
REPORT PROGRAM
GENERATOR II

RPGPLUS (VERSION 1)

RPGII (VERSION 4)

User's Guide

April, 1978

Model Code No. 50325

~TAPOINT CORPORATION

The leader in dispersed data processing 1M

COPVRIGHT' 1978 BY DATAPOINT CORPORATION. PRINTED IN U.S.A.

REPORT PROGRAM GENERATOR II
RPGPLUS (VERSION 1)

RPGII (VERSION 4)

User's Guide

Version 4

April, 1978

Model Code No. 50021

PREFACE

This manual applies to the following versions of Datapoint's

RPG II systems: RPGPLUS version 1, and RPGII version 4.*

This manual is to be used as a source language reference and

operation guide for all Datapoint RPG II systems. The RPG II

systems are specifically RPGII and RPGPLUS. RPGII will operate on

1100 and 2200 systems as well 5500 and 6600 systems. RPGPLUS

processes an enhanced version of the Datapoint RPG II source

language to produce relocatable object code for 5500 and 6600

systems.

* RPGII version 4 contains all features and capabilities of

RPG5500 version and RPGII version 3.

i

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Installing The RPG II Compiler
1.2 Required Utility Programs
1.3 Definition of Terms
1.4 General Datapoint RPG II Program Logic

1 .4.1 Operations at Total Time
1.4.2 Operations at Detail Time
1.4.3 General Program Cycle

1.5 Source File Order and Program Specifications

2. COMMON FIELDS ON SOURCE
2.1 Columns 1-2 (Page)
2.2 Columns 3-5 (Line)
2.3 Column 6 (Form Type)
2.4 Column 7 (Comments)
2.5 Columns 75-80 (Program Identification)

3. HEADER SPECIFICATION
3.1 Columns 1-2 (Page) and 3-5 (Line)
3.2 Column 6 (Form Type)
3.3 Columns '7-9
3.4 Column 10 (Object Output)
3.5 Column 11 (Listing Options)
3.6 Columns 12-14 (Core Size to Execute)

3.6.1 Column 12
3.6.2 Columns 13-14

3.7 Column 15 (Debug)
3.8 Columns 16-25
3.9 Column 26 (Alternate Collating Sequence)
3.10 Columns 27-74
3.11 Columns 75-80 (Program Identification)

4. FILE DESCRIPTION SPECIFICATIONS
4.1 Columns 1-2 (Page) and 3-5 (Line)
4.2 Column 6 (Form Type)
4.3 Columns 7-14 (File Name)
4.4 Column 15 (File Type)

4.4.1 Input File
4.4.2 Output Files
4.4.3 Update Files
4.4.4 Display Files

4.5 Column 16 (File Designation)
4.5.1 Primary Files

ii

page
1-1
1-1
1-1
1-2
1-3
1-3
1-3
1- 3
1_1~

2-1
2-1
2-2
2-2
2-2
2-3

3-1
3-1
3-1
3-1
3-1
3-1
3-2
3-2
3-3
3-3
3-3
3-3
3-4
3-4

4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-3
4-3

~

4.5.2 Secondary Files 4~4
4.5.3 Chained Files 4-4
4.5.4 Record Address Files 4-4
4.5.5 Table or Array Files 4-4
4.5.6 Demand Files 4-5

4.6 Column 11 (End of File) 4-5
4 . 7 Col u in n 1 8 (Seq u en c e) 4 - 6
4.8 Column 19 (File Format) 4-7

4.8.1 Fixed Format Files 4-7
4.8.2 Variable Form~t Files 4-7

4.9 Columns 20-23 (Block Length) 4-7
. 4.9.1 Disk Files 4-8

4.9.2 Tape Files 4~8
4.9.3 Other Files 4-8

4.10 Columns 24-27 (Record Length) 4-8
4.11 Column 28 (Mode of Processing) 4-9

4.11.1 Consecutive Method 4-9
4.11.2 By ADDROUT File 4-10
4.11.3 Sequential By Key 4-10
4.11.4 Sequential Within Limits 4-10
4.11.5 Random Method 4-11

4.12 Columns 29-30 (Length of Key) 4~11
4.13 Column 31 (Record Address Type) 4-12
4.14 Column 32 (File Organization) 4~12
4.15 Columns 33-34 (Overflow Indicator) 4-13

4.15.1 Overflow Indicator 4-13
4.16 Columns 35-38 (Key Field Starting Location) 4-14
4.17 Column 39 (Extension Code) 4-14
4.18 Column 40-46 (Device) 4-14

4.18.1 Use of the LOADER Device for Program Chaining 4-17
4.18.2 SPECIAL Device Support 4-17

4.19 Columns 47-52- 4-18
4.20 Columns 53-65 (Continuation Lines) 4-18

4.20.1 Column 53 (Continuation Code) 4-18
4.20.2 Columns 54-59 (Continuation Option) 4-19

4.20.2.1 Columns 54-59 (Name of Label Exit) 4-19
4.20.2.2 Columns 60-62 (Extension) 4-20
4.20.2.3 Columns 63-65 (Drive) 4-20
4.20.2.4 Columns 60-65 (Number of Sectots) 4-20
4.20.2.5 LOCAL/SERVO Continuation Option 4-20
4.20.2.6 ASCII Continuation Option 4-20
4.20.2.7 Tape Density Continuation Option 4-21

4.21 Column 66 (File Addition) 4-21
4.22 Columns 67-70 4-21
4.23 Columns 71-72 (File Conditioning Indicator) 4-22

4.23.1 U1-U8 (External Indicators) 4-22
4.24 Columns 73-74 4-23
4.25 Columns 75-80 (Program Identification) 4-23

iii

5. EXTENSION SPECIFICATIONS 5-1
5.1 Columns 1-2 (page) and 3-5 (Line) 5-1
5.2 Column 6 (Form Type) 5-1
5.3 Columns 7-10 5-1
5.4 Columns 11-18 (From Filename) 5-1
5.5 Columns 19-26 (To Filename) 5-2
5.6 Columns 27-32 (Table or Array Name) 5-3

5.6.1 Table Name 5-3
5.6.2 Array Name 5-4

5.7 Columns 33-35 (Number of Entries per Record) 5-5
5.8 Columns 36-39 (Number of Entries/Table) 5-5
5.9 Columns 40-42 (Length of Entry) 5-6
5.10 Column 43 (Packed or Binary Field) 5-6
5.11 Column 44 (Decimal Positions) 5-7
5.12 Column 45 (Sequence) 5-7
5.13 Columns 46-57 (Alternate Table/Array Specification) 5-8
5.14 Columns 58-74 (Comments) 5-8
5.15 Columns 75-80 (Program Identification) 5-8

6. LINE COUNTER SPECIFICATIONS 6-1
6.1 Columns 1-2 (Page) and Columns 3-5 (Line) 6-1
6.2 Column ~ (Form Type) 6-1
6.3 Columns 7-14 (Filename) 6-1
6.4 Columns 15-17 (Lines per Page) 6-1

.6.5 Columns 18-19 (Form Length) 6-2
6.6 Columns 20-22 (Line Number of Overflow Line) 6-2
6.7 Columns 23-24 (Overflow Line) 6-2
6.8 Columns 25-74 6-3
6.9 Columns 75-80 (Program Identification) 6-3

7. INPUT SPECIFICATIONS 7-1
7.1 Columns 1-2 (Page) and 3-5 (Line) 7-1
7.2 Column 6 (Form Type) 7-1
7.3 Columns 7-14 (Filename) 7-1
7.4 Columns 15-16 (Sequence) 7-2
7.5 Column 17 (Number) 7-3
7.6 Column 18 (Option) 7-3
7.7 Columns 19-20 (Record Identifying Indicator) 7-4

7.7.1 Record Identifying Indicator 7-4
7.7.2 Look Ahead Fields 7-5

7.8 Columns 21-41 (Record Identification Codes) 7-7
7.8.1 Position 7-7
7 . 8 . 2 N ot 7 - 8
7.8.3 C/Z/D 7-8
7.8.4 Character 7-8
7.8.5 AND Relationship 7-9
7.8.6 OR Relationship 7-9

iv

7.9 Column 42 7-10
7.10 Column 43 (Packed or Binary Field) 7-10

7.10.1 IBM Compatible Format 7-10
7.10.2 Datapoint Compatible Format 7~10

7.11 Columns 44-51 (Field Location) 7-11
7.12 Column 52 (Decimal Positions) 7-12
7.13 Columns 53-58 (Field Name) 7-12

7.13.1 Field Names 7-12
7.13.2 Field Names in OR Relationship 7-13
7.13.3 Special Word PAGE 7~13

7.14 Columns 59-60 (Control Level) 7-14
7.14.1 L1-L9 (Control Level Indicators) 7-14

7.15 Columns 61-62 (Matching Fields) 7-15
7.15.1 Matching Fields 7-15

7.16 Columns 63-64 (Field Record Relations) 7-15
7.16.1 Record Identifying Indicators (01-99) 7-16
7.16.2 Control Level (L1-L9) and Matching Record (MR)

Indicators 7-17
7.16.3 External Indicators (U1-U8) 7-17
7.16.4 Halt Indicators (H1-H9) 7-17

7.17 Cdlumns 65-70 (Field Indicators) 7-18
7.1'7.1 Halt Indicators 7-18

7.18 Columns 71-74 7-19
7.19 Columns 75-80 (Program Identification) 7-19

8. CALCULATION SPECIFICATIONS
8.1 Columns 1-2 (Page) and 3-5 (Line)
8.2 Column 6 (Form Type)
8.3 Columns 7-8 (Control Level)
8.4 Columns 9-17 (Indicators)
8.5 Columns 18-27 and Columns 33-42 (Factor 1 & 2)
8.6 Literals
8.7 Columns 28-32 (Operation)
8.8 Columns 43-48 (Result Field)
8.9 Columns 49-51 (Field Length)
8.10 Column 52 (Decimal Positions)
8.11 Column 53 (Half Adjust)
8.12 Columns 54-59 (Resulting Indicators)

8.12.1 Columns 54-55 (Plus or High)
8.12.2 Columns 56-57 (Minus or Low):
8.12.3 Columns 58-59 (Zero or Equal)

8.13 Columns 60-74 (Comments)
8.14 Columns 75-80 (Program Identification)
8.15 Operation Codes
8.16 Arithmetic Operations

8 . 16 . 1 Add (ADD)
8.16.2 Zero and Add (Z-ADD)
8.16.3 Subtract (SUB)

v

8-1
8-1
8-1
8-1
8-2
8-3
8-4
8-5
8-5
8-6
8-7
8-7
8-8
8-9
8-9
8-9

8-10
8-10
8-10
8-10
8-11
8-11
8-11

8.16.4 Zero and Subtr~~t (Z~SUe)
8.16.5 Multip~y (MULl)
8.16~6 Divide (DIV)
8.16.7 Move R~mainder (MVE)
8.16.8 Square Root (SQRT)
8.16.9 Cro~~foot (XFOOT)

8.17 Move Operations
8.17.1 Hove (MOVE)
8.17.2 Move Left (MOVEL)
8.17.3 Move Array (MOVEA)

8.18 Move Zone Operations
8.18.1 Move High to High Zone (MHH20)
8.18.2 Move High to Low Zone (MHLZO)
8.18.3 Move Lo~ to Low Zone (ML~ZO)
8.18.4 Move Low to High Zone (MLHZQ)

8.19 Compare and T~sting Operations
8.19.1 Compare (COMP)
8.19.2 Test Zone (TESTZ)

8.20 Binary Field Operation~
8.20.1 Set Bit On (BITON)
8.20.2 Set Bit Off (BITOF)
8.20.3 Test Bit (TESTB)

8.21 Setting Indicators
8.21.1 Set On (SETON)
8.21.2 Set Off (SETOF)

8.22 Branching Operations
8.22.1 Go To (GOTO)
8.22.2 Tag (TAG)

8.23 Lookup Operations
8.23.1 ~ookup (LOKUP)
8.23.2 Using LOKUP with One Table
8.23.3 Using LOKUP with Two Tabl~$
8.23.4 Referencing the Table Item Found
8.23.5 Using LOKUP with an Array

8.24 Subroutine Operations
8.24.1 Begin Subroutine (BEGSR)
8.24.2 End Subroutine (ENDSR)
8.24.3 Execute Subroutin~ (EXSR)

8.25 Programmed Control of Input gnd Output
8.25.1 Exception (EXCPT)
8.25.2 Force (FORCE)
8.25.3 Display (DSPLY)
8.25.4 Read (READ)
8.25.5 Chain (CHAIN)
8.25.6 Set Lower Limits Operation (SETLL)

8.26 Audio Output Operations
8.26.1 Beep (BEEP)
8.26.2 Click (CLICK)

v~

8-11
8-11
8-12
8-12
8-12
8-13
8-15
8-15
8-17
8-19
8-19
8-19
8-20
8-20
8-20
8-21
8-21
8-22
8-22
8-23
8-23
8-23
8-24
8-25
8-25
8-25
8-26
8-26
8-26
8-27
8-28
8-28
8-29
8-29
8-30
8-30
8-30
8-30
8-30
8-31
8-31
8-32
8-33
8-34
8-37
8-37
8-37
8-38

8.27 Debug Operations
8.27.1 Debug (DEBUG)
8.27.2 Debug Specifications

8.28 EXIT and RLABL Operations
8.28.1 EXIT Operation
8.28.2 RLABL Specification
8.28.3 Referencing Fields
8.28.4 Referencing Tables and Arrays
8.28.5 Referencing Indicators

9. OUTPUT FORMAT SPECIFICATION
9.1 Columns 1-2 (Page) and Columns 3-5 (Line)
9.2 Column 6 (Form Type)
9.3 Columns 7-14 (Filename)
9.4 Column 15 (Type)
9.5 Columns 16-18 (Add a Record)
9.6 Column 16 (Fetch Overflow)
9 . 7 Col u in n s 1 7 - 22 (S pac e / Ski p)

9.7.1 Columns 17-18 (Space)
9.7.2 Columns 19-22 (Skip)

9.8 Columns 23-31 (Output Indicators)
9.8.1 AND and OR Lines
9.8.2 External Indicators
9.8.3 Control Level Indicators
9.8.4 Overflow Indicators
9.8.5 First Page Indicator

9.9 Columns 32-37 (Field Name)
9.9 . 1 PAGE
9.9.2 Date Field

9.10 Column 38 (Edit Codes)
9.11 Column 39 (Blank After)
9.12 Columns 40-43 (End Position in Output Record)
9.13 Column 44 (Packed or Binary Field)
9.14 Columns 45-70 (Constant or Edit Word)

9.14.1 Constant
9.14.2 Edit Word
9.14.3 Editing Considerations

9.15 Columns 71-74
9.16 Columns 75-80 (Program Identification)

Appendix A. GENERATION AND USE OF RELOCATABLE RPGPLUS
A.1 Compiling an RPGPLUS Program
A.2 Linking a Compiled RPGPLUS Program
A.3 Running a Linked RPGPLUS Program

A.3.1 DATE Field
A.3.2 External Indicators
A.3.3 Opening Files
A.3.4 Indexing ISAM (Indexed) Files

vii

8-38
8-38
8-38
8-39
8-39
8-39
8-40
8-40
8-40

9-1
9-1
9-1
9-1
9-1
9-2
9-2
9-3
9-3
9-4
9-4
9-6
9-6
9-6
'9-7
9-7
9-8
9-8
9-9
9-9

9-11
9-12
9-12
9-13
9-13
9-13
9-14
9-17
9-17

A-1
A-1
A-3
A-3
A-4
A-4
A-5
A-5

A.3.5 Console Input Files

Appendix B. RPGPLUS REFERENCE TABLES

Appendix C. RPGPLUS COMPILE TIME MESSAGES

Appendix D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES

Appendix E. RPGPLUS USER ASSEMBLY LANGUAGE FACILITIES
E.1 The RPGPLUS Library Facility
E.2 RPGPLUS Calling Sequences to User Subroutines
E.3 SPECIAL Device Drivers
E.4 Non-standard Tape Labels

Appendix F. GENERATION AND USE OF RPGII
F.1 RPGII Generation For Cartridge Disks
F.2 Selective Generation of RPGII
F.3 RPGI! Generation For Diskette Systems
F.4 Compiling an RPG II Program
F.5 Running a Compiled RPG II Program

F.S.1 DATE Field
F.S.2 External Indicators
F.S.3 Opening Files
F.S.4 Indexing ISAM (Indexed) Files
F.S.S Console Input Files

Appendix G. RPGII REFERENCE TABLES

Appendix H. RPGII COMPILE TIME MESSAGES

Appendix I. RPGII OBJECT (EXECUTION) TIME MESSAGES

Appendix J. RPGII USER ASSEMBLY LANGUAGE FACILITIES
J.1 The RPG II Library Facility
J.2 The RPG II Pre-processor
J.3 RPG II Calling Sequences to User Subroutines

J.3.1 SPECIAL Device Drivers
J.3.2 Non-standard Tape Labels

Appendix K. DETAILED RPG OBJECT FLOW (COMMON)
K.1 Initialization
K.2 Program Cycle
K.3 Termination

Appendix L. COMMON REFERENCE TABLES

Appendix M. COMMON INPUT/OUTPUT DEVICE INTERFACES

viii

A-S

B-1

C-1

D-1

E-1
E-1
E-2
E-2
E-4

F-1
F-1
F-1
F-3
F-4
F-5
F-S
F-S
F-6
F-6
F-7

G-1

H-1

1-1

J-1
J-1
J-2
J-4
J-4
J-S

K-1
K-1
K-1
K-4

L-1

M-1

Appendix N. CODING SHEET SUMMARY (COMMON)
N.1 Common Fields
N.2 Header Specification
N.3 File Description Specifications
N.4 Extension Specifications
N.5 Line Counter Specifications
N.6 Input Record Descriptions

N.6.1 Record Type Definition
N.6.2 And/Or Line
N.6.3 Field Definitions

N.7 Calculation Specifications
N.B Output Format Specifications

N.8.1 Record Type Definition
N.8.2 And/Or Line
N.8.3 Record Formats and Field Editing

ix

N-1
N-1
N-2
N-4
N-9

N-12
N-13
N-13
N-14
N-15
N-17
N-25
N-25
N-27
N-27

CHAPTER 1. INTRODUCTION

RPG II is a language oriented for business data processing.
This document specifies RPG II for Datapoint systems. Source
programs and data can be prepared using RPGPREP, CRPGPREP, or
DAT AFORM II.

After preparing the source program, one of the RPG II compilers
must be run to produce the object program. RPGII object program
output is directly executable under DOS, whereas the object
program produced by RPGPLUS must be subsequently link edited
(using the LINK utility) to produce a self-contained program which
executes under DOS.

RPG source programs are rigidly formatted. In the subsequent
text, source records will be referred to as if they were 80-column
card images.

1.1 Installing The RPG II Compiler

Complete instructions for installating RPGPLUS are given in
Appendix A; installation instructions for RPGII are given in
Appendix F. The appendix also contains detailed instructions for
compiling programs and indexing ISAM (Indexed Sequential Access
Method) files.

1.2 Required Utility Programs

The following utilities at the indicated version/revision
levels (or higher) are required for full utilization of RPG II:

RPGPREP

CRPGPREP

INDEX

REFORMAT

SORT

LINK

RPG Program Preparation Utility (DOS).

RPG Program Preparation Utility (Cassette).

DOS Index Utility.

DOS Reformat Utility.

Disk Operating System Sort.

DOS Linking Editor for Relocatable Modules
(required for RPGPLUS only)

CHAPTER 1 . INTRODUCTIOU 1-1

Note: Records output using the DOS SORT utility will be in ASCII
sequence, unless specified otherwise.

1.3 Definition of Terms

EBCDIC (Extended Binary-Code-Decimal Interchange Code) Notation:
The 256-character machine code used inside the Datapoint RPG II
system. Files are automatically translated to EBCDIC when read,
and from EBCDIC to ASCII (if necessary) when written.

Alphabetic Characters: The 26 alphabetic EBCDIC characters and
the three EBCDIC characters '.', '$', and 'H'.

Numeric Characters: The EBCDIC characters 0-9.

Special Characters: The 217 EBCDIC characters not defined as
alphabetic or numeric.

Alphanumeric Characters: Any of the 256 EBCDIC characters.

Alphanumeric Fields: All fields for which a decimal-positions
speCification has not been made in the appropriate column of the
specifications forms. Alphanumeric fields can contain
alphabetic, numeric, or special characters.

Numeric Fields: All fields having a decimal-positions
specification in the appropriate columns of the specifications
forms.

Valid Datapoint RPG II Names: The following rules apply to
names used in RPG II programs:

RPG II filenames can be from 1-8 characters long; RPG II
field names can be from 1-6 characters long.

The first character of either a filename or a field name must
be alphabetic (see preceding definitions of alphabetic
characters). The remaining characters can be any combination
of alphabetic and numeric characters (special characters are
not allowed).

Blanks cannot appear between characters in the name.

1-2 REPORT PROGRAM GENERATOR II

1.4 General Datapoint RPG II Program Logic

Every Datapoint RPG II object program has the same general
program logic. This logic is based on the processing cycle
performed for each input record read. Every program cycle
involves three basic steps.

1. Reading information (input).

2~ Performing calculations (processing).

3. Recording results (output).

In the RPG II cycle, calculation and output can occur at two
different times in the cycle: total time and detail time.

1.4.1 Operations at Total Time

Total calculation and output are normally performed on data
accumulated for a group of related records which form a control
group. When the fields of a record whioh determine the control
group change, a control break occurs indicating a new control
group is starting. When a break occurs (shown by control level
indicators being turned on), calculation and output operations are
performed using information accumulated from all records in the
previous control group.

1.4.2 Operations at Detail Time

Detail calculations and detail output are normally performed
for individual data records. Total operations are performed
before detail operations. Thus a record which causes a control
break is processed after the total operations for the previous
control group.

1.4.3 General Program Cycle

An RPG object program proceeds through three major steps:

1. Initialization

2. Processing Cycle

3. Termination

CHAPTER 1 . INTRODUCTION 1-3

Initialization consists of:
clearing all working areas,
processing cycle.

loading all necessary tables,
and opening all files for the

The processing cycle consists of: writing all heading and detail
records, reading the next input record and identifying it,
performing total operations if a control break occurs, and then
calculating all results from the record previously read. This
cycle repeats until the last record is processed.

The first and last cycles are somewhat different from the normal
cycle. Before the first record is read, detail output conditioned
by the 1P indicator and unconditioned detail output is performed.
Total processing is bypassed until the cycle after the first
control break.

After the last record has been read, the last record indicator
(LR) is turned on, as well as all control levels. After total
processing has been performed, the normal cycle is aborted and the
termination routines are processed.

Termination consists of: writing all necessary tables and closing
all files.

A detailed description of the object program logic is found in
Appendix K.

1.5 Source File Order and Program Specifications

The RPG source file consists of a source program, optionally
followed by compile-time tables and arrays. The source file
contains up to seven sections which can be coded on seven standard
RPG specification sheets and entered using the RPGPREP utility
program. The seven forms are:

1. Header Specification. This specification contains control
information for the compiler.

2. File Description Specification. This specification contains
file description information about each file used in the
program.

3. Extension Specification. This specification contains extension
information about each table or array used in the program.

4. Line Counter Specification. This specification contains
information about the number of lines to be printed on each

1-4 REPORT PROGRAM GENERATOR II

form.

5. Input Specification. This specification contains information
describing the records read by the program.

HOTE: In all versions of RPGII, the order of references to
files in the Input Specifications must correspond to the order
of occurrence of file declarations in the File Specifications.
This is not a restriction in RPGPLUS.

6. Calculation Specification. This specification describes all
calculations performed by the program.

7. Output Format Specification. This specification describes the
format of all records written by the program.

The first part of the source program may end wi th: a normal
EDIT end-of-file, a record containing '/*b' in columns 1-3, or a
record containing '**b' in columns 1-3 (where b indicates a
blank). The"first two cases signify the end of the source
program; the last case signifies that a user library inclusion
and/or compile-time tables follow the source program.

If code from a user library is required, (see Appendices E and I
for details), a library inclusion record must immediately follow
the '**b' record. A user library is required for SPECIAL
input-output devices and non-standard tape labels. The EXIT
operation (see Chapter 8) also requires a user library. The
format of a library inclusion is: '*LIBRARY' in columns 1-8,
followed by one or more blanks, followed by a DOS file name. If no
extension is supplied, the extension 'REL' is assumed by RPGPLUS;
RPGII uses 'RPG' as the default. If compile-time tables are also
used, a '**b' record should follow the library inclusion.
Compile-time tables follow the first '**b' record if no library is
included, or the second '**b' record if one is used. Each
compile-time table must appear in the order specified on the
extension sheets, and must be separated by '**b' records. See
Chapter 5 for a description of tables and arrays.

After any of the preceding optional sections have appeared, the
source file should terminate with either an EDIT end-of-file or a
record containing '/*b' in columns 1-3.

CHAPTER 1 . INTRODUCTION 1- 5

CHAPTER 2. COMMON FIELDS ON SOURCE

This chapter defines entries common to all RPG coding sheets.
Each coding sheet contains the following entries:

1. Columns 1-2 (PAGE).

2. Columns 3-5 (LINE).

3. Column 6 (FORM TYPE).

4. Column 7 (COMMENTS).

5. Columns 75-80 (PROGRAM IDENTIFICATION).

2.1 Columns 1-2 (Page)

Entry Explanation

01-99 Page number.

Columns 1-2 are for numbering the specification sheets used in a
job. You can use more than one of each sheet, but all sheets of
the same type must be kept together. When all the specifications
sheets are filled out, arrange them in the following order and
number them in ascending sequence:

1 • Header Card.

2. File Description.

3. Extension.

4 • Line Counter.

5. Input.

6. Calculation.

7. Output Format.

CHAPTER 2. COMMON FIELDS ON SOURCE 2-1

2.2 Columns 3-5 (Line)

Entry

Any
numbers

Explanation

Line numbers.

Columns 3-5 are used to number the lines on each sheet. Columns
3-4 contain preprinted line numbers, so in most cases line
numbering is already done. The unnumbered lines below the
preprinted numbers can be used for additional lines or to insert a
line between two other completed lines. Any other lines on the
sheets can be skipped. The line numbers used need not be
consecutive, but should be in ascending order. Line numbers are
optional. Note: RPGPREP automatically supplies line numbers.
Column 5 is always set to zero to allow later insertion of up to
nine new lines.

2.3 Column 6 (Form Type)

Entry

H

F

E

L

I

C

o

Explanation

Header.

File Description Specifications.

Extension Specifications.

Line Counter Specifications.

Input Specifications.

Calculation Specifications.

Output Format Specifications.

Column 6 contains a code for each type of source statement.

2.4 Column 7 (Comments)

Entry Explanation

* Comment line.

You may want to write comments to help you understand or remember
what is being done in a certain section of coding. Datapoint RPG

2-2 REPORT PROGRAM GENERATOR II

II allows an entire line to be used for these comments. The
comment line is identified by placing an asterisk in column 7.
Any characters in the character set may be used in a comment line.

Comments are not instructions to the RPG II program. They serve
only as a means of documenting the program. A comment line cannot
be written in the header card specifications line.

2.5 Columns 75-80 (Program Identification)

Columns 75-80 on all source program cards may contain any
characters. These columns may use the program name, or the columns
may contain any other characters to identify a certain portion of
the program. These entries are ignored by the compiler, but will
appear in the source program listing.

Note: Any entry made in these columns on the header specification
will be automatically placed into these columns of each source
statement by RPGPREP.

CHAPTER 2. COMMON FIELDS ON SOURCE 2-3

CHAPTER 3. HEADER SPECIFICATION

One header line is required for every program. It provides
information about your program and your system to the RPG II
compiler. Without this information your source program cannot be
translated into an RPG II object program.

3.1 Columns 1-2 (Page) and 3-5 (Line)

The he a d e r 1 i n emu s tal way s be 1 i n e " 0 1 0" (col u m n s 3 - 5) .
Refer to Chapter 2 for additional details.

3.2 Column 6 (Form Type)

An H must appear in column 6. A header line with an H in
column 6 must be entered for every program even if all other
columns are left blank.

3.3 Columns 7-9

Columns 7-9 are not used. The program is compiled in the
available core storage.

3.4 Column 10 (Object Output)

Column 10 is checked and if it contains neither C, D, or
blank, a warning is produced. The program identification is
ignored. No object program is produced when severe (terminal)
errors are present in the source statements.

3.5 Column 11 (Listing Options)

Entry

Blank

B

Explanation

1. The object program is produced (if no severe
errors are found).

2. The program listing is printed.

1. The object program is produced (if no severe
errors are found).

CHAPTER 3. HEADER SPECIFICATION 3-1

2. The program listing is not printed.

Column 11 provides for listing options at the time your source
program is compiled. If any severe errors are found during
compilation, the system halts after completing the listing
(provided a listing is to be printed).

The blank entry is the usual case, producing an object program (if
no severe errors are found) and a source program listing. The
program listing consists of the source program, error messages,
and a core map. The core map lists such information as relative
addresses of fields, constants, and 1/0 areas. The core map is
printed only if the program is successfully compiled. The B entry
means that no program listing is printed; however, an object
program is produced.

3.6 Columns 12-14 (Core Size to Execute)

Core Size to Execute is documentary only in Datapoint RPG and
does not affect program execution in any way!

3.6.1 Column 12

Entry

Blank,

Q

H

T

Explanation

No additional 256-byte increments are needed.

One additional 256-byte increment is needed.

Two additional 256-byte increments are needed (512
bytes).

Three additional 256-byte increments are needed (768
bytes).

Column 12 may be used to specify additional 256-byte increments of
storage. These increments document an extra 1/4K, 1/2K or 3/4K of
storage to be required in addition to the storage specified in
columns 13-14.

3-2 REPORT PROGRAM GENERATOR II

3.6.2 Columns 13-14

Entry Explanation

Blank The core storage required for object program
execution is the same as that used to compile the
program.

01-13 The core storage required for program execution (if
different from core storage available for object
program generation).

Use columns 13-14 to specify some multiple of 1K bytes of storage
(K=1024). Columns 13-14 document the core storage required for
program execution. The entry must end in column 14.

3.7 Column 15 (Debug)

Entry Explanation

Blank DEBUG operation is not performed.

DEBUG operation is performed.

In order to perform a DEBUG operation:

1. A 1 must appear in column 15 when the source program is
compiled.

2. The DEBUG operation code must appear in calculation
specifications.

3.8 Columns 16-25

Columns 16-25 are not used. Leave them blank.

3.9 Column 26 (Alternate Collating Sequence)

Entry Explanation

Blank Normal (EBCDIC) collating sequence is used.

A ASCII collating sequence is used.

CHAPTER 3. HEADER SPECIFICATION 3-3

Use column 26 if job collating sequence is in ASCII. Sequence
checking, comparisons and indexed disk files will be processed in
ASCII sequence.

Using the ASCII collating sequence is recommended since it is the
normal sequence used by other Datapoint software. The collating
sequence used in an RPG program must agree with the collating
sequence used to INDEX or SORT files.

3.10 Columns 27-74

Columns 27-74 are not used. Leave them blank.

3.11 Columns 15-80 (Program Identification)

See Chapter 2.

CONTROL CARD SPECIFICATION
""OGRAM ____ _ PROGRAMMER . __ DAIE _____ PAGE_DF_PAGES

Figure 3-1. Example of a Header Specification.

3-4 REPORT PROGRAM GENERATOR II

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS

File description specifications are required for every file
used by a program. Write these specifications on the File
Description Sheet. At least one line is needed to describe a
file. Datapoint RPG will allow a maximum of 24 file description
entries.

4.1 Columns 1-2 (Page) and 3-5 (Line)

Refer to Chapter 2.

4.2 Column 6 (Form Type)

An F must appear in column 6.

4.3 Columns 1-14 (File Name)

Use columns 7-14 to assign.a unique filename to every file
used in your program except compile-time table and array files,
which must not be named on the File Description Sheet. (Compile
time tablesarld arrays are described on the Extension Sheet). The
filename can be from 1-8 characters long, must begin in column 7,
and must be a valid RPG II name. The filename can be the same as
a field name.

Pre-execution time table and array files are described on the File
Description Sheet.

The entry in this field may be the same as the DOS file name used
when executing this program or it may be completely internal to
the program. See Column 53 (Continuation Code) for details.

When assigning file names for processing existing indexed files,
the file name should refer to the index to be used. The associated
data file will be selected whenever the index is referenced.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-1

4.4 Column 15 (File Type)

Entry Explanation

I Input file

0 Output file

U Update file

D Display file

Use column 15 to identify the way in which your program uses the
file. All input file descriptions must preceed other file
descriptions.

4.4.1 Input File

Input files are records that a program uses as a source of
data. When input files are described in a program it indicates
that records are to be read from the file. All input files except
table and array files must be further described on the Input
Sheet. Table and array files must be further described on the
Extension Sheet.

4.4.2 Output Files

Output files are records that are written or printed by a
program. All output files, except table and array output files,
must be further described on the Output Format Sheet.

4.4.3 Update Files

Update files are disk files from which a program reads a
record, updates fields in the record, and writes the record back
in the location from which it was read. Update files- must be
further described on both the Input Sheet and Output-Format Sheet.
A chained file or a demand file may be updated at detail time, at
total time or exception time. All other disk files can be updated
only at detail time during the same program cycle that reads the
record.

4-2 REPORT PROGRAM GENERATOR II

4.4.4 Display Files

A display file is a collection of information from fields
used by a program. The DSPLY operation code must be used on the
Calculation Sheet in order to display a field or record directly
from storage and/or key data into a field or record in storage.
Display files need only be described on the File Description
Sheet. The device associated with a display file must be a
keyboard-display (CONSOLE). See Operation Codes, DSPLY in Chapter
8 for more information.

4.5 Column 16 (File Designation)

Entry Explanation

P Primary file

S Secondary file

C Chained file

R Record address file

T Table or array file (pre-execution time ta bles or
arrays)

D Demand file

Use col u m n 1 6 tofu r the rid en t i f Y the use 0 f in put, up d ate, an d
chained files. Leave the column blank for display files and all
output files except chained and table output files.

4.5.1 Primary Files

A primary file .is the main file from which a program reads
records. In multifile processing the primary file is used to
control the order in which records are selected for processing.
It can be an input or update file. In programs that read records
from only one file, that file is the primary file. Every program
must have one and only one primary file. The primary file
description must be the first file description entry.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-3

4.5.2 Secondary Files

Secondary files apply to programs that do multifile
processing. All of the files involved in multifile processing,
except the primary file, are secondary files. A secondary file
c an be an inpu t, or upda te fi Ie. Second ary f i I es are proc ess ed in
the order in which they are written in the file description
specifications, except when matching records (MR) or when the
FORCE operation is used. Note that table, chained, and demand
files are not involved in record selection in multifile
processing.

ij.5.3 Chained Files

A chained file is a disk file that is read or written
randomly via the CHAIN operation code. A chained file can be an
input, output, or update file. If it is output and indexed, the A
option must be specified in column 66. This is because a chained,
indexed file must have an index built using the INDEX Utility
program. If this has been done, the file already exists and any
r e cor d s wr itt e n are a p pen de d to the ex i s tin g f i Ie, an din s e r ted
into the index.

4.5.4 Record Address Files

A record address file is an input file that indicates which
records are to be read from a disk file and the order in which the
records are to be read from the disk file. You cannot use more
than one record address file per disk file. All record address
files must be further defined in extension specifications.

Record address files contain binary relative record addresses and
are called ADDROUT (address output) files. They are disk files
produced by the DOS SORT program and can be used with any type of
disk file. See Column 28 (Mode of Processing), By ADDROUT File,
in this chapter for more information. .

4.5.5 Table or Array Files

A table or array file is an input or output file that
contains table or array entries. The entries can be read into the
pfogr~~ from a table input file immediately before execution of
the program. Only pre-execution time tables or arrays are
described on the File Description Sheet. However, both
pre-execution and compile time tables and arrays must be described

4-4 REPORT PROGRAM GEIJERATOR II

in the Extension Sheet.

A table or array output file (written after LR output) can be
defined and used as a normal output file and does not require an
entry in column 16. If the only output to the file is tables and
arrays, the file should be designated as a table output file.

Table and array files are not involved in record selection and
processing. They are only a means of supplying entries for tables
or arrays used by the program. When table or array files are read
during the execution of the program, the program reads all the
entries from the table or array files before it begins record
processing. See Chapter 5 for additional information.

4.5.6 Demand Files

Demand files can be input or update files. The READ
operation code must be used on the Calculation Sheet in order to
read consecutively from a demand file. Demand files can only be
processed consecutively. See Operation Codes, READ in Chapter 8
for a discussion of processing demand files.

4.6 Column 17 (End of File)

Entry

E

Blank

Explanation

All records from the file must be processed before
the program can end.

1. The program can end whether or not all of the
records from the file have been processed.

2. If column 17 is blank for all of the files, all
records from every file must be processed before
the program can end.

Column 17 applies to programs that perform multifile processing.
Use it to indicate whether or not the program can end before all
of the records from the file are processed. It applies only to
input and update files that are used as primary or secondary
files.

If the records from all the files must be processed, column 17
must be blank for all files, or contain E's for all files.

A program that performs multifile processing could reach the end

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-5

of one file before reaching the end of the others. It therefore
needs some indication of whether it is to continue reading records
from the other files or end the program. An entry in column 17 in
the descriptions of the files provides that indication.

4.7 Column 18 (Sequence)

Entry

A

D

Blank

Explanation

Sequence checking is to be done. Records in the
file are in ascending order.

Sequence checking is to be done. Records in the
file are in descending order.

No sequen6e checking is to be done.

Column 18 applies to update files, and all input files except
table, array, chained, and demand files. Leave column 18 blank
for output, display, table or array files, and chained files. Use
it to indicate whether or not the program is to check the sequence
of the records. Use columns 61-62 on the Input Sheet to identify
the matching fields containing the sequence information. The
proper collating sequence for sequence checking (EBCDIC or ASCII)
is determined by column 26 in the Control Card Specification.

Sequence checking is required when matching fields are used in the
records from the file. When a record from a matching input file
is out of sequence, the program halts, and the operator has three
options:

1. Bypass the record out of sequence and read the next record
from the same file (BYPASS option).

2. Bypass the record out of sequence, turn on the LR indicator
and perform all end-of-job and final total procedures (CANCEL
option).

3. Immediately discontinue program execution (ABORT option).

See Appendix A (RPGPLUS) or F (RPGII) for a detailed description
of operating procedures.

4-6 REPORT PROGRAM GENERATOR II

4.8 Column 19 (File Format)

Entry Explanation

F Fixed-length records.

v Variable-length records.

In Datapoint RPG II there are two types of file organizations,
fixed and variable. Disk and cassette files may be either; files
on other devices must be fixed. For cassette input either 'F' or
'V' may be used, with no effect on program execution.

4.8.1 Fixed Format Files

These files have definite record length and are not subject
to special processing. Disk files to be updated or processed
randomly must be fixed format. See Appendix M for further details
about fixed-format disk files. Cassette output file records will
be written without space compression if an 'F' is used in column
19.

4.8.2 Variable Format Files

These files have a maximum record length ~nd are compatible
with Datapoint software using the sequential record format such as
the general purpose editor program EDIT. On input, blanks are
expanded; on output, blanks are compressed. See Appendix M for
further details about variable-format disk files. Cassette output
files will be written with space compression if a 'V' is used in
column 19.

4.9 Columns 20-23 (Block Length)

Entry Explanation

Number Length of block.

Blank Default block length.

These columns have differing interpretations depending on the
device assigned for the file (see Columns 40-46). If an entry is
s p e c i fie d, it m u s ten din col urn n 23. Lea din g z e r 0 s rna y be
omitted.

CHAPTER 4.· FILE DESCRIPTION SPECIFICATIONS 4-7

4.9.1 Disk Files

The block length for fixed-format disk files may be a
multiple of the record length. This is allowed for language
compatibility, however, Datapoint RPG will always assign the most
efficient block length. For variable-format disk files these
columns must either be blank or equal to the record length.

4.9.2 Tape Files

These columns may either be blank or contain a multiple of the
record.length. In order to properly process tape input files, the
block length entry used must be the same as the block length used
when the tape file was written.

4.9.3 Other Files

These columns must either be blank or contain the record
length.

4.10 Columns 24-27 (Record Length)

Entry

Number

Explanation

The number of characters used in each record
(limited by the device used).

Use columns 24-27 to indicate the length of the records in the
file. For variable-format files the record length defines the
maximum size of a record. The actual size is determined by the
data read or written. For fixed-format files, information is
transferred in units of the record length. All of the records in
one file must be the same length. (For update files, the length
of a record after it is updated must be the same as before it was
updated). The maximum record length allowed and the size of the
IIO area assigned depend upon the device assigned to the file.
The record length specified may be shorter than the maximum length
for the device. The entry placed in these columns must end in
column 27. Leading zeros can be omitted.

4-3 REPORT PROGRAM GENERATOR II

4.11 Column 28 (Mode of Processing)

Entry Explanation

L Sequential within limits.

R 1 • Random by relative record number.

2. Random by key.

3. By ADDROUT file.

4 • Direct file load (random load) .

Blank 1 • Sequential by key.

2. Consecutive.

Use column 28 to indicate the method by which records are to be
processed. Only indexed disk files can be processed sequentially
by key or within limits. Disk files that are indexed, chained or
controlled-by an ADDROUT file can be processed randomly. All
other files must be processed consecutively.

Column 31 is used to further identify the processing method. See
column 31 (Record Address Type) in this chapter.

4.11.1 Consecutive Method

The consecutive method applies to all files. During
consecutive processing records are read in the order in which they
physically appear in the file. The contents of spaces left for
missing records in direct (fixed-format) files are read as though
the records were there. (Such spaces are filled with blanks).

The program reads records from the file until either the end of
that file is reached or the program ends due to the end-of-file
condition of another file. See column 17, End of File, in this
chapter for more information about the second condition.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-9

4.11.2 By ADDROUT File

An ADDROUT (address output) file is a record address file
produced by the DOS SORT Program. It is a file of 3-byte disk
records containing binary relative record addresses of records in
a disk file. RPG II locates and reads the record at the specified
address in the original disk file. Records are read in this
manner until either the end of the ADDROUT file is reached or the
program ends due to the end-of-file condition of another file.
See Column 17, End of File in this chapter for more information
about the second condition.

4.11.3 Sequential By Key

Processing sequentially by key applies only to indexed disk
files that are used as primary, secondary or demand files.

Records are read in ascending key sequence established when the
file was INDEXed by the INDEX utility program (See Appendices
A/F). The alternate collating sequence option (Column 26 in the
Header Specification) must agree with the option used when
INDEXing the file (EBCDIC or ASCII). The program reads records
from the file until either the end of that file is reached or the
program ends due to the end-of-file condition of another file. See
column 17, End of File, in this chapter for more information about
the second condition.

4.11.4 Sequential Within Limits

Sequential within limits processing is accomplished using the
SETLL operation code during calculations. The SETLL operation code
is used to establish a lower limit for sequentially processing
primary, secondary, or demand files. The upper limit (if not
end-of-file) must be checked using the COMP operation code.

When using SETLL with primary and secondary files, care should be
exercised to discard the first record read (as part of the normal
input cycle) prior to entering calculations and executing the
first SETLL. (See Operation Codes, SETLL in Chapter 8).

4-10 REPORT PROGRAM GENERATOR II

4.11.5 Random Method

Two methods, random by relative record number and random by
key, apply to chained files only. They require the use of the
CHAIN operation code. The records of a file to be read or written
must be processed by the CHAIN operation code. The records are
read or written only when the CHAIN statements that identify them
are executed.

When processing fixed blocked disk files "directly" (without using
an ISAM index), relative record numbers are used to identify the
records. Relative record numbers identify the positions of the
records relative to the beginning of the file. For example, the
relative record numbers of the first, fifth, and seventh records
in a file are 1, 5, and 7 respectively. (See Operation Codes,
CHAIN in Chapter 8).

For indexed files, record keys must be used to locate the records.
A record key is the information used to match unique data in a
field in each record that is used to identify that record. Record
key fields are defined when a fixed blocked disk file is indexed
with the INDEX utility program (See Appendices A/F).

Records are read during the calculation phase of the program.
Therefore, fields from these records can be used during detail or
total calculations. Note then, that fields of records read from
chained update files can be read and altered during calculations
and the records can be updated (written back on the file with
alterations) during output.

4.12 Columns 29-30 (Length of Key)

Entry Explanation

Number Length of record key or ADDROUT file record

Columns 29-30 apply only to indexed disk files and record address
files. Enter:

1. The length of the record keys in indexed files.

2. The length of the records in ADDROUT files.

All of the key fields in the records in an indexed file must be
the same length. The maximum is 99 bytes. All of the records in an
ADDROUT file have a length of three. A leading zero is not
required.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-11

4.13 Column 31 (Record Address Type)

Entry

A

I

Blank

Explanation

Record keys in unpacked format are used in
processing indexed files.

The file is being processed by means of an ADDROUT
file or the file is an ADDROUT file.

1. Relative record numbers are used in processing
sequential and direct files.

2. A sequential or direct file is being loaded.

3. Records are read consecutively.

Column 31 indicates the way in which records in a disk file are
identified.

4.14 Column 32 (File Organization)

Entry Explanation

I Indexed file.

T ADDROUT file.

Blank Sequential file or direct file.

1-9 Additional 1/0 areas (ignored).

Use column 32 to identify indexed and ADDROUT files. See Column
28, Mode of Processing for further details. A digit is allowed in
this column for compatibility with other RPG systems, but has no
effect on the execution of the program.

4-12 REPORT PROGRAM GENERATOR II

4.15 Columns 33-34 (Overflow Indicator)

Entry Explanation

An overflow indicator is used to condition OA-OG,
OV records in the file. The indicator specified is the

one used.

Blank No overflow indicator is used.

Columns 33-34 apply to the output file assigned to the printer.
Use "these columns to indicate that you are using an overflow
indicator to condition records being printed in the file. Any
overflow indicators used in a program must be unique for the
output file assigned to the printer. Note that only one overflow
indicator can be assigned to a file. Do not assign overflow
indicators to a console file.

4.15.1 Overflow Indicator

Overflow indicators are used only with printer files,
primarily to condition the printing of heading lines. If you
intend to use an overflow indicator to condition output lines on
the printer, you must assign an overflow indicator to the printer
file on the File Description Sheet (columns 33-34). The same
indicator must be used to condition all lines that are to be
written only when overflow occurs.

If the destination of a space/skip or print operation is a line
beyond the overflow line, the overflow indicator is turned on and
remains on until all overflow lines are printed. However, if a
skip or space is specified that advances the form past the
overflow line to the first line or past the first line on a new
page, the overflow indicator does not turn on.

If an overflow indicator is used as a conditioning indicator, it
indicates that output is to be performed at overflow time. This
applies whether or not the line conditioned by the indicator is in
an AND or OR relationship with other indicators.

The overflow indicator may be set by the SETON or SETOF operation
code. After all total records have been written, however, the
indicator is set as it normally is in accord with the overflow
line.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-13

4.16 Columns 35-38 (Key Field Starting Location)

Entry Explanation

1-255 Record position in which the key field begins.

Columns 35-38 apply to indexed files only. An entry must be made
in these columns for an indexed disk file. Enter the location in
which the key field begins in indexed file records.

The number entered must end in column 38. Leading zeros can be
omitted.

4.17 Column 39 (Extension Code)

E

L

Extension specifications further describe the file.

Line counter specifications further describe the
file.

Column 39 applies to (1) table and array files that are to be read
during program execution, (2) record address files, and (3) the
output file assigned to the printer. Output files that are
assigned to the printer can be described on the Line Counter
Sheet. Ta bles, ar r ay, an d recor d addr es s files mus t be desc r i bed
on the Extension Sheet. If tables are output to the printer 'E'
should not be used.

4.18 Column 40-46 (Device)

Entry Explanation

PRINTER Printer.

CONSOLE Keyboard Display.

DISK Disk.

READER Card Reader.

TAPE Industry-compatible 9 track tape unit.

CASSET1 Rear tape cassette.

CASSET2 Front tape cassette.

4-14 REPORT PROGRAM GENERATOR II

LOADER

SPECIAL

Pseudo-device for use with the. DOS CHAIN command

Special input/output device not supported by
Datapoint RPG II. (See Appendix F).

These columns are used to specify the input/output device to be
used for the file. All entries begin in column 40. The devices
that can be used depend upon the type of file access specified.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-15

FILE

Primary or
Secondary
Input

Chained Input
Files

Update Files
(Primary,
Secondary,
or Chained)

Output Files

Display File

DOS Chaining

Special Files

AVAILABLE DEVICES

MEDIA

Disk

Cards

Tape(800 BPI)
Tape(1600 BPI)

Cassette

Keyed In

Disk

Di sk

Di sk

Tape(SOO BPI)
Tape(1600 BPI)

Cassette

Printed

CRT

CRT

none

unknown

DEVICES

DISK (fixed or
variable format)

READER

TAPE
TAPE

CASSET1 or CASSET2

CONSOLE

MAXIMUM
BLOCK
LENGTH

9999

SO

1057
2048

249

78

DISK (fixed format) 9999

DISK (fixed format) 9999

DISK, (fixed or 9999
variable format)

TAPE 1057
TAPE 2048

CASSET1 or CASSET2 249

PRINTER 132

CONSOLE SO

CONSOLE 80

LOADER SO

SPECIAL 9999

4-16 REPORT PROGRAM GENERATOR II

4.18.1 Use of the LOADER Device for Program Chaining

This device may be used to construct a command line to be
executed by the DOS command processor after the normal end of an
RPG II object program. The LOADER must be used as an output file,
and the command line can typically be written during the last
total cycle (LR-time). The simplest use of the LOADER is to
invoke some other program, for example, the DOS SORT. By
constructing a sequence of DOS commands on some disk file and then
wri ting "CHAIN file" on the LOADER, where "file" is the DOS name
of the command file, more complex sequences may be realized.

Only one record may be written on the LOADER during the execution
of the object program. If the object program aborts, rather than
concluding normally, the command line is ignored.

4.18.2 SPECIAL Device Support

You can process files using devices not supported by
Datapoint RPG II. To do this, you must indicate that the file will
be handled by a SPECIAL device (SPECIAL in columns 40-46 of the
File Description Sheet). You must also supply a subroutine to
perform the 1/0 operations required to transfer data between the
SPECIAL device and core storage (subroutine name in columns 54-59
of the File Description Sheet).

The following can be used with SPECIAL files:

FORCE operation code.
READ operation code.

The following cannot be used with SPECIAL files:

CHAIN operation code.
Spacing and skipping.

SPECIAL files can only be processed consecutively. See Appendix E
for the conventions used by RPGPLUS to call the input-output
subroutine; Appendix I gives the RPGII conventions.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-17

4.19 Columns 47-52

These columns are not used and should be left blank.

4.20 Columns 53-65 (Continuation Lines)

4.20.1 Column 53 (Continuation Code)

Entry Explanation

A Assign disk file name at run-time.

D Disk file name defined at compile-time.

S Standard labels are used.

N Non-standard labels are used.

U No labels are used.

K Continuation Record.

If the file being defined is a disk file, column 53 may contain
'A' or 'D'. (If it is left blank, 'A' is assumed.) When the 'A'
entry is used, the object program will ask for the DOS external
file name to assign to the current internal file. When the 'D'
entry is used, the external file name is assumed to be the same as
the internal file name. See Appendix A and the 'EXTDRV' entry in
columns 54-59 for additional information.

Column 53 must contain'S', 'N', or 'U' if the file is a tape
file. If non-standard labels are being used, columns 54-59 must
contain the name of the user-supplied subroutine for processing
the labels. (See Appendices Ell for calling conventions.)

If the preceding File Description line describes an ASCII tape
file, column 53 must contain 'K' and columns 54-59 must contain
'ASCII'.

If the preceding File Description line describes a disk or printer
file, column 53 may contain a 'K', in which case columns 54-65
contain additional file specifications. See the following
discussion.

4-18 REPORT PROGRAM GENERATOR II

4.20.2 Columns 54-59 (Continuation Option)

Entry

EXTDRV

MAXSEC

LOCAL

SERVO

ASCII

_ 800 or
1600

Explanation

Extension and/or drive for disk file (Used to
specify the extension and/or disk drive assigned
for defined DISK files (see Column 53 above).

Maximum number of sectors for new disk files.

The Local printer is used at object (execution)
time.

The Servo printer is used at object (execution)
time. (The DEVICE in the preceding File
Description line must be PRINTER).

TAPE file written in ASCII.

Tape density(if not given for a tape file
800bpi is assumed).

4.20.2.1 Columns 54-59 (Name of Label Exit)

Entry

RPG name

Blank

Explanation

Name of the user-written subroutine which
will perform the I/O operation for a SPECIAL
device, or which will process non-standard
tape labels.

No SPECIAL device or non-standard labels
are being used.

Columns 54-59 must contain an entry for each data file assigned to
a SPECIAL device or to a TAPE file with non-standard labels.
These columns are used to specify the subroutine which will
perform the input/output operations for a file assigned to a
SPECIAL device or for non-standard tape label processing. The
subroutine name entered in columns 54-59 can be from one to six
characters long, and must be a valid RPG II name.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-19

4.20.2.2 Columns 60-62 (Extension)

Use these columns on a continuation card with the 'EXTDRV'
entry in columns 54-59 to specify the extension to be used for a
(compile-time) defined disk file. Datapoint RPG assumes an
extension of 'TXT' for all disk files except ISAM files. For ISAM
files, an extension of 'lSI' is assumed.

4.20.2.3 Columns 63-65 (Drive)

Use these columns to specify the drive for a compile-time
defined disk file. Single-digit drive numbers are specified by
'DRO' through 'DR9' or by 'DOO' through 'DOg'. Double-digit drive
number~ are specified by 'DOO' through 'D15'.

Either entry (EXT or DRV) can be specified, or left blank. If an
entry is left blank, 'ITXT' is assumed for the extension, and any
drive, starting with ':DRO', is assumed for the drive. Do not
specify the initial 'I' on the extension, or the ,., on the drive.
See the DOS manuals for further details.

4.20.2.4 Columns 60-65 (Number of Sectors)

These columns may be specified on a continuation card with
the 'MAXSEC' entry in columns 54-59 to specify the LRN limit to be
used for any disk file which may be created by the object program.
This entry no longer has any effect in Datapoint RPG.

4.20.2.5 LOCAL/SERVO Continuation Option

For files assigned to the printer, you may specify whether a
local or servo printer will be used at execution time by means of
a continuation card. If no specification is given local printer is
assumed.

4.20.2.6 ASCII Continuation Option

The ASCII continuation option is used for a tape file written
in ASCII. If the tape file is in ASCII format this option must be
used.

4-20 REPORT PROGRAM GENERATOR II

4.20.2.1 Tape Density Continuation Option

The tape density continuation option is used to give the
density of the tape being used. If the density of a tape file is
not given 800bpi is assumed. This option may be used in conjuction
with the ASCII option.

4.21 Column 66 (File Addition)

Entry Explanation

A New records are to be added to the file.

Column 66 must contain an 'A' when new records are to be added to
an existing consecutive or indexed disk file.

Records added to a consecutive file are added to the end of the
file. To add records to a sequential file, the file must be an
output file (0 in column 15 of the File Description).

Records-added to an indexed file are added to the end of the file
and the index used for the operation is updated to refect the
addition. New records may be added in any order and will be
indexed into the proper sequence. To add records to an indexed
file, the file must be an output or update file (0 or U in column
15 of the File Description).

If an indexed file has more than one index (indexed on more than
one key using the INDEX utility) the new records can not be
accessed using the other indices untilthe other indices have been
updated using the INDEX utility! (See Appendix A).

Column 66 should be blank for direct files.

4.22 Columns 61-10

These columns are ignored.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-21

4.23 Columns 11-72 (File Conditioning Indicator)

Entry

U1-U8

Blank

Explanation

The file is conditioned by the specified external
indicator.

Tbe file is not conditioned by an external
indicator.

Columns 71-72 apply to primary and secondary input (excluding
table input files), update, and output files. If an output file
is conditioned by an external indicator which is off, records will
not be written on that file. Any calculation operation which
should not be done when the file is not in use should also be
conditioned by the same indicator. When the indicator is off, the
file is treated as though the end of file had been reached; that
is, no records can be read from or written into the file.

4.23.1 U1-U8 (External Indicators)

Indicators U1-U8 are external indicators. This means they
are set during start-up. Their setting cannot be changed during
processing. Thus, the program has no control over them.

You may use these indicators as file conditioning indicators. They
tell whether or not a certain file is to be used for a job. For
example, you may have a job which one time requires the use of two
output (or input) files and another time the use of only one.
Instead of writing two different programs (one using one file, the
other two), you can condition a file (in the File Description
Specifications) by an external indicator. When the indicator is
on, the file is used; when it is off, the file is not used.

In addition to using these indicators as file conditioning
indicators, you may use them:

1. To condition calculation operations.

2. To condition output operations.

3. As field record relation indicators (columns 63-64 of Input
Specifications Sheet).

4-22 REPORT PROGRAM GENERATOR II

4.24 Columns 13-74

Columns 73-74 are not used.

4.25 Columns 15-80 (Program Identification)

See Chapter 2.

FILE DESCRIPTION SPECIFICATION
PAGE_OF .* __ ~ PAGES

CONTINlIATIn

PP:JGRAM

IDENTIFICATION

~~~lII .. ~.~_ T ~~.~.~ ~H- - -- -1- - - - -t-'~ _~ _ -1- -_. -f-~-++-+--l- r-I---I- - -,-l----+-+-+-~ -r-- - -I- 1-- - +-
I-I-_~a. . _ F-I-.-i-_I- _ --L,-.- -I-r--I-I- _ t--- ._ _ _ .. _ __ ._ I J 1-1-.,..1 -+-1_1--I--..Ll---1--4 

I - :--rtl---' 

Figure 4-1. Example of simple File Description Specification. 

o~41 F I, ' i - r T 1 r 1 - I T I i + I Ii; ~ F ' -1- -+--l~+--+-+--+--+--+--H-I-J- J- t +- .. ··+-·+-+-+-+-++-II-++-~-f-H +-l-r+-+--+--~++-t~ .~.--!-!-4--+ ---l-f-I-I-+-! +-t 
r+_~O+146~~F~P_+~;~T~I~_+~/~L~iE+. ~M~~~+~F++~~~~!2_HHf-+-+-+-~++~~tPi~~/WrrI1-r=£t~ii~rtti~a~tt~~~tti~-rrtti~-rttl~~ 

~f - F 1---1 1-1--- - -l-- . f- I--- -~-+-+-l-+-+.+-t-+-+-l-+-+-+-+-~+-+--t-+-=I=+=+II<-
018 ~r+~r++~-r+-+~~-+-+-r+4~~~.~-+-+~+-+~~4-j~++4~++~~+4~~-~-+-+-+~·~-~-+-+-+-+-b++--t-+-~+4-1-+-~-~+ 

H-~~!. .- f --+--l-+--+--J.-+--+-++-jl--+.- 1-+++-\---4. I--

" 0 F 
,I I + I 

I- -~+~+- ~ -tt- --1--1-- --tT- -1-+ -- -H-f--l-+-+.-++-I-I-+-+-+--il-+-++-+++-+-I-I-+-+++H-t- +- -.+--l--+-++-+-J-++++- -- +-n 1-+-1--, _.+-"-'-+-+-+--+-1 

Figure 4-2. 
Description 

Example of continuation 
Specification. 

line usage in File 

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-23 





CHAPTER 5. EXTENSION SPECIFICATIONS 

Extension specifications are needed to describe the record 
address files, tables, and arrays you may use in your job. Enter 
these specifications on the Extension Sheet. 

Pre-execution time tables and arrays are described in columns 
11-45. Compile time tables and arrays are described in columns 
19-45. If an alternating table or array is to be specified with 
another table or array, it is described in columns 46-57 of the 
same line as the first. 

Record address files require entries on the Extension Sheet in 
columns 11-26. 

5.1 Columns 1-2 (page) and 3-5 (Line) 

See Chapter 2. 

5.2 Column 6 (Form Type) 

An E must appear in column 6. 

5.3 Columns 7-10 

Columns 7-10 are not used. 

5.4 Columns 11-18 (From Filename) 

Entry 

Record 
Address 
Filename 

Table 
or Array 
Filename 

Explanation 

The name of the record address file 
defined on the File Description 
Specification Sheet. 

Table or array file loaded at 
pre-execution time. 

Blank 1. Table or array loaded at compilation time 
if an entry appears in Number of Entries 

CHAPTER 5. EXTENSION SPECIFICATIONS 5-1 



per Record (columns 33-35). 

2. Array loaded at execution time (loaded via 
input or calculations specifications) if 
there is no entry in Number of Entries per 
Record (columns 33-35). 

Columns 11-18 are used to name a table file, array file, or record 
address file. Filenames must begin in column 11. 

Leave columns 11-18 blank for compile time tables or arrays, or 
for arrays loaded via input or calculations specifications 
(execution time array). These columns must contain the table or 
array filename of every pre-execution time table or array used in 
your program. 

5.5 Columns 19-26 (To Filename) 

Entry 

Name of 
an input 
or update 
file . 

Name of 
an out­
put file 

Explanation 

The file processed via the record 
address file name under From Filename. 

The output file on which a table or array 
is to be written at end of job. 

Columns 19-26 define the relationship between a file named in 
these columns and a file named in columns 11-18. Filenames must 
begin in column 19. 

If a record address file is named under From Filename, columns 
11-18, the name of the primary or secondary file that contains the 
data records to be processed must be entered in To Filename, 
columns 19-26. 

If you wish a table or array to be written, us~ columns 19-26 to 
enter the filename of the output file you will use to do this. 
This output file must have been previously named in the file 
description specifications. Execution time arrays cannot be 
written at end-of-job. Leave columns 19-26 blank for execution 
time arrays or if you do not want the table or array written. 

If a table or array is to be written, it is automatically written 

5-2 REPORT PROGRAM GENERATOR II 



at the end of the job after all other records have been written. 

Since the table or array will be written in the same format in 
which it was entered, you may want to rearrange the output table 
or array through Output Format Specifications. You may format 
table or array output by using exception lines to write out one 
item at a time (see Operation Codes, Exception in Chapter 8). 
Tables or arrays will be written under RPG II control only after 
all records have been processed (Last Record indicator is on). 
Note: If a table or array is to be written to a printer file at 
the end of a job, the last Output Format Specification should be a 
space or skip to the line at which table or array output should 
begin. 

5.6 Columns 27-32 (Table or Array Name) 

Entry 

Table or 
Array 

Explanation 

Name of a table or array used in the 
program. 

Use columns 27-32 to name your table or array. No two tables or 
arrays may have the same name. The name can be from one to six 
characters long and must begin in column 27, and must be a valid 
RPG II name. If alternating tables or arrays are being described, 
this must name the table or array whose entry is first on the 
input record. 

5.6.1 Table Name 

Every table used in your program must be given a name from 
three to six characters long beginning with the letters TAB. Any 
name in these columns which does not begin with TAB is considered 
an array name. This table name is used throughout the program. 
However, different results can be obtained depending upon how the 
table name is used. Factor 2 on the Calculation Sheet can contain 
the name of a table to be searched and the result field can 
contain the name of another table from which an associated 
function is to be obtained. When the table name is used in Factor 
2 or Result Field (on the Calculation Sheet) with the LOKUP 
operation, it refers to the entire table. When the table name is 
used with any other operation code, it refers to the table item 
last selected from the table by a LOKUP operation. If the table 
name is used before any successful look-ups are performed, the 
first table item is referenced. See Operation Codes, LOKUP, in 
Chapter 8 for more information. 

CHAPTER 5. EXTENSION SPECIFICATIONS 5-3 



Tables are processed in the same order as they are specified on 
the Extension Sheet. Therefore, if you have more than one table, 
remember the tables are to be loaded in the, same order as they 
appear on the sheet. 

Tables cannot be used with an index. 

5.6.2 Array Name 

Every array used in your program must be given a name from 
one to six characters long. An array name cannot begin with the 
letters TAB. This array name is used throughout the program. 
Different results are obtained if the array name is used with an 
index or without an index. When used with an index, a particular 
element of the array is referenced. An array name used un indexed 
refers to the whole array. 

An index is a numeric field or literal with zero decimal 
positions. When used to select an array element, the value of the 
index must not be negative, zero, or greater than the number of 
elements in the array. An indexed array reference is written as: 
array-name,index (note that the name and index are separated by a 
comma).The length of an array name is limited by its use. In 
input, output and the result field of calculations, ,the array 
element (array-name, index) is limited to six positions; in factor 
1 and factor 2, to ten positions. 

On input or output an entire array may be read or written to a 
single field or the array may be proces~ed element by element. An 
indexed reference is treated like a normal field during 
calculation. An unindexed reference refers to the entire array. 
An entire array may not be used with: COMP, DSPLY, TESTZ, TESTB, 
BITON, or BITOF. Otherwise the following rules apply: 

1. When all operands are arrays, the operation is performed 
element by element until the shortest array is processed. 

2. When one operand and the result field are arrays, and the 
other operand is a field or literal, the operation is 
repetitively performed using the same field or literal. 

3. Except for XFOOT and LOKUP, neither operand can be an array 
name unless the result field is an array name, and resulting 
indicators may not be used. 

5-4 REPORT PROGRAM GENERATOR II 



5.1 Columns 33-35 (Number of Entries per Record) 

Entry Explanation 

1-999 Number of table or array entries found in each table 
or array input record. 

Indicate in columns 33-35 the exact number of table entries in 
each table or array input record. The number entered must end in 
column 35. Every table or array input record except the last must 
contain the same number of entries as indicated in columns 33-35. 
The last record may contain fewer entries than indicated, but 
never more. When two related tables are described, each table 
input record must contain the corresponding items from each table 
written in alternating form. These table items are considered as 
one entry. Corresponding items from related tables must be on the 
same record. If there is room, comments may be entered on table 
input records in columns following table entries. 

When loading an array the following must be considered: 

1. To load a pre-execution time array, the array filename must be 
entered in columns 11-18 and an entry must be made in Number 
of Entries per Record (columns 33-35). 

2. To load an array at compile time, the filename entry (columns 
11-18) must be blank, but an entry must be made in Number of 
Entries per Record (columns 33-35). 

3. To load an execution time array (via the input and/or 
calculation specifications), the From Filename (columns 11-18) 
and the Number of Entries per Record (columns 33-35) must be 
blank. 

5.8 Columns 36-39 (Number of Entries/Table) 

Entry Explanation 

1-9999 Maximum number of table or array entries. 

Use columns 36-39 to indicate the maximum number of table items 
which can be contained in the table named in columns 27-32, or the 
maximum number of array items which can be contained in the array 
named in columns 27-32. This number may apply to one table or to 
two alternating tables. If alternating tables are described, 
corresponding table items are considered one entry. Any number 
entered in these columns must end in column 39. 

CHAPTER 5. EXTENSION SPECIFICATIONS 5-5 



If your table or array is full, this entry gives the exact number 
of items in it. However, if the table or array is not full, the 
entry gives the number of items that can be put into it. A table 
or array that is not full is known as a short table or array. 

Since the number of items for two related tables or arrays must be 
the same, the entry in these columns also ~ives the number of 
items in a second table or array (columns 46-51). 

5.9 Columns 40-42 (Length of Entry) 

Entry Explanation 

1-256 Length of a table or array entry. 

Use columns 40-42 to give the length of each entry in the table or 
array named in columns 27-32. The number entered must end in 
column 42. 

All table items must have the same number of characters. It is 
almost impossible, however, for every item to be the same length. 
Therefore, add zeros or blanks to the front of numeric items to 
make them the same length and add blanks to alphanumeric items. 
For aiphanumeric items, blanks may be added either before or after 
the item. 

If two related tables or arrays are described on one Extension 
Sheet, the entry in columns 40-42 applies to the table whose item 
appears first on the record. 

5.10 Column 43 (Packed or Binary Field) 

Entry 

Blank 

Explanation 

Data for table or array is in IBM-compatible numeric 
format or is alphanumeric. 

Data for table or array is in Databus-compatible 
format. 

For a complete discussion of data representation, see Column 43, 
Packed or Binary Field in Chapter 7. 

5-6 REPORT PROGRAM GENERATOR II 



5.11 Column 44 (Decimal Positions) 

Entry 

Blank 

0-9 

Explanation 

Alphanumeric table or array. 

Number of positions to the right of the decimal in 
numeric table or array items. 

Column 44 must always have an entry for a numeric table or array. 
If the items in a numeric table or array have no decimal 
positions, enter a O. 

If two alternating tables or arrays are described in one file, the 
specification in this column applies to the table containing the 
item which appears first on the record. 

5.12 Column 45 (Sequence) 

Entry Explanation 

Blank No particular order. 

A Ascending order. 

D Descending order. 

Use column 45 to describe the sequence (ascending or descending) 
of the data in a table or array. Execution time arrays are not 
checked for sequence, but column 45 must contain an entry if high 
or low LOKUP is to be used. 

When an entry is made in column 45, the table or array is checked 
for the specified sequence. If a pre-execution time table or 
array is out of sequence, an error occurs and the program halts 
immediately. The program can be restarted from the point where it 
halted if you do not want to correct the out-of-sequence 
condition; otherwise program execution must be restarted from the 
beginning. 

Compile-time tables or arrays are sequenced checked at 
compile-time and a diagnostic is issued if they are improperly 
sequenced. 

Ascending order means that the table or array items are entered 
starting with the lowest data item (according to the collating 
sequence) and proceeding to the highest. Descending order means 

CHAPTER 5. EXTENSION SPECIFICATIONS 5-7 



that the table or array items are entered starting with the 
highest data item and proceeding to the lowest. 

If alternating tables or arrays are described in one file, the 
entry in column 45 applies to the table or array containing the 
item which appears first on the record. 

When you are searching a table or array for an item (LOKUP) and 
wish to know if the item is high or low compared with the search 
word, your table or array must be in either ascending or 
descending order. See Operation Codes, LOKUP in Chapte~ 8 for 
more information. When a specific sequence has been specified, 
RPG II checks the data in the table or array to see if it really 
is in that sequence. In checking for sequence, an equal condition 
(identical entries) is considered valid. This allows you to pad 
the beginning of the table wi th zeros or blanks, or to pad the end 
of the table with 9's (assuming EBCDIC, ascending sequence). 

5.13 Columns 46-51 (Alternate Table/Array Specification) 

Use columns 46-57 only when describing a second table or 
array which is entered in alternating format with the table or 
array named in columns 27-32. All fields in this section have the 
same significance and require the same entries as the fields with 
corresponding titles in columns 27-45. An alternating array 
cannot be described with an execution time array. See the 
previous discussion on those columns for information about correct 
specifications. 

5.14 Columns 58-74 (Comments) 

Enter any information you wish in columns 58-74. The 
comments you use should help you understand or remember what you 
are doing in each specification line. Comments are not 
instructions to the RPG II program; they serve only as a means of 
documenting your program. 

5.15 Columns 15-80 (Program Identification) 

See Chapter 2. 

5-8 REPORT PROGRAM GENERATOR II 



EXTENSION SPECIFICATION 
PROGAAM ________ PROGRAMMER _______ :,\T: 

PO LINE 

NO '10 

FADM 

FILE f"A~E 
TO 

FilE NAME 

___ ?,.:'':_>· __ PA\3;'':' 

;)ATA FORMAT 
DECIMAL POSITIONS 

SEQUENCE (A '01 

PROGRAM 
IDENTIFICA.TION 

Fiqurq.5-1. Examole of a sinale table descriotion on Extension 
Soecification. 

Figure 5-2. Example of alternating tables on Extension 
Specification. 

figure 5-3. Example of an array description on Extension 
Specification. 

CHAPTER 5. EXTENSION SPECIFICATIONS 5-9 





CHAPTER 6. LINE COUNTER SPECIFICATIONS 

Line counter specifications should be used for the printer 
file (except the keyboard-display) in your program. Line counte~ 
specifications indicate at what line overflow occurs and the 
length of the form used in a printer. Both of these entries must 
be specified on the Line Counter Sheet (Figure 6-1). Line counter 
specifications may be omitted if overflow indicators are not used 
with untitled 66-line forms. 

6.1 Columns 1-2 (Page) and Columns 3-5 (Line) 

See Chapter 2. 

6.2 Column 6 (Form Type) 

An L must appear in column 6. 

6.3 Columns 7-14 (Filename) 

Use columns 7-14 to identify the output file to be written on 
the printer. Filename must begin in column 7. 

Any filename entered in these columns must be previously defined 
on the File Description Sheet. The output device assigned to the 
file on the File Description Sheet must be a printer. 

6.4 Columns 15-17 (Lines per Page) 

Entry Explanation 

1-99 Number of printing lines per form or page. 

Columns 15-17 specify the exact number of lines on the form or 
page to be used. The entry must end in column 17. Leading zeros 
may be omi t ted. 

CHAPTER 6. LINE COUNTER SPECIFICATIONS 6-1 



6.5 Columns 18-19 (Form Length) 

Entry Explanation 

FL Form length 

Columns 18-19 must contain the entry FL. This entry indicates 
that the preceding entry (columns 15-11) is the form length. 

6.6 Columns 20-22 (Line Number of Overflow Line) 

Entry Explanation 

1-99 A line number from 1-99 is the overflow line. 

Columns 20-22 specify the line number that is the overflow line. 
The entry must end in column 22. Leading zeros may be omitted. 

When the destination line of a space, skip, or print operation is 
a line beyond the overflow line you have specified (but not beyond 
the form length), the overflow indicator turns on to indicate that 
the end of the page is near. When the overflow indicator is on, 
the following occur before forms advance to the next page: 

1. Detail lines are printed (if this part of the program cycle 
has not already been completed). 

2. Total lines are printed. 

3. Total lines conditioned by the overflow indicator are printed. 

Because all these lines are printed on the page after the overflow 
line_ you have to specify the overflnw line high enough on the 
page to allow all these lines to print. 

6.7 Columns 23-24 (Overflow Line) 

Entry Explanation 

OL Overflow line 

Columns 23-24 must contain the entry OLe This entry indicates 
that the preceding entry (column 20-22) is the overflow line. 

6-2 REPORT PROGRAM GENERATOR II 



6.8 Columns 25-14 

Columns 25-74 are not used, and should be left blank. 

6.9 Columns 75-80 (Program Identification) 

See Chapter 2. 

LINE COUNTER SPECIFICATION 
PROG"""' _______ PROGRAMMER ______ DATE ___ PAGE_OF_PAGES 

PO I.INE 

NO NO 
FILENAME FOR'" <fc6! 

lENGTH LINE 

F l NlJ"'BEF 0 l 

PROGR ..... 
INOENTIFICATION 

14'S 17'~ 1S 20 27:n 24 

Figure 6-1. Example of Line Counter Specification. 

CHAPTER 6. LINE COUNTER SPECIFICATIONS 6-3 





CHAPTER 7. INPUT SPECIFICATIONS 

Input specifications describe the data files, records, and 
fields of the records to be used by the program. These 
specifications may be divided into two categories: 

1. File and record type identification (columns 7-42). These 
specifications describe the input record and its relationship 
to other records in the file. 

2. Field description entries (columns 43-74). These 
specifications describe the fields in the records. 

The specifications are written on the Input Sheet. Field 
description entries must not appear on the same line as file or 
record type identification entries. 

7.1 Columns 1-2 (Page) and 3-5 (Line) 

See Chapter 2. 

7.2 Column 6 (Form Type) 

An I must appear in column 6. 

1.3 Columns 1-14 (Filename) 

Columns 1-14 identify the input or update file being 
described. The filename must begin in column 1 and conform to RPG 
II naming specifications. Use the same filename given in the file 
description specifications. The name of every input or update 
file (except table input files) described in the file description 
specifications must be entered at least once on this sheet. The 
filename must appear on the first line that contains information 
concerning the records in that file. If the filename is omitted, 
the last input filename entered is assumed to be the file being 
described. All records and fields for one file must be completely 
described before another file can be described. 

In RPGPLUS, the order in which files are described in the File 
Specifications need not be the same as the order in which they are 
described in the Input Specifications. However, in RPGII, files 

CHAPTER 7. INPUT SPECIFICATIONS 1-1 



must be described in the Input Specifications in the same order as 
they were described in the File Specifications. 

7.4 Columns 15-16 (Sequence) 

Entry 

Any two 
Alphabetic 
characters 

Any 
two-digit 
number 

Explanation 

No check for special sequence. 

Check for special sequence 

Columns 15-16 may contain a numeric entry which assigns a special 
sequence to different record types in a file. 

If different types of records do not need to be in any special 
order, use two alphabetic characters. Alphabetic characters must 
be used for chained files and look ahead records. Within one 
file, record types having alphabetic and numeric sequence entries 
can be specified for the same file, but all alphabetic entries 
must be before the numeric entries. 

Use columns 15-16 to assign sequence numbers to different types of 
records within a file. A job may require that one record type 
(identified by a record identification code) must appear before 
another record type within a sequenced group. For example, a name 
record may be needed before an address record. A record 
identification code must be provided for each type of record and 
the record types must be numbered in the order that they should 
appear. The program will check this order as the records are 
read. The first record type must have the lowest sequence number 
(01), the next record type should be given a higher number, etc. 
Gaps in sequence numbers are allowed, but the numbers used must be 
kept in ascending order. The first sequence number must be 01. 
Numeric sequence numbers only ensure that all records of record 
type 01 precede all records of record type 02, etc., in any 
sequenced group. The sequence numbers do not ensure that records 
within a record type are in any certain order. Numeric sequence 
numbers have no relationship with control levels, nor do they 
provide for sequence checking of data in fields of a record. A 
record type out of sequence causes the program to stop. Program 
execution may be resumed, but the record that causes the halt is 
bypassed and the next record is read from the same file. 

7-2 REPORT PROGRAM GENERATOR II 



Records in an AND or OR line cannot have a sequence entry in these 
columns. The entry in these columns from the previous line also 
applies to the AND or OR line. 

7.5 Column 17 (Number) 

Entry 

Blank 

N 

Explanation 

Record types are not being sequence checked (columns 
15-16 have alphabetic entries). 

Only one record of this type is present in the 
sequenced group. 

One or more records of this type may be present in 
the sequenced group. 

Use column 17 only if sequence checking is to be done (columns 
15-16 contain numbers). Often, when sequence checking, there may 
be more than one record of a particular type within the sequenced 
group, thus you must indicate by an entry in column 17 that a 
certain number of records of one type may be found in the sequence 
group. 

AND or OR lines (columns 14-16 have the letters AND or OR) should 
not have an entry in this column. It is assumed that the number 
of records of this type to be found in the sequenced group is the 
same as the number entered in column 17 of the previous line. 
(See Columns 21-41 and Columns 53-58 in this chapter for more 
information on OR lines). 

7.6 Column 18 (Option) 

Entry 

Blank 

o 

Explanation 

Record type must be present (if sequence checking is 
specified). 

Option. Record type mayor may not be present. 

Column 18 is used when record types are being sequence checked. A 
blank entry specifies that a record of this record type must be 
present in each sequenced group. 

The 0 entry specifies that a record of this record type mayor may 
not be present in each sequenced group. If all record types are 

CHAPTER 7. INPUT SPECIFICATIONS 7-3 



optional, no sequence errors will be found. 

AND or OR lines should not have an entry in this column. The 
entry in this column on the previous line also applies to this 
line. (See Columns 21-41 in this chapter for more information on 
AND lines; see Columns 53-58 for more information on OR lines). 

7.7 Columns 19-20 (Record Identifying Indicator) 

Entry 

01-99 

L1-L9 

LR 

H1-H9 

** 

Explanation 

Record identifying indicator. 

Control level indicator, used for a record 
identifying indicator when a record type rather than 
a control field signals the start of a new control 
group. 

Last record indicator. 

Halt indicator, used for a record identifying 
indicator when checking for a record type that 
causes an error condition. 

Look-ahead fields. 

Columns 19-20 may be used for two purposes: 

1. Specifying record identifying indicators. 

2. Indicating look-ahead fields. 

7.7.1 Record Identifying Indicator 

Use columns 19-20 to assign an indicator to each record type. 
When you have different types of records within a file", you often 
want to do different operations for each record type. Therefore, 
you must have some way of knowing which type of record has just 
been read. To do this, you assign different record identifying 
indicators to each record type. Whenever a record type is 
selected to be processed next, its corresponding identifying 
indicator is turned on. (All other record identifying indicators 
are off at this time, unless chained files or demand files are 
being used, in which case several may be on at the same time.) 
This indicator signals throughout the rest of the program cycle 

7-4 REPORT PROGRAM GENERATOR II 



which record type has just been selected~ A record identifying 
indicator need not be assigned if you are not concerned about 
different record types. 

Because the record identifying indicator is on for the rest of the 
program cycle, you may use it to condition calculation operations 
(see Columns 9-17 in Chapter 8) and output operations (see Columns 
23-31 in Chapter 9). 

Record identifying indicators do not have to be assigned in any 
order. 

When a control level indicator used as a record identifying 
indicator turns on to reflect the type of record read, only that 
one control level indicator turns on. All lower level indicators 
remain off. 

The same indicator may be assigned to two or more different record 
types provided the same operations are to be performed on these 
types. This can be done by using the OR relationship (see Columns 
21-41 in this chapter). 

No record identifying indicator may be specified in the AND line 
of an AND relationship. Record identifying indicators for OR 
lines may be specified for every record type in the OR 
relationship that requires special processing. (See Columns 21-41 
in this chapter for information on AND lines. See Columns 53-58 in 
this chapter for information on OR lipes). 

7.7.2 Look Ahead Fields 

Use asterisks in columns 19-20 to indicate that fields named 
in columns 53-58 on the following specifications lines are 
look-ahead fields. A look-ahead field allows you to look at 
information in a field on the next record that is available for 
processing in any input file. In update files, the look-ahead 
field is for the record currently in process. 

Two of the uses for look-ahead fields are: 

1. Determining when the last card of a control group is being 
processed. 

2. Extending the RPG II matching record capability. 

Look-ahead fields can be used with input and update files. They 
cannot be specified for chained or demand files. You can describe 

CHAPTER 7. INPUT SPECIFICATIONS 7-5 



one set of look-ahead fields per file; the description applies to 
all records in the file, regardless of their type. (The 
specifications for describing the fields are given later). 
Look-ahead fields cannot be altered in the program (they cannot be 
used as a result field or blanked after). 

If you wish to use information both before and after the record is 
selected for processing, you must describe the field twice; once 
as a look-ahead field and once as a normal field. 

For update files, the look-ahead fields apply to the next record 
in the file only if the current record was not read from that 
file. Therefore, when you are reading from only one file and the 
file is an update file, look-ahead fields always apply to the 
current record. 

At end of file, all look ahead fields for that file are filled 
with nines. 

INPUT SPECIFICATION 
________ PROGRAMMER ______ DA1F. _____ PAGE ___ OF_PAGES 

ryPf foP~ 

q rCONTROL LEVEL 

rNr:;'~~~ECORD INDICATOR DECIMAL rOHMAT, DECIMAL POSITIONS, I rM~~:~~DF~~ggRD RELATION 

FIELO 
fiELD LOCATION INDICATORS 

fiELD NAME t! 
• - OR 

~ 

PROGRAM PG LINE 

'K' NO 
Fll( NAME SEQ 

t- NO: I- t-j a: 1_ N.r. 

POSH ION ~ ~ ~ POSITION g ~ 5 POSITION 9. ~ A 
STAAT END 

IDENTI~ leA nON 

65 67 69 71 14 7~ 

r--- -c-~ -. 

- --

Figure 7-1. Example of look-ahead specification. 

7-6 REPORT PROGRAM GENERATOR II 

-



7.8 Columns 21-41 (Record Identification Codes) 

Use columns 21-41 to describe the information that identifies 
a record type. 

When there are many record types in one file, you often want to 
perform different operations for each type. Therefore, you must 
identify each type by giving each a special code consisting of a 
c~mbination of characters in certain positions in the record. 
This code must be described in columns 21-41 so that when a reco~d 
is read the record type can be determined by these specifications. 
The first record identifying character should be identified in 
columns 21-27, the second in columns 28-34, and so forth. 

You may specify AND or OR lines in any combination to describe the 
record identifying code. The record must contain all the 
characters indicated as its record identification code before the 
record identifying indicator will turn on. 

Seven columns are set aside for the description of one character 
in the record identification code. Each specification line 
contains three sets of seven columns: columns 21-27, 28-34, and 
35-41. Each set consists of 4 fields: Position, Not, C/Z/D, and 
Character. Coding is the same for all three sets. 

When mo(e than one record type is used in a file, only one record 
type will be selected for processing in each cycle. The record 
identifying indicator for that record type will be turned on at 
the time of selection. If a data record meets the requirements of 
more than one of the record types, it will belong to the first 
record type for which it qualifies. When all records are to be 
processed alike regardless of their type, or if there is only one 
type, leave columns 21-41 blank. 

Note: If none of the identifying codes you have specified is 
found on a record, processing stops. You may continue. However, 
the record that caused the halt is not processed, and the next 
record in that file is read. 

7.8.1 Position 

Entry Explanation 

Blank No record identificaton code is needed. 

1-4096 Record position of the record identification code. 

CHAPTER 7. INPUT SPECIFICATIONS 7-7 



Use columns 21-24, 28-31, and 35-38 to give the location in the 
record of every character in the identification code. Entries in 
these columns must end in columns 24, 31, and 38 respectively. 
Leading zeros can be omitted. 

7.8.2 Not 

Entry 

Blank 

N 

Explanation 

Record ID code is present in the specified column. 

Record 10 code is not present in the specified 
column. 

Use an 'N' in columns 25, 32, or 39 to indicate that a certain 
character should NOT be present in the specified position. 

7.8.3 C/Z/D 

Entry Explanation 

Entire character. 

Z Zone portion of character. 

D Digit portion of character. 

Use columns 26, 33, or 40 to indicate what portion of a character 
is used as part of the record identifying code. Only the zone 
portion, only the digit portion, or both portions (the whole 
character) may be used. When establishing record identifying 
codes, remember that many characters have either the same zone or 
the same digit portion. 

7.8.4 Character 

Use any alphabetic character, special character, or digit in 
columns 27, 34, or 41 to identify the character that was used in 
the record to serve as the code or part of the code. 

7-8 REPORT PROGRAM GENERATOR II 



7.8.5 AND Relationship 

A maximum of three identifying characters may be described in 
one specification line. Thus, if the identification code consists 
of more than three characters, an AND line must be used. This 
means that the first three identifying characters are described in 
the first line. The additional identifying characters are 
described in as many following lines as are needed. Wri te the 
word AND in columns 14-16 to indicate an AND line. 

7.8.6 OR Relationship 

A particular record type may be identified by two different 
codes. If this is the case, OR lines must be used to indicate 
that either one of the codes may be present to identify the 
record. Write the word OR in columns 14-15 to indicate an OR 
line. 

INPUT SPECIFICATION 
PROGRAM _ ~~ ___ ~ __ rROGRAMME'R ______ _ 

TYPE FORM., 

PG LINE 

rNUMBER 
OPTION r ,-RECORD INDICATOR DECIMAL FORMAT, 

FIELD lOCATtON INOICATO~S 
PROGRAM 

II 
.. - OA 

1<0 NO 
FILE NAME SEa POSITION. 0 ~ ~ POSITION 0 ~ 1 POSITION 9 6 ~ 

ZuG Zuo ?oi') 
FIELD NM<E 

ICENT IFlCATION 
START END 

jl 

7 51 ':>253 58 59 61 €o3 65 67 f.,g 71 7' 75 

-+ .!l~!!-i - .~ -t' -tt' ~H_jA NJD -I t ... t _jIQf1)' - Cl~ -f-- Q;I·P CIE_'-
I 

11+-- ----.- -1-~ -f--H-- .- -T I + -t- -t-H- + tt-t-r+ I I I 
I 0 7!' " I I I I I 

Figure 7-2. Example of record identification line in Input 
Specification. 

CHAPTER 7. INPUT SPECIFICATIONS 7-9 

80 



1.9 Column 42 

Column 42 is not used and should be left blank. 

1.10 Column 43 (Packed or Binary Field) 

Entry 

Blank 

Explanation 

Field is in IBM-compatible decimal format, or is 
alphameric. 

Field is in Datapoint-compatible decimal format. 

Column 43 is used to indicate that a numeric field is in 
"Datapoint-compatible format. Fields in this form will be 
converted to IBM-compatible form for use within the RPG II 
program. 

An array which is read in Datapoint format should have an entry in 
column 43 of the Input Sheet. In this case the From and To 
columns of the Input Sheet should define the position the array 
occupies in the record. The array element length is defined on 
the Extension Sheet. 

1.10.1 IBM Compatible Format 

In this format, numeric input data is represented without an 
explicit decimal point and with the sign superimposed over the 
right-most digit. Leading zeroes may be replaced with blanks. 
This is the form RPG normally processes. 

7.10.2 Datapoint Compatible Format 

In this format numeric input data must be represented with an 
explicit decimal point unless the field contains no decimal 
positions. In this case the decimal point mayor may not be 
present. If the number is negative, the character preceding the 
first digit (or the decimal point) must be a minus sign. Since 
RPG does not internally store the decimal point, the internal 
field assigned is one byte less than the external field size with 
the same number of decimal positions. 

7-10 REPORT PROGRAM GENERATOR II 



IN PUT FIELD SI ZE INTERNAL FI ELD SIZE 

A. 1234. 5.0 1234 4.0 
B. -123. 5.0 012L 4.0 
C . -1234 5.0 1231"1 4.0 
D. 01234 5.0 1234 4.0 
E. 12345 5.0 illegal 4.0 
F. 12. 34 5.2 12 .... 34 ·4.2 
G. -1 .23 5.2 01 .... 2L 4.2 

Caret ( .... ) impl i es assumed decimal point. 

Example E shows that since the field contains five digits (no 
decimal point or sign is present), it cannot be converted to a 
four digit internal number. An attempt to read in a field larger 
than will fit will cause an error message to be displayed. 

7.11 Columns 44-51 (Field Location) 

Entry 

Two 
numbers 
of 1-4 digits 

Explanation 

Beginning (From) and end (To) of a field. 

Use columns 44-51 (From and To) to describe the location on the 
record of each field containing input data named in columns 53-58 
(Field Name). Enter the number of the record position in which 
the field begins in columns 44-47. Enter the number of the record 
position in which the field ends in columns 48-51. 

A single position field is defined by putting the same number in 
both From (columns 44-47) and To (columns 48-51). If a field of 
more than one position is defined, the number entered in From 
(columns 44-47) must be less than the number entered in To 
(columns 48-51). 

It is not necessary that the From and To columns specify a whole 
array. A portion of an array may be read in; however, the array 
will be read in from element 1 up to as many elements as will fit 
in the numbers specified in the From and To columns. 

DATABUS compatible input fields must take at least two positions. 

The maximum field length for a numeric field is 15 positions. The 
maximum field length for an alphanumeric field is 256 characters. 

CHAPTER 7. INPUT SPECIFICATIONS 7 -11 



Entries in these columns must end in columns 47 and 51. Leading 
zeros may be omitted. 

1.12 Column 52 (Decimal Positions) 

Entry Explanation 

Blank Alphanumeric field. 

0-9 Number of decimal positions in numeric field. 

Use column 52 to indicate the number of positions to the right of 
the decimal in any numeric field named in columns 53-58. Column 52 
must always have an entry when the field named in columns 53-58 is 
numeric. If you wish to define a field as numeric with no decimal 
positions, enter a O. If a field is to be used in arithmetic 
operations or is to be edited, it must be numeric. The number of 
decimal positions must be less than or equal to the field length. 

1.13 Columns 53-58 (Field Name) 

Entry 

1-6 
alphanumeric 
characters 

PAGE 

Explanation 

Field name, array name, or array 
element. 

Special word. 

Use columns 53-58 to name a field, array, or array element found 
on the input records. If you are referencing an array, additional 
entries may be needed in these columns. Use this name throughout 
the program whenever this field is referred to. Indicate the names 
of the fields for all types of records. However, you need name 
only the fields that are used. 

1.13.1 Field Names 

A field name can be from one to six characters long, must 
begin in column 53, and must be a valid RPG II name. 

All fields in one type of record should have different names. If 
two or more fields of the same record type have the same name, 
only the field described last is used. However, fields from 
different record types may have the same name if the fields are 

7-12 REPORT PROGRAM GENERATOR II 



the same length and contain the same type of data. This applies 
even if the fields are found in different locations in each record 
type. Storage is only reserved for each unique field name defined. 

Fields that are used in arithmetic operations or fields that are 
edited or zero suppressed (see Column 38 and Columns 45-70 in 
Chapter 9) must be defined as numeric. This means that column 52 
must have a decimal position entry. 

A separate line is used for each field description. 

7.13.2 Field Names in OR Relationship 

Even though two or more record types contain identical fields 
you must describe each field. This may require duplicate coding. 
To eliminate duplicate coding of identical fields from different 
record types, you may use the OR relationship. 

An OR relationship means that the fields named may be found in 
either one of the record types. You may use OR lines when: 

1. Two or more record types have the same fields in the same 
positions. 

2. Two or more record types have some fields which are identical 
and some fields which differ in location, length, or type of 
data. 

Write the word OR in columns 14 and 15 to indicate an OR line. If 
there are several AND or OR lines, field description lines start 
after the last record identification line. 

7.13.3 Special Word PAGE 

If your printed report has several pages, you may want to 
number the pages. The special word PAGE allows you to indicate 
that page numbering is to be done. When you use a PAGE entry on 
the Output-Format Sheet, page numbering automatically starts with 
1 • 

If you want to start at a page number other than 1, you can enter 
that page number in a field of an input record and name that field 
PAGE in columns 53-58. The number you enter in the PAGE field of 
the input record should be one number less than the starting page 
number. If your numbering should start with 24, enter a 23 in the 
PAGE field. The PAGE field can be of any length (up to 15 

CHAPTER 7. INPUT SPECIFICATIONS 7-13 



positions), but must have zero decimal positions specified. Any 
entry you make in the PAGE field should be right justified, such 
as 0023. 

Page numbering can be restarted during a program run by entering a 
number in a page field of any input record. The PAGE field can be 
defined and used in calculations like any other field. 

7.14 Columns 59-60 (Control Level) 

Entry Explanation 

L1-L9 Any control level indicator. 

Use columns 59-60 to assign control level indicators to input 
fields. (Control level indicators may not be associated with a 
chained or demand file). Control level indicators are used to 
specify the point at which specified operations are to be done. 
You may assign a control level indicator to any field. This field 
is then known as a control field and is checked for a change in 
information. When information in the control field changes, a 
control break occurs. All records having the same information in 
the control field are known as a control group. 

Whenever a record containing a control field is selected, the data 
in the control field is compared with data in the same control 
field from the previously selected record. When a control break 
occurs, the control level indicator turns on. Operations 
conditioned by the control level indicators are then done before 
processing the record which caused the control break, since that 
record is the first record of a new control group. 

7.14.1 L1-L9 (Control Level Indicators) 

Control level indicators are used to signal when a change in 
a control field has occurred. Because they turn on when the 
information in a control field changes, they may be used to 
condition operations (such as finding totals) that are to be 
performed only when all records having the same information in the 
control field have been read. They may also be used to do total 
printing or to condition operations that are to be done on only 
the first record in a control group. Control level indicators 
always turn on after the first record of a control group is read. 

7-14 REPORT PROGRAM GENERATOR II 



1.15 Columns 61-62 (Matching Fields) 

Entry Explanation 

M1-M9 Any matching level. 

Use columns 61-62 to specify matching fields and sequence 
checking. 

An entry in columns 61-62 indicates: 

1. Matching fields and sequence checking when you have two or 
more input or update files with match fields. 

2. Only sequence checking when you have just one input or update 
file. 

1.15.1 Matching Fields 

Make an entry in columns 61-62 when you wish to compare 
records from two or more input or update files in order to 
determine when records match. Records can be matched by matching 
one field, many fields, or entire records. You can indicate as 
many as nine matching fields (M1-M9). Whenever the contents of 
the match fields from records of the primary file are the same as 
the contents of the match fields from a secondary file, the 
matching record (MR) indicator turns on. M1-M9 are used only to 
identify fields by which records are matched. The values M1-M9 
are not indicators, but do cause MR to turn on when a match 
occurs. Matching is allowed with primary and secondary files 
only. 

1.16 Columns 63-6~ (Field Record Relations) 

Entry 

01-99 

L1-L9 

MR 

U1-U8 

H1-H9 

Explanation 

Record identifying indicator assigned to a record 
type. 

Control level indicator previously used. 

Matching record indicator. 

External indicator previously set. 

Halt indicator previously used. 

CHAPTER 7. INPUT SPECIFICATIONS 7-15 



Columns 63-64 have several uses which are discussed after these 
general rules: 

1 • 

2. 

3. 

4. 

5 . 

All fields, including matching or control fields, that have no 
field record relation specification, should come before those 
that do. 

All fields related to one record type (that is, having the 
same Field Record Relation entry) should be entered as a group 
in specification lines following one another for more 
efficient use of core storage. These fields could, however, 
be entered in any order. 

I 
" \' 

~c ,IY.lVJf {A ~Q.; 
All portions of a split control field must be assigned the 
same field record relation indicator and must be entered as a 
group in specification lines following one another. 

When used with match or control fields, the field record 
relation indicator must match a record identifying indicator 
for this file. 

When any match value (M1-M9) is specified without field record 
relation, all match values used must be specified once without 
field record relation. If all match fields are not common to 
all records, a dummy match field should be used. 

7.16.1 Record Identifying Indicators (01-99) 

Columns 63-64 are commonly used when several record types 
have been specified in an OR relationship. Fields which have no 
field record relation indicator are associated with all the record 
types in the OR relationship. This is fine when all record types 
have the same fields, but if the record types in the OR 
relationship have some fields that are the same and some that are 
not the same, you do not want to associate every field with all 
records. Therefore, there must be some way of relating a field to 
a certain record. To do this, place in columns 63-64 the record 
type in which the field is found. 

Control fields (indicated by entries in columns 59-60) and 
matching fields (indicated by entries in columns 61-62) may also 
be related to a particular record type in an OR relationship by a 
field record relation entry. Control fields or matching fields 
that are not related to any particular record type in the OR 
relationship by the field record relation indicator are used with 
all record types in the OR relationship. 

7-16 REPORT PROGRAM GENERATOR II 



When two control fields have the same control level indicator or 
two matching fields have the same matching level entry, it is 
possible to assign a field record relation indicator to just one 
of the control fields or to just one of the matching fields. In 
this case, only the specification having the field record relation 
indicator is used when that indicator is on. If none of the field 
record relation indicators are on for that control field or 
matching field, the specification without a field record relation 
indicator is used. Control fields and matching fields cannot have 
an L1-L9, U1-U8, or MR entry in columns 63-64. 

1.16.2 Control Level (L1-L9) and Matching Record (MR) Indicators 

Another situation for which you may use these columns is when 
you wish to accept and use data from a particular field only when 
a certain condition (such as matching records or a control break) 
occurs. You indicate the conditions under which you accept data 
from a field by indicator L1-L9 or MR. Data from the field named 
in columns 53-58 is accepted only when the indicator is on. 

1.16.3 External Indicators (U1-U8) 

These columns may also be used to condition a specification 
by an external indicator (U1-U8). The external indicator, which 
is set prior to processing, conditions whether a field is to be 
used in the program. When the indicator is on, the field is read; 
when the indicator is off, the field is not read. 

External indicators are primarily used when file conditioning is 
done by an entry in columns 71-72 in the file description 
specifications. However, they may also be used to condition when 
a specification should or should not be done even though file 
conditioning is not specified. 

1.16.4 Halt Indicators (H1-H9) 

A halt indicator is used to relate a field to a record that 
is in an OR relationship and also has a halt indicator specified 
in columns 19-20 of the input record specifications. 

CHAPTER 7. INPUT SPECIFICATIONS 7-17 



1.17 Columns 65-70 (Field Indicators) 

Entry 

01-99 

H1-H9 

Explanation 

Field indicator. 

Halt indicator (when checking for an error condition 
in the data). 

Use field indicators 01-99 to test a field for a condition of 
either plus, minus, zero, or blank. The indicator specified turns 
on if the condition is true for the input record; it remains off 
or turns off if the condition is not true for the input record. 
These indicators may then be used to control certain calculation 
or output operations. 

The three conditions which may be checked for are: 

1. Plus (columns 65-66). Any valid indicator entered here is 
turned on if the numeric field named in columns 53-58 is 
greater than zero. 

2. Minus (columns 67-68). Any valid indicator entered here is 
turned on if the n umer ic fie Id in col umns 53- 58 is Ie ss than 
zero. 

3. Zero or blank (columns 69-70). Any valid indicator entered 
here is turned on if a numeric field named in columns 53-58 is 
all zeros or if an alphanumeric field is all blanks. 

A numeric field which is all blanks will turn on an indicator 
specified for all zeros. However, if an alphanumeric field is all 
zeros, the field will NOT turn on an indicator specified for all 
blanks. 

1.17.1 Halt Indicators 

Specify any halt indicator (H1-H9) in columns 65-70 to check 
for an error condition in your data. For example, if a field 
should not be zero, you may specify a halt indicator to check for 
that zero condi tion. If a zero field is found, the halt indicator 
turns on and the job stops after the record with the zero field 
has been proc~ssed. 

Indicators H1-H9 cause the program to halt after the record which 
caused the indicator to turn on is completely processed. 

7-18 REPORT PROGRAM GENERATOR II 



7.18 Columns 11-74 

These columns are not used and should be left blank. 

1.19 Columns 15-80 (Program Identification) 

See Chapter 2. 

INPUT SPECIFICATION 

-1--1-. 

Figure 7-3. Example of field specifications on Input 
Specification. 

CHAPTER 7. INPUT SPECIFICATIONS 

f"'AQG.R ...... 

IOf.HTIFtCATION 

7-19 



INPUT SPECIFICATI()t~ 

f-~- ~~+ 1- .. 

f-- -!~r 1 -

H- -1-~+- 1 --+-+-4-1-+-i-+-. ~ ~~_ 
1-.... ~4 .!.. 

l' 5! 1 
-f-

Figure 7-4. 

7-20 

+-
-- -t-

Example of Input Specification. 

REPORT PROGRAM GENERATOR II 

PROGRAM 

IDENllFICATION 



CHAPTER 8. CALCULATION SPECIFICATIONS 

Calculation specifications describe the calculations to be 
performed on the data and the order in which they are to be 
performed. Each calculation specification can be divided into 
three parts that indicate: 

1. When the operation is to be performed (columns 7-17). The 
indicators entered in these columns determine under what 
conditions the operation specified is to be done. 

2. What kind of operation (column 28-32) is to be performed on 
the data in columns 18-27 and/or columns 33-42. Entries in 
these fields describe the kind of operation to be done. They 
also specify the data upon which the operation is to be 
performed, and, if applicable, where the result is to be 
placed. 

3. What tests are to be made on the results of the operation 
(columns 54-59). The indicators entered here signal the 
nature of the result of the operation and may serve to 
condition other operations. 

8.1 Columns 1-2 (Page) and 3-5 (Line) 

See Chapter 2. 

8.2 Column 6 (Form Type) 

A C must appear in column 6. 

8.3 Columns 7-8 (Control Level) 

Entry Explanation 

Blank Calculation operation is not part of a subroutine 
and may only be performed for detail calculations. 

LO, 
L1-L9 

Calculation operation is done when the 
appropriate control break occurs or when an 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-1 



LR 

SR 

AN, OR 

indicator is set on (La is always, on). 

Calculation operation is done after the last record 
has been processed or after the LR indicator has 
been set on by a SETON operation. 

Calculation operation is part of a subroutine. 

Establishes AND and OR relationships between lines 
of indicators. 

If columns 7-8 are blank, the operation specified on the same line 
is done every time a record is read, provided indicators in 
columns 9-17 of that line or AN/OR lines associated with that line 
allow it. 

Calculations must be specified in the following order: 

1. Detail (blank in columns 7-8). 

- 2. Total (La or L1-L9 in columns 7-8). 

3. Last record (LR in columns 7-8). LR calculations must appear 
after L1-L9 calculations. 

4. Subroutine (SR in columns 7-8). 

AN/OR lines can appear within any of the above calculations. When 
AN/OR lines are used, the operation and its operands are entered 
on the last line of the AN/OR group. 

8.4 Columns 9-17 (Indicators) 

Entry 

Blank 

01-99 

L1-L9 

LR 

MR 

H1-H9 

8-2 

Explanation 

Operation is performed for every record read unless 
columns 7-8 contain La, L1-L9 or SR. 

Resulting indicators used elsewhere in the program. 

Control level indicators previously assigned. 

Last record indicator. 

Matching record indicator. 

Halt indicators assigned elsewhere. 

REPORT PROGRAM GENERATOR II 



U1-U8 External indicators previously set. 

OA-OG,OV Overflow indicator previously assigned. 

Use columns 9-17 to assign indicators that control when an 
operation is or is not to be done. From one to three indicators 
may be used on a line. By using AN or OR entries in columns 7-8, 
many indicators can be used to condition one operation. 

The rea ret h r e e s epa rat e fie 1 d s (9 - 1 1, 1 2 - 1 4, an d 1 5 - 1 7) 0 n e a c h 
line, one for each indicator. If the indicator must not be on in 
order to condition the operation, place an N before the 
appropriate indicator (columns 9, 12, 15). 

All three indicators on one line are in an AND relationship with 
each- other. The indicators on one line, or indicators in grouped 
lines, plus the control level indicator (if used in columns 7-8) 
must all be exactly as specified before the operation is done. 

Unless otherwise specified, any calculation operation may be 
conditioned by indicators. 

8.5 Columns 18-27 and Columns 33-42 (Factor 1 & 2) 

Use columns 18-27 and 33-42 to name the fields or to give the 
actual data (literals) on which an operation is to be performed. 
The entries which can be used are: 

1. The name of any field that has been defined. 

2. Any alphanumeric or numeric literal. 

3. Any subroutine, table or array name, or an array element. 

4. Any data field names (UDATE, UMONTH, UDAY, UYEAR). 

5. The special name, PAGE. 

6. A label or a TAG, BEGSR, or ENDSR operation (Factor 1 only). 

7. A filename for a CHAIN, DEBUG, DSPLY, READ, or FORCE operation 
(Factor 2 only). 

An entry in Factor 1 must begin in column 18; an entry in Factor 2 
must begin in column 33. 

The entries you use depend upon the operation you are describing. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-3 



Some operations need entries in both sets of columns, some need 
entries in only one, and some need no entries at all. 

8.6 Literals 

A literal is the actual data used in an operation rather than 
the field name representing that data. A literal may be either 
alphanumeric or numeric. 

1 . Any co m bin at ion 0 f ch a r act e r sma y be us e d in an al ph an u mer i c 
literal. Blanks are also valid. 

2. Alphanumeric literals must be enclosed by apostrophes ('). 

3. The maximum length of an alphanumeric literal is eight 
characters excluding the two enclosing apostrophes. 

4. An apostrophe required as part of a literal is represented by 
two apostrophes. For example, the literal O'CLOCK would be 
written as '0' 'CLOCK'. 

5. Alphanumeric literals may not be used for arithmetic 
operations .. 

Consider the following rules when using a numeric literal: 

1. A numeric literal consists of any combination of the digits 
0-9 . A dec i mal po i n tor s i g n rna y al so be inc 1 u de d . 

2. The maximum total length of a literal is 10 characters 
including signs and decimal points. 

3. Blanks may not appear in the literal. 

4. The sign, if present, must be the leftmost character. An 
unsigned literal is treated as a positive number. 

5. Numeric literals must NOT be enclosed by apostrophes ('). 

8-4 REPORT PROGRAM GENERATOR II 



8.1 Columns 28-32 (Operation) 

Use columns 28-32 to specify the kind of operation to be 
performed using Factor 1, Factor 2, and/or the Result Field and 
resulting indicators. The operation code must begin in column 28. 
A special set of operation codes have been defined which must be 
used to indicate the type of operation desired. Every operation 
code used requires certain entries on the same specification line. 
For further information on the operations that can be performed, 
see Operation Codes in this chapter. 

The operations are performed in the order specified on the 
Calculation Sheet. 

All operations conditioned by control level indicators in columns 
7-8 must follow those that are not conditioned by control level 
indicators. All operations which are part of a subroutine (SR in 
column 7-8) must follow all other calculations in a program. 

8.8 Columns ~3-48 (Result Field) 

Entry 

Result 
Field 

Explanation 

Field, table, array, or array element. 

Use columns 43-48 to name the field, table, array, or array 
element that will hold the result of the operation specified in 
columns 28-32. You may use the name of a field, table, array, or 
array element that has already been defined either on extension 
specifications, input specifications, or elsewhere in the 
calculation specifications. 

Otherwise you may define a new field by entering a field name that 
has not already been used. Any field you define here will be 
created at the time the program is compiled. The field you name 
may be either numeric or alphanumeric. A field used in arithmetic 
operations or numeric compares, or a field edited or zero 
suppressed in output-format specifications must be numeric. 

The result field name must begin with an alphabetic character in 
column 43 and contain no blanks or special characters. 

If you are entering the name of a field that has not been defined 
elsewhere, columns 49-52 should also contain entries. If you are 
entering the name of a field that has been defined, entries in 
columns 49-52 are not necessary but if specified must agree with 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-5 



the previous definition of that field. 

8.9 Columns 49-51 (Field Length) 

Entry Explanation 

Blank Alphanumeric or numeric field described elsewhere. 

1-256 Result Field length. 

Use columns 49-51 to give the result field length for any result 
field. If you are naming a new field (one that has not been used 
before), you must consider the form your data will be in and the 
length it will have after the operation has been performed. 

Whenever the field length is specified for a result field, you 
should be careful to make the result field long enough to hold the 
largest possible result. If the result field is too small, 
significant digits may be lost. For example, you may wish to add 
field A (eight characters long, four decimal places) to field B 
(ten characters long, six decimal positions). Fields A and B have 
four characters to the left of the decimal, but the result field, 
field C, must allow for more characters to the left of the 
decimal. 

9999.0000 Field A 

0001.111111 Field B 

10000.11 1 1 1 1 Field C (result field) 

In this case, field C was defined as 11 characters long with six 
decimal positions. Some of the numbers to the right of the 
decimal could be lost without changing the meaning of the result 
greatly. However, if field C were defined as 10 characters long 
with six decimal positions, an error during execution results. 

Numeric fields have a maximum length of 15 characters. 
Alphanumeric fields may be up to 256 characters long. You may 
indicate the length of a field that has been previously described 
either in the Input Specifications or in Calculation 
Specifications. However, if you do so, you must specify the same 
field length and number of decimal positions as was previously 
given to the field. 

If the result field contains the name of a table or array, an 
entry in these columns is optional. If used, it must agree with 

8-6 REPORT PROGRAM GENERATOR II 



the length described in the Extension Specifications. 

8.10 Column 52 (Decimal Positions) 

Entry Explanation 

Blank Alphanumeric or numeric field described elsewhere. 

0-9 Number of decimal places in a numeric result field. 

Use column 52 to indicate the number of positions to the right of 
the decimal in a numeric result field. If the numeric result 
field contains no decimal positions, enter zero. 

This column must be left blank if the result field is 
alphanumeric. It may also be left blank if the result field is 
numeric but has been previously described in the Extension, Input, 
or Calculation Specifications. In this case, Field Length 
(columns 49-51) must also be blank. 

The number of decimal positions .must never be greater than the 
length of the field. The number may, however, be larger or 
smaller than the number of decimal positions that actually result 
from an operation. If the number specified is smaller than the 
number that results from the operation, the rightmost digits 
(lowest order, or least significant, decimal places) are dropped. 

8.11 Column 53 (Half Adjust) 

Entry Explanation 

Blank Do not half adjust. 

H Half adjust. 

Use column 53 to indicate that the contents of the result field 
are to be half adjusted (rounded). In essence, half adjusting is 
done by adding a 5 (-5 if the field is negative) to the number at 
the right of the last decimal position specified for this field. 
All decimal positions to the right of the position specified for 
that field are then dropped. 

The half adjust entry is allowed only with arithmetic operations. 
This entry cannot be specified for a DIV operation followed by an 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-1 



/VlVR operation. 

8.12 Columns 54-59 (Resulting Indicators) 

Entry 

01-99 

H1-H9 

L1-L9 

LR 

OA-OG, 
OV 

Explanation 

Any numeric indicator. 

Any halt indicator. 

Any control level indicator. 

Last record indicator. 

Any overflow indicator (if specified on File 
Description Sheet). 

1. To test the value of the result field after an arithmetic 
operation. 

2. To check the outcome of a CHAIN, LOKUP, COMP, TESTS, or TESTZ 
operation .. 

3. To specify which indicators to SETON or SETOF. 

4. To indicate end of file for the READ operation code. 

By entering an indicator in columns 54-59, you specify that the 
res u It fie I dis to be t est e d aft er the 0 per a t i on s p e c i f i ed in 
columns 28-32 has been performed. (Normally, only indicators 
01-99 and H1-H9 are used for testing). The indicator specified is 
turned on only if the result field satisfies the condition being 
tested for. This indicator may then be used to condition 
following calculations or output operations. If the same 
indicator is used to test the result of more than one operation, 
the operation last performed determines the setting of the 
indicator. 

Notice that three fields (columns 54-55, 56-57, and 58-59) can be 
used for this purpose. Each field is used to test for different 
conditions: columns 54-55, plus or high; columns 56-57, minus or 
low; columns 58-59, zero or equal. You can test for more than one 
of the conditions. 

8-8 REPORT PROGRAM GENERATOR II 



8.12.1 Columns 54-55 (Plus or High) 

Place an indicator in these columns when testing to find: 

1 • If the Result Field in an arithmetic operation is posi ti ve. 

2. If Fa ct or 1 is higher than Factor 2 in a compare operation. 

3. If Factor 2 is hi gher than Factor in table or array lookup 
operation. 

4. The results of a CHAIN (not found), TESTB (all a's) , or TESTZ 
operation ( for characters '& ' and 'A-I'). 

8.12.2 Columns 56-57 (Minus or Low): 

Place an indicator in these columns when testing the Resul t 
Field to find: 

1. If the Result Field in an arithmetic operation is negative. 

2. If Factor 1 is lower than Factor 2 in a compare operation. 

3. If Factor 2 is lower than Factor 
operation. 

in table or array lookup 

4. The results of a TESTB (mixed), or TESTZ operation (for 
characters '}','-', and 'J-R'). 

8.12.3 Columns 58-59 (Zero or Equal) 

Place an indicator in these columns when testing the Result 
Field to find: 

1. If the Result Field in an arithmetic operation is zero. 

2. If Factor 1 is equal to Factor 2 in a compare operation. 

3. If Factor 2 is equal to Factor 
operation. 

in a table or array lookup 

4. The results of a READ (end of file), TESTB (all ones), or 
TESTZ operation (neither of the preceding). 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-9 



8.13 Columns 60-14 (Comments) 

Enter in columns 60-74 any meaningful informati6n you wish. 
The comments you use should help you understand or remember what 
you are doing on each specification line. Comments are not 
instructions to the RPG II program. They serve only as a means of 
documenting your program. 

8.14 Columns 75-80 (Program Identification) 

See Chapter 2. 

8.15 Operation Codes 

You are able to perform many different types of operations on 
your data using the RPG II language. Special codes have been set 
up which indicate the operation to be performed. Usually these 
are just abbreviations of the name of the operation. You must use 
these codes to specify the operation to be performed. 

Operations may be divided into nine categories; all codes in each 
category are explained in this section. 

8.16 Arithmetic Operations 

A r i t h met i cop era t ion s can be pe r for me don 1 y . on n u mer i c fie 1 d s 
or Ii terals. The result field must also be numeric. For 
arithmetic operations in which all three fields are used: 

1. Factor 1, Factor 2, and the Result Field may all be different 
fields. 

2. Factor 1, Factor 2, and the Result Field may all be the same 
field. 

3. Factor 1 and Factor 2 may be the same field but different from 
the Result Field. 

4. Either Factor 1 or Factor 2 may be the same as the Result 
Field. 

The length of any field involved in an arithmetic operation cannot 
exceed 15 digits. If the result exceeds 15 digits, digits may be 
dropped from the right end of the fractional part of the result. 
Too many digits in the integer part of the result causes an 

8-10 REPORT PROGRAM GENERATOR II 



execution error diagnostic. The results of all operations are 
signed C+, -). Any data placed in the result field replaces the 
data that was there previously. 

8.16.1 Add (ADD) 

Factor 2 is added to Factor 1. The sum is placed in the 
Result Field. Factor 1 and Factor 2 are not changed by the 
operation. 

8.16.2 Zero and Add (Z-ADD) 

Factor 2 is added to a field of zeros, and the sum is placed 
in the Result Field. 

8.16.3 Subtract (SUB) 

Factor 2 is subtracted from Factor 1. The difference is 
placed in the Result Field. Factor 1 and Factor 2 are not changed 
by the operation. 

Note: Subtracting two fields which are the same is a method of 
setting the result field to zero. 

8.16.4 Zero and Subtract (Z-SUB) 

Factor 2 is subtracted from a field of zeros. The difference 
is placed in the Result Field. This actually places the negative 
of Factor 2 in the Result Field. This operation can be used to 
change the sign of a field. Factor 1 is not used. 

8.16.5 Multiply (MULT) 

Factor 1 is multiplied by Factor 2. The product is then 
p 1 aced in the Res u 1 t Fie 1 d . Fa c tor 1 and Fa c tor 2 are not 
changed. When you use (as a factor) a field which is described as 
the Result Field, you must be sure the Result Field is large 
enough to hold the product. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-11 



8.16.6 Divide (DIV) 

Fa c tor 1 (d i v ide n d) i s d i v ide d by Fa c tor 2 (d i vis 0 r) . Th e 
result (quotient) is placed in the Result Field. Factor 1 and 
Factor 2 are not changed. 

If Factor 1 is 0, the result of the divide operation will be O. 
Factor 2 cannot be O. If it is, the job stops immediately and a 
halt code is displayed. If processing is continued, the result 
and remainder are set to zero. 

Any remainder resulting from the divide operation is lost unless 
the move remainder operation is specified as the next operation. 
If move remainder is the next operation, the result of the divide 
operation cannot be half adjusted (rounded). 

8.16.7 Move Remainder (MVR) 

This operation moves the remainder from the previous divide 
operation to a separate field named under Result Field. Factor 1 
and Factor 2 must not be used. This operation must immediately 
follow the divide operation and should be conditioned by the same 
indicators. The maximum length of the remainder is 15, including 
decimal positions. The number of significant decimal positions is 
the greater of: 

1. The number of decimal positions in Factor 1 of the previous 
divide operation. 

2. The sum of the decimal positions in Factor 2 and the Result 
Field of the previous divide operation. 

The maximum whole number positions in the remainder is equal to 
the whole number positions in Factor 2 of the previous divide 
operation. 

8.16.8 Square Root (SQRT) 

This operation derives the square root of the field named in 
Factor 2. The square root of Factor 2 is placed in the Result 
Field. Factor 1 is not used. 

Factor 2 and the Result Field can be numeric fields up to fifteen 
digits long overall, including up to nine decimal places. 

For every digit left of the decimal place in the Result Field, 

8-12 REPORT PROGRAM GENERATOR II 



there should be two digits left of the decimal place in Factor 2; 
for every digit right of the decimal place in the Result Field, 
there should be two digits right of the decimal place in Factor 2. 

A whole array can be used in a SQRT operation if Factor 2 and 
Result Field contain array names. In this case, the square root 
of each element of the array named in Factor 2 will be placed in 
the corresponding element of the array named in the Result Field. 

When using the SQRT operation, remember: 

1. The Result Field (root) is automatically half-adjusted. 

2. The Result Field length must be greater than or equal to the 
decimal positions entry. 

3. Factor 2 cannot be a negative number. A negative number 
causes a halt. 

8.16.9 Crossfoot (XFOOT) 

This operation is used only on arrays with numeric elements. 
It adds all the elements of the array together and puts the sum 
into a separate field specified as the Result Field. Factor 1 is 
not used. Factor 2 contains the name of the array. You can 
half-adjust the total in the Result Field and use resulting 
indicators if you wish. 

If the Result Field is an element of the same array used in Factor 
2, the value of that element prior to the XFOOT operation is used 
in arriving at a total. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-13 



CALCULATION SPECIFICATIONS 
PROGRAM . ________ PROGRAMMER __ _ 

FOR'~ TYPE.., ...... CONTROL LEvEL DECIMAL POS:TrONS 

IN:-rCATOAS r~r~T.:;r~+~r~'s 

OPfRAllON F;'.C TOR !="IElO COI.':IH~tO 
N' 2 FIELD LENG TH Hi LO EO 

PG LINE 
NO /'j() 

FACTOR 
COMMENTS 

IDENTIFICATION 
f4 ON N '>£ 1<2 '·<:.2 

, 1 !:> 6 r <; 11'2 !415 17 18 2i:?B 3733 42 4849 5152 'd ~ 5€ !)8 60 74 75 8,; 

~ -- 4!-~ '!. 1- H- - -~- -H+a1++-4-.! .. I I i -+ f-T.- f- -

f-f-~~~- ~ t- - U- .. ' .. +- ±. f-H- - f-.I-H· .L~_11~.f-l- -[1- '-r-~-+' -t-. ~--r 
f- f-. -;r. --f=O . i-. _ ... _L - -- f-. -f-- .. - - H-+ I-~-f-- -t- -f- - 1-+

1 
·+-+--+-1f-+-+-++-+-+--H-++-+-...,H-+-+-H-+--H-~ 

2 4 . C f-f- . f-. 
25 C . I ! I 

I I I , c 
C I 

+ I i ! 

! 
- T 

C 
I 

I 

I C t 
C 

I 

Figure 8-1. Example of arithmetic operations. 

8-14 REPORT PROGRAM GENERATOR II 



8.17 Move Operations 

Move operations move part or all of Factor 2 to the Result 
Field. Factor 2 remains unchanged. Factor 1 is not used in any 
move operations. It must always be blank. No resulting 
in d i cato rs may be use d. Numer ic fie Ids may be c hanged to 
alphanumeric fields and alphanumeric fields may be changed to 
numeric fields by the move operations. To change a numeric field 
to an alphanumeric field, place the name of the numeric field in 
Factor 2 and use an alphanumeric result field. To change an 
alphanumeric field to a numeric field, place the name of the 
alphanumeric field in Factor 2 and use a numeric result field. 

When rnove operations are specified to move data into numeric 
fields, -decimal positions are ignored. For example, if the data 
1 .00 is moved into a numeric field with one decimal posi tion, the 
result is 10. O. 

Note: Databus-format numeric fields are stored within RPG with 
the sign superimposed over the low-order digit (see internal field 
examples in Chapter 7, Column 43). 

8.17.1 Move (MOVE) 

This operation causes characters from Factor 2 to be moved to 
the rightmost positions in the result field. Moving starts with 
the rightmost character. 

If Factor 2 is longer than the Result Field, the excess leftmost 
characters of Factor 2 are not moved. If the Result Field is 
longer than Factor 2, the characters to the left of the data just 
moved in are unchanged. 

An alphanumeric field or constant may be changed into a numeric 
field. When this is specified, the digit portion of each 
character is converted to its corresponding numeric character and 
then moved to the result field. Blanks are transferred as zeros. 
However, the zone portion of the rightmost alphanumeric character 
is converted to a corresponding sign and is moved to the rightmost 
position of the numeric field where it becomes the sign of the 
field. 

A numeric field may also be changed into an alphanumeric field by 
moving it into an alphanumeric field. All digits are transferred. 
In addition the zone of the rightmost character is transferred 
with i ts dig it. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-15 



FACTOR 2 < RESULT 

FACTOR 2 = RESULT 

FACTOR 2 ) RESULT 

FACTOR 2 < RESULT 

FACTOR 2 = RESULT 

FACTOR 2 > RESULT 

FACTOR 2 < RESULT 

FACTOR 2 = RESULT 

FACTOR 2 ) RESULT 

FACTOR 2 ( RESULT 

FACTOR 2 = RESULT 

FACTOR 2 ) RESULT 

ALPHA 'l10 ALPHA 

FACTOR 2 

I AIB,C,D I 
RESULT BEFORE MOVE 

I FIG,H,I,JI 

1 A,B, C, D I 

IAIB,C,D,E/ 

1 F ,G ,Hili 
1 F ,G,H, II 

NUMERIC TO NUMERIC 

I 1,2,3,41 

1 1 1 2 ,3,4"1 
11,2,3,4,51 

ALPHA TO NUMERIC 

I AlB, c, 111 
I A,B, C,M\ 

IA1B1C,D,MI 

NUMERIC TO ALPHA 

1 1 ,2,3,4"1 

1 1 ,2,3,4"1 

1 1,2,3,4,51 

16,7,8,9,01 

I 6,7 ,8,91 

I 6,7,8,91 

15,6,7,8,91 

I 6! 7 ,8,91 
I 6,7 ,8,91 

IV,W,X,Y,zl 

1 W,X,Y, zl 
Ilv,X,Y,Z\ 

Figure 8-2. Diagram of MOVE instruction. 

8-16 REPORT PROGRAM GENERATOR II 

RESULT AFTER MOVE 

IF,A,B,c,DI 

IA1B,C,DI 

1 B,C ,D,E I 

16,1,2,3,41 

1 1 ,2,3,41 
12,3,4,51 

15,1,2
1
3,4\ 

11,2 13,41 

12,3,4,41 

IV,1 12,3,41 

11,2,3,4"1 

1 2 ,3,4,51 



8.17.2 Move Left (MOVEL) 

This operation causes characters from Factor 2 to be moved to 
the leftmost position in the Result Field. Moving begins with the 
leftmost character. 

If Factor ,2 is longer than the Result Field, the excess rightmost 
characters of Factor 2 are not moved. If the Result Field is 
longer than Factor 2, the characters to the right of the data just 
moved in are unchanged. In this case the sign of a numeric field 
is not changed either. 

An alphanumeric field or constant may be changed into a numeric 
field by moving it into a numeric field. When this is specified, 
the digit portion of each character is converted to its 
corresponding numeric character and then moved into the result 
field. 

Blanks are transferred as zeros. If the rightmost character is 
moved, the zone is also converted and used as the sign of the 
field. When the rightmost character is not transferred, the zone 
is, nevertheless, still transferred and used as the sign of the 
result field. 

A numeric field may also be changed into an alphanumeric field by 
moving it into an alphanumeric field. All digits are transferred. 
Both digit and zone portions of the rightmost character are 
transferred if that character is to be moved. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-17 



ALPHA TO ALPHA 

FACTOR 2 RESULT BEFORE MOVE RESULT AFTER IvlOV: 

FACTOR 2 < RESULT I AIBICIDI IF,G1H,IIJI jA,B,CID1JI 

FACTOR 2 = RESULT I A,B 1 C,DI IF, G,H , I 1 IA1B,C,DI 

FACTOR 2 > RESULT I AIB,C,D,EI IF IG ,H ,I I IA,B,c,DI 

NUMERIC TO NUMERIC 

FACTOR 2 < RESULT 1 1 12
1 3 ,41 \6 1 7 18 1 9 1°1 11 12 1

3 14 ,01 

FACTOR 2 = RESULT 1 1 ,2 1 3 14 1 I 6,7 18 I 91 11,2 13141 

FACTOR 2 > RESULT \1,2.,3,4,51 I 6 ,7 ,8,91. 11,2 13 1 41 
ALPHA TO NUMERIC 

FACTOR 2 < RESULT I A1B1C,MI 15 1 6 17,8 1
9 1 1112,314,~ 

FACTOR 2 = RESULT I A,B,C,MI I 6 ,7 ,8 I 91 /1,2 ,3 141 

FACTOR 2 ) RESULT I A,B,C.D,MI I 6 ,7 ,8 ,91 11,2 (3 1 41 
NUMERIC TO ALPHA 

FACTOR 2 < RESULT 11 1 2 13 , 41 \V,WIX,Y,ZI 1112,3 1Mlzl 

FACTOR 2 = RESULT I 1,2,3,41 I W,X,Y, Z I 1112 ,3, MI 

FACTOR 2 '/ RESULT 1 1 ,2,3 1 4 , 51 I \v , X ,Y 1 Z I 11,2 ,3 ,41 

Figure 8-3. Diagram of MOVEL instruction. 

8-18 REPORT PROGRAM GENERATOR II 



8.17.3 Move Array (MOVEA) 

The mo ve ar ray op era t ion, val i dON L Yin R PG P L US, m 0 v e s 
characters from Factor 2 to the Result Field, starting at the 
left-most position of each operand. The number of characters 
moved is the smaller of the lengths of Factor 2 and the Result 
Field. If Factor 2 is longer than the Result Field, the right-most 
characters of Factor 2 are not moved. If Factor 2 is shorter than 
the Result Field, the right-most characters of the Result Field 
are left unchanged. Both operands must be described as 
alphanumeric. 

With MOVEA it is possible to move multiple contiguous elements of 
an array, a whole array, or a field to multiple contiguous 
elements of an array, a whole array, or a field. If Factor 2 or 
the Result Field contain the name of an array, the move starts at 
the first element of the array. If they contain an indexed array 
element, the move starts at the element specified. The MOVEA 
operation terminates when the end of the shorter operand is 
rea ched. In the case of fv10VEA wi th arr ay s, th is may be in the 
middle of an array element. 

8.18 Move Zone Operations 

These operations are used only to move the zone portion of a 
character. There are four varieties of the move zone operation. 

Note: Generally, whenever the word high is used in a move zone 
operation, the field involved must be alphanumeric; whenever low 
is used, the field involved may be either alphanumeric or numeric. 

8.18.1 Move High to High Zone (MHHZO) 

This operation moves the zone from the leftmost position of 
Factor 2 to the leftmost position of the Result Field. Factor 2 
and the Result Field must be alphanumeric. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-19 



FACTOR L 

IZ,Nlz,Nlz,NI 
I 

RESULT 

I zINlz,Nlz,N I 
t 

Figure 8~4. Diagram of MHHZO instruction. 

8.18.2 Move High to Low Zone (MHLZO) 

This operation moves the zone from the leftmost position of 
Factor 2 to the rightmost position of the Result Field. Factor 2 
can be only alphanumeric. The Result Field may be either 
alphanumeric or numeric. 

FACTOR 2 RESULT 

Figure 8-5. Diagram of MHLZO instruction. 

8.18.3 Move Low to Low Zone (MLLZO) 

This operation moves the zone from the rightmost position of 
Factor 2 to the rightmost position to the Result Field. Factor 2 
and the Result Field may be either alphanumeric or numeric. 

FACTOR 2 RESULT 

Figure 8-6. Diagram of MLLZO instruction. 

8-20 REPORT PROGRAM GENERATOR II 



8.18.4 Hove Low to High Zone (MLHZO) 

This operation moves the zone from the rightmost position of 
Factor 2 to the leftmost position of the Result Field. Factor 2 
can be numeric or alphanumeric, but the Result Field can only be 
alphanumeric. 

FACTOR 2 RESU~T 

Figure 8-7. Diagram of MLHZO instruction. 

8.19 Compare and Testing Operations 

These operations test fields for certain conditions. The 
result of the test is shown by the resulting indicators assigned 
in columns 54-59. No fields are changed by these operations. 

8.19.1 Compare (COMP) 

This operation causes Factor 1 to be compared with Factor 2. 
As a result of the compare, indicators are turned on as follows: 

High Factor 1 is greater than Factor 2. 

Low Factor is less than Factor 2. 

Equal Factor equals Factor 2. 

Factor 1 and Factor 2 must either be both alphanumeric or both 
numeric. A field may be compared to another field or a literal. 

The fields are automatically aligned before they are compared. If 
the fields are alphanumeric, they are aligned to their leftmost 
character. If one is shorter, the unused positions are filled 
with blanks. 

If the fields which are to be compared are numeric, they are 
aligned according to the decimal point. Any missing digits are 
filled in with zeros. The maximum field length for numeric fields 
which are to be compared is 15 digits. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-21 



NUMERIC COMPARE 

VALUE COMPARE VALUE 

FACTOR 1 123.45 123.450 

FACTOR 2 42.763 042.763 

ALPHANUMERIC COMPARE 

FACTOR 1 ABC ABCJ6J6 

FACTOR 2 VWXYZ VWXYZ 

Figure 8-8. Di agrarn of COMP instruction. 

8.19.2 Test Zone (TESTZ) 

This operation tests the zone of the leftmost character in 
the result field (see ASCII to EBCDIC Translation Table in 
Appendix L). The Result Field must be alphanumeric since this 
operation can be done only on alphanumeric characters. Resulting 
indicators are used to determine the results of the test. The zone 
portion of characters & and A-I causes the plus indicator to turn 
on. The zone portion of the characters} (bracket), - (minus), 
and J-R causes the minus indicator to turn on. All other 
characters, when tested, cause the blank indicator to turn on. 
Factor 1 and Factor 2 are not used in this operation. 

8.20 Binary Field Operations 

Three operation codes, BITON, BITOF, and TESTB, are provided 
to s et and t est in d i v i d u alb its. The in d i v i dual bits c an be use d 
as switches in a program. 

In binary field operations, the operation code, BITON, BITOF, or 
TESTB must appear in columns 28-32. Factor 2 can contain: 

Bit number 0-7: One or more bits (maximum of eight) may be 
set on, set off, or tested per operation. The bits are 
numbered from left (most significant) to right (least 

8-22 REPORT PROGRAM GENERATOR II 



significant) and are enclosed in apostrophes. The order of 
specification of the bits is not restricted. For example, to 
specify the first bit in a field, enter '0' in Factor 2 
( col u m n s 3 3 - 3 5 ) . To s p e c i fy bit sO, 2 , and 5, en t e r '0 2 5' in 
Factor 2 (columns 33-37). Bits not specified in Factor 2 are 
n ot c han g e d . 

Field Name: The name of a one-position, alphanumeric field or 
ta b Ie or arr ay element c an be en tered. In th is case, the bi ts 
which are on in the field or array element are set on, set 
off, or tested in the Result Field; bits which are not on are 
not affected. 

Any field named in Factor 2 or the Result Field must be a 
one-position, alphanumeric field (no entries in the decimal 
positions columns on the Input or Calculation Sheet). 

8.20.1 Set Bit On (BITON) 

This operation code causes bits identified in Factor 2 to 
turn on (set to one) in a field named as the Result Field. The 
operation code BITON must appear in columns 28-32. Conditioning 
indicators can be used in columns 7-17. Any entry under Field 
Length must be 1. See the preceding discussion in Binary Field 
Operations. 

Factor 1, Decimal Positions, Half-adjust, and Resulting Indicators 
are not used with the SITON operation. 

8.20.2 Set Bit Ofr (BITOF) 

This operation code causes bits identified in Factor 2 to 
turn off (set to zero) in a field named as the Result Field. 

The operation code BITOF must appear in columns 28-32. All other 
specifications are the same as those for the BITON operation. 

8.20.3 Test Bit (TESTB) 

This operation code causes bits identified in Factor 2 to be 
tested for an on or 0 ff cond i ti on in the fie ld named as the Resul t 
Field. The condition of the bits is known by resulting indicators 
in columns 51~-59. All other specifications are the same as those 
for SITON and BITOF. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-23 



At least one resulting indicator must be used with the TESTB 
operation; as many as three can be named for one operation. Two 
indicators may be the same for one TESTS operation, but not three. 
If Factor 2 contains bits which are all off, no resulting 
indicators are turned on. A resulting indicator has the following 
~eanings for these columns: 

Columns 54-55: An indicator in these columns is turned on if each 
bit s p e c i f i ed in Fa c tor 2 is 0 f f (0) in the Res u 1 t Fie 1 d . 

Columns 56-57: An indicator in these columns is turned on if two 
or more bi ts were tested and found to be of mixed status; that is, 
some bits on and other bits off. It is the programmer's 
responsibility to ensure that the field named in Factor 2 contains 
more than one bit which is on if an indicator appears in columns 
56-57. 

Columns 58-59: An indicator in these columns is turned on if each 
bit specified in Factor 2 is on (1) in the Result Field. 

8.21 Setting Indicators 

These op~ration codes are used to turn indicators off or on. 
Any indicator to be turned on or off is specified in columns 
54-59. The headings in the Resulting Indicators Field (Plus or 
High, Minus or Low, Zero or Equal) have no meaning in these 
operations. When setting indicators, remember: 

1. The following indicators may not be- turned on by the SETON 
ope rat ion: 1 P, rvIR, LO, U 1 - U 8 • 

2. The following indicators may not be turned off by the SETOF 
ope rat ion: 1 P, rvIR, LO, U 1 - U 8 . 

3. If the LR indicator is turned on by a SETON operation which is 
conditioned with a control level indicator (columns 7-8 of the 
Calculation Sheet), processing stops after all total output 
operations are finished. If it is turned on by a SETON 
operation not so conditioned, processing stops after the next 
total output operation is completed. 

4. If the halt indicators (H1-H9) are set on and not turned off 
before the detail output operations are complete, the system 
stops. Processing may be continued after halting once for 
every halt indicator that is on. 

5. Setting on or setting off a control level indicator (L1-L9) 

8-24 REPORT PROGRAM GENERATOR II 



does not automatically set on the lower control level 
indicators. 

6. Indicators L1-L9 and the record identifying indicators are 
always turned off after detail output operations are 
completed, regardless of the previous SETON or SETOF 
operation. 

7. Whenever a new record is read, record identifying indicators 
are set to reflect conditions on the new record. The setting 
from any previous SETON or SETOF operation does not apply 
then. 

8.21.1 Set On (SETON) 

This operation causes any indicators in columns 54-59 to be 
turned on. 

8.21.2 Set Off (SETOF) 

This operation causes any indicators in columns 54-59 to be 
turned off. 

8.22 Branching Operations 

Operations are normally performed in the order that they 
appear on the Calculation Sheet. There may be times, however, 
when you do not want the operations performed in the order they 
are specified. For example, you may wish to: 

1. Skip several operations when certain conditions occur. 

2. Perform certain operations for several, but not all, record 
types. 

3. Perform several operations over and over again. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-25 



8.22.1 Go To (GOTO) 

This operation allows you to skip instructions by specifying 
some other instruction to go to (see TAG). You may branch to an 
earlier line or to a later specification line. However, you cannot 
skip from a calculation that is conditioned by a control level 
indicator (columns 7-8) to one that is not. Neither can you branch 
from a calculation within a subroutine to a calculation outside of 
that subroutine, or vice versa. 

When using the GOTO command to transfer control from a detail 
calculation to a total calculation, care must be taken, to avoid 
creating an infinite loop. (See Appendix K for normal sequencing.) 
The 'L' indicators will not be implicitly set when such a jump is 
performed. 

Factor 2 must contain the name of the point to which you wish to 
go. Factor 1 and the Result Field are not used in this operation. 
The GOTO operation may be conditioned by any indicators. If it is 
not conditioned, the operation is always done. 

8.22.2 Tag (TAG) 

This operation code names the point to which you are 
branching in the GOTO operation. Factor 1 contains this label. 
The name must begin in column 18. The same label may not be used 
for more than one TAG instruction. 

Factor 2 and the Result Field are not used. No indicators may be 
entered in columns 9-17 for a TAG instruction. A control level 
(see Columns 7-8) may be used, however, if the TAG occurs in 
total calculations. 

8.23 Lookup Operations 

Lookup operations are used when searching through a table or 
an array to find a special element. 

8-26 REPORT PROGRAM GENERATOR II 



8.23.1 Lookup (LOKUP) 

This operation code causes a search to be made for a 
particular item in a table or array. The table or array is Factor 
2. Factor 1 is the search word (data for which you wish to find a 
match in the table or array named). Factor 1, the search word, 
may be: 

1. An alphanumeric or numeric constant. 

2. A field name. 

3. An array element. 

4. A table name. 

Remember that when a table is named in Factor 1, it refers to the 
element of the table last selected in a LOKUP operation, not to 
the whole ta ble . 

Resulting indicators are always used in connection with LOKUP. 
They are used to first indicate the type of search desired and 
then to reflect the result of the search. A resulting indicator 
assigned to Equal (columns 58-59) Lnstructs the program to search 
for an entry in the table or array equal to the search word. The 
indicator turns on only if such an entry is found. If there are 
several entries identical to the search word, the first one that 
is encountered is selected. 

An indicator assigned to Low (columns 56-57) instructs the program 
to locate an entry in the table that is nearest to, yet lower in 
sequence than, the search word. The first such entry found causes 
the indicator assigned to Low to turn on. 

The indicator assigned to High (columns 54-55) instructs the 
program to find the entry that is nearest to, yet higher in 
sequence than, the search word. The first higher entry found 
causes the indicator assigned to High to turn on. In all cases 
the resulting indicator turns on only if the search is successful. 

At least one resulting indicator must be assigned, but no more 
than two can be used. Resulting indicators can be assigned to 
Equal and High or Equal and Low. The program searches for an 
entry that satisfies either condition, with Equal given 
precedence; that is, if no Equal entry can be found, the nearest 
lower or nearest higher entry is selected. If resulting 
indicators are assigned both to High and Low, the indicator 
assigned to Low is ignored. When using the LOKUP operation, 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-27 



remember: 

1. The search word and each table or array item must have the 
same length and the same format (alphanumeric or numeric), but 
need not have the same alignment. 

2. You may search on High, Low, High and Equal, or Low and Equal 
only if your table or array is in sequence. 

3. No resulting indicator turns on if the entry searched for is 
not found. 

8.23.2 Using LOKUP with One Table 

When searching a single ta ble, Factor 1, Factor 2, and at 
least one resulting indicator must be specified. Conditioning 
indicators (specified in columns 7-17) may also be used. 

Whenever a table item is found that satisfies the type of search 
being made (Equal, High, Low), a copy of that table item is placed 
in a special storage area. Every time a search is successful, the 
newly found table item is placed in this area, destroying what was 
there before.. If the search is not successful, no table i tern is 
placed in the storage area. Instead, the area keeps the contents 
it had before the unsuccessful search. 

Resulting indicators are always set to reflect the result of the 
search. If the indicator is on, showing a successful search, you 
know that a copy of the item searched for is in the special 
storage area. 

8.23.3 Using LOKUP with Two Tables 

Wh en two re 1 ate d ta b 1 e s ar e us ed in a sea r c h, 0 n 1 y on e is 
actually searched. When the search condition (High, Low, Equal) 
is satisfied, the corresponding data items from both tables are 
made available for use. 

Factor 1 must be the search word and Factor 2 must name the table 
to be searched. The Result Field must name the related table from 
which data is made available for use. Resulting indicators must 
also be used. Conditioning indicators (specified in columns 7-17) 
may be specified if needed. 

The two tables involved should be the same length. If the table 
that is searched is longer than its related table, the search 

8-28 REPORT PROGRAM GENERATOR II 



stops at the end of the shorter table. 

8.23.4 Referencing the Table Item Found 

Whenever a table name is used in an operation other than 
LOKUP, the table name really refers to the data placed in the 
special storage area by the last successful search. Thus, by 
specifying the table name in this fashion, you can use data items 
from a table in calculation operations. 

If the table is used as Factor 1 in a LOKUP operation, the 
contents of the special storage area are used as the search word. 
In this way a data item from a table can itself become a search 
word. 

The table may also be used as the Result Field in operations other 
than the LOKUP operation. In this case the contents of the 
special storage area are changed by the calculation operation. 
The corresponding table item in the table itself is also changed. 
This is a way in which you can modify the contents of the table by 
calculation operations. 

8.23.5 Using LOKUP with an Array 

The LOKUP specifications for arrays are the same as for 
tables except that if Factor 2 is an array, the Result field 
cannot be used. In addition if the desired item is found, the 
indicators reflect only that the desired item is in the array; the 
programmer does not have ready access to this item. 

If you use just the array name in referencing the array, the 
search begins at the first element in the array. You must use 
indicators to determine if a match was found. 

If you use the array name and an index (which may be a field name 
or a literal), the search begins at the element identified by the 
index. If a match is found, the number of the array element 
containing the match is placed in the field used as an index. If 
no match is found, the index is set to 1. 

If a literal was used as an index, indicators must be used to 
determine if a match was found. The content of the element 
referenced by the literal is not changed. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-29 



8.24 Subroutine Operations 

These operation codes are only used for subroutines. All 
subroutine operation codes must be written in sp~cification lines 
following all detail and total calculations. Subroutine lines are 
always ident~fied by an SR in columns 7-8. 

8.24.1 Begin Subroutine (BEGSR) 

This operation code serves as the beginning point of the 
subroutine. Factor 1 must contain the name of the subroutine. 

8.24.2 End Subroutine (ENDSR) 

This operation code must be the last statement of the 
subroutine. It serves to define the end of the subroutine. 
Factor 1 may contain a name. This name then serves as a point to 
which you can branch by a GOTO statement within the subroutine. 
The ENDSR operation ends the subroutine and automatically causes a 
branch back to the next statement after the EXSR operation. 

8.24.3 Execute Subroutine (EXSR) 

This operation causes all the operations in the subroutine to 
be performed. EXSR may appear anywhere in the program. Whenever 
it appears, the subroutine is executed. After all operations in 
the subroutine are done, the operation in the line following the 
EXSR operation is performed. 

8.25 Programmed Control of Input and Output 

The normal Datapoint RPG II processing cycle is as follows: 

1 . A record is read. 

2. Calculations are performed. 

3. Records are written. 

The normal program cycle can be altered to allow input and output 
operations during calculations. The following operations provide 
this capability: 

Exception (EXCPT) 

8-30 REPORT PROGRAM GENERATOR II 



Force (FORCE) 

Display (DSPLY) 

Read (READ) 

Chain (CHAIN) 

Set lower 1 imi t (SETLL) 

8.25.1 Exception (EXCPT) 

This operation allows records to be written at the time 
calculations are being done. Use this primarily when you wish to 
have a variable number of similar or identical records (either 
detail or total) written in one program cycle. (Remember that 
normally only the exact number of records specified in the Output 
Format Specifications are written on a file in one program cycle). 
For example, you might use EXCPT to produce a variable number of 
identical mailing labels, or to write out contents of a table. 

When the EXCPT operation is used, EXCPT is entered in columns 
28-32, and columns 7-17 may have entries. All other columns must 
be blank. The line or lines which are to be written out during 
calculation time are indicated by an E in column 15 of the Output 
Format Sheet. 

8.25.2 Force (FORCE) 

FORCE statements enable you to select the file from which the 
next record is to be taken for processing. They apply to primary 
or secondary, input or update files. 

Factor 2 in a FORCE statement identifies the file from which the 
next record is to be selected. If the statement is executed, the 
record is selected at the start of the next program cycle. If more 
than one FORCE statement is executed during the same program 
cycle, all but the last is ignored. FORCE should not be specified 
at total time. 

FORCE statements override the multifile processing method by which 
the program normally selects records. However, the first record 
to be processed is always selected by the normal method. The 
remaining records can be selected by FORCE statements. When 
end-of-file is encountered on a forced file, a record will not be 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-31 



retrieved from the file; normal records selection will determine 
which record is to be processed. 

8.25.3 Display (DSPLY) 

The display operation allows either or both of the following: 

1. A field, table element, array element, or literal up to 80 
characters long is displayed on the keyboard-display during 
program execution without a program halt. 

2. A field, table element, literal, or array element up to 80 
characters long is displayed on the keyboard-display, and the 
program halts, allowing that field to be changed. 

A literal may not be changed with display. 

Factor 2 in a DSPLY statement identifies the file used for the 
display operation and must be defined with a D in column 15 of the 
File Description Specification. The device used must be the 
CONSOLE. 

Fields Defined Data Displayed Keyboard 
-------------- -------------- --------------
Factor 1 DSPLY none 

<factor-1> 

Result Field DSPLY data to replace 
<result-field> 

Factor 1 and DSPLY data to replace 
Result Field <factor-1> result-field 

<result-field> 

There are several points to remember if you wish to enter data 
during program execution: 

1. Numeric data must be entered in Databus format. To key a 
negative field, the minus sign is keyed and then the field is 
keyed. The entry will be automatically aligned on its decimal 
point before it is stored in the result field. The resul t 
field must be defined with one extra digit position to the 
left of the decimal point if a sign is to be entered. 

2. Alphanumeric result fields will be left-justified after all 
characters are keyed. If the number of characters entered is 

8-32 REPORT PROGRAM GENERATOR II 



less than the result field size the field is right filled with 
blanks. 

3. If no characters are entered or the space bar is not 
depressed, the result field will not be changed. 

4. Numeric fields are displayed in Databus format. The field 
definition must contain enough integer positions to allow room 
for a minus sign to the left of the first significant digit or 
a NUMERIC FIELD ERROR may occur when displaying negative 
numbers. 

8.25.4 Read (READ) 

The READ operation is used to call for immediate input from a 
demand file during the calculations in the program cycle. This 
operation differs from the FORCE operation because FORCE specifies 
input on the next program cycle, not the present one. The READ 
operation is similar to the CHAIN operation, except that the READ 
file is processed sequentially and the CHAIN file is processed 
randomly. 

The operation code READ must appear in columns 28-32. Factor 2 
contains the name of the file from which a record will be read 
immediately. An indicator should be used in columns 58-59. An 
indicator specified in these columns will turn on after a READ 
operation in which an end-of-file condition is reached. An 
attempt to read past end-of-file will cause an error message to be 
displayed. If columns 58-59 are blank, a halt will occur on an 
end-of-file condition and on subsequent READ operations after the 
end-of-file condition is reached. Indicators may be specified in 
columns 7-17. 

Note: When the program is reading from several demand files 
during the same RPG II cycle, record identifying indicators 
assigned to the demand files will remain on throughout the cycle 
if the previous READ operations were executed successfully. 

The following files can appear as Factor 2 in a READ operation 
(all must be designated demand files with a D in column 16 of the 
File Description Sheet): 

Files processed consecutively and specified as input or update 
files. 

Console files specified as input files. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-33 



When using the READ operation for demand files remember these 
points: 

1. Demand files can only be processed by the READ operation. 

2. Control levels, matching fields, and look-ahead fields are not 
allowed with demand files. 

3. Numeric sequence testing on the Input Sheet is not allowed for 
demand files. 

4. The MR indicator may not be entered in columns 63-64 (Field 
Record Relation) on the Input Sheet. 

5. When a demand file is conditioned by a Ul-U8 indicator which 
is not on, no records will be read from that file and the 
end-of-file indicator (in columns 58-59 of the Calculations 
Sheet) will not turn on. 

8.25.5 Chain (CHAIN) 

The chain operation causes a record to be read from a disk 
file during calculations. This operation allows one record to be 
read in when the operation code CHAIN appears in columns 28-32 of 
the Calculation Sheet. 

Indicators in columns 7-17 may be used, but Result Field, Field 
Length, Decimal Position, and Half-Adjust (columns 43-53) must be 
blank. File conditioning indicators (Ul-U8) can be used to 
condition a chained file. 

Factor 1 must contain: 

1. Relative record number of record to be read. 

2. Key of indexed file .record to be read. 

Relative record number must be a numeric field with no decimal 
positions. Relative record numbers start from 1. 

Keys must be alphanumeric fields. If the length is not the same as 
keys in the file, the shorter key will be extended with blanks for 
comparison. 

Factor 2 must contain the name of a CHAIN file. 

Columns 54-55 should contain an entry. If the record is not 

8-34 REPORT PROGRAM GENERATOR II 



found, the indicator specified in these columns will turn on. 
Columns 56-59 must always be blank for chain operations. 

If an indicator is not specified in columns 54-55, and the record 
is not found, the program will halt and display a chaining error 
message. The options given are to end the job or bypass the 
remainder of the current cycle and begin a new cycle. If LR 
processing has already been initiated, the 
bypass-and-begin-new-cycle option is not allowed. If the 
controlled cancel option is taken, files are closed, but the rest 
of the LR processing does not occur. When a record is beyond the 
range of the file, the options to end the job or bypass the 
remainder of the current cycle are given. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-35 



CHAINING RECORD PROCESSING 

FILE 
TYPE 

RECORD 
PRESENT 

ADD 
FILE 

CHAIN ACTION 
INDICATOR 

DIRECT INPUT Yes Off A 
No* On B 
No 1 

DIRECT OUTPUT Yes Off D 
No* Off E 
No On F 

D IRE CT UP DATE Yes Off C 
No* On E 
No On F 

INDEXED INPUT Yes Orf A 
No On B 

INDEXED OUTPUT Yes 2 
No Yes On F 
No No 1 

INDEXED UPDATE Yes Ofr C 
No Yes On F 
No No 1 

*Fixed format 

ACTION CODES: 

A Record returned. 

B Blank record returned. 

C Existing record updated. 

D Existing record overwritten. 

E Record written in formatted disk space. 

F File extended and new record written. 

8-36 REPORT PROGRAM GENERATOR II 



CH A I N I NG E R RO R . 

2 DUPLICATE KEY error. 

8.25.6 Set Lower Limits Operation (SETLL) 

This operation allows the lower limit to be set during 
calculations when processing indexed files sequentially by key. It 
may be used with indexed input, update and demand files. When used 
with inpu~ and update files, care should be exercised to properly 
process records already read during the input cycle prior to 
executing calculations. The SETLL operation may be executed as 
many times as desired prior to reaching the end of the input file. 
SETLL will select a new starting record for input during the next 
input cycle. 

Factor 1 must contain an alphanumeric field name or literal 
representing the value of the lower limit being set. The length of 
the field or literal does not have to be equal to the length of 
the key for the file named in Factor 2. The shorter key will be 
extended with blanks before comparison is made. 

Factor 2 must contain the name of the file for which the lower 
limit is to be set. If a read is performed to the file prior to 
the first SETLL instruction the record with the lowest key in the 
file is read. 

The Mode of Processing entry (column 28) in the File Description 
must contain an L for processing within limits. 

8.26 Audio Output Operations 

Operation codes are provided to allow audible signals to be 
given to alert the operator of conditions requiring operator 
intervention. These signals can also be used for debugging and 
timing. 

8.26.1 Beep (BEEP) 

The BEEP operation code causes the Datapoint computer to emit 
an audible beep. 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-37 



8.26.2 Click (CLICK) 

The CLICK operation code causes the Datapoint computer to 
emit an audible click. 

8.27 Debug Operations 

The debug operation is an RPG II function that may be used to 
help find errors in a program which is not working properly. This 
code causes one or more records to be written containing 
information helpful for finding programming errors. 

8.27.1 Debug (DEBUG) 

The DEBUG operation code may be placed at any point or at 
several points in the calculation operations. Whenever it is 
encountered, one or more records are written depending upon the 
specifications entered. One record contains a list of all 
indiQators which are on at the time the DEBUG code was 
encountered. The other shows the contents of anyone field. 

8.27.2 Debug Specifications 

Factor 1 is optional. It may contain a literal or field name 
which identifies the particular debug operation. The literal or 
the value of the field named here is written on record 1. Factor 2 
must contain the name of the output file on which the records are 
written. The same output filename must appear in Factor 2 for all 
DEBUG statements in a program. The result field may be a field, 
table element, array element, or whole array whose contents you 
want to write on record 2. Any valid indicators may be used in 
columns 7-17. Columns 49-59 must be blank. 

Numeric fields are displayed in Databus format. The field 
definition must contain enough integer positions to allow room for 
a minus sign to the left of the first significant digit or a 
NUMERIC FIELD ERROR may occur when displaying negative numbers. 

The operation code produces results only if the proper entry (1 in 
column 15) has been made in the control card specifications. If 
the control card entry has not been made, the operation code DEBUG 
is treated as a comment by the compiler. 

8-38 REPORT PROGRAM GENERATOR II 



8.28 EXIT and RLABL Operations 

Linkage from Datapoint RPG II to Assembler language 
subroutines is accomplished through the RPG II EXIT and RLABL 
operations. 

8.28.1 EXIT Operation 

The EXIT operation code is used to designate a point in the 
R PG I I cal c u 1 at i on s p e c i f i cat ions at w h i ch con t r 01 is to be pas sed 
to a pre-processed, external subroutine. The rules for use of the 
EXIT operation in RPG II calculation specifications are as 
follows: 

1. Operation EXIT. 

2. Factor blank. 

3. Factor 2 contains the name of subroutine to which control is 
to pass. 

4. Result Field blank. 

5. Resulting Indicators blank. 

The EXIT operation can be conditioned by Control Level entries 
(columns 7-8) and Indicator entries (columns 9-17). If not 
conditioned by control level entries, the EXIT operation occurs at 
detail calculation time. 

The EXIT operation generates a CALL to the subroutine named in 
Factor 2. 

8.28.2 RLABL Specification 

Through the RLABL operation, a field, table, or array defined 
in the RPG II program can be referenced by the subroutine to which 
the EXIT operation gives control. The rules for use of RLABL in 
RPG II calculation specifications are as follows: 

1. Operation RLABL. 

2. Result Field contains field, table, or array name. 

3. Field Length contains the length of the field (optional). 

CHAPTER 8. CALCULATION SPECIFICATIONS 8-39 



4. Decimal Positions contains the decimal indication (optional). 

The RLABL specifications must immediately follow the EXIT 
specifications for the subroutine which references the RPG II 
field. A name defined by a TAG, BEGSR, or ENDSR specification 
cannot be used in an RLABL specification. 

8.28.3 Referencing Fields 

If the result field of the RLABL refers to a field, a 
four-byte DC is generated containing: the number of decimal 
positions in the field or 0 (first byte), the field length (second 
byte), and the address (third and fourth bytes) of the left-most 
byte of the field. A numeric field has normal zones (octal values 
360-371) over all positions except the last (right-most), which 
contains a character in the range 300 to 311 if the number is 
positive or a character in the range 320 to 321 if the number is 
negative. If the subroutine generates numeric results, the user 
should ensure that all zero values generated have a positive sign. 

8.28.4 Referencing Tables and Arrays 

If the result field of the RLABL refers to a table or array, 
the two-byte address of the Table Description Block (TDB) is 
generated. See Appendix C for its format. 

8.28.5 Referencing Indicators 

An assembler subroutine may reference indicators in the RPG 
II program to which it is linked. This is done by entering INxx 
in the Result Field of an RLABL specification. The xx represents 
the indicator to be referenced. For example, if MR is to be 
tested, INMR must "be entered in the Result Field of the RLABL 
specification. 

The object code generated is the two-byte address of the 
indicator. An indicator byte contains zero when the indicator is 
off. It is non-zero (and normally 377) when it is on. 

Note: Two-byte addresses are generated in the standard order: 
least-significant-byte, then most-significant-byte. 

8-40 REPORT PROGRAM GENERATOR II 



CHAPTER 9. OUTPUT FORMAT SPECIFICATION 

Output Format specifications describe your output records. 
These specifications may be divided into two general categories: 

1. Record description entries (columns 7-31) which describe the 
output file records to be written. 

2. Field description entries (columns 32-74) which indicate the 
position and the format of data on the output record. 

Write the specifications on the Output Format Sheet. The field 
description entries start one line lower than record description 
entries. 

9.1 Columns 1-2 (Page) and Columns 3-5 (Line) 

See Chapter 2. 

9.2 Column 6 (Form Type) 

An 0 must appear in column 6. 

9.3 Columns 1-14 (Filename) 

Use columns 7-14 to identify the file to which records are to 
be written. The filename must begin in column 7. Use the same 
filename given in the file description specifications. You need to 
specify the output filename only once. That name, however, must 
be on the first line that identifies the file. 

9.4 Column 15 (Type) 

Entry Explanation 

H Heading records. 

D Detail records. 

T Total records. 

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-1 



E Exception Records (records to be written during 
calculaton time). 

Use column 15 to indicate the type of record that is to be 
written. Either enter the records for each file in this order: 
heading, detail, total, and exception, or enter all heading 
records for all output files, then, all detail records for all 
output files, etc. 

9.5 Columns 16-18 (Add a Record) 

Entry Explanation 

ADD Add a record. 

Columns 16-18 may be used to specify that a record is to be added 
to an output or update file. The output device must be DISK and an 
A must be coded in column 66 of the File Description Specification 
for the file to which the record is to be added. 

The entry in Columns 16-18 is optional and is not required for 
adding records to the file. 

9.6 Column 16 (Fetch Overflow) 

Entry Explanation 

Blank Overflow not fetched. 

F Fetch overflow. 

Column 16 may be used to indicate that the overflow routine can be 
used at this point for a printer file. When the fetch overflow 
routine is not used, the following usually occurs when the 
overflow line is sensed: 

1. All remaining detail lines in that program cycle are printed 
(if a printer operation spaced or skipped to the overflow 
area). 

2. All remaining total lines in that program cycle are printed. 

3. All lines conditioned by an overflow indicator are printed. 

4. Forms advance to a new page if a skip to a new page has been 
specified. 

9-2 REPORT PROGRAM GENERATOR II 



If you do not want all of the remaInIng detail and total lines 
printed on the page before overflow lines are printed and forms 
advance to the new page, you may cause overflow lines to be 
printed ahead of the usual time. This is known as fetching the 
overflow routine and is indicated by the entry in column 16. 
Overflow is fetched only if all conditions specified by the 
indicators in columns 23-31 are met and an overflow has occurred. 

The fetched overflow routine automatically causes forms to 
advance. . 

F may be used in an OR line if you want that line to condition a 
record with the overflow indicator. 

9.7 Columns 17-22 (Space/Skip) 

Columns 17-22 are used to specify spacing and line skipping 
for a printer file. If these columns are blank, single spacing 
occurs automatically after each line is printed. 

Line spacing and skipping may be specified both before and after 
printing of a line. There may be as many as six spaces (three 
before, three after) between two lines of printing. Only space 
before and space after can be specified on output for the display. 

If both spacing and skipping are specified on the same line, they 
are done in this order: 

1. Skip before. 

2. Space before. 

3. Skip after. 

4. Space after. 

9.7.1 Columns 17-18 (Space) 

Entry Explanation 

o No spacing. 

Single spacing. 

2 Double spacing. 

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-3 



3 Triple spacing. 

Spacing is used in reference to the lines on one page. You may 
indicate that spacing should be done before (column 17) or after 
(column 18) a line is printed. If the destination of a space 
operation is a line beyond the overflow line (but not on a new 
page), the overflow indicator turns on and remains on until all 
overflow lines are printed. 

Note: The display will always roll up one line before output. 
Therefore, a space before entry of blank, zero, or one will result 
in a single space before output. 

9.7.2 Columns 19-22 (Skip) 

Entry Explanation 

01-99 Lines 1-99. 

Skipping refers to jumping from one printing line to another 
without stopping at lines in between. This is usually done when a 
new page is needed. A skip to a lower line number means advance 
to' a new page. Skipping may also be used, however, when a great 
deal of space is needed between lines. 

The entry must be the two-digit number which indicates the number 
of the next line to be printed. You may indicate that skipping 
should be done before (columns 19-20) or after (columns 21-22) a 
line is printed. If you specify a skip to the same line number as 
the forms are positioned on, no movement of the paper occurs. If 
the destination of a skip operation is a line beyond the overflow 
line (but not on a new page), the overflow indicator is turned on 
and remains on until all overflow lines are printed. The 
destination line of a skip operation must not be beyond the form 
length defined on the Line Counter Specification. 

9.8 Columns 23-31 (Output Indicators) 

Entry 

01-99 

L1-L9 

9-4 

Explanation 

Any resulting indicator, field indicator, or record 
identifying indicator previously specified. 

Any control level indicators previously specified. 

REPORT PROGRAM GENERATOR II 



H1-119 

U1-u8 

OA-OG, 
OV 

MR 

LR 

1P 

LO 

Any halt indicators previously specified. 

Any external indicator set during program 
initialization. 

Any overflow indicator previously assigned to 
this file. 

Matching record indicator. 

Last record indicator. 

First page indicator. 

Level zero indicator. 

Use output indicators to give the conditions under which output 
operations are to be done. When you use an indicator to condition 
an entire line of print, place it on the line which specified the 
type of record. Place an indicator which conditions when a field 
is to be printed on the same line as the field name. 

There are three separate output indicator fields (columns 23-25, 
26-28, and 29-31). One indicator may be entered in each field. 
If these indicators are on, the output operation will be done. An 
N in the column (23, 26, or 29) preceding each indicator means 
that the output operation will be done only if the indicator is 
not on. No output line should be conditioned by all negative 
indicators (at least one of the indicators used should be 
positive). If all negative indicators condition a heading or 
detail operation, the operation is performed at the beginning of 
the program cycle when 1P lines are written. The overflow 
indicators may not be specified on an E (exception output) line. 

Warning: When defining records of update files, avoid writing 
multiple records on one cycle, since results are unpredictable. 

In Datapoint RPG II, all total lines conditioned by LR will be 
per formed la st. 

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-5 



9.8.1 AND and OR Lines 

If you need to use more than three indicators to condition an 
output operation, you may use an AND line. Enter the word AND in 
columns 14-16 and as many indicators as needed. The condition for 
all indicators in an AND relationship must be satisfied before the 
output operation is done. 

Output indicators may also be in an OR relationship. If either or 
both of the OR conditions are met, the output operation will be 
done. OR lines are indicated by the word OR in columns 14-15. 
Both AND or OR lines may be used together to condition an entire 
output line. AND and OR lines cannot be used to condition a 
field. 

The use of an LO-L9 indicator in an OR relationship with an LR 
indicator can result in the specified operation being done twice 
when LR is on. One operation is performed during LR processing 
and the other at detail or total time. 

9.8.2 External Indicators 

A file named in the Output Format specifications may be 
conditioned by an external indicator in the file description 
specifications. External indicators can also be used to condition 
a record or field. No output can occur to a file if it is 
conditioned by an external indicator and that indicator is off. 

9.8.3 Control Level Indicators 

Control level indicators entered in columns 23-31 of this 
sheet specify when output records or fields are to be written: 

1. If the control level indicator is entered along with a T in 
column 15 and no overflow indicator is used, the record is 
written only after the last record of a control group has been 
processed. 

2. If the indicator is entered along with a D in column 15 and no 
overflow indicator is used, the record is written only after 
the first record of the new control group has been processed. 

3. If the control level indicator is entered along with an 
overflow indicator, the record is written after the overflow 
line has been sensed (provided a control break has also 
occurred). 

9-6 REPORT PROGRAM GENERATOR II 



9.8.4 Overflow Indicators 

Overflow indicators are used to condition output operations 
on the printer. The operations conditioned by the overflow 
indicator are done only after the overflow line has been passed. 

If you have not assigned an overflow indicator to the printer file 
in the File Description specifications, you may not use an 
overflow indicator in the Output Format specifications. In this 
case, advancing the forms to a new page is handled automatically, 
even though no overflow indicator has been assigned. If any 
specification line not conditioned by an overflow indicator 
specifies a skip to a line on a new page, overflow indicators turn 
off before forms advance to a new page. 

An overflow indicator may appear on either AND or OR lines. 
However, only one overflow indicator may be associated with one 
group of output indicators. That overflow indicator must also be 
the same indicator associated with the file on the File 
Description Sheet. 

When the overflow indicator is used in an AND relationship with a 
record identifying indicator, unusual results are often obtained. 
This is because the record type might not be the one read when 
overflow has occurred. Thus, the record type indicator is not on 
and all lines conditioned by both overflow and record type 
indicators do not print. 

If at all possible, use overflow indicators and record type 
indicators in an OR relationship when conditioning output lines. 

An overflow indicator cannot condition an exception line (E in 
column 15), but may condition fields within the exception record. 

9.8.5 First Page Indicator 

The first page (1P) indicator is usually used to allow 
printing on the first page. It may also be used in an OR 
relationship with the overflow indicator to allow printing on 
every page. The information printed out on the line conditioned 
by the 1P indicator is usually constant information used as 
headings. The constant information is specified on the Output 
Format Sheet, columns 45-70. 

The 1P indicator is used only with heading or detail output lines. 

CHAPTER 9. OUTPUT FORHAT SPECIFICATION 9-7 



It cannot be used to condition total or exception output lines. 
Use this indicator only when other indicators (control level or 
resulting indicators) cannot be used to control printing on every 
page. All lines conditioned by the 1P indicator are written out 
even before the first record from any input file is processed. 
Therefore, do not condition output fields (except PAGE and UDATE) 
which are based upon data from input records by the 1P indicator. 
Calculation operations cannot be conditioned by the 1P indicator. 

9.9 Columns 32-37 (Field Name) 

In columns 32-37, use one of the following to name every 
field that is to be written out. 

1. Any field name previously used in the program. 

2. The special words PAGE, UDATE, UDAY, UMONTH, and UYEAR. 

3. A table name, array name, or array element. 

The field names used are the same as the field names on the Input 
Sheet (columns 53-58) or the Calculation Sheet (columns 43-48). 
Do not use these columns if a constant is used (see Columns 45-70 
in this chapter). If a field name is entered in columns 32-37, 
columns 7-22 must be blank. 

Fields may be listed on the sheet in any order since the sequence 
in which they appear on the printed form is determined by the 
entry in columns 40-43. However, they are usually listed 
sequentially. If later fields overlap the first fields specified, 
the data which is overlayed is lost. 

In IBM-compatible format, the sign (+ or -) of a numeric field is 
in the units position (rightmost digit). A minus sign in the 
units position prints as a letter unless the field is edited (see 
Column 38 and Column 44 in this chapter). 

9.9.1 PAGE 

PAGE is a special word which causes automatic numbering of 
pages. Enter the word PAGE in these columns if you wish pages (or 
an individual record) to be numbered. When a PAGE field is named 
in these columns without being defined elsewhere, it is assumed to 
be a four-position numeric field with no decimal positions. 

However, a PAGE field can be defined in input or calculation 

9-8 REPORT PROGRAM GENERATOR II 



specifications and may be up to 15 positions long. A PAGE field, 
when explicitly defined, must be defined with zero decimal 
positions. Leading zeros are suppressed, and the sign is not 
printed in the rightmost position unless an edit word or edit code 
is specified. The page number starts with 1 unless otherwise 
specified, and one is automatically added each time the PAGE field 
is written. 

It is possible at any point in the job to restart the page 
numbering sequence. To do this, set the PAGE field to zero before 
it is printed. One method of setting the PAGE field to zero is to 
use Blank After (see Column 39 in this chapter). Another way is 
to use an output indicator. A PAGE field will always be printed 
even though the field is conditioned by an indicator. If the 
indicator is on, the PAGE field is set to zero, and one is added 
before it is written. Remember that one is always added to the 
PAGE field before it is written. 

9.9.2 Date Field 

Often you want the date to appear on the printed report or 
output record. Use special words UDATE, UMONTH, UDAY, and UYEAR 
to get the date field you desire. The following rules apply to the 
da te field: 

1. UDATE gives a six-character numeric date field in the format: 
mmddyy (d, m, and yare the day, month and year positions in 
the UDATE field). 

The edited date field is eight characters long, in the format: 
I"1M/DD/YY. 

2. UDAY may be used for days only, UMONTH for months only, and 
UYEAR for years only. 

3. These fields may not be changed by any operations specified in 
the program. 

9.10 Column 38 (Edit Codes) 

Use column 38 to: 

1. Suppress leading zeros for a numeric field. 

2. Omit a sign from the low order position of a numeric field. 

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-9 



3. Punctuate a numeric field without setting up an edit word. 

A table summarizing the edit codes that can be used is printed 
below. Each edit code punctuates differently. If an edit code is 
used in column 38, columns 45-70 must be blank unless asterisk 
fill or a floating dollar sign is required ('*' or '$' entered in 
columns 45-47). If an edit code is used to punctuate an array, 
two spaces are left between elements of the array to the left of 
each element. 

Normally, when an edit code is used in column 38, defining an edit 
word in columns 45-70 is not allowed; however, there are two 
exceptions: 

1. If leading zeros are to be replaced by asterisks, enter '*' in 
columns 45-47 of the line containing the edit code. 

2. If a dollar sign is to appear before the first digit in the 
field (floating dollar sign), enter '$' in columns 45-47 of 
the line containing the edit code. 

Asterisk fill and floating dollar sign are not allowed with X, Y 
and Z edit codes. 

It is also possible to have a dollar sign appear before the 
asterisk fill (fixed dollar sign). This is done in the following 
way: 

1. Place a dollar sign constant one space before the beginning of 
the edited field (on another output specification line). 

2. Place ,*, in column 45-47 of the line containing the edit 
code. 

9-10 REPORT PROGRAM GENERATOR II 



Summary of Edit Codes 

Commas Zero No CR 
to Print Sign 

Yes Yes A J 

Yes No 2 B K 

No Yes 3 C L 

No No 4 D M 

x = Remove Plus Sign 

Y = Date Field Edit 

Z = Zero Suppress 

9.11 Column 39 (Blank After) 

Entry 

Blank 

B 

Explanation 

Field is not to be reset (blanked or zeroed) after 
writing. 

Field is to be reset (blanked or zeroed) after 
writing. 

Use column 39 to reset a field to zeros or blanks. Numeric fields 
are set to zero and alphanumeric fields are set to blanks. This 
column must be blank for Look-Ahead fields, date fields (UDATE, 
UDAY, UMONTH, UYEAR), and constants. 

Resetting fields to zeros is useful when accumulating totals for 
each control group. After finding the total for one group and 
printing it, you want to start accumulating and printing totals 
for the next group. However, the total field should always start 
with zeros, not with the total it had for the previous group. 
Blank After will reset the total field to zero after it is 
printed. 

If the field is to be used for output more than once, be sure the 

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-11 



B is entered on the last output line for that field. Otherwise, 
the field is blanked out before all required output is finished. 

If a field name specified with Blank After is a table name, the 
element of the table looked up last will be blanked or zeroed. 

9.12 Columns 40-43 (End Position in Output Record) 

Use columns 40-43 to indicate the location on the output 
record of the field or constant that is to be written. Enter only 
the number of the ending position (the rightmost character) in the 
field or constant. Be sure to allow enough space (as indicated by 
end position entries) on the output record to hold edited fields. 

9.13 Column 44 (Packed or Binary Field) 

Entry 

Blank 

Explanation 

Field is IBM-compatible numeric or alphanumeric 
data. 

Field is Datapoint-compatible numeric data. 

Column 44 should contain a D for output in Datapoint format. If 
used, the field must not be edited. Since a decimal point is 
automatically inserted when the field is written, an additional 
column must be allowed for the period. A minus sign will always 
be placed to the left of the most significant digit. There must 
be room for both a decimal point and a sign if the output field is 
negative. 

Examples 

Internal field Size Output field Size 

1234 4.0 1234. 5 
012L 4.0 -123. 5 
123M 4.0 illegal 5 
001K 4.0 -12. 5 

9-12 REPORT PROGRAM GENERATOR II 



9.14 Columns 45-70 (Constant or Edit Word) 

Use columns 45-70 to specify a constant or an edit word. 

9.14.1 Constant 

A constant is any unchanging information that is entered by a 
specification. Constants are usually words used for report 
headings or column headings. 

The following rules apply to constants: 

1. Field name (columns 32-37) must be blank. 

2. A constant must be enclosed in apostrophes. Enter the leading 
apostrophe in column 45. 

3. An apostrophe in a constant must be represented by two 
apostrophes. For example, if O'CLOCK appears as a constant it 
must be coded O"CLOCK. 

4. Up to 24 characters of constant information can be placed in 
one line. Additional lines may be used, but each line must be 
treated as a separate line of constants. The end position of 
each line must appear in columns 40-43. 

9.14.2 Edit Word 

An edit word gives more flexibility in punctuating a numeric 
field than an edit code. You directly specify whether commas, 
decimal points, and zero suppression are needed, whether the 
negative sign should print, whether the output is dollars and 
cents, and whether a dollar sign and leading asterisks are wanted. 
Constants can be used within edit words. 

The following rules apply to edit words: 

1. Column 38 (Edit Codes) must not be used. 

2. Columns 32-37 (Field Name) must contain the name of a numeric 
field. 

3. Columns 40-43 (End Position in Output Record) must contain an 
entry. 

4. An edit word must be enclosed in apostrophes. Enter the 

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-13 



leading apostrophe in column 45. The edit word itself must 
begin in column 46. 

5. Any printable character is valid, but certain characters in 
certain positions have special uses (see Editing 
Considerations in the following text). 

6. An edit word cannot be longer than 24 characters. 

7. The number of replaceable characters in the edit word must be 
equal to the length of the field to be edited. (See Editing 
Considerations in the following text for a discussion of 
replaceable characters.) 

8. All leading zeros are suppressed unless a zero or asterisk is 
specified in the edit word. The zero or asterisk indicates 
the last leading zero in the field to be replaced by a blank 
or asterisk. 

9. Any zeros or asterisks following the leftmost zero or asterisk 
are treated as constants (they are not replaceable 
characters). 

10. Any constant to the left of the zero suppression stop 
character (except $) will be suppressed unless a significant 
digit precedes the constant. 

9.14.3 Editing Considerations 

Always leave exactly enough room on the output file for the 
edited field. If the field to be edited is seven characters long 
on the input record, the possible insertion of editing characters 
may well require the output field length to be greater than seven. 

When computing the length of an edited output field, determine how 
many of the editing characters are replaceable. The number of 
replaceable characters in the edit word must be equal to the 
length of the field to be edited (see following Note). The 
replaceable characters are: 

Character Use 

o Zero Suppression. 

* Asterisk fill. 

Blank Blank. 

9-14 REPORT PROGRAM GENERATOR II 



$ Floating dollar sign (if it appears immediately to 
the left of zero suppression). 

A fixed dollar sign, decimal points, floating dollar sign, commas, 
ampersands (representing blanks), negative signs (- or CR) and 
constant information are not replaceable characters. 

Note: There are two exceptions to the rule that the number of 
replaceable characters in the edit word must be equal to the 
length of the field to be edited. The exceptions are: 

1. An extra space must be left in the edit word for the floating 
dollar sign. This ensures a print position for the dollar 
sign if the output field is full. 

2. An extra space can be left in the edit word if the first 
character in the edit word is a zero. In this case, the field 
to be edited will not be zero suppressed, but all other 
specified editing will be performed. 

If it is necessary to show a negative number, a sign must be 
included in the edit word. Either the minus sign (-) or the 
letters CR may be used. These print only for a negative number; 
however, the character positions they require must be taken into 
consideration when entering the end position of the field on the 
Output Format Sheet. 

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-15 



yALUE OF FIE\..D 

0001'2.75 
00012.75" 
-1000.00 
0000.00 
/000.00 
-/000.00 
0025.50 
0100000.00 
001000.00 
78596/2 
125.75 
000.50,00 
03157t) 
0815 
O'fOO./O 
0000010 
022975 
0000.03 
-00222.22 
3f56.76 
123450107 
0002()() 
/23'1-5fo 
00000 
00000 
0OO2'f66 
-0012 
000.15 
00023i.f 
0000.00 

45 , 
<. 

c 

C 

( 

( 

, 
I 

( 

, 
'~ 
( ~ 
( 

< ~ 
( 

, 
( 

( 

( 

, 
, 
, 
( 

( 

l 

C i¢ 
( 

C 

<. 

( 

CONSTANT OR EDIT WORD 

e. ) 

;~ , 
rJ. - ) 

~. 
, 

0. CR.' 
rt'. c,R.) 
Cd. i, CI? ~-T or A L ) 

~ '" ~. ~c R' 
. ~ $ ¢. I~ CR' 
/ , 

) -
RJ. 

, 

o. ) 

.. 
/' / ) 

/I RS • M I N S. ~o ' J CL 

$* . 
, 

~ 
l' 

*' . . 
T~ ~ 

, 
) .. . 

" tJ. Irf" -~ GR OS s) 
0. (JR. *~ 

~ , 
e , 

, . 
r' *1" 

~ ~ rI> ~ ~ 
.) 

t1' 
i(tJ ) 

, 
gJ i> ) 

¢. ) 

¢ *' 
) 

¢. ) 

" 

70 

I 

OC 1<' 

,Jf;5~ 12.75" 
JI/I~/275 
1000.00-
#1I1J1l. (X) 
/000.00 11# 
/ OCX). 000R. 
1f1l25.50IJI)JpJ} Tf)TAL 

PIIIOOJOOO. 00 ID~JJ 
1I1i1D~ I) OaJ. 00 Ifjjj> 
785-9612 .. 

4-125.75' 

r ¥f61PJDEo.00 
f;J3/18/7£; 
#8HRS .. /5MINS O'CLOCK. 
f$4<XJ./O 

*******10 
Jf2Jf2tOJf15 
j1 /PfJ/p/p~/p3 
{It111222.22~-f/GR.tJS5 
3/J5(o. 78 )5/1 ** 
/2,3'1-5, blo 7 
***200 
/Jf2/1B lI'1lpS,b 

~16"~~ 
1J~IfIlO 
/l002tfbS 
flJ'12Jp-
jJJ1/b}515 
~l/JfP 2*3Lf 
~fJ~~#.OO 

Note all decimal PtJinf:s appearil'1g onder VAUJEi' OF FIELO CJre /rnplie::l and do not; 

o~tJp'l .. _tfi. qfjte cd. ~~II1.,!r!l.. .,. ,~ . . . . __ r 

Figure 9-1. Examples of ed it words. 

9-16 REPORT PROGRAM GENERATOR II 



9.15 Columns 71-14 

These columns are not used and should be left blank. 

9.16 Columns 75-80 (Program Identification) 

Refer to Chapter 2. 

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-17 



OUTPUT FORMAT SPECIFICATION 

r--"- Edit Codes 

r---iiero Ha. I3I,,·c-.-T. -----r-r----r-----4 
COrolm3$ to Prmt No SH:)" CR - ;(. Remove 

Yes 
v •• 
No 

110 

Ve' 
No 

No 

Plus SIDn 
A J y - Oat., 

Z - ZerO 
o JJI Suppress ______ . ____ L-~-~-~~----~ 

PRQGQAV ____________ PROGRAMME.R_. __ • ______ ~....:.::nA~TF~.-.:.-.::. ===.:..:. ... .:P"::G::E =::.:(l:.:. •. ~.:_.=.::PA:OE:.:S ________ ---' 

I r~~~~~ 18, rOATA FORMA. (O! 

PO L!NE 
>;() "0 FILE ""ME 

2'5 0 

I 0 

I 0 

I 0 I 

j I I 0 i , I 
! 0 I ! 

Figure 9-2. 

9-18 

I SP SKIP OUTPUr INDICATO~S END 
PO~~ION 

OUTPUT 
RECORD 

CONSTANT OR EO, r WORD 

Examples of Output Specifications. 

REPORT PROGRAM GENERATOR II 

10 15 

P"OG;<AM 
IOF.NTWICA.lION 

I 
I i I 
j 

I! I i 
i I i 



APPENDIX A. GENERATION AND USE OF RELOCATABLE RPGPLUS 

The collection of files which comprise the Datapoint RPGPLUS 
system are distributed on a serialized disk pack. 

A.1 Compiling an RPGPLUS Program 

An RPG II source file is compiled by the RPGPLUS compiler by 
keying in a command wi th the following format: 

RPG srcfil (,objfil)(;(L)(P)(D)(O)(S)(X)(A)(F)(W)(B» 

where the file names are in standard DOS format. If no object file 
is specified, the name "srcfil" will be substituted: thus the 
command file would be "srcfiI/CMD". TXT extension is assumed for 
the source file, which can be in EDIT or DATAFORM format and CMD 
is the default object file extension. Additional default 
extensions are PRT for a listing file, REL for the file containing 
relocatable object code, TXC for the link control file and SYS for 
the RPG work files. The standard RPGPLUS work file names are 
suffixed by either a blank or the alphabetized unique character 
assigned by the Partition System to the partition in which the 
compiler is running. This character replaces the 'u' shown in file 
names in the following text. The option characters are used as 
follows: 

L - List source program and storage map on printer 
P - List source program and stor age map on disk 
D - List source program and storage map on sc reen 

o - Li st generated obj ect code (requires 
S - List symbol table (requires 
X - List cross r eferenc es (requires 

A - Automatic link edit 

F - Rename intermediate files (REL, TXC) 
W - Rename work files (RPGWRKnu/SYS) 
B - Specify new buffer area upper bound 

L, P 
L, P 
L, P 

or D) 
or D) 
or D) 

For normal use of the compiler, the L or P and the A options are 
all that are required. The 0 option will cause listings of 15 to 
over 100 pages to be produced, and exists for use by maintenance 
personnel. If the A option is specified and fatal errors occur, 

APPENDIX A. GENERATION AND USE OF RELOCATABLE RPGPLUS A-1 



linking will be supressed. 

Use of the L,P,F,W and B options will cause the compiler to 
request additional data. These requests will be made in the 
following order (with * representing the blinking cursor): 

The W option (rename work files) displays: 

Work file specification: 
Work file 0: RPGWRKOu/SYS * 
Work file 1: RPGWRK1u/SYS * 

The second and third messages are requests for new file names; the 
default names are those shown. These two files are created and 
then killed each time the RPG compiler is used. 

The B option (reset upper bound of buffer area) displays: 

Buffer allocation up to: ddddd (000000) * 
giving the current limit in both decimal and octal and accepting a 
new value in either number system (leading 0 for octal); the 
default value is the one shown. 

The F option (rename intermediate files) displays: 

ENTER INTERMEDIATE OBJECT FILE NAMES (R,L): * 
and accepts names for the Relocatable object code and Link control 
files in the format: (relfil) (, lnkfil). These two files have 
defaults of "objfiI/REL" and "objfiI/TXC" respectively. The F 
option allows these files to be saved for future use; if it is not 
specified, RPGOBJTu/REL and RPGLINKu/TXC are used and LINK must be 
performed before the next compilation. 

The P option (list on disk) displays: 

LIST ON FILE: * 
requesting a print file name. The default name and extension for 
this file are "srcfil" and PRT. 

The Land P options (listing requested) display: 

ENTER HEADING: * 
and accept a heading to be displayed at the top of each page. 

A-2 REPORT PROGRAM GENERATOR II 



Having obtained any optional data it needs, the compiler will 
process the source file, and produce arelocatable object file 
(RPGOBJTu/REL) and a link control file (RPGLINKu/TXC). During the 
processing, the top right-hand corner of the display will contain 
the RPGPLUS version number and the message "Phase: XX", where XX 
are two alphabetic characters. These two characters indicate which 
compilation phase is being executed at any particular time. There 
are over 30 separate phases, each corresponding to a particular 
portion of the compilation process. The names of the phases and 
their functions are described in Appendix C. 

A.2 Linking a Compiled RPGPLUS Program 

After a relocatable RPGPLUS program has been compiled, it 
must be linked with the RPG object library (and user library, if 
specified) to produce an executable command file. This may be 
done by using the A option or by typing the command: 

LINK R P G LIN K u ; F 

WARNING: Normally LINKing must be done before another RPGPLUS 
program is compiled since the compiler will overwrite the two 
files each time it is used; if LINKing is to be deferred, the F 
option (see above) can be used to rename these files. 

A.3 Running a Linked RPGPLUS Program 

After compiling the source file and linking the relocatable 
object file, the resulting command file is executed by merely 
calling for it from the command interpreter. For example suppose 
the source file TEST/TXT were compiled by the command: 

RPG TEST; L 

and linked using: 

LI NK RPGLINKu; F 

or both compiled and linked by the command: 

RPG TEST;LA 

Then the object file could be executed by the command: 

TEST 

APPENDIX A. GENERATION AND USE OF RELOCATABLE RPGPLUS A-3 



The object file can not accept parameters from the command line; 
all necessary interaction with the user is done under object 
pro gr am cont role 

A.3.1 DATE Field 

If any of the special words: UDATE, UDAY, UMONTH, or UYEAR 
were used in the source program, the object program will ask for 
the date, which should be entered as MM/DD/YY. For example, Sept. 
5, 1 97 3 , is en t e r ed as 09 105 17 3 . 

A.3.2 External Indicators 

If any of the external indicators, U1 to U8, were used in the 
source program, the object program will ask for their values at 
the beginning of execution. The values must be entered in binary, 
with a 0 setting the indicator off and a 1 setting it on, and in 
the following order: 

U1 U2 U3 U4 U5 U6 U7 U 8 

Values for indicators not used are not required if there are no 
used indicators with a higher number. For example, if U1 were the 
only external indicator used, a valid response is either: 

o or 1. 

If U1 and U2 were the only external indicators used, the valid 
responses are: 

00, 0 1, 1 0, or 11. 

However, if U1 and U3 were used, and no others, the response must 
be of the form: 

OxO, Ox1, 1xO, or 1x1 

where x is any character. 

A-4 REPORT PROGRAM GENERATOR II 



A.3.3 Opening Files 

Each file opened by the object program causes an opening 
message to be displayed. In the case of assignable disk files, a 
message will be displayed, and then the program will wait for a 
file name to be entered. This name should be in standard DOS 
format (TXT extension is assumed for data files, lSI extension is 
assumed for indexed files if extension is not given). If a 
defined disk file does not exist, an error message will be 
displayed and the program will then ask for a name as for an 
assignable file. 

A.3.4 Indexing ISAM (Indexed) Files 

Indexed files are created in exactly the same format as any 
fixed format disk file. The data structure is identical and may be 
processed, disregarding the index, as a simple fixed format file. 
To permit processing as an indexed file, the INDEX utility is used 
to create a separate index file. The file is indexed by typing: 

INDEX datafile(,indexfile);(E)aaa-bbb 

All parameters within the parenthesis are optional. File names are 
in standard DOS format. If the indexfile name parameter is 
omi tted, an index will be created wi th the name "datafile/ISI". 
The "E" parameter indicates that the index is in EBCDIC collating 
sequence. If the "E" is omi tted the index will be created in ASCII 
sequence. The parameter aaa (1-255) is the position of the first 
character in the key and bbb (1-353) is the position of the end of 
the key. 

The index file name should be referenced in the File Description 
Specifications any time the file is used as an indexed input, 
update or add file in an RPG program. 

A.3.5 Console Input Files 

When entering data from the keyboard as an input file, 
end-of-file may be entered by depressing the DISPLAY key and the 
ENTER key simultaneously. This eliminates the necessity of coding 
an end of file character to set the LR indicator when keyboard 
input files are used directly (not in DOS CHAIN). When keyboard 
input is used with DOS CHAIN, a record which sets the LR indicator 
should be used to terminate processing. 

APPENDIX A. GENERATION AND USE OF RELOCATABLE RPGPLUS A-5 





APPENDIX B. RPGPLUS REFERENCE TABLES 

General System Organization 

The first part of the appendix lists the various components of the 
RPGPLUS system and gives a brief description of the function 
performed by each phase of the compiler. The two-letter 
abbreviations appear during compilation in the upper right-hand 
corner of the display. An RPG compilation is passed through the 
following phases: 

1. Interface Program - common data and code. 

2. Enter Phases - read, list, and compress source. 

3. Assign Phases - allocate data storage. 

4. Diagnostic Phases - finish error checking. 

5. Generate Phases - generate object program operations for 
input, compute, output. 

6. Assembly Phases - assemble object text in relocatable form. 

Enter Phase Summary 

AA - Initialize system, read control card, list, compress and 
diagnose. 

AD - Process file-descriptions - compress information, writing 
part of card on disk, building file-name table and in-core 
compression table with the rest of the information. 

AE - Process file-extension specifications - compress and write on 
disk. 

AF - Process line-counter specifications. 

AG - Process input specifications, generating record and field 
compressions. 

AK - Process calculation specifications - read, list, diagnose and 
compress records. 

APPENDIX B. RPGPLUS REFERENCE TABLES B-1 



AM - Process output specifications, generating record and field 
compressions. 

AZ - Process user library inclusion, and compile-time tables. 

BA - Initialize symbol name table. 

BF - Assign token numbers to TAG names. 

BG - Assign token numbers to subroutine names (BEGSR). 

BH - Assign token numbers to table and field names. 

BQ - Reorganize symbol name table. 

Assign Phase Summary 

CA - Assign indicator storage. 

CB - Generate indicator table for 'DEBUG' operations. 

CC - Define 
and%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%table 
and field storage, generate table storage. 

CH - Scan input, calculation and output compressions, move 
definitions to compression records. 

CI - Generate field storage. 

CK Scan calculation and output compressions, define literals and 
edit masks in core table. 

CL Move literal definitions into compression records. 

CV - Generate literal definitions. 

8-2 REPORT PROGRAM GENERATOR II 



Diagnostic Phase Summary, 

FC - Diagnose file-descriptions. 

FG - Diagnose calculation specifications, check use of table and 
arrays in calculations, check arithmetic precision. 

FK - Diagnose and preprocess input specifications. 

FL - Diagnose and preprocess output specifications. 

FM - Diagnose file referencing errors. 

GA - List error notes in order by line number. 

GC to GI - List error texts as needed. 

GX - End error text listing, call phase ZZ if fatal error 
occurred. 

Generation Phase Summary 

Input Generation Phases: 

MB - Generate control field compare. 

ME - Generate control field moves. 

MG - Generate match field moves. 

MK - Generate input field processors. 

MP - Generate input, record-tests, and select routines. 

MQ - Generate input mainline, end test, and file select sequences. 

Calculation Generation Phases: 

PA - Generate arithmetic and character (byte) sequences. 

PX - Generate detail calculation mainline. 

PY - Generate total calculation mainline. 

APPENDIX B. RPGPLUS REFERENCE TABLES B-3 



PZ - Generate RPG subroutines. 

Phases PX, PY, and PZ generate calculation control code and 
the code for other operators. 

Output Generation Phases: 

SA - Generate output field processors. 

SO - Generate heading/detail output mainline. 

SP - -Generate total output mainline. 

SQ - Generate overflow output processor. 

SR - Generate exception output processor. 

SS - Generate put routines. 

Final Generation Phases: 

UA - Generate file description blocks. 

UF - Generate open mainline. 

UG - Generate end mainline. 

UU - Link generated segments with the fixed library. 

Assembly Phases: 

WA - Initialize assembly, set up symbol table. 

WC - Assembly pass - define internal symbols. 

WE - Assembly pass 2 - generate relocatable object code. 

WG - Assembly print pass - list object code. 

WK - Finish assembly and generate ITXC file. 

WS - Cross-reference sort. 

B-4 REPORT PROGRAM GENERATOR II 



WX - Cross-reference listing. 

ZZ - RPG Close phase. 

APPENDIX B. RPGPLUS REFERENCE TABLES B-5 



Format of File Description Blocks 

A partial description of the format of a File Description 
Block (FDB) is given symbolically in this section. For a 
complete and absolute listing look at the beginning of an 
RPGPLUS object listing (0 and list options). The symbols 
defined here have the format 'PxxxxFDB' where the suffix 
'FDB' shows the symbol pertains to FDBs and 'P' is a prefix 
indicating the type of symbol. The prefix 'D' is used for a 
displacement, 'M' for a mask, 'L' for a length and 'V' for a 
value. Thus 'DRLENFDB' is the offset of the 2-byte record 
length field wi thin the FDB, 'MEOFFDB' is the mask used to 
set the end-of-file flag, 'LCOMFDB' is the length of the 
common part of an FDB and 'VOPNFDB' is the value of byte 
passed to a special device driver signifying the OPEN 
function. 

Two-byte quantities such as the record length and the file 
work area address are stored in standard LSB,MSB form; 
Boolean (bit) values are represented as 1 = true and a = 
false. 

Name 

DFLAGFDB 

MRREQFDB 

MCLOSFDB 

MEOFFDB 

MADDFDB 

MPUTFDB 

MDBUFFDB 

MERRFDB 

MRPRFFDB 

Purpose 

Displacement of the three-byte flag field. 

------ First Flag Byte -------

Read request pending. 

File is closed. 

File is at end-of-file. 

Append file. 

Put pending - output record ready for update or 
chained output. 

Buffer dirty - buffer output pending (update 
files). 

Error (invalid key). 

Record is present in buffer. 

------ Second Flag Byte -------

B-6 REPORT PROGRAM GENERATOR II 



MCHNFDB 

MWACFDB 

MRACFDB 

MERFFDB 

MAPPFDB 

MISAFDB 

MRAFFDB 

MSBCFDB 

MASTPFDB 

- fv1HIDNFDB 

MFLMKFDB 

DRLENFDB 

DBLKFFDB 

DFWAFDB 

DFNAMFDB 

LFNAMFDB 

CHAIN file. 

Output/update file. 

Input/update file. 

Embedded record (update file). 

Record appended (don't read ahead). 

------ Third Flag Byte -------

ISAM file. 

File processed by ADDROUT file. 

Suppress buffer clear. 

ASCII tape. 

High density tape. 

File mark seen. 

------ Basic Description -----­

Logical record length (2 bytes). 

Blocking factor (2 bytes). 

File work area address (2 bytes). 

File name address (2 bytes). 

Length of file name. 

APPENDIX B. RPGPLUS REFERENCE TABLES B-7 



Format of Table Description Blocks 

The format of table description blocks is given symbolically in 
this section. Absolute values follow the FDB definitions in an 
RPGPLUS object listing. Conventions are the same as for file 
description blocks. 

Name Purpose 

DBASETDB Addfess of table/array storage area (2 bytes). 

DNENTDB Number of elements (2 bytes). 

DELENTDB Element length (1 byte). 

DCENOTDB Index of current entry (2 bytes). 

DCEADTDB Address of current entry (2 bytes). 

B-8 REPORT PROGRAM GENERATOR II 



APPENDIX C. RPGPLUS COMPILE TIME MESSAGES 

In the following itemization of possible RPGPLUS compile-time 
messages, column 1 is the message number, column 2 ~istinguishes 
between warning (W) and fatal (F) errors, column 3 identifies the 
type of specification to which the flagged statement belongs 
(Header, File, Extension, etc.), and column 4 gives the text of 
the mess age. 

No. W/F Card Text 

1 W H C C 7 - 9 S H 0 U LD BE B LAN K . 

2 W H INVALID CORE SIZE, CC12-14. 

3 W H INVALID DEBUG CODE, C15. 

4 W H CC16-25 SHOULD BE BLANK. 

5 F F INVALID OR BLANK FILE NAME, CC7-14. 

6 

7 

8 

9 

10 

1 1 

12 

13 

14 

15 

16 

F 

F 

w 

w 

w 

W 

F 

w 

W 

W 

w 

F INVALID OR BLANK FILE TYPE, C15. 

F INVALID OR BLANK FILE DESIGNATION, C16. 

F INVALID PROCESS TO END OF FILE ENTRY, C17. 

F SEQUENCE ENTRY INVALID, OR SPECIFIED WITH FILE TYPE 
NOT PRIMARY OR SECONDARY, C18. 

F INVALID FORMAT ENTRY, C19. 

F INVALID BLOCK LENGTH, CC20-23. 

F INVALID RECORD LENGTH, CC24-27. 

F INVALID MODE OF PROCESSING ENTRY, C28. 

F CC29-31 SHOULD BE BLANK. 

F INVALID OVERFLOW ENTRY, CC33-34. 

F OVERFLOW SPECIFIED WITH DEVICE OTHER THAN PRINTER, 
CC33-34. 

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-1 



17 W 

18 W 

19 W 

20 F 

21 W 

22 W 

23 W 

24 W 

25 W 

26 W 

27 w 

28 W 

29 W 

30 W 

31 W 

32 W 

33 W 

34 W 

35 F 

36 F 

37 F 

38 F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

E 

E 

E 

F 

E 

CC35-38 SHOULD BE BLANK. 

INVALID EXTENSION OR LINE COUNTER ENTRY, C39. 

LINE COUNTER SPECIFIED WITH DEVICE OTHER THAN 
PRINTER, C39. 

INVALID DEVICE CODE, CC40-46. 

CC47-52 SHOULD BE BLANK. 

CC53-59 SHOULD BE BLANK UNLESS DEVICE SPECIFIED AS 
'SPECIAL' . 

INVALID 'K' ENTRY, C53. 

INVALID UNLESS SPECIAL DEVICE NAME, CC54-59. 

INVALID NAME FOR SPECIAL DEVICE 1/0 ROUTINE, 
CC54-59. 

CC60-65 SHOULD BE BLANK. 

C66 SHOULD BE BLANK. 

INVALID ADDITIONS ENTRY, C66. 

CC67-69 SHOULD BE BLANK. 

C70 SHOULD BE BLANK UNLESS TAPE DEVICE. 

INVALID REWIND OPTION, C70. 

INVALID FILE CONDITION ENTRY, CC71-72. 

CC73-74 SHOULD BE BLANK. 

CC7-10 SHOULD BE BLANK. 

INVALID OR UNRECOGNIZABLE 'FROM' FILE NAME, 
CC11-18. 

INVALID OR UNRECOGNIZABLE 'TO' FILE NAME, CC19-26. 

CHAINED, INDEXED OUTPUT FILE C66 MUST BE A. 

INVALID TABLEIARRAY NAME, CC27-32. 

C-2 REPORT PROGRAM GENERATOR II 



39 F 

40 F 

41 F 

42 W 

43 F 

44 W 

45 F 

46 F 

47 F 

48 F 

49 F 

50 F 

51 F 

52 F 

53 W 

54 W 

55 F 

56 F 

57 F 

58 W 

59 F 

60 W 

61 W 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

H 

H 

L 

L 

L 

L 

L 

L 

L 

INVALID NUMBER OF ENTRIES PER RECORP, CC33-35. 

INVALID NUMBER OF ENTRIES FOR TABLE/ARRAY, CC36-39. 

INVALID LENGTH OF ENTRY, CC40-42 OR CC52-54. 

INVALID FORMAT ENTRY, C43 OR C55 - IGNORED. 

INVALID DECIMAL POSITIONS ENTRY, C44 OR C56. 

INVALID SEQUENCE ENTRY, C45 OR C57 - IGNORED. 

INVALID ALTERNATE TABLE NAME, CC46-51. 

EXECUTION-TIME TABLES NOT ALLOWED. 

ALTERNATE TABLE SPECIFICATION NOT ALLOWED WITH 
EXECUTION-TIME ARRAYS. 

'FROM' FILE MUST BE AN INPUT-TABLE FILE. 

'TO' FILE MUST BE ORDINARY OUTPUT OR OUTPUT-TABLE 
FILE. 

'FROM' FILE TOO SHORT FOR TABLE RECORD. 

'TO' FILE TOO SHORT FOR TABLE RECORD. 

MORE THAN 8192 BYTES OF TABLE STORAGE ALLOCATED. 

INVALID COLLATE SEQUENCE ENTRY, CC26. 

CC27-74 SHOULD BE BLANK. 

INVALID OR UNDEFINED FILE NAME, CC7-14. 

FILE MUST BE ASSIGNED TO THE PRINTER. 

FORM LENGTH, CC15-17, INVALID OR >99. 

CC18-19 SHOULD CONTAIN 'FL'. 

OVERFLOW LINE, CC20-22, INVALID OR >99. 

CC23-24 SHOULD CONTAIN 'OL'. 

CC25-74 SHOULD BE BLANK. 

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-3 



62 F 

63 F 

64-65 

L 

L 

66 F I 

6'7 W I 

68 F I 

69 F I 

70 W . I 

71 W I 

72 W I 

73 F I 

74 F I 

75 W I 

76 W I 

77 W I 

78 F I 

'19 F I 

80 F I 

81 F I 

82 F I 

83 F I 

84 F I 

85 F I 

86 F I 

OVERFLOW LINE IS GREATER THAN FORM LENGTH. 

MULTIPLE LINE COUNTER SPECIFICATION LINES. 

UNASSIGNED. 

MIXED RECORD AND FIELD DATA, CC7-42, 43-74. 

CC7-14 SHOULD BE BLANK FOR 'AND' AND 'OR' CARDS. 

FILE NAME, CC7-14, NOT SPECIFIED IN FILES SECTION. 

INVALID SEQUENCE ENTRY, CC15-16. 

INVALID SEQUENCE ENTRY, C17. 

INVAL ID OPTIONAL SEQUEN CE ENTRY, C 18. 

INVALID RECORD INDENTIFYING INDICATOR, CC19-20. 

INCOMPLETE RECORD INDENTIFYI NG CODE, CC25- 27 , 
CC32-34, OR CC39-41~ 

INVALID POSITION ENTRY, CC21-24, 28-31 OR 35-38. 

INVALID NOT ENTRY, C25, 32 OR 39. 

INVALID C/Z/D ENTRY, C26, 33 OR 40. 

STACKER SELECT NOT IMPLEMENTED, C42. 

INVALID FORMAT ENTRY, C43. 

INVALID 'FROM' LOCATION ENTRY, CC44-47. 

INVALID 'TO' LOCATION ENTRY, CC48-51. 

NEGATIVE OR ZERO FIELD LENGTH, CC44-51. 

INVALID DECIMAL POSITION ENTRY, C52. 

INVALID FIELD NAME, CC53-58. 

INVALID CONTROL LEVEL ENTRY, CC59-60. 

INVALID MATCH FIELD ENTRY, CC61-62. 

INVALID FIELD RECORD RELATION ENTRY, CC63-64. 

C-4 REPORT PROGRAM GENERATOR II 



87 F 

88 W 

89 F 

90 F 

91 F 

92 F 

93 F 

94 F 

95 F 

96 F 

97 w 

98 F 

99 F 

100 F 

101 F 

102 F 

103 F 

104 F 

105 F 

106 F 

107 .f 

108 W 

I 

I 

I 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

F 

F 

F 

INVALID FIELD INDICATORCS), CC65-70. 

CC71-74 SHOULD BE BLANK. 

RECORD DESCRIPTION ILLEGAL. 

INVALID ENTRY IN CC7-8. 

INVALID 'NOT' ENTRY IN CC9, 12, 15. 

INVALID INDICATOR IN CC10-11, CC13-14, OR CC16-17. 

INVALID FACTOR 1 ENTRY, CC18-27. 

UNRECOGNIZABLE OPERATION, CC28-32. 

INVALID FACTOR 2 ENTRY, CC33-42. 

INVALID RESULT FIELD, CC43-48. 

HALF-ADJUST ENTRY IN C53 UNRECOGNIZABLE OR NOT 
ALLOWED. 

INVALID RESULT INDICATOR ENTRY, CC54-59. 

INVALID LENGTH IN CC49-51. 

DECIMAL POSITIONS INVALID, C52. 

CC49-52 SHOULD BE BLANK IF NO RESULT FIELD IS 
SPECIFIED. 

INVALID FILE NAME IN CC33-42. 

INVALID LITERAL SPECIFICATION. 

INVALID BIT MASK, CC33-42. 

CONDITION INDICATORS NOT ALLOWED WITH 'TAG', 
'RLABL', 'BEGSR', OR 'ENDSR' OPERATIONS. 

INVALID KEY LENGTH, CC29-30. 

INVALID KEY STARTING POSITION, CC35-38. 

ISAM OUTPUT FILE MUST BE "INDEXED" AFTER CREATION. 

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-5 



109 F 

110 F 

111 F 

112 F 

113 W 

114 F 

115 W 

116 W 

117 W 

118 W 

119 W 

120 W 

121 F 

122 F 

123 F 

124 W 

125 W 

126 F 

127 w 
128 W 

129 W 

130 F 

131 F 

132 W 

F 

o 

o 

o 

o 

o 

o 

o 

o 

o 

·0 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

SEQUENTIAL WITHIN LIMITS VALID ONLY ON INDEXED 
FILES, C28. 

RECORD AND FIELD DATA IN SAME LINE. 

INVALID OR UNSPECIFIED FILE NAME, CC7-14. 

INVALID 'AND' OR 'OR' ENTRY, CC14-16. 

CC17-22 SHOULD BE BLANK ON 'AND' OR 'OR' LINES. 

INVALID LINE TYPE, C15. 

INVALID FETCH OVERFLOW ENTRY, C16. 

INVALID 'SPACE BEFORE' ENTRY, C17. 

INVALID 'SPACE AFTER' ENTRY, C18. 

INVALID 'SKIP BEFORE' ENTRY, CC19-20. 

INVALID 'SKIP AFTER' ENTRY, CC21-22. 

INVALID 'NOT' ENTRY, C23, 26, OR 29. 

INVALID FIELD CONDITIONING INDICATOR. 

INVALID FIELD NAME. 

INVALID EDIT CODE, C38. 

C38 SHOULD BE BLANK IF NO FIELD NAME SPECIFIED. 

INVALID 'BLANK AFTER] ENTRY, C39. 

INVALID END POSITION ENTRY, CC40-43. 

INVALID DATABUS FORMAT ENTRY, C44. 

C44 SHOULD BE BLANK IF NO FIELD NAME SPECIFIED. 

LITERAL NOT STARTED WITH A QUOTE, C45. 

EMBEDDED SINGLE QUOTE, CC45-70. 

REMAINDER OF CC45-70 NOT BLANK AFTER LITERAL. 

LITERAL TOO LONG, CC70-80. 

C-6 REPORT PROGRAM GENERATOR II 



133 W 

134 W 

135 W 

136 W 

137 w 

138 W 

139 W 

140 W 

141 W 

142 W 

143 F 

144 W 

145 W 

146 W 

147 W 

148 F 

149 W 

150 F 

151 F 

152 W 

153 W 

154 W 

o 

o 

o 

o 

H 

H 

11 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

INVALID COMBINATIONS OF $ AND * IN CC45-47. 

CC45-47 NOT $, *, OR BLANK. 

INVALID EDIT WORD. 

C C 7 1 -7 4 S H 0 U LD BE B LAN K . 

MULTIPLE HEADER CARDS. 

INVALID ENTRY, C10. 

INVALID ENTRY, C11. 

FILE NAME TABLE FULL. 

DUPLICATE FILE NAME, CC7-14. 

INVALID TYPE FOR GIVEN DEVICE CODE, C15. 

INVALID DESIGNATION FOR GIVEN DEVICE CODE, C16. 

INVALID FILE FORMAT FOR THIS DEVICE, C19. 

BLOCKING FACTOR GREATER THAN 255, CC20-27. 

BLOCK LENGTH LESS THAN RECORD LENGTH, CC20-27. 

BLOCK LENGTH NOT A MULTIPLE OF RECORD LENGTH, 
CC20-27. 

BLOCK LENGTH GREATER THAN ALLOWED FOR GIVEN DEVICE, 
CC20-23. 

BLOCK LENGTH NOT EQUAL TO RECORD LENGTH, CC20-27. 

NO FILE DESCRIPTION SPECIFICATIONS. 

NO PRIMARY OR SECONDARY FILE SPECIFIED. 

SECONDARY FILE PRECEDES PRIMARY FILE. 

MULTIPLE PRIMARY FILES. SECONDARY ASSUMED. 

AN EXTENSION, C39, MUST BE SPECIFIED FOR TABLE 
FILES. 

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-7 



155 W 

156 F 

157 W 

158 w 

159 F 

160 W 

161 F 

162 W 

163 F 

164 W 

165 F 

166 W 

167 F 

168 F 

169 W 

170 F 

171 

172 W 

173 W 

174 W 

175 W 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

EXTENSION, C39, INVALID WITH GIVEN DEVICE OR 
NON-TABLE FILE. 

DEVICE ASSIGNED TO MORE THAN ONE FILE. 

CONDITION INDICATOR, CC71-72, INVALID FOR TABLE 
FILE. 

FILE NAME ASSIGNED BUT NEVER USED IN PROPER 
SE CTION . 

SEQUENCE, C18, INVALID WITH NO MATCH FIELDS. 

SEQUEN CE, C 18, MUST BE SPECIFI ED WI TH MATCH FI ELDS . 

EXTENSION OR LINE COUNTER SPECIFICATION MISSING, 
C39. 

EXTENSION OR LINE COUNTER SPECIFICATION FOUND FOR 
THIS FILE, BUT C39 IS NOT 'E' OR 'L'. 

OUTPUT REFERENCE REQUIRED FOR UPDATE FILE. 

CC7-52 ON CONTINUATION CARD SHOULD BE BLANK. 

CC54-59 ON CONTINUATION CARD NOT EQUAL 'ASCII'. 

CC60-74 ON CONTINU ATI ON CARD SHOULD BE BLANK. 

TAPE RECORD LENGTH LESS THAN 18. 

ADDITIONS INVALID FOR FILE OR DEVICE, C66. 

ALL PRIMARY AND SECONDARY FILES CONDITIONED. 

CALCULATION REFERENCE REQUIRED FOR CHAIN OR DEMAND 
FILES. 

UNASSIGNED. 

INVALID ENTRY IN C53. 'A' ASSUMED. 

INVALID LABEL EXIT. 

C53 SHOULD BE BLANK. 

CC60-65 SHOULD BE BLANK ON ASCII CARD. 

C-8 REPORT PROGRAM GENERATOR II 



176 F 

17'7 F 

178 

179 w 

180 W 

181 F 

182 F 

183 F 

184 F 

185 F 

186 F 

187 F 

188 F 

189 F 

190 w 

191 

192 F 

193 F 

194 F 

195 F 

196 F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

E 

E 

E 

E 

E 

UNRECOGNIZABLE DISK CONTINUATION OPTION IN CC54-59. 

UNRECOGNIZABLE ENTRY IN CC60-65. 

UNASSIGNED. 

VARIABLE BLOCKING INVALID FOR THIS FILE TYPE, FIXED 
BLOCKING ASSUMED. 

CC31-32 SHOULD CONTAIN 'I ' OR 'AI' FOR RANDOM 
PROCESSING. 

CC29-32 SHOULD CONTAIN' 3IT' FOR ADDROUT FILES. 

ADDROUT FILES MUST BE FIXED-FORMAT, UNBLOCKED FILES 
WITH RECORD LENGTH EQUAL TO 3. 

THIS FILE MUST BE CONTROLLED BY AN ADDROUT FILE. 

ADDROUT FILE MUST CONTROL A PRIMARY/SECONDARY FILE. 

CORRESPONDING ADDROUT AND PRIMARY/SECONDARY FILES 
MUST HAVE THE SAME EXTERNAL INDICATOR CONDITION. 

UNRECOGNIZABLE PRINTER CONTINUATION. 

RECORD ADDRESS TYPE SHOULD BE 'A' OR 'I', CC31. 

UNRECOGNIZABLE RECORD ADDRESS TYPE, CC31. 

UNRECOGNIZABLE FILE ORGANIZATION, C32. 

C C 2 9 - 30 S H 0 U LD BE B LANK FOR FILE PRO C E S SED BY 
ADDROUT FILE. 

UNASSIGNED 

ISAM FILE CAN'T BE CONTROLLED BY TAG FILE. 

NO DATA FOR COMPILE TIME TABLE~ 

MORE THAN ONE ADDROUT FILE CONTROLS THIS 
PRIMARY/SECONDARY FILE. 

MORE THAN ONE PRIMARY/SECONDARY FILE IS CONTROLLED 
BY THIS ADDROUT FILE. 

'FROM' FILE MUST BE AN ADDROUT FILE. 

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-9 



197 F 

198 F 

199 F 

200 F 

201 F 

202 F 

203 F 

204 F 

205 F 

206 F 

207 F 

208 F 

209 F 

210 F 

211 F 

212 F 

213 

214 W 

215 W 

216 W 

217 F 

218 W 

219 W 

E 

E 

E 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

'TO' FILE MUST BE A RANDOMLY-PROCESSED 
PRIMARY/SECONDARY FILE. 

TOO MANY TABLES DEFINED. 

MULTIPLE TABLE DEFINITIONS. 

NO INPUT SPECIFICATION SECTION. 

FIELD PRECEDES FIRST RECORD. 

FILE ASSIGNED IS NOT AN INPUT OR UPDATE FILE. 

MORE THAN 256 INPUT RECORD TYPES SPECIFIED. 

UNASSIGNED. 

CONTROL LEVEL SPECIFICATION INVALID WITH FILE TYPE. 

MATCH FIELD SPECIFICATION INVALID WITH FILE TYPE. 

MORE THAN 255 RECORD ID TESTS FOR THIS RECORD. 

FIRST LINE IS AN 'AND' OR 'OR' LINE. 

MULTIPLY DEFINED FIELD. 

LENGTH OF CONTROL FIELDS GREATER THAN 255 BYTES. 

LENGTH OF MATCH FIELDS GREATER THAN 255 BYTES. 

MORE THAN 32 'AND' LINES. 

UNASSIGNED. 

'AND' LINE FOLLOWS LINE WITHOUT RECORD ID CODES. 

NO FIELDS DESCRIBED FOR PREVIOUS RECORD. 

NUMERIC SEQUENCE ENTRIES NOT IN ORDER, OR FIRST 
ENTRY NOT EQUAL 01. 

CC17-18 SHOULD BE BLANK FOR ALPHABETIC SEQUENCE. 

CC17-20 SHOULD BE BLANK FOR 'AND' LINES. 

CC17-18 SHOULD BE BLANK FOR 'OR' LINES. 

C-10 REPORT PROGRAM GENERATOR II 



220 F 

221 W 

222 F 

223 F 

224 F 

225 F 

226 F 

227 F 

228 F 

229 F 

230 F 

231 F 

232 F 

233 F 

234 W 

235 F 

236 F 

237 F 

238 F 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

LENGTH OF NUMERIC FIELD GREATER THAN 15, OR LENGTH 
OF ALPHABETIC FIELD GREATER THAN 256. 

DECIMAL POSITION ENTRY INVALID FOR ARRAY. 

NUMBER OF DECIMAL POSITIONS EXCEEDS FIELD LENGTH. 

TABLE NAME INVALID FOR A FIELD NAME. 

'AND' LINES INVALID WITH LOOK-AHEAD RECORD. 

CC17-18, 21-42, AND 59-74 INVALID WITH LOOK-AHEAD. 

FIELD LOCATION ENTRIES EXCEED RECORD LENGTH. 

FIELD NAME IS A RESERVED WORD OTHER THAN 'PAGE'. 

CONTROL AND MATCH SPECIFICATIONS INVALID FOR 
ARRAYS. 

LOOK-AHEAD INVALID WITH CHAIN OR DEMAND FILES OR 
WITH THIS DEVICE. 

NO FIELDS SPECIFIED FOR LOOK-AHEAD RECORD. 

ARRAY LENGTH EXCEEDS OR IS NOT A MULTIPLE OF LENGTH 
IN EXTENSION SPECIFICATION. 

INCONSISTENT LENGTHS FOR CONTROL OR MATCHING FIELDS 
OF ONE LEVEL. 

INVALID SPLIT CONTROL FIELD SPECIFICATION. 

CONTROL OR MATCHING FIELDS SPECIFIED AS ALPHA AND 
NUHERIC. 

ALL VALID MATCH LEVELS WERE NOT REFERENCED IN THE 
LAST RECORD GROUP. 

CONTROL OR MATCH FIELDS WITHOUT FIELD RECORD 
RELATION MUST PRECEDE THOSE WITH FIELD RECORD 
RELATION. 

CONTROL OR MATCH FIELDS WITH FIELD RECORD RELATION 
MUST BE GROUPED BY FIELD RECORD RELATION. 

FIELD RECORD RELATION INDICATOR USED IMPROPERLY 
WITH CONTROL OR MATCH FIELDS. 

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-11 



239 W 

240 F 

241 F 

242 F 

243 F 

244 F 

245 F 

246 F 

247 F 

248-249 

250 F 

251 F 

252 F 

253 F 

254 F 

255 W 

256 W 

257 F 

258 F 

259 W 

260 F 

261 F 

262 F 

I 

I 

I 

c 

C 

C 

C 

C 

C 

c 

C 

C 

C 

C 

C 

,., 
v 

INDICATOR ASSIGNED BUT NOT USED. 

INDICATOR USED, BUT NOT ASSIGNED. 

FIELD LENGTH NOT MULTIPLE OF TABLE ENTRY LENGTH. 

INDEX FIELD NOT NUMERIC OR DECIMAL POSITIONS > O. 

LITERAL INDEX OUT-OF-BOUNDS. 

CONFLICT IN TAPE DENSITY. 

FILE ORGANIZATION SPECIFICATION SHOULD BE BLANK, 
CC32. 

FILE ORGANIZATION SHOULD BE 'I' OR 'T' ~ CC32. 

RECORD ADDRESS TYPE AND FILE ORGANIZATION ARE 
INCOMPATIBLE, CC31-32. 

UNASSIGNED. 

INVALID FILE FOR FORCE. 

INVALID FILE FOR READ. 

INVALID CHAINING FIELD. 

INVALID FILE IN CHAIN. 

DEBUG FILE NOT OUTPUT FILE. 

DEBUG OPERATIONS IN PROGRAM IGNORED. 

DEBUG OPTION WITHOUT DEBUG OPERATION. 

DIFFERENT DEBUG FILES. 

INVALID FILE FOR DSPLY. 

CALCULATIOtlS CONSIST ONLY OF SUBROUTINES. 

SUBROUTINE MUST BEGIN WITH 'BEGSR' OPERATION. 

TOTAL OR DETAIL RECORD OUT OF SEQUENCE,. 

ARRAY IMPROPERLY USED IN RESULT FIELD. 

C-12 REPORT PROGRAM GENERATOR II 



263 F 

264 F 

265 F 

266 F 

267 F 

268 F 

269 F 

270 F 

271 F 

272 F 

273 F 

274 F 

275 F 

276 F 

277 F 

278 F 

279 F 

280 F 

281 F 

282 W 

283 W 

284 F 

C 

C 

c 

C 

·C 

C 

C 

C 

c 

c 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

FACTOR 1 OR 2 MAY NOT BE AN ARRAY UNLESS RESULT 
FIELD IS. 

RECORD LENGTH FOR DEBUG FILE IS TOO SMALL. 

FACTOR 1 IN 'DEBUG' SHOULD BE LESS JHAN NINE BYTES 
LONG. 

SUBROUTINE MUST END WITH 'ENDSR'. 

RESULT FIELD MUST BE ALPHANUMERIC. 

FACTOR 2 MUST BE ALPHANUMERIC. 

FACTORS 1 & 2 MUST HAVE SAME TYPE. 

BIT OPERATIONS TAKE SINGLE-BYTE FIELDS. 

FACTOR 2 IN 'LOKUP' MUST BE A TABLE OR ARRAY. 

CORRESPONDING TABLE MAY NOT BE USED WITH ARRAY 
LOOK-UP. 

RESULT FIELD IN LOKUP MUST BE A TABLE. 

FACTOR 1 IvlUST HAVE SAME LENGTH AS FACTOR 2 IN 
LOOK-UP. 

'BEGSR' IN MIDDLE OF SUBROUTINE. 

'RLABL' MUST IMMEDIATELY FOLLOW 'EXIT'. 

INVALID LABEL OPERAND. 

'BEGSR' OR 'ENDSR' IN DETAIL OR TOTAL RECORDS. 

FACTOR MUST BE NUMERIC. 

FACTOR 2 MUST BE NUMERIC. 

RESULT FIELD MUST BE NUMERIC. 

HALF-ADJUST NOT NEEDED, ENTRY ASSUMED BLANK. 

COMPUTED RESULT MAY OVERFLOW RESULT FIELD. 

FACTOR 2 IN 'XFOOT' MUST BE AN ARRAY. 

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-13 



285 F 

286 F 

287 F 

288 F 

289 F 

290 F 

291 F 

292 F 

293-327 

328 W 

329 F 

330 F 

331 W 

332 W 

333 W 

334 F 

335 W 

336 F 

337 W 

338 W 

339 W 

340 F 

C 

C 

C 

C 

C 

C 

C 

C 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

'MVR' MUST FOLLOW 'DIV'. 

HALF-ADJUST ON PREVIOUS 'DIV' ILLEGAL WITH 'MVR'. 

FACTOR 2 NOT A PROCESS WITHIN LIMITS FILE. 

FACTOR IS NOT A VALID KEY. 

INVALID USE OF AND/OR LINE. 

PRECEDING LINE SHOULD HAVE AN OP-CODE OR THIS LINE 
SHOULD BE AN AND/OR LINE. 

FACTOR 2 AND RESULT FIELD CAN NOT BE SAME ARRAY. 

TABLE OR ARRAY MUST BE EITHER ASCENDING OR 
DESCENDING FOR HIGH OR LOW 'LOOKUP'. 

UNASSIGNED 

DATAPOINT COMPATIBLE FIELD SHOULD BE NUMERIC. 

NEITHER FIELD NAME OR LITERAL IS PRESENT. 

'AND' OR 'OR' LINE NOT PRECEDED BY RECORD LINE. 

SPACE AND SKIP INVALID WITH DEVICE OTHER THAN 
CONSOLE OR PRINTER. 

SKIP ENTRY GREATER THAN FORM LENGTH. 

FETCH OVERFLOW INVALID FOR DEVICE OTHER THAN 
PRINTER. 

OVERFLOW INDICATOR INVALID FOR EXCEPTION LINE. 

FETCH OVERFLOW INVALID WITH OVERFLOW INDICATORS. 

OVERFLOW INDICATOR USED IS NOT ASSIGNED TO THIS 
FILE. 

1P INDICATOR INVALID ON TOTAL OR EXCEPTION LINES. 

FETCH OVERFLOW INVALID WITH 1P INDICATOR. 

SPACE BEFORE OF 0 INVALID FOR CONSOLE. 

INVALID INDICATORS USED WITH 1P INDICATOR. 

C-14 REPORT PROGRAM GENERATOR II 



341 F 

342 F 

343 F 

344 W 

345 W 

346 F 

347 F 

348 F 

349 F 

350 F 

351 F 

352 W 

353 F 

354 W 

355 F 

356 W 

357 W 

358 F 

359 F 

360 F 

361 F 

362 W 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

END POSITION GREATER THAN RECORD LENGTH. 

LENGTH OF ARRAY, ELEMENT, OR FIELD EXCEEDS RECORD 
LENGTH. 

END POSITION TOO LOW. 

ALL INDICATORS MISSING OR NEGATIVE IN PREVIOUS 
RECORD. 

ALL INDICATORS MISSING ON THIS LINE. 

INVALID EDIT WORD SIZE. 

EDIT CODE INVALID WITH ALPHA FIELD OR CONSTANTS 
OTHER THAN $ OR *. 

CONSTANT INVALID WITH EDIT CODES X, Y OR Z. 

INVALID FIELD LENGTH FOR Y EDIT CODE. 

DECIMAL POSITIONS INVALID WITH Y EDIT CODE. 

INVALID FILE TYPE FOR OUTPUT RECORD. 

BLANK AFTER INVALID WITH RESERVED WORD OTHER THAN 
'PAGE' . 

MORE THAN 32 'AND' OR 'OR' LINES. 

BLANK AFTER SPECIFIED FOR A CONSTANT. 

ARRAY INDEX EXCEEDS NUMBER OF ELEMENTS. 

BLANK AFTER INVALID WITH LOOK-AHEAD. 

INDICATOR ASSIGNED BUT NEVER USED. 

INDICATOR USED BUT NEVER ASSIGNED. 

FIELD NAME USED BUT NOT DEFINED. 

TABLE OR ARRAY NAME USED AS INDEX. 

NUMBER OF DECIMAL POSITIONS EXCEEDS FIELD LENGTH. 

LO-L9 IN 'OR' RELATIONSHIP WITH LR. 

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-15 



363 F 

364 W 

365 F 

366 F 

367 F 

368 

369 F 

370 F 

371 F 

372 F 

373 F 

374 W 

375 F 

376 F 

377 F 

378-379 

380 W 

381 F 

382 F 

383 F 

384 F 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

ADDITIONS INVALID WITH 'AND' OR 'OR' LINES. 

FOR ADD FILES, EACH RECORD MUST HAVE 'ADD' IN 
CC16-18. 

ADDITIONS INVALID WITH FILES EXCEPT SEQUENTIAL DISK 
FILES. 

'T' IN C15, OR E WITH LO-L9 INVALID WITH UPDATE 
FILES. 

FIELD LINE PRECEEDS FIRST RECORD LINE. 

UNASSIGNED. 

MORE THAN 255 OUTPUT RECORD TYPES SPECIFIED. 

NO OUTPUT SPECIFICATION SECTION FOUND. 

RECORDS MUST BE IN SAME ORDER AS FILES. 

H, D, T AND E LINES MUST BE IN ORDER. 

FIELD LENGTH DOES NOT CORRESPOND TO NUMBER OF 
REPLACEABLE CHARACTERS IN EDIT WORD. 

EXCEPT RECORD WITHOUT 'EXCPT' OPERATION. 

EDIT CODE INCOMPATIBLE WITH OPTIONS USED IN 
CC45-47. 

NO REPLACEABLE CHARACTERS IN EDIT WORD. 

FILE IS NOT A DISK ADD FILE, CC16-18. 

UNASSIGNED. 

SEQUENCE NUMBERING ERROR IN SOURCE RECORDS, CC1-5. 
(Note: a sequence error will occur if a blank 
record is present in the source code.) 

RECORD TYPE OUT OF SEQUENCE IN SOURCE RECORDS, C6. 

INVALID CHARACTERS IN (MAIN) OPERAND NAME. 

INVALID CHARACTERS IN INDEX OF OPERAND. 

INDEX IS INVALID WITH THIS OPERAND. 

C-16 REPORT PROGRAM GENERATOR II 



385-399 

400 F 

401 F 

402 W 

403 F 

404 F 

405 W 

406 W 

407 F 

408 F 

409 w 

410 W 

411 W 

412 F 

UNASSIGNED. 

SEQUENCE ERROR IN COMPILE-TIME TABLE OR ARRAY. 

NUMERIC FIELD ERROR IN COMPILE-TIME TABLE OR ARRAY. 

END OF FILE FOLLOWS '**b' RECORD. 

NO FILE NAME IN LIBRARY INCLUSION RECORD. 

USER LIBRARY FILE DOES NOT EXIST. 

DELllvtITER CARD FORMAT ERROR. 

INSUFFICIENT DATA FOR TABLE OR ARRAY. 

EXCESS DATA FOR TABLE OR ARRAY. 

ALTERNATE TABLE BUFFER FULL. 

NO '**b' RECORD FOLLOWS LIBRARY INCLUSION RECORD. 

NO COMPILE-TIME TABLE/ARRAY FOR DATA. 

INVALID LIBRARY FILE NAME. 

COMPILE-TIME TABLE/ARRAY DATA RECORD LENGTH> 80. 

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-17 





APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES 

During the execution of an RPGPLUS object program, messages 
will be displayed on the screen either to request input from the 
user or merely to inform him of certain actions being performed. 
In addition, error messages will be displayed if abnormal 
situations are encountered. The following list of messages are 
all those which could possibly occur during an RPGPLUS object 
program execution. The list includes an explanation of each 
message, special action taken by the object program after 
displaying the message, and an explanation of the response from 
the user, if necessary. RPGPLUS accepts a single character 
response (R,B,C,or A for Resume, Bypass, Cancel, or Abort, 
respectively) from the operator only; this response cannot be 
incorporated into a CHAIN file. This appendix lists unnumbered 
general messages followed by numbered diagnostics. 

------------------------------------------------------------
RESUME/BYPASS/CANCEL/ABORT 

BYPASS/CANCEL/ABORT 
CANCEL/ABORT 

Explanation: General error messages displayed after other 
error messages to give the user an option as to 
what action should be taken by the program. 

Program Action: Wait for input. 

User Response: Up to four different responses are allowed. 
Typing an 'R' will cause the program to Resume 
execution at the point where the error occured. 
Typing a 'B' will cause the program to Bypass the 
current cycle and read the next record. Typing a 
'C' will Cancel program execution and close all 
the files. Typing an 'A' will immediately return 
control to the operating system without closing 
any files. 

In the following descriptions, those errors 
permitting Resume or Bypass will be marked with a 
parenthesized 'R' or 'B' following the Object 
Time Message number. Messages not so marked must 
be processed by CANCELling or ABORTing program 

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-1 



execution. 

OPEN xxxxxxxx AS yyyyyyyy FILE: 

Explanation: General message displayed during the file opening 
sequence for every file described in the program. 
The program name for the file will appear in 
place of the x's and the type of file will appear 
in place of the y's. This message will be 
followed by one of the following: blinking 
cursor (for an assignable disk file), the file 
name defined in the source program, or an 
asterisk followed by the device being used (e.g. 
"*SERVO PRINTER"). 

Program Action: Wait for response if assignable disk file. 

User Response: If the file is an assignable disk file, enter the 
file name. The default extension is "TXT"; 
"search all dr i ves" wi 11 be ass umed if no dr i ve 
is specified. 

(NO SUCH F I L E ) 

Explanation: Error message displayed if, when naming an input 
file during the file opening sequence, the named 
file does not exist. 

Program Action: The request for a file name will be repeated. 

User Response: The name of "an existing file should be entered. 

(BAD FILE SPEC) 

Explanation: Error message displayed if a specification of a 
file during the file opening sequence is 
incorrect. 

Program Action: The request for a file name will be repeated. 

Use r R espo nse: A corre ct fi Ie name shou Id be en tere d. 

D-2REPORT PROGRAM GENERATOR II 



Explanation: 

User Response: 

DSPLY 

Message displayed whenever the DSPLY operation is 
executed. 

If blinking cursor displayed, enter new value for 
quantity shown. 

ENTER EXTERNAL INDICATOR SETTING IN BINARY 

Explanation: Message displayed if any of the external 
indicators, U1 to U8, were used in the source 
program. 

Program Action: Wait for input. 

User Response: The values of the external indicators used in the 
program should be entered. Detailed formatting 
can be found in Appendix A. 

Explanation: 

ENTER DATE AS MM/DD/YY 

Message displayed if any of the special names: 
UDATE, UDAY, UMONTH or UYEAR were used in the 
sour ce pro gr am. 

Program Action: Wait for input. 

User Response: The desired date should be entered. The format 
of the date is fixed, in that January 24, 1977 
would be entered as 01/24/77. 

FORMAT CORRECT, CONTINUE? 

Explanation: Message displayed if the format of the tape 
header labels was correct. 

Program Action: Display labels then wait for response. 

User Response: If the correct tape is mounted, a "Y" should be 

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-3 



Explanation: 

001(B): 

Explanation: 

002: 

Explanation: 

User Response: 

entered so processing can continue. If the wrong 
tape is mounted, an "N" should be entered to stop 
program execution. 

ERROR HALT n 

Message displayed at the end of a cycle if Halt 
indicator n (H1 - H8) is found on. 

MULTIPLE WRITES TO LOADER 

Error message displayed if more than one record 
is written to device LOADER. 

LOADER OVERLAY MISSI NG 

Error message displayed if the source program has 
specified the LOADER device and the loader object 
file (RPGLDR/OV1) does not exist. 

The file RPGLDR/OV1 should be re-installed from 
the RPGPLUS generation tapes and the program 
re-run. 

003(B): NON-DIGIT IN CONVERSION TO BINARY 

Explanation: Error message displayed if a field or literal 
used as an array index of a record address of a 
CHAINed file is less than zero or greater than 
65535. 

D-4 REPORT PROGRAM GENERATOR II 



'004(B): 

Explanation: 

005(B): 

Explanation: 

006(B): 

Explanation: 

001(B): 

Explanation: 

008(J3): 

Explanation: 

009 (R) : 

Explanation: 

DATABUS INPUT ERROR 

Error message displayed if the format of a number 
being read from an input file is not in correct 
DAT ABUS format. 

NUMERIC FIELD ERROR 

Error message displayed if a character in a 
numeric field is not a digit~ 

RESULT OVERFLOW 

Error message displayed when the result of an 
arithmetic operation is too large to fit in the 
field specified. 

DSPLY FIELD TOO LONG 

Error message displayed if the length of a field 
being displayed in the DSPLY operation is greater 
than 80. ' 

DIVIDE BY ZERO 

Error message displayed upon an attempt to divide 
by zero. 

SQUARE ROOT IMAGINARY 

Error message displayed if an attempt is made to 
take the square root of a negative number. 

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-5 



010(B): 

Explanation: 

INVALID INDEX 

Error message displayed if an larray index is less 
than 1 or greater than the num\ber of elements in 
the array. 

011(R): NO DATA FOR TABLE/ARRAY LOAD 

Explanation:. Error message displayed if there is no data for a 
pre-execution time table or array. 

Program Action: Leave table empty. 

012(R): 

Explanation: 

TOO MUCH DATA FOR TABLE/DATA LOAD 

Error message displayed if a pre-execution time 
table or array has been entirely filled and there 
is another record of data for that table or 
array. 

Program Action: Ignore excess data records. 

013: 

Explanation: 

SEQUENCE ERROR IN TABLE/ARRAY LOAD 

Error message displayed if the sequence of data 
being read into a pre-execution time table or 
array is not as specified on the Extension Specs. 

014(B): OPTION TEST LOOP 

Explanation: Error message displayed if all record types for 
an input file are described as optional and the 
current input record is not identifiable. 

D-6 REPORT PROGRAM GENERATOR II 



-----------------~------------------------------------ ------

015(8): 

Explanation: 

016(8) : 

Explanation: 

HATCH SEQUEN CE ER RO R 

Error message displayed if the sequence of data 
in any specified match fields is not as specified 
on the File description specs. 

RID TESTS FAILED 

Error message displayed if a record in an input 
file can not be identified; i.e. does not match 
any of the Record IDentifying codes on the Input 
specification. 

;, 017(R): INVALID EXTERNAL INDICATOR SETTING 

Explanation: Error message displayed if the external 
indicators entered were not a valid 0 or 1. 

Program Action: Request for external indicator setting repeated. 

User Response: Enter correct setting. 

018(R): INVALID USER DATE ENTERED 

Explanation: Error message displayed if incorrect date entered 
- must have form mm/dd/yy where mm (month), dd 
(day) and yy (year) are two-digit numbers. 

Program Action: Request for date repeated. 

User Response: Enter date in correct format. 

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-7 



026: 

Explanation: 

028: 

Explanation: 

029 ( B) : 

Explanation: 

030(B): 

Explanation: 

031 : 

Explanation: 

NO WRI TE RI NG FOR OUT PU T 

Error message displayed if magnetic tape to be 
written on does not have a write. ring. 

END OF TAPE FOUND 

Error message displayed if the physical end of a 
magnetic tape is encountered. 

RECURRING PARITY ERROR 

Error message displayed if bad parity persists 
during an attempt to read tape. 

BAD TAPE FOUND DURING WRITE 

Error message displayed if it is not possible to 
write a tape block correctly. 

FDBS DO NOT MATCH IN TAPE CLOSE 

Error message displayed if the FDB address 
supplied to tape close does not match that stored 
by the open routine. 

032 : NO VOL U rvt ElLA BEL FO UN D 

Explanation: Message displayed if the VOLl label is either 
missing or invalid. 

D-8 REPORT PROGRAM GENERATOR II 



033: 

Explanation: 

034: 

Explanation: 

035: 

Explanation: 

MISSING OR INVALID HDR1 LABEL 

Error message displayed if the HDR1 label on an 
input tape is either missing or invalid. 

MISSING OR INVALID HDR2 LABEL 

Error message displayed if the HDR2 label on an 
input tape is either missing or invalid. 

RECORD FORMAT NOT FIXED 

Error message displayed if format specified in 
tape labels is not Fixed ("F"). 

------------------------------------------------------------
036: 

Explanation: 

037 : 

Explanation: 

038: 

Explanation: 

WRONG BLOCK SI ZE IN LABEL 

Error message displayed if the block length in 
the HDR2 label of an input tape is not the same 
as that specified in the source program. 

WRONG RECORD SIZE IN LABEL 

Error message displayed if the record length in 
the HDR2 label of an input tape is not the same 
as that specified in the source program. 

OPERATOR ABORT REQUESTED 

Message displayed when operator responds 
negatively to message asking if tape label format 
is correct. 

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-9 



039: 

Explanation: 

040: 

Explanation: 

041: 

Explanation: 

042: 

Explanation: 

051: 

Explanation: 

NO EOF1 LABEL FOUND 

Error message displayed if the EOF1 label is 
missing or invalid on an input tape. 

BLOCK COUNT NOT EQUAL TO COUNT IN LABEL 

Error message displayed if the block count in the 
EOF1 label is not equal to the number of blocks 
read from an input tape. 

INVALID TAPE DENSITY IN LABEL 

Error message displayed if tape density specified 
in HDR2 does not match that defined in source 
program. 

INVALID LABEL RECORD LENGTH 

Error message displayed if the ~ength of a tape 
label record was incorrect. 

INVALID OPENING OF CASSETTE FILE 

Error message displayed if a file has already 
been opened using this cassette drive. 

052(B): READ PARITY ERROR 

Explanation: Error message displayed if a parity fault 
occurred while reading a cassette file. 

D-10 REPORT PROGRAM GENERATOR II 



053(B): 

Explanation: 

054: 

Explanation: 

055: 

Explanation: 

051(B): 

Explanation: 

058(B): 

Explanation: 

WRITE PARITY ERROR 

Error message displayed if a parity fault 
occurred while writing a cassette file. 

CAN NOT POSITION TAPE 

Error message displayed if there is no file zero 
on a cassette tape. 

END OF CASSETTE TAPE 

Error message displayed if the physical end of a 
cassette tape is encountered. 

FILE FORMAT ERROR 

Error message displayed if disk file has format 
error - EOR missing or prior record not 
terminated by EOS or deletion character. 

SHORT INPUT RECORD 

Error message displayed if record read from Fixed 
disk file is shorter than specified in the source 
program. 

-----------~------------------------------------------~-----

059(B): 

Explanation: 

LONG INPUT RECORD 

Error message displayed if record read from Fixed 
disk file is longer than specified in the source 
program. 

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-11 



062(B): 

Explanation: 

063(B): 

Explanation: 

064: 

Explanation: 

065: 

Explanation: 

077: 

Explanation: 

DR$ READ ERROR 

Error message displayed when an attempt to read a 
sector of an index file fails. 

FORMAT ERROR IN EXTENDING DIRECT FILE 

Error message displayed when the point to which a 
direct (CHAIN by record number) file comes 
before the last record of the file. 

ISAM FILE KEY DOES NOT MATCH FDB SPECIFCATION 

Error message displayed when key description in 
index file does not match that given in the 
source program. 

OPEN ERROR IN ISAM DATA FILE 

Error message displayed when data file named in 
index file cannot be opened or has invalid name. 

WRITE PROTECTED 

Error message displayed if an attempt is made to 
write on a disk file which is write protected. 

078: DELETE PROTECTED 

Explanation: Error message displayed if an attempt is made to 
shorten or delete a disk file which is delete 
protected. 

D-12 REPORT PROGRAM GENERATOR II 



079: 

Explanation: 

080: 

Explanation: 

'0 081 (B) : 

Explanation: 

082: 

Explanation: 

083: 

Explanation: 

FILE SPACE FULL 

Error message displayed if an attempt is made to 
allocate space to a disk file when either the 
disk is full or no more segment descriptor slots 
are available for the file. 

DRIVE OFF LIN E 

Error message displayed if an attempt is made to 
access a disk drive which is either physically 
absent or off line. 

CHAINING ERROR 

Error message displayed when attempt is made to 
CHAIN to a non-existent record and the source 
program has not specified an indicator to set. 

INVALID BUFFER ADDRESS 

Error message displayed if the buffer address in 
a record address (ADDROUT) file is invalid. 

PARITY ERROR IN INDEX - REINDEX 

Error message displayed if a parity error is 
found in the index of an ISAM file. 

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-13 



084(8): 

Explanation: 

085(B): 

Explanation: 

086(B): 

Explanation: 

DUPLICATE KEY 

Error message displayed if the program attempts 
to add a record to an indexed file and a record 
already exists with the same key. 

MULTIPLE UPDATES IN SAME CYCLE 

Error message displayed if the program attempts 
to write two or more records onto an Update file 
during a single cycle. 

MULTIPLE CHAINED OUTPUT IN SAME CYCLE 

Error message displayed if the program attempts 
to write two or more chained output records 
during a single cycle. 

087(B): READ AT EOF OR FROM CLOSED FILE 

Explanation: Error message displayed if the READ operation was 
attempted on a file which was at end-of-file or 
was closed and the source did not specify an 
indicator to set. 

D-14 REPORT PROGRAM GENERATOR II 



APPENDIX E. RPGPLUS USER ASSEMBLY LANGUAGE FACILITIES 

E.1 The RPGPLUS Library Facility 

An integral component of the RPGPLUS compiler system is the 
LIBRARY facility. This facility includes the system library file 
RPGOLIB/REL and one optional user library file «user lib>/REL 
specified by the *LIBRARY <user lib> line in the source code). 
These libraries contain relocatable code sequences which can be 
selectively included in an RPGPLUS object program, depending upon 
the particular operations specified in the source program. SNAP/2 
is used to transform a library source file into a relocatable 
object file; LIB may be used to combine such files into a larger 
library. 

The USER LIBRARY facility allows for user written routines to be 
assembled into an RPGPLUS object program: SPECIAL device drivers, 
user label processors, and routines referenced by the EXIT 
operation. The calling sequences generated for these features 
will be described at the end of this appendix. 

A library file is partitioned into SEGMENTS, each of which can be 
included separately into an RPGPLUS object program. Segment 
inclusion is done on the basis of ENTRY POINTS in the segment and 
undefined symbols in the object code. In other words, during 
object program LINKing, a segment will be included if at least one 
of its entry points corresponds to an undefined symbol in the 
dictionary. When such a segment is found, it becomes part of the 
object code and treated exactly as if it were code directly 
generated by the compiler. Any undefined symbols it may have, if 
not already defined previously, will then cause additional library 
segments to be included. In this way, a hierarchy of segments can 
be included in the object code, depending upon the particular 
operation specified in the source program. 

APPENDIX E. RPGPLUS USER ASSEMBLY LANGUAGE FACILITIES E-1 



E.2 RPGPLUS Calling Sequences to User Subroutines 

The RPGPLUS system will generate calls to user subroutines 
when any of the following language features is invoked: 

1. SPECIAL files, 
2. non-standard tape labels, or 
3. EXIT operations. 

In each case the name of the subroutine must be given in special 
col umns as follows: 

1. cc54-59 Label Exit - in the File Description Specifications, 
and 

2. cc33-38 - Factor 2 - in the Calculation Specifications. 

The compiler will prefix each user subroutine name with the 
characters 'X$' to distinguish it from entry-points in the system 
library. 

E.3 SPECIAL Devi~e Drivers 

Each file in the RPG object program is described by a table 
called the File Description Block (FDB). The format of this table 
and values of associated symbols are given in Appendix B. A 
SPECIAL device subroutine will be called: to open the file, to 
read from it, to wri te on it, or to close it. In all cases the 
subroutine will be called with an operation code in A and the 
address of the FDB in HL. When the file has been successfully 
opened, the closed-file flag MCLOSFDB in the file's FDB must be 
cleared; if the file is an input file, the End-Of-File flag 
MEOFFDB should be set when the end of the fi Ie has been found. 

The values of the operation codes can be found by compiling an RPG 
II program with an object listing (0 and list options) and looking 
for the following symbols (defined near the beginning): 

Val ue of A 

VOPNFDB 
VGETFDB 
VPUTFDB 
VCLSFDB 

Operation 

Open 
Input 
Output 
Close 

Thus a simple input driver which requires no open or close actions 

E-2 REPORT PROGRAM GENERATOR II 



might start like this (remember the 'X$' prefix for subroutine 
names): 

MYDRIVER 
CODE 
DATA 

PROG 
ORG 
ORG 
INC 

o 
O,P 
IFDBDEF/EPT 

Begin library segment 

FDB definitions 

USE DAT A 
WORKAREA 
CURRFDB SK 

USE 
X$MYDRV: CP 

JFZ 

. 

PUSH 
LX 
DPS 

POP 
RET 

* End of file seen 

ENDOFILE LFII 
LAM 
OR 
LMA 

2 

CODE 
VGETFDB 
CHKOPEN 

XA 
WORKAREA>8 
HL,CURRFDB 

XA 

Base of data page 
Address of FDB 
Add i tional data 

GET operation? 
No, check for OPEN 

Save (X) 
Set page 
Save FDB address 

Read record 

Restore (X) 
EXIT 

HL,DFLAGFDB,CURRFDB Address flag byte 
& fetch it 

MEOFFDB Set end of file 
& upda te 

LFII HL,DRLENFDB,CURRFDB Address record length 
DL BC, HL & fetch it 

LFII HL,DFWAFDB,CURRFDB Point to FWA address 
DL HL, HL & fetch it 

POP XA Restore (X) 
JMP BLNSETL EXIT clearing FWA 

. 
* Operation is not GET 

CHKOPEN CP 
RFZ 

VOPNFDB OPEN function? 
No, EXIT 

APPENDIX E. RPGPLUS USER ASSEMBLY LANGUAGE FACILITIES E-3 



LAM 
ND 
LMA 
RET 

END 

-1.XOR.MCLOSFDB 

E.4 Non-standard Tape Labels 

Yes, get flag byte 
Clear file closed 
Update FDB 
EXIT 

End library segment 

A non-standard label routine is called with the operation in 
A, the tape data page address MSB in X, and the tape FDB address 
stored at TAPFDB in the data page. The operation code is 0 for 
open (i.e., header labels) and not 0 for close (i.e., trailer 
labels).- The tape will be positioned before the-fIrst label 
record in each case and it is the responsibility of the label 
routine to properly position the tape at the beginning of data 
(for headers) or before the last tape mark (for trailers). The 
standard tape 1/0 routines TAPEREAD and TAPEWRIT may be used to 
read and write tape labels. They both require the address of a 
label record buffer in HL and its length in DE. TAPEREAD will 
read up to the specified number of characters and then store the 
character EOTXT to mark the end of the record; it will return the 
False Zero condition if the read was not successful. TAPEREAD 
will al so set the f1 ag MFLMKFDB in the tape FDB wh enever it sees a 
file mark. The subroutine TAPINIT must be called before reading a 
set of labe Is; before call ing TAPEWRIT, ca 11 CHKT'APE to wa it for a 
previous write to finish. Additional subroutines are WRITFMRK 
which writes a file mark (call CHKTAPE also) and TAPRESET to clear 
one. For example: 

MYLABELS 
CODE 
WORK 

LLABLUSR 

PROG 
ORG 
ORG 
INC 
EQU 

o 
o 
IFDBDEF/EPT 
?? 

FDB definitions 
User label length 

USE 
X$MYLABL: ORA 

JFZ 

CODE 
Opening file? 
TRLRLABL No 

LFII HL,DFLAGFDB+1,TAPFDB Yes 
LAM Get flag byte 
ND MWACFDB Output? 
JFZ OUTHEADR Yes 

E-4 REPORT PROGRAM GENERATOR II 



* Process header labels of input file 

CALL TAPINIT 

CALL GETLABEL 

RET 

· * Process header labels of output file 

OUTHEADR 

* Process trailer labe Is 

TRLRLABL 

* Subroutine to 

GETLABEL HL 
DE 
CALL 
JFZ 

HL 
CALL 
HL 
JMP 

LABEL ERR 

· * Subroutine to 

PUTLABEL CALL 

· 

HL 
DE 
JMP 

read a label 

LABLBUFR 
LLABLUSR 
TAPEREAD 
LABELERR 

ROLLUP 
DSPLY$ 
LABLBUFR 
DSPLY$ 

write a label 

CHKTAPE 
LABLBUFR· 
LLABLUSR 
TAPEWRIT 

* Allocate label buffer(s) 

USE 
LABLBUFR SK 

END 

WORK 
LLABLUSR+1 

record 

record 

Initialize read 

Get a label record 

EXIT 

Address label 
Load length 
Read a record 
If read failed 

Roll up screen 
Address label 
EXIT displaying label 

Error routi ne 

Wait for prior write 
Address label 
Load length 
EXIT writing record 

APPENDIX E. RPGPLUS USER ASSEMBLY LANGUAGE FACILITIES E-5 





APPENDIX F. GENERATION AND USE OF RPGII 

F.1 RPGII Generation For Cartridge Disks 

The collection of files which comprise the Datapoint RPGII 
system are distributed on five cassettes, labeled RPGII CASSETTE 
1, RPGII CASSETTE 2, RPGII CASSETTE 3, RPGII CASSETTE 4, and RPGII 
CASSETTE 5. The first two cassettes are to be MIN-ed onto a disk. 
The contents of the last three cassettes must be catalogued under 
DOS using the RPGII Generator. This is done by running the CHAIN 
RPGIIOUT/CHN which is on CASSETTE 1. In order for the system 
generation to be successful, there must be at least 50 free files 
and 1800 free sectors on the drive specified for generation. The 
a6tual number of free files and sectors can be determined by 
running the FR~E utility program. 

Once it has been determirled that there is enough space for the 
RPGII system, plaGe CASSETTE 1 in the front deck, and type the 
command: MIN ;AO:DRn. (Where n is the number of the disk where the 
RPGII system is to be placed.) Use the same command for CASSETTE 
2. Now to unload CASSETTES 3, 4, and 5 type in the command CHAIN 
RPGIIOUT/CHN;ALL,Dl=n,D2=n,D3=n,DISK. (Where n is the same number 
as for CASSETTES 1 AND 2.) The CHAIN will ask that CASSETTE 3 be 
mounted in the 'front deck first, then 4, and last CASSETTE 5. 
Upon completion of CASSETTE 5, the RPGII system generation is 
complete and ready for operation. 

F.2 Selective Generation of RPGII 

If, as sometimes happens, a single RPGII system file gets 
destroyed, it can be selectively recovered by one of two 
procedures, depending upon the type of file. RPGGEN has the 
facility to bypass a tape if "*,, is keyed in when a cassette is 
asked for. This is useful for recovering one of the library files 
from CASSETTES 3, 4 or 5. An overlay file or the pre-processor 
can be recovered by performing: 

MIN and selecting the file that is desired. The following 
table gives the cassette names and file numbers for single file 
recovery. 

APPENDIX F. GENERATION AND USE OF RPGII F-1 



File Cassette Recovery 

RPGALIB 3 ' CHAIN RPGIIOUT/CHN;3,D1=n,DISK 
RPGBLIB 4 CHAIN RPGIIOUT/CHN;4,D2=n,DISK 
RPGCLIB 5 CHAIN RPGIIOUT/CHN;3,D3=n,DISK 

RPGICMD 1 MIN 
RPGIIOUT/CHN 1 MIN 
RPG/OIG 1 MIN 
RPGPRTLB/REL 1 MIN 
RPG/OAA 1 MIN 
RPG/OAD 1 MIN 
RPG/OAE 1 MIN 
RPG/OAG 1 MIN 
RPG/OAK 1 MIN 
RPGIOAM 1 MIN 
RPG/OAZ 1 MIN 
RPG/OCA 1 MIN 
RPG/OCG 1 MIN 
RPG/OCK 1 MIN 
RPG/OFC 1 MIN 
RPG/OFK 1 MIN 
RPG/OGA 1 MIN 
RPG/OGB 1 MIN 
RPG/OGD 1 MIN 
RPG/OGF 1 MIN 
RPG/OGH 1 MIN 
RPG/OGK 1 MIN 
RPG/OGM 1 MIN 
RPG/OGO 1 fv1IN 

F-2 REPORT PROGRAM GENERATOR II 



RPG/OMB 
RPG/OMP 
RPG/OPA 
RPG/OPX 
RPG/OSA 
RPG/OSO 
RPG/OUA 
RPG/OUU 
RPG/OWA 
RPG/OWL 
RPG/OWM 
RPG/OWS 
RPG/OWU 
RPG/OWX 
RPG/OZZ 
RPGPP/CMD 
RPGLDR/OV1 
RPGISA/OV1 
RPG/OPL 
RPG/OPF 
RPG/OPS 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 
MIN 

F.3 RPGII Generation For Diskette Systems 

Diskette systems will be distributed on diskettes rather than 
cassettes. A diskette user will receive four diskettes labeled 
RPGII DISKETTE 1, RPGII DISKETTE 2, RPGII DISKET7E 3, RPGII 
DISKETTE 4. These diskettes should be placed on drives 0, 1, 2, 
and 3 respectively. 

In addition to the RPGII files, the user will need to build the 
following DOS utilities on DISKETTE 4: 

SORT/CMD and SORT/OV1 
INDEX/CMD and INDEX/OV1 
REFORMAT/CMD 

All utilities must be the proper version for DOS.C. RPGPREP/CMD 
will be included on DISKETTE 4. 

Use the diskette on drive zero for RPG II source and object 
programs and other user desired utilities (such as EDIT, LIST, 
etc). The RPG II compiler will use the diskette on drive zero for 
w 0 r k f i 1 e s . Note t hat f 0 u r d r i v es are r e qui r ed f or an R PG I I 
compilation on diskette. 

APPENDIX F. GENERATION AND USE OF RPGII F-3 



F.4 Compiling an RPG II Program 

An RPG II source file is compiled by the RPG II compiler by 
keying in a command with the following format: 

RPG srcfil (,objfil)(;(L)(O)(F)(I)(D)(S)(X» 

where the file names are in standard DOS format. If no object file 
is specified, the file "srcfiI/CMD" will be produced. TXT 
extension is assumed for the source file, which can be in EDIT or 
DATAFORM format, and CMD is the default object file extension. The 
option characters are used as follows: 

L -- List source program and storage map ° - List generated object code (requires 
F - List code under false IF's (requires 
G - List all object bytes (requires 
I - List included library routines (requires 
D - Display object code 

L) 
L,O) 
L,O) 
L,O) 

S - List symbol table 
X - List cross references 

(requires L) 
(requires L) 

For normal use of" the compiler, the L option is all that is 
required. The ° and I options will cause listings of 30 to over 
100 pages to be produced, and exist for use by maintenance 
personnel. 

After the RPG II compiler has been invoked, it will ask for a 
heading line if the L option has been specified. A page heading 
should be keyed in, terminated with ENTER. This heading will then 
appear on the top line of every page of the listing. The compiler 
will then process the source file, and produce an executable 
object file. During the processing, the top right-hand corner of 
the display will contain the message "PHASE XX", where XX are two 
alphabetic characters. These two characters indicate which 
compilation phase is being executed at any particular time. There 
are over 40 separate phases, each corresponding to a particular 
portion of the compilation process. The names of the phases and 
their functions are described in Appendix G. 

Additionally, there are a number of PAUSE points defined in the 
compiler. These occur before displaying each error note, error 
text, IDENT, and object code line. At each of these PAUSE points, 
if the DISPLAY key is depressed, execution will be temporarily 
suspended until it is released. If the KEYBOARD key is depressed, 
the machine will BEEP and stop execution. This is another facility 

F-4 REPORT PROGRAM GENERATOR II 



for maintenance personnel, and as such is not required for normal 
compiler operation. The compiler can be restarted from this 
suspended condition by pressing ENTER. 

F.5 Running a Compiled RPG II Program 

The object code generated by RPGII is totally compatible with 
the instruction set of the Datapoint 1100/2200/5500/6600 series of 
systems. After compiling the source file, the resulting object 
file is executed by merely calling for it from the command 
interpreter. For example suppose the source file TESTITXT were 
compiled by the command: 

RPG TEST; L 

Then the object file could be executed by the command: 

TEST 

The object file can not accept parameters from the command line; 
all necessary. interaction with the user is done under object 
program control. 

F.5.1 DATE Field 

If any of the special words: UDATE, UDAY, UMONTH, or UYEAR 
were used in the source program, the object program will ask for 
the date, which should be entered as MM/DD/YY. For example, Sept. 
5, 1973, is entered as 09/05/73. 

F.5.2 External Indicators 

If any of the external indicators, U1 to U8, were used in the 
source program, the object program will ask for their values at 
the beginning of execution. The values must be entered in binary, 
wi th a 0 setting the indicator off and a 1 setting it on, and in 
the following order: 

U1 U2 U3 U4 U5 U6 U7 U 8 

APPENDIX F. GENERATION AND USE OF RPGII F-5 



Values for indicators not used are not required if there are no 
used indicators with a higher number. For example, if U1 were the 
only external indicator used, a valid response is either: 

a or 1. 

If U1 and U2 were the only external indicators used, the valid 
responses are: 

00, 01, 10, or 11. 

However, if U1 and U3 were used, and no others, the response must 
be of the form: 

OxO, Ox1, 1xO, or 1x1 

where x is any character. 

F.5.3 Opening Files 

Each file opened by the object program causes an opening 
message to be displayed. In the case of assignable disk files, a 
message will be displayed, and then the program will wait for a 
file name to be entered. This name should be in standard DOS 
format (TXT extension is assumed for data files, lSI extension is 
assumed for indexed files if extension is not given). If a 
defined disk file does not exist, an error message will be 
displayed and the program will then ask for a name as for an 
assignable file. 

F.5.4 Indexing ISAM (Indexed) Files 

Indexed files are created in exactly the same format as any 
fixed format disk file. The data structure is identical and may be 
processed, disregarding the index, as a simple fixed format file. 
To permit processing as an indexed file, the INDEX utility is us~d 
to create a separate index file. The file is indexed by typing: 

INDEX datafile(,indexfile);(E)aaa-bbb 

All parameters within the parenthesis are optional. File names are 
in standard DOS format. If the indexfile name parameter is 

F-6 REPORT PROGRAM GENERATOR II 



omitted, an index will be created wi th the name "datafile/ISI". 
The "E" parameter indicates that the index is in EBCDIC collating 
sequence. If the "E" is omitted the index will be created in ASCII 
sequence. The parameter aaa (1-255) is the position of the first 
character in the key and bbb (1-353) is the position of the end of 
the key. 

The indexfile name should be referenced in the File Description 
Specifications any time the file is used as an indexed input, 
update or add file in an RPG program. 

F.5.5 Console Input Files 

When entering data from the keyboard as an input file, end of 
file may be entered by depressing the DISPLAY key and the ENTER 
key simultaneously. This eliminates the necessity of coding an 
end of file character to set the LR indicator when keyboard input 
files are used directly (not in DOS CHAIN). When keyboard input 
is used with DOS CHAIN a record which sets the LR indicator should 
be used to terminate processing. 

APPENDIX F. GENERATION AND USE OF RPGII F-7 





APPENDIX G. RPGII REFERENCE TABLES 

General System Organization 

The first part of the appendix lists the various components of the 
RPG II system and gives a brief description of the function 
performed by each phase of the compiler. The two-letter 
abbreviations appear during compilation in the upper right-hand 
corner of the display. An RPG compilation is passed through the 
following phases: 

1. Interface Program - common data and code. 

2. Enter Phases - read, list, and compress source. 

3. Assign Phases - allocate data storage. 

4. Diagnostic Phases - finish error checking. 

5. Generate Phases - generate object program operations for 
input, compute, output. 

6. Assembly and Library Phases - assemble object text, include 
necessary routines from library. 

Enter Phase Summary 

AA - Initialize system, read control card, list, compress and 
diagnose. 

AD - Process file-descriptions - compress information, writing 
part of card on disk, building file-name table and in-core 
compression table with the rest of the information. 

AE - Process file-extension specifications - compress and write on 
disk. 

AF - Process line-counter specifications. 

AG - Process input specifications, generating record and field 
compressions. 

AK - Process calculation specifications - read, list, diagnose and 

APPENDIX G. RPGII REFERENCE TABLES G-1 



compress records. 

AM - Process output specifications, generating record and field 
compressions. 

AZ - Process user library inclusion, and compile-time tables. 

Assign Phase Summary 

CA - Assign indicator storage. 

CB - Generate indicator table for 'DEBUG' operations. 

CC - Define and assign control field storage. 

CD - Assign file working areas. 

CE - Define and assign match field storage. 

CG - Scan extension, input and calculation compressions, define 
table and field storage, generate table storage. 

CH - Scan input, calculation and output compressions, move 
definitions to compression records. 

CI - Generate field storage. 

CK Scan calculation and output compressions, define literals and 
edit masks in core table. 

CL Move literal definitions into compression records. 

CV - Generate literal definitions. 

Diagnostic Phase Summary 

FC - Diagnose file-descriptions. 

FG .- Diagnose calculation specifications, check use of table and 
arrays in calculations, check arithmetic precision. 

FK - Diagnose and preprocess input specifications. 

G-2 REPORT PROGRAM GENERATOR II 



FL - Diagnose and preprocess output specifications. 

FM - Diagnose file referencing errors. 

GA - List error notes in order by line number. 

GB to GO - List error texts as needed. 

GX - End error text listing, call phase ZZ if fatal error 
occurred. 

Generation Phase Summary 

Input Generation Phases: 

MB - Generate control field compare. 

ME - Generate control field moves. 

MG - Generate match field moves. 

MK - Generate input field processors. 

MP - Generate input, record-tests, and select routines. 

MQ - Generate input mainline, end test, and file select sequences. 

Calculation Generation Phases: 

PA - Generate arithmetic and character (byte) sequences. 

PX - Generate detail calculation mainline. 

PY - Generate total calcutation mainline. 

PZ - Generate RPG subroutines. 
Phases PX, PY, and PZ generate calculation control code and 
the code for other operators. 

APPENDIX G. RPGII REFERENCE TABLES G-3 



Output Generation Phases: 

SA - Generate output field processors. 

SO - Generate heading/detail output mainline. 

SP - Generate total output mainline. 

SQ - Generate overflow output processor. 

SR - Generate exception output processor. 

SS - Generate put routines. 

Final Generation Phases: 

UA - Generate file description blocks. 

UF - Generate open mainline. 

UG - Generate end mainline. 

UU - Generate assembly parameters. 

UV - Link generated segments with the fixed library. 

Assembly Phases: 

WA - Initialize assembly, set up symbol table. 

WM - Assembly passes 1 and 2. 

WL - Scan library and include referenced segments. 

WS - Sort dictionary. 

WU - Dictionary listing. 

WX - Cross reference sort and listing. 

ZZ"- RPG Close phase. 

G-4 REPORT PROGRAM GENERATOR II 



RPG Preprocessor: 

(PP) - Preprocess ASM text to object text. 

APPENDIX G. RPGII REFERENCE TABLES G-5 



Format of File Description Blocks 

A partial description of the format of a file description block is 
given symbolically in this section. For a complete and absolute 
listing look at an assembly listing of the second object program 
segment. All symbols defined below have blank qUBlification, and 
are input to the pre-processor as ':XXXXXX'. Symbols beginning 
with the letter 'D' are byte displacements relative to the start 
of an FDB entry. Symbols beginning with 'M' are.masks for parts 
of a byte. For example the displacement of the two-byte record 
length is 'DRLNFD', and the mask for the end-of-file fl ag is 
'MEOFFD' . 

Name Purpose 

DFLGFD Displacement of the three-byte flag field. 

------First Flag Byte------

MEOFFD End of file. 

MCLSFD File closed. 

MPUTFD Output record ready for update or chained output file. 
Output pending. 

MPBFFD Buffer output pending (update files). 

MADDFD ADD file. 

------Second Flag Byte------

MCHNFD CHAIN file. 

MWACFD Output/Update file. 

MRACFD Input/Update file 

------Third Flag Byte-------­

MISAFD Indexed (ISAM) File. 

------Basic Description------

DRLNFD Logical record length (two-bytes - MSB,LSB). 

DBLFFD Blocking factor (one-byte). 

G-6 REPORT PROGRAM GENERATOR II 



DFWAFD Address of File (record) Working Area (two-bytes -
LSB,MSB). 

DFNMFD Address of internal file name (LSB,MSB) 

APPENDIX G. RPGII REFERENCE TABLES G-7 



Format of Table Description Blocks 

The format of table description blocks is given symbolically in 
this section. For an absolute listing look at the assembly 
listing for the segment named 'COMMON TABLE PROCESSOR'. The 
conventions are the same as for file description blocks. 

Name Purpose 

DTHATD Address of table/array storage area (two-bytes -
LSB,MSB). 

DFLDTD Address of current selected entry (LSB,MSB). 

DNELTD Number of elements (two-bytes - MSB,LSB). 

DELNTD Length of an element (one-byte). 

DCENTD Index of current entry (two-bytes - MSB,LSB). 

- DCEATD Address of current entry (two-bytes - LSB,MSB) 

Note: By convention, addresses are stored in the 
least~significant, then the most-significant byte order, whereas 
two-byte binary numbers are stored in the most-significant, 
least-significant order. For Boolean (bit) values, true = 1 and 
false = O. 

G-8 REPORT PROGRAM GENERATOR II 



\ 

APPENDIX H. RPGII COMPILE TIME MESSAGES 

No. W/F Card Text 

W 

2 W 

3 W 

4 W 

5 F 

6 F 

7 F 

8 W 

9 W 

1 0 ~v 

11 W 

12 F 

13 W 

14 W 

15 W 

16 W 

17 W 

18 w 

19 W 

H 

H 

H 

H 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

CC7-9 SHOULD BE BLANK. 

INVALID CORE SIZE, CC12-14. 

INVALID DEBUG CODE, C15. 

CC16-25 SHOULD BE BLANK. 

INVALID OR BLANK FILE NAME, CC7-14. 

INVALID OR BLANK FILE TYPE, C15. 

INVALID OR BLANK FILE DESIGNATION, C16. 

INVALID PROCESS TO END OF FILE ENTRY, C17. 

SEQUENCE ENTRY INVALID, OR SPECIFIED WITH FILE TYPE 
NOT PRIMARY OR SECONDARY, C18. 

INVALID FORMAT ENTRY, C19. 

INVALID BLOCK LENGTH, CC20-23. 

INVALID RECORD LENGTH, CC24-27. 

INVALID MODE OF PROCESSING ENTRY, C28. 

CC29-31 SHOULD BE BLANK. 

INVALID OVERFLOW ENTRY, CC33-34. 

OVERFLOW SPECIFIED WITH DEVICE OTHER THAN PRINTER, 
CC33-34. 

CC35-38 SHOULD BE BLANK. 

INVALID EXTENSION OR LINE COUNTER ENTRY, C39. 

LINE COUNTER SPECIFIED WITH DEVICE OTHER THAN 
PRINTER, C39. 

APPENDIX H. RPGII COMPILE TIME MESSAGES H-1 



20 F 

21 W 

22 W 

23 W 

24 W 

25 W 

26 W 

27 w 
28 w 

29 W 

30 W 

31 W 

32 W 

33 W 

34 W 

35 F 

36 F 

37 F 

38 F 

39 F 

40 . F 

41 F 

42 W 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

E 

E 

E 

F 

E 

E 

E 

E 

E 

INVALID DEVICE CODE, CC40-46. 

CC47-52 SHOULD BE BLANK. 

CC53-59 SHOULD BE BLANK UNLESS DEVICE SPECIFIED AS 
'SPECIAL' . 

INVALID 'K' ENTRY, C53. 

INVALID UNLESS SPECIAL DEVICE NAME, CC54-59. 

INVALID NAME FOR SPECIAL DEVICE I/O ROUTINE, 
CC54-59. 

CC60-65 SHOULD BE BLANK. 

C66 SHOULD BE BLANK. 

INVALID ADDITIONS ENTRY, C66. 

CC67-69 SHOULD BE BLANK. 

C70 SHOULD BE BLANK UNLESS TAPE DEVICE. 

INVALID REWIND OPTION, C70. 

INVALID FILE CONDITION ENTRY, CC71-72. 

CC73-74 SHOULD BE BLANK. 

CC7-10 SHOULD BE BLANK. 

INVALID OR UNRECOGNIZABLE 'FROM' FILE NAME, 
CC11-18. 

INVALID OR UNRECOGNIZABLE 'TO' FILE NAME, CC19-26. 

CHAINED, INDEXED OUTPUT FILE C66 MUST BE A. 

INVALID TABLE/ARRAY NAME, CC27-32. 

INVALID NUMBER OF ENTRIES PER RECORD, CC33-35. 

INVALID NUMBER OF ENTRIES FOR TABLE/ARRAY, CC36-39. 

INVALID LENGTH OF ENTRY, CC40-42 OR CC52-54. 

INVALID FORMAT ENTRY, C43 OR C55 - IGNORED. 

H-2 REPORT PROGRAM GENERATOR II 



43 F 

44 W 

45 F 

46 F 

47 F 

48 F 

49 F 

50 F 

51 F 

52 F 

53 W 

54 W 

55 F 

56 F 

57 F 

58 w 
59 F 

60 W 

61 W 

62 F 

63 F 

64-65 

66 F 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

H 

H 

L 

L 

L 

L 

L 

L 

L 

L 

L 

I 

INVALID DECIMAL POSITIONS ENTRY, C44 OR C56. 

INVALID SEQUENCE ENTRY, C45 OR C57 - IGNORED. 

INVALID ALTERNATE TABLE NAME, CC46-51. 

EXECUTION-TIME TABLES NOT ALLOWED. 

ALTERNATE TABLE SPECIFICATION NOT ALLOWED WITH 
EXECUTION-TIME ARRAYS. 

'FROM' FILE MUST BE AN INPUT-TABLE FILE. 

'TO' FILE MUST BE ORDINARY OUTPUT OR OUTPUT-TABLE 
FILE. 

'FROM' FILE TOO SHORT FOR TABLE RECORD. 

'TO' FILE TOO SHORT FOR TABLE RECORD. 

MORE THAN 8192 BYTES OF TABLE STORAGE ALLOCATED. 

INVALID COLLATE SEQUENCE ENTRY, CC26. 

CC27-74 SHOULD BE BLANK. 

INVALID OR UNDEFINED FILE NAME, CC7-14. 

FILE MUST BE ASSIGNED TO THE PRINTER. 

FORM LENGTH, CC15-17, INVALID OR >99. 

CC18-19 SHOULD CONTAIN 'FL'. 

OVERFLOW LINE, CC20-22, INVALID OR >99. 

CC23-24 SHOULD CONTAIN 'OL'. 

CC25-74 SHOULD BE BLANK. 

OVERFLOW LINE IS GREATER THAN FORM LENGTH. 

MULTIPLE LINE COUNTER SPECIFICATION LIN~S. 

UNASSIGNED. 

MIXED RECORD AND FIELD DATA, CC7-42, 43-74. 

APPENDIX H. RPGII COMPILE TIME MESSAGES H-3 



67 W 

68 F 

69 F 

70 w 

71 W 

72 W 

73 F 

74 F 

75 W 

76 W 

7'7 W 

78 F 

79 F 

80 F 

81 F 

82 F 

83 F 

84 F 

85 F 

86 F 

'87 F 

88 w 

89 F 

90 F 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

C 

CC7-14 SHOULD BE BLANK FOR 'AND' AND 'OR' CARDS. 

FILE NAME, CC7-14, NOT SPECIFIED IN FILES SECTION. 

INVALID SEQUENCE ENTRY, CC15-16. 

INVALID SEQUENCE ENTRY, C17. 

INVALID OPTIONAL SEQUENCE ENTRY, C18. 

INVALID RECORD INDENTIFYING INDICATOR, CC19-20. 

INCOMPLETE RECORD INDENTIFYING CODE, CC25-27, 
CC32-34, OR CC39-41. 

INVALID POSITION ENTRY, C24, 31 OR 38. 

INVALID NOT ENTRY, C25, 32 OR 39. 

INVALID C/Z/D ENTRY, C26, 33 OR 40. 

STACKER SELECT NOT IMPLEMENTED, C42. 

INVALID FORMAT ENTRY, C43. 

INVALID FROM LOCATION ENTRY, CC44-47. 

INVALID 'TO' LOGATION ENTRY, CC48 7 51. 

NEGATIVE FIELD LENGTH, CC44-51. 

INVALID DECIMAL POSITION ENTRY, C52. 

INVALID FIELD NAME, CC53-58. 

INVALID CONTROL LEVEL ENTRY, CC59-60. 

INVALID MATCH FIELD ENTRY, CC61-62. 

INVALID FIELD RECORD RELATION ENTRY, CC63-64. 

INVALID FIELD INDICATORCS), CC65-70. 

CC71-74 SHOULD BE BLANK. 

RECORD DESCRIPTION ILLEGAL. 

INVALID ENTRY IN CC7-8. 

H-4 REPORT PROGRAM GENERATOR II 



91 F 

92 F 

93 F 

94 F 

95 F 

96 F 

97 w 

98 F 

99 F 

100 F 

101 F 

102 F 

103 F 

104 F 

105 F 

106 F 

10'7 F 

108 w 

109 F 

110 F 

111 F 

112 F 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

F 

F 

F 

F 

o 

o 

o 

INVALID NOT ENTRY IN CC9, 12, 15. 

INVALID INDICATOR IN CC10-11, CC13-14, OR CC16-18. 

INVALID FACTOR 1 ENTRY, CC18-27. 

UNRECOGNIZABLE OPERATION, CC28-32. 

INVALID FACTOR 2 ENTRY, CC33-42. 

INVALID RESULT FIELD, CC43-48. 

HALF-ADJUST ENTRY IN C53 UNRECOGNIZABLE OR NOT 
ALLOWED. 

INVALID RESULT INDICATOR ENTRY, CC54-59. 

INVALID LENGTH IN CC49-51. 

DECIMAL POSITIONS INVALID, C52. 

CC49-52 SHOULD BE BLANK IF NO RESULT FIELD IS 
SPECIFIED. 

INVALID FILE NAME IN CC33-42. 

INVALID LITERAL SPECIFICATION. 

INVALID BIT MASK, CC33-42. 

CONDITION INDICATORS NOT ALLOWED WITH 'TAG', 
'RLABL', 'BEGSR', OR 'ENDSR' OPERATIONS. 

INVALID KEY LENGTH, CC29-30. 

INVALID KEY STARTING POSITION, CC35-38. 

ISAM OUTPUT FILE MUST BE "INDEXED" AFTER CREATION. 

SEQUENTIAL WITHIN LIMITS VALID ON INDEXED FILES, 
C28. 

RECORD AND FIELD DATA IN SAME LINE. 

INVALID OR UNSPECIFIED FILE NAME, CC7-14. 

INVALID 'AND' OR 'OR' ENTRY, CC14-16. 

APPENDIX H. RPGII COMPILE TIME MESSAGES H-5 



113 W 

114 F 

115 W 

116 W 

117 W 

118 W 

11 9 \11/ 

120 W 

121 F 

122 F 

123 F 

124 W 

125 W 

126 F 

127 W 

128 w 
129 W 

130 F 

131 F 

132 W 

133 W 

134 W 

135 W 

136 W 

o CC17-22 SHOULD BE BLANK ON 'AND' OR 'OR' LINES. 

o INVALID LINE TYPE, C15. 

o INVALID FETCH OVERFLOW ENTRY, C16. 

OI NVALID 'SPACE 6E-FO-RE' ENTRY, Gl'l. 

o INVALID 'SPACE AFTER' ENTRY, C18. 

a INVALID 'SKIP BEFORE' ENTRY, CC19-20. 

o INVALID 'SKIP AFTER' ENTRY, CC21-22. 

o INVALID 'NOT' ENTRY, C23, 26, OR 29. 

o INVALID FIELD CONDITIONING INDICATOR. 

o INVALID FIELD NAME. 

o INVALID EDIT CODE, C38. 

o C38 SHOULD BE BLANK IF NO FIELD NAME SPECIFIED. 

O' INVALID' BLANK AFTER' ENTRY, C39. 

o INVALID END POSITION ENTRY, CC40-43. 

o INVALID DATABUS FORMAT ENTRY, C44. 

o C44 SHOULD BE BLANK IF NO FIELD NAME SPECIFIED. 

o LITERAL NOT STARTED WITH A QUOTE, C45. 

o EMBEDDED SINGLE QUOTE, CC45-70. 

o REMAINDER OF CC45-70 NOT BLANK AFTER LITERAL. 

o LITERAL TOO LONG, CC70-80. 

o INVALID COMBINATIONS OF $ AND * IN CC45-47. 

o CC45-47 NOT $, *, OR BLANK .. 

o INVALID EDIT WORD. 

o CC71-74 SHOULD BE BLANK. 

H-6 REPORT PROGRAM GENERATOR II 



137 W 

138 W 

139 W 

140 W 

141 W 

142 W 

143 F 

144 W 

145 W 

146 W 

147 w 

148 F 

149 W 

150 F 

151 F 

152 W 

153 W 

154 W 

155 W 

156 F 

157 w 

H 

H 

H 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

MULTIPLE HEADER CARDS. 

INVALID ENTRY, C10. 

INVALID ENTRY, C11. 

FILE NAME TABLE FULL. 

DUPLICATE FILE NAME, CC7-14. 

INVALID TYPE FOR GIVEN DEVICE CODE, C15. 

INVALID DESIGNATION FOR GIVEN DEVICE CODE, C16. 

INVALID FILE FORMAT FOR THIS DEVICE, C19. 

BLOCKING FACTOR GREATER THAN 255, CC20-27. 

BLOCK LENGTH LESS THAN RECORD LENGTH, CC20-27. 

BLOCK LENGTH NOT A MULTIPLE OF RECORD LENGTH, 
CC20-27. 

BLOCK LENGTH GREATER THAN ALLOWED FOR GIVEN DEVICE, 
CC20-23. 

BLOCK LENGTH NOT EQUAL TO RECORD LENGTH, CC20-27. 

NO FILE DESCRIPTION SPECIFICATIONS. 

NO PRIMARY OR SECONDARY FILE SPECIFIED. 

SECONDARY FILE PRECEDES PRIMARY FILE. 

MULTIPLE PRIMARY FILES. SECONDARY ASSUMED. 

AN EXTENSION, C39, MUST BE SPECIFIED FOR TABLE 
FILES. 

EXTENSION, C39, INVALID WITH GIVEN DEVICE OR 
NON-TABLE FILE. 

DEVICE ASSIGNED TO MORE THAN ONE FILE. 

CONDITION INDICATOR, CC71-72, INVALID FOR TABLE 
FILE. 

APPENDIX H. RPGII COMPILE TIME MESSAGES H-7 



158 W 

159 F 

160 W 

161 F 

162 W 

163 F 

164 W 

165 F 

166 W 

167 F 

168 F 

169 W 

170 F 

171 

172 W 

173 W 

174 W 

175 W 

176 F 

177 F 

178 

179 w 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

FILE NAME ASSIGNED BUT NEVER USED IN' PROPER 
SECTION. 

SEQUENCE, C18, INVALID WITH NO MATCH FIELDS. 

SEQUENCE, C18, MUST BE SPECIFIED WITH MATCH FIELDS. 

EXTENSION OR LINE COUNTER SPECIFICATION MISSING, 
C39. 

EXTENSION OR LINE COUNTER SPECIFICATION FOUND FOR 
THIS FILE, BUT C39 IS NOT 'E' OR 'L'. 

OUTPUT REFERENCE REQUIRED FOR UPDATE FILE. 

CC7-52 ON CONTINUATION CARD SHOULD BE BLANK. 

CC54-59 ON CONTINUATION CARD NOT EQUAL 'ASCII'. 

C C 6 0-74 ON CON TIN U A T I ON CARD S H 0 U LD BE B LAN K . 

TAPE RECORD LENGTH LESS THAN 18. 

ADDITIONS INVALID FOR FILE OR DEVICE,.C66. 

ALL PRIMARY AND SECONDARY FILES CONDITIONED. 

CALCULATION REFERENCE REQUIRED FOR CHAIN OR DEMAND 
FILES. 

UNASSIGNED. 

INVALID ENTRY IN C53. 'A'ASSUMED. 

INVALID LABEL EXIT. 

C53 SHOULD BE BLANK. 

CC60-65 SHOULD BE BLANK ON ASCII CARD. 

UNRECOGNIZABLE DISK CONTINUATION OPTION IN CC54-59. 

UNRECOGNIZABLE ENTRY IN CC60-65. 

UNASSIGNED. 

VARIABLE BLOCKING INVALID FOR THIS FILE TYPE, FIXED 
BLOCKING ASSUMED. 

H-8 REPORT PROGRAM GENERATOR II 



180 W 

181 F 

182 F 

183 F 

184 F 

185 F 

186 F 

187 F 

188 F 

189 F 

190 W 

1 91 

192 F 

193 F 

194 F 

195 F 

196 F 

197 F 

198 F 

199 F 

200 F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

F 

E 

E 

E 

E 

E 

E 

E 

E 

I 

CC31-32 SHOULD CONTAIN 'I ' OR 'AI' FOR RANDOM 
PROCESSING. 

CC29-32 SHOULD CONTAIN' 3IT' FOR ADDROUT FILES. 

ADDROUT FILES MUST BE FIXED-FORMAT, UNBLOCKED FILES 
WITH RECORD LENGTH EQUAL TO 3. 

THIS FILE MUST BE CONTROLLED BY AN ADDROUT FILE. 

ADDROUT FILE MUST CONTROL A PRIMARY/SECONDARY FILE. 

CORRESPONDING ADDROUT AND PRIMARY/SECONDARY FILES 
MUST HAVE THE SAME EXTERNAL INDICATOR CONDITION. 

UNRECOGNIZABLE PRINTER CONTINUATION. 

RECORD ADDRESS TYPE SHOULD BE 'A' OR 'I', CC31. 

UNRECOGNIZABLE RECORD ADDRESS TYPE, CC31. 

UNRECOGNIZABLE FILE ORGANIZATION, C32. 

CC29-30 SHOULD BE.BLANK FOR FILE PROCESSED BY 
ADDROUT FILE. 

UNASSIGNED 

ISAM FILE CAN'T BE CONTROLLED BY TAG FILE. 

NO DATA FOR COMPILE TIME TABLE. 

MORE THAN ONE ADDROUT FILE CONTROLS THIS 
PRIMARY/SECONDARY FILE. 

MORE THAN ONE PRIMARY/SECONDARY FILE IS CONTROLLED 
BY THIS ADD ROUT FILE. 

'FROM' FILE MUST BE AN ADDROUT FILE. 

'TO' FILE MUST BE A RANDOMLY-PROCESSED 
PRIMARY/SECOUDARY FILE. 

TOO MANY TABLES DEFINED. 

MULTIPLE TABLE DEFINITIONS. 

NO INPUT SPECIFICATION SECTION. 

APPENDIX H. RPGII COMPILE TIME MESSAGES H-9 



201 F 

202 F 

203 F 

204 F 

205 F 

206 F 

207 F 

208 F 

209 F 

210 F 

211 F 

212 F 

213 

214 W 

215 W 

216 W 

217 F 

218 w 
219 W 

220 F 

221 W 

222 F 

223 F 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

FIELD PRECEDES FIRST RECORD. 

FILE ASSIGNED IS NOT AN INPUT OR UPDATE FILE. 

MORE THAN 256 INPUT RECORD TYPES SPECIFIED. 

INPUT RECO-RDS MUST -BE DESCH-IB-ED IN SAME ORDER AS 
FILES. 

CONTROL LEVEL SPECIFICATION INVALID WITH FILE TYPE. 

MATCH FIELD SPECIFICATION INVALID WITH FILE TYPE. 

MORE THAN 255 RECORD ID TESTS FOR THIS RECORD. 

FIRST LINE IS AN 'AND' OR 'OR' LINE. 

MULTIPLY DEFINED FIELD. 

LENGTH OF CONTROL FIELDS GREATER THAN 255 BYTES. 

LENGTH OF MATCH FIELDS GREATER THAN 255 BYTES. 

MORE THAN 32 'AND' .LINES. 

UNASSIGNED. 

'AND' LINE FOLLOWS LINE WITHOUT RECORD ID CODES. 

NO FIELDS DESCRIBED FOR PREVIOUS RECORD. 

NUMERIC SEQUENCE ENTRIES NOT IN ORDER, OR FIRST 
ENTRY NOT EQUAL 01. 

CC17-18 SHOULD BE BLANK FOR ALPHABETIC SEQUENCE. 

CC17-20 SHOULD BE BLANK FOR 'AND' LINES. 

CC17-18 SHOULD BE BLANK FOR 'OR' LINES. 

LENGTH OF NUMERIC FIELD GREATER THAN 15, OR LENGTH 
OF ALPHABETIC FIELD GREATER THAN 255. 

DECIMAL POSITION ENTRY INVALID FOR ARRAY. 

NUMBER OF DECIMAL POSITIONS EXCEEDS FIELD LENGTH. 

TABLE NAME INVALID FOR A FIELD NAME. 

H-10 REPORT PROGRAM GENERATOR II 



224 F 

225 F 

226 F 

227 F 

228 F, 

229 F 

230 F 

231 F 

232 F 

233 F 

234 W 

235 F 

236 F 

237 F 

238 F 

239 W 

240 F 

241 F 

242 F 

243 F 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

'AND' LINES INVALID WITH LOOK-AHEAD RECORD. 

CC17-18, 21-42, AND 59-74 INVALID WITH LOOK-AHEAD. 

FIELD LOCATION ENTRIES EXCEED RECORD LENGTH. 

FIELD NAME IS A RESERVED WORD OTHER THAN 'PAGE'. 

CONTROL AND MATCH SPECIFICATIONS INVALID FOR 
ARRAYS. 

LOOK-AHEAD INVALID WITH CHAIN OR DEMAND FILES OR 
WITH THIS DEVICE. 

NO FIELDS SPECIFIED FOR LOOK-AHEAD RECORD. 

ARRAY LENGTH EXCEEDS OR IS NOT A MULTIPLE OF LENGTH 
IN EXTENSION SPECIFICATION. 

INCONSISTENT LENGTHS FOR CONTROL OR MATCHING FIELDS 
OF ONE LEVEL. 

INVALID SPLIT CONTROL FIELD SPECIFICATION. 

CONTROL OR MATCHING FIELDS SPECIFIED AS ALPHA AND 
NUMERIC. 

ALL VALID MATCH LEVELS WERE NOT REFERENCED IN THE 
LAST RECORD GROUP. 

CONTROL OR MATCH FIELDS WITHOUT FRR MUST PRECEDE 
THOSE WITH FRR. 

CONTROL OR MATCH FIELDS WITH FRR MUST BE GROUPED BY 
FRR. 

FIELD RECORD RELATION INDICATOR USED IMPROPERLY 
WITH CONTROL OR MATCH FIELDS. 

INDICATOR ASSIGNED BUT NOT USED. 

INDICATOR USED, ,BUT "NOT ASSIGNED. 

FIELD LENGTH NOT MULTIPLE OF TABLE ENTRY LENGTH. 

INDEX FIELD NOT NUMERIC OR DECIMAL POSITIONS> O. 

LITERAL INDEX OUT-OF-BOUNDS. 

APPENDIX H. RPGII COMPILE TIME MESSAGESH-11 



244 F 

245 F 

246 F 

247 F 

248-249 

250 F 

251 F 

252 F 

253 F 

254 F 

255 W 

256 W 

257 F 

258 F 

259 W 

260 F 

261 F 

262 F 

263 F 

264 F 

265 F 

266 F 

267 F 

F 

F 

F 

C 

C 

C 

C 

C 

c 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

CONFLICT IN TAPE DENSITY. 

FILE ORGANIZATION SHOULD BE BLANK, CC32. 

FILE ORGANIZATION SHOULD BE 'I' OR 'T', CC32. 

RECORD AD~BES~TYP£AND FILE ORGANIZATION ARE 
INCOMPATIBLE, CC31-CC32. 

UNASSIGNED. 

INVALID FILE FOR FORCE. 

INVALID FILE FOR READ. 

INVALID CHAINING FIELD. 

INVALID FILE IN CHAIN. 

DEBUG FILE NOT OUTPUT FILE. 

DEBUG OPERATIONS IN PROGRAM IGNORED. 

DEBUG OPTION WITHOUT DEBUG OPERATION. 

DIFFERENT DEBUG FILES. 

INVALID FILE FOR DSPLY. 

CALCULATIONS CONSIST ONLY OF SUBROUTINES. 

SUBROUTINE MUST BEGIN WITH 'BEGSR' OPERATION. 

TOTAL OR DETAIL RECORD OUT OF SEQUENCE. 

ARRAY IMPROPERLY USED IN RESULT FIELD. 

FACTOR 1 OR 2 MAY NOT BE AN ARRAY UNLESS RESULT 
FIELD IS. 

RECORD LENGTH FOR DEBUG FILE IS TOO SMALL. 

FACTOR 1 IN 'DEBUG' SHOULD BE LESS THAN NINE BYTES 
LONG. 

SUBROUTINE MUST END WITH 'ENDSR'. 

RESULT FIELD MUST BE ALPHANUMERIC. 

H-12 REPORT PROGRAM GENERATOR II 



268 F 

269 F 

270 F 

271 F 

272 F 

273 F 

274 F 

275 F 

276 F 

217 F 

278 F 

279 F 

280 F 

281 F 

282 W 

283 W 

284 F 

285 F 

286 F 

287 F 

288 F 

289-327 

328 W 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

o 

FACTOR 2 MUST BE ALPHANUMERIC. 

FACTORS 1 & 2 MUST HAVE SAME TYPE. 

BIT OPERATIONS TAKE SINGLE-BYTE FIELDS. 

FACTOR 2 IN 'LOKUP' MUST BE A TABLE OR ARRAY. 

CORRESPONDING TABLE MAY NOT BE USED WITH ARRAY 
LOOK-UP. 

RESULT FIELD IN LOKUP MUST BE A TABLE. 

FACTOR 1 MUST HAVE SAME LENGTH AS FACTOR 2 IN 
LOOK-UP. 

'BEGSR' IN MIDDLE OF SUBROUTINE. 

'RLABL' MUST IMMEDIATELY FOLLOW 'EXIT'. 

INVALID LABEL OPERAND. 

'BEGSR' OR 'ENDSR' IN DETAIL OR TOTAL RECORDS. 

FACTOR 1 MUST BE NUMERIC. 

FACTOR 2 MUST BE NUMERIC. 

RESULT FIELD MUST BE NUMERIC. 

HALF-ADJUST NOT NEEDED, ENTRY ASSUMED BLANK. 

COMPUTED RESULT MAY OVERFLOW RESULT FIELD. 

FACTOR 2 IN 'XFOOT' MUST BE AN ARRAY. 

'MVR' MUST FOLLOW 'DIV'. 

HALF-ADJUST ON PREVIOUS 'DIV' ILLEGAL WITH 'MVR'. 

FACTOR 2 NOT A PROCESS WITHIN LIMITS FILE. 

FACTOR IS NOT A VALID KEY. 

UNASSIGNED 

DATAPOINT COMPATIBLE FIELD SHOULD BE NUMERIC. 

APPENDIX H. RPGII COMPILE TIME MESSAGES H-13 



329 F 

330 F 

331 W 

332 W 

333 W 

334 F 

335 W 

336 F 

337 W 

338 W 

339 W 

340 F 

341 F 

342 F 

343 F 

344 W 

345 W 

346 F 

347 F 

348 F 

349 F 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

NEITHER FIELD NAME OR LITERAL IS PRESENT. 

, AND' 0 R '0 R' LIN E NOT PRE C ED ED BY R E CORD LIN E . 

SPACE AND SKIP INVALID WITH DEVICE OTHER THAN 
CONSOLE OR PRINTER. 

SKIP ENTRY GREATER THAN FORM LENGTH. 

FETCH OVERFLOW INVALID FOR DEVICE OTHER THAN 
PRINTER. 

OVERFLOW INDICATOR INVALID FOR EXCEPTION LINE. 

FETCH OVERFLOW INVALID WITH OVERFLOW INDICATORS. 

OVERFLOW INDICATOR USED IS NOT ASSIGNED TO THIS 
FILE. 

1P INDICATOR INVALID ON TOTAL OR EXCEPTION LINES. 

FETCH OVERFLOW INVALID WITH 1P INDICATOR. 

SPACE BEFORE OF 0 INVALID FOR CONSOLE. 

INVALID INDICATORS USED WITH 1P INDICATOR. 

END POSITION GREATER THAN RECORD LENGTH. 

LENGTH OF ARRAY, ELEMENT, OR FIELD EXCEEDS RECORD 
LENGTH. 

END POSITION TOO LOW. 

ALL INDICATORS MISSING OR NEGATIVE IN PREVIOUS 
RECORD. 

ALL INDICATORS MISSING ON THIS LINE. 

INVALID EDIT WORD SIZE. 

EDIT CODE INVALID WITH ALPHA FIELD OR CONSTANTS 
OTHER THAN $ OR *. 

CONSTANT INVALID WITH EDIT CODES X, Y OR Z. 

INVALID FIELD LENGTH FOR Y EDIT CODE. 

H-14 REPORT PROGRAM GENERATOR II 



350 F 

351 F 

352 W 

353 F 

354 W 

355 F 

356 W 

357 W 

358 F 

359 F 

360 F 

361 F 

362 W 

363 F 

364 W 

365 F 

366 F 

367 F 

368 

369 F 

370 F 

371 F 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

·0 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

DECIMAL POSITIONS INVALID WITH Y EDIT CODE. 

INVALID FILE TYPE FOR OUTPUT RECORD. 

BLANK AFTER INVALID WITH RESERVED WORD OTHER THAN 
'PAGE'. 

MORE THAN 32 'AND' OR 'OR' LINES. 

BLANK AFTER SPECIFIED FOR A CONSTANT. 

ARRAY INDEX EXCEEDS NUMBER OF ELEMENTS. 

BLANK AFTER INVALID WITH LOOK-AHEAD. 

INDICATOR ASSIGNED BUT NEVER USED. 

INDICATOR USED BUT NEVER ASSIGNED. 

FIELD NAME USED BUT NOT DEFINED. 

TABLE OR ARRAY NAME USED AS INDEX. 

NUMBER OF DECIMAL POSITIONS EXCEEDS FIELD LENGTH. 

LO-L9 IN 'OR' RELATIONSHIP WITH LR. 

ADDITIONS INVALID WITH 'AND' OR 'OR' LINES. 

FOR ADD FILES, EACH RECORD MUST HAVE 'ADD' IN 
CC16-18. 

ADDITIONS INVALID WITH FILES EXCEPT SEQUENTIAL DISK 
FILES. 

'T' IN C15, OR E WITH LO-L9 INVALID WITH UPDATE 
FILES. 

FIELD LINE PRECEEDS FIRST RECORD LINE. 

UNASSIGNED. 

MORE THAN 255 OUTPUT RECORD TYPES SPECIFIED. 

NO OUTPUT SPECIFICATION SECTION FOUND. 

RECORDS MUST BE IN SAME ORDER AS FILES. 

APPENDIX H. RPGII COMPILE TIME MESSAGES H-15 



372 F 

373 F 

3'"(4 W 

375 F 

376 F 

377 F 

378-379 

380 iN 

381 F 

382 F 

383 F 

384 F 

385-399 

400 F 

401 F 

402 W 

403 F 

404 F 

405 W 

406 W 

407 F 

408 F 

409 W 

o 

o 

o 

o 

o 

o 

H, D, T AND E LINES MUST BE IN ORDER. 

FIELD LENGTH DOES NOT CORRESPOND TO NUMBER OF 
REPLACEABLE CHARACTERS IN EDIT WORD. 

EXCEPT RECORD WITHOUT 'EXCPT' OPERATION. 

EDIT GODEINCOMPATIBLE WITH OPTIONS USED IN 
CC45-47. 

NO REPLACEABLE CHARACTERS IN EDIT WORD. 

FILE IS NOT A DISK ADD FILE, CC16-18. 

UNASSIGNED. 

SEQUENCE NUMBERING ERROR IN SOURCE RECORDS, CC1-5. 
SEE NOTE BELOW. 

RECORD TYPE OUT OF SEQUENCE IN SOURCE RECORDS, C6. 

INVALID CHARACTERS IN (MAIN) OPERAND NAME. 

INVALID CHARACTERS IN INDEX OF OPERAND. 

INDEX IS INVALID WITH THIS OPERAND. 

UNASSIGNED. 

SEQUENCE ERROR IN COMPILE-TIME TABLE OR ARRAY. 

NUMERIC FIELD ERROR IN COMPILE-TIME TABLE OR ARRAY. 

END OF FILE FOLLOWS '**b' RECORD. 

NO FILE NAME IN LIBRARY INCLUSION RECORD. 

USER LIBARY FILE DOES NOT EXIST. 

DELIMITER CARD FORMAT ERROR. 

SHORT COMPILE-TIME TABLE OR ARRAY. 

TABLE/ARRAY FILLED. 

ALTERNATE TABLE BUFFER FULL. 

NO '**b' RECORD FOLLOWS LIBRARY INCLUSION RECORD. 

H-16 REPORT PROGRAM GENERATOR II 



410 W 

411 W 

412 F 

~ 

NO COMPILE-TIME TABLE/ARRAY FOR DATA. 

INVALID LIBRARY FILE NAME. 

COMPILE-TIME TABLE/ARRAY DATA RECORD LENGTH> 80. 

***NUMBER FOR CONVERSION WON'T FIT-This is an 
indication 
that the RPG II Compiler has failed. Report problem 
to Datapoint. 

NOTE: A SEQUENCE ERROR WILL OCCUR IF A BLANK RECORD 
IS PRESENT IN THE SOURCE CODE. 

APPENDIX H. RPGII COMPILE TIME MESSAGES H-11 





APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 

During the execution of an RPG II object program, messages 
will be displayed on the screen either to request input from the 
user or merely to inform him of certain actions being performed. 
In addition, error messages will be displayed if abnormal 
situations are encountered. The following list of messages are 
all those which could possibly occur during an RPG II object 
program execution. The list includes an explanation of each 
message, the action taken by the object program after displaying 
the message, and an explanation of the response from the user, if 
necessary. Note that any data typed in by the user must be 
terminated with the ENTER key. 

OTM01: *** INVALID INPUT 

Explanation: Error message displayed if the data given 
in response to either the DATE message (OTM23) or 
the INDICATOR message (OTM24) is not in the 
correct format. 

Program Action: The appropriate request for data is made 
again. 

User Response: Re-enter the data requested. 

OTM02: ABSENT RECORD AND NO INDICATOR 

Explanation: Error message displayed if a record was not 
found during a CHAIN operation and no indicator 
was specified in columns 54-55. 

Program Action: Display message OTM10. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-1 



OTM03: ASC/BIN ERROR 

Explanation: Error message displayed whenever an ASCII 
numericstring,being converted to an internal 
binary number, contains either no digits or more 
than 6 digits. 

Program Action: Display message OTM10. 

OTM04: ATTEMPT TO READ PAST END OR FROM CLOSED FILE 

Explanation: Error message displayed if the READ 
operation was attempted on a file which was at 
end-of-file or was closed. 

Program Action: Display message OTM10. 

OTM05: (BAD FILE SPEC) 

Explanation: Error message displayed if a specification 
of a file during the file opening sequence is 
incorrect. 

Program Action: A file name wilL be asked for again. 

User Response: A correct file name should be entered. 

OTM06: 

Explanation: 

BAD RECORD NUMBER 

Error message displayed if a disk access is 
attempted to a record number less than zero or to 
a record number above the currently allocated 
space. 

Program Action: Display the program name of the file and 
then message OTM10. 

1-2 REPORT PROGRAM GENERATOR II 



OTM07: BAD TABLE OR ARRAY SEQUENCE 

Explanation: Error message displayed if the sequence of 
data being read into a pre-execution time table 
or array is not as specified on the Extension 
Specs. 

Program Action: Display message OTM10. 

OTM08: BIN/ASC ERROR 

Explanation: Error message displayed whenever an ASCII 
numeric string, destined to receive a converted 
binary value, is of zero length. 

Program Action: Display message OTM10. 

OTM09: BIN/DEC ERROR 

Explanation: Error message displayed if the length of a 
field being used to store an index after an array 
LOKUP operation is not long enough to contain the 
result. 

Program Action: Display message OTM10. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-3 



OTM10: BYPASS/CANCEL/ABORT 

Explanation: General error message displayed after many 
other $p~cificerror messages to give the user 
the option as to what action should be taken by 
the program. 

Program Action: Wait for input. 

User Response: Three different responses are allowed. 
Typing a 'B' will cause the program to bypass the 
current cycle and read the next record. Typing a 
'e' will cancel program execution and close all 
the files. Typing an 'A' will immediately return 
control to the operating system without closing 
any files. 

OTH11: CANCEL/ABORT 

Explanation: Similar to OTM10. Displayed in place of OTM10 
if the program is in the last cycle. 

Program Action: Wait for input. 

User Response: Same as for OTM10 and OTM55, except the' R' 
and 'B' responses are not valid. 

OTlvI12: 

Explanation: 

CANNOT LOAD ISAM OVERLAY 

Error message displayed if the program 
tries to load the overlay RPGISA/OV1 to add 
records to an indexed file, and is unable to do 
so. 

Program Action: Execution is terminated. 

User Response: The file RPGISA/OV1 should be re-installed 
from the RPG II generation tapes and the program 
re-run. 

1-4 REPORT PROGRAM GENERATOR II 



OTM13: CHAINING ERROR 

Explanation: Error message displayed if Factor.-1 used in 
a CHAIN operation contains invalid data. See the 
CHAINED RECORD PROCESSING table in Chapter 8. 

Program Action: Display the progam name of the file and 
then message OTM10. 

OTM14: DATABUS INPUT ERROR 

Explanation: Error message displayed if the format of a 
number being read from an input file is incorrect 
(not correct Databus format). 

Program Action: Display message OTM10. 

OTM15: DEBUG: 

Explanation: Message written on an output file whenever 
the DEBUG operation is executed. 

Program Action: A series of records are written on the 
output file, according to the format of the DEBUG 
operation. 

OTM16: DEC/BIN ERROR 

Explanation: Error message displayed if a field or 
literal, used as an array index or a record 
address of a Chain file, is less than zero or 
greater than 65535. 

Program Action: Display message OTM10. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-5 



OTM17: DELETE PROTECT 

Explanation: Error message displayed if an attempt is 
made to shorten a di~k file which is d~lete 
protected. 

Program Action: Display the program name of the file and 
then message OTM10. 

OTM18: DRIVE OFF LINE 

Explanation: Error message displayed if an attempt is 
made to access a disk drive which is either 
physically absent or off line. 

Program Action: Display the program name of the file and 
then message OTM10. 

OTM19: DSPLY 

Explanation: Message displayed whenever the DSPLY 
operation is executed. 

Program Action: The contents of one or two fields are 
subsequently displayed, depending upon the format 
of the DSPLY statement. 

User Response: If the cursor is on after the contents of 
the last field are displayed, the program is 
waiting for data to be entered by the user. This 
data will become the contents of the Result field 
used in the DSPLY operation (last field shown 
before cursor). 

1-6 REPORT PROGRAM GENERATOR II 



OTM20: DSPLY FIELD TOO LARGE 

Explanation: Error message displayed if the length of a 
field being displayed in the DSPLY operation is 
greater than 80. 

Program Action: Display message OTM10. 

OTM21: DUPLICATE KEY 

Explanation: Error message displayed if the program 
attempts to add a record to an indexed file and a 
record already exists with the same key. 

~rogram Action: Display the program name of the file and 
then the message OTM10. 

OTM22: END OF TAPE 

Explanation: Error message displayed if the end of the 
tape is encountered while reading or writing a 
Cassette file. 

Program Action: Display the program name of the file and 
then message OTM10. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-7 



OTM23: 

Explanation: 

ENTER DATE AS MM/DD/YY 

Displayed if any of the special words: 
UDATE, UDAY, UMONTH, or UYEAR were used in the 
source program. 

Program Action: Wait for input. 

User Response: The desired date should be typed in. The 
format of the date is fixed, in that Sept. 5, 
1973 should be entered as 09/05/73. 

OTM24: ENTER EXTERNAL INDICATOR SETTING IN BINARY 

Explanation: Displayed if any of the external 
indicators, U1 to U8, were used in the source 
program. 

Program Action: Wait for input. 

User Response: The values of the external indicators used 
in the program should be typed in. Detailed 
formatting information can be found in Appendix 
F. 

OTM25: EOF AND NO INDICATOR 

Explanation: Error message displayed if a READ operation 
encounters an end-of-file condition and no 
indicator was specified in columns 58-59. 

Program Action: Display message OTM10. 

1-8 REPORT PROGRAM GENERATOR II 



OTM26: ERROR HALT n 

Explanation: Message displayed at the end of a cycle if 
Halt indicator n is found on. 

Program Action: Display message OTM10. 

OTM27: FILE FORMAT ERROR 

Explanation: Error message displayed if the format of a 
fixed format disk file does not match the program 
specifications of the file. 

Program Action: Display the program name of the file and 
then message OTM10. 

OTM28: FILE SPACE FULL 

Explanation: Error message displayed if an attempt is 
made to allocate space to a disk file when either 
the disk is full or no more segment descriptor 
slots are available for the file. 

Program Action: Display the program name of the file and 
then message OTM10. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-9 



OTM29: FORMAT CORRECT. CONTINUE? 

Explanation: Message displayed if the format of the tape 
header labels was correct. 

Program Action: Display label (OTM34) and wait for input. 

User Response: If the correct tape is mounted, a "Y" 
should be typed in so processing can continue. If 
the incorrect tape is mounted, an "N" should be 
typed in, which will stop program execution. 

OTM30: FORMAT ERROR, TRY AGAIN? 

Explanation: Error message displayed if the format of a 
number being entered during a DSPLY operation is 
not correct (Incorrect Databus format). 

Program Action: Wait for input. 

User Response: A "Y" should be typed in if the user wishes 
to re-en ter the da ta. A "N" should be typ ed if 
the user does not wish to try again, in which 
case OTM50 is displayed and entered. 

OTM31: ILLEGAL FORMAT IN LABEL 

Explanation: Error message displayed if the format in 
the HDR2 label of an input tape is not "F". 

Program Action: Display message OTM10. 

1-10 REPORT PROGRAM GENERATOR II 



OTM32: INVALID BUFFER ADDRESS 

Explanation: Error message displayed if the buffer 
address in a Record Address file is invalid. 

Program Action: Display the program name of the file and 
then message OTM10. 

OTM33: 

Explanation: 

Program Action: 

INVALID INDEX 

Error message displayed if an array index 
is less than 1 or greater than the number of 
elements in the array. 

Display message OTM55. If the response to 
this message is Resume, the first element of the 
array is accessed. 

OTM34: LABELS: 

Explanation: Message displayed prior to display of tape 
labels during header label tape processing. 

Program Action: Display header labels. 

OTM35: MATCH SEQUENCE ERROR 

Explanation: Error message displayed if the sequence of 
data in any specified match fields is not as 
specified on the File Description Specs. 

Program Action: Display message OTM10. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-11 



OTM36: MORE CARDS? 

Explanation: Message displayed when the card reader 
hopper becomes empty. 

Program Action: Wait for input. 

User Response: If more cards are to be processed, they 
s h 0 u 1 d be put in tot he hop p er and a " Y" t Y P ed in. 
If there are no more cards to be processed, an 
"N" should be typed in, whi ch wi 11 cause an 
end-of-file condition on the reader. 

OTM37: MULTIPLE CHAINED OUTPUT IN SAME CYCLE 

Explanation: Error message displayed if the program 
attempts to write two or more chained output 
records into the same file during a single cycle. 

Program Action: Display the program name of the file and 
then the message OTM10. 

OTM38: MULTIPLE LOADER OUTPUT 

Explanation: Error message displayed if more than one 
record is written to the LOADER device. 

Program Action: Display message OTM10. 

1-12 REPORT PROGRAM GENERATOR II 



OTM39: MULTIPLE UPDATE IN SAME CYCLE 

Explanation: Error message displayed if the program 
attempts to write two or more records onto an 
Update file during a single cycle. 

Program Action: Display message OTM10. 

OTM40: NO DATA FOR TABLE OR ARRAY 

Explanation: Error message displayed if there is no data 
for a pre-execution time table or array. 

Program Action: Display message OTM55. If the response 
to this message is Resume, the table will remain 
empty and the object program will resume 
execution. 

OTM41: NO HDR1 LABEL - NO PROBLEM 

Explanation: Message displayed if the HDR1 label is not 
present on an output tape. 

Program Action: The program will supply a dummy HDR1 label 
and processing will continue. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-13 



OTM42: NO LOADER OVERLAY 

Explanation: Error message displayed if the source 
program has specified the LOADER device and the 
loader object file (RPGLDR/OV1) does not exist. 

Program Action: Execution is terminated. 

User Response: The file RPGLDR/OVl should be re-installed 
from the RPG II generation tapes and the progam 
re-run. 

OTfJI43: (NO SUCH FILE) 

Explanation: Error message displayed if, when naming an 
input file during the file opening sequence, the 
named file does not exist. 

Program Action: A file name will be asked for again. 

User Response: The name of an existing file should be 
typed in. 

OTM44: NON-ZERO BLOCK COUNT 

Explanation: Error message displayed if the block count 
in the HDRl label of an input tape is not zero. 

Program Action: Display message OTM10. 

1-14 REPORT PROGRAM GENERATOR II 



OTM45: (NOT READY) 

Explanation: Message displayed when the program attempts 
to open either the tape unit or card reader and 
the device is not in a ready condition. 

Program Action: Wait for device to become ready. 

User Response: The device should be made ready. 

OTM46: NUMERIC FIELD ERROR 

Explanation: Error message displayed if a character in 
a numeric field is not a digit. 

program Action: Display message OTM10. 

OTM47: 

Explanation: 

Progam Action: 

User Response: 

OPEN XXXXXXXX AS YYYYYY FILE: 

General message displayed during the file 
opening sequence for every fIle described in the 
program. The program name for the file will 
appear in place of the X's and the type of file 
will appear in place of the Y's. 

Depending upon the type of the device 
specified for the file or, if a DISK file, 
whether it has an assignable or defined name, the 
program will either supply a name after this 
message or wait for input. 

If the file is an assignable DISK file the 
appropriate file name should be typed in. An 
extension of "TXT" and "all drives" will be 
assumed if neither the extension nor drive number 
is supplied. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-15 



------------------------------------------------------------
OTM48: OPT TEST LOOP 

Explanation: Error message displayed if all record types 
for an input file are described as optional and 
the current input record is not identifyable. 

Program Action: Display message OTM10. 

OTM49: PARITY ERROR IN INDEX. RE-INDEX 

Explanation: Error message displayed if a parity is 
found in the index of an indexed (ISAM) file. 

Program Action: Display the program name of the file and 
then the message OTM10. 

User Response: When job terminates, use the INDEX 
utility to re-index the file. 

OTM50: RE-TRY DECLINED 

Explanation: Message displayed if the response to 
message OTM30 was 'N'. 

Program Action: Display message OTM10. 

OTM51: READ PARITY 

Explanation: Error message displayed if a parity fault 
occurred while reading a disk file. 

Program Action: Display the program name of the file and 
then message OTM10. 

1-16 REPORT PROGRAM GENERATOR II 



OTM52: READER CHECK! 

Explanation: Error message displayed if a card reader 
error is detected. 

Program Action: Display message OTM56. 

OTM53: RECORD FORMAT ERROR 

Explanation: Error message displayed if the physical 
file number or logical record number in a disk 
record do not match the entries in the logical 
file table. 

Program Action: Display the program name of the file and 
then message OTM10. 

OTM54: RESULT OVERFLOW 

Explanation: Error message displayed if the result of an 
arithmetic operation is too large for the result 
field. 

Program Action: Display message OTM10. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-17 



OTM55: RESUME/BYPASS/CANCEL/ABORT 

Explanation: General error message displayed after many 
other specific error messages to give the user 
the option as to what action should be taken by 
the program. 

P~ogram Action: Wait for input. 

User Response: Four different responses are allowed. 
Typing an 'R' will cause the program to Resume 
execution at the point where the error occurred. 
Typing a 'B' will cause the program to Bypass the 
current cycle and read the next record. Typing a 
'C' will Cancel program execution and close all 
the files. Typing an 'A' will immediately return 
control to the operating system without closing 
any files. 

OTM56: RESUME/CANCEL/ABORT 

Explanation: Displayed after message OTM52. Check card 
reader indicator lights. If STACKER and DATA 
lights are both off, an invalid punch combination 
has been detected in the last card in the 
stacker. If the STACKER light is on, the stacker 
is full. If the DATA light is on, the last card 
in the stacker was read incorrectly. 

Program Action: Wait for input. 

User Response: Remove the last card stacked, correct it 
if necessary and insert it in front of the cards 
in the hopper. Type 'R' to resume. Type 'e' to 
cancel program execution or 'A' to abort if the 
error cannot be corrected. 

1-18 REPORT PROGRAM GENERATOR II 



OTM57: RID TESTS FAILED 

Explanation: Error message displayed if a record in an 
input file can not be identified; i.e. does not 
match any of the Record Identifying Codes on the 
Input Specifications. 

Program Action: Display message OTM10. 

OTM58: 

Explanation: 

SQRT OF NEGATIVE NUMBER 

Error message displayed if the SQRT 
operation was attempted on a number less than 
zero. 

Program Action: Display message OTM10. 

OTM59: TAPE BLOCK COUNT BAD 

Explanation: Error message displayed if the block count 
in the EOF1 label of an input tape is not the 
same as the number of blocks processed by the 
program. 

Program Action: Display message OTM10. 

OTM60: TAPE PROCESSING ABORTED 

Explanation: Message displayed if the response to OTM29 
was a "N". 

Program Action: Display message OTM11. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-19 



OTM61 : 

Explanation: 

TOO MUCH DATA FOR TABLE OR ARRAY 

Error message displayed if a pre-execution 
time table or array has been entirely filled and 
there is another record of data for that table or 
array. 

Program Action: Display message OTM56. If the response to 
this message is Resume, the offending record will 
be ignored and the table loading process will 
continue. 

OTM62: UNFINDABLE FILE 

Explanation: Error message displayed if there is no file 
zero on a Cassette tape. 

Program Action: Display the program name of the file and 
then message OTM10. 

OTM63: WRITE PARITY 

Explanation: Error message displayed if a parity fault 
occurred while writing a disk file. 

Program Action: Display the program name of the file and 
then message OTM10. 

1-20 REPORT PROGRAM GEHERATOR II 



OTM64: WRITE PROTECT 

Explanation: Error message displayed if an attempt is 
made to write on a disk file which is write 
protected. 

Program Action: Display the program name of the file and 
then message OTM10. 

OTM65: WRONG BLOCK LENGTH 

Explanation: Error message displayed if the block length 
in the HDR2 label of an input tape is not the 
same as that specified in the source program. 

Program Action: Display message OTM10. 

OTM66: WRONG RECORD LENGTH 

Explanation: Error message displayed if the record 
length in the HDR2 label of an input tape is not 
the same as that specified in the source program. 

Program Action: Display message OTM10. 

OTM67: 

Explanation: 

3 FILES 

Error message displayed if only three disk 
files were specified in the program, but more 
than three are being used during program 
execution. 

Program Action: Display message OTM10. 

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES 1-21 





APPENDIX J. RPGII USER ASSEMBLY LANGUAGE FACILITIES 

J.1 The RPG II Library Facility 

An integral component of the RPG II compiler system is the 
LIBRARY facility. This facility includes the three system library 
files, RPGALIB/RPG, RPGBLIB/RPG and RPGCLIB/RPG, the library 
pre-processor, RPGPP, and, optionally, one user library file. The 
libraries contain fixed code sequences which can be selectively 
included in an RPG II object program, depending upon the 
particular operations specified in the source program. The 
pre-processor transforms a library file from the standard text 
(assembler) format into a format compatible with the RPG II 
compiler. The USER LIBRARY facility allows for user written 
routines to be assembled into an RPG II object program: SPECIAL 
device drivers, user label processors, and routines referenced by 
the EXIT operation. The calling sequences generated for these 
features will be described at the end of this appendix. 

A library file is partitioned into SEGMENTS, each of which can be 
included separately into an RPG II object program. A segment 
inclusion is done on the basis of ENTRY POINTS in the segment and 
undefined symbols in the object code. In other words, during the 
library inclusion phase of the compiler, a segment will be 
included if at least one of its entry points corresponds to an 
undefined symbol in the main dictionary. When such a segment is 
found, it becomes part of the object code and treated exactly as 
if it were code directly generated by the compiler. Any undefined 
symbols it may have, if not already defined previously, will then 
cause additional library segments to be included. In this way, a 
hierarchy of segments can be included in the object code, 
depending upon the particular operation specified in the source 
program. 

All symbols in an RPG II object program are QUALIFIED, in that 
they have the form: 

(A'CHAR):(SYMBOL) or (SYMBOL) 

where A'CHAR is any alphabetic character. This effectively 
increases the length of a symbol to 7 characters and reduces the 
possibility of conflicts. The compiler uses this facility to 
partition the object symbols into a number of categories, 

APPENDIX J. RPGII USER ASSEMBLY LANGUAGE FACILITIES J-1 



depending on the particular function the symbol is, involved with. 

J.2 The RPG II Pre-processor 

As discussed previously, the pre-processor, RPGPP, translates 
a text file to library format. Its input is substantially like 
that of ASSEMBLER 5, with some additions and deletions consistent 
with generating a library file. The start of an independent 
segment is denoted with the IDENT directive, which must be the 
first statement in the input file. The end of a segment is the 
next IDENT directive, or the end of the file. In other words, 
IDENT directives partition the file into independent segments. A 
segment ENTRY POINT is declared by terminating a label with an 
asterisk. There may be any number of entry points, but there 
should be at least one. If not, there is no way for the segment 
to be included in the object program. 

The following table lists the additional directives accepted by 
the pre-processor. 

Pre-processor Directives 

IDENT 

QUAL 

Define the start of a segment, which continues until the 
next IDENT directive or the end of the file. It must be 
the first statement in the input file •. The label and 
expression fields are ignored. The system libraries use 
the expression field to denote the hierarchical level of 
the segment, where a means a primitive level and higher 
numbers mean more general levels. This denotation, 
however, is for documentation purposes only. 

QUALIFY. Defines the current qualification character. 
The expression field can contain any alphabetic character, 
or can be blank. The current qualification character is 
that character which is affixed to every symbol (during 
pre-processing) which is not explicitly qualified. For 
example, if X were the current qualification character, 
the statement: 

LABEL MSA *COUNT 

would be transformed into: 

X:LABEL MSA *X:COUNT 

J-2 REPORT PROGRAM GENERATOR II 



and this latter form would appear in the object code.­
However, this automatic qualification can be inhibited on 
a per-symbol basis by explicitly qualifying a symbol with 
"(CHAR):". For example: 

LABEL MSA *Y:COUNT 

would be transformed into: 

X:LABEL MSA *Y:COUNT 

if X were the current qualification. The initial current 
qualification character in the pre-processor is X. It is 
recommended that any user library routines be restricted 

.to X, B, or Q qualification, so as not to conflict with 
RPG II system symbols. 

PPLIST PRE-PROCESSOR LIST control. This directive can accept the 
L or I flags (as in the LIST directive) and controls the 
listing during pre-processing. 

EBCDIC Sets the mode to EBCDIC, whereby all string characters are 
transformed into their EBCDIC equivalent values. 

ASCII Sets the mode to ASCII, whereby all string characters are 
transformed into their ASCII equivalent values. 

The following ASSEMBLER 5 directives are illegal as input to the 
pre-processor: 

SET, LOC, ORG, USE, END. 

The function of the pre-processor is to translate text files to 
library files. The syntax of the source code and the opcode 
specifications are checked for validity, and some directives are 
evaluated. In particular, an INCLUDE directive is evaluated 
during pre-processing and the contents of the included file put in 
the library file. Also, the IF and LIST directives have no effect 
during pre-processing. The '*' terminator for a label, as 
mentioned previously, declares that label as an ENTRY POINT of the 
segment in which it is located. This is a pre-processor 
evaluation; the ,*, is ignored by the compiler. All macros and 
any directive or construct not mentioned in this section is 
exactly the same as in ASM 5, and is evaluated by the compiler. 

APPENDIX J. RPGII USER ASSEMBLY LANGUAGE FACILITIES J-3 



J.3 RPG II Calling Sequences to User Subroutines 

The RPG II system will generate calls to user subroutines 
when any of the following language features is invoked: 

1. SPECIAL files, 
2. non-standard tape labels, or 
3. EXIT operations. 

In each case the name of the subroutine must be given in special 
columns as follows: 

1. cc54-59 Label Exit - in the File Description Specifications, 
and 

2. cc33-38 - Factor 2 - in the Calculation Specifications. 

The compiler always uses 'X'-qualified symbols to refer to a user 
subroutine. We will now discuss the calling sequence used for 
each feature. 

J.3.1 SPECIAL Device Drivers 

All files in the RPG object program are described by a table 
entry called the File Description Block (FDB). The format of this 
table is given in Appendix G, and in the second object program 
segment. A SPECIAL device subroutine will be called: to open the 
file, to read from it, to write on it, or to close it. In all 
cases the subroutine will be called with an operation code in A 
and the address of the FDB in HL. The user must clear the 
file-closed flag (MCLSFDB) upon OPEN, set the end-of-file flag 
(MEOFFD) when the end of file has been read, and reset the 
file-closed flag when called with the CLOSE function. The 
operation codes are as follows: 

Value of A 

o 
1 
2 
3 

Operation 

Open 
Input 
Output 
Close 

Thus a simple input driver which requires no open or close actions 
might start like this (remember that ',X'-qualification is the 
default): 

J-4 REPORT PROGRAM GENERATOR II 



IDENT SPECIAL DRIVER SUBR 
QUAL X 

SPCL ORA OPEN OPERATION? 
JTZ SETOPN YES 
CP 3 CLOSE? 
JTZ SETCLS YES 
LDH NO< ASSUME INPUT OPERATION 
LEL COpy FDB ADDR TO (DE) 

* 
SETOPN LAIvt GET FLAG BYTE 

ND -1.XOR.MCLSFD & CLEAR CLOSED 
LMA & UPDATE FLAG 
RET EXIT 

-~~ * 
SETCLS LAM GET FLAG BYTE 

OR MCLSFD & SET CLOSED 
LMA & UPDATE FLAG 
RET EXIT 

J.3.2 Bon-standard Tape Labels 

A non-standard label routine is called with the operation in 
A and the FDB address in HL. The standard tape drivers may be 
used for input-output; use the LOI options with some tape program 
to get a listing. The operation code is 0 for open (i.e., header 
labels) and 1 for close (i.e., trailer labels). The tape will be 
positioned before the firit-label record in each case and it is 
the responsibility of the label routine to properly position the 
tape at the beginning of data (for headers) or before the last 
tape mark (for trailers). 

APPENDIX J. RPGII USER ASSEMBLY LANGUAGE FACILITIES J-5 





APPENDIX K. DETAILED RPG OBJECT FLOW (COMMON) 

The flowcharts in this appendix give the object program flow. 
The numbers beside each box refer to the description which 
follows. Initialization is covered in steps 1 through 4; the 
program cycle, 5 through 38; and termination, 39 and 40. 

K.1 Initialization 

1. Start: For each external indicator (U1-U8) used, the program 
requests the setting from the keyboard. 

2. For each table input file in use, the program opens the file, 
and then reads all the tables on that file into memory. 

3. All files used during normal processing are opened/prepared. 
The names of files assigned to the disk may be keyed in. If 
the program is unable to open all files, DOS is reloaded. 

4. All wor ki ng ar eas are clear ed to b lank/ zero. Ind i cators are 
set to off except 1P. Records are requested for all 
input/update files. 

K.2 Program Cycle 

5. Cycle: All heading and detail records whose output condition 
is true are written. The overflow indicator and switch are turned 
on if necessary and overflow output is performed if fetched during 
detail output. 

6. The overflow switch is copied to the overflow indicator (see 
a I so s t e p 35). 

7. Bypass: If any halt indicator (H1-H9) is on, a halt code is 
set, and the corresponding indicator is turned off. Control then 
goes to step 18 (Error). If all halt indicators are off this step 
is sk ipped . 

APPENDIX K. DETAILED RPG OBJECT FLOW (COMMON) K-1 



8. All record identifying indicators are turned off, as well as 
control level indicators. 

9. If the last record indicator (LR) is on, a branch is taken to 
step 30 (Last Cycle). 

Input: 

The input steps 10 through 17 are performed for all 
input/update files. The exit to Select is taken only for the last 
file. 

10. If no record request is pending for this file, go to step 10 
for the next file or go to step 21 (Select) if this is the last 
input file. Note that on the first cycle, requests are pending 
for all input files. 

11. Go to step 17 if this file is at end-of-file. 

12. Read the next record from this file. 

13. Go to step 18 (Error) if an Input/Output error occurred. 

14. Go to step 17 if file now at end. 

15. Try to identify the record type and check the type sequence. 

16. Go to step 18 (Error) if type or type sequence error. 

17. Turn off the record request. Control goes to the next input 
sequence or to step 21 (Select). 

18. Error: The code for the halt is displayed and the program 
requests whether to bypass, cancel, or abort. 

19. If the halt is to be bypassed, go to step 7 (Bypass). 

20. If the halt is to cause cancellation, go to step 30 (Last 
Cycle). Otherwise abort to DOS. 

Select: 

Depending on the program, one of four select routines is compiled. 
The others are subsets of matching with multiple input files; 

2 1. I fall in put f i I e s wh i c h m us t be a t en d - 0 f - f i I ear e at the i r 
end, go to step 30 (Last Cycle). 

K-2 REPORT PROGRAM GENERATOR II 



22. If a valid FORCE has been executed, make that file current; 
reset FORCEing. 

23. If the current record of the currently selected file has no 
matching fields go to step 26. 

24. Select the record and file with matching fields with the 
highest priority (lowest in sequence if ascending). 

25. Request next record and go to step 18 (Error) if selected 
record is not in sequence. 

26. Turn on the record identifying indicator of the selected 
record. 

27. Test Break: If the current record contains control fields, a 
test for control break occurs. If no control break, go to step 33 
(Test End). 

28. Turn on indicators for all appropriate control levels. Reset 
switch to bypass totals (takes effect next cycle). 

29. Go to step 33 (Test End) until after the first control break 
has been found. 

30. Last Cycle: Turn on LR indicator and all control level 
indicators (L1-L9). 

31. Perform all total calculations whose enabling conditions are 
met. Since I/O can be performed, set indicators as needed. 

32. Perform all enabled total output, process overflow as in step 
5 . 

33. Test End: Go to step 39 (End-of-Job) if LR is on. 

34. Go to step 36 if the overflow indicator is off. 

35. Turn off the overflow switch. Perform overflow output only if 
overflow not previously fetched. 

36. Turn on the MR indicator if the primary file matches some 
secondary file. 

37. Move current input record to fields, setting resulting 
indicators. Request new read for current file. 

38. Perform detail calculations as in step 31. Go to step 5 

APPENDIX K. DETAILED RPG OBJECT FLOW (COMMON) K-3 



(Cycle). 

K.3 Termination 

39. EOJ (End-of-Job): Close all files except table output files. 

40. For each table output file, write out all tables and arrays 
requested for the file, and then close the file. Exit to DOS 
after all table output. 

K-4 REPORT PROGRAM GENERATOR II 



APPENDIX L. COMMON REFERENCE TABLES 

Standard Tape Label Format 

Name Description 

VOL1 Volume Label 
HDR1 Header Label 1 
HDR2 Header Label 2 

File Mark 

Data 

File Mark 

E-OF1 Trailer Label 1 
EOF2 Trailer Label 2 

File Mark 
File Mark 

Format of Unlabeled RPG Tape 

Data Blocks 

File Hark 
File Mark 

Reading a tape with a file mark on the front will cause an EOF 
condition at the beginning of the file. A user label routine 
could read the file mark and ignore it. 

APPENDIX L. COMMON REFERENCE TABLES L-1 



Volume Label Format 

Columns 

1-4 
5-80 

Contents 

VOL1 
Arbitrary 

Format of Label 

1-3 

4 
5-54 
55-60 

61-80 

HDR 
EOF 
1 
Arbitrary 
Number 
000000 
Arbitrary 

Format of Label 2 

1-3 

4 
5 
6-10 
11- 15 
16 

HDR 
EOF 
2 
F 
Number 
Number 
2 

Description 

Label Identifier 
Volume Identification 

Header Label Identifier 
Trailer Label Identifier 
Label Number 
Data Identification 
Block Count (Trailer) 
Zero (Header) 
Data Identification 

Header Label Identifier 
Trailer Label Identifier 
Label Number 
Fixe,d Format 
Block Length 
Record Length 
800 BPI Density 

L-2 REPORT PROGRAM GENERATOR II 



17 
18-34 
35-80 

3 
o 
Arbitrary 
Blank 

1600 BPI Density 
No Volume Switch 
Job Step Identification 

APPENDIX L. COMMON REFERENCE TABLES L-3 



ASCII to EBCDIC Translatlon Table 

ivlSH 40 6(J 100 120 14U 160 200 220 240 260 300 320 340 360 
LSH l--------------------------------------------------------
ouu I SP 0 ~ p .p 40 60 101 121 104 124 144 164 
001 I 1 A Q a q 41 61 102 122 105 125 14~ 165 
002 I 2 B R b r 42 62 103 123 106 126 146 166 
003 I it 3 C S c s 43 63 110 130 10-J 12 -J 1-4 " 1b -I 
004 l S 4 D T u t 44 64 111 131 212 232 2 :>2 2-J 2 
OOS 1 % 5 E U e u 45 65 142 160 213 233 2~3 2',3 
006 j & 6 F V f v 46 66 143 161 214 234 254 2 'J 4 
00 "J I "j G W g w 4 " 6" 150 162 215 235 255 2'15 
010 j ( b H X h x 50 -,0 151 163 216 236 2S6 2',6 
011 I ) ~ I Y ~ Y 51 11 200 1'/0 21"' 23 'J 25 "J 2 -J-J 
012 l A J Z j z 52 ',2 220 1-/1 312 332 3 ~)2 3 -/2 
013 1 + ; K [ k { S3 '/3 240 241 313 333 353 3"J 3 
014 I < L \ 1 I 54 "14 264 2 -,0 314 334 354 3"J 4 
01S j =:; iVl ] m } 55 ',5 265 2-/1 315 335 35S 3', ~ 
016 i > N n S6 i6 266 340 316 336 356 3"'6 
01"/ , / ? 0 0 DEL 5 ", "/ ", 26 "J 341 31 "j 33 -, 35 '/ 3) " 

EBCDIC to ASCII Translation Table 

MSH 40 60 100 120 140 160 200 220 240 260 300 320 340 360 
LSH 1--------------------------------------------------------
000 1 200 220 SP & 265 251 2S2 2S3 { }. 2', b 0 
001 I 201 221 240 260 / 266 a j 2 ",3 A J 2 -J-I 1 
002 I 202 222 241 261 24~ 2b'J b k s ] B K S 2 
003 1 203 223 242 2b2 246 2',0 c 1 t \ c L T 3 
004 I 2(;4 224 30U 320 340 360 d m U 254 D t1 U 4 
OO~ I 2 ()~ 225 301 321 341 361 e n v 255 E N V S 
OOb i 20b 226 302 322 342 362 f 0 w 2~6 F 0 H 6 
00'/ I 20", 22) 303 323 343 363 9 P x 2S', G P X 

" 

(JIU I 210 230 243 263 24 " 2"11 h q y 2"'4 11 Q y cs 
011 I 211 231 244 264 2~0 2"2 ~ r z 2 -J 5 I R Z ~ 

012 I 212 232 DEL 304 324 344 3b4 312 332 352 3-/2 
013 I 213 233 $ if 305 325 345 365 313 333 353 3 '/3 
014 I 214 23'! < ;J. 1i @ 30b 32b 346 366 314 334 354 3"4 
015 I 215 235 30"J 32-, 34-, 36-, 315 33~ 355 -3"J 5 
016 I 21b 236 + ; > =:; 310 330 350 3',0 316 336 356 3-,6 
01"' I 21'1 2J"! ? 311 331 351 3 -/1 31'J 33', 35", 3 -J"J 

L-4 REPORT PROGRAM GENERATOR II 



NOTE: MSH= Most Significant Half 
LSH= Least Significant Half 

For example: MSH (240) + LSH (013) = 0253 

Values between 000 and 037 map into themselves. 

APPENDIX L. COMMON REFERENCE TABLES L-5 





APPENDIX M. COMMON INPUT/OUTPUT DEVICE INTERFACES 

This section contains information about each of the I/O 
devices supported by the RPG II system, including what, if any, 
actions must be performed by the user for any particular device. 

PRINTER 

The printer must be correctly positioned at top of form prior to 
executing programs that use the printer as an output device. The 
printer will remain at this initial position when it is opened at 
the be~inning of object program execution. When the printer is 
closed at the completion of execution, it will skip to 
top-of-form. Depending upon the form length used in the RPG 
program, a "soft" top-of-form will be issued in place of a "hard" 
top-of-form. 

CONSOLE 

When the keyboard is used as an input device and the object 
program requires input, a "*" will be displayed, followed by the 
blinking cursor. The input record should then be entered, with 
column 1 of the record being the character position just after the 
"*" End-of-file for this device is signaled by simultaneously 
depressing the DISPLAY key while entering a null record with the 
ENTER key. 

DISK 

Disk files may be organized with either variable or fixed length 
records. . 

Each file sector contains 3 system bytes followed by up to 250 
data and control bytes and a byte containing 003 to indicate the 
logical end of the sector. Logical records are terminated with an 
015 byte and are packed contiguously into sectors, spanning to the 
next sector when the 250th data byte is filled. 

Fixed format files contain records of equal length, with no 
compression of spaces. This organization is necessary to allow 
the files to be randomly processed and updated. 

APPENDIX M. COMMON INPUT/OUTPUT DEVICE INTERFACES M-1 



Variable format is the standard GEDIT format with compressed 
blanks and variable length records. Contiguous blanks are 
represented by an 011 byte followed by a byte containing the count 
of the number of spaces compresed (2-255 in binary). 

RPG disk record formats are compatible with record~ written by 
other DOS programs, however, caution should be excercised in 
selecting a record length that does not exceed the maximum record 
size accepted by other DOS programs that may be handling the same 
data. When creating fixed format records with Databus or 
Datashare, they must be written using the physically sequential 
access method if they are to be processed by RPG as output, update 
or direct files. The one exception to this rule is 249 character 
records written using the physically random access method. 

CARD READER 

If the card reader is specified as an input device in an RPG II 
program, the object program will try to start it up during the 
open sequence. If the power to the reader is off or the hopper is 
empty at this time, the program will BEEP and display "NOT READY" 
until power is on and cards are in the hopper. 

After one or tn'ore cards have been read by the program, and the 
hopper becomes empty, the message "HORE CARDS (Y OR N)" will be 
displayed. Place the last card in front of any additional cards 
and ready the card reader. If there is a hardware error in the 
car d rea de r, the me s sag e " C LEAR READ ERE R R 0 R " will be dis pIa ye d . 
When the reader is made ready, the message is removed from the 
screen and cards continue to be read. To indicate an end-of-file 
condition on the card reader, an end-of-file card must be placed 
at the end of the deck. This card contains a multi-punch in card 
column one of 1-2-3-4-5-6-7-8-9. 

TAPE 

RPG II supports 9-track industry-compatible magnetic tape as 
either an input or output device. During the open sequence, the 
RPG II object program will interrogate the tape unit to determine 
if it is ready for operation. If the deck is not in service, "NOT 
READY" will be displayed and a BEEP will sound until the deck is 
in service. (To cause the deck to be in service, the tape must be 
loaded, the disable switch must be in RUN, and the REMOTE button 
must be pressed). In addition, if the TAPE is an output device, 
the presence of a write ring is checked for, and an error message 
is displayed if one is not on the reel. 

M-2 REPORT PROGRAM GENERATOR II 



The user has the option, in his source program, to specify one of 
three tape label options: unlabeled tape, user labels, or IBM 
standard labels. The procedures for invoking one of these options 
and for processing user labels are discussed in other sections of 
this manual. This portion discusses the IBM standard label 
option. The tape will always be rewound when the file is opened. 
However, the tape is not rewound when the file is closed. 

TAPE INPUT 

Upon opening the tape, the volume label (VOL1) and the two header 
labels (HDR1, HDR2) are read and displayed. The first four 
characters of each one are checked, the block count in HDR1 is 
checked for zero, and HDR2 is checked for "F" format and the 
correct block length and record length. If all checks are 
successful, the user is asked if the program should continue. 

Upon encountering end-of-file, the first trailer label (EOF1) is 
read. The first four characters are checked and the block count is 
compared against the internal block count. The'second trailer 
label is not checked. 

TAPE OUTPUT 

Upon opening the tape, the volume label (VOL1) is read and 
displayed. If it is not present, or if the first four characters 
are not "VOL 1", tape processing is aborted. Next a read of the 
first header label (HDR1) is attempted. If it does not exist, a 
dummy HDR1 label is generated and displayed. The user is then 
asked if the correct tape is mounted. If "Y" is the response, 
"HDR 1" is displayed and the user is asked to key in data for 
columns 5 to 80. After the data is entered, a block count of zero 
is put in columns 55 to 60, but all other columns can have 
arbitrary information in them. Next a new HDR2 label is generated 
with the current format information and then displayed. The user 
may now enter any data in the ,job-step identification field 
(columns 18 to 34). The tape is now rewound, the VOL1 label 
re-written, the new header labels are written, and a file mark 
written. The tape is now positioned for normal output operations. 

Upon closing the tape, the current block is written on the tape. 
If the block is not full, dummy blank records are generated so 
that all data blocks will be of the same length. A file mark is 
then written, the EOF1 and EOF2 labels are generated and written, 
followed by two file marks. 

APPENDIX M. COMMON INPUT/OUTPUT DEVICE INTERFACES M-3 



CASSETTES 

Both cassette decks may be used as RPG II I/O devices. The rear 
deck is designated CASSET1 and the front deck CASSET2. Either may 
be used as input'or output, independently of each other. The data 
on a cassette is assumed to be a standard source file (file 0) in 
GEDIT format, with compressed blanks and variable length logical 
records. 

M-4 REPORT PROGRAM GENERATOR II 



APPENDIX N. CODING SHEET SUMMARY (COMMON) 

N.1 Common Fields 

Columns 1- 2: (Page) 

Columns 3- 5: (Line) 

Column 6: (Form Type) 

Page/line number must be in strictly 
ascending order, if used. 

H Header (control) card. 
F File description specifications. 
E Extension specifications. 
L Line counter specifications. 
I Input record formats. 
C Calculations. 
o Output record formats. 

Column 7: (Comments) 
* Comment line identifier. 

Columns 75-80: (Program Identification) 

xxxxxx Alphanumeric consisting of any 6 
characters. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-1 



N.2 Header Specification 

Column 6: (Form Type) 
H To identify this source line type. 

Column 10: (Object Output) 

C 
D 
blank 

Column 11: (Listing Options) 

B Suppress listing. 
blank List source code. 

Columns 12-14: (Core Size to Execute) 
Size of memory required for object program. 

Columns 13-14: Number of 1K blocks: (1K = 1024). 

o or 
blank 

01-13 

If same as that used to compile the 
program. 
For 01K-13K bytes, if the object program is 
to be executed on a system with less memory 
than the compilation system. 

Column 12: (Number of additional quarter blocks) 

o or 
blank 
Q 

H 

T 

Column 15: (Debug) 

blank 

If none. 
If one additional Quarter block (256 bytes) 
is needed. 
If two quarter blocks are needed (i.e., a 
Half block (512 bytes)). 
(768 bytes). 

To perform DEBUG operation (calculations). 
To ignore DEBUG commands. 

N-2 REPORT PROGRAM GENERATOR II 



Column 26: (Alternate Collating Sequence) 

A 
blank 

ASCII sequence. 
EBCDIC sequence. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-3 



N.3 File Description Specifications 

Column 6: (Form Type) 
F File Specification statement type 

identification. 

Columns 7-14: (File Name) 

Column 15 : 

Column 16 : 

file name Name to be used for this file throughout 
the program. 

(File Type) 

I Input. 
0 Output. 
U Update. 
D Display. 

(File Designation) 

blank This column must be blank for display and 
non-chained output files. 

P Primary -- there must be exactly one 
primary input/update file. 

S Secondary. 
C Chained. 
R Record address file. 
T Table or array file (see Extension specs). 
D Demand file. 

Column 17: (End of File) 

E or 
blank for 
all files 

blank for 
some files 

blank for 
all files 

If all records of the file(s) must be 
processed before the program can be 
terminated. 

If all records of the file need not be 
read. 

If all files must be read to end-of-file. 

N-4 REPORT PROGRAM GENERATOR II 



Column 18: 

Column 19: 

(Sequence) 

A Records are in ascending order. 
D Records are in descending order. 
blank No sequence checking. 

(Fi Ie Format) 

F Fixed length records: record length 
specified will be that of all records. 

V Variable length records: maximum length 
will be given. 

Columns 20-23: (Block Length) 

nnnn Length of block. 
blank Default length. 

maxima are: 

78 
80 
132 
80 
9999 
249 
1057 
2048 
80 
9999 

For: 

Console input. 
Console output. 
Printer. 
Card reader. 
Disk. 
Cassette. 
800 BPI Tape. 
1600 BPI Tape. 
Loader. 
Special. 

Columns 24-2'7: (Record Length) 

nnnn Record length (number of bytes per record). 

Column 28: (Mode of Processing) 

L Sequential within limits. (Must be indexed 
fi le) . 

R Random. (Chained disk files and files 
processed by ADDROUT). 

blank Sequential. (Non-disk files must be 
processed sequentially). 

Columns 29-30: (Length of Key) 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-5 



nn Length of indexed file keys or ADDROUT file 
record. 

Column 31: (Record Address Type) 

A 
I 

blank 

Unpacked indexed file keys. 
File is an ADDROUT file or is processed by 
one. 
All other files. 

Column 32: (File Organization) 

I 
T 
blank 
1-9 

Indexed file. 
ADDROUT file. 
Any other type of file. 
Additional I/O areas (ignored). 

Columns 33-34: (Overflow Indicator) 

OV or 
OA-OG 
blank 

The indicator to be used. 

None used. 

Columns 35-38: (Key Field Starting Location) 

.nnnn Key field starting location for indexed 
files. 

Column 39: (Extension Code) 

E 
L 
blank 

On the Extension form. 
On the Line counter form. 
Neither needed. 

Columns 40-46: (Device) 

PRINTER 
CONSOLE 
DISK 
READER 
TAPE 
CASSET1 
CASSET2 
LOADER 

SPECIAL 

Printer (default is LOCAL). 
Keyboard display. 
Disk. 
Card reader. 
Industry-compatible tape unit. 
Rear tape cassette. 
Front tape cassette. 
Pseudo device for use with the DOS CHAIN 
command. 
Special input/output device supported only 
through user assembly language coding. 

N-6 REPORT PROGRAM GENERATOR II 



Column 53: (Continuation Code) 

A Assign disk file name at run-time. 
D Internal name is to be used externally as 

well. 
S Standard tape labels are used. 
N Non-standard tape labels are used. 
U Tapes are unlabeled. 
K Continuation line, columns 54-59 must be 

filled. 
blank Defaults to same as "A". (Assign disk file 

name at run-time). 

Columns 54-59: (Continuation Option) 

EXTDRV 
MAXSEC 

LOCAL 
SERVO 

ASCII 
800 or 
1600 
RPG name 

blank 

Extension and/or drive for disk file. 
Maximum number of sectors for new disk 
files. 
The local printer is used at object-time. 
The servo printer is to be used at 
object-time. 
Tape file is written in ASCII. 
Tape Density (800 is assumed if not given). 

Name of user written subroutine which will 
perform I/O for a Special device or process 
non-standard labels. 
Neither a special device, nor non-standard 
labels are being used. 

Columns 60-62: (Extension) 

extension 

Columns 63-65: (Drive) 

File name extension to be used for a disk 
file. 

drive Drive to be selected for disk file (DRO-DR1 
or DO 0- D 15 ) . 

Columns 60-65: (Number of Sectors) 

nnnnnn With MAXSEC, to specify LRN limit. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-7 



Column 66: (File Addition) 

A If new records are to be added to the file 
(APPEND file). 

Columns 71-72: (File Conditioning Indicator) 

U1-U8 If the file is to be used only when the 
specified external indicator is on. 

N-8 REPORT PROGRAM GENERATOR II 



N.4 Extension Specifications 

Column 6: (Form Type) 

E Form type. 

Columns 11-18: (From Fi~ename) 

table or 
array 
file name 
blank 

record 
address 
file name 

If the table or array is to be loaded at 
pre-execution time (From file name). 

Table or array loaded at compile time if 
number of entries per record is specified, 
otherwise at execution time. 
If record address file is defined. 

Columns 19-26: (To Filename) 

name of 
output 
file 
name of 
an input 
or update 
file 

If a table or an array is to be written out 
at the end of a program (To file name). 

If file processed via a record address file 
specified in columns 11-18. 

Columns 27-32: (Table or Array Name) 

TABxxx 

array name 

Table name, xxx being from 1-3 alphanumeric 
characters. 
An array name must not begin with "TAB". 

Columns 33-35: (Number of Entries per Record) 

1-999 Exact number of table or array entries per 
input record, if loaded at compile or 
pre-execution time. Use the sum of the 
contents of columns 40-42 and 52-54 (entry 
lengths) in computing this number. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-9 



Columns 36-39: 

1-9999 

Columns 40-42: 
1-256 

(Number of Entries/Table) 

Maximum number of table or array entries. 
This number is limited by the size of 
object time memory a~ the whole table is 
kept in main memory. 

(Length of Entry) 
Length of a table or array entry. 

Column 43: (Packed or Binary Field) 

If an execution time array is in 
Databus-compatible format. 

Column 44: (Decimal Positions) 

0-9 

blank 

Column 45: (Sequence) 

Number of decimal positions for numeric 
field. 
Alphanumeric. 

A Ascending order. 
D Descending order. 
blank No particular order. 

Columns 46-57: (Alternate Table/Array Specification) 
Entries to this table or those of the array 
are paired with those of the table 
described in columns 27-45. 

Columns 46-51: (Alternate Table or Array Name) 
(see Columns 27-32) 

Columns 52-54: (Alternate Length of Entry) 
(see Columns 40-42) 

Column 55: (Alternate Packed or Binary Field) 
(see Column 43) 

Column 56: (Alternate Decimal Position) 
(see Column 44) 

Column 57: (Alternate Sequence) 
(see Column 45) 

N-10 REPORT PROGRAM GENERATOR II 



Columns 58-74: (Comments) 

text Any programmer comments 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-11 



N.5 Line Counter Specifications 

Column 6: (Form Type) 

L Form type. 

Columns 7-14: (Filename) 

file name Name of a PRINTER file. 

Columns 15-17: (Lines per Page) 

1-99 Number of printing lines available per 
page. 

Columns 18-19: (Form Length) 

FL Previous entry is Form Length. 

Columns 20-22: (Line Number of Overflow Line) 

1-99 Number of the line at which the overflow 
indicator is to be set on. (Allow 
additional lines to complete groups of 
detail records and for totals). 

Columns 23-24: (Overflow Line) 

OL Previous entry is Overflow Line. 

N-12 REPORT PROGRAM GENERATOR II 



N.6 Input Record Descriptions 

N.6.1 Record Type Definition 

Column 6: (Form Type) 

I Form type. 

Columns 7-14: (Filename) 

file name Name of input file containing the record 
described. 

Columns 15-18: (Record Order) 

Columns 15-16: (Sequence) 

aa 

01-99 

Column 17: (Number) 

Any two alpha characters if no check for 
sequence is to be made. 
If records must be in order by type: first 
type must be 01, subsequent types must be 
defined in ascending order. 

1 Only one. 
N More than one. 

Column 18: (Option) 

o Record type is optional. 
blank Record type is required. 

Columns 19-20: (Record Identifying Indicator) 

01-99, Only one RID is on at a time. 
LO-L9, 
LR or 
H1-H9 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-13 



Columns 21-41: (Record Identification Codes) 

This set of columns can contain up to three 
codes whose presence is to be ANDed 
together per line. 

Columns 21-24, 28-31, 35-38: (Position) 

1-256 
blank 

Columns 25, 32, and 39 : 

blank 
N 

Columns 26, 33, and 40: 

C 
Z 
D 

Columns 27, 34, and 41 : 

N.6.2 And/Or Line 

Column 6: (Form Type) 

I 

Position (column) in record of code. 
No (additional) code needed. 

(Not) 

Code is present in this type of record. 
Code is Not present. 

(C/Z/D) 

Entire Character is code. 
Only Zone portion is used. 
Digit part only. 

(Character) 

Any character at all to indentify this 
record type. 

Form type. 

Columns 14-16: (Logical relation) 

AND To AND the result of tests specified on 
this line. 

OR To (inclusive) OR the result. 

Columns 21-41 : (Record Identification Codes) 

Additional codes as specified above for these columns. 

N-14 REPORT PROGRAM GENERATOR II 



N.6.3 Field Definitions 

Columns 6: (Form Type) 

I Form type. 

Column 43: (Datapoint-compatible Format) 

If data in Datapoint-compatible decimal 
format. 

Columns 44-51: (Field Location) 

Field location, up to 256 positions if alphanumeric 
(final - initial + 1 <= 256). 

Columns 44-47: (From) 

1-9999 Initial position (column). 

Columns 48-51: (To) 

1-9999 Final position. 
(File-dependent). 

Column 52: (Decimal positions) 

blank Alphanumeric field. 
0-9 Number of decimal places (numeric field). 

Columns 53-58: (Field Name) 

field name, 
array name or 
array element 

PAGE To input initial page number. \ 

Columns 59-60: (Control Level) 

L1-L9 A control level indicator. 
blank If none needed. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-15 



Columns 61-62: 

M1-M9 
blank 

Columns 63-64: 

01-99 
L1-L9 

MR 

U1-U8 

H1-H9 

blank 

Columns 65-70: 

01-99 
H1-H9 
blank 

Columns 65-66: 

(+) 

Columns 67-68: 

(-) 

Columns 69-70: 

(Matching Fields) -- If fields match Matching 
Record indicator is set on. 

Matching field number. 
If none used. 

(Field record relation (FRR» 

Field only used if indicator is on. 
Data only used at previously specified 
control level. 
Matching Record permits acceptance of data 
from this field. 
Field used only when this external 
indicator is on. 
Relates field to a record type with a halt 
indicator in columns 19-20. 
If none needed. 

(Field Indicators) 

(Plus) 

(Minus) 

(Zero) 

Field status indicator set. 
Halt indicator set. 
None used. 

Indicator is to be set on when 
field is greater than zero. 

Indicator set when contents of 
field is less than zero. 

numeric 

numeric 

( 0) 
(blank) 

Set if numeric field equal to zero. 
Set if numeric or alphanumeric field is 
blank. 

N-16 REPORT PROGRAM GENERATOR II 



N.7 Calculation Specifications 

Column 6: (Form Type) 

C Form type. 

Columns 7-8: (Control Level) 

LO, L1-L9 
LR 
SR 
blank 

AN 

OR 

Calculation selected: 

At control break (LO is always on). 
When Last Record read. 
As part of a subroutine. 
Otherwise. 

This line of indicators is to be ANded with 
the previous one. 
This line is to be ORed with the previous 
line. 
Note: The line containing the operation 
code is the last in a series of ANds and 
ORs. 

Columns 9-17: (Indicators) performance of the operation. 

blank If operation is to be done for every record 
(but see columns 7-8). 

Columns 10-11,13-14, and 16-17: Indicator 

01-99, 
L1-L9, 
LR, MR, 
H1-H9, 
U1-U8, 
OA-OG, 
or OV 

Columns 9, 12, and 15: 

N 

blank 

If performance of operation is dependent on 
the specified indicator. 

Negation relation 

Operation performed when indicator is Not 
on. 
When indicator is on. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-17 



Columns 18-27: 
Columns 33-42: 

(Factor 1) 
(Factor 2) 

field 
table 

name, 
name, 

array name, 
array element, 
.1 iter al , 
PAGE, UDATE, 
UMONTH, UDAY, 
or UYEAR 

a label for one of the following operations 
(factor 1 only): 

TAG 
BEGSR 
ENDSR 

a file name for one of the explicit 1/0 
operations (factor 2 only): 

CHAIN 
DEBUG 
DSPLY 
READ 
FORCE 

the name of the external subroutine (factor 
2 only) called by the EXIT command. 

Columns 28-32: (Operation) 

Arithmetic operations: 

ADD 

Z-ADD 

SUB 

Perform an operation using factor 1 and 
factor 2 to give the result. 

ADD factor to factor 2. 

ADD factor 2 to a field of Zeros. 

SUBtract factor 2 from factor 1. 

N-18 REPORT PROGRAM GENERATOR II 



Z-SUB 

MULT 

DIV 

MVR 

SQRT 

XFOOT 

SUBtract factor 2 from a field of zeros to 
yield the result (the negative of factor 
2) • 

MULTiply factor 1 by factor 2. Note that 
the length of the result could be up to the 
sum of the lengths of the two factors. 

DIVide factor 1 by factor 2 storing the 
quotient in the specified result field: 
factor 2 may not be zero. 

Move the Remainder of the previous DIVide 
to the result field. 

Place the SQuare RooT of factor 2 in the 
result field: factor 2 may not be negative. 

Crossfoot: the result is the sum of the 
elements of the array named as factor 2. 

Comparison and test: 

COMP 

TESTZ 

COMPare factor 1 to factor 2 and as a 
result set indicators showing whether 
factor 1 is greater than, less than, or 
equal to factor 2. 

Test zone of the leftmost character of the 
result field setting indicators as follows: 

+ if &, or A-I (12 zone) 
- if -, } or J-R (11 zone) 
a otherwise. 

Binary rield operations: 

Using bit positions specified in factor 2, 
operate on 1 or more bits of the result 
field. Factor 2 may be a string of decimal 
digits each specifying a position or it may 
be the name of a one-position mask having a 
bit on wherever a result field bit is to be 
operated on. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-19 



BITON 

BITOF 

TESTB 

Set specified BIT(s) ON. 

Set BIT(s) OFf. 

TEST Bit(s) and set indicators to show if 
the bits specified were all zero, of mixed 
values, or were all ones, respectively. 

Indicator set and reset: 

SETON 

SETOF 

Moves: 

MOVE 

MOVEL 

MOVEA 

MHHZO 

MHLZO 

MLLZO 

MLHZO 

SET indicators listed in columns 54-59 ON. 

SET listed indicators OFF. 

(Move the contents of the field named as 
factor 2 to the result field, ignoring 
decimal points). 

MOVE characters of factor 2 starting with 
the rightmost position. 

MOVE characters, starting with the leftmost 
position. 

MOVE characters, starting with leftmost 
position, ignoring array element 
boundaries. 

Move High to High Zane: move the leftmost 
zone only from factor 2 to the result 
field. 

Move High to Low Zane: from the leftmost 
position of factor 2 to the rightmost 
position of the result. 

Move Low to Low Zane: rightmost to 
rightmost. 

Move Low to High Zane: rightmost to 
leftmost. 

N-20 REPORT PROGRAM GENERATOR II 



Branching: 

GOTO 

TAG 

Table lookup: 

LOKUP 

Factor 2 names the label (factor 1) of the 
instruction with which to resume 
computation. (GO TO <label> ). 

TAG (label) a location in the calculations 
with the name given as factor 1. 

LOoK UP factor 1 in table or array named as 
factor 2. The result field contains the 
name of thee alternating table or array; 
the resulting indicators give the results 
of the search. 

Subroutine operations: 

BEGSR 

ENDSR 

EXSR 

BEGin a SubRoutine whose name is contained 
in factor 1. 

END a SubRoutine and return to the command 
following the EXSR which caused this to be 
executed: factor 1 may contain a label 
(T AG) . 

EXecute the SubRoutine named as factor 2. 

Programmed control of Input/Output: 

EXCPT 

Note: normal program cycle is: 
1. Read. 
2. Calculate. 
3. Write. 

Write exception records (identified by an E 
in column 15 of the output format 
description). 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-21 



N-22 

DSPLY 

DEBUG 

FORCE 

READ 

CHAIN 

SETLL 

BEEP 

CLICK 

Display on the console (file named as 
factor 2) the data specified as either 
factor 1 and or as the result field or 
both; if the result field is used, the 
machine will wait for input from the 
keyboard to enter into £he named field or 
array: if only the enter key is pressed 
then no change will be made. 

Output data for DEBUGging the program: 
write the data specified in the factor 
and result fields into the file named as 
factor 2; also list those indicators which 
are on. Column 1 of the Header card must 
contain a 1 for this to be executed. 

FORCE the file specified as factor 2 to be 
read on the next program cycle. 

READ a record from a demand file during the 
current cycle. Note -- record identifying 
indicators are not automatically turned 
off until the end of the cycle. The 
resulting indicator designated in columns 
58-59 will be turned on if the end of the 
file has been found. 

Re~d or write a record of a CHAINed file 
(factor 2). Columns 54-55 should contain 
an indicator to be turned on if the record 
specified as factor 1 is not found. 

Set lower limit (factor 1) for processing 
sequential indexed file (factor 2). 

Emit an audible BEEP. 

Emit an audible CLICK. 

REPQRT PROGRAM GENERATOR II 



Columns 

Columns 

Columns 

Column 

External subroutine access: 

EXIT 

RLABL 

43-48: (Result 

field name 
table name 
array name 
array element 

49-52: Result 

49-51 : (Field 

1-256 

The following two commands are used to 
generate a call to an external (assembly 
language) subroutine and to pass an 
argument address vector to it. (See 
Appendices E or I of the DATAPOINT RPG 
User's Guide for further information.) 

EXIT to (call) the pre-processed external 
subroutine named as factor 2. 

Pass the LABEL (data name) in the Result 
field to the subroutine EXITed to. The 
result field contains the name of a field, 
table or array or it contains INxx where 
xx is an indicator; the field length and 
number of decimal positions may be 
specified. The RLABL command must 
immediately follow the EXIT instruction. 

Field) 

field definition (blank if previously 
defined) 

Length) 

Field length. 

52: (Decimal Positions) 

0-9 

blank 

Number of decimal positions, if field is 
numeric. 

If field is alphanumeric. 

Column 53: (Half Adjust) 

H 
blank 

To Half-adjust (round) result. 
Truncate result. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-23 



Columns 54-59: (Resulting Indicators) 

01-99, 
H1-H9, 
L1-L9,LR, 
OA-OG or 
OV 

Indicators to be set depending upon the 
result of the operation. 

Columns 54-55: (Plus or High) 

(+, » Set if result positive, greater 
than, or higher. 

Columns 56-57: (Minus or Low) 

(-, <) Result negative, less than, or 
lower. 

Columns 58-59: (Zero or Equal) 

(0, =) Zero, equal, or successful match. 

Columns 60-74: (Comments) 

Comments 

N-24 REPORT PROGRAM GENERATOR II 



N.B Output Format Specifications 

N.B.l Record Type Definition 

Column 6: (Form Type) 

o Form type. 

Columns 7-14: (File Name) 

file name 
blank 

Column 15: (Type) 

H 
D 
T 
E 

Name of file being described. 
For subsequent record descriptions. 

Heading records. 
Detail records. 
Total records. 
Exception records (to be written during 
calculation time). 

Columns 16-18: (Add a Record) 

ADD To add a record to a sequential or indexed 
disk file (optional). 

Column 16: (Fetch Overflow) 

F 

blank 

Column 17: (Space) 

space code 

To perform (Fetch) the printer page 
overflow routine if at the end of the page. 
Otherwise: overflow type printing done at 
normal point in the cycle. 

Space before printing. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-25 



Column 

Columns 

18 : (Space) 

space code 

0 
1 or 
blank 
2 
3 

19-20: (Skip) 

01-99 

Space after printing. 

Zero lines. 

One line. 
Two lines. 
Three lines. 

Skip to specified line of page before 
printing, next page if number less than or 
equal to current one, suppressing overflow 
printing. 

blank No skip before printing. 

Columns 21-22: (Skip) 

01-99 Skip after printing. 
blank No skip after printing. 

(If both 19-20 and 21-22 blank, skip one after 
printing). 

Columns 24~25, 27-28, and 30-31: (Output Indicators) 

01-99, 
L1-L9, 
H1-H9, 
U1-U8, 
OA-OG, 
OV, MR, 
LR, 

1 P , 

or LO 

(On only at end of program during total 
output). 
(On only at the very beginning of the 
program) . 

Columns 23, 26, and 29: (Negation Relation) 

N If output is to occur when indicator is Not 
on. 

blank Otherwise. 

N-26 REPORT PROGRAM GENERATOR II 



N.8.2 And/Or Line 

Column 6: (Form Type) 

o Form type. 

Columns 14-16: (Logical Relation) 

AND AND indicator lines. 
OR OR lines. 

Columns 23-31: Indicator specifications (see above). 

N.8.3 Record Formats and Field Editing 

Column 6: (Form Type) 

o Form type. 

Columns 23-31: Indicator specifications (see above) 

(blank If field always used) 

Columns 32-37: (Field Name) 

field name 

table name 
array name 
array element 
PAGE 

Name of a field previously used in the 
program. 

UDATE, UDAY, UMONTH, or UYEAR 
blank To write a constant of value given in 

columns 45-70. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-27 



Column 38: (Edit codes) 

blank 

No CR 
Sign 

1 A 
2 B 
3 C 
4 D 

X 
Y 
Z 

J 
K 
L 
fv1 

No editing, or use specified edit word (see 
below). 

Commas Zeros to print 

Yes Yes 
Yes No 
No Yes 
No No 

Remove plus sign. 
Date field (insert "I"'s). 
Zero suppress. 

Column 39: (Blank After) 

B Blank or zero field after writing it. 
blank Do not destroy it. 

Columns 40-43: (End Position in Output Record) 

1-9999 End position of field in output record 
(output file limited). 

Column 44: (Packed or Binary Field) 

blank 
Field is Datapoint-compatible numeric. 
Otherwise. 

N-28 REPORT PROGRAM GENERATOR II 



Columns 

Columns 

45-47: (Edit Codes) 

blank ,* , 
, $ , 

No additional editing (See Column 38). 
Replace leading zeroes with asterisks. 
Floating dollar sign. 
(These are used in conjuction with Column 
38 edit codes 1-M.) 

45- rrO: (Constant or Edit Word) 

Constant 

Edit Word 

edit mask 

Constant to be printed, columns 32-37 
(field name) must be blank. 
To be us ed - wi th numer i c fie ld named in 
columns 32-37 (field name). 
Mask to control editing of the field within 
the Edit Word when column 38 is blank: 

1-1ask: Function: 

$ Fixed or floating dollar sign. 
* Replace leading zeroes by 

asterisks. 
o End suppression of leading zeroes. 
& Replace this character with a 

space. 
- or CR Write sign if negative. 
blank Replace with the next consecutive 

digit of the field. 
other Write this character here -- may 

not begin an edit mask. 

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-29 





ge B-2 Assign Phase Summary 

reads: 

- Define 
and %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%table 
and field storage, generate table storage. 

ould read: 

- Define and assign control field storage •. 

- Assign file working areas. 

- Define and assign match field storage. 

- Scan extension, input and calculation compressions, 
define table and field storage, generate table storage. 

ge N-10 

reads: 

lumn 43: (Packed or Binary Field) 

ou Id read: 

If an execution time array is in natabus -
compatible format. 

lumn 43: (Packed or Binarv Field) 

If an execution time array is in Databus -
compatible format and has no decimal point in 
the input. 

D If an execution time array is in Databus -
compatible format and has a decimal point in the 
input. 

: reads: 

Ilumn 43: (Datapoint - compatible format) 

If data in Datapoint 
format. 

compatible decimal 

o 

o 

o 



:rl 
"l~=/; 

Addendum to RPG User's Guide 
Model #50325 

April, 1978 

Page 5-6, paragraph 5.10 Column 43 (Packed or Binary Field) 

As reads: 

Entry Explanation 

Data for table or array is in Databus - compatible 
format. 

Should read: 

Entrv Explanation 

Data for table or array is in Databus - compatible 
format and has no decimal point in the input. 

D Data for table or array is in Databus - compatible 
format and has a d~cimal point in the input. 

Page 7-10, paragraph 7.10 Column 43 (Packed or Binary Field) 

As reads: 

Entrv 

Blank 

Bxplanation 

Field is in IBM - compatible decimal format, or is 
alphanumeric. 

Field is in Datapoint -compatible decimal format. 

Should read: 

Entry 

Blank 

Explanation 

Field is in IBM - compatible decimal format,· or is 
alphanumeric. 

Field is in Datapoint - compatible decimal format 
and has no decimal point in the input. 

D Field is in Datapoint - compatible decimal format 
and has a decimal point in the input. 



o 

o 

o 



Should read: 

Column 43: 

D 

o 

o 

(Dat'apoint - compatible format) 

If data is 1.n Datapoint - compatible decimal 
format and ha·s no decimal point in· the input. 

If data is in Dataooint - compatible decimal 
format and has a decimal point in the input. 


