
MACRO-ASSEMBLER 
SNAP/3 

User's Guide 

Version 3 

April, 1980 

Document No. 50296 

DATAPOINT 





MACRO-ASSEMBLER 
SNAP/3 

User's Guide 

Version 3 

April, 1980 

Document No. 50296 

. Copyright (C.' 1980 Oatapolnt Corporation. All F,tights Reserved. 





·PREFACE 

The SNAP/3 assembler runs on any Datapoint processor with at 

least the 5500 instruction set and can assemble programs for any 

Datapoint processor. SNAP/3 contains all of the features of 

SNAP/1 and SNAP/2 but runs much faster, especially when assembling 

programs with many macros. SNAP/3 also assembles the additional 

instructions accepted by the Datapoint 6600 processor. SNAP/3 can 

produce either an absolute object program file or a relocatable 

object file; a relocatable file must be processed by the LINK 

utility before it can be executed. 

i 





TABLE OF CONTENTS 

1. INTRODUCTION 
1.1 Changes to SNAP/3 since version 1 
1.2 Changes to SNAP/3 since version 2 
1.3 Introduction to SNAP/3 

2. STATEMENTS 
2.1 Label field 
2.2 In~truction field 
2.3 Expression field 
2.4 Examples of expressions 
2.5 Comment field 

3. SNAP/3 DIRECTIVES 
3.1 Align Address 
3.2 Define Address 
3.3 Define Constant 
3.4 End 
3.5 Equivalence 
3.6 Error 
3.7 IF 
3.8 Include 
3.9 List 
l.10 Location 
3.11 Macro Definition 
3.12 Macro Definition End 
3.13.Macro Library Include 
3.14 Originate 
3.15 Program Definition 
3.16 Repeat 
3. 17 SET 
3.18 SKIP 
3.19 Assembly Options 
3.20 Test 
3.21 Title 
3.22 Tabulate Maybe 
3.23 Tabulate Page 
3.24 Usage 
3.25 XIF 

4. PSEUDO-INSTRUCTIONS 
4. 1 HL 
4.2 DE 
4.3 Be 

ii 

page 

1-1 
1-1 
1-1 
1-2 

2-1 
2-1 
2-3 
2-3 
2-7 
2- 8 

3-1 
3-1 
3-1 
3-2 
3-2 
3-2 
3-3 
3-3 
3-1~ 

3-1~ 

3-5 
3-6 
3-6 
3-6 
3-6 
3-7 
3-7 
3-7 
3-8 
3-8 
3-9 

3-10 
3-10 
3-10 
3-10 
3-11 

4-1 
ll·- 1 
4-1 
4-1 



4.4 
4.5 
4.6 
4.7 
4.8 
4-.9 

XA 
Memory Store 
Memory Load 
Shift Right 
Shift Left 
Condition Code Load 

4-2 
4-2 
4-2 
4-2 
4-3 
4-3 

5. MACROS 5-1 
5.1 Preparing Macro Prototypes 5-1 
5.2 Macro Calls 5-2 
5.3 Macro Definitions within Programs 5-3 
5.4 Macro Expansion 5-3 
5.5 Global Labels 5-5 
5.6 Local Labels 5-6 
5.7 Macro Nesting 5-7 
5.B Forcing characters 5-8 
5.9 Concatenation 5-8 
5.10 Macro Directives 5-9 

5.10.1 Macro IF 5-9 
5.10.2 Macro IF Exit 5-10 

6. OPERATING PROCEDURES 6-1 
6.1 Parameterization 6-1 
6.2 SNAP/3 Pass One 6-2 
6.3 SNAP/3 Pass Two 6-3 
6.4 Cross-Reference Generation 6-3 
6.5 Assembly Errors 6-4 
6.6 DISPLAY and KEYBOARD Keys 6-5 
6.7 Temporary Files 6-5 

Append! x A. ASCII-OCTAL EQUIVALENTS A-1 

Appendix B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS 8-1 

Appendix C. RESERVED MNEMONICS C-1 

Appendix D. INSTALLATION INSTRUCTIONS D~1 

Appendix E. INCOMPATABILITIES WITH SNAP AND SNAP/2 E-1 

INDEX 

iii 



CHAPTER 1. INTRODUCTION 

1.1 Changes to SNAP/3 since version 1 

1. Two new options, "B" and "H", were added to the command line 
and the SNAPOPT directive to allow numbers in the program 
listing to be edited in binary oi hexadecimal instead of 
octal. See sections 3.19 and 6.1 for more details. 

1.2 Changes to SNAP/3 since version 2 

1. SNAP/3 now supports text file libraries. Both source files 
and include files may now be assembled directly from a text 
library. Libraries are created and manipulated using the 
LIBRARY command. A member name is specified for a file by 
placing a period (.) after the normal DOS file specification, 
and then the library member name. For example: 

INCLIB.DEFINE 
MAINLIB:DR4.INCLUDE 

Also note that if a member name is given for a file, the 
default extension becomes "LIB" instead of "TXT". On the 
command line, both the source file and include (5th file spec) 
may specify library members. (See the LIBRARY user's guide for 
more information). 

2. Hexadecimal and Binary constants may now be specified in the 
expression field. A hex constant is preceeded by an ampersand 
(&), and a binary constant is preceeded by a percent sign (%). 

3. For users of the ARC system, the time and date now appears on 
the listing. If a valid time can be found from file 
ARCCLOCK/TXT (See the ARC user's guide for more information), 
it will be printed just below the user heading on the front 
page, and on cross-reference pages. Note that the time is 
updated between cross-references and PROGs. 

4. If the "P" or "Q" option is given without the "L" option, the 
program name, program. address blocks, and transfer address 

CHAPTER 1. INTRODUCTION 1-1 



will be printed on the listing. 

5. Many more inclusions are now possible. After inclusion "Z", 
the next inclusion will be "a". After "z" will be "0". After 
"9", more inclusions are possible, but the inclusion letter 
will be undefined. 

6. The "?" option has been added. This causes the command line 
format and options to be displayed. No assembly will be 
performed if the option is given. 

7. The INFO instruction no longer requires the "6" option. This 
instruction is now defined to be a 5500 instruction. 

1.3 Introduction to SNAP/3 

SNAP/3 may be used to generate either absolute or relocatable 
object code from a source program file. The file may be created 
using the EDITOR, and consists of mnemonic instructions, assembler 
directives, and comments. 

The kind of object file produced is controlled by a 
command-line option. An absolute object file may be loaded for 
execution by the DOS loader, while a relocatable object program 
must be processed by the LINK utility to create an absolute 
program. 

Since SNAP/3 and this manual assume many details which are 
inherent to the DOS and Datapoint processors, a working knowledge 
of both the DOS and processor is recommended before proceeding. 

Basically, the SNAP/3 assembler is a program that assigns 
numerical values to symbols and puts out these values upon input 
of the associated symbols. Symbols in certain fields have 
preassigned values (such as instruction mnemonics) while other 
symbols are defined by the user (such as labels and macro names). 

The value assigned to an instruction mnemonic is the binary 
bit configuration recognized by the processor for that 
instruction. For example, the following instruction mnemonics 
have the following octal values: 

MNEMONIC 

ADBC 
RET 
SU 

VALUE 

0062 0201 
0007 
0024 

1-2 MACRO-ASSEMBLER 



Predefined symbols are kept separately by SNAP/3 and 
recognized as reserved symbols only when they are encountered in 
the proper context. In context other than that where their usage 
is predefined, the symbol will assume whatever value the user may 
wish to assign. For example: 

LABEL INSTRUCTION EXPRESSION 

L1 AD 1 
JMP CALL 

L2 AD 2 
CALL CALL SURR 1 
INPUT INPUT 

There is no problem in differentiating the two CALL and INPUT 
symbols since the ones in the instruction field are predefined and 
the ones in the label and expression fields are user-defined. 

Along with relating symbols to numbers, another major 
function of the SNAP/3 assembler is to enable the programmer to 
reference a symbol that is defined later in the program. This is 
called FORWARD REFERENCING, and may be handled in a variety of 
ways. When SNAP/3 is generating relocatable output, the forward 
references are resolved by the LINK utility using information in 
the relocatable file. When SNAP/3 is generating absolute output 
or a code listing is requested, it produces an intermediate 
internal file similar to a relocatable output file which it reads 
back during a second "pass" and produces the actual relocatable or 
absolute output file and/or the listing with the resolved-forward 
references. A second pass may also be requested by an option on 
the command line; this option is necessary if the relocatable 
output file is to be loaded by the DOS relocatable loader function 
(function 15). 

An optional function of SNAP/3 is that of producing a 
tabulated listing of all user-defined symbols, their octal value, 
and all references to them. This cross-reference table generation 
consists of recording all definitions of and references to 
user-defined symbols, sorting the references, and merging them 
with their values. 

SNAP/3 maintains two internal counters called the ADDRESS 
COUNTER and the LOCATION COUNTER. The ADDRESS COUNTER indicates 
the memory address of the object code currently being generated 
and the LOCATION COUNTER indicates the memory address at which the 
object code currently being generated will be executed. Thus it 
is possible to assemble code which may be loaded into memory at 
any address, but Which will execute properly only when loaded at 

CHAPTER 1 • INTRODUCTION 1-3 



the address given by the LOCATION COUNTER. These counters are 
usually the same except in the case of Located Code which is 
generated by the LOC directive (see section 3.10). Each time a 
byte of code is generated, both counters are incremented. The 
values of these counters are initially set to 010000 but 
directives are available for changing their values either 
initially or dynamically (see sections 3 and 5). The content of 
the LOCATION COUNTER when processing of the current line is 
initiated is usually displayed at the left side of the listing. 
The dollar sign character ($) has special meaning in that it has 
the value of the LOCATION COUNTER when processing of the current 
line began. For example: 

ADRCTR OBJECT CODE SOURCE CODE 

01000 SET 01000 
01000 104 000 002 XXX JMP XXX 
01003 104 003 002 DOG -JMP $ 
01006 A EQU $ 
00001 B EQU 1 
01006 123 123 DC 0123,83 
05400L LOC 05400 
05403L C EQU $+3 

SNAP/3 maintains a stack of 15 dynamic Program Address Blocks 
(PAB's) which may be used to locate data and code at Assembly 
time. A PAB is actually an ADDRESS COUNTER which has been given a 
symbolic name. This name is not used as a dictionary entry but is 
used solely for the purpose of requesting an ADDRESS COUNTER swap 
with the current PAB (see sections 3.14 and 3.24). 

An ABSOLUTE PAB is defined by SNAP/3 and is implicitly used 
anytime the programmer neglects to Originate (ORG) and Use (USE) 
additional PAB's (see section 3.14 and 3.24). When a new PAB is 
requested, the current PAB's ADDRESS COUNTER is stored and the 
next available address associated with the requested PAB is placed 
in the ADDRESS and LOCATION COUNTERS. 

The first word address and the length of each PAB is printed 
at the end of pass one. 

Example of PAB usage: 

ADRCTR OBJECT CODE 

01000 
07000 
00120 

1-4 MACRO-ASSEMBLER 

SOURCE CODE 

BUFFER ORG 
CODE ORG 
LTH EQU 

01000 
07000 
80 



01000 
01000 
01003 
01000 
01000 
01120 
01006 
01006 

002 000 120 
002 120 120 

311 

BUFl 
BUF2 

USE 
DC 
DC 
USE 
SK 
SK 
USE 
HALT 

CODE 
*BUF1,LTH 
*BUF2,LTH 
BUFFER 
LTH 
LTH 
* 

Object code generated by SNAP/3 will be assumed to be 
non-relocatable starting at octal location 010000 until an "ORG 
location-zero" directive is given followed by a USE statement 
referencing the ORG 0 program address block. A non-zero origin 
for any program address block (PAB) will render the generated 
object code for that address block non-relocatable. 

A description of the format of an absolute object file may be 
found in the DOS User's guide. A description of the format of a 
relocatable object file may be found in the LINK User's Guide. 

CHAPTER 1. INTRODUCTION 1-5 





CHAPTER 2. STATEMENTS 

An assembly code statement consists of a label field, an 
instruction field, an expression field and a comment field. For 
example: 

1 2 3 4' 
LABEL JTC START THIS IS A COMMENT FIELD 

Field 1 is the LABEL FIELD 
Field 2 is the INSTRUCTION FIELD 
Field 3 is the EXPRESSION FIELD 
Field 4 is the COMMENT FIELD 

The editor provides tabulation so that the fields may be 
justified to begin in a certain column for ease of readin?,. Tab 
stops at columns 11, 21 and 38 create a good appearance. However, 
SNAP/3 only requires the following: 

A non-space in the first column means that the first field is 
a label except for a leading period (.), plus (+), or 
asterisk (*), which designate the entire line as a comment 
line. 

Instruction mnemonics, SNAP/3 directives and SNAP/3 macro 
names must start at or before column 20. 

Expressions must start at or before column 25. 

Any statements which are blank prior to column 21 will be 
treated as comments. 

Scanning proceeds from left to right with one or more spaces 
serving as field delimiters. 

2.1 Label field 

The label field may consist of from one to eight characters. 
If more than eight are used only the first seven and last will be 
used as a label name in the dictionary and therefore, must be 
unique. The first character may be any alphabetic character or a 
dollar sign ($). The other characters may be any alphanumeric 
character or a dollar sign. A terminating asterisk (*) will 

CHAPTER 2. STATEMENTS 2-1 



declare the label as a fixed program entry point and the label 
will be written to an entry point file by SNAP/3 (see section 
6.1). If the label is terminated by a colon (:), the label will 
be declared an external definition to be used by the linkage 
editor in resolving external references. If SNAP/3 is producing 
an absolute object file, a label terminated by a colon will be 
treated like a label terminated by an asterisk, as a fixed entry 
point. If the label is terminated by an equal sign (=), and the 
label has been previously defined, a redefinition of the label's 
value will occur and the normal "0" error flag will ·not be 
generated. Extreme care must be exercised when using this 
redefinition capability as any reference to a multiply defined 
label will use the most recently defined value, or the last 
definition if the label has not been previously defined. Note, 
however, that the colon, asterisk, or equal sign is not part of 
the label itself. Thus when the label is referenced in the 
operand, only the name, without the designator, is used. Some 
examples of labels follow. 

VALID LABELS 

LBL12 
LABEL$ 
LABELA* 
LABELB: 
LABELC= 

INVALID 

1LABEL 

LABELII 

LABEL. 

L1-2L3 

Invalid 

LABELS 

labels 

Starts with numeric. 

Non-alphanumeric or 

Non-alphanumeric or 

Non-alphanumeric or 

will be flagged with 

$ character ( II ) • 

$ character ( . ) . 
$ character (-) . 
an "E" error flag. 

The following characters have special meaning when they 
'appear in column one: 

A period in the first column will cause SNAP/3 to treat 
the entire line as a comment line. 

+ A plus sign in the first column will cause a page eject 
during the listing of the program. The line will be 

2-2 MACRO-ASSEMBLER 



treated as a comment line as well and printing will 
occur after the ejection. 

* An asterisk in the first column will cause a page eject 
if the listing is within two inches of the bottom of a 
page. The line is treated as a comment line and 
printing occurs after any possible ejection. 

2.2 Instruction field 

The instruction field may be any of the instruction 
mnemonics, SNAP/3 directives, or a macro name. It has the same 
syntactical restrictions as the label field (up to eight 
characters starting with a letter or dollar sign ($) and 
containing only alphanumerics or dollar signs). 

Only the following instruction mnemonics and SNAP/3 
directives may be abbreviated. 

INPUT abbreviated as IN 
JUMP abbreviated as JMP 
LIST abbreviated as LIS 
RETURN abbreviated as RET 
SKIP abbreviated as SK 

Any illegal or undefined instruction mnemonics will cause "I" 
error flags to be generated. 

2.3 Expression field 

The expression field consists of one or more expressions, 
delimited by commas (,), comprising any number of strings, 
numbers, or symbols with operators between them. Supplying more 
expressions than are permitted for an instruction or directive 
will result in in "E" error flag. A space after an operand or 
right parenthesis terminates the expression and expression field. 
Spaces are ignored after a left parenthesis or operator. 

Numbers are assumed to be decimal (base 10) unless they start 
with a special character. If the number is octal (base 8), it 
must contain at least one leading zero. If the constant is to be 
taken as hexadecimal (base 16), it must begin with an ampersand 
(&). Binary (base 2) numbers begin with a percent (I) sign. 12 
is 12 decimal, 023 is 023 octal (19 decimal), &F is the hex number 
"F" (17 decimal),and 1010110 is the decimal number 22. String 
quantities are denoted (preceded and followed) by apostrophes ('). 

CHAPTER 2. STATEMENTS 2-3 



The DC directive allows strings containing one or more characters. 
All other directives and instructions allow strings of only one 
character in length. The numeriri value of a character is its 
ASCII binary value with the parity bit always a zero. A null 
string is illegal. A forcing character (I) is used in strings to 
indicate that the next character should be taken as ASCII no 
matter what it is. This is useful for entering the characters (') 
and (I) themselves into the string. For example: 

'I'HH' is the character string 'H 

Expressions are evaluated from left to right and all 
operators have the same precedence. The order of evaluation may 
be modified with the use of parentheses as in arithmetic 
expressions. For example, the following is a legitimate 
expression in SNAP/3 : 

(ADDRESS1<8)-ADDRESS2/8+(ADDRESS3-ADDRESS4) 

The expression scanner generates a 16-bit two's complement 
value giving a range of -32768 through +32767. Instructions which 
use only eight bits will discard the most significant byte (MSB) 
of the value generated by the expression scanner and use ony the 
least significant byte (LSB) of the value. Syntax errors in 
expressions will be flagged with "E" error flags. 

Undefined labels in the expression field of DA, DC, and 
statements containing instruction mnemonics will be treated as 
external references to be resolved by the linkage editor if SNAP/3 
is producing relocatable output. The statements containing 
external references will be marked on listings with a pointer next 
to the address and will not be treated as errors. Undefined 
labels will produce "U" error flags if SNAP/3 is producing 
absolute output. Undefined or forward referenced labels in the 
expression fields of directives other than TESTnn in pass one, DA, 
and DC will always produce "un error flags. 

The expression field is omitted for instructions which 
require no expression. The DA and DC directives accept multiple 
expressions delimited by commas (see sections 3.2 and 3.3). 

2-4 MACRO-ASSEMBLER 



There are twelve operators allowed in expressions: 

2.3.1 

2.3.2 

2.3.4 

2.3.5 

2.3.6 

2.3.7 

2.3.8 

+ This means addition. 

This means subtraction. Note that the minus 
sign may be placed at the beginning of an 
expression if the value of the first item is 
to be negated. . 

* When used as the first character in the 
expression, this operator will set the 
assembler's star flag, which affects the 
evaluation of the expression, depending upon 
where it occurs (see sections 3.2, 3.3, 4.5, 
and 4.6). It may be followed by a minus 
operator (e.g. *-DOG+1). When used as the 
first character after a left parenthesis, it 
is ignored. 

* When used between two operands, signifies 
16-bit signed integer multiplication. 

/ A slash indicates signed integer division. Any 
remainder produced by the division will be 
ignored. 

> This means shift right. The value accumulated 
up to this point is logically shifted right 
the number of places indicated in the 
following operand (all bits shifted off the 
end are discarded and zeros are filled in on 
the left). Negative numbers will be treated 
as unsigned 16-bit values instead of two's 
complement 16-bit values. 

< This is the same as > except shifting is to 
the left with zero filIon the right. 

.AND. This means to perform a logical "AND" of the 
two unsigned 16-bit numbers. 

CHAPTER 2. STATEMENTS 2-5 



2.3.9 .OR. 
• 10R • 

2.3.10 • XOR. 

2.3.11 .MOD. 

These mean to perform a logical inclusive 
"OR" of the two unsigned 16-bit numbers . 

This means to perform a logical exclusive "OR" 
of the two unsigned 16-bit numbers. 

This means. signed divide giving only the 
~emainder produced by division. 

Note that only the first character of a 
logical operation is used to determine the 
operation type and that additional characters 
prior to the second period are ignored. 

2-6 MACRO-ASSEMBLER 



2.4 Examples of expressions 

The following examples assume that the value of DOG is 1 and that 
the value of CAT is 2. 

VALID EXPRESSIONS VALUE 

DOG 

DOG+1 2 

1+ DOG 2 

DOG+CAT 3 

'A'+1 0102 

*-CAT+1 -1 

-DOG<3 -8 

-DOG>3 8191 

8> 3+ 1 2 

CAT*CAT 4 

CAT.AND.DOG 0 

DOG.OR.CAT 3 

0377.XOR.DOG 0316 

Note that star flag will be set. 

Note that sign is not extended on right 
shifts. 

Note that shift occurs before addition. 

CHAPTER 2. STATEMENTS 2-1 



ILLEGAL EXPRESSIONS 

DOG+ 

DOG#1 

1 +DOG 

'AB' 

CAT+DOG: 

CAT.NOT.l 

**12 

. XOR.l 

2.5 Comment field 

Terminating character not a space or comma. 

Illegal binary operator. 

Will not be flagged but +DOG will not be 
evaluated as part of the expression. 

Illegal if not a DC ataternent. Only 
character allowed in all other expression 
strings. 

Illegal terminator character. 

Illegal binary operator. 

Star flag set but no multiplier exists for 
second asterisk. 

No value prior to operator . 

The comment field begins anywhere after the expression field, 
column 25 (if the expression field is not used), or column 2 (if 
column 1 contains a period, plus, or asterisk as noted in section 
2.1). When placed following an instruction that does not use an 
expression, the comment field must not start prior to column 26. 
The comment field may contain any character and is terminated by 
the end of the line. SNAP/3 puts out its listing of the source 
line exactly as it is provided in the source code so formatting of 
comments will be maintained. 

2-8 MACRO-ASSEMBLER 



CHAPTER 3. SNAP/3 DIRECTIVES 

Assembler Directives are used for setting the LOCATION 
COUNTER, ADDRESS COUNTER, and LABEL values to other than the 
normal sequential assignments and for defining constants. Other 
Directives are used to control certain SNAP/3 functions such as 
input file linking, source file assembly, program listing and 
macro definition. Note that forward and external references in 
the expression field are only permitted in TESTnn in pass one, DA, 
and DC directives. 

3.1 Align Address 

ALIGN <exp) 

Increments the LOCATION COUNTER and ADDRESS COUNTER until the 
LOCATION COUNTER is an even multiple of the expression value. The 
expression value must be a power of two (i.e. 2,4,8,16 etc.) or an 
"E" error will result. If the statement has a label, it will be 
given the value of the location counter after the ALIGN is 
performed. Will produce an "E" error if the LOCATION COUNTER PAS 
is not .either absolute or required to start at the beginning of a 
page. If a LOC directive has specified "n" bytes per word, the 
ADDRESS COUNTER will be incremented by "n" times the amount the 
LOCATION COUNTER is incremented. 

3.2 Define Address 

DA <exp)[,<exp) .•. ] 

Generates a two byte constant which is the addres3, LSR 
first, of each expression. Placing an * in front of an expression 
will cause the two bytes to be generated in the reverse order (MSB 
first, LSB second). For example: 

DOG EQU 
DA 

01234 
DOG,*DOG,1 

gives the following octal values: 

234 002 002 234 001 000 

CHAPTER 3. SNAP/3 DIRECTIVES 3-1 



3.3 Define Constant 

DC (exp>[,(exp> •.• J 

Generates eight bit object bytes from one or more expressions 
or strings found in the expression field delimited by commas. A 
leading asterisk (*) on any expression ~ill produce two object 
bytes (LSa, MSB) and therefore addresses may be imbedded. within DC 
directives. A special exception is made for string items found in 
the DC directive. All the characters of a string item are 
significant and as many words as necessary are generated to 
accommodate all the characters of the given string. This special 
string item is in effect only if the expression consists of only a 
string. String items in expressions still have only one character 
of significance. For example: 

DC 1,2+3, 'A'+2, 'ABC' 

generates the following octal values: 

001,005,0103,0101,0102,0103 

3.4 End 

END [(exp>J 

Indicates that there is no more source code in the program to 
be processed and that SNAP/3 should proceed to the next pass, if 
any. The expression field has special significance in the END 
statement in that its value is taken as the Primary Transfer 
Address at which program execution will begin. This is optional 
and if the expression field is empty or no END statement is 
encountered, a Secondary Transfer Address is set by SNAP/3 to the 
location of the first byte of object code. 

3.5 Equivalence 

(label> EQU <exp> 

Sets the value of the label on the statement to the value of 
the expression field. Object code is not generated by EQU's~ but 
dictionary labels are. One way of handling external references is 
by equating labels to the value of the external references and 
then referencing the labels. (A better way is usually to use LINK 
to resolve the external references.) Will produce an "E" error if 

3-2 MACRO-ASSEMBLER 



no label is found. 

3.6 Error 

ERR 

Produce a "P" error flag. Usually follows a conditional 
assembly statement to trap a page or table overflow etc. For 
example: 

TABLE 

3.7 IF 

IFnn 

SK 
IFNE 
ERR 
XIF 

LEN 
$>8,TABLE>8 
TABLE OVERFLOWS A PAGE! 

<exp>[,<exp>J 

This is the conditional assembly directive. Condition "nn" 
(assumed to be "EQ" if not given) must be met in the signed 
comparison of the two expressions found separated by a comma in 
the expression field in order to assemble following lines of code. 
The second expression will be assumed zero if not given. Only an 
XIF directive will turn the conditional assembly back on. Any 
number of IF directives may occur before an XIF directive, but as 
soon as processing is turned off by one of the IF directives, the 
remaining IF directives will be ignored and processing will be 
turned back on by the first following XIF directive. An undefined 
or forward referenced expression operand is fatal and this 
occurrence will cause pass two to be aborted. The available 
condition codes are: 

CHAPTER 3. SNAP/3 DIRECTIVES 3-3 



EQ Field 1 must be equal to field 2 
GT Field 1 must be greater than fi~ld ? 
LT Field 1 must be less than field 2 
NE Field 1 must not be equal to field 2 
NG Field 1 must not be greater than" field 2 
fJL Field 1 l!1ust not be less than field 2 
GE Field 1 must be either greater than 

or equal to field 2 
LE Field 1 must be either less than 

or equal to field 2 
Z Field 1 must be zero 
NZ Field 1 must be non-zero 
C Field 1 must be clear 

(flag-testing, same as Z) 
S Field 1 must be set 

(flag-testing, same as NZ) 
STR Field 1 must begin with an asterisk (* ) 
NSTR Field 1 must not befin with an asterisk 

3.8 Include 

INC <filename> 

Includes t~e sourcp from filAname specified in the pxpression 
field. The file specified may be in DOS format (as a free standinp 
file,) or in library member format (filenarne/ext.mpmber). Up to 
62 files may be included". Lines of source code originatinp, from 
an included file are noted by a trailing alphabettc character in 
the line number. Unused labels in included files are omitted from 
the "Unuserl Label" listing. 

3.9 List 

LIST r-l<letter>[, ... l 

This is a directive which is userl to alter the settin~s of 
SNAP 1 3 's listing control flags. Each flag is specified by one 
character which turns the flaR on when mentioned in a LI~T 
statement, unless it is preceded by a minus sign (-) which will 
turn the flag off. Commas may be used to delimit more than one 
flag character. To allow nesting of listing control, a counter is 
associated with each fla~. Whenever a LIST -x appears, the 
associated counter is incremented. Whenever a LIST x appears and 
the control flag is off, the counter is decremented, and the 
control flag is only turned on "when LIST x has appeared as many 
times as LIST -x. The flap characters, their default settings, 

3-4 MACRO-ASSE~BLER 



and their usage are as follows: 

L ON Master list control. If turned off, no pass two 
output will be listed until this flag is turned on 
again regardless of other control flags. 

F OFF If-skipped lines. This flag must be on to produce 
a listing of all lines of source skipped by an 
IF<nn> statement. 

G OFF Generated lines. If turned off, this flag will 
suppress the listing of code lines generated by DA, 
DC, and RPT statements. 

I OFF Included lines. Lines of source code included from 
additional source files will not be listed unless 
this flag is on. 

M OFF Macro expansion. This flag must be on to produce a 
listing of macro expansion source lines. 

For example, LIST M,-I would turn on listing of expanded 
macros, but turn off listing of includes. 

3.10 Location 

LOC <exp>[,<exp>J 
LOC *[,<exp>J 

Sets LOCATION COUNTER to the value of expression field and 
sets the Located Mode flag. If the expression field consists of 
an asterisk (*), the Location flag is cleared and the LOCATION 
COUNTER is set to the ADDRESS COUNTER. If the statement has a 
label, it will be given the value of the location counter after 
the LOC is performed. Note that the listing will have the 
LOCATION COUNTER (noted by a trailing L) printed instead of the 
ADDRESS COUNTER while the Location flag is set. Remember that the 
LOCATION COUNTER indicates the address at which the code is to 
execute. If th~ expression is relocated by a relocatable PAB, 
then references to the current LOCATION COUNTER will be relocated 
by that PAB. The optional second expression is the number of 
bytes per word. This parameter is used when generating code for 
other machines whose word (address unit) size is larger than eight 
bits. If the value of this parameter is "n", the ADDRESS COUNTER 
will be incremented by "n" whenever the LOCATION COUNTER is 
incremented by one. A USE or SET directive resets the Location 
flag and resets the number of bytes per word to one. 

CHAPTER 3. SNAP/3 DIRECTIVES 3-5 



3.11 Macro Definition 

MACRO [<exp>J 

Indicates that the statements that follow are an inline 
definition of a macro prototype. (See Chapter 5.) 

3.12 Macro Definition End 

MEND 

Marks the end of a macro definition. (See Chapter 5.) 

3.13 Macro Library Include 

MLIB <filename> 

Allows access to macros in the file specified in DOS format 
in the expression field. (See Chapter 5.) 

3.14 Originate 

<PAR> ORG <exp>[,<flag>[, ••• ]] 

Initializes a new Program Address Block (PAB) and sets its 
first and current word addresses to the value of the expression 
field. A PAB is relocatable if the expression given is zero. 
Following the address in the expression field, page alignment for 
reI 0 cat a b 1 ePA B 's iss p e c i f i ed by", T", ", P" and ", C" • The" T" 
option generates a fl~g in the object code that tells the linkage 
editor to align the PAB at the beginning of a memory page. The 
"P" option generates an object code flag that tells the linkage 
editor to align the PAB so that it does not cross any memory page 
boundaries. The "cn option specifies that this PAS and all other 
PAB's with the same name are common and should be linked into the 
same area rather than being appended together. The label field 
defines the PAB's name which is referenced in the USE directive 
(section )..24). It does not generate a label for the dictionary. 
A "D" error flag will be issued if the PAR has been previously 
defined; this is a fatal error. 

3-6 MACRO-ASSEMBLER 



3.15 Program Definition 

<name> PROG 

This is used to define the name to be used in the object code 
library to identify the program that follows. The label field 
gives the name of the segment produced. A PROG directive must be 
used in all but the first program when the source file being 
assembled by SNAP/3 contains more than one program. All object 
segments produced are placed in the same library. 

3.16 Repeat 

RPT <exp> 

Will cause the following line of source code to be processed 
the number of times indicated by the LSB of the expression field's 
value. The following line may not be a RPT directive. For 
example: 

RPT 5 
CALL INCHL 

will produce the same code as: 

CALL INCHL 
CALL INCHL 
CALL INCHL 
CALL INCHL 
CALL INCHL 

Repeating statements with labels which do not have a trailing = to 
signify a multiple definition will result in "D" error flags. 

3.11 SET 

SET <exp> 

Clears the Location flag, initiates usage (USE) of the 
ABSOLUTE PAB (see section 3.24), and sets the ADDRESS COUNTER and 
LOCATION COUNTER to the value of the expression. If the statement 
has a label, it will be given the value of the location counter 
after the SET is performed. 

CHAPTER 3. SNAP/3 DIRECTIVES 3-1 



3.18 SKIP 

SKIP (exp) 

Increments the values of the LOCATION COUNTER and ADDRESS 
COUNTER by the value of the expression field. The value may be 
positive or negativ~. If a LOC directive (section 3.10) has 
specified "n" bytes per word, then the ADDRESS COUNTER is 
incremented by "n" times the S~IP expression value. 

3.19 Assembly Options 

SNAPOPT (letter)[,(letter) ... ] 

This is used to turn certain assembly options on or off 
during an assembly. Each option is specified by one character 
which turns the option on when mentioned in a SNAPOPT statement, 
unless it is preceded by a minus sign (-) which turns the option 
off. Each option is initially off at the beginning of each 
program unless the character was specified as an option on the 
command line, in which case the option is initially on. The 
options which may be specified on the SNAPOPT directive follow. 
See section 6.1 for a complete list of options. 

-

U Instructions and pseudo-instructions for the 2200 and 
5500 processors will not be defined. This permits these 
names to be defined as macros. 

2 Only 2200 processor instructions are allowed. 
Instructions for the 5500 processor will produce an "I" 
error flag but will generate the correct code. This is 
usefull when assembling code to be executed on a 2200 
processor. 

6 Instructions for the 6600 processor are defined. 

X This option only has effect if a cross reference listing 
was requested by the X option on the command line. 
Label definitions and references occurring while this 
option is off will not appear in the cross reference 
listing. 

3-8 MACRO-ASSEMBLER 



R This option only has effect if a cross reference listing 
was requested by the X option on the command line. If a 
label is defined while this option is on, then no 
references to that label occurring after the defin~tion 
will appear in the cross reference listing. This is 
usefull if it is desired that certain labels not appear 
in the cross reference listing. 'This option may not 
appear on the SNAP3 command line. 

H All numbers on the listing which are normally edited in 
octal will be hexadecimal instead. This option may not 
be dynamicly turned on and off throughout the listing; 
the state of the option at the end of the source code 
will be used throughout the listing. 

B Generated object code bytes will be edited in binary 
instead of octal on the listing. This option may not be 
dynamicly turned on and off throughout the listing; the 
state of the option at the end of the source code will 
be used throughout the li~ting. 

3.20 Test 

TESTnn <exp>[,<exp>J 

This directive tests whether the specified relation "nn" 
holds between the two operands. It differs from most other 
directives in that the operand expressions may contain forward 
references, and als6 in that the assembly must be a two pass 
assembly if this directive is used. The assembly will be two pass 
if a source listing was requested by the D or L option on the 
command line or if absolute output was ~equested by the A option, 
or two passes may be forced by the T option. This directive will 
produce an "En flag if the specified condition is not met, if the 
assembly is not two pass, or if the value of either expression is 
relocatable. The possible relations are the same as for the IF 
directive (section 3.1) except for omitted, STR, and NSTR. For 
example: 

TESTGE ABC-$,-128 

TESTLE ABC-$,121 

would produce an error flag if the label ABC were not within the 
range [$-128,$+121]. 

CHAPTER 3. SNAP/3 DIRECTIVES 3-9 



3.21 Title 

TITLE 

Causes the program listing to page eject and print the page 
heading followed by text taken from the .line immediately following 
the TITLE statement. The title will continue to print at the top 
of each page until changed by another TITLE directive. 

3.22 Tabulate Maybe 

TM (exp> 

Performs a Tabulate Page (section 3.23) if the value of the 
expression field would cause a page overflow if added to the 
current LOCATION COUNTER. If the statement has a label, it will 
be given the value of the location counter after the TM is 
performed. Will produce an "E" error if the LOCATION COUNTER PAS 
is not either absolute or requ~red to start at the beginning of a 
page. 

3.23 Tabulate Page 

TP 

Increments the value of ADDRESS COUNTER and the the LOCATION 
COUNTER until the LOCATION COUNTER value is a multiple of 256 (LSB 
= 000). This is useful for setting up page-dependent data areas 
which are addressable by single precision (leaving H fixed and 
manipulating only the L-register). If the statement has a label, 
it will be given the value of the location counter after the TP is 
performed. Will produce an "E" error if the LOCATION COUNTER PAS 
is not either absolute or required to start at the beginning of a 
page. If a LOC directive (section 3.10) has specified "n" bytes 
per word, then the ADDRESS COUNTER is incremented by "n" times the 
amount the LOCATION COUNTER is incremented. 

3.24 Usage 

USE (PAB> 

Initiates usage of the PAB whose name is given in the 
expression field. An asterisk (*) in the expression field will 
revert back to the last PAA used. If the statement has a label, 
it will be given the value of the location counter after the USE 

3-10 MACRO-ASSEMBLER 



is performed. A "U" error will be issued if the PAB named has not 
been defined by an ORG statement; this is a fatal error. 

3.25 XIF 

XIF 

Force the-assembly on if it has been conditionally turned 
off. 

CHAPTER 3. SNAP/3 DIRECTIVES 3-11 





CHAPTER 4. PSEUDO-INSTRUCTIONS 

Pseudo-instructions are predefined mnemonics for commonly 
used instruction sequences. They cause SNAP/3 to generate a 
sequence of machine instructions to perform the desired function. 

4.1HL 

HL 

4.2 DE 

DE 

4.3 BC 

BC 

<exp> 

<exp> 

<exp> 

The HL pseudo-instruction generates the 
load H register and load L register 
instructions necessary to place the 
value of the expression field in the H 
and the L registers properly, so that a 
load to or from memory will use that 
address, i.e., H contains the MSB and L 
contains the LSB. The HL 
pseudo-instruction generates four bytes 
of object code. For example: 

OOPS EQU 02005 
HL OOPS 

generates the following code: 

066 005 056 004 

The DE pseudo-instruction works the same 
as the HL pseudo-instruction except it 
loads the D and E registers instead of H 
and L. 

The BC pseudo-instruction works the same 
as the HL pseudo-instruction except it 
loads the Band C registers instead of H 
and L. 

CHAPTER 4. - PSEUDO-INSTRUCTIONS 4-1 



4.4 XA . 

XA 

4.5 Memory Store 

<exp> The XA pseudo-instruction works the same 
as the HL pseudo-instruction except it 
loads the X and A registers instead of H 
and L .. 

MSr [*J<exp> The Memory Store pseudo-instruction 

4.6 Memory Load 

allows the user to store a given 
register into a given memory location. 
Placing an * in front of the expression 
causes the H-register to be loaded as 
well as the L. The expansion is as 
follows: 

LL <exp> 
LH <exp»8 if * is present 
LMr 

MLr [*J<exp> The Memory Load pseudo-instruction works 

4.1 Shift Right 

SRN <exp> 

the same as Memory Store (MSr) with the 
exception that the register is loaded 
from memory rather than being stored 
into memory. 

The Shift Right numeric 
pseudo-instruction allows the user to 
generate SRC instructions the number of 
times specified in the expression field. 
The expression must be defined in pass 
one and must have a value between zero 
and seven. For example: 

SRN 3 

will generate the following code: 

012 012 012 

4-2 MACRO-ASSEMBLER 



4.8 Shift Left 

SLN (exp> 

4.9 Condition Code Load 

CCL[r] 

The Shift Left numeric 
pseudo-instruction works the same as SRN 
with the exception that SLC instructions 
(002) are generated. 

The Condition Code Load 
pseudo-instruction generates an ADrr 
instruction (ADA if r is omitted) which 
will reload the condition code after it 
has been saved in register r by aces 
(condition code save) instruction or 
equivalent. 

CHAPTER 4. PSEUDO-INSTRUCTIONS 4-3 





CHAPTER 5. MACROS 

Macros are predefined sections of source code which may be 
used to facilitate the coding of commonly used procedures. Macro 
source code is modified by SNAP/3 to include labels and 
expressions passed as arguments by the main body of source 
statements. 

Macro definitions are called "Macro Prototypes" and are 
saved for later access by the SNAP/3 assembler. 

5.1 Preparing Macro Prototypes 

The DOS editor is used to produce prototype statements. 
Macro prototypes must be entered in the following format: 

MACRO [expression] 
[label] name [symbol[(default)]][,symbol[(default)]] .. etc. 
[one or more assembly-language statements] 

MEND 

Each prototype must start with a statement with "MACRO" in 
the instruction field and end with a statement with "MEND" in the 
instruction field. The optional expression on the MACRO line 
specifies the number of parameter lists on the second line as 
described below. 

The second statement of each prototype is called a "Macro 
Prototype Header" and defines the name of the macro and any 
labels and symbols that may be replaced during assembly. The name 
may be any 1 to 8 character symbol that is not already predefined 
by SNAP/3 as an instruction mnemonic or assembly directive (See 
Appendix C). All arguments shown in brackets are optional and may 
be omitted if not needed. 

Labels and symbols shown in the prototype header define items 
in the statements that follow that may be replaced at assembly 
time. Following each symbol in the header a default expression 
may be defined. The default will be used if a macro reference in 
SNAP/3 fails to supply a replacement expression for the preceding 
symbol. 

CHAPTER 5. MACROS 5-1 



The operand field of the prototype header consists of one or 
more lists separated by blanks, ~ith each list consisting of one 
or more symbols (with defaults) separated by commas (,). If more 
than ~ne list is present, the number of lists must be specified as 
the operand field of the MACRO line. A "zeroth" list may also be 
supplied, separated from the prototype h~ader name by a comma; 
this list is not counted in the number specified on the MACRO 
line. 

One or more macro definitions may be defined in the same file 
using the DOS editor. Macro definitions may occur in line in the 
same program in which they are to be used, or they may be placed 
in macro libraries, which are created by the LIB utility. 

5.2 Macro Calls 

Code from a macro prototype library is included in SNAP/3 
assemblies by the means of "macro calls". Each library containing 
macros to be included must first be made known to the assembler by 
means of a MLIB directive. The MLIB directive is entered in the 
instruction field followed by the macro library file name in the 
following format: 

MLIB file-name 

If the file-name's extension is omitted, IMPL will be 
assumed. 

Macro calls are coded as follows: 

[label] name [expression][,expression] ... etc. 

The name used in the instruction field will be assumed to be 
a macro name if is not a recognizable SNAP/3 instructiori mnemonic 
or assembly directive (See Appendix C). The label and expression 
arguments in brackets are optional. Arguments defined in the 
expression field are positional and must be defined in the same 
order as related symbols in the macro's prototype header. 

5-2 MACRO-ASSEMBLER 



5.3 Macro Definitions within Programs 

Macros may be defined in the same program in which they are 
to be used by simply defining macro prototypes prior to their 
first reference by a macro call in the program. The macros may be 
defined in the source file or an INCluded file. 

When macros are defined inline, a MLIB statement is not 
required for their use within the assembly. 

5.4 Macro Expansion 

Note the similarity between the format of a macro call and 
macro prototype header. They are closely related and determine 
the final code that will be included in your assembly. 

Call: [label] name [expression][,expression] [expression] .. etc. 
Header: [label] name [sym[(def)]][,sym[(def)]] [sym[(def)]] .. etc. 

The label for the call will replace the occurrences of the 
header label in prototype code during expansion. The first 
expression in the call will replace the first header symbol in the 
prototype code, the second expression will replace the second 
symbol, and so forth. 

Arguments may be omitted in each list of macro call 
expressions by coding only the trailing comma to indicate the 
missing expression. Trailing commas after the last expression in 
a list are not required. 

CHAPTER 5. MACROS 5-3 



The rules for substitution are: 

Macro Call Protot~pe Header 

Label No Label 

Label Label 

No label No label 

No label Label 

Symbol No symbol 

Symbol Symbol 

No symbol Symbol but 
no default 

No symbol Symbol with 
a default 

5-4 MACRO-ASSEMBLER 

Action 

Label is defined normally before 
expanded m~cro code is processed. 

Call label substituted in 
expanded macro code. 

No change. 

Prototype label is unchanged. 

Call symbol ignored. 

Call expression substituted for 
occurrences in macro code. 

Header symbol disappears 
in expanded code. 

Default substituted for 
occurrences in macro code. 



Symbols within apostrophes (') are never replaced during 
expansion. Substitution of arguments is best shown by example: 

Macro call: 

LOOP CLEAR BUFFER 

Macro prototype: 

MACRO 
LABEL CLEAR FIELD,SIZE(80) 

HL FIELD 
LB 0 
LC SIZE 

LABEL LMB CLEAR THE FIELD 
INCP HL 
SUC 1 DECREMENT COUNT 
JFZ LABEL CONTINUE 
MEND 

Expansion: 

HL BUFFER 
LB 0 
LC 80 

LOOP LMB CLEAR THE BUFFER 
INCP HL 
SUC 1 DECREMENT COUUT 
JFZ LOOP CONTINUE 

You will note in the preceding example that the symbols 
"LABEL" and "FIELD" in the prototype have been replaced by "LOOP" 
and "BUFFER" provided by the macro call. The symbol "SIZE" did 
not have a replacement expression in the macro call and the 
default "80" has been substituted. 

5.5 Global Labels 

Global labels are labels which can be referenced anywhere in 
a SNAP/3 assembly. Each global' label name must be unique within 
an assembly since references may occur in both the main code as 
well as within macro expansion code. 

Any label in the label field of any line of a macro prototype 
that is altered or replaced by a macro call argument or macro 

CHAPTER 5. MACROS 5-5 



prototype default automatically becomes global. 

In the preceding example, the label "LOOP" is global. 

5.6 Local Labels 

Local labels are labels which can be referenced only within 
the macro expansion in which they occur. Each macro expansion 
generates an identifying number which is associated internally 
with all local labels within the current expansion. Local label 
names may be duplicated many times within an assembly, however, 
SNAP/3 considers each unique to the macro expansion in which it 
occurred. 

Any label in the label field of any line of a macro prototype 
that is not altered or replaced during macro expansion is 
automatically declared a local label. 

For example: 

Macro-Erototype: 

MACRO 2 
COUNT AAA,BBB(O) ecc 
BC BBB 

OUTER DE cec 
INNER DECP DE 

JFC INNER 
AAA DECP BC 

JFC OUTER 
MEND 

Macro Calls followed £I Expansions: 

NEXT COUNT ,1000 500 COUNT BCSET 999 

NEXT BC 1000 BC 0 
OUTER DE 500 OUTER DE 999 
INNER DECP DE INNER DECP DE 

JFC INNER JFC INNER 
DECP BC BeSET DECP BC 
JFC OUTER JFC OUTER 

In the example on the left, a global label line is generated 
for NEXT. OUTER and INNER become local label$ and the symbol AAA 
in the prototype disappears. 

5-6 MACRO-ASSEMBLER 



In the example on the right, OUTER and INNER become local 
labels and the symbol AAA in the prototype becomes the global 
label BCSET. 

5.7 Macro Nesting 

SNAP/3 allows nesting of macros calls within macro calls with 
up to eight levels of expansion. Local labels cannot be passed as 
arguments to inner macros, however, passage of global labels and 
other arguments is unrestricted. 

For example: 

MACRO INLINE DEFINITION 1 
LEVEL1 ARG 

XXX DC ARG 
LEVEL2 ARG 
DA XXX 
MEND 

MACRO INLINE DEFINITION 2 
LEVEL2 ARG 

xxx DC ARG+1 
DA XXX 
MEND 

XXX DC a MAINLINE CODE 
LEVEL1 017· 
DA XXX 

Expands to: 

14. 000000 000 XXX DC a MAINLINE CODE 
15. LEVEL1 017 
15. 000001 017 XXX DC 017 
15. LEVEL2 017 
15. 000002 020 XXX DC 017+1 
15 . 000003 002 000 DA XXX 
15. 000005 001 000 DA XXX 
16. 000007 000 000 DA XXX 

In the preceding example, XXX is defined as a label three 
times. The first definition is a global label in the main body of 
code. The second and third definitions are as local labels at 
different levels of macro expansion. 

CHAPTER 5. MACROS 5-7 



5.8 Forcing characters 

The "at" sign (@) is used in macro call and macro prototype 
expressions as a forcing character. Its primary purpose is to 
allow blanks, commas, apostrophes, and concatenation characters to 
be transferred to an expansion wi thout e'valuation. 

Forcing characters are not transferred to the expanded code. 

For example: 

Macro-prototype: 

MACRO 
STRING A,B 
DC A,@'B@' 
MEND 

Macro fall and Expansion: 

STRING 100@,200@,300,ERROR@ MESSAGE@ ##1 
DC 100,200,300, 'ERROR MESSAGE ##1' 

Note that in the macro prototype, forcing characters are used 
to prevent evaluation of apostrophes and allow a substitution to 
be made between them (substitutions are normally suppressed 
between apostrophes). Commas and blanks have been forced in the 
expression field of the macro call to prevent their being 
interpreted as expression delimiters. 

I nth e mac roc all, il 1 OO@ , 200@ , 300" i s con sid ere d to be 0 n e 
expression and "ERROR@ MESSAGE@ #'1" is considered to be a second 
expression. 

5.9 Concatenation 

The concatenation character (I) is used in inner macro calls 
and macro prototype expressions to separate symbols into . 
individually replaceable elements. During macro expansion, 
concatenation characters in the expression field that are not 
within apostrophes or preceded by a forcing character will be 
omitted from the generated code. 

5-8 MACRO-ASSEMBLER 



For example: 

Macro-prototype: 

MACRO 
MSG 

MSGIAAA DA 
DC 
MEND 

AAA,BBB 
BBBILOC,BBBISIZE 
@'ERROR@ IN@ PHASE@ DCTIAAA@' 

Macro Call and Expansion: 

MSG024 
MSG 
DA 
DC 

024,PHS4 
PHS4LOC,PHS4SIZE 
'ERROR IN PHASE DCT024' 

5.10 Macro Directives 

Macro directives provide a means of conditionally generating 
lines of macro code depending on what replacement expressions have 
been specified for prototype symbols. Macro directives are 
evaluated and executed during macro expansion. 

5.10.1 Macro IF 

Macro IF directives are coded in the following format: 

MIFnn string1[,string2] 

Macro code following a MIF is generated only when the 
selected condition (nn) is found to be true: 

Directive 

MIF 
MIFS 
MIFC 
MIFLT 

.MIFEQ 
MIFGT 

True Condition 

String1 is set (Not null) 
String1 is set (Not null) 
String1 is clear (Null) 
String1 is less t~an string2 
String1 is equal to string2 
String1 is greater than string2 

CHAPTER 5. MACROS 5-9 



MIFLE Stringl is less than or equal to string2 
MIFGE Stringl is greater than or equal to string2 
MIFNL Stringl is not less than string2 
MIFNE Stringl is not equal to string2 
MIFNG Stringl is not greater than string2 

A string2 should not be specified for MIF, MIFS and MIFC. If 
specified it will be ignored. 

A string2 must be specified for MIFLT, MIFEQ, MIFGT, MIFLE, 
MIFGE, MIFNL, MIFNE, and MIFNG. If string2 is not specified, it 
is assumed to be a null string. Strings of characters specified 
for comparison are terminated by the first blank or comma 
character that is not preceded by a forcing character or within 
apostrophes. If the two strings are different length but 
otherwise equal, the shorter string is considered to be less. 

For Example: 

MIFEQ PAR1IPAR2,ABC! DEFG t@ COMMENT HIJKL 

The second comparison string starts with the letter A and 
ends with the letter T. 

5.10.2 Macro IF Exit 

Conditional gener~tion of macro code is terminated by a 
Macro-eXit-IF (MXIF) directive. 

For example: 

MACRO 
TEST Pl 
MIFEQ Pl,ASCII 

· THIS COMMENT WILL GENERATE IF P1 IS ASCII 
MXIF 
MIFNE P1,ASCII 

· THIS COMMENT WILL GENERATE IF P1 IS NOT ASCII 
MXIF 

• THIS WILL GENERATE UNCONDITIONALLY 
MEND 

5-10 MACRO-ASSEMBLER 



CHAPTER 6. OPERATING PROCEDURES 

The DOS command requesting exec~tion of the SNAP/3 assembler 
should be as follows: 

SNAP3 source[,object][,ept][,print][,include][;<option chars.>] 

where each bracketed object and each character after the semicolon 
is optional. 

6.1 Parameterization 

The first file specification (which is required) is the 
source file, the second file specification-is for the object file, 
the third file specification is for the entry point file, the 
fourth specification is the print file, and the fifth 
specification is a file which will be INCluded (see section 3.B) 
before the source file is processed. The source file has a 
default extension of TXT. The object file, if not given, is 
assumed to have the same name as the source file and has a default 
extension of REL if relocatable output is being produced, ABS if 
absolute output is being produced. The entry point file name, if 
not given, is assumed to have the same name as the program name 
(which defaults to the object file name if there is no PROG 
directive). The entry point file has a default extension of EPT 
and a default drive the same as the drive the object file is 
written on, unless the entry point file already exists. The entry 
point file is written after pass one only if entry points have 
been declared in the program. The EPT file is written in a 
compressed symbolic format which can be INCLUDED by a later 
assembly to provide a program linkinp. capability. The print file 
has a default name the same as the object file name and a default 
extension of PRT. The include file name has a default extension 
of TXT. 

The characters on the command line following the semicolon 
select SNAP/3 options. The following options may be specified: 

A 

D 

Causes an absolute output file to be produced, 
instead of a relocatable file. 

Causes a source and object code listing to be 
displayed on the CRT; may be specified in addition 
to the L option. 

CHAPTER 6. OPERATING PROCEDURES 6-1 



F,G,I,M 

L 

p 

Q 

S 

T 

X 

? 

Turns on corresponding listing control flags (see 
section 3.9). 

Produces a source and object code listing. The 
listing will be on the local printer if neither the 
P, Q, nor S option appear~. 

Causes the L or-X option listing to be to a print 
file. 

Same as P option, but specifies that the listing 
should be appended or queued after any information 
already in the print file. 

Causes the L or X option listing to be to the servo 
printer. 

Forces a two pass assembly. Must be specified if 
the relocatable output file produced is to be 
loaded by the DOS relocatable loader (DOS function 
15). 

Produces a cross-reference map listing. May appear 
with or without the L option. 

This causes a list of options and the command line 
format to be displayed. No assembly is done. 

2,6,B,H,U Turns on the assembly options described in section 
3.19. 

6.2 SNAP/3 Pass One 

Initially SNAP/3 will validate the file specifications and 
the options selected. The version and revision numbers 
identifying the release will be-displayed. If P or Q appeared on 
the command line but the print file was not specified, the print 
file specification is requested. The default file name is the 
object file name, and the default ~xtension is PRT. The program 
will request an BO-character heading if either the L or X 
parameter has been specified. SNAP/3 will then read the source 
file and any INCLUDED files in order to build a dictionary 
containing all symbolic names used by the programmer and their 
equivalent octal value or address. A notation is printed as each 
INCLUDE is processed along with any lines which contain errors. 

At the end of pass one, one or more of the following items 

6-2 MACRO-ASSEMBLER 



will be displayed on the CRT: 

1) Any pass one error flags 
2) Fatal error message if fatal error occurred 
3) Program Address Blocks--name, origin, and length 
4) Primary Transfer Address--octal value 

If a program listing has been requested, one or more of the 
following items will be printed on the printer device or CRT: 

1) Any pass one error flags 
2) Fatal error message if fatal error occured 
3) Program Address Blocks--name, origin, and length 
4) Primary Transfer Address--octal value 
5) Entry Points--name, value 
6) External definitions--name, value 
7) External references 
8) Unused labels 
9) Multiply defined labels 

6.3 SNAP/3 Pass Two 

If no fatal pass one errors occurre~, SNAP/3 will now write 
the entry point file, if required, and proceed into pass two, if 
required. Pass two is responsible for the resolution of forward 
references and the generation of a program listing. 

6.4 Cross-Reference" Generation 

At the completion of pass two, SNAP/3 will call the DOS SORT 
if a cross-reference listing is desired. DOS SORT will sort the 
label definitions and references and write a sorted label file. 
It will then overlay itself with SNAP/3 which will list the sorted 
references. 

Th~ actual listing of references will contain the symbolic 
name preceded by its actual octal value. Following the symbolic 
name is a list of all line numbers at which that symbolic name was 
defined or referenced. All definition lines are flagged with a 
leading asterisk while all Inclusions are noted by a trailing 
colon followed by the Inclusion file character (see section 3.8). 
Macro internal labels will have (M) after their name and each 
usage and associated references will be grouped and listed 
separately. Duplicate references with the same line number will 
be suppressed. For example: 

CHAPTER 6. OPERATING PROCEDURES 6-3 



11304 DECHL *32:A *32:B 

00341 DISPL *24 

00024 IDLE *197 212 

00035 INDEX (M) *904 900 906 

00057 INDEX (M) *913 936 

10176 INCHL *102 71 151 156 

00007 MANY *25:A *25:B 21:A 21:B 

If a symbol has duplicate definitions, the octal value shown 
is the initial value assigned. 

6.5 Assembly Errors 

SNAP/3 produces error flags to indicate source program 
errors. Some serious errors are fatal; these cause the second 
assembly pass to be skipped and any active CHAIN to be aborted. 
The other errors set the ABTIF flag which can be tested in a CHAIN 
(see the DOS manual). The fatal errors are mentioned in the 
sections describing constructions which can cause them. 

The ERROR FLAGS produced by SNAP/3 are as follows: 

6.5.1 D 

6.5.2 E 

6.5.3 F 

The D flag means DUPLICATE DEFINITION. It is 
generated if an attempt has been made to define 
the label more than once without a trailing = 
mark. Note that a reference to a duplicately 
defined label will use the most recent previous 
definition, or the last definition if the label 
has not been previously defined. 

The E flag means that an error has occurred in an 
EXPRESSION or some unrecognizable character 
appeared in the wrong place. In this case, a zero 
is substituted for the expression or for whatever 
was unrecognizable if code generation was 
expected. 

The F flag means FILE error. It can be issued for 
an INC or MLIB directive because the specified 
file is not (ound. 

6-4 MACRO-ASSEMBLER 



6.5.4 I 

6.5.5 o 

6.5.6 P 

6.5.7 U 

The I flag means INSTRUCTION MNEMONIC UNDEFINED. 
The instruction was not an acceptable instruction 
and three octal zeroes are inserted for the 
instruction. 

The 0 flag means memory page OVERFLOW. It is 
issued when generated code in a page restricted 
Program Address Block crosses a memory page 
boundary. 

The P flag means PROGRAMMER PRODUCED. It is 
issued when an ERR directive is processed. 

The U flag means UNDEFINED LABEL. It is issued in 
pass two whenever a label is referenced and is not 
defined if absolute output is being produced. It 
is also issued when an assembly directive in pass 
one (except DA, or DC, or TESTnn) is operating on 
an expression containing a label not yet in the 
dictionary~ Other undefined symbols in 
relocatable assemblies are assumed to be external 
references, and are marked with ff>" on the 
listing. . 

6.6 DISPLAY and KEYBOARD Keys 

The DISPLAY key may be depressed at any time to cause SNAP/3 
to pause while displaying data. Normal processing will resume 
when the DISPLAY key is released. 

The KEYBOARD key may be depressed at any time to cause SNAP/3 
to abort the assembly. 

6.7 Temporary Files 

SNAP/3 may use up to four temporary files, plus any temporary 
files used by the SORT utility if a cross reference is requested. 
These files are placed on the same drive as the object file, and 
are deleted at the end of the assembly. The files are: 
SNPTEMPn/SYS if the assembly is two pass, SNPPAGEn/SYS if SNAP/3 f s 
working tables will not all fit in memory, and SNPXREFn/SYS and 
SNPSXRFn/SYS if a cross reference is requested. The character 'n' 
in the file names will be '0' if the Partition Supervisor (PS) is 
not active or the partition identifier if it is. 

CHAPTER 6. OPERATING PROCEDURES 6-5 





APPENDIX A. ASCII-OCTAL EQUIVALENTS 

The standard octal equivalents for the ASCII character set. 
Interpretations will vary with some printers and display devices. 

A 101 a 141 0 060 072 
B 102 b 142 1 061 . 073 , 
C 103 c 143 2 062 < 074 
D 104 d 144 3 063 = 075 
E 105 e 145 4 064 > 076 
F 106 f 146 5 065 ? 077 
G 107 g 147 6 066 [ 133 
H 110 h 150 7 067 - 176 
I 111 i 151 8 070 ] 135 
J 112 j 152 9 071 ,.. 136 
K 113 k 153 Space 040 137 
L 114 1 154 ! 041 @ 100 
M 115 m 155 " 042 { 173 
N 116 n 156 II 043 \ 134 
0 117 0 157 $ 044 I 174 I 

P 120 P 160 % 045 } 175 
Q 121 q 161 & 046 
R 122 r 162 , 047 
S 123 s 163 ( 050 
T 124 t 164 ) 051 
U 125 u 165 * 052 
V 126 v 166 + 053 
w 127 w 167 , 054 
X 130 x 170 - 055 
y 131 y 171 . 056 
Z 132 z 172 / 057 

APPENDIX A. ASCII-OCTAL EQUIVALENTS A-1 





APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS 

The following is a list of all Datapoint processor 
instruction mnemonics accepted by SNAP/3 with the octal code 
generated for each instruction. 

In the instruction expression field the following abbreviations 
are used: 

data 
loc 
disp 

- immediate data 
- location 
- displacement 

In the generated code the following abbreviations are used: 

vvv 

Isb 

msb 

ndx 

- 8 bits of immediate data 

- least significant 8 bits of location 
or displacement 

- most significant 8 bits of location 
or displacement 

- least significant 8 bits of index (msb 
in X) 

In the description the following abbreviations are used: 

data - 8 bits of immediate ,data in instruction 
code (vvv) 

A-E,H,L,X - contents of the specified register 

(BC),(DE),(HL),(XA) - contents of memory pointed to by 
register pair 

AC data 014 vvv Add with carry 
ACA 210 Add with carry 
ACA data 014 vvv Add with carry 
ACAA 210 Add with carry 
ACAB 111 210 Add with carry 
ACAC 062 210 Add with carry 
ACAD 113 210 Add with carry 

data 
A to 
data 
A to 
A to 
A to 
A to 

to 
A 
to 
A 
B 
C 
D 

A 

A 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-1 



ACAE 174 210 Add with carry A to E 
ACAH 115 210 Add with carry A to H 
ACAL 176 210 Add with carry A to L 
ACAX 117 210 Add with carry A to X 

ACB 211 Add with carry B to A 
ACB data 111 014 vvv . Add with carry data to B 
ACBA 211 Add with carry B to A 
ACBB 111 211 Add with carry B to B 
ACBC 062 211 Add with carry B to C 
ACBD 113 211 Add with carry B to D 
ACBE 174 211 Add with carry B to E 
ACBH 115 211 Add with carry B to H 
ACBL 176 211 Add with carry R to L. 
ACBX 117 211 Add with carry B to X 

ACC 212 Add with carry C to A 
ACC data 062 014 vvv Add with carry data to C 
ACCA 212 Add with carry C to A 
ACCB 111 212 Add with carry C to B 
ACCC 062 212 Add with carry C to C 
ACCD 113 212 Add with carry C to D 
ACCE 174 212 Add with carry C to E 
ACCH 115 212 Add with carry C to H 
ACCL 176 212 Add with carry C to L 
ACCX 117 212 Add with carry C to X 

ACD 213 Add with carry D to A 
ACD data 113 014 vvv Add with carry data to D 
ACDA 213 Add with carry D to A 
ACDB 111 213 Add with carry D to B 
ACDC 062 213 Add with carry D to C 
ACDD 113 213 Add with carry D to D 
ACDE 174 213 Add with carry D to E 
ACDH 115 213 Add with carry D to H 
ACDL 176 213 Add with carry D to L 
ACDX 117 213 Add with carry D to X 

ACE 214 Add with carry E to A 
ACE data 174 014 vvv Add with carry data to E 
ACEA 214 Add with carry E to A 
ACEB 111 214 Add with carry E to B 
ACEe 062 214 Add with carry E to C 
ACED 113 214 Add with carry E to D 
ACEE 174 214 Add with carry E to E 
ACEH 115 214 Add with carry E to H 
ACEL 176 214 Add with carry E to L 
ACEX 117 214 Add with carry E to X 

B-2 MACRO-ASSEMBLER 



ACH 215 Add with carry H to A 
ACH data 115 014 vvv Add with carry data to H 
ACHA 215 Add with carry H to A 
ACHB 111 215 Add with carry H to B 
ACHC 062 215 Add w.i th carry H to C 
ACHD 113 215 Add with carry H to D 
ACHE 174 215 Add with carry H to E 
ACHH 115 215 Add with carry H to H 
ACHL 176 215 Add with carry H to L 
ACHX 117 215 Add with carry H to X 

ACL 216 Add with carry L to A 
ACL data 176 014 vvv Add with carry data to L 
ACLA 216 Add with carry L to A 
ACLB 111 216 Add with carry L to B 
ACLC 062 216 Add with carry L to C 
ACLD 113 216 Add with carry L to D 
ACLE 17~ 216 Add with carry L to E 
ACLH 115 216 Add with carry L to H 
ACLL 176 216 Add with carry L to L 
ACLX 117 216 Add with carry L to X 

ACM 217 Add with carry (HL) to A 
ACMA 217 Add with carry (HL) to A 
ACMB 111 217 Add with carry (HL) to B 
ACMC 062 217 Add with carry (HL) to C 
ACMD 113 217 Add with carry (HL) to D 
ACME 174 217 Add with carry (HL) to E 
ACMH 115 217 Add with carry (HL) to H 
ACML 176 217 Add with carry (HL) to L 
ACHX 117 217 Add with carry (HL) to X 

ACX data 117 014 vvv Add with carry data to X 

AD data OO~ vvv Add data to A 
ADA 200 Add A to A 
ADA data OO~ vvv Add data to A 
ADAA 200 Add A to A 
ADAB 111 200 Add A to B 
ADAC 062 200 Add A to C 
ADAD 113 200 Add A to D 
ADAE 174 200 Add A to E 
ADAH 115 200 Add A to H 
ADAL 176 200 Add A to L 
ADAX 111 200 Add A to X 

ADB 201 Add B to A 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-3 



ADB data 111 004 vvv Add data to B 
ADBA 201 Add B to A 
ADBB 111 201 Add B to B 
ADBC 062 201 Add 8 to C 
ADBD 113 201 Add B to D 
ADBE 174 201 Add 8 to E 
ADBH 115 201 Add B to H 
ADBL 176 201 Add B to L 
ADBX 117 201 Add B to X 

ADC 202 Add C to A 
ADC data 062 004 vvv Add data to C 
ADCA 202 Add C to A 
ADCB 111 202 Add C to B 
ADCC 062 202 Add C to C 
ADCD 113 202 Add C to D 
ADCE 174 202 Add C to E 
ADCH 115 202 Add C to H 
ADCL 176 202 Add C to L 
ADCX 117 202 Add C to X 

ADD 203 Add D to A 
ADD data 113 004 vvv Add data to D 
ADDA 203 Add D to A 
ADDB 111 203 Add D to B 
ADDC 062 203 Add D to C 
ADDD 113 203 Add D to D 
ADDE 174 203 Add D to E 
ADDH 115 203 Add D to H 
ADDL 176 203 Add D to L 
ADDX 117 203 Add D to X 

ADE 204 Add E to A 
ADE data 174 004 vvv Add data to E 
ADEA 204 Add E to A 
ADEB 111 204 Add E to B 
ADEC 062 204 Add E to C 
ADED 113 204 Add E to D 
ADEE 174 204 Add E to E 
ADEH .115 204 Add E to H 
ADEL 176 204 Add E to L 
ADEX 117 204 Add E to X 

ADH 205 Add H to A 
ADH data 115 004 vvv Add data to H 
ADHA 205 Add H to A 
ADHB 111 205 Add H to B 
ADHC 062 205 Add H to C 

B-4 MACRO-ASSEMBLER 



ADHD 113 205 Add H to D 
ADHE 174 205 Add H to E 
ADHH 115 205 Add H to H 
ADHL 176 205 Add H to L 
ADHX 117 205 Add H to X 

ADL 206 Add L to A 
ADL data 176 004 vvv Add data to L 
ADLA 206 Add L to A 
ADLB 111 206 Add L to B 
ADLC 062 206 Add L to C 
ADLD 113 206 Add L to D 
ADLE 174 206 Add L to E 
ADLH 115 206 Add L to H 
ADLL 176 206 Add L to L 
ADLX 117 206 Add L to X 

ADM 207 Add (HL) to A 
ADMA 207 Add (HL) to A 
ADMB 111 207 Add (HL) to B 
ADMC 062 207 Add (HL) to C 
ADMD 113 207 Add (HL) to D 
ADME 174 207 Add (HL) to E 
ADMH 115 207 Add (HL) to H 
ADML 176 207 Add (HL) to L 
ADMX 117 207 Add (HL) to X 

ADX data 117 004 vvv Add data to X 

ALPHA 030 Select Alpha mode 

BCP 041 Block compare 
BCV 062 021 Block convert 

BETA 020 Select Beta mode 

RFAC 011 Binary field add with 
carry 

BFLRAD 111 006 Binary field left to 
right add 

BFLRAC 111 016 Binary field left to 
right add with carry 

BFLRSU 111 026 Binary field left to 
right subtract 

BFLRSB 111 036 Binary field left to 
right subtract with 
borrow 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-5 



BFLRND 111 046 Binary field left to 
right and 

BFLRXR 111 056 Binary field left to 
right exclusive or 

BFLROR 111 066 Binary field left to 
right or 

BFSB 031 - Binary field subtract 
with borrow 

BFSL 075 Binary field shift left 
BFSR 111 075 Binary field shift right 

BP 052 Break point 

BRL 072 Base register load from A 
BRLA 012 Base register load from A 
BRLB 111 072 Base register load from B 
BRLC 062 072 Base register load from C 
BRLD 113 072 Base register load from D 
BRLE 174 072 Base register load from E 
BRLH 115 072 Base register load from H 
BRLL 176 072 Base register load from L 
BRLX 117 072 Base register load from X 

BT 021 Block transfer 
BTR 111 021 Block transfer reverse 

CALL loc 106 1sb msb Subroutine call 

CCS 042 Condition code save in A 
CCSA 042 Condition code save in A 
CCSB 111 042 Condition code save in B 
CCSC 062 042 Condition code save in C 
CCSD 113 042 Condition code save in D 
CCSE 174 042 Condition code save in E 
CCSH 115 042 Condition code save in H 
CCSL 176 042 Condition code save in L 
CCSX 117 042 Condition code save in X 

CFC loc 102 1sb msb Subroutine call if false 
carry 

CFB loc 102 lsb msb Subroutine call if false 
borrow 

CFZ loc 112 Isb msb Subroutine call if false 
zero 

CFE loc 112 1sb msb Subroutine call if false 
equal 

CFS loc 122 1sb rnsb Subroutine call if false 

B-6 MACRO-ASSEMBLER 



sign 
CFL 10c 122 lsb msb Subroutine call if false 

less 
CFN 10c 122 lsb msb Subroutine call if false 

negative 
CFP 10c 132 lsb msb Subroutine call if false 

parity 

CaMP BC 062 011 2's complement BC 
CaMP DE 174 011 2's complement DE 
CaMP HL 176 011 2's complement HL 

CaMPS BC 113 011 2's complement Be 
CaMPS DE 115 011 2's complement DE 
CaMPS HL 117 011 2's complement HL 

CP data 074 vvv Compare A to data 
CPA 270 Compare A to A 
CPA data 074 vvv Compare A to data 
CPAA 270 Compare A to A 
CPAB 111 270 Compare B to A 
CPAC 062 270 Compare C to A 
CPAD 113 270 Compare D to A 
CPAE 174 270 Compare E to A 
CPAH 115 270 Compare H to A 
CPAL 176 270 Compare L to A 
CPAX 117 270 Compare X to A 

CPB 271 Compare A to B 
CPB data 111 074 vvv Compare B to data 
CPBA 271 Compare A to B 
CPBB 111 271 Compare B to R 
CPB-C 062 271 Compare C to B 
CPBD 113 271 Compare D to B 
CPBE 174 271 Compare E to B 
CPBH 115 271 Compare H to B 
CPBL 176 271 Compare L to B 
CPBX 117 271 Compare X to B 

cpe 272 Compare A to C 
CPC data 062 074 vvv Compare C to data 
CPCA 272 Compare A to C 
CPCB 111 272 Compare B to C 
CPCC 062 272 Compare C to C 
CPCD 113 272 Compare D to C 
CPCE 174 272 Compare E to C 
CPCH 115 272 Compare H to C 
CPCL 176 272 Compare L to C 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-7 



CPCX 111 212 Compare X to C 

CPD 213 Compare A to D 
CPD data 113 014 vvv Compare D to data 
CPDA 213 Compare A to D 
CPDB 111 213 Compare B to D 
CPDC 062' 213 Compare C to D 
CPDD 113 213 Compare D to D 
CPDE 114 213 Compare E to D 
CPDH 115 213 Compare H to D 
CPDL 116 213 Compare L to D 
CPDX 111 213 Compare X to D 

CPE 214 Compare A to E 
CPE data 114 014 vvv Compare E to data 
CPEA 214 Compare A to E 
CPEB 111 214 Compare B to E 
CPEC 062 214 Compare C to E 
CPED 113 214 Compare D to E 
CPEE 114 214 Compare E to E 
CPEH 115 214 . Compare H to E 
CPEL 116 214 Compare L to E 
CPEX 111 214 Compare X to E 

CPH 215 Compare A to H 
CPH data 115 014 vvv Compare H to data 
CPHA 215 Compare A to H 
CPHB 111 275 Compare B to H 
CPHC 062 215 Compare C to H 
CPHD 113 275 Compare D to H 
CPHE 174 275 Compare E to H 
CPHH 115 275 Compare H to H 
CPHL 176 215 Compare L to H 
CPHX 117 275 Compare X to H 

CPL 216 Compare A to L 
CPL data 116 074 vvv Compare L to data 
CPLA 216 Compare A to L 
CPLB 111 276 Compare B to L 
CPLC 062 276 Compare C to L 
CPLD 113 276 Compare D to L 
CPLE 114 276 Compare E to L 
CPLH 115 276 Compare H to L 
CPLL 176 276 Compare L to L 
CPLX 117 276 Compare X to L' 

CPM 271 Compare A to (HL) 
CPMA 211 Compare A to (HL) 

B-8 MACRO-ASSEMBLER 



CPMB 111 277 Compare B to (HL) 
CPMC 062 277 Compare C to (HL) 
CPMD 113 271 Compare D to (HL) 
CPME 174 277 Compare E to (HL) 
CPMH 115 217 Compare H to (HL) 
CPML 176 277 Compare L to (HL) 
CPMX 117 277 Compare X to (HL) 

CPX data 117 074 Compare X to data 

CTC 10c 142 Isb msb Subroutine call if true 
carry 

CTR 10c 142 Isb msb Subroutine call if true 
borrow 

CTZ loc 152 Isb msb Subroutine call if true 
zero 

CTE 10c 152 Isb msb Subroutine call if true 
equal 

CTS loc 162 1sb msb Subroutine call if true 
sign 

CTL 10c 162 1sb msb Subroutine call if true 
less 

CTN 10c 162 1sb msb Subroutine call if true 
negative 

CTP 10c 172 1sb msb Subroutine call if true 
parity 

DADI rp,data rp 110 Isb msb Double immediate to 
register add 

DACI rp,data rp 311 Isb msb Double immediate to 
register add with carry 

DSUI rp,data rp 130 Isb msb Double immediate to 
register subtract 

DSBI rp,data rp 331 Isb msb Double immediate to 
register subtract with 
borrow 

DNDI rp,data rp 140 Isb msb Double immediate to 
register and 

DXRI rp,data rp 150 Isb msb Double immediate to 
register exclusive or 

DORI rp,data rp 160 Isb msb Double immediate to 
register or 

DCPI rp,data rp 170 lsb msb Double immediate to 
register compare 

DADM rp rp 013 Double memory to register 
add 

DACM rp rp 310 Double memory to register 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS 8-9 



add with carry 
DSUM rp rp 033 Double memory to register 

subtract 
DSBM rp rp 330 Double memory to register 

subtract with borrow 
DNDM rp rp 043 Double memory to register 

and 
DXRM rp rp 053 Double memory to register 

exclusive or 
DORM rp rp 063 Double memory to register 

or 
DCPM rp rp 073 Double memory to register 

compare 

DADP rp,loc rp+1 013 Isb Double paged to register 
add 

DACP rp,loc rp+1 310 Isb Double paged to register 
add with carry 

DSUP rp,loc rp+1 033 Isb Double paged to register 
subtract 

DSBP rp,loc rp+1 330 Isb Double paged to register 
subtract with borrow 

DNDP rp,loc rp+1 043 Isb Double paged to register 
and 

DXRP rp,loc rp+1 053 Isb Double paged to register 
exclusive or 

DORP rp,loc rp+1 063 Isb Double paged to register 
or 

DCPP rp,loc rp+1 073 Isb Double paged to register 
compare 

DEC! disp,index 025 Isb ndx Decrement index 
DEC! *disp,index 111 025 Isb msb ndx Decrement index 

DECP BC 062 035 Decrement BC pair 
DECP BC,2 113 035 Decrement BC pair by 2 
DECP BC,A 062 037 Decrement BC pair by A 
DECP DE 174 035 Decrement DE pair 
DECP DE,2 115 035 Decrement DE pair by 2 
DECP DE,A 174 037 Decrement DE pair by A 
DECP HL 035 Decrement HL pair 
DECP HL,2 117 035 Decrement HL pair by 2 
DECP HL,A 037 Decrement HL pair by A 
DECP XA 022 035 Decrement XA pair 
DECP XA,2 111 035 Decrement XA pair by 2 
DECP XA,A 022 037 Decrement XA pair by A 

DFAC 111 041 Decimal field add with 

B-10 MACRO-ASSEMBLER 



carry 
DFSB 062 041 Decimal field subtract 

with borrow 

DI 040 Disable interrupts 
DIDIV 111 031 Double integer divide 

DL BC,BC 062 047 Double load BC from (BC) 
DL BC,DE 113 047 Double load BC from (DE) 
DL BC,HL 111 047 Double load BC from (HL) 

'DL DE,BC 174 047 Double load DE from (BC) 
DL DE,DE 115 047 Double load DE from (DE) 
DL DE,HL 047 Double load DE from (HL) 
DL HL,BC 176 047 Double load HL from (BC) 
DL HL,DE 117 047 Double load HL from (DE) 
DL HL,HL 057 Double load HL from (HL) 

DMAD rp rp+1 110 Double register to memory 
add 

DMAC rp rp+1 311 Double register to memory 
add with carry 

DMS'U rp rp+1 130 Double register to memory 
subtract 

DMSB rp rp+1 331 Double register to memory 
subtract with borrow 

DMND rp rp+1 140 Double register to memory 
and 

DMXR rp rp+1 150 Double register to memory 
exclusive or 

D~'10R rp rp+1 160 Double register to memory 
or 

DPL BC,loc 111 124 Isb Double paged load BC 
DPL DE,loc 113 144 Isb Double paged load DE 
DPL HL,loc 115 164 Isb Double paged load HL 

DPLR BC,loc 062 114 Isb Double paged load 
reversed BC 

DPLR DE,loc 174 134 Isb Double paged load 
reversed DE 

DPLR HL,loc 176 154 Isb Double paged load 
reversed HL 

DPS BC,loc 111 126 Isb Double paged store BC 
DPS DE,loc 11 3 146 Isb Double paged store DE 
DPS HL,loc 115 166 Isb Double paged store HL 

DPSR BC,loc 062 116 Isb Double paged store 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-11 



reversed BC 
DPSR DE,loc 174 136 Isb Double paged store 

reversed DE 
DPSR HL,loc 176 156 Isb Double paged store 

reversed HL 

DS BC,DE 113 027 Double store BC into (DE) 
DS BC,HL 111 027 Double store BC into (HL) 
DS DE,BC 174 027 Double store DE into (BC) 
DS DE,HL 027 Double store DE into (HL) 
DS HL,BC 176 027 Double store HL into (BC) 
DS HL,DE 117 027 Double store HL into (DE) 

EI 050 Enable interrupts 
,EJMP loc 111 050 lsb msb Enable interrupts and 

jump 
EUR 062 050 Enable interrupts and 

user return 

EX ADR 121 Output address from A 
EX BEEP 151 Beep 
EX BSP 167 Backspace tape 
EX CLICK 153 Click 
EX COM1 131 External command 1 from A 
EX COM2 133 External command 2 from A 
EX COM3 135 External command 3 from A 
EX COM4 137 External command 4 from A 
EX DATA 125 Select data mode 
EX DECK1 155 Select cassette deck 
EX DECK2 157 Select cassette deck 2 
EX RBK 161 Read block 
EX REWIND 175 Rewind cassette deck 
EX SB 173 Slew backward (cassette) 
EX SF 171 Slew forward (cassette) 
EX STATUS 123 Sense status 
EX TSTOP 177 Stop cassette tape 
EX WBK 163 Write block 
EX WRITE 127 Write data from A 

EXA ADR 121 Output address from A 
EXA COM1 131 External command 1 from A 
EXA COM2 133 External command 2 from A 
EXA COM3 135 External command 3 from A 
EXA COM4 137 External command 4 from A 
EXA WRITE 127 Write data from A 

EXB ADR 111 121 Output address fro~ B 
EXB> COM1 111 131 External command 1 from B 

B-12 MACRO-ASSEMBLER 



EXB COM2 111 133 External command 2 from R 
EXB COM3 111 135 External command 3 from B 
EXB COM4 111 137 External command 4 from B 
EXB WRITE 111 127 Write data from B 

EXC ADR 062 121 Output address from C 
EXC COM1 062 131 External command 1 from C 
EXC COM2 062 133 External command 2 from C 
EXC COM3 062 135 External command 3 from C 
EXC COM4 062 137 External command 4 from C 
EXC WRITE 062 127 Write data from C 

EXD ADR 113 121 Output address from D 
EXD COM1 113 131 External command 1 from 0 
EXD COM2 113 133 External command 2 from 0 
EXD COM3 113 135 External command 3 from D 
EXD COM4 113 137 External command 4 from 0 
EXD WRITE 113 127 Write data from 0 

EXE ADR ·174 121 Output address from E 
EXE COM1 174 131 External command 1 from E 
EXE COM2 174 133 External command 2 from E 
EXE COM3 174 135 External command 3 from E 
EXE COM4 174 137 External command 4 from E 
EXE WRITE 174 127 Write data from E 

EXH ADR 115 121 Output address from H 
EXH COM1 115 131 External command 1 from H 
EXH COM2 115 133 External command 2 from H 
EXH COM3 115 135 External command 3 from H 
EXH COM4 115 137 External command 4 from H 
EXH WRITE 115 127 Write data from H 

EXL ADR 176 > 121 Output address from L 
EXL COM1 176 131 External command 1 from L 
EXL COM2 176 133 External command 2 from L 
EXL COM3 176 135 External command 3 from L 
EXL COM4 176 137 External command 4 from L 
EXL WRITE 176 127 Write data from L 

EXX ADR 117 121 Output address from X 
EXX COMl 117 131 External command 1 from X 
EXX COM2 117 133 External command 2 from X 
EXX COM3 117 135 External command 3 from X 
EXX COM4 117 137 External command 4 from X 
EXX WRITE 117 127 Write data from X 

HALT 377 Halt 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-13 



IDIV 062 031 Integer divide 
IMULT 111 011 Integer multiply 

IN 101 Input to A 
INA 101 Input to A 
INB 111 101 Input to B 
INC 062 101 Input to C 

INCI disp,index 005 Isb ndx Increment index 
INCI *disp,index 111 005 Isb msb ndx Increment index 

INCP BC 062 015 Increment BC pair 
INCP BC,2 113 015 Increment BC pair by 2 
INCP BC,A 062 017 Increment BC pair by A 
INCP DE 174 015 Increment DE pair 
INCP DE,2 115 015 Increment DE pair by 2 
INCP DE,A 174 017 Increment DE pair by A 
INCP HL 015 Increment HL pair 
INCP HL,2 117 015 Increment HL pair by 2 
INCP HL,A 017 Increment HL pair by A 
INCP XA 022 015 Increment XA pair 
INCP XA,2 111 015 Increment XA pair by 2 
INCP XA,A 022 017 Increment XA pair by A 

IND 113 101 Input to D 
INE 174 101 Input to E 

INFO 111 010 System information 

INH 115 101 Input to H 
INL 176 101 Input to L 
INPUT 101 Input to A 
INX 117 101 Input to X 

JFC loc 100 lsb msb Jump if false carry 
JFB 10c 100 Isb msb Jump if false borrow 
JFZ 10c 110 Isb msb Jump if false zero 
JFE 10c 110 Isb msb Jump if false equal 
JFS 10c 120 Isb msb Jump if false sign 
JFL loc 120 Isb msb 411J'I'lQ Jf. false le..s.s .. 

. tJj'N-···· ·lcc ·r~o 1st> ms·f> Jump if false negative 
JFP loc 130 Isb msb Jump if false parity 

JMP 10c 104 Isb msb Jump to location 

JTC 10c 140 Isb msb Jump if true carry 
JTB 10c 140 Isb msb Jump if true borrow 

8-14 MACRO-ASSEMBLER 



JTZ loe 150 Isb msb Jump if true zero 
JTE loe 150 Isb msb Jump if true equal 
JTS loe 160 Isb msb Jump if true sign 
JTL loe 160 Isb msb Jump if true less 
JTN loe 160 Isb msb Jump if true negative 
JTP loe 170 lsb msb Jump if true parity 

JUMP loe 104 lsb msb Jump to location 

LA data 006 vvv Load A with data 
LAA 300 Load A from A 
LAB 301 Load A from B 
LAC 302 Load A from C 
LAD 303 Load A from D 
LAE 304 Load A from E 
LAH 305 Load A from H 
LAL 306 Load A from L 
LAM 307 Load A from (HL) 
LAM BC 062 307 Load A from (RC) 
LAM DE 174 307 Load A from (DE) 
LAM HL 307 Load A from (HL) 
LAM XA 022 307 Load A from (XA) 

LB data 016 vvv Load B with data 
LBA 310 Load B from A 
LBB 311 Load B from B 
LBC 312 Load B from C 
LBO 313 Load B from D 
LBE 314 Load B from E 
LBH 315 Load B from H 
LBL 316 Load B from L 
LBM 317 Load B from (HL) 
LBM BC 062 317 Load B from (BC) 
LEM DE 174 317 Load B from (DE) 
LBM HL 317 Load B from (HL) 
LBM XA 022 .317 Load B from (XA) 

LC data 026 vvv Load C with data 
LCA 320 Load C from A 
LCB 321 Load C from B 
LCC 322 Load C from C 
LCD 323 Load C from D 
LCE 324 Load C from E 
LCH 325 Load C from H 
LCL 326 Load C from L 
LCM 327 Load C from (HL) 
LCM BC 062 327 Load C from (BC) 
LCM DE 174 327 Load C fr0m (DE) 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS ·B-15 



LCM HL 327 Load C from (HL) 
LCM XA 022 327 Load C from (XA) 

LO data 036 vvv Load D with data 
LOA 330 Load D from A 
LOB 331 Load D from B 
LOC 332 Load D from C 
LDD 333 Load D from D 
LDE 3311 Load D from E 
LDH 335 Load D from H. 
LDL 336 Load D from L 
LDM 337 Load D from (HL) 
LDM BC 062 337 Load D from (BC) 
LDM . DE 1711 337 Load D from (DE) 
LDM HL 337 Load D from (HL) 
LDM XA 022 337 Load 0 from (XA) 

LE data 046 vvv Load E with data 
LEA 340 Load E from A 
LEB 341 Load E from B 
LEC 342 Load E from C 
LED 3113 Load E from D 
LEE 344 Load E from E 
LEH 3115 Load E from H 
LEL 346 Load E from L 
LEM 3117 Load E from (HL) 
LEM BC 062 347 Load E from (BC) 
LEM DE 174 347 Load E from (DE) 
LEM HL 3117 Load E from (HL) 
LEM XA 022 3117 Load E from (XA) 

LFID BC,disp,index 062 025 Isb ndx Load Be from index 
decremental 

LFIO BC,*disp,index 113 025 Isb msb ndx Load BC from index 
decremental 

LFID DE,disp,index 1711 025 Isb ndx Load DE from index 
decremental 

LFID DE,*disp,index 115 025 Isb msb ndx Load DE from index 
decremental 

LFID HL,disp,index 176 025 Isb ndx Load HL from index 
decremental 

LFIO HL,*disp,index 117 025 Isb msb ndx Load HL from index 
decremental 

LFII BC,disp,index 062 005 Isb ndx Load Be from index 
incremental 

LFII BC,*disp,index 113 005 Isb msb ndx Load BC from index 
incremental 

8-16 MACRO-ASSEMBLER 



LFII DE,disp,index 114 005 Isb ndx Load DE from index 
incremental 

LFII DE,*disp,index 115 005 lsb msb ndx Load DE from index 
incremental 

LFII HL,disp,index 116 005 Isb ndx Load HL from index 
incremental 

LFII HL,*disp,index 111 005 Isb msb ndx Load HL from index 
incremental 

LH data 056 vvv Load H with data 
LHA 350 Load H from A 
LHB 351 Load H from B 
LHC 352 Load H from C 
LHD 353 Load H from D 
LHE 354 Load H from E 
LHH 355 Load H from H 
LHL 356 Load H from L 
LHM 351 Load H from (HL) 
LHM BC 062 351 Load H from (BC) 
LHM DE 114 351 Load H from (DE) 
LHM HL 351 Load H from (HL) 
LHM XA 022 351 Load H from (XA) 

LL data 066 vvv Load L with data 
LLA 360 Load L from A 
LLB 361 Load L from B 
LLC 362 Load L from C 
LLD 363 Load L from D 

LLDEL 111 051 Doubly linked list delete 

LLE 364 Load L from E 
LLH 365 Load L from H 

LLINS 062 051 Doubly linked list insert 

LLL 366 Load L from L 
LLM 361 Load L from (HL) 
LLM BC 062 361 Load L from (BC) 
LLM DE 114 361 Load L from (DE) 
LLM HL 361 Load L from (HL) 
LLM XA 022 361 Load L from (XA) 

LMA 310 Load (HL) from A 
LMA BC 062 310 Load (BC) from A 
LMA DE 114 310 Load (DE) from A 
LMA HL 310 Load (HL) from A 
LMA XA 022 310 Load (XA) from A 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS 8-11 



LMB 371 Load (HL) from B 
LMB BC 062 371 Load (BC) from B 
LMB DE 174 371 Load (DE) from B 
LMB" HL 371 Load (HL) from B 
LMB XA 022 371 Load (XA) from B 
LMC 372 Load (HL) from C 
LMC BC 062 372 . Load (BC) from C 
LMC DE 174 372 Load (DE) from C 
LMC HL 372 Load (HL) from C 
LMC XA 022 372 Load (XA) fr.om C 
LMD 373 Load (HL) from D 
LMD BC 062 373 Load (BC) from D 
LMD DE 174 373 Load (DE) from D 
LMD HL 373 Load (HL) from D 
LMD XA 022 373 Load (XA) from D 
LME 374 Load (HL) from E 
LME BC 062 374 Load (BC) from E 
LME DE 174 374 Load (DE) from E 
LME HL 374 Load (HL) from E 
LME XA 022 374 Load (XA) from E 
LMH 375 Load (HL) from H 
LMH BC 062 375 Load (BC) from H 
LMH DE 174 375 Load (DE) from H 
LMH HL 375 Load (HL) from H 
LMH XA 022 375 Load (XA) from H 
LML 376 Load (HL) from L 
LML BC 062 376 Load (BC) from L 
LML DE 174 376 Load (DE) from L 
LML HL 376 Load (HL) from L 
LML XA 022 376 Load (XA) from L 

LX data 076 vvv Load X with data 

MIN 111 061 Multiple input 
Mour 111 071 Multiple output 

ND data 044 vvv AND data to A 
NDA 2-40 kN-B~t-o--A 

NDA data 04 11 vvv AND data to A 
NDAA 240 AND A to A 
NDAB 111 240 AND A to B 
NDAC 062 240 AND A to C 
NDAD 113 240 AND A to D 
NDAE 174 240 AND A to E 
NDAH 115 240 AND A to H 
NDAL 176 240 AND A to L 
NDAX 117 240 AND A to X 

8-18 MACRO-ASSEMBLER 



NDB 241 AND B to A 
NDB data 111 044 vvv AND data to B 
NDBA 241 AND B to A 
NDBB 111 241 AND B to B 
NDBC 062 241 AND B to C 
NDBD 113 241 AND B to D 
NDBE 174 241 AND B to E 
NDBH 115 241 AND B to H 
NDSL 176 241 AND B to L 
NDBX 117 241 AND B to X 

NDC 242 AND C to A 
NDC data 062 044 vvv AND data to C 
NDCA 242 AND C to A 
NDCB 111 242 AND C to 8 
NDCC 062 242 AND C to C 
NDCD 113 242 AND C to D 
NDCE 174 242 AND C to E 
NDCH 115 242 A~JD C to H 
NDCL 176 242 AND C to L 
NDCX 117 242 AND C to X 

NDD 243 AND D to A 
NDD data 113 044 vvv AND data to D 
NDDA 243 AND D to A 
NDDB 111 243 AND D to 8 
NDDC 062 243 AND D to C 
NDDD 113 243 AND D to D 
NDDE 174 243 AND D to E 
NDDH 115 243 AND D to H 
NDDL 176 243 AND D to L 
NDDX 117 243 AND D to X 

NDE 244 AND E to A 
NDE data 174 044 vvv AND data to E 
NOEA 244 AND E to A 
NDEB 111 244 AND E to 8 
NDEC 062 244 AND E to C 
NDED 113 244 AND E to D 
NOEE 174 244 AND E to E 
NOEH 115 244 AND E to H 
NOEL 176 244 AND E to L 
NDEX 117 244 AND E to X 

NDH 245 AND H to A 
NDH data 115 044 vvv AND data to H 
NDHA 245 AND H to A 
NDHB 111 245 AND H to B 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-19 



NDHC 062 245 AND H to C 
NDHD 113 245 AND H to D 
NDHE 174 245 AND H to E 
NDHH 115 245 AND H to H 
NDHL 176 245 AND H to L 
NDHX 117 245 AND H to X 

NDL 246 AND L to A 
NDL data 176 044 vvv AND data to L 
NDLA 246 AND L to A 
NDLB 111 246 AND L to B 
NDLC 062 246 AND L to C 
NDLD 113 246 AND L to D 
NDLE 174 246 AND L to E 
NDLH 115 246 AND L to H 
NDLL 176 246 AND L to L 
NDLX 117 21J6 AND L to X 

NDM 2LJ7 AND (HL) to A 
NDMA 2LJ7 AND (HL) to A 
NDMB 111 2LJ7 AND (HL) to B 
NDMC 062 2LJ7 AND (HL) to C 
NDMD 113 2LJ7 AND (HL) to D 
NDME 174 2LJ7 AND (HL) to E 
NDMH 115 2LJ7 AND (HL) to H 
NDML 176 247 AND (HL) to L 
NDMX 117 247 AND (HL) to X 

NDX data 117 OLJLJ vvv AND data to X 

NOJ loc 045 Isb msb No jump (3 byte NOP) 
NOP 300 No operation 

OR data 06LJ vvv Inclusive OR data to A 
ORA 260 Inclusive OR A to A 
ORA data 06LJ vvv Inclusive OR data to A 
ORAA 260 Inclusive OR A to A 
ORAB 1 1 l---240 In c-Iu-sive----eJJt-i\-t 0-8 
OR /\ C 062 260 Inclusive OR A to C 
ORAD 113 260 Inclusive OR A to D 
ORAE 174 260 Inclusive OR A to E 
ORAH 115 260 Inclusive OR A to H 
ORAL 176 260 Inclusive OR A to L 
ORAX 117 260 Inclusive OR A to X 

ORB 261 Inclusive OR B to A 
ORB data 111 064 vvv Inclusive OR data to B 
ORBA 261 Inclusive OR B to A 

B-20 MACRO~ASSEMBLER 



ORBB 111 261 Inclusive OR B to B 
ORBC 062 261 Inclusive OR B to C 
ORBD 113 261 Inclusive OR B to D 
ORBE 114 261 Inclusive OR B to E 
ORBH 115 261 Inclusive OR B to H 
ORBL 116 261 Inclusive OR B to L 
ORBX 111 261 Inclusive OR B to X 

ORC 262 Inclusive OR C to A 
ORC data 062 064 vvv Inclusive OR data to C 
ORCA 262 Inclusive OR C to A 
ORCB 111 262 Inclusive OR C to B 
ORce 062 262 Inclusive OR C to C 
ORCD 113 262 Inclusive OR C to D 
ORCE 114 262 Inclusive OR C to E 
ORCH 115 262 Inclusive OR C to H 
ORCL 116 262 Inclusive OR C to L 
ORCX 111 262 Inclusive OR C to X 

ORD 263 Inclusive OR D to A 
ORD data 113 064 vvv Inclusive OR data to D 
ORDA 263 Inclusive OR o to A 
OROB 111 263 Inclusive OR D to B 
ORDC 062 263 Inclusive OR D to C 
OROD 113 263 Inclusive OR D to D 
OROE 114 263 Inclusive OR D to E 
ORDH 115 263 Inclusive OR D to H 
OROL 116 263 Inclusive OR D to L 
OROX 111 263 Inclusive OR D to X 

ORE 264 Inclusive OR E to A 
ORE data 114 064 vvv Inclusive OR dat8 to E 
OREA 264 Inclusive OR E to A 
OREB 111 264 Inclusive OR E to B 
OREC 062 264 Inclusive OR E to C 
OREO 113 264 Inclusive OR E to D 
OREE 174 264 Inclusive OR E to E 
OREH 115 264 Inclusive OR E to H 
OREL 116 264 Inclusive OR E to L 
OREX 111 264 Inclusive OR E to X 

ORH 265 Inclusive OR H to A 
ORH data 115 064 vvv Inclusive OR data to H 
ORHA 265 Inclusive OR H to A 
ORHB 111 265 Inclusive OR H to B 
ORHC 062 265 Inclusive OR H to C 
ORHD 113 265 Inclusive OR H to 0 
ORHE 114 265 Inclusive OR H to E 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-21 



ORHH 115 265 Inclusive OR H to H 
ORHL 176 265 Inclusive OR H to L 
ORHX 117 265 Inclusive OR H to X 

ORL 266 Inclusive OR L to A 
ORL data 176 064 vvv Inclusive OR data to L 
ORLA 266 Inclusive OR L to A 
ORLB 111 266 Inclusive OR L to B 
ORLC 062 266 Inclusive OR L to C 
ORLD 113 266 Inclusive OR L to D 
ORLE 174 266 Inclusive OR L to E 
ORLH 115 266 Inclusive OR L to H 
ORLL 176 266 Inclusive OR L to L 
ORLX 117 266 Inclusive OR L to X 

ORM 267 Inclusive OR (HL) to A 
ORMA 267 Inclusive OR (HL) to A 
ORMS 111 267 Inclusive OR (HL) to B 
ORMC 062 267 Inclusive OR (HL) to C 
ORMD 113 267 Inclusive OR (HL) to D 
ORME 174 267 Inclusive OR (HL) to E 
ORMH 115 267 Inclusive OR (HL) to H 
ORML 176 267 Inclusive OR (HL) to L 
ORMX 117 267 Inclusive OR (HL) to X 

ORX data 117 064 vvv Inclusive OR data to X 

PAD r,loc r 106 lsb Single paged to register 
add 

PAC r,loc r 112 lsb Single paged to register 
add with carry 

PSU r,loc r 122 lsb Single paged to register 
subtract 

PSB r,loc r 132 lsb Single paged to register 
subtract with borrow 

PND r,loc r 1lt2 lsb Single paged to register 
and 

PXR ~,lQC ~ 19-2~lsb 3 trrgre--p-a g eo to register 
exclusive or 

POR r,loc r 162 lsb Single paged to register 
or 

PCP r,loc r 172 lsb Single paged to register 
compare 

PIN 103 Parity checking input to 
A 

PINA 103 Parity checking input to 
A 

B-22 MACRO-ASSEMBLER 



PINB 111 103 Parity checking input to 
B 

PINC 062 103 Parity checking input to 
C 

PIND 113 103 Parity checking input to 
D 

PINE 174 103 Parity checking input to 
E 

PINH 115 103 Parity checking input to 
H 

PINL 176 103 Parity checking input to 
L 

PINX 117 103 Parity checking input to 
X 

PL A,loc 105 lsb Paged load A 
PL B,loc 114 lsb Paged load R 
PL C,loc 124 lsb Paged load C 
PL D,loc 134 lsb Paged load D 
PL E,loc 144 lsb Paged load E 
PL H,loc 154 lsb Paged load H 
PL L,loc 164 lsb Paged load L 

POP 060 Pop value from stack into 
HL 

POP BC 062 060 Pop value from stack into 
Be 

POP DE 174 060 Pop value from stack into 
DE 

POP HL 060 Pop value from stack into 
HL 

POP XA 022 060 Pop value from stack into 
XA 

PS A,loc 107 Isb Paged store A 
PS B,loc 116 Isb Paged store B 
PS C,loc 126 Isb Paged store C 
PS D, lac 136 Isb Paged store D 
PS E,loc 146 Isb Paged store E 
PS H,loc 156 Isb Paged store H 
PS L,loc 166 Isb Paged store L 

PUSH 070 Push HL onto stack 
PUSH data 051 Isb msb Push data onto stack 
PUSH BC 062 010 Push Be onto stack 
PUSH DE 174 070 Push DE onto stack 
PUSH HL 070 Push HL onto stack 
PUSH XA 022 070 Push XA onto stack 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-23 



REGL 111 055 Register load 
REGS 055 Register save 

RET 007 Subroutine return 
RETURN 007 Subroutine retu.rn 

RFC 003 . Subroutine return if 
false carry 

RFB 003 Subroutine return if 
false borrow 

RFZ 013 Subroutine return if 
false zero 

RFE 013 Subroutine return if 
false equal 

RFS 023 Subroutine return if 
false sign 

RFL 023 Subroutine return if 
false less 

RFN 023 Subroutine return if 
false negative 

RFP 033 Subroutine return if 
false parity 

RTC 043 Subroutine return if true 
carry 

RTB 043 Subroutine return if true 
borrow 

RTZ 053 Subroutine return if true 
zero 

RTE 053 Subroutine return if true 
equal 

RTS 063 Subroutine return if true 
sign 

RTL 063 Subroutine return if true 
less 

RTN 063 Subroutine return if true 
neg a-t--i--v e 

RTP 073 Subroutine return if true 
parity 

SB data 034 vvv Subtract with borrow data 
from A 

SBA 230 Subtract with borrow A 
from A 

SBA data 03'4 vvv Subtract with borrow data 
from A 

SBAA 230 Subtract with borrow A 

8-24 MACRO-ASSEMBLER 



from A 
SBAB 111 230 Subtract with borrow A 

from B 
SBAC 062 230 Subtract with borrow A 

from C 
SBAD 113 230 Subtract with borrow A 

from D 
SBAE 114 230 Subtract with borrow A 

from E 
SBAH 115 230 Subtract with borrow A 

from H 
SBAL 116 230 Subtract with borrow A 

from L 
SBAX 111 230 Subtract with hor r~ ow A 

from X 

SBB 231 Subtract with borrow R 
from A 

SBB data 111 034 vvv Subtract with borrow data 
from R 

SBBA 231 Subtract with borrow B 
from A 

SBBB 111 231 Subtract with horrow B 
from B 

saBC 062 231 Subtract with borrow B 
from e 

SBBD 113 231 Subtract with borro'rJ B 
from'D 

SBBE 114 231 Subtract with borrow B 
from E 

SBBH 115 231 Subtract with harrow B 
from H 

SBBL 116 231 Subtract with borrow B 
from L 

SBBX 111 231 Subtract with borrow B 
from X 

sse 232 Subtract with borrow e 
from A 

SBC data 062 034 vvv Subtract with borrow data 
from C 

SBCA 232 Subtract with borrow C 
from A 

SBCB 111 232 Subtract with borrow C 
from B 

SBce 062 232 Subtract with borrow C 
from C 

SBCD 113 232 Subtract with borrow C 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS 8-25 



from D 
SBCE 174 232 Subtract with borrow C 

from E 
SBCH 115 232 Subtract with borrow C 

from H 
SBCL 176 232 Subtract with borrow C 

from L 
SBCX 117 232 Subtract with borrow C 

from X 

SBD 233 Subtract with borrow D 
from A 

SBD data 113 034 vvv Subtract with borrow data 
from D 

SBDA 233 Subtract with borrow D 
from A 

SBDB 111 233 Subtract with borrow D 
from B 

SBDC 062 233 Subtract with borrow D 
from C 

SBDD 113 233 Subtract with borrow D 
from D 

SBDE 174 233 Subtract with borrow D 
from E 

SSDH 115 233 Subtract with borrow D 
from H 

SBDL 176 233 Subtract with borrow D 
from L 

SBDX 117 233 Subtract with borrow D 
from X 

SBE 234 Subtract with borrow E 
from A 

SBE data 174 034 vvv Subtract with borrow data 
from E 

SBEA 234 Subtract with borrow E 
from A 

SBES 111 23 1t Subtlact with borrow E 
from B 

SBEC 062 234 Subtract with borrow E 
from C 

SBED 113 234 Subtract with borrow E 
from D 

SBEE 1714 2314 Subtract with borrow E 
from E 

SBEH 115 234 Subtract with borrow E 
from H 

SBEL 176 234 Subtract with borrow E 

B-26 MACRO-ASSEMBLER 



from L 
SBEX 117 234 Subtract with borrow E 

from X 

SBH 235 Subtract. with borrow H 
from A 

SBH data 115 034 vvv Subtract with borrow data 
from H 

SBHA 235 Subtract with borrow H 
from A 

SBHB 111 235 Subtract with borrow H 
from B 

SBHC 062 235 Subtract with borrow H 
from C 

SBHD 113 235 Subtract wlth borrow H 
from D 

SBHE 174 235 Subtract with borrow H 
from E 

SBHH 115 235 Subtract with borrow H 
from H 

SBHL 176 235 Subtract with borrow Ii 
from L 

SBHX 117 235 Suhtract with borrow H 
from X 

SBL 236 Subtract with borrow L 
from A 

SBL data 176 034 vvv Subtract with borrow data 
from L 

SBLA 236 Subtract with borrow L 
from A 

SBLB 111 236 Subtract with borrow L 
from B 

SBLC 062 236 Subtract with borrow L 
from C 

SBLD 113 236 Subtract with borrow L 
from D 

SBLE 174 236 Subtract with borrow L 
from E 

SBLH 115 236 Subtract with borrow L 
from H 

SBLL 176 236 Subtract with borrow L 
from L 

SBLX 117 236 Subtract with borrow L 
from X 

SBM 237 Subtract with borrow (HL) 
from A 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-27 



SBMA 237 Subtract with borrow (HL) 
from A 

SBMB 111 237 Subtract with borrow (HL) 
from B 

SBMC 062 237 Subtract with borrow (HL) 
from C 

SBMD 113 237 Subtract with borrow (HL) 
from D 

SBME 174 237 Subtract with borrow (HL) 
from E 

SBMH 115 237 Subtract with borrow (HL) 
from H 

SBML 176 237 Subtract with borrow ( HL) 
from L 

SBMX 117 237 Subtract with borrow (HL) 
from X 

SBX data 117 034 vvv Subtract with borrow data 
from X 

SC 067 System call 

SLC 002 Shift A left circular 
SLCA 002 Shift A left circular 
SLCB 111 002 Shift B left circular 
SLCC 062 002 Shift C left circular 
SLCD 113 002 Shift D left circular 
SLCE 174 002 Shift E left circular 
SLCH 115 002 Shift H left circular 
SLCL 176 002 Shift L left circular 
SLCX 117 002 Shift X left circular 

SRC 012 Shift A right circular 
SRCA 012 Shift A right circular 
SRCB 111 012 Shift B right circular 
SRCC 062 012 Shift C right circular 
SRCD 113 012 Shift D right circular 
SRCE 174 012 Shift E right circular 
SRCH 115 012 Shift H right circular 
SRCL 176 012 Shift L right circular 
SRCX 117 012 Shift X right circular 

SRE 032 Shift A right extended 
SREA 032 Shift A right extended 
SREB 111 032 Shift B right extended 
SREC 062 032 Shift C right extended 
SRED 113 032 Shift D right extended 
SRE.E 174 032 Shift E right extended 

B-28 MACRO-ASSEMBLER 



SREH 115 032 Shift H right extended 
SREL 176 032 Shift L right extended 
SREX 117 032 Shift X right extended 

STKL 111 065 Stack load 
STKS 065 Stack save 

STL 077 Sector table load 

STLO 022 077 Sector table load 
starting at offset A 

STLOA 022 077 Sector table load 
starting at offset A 

STLOB 111 077 Sector table load 
starting at offset B 

STLOC 062 077 Sector table load 
starting at offset C 

STLOD 113 077 Sector table load 
starting at offset 0 

STLOE 174 077 Sector table load 
starting at offset E 

STLOH 115 077 Sector table load 
starting at offset H 

STLOL 176 077 Sector table load 
starting at offset L 

STLOX 117 077 Sector table load 
starting at offset X 

SU data 024 vvv Subtract data from A 
SUA 220 Subtract A from A 
SUA data 024 vvv Subtract data from A 
SUAA 220 Subtract A from A 
SUAB 111 220 Subtract A from B 
SUAC 062 220 Subtract A from C 
SUAD 113 220 Subtract A from D 
SUAE 174 220 Subtract A from E 
SUAH 115 220 Subtract A from H 
SUAL 176 220 Subtract A from L 
SUAX 117 220 Subtract A from X 

SUB 221 Subtract B from A 
SUB data 111 024 vvv Subtract data from B 
SUBA 221 Subtract B from A 
SUBB 111 221 Subtract B from B 
SUBC 062 221 Subtract B from C 
SUBD 113 221 Subtract B from D 
SUBE 174 221 Subtract B from E 
SUBH 115 221 Subtract B from H 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-29 



SUBL 116 221 Subtract B from L 
SUBX 111 221 Subtract B from X 

SUC 222 Subtract C from A 
SUC data 062 024 vvv Subtract data from C 
SUCA 222 Subtract C from A 
SUCB 111 222 Subtract C from B 
SUCC 062 222 Subtract C from C 
SUCD 113 222 Subtract C from D 
SUCE 114 222 Subtract C from E 
SUCH 115 222 Subtract C from H 
SUCL 116 222 Subtract C from L 
SUCX 111 222 Subtract C from X 

SUD 223 Subtract D from A 
SUD data 113 024 vvv Subtract data from D 
SUDA 223 Subtract D from A 
SUDB 111 223 Subtract D from B 
SUDC 062 223 Subtract D from C 
SUDD 113 223 Subtract D from D 
SUDE 114 223 Subtract D from E 
SUDH 115 223 Subtract D from H 
SUDL 116 223 Subtract D from L 
SUDX 111 223 Subtract D from X 

SUE 224 Subtract E from A 
SUE data 114 024 vvv Subtract data from E 
SUEA 224 Subtract E from A 
SUEB 111 224 Subtract E from B 
SUEC 062 224 Subtract E from C 
SUED 113 224 Subtract E from D 
SUEE 114 224 Subtract E from E 
SUEH 115 224 Subtract E from H 
SUEL 116 224 Subtract E from L 
SUEX 111 224 Subtract E from X 

SUH 225 Subtract H from A 
SUH data 115 02'1 vvv Subtract data trom H 
SUHA 225 Subtract H from A 
SUHB 111 225 Subtract H from B 
SUHC 062 225 Subtract H from C 
SUHD 113 225 Subtract H from D 
SUHE 114 225 Subtract H from E 
SUHH 115 225 Subtract H from H 
SUHL 116 225 Subtract H from L 
SUHX 117 225 Subtract H from X 

SUL 226 Subtract L from A 

B-30 MACRO-ASSEMBLER 



SUL data 176 024 vvv Subtract data from L 
SULA 226 Subtract L from A 
SULB 111 226 Subtract L from B 
SULC 062 226 Subtract L from C 
SULD 113 226 Subtract L from D 
SULE 174 226 Subtract L from E 
SULH 115 226 Subtract L from H 
SULL 176 226 Subtract L from L 
SULX 117 226 Subtract L from X 

SUM 227 Subtract (HL) from A 
SUMA 227 Subtract (HL) from A 
SUMB 111 227 Subtract (HL) from B 
SUMC 062 227 Subtract (HL) from C 
SUMD 113 227 Subtract (HL) from D 
SUME 174 227 Subtract (HL) from E 
SUMH 115 227 Subtract (HL) from H 
SUML 176 2?7 Subtract (HL) from L 
SUMX 117 227 . Subtract (HL) from X 

SUX data 117 024 vvv Subtract data from X 

SYNC 010 Generate sync pulse 

UR 111 102 User return 

XR data 054 vvv Exclusive OR data to A 
XRA 250 Exclusive OR A to A 
XRA data 054 vvv Exclusive OR data to A 
XRAA 250 Exclusive OR A to A 
XRAB 111 250 Exclusive OR A to B 
XRAC 062 250 Exclusive OR A to C 
XRAD 113 250 Exclusive OR A to D 
XRAE 174 250 Exclusive OR A to E 
XRAH 115 250 Exclusive OR A to H 
XRAL 176 250 Exclusive OR A to L 
XRAX 117 250 Exclusive OR A to X 

XRB 251 Exclusive OR B to A 
XRB data 111 054 vvv Exclusive OR data to B 
XRBA 251 Exclusive OR B to A 
XRBB 111 251 Exclusive OR B to B 
XRBC 062 251 Exclusive OR B to C 
XRBD 113 251 Exclusive OR B to D 
XRBE 174 251 Exclusive OR B to E 
XRBH 115 251 Exclusive OR B to H 
XRBL 176 251 Exclusive OR B to L 
XRBX 117 251 Exclusive OR B to X 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS B-31 



XRC 252 Exclusive OR C to A 
XRC data 062 054 vvv Exclusive OR data to C 
XRCA 252 Exclusive OR C to A 
XRCB 111 252 Exclusive OR C to B 
XRCC 062 252 Exclusive OR C to C 
XRCD 113 252 . Exclusi ve OR C to D 
XRCE 174 252 Exclusive OR C to E 
XRCH 115 252 Exclusive OR C to H 
XRCL 176 252 Exclusive OR C to L 
XRCX 117 252 Exclusive OR C to X 

XRD 253 Exclusive OR D to A 
XRD data 113 054 vvv Exclusive OR data to D 
XRDA 253 Exclusive OR D to A 
XRDB 1 11 253 Exclusive OR D to B 
XRDC 062 253 Exclusive OR D to C 
XRDD 113 253 Exclusive OR D to D 
XRDE 174 253 Exclusive OR D to E 
XRDH 115 253 Exclusive OR D to H 
XRDL 176 253 Exclusive OR D to L 
XRDX 117 253 Exclusive OR D to X 

XRE 254 Exclusive OR E to A 
XRE data 174 054 vvv Exclusive OR data to E 
XREA 254 Exclusive OR E to A 
XREB 111 254 Exclusi ve OR E to R 
XREC 062 254 Exclusive OR E to C 
XRED 113 254 Exclusive OR E to D 
XREE 174 254 Exclusive OR E to E 
XREH 115 254 Exclusive OR E to H 
XREL 176 254 Exclusive OR E to L 
XREX 117 254 Exclusive OR E to X 

XRH 255 Exclusive OR H to A 
XRH data 115 054 vvv Exc 1 usive OR data to H 
XRHA 255 Exclusive OR H to A 
XRHB 111 255 ExcluSIve OR H to A 
XRHC 062 255 Exclusive OR H to C 
XRHD 113 255 Exclusive OR H to D 
XRHE 174 255 Exclusive OR H to E 
XRHH 115 255 Exclusive OR H to H 
XRHL 176 255 Exclusive OR H to L 
XRHX 117 255 Exclusive OR H to X 

B-32 MACRO-ASSEMBLER 



XRL 256 Exclusive OR L to A 
XRL data 176 054 vvv Exclusive OR data to L 
XRLA 256 Exclusive OR L to A 
XRLB 111 256 Exclusive OR L to B 
XRLC 062 256 Exclusive OR L to C 
XRLD 113 256 Exclusive OR L to 0 
XRLE 174 256 Exclusive OR L to E 
XRLH 115 256 Exclusive OR L to H 
XRLL 176 256 Exclusive OR L to L 
XRLX 117 256 Exclusive OR L to X 

XRM 257 Exclusive OR (HL) to A 
XRMA 257 Exclusive OR (HL) to A 
XRMB 111 257 Exclusive OR (HL) to B 
XRMC 062 257 Exclusive OR (HL) to c 
XRMD 113 257 Exclusive OR (HL) to 0 
XRME 174 257 Exclusive OR (HL) to E 
XRMH 115 257 Exclusive OR (HL) to H 
XRML 176 257 Exclusive OR (HL) to L 
XRMX 117 251 Exclusive OR (HL) to X 

XRX data 111 054 vvv Exclusive OR data to X 

APPENDIX B. DATAPOINT 2200/5500/6600 INSTRUCTION MNEMONICS 8-33 





APPENDIX C. RESERVED MNEMONICS 

The mnemonics in the following list are predefined for use in 
the instruction field as SNAP/3 directives. Macros must be 
assigned names which do not conflict with these predefined 
mnemonics. 

ALIGN IFGT IFZ MIFGE ORG TESTGT TM 
DA IFLE INC MIFGT PROG TESTLE TP 
DC IFLT LIS MIFLE RPT TESTLT USE 
END IFNE LIST MIFLT SET TESTNE XIF 
EQU IFNG LOC MIFNE SK TESTNG 
ERR IFNL MACRO MIFNG SKIP TESTNL 
IF IFNSTR MEND MIFNL SNAPOPT TESTNZ 
IFC IFNZ MIF MIFS TESTC TESTS 
IFEQ IFS MIFC MLIB TESTEQ TESTZ 
IFGE IFSTR MIFEQ MXIF TESTGE TITLE 

APPENDIX C. RESERVED MNEMONICS C-l 



The mnemonics in the following list are the Datapoint 2200 
instructions, and may not be used as macro names unless the "U" 
option appears on the SNAP/3 command line. 

AC CFL JFL LDA MLB ORHA SLCA 
ACA CFN JFN LDB MLC ORL SLN 
ACAA CFP JFP LDC MLD ORLA SRC 
ACB CFS JFS LDD MLE ORM SRCA 
ACBA CFZ JFZ LDE MLH ORMA SRN 
ACC CP JMP LDH MLL POP SU 
ACCA CPA JTB LDL MSA PUSH SUA 
ACD CPAA JTC LDM MSB RET SUAA 
ACDA CPS JTE LE MSC RETURN SUB 
ACE CPBA JTL LEA MSD RFB SUBA 
ACEA CPC JTN LEB MSE RFC SUC 
ACH CPCA JTP LEC MSH RFE SUCA 
ACHA CPD JTS LED MSL RFL SUD 
ACL CPDA JTZ LEE ND RFN SUDA 
ACLA CPE JUMP LEH NDA RFP SUE 
ACM CPEA LA LEL NDAA RFS SUEA 
ACMA CPH LAA LEM NDB RFZ SUH 
AD CPHA LAB LH NDBA RTB SUHA 
ADA CPL LAC LHA NDC RTC SUL 
ADAA CPLA LAD LHB NDCA RTE SULA 
ADB CPM LAE LHC NDD RTL SUM 
ADBA CPMA LAH LHD NDDA RTN SUMA 
ADC CTS LAL LHE NDE RTP SYNC 
ADCA CTC LAM LHH NDEA RTS XR 
ADD CTE LB LHL NDH RTZ XRA 
ADDA CTL LBA LHM NDHA SB XRAA 
ADE CTN LBB LL NDL SBA XRB 
ADEA CIP LBC LLA NDLA SSAA XRBA 
ADH CTS LBO LLB NDM SSB XRC 
ADHA CTZ LBE LLC NDMA SBSA XRCA 
ADL DE LBH LLD NOP SBC XRD 
ADLA DI LBL LLE OR SBCA XRDA 
ADM EI LBM LLH ORA SBD XRE 
ADMA EX LC LLL ORAA SSDA XREA 
ALPHA EXA LCA LLM ORB SSE XRH 
BC HALT LCB LMA ORBA SBEA XRHA 
BETA HL LCC LMB ORC SBH XRL 
CALL IN LCD LMC ORCA SBHA XRLA 

. CCL INA LCE LMD ORD SBL XRM 
CCLA INPUT LCH LME ORDA SBLA XRMA 
CFB JFB LCL LMH ORE S8M 
CFC JFC LCM LML OREA SBMA 
CFE JFE LD MLA ORH SLC 

C-2 MACRO-ASSEMBLER 



The mnemonics in the following list are the additional 
Datapoint 5500 instructions, and may not be used as macro names 
unless the "U" option appears on the SNAP/3 command line. 

ACAB ACHE ADCL BCP CPAL CPLC INX 
ACAC ACHH ADCX BCV CPAX CPLD LFID 
ACAD ACHL ADDB BFAC CPBB CPLE LFII 
ACAE ACHX ADDC BFSB CPBC CPLH LX 
ACAH ACLB ADDD BFSL CPBD CPLL MIN 
ACAL ACLC ADDE BFSR CPBE CPLX MOUT 
ACAX ACLD ADDH BP CPBH CPMB NDAB 
ACBB ACLE ADDL BRL CPBL CPMC NDAC 
ACBC ACLH ADDX BRLA CPBX CPMD NDAD 
ACBD ACLL ADEB BRLB CPCB CPME NDAE 
ACBE ACLX ADEC BRLC CPCC CPMH NDAH 
ACBH ACMB ADED BRLD CPCD CPML NDAL 
ACBL ACMC ADEE BRLE CPCE CPMX NDAX 
ACBX ACMD ADEH BRLH CPCH CPX NDBR 
ACCB ACME ADEL BRLL CPCL DECI NDBC 
ACCC ACMH ADEX BRLX CPCX DECP NDBD 
ACCD ACML ADHB BT CPDB DFAC NDRE 
ACCE ACMX ADHC BTR CPDC DFSB NDBH 
ACCH ACX ADHD CCLB CPDD DL NDBL 
ACCL ADAB ADHE CCLC CPDE DPL NDRX 
ACCX ADAC ADHH CCLD CPDH DPS NDeB 
ACDB ADAD ADHL CCLE CPDL DS NDCC 
ACDC ADAE ADHX CCLH CPDX EJMP NDCD 
ACDD ADAH ADLB CCLL CPEB EUR NDCE 
ACDE ADAL ADLC CCS CPEC EXB NDCH 
ACDH ADAX ADLD CCSA CPED EXC NOeL 
ACDL ADBB ADLE CCSB CPEE EXD NDCX 
ACDX ADBC ADLH CCSC CPEH EXE NDDB 
ACEB ADBD ADLL CCSD CPEL EXH NODC 
ACEC ADBE ADLX CCSE CPEX EXL NDOD 
ACED ADBH ADMB CCSH CPHB EXX NDDE 
ACEE ADBL ADMC CCSL CPHC INB NDDH 
ACEH ADBX ADMD CCSX CPHD INCI NDDL 
ACEL ADCE ADME CPAB CPHE INCP NDDX 
ACEX ADCC ADMH CPAC CPHH IND NDEB 
ACHB ADCD ADML CPAD CPHL INE NDEC 
ACHC ADCE ADMX CPAE CPHX INH NDED 
ACHD ADCH ADX CPAH CPLB INL NDEE 

APPENDIX C. RESERVED MNEMONICS C-3 



NDEH ORCE PINC SBEL SRED SUHB XRCL 
NDEL ORCH PIND SBEX SREE SUHC XRCX 
NDEX ORCL PINE SBHB SREH SUHO XRDB 
NDHB ORCX PINH SBHC SREL SUHE XRDC 
NDHC ORDB PINL SBHD SREX SUHH XRDD 
NDHD ORDC PINX SBHE STKL- SUHL XRDE 
NDHE ORDD PL SBHH STKS SUHX XRDH 
NDHH ORDE PS SBHL STL SULB XRDL 
NDHL ORDH REGL SBHX SUAB SULC XRDX 
NDHX ORDL REGS SBLB SUAC SULD XREB 
NDLB ORDX SBAB SBLC SUAD SULE XREC 
NDLC OREB SBAC SBLD SUAE SULH XRED 
NDLD OREG SBAD SBLE SUAH SULL XREE 
NDLE ORED SBkE SBLH SUAL SULX XREH 
NDLH OREE SBAH SBLL SUAX SUMB XREL 
NDLL OREH SBAL SBLX SUBB SUMC XREX 
NDLX OREL SBAX SBMB SUBC SUMD XRHB 
NDMB OREX SSBB SBMC SUBD SUME XRHC 
NDMC ORHB SBBC SBMD SUBE SUMH XRHO 
NDMD ORHC SBBO SBME SUSH SUML XRHE 
NDME ORHD SSSE SBMH SUBL SUMX XRHH 
NDMH ORHE SBSH SBML SUBX SUX XRHL 
NDML ORHH SBSL SBMX SUCB UR XRHX 
NDMX ORHL SBSX SBX SUCC XA XRLB 
NDX ORHX SBCB SC SUCD XRAB XRLC 
NOJ ORLB SSCC SLCR SUCE XRAC XRLD 
ORAB ORLC SBCD SLCC SUCH XRAD XRLE 
ORAC ORLD SBCE SLCD SUCL XRAE XRLH 
ORAD ORLE SBCH SLCE SUCX XRAH XRLL 
ORAE ORLH SBCL SLCH SUDB XRAL XRLX 
ORAB ORLL SBCX SLCL SUDC XRAX XRMR 
ORAL ORLX SBOS SLCX SUDO XRBB XRMC 
ORAX ORMB SBOC SRCB SUDE XRBC XRMD 
ORBB ORMC SBDO SRCC SUDH XRBD XRME 
ORBC ORMD SBDE SRCO SUOL XRBE XRMH 
ORBD ORME SSOH SRCE SUDX XRBH XRML 
OREE ORMH SBDL SRCH SUEB XRBL XRMX 
ORBH ORML SBDX SRCL SUEC XRBX XRX 
ORBL ORMX SEER SRCX SUED XRCB INFO 
ORBX ORX SBEC SRE SUEE XRCC 
ORCE PIN SBED SREA SUEH XRCD 
ORCC PINA SBEE SREB SUEL XRCE 
ORCD PINB SEEH SREC SUEX XRCH 

C-4 MACRO-ASSEMBLER 



The mnemonics in the following list are the additional 
Datapoint 6600 instructions on the SNAP/3 command line. 

BFLRAC DACM DMAD DORM DXRI PCP STLOD 
BFLRAD DACP DMND DORP DXRM PND STLOE 
BFLRND DADI DMOR DPLR DXRP POR STLOH 
BFLROR DADM DMSB DPSR IDIV PSB STLOL 
BFLRSB DADP DMSU DSBI IMULT PSU STLOX 
BFLRSU DCPI DMXR DSBM PXR 
BFLRXR DCPM DNDI DSBP LLDEL STLO 
COMP DCPP DNDM DSUI LLINS STLOA 
COMPS DIDIV DNDP DSUM PAC STLOB 
DACI DMAC DORI DSUP PAD STLOC 

APPENDIX C. RESERVED MNEMONICS C-5 





APPENDIX D. INSTALLATION INSTRUCTIONS 

Installation of SNAP/3 requires the following prerequisites: 

1. Datapoint processor with 5500 instruction set with 
Disk Operating System 

2. SORT or'FASTSORT Utility 
3. MIN Utility 

The SNAP/3 Macro Assembler is installed by loading the Disk 
Operating System, inserting the program distribution cassette in 
the front deck and typing the command: 

MIN ;AO 

When loading is complete the followin~ module will have heen 
cataloged on your disk: 

SNAP3/CMD SNAP/3 Assembler 

The following programs will be required for library 
maintenance and for the conversion of relocatabe to executable 
(absolute) code. 

1. LIBSYS Utility 
2. LINK Utility (Version 2.1 or later) 

APPENDIX D. INSTALLATION INSTRUCTIONS D-1 





APPENDIX E. INCOMPATABILITIES WITH SNAP AND SNAP/2 

1. The IFEQ, etc., directives use signed comparisons between 
their operands; SNAP and SNAP/2 used unsigned comparisons. 
This may cause different results if two addresses having 
different high bits are cOMpared. The multiply and divide 
operators also use signed arithmetic. 

2. A reference to a multiply defined label will use the most 
recent previous definition, or the last definition if the 
label has not been defined previously. With SNAP and SNAPI?, 
the last definition was always used during pass 2. 

3. Any extra parameters supplied for directives, instructions, or 
pseudo-instructions will produce an error flag. 

4. The ALIGN, TM, and TP directives use the location counter 
value to determine how much to skip, instead of the address 
counter. This can only cause different results if the LOC 
directive is used. 

5. Under SNAP and SNAP/2, if a local label in a macro appe8red on 
a line containing a call to a second macro, and there was no 
label on the prototype header of the second macro, an 
additional line was created at the beginning of the expansion 
for the second macro call, and the label therefore became 
global. This is undesirable, so with SNAP/3 the label remains 
local, no additional expansion is created, and the label is 
defined with the expected value before the expanded second 
macro is processed. 

6. The format of the parameters for the MIFEQ, etc., directives 
was simplified and generalized. Each parameter is an 
arhitrary string terminated by the first unforced blank or 
comma not in quotes. Normal substitution will be made for any 
macro parameter appearing in either string. No special rules 
apply if either string is null after substitution. These 
changes may cause different results if the second string 
contains macro parameters or concatenation characters. 

7. The T option will force SNAP/3 to make two passes, and 
therefore the generated relocatable file will not contain 
forward reference entries in the external reference table. 
This option must be used to generate files which are to be 

APPENDIX E. INCOMPATABILITIES WITH SNAP AND SNAP/2 E-1 



loaded by the DOS relocatable loader (DOS function 15). 

8. The LIST directive is processed slightly differently to allow 
LIST directives to be nested. A LIST x statement will not 
always turn on the listing control flag if several LIST -x 
statements have appeared in a row (see section 3.22). 

9. LINK version 2.1 or later must be used to link relocatable 
programs generated by SNAP/3. 

10. In SNAP/2 and SNAP/3 the entry point file name defaults to the 
PROG name, which defaults to the object file name. In SNAP 
the entry point file name defaults to the source file name. 

E-2 MACRO-ASSEMBLER 



INDEX 

/I string forcing character 2-4 
$ location counter symbol 1-3, 2-1, 2-3 , string delimiter 2-3, 5-5 
* operator 2-1 , 2-3, 2-5, 3-1 , 3-2, 3- 11 , 3-5, 
+ operator 2-1 , 2-2, 2-4" 
, delimiter 2-3, 5-2 
- operator 2-4, 3-4, 3-8 . delimiter 2-1 , 2-2, 2-5 
I operator 2-5 

delimiter 2-2 
< operator 2-5 
= delimiter 2-2 
> operator 2-5 
@ macro forcing character 5-8 
Absolute object code file 1 - 1 , 1-2, 1-4, 2-2, 

6-5 
Address counter 1-2, 1~3, 3-1, 3-5, 3-8, 3-10 
ALIGN directive 3-1 
AND operator 2-5 
BC pseudo-instruction 4-1 
Binary 3-9 
CCL pseudo-instruction 4-3 
Command line 3-8, 3-9, 6-1 
Comment 2-1, 2-2, 2-3, 2-7 
Concatenation character 5-8 
Cross-reference 1-2, 6-2, 6-3 
D error flag 2-2, 3-6, 3-7, 6-4 
DA directive 2-4, 3-1, 3-5, 6-5 
DC directive 2-3, 2-4, 3-1, 3-2, 3-5, 6-5 
DE pseudo-instruction 4-1 
Decimal 2-3 
Definition 3-8, 3-9 
Dictionary 2-1, 3-2,6-2, 6-5 
Directive 2-1, 2-3, 3-1 
DISPLAY key 6-5 

3-10, 

2-4, 

E error flag 2-2, 2-3, 2-4, 3-1, 3-2, 3-10, 6-4 
END directive 3-2 
Entry point 2-2, 6-1, 6-3 
EQU directive 3-2 
ERR directive 3-3, 6-5 
Error flag 6-2, 6-4 
Expansion, macro 3-5, 5-3 
Expression 2-1,2-3, 3-1 

4-2 

3-9, 6-1 , 



External definition 
External reference 
F error flag 6-4 
Forcing character 
Forward reference 
Global label 5-5 
Header, macro 5-1 
Hexadecimal 3-9 

2-2, 6-3 
2-2, 2-4, 3-1, 3-2, 6-3 

2-4, 5-8 
2-4, 3-1, 3-3, 3-9, 6-3 

HL pseudo-instruction 4-1 
I error flag 2-3, 3-8, 6-5 
IF directive 3-3 
INC directive 3-4, 6-4 
Include 3-4, 3-5, 6-1 
Instruction field 2-1, 2-3 
lOR operator 2-5 
KEYBOARD key 6-5 
LIB utility 5-2 
LINK utili ty 1-1, 1-2, 1-4 
LIST directive 3-4 
LOC directive 3-1, 3-5, 3-8, 3-10 
Local label 5-6 
Located mode 1-3, 3-5 
Location counter 1-2, 3-1, 3-5, 3-8, 3-10 
MACRO directive 2-1, 2-3, 3-5, 3-6, 5-1 
MEND directive 3-6, 5-1 
MIF directive 5-9 
MLIB directive 3-6, 5-2, 6-4 
MLr pseudo-in~truction 4-2 
MOD operator 2-5 
MSr pseudo-instruction 
Multiply defined label 
MXIF directive 5-10 
Nesting 3-4. 5-7 
Number 2-3-
o error flag 
Object file 
Octal 2-3 
Operator 2-4 
Option 6-1 

6-5 
1-4, 6-1 

OR operator 2-5 
ORG directive 3-6 
P error flag 3-3, 6-5 

4-2 
2-2, 6-3 

PAS (program address block) 1-3, 3-5, 3-6, 3-10 
Primary transfer address 3-2, 6-3 
PROG directive 3-7 
Prototype, macro 3-6, 5-1 
Pseudo-instruction 3-8, 4-1 



Relocatable object code file 
6-1 

1-1, 1-2, 1-4, 2-4, 3-5, 3-6, 3-9, 

RPT directive 3-5, 3-7 
Secondary transfer address 3-2 
SET directive 3-5, 3-7 
SKIP directive 3-8 . 
SLN pseudo-instruction 4-3 
SNAPOPT directive 3-8 
Source file 6-1 
SRN pseudo-instruction 4-2 
Star flag 2-5 
Statement 2-1 
String 2-3, 3-2 
Substitution, macro 5-4 
TEST directive 2-4, 3-1, 3-9, 6-5 
TITLE directive 3-10 
TM directive 3-10 
TP directive 3-10 
U error flag 2-4, 3-11, 6-5 
Undefined symbol 2-4, 3-3, 6-5 
Unused label 3-4, 6-3 
USE directive 3-5, 3-6, 3-10 
XA pseudo-instruction 4-2 
XIF directive 3-3, 3-11 
XOR operator 2-5 
: macro concatenation character 5-8 





Manual Name ______________________________________ ___ 

Manual Number ______________________________________ __ 

READER'S COMMENTS 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? Please make suggestions for 
improvement. 

Name ________________________________________ Date ______________________________________ __ 

Organization _______________________________________________________________________________ ___ 

Street _______________________________________________________________________________ ___ 

City ______________________________ State, __________ Zi p Code _____________________________ _ 

All comments and suggestions become the property of Datapoint. 



Fold Here 

_____________________________ y~l~ ~e~ ~n~ ~t~~ ___________________________ _ 

BUSINESS REPLY MAl L 
No Postage Necessary if mailed in the United States 

Postage will be paid by: 

DATAPOINT CORPORATION 
DIRECTOR OF SOFTWARE SUPPORT 
8550 Datapoint Drive, Mail Station# N60 
San Antonio, Texas 78284 

111111 
FIRST CLASS 

Permit 
5774 

San Antonio 
Texas 


