file (SOBO), and multiple file (LGO, CTOS, and MOUT with
or without a directory) tape formats.

22.1 TAPE FORMATS

Muitipie In will iautomatically process the tape format. by the following conventions if an
option is given. '

22.1.1 SINGLE FILE TAPES

An QUT (object out) tape format has a file mark zero, a file mark one, an object file
with entry point. and a file mark 0177. An object file has an address with the MSB and LSB
in the fourth and fifth bytes of each record. Their complements are in the sixth and seventh
bytes. The remainder of each record is filled with octal characters (ranging from 0 to 0377).

A SOUT (source out) tape format has a file mark zero, a source file, a file mark one,
and a file mark 0177. A source file consists of records containing only ASCII characters,
except for space compression bytes, physical end-of-record bytes, and logical end-of-record
bytes.

A DSOUT (Datashare object out) tape format has a file mark zero, a Datashare object
file, a file mark one, and a file mark 0177. A Datashare object file has an MSB and LSB
with complements in the first record similar to an object record. However, the remainder of
the first record is filled with 377's.. The remaining records (128 bytes long on tape, 256 bytes
on disk) represent pure Datashare object code.

22.1.2 DOUBLE FILE TAPES
A SOBO (source and object out) tape is the combination of a SOUT and OUT tape. It

has a file mark zero, a source file, a file mark one, an object file with entry point, and a file
mark 0177.

SECTION 22. MIN COMMAND 22-1

22.1.3 MULTIPLE NUMBERED-FILE TAPES

An LGO (load and go) tape has a loader, a file mark zero, a string of files (the first
being an object file and the rest may be source, object, and Dalashare object intermixed)
separated by sequential file marks, and a file mark 040.

A MOUT (multiple out) tape without directory has a file mark zero, a string of files
{may be source, object, and Datashare object intermixed) separated by sequentiai file marks,
and file marks 040 and 0177. Single and double file tapes are included in this category if
options are not used.

22.1.4 MULTIPLE NAMED-FILE TAPES

A CTOS (cassette tape operating system) tape has a loader, a file mark zero, a CTOS
object file with entry point, a file mark one, a catalog object file, a string of files separated
by sequential (though not necessarily contiguous) file marks, and a file mark 040.

A MOUT (multiple out) tape with directory has a file mark zero, a tape directory, a
string of files separated by sequential file marks, and file marks 040 and 0177. The directory
is a source format file containing a date entry seven bytes long (DDMMMYY) and 31 file
name entries each eleven bytes long (eight bytes for the name and three bytes for the
extension). The entries are separated by end-of-string bytes (octal 015). This makes it
convenient for display under CTOS LIST or to load to disk and iist.

22.2 PARAMETERS

22.2.1 SINGLE FILE TAPES

For OUT, SOUT, and DSOUT tape formats, the file specifications may be included on
the command line in the following manner:

MIN | <file spec>};<option>

where <option>is an 'S’ for SOUT, and a 'T' for DSOUT tape formats.

File specifications are of the form FILENAME/EXT:DR#. If the drive is not given, all
drives online will be searched starting at drive zero. |f the extension is not given, the
assumed extension (TXT, ABS, or TSD) will depend on the file format. MIN will identify the
tape format. If the file name has not been entered on the command line, the program will

ask:
LOAD FILE #XX (format)?
where, XX indicates the file number on the cassette and format indicates the type of

file (SOURCE, OBJECT. DATASHARE). If the file is to be loaded, the response Y (yes) will
cause the message:

22-2 PART Il SYSTEM COMMANDS

DOS FILE NAME:

to be displayed on the same line. If the response is N {no), the operator will be

asked for the next file (if any). f the response is *, control is returned to DOS. If no name
is entered, the message:

NAME REQUIRED

will appear. If the filename specified already exists, the message:

NAME IN USE. WRITE OVER?

will appear. The answer N (no) will cause the filename request to be displayefd
again.The answer Y (yes) will cause the disk resident file to be overwritten. If the file to be
overwrittten is write protected, the message:

*WRITE PROTECTED*OVERWRITE?

will appear. If the response is not Y, the filename request will be displayed again. !f
the response is Y, the protection is changed from write protect to delete protect and the disk
resident file is overwritten. When a file has been ioaded from the cassetie the message:

LOADED

will appear to ihe right of the filename. The message:

MULTIPLE IN COMPLETED

indivates the successful completion of the program.
22.2.2 DOUBLE FILE TAPES

The file specifications for a SOBO tape may be entered on the command line in the
following manner:

MIN {<file spec>}{,<file spéc>};8

File specifications are of the form discussed above. If the second file name is. not.
given, the first name with the assumed extension of ABS- will be used. If the extension is
not given with the first name, TXT will be assumed. If the filename has not been entered on
the command line, MIN will operate in the same manner as described in section 22.1.2.1 for
each file on the cassette, displaying the messages in the same order for both files.

SECTION 22. MIN COMMAND 22-3

22.2.3 MULTIPLE NUMBERED-FILE TAPES

LGO tapes and MOUT tapes without a directory are both hand'ed in the 'same manner.
MIN is first executed as:

MIN
An LGO tape will then be identified as:

LGO TAPE FORMAT

In the case of multiple files, MIN will operate in the same manner as described in Section
22.2.1 for loading a file without entering the name on the command line. The questions
described will be asked for each file on the tape until end of file has been encountered on
the tape or an *is entered in response to the 'load’ question. MIN bypasses the loader on a
LGO tape before searching for the file. If the file specified is not fcund, the message:

FILE NOT FOUND

will appear and MIN will be terminated. |f the file is found and the file name is not
entered on the command line, the file name will be requested as in single-file tapes.

22.2.4 CTOS TAPES

A CTOS tape will be identified as:

CTOS SYSTEM TAPE FORMAT

The system then searches for the catalog (tape file #1). The CTOS file is fairly long
so it takes a while. |f the catalog file is not an object file or is an object file that loads into

memory somewhere other than 017406 or 017410, the message:

BAD CATALOG

will appear and the remainder of the tape will be processed as a multiple numbered-file tape
starting at tape file #2. If a good catalog is found, it will then be displayed as:

CATALOG: <file 1> <file 2> <file 3> <file 4>. . .
Then the operator will be asked:
DO YOU WANT TO LOAD <file 1>?
The entire process is ide.mical to the multiple numbered-file tapes abcve except the file is

referred to by name. The filename may be expanded from the six character name allowed by
CTOS to the eight character name allowed by DOS plus the extensicn. A filename is

22-4 PART Ill SYSTEM COMMANDS

requested if the reply is 'Y'.
22.2.5 MOUT WITH DIRECTORY TAPES

These tapes are processed in a manner very similar to CTOS tapes. The tape is first
identified as:

§

MOUT TAPE FORMAT
Next the date will be displayed:

DATE: DD MMM YY
Then the directory will be displayed:

DIRECTORY: <file 1/ext> <file 2/ext> <file 3/ext>. . .
Then the operator will be asked:

LOAD <file 1/ext>?

All the responses are the same as above except that the file name will not be requested. It
will be the one displayed. The program will cycle until the end-of-tape file mark (040 or
0177) is read at which point the message:

MULTIPLE IN COMPLETED
will be displayed.

- 22.2.6 OPTIONS

Tape file modifications may prevent MIN from automatically determining the tape format.
In this event, the options 'L’ (for LGO), 'C’ (for CTOS), or 'D’ {for Directory) are available.
Also, option 'N’ (for No directory) will tell the system that it is handling a MOUT tape without
a directory which allows entering the file names manually if the directory entry names are not
desired. Options are entered following a semi-colon.

These options are merely test overrides. If a tape, for instance, starts with a .
recognizable file mark, a loader won't even be tested for and therefore entering the 'L’ option
is meaningless. :

Unfortunately, MIN cannot differentiate an OUT, SOUT, DSOUT, or SOBO tape from a
MOUT without directory tape. To speed the processing, the options 'S’ (for SOUT), 'T' (for
DSOUT), and ‘B’ (for SOBO) are available. Once again, if the tape doesn't resemble a SOUT
tape, for instance, entering an 'S’ is meaningless.

If the tape is a MOUT tape with a directory, the options 'A’ (for All), 'O’ (for Overwrite),
and 'Q" (for modifying the extension with Q’s) are available. Using the option 'A’ will load

SECTION 22. MIN COMMAND 22-5

all the files. However, if the filé already exists, the operator will be asked if overwriting is
desired and if not, for a new file name. Entering the 'O’ option in conjunction with the 'A’
will force overwriting of existing files (unless write protected). f while processing in the 'All
Overwrite’ mode and a write protected file is encountered, the message:

WRITE PROTECTED

will appear and processing continues with the next file. Entering the 'Q’ option in
conjunction with the 'A” will put as many Q’s into the directory extension as necessary to
create a new filename/ext if the original one already exists. If the original filename/ext
exists, the message:

EXISTING FILE

will appear to the right before the modification to the extension is performed. If the
filename/QQQ already exists, the message:

Q OPTION EXHAUSTED
will appear to the right and the file skipped.

The option ‘N’ followed by an octal number allows that specific file to be loaded. For
example, entering: :

MIN FILE/TXT;N12

will load the tape file following file mark 12 (octal) to disk as 'FILE/TXT. The default
extension will be 'TXT' for source, 'ABS' for object, and 'TSD" for Datashare object files
depending on the tape file format. If a non-octal number is entered {e.g. N8) the message:

NUMBER NOT OCTAL

will appear and MIN will be terminated. If an unrecognizable record format is encountered,
4 .
L

~ Yalololed
ne meéessage:

UNRECOGNIZABLE TAPE RECORD FORMAT

will appear and MIN will be ter‘minated. MIN bypasses the loader on a LGO tape before
searching for the file. If the file specified is not found, the message:

FILE NOT FOUND

will appear and MIN will be terminated. If the file is found and the file name is not entered
on the command line, the file name will be requested as in single-file tapes.

The options ‘L', 'C’, ‘N, 'S’, ‘T, and ‘B’ are mutually exclusive.' Only oné may be

entered The ‘A" may be entered with or without the ‘D’ and with none of the other above
options. 'O’ and 'Q" are mutually exclusive and may only be entered in conjunction with the

22-6 PART Il SYSTEM COMMANDS

®
o
5

‘A’ If any of these restriction
message: ’

or a character other than those above entered, the

BAD OPTION PARAMETER
will appear and ‘the program will be aborted.

22.3 ERRORS

If the tape format is not one of the sight standard formats outiined above in Section
23.1 (e.g. it starts with a file mark two) the message:

INVALID TAPE FORMAT

will appear and the processing will be aborted. If the end of tape is detected while
processing, the message: '

END OF TAPE

will appear and the processing will be aborted. If a parity error is encountered in an object
or Datashare file on tape, the message:

PARITY ERROR-FILE DELETED

will appear, the file name will be removed from the disk directory, and processing will skip
to the next file. If a parity error is encountered in a source file on tape, the message:

PARITY ERROR-RECORD MODIFIED

will appear, a 253 byte disk record will be written with percent signs in the first five
positions of the record data, and processing will be continued with the next record.

SECTION 22. MIN COMMAND 22-7

SECTION 23. MOUT COMMAND

MOUT - Write Out Multiple Files

23.0 PURPOSE

The Multiple Out (MOUT) command is useful for writing multiple (up to 32, or 31 if a
directory is used) disk files (source, object, and Datashare) out to the front cassette drive.

An additional feature is the ablity to create a tape file directory as file #0 on the tape.
The directory is a source format file, that is, it consists entirely of ASCII characters except for
space compression bytes, physical end-of-record marks, and logical end-of-record marks. The
directory contains a date entry seven bytes long (DDMMMYY) and 31 file name entries each
eleven bytes long (eight bytes for the name and three bytes for the extension). The entries
are separated by end-of-string bytes (octal 015). This makes it convenient to list under CTOS
LIST or to load to disk and list. The directory is also used by the MIN program to enter files
to disk. MOUT creates the directory in memory before the tape writing starts even if it is not
to be written to tape. The writing of a full tape (over 500 records) takes about 10 minutes
which shows the advantage of entering ail the names before writing begins. - ‘

Another feature is the option to automatically verify a tape following its creation. Or a
previously written directory tape may be verified in an only verify’ mode. If this is requested,
the system will read the directory on the cassette tape in the front drive (if a valid directory is
not found, the system will abort with the appropriate message) and verification will be
performed against the indicated files.

23.1 PARAMETERS

File specifications and/or options may be entered on the command line in the following
manner: :

MOUT (<file spec>,<file spec>,...}{,options)

File specifications are of the form FILENAME/EXT:DR#. If the drive is not given, all
online drives will be searched starting at drive zero. |f the extension is not given, ABS is
assumed.. File specs are separated by anything (including multiple spaces) except letters,
numbers, slash (/), or colon (:).

23.2 OPTIONS

Options (which follow a semi-colon and may be spaced) are 'L’ for a loader format tape.
‘D’ for a directory format tape, 'V’ for verification of the created tape, and 'X' for verification
only.

SECTION 23. MOUT COMMAND 23-1

It a loader is to be written, the first file (file #0) must be an object file. There are no
restrictions on files other than #0.

‘The directory option (‘D) will write a tape directory as file #0. The first item within the
directory is the date entered DDMMMYY. Note: the month is entered as three alpha
characters. The date may be entered following the option letter (e.g. O 12JAN74). If the date
is not entered, it will be requested.

The verify option ('V’) will verify all the files on the created tape. Verification consists of
making a byte for byte comparison between the data on the disk and the data on the tape. If
verification fails, the tape will be rewritten and verification tried one more time.

The verify only option ('X') will cause the first tape file to be read from the front deck.
If it is a directory (first seven characters of DDMMMYY format), the remaining files will be
automatically verified using the directory entries. If it is a loader, it wi‘i be verified and file
names requested for the remaining files as they are verified. An 'N' may be entered
immediately preceding the 'X' to force the system not to recognize the directory. This would
be done if manually entering file names is desired (for instance, the directory names don’t -
match the disk file names). If it is neither a directory or loader, file names are requested as
the files are verified.

It the semi-colon is entered with no entry following, it will be interpreted that the tape
will not have a loader, a directory, or any verification.

Entering ‘D’ and 'L’ together or entering something with 'X' or entering some letter other
than D', 'L, V', or ‘X' will result in the message:

BAD OPTION PARAMETER. MOUT DISCONTINUED.
and the Multiple Out will be aborted.

It file names and/or options are not entered on the command line, MOUT will ask for
them as required. [f options were not entered, the first question will be:

DO YOU WANT A LOADER?

Replys other than 'Y’ or 'N' will bé answered by:
WHAT?

and a repeat of the question. If the reély is 'N’, the next queﬁtion is:
DO YOU WANT A DIRECTORY?

Again, it the reply is other than 'Y' or 'N', it will be answered by:

WHAT?

23-2 PART Il SYSTEM COMMANDS

and a repeat of the question. If the reply is 'Y’, the next request is:

ENTER THE DATE (DDMMMYY)

where the month is entered as three alpha characters. If the day is not in the range of 00 to
39, the month not alpha, or the year not in the range of 70 to 99, the response:

BAD DATE

will appear and again the request for the date. The next question is:
DO YOU WANT TO VERIFY THE TAPE? |

If the reply is not 'Y’ or 'N’, the response:

WHAT?

will appear followed by a repeat of the question. If the reply _is 'Y' and the replies to the
loader and directory questions are 'N’, the question:

DO YOU WANT TO ONLY VERIFY THE TAPE?
will then be asked. If the reply is other than 'Y’ or 'N’, the response

WHAT?

will appear followed by a repeat of the question. If only verification is requested, the first tape
record on the front tape deck is read in. If it is a directory (the first seven charactgrs of
DDMMMYY format), the remaining tape files will be automatically verified using the directory
entries. If it is a loader, the message:
LGO TAPE FORMAT
will appear. The message:
LOADER IS BEING VERIFIED
will then appear as the loader is being verified. If the loader verifies correctly, the message:
LOADER OK

will appear to the right. Otherwise, the message: -

BAD LOADER

will appear. After checking the loader or if the tape has neither a loader or directory, the
message:

SECTION 23. MOUT COMMAND 23-3

CASSETTE FILE #XX (format) DOS FILE NAME:

will appear where XX is the file number and (format) is (SOURCE), (OBJECT), or
(DATASHARE) depending on the file format. If nothing is entered, the message:

NAME REQUIRED

will appear and the request repeated. If an asterisk (*) is entered, MIN will terminate and
return to DOS. If a greater-than sign (>) is entered, the program will skip to the next file. If
a less-than sign (<) is entered, the program will backspace to the pricr file (bypassing null
files). If the program finds the beginning of the tape, it will beep and then move forward to.
the first file. If a name is entered, the default extension is 'TXT" for source, 'ABS’ for object,
and 'TSD’ for Datashare object depending on the file format. If the drive number is not
entered, all online drives will be searched starting at drive zero. I|f a drive number greater
than DOS allows is given, the message:

BAD DRIVE
will appear and the request repeated. If the file is not found, the message:
FILE NOT FOUND

will appear and the request repeated. If the disk file is found, it will be matched byte by byte
against the disk file. if the files completely match. the message:

FILE OK
will appear to the right and processing continues with the .next file. if an error is detected,
the appropriate message will appear and processing continues with the next file. Null files are
bypassed. Processing continues until an end-of-tape mark (file mark 040 or 0177) is read at
which time the message:

VERIFICATION PHASE COMPLETED
will appear and MOUT wili be terminated.

23.3 FILE NAMES

If the file names are not given in the command line, the operator will be asked for the
file names one at a time. The request is of the form:

CASSETTE FILE XX DOS NAME:
where XX is the file number. Possible replies to the file name query include:
a) the file specifications as discussed above,

b) a pound sign (#) which will bump the file number to 20 ostal if not already there
(only allowed on loader tapes to initiate numbered files on a CTOS tape),

23-4 PART I SYSTEMb COMMANDS

c) %5 a dollar sign ($) which will cause a null file (tape file mark only) to be written
to tape and the file spec of NULL/NUL to be entered in the directory,
d) an asterisk (*) which will indicate no more files are to be entered and the tape
writing started (writing is postponed until the directory is complete), and
e) OS which will abort the program. The message: '
MULTIPLE OUT DISCONTINUED will appear and control is returned to DOS. (To

dump OS/ABS, enter 'OS/ABS’ or '08’). '
it the operator fails to enter a name, the message:

NAME REQUIRED

will appear and the name request will be repeated. If the drive is given and is not in the
range valid for DOS, the message:

BAD DRIVE

will appeak follbwed by a re-request of the name. If the file is not found, the message:

FILE NOT FOUND

will appear followed by a re-request of the name. If the file is found, the format (object,
source, or Datashare) will be determined by the system. If the tape is a loader tape and file
#0 is not an object file, the message:

FILE FOLLOWING LOADER NOT OBJECT

will appear along with a re-request of the file name. This message may also be displayed if
the reply to the file name query for file #0 is a pound sign. Otherwise the messages:

OBJECT FILE
or:

SOURCE FILE
or:

DATASHARE FILE
or:

NULL FILE

will appear to the right of the file name. If the pound sign is entered for a tape that does
not have a loader, the message:

NOT LGO TAPE

SECTION 23. MOUT COMMAND 23-5

will appear with a re-request of the file name. If 32 files (or 31 on a directory tape) are
entered, the message:

THAT'S THE END OF THE LINE
will appear and the tape writing is started automatically.

23.4 WRITING

Once the tape writing has started, the system will keep the operator informed of its
progress. As a loader is being written, the message:

LOADER IS BEING WRITTEN
will appear. As a directory is being w.ritten, the message:
DIRECTORY IS BEING WRITTEN
will appear. While files (including null files) are being written, the message:
FILE <filename/ext>1S BEING WRITTEN
will appear. When the writing is completed, the message:
WRITING PHASE COMPLETED '
will appear.
If a non-object record is sensed in an object file while wn;iting to tape, the message:
FILE CONTAINS NON-OBJECT RECORD
will appear and the next file is written over the bad tape file including the file mark. This
will leave a directory entry without a file. If this should happen, it yvili cause verification to
display the message:
NON-SEQUENTIAL FILE MARK
aﬁd the tape rewritten.
It a non-source record is sensed in a source file while writing‘ to tape, the message:
INCORRECTLY FORMATTED SOURCE RECORD
will appear. The filé is ended at this point without writing the bad record and the next tape

file will start immediately following. |f this should happen, it will cause verification to display
the message:

23-6 PART IIl SYSTEM COMMANDS

INCORRECTLY FORMATTED DISK RECORD
or:
TAPE EOF BEFORE DISK EOF
and the tape rewritten.
If MOUT runs out of tape, the message:
END OF TAPE ENCOUNTERED WHILE WRITING filename/ext

will appear, an end of tape marker written at the end of the previous tape file, and the

unwritten files will be removed from the directory (if there is one). Processing then will be
continued with verification.

23.5 VERIFYING

It verification is requested, the system will keep the operator informed of its progress.
As a loader is being verified, the message:

LOADER IS BEING VERIFIED
will appear. As a directory is being verified, the meésage:
DIRECTORY IS BEING VERIFIED
will appear. While filés (including null files) are being verified, the message:
FILE filename/ext IS BEING VERIFIED
will appear. When thé‘verification is completed, the message:
VERIFICATION PHASE COMPLETED
will appear. If verification is requested for a tape paving no directory, the message:
NOT DIRECTORY TAPE |
is displayed. Then the message:
CASSETTE FILE #XX(format) DOS FILE NAME:
will app\ear. The filename should be entered Responses are discussed in section 24.2.

A variety of error messages may be displayed during the verification phase. Most of
them a self-explanatory. They include:

SECTION 23. MOUT COMMAND 23-7

BAD LOADER

BAD DIRECTORY

TAPE FILE DOES NOT MATCH DISK FILE

INCORRECTLY FORMATTED DISK RECORD

DISK FILE CONTAINS NON-OBJECT RECORD.

DISK FILE CONTAINS NON-TEXT RECORD.

NON-SEQUENTIAL FILE MARK.

TAPE FILE MARK READ BEFORE TAPE OBJECT EOF.

TAPE OBJECT EOF NOf FOLLOWED BY TAPE FILE MARK.

DISK EOF BEFORE TAPE EOF

TAPE EOF BEFORE DISK EOF

If an error is detected, the system will then either rewrite the tape (if it has just been
created) or skip to the next file (if in the ‘only verify’ mode). If it rewrites the tape, the
message:

I'M NOW REWRITING THE TAPE

will appear. The system will rewrite once before quitting completely at which point the
message:

VERIFICATION UNSUCCESSFUL
will appear and the processing terminated.
If a problem arises that causes an abnormal end (e.g. end of tabe), the message:
MULTIPLE OUT DISCONTINUED
will appear, otherwise the message:
MULTIPLE OUT COMPLETED
will signal fhe successful end of the program.
ERROR D ON DECK 2

will signal parity errors on the cassette and control is returned to DOS.

23-8 PART 1l SYSTEM COMMANDS

SECTION 24. NAME COMMAND

NAME will allow the user to change the name of a file, the extension of a file, or the
subdirectory in which a file resides. The content of the file is unchanged.

NAME - Change the name of a file

NAME <file spec1>,{<file spec2> }{,<subdirectory name>)

The first file specification refers to the current file name and the second file
specification is the new name and/or extension to be assigned. If no extension is supplied
in the first file specification, ABS is assumed. If no extension is supplied in the second file
specification, the extension of the first file is assumed. |f no extensions are supplied, both

files will be assumed to have extensions of ABS. The drive number should only be specified
in the first file specification.

If the NAME command is used to move a file from one subdirectory to another the
second file specification may be omitted (unless the filename and/or extension are to be
changed) and the subdirectory name denoting the subdirectory into which the file is to be
placed is the third specification: ‘ '

NAME <file specl>, <subdirectory name>

in both uses of the NAME command, two specifications are required. If either name is not
given, the message '

NAME REQUIRED.

will be displayed. If the second name is already defined on the drive that contains the first
file, the message '

NAME IN USE.

will be displayed. Note that the drive specification on the second name is ignored. If the
first name is not found on an online disk, the message

NO SUCH NAME.

will be displayed. If the subdirectory name keyed is not found on the disk containing the
file to be renamed, the message

NO SUCH SUBDIRECTORY.

SECTION 24. NAME COMMAND 241

will be displayed. If the third parameter is not specified, the file is ‘brought into’ the
current subdirectory at the completion of the renaming process.

24-2 PART [II SYSTEM COMMANDS

SECTION 25. REFORMAT COMMAND

25.1 INTRODUCTION

The DOS REFORMAT command is used to change the internal disk format of text-type
(non-object) files. Additionally, it can recover disk space left unused when files are updated
by the DATASHARE indexed sequential access method. REFORMAT can compress a file in
place on disk provided that such compression does not entail the writing of a physical disk
sector prior to the time that sector is read. REFORMAT maintains logical consistency in
such cases and will not write on a disk file until it has checked to be sure it can complete
its job successfully.

25.2 SYSTEM REQUIREMENTS

REFORMAT runs under the DOS operating system and requires a direct access device
supported by the Disk Operating System.

25.3 OPERATION

When the REFORMAT program is to be executed, the operator must type:
REFORMAT <file-spec>{,<file-spec>}{; < parameters> |

where only the first file specification is mandatory, and specifies the file to be reformatted. If
the second file specification is given, it must be distinct from the first. Reformatting in place
is requested by omitting the second file specification.

The parameter list describes the format the output file is to take, and whether
REFORMAT is to free any disk space that might be vacated by the reformatting process. In
addition, the user can specify that REFORMAT is to pad short records, and either truncate or
segment long records. Reformat will produce three different kinds of output files: record
compressed, space and record compressed, and blocked records (See Section 257 for disk
file formats). Note that REFORMAT will not produce blocked space compressed records or
space compressed non record compressed files although such files can be used as input to
the REFORMAT program.

The valid parameters that can be passed to REFORMAT are as follows:
Parameter Description
B<n

> The output file will be blocked. This implies no space or record compression,
with <n>logical records per physical sector.

SECTION 25. REFORMAT COMMAND 25-1

C The output file will be space and record compressed. The number of logical
records per physical sector will be indeterminate.

R The output file will be record compressed, but no space compression will be

done. In general, the number of logical records per physical sector will be
indeterminate.

L<n
> The length of each logical record will be adjusted to <n>characters. Note
that if the logical records are space compressed, this will not make the
physical length of the records <n>characters. If the logical record is shorter
than <n>characters, it will be padded with blanks to the proper length. If
the logical record is longer than <n>characters, the action taken depends on
the T and S parameter. '

T (Only valid if L parameter is given) Truncate the lcgical record if it is longer
than <n>characters.

S (Only valid if L parameter is given) If the length of the logical record is
greater than <n>characters, segment it into (q) logical records each of length
<n>, padding if necessary. The number (q) is defined as input length divided
by <n>rounded upward to the next integer.

If neither S or T is specified, and an input record of length greater than
<n>is found, a message is issued and REFORMAT

gives up.

D It reformatting is done in place and this parameter is specified, any disk space
vacated by the reformatting process will be returned to the operating system
for re-use.

25.4 OUTPUT FILE FORMATS

The REFORMAT utility permits you to select essentially three different output file
formats. It will produce blocked files that are not space compressed, record compressed files
that are not space compressed, and files that are both record and space compressed. In
addition, it has a subcommand to permit you to specify the logicai length of the output
records. Use of this subcommand will guarantee that each record has exactly the same
logical length. Note that if the output format does not specify 'space compression, the

- physical length of each record will be identical. This is especially useful for
telecommunications disciplines that require records of fixed length.

If you have set a fixed logical length for output records, there are two subcommands
available to tell REFORMAT what to do with records whose logical length exceeds the
specified output length. You may select either truncation of the input record, or you may
segment it into two (or more) output records, each of the logical length specified.

25-2 PART Il SYSTEM COMMANDS

25.5 REASONS FOR REFORMATTING

Several uses of REFORMAT deserve special mention. First, a random disk file is
structured to have one logical record per physical sector. Often, however, it is convenient to
create a random file through the use of the genegral purpose editor - which record and space
compresses its output. REFORMAT can then re;;rocess the file into the correct format for
DATASHARE or DATABUS random access.

Secondly, when a file is accessed with DATASHARE indexed sequential access method,
any additions or deletions result in an increase in the physical size of the file. The reason
for this is that any inserted records are placed at the physical end of the file, and each one
consumes at least one entire physical sector, regardless of its logical length. Similarly,
deleted records are simply overstored with octal 032 (logical delete) characters, and the
space they vacate is not reused. REFORMAT recognizes this condition, and will recover
such vacated space. Note that ISAM read-only or update-only (no additions or deletions) files
do not usually need reformatting.

25.6 REFORMAT MESSAGES

The REFORMAT utility program produces several messages on the operator's console.
The contents and where necessary, mean’ing of those messages follow:

REFORMAT VERSION 1
Selt-explanatory.

COMMAND LINE ERROR _
This is an Internal error and should be reported to Datapoint.

PROGRAM ERROR - EXCESS FILE SPACE NOT DEALLOCATED

TO PREVENT POSSIBLE LOSS OF DATA '
REFORMAT has detected an invalid end of file mark. In order to prevent
the possible loss of data which might be after the invalid end of file
indicator, space allocated but unused is not freed.

EXCESS FILE SPACE NOT DEALLOCATED; OUTPUT FILE IS
- DELETE PROTECTED.
Self-explanatory.

OUTPUT FILE IS WRITE PROTECTED AND CANNOT BE

WRITTEN INTO OR SHORTENED.
You have requested REFORMAT to output to .a write-protected file.

SECTION 25. REFORMAT COMMAND 25-3

INVALID OPTIONS SPECIFIED
You have given REFORMAT an invalid parameter iist. This message is
followed by the valid options you may specity.

ILLEGAL CONFLICTING OPTIONS
You have specified two mutually exclusive options.

YOU SPECIFIED BOTH SEGMENTATION AND TRUNCATION,
YOU CANNOT HAVE BOTH
Self-explanatory.

BLOCKING FACTOR CONTAINS ILLEGAL NON-NUMER!C DIGITS
Self-explanatory.

BLOCKING FACTOR REQUIRED BUT MISSING OR ZERO
You specified blocking but omitted the blocking factor.

LOGICAL RECORD LENGTH REQUIRED BUT MISSING OR.ZERO
You must specify the logical record length of the output file if you wish to
have fixed length output records.

YOU HAVE ILLEGALLY ENTERED A SPECIFICATION FOR
A THIRD FILE
REFORMAT recognizes only two file specifications.

HOW DO YOU EXPECT TO FIT THAT MANY RECORDS IN A
256 BYTE SECTOR? :
Self-explanatory.

LOGICAL RECORD LENGTH, IF SPECIFIED MUST
BE «<=250 BYTES. .
Self-explanatory.

YOUR BLOCKING FACTOR IS TOO LARGE FOR THE SIZE
OF -THE RECORDS YOU HAVE.
Self-explanatory.

YOUR LOGICAL RECORD LENGTH IS TOO SMALL FOR THE

SIZE OF THE RECORDS YOU HAVE
While processing the input file, REFORMAT came across a record that was
larger than the specified logical record length. Since you specified neither
segmentation nor truncation, this is recognized as an error.

25-4 PART Il SYSTEM COMMANDS

SPECIFIED OUTPUT FILE FORMAT GES PRESENT
INPUT FILE. INPUT FILE CANNOT BE ENLARGED DURING
REFORMAT-IN-PLACE. REFORMAT IN-PLACE REQUEST
REFUSED.

Self—expla‘natory.

YOU SPECIFIED AN OUTPUT FILE THAT ENDED UP
BEING YOUR INPUT FILE. TO REFORMAT IN-PLACE
DON'T SPECIFY ANY OUTPUT FILE.

Self-explanatory.

INPUT FILE IS EMPTY!
You are attempting to reformat a null file.

OUTPUT FILE NOT FOUND ON DRIVE X.

OUTPUT FILE FOUND ON DRIVE Y.

OUTPUT FILE WILL BE CREATED ON DRIVE Z
These messages only occur if no specific drive was indicated for the output
file. The first message appears followed by either the second or third.
REFORMAT could not find the output file on the same drive as the input
file. It either found one on a different drive, or created one on the
displayed drive. |f the output file is created, it is always created on the
same drive as the one the input file is on.

REFORMAT IN-PLACE REQUESTED.

PRESCAN IN PROGRESS.
REFORMAT is checking to make sure it can properly process the file
inplace.

FILE WAS ALREADY IN THE SPECIFIED FORMAT
Self-explanatory.

' COPYING WITH REFORMATTING IN PROGRESS
Self-explanatory

INPUT FILE NAME REQUIRED .
Either you gave only an extension or drive for the input file, or you
specified the output file first, followed by the input file.

INVALID DRIVE SPECIFICATION

The drive number was greater than allowed or you did not specify the drive
in the form :DR<n>. ‘

SECTION 25. REFORMAT COMMAND 25-5

25.7 TEXT FILE FORMATS

Under Datapoint Corporation's Disk Operating System, text files consist of legal ASCH
characters, which make up the text itself, and various special control characters with special
meanings. It is illegal to have the control characters in the text portion of the file.
According to DOS convention, and character between 000 and 037 is considered a control
character.

Each physical record of a text file is a logical disk sector, and contains 256 characters.
The first three and last two characters are reserved for control functions; hence, the
maximum space available in a single physical record is 261 bytes. The format of a logical
sector is as follows:

Offset Length . Description

000 001 Physical file number of this file. For a detailed description of
physical file organization, see the DOS Advanced Programmer's
Guide (Part V).

001 002 Logical record number. This refers to logical physical records, and
is not related to text records within the file.

003 373 Text. 251 bytes of text and control characters, depending upon the
format of the file. '

376 002 Two characters reserved.

The text part of each file is considered a logical stream, crossing sector boundaries
without being logically discontinuous. Demarcations of logical recotd boundaries are made
solely by control characters imbedded within the text itself. There are essentially five control
characters found in files generated by DOS: 000 <NUL>used for end of file indication, 003
used to denote the end of medium (a sector boundary) but not the end of a
logical record, 011 <CMP>used to denote space compression, 015 <ENT>used to denote

the end of a logical record, and 032 <DLE>used to denote deleted data.

Under DOS each file is treated as a single, continuous stream of data. Physical
records bear no relation to the logical structure of the data contained in them. In this way,
a proliferation of different file structures, and the special routines needed to treat such
special cases has been avoided. This does not mean that there carnot be a relation
between physical and logical structure, it simply means that such a relationship is incidental
to a particular file, and need not be treated as a special case. For example, random access
to a data file is defined in the DATABUS language. Files to be accessed in this manner are
structured in such a way that one logical record corresponds exactly with one physical
record. This structure is not inherent in the makeup of a random file, in fact, such files can

25-6 PART Ii SYSTEM COMMANDS

be treated exactly as any other text file.

The basis for this treatment of text files is the logical record. A logical record starts
at the beginning of a file, or immediately after the end of a previous logical record. It
consists of ASCIl data and is of no pre-determined length. Instead, the record is terminated
with a single ENT character. In this way, complications arising from a multitude of record
types are entirely avoided. '

it the logical record contains any CMP characters, it is said to be space-compressed.
The character immediately following the CMP character is a space count, and the pair _
represent the number of ASCIl blanks removed when the record was compressed. Since the
character following CMP is always assumed to be a space count, CMP can never occur as
the next-to-last text character in a physical sector, since the EM character following it would
be lost.

If the file is organized so that each phySicaI sector contains exactly the same integral
number of ‘logical records, with no logical record spanning an EM character, the file is said
to be blocked. If the file is not blocked, then it is said to be record compressed. Note that
for a blocked file all sectors except possibly the last one in the file contain the same number
of logical records while for record compressed files the number of logical records per
physical sector is indeterminate.

Under DOS conventions, a valid end of file mark consnsts of exactly six NUL
characters, followed by an EM character:

000 000 000 000 000 000 003

ThIS mark must begin at a sector boundary. All information after a valid end of file mark in
the sector is indeterminate.

SECTION 25. REFORMAT COMMAND 25-7

SECTION 26. REWIND COMMAND

REWIND - Rewind the front cassette tape.

The cassette in the front deck is rewound. If no cassette is in place in the front deck,
the rewind will proceed but only after a cassette is put into place. The cassette can be fully
wound onto the clear leader at the very end of the tape, since the rewind command starts by
slewing the tape backwards for a few seconds first. This both takes up any slack that may be
present in the cassette before the high-speed rewind starts, and also ensures that the tape is
not on the ciear leader when the actual rewind begins.

Since the REWIND command uses the interrupt-driven cassette routines, the REWIND
function has an interrupt process going until the actual high-speed rewind is begun. Until the
backwards slew changes to a rewind, loading any other program in on top of the cassette tape
drives (located.from 010000 through 012377 in memory) is apt to cause the system to go astray
upon occurrence of the next interrupt.

SECTION 26. REWIND COMMAND 26-1

SECTION 27. SAPP COMMAND

SAPP - Append two source files creating a third

SAPP <file spec> (<file spec>} <file spec>

The SAPP command appends the second source file after the first and puts the result
into the t‘hird file. If extensions are not supplied, TXT is assumed. The first two files must
exist. If the third file does not already exist, a new file will be created. The first file's end of

file record is discarded and the copy is terminated by the end of file mark in the second file.

Omitting the second file specificaition causes the first file to be copied into the third file.
Note that neither the first or second file is changed.

The first and third file specifications are required. |f either is omitted the message
NAME REQUIRED
will be displayed.

The second and third file specifications must not be the same.

SECTION 27. SAPP COMMAND 27-1

SECTION 28. SORT COMMAND

28.0 INTRODUCTION

The Disk Operating System SORT enables any Datapoint Disk user to initiate file sorts
directly from the keyboard.

Using a muiti-train radix sort technique, the Datapomt processor achieves speeds
comparable with much larger systems. The list of options also compares favorably with much
more extensive systems. Nevertheless, since it uses the full dynamic nature of the Disk
Operating System, it is extremely easy to operate. (Users who have spent several hours
figuring out how to set up the myriad of SORT work datasets required by some other
companys’ sort packages know what we're talking about).

For more sophisticated uses, SORT may be called from other programs through DOS
CHAIN. Using CHAIN also enables complicated sort options to be reduced to a single file
name then callable either from the keyboard or another program by that name. CHAIN also
extends the SORT package to operate as a merge, as well.

28.1 GENERAL INFORMATION

28.1.1 Physical requirements »

SORT will optimize its speed through allocation of its working files on the available
drives. Durmg this process it attempts to ascertain the availability of sufficient disk space to

achieve the desired sort. The program will abort at this point should the disk space be
inadequate.

28.2 FUNDAMENTAL SORT CONCEPTS

28.2.1 What the files look like

All Datapoint systems use a universal text file structure - Databus, Datashare, RPG |I,
Basic, Scribe, Editor, Assembler, Terminal emulators, etc. Therefore, any text file generated by
or for any of the above may be sorted. The file to be sorted must be on disk, however.

There are two sub-formats a Datapoint file can have: Indexed or Sequential. Notice
that throughout the SORT section of the User's Guide, ‘Indexed’ refers to direct random, as
opposed to ISAM, access. Indexed files are required to have a fixed relationship of a single
'string’ or ‘record’ of data per physical disk record. SORT assumes indexed files have space
compression. This implies that the logical position of a character in a record and the physical
position of a character in a record may differ. The SORT will always expand the spaces to
determine the logical position of a character. The maximum record size for indexed records is
250 bytes. Sequential records have no fixed relationship to physical disk records and are
written as densely as possible in the given file space. Nonetheless, indexed files can be read

SECTION 28. SORT COMMAND 28-1

sequentially in the identical way that sequential files are read. In fact, both types, when read
sequentially, are indistinguishable. Indexed files are used for achieving random access to

records. They generally require more disk space than sequential files for the same amount of
data.

When sorting, consider that the result of the sort is not restructuring of the original file.
It is a NEW file which is a restructured COPY of the original file. - The original file is never
changed. : '

Therefore, SORT produces a file which is a sorted version of the original. This gives the
user the added opportunity of specifying the type of file to be output regardless of the input
file format (with one restriction - see section 28.3.4).

28.2.2 The key options

The KEY of a sort is the FIELD or that part of the record which is to ORDER the
sequence of records. " For instance, it can be a person's name, state, employee number,
amount in debt or any aspect of the data base identifiable by a fixed position in the record
based upon the column count from the beginning of the record.

Consider the following record (column count scale below for reference only):

Mule, Francis A. 242219 123 BARN SAN ANTONIO TX
123456789012345678901234567890123456789012345678901234567890

The name begins in column 1 and goes to 22. The employee number spans columns 24-29.
The street address is 31-42. The city is 43-59. The State is 59-60

If each person had a record in the file exactly in the above format, SORT could order
the sequence of records in the file by any of the above fields. For instance, to get an
alphabetical list of the records by name, the KEY would be 1 to 22 (hereafter referred to as
1-22). The KEY for sequencing the file in order of employee number would be 24-29. The key
for ordering the records by state then city and then employee number would be
59-60,43-59,24-29.

It should be obvious that any part of the record can be used as a key. It may not be
obvious, however, that the larger the key, the slower the sort - it is the case and it is just
about proportional.

28.2.3 How to sort a file
Sorting a file is done right from the keyboard of the DOS. Ail the operator must know
is the NAME of the file to be sorted, the name desired for the sorted output file, and the

definition of the KEY.

For instance, the keyboard issued command for the above example to sort on the name
field (1-22), would be:

28-2 PART Ili SYSTEM COMMANDS

..... —

SORT EMPLFILE,SORTFILE;1-22

This is assuming that the name of that file was EMPLFILE. It is also the operators
decision as to what the resultant sorted file is called, as the command could have easily been:

SORT EMPLFILE,EMPSORT;1-22
as well. The second file named is where the resultant sort will be placed.

More coniplicated keys may be stated as well and the command to list by state and then
name would be:

SORT EMPLFILE,SORTFILE;59-60,1-22
That is all there is to simplified sorting.

Testing SORT for yourself is simple. Most systems have a source code file for a
Databus or Assembly language ‘program on the disk. Such programs can be sorted by
op-code and provide an interesting analysis of the usage of each instruction type:

SORT INFILE,OUTFILE;9-12
28.3 THE OTHER OPTIONS
28.3.1 Generalized command statement format

The following is the generalized statement format for the Datapoint DOS SORT:

SORT
IN,OUT <,:DRk> <,SEQ> <;{ <F><0><R> <H> <GNNNTC> <N>}<K1>..<,0n><Kn>>

Information contained within a pair of corner brackets < >is optional and information
within brackets is order-dependeht. and commas may be used to delimit parameters. (NOTE
that commas MUST be used to delimit sort-key groups.) The first. four fields (those ahead of
the semi-colon) are considered to be file specification fields. The fields following the
semi-colon are considered to be sort key parameters. Default conditions are listed below.
Typical statements obeying this format are:

(1) SORT INFILE,OUTFILE

(2) SORT INFILE,OUTFILE;1-3,7-20

(3) SORT INFILE,OUTFILE;ID1-3

(4) SORT INFILE,OUTFILE;IDL7-20

(5) SORT INFILE,QUTFILE;LH11-20

(6) SORT INFILE,OUTFILE,SEQFILE _

(7) SORT INFILE,OUTFILE,:DRO,SEQFILE/SEQ:DR1

All the above statements will invoke a sort. Each will provide different results. However.
notice that in (1) there are no other parameters than the file specifiers. That is because all

SECTION 28. SORT COMMAND 28-3

the specifiable parameters have a given value in case there is no specification for it.

The foliowinég list defines the parameters which can be specified:

This specifies the input file. This file must exist on disk.

This specifies the output file. This specification is optional IF AND ONLY IF the

‘L’ AND 'H' options are used. If an output file is specified AND no
disk drive is specified AND the file exists on a drive on-line to the
system then the output file will over-write the existing file. If an
output file is specified AND no disk drive is specified AND no file of
that name exists on a drive on-line to the system THEN a file of the
given name will be created on the same drive as the input file.

..This specifies the drive for the sort key file. This is only a working scratch file

needed during the sort. SORT will usually pick the optimum drive on
which to put the work file on a multi-drive system. Experience or
special considerations may cause the user to want to specify a work
drive.

..NON-ASCII COIIATING SEQUENCE FILE

Froeorii FORMAT.

28-4

PART 1l

This specifies the file which contains the coliating sequence to be
used. If omitted, ASCIl will be assumed.

This parameter specifies the output file format: Indexed or
Compressed (Compressed is also called Sequential). The actual
character entered is 'C’ or 'I'. The default value is 'C".

Without typing the 'I', the output file will be SEQUENTIAL no matter
what the input file. IF AND ONLY IF the input file is an INDEXED
file, you may include the 'I' parameter and cause the output file to
be indexed. '

This parameter specifies the output file c'ollating sequence: _
Ascending or Descending. The actual character entered is 'A’ or 'D".
The default value is 'A’.

Without typing the 'D’, the collating sequence order is considered
ASCENDING. Including the D parameter wili cause the collating
sequence to operate in DESCENDING order. Note that if some keys
are to be sorted in ascending order and other keys in descending
order, the On specification described below should preceed each key
whose order differs from the order of the key- preceeding it. However,
it all keys are to be ordered in the same sequence, only this
parameter need be specified.

SYSTEM COMMANDS

R, RECORD FORMAT.

This parameter specifies a special output record format: Limited
output file format or Tag file output. The actual character entered is
‘L' or 'T. The default value is NO SPECIAL OUTPUT RECORD
FORMAT,; that is, neither 'L’ nor 'T’, so that the records in the output
file will be exact copies (FULL IMAGE RECORDS) of the records in
the input file.

Normally the sort transfers the entire records of the input file to the
output file. It is possible, not only to transfer part of each record, but
to include constant literals in each record as well. Including the 'L’
parameter in the list of parameters will cause another question to be
asked wherein you may specify the liritations and constants. See
section 28.3.6.

By entering the 'T’ character an outpur file is generated which
consists only of binary record number and buffer byte pointers to the
input file records. See section 28.3.7.

Hoe HARDCOPY OUTPUT.

G GROUP INDI

This parameter specifies that the output of the SORT will be listed on
a printer. The actual character entered is 'H'. The default value is
NO HARDCOPY QUTPUT.

Without typing the 'H’ no printing will occur and SORT will require
that an output file be named. If the 'H’' parameter is given AND an
output file is named then SORT will list the output to a printer AND
will generate an output file. If the 'H' parameter is given and NO
output file is named then SORT will list the output to a printer and
no disk file output will be generated.

IF the 'H' parameter is givén THEN the 'L’ parameter MUST precede
the 'H’ parameter.

SORT wili print,to a local printer or a servo printer. See section
28.38. '

CATOR
This parameter specifies that the incut file consists of PRIMARY and
SECONDARY records and specifies which GROUP is to be sorted.
The actual character entered is 'P’ for PRIMARY or 'S’ for
SECONDARY. There is no defauit va'ue.

IF the 'G’ option is entered THEN the NNNTC options MUST ALSO be
entered.

In a file with PRIMARY and SECONDARY records a string of records
with a PRIMARY record as the first record and SECONDARY records

SECTION 28. SORT COMMAND 28-5

following it is considered one block, or group, of records.

When the file is sorted on PRIMARY records the output file has the
blocks of records re-ordered so that the PRIMARY records are in the
sorted sequence; no change is made in the sequence of the
secondary records following each PRIMARY record.

When the file is sorted on SECONDARY records the output file has
the blocks of records in the same order as in the input file, but the
SECONDARY records within each block are in the sorted sequence.

SORT has no provision for the sorting of PRIMARY AND SECONDARY
records in the same SORT run.

NNN............. NUMERIC position of PRIMARY/SECONDARY flag.
This parameter specifies the character position for the character (the
'C' parameter) indicating whether the record is a PRIMARY or
SECONDARY record . The number MUST be specified if the option
is taken and must fall in the range 1 to 249.

T TYPE of evaluation.
This parameter specifies equivalence or inequivalence of the group
indicator character; that is, whether the character in the record will be
EQUAL to or NOT EQUAL TO the character specified. The actual
character entered is '=' for equal or '#' for not equal. There is no
default character, '=' or '#' must be given if the option is taken.

If '=" is given then if the character in the NNNth position of an input
file record is EQUAL to the group indicator character -- indicated by
'C' below -- then the record is a member of the specified. sort group
-- indicated by 'G' above. Otherwise, it is not a member of the
specified group.
Creereenrers CHARACTER, group indicator
This parameter specifies the actual test character for determination of
a record’'s membership in the sort group. The actual character
entered is any member of the character set -- this means any
combination of eight bits -- except 015. There is no default
character: the character immediately following the ‘T’ parameter is
taken to be the 'C' parameter -- except a 015.

N This parameter specifies no space compression on output. This applies to FULL
IMAGE and LIMITED OUTPUT files. It does not apply for INDEXED
or TAG files.

Kl SSS-EEE

This is the first sort key specification. If no key is specified, the
SORT will assume 1-10,i.e. the first ten characiers of the record.

28-6 PART Ili SYSTEM COMMANDS

SSS is the starting key position.
EEE is the ending key position.

On....... This specifies the order for the nth key (ascending and descending are indicated
by 'A’ or 'D’). If omitted the order used on the previous key is
assumed. '

Kn......... SSS-EEE

The nth sort key specification. The maximum number of keys is that
which can be typed without exceeding the input line.

28.3.2 Kays-overlapplng and in backwards order

The key specification need not be only forward. A specification of 17-12 will cause the
6 delimited characters to be a key but in the order of 17,16,15,14,13,12. This is extremely
valuable, clearly, in data which has the most significant digit or character last.

Key specifications ‘may also be overlapping: 1-20,30-15 overlaps 15 to 20. When this
occurs, the system will optimize the sort and save time over re-sorting on those columns
again.

28.3.3 Collating Sequence File

By specifying a sequence file, the user may substitute any collating sequence for the
standard ASCII character set. The file name contains eleven characters .eight of which are
the file name and three of which are the extension {example, EBCDIC/SEQ:DRn).The last
three characters (the extension) must be 'SEQ’. If the disk drive number on which the file
resides is omitted, SORT defaults to the same drive from which the SORT itself was loaded.
This table may be supplied by the user but must meet certain requirements to be loaded:

It must be an absolute object file.

It must begin loading at location 027400.

The first eleven bytes must contain the file name and the extension must be SEQ.

The table itself must begin loading at location 027400 and occupy 256 bytes.

If the file is not found on the specified disk drive the following message is
displayed:

9 AL

SEQUENCE FILE NOT FOUND

6. If the file is found but is not an absolute object file the following message is
displayed:

SEQUENCE FILE FORMAT ERROR A
7. 1f the file format appears valid, the file will be loaded using DOS routine LOADXS.

LOADX$ will return an error code if the load is unsuccessful. The following
display will notify the user of the error:

SECTION 28. SOCRT COMMAND 28-7

SEQUENCE FILE FORMAT ERROR n

where n=0 if file does not exist

if disk drive is off-line

if directory parity fault

if RIB parity fauit

if file parity tault

if off end of physical file
if record of illegal format

OO A W -

28.3.4 Ascending and Descending sequences

Changing the collating sequence from ascending to descending is the same as
‘reversing’ the file, or placing the last first etc. Sorting a telephone directory in ascending
sequence on name produces the familiar order. Should it be sorted in descending sequence,
then Mr. Zyk would be first and Mr. Aardvark would be last. The order of collation, when
alphabetic, numeric, and punctuation characters all can occur in a column together, follows
the character set order. The sequence may be specified for each sort key. However, it need
‘not be specifi"’ed if it is the same as the key which preceeds it.Therefore, it is possible to sort
portions of the key in ascending order and portions in descending oider.

28.3.5 Input/output file format options

SORT accesses each file sequentially. Due to the techniques used in the Datapoint
standard file structure, the sequential reading technique will provide SORT with all of the
records in the file whether the file was originally indexed or sequentiai. Therefore, the file
format options only aliow specification of the OUTPUT file's format. ’

It the input file is INDEXED, that is one logical record or string per physical disk
record, then you have a choice of output formats. If 'I' is chosen, that is INDEXED, then each
output disk record will contain an exact copy the appropriate input file record. If 'S’ is
chosen, that is SEQUENTIAL, then the input file, reordered, will be reblocked, space
compression imposed, and appear, generally much more compactly, in the output file in

uential format,

If the input file is SEQUENTIAL in its original format, then there is only one choice for
the output format. The output file format for a sort on an input file which is sequential
MUST be SEQUENTIAL.

28.3.6 Limited output format option.

In many cases, especially when making reports, directories etc. from the data base, it
isn't necessary to have the entire record transferred from the input file to the output file
during a sort. For instance, an entire personnel data base can be sorted by name to
produce an internal company telephone directory. However, it is obvious that ail that is
needed is the name and telephone number, NOT all the other payroll information. Therefore,
SORT permits transferring only that part of the data base desired.

28-8 PART 1ll SYSTEM COMMANDS

The following is the generalized statement format for the limited output specification:
{(SSS<-EEE>I*I’QQQ‘)</(P1NNNTC)>}<,{DUPLICATE OF PRECEEDING]>...

Where different items within parenthesis are separated by and only one item
within a pair of parenthesis may be specified, and, all items within corner brackets .

< >are optional, and, items within brackets {Jmay be repeated and must be
separated by commas.

The following list defines the parameters which can be specified:

SSS.......... STARTING position within input record.

EEE......... ENDING position within input record.
These parameters specify the character positions within the
input record to be copied to the output record. The EEE
specification is optional; if it is not specified then only one
character, the character at 888, will be copied from the input
record to the output record. The SSS and EEE options must
fall in the range 1 to 249.

R ASCII TAG output. v

This parameter specifies that an ASCil pointer to the input
record appear in the output record. The ASCIl pointer points to
the input file logical record number and the byte in that
physical disk record containing the first byte of the input file
logical record. |If the 'V’ parameter was specified in the SORT
options then, since the byte in the physicai disk record
containing the first byte of the input file logical record will

. always be '1’, the "1’ will not appear. The ASCII pointer is a
DATABUS 7 and DATASHARE compatable, leading-zero and
Space-compressed ASC!l number. The number of digits for the
logical record number pointer is four; the largest number that
can be represented is 9696. The numter of digits for the byte
pointer (if it is generated; that is, the 'I' parameter was not
specified) is three; the largest number that can be represented
is 250. . :

QQQ............ QUOTED character string. .
This parameter specifies an actual string of quoted characters
that is to be copied into the output recora. The quoting symbol
is the single quote ' mark. The string may include any
Characters except the ' mark itself anc 015, and must be less
than 90 characters long.

P, PRIMARY record to be source.
This parameter specifies that the information preceeding is to be
extracted from the primary record for the current record block.
This parameter has no effect when an output record is being

SECTION 28. SORT COMMAND 28-9

generated from a primary record.

NNN........oo. NUMERIC position of evaluation character.
This parameter specifies the character position fcr the character
(the 'C’ parameter below) indicating whether the information
preceeding is to be copied from the input recard to the output
record. The number must fall in the range 1 to 249.

T TYPE of evaluation. »
This parameter specifies the equivalence or inequivalence of the
evaluation character; that is, whether the character in the input
record should be EQUAL to or NOT EQUAL to the evaluation
charater. The actual character entered is '=' for equal or '#
for not equal. |f the evaluation is satisfied, then the information

preceeding will be copied to the output record.

Coverree CHARACTER,. record evaluation.
This parameter specifies the actual test character for record
evaluation. The actual character entered is any character
except 015.

in the same manner that the key of the records is specified by fixed column
number, i.e. 1-10 for the first ten characters, the limited output feature specifies that
part of the records to be transferred. Should the response 1-10 be given to the
limited output format request, only the first ten characters of each record will be
transferred to the output file. Also, in the same manner that the key permits multiple
discontiguous fields to be specified, the limited output format specifier operates. For
instance, 1-10,50-70 would transfer thirty characters from each record of the input file
to the output file. The eleventh character in the output record would be the fiftieth
character of the input record, etc.

To invoke the limited output format option, the operator includes the 'L’
parameter in the specifier list. (see Section 28.3.1). If and only if the L is specified
during the SORT call, will there be a second question asked of the operator on the
next line:

LIMITED OUTPUT FILE FORMAT:

This question requires at least one non-trivial field specification or constant(see
next paragraph). The number of field and constant specifications is only limited by
that which can fit on the keyed in line.

To permit even more utility in report generation, SORT allows inclusion of
constants in the output record that didn't occur in the input record. For instance,
assume that the personnel data base was a full record of about 240 characters and
that the .employees name appears in columns 80 to 110 and his telephone number
was in columns 171 to 180. To make a telephone directory in alphabetical order, one
could answer the following to the limited file output format request:

28-10 PART ili SYSTEM COMMANDS

80-110," - ',171-180

Note that this would put out the name followed by one space, a hyphen, one
more space and the number. Any number of input file fieids and constants can be
placed in the output file up to the limit of the line on which the specification is
typed.

Also note that the output file requires proportionally less room than the input
file when limited. Often this fact can be put to use when the disk file space is
nearly exhausted and a sort is required.

28.3.7 TAG file output format option.

For some applications it is useful to have a data file scrted into several different
sequences. However, to have several copies of a file on dick merely to have it in
different sequences consumes a lot of disk space, and indeed if the file is a very
large file many copies of it may not fit onto one or even four disk packs.

This ‘problem could be avoided if there were a way to index into the one main
file in any of several different sequences. The index pointers could exist as a file,
and the index entry for each record in the main file would oniy have to be three
bytes long -- two bytes for the LRN (Logical Record Number) ana one byte for the
BUFPTR (Buffer Pointer -- a pointer to the beginning of the actual desired record
within the disk physical buffer).

SORT provides for the generation of such an indexing file. a TAG file, by the .
T variation of the 'R” option. A TAG file may be generated for either a Sequential or
Index file, and will have the same format for either file. The fermat of a TAG file is
simple:

1. For each record in the input file, the TAG file will have a three byte binary
pointer to the first byte of the record.

2. The format of the pointer is:
Byte 1: MSPLRN (Most Significant Portion of LRN),
Byte 2: LSPLRN (Least Significant Portion of LRN)
Byte 3: BUFPTR (Buffer Pointer).
3. The'three-byte binary pointers are blocked in a physical disk record.

4. The Physical-End-Of-Record mark is an 003 and the rest 000's.

5. The End-Of-File mark is: beginning at the first byte in the physical record, six
000's, one 003, and the rest 000’s.

TAG files may be used by assembly language programs, by RPG |l (as Record

Address files), and by some Datapoint utility programs, such as the INDEX utility used
to generate Indexed-Sequential-Index files (files with extension i3l).

SECTION 28. SORT COMMAND 28-11

For users writing their own Assembly language code to use a TAG file, it is
important to know that the MSPLRN and LSPLRN are together a 16-bit binary pointer
to the DOS LOGICAL RECORD NUMBER of the input file, as opposed to the USER
LOGICAL RECORD NUMBER. The difference is this: The DOS LOGICAL RECORD
NUMBER of a file points to the actual Nth record (starting with zero) in the file,
whereas the USER LOGICAL RECORD NUMBER of a file points to the Nth DATA
RECORD (starting with the zeroth data record) in the file. Thus a DOS LRN of zero
points to the very first record of the file, which is the master copy of the RIB, a DOS
LRN of one points to the second record of the file which is the RIB copy, a DOS
LBN of two points to the third record of the file (which is the FIRST DATA RECORD
of the file and the USER LOGICAL RECORD NUMBER zero), and so on. The LRN
given in the TAG file can NOT be used with the POSIT$ routine unfess it is biased
by -2. It is much easier to simply place the LRN from the TAG file directly into the
LOGICAL FILE TABLE ENTRY for the file that is indexed. Examples of this are in
Section 28.7.

The case with the BUFFER POINTER byte is similar to the LRN pointer bytes.
The BUFFER POINTER byte from the tag file is the DOS BUFFER POINTER as
opposed to the USER BUFFER POINTER. The difference is this: the DOS BUFFER
POINTER points to the actual Nth byte of a disk buffer (starting with zero), whereas
the USER BUFFER POINTER points to the Nth DATA BYTE in the disk buffer; the
beginning (zeroth) DATA BYTE in the buffer is the fourth byte in the buffer; the first
three bytes are reserved for the DOS. Thus, a DOS BUFPTR of zero points to the
very first byte in the buffer, which is the PFN (Physical File Number) of the file, a
DOS BUFPTR of ope points to the second byte in the buffer, which is the DOS
LSPLRN, a DOS BUFPTR of two points to the third byte in the buffer, which is the
DOS MSPLRN, a DOS BUFPTR of three points to the fourth byte of the buffer (which
is the very first DATA BYTE in the buffer), and so on. The BUFPTR given in the
TAG file can NOT be used with the GETR$ or PUTRS$ routines unless it is biased by
-3. It is much easier to simply place the BUFPTR from the TAG file directly into the
LOGICAL FILE TABLE ENTRY for the file that is indexed. Examples of this are in
Section 28.7. ’

If the TAG file option is specified then the LIMITED OUTPUT FILE FORMAT or
the HARDCOPY OUTPUT can NOT be specified.

If a TAG file is generated when the 'P' (PRIMARY SORT) option is specified
then TAG file pointers will be generated only to the PRIMARY records in the input
file. '

If a TAG file is generated when the 'S’ (SECONDARY SORT) option is specified
then TAG file pointers will be generated that point to each PRIMARY record of the
input file (in their original sequence) followed by pointers to the SECONDARY records
in. the record block in their sorted sequence.

When a TAG file is generated for 'P’ or 'S’ sorts, no indication is given .in the

TAG file pointer whether the pointer points to a primary or a seconcary record; it is
up to the user's program to check the records in the indexed file to determine when

28-12 PART il SYSTEM COMMANDS

a record block begins or ends.

Section 28.7 is an example of the use of TAG files. The example program, the
LISTX prograﬁ‘n, is simply a program to read and display TAG-file-indexed files via the
TAG file. In this program, the LRN is obtained by biasing the TAG file pointer by -2
and using the DOS POSIT$ routine(lines 161-168), but the BUFFER POINTER is used
straight from the TAG file to the indexed file's logical file table entry (lines 170-172).
Thus, examples of two different ways to use the pointers in a TAG file.

This program can be used by the SORT user to check the output of a TAG
SORT. A user planning to input a TAG file to a program he has written can thus
assure himself that the data in the TAG file is as he expects it to be. It is always
helpful when debugging a new program to know that the input data is correct.

28.3.8 HARDCOPY output option.

Many times it is desired to have a hardcopy (printed) output from a SORT
instead of or in addition to the creation of a disk output file. Tnis can be easily
accomplished with SORT by specifying the 'H’ (HARDCOPY) option along with the 'L’
(LIMITED OUTPUT STRING) option. The 'H’ option is essentially an expansion of the
'L’ option because disk data files are almost never suitable for full image output to a
printer; decimal points need to be inserted into dollar and cents amounts, dashes
need to be inserted into part numbers, and spaces need to be placed between dollar
amounts and part numbers to colunmnate the data, and so on. |If it is desired to list
output records in full image format, it is only neccessary to give:

1-132
as the limited output string specification.

Sort will not send. a line of over 132 characters to a printar. If the limited
output specification designates a longer output record, then the full specified
formatting will be applied to the disk output file (if any), but only the first 132
characters of the record will be printed.

If the following s;:bevciali characters are imbedded in the output record, they will
be interpreted as indicated: :

015 =End-Of-Record and Carriage-Return/Line Feed.
012 =Line Feed.
014 =Form Feed.

SORT will support either a local printer (address 0303, or a servo printer
(address 0132). If a servo printer is on-line at the beginning »f the FINAL MERGE
then it is preferred as the output printer device; else a local printer will be used. |If
both printers are available on a system, selection between one or the other cannot be
forced by parameterization; if output is desired to the local printer then the servo
printer must be turned off.

SECTION 28. SORT COMMAND 28-13

28.3.9 PRIMARY/SECONDARY sorting considerations.

If the 'P' (PRIMARY) or 'S’ (SECONDARY) SORT option is used then the input
file must have a PSPSPS.... format in order for SORT to work as expected, where P is
one primary record and S is one or more secondary records. The first record in the
file should always be a primary record, and the last record should be a secondary
record. There should always be at least one secondary record following each primary
record. Tertiary and further level records cannot be accommodated by SORT.

In some cases it may be possible to successfully sort a file using the ‘P’ or 'S’
options even if the file does not faithfully follow the above rules. However, the user
must use great caution if he is to successfully fudge a system as complex as SORT.
Pitfalls will be many. For example, if a file has the format PPPPSPSPS..., and a sort
is done using the 'S’ option, the output file will probably not contain the first three
primary records at all. This case is true because when sorting using the 'S’ option,
pointers are generated for only the secondary records, prefixed by a pointer to the
record preceeding the first secondary record of a record block. Since no secondary
pointers were ever generated for the first three primary records, they are simply lost.
It should be easy for the user to imagine what would happen to a file if a tertiary
sort were attempted.

28.3.10 Key file drive number.

There are three file systems associated with a sort. The first is, of course, the
input file. The second is the output file. The third is the keyfile system. (The user
only uses the output file - the keyfile system is a scratch file used by the system
during sorting). There are actually two files which get opened during the sort for the
keyfile system. They are *SORTKEY/SYS and *SORTMRG/SYS. These two files can
grow to considerable sizes during the sorting procedure since they are proportional to
the number of records and the size of the key field.

There are two considerations for the location of the kevfile systém. The first is
the problem of room. The keyfile must be on a drive with sufficient room to hold it.
The second is speed. The greatest increase in speed occurs in removing the keyfile
systém from the same drive as the input file. Greater speeds can occur if it is, as
well, not on the same drive as the output file. Normally the SORT does a pretty
good job of determining the best location of the two keyfile files and it shouldn't be
necessary to specify anything for this. However, under complex circumstances, it may
be desirable for the operator to specify the drive number for the keyfile. Should this
be the case, the user should type in the <:DRk>specification as indicated in the
general command format in Section 3.1.

28-14 PART IIl SYSTEM COMMANDS

28.3.11 Disk space requireménts.

A formula for determining the room in physical disk records that will be
required for the SORT work files is: '

NT(L+P+3)
R = + 4T
S

where. R =Room in physical disk records required on disk.

N =Number of logical records in input file for which keys will be
generaied:
=number of records in file if not sorting on P or 'S’
=number of primary records in file if sorting on 'P’.
=number of secondary records in file if sorting on 'S’

L =Length of the sort key in bytes.

P =3 if sorting on secondary records,
0 if not sorting on secondary records.

T =1 if only ohe sort-key train is generated,
=2 if more ‘than one sort key train is generatad.

S =bytes per block of physical space available to the user

The value of T can be computed exactly, but it is easier to make the general
statement that short files will generate only one sort key trair and longer files will
generate more than one sort key train. Experience will soon develop empirical and
intuitive knowledge for T evaluation for the user.

28.3.12 LINK into SORT from programs.

There are three ways in which a SORT sort can be initiated:

1. From the keyboard via the DOS COMMAND HANDLER;

2. By using the DOS CHAIN command;

3. By loading and linking to SORT/CMD from an assembly language program.

Note that SORT can also be called from a DATABUS 7 or DATASHARE program
by linking from those programs to an assembly language program which in turn links
to SORT. Datashare users can also invoke SORT by using the rollout facility to start
or continue a chain (see CHAIN and the DATASHARE User's Guide for more detaiis).

Sort reserves for the user a nominal amount of storage normally occupied by
the DOS DEBUGS routine. The specific memory locations saved are 06144 through
06377. This permits the user to partially overlay his program with the SORT utility
and regain control at the completion of the sort. Additionally, the next page of
storage, 06400-06777, is available to the user if full image output records are to be
generated. The DOS interrupt handler is disabled during the sort but is re-enabled

SECTION 28. 3O0RT COMMAND 28-15

upon completion of the sort. Of course, if the user has a foreground process running
before and after the sort, the process must be controlled from within the memory not

used by SORT, or when foreground is re-enabled it will vector to whatever SORT left
in memory.

The steps to call SORT from an assembler program are as follows:

1. Close files 1, 2, and 3 if open.
2. Set MCR$ (01400-01543) with the command string terminated by a 015.
3. Load the SORT utility.
4. PUSH the stack.
5. Point HL to a parameter table with the format:
PTABLE DA - LIMSTG
DA HEDING
DA EXITAD
6. RETURN
Where:

LIMSTG =the LIMITED OUTPUT SPECIFICATION string, terminated by a 015. If there
is to be no limitation output specification, put 0. If there is a LIMSTG, it
must exist entirely within the range 06144-06377. The LIMSTG must be
exactly the characters as they would be entered from the keyboard.
Examples follow.

HEDING =the HARDCOPY HEADING string, terminated by a 015. If there is to be no
hardcopy output, put 0. If there is a hardcopy heading string, it must exist
entirely within the range 06144-06377. The HEDING must be exactly the
characters as they would be entered from the keyboard. Examples follow.

EXITAD =the first memory location to be executed upon successful completion of the
sort. If the sort is to return to the DOS upon completion, put 0. If there is
a specific exit address, it must exist within the range 06144-06377.
Normally, the instructions at the exit address will load and run the program

to be run after the sort, or will re-load a control program of the user's own
control system.

A simple example of loading and running sort from an assembler program
would be: 1 ‘

SRTCMD DC 'SORT INFILE.OUTFILE',015 SORT CMD STRING
SRTNAM DC ‘SORT CMD’' NAME OF SORT UTILITY ON DISK
PTABLE DA 0 NO LIMITATION STRING

DA 0 NO HARDCOPY HEADING

DA 0 NO SPECIAL EXIT ADDRESS

oAl

28-16 PART Ill SYSTEM COMMANDS

6 RUNSRT LC SRTNAM-SRTCMD MOVE THE SORT COMMAND STRING
7. DE MCRS$ TO MCR$
8

: HL SRTCMD

9. CALL BLKTFR

10. LC 1 LOAD THE SORT UTILITY

11. DE SRTNAM

12. CALL LOADS '

13. PUSH PUSH THE SORT STARTING ADDRESS
14. HL PTABLE POINT TO THE PARAMETER TABLE
15. RET RUN SORT

The above sequence of instructions could be located anywhere in memory,
except lines 13 thru 15 must obviously reside in a portion of memory from 06144
thru 06377 to avoid being overlayed when the SORT utility is loaded from disk. The
above instructions exemplify the simplest possible case of linking to SORT, in that
only the SORT command and an INPUT FILE and an QUTPUT F'LE are specified, all

other options are defaulted. The above instructions have the same effect as calling
SORT by entering the line:

SORT INFILE,QUTFILE

to the DOS. COMMAND HANDLER.

Here is a line-by-line expianation of the instructions:

Line 1 defines the SORT COMMAND STRING. This is accomplished by a
simple DC statement of a quoted ASCII string followed by a 015. The quoted ASCII
characters are exactly the same that would be keyed in to the COS COMMAND
HANDLER if the sort were being initiated from the keyboard: The 015 is the string
delimiter and is the same character that is placed after a string by the KEYINS$ routine
when the ENTER key is depressed. The SORT command string can be up to 100
characters long including the 015 because the MCR$ area is 100 bytes long. Note
that this is nineteen characters more than can be specified from the keyboard.

Line 2 defines the name of the SORT utility main overlay. Notice that the
complete name of the SORT given here must be exactly the name as listed in the
DOS DIRECTORY of files. The eleven ASCII characters in a file name specification
include an eight character FILENAME and a three character EXTENSION. Since the
FILENAME of SORT is only four characters, it must be followed oy four spaces before
the EXTENSION of CMD can be given.

Line 3 defines the beginning of the six-byte PARAMETER TABLE. The first two
bytes of the parameter table specify the address of the beginning of the LIMITED

SECTION 28. SORT COMMAND 28-17

OUTPUT SPECIFICATION string. In this example there is to be no limited output
specification string specitied, so an address of 0 is given.

Line 4 defines the address of the beginning of the HARDCOPY HEADING string.
In this example there is to be no hardcopy output, so an address of 0 is given.

Line 5 defines the address of the EXIT ADDRESS, or the address to which the
SORT is to exit when it is successfully completed. (If something goes wrong during
the sort, exit is to the DOS.) In this example there is to be no special exit address,
SO an addess of 0 is given.

+ Line 6 begins the actual process of calling SORT from the program. Lines 6
thru 9 move the SRTCMD string from wherever it is in memory to the MCR$ area.

Line 10 specifies that SORT is to be loaded from wherever it is found in the
disk drives that are on-line to the system. Refer to the DOS SYSTEM MANUAL if you
are not familiar with the DOS LOAD$ routine.

Line 11 points to the name of the SORT utility main overlay in memory, given in
SRTNAM, line 2.

Line 12 calls the DOS LOADS$ routine which finds the SORT main overlay
program on disk and loads it into memory, leaving the starting address in HL.

Line 13 puts the starting address of SORT on the P-counter Stack.

Line 14 points to the PARAMETER TABLE, lines 3, 4, and 5. The way that
SORT knows that it is being run by the DOS COMMAND HANDLER or by a user
program is by comparing the values of the HL contents and the top entry of the
P-counter stack. If the values are equal, as they are immediately following a LOADS,
then SORT asks for a LIMITED OUTPUT SPECIFICATION string ana a HARDCOPY
HEADING string if they are specified in the SORT COMMAND string. If the values
are not equal, then SORT checks the memory pointed by HL for the location of the
LIMITED OUTPUT SPECIFICATION string, the HARDCOPY HEADING string. and an
EXIT ADDRESS.

Line 15 effects the actual transfer of execution to the SORT utility. Since the
starting address of the SORT was PUSHed onto the P-counter stack, a RETurn
instruction JuMPs to the SORT starting address.

Section 28.6 is an example of a DATABUS 7 program that links to SORT and
back by the use of a pair of intermediate assembly language programs.

A DATASHARE program can link to SORT by executing a ROLLOUT instruction
to a user-built CHAIN file which includes the SORT COMMAND LINE and, if specified,
the LIMITED OUTPUT specification line and a HARDCOPY HEADING line, followed by
the TSDBACK program to re-load the DATASHARE.

28-18 PART 1l SYSTEM COMMANDS

Section 28.7 is an example of sophisticated usage of assembler language
linkage to SORT. The assembler language program is in fact a SORTTEST program
which dynamically generates various combinations of SORT options, including
LIMITED OUTPUT SPECIFICATION strings and HARDCOPY HEADING strings, and
then runs SORT for those options. The comments in the program itself, and in

general in the opening comments on page 2, explain in detail what the program does
and how it does it.

28.4.0 THE USE OF CHAIN WITH SORT

The reader should hrst fammarlze himself with CHAIN by thoroughly reading the
CHAIN Section.

CHAIN is a system whereby the operator of a Datapcint Disc Operating System
may pre-define a procedure sequence of his own programs, sysiem commands and
utilities (including keyboard answers to questions requested by these programs) and
have them called and, sequentially executed by a single name This is especially
powerful when using SORT since there may be a repetitive sequence of routines with
complex parameterizations which would make good use of a simplification.

28.4.1 How to set up a chain file for sort

The author of a chain file only needs to remember that ALL questions that the
system requests INCLUDING those initiated by the executing programs MUST BE
ANSWERED from the chain file just as though they would pe typed in from the
keyboard.

For instance, the initiajion of a sort 'SORT INFILE,OUTFILE;I3-42' could be done
through chain. To do this, use the Editor to type in that exact sequence of
characters into a file. Note that the file will, in this case, consist of a single line as
typed above. The file can be any name, but for purposes of simplifying the
explanation, it shall be referred to as CHAINFIL. {f CHAINFIL consists of that single
line, and if the operator types the command 'CHAIN CHAINFIL’ to the DOS, the SORT
specified above would be initiated. If the 'L’ specification were included in the
statement above, then SORT would ask for another line of information. In this case,
the file CHAINFIL would have to have two lines in it with the first being the SORT
command and the second being the limited output file format specification.

28.4.2 Naming a repetitive sort procedure

Frequently there are sorts and printouts and other procedures which occur
together and for which a name invoking the procedure wou!d pe a great
simplification.

For instance, in the telephone directory example above, the process of sorting

the file into a limited output file and then listing it on a local printer could be
procedurized as follows:

SECTION 28. SORT COMMAND 28-19

SORT EMPFILE,TELFILE;L80-110

80-110,” - ',171-180

LIST TELFILE;XL

TELEPHONE DIRECTORY FOR XXXXXXXXXX CORPORATION

Note that there are four statements. The first is the SORT command. The
second is the answer to the limited format initiated by the 'L’ in the SORT command.
The third is the DOS LIST command with the specifiers of ‘X' which says 'without line
numbers’ and the 'L" which, here, means local printer. Then there is a forth line
which the LIST command requests - the heading. This question must also be
answered in the chain file. If the above four statements were pl‘acéd in a file by the
Editor (or by any other means, for that matter) and then CHAIN were invoked with
that file specified, the result would be a sorted telephone directory from the personnel
files appearing on the printer.

28.4.3 Initiating a sort from another program

The chain file (CHAINFIL above) could have been created by any Datapoint
system which can write a file. This makes the concept even more powerful since
programs can create or modify subsequent procedures of itself, other programs,
system commands and utilities. RPG || and Databus 7 especially can make good use
‘of this.

28.4.4 Using CHAIN to cause a merge

Consider a situation wherein a system has a master file called '"MASTER’ and a
file of records to be added, in sequence, to the master file called 'ADDFILE’. To
merge these two files in sorted sequence at the end of each day would normally
require a sequence of keyed in operations which are somewhat complicated and error
prone. CHAIN can cause an effective MERGE and assign it a single name as
follows: : :

SAPP MASTER.ADDFILEMASTER
SORT MASTER,SCRATCH;1-20
KILL MASTER/TXT

NAME SCRATCH/TXT MASTER/TXT

Note that the procedure:
1) appends the ADDFILE to the MASTER file.
2) Sorts the extended MASTER file into a SCRATCH file.
3&4) Renames the SCRATCH file as the new MASTER file. Thus, it is apparent that a
merge can be effectively achieved using SORT by using chain to pre-define the
procedure.

28-20 PART lli SYSTEM COMMANDS

28.5 SORT EXECUT.ON-TIME MESSAGES.

This subsection describes the operator messages that SORT may display on the
CRT screen during execution. Some of the messages are monitor messages to keep

the operator informed of the progress of the program, while other messages are error
[nessages.

DOS SORT RELEASE m.n

This message is the SORT sign-on and is displayed when the INPUT file
specification and, if given, the OUTPUT file specification ard the KEY DRIVE

specification, have been accepted and SORT is ready to scan the option
specifications.

SORT OVERLAY MISSING.

This message is displayed if the SORT/OV1 ftile is not on the same drive as the
SORT/CMD file.

INPUT FILE REQUIRED.

This message is displayed if no filename was’specified for the first file
specification. This would happen if a command lines such as:

SORT ,OUTFILE or SORT /TXT,QUTFILE
were entered.

OUTPUT FILE REQUIRED.

This message is displayed if no filename was specified for the second file
specification AND if the 'L’ and 'H' options were not specitied.

BAD DEVICE SPECIFICATION.

This message is displayed if a drive specification in a file snecification was not
entered in exactly the format; DR#where #is a valid drive number.

OUTPUT FILE SAME AS INPUT.

This message is displayed if the FILENAME and EXTENSION of the INPUT file
and the OUTPUT file are the same, and the DRIVE NUMBER for each file is the

SECTION 28 SORT COMMAND 28-21

same or not specified for EACH file.

28-22 PART Il SYSTEM COMMANDS

INPUT FILE NOT FOUND.
This message is displayed if the INPUT file could not be found on any drive
on-line to the system if no drive was specified, or on the drive given if a drive
was specified. If no extension is supplied in the file specification an extension of
TXT will be assumed; in this case if a file FILENAME/TXT is not on-line or on
the drive specified then the INPUT file will not be found.

INPUT FILE RIB ERROR.
This message is displayed if a read parity error occurs when the INPUT file's RIB
is checked to determine the INPUT file’s length.

KEY FILE SPECIFICATION ERROR.
This message is displayed if a FILENAME or EXTENSION is given for the KEY
DRIVE specification.

KEY FILE DEVICE SPECIFICATION ERROR.
This message is displayed if the drive specification for the KEY file was not
exactly in the format: DR#where #is a valid drive number.

SORT KEY FILE PLACED ON DRIVE #
This message is displayed it the KEY DRIVE was not specified on a multi-drive
system. The message is to notify the operator of the location of the KEY file.
The #stands for a valid drive number.

OPTION FIELD ERROR.

This message is displayed it a semicolon ; is entered at the end of the SORT
command line but is not followed by any option specifications.

OPTION SPECIFICATION DUPLICATION.
This message is displayed if a command line such as:
SORT INFILE,OUTFILE;DLA

were entered. The 'D' and 'A’ options are both variations of the ORDER option,
and obviously both cannot occur simultaneously.

SECTION 28. SORT COMMAND 28-23

HARDCOPY ONLY IF LIMITED OUTPUT SPECIFIED.

This message is displayed |f the 'H' option is specified but the 'L option was not
given previously.

ILLEGAL HEADER SPECIFICATION.

This message is displayed if the P or 'S’ opnon is given but is immediately
followed by the 015 byte -- the ENTER key.

ILLEGAL HEADER KEY EVALUATION.

1

This message is displayed if the character immediately following the P’ or 'S’
option is not ‘=" or '#'.

ILLEGAL SORT KEY SPECIFICATION.
This message is displayed if a key position of 0 or greater than 249 was
specified, or if a key position was not terminated by , or - or 015, or if a
two-position key was not terminated by , or 015.

SORT KEY TOO LONG.

This message is displayed if the total sort key is longer than 100 characters long.

A1

OVERLAPPING SORT KEY SPECIFICATIONS---SORT OPTIMIZED.

This message is displayed if the same record positions were specified for more
than one sort key group. SORT does not repeat duplicate positions in sort key

sal CUPneals

generation and thus saves processing and disk read/write time.

OVERLAPPING SORT AND HEADER KEYS---SORT OPTIMIZED.
This message is displayed if the same record position is specified as a sort key
position and a header indication position. The position is removed as a sort key
position and the key is thus shortened. The effect is as for the previous
message.

LIMITED OUTPUT FILE FORMAT:

This message is displayed if SORT has accepted the SORT command line
including all option specifications and it the 'L’ option has been given. The

28-24 PART Il SYSTEM COMMANDS

operator must enter the iimited output specification line.

NULL LIMITATION SPEClFICATION.

This message is displayed if the 'L’ option was given but the limitation
specification was only 015 -- the ENTER key. If the 'L’ option is given then a
non-empty limited output specification string must also be given.

INVALID LIMITATION SPECIFICATION.

This. message is displayed if the limited output specification does not fit the
syntax given in subsection 28.3.6 of the SORT Section. Usually the fault is that a
comma was not placed between option specmcatlon groups, or double quotes ’
were used instead of single quotes ' .

ENTER THE HARDCOPY HEADING:

This message is dnsplayed when the limited output specification has been
accepted and if the 'H' option was given. The operatcr must enter from 0 to 79
characters of information which will be printed at the top of each page printed
during SORT output generation.

SEQUENCE FILE NAME HEQUIRED

This message is dlsplayed when the sequence file field is blank and the file

specification fields have not been terminated with a semi-co'on or an end of line
designator.

SEQUENCE FILE NOT FOUND -

This message is displayed when SORT requests the seguence file be OPENed
and DOS cannot locate the file on the disk drive indicated. Note that if the drive
is not specified, the drive on which the SORT/CMD resides s implied.

SEQUENCE FILE FORMAT ERROR A

This message is displayed when SORT determines that the sequence file specified
is not an absolute object file.

SEQUENCE FILE FORMAT ERROR n

This message is displayed when SORT receives an errcr return from LOADXS
when an attempt is made to load the sequence file. The value of n may be 0-6
and is defined as follows:

SECTION 28. SORT COMMAND 28-25

If file does not exist

If disk drive is off-line

If directory parity error
RIB parity fault

It file parity fault

It off end of physical file
If record of illegal format

DA WON =~ C

LIMITATION SPECIFICATION OVERFLOW

This message indicates that limited output parameters entered require more
memory (256 bytes) than allocated by SORT.

INTERNAL ERROR -- GET SYSTEM HELP !!!

This message indicates a probable hardware error ocgurred'during a limited
output string sort. SORT cannot continue executing.

MERGE FILE OVERFLOW
This message indicates not enough disk space is available for the merge file.
FULL IMAGE OUTPUT RECORDS

This is an informative message to the operator that full image records are being
output by SORT. ‘

DOS SORT UTILITY REGUIRES 12 K

This message indicates an attempt is being made to execute SORT in less than
12K memory, which is the minimum storage requirement.

OUTPUT FILE OVERFLOW
This message indicates not enough disk space is available for the output file.
THE FOLLOWING MESSAGES MAY BE DISPLAYED DURING SORT
INITIALIZATION IF SORT WERE LINKED TO BY AN ASSEMBLY LANGUAGE
PROGRAM:

INVALID LIMITATION STRING ADDRESS.

INVALID HARDCOPY HEADING STRING ADDRESS.

INVALID USER EXIT ADDRESS.

One of these messages is displayed if the corresponding entry in the parameter
table linkage data was not either 0 or in the range 06144-06377 inclusive.

28-26 PART 1lI SYSTEM COMMANDS

LFT ENTRIES 1->3 NOT CLOSED WHEN SORT ENTERED.

This message is displayed if the user left one of the logicai files 1, 2, or 3 open
upon linking to the SORT utility.

LIMITATION STRING MISSING.

This message is displayed if the 'L’ option was given in the SORT command
string but the pointer to the limited output format string in the parameter table
linkage data was 0, indicating no limited output format string specified.

HARDCOPY HEADING STRING MISSING.

This, message is displayed if the 'H’ option was given in tha SORT command
string but the pointer to the hardcopy heading string in the parameter table
linkage data was 0, indicating no hardcopy heading string specified.

THE FOLLOWING MESSAGES ARE DISPLAYED AFTER THE SORT
INITIALIZATION IS COMPLETED:

BUILDING SORT KEY TRAIN 1.

This message is displayed when all parameter specifications have been accepted
and SORT has started the extraction of the sort keys from records of the INPUT
file and is writing them to the *SORTKEY/SYS file.

SORT KEY FILE OVERFLOW.

This message is displayed if there was not adequate room on the KEY DRIVE to
hold the *SORTKEY/SYS file. If *SORTKEY/SYS file overilow occurs the file is
deleted from the disk before the message is displayed.

NULL OUTPUT FILE.

This message is displayed if no sort key records were generated. |f no sort key
records are generated SORT cannot re-order the INPUT file, thus no output
generation would be useful.

INTERMEDIATE SORT PASS 1

This message is generated during sorting of the sort key trains on the

SECTION 28. SCRT COMMAND 28-27

*SORTKEY/SYS file. The only actual sorting done during a sort is

that which can be done on the initial sort key trains, which are made short
enough that they will fit in memory. After the sorting of the keys within each
initial train, thé trains are merged sixteen abreast into larger trains, repeatedly
until only one train remains.

INTERMEDIATE MERGE PASS 1, TRAIN 1

This message .is displayed if more than sixteen sort key trains exist during a
merge pass. The intermediate merge pass number is the Nth iteration of the
merge process. The train number is the number of the train being output by the
merge pass. If more than one train is output by an intermediate merge pass then
at least one more intermediate merge pass will be required. !f more than sixteen
trains are output 'by an intermediate merge pass then at least two more
intermediate merge passes will be required, and so on.

FINAL MERGE: SORT TRAIN 1

This message is displayed during the generation of the output file from the data
in the now fully sorted and merged sort key file and from the records in the
INPUT file. The sort train number corresponds to the current state of progress as
measured against the number of trains generated by the next to the last
intermediate merge pass.

28.6 DATABUS 7 LINKAGE TO SORT

This subsection describes and gives a detailed example of linkage to and from
SORT by DATABUS 7 programs. ,

There is no direct way to chain or link from a DATABUS 7 program to SORT
and from SORT back to a DATABUS 7 program. However, it is only necessary to
write a pair of simple assembler language programs to interface between these two
powerful business-oriented processors. The example used here to explain the
proceedure includes two fairly generalized and complete assembler language intertace
programs. For most applications, the user can set up a DATABUS 7 program to link
to SORT and use the assembler language programs as is. The only requirement is
that the user set up his DATABUS 7 linkage program along the same lines as the
example program.

In fact, this example is somewhat fancy; it shows how to link back to a
DATABUS 7 program and modify it before executing it. If the user does not want to
modify a DATABUS 7 program, he can reduce the assembly language programs
appropriately. Exactly how to do this is noted also.

The example given does basically the following:

28-28 PART IlI SYSTEM COMMANDS

1. First a iisting of the file to be sorted, the XDICT file, is produced on a printer.

2. Next the program links to the SORT by CHAINing to onz ot the assembly
language linkage programs. '

3. Finally, the program having been re-loaded and slightly mcdified (one byte in the

data area changed from a "1’ to a '2'), the program procduces a listing of the
output file (XDICTSRT). on the printer.

The assembly language programs in this example are sophisticated enough to
be able to transfer from the DATABUS 7 program to the SORT utility a full
complement of SORT option parameterizations.

The DATABUS 7 program only needs to have a data arsa with the following
format:

1. The first field is a numeric (FORMAT) field having a one-digit number of '1". This
provides a simple data communication area between the DATABUS 7 program
and the aSsembly language sort linkage programs. It is used simply so that the
DATABUS 7 program will know whether it has already linked to the SORT. By
using this technique, one and the same DATABUS 7 program can link into and
out of a SORT, and be able to maintain control of the overall processing.

This information exchange could also occur via a datafile with some special
appropriate name such as SORTLINK.

Of course, if it is desired to link into SORT from one DATABUS 7 program and
resume execution with another DATABUS 7 program, the first field in this
example is not needed. In the example assembly language program
SORTLNK1/DB7, line numbers Xxx-yyy could be deleted.

2. The second field, SRTCMD, is a string variable definition that is used to define
the INPUT and OUTPUT files, and to specify the sorting parameter options. The
first five characters of this field must always be ‘SORT ', because those
characters are checked for by SORT and define the name of the SORT system
in the disk directory. This line is the same line as would e keyed in to the
DOS if SORT were being ‘initialized from the keyboard.

3. The third field, LIMSTR, is a string variable definition that 1s used to specify the
LIMITED OUTPUT options. A string is given in this example even though the
'L’ option was not given in the SRTCMD line. Note that the single quotes
required by SORT does not conflict with the double quctes ' required by
DATABUS 7. For the assembly language linkage programs in this example, a
one-charcter entry of -’ would be sufficient to locate the LIMSTR string variable
and indicate that there really is no LIMITED OUTPUT string defined.

4. The fourth field, HEDSTR, is a string variable definition that is used to specify the
HARDCOPY OUTPUT HEADING. A string is given in this example even though
the 'H’ option was not given in the SRTCMD line. For the assembly language
linkage programs in this example, a one-charcter entry of - would be sufficient

SECTION 28. SORT COMMAND 28-29

to locate the HEDSTR string variable and indicate that there really is no
HARDCOPY HEADING string defined.

5. The fifth field, RETURN, is a string variable definition that is used to specify the

program to be executed upon return from the SORT. For this example, a name
must be specified.

Thus, for the programs given in this subsection, a DATABUS 7 program can link
to SORT and specify the SORT COMMAND LINE, a LIMITED OUTPUT specification
line, a HARDCOPY HEADING string, and can name the program to be excuted upon
completion of SORT.

It is not necessary, of course, for all applications to accommodate all of the
SORT specification options. But-the example in this subsection should be ample to
show and explain how to link a DATABUS 7 program to SORT.

28-30 PART Ill SYSTEM COMMANDS

PAGE O

25000
25003
25037
25060
25116

25130
25252
25265
25300
25305
25564
2537¢
25576
25402
25405

25420
25502

25513
25520
25546
25547

25555
25555

JATABUS 7 Llnk Tu SURT DEMUNSTRATIUN PRUGKAM

THl> 1o A valaous 7 PkUuHAE WRIlH UEMUNSTRKAILS LInKlnb TU Su=i.
THE PRUGKAM PEKFURMS 1nt FOLLOMING UPERKAT Iuws:

1o LISIS ThHE ADICT FILE.
2. LINKS TU ihk SURT
3. LISTS The XDICTYSKT FiLE,

Iht XDICT/ZTXT FILE IS LISIED oEFURE SURTING TU SHOw THE INPUT FILE FOR
THE SORT UPERATIUN,

LINKAGE TO THE SURT I8 ACCUMPLISHED VIA A PAIR OF ASSEMBLY LANGUAGE
PROGRAMB, THE FIRST PROGRAM RESIDES IN HIGH MEMORY SU THAT IT CAN BE LOADED
WITHUUT OVERLAYING PART OF THE DATABUS 7 INTERPRETER OR THE DATABUS PROGRAM,
Tt FIKST PROGRAM LOADS THt SECOND PROGRAM, WHICH RESIUES IN THE MEMOKY
RESERVED BY SOURT FOR USER LINKAGE PROGRAMS, THE DATABUS 7 PROGKAM PASSES
THE SORT COMMANO LINE, THE LIMITED OUTPUT SPECIFICATION, THE HARDCOPY
HEADING STRING, AND THE NEXT PROGRAM NAME TO THE ASSEMBLER LANGUAGE PROGRAMS
BY MEANS UF THE DATA IN THE FIRST 8IX FIELDS OF THE DATA AREA. IT IS THE
ASSEMBLER LANGUAGE PROGRAMS wWHICH SET UP ThE LINK INFURMATION FOUR SURT,

THE XOICTSRT/TXT FILE I8 LISTED AFTER SORTING TU SHOW THE QUTPUT OF THE
SURT OPERATION. THE DATABUS 7 PRUGRAM KNOWS wHICH PASS OF IT'S EXECUTION IT
IS IN 8Y CHECKING THE FIRST DATA FIELD.

PASS FORM nyw PASS NUMBER

SRTCMD INIT "SORT XDICT,XDICTSRTs11=20" SORT COMMAND LINE,

LIMSTR INIT "20=11,' ',1=60" LIMITED OUTPUT SPECIFICATION
HEDSTG INIT "SORT FOR DATABUS 7 PRUGRAM." HARDCUPY HEADING STRING,
RETURN INIT "DBYSORT" RETURN PROGRAM NAME,

PLINE DIm 79 LIST RECURD I/0 BUFFER
INFILE INET “XvICT " INPUT FILE NAME

OUTFIL INIT "XOICT8RT" OUTPUT FILE wAME

PAGENU FURM " o¥ OQUTPUT PaGt NUMBER

nEDInNG iwlt " DATABUS 7 PKUGSRAM PRULUCED LISTING OF *

LINENU FURM " o" OUTPUT LINE nNuMBEK

PRTLLw rURM *55n , LInES Tu PRINT PER PAGE
PRTLIM Fukm e RESTURE FOR ApOVE

UNE FORM™ i INCREMENT NUMBLR

SRTLNR INLT "SURTLNRLY NAME UF 18T ASSEMBLY PRUGRAM

VISPLAY THE SIuN=ON:

LISPLAY *R1,aV12, %Ry "UATABUS / PRUGKAM SURT LINKAGE UEMUNSIKATIUN":
", PASS M,PASS

BRANCH PASS UF PASS1,PASS? DRANLH TU PASS 1 UR rASS ¢
LISPLAY "INVALIU PASS NumBbeR," CATCH SUMETHING wRUNG
S(ub RETURN Tu THE MASTEK PRUGKAM
FASS1 UPEN 1,InFILE UrEn ThE I6PUT FILE A4S FlLt)
GUIY FrR1IF LLIoT The InPUY FlLE
PASS1 A CHALw SKTLIK Craliv TU THE SURT LINK PRUGRAM

FrabE U2 wvaATEBud 7 Link Tu SURT LEMUNSTHATIuN PRUGKAM

293591 VProdd {4 levulriL : Uk TeE wdlirod FaLe #0 HlLe)
2550 2 3 vulfle TU InNFiLEL mUvek Flit mame Fuw mbtavihi

e TRE FPoliu-idinse Suohuwidst €157 LUGICAL FiLE 1 ul. Trk rrlaTek,

29506 PHRINTF Inav PrRIt:wu 1F cUtd SET Trt thu=UF=FliLt THAF

2s5/1 Lebt Priinin Prii.T Trt FLIRST nEAULHG Lint
255135 Rteau nEe Ly 1;PLLsE mehy THe neXxT FlLk 1 RELUKUD
569y Avu tie TU LINENU puMr Int LINE wurpEr .

250U % suelrall Unk Frur PhibIn velnemenT THE PRIST Lint CUUNTER
250Ub [N Frloalrm iF (bxu PrisT mbavInG 1F 1IME FOR PAGE
¢5011 LY Linkwwue®. ",FLINE rrinT Thre LInk

2562 LbuTy ~EAL LOUF IF wul TIME FOR A ntw PALE
¢50ce PRiwnin Auv unt To PAGewu) [hCREFENT Trk PALL numMBER

25e6¢e> Prlii LIWPE JWPR RFR JHPR JEPR T E TR S0 Priinl THe READING Lint

29050 aL, "FALE “'P"\lﬂ’.NU'HEDINGIlNFlLio*L'*LI‘ .

25655 et PRTILIM TU PRILLN RESET Tt PRINT LINE CUUNIEX
256%0 RE Tury

259657 PRIt w Friwl LI T GET THE PAPER OUT OF Tnt PRINTEK
CcoLo~ Lol 1 CLUSE LuGICay It 1

25000 P o] PASS uF PASSLIX GUTU SURTLINK [F PASS 1

eseie . 3Tur

25673 PASS)

256i5 PASISe
%677 PrINTF
25701 PASS1x
25708 rRTENY
25705 PriaTr
eéS7u7 REAU

25711 PASS
257is ErTCu
25715 Lisoim
25717 Htuvdle
25721 n~ETurn
23725 rihlne
eS72s> lhFiLt
ebiel wUifiL
25731 Plduvorvu
ébl3s neulse
257385 Lloe e
o751 “kici.
257wml rPricic
25i/+5 unc

I Y SHiL

PAGE 1 BORTLNKY/TXT SORT LINK { PROGRAM FOR DATABUS 7 TO/FROM SORT LINKAGE

DOS ASSEMBLER 5,1 663 LARELS

CONFIDENTIAL PROPRIETARY INFOKMATIOM

THIS ITEM I8 THE PROPERTY UF OATAPOINT CORPOKATION, SAN ANTONIQ, TEXAS, AND CONTAINS CUNFIDENTIAL AND
TRADE SECRET INFORMATION, THIS ITEM MAY NOT BE TRANSFERRED FROM THME (CUSTODY OR COUNTROL OF DATAPOINT EXCEPY
AS AUTHORIZED BY DATAPOINT ANU THEN ONLY BY WAY OF LOAN FOR LIMITED PURPOSES, 17T MUST NOT BE REPRODUCED
IN WHOLE OR IN PART AND MUST BE RETYURNED TO DATAPDINT UPON REQUEST AND IN ALL EYENTS UPON COMPLETION OF

THE PURPOSE UF THE LOAN,

NEITHER THIS ITEM NOR THE INFORMATION IT CONTAINS MAY BE USED OR DISCLOSED TO PERSOUNS NOT HAVING A NEED
FOR SUCH USE OR DISCLOSURE CONSISTENT WITH THE PURPOSE OF THE LOAN, wITHOUT THE PRIOR WRITTEN CONSENT OF

DATAPOINT, .

ODATAPUOINT CONFIOENTIAL INFORMATION = SEE PAGE-1
PAGE 2 SORTLNKL/TXY SORT LINK 1| PROGRAM FUR DATABUS 7 TO/FROM BORT LINKAGE

PAGE

3

B10dé6
21014
21871
21143
011514
21400

pEl44
06226
06310
06323

23¢ve
23063

d7e00
J7¢00

37403
37046
376314

37044
37045
37046
37951
37e54
37086
37462
37065
$787¢

37e71
37275
d710%
37164

SORTLNKL/TXTY

104

123
1e4
840

220
dze
1086
140
@26
246
1¢6
142
(24

046
(1-1.]
106
Bab6

28¢

117
102
240

‘206

19514
377
el
¥71
191

aee
2ed
2e7
144

e7e

122
P67
X T

eve
[1°Y]

[)
¢v2
Pue

(21
[4-1.]
¢re
(1

124 {14
114 116
242 @249

A76

LR
vaé

s14

DATAPOINT CONFIDENTIAL INFORHMATION o SEE PAGE |

SORT LINK { PROGRAM FOR DATABLS 7 TO/FROM S0RYT LINKAGE

SORTLNK]

® % P 8 4 9 5 e e

008 EGU'SS
L]
LOADXS EaU

INCHL EQu
LOADS EQU
BLKTFR EQU
EXITS EQu
MCRS EQu

SORT LInK

viees
e1e11
21271
2114
21154
21480

T SORTLNKZ EQU'SS

LIHSTR EQU

HEOSTR EQU
X1TNAM EQU
PYABLE EQU

06144

LIMSTReBO
HEDSTR#50
XITNAMe4

1)
o DB7SORY EQU'SS

THIS I8 § OF 2 ASSEMBLY LANGUAGE PRUGRAMS TO LINK BETWEEN A DATABUS 7
PROGRAM AND SORT, -

THIS PROGRAM RESIDES ABOVE THE DATABUS 7 INTERPRETER AT vd78e8, THIS
PROGRAM LQAD3 THE BECOND LINK PROGRAM AND SETS UP THE LINKAGE STRINGS,

STARTS AT BEGINNING OF RESERVED MEMORY
LIMSTR AND WEDSTR ARE 350 BYTES LONG
X1TNAM I8 11 BYTES LONG

: THE FOLLOWING VALUE I8 THE BEGINNING OF THE DATABUS 7 PROGRAM
’ IF THE PROGRAM BEGINS AT AN ADORESS OTHER THMAN @R3e0@
" THE VALUE OF PASS MUST BE CHANGED

PABS EQU
SRTCHD EQGU

SEY
Jup

SRTLK2 DC
UBZINT DC
NXTPRG DC

[}

START SUA
LCA
CALL
JTC
LC
4]
CaLl
JTC
PUSH

DE
ML
CALL
V]

223800
PASS®)

u370820
PASS2

YSORTLNK2ABS!

'DBZINY CmD?
' '

LOADXS
EXITS
-1
SRTLK2
LOADS
EXITS

MCKS

SRTCMD

MOVSY
LIMSTR

THE PASS INDICATOR 18 THE FIRST FIELD.
THE SORT COMMAND LINE 1S THE NEXT FIELD

SORYLNR1 PASS 2 ENTEY POINT,

NAME/EXTENSION UF THE 2ND PROGRAM :
NAME/EXTENSION OF DATABUS 7 INTERPRETER
NAME/EXTENSION OF NEXT PROGRAM (FOR PASS 2)

LUAD THE DN8 UTILITY ROUTINES, THESE MuST BE
LUADED YO MEMORY TO OVERSTORE THE DATABUS 7
INTERPRETER, SURT NEEDS THE DOS ROUTINES,
D08 LGADED FIRST ELSE 17 UVERSTURE SURTLNK2,
LOAD SORTLNKZ2/ABS FROM ANY DRIVE

JUST GUIT -1F WNOY FOUND
ELSE SAVE THE ENTRY POINT ON THE STACHK

MOVE THE SOKT COMMAND STRING TU MCKS

mUVE THE LIMITED OQUTPUY SFECIFICATIUN

PAGE

35,
36,
37,
58,
39,
6@,
61,
62,
63,
64,
635,
66,
87,
68,
69,
70.
71,
72.
73,
74,
73,
76,
77,
78,
79.
8e,
LR
8z,
83,
84,
83,
86,
87,

89,
98,
91,
92,
93.
9d,
95,
9b.
97.
98,
99,
1ae,
il
1e2,
!wJ.
144,
103,
e,
1?7.
tee,

4

3711e
37113
3717
3ziee
dries
37131
37132
37133
37133
37136
J71 40
37142
37143
3715¢
37152
37158
37156
37161
37164

37167
37174
37176
37177
J7209
37203
37206

37207
37219
37213
37214
47213
37220
372218
37223
37224
372258
37220
37227
37231
37234
37236
3724}
37242
s7243
17244
3724~

V7247
3725¢
372514

SORTLNKI/TXY

106
246
106
Bab
186
353

364.

ue6
378
266
ves
3’e
- 066
274
110
e2e
266
268
104

266
274
213
229
266
866
[1M

337
1086
327
37
106
Jo2
@24
3z2@
321
eze
J2e
@74
149
226
1e6
478
353
3va
0o
378
1.y}
3e?
874

2e7
226
2e7
Jie
207

240

d2¢

104

144
11}
187

Jda3
324
200

226

er6
836
@76
836
ere

11
076
378
370
ere

256

323
326

UED)
¥i1d

vel

ne2
236
we1
143

015

203

aze
379

g2

eeR

e76

w2

814

814

214 307

vi4 do7

DATAPOINT CONFIDENTIAL INFORMATION = ;EE PAGE |

SURT LINK | PROGRAM FOR DATaABUS 7 TU/FROM SORT LINKAGE

EHKHED

CLRHED

caLL
DE
CALL
VE
CALL
LMD
LLE
LA
LMA
LL
LA
LMA
MLA
cP
JF2
SUA
M8 A
MSA
Jnp

MLA
ce

RFZ
Sus
MSA
MSA
REY

MOvsv
HEDSTR
MOYSY
XITNAM
novsyv

XITNAKSS
"

*INSTR
let

CHKHED

PYABLE
PTABLE»!
CLRHED

*HEDSTR
lof

PTABLE®2
PTABLE®J

MUVE THE HARDCOPY MEADING
MWOVE THE PROGRAM NAME TO BE RUN AFTER SORT

RESET THE P15 TO BLANK

MAKE SURE THE D' UF THE '0B7'" EXTENSION
mAS NOT OVERSTORED

CHECK FOR NULL LIMITATION STRING

IF LINITATION STRING NULL THEN CLEAR PTABLE

THERE CAN'T BE A HARDCOPY HEADING
CHECK FOR NULL HMARDCOPY MEADING STRING
IF 80 LINK TO SORTLNK2

LINK TO SORTLNKZ

MOVE A STRING VARIABLE STARTING AT WL TO MEMORY BTARTING AT DE,

o TERMINATE THE DE STRING wITH A 819,

)
MOVSY

MOVEVY

MOVSVL

LB8M
CALL
LCH
LAM
CALL
LAC

g 1Y)

LCA
LAB
Suc
LCA
cP
Jic
LC
CALL
PUSH
Lro
LLE
LA
LMA
POP
LAM
cP

INCHL

INCHL*2
1

5¢
MOVSV1
49
BLKTFR

19

peed

B = LOSICAL STRING LENGTH

C s FORM POINTER
ML =» FORm POINTED CMARACTER

COMPUTE NUMBER OF CHARACTERS T0 MOVE

DON'Y MOVE MORE THAN 49

MOVE FRUM FORM PDINTED CHARACTER
ML w>» PS s CHARACTER AFTER LAST ONE MOVED,
TERMINATE DE STRING WITh ¥id

RESTORE AL
SCAN TO THE ETX

PAGE

199,
11¢,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
124,
122,
129,
124,
128,
128,
127,
129,
130,
131,

5

37253
37256
37261

37264
37266
3zarea
37276
37384
37383
37397
37312
37318
37317
37323
J7d26
37331

37332

37334
37341
37348

37044

SORTLNKLI/TXT

15e
1e6
104

826
246
866
106
226
046
106
140

826

046
186
140
ere
2ed
86
U1
104

e1l
a1l
258

213
231
310
149
37
816
e71
151
377
831
ery
15

o2
el

214

pe2
poe
276

036
'3-1
eR2

236
ge2
#R2
236
ee2
eve
836

213

eg7e6
214

a76

ers

048 J7¢

DATAPOINT CONFIDENTIAL INFORMATION » SEE PAGE

SORT LINK { PROGRAM FOR DATABUS 7 TO/FROM SORT LINKAGE

s
PASS2

Tz
CALL
JMP

L
DE
Hi
CALL
LC
DE
CALL
JT7¢e

M8A
POP
JMp

END

INCHL
INCHL
MOVSVYL

11
NXTPRG
XITNAM
BLKTFR
wl
DB7INTY
LOADS
EXITS
»1
NXTPRG
LOADS

EXITS

"2 L}
*PASSet

#0414
STARY

POINT YO THE NEXT CHARACTYER AND ExIT,
SAVE THE NAME OF THE PROGRAM TO BE RUN NEXT

LOAD THE DATABUS 7 INTERPRETER

JUST QUIT IF GONE
LOAD THE NEXY PROGRAM TD BE EXECUTED

JUST QUIT IF GONE
ELSE SAVE THE ADORESS ON THE STACR
OYERSTORE THE PASS NUMBER

RESTORE ML
ENTER YHE DATABUS 7 INTERPRETER

DATAPDINT CONFIDENTIAL INFORMATION = SEE PAGE |

PAGE 6 SORTLNKY/TXT SORT LINK i PROGRAM FOR DATABUS 7 TO/FROM SORT LINKAGE
#1143 BLKTFR "4 140 116
37167 CHKHEU 69 «75

37200 CLRHEO 73 x79
37016 DB7INT «38 118
A1151 EXITS .5 44 a8 120 124
26226 HENSTR 21 22 56 75
01011 INCHL w2 87 96 149 11
06144 LIMSTR *20 21 54 67
21071 LOADS 03 a7 119 123
21206 LOADXS vy 43 -
21400 MCRS e16 51
37287 MOVSY 53 58 57 89 Y
37236 HMOVSV1 98 *100
372%2 MOVSVL «107 11
37831 NXTPRG »39 114 122
23000 PASS «30 T 127
37264 PASS2 as 113
#6323 PTABLE *23 71 72 79 8¢
23803 SRTCMD 31 52
37003 SKTLK2 - w3y a6
37044 START vay 131
96319 XITnaM *22 23 58 64 115

22 LABELS USED

PAGE H SORTLNK2/TXT SORT LINK 2 PROGRAM FOR DATABUS 7 TO/FROM BORY LINKAGE

DOS ASSEMBLER 5,1 663 |LABELS

CONFIDENTIAL PROPRIETARY INFORMATION

TH18, IVEM IS5 THE PROPERTY OF DATAPOINT CORPORATION, SAN aNTONIU, TEXAS, AND CONTAINS CONFIDENTIAL AND
TRADE SECRET INFORMATION, THIS ITEM MAY NOT BE TRANSFERRED FROM THE CUSTODY OR CONTROL OF DAVAPOINTY EXCEPTY
" A8 AUTHORIZED BY DATAPOINT AND THEN ONLY BY wAY OF LOAN FUR LIMITED PURPOSES, 1T MUSY NOT BE REPRODUCED
IN WHOLE OR IN PART AND MUST BE RETURNED TO DATAPOINT uPOn REQUEST AND IN ALL EVENTS UPON COHPLETION OF
THE PURPOSE OF THE LOAN,

NEITHER THMIS ITEM NOR THE INFORMATION IT CONTAiNs MAY BE USED OR DISCLOSED YO PERSONS NDT HAVING A NEEVD
FOR BUCH USE OR DISCLOSURE CONSISTENT WITH THE PURPDSE OF THE LOAN, WITHOUT THE PRIOR WRITTEN CONSENT OF

DATAPOINT,

DATAPDINT CONFIDENTIAL INFORRATION » SEE PAGE |
" PAGE 2 SORTLNK2/TXY SORT [LINK 2 PROGRAM FOR DATABUS 7 TO/FROM BORY LINKAGE

UNUSEDL LABELSS XTTNAM

PAGE

3

o107y

Jraee
26144

86144
e6226
06318
06323
2632%
26327

26331

26344
26346
86352
R L1
8635¢
26362

ne363
26365
863714
w6374
©ey77?

26344

SORTILNK2/TXY

049
144
26
363

123

926
246
1es
279
066
ee?

026
a40
106
124

123

g4
k14
214
014

117

377
377
871

Jad

377
331
274
voe

g40

122
@36
a2
ese

236
epe
276

122

842 P40

124 114
214

214

a14

124 V40

DATAPOINT CONFIDENTIAL INFORMATION e SEE PAGE)
SORT LINK 2 PROGRAM FOR OATABUS 7 TO/FROM SORT LINKAGE

SORTLNK2 == SQRT LINK 2

.
L}
» THIS I8 2 OF 2 ASBSEMBLY LANGUAGE PRUGRAMS TU LINK BETWEEN A DATABUS 7
s PROGRAM AND SORT,
.
« THI8 PROGRAM RESIDES IN MEMORY RESERVED BY 80RYT FOR THE USER = 2614426377,
o THIS PROGRAM LOADS THE SORT UTILITY AND LINKS INTQ IT, wWHEN THE SORT
o« IS DONE RETURN IS TO THIS PROGRAM, WKICH IN TURN RE=LOADS THE SORTLNX2
s PROGRAM AND LINKS BACK YO IT, WHICH IN TURN LINKS BACK TO THE DATABUS 7
« INTERPRETER,
1]
» D08 EQU'SH _
. .
LOADS EQu 91971
L]
o SORTLNKS EQU'SH
L4
PASSE2 EGU n37909 ENTRY POINY I8 FIRST THREE BYTES IN PROGRAM
L]
SEY Q6144 BYART AT THE BEGINNING OF THME RESERVED AREA
]
LIMSTR 8K 50 ALLO™ UP TO 5@ CHARACTERS, INCLUDING THE @15
HEDSTR 8K 50 SAME HERE
XITNAM DC ' DB7' RGOM FOR FILENAME/EXTENSION

POINTER YO LIMITED OUTPUT SPECIFICATION
POINTER TO HARDCOPY HEADING STRING
POINTER 7O RETURN ADDRESS

PTABLE 0OA LIMSTR
OA HEDSTR
DA RETURN

;RTLKl -0C 'SORTLNKIDB7 ' NAME/EXTENSION OF THE FIRST PROGRAM

£

START LC .l
DE SRTNAM
CALL LOADS
PUSH LI¥X TO SORY
Hi PTABLE
RET

LOAD THE SORT FROM ANY DISK DRIVE

‘;ETURN LC "y
0E SRTLKY

LOAD THE SORTLNK] PROGRAM FNOM ANY DRIVE

CALL LOADS

JMP PASS2 ENTER AT THE PASS 2 ENTRY POINT
R .
SRTNAM DC 'SORT CHO! NAME/EXTENSION OF THE SORT UTILITY
]

END STARY

PAGE

#6226
R61dd
618714
37006
6323
26363
36331
08377
26344
26310

4

HEDSTh
LImMSTH
LOADS
PASS2
PTABLE
RETURN
SRTLK]
SRTNAM
STARY

XITWAM

SORTLNK2/TXT

.23
€22
L AN
*i8
.25
27
*29
32
*34
*24

17 LABELS USED

26
2%
33
41
35
»38
39
“«43

43

DATAPDINT CONFIDENTIAL INFORMATION = SEE PAGE I

. SOURT LINK 2 PROGRAM FOR DATABUS 7 TO/FROM 8ORT LINKAGE

¢

PAGE

DO ~3 D U B WA

9.
19.
11.
12.
13.
14.
15.
16.
17.
18.

. 19‘
20.
21.
22.
23.
24,
25.

26.

27.

28.

29.

349.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.
42.
43,
44,
45.
46.
47.
48,
49.
5@.
51.
ha.
53.
54,

1

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
23>
>>>
25>
25>
>>>

S>>

>>>
>>>
25>
25>
>>>
>3
23>
25>
>>>
>>>
>>>
2>
>>>
>>>
>>>
>>>
>>>
>3>
>>>
25>
>>>
25>
>>>
25>
>>>
25>
>>>
>>>
>>>
>>>
>>>
2>
>>>
>>>

rurummm'vmmmmmmmmmrummmm'um'ummmmmmmmmmmmmmm*ﬂmmmmmmmmmmmmmmm

DATABUS 7 PROGRAM PRODUCED LISTING OF XDICTSRT

<<«
<<«
<<
<<K
<<«
<<«
<<<
<<«
<<«
<K<
<<«
<<KL
<<
<<«
<<K
<<K
<<«
<L
<LK
<<L
<K<
<L
<KL
<<«
<<K
<<
<<
<KL
<<«
<<<
<<«
<L
<<<
<<«
<LK
<<«
<K
<K<
<<
<<<
<L
<<L
<<
<<K
<<<
<<«
<L
<L
<<<
<LK
<<
<<«
<KL
<<<

xanthate
xanthein
xanthic
xanthin
xanthine
xanthiope
xanthochroid
xanthoohyl
xanthophyll
xanthous
xebec

xenia
xenogamous
xenogamy
xenogenesis
xenogenetic
Xxenogenic
xenolith
Xxenomorphic
xenon
xenovhobia
xeric
xeroderma
xerophilous
xerophily
xerophthalmia
xerophyte
xerphthalmic
xiphisternum
xiohoid
xiphosuran
Xxmas.

xylan

xylem
xylene
xylic
xylidin
xylidine
Xxylograph
xylogranher
xylographic
xylographical
xylograohy
xyloid
xylol
xylophage
xylophagous
xylophone
xylophonist
xylose
xylotomist
xylotomous
xylotomy
xyster

SECONDARY

- X - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDAPY
SECONDARY
SECONDARY
SECONDAPRY
SECONTARY

- X - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

SECONDARY

SECONDARY
SECONDARY
SECONDARY

- O - PRIMARY RECOP
- G - PRIMARY RECORD

SECONDARY

RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECOXD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RFCORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:

5
De 4
1
2
: R

1
1
1
3
A
2
1
2
4
3
5
D
2
4
1
3
5
4
3
2
1
4
5
2
3
3
D

fo)

5

- X - PRIMARY RECORD: 2

SECONDARY
SECONDARY
SECONTARY
SECONDNARY

- X - PRIMARY RECOR

SECONDARY
SECOUNDARY
SECONTARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONTARY

RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

3
1
4

5
D:
3
4
5
1
4
2
1
5
2

- C - PRIMARY RECORD: 9

SECONDARY
SECCNDARY

SECONDARY RECORD:
- 0 - PRIMARY RECCOERD:
- O - PRIMARY RECORD:

RECORD:
RECORD:

5
2
3

S
3

PAGE

O 0 ~INWB W N

et s
N
L] .

13.

[
(-
L

15.
16.

18.
19'
20.
21,
22,
23,
24,
25.
26.
27.
28.
29.
3g.
31.
32.
33.
34.
35.
36.
37.
38.
39,
4a.
al.
a2,
43,
aa,
45.
46.
a7.
48.
49,
50.
51.
52.
53,
54.

1

P

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>5>
>>>
>>>
53>
>>>
>>>
>>>
>
>>>
5>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>
>>>
>>>

22>

>>>

PP

>>>
>>>
>>>
>>>
22>
>>>
>>>
25>
>
>>>
>>>
2>
>
>
>2>
>>>
>>>

mmmmmvmmmmmmmmmmmmmmmmmwmmmmmvﬂmmmmmmmmmmmmmmmmmvmmmmmfu

DATABUS 7 PROGRAM PRODUCED LISTING OF XDICT

£<<
<<
<<«
<KL
<<<
<L
<<«
<<«
<<«
<<«
<<«
<<«
<L
<KL
<KL
<KL
<<«
<<«
<K
<<<
1 ¢
<<<
<<«
<KL
<L«

<KL

<<«
<L
<<«
<<«
<<
<<«

<<<

<<«
<<
<<
<<
<<<
<<
<<«
<<<
<<
<<<
<<«
<<«
<<
<<«
<<«
<<«
<<«
<<
<<
<<«
<<<

xmas

‘xebec
'Xxenia

xenon
Xeric

xylan

xylem

xylic

xylol
xylene
xyloid
xylose
xyster
xanthic
xanthin
xiphoid
xylidin
xanthate
xanthein
xanthine
xanthous
xenogamy
xenolith
xylidine
xylotomy
xanthippe
Xxenogenic
xeroderma
xerophily
xerophyte
xylograph
xylophage
xylophone
xanthophyl
xenogamous
xenophobia
xiphosuran
xylography
xylotomist
xylotomous
xanthophyll
xenogenesis
xenogenetic
xenomorohic
xerophilous
xylographer
xylographic
xylophagous
xylophonist
xanthochroid
xerphthalmic
xiphisternum
xeroohthalmia
xylographical

= 0 - PRIMARY RECORD:

SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECOWDARY RECORD:

- X - PRIMARY RECOR

SECONDAPY RFCORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECORDARY RECORD:

- O - PRIMARY RECOR

SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

1
2
3
4
5
D

1
2
3
4
b}
D

= X - PRIMARY RECORD:

SECONDARY RECORD:
SECONDARY RECORD:
SECOMDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

= O - PRIMARY RECOR

SECONDARY RECORD:

-SECONDARY RECORD:

SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

- X - PRIMARY RECOR

SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECCNDARY RECORD:
SECONDARY RECORD:

= O - PRIMARY RECOR

SECONDARY RECORD:
SECOMNCARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

- X - PRIMARY RECOR

SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

- O - PRIMARY RECOR

SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECCNDARY RECORD:
SECGNDARY RECORD:

1
2
3
4
5
1
2
3
4
5
D
1
2
3
4
5
D
1
2
3
5
1

4
D
2
3
4
5
D
1
2
3
4
5
D
1
2
3
4
5

.
.
o
.
.
.
-
.

28.7 EXAMPLE OF USE OF TAG FILE

This subsection gives a detailed example of the use of the SORT TAG file
output. The example is in the form of the complete program LISTX, described in

Section 28.3.7 of the SORT Section.

2

SECTION 28. SORT COMMAND 28-31

PAGE 1 LISTX/TXT ' LIST AN INDEXED FILE PROGRAM

D0S ASSEMBLER 3,1 663 LABELS

CONFIDENTIAL PROPRIETARY INFORMATION

THIS ITEM IS THE PROPERTY OF DATAPOINT CORPORATION, SAN ANTONIO, TEXAS, AND CONTAINS CONFIGENTIAL AND
TRADE SECRET INFORMATION, THIS ITEM MAY NOT BE TRANSFERRED FROM THE CUSTODY OR CONTROL OF DATAPQINT EXCEPT
AS AUTHORIZED BY DATAPOINT AND THEN ONLY BY WAY OF LOAN FOR LIMITED PURPOSES, IT MUST NOT BE REPROQUCED
IN WHOLE OR IN PART AND MUST BE RETURNED TO DATAPOINT UPON REGQUEST AND IN ALL EVENTS UPON COHPLETIDN GF

THE PURPOSE OF THE LOAN,

NEITHER TMIS ITEM NOR THE INFORMATION T CONTAINS MAY BE USED OR DISCLOSED TO PERSONS NOT HAVING A NEED
FOR SUCH USE OR OISCLOSURE CONSISTENT WITH THE PURPOSE OF THE. LOAN, WITHOUT THE PRIDR WRITTEN CONBENT OF

DATAPOINT,

DATAPOINTY CONFIDENTIAL INFURMATION e BEC FALE 1

PAGE 2 LISTX/TXY LIST AN INDEXED FILE PROGRAM

INCLUSION A3 DOS/EPY

UNUSED LABELSS EXTFLY

DATAPOINT CONFIDENTIAL INFORMATION » SEE PAGE |

PAGE 3 LISTX/TXT LIST AN INDEXED FILE PROGRAw
1. . PROGRAM TG READ AND DISPLAY INDEXED FILES VIA THE INDEX (TAG) FILE,
2, + INPUT SPECIFICATION 181
3. .
., . LISTX XFILE,FILE
3, »
6, . WHERE !) .
7. . XFILE 1S THE NAME OF TWE INDEX FILE (SORT TAG FILE),
.. . FILe 18 THE NAME OF THE INDEXED FILE,

PAGE

4

10,4
11,A
12,4
13,A
14,4
19,4
16,4
17 ., A
18,4
19,4
2“.‘
21,4
22,4
23,4
24,4
25,4
26,4
27 . A
28,4
29,4
30 A
31..
32,4
33, A
34,4
35, A
36,4
37 .4
38,4
39,4
4v A
41,4
42,4
a3 A
a4,
a5, A
ar .4
47 A
a4k a
4Y A
LT
91,4
5244

a1eep
e10ed
a1ees
01047
21052
21053
sie60

123y
21036
e1e4}
21044

21e11
vle22
21143
©1146
7119}
14307

210063
21066
1871
Alezse

21e77
v1142
r11e5
vitle
1113
21116
v11e21
n1124
?14127
V1132
v1135%

LISTX/TXY

DATAPOINT CONFIDENTIAL INFORMATION = SEE PAGE |

LIST AN INDEXEC FILE PROGRAM

.
800Ts
RUNXS
LOADXS
GETNCH
DRS
Dw3
DSKWATY

INC

EQu
EQu

EQu -

Eou
EQU

. EQu

€ou

LOS/EPT

LOADER ROUTINES

gi100p
21093
p1v@s
o1047
01032
21085
viese

THI8 FILE CONTAINS THE 00DS 1,3 ENTRY POINTS

RELOAD THE OPERATING SYSTEM

LOAD AND RUN A FILE BY NUMBER

LUAD A FILE BY NUMBER

GET THWE NEXT DISK BUFFPER BYIE

READ A SECTOR INTO THE DISK BUFFER
WRITE a SECTYOR FROM THE DISK BUFFER
wAIT FOR DISK READY

R .
« TIME=CRITICAL SCHEDULING ROUTINES

[l

css
TPS
SET1S
CLRI3

L]
o GENERALIZED

]
INCHL
DECHL
BLKYFR
TRAPS
EXITS
CMDINTY

Eou
EQU
EQu
egou

EQU
EQu
EQu
EQu
EQu
EQu

vi1e33
01036
vie4)
01844

CHANGE PROCESS 3YATE

TERMINATE PROCESS

INITIATE A TIMEeCRITICAL PROCESS
TERMINATE A TIME-CRITICAL PROCESS

PROCESSING ROUTINES

vivil
01022
1143
¢1148
v1151
414597

INCREMENT HL

DECREMENT wL

TRANSFER Ao BLOCK OF MEMORY

S8EY A DISK ERROR CONDITION TRAP
CLOSE ALL FILES AND RELOAD DOS
INTERPRET MCRS A8 A COMMAND

1]
o SYMBOLIC FILE WANDLING ROUTINES

.
PREPS
OPENS
LOADS
RUND

EQu
EQU
EQU
EQU

21v8)
01060
viery
“ivr4

OPEN OR CREATE A FILE

OPEN AN EXISTING FILE

LOAD A FILE BY MNAME

LUAU AND RUN A FILE BY ~NAME

L]
e LUGICAL FILE WANULING ROUTINES

[]
CLOSES
CHOPS
PROTES
PDSITS
READS
wRITES
GETS
GETRS
PUTS
PUTRS
BSPS

EQu
EQU
EQu
EvU
EQU
EGU
EGU
EQU
EGU
EQuU
EQU

wie77
¥iine
“wiies
vifle
21113
uil1e
w121
41124
vita?
01132
81135

CLOSE A FILE

DELETE SPACE IN A FlLE

CHANGE THE PROTECTION ON A FILE
PUSITION TO A RECORD wWITHIN A FILE
READ A RECORD INTU THE BUFFER

wRITE A RECORD FRDM THE BUFFER

GET THE NEXT BUFFER BYTE

GEY AN INPEXED BUFFER BYTE

STORE INTD THE NEXT BUFFER POMITION

STURE INTO AN INDEXED BUFFENXK POSITION

BACKSPACE ONE RECORD

53,4
54,A
55,4
56,4
57,4
58,4
59, A
62,4
61.A
62,4
63,A
64,A
65,4
B86,A
67,4
8B8,A
60,A
70,4
71,A
7R.A
73.,A
74,A
785,.A
78,A
77.A
78.A
78,.,A
‘BB A
.l.‘
82,4
B83,A
84 A
85,A
86,A
B7 .4
LY.
B9, A
94 A
91.4
P2,A
93,4
94,4
93,4
b, A
97 . A
98, A
09,A
19@,4
101.4A
102,4A
123,A
104, A
1a8, 2
126, A

#1154
#1187
1162

14000
1eens
iepl2
10817
10024
18031
14234
10037
10242
10045
10060
10083
100856
10061

0eo04

20003

dea2s
oen2y
Po03e
e1400
210544
veaen
nanze
pepap
nvesi

[4-I'21')
pnony
npeaz
opeed
(L1]
naYl1o
pooly
wdela
anelae
[T 13Y-]
weaty

LISTX/TXY

DATAPOINT CONFIDENTIAL INFORMATION o SEE PAGE 1

LIST AN INDEXED FILE PRUGRAM

. .
o KEYBOARD AND DISPLAY ROUTINES

L

DEBUGS
KEYINS
DEPLYS

EQU
EQU
EQuU

01154
21187
01162

ENTER TWE DEBUGGING RUUTINE
DBTAIN A LINE FROM THE KEYBUAKD
OISPLAY A LINE ON THE BCREEN

L .
e« CASSETTE TAPE HANDLING ROUTINES

;PBOFS'

TPEQFS
TRwS
TBSPS3

THBLKS

TRS

TREADS

w3
TARITS
TFHRS
TFMNS
TTRAPS
TWAITS
TCHKS

: INTERNAL DO8 EQUIVALENCES

L4
DOSPFN

DOSPON '

DOSPTR
8DFLAG
SDNR
MCRS
LFT
LFa
LF1
LF2
LF3

EGU
EQU
EQU
EoU
EQU
EQu
EQU
EQU
EQu
EQu
EQU
EQu
EQu
EQuU

EQU
(V]
EQu
EQy
EQU
EGu
EGU
EQu
£QU
EGU
EQu

Blopee
UYL]

vlepla-

3T 1204
#10034
s10031
2102834

218037
210042

019848
210032
vivesd
810086
014261

apoR4
4ooes
oeoge
ppeg?
2eo38
b1409
vilaq
"I Y]
124
2=4
I<a

‘POSITION TO THE BEGINNING OF A FILE

POSITION TO THE END OF A FILE
PHYSICALLY REWIND A CASSETTE
PHYSICALLY BACKSPACE ONE RECORD
WRITE AN UNFORMATTED BLOCK

READ A NUMERIC CTOS RECORD

TRS AND WAIT FOR LAST CHARACTER
WRITE A NUMERIC CT08 RECORD

Twd AND WAIT FOR LAST CHARACTER
READ THE NEXT FILE MARKER RECORD
WRITE A FILE MARKER RECORD

SET A CABSETTE ERROR TRAP

WAIT FOR 1/0 COMPLETION

GET I/0 STATUS

PEN FOR USE BY DRS AND Dw3

PON FOR USE BY DRS AND DWS

BUFPTR UBED BY GETNCH)
SUB=DIRECTORY EXISTANCE FLAG
SUB-DIRECTORY NUMBERS (3 PER DRIVE)
MONITOR COMMUNICATION REGION :
LOGICAL FILE TABLE

LOGICAL FILE #9

LOGICAL FILE w1l

LOGICAL FILE #2

LOGICAL FILE 53

L]
o LOGICAL FILE TABLE DESCRIPTIGN

L]

PFN
PON
LRN
BLRN
CSo
RIBCYL
RIBSEC
MAXLRN
LRNLIM
BUFADR
XAAXXX

. .
o DUS 1,3 MEMORY MAFPING

L

EBY
EQU
EQU
EQu
EQu
EQU
EQuU
EQU
EQu
EQU
EQU

(1) PWYSICAL FILE NUMBER

(1) PrYSICAL ORIVE NUMBER ANO PRDTECTION
(2) NEXT LRN TO BE DEALT wITHd

(2) FIRST LRN WITHIN CURRENT SEGMENWT
{2) CURRENT SEGMENT DESCRIPTOR

(1) CYLINDER CONTAINING THE RIB

(1) SECTOR CONTAINING THE RIB

(2) LARGEST LRN REFERENCED

(2) LARGEST LRN ALLOWED

(1) CURRENT CONMTROLLER BUFFER ADDRESS
(1) NOT USBED

PAGE 6

1874
188,4
109, 4
110,4
111,4
112,44
113.4
114,4
119,4A
116,4
117 .4
118,44

apeep
aleage
véguu
‘2211
84372
Bo6vLe
07400
1noep
124v0e
17000

LISTX/TXTY

-

UATAPOINT CUNFIDENTIAL INFORMATION e SEE PAGE

LIST AN INDEXED FILE PROGHAR

LORADS
DOSADS
OVLADS
USPADS
KEYADS
DEHADS
UNPADS
CASADS
CMOADS
COVADS

EQuU
EQu
EQu
EQU
Eou
EQU
Eau
EQu
EQu
EQu

wPYAde
“eluge
vedqgue
vesSeoe
vu5872
AP0 de
P77 400
¢loary
wi24ope
ni7eee

..
o END UF DOS §,d ENTRY POINTS

SYSTEM LOADER
VOS RESIDENT

GUS OVERLAYS

CRT mRITE ROUTINE

KEYBOARD READ WOUTINE

DISK DEBUG

UNUSED PAGE

CASSETTE TAPE ORIVEWS
COMMAND INTERPRETER

CUMMAND INTERPRETER OVERLAYS

7

2uu80

L ETT
20a9d
20034
20843
FIBY
20112
20154
20161
20298
202313
2@23P
20342
203668
20973
20828
2033e
2033a
20332

2WV4L s

2084352
20433

20544
2053e
20533
2058¢
205862
20566
(1 >4
20574
22578
20epe
z2e8e:
ese2
20648
20611
208318
2062¢
20822
20822
204827
2363¢
20833
20635
20632
28842
22842
2vasy

228382

WISTA/TXT

21l
114
il
104
211
1o}
Bl
1g4
el
111
211
131
231
129
241
114
211
111

ig4
11

(1.1
186
286
Y4
gas
158
268
27 4
PRE
335
346
266
152
866
0ee
274
R-1'd
254
dae
266
eha
262
7] -]
110
(:4-1.]
€24
140

L)
111
aee
116
200
249
ee0
117
eee
116
209
146
200
117

200

116
200
118

130
o0

goe
162
166
049
236
364
176
e4e
803

D14
143
291
377
pae
263
104

ka2
122

2u6
361
293
269
361

243
123
213
240
213
123
813
117
213
126
e13
104
213
128
213
104
813
126

124
813
@56
eve
"3-1.]
236

242
3v7

856
Bo2
236

Pat

3u7

@36
042
387

paz

213
124
813
111
813
117
213
ka9
213
184
a13
108
213
122
243
105
e

161’

2313

240
o083

a40

a4l

203

vap

223
1%
22l
116
823
125
oe3
118
ead
114
23
130

103

-023

130
023
114

387

ez

DATAPOINT CONFIDENTIAL INFORMATION » SEE PAGE 1§

LIsY

SIGNON
NOXFNM
NOSFNM
XCSFNM

BADDEV

NOXFIL
NOSFIL
XEQF

BADFIL

»
™Y

BUFFRP
BUFFER
L]

START

EXTFLY

“bE

CALL
MLA
cP
DE
J12
MLA
3

L€

LOH
LEL
Hi
([3
MLA
LC
cP
472
XR
LCA
MLA
xR
ORC
DE
JFL
MLA
su
JTC

e26aan

AN INOEXED FILE PROGRAR

2i4,9,013,11,¥23

'WIST AN INDEXED FILE 1,1',015

il ,013,141,0823

VAN INDEX FILE NAME MUSBT BE GIVEN,',3d
031,9,813,14,0623

YA SOURCE FILE NAME MUST BE GIVEN,',3
B11,0,083,11,@823

'TOO MANY FILE NAMES,',d
914,0,013,11,082)

YINVALIDO DEVICE,?,

P11,0,013,11,0223

TINDEX FILE NODT FOUND,!V 5
211,2,013,18,023

'SOURCE FILE NOY fDUND, ']
211,0,813,13,823,02%

'INDEX FILE EOF,,3

Vi1,0,013,823,023

VINVALIO FORMAT IN SOURCE FILE,',d

tTXT

211,0,083,11
-} .

SIGNON
DIPLYS

*LFT+LF142

1
NOXFNH
ERROR
LFT<LFle10
1ot

3

X7
BLKTFR
w FTo F1+13
-1
[
SETXOR
0!

LFT+_ Fi1+14
TR

BADDEV
ERROR
LFT#LF1+18
g

ERROR

DISPLAY THE SIGNwON
THERE MUST BE AN INDEX FILE SPECIFIED

ASSUME AN EXTENEION OF TXT IF NDNE GIVEN

SEE IF DRIVE SPECIFIED

. SEARCH ALL DRIVES IF NOT

PAGE

65,
66,

68,
69,
70,
’1.
72,
73.
74,
75,
76.
77,
78,
79,
8o,
81,
82,
83,
84,
8s,
.6.
87,
88,
8%,
se,
91,
92.
93,
94,
95,
96,
97,
'TH
99,
100,
191,
182,
103,
1¢4,
1235,
106,
197,
1086,
19,
110,
111,

8

20653
20657
2¢662
20663

28608
20671
28673
20677
20782
@703
24797
20711
20712
20743
208737
20722
28727
20731
20733
20736
207 4¢
2074}
28744
28748
20747
209753
20756
20761
20783
20766
28770
20773
20774

20777
219802
21004
2¥.11-]
21919
21012
21v13
2ini4
21017
2142}
21122
21426

LISTX/TXY

274
12@
329
066

ve4
361

28

266
974
046
15¢
[-I.1.]
274
026
338
346
266
152
066
226
a74
159
354
320
066
LEL
262
246
11e
[-1.1.]
224
149
274
100
J2e
(11

286
40
1935
361
216
248
283

814
143
221
377
LYY
374
104

222
122

206
361
223
-1.1.]
361
204
361

22}

[1.1.]
254
329
866
¢54
262
328
266
454
262
246
11@

226
040

236
A4e
241
a40

154
364

X Vi
372
Je7
236

242
387

56
ea2
856

243

387

€36
042
J87
842
042
372

387

307

Ja7

w36
vaz2

249

day

ged vy

249

240

DATAPOINT CONFIDENTIAL INFURMATIUN « BEE PAGE)

LIST AN INDEXED FILE PROGRAM

SETXOR

SETSOR

cP

JFC
LCA
MSC

LA
cP
DE
JT12
MLA
cP
LC
LOH

HL
3%}
MLA
Lc
cP
J12
xR
LCA
MLA
XR
ORC
DE
JFL
LA
su
JTe
ce
JFC
LCA
M8C

nLA
XR

LCA
mLA
xR -
oRC

LCa

MLA
XR
ORC
DE
JF2

LEL

4
ERROR

LET#LF1e1d

LFTeLF2+2
| 2]

NOSFNM
ERRQOR
LFTeLF2+19
[

3

T

BLKTFR
o FT PF2¢13
L 3}

[.]

SETSDR

0!

LFTeF2e14e
1Rt

BADDEV
ERRQR

LFT+LF2¢13

e

ERROR

4

ERROR
LFT+LF2¢13

LET#LFO+2
[

LFT+F3e10
[

LFTeLFle1
A

XCSFNM
ERROR

SAVE THE INDEX FILE DRIVE NUMBER

A SOURCE FILE MUST BE SPECIFIED

ASSUME EXTENSION OF TXT 1F NUNE SPECIFIED

SEE IF A DRIVE]8 8PECIFIED
SEARCH ALL ORIVES IF NONE GIVEN

ELS8E CHECK THE DRIVE SPECIFICATION

SAVE THE SOURCE FILE DRIVE NUMBER

NO OTHER FILE SHOULD BE SPECIFIED

PAGE

{12,
119,
114,
118,
116,
117,
118,
119,
20,
121,
122,
123,
124,

21031
21833
21040
21044
21047
21053
21036
21960
21965
21e71
21874
21189

LISTX/TXTY

216
1-1.)
346
196
046
1402
216
1.1
246
106
240
140

629
281
166
e66
233
361
249
221
208
266
268
361

2%6
236
ru2
836
242

856
236
Ik
236
242

pad 327
213

042
283 327
803
@490

DATAPOINT CONFIDENTIAL INFORMATION e SEE PAGE 1
LIST AN INDEXED FILE PROGRANM

LB LF1

MLC wLFTeLF1+13 TRY TO OPEN THE INDEX FILE
DE LFT#+LF1e2

CALL OPENS

DE NOXFIL

JTC ERROR

L8 LF2 _ TRY TO OPEN THE SOURCE FILE
MLC *LFTeLF2413 ‘
DE LFTeLF2e2

CALL OPENS
DE NOSFIL

JTC ERROR

PAGE 1

123,
126,
127,
128,
‘129,
130,
131,
132,
133,
134,
1335,
136,
137.
138,
139,
140,
141,
142,
143,
144,
145,
146,
147,
148,
149,
132,
192,
153,
154,
158,
156,
187,
158,
158,
169,
161,
162,
163,
164,
163,
168,
167,
168,
169,
179,
171,
172,
173,
174,
175,
176,
177,
178,

2113
21103
2i11e
21112
211195
21116
21121
21122
21128
21126
21127
21132
21133
21136
211y
21149
21143
21145

211590
211514
21152
211354
21453
21156
21160
21161
21163
21166
21171
21172
21173
212¢0
21202
21203
21207
21212
21216

21221
21223
21226
2123¢
21233
21233
21240
21241
21243
21246
21231

LISTX/TXY

-B Y]
106
38]
106
338
106
Jag
1e6
3se
260
iie
264
11e
383
. 269
150
eza
159

e7e
Jp4
024
340
383
034
330
218
186
ieé
960
328
266
@16
146
274
15@
266
104

216
196
ar4
51]
w74
1%
370
e74
19%¢
106
104

h2e
113
020
121

121
121
159
150

J46
eed
103

ee2

ae¢e

240
110
113

222
240
121
ead
& 1-1-]
023
233

gap
121
2ed
311
211
323

CRE)
254
211
2214

due
ge2
ewe

eu2

242

nag

642

o4z

856

eee

42
-1

263 37¢

241

42

ree
242
vaz
rag

wne
942

DATAPOINT CONFIDENTIAL INFOUN®ATION » SEE PAGE 1

LIST aN INDEXED FILE PROGRAM

*
GETXR

GETXP

L
GETSR

]

*
GETSC

SAVCHR

L8
CALL
LB
CALL
LDA
CALL
LEA
CaLL

LHA

ORA
JF1
ORE
JFZ
LAD
ORA
4T
cP

JT2

PUSH
LAE
su
EA
AD
1Y)
LDaA
L8
CALL
CALL
POP
LAN
MSA
LB
CaLL
cP
J12
Wi
JMP

L8
CaLL
ce
JT2
cP
J1z
LMA
cP
J12
o YRR
JmMP

LF1
READS
LF1
GETS

GETS
GETS

GETSR
GETSR

EOJ
GETXR

5

LF2
POSITS
READS

*LFTeLP24BUFADR
LF2
GETS
3
FILERR
BUFFER
SLVCHR

LF2
GETS$
293
PEOR
vil
SPCMPR

415
DSPREC
INCHY
GETSC

READ THE FIRST INDEX RECORD

GEY THE POINTERS FOR THE SOURCE RECURD

SAVE THE BUFFER POINTER

TEST FOR PHYSICAL ENDeOFeRECOKD

N0

TEST THE PHYSICAL RECORD PUINTER

~NO

IF THE M8P OF PMYS,REC,PTR, I8 ZERD
THEN THIS IS END=OFeINDEX FILE

IF THE MSP OF PHYS,REC,PTR, 18 THREE
THEN THIS I8 ENDwOF=INDEX=PHYSICAL=RECORD

SAVE THE BUFFER POINTER
BIAS THE PHYSICAL RECORD POINTER

POSITION TO THE SQURCE RECORD

READ THE SOURCE RECORD

HETRIEVE THE BUFFER POINTER

SAVE THE BUFFER POINTEN

READ THE SOURCE RECURD FIRST CHARACTER
CATCH ANMY ERROR

INITIALILZE THE DISPLAY BUFFER POINTER
ENTER NORMAL LOOP

., READ THE LOGICAL RECORD = UP TO 72 BYTES » INTU MEMURY OISPLAV BUFFER1

GET A BYTE
CATCH END OF PHYSICAL RECORD
CATCH SPACE COMPRESSIUN

ELSE STORE THE CHARACTER
CATCH END OF LOGICAL RECORD
DISPLAY THE RECURD IF aLL IN
ELSE BUMP ThE BUFFER POINTER
RESUME CHARACTEKR READING

PAGE 11

179,
19¢,
81,
182,
183,
{84,
185,
186,
187,
188,
189,
199,
191,
192,
163,
194,
1995,
196,
197,
198,
1909,
280,
2e1,
202,
293,
204,
205,
2v6,
297,
208,
289,
21@,
211,
212,
213,
2113,
215,
216,
217,
218,
213,
22¢,
221,

21254
2126v
21263
21265

21266

21267
21272
21271
21272
21273
21275
21300
21361
21303
21306

21311
21312
21314
21317
21324

21323
21326
21339
21331
21332
21335
21330
21342
21343

21346
21332

2135
21361
21362
21363
21366

2vb544

LISTX/TXT

460
1eb
Zob
49
121
Joe
101
LT

324 -

vada
110
302
a4
112
104

a7e
216
100
408
104

106
©v3b
320
373
196
3v2
w24
119
104

¢ao
104

nao

353
364
1¢6
124

217
162
341

vie
263

vo4
151
118

a4de

113
221
121
@249
811
wirg
3390
221

322
364

L

162
191

7he6

wez

¢42

ge2
a2

ko2
vazg

P2

ep2
ea2
nag

"2 1.]
P42

V36

e 2
v

way

H4p

Zaw

OATAPUINY CONFIDENTIAL INFOR®ATION w SEE PAGE 1

LIST AN INDEXED FILE PROGRAM

DSPREC

DKWALT

.
PEQR

.
SPCMPR
SPCMPL

L

E0J

L[]
FILERR

.
ERRUR

sL
CALL
LA
D1
EX
NOP
IN
El
LEA
ND
JFZ

LAC

ND
JFZ
JMP

PUSH
L8
cALL
POP
Jnp

CALL
Lo
LCA
LMD
CaLL
LAC
5u

JF1

JMP

DE
JHp
DE
LHD
LLE
CaLl
JMP

END

BUFFRP
DEPLYS
v34l

ADW

A Y]
OKWALT .

004
EXITS
GETXP

LF2
READS

GETSC

GETS
)

INCHL
1

SPCMPL
GETSC

XEQF
ERROR

BAQF L

VEPLYS
EXITS

STAKT

POINT TD BUFFER SCREEN PUIATEXS
UISPLAY THE LOGLCL RECORD
SEE IF THE UISPLAY KEY 15 DEPWESSED

SAVE THE STATUS

. YES, wALT

SEE IF ABORT
YES
GET THE POINTER TO THE NEXT RECORD

SAVE THE BUFFER PUOINTERS
READ THE NEXT SOURCE PHYSICAL RECORD

RESTORE TnE BUFFER POINTERS
RESUME ChARCTER READING

GET THE SPACE COUNTY

SPACE .

SAVE THE SPACE COUNT

PUT SPACE IN BUFFER

BUMP THE BUFFER PUINTER
DECREMENT THE SPACE CUUNT

RESUME CMARACTER READING

PAGE

28206
2435%¢
aj143
raee4
21eoe
21133
20616
22423
2v417
13009
atjee
eie’r?
ﬂléld
12400
14507
17eew
nieadd
A20db
ngaedq
CRR L]
njeze
21203
A1Puw
A4dnd
AR 4
Hulen

11252

12

BADDEV
BALFIL
BLKTFR
BLARN
BOOTS
B3PS
BUFADR
BUFFER
BUFFRP
CABADS
CHOPS
CLOSES
CLRIS
CMDADS
CMDINT
COVALD
-1
[%-19)
DEBADS
DEBUGS
DECHL
DEwALT
DNSADS
NSPIIN
DUSPFN
NOSPTR

318

LISTX/TXTY

va2e
*30
«283A
*968A
*91A
*521A
w121
-36
38
e{148A
»4344
*428A
w221A
«1150A
*388A
v11614A
1934
“975A
v{128A
fﬁﬁll
w278 A
v181
*10B3A
«80218A
*798A
w31tA

#1384

.14
214

5@

157
162
179

189

DATAPOINT CONFIDENTIAL INFORMATION » SEE PAGE
LIST AN INDEXED FILE PROGRAM

o0

80

PARE

Alebe
wo4pe
n1i6e
21254
218359
21346
21361

21181
28714
21355
21124
21047
21124
21221
211%0
211149
21123
21211
n5872
61157
agaea
ABRBV

AQPA24k
LT Y1)

npehe

13

OSKwAT
LSPaAD$
USPLYS
DSPREC
Dw$
EoJ

ERROR

EXITS
EXTFLL
FILERR
GETS
GETNCH
GETRS
GETSC
GETSR
GETXP
GETXR
AINCHL
REYADS
KEYInD
LUiRADS
LFW

LF1

LF2

Lk

LISTx/TXT

«153A
wil1@tA
*581A
175
*143A
143

43
124

*3014
(X Y]
161
*4B1A
*1234
*408A
*167
1;6
v128
v126
w2614A
wi1itaA
*57%14
«1A78A
868 A

*3714
126

«BB1A
152

*8634A

39

vi78

*211

64
212

192

214
129

177
138
199
142

176

a0
128

749
157

140

DATAPDINT CONFIDENTIAL INFORMATION = SEE PAGE 1

LIST AN INDEXED FILE PROGRAM

14¢

64
*216

219

131

199

w145

24%

aa
74
158

led

218

66

133

229

51

L3
167

127

73 94 94
159 168 2vl
57 62 68
. B7 92 98
196

96

113

119

111

114

12v

ieg}

DATAPOINT CONFIDENTIAL INFORMATION = SEE PAGE 1

PAGE 4 LISTX/TXT LIST AN INDEXED FILE PROGRAM
A1544 LFY #8514 49 44 51 57 62 68 7¢ 74 81
87 92 98 109 123 187 114 113 12¢ 124
157
pia7y LOADS 3714
A1AL6 LOADKS *183A
ApP62 LRN *9S534a
. @@e14 LRNLIM UL
#2012 MAXLRN 12014
a1402 MCRS "848A
20266 NOSFIL 26 123
20185 NOSFNM *18 72
20233 NOXFIL v24 117
28036 NOXFNM "8 42
21866 ODPENS *368A 116 122
#400@ O0OVLADS *18934A
eeee) PON *9404A
21313 PEQR 170 *199
eeepa PFN 9384
e1112 POSITS #4514 153
#1063 PREPS 3514
f11e% PROTES wdalA
41127 PuTS w56 1A
21132 PuUTHS *5134
21113 READS w46tA 127 154 197
negaye RIBCYL #9B8LA
A1l WIBSEC *9013A
iu74 RUN® w3BIA

Q178 RUNXDY wiRgA

DATAPOINT CONFPIDENTIAL INFORMATION = BEE PAGE |}

PAGE 15 LISTX/TXTY : LIST AN INDEXED FILE PRUGRAM
21233 SAVCHRR 163 *171
Pd027 SDFLAG «B21A
20n3¢ SONK ‘*831A
21041 SETIS #2114
20774 . SETSDR 84 '98~
20663 SETXDR 54 58
29080 SIGNOM “id hY:]
21330 SPCWPL *203 208
21323 SPCMPR 172 201
20544 START *38 221
10017 TusPs "658A
10661 TCHK? “751A
10648 TFMRS w713A
1@050 TFhu$ "J28A
1236 Y?& *228A
1840¢ TPBOFS *628A
10605 TPEOFS 6324
10231 TRS) 6573 A
N1146 TWAPY “293 A
1@634 TREADS . WGBIA
{pe1e Thad whatA
14053 TTRAPS *7314A
10037 Twi LR Y
1onB6 TwAlTS *7434
1Wn24 Twol KRS 0614
18M42 TwrITS *7V8A

204314 Txi *33 49 79

DATAPUINY CONPIDENTIAL INFORPATION » SEE PAGE |

PAGE 16 LISTX/TXY LIST AN INDEXED FILE PROGRAM
27482 uUnNPADS w131

21116 wRITES *478A

2¢154 XCSFNm »20 110

26322 XEOF 28 213

28017 XXXXXX «1031A

110 LABELS USED

28.8 EXAMPLE OF SOPHISTICATED ASSEMBLER

LANGUAGE LINKAGE TO SORT

This subsection gives a detailed example of the use of the assembler language
linkage method in SORT. The example is in the form of the complete program
SORTTEST, described in 28.3.12 of the SORT Section, and extensively described in
the comments of the program itself. ‘

A modified version of the SORTTEST program produced the SORT OPTIONS
COMBINATIONS SAMPLE LIST which is listed in subsection 28.9.

The SORTTEST program was the system controller program which used the
SORT utility to produce the sorted output sample files listed in subsection 28.10.

28-32 PART lll SYSTEM COMMANDS

PAGE 1 SORTIEST/TXT SORT OPTIONS COMBINATIONS GENERATION PROGRAM

DOS ASSEMBRLER 5,1 663 LAHELS

CONFIDENTIAL PROPwRIETARY INFORMATION

Tw1S ITE® 18 THE PROPERTY OF DATAPOINT CORPORATION, S&N ANTONID, TEXAS, AND CONTAINS CONFIDENTIAL aAnD
TRADE SECRET INFORMATION, THIS ITEM MAY NOT BE TRANSFERRED FROM THE CUSTUDY DR CONTROL OF DATAPOINY EXCEPT
AS AUTHORIZED BY OATAPOINT AND THEN ONLY BY waY OF _OAN FOR LIMITED PURPOSES, 1T MUST NOT BE REPRODUCED
IN WHOLE OR IN PART AND MUST BE RETURNED TO DATAPOINT UPON REQUEST AND IN ALL EVENTS UPON COMPLETION OF

THE PURPOSE OF THE LOAN,

EM NOR THE INFORMATION IT CONTAINS MAY BE USED DR DISCLOSED TO PERSONS NOT mAVING A NEED

NEITHER THMIS IT [
WITHOUT TRE PRIOR WRITTEN CONSENT OF

FOR SUCH USE UR DISCLUSURE CONSISTENY WITH THE PURPOSE OF THE LOAN,
DATAROINT, -

DATAPOINT CONFIDENTIAL INFORMATION = SEE PAGE 1

PAGE 2 SORTTEST/TXY SORT CPTIONS COMBINATIONS GENERATION PROGRAM

INCLUSION AT UOS/EPRT

DATAPOINT CONFIDENTIAL INFORMATION = SEE PAGE |

PAGE 3 SUNTTEST/ZTXT SORT UPTIONS COMBINATIONS GLENERATION PROGRAM

1. o« PROGRAM TU GENERATE COmBINATICANS OF OFTIONS FOUK SOKT ,

2, .

3, . THIS8 PROGRAM GENERATES ALL MAJOR COMBINATIONS OF QOPTIONS USEABLE

4, o IN SDRT , OBVIOUSLY IT 15 NOY FEASIBLE OR DESIRABLE TO ATTEMPT

5, s TO GENERATE AND YESY aLL POUSSIBLE COMBINATIONS OF OPTIUNS AND KEY

6, « FIELDS THAY COULD BE waANDLEUL BY SORT,

7. ’ : .

8, . IN THE CONFIGURATION OF THE PROGRAM IN THIS LISTING THE PROGWRAM

9, s GENERATES OUNLY THE PORTIUN OF THE PARAMETER SBTRING AFTER THE SEMICOLUNM
18, e IN THE INITIAL SORT PARAWETER STRING, AND APPENDS THAT PURTION DF THE
11, o PARAMETER STRING TO THE BASIC PARAMETER STKINGS
12. 1]

13, . SORY INFILEIORY,OUTFILEIDR2,:DROy
14, v '
18. s LOADED WITH THE PROGRAM INTD MCRS, IF AN OUTPUT LIMITATION STRING
16, » WOULD BE REQUIRED IT TDO 18 GENERATED AND A POINTER TO IV IS PLACEL
17. o IN THE PARAMETER TABLE, 1IF 4 MARDLCOPY OUTPUT HEADING STRING WOULD
18, o BE REQUIRED A PUIKNTER 7O IT IS ALSO PLACED IN THE PARAMETER TABLE,
19, » '
22, . THE PROGRAM CONBISYS OF TWREE MODULEST SORT TESY CONTROL MODULE,
21, . SORT OPTIONS GENERATION MOODULE, AND SORY INITIALIZATION MODULE,
22. L]
23, . THE SORY TESY CONTROL MODULE RESIDES IN THE RESEWVED MEMOQRY AREA OF
24, e THE SORY UTILITY WHERE IV w~ILL NOT BE OVERLAYED OR DESTRUYED BY SORT,
25, e« THE CONTROL MOUULE nOLDS THE VARIOUS CHGUNTERS, POINTERS, CONSTANTS,
26, o LINKAGE DATA AREAS AND LINKAGE CODE FOR LOADING AND LINKING TQO SORT AND
27, ¢« FOR RELOADING THE SORT TEST PROGRAM FOR RE=ENTRY,
28, ’
20, . THE ENTIRE SURRREST/CMD PRUGRAM IS REeLOADED AT THE END OF EACH SORT,
3e, e BUT FIVE VITAL BYTES THAT ARE COUNTERS OR POINTERS ARE NOT OVERLAYED BY
31, e« RELOADING., THE BYTES aRE INITIALIZED OURING THE FORST SORTTEST/CMD
32, o« PROGRAM EXECUTION anD uPDATED BY SUCCESSIVE RE-EXECUTIONS OF THE SURT
33, s OPTION GENERATION mQOULE,
34 5 .
35: N THE SORY OPTIONS GENERATION MODULE IS THE MOUDULE EXECUTED AFTEN EACH
36, e SORY AND UPDATES YHE VARIOUS PGINTERS AN COUNTERS; CENERATES THE
ar. . PARAMETER STRING OPT1IO~ VARIATIONS AND, #HEN REGUIRED, ThmE LIMITATION
38, + STRINGS AND VARIATIONS AnD TmE HARDCOPY OUTPUT HEADING STRING,
38
40: : THE SORT INITIALIAZATION MODULE PERFORMS RATHMER EXTENSIVE INITIALIZATIUN
41, o CHURES FOR THE SuNY TESTING, INCLUDINGS
42

a3, C i, INITIALIZES THE PARAMETER GENERATION BYTES,
a4, . 2, MAKES SURE Trme SORTTEST/CMD PROGRAM TTSELF IS8 UM DIkVE w»,

45, . 3, CHECKS TO MAKE SuwE URIVES | AND 2 ARE ON=LINE,

an, N 4, MAKES SURE THE SGRT UTILITY (SORT/CmMD AND SORT/0Vi) IS OUN DRIVE o,
47, . 5. DETERMINES FRO~ OPEWATOR THAT DRIVES 1 AND 2 HOULD SCHATOH PACKS,
a8, . 5, MAKES SUWE ALL TEST FILES (SPECIFIED AT SURTTEST ASSEMALY TIME) Ank
49, . UN DRIVE @,

Se, . 7¢ KILLS ALL FILES aA~D DEALLOCATES ALL SPACE ExCEPT CYLINDER ZERU UM
51, . DRIVES | any 2,

52, N 8, DPENS THE INPUT/TXT FILE ON DRJVE 1, SETS FILE SIZE YD 6696 RECURUS,
53, e 9y EXITS TO SEWUENTIAL I~PuT FILE GENERATION WOUTINE In SUNWT OPTIONS
54, « GENERATION ®OUULE,

PAGE

4

SORTTEST/TxY

DATAPOINT CONFIODENTIAL INFORMATION = SEE PAGE 1
SORT UFPTIONS COMBINATIONS GENERATION PRUGRAM

*

THE APPRUACH T DPTION SELECTION 13 METHODICAL AS OPPOSED TO RANDOY,
THE GPTIONS TD BE INCLUOEU 1IN B0UTH THE INITIAL PARAMETER STRING AND N
THE LIMITATIUN STRING ARE SELECTED BY THE BIT PATTERNS IN ONE BYTE TO
AMICH 1S ADDED ONE UNTIL & LIMIT 15 REACHED, THME LIMIT IS ZERD (wrRAP-
ANQUND) IN THE CASE UF TWE BYTES FOR THE INITIAL PARAMETER STHING AND
P24 FOR THE LIMITATION STHING,

THE SIGNIFICANCE OF Tme BITS IN THE BYTES 1§ A5 FOLLOWSS
PARAMETEN STRING BYTES

7 3

- 3

4 A3 A2 Al Y] .
0 (TTITY OemaCOALLATING SEWUENCE
[) VsASCENDING
0 0 180ESCENDING
© 0==nSPECIAL OUTPUT SPECIFICATION
° PpsND SPECIAL OUTPUT
0 O1=TAG FILE
[1sLIMITATION STRING, NO PRINT
° 14sLIMITATION STRING AND PRINT
0seakKEY GROUP INDICATOR
2aNO PRIMARY/SECONDARY SPECIFICATION
1sUSE PRIMARY/SECUNDARY SPECIFICATION
sonpgsPRIMARY SPECIFICATION
18SECONDARY SPECIFICATION
swaHEADER KEY EVALUATION TYPE:
SSEQUIVALENCE
18 INEWUIVALENCE
se=8QRT K€Y DIRECTIONI
2sFORwARD SORT KEY
1sBACKWARC SORT KEY
wesQUTPUT FILE FORMAT
¢sCOMPRESSED SYMBOLIC (SEQUENTIAL)
18 INDEXEL RECOROS

A A
< 0
[°
o °
[L]
0 [
o °
L] °
° <
] L
[o
0 ¢
Q -
°

)

L3-S - 30 -3 - B -0 - B -3 - Y - L - 3K - 3% -]

A
(]
4
¢
(]
[
(]
[
0
4
0
0
0
o
(4
°
¢
9
(]
0
]

LIMITATION STRING BYTE!

A7 A AD Ad AJ A2 Al A¢
revalvesedewawld 0 . [Dewa=nld
¢ 0) CemmOUTPUT INDICATORSS
NOT USENw==9 ° 9 WORFORWARD PUINTERS
Iy 0 WisBACKwANRD PUINTERS
0 ° 168ASCI] RECORD PUINTER
Qeae=d 11mA8CII STrING

OmeaCONCITIONAL OUTPUT SPECIFICATION
2nSUNCUNDITIONAL QUTYPUT
21sUSING CURKENT HEADEFR
108USING REL, BEWUIVALENCE
118USING REL, InNEGU]IVALENCE

on..-....-.0...0....-......‘.C‘..o.qc...‘.....-.

1840,
let,

—
-

B i
QARG S OTNGEEE LN
® B ® ®» 5 B O & 0 G B O S E
LR b A B B 2 B 2B b 2B b 3 b b 4 4

- e
> N
L
» >

19,4
‘20, A
21,4
22,4
2da.A
24 ,A
25,4
264
27 A
28,4
29,4
Ju, A
3104
32,4
33,4
38, A
39,4
10 A
37,4
RIS
39,4
49, A
41 .k
42,4
Ad A
A4, A
45,4
4t .8
a7 A
ab A
at 8
v g A
21,4
52.48

nlo0e
ALeed
71206
vwioae?
viese
P1055

UL

21233
21236
h1dal
pledd

v1e11
p3022
721143
21146
r1151
14507

vieed
Y11
r1e71
niuny a4

A7
21142
wited
vilie
V1113
A1110
w1121
r112e
w1127
v11d2

AR RI-)

UNTIEST/TXT

DATAPOINT CONFIDENTIAL INFURMATION = SEE PAGE 1

SORT OPTIONS COMBINATIONS GENERATION PROGRAM

ROOTS
RUNXS
LOADXS
GETNCH
DRS

L} |

OSKWAY

INC

EQU
eQu
EQU
EQuU
EGu
EQu
EQU

BOS/EPT

THIS FILE CONTAINS THE

LOADER ROUTINES

Alovn
Bi2ay
a1ees6
Bioa?
'3Y°1-1]
p1e8s
01060

noLs

INCLUDE THE LGS ENTRY POINTS

1.3 ENTRY POINTS

KELOAD THE OPERATING SYSTEM

LOAD AND RUN A FILE BY NUMBER

LUAD A FILE BY NUMBER :

GEY THE MEXT DISK BUFFER BYTE

READ A BECTOR InNTO THE D1SK BUFFEK
wRITE A SECTOR FROM THE DISK BUFFER
WwAIT POR DISK READY

: TIMEwCRITICAL SCHEDULING ROUTINES

.
€8s

TPs
SETI1S
CLRIS

EQL

EQU-

EQU
EBU

n1e33
11036
#1e4)
wig4a

CHANGE PRNCESS STATE

TERMINATE PROCESS

INITIATE A TVIME-CRIVICAL PROCESS
TERMINATE A TIMEWCRITICAL PROCESS

. GENERALIZED PROCESSING ROUTINES

[
INCHL
DECHL
BLKTFR
TRAPS
EXITS
CMDINT

EQu

EQu.

EQU
EQu
EQU
EQU

dlell
21422
w1143
1146
01153
14507

INCREMENT hR{

DECREMENY ki _

TRANSFEK A BLOCK OF MEMORY

SET A DISK ERROR CONDITION TRAP
CLDSE ALL FILES AND ReLOAD U0S
INTERPRET MCRE AS A COMMAND

' SYMBOLIC FILE HANDLING ROUTINES

.
FREPS
OPENS
LOADS
RUNS

tou
Ey
Equ
EQU

wivnbd
vi1a66
"7
{74

UPE» OR CREATE A FILE

OPe~ AN EXISTING FILE

LOAD & FILE BY NAME

LUAD AND RUN A FILE BY NAME

: LNGICAL FILE MANDLING ROUTINES

»
CLOSES
CHOUP®
PROTES
PUSITSH
READS
WRITES
GETS
LETRS
FUTH
PUIRS
BSF3

EQu
EGU
[ANY)
EQU
EGu
EGU
EQU
EQu
EQU
EQU
EQU

wla?7
wiiag
23105
41ite
41113
211186
w1121
w1124
ni12?
ARR T
»113d8

CLOSE & FILE

OELETE SPACE IN A FILE

CrRANGE THE PROTECTYION ON A FILE
FOSITION TO A RECORD wiTmIN A FlLt
REAU A RECORD INTU THE BUFFER

wRITE A RECURD FROM THE BUFFEN

GEY THE NEXT BUFFER BYTE

GET AN INDEXED BUFFER BYTE

STURE InTU THE NEXT BUFFER POSITIUN
STURE INTO AN INDEXED BUFFER PUSITION
BACKSPACE UGNE RECOUKD

DATAPOINY CONFIDENTIAL INFORMATION = SEE PAGE 1

PAGE 6 SORTTEST/TxY SORT OPTIUNS COMBINATIONS GENERATION PROGRAM
53,4 .
54,4 ., KEYBIJARD AND BISPLAY WOUUTINES
35.‘ (]
56,4 211D¢ DEBUGS EQU 014154 ENTER THE DEBUGGLING RUUTINE
57 .4 ¥1157 KEYINS EQU RRE-24 OBTAIN A LINE FRUM THE KEYBUAND
58,A 1162 USPLYS ELU 41162 GISPLAY A LINE ON TrHE SCREEN
29,4 .
6P, A)) ¢ CASSETTE TAPE nHANDLING ROUTINES
bl.‘ [4
62,4 1200F TPBCF® EQuU Alv@wy PUSITION YO THE BEGINNING UF A FILE
63.,A 100B¥Wd TPECFS EWQU ploees POSITION TU THE END OF A FILE
64,A 10012 TRwY EQU 21ve12 PHYSICALLY REWIND A CASSETTE
65.,A 106617 T8SPS [4:]V} wieeyz PHYSICALLY BACKSPACE ONE RECOND
66,A 10224 : TWBLKS EOU piue2d wRITE AN UNFORMATTED BLOCK
67,4 16031 TRS EQU 10931 HEAD A NUMERIC CTOS RECURD
0E,A 10034 TREADS EQU 218034 TRS AND WAIT FOR LAST CHARACTER
69,4 10837 . Twd EQU 210037 WRITE A NUMERIC CTOS8 RECORD
72,A 1nR42 TWRITS EQU A1pae Tw3 AND WAIT FOR LAST CHAWACTER
7i1,A 104D TFHRS EQu 211245 READ THE NEXT FILE MARKER RECOURD
72.A 1005 TFMRS EQU a10ede wRITE A FILE MARKER RECURD
73.A 1P053 TTRAPY EOQU 4190083 SET A CASSETTE ERROR TRAP
7a.,A 12656 TWAITS EQU A1P056 wAIY FOR 1,0 COMPLETION
75,4 (006} TCHXS EQu 21006} GET 1/0 STATUS
76.A .
77 .A o« INTEWNAL DOS EJUIVALENCES
Ta,A »
79.4 22¢L4 DOSPFN EQU sedB 4 PFN FOR USE BY DRY® AND Dw$
BU.A WRVED DOSPON EQU AR N“E] PON FOR USE BY DKS AND Lad
a1,4 200206 LOSPTR EQU v0e26 BUFPTR USED BY GETNCM
82.A V227 SDFLAG EGQU weu27 SuB=DIRECTORY EXISTANCE FLAG
B83,A PVOJIP SDNR EQU 4eode SUB=DIRECTORY NUMBERS (1 PER DKRIVE)
B4, A RlaCY) MCRS E0U a14pe MUNITOR COMMUNICATION REGION
85,4 11544 LFT EQU 21544 LUGICAL FILE TABLE
86,A woRRE LF© (1+°11] V<4 LOGICAL FILE w@
B7.A PRE22 : LF1L EQu 1¢4 LOGICAL FILE #i
88,4 Qvdae LF2 EQU 2¢4 LOGICAL FILE #2
B9.A VOBO6Y LF3 Eaqu Jed LOGICAL FILE #3
9h,a : . .
91,4 o LOGICAL FILE VABLE OESCRIPTIONM
Q2.4 3
93,4 YRV PFN EQuU “4 (1) PHYSICAL FILE NUMBER
94, PURAY PON EQU 1 (1) PHYSICAL ORIVE NUMBER AND PROTECTION
IR A PArV2 LRN EQU 2 (2) NEXT LRN TO BE OEALT wlTH
O, A viéGea BLRN EWU 4 (2) FIRST LRN wITHIN CURRENT BEGMENT
97,56 niulo csn EGQU [(2) CURRENT SEGMENT DESCRIPTOR
93,4 vuviwn RIMCYL EQU 8 (1) CYLINDER CONTAINING THE RIS
99,4 vunil RIBSEC EQU 9 (1) SECTOR CONTAINING THE RIB
it A wAALR MAXLRN EQU 1e (2) LARGEST L®N REFERENCED
101 ,A ARR14 LRNLIM Elu 12 (2) LARGEST LRN ALLOWED
1424 wAdte BUFADR EQU 14 (1) CURREMT CONTROLLER BUFFER ADORESS
18,4 w1y xXXXXx EWU 15 (1) NOT USED
jvd, A .
125, 4 o DOS 1,3 MEMORY MAPPING

1vr,a '

PAGE 7

17 A
148 ,4
{119, 4
112,4
1114
112,4
113,4
114,4
118,4
116,4
117 .4
118,4
197,
128,
199,
1ie,
111,
112,
113,
114,
115,
116,
117,
118,
119.
120,
121,
122,
123,
124,
125,
126,
127,
128,
129,
138,
134,
132,
133,
‘3‘.
135,
136,
137,
138,
139,
14v,
141,
142'
143,
144,
145,
146,
147,
Lak,

BNvA L
vivav
vapuy
PHane
vHn72
46vpY
w74ep
{pvuy
12400
17000

gleltl

D14ve
vldee
v1441

vbida

rb144
26145
wb6146
vwb147
6180
¢b191

wv1de
vbina
wo1d6

vhiov
vodit

vH27v
eb2le
2h273
vodidn
vOHIBS

SORTTEST/TXT

123 117 122 124 840

Qpo
ane
a1t

va’
1ve

@age
332
266
176
a7 e

wen
Y
M4

122

By

147
a71

1ed

11

#o6
43

ivd 117

12¢ ¥o0d

214 347

* %2 2 % % RN N S e e

DATAPOINT CONFIDENTIAL INFURMATION = SEE PAGE 1

SORT OPTIONS COMBINATIONS GENERATICN PROGRAM

Gndapne
AP LY
YR40uBY
ueS4u@
ubdb72
weeBvd
ne7480
W1vdaev
“124u0
v170uve

wie1l

SORT TESTY

THE VARIOUS COUNTERS,

LOKRADS® EQU

LDOSADS EQU

OVLADS EQU

DSPADS EQU

KEYADS EGQU

DEBADY EGU

UNPADS EQU

CASADS EQU

CMDADS® EQU

COVADS EQu

NCHLS EQU

L]

.

SEY
pe

PRMOPS 8k

.

SET

L

PRH®FLG 5K

LIMFLE 5K

FNTPTh Sn

SRTPFH 8K

TSTPEN 3K

CIFLG L1

[]

PTABLE DA
DA
0A

L]

LISTR DC

L]

HELING DC

L]

SKRTLNK LC
LDC
MLE
CALL
PUSH

MCHS

SYSTEX LOADEN

L0S RESIDENT

008 OVERLAYS

CRY wRITE ROUTINE

REYUODARD KEAD WDUTINE

GI6x DEBUG

JMUSED PAGE

CASBEYTE TAPE DRIVERS
COMMAND INTERPRETER

CUMMAND INTERPRETER QVEKLAYS

END OF DOS 1,3 ENTRY POINTS

"I I I BE IR 2 I 2 K I Y I I I R BN N NN BN N R DL L B N L

CONTROL MODULE

THIS CODE IS LOADED INTO THE RESERVED MEMORY AREA OF THE SORT UTILITY
WHERE IT WILL NOT 8E OVERLAYED OR DESTROYED BY SARYT, TWIS CODE mOLDS
POTNTERS, CONSTANTS, LINKAGE DATA AREAS ANO
LINKAGE CODE FOR LOADING AND LINKING TO 8OURT AND FOR RELOADING THE
SORT TEST PROGRAM FOR RE=ENTRY,

."tl'.'l’ﬁ.""t't"'-*.".it_*'i'.'.

MCHS PARAMETER STRING INITIALIZATIONS

'SORT INFILESURY,QUYFILEIDR2,30R0}?

[

6144

- . e

1 d
£

NETuURN

LOCATE IN RESERVEDN MEMQRY AREAS

PARAMETER STRING DPTION FLAGY
LIMIT2TION STHRING OPTION FLALY

FILE NANE TABLE POINTER

SURT/CHML PRYSICAL FlLE ~uMBER
SGRITEST/C®D PHYSICAL FILE ~NUMBER
INDEXED FILE GENERATION 5»17CH
PARAMETER TABLE FOR 8O0RT LINKAGEZ
LImITATION STRING ADDRESS (ASSUME MONE)
~ARGCOPY wEADING STRIMG AUDREDS (ASSUME NONE)
SURT EXIT AUDRESS

VIMITATION STRINGS (SAMPLE mAXImUM SILE)

'TRYRECQORY=> u' /58P, %! al,i=64',415
mARLCOPY HEADING SThInGS (SAMPLE max]ItUM B1LE)

VOLHP SR 1 1=22

4

*SRTIPFN

LOADY

IHECORD®> ml/52P,m' 8),i=bu!,nld
LInNKAGE TO SORTS
LUAD THE SONT UTILITY FRUM URIVE ZERO
JSE THE PFA

LINK TO THE SORT

¢ & & & & % & GRS

DATAPOINT CONFIDENTIAL INFORMATION o SEE PAGE 1

PAGE 8 SOKTTESY/TXT SURT OPTIONS COMBINATIONS GENERATION PROGRAM
149, 06324 v66 132 e5¢ via HL PTABLE
150, V631 Ve RET
151, " LINKAGE FRUM SUKT3
192, wedi1 226 puvr KRETURN LC v RE=LOAD THE SORY TESY PROGRAM
153, #6313 332 LOC USE THE PFW»
154, V6314 266 189 @56 414 347 MLE «TSTPFN

155, 06321 146 @71 Re2 CALL LOADS

DATAPDINT CONFIDENTIAL INFORMATION o 3€E PAGE 1

* R % % ¢ N B &S

PAGE 9 SORTTEST/TXT SORT UPTIONS COMBINATIONS GENERATION PROGRANW
156, »
157' I R 2EE 20K 2NE TR JUE 200 JEE S NN DN NN R T L NEE NS BN BN SN 4 L 20 BEE T BT BN BN D N S B N B S N N]
158, »)
159, L S ORY OPTYT I U®HS G ENERAMTYTION MG DULE
10, "
161, " THIS MOUULE 18 LOADED ANU EXECUTED wlTH THE INITIAL PROGNAm LOAC AND
162, * RE=LOADED AN EXECUYED AFTER EACM SORT, UNTIL ALL SORY UOPTIONS HAVE
163, * BEEN GENERATED FOR ALL GF THE FILES IN THE FILE NAWE TABLE,
i64, »
155. 'EE B EE R B R BTN T 2 N BN IR JNE JEE BEE NE BN NN BN BN 2 L N NN NN N NN BN N N BN B BN BN B SRR "
1661 L] B
187, 06324 066 144 856 214 J¥7 MLA *PRMFLG SEE IF ALL OPT]IONS GENERATED FOR FILE
166, 263334 260 ORA o
1690, 06332 150 364 016 JT2 NXTFIL YES
170, 96335 066 {44 056 B14 3v7 GETAD MLA wPRMFLG GEY THE PARAMETER FLAGLGS BYTE
173, p634aR 3190 LBA SAVE THE OPTION FLABS IN B
172, 06343 066 241 956 v9J KL PRNOPS INITIALIZE THE PARAMETER STRING PUINTER
173, @6l4a7 044 001 ND 1 GET ASCENDING/DESCENDING
174, 06351 150 362 ¢14 . JT12 GETCI ASSUME ASCENDING
175, 06354 226 194 LC et ELSE PYT DESCENDING
176, 06336 372 LMC : ’
177, ©O63IS7 1¢6 Uil en2 CALL INCHLS >
l".]
179, ©6362 J@) GETCI LAB GET COMPRESSED/INDEXED
1880, v6363 Qa4 204 L) 1¢7 :
181, @6365 150 043 815 JTZ GETSOS ASSUME COMPRESSED
182, 0637 070 PUSH *SAVE THE PARAMETER STING ADDRESS
183, 063731 066 151 @5€ @14 387 MLA *CIFLG FIRST TIME nOP
184, 06376 269 : ORa
185, 96377 119 @821 @18 JF SETINX JuMP IF NOT FIRST TIME
186, ©64v2 Qo6 377 LA L TURN OFF THE FIRST TIME NOP
187, ub4da D66 151 €56 V14 37e M8A ¢(IFLD
1689, e6411 106 324 217 CALL CwTInX COPY NAPED FILE TO INDEXED INPUT FILE
189, 06al4a @¥66 144 ABE6 V14 317 M B wPRMFLG RESBTORE THE PARAMVER FLAGS BYTE
{9, V6421 263 SETINX POP. *RESTORE THE PAWAMETER 3TRING AQDRESS
191, ©»6422 02C 111 Lc 11t SET THE INOEXELD FLrG
192, nb6424 372 LMC
193, 6425 146 Wiy Bv2 CALL INCHLS
194, 643k 341 LAB W1TH THE INDEXED FORMAT
199, vbad1 @Aaa Pw6 ND Jey NO LIMITATION STRING CaAv bt SPECIFIED
196, w6433 274 122 cP 1<}
197, 6435 {150 124 15 J12 SETTAG TAG FILE SPECIFICATION IS PERMITTED
198, w6447 {v4 112 615 JMP GETKG ELSE JUST GET REY GKQUP

PAGE 19

199,
28,
24y,
2v2,
2¢3,
204,
2es,
206,
287,
208,
299,
219,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,
226,
227.
228,
229,
23e,
231,
232,
233,
234,
238,
236,
237,
238,
239,
240,
24},
242,
243,
244,
245,
246,
247,
248,
249,
251,
251,
2%2,

#6443
76464
vb 446
v645]
¢6453
6456
06457
6461
6462
CI-Y1-1]
#6466
ve47e
26473
v647%
26476
265021

26504
26506
(1-+1.04

'1-2- 2 ¥
26513
0515
263280
26521
26523
26525
26339
26532
26333
08336
63540
26541
¢6544
06545
26547
[1.3-1- 3}
©¥65%4
w6556
*6557
6562
w6563

28566
26567
265714
7?6573
06574
26575
11"}
o644
wholw

SORTTEST/TXT

LD
244
150
274
159
32¢
28
378
196
Je2
074
110
226
372
1né
1o4

826
335
346
"]-1]
150
(33
116

beo
112
ve2
1ua

114
211
eos
112
110

211
112

124
o111
gle
166
Q26
120
132
123

211
1.1}

011

244
75

158

243

211

vll

108
2e6

263
2w
273
143

b1

#15

@ee2

(2 %]

ee?
fLs

(121

2% I

218

L'}

P02

815

nez

ae2

/3-1.]
B
[(3-1.]
(47

429

22¢

DATAPDINT CONFIDENTIAL INFORMATION = SEE PAGE 1

SORT OPTIONS COMBINATIONS GENERATION PROGRAM

*

GETSUS Lag
ND
JT2
cP
Jrz
LCA
LA
LMA
CALL
LAC
cP
JF2
Lc
LMC
CALL
JmMp

SETTAG LC
L
CALL

GETKG LAB
ND
J12
LAB
ND
Lc
J12
LC

SETPS LMC
CaLl
LA
LMA
CALL
LAB
ND
LA
Jr2
LA

SETEI LMA
CaLL
LhC
CALL

L]

GETF8 LAS
ND
LC
LOM
LEL
.18
J17
HL

SETKEY CALL

J«i
GETRG
1<}

" SETTAG

et
INCHL®

J«}
GETKG
1R

INCHLS
GETKG

L

INCHLD

1<
GETFB

1«4
1pt
SETPS
18!

INCHLS
X

INCHLSE

1«5
gt

SETEL
tuy!t

INCHLS
INCHLS

1«8
6

KEYFwD
SETKEY
KEYBwD
BLKTFK

GET SPECIAL OUTPUT SPECIFICATION?
NG SPECIAL OUTPUT

TAG FILE OUTPUT
SET THE LIMITATION STRInG SPECIFICATION

SEE IF WARDCOPY OUTPUT

NO .
SET THE MARDCUPY OUTPUT

8ET THE TAG FILE OUTPUY

SEE IF KEY GROUP SPECIFLED
NO
GET PRIMARY/SECUNDARY

PRIMARY
SECOUNDARY

PUY RECORD EVALULATIOM POSITIUN
GET EQUIVALENCE/INEWUIVALENCE

EQUIVALENCE
INEQUIVALENCE

PUT HEADER KEY UHARACTEN

GET KEY FORWARD/BACKwWAND

FURNARD
BACKWARD

PAGE 11

253,
254,
255,
256,
257,
258,
259,
260,
261,
262,
263,
264,
265,
266,
267,
268,
269,
27¢,
271,
_2re2,
273,
274,
275.
276,
277,
278,
279,
280,
281,
282,
283,
284,
285,
283,
287,
208,

289,

29e,
291,
292,
293,
294,
295,
29%,
297 .
eve,
299,
Joe,
Idl,
bf?l
Icd,
3va,
Ind,
3eb,

#6619
20647
woe22
0e626

w663}
PE6I6
n6637
06642
6644
26647
¢6654
26656
26661
26663
w6666
11047
wee73
1-1.74-]
w6791

w6704
06706
verie

267153
weri17
weres

ve726
we73¢

pe734
ne74a

nb743
267 8¢
1-YA-}!
A0752
V6753
w755
2076¢
wB762
A6763
o766
AET 67
6774
n&?273
PETTH

SCRTTEST/ZTXTY

S 0bb

1vb
266
106

066
260
169
Q44
159
266
244
150
274
130
274
150
226
866
104

R26
266
1e4

n26
260
104

a26
#60

N46
106

466
31e
353
364
n44
{di
AZE
372
{vt
el
2aa
w74
150
w2

ubae
162
Qa2e
162

144

278
o004
279
148
o3
Je4
evl
318
¢ue
326
e13
312
334

['1.1-]
277
334

aes
dvd
334

Qv
31

169
143

b14
106
as7

¢l
14

wea
as]

e56
b2
256
202

836

916

216
31

il
215
215
56
n1s8

256

¢56
813

€16

vve

“hy

a25
243

“i14 J07

014 387

820

29

e15

r2e

A2Q

214

vi4 347

DATAPOINT CONFIDENYIAL INFORMATION = SEE PAGE |

SORT DPTIONS COMBINAYIONS GENERATION PROGRANM

, IF THERE IS

GETLIM

.
NMBF WD

.
NMBB WD

*
PUINTR

.
SETLIM

UISPLAY THE

HL

Rl
CALL

MLA

- QRA

JT8
ND
J11
MLA
ND
JT2
cP
JT2
ce
Jrz
LC
HL
JmMp

LC
HL
JMP

LC
HL
JMP

Le
HL

DE
CaLL

MLA
LBa
LHD
LLE
%D
Jrz
LG
LMC
CALL
LAB
ND
cP
J12
LC

CaLL

SDRY CALL AND PARAMETER STRINGS

M9
GSPLYS

© MCRS

VSPLYS

CARRIAGE RETURN, LINE FEEOD, LINE FEED

TO BE A LIMITATIUN STRING, CONSTRUCT 173

"PRMFLE

NXTPRM
1<2:
NXTPRM
«LIMPFLG
3

NMBF WD
1 .
NMBBWD
2
POINTR
11
ASCI1S
SETLIM

5
FWDNMB
SETLI™

5
HWONNE
SETLIM

1
ASTERX

LIMSTR
BLKTFR

YLIMFLG

d«2
EnpLIM
(X

INCHLS

3«2
1«2
SETHiN
Y

SEE IF THERE IS A LIMITATION STKRING

NU, NOT FOR INDEXED FILES

NO

GEY THE LIMITATION STRING FLAGS

SEE WHICH OPTION TO USE
D0 POSITIONS FORWARD

DO POSITIONS BACKwAKD

DU ASCII POINTER
D0 ASCII STRING
YRECORD=> ¥

11=20

2u=§1

GeT CunulTIUNAL FLADLS

NU CONDITICHNS

SEE 1F LSING CURRENT HEADEW

Sk HEAGER
LWBE RECORUL EVALUATIUN PUSITION

DATAPOINT CONFIDENTIAL INFUR=ATION = SEE PAGE 1

PAGE 12 SORTTEST/TXTY SOKT (OPTIONS COMBINATIONS GENERATION PRUGKAM

. 3Ny, e7ede 372 (8,1
Jus, 97201 126 011 eve CALL INCHLS
3v9, A7dve 301 LAB GET EVALUATION 1YPE
318, B7Av5 244 224 ND 1¢2
311, ©7207 2426 @75 LC 's?
312, #7911 150 @16 @16 J12 SETEY EQUIVALENCE
313, ©70314 Q26 vad LC Tant INEQGUIVALENCE
314, w7246 3I72) SETEY LMC
315, wv7@17 186 @11 ve? CALL INCHLS

316, @7022 @Y¢ : PUSH GEY THE RECORD EVALUATION CHARACTER
317,. 27023 966 144 @56 214 307 MLA *PRMFLG

- 318, @7e3p p8e POP
319, @7031 044 820 ND 1¢4
320, 07033 926 120 ‘ . LC e
J21, 97035 15Q Q42 016 JTZ SETREC PRIMARY
322, @7040 928 123 LC 181
323, P7042 372 SETREC LmMC
J24, 07043 (26 011 002 CALL INCHLS
325, @7046 124 106 016 JHp ENDLIM
326, . .
327, 07851 @7¢ SETHDR PUSH HEADER SPECIFICATION ONLY VALID IF
328, 97852 0266 144 256 214 397 MLA wPRMFLG SORTING ON PRIMARYS Ok SECONDARIES
329, 07857 o6 POP
330, #7060 Q244 010 . ND 1¢3
331, 876062 1o 1vv @16 JFZ PUTHUK
332, 979683 @66 1435 56 814 3v7 MLA oLIMFPLG ELSE JUST INCREMENY LIMITATION STRING FLADLS
333, @7e72 04 @pl AD 1
334, 07074 370 LA
338, 7075 tps 254 ¢1B JMP GETLI™
336. L[])
337, #7106 026 12¢ PUTHDR C 1pe SETY USE MEAUER RECORD
338, 97102 2372 : LMC
339, 9P7103 106 @11 @e2 CALL INCHLS
3‘0. L]
341, 027186 @26 212 ENDLIM LC -1 ¢! 1,1=60(LEOR)
342, 7810 33D) LDH :
343, 27111 346 LEL
344, 97112 066 326 056 020 : WL LIMEND
345, ©¥7116 186 143 ok CALL BLKTFR
346, : .
347, ©v7121 245 160 036 214 QE LIMSTR PuT POINTER TU LIMITATION STRING IN PYaABLE
348, v712% 266 133 ©56 214 J73 M8D wPTABLE+]

349, 027132 0966 152 374 MSE PTABLE

PAGE 13

3%0,
351,
552.
353,
354,
355,
356,
352,
358,
359,
360,
361,
362,
363,
J04,
365,
RT.1. 9
367,
jes,
369,
379,
371,
372,
373,
74,
ars,
378,
377,
378,
879.
580,
u81,
Jjee,
383,
384,
388,
386,
387,
51-1. 19
389,
39u,
391,
392,
3v3,
304,
3Aes,
396,
387,
3o8,
3999
4@,
a0y,
a0z,
40),

w2133
v?ial
7145

27159
87155
271%7
8716}
87164
e7170
pr374
07177
o791
27205
nr2ie
27214
wr217
p722y
ere21
67222
7228
87233
87238
07242
p7246

77254
a7256
n7260
nl12%1
w7263
wl2o6
07267

»n727
7275
07277
LYAYL
27343
V7305
n73ve
w7381
w7313
w7316
Nr317

72322
w7324
v73gb

SORTIEST/TXY

B4b
466
126

066
044
@274
110
240
L1}
1086
026
(1.1
106
266
106
33
364
3ze
246
L.1.1.]
666
048
968
je6

UL1
224
s7@
ar4
110
229
37@

’1-1.}
204
370
162
044
Junz
i5@
444
15
3n7
lrd

vaa
dn?
053

213
16¢
162

144
a6
2ns
251
211
241
332
21
da0
143
16¢
332

211
138
134
213
211
162

145
1D

029
ey

144
niel

322
nru

7
¢1e
27¢
e7v

¥ué

236
256
#02

256
216
238
256
216
aBé
o8

656
216

©36
3-1
374
e38
256
P2

1.}

¢la

56

16

nwia
91)

214

84
314

814 3487

ei4
293

e2e
gid4

214
@314 373

due
#14

D14 307

vnid 3v?

OATAPOINT CONFIDENTIAL INFORMATION = SEE PAGE)

SORT UPTIONS COMBINATIONS GENERATION PROGRAM

L]

L]
NXTLIM

L]
KXTPRM

L]
INKPRM

LE
HL

CALL

MLA
~ND
cP
JFZ

DE

HL
CALL
Lc
Hi
CALL

ML

CALL
LHD
LLE

ML A
AD
LMA
P
JFZ

‘SUA

LHa
NLA
AD

LMA
cT8
nNO

LAM
Jr2
ND

J12
LAM
JMP

ND
LAM
RTZ

1t
LIMSTR
DSPLY®

*PRMFLG
Jey
13
NXTLIM
HEDING
PRMOPS
XFREOS
i@
SPACES
BLXTFR
LIMITR
XFREOS

HEDING

wPTABLE+»D

PTABLE#2
11
REDING
0SPLYS

wLINFLG
i

nae
SRTLNK

*PRNFLG
1

INXPRM
4]

SRTLNK
ﬁlm
NXTPHRM™

SRTLNK

1eg2

DISPLAY THE LIMITATION STRINGS

SEE IF nARDCOPY OUTPUY

NO
CONSTRUCT THE HARDCOPY HEADING

PUT POINTER TO HEADING STRING IN PTABLE

DISPLAY THE HARDCOPY HWEADING

, NOW STRINGS ARE ALL SET7 COMPUTE THE NEXT FLAGSS

INCREMENT THE LIMITATIUN STRING FLAGS

CTATCH ALl LIMITATICN UPTICMS GENERATED
LINK TO THE 30ORT .
RESET LIMITATION FLAGS

INCHEMENT THE PARAMETER STRING FLAGS

SMECIAL CHECKING IF GENERATING INUEX PANWAMETEN
CATCH NO OPERATIOUN CASES

LINK TD THE SOKT

OTHERwISE)IF NOT uSInNG P/S

SKIP THE OPERAT]IOM

LINK TO THE SORY

SKIP GENERATION FUR ANY L IAITATICN STRING

FINISH (HECKING JF NO LIMITATION STRING

PAGE 14

404,
a0d,
aes,
4v7,
4¢8,
409,
ale,
411,
812,
413,
414,
a15,
410,
a17,
418,
419,
422,
421,
422,
423,
424,
425,
‘2‘.
427,
428,
429,
ajde,

n7326
07327

27332
a7333
w7335
a7336
A7337
07342
27343
27346

vw7351%
27332
87354
87355
27336
87387
27381
87362
27363

07364
873714

0737

27374
27373

SORTTEST/TXY

LT
14

387
074
253

317

106
374
106
104

3e6
204
354
J40
303
214
53
3¢
L1 M

868
d04
370
222
966

270 @36
015

331 e16
351 @16

332 ole

291

146 256 &l4 327
a10

151 256 214 370

DATAPUOINT CONFIDENTIAL INFORMATION = SEE PAGE |

SURT OPTIONS COMBINATIONS GENERATION PROGRAM

L
XFREODS

*
INCSwF

.
NXTFIL

POP
JMP

Lam
cP
RYZ
LBM
CaLL
L™B
CALL
JMp

LAL
AD

LLE
LEA
LAn
AC

LHD
LDA
RET

MLA
AD

LMA
Sua
MSA

NXTPRM

w13

INCEWP

INCSwP
XFREOS

*FNTPTR
8

*CIFLG

ELSE $KIP

MOVE A STRING UNTIL v15 E~COUNTENED

INCREMENT THE FILE NAME TABLE POINTER

RESEY THE FIRSTeTIME INDEX SwITCH

PAGE 15

431,
a2,
433,
434,
a3s,
436,
437.
4\,8.
439,
449,
441,
442,
443.
444,
445,
446,
a47,
048,
649.
ase,
454,
452,
453,
4%a,
455,
456,
487,
a58,
459,
a8,
461,
462.
463,
-7
465,
abo,
467,
468,
469,
are,
a7l.
472,
al3.
474,
475,
476,
477,
478,
479,
aBe,
481,
482,
483,
4Ra,

v7482
n74¢7?
w7441
?7412
p7414
w7416
w7447
07420
87421
pr4za
n74206
A7432
074358
¥7437
d7448)
V7445
p745¢
07452
07454
p7460
P7463
07467
#7472

n7476

p759014
w75@3
w7566
#7510
279514
97528
7523
w7528
Hw7%31
©7535
w7544
r7542
n7545
n7547
77553
?7557
X 4-1.¥]
7564
v7%7e
w7574
e75%77
v76ed
w76k4
[y 2. 153)
v7b1#
v‘7b12

SORTTEST/TXY

2606
dnd
d6v
206
414
35@
de7
269
160
paé
046
108
218
az6
21
186
216
226
246
1nb6
"2].]
106
966
126

¥16
106
826
P46
)11
106
a28
0ab
266
1486
216
126
026
046
66
106
226
Dah
1Y)
inb
216
1206
26¢
119
nik
126

146
21

nav
nee

e
219
25p
143
e2e
ace
25¢
266
240
eel
(1.
866
3az
243
233
162

020
113
@20
224
164
143
v2e
154
264
143
b2
116
w29
204
164
148
pae
164
224
143

(2-1

na2e

236
ee2

236
ee2

836
eue
¢36
2%4
256
ree

o2

236
056
bhe

v36
756
nee

uee

236
(31
Pne

rae
31
ene

2w -

121

ivd
e2n
v77?

w2

w17

214 307

nee
029

aee
424

224

"ed
eB3

20d
o3
B3

R4l

e
any

DATAPOINT CONFIOENTIAL INFORMATION » SEE PAGE 1}

SORT DOPTIONS COMBINATIONS GENERATION PROGKAM

+*

o COPY THE FILE NAMEL IN THE FILENANE VABLE TO INFILE/TXTIORY,

.
CPYFIL

.
CPYLUP

MLA
AD
LLA
LA
AC
LHA
LAM
ORA
JT18
LC
DE
CaLL
L8
LC
DE
CALL
L8

CaLL

DE
HL
CALL
CALL
ORA
JFZ

CaLl

*FNTPTR
FNTABL

FNTABL>8
L4

ENDTST
8
NAMEXT
BLKTFR
LF1

]
NAMEXT
UPENS
LF2

1

@
OPENS
Mi3a
FNMOVE
LB Y]
D8PLYS

LF1
READS
16
LFT#LF3
LFT»L5Y
BLKYFR
16
LFT+LF1
LFT#HLF2
BLKTFR
LF1
NRITES
16
LFT+LF2
LFT+LF1
BLRTFR
16
LFT+LF1i
LFT*LFJ
BLKRTFR
LF1
GETS

CPYLUP
LF1
CLOSES

INDEX INTO THE FILE NAME TABLE

CATCR END OF FILENAME TABLE aAND E~d OF TEST
MOVE FILE NAME TO NAMEXT

OPEN THE NAMED FILE ON DRIVE o

- OPEN THE INPLT FILE ON DRIVE 1

JUST USE THE PHYSICAL FILE NUMBER
SYSTEM3/SYS MUST BE PATCHED
TELL UPERATUR WHAT'S GOING ON

"SEQUENTIAL TEST FILE GENERATION USING ¥
"FILENAME/ZTXT, "

WEAD A SOURCE FILE KECURD
SAVE LF1 TABLE ENTRY

MOVE LP2 EAMTRY TO LF1 ENTRY

WRITE THE INPUT FILE RECODRD

SAVE LF2 TABLE ENTRY
RESTORE LFLi TABLE EnNTRY
CATCH SGURCE ENO=QOF=FILE

LOUP IF NDT THEKE
CLOSE THE SOURCE FILE

PAGE 16

a8s,
486,
487,
ass,
489,
ave,
491,
492,
493,
494,
495,
496,
497,
498,
499,
50,
504,
592,
593,
584,
505,
506,
307,

87615
w7647
w7622
w7624
27631
07635
w7640

V7643
w7647
07650
276352
2763%

- w7636

@7661
p7662
27668
©v7686
¥7678

b7873
87675
07764

SOQRTTEST/TXT

216
1¢6
216
266
266
186
104

266
w7
274
158
317
186
371
106
Jes
074
119

8206
266
te4s

240
877
377
22%
vi2
162
333

232

840
273

351
354

264
247

o886
352
143

av2
(3.1
(2.1
Bez
BN

eneé

@17
b6
216

217

256
eee

vad 371
v29%

420

e29

DATAPOINT CONFIDENTIAL INFORMATION » SEE PAGE |

SORYT OPTIONS COMAINATIONS GENERATION PROGRAM

L
FNMDVE
FNMOV]

»
FNMOV2

L6
CALL
L8
MSB
HL
CALL
JHP

Hi
LAM
ce
JT2
LBM
CaLL
LMe
CaLL
LAL
cP
JF?

LC
ML
JMp

LF2

CLOSES

-1
“LFTeLF3+}

mi7

D8PLYS

GETAD

~AMEXTY

[
FNMOV2

INCSwP
INCSwP

NAMEXT+8
FANMOVY

8
EXTTXT
BLKTFR

CLOSE THE "INPUT™ FILE
MAKE LF3 LOOX CLOSED TOO
"DONE,"

RE=ENTER FLAG GENERATOR

MOVE CHARACTERS UNTIL BLANK OK EIGMT CHARACTENS

MOVE '/TXT,',848

PAGE 17

5G8,
549,
518,
511,
512,
513,
St4,
518,
516,
517,
518,
516,
5208,
521,
a2z,
523,
324,
325,
527.
528,
529,
53@,
531,
532.
533,
534,
538,
536,
537,
538,
539,
sée,
544,
542,
3543,
544,
545,
546,
%547,

548,

549,
556,
551,
552,
553,
554,
585,
556,
357,
5586,
859,

300,
Skt

27744
e’74
7?7713
w7714
r7716
e772e
p7721%
w7723
¢rze7
27732
27734
#7736
7742
87745
@7747
877981
7755
¢776¢
87764
87767
27773

27776
1ed0e
18083
18205
1801¢
LB B
13214
1816
19021
16823
1ec2s
10032
102933
12435
140 aY

14vad
14449
12e8R
{6ed2

{v255%
16287
10402
1odoa
10”67
16¢7v
12¢7 8
ted7¢
1l

SORTTESLT/TXY

866
2n4
369
296
214
354
26
¢46
106
018
226
046
106
216
226
046
106
046
106
266
186

16
186
216
186
2690
15¢
274
150
074
15@
az7a
152
a16
1¢6
1vd

wis
1ub
a6
1e4d

21h
136
dad
1a0
22v
ivh
jv s
v
vibt

146
212

929

‘009

210
25¢
143
920
pee

259

266
040
201
200
p66
374
243
328
162

o2
113
229
121

123
v1s
¥55
083
376
Uil
ae3
vay
127
ary

n4e
127
b4
121

vap
127
B3
127

127
w67
116
27

-1

236
we2

UR]
eee

236
ez
236
01?7
(-1
ae2

nee
hine

e
pev
Py
rhe

414 J07

29

o290

2ua

224

#24

MY Se7

DATAPOINT CONFIDENTIAL INFORMATION » SEE PAGE)

SORT OPTIONS COMBINATIONS GENERATION PROGRAM

+ COPY THE NAMED FILE TO THE INDEXED INPUT FILES

'
CVTINX

*
GETREC
GETBYY

’
PUTSPC

.
PUTREL

PADREC

ML A
AD
Lia
LA
AC
LHA
LC
DE
CALL
L8
LC
DE
CaLL
L8
LC
DE
CALL
DE
CaLi
HL

CaLL

LB
CALL
LB
CALL
ORA
JT2
cP
J12
cP
JT12
cP
€T2
[N
CALL
JMP

LH
CapL
Le
JMP

L

CaLL
LA

CALL
Sita
CaLt
JFC
CailL
ML A

*FNTPTR
FNTABL

FNTABL>S
9

B
NAMEXT
BLKTFR
LF1

@
NAMEXT
ORPENS
LF2

1

@
OPENS
LBE-T)
FNMOVE
16
DSPLYS

LF1
READS
LF1
GETS

SRCEOF

415

PUTREC

obd

GETREC S
a1

PUT3PC

LFe

PUTS

GETBYT

LF2
PUTS
LF1
LGETS

LkZ
PUTS
3
PUTS

PIITS

PADREC

~RITES

YL FTLF2+ RN}

INDEX INTO FILE NAME TABLE

MOVE FILE NAME TO NAMEXT

OPEN THE NAMED FILE

B*.NANZ

OPEN THE "INPUT® FILE

BY PHYSICAL FILE NUMBER

TELL OPERATOR WHAT!'S GOING ON

WINDEX TEST FILE GENERATION USING FILENAME/TXT,"

READ A SOURGE RECORD
GET A LOGICAL SQURCE RECORD

CATCH END OF FILE

CATCH LEOR

C;TCH PEDR

CATCH 8PACE CUMPRESSION

PUY BYTe JF ~OT EOx DR EOF

NG THe ~EXT BYTE

wHITE THE LEUR
wrITE THE PEOR
PAD THE REST OF TME NECORD TO ZeRDS

«R]1TE THME RECOKRY
SEE IF THAT wAS HECUKD 9695

PAGE 18

56z,
563,
564,
565,
586,
567,
568,
569,
57,
571,
572,
573,
574,
575,
376,
877,
$78,
579,
588,
581,
582,
563,
384,
588,
586,
587.
588,
589,
59¢,
391,
592,
583,
594,
5085,
596,
567,
598,
899,
6ee,
601,
se2,
603,
64,
-11- 18
6ub,
607,
6608,
609,
619,
611,
612,
613,
614,
619,

18106
19119
18113
10116
1812¢

10123
1v128
10127
10130
10133
10134
10136
16137
10142
10144
16147
10152
10153
10158
18161
10164
10166
10171
10175

10200
10204
10207

18212
10222
19232
14242

{u24d
11u2%9
11263
18271
10277
10324
14311
1n312
14326
1n3ddn
1ulds2

SORTTEST/TXY

474
i10
2686
U774
118

016
226
22¢
106
Jee
224
320
118
008
126
229¢
186
j0@
108
186
816
106
266
lgd

266
166
104

13¢
1a4
10}
377

¥il
#40
061
es2
e
262
052
pay
054
¥de
1-04

045
ged
200
337
eed

pay
oRe6

127
Qo1

127
es3
127

127
147
116
77
229
877
012
162

225
162
151

104
o4
114

ene
vao
e61
1%
261
ueo

122
447
@49
{124

eae
307

gae

ee2

ez29
PRz

©vez
ege
2e2
002

062
256
ep2

856
202
0e

i1l
111
120

213
pap
255
©55%
255
255

105
¢a0
nae
13¢

ues

223

193
103
110

013
240
262
1.3}
as2
uo}

143
a4y
a4y
124

124
124
101

223
04
o6@
"1}
860
@61

117
854
Rap
211

OATAPOINT CONFIDENTIAL INFORMATION e SEE PAGE)

SORT OPTIONS COMBINATIONS GENERATION PROGRAM

[]
SRCEQF
PUTEQF

PADEOF

cP
JF2
ML A
cP
JFZ

LB
LC
SUA
CaLlL
LAC
SU’
LCA
JF2
LA
CALL
SuA
CALL
JFC
CALL
CALL
L8
CALL
ML
Jup

9685»8

GETBYT NO
LFTeLFReLRN

96993

GETBYT NO

LFe wRITE EOF TO "INPUT"™ FILE
s .

PUTS
1

PUTEUF
3
PUTS

PUTS

PADEQF

wRITES

CLOSES CLOSE THE "INPUT®" FILE
LFY CLOSE THE SOURCE FILE
CLOSES

L} ¥4 "DONE "

OSPLYS AND EXIT

o END OF THE SORT TEST:

.
ENDTSTY

ML
CALL
JMP

LEY "SURT TEST COMPLETED,"
DSPLYS
EXITS

FILE NAME TABLES
THESE ARE THE NAMES OF THE BASIC SORT TEST FILES, ALL HaVE

NTABL

L

« OTHER
L]

M1y
NAMEXT
KEYFWD
KEYBWD
FWDONMB
BWDNMB
ASTERX
ASCIIS
LIMEND
SPACES
EXTTXTY

.

L

s

« AN EXTENSION OF /TXT,
1

F

bC
ot
beC
]

'XDICT '
YADICT '
TALPHABET!
=

CONSTANTS USEL dBY SORT OPTIONS GENERATION MOUODULES

oc
nc
oc
pc
bC
oe
oc
oc
bC
oC
0c

A13,0,013,11,223
? TxT?®
'11=2¢1,4158
120=111,015
'{1=20"

‘=it

Tel

'8 'RECORDe> @',
)8! w1, 1,608,015
] '

Y/TXT ., 8

PAGE 19

616,
617,
618,
619,
620,
621,
622,
623,
624,
525,
626,
627,
528,
529,
630,
634,
632,
533,
634,
638,
536,
837,
838,
839,
640,
543,
642,
a43,
sa4,
545,
646,
#47,
348,
649,
659.
551,
882,
6553,
854,
655,
656,
657 .
AOR
59,
bee,
bbl,
eb2,
663,
664,
665,
666,
667,
A58,
t69,

12360
18361
10366
10371
10374
10377
18404
10426
10438
10415
10420

10425
19427
10434
10431
1043)
14434
10435
10436
10437
10449
10444
1ned7
1045]
10452
10453
10454
10455
10436
104062
10463

1U466
10479
10472
1vd76
18541
12589
14810
14515
18522
11524
19530
14533

SORTIEST/TaT

22¢@
26b
/1.1
266
P66
266
244
046
110
066
266

856
dre
37¢
J7¢@

144
145
146
151
145
éo3
L1}
371
144
159

236
a22
ez
86

Pué
Y4
121
ee6
131
Jve
101
J0@
812
246
1ve
2ué
191
3060
in}
Jpe
g12
046
#59
1eo

17¢

"}

243
262
©ve2

va6
221

w78 236

371 @22
rze
ben
191
(4-1.]
127
371
164
147
Bod
114
0eeé
165

vio
k1]
Aab
1ve
@46
14@
266
w66
w26
vae
106
46

¢38
ce2
236
nee
(A1)
«36

?36
wo2
¢36

256

at4 37e

ded 307

223

214 370

223

423

8e2d
az23

kY'y4
374

vl
nl4

a5

a2y

DATAPODINT CONFIDENTIAL INFORMATION » SEE PAGE

SURY OPTIONS COMBINATIONS GENERATICON PROGRAM

[~ 28 B B 3R 3% B 3 B R 2

TART

NODRV Y

L2 B BN BEN NN BN BEE NN DN BRI A A O

INTITIALTIZATILION

[2NN I 2 O I DN DN A DY D B B B

MO ODULE

v ¥ * W

"
"

L]

THIS MODULE I8 EXECUTEQ OMLY ONCE, AT SORY TEST INITIALIZATION, ”
. "

*

SUA
M8A
M8 A
M8A
M3A
MLA

ND
DE
JF2
MLA
T

LA
- Dl
EX
LA
EX
NOP
IN
NOP
SRC
DE
JFC
LA
Ex
NOP
IN
NOP
SRC
DE
El
JFC

LB
LC
nNE
CALL
DE
JTC
MLA
M8 A
LC

" DE

CaLL

DE

*PRMFLG
LINFLG
FNYPTR
CIFLG

wLFTeLFOe]
3 .

LT'R}

ERRDOR

LFT+LFo
*TSTPFN

wi7@

ADR
1
COMY

NAR
NODRVY
2

comMi

AR}
ERROR

LF1
w
SRTCMD
DPENS
M4
ERROR
“LFTHLF)
«SRTPFN
R4
SRYOV])
QPENY
nes

INITIALIZE THE PARAMETER FLAGS

[200 BN 2NN 2T AEE Y K 2EE 2EE 2NN BEE ZEE NEE NN K REK K BEE BN B 2N BN NN NN DR 20h B NN IR 2NN TN NN 2NN NN

INITIALIZE THE FILE NAME TABLE POINTER
INITIALIZE THE INDEXED FILE GENERATION SwITCH

CRECK THE SORTTEST/CMD DRIVE NUMBER
“BURTTEST/CMD NOT FROM DRIVE ©,"
BET BORTTEST/CMD PHYSICAL FILE NUMBER

SEE IF DRIVES § AND 2 ARE THERE

TDRIVE § NOT ON LINE,"

"ORIVE 2 NOT ON LINE,"

CHECX FOR S0RY ULTILITY FILES

ON LRIVE ZERD

"3ONT/CML RGT ON DRIVE ©,"

S&T SORT/ChU PRYSICAL FlLE ~UMBER

RSOAT/OV] NOT UN DRIVE "

PAGE 29

s7e,
671,
672.
673,
674,
6758,
678,
677,
678,
879,
689,
681,
682,
683,
684,
88s,
e8e,
687,
é8s,
689,
s9e,
691,
692,
‘93.
694,
69s,.
696,
697,
698,
699,
76”.
Tel,
Teg,
7063,
724,
78,
7v6,
77,
78,
7e9,
71¢,
711,
712,
713,
714,
715,
716,
717,
718,
719,
72¢,
721,
722,
723,

14537

18542
14546
18531
12533
18557
10562
18567
1257y
18574
18576
19602
18645
19606

10611
1¢013
10629
10622
196206
10631
10636
180640
10643
10645
196514
10654
10653

10660
10681
18663
106864
10668
1@a672
19671
10872
18673
10676
10704
107¢4
16727
14711
16713
10717
10722
14725
18732
16734
18739

SORTTEST/TXT

149

465
{46
426
266
186
866
é74
180
874
266
%-1
151
104

866
188
826
266
186
(1]
8r4
152
674
246
159
151
104

22¢
004
J6¢
206
214
3se
3e7
26
16
826
846
106
216
226
046
1v6
140
266
204
are
246

371

223

162
ve2
127
157
127
131
211
116
262
7

142

3t
162
002
127
157
127
131
260
116
348
371

21

212

aze
eee

017
aLe
25@
143
e2e
(2.1
25@
066
347
146
(Y

376

g2

@36
eee

ese
ee2
L1
eet

e56
“ee

21

256
eee

256
a2
1 1.1
e21

036
2ee

02t

az2

236
(4}

©uae
02
921
036

36

223

a25
w28

023

n2d

a2
223

023

n2e
220
vid

was

Jazy

347

Je7

DATAPDINT CONFIOENTIAL INFORMATION = SEE PAGE 1

SORT OPTIONS COMBINATIONS GENERATION PROGRAM

JTC ERROR
L
GETSCH Hl, M@6
CALL USPLYS
LC 2
mML REPLY
CALL KEYINS
MLA wREPLY
cP 'yt
JTZ HAKSUR
cP INT
.18 May
J12 ERROR
CEX BEEP
JHP GETSCR
»
MAXSUR WL ~es8
CALL DSPLYS
Lc 2
ML REPLY
CALL KEYINS
MLA *REPLY
cP 'y
JYZ FNTCHK
P 'nt
DE M9
JT2 ERROR
EX BEEP
JMP MAKSUR
L]
o« MAKE SURE ALL OF THE BASIC
« ON DRIVE ZERO1
]
FNTCHK SUA
ENTCKL AD FNTABL
LLaA
LA FNTABL>S
AC [4
LHA
LAM
ORA
JT8 ENDFNT
LC 8
VE NAMEXT
CALL BLKTFR
LB LF1
Lc (]
DE NAMEXT
CALL JPENS
JT¢C NOFILE
MLA wFNTPTR
AD 8
LMA
NE LY

"URIVES 1| AND 2 SCRATCHm 7 "

"END OF SORT TEST,"

TRY AGAIN

Pewe ARE YOU SURE 7 ewee ®

IF 80 CHECK THE FILE NAME TABLE
"I DION'T THINK SOJ"

TEST FILES IN THE FlLt MAME TABLE ARE

INDEX INTO THE ENTRY

CATCH END OF TaBLE
MOVE NAME TO NAMEXY

TRY TO OPEN THE FILE

JUMFE IF NOT THERE
BUMP THE PUINTER

"TO0 MANY FLLES,"

PAGE 21

724,
728,
726,
727,
728,
729,
73¢,
731,
732,
733,
734,
738,
7386,
737,
738,
739,
740,
744,
742,
743,
744,
749,
746,
747,
748,
749,
750,
751,
782,
783,
754,
758,
756,
757,
758,
759,
760,
761,
762,
763,
764,
765,
766,
767,
768,
769,
77e,
771,
772,
773,
774,
778,
776,
777,

16741
14744

14747
1¢7%)
14755
14736
1a769
19763
18766
18767
108774
14772

18779
18777
11020
110014
11803
1121¢
11014

11217
11028

11225
11827
11834
11038
11837
11040
11841
11042
11844
11043
11046
11047
1148¢
11851
11083
11254
110356
11487
11061
11862
11063
11264
11463
11266
114867
11471
11472
1127%
11¢77

SURTTEST/TXT

1%0
104

26
466
3a7
274
159
186
302
624
3e@
104

@26
335
348
266
186
246
124

v
'1-1.]

80
268
a5
'1.1.}
240
121
Jup
006
131
J0o@
230
137
3ne
dué
127
216
"1.1"]
vob
240
121
Jue
259
127
doi
¢24
31¢
112
310
wh2

371
261}

2ie
254

Bav
378
a1t
2ol
355
a3z
830
143
243
371
146

001
ens

178

211

377
12
170

Bl

wh6
vha

»22
w21

n56

nel
bve

n2y

256
eee
236
822

8d6

656

v22

vaa

024
220

214 370

240 37w

DATAPOINT CONFIDENTIAL INFORrRATION = 3EE PAGE 1

SURT OPTIONS COMAINATIONS GENERATION PRUGRAM

[]
NOFILE

NOFIL1Y

NOFIL2

.
ENDFNY
»

KILLEM

FRECYL

LOKKST

J12
JHP

Lc
nL
LAM
cp
JT2
CaLL
LAC
Su
LCA
JHp

Lc
LDw
LEL
HL
CALL
DE
JMP

Sua
M8 A

LA
MSA
El
LA
ny
EX
NOP
LA
EX
NOP
XRa
EX
NOP
LA
EX
LB
£l
LA
DI
EX
NOP
XN A
EX
LAB
Su
LBA
JFZ
LB
£l

ERROR
FNTCXL

8
HAMEXT

[.)
NOFIL2
INCHLS

.

NOFILY
MiReMitA
Mi1A
BLKTFR

M1t
ERRQORA

*FNTPTR

1
s008PON
2170

ADR

-1
wWRITE
202
wirza

ALK

wlle
i

FRECYL
“376=202

LrECK NEXT ENTHY

SCAN THE NAME FOR A BLANK

FOUND

MOVE THE RESYT OF THE MESSAGE 7O NANME

®/YXT NOY ON DRIVE @,°"
RESET THE FILE NAME TABLE PUINTER

KILL ALL FPILES ON DRIVES 1 AND 2

"SELECT DISK CONTROLLER BUFFER LERO

SET THE DISK BUFFeR INTERMAL ADDRESS

.) []
BE SUKE CYLINUEWR ZERD I8 SAVED

INITIALIZE THE CYLINDER COUNT
ENABLE INTEWRRUPTS FUR LOUPING

FREE THE CYLINLEN

DECREMENT THE CYLINDER COUnT

LOOP IF NCT THEKE

LUCK OUT THE REST

PAGE 22

778,
7769,
789,
781,
782,
783,
78a,
788,
788,
787,
788,
789,
790.
791,
782,
783,
794,
798,
7986,
797,
798,
799,
aeo,
801,
8oz,
ae3,
824,
8ed5,
8e6,
8e7,
8es,
809,
81,
811,
siaz,
813,
Bl‘.
818,
- 816,
817,
818,
B19,
82e,
8z1,
822,
823,
824,
aas,
826,
s8ez,
828,
829,
830.
831,

SORTTEST/TXT

906 170
240
121
Joe
206
127
da4
024
319
110
127
-1

377

-I'}
877

@16 Qe
246 Q200
106 €55
140 J0¢

(11
040
121
309
2%¢
137
310
a3
206
840
121
Je0
de¢o
127
3ol
P04 el
310
1190
230

17¢

17

145

2186
046
1868
140
J04
2ude
Ja0
274
119

oee
(121
"LE]
3oy

(13}

P30
174
(L'2]
LT
“73
062
162
B¥s

866
064
o656
266
106
066

377

R22

236
ea2
@22

o2

836
oee
e2e

»wa2
256

256
256
202
236

¥on

P12

424
v24

ane

de7
378

347

DATAPUINT CONFIDENTIAL INFURMATION » SEE PAGE 1

SORT OPTIONS COMBINATIONS GENERATION PROGRAM

CLRPAG

DIRWRT

LA
oI
EX
NOP
LA
Ex
LAB
su
LBaA
Jrz
EX
El

Le
1] 3
CALL
JTC

LA
01
EX
NOP
XRA
EX
LBA
£l
LA
01
EX
NOP
LA
Ex
LAB
AD
LBaA
JFZ
El

LB
DE
CaLL
JTC
LAE
AD
LEA
cP
JFZ

ML A
OR
MSA
HL

CaLL

MLA

vize
ADR

-y
WRITE

1
LOKRSY
wRITE

a

2

DLE]
DSKERR
é17@

ADN

COMe

w17
ADR

=}
wRITE

1
CLRPAG
]

1

Dns
DSKERR
1

238
DIRWKRY

*008PON

tpt

*M124A

mi2
DSPLYS

*DOSPUN

LOOP IF NOT THERE
FINISH OFF wITH A ZERD

CLEAR THE CLUSTER ALLOCATIONGTABLE

CATCH DISK ERROR
NOW CLEAR THE DIRECTORY MASTER

INITIALIZE THE BUFFER POINTER

ENABLE INTERRUPTS FOR LDOPING

BUMP THE BUFPER PODINTER

CLEAR THE DIRECTORY MASTER
BUMP THE PAGE POINTEK

LOOP IF NOT THERE
DISPLAY THE CLEAN ME8SAGE?

YORIVE N CLEARED,"

PAGE 23

a3z,
833,
834,
835,
836,
837,
838,
839,
R4Q,
841,
842,
YT
844,
845,
846,
gay,
aas,
849,
8se,
851,
852,
653.
854,
855,
856,
ap7,
858,
889,
862,
881,
862.
863,
BG64.
865,
866,
8E7,
868,
869,
are,

11243
11245
11247

11252
11234
11286
11262
112635
11267
11273
11276

11301
11306
11311
11333

1132¢

11324

11327
11331
11336
11337
11341
11343
11380
1138
113354
11356
1i36¢
113653

113714
11372
11373
11376

SUKTIEST/TXT

¢eed
374
119

216
026
vab
1026
026
84
106
104

266
158
364
866
Qa8
104

064
066
3va
44
064
268
Jod
812
44
a64
066
a6

383
364
{eé
{va

3B
ved
e27

028
Rl
268
63
(13}
342
1ed
802

ees
327
a6
129
110
373

269
177

eed
1.1
239

¢12
083
AT
227
144

162
151

eee

236
202

836
(21
217

(-1
022

[1-1.]

038
422

256

256

12

31
236

e
vae

228

Q48

224
224

az24

p24

024
Q24

de7 .

3709

378

379

376

DATAPOINT CONFIOENTIAL INFORWATION » SEE PAGE 1

SORT OPTIONS COMBINATIONS GENERATION PROGRAM

AD
cP
JFZ

!
2ot
KILLEM

D0 DRIVE Twl IF NUT DONE

. CREATE THE INPUT/TXT FILE Gn DRIVE 118

»
DSKERR

L]
DSKPAR

L]
ERROR

LB

&C

DE
CALL
LC
nE
CaLL
JMP

MLA
JTz
OR-
M8 A
DE
JMP

OR
8 A
LAE
ND
OR
M8A
LAE
SRN
ND
oR
M8A
DE

LHD
LLE
CaLL
JMP

LF1

1
INFILE
PREPS
1

0696
PROTES
CPYFIL

*D0SPON
OBKPAR
g
wMidA
My
ERROR

rx
*MidA

3
g
«M14B

3

3

1y
*M)4Bw]

M4

OSPLYS®
EXITS

GENERATE THE FILE

SET THE FILE SIZE TO MaX]mum

COPY THE FIRST FILE TO INPUT FILE

GET THE DRIVE NUMBER
CATCH PARITY ERROR
PUT DRIVE NUMBER IN MESSAGE

CMDRIVE N WENT OFF LINE,"

PUT DRIVE NUMBER IN MESSAGE
PUT SECTOR ADORESS IN MESSAGE

POINT TU ERROR MESSAGE

OATAPOINT CONFIDENTIAL INFORMATION e SEE PAGE 1}

PAGE 24 SORTTEST/TXT SORT DPTIONS COMBINATIONS GENERATION PROGRAM

871, *

872, 11401 911 B0p 013 413 823 mpy bDe ¥ii,e,283,11,023

873, 11406 123 117 122 124 124 e 'SORTTEST/CMU ANOT ON ORIVE @,',015
B74, 11443 011 BV 033 213 923 mMe2 ve wii,2,043,11,023

875, 11452 104 122 1331 126 05 De TDRIVE 1§ NOT ON LINE,!',015
876, 11475 011 002 @213 013 023 M23 1] ¥il1,9,013,11,023

877, 115¢¥2 106 122 111 126 a8 oc 'ORIVE 2 NOT ON LINE,',2158
878, 11527 o411 @0 €13 812 B2 Mo4 oc B1149,113,11,0203

879, 11534 123 117 122 124 @3 1 'SORT/CMU NOT ON DRIVE 2,',015
880, _11565 211 200 213 ¥413 623 mHed DC 911,0,883,11,02)

881, 11572 123 3117 122 124 oY) DC tSORT/DVY NOT ON DRIVE @,',010
882, 11623 9211 ver B1Y 013 823 MUb6 DC 411,¢,013,11,023

883, 1163¢ 124 122 111 126 105]+ YDRIVES 1 AND 2 SCRATCh 7?7 '3
884, 11662 011 POO 213 V13 ©¥23 Ne7 oc 631,4,883,11,023

885, 11667 105 116 104 240 117 7] YEND OF SORT TEST,',015

686, 11711 Q11 200 213 13 M23 wes oC 214,0,213,11,023

887, 11716 952 052 052 240 f¥i DC Teee ARE YOU SURE 7 e#¢ 1,
883, 11746 Q11 229 2313 213 823 MO9S] i1,0,013,141,023

889, 11733 111 240 104 111 104 1] "1 DIDNW'T THINK 80)',045

890, 11776 0211 oRP 813 S13 823 M1 0oC ¥i1,0,013,11,023

891, 12003 124 117 117 049 118 e TTO0 MANY TEST PILES,',015
892, 12030 Qii @092 013 213 B23 M1lA DC 211,0,013,11,023

893, 12035 037 124 130 124 4R]+ t/7TXY NOT ON DRIVE 9,',248
894, 120062 @211 200 213 213 223 M2 pC v1i,9,013,11,023

595, 12467 194 122 131 126 145 pC 'DRIVE !

896, 12073 1316 240 103 114 183 mi2A]+ 'N CLEARED, !,

897, 1211v ©1] @00 13 6)3 V23 M1 oc $11,0,813,11,023

898, 12115 104 122 111 126 (8 oC TDRIVE !

899, 12123 116 040 127 105 116 Mi134A] o IN NENT OFF LINE,!',018

900, 12144 0211 000 0313 913 923 Misa 219 $11,0,08313,11,423

905, 12151 120 19y 122 111 124 oc IPARITY ERROR ON DRJIVE !

982, 12377 116 040 191 124 240 Ml4AA b1+ IN AT CYLINDER P SECTOR 98!
003, 12238 260 936 0315 M14B 0C '9,',013 i

904, 12233 01} oPR 213 213 023 MiS [+]+4 ¥14,0,813,11,0293,023

995, 12241 123 {08 121 1235 103 bC 1SEQUENTIAL TEST FILE GENERATION USING !
9086, 12327 186 111 114 103 116 Mi5A DC TFILENAME/TXT, !, :
997, 12325 21} oPp @13 813 A2I Mmis 114 ni1,0,013,11,823,023

948, 12333 111 116 {04 185 138 DC VINDEX TEST FILE GENERATION UBING !
99, 12374 196 113 114 105 116 M164A DeC VFILENAME/TXT,',0

91, 12412 211 Q@@ 213 B1J V23 M7 414 W11,0,813,11,¥23

911, 12417 104 §17 146 185 856 nc 'OONE, ',215

912, 12425 11 200 213 313 ¥23 MiB [+]# 011,9,0813,11,223

913, 12432 123 117 122 124 w4e oc 1SORT TEST COMPLETED,',023,915
914, 12469 911 Q0@ 213 213 823 M9 oC A11,0,018,11,023,415

915, .

916, 12466 131 116 196 111 114 INFILE ODC VINFILE TXT!

917. »

918, 12%01 123 117 122 {24 ¢4e SRTCMD DC 'SORT cmD!

919, 1251a 123 117 122 124 ¢4¢ SRTOVYI OC 'SORT ovie

gze, 12527 REPLY SK 2

921, .

922, 14360 END START .

PAGE

12312
18311

41143

Poedd
pioae
21135
pev10
1930a
1peee
2l1e2
26131
2ie77
aieda
14149
12409
14597
irgen
n?ee2
2751
alwsé
rAPRO
A77v4
1-TLdS
21134
21022

11174

23

ASCIIS
ASTERX

BLKTFR

8LW~>
BOOTS
38P%
BUFADR
B4ONMB
CASADS
CHOPS
CIFLG
CLOSES
CLRI
CLRPAG
CmDADS
CMOINT
COVADS
CPYFIL
CPYLUP
Css
Csv
CvTiny
vEBADY
DEBULGY
JECHL

CIRWRT

SORTTEST/TXT

276
288

*28%A
su7

wOS3A
"SLA
*521A
*1428A
284
wii148A

*431A

*134
*428 A
*“228A

“8a3

«11584
*3i1A

wi{1hth

wAada

*459
#1914
*Q734A
186
vi1214
*5634
w2714

wB18

*612
*6511

252
518

“610

484

813

845

432

*310

B2a

DATAPOINT CONFIDENTIAL INFORMATION o SEE PAGE 1

S8ORT QPTIONS COMBINATIONS GENERATION PROGRAM

291 345 366 443 a64 468 474
714 742
187 43¢ 629

4pb 582 584

478

PAGE

21200
209
wovvd
aApr2e
niede
11321
11327
ai1a6e
Rd4902
e11862

viess
11217
“w/100
2an
11371
21151
19352
27647
a7673
©7643
18212
126060
18661
26146
11@50
10277

¢1121

26

LOSADY
NoSP LN
VULSPFNK
I LAL
Lund

DSKEnW

usxPAnu

D8KWAT
D8SPADS

DSPLYS

Dr$
ENDFNT
cnugdm
FrLRTST
ERROR
ExITS
EXTTXY
FNMDV |
FNMOV2
FNMDvE
FNTABL
FrnTCHR
FNTCRY
FNIWTR
PRELYL
FuDNME

GETS

SORTTEST/TXTY

«12B8LA
“BUIA
«7614
wBitA
*1354A
794
848
w15t

‘11014

*+838%A
673

e1431A
713
<90
442
633
*3P LA
526
*494
496
458%
435
65d
724
w131
L¥A-]
289

w4BIA

758

819

»854

257
687

793
*746
KrE)
*599
636
592
*815
503
'Sws
-aba
437
“703
725
428
77%
v5609

48¢

UATAPUINT CONFICENTIAL INFORMATION = SEE PAGE |

SORT OPTIONS COMBINATIONS GENERATION PRUGRAM

826 831 B47

847

239 k1.1.] 377 457 490 530 586
830 869 ,
818 .

LT

682 670 882 896 v24 744 L -}
a7e

528

511 513 *398 704 7086

434 519 828 720 747

535 5851

S8t

“867

PAGE

w6333
108nd
n6362
26566
26512
06654
Q1247
D114
87776
10342
6443
n6esl
a1ell

41011

37351
124066
27322
25572
1e271
12263
ni1h7
11427
ook
12002

roAR0

Adade

27

GETAD
GETBYT
GETCI
GETFB
GETKG
GETLIM
GETNCH
GETRS
BETREC
GETSCR
GETSOS
HEDING
INCHL

INCHLS

INCSWP
INFILE
1~XPRﬂ
KEYADS
KEYBWO
KEYFAD
REYINS
KILLEWM
LNRADS
LF@

LFi

LF2

SOMTTEST/TxY

vi7¢
*334
174
223
198
w269
"2t
“49184A
w532
*672
181
142
2684

*147
el

411
8ay

hEh

11114

251
249
*57 84
*75¢
(ST AY)
«B61A

*B8714
519

sBBLA

491
546

{79

v244
292
335

541
584
"229

361

177
Jeod

413

*916

LT T

*548
*he?
676

834

630

. 446
332

a5y

DATAPOINT CONFIDENTIAL INFORMATION » SEE PAGE 3
SORT OPTIONS COMBINATIONS GENERATION PRUGRAM

563

211

3ze

193
315

*«4416

69

634

459

534

467

366

215

376

208
324

498

463
556

472

w221

214 219 232 238
339 732

500

466 469 473 476
583 638 664 715
485 523 544 548

249

479
838

553

242

483

561

PAGE

'T.L 11

1844

10326
06143
esi6e
0107}
a1206
11677
evae2
0014
11401
L1440
11475
118527
11560
11023
11682
117414
11746
11776
18243
1203¢
12062
120793
1211¢

1212

28

LFd

LFT

L IMENL
LInFLG
LINSTH
LOADS
LOADXS
LOKRST
Lﬂ“
LANLIM
Hel
T
MY
o4
nas
“ge
o7
MRl
nag
1o
"1l
M11A
"2
mi2A
13

H13A

SURTTEST/TXT

564
*BOLA

8534
561

344
) w138
‘0140
*378A
#1184
“777
*0514A
*1218A
632
vab
554
668
669
672
681
686
665
723
*69%
738
738
828
8b1

ase

2686
462

462
364

*613
258
290

147

787
561

*372
&7 4
*876
*878
“38@
*382
«884

*890
74
748
829

“896

*8y7

*899

DATAPOINT CONFIDENTIAL INFOR®ATION » SEE PAGE 1
SORT OPTIONS COMBINATIONS GENERATION PROGRAM

477

463

630

293

347
159

564

w894

488

466

634

332
354

467
654

LY

367

a7e

627

473

are

477

488

PAGE

12144
12177
1223¢
12233
12387
12325
12374
12412
12429
12460
188114
epai2
B1400
102830
ag715
16704
15462
10759
108775
19747
27364
27251
arere
Y11
A4pn0
19147

10067

29

M4
Mi{dA
“148
M1B
MLSA
M16
Mi6A

L %4
M1B
Mi9
HAKSUR
MAXLRN
MCRS
NAMEXT
NMBEND
NMBF D
NODRVY
NOFILS
NOFIL2
NOF ILE
NXTFIL
NXTL D™
NXTPRM
OPENS
OVLADS
PADEQF

PADREC

SORTTEST/TXTY

Bes
8335
859
456
454
529
527
489
S9¢
25K
679
v1008A
8484
444 .
272
27¢
647

h-1%
26°%
«3634
w1298 A
+578

557

"9y
922

BG4
*9p4
*9u8
w907
*9a9

585
v912
*914
*0886

123
448
*283
279
'655
738
*738
“727
v426
*381
207

449

580

559

DATAPOINT CONFIOENTIAL INFORMATION o SEE PAGE
SORT OPTIONS COMBINATIONS GENERATION PRUGRAM

*903

910

698

258
493 582 517 521 *606

LAY 397 anhd

any S22 Seb 661 668

713

718

717

728

DATAPOINT CUNFIDENTIAL INFURSATION = SEE PAGE |

PaGE 30 SORTTEST/TXT SORT OPTIONS COMBINATIONS GENERATION FRUGKAM

ARQpl PUN eG4t A

2220¢ PFN “QlsA

26726 PLINTH 274 w287

21117 POSITS 4514

21963 PREPS «3514 841 -
46144 PRMFLG v120 167 170 189 263 317, 328 357 389 626
41441 PRMOPS e125 172 302

21105 PROTES vadlA B44a

26152 PTABLE *136 149 348 349 373 - 374

91127 PUTS +801A 545 549 584 556 558 571 577 879
10127 PUTECF 570 575

8716@ PLTHDR 331 %337

viide Fruing EIRY)

1A”SS PUTREC 539 «553

10843 PUTSPC 543 #5848

91113 READS sabta 480 533

12527 REPLY 678 677 689 691 920

98311 RETURN 138 152

A0010 RIBCYL 9814

sew1l RIBSEC RTTITY

Ai1a7ae RUNS 3815

21003 RUNXS wieta

20027 SOFLAG s8214

290 3¢ SONK *838A

26356 SETE1 237 %239

07016 SETET 312 w314

27¢51 SETHOR Jus w327

DATAPOINT CONFIDENTIAL INFURMATION o SEE PAGE |

PAGE J1 SURTTEST/TXT S8ORT OPTIONS COMBINATIONS GENERATION PRUGRAM
21041 SETIS *2114

96421 SETINX 185 #1990

26610 SETKEY 250 e2%2

A6734 SETLIM 277 284 285 290
26532 SETPS 227 w229

27042 SETREC 321 323

26304 SETTAG 197 ‘204 w217

10340 SPACES 365 614

19123 SKCEOP 537 w868

12891 SRTCND s6e +9i8

26270 SRTLNK v144 388 395 399
12514 SRYOVY 667 919

46147 SRTPFN €132 148 865

19360 START +625 922

18017 TBSPS “6514

10861 TCHKS “751a

10045 TFMAS 07184

14098 TFMnS v7284

21036 TPS “201A

1092¢ TPRPBLFY w8214

{eeed TPEOFS “8314A

19431 TRS v67 1A

1146 TRAPS '29}‘

18034 TREAULS wH8LA

12212 TRwS ¥6414

06152 TSTPH "33 154 635

12283 TTRAPS #7314

DATAROINT CONFIDENTIAL INFURRATION = SEE PAGE 1

PAGE 32 SORTTEST/TXT SUKT OPTIONS COMBINATIONS GENERATION PROGRAM
10237 Tas v691A
10056 T~AlTS v741A
19924 TwBLKS v661A
1ee4g 7*?175 “70LA
~@7402 UNPALS *11334A
21116 wRITES ea71A 470 s6¢ 581)
47332 XFRECS 363 368 w407 a4
20017 XXXXXX *1631A

194 LABELS USED

28.9 SORT OPTIONS COMBINATIONS

SAMPLE LIST

This subsection gives many examples of SORT option combinations. The list
was generated by the SORTTEST program modified to write the generated options to
a disk file. The list inciudes all legal combinations c¢f one each of each of the SORT

options for both the SORT COMMAND LINE options and for the LIMITED OUTPUT
specification line.

The ordering of the list is:

All combinations of the SORT COMMAND LINE options. These are the options

which follow the semicolon ; in the very first parameter string to be passed to
SORT. :

All combinations. of the LIMITED OUTPUT specification options. These are the
options which must be given if the 'L’ option is specified in the SORT
COMMAND LINE. For each SORT COMMAND LINE which includes the 'L’

option, the LIMITED OUTPUT specification lines are listed before the next SORT
COMMAND LINE.

The HARDCOPY HEADING specification. This is the line of characters which
must be given if the 'H’ option is specified in the SORT COMMAND LINE. For
each SORT COMMAND LINE which includes the H’ option, the HARDCOPY
HEADING line is li:sted after the associated LIMITED OUTPUT specification.

The SORT COMMAND LINE options begin at the first column of the list. If
LIMITED OUTPUT specification lines are required they are listed indented fiye spaces,
following the associated SORT COMMAND LINE. If HARDCOPY HEADING lines are

required they are listed indented ten spaces, following the associated LIMITED
OUTPUT specification.

Note that the HARDCOPY HEADING line when generated consists of three
elements:

1. The associated SORT COMMAND LINE:
2. Ten spaces as a separater;

3. The associated LIMITED OQJPUT specification.

The comments in the SORTTEST program (subsection 28.8), especially page 3 of
the program, explain the basis of the ordering of the options generation.

SECTION 28. SORT COMMAND 28-33

SONTOPNS/TXT == SORT OPTIONS COMBINATIONS SAMPLE LIST

D11=24
Tii=22
DT11=20
Li1=20

1§20, 1,1e80
2émil, ! ', 1m60

i" |'1Q6a

"RECORD=> 1,V 1,1n6u4
11=20/58P,1 1,180
20”11/5'?,’ '.1%6”
*/%sP,! 1, 160

'"RECORDw> '/58P,! 1,{e60

11m28/5%P,! 1,1e60
20=11/54P,1 1,1e60
«/B4P,' 1,160

"RECORD=> '/84P,! !,1w60

DL11e20

11'23" .ulQﬁg
20=11,1 1,180

W AURTE L4 LI
TRECORDm> 1,1 1, {=6y
11=20/83P,"' V,1m80
20m1 1 /58P, 1 1,160
'/5'P,' "1'6“

'RECORDw> 1/58P,! 11,1060

11=20/58P," ',1w60
20=11/54P," 1,1w60
*/5#P,' ',1n6@

11=28,%' 1,1«60
LH11=20
2””11,' ',1s6ﬂ
LH1l1=20
v, ! 1, 1=60
LHli=20
'RECORD=>» 1,1 1,160
v LH1i=20
11=28/58P,1 1, 1mby
LH1i{=20
2@m1 1 /58P, 1 1, 1mK0
LHi1m20
*/58P, 1 1, 1e60
LHlle20

'RECORD=> 1/53P,! 1,{nmfp
'RECORD=> F/5sP,!' !,1=b60

LHi1=20
11=22/58P," ',1e69
LH11=20 _
Q=i i/58P,' 1,180
LH)1=20
«/58P,1 1,168
LHl1w20

'RECORD=> '/5#P,"' ',1n60
LH1le20 ' ' .

1120, 1, i=80

20=11,! 1,1=80

w,! V,{=60

YRECURDw>» 1,! !,1e60
11=20/88P,"' ',1m60
20=11/58P, 7 1,]=60

»/58P, ' !',1e60

11-20/54P, ! ',1e60
2O=11/54P," 1 ,1=6v

*/5uP, 1 1,1=60

"RECORD=> 1/54P,' 1,1~60

2 SURTUPNS/TXT e= SORT CPTIONS COMBINATIONS SAMPLE LIST

LH11=20
OLHl1=28
1i=20,' ',1=60
DLnli=20
201y, 1,1mw6¥
OLRi1=20
"1’6@
DLH]1 =20
'RECORD=> !,
OLH]1=20
11224/758P,! ',1=68¢
OLn11=20
20m11/50P,1 V,1nB0
DLHi1=20
-/53P'l 1,1=60
bLH11=20
YRECURDw> '/58P,!
DLH11=R0
11=20/50P,! ',1e0680
DLAH11=20
2um11/54#P,"' ',1=060
OLHii=20
*IS‘P" ‘II’GQ
DLH11=20
TRECORD=» '/88P,!
OLni =20

w, !

1,1=60

P3uP)1=»20
OPSsP11e20
TPBepPlin2d
OTPSaP1i=20
LPSaP11»20
11220, ',1e0¢
20wil,' !',1=60
e, 1,1=60
TRECORD=» 7,7 1,18
11e20/P," ',1w060
20eii/P,! !,1e60
w/P,1 1,160
'RECORD»> 1/P,!
11220/%sP,"' 1,160
20011/38P,' ', 1069
*/5",' ""Ge
'RECORD=> '/BsP,!
11=20/80P," ')1e60
20wl i /08P, ',1=60
'/5*',‘ 1,1e680
'RECORDw> '/84P,'
DLPInP11=20
1120, ', 160
2“'11,' "1-59
w,) 1,1n60
'RECORD=» 1,!
11=20/P,"
20wl /P,

'y1=60
')1=60
1,1w680

1,1=60

'RECORDw> '/5uP,! !,1=64

{1e20,1 V,1m=60

2umei1,! t,1w60
#,! t,1n64

TRECORD®> ', ',1=6¢
{1e20/58P," 1,1m60
29=11/83P, 1 1, 1nbw

w/%ap,! 1, =68

PR L1

IRECORDm> /58P, !, =60

11-20/58P,"' ¥, 1=k
29%11/34P,"' ', 1=62

“/5HP, " 1,1e60

',1e60

'RECOURD=> '/5%P,"' ',1=6¢

1yin6d

1,1e64

PAGE

189,
11e,
111,
lig,
113,
114,
115,
116,
117,
118,
119,
129,
121,

123,

124..

150,
151‘
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,

3

LHPO=

DLHPS

20miy,

SURTUPNS/TXT =~ SORT OPTIONS COMBINATIUNS SAMPLE LIST

*/Py! 1, 1m60
'RECORDm> 1/P,1 1,1a60
11=20/58P, ' 1,1m60
20-11/5%P,1 1, 1a6¢
v/38P,) ', w60
'"RECORD=» 1/5sP,!
{1=20/5aP," V,1=60
2”'11/5“?,‘ "xﬂsﬂ
Y/5HP, ! 1, 1m0
"RECORD=» '/58#P,!
Plie20
11=28,1 1,1e60
LHPSapP1{m20
2¥=11,"' 1,1=68
LHPSeP11m2¢8
'pl'ﬁ@
LHPDRPi =20
'"RECORD=> !,! !, 1=60
LNPSsPi1=20
11e28/P, ' 1,160
LHPSeP1 =20
2hei /P, YV, w60
LHPSePliw20
i,1w»80
LHPSsPiim2D
"RECORDe» 1/P,!1 ', 1«60
LHPSsP1i=20
11eR20/88P,1 V,{w60
LHPSsP1{=20
2”'11,5‘?5' ',1?6@
LHPS5aP1iwmed
ﬁ/5u?,! !ll,ca
. LMPSsP1ie2
'RECORDw=» /5P ,!
LHPS2P11=20
{1=20/54P,!' 1, =6¢
LMPEapPi{i=20
20=11/5%P, 1 1, 1e60
LHFPSaPl1e2p
*/54P, ! 1, 1=60
LHPSaP{i=20
'RECORD=> 1/58P,!
LHPBaP =20
SR 1w2
11«20, 1,1=60
DLHPSeP{1=20
Vy1=60
DLMPSeP w22
"1‘69)
DLHPSePiie2d
"WECORD=> 1, 1,{=mfy
DLHPOBP1iw20
11=20/P," ',1=60
Di.HPSaP]1=24

1,1=60

',1=64

¥,

/P!

Vyi=60

',1=60

w, !

11e20,' !',1=6¢

2@mil,!' !',1=60
Wyt !,i=80
'RECORD®» ', ! !,1m60
11!26/P" 1,1e6¢
28011/P,! 1, 1m60
w/Pyt 1, ie80

IRECORD®> 1/P, ! 1,1=64
11220/58P,! !, 1=6¢
20a11/58P,1 1,1m60
*/58P, 0 !, 160

1 /58P, !

'RECORDe» ',1=60

11208/58P," ', 164
20w11/54P, ! ', 1=60
«/5HP, ',1=60

IRECORDw> '/58P,!' !',1eb2

1im2@," V,1~60
20w11,! 1,160
! Vyie00

TRECORDm> 7,7 7,im6@

ll'Z@/P,' ',_1-014

PAGE

163,
164,
169,
166,
167,
168,
169,
170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
188,
187,
188,
109,
108,
191,
102,
193,
194,
198,
196,
197,
198,
199,
200,
2@1'
202,
203,
204,
208,
206,
207,
208,
299,
210,
11,
212,
213,
214,
219,
218,

4 SORTOPNS/TXT =e SORT OP "10NS COMBINATIONS SAMPLE LIST

20=11/P, "' 1,1w60
DLHPSsP =2
“/P,' Yy 1e60
ULHPSsPii=20
'RECORD=> /P, !,1=60
DLHPSaP11»20
{1e20/8ep,! 1,160
DLAPSsP11=20
20m11 /%8P, 1,1mb0
DLHPSsP{i=20
"/5'P0' ',1=60
. DLHPSspPiie2d
'RECORD=» 1/88P,!' 1, wbi
DLHPSaPi1m20
11=20/54P,"' 1,1=680
DLHPSeP1i=22
26=11/38P,"' ', 1m80
DLHPSaPii=20
w/54P,' ' ,1{=60
DLMPSsPi1e20
'RECORD=» '/50P,!' ' ,1e60
DLHPOsPiie20
$3a81le2¢
DELLE R YY)
T85uS511=20
DT8JeS]1=20
L85s811~20
11=208,' ',1e60
Q0e11,' 1,160
w,! ',l.ﬁﬂ
'RECORDe» ', 1,1=b0
11e20/P,!' V,1e60
20wii/P,' V,40680
'/Po' "106'
'RECORD=> /P, 1,i=062
1120/588,"' ',1=00
20=11/588,' 1,1e80
'/513,‘ ',1e60
'RECORDe> '/8m8,!' !,1=60
11-22/588,"' ',1e69
20~11/588," 1,1=60
'/5¢8,' ',lvGD
TRECQRDw> '/588,! !,1wm00
0L.S9sS511=20 .
11m20,' ',1w060
2“'11,‘ ',1.6“
." "laﬁw
IRECORD™> ',' V', 1m6¢
11w2@/P,' ',1=60
20eli/P,! V' ,imb0
/P, V,1=60
IRECORD=> 1/P,! ',1=60
11=20/588,"! ',1-6@
2“'11/5'5;' "1'6@

2P=11/P,7 1,160

w/P,' 1,1=b60

IRECORDe>» V/P,' ',1=04
1120/58P, 1 1,160
20w11/53P, " ', 1=60
w/S5ep, ',1.59

YRECORDm» '/88P,!' !',1=60
11#20/5#P," ',1=60

Rue11/9%4P, ' ',1=60

w/5HP, ' Y, =60

"RECURDm> '/08P,! 1,1=6¢

PAGE

217,
218,
219,
220,
221,
222,
223,
224,
228,
226,
227,
228,
229,
230,
231,
232,
233,
234,
235,
236,
237,
238,
239,
240,
241,

242,
243,
244,
248,
246,
247,
248,

249,
250,
251,
252,
253,
254,
255,

256,

257,
258,
259,

261,
262,
263,
264,
265,
266,
267,
268,
269,
27v,

5

SORTOPNS/TXT = SORT OPTIONS COMBIWATIONS SAMPLE LIST

*/338,"' 1,in60
'WECORD=> 1/588,!
11-2E/5”8" ',1&60
2v=11/588,1 1,164
*/548,! ' ,1=6p
'RECORD=> '/5K8,!

1yi=60

1,1=60

LHSSeS11=20

11'2@.' ',1‘6“
LH35=S11s20
20m11,! ', 1wb0
LHESnS11e20
W, 1, 1=60
LHSS=8) =20
'RECORD»> ',! 1,1m60
LHSSu811e20
1!’2@/?.' ,'IDGB
LHESeS1ielP
2h= iy /P,V ' ,1w60
LHSS5e811»20
'yl=80 :
LHSS=8y1~28
'RECORD=>» 1/P,!
LHSSe81i=20
11=28/588,) 1,1e80
' LHSS5eS11=202
2U=11/528,! 1,1wée
LH35m811=20
t/bls'l |'t~60
LHSS8811»20 v
'RECORDe> 1/588,! !,{~6E0
LHS5s811=20
11'2@/5”3" ',1!6“
LHSSISII#Z@
20w11/588,' !, w60
LHSS5eSiim20
*/588,1 ', =60
LHS5uS11=20
'"RECORD=» '/5#8,!
LHSO=8 =20

WP,

11262

',1=60

DLASS2811=20

11-2@" '.1'6”
DLHSSuS11e24
20wy, Y, {=60
DLHSSES 1=24
*,! ';1'50
DLHS3u8] w21
'RECORDm» !, 1 ,1m6p
DLHS8a811=29
11=20/P,"! t,1=60
DLHSSE811e24
eV=11/P," ',1=64
DLHSSaS11m22
'y1=62
DLHSSeS 1 1m24

/P,

 'RECOR[:w> '/5m§,!

1im20,1 1,1=60
20w11,! 1,1=60

‘p’ ',1=80

IRECORD=> ',!' !',i=60
11w20/P,1 1, 1=60
2dm11/P,! 1,1=b¢
w/R)t 1, 1e60

IRECORD=> '/P,!' 1,1wb0

11e20/588,7 1,1=60
20m11/588," 1,1=64
*/588,! 1,1e64

',1=64
11m20/588," ',1=64
20e11/548," 1,1=64
w/58S,"!' 1,1=60

'RECORDw> '/5#8,' !',le60

11=20,"' ",1=60
208=11,"' ',1=64
v, 1,160

'RECORD=» ',! ',1=60
11=28/P," 1,1=60
201 1/P, % V,1=08

*/P,' 1,160

PAGE

271,
272,
273,
274,
275,
276,
277,
278,
279,
280,
282,
283,
284,
288,
286,
287,
288,
290,
291,
292,
293,
294,
295,
296,
297,
298,
299,
3ee,
e,
302,
5@3.
304,
385,
3ee,
3e7,
3es,
310,
311,
312,
313,
314,
3189,
3186,
317,
318,
319,
32e,
321,
322,
323,
324,

6

PoS&P1{
OPS#P

SORTOPNS/TXT == SORT OP ' IONS COMBINATIUNS SAMPLE LIST

'RECURD=» '/P,"' ',|~80
OLHSSnS 1w20
11220/%08,1 V,1=60
DLHSBw811e20
20-11/988,"' !,1e6¢
DLHSSu81 (=20
v/588," 1,1=060
OLHSSs81{~20
"RECURD=> 1 /8x8,!' 1,1=00
OLHSSm811=2¢
11=20/58S," 1,1=60
OLHS5=811+20
20011/5%8,' ',1«68
DLHSSu811e20
2/58S,"' ' ,1=60
DLN3%a81ie2¢
'RECORD=> '"/5#8,' !',1e060
DLHS3e811e20
{»w20
11=20

TRPS#P1122¢
DTPS5AP11=20

LPO#P

1120

11m23,"' ',160

20miy, ! V,imb0

..' '.1-6“

'RECORD=>» 1,!' ',1=80
11'2“/?9' ‘11'60

201 /P, V,1=60

w/P, V180
'RECORD=> '/P,! !,1=68
11=23/58P,! 1,160
20=11/53P," !',1=60
w/Bap,! 1,1e60

'RECORDw=» /58P, ',i=bd
11m20/58P," ',1=60¢
20=11/54P,"' ',1e60
“/58P, 1 1, 1eb0

'RECORD=> '/5#P,' ', 1m0

ULPS#P11=20

11220, 1,160

20w11,' 1,160

*,! 1,160 .
'"RECORD=>» t,? 1,{=0y
11-26/P" ‘.1'60
20el1/P,!' V,1wB0

/P, 1,1=80

'RECORD=> 1/P,' ', 1=60
11n20/58P,' ',1w00
2Um1 1 /58P, 1,16y
«/88P,1 1,160
'RECORD=> 1/88P,! 1,1mi5p
11=20/84P," !',{w60
2¥=11/5aP,! !,1=60

'RECORDw>» '/P,!' ',1=60
11»20/588,"' ',1=00
20=11/523,"' V,1=60
w/5m8," 1,1=b4

'RECORDw> '/585,!' !',i=b6¢
11=20/588,"' ',1=0U
20w11/548," ',1=n00
#/5H8," 1,1=00

'RECORDwe>» '/5#S,' !',1=60

PAGE

328,
326,
327,
328,
329,
33e,
asi,
332,
333,
334,
335,
336,
337,
339,
340,
341,
342.
343,
344,
345,
346,
348,
359,
351 []
3s2,
353,
3ss,
357,
3ss,
3sg,

360,

3st,
as2,
363,
36‘.
365,
366,
367,
368,
369,
378,
371,
3re,
373,
374,
378,
376,
377,
378,

7 SURTOPNS/TXT == SORT OPTIONS CUMBINATIONS SAMPLE LIST
*»/38P, 1 1, 1w6p
'"RECORD=> 1/54P,! 1, ,1=60
LHPS#P 11«20
11=20,"' ',1=60
LHPSaP | 1=2p 11=200,"' ', 1w64
2””11,’ "1”6”
LHPS#P|1w2p 20mi1,!' 1,160
*,! 1,i=60
LHFSHP] {=2P v, 1, 1~60
"WECORD=> ',' 1,1mpp
LHPS#HP11=2) 'RECORD=3 ',' 1,1mbu
11=28/P, ! 1 ,1=60
LHPB#P | 1=20 11m20/P, ' 1,1460
Qé=i1/P, 1 1,1e60 ’
LHPS&P11=2p 20w /P,"' V,1mbu0
w/P,t ', 1e60
LHPS#P11=20 w/P,! 1,1=64
'RECORD=> 1/P,! 1, $hso |
LHPSHP1 =20 IRECURDmn /P, 1,1m6Q
112208/88P, ! t,1u60
LEPSHP1{=20 {11e26d/50P, " 1,169
2vw] /58P, 1 ,{e6¥
LHPS&aP11=20 20=i1/5eP,! ',1=b0
/5aP,! 1,160
LHPS&P|1»20 w/58P, ! 1,160
'RECORD=> '/58P,! 1, 1mE0
LHPS#P11=20 'RECORD»> /58P, !,1m64
11=28/54P,) 1,1a6p
LHPS#P11=22 11e20/54P; ! ',1=64
20al1/358P,! !,1e80 ,
' LHPS#P11-20 20=11/5%P,"' ',1=64
/58P, 1, 1m60
LHP5#P 1=20 «/584P,"' !',1=60u
YRECORD=> '/54P,! 1,1=6¢ '
LHPSHP | 1=20 IRECORO=> /58P, 1,1=6y
OLHPS#P 1120 ' :
11=20,! ',{=6p
DLHPSNPL 1w 11=20,1" 1V, 1=b0
20=11,"' 1,i=60
OLHPS#P11m20 2841, ',1mb60
! 1,1=60
OLHPSHP11m22 %, 1,1e89
'TRECQRDe> 1,7 1,1m80 '
ODLHPSHP11m2d 'RECORDe>» !',!' !, wE0Q
11.20/F" '(1-50
- DLHPS#P{1e20 11=28/P," ',1=68
20m14 /P, 1,1w60
OLHPSAP =20 20wl 1 /P, V,lebp
./Pp' "1-6”
DLHPS#P1 w20 w/P,yt 1,1ubl
'RECUND»>» 1/P,!' ', 160
DLHPBS®#P11m20 IRECNRDe>» /P, 1 V. 1tmpd
11=208/%0pP,! 1, {a6¢
DLHPS#P{1e20 11=20/05sR,! ',1e6p

PAGE

379,
380,
381,
382,
383,
384,
383,
386,
387,
388,
389,
3ge,
591.
32,
393,
394,

398,

396,
397,
3gs,
399,
490,
403,
402,
403,
404,
405,
406,
407,
498,
409,
a0,
a1,
412,
413,
414,
415,
4186,
417,
418,
419,
420,
421,
422,
423,
424,
4285,
426,
427,
428,
429,
430,
431,
432,

8 SORTUPNS/TXY ea SORYT OPTIONS COMBINATIONS SAMPLE LIST

20=11/58P,' 1,1e60
DLHPSNP Y 1=24
*/58P,! 1,160
DLHPBSHPL1w2Q
'"RECORD=> '/8a8P,! !,1mbd
OLHPENPL1w20
L1e20/3#P,"' 1,in80
DLHPONP 1 1e20
20w11/34P,"' 1,1a80
OLHPS#P 1120
»/54P, 1 1,164
OLHPS#PL1=2¢
'RECORD=> '/84P,"' !,1m69
DLHPS#P11=20
S5u811e20
P3SNS11m24
T884#311e20
DYS3w811m20
LSSNS11w20
:‘923" ',1-6@
28e11,' 1,160
." ',1’60
'RECORD=>» ', !,1e8p
11«20/P,"' ',1e68
20=11/P,' ' ,1=60
«/P,! 1,1=60
'"RECORDw»> /P, ',1w6¥
$11w20/528,' 1,180
2ve11/588," 1,160
v/5388,"' ', 1«60
'RECORD=> '/588,! ',1e00
11=20/585,! V,({n60
2vaii /848, 1,180
w/388,' 1,160
IRECORD=> 1/548,1 1,1=bp
DLSIN3i1=20
11w20,' ',1a60
20m11," 1,169
v,! 1,1=60
'RECORDe» ',! 1,1wg0
1iw20/P,"' 1,1m60
20«11/P," ',imb0
/P,' ',1=00
IRECORD=> 1/P,! 1,{=w80
11'2“/5'8" ',1.6&
20w11/588,' V,1w6¢
w/383,"' 1,160
'RECORD=> '/85u8,!' 1 ,i=6d
11=20/588,! ',1=60
20m11/508," ',1e80
'/5“3" ';1‘6”
'RECORD=> '/848,' !,{=6¢
LH85uS11=20
11-26" ',1!6&

20=11/88P,"! V,1=60
v/38P, " 1,je00

'RECORD=» 1/58P,"' ',1=60D
11.20/30P,"' ',1=60
2u=11/84P,1 ',1=68
*/S5HP,! ';1-60

'RECORD=> '/5#P,' ',1=64

PaGe 9 SUORTUPNS/TXY =« S0ORT OPTIONS CUMBINATIONS SAMPLE LIST

433, LHSSaS1iw20 11220, ',1=62

434, 20e11,7 1,1n6p

4335, LHSOHS1=20 20m11,' ',1=60

436, w,t 1, 1e60 ' »

437, LHS5#811w20 #,! 1,{=60

438, 'RECORD®> ', 1, w52

439, LHS5#S8 120 'RECORDe> !',! !,lepn
440, 11=20/P," ',1=6p '

441, LHSS#S 1w 11820/P," 1, 1=y

442, 2hwli/P,t V,1mE0

443, LHSS#811=20 20wl i/P) Y V,1e60
444, w/R,! 1 ,1=60

443, LHSS4#811m20 /P, 1, lmBul

446, 'RECORD=> /P, 1. ',1m60

447, LHS54811m=20 'RECORDw> '/P,!' 1,1=60
448, 11=28/508,! ',1e80 _

449, LHSS#S11=20 11m20/508,! ',1=6¢
450, Ql=11/5r5,V 1,1mBy

451, LHSBHS =20 ' 2Um11/50§,! V,1=64
452, */538,' 1,1eg@

453, LHSSNS 11m20 */588,"' !,1e68

454, - 'RECORDw=> '/58§,!' !, 1n60

455, : LHSO#S =20 'RECORDe> '/58§,!' !,1=60
456, 11=208/8#8,!' 1,180

437, LHSS#811=20 11w20/548,!' 1,1=60
458, 20=11/5488," ',1e60

459, LHS5#811=R0 20e11/588,"' ',1=060
46”. */5“3" ',insﬂ

461, LHS5#311=20 */8#S,"' ',1=606

452’ 'RECQRDH) '/ﬂ#s;' ',1’6@ i

463, LH3SuS1i=220 'RECORD=» '/5a8,!' !',1=60
464, OLHS59S511=20 .
465' 11*2@,' ',196@

466. DLHSSuSiim29 11"2”; 1 V,1=64

467, 2u=11,' 1,1{w6p

468, DLMSS5aS11w20 C2@m11,! ' ,1=60

469, Wyt 1, 1e6y

‘79. DLHSS#Si1=22 v, 1,imbY

474, TRECORD=> 1,! 1, {=gp .

472, DLHSS#S11e22 TRECORDmy ',! ',1=60
473, 11=20/P,) 1,1=60

474, ’ DLMSSNS iw22 11=20/F,! V,1=62
475%, 28=11/P,! 1,160

476, DLHSSNS 1=22 20=11/P,' ',1=60
477, */P,t 1 ,1=60

478, DLHSSNS 1ep0 w/P,t ',imbd

479, '"RECORDe>» '/P,! ',1e6Y

489, OLMS5NS 1w22 "~ YRECORODs» '/P,!' ',1=60
481, 11=20/828,!' 1,1=60 -

482, DLHSBNS 11=20 11e28/%28,"' ',1=60
‘83. 2@.‘1/5-3,' ',1.6”

484, ULHS5#S1{mZ4 2ibmil/5m8, ' ', i=0¢
485, */538,1 t,1=hpR

486, DLHSSHS =24 */588,! V,1=060

PAGE 1V SORTUPNS/TXY == SORT GP IONS COMBINATIONS SAMPLE LIST

487, 'RECORD»>» '/8m8,! !,{m56¢

488, DLHSSRS]1=2D 'RECURD®> '/583,' ',1=6i
439. 11’20/5“8" "!'5”)

490, DLHSS5#811=20 11228/888,"' ',1=64

491, 2u=11/548,! 'yi‘ﬁ@

492, OLHS5NS811e20 2bm11/588,! ', 1=04

493, w/5488,"' V,1=60

494, DLHSS#S11~20 “/588,) ',1=60

495, 'RECORD=> '/8n88,!' !,{=68

496, DLHSO®S11=20 'RECORD=> 'V /588, 1, =64
497, 2B=i} ‘

498, DLQu=i1
499' Ta@'ll
500, UT20~11
5@1. L20v11

502, 11=29,!' ',1=60

593. 2U-11,' ',1=6p

504, *,! 1,1=62

509, 'RECORD=> t,! 1,1mw69

588, 11m20/33P,"! !, 1ew@0

597. 'aﬂwllIS'P,' '.1!5@

S5é8, «/58P,") ,1=i

509, 'RECORD=> '/5aP,!' V,{=b0

S1e, 11=20/0#P,! ', {w60

511, 20«11/%8P," 1,1+60

512, /58P, V,1e60

513, '"RECORD=> '/3HP,! ',1wb0

514, OLQ0=11

515, 11=29,"' 1,1=60

516. 20-11'| 'pl'GD

17, *w,! 1,1=60

513. 'RECORD=> 1, 1,1=62

319, 11w20/533P, 1 1,160

520, QU= /88P, 1 V,1e8

521; '/5"9' ';1‘6” '

522, YRECORDe> /3aP,! 1,1inb0

523, 11=20/58P," ',1w80

52" 20'11/5'?.' ',1-6B

525. .IO*P" ‘.1’6”

528, 'RECORD=> '/8#P,!' 1,1et0

527. LH20'11

528, 11024, ',1=60 '
529, LH20w]} 11-20,' ',160
Sye, 20wil, ! V,1e60

534, Lhcew11q 2B=11,' ',1e60
532. ‘,' 'jl.ﬁa

533, LH2Ow1 w,V 1,160
534, 'RECORDw» ',' 1,1m60

538, LH2d=1Y '"RECORDm» 1,' V,j=b4
536, 11=20/88P,! 1,1w60 '

537, LM20e1y 11=20/5aP,! ', =6y
338, 20wl 1/5uP, 1 1 ,{ab¥

539, LH2U=it 20=)11/3aP,! ', ,1=6y

540, w/5RP,1 1, et

PAGE

541,
543,
544,
545,
546,
548,
549,
550,
551,
552,
553,
554,
558,
556,
557,
558,
559,
560,
561 .
562,
563,
564,
565,
567,

568,

569,
57@,
571,
572,
573,
574,
575,
576,
577,
578,
879,
388,
581,
582.
583,
585,
586,
587,
588,
589,
590,
591 .
592,
593,
594,

111 SORTOPNS/TXT we SORT OPTIONS CUMBINATIONS SAMPLE LIST
LH2OmwY] /58P, 1,166
'RECORD=» t/58P,! 1,6 1=fy
' LH20=1} 'RECORD=> 1/5aP,"' !, =60
1120/58P," 1,1w60 .
LH2@=1} 11=20/58P,) 1,1=60
2001 1/58P,! 1,160 '
X LHZ2@m]1] Q=11 /58P, !',1»89
«/5HP, ! 1,160
LH20=]1{ w/858P, 1 1,1mb¢
'RECORD=» 1/58P,' 1,160
LH20»11 'RECORD=> '/34P,! ',1e64
DLH20=11
11=20,' ', 1m6¢
DLHQUm] 11=200,"' ',im6d
2@'11,' "1”53 :
v DLH2@mY eR=14,"!' 1,1=80
w,! 1,1=60
: OLn2eei) w,! ',1nG0
'TRECORD=>» t,! 1, 1«6 .
DLHZB=11 'RECORDe> 1,7 ', ,imwb0
11=2¢/58P, ! 1,160
DLH2UdmY Y 11=28/5spP,! tyl1=60
20=11/58P,1 1,1e6@ :
OLHZ2Rml] A 20=11/0mpP,! 1,1=60
*/58P,1 1, 1u60 »
DLrM2dey v/58P,' ', 1e60
'RECORD=> 1/8apP,! ,61=60 '
DL.H2R=11 TRECORD»>» !/35%P,! !',1=64
11m20/58P,1 ',1e60 :
- DLH2Aw1Y J1=20/54P,"' ',1e60
20=11/5#P,1 1,1e80 '
DLH20=11 20=11/54P ;"' 1,160
/58P, ', 1e60
DLH20%ei} w/BSHPR,! !,1=60
TRECORD=> '/34P,! 1,1=60
OLHRe=1y IRECORD=> '/54P,!' !,1e60
PS5sP2¢el}
DPB3upP2dmyy
TP5sP2¢mll
DTP5sP20=11
LP5aP2imy

11‘20;' ""6@

2”‘11,' ',1'5@

w,! 1,1=80

'RECORD=> 1, 1,1=60
11=20/P, "' 1,1e80

20w 1/P, ! 1, =60

“/P,!' 1,1=88 v
'RECORDe> V1 /P,!' 1,1=60
11=20/58P, ! ',1e80
2¢é=11/58P,) ' ,1a80¢
“/58P .1 1.1a60
'RECORQ=> 1/5aP, ! 1,1a6y
11’2“/5“P" ',]-6(0

PAGE 12 SORTOPNS/TXY =e SQRT OP IUNS COMBINATIONS SAMPLE LISTY

395, 2@e11/5#P, ! 1,160

396, /B8P, Y, 16

597, "RECORD=>» '/84aP,!' !,{wfp

598, JLPO=P20w}it

399, {1m20,! 1,1=60

sde, R¥é=11,"' 1,1a82

501. t.' l,l-ﬁﬂ

602, 'RECORDe>» ',! 1,1=g9

603, f1e20/P,' V',1m60

604, 20wl 1/P, "' 1,1=60

603, /Py V) 1e6R :

606, "RECORD=> /P, '1,1=60

éez, {i=20/0spP,"' ',1e060

608, 20=11/5aP, ' ,1el0

539. 'ISF'P" '.1'6“

610, tRECORD=>» 'IS.P" t,in60

6‘1; 11-20/5“Pp' 'fl.ﬁﬂ

6‘2' 20-11/5~P,’ "1'66

513. ‘/5~'P" '.1.GB

614, 'RECQRD=>» '/58pP,! },1-6@

615, LHPS3P20=1} "

816, 11=22,"' ',1=60

617, LHP5aP28m1] 11mw24,' 1,1=60
61‘. 20'11,' ‘,1‘6“

619, LHPSsP2Rel QU=11,"' ',1=60
62e8, w,! 1,1=60

621, LHPOEPRRel] ! V,1e60

622, '"RECORD=» 1,1 ! ,1=80

623, LHPS5aP20=1} '"RECORD=>» ', ',1=6y
62‘.. 1.1’2ﬁ/P" 'p!‘ﬂﬂ)
625, LHPGEPRRw] 11=20/P, "' ',1=60
626. 2“‘11/P.' ',1.60)

627, LHPSaP20w 20wi1/P," ',1w60
620. '/P.' "1-‘05

a29, _ LHPSeP2¢Umt | e/P,1 1;1=60

830, 'RECORD=> V1P, ',1w6¥

631, LHPSaP28w1} TRECORDw>» /P, ! 1,1mbBu
632. IIFZG/S‘P" ',lnﬁﬂ

633, LHPOaP208wmy 11=20/88P,' V,1=6¢
634, 20w 1/58pP, 1 1,580 ‘

638, LHPOaP20m1] 20=11/83s8P,"' ',1=60
636, w/58P,1 V', 1m60 .

637, LHPOBP20ei} w/5apP,"' 1 ,1e60
638, 'RECORDe> 1/3aP,! 1,1=tid v
639, LHPSeP22=11 'RECORD=> '/58P,' ',1=b6y
Q‘H, 11’20,5*P" '91050

641, LHPSsP2O=1} 11=20/54P,! ',1=6u
ﬁ‘a. 2“‘11,5”P" "1‘6“

643, LHP5aP2@=11 20=11/54P," ', 1m60
54‘. i/S#P,' 1,1=60 :

648, LHPS5aP20wl] /58P, !',1=84
546, 'RECORD=> 1/58P,!' !',1w6V

6‘70 LHPS'PQ“-,.I TRECORD»> 'IS‘P" 1,1=68

6548, DLHPSsP2e=1}

PAGE

649,
650,
651,
652,
653,
654,
655,
656,
657,
658,
659,
660,
661,
662,
563,
664,
665,
666,
667,
668,
669,
670,
671,
872,
673,
674,
675,
676,
677,
678,
675,
680,
681,
682,
683,
684,
685,
686,
687,
688,
689,
69¢,
691,
692,
693,
694,
695,
696,
697,
698,
699,
70p,
701,
702,

13

11=20/54P, !

SORTOPNS/TXT == SORT OPTIONS COMBINATIONS SAMPLE LIST

11-29,' ‘,1!6”
DLHPERP20el
2t=11,' 1,160
DLHPSsP20w)]
*'l ',1p50
OLHPSsP2@mi}
'RECORD=» 1,1 1,1=80
DLHPSaP2Rell
11=20/P,"' V,1=68
DLRPSsP2Rmit
2u=11/P,"' 1 ,1m60
DLHP3sP2umi
',1=80
DLHPSeP28ei1
TRECORD=>» 1/P,! !,1e60
DLHPSeP2im1]
11»20/%8P,' 1,1n60
DLHPS=P20=1
20ewii/Bup, 1 V,{wb0
OLAPSeP20ei
v/3ap,1 1,160
DLHPBaP2Bw]
'RECQRD=> '/5sP,!
" DLMP3eP2Re11
1,1w60
DLHPSaPROwi
Ch=11/88P, 1 11,1060
OLHPSeP20el
*/54P,!' 1,1{n60
. OLHPSsP20wi] :
YRECORD»~»> '/54&P,! !,1=80
OLHPSsP20¢my

w/P,!

',1»60

§%u820=11
P55a520my |
T85u82¢m1 1
DTSHa820=11

L538820=11

NLE58820=11

11m20," 1,1n60
2é=»11,! V,1w60
"1 1, 1e60
IRECORD=» 1,1t
1im208/P,
2u=11/P,' ',1»60

w/P,1 1,160

'RECORDe> /P, ' !,1=60
11=20/5a8,!' 1,1w60
20m1} /5835, 1,1»80
./5'3" "1'6@
'RECORD=> 1/518,!
11=20/3885," ',1=6p
2uwl /5845, ',i1=80
'/5“3;' ',!-5%
'RECURD=> 1'/588,! 1,{=64

Yy1980
t,1=60

1,1w80

TRECORU»>

1i=2u,! 1,1=60

2hell, ! 1,1~604
*,! ', 1=64
'RECORD=>» ', ' 1,]lw6y
{im20/F,"' ', 1=04
20«11/P,' ',l=0v
W/P, 1, ieb)
'RECORO=> '/P,' ',1=60
11=20/8aP,! !',1=60
20e11/38P,"' ',1=60
w/5ap,t 1, ,{epd

TRECORDw> '/5'9,' 'pl‘ﬁﬁ

11e20/830P,"' ', 1»68¢
20-11/5#P;' 'ol‘dm
* /5P, t,1=bl

',$§P'| ’.1?6@

PAGE

793,
704,
785,
706,
ey,
708,
729,
710,
711,
712,
713,
714,
715,
716,
717,
718,
719,
720,
721,
720,
723,
724,
728,
726,
727,
728,
729,
730,
734,
732,
733,
738,
736,

TRy
I"

738,
738,
740,
744,
742,
743,
7“.
745,
746,
747,
748,
749,
750,
751,
752,
753,
754,
768,
7586,

14

11220, 1,1=6p
29'11" ';1*6%
.,’ "lnﬁu
TRECORDm> 1,1
11=20/P,!
20m11/P,' 1,180
i/P'l l,l-ﬁa
'RECORD=> '/P,!
11e20/5s8,!
20011/588,1 1,180
'/5'3" "1960
'RECORD»> '/5s8,!
11220/588," ', =60
20=11/848,' ',1=00
‘,5”3;' '.1'6”
"RECORD=> '/548,!
LH3583820~11}
11‘2“,' ',1‘60
LHS5=320e1}
20e1l,! 'nl!ﬁﬁ
LHS58820e1
1,1=68
LHS58820m1
TRECORD=» !,!
LHSSe8208w1]
11=20/P,"' ',1=60
LHS5s820~11
20e11/P,' 1,1m60
LHS3u8R0=1y
,1e60
LHS5e820=11
"RECORD=> 1/P,!
LHS5a8208ei]
11=20@/5e8,1 1,160
LHA5583g0=11
20=11/5m8,' 1,1=6¥
- LHSDe320e1}
‘/5‘3,' '.1‘69
LHS5n820m1}
'RECORD=> '/888,!
LHSDeS20=11
11=20/5#5,!' 1,1=60
LHS5sS820=11
20=11/8385,' 1,1=6p
LHS5e820~11
w/588,!' ',1e€0
LH3588208e11
'RECORD=> 1/358§,!
LHS58820wmi
DLHSOHeS20=1
11220, ', 1e60
OLHS5=820w11
2b=11,"' ',1=68
DLHSSmS20w}i

',1=6u

'ylebu

t"

"/P,

'y1=60
',1=60
V1,164

',1m60

t,1=60

1,1=60

"1-5@

PR LY

SORTOPNS/TXY we SORT OPTIINS CUMBINATIONS SAMPLE LIST

1120, ',1=60

20mil, ! 1, 1m0

W, 1,1e64

'RECURDw»>» ', 1,1et4

11#20/P," ',1=60

20m11/P," ', 1=t0

“/P,' ',1=60

'RECURDw®> 1/P,"' !, iwby

11m28/585,! ',i=60

o

207117588, ',1=60

w/388,) 1,1=60

'RECURD') 17528, !',1=60

11=R0/548,"' ',1=64
Q0=11/%48,' ', =6y
*/588,! 1,1=60

'RECORDw>» '/548,' !,1=64

11=20,"' ',1=60

2@mil, ' ',1m060

PAGE

757,
758,
759,
76e@,
761,
762,
763,
764,
765,
766,
767,
768,
769,
770,
771,
772,
773,
774,
775,
776,
777,
778,
781,
782,
783,
78‘.
785,
786,
787,
788,
789,
790,
791,
792,
794,
798,
796,
797,
798,
799,
8ee,
8u1,
822,
803,
8U4,
ses,
86,
ger,
310,

15

SURTOPNS/TXT ==« SORT OPTIONS COMBINATIONS SAMPLE LIST

w,! 1,1e60
DLHSS=S820e1
'"RECORDw> 1,1 1, ,1=8¢
DLH35sS20=11
11=20/P, ! V,1m60
DLH85=328ms1
2hml1/P, ! 1, 1e60
DLH3Bn820»11
WRLL [
DLHESs820m1 1
'RECORD" '/P" ',lﬂﬁa
DLH8Ss320m11
11=20/3588,1 !',1e80
DLH38n82¢m1
20w11/588,! 1,1n60
DLHS5e820m11
w/588,! ',1e80
DLHSSe8202e1}
'RECORDm> '/3m8,! !,1=6y
DLHSOm820-11
11=20/548,1' !',1e60
OLHSBu820w=1}
20=11/588,"' ' ,1=60
DLHS3s82¢m1]
'/5“8" "1-69
DLHS8e820ei)
'RECORD=> '/5#48,!
DLHSS5wS20=11

/P,

'yi=60

P5#P2¢¥=11
QP5aP20m1]
TPSHP2Rel
UTPSaP20=11
LP3#PRUw1

11220,! 1,im60
28m11, ! 1,1e60
*,! 1,ie60
TRECORD»p 1,!
11020/P,'
20=141/P, 1,1=60

'/P" "IQGE _
TRECORD»> 1/P,! !, 1m60
11”2015.Pp' ',1m60
20wi1/58P,1 ¥, {u80
./5'P,' ',‘ﬂsﬁ
'RECURD=> '/5up,!
11m20/58P, " 1, e6d
Qé=11/8aF,"' 1,1w60
¢/58P, "' 1 ,{e60
"RECORD=> '/5#pP,!

tyl=60
1,i=60

1,1=60

1,1=60

OLP3#P20=11

11»20," 1,160
2¢e=11, ! 1, =60
‘i' 'ai’aﬂ

'RECORD=> ',! 1 ,1=6y

*,! ',1e80
YRECURD=» ', ', =6y
11=20/P, ',1mb0

20=11/P,! '.lwbé
w/P,! 1,1w6¢

'RECORD»> '/P,' !,1m=60
11920/388,"' 1 ,1=64
20=11/528,!' 1,1e04
w/388,1 1, 1=6y
'RECORDw» '/588,!' !1,im8¢
$1220/588,"' !,1=60
28»11/548,"' ',1»64
w/35KS," 1,1=60

'RECORDen» 1/585,' ',1=60

PAGE

811,
812,
813,
Bl4,
815,
818,
817,
518,
8ip,
82n,
621,
822,
823,
824,
82s,
826,
827,
828,
89,
830,
831,
ase,
833,
834,
835,
836,
837,
ads,
839,
848,
841,
842,
843,
544,
845,
846,
848,
849,
8se,
853,
8%2,
853,
884,
835,
ad%6,
asy,
858,
859,
860,
861,
862,
a6y,
864,

16 SORTOPNS/TXT == SOKT GPTIONS COMBINATIONS SAMPLE LIST

11=20/P,"
QU=1i/P,"' ',1=80
w/P,!' ',1«6¢
'RECORD=» 1/P,!
11»20/8eP,"' 1 ,1nB0
Cowii/BuP,1 1,1mby
'/5.Pp' ',1-6$
'RECORD=>» 1/8sP,!
11=220/%8P," ' ,{e60
20«1 1/58P," 1,1m60¢
*/38P,"' 1,1e60
'RECORD=» '/5npP,!
LHPSNP20=11
1i#20,"' 1, 1=60
~ LHP5#PRRe1]
20«11, ',i{=80
LHPSHPRBwY L
'.1-60
LNPSWPRO"11
'"RECORO=>» ',! ! ,imBy
LHPO#P2RmYL]
{1w2@/P, "' V,1=60
LHP3#P20~11
20e11/P,"' 1,1m60
LHPS#P2B={1
',1=60
LHPONPRO=1
'RECORD=»' 1/P,!
LHPSNP2P=1}
11=20/5sP,! ',1e60
LHP3#PR0»1 Y
20=11/58P," !,1e60
LHPSNP20w
|i"53P'= ='i.-aa
LHPO#P20O»1
'RECORO=>» '/8spP,!
LHPSHPRB=1Y
13w20/58P, 1 ,1m60
‘ LHPS#P2Om1
2Ymi1 /08P, 1 ,{mB0
LHPO#PROe1 Y
'IS#P,' t,1=60
LHPS#PRAeY L
'RECORU=> '/54P,!
LHPOWPRO=1}
OLHPSHPRR=1]
11’2”,' ',1'6”
DLHP3wP20m11.
Qémil, "' 1, b0
DLHPS#P20w11
',1=60
DLHPS#P2Ue1
TRECORD=> ', !,{mpi
DLHP3NP2A=Y]

'ql-ﬁﬂ

t,1=80

',1=64

1,1=60

i"

/P,

1,1=60

',1e0¥

'y imtip

w,!

1im20,!' ',1m64

Qémil, ! ' ,1mb0
*,! 1,160
"RECORDe>» !,! ', {ebi
11=20/P,!' V,1=64
20w 11/P,) 1 ,1mb¥
*/Py1 11060
IRECORD=> '/P,"' !',1=60
11220/8sP,!' 1,1=60
2umiL/8eP,! 1,160
“ /58P, 1,1m60
'RECORD=>» 1/838P,! !,{=56p
11m20/54P,! ';1'5@
20m11/88P,"' ',1=6¢
w/58P,"' V', =60

IRECORD=» 1/5#P,! ',1=60

11220, !',1~64

2é=11,"' ',1~60
w,! ',1le60

'RECORD=»» ',' ',1w64

PAGE 17 SORTOPNS/TXT == SORT OPTIONS COMBINATIONS SAMPLE LIST

855, 11*2@/?5' ,imEp :

866, DLHPBaP22my | 11=20/P (1 ', 1«60

867, 20mil /P, 1, 1m60

868, DLHPS#P20w»1 2é=11/P,!' ',1=b0

869. ./P" "1‘50

87@. DLHPﬂ“F@ngi */P" 'pl-ﬁﬂ

871. ,RECORD‘P ./Pp' ';1-6%

872, OLHPS#P22w) : YRECORD=>» /P, ! ,1=pd
B?73, 11=20/5=P, 1 !, 1489

874, DLHP3#P20my 11=20/5mp, ' 1, 1=60
8rs, 201 1/58P,1 1,1e6p

876, ODLHPSNP20Om) Y 2lm11/5zP,"' 1, 1=60
877, - w/BAP, Y 1, a6 ;

878, DLHPSNP20mY /58P, 1,1=6p

879, 'RECQRD»>» 1/8ap,! 1,1n60

8ae, DLAPO#PR2B»1 Y 'RECORDw>» /58P, 1,1m64d
881Q 11%20/5#P,' ',‘ﬂ&ﬂ

882, OLHP3WP2gw 1 | 11=26/58P," 1,1=60
883. 2@'11[5*P" "1'6ﬁ .

884, ‘ OLHPS#P2O»1 Q0=11/58P," ',1=60
885, #/54P, 1 1, {e60

8860 DLHP5~PZQQ11 '/5#9;' FRL L1

887, "RECORDw»» 1/54P,! 1,{e6d

888, OLHP3NPRO»1 1 VYRECORDm> 1/54pF,!' 1, =64

889, S5u482@eit

899, DS5#320e]1]
891, TS5u520m11
892, DTS5#S20=11
893, LS5#S20w11]

894, 11920,!' ', 1e60

895, 20=11,"' 1,160

896, *,! ', 1e60

897, "RECOQRD=» 1,1 1, 1e6p
898, 11m20/P, ! 1,168

899, ueii/P,! 1,1m60

903. '/P" "lgca

se1, .~ "RECORDw» 1/P,' ,{=6p
902, 11=20/588,"' ', 160
9@3. 2&*!1/5.8" t,1»80
9e4, */588,' 1, 1,60

sos, "RECURD=> 1/588,! 1,160
986, 11=20/5%8,! 1,{e80
se7, 2¢=11/545," ',1m68
ses, w/588,' 1, 1u60

9eq, '"RECORD=> '/348,!' 1,1e60
918, ULSH482P~11)

911, 11=20,! 1,1=60

912, 20m11,1 1,1e68

913, ", 1,160

914, TRECORD=> 1,1 1,1a6p
913, 11=20/P,) V,1a60

916, 20=11/P,' 1, 1060

917, /P, 1, 1ap0

918, '"RECORD=> 1/P,! 1, {ugi

PAGE

919,
920,
921 s
922,
923,
924,
925,
927,
928,
929,
930

931,
932,
933,
934,
93s,
936,
937,
938,
939,
940,
941,
943,
944,
945,
946,
947,
948,
949,
95@,
951,
952,

L3

A]

954,
955,
957,
958,
959,
960,
961,
962,
963,
964,
966,

968,

967,
968,
969,
970,
971,
972,

18

SORTUPNS/TXT =« SORT OPTIUNS COMBINATIONS SAMPLE LIsT

11=23/58§,!
2”'11/5.5" ',!-GB
“/588,' ',{e60

'RECORD=> '/588,! J,1=6y
11220/588,!' ' ,1e6¢
2¥m11/508,! 1,100
“/583," 1,160
'"RECORD=> '/5u8,!

', 1»64

1,1»69

LHSS¥828=1}

11920, 1,1e60
LHSON320e1}
2B=i1,! 1,169
LHSSnS20m1
w,! l,l.ﬁﬂ
LHSSNS20m=1 1
"RECORD®»> ', ! ', 1=60
, LNSSNS20w11
11=22/P,1 1,1=60
LHSSHS2Rmyy
20=i /P, 1,1m62
LHSGNSQH-;;
V)1=602
LH35n820~11
'RECORD=> '/pP,!
LHSSwS20=11
11228/588,! 1,160
LHSO#NS20=1
2Vei 1 /58S, 1,1e6p
LHSSa828=11
*/5u8,1 1,1=80
LHSSAS28=11
'RECORD=>» '/588,!
LHSSnS20=11
11=20/548," ',1»680

[~ 7 " I
LRESRS28=11

20m11/5KS,! 1,1m60
LH55#820wy

v/588,1 1,1a60
LHS584320#1 1

'RECORD=> 1/5#8,"
LHS5¥820m11

w/P,

V,i=60

'y iw60

V,imb

DLHSO®S20=11

11=28,1' 1,160
© - DLHSSwNS20m41

2dm11,' 1, 1e680
DLHS3N820m1

! '.1-6@
DLn35n820m11

'RECORD=> 1,! 1, ,{=gn
DLHSSN820»1 1

11-2”,P" "1-60
DLHSS#820=1}

20=11/P,"' ',1=60
OLHSSHS20=31

11220, !',1e64
20e11,") ',1=6u
w,! |;1.5u

'RECURD®> ', ',1m6d
11=20/P,!' 1,16y
20=11/P,"' ',1=60
w/Pe! ',1e60

'RECORDw» '/P,! !,1eb8
1120/588,! ',1=84
20%11/588,"! 1,1m60

w/538,! 1,1=60

'RECORD=> '/588,"' ',1=060
11n20/508,1 1, 1e64
20=11/7588,! ',1=p0

*/545,' 1,1=60

YREGURDw> '/5#5,! !,1e6

11=20,"' ',1=60

Qlell, ' 1,1=60
w,t ',{=60

'RECORD=> ', ',l«nd
11=20/P," !',1=b0

2“’11/P,’ ';1'6@

PAGE

973,
974,
975,
976,
977,
978,
979,
989,
981,
982,
983,
985,
986,
987,
988,
989,
989,
991,
992,
993,
994,
9985,
9946,
997,
998,
999,
1001,
1992,
1403,
1204,
1205,
1006,
1407,
1028,
1209,
1810,
1211,
1012,
1013,
1014,
10185,
1816,
1817,
ieis,
1019,
1020,
1024,
10822,
ingaé,
1026,

19 .~ SORTOPNS/TXT w= SORT OPTIONS COMBINATIUNS SAMPLE LIST

*/P,! V160
: DLHSSNS20»11
'RECORD=> /P, ! 1,{n6y
OLHSONS20=11
11#20/328,! 1,160
. DLN8SNE28mY 1
20m11/5288,! 1,1n80
: DLH3S#820»11
w/588,1 1,1»60
DLHSS#820m1 1
'"RECORD®> 1/538,' 1,1m60
DLHSSwS20e11
11=20/583,!' ',1e84
DLH83NS20ey)
Ql»11/5#8,"' 1,1w60
DLHSS#820my
‘/5”5,' ',‘Qea
DLHSSNS20ey]
'RECORDw> 1/8#48,' ',1=6p
DLHS5#820e1
I111=20
VI11=20
IT11=20
DIT11=2¢
IPSePiie20
DIPSsPi1m20
ITPSspP11=20
DITPBsP11=20
1858811m20
DISSa811=20
ITS5e811=20
DITS3s811-20
IPS5API =20
DIPSHPLIiw2D
ITPS#P11=20
DITPS#P1im=20
I834511w=20
DISS#811.20
ITS5#811=20
DITS5#81 =202
120=11
DIze~11
IT2¢ety
OIT2e=11}
[PSeP2eml}
DIPS=PRA=1y
I1TPBaP20=yy
DITPSsP2pwm1y
1538820e11
DISSa320=1}
ITS5s820=1}
DIT85nS20=11
IPS5aP2Pm1}
DIPSNP22=1y

¥/P)t 1, 1e60
'RECORDw» '/P,' ',1=68
11=28/583,1 1,1=60
20117528, 1,1m60

*/588,"' ',i=50

'RECORDe> !/585,' !, 1=60
11m20/588," !,1=60
20-11/5%8," ',1=60
*/588," ',i=6e

'RECORDw=> '/5#5,' !',1=66

PAGE

1027,
1128,
1029,
1031,
1032,

20 SORTUPNS/TXT == SORT LGP IONS COMBINATIONS SAMPLE LIST

1TPOMP2U=11
OITP3aPR2U=11
I185#S20-11
LISSaS2umy
1T85%320~11
VITSS#820~11

28.10 SELECTED EXAMPLES OF SORT PARAMETERIZATION AND
RESULTANT OUTPUT ' '

This subsection gives many examples of SORT parameterization and the
resultant output for the parameters. All of the examples in this appendix are based
on the file XDICT/TXT, which is a 54 record file of primary and secondary records
listed on the very first page following. '

Since the XDICT file is exactly 54 records long, all of its sorted output files fit
exactly onto one page. Thus each page following the listing of the original XDICT file
is a complete example of the sorted output file.

The parameters for each output file are given in the heading of the page. The
first string of characters in the heading would immediately follow the string:

SORT INFILE:DR1,0UTFILE:DR2,:DRO;

and the second string of characters in the heading are the LIMITED OUTPUT
specification for the file. For example, the first example is the output of a SORT
parameterized by the lines 31, 32, and 33 of subsection 28.9.

The examples in this subsection were selected so that the most major
combinations of options used by SORT are shown. Examples include super
elementary specifications such as the first-example which is a straight sort of the file
on the key in positions 11-20 and a LIMITED OUTPUT which puts out the key
followed by the record, more interesting combinations of options which sort the file on
backwards descending keys and/or have a LIMITED OUTPUT which puts the key in
the first positions of the record only for PRIMARY or SECONDARY records, and some
special combinations of options which show how not to use SORT as in the example
with the heading:

LHS5#8511-20 11-20, '11-60

The user should understand why the above didn't seem to work right. (Hint: see
section 28.3.9 of the SORT Section.)

The examples selected for this subsection are in the sequence they are listed in
subsection 28.9. Only the examples from subsection 28.9 with 'H' specified in the
SORT COMMAND LINE were listed for this subsection (SORT did the actual
HARDCOPY output), and only about 10% of those were selected for this subsection.

28-34 PART Il SYSTEM COMMANDS

1

>>>
>>>
>>>
>>>
»>>
*>>>
>>>
>»>
>>>
>
>>»
»>>»
>>>

P>

»>>
»>>
»>>
»>
»>>
»>>
»>>
>
»>
»>
>>»>
»>
>>>
>>>
>>>
»>>
»>
»»>
»»>
»>>

3>

>>>
>>>
>>>
>>»>
>>>
»>»>
>>>
»>>
»»>
»>>
»>>
> >
>>>

B

>>>
>>>
>»>>
>»>>
>>>

mmwmmvwmmmavmmmmmﬂummmmmtmmmmmvwmmwmuamwmmvuwmumtmwmmmm

XDICT/TXTY

€<
<<«
<<€<
<<
<<<
<<<
€<
<<«
<<<
€<«
<<«
<<<
<<
<<«
<<<
<<«
€<
<<<
<<<
€<«
<<<
<<<¢
€<<
€<<
'L
€<<
<<<
<<«
<<
<<<
<<
€<<
€<<
<<<
<<
<<<
<<<
<<<
<<<
<<«
<<«
<<«
<<«
<<«
<<<
<<<
<<«
<<
<<<
<<«
<<<
<<<
<<«
<<e

XMAS

XEBEC

XENIA

XENON

XERIC

XYLAN

XYLEM

XYLIC

XYLOL
XYLENE
XYLOID
XYLOSE
XYSTER
XANTHIC
XANTHIN
XIPHOID
XYLIDIN
XANTHATE
XANTHEIN
XANTHINE
XANTHOUS
XENQGAMY
XENOLITH
XYLIDINE
XYLOTONmY
XANTHIPPE
XENOGENIC
XEROOERMA
XEROPHILY
XERQPHYTE
XYLOGRAPM
XYLOPMAGE
XYLOPHONE
XANTHOPHYL
XENQGAMOUS
XENOPHMOBIA
XIPHOSURAN
XYLOGRAPHY
XYLOTOMIST
XYLOTOMOUS
XANTHOPHYLL
XENOGENESIS
XENQGENETIC
XENQMORPHIC
XEROPHILOUS
XYLOGRAPHER
XYLOGRAPKIC
XYLOPHAGOUS
XYLOPHONISY
XANTHOCKROID
XERPHTHALMIC
XIPHMISTERNUM
XERQOPHTHALMIA
XYLOGRAPKICAL

USED AS INPFILE/TXTIDR} FUR SURT

= 0 = PRIMARY RECORDS

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORDS
RECORDS
RECORDS
RECORD?
RECURULL

1
2
3
4
5

» X = PRIMARY RECORUS

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECDRDI
RECORDS
RECORU
RECORUD
RECORDS

= 0 = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECUNDARY

RECURUS
RECORUS
RECORD 3
RECORD3
RECORD$

= X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDAERY

RECURDS
RECORD S
RECORD1
RECORD3
RECURDS

o 0 =» PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECURD?
RECORD 1
RECURD?
RECORD1
RECORD1

= X = FRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORD1
RECORD1
RECORDS
RECORGS
RECURDS

. 0 = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECUNDARY
SECONDARY

RECORD1
RECORDS
RECORD1
RECORD
RECORD?

» X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORD?S
RECDRUDS
RECURD?S
RECORDS
RECORU?S

= 0 = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORD1
RECORD1
RECORDS
RECORU?S
RECORD:

uaum-—cuaam-—cuuom-—-coaum-—Uuhuwv—yu&um“cobumwcmnum»

PAGE 1

Xanthate
Xanthein
xanthic
xanthin
Xanthine
xanthippe
Xanthochro
xanthophyl
xanthophyl
xanthous
Xxebec
xenia
Xxenogamous
Xxenogamy
Xenogenesi
Xenogeneti
Xenogenic
Xxenolith
Xxenomorphi
Xenon
Xenophobia
xXeric
Xeroderma
xerophilou
xerophily
Xerophthal
xerophyte
xerphthalm
Xiphistern
Xiphoid
Xiphosuran
Xmas
Xylan
xylem
X¥lene
Xylic
xylidin
Xylidine
XyYlograph
xyYlographe
xylographi
XYlographi
xylography
xyloid
xylol
Xylophage
Xylophagou
XYlophone
XYlophonis
Xylose
Xylotomist
Xylotomous
xylotomy
Xxyster

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>5>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>.

>>>
>>>
>>>

23>

>>>
>>>
25>
>>5
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

Cn(n"U(nU)U)U)U)U)U)UJU)U)U)U)U)'UU)

mohnhghnhnhnhnhoguhhunwhoggnhnhhnhnnh oo

SORT XDICT,,;LH11-20

<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<«
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<«
<<<
<<<
<<<
<<«
<<«
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<«
<<<
<<«
<<<
<<«
<<<
<<<
<<<
<<«
<<<

Xanthate
Xanthein
xanthic
Xanthin
xanthine
Xanthippe

xanthochroid

Xanthophyl
Xanthophyll
xXanthous
Xebec
Xenia
xenogamous
xenogamy
Xenogenesis
Xenogenetic
Xenogenic
xenolith
Xenomorphic
Xenon
xenophobia
Xeric
xeroderma
Xerophilous
xerophily

Xerophthalmia

Xerophyte
xXerphthalmic
xiphisternum
Xiphoid
xiphosuran
Xmas

Xylan

Xylem
Xylene

xylic
xylidin
Xylidine
Xylograph
xYlographer
Xylographic

xXyYlographical

xXylography
xyloid
Xylol
xYlophage
xylophagous
XYlophone
Xylophonist
XYlose
Xylotomist
xylotomous
Xylotomy
Xyster

11-201' ',1—60

SECONDARY RECOR’D: 5
- X - PRIMARY RECORD:
SECONDARY RECORD: 1
SECONDARY RECORD: 2
SECONDARY RECORD: 1
SECONDARY RECORD: 1
SECONDARY RECORD: 1
SECONDARY RECORD: 3
SECONDARY RECORD: 4
SECONDARY RECORD: 2
SECONDARY RECORD: 1
SECCNDARY RECORD: 2
SECONDARY RECORD: 4
SECONDARY RECORD: 3
SECONDARY RECORD: 5
- X - PRIMARY RECORD:
SECONDARY RECORD:

4

. SECONDARY RECORD:

2
SECONDARY RECORD: 1
SECONDARY RECORD: 3
SECONDARY RECORD: 5
SECONDARY RECORD: 4
SECONDARY RECORD: 3
SECONDARY RECORD: 2
SECONDARY RECORD: 4
SECONDARY RECORD: 4
SECONDARY RECORD: . §
SECONDARY RECORD: 2
SECONDARY RECORD: 3
SECONDARY RECORD: 3
- O - PRIMARY RECORD:
- O - PRIMARY RECORD:

SECONDARY RECORD:
- X - PRIMARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

5

3
1
4
5

- X - PRIMARY RECORD:

SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
- C - PRIMARY RECORD:

SECONDARY RECORD: 3
SECONDARY RECORD: 4
SECONDARY RECORD: 5
SECONDARY RECORD: 1
SECONDARY RECORD: 4
SECONDARY RECORD: 2
1
5
2

SECONDARY RECORD: 5
SECONDARY RECORD: 2
SECONDARY RECORD: 3
= O -~ PRIMARY RECORD:

= O - PRIMARY RECORD:

4

— o~

9

" PAGK 1

etahtnax >>>
niehtnax >>>
cihtnax >>>
nihtnax >>>
enihtnax >>>
eppihtnax >>>
orhcohtnax >>>
lyhpohtnax »>»>>
lyhpohtnax >>»>
suohtnax >>>
cebex >>>
ainex >>>
suomagonex >>>
ymagonex >>>
isenegonex >>>
itenegonex >>>
cinegonex >>>
htilonex >>>
ihpromonex >>>
nonex >>>
aibohponex >>>
cirex >>>
amredorex >>>
uolihporex >>>
Ylihporex >>>
lahthporex >>>
etyhporex >>>
mlahthprex >>>
nretsihpix >>>
diohpix >>>
narusohpix >>>
samx >>>

nalyx >>>
melyx >>>
enelyx >>>
cilyx >>>
nidilyx >>>
enidilyx >>>
hpargolyx >>>
ehpargolyx >>>
ihpargolyx >>>
ihpargolyx >>>
yhpargolyx >>>
diolyx >>>
lolyx >>>
egahpolyx >>>
uogahpolyx >>>
enohpolyx >>>
sinohpolyx >>>
esolyx >>>
tsimotolyx >>>
suomaotolyx >>>
ymotolyx >>>
retsyx >>>

" SORT XDICT,,;LH11-20

vrghnhghhnunnhhnhnhoghonhhnvnndomhnhhonhuonhononhLonhhowonbunnnhonhunhhnhLhongon

<<<
<<<
<K<
<<<
<<<
<<<
<<<
<K<
<<<
<<<
<<«
<<«
<<<

- €<<

<<<
<<<
<<<
<<<
<K<
<<<
<<
<<<
<<L<
<<<
<<L<
<<<
<<<
<<<
<<L
<<
<<<
<<<
<<<

<L<<

<<<
<<<
<<L
<<<
<K<
<<<
<<<
<<«
<K<
<<<
<K<
<<L<L
<<<
<<«
<<<
<<<
<<<
<<<
<<<
<<<

xanthate
Xanthein
Xanthic
¥anthin
xanthine
xanthippe
xanthochroid
xanthophyl
xanthophyll
Xanthous
Xebec

xenia
Xenogamous
Xxenogamy
Xenogenesis
Xenogenetic
Xenogenic
xenolith
xXenomorphic
Xenon
Xenophobia
Xeric
Xeroderma
Xerophilous
Xerophily

xerophthalmia'

Xerophyte
xerphthalmic
xiphisternum
xXiphoid
xiphosuran
Xmas

Xylan

Xylem

XYlene

xylic
Xylidin
Xylidine
Xylograph
Xylographer
xylographic
Xylographical
XYlography
xyloid

Xylol
XYlophage
XxYlophagous
xylophone
xylophonist
Xylose
Xylotomist
Xylotomous
xylotomy
Xyster

20-111 ‘

SECONDARY

- X - PRIMARY RECORD:

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- X - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

‘SECONDARY

SECONDARY
SECONDARY

= O - PRIMARY RECORD:
- 0 - PRIMARY RECORD:

= 0 = PRIMARY RECORD:
- O - PRIMARY RECORD:

RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:

RECORD: °

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

‘ [1-60

5

SECONDARY RECORD: 5
=~ X = PRIMARY RECORD:
SECONDARY RECORD: 3
SECONDARY RECORD: 1
SECONDARY RECORD: 4
SECONDARY RECORD: 5
- X = PRIMARY RECORD:
SECONDARY RECORD: 3
SECONDARY RECORD: 4
SECONDARY RECORD: 5
SECONDARY RECORD: 1
SECONDARY RECORD: 4
SECONDARY RECORD: 2
SECONDARY RECORD: 1
SECONDARY RECORD: 5
SECONDARY RECORD: 2
- O - PRIMARY RECORD:
SECONDARY RECORD: 5
SECONDARY RECORD: 2
SECONDARY RECORD: 3

wwww.&.&-wwbwwr—'nmoww.::.mv—aw.g_;u..a._u_-wp

=~

PAGE

2170
2211
10
50

55
96
6151
3 47
0 42
0 80
5139
3 88
6195
6239
4 48
3129
7 37
0118
5182
0156
4 90
7 81
4132
8190
4174
8100
8145
2 90
5225
0 1

0194

0232
1100
1 24
2130
3170
4216
7125
7169
8236
6 22
1139
1 62
512

7213

5 54
8 7
1178
6 65
6108
3211
1217

1

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
22>

>>>
>>>

>>>
25>

252>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>
>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>2>
>2>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

mrummmmmwmmMmmmmmwmmmwmwmmmmmmmmmmmmmmmwmmmmmmmmmmcnmmrum

'SORT XDICT,,;LH11=-20

<<«
<<<
<<<
<<<
<<«
<<
<<<
<<
<<<
<<«
<<<
<<«
<<<
<<«
<<<
<<<
<<<
<<<
<<«
<<<
<<<
<<<
<<«
<<<
<<<
<<<
<<«
<<<
<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<
<<<
<<<
<<«
<<«
<<<
<<«
<<«
<<<
<<«
<<«
<<<
<<<
<<«
<<<
<<<

xanthate
xXanthein
xanthic
xanthin
xanthine
Xanthippe
xanthochroid
xanthophyl
xanthophyll
xanthous
xebec

xenia
Xxenogamous
Xenogamy
Xxenogenesis
xXenogenetic
Xenogenic
xenolith
xenomorphic
Xenon

xenophobia

Xeric
xeroderma
xerophilous
xerophily
xerophthalmia
xerophyte
xerphthalmic
xiphisternum
xiphoid
xiphosuran
Xmas

¥ylan

Xylem

XYlene

Xylic
Xylidin
xylidine
xylograph
xylographer
Xylographic
xylographical
xylography
xyloid

xylol
xylophage
xylophagous
xyYlophone
Xylophonist
Xylose
xylotomist
xylotomous
xylotomy
Xyster

"SECONDARY

*I' ’:l"60

SECONDARY RECORD:
- X - PRIMARY RECOR
SECONDARY RECORD:
SECONDARY RECORD:
SECCNDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECCNDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
- X - PRIMARY RECOR
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY RECORD:
SECONDARY RECORD:
- 0 - PRIMARY RECOR
- O - PRIMARY RECOR
SECONDARY RECORD: 5
- X = PRIMARY RECORD
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
- X = PRIMARY RECOR
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
- O - PRIMARY RECORD
SECONDARY RECORD: 5
SECONDARY RECORD: 2
SECONDARY RECORD: 3

5
D
1
2
1
1
1
3
4
2
1

2
4
3
5
D
2

4
1

3
5
4
3
2
4
4
5
2
3
3
D
D

-
.
.
-

s

NN B O WOV W

- 0 - PRIMARY RECORD:

- 0 - PRIMARY RECORD

.
-

PAGE

RECORD~>
RECORD=~>
RECORD~>
RECORD->
RECORD~>
RECORD=->
RECORD->
RECORD->
RECORD~>
RECORD~>
RECORD~>
RECORD=->
RECORD=->
RECORD~->
RECORD~>
RECORD~>
RECORD=->
RECORD=~>
RECORD->
RECORD=->
RECORD=->
RECORD=->
RECORD~->
RECORD=~->
RECORD=->
RECORD=->
RECORD~>
RECORD->
RECORD=->
RECORD=>
RECORD~->
RECORD=~>
RECORD=->
RECORD~->
RECORD->
RECORD=->
RECORD->
RECORD=->
RECORD~->
RECORD=>
RECORD~>
RECORD~>
RECORD=->
RECORD=->
RECORD->
RECORD~>
RECORD~>
RECORD~>
RECORD~->
RECORD->
RECORD~>
RECORD->
RECORD=->
RECORD=>

1

>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>2>>
>>>
>>>
>>>
22>
>2>2
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

22>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

"U'UU)U)U)'UUJU)U)UJO)U)U)'U]U)'UU)U)U)U)'UU)"UPU(HU)(DU)U)UJU)U)U)U)U)U)U)U)’UU)U?U)U)U)U)U)mmUDU)U)Cn'UU')

<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<K<
<K<
<<L<
<<<
<<<
<K<
<<L<
<<<
<<<
<<<
<<<
<<<
<<<
<<<L
<<<
<<<
<<<
<<<
<<<
<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<L<
<K<
<<L<
<K<
<<<
<<<L

¥anthate
Xanthein
Xanthic
xXanthin
xanthine
xanthippe
xanthochroid
xanthophyl
xanthophyll
Xanthous
Xebec

Xenia
Xenogamous
xenogamy
Xenogenesis
xXenogenetic
Xenogenic
Xenolith
Xenomorphic
Xenon
Xenophobia
Xeric
xeroderma
xXerophilous
xerophily
Xerophthalmia
Xerophyte
xerphthalmic
Xiphisternum
Xiphoid
Xiphosuran
Xmas

xylan

Xylem
X¥lene
xXylic
xylidin-
Xylidine
Xxylograph
Xylographer
Xylographic
XyYlographical
xylography
xXyloid
Xylol
XyYlophage
Xylophagous
xXy¥lophone
XYlophonist
XYlose
Xylotomi st
Xylotomous
xylotomy
Xyster

"RECCRD~-> *;

SECONDARY
- X
SECONDARY
SECONDARY
SECONDARY
SECCONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

7

4
I

- X - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECOMDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

5

- PRIMARY RECORD:

WWNhUER BN WERUNWRBNDTOOWBNEN D W ey

- O - PRIMARY RECORD:

- O - PRIMARY RECORD:
SECONDARY RECORD: 5
- X - PRIMARY RECORD:
SECONDARY RECORD: 3
SECONDARY RECORD: 1
SECONDARY RECORD: 4
SECONDARY RECORD: 5
- X - PRIMARY RECORD:
SECONDARY RECORD: 3
SECONDARY RECORD: 4
SECONDARY RECORD: 5
SECONDARY RECORD: 1
SECONDARY RECORD: 4
SECONDARY RECORD: 2
SECONDARY RECORD: 1
SECONDARY RECORD: 5
SECONDARY RECORD: 2
- O - PRIMARY RECORD:
SECONDARY RECORD: 5
SECONCARY RECORD: 2
SECONDARY RECORD: 3

-~ G - PRIMARY RECORD:
- PRIMARY RECORD:

-0

’ 11'60.

8

-

PAGE 1

>>> § <k«

xanthein
>>> § <<«
>>> § <<«
>>> 5 <K<«
>>> 8§ <<«
»>> 5 <<<
2> 5 <<«
»>> 5 «<<
>>, 5 <<«
>>> § <<«
>>> 8§ <<«
>>> § <<<
>>> § <<«
>>> § <<«
Xenogeneti
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<k
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
Xiphosuran
Xmas
>>> § <<«
Xylem
>>> 8§ <<«
>>> § <<«
>>> § <«<<
>>> § <k«
XYlograph
>>> § <<«
>>> § <k«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> S <«K
>>> § <<<

Xylophonis
>>> § <<«
>>> 8§ <<<
>>> § <k

Xylotomy

Xyster

SORT XDICT:I;LHll-ZO

xanthate

>>> P <<< xanthein
xanthic
xanthin
Xxanthine
xanthippe
Xanthochroid
xanthophyl
xanthophyill
xanthous
Xebec

Xenia
Xxenogamous
xXenogamy
Xenogenesis

>>> P <<< xenogenetic

Xenogenic
Xenolith
Xenomorphic
Xenon
Xenophobia
Xeric
Xeroderma
xerophilous
xerophily
Xerophthalmia
Xerophyte
xerphthalmic
%»1iphisternum
Xiphoid _
>>> P <<< xiphosuran
>>> P <<< xmas
X¥ylan

>>> P <<< xylem
XYlene

xXylic

xylidin
Xylidine

>>> P <<< xylograph
Xylographer
xylographic
XYlographical
Xylography
Xyloid

Xxvlol
xylophage
Xylophagous
XyYlophone

SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

>>> P <<< xylophonist

Xylose

Xylotomist
xylotomous ,
>>> P <<< xylotomy
>>> P <<< xyster

SECONDARY
SECONDARY
SECONDARY

11—20/5=Pr’

RECORD: 5

- X - PRIMARY RECORD:
RECORD: 1

RECCRD: 2

RECORD: 1

RECORD: 1

RECORD: 1

RECORD: 3

RECCRD: 4

RECORD: 2

RECORD: 1

RECORD: 2

RECCRD: 4

RECORD: 3

RECORD: 5

- X = PRIMARY RECORD:
RECGCRD: 2

RECORD: 4

RECORD: 1

RECORD: 3

RECORD: 5

RECORD: 4

RECORD: 3

RECORD: 2

RECORD: 4

RECORD: 4

RECORD: 5

RECORD: 2

RECORD: 3

RECORD: 3

= O - PRIMARY RECORD:
- O - PRIMARY RECORD:
RECORD: 5 -
- X = PRIMARY RECORD:
RECORD: 3

RECORD: 1

RECORD: 4

RECORD: 5

- X = PRIMARY RECORD:
RECORD: 3

RECORD: 4

RECORD: 5

RECORD: 1

RECORD: 4

RECORD: 2

RECQRD: 1

RECORD: 5

RECORD: 2

= 0O - PRIMARY RECORD:
RECORD: 5

RECORD: 2

RECORD: 3

- O -~ PRIMARY RECORD:
- 0 - PRIMARY RECORD:

“/1-60

4

8

g

w

PAGE 1

>>> § <<<
niehtnax
>>> <<<
>>> <<<
>>> <<
>>> << <
>> > <<
>>> <<<
>>> <<<
>5> <<<
>>> <<«
>>> <<<
>>> <<<
>>> <<<
>>> S <<«
itenegonex
>>> <<«
>>> <<<
>>> <<«
>>> <<<
>>> <<<
>>> <<«
>>> <<
>>> <<«
>>> <<«
>5> <<<
>>> <<<
>>> <<<
>>> <<<
>>> <<k
narusohpix
samx

>>> § <<«
melyx

>>> § <<«
>>> § <<«
>>> § <k«

NnunununLnunn

nwn

Nnhnuinnnnnwnm nn

>>> § <<«
hpargolyx
>>> § <<<
>>> 8§ <<«
>>> § <<«
>>> § <<«
>>> S <<«
>>> § <<«
>>> § <<«
>>> 8§ <<«
>>> § <<«
sinohpolyx

>>> § <<«
>>> § <<«
>>> § <<«
ymotolyx

retsyx

SORT XDICT,,:LH11~-20

Xanthate

>>> P <<< xanthein
xanthic
xanthin
xanthine
xanthippe
xanthochroid
xanthophyl
xanthophyll
xanthous
Xebec

‘Xenia

Xenogamous
xenogamy
Xenogenesis

>>> P <<< xenogenetic

Xenogenic
Xenolith
Xenomorphic
Xenon
xenophobia
Xeric
xeroderma
xerophilous
xerophily

Xerophthalmia -

Xerophyte
xerphthalmic
xiphisternum
xiphoid

>»> P <<< xiphosuran

>>> P <<< xmas
Xylan
>>> P <<< xylem
XYlene

.xXylic
"Xylidin

xylidine

>>> P <<< xylograph

xylographer
xylographic
xylographical
xylography
xyloid

Xylol
xyYlophage
XYlophagous
XYlophone

SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

>>> P <<< xylophonist

XYlose

xXxylotomist
xylotomous

>>> P <<< xylotomy
>>> P <<< xyster

SECONDARY
SECONDARY
SECONDARY

20‘11/5=Pl ‘

RECORD:

5

‘ 11_60

- X =~ PRIMARY RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

UV WER NN D W N -

- X - PRIMARY RECORD:

RECOKD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECCRD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECOKD:
RECORD:

2

4
1
3
5
4
3
2
4
4
5
2
3

3

- C - PRIMARY RECORD:
- O - PRIMARY RECORD:

RECORD:

5

- X - PRIMARY RECORD:

RECORD:
RECORD:
RECORD:
RECORD:

3
1
4
5

= X = PRIMARY RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

3
4
5
1
4
2
1
5

2

-~ 0 - PRIMARY RECORD:

RECCRD:
RECOCRD:
RECORD:

5
2
3

~ O - PRIMARY RECORD:
- O = PRIMARY RECORD:

Ll |

9

PAGE 1 SORT XDICT,,;LH11=-20

>>> 5 <<< xanthate
2211 >>> P <<< xanthein

>>> S <<< xanthic

>>> 3 <<< xanthin

>>> § <<< xanthine
>>> § <<< xanthippe
»>> 5 <<< xanthochroid
>>> § <<< xanthophyl
>>> S <<< xanthophyll
>>> S <<< xanthous
>>> § <<< xebec

»>> 5 <<< xenia

22> § <<< xenogamous
»»> § <<< xenogamy
>>> § <<< xenogenesis

6239 >>> P <<< xenogenetic
>>> <<< xenogenic
>>> <<< xenolith
>>> <<< xenomorphic
>>> <<< xenon
>>> <<< xenophobia
>>> <<< xeric .
>>> <<< xeroderma
>>> <<< xerophilous
>>> <<< :erophily
>>> <<< xerophthalmia
>>> <<< xerophyte
>>> <<< xerphthalmic
>>> <<< xiphisternum
>>> <<< xiphoid
5225 >>> P <<< xiphosuran
0 1 >>> P <<< xmas
>>> S <<< xylan
0232 >>> P <<< xylem
>>> 5§ <<< xylene
>>> S <<< xylic
>>> S <<< xylidin
>>> S <<< xylidine
4216 >>> P <<< xylograph

nNnnunuuununnnnnunwnn

>>> S <<< xylographer
>>> 8§ <<< xylographic
>>> S <<< xylographical
>>> 8 <<< xylography
>>> S <<< xyloid

>>> 5 <<< xylol

>>> 5 <<< xylophage

>>> S <<< xylophagous
>>> S <<< xylophone

8 7 >>> P <<< xylophonist
>>> § <<< xylose
>>> S <<< xylotomist
>>> 5 <<< xylotomous
3211 >>> P <«<< Xxylotomy
1217 >>> P <<< xyster

SECONDARY RECORD: 5

- X = PRIMARY RECORD:

SECONDARY RECORD:
SECONDARY RECOCRD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECCRD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

- X = PRIMAR
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

- 0 - PRIMARY

- O - PRIMARY
SECONDARY RECORD: 5

= X - PRIMARY
SECONDARY RECORD: 3
SECONDARY RECORD: 1

WWRNUTERNDNWEOWRE & RNKUWE NP NS Wy

*/5=pP,” ’,1-60

RECORD:

RECORD:

RECORD:

RECORD:

SECONDARY RECOKD: 4

SECONDARY RECORD: 5

- X - PRIMARY
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

NN O AW

- O - PRIMARY RECORD:

SECONDARY RECORD: 5
SECONDARY RECORD: 2
SECONDARY RECORD: 3

-~ O - PRIMARY RECORD:
- O - PRIMARY RECORD:

RECORD:

8

[N |

9

5

PAGE 1

>>> § <<«
RECORD=->
>>> § <<«
>>> § <<«
>>> S <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> 5 <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
RECORD=>
>>> § <<«
>>> § <««
>>> § <<«
>>> § <<«
>>> 5§ <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <Kk«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
RECORD~>
RECORD->
>>> § <<«
RECORD=->
>>> § <<«
>>> § <k«
>>> S <<«
>>> § <k«
RECORD=>
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> § <<«
>>> S <<<
>>> 8§ <k«
>>> § <<«
>>> S <k«
RECORD~->

SORT XDICT,,;LH11-20

Xanthate

>>> P <<< xanthein
Xanthic

Xanthin

Xanthine
xanthippe
xanthochroid
xanthophyl
xanthophyll
Xanthous

xebec

'Xenia

Xenogamous
Xxenogamy
Xenogenesis
>>> P <<< xenogenetic
Xenogenic
Xenolith
Xenomorphic

Xenon

xenophobia

Xeric

Xeroderma
xXerophilous
xerophily
Xerophthalmia
Xerophyte
xerphthalmic
xiphisternum
Xiphoid

>>> P <<< xiphosuran
>>> P K<« Xmas
X¥lan

>>> P <<< xylem
XyYlene

xylic

Xylidin

Xylidine

>>> P <<< xylograph
xylographer
xylographic
XxYlographical
xyYlography

xyloid

Xylol

xylophage
xY¥lophagous
XY¥lophone

>>> P <<< xylophonist

>>> S <<< xylose

>>> S <<< xylotomist

>>> § <<< xylotomous
RECORD~> >>> P <<« xylotomy
RECORD=-> >>> P <<< xyster

"RECORD->

SECONDARY RECORD: §

- X = PRIMARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECCRD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
- X = PRIMARY RECORD:

RECCRD:

U100 N2 DO s W ks = ey

SECONDARY
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECGRD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
- C -~ PRIMARY RECORD:
- O - PRIMARY RECORD:
SECONDARY RECORD: 5
' = X = PRIMARY RECORD:
SECONDARY RECORD: 3
SECONDARY RECORD: 1
SECONDARY RECORD: 4
SECONDARY RECORD: 5
- X - PRIMARY RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
- O - PRIMARY RECORD:
SECONDARY RECORD: 5
SECONDARY RECORD: 2
SECONDARY RECORD: 3
- O - PRIMARY RECORD:
-~ O - PRIMARY RECORD:

WwWwh U d ENDWEB W AN

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

N U N O W

'/5=P, I3

‘ 11-60

—

9

PAGE 1

Xanthate

SORT XDICT,,;LH11-20

<<<

11-20/54P," *,1-60

>>> § xanthate SECONDARY RECORD: 5
>>> P <<< xanthein - X - PRIMARY RECORD: 4
Xanthic >>> S <<< xanthic SECONDARY RECORD: 1
Xanthin >>> 5 <<< xanthin SECONDARY RECORD: 2
Xanthine >>> S <<< xanthine SECONDARY RECORD: 1
xanthippe >>> S <<< xanthippe SECONDARY RECORD: 1
Xanthochro >>> 5§ <<« xanthochroid SECONDARY RECORD: 1
Xanthophyl >>> § <<« xanthophyl SECONDARY RECORD: 3
xanthophyl >>> 3 <<« xanthophyll SECONDARY RECORD: 4
Xanthous >>> S <<< xanthous SECONDARY RECORD: 2
xebec >>> S <<< xebec SECONDARY RECORD: 1
Xenia >>> S <<< xenia SECONDARY RECORD: 2
Xenogamous >>> S <<« Xenogamous SECONDARY RECORD: 4
Xxenogamy >>> 5 <<< xenogamy SECONDARY RECORD: 3
Xenogenesi >>> § <<« Xenogenesis SECONDARY RECORD: 5
>>> P <<< xenogenetic - X - PRIMARY RECORD: 8
Xenogenic >>> § <<< xenogenic SECONDARY RECORD: 2
xenolith >>> 8 <<< xenolith SECONDARY RECORD: 4
Xenomorphi >>> § <<< xenomorphic SECONDARY RECORD: 1
Xenon >>> § <<< xenon SECONDARY RECORD: 3
Xenophobia >>> S <<< xenophobia SECONDARY RECORD: 5
xXeric >>> 5 <<< xeric SECONDARY RECORD: 4
Xeroderma >>> § <<< Xeroderma SECONDARY RECORD: 3
xerophilou >>> S <<< xerophilous SECONDARY RECORD: 2
Xxerophily >>> S <<< xerophily SECONDARY RECORD: 4
xerophthal >>> S <<< xerophthalmia SECONDARY RECORD: 4
Xerophyte >>> S <<< xerophyte SECONDARY RECORD: 5.
xerphthalm >>> S <<< xerphthalmic SECONDARY RECORD: 2
Xiphistern >>> S <<< xiphisternum SECONDARY RECORD: 3
xiphoid >>> S <<< xiphoid SECONDARY RECORD: 3
>>> P <<< xiphosuran - O - PRIMARY RECORD: 7
>>> P <<< xmas = O - PRIMARY RECORD: 1
XYylan >>> § <<< xylan SECONDARY RECORD: 5
>>> P <<< xylem ‘ - X - PRIMARY RECORD: 2
XYlene >>> 8§ <<< xylene SECONDARY RECORD: 3
xylic >>> 5 <<< xylic SECONDARY RECORD: 1
xylidin >>> S <<< xylidin SECONDARY RECORD: 4
Xylidine >>> S <<< xylidine SECONDARY RECORD: 5
>>> P <<< xylograph - X - PRIMARY RECORD: 6
xylographe >>> S <<< xylographer SECONDARY RECORD: 3
Xylographi >>> § <<< xylographic SECONDARY RECORD: 4
xylographi >>> s <<< xylographical SECONDARY RECORD: 5
Xylography >>> § <<« xylography SECONDARY RECORD: 1
xyloid >>> S <<< xyloid SECONDARY RECORD: 4
xylol >>> S <<< xylol SECONDARY RECORD: 2
xylophage >>> 5 <<< xylophage SECONDARY RECORD: 1
Xylophagou >>> S <<< xylophagous SECONDARY RECORD: 5
xylophone >>> S <<< xylophone SECONDARY RECORD: 2
>>> P <<< xylophonist - 0 ~ PRIMARY RECORD: 9
XYlose >>> S <<< xylose SECONDARY RECORD: 5
Xylotomist >>> S <<< xylotomist SECONDARY RECORD: 2
Xylotomous >>> S <<< xylotomous SECONDARY RECORD: 3
>>> P <<< xylotomy - O - PRIMARY RECORD: 5
>>> P <<< xyster ~ O - PRIMARY RECORD: 3

PAGE 1

etahtnax
>>> P <k«
cihtnax
nihtnax
enihtnax
eppihtnax
orhcohtnax
lyhpohtnax
lyhpohtnax
suohtnax
Ccebex
ainex
suomagonex
ymagonex

i senegonex
>>> P K<<
cinegonex
htilonex
ihpromonex
nonex
aibohponex
cirex
amredorex
uolihporex
ylihporex
lahthporex
etyhporex
mlahthprex
nretsihpix
diohpix
>>> P <<«
>>> P <K<K
nalyx

>>> P <<«
enelyx
cilyx
nidilyx
enidilyx
>>> P <<k«
ehpargolyx
ihpargolyx
ihpargolyx
vyhpargolyx
diolyx
lolyx
egahpolyx
uogahpolyx
enohpolyx
>>> P <<«
esolyx
tsimotolyx
suomotol yx
>>> P <<«
>>> P <<<

>>>

SORT XDICT,,;LH11-20

>>> § <k«

.Xanthein

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
55> <<<
>>> <<<
xXxenogeneti
>>> <<«
>>> <<<
>>> <<
>>> <<«
>>> <<<
>>> <<<
>>> <<<
>>> <<<
>>> <<<
>>> <<«
>>> <<<
>>> <<<
>>> <<
>>> <<
xiphosuran
Xmas

>>> 5§ <<«
Xylem
>>> §
>>> §
>>> S <K<«
>>> § <k«
xYlograph
>>> <<<
>>> <<<
>>> <<<
>>> <<<
<<<
<<<
<<<
<<<
<<<

<<<
K<<
<<<L
<<<
<<K<1
<<<
<<<
<<<
<<<
<<<
<<<

nNunnmnunhnthnnvwnonn

NnunuLunuLununLOnLLn nnm

<L
<<<

>>>
>>>
>>>
25>

hnunhnnnon

Xanthate

xanthic
Xanthin
xanthine
xanthippe

20-11

SECONDARY

/5#P,°

RECORD:

= X -~ PRIMAEFY RECORD: 4

xanthochroid

xanthophyl
xanthophyll
xanthous
xebec

Xenia
xenogamous
Xenogamy
Xenogenesis
c

Xxenogenic
Xenolith
Xenomorphic
Xenon
Xenophobia
Xeric
xeroderma
xerophilous
xXerophily

xerophthalmia

xerophyte

xerphthalmic
xiphisternum

Xiphoid

xylan

XYlene
xXylic
xylidin
xylidine

x¥lographer
xyYlographic

xyYlographical

XxyYlography
Xyloid
xylol
XyYlophage
xylophagous
xylophone

xYlophonist

>>> § <<«
>>> S <K<«
>>> 5 <<«
xylotomy
xyster

XYlose
Xylotomi st
Xylotomous

X

SECONDARY
SECONDARY
SECONDARY

'SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECOMNDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

SECONDARY

SECONDARY
SECONDARY
SECONDARY
SECONDARY

- PRIMARY RECORD

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

= X - PRIMARY RECORD: 8
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:

RECORD:

RECORD:
RECORD:
RECORD:

RECORD:
RECORD: ~

RECORD:

- PRIMARY RECORD: 7
- PRIMARY RECORD: 1

RECORD:

- PRIMARY RECORD: 2

RECORD:
RECORD:
RECORD:
RECORD:
: 6
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

= O -~ PRIMARY RECORD: 9

SECONDARY
SECONDARY
SECONDARY

RECORD:
RECORD:
RECORD:

~ O - PRIMARY RECORD: 5

- 0

- PRIMARY RECORD: 3

",1-60

(%)

UVTW NN B W PPN

O N RO AW oo W w Wwioud e pNDWbBUWE SN

w oo

PAGE" 1 SORT XDICT,,;LH11-20 */S#P," 7 ,1-60

2170 >>> S <<< xanthate SECONDARY RECORD: 5
>>> P <<< xanthein - X - PRIMARY RECORD: 4
2 10 >>> S <<< xanthic . SECONDARY RECORD: 1
2 50 >>> 3 <<< xanthin SECONDARY RECORD: 2
3 6 >>> S <<< xanthine SECONDARY RECORD: 1
4 6 >>> S <<« Xanthippe SECONDARY RECORD: 1
8 55 >>> S <<< xanthochroid SECONDARY RECORD: 1
5 96 >>> § <<« xanthophyl SECONDARY RECORD: 3
6151 >>> S <<< xanthophyll SECONDARY RECORD: 4
3 47 >>> 3 <<< xanthous ' SECONDARY RECORD: 2
0 42 >>> S <<< xebec , SECONDARY RECORD: 1
0 BO >>> S <<< xenia SECONDARY RECORD: 2
5139 >>> S <<< xenogamous SECONDARY RECORD: 4
3 88 >>> 5 <<< xenogamy + SECONDARY RECORD: 3
6195 >>>.5 <<< xenogenesis SECONDARY RECORD: 5
>>> P <<< xenogenetic = X - PRIMARY RECORD: 8
4 48 >>> 5 <<< xenogenic SECONDARY RECORD: 2
3129 >>> S <<< xenolith SECONDARY RECORD: 4
7 37 >>> S <<< xenomorphic SECONDARY RECORD: 1
0118 >>> S8 <<< xenon SECONDARY RECORD: 3
5182 >>> S <<< xenophobia SECONDARY RECORD: 5
0156 >>> S <<< xeric SECONDARY RECORD: ¢4
4 90 >>> S <<< xeroderma SECONDARY RECORD: 3
7 81 >>> S <<< xerophilous SECONDARY RECORD: 2
4132 >>> S <<« xerophily SECONDARY RECORD: 4
8190 >>> S <<< xerophthalmia SECONDARY RECORD: 4
4174 >>> S <<< Xerophyte SECONDARY RECORD: 5
8100 >>> 5 <<< xerphthalmic SECONDARY RECORD: 2
8145 >>> S <<< xiphisternum SECONDARY RECORD: 3
2 90 >>> S <<< xiphoid _ SECONDARY RECORD: 3
>>> P <<< xiphosuran -~ O - PRIMARY RECORD: 7
>>> P <<< xmas - O - PRIMARY RECORD: 1
0194 >>> s <<< xylan SECONDARY RECORD: 5
>>> P <<< xylem -~ X = PRIMARY RECORD: 2
1100 >>> 8 <<« XYlene SECONDARY RECORD: 3
1 24 >>> 5 <<« Xylic SECONDARY RECORD: 1
2130 >>> S <<< xylidin SECONDARY RECORD: 4
3170 >>> § <<« xXylidine SECONDARY RECORD: 5
>>> P <<< xylograph - X =~ PRIMARY RECORD: 6
7125 >>> S <<« XYlographer SECONDARY RECORD: 3
7169 >>> S <<« xylographic SECONDARY RECORD: 4
8236 >>> § <<« xXY¥lographical SECONDARY RECORD: 5
6 22 >>> S <<< xylography SECONDARY RECORD: 1
1139 >>> 5 <<< xyloid SECONDARY RECORD: ¢4
1 62 >>> S <<< xylol SECONDARY RECORD: 2
5 12 >>> S <<< xylophage SECONDARY RECORD: 1
7213 >>> 5 <<< xylophagous SECONDARY RECORD: 5
5 54 >>> S <<< xylophone SECONDARY RECORD: 2
>>> P <<< xylophonist - O - PRIMARY RECORD: 9
1178 >>> S <<< xylose SECONDARY RECORD: 5
6 65 >>> S <<« Xylotomist SECONDARY RECORD: 2
6108 >>> S <<< xylotomous SECONDARY RECORD: 3
>>> P <<< xylotomy - O - PRIMARY RECORD: 5

>>> P <<< xyster : = O - PRIMARY RECORD: 3

PAGE 1

SORT XDICT,,;LH11~20

'RECORD-> '/S#PI' ',1-60

RECORD=-> >>> S <<< xanthate SECCNDARY RECORD: 5
>>> P <<< ¥anthein : - X = PRIMARY RECORD: 4
RECORD-> >>> S <<< xanthic - SECONDARY RECORD: 1
RECORD=> >>> § <<« xanthin SECONDARY RECORD: 2
RECORD-> >>> S <<< xanthine SECONDARY RECORD: 1
RECORD-> >>> § <<<'xanthippe SECONDARY RECORD: 1
RECORD=-> '>>> § <<« xanthochroid SECONDARY RECORD: 1
RECORD=-> >>> § <<« xXanthophyl SECONDARY RECORD: 3
RECORD-> >>> § <<« xanthophyll SECONDARY RECORD: 4
RECORD=-> »>>> § <<« Xanthous SECONDARY RECORD: 2
RECORD-> >>> § <<< xebec SECONDARY RECORD: 1
RECORD-> >>> S <<< xenia SECONDARY RECORD: 2
RECORD-> >>> S <<< xenogamous SECONDARY RECORD: 4
RECORD-> >>> 5 <<< xenogamy SECONDARY RECORD: 3
RECORD~> >>> S <<< xenogenesis SECONDARY RECORD: 5
>>> P <<< xXenogenetic - = PRIMARY RECORD: 8
RECORD~> >>> § <<< xenogenic SECONDARY RECORD: 2
RECORD=-> >>> S <<< xenolith SECCONDARY RECORD: 4
RECORD=-> >>> S <<< xenomorphic SECONDARY RECORD: 1
RECORD~-> >>> S <<< xenon SECONDARY RECORD: 3
RECORD~> >>> § <<« Xenophobia SECONDARY RECORD: 5
RECORD=-> >>> S <<< xeric SECONDARY RECORD: 4
RECORD-> >>> S <<< xeroderma SECONDARY RECORD: 3
RECORD=-> >>> S <<< xerophilous - SECONDARY RECORD: 2
RECORD-> >>> § <<< xerophily SECONDARY RECORD: 4
RECORD-> >>> § <<< xerophthalmia SECONDARY RECORD: 4
RECORD-> >>> § <<« Xerophyte SECONDARY RECORD: 5
RECORD=-> »>>> § «<«<«< Xerphthalmic SECONDARY RECORD: 2
RECORD=> >>>.§ <<« xiphisternum SECONDARY RECORD: 3
RECORD=> >>> § <<« xiphoid SECONDARY RECORD: 3
>>> P <<< xiphosuran - O - PRIMARY RECORD: 7
>>> P <<< xmas - O - PRIMARY RECORD: 1
RECORD-> >>> S <<< xylan SECONDARY RECORD: 5
>>> P <<< xylem - = X = PRIMARY RECORD: 2
RECORD=-> >>> .5 <<« XYlene SECONDARY RECORD: 3
RECORD=-> >>> § <<« xylic SECONDARY RECORD: 1
RECORD-> >>> S <<< xylidin SECONDARY RECORD: 4
RECORD=> >>> S <<< xylidine _ SECONDARY RECORD: 5
>>> P <<< xylograph -~ X - PRIMARY RECORD: 6
RECORD=-> >>> S <<« Xylographer SECONDARY RECORD: 3
RECORD-> >>> 5 <<< xylographic SECONDARY RECORD: 4
RECORD-> >>> § <<< xylographical SECONDARY RECORD: 5
RECORD-> >>> S <<< xylography SECONDARY RECORD: 1
RECORD=> >>> § <<« Xyloid SECONDARY RECORD: 4
RECORD-> >>> § <<« Xylol SECONDARY RECORD: 2
RECORD-> >>> S <<< xylophage SECONDARY RECORD: 1
RECORD-> >>> § <<< xylophagous SECONDARY RECORD: 5
RECORD-> >>> S <<< xylophone SECONDARY RECORD: 2
>>> P <<< xylophonist - 0 - PRIMARY RECORD: 9
RECORD~-> »>>> 5§ <<« Xylose SECONDARY RECORD: 5
RECORD~> >>> 5§ <<« Xylotomist SECONDARY RECORD: 2
RECORD~> >>> S <<< xylotomous SECONDARY RECORD: 3
>>> P <<< xylotomy = O - PRIMARY RECORD: 5
>>> P <<< xyster ~ 0 - PRIMARY KECORD: 3

PAGE 1

XyYster
xylotomy
xylotomous
xylotomist
XYlose
xylophonis
Xx¥lophone
XxYlophagou
xyYlophage
xylol
xyloid
xylography
xYlographi
xylographi
xyYlographe
Xxylodgraph
Xylidine
Xxylidin
xvylic
Xylene
Xylem
xylan

Xmas
Xiphosuran
Xiphoid
Xiphistern
Xerphthalm
Xerophyte
Xerophthal
xerophily
Xerophilou
Xeroderma
Xeric
Xenophobia
Xenon
xenomorphi
Xenolith
Xenogenic
Xenogeneti
Xenoygenesi
Xxenogamy
Xenogamous
Xenia
Xebec
xanthous
Xanthophyl
Xanthophyl
xanthochro
xanthippe
Xanthine
Xanthin
Xanthic
Xanthein
xanthate

>5>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>-

>>>
>>>

>>>
>2>>

2>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

>2>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

U)U)U)U){/)'UU)U]U)'U'U

mrUUJmcna)mcn07mcnuymcnu:mcnu)mcnaam(nuamcnU)mtnunm'uU)wcnunmcanmcnu;m

SORT XDICT,,;DLH11-20

<<L<
<<<
<<<
<<
<<<
<<<
<<<
<<<
<<<L
<K<
<<<
<<<
<<<

<<<
<<<

<<<
<<<

<<<
<<<

<<<
<<

<K<
<<<

<<<
<<<

<<

<<<
<<<
<<<

<K<
<<
<<<
<<<

<<<
<<<
<K<
<<<
<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<K<
<<<
<K<
<<<
<<<L
<<<
<<<
<<<

Xyster
xylotomy
xyYlotomous
xylotomist
XyYlose
Xy¥lophonist
Xylophone
xXylophagous
XYlophage
xylol

Xyloid
XYlography
XYlographic
xylographical
Xylographer
Xylograph
xXylidine
Xylidin
Xxylic

XYlene

xylem

X¥lan

Xma s
xiphosuran
xiphoid
Xiphisternum
Xxerphthalmic
xerophyte
Xerophthalmia
Xerophily
Xerophilous
Xeroderma

-Xeric

xenophobia
Xenon
Xenomorphic
Xenolith
Xenogenic
Xenogenetic
Xenogenesis
xenogamy
Xenogamous
Xenia

Xebec
xanthous
xanthophyl
xanthophyll
Xxanthochroid
xanthippe
Xanthine
Xanthin
Xanthic
xanthein
Xanthate

11-20,°

“,1-60

= O - PRIMARY RECORD:
- O - PRIMARY RECORD:

SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

- X = PRIMARY RECOR

SECONDARY RECORD:
SECCNDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

3

2
5

= O - PRIMARY RECORD:

2
5
1
2
4
1
4
5
3
D:

5
4
1

3

- X = PRIMARY RECORD:

SECONDARY RECORD:

5

- = O - PRIMARY RECORD:

- O - PRIMARY RECORD:

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

- X = PRIMARY RECOR

SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

- X - PRIMARY RECOR

SECONDARY RECORD:

3

3
2
5
4
4
2
3
4
5
3
1
4
2
D:
5
3
4
2
1
2
3
4
1
1
1
2
1
D:
5

9

~

PAGE 1

xanthein >>> p <<< xanthein - X - PRIMARY RECORD:
xanthine >>> S <<< xanthine SECONDARY RECORD: 1
xanthous >>> S <<< xanthous SECONDARY RECORD: 2
Lenogamy - >>> S <<< xenogamy SECONDARY RECORD: 3
xenolith >>> S <<< xenolith SECONDARY RECORD: 4
xylidine >>> S <<< xylidine SECONDARY RECORD: 5
fenogeneti >>> P <<< xenogenetic - ¥ ~ PRIMARY RECORD:
xenomorphi >>> 5 <<< xenomorphic SECONDARY RECORD: 1
xerophilou >>> S <<< xerophilous SECONDARY RECORD: 2
xylographe >>> 5 <<< xylographer SECCNDARY RECORD: 3
#ylographi >>> § <<« xylographic SECONDARY RECORD: 4
xylophagou >>> S <<< xylophagous SECONDARY RECORD: 5
xiphosuran >>> P <<< xiphosuran - O - PRIMARY RECORD:
4/lography >»- S <<< xylography SECONDARY RECORG:
Afiotumi ot o0 8 <k xylotor: st SECURDERY FECOED:
AR AR IR ¥ ST T S SRR w0
vt hophy | 5 <4< xanthophyl) - SECOMDARY RECORD: 4
Xenogencst >>> § <<< xXenogenesis SECONDARY RECORD: 5
Xxmas >>> P <<< xmas - O - PRIMARY RECORD:
xebec >>> S <<< xebec SECONDARY RECORD: 1
xenia >>>.5 <<< xenia SECONDARY RECORD: 2
Xenon >>> S <<< xenon ‘SECONDARY RECORD: 3
Xeric >>> § <«< xeric SECONDARY RECORD: 4
xylan >>> § <<< xylan SECONDARY RECORD: 5
xylem >>> P <<< xylem - X = PRIMARY RECORD:
xylic >>> § <<< xylic SECONDARY RECORD: 1
xylol >>> § <<< xylol SECONDARY RECORD: 2
Xylene >>> 8 <<< xylene SECONDARY RECORD: 3
xyloid >>> 5§ <<< xyloid SECONDARY RECORD: 4
XYylose >>> § <<< xylose SECONDARY RECORD: 5
xylograph >>> P <<< xylograph - X = PRIMARY RECORD:
xylophage >>> S <<< xylophage SECONDARY RECORD: 1
Xylophone »>>> § <<« Xxylophone SECONDARY RECORD: 2
Xanthophyl >>> § <<< xanthophyl SECONDARY RECORD: 3
xXenogamous >>> S <<< xenogamous SECONDARY RECORD: 4
xenophobia >>> § <<< xenophobia SECONDARY RECORD: 5
xylophonis >>> P <<< xylophonist - O - PRIMARY RECORD:
xanthochro >>> S <<< xanthochroid SECONDARY RECORD: 1
xerphthalm >>> § <<« xerphthalmic SECONDARY RECORD: 2
Xiphistern >>> § <<« Xiphisternum SECONDARY RECORD: 3
xerophthal >>> S <<< xerophthalmia SECONDARY RECORD: 4
xylographi >>> S <<< xylographical SECONDARY RECORD: 5
Xylotomy >>> P <<< xylotomy - O -~ PRIMARY RECORD:
xanthippe >>> S <<< xanthippe SECONDARY RECORD: 1
xenogenic >>> S <<< .xenogenic SECONDARY RECORD: 2
xeroderma >>> S <<< xeroderma SECONDARY RECORD: 3
Xxerophily >>> S <<< xerophily SECONDARY RECORD: 4
xerophyte >>> S <<< xerophyte SECONDARY RECORD: 5
xyster >>> P <<< xyster - O - PRIMARY RECORD:
xanthic >>> S <<< xanthic SECONDARY RECORD: 1
xanthin >>> 8 <<< xanthin SECONDARY RECORD: 2
Xiphoid >>> S <<< xiphoid SECONDARY RECORD: 3
xylidin >>> § <<< xylidin SECONDARY RECORD: 4
xanthate >>> S <<< xanthate SECONDARY RECORD: 5

SORT XDICT,,;LHP5=P11-20

11—20,'

'11‘60

PAGE

2211
2211
2211
2211
2211

2211

6239
6239
6239
6239
6239
6239
5225
5225
5225
5225
5225
5225

ocoooo
= b s o s

0232
0232
0232
0232
0232
0232
4216
4216
4216
4216
4216
4216

[selisslyosiNs o BN oleo]
NN NN N

3211
3211
3211
3211
3211
3211
1217
1217
1217
1217
1217
1217

1

>>>

>>>
>>>
>>>
>>5
>>>
>>>
>>>
>>>
>>>
22>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

>>>
>>>

>2>>
>>>

>>>
>>>

>>>

>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

mmmmmrgmmm'mmrummmmmmmmmcnmrummmmm‘rommmmm*uU)mmmmwmmmmmmmmmmmw

<K<
<<<
<<<
<<<
<<<

<<<

<<«
<<<
<<<
<<«
<<<
<<<
<<«
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<«
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<

SORT XDICT,, ;LHP5=P11-20

Xanthein
Xanthine
xXanthous
xXenogamy
Xenolith
Xylidine
Xenogenetic
xenomorphic
xerophilous
Xylographer
xYlographic
xylophagous
xiphosuran
Xylography
Xylotomist
xylotomous
xanthophyll
Xenogenesis
Xmas

Xebec

Xenia

Xenon

xeric

Xylan

xylem

xylic

Xxylol
XYlene
xyloid
Xylose
Xylograph
xY¥lophage
Xylophone
xanthophyl
Xenogamous
xenophobia
Xxylophonist
xanthochroid
Xerphthalmic
xXiphisternum

xerophthalmia
xXylographical

xylotomy
xanthippe
xXxenogenic
xeroderma
xerophily
Xerophyte
Xyster
xXanthic
xanthin
xiphoid
Xxylidin
Xanthate

SECONDARY
SECONDARY
SECONDARY

. SECONDARY

SECONDARY

- X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- O =~ PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- 0 - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY

*r’ '11’60

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:

SECONDARY RECORD:

- X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY

SECONDARY RECORD:
= X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

-~ O - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

= O - PRIMARY RECCR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDAKRY

= O - PPIMARY RECOR
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:
SECONDARY RECORD:

RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

2
3
4
5
D
1
2
3
4
5
D

= X = PRIMARY RECORD:

°
.

-
-

PAGE 1

SORT XDICT,,;LHP5=P11-20 11-20/P," 7,1-60
>>> P‘<<< Xxanthein -~ X - PRIMARY RECORD: 4
xanthein >>> S <<< xanthine SECONDARY RECORD: 1
xanthein >>> S5 <<< xanthous SECONDARY RECORD: 2
Xanthein >>> 5 <<< xenogamy SECONDARY RECORD: 3
Xxanthein >>> § <<< xenolith SECONDARY RECORD: 4
Xanthein - >>> S <<< xylidine SECONDARY RECORD: 5
>>> P <<< xenogenetic - X - PRIMARY RECORD: 8
Xenogeneti >>> S <<< xenomorphic SECONDARY RECORD: 1
xenogeneti >>> § <<< xerophilous SECONDARY RECORD: 2
Xenogeneti >>> § <<< xylographer SECONDARY RECORD: 3
Xxenogeneti >>> § <<< xylographic SECONDARY RECORD: 4
xenogyeneti >>> § <«<< xylophagous SECONDARY RECORD: 5
>>> P <<< xiphosuran - O - PRIMARY RECORD: 7
xiphosuran >>> S <<< xylography SECONDARY RECORD: 1
xiphosuran >>> S <<< xylotomist SECCONDARY RECORD:. 2
xiphosuran >>> S <<< xylotomous SECONDARY RECORD: 3
xiphosuran >>> S <<< xanthophyll SECONDARY RECORD: 4
xiphosuran >>> S <<< xenogenesis SECONDARY RECORD: 5
>>> P <<< Xmas - 0 - PRIMARY RECORD: 1
xXmas >>> § <<< xebec SECONDARY RECORD: 1
Xmas >>> S <<< xenia SECONDARY RECORD: 2
Xmas >>> S <<< xenon SECONDARY RECORD: 3
Xmas >>> § K<< xeric SECONDARY RECORD: 4
xmas. >>> S <<< xylan SECONDARY RECORD: 5
>>> P <<< xylem - X = PRIMARY RECORD: 2
Xylem >>> § <<< xylic SECCONDARY RECORD: 1
Xylem >>> § <<< xylol SECONDARY RECORD: 2
Xylem >>> § <<< xylene SECONDARY RECORD: 3
xylem >>> § <<< xyloid SECONDARY RECORD: 4
Xylem >>> S <<< xylose SECONDARY RECORD:)
>>> P <<< xylograph - X = PRIMARY RECORD: 6
xylograph >>> S <<« XYlophage SECONDARY RECORD: 1
xylograph >>> S <<« xylophone SECCNDARY RECORD: 2
Xxylograph >>> § <<« ¥anthophyl SECONDARY RECORD: 3
xylograph >>> S <<< xenogamous SECONDARY RECORD: ¢
xylograph >>> § <<« Xenophobia SECONDARY RECORD: 5
>>> P <<< xylophonist - O - PRIMARY RECORD: 9
xXylophonis >>> S <<< xanthochroid SECONDARY RECCRD: 1
Xylophonis >>> S <<< xerphthalmic SECONDARY RECORD: 2
Xylophonis >>> S <<< xiphisternum SECONDARY RECORD: 3
Xylophonis >>> S <<< xerophthalmia SECONDARY RECORD: 4
xylophonis >>> S <<« Xylographical SECONDARY RECORD: 5
>>> P <<< xylotomy - 0 - PRIMARY RECORD: 5
xylotomy >>> § <<< xanthippe SECONDARY RECORD: 1
xylotomy >>> § <<< xenogenic SECONDARY RECORD: 2
Xxylotomy >>> § <<< xeroderma SECONDARY RECORD: 3
xylotomy >>> § <<< xerophily SECONDARY RECORD: 4
xylotomy >>> S <<< xerophyte SECONDARY RECORD: 5
>>> P <<< xyster - 0 - PRIMARY RECORD: 3
Xyster >>> § <<< xanthic SECONDARY RECORD: 1
xyster >>> § <<< xanthin SECONDARY RECORD: 2
xyster >>> § <<< xiphoid SECONDARY RECORD: 3
Xyster >>> § <<< xylidin SECONDARY RECORD: 4
Xyster >>> § <<< xanthate SECONDARY RECORD: 5

PAGE

1

U WwWN - Wb W N - Uk W U N = U W N =

U b LI =

SORT XDICT,, ;LHP5=P11-20 */P=P11=-20
22> P <<< xanthein - X - PRIMARY RECORD: 4
2211 >>> S <<< xanthine SECONDARY RECORD:
2211 >>> S <<< xanthous SECONDARY RECORD:
2211 >>> § <<« Xenogamy SECONDARY RECORD:
2211 >>> § <<« Xenolith SECONDARY RECORD:
2211 »>>> 5 <<« xylidine SECONDARY RECORD:
>2> P <<< xenogenetic - X = PRIMARY RECORD: 8
6239 >>> 5 <<< xenomorphic SECONDARY RECORD:
6239 >>> 5§ <<« Xerophilous SECONDARY RECORD:
6239 >>> § <<« Xylographer SECONDARY RECORD:
6239 >>> § <<« xylographic SECONDARY RECORD:
6239 >>> § <<« xylophagous SECONDARY RECORD:
>>> P <<< xiphosuran - = 0 - PRIMARY RECORD: 7
5225 >>> 5 <<« xylography SECONDARY RECORD:
5225 >>> § <<« xylotomist SECONDARY RECORD:
5225 >>> S <<< xylotomous ' SECONDARY RECORD:
5225 >>> S <<< xanthophyll SECONDARY RECORD:
5225 >>> S <<< xenogenesis SECONDARY RECORD:
>>> P <<< xmas - O - PRIMARY RECORD: 1
0 1 >>> S <<< xebec SECONDARY RECORD:
0 1 >>> S <<< xenia SECONDARY RECORD:
0 1 >>> S <<< xenon SECONDARY RECORD:
0 1 >>> 8 <<< xeric SECONDARY RECORD:
0 1 >>> S <<< xylan SECONDARY RECORD:
>>> P <<< xylem - X - PRIMARY RECORD: 2
0232 >>> S <<< xylic SECONDARY RECORD:
0232 >>> 8§ <<« Xylol SECONDARY RECORD:
0232 >>> 5 <<« Xylene SECCNDARY RECORD:
0232 >>> 5 <<< xyloid SECONDARY RECORD:
0232 >>> 5 <«« Xylose SECONDARY RECORD:
>>> P <<< xylograph -~ X - PRIMARY RECORD: 6
4216 >>> S <<< xylophage SECONDARY RECORD:
4216 >>> S <<« Xylophone SECONDARY RECORD:
4216 >>> S <<< xanthophyl SECONDARY RECORD:
4216 >>> S <<< xenogamous SECONDARY RECORD:
4216 >>> S <<< xenophobia SECONDARY RECORD:
>>> P <<< xylophonist = O - PRIMARY RECORD: 9
8 7 >>> § <<< xanthochroid SECONDARY RECORD:
8 7 >>> S <<< xerphthalmic SECONDARY RECORD:
8 7 >>> S <<< xiphisternum SECONDARY RECORD:
8 7 >>> S <<< xerophthalmia . SECONDARY RECORD:
8 7 >>> S <<< xylographical SECONDARY RECORD:
>>> P <<< xylotomy - O - PRIMARY RECORD: 5
3211 >>> § <<« xanthippe SECONDARY RECORD:
3211 >>> S <<< xenogenic SECONDARY RECORD:
3211 >>> S <<< xeroderma SECONDARY RECORD:
3211 >>> S <<< xerophily SECONDARY RECORD:
3211 >>> § <<« Xerophyte SECONDARY RECORD:
>>> P <<< xyster . - O - PRIMARY RECORD: 3
1217 >>> S <<< xanthic SECONDARY RECORD:
1217 >>> S <<< xanthin SECONDARY RECORD:
1217 >>> S <<< xiphoid SECONDARY RECORD:
1217 >>> S <<< xylidin SECONDARY RECORD:
1217 >>> S <<< xanthate SECONDARY RECORD:

Ul W N Cds W

U b W

PAGE 1

XKyster >>> P <<< xyster = O - PRIMARY RECORD:
xanthic >>> 5§ <<< xanthic SECONDARY RECORD: 1
xanthin >>> S <<< xanthin SECONDARY RECORD: 2
xiphoid >>> 5 <<< xiphoid SECONDARY RECORD: 3
Xylidin >>> § <<< xylidin SECONDARY RECORD: ' 4
xanthate »>>> 5 <<< xanthate SECONDARY RECORD: 5
xylotomy — >>> P <<< xylotomy - 0 - PRIMARY RECORD:
Xanthippe >>> S <<< xanthippe SECONDARY RECORD: 1
Xxenoygenic >>» § <<< Xenogenic SECONDARY RECORD: 2
Xeroderma >>» 85 <<« xXeroderma SECONDARY RECORD: 3
xerophily >>> 5 <<< xerophily SECONDARY RECORD: 4
xerophyte >>> S <<< xerophyte SECONDARY RECORD: 5
xylophonis »>> P <<< xylophonist - O - PRIMARY RECORD:
Xanthochro >>> S <<< xanthochroid SECONDARY RECORD: 1
xerphthalm >>> § <<« Xerphthalmic SECONDARY RECORD: 2
Xiphistern >>> S <<< xiphisternum SECONDARY RECORD: 3
xerophthal >>> S <<< xerophthalmia SECONDARY RECORD: 4
xylographi >>> S <<< xylographical SECONDARY RECORD: 5
xylograph >>> P <<< xylograph - X - PRIMARY RECORD:
xylophage >>> § <<< xylophage SECONDARY RECORD: 1
x¥lophone >>> § <<« Xxylophone SECONDARY RECORD: 2
xanthophyl >>> 5 <<< xanthophyl SECONDARY RECORD: 3
Xenogamous >>> 5 <<< xenogamous SECONDARY RECORD: 4
xenophobia >>> S <<< xenophobia SECONDARY RECORD: 5§
xylem - >>> P <K< xylem - X - PRIMARY RECORD:
Xylic >>> § <<< xylic SECONDARY RECORD: 1
xylol . >>> S <<< xylol SECONDARY RECORD: 2
XYlene >>> 5 <<< xylene SECONDARY RECORD: 3
xyloid >>> 5§ <<< xyloid SECONDARY RECORD: 4
Xylose >>> § <<< xylose SECONDARY RECORD: 5
Xmas >>> P <<< xmas - O - PRIMARY RECORD:
xebec >>> S <<< xebec SECONDARY RECORD: 1
xenia >>> § <<< xenia SECONDARY RECORD: 2
Xenon >>> S <<< xenon SECONDARY RECORD: 3
xXeric >>> S <<« xeric SECONDARY RECORD: 4
xylan >>> S <<< xylan SECONDARY RECORD: 5
xiphosuran >>> P <<< xiphosuran - O - PRIMARY RECORD:
xylography >>> S <<< xylography SECONDARY RECORD: 1
Xylotomist >>> S <<< xylotomist SECONDARY RECORD: 2
xylotomous >>> § <<« Xylotomous SECONDARY RECORD: ' 3
xanthophyl >>> S <<< xanthophyll SECONDARY RECORD: ¢4
Xenogenesi >>> § <<< xenogenesis SECONDARY RECORD: 5
Xenogeneti >>> P <<< xenogenetic - X = PRIMARY RECORD:
Xenomorphi >>> S <<< xenomorphic SECONDARY RECORD: 1
xXerophilou >>> S <<« Xerophilous SECONDARY RECORD: 2
xylographe >>> S <<< xylographer SECONDARY RECORD: 3
xylographi >>> § <<< xylographic SECONDARY RECORD: 4
Xylophagou >>> 5 <<< xylophagous SECONDARY RECORD: 5
xanthein >>> P <<< xanthein - X = PRIMARY RECORD:
Xanthine >>> S <<< xanthine SECONDARY RECORD: 1
xanthous >>> S <<< xanthous SECONDARY RECORD: 2
Xxenogamy >>> S <<< xenogamy SECONDARY RECORD: 3
xenolith >>> S <<< xenolith SECONDARY RECORD: 4
xylidine >>> § <<<'xylidine SECONDARY RECORD: 5

SORT XDICT,, ;DLHP5=P11-20

11-2¢,°

‘ 11'60

PAGE 1

Xmas
Xebec
Xenia
xenon
Xeric
xylan
Xylem
X¥Ylene
Xylic
xvloid
xylol
xylose
Xxyster
xanthate
Xanthic
xanthin
Xiphoid
Xylidin
Xanthein
xanthine
Xanthous
xenogamy
Xenolith
xylidine
xylotomy
xanthippe
Xenogenic
Xeroderma
Xerophily
Xerophyte
Xylograph
xanthophyl
Xenogamous
xenophobia
xylophage
Xylophone
Xxiphosuran
xanthophyl
Xenogenesi
Xylography
Xxylotomist
Xxylotomous
Xenogeneti
Xenomorphi
Xerophilou
XyYlographe
xylographi
Xylophagou
Xylophonis
xanthochro
Xerophthal
xerphthalm
xiphistern
Xylographi

>>>
>>>
>>>
>>>
35>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

VLYY NNLnUYLDNLNLLLLNNLLLLLDNYNLLNN”YLLNN VY NH O’ g

SORT XDICT,,:;LHS5=S511-20

<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<

Xmas
Xebec
Xenia
Xxenon
Xeric
Xylan
Xylem
Xylene
Xylic
Xyloid
xylol
XYlose
Xyster
xanthate
xanthic
Xanthin
Xiphoid

'xylidin

Xanthein
Xanthine
xanthous
Xenogamy
xenolith
xylidine
xylotomy
xanthippe
Xenogenic
Xeroderma
Xerophily
Xerophyte
Xylograph
xanthophyl
Xenogamous .
Xenophobia
xyYlophage
Xylophone
xiphosuran
xanthophyll
Xenogenesis
Xylography
Xxylotomist
Xylotomous
xenogenetic
xenomorphic
Xerophilous
XyYlographer
xylographic
xXylophagous
Xxylophonist
xanthochroid
xerophthalmia
Xerphthalmic
Xiphisternum
XYlographical

11-20,°

‘ 11-60

- O - PRIMARY RECORD:

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
- X -
SECONDARY

'SECONDARY

SECONDARY
SECONDARY
SECONDARY

- 0 - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- X - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
-0 ~
SECCNDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

= X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- O - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
- X
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- O - PRIMARY RECOR

SECONDARY
SECONDARY

 SECONDARY

SECONDARY
SECONDARY

RECORD:

PRIMARY RECOR

RECORD:

- PRIMARY RECOR

RECORD: 1
RECORD: 2
RECORD: 3
RECORD: 4
RECORD: 5

D:

PRIMARY RECOR

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:

RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD: |
RECORD:

RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:

3
1
4
2
5
D:
5
1
2
3
4
D:
1
2
3
4
5
D:
1
2
3
4
5
D:
3
4
5
1
2
D:
4
5
1
2
3
D:
1
2
3
4
5
D:
1
4
2
3
RECORD: 5

PAGE 1

xylophonis

xylographi
xiphistern
xerphthalm
xerophthal
xanthochro
Xenogeneti
xylophagou
xy¥lographi
xy¥lographe
Xxerophilou
Xenomorphi
Xiphosuran
Xylotomous
Xylotomist
xylography
Xenogenesi
xanthophyl
Xylograph
Xylophone
XxyYlophage
Xenophobia
Xenogamous
xanthophyl
xylotomy
Xxerophyte
Xerophily
xXeroderma
Xenogenic
Xanthippe
Xanthein
Xylidine
Xenolith
Xxenogamy
xanthous
xanthine
Xyster
xylidin
Xiphoid
xXxanthin
xanthic
Xanthate
Xylem
Xylose
Xxylol
Xyloid
Xylic
XYlene
Xmas

Xylan
Xeric
Xenon
Xenia
xebec

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
2> >
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

mmmmmmmmmmmwmmmmmwmmmmmwmmmmmwmmmmm@mmmmm@mmmmmwmmmmmw

SORT XDICT,, ;DLHS5=811-20

<<<
<<
<<<
<<<
<<<
<<<
<<<
<<
<<<
<K<
<<<
<<<
<<<
<<<
<K<
<<<
<<
<<<
<<<
<<
<<<
<<L<
<<<
<<<
<<<
<<<
<<<
<K<
<<<
<<<
<<<
<<K
<<L<
<<<
<<
<K<
<<<
<<<
<<<L
<<<
<<L<
<K<
<<<
<<<
<<<
<<<
<K<
<<<
<<<
<<<
<<<
<<<
<<<
<<<

x¥lophonist

xylographical

xiphisternum
Xerphthalmic
Xxerophthalmia
xanthochroid
Xenogenetic
Xylophagous
Xylographic
xyYlographer
Xerophilous
Xenomorphic
Xiphosuran
xylotomous
Xy¥lotomist
Xylography
Xenogenesis
Xanthophyll
Xylograph
Xylophone
XYlophage
xenophobia
Xxenogamous
xanthophyl
xylotomy
Xerophyte
xerophily
Xeroderma
Xenogenic
xanthippe
xanthein
Xylidine
Xenolith
Xenogamy
xanthous
Xanthine
Xyster
Xylidin
xiphoid
xanthin
Xanthic
Xanthate
Xylem
Xylose
xylol
Xyloid
xylic
Xylene

Xmas

XyYlan

Xeric

Xenon

Xenia

Xebec

- 0 -
SECONDARY
SECONDARY
SECOMDARY
SECONDARY
SECONDARY

- X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- O - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- O = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECCNDARY
SECONDARY

- X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- O - PRIMARY RECOCR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- X - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- 0 - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

11-20,°

RECORD:
RECORD:
RECORD:

“411-60

PRIMARY RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:

RECORD:

U-hLﬂF*N(gCJvaUJALﬂCJH'&boum

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

SRRV N

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:

RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:

RECORD:
RECORD:
RECORD:
RECORD:

RECORD:

RECORD:
RECORD:
RECORD:
RECORD:

Hruu)p‘ﬁcyu)H.nh)quLﬂF‘N<~‘>U'““J“’“‘”C’H°”“’“Lﬁ

PAGE 1

Xanthate
xanthein
xanthic
Xanthin
xanthine
xanthippe
xanthochro
xanthophyl
xanthophyl
xanthous
Xebec
xenia
Xenogamous
Xxenogamy
Xenogenesi
Xenogeneti
Xenogenic
xenolith
Xenomorphi
Xenon
xenophobia
Xiphosuran
Xeric
xeroderma
xerophilou
xerophily
xerophthal
Xerophyte
XxYlograph
Xerphthalm
Xiphistern
Xiphoid
xylan
Xylem
XYlene
xXylic
Xylidin
Xylidine
xXylotomy
Xxylographe
XYlographi
xylographi
Xylography
Xyloid
xylol
Xy¥lophage
XyYlophagou
XYlophonis
Xylophone
XYlose
Xyster
XYlotomist
xy¥lotomous

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>5>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

n

namhunvonLnnnnnNYELNNNYNLOLPDLNLNLNPNLRLLVNYNNNN KNG KNG N YN

SORT XDICT,, ;LHPS5#P11-20

<<<
<<<
<<<
<<<
<<<
<<<
<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<K<
<K<
<<<
<<<
<<<
<<<
<K<
<<<
<<<
<<<
<<<
<<<
<<<
<<K<
<<<
<<<
<<<
<<
<<<
<<<
<<<
<<«
<<<
<K<
<<
<<L<
<<<
<<<
<<<
<<<
<<<
<L
<<<
<<<
<<<
<<<

Xanthate
xanthein
xanthic
xanthin
Xanthine
Xanthippe
xanthochroid
xanthophyl
xanthophyll
xanthous
Xebec

Xenia
Xxenogamous
xenogamy
Xenogenesis
xenogenetic
Xenogenic
Xenolith
Xenomorphic
Xenon
xenophobia
xiphosuran
Xeric
Xeroderma
Xxerophilous
xerophily
Xerophthalmia
xerophyte
xylograph
xerphthalmic
Xxiphisternum
xiphoid
Xylan

Xylem
XyYlene
Xylic
Xylidin
xylidine
Xxylotomy
xXylographer
Xxylographic
xylographical
xylography
xXyloid
Xylol
xYlophage
xYlophagous
XYlophonist
Xxylophone
XYlose
Xyster
Xylotomist
xyloctomous

11-20,°

SECONDARY
- X
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- 0 - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECCNDARY
SECONDARY
SECONDARY

- X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
- ¥
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:

- PRIMARY RECOR

RECORD:
RECORD:
RECORD:
RECORD:

“+1-60

5

1

2
1
1
1
3
4
2
1
2

4
3
5
D
4
3
5

2
1
D
4
3
2
4
4
5
D
2
3
3
5
b

3
1
4
5

- PRIMARY RECORD:

- O - PRIMARY RECORD:

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

-~ G -~ PRIMARY RECORD:

SECCNDARY
SECONDARY

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:

U NSRS W

2
5

- O -~ PRIMARY RECORD:

SECONDARY
SECONDARY

RECORD:
RECORD:

2

"

3

PAGE 1

Xmas
Xmas

Xxylan
Xylem
xYlose
Xyster
xanthate
xanthein
xylidine
xylotomy
Xerophyte
XYlograph
Xxenophobia
Xiphosuran

Xenogenesi

Xenogeneti
xXYlophagou
Xylophonis

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

"UU)"UU)"UU)"UM'UU)'UCD'UU)*U(D"U"U

SORT XDICT,,;LHS5#S11-20

<<<
<<<
<<<
<<<
<<<
<<<
<<<
<K<
<<<
<<<
<<<
<<<
<<<
<<<
<K<
<<<
<<<
<<<

Xmas
Xmas

Xylan

XyYlem
XYlose
XyYster
Xanthate
xanthein
Xylidine
xylotomy
Xerophyte
Xylograph
Xenophobia
Xiphosuran
Xenogenesis
Xenogenetic
xYlophagous
XYlophonist

11-20,° *,1-60

= O - PRIMARY RECORD:
- O = PRIMARY RECORD:
SECONDARY RECORD: 5
- X = PRIMARY RECORD:
SECONDARY RECORD: 5
- O - PRIMARY RECORD:
SECONDARY RECORD: 5
- X = PRIMARY RECORD:
SECONDARY RECORD: 5
- 0 - PRIMARY RECORD:
SECONDARY RECORD: 5
- X - PRIMARY RECORD:
SECONDARY RECORD: 5
= O = PRIMARY RECORD:
SECONDARY RECORD: 5
- X - PRIMARY RECORD:
SECONDARY RECORD: 5
- O - PRIMARY RECORD:

“

[y -

PAGE 1

Xmas
Xenia
Xebec
xylic
Xeric
xylol
Xylem
xylan
Xenon
xyloid
XYlene
Xylose
Xxyster
xanthic
Xiphoid
Xylidin
xanthin
Xylidine
xanthine
xanthate
Xenolith
Xanthein
xanthous
xenogamy
xylotomy
Xeroderma
Xenogenic
xyYlophage
Xylophone
xanthippe
Xerophyte
xylograph
xerophily
xXenophobia
Xylographe
Xylographi
Xylographi
Xxenomorphi
Xxenogenesi
Xenogeneti
xerophthal
xanthophyl
xanthophyl
Xerphthalm
Xiphosuran
Xiphistern
xanthochro
Xylophonis
Xxenogamous
xylotomous
Xylotomist
x¥lophagou
Xerophilou
Xylography

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>2>>
>>>
>>>
>>>
>>>
>2>>
>>>
>>>
>2>
>>>
>>>
>2>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>2>>
>>>
>>>
>>>
>>>
>>>
>>>
>2>>
>>>
>>>
>>>
>>>

nunnnhntnuwhnhnrunhonhnhonvnhonhnlwOntnntnlnygnbnohnn g

SORT XDICT,, ;LH20-11

<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<K<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<«
<<<
<<<
<<<
<<«
<<<
<<<
<<<
<<<
<<<
<<«
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<

Xmas
Xenia
Xebec
Xylic
Xeric
Xylol
Xylem
Xylan
xenon
xyloid
XYlene
Xylose
Xyster
xanthic
xiphoid
xylidin
xanthin
xXylidine
Xanthine
Xanthate
Xenolith
xanthein
xanthous
Xenogamy
xylotomy
Xeroderma
Xenogenic
xylophage
xylophone
Xanthippe
Xerophyte
xyYlograph
xerophily
Xenophobia
Xylographer
xylographic

XYlographical

Xenomorphic
Xenogenesis
xenogenetic

xerophthalmia

xanthophyl
xanthophyll

Xerphthalmic

Xiphosuran

xiphisternum
xanthochroid

xylophonist
xenogamous
Xylotomous
Xylotomist
Xylophagous
Xerophilous
xylography

11-201’ '11-60

- O - PRIMARY RECORD:
SECONDARY RECORD: 2
SECONDARY RECORD: 1
SECONDARY RECORD: 1
SECONDARY RECORD: 4
SECONDARY RECORD: 2
- X - PRIMARY RECORD:
SECONDARY RECORD: 5
SECONDARY RECORD: 3
SECONDARY RECORD: {4
SECONDARY RECORD: 3
SECONDARY RECORD: 5
- O - PRIMARY RECORD:
SECONDARY RECORD: 1
SECONDARY RECORD: 3
SECONDARY RECORD: 4
SECONDARY RECORD: 2
SECONDARY RECORD: 5
SECONDARY RECORD: 1
SECONDARY RECORD: 5
SECONDARY RECORD: 4
- X - PRIMARY RECORD:
SECONDARY RECORD: 2
SECONDARY RECORD: 3
- 0 - PRIMARY RECORD:
SECONDARY RECORD: 3
SECONDARY RECORD: 2
SECONDARY RECORD: 1
SECONDARY RECORD: 2
SECONDARY RECORD: 1
SECONDARY RECORD: 5
- X - PRIMARY RECORD:
SECONDARY RECORD: 4
SECONDARY RECORD: 5
SECONDARY RECORD: 3
SECONDARY RECORD: 4
SECONDARY RECORD: 5
SECONDARY RECORD: 1
SECONDARY RECORD: 5
- X - PRIMARY RECORD:
SECONDARY RECORD: 4
SECONDARY RECORD: 3
SECONDARY RECORD: 4
SECONDARY RECORD: 2
- O - PRIMARY RECORD:
SECONDARY RECORD: 3
SECONDARY RECORD: 1
- O - PRIMARY RECORD:
SECONDARY RECORD: 4
SECONDARY RECORD: 3
SECONDARY RECORD: 2
SECONDARY RECORD: 5
SECONDARY RECORD: 2
SECONDARY RECORD: 1

PAGE 1

xylography
Xerophilou
Xxylophagou
Xxylotomisgt
XYlotomous
Xenogamous
Xylophonis
xanthochro
xiphistern
xiphosuran
xerphthalm
xanthophyl
xanthophyl
¥erophthal
Xenogeneti
Xenogenesi
Xenomorphi
Xxylographi
xylographi
Xylographe
Xenophobia
Xerophily
Xylograph
Xerophyte
xanthippe
XYlophone
xylophage
Xenogenic
xeroderma’
Xxylotomy
Xenogamy
Xanthous
xanthein
Xenolith
Xanthate
Xanthine
xXylidine
xanthin
xylidin
Xiphoid
xanthic
Xyster
Xylose
Xylene
xyloid
Xenon
Xylan
Xylem
Xxylol
Xeric
Xylic
Xebec
xXenia

Xmas

b -

R

>>>
>5>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>5>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

>5>

>2>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>2>>
>>>

rvmmmmmfommmmm*ommmmmmmmmmmmmmMmmm@wmmmMmmhcmm.mm'vmm»ummmmm

2]

SORT XDICT,,;DLH20-11

<<
<<<
<<<
<<<
<K<
<<
<<«
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<K<
<<<
<<<
<<<
<<<
<<<
<<L

-<<L<

<<<
<<<
<<<
<<<
<<<
<<<
<<
<<L<
<<<
<<<
<<<
<<<
<<L<
<<<
<<<
<<<
<<«
<<
<<<
<<<
<<<
<<<
<<<
<<<
<<
<<<

Xylography
Xerophilous
xYlophagous
Xylotomist
xylotomous
Xenogamous
Xylophonist
xanthochroid
xiphisternum
Xiphosuran
Xerphthalmic
Xanthophyl
xanthophyll
Xerophthalmia
Xenogenetic
Xenogenesis
Xenomorphic
XYlographic
xylographical
xylographer
Xenophobia
Xerophily
XYlograph
Xerophyte
Xanthippe
xyYlophone
xyYlophage
xenogenic
Xeroderma
XYlotomy
Xenogamy
xXanthous
Xanthein
Xenolith
Xanthate
xanthine
xylidine
xanthin
Xylidin
Xiphoid
xanthic
Xyster
XYlose
XYlene
xyloid
Xenon

xylan

XYlem

X¥lol

Xeric

Xylic

Xebec

Xenia

Xmas

11-20,°

SECCNDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

‘ rl"60

> w oo

= O -~ PRIMARY RECORD:

SECONDARY
SECONDARY

RECORD:
RECORD:

1
3

- O - PRIMARY RECORD:

SECONDARY
SECONDARY
SECONDARY
SECONDARY

- X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECGNDARY

RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

2
3

= O - PRIMARY RECORD:

SECONDARY
SECONDARY

RECORD:
RECORD:

3
2

- X - PRIMARY RECORD:

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- O - PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

= X = PRIMARY RECOR

SECONDARY
SECONDARY
SECONDARY
SECONDARY
SECONDARY

- O - PRIMARY RECOR

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

RECORD:
RECORD:
RECORD:
RECORD:
RECORD:

4

5
1
5
2
4
3
1
D:
5
3
4
3
5
D:
2
4
1
1
2
D:

~J

PAGE

Xma s
Xebec
Xenia
Xenon
xXeric
X¥lan
Xylem
Xylic
xylol
XYlene
Xyloid
XYlose
xyster:
xanthic
xanthin
Xiphoid
Xxylidin
Xanthate
Xanthein
Xanthine

1

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

it Ly U)'UU)U)U)U)U)'UU)U)U)U}U)"U

SORT XDICT,, ;LHP5=P20-11

<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<
<<<

<

Xmas
Xebec
Xenia
Xenon
Xeric
xXylan
XYlem
Xylic
Xylol
XYlene
Xyloid-
Xylose
Xyster
xanthic
xanthin
xXiphoiqd
Xylidin
Xanthate
Xanthein
Xanthine

St Faeciaes

11-201’ ’11-60

= O = PRIMARY RECORD
SECONDARY RECORD: 1
SECCNDARY RECORD: 2
SECONDARY RECORD: 3
SECONDARY RECORD: 4
SECONDARY RECORD: 5
-~ X = PRIMARY RECORD
SECONDARY RECORD: 1
SECONDARY RECORD: 2
SECONDARY RECORD: 3
SECONDARY RECORD: 4
SECONDARY RECORD: 5
- 0 - PRIMARY RECORD
SECONDARY RECORD: 1
SECONDARY RECORD: 2
SECONDARY RECORD: 3
SECONDARY RECORD: 4
SECONDARY RECORD: 5
- X - PRIMARY RECORD
SECONDARY RECORD: i

SECTION 29. SUR COMMAND

SUR - Subdirectory command 29.0 Purpose

When a specific disk is used for more than one purpose, some inconveniences
occasionally turn up. Assume for a moment that a user has a disk which he is using for
program generation on each of two more or less unrelated projects. When he uses the CAT
command, for instance, he will normally see a whole range of files, some of which are not
related to the project he may be currently interested in. Or, he may begin editing a new file
on the disk, only to find that another user of the same disk may have already had a file of
that name. At times like this, it would be convenient to logically partition the directory so that

a user would only have a portion of it, the portion he is currently interested in, available to
him at one time. '

A more concrete example is the DOS itself and its various commands. Obviously
Datapoint's DOS.A, DOS.B, and DOS.C bear a strong resemblance to each other. The DOS
and most of the command files are configured at assembiy time through conditionali assembly
and equates to support a given disk controller and specific file structure. The result is several
different object code files, all with a /ABS extension, for each single source file with a /TXT
extension. Yet it is desirable for a number of reasons to keep all of the object code files for
all the DOS and commands on a single drive.

Without the DOS subdirectory facility, it is not permitted to have two files on a giwen
logical drive with the same name.

29.1 About Subdirectories

The use of the SUR (Subdirectory Utility Routine) command allows the user to logieally
partition the directory on a given disk into several smaller subdirectories. Each such.
subdirectory can then contain zero or more files, up to the maximum number of 256 fikes per
logical drive. Each subdirectory on a disk has a unique name. Two subdirectories always
exist on all drives; these are called SYSTEM and MAIN. The names for the other
subdirectories are assigned by the user as he establishes them, and follow the same rules as
for any standard DOS file name. As a subdirectory is created, the name specified by the user
is related to a unique number which is referred to as the subdirectory number. The relationship
between subdirectory names and subdirectory numbers is riot unlike the relationship between
DOS file names and physical file numbers. A given subdirectory may have different numbers
on ditferent drives, even though the subdirectory name is the same.

It is important to realize that subdirectories are not.a way of getting more than 256 files
on a drive. This they cannot do. The thing that subdirectories are good for is partitioning the
directory and restricting the scope of a file name. This allows several files of the same name
to exist on one disk at the same time, without causing the DOS to become confused as to
which is the one to be referenced at any time. The way the DOS achieves this is that each

SECTION 29. SUR COMMAND 29-1

of the files is in a 'different subdirectory’ from each other, and hence is uniquely identified
even though the name and extension may be identicel.

29.2,1 Creation of Subdirectories

Subdirectories are created with the SUR command. All that is required is to specify a
name for the proposed subdirectory and request its creation. Creation of a subdirectory does
not actually result in any real change to the directory on disk at all; all it does is to cause
the specified name to be entered into a table, kept on disk, which relates each subdirectory
name with its subdirectory number. The user is allowed to specify which drive he wishes to
create the subdirectory on; if he does not indicate a specific drive, the named subdirectory
i1s placed onto all on-line drives if possible.

29.2.2 Deletion of Subdirectories

Subdirectories are deleted with the SUR command. The user specifies the name of the
subdirectory he wishes to remove and requests its deletion. Deletion of a subdirectory does
not result in KILLing the files within the range of that subdirectory. |f a subdirectory to be
deleted contains one or more files, the files are first moved from that subdirectory to the one
called MAIN before the named subdirectory is deleted. The user is allowed to specify from
which drives the subdirectory is to be deleted; if he does not indicate a specific drive, the
named subdirectory is deleted from all on-line drives on which it appears.

29.2.3 Being ‘in a Subdlirectory’

The user can define at any time which of the subdirectories on each of his disks contain
the current files he is interested in. This is done with the SUR command by specifying the
name of the subdirectory containing the files of current interest. This action causes him to be
placed ‘into’ the named subdirectory on the drive specified. (If no specific drive is mentioned,
he will be placed 'into’ the subdirectory specified on all on-line drives containing a
subdirectory with the given name). It is appropriate to point out that the current subdirectory
on each drive need not have the same name; for example, the user could easily be in
subdirectory PROGRAMS on drive zero and in subdirectory DATABASE on drive one at the
same time.

Once in a specific subdirectory on a drive, that state does not normally change until the
user requests being placed into a different subdirectory (again via the SUR command) or
re-boots the DOS. Rebooting the DOS causes the user to be placed into the subdirectory
named SYSTEM on all drives.

29.2.4 Scope of a File Name

When a program accesses a file under DOS, it tells DOS the name and extension of the
file it is looking for and either indicates one specific drive which the DOS is to search for the
file, or requests that the DOS look on all on-line drives. In order for the DOS to ‘find’ the
given file, the DOS must find a file whose name and extension exactly match the ones
specified by the requesting program. {f no such file can be found, the DOS returns indicating
that the specified file cannot be found and therefore probably does not exist.

29-2 PART Il SYSTEM COMMANDS

When subdirectories are in use, this matching of name and extension is expanded so
that in addition to a file’s name and extension matching those specified by the requesting

program, the file must also be within either the current subdirectory (for that drive) or the one
called SYSTEM in order to be ‘found’.

Therefore the scope of a file name can be more or less defined via the following:
when a user is in subdirectory X on drive Y, files can be 'seen’ by his program only if they

are in either subdirectory X or subdirectory SYSTEM. Files in any other subdirectory wili not
appear to exist.

29.2.5 About Subdirectory SYSTEM

It has been shown that files in the subdirectory named SYSTEM are special in that they
can be accessed regardless of which subdirectory the user is ‘in’ on a specific drive.
Likewise, a special situation also occurs when the user is ‘in’ the subdirectory named
SYSTEM. When the subdirectory named SYSTEM is the current subdirectory on a given drive,
all files on that drive are accessible regardless of which subdirectory they themseives are
actually in.

A little caution must be used when a user is in subdirectory SYSTEM on a disk with
multiple files of the same name and extension. The caution is that, although each of the files
is still associated with one and only one subdirectory, all of the files on a disk are available
when the user is ‘in’ the SYSTEM subdirectory. The result is that in this situation, one of the
files of the desired name and extension will be reférenced; which -one is referenced is,
however, undefined. Therefore, good practice dictates that if a user has more than one file
with the same name and extension on some drive, that he make a point of always knowing
which subdirectory he is in (and that it is not SYSTEM) if it matters to him which of his files
he references.

29.2.6 Files vs. the User Being ‘in a Subdirectdry’

It is important not to confuse the two distinct concepts of a file being in a subdirectory
as opposed to that of {a uger)’being in a subdirectory’.

A file being in a specific subdirectory is a way of saying that the file cannot be
accessed when the current subdirectory is neither that specific subdirectory nor SYSTEM. This
relationship, that of a file being in a specific subdirectory, is retained more or less
permanently, it a file is placed in subdirectory SUBDIR1 today on a disk, the disk can be
removed and stored on a shelf; if tomorrow the disk is taken down from the shelf and
re-mounted, that file will still be in subdirectory SUBDIR1.

A user being in a specific subdirectory is a way of saying that the subdirectory in
question is ‘the current subdirectory’ on one or more logical drives. The ‘current subdirectory’
on a drive is less permanent and reflects the use of the SUR command since the previous
time the DOS was bootstrapped.

As in most computer-related things, the best understanding of subdirectories is attained
through experimentation. i

SECTION 29. SUR COMMAND 29-3

29.2.7 Getting a File into a Subdirectory

In general, there are three ways to get a file into a given subdirectory. The easiest and
probably most common of these is automatic. Whenever a file is created, it is always placed
into the current subdirectory on the drive on which it is created.

Once a file has been thus created, it can be moved between subdirectories with the
NAME command. The NAME command can take a file within the scope of the current
subdirectory and put it into the current subdirectory if it is not already (which is useful if
either the source or destination subdirectory is SYSTEM) or can place it into any other
subdirectory the user might wish to put it into.

29.3 USAGE
The SUR command is parameterized as follows:
SUR |<name>}|/<function>}{:DR<n>|{,<new name>]

The function performed by SUR is determined by the absence or value of the
<function>field and the name field, as described below.

29.3.1 Establishing a 'Current Subdirectory’

If the function field is not given, SUR establishes the named subdirectory as the current
subdirectory on all drives on which the named subdirectory exists. it the named
subdirectory does not exist on one or more drives, the current subdirectory on any such drives
is unaffected. If a specific drive is mentioned, then only the current subdirectory on the
specified drive is subject to change. '

29.3.2 Creating a Subdirectory

If the function field is /NEW, SUR creates the named subdirectory on all drives on which
the named subdirectory does not exist. The current subdirectory is not affected by the
operation. If a specific drive is mentioned, then the named subdirectory is only created on
the specified drive.

29.3.3 Deleting a Subdirectory

if the function field is /DEL, SUR deletes the named subdirectory on any drives on which
the named subdirectory exists. |If any files are in the named subdirectory, they are moved to
subdirectory MAIN before the named subdirectory is deleted. If the subdirectory being deleted
is the current subdirectory on that drive, the current subdirectory is also changed to
MAIN. Subdirectories SYSTEM and MAIN cannot be deleted. If a specific drive is mentioned,
then the named subdirectory is only deleted from the specified drive.

29-4 PART 11l SYSTEM COMMANDS

29.3.4 Renaming a Subdirectory

If the function field is /REN, SUR renames the named subdirectory on any drives on
which the named subdirectory exists, to the name specified in the new subdirectory name
field.If any files are in the named subdirectory, they will be in the subdirectory specified by the
new subdirectory name field upon completion of the operation. Subdirectories SYSTEM and
MAIN cannot be renamed. If a specific drive is mentioned, then the name of the named
subdirectory is changed only on that specified drive.

29.3.5 Displaying Subdirectories.

If the subdirectory name field is not given, SUR displays the names of all subdirectories
on all on-line drives. The format of the listing is similar to that provided for file names by the
CAT command. The number in parentheses to the right of each subdirectory name is the
subdirectory number associated with that name (in octal); an asterisk indicates the current
subdirectory on each drive. If a specific drive is mentioned, then only the subdirectories
present on the specified qrive are displayed.

SECTION 29. SUR COMMAND 29-5

PART IV

ADVANCEDG%&E RAMMERS

SECTION 1. INTRODUCTION

1.1 General Background Information

The object of an operating system is to allow maximal use of the capabilitie s f a a
computer with minimal effort. A Datapoint 1100, 2200 Version 2, or 5500 computer with a
Datapoint disk memory unit attached is capable of a very sophisticated mass information
storage structure and a multitask environment. The sophistication of the mass storage
structure allows efficient use of the available space while maintaining operator convenience
and error recovery. The multitask environment allows the execution of several functions

simultaneously. With the préceding in mind, a complete set of system routines and operator
commands are provided.

1.2 Operator Commands

The operating system contains a routine that interprets user commands given at the
keyboard and performs the tasks indicated. A large set of commands are supplied with the
system which provide the user with facilities for creation, modification, and execution of files,
along with a dynamic debugging facility. These include a general purpose editor and many
useful disk file handling commands. A complete set of CTOS compatible cassette handling

commands are also provided, allowing the user to transfer files between the disk and
cassettes.

Since the commands are actually programs which the system loads and executes to
perform the task required, the command language is naturally extensible to include any
program the user may desire, thus leading to a powerful keyboard facility. See Part Iil for
information on the commands supplied with the system.

1.3 System Structure

The operating system proper resides within the first 8K of memory. Of this, only the first
2.8K is necessary for the support of the disk. The debugging tool and CTOS compatible
keyboard and display routines occupy through 4K, the cassette handler through 5.4K and the
command handler through the rest. 'When the system is bootstrapped from the rear cassette,
the first 768 bytes are loaded with a loader in the first 512 and entry point table and interrupt
handler in the other 256. Note that since only the first 512 locations are necessary to load a
file from the disk, any program’ that could be loaded by the cassette loader can be loaded by
the disk loader. The small size of the disk file handling routines is due to the use of overlays
for the file opening and closing functions. An overlay is also used to contain most of the
system error messages, allowing fully descriptive messages without using a prohibitive amount
of main memory. The basic DOS itself will run in 8K memory, but many of the commands
require more than 8K. A 16K machine is strongly recommended. (Different considerations
apply to Datapoint 5500 users due to the greatly expanded capabilities of the 5500 and hence
its more powerful DOS).

SECTION 1. INTRODUCTION 1-1

The operating system supports one disk controller with one or more physical disk drives
attached. Each physical drive contains one disk unit which is considered to be one or more
logical drives, each of which consists of a completely sclf-contained information structure.
Each logical disk can contain up to 256 files, the marimum length of any one of which being
determined by the particular DOS in use; but in no case may the size of any file exceed the
capacity of the logical drive on which it resides. File snace is allocated dynamically while

maintaining as much physical contiguity as possible, thus enhancing access time and storage
efficiency. '

1.4 Interrupt Handling

A set of routines is loaded by the bootstrap that allows the user to make effective use of
the interrupt facility in the Datapoint computers. These routines schedule the execution of
_interrupt driven processes, provide facilities for these processes to be turned on and off, and
provide a mechanism via which these processes can be made to execute in a convenient
manner. Note that since these routines are loaded only by the bootstrap action, interrupt
driven processes are not stopped by the loading of the system or other programs. The DOS
cassette handling routines make use of this interrupt facility to allow slewed reads and writes
when moving data between the disk and cassettes, greatly increasing the rate of transfer.

1.5 System Routines

Routines within the operating system provide the programmer with facilities for dealing
with the disk, cassettes, keyboard, and display. Each category of routine has an entry point
table to allow system changes without necessitating a change in the user's code. Since each
category has its own table, those routines not needed may be overlayed by the user. The
keyboard and display routines are identical in parameterization and function to the CTOS
routines. The cassette routines perform the same functions as the CTOS routines but are
parameterized differently. All of the routines execute with interrupts enabled and have a full
set of error traps, enabling the user to deal with all errors except those fatal to the system.

1.6 Physical Configuration Requirements

The minimal physical configuration required to support the disk operating system is a
Datapoint 1100, 2200 or 5500 computer (minimum 8K memory, 16K strongly recommended) and
a Datapoint Corporation disk memory peripheral. (Note that the Version 1 2200 is not capable
of running the DOS). As mentioned earlier, users with Datapoint 5500 computers and wishing
to use the full 5500 disk operating system will need more than 16K, with the full complement
of 48K user memory recommended.

The choice of computer (1100, 2200, or 5500) and disk drive type (flexible diskette,

cartridge disk, or full eleven-high disk pack drive) will determine which versions of DOS a user
may choose from. '

1-2 PART IV . ADVANCED PROGRAMMERS 3UIDE

1.7 Program Compatibility with Different DOS

The various versions of Datapoint DOS vary somewhat in internal disk structuring and in
small related details. (Such detailed information is provided in the DOS System Manual
corresponding to the user's individual DOS). In general, if a programmer uses the information
contained in this User's Guide in writing his program, that program should run under any of
the Datapoint Corporation DOS, without modification.

Use of information contained within the DOS System Manual with regard to internal disk
structuring details, absolute physical locations of system tables, assumptions regarding the

format and contents of internal physical disk addresses, and the like, should be avoided within =

user programs as it will tend to impair compatibility with different DOS and obstruct ease of
future upgrading to higher capacity, more cost effective disks and more powerful processors.

SECTION 1. INTRODUCTION 1-3

SECTION 2. OPERATOR COMMANDS

Files are identified from the console by a NAME, EXTENSION, and LOGICAL DRIVE
NUMBER. The NAME must start with a letter and may be fellowed by up to seven
alphanumeric characters. For many commands, this is the only information that must be
supplied. The EXTENSION must start with a letter and may be followed by up to two
alphanumeric characters. It further defines the file, usually indicating the type of information -
contained therein. For example, TXT usually implies user data files or source information (e.g.
DATASHARE, ASM, DOS DATABUS, or SCRIBE source lines), ABS usually implies program
object code records that can be loaded by the system loader, and CMD usually implies
programs that implement commands given the DOS from the keyboard. Most commands have
default assumptions concerning the extensions of the file names supplied to them as
parameters. However, extensions may otherwise be considered as an additional part of the
name. The LOGICAL DRIVE NUMBER specifies which logical drive is to be used. It is given
in the form DR(n), where (n) is zero through the maximum supported within the user's '
configuration and the specific DOS he is using. If the drive is not specified, the system
searches all drives starting with zero. Note that each logical drive contains its own directory
structure. Specifying the drive number enables one to keep programs of the same NAME and
EXTENSION on more than one drive. '

Files are always created implicitly. That is, the operator never specifically instructs the
system to create a given file. Certain commands create files from the names given as their
parameters. Since space allocation is dynamic, the operator never specifies how many records
his file contains.

Deleting files is made somewhat more difficult to protect the user from accidentally
destroying valuable data. Files can be protected against deletion or both deletion and writing.
In addition to this, the operator must always explicitly describe the file he is deleting and even
then must answer a verification check stop before the actual deletion occurs.

The éystem has no explicit RUN command since, to execute his program, the user simply
mentions its name as the first file specification on the command line. This is the mechanism
via which both commands and user programs alike are executed. The first file specification
may be followed by up to three more, depending upon the requirements for parameterization of
the program being run. A file specification is of the form:

NAME/EXTENSION:DRIVE

where any of the three items may be null (except the NAME must be given in the first
specification which denotes the program to be run). Note that the / indicates that an
extension follows and the : indicates that a device specification follows. If either of these
items is not given, the corresponding denotation character is not used. For example:

NAME/ABS:DR0 NAME/ABS
NAME:DRO

SECTION 2. OPERATOR COMMANDS 2-1

NAME

are all syntactically correct. File specifications may be delimited by any non-alphanumeric that
would not be confused with the extension and device indicators. For example:

COPY NAME/TXT,NAME/ABS

COPY NAME/TXT NAME/ABS

COPY NAME/TXT/NAME/ABS \
will all perform the same function. If an extension is not supplied in the first file specification,
it will be assumed to be CMD. In the above examples, COPY/CMD will be used for the
complete file name sought in the directory for the command program name. Note that if one
wanted to run a file he had created with extension ABS, he would simply enter

NAME/ABS

and his program would be loaded and executed. 1f the name given cannot be found in the
directory or directories specified, the message

WHAT?

will be displayed. Note that the DOS can load any object code at or above location 01000
(octal). However, if any use has been made of the interrupt handling facility, loading must be
above 01400 or the system must be bootstrapped (by pushing RESTART) before 01000 through
01377 may be overstored. This restriction arises from the fact that once the interrupt facility
has been activated, a JUMP to a routine between 01000 and 01377 has been stored in
locations 0, 1 and 2 and if this routine is overstored, the system will go astray upon
occurrence of the next interrupt.

See Part Ill of this manual for a full description of the command programs supplied with
the DOS.

2-2 PART IV ADVANCED PROGRAMMERS GUIDE

SECTION 3. SYSTEM STRUCTURE

3.1 Disk Structure

A disk, whether a flexible diskette, cartridge, or pack, is a self contained information
structure when used with the DOS. A disk’s tables reference only information on the disk
itself, and it is assumed that the structure of the disk will not be changed without these tables
also being changed.

The smallest structural unit of information on the disk is called a cluster and is
composed of some fixed number of 256-byte sectors. (The rnumber of sectors per cluster varies
with different DOS but in general is between three and thirty-two sectors per cluster.) Clusters
do not span track or cylinder boundaries, and one track of the disk will generaliy contain one
or more clusters. Since the cluster is the smallest allocatabie unit of storage on the disk, one
cluster represents. the minimum possible file size.

Some small portion of each logical disk is reserved for several special tables maintained
by the system. These tables include the Cluster Allocation Table (CAT), Lockout CAT, and the
Directory. These tables are maintained in duplicate for backup purposes. This helps to insure
that a software or disk error will not result in possible massive loss of data.

The CAT is a bit map of the clusters that are not avaiiable for new space allocation.
Each bit represents one cluster, and generally each byte represents one cylinder. Thus, the’
location of the byte in the table is equal to the number of the cylinder it is representing. Note
that since not all 256 bytes are needed for this bit map (no supported disk has 256 cylinders),
these excess entries are marked as not being available. However, since the DOS knows the
maximum number of cylinders per disk, the entries above that number are never checked (thus
leaving them free for other purposes). The last byte of the CAT is the auto-execute PFN,
which specifies the physical file number of the file to be automatically executed when the DOS
is loaded. This number being zero implies that no file is to be automatically executed since
physical file zero is the number of the DOS itself. :

The Lockout CAT is similar to the CAT but is written only once, at the time of DOS
generation of each disk. This sector is a copy of the CAT after the DOS GENERATION -
program has certified the disk but before any files have been aliocated on it. It therefore
provides a sector indicating which areas of the disk have been flagged as bad during the DOS
GENERATION certification process. This is used in conjunction with the main CAT to avoid
allocating files onto known bad places on the disk.

The Directory consists of sixteen sectors. Each sector contains sixteen entries of sixteen
bytes each. Each entry is associated with a number called the physical file number (PFN).
This number is some function of the physical location of the entry in the directory (which
function may vary for different DOS).

The DOS loader (resides between 0 and 01000 in memory) is parameterized by a logical

SECTION 3. SYSTEM STRUCTURE 3-1

drive number and a physical file number. It indexes the directory on the given disk by the
physical file number according to the individual DOS’s directory mapping function to obtain the
file's physical starting location (part of the information within the directory). Physical files
zero through seven are reserved for system usage. File zero contains all of the code for the
DOS (except for the overlays) that resides above location 01400. Files one through six contain
code for executing the following functions:

- PREP - create a new file

- CLOSE - close a file and delete if indicated
- OPEN - open an existing file

ALLOC - allocate more space for a file

- ABORT - display an error message

SCREEN - initialize the RAM display if present

DU A WN =
'

These are overlays that reside in thé area between 04000 and 05400. File seven is used both
by the DOS subdirectory facility, described in the SUR command section, and for the DOS
FUNCTION overlays. :

The physical number of a file is written in every record of that file for error control
purposes. Otherwise, physical file numbers are used only to parameterize the system
loader. At higher levels, files are parameterized by a symbolic name which is also contained
within the directory entry. Other information contained within a directory entry is the physical
disk location of the first cluster of the file, and protection bits to disable either deletion of the
file or both deletion of and writing into the file.

Note that the name as stored in the directory consists of eleven bytes of data. The
command interpreter, which handles information given at the keyboard by the operator, deals
with an eight byte name ‘and a three byte extension (see Section 2). This is, however, purely
a convention of the command interpreter and has no significance in relation to the internal
format of the directory. When system routines which deal with file names are used, eleven
bytes are provided for the parameter which is always dealt with as a monolithic item.

A file consists of logically contiguous records (there is a one to one correspondence .
between records and physical disk sectors). These records are aiiocaied in one or more
physically contiguous groups of clusters where each contiguous group is called a
segment. This segmentation is employed to allow the dynamic allocation and
de-allocation of disk space without having to move information contained in other files.

Internally, the DOS references records by a number, called the Logical Record Number
(LRN), that starts at zero. The first two logical records (zero and one) contain a table
followed by its copy that lists the location of each of the segments that make up the
file. Logical records two through the last record in the file contain the user's data. These
records are referenced by a number specified by the user that starts at zero. Therefore,
system logical record two is user logical record zero.

The table that describes the segments comprising the file is called the Retrieval

information Block (RIB). The working copy is kept in system logical record zero and its
backup copy in record one. The backup copy is always written immediately after the working

3-2 PART IV ADVANCED PROGRAMMERS GUIDE

copy is written. It exists to allow recovery if the working copy shows a parity failure in later
use. Since the 1100 and 2200 DOS always write with the write/verify mode of the disk
controller, this situation should only occur if a power failure occurs while the working copy is
actually being written on the disk (the actual writing of a sector on the disk surface only takes
a millisecond or two, except for the flexible diskette). Since RIB updates occur infrequently,
the probability of this kind of failure is extremely small. The CAT, Lockout CAT and Directory
copies are treated in a manner similar to the treatment of the RIB copy for exactly the same
reasons and exhibit the same small probability of requirement for backup. However, it is
important that these backup facilities exist to prevent possible massive loss of the user’'s data.

The figure on the following page depicts the file structure described above. Note that
the logical record numbers indicated in the second figure are system numbers and that the
LBN 2 shown is actually user LRN 0. The upper portion of the sketch shows the first segment
broken down into its individual records. The first record points to all of the segments in the
file (including the segment that contains the first record itself). The lower portion of the
sketch shows the next segment broken down into its individual clusters. -

SECTION 3. SYSTEM STRUCTURE 3-3

FILE STRUCTURE

USER LRN 2
USER LRN 1
USER LRN 0
RIB COPY
RIB

/:EST OF SEGMENT 1

PHYSICALLY CONTIGUOUS
TO THE RIB & COPY

(SYSTEM LRN 2 =
USER LRN 0)

X RECORDS/CLUSTER

1 TO 32 PHYSICALLY
CONTIGUOUS CLUSTERS
PER SEGMENT

SEGMENT 2

%
'
’V/?X RECORDS/CLUSTER
¢
|y X RECORDS/CLUSTER

y
y
Lﬂ/?x RECORDS/CLUSTER

3-4 PART IV ADVANCED PROGRAMMERS GUIDE

The RIB contains the physical file number in its first byte, as in all records within the
system, and a logical record number in the second two bytes, also as in all records within the
system (the LRN of the working copy is zero and of the back-up copy is one). The fourth
byte of the RIB always contains an 0377. The rest of the 252 bytes within the RIB contains
up to 126 segment pointers (called descriptors). The first segment descriptor points to the
segment containing the RIB itself and always exists. If the list is shorter than 126 segments, a
terminator consisting of two 0377's appears to denote that no descriptors follow. When the file
is 126 segments long, the pair of 0377's does not exist. A single segment may be between 1
and 32 clusters long. This length is specified by the rightmost five bits of the second byte in
the descriptor which is the length minus one (thus the range of 1 through 32). The maximum
ot 32 clusters per segment is due to the five length bits available in the RIB's segment
descriptors. An additional limitation exists which further reduces the maximum number of
clusters per segment for certain DOS, that restriction being that the total number of sectors
per segment must be less than 256. The left three bits of the second byte, together with the
first byte, specify the cluster where the segment begins. The following figure shows the format
of the RIB:

RIB FORMAT
PFN
-ﬁ
a .
LRN > RIB COPY IS LRN 1
;M
s D
p3r7 - CAUSES LOADER TO SKIP RIB'S
. ﬁ‘
SEGMENT - - T
DESCRIPTOR > CYLINDER
: 1 ! 1 1 N | [|
SEGMENT ‘-
DESCRIPTOR
2 .
 CLUSTER
‘NUMBER OF
. FIRST ONE
IN THE
SEGMENT
: NUMBER OF —
4377 CLUSTERS
. MINUS ONE
9377

SECTION 3. SYSTEM STRUCTURE 3-5

3.2 Disk Data Formats

The DOS itself does not deal with the user's data below the record level. it only keeps
track of where the records are, allowing the user to format the data in any manner he
pleases.The user is presented with records that are 253 bytes long. The system keeps the
physical file number in the first physical location of each sector and the system logical record
number of the given record in the second (LSB) and third (MSB) physical locations of each
sector. This is done to insure that the record obtained is the record desired. The last 253
bytes may contain anything the user chooses. There are, however, some assumptions made by
the DOS and the programs supplied with it that deal with disk data. These assumptions fall
into two classes: system loader object records and symbolic data records. The first class
contains all records that are to be loaded into memory by the DOS loader. The second class
contains all records that are to be handled by the standard data handling programs. These
programs include the general purpose editor, the assembler, DATASHARE, RPG i, DOS BASIC,
and the DATABUS programs (both source lines for the various compilers and data records
handled by the resulting programs).

A record that is to be loaded by the system loader must have the following format:

glLlH|C]AININBYTES] @ |L|H]T|H|N]|NBYTES] 8377 | X X X

J T on

v '
DATA BLOCK DATA BLOCK

Any number of the data blocks may appear in a record. . The leading byte being O
indicates a data block follows and 0377 indicates end of record. The special case of N being
zero is used to indicate an end-of-file. In this case, the HL given is taken to be the starting
address if one is to be used. A record that is to be dealt with by one of the standard data
hgndiing programs must have the foilowing format (note that this format is identical to the
GEDIT format used on cassette tapes except for the end-of-file indication):

DATA 015 DATA 011| N DATA 015 DATA 3
L A J T_
: h 8 Y
END OF ONE LOGICAL THIS EOR
LOGICAL N SPACES RECORD RECORD END OF
RECORD COMPRESSED ' CONTINUED PHYSICAL
(N > 1) ON NEXT RECORD
PHYSICAL
RECORD

—MAXIMUM OF 251 BYTES —

3-6 PART IV ADVANCED PROGRAMMERS GUIDE

3.3 Memory Mapping

The DOS occupies memory as shown by the following map:

|

i\
\

020000 {8K)

COMMAND
OVERLAYS

COMMAND
INTERPRETER

CASSETTE
DRIVERS

DOS FUNCTIONS

DEBUG

KEYIN & DISPLAY

FILE HANDLING
OVERLAYS

DISK FILE
HANDLING ROUTINES

DATA AREA

ENTRY POINTS &
INTERRUPT HANDLER

SYSTEM LOADER

017000

012400

010000 (4K)

07400

05400

04000 (2K)

02000
01400
01000

SECTION 3. SYSTEM STRUCTURE

3.4 Memory Tables

A number of entry point tables exist within the DOS. These tables consist of a group of
jumps to the varibus routines made available to the user. These jumps allow the system to be
changed without requiring the usér to reassemble his programs.

The first entry point table is located between 01000 and 01377. It contains entry points
to the routines in the loader (the loader itself, the basic disk read and write driver, and the
interrupt handler) and the DOS file handling routines. It also contains in-line routines to
increment and decrement the HL registers. These routines are coded in-line and constructed
in a fashion to enable the A-register to contain the increment or decrement vaiue and the
entry point plus two entered for incrementation or decrementation by a number other than one.

The second entry point table is located between 010000 and 010066 and contains entry
points to the cassette handling routines. The third entry point table is located between 013400
and 013452 and contains entry points to routines within the command interpreter. The
availability of the command interpreter routines makes small command tasks easy to implement
as can be seen by inspection of the assembly listings for the commands supplied with the
DOS. See Sections 5 and 7 of Part IV of this manual for more details on the routine functions
and entry point locations.

The major working table in the system is called the Logical File Table (LFT) and is
located from 01544 through 01643. It contains all of the information required by the file
handling routines for every file which is currently open (a maximum of three files may be open
at any one time - logical files one, two, and three). Once the user has opened a file by its
symbolic name, he deals with it by the logical file number under which it was opened. The
LFT entry keeps a record of the segment currently being dealt with. If the record being
accessed (specified by the LRN in the following table) is within the current segment
(determined from the BLRN and CSD in the foliowing table), the physical disk location can be
determined from the information in the LFT (all LRN's in the LFT are system
LRN's). Otherwise, the RIB must be read and a new current segment established. Note,
however, that a maximum of only two disk accesses are necessary to randomiy access any
piece of information within a file and sequential accesses require only one disk access in most
cases. : ,
The LFT contains for each entry the following information in the order shown (the
number in parenthesis is the number of bytes used for the item):

PFN (1) - Physical File Number

PDN (1) - Physical Drive Number and Protection
LBRN {2} - Next LRN to be dealt with

BLRN (2) - First LRN within the current segment
CSD (2) - Current Segment Descriptor

RIBCYL (1) - Physical Disk Address of RIB (MSB)
RIBSEC (1) - Physical Disk Address of RIB (LSB)
MAXLRN (2) - Largest LRN referenced

LRNLIM (2) - Largest LRN ailowed (obsolete)

3-8 PART IV ADVANCED PROGRAMMERS GUIDE

BUFADR (1) - Current controller buffer address
XXXXXX (1) - Not used

There are actually four LFT entries to correspond to buffers 0-3 in the disk
controller. However, the first entry (logical file zero) is reserved for system usage because the
DOS needs a buffer into which it can read the RIB if it is necessary to determine a new
current segment when a given access is made. This need is only critical on writes when the
buffer contains the information to be written to the disk and the system must then read the
RIB into a different buffer. On reads, the user's data will always be the last item to be read
and logical file zero can be used.- One must exercise caution in the use of logical file zero,
however, since an access involving a different logical file may cause logical file zero's disk
buffer to be loaded with a RIB. Also, the zeroth disk controller buffer is always used by the
system loader in transferring data to memory. This last fact implies that the user may load an
overlay or chain to another program without any of the standard (one through three) logical
files being perturbed in any way. The other thing that is Special about logical file zero is
that CLOSEs have no effect when issued on it. This means that neither space deallocation
nor updating of the protection field occur when logical file zero is closed. This is true
whether the close is done by explicitly calling CLOSES$ or implicitly by calling other system
routines (e.g. PREP$, LOADS, RUNS. etc.)

The DOS‘Ioader uses a set of locations in memory locations 4 through 022 to perform
the functions of an LFT entry during the loading process. It knows, however, that an object
file is always sequential and does not have to have the accessing generalization of the main
file handling routines. This is the main factor in the small size of the DOS loader. The file
handling routines also use these low memory locations for temporary storage of a specified
LFT entry to eliminate having to continually index into the LFT. Also, since the basic disk
read and write routines use location 5 to indicate which drive is to be used, having the LFT
temporarily stored in the low memory locations automatically selects the correct drive for use.

3.5 The Command Interpreter

Section 2 of this manual describes the operation of the DOS from the system
console. When the command interpreter is entered, it checks to see if a program has been
set to be automatically executed. If it has, the program is loaded and executed (unless the
KEYBOARD key is depressed). Otherwise, the command interpreter attempts to obtain a
command- line from the keyboard. While it is waiting for this line, the command interpreter
runs a test on the disk controller buffer memory while checking the keyboard ready status
bit.When the keyboard becomes ready, the test is stopped and the keyin routine entered (which
will get the character that made the keyboard become ready and then key in the rest of the
command line - note that even striking just the CANCEL key will stop the disk buffer memory’
test).

Th:e command interpreter resides in locations 012400 through 020000. Actually, the area
between 017000 and 020000 is used as an overlay area by many of the commands supplied
with the system, thus eliminating the need to reload the DOS after the execution of every
command. The interpreter keys a command line into a place in the data area of the DOS
called MCR$ (Monitor Communication Region, locations 01400 through 01543). It then scans

SECTION 3. SYSTEM STRUCTURE 39

this line with lexical scanning routines that are made available to the user through the
command interpreter entry point table. The IN command and the #(which causes entry into
the debugging tool), are handled as special cases. Otherwise, the first name given is opened
as logical file zero and that program loaded and executed. The program that is loaded has
access to the command line in MCR$ and thus programs may be parameterized by information
given after the program name.

The command interpreter scans up to four file specifications from the command
line. These specifications are entered in a normalized symbolic form into the corresponding
logical file table entries. Note that this is not the normal logical file table information but that
these locations are simply being used as a temporary storage for the symbolic information that
has been lexically normalized by the command interpreter. The program loaded may simply
check that all the necessary information has been supplied and/or supply any assumed
portions, and then use this data as a name parameter to the file opening or creating
routine. The opening routine has no difficulty using a name that is supplied as its parameter
in the same locations as the logical file table entry it is going to set up.

When a program receives control from the command interpreter after having been
invoked via a command line from the keyboard, each of the LFT entries one through three (but
not zero) contain the following:

DRCODE (1) - Drive select code (described below)
0377 (1) - Indicates file is closed

FILENAME (8) - File name specified (or eight spaces)
FILEEXT (3) - File extension specified (or spaces)
DRSPEC (3) - Logical drive specification (or spaces)

The drive select code contains one of the following:

0377 - No drive spec entered (DRSPEC is spaces)
0376 - Nonstandard, probably invalid, drive spec
Otherwise - The given logical drive number, in binary.

Note that most DOS system routines allow 0377 as a drive number, indicating 'scan all
drives’. (This is the reason why 0377 is the no-drive-specified code; programs need no longer
treat this as a special case). Example program usage: (prepare file specified in LF2 file spec,
defaulting extension to TXT)

TXT DC TXT Default extension
START MLA *LFT+LF2+10 Get first byte of ext.

CcP Check if it's blank
JFZ NODEF If not, leave it alone
LEL '
LDH

HL XT Else default to 'TXT’
LC 3 :

CALL BLKTFR
NODEF MLA *LFT+LF2+2 Make sure name was given

3-10 PART IV ADVANCED PROGRAMMERS GUIDE

CP T And if not, get address

NAMREQ of 'NAME REQ’' message
JTZ CMDAGN And return with it
MLA *LFT+LF2 Check file extension
CP 0376 for validity and if bad
HL BADEXT give INVALID DRV’ message
JTZ CMDAGN
LCA Get drive #(N,0377) into C
h DE LFT+LF2+2 DE =>name, extension

CALL PREPS And it's done.

Note that programs which receive control upon DOS startup (programs which have been
set for AUTO-execute) do not generally receive control via the command line mechanism and
hence the contents of both MCR$ and the LFT are initially undefined when such programs are
entered. Any program which is to be set for automatic execution will therefore have to take
this factor into consideration, and perhaps make special provisions as it may require. (A utility
program called AUTOKEY exists which remedies this situation, and is released with the DOS).

SECTION 3. SYSTEM STRUCTURE 3-11

SECTION 4. INTERRUPT HANDLING

4.1 Scheduling

When the system is loaded with the bootstrap function (RESTART depressed), the
following set of CALL instructions are loaded into the area between 01000 and 01377 (just
above the main entry point table for the DOS): ’

INTRPT Dt _ . Disable interrupts
BETA Use BETA mode

INTO " CALL RETURN Do the four

INT1 CALL RETURN one millisecond

INT2 CALL RETURN routines

INT3 CALL RETURN
MLA *INTSCN Rotate to the
AD 6 next one of the
LMA ~ four millisecond
AD INT4-6 routines
LLA . b HL =CALL address
PUSH Jump to the

RETURN RET next CALL

INT4 CALL RETURN " Four millisecond
JMP INTRET routine table

INT5 CALL RETURN
JMP INTRET

INT6 CALL RETURN
JMP INTRET

INT7 CALL RETURN

: XRA Reset the scan
. MSA *INTSCN pointer

INTRET ALPHA : Back to ALPHA mode
El Enable interrupts
RET Back to the background

Foreground routines are executed by being called by cne of the above CALL
instructions, and run only in BETA mode with interrupts disabled. Note that the only way for a
foreground routine to return to the scheduler is via a RETURN instruction. Therefore, the
routine must always leave the subroutine call address stack in the same state it was in when
the routine was entered. ' This means that a foreground routine can not call a subroutine that
then returns to the interrupt scheduler because this would leave the stack with an address it
did not previously have. Subroutines that must wait for another interrupt must be handlied by

SECTION 4. INTERRUPT HANDLING 4-1

storing the return address into a memory location somewhere (usually most conveniently into
the address portion of a jump instruction, as it turns out).

4.2 Process Initialization

When bootstrap occurs, a return is stored in location zero to cause interrupts to have no
effect. This enables the loader to be completely self-contained below location 01000, able to
load all programs that could be loaded by the cassette loader, and still able to run with
interrupts enabled. Whenever an interrupt routine is activated, however, locations 0, 1, and 2
are loaded with a jump instruction to the label INTRPT in the preceding code. This activates
the interrupt scheduler and is also the reason why programs should not be loaded below
01400 after the interrupt handling facilities within the DOS have been used.

Once the jump instruction has been stored, the interrupt scheduler is executed every
millisecond. Note that initially none of the CALLs would have any effect, since they all call a
RETURN instruction. When an interrupt driven routine is initiated, however, its address is
stored into the address portion of the CALL instruction, causing that routine to be executed.
interrupt driven routines are always initialized from the background program by the routine
SETI$, which stores the address given in the D and E registers (MSB and LSB respectively)
into the CALL instruction whose number is given in the C register (the number corresponding
to the digit shown in the labels on the CALL instructions in the preceding code). The first
four CALLs are executed every millisecond and the second four CALLs are rotated in
execution causing any particular one to be executed only once every four milliseconds. Since
the interrupt 'scheduler is entered every millisecond, the execution time for the one four
millisecond and four one millisecond routines should not total more than one millisecond
average to prevent an interrupt from being dropped.

The execution of the foreground process can be stopped in two ways. There is a
background routine called CLRI$ which simply sets the D and E registers to the label RETURN
in the preceding code and executes the SETI$ routine. There is also a foreground routine
called TP$ which will be discussed after the explanation of process state changing.

4.3 Procesg State Changing

Once an address has been stored in a particular CALL instruction, the same location will
be entered upon each execution of that CALL. This location is calied the state of the
foreground process. A routine exists above the interrupt scheduler (still below 01400} which
allows the state of the process to be changed to the location following the call of that routine.
The routine, shown below, is called CS$ for Change State:

CS$ POP DE =the address
LEL after the CALL
LDH instruction
POP HL =the address
PUSH of the CALL to
CALL. DECHL this process

4-2 PART IV ADVANCED PROGRAMMERS GUIDE

LMD Change the address

CALL DECHL in the CALL to
LME this process
RET Back to the scheduler

This routine obtains the new state address by popping the stack. it assumes that after
doing that, the stack is in the same state it was when the process call was executed, and thus
can obtain the location of that call by popping the stack again. (This implies that CS$ should
not normally be called from a subroutine within an interrupt-driven process, but only from ‘level
zero' of the foreground process). It does this and stores the new address in the process call.

It then executes a RETURN to give control back to the interrupi scheduler, thereby causing

execution of that specific foreground process to wait until the next time the process call is
executed.

A routine called TP$ exists- which simply loads the D and E registers with the location
RETURN in the interrupt scheduler code shown earlier and jumps to the second POP
instruction in CS$. This routine is jumped to (not called) and, as mentioned before, terminates
the execution of the foreground process.

At this point an example is appropriate. To simplify the discussion, it will be assumed
that the process CALL has been initialized to the location LABEL1. The following routine
decrements a memory location called COUNT until it becomes zero and then changes its state
to the location LABEL2, which waits for the keyboard status bit to be set and then obtains the
character entered and continues with processing. Note that this has the effect of causing a
delay of the number of milliseconds equal to the number that was initially in COUNT before
continuing on to checking the keyboard and processing the character.

LABEL1 MLA *COUNT Get the count
su 1 Decrement it
LMA Update memory
RFZ . : Back to the scheduler
CALL CS$ Change state if zero
LABEL2 LA 0341 Then start checking
EX ADR the keyboard
IN Wait for KBD
ND 2 ready
RTZ Back to. the scheduler
EX DATA Unless KBD ready
IN Then get the key
Etc.

The following is a narrative of what takes place. It will be assumed that interrupt zero
(INTO) has been initialized and the jump instruction to INTRPT stored in locations 0, 1, and 2.

SECTION 4. INTERRUPT HANDLING 43

Upon occurrence of the next interrupt a jump to INTRPT occurs, interrupts are disabied, and
the processor switched to BETA mode. A CALL to LABEL1 is then executed by the
instruction at INTO. LABEL1 loads the A-register with the contents of COUNT, decrements it,
and stores the result back into COUNT. If the result is not zero, the return is executed and
the rest of the CALLs in the interrupt scheduler are executed, the processor switched back to
ALPHA mode, interrupts enabled, and control passed back to the program that was interrupted.
If the result is zero, CS$ is called. It gets the location LABEL2 by popping the stack into the
DE registers. It then gets the location INT1 by popping the stack into the HL registers but
leaves this value on the stack. It then stores the DE register values (equal to the address
LABELZ2) into the CALL at INTO and returns, causing execution to continue at INT1. When the
next interrupt occurs, the CALL at INTO will be to LABELZ.

4.4 Timing Considerations

As mentioned before, the programmer must be careful with the amount of time he uses
when constructing interrupt driven routines. Since the interrupt scheduler is entered every
millisecond, the total execution time of the four one millisecond calls and the one four
millisecond call must not average over one millisecond if no interrupts are to be missed.
Because of this time restriction, the calls that are rotated in execution were constructed to
allow processes which do not require the higher rate to not impose as much overhead on the
system. When one is constructing a foreground process and discovers that its execution time
is becoming excessive, he must break it down into several states with each state using a more
appropriate amount of time. Note that the interrupt scheduler itself uses 130 microseconds
when there are no processes active. '

(Timings given here and elsewhere relate to the Datapoint 1100 and 2200 Version Il
processors. Users with Datapoint 5500 computers (and not concerned with downward
compatibility with Datapoint 1100 and 2200 processors) will find that its increased speed allows
less restriction on the execution time of foreground driven processes, assuming that the 5500
DOS is running in single partition mode.)

The 1100, 2200, and 5500 each contain a crystal controlled clock which causes an
interrupt signal every millisecond plus or minus 500 nanoseconds (.05%). When this signal
occurs, a flag within the processor, called Interrupts Pending, is set. Upon the occurrence of
an instruction fetch cycle when interrupts are enabled and Interrupts Pending is set, the
processor clears Interrupts Pending and executes a CALL to location zero instead of
performing the normal instruction fetch. This implies that the processor buffers interrupts one
deep since Interrupts Pending will remember the occurrence of an interrupt until they are
enabled. Note that there is a delay between the actual time when the one millisecond signal
occurs and the time when the CALL to location zero is performed. This delay is equal to the
length of time between the occurrence of the interrupt signal and the occurrence of a fetch
cycle when interrupts are enabled. Since the interrupt signal is asynchronous to when the
background program will have interrupts disabled and even to when fetch cycles occur, jitter
in the execution of the interrupt scheduler with relation to the actual occurrence of the
interrupt signal is introduced. This jitter is of prime concern when dealing with interrupt
processes and its sources and analysis for purposes of program construction are treated in the
following paragraphs.

4-4 PART IV ADVANCED PROGRAMMERS GUIDE

There are two major sources of interrupt execution jitter. The first is interrupts being
disabled. The background program must disable interrupts whenever it has the system in a
state that cannot be restored by the interrupt scheduler. The interrupt scheduler assumes that
the background does not use the BETA mode of the processor and, therefore, that it can be
used without being restored when control is returned. Because of this, the background

program must have interrupts disabled whenever the BETA mode of the processor is being
used.

The other system state that cannot be saved is that of the |/O devices. When interrupts
are active and the interrupt driven routines are performing input or output operations, the
background routines must either not do any /O or must disable interrupts when dealing with a
device. If a background routine addresses a given device without first disabling interrupts, it
could be interrupted before getting around to using that device and the interrupt routine could
address some other device. When control is passed back to the background routine, it will
proceed with its 1/0O operation thinking that the device it addressed is still addressed, whereas
the device that the interrupt routine accessed is the one actually addressed and confusion will
occur. Therefore, any |/O operations performed by the background program must have
interrupts disabled from before the time the device is addressed until after it is used.

Care must be exercised when disabling interrupts in the background program to prevent
the loss of an interrupt. Since Interrupts Pending is only one bit of information, the
occurrence of another interrupt signal before the previous one is processed will result in the
state of Interrupts Pending not changing (since it will simply be set again and it is already
set) and, therefore, the occurrence of the second interrupt will not be reflected in the state of
the processor. This means that if interrupts are disabled for more than one millisecond, an
“interrupt will be dropped. In practice. interrupts should not be disabled in the background for
more than a few hundred microseconds for the following reason:

Suppose an interrupt process is active which is taking characters from
a device at the rate of 700 per second. This implies that a character
must be taken from this device on the average of one every 1.4
milliseconds (if the device contains a one character butfer). Suppose
further that the interrupt process polled the device just before the next
character became available. At this point, the process has about 1.4
milliseconds to get the next character before it will be overstored by
" the following and cause a loss of data. Normally, if interrupts were
enabled, the interrupt process would poll the device about 1.0
milliseconds later and get the character with time to spare. However, if
the background routine disabled interrupts for 500 microseconds just
before the next interrupt occurred, the interrupt process would not be
executed soon enough and a data character would be lost.

As the above example shows, the actual execution time of the interrupt
processes can be caused to jitter due to the background routine disabling interrupts.
The worst case jitter is exactly equal to the maximum amount of time the background
routines disable interrupts. The DOS routines disable interrupts no longer than 200
microseconds. The maximum time tolerable is equal to the difference between the
time between interrupts (1000 microseconds) and the minimum time between necessary

SECTION 4. INTERRUPT HANDLING 4-5

interrupt process executions (1400 microseconds in the case above).

Another source of jitter can be in the execution time of the foreground
processes themselves. The jitter time for interrupt zero is exactly equal to that due to
interrupts being disabled. However, interrupt one is not executed until after interrupt
zero and if interrupt zero consumes a different amount of processor time on each
interrupt, interrupt one's execution time will vary with respect to when interrupt zero
started execution. This is an additional jitter factor which must be calcuiated for
interrupt one. The same is true for the interrupts that follow, but they vary even more
since the start of each succeeding interrupt process depends upon the total of the
execution times of all of the proceeding interrupt processes.

4.5 DOS Usage

The DOS itself (i.e. excluding command programs running under the DOS) uses
the interrupt facility in only two places. One is the debugging tool's dynamic
P-counter display (if it is turned on; uses interrupt zero) and the other is for the
cassette handling routines when used (uses interrupt one). Both of these routines
introduce a maximum of 400 microseconds of jitter and consume an average of 150
microseconds of processor time (with peaks of 500 microseconds).

Users with Datapoint 5500 computers and running the full 5500 DOS must
consider other details relating to timing of foreground routines, particularly on
foreground routines that deal with non-DOS supported /0 devices. These details
will be dealt with more fully in the DOS System Manuals for the appropriate DOS.

4-6 PART IV ADVANCED PROGRAMMERS GUIDE

SECTION 5. SYSTEM ROUTINES

5.1 Parameterization

Parameters are passed to the subroutines through the registers. In the discussion of
these parameters, the following abbreviations will be used:

LFN - Logical File Number times 16 (16, 32, or 48)
LBN - Logical Record Number (the user's LRN)
PFN - Physical File Number

LFT - Logical File Table

also:

Drive Number - indicate a logical drive number (0-N). (N varies with the DOS in use, but
in general will be 2**X-1; typically 3, 7, or 15). In some routines, 0377 is
used to indicate that all drives are to be checked. ‘

Name- the address of a field containing exactly eleven bytes. The first eight bytes are
the file name and the last three bytes are the file extension by command
interpreter convention. The name characters may be any eight bit
combinations except the first character must not be a 0377. The command
interpreter requires that the first and ninth characters be letters and that the
remaining be letters or digits with trailing spaces.

5.2 Exit Conditions

When a routine is called, it can either perform the expected action or not. In the
second case, some indication must be made that the expected action did not occur. This is
achieved by the condition flags in the processor being set in a special manner or by control
being transferred to a trap location instead of being returned via the subroutine mechanism.
The 'Exit conditions’ section of each subroutine description shows the register contents and
condition flags of interest when the routine returns.

5.3 Error Handling

There are fatal and non-fatal errors. Fatal errors suggest that the program is
hopelessly confused and the only recourse is to display what the problem appears to be and
reload the operating system. This is usually the result of a call being incorrectly
parameterized or the system tables on the disk being unusable. The messages displayed are
explained in Section 6.

Non-fatal errors concern various conditions such as parity failures in the user’'s data,
records of illegal format, violations of a file’s protection, or physical end of cassette. In

SECTION 5. SYSTEM ROUTINES 5-1

some cases these conditions can be detected upon the routine’s exit as explained in Section
5.2. In the other cases. control is passed to a specified location (to the error message
routine if no location has been specified by the user) instead of being returned via the
normal subroutine exit mechanism.

' There are actually two sets of traps. The first deals with the disk routines and the
second deals with the cassette routines. The disk routine traps are described under Section
56 and the cassette routine traps are described under Section 59. The 'Traps’ section of
each subroutine description indicates what conditions will cause the relevant traps. These
traps are referenced by mnemonics which are defined in the section where the trap setting
routines are described (5.6.17 and 5.9.12).

5.4 Foreground Routines

Section 4 contains a complete discussion on the functioning and use of the foreground
handling and should be consulted for an understanding of the following routines.

5.4.1 CS$ - change process state

CS$ changes a foreground routine's state. It is called by the executing foreground
routine and causes its execution address to be changed to the address following the CALL
CS$. Execution will not continue at the new address until the next interrupt occurs. CS$ is
normally called from the outermost level (level 0) of an active foreground process.

Entry point: 01033
Parameters: on subroutine stack - see Section 4
Exit conditions: return is made to the scheduler

5.4.2 TP$ - terminate process

TP$ deactivates the process called by storing the address of a return instruction in the

process call. TP$ is jumped to, not caiied. TP$ is invoked from the outermost leve! {leve! 0)
of an active foreground process.

Entry point: 01036
Parameters: - on the stack - see Section 4
Exit conditions: no exit

5.4.3 SETIS - initiate foreground process

SETI$ activates the interrupt process specified by the number in the C register (0-7) by
storing the address given in the D and E register into the CALL instruction for that process.
Interrupt processes zero through three are executed every millisecond while four through
seven are executed every fourth millisecond.

5-2 PART IV ADVANCED PROGRAMMERS GUIDE

Entry point: 01041

Parameters: C =process number (0-7)
DE =address of foreground process

Exit conditions: B.D,E unchanged
H,L =0

5.4.4 CLRI$ - terminate foreground process

CLRI$ deactivates a foreground process by storing .the address of a return instruction
Into the process call specified by the number in the C register (0-7).

Entry point: 01044
Parameters: C =process number (0-7)
Exit conditions: B,D,E unchanged

HL =0

5.5 Loader Routines

There are two levels of disk handling routines. This section describes the lower level
routines which reside in the loader and require numbers physically describing the drive,
cylinder, sector, buffer, and file. Section 5.6 describes the upper level routines.

INCHL and DECHL are described in this section only because they are used by the
DOS at all' levels and because these two routines are loaded as part of the bootblock. In
general, the other routines described in this section (5.5) are not used by typical user
programs; most user programs will be better served by the higher level routines described in
section. 5.6.

5.5.1 BOOT$ - reload the operating system

BOOTS loads and executes the.operating system (PFN O on logical drive 0). This action
does not effect the interrupt handling facility between 01000 and 01377. Since BOOTS$
requires that the operating system always be loaded from specifically drive zero, BOOTS
should normally only be used in cases where EXIT$ is unusable, for example if the disk
handling routines have been overstored. BOOT$ does not close any files before reloading
the DOS.

Entry point: 01000
Parameters: none
Exit conditions: does not return

SECTION 5. SYSTEM ROUTINES 5-3

5.5.2 RUNXS$ - load and run a file by number

RUNXS$ loads the physical file specified and begi'ns its execution. If the file cannot be
loaded, a jump to BOOT$ occurs.

Entry point: 01003

Parameters: A =PFN
C =Drive Number

Exit conditions: does not return
5.5.3 LOADXS - load a file by number

LOADXS$ loads the physical file specified and returns with the starting address in HL if
the load was successful. .

Entry point: 01006

Parameters: A =PFN
C =Drive Number

Exit conditions: Carry false: HL =Starting address of file

Carry true: A=0 if file does not exist

1 it drive off line

it directory parity fault
if RIB parity fault
if file parity fault
if off end of physical file
if record of illegal format

[« 2204 BN~ 44 B N }

5.5.4 INCHL - increment the H and L registers

INCHL increments the sixteen bit value in the HL registers by one. If the routine is
entered at INCHL+2, the sixteen bit value in the HL registers will be incremented by the
number in the A register.

Entry point: 01011 (01013 for increment by A)

Parameters: HL =number to be incremented
A =increment value if INCHL+2 used

Exit conditions: HL incremented

A equal to the H-register
B,C,D,E unchanged

5-4 PART IV ADVANCED PROGRAMMERS GUIDE

5.5.5 DECHL - decrement the H and L registers

DECHL decrements the sixteen bit value in the HL registers by one. If the routine is
entered at DECHL+2, the sixteen bit value in the HL registers will be decremented by
negative the number in the A register (e.g., for decremention of 2, A is set to -2).

Entry point: 01022 (01024 for decrement by -A)

Parameters: HL =number to be decremented
A =decrement value if DECHL+2 used

Exit conditions: HL decremented
A equal to the H-register
B,C.D,E unchanged

5.5.6 GETNCH - get the next disk buffer byte

GETNCH gets the character from the physical disk buffer location pointed to by low
memory location BUFADR (location 026) from the disk buffer currently selected and then
increments the contents of the location BUFADR. Note: Do not confuse the low-memory
location BUFADR used by GETNCH with the 4 fields called BUFADR in the LFT.

Entry point; 01047
Parameters: . BUFADR =disk buffer address (0-255)
Exit conditions: A =character from disk buffer

BUFADR =BUFADR+1
B,C,D.EH.L all unchanged

5.5.7 DR$ - read a sector into the disk buffer

DR$ causes a sector to be transferred from the disk to one of the disk controller
buffers. The drive number is given in the least significant bits (the others are ignored) of
location PDN (5). (The number of bits ignored depends upon the particular DOS in
use). The physical disk address (LSB) is given in the E register and the physical disk
address (MSB) is given in the D register. The disk controller buffer number times sixteen is
given in the B register. Interrupts are disabled by this routine a maximum of 100
microseconds.

Compatibility note: Here the user shouid be reminded that the physical disk address
format will vary; the user's program should not make assumptions regarding this format if
the program is to be transportable between different DOS. The most significant byte is
generally a cylinder number, and the least significant byte is a sector address within a
cylinder. This least significant byte will generally be the more at variance among DOS. In

SECTION 5. SYSTEM ROUTINES 5-5

general, the only safe way to insure a valid, proper physical disk address (PDA) is to get it
as a returned item from a system routine (POSIT$ or one of the DOS FUNCTIONSs, to be
described later). User program generation of or manipulation of physical disk addresses is
strongly discouraged.

DR$ tries up to four times to read a record, if parity faults are detected, before giving
an abnormal exit status. Note that since this routine is used by ail of the higher levei
routines, all disk reads performed by the disk operating system try to.read a record that
shows parity problems up to four times before giving up.

Entry point: 01052

Parameter. B =16 times buffer number (0,16,32,48)
D =physical disk address (MSB)
E =physical disk address (LSB)
PDN (at loc 5) =logical drive number

Exit conditions: B,D,E,PDN all unchanged
Carry false if read successful
L =252 + number of retries required
Carry true and Zero false if drive off line
Carry true and Zero true if parity fault

5.5.8 DWS$ - write a sector from the disk buffer

DW$ causes the contents of one of the disk controller buffers to be transferred to a
sector on the disk. If the write protection on the specified drive is enabled, DW$ will beep
continuously until the protection is disabled.

There are two types of write protection in the disk operating system. The first type is
a physical protection that is part of the disk drive hardware which will cause DW$ to beep if
set. The second type of write protection is a logical protection that is connected with each
file on a disk. A Dbit exisis in the directory eniry for each file which, if set, will prevent the
higher level routines (for example, WRITE$) from calling the DW$ routine. It is important not
to confuse these two types of write protection. All references to write protection that follow
refer to the logical protection on each file and not to the physical protection on the drive
itself.

In the 1100/2200 series DOS, DW$ uses the write/verify mode of the disk controller.
This implies that all writes made by these disk operating systems use this mode of writing.
As in the DRS$ routine, up to four tries will be made if parity faults occur before abnormal
exit will occur. In all other respects, DW$ is similar to DRS.

Entry point: 01055

Parameters: B =16 times buffer number (0,16,32,48)
D =physical disk address (MSB)

5-6 PART IV ADVANCED PROGRAMMERS GUIDE

E =physical disk address (LSB)
PDN (at loc 5) =drive number

Exit conditions: B,D.E,PDN unchanged
Carry false if read successful _
L =252 + number of retries required
Carry true and Zero false if drive off iine
Carry true and Zero true if parity fault

5.5.9 DSKWAT - wait for disk ready

DSKWAT waits for disk ready, controller ready, no disk 1/O transfer in progress, and
drive online to all be true. If the drive is not online, return is made with the carry flag true,
the zero flag false, and interrupts enabled. Otherwise, exit is made with interrupts disabled.

Entry point: 01060
Parameters: none (drive checked is the selected d-rive)
Exit conditions: explained above

B,C,D.E,H.L unchanged

5.6 File Handling Routines

A file is dealt with as a logically contiguous and randomly accessible space. The file
being used is specified by its symbolic name (see 5.1). The LRN being dealt with within that
~file is determined by a two-byte number kept within the system (LRN in the LFT). When a
file is opened, this number is set to two.

A bit of explanation may be called for here. This two corresponds to user logical
record number zero; the LRN in the LFT is the system LRN. System LRN zero is the primary
RIB for the file and system LRN one is the RIB backup. System LRN two is the first user
data sector. "It is important to recognize this distinction between system and user logical
record numbers. All logical record numbers supplied to system routines (e.g. POSITS) are
user logical record numbers. These are converted to system logical record numbers
before being used by the DOS or placed into the LFT.

After each record access (READ$ or WRITES), LRN is incremented. Thus, for sequential
accesses, the user does not actually specify which record he is dealing with. However, a
routine exists which allows the LRN to be changed to any value between zero and the upper
limit on the file, providing a random access facility. (This upper limit depends upon the DOS
in use). Note that, since no end of file mark is intrinsic to the system, the user must provide
his own special data record to denote an end of file during sequential accesses.

If a user wishes the option of processing his files using the standard DOS utility

programs (SAPP, LIST, REFORMAT, etc.) then his EQFmark should follow DOS EDITOR
conventions:

SECTION 5. SYSTEM ROUTINES 5-7

1) The first six user data bytes in the EOFmark sector are
binary zeros.

2) The seventh user data byte in the EOFmark sector is a
binary three.

For example: Assume the user has moved the last data record to be written to
the appropriate disk buffer. (The terminating 03 is assumed to be there also). The
following sequence will write the final record and create a valid DOS EOFmark:

LB LFn Specify output LFN
CALL WRITES Write last data record
LC 6 Loop counter
EOFPUT XRA Set A to binary zero
CALL PUTS Output zero to buffer
LA -1 Decrement counter
ADC
LCA
JFZ EOFPUT And repeat as needed
LA 3 ‘Set A to binary three
CALL PUTS Last byte of EOFmark
CALL WRITES Write the EOFmark
CALL- CLOSE$ And close the file

5.6.1 PREP$ - open or create a file

PREPS$ searches the directory or directories specified for the given name. It the
name is found, the file is simply opened for use as the specified logical file number.
Otherwise. a new file having the name specified will be created. If a new file is
created, an end of file by GEDIT convention (six zeros followed by an 003) is written
in logical record zero. Whether the file is simply opened or is created, the information
describing it is stored in the LFT entry specified so that all subsequent references to
that file by its LFN will be able to deal with the correct locations on the disk. If the
LFT entry specified is already in use when PREP$ is called, the file that the entry
specifies will be closed (see Section 5.6.5) and then the new file opened in its place.

DE is normally an address of an 11-byte string which is the name of the file
being specified (as explained before under Section 5.1). However, if the D register is
zero then the E register contains the physical file number. The ability to reference
files by number makes it possible to avoid the substantial time required to search the
directory for a name. |If the PFN is aiready in use, a 'SPACE’ trap will occur.
Otherwise, the file of that number will be created. When a file is created by number,
its name in the directory consists of all 0377 characters, preventing it from being
accessed symbolically or being listed by the catalog listing command. When a PFN
is supplied, a particular drive must be specified (0377 may not be specified as a drive
number).

5-8 PART IV ADVANCED PROGRAMMERS GUIDE

Entry point: '01063

Parameters: B =LFN (16,32,48: 0 =>nop)
C =Drive Number or 0377
DE=Name or D=0 and E=PFN
If PFN given, C must not be 0377.

Exit conditions: B .=LFN; other registers indeterminate

Traps: SPACE if a new file must be allocated and no space
is left, no more directcry entries are available,
or the drive specified is off line.

5.6.2 OPENS$ - open an existing file

OPENS$ is similar to PREP$ except for the action taken if the file specified does
not exist. 'In this case, return is made with the Carry condition true (return is made
with it false if the file exists). Action is similar if a PFN is supplied instead of the
name. |f the PFN specified exists, the file is opened and return is made with the
Carry condition false. Otherwise, return is made with the Carry condition true.

Entry point: 01066
Parameters: _ same as for PREP$
Exit conditions: B =LFN; other registers indeterminate

Carry true if the file is non-existent
Traps: none

5.6.3 LOADS - load a file

LOADS opens the specified file as logical file zero and then calls the system
loader to load it into memory. Exit is made with the Carry condition set if the file is
non-existent. If the load is successful, return is made with the starting address in the
H and L registers.

Entry point: 01071
Parameters: same as for PREP$ (except B not required)
Exit conditions: B =LFN (always zero)

HL =starting address if good load
Carry true if file non-existent

Traps: OFFLIN drive off line
RPARIT file contains parity fault
RANGE loader ran off end of file

‘SECTION 5. SYSTEM ROUTINES 5-9

FORMAT record of bad loader format

5.6.4 RUNS - load and run a file

RUNS opens the specified tile as logical file zero and then calls the system
loader to load it into memory. Return is made to following the call if the name
specified cannot be found in the directory or directories specified. If any loading
errors occur, the operating system is reloaded. Otherwise. control is transferred to
the starting address given by the loader.

Entry point: 01074

Parameters: same as for PREP$ _
(except that B is not required)

Exit conditions: returns if name not in directory :
operating system reloaded if bad load
otherwise, control is passed to the

starting address of the new file.

Traps: none

5.6.5 CLOSES - close a file

When new space is allocated for a file, a large contiguous piece (up to one full
segment) is taken in an effort to keep the file as physically contiguous as possible.
When this allocation takes place, a flag in the LFT, called the new space allocated
flag, is set. ' The LFT also contains a number which is the largest LRN referenced
while the file was open. When CLOSES is called, the file is physically truncated after
the largest LRN referenced, if the new space allocated flag is set. Thus, if only a
few records of the new space allocated has been used, the rest of the space is freed
for use in other files. However, if all of the space is used, the file will consist of a
large amount of physically contiguous space. Note that if CHOP$ was called with the
D register negative, and the LRN in the LFT has not been changed, a call to CLOSE$
will delete the entire file and remove its entry from the directory.

After the file has been truncated, if necessary, CLOSE$ then writes the copies
of the protection bits and old file length limit field that are in LFT entry back into the
directory. Therefore, one only needs to change these entries in the LFT and then
close the file to have them changed in the directory. This is the basis for the
functioning of the CHOP$ and PROTES$ routines. Since the protection bits and old
file length limit field are not changed on the disk until the CLOSES$ routine is called,
if one changes these numbers and then, for some reason, reloads the systemn without
calling the CLOSES$ routine (by depressing RESTART before the file is closed, for
example) the disk will retain the old values.

5-10 PART IV ADVANCED PROGRAMMERS GUIDE

After the protection and file length limit have been stored in the directory,
CLOSES$ then vacates the LFT entry specified. This is achieved by storing an 0377 in
the second byte of the entry (this is the drive number and 0377 denotes that the LFT
entry is not in use). CLOSE$ simply returns if the LFT entry is not in use.

Entry point: . 01077

Parameters: | B =LFN

Exit conditions: B =LFN; other registers indeterminate
Traps: A none

5.6.6 CHOP$ - delete space in a file

CHOPS$ sets the maximum LRN value kept in the LFT and sets the new space
allocated flag if no protection is set. |f the CLOSE$ routine is called after the call to
CHOPS$ without the LRN being changed, the space after the specified LRN will be
physically deleted from the file, making it free again for allocation by the system.
Note that if the D register is negative upon entry to CHOPS$, calling the CLOSES$
routine will completely delete the file from the system (removing its entry from the
directory as well as freeing all of its space). When an entry is deleted from the
directory, all 'sixteen bytes of the directory for that entry are set to 0377. This is the
same value for an unused directory entry that is set by the system generation
program. :

CHOP$ changes the MAXLRN field in the LFT to the LRN supplied as the
parameter. (Note: CHOPS$ makes provision here for the two RIBs and biases the
LRN supplied by the user by two before placing it into the LFT MAXLRN field).

Remember that calling CHOPS$ only affects the LFT entry and that no physical
change on the file is effected until CLOSE$ is called.

Entry point: 01102
Parameters: B =LFN

DE =LRN if D not less than zero
DE <0 to delete entire file

Exit conditions: B =LFN; other registers indeterminate

Traps: RANGE DE not less than MAXLRN
DVIOLA delete protection is set
WVIOLA write protection is set

SECTION 5. SYSTEM ROUTINES 5-11

5.6.7 PROTES - change the protection on a file

PROTES$ changes the file protection bit and/or upper file length limit copies that
are kept in the LFT. The protection bits, given in the C register, are changed only if
the least significant bit of the C register is a one. The old upper file length limit
field is changed only if the sign bit of D is one on entry. Therefore, setting the
number to zero prevents the limit field from being changed. Note that the file length
field is obsolete and is no longer used by the DOS; it is maintained for future use,
probably as a file type designation field.

Entry point: 01105

B =LFN

C =new protection:
CO0 =1 for protection change
C6 =1 for write protection
C7 =1 for delete protection

DE =new LRN limit field; 0 for no change

Parameters:

Exit conditions: B =LFN; other registers indeterminate
Traps: none
5.6.8 POSITS - position to a record within a file

POSIT$ positions the file logically and the head physically to the LRN given. |If
the LRN given is negative, the current value in the LFT is used for positioning the
head and the LFT entry is not changed. Note that positioning to record zero
performs a logical ‘rewind’ of sequential files.

Entry point: 01110

Parameters:. - B =LFN
DE =LRN (use LRN from LFT if D <0)

Exit conditions: B =LFN
' D =Physical Disk Address (MSB)
E =Physical Disk Address (LSB)
other registers indeterminate

Traps: o RANGE LRN <0 or LRN >file limit

5-12 "PART IV ADVANCED PROGRAMMERS GUIDE

5.6.9 READS - read a recdrd into the buffer

READS$ causes the record, pointed to by the LRN in the LFT entry specified by
the LFN given, to be transferred from the disk to the disk controller buffer that
corresponds to the LFN given. The LRN is incremented by one after the read if it
was successful. READS tries four times to read a record, if a parity fault is detected,

before giving the trap. Attempting to read a record that is not physically allocated
will cause the 'RANGE’ trap.

Entry point: 01113

Parameters: B =LFN

Exit conditions: B =LFN; other registers indeterminate

Traps: RANGE LRN out of range
RPARIT record unreadable
FORMAT PFN or LRN in record incorrect
OFFLIN drive off line

5.6.10 WRITES - write a record from the buffer

WRITES first takes the PFN and LRN .values from the LFT entry specified by the
LFN given and stores them ‘into the first three bytes of the disk controller buffer that
corresponds to the LFN given. It then transfers that buffer to the sector on the disk
specified by the LRN in the LFT entry specified by the LFN given. The LRN is
incremented after the write if it is successful. Note that all system routines use DW$
in writing records and hence try up to four times to obtain a good write, if a parity
fault is detected, before giving the trap.

It WRITES tries to write a record which would not go in a place that has been
physically allocated, it will automatically try to allocate more space. If the space is
available, it is allocated and the write occurs. |f there is no more physical space on
the disk or if there are no more entries in the RIB available for the new segment
descriptor, a 'SPACE’ trap is given.

Entry point: 01116
Parameters: B =LFN
Exit conditions: B =LFN; other registers indeterminate

LRN =LRN + 1

Traps: WVIOLA file is write protected
WPARIT write/verify failure
OFFLIN drive off line

SECTION 5. SYSTEM ROUTINES 5-13

RANGE LRN <0
SPACE explained above

5.6.11 GETS$ - get the next buffer character

The LFT contains an entry called BUFADR (not to be confused with loc. 026
used by GETNCH) which points to a character in the disk controller buffer that
corresponds to the given LFN. Each buffer contains 256 characters but since the
system uses the first three bytes in each sector to store the PFN and the LRN of
each record, the user has only 253 bytes available.

Whenever READS. WRITES$, or POSITS are executed, they set the buffer pointer
mentioned above to point to the third byte in the disk controller buffer associated with
the given LFN (by setting the BUFADR field of the LFT entry to a three). Whenever
GETS$ is called, the byte pointed to by this pointer is fetched from the disk controller
buffer and the pointer is incremented. If the byte being returned is not a valid user
data byte (i.e. BUFADR was 0,1,0r 2 on entry) then carry is true on return, and
register A contains the specified byte of the buffer (which will be PFN or one of the
LRN bytes.) Note that the next buffer is not read automatically from the disk; the
pointer simply ends-around. Upon the first call of GET$ which returns carry true, the
PFN will be obtained since it is contained in buffer location zero. The first three
bytes may also be accessed by simply setting the buffer pointer contained in the LFT
entry to the desired location.

Entry point: 01121
Parameters: B =LFN
Exit conditions: A =the byte obtained from the buffer

All other registers preserved
Carry true if location 0,1,0r 2 accessed

Traps: none
5.6.12 GETRS - get an indexed buﬂer character

GETRS is similar to GET$ except that it uses the logical buffer address supplied
in the C register instead of the physical buffer address in the LFT for the address of
the disk buffer byte to return. Calling GETR$ has no effect on the buffer pointer kept
in the LFT. The physical buffer location is obtained by adding three to the value
given in the C register to skip past the system data in the first three bytes in the
disk buffer. Thus the user is presented with a logical space within a record that is
addressed from 0 through 252. Normally, GETR$ exits with the value in the C
register incremented by one and the carry condition false. However, if the C register
is between 253 and 255 (inclusive) upon entry, it will not be incremented and exit will
be made with the carry condition true. In either case, the buffer byte located by the
C register value plus three is returned in the A register. Therefore, the user may

5-14 PART IV ADVANCED PROGRAMMERS GUIDE

obtain any buffer byte with GETR$ but must remember to supply an address which is
the physical buffer address minus three and remember not to assume that the C
register will be incremented if he plans to access one of the first three phsical bytes.

Entry point: 01124

Parameters: B =LFN
' C =buffer location

Exit conditions: A =byte obtained
C =C + 1 if carry false
Carry true if 252 <C <256
All other registers preserved

Traps: none
5.6.13 PUTS$ - store into the next buffer position

PUTS is similar to GET$ except hat the byte presented in the A register on
entry is stored into the buffer. Also, on return register A contains the physical
address of the next byte to be accessed in the disk buffer. Carry is true if the byte
stored was stored into the last physical location in the buffer. Here a reminder is
appropriate: remember that in standard, EDIT-format records, the last two bytes (at
least) of the buffer are not used, and an 03 occurring earlier in the sector indicates
logical-end-of-sector. (A complete description of the format for EDIT-copatible text
files can be found in the REFORMAT command in Part 11l of this manual.)

Entry point:k 01127

Parameters: A =the byte to be stored in the buffer
B =LFN

Exit conditions: A as described above

All other registers preserved
Carry true if location 255 as stored into

Traps: none
5.6.14 PUTRS - store into an indexed buffer position

PUTRS is identical to GETR$ except that the byte presented in the A register is
stored into the buffer.

Entry point: 01132
Parameters: A =byte to be written
B =LFN

C =logical buffer location

SECTION 5. SYSTEM ROUTINES 5-15

Exit conditions: C =C + 1 if carry false
Carry true if 252 <C <256
All other registers preserved
Traps: none
5.6.15 BSP$ - backspace one record
BSP$ decrements the LRN in the LFT entry specified by the LFN given and then
executes POSIT$. If the decrementation caused the LRN to become less than zero, a

'RANGE’ trap is given.

Entry point: 01135

Parameters: B =LFN
Exit conditions: B =LFN; other registers indeterminate
Traps: RANGE LRN <O after decrementation

5.6.16 BLKTFR - transfer a block of memory

BLKTFR moves the number of bytes specified in the C register (0 causes
transfer of 256 bytes) from the memory location starting where HL points to the
memory location starting where DE points. Note that since exit is made with HL and
DE pointing after the last byte moved and C equal to zero, transfers of more than 256
bytes may be made by first setting C to zero, calling BLKTFR enough times to make
the residual number of bytes to transfer less than 256, setting C to the residual
number of bytes to be transferred, and then calling BLKTFR one last time. For
example:

- HL SOURCE
DE DEST
LC o
CALL _ BLKTFR
CALL BLKTFR
LC 25
CALL BLKTFR

will cause 537 bytes to be transferred from SOURCE to DEST.
Entry point: 01143
Parameters: C =number of bytes to be moved

(0 moves 256 bytes)

HL =source address
DE =destination address

5-16 PART IV ADVANCED PROGRAMMERS GUIDE

Exit conditions: HL =HL + C (HL + 256 if C =0)
DE =DE + C (DE + 256 if C =0)
C =zero

Traps: none
5.6.17 TRAPS - set an error condition trap

There are eight non-fatal error conditions, concerning the disk operating system
file handling facilities, that may be trapped by the user. If the trap corresponding to
a certain error is not set by this routine, the system displays a pertinent message and
reloads the system. Otherwise, control is transferred to the address specified when
the trap was set, with the subroutine return address stack in the state it had before
the calling of the file handling routine that caused the error condition.

The only disk errors that cannot be trapped are ones associated with the system
tables on the disk. The occurrence of these errors causes the message

FAILURE IN SYSTEM DATA

to be displayed. The other errors that cannot be trapped have to do with: the LFT
entry not being open when a routine which tried to use data from the entry was
called, invalid Iogical file numbers, invalid drive numbers, invalid trap numbers, and
invalid physical file numbers.

If a trap occurs during a call to READ$ or WRITES, the logical record number
(LRN) in the logical file table (LFT) is NOT incremented; if the user wishes to
continue processing records past the one which caused the trap, he must increment
the LRN in the LFT himself first.

TRAPS$ sets the trap whose number is given in the C register to the address
supplied in the D register (MSB) and E register (LSB). The trap is cleared by cailing
TRAP$ with D and E equal to zero. The trap is also cleared when the error
condition occurs, at which time the B register will be loaded with the Logical File
Number involved and control transferred to the indicated address.

In the following table, the mnemonic given after the trap number is the one
used in the previous routine explanations. The capitalized lines are the messages
displayed if the trap is not set. :

0 - RPARIT - PARITY FAILURE DURING READ
A parity fault while reading a data record causes this trap.

1 - WPARIT - PARITY FAILURE DURING WRITE
A parity fault while writing a data record causes this trap.

2 - FORMAT - RECORD FORMAT ERROR
The physical file number or logical record number in the record read not

SECTION 5. SYSTEM ROUTINES 5-17

matching the ones contained in the logical file table entry causes this
trap. The physical position of a record is obtained from information in the
retrieval information block and the PFN and LRN in the record are only
checked to ensure that the drive is functioning correctly and that the user
is not trying to read a record he has not written. This trap has nothing
to do with the 253 data bytes provided to the user.

3 - RANGE - RECORD NUMBER OUT OF RANGE
During a read, an access below zero or to a record above the currently
allocated space causes this trap. During a write, an access below zero
causes this trap. |

E-N
'

WVIOLA - WRITE PROTECT VIOLATION :
An attempt to write on, delete, or shorten a file with the write protection
bit set causes this trap.

5 - DVIOLA - DELETE PROTECT VIOLATION
An attempt to delete or shorten a file with the delete protection bit set
causes this trap.

6 - SPACE - FILE SPACE FULL
An attempt to allocate more space when either the disk is full or no more
segment descriptor slots in the RIB are available causes this trap.

7 - OFFLIN - DRIVE OFF LINE
An attempt to use a drive that is either physically absent or not online
causes this trap.

Note that the causes given for the various traps are the causes for DOS to
issue the appropriate messages. Some of the DOS Command programs also cause
the issuance of some of these messages for related reasons. For example, several
DOS Utilities indicate a RECORD FORMAT ERROR if the sector formatting of a file
being processed does not follow GEDIT (or DOS EDITOR) standards. In cases such
as this the above details are sometimes not valid descriptions of the problem; here
the 253 data bytes encountered may have everything to do with' the cause of the
record format error.

Note also that FORMAT and RANGE traps are frequently the result of
sequentially reading or otherwise processing a file which has no valid EOFmark,
resulting in the program running off the logical end of the file.

Entry point: 01146

Parameters: DE =trap address
C =trap number

Exit conditions: register contents indeterminate

5-18 PART IV ADVANCED PROGRAMMERS GUIDE

Traps: none
5.6.18 EXIT$ - reload the operating system

EXITS closes any logical files (one through three) that are open and then
reloads the operating system. EXIT$ is the normal exit for all DOS programs. |If
drive zero is off line when EXITS is reached (or if the DOS is unioadable from there
for any reason) an automatic drive switch occurs (indicated by a beep) and an
attempt is made to load the DOS from the next drive in sequence. The automatic
drive switch and beep is repeated until the DOS is successfully loaded. One jumps
to this entry point.

Entry point: 01151
Parameters: none
Exit conditions: no exit
Traps: none

5.6.19 ERRORS -- reload the operating system

ERRORS is identical to EXIT$ in all respects except for the fact that jumping to
ERRORS will abort an active CHAIN (refer to the CHAIN command in Part Il of this
manual for more details). A user program would exit through ERRORS if an error of
severity suggesting aborting a CHAIN occurred.

Entry point: 01140

Parameters: none
Exit conditions: no exit
Traps: none

5.7 Keyboard and Display Routines

5.7.1 DEBUGS$ - enter the debugging tool
The debugging tool enables the programmer to load files by number, examine
and modify memory locations, set break points, and execute sections of his program.

This facility greatly simplifies the task of debugging machine language programs.

The debugging tool can be entered from the command interpreter by entering a
single pound sign (#) on the command line or from the user's program by jumping to

SECTION 5. SYSTEM ROUTINES 5-19

the entry point. When it is executing, two numbers are displayed vertically in the last
column of the screen. The top number, consisting of five digits, is an address and
the bottom number, consisting of three digits, is the content of that address. After
these numbers are displayed, input is requested from the keyboard as indicated by a
tlashing cursor. Commands to the debugger are given in the form <n>X where
<n>is any number of octal digits and X is a command character.

The command is executed immediately upon depression of the command character
key without waiting for the ENTER key (the ENTER character is a command in itself).

All keys that are not recognized are ignored with a beep signaling the rejection.
The BACKSPACE key is ignored but since commands use only the lower eight or
sixteen bits of <n>, errors in the entry of numbers can be corrected by striking
several zeros and then entering the correct digits. Alternatively, the CANCEL key
causes the current input line to be erased without changing the current
address. Although display stops if the cursor runs off the screen during input,
characters are still accepted.

The debugger maintains a current address that is usually displayed as the five
digit number at the right of the screen. There are times, however, when the five
“digits at the right of the screen do not reflect the current address and caution must
be exercised to avoid confusion as to the value of the current address. The ENTER
key is normally used to change the current address, but depressing it without
preceding it with any digits will cause the current address to be displayed. Theretore,
if there is any doubt about the number being displayed on the screen, simply
depressing the ENTER key will ensure that the current address is being displayed.

Whenever the debugger is entered either from the jump to the entry point or
from a return from a break point or call command, a beep is given and the state of
all of the alpha mode registers and condition flags is saved. The value initially
displayed is the top of the stack at entry, unless DEBUG was entered from a DOS
DEBUG breakpoint; in this case the address displayed is the address where the
breakpoint was set. In all cases, the stack is preserved as at entry and the current
address is set to the address displayed at entry. This enables the user to tell exactly
the state of his program when the debugger was entered. Whenever a memory
location is called or jumped to, the state of all of the alpha mode registers and
condition flags is restored from the values saved at entry. Since these values are
saved in memory, the programmer can simply modify these locations to change the
values used to initialize the state of the alpha machine before control is transferred.

The major debugging technique is the setting of break poi‘nts at critical places
in the program and the execution of portions of the program while checking the
values of the registers and critical memory locations at each break. The debugger
sets a break point by storing a jump instruction, to a special entry point in itself, in
the current address and the following two locations. (Notice that setting break
points less than three bytes apart is therefore not a good idea.) Before the jump is
stored, the content of the memory locations to be used is saved in a table in the
debugger. When the break point is reached, the memory locations are restored with
their original contents. A maximum of four break points may be active at any one

5-20 PART IV ADVANCED PROGRAMMERS GUIDE

time. A command is provided for insuring that all break points have been restored.
When a break point is executed, the current address is set to the first byte of the
break point jump instruction. Since the J command causes a jump to the current
address if no digits precede it, one can continue execution of the routine that was
broken by simply depressing the J key. Execution will continue with the first byte
that was overstored by the break point jump with the state of the alpha machine
exactly like it was before the break occurred. Thus, the programmer can set a break
point, start execution, examine the registers when the break occurs (since register
viewing does not change the current address) and then depress the J key to continue
execution. This technique allows him to practically single step his program.

ENTRY POINT: 01154
COMMANDS:
B - Set a break point at the location given or, if no number is given, at the current

address. Caution should be exercised to insure that the current address is
pointing to the desired location if it is used.

C - Execute a call to the number given or, if no number is given, to the current
address. The alpha machine state is loaded from the values saved in the
debugger before the call is executed. A return to the call causes the debugger
to be re-entered and the alpha machine state to be saved.

D - Decrement the current address (any digits given are ignored).

G - Get the physical file specified from the disk. Care must be exercised that a file
is not loaded that will overlay the debugger (locations 0-01377 and 06000-07377).
It the file does not exist or contains a record of illegal loader format, a beep
will be given. The first digit of the last four entered is the logical drive number
from which the file is to be loaded. The following three digits are the physical
file number. For example, 02003G will load SYSTEM3/SYS from drive two. To
load PFN 0115 from drive 0, simply enter 115G.

I - Increment the current address (any digits given are ignored).

J - Execute a jump to the number given or, if no number is given, to the current
address. The alpha machine state is loaded from the vaiues saved in the
- debugger before the jump is executed.

M - Modify the contents of the current address. The least significant eight bits of the
octal number given before the command character are used for the new memory
value. If no digits are given, a zero is assumed.

P - Turn on the P-counter display (to the left of the current address). This display is
a foreground driven routine which takes the value of the P-counter when the
interrupt occurred and displays it vertically. This implies that the value shown
is the background P-counter at 32 millisecond sample points. When the display

SECTION 5. SYSTEM ROUTINES 5-21

is active, simultaneous depression of the KEYBOARD and DISPLAY keys will
cause the debugger to be entered regardiess of what is currently being
executed in the background. When such entry occurs, the current address
points to the location where the background program was interrupted so that
execution can be resumed with the J command. '

R - Display the saved alpha mode register value. The registers are referenced by
number (0-A, 1-B, 2-C, 3-D, 4-E, 5-H, 6-L, and 7-Conditions). The condition code
is stored with bits 7=Carry, 6=Sign, bits 5 through 2 always zero, 1=(-Zero and
-Sign), and 0=(-Zero and -Parity). (The easiest way to understand this is to
realize that the condition code as displayed, added to itself, results in restoring
all four conditions to their entry values.) When a register is displayed, the
address shown is the memory location used to store the value of that register.
This does not, however, affect the current address. The registers may be
initialized for a C or J command by simply storing into the memory locations
displayed when the registers are displayed.

X - Turn off the P-counter display.

#- Clear all break points. The current address will reflect the location of the last
point cleared.

. - Perform the M command followed by the | command.
CANCEL - Erase the entered number without changing the current address.

ENTER - Change the current address to the digits entered. It no digits are entered,
the current address in effect will be displayed.

5.7.2 KEYINS - obtain a line from the keyboard

KEYIN$ obtains a string of characters from the keyboard, displaying them on the
screen and storing them in memory as they are entered. lts operation is identical to
the KEYIN$ routine contained in the Cassette Tape Operating System. When KEYINS
is called, the cursor is turned on and characters requested. Backspacing off the
beginning of the line, entering more than the specified maximum number of
characters, or running off the screen is prevented. The routine turns off the cursor
and returns when the ENTER key is depressed.

Entry point: 01157

Parameters: C =maximum number of characters accepted
D =initial horizontal cursor position

E =vertical cursor position

H

L. =starting location of input bufter

Exit conditions: String terminated by 015
HL pointing to the 015

5.22 PART IV ADVANCED PROGRAMMERS GUIDE

D =horizontal position of ENTER
E =unchanged

5.7.3 DSPLYS$ - display a line on the screen

DSPLYS$ displays a string of characters stored in memory on the screen.
Certain characters denote control functions according to the following table:

003 - end of string

011 - new horizontal position follows
013 - new vertical position follows
015 - end of string with CR/LF

021 - erase to end of frame

022 - erase to end of line

023 - roll up one line

This routine is identical in function to the DSPLY$ routine in the Cassette Tape
Operating System. If the string to be displayed starts with either or both horizontal or
vertical cursor controls, then either or both of the corresponding values need not be
in D or E at entry. '

Entry point: 01162

Parameters: D =initial horizontal cursor position
E =initial vertical cursor position
HL points to string in memory

Exit conditions: DE =cursor position after the last
character displayed
HL =byte after the string terminator

5.8 DOS FUNCTION Facility

The page of memory located between 07400 and 07777 contains a special
loader and overlay area. This ‘loader’ can load any one of up to 255 DOS overlays,
each up to 124 bytes long. The loader resides in the first half of the page and the
overlays all load into the second half of the same page. The overlays reside on disk
in physical file 7, called SYSTEM7/SYS. The design of the DOS FUNCTION loader is
such that overlays are loaded only if necessary, i.e. if the same overlay is called
several times in sequence, it is not reloaded each time. The overlays provide the
DOS assembly language programmer with many useful utility functions. New DOS
FUNCTIONs will be added from time to time as they are implemented; DOS
FUNCTIONs are distributed on the DOS UTILITIES tape. Parameterization of DOS
FUNCTIONSs varies with the individual functions, the only basic requirement being that
on entry to the DOS FUNCTION loader, the A register contains the function number
(1-255). Use of functions not yet installed will produce indeterminate results, but may
result in format traps, range traps. processor halts, and the like. DOS FUNCTIONs
are normally loaded from the SYSTEM7/SYS on drive zero.

SECTION 5. SYSTEM ROUTINES 5-23

Upon the first call to DOSFNC (the DOS FUNCTION loader), SYSTEM7/SYS is
opened as LFO and the LFT entry saved internally to the DOS FUNCTION loader.
Upon subsequent calls to DOSFNC, the entry is simply moved back into the LFT,
eliminating the need to re-open SYSTEM7/SYS each time a function is loaded. The
file is only closed by the reloading of the DOS, either by depressing RESTART or by
a program passing control to BOOTS, EXITS, or ERRORS.

Since new DOS functions will be release frequently, the following descriptions
shouid not be considered exhaustive.

Entry point: 07400

Parameters: A =Function number (1-0377)
Others required by individual functions

Exit conditions: Defined separately for each function

5-24 PART IV ADVANCED PROGRAMMERS GUIDE

DOS FUNCTION: 1
subfunction selector

uniform attributes for all subfunctions:

on entry, A =function number (1)
C =subfunction number (0,1,2,3,4,5,6)
on exit, B,CH,L all unchanged

CARRY FALSE: function completed successfuily
CARRY TRUE: invalid subfunction number

all other entry/exit parameters and conditions are described separately for each

individual subfunction.

DOS FUNCTION: 1 SUBFUNCTION: © :
return the address of a specified directory sector in DE

on entry, B =directory sector number (0-15) OR
PFN of entry in the directory sector
on exit, A indeterminate

DE =PDA of specified directory sector

DOS FUNCTION: 1 SUBFUNCTION: 1
return the two byte physical disk address for each of the 16 prime directory
sectors, into a 32-byte work area provided by the user.

on entry, HL =>32-byte work area to receive the PDAs

on exit, all registers restored
user-provided work area contains 16 PDAs, one corresponding to

each prime directory sector, in ascending order.

DOS FUNCTION: 1 SUBFUNCTION: 2
return the two-byte physical disk address of each of the 16 directory sector
backups, in ascending order, into a 32-byte user-provided work area.

on entry, HL =>32-byte area to receive the 16 PDAs
on exit, all registers restored
work area contains 16 PDAs (LSB,MSB)

DOS FUNCTION: 1 SUBFUNCTION: 3
return the physical disk address of the prime cluster allocation table (CAT) in the

DE register pair.

on exit, A indeterminate
DE =PDA of prime CAT

SECTION 5. SYSTEM ROUTINES 5-25

DOS FUNCTION: 1 SUBFUNCTION: 4
return the physical disk address of the backup CAT

on exit, A indeterminate
DE =PDA of backup CAT
DOS FUNCTION: 1 SUBFUNCTION: 5
return the physical disk address of the lockout CAT
on exit, A indeterminate
DE =PDA of lockout CAT
DOS FUNCTION: 1 SUBFUNCTION: 6 ,
return the physical disk address of the lockout CAT backup
on exit, A indeterminate

DE =PDA of lockout CAT backup

DOS FUNCTION: 1 SUBFUNCTION: 7
return the address of a backup directory sector (in DE)

on entry, B =backup directory sector number (0-15) OR
PFN of a file entry contained therein
on exit, A indeterminate

DE =PDA of backup directory sector
DOS FUNCTION: 2
subfunction selector

Uniform attributes for all subfunctions:

on entry, A =function number (2)
C =subfunction number (0,1,2)

on exit, ALL REGISTERS RESTORED
CARRY TRUE implies error or invalid subfunction
number

all other entry/exit parameters and conditions are described separately for each
individual subfunction.

DOS FUNCTION: 2 SUBFUNCTION: 0
read in the directory sector containing the 16-byte directory entry corresponding to
the PFN given, on a specified logical drive.

on entry, D =PDN (logical drive number of file)
E =PFN

5-26 PART IV ADVANCED PROGRAMMERS GUIDE

B =LFN as per DOS standard; (0, 16, 32, 48)
on exit, CARRY FALSE: selected directory sector is in buffer specified,

which is the selected buffer upon exit.

CARRY TRUE: indicates /O error.

Further defined as follows:

ZERO FALSE: specified drive is off-line .

ZERO TRUE: unable to read sector due to CRCC error during
read, or unrecoverable failure to find sector

DOS FUNCTION: 2 SUBFUNCTION: 1

get 16-byte directory entry corresponding to a specified PFN on a given logical
drive.

on entry, B,D,E set as for subfunction 0.
HL =>16 byte area to receive the entry
on exit, CARRY FALSE: entry is in user's area.

CARRY TRUE: as for subfunction 0.

DOS FUNCTION: 2 SUBFUNCTON: 2
get name/ext (pfn) for a specified numbered file on a specified logical drive.
(Same basic format as used by DOS CAT command).

on entry, B,D.E as for subfunction 0.
HL =>20-byte receiving field.
on exit, CARRY FALSE: user's 20-byte area contains the name, extension

and PFN of the specified file, for example:
EDIT/CMD (037)
where the right paren is followed by an 03
UNLESS: ZERO TRUE: implies that the file number specified
does not exist, or was created by number and therefore has no
name.
CARRY TRUE: as for subfunction 0.

NOTICE: the use of THIS SUBFUNCTION ONLY (df those in DOS FUNCTION 2)
requires that the DOS command interpreter be present (the
command interpreter resides from 013400-017000).

5.9 Cassette Handling Routines

Standard record formats, identifies, and file marker record conventions on
cassettes are established by the Cassette Tape Operating System. Routines capable
of dealing with cassettes in a manner compatible with CTOS are provided as part of
the Disk Operating System to enhance its overall capability. For detailed information
on cassette format and organization, see the Cassette Tape Operating System Manual.

All of the DOS cassette routines are foreground driven and, with the debugging

SECTION 5. SYSTEM ROUTINES 5-27

facility, are the only routines within the system which make use of the foreground
handling faciiity. Being foreground driven, however, does not alter the way with
which the routines are dealt since all interfacing between the background and
foreground is handled by the system. It does allow increased speed of operation with
the cassettes since the user may be processing one record while the next is being
read from or written to the tape. This is evident in the way the DOS slews the tape
when transferring information between it and the disk.

Some of the cassette handlinb routines initiate foreground action -and then
return immediately to the user while others wait for 1/O completion. All of the
routines wait for any uncompleted 1/0 to finish before starting something new. Note
that in the cases of reading or writing on the same deck, requesting the next
operation before the completion of the first will cause the tape to automatically slew
instead of stopping between records. This is only in the case of a read followed by
another read or a write followed by another write on the same deck. The only cases
where caution must be exercised is in the read and write routines which return
immediately after starting the /O operation. If the user does not wait for the transfer
to complete, he could try to use the data before. it is read or change the data before
it is written. In the second case, records with incorrect parity will usually be
generated. Routines are provided, however, which automatically wait for the transfer
to complete, relieving the user of having to concern himself with the fact that the
routines are foreground driven if he has no need for the advantages.

The various error conditions associated with cassette handling can be trapped -
by the user. If the trap is not set, an error message similar to the error message
generated by CTOS is displayed and the DOS reloaded. If the trap has been set, the
address specified will be jumped to and the trap cleared. The traps are identified in
the error message by a letter similar to the CTOS identification. In the relevant
cases, the same letter is used in the DOS as is used in the CTOS. In the following
routine descriptions the relevant letter will be given in the 'Traps’ section.

Most of the cassette routines are parameterized by a deck number given in the
o register Th:s numbar ;e a zero fnr fhﬂ rear deck an‘l a one for 'hp 'fﬂn' dpf‘k

=T =

5.9.1 TPBOFS$ - position to the beginning of a file

TPBOF$ positions the cassette in the specified deck to the specified file. The
search for the file marker of the desired file is started with backward motion of the
tape. If a marker of lower value than the file number requested or the beginning of
the tape is encountered, the search will be reversed to the forward motion of the
tape. If then a marker of larger value than the file number requested, the end of the
tape, or a record of unrecognizable format is encountered, an error G will be given.
Otherwise. the file is left positioned before the first data record.

Entry point: 010000

Parameters: B =deck number
C =physical file number (0-0177)

5-28 PART IV ADVANCED PROGRAMMERS GUIDE

Exit conditions: none

Traps: D unrecognizable record found
G file could not be found

5.9.2 TPEOFS$ - position to the end of a file

TPEOF$ moves the tape forward until the next file mark is found. It then
backspaces the tape one record to leave it at the end of the current file.

Entry point: 010005

Parameters: B =deck number

Exit conditions: none

Traps: D unrecognizable record found

E end of tape encountered
5.9.3 TRWS$ - physically rewind a cassette

TRWS§ rewinds the cassette on the selected deck by first slewing backwards to
ensure that the tape is not on the trailer and then performing a hardware rewind.

Entry point: 010012
Parameters: B =deck number
Exit conditions: none

Traps: none

5.9.4 TBSP$ - physically backspace one record

TBSPS$ simply executes a hardware backspace function. No checking is
performed on the data passed over. However, backspacing onto clear leader causes
an end of tape trap.

Entry point: 010017

Parameters: B =deck number

Exit conditions: none

Traps: E beginning of tape encountered

W

SFCTION 5 SYSTEM ROUTINES 5-29

5.9.5 TWBLKS - write an unformatted block

TWBLKS writes the specified number of bytes (0-255; 0 causes 256 to be
written) from the memory buffer specified onto the cassette in the deck specified.
Only the bytes specified will be written on the tape.

Entry point: 010024

Parameters: B =deck number
C =number of bytes to write (0 for 256)
HL points to start of buffer

Exit conditions: none

Traps: E end of tape encountered
z premature deck ready status

5.9.6 TR$ - read a numeric CTOS record

TRS$ reads a record of CTOS numeric format into the memory locations
specified. The length of the record is stored in the specified memory location and the
data bytes are stored in the locations that follow. Return is made from TR$ as soon
as the read operation is started but the user cannot use thedata until the operation
has been completed (see TCHKS$). One way to check for operation completion is to
call TR$ again with a different buffer as its parameter. Return from the second call
will be made as soon as the first operation is completed. This is the mechanism via
which multiple buffering is normally achieved. Note that tape motion will not cease if
TR$ is called within five milliseconds of the end of the previous record.

If parity problems arise, TR$ tries up to 5 times to read the tape before giving a
parity failure trap. Other traps given are end of tape an end of file. If an end of
tile trap is given, the tape is positioned before the file marker.
Entry point: 010031

Parameters: ‘ B =deck number
HL points to data storage location

exit conditions: none
Traps: ' D parity failure

E end of tape encountred
F end of file encountered

5-30 - PART IV ADVANCED PROGRAMMERS GUIDE

5.9.7 TREADS - TR$ and wait for the last character

TREADS$ performs the TR$ function and then waits for the last character to be
read from the tape. This routine should be used when multiple buffeing is not being
performed since it relieves the user from having to explicitly wait for the last
character to be read.

Entry point: 010034
Parameters: same as for TR$
Exit conditions; none

Traps: same as for TR$

5.9.8 TWS$ - write a numeric CTOS record

TWS rites the specified memory locations in a record of standard CTOS
numeric format. [t uses (for parity generation) the three locations preceeding the
memory location specified which contains the number of bytes to be written and is
followed by that number of data bytes.

TW$ returns as soon as the writeoperation is started. The user must be
careful not to change any of the memory locations given as parameters before the
last byte has been transferred. This can be achieved by either calling TCHKS$ and
waiting for completion status or calling TW$ with the next buffer if multiple buffering
is being used. Note that tape motion will not cease it TW$ is called before the
middle of the IRG is reached from the previous write (140 milliseconds after the last
character is written when using a 7.5 ips deck).

Entry point: 010037

Parameters: same as for TR$
Exit conditions: none
Traps: E end of tape encountered
y4 premature deck ready status

5.9.9 TWRITS$ - TWS and wait for the last character

TWRITS executes the TWS$ routine and then waits for the last byte to be written
on the tape. This routine should be used when muiltiple buffering is not being
performed since it relieves the user from having to explicitly wait for the last byte to
be written.

SECTION 5. SYSTEM ROUTINES 5-31

5.9.10 TFMR$ - read the next file marker record

TFMRS$ reads the tape until a file marker record is found.. A trap occurs if a
record is encountered that is neither a file marker nor a CTOS numeric dta record.

Entry point: 010045
Parameters: B =deck number
Exit conditions: C =PFN of marker found

Tape positioned after marker record

Traps: D unrecognizable record found
BTWVE end of tape encountered

5.9.11 TFMWS$ - write a tile marker record
TFMWS writes a file marker record that contains the number specified.
Entry point: 010050

Parameiers: B =deck number
C =PFN to be written

Exit conditions: none

Traps: E end of tape encountered
Z premature deck readystatus

5.9.1 TTRAPS - set an error condition trap

TTRAP$ allows the user to trap the various errors associated with cassette 1/0.
If the trap is not set, an error message of the form

*+*ERROR X ON DECK Y ***

will be displayed, where X is one of the letters shown below and Y is a 1 for the
rear deck and a 2 for the front deck. The trap is specified by a number according to
the following table:

3

D - parity error

- E - end of tape

F - end of file

- G - unfindable file

[o >4 B — V]
1

in addition, error Z (cannot be trapped) indicatesthat the deck ray status bit came

5-32 PART IV ADVANCED PROGRAMMERS GUIDE

true while a record was being written. This implies that the write routine fll behind
in wrting characters and most probably indicates that the foreground interrupt
handling was disrupted in some fashion (interrupts were disabled too long or an
interrupt driven routine was running which imposed too much overhead).

Traps can be cleared by setting their addresses to zero. When the event which
Causes a trap occurs, that trap is cleared and control passed to the address indicated
with the deck number in the B register (0 for rear and 1 for front deck).

Entry point: 010053

Parameters: C =trap number (ab_bve)
DE=trap address (0 clears trap)

Exit conditions: ' none
Traps: none
5.9.13 TWAITS - wait for |/O completion 0

TWAITS$ waits for any tape operation active to complete. This does not
mean

that physical motion has stopped since TR$ and TW$ indicate I/O completion
when

THE LAST CHARACTER HAS BEEN TRANSFERRED. It does mean that all data
is free to be

processed by the user. TWAIT$ also executes any traps pending upon the
completion

status being set.

Entry point: - 010056

Parameters: none

Exit conditions: B, C, D, and E registers preserved
Traps: any trap pending will be executed

5.9.14 TCHKS$ - get I/O status

TCHK$ sets the tape demand flag in the carrycondition flag andloads the tape
handling status in the A register. The handling status codes are as follows:

000 - PBOF in progress

002 - PEOF in progress

004 - Rewind in progress

006 - Record read in progress
010 - Backspace in progress
012 - File mark read in progress
014 - Record write in progress

377 - Normal completion

SECTION 5. SYSTEM ROUTINES 5-33

206 - Parity error

210 - End of tape

212 - End of file

214 - File not found

262 - Premature deck ready status

Normal use of the cassette routines will not require the user to deal with these status
codes or even use the TCHK$ routine. They are provided here to facilitate
understanding the listing of the routines.

Entry point: 010061
Parameters: none
Exit conditions: Carry condition =demand flag

A =status code (above)
Traps: none
5.10 Command Iterpreter Routines

This section deals with a series of user-available routines available within the
command interpreter. Note that these routines are only available for use if the user
program does not overlay the command interpreter, which resides in locations
012400-016777.

The first three of these entry points are really more like ‘exit ‘points’, since they
are places in the DOS to which uers may return in place of EXIT$. The primary
advantage to using them in hlace of EXIT$ is that none of these three entry points
result in the DOS being reloaded, a process which takes significant time. Note that
since they do not reload the DOS, programs which exit through DOS$, CMDAGN, or
NXTCMD must not have overstored any part of the DOS; i.e. they should run

completely in locations 017000 upwards. Alsc, these ‘exit points’ do not clear any
traps that the user may have set; therefore the user should clear any traps he has
set before exiting in this manner. If this is not done, the system will most likely go

astray upon the first subsequent occurrence of a trapped situation.

" Most of the other routines documented in this section are routines which are
used by one or more of the DOS command programs supplied either on the DOS
Generation or DOS Utilities tapes. Since these routines are pointed to by the
command interpreter's entry point table and are used by some of the utility programs,
they are documented here primarily for the sake of compieteness; not to suggest that
every DOS programmer will find them wonderfully useful for his particular application.

5-34 PART IV ADVANCED PROGRAMMERS GUIDE

5.10.1 DOS$ - return to command interpreter

DOS$ causes a program which has been AUTO’d to be executed. If no
programs are set for auto-execution, the DOS sign-on is displayed, files 1-3 are closed
if necessary, and the familiar 'READY’ message displayed. Note again that any traps
set by the user program (e.g. via TRAPS) are not cleared unless the DOS is reloaded.
This implies that if a user program sets any of the traps and wishes to return via
DOS$, NXTCMD, or CMDAGN, it must first clear any traps it has set to prevent the
DOS from going astray. DOSS$ is the normal starting point of the DOS when a
bootstrap operation occurs.

Entry point: 013400
Parameters: none
Exit conditions: Does not return

5.10.2 NXTCMD - return to command interpreter

NXTCMD causes files 1-3 to be closed and displays the familiar DOS 'READY’
message.

Entry point: 013403
Parameters:‘ none
Exit conditions: Same as DOS$

5.10.3 CMDAGN - return to command interpreter

CMDAGN causes files 1-3 to be closed and displays a user-supplied message
before returning to the command interpreter.

-Entry point: 013406

Parameters: HL =address of DSPLY$-format string
DE unused; string should position cursor

Exit conditions: same as DOS$.
CHAIN (a DOS Utility) aborts if active

SECTION 5. SYSTEM ROUTINES 5-35

5.10.4 GETSYM - get the next symbol from MCRS$

GETSYM causes the next seqgential symbol in MCR$ to be scanned off and
stored in an 8-byte field called SYMBOL located at 013472. The starting byte scanned
in MCRS$ is pointed to by INPTR, a byte at location 013455. (INPTR is the LSB of the
current byte in MCR$.) The symbol must begin with an upper case alphabetic
character (leading spaces are ignored) and following that may contain upper case
alphabetic or numeric characters. The first illegal character encountere terminates
the scan; the illegal, terminating character is stored for the user’s inspection (at
SYMBOL+8) and SYMBOL is padded on the right with spaces if necessary. |If the
symbol is longer than eight characters, the first eight only are used; remaining
characters, through the terminator, are scanned but not stored. (The terminator is
stored at SYMBOL+8 in any case.) On exit, INPTR points after the terminating
character unless the terminator is an 015, in which case INPTR points to the 015.

Entry point: 013411
Parameters: INPTR =>current byte in MCRS$, LSB
Exit conditions: SYMBOL =8-byte symbol as described above

A, SYMBOL+8 =terminator character

INPTR =>byte after symbl terminator in MCR$
{except as noted above)

All other registers indeterminate

5.10.5 GETCH - get the next character from MCRS$

GETCH obtains the next character from the Monitor Communiation Region
(MCRS$) and returns it in A. The address of the character to be returned is obtained
by using the most significant byte of the address of MCR$ (which is contained within

AAAAAAA ~mmado b PTR flomambiom NA4ACE) [ay=] N~ i A~
wilic pagcf GHU lIIU CUITICito Ul Il \IUUGUOII ViIiusoy) as lllc Lo, A2 CI\Il it Zeis

is true, A =015 and INPTR is not incremented (INPTR is never bumped past an 015);
it zero is false, A is not an 015 and INPTR is incremented.

Entry point: 013414
Parameters: INPTR =LSB of ddress of byte (see above)
Exit conditions: A =character from MCR$

ZERO TRUE/FALSE as described above
B =entry value of INPTR
C,D.E unchanged

5-36 PART IV ADVANCED PRGRAMMERS GUIDE

5.10.6 GETAEN - Get auto-execute physical file number

GETAEN returns the physical file number of the file (on logical drive zero)
which is set to be auto-executed by the DOS.

Entry point: 013417
Parameters: none
Exit conditions: Carry true if 1/0 error reading the cat

otherwise, A =auto-execute PFN (0=none)
Zero true if a-e PFN not set
Zero false if A is valid a-e PFN
All other registers indeterminate

5.10.7 PUTAEN - set or clear a file to be auto-executed

. PUTAEN either sets or clears the auto-execute PFN stored in the CAT on the
disk in logical drive zero. The change becomes effective upon the next time DOS is
entered at DOSS, either by depressing the RESTART key, the auto-restart tab being

punched out of the rear cassette and the processor halted, or jumping to EXITS,
ERRORS, BOOTS, or DOSS.

Entry point: 013422
Parameters: A =PFN to be auto-executed (0 to clear)
Exit conditions: All registers indeterminate

Carry true if 1/0 error updating CAT
5.10.8 GETLF1 - Open the user-specified data file

GETLF1 opens logical file 1 using the file name, extension, and drive select
code stored in LFT entry one in the normalized form described in Section 3.5. The
extension, if blank, is assumed to be 'ABS’. Note: The iogical drive specification
field is ignored, since the drive select code field is used instead. If an error occurs,
carry is true on return and HL points to a DSPLY$ format string complete with cursor
positioning ytes and one of the following messages:

NAME REQUIRED. (first byte of name field is blank)

INVALID DEVICE. (select code =0376; :DRn wrong)

NO SUCH NAME. (file not found; the file must exist)

Each of the abovemessages is preceeded bycontrol

bytes: 011,0,013,11,023 and followed by an 015. I[fcarry is faise upon return, the file
named has been successfully opened as logical file one.

SECTION 5. SYSTEM ROUTINES 5-37

Entry point: 013425
Parameters: in LFT entry one (of 0-3); see above
Exit conditions: Carry false if LF1 successflly opened
Carry true and HL =>message if OPEN failed

All registers indeterminate

5.10.9 PUTCHX - store the character in ‘A’

PUTCHX stores the A register at the memory location pointed to by HL,
increments HL, and decrements a byte counter maintained in E.

Entry point: 013433
Parameters: A =byte to be stored at HL
E =count to be decremented

HL =address where A is to be stored

Exit conditions: B,C,.D unchanged
HL =entry value + 1
E =entryvalue - 1

5.10.10 PUTCH - Alternate version of PUTCHX

PUTCH is like PUTCHX except it starts by setting the most significant bit of A
to zero and that if A then contains aspace (040) it immediately returns zero true; in
which case A is not stored, HL not incremented, and E not decremented.

Entry point: 013430
Parameters: same as PUTCHX
Exit conditions: same as PUTCHX except as described above

5.10.11 PUTNAM - format a filename from directory

PUTNAM is a routine which extracts a name, extension and physical file number
for a directory entry and puts them into a place in the command interpreter called
'NAME' (located at 013513; the field is 19 bytes long and followed by an 03) Since
this routine is used by the CAT command, the format of the names produced by
PUTNAM should be familiar to all DOS users.

Note that o entry, only the most significant 4 bits of C are used, and that
CURLOC (location 013463) is to contain the two-byte PDA of the directory sector
(LSB,MSB).

Entry point: 013436

5-38 - PART IV ADVANCED PROGRAMMERS GUIDE

Parameters: the directory sector in the disk buffer
B =LFN indicating which buffer
C =PFN of entry being extracted
CURLOC =PDA of directory sector -

Exit conditions: CURLOC unchanged
disk buffer unchanged
B unchanged
all other registers indeterminate
ZERO TRUE: file either does not exist
or was created by PFN and therefore
has no name.

5.10.12 MOVSYM - obtain the symbol scanned by GETSYM

MOVSYM moves the eight-byte SYMBOL described in 5.10.4 into the eight-byte
area pointed to by DE.

Entry point: 013441
Parameters: . D,E =address of user’'s eight-byte area
Exit conditions: All registers indeterminate 5.10.13 GETDBA - Obtain disk

controller buffer address GETDBA extracts the current disk buffer address in the
format acceptable to GETR$ from one of the four LFT entries. It does this by getting
the BUFADR from the specified LFT entry and subtracting three from it. On return, H
is the address MSB pointing into the command interpreter data area. :

Entry point: 013444
Parameters: B =LFN (0,16,32,48)
Exit conditions: A =BUFADR as described above
H as described above
B,C,D.E unchanged .

5.11 User Supported InputOutput

Whén the user desires to use I/Q devices other than the keyboard, display, disk,
or cassettes, he will use a routine that is not part of the operating system. Many of
these devices (for instance, the communications channel) will be serviced by
foreground processes which run with interrupts disabled. However, if the user does
access an |/O device from a background process, he must realize that as long as
interrupts are enabled, some other device can be addressed by a foreground routine.
For this reason, the user must disable interrupts between the time he addresses his
device and the time he uses it. To reduce the amount of foreground processing real
time jitter (discussed in section four) as much as possible, the aim in writing
background 1/O routines should be to minimize the amount of time that interrupts are

SECTION 5. SYSTEM ROUTINES 5-39

disabled. This implies that devices accessed from background programs must be
addressed every time they are used. For example:

GETCH El Enable interrupts in case
LA 022 looping
DI ' Disable interrupts
EX ADR Address the device
IN Get the device status
ND 2 Check for required bits
JTZ GETCH Wait if not set
EX DATA Else get the byte
El Enable interrupts after
IN the data input
RET

Note that a little cheating on time was done in the interest of program length. (Since
the INPUT in DATA mode was done without enabling interrupts, re-disabling them and
re-addressing the device.) One should be judicious in the trade off employed in
exercising this freedom. '

Note: The user must not do |/O to the disk controller from foreground-driven
routines or results can be unpredictable. The DOS disk drivers allow user foreground
routines to get control in the midst of a disk /O operation, under te assumption that
the foreground routine will not do anything to the disk controller which would confuse
it.

5-40 PART IV ADVANCED PROGRAMMERS GUIDE

SECTION 6. ERROR MESSAGES

PARITY FAILURE DURING READ
A parity fault occurred while a disk data record was being read.

PARITY FAILURE DURING WRITE
A parity fault occurred while a disk data record was being written.

RECORD FORMAT ERROR
The physical file number or logical record number in the record read did not
match the values contained in the logical file table.

RECORD NUMBER OUT OF RANGE
The record accessed had a logical record number less than zero or, during
reads, was outside the physical space allocated toc the file.

WRITE PROTECT VIOLATION
An attempt was made to write on a file that had its write protection bit set.

DELETE PROTECT VIOLATION v
An attempt was made to delete a file that had either its write or delete
protection bit set.

FILE SPACE FULL
An attempt was made to aliocate space when either the disk was physically full
or no more segment descriptor slots were available in the RIB for the given file.

DRIVE OFF LINE
The drive went off line after the file was opened.

LOGICAL FILE NOT OPEN
An attempt was made to use an entry in the logical file table that was not
opened for use with some file.

INVALID LOGICAL FILE NUMBER
A routine was called with the logical file number parameter not zero through
three. '

INVALID DRIVE NUMBER
A routine was called with the drive number not zero through the defined drive
number limit (or 0377, if allowed).

SECTION 6. ERROR MESSAGES 6-1

INVALID TRAP NUMBER
The TRAP$ routine was called with a trap number not between zero and seven.

FAILURE IN SYSTEM DATA
An unrecoverable parity error occurred while the system was dealing with one
of the disk tables or a retrieval information block, or a RIB with incorrect format
was accessed.

INVALID PHYSICAL FILE NUMBER o
A physical file number reserved for the system was illegally referenced.

THE WORLD HAS COME TO AN END |
The error message routine was parameterized with an invalid error message
number!

ERROR X ON DECK Y
A cassette routine error has occurred. The X indicates the type of error
according to the following table:

D - parity error

E - end of tape

F - end of file

G - unfindable file
Z - write faiture

6-2 PART IV ADVANCED PROGRAMMER'S GUIDE

. Loader Routines

01000
01003
01006
01011
01022
01047
01052
01055
01060

BOOTS
RUNX$
LOADX$
INCHL
DECHL
GETNCH
DR$
DWS$
DSKWAT

. Foreground Routines

01033
01036
01041
01044

. File

01063
01066
01071
01074

01077
01102
01105
01110
01113
01116
01121
01124
01127
01132
01135

CS$
TPS$
SETI$
CLRI$

Handling Routines

SECTION 7.0 ROUTINE ENTRY POINTS

reload the. operating system

load and run a file by number
load a file by number

increment HL

decrement HL

get the next disk buffer byte

read a sector into the disk buffer
write a sector from the disk buffer
wait for disk ready '

change process state
terminate process

initiate foreground process
terminate foreground process

Symbolic File Referencing

PREP$
OPENS$
LOADS
RUNS

open or create a file
open an existing file
load a file by name
load and run a file by name

Logical File Referencing

CLOSE$S
CHOPS
PROTES
POSITS
READS
WRITES
GETS
GETRS
PUTS
PUTRS
BSP$

close a file

delete space in a file

change the protection on a file
position to a record within a file
read a record into the buffer
write a record from the buffer

get the next buffer character

get an indexed buffer character
store into the next buffer position
store into an indexed buffer position
backspace one record

SECTION 7.0 ROUTINE ENTRY POINTS

7-1

Non-tile referencing

01143 BLKTFR transfer a block of memary

01146 TRAPS$ set a disk error condition trap
01151 EXITS reload the operating system

. Keyboard and Display Routines

01154 DEBUGS enter the debugging tool

01157 KEYIN$ obtain a line from the keyboard
01162 DSPLY$S display a line on the screen

. Cassette Handling Routines

010000 TPBOF$ position to the beginning of a file

010005 TPEOF$ position to the end of a file
010012 TRWS physically rewind a cassette
010017 TBSP$ physically backspace one record
010024 TWBLKS write an unformatted block
010031 TR$ read a numeric CTOS record
010034 TREADS$ TR$ and wait for last character
010037 TWS write a numeric CTOS record
010042 TWRITS TW$ and wait for last character
010045 TFMR$ read the next file marker record
010050 TFMWS$ write a file marker record
010053 TTRAPS set a cassette error trap

010056 TWAITS wait for 1/O completion

010061 TCHKS get 1/O status

7-2 PART IV ADVANCED PROGRAMMER'S GUIDE

SECTION 8.0 EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT DOS

. When | write my program, where should | place it in memory?

. The best address to specify in your SET statement in an assembly language program is
017000. This allows your program full access to the routines in the DOS command
interpreter and allows your program to return to the DOS through the NXTCMD and
CMDAGN entry points. If the 8.5 K remaining above 017000 is inadequate for your
program’s needs, you could start your program at 010000 (assuming your program will
not be using the DOS cassette handling routines.)

. Where should | put the data areas used by my program, at the beginning or at the end?
- Experience in programming the Datapoint computers has found that generally it is best to
put program data areas before the program itself. One advantage of this approach stems
from the fact that programs can often be made shorter if most or all of the most
commonly used data items are contained within one page of memory, eliminating the
need to reload the H register as often. Since programs typically start on a page
boundary, this automatically means that the first 256 bytes of your data area will be in
one common page. Another advantage of this approach is that a person reading a
program is frequently aided by seeing the program’s data area and error messages, etc.,
before he plunges into the code itself. This placement also reduces the number of
forward references the assembler must contend with.

. When my program gets control from the DOS, do | need to save the registers so | can
restore them before returning to it?

. No. Under the DOS the saving and restoring of the system’s registers by user programs
is not necessary.

. Talking about returning to the DOS, how should my program do that?
. When a user program finishes, the normal termination is by jumping to EXITS.

. Does it matter if my program returns to the DOS (to EXIT$, NXTCMD, CMDAGN, or
whereever) with the stack at a different level than when my program started? in other
words, if my program calls. several levels down into subroutines and the subroutine
jumps to EXIT$, will that mess things all up?

. No. Since the stack wraps around, the level is always relative and it makes no difference
what is in the stack when the user returns control to the DOS.

SECTION 8.0 EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT DOS 8-1

Q. What is the best way to pass parameters to my subroutines? Is there any official
convention for this?

A. There is no ‘official convention’ for parameter passing. However, experience with
programming under the DOS suggests that passing parameters in the registers as typified
by the DOS file handling routine parameterization is both efficient and convenient to use.
The DOS convention that abnormal returns from subroutines are indicated by carry being
true on exit (and further information indicated by the zero condition being true or faise)
also has proven to be a very handy technigue, and one which user programs can
probably make profitable exampie of.

If you have had questions that may be helpful to others, please forward them to the
Software Development Group, Datapoint Corporation so that they may be considered for use
in subsequent releases of the DOS User's Guide.

8-2 PART IV ADVANCED PROGRAMMER'S GUIDE

	000
	001
	002
	005
	006
	007
	008
	1_001
	1_1-01
	1_1-02
	1_1-03
	1_2-01
	1_3-01
	1_3-02
	1_3-03
	2_001
	2_1-01
	2_2-01
	2_2-02
	2_2-03
	3_01-01_APP
	3_02-01_AUTO
	3_03-01_AUTOKEY
	3_03-02
	3_03-03
	3_03-04
	3_03-05
	3_03-06
	3_03_001
	3_04-01_BACKUP
	3_04-02
	3_04-03
	3_04-04
	3_05-01_BLOCKEDIT
	3_05-02
	3_05-03
	3_05-04
	3_05-05
	3_05-06
	3_05-07
	3_05-08
	3_05-09
	3_05-10
	3_05-11
	3_05-12
	3_05-13
	3_05-14
	3_05-15
	3_05-_1
	3_05-_2
	3_05-_3
	3_05-_4
	3_05-_5
	3_05-_6
	3_05-_7
	3_05-_8
	3_05-_9
	3_06-01_BOOTMAKE
	3_07-01_CAT
	3_08-01_CHAIN
	3_08-02
	3_08-03
	3_08-04
	3_08-05
	3_08-06
	3_08-07
	3_08-08
	3_08-09
	3_08-10
	3_09-01_CHANGE
	3_10-01_COPY
	3_10-02
	3_11-01_DOSGEN
	3_11-02
	3_12-01_DUMP
	3_12-02
	3_12-03
	3_12-04
	3_12-05
	3_13-01_EDIT
	3_13-02
	3_13-03
	3_13-04
	3_13-05
	3_13-06
	3_13-07
	3_13-08
	3_13-09
	3_13-10
	3_13-11
	3_13-12
	3_13-13
	3_13-14
	3_13-15
	3_13-16
	3_13-17
	3_14-01_FILES
	3_14-02
	3_14-03
	3_15-01_FIX
	3_15-02
	3_16-01_FREE
	3_17-01_INDEX
	3_17-02
	3_17-03
	3_17-04
	3_17-05
	3_17-06
	3_17-07
	3_17-08
	3_19-01_KILL
	3_19-01_LIST
	3_19-02
	3_19-03
	3_20-01_MANUAL
	3_21-01_MASSACRE
	3_22-01_MIN
	3_22-02
	3_22-03
	3_22-04
	3_22-05
	3_22-06
	3_22-07
	3_23-01_MOUT
	3_23-02
	3_23-03
	3_23-04
	3_23-05
	3_23-06
	3_23-07
	3_23-08
	3_24-01_NAME
	3_24-02
	3_25-01_REFORMAT
	3_25-02
	3_25-03
	3_25-04
	3_25-05
	3_25-06
	3_25-07
	3_26-01_REWIND
	3_27-01_SAPP
	3_28-01_SORT
	3_28-02
	3_28-03
	3_28-04
	3_28-05
	3_28-06
	3_28-07
	3_28-08
	3_28-09
	3_28-10
	3_28-11
	3_28-12
	3_28-13
	3_28-14
	3_28-15
	3_28-16
	3_28-17
	3_28-18
	3_28-19
	3_28-20
	3_28-21
	3_28-22
	3_28-23
	3_28-24
	3_28-25
	3_28-26
	3_28-27
	3_28-28
	3_28-29
	3_28-30_000
	3_28-30_001
	3_28-30_002
	3_28-30_003
	3_28-30_004
	3_28-30_005
	3_28-30_006
	3_28-30_007
	3_28-30_008
	3_28-30_009
	3_28-30_010
	3_28-30_011
	3_28-30_012
	3_28-30_013
	3_28-30_014
	3_28-31_000
	3_28-31_001
	3_28-31_002
	3_28-31_003
	3_28-31_004
	3_28-31_005
	3_28-31_006
	3_28-31_007
	3_28-31_008
	3_28-31_009
	3_28-31_010
	3_28-31_011
	3_28-31_012
	3_28-31_013
	3_28-31_014
	3_28-31_015
	3_28-31_016
	3_28-32_000
	3_28-32_001
	3_28-32_002
	3_28-32_003
	3_28-32_004
	3_28-32_005
	3_28-32_006
	3_28-32_007
	3_28-32_008
	3_28-32_009
	3_28-32_010
	3_28-32_011
	3_28-32_012
	3_28-32_013
	3_28-32_014
	3_28-32_015
	3_28-32_016
	3_28-32_017
	3_28-32_018
	3_28-32_019
	3_28-32_020
	3_28-32_021
	3_28-32_022
	3_28-32_023
	3_28-32_024
	3_28-32_025
	3_28-32_026
	3_28-32_027
	3_28-32_028
	3_28-32_029
	3_28-32_030
	3_28-32_031
	3_28-32_032
	3_28-33_000
	3_28-33_001
	3_28-33_002
	3_28-33_003
	3_28-33_004
	3_28-33_005
	3_28-33_006
	3_28-33_007
	3_28-33_008
	3_28-33_009
	3_28-33_010
	3_28-33_011
	3_28-33_012
	3_28-33_013
	3_28-33_014
	3_28-33_015
	3_28-33_016
	3_28-33_017
	3_28-33_018
	3_28-33_019
	3_28-33_020
	3_28-34_000
	3_28-34_001
	3_28-34_002
	3_28-34_003
	3_28-34_004
	3_28-34_005
	3_28-34_006
	3_28-34_007
	3_28-34_008
	3_28-34_009
	3_28-34_010
	3_28-34_011
	3_28-34_012
	3_28-34_013
	3_28-34_014
	3_28-34_015
	3_28-34_016
	3_28-34_017
	3_28-34_018
	3_28-34_019
	3_28-34_020
	3_28-34_021
	3_28-34_022
	3_28-34_023
	3_28-34_024
	3_28-34_025
	3_28-34_026
	3_29-01_SUR
	3_29-02
	3_29-03
	3_29-04
	3_29-05
	4_001
	4_1-01
	4_1-02
	4_1-03
	4_2-01
	4_2-02
	4_3-01
	4_3-02
	4_3-03
	4_3-04
	4_3-05
	4_3-06
	4_3-07
	4_3-08
	4_3-09
	4_3-10
	4_3-11
	4_4-01
	4_4-02
	4_4-03
	4_4-04
	4_4-05
	4_4-06
	4_5-01
	4_5-02
	4_5-03
	4_5-04
	4_5-05
	4_5-06
	4_5-07
	4_5-08
	4_5-09
	4_5-10
	4_5-11
	4_5-12
	4_5-13
	4_5-14
	4_5-15
	4_5-16
	4_5-17
	4_5-18
	4_5-19
	4_5-20
	4_5-21
	4_5-22
	4_5-23
	4_5-24
	4_5-25
	4_5-26
	4_5-27
	4_5-28
	4_5-29
	4_5-30
	4_5-31
	4_5-32
	4_5-33
	4_5-34
	4_5-35
	4_5-36
	4_5-37
	4_5-38
	4_5-39
	4_5-40
	4_6-01
	4_6-02
	4_7-01
	4_7-02
	4_8-01
	4_8-02

