REPORT PROGRAM
GENERATOR I
RPGPLUS (VERSION 1)
RPGII (VERSION 4)

- User's Guide

April, 1978

Model Code No. 50325

DATAPOINT CORPORATION

The leader indispersed data processing ™

COPYRIGHT® 1978 BY DATAPOINT CORPORATION. PRINTED IN US.A

REPORT PROGRAM GENERATOR II
RPGPLUS (VERSION 1)
RPGII (VERSION 4)

User's Guide

Version 4

April, 1978

Model Code No. 50021

PREFACE

This manual applies to the following versions of Datapoint's
RPG II systems: RPGPLUS version 1, and RPGII version M.*
This manual is to be used as a source language reference and
operation guide for all Datapoint RPG II systems. The RPG II
systems are specifically RPGII and RPGPLUS. RPGII will operate on
1100 and 2200 systems as well 5500 and 6600 systems. RPGPLUS
processes an enhanced version of the Datapoint RPG II source
language to produce relocatable object code for 5500 and 6600

systems.

RPGII version 4 contains all features and capabilities of

RPG5500 version 1 and RPGII version 3.

TABLE OF CONTENTS

1. INTRODUCTION 1-1
1.1 Installing The RPG II Comnmpiler 1-1
1.2 Required Utility Programs -1
1.3 Definition of Terms 1
1.4 General Datapoint RPG II Program Logic 1

1.4.1 Operations at Total Time 1
1.4.2 Operations at Detail Time 1
1.4.3 General Program Cycle 1
1.5 Source File Order and Program Specifications 1

2. COMMON FIELDS ON SOURCE
2.1 Columns 1-2 (Page)
2.2 Columns 3-5 (Line)
2.3 Column 6 (Form Type)
2.4 Column 7 (Comments)
2.5 Columns 75-80 (Program Identification)

[T T
WD = —

N O NN

HEADER SPECIFICATION

.1 Columns 1-2 (Page) and 3-5 (Line)
.2 Column 6 (Form Type)

.3 Columns 7-9
U
.5
.6

3.

Column 10 (Object OQutput)

Column 11 (Listing Options)

Columns 12-14 (Core Size to Execute)

3.6.1 Column 12

3.6.2 Columns 13-14
7 Column 15 (Debug)
8 Columns 16-25
9
1
1

WL)JWUJWL&)
1 [|
EEWWWWMNLD NS 2

Column 26 (Alternate Collating Sequence)
0 Columns 27-74
1 Columns 75-80 (Program Identification)

3.
3.
3.
3.
3.

4, FILE DESCRIPTION SPECIFICATIONS
4.1 Columns 1-2 (Page) and 3-5 (Line)
4,2 Column 6 (Form Type)

4.3 Columns 7-14 (File Name)
4.4 Column 15 (File Type)
4.4.1 Input File
4.4.2 Output Files
4.4.3 Update Files
4,4.4 Display Files
4.5 Column 16 (File Designation)
4.5.1 Primary Files

1 L I B |
WWWN NN = ==

EEEEFEREEESEE wwﬁowwwwwwwwwww

ii

Secondary Files

Chained Files

Record Address Files

Table or Array Files

Demand Files

lumn 17 (End of File)

luinn 18 (Sequence)

olumn 19 (File Format)
4.,8.1 Fixed Format Files
4.8.2 Variable Format Files

4.9 Columns 20-23 (Block Length)

4.9.1 Disk Files

4,9.2 Tape Files

4,9.3 Other Files

4.10 Columns 24-27 (Record Length)
4,11 Column 28 (Mode of Processing)
4.11.1 Consecutive Method
.11.2 By ADDROUT File
.11.3 Sequential By Key
.11.4 Sequential Within Limits
4.11.5 Random Method ;
.12 Columns 29-30 (Length of Key)
.13 Column 31 (Record Address Type)
.14 Column 32 (File Organization)
.15 Columns 33-34 (Overflow Indicator)
4.15.1 Overflow Indicator
4,16 Columns 35-38 (Key Field Starting Location)
4,17 Column 39 (Extension Code)
4,18 Column 40-46 (Device)
4,18.1 Use of the LOADER Device for Program Chaining
4,18.2 SPECIAL Device Support
4,19 Columns u47-52.
4,20 Columns 53-65 (Contlnuatlon Lines)

4.20.1 Column 53 (Continuation Code)

4,20.2 Columns 54-59 (Continuation Option)
4,20.2.1 Columns 54-59 (Name of Label Exit)
4,20.2.2 Columns 60-62 (Extension)
4,20.2.3 Columns 63-65 (Drive)
4,20.2.4 Columns 60-65 (Number of Sectors)
4.,20.2.5 LOCAL/SERVO Continuation Option
4,20.2.6 ASCII Continuation Option
4,20.2.7 Tape Density Continuation Option

4 21 Column 66 (File Addition)
4,22 Columns 67-T70 ‘
4,23 Columns 71-72 (File Conditioning Indicator)

4,23.1 U1-U8 (External Indicators)

4,24 Columns 73-TUu
4,25 Columns 75-80 (Program Identification)

J“—‘J‘:-F—'.l:-r—'
O\\ﬂ-(:LA)I\)

.5
.5.
.5.
5.
5.
0
0

4.6 C
u’c? C
4.8 C

Ei-E

iii

|l | T FEFEEFEFFEFFEFEEEEEREEEREEREE

[}
[RSTENS JEN T) ' JE S i S P QT S G G SR G G G (IO VT IO N T T TN AN KON N SN N NN T N S NS S M |
[eNoNoNe]

L I P IR R O N |
DO NIEETEFTWWNON—L, 2000 WOXOO_I"NN0OUIUl & &&=

J:JI-:J:JZ-B‘J:J:J:J:J:J':J:-IIJ:J:J:-C:J:J:J:.E.E

4-20
4-21
4=-21
421
4-22
422
4-23
4-23

5.

(SIRG R RGIRCI R RN R}

.

NN

<>0\©c»0‘0w>0\o

* o

XTENSION
Columns

Columns
Columns

E

1

2
.3 Columns
4

5

6 Columns

U1 UV U U ot Ot
o« o o .

SPECIFICATIONS , .
1-2 (page) and 3-5 (Line)

Column 6 (Form Type)

7-10

11-18 (From Filename)

19-25 (To Filename)

27-32 (Table or Array Name)

5.6.1 Table Name
5.6.2 Array Name

Columns
Columns
Columns
Column
Column
Column

_ e O o

UlE=Ewh =0

¢« e e

33-35 (Number of Entries per Record)
36-39 (Number of Entries/Table)
40-42 (Length of Entry)

43 (Packed or Binary Field)

44 (Decimal Positions)

45 (Sequence)

Columns 46-57 (Alternate Table/Array Specification)
Columns 58-74 (Comments)
Columns 75-80 (Program Identification)

INE COUNTER SPECIFICATIONS

Columns

L

.

.2

.3 Columns
.4 Columns
.5 Columns
.6 Columns
.7 Columns
8 Columns
9 Columns

Columns

I

.1

.2

.3 Columns
.4 Columns
.5
.6
T

Columns

1-2 (Page) and Columns 3-5 (Line)

Column 6 (Form Type)

7-14 (Filename)

15-17 (Lines per Page)

18-19 (Form Length)

20-22 (Line Number of Overflow Line)
23-24 (Overflow Line)

25-T4

75-80 (Program Identification)

NPUT SPECIFICATIONS

1-2 (Page) and 3-5 (Line)

Column 6 (Form Type)

7-14 (Filename)
15-16 (Sequence)

Column 17 (Number)
Column 18 (Option)

19-20 (Record Identifying Indicator)

7.7.1 Record Identifying Indicator
7.7.2 Look Ahead Fields

7. 8 Columns

21-41 (Record Identification Codes)

7.8.1 Position

7.8.2 Not

7.8.3 C/Z/D

7.8.4 Character

7.8.5 AND Relationship
7.8.6 OR Relationship

iv

] LI T I |
OO~ OWUTUTIZWWN =

} [IR O N B |
WL NN DN = s v

[X Ne R NerNerNeorNerNerNe) (RO RO RV R RO RV G R RO N2 RV RO R0 NI V2RO R
!

| 1 T N O N Y N A N N N I O B B |
WWOWOWWROENTUTELEZTWWN = = = =

NN NN N N~
|

o CO 00 CO Co GO CO OO Co OO o o
« o . . e s+ e

e cc e o

-0

~ =
—
VO~ ~1 ~_NNOoO~NU~NE—-3-~JWwWwh==1-30

~ ==

~=
. L]

_, e s OO O0OUT W N -

Column 42

Column 43 (Packed or Binary Field)
.10.1 IBM Compatible Format

.10.2 Datapoint Compatible Format
Columns 44-51 (Field Location)

Column 52 (Decimal Positions)

Columns 53-58 (Field Name)

.13.1 Field Names

.13.2 Field Names in OR Relationship
.13.3 Special Word PAGE

Columns 59-60 (Control Level)

.14.1 L1-L9 (Control Level Indicators)
Columns 61-62 (Matching Fields)

.15.1 Matching Fields

Columns 63-64 (Field Record Relations)
.16.1 Record Identifying Indicators (01-99)
.16.2 Control Level (L1-L9) and Matching Record (MR)

Indicators

.16.3 External Indicators (U1-U8)

.16.4 Halt Indicators (H1-H9)

Columns 65-70 (Field Indicators)

.17.1 Halt Indicators

Columns 71-TH4

Columns 75-80 (Program Identification)

—_ _

-—_

-

—_

CALCULATION SPECIFICATIONS

Columns 1-2 (Page) and 3-5 (Line)
Column 6 (Form Type)

Columns 7-8 (Control Level)

Columns 9-17 (Indicators)

Columns 18-27 and Columns 33-42 (Factor 1 & 2)
Literals

Columns 28-32 (Operation)

Columns 43-48 (Result Field)

Columns 49-51 (Field Length)

0 Column 52 (Decimal Positions)

1 Column 53 (Half Adjust)

2 Columns 54-59 (Resulting Indicators)
8.12.1 Columns 54-55 (Plus or High)
8.12.2 Columns 56-57 (Minus or Low):
8.12.3 Columns 58-59 (Zero or Equal)

.13 Columns 60-74 (Comments)

.14 Columns 75-80 (Program Identification)
.15 Operation Codes A , .
.16 Arithmetic Operations

8.16.1 Add (ADD)
8.16.2 Zero and Add (Z-ADD)
8.16.3 Subtract (SUB)

o0 00 OO Co OO o X
|
JPONE NRSY UL QS U S UOE I U |

7-10
7-10
7-10
7-10
7-11
7-12
7-12
7-12
7-13
7-13
7-14
7-14
7-15
7-15
7-15
7-16

7=-17
T-17
=17
7-18
7-18

3
11
| SO TR N T T | —_ =
O \O

L N I | |
- e OO0 O O0OWOUWWOONTOUITUI ZWN 2 —m

11 I 1 1 0000 0o oo 0o o OO o CoCo o 00 CoCo
!]

4 Zero and Subtract (Z-SUB)
5 Multiply (MULT)
6 Divide (DIV)
.16.7 Move Remainder (MVR)
8 Square Root (SQRT)
.9 Crossfoot (XFOOT)
Move Operations
.17.1 Move (MOVE)
7.2 Move Left (MOVEL)
3 Move Array (MOVEA)
e Zone Operations
1 Move High to High Zone (MHHZO)
.2 Move High to Low Zone (MHLZO)
3
4

.
—

.
-_—
. ‘o .) . L]

Move Low to Low Zone (MLLZO)
Move Low to High Zone (MLHZOQ)
mpare and Testing Operations
.19.1 Compare (COMP)

8.19.2 Test Zone (TESTZ)

.20 Binary Field Operations

8.20.1 Set Bit On (BITON)

8.20.2 Set Bit Off (BITOF)

8.20.3 Test Bit (TESTB)

.21 Setting Indicators

8.21.1 Set On (SETON)

8.21.2 Set Off (SETOF)

.22 Branching Operations

8.22.1 Go To (GOTO)

8.22.2 Tag (TAG)

.23 Lookup Operations

8.23.1 Lookup (LOKUP)

8.23.2 Using LOKUP with One Table
8.23.3 Using LOKUP with Two Tables
8.23.4 Referencing the Table Item Found
8.23.5 Using LOKUP with an Array

.24 Subroutine Operations

8.24.1 Begin Subroutine (BEGSR)
8.24,2 End Subroutine (ENDSR)

8.24.3 Execute Subroutine (EXSR)

.25 Programmed Control of Input and Output
8.25.1 Exception (EXCPT)

8.25.2 Force (FORCE)

8.25.3 Display (DSPLY)

8.25.4 Read (READ)

8.25.5 Chain (CHAIN)

8.25.6 Set Lower Limits Operation (SETLL)
.26 Audio Output Operations

8.26.1 Beep (BEEP)

8.26.2 Click (CLICK)

.
—

vi

[ST O TP R S N VR VAR R Qi (I W (T Y
O OWVWWOWOU_UTVIW N NN = -

QO 0o OO0 -0 0o 0O 0o Co 00 Co CO 0o O CO OO U OV
U L I | [|

[\C SRV V]

N —= =0

8-22
8-23
8-23
8-23
3-24
8-25
8=-25
8-25
8-26
8-26
8-26
8-27
8-28
8-28
8-29
8-29
8-30
8-30
8-30
8-30
8-30
8-31
8-31
8-32
8-33
8-34
8-37
8-37
8-37
8-38

8.27 Debug Operations 8-38
8.27.1 Debug (DEBUG) 8-38
8.27.2 Debug Specifications 8-38

8.28 EXIT and RLABL Operations 8-39
8.28.1 EXIT Operation 8-39
8.28.2 RLABL Specification 8-39
8.28.3 Referencing Fields 8-40
8.28.4 Referencing Tables and Arrays 8-40
8.28.5 Referencing Indicators

oo
[}
=
o

QUTPUT FORMAT SPECIFICATION

.1 Columns 1-2 (Page) and Columns 3-5 (Line)
.2 Column 6 (Form Type)

.3 Columns 7-14 (Filename)

4 Column 15 (Type)
05
.6
T

Columns 16-18 (Add a Record)

Column 16 (Fetch Overflow)

Columns 17-22 (Space/Skip)

9.7.1 Columns 17-18 (Space)
9.7.2 Columns 19-22 (Skip)
9.8 Columns 23-31 (Output Indicators)

9.8.1 AND and OR Lines
9.8.2 External Indicators

.8.3 Control Level Indicators
.8.4 Overflow Indicators

8.5 First Page Indicator
olumns 32-37 (Field Name)

.9.1 PAGE

.9.2 Date Field

Column 38 (Edit Codes)

Column 39 (Blank After)

Columns 40-43 (End Position in Output Record)
Column 44 (Packed or Binary Field)
Columns 45-70 (Constant or Edit Word)
.14.1 Constant

.14.2 Edit Word
.14.3 Editing Considerations

Columns 71-74

Columns 75-80 (Program Identification)

\O\C WO O \WOW\O\WO
1
N_EFELWWWNLNN 2V NITOOOEETWWMNON - 2

O
O
CY .
| I I N |

I OWWVWWOVWPOCOVWYOWWOWOWWOWWOWWOWWOWOWOWWOW
|

O \O\O \O\O
[N G
1

[2 T N |

UV OO FWN) = OO\ O \O \O
O OO OO DOOO
_ e e -

—_—

9.
9.

Appendix A. GENERATION AND USE OF RELOCATABLE RPGPLUS
A.1 Compiling an RPGPLUS Program
A.2 Linking a Compiled RPGPLUS Program
A.3 Running a Linked RPGPLUS Program
A.3.1 DATE Field
A.3.2 External Indicators
A.
A

[|

3.3 Opening Files
3.4 Indexing ISAM (Indexed) Files

:’>3>3>:;>B>3>I]>3>
UUTE W — o

vii

A.3.5 Console Input Files
| Appendix B. RPGPLUS REFERENCE TABLES

Appendix C. RPGPLUS COMPILE TIME MESSAGES
Appendix D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES

Appendix E. RPGPLUS USER ASSEMBLY LANGUAGE FACILITIES
E.1 The RPGPLUS Library Facility
E.2 RPGPLUS Calling Sequences to User Subroutines
E.3 SPECIAL Device Drivers
E.4 Non-standard Tape Labels

Appendix F. GENERATION AND USE OF RPGII
F.1 RPGII Generation For Cartridge Disks

Selective Generation of RPGII

RPGII Generation For Diskette Systems

Compiling an RPG II Program

Running a Compiled RPG II Program

.5.1 DATE Field

External Indicators

Opening Files

Indexing ISAM (Indexed) Files

Console Input Files

Ty T
T =who

T
Ut Ut U1 U
Ul =W

o« o o

Appendix G. RPGII REFERENCE TABLES
Appendix H. RPGII COMPILE TIME MESSAGES

Appendix I. RPGII OBJECT (EXECUTION) TIME MESSAGES

Appendix J. RPGII USER ASSEMBLY LANGUAGE FACILITIES
J.1 The RPG II Library Facility
J.2 The RPG 1II Pre-processor
J.3 RPG II Calling Sequences to User Subroutines
J.3.1 SPECIAL Device Drivers
J.3.2 Non-standard Tape Labels

Appendix K. DETAILED RPG OBJECT FLOW (COMMON)
K.1 Initialization
K.2 Program Cycle
K.3 Termination

Appendix L. COMMON REFERENCE TABLES

Appendix M. COMMON INPUT/OUTPUT DEVICE INTERFACES

viii

mmrlqmm
FOND = =

|
~NOOUITUTU W= -

T ? ﬁv T'nﬂim'nij*nﬂjw*n
. e W e—

[R R L]
[I |
JEENN - =

— RN RAR
1
[g G ST Y

Appendix N. CODING SHEET SUMMARY (COMMON)
N.1 Common Fields
Header Specification
File Description Specifications
Extension Specifications
Line Counter Specifications
Input Record Descriptions
N.6.1 Record Type Definition
N.6.2 And/Or Line
N.6.3 Field Definitions
N.7 Calculation Specifications
N.8 Output Format Specifications
N.8.1 Record Type Definition
N.8.2 And/Or Line
N.8.3 Record Formats and Fleld Editing

Z=Z===2=
ol W

1X

=
1

CHAPTER 1. INTRODUCTION

RPG II is a language oriented for business data processing.
This document specifies RPG II for Datapoint systems. Source
programs and data can be prepared using RPGPREP, CRPGPREP, or
DATAFORM II.

After preparing the source program, one of the RPG II compilers
must be run to produce the object program. RPGII object program
output is directly executable under DOS, whereas the object
program produced by RPGPLUS must be subsequently link edited
(using the LINK utility) to produce a self-contained program which
executes under DOS.

RPG source programs are rigidly formatted. 1In the subsequent
text, source records will be referred to as if they were 80-column
card images.

1.1 Installing The RPG II Compiler

Complete instructions for installating RPGPLUS are given in
Appendix A; installation instructions for RPGII are given in
Appendix F. The appendix also contains detailed instructions for
compiling programs and indexing ISAM (Indexed Sequential Access
Method) files.

1.2 Required Utility Programs

The following utilities at the indicated version/revision
levels (or higher) are required for full utilization of RPG II:

RPGPREP RPG Program Preparation Utility (DOS).
CRPGPREP RPG Program Preparation Utility (Cassette).
INDEX DOS Index Utility.

REFORMAT DOS Reformat Utility.

SORT Disk Operating System Sort.

LINK DOS Linking Editor for Relocatable Modules

(required for RPGPLUS only)

CHAPTER 1. INTRODUCTION 1-1

Note: Records output using the DOS SORT utility will be in ASCII
sequernice, unless specified otherwise.

1.3 Definition of Terms

EBCDIC (Extended Binary-Code-Decimal Interchange Code) Notation:
The 256-character machine code used inside the Datapoint RPG II
system. Files are automatically translated to EBCDIC when read,
and from EBCDIC to ASCII (if necessary) when written.

Alphabetic Characters: The 26 alphabetic EBCDIC characters and
the three EBCDIC characters '.', '$', and '#°'.

Numeric Characters: The EBCDIC characters 0-9.

Special Characters: The 217 EBCDIC characters not defined as
alphabetic or numeric.

Alphanumeric Characters: Any of the 256 EBCDIC characters.

Alphanumeric Fields: All fields for which a decimal-positions
specification has not been made in the appropriate column of the
specifications forms. Alphanumeric fields can contain
alphabetic, numeric, or special characters.

Numeric Fields: All fields having a decimal-positions
specification in the appropriate columns of the specifications
forms.

Valid Datapoint RPG II Names: The following rules apply to
names used in RPG I1 programs:

RPG II filenames can be from 1-8 characters long; RPG II
field names can be from 1-6 characters long.

The first character of either a filename or a field name must
be alphabetic (see preceding definitions of alphabetic
characters). The remaining characters can be any combination
of alphabetic and numeric characters (special characters are
not allowed).

Blanks cannot appear between characters in the name.

1-2 REPORT PROGRAM GENERATOR II

1.4 General Datapoint RPG II Program Logic

Every Datapoint RPG II object program has the same general
program logic. This logic is based on the processing cycle
performed for each input record read. Every program cycle
involves three basic steps.
1. Reading information (input).
2., Perforwming calculations (processing).
3. Recording results (output).
In the RPG II cycle, calculation and output can occur at two
different times in the cycle: total time and detail time.
1.4.1 Operations at Total Time

Total calculation and output are normally performed on data
accumulated for a group of related records which form a control
group. When the fields of a record which determine the control
group change, a control break occurs indicating a new control
group is starting. When a break occurs (shown by control level
indicators being turned on), calculation and output operations are
performed using information accumulated from all records in the
previous control group.
1.4.2 Operations at Detail Time

Detail calculations and detail output are normally performed
for individual data records. Total operations are performed
before detail operations. Thus a record which causes a control
break is processed after the total operations for the previous
control group.
1.4.3 General Program Cycle

An RPG object program proceeds through three major steps:
1. Initialization

2. Processing Cycle

3. Termination

CHAPTER 1. INTRODUCTION 1-3

Initialization consists of: 1loading all necessary tables,
clearing all working areas, and opening all files for the
processing cycle.

The processing cycle consists of: writing all heading and detail
records, reading the next input record and identifying it,
performing total operations if a control break occurs, and then
calculating all results from the record previously read. This
cycle repeats until the last record is processed.

The first and last cycles are somewhat different from the normal
cycle. Before the first record is read, detail output conditioned
by the 1P indicator and unconditioned detail output is performed.
Total processing is bypassed until the cycle after the first
control break.

After the last record has been read, the last record indicator
(LR) is turned on, as well as all control levels. After total
processing has been performed, the normal cycle is aborted and the
termination routines are processed.

Termination consists of: writing all necessary tables and closing
all files.

A detailed description of the object program logic is found in
Appendix K.

1.5 Source File Order and Program Specifications

The RPG source file consists of a source program, optionally
followed by compile-time tables and arrays. The source file
contains up to seven sections which can be coded on seven standard
RPG specification sheets and entered using the RPGPREP utility
program. The seven forms are:

1. Header Specification. This specification contains control
information for the compiler.

2. File Description Specification. This specification contains
file description information about each file used in the
program.

3. Extension Specification. This specification contains extension
information about each table or array used in the program.

4, Line Counter Specification. This specification contains
information about the number of lines to be printed on each

1-4 REPORT PROGRAM GENERATOR II

form.

5. Input Specification. This specification contains information
describing the records read by the program.

HOTE: In all versions of RPGII, the order of references to
files in the Input Specifications must correspond to the order
of occurrence of file declarations in the File Specifications.
This is not a restriction in RPGPLUS.

6. Calculation Specification. This specification describes all
calculations performed by the program.

7. Output Format Specification. This specification describes the
format of all records written by the program.

The first part of tne source program may end with: a normal
EDIT end-of-file, a record containing '/¥b' in columns 1-3, or a
record containing '¥¥p' in columns 1-3 (where b indicates a
blank). The first two cases signify the end of the source
program; the last case signifies that a user library inclusion
and/or compile-time tables follow the source program.

If code from a user library is required, (see Appendices E and I
for details), a library inclusion record must immediately follow
the '¥¥p' record. A user library is required for SPECIAL
input-output devices and non-standard tape labels. The EXIT
operation (see Chapter 8) also requires a user library. The
format of a library inclusion is: '"¥LIBRARY' in columns 1-8,
followed by one or more blanks, followed by a DOS file name. If no
extension is supplied, the extension 'REL' is assumed by RPGPLUS;
RPGII uses 'RPG' as the default. If compile-time tables are also
used, a '¥¥p' record should follow the library inclusion.
Compile~-time tables follow the first '¥¥b' record if no library is
included, or the second '¥¥pb' record if one is used. Each
compile-time table must appear in the order specified on the
extension sheets, and must be separated by '¥¥b' records. See
Chapter 5 for a description of tables and arrays.

After any of the preceding optional sections have appeared, the

source file should terminate with either an EDIT end-of-file or a
record containing '/%¥b' in columns 1-3.

CHAPTER 1. INTRODUCTION 1-5

CHAPTER 2. COMMON FIELDS ON SOURCE

This chapter defines entries common to all RPG coding sheets.
Each coding sheet contains the following entries:

1. Columns 1-2 (PAGE).
2. Columns 3-5 (LINE).
3. Column 6 (FORM TYPE).
4. Column 7 (COMMENTS).

5. Columns 75-80 (PROGRAM IDENTIFICATION).

2.1 Columns 1-2 (Page)

Entry Explanation

01-99 Page number.
Columns 1-2 are for numbering the specification sheets used in a
job. You can use more than one of each sheet, but all sheets of
the same type must be kept together. When all the specifications
sheets are filled out, arrange them in the following order and
number them in ascending sequence:
1. Header Card.
2. File Description.
3. Extension.
4, Line Counter.
5. Input.

6. Calculation.

7. Output Format.

CHAPTER 2. COMMON FIELDS ON SOURCE 2-1

2.2 Columns 3-5 (Line)

Entry Explanation
Any Line numbers.
numbers

Columns 3-5 are used to number the lines on each sheet. Columns
3-4 contain preprinted line numbers, so in most cases line
numbering is already done. The unnumbered lines below the
preprinted numbers can be used for additional lines or to insert a
line between two other completed lines. Any other lines on the
sheets can be skipped. The line numbers used need not be
consecutive, but should be in ascending order. Line numbers are
optional. Note: RPGPREP automatically supplies line numbers.
Column 5 is always set to zero to allow later insertion of up to
nine new lines.

2.3 Column 6 (Form Type)

Entry Explanation

H Header.

F File Description Specifications,
E Extension Specifications.

L Line Counter Specifications.

I Input Specifications.

C Calculation Specifications.

0 Output Format Specifications.

Column 6 contains a code for each type of source statement.

2.4 Column 7 (Comments)
Entry Explanation
¥ Comment line.

You may want to write comments to help you understand or remember
what is being done in a certain section of coding. Datapoint RPG

2=-2 REPORT PROGRAM GENERATOR II

IT allows an entire line to be used for these comments. The
comment line is identified by placing an asterisk in column 7.
Any characters in the character set may be used in a comment line,

Comments are not instructions to the RPG II program. They serve
only as a means of documenting the program. A comment line cannot
be written in the header card specifications line.

2.5 Columns 75-80 (Program Identification)

Columns 75-80 on all source program cards may contain any
characters. These columns may use the program name, or the columns
may contain any other characters to identify a certain portion of
the program. These entries are ignored by the compiler, but will
appear in the source program listing:

Note: Any entry made in these columns on the header specification

will be automatically placed into these columns of each source
statement by RPGPREP.

CHAPTER 2. COMMON FIELDS ON SOURCE 2=3

CHAPTER 3. HEADER SPECIFICATION

One header line is required for every program. It provides
information about your program and your system to the RPG II
compiler. Without this information your source program cannot be
translated into an RPG II object program.

3.1 Columns 1-2 (Page) and 3-5 (Line)

The header line must always be line "010" (columns 3-5).
Refer to Chapter 2 for additional details.

3.2 Column 6 (Form Type)

An H must appear in column 6. A header line with an H in
column 6 must be entered for every program even if all other
columns are left blank.

3.3 Columns T7-9

Columns 7-9 are not used. The program is compiled in the
available core storage.

3.4 Column 10 (Object Output)

Column 10 is checked and if it contains neither C, D, or
blank, a warning is produced. The program identification 1is
ignored. No object program is produced when severe (terminal)
errors are present in the source statements.

3.5 Column 11 (Listing Options)
Entry Explanation
Blank 1. The object program is produced (if no severe
errors are found).

2. The program listing is printed.

B 1. The object program is produced (if no severe
errors are found).

CHAPTER 3. HEADER SPECIFICATION 3-1

2. The program listing is not printed.

Column 11 provides for listing options at the time your source
program is compiled. If any severe errors are found during
compilation, the system halts after completing the listing
(provided a listing is to be printed).

The blank entry is the usual case, producing an object program (if
no severe errors are found) and a source program listing. The
program listing consists of the source program, error messages,
and a core map. The core map lists such information as relative
addresses of fields, constants, and I/0 areas. The core map 1is
printed only if the program is successfully compiled. The B entry
means that no program listing is printed; however, an object
program is produced.

3.6 Columns 12-14 (Core Size to Execute)

Core Size to Execute is documentary only in Datapoint RPG and
does not affect program execution in any way!

3.6.1 Column 12

Entry Explanation

Blank, No additional 256-byte increments are needed.

Q One additional 256-byte increment is needed.

H Two additional 256-byte increments are needed (512
bytes).

T Three additional 256-byte increments are needed (768
bytes).

Column 12 may be used to specify additional 256-byte increments of
storage. These increments document an extra 1/4K, 1/2K or 3/4K of
storage to be required in addition to the storage specified in
columns 13-14.

3-2 REPORT PROGRAM GENERATOR II

3.6.2 Columns 13-14

Entry Explanation

Blank The core storage required for object program
execution is the same as that used to compile the
program.

01-13 The core storage required for program execution (if

different from core storage available for object
program generation).

Use columns 13-14 to specify some multiple of 1K bytes of storage

(K=1024). Columns 13-14 document the core storage required for
program execution. The entry must end in column 14.

3.7 Column 15 (Debug)

Entry Explanation
Blank DEBUG operation is not performed.
1 DEBUG operation is performed.

In order to perform a DEBUG operation:

1. A 1 must appear in column 15 when the source program is
compiled.

2. The DEBUG operation code must appear in calculation
specifications.

3.8 Columns 16-25

Columns 16-25 are not used. Leave them blank.

3.9 Column 26 (Alternate Collating Sequence)

Entry Explanation
Blank Normal (EBCDIC) collating sequence is used.
A ASCII collating sequence 1is used.

CHAPTER 3. HEADER SPECIFICATION 3-3

Use column 26 if job collating sequence 1is in ASCII. Sequence
checking, comparisons and indexed disk files will be processed in
ASCII sequence. ‘

Using the ASCII collating sequence is recommended since it 1is the
normal sequence used by other Datapoint software. The collating
sequence used in an RPG program must agree with the collating
sequence used to INDEX or SORT files.

3.10 Columns 27-T74

Columns 27-74 are not used. Leave them blank.

3.11 Columns 75-80 (Program Identification)

See Chapter 2.

CONTROL CARD SPECIFICATION

PROGRAM. PROGRAMMER, DATE PAGE OF . PAGES

O‘JJEQ’Y QUTPUT (C:0)
FORM TYPE = I’ I‘L)S NG 0:""72:\}’(?'“) [~ALTERNATE COLLATING SEQUENCE (A)
PG LINE CORE PROGRAM
NO NO SIZE IDENTIFICATION
1213 56 10]11]12 it1e 26} 75 80
Olw 8} T1]el A

* .

H
Figure 3-1. Example of a Header Specification.

3-4 REPORT PROGRAM GENERATOR II

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS

File description specifications are required for every file
used by a program. Write these specifications on the File
Description Sheet. At least one line is needed to describe a
file. Datapoint RPG will allow a maximum of 24 file description
entries.

4.1 Columns 1-2 (Page) and 3-5 (Line)

Refer to Chapter 2.

4.2 Column 6 (Form Type)

An F must appear in column 6.

4.3 Columns 7-14 (File Name)

Use columns 7-14 to assign a unique filename to every file
used in your program except compile-time table and array files,
which must not be named on the File Description Sheet. (Compile
time tables and arrays are described on the Extension Sheet). The
filename can be from 1-8 characters long, must begin in column 7,
and must be a valid RPG II name. The filename can be the same as
a field name.

Pre-execution time table and array files are described on the File
Description Sheet.

The entry in this field may be the same as the DOS file name used
when executing this program or it may be completely internal to
the program. See Column 53 (Continuation Code) for details.

When assigning file names for processing existing indexed files,

the file name should refer to the index to be used. The associated
data file will be selected whenever the index is referenced.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-1

4.4 Column 15 (File Type)

Entry Explanation
I Input file
0 Output filé
U Update file
D Display file

Use column 15 to identify the way in which your program uses the
file. All input file descriptions must preceed other file
descriptions.

4.4,.1 Input File

Input files are records that a program uses as a source of
data. When input files are described in a program it indicates
that records are to be read from the file. All input files except
table and array files must be further described on the Input
Sheet. Table and array files must be further described on the
Extension Sheet.

4.4,2 Output Files

Output files are records that are written or printed by a
program. All output files, except table and array output files,
must be further described on the Output Format Sheet.

4.4,3 Update Files

Update files are disk files from which a program reads a .
record, updates fields in the record, and writes the record back
in the location from which it was read. Update files - must be
further described on both the Input Sheet and Output-Format Sheet.
A chained file or a demand file may be updated at detail time, at
total time or exception time. All other disk files can be updated
only at detail time during the same program cycle that reads the
record.

42 REPORT PROGRAM GENERATOR II

4.4.4 Display Files

A display file is a collection of information from fields
used by a program. The DSPLY operation code must be used on the
Calculation Sheet in order to display a field or record directly
from storage and/or key data into a field or record in storage.
Display files need only be described on the File Description
Sheet. The device associated with a display file must be a
keyboard-display (CONSOLE). See Operation Codes, DSPLY in Chapter
8 for more information.

4.5 Column 16 (File Designation)

Entry Explanation

P Primary file

S Secondary file

C Chained file

R Record address file

T Table or array file (pre-execution time tables or
arrays) :

D Demand file

Use column 16 to further identify the use of input, update, and
chained files. Leave the column blank for display files and all
output files except chained and table output files.

4.,5.1 Primary Files

A primary file is the main file from which a program reads
records. In multifile processing the primary file is used to
control the order in which records are selected for processing.
It can be an input or update file. 1In programs that read records
from only one file, that file is the primary file. Every program
must have one and only one primary file. The primary file
description must be the first file description entry.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-3

4.5.2 Secondary Files

Secondary files apply to programs that do multifile
processing. All of the files involved in multifile processing,
except the primary file, are secondary files. A secondary file
can be an input, or update file. Secondary files are processed in
the order in which they are written in the file description
specifications, except when matching records (MR) or when the
FORCE operation is used. Note that table, chained, and demand
files are not involved in record selection in multifile
processing.

4.,5.3 Chained Files

A chained file is a disk file that is read or written
randomly via the CHAIN operation code. A chained file can be an
input, output, or update file. If it is output and indexed, the A
option must be specified in column 66. This is because a chained,
indexed file must have an index built using the INDEX Utility
program. If this has been done, the file already exists and any
records written are appended to the existing file, and inserted
into the index.

4,5.4 Record Address Files

A record address file is an input file that indicates which
records are to be read from a disk file and the order in which the
records are to be read from the disk file. You cannot use more
than one record address file per disk file. All record address
files must be further defined in extension specifications.

Record address files contain binary relative record addresses and
are called ADDROUT (address output) files. They are disk files
produced by the DOS SORT program and can be used with any type of
disk file. See Column 28 (Mode of Processing), By ADDROUT File,
in this chapter for more information. '

4,5.5 Table or Array Files

A table or array file is an input or output file that
contains table or array entries. The entries can be read into the
program from a table input file immediately before execution of
the program. Only pre-execution time tables or arrays are
described on the File Description Sheet. However, both
pre-execution and compile time tables and arrays must be described

4-y REPORT PROGRAM GENERATOR II

in the Extension Sheet.

A table or array output file (written after LR output) can be
defined and used as a normal output file and does nqot require an
entry in column 16. If the only output to the file is tables and
arrays, the file should be designated as a table output file.

Table and array files are not involved in record selection and
processing. They are only a means of supplying entries for tables
or arrays used by the program. When table or array files are read
during the execution of the program, the program reads all the
entries from the table or array files before it begins record
processing. See Chapter 5 for additional information.

4.5.6 Demand Files

Demand files can be input or update files. The READ
operation code must be used on the Calculation Sheet in order to
read consecutively from a demand file. Demand files can only be
processed consecutively. See Operation Codes, READ in Chapter 8
for a discussion of processing demand files.

4.6 Column 17 (End of File)
Entry Explanation

E All records from the file must be processed before
the program can end.

Blank 1. The program can end whether or not all of the
records from the file have been processed.

2. If column 17 is blank for all of the files, all
records from every file must be processed before
the program can end.

Column 17 applies to programs that perform multifile processing.
Use it to indicate whether or not the program can end before all
of the records from the file are processed. It applies only to
input and update files that are used as primary or secondary
files.

If the records from all the files must be processed, column 17
must be blank for all files, or contain E's for all files.

A program that performs multifile processing could reach the end

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-5

of one file before reaching the end of the others. It therefore
needs some indication of whether it is to continue reading records
from the other files or end the program. An entry in column 17 in
the descriptions of the files provides that indication.

4,7 Column 18 (Sequence)
Entry Explanation

A Sequence checking is to be done. Records in the
file are in ascending order.

D Sequence checking is to be done. Records in the
file are in descending order.

Blank No sequence checking is to be done.

Column 18 applies to update files, and all input files except
table, array, chained, and demand files. Leave column 18 blank
for output, display, table or array files, and chained files. Use
it to indicate whether or not the program is to check the sequence
of the records. Use columns 61-62 on the Input Sheet to identify
the matching fields containing the sequence information. The
proper collating sequence for sequence checking (EBCDIC or ASCII)
is determined by column 26 in the Control Card Specification.

Sequence checking is required when matching fields are used in the
records from the file. When a record from a matching input file
is out of sequence, the program halts, and the operator has three
options:

1. Bypass the record out of sequence and read the next record
from the same file (BYPASS option).

2. Bypass the record out of sequence, turn on the LR indicator
and perform all end-of-job and final total procedures (CANCEL
option).

3. Immediately discontinue program execution (ABORT option).

See Appendix A (RPGPLUS) or F (RPGII) for a detailed description
of operating procedures.

4-6 REPORT PROGRAM GENERATOR II

4.8 Column 19 (File Format)

Entry Explanation
F Fixed-length reccrds.
v Variable-length records.

In Datapoint RPG II there are two types of file organizations,
fixed and variable. Disk and cassette files may be either; files
on other devices must be fixed. For cassette input either 'F' or
'V' may be used, with no effect on program execution.

4.8.1 Fixed Format Files

These files have definite record length and are not subject
to special processing. Disk files to be updated or processed
randomly must be fixed format. See Appendix M for further details
about fixed-format disk files. Cassette output file records will
be written without space compression if an 'F' is used in column

190)

4.8.2 Variable Format Files

These files have a maximum record length and are compatible
with Datapoint software using the sequential record format such as
the general purpose editor program EDIT. On input, blanks are
expanded; on output, blanks are compressed. See Appendix M for
further details about variable-format disk files. Cassette output
files will be written with space compression if a 'V' is used in
column 19.

4.9 Columns 20-23 (Block Length)

Entry Explanation
Number Length of block.
Blank Default block length.

These columns have differing interpretations depending on the
device assigned for the file (see Columns 40-46). If an entry is
specified, it must end in column 23. Leading zeros may be
omitted.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS B-7

4.9.1 Disk Files

The block length for fixed-format disk files may be a
multiple of the record length. This is allowed for language
compatibility, however, Datapoint RPG will always assign the most
efficient block length. For variable-format disk files these
columns must either be blank or equal to the record length.

4.,9.2 Tape Files

These columns may either be blank or contain a multiple of the
record length. In order to properly process tape input files, the
block length entry used must be the same as the block length used
when the tape file was written.

4.,9,.3 Other Files

These columns must either be blank or contain the record
length.

4.10 Columns 24-27 (Record Length)
Entry Explanation

Number The number of characters used in each record
(limited by the device used).

Use columns 24-27 to indicate the length of the records in the
file. For variable-format files the record length defines the
maximum size of a record. The actual size is determined by the
data read or written. For fixed-format files, information is
transferred in units of the record length. All of the records in
one file must be the same length. (For update files, the 1length
of a record after it is updated must be the same as before it was
updated). The maximum record length allowed and the size of the
I/0 area assigned depend upon the device assigned to the file.
The record length specified may be shorter than the maximum length
for the device. The entry placed in these columns must end in
column 27. Leading zeros can be omitted.

4-3 REPORT PROGRAM GENERATOR II

4,11 Column 28 (Mode of Processing)

Entry Explanation
L Sequential within limits.
R 1. Random by relative record number.

2. Random by key.

3. By ADDROUT file.

4., Direct file load (random load).
Blank 1. Sequential by key.

2. Consecutive.

Use column 28 to indicate the method by which records are to be
processed. Only indexed disk files can be processed sequentially
by key or within limits. Disk files that are indexed, chained or
controlled -by an ADDROUT file can be processed randomly. All
other files must be processed consecutively.

Column 31 is used to further identify the processing method. See
column 31 (Record Address Type) in this chapter.

4.,11.1 Consecutive Method

The consecutive method applies to all files. During
consecutive processing records are read in the order in which they
physically appear in the file. The contents of spaces left for
missing records in direct (fixed-format) files are read as though
the records were there. (Such spaces are filled with blanks).

The program reads records from the file until either the end of
that file is reached or the program ends due to the end-of-file
condition of another file. See column 17, End of File, in this
chapter for more information about the second condition.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-9

4,11.2 By ADDROUT File

An ADDROUT (address output) file is a record address file
produced by the DOS SORT Program. It is a file of 3-byte disk
records containing binary relative record addresses of records in
a disk file. RPG II locates and reads the record at the specified
address in the original disk file. Records are read in this
manner until either the end of the ADDROUT file is reached or the
program ends due to the end-of-file condition of another file.

See Column 17, End of File in this chapter for more information
about the second condition.

4,11.3 Sequential By Key

Processing sequentially by key applies only to indexed disk
files that are used as primary, secondary or demand files.

Records are read in ascending key sequence established when the
file was INDEXed by the INDEX utility program (See Appendices
A/F). The alternate collating sequence option (Column 26 in the
Header Specification) must agree with the option used when
INDEXing the file (EBCDIC or ASCII). The program reads records
from the file until either the end of that file 1s reached or the
program ends due to the end-of-file condition of another file. See
column 17, End of File, in this chapter for more information about
the second condition.

4.11.4 Sequential Within Limits

Sequential within limits processing is accomplished using the
SETLL operation code during calculations. The SETLL operation code
is used to establish a lower limit for sequentially processing
primary, secondary, or demand files. The upper limit (if not
end-of-file) must be checked using the COMP operation code.

When using SETLL with primary and secondary files, care should be
exercised to discard the first record read (as part of the normal
input cycle) prior to entering calculations and executing the
first SETLL. (See Operation Codes, SETLL in Chapter 8).

4-10 REPORT PROGRAM GENERATOR II

4,.11.5 Random Method

Two methods, random by relative record number and random by
Key, apply to chained files only. They require the use of the
CHAIN operation code. The records of a file to be read or written
must be processed by the CHAIN operation code. The records are
read or written only when the CHAIN statements that identify them
are executed.

When processing fixed blocked disk files "directly" (without using
an ISAM index), relative record numbers are used to identify the
records. Relative record numbers identify the positions of the
records relative to the beginning of the file. For example, the
relative record numbers of the first, fifth, and seventh records
in a file are 1, 5, and 7 respectively. (See Operation Codes,
CHAIN in Chapter 8).

For indexed files, record keys must be used to locate the records.
A record key 1is the information used to match unique data in a
field in each record that is used to identify that record. Record
key fields are defined when a fixed blocked disk file is indexed
with the INDEX utility program (See Appendices A/F).

Records are read during the calculation phase of the program.
Therefore, fields from these records can be used during detail or
total calculations. Note then, that fields of records read from
chained update files can be read and altered during calculations

and the records can be updated (written back on the file with
alterations) during output.

4.12 Columns 29-30 (Length of Key)
Entry Explanation

Number Length of record key or ADDROUT file record

Columns 29-30 apply only to indexed disk files and record address
files. Enter:

1. The length of the record keys in indexed files.

2. The length of the records in ADDROUT files.

All of the key fields in the records in an indexed file must be
the same length. The maximum is 99 bytes. All of the records in an

ADDROUT file have a length of three. A leading zero is not
required. '

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-11

4,13 Column 31 (Record Address Type)
Entry Explanation

A Record keys in unpacked format are used in
processing indexed files.

I The file is being processed by means of an ADDROUT
file or the file is an ADDROUT file.

Blank 1. Relative record numbers are used in processing
: sequential and direct files.

2. A sequential or direct file is being loaded.
3. Records are read consecutively.

Column 31 indicates the way in which records in a disk file are
identified.

4.14 Column 32 (File Organization)

Entry Explanation

I Indexed file.

T ADDROUT file.

Blank Sequential file or direct file.
1-9 Additional I1/0 areas (ignored).

Use column 32 to identify indexed and ADDROUT files. See Column
28, Mode of Processing for further details. A digit is allowed in
this column for compatibility with other RPG systems, but has no
effect on the execution of the program.

4-12 REPORT PROGRAM GENERATOR II

4.15 Columns 33-34 (Overflow Indicator)

Entry Explanation

OA-0G, An overflow indicator is used to condition

ov records in the file. The indicator specified is the
one used.

Blank No overflow indicator is used.

Columns 33-34 apply to the output file assigned to the printer.
Use these columns to indicate that you are using an overflow
indicator to condition records being printed in the file. Any
overflow indicators used in a program must be unique for the
output file assigned to the printer. Note that only one overflow
indicator can be assigned to a file. Do not assign overflow
indicators to a console file.

4.15.1 Overflow Indicator

Overflow indicators are used only with printer files,
primarily to condition the printing of heading lines. If you
intend to use an overflow indicator to condition output lines on
the printer, you must assign an overflow indicator to the printer
file on the File Description Sheet (columns 33-34). The same
indicator must be used to condition all lines that are to be
written only when overflow occurs.

If the destination of a space/skip or print operation is a line
beyond the overflow line, the overflow indicator 1is turned on and
remains on until all overflow lines are printed. However, if a
skip or space is specified that advances the form past the
overflow line to the first line or past the first line on a new
page, the overflow indicator does not turn on.

If an overflow indicator is used as a conditioning indicator, it
indicates that output is to be performed at overflow time. This
applies whether or not the line conditioned by the indicator is in
an AND or OR relationship with other indicators.

The overflow indicator may be set by the SETON or SETOF operation
code. After all total records have been written, however, the
indicator is set as it normally is in accord with the overflow
line.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-13

4,16 Columns 35-38 (Key Field Starting Location)

Entry Explanation

1-255 Record position in which the key field begins.
Columns 35-38 apply to indexed files only. An entry must be made
in these columns for an indexed disk file. Enter the location in
which the key field begins in indexed file records.
The number entered must end in column 38. Leading zeros can be

omitted.

4,17 Column 39 (Extension Code)

E Extension specifications further describe the file.
L Line counter specifications further describe the
file.

Column 39 applies to (1) table and array files that are to be read
during program execution, (2) record address files, and (3) the
output file assigned to the printer. Output files that are
assigned to the printer can be described on the Line Counter
Sheet. Tables, array, and record address files must be described
on the Extension Sheet. If tables are output to the printer 'E'
should not be used.

4.18 Column 40-46 (Device)
Entry Explanation
PRINTER Printer.

CONSOLE Keyboard Display.

DISK Disk.
READER Card Reader.
TAPE Industry-compatible 9 track tape unit.

CASSET1 Rear tape‘cassette.

CASSET2 Front tapé cassette.

414 REPORT PROGRAM GENERATOR II

LOADER Pseudo-device for use with the DOS CHAIN command

SPECIAL Special input/output device not supported by
Datapoint RPG II. (See Appendix F).

These columns are used to specify the input/output device to be
used for the file. All entries begin in column 40. The devices

that can be used depend upon the type of file access specified.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-15

AVAILABLE DEVICES

MAXIMUM
BLOCK
LENGTH

Primary or
Secondary
Input

Cards

Tape(800 BPI)
Tape(1600 BPI)

Cassette

Keyed In

DISK (fixed or
variable format)

READER

TAPE
TAPE

CASSET1 or CASSETZ2
CONSOLE

80

1057
2048

Chained Input
Files

Update Files
(Primary,
Secondary,
or Chained)

- - - - - - - S - - - - S S e T e T R G N G M D e e e E . . S - -

Qutput Files

Tape(800 BPI)
Tape(1600 BPI)

Cassette

Printed

DISK, (fixed or
variable format)

TAPE
TAPE

CASSET1 or CASSETZ2
PRINTER

CONSOLE

- A — AR A - - D . —— G A e G e e D A s S e D B Y S . D TR A M S S . S S W W WS MR e A W - -

- . - . —— - - - - - ——— - e e . S T M MR G M R R R R G We MR R R M R s e G T G e R e e e —

- - - - - — > R h - e AR R D WS SR e S e e N D D - . — w w w— Gm . -

- e - ——— - — - . - —— G " - - — - - - - - . - - — ——— - - o=

4-16

REPORT PROGRAM

GENERATOR II

4.18.1 Use of the LOADER Device for Program Chaining

This device may be used to construct a command line to be
executed by the DOS command processor after the normal end of an
RPG II object program. The LOADER must be used as an output file,
and the command line can typically be written during the last
total cycle (LR-time). The simplest use of the LOADER is to
invoke some other program, for example, the DOS SORT. By
constructing a sequence of DOS commands on some disk file and then
writing "CHAIN file"™ on the LOADER, where "file"™ is the DOS name
of the command file, more complex sequences may be realized.

Only one record may be written on the LOADER during the execution
of the object program. If the object program aborts, rather than
concluding normally, the command line is ignored.

4.18.2 SPECIAL Device Support

You can process files using devices not supported by
Datapoint RPG II. To do this, you must indicate that the file will
be handled by a SPECIAL device (SPECIAL in columns 40-46 of the
File Description Sheet). You must also supply a subroutine to
perform the I/0 operations required to transfer data between the
SPECIAL device and core storage (subroutine name in columns 54-59
of the File Description Sheet).

The following can be used with SPECIAL files:

FORCE operation code.
READ operation code.

The following cannot be used with SPECIAL files:

CHAIN operation code.
Spacing and skipping.

SPECIAL files can only be processed consecutively. See Appendix E
for the conventions used by RPGPLUS to call the input-output
subroutine; Appendix I gives the RPGII conventions.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-17

4,19 Columns U47-52

These columns are not used and should be left blank.

4,20 Columns 53-65 (Continuation Lines)

4,20.1 Column 53 (Continuation Code)

Entry Explanation

A Assign disk file name at run-time.

D Disk file name defined at compile-time.
S Standard labels are used.

N Non-standard labels are used.

U No labels are used.

K Continuation Recorq.

If the file being defined is a disk file, column 53 may contain
'A' or 'D'. (If it is left blank, 'A' is assumed.) When the 'A'
entry is used, the object program will ask for the DOS external
file name to assign to the current internal file. When the 'D!
entry is used, the external file name is assumed to be the same as
the internal file name. See Appendix A and the 'EXTDRV' entry in
columns 54-59 for additional information.

Column 53 must contain 'S', 'N', or 'U' if the file is a tape
file. If non-standard labels are being used, columns 54-59 must
contain the name of the user-supplied subroutine for processing
the labels. (See Appendices E/I for calling conventions.)

If the preceding File Description line describes an ASCII tape
file, column 53 must contain 'K' and columns 54-59 must contain
"ASCII'.

If the preceding File Description line describes a disk or printer
file, column 53 may contain a 'K', in which case columns 54-65
contain additional file specifications. See the following
discussion.

4-18 REPORT PROGRAM GENERATOR II

4.,20.2 Columns 54-59 (Continuation Option)
Entry Explanation
EXTDRV Extension and/or drive for disk file (Used to

specify the extension and/or disk drive assigned
for defined DISK files (see Column 53 above).

MAXSEC Maximum number of sectors for new disk files.

LOCAL The Local printer is used at object (execution)
time.

SERVO The Servo printer is used at object (execution)

time. (The DEVICE in the preceding File
Description line must be PRINTER).

ASCII TAPE file written in ASCII.
_ 800 or Tape density(if not given for a tape file
1600 800bpi is assumed).

4,20.2.1 Columns 54-59 (Name of Label Exit)
Entry Explanation

RPG name Name of the user-written subroutine which
will perform the I/0 operation for a SPECIAL
device, or which will process non-standard
tape labels.

Blank No SPECIAL device or non-standard labels
are being used.

Columns 54-59 must contain an entry for each data file assigned to
a SPECIAL device or to a TAPE file with non-standard labels.

These columns are used to specify the subroutine which will
perform the input/output operations for a file assigned to a
SPECIAL device or for non-standard tape label processing. The
subroutine name entered in columns 54-59 can be from one to six
characters long, and must be a valid RPG II name.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-19

4,20,2.2 Columns 60-62 (Extension)

Use these columns on a continuation card with the 'EXTDRV!
entry in columns 54-59 to specify the extension to be used for a
(compile-time) defined disk file. Datapoint RPG assumes an
extension of 'TXT' for all disk files except ISAM files. For ISAM
files, an extension of 'ISI' is assumed.

4.20.2.3 Columns 63-65 (Drive)

Use these columns to specify the drive for a compile-time
defined disk file. Single-digit drive numbers are specified by
'DRO' through 'DR9' or by 'D0O0' through 'D09'. Double-digit drive
numbers are specified by 'DO0' through 'D15'.

Either entry (EXT or DRV) can be specified, or left blank. If an
entry is left blank, '/TXT' is assumed for the extension, and any
drive, starting with ':DRO', is assumed for the drive. Do not
specify the initial '/' on the extension, or the ':' on the drive.
See the DOS manuals for further details.

4.20.2.4 Columns 60-65 (Number of Sectors)

These columns may be specified on a continuation card with
the '"MAXSEC' entry in columns 54-59 to specify the LRN limit to be
used for any disk file which may be created by the object program.
This entry no longer has any effect in Datapoint RPG.

4.20.2.5 LOCAL/SERVO Continuation Option

For files assigned to the printer, you may specify whether a
local or servo printer will be used at execution time by means of
a continuation card. If no specification is given local printer is
assumed.
4,20.2.6 ASCII Continuation Option

The ASCII continuation option is used for a tape file written

in ASCII. If the tape file is in ASCII format this option must be
used.

4-20 REPORT PROGRAM GENERATOR II

4,20.2.7 Tape Density Continuation Option

The tape density continuation option is used to give the
density of the tape being used. If the density of a tape file is
not given 800bpi is assumed. This option may be used in conjuction
with the ASCII option. -

4,21 Column 66 (File Addition)
Entry Explanation
A Hew records are to be added to the file.

Column 66 must contain an 'A' when new records are to be added to
an existing consecutive or indexed disk file.

Records added to a consecutive file are added to the end of the
file. To add records to a sequential file, the file must be an
output file (O in column 15 of the File Description).

Records-added to an indexed file are added to the end of the file
and the index used for the operation is updated to refect the
addition. New records may be added in any order and will be
indexed into the proper sequence. To add records to an indexed
file, the file must be an output or update file (0 or U in column
15 of the File Description).

If an indexed file has more than one index (indexed on more than
one key using the INDEX utility) the new records can not be
accessed using the other indices until the other indices have been
updated using the INDEX utility! (See Appendix A).

Column 66 should be blank for direct files.

4,22 Columns 67-T0

These columns are ignored.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-21

4.23 Columns 71-72 (File Conditioning Indicator)

Entry Explanation
'U1—U8 The file is conditioned by the specified external
indicator.
Blank The file is not conditioned by an external
indicator.

Columns 71-72 apply to primary and secondary input (excluding
table input files), update, and output files. If an output file
is conditioned by an external indicator which is off, records will
not be written on that file. Any calculation operation which
should not be done when the file is not in use should also be
conditioned by the same indicator. When the indicator is off, the
file is treated as though the end of file had been reached; that
is, no records can be read from or written into the file.

4,23.1 U1-U8 (External Indicators)

Indicators U1-U8 are external indicators. This means they
are set during start-up. Their setting cannot be changed during
processing. Thus, the program has no control over them.

You may use these indicators as file conditioning indicators. They
tell whether or not a certain file is to be used for a Jjob. For
example, you may have a job which one time requires the use of two
output (or input) files and another time the use of only one.
Instead of writing two different programs (one using one file, the
other two), you can condition a file (in the File Description
Specifications) by an external indicator. When the indicator is
on, the file is used; when it is off, the file is not used.

In addition to using these indicators as file conditioning
indicators, you may use them: .

1. To condition calculation operations.
2. To condition output operations.

3. As field record relation indicators (columns 63-64 of Input
Specifications Sheet).

4-22 REPORT PROGRAM GENERATOR II

4.24 Columns T3-T4

Columns T73-7T4 are not used.

4.25 Columns T5-80 (Program Identification)

See Chapter 2.

FILE DESCRIPTION SPECIFICATION

PEOGRAN PROGRAMME . DATF . . _ PAGE [— PAGES
FILE CESIGNATIONIP S CR.T. D) I»mn OF FILEIE) CONTINUATION RECOSD,
) SEGUENCEA D) MODE - R A TYPEA £ TN T AT TR T on
_FORM TYoE FLE TYPENOUC Uiq -] [FILE FORMATIF v) ry;n» l— [ORGAMIZATION(T = EXTENSION CODEIE L) I \'_ONI“OVV‘OL > T CF SECTONT rr'LE Aaomu»::;m““ INDICATOR
< wi z I -
PG | UNE sLock | Re i 12 3
I ECORD = &z
no | wNo | ILE NAmE LENGTH | LENGTH 59 Rl A DEVICE o) USER LBl 2 | vave PROGRAM
bt O & lLocATION Gl ROUTINE ¥ IDENTIFICATION
X «|
vzl slelr 1a]1s]1a] 17 e[alon 2324 a7frafen w0l 31]afas aslas 38 39]a 5 “
3 : 0 ki KRR 0 46147 52153154 g 5 71 72) i
NyGEARGARNGEDR ;i SEEENEED T =
o1} | i 810 READIE|R,
T
o2} el PIOF|ILIE] VIS | 1A 810 118K
o3| {elQUTIFIIILIEL 10 F 11010 D11SIK
olal ¢
05 F
)
[| 198, IF
0'7 F
H
o's F

Figure 4-1. Example of simple File Description Specification.

P m ™ im g m [n

Figure 4-2. Example of continuation line usage in File
Description Specification.

CHAPTER 4. FILE DESCRIPTION SPECIFICATIONS 4-23

CHAPTER 5. EXTENSION SPECIFICATIONS

Extension specifications are needed to describe the record
address files, tables, and arrays you may use in your Jjob. Enter
these specifications on the Extension Sheet.

Pre-execution time tables and arrays are described in columns
11-45. . Compile time tables and arrays are described in columns
19-45, If an alternating table or array is to be specified with
another table or array, it is described in columns 46-57 of the
same line as the first.

Record address files require entries on the Extension Sheet in
columns 11-26.

5.1 Columns 1-2 (page) and 3-5 (Line)

See Chapter 2.

5.2 Column 6 (Form Type)

An E must appear in column 6.

5.3 Columns 7-10

Columns 7-10 are not used.

5.4 Columns 11-18 (From Filename)

Entry Explanation

Record The name of the record address file

Address defined on the File Description

Filename Specification Sheet.

Table Table or array file loaded at

or Array pre-execution time.

Filename

Blank 1. Table or array loaded at compilation time

if an entry appears in Number of Entries

CHAPTER 5. EXTENSION SPECIFICATIONS 5-1

per Record (columns 33-35).

2. Array loaded at execution time (loaded via
input or calculations specifications) 1if
there is no entry in Number of Entries per
Record (columns 33-35).

Columns 11-18 are used to name a table file, array file, or record
address file. Filenames must begin in column 11,

Leave columns 11-18 blank for compile time tables or arrays, or
for arrays loaded via input or calculations specifications
(execution time array). These columns must contain the table or
array filename of every pre-execution time table or array used in
your program.

5.5 Columns 19-26 (To Filename)

Entry Explanation

Name of The file processed via the record

an input address file name under From Filename.

or update

file ’

Name of The output file on which a table or array
an out- is to be written at end of job.

put file

Columns 19-26 define the relationship between a file named in
these columns and a file named in columns 11-18. Filenames must
begin in column 19.

If a record address file is named under From Filename, columns
11-18, the name of the primary or secondary file that contains the
data records to be processed must be entered in To Filename,
columns 19-26.

If you wish a table or array to be written, use columns 19-26 to
enter the filename of the output file you will use to do this.
This output file must have been previously named in the file
description specifications. Execution time arrays cannot be
written at end-of-job. Leave columns 19-26 blank for execution
time arrays or if you do not want the table or array written.

If a table or array is to be written, it is automatically written

5-2 REPORT PROGRAM GENERATOR II

at the end of the job after all other records have been written.

Since the table or array will be written in the same format in
which it was entered, you may want to rearrange the output table
or array through Output Format Specifications. You may format
table or array output by using exception lines to write out one
item at a time (see Operation Codes, Exception in Chapter 8).
Tables or arrays will be written under RPG II control only after
all records have been processed (Last Record indicator is on).
Note: If a table or array is to be written to a printer file at
the end of a job, the last Output Format Specification should be a
space or skip to the line at which table or array output should
begin.

5.6 Columns 27-32 (Table or Array Name)

Entry Explanation
Table or Name of a table or array used in the
Array program.

Use columns 27-32 to name your table or array. No two tables or
arrays may have the same name. The name can be from one to six
characters long and must begin in column 27, and must be a valid
RPG II name. If alternating tables or arrays are being described,
this must name the table or array whose entry is first on the
input record.

5.6.1 Table Name

Every table used in your program must be given a name from
three to six characters long beginning with the letters TAB. Any
name in these columns which does not begin with TAB is considered
an array name. This table name is used throughout the program.
However, different results can be obtained depending upon how the
table name is used. Factor 2 on the Calculation Sheet can contain
the name of a table to be searched and the result field can
contain the name of another table from which an associated .
function is to be obtained. When the table name is used in Factor
2 or Result Field (on the Calculation Sheet) with the LOKUP
operation, it refers to the entire table. When the table name is
used with any other operation code, it refers to the table item
last selected from the table by a LOKUP operation. If the table
name 1is used before any successful look-ups are performed, the
first table item is referenced.. See Operation Codes, LOKUP, in
Chapter 8 for more information.

CHAPTER 5. EXTENSION SPECIFICATIONS 5-3

Tables are processed in the same order as they are specified on
the Extension Sheet. Therefore, if you have more than one table,
remember the tables are to be loaded in the same order as they
appear on the sheet.

Tables cannot be used with an index.

5.6.2 Array Name

Every array used in your program must be given a name from
one to six characters long. An array name cannot begin with the
letters TAB. This array name 1is used throughout the program.
Different results are obtained if the array name is used with an
index or without an index. When used with an index, a particular
element of the array is referenced. An array name used unindexed
refers to the whole array.

An index 1s a numeric field or literal with zero decimal
positions. When used to select an array element, the value of the
index must not be negative, zero, or greater than the number of
elements in the array. An indexed array reference is written as:
array-name,index (note that the name and index are separated by a
comma) .The length of an array name is limited by its use. 1In
input, output and the result field of calculations, the array
element (array-name, index) is limited to six positions; in factor
1 and factor 2, to ten positions.

On input or output an entire array may be read or written to a
single field or the array may be processed element by element. An
indexed reference is treated like a normal field during
calculation. An unindexed reference refers to the entire array.
An entire array may not be used with: COMP, DSPLY, TESTZ, TESTB,
BITON, or BITOF. Otherwise the following rules apply:

1. When all operands are arrays, the operation is performed
element by element until the shortest array is processed.

2. When one operand and the result field are arrays, and the
other operand is a field or 1literal, the operation is
repetitively performed using the same field or literal.

3. Except for XFOOT and LOKUP, neither operand can be an array

name unless the result field is an array name, and resulting
indicators may not be used.

5-4 REPORT PROGRAM GENERATOR II

5.7 Columns 33-35 (Number of Entries per Record)
Entry Explanation

1-999 Number of table or array entries found in each table
or array input record.

Indicate in columns 33-35 the exact number of table entries in
each table or array input record. The number entered must end in
column 35. Every table or array input record except the last must
contain the same number of entries as indicated in columns 33-35.
The last record may contain fewer entries than indicated, but
never more. When two related tables are described, each table
input record must contain the corresponding items from each table
written in alternating form. These table items are considered as
one entry. Corresponding items from related tables must be on the
. same record. If there is room, comments may be entered on table
input records in columns following table entries.

When loading an array the following must be considered:

1. To load a pre-execution time array, the array filename must be
entered in columns 11-18 and an entry must be made in Number
of Entries per Record (columns 33-35).

2. To load an array at compile time, the filename entry (columns
11-18) must be blank, but an entry must be made in Number of
Entries per Record (columns 33-35).

3. To load an execution time array (via the input and/or
calculation specifications), the From Filename (columns 11-18)
and the Number of Entries per Record (columns 33-35) must be
blank.

5.8 Columns 36-39 (Number of Entries/Table)
Entry Explanation
1-9999 Maximum number of table or array entries.

Use columns 36-39 to indicate the maximum number of table items
which can be contained in the table named in columns 27-32, or the
maximum number of array items which can be contained in the array
named in columns 27-32. This number may apply to one table or to
two alternating tables. If alternating tables are described,
corresponding table items are considered one entry. Any number
entered in these columns must end in column 39.

CHAPTER 5. EXTENSION SPECIFICATIONS 5-5

If your table or array is full, this entry gives the exact number
of items in it. However, if the table or array is not full, the
entry gives the number of items that can be put into it. A table
or array that is not full is known as a short table or array.

Since the number of items for two related tables or arrays must be
the same, the entry in these columns also gives the number of
items in a second table or array (columns 46-51).

5.9 Columns 40-42 (Length of Entry)
Entry Explanation
1-256 Length of a table or array entry.

Use columns 40-42 to give the length of each entry in the table or
array named in columns 27-32. The number entered must end in
column 42,

All table items must have the same number of characters. It is
almost impossible, however, for every item to be the same length.
Therefore, add zeros or blanks to the front of numeric items to
make them the same length and add blanks to alphanumeric items.
For alphanumeric items, blanks may be added either before or after
the item.

If two related tables or arrays are described on one Extension
Sheet, the entry in columns 40-42 applies to the table whose item
appears first on the record.
5.10 Column 43 (Packed or Binary Field)

Entry Explanation

Blank Data for table or array is in IBM-compatible numeric
format or is alphanumeric.

- Data for table or array is in Databus-compatible
format.

For a complete discussion of data representation, see Column 43,
Packed or Binary Field in Chapter 7.

5-6 REPORT PROGRAM GENERATOR II

5.11 Column 44 (Decimal Positions)

Entry Explanation
Blank Alphanumeric table or array.
0-9 Number of positions to the right of the decimal in

numeric table or array items.

Column 44 must always have an entry for a numeric table or array.
If the items in a numeric table or array have no decimal
positions, enter a O.

If two alternating tables or arrays are described in one file, the

specification in this column applies to the table containing the
item which appears first on the record.

5.12 Column 45 (Sequence)

Entry Explanation

Blank No particular order,
A Ascending order.

D Descending order.,

Use column 45 to describe the sequence (ascending or descending)
of the data in a table or array. Execution time arrays are not
checked for sequence, but column 45 must contain an entry if high
or low LOKUP is to be used.

When an entry is made in column 45, the table or array is checked
for the specified sequence. If a pre-execution time table or
array is out of sequence, an error occurs and the program halts
immediately. The program can be restarted from the point where it
halted if you do not want to correct the out-of-sequence
condition; otherwise program execution must be restarted from the
beginning. -

Compile-time tables or arrays are sequenced checked at
compile-time and a diagnostic is issued if they are improperly
sequenced.

Ascending order means that the table or array items are entered

starting with the lowest data item (according to the collating
sequence) and proceeding to the highest. Descending order means

CHAPTER 5. EXTENSION SPECIFICATIONS 5-7

that the table or array items are entered starting with the
highest data item and proceeding to the lowest.

If alternating tables or arrays are described in one file, the
entry in column 45 applies to the table or array containing the
item which appears first on the record.

When you are searching a table or array for an item (LOKUP) and
wish to know if the item is high or low compared with the search
word, your table or array must be in either ascending or
descending order. See Operation Codes, LOKUP in Chapter 8 for
more information. When a specific sequence has been specified,
RPG II checks the data in the table or array to see if it really
is in that sequence. In checking for sequence, an equal condition
(identical entries) is considered valid. This allows you to pad
the beginning of the table with zeros or blanks, or to pad the end
of the table with 9's (assuming EBCDIC, ascending sequence).

5.13 Columns 46-57 (Alternate Table/Array Specification)

Use columns 46-57 only when describing a second table or
array which is entered in alternating format with the table or
array named in columns 27-32. All fields in this section have the
same significance and require the same entries as the fields with
. corresponding titles in columns 27-45. An alternating array
cannot be described with an execution time array. See the
previous discussion on those columns for information about correct
specifications.

5.14 Columns 58-74 (Comments)

Enter any information you wish in columns 58-74. The
comments you use should help you understand or remember what you
are doing in each specification line. Comments are not
instructions to the RPG II program; they serve only as a means of
documenting your program.

5.15 Columns 75-80 (Program Identification)

See Chapter 2.

5-8 REPORT PROGRAM GENERATOR II

EXTENSION SPECIFICATION

PROGRAM PRO JATS Yol g
DATA FORMAT
OECIMAL POSITIONS
[stouence 4 o) r

UE(‘IMAL POSITIONS
[-SEQUENCE (A'D)

FORM TYPE =
NUMBER NUMBER
. ARRAY OR : LENGTH ARRAY OR
| e E:E;'f“ g I | oo
L 3 X 35:%n Ao solsalasls 152 578 7al7s 29|
IAANAERENRREARANE AN % P }42F *%& 27 IJlIl 1 Y TAGL Illl HEEE!
Tl Tl T r H!! Tl IIIHIIHIIIHII IRERRRRR

Figure 5=1, Examole of a sinale table description on Extensxon
So°c1f1cat1on.

—_—
A

e

——

T%BVE% F /MAphzthF(%ﬁ TAﬁL }
ERER P .

Al
Il

?M@wq

[

FEH

Figure 5-2. Example of alternating tables on Extension
Specification.

WP A JARRAN | '

s Je]]] RRAYI] o[[T _ _ '
‘I o“ali el I REAY2 1100 | 300 | # |2 WMEIRLC] JARRAY i
[lalri Tel | 1 RN I t AT , I

Figure 5-3. Example of an array description on Extension
Specification.

CHAPTER 5. EXTENSION SPECIFICATIONS 5-9

CHAPTER 6. LINE COUNTER SPECIFICATIONS

Line counter specifications should be used for the printer
file (except the keyboard-display) in your program. Line counter
specifications indicate at what line overflow occurs and the
length of the form used in a printer. Both of these entries must
be specified on the Line Counter Sheet (Figure 6-1). Line counter
specifications may be omitted if overflow indicators are not used
with untitled 66-1ine forms.

6.1 Columns 1-2 (Page) and Columns 3-5 (Line)

See Chapter 2.

6.2 Column 6 (Form Type)

An L must appear in column 6.

6.3 Columns 7-14 (Filename)

Use columns 7-14 to identify the output file to be written on
the printer. Filename must begin in column 7.

Any filename entered in these columns must be previously defined
on the File Description Sheet. The output device assigned to the
file on the File Description Sheet must be a printer.
6.4 Columns 15-17 (Lines per Page)

Entry Explanation

1-99 Number of printing lines per form or page.
Columns 15-17 specify the exact number of lines on the form or

page to be used. The entry must end in column 17. Leading zeros
may be omitted. '

CHAPTER 6. LINE COUNTER SPECIFICATIONS 6-1

6.5 Columns 18-19 (Form Length)
Entry Explanation
FL Form length

Columns 18-~19 must contain the entry FL. This entry indicates
that the preceding entry (columns 15-17) is the form length.

6.6 Columns 20-22 (Line Number of Overflow Line)
Entry Explanation
1-99 A line number from 1-99 is the overflow line.

Columns 20-22 specify the line number that is the overflow line.
The entry must end in column 22. Leading zeros may be omitted.

When the destination line of a space, skip, or print operation is
a line beyond the overflow line you have specified (but not beyond
the form length), the overflow indicator turns on to indicate that
the end of the page is near. When the overflow indicator 1is on,
the following occur before forms advance to the next page:

1. Detail lines are printed (if this part of the program cycle
has not already been completed).

2. Total lines are printed.
3. Total lines conditioned by the overflow indicator are printed.
Because all these lines are printed on the page after the overflow

line, you have to specify the overflow line high enough on the
page to allow all these lines to print.

6.7 Columns 23-24 (Overflow Line) .
Entry Explanation
oL Overflow line

Columns 23-24 must contain the entry OL. This entry indicates
that the preceding entry (column 20-22) is the overflow line.

6-2 REPORT PROGRAM GENERATOR II

6.8 Columns 25-TlU

Columns 25-T4 are not used, and should be left blank.

6.9 Columns 75-80 (Program Identification)

See Chapter 2.

LINE COUNTER SPECIFICATION .

PROGRAM. PROGR AMME| DATE PAGE. OF — —PAGES

FORM TYPE 4

PG [LINE FORM Prow PROGRAM
Fi L
LENAME LENGTH| UNE INOENTIFIGATION|

C 213 St

~

afs 17]'8 15{20 22)23 24 75 80

PRITFI L SI0IFL] 4410l

Collt ol Ol e ol

Figure 6-1. Example of Line Counter Specification.

CHAPTER 6. LINE COUNTER SPECIFICATIONS 6-3

CHAPTER 7. INPUT SPECIFICATIONS

Input specifications describe the data files, records, and
fields of the records to be used by the program. These
specifications may be divided into two categories:

1. File and record type identification (columns 7-42). These
specifications describe the input record and its relationship
to other records in the file.

2. Field description entries (columns 43-T4). These
specifications describe the fields in the records.

The specifications are written on the Input Sheet. Field
description entries must not appear on the same line as file or
record type identification entries.

7.1 Columns 1-2 (Page) and 3-5 (Line)

See Chapter 2.

7.2 Column 6 (Form Type)

An I must appear in column 6,

7.3 Columns 7-14 (Filename)

Columns 7-14 identify the input or update file being
described. The filename must begin in column 7 and conform to RPG
II naming specifications. Use the same filename given in the file
description specifications. The name of every input or update
file (except table input files) described in the file description
specifications must be entered at least once on this sheet. The
filename must appear on the first line that contains information
concerning the records in that file. If the filename 1is omitted,
the last input filename entered is assumed to be the file being
described. All records and fields for one file must be completely
described before another file can be described.

In RPGPLUS, the order in which files are described in the File

Specifications need not be the same as the order in which they are
described in the Input Specifications. However, in RPGII, files

CHAPTER 7. INPUT SPECIFICATIONS -1

must be described in the Input Specifications in the same order as
they were described in the File Specifications.

7.4 Columns 15-16 (Sequence)
Entry Explanation

Any two No check for special sequence,
Alphabetic
characters

Any Check for special sequence
two-digit
number

Columns 15-16 may contain a numeric entry which assigns a special
sequence to different record types in a file.

If different types of records do not need to be in any special
order, use two alphabetic characters. Alphabetic characters must
be used for chained files and look ahead records. Within one
file, record types having alphabetic and numeric sequence entries
can be specified for the same file, but all alphabetic entries
must be before the numeric entries.

Use columns 15-16 to assign sequence numbers to different types of
records within a file. A job may require that one record type
(identified by a record identification code) must appear before
another record type within a sequenced group. For example, a name
record may be needed before an address record. A record
identification code must be provided for each type of record and
the record types must be numbered in the order that they should
appear. The program will check this order as the records are
read. The first record type must have the lowest sequence number
(01), the next record type should be given a higher number, etc.
Gaps in sequence numbers are allowed, but the numbers used must be
kept in ascending order. The first sequence number must be O01.
Numeric sequence numbers only ensure that all records of record
type 01 precede all records of record type 02, etc., in any
sequenced group. The sequence numbers do not ensure that records
within a record type are in any certain order. Numeric sequence
numbers have no relationship with control levels, nor do they
provide for sequence checking of data in fields of a record. A
record type out of sequence causes the program to stop. Program
execution may be resumed, but the record that causes the halt is
bypassed and the next record is read from the same file.

T=2 REPORT PROGRAM GENERATOR II

Records in an AND or OR line cannot have a sequence entry in these
columns. The entry in these columns from the previous 1line also
applies to the AND or OR line.

7.5 Column 17 (Number)

Entry Explanation
Blank Record types are not being sequence checked (columns
15-16 have alphabetic entries).

1 Only one record of this type is present in the
sequenced group.

N One or more records of this type may be present in
the sequenced group.

Use column 17 only if sequence checking is to be done (columns
15-16 contain numbers). Often, when sequence checking, there may
be more than one record of a particular type within the sequenced
group, thus you must indicate by an entry in column 17 that a
certain number of records of one type may be found in the sequence
group.

AND or OR lines (columns 14-16 have the letters AND or OR) should
not have an entry in this column. It is assumed that the number
of records of this type to be found in the sequenced group is the
same as the number entered in column 17 of the previous line.
(See Columns 21-41 and Columns 53-58 in this chapter for more
information on OR lines).

7.6 Column 18 (Option)

Entry Explanation

Blank Record type must be present (if sequence checking is
specified).

0 Option. Record type may or may not be present.
Column 18 is used when record types are being sequence checked. A
blank entry specifies that a record of this record type must be
present in each sequenced group.

The O entry specifies that a record of this record type may or may
not be present in each sequenced group. If all record types are

CHAPTER 7. INPUT SPECIFICATIONS 7-3

optional, no sequence errors will be found,

AND or OR lines should not have an entry in this column. The
entry in this column on the previous line also applies to this
line. (See Columns 21-41 in this chapter for more information on
AND lines; see Columns 53-58 for more information on OR lines).

7.7 Columns 19-20 (Record Identifying Indicator)

Entry Explanation
01-99 Record identifying indicator.
L1-L9 Control level indicator, used for a record

identifying indicator when a record type rather than
a control field signals the start of a new control

group.
LR Last record indicator.
H1-H9 Halt indicator, used for a record identifying

indicator when checking for a record type that
causes an error condition.

* % Look-ahead fields.

Columns 19-20 may be used for two purposes:
1. Specifying record identifying indicators.

2. Indicating look-ahead fields.

7.7.1 Record Identifying Indicator

Use columns 19-20 to assign an indicator to each record type.
When you have different types of records within a file, you often
want to do different operations for each record type. Therefore,
you must have some way of knowing which type of record has just
been read. To do this, you assign different record identifying
indicators to each record type. Whenever a record type 1is
selected to be processed next, its corresponding identifying
indicator is turned on. (All other record identifying indicators
are off at this time, unless chained files or demand files are
being used, in which case several may be on at the same time.)
This indicator signals throughout the rest of the program cycle

T-4 REPORT PROGRAM GENERATOR II

which record type has just been selected. A record identifying
indicator need not be assigned if you are not concerned about
different record types.

Because the record identifying indicator is on for the rest of the
program cycle, you may use it to condition calculation operations
(see Columns 9-17 in Chapter 8) and output operations (see Columns
23-31 in Chapter 9).

Record identifying indicators do not have to be assigned in any
order.

When a control level indicator used as a record identifying
indicator turns on to reflect the type of record read, only that
one control level indicator turns on. All lower level indicators
remain off.

The same indicator may be assigned to two or more different record
types provided the same operations are to be performed on these
types. This can be done by using the OR relationship (see Columns
21-41 in this chapter).

No record identifying indicator may be specified in the AND line
of an AND relationship. Record identifying indicators for OR
lines may be specified for every record type in the OR
relationship that requires special processing. (See Columns 21-41
in this chapter for information on AND lines. See Columns 53-58 in
this chapter for information on OR lines).

T.7.2 Look Ahead Fields

Use asterisks in columns 19-20 to indicate that fields named
in columns 53-58 on the following specifications lines are
look-ahead fields. A look-ahead field allows you to look at
information in a field on the next record that is available for
processing in any input file. In update files, the look-ahead
field is for the record currently in process.

Two of the uses for look-ahead fields are:

1. Determining when the last card of a control group is being
processed.

2. Extending the RPG II matching record capability.

Look-ahead fields can be used with input and update files. They
cannot be specified for chained or demand files. You can describe

CHAPTER 7. INPUT SPECIFICATIONS -5

one set of look-ahead fields per file; the description applies to
all records in the file, regardless of their type. (The
specifications for describing the fields are given later).
Look-ahead fields cannot be altered in the program (they cannot be
used as a result field or blanked after).

If you wish to use information both before and after the record is
selected for processing, you must describe the field twice; once
as a look-ahead field and once as a normal field.

For update files, the look-ahead fields apply to the next record
in the file only if the current record was not read from that
file. Therefore, when you are reading from only one file and the
file is an update file, look-ahead fields always apply to the
current record.

At end of file, all look ahead fields for that file are filled
with nines.

INPUT SPECIFICATION

PROGAAM PROY OAYE PAGE_____OF.

PAGES

NUMBER CONTROL LEVEL
OPTION I— MATCHING FIELDS
TYPE FORM [[=recono moicaror DECIMAL FOFMAT _ DECIMAL POSITIONS- = FIELD RECORD RELATION
FIELD LOCATION INOKEATORS
ol FILE NAM seQ posinion |5l o] %1 rosimion [5]6} %] rosimon {5 [5] FIELD NAME [s hogR
e NO e 13 o % ‘3 (I) g 3 5 S Zlo }‘) staRT EnD N - on IDENTIFICATION
1]
1 E 1l taf's & NGl &k 21 24 ZEJ_?T 28 31]5e]si313s 28130130141 41144 47148 51152153 58159 61 83 €5 67 62 71 74175 80}
0 3[ah] 1 [PRl MARY| lalAl T 1ol /] 1CIA |
b
03]ei2] |1 L 5| (KIEWL/ M/
Q}o?: i J4b o [0} WUN
031 oja] 11| Bl | P
0305l 11 5| IWEXTI!
103]0s [V GEICIOMD | IBA L 020 L1V 1CE)]
0.3lert I | 1L 2| 5 IKIElYIZ i/
03]¢'s] |1 T T 18] |oAlTiA
; ” i
L Joei |1 H ’ 1 1 A O T I O O I -
- -t =1 111 1 -
et 1o I I |

Figure 7-1. Example of look-ahead specification.

7-6 REPORT PROGRAM GENERATOR II

7.8 Columns 21-41 (Record Identification Codes)

Use columns 21-41 to describe the information that identifies
a record type.

When there are many record types in one file, you often want to
perform different operations for each type. Therefore, you must
identify each type by giving each a special ¢tode consisting of a
combination of characters in certain positions in the record.

This code must be described in columns 21-41 so that when a record
is read the record type can be determined by these specifications.
The first record identifying character should be identified in
columns 21-27, the second in columns 28-34, and so forth.

You may specify AND or OR lines in any combination to describe the
record identifying code. The record must contain all the
characters indicated as its record identification code before the
record identifying indicator will turn on.

Seven columns are set aside for the description of one character
in the record identification code. Each specification line
contains three sets of seven columns: columns 21-27, 28-34, and
35-41. Each set consists of 4 fields: Position, Not, C/Z/D, and
Character. Coding is the same for all three sets.

When more than one record type is used in a file, only one record
type will be selected for processing in each cycle. The record
identifying indicator for that record type will be turned on at
the time of selection. If a data record meets the requirements of
more than one of the record types, it will belong to the first
record type for which it qualifies. When all records are to be
processed alike regardless of their type, or if there is only one
type, leave columns 21-41 blank.

Note: If none of the identifying codes you have specified is
found on a record, processing stops. You may continue. However,
the record that caused the halt is not processed, and the next
record in that file is read.

T.8.1 Position

Entry Explanation
Blank No record identificaton code is needed.
1-4096 Record position of the record identification code.

CHAPTER 7. INPUT SPECIFICATIONS =7

Use columns 21-24, 28-31, and 35-38 to give the location in the
record of every character in the identification code. Entries in
these columns must end in columns 24, 31, and 38 respectively.
Leading zeros can be omitted.

7.8.2 Not
Entry Explanation
Blank Record ID code is present in the specified column.
N Record ID code is not present in the specified

column.

Use an 'N' in columns 25, 32, or 39 to indicate that a certain
character should NOT be present in the specified position.

7.8.3 C/Z/D

Entry Explanation

C Entire character.

Z Zone portion of character.
D Digit portion of character.

Use columns 26, 33, or 40 to indicate what portion of a character
is used as part of the record identifying code. Only the zone
portion, only the digit portion, or both portions (the whole
character) may be used. When establishing record identifying
codes, remember that many characters have either the same zone or
the same digit portion.

7.8.4 Character

Use any alphabetic character, special character, or digit in
columns 27, 34, or 41 to identify the character that was used in
the record to serve as the code or part of the code.

7-8 REPORT PROGRAM GENERATOR II

7.8.5 AND Relationship

A maximum of three identifying characters may be described in
one specification line. Thus, if the identification code consists
of more than three characters, an AND line must be used. This
means that the first three identifying characters are described in
the first line. The additional identifying characters are
described in as many following lines as are needed. Write the
word AND in columns 14-16 to indicate an AND line. '

7.8.6 OR Relationship

A particular record type may be identified by two different
codes. If this is the case, OR lines must be used to indicate
that either one of the codes may be present to identify the

record. Write the word OR in columns 14-15 to indicate an OR
line,

INPUT SPECIFICATION

PROGRAM.

PRO SA e, ——FAGES
CONTROL LEVEL
NUMBER r MATCHING FIELOS
TYPE FORM~ [rom,f:cconuwmcnon DECIMAL FORMAT _ DECIMAL POSITIONS— l- r-"El-D:LELCfRD RELATION
FIELD LOCATION INDICATORS prOGAAM
PG | UNE sea posimion | 5| o] £{ posirion 5[0 | %[posimion |55 |% FIELD NAME g IDENTIFICATION
No | No FILE NavE z|o|& 2|61 Hold START eno A B
slelr 1afis erbafie dor 2420306127128 3] ol dsalas anpoiiba] Lol a7l48 s1§52153 sﬂg__mrls_sv__p_s_ 67 _feo f71 74175 s_o*
oo] Lty el TalAl [1dls] 1 12221 lefr) 1 123 plal T 12zl -
ojz| |u OR 2021 folT] | 1212] i3
oial |1 : 141
o4 |t .
os; DINIFILEZ [BC] | 10j2] | 0] 1CIA] | lolZ] 1ci8] | 03] ICC
+ q
elst) | AN;D 11 o4 .01?.1__,0,.5 ClE]
ot il] |] |

Figure 7-2. Example of record identification line in Input
Specification.

CHAPTER 7. INPUT SPECIFICATIONS 7-9

7.9 Column 42

Column 42 is not used and should be left blank.

" 7.10 Column 43 (Packed or Binary Field)
Entry Explanation

Blank = Field is in IBM-compatible decimal format, or is
alphameric. '

- Field is in Datapoint-compatible decimal format.

Column 43 is used to indicate that a numeric field is in
‘Datapoint-compatible format. Fields in this form will be
converted to IBM-compatible form for use within the RPG II
program.

An array which is read in Datapoint format should have an entry in
column 43 of the Input Sheet. In this case the From and To
columns of the Input Sheet should define the position the array
occupies in the record. The array element length is defined on
the Extension Sheet.

7.10.1 IBM Compatible Format

In this format, numeric input data is represented without an
explicit decimal point and with the sign superimposed over the
right-most digit. Leading zeroes may be replaced with blanks.
This is the form RPG normally processes.

7.10.2 Datapoint Compatible Format

In this format numeric input data must be represented with an
explicit decimal point unless the field contains no decimal
positions. In this case the decimal point may or may not bDe
present. If the number is negative, the character preceding the
first digit (or the decimal point) must be a minus sign. Since
RPG does not internally store the decimal point, the internal
field assigned is one byte less than the external field size with
the same number of decimal positions.

7-10 REPORT PROGRAM GENERATOR II

INPUT FIELD SIZE INTERNAL FIELD SIZE

A. 1234, 5.0 1234 4.0
B. -123. 5.0 012L 4.0
C. =-1234 5.0 123M 4.0
D. 01234 5.0 1234 4.0
E. 12345 5.0 illegal 4.0
F. 12.34 5.2 12734 4.2
G. =1.23 5.2 0172L b2

Caret (") implies assumed decimal point.

Example E shows that since the field contains five digits (no
decimal point or sign is present), it cannot be converted to a
four digit internal number. An attempt to read in a field larger
than will fit will cause an error message to be displayed.

T7.11 Columns 44-51 (Field Location)

Entry Explanation
Two Beginning (From) and end (To) of a field.
numbers

of 1-4 digits

Use columns 44-51 (From and To) to describe the location on the
record of each field containing input data named in columns 53-58
(Field Name). Enter the number of the record position in which
the field begins in columns 44-47, Enter the number of the record
position in which the field ends in columns 48-51.

A single position field is defined by putting the same number in
both From (columns 44-47) and To (columns 48-51). If a field of
more than one position is defined, the number entered in From
(columns 44-47) must be less than the number entered in To
(columns 48-51).

It is not necessary that the From and To columns specify a whole
array. A portion of an array may be read in; however, the array
will be read in from element 1 up to as many elements as will fit
in the numbers specified in the From and To columns.

DATABUS compatible input fields must take at least two positions.

The maximum field length for a numeric field is 15 positions. The
maximum field length for an alphanumeric field is 256 characters.

CHAPTER 7. INPUT SPECIFICATIONS 7-11

Entries in these columns must end in columns 47 and 51. Leading
zeros may be omitted.

7.12 Column 52 (Decimal Positions)

Entry Explanation
Blank Alphanumeric field.
0-9 Number of decimal positions in numeric field.

Use column 52 to indicate the number of positions to the right of
the decimal in any numeric field named in columns 53-58. Column 52
must always have an entry when the field named in columns 53-58 is
numeric. If you wish to define a field as numeric with no decimal
positions, enter a 0. If a field is to be used in arithmetic
operations or is to be edited, it must be numeric. The number of
decimal positions must be less than or equal to the field length.

7.13 Columns 53-58 (Field Name)

Entry Explanation

1-6 Field name, array name, or array
alphanumeric element.

characters

PAGE Special word.

Use columns 53-58 to name a field, array, or array element found
on the input records. If you are referencing an array, additional
entries may be needed in these columns. Use this name throughout
the program whenever this field is referred to. Indicate the names
of the fields for all types of records. However, you need name
only the fields that are used.

7T.13.1 Field Names

A field name can be from one to six characters long, must
begin in column 53, and must be a valid RPG II name.

All fields in one type of record should have different names. If
two or more fields of the same record type have the same name,
only the field described last is used. However, fields from
different record types may have the same name if the fields are

7-12 REPORT PROGRAM GENERATOR II

the same length and contain the same type of data. This applies
even if the fields are found in different locations in each record
type. Storage is only reserved for each unique field name defined.

Fields that are used in arithmetic operations or fields that are
edited or zero suppressed (see Column 38 and Columns 45-T70 in
Chapter 9) must be defined as numeric. This means that column 52
must have a decimal position entry.

A separate line is used for each field description.

T.13.2 Field Names in OR Relationship

Even though two or more record types contain identical fields
you must describe each field. This may require duplicate coding.
To eliminate duplicate coding of identical fields from different
record types, you may use the OR relationship.

An OR relationship means that the fields named may be found in
either one of the record types. You may use OR lines when:

1. Two or more record types have the same fields in the same
positions.

2. Two or more record types have some fields which are identical
and some fields which differ in location, length, or type of
data.

Write the word OR in columns 14 and 15 to indicate an OR line. If
there are several AND or OR lines, field description lines start
after the last record identification line.

7.13.3 Special Word PAGE

If your printed report has several pages, you may want to
number the pages. The special word PAGE allows you to indicate
that page numbering is to be done. When you use a PAGE entry on
the Output-Format Sheet, page numbering automatically starts with
1.

If you want to start at a page number other than 1, you can enter

that page number in a field of an input record and name that field
PAGE in columns 53-58. The number you enter in the PAGE field of

the input record should be one number less than the starting page

number. If your numbering should start with 24, enter a 23 in the
PAGE field. The PAGE field can be of any length (up to 15

CHAPTER 7. INPUT SPECIFICATIONS 7-13

positions), but must have zero decimal positions specified. Any
entry you make in the PAGE field should be right justified, such
as 0023.

Page numbering can be restarted during a program run by entering a
number in a page field of any input record. The PAGE field can be
defined and used in calculations like any other field.

7.14 Columns 59-60 (Control Level)
Entry Explanation
L1-L9 Any control level indicator.

Use columns 59-60 to assign control level indicators to input
fields. (Control level indicators may not be associated with a
chained or demand file). Control level indicators are used to
specify the point at which specified operations are to be done.
You may assignh a control level indicator to any field. This field
is then known as a control field and is checked for a change in
information. When information in the control field changes, a
control break occurs. All records having the same information in
the control field are known as a control group.

Whenever a record containing a control field is selected, the data
in the control field is compared with data in the same control
field from the previously selected record. When a control break
occurs, the control level indicator turns on. Operations
conditioned by the control level indicators are then done before
processing the record which caused the control break, since that
record is the first record of a new control group.

7.14.1 L1-L9 (Control Level Indicators)

Control level indicators are used to signal when a change in
a control field has occurred. Because they turn on when the
information in a control field changes, they may be used to
condition operations (such as finding totals) that are to be
performed only when all records having the same information in the
control field have been read. They may also be used to do total
printing or to condition operations that are to be done on only
the first record in a control group. Control level indicators
always turn on after the first record of a control group is read.

T-14 REPORT PROGRAM GENERATOR II

7.15 Columns 61-62 (Matching Fields)
Entry Explanation
M1-M9 Any matching level.

Use columns 61-62 to specify matching fields and sequence
checking.

An entry in columns 61-62 indicates:

1. Matching fields and sequence checking when you have two or
more input or update files with match fields.

2. Only sequence checking when you have just one input or update
file.

7.15.1 Matching Fields

Make an entry in columns 61-62 when you wish to compare
records from two or more input or update files in order to
determine when records match. Records can be matched by matching
one field, many fields, or entire records. You can indicate as
many as nine matching fields (M1-M9). Whenever the contents of
the match fields from records of the primary file are the same as
the contents of the match fields from a secondary file, the
matching record (MR) indicator turns on. M1-M9 are used only to
identify fields by which records are matched. The values M1-M9
are not indicators, but do cause MR to turn on when a match
occurs. Matching is allowed with primary and secondary files
only. -

7.16 Columns 63-64 (Field Record Relations)

Entry Explanation

01-99 Record identifying indicator assigned to a record
type.

L1-L9g Control level indicator previously used.

MR Matching record indicator.

U1-U8 External indicator previously set.

H1-H9 Halt indicator previously used.

CHAPTER 7. INPUT SPECIFICATIONS =15

Columns 63-64 have several uses which are discussed after these
general rules:

1. All fields, including matching or control fields, that have no
field record relation specification, should come before those
that do. :

2. All fields related to one record type (that is, having the
same Field Record Relation entry) should be entered as a group
in specification lines following one another for more
efficient use of core storage. These fields could, however,
be entered in any order.

Mo breeen, W

3. All portions of a split control field must be assigned the
same field record relation indicator and must be entered as a
group 1in specification lines following one another.

4, When used with match or control fields, the field record
relation indicator must match a record identifying indicator
for this file.

5. When any match value (M1-M9) is specified without field record
relation, all match values used must be specified once without
- field record relation. If all match fields are not common to
all records, a dummy match field should be used.

7.16.1 Record Identifying Indicators (01-99)

Columns 63-64 are commonly used when several record types
have been specified in an OR relationship. Fields which have no
field record relation indicator are associated with all the record
types in the OR relationship. This is fine when all record types
have the same fields, but if the record types in the OR
relationship have some fields that are the same and some that are
not the same, you do not want to associate every field with all
records. Therefore, there must be some way of relating a field to
a certain record. To do this, place in columns 63-64 the record
type in which the field is found.

Control fields (indicated by entries in columns 59-60) and
matching fields (indicated by entries in columns 61-62) may also
be related to a particular record type in an OR relationship by a
field record relation entry. Control fields or matching fields
that are not related to any particular record type in the OR
relationship by the field record relation indicator are used with
all record types in the OR relationship.

7-16 REPORT PROGRAM GENERATOR II

When two control fields have the same control level indicator or
two matching fields have the same matching level entry, it is
possible to assign a field record relation indicator to just one
of the control fields or to just one of the matching fields. 1In
this case, only the specification having the field record relation
indicator is used when that indicator is on. If none of the field
record relation indicators are on for that control field or
matching field, the specification without a field record relation
indicator is used. Control fields and matching fields cannot have
an L1-L9, U1-U8, or MR entry in columns 63-64.

7.16.2 Control Level (L1-L9) and Matching Record (MR) Indicators

Another situation for which you may use these columns is when
you wish to accept and use data from a particular field only when
a certain condition (such as matching records or a control break)
occurs. You indicate the conditions under which you accept data
from a field by indicator L1-L9 or MR. Data from the field named
in columns 53-58 is accepted only when the indicator is on.

T.16.3 External Indicators (U1-U8)

These columns may also be used to condition a specification
by an external indicator (U1-U8). The external indicator, which
is set prior to processing, conditions whether a field is to be
used in the program. When the indicator is on, the field is read;
when the indicator is off, the field is not read.

External indicators are primarily used when file conditioning is
done by an entry in columns T71-72 in the file description
specifications. However, they may also be used to condition when

a specification should or should not be done even though file
conditioning is not specified.

7.16.4 Halt Indicators (H1-H9)
A halt indicator is used to relate a field to a record that

is in an OR relationship and also has a halt indicator specified
in columns 19-20 of the input record specifications.

CHAPTER 7. INPUT SPECIFICATIONS =17

7.17 Columns 65-70 (Field Indicators)

Entry Explanation !
01-99 Field indicator.
H1-H9 Halt indicator (when checking for an error condition

in the data).

Use field indicators 01-99 to test a field for a condition of
either plus, minus, zero, or blank. The indicator specified turns
on if the condition 1is true for the input record; it remains off
or turns off if the condition is not true for the input record.
These indicators may then be used to control certain calculation
or output operations.

The three conditions which may be checked for are:

1. Plus (columns 65-66). Any valid indicator entered here is
turned on if the numeric field named in columns 53-58 is
greater than zero.

2. Minus (columns 67-68). Any valid indicator entered here is
turned on if the numeric field in columns 53-58 is less than
zero.

3. Zero or blank (columns 69-70). Any valid indicator entered
here is turned on if a numeric field named in columns 53-58 1is
all zeros or if an alphanumeric field is all blanks.

A numeric field which is all blanks will turn on an indicator
specified for all zeros. However, if an alphanumeric field is all
zeros, the field will NOT turn on an indicator specified for all
blanks.

7.17.1 Halt Indicators

Specify any halt indicator (H1-H9) in columns 65-70 to check
for an error condition in your data. For example, if a field
should not be zero, you may specify a halt indicator to check for
that zero condition. If a zero field is found, the halt indicator
turns on and the job stops after the record with the zero field
has been processed.

Indicators H1-H9 cause the program to halt after the record which
caused the indicator to turn on is completely processed.

7-18 REPORT PROGRAM GENERATOR II

7.18 Columns T1-T4

These columns are not used and should be left blank.

T7.19 Columns 75-80 (Program Identification)
See Chapter 2.

INPUT SPECIFICATION

PROGRAM. PROGRAMMER. DATE

PAGE . OF._____PAGES
NUMBER -CONTROL LEVEL
OPTM MATCHING FIELDS
TYPE FORM r 1~=RECORD INDICAT (R DECIMAL FORMAT -y DECIMAL POSITIONS= r = FIELD RECORD FELATION
FIELD
FIELD LOCATION INDEATORS
PG | e FILE NAME sea rosirion | 5[0 3| rosimon {5]6] 3] posmion {5 {1 % FIELD NAME " i
afw Qe BRI i IFICATH
o No 1015 zlols ~1old) START END * - (f 1OENTIFICATION
3 “1hRp7 34415 i N) 21 2a)0n]2el27 o8 ki iy Akl 21 6il el el 43p44 47 148 51152153 53159 59 63 65 67 &l tal 14175 B_O]
0:1]
| | foia] 1 _ 1L H 1 WBL IMAME]
93, 1! 1 110 /] WUMBERILYI
7
G-] | 201 131 _|AMOUINIT] 11011172)
01 s. {! .

Figure 7-3. Example of field specifications on Input
Specification.

CHAPTER 7. INPUT SPECIFICATIONS 7-19

INPUT SPECIFICATION

PROGRAM PRCK 1 vATE PAGE .. Ur ... _PAGLS
NUMBER CONTROL LEVE
OPTION MALCHING FIELDS
TYPE FORM~ [[(=atconn moicaron DECIMAL FORMAT 4 DECIMAL POSITIONS r L£=FIFLD RECOMD RELATION
FIELD LOGATION ,Nl,',gﬁ,o,,s
2 ";;‘JE FILE NAME SEQ rosimon |5 % posimon |6 o SE rosirion |5]5 ? FIELD NAME s :o:::fn?::o«
ol ols “lo)o) START END A R .
3 3507 raps _ptrpeadeo g2y 2al2st0|o7)28 3rjacfaufas) &) K C1] B EX) 223 47 s1fslsy salso Y6y 163 los 167 o9 i1 74]s Ly
ot (1O S ITIoMERIG /N 110 111/ JCA
ojz] |1 2 0} JAICICITVOIL|I M/
olay |1 i A /oL 11201 wAmE -
gal | 1 : 211 | oL Ay
ols! |1 02} 1112 1] 1018]
| fole] |1 j i} IRNZBRRANNd < nnrasn) SRNEE
oir] |a 7)1 1 |Z|28A 1L A NMC 31013]/13:.2)
ool I T 1 119loleAles 11
ols] It _ -] et} e
tol i 0i3V|o|/ |4 /1o
] 1 2 e Aelemvari] T
el] i ~ T Tirzdamounin |11 ez
131 h] ~ “J..J
va; I | X R
1si]
T 1 T

Figure 7-4., Example of Input Specification.

7-20 REPORT PROGRAM GENERATOR II

CHAPTER 8. CALCULATION SPECIFICATIONS

Calculation specifications describe the calculations to be

performed on the data and the order in which they are to be
performed. Each calculation specification can be divided into
three parts that indicate:

1.

8.2

8.3

When the operation is to be performed (columns 7-17). The
indicators entered in these columns determine under what
conditions the operation specified is to be done.

What kind of operation (column 28-32) is to be performed on
the data in columns 18-27 and/or columns 33-42. Entries in
these fields describe the kind of operation to be done. They
also specify the data upon which the operation is to be
performed, and, if applicable, where the result is to be
placed.

What tests are to be made on the results of the operation
(columns 54-59). The indicators entered here signal the

nature of the result of the operation and may serve to
condition other operations.

Columns 1-2 (Page) and 3-5 (Line)

See Chapter 2.

Column 6 (Form Type)

A C must appear in column 6.

Columns 7-8 (Control Level)

Entry Explanation

Blank Calculation operation is not part of a subroutine
and may only be performed for detail calculations.

LO, Calculation operation is done when the

L1-L9 appropriate control break occurs or when an

CHAPTER 8. CALCULATION SPECIFICATIONS 8-1

LR

SR

AN, OR

indicator is set on (LO is always on).

Calculation operation 1is done after the last record
has been processed or after the LR indicator has
been set on by a SETON operation.

Calculation operation is part of a subroutine.

Establishes AND and OR relationships between lines
of indicators.

If columns 7-8 are blank, the operation specified on the same line
is done every time a record is read, provided indicators in
columns 9-17 of that line or AN/OR lines associated with that 1line

allow it.

Calculations must be specified in the following order:

1. Detail (blank in columns 7-=8).

. 2. Total (LO or L1-L9 in columns 7-8).

3. Last record (LR in columns 7-8). LR calculations must appear
after L1-L9 calculations.

4, Subroutine (SR in columns T7-8).

AN/OR lines
AN/OR lines
on the last
8.4 Columns
Entry

Blank

01-99
L1-L9
LR
MR

H1-H9

8-2

can appear within any of the above calculations. When
are used, the operation and its operands are entered
line of the AN/OR group.

9-17 (Indicators)

Explanation

Operation is performed for every record read unless
columns 7-8 contain LO, L1-L9 or SR.

Resulting indicators used elsewhere in. the program.
Control level indicators previously assigned.

Last record indicator,.

Matching record indicator.

Halt indicators assigned elsewhere.

REPORT PROGRAM GENERATOR II

u1-us External indicators previously set.

0A-0G,0V Overflow indicator previously assigned.
Use columns 9-17 to assign indicators that control when an
operation is or is not to be done. From one to three indicators
may be used on a line. By using AN or OR entries in columns 7-8,
many indicators can be used to condition one operation.
There are three separate fields (9-11, 12-14, and 15-17) on each
line, one for each indicator. If the indicator must not be on in
order to condition the operation, place an N before the
appropriate indicator (columns 9, 12, 15).
All three indicators on one line are in an AND relationship with
each other. The indicators on one line, or indicators in grouped
lines, plus the control level indicator (if used in columns 7-8)
must all be exactly as specified before the operation is done.
Unless otherwise specified, any calculation operation may be
conditioned by indicators.
8.5 Columns 18-27 and Columns 33-42 (Factor 1 & 2)

Use columns 18-27 and 33-42 to name the fields or to give the
actual data (literals) on which an operation is to be performed.
The entries which can be used are:

1. The name of any field that has been defined.
2. Any alphanumeric or numeric literal.
3. Any subroutine, table or array name, or an array element.
4, Any data field names (UDATE, UMONTH, UDAY, UYEAR).
5. The special name, PAGE.
A label or a TAG, BEGSR, or ENDSR operation (Factor 1 only).

T. A filename for a CHAIN, DEBUG, DSPLY, READ, or FORCE operation
(Factor 2 only).

An entry in Factor 1 must begin in column 18; an entry in Factor 2
must begin in column 33.

The entries you use depend upon the operation you are describing.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-3

Some operations need entries in both sets of columns, some need
entries in only one, and some need no entries at all.
8.6 Literals

A literal is the actual data used in an operatién rather than

the field name representing that data. A literal may be either
alphanumeric or numeric.

1. Any combination of characters may be used in an alphanumeric
literal. Blanks are also valid.
2. Alphanumeric literals must be enclosed by apostrophes (').

3. The maximum length of an alphanumeric literal is eight
characters excluding the two enclosing apostrophes.

4, An apostrophe required as part of a literal is represented by
two apostrophes. For example, the literal O'CLOCK would be
written as 'O''CLOCK'.

5. Alphanumeric literals may not be used for arithmetic
operations.’

Consider the following rules when using a numeric literal:

1. A numeric literal consists of any combination of the digits
0-9. A decimal point or sign may also be included.

2. The maximum total length of a literal is 10 characters
including signs and decimal points.

3. Blanks may not appear in the literal.

4., The sign, if present, must be the leftmost character. An
unsigned literal is treated as a positive number.

5. Numeric literals must NOT be enclosed by apostrophes (').

8-4 REPORT PROGRAM GENERATOR II

8.7 Columns 28-32 (Operation)

Use columns 28-32 to specify the kind of operation to be
performed using Factor 1, Factor 2, and/or the Result Field and
resulting indicators. The operation code must begin in column 28.
A special set of operation codes have been defined which must be
used to indicate the type of operation desired. Every operation
code used requires certain entries on the same specification line.
For further information on the operations that can be performed,
see Operation Codes in this chapter.

The operations are performed in the order specified on the
Calculation Sheet.

All operations conditioned by control level indicators in columns
7-8 must follow those that are not conditioned by control level
indicators. All operations which are part of a subroutine (SR in
column 7-8) must follow all other calculations in a program.

8.8 Columns 43-48 (Result Field)

Entry Explanation
Result Field, table, array, or array element.
Field

Use columns 43-48 to name the field, table, array, or array
element that will hold the result of the operation specified in
columns 28-32. You may use the name of a field, table, array, or
array element that has already been defined either on extension
specifications, input specifications, or elsewhere in the
calculation specifications.

Otherwise you may define a new field by entering a field name that
has not already been used. Any field you define here will be
created at the time the program is compiled. The field you name
may be either numeric or alphanumeric. A field used in arithmetic
operations or numeric compares, or a field edited or =zero
suppressed in output-format specifications must be numeric.

The result field name must begin with an alphabetic character in
column 43 and contain no blanks or special characters.

If you are entering the name of a field that has not been defined
elsewhere, columns 49-52 should also contain entries. If you are
entering the name of a field that has been defined, entries in

columns 49-52 are not necessary but if specified must agree with

CHAPTER 8. CALCULATION SPECIFICATIONS 8-5

the previous definition of that field.

8.9 Columns 49-51 (Field Length)

Entry Explanation
Blank Alphanumeric or numeric field described elsewhere.
1-256 Result Field 1length.

Use columns 49-51 to give the result field length for any result
field. If you are naming a new field (one that has not been used
before), you must consider the form your data will be in and the
length it will have after the operation has been performed.

Whenever the field length is specified for a result field, you
should be careful to make the result field long enough to hold the
largest possible result. If the result field is too small,
significant digits may be lost. For example, you may wish to add
field A (eight characters long, four decimal places) to field B
(ten characters long, six decimal positions). Fields A and B have
four characters to the left of the decimal, but the result field,
field C, must allow for more characters to the left of the
decimal.

9999.0000 Field A
0001.111111 Field B
10000.111111 Field C (result field)

In this case, field C was defined as 11 characters long with six
decimal positions. Some of the numbers to the right of the
decimal could be lost without changing the meaning of the result
greatly. However, if field C were defined as 10 characters long
with six decimal positions, an error during execution results.

Numeric fields have a maximum length of 15 characters.
Alphanumeric fields may be up to 256 characters long. You may
indicate the length of a field that has been previously described
either in the Input Specifications or in Calculation
Specifications. However, if you do so, you must specify the same
field length and number of decimal positions as was previously
given to the field.

If the result field contains the name of a table or array, an
entry in these columns is optional. If used, it must agree with

8-6 REPORT PROGRAM GENERATOR II

the length described in the Extension Specifications.

8.10 Column 52 (Decimal Positions)

Entry Explanation
Blank Alphanumeric or numeric field described elsewhere.
0-9 Number of decimal places in a numeric result field.

Use column 52 to indicate the number of positions to the right of
the decimal in a numeric result field. If the numeric result
field contains no decimal positions, enter zero.

This column must be left blank if the result field is
alphanumeric. It may also be left blank if the result field is
numeric but has been previously described in the Extension, Input,
or Calculation Specifications., In this case, Field Length
(columns 49-51) must also be blank.

The number of decimal positions must never be greater than the
length of the field. The number may, however, be larger or
smaller than the number of decimal positions that actually result
from an operation. If the number specified is smaller than the
number that results from the operation, the rightmost digits
(lowest order, or least significant, decimal places) are dropped.

8.11 Column 53 (Half Adjust)

Entry Explanation
Blank Do not half adjust.
H Half adjust.

Use column 53 to indicate that the contents of the result field
are to be half adjusted (rounded). In essence, half adjusting is
done by adding a 5 (-5 if the field is negative) to the number at
the right of the last decimal position specified for this field.
A11 decimal positions to the right of the position specified for
that field are then dropped.

The half adjust entry is allowed only with arithmetic operations.
This entry cannot be specified for a DIV operation followed by an

CHAPTER 8. CALCULATION SPECIFICATIONS 8-17

MVR operation.

8.12 Columns 54-59 (Resulting Indicators)

Entry Explanation

01-99 Any numeric indicator.

H1-H9 Any halt indicator;

L1-L9 Any control level indicator.

LR Last récord indicator.

0A-0G, Any overflow indicator (if specified on File
ov Description Sheet).

1. To test the value of the result field after an arithmetic
operation.

2. To check the outcome of a CHAIN, LOKUP, COMP, TE3STB, or TESTZ
operation,

3. To specify which indicators to SETON or SETOF.
4, To indicate end of file for the READ operation code.

By entering an indicator in columns 54-59, you specify that the
result field is to be tested after the operation specified in
columns 28-32 has been performed. (Normally, only indicators
01-99 and H1-H9 are used for testing). The indicator specified is
turned on only if the result field satisfies the condition being
tested for. This indicator may then be used to condition
following calculations or output operations. If the same ;
indicator is used to test the result of more than one operation,
the operation last performed determines the setting of the
indicator.

Notice that three fields (columns 54-55, 56-57, and 58-59) can be
used for this purpose. Each field is used to test for different
conditions: columns 54-55, plus or high; columns 56-57, minus or
low; columns 58-59, zero or equal. You can test for more than one
of the conditions.

8-38 REPORT PROGRAM GENERATOR II

8.12.1 Columns 54-55 (Plus or High)

Place an indicator in these columns when testing to find:
If the Result Field in an arithmetic operation is positive.
If Factor 1 is higher than Factor 2 in a compare operation.

If Factor 2 is higher than Factor 1 in table or array lookup
operation.

The results of a CHAIN (not found), TESTB (all O's), or TESTZ
operation (for characters '&' and 'A-I').

8.12.2 Columns 56-57 (Minus or Low):

Place an indicator in these columns when testing the Result

Field to find:

If the Result Field in an arithmetic operation is negative.
If Factor 1 is lower than Factor 2 in a compare operation.

If Factor 2 is lower than Factor 1 in table or array lookup
operation.

The results of a TESTB (mixed), or TESTZ operation (for
characters '}','-', and 'J-R').

8.12.3 Columns 58-59 (Zero or Equal)

Place an indicator in these columns when testing the Result

Field to find:

If the Result Field in an arithmetic operation is zero.
If Factor 1 is equal to Factor 2 in a compare operation.

If Factor 2 is equal to Factor 1 in a table or array lookup
operation.

The results of a READ (end of file), TESTB (all ones), or
TESTZ operation (neither of the preceding).

CHAPTER 8. CALCULATION SPECIFICATIONS 8-9

8.13 Columns 60-74 (Comments)

Enter in columns 60-7T4 any meaningful information you wish.
The comments you use should help you understand or remember what
you are doing on each specification line. Comments are not
instructions to the RPG II program. They serve only as a means of
documenting your progranm.

8.14 Columns 75-80 (Program Identification)

See Chapter 2.

8.15 Operation Codes

You are able to perform many different types of operations on
your data using the RPG II language. Special codes have been set
up which indicate the operation to be performed. Usually these
are Jjust abbreviations of the name of the operation. You must use
these codes to specify the operation to be performed.

Operations may be divided into nine categories; all codes in each
category are explained in this section.

8.16 Arithmetic Operations

Arithmetic operations can be performed only on numeric fields
or literals. The result field must also be numeric. For
arithmetic operations in which all three fields are used:

1. Factor 1, Factor 2, and the Result Field may all be different
fields.

2. Factor 1, Factor 2, and the Result Field may all be the same
field.

3. Factor 1 and Factor 2 may be the same field but different from
the Result Field.

4, Either Factor 1 or Factor 2 may be the same as the Result
Field.

The length of any field involved in an arithmetic operation cannot
exceed 15 digits. If the result exceeds 15 digits, digits may be
dropped from the right end of the fractional part of the result.
Too many digits in the integer part of the result causes an

8-10 REPORT PROGRAM GENERATOR II

execution error diagnostic. The results of all operations are
signed (+, -). Any data placed in the result field replaces the
data that was there previously.

8.16.1 Add (ADD)

Factor 2 is added to Factor 1. The sum is placed in the
Result Field. Factor 1 and Factor 2 are not changed by the
operation.

8.16.2 Zero and Add (Z-ADD)

Factor 2 is added to a field of zeros, and the sum is placed
in the Result Field.

8.16.3 Subtract (SUB)

Factor 2 is subtracted from Factor 1., The difference is
placed in the Result Field. Factor 1 and Factor 2 are not changed
by the operation.

Note: Subtracting two fields which are the same is a method of
setfting the result field to zero.

8.16.4 Zero and Subtract (Z-SUB)

Factor 2 is subtracted from a field of zeros. The difference
is placed in the Result Field. This actually places the negative
of Factor 2 in the Result Field. This operation can be used to
change the sign of a field. Factor 1 is not used.

8.16.5 Multiply (MULT)

Factor 1 is multiplied by Factor 2. The product is then
placed in the Result Field. Factor 1 and Factor 2 are not
changed. When you use (as a factor) a field which is described as
the Result Field, you must be sure the Result Field is large
enough to hold the product.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-11

8.16.6 Divide (DIV)

Factor 1 (dividend) is divided by Factor 2 (divisor). The
result (quotient) is placed in the Result Field. Factor 1 and
Factor 2 are not changed.

If Factor 1 is 0, the result of the divide operation will be 0.

Factor 2 cannot be 0. If it is, the job stops immediately and a
halt code is displayed. If processing is continued, the result

and remainder are set to zero.

Any remainder resulting from the divide operation is lost unless
the move remainder operation is specified as the next operation.
If move remainder is the next operation, the result of the divide
operation cannot be half adjusted (rounded).

8.16.7 Move Remainder (MVR)

This operation moves the remainder from the previous divide
operation to a separate field named under Result Field. Factor 1
and Factor 2 must not be used. This operation must immediately
follow the divide operation and should be conditioned by the same
indicators. The maximum length of the remainder is 15, including
decimal positions. The number of significant decimal positions is
the greater of:

1. The number of decimal positions in Factor 1 of the previous
divide operation.

2. The sum of the decimal positions 'in Factor 2 and the Result
Field of the previous divide operation.

The maximum whole number positions in the remainder 1is equal to
the whole number positions in Factor 2 of the previous divide
operation.
8.16.8 Square Root (SQRT)

This operation derives the square root of the field named in
Factor 2. The square root of Factor 2 is placed in the Result

Field. Factor 1 is not used.

Factor 2 and the Result Field can be numeric fields up to fifteen
digits long overall, including up to nine decimal places.

For every digit left of the decimal place in the Result Field,

8-12 REPORT PROGRAM GENERATOR 1II

there should be two digits left of the decimal place in Factor 2;
for every digit right of the decimal place in the Result Field,
there should be two digits right of the decimal place in Factor 2.

A whole array can be used in a SQRT operation if Factor 2 and

Result Field contain array names. In this case, the square root
of each element of the array named in Factor 2 will be placed in
the corresponding element of the array named in the Result Field.

When using the SQRT operation, remember:
1. The Result Field (root) is automatically half-adjusted.

2. The Result Field length must be greater than or equal to the
decimal positions entry.

3. Factor 2 cannot be a negative number. A negative number
causes a halt.

8.16.9 Crossfoot (XFOOT)

This operation is used only on arrays with numeric elements.
It adds all the elements of the array together and puts the sum
into a separate field specified as the Result Field. Factor 1 is
not used. Factor 2 contains the name of the array. You can
half-ad just the total in the Result Field and use resulting
indicators if you wish.

If the Result Field is an element of the same array used in Factor

2, the value of that element prior to the XFOOT operation is used
in arriving at a total.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-13

CALCULATION SPECIFICATIONS

PROGRAM AaTE pACE _ AF. _pAGES
FORM TYPE o —CONTAROL LEVEL OECIMAL POS!TIONS« p~HALF ADJUST
- INCICATORS DICATORS
w | o oo Feren openation e i vl B i o CoMMENTS oerFeATION
H N ol 1>z| <212
1 1 slefr S 11112 13415] 17118 2ifes . 32133 dﬂ 48§49 51152]33)54 56 58 60 74175
&l Je '[7* VALLIEW A VIALIEB VIAILIVIEK] | 15l T
ol2| e VIAILIWIEIC) S ylB | VAILVIEA VALIWER | 5|0
ojal e Z:- IAIDIAZ . 15 VIAILIVE 31/
o4l e Z- 181U18)/.0 ! VAILUVEG | 1210
os| lc VAILIVE MUILIT! [VAILIVED VALY B/ H!
| gés__h_c VIAILIYIEIC 112y VAL (FEG VALU‘E/»__Ba
07 le MyIR VALUEY | 1210
osl lc SOIRT [VIAILIWE VALWEL | #i2
ols| e XiF0OINARIRAYY TOTAL! | {/1012
o] lc
sla] le]
1:2] |¢c
sl e
14! e
f- 1s| e
s, Jc
1,7 C
‘;" c
19] |c
20} e
21] Je
22| le
23] |c
2! Jc
2(s| |c
c
c
c
£ 1
[! i

Figure 8-1. Example of arithmetic operations.

8-14 REPORT PROGRAM GENERATOR II

8.17 Move Operations

Move operations move part or all of Factor 2 to the Result
Field. Factor 2 remains unchanged. Factor 1 is not used in any
move operations. It must always be blank. No resulting
indicators may be used. Numeric fields may be changed to
alphanumeric fields and alphanumeric fields may be changed to
numeric fields by the move operations. To change a numeric field
to an alphanumeric field, place the name of the numeric field in
Factor 2 and use an alphanumeric result field. To change an
alphanumeric field to a numeric field, place the name of the
alphanumeric field in Factor 2 and use a numeric result field.

When move operations are specified to move data into numeric
fields, ‘decimal positions are ignored. For example, if the data
1.00 is moved into a numeric field with one decimal position, the
result is 10.0.

Note: Databus-format numeric fields are stored within RPG with
the sign superimposed over the low-order digit (see internal field
examples in Chapter 7, Column 43).

8.17.1 Move (MOVE)

This operation causes characters from Factor 2 to be moved to
the rightmost positions in the result field. Moving starts with
the rightmost character.

If Factor 2 is longer than the Result Field, the excess leftmost
characters of Factor 2 are not moved. If the Result Field 1is
longer than Factor 2, the characters to the left of the data just
moved in are unchanged.

An alphanumeric field or constant may be changed into a numeric
field. When this is specified, the digit portion of each
character 1is converted to its corresponding numeric character and
then moved to the result field. Blanks are transferred as zeros.
However, the zone portion of the rightmost alphanumeric character
is converted to a corresponding sign and is moved to the rightmost
position of the numeric field where it becomes the sign of the
field.

A numeric field may also be changed into an alphanumeric field by
moving it into an alphanumeric field. All digits are transferred.
In addition the zone of the rightmost character is transferred
with its digit.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-15

FACTOR

FACTOR

FACTOR

FACTOR

FACTOR

FACTOR

FACTOR

FACTOR

FACTOR

FACTOR

FACTOR

FACTOR

Figure

8-16

RESULT
RESULT

RESULT

RESULT
RESULT

RESULT

RESULT
RESULT

RESULT

RESULT
RESULT

RESULT

8-2.

ALPHA TO ALPHA

FACTOR 2

A,B CD

A B CD

i
I

|a,B c D E|

RESULT BEFORE MOVE

|rcu 17|

F GHI

FGHTI

NUMERIC TO NUMERIC

6.7 89

¥

6,7,8,9

ALPHA TO NUMERIC

IA|B C Ml
lAIBIC MI

lAlBIC|DLM|

[5.6,7,8,9]

6,7,8 9

1

6.7 8 9

NUMERIC TO ALPHA

1,23 4

.E

1,2 3 4

!112|314!5l

—

VW, X Y, 2]

W X 'Y 2

WXY Z

i

Diagram of MOVE instruction.

REPORT PROGRAM GENERATOR 1II

6,7.8,9,0]

RESULT AFTER MOVE

o

.}

.
w

-

Q
w)

e

A,B CD

1

B CDE

w
|

U

=

-

N

w
>

p———er

<

-
[\S]

H

w

=

8.17.2 Move Left (MOVEL)

This operation causes characters from Factor 2 to be moved to
the leftmost position in the Result Field. Moving begins with the
leftmost character.

If Factor .2 is longer than the Result Field, the excess rightmost
characters of Factor 2 are not moved. If the Result Field is
longer than Factor 2, the characters to the right of the data just
moved in are unchanged. In this case the sign of a numeric field
is not changed either.

An alphanumeric field or constant may be changed into a numeric
field by moving it into a numeric field. When this is specified,
the digit portion of each character is converted to its
corresponding numeric character and then moved into the result
field.

Blanks are transferred as zeros. If the rightmost character is
moved, the zone is also converted and used as the sign of the
field. When the rightmost character is not transferred, the zone
is, nevertheless, still transferred and used as the sign of the
result field. :

A numeric field may also be changed into an alphanumeric field by
moving it into an alphanumeric field. All digits are transferred.
Both digit and zone portions of the rightmost character are
transferred if that character is to be moved.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-17

FACTOR
FACTOR

FACTOR

FACTOR
FACTOR

FACTOR

FACTOR
FACTOR

FACTOR
FACTOR
FACTOR

FACTOR

Figure

8-3.

8-18

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

ALPHA TO ALPHA

FACTOR 2

A B CD

A BCD

1
3
i

r.
1

E

Is
o
=

RESULT BEFORE MOVE

lFlGlHlllJl

FGHTI

F GHTI

NUMERIC TO NUMERIC

1234

3

1234

1.2.3,45]|

P

8.9,0]

[~

|

T

6 7.8 9]

ALPHA TO NUMERIC

A BCM

1

A B CM

IAIB|C|D,M|

5I6|.7I8|9|

6,7,8,9

6,7,8 9

1

NUMERIC TO ALPHA

[
N
-w
NN
(S201

e

VIWIX|Y|Z|

W X Y Z

W X Y Z

1
1

Diagram of MOVEL instruction.

REPORT PROGRAM GENERATOR II

RESULT AFTER MOV.

AIBICIDIJI

A B CD

A BCD

1,2,3,4,0]

-

)

w
I

1,23 M

1 2 3 4

8.17.3 Move Array (MOVEA)

The move array operation, valid ONLY in RPGPLUS, moves
characters from Factor 2 to the Result Field, starting at the
left-most position of each operand. The number of characters
moved is the smaller of the lengths of Factor 2 and the Result
Field. If Factor 2 is longer than the Result Field, the right-most
characters of Factor 2 are not moved. If Factor 2 1is shorter than
the Result Field, the right-most characters of the Result Field
are left unchanged. Both operands must be described as
alphanumeric.

With MOVEA it is possible to move multiple contiguous elements of
an array, a whole array, or a field to multiple contiguous
elements of an array, a whole array, or a field. If Factor 2 or
the Result Field contain the name of an array, the move starts at
the first element of the array. If they contain an indexed array
element, the move starts at the element specified. The MOVEA
operation terminates when the end of the shorter operand is
reached. In the case of MOVEA with arrays, this may be in the
middle of an array element.

8.18 Move Zone Operations

These operations are used only to move the zone portion of a
character. There are four varieties of the move zone operation.

Note: Generally, whenever the word high is used in a move zone
operation, the field involved must be alphanumeric; whenever low
is used, the field involved may be either alphanumeric or numeric.
8.18.1 Move High to High Zone (MHHZO)

This operation moves the zone from the leftmost position of

Factor 2 to the leftmost position of the Result Field. Factor 2
and the Result Field must be alphanumeric.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-19

FACTOR 2z RESULT

ERIERIER I IR ER ERI LR

Figure 8-4., Diagram of MHHZO instruction.

8.18.2 Move High to Low Zone (MHLZO)

This operation moves the zone from the leftmost position of
Factor 2 to the rightmost position of the Result Field. Factor 2
can be only alphanumeric. The Result Field may be either
alphanumeric or numeric.

FACTOR 2 RESULT

Ille\ZLNLZ|N’ lz N|z |z N|

Figure 8-5. Diagram of MHLZO instruction.

8.18.3 Move Low to Low Zone (MLLZO)
This operation moves the zone from the rightmost position of

Factor 2 to the rightmost position to the Result Field. Factor 2
and the Result Field may be either alphanumeric or numeric.

FACTOR 2 RESULT

lz.nlz,v]z n] |z,8]2,8]2,5]
L N

Figure 8-6. Diagram of MLLZO instruction.

8-20 REPORT PROGRAM GENERATOR II

8.18.4 Move Low to High Zone (MLHZO)

This operation moves the zone from the rightmost position of
Factor 2 to the leftmost position of the Result Field. Factor 2
can be numeric or alphanumeric, but the Result Field can only be
alphanumeric.

FACTOR 2 RESULT

|z n|z n|z. nw| |z n|z n|z N]
L 1

Figure 8-7. Diagram of MLHZO instruction.

8.19 Compare and Testing Operations

These operations test fields for certain conditions. The
result of the test is shown by the resulting indicators assigned
in columns 54-59. No fields are changed by these operations.

8.19.1 Compare (COMP)

This operation causes Factor 1 to be compared with Factor 2.
As a result of the compare, indicators are turned on as follows:

High Factor 1 is greater than Factor 2.
Low Factor 1 is less than Factor 2.
Equal Factor 1 equals Factor 2.

Factor 1 and Factor 2 must either be both alphanumeric or both
numeric. A field may be compared to another field or a literal.

The fields are automatically aligned before they are compared. If
the fields are alphanumeric, they are aligned to their leftmost
character. If one is shorter, the unused positions are filled
with blanks.

If the fields which are to be compared are numeric, they are
aligned according to the decimal point. Any missing digits are
filled in with zeros. The maximum field length for numeric fields
which are to be compared is 15 digits.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-21

NUMERIC COMPARE

VALUE COMPARE VALUE
FACTOR 1 123.45 123.450
FACTOR 2 42.763 042.763

ALPHANUMERIC COMPARE

FACTOR 1 ABC ABCPBY
FACTOR 2 VWXYZ VWXYZ

Figure 8-8. Diagram of COMP instruction.

8.19.2 Test Zone (TESTZ)

This operation tests the zone of the leftmost character in
the result field (see ASCII to EBCDIC Translation Table in
Appendix L). The Result Field must be alphanumeric since this
operation can be done only on alphanumeric characters. Resulting
indicators are used to determine the results of the test. The zone
portion of characters & and A-I causes the plus indicator to turn
on. The zone portion of the characters } (bracket), - (minus),
and J-R causes the minus indicator to turn on. All other
characters, when tested, cause the blank indicator to turn on.
Factor 1 and Factor 2 are not used in this operation.

8.20 Binary Field Operations

Three operation codes, BITON, BITOF, and TESTB, are provided
to set and test individual bits. The individual bits can be used
as switches in a program.

In binary field operations, the operation code, BITON, BITOF, or
TESTB must appear in columns 28-32. Factor 2 can contain:

Bit number 0-7: One or more bits (maximum of eight) may be

set on, set off, or tested per operation. The bits are
numbered from left (most significant) to right (least

8-22 REPORT PROGRAM GENERATOR II

significant) and are enclosed in apostrophes. The order of
specification of the bits is not restricted. For example, to
specify the first bit in a field, enter '0' in Factor 2
(columns 33-35). To specify bits 0, 2, and 5, enter '025' in
Factor 2 (columns 33-37). Bits not specified in Factor 2 are
not changed.

Field Name: The name of a one-position, alphanumeric field or
table or array element can be entered. 1In this case, the bits
which are on in the field or array element are set on, set
off, or tested in the Result Field; bits which are not on are
not affected.

Any field named in Factor 2 or the Result Field must be a
one-position, alphanumeric field (no entries in the decimal
positions columns on the Input or Calculation Sheet).

8.20.1 Set Bit On (BITON)

This operation code causes bits identified in Factor 2 to
turn on (set to one) in a field named as the Result Field. The
operation code BITON must appear in columns 28-32. Conditioning
indicators can be used in columns 7-17. Any entry under Field
Length must be 1. See the preceding discussion in Binary Field
Operations.

Factor 1, Decimal Positions, Half-adjust, and Resulting Indicators
are not used with the BITON operation.
8.20.2 Set Bit Off (BITOF)

This operation code causes bits identified in Factor 2 to
turn off (set to zero) in a field named as the Result Field.

The operation code BITOF must appear in columns 28-32. All other
specifications are the same as those for the BITON operation.

8.20.3 Test Bit (TESTB)

This operation code causes bits identified in Factor 2 to be
tested for an on or off condition in the field named as the Result
Field. The condition of the bits is known by resulting indicators
in columns 54-59. All other specifications are the same as those
for BITON and BITOF.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-23

At least one resulting indicator must be used with the TESTB
operation; as many as three can be named for one operation. Two
indicators may be the same for one TESTB operation, but not three.
If Factor 2 contains bits which are all off, no resulting
indicators are turned on. A resulting indicator has the following
meanings for these columns: .

Columns 54-55: An indicator in these columns is turned on if each
bit specified in Factor 2 is off (0) in the Result Field.

Columns 56-57: An indicator in these columns is turned on if two
or more bits were tested and found to be of mixed status; that is,
some bits on and other bits off. It is the programmer's
responsibility to ensure that the field named in Factor 2 contains
more than one bit which is on if an indicator appears in columns
56-57.

Columns 58-59: An indicator in these columns is turned on if each
bit specified in Factor 2 is on (1) in the Result Field.

8.21 Setting Indicators

These operation codes are used to turn indicators off or on.
Any indicator to be turned on or off is specified in columns
54-59. The headings in the Resulting Indicators Field (Plus or
High, Minus or Low, Zero or Equal) have no meaning in these
operations. When setting indicators, remember:

1. The following indicators may not be turned on by the SETON
operation: 1P, MR, LO, U1-US8.

2. The following indicators may not be turned off by the SETOF
operation: 1P, MR, LO, U1-US8.

3. If the LR indicator is turned on by a SETON operation which is
conditioned with a control level indicator (columns 7-8 of the
Calculation Sheet), processing stops after all total output
operations are finished. If it is turned on by a SETON
operation not so conditioned, processing stops after the next
total output operation is completed.

4. If the halt indicators (H1-H9) are set on and not turned off
before the detail output operations are complete, the system
stops. Processing may be continued after halting once for
every halt indicator that is on.

5. Setting on or setting off a control level indicator (L1-L9)

8-24 REPORT PROGRAM GENERATOR II

does not automatically set on the lower control level
indicators.

6. Indicators L1-L9 and the record identifying indicators are
always turned off after detail output operations are
completed, regardless of the previous SETON or SETOF
operation.

T. Whenever a new record is read, record identifying indicators
are set to reflect conditions on the new record. The setting
from any previous SETON or SETOF operation does not apply
then.

8.21.1 Set On (SETON)

This operation causes any indicators in columns 54-59 to be
turned on.

8.21.2 Set Off (SETOF)

This operation causes any indicators in columns 54-59 to be
turned off.

8.22 Branching Operations

Operations are normally performed in the order that they
appear on the Calculation Sheet. There may be times, however,
when you do not want the operations performed in the order they
are specified. For example, you may wish to:

1. Skip several operations when certain conditions occur.

2. Perform certain operations for several, but not all, record
types. :

3. Perform several operations over and over again.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-25

8.22.1 Go To (GOTO)

This operation allows you to skip instructions by specifying
some other instruction to go to (see TAG). You may branch to an
earlier line or to a later specification line. However, you cannot
skip from a calculation that is conditioned by a control level
indicator (columns 7-8) to one that is not. Neither can you branch
from a calculation within a subroutine to a calculation outside of
that subroutine, or vice versa.

When using the GOTO command to transfer control from a detail
calculation to a total calculation, care must be taken, to avoid
creating an infinite loop. (See Appendix K for normal sequencing.)
The 'L' indicators will not be implicitly set when such a jump is
performed.

Factor 2 must contain the name of the point to which you wish to
go. Factor 1 and the Result Field are not used in this operation.
The GOTO operation may be conditioned by any indicators. If it is
not conditioned, the operation is always done.

8.22.2 Tag (TAG)

This operation code names the point to which you are
branching in the GOTO operation. Factor 1 contains this label.
The name must begin in column 18. The same label may not be used
for more than one TAG instruction.

Factor 2 and the Result Field are not used. No indicators may be

entered in columns 9-17 for a TAG instruction. A control level
(see Columns 7-8) may be used, however, if the TAG occurs in
total calculations.

8.23 Lookup Operations

Lookup operations are used when searching through a table or
an array to find a special element.

8-26 REPORT PROGRAM GENERATOR II

8.23.1 Lookup (LOKUP)

This operation code causes a search to be made for a
particular item in a table or array. The table or array is Factor
2. Factor 1 is the search word (data for which you wish to find a
match in the table or array named). Factor 1, the search word,
may be:

1. An alphanumeric or numeric constant,
2. A field name.

3. An array element.

4, A table name.

Remember that when a table is named in Factor 1, it refers to the
element of the table last selected in a LOKUP operation, not to
the whole table.

Resulting indicators are always used in connection with LOKUP.
They are used to first indicate the type of search desired and
then to reflect the result of the search. A resulting indicator
assigned to Equal (columns 58-59) instructs the program to search
for an entry in the table or array equal to the search word. The
indicator turns on only if such an entry is found. If there are
several entries identical to the search word, the first one that
is encountered is selected.

An indicator assigned to Low (columns 56-57) instructs the program
to locate an entry in the table that is nearest to, yet lower in
sequence than, the search word. The first such entry found causes
the indicator assigned to Low to turn on.

The indicator assigned to High (columns 54-55) instructs the
program to find the entry that is nearest to, yet higher in
sequence than, the search word. The first higher entry found
causes the indicator assigned to High to turn on. In all cases
the resulting indicator turns on only if the search is successful.

At least one resulting indicator must be assigned, but no more
than two can be used. Resulting indicators can be assigned to
Equal and High or Equal and Low. The program searches for an
entry that satisfies either condition, with Equal given '
precedence; that is, if no Equal entry can be found, the nearest
lower or nearest higher entry is selected. If resulting
indicators are assigned both to High and Low, the indicator
assigned to Low is ignored. When using the LOKUP operation,

CHAPTER 8. CALCULATION SPECIFICATIONS 8-27

remember:

1. The search word and each table or array item must have the
same length and the same format (alphanumeric or numeric), but
need not have the same alignment.

2. You may search on High, Low, High and Equal, or Low and Equal
only 1if your table or array is in sequence.

3. No resulting indicator turns on if the entry searched for is
not found.

8.23.2 Using LOKUP with One Table

When searching a single table, Factor 1, Factor 2, and at
least one resulting indicator must be specified. Conditioning
indicators (specified in columns 7-17) may also be used.

Whenever a table item is found that satisfies the type of search
being made (Equal, High, Low), a copy of that table item is placed
in a special storage area. Every time a search is successful, the
newly found table item is placed in this area, destroying what was
there before. If the search is not successful, no table item 1is
placed in the storage area. Instead, the area keeps the contents
it had before the unsuccessful search.

Resulting indicators are always set to reflect the result of the
search. If the indicator is on, showing a successful search, you
know that a copy of the item searched for is in the special
storage area.

8.23.3 Using LOKUP with Two Tables

When two related tables are used in a search, only one is
actually searched. When the search condition (High, Low, Equal)
is satisfied, the corresponding data items from both tables are
made available for use. :

Factor 1 must be the search word and Factor 2 must name the table
to be searched. The Result Field must name the related table from
which data is made available for use. Resulting indicators must
also be used. Conditioning indicators (specified in columns 7-17)
may be specified if needed.

The two tébles involved should be the same length. If the table
that 1is searched is longer than its related table, the search

8-28 REPORT PROGRAM GENERATOR II

stops at the end of the shorter table.

8.23.4 Referencing the Table Item Found

Whenever a table name is used in an operation other than
LOKUP, the table name really refers to the data placed in the
special storage area by the last successful search. Thus, by
specifying the table name in this fashion, you can use data items
from a table in calculation operations.

If the table is used as Factor 1 in a LOKUP operation, the
contents of the special storage area are used as the search word.
In this way a data item from a table can itself become a search
word.,

The table may also be used as the Result Field in operations other
than the LOKUP operation. In this case the contents of the
special storage area are changed by the calculation operation.

The corresponding table item in the table itself is also changed.
This is a way in which you can modify the contents of the table by
calculation operations. :

8.23.5 Using LOKUP with an Array

The LOKUP specifications for arrays are the same as for
tables except that if Factor 2 is an array, the Result field
cannot be used. 1In addition if the desired item is found, the
indicators reflect only that the desired item is in the array; the
programmer does not have ready access to this item.

If you use Jjust the array name in referencing the array, the
search begins at the first element in the array. You must use
indicators to determine if a match was found.

If you use the array name and an index (which may be a field name
or a literal), the search begins at the element identified by the
index. If a match is found, the number of the array element
containing the match is placed in the field used as an index. If
no match is found, the index is set to 1.

If a literal was used as an index, indicators must be used to

determine if a match was found. The content of the element
referenced by the literal is not changed.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-29

8.24 Subroutine Operations

These operation codes are only used for subroutines. All
subroutine operation codes must be written in specification lines
following all detail and total calculations. Subroutine lines are
always identified by an SR in columns 7-8.

8.24.1 Begin Subroutine (BEGSR)

This operation code serves as the beginning point of the
subroutine. Factor 1 must contain the name of the subroutine.

8.24.2 End Subroutine (ENDSR)

This operation code must be the last statement of the
subroutine. It serves to define the end of the subroutine.
Factor 1 may contain a name. This name then serves as a point to
which you can branch by a GOTO statement within the subroutine.

The ENDSR operation ends the subroutine and automatically causes a
branch back to the next statement after the EXSR operation.

8.24.3 Execute Subroutine (EXSR)

This operation causes all the operations in the subroutine to
be performed. EXSR may appear anywhere in the program. Whenever
it appears, the subroutine is executed. After all operations in
the subroutine are done, the operation in the line following the
EXSR operation is performed.

8.25 Programmed Control of Input and Output

The normal Datapoint RPG II processing cycle is as follows:

1. A record is read.

2. Calculations are performed.

3. Records are written.

The normal program cycle can be altered to allow input and output
operations during calculations. The following operations provide

this capability:

-- Exception (EXCPT)

8-30 REPORT PROGRAM GENERATOR II

-- Force (FORCE)
-- Display (DSPLY)
-- Read (READ)

-- Chain (CHAIN)

-- Set lower limit (SETLL)

8.25.1 Exception (EXCPT)

This operation allows records to be written at the time
calculations are being done. Use this primarily when you wish to
have a variable number of similar or identical records (either
detail or total) written in one program cycle. (Remember that
normally only the exact number of records specified in the Output
Format Specifications are written on a file in one program cycle).
For example, you might use EXCPT to produce a variable number of
identical mailing labels, or to write out contents of a table.

When the EXCPT operation is used, EXCPT is entered in columns
28-32, and columns 7-17 may have entries. All other columns must
be blank. The line or lines which are to be written out during
calculation time are indicated by an E in column 15 of the Output
Format Sheet.

8.25.2 Force (FORCE)

FORCE statements enable you to select the file from which the
next record is to be taken for processing. They apply to primary
or secondary, input or update files.

Factor 2 in a FORCE statement identifies the file from which the
next record is to be selected. If the statement is executed, the
record 1s selected at the start of the next program cycle. If more
than one FORCE statement is executed during the same program
cycle, all but the last is ignored. FORCE should not be specified
at total time.

FORCE statements override the multifile processing method by which
the program normally selects records. However, the first record
to be processed is always selected by the normal method. The
remaining records can be selected by FORCE statements. When
end-of-file is encountered on a forced file, a record will not be

CHAPTER 8. CALCULATION SPECIFICATIONS 8-31

retrieved from the file; normal records selection will determine
which record is to be processed.

8.25.3 Display (DSPLY)
The display operation allows either or both of the following:

1. A field, table element, array element, or literal up to 80
characters 1long is displayed on the keyboard-display during
program execution without a program halt.

2. A field, table element, literal, or array element up to 80
characters long is displayed on the keyboard-display, and the.
program halts, allowing that field to be changed.

A literal may not be changed with display.

Factor 2 in a DSPLY statement identifies the file used for the
display operation and must be defined with a D in column 15 of the
File Description Specification. The device used must be the
CONSOLE.

Fields Defined Data Displayed Keyboard
Factor 1 DSPLY none
<factor-1>
Result Field DSPLY data to replace
<result-field>
Factor 1 and DSPLY data to replace
Result Field <factor-1> result-field

{result-field>

There are several points to remember if you wish to enter data
during program execution:

1. Numeric data must be entered in Databus format. To key a
negative field, the minus sign is keyed and then the field is
keyed. The entry will be automatically aligned on its decimal
point before it is stored in the result field. The result
field must be defined with one extra digit position to the
left of the decimal point if a sign is to be entered.

2. Alphanumeric result fields will be left-justified after all
characters are keyed. If the number of characters entered is

8-32 REPORT PROGRAM GENERATOR II

less than the result field size the field is right filled with
blanks.

3. If no characters are entered or the space bar is not
depressed, the result field will not be changed.

4, Numeric fields are displayed in Databus format. The field
definition must contain enough integer positions to allow room
for a minus sign to the left of the first significant digit or
a NUMERIC FIELD ERROR may occur when displaying negative
numbers.

8.25.4 Read (READ)

The READ operation is used to call for immediate input from a
demand file during the calculations in the program cycle. This
operation differs from the FORCE operation because FORCE specifies
input on the next program cycle, not the present one. The READ
operation is similar to the CHAIN operation, except that the READ
file is processed sequentially and the CHAIN file is processed
randomly.

The operation code READ must appear in columns 28-32. Factor 2
contains the name of the file from which a record will be read
immediately. An indicator should be used in columns 58-59. An
indicator specified in these columns will turn on after a READ
operation in which an end-of-file condition is reached. An
attempt to read past end-of-file will cause an error message to be
displayed. If columns 58-59 are blank, a halt will occur on an
end-of-file condition and on subsequent READ operations after the
end-of-file condition is reached. 1Indicators may be specified in
columns 7-17.

Note: When the program is reading from several demand files
during the same RPG II cycle, record identifying indicators
assigned to the demand files will remain on throughout the cycle
if the previous READ operations were executed successfully.

The following files can appear as Factor 2 in a READ operation
(all must be designated demand files with a D in column 16 of the
File Description Sheet):

Files processed consecutively and specified as input or update
files.

Console files specified as input files.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-33

When using the READ operation for demand files remember these
points:

1. Demand files can only be processed by the READ operation.

2. Control levels, matching fields, and look-ahead fields are not
allowed with demand files.

3. Numeric sequence testing on the Input Sheet is not allowed for
demand files.

4, The MR indicator may not be entered in columns 63-64 (Field
Record Relation) on the Input Sheet.

5. When a demand file is conditioned by a U1-U8 indicator which
is not on, no records will be read from that file and the
end-of-file indicator (in columns 58-59 of the Calculations
Sheet) will not turn on.

8.25.5 Chain (CHAIN)

The chain operation causes a record to be read from a disk
file during calculations. This operation allows one record to be
read in when the operation code CHAIN appears in columns 28-32 of
the Calculation Sheet.

Indicators in columns 7-17 may be used, but Result Field, Field

Length, Decimal Position, and Half-Adjust (columns 43-53) must be

blank. File conditioning indicators (U1-U8) can be used to

condition a chained file.

Factor 1 must contain:

1. Relative record number of record to be read.

2. Key of indexed file record to be read.

Relative record number must be a numeric field with no decimal
positions. Relative record numbers start from 1.

Keys must be alphanumeric fields. If the length is not the same as
keys in the file, the shorter key will be extended with blanks for
comparison.

Factor 2 must'contain.the name of a CHAIN file.

Columns 54-55 should contain an entry. If the record is not

8-34 REPORT PROGRAM GENERATOR II

found, the indicator specified in these columns will turn on.
Columns 56-59 must always be blank for chain operations.

If an indicator is not specified in columns 54-55, and the record
is not found, the program will halt and display a chaining error
message. The options given are to end the job or bypass the
remainder of the current cycle and begin a new cycle., If LR
processing has already been initiated, the
bypass-and-begin-new-cycle option is not allowed. If the
controlled cancel option is taken, files are closed, but the rest
of the LR processing does not occur. When a record is beyond the
range of the file, the options to end the Jjob or bypass the
remainder of the current cycle are given.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-35

CHAINING RECORD PROCESSING

CHAIN
INDICATOR

- s s A - —— - . e WD TE S Gm W - G e P WD e A M Gup SN A NP WS R R A G MR MR . AR . . . S A Gn Em en - - -

Yes
No

Yes
No

off
On

off
Ooff
On

Ooff
On
On
off
On
On

off
On

MmO

T O

Existing record overwritten.

FILE RECORD
TYPE PRESENT
DIRECT INPUT Yes
No¥
No
DIRECT OUTPUT Yes
No¥
No
DIRECT UPDATE Yes
No¥*
No
INDEXED INPUT Yes
No
INDEXED OUTPUT Yes
. No
No
INDEXED UPDATE Yes
No
No
¥Fixed format
ACTION CODES:
A Record returned.
B Blank record returned.
C Existing record updated.
D
E
F

8-36 | REPORT PROGRAM GENERATOR II

Record written in formatted disk space.

File extended and new record written.

1 CHAINING ERROR.

2 DUPLICATE KEY error.

8.25.6 Set Lower Limits Operation (SETLL)

This operation allows the lower limit to be set during
calculations when processing indexed files sequentially by key. It
may be used with indexed input, update and demand files. When used
with input and update files, care should be exercised to properly
process records already read during the input cycle prior to
executing calculations. The SETLL operation may be executed as
many times as desired prior to reaching the end of the input file.
SETLL will select a new starting record for input during the next
input cycle.

Factor 1 must contain an alphanumeric field name or literal
representing the value of the lower limit being set. The length of
the field or literal does not have to be equal to the length of
the key for the file named in Factor 2. The shorter key will be
extended with blanks before comparison is made.

Factor 2 must contain the name of the file for which the lower
limit is to be set. If a read is performed to the file prior to
the first SETLL instruction the record with the lowest key in the
file is read.

The Mode of Processing entry (column 28) in the File Description
must contain an L for processing within limits.
8.26 Audio Output Operations

Operation codes are provided to allow audible signals to be
given to alert the operator of conditions requiring operator
intervention. These signals can also be used for debugging and
timing.
8.26.1 Beep (BEEP)

The BEEP operation code causes the Datapoint computer to emit
an audible beep.

CHAPTER 8. CALCULATION SPECIFICATIONS 8-37

8.26.2 Click (CLICK)

The CLICK operation code causes the Datapoint computer to
emit an audible click.

8.27 Debug Operations

The debug operation is an RPG II function that may be used to
help find errors in a program which is not working properly. This
code causes one or more records to be written containing
information helpful for finding programming errors.

8.27.1 Debug (DEBUG)

The DEBUG operation code may be placed at any point or at
several points in the calculation operations. Whenever it is
encountered, one or more records are written depending upon the
specifications entered. One record contains a list of all
indicators which are on at the time the DEBUG code was
encountered. The other shows the contents of any one field.

8.27.2 Debug Specifications

Factor 1 is optional. It may contain a literal or field name
which identifies the particular debug operation. The literal or
the value of the field named here is written on record 1. Factor 2
must contain the name of the output file on which the records are
written. The same output filename must appear in Factor 2 for all
DEBUG statements in a program. The result field may be a field,
table element, array element, or whole array whose contents you
want to write on record 2. Any valid indicators may be used in
columns 7-17. Columns 49-59 must be blank.

Numeric fields are displayed in Databus format. The field
definition must contain enough integer positions to allow room for
a minus sign to the left of the first significant digit or a
NUMERIC FIELD ERROR may occur when displaying negative numbers.

The operation code produces results only if the proper entry (1 in
column 15) has been made in the control card specifications. If
the control card entry has not been made, the operation code DEBUG
is treated as a comment by the compiler.

8-38 REPORT PROGRAM GENERATOR II

8.28 EXIT and RLABL Operations
Linkage from Datapoint RPG II to Assembler language

subroutines is accomplished through the RPG II EXIT and RLABL
operations.

8.28.1 EXIT Operation

The EXIT operation code is used to designate a point in the
RPG II calculation specifications at which control is to be passed
to a pre-processed, external subroutine. The rules for use of the
EXIT operation in RPG II calculation specifications are as
follows:
1. Operation EXIT.
2. Factor 1 blank.

3. Factor 2 contains the name of subroutine to which control is
to pass.

4, Result Field blank.
5. Resulting Indicators blank.
The EXIT operation can be conditioned by Control Level entries
(columns 7-8) and Indicator entries (columns 9-17). If not
conditioned by control level entries, the EXIT operation occurs at
detail calculation time.
The EXIT operation generates a CALL to the subroutine named in
Factor 2.
8.28.2 RLABL Specification

Through the RLABL operation, a field, table, or array defined
in the RPG II program can be referenced by the subroutine to which
the EXIT operation gives control. The rules for use of RLABL in
RPG II calculation specifications are as follows:
1. Operation RLABL.

2. Result Field contains field, table, or array name.

3. Field Length contains the length of the field (optional).

CHAPTER 8. CALCULATION SPECIFICATIONS 8-39

4, Decimal Positions contains the decimal indication (optional).

The RLABL specifications must immediately follow the EXIT
specifications for the subroutine which references the RPG II
field. A name defined by a TAG, BEGSR, or ENDSR specification
cannot be used in an RLABL specification. .

8.28.3 Referencing Fields

If the result field of the RLABL refers to a field, a
four-byte DC is generated containing: the number of decimal
positions in the field or 0 (first byte), the field length (second
byte), and the address (third and fourth bytes) of the left-most
byte of the field. A numeric field has normal zones (octal values
360-371) over all positions except the last (right-most), which
contains a character in the range 300 to 311 if the number is
positive or a character in the range 320 to 321 if the number is
negative. If the subroutine generates numeric results, the user
should ensure that all zero values generated have a positive sign.

8.28.4 Referencing Tables and Arrays

If tﬁe result field of the RLABL refers to a table or array,
the two-byte address of the Table Description Block (TDB) is
generated. See Appendix C for its format.

8.28.5 Referencing Indicators

An assembler subroutine may reference indicators in the RPG
II program to which it is linked. This 1is done by entering INxx
in the Result Field of an RLABL specification. The xx represents
the indicator to be referenced. For example, if MR is to be
tested, INMR must be entered in the Result Field of the RLABL
specification.

The object code generated is the two-byte address of the

indicator. An indicator byte contains zero when the indicator 1is
off. It is non-zero (and normally 377) when it is on.

Note: Two-byte addresses are generated in the standard order:
least-significant-byte, then most-significant-byte.

8-40 REPORT PROGRAM GENERATOR II

CHAPTER 9. OUTPUT FORMAT SPECIFICATION

Output Format specifications describe your output records.
These specifications may be divided into two general categories:

1. Record description entries (columns 7-31) which describe the
output file records to be written.

2. Field description entries (columns 32-7T4) which indicate the
position and the format of data on the output record.

Write the specifications on the Output Format Sheet. The field
description entries start one line lower than record description
entries.

9.1 Columns 1-2 (Page) and Columns 3-5 (Line)

See Chapter 2.

9.2 Column 6 (Form Type)

An O must appear in column 6.

9.3 Columns T-14 (Filename)

Use columns 7-14 to identify the file to which records are to
be written. The filename must begin in column 7. Use the same
filename given in the file description specifications. You need to
specify the output filename only once. That name, however, must
be on the first line that identifies the file.

9.4 Column 15 (Type)

Entry Explanation

H Heading records.
D Detail records.
T Total records.

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-1

E - Exception Records (records to be written during
calculaton time).

Use column 15 to indicate the type of record that is to be
written. Either enter the records for each file in this order:
heading, detail, total, and exception, or enter all heading
records for all output files, then, all detail records for all
output files, etc.

9.5 Columns 16-18 (Add a Record)

Entry Explanation

ADD Add a record.
Columns 16-18 may be used to specify that a record is to be added
to an output or update file. The output device must be DISK and an
A must be coded in column 66 of the File Description Specification

for the file to which the record is to be added.

The entry in Columns 16-18 is optional and is not required for
adding records to the file.

9.6 Column 16 (Fetch Overflow)

Entry Explanation
Blank Overflow not fetched.
F Fetch overflow.

Column 16 may be used to indicate that the overflow routine can be
used at this point for a printer file. When the fetch overflow
routine is not used, the following usually occurs when the
overflow line 1is sensed:

1. All remaining detail lines in that program cycle are printed
(if a printer operation spaced or skipped to the overflow
area).

2. All remaining total lines in that program cycle are printed.

3. All lines conditioned by an overflow indicator are printed.

4, Forms advance to a new page if a skip to a new page has been
specified.

9-2 REPORT PROGRAM GENERATOR II

If you do not want all of the remaining detail and total lines
printed on the page before overflow lines are printed and forms
advance to the new page, you may cause overflow lines to be
printed ahead of the usual time. This is known as fetching the
overflow routine and is indicated by the entry in column 16.
Overflow is fetched only if all conditions specified by the
indicators in columns 23-31 are met and an overflow has occurred,

The fetched overflow routine automatically causes forms to
advance.

F may be used in an OR line if you want that line to condition a
record with the overflow indicator.
9.7 Columns 17-22 (Space/Skip)

Columns 17-22 are used to specify spacing and line skipping
for a printer file. If these columns are blank, single spacing
occurs automatically after each line is printed.

Line spacing and skipping may be specified both before and after
printing of a line. There may be as many as six spaces (three
before, three after) between two lines of printing. Only space
before and space after can be specified on output for the display.

If both spacing and skipping are specified on the same line, they
are done in this order:

1. Skip before.
2. Space before.
3. Skip after.

4., Space after.

9.7.1 Columns 17-18 (Space)

Entry Explanation
0 No spacing.
1 Single spacing.
2 Double spacing.

CHAPTER 9. OUTPUT FORWMAT SPECIFICATION 9-3

3 Triple spacing.

Spacing is used in reference to the lines on one page. You may
indicate that spacing should be done before (column 17) or after
(column 18) a line is printed. If the destination of a space
operation is a line beyond the overflow line (but not on a new
page), the overflow indicator turns on and remains on until all
overflow lines are printed.

Note: The display will always roll up one line before output.
Therefore, a space before entry of blank, zero, or one will result
in a single space before output.

9.7.2 Columns 19-22 (Skip)
Entry Explanation

- 01-99 Lines 1-99.

Skipping refers to jumping from one printing line to another
without stopping at lines in between. This is usually done when a
new page is needed. A skip to a lower line number means advance
to' a new page. Skipping may also be used, however, when a great
deal of space 1is needed between lines.

The entry must be the two-digit number which indicates the number
of the next line to be printed. You may indicate that skipping
should be done before (columns 19-20) or after (columns 21-22) a
line is printed. If you specify a skip to the same line number as
the forms are positioned on, no movement of the paper occurs. If
the destination of a skip operation is a line beyond the overflow
line (but not on a new page), the overflow indicator is turned on
and remains on until all overflow lines are printed. The
destination line of a skip operation must not be beyond the form
length defined on the Line Counter Specification.

9.8 Columns 23-31 (Output Indicators)
Entry Explanation

01-99 Any resulting indicator, field indicator, or record
identifying indicator previously specified.

L1-L9 Any control level indicators previously specified.

9-4 REPORT PROGRAM GENERATOR II

H1-H9 Any halt indicators previously specified.

u1-08 Any external indicator set during program
initialization.

OA-0G, Any overflow indicator previously assigned to
ov this file.

MR Matching record indicator.

LR Last record indicator.

1P First page indicator.

LO Level zero indicator.

Use output indicators to give the conditions under which output
operations are to be done. When you use an indicator to condition
an entire line of print, place it on the line which specified the
type of record. Place an indicator which conditions when a field
is to be printed on the same line as the field name.

There are three separate output indicator fields (columns 23-25,
26-28, and 29-31). One indicator may be entered in each field.
If these indicators are on, the output operation will be done. An
N in the column (23, 26, or 29) preceding each indicator means
that the output operation will be done only if the indicator is
not on. No output line should be conditioned by all negative
indicators (at least one of the indicators used should be
positive). If all negative indicators condition a heading or
detail operation, the operation is performed at the beginning of
the program cycle when 1P lines are written. The overflow
indicators may not be specified on an E (exception output) line.

Warning: When defining records of update files, avoid writing
multiple records on one cycle, since results are unpredictable.

In Datapoint RPG II, all total lines conditioned by LR will be
performed last.

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-5

9.8.1 AND and OR Lines

If you need to use more than three indicators to condition an
output operation, you may use an AND line. Enter the word AND in
columns 14-16 and as many indicators as needed. The condition for
all indicators in an AND relationship must be satisfied before the
output operation is done.

Output indicators may also be in an OR relationship. If either or
both of the OR conditions are met, the output operation will be
done. OR lines are indicated by the word OR in columns 14-15,
Both AND or OR lines may be used together to condition an entire
output line. AND and OR lines cannot be used to condition a
field.

The use of an LO-L9 indicator in an OR relationship with an LR
indicator can result in the specified operation being done twice
when LR is on. One operation is performed during LR processing
and the other at detail or total time.

9.8.2 External Indicators

A file named in the Output Format specifications may be
conditioned by an external indicator in the file description
specifications. External indicators can also be used to condition
a record or field. No output can occur to a file if it is
conditioned by an external indicator and that indicator is off.

9.8.3 Control Level Indicators

Control level indicators entered in columns 23-31 of this
sheet specify when output records or fields are to be written:

1. If the control level indicator is entered along with a T in
column 15 and no overflow indicator is used, the record is
written only after the last record of a control group has been
processed.

2. If the indicator is entered along with a D in column 15 and no
overflow indicator is used, the record is written only after
the first record of the new control group has been processed.

3. If the control level indicator is entered along with an
overflow indicator, the record is written after the overflow
line has been sensed (provided a control break has also
occurred).

9-6 REPORT PROGRAM GENERATOR II

9.8.4 Overflow Indicators

Overflow indicators are used to condition output operations
on the printer. The operations conditioned by the overflow
indicator are done only after the overflow line has been passed.

If you have not assigned an overflow indicator to the printer file
in the File Description specifications, you may not use an
overflow indicator in the Output Format specifications. In this
case, advancing the forms to a new page is handled automatically,
even though no overflow indicator has been assigned. If any
specification line not conditioned by an overflow indicator
specifies a skip to a line on a new page, overflow indicators turn
off before forms advance to a new page.

An overflow indicator may appear on either AND or OR lines.
However, only one overflow indicator may be associated with one
group of output indicators. That overflow indicator must also be
the same indicator associated with the file on the File
Description Sheet.

When the overflow indicator is used in an AND relationship with a
record identifying indicator, unusual results are often obtained.
This is because the record type might not be the one read when
overflow has occurred. Thus, the record type indicator is not on
and all lines conditioned by both overflow and record type
indicators do not print.

If at all possible, use overflow indicators and record type
indicators in an OR relationship when conditioning output lines.

An overflow indicator cannot condition an exception line (E in
column 15), but may condition fields within the exception record.

9.8.5 First Page Indicator

The first page (1P) indicator is usually used to allow
printing on the first page. It may also be used in an OR
relationship with the overflow indicator to allow printing on
every page. The information printed out on the line conditioned
by the 1P indicator is usually constant information used as
headings. The constant information is specified on the Output
Format Sheet, columns 45-70.

The 1P indicator is used only with heading or detail output lines.

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-7

It cannot be used to condition total or exception output lines.
Use this indicator only when other indicators (control level or
resulting indicators) cannot be used to control printing on every
page. All lines conditioned by the 1P indicator are written out
even before the first record from any input file is processed.
Therefore, do not condition output fields (except PAGE and UDATE)
which are based upon data from input records by the 1P indicator.
Calculation operations cannot be conditioned by the 1P indicator.

9.9 Columns 32-37 (Field Name)

In columns 32-37, use one of the following to name every
field that is to be written out.

1. Any field name previously used in the program.
2. The special words PAGE, UDATE, UDAY, UMONTH, and UYEAR.
3. A table name, array name, or array element.

The field names used are the same as the field names on the Input
Sheet (columns 53-58) or the Calculation Sheet (columns 43-48),.
Do not use these columns if a constant is used (see Columns 45-70
in this chapter), If a field name is entered in columns 32-37,
columns 7-22 must be blank.

Fields may be listed on the sheet in any order since the sequence
in which they appear on the printed form is determined by the
entry in columns 40-43., However, they are usually listed
sequentially. If later fields overlap the first fields specified,
the data which is overlayed is lost.

In IBM-compatible format, the sign (+ or -) of a numeric field is
in the units position (rightmost digit). A minus sign in the
units position prints as a letter unless the field is edited (see
Column 38 and Column 44 in this chapter).

9.9.1 PAGE

PAGE is a special word which causes automatic numbering of
pages. Enter the word PAGE in these columns if you wish pages (or
an individual record) to be numbered. When a PAGE field is named
in these columns without being defined elsewhere, it is assumed to

be a four-position numeric field with no decimal positions.

However, a PAGE field can be defined in input or calculation

9-8 REPORT PROGRAM GENERATOR II

specifications and may be up to 15 positions long. A PAGE field,
when explicitly defined, must be defined with zero decimal
positions. Leading zeros are suppressed, and the sign is not
printed in the rightmost position unless an edit word or edit code
is specified. The page number starts with 1 unless otherwise
specified, and one is automatically added each time the PAGE field
is written.

It is possible at any point in the job to restart the page
numbering sequence. To do this, set the PAGE field to zero before
it is printed. One method of setting the PAGE field to zero is to
use Blank After (see Column 39 in this chapter). Another way is
to use an output indicator. A PAGE field will always be printed
even though the field is conditioned by an indicator. If the
indicator is on, the PAGE field is set to zero, and one is added
before it is written. Remember that one is always added to the
PAGE field before it is written.

9.9.2 Date Field
Often you want the date to appear on the printed report or
output record. Use special words UDATE, UMONTH, UDAY, and UYEAR
to get the date field you desire. The following rules apply to the
date field:
1. UDATE gives a six-character numeric date field in the format:
mmddyy (d, m, and y are the day, month and year positions in
the UDATE field).

The edited date field is eight characters long, in the format:
MM/DD/YY.

2. UDAY may be used for days only, UMONTH for months only, and
UYEAR for years only.

3. These fields may not be changed by any operations specified in
the program.

9.10 Column 38 (Edit Codes)
Use column 38 to:

1. Suppress leading zeros for a numeric field.

2. Omit a sign from the low order position of a numeric field.

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-9

3. Punctuate a numeric field without setting up an edit word.

A table summarizing the edit codes that can be used is printed
below. Each edit code punctuates differently. If an edit code is
used in column 38, columns 45-70 must be blank unless asterisk
fill or a floating dollar sign is required ('¥' or '$' entered in
columns 45-47). If an edit code is used to punctuate an array,
two spaces are left between elements of the array to the left of
each element.

Normally, when an edit code is used in column 38, defining an edit
word in columns 45-70 is not allowed; however, there are two
exceptions:

1. If leading zeros are to be replaced by asterisks, enter '¥' in
columns 45-47 of the line containing the edit code.

2. If a dollar sign is to appear before the first digit in the
field (floating dollar sign), enter '$' in columns 45-47 of
the line containing the edit code.

Asterisk fill and floating dollar sign are not allowed with X, Y
and Z edit codes.

It is also possible to have a dollar sign appear before the
asterisk fill (fixed dollar sign). This is done in the following
way: .

1. Place a dollar sign constant one space before the beginning of
the edited field (on another output specification line).

2. Place '¥' in column 45-47 of the line containing the edit
code.

9-10 . REPORT PROGRAM GENERATOR II

Summary of Edit Codes

Commas Zero No CR -
to Print Sign

Yes Yes 1 A J
Yes No 2 B K
No = Yes 3 C L
No No Y D M

X = Remove Plus Sign

=<
"

Date Field Edit

N
1]

Zero Suppress

9.11 Column 39 (Blank After)

Entry Explanation

Blank Field is not to be reset (blanked or zeroed) after
writing.

B Field is to be reset (blanked or zeroed) after
writing.

Use column 39 to reset a field to zeros or blanks. Numeric fields
are set to zero and alphanumeric fields are set to blanks. This
column must be blank for Look-Ahead fields, date fields (UDATE,
UDAY, UMONTH, UYEAR), and constants.

Resetting fields to zeros is useful when accumulating totals for
each control group. After finding the total for one group and
printing it, you want to start accumulating and printing totals
for the next group. However, the total field should always start
with zeros, not with the total it had for the previous group.
Blank After will reset the total field to zero after it is
printed.

If the field is to be used for output more than once, be sure the

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-1

B is entered on the last output line for that field. Otherwise,
the field is blanked out before all required output is finished.

If a field name specified with Blank After is a table name, the
element of the table looked up last will be blanked or zeroed.

9.12 Columns 40-43 (End Position in Output Record)

Use columns 40-43 to indicate the location on the output
record of the field or constant that is to be written. Enter only
the number of the ending position (the rightmost character) in the
field or constant. Be sure to allow enough space (as indicated by
end position entries) on the output record to hold edited fields.

9.13 Column 44 (Packed or Binary Field)

Entry Explanation
Blank Field is IBM-compatible numeric or alphanumeric
data.

- * Field is Datapoint-compatible numeric data.

Column 44 should contain a D for output in Datapoint format. If
used, the field must not be edited. Since a decimal point is
automatically inserted when the field is written, an additional
column must be allowed for the period. A minus sign will always
be placed to the left of the most significant digit. There must
be room for both a decimal point and a sign if the output field is
negative.

Examples

Internal field Size Output field Size

1234 4.0 1234, 5
012L 4.0 -123. 5
123M 4.0 illegal 5
001K 4.0 -12. 5

9-12 REPORT PROGRAM GENERATOR II

9.14 Columns U5-7T0 (Constant or Edit Word)

Use columns 45-70 to specify a constant or an edit word.

9.14.1 Constant

A constant is any unchanging information that is entered by a
specification. Constants are usually words used for report
headings or column headings.

The following rules apply to constants:
1. Field name (columns 32-37) must be blank.

2. A constant must be enclosed in apostrophes. Enter the leading
apostrophe in column 45.

3. An apostrophe in a constant must be represented by two
apostrophes. For example, if O'CLOCK appears as a constant it
must be coded O''CLOCK.

4, Up to 24 characters of constant information can be placed in
one line. Additional lines may be used, but each line must be
treated as a separate line of constants. The end position of
each line must appear in columns H40-43.

9.14.2 Edit Word

An edit word gives more flexibility in punctuating a numeric
field than an edit code. You directly specify whether commas,
decimal points, and zero suppression are needed, whether the
negative sign should print, whether the output is dollars and
cents, and whether a dollar sign and leading asterisks are wanted.
Constants can be used within edit words.
The following rules apply to edit words:
1. Column 38 (Edit Codes) must not be used.

2. Columns 32-37 (Field Name) must contain the name of a numeric
field.

3. Columns 40-43 (End Position in Output Record) must contain an
entry.

4. An edit word must be enclosed in apostrophes. Enter the

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-13

leading apostrophe in column 45. The edit word itself must
begin in column 46.

5. Any printable character is valid, but certain characters in
certain positions have special uses (see Editing
Considerations in the following text).

6. An edit word cannot be longer than 24 characters.

f. The number of replaceable characters in the edit word must be
equal to the length of the field to be edited. (See Editing
Considerations in the following text for a discussion of
replaceable characters.)

8. All leading zeros are suppressed unless a zero or asterisk is
specified in the edit word. The zero or asterisk indicates
the last leading zero in the field to be replaced by a blank
or asterisk.

9. Any zeros or asterisks following the leftmost zero or asterisk
are treated as constants (they are not replaceable
characters).

10. Any constant to the left of the zero suppression stop
character (except $) will be suppressed unless a significant
digit precedes the constant.

9.14.3 Editing Considerations

Always leave exactly enough room on the output file for the
edited field. If the field to be edited is seven characters long
on the input record, the possible insertion of editing characters
may well require the output field length to be greater than seven.

When computing the length of an edited output field, determine how
many of the editing characters are replaceable. The number of
replaceable characters in the edit word must be equal to the
length of the field to be edited (see following Note). The
replaceable characters are:

Character Use

0 Zero Suppression.
¥ Asterisk fill.
Blank Blank.

9-14 REPORT PROGRAM GENERATOR II

$ Floating dollar sign (if it appears immediately to
the left of zero suppression).

A fixed dollar sign, decimal points, floating dollar sign, commas,
ampersands (representing blanks), negative signs (- or CR) and
constant information are not replaceable characters.

Note: There are two exceptions to the rule that the number of
replaceable characters in the edit word must be equal to the
length of the field to be edited. The exceptions are:

1. An extra space must be left in the edit word for the floating
dollar sign. This ensures a print position for the dollar
sign if the output field is full.

2. An extra space can be left in the edit word if the first
character in the edit word is a zero. In this case, the field
to be edited will not be zero suppressed, but all other
specified editing will be performed.

If it is necessary to show a negative number, a sign must be
included in the edit word. Either the minus sign (-) or the
letters CR may be used. These print only for a negative number;
however, the character positions they require must be taken into
consideration when entering the end position of the field on the
OQutput Format Sheet.

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-15

VALUE OF FELD

000/2.75
0001275
-1000.00
0000.00
/000.00
-1000.00
0025.50
0/00000.00
00/000.00
7859612
125,75
00050.00
031575
0815
0400.10
0000010
022875
0000.03
-00222.22
3456.78
12245007
000200
/123456
00000.
00000
0002469
-0012
000.15
000234
0000.00

CONSTANT OR EDIT WORD
¢)
C @' J
[3 RE
T
T el
C . aR)
¢ . | dlelr@ToiTAlLl’
‘ , .|| R’
LI Ll el | BeiR’
[4 - b4 AL
[4 F)
Rl To P
SRRZERvERG
‘g HRS!.| | mMIvs. ol lciL ’
‘ *0)
¢ 7 *2
e el
< >
L1 e.] | l8-elerloisis!’
4L ORI ¥ %
TP T el
88 B8 el
¢ b
[3 ‘pg)
tﬂ >
q12 8-
< ﬁ' 2
NERE
) b Y ﬁ’)

WRITTEN ON OfP REcoRD

HPY 1275

wpy 1275

1000.00~

ppbY. 0

1000.00 #
1000.00CR.

#¥ 2550 b TOTAL
Y 100,000.00 #pl
Y88 1,000.00 Yp§
785-96/2

$125,75
74pBY50.00
$3/15/75

BEHRS. ISMINS O'CLOCK.
#$400.10

XXX XX IO
F2P2875
poopspp3

BbY 222,22 p- 6R0SS
3450-78 p ¥¥
12,345,667

*%% 200

1243 444 5¥0
popiy

L2417

002468

pBI12p—

ProE/S

by 2%34
PEBpY.00

Note ail decimal points Sppesring vnder VALUE OF FIELD Sre implied and do not:

Figure 9-1.

9-16

occupy 4 byte of memory.

Examples of edit words.

REPORT PROGRAM GENERATOR II

9.15 Columns T1-T4

These columns are not used and should be left blank.

9.16 Columns 75-80 (Program Identification)

Refer to Chapter 2.

CHAPTER 9. OUTPUT FORMAT SPECIFICATION 9-17

Edn Codes
Coramas z"‘:o”:”::;c” No Sign} CR| « | X = Remove
) Plus Sign
. . Yos Yos v balu) vy -oee
. Yes No 2 8| K Field Eat
OUTPUT FORMAT SPECIFICATION L I B Y Y R
. Ho No 4 DM Suppress
PROGRAM . PROG! 13 . DATE __ PAGE OF, ... PAGES l
FORM TYPE TYPE WO T/E4 [-FETCH OVERFLOW (F) [[RET85 81 oATA FORMAT (D)
- jP WSKlp wTFl'JT KNO‘C:TO&S POg‘:\'DION S
:(; I'.‘!:;E FILE NAME '.:T'n' £ ? g % L : :‘ I FIELD NAME g;,i:,‘;% CONSTANT OR EO/T WORD mmv?gcmou
APOEEIG B < vt on oN N
1 3 sis]7 1afrsleal-7ieai19 20121 22023 _g_sj&__ 28[29; 31i32 37[3830f40 a3]aa]as 70] A1 ao
ol [o{PIRY T / ’Jﬂ+l uil { ji
oz |o 100] TruITLie loF IL7simive)’ I
o3| |o ! 10
0| jo FIL DA 8 | 20
ois| lo FIL\PB wiol 1* . 4
o's| o FILOC 6.0 | . ’
0i7] |o LD 0
08| lo FILIDIE] /00| [B 80?**:_
olsl |o LD 12yl | g— BICRX ¥’
10! loPAT, % N 11/ .
1] lo il MK
1i2] lo FILIDH, 35
vs] Jo FiLig) 40
sl o FILIGY 50/
15 lo 25! ‘078 AT AP ILE]?
18] lo "l 4/ ;L |
szl lol. 1l TOITALH] 1] 35
sl lo 1 TOTALL)
9] Jo TOTAL J O\,
2ol |o 5 [‘ToT ALl 101K DATA 1A/LE?
211! lo
2l2] lo
2{3] |9
2le! jo
25! o
0
o
o
(<]
o i

Figure 9-2. Examples of Output Specifications.

9-18 REPORT PROGRAM GENERATOR II

APPENDIX A. GENERATION AND USE OF RELOCATABLE RPGPLUS

The collection of files which comprise the Datapoint RPGPLUS
system are distributed on a serialized disk pack.

A.1 Compiling an RPGPLUS Program

An RPG II source file is compiled by the RPGPLUS compiler by
keying in a command with the following format:

RPG srcefil (,o0bjfil) (;(L)(P)(D)(0)(S)(X)(A)(F)(W)(B))

where the file names are in standard DOS format. If no object file
is specified, the name "srcfil" will be substituted: thus the
command file would be "srcfil/CMD". TXT extension is assumed for
the source file, which can be in EDIT or DATAFORM format and CMD
is the default object file extension. Additional default
extensions are PRT for a listing file, REL for the file containing
relocatable object code, TXC for the 1link control file and SYS for
the RPG work files. The standard RPGPLUS work file names are
suffixed by either a blank or the alphabetized unique character
assigned by the Partition System to the partition in which the
compiler is running. This character replaces the 'u' shown in file
names in the following text. The option characters are used as
follows:

L - List source program and storage map on printer

P - List source program and storage map on disk

D - List source program and storage map on screen

0 - List generated object code (requires L, P or D)
S - List symbol table (requires L, P or D)
X - List cross references (requires L, P or D)
A - Automatic link edit

F - Rename intermediate files (REL, TXC)
W - Rename work files (RPGWRKnu/SYS3)
B - Specify new buffer area upper bound

For normal use of the compiler, the L or P and the A options are
all that are required. The O option will cause listings of 15 to
over 100 pages to be produced, and exists for use by maintenance
personnel. If the A option is specified and fatal errors occur,

APPENDIX A. GENERATION AND USE OF RELOCATABLE RPGPLUS A-1

linking will be supressed.

Use of the L,P,F,W and B options will cause the compiler to
request additional data. These requests will be made in the
following order (with * representing the blinking cursor):

The W option (rename work files) displays:

Work file specification:
Work file 0: RPGWRKOu/SYS ¥
Work file 1: RPGWRK1u/SYS *¥

The second and third messages are requests for new file names; the
default names are those shown. These two files are created and '
then killed each time the RPG compiler is used.
The B option (reset upper bound of buffer area) displays:

Buffer allocation up to: ddddd (oooooo) ¥
giving the current limit in both decimal and octal and accepting a
new value in either number system (leading O for octal); the
default value is the one shown.
The F option (rename intermediate files) displays:

ENTER INTERMEDIATE OBJECT FILE NAMES (R,L): ¥
and accepts names for the Relocatable object code and Link control
files in the format: (relfil)(,1lnkfil). These two files have
defaults of "objfil/REL"™ and "objfil/TXC" respectively. The F
option allows these files to be saved for future use; if it 1s not
specified, RPGOBJTu/REL and RPGLINKu/TXC are used and LINK must be
performed before the next compilation.
The P option (list on disk) displays:

LIST ON FILE: *

requesting a print file name. The default name and extension for
this file are "srcfil"™ and PRT.

The L and P options (listing requested) display:
ENTER HEADING: ¥

and accept a heading to be displayed at the top of each page.

A-2 REPORT PROGRAM GENERATOR II

Having obtained any optional data it needs, the compiler will
process the source file, and produce a relocatable object file
(RPGOBJTu/REL) and a link control file (RPGLINKu/TXC). During the
processing, the top right-hand corner of the display will contain
the RPGPLUS version number and the message "Phase: XX", where XX
are two alphabetic characters. These two characters indicate which
compilation phase 1is being executed at any particular time. There
are over 30 separate phases, each corresponding to a particular
portion of the compilation process. The names of the phases and
their functions are described in Appendix C.

A.2 Linking a Compiled RPGPLUS Program

After a relocatable RPGPLUS program has been compiled, it
must be linked with the RPG object library (and user library, if
specified) to produce an executable command file. This may be
done by using the A option or by typing the command:

LINK RPGLINKu;F
WARNING: Normally LINKing must be done before another RPGPLUS
program is compiled since the compiler will overwrite the two
files each time it is used; if LINKing is to be deferred, the F
option (see above) can be used to rename these files.
A.3 Running a Linked RPGPLUS Program

After compiling the source file and linking the relocatable
object file, the resulting command file is executed by merely
calling for it from the command interpreter. For example suppose
the source file TEST/TXT were compiled by the command:

RPG TEST;L
and linked using:

LINK RPGLINKu;F
or both compiled and linked by the command:

RPG TEST;LA

Then the object file could be executed by the command:

TEST

APPENDIX A. GENERATION AND USE OF RELOCATABLE RPGPLUS A-3

The object file can not accept parameters from the command line;
all necessary interaction with the user is done under object
program control.

A.3.1 DATE Field
If any of the speciai words: UDATE, UDAY, UMONTH, or UYEAR
were used in the source program, the object program will ask for

the date, which should be entered as MM/DD/YY. For example, Sept.
"5, 1973, is entered as 09/05/73.

A.3.2 External Indicators

If any of the external indicators, Ul to U8, were used in the
source program, the object program will ask for their values at
the beginning of execution. The values must be entered in binary,
with a 0 setting the indicator off and a 1 setting it on, and in
phe following order:

Ut U2 U3 U4 U5 U6 U7 U8
Values for indicators not used are not required if there are no
used indicators with a higher number. For example, if U1 were the
only external indicator used, a valid response is either:

0 or 1.

If U1 and U2 were the only external indicators used, the valid
responses are:

00, 01, 10, or 11.

However, if U1 and U3 were used, and no others, the response must
be of the form:

0x0, Ox1, 1x0, or 1x1

where X 1is any character.

A-4 REPORT PROGRAM GENERATOR II

A.3.3 Opening Files

Each file opened by the object program causes an opening
message to be displayed. In the case of assignable disk files, a
message will be displayed, and then the program will wait for a
file name to be entered. This name should be in standard DOS
format (TXT extension is assumed for data files, ISI extension is
assumed for indexed files if extension is not given). 1If a
defined disk file does not exist, an error message will be
displayed and the program will then ask for a name as for an
assignable file.

A.3.4 Indexing ISAM (Indexed) Files

Indexed files are created in exactly the same format as any
fixed format disk file. The data structure is identical and may be
processed, disregarding the index, as a simple fixed format file.
To permit processing as an indexed file, the INDEX utility is used
to create a separate index file. The file is indexed by typing:

INDEX datafile(,indexfile);(E)aaa-bbb

All parameters within the parenthesis are optional. File names are
in standard DOS format. If the indexfile name parameter is
omitted, an index will be created with the name "datafile/ISI".
The "E" parameter indicates that the index is in EBCDIC collating
sequence. If the "E" is omitted the index will be created in ASCII
sequence. The parameter aaa (1-255) is the position of the first
character in the key and bbb (1-353) is the position of the end of
the key.

The indexfile name should be referenced in the File Description
Specifications any time the file is used as an indexed input,
update or add file in an RPG program.

A.3.5 Console Input Files

When entering data from the keyboard as an input file,
end-of-file may be entered by depressing the DISPLAY key and the
ENTER key simultaneously. This eliminates the necessity of coding
an end of file character to set the LR indicator when keyboard
input files are used directly (not in DOS CHAIN). When keyboard
input is used with DOS CHAIN, a record which sets the LR indicator
should be used to terminate processing.

APPENDIX A. GENERATION AND USE OF RELOCATABLE RPGPLUS A-5

APPENDIX B. RPGPLUS REFERENCE TABLES

General System Organization
The first part of the appendix lists the various components of the
RPGPLUS system and gives a brief description of the function
performed by each phase of the compiler. The two-letter
abbreviations appear during compilation in the upper right-hand
corner of the display. An RPG compilation is passed through the
following phases:
1. Interface Program - common data and code.
2. Enter Phases - read, list, and compress source.
3. Assign Phases - allocate data storage.

4, Diagnostic Phases - finish error checking.

5. Generate Phases - generate object program operations for
input, compute, output.

6. Assembly Phases - assemble object text in relocatable form.

Enter Phase Summary

AA - Initialize system, read control card, list, compress and
diagnose.

AD - Process file-descriptions - compress information, writing
part of card on disk, building file-name table and in-core
compression table with the rest of the information.

AE - Process file-extension specifications - compress and write on

AF - Process 1line-counter specifications.

AG - Process input specifications, generating record and field
compressions,

AK - Process calculation specifications - read, list, diagnose and
compress records.

APPENDIX B. RPGPLUS REFERENCE TABLES B-1

AM

AZ

BA
BF
BG
BH

BQ

CA
CB
cC

CH

CI

CK

.CL

cv

Process output specifications, generating record and field
compressions.

Process user library inclusion, and compile-time tables.

Initialize symbol name table.

Assign token numbers to»TAG names.

Assign token numbers to subroutine names (BEGSR).
Assign token numbers to table and field names.

Reorganize symbol name table.
Assign Phase Summary

Assign indicator storage.

Generéte indicator table for 'DEBUG' operations.

Define
and%%%%%%%%%%%%%%%%%% % 5% %% bbb bbb bt bbbk hh % bh %t b bt hh %t bbbk hh%b
5555 bbb bbb bbb bbb bbb hhhhehhhhhhhhhhhh kbbb bbb bt kbbb bbb bbbt D%
Yy Y Y Y Y Y YV Y XYY,

58555550 e kbbb bbb h bbb e hhhhhhhhh kbbbt b e kb h kb hehhhhhhhtable
and field storage, generate table storage.

Scan input, calculation and output compressions, move
definitions to compression records.

Generate field storage.

Scan calculation and output compressions, define literals and
edit masks in core table.

Move literal definitions into compression records.

Generate literal definitions.

B-2 REPORT PROGRAM GENERATOR II

FC

FG

FK
FL
FM
GA

GC

GX - End error text listing,
occurred.

Diagnose

Diagnose calculation specifications,
arrays in calculations,

Diagnostic Phase Summary .

file-descriptions.

Diagnose and preprocess input specifications.

Diagnose

and preprocess output specifications.

Diagnose file referencing errors.

List error notes in order by line number.

to GI - List error texts as needed.

Generation Phase Summary

Input Generation Phases:

MB
ME
MG
MK
- MP

MQ

Generate
Generate
Generate
Generate
Generate

Generate

control field compare.

control field moves.

match fiéld moves.

input field processors.

input, record-tests, and select routines.

input mainline, end test, and file select

Calculation Generation Phases:

PA - Generate arithmetic and character (byte) sequences.

PX - Generate detail calculation mainline.

PY - Generate total calculation mainline.

APPENDIX B. RPGPLUS REFERENCE TABLES

check use of table and
check arithmetic precision. '

call phase ZZ if fatal error

sequences.

B-3

PZ - Generate RPG subroutines.

Phases PX, PY, and PZ generate calculation control code and
the code for other operators.

Output Generation Phases:

SA - Generate output field processors.

SO - Generate heading/detail output mainline.
SP - -Generate total output mainline.

SQ - Generate overflow output processor.

SR - Generate exception output processor.

SS - Generate put routines.

Final Generation Phases:

UA - Generate file description blocks.

UF - Generate open mainline.
UG -~ Generate end mainline.
UU - Link generated segments with the fixed library.

Assembly Phases:

WA -~ Initialize assembly,'set up symbol table.

WC - Assembly pass 1 - define internal symbols.

WE - Assembly pass 2 - generate relocatable object code.
WG - Assembly print pass - list object code.

WK - Finish assembly and generate /TXC file.

WS - Cross=-reference sort.

B-4 REPORT PROGRAM GENERATOR II

WX - Cross-reference listing.

ZZ - RPG Close phase.

APPENDIX B. RPGPLUS REFERENCE TABLES B-5

Format of File Description Blocks

A partial description of the format of a File Description
Block (FDB) is given symbolically in this section. For a
complete and absolute 1listing look at the beginning of an
RPGPLUS object listing (O and list options). The symbols
defined here have the format 'PxxxxFDB' where the suffix
'FDB' shows the symbol pertains to FDBs and 'P' is a prefix
indicating the type of symbol. The prefix 'D' is used for a
displacement, 'M' for a mask, 'L' for a length and 'V' for a
value. Thus 'DRLENFDB' is the offset of the 2-byte record
length field within the FDB, 'MEOFFDB' is the mask used to
set the end-of-file flag, 'LCOMFDB' is the length of the
common part of an FDB and 'VOPNFDB' is the value of byte
passed to a special device driver signifying the OPEN
function. _

Two-byte quantities such as the record length and the file
work area address are stored in standard LSB,MSB form;
Boolean (bit) values are represented as 1 = true and 0O =
false.
Name Purpose

DFLAGFDB Displacement of the three-byte flag field.

------ First Flag Byte —-=-----

MRREQFDB Read request pending.

MCLOSFDB File is closed.

MEOFFDB File is at end-of-file.

MADDFDB Append file.

MPUTFDB Put pending - output record ready for update or
chained output. .

MDBUFFDB Buffer dirty - buffer output pending (update
files).

MERRFDB Error (invalid key).
MRPRFFDB Record is present in buffer.

------ Second Flag Byte --===-=-

B-6 REPORT PROGRAM GENERATOR II

MCHNFDB
MWACFDB
MRACFDB
MERFFDB

MAPPFDB

MISAFDB
MRAFFDB
MSBCFDB
MASTPFDB
- MHIDNFDB

MFLMKFDB

DRLENFDB
DBLKFFDB
DFWAFDB

DFNAMFDB

LFNAMFDB

CHAIN file.

Qutput/update file.

Input/update file.

Embedded record (update file).
Record appended (don't read ahead).
------ Third Flag Byte -------
ISAM file.

File processed by ADDROUT file.
Suppress buffer clear.

ASCII tape.

High density tape.

File mark seen.

------ Basic Descfiption ——————
Logical record length (2 bytes).
Blocking factor (2 bytes).

File work area address (2 bytes).
File name address (2 bytes).

Length of file name.

APPENDIX- B. RPGPLUS REFERENCE TABLES

Format of Table Description Blocks

The format of table description blocks is given: symbolically in
this section. Absolute values follow the FDB definitions in an
RPGPLUS object listing. Conventions are the same as for file
description blocks.

Name Purpose

DBASETDB Address of table/array storage area (2 bytes).

DNENTDB Number of elements (2 bytes).

DELENTDB Element length (1 byte).

DCENOTDB Index of current entry (2 bytes).

DCEADTDB Address of current entry (2 bytes).

B-8 REPORT PROGRAM GENERATOR II

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES

In the following itemization of possible RPGPLUS compile-time
messages, column 1 is the message number, column 2 distinguishes
between warning (W) and fatal (F) errors, column 3 identifies the
type of specification to which the flagged statement belongs
(Header, File, Extension, etc.), and column 4 gives the text of
the message.

No. W/F Card Text

1 W H CCT7-9 SHOULD BE BLANK.

2 W H INVALID CORE SIZE, CC12-14.
3 W H INVALID DEBUG CODE, C15.

4 W H CC16-25 SHOULD BE BLANK.

F INVALID OR BLANK FILE NAME, CCT7-14,
F - INVALID OR BLANK FILE TYPE, C15.
INVALID OR BLANK FILE DESIGNATION, C16.

F INVALID PROCESS TO END OF FILE ENTRY, C17.

O o =N o W
= = =™ = m
3]

F SEQUENCE ENTRY INVALID, OR SPECIFIED WITH FILE TYPE
NOT PRIMARY OR SECONDARY, C18.

10 W F INVALID FORMAT ENTRY, C19.
" W F INVALID BLOCK LENGTH, CC20-23.

12 F F INVALID RECORD LENGTH, CC24-27.

13 W F INVALID MODE OF PROCESSING ENTRY, C28.

14 W F CC29~-31 SHOULD BE BLANK.

15 - W F INVALID OVERFLOW ENTRY, CC33-34.

16 W F OVERFLOW SPECIFIED WITH DEVICE OTHER THAN PRINTER,

CC33534.

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-1

17
18
19

20
21
22

23
24

25

26
27
28
29
30
31
32
33
34
35

36
37
38

T E s = o5 ¥ o=x O =E = =

)

C=-2

m mom Mmoo T om Mmoo om

CC35-38 SHOULD BE BLANK.
INVALID EXTENSION OR LINE COUNTER ENTRY, C39.

LINE COUNTER SPECIFIED WITH DEVICE OTHER THAN
PRINTER, C39.

INVALID DEVICE CODE, CC40-46.
CCY47-52 SHOULD BE BLANK.

CC53-59 SHOULD BE BLANK UNLESS DEVICE SPECIFIED AS
'SPECIAL'.

INVALID 'K' ENTRY, C53.
INVALID UNLESS SPECIAL DEVICE NAME, CC54-59,

INVALID NAME FOR SPECIAL DEVICE I/O ROUTINE,
CC54-59.

CC60-65 SHOULD BE BLANK.

C66 SHOULD BE BLANK.

INVALID ADDITIONS ENTRY, C66.

CC6T7-69 SHOULD BE BLANK.

C70 SHOULD BE BLANK UNLESS TAPE DEVICE.
INVALID REWIND OPTION, CT70.

INVALID FILE CONDITION ENTRY, CCT71-T2.
CC73-7T4 SHOULD BE BLANK.

CC7-10 SHOULD BE BLANK.

INVALID OR UNRECOGNIZABLE 'FROM' FILE NAME,
CC11-18.

INVALID OR UNRECOGNIZABLE 'TO' FILE NAME, CC19-26.
CHAINED, INDEXED OUTPUT FILE C66 MUST BE A.
INVALID TABLE/ARRAY NAME, CC27-32.

REPORT PROGRAM GENERATOR II

39
40

41
12
43
ny
45
16
47

48
49

50
51
52
53
54
55
56
57
58
59
60
61

mom = m o= m T om

T

o =5 T T

moo= Mo

=

[R

o S S TR

INVALID NUMBER OF ENTRIES PER RECORD, CC33-35.

INVALID NUMBER OF ENTRIES FOR TABLE/ARRAY, CC36-39.

INVALID LENGTH OF ENTRY, CCLO-42 OR CC52-54.
INVALID FORMAT ENTRY, CU43 OR C55 - IGNORED.
INVALID DECIMAL POSITIONS ENTRY, C44 OR C56.
INVALID SEQUENCE ENTRY, C45 OR C57 - IGNORED.
INVALID ALTERNATE TABLE NAME, CC46-51.
EXECUTION-TIME TABLES NOT ALLOWED.

ALTERNATE TABLE SPECIFICATION NOT ALLOWED WITH
EXECUTION-TIME ARRAYS.

'FROM' FILE MUST BE AN INPUT-TABLE FILE.

'TO' FILE MUST BE ORDINARY OUTPUT OR OUTPUT-TABLE
FILE.

'"FROM' FILE TOO SHORT FOR TABLE RECORD.
'TO' FILE TOO SHORT FOR TABLE RECORD.
MORE THAN 8192 BYTES OF TABLE STORAGE ALLOCATED.
INVALID COLLATE SEQUENCE ENTRY, CC26.
CC27-74 SHOULD BE BLANK.

INVALID OR UNDEFINED FILE NAME, CCT-14.
FILE MUST BE ASSIGNED TO THE PRINTER.
FORM LENGTH, CC15-17, INVALID OR >99.
CC18-19 SHOULD CONTAIN 'FL'.

OVERFLOW LINE, CC20-22, INVALID OR >99.
CC23-24 SHOULD CONTAIN 'OL'.

CC25-T4 SHOULD BE BLANK.

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-3

62
63
6U4-65
66
o7
68
69
70
71
72
73

T4
75
76
7
78
79
80
81
82
33
84
85
86

m M £ = = ™ m =

T = = =

m ™o

C-4

=

OVERFLOW LINE IS GREATER THAN FORM LENGTH.
MULTIPLE LINE COUNTER SPECIFICATION LINES.
UNASSIGNED.

MIXED RECORD AND FIELD DATA, CC7-42, 43-T4,

CC7-14 SHOULD BE BLANK FOR 'AND' AND ’OR'>CARDS.
FILE NAME, CC7-14, NOT SPECIFIED IN FILES SECTION.
INVALID SEQUENCE ENTRY, CC15-16.

INVALID SEQUENCE ENTRY, C17.

INVALID OPTIONAL SEQUENCE ENTRY, C18.

INVALID RECORD INDENTIFYING INDICATOR, CC19-20.

INCOMPLETE RECORD INDENTIFYING CODE, CC25-27,
CC32-34, OR CC39-41.

INVALID POSITION ENTRY, CC21-24, 28-31 OR 35-38.
INVALID NOT ENTRY, C25, 32 OR 39.
INVALID C/Z/D ENTRY, C26, 33 OR 40.
STACKER SELECT NOT IMPLEMENTED, CA2.
INVALID FORMAT ENTRY, C43.

INVALID 'FROM' LOCATION ENTRY, CCU44-4T.
INVALID 'TO' LOCATION ENTRY, CC48-51.
NEGATIVE OR ZERO FIELD LENGTH, CC44-51.
INVALID DECIMAL POSITION ENTRY, C52.
INVALID FIELD NAME, CC53-58.

INVALID CONTROL LEVEL ENTRY, CC59-60.
INVALID MATCH FIELD ENTRY, CC61-62.

INVALID FIELD RECORD RELATION ENTRY, CC63-64.

REPORT PROGRAM GENERATOR II

87 F I INVALID FIELD INDICATOR(S), CC65-70.

88 W I CCT1-74 SHOULD BE BLANK.

89 F I RECORD DESCRIPTION ILLEGAL.

90 F C INVALID ENTRY IN CCT7-8.

91 F C INVALID 'NOT' ENTRY IN CC9, 12, 15.

92 F C INVALID INDICATOR IN CC10-11, CC13-14, OR CC16-17.
93 F C INVALID FACTOR 1 ENTRY, CC18-27.

94 F C UNRECOGNIZABLE OPERATION, CcC28-32.

95 F C INVALID FACTOR 2 ENTRY, CC33-42.
96 F C INVALID RESULT FIELD, CC43-48.

97 W C HALF-ADJUST ENTRY IN C53 UNRECOGNIZABLE OR NOT
ALLOWED.

.98 F C INVALID RESULT INDICATOR ENTRY, CC54-59.

99 F C INVALID LENGTH IN CC49-51.

100 F C DECIMAL POSiTIONS INVALID, C52.

101 F C CC49-52 SHOULD BE BLANK IF NO RESULT FIELD IS
SPECIFIED.

102 F C INVALID FILE NAME IN CC33-42.

103 F C INVALID LITERAL SPECIFICATION.

104 F C INVALID BIT MASK, CC33-42.

105 F C CONDITION INDICATORS NOT ALLOWED WITH 'TAG',
'RLABL', 'BEGSR', OR 'ENDSR' OPERATIONS.

106 F F INVALID KEY LENGTH, CC29-30.

107 F F INVALID KEY STARTING POSITION, CC35-38.
108 W F ISAM OUTPUT FILE MUST BE "INDEXED" AFTER CREATION.

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-5

109 F F SEQUENTIAL WITHIN LIMITS VALID ONLY ON INDEXED
FILES, C28.

110 F 0 RECORD AND FIELD DATA IN SAME LINE.

111 F 0 INVALID OR UNSPECIFIED FILE NAME, CC7-14,.

112 F 0 INVALID 'AND' OR 'OR' ENTRY, CC14-16.

113 W 0] | CC17-22 SHOULD BE BLANK ON 'AND' OR 'OR' LINES.
114 F 0 INVALID LINE TYPE, CI15.

115 W 0 INVALID FETCH OVERFLOW ENTRY, C16.

116 W 0 INVALID 'SPACE BEFORE' ENTRY, C17.

M7 W 0] INVALID 'SPACE AFTER' ENTRY, C18.

118 W 0] INVALID 'SKIP BEFORE' ENTRY, CC19-20.

119 W 0 INVALID 'SKIP AFTER' ENTRY, CC21-22.

120 W 0] INVALID 'NOT' ENTRY, C23, 26, OR 29.

121 F 0] INVALID FIELD CONDITIONING INDICATOR.

122 F 0 INVALID FIELD NAME.

123 F 0 INVALID EDIT CODE, C38.

124 W 0 C38 SHOULD BE BLANK IF NO FIELD NAME SPECIFIED.
125 W 0 INVALID 'BLANK AFTER' ENTRY, C39.

126 F 0 INVALID END POSITION ENTRY, CCU4O-43.

127 W 0 INVALID DATABUS FORMAT ENTRY, Cu4.

128 W 0] C44 SHOULD BE BLANK IF NO FIELD NAME SPECIFIED.
129 W 0 LITERAL NOT STARTED WITH A QUOTE, Cu45.

130 F 0 EMBEDDED SINGLE QUOTE, CCu45-70.

131 F 0 REMAINDER OF CC45-70 NOT BLANK AFTER LITERAL.

132 W 0 LITERAL TOO LONG, CC70-80.

C-6 REPORT PROGRAM GENERATOR II

133
134
135
136
137
138
139
140
141
142
143
144
145
146

147

148

149
150
151
152
153
154

m O s E o= O=E =2 ¥ o= = o=

= = = = =

= = = =

(@

= - O O

H

mom

mom

5]

T

INVALID COMBINATIONS OF $ AND * IN CCU5-4T.
CC45-47 NOT $, *, OR BLANK.

INVALID EDIT WORD.

CCT1-74 SHOULD BE BLANK.

MULTIPLE HEADER CARDS.

INVALID ENTRY, C10.

INVALID ENTRY, C11.

FILE NAME TABLE FULL.

DUPLICATE FILE NAME, CCT7-14.

INVALID TYPE FOR GIVEN DEVICE CODE, C15.
INVALID DESIGNATION FOR GIVEN DEVICE CODE, C16.
INVALID FILE FORMAT FOR THIS DEVICE, C19.
BLOCKING FACTOR GREATER THAN 255, CC20-27.
BLOCK LENGTH LESS THAN RECORD LENGTH, CC20-27.

BLOCK LENGTH NOT A MULTIPLE OF RECORD LENGTH,
CC20-27.

BLOCK LENGTH GREATER THAN ALLOWED FOR GIVEN DEVICE,
CC20-23.

BLOCK LENGTH NOT EQUAL TO RECORD LENGTH, CC20-27.
NO FILE DESCRIPTION SPECIFICATIONS.

NO PRIMARY OR SECONDARY FILE SPECIFIED.

SECONDARY FILE PRECEDES PRIMARY FILE.

MULTIPLE PRIMARY FILES. SECONDARY ASSUMED.

AN EXTENSION, C39, MUST BE SPECIFIED FOR TABLE
FILES.

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-17

155

156
157

158

159
160
161

162

163
164
165
166
167
168
169

170

171
172
173
174
175

Mmoo mo=s T

S|

c-8

moomo om om mom

]

EXTENSION, C39, INVALID WITH GIVEN DEVICE OR
NON-TABLE FILE.

DEVICE ASSIGNED TO MORE THAN ONE FILE.

CONDITION INDICATOR, CC71-72, INVALID FOR TABLE

FILE.

FILE NAME ASSIGNED BUT NEVER USED IN PROPER
SECTION. :

SEQUENCE, C18, INVALID WITH NO MATCH FIELDS.
SEQUENCE, C18, MUST BE SPECIFIED WITH MATCH FIELDS.

EXTENSION OR LINE COUNTER SPECIFICATION MISSING,
€39. '

EXTENSION OR LINE COUNTER SPECIFICATION FOUND FOR

THIS FILE, BUT C39 IS NOT 'E' OR 'L'.

OUTPUT REFERENCE REQUIRED FOR UPDATE FILE.
CCT7-52 ON CONTINUATION CARD SHOULD BE BLANK.
CC54-59 ON CONTINUATION CARD NOT EQUAL 'ASCII'.
CC60-74 ON CONTINUATION CARD SHOULD BE BLANK.
TAPE RECORD LENGTH LESS THAN 18.

ADDITIONS INVALID FOR FILE OR DEVICE, C66.

ALL PRIMARY AND SECONDARY FILES CONDITIONED.

CALCULATION REFERENCE REQUIRED FOR CHAIN OR DEMAND
FILES.

UNASSIGNED.

INVALID ENTRY IN C53. 'A' ASSUMED.
INVALID LABEL EXIT.

C53 SHOULD BE BLANK.

CC60-65 SHOULD BE BLANK ON ASCII CARD.

REPORT PROGRAM GENERATOR II

176
177
178
179

180

181
182

183
184
185

186
187
188
139
190

191
192
193
194

195

196

F

UNRECOGNIZABLE DISK CONTINUATION OPTION IN CC54-59.

UNRECOGNIZABLE ENTRY IN CC60-65.
UNASSIGNED.

VARIABLE BLOCKING INVALID FOR THIS FILE TYPE, FIXED
BLOCKING ASSUMED.

CC31-32 SHOULD CONTAIN 'I ' OR 'AI' FOR RANDOM
PROCESSING.

CC29-32 SHOULD CONTAIN ' 3IT' FOR ADDROUT FILES.

ADDROUT FILES MUST BE FIXED-FORMAT, UNBLOCKED FILES
WITH RECORD LENGTH EQUAL TO 3.

THIS FILE MUST BE CONTROLLED BY AN ADDROUT FILE.
ADDROUT FILE MUST CONTROL A PRIMARY/SECONDARY FILE.

CORRESPONDING ADDROUT AND PRIMARY/SECONDARY FILES
MUST HAVE THE SAME EXTERNAL INDICATOR CONDITION.

. UNRECOGNIZABLE PRINTER CONTINUATION.

RECORD ADDRESS TYPE SHOULD BE 'A' OR 'I', CC31.
UNRECOGNIZABLE RECORD ADDRESS TYPE, CC31.
UNRECOGNIZABLE FILE ORGANIZATION, C32.

CC29-30 SHOULD BE BLANK FOR FILE PROCESSED BY
ADDROUT FILE.

UNASSIGNED
ISAM FILE CAN'T BE CONTROLLED BY TAG FILE.
NO DATA FOR COMPILE TIME TABLE.

MORE THAN ONE ADDROUT FILE CONTROLS THIS
PRIMARY/SECONDARY FILE.

MORE THAN ONE PRIMARY/SECONDARY FILE IS CONTROLLED
BY THIS ADDROUT FILE.

'FROM' FILE MUST BE AN ADDROUT FILE.

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES - C=9

197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217
218
219

™ T T T T T B

m = om om

C-10

'TO' FILE MUST BE A RANDOMLY-PROCESSED
PRIMARY/SECONDARY FILE.

TOO MANY TABLES DEFINED.

MULTIPLE TABLE DEFINITIONS.

NO INPUT SPECIFICATION SECTION.

FIELD PRECEDES FIRST RECORD.

FILE ASSIGNED IS NOT AN INPUT OR UPDATE FILE.
MORE THAN 256 INPUT RECORD TYPES SPECIFIED.
UNASSiGNED.

CONTROL LEVEL SPECIFICATION INVALID WITH FILE TYPE.
MATCH FIELD SPECIFICATION INVALID WITH FILE TYPE.
MORE THAN 255 RECORD ID TESTS FOR THIS RECORD.
FIRST LINE IS AN 'AND' OR 'OR' LINE.

MULTIPLY DEFINED FIELD.

LENGTH OF CONTROL FIELDS GREATER THAN 255 BYTES.
LENGTH OF MATCH FIELDS GREATER THAN 255 BYTES.
MORE THAN 32 'AND' LINES.

UNASSIGNED.

'"AND' LINE FOLLOWS LINE WITHOUT RECORD ID CODES.
NO FIELDS DESCRIBED FOR PREVIOUS RECORD.

NUMERIC SEQUENCE ENTRIES NOT IN ORDER, OR FIRST
ENTRY NOT EQUAL 01.

CC17-18 SHOULD BE BLANK FOR ALPHABETIC SEQUENCE.
CC17-20 SHOULD BE BLANK FOR 'AND' LINES.
CC17-18 SHOULD BE BLANK FOR 'OR' LINES.

REPORT PROGRAM GENERATOR II

220

221
222
223
224
225
226
227

228

229

230

231

232

233
234

235

236

237

238

LENGTH OF NUMERIC FIELD GREATER THAN 15, OR LENGTH
OF ALPHABETIC FIELD GREATER THAN 256.

DECIMAL POSITION ENTRY INVALID FOR ARRAY.

NUMBER OF DECIMAL POSITIONS EXCEEDS FIELD LENGTH.
TABLE NAME INVALID FOR A FIELD NAME.

'"AND'" LINES INVALID WITH LOOK-AHEAD RECORD.
CC17-18, 21-42, AND 59-74 INVALID WITH LOOK-AHEAD.
FIELD LOCATION ENTRIES EXCEED RECORD LENGTH.

FIELD NAME IS A RESERVED WORD OTHER THAN 'PAGE'.

CONTROL AND MATCH SPECIFICATIONS INVALID FOR
ARRAYS.

LOOK-AHEAD INVALID WITH CHAIN OR DEMAND FILES OR
WITH THIS DEVICE.

NO FIELDS SPECIFIED FOR LOOK-AHEAD RECORD.

ARRAY LENGTH EXCEEDS OR IS NOT A MULTIPLE OF LENGTH
IN EXTENSION SPECIFICATION.

INCONSISTENT LENGTHS FOR CONTROL OR MATCHING FIELDS
OF ONE LEVEL.

INVALID SPLIT CONTROL FIELD SPECIFICATION.

CONTROL OR MATCHING FIELDS SPECIFIED AS ALPHA AND
NUMERIC.

ALL VALID MATCH LEVELS WERE NOT REFERENCED IN THE
LAST RECORD GROUP.

CONTROL OR MATCH FIELDS WITHOUT FIELD RECORD
RELATION MUST PRECEDE THOSE WITH FIELD RECORD
RELATION.

CONTROL OR MATCH FIELDS WITH FIELD RECORD RELATION
MUST BE GROUPED BY FIELD RECORD RELATION.

FIELD RECORD RELATION INDICATOR USED IMPROPERLY
WITH CONTROL OR MATCH FIELDS.

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-11

239 W I INDICATOR ASSIGNED BUT NOT USED.

240 F I INDICATOR USED, BUT NOT ASSIGNED.

241 F I FIELD LENGTH NOT MULTIPLE OF TABLE ENTRY LENGTH.

242 F INDEX FIELD NOT NUMERIC OR DECIMAL POSITIONS > O.

243 F LITERAL INDEX OUT-OF-BOUNDS.

244 F CONFLICT IN TAPE DENSITY.

245 F FILE ORGANIZATION SPECIFICATION SHOULD BE BLANK,
' CcC32.

246 F FILE ORGANIZATION SHOULD BE 'I' OR 'T', CC32.

247 F RECORD ADDRESS TYPE AND FiLE ORGANIZATION ARE

INCOMPATIBLE, CC31-32.
248-249 UNASSIGNED.

250 F C INVALID FILE FOR FORCE.
251 F C INVALID FILE FOR READ.

252 F C INVALID CHAINING FIELD.

253 F C INVALID FILE IN CHAIN.

254 F C’ DEBUG FILE NOT OUTPUT FILE.

255 W C DEBUG OPERATIONS IN PROGRAM IGNORED.
256 W C DEBUG OPTION WITHOUT DEBUG OPERATION.
257 F C DIFFERENT DEBUG FILES.

258 F C INVALID FILE FOR DSPLY.

259 W C CALCULATIONS CONSIST ONLY OF SUBROUTINES.

260 F C SUBROUTINE MUST BEGIN WITH 'BEGSR' OPERATION.
261 F C TOTAL OR DETAIL RECORD OUT OF SEQUENCE.

262 F C ARRAY IMPROPERLY USED IN RESULT FIELD.

C-12. REPORT PROGRAM GENERATOR II

263

264

265

266

273
274

275
276
277
278
279

280 -

281
282
283
284

= = m

r

T}

FACTOR 1 OR 2 MAY NOT BE AN ARRAY UNLESS RESULT
FIELD IS.

RECORD LENGTH FOR DEBUG FILE IS TOO SMALL.

FACTOR 1 IN 'DEBUG' SHOULD BE LESS THAN NINE BYTES
LONG.

SUBROUTINE MUST END WITH 'ENDSR'.

RESULT FIELD MUST BE ALPHANUMERIC.

FACTOR 2 MUST BE ALPHANUMERIC.

FACTORS 1 & 2 MUST HAVE SAME TYPE.

BIT OPERATIONS TAKE SINGLE-BYTE FIELDS.
FACTOR 2 IN 'LOKUP' MUST BE A TABLE OR ARRAY.

CORRESPONDING TABLE MAY NOT BE USED WITH ARRAY
LOOK-UP.

RESULT FIELD IN LOKUP MUST BE A TABLE.

FACTOR 1 MUST HAVE SAME LENGTH AS FACTOR 2 1IN
LOOK-UP.

'BEGSR' IN MIDDLE OF SUBROUTINE.

'RLABL' MUST IMMEDIATELY FOLLOW 'EXIT'.
INVALID LABEL OPERAND.

'BEGSR' OR 'ENDSR' IN DETAIL OR TOTAL RECORDS.
FACTOR 1 MUST BE NUMERIC.

FACTOR 2 MUST BE NUMERIC.

RESULT FIELD MUST BE NUMERIC.

HALF-ADJUST NOT NEEDED, ENTRY ASSUMED BLANK.
COMPUTED RESULT MAY OVERFLOW RESULT FIELD.

FACTOR 2 IN 'XFOOT' MUST BE AN ARRAY.

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-13

285 F C 'MVR' MUST FOLLOW 'DIV'.

286 F C HALF-ADJUST ON PREVIOUS 'DIV' ILLEGAL WITH 'MVR'.
287 F C FACTOR 2 NOT A PROCESS WITHIN LIMITS FILE.

288 F C FACTOR 1 IS NOT A VALID KEY.

289 F C INVALID USE OF AND/OR LINE.

290 F C PRECEDING LINE SHOULD HAVE AN OP-CODE OR THIS LINE

SHOULD BE AN AND/OR LINE.

291 F C FACTOR 2 AND RESULT FIELD CAN NOT BE SAME ARRAY.

292 F C TABLE OR ARRAY MUST BE EITHER ASCENDING OR
DESCENDING FOR HIGH OR LOW 'LOOKUP'.

293=-327 UNASSIGNED

328 W 0 DATAPOINT COMPATIBLE FIELD SHOULD BE NUMERIC.

329 F 0] NEITHER FIELD NAME OR LITERAL IS PRESENT.

330 F 0 "AND' OR 'OR' LINE NOT PRECEDED BY RECORD LINE.

331 W 0 SPACE AND SKIP INVALID WITH DEVICE OTHER THAN
CONSOLE OR PRINTER. '

332 W 0 SKIP ENTRY GREATER THAN FORM LENGTH.

333 W 0 FETCH OVERFLOW INVALID FOR DEVICE OTHER THAN
PRINTER.

334 F 0 OVERFLOW INDICATOR INVALID FOR EXCEPTION LINE.

335 W 0 FETCH OVERFLOW INVALID WITH OVERFLOW INDICATORS.

336 F 0 OVERFLOW INDICATOR USED IS NOT ASSIGNED TO THIS
FILE.

337 W 0 1P INDICATOR INVALID ON TOTAL OR EXCEPTION LINES.

338 W 0 FETCH OVERFLOW INVALID WITH 1P INDICATOR.

339 W 0 SPACE BEFORE OF O'INVALID FOR CONSOLE.

340 F 0 INVALID INDICATORS USED WITH 1P INDICATOR.

C-14 REPORT PROGRAM GENERATOR II

3M
342

343
34y

345
346
347

348
349
350
351
352

353
354
355
356
357
358
359
360
361
362

= m = m

=

]

= m ™ m

o

o © o O o

o O o O o

O

o o O o

END POSITION GREATER THAN RECORD LENGTH.

LENGTH OF ARRAY, ELEMENT, OR FIELD EXCEEDS RECORD
LENGTH.

END POSITION TOO LOW.

ALL INDICATORS MISSING OR NEGATIVE IN PREVIOUS
RECORD.

ALL INDICATORS MISSING ON THIS LINE.
INVALID EDIT WORD SIZE.

EDIT CODE INVALID WITH ALPHA FIELD OR CONSTANTS
OTHER THAN $ OR ¥*.

CONSTANT INVALID WITH EDIT CODES X, Y OR Z.
INVALID FIELD LENGTH FOR Y EDIT CODE.
DECIMAL POSITIONS INVALID WITH Y EDIT CODE.
INVALID FILE TYPE FOR OUTPUT RECORD.

BLANK AFTER INVALID WITH RESERVED WORD OTHER THAN
'PAGE"'.

MORE THAN 32 'AND' OR 'OR' LINES.

BLANK AFTER SPECIFIED FOR A CONSTANT.

ARRAY INDEX EXCEEDS NUMBER OF ELEMENTS.

BLANK AFTER INVALID WITH.LOOK4AHEAD.

INDICATOR ASSIGNED BUT NEVER USED.

INDICATOR USED BUT NEVER ASSIGNED.

FIELD NAME USED BUT NOT DEFINED.

TABLE OR ARRAY NAME USED AS INDEX.

NUMBER OF DECIMAL POSITIONS EXCEEDS FIELD LENGTH.
LO-L9 IN 'OR' RELATIONSHIP WITH LR.

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-15

363

F
364 W
365 F
366 F
367 F
368
369 F
370 F
3717 F
372 F
373 F
374 W
375 F
376 F
377 F
378-379
380 W
381 F
382 F
383 F
384 F

C-16

(@) o O O (@] o

o

ADDITIONS INVALID WITH 'AND' OR 'OR' LINES.

FOR ADD FILES, EACH RECORD MUST HAVE 'ADD' IN
CC16-18.

ADDITIONS INVALID WITH FILES EXCEPT SEQUENTIAL DISK
FILES.

'T* IN C15, OR E WITH LO-L9 INVALID WITH UPDATE
FILES.

FIELD LINE PRECEEDS FIRST RECORD LINE.
UNASSIGNED.

MORE THAN 255 OUTPUT RECORD TYPES SPECIFIED.
NO OUTPUT SPECIFICATION SECTION FOUND.
RECORDS MUST BE IN SAME ORDER AS FILES.

H, D, T AND E LINES MUST BE IN ORDER.

FIELD LENGTH DOES NOT CORRESPOND TO NUMBER OF
REPLACEABLE CHARACTERS IN EDIT WORD. '

EXCEPT RECORD WITHOUT 'EXCPT' OPERATION.

EDIT CODE INCOMPATIBLE WITH OPTIONS USED IN
CCus5-47,

NO REPLACEABLE CHARACTERS IN EDIT WORD.

FILE IS NOT A DISK ADD FILE, CC16-18.

UNASSIGNED.

SEQUENCE NUMBERING ERROR IN SOURCE RECORDS, CC1-5.
(Note: a sequence error will occur if a blank
record is present in the source code.)

RECORD TYPE OUT OF SEQUENCE IN SOURCE RECORDS, Cé6.
INVALID CHARACTERS IN (MAIN) OPERAND NAME.

INVALID CHARACTERS IN INDEX OF OPERAND.

INDEX IS INVALID WITH THIS OPERAND.

REPORT PROGRAM GENERATOR II

385-399

400
401
U402
403
40Oy
405
406
407
408
409
410
411
412

F

F
W
F

moom = =T

mE = =

UNASSIGNED.

SEQUENCE ERROR IN COMPILE-TIME TABLE OR ARRAY.
NUMERIC FIELD ERROR IN COMPILE-TIME TABLE OR ARRAY.
END OF FILE FOLLOWS '¥*¥b' RECORD.

NO FILE NAME IN LIBRARY INCLUSION RECORD.

USER LIBRARY FILE DOES NOT EXIST.

DELIMITER CARD FORMAT ERROR.

INSUFFICIENT DATA FOR TABLE OR ARRAY.

EXCESS DATA FOR TABLE OR ARRAY.

ALTERNATE TABLE BUFFER FULL.

NO '¥*¥p' RECORD FOLLOWS LIBRARY INCLUSION RECORD.
NO COMPILE-TIME TABLE/ARRAY FOR DATA.

INVALID LIBRARY FILE NAME.

COMPILE-TIME TABLE/ARRAY DATA RECORD LENGTH > 80.

APPENDIX C. RPGPLUS COMPILE TIME MESSAGES C-17

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES

During the execution of an RPGPLUS object program, messages
will be displayed on the screen either to request input from the
user or merely to inform him of certain actions being performed.
In addition, error messages will be displayed if abnormal
Situations are encountered. The following list of messages are
all those which could possibly occur during an RPGPLUS object
program execution, The list includes an explanation of each
message, special action taken by the object program after
displaying the message, and an explanation of the response from
the user, if necessary. RPGPLUS accepts a single character
response (R,B,C,or A for Resume, Bypass, Cancel, or Abort,
respectively) from the operator only; this response cannot be
incorporated into a CHAIN file. This appendix lists unnumbered
general messages followed by numbered diagnostics.

RESUME/BYPASS/CANCEL /ABORT
BYPASS/CANCEL/ABORT
CANCEL/ABORT

Explanation: General error messages displayed after other
error messages to give the user an option as to
what action should be taken by the program,

Program Action: Wait for input.

User Response: Up to four different responses are allowed.
' Typing an 'R' will cause the program to Resume

execution at the point where the error occured.
Typing a 'B' will cause the program to Bypass the
current cycle and read the next record. Typing a
'C' will Cancel program execution and close all
the files. Typing an 'A' will immediately return
control to the operating system without closing
any files.

In the following descriptions, those errors
permitting Resume or Bypass will be marked with a
parenthesized 'R' or 'B' following the Object
Time Message number. Messages not so marked must
be processed by CANCELling or ABORTing program

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES © D=1

Explanation:

Program Action:

User Response:

Explanation:

Program Action:

User Response:

Explanation:

Program Action:

User Response:

execution.

- - —— - - WS D D - - = ——— — S D Gm . - D A - - - =

OPEN xxxxxxxx AS yyyyyyyy FILE:

General message displayed during the file opening
sequence for every file described in the program.
The program name for the file will appear in
place of the x's and the type of file will appear
in place of the y's. This message will be
followed by one of the following: blinking
cursor (for an assignable disk file), the file
name defined in the source program, or an
asterisk followed by the device being used (e.g.
"¥SERVO PRINTER").

Wait for response if assignable disk file.

If the file is an assignable disk file, enter the
file name. The default extension is "TXT";
"search all drives" will be assumed if no drive
is specified. ‘

(NO SUCH FILE)

Error message displayed if, when naming an input
file during the file opening sequence, the named
file does not exist.

The request for a file name will be repeated.

The name of an existing file should be entered.

(BAD FILE SPEC)

Error message displayed if a specification of a
file during the file opening sequence is
incorrect.

The request for a file name will be repeated.

A correct file name should be entered.

D-2 “REPORT PROGRAM GENERATOR II

Explanation:

User Response:

Explanation:

Program Action:

User Response:

Explanation:

Program Action:

User Response:

Explanation:

Program Action:

User Response:

DSPLY

Message displayed whenever the DSPLY operation is
executed.

If blinking cursor displayed, enter new value for
quantity shown.

- - - — - - - - - - - - — - - - - - - - -

ENTER EXTERNAL INDICATOR SETTING IN BINARY

Message displayed if any of the external
indicators, U1 to U8, were used in the source
program.

Wait for input.
The values of the external indicators used in the

program should be entered. Detailed formatting
can be found in Appendix A.

ENTER DATE AS MM/DD/YY

Message displayed if any of the special names:
UDATE, UDAY, UMONTH or UYEAR were used in the
source program. -

Wait for input.
The desired date should be entered. The format

of the date is fixed, in that January 24, 1977
would be entered as 01/24/77.

FORMAT CORRECT, CONTINUE?

Message displayed if the format of the tape
header labels was correct.

Display labels then wait for résponse.

If the correct tape is mounted, a "Y" should be

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-3

001(B):

Explanation:

002:

Explanation:

User Response:

003(B):

Explanation:

entered so processing can continué. If thé wrong
tape is mounted, an "N" should be entered to stop
program execution. '

ERROR HALT n

Message displayed at the end of a cycle if Halt
indicator n (H1 - H8) is found on. .

MULTIPLE WRITES TO LOADER

Error message displayed if more than one record
is written to device LOADER.

LOADER OVERLAY MISSING

Error message displayed if the source program has
specified the LOADER device and the loader object
file (RPGLDR/OV1) does not exist.

The file RPGLDR/OV1 should be re-installed from
the RPGPLUS generation tapes and the program
re-run.

- . . - P M P W W W N R e e e - I R e S P G W T D S P D e P

NON-DIGIT IN CONVERSION TO BINARY

Error message displayed if a field or literal
used as an array index of a record address of a
CHAINed file is less than zero or greater than
65535. :

D-4 REPORT PROGRAM GENERATOR II

004(B)

Explanation:

005(B):

Explanation:

006(B):

Explanation:

007(B):

Explanation:

008(B):

Explanation:

009(R):

Explanation:

APPENDIX D.

DATABUS INPUT ERROR

Error message displayed if the format of a number
being read from an input file is not 1in correct
DATABUS format.

-NUMERIC FIELD ERROR

Error message displayed if a character in a
numeric field is not a digit.

- - - - — - — - - G R D R D D G D Y - R G D mD A - - -

RESULT OVERFLOW

Error message displayed when the result of an
arithmetic operation is too large to fit in the
field specified.

DSPLY FIELD TOO LONG

Error message displayed if the length of a field
being displayed in the DSPLY operation is greater
than 80.

DIVIDE BY ZERO

Error message displayed upon an attempt to divide
by =zero.

SQUARE ROOT IMAGINARY

Error message displayed if an attempt is made to
take the square root of a negative number.

RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-5

-——— oy . - —— ww wp P - -

010(B):

Explanation:

011(R):

Explanation:.

Program Action:

- —— - — - ——— - . G- - ——

012(R):

Explanation:

Program Action:

- . - - — - - — -~ — - -

013:

Explanation:

014(B):

Explanation:

D-6

——— - D - P P - WD TE S D D L D W Y N D W . = -

INVALID INDEX

Error message displayed if an @rray index 1is less
than 1 or greater than the number of elements in
the array. ’

- - . - - = S = W = . W - WS W . W S G T WD - S - - - -

NO DATA FOR TABLE/ARRAY LOAD

Error message displayed if there is no data for a
pre-execution time table or array.

Leave table empty.

TOO MUCH DATA FOR TABLE/DATA LOAD

Error message displayed if a pre-execution time
table or array has been entirely filled and there
is another record of data for that table or
array.

Ignore excess data records.

- —— " - ——— - . - - W N G S W e e o A S . o - - -

SEQUENCE ERROR IN TABLE/ARRAY LOAD

Error message displayed if the sequence of data
being read into a pre-execution time table or
array is not as specified on the Extension Specs.

OPTION TEST LOOP

Error message displayed if all record types for
an input file are described as optional and the
current input record is not identifiable.

REPORT PROGRAM GENERATOR II

015(B):

Explanation:

016(B):

Explanation:

“017(R):

Explanation:

Program Action:

User Response:

018(R):

Explanation:

Program Action:

User Response:

APPENDIX D.

MATCH SEQUENCE ERROR

Error message displayed if the sequence of data
in any specified match fields is not as specified
on the File description specs.

- — - D - - Y ED . D G S D A D - P D T D P G S W S P D WP D b . D . -

RID TESTS FAILED

Error message displayed if a record in an input
file can not be identified; i.e. does not match
any of the Record IDentifying codes on the Input
specification. o

- —n an . - - — - - - - - - P = D D =D W N - . - . . = -

INVALID EXTERNAL INDICATOR SETTING

Error message displayed if the external
indicators entered were not a valid 0 or 1.

Request for external indicator setting repeated.

Enter correct setting.

INVALID USER DATE ENTERED

Error message displayed if incorrect date entered
- must have form mm/dd/yy where mm (month), dd
(day) and yy (year) are two-digit numbers.

Request for date repeated.

Enter date in correct format.

RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D=7

026:

Explanation:

028:

Explanation:

029(B):

Explanation:

030(B):

Explanation:

031:

Explanation:

032:

Explanation:

D-8

NO WRITE RING FOR OUTPUT

Error message displayed if magnetic tape to be
written on does not have a write ring.

END OF TAPE FOUND

Error message displayed if the physical end of a
magnetic tape is encountered.

RECURRING PARITY ERROR

Error message displayed if bad parity persists
during an attempt to read tape.

- - - - G Wm T WS . S = D D D P G D -y T T P WD AR e W S A - - -

BAD TAPE FOUND DURING WRITE

Error message displayed if it is not possible to
write a tape block correctly.

FDBS DO NOT MATCH IN TAPE CLOSE

Error message displayed if the FDB address
supplied to tape close does not match that stored
by the open routine.

NO VOLUME 1 LABEL FOUND

Message displayed if the VOL1 label is either
missing or invalid.

REPORT PROGRAM GENERATOR II

033:

Explanation:

034

Explanation:

035:

Explanation:

- - - - . - = - w—

036:

Explanation:

037:

Explanation:

038:

Explanation:

APPENDIX D.

MISSING OR INVALID HDR1 LABEL

Error message displayed if the HDR1 label on an
input tape is either missing or invalid.

MISSING OR INVALID HDR2 LABEL

Error message displayed if the HDR2 label on an
input tape is either missing or invalid.

RECORD FORMAT NOT FIXED

Error message displayed if format specified in
tape labels is not Fixed ("F").

WRONG BLOCK SIZE IN LABEL

Error message displayed if the block length in
the HDR2 label of an input tape is not the same
as that specified in the source program.

WRONG RECORD SIZE IN LABEL

Error message displayed if the record length in
the HDR2 label of an input tape is not the same
as that specified in the source program.

OPERATOR ABORT REQUESTED

Message displayed when operator responds
negatively to message asking if tape label format
is correct.

RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-9

039:

Explanation:

040:

Explanation:

041:

Explanation:

042:

Explanation:

051:

Explanation:

052(B):

Explanation:

- D - - A - D D G G D WD P D GD G D . N W - - —— o s = au

NO EOF1 LABEL FOUND

Error message displayed if the EOF1 label is
missing or invalid on an input tape.

—— - . - W . - W M — T P - D - D = D - - -

BLOCK COUNT NOT EQUAL TO COUNT IN LABEL

Error message displayed if the block count in the
EOF1 label is not equal to the number of blocks
read from an input tape.

- - . - —— D . I . = - - - - -

INVALID TAPE DENSITY IN LABEL

Error message displayed if tape density specified
in HDR2 does not match that defined in source
program.

- s - > = " - D u N G D e G G G WD WS D W G W G W W Ge W e s s e =

INVALID LABEL RECORD LENGTH

Error message displayed if the length of a tape
label record was incorrect.

Y - — - D D - - - - - — - . - - = S - — - s - - =

INVALID OPENING OF CASSETTE FILE

Error message displayed if a file has already
been opened using this cassette drive.

READ PARITY ERROR

Error message displayed if a parity fault
occurred while reading a cassette file.

REPORT PROGRAM GENERATOR II

053(B):

Explanation:

054

Explanatioh:

- - - — - -

055:

Explanation:

057(B):

Explanation:

058(B):

Explanation:

- - - —— - — - - -

059(B):

Explanation:

WRITE PARITY ERROR

Error message displayed if a parity fault
occurred while writing a cassette file.

CAN NOT POSITION TAPE

Error message displayed if there is no file zero
on a cassette tape.

END OF CASSETTE TAPE

Error message displayed if the physical end of a
cassette tape is encountered.

FILE FORMAT ERROR

Error message displayed if disk file has format
error - EOR missing or prior record not
terminated by EOS or deletion character.

- - ——— . . = G D D N G P - . D M WD WD S D D SR R WS S - - . - - -

SHORT INPUT RECORD

Error message displayed if record read from Fixed
disk file is shorter than specified in the source
program.

- - ——— - - —— - - S S S - - - - - - - - - - -

LONG INPUT RECORD

Error message displayed if record read from Fixed
disk file is longer than specified in the source
program.

APPENDIX D. RPGPLUS OBJECT (EXECUTION) TIME MESSAGES D-11

062(B): DR$ READ ERROR

Explanation: Error message displayed when an attempt to read a
sector of an index file fails.

063(B): FORMAT ERROR IN EXTENDING DIRECT FILE

Explanation: Error message displayed when the point to which a
direct (CHAIN by record number) file comes
before the last record of the file.

1064 ISAM FILE KEY DOES NOT MATCH FDB SPECIFCATION

Explanation: Error message displayed when key description in
index file does not match that given in the
source program.

065: ~ OPEN ERROR IN ISAM DATA FILE

Explanation: Error message displayed when data file named in
index file cannot be opened or has invalid name.

o77: WRITE PROTECTED

'Explanation: Error message displayed if an attempt is made to
write on a disk file which is write protected.

078: DELETE PROTECTED
Explanation: Error message displayed if an attempt is made to

shorten or delete a disk file which is delete
protected.

D-12 REPORT PROGRAM GENERATOR II

079:

Explanation:

080:

Explanation:

081(B):

Explanation:

082:

Explanation:

083:

Explanation:

APPENDIX D.

FILE SPACE FULL

Error message displayed if an attempt is made to
allocate space to a disk file when either the
disk is full or no more segment descriptor slots
are available for the file.

DRIVE OFF LINE

Error message displayed if an attempt is made to
access a disk drive which is either physically
absent or off 1line.

CHAINING ERROR

Error message displayed when attempt is made to
CHAIN to a non-existent record and the source
program has not specified an indicator to set.

INVALID BUFFER ADDRESS

Error message displayed if the buffer address in
a record address (ADDROUT) file is invalid.

PARITY ERROR IN INDEX - REINDEX

Error message displayed if a parity error is

found in the index of an ISAM file.

RPGPLUS OBJECT (EXECUTION) TIME MESSAGES - D-13

_,084(8):

'“Explanation:

 085(B):

Explanation:

- . - ——— - -

086(B):

Explanation:

- . - - - - -

087(B):

Explanation:

D-14

DUPLICATE KEY

Error message displayed if the program attempts
to add a record to an indexed file and a record
already exists with the same key.

- - " ., " . - - — W D - - ———— - -

MULTIPLE UPDATES IN SAME CYCLE

Error message displayed if the program attempts
to write two or more records onto an Update file
during a single cycle.

- - —— S . D P WD . W D A D S S D P D SR D . W D . D - - -

MULTIPLE CHAINED OUTPUT IN SAME CYCLE

Error message displayed if the program attempts
to write two or more chained output records
during a single cycle.

READ AT EOF OR FROM CLOSED FILE

Error message displayed if the READ operation was
attempted on a file which was at end-of-file or
was closed and the source did not specify an
indicator to set.

REPORT PROGRAM GENERATOR II

APPENDIX E. RPGPLUS USER ASSEMBLY LANGUAGE FACILITIES

E.1 The RPGPLUS Library Facility

An integral component of the RPGPLUS compiler system is the
LIBRARY facility. This facility includes the system library file
RPGOLIB/REL and one optional user library file (<user 1lib>/REL
specified by the ¥LIBRARY <user lib> line in the source code).
These libraries contain relocatable code sequences which can be
selectively included in an RPGPLUS object program, depending upon
the particular operations specified in the source program. SNAP/2
is used to transform a library source file into a relocatable
object file; LIB may be used to combine such files into a larger
library.

The USER LIBRARY facility allows for user written routines to be
assembled into an RPGPLUS object program: SPECIAL device drivers,
user label processors, and routines referenced by the EXIT
operation. The calling sequences generated for these features
will be described at the end of this appendix.

A library file is partitioned into SEGMENTS, each of which can be
included separately into an RPGPLUS object program. Segment
inclusion is done on the basis of ENTRY POINTS in the segment and
undefined symbols in the object code. In other words, during
object program LINKing, a segment will be included if at least one
of its entry points corresponds to an undefined symbol in the
dictionary. When such a segment is found, it becomes part of the
object code and treated exactly as if it were code directly
generated by the compiler. Any undefined symbols it may have, if
not already defined previously, will then cause additional library
segments to be included. 1In this way, a hierarchy of segments can
be included in the object code, depending upon the particular
operation specified in the source program.

APPENDIX E. RPGPLUS USER ASSEMBLY LANGUAGE FACILITIES E-1

E.2 RPGPLUS Calling Sequences to User Subroutines

The RPGPLUS system will generate calls to user subroutines
when any of the following language features is invoked:

1. SPECIAL files,
2. non-standard tape labels, or
3. EXIT operations.

In each case the name of the subroutine must be given in special
columns as follows:

1. c¢c54-59 - Label Exit - in the File Description Specifications,
and :
2. c¢c33-38 - Factor 2 - in the Calculation Specifications.

The compiler will prefix each user subroutine name with the
characters 'X$' to distinguish it from entry-points in the system
library.

E.3 SPECIAL Device Drivers

Each file in the RPG object program is described by a table
called the File Description Block (FDB). The format of this table
and values of associated symbols are given in Appendix B. A
SPECIAL device subroutine will be called: to open the file, to
read from it, to write on it, or to close it. 1In all cases the
subroutine will be called with an operation code in A and the
address of the FDB in HL. When the file has been successfully
opened, the closed-file flag MCLOSFDB in the file's FDB must be
cleared; if the file is an input file, the End-0f-File flag
MEOFFDB should be set when the end of the file has been found.

The values of the operation codes can be found by compiling an RPG
II program with an object listing (O and list options) and looking
for the following symbols (defined near the beginning):

Value of A Operation
VOPNFDB Open
VGETFDB Input
VPUTFDB Output
VCLSFDB Close

Thus a simple input driver which requires no open or close actions

E-2 REPORT PROGRAM GENERATOR II

might start like this (remember the 'X$' prefix for subroutine
names) :

MYDRIVER PROG Begin library segment
CODE ORG 0
DATA ORG o,P
INC IFDBDEF/EPT FDB definitions
USE DATA
WORKAREA Base of data page
CURRFDB SK 2 Address of FDB
. Additional data
USE CODE
X$MYDRV: CP VGETFDB GET operation?
JFZ CHKOPEN No, check for OPEN
PUSH XA ‘ Save (X)
LX WORKAREA>8 Set page
DPS HL ,CURRFDB Save FDB address
Read record
POP XA Restore (X)
RET EXIT

¥ End of file seen

ENDOFILE LFII HL,DFLAGFDB,CURRFDB Address flag byte
LAM & fetch it
OR MEOFFDB Set end of file
LMA & update
LFII HL ,DRLENFDB,CURRFDB Address record length
DL BC, HL & fetch it
LFII HL ,DFWAFDB,CURRFDB Point to FWA address
DL HL, HL & fetch it
POP XA Restore (X)
JMP BLNSETL EXIT clearing FWA

¥ QOperation is not GET

CHKOPEN CP VOPNFDB OPEN function?
RFZ No, EXIT

APPENDIX E. RPGPLUS USER ASSEMBLY LANGUAGE FACILITIES - E-3

LAM Yes, get flag byte

ND -1.XOR.MCLOSFDB Clear file closed

L MA Update FDB

RET EXIT

END End library segment

E.4 Non-standard Tape Labels

A non-standard label routine is called with the operation in
A, the tape data page address MSB in X, and the tape FDB address
stored at TAPFDB in the data page. The operation code is 0 for
open (i.e., header labels) and not 0 for close (i.e., trailer
labels). The tape will be positioned before the first label
record in each case and it is the responsibility of the label
routine to properly position the tape at the beginning of data
(for headers) or before the last tape mark (for trailers). The
standard tape I1/0 routines TAPEREAD and TAPEWRIT may be used to
read and write tape labels. They both require the address of a
label record buffer in HL and its length in DE. TAPEREAD will
read up to the specified number of characters and then store the
character EOTXT to mark the end of the record; it will return the
False Zero condition if the read was not successful. TAPEREAD
will also set the flag MFLMKFDB in the tape FDB whenever it sees a
file mark. The subroutine TAPINIT must be called before reading a
set of labels; before calling TAPEWRIT, call CHKTAPE to wait for a
previous write to finish. Additional subroutines are WRITFMRK
which writes a file mark (call CHKTAPE also) and TAPRESET to clear
one. For example:

MYLABELS PROG

CODE _ ORG 0
WORK ORG 0
INC IFDBDEF/EPT FDB definitions
LLABLUSR EQU 7? . User label length
USE CODE
X$MYLABL: ORA Opening file?
JFZ TRLRLABL ‘ No
LFII HL ,DFLAGFDB+1,TAPFDB Yes
LAM Get flag byte
ND MWACFDB Output?
JFZ OUTHEADR Yes

E-4 REPORT PROGRAM GENERATOR II

¥ Process header labels of input file

-

CALL TAPINIT
CALL GETLABEL
RET

¥ Process header 1abels of output file

OUTHEADR ...
¥ Process trailer 1labels

TRLRLABL ...

¥ Sybroutine to read a label record

GETLABEL HL LABLBUFR
DE LLABLUSR
CALL TAPEREAD
JFZ LABELERR
HL ROLLUP
CALL DSPLY$
HL LABLBUFR
JMP DSPLY$

LABELERR ...

¥ Subroutine to write a label record

PUTLABEL CALL CHKTAPE
HL LABLBUFR
DE LLABLUSR
JMP TAPEWRIT

¥ Allocate label buffer(s)

USE WORK
LABLBUFR SK LLABLUSR+1

END

APPENDIX E. RPGPLUS USER ASSEMBLY

Initialize read
Get a label record

EXIT

Address label
Load length

Read a record
If read failed

Rollup screen
Address label
EXIT displaying 1label

Error routine

Wait for prior write
Address label

Load length

EXIT writing record

LANGUAGE FACILITIES

E-5

APPENDIX F. GENERATION AND USE OF RPGII

F.1 RPGII Generation For Cartridge Disks

The collection of files which comprise the Datapoint RPGII
system are distributed on five cassettes, labeled RPGII CASSETTE
1, RPGII CASSETTE 2, RPGII CASSETTE 3, RPGII CASSETTE 4, and RPGII
CASSETTE 5. The first two cassettes are to be MIN-ed onto a disk.
The contents of the last three cassettes must be catalogued under
DOS using the RPGII Generator. This is done by running the CHAIN
RPGIIOUT/CHN which is on CASSETTE 1. In order for the system
generation to be successful, there must be at least 50 free files
and 1800 free sectors on the drive specified for generation. The
actual number of free files and sectors can be determined by
running the FREE utility program.

Once it has been determired that there is enough space for the
RPGII system, place CASSETTE 1 in the front deck, and type the
command: MIN ;AO0:DRn. (Where n is the number of the disk where the
RPGII system is to be placed.) Use the same command for CASSETTE
2. Now to unload CASSETTES 3, 4, and 5 type in the command CHAIN
RPGIIOUT/CHN;ALL,D1=n,D2=n,D3=n,DISK. (Where n is the same number
as for CASSETTES 1 AND 2.) The CHAIN will ask that CASSETTE 3 be
mounted in the front deck first, then 4, and last CASSETTE 5.

Upon completion of CASSETTE 5, the RPGII system generation is
complete and ready for operation.

F.2 Selective Generation of RPGII

If, as sometimes happens, a single RPGII system file gets
destroyed, it can be selectively recovered by one of two
procedures, depending upon the type of file. RPGGEN has the
facility to bypass a tape if "*¥" is keyed in when a cassette is
asked for. This is useful for recovering one of the library files
from CASSETTES 3, 4 or 5. An overlay file or the pre- processor
can be recovered by performing:

MIN and selecting the file that is desired. The following

table gives the cassette names and file numbers for single file
recovery.

APPENDIX F. GENERATION AND USE OF RPGII F-1

File

Cassette Recovery

RPGALIB 3 . CHAIN RPGIIOUT/CHN;3,D1=n,DISK
RPGBLIB 4 CHAIN RPGIIOUT/CHN;4,D2=n,DISK
RPGCLIB 5 CHAIN RPGIIOUT/CHN;3,D3=n,DISK
RPG/CMD 1 MIN
RPGIIOUT/CHN 1 MIN
RPG/01IG 1 MIN
RPGPRTLB/REL 1 MIN
RPG/0AA 1 MIN
RPG/0AD 1 MIN
RPG/0AE 1 MIN
RPG/0AG 1 MIN
RPG/0AK 1 MIN
RPG/0AM 1 MIN
RPG/0AZ 1 MIN
RPG/0OCA 1 MIN
RPG/0OCG 1 MIN
RPG/0CK 1 MIN
RPG/OFC 1 MIN
RPG/OFK 1 MIN
RPG/0GA 1 MIN
RPG/0GB 1 MIN
RPG/0GD 1 MIN
RPG/OGF 1 MIN
RPG/OGH 1 MIN
RPG/0GK 1 MIN
RPG/OGM 1 MIN
RPG/0GO 1 MIN
F-2 REPORT PROGRAM GENERATOR II

RPG/OMB 2 MIN
RPG/OMP 2 MIN
RPG/OPA 2 MIN
RPG/0OPX 2 MIN
RPG/0SA 2 MIN
RPG/0S0 2 MIN
RPG/0OUA 2 MIN
RPG/0UU 2 MIN
RPG/OWA 2 MIN
RPG/0OWL 2 MIN
RPG/0OWM 2 MIN
RPG/OWS 2 MIN
RPG/0OWU 2 MIN
RPG/OWX 2 MIN
RPG/0ZZ 2 MIN
RPGPP/CMD 2 MIN
RPGLDR/0OV1 2 MIN
RPGISA/0OV1 2 MIN
RPG/0OPL 2 MIN
RPG/OPF 2 MIN
RPG/0OPS 2 MIN

F.3 RPGII Generation For Diskette Systems

Diskette systems will be distributed on diskettes rather than
cassettes. A diskette user will receive four diskettes labeled
RPGII DISKETTE 1, RPGII DISKETTE 2, RPGII DISKETTE 3, RPGII
-DISKETTE 4. These diskettes should be placed on drives 0, 1, 2,
and 3 respectively.

In addition to the RPGII files, the user will need to build the
following DOS utilities on DISKETTE 4:

SORT/CMD and SORT/O0V1

INDEX/CMD and INDEX/OV1

REFORMAT/CMD
All utilities must be the proper version for DOS.C. RPGPREP/CMD
will be included on DISKETTE 4.

Use the diskette on drive zero for RPG II source and object
programs and other user desired utilities (such as EDIT, LIST,
etc). The RPG II compiler will use the diskette on drive zero for
work files. Note that four drives are required for an RPG II
compilation on diskette.

APPENDIX F. GENERATION AND USE OF RPGII F-3

F.4 Compiling an RPG II Program

An RPG II source file is compiled by the RPG II compiler by
keying in a command with the following format:

RPG srefil (,objfil)(;(L)(0)(F)(I)(D)(S)(X))

where the file names are in standard DOS format. If no object file
is specified, the file "srcfil/CMD" will be produced. TXT
extension is assumed for the source file, which can be in EDIT or
DATAFORM format, and CMD is the default object file extension. The
option characters are used as follows:

L --List source program and storage map

0 - List generated object code (requires L)

F - List code under false IF's (requires L,0)
G - List all object bytes (requires L,0)
I - List included library routines (requires L,0)
D - Display object code

S - List symbol table (requires L)

X - List cross references (requires L)

For normal use of the compiler, the L option is all that is
required. The O and I options will cause listings of 30 to over
100 pages to be produced, and exist for use by maintenance
personnel.

After the RPG II compiler has been invoked, it will ask for a
heading line if the L option has been specified. A page heading
should be keyed in, terminated with ENTER. This heading will then
appear on the top line of every page of the listing. The compiler
will then process the source file, and produce an executable
object file. During the processing, the top right-hand corner of
the display will contain the message "PHASE XX", where XX are two
alphabetic characters. These two characters indicate which
compilation phase is being executed at any particular time. There
are over 40 separate phases, each corresponding to a particular
portion of the compilation process. The names of the phases and
their functions are described in Appendix G.

Additionally, there are a number of PAUSE points defined in the
compiler. These occur Dbefore displaying each error note, error
text, IDENT, and object code line. At each of these PAUSE points,
if the DISPLAY key is depressed, execution will be temporarily
suspended until it 1is released. If the KEYBOARD key is depressed,
the machine will BEEP and stop execution. This 1is another facility

F-4 REPORT PROGRAM GENERATOR II

for maintenance personnel, and as such is not required for normal
compiler operation. The compiler can be restarted from this
suspended condition by pressing ENTER.

F.5 Running a Compiled RPG II Program

The object code generated by RPGII is totally compatible with
the instruction set of the Datapoint 1100/2200/5500/6600 series of
systems. After compiling the source file, the resulting object
file is executed by merely calling for it from the command
interpreter. For example suppose the source file TEST/TXT were
compiled by the command:

RPG TEST;L
Then the object file could be executed by the command:
TEST
The object file can not accept parameters from the command line;

all necessary interaction with the user is done under object
program control.

- F.5.1 DATE Field

If any of the special words: UDATE, UDAY, UMONTH, or UYEAR
were used in the source program, the object program will ask for
the date, which should be entered as MM/DD/YY. For example, Sept.
5, 1973, is entered as 09/05/73.

F.5.2 External Indicators

If any of the external indicators, Ul to U8, were used in the
source program, the object program will ask for their values at
the beginning of execution. The values must be entered in binary,
with a 0 setting the indicator off and a 1 setting it on, and in
the following order:

Ut U2 U3 U4 U5 U6 Ut U8

APPENDIX F. GENERATION AND USE OF RPGII F-5

Values for indicators not used are not required if there are no
used indicators with a higher number. For example, if U1 were the
only external indicator used, a valid response is either:

0 or 1.

If U1 and U2 were the only external indicators used, the valid
responses are:

00, 01, 10, or 11.

However, if U1 and U3 were used, and no others, the response must
be of the form:

0x0, 0Ox1, 1x0, or 1x1

where x 1is any character.

F.5.3 Opening Files

Each file opened by the object program causes an opening
message to be displayed. In the case of assignable disk files, a
message will be displayed, and then the program will wait for a
file name to be entered. This name should be in standard DOS
format (TXT extension is assumed for data files, ISI extension is
assumed for indexed files if extension is not given). If a
defined disk file does not exist, an error message will be
displayed and the program will then ask for a name as for an
assignable file.

F.5.4 Indexing ISAM (Indexed) Files

Indexed files are created in exactly the same format as any
fixed format disk file. The data structure is identical and may be
processed, disregarding the index, as a simple fixed format file.
To permit processing as an indexed file, the INDEX utility is used
to create a separate index file. The file is indexed by typing:

INDEX datafile(,indexfile);(E)aaa-bbb

All parameters within the parenthesis are optional. File names are
in standard DOS format. If the indexfile name parameter is

F-6 REPORT PROGRAM GENERATOR II

omitted, an index will be created with the name "datafile/ISI".
The "E" parameter indicates that the index is in EBCDIC collating
sequence. If the "E" is omitted the index will be created in ASCII
sequence. The parameter aaa (1-255) is the position of the first
character in the key and bbb (1-353) is the position of the end of
the key.

The indexfile name should be referenced in the File Description
Specifications any time the file is used as an indexed input,
update or add file in an RPG program.

F.5.5 Console Input Files

When entering data from the keyboard as an input file, end of
file may be entered by depressing the DISPLAY key and the ENTER
key simultaneously. This eliminates the necessity of coding an
end of file character to set the LR indicator when keyboard input
files are used directly (not in DOS CHAIN). When keyboard input
is used with DOS CHAIN a record which sets the LR indicator should
be used to terminate processing.

APPENDIX F. GENERATION AND USE OF RPGII F-7

APPENDIX G. RPGII REFERENCE TABLES

General System Organization
The first part of the appendix lists the various components of the
RPG II system and gives a brief description of the function
performed by each phase of the compiler. The two-letter
abbreviations appear during compilation in the upper right-hand

corner of the display. An RPG compilation is passed through the
following phases:

1. Interface Program - common data and code.

2. Enter Phases - read, list, and compress source.
3. Assign Phases - allocate data storage.

4.> Diagnostic Phases - finish error checking.

5. Generate Phases - generate object program operations for
input, compute, output.

6. Assembly and Library Phases - assemble object text, include
necessary routines from library.
Enter Phase Summary

AA - Initialize system, read control card, list, compress and
diagnose.

AD - Process file-descriptions - compress information, writing
part of card on disk, building file-name table and in-core
compression table with the rest of the information.

AE - Process file-extension specifications - compress and write on
disk.

AF - Process line-counter specifications.

AG - Process input specifications, generating record and field
compressions.

AK - Process calculation specifications - read, list, diagnose and

APPENDIX G. RPGII REFERENCE TABLES G-1

AM

AZ

CA
CB
cC
CD
CE

CG
CH

CI

CK

CL

Ccv

FC

FG .

FK

compress records,

Process output specifications, generating record and field
compressions.

Process user library inclusion, and compile-time tables.
Assign Phase Summary

Assign indicator storage.

Generate indicator table for 'DEBUG' operations,
Define and éssign control field storage.

Assign file working areas.

Define and assign match field storage.

Scan extension, input and calculation compressions, define
table and field storage, generate table storage.

Scan input, calculation and output compressions, move
definitions to compression records.

Generate field storage.

Scan calculation and output compressions, define literals and
edit masks in core table.

Move literal definitions into compression records.

Generate literal definitions.
Diagnostic Phase Summary
Diagnose file-descriptions.

Diagnose calculation specifications, check use of table and
arrays in calculations, check arithmetic precision.

Diaghose and preprocess input specifications.

G-2 REPORT PROGRAM GENERATOR II

FL - Diagnose and preprocess output specifications.
FM - Diagnose file referencing errors.
GA - List error notes in order by line number.

GB to GO - List error texts as needed.

GX - End error text listing, call phase ZZ if fatal error

occurred.

Generation Phase Summary

Input Generation Phases:

MB - Generate control field compare.
ME - Generate control field moves.
MG - Geﬁerate match field moves.

MK - Generate input field processors.

MP - Generate input, record-tests, and select routines.

MQ - Generate input mainline, end test, and file select

Calculation Generation Phases:

PA - Generate arithmetic and character (byte) sequences.

PX - Generate detail calculation mainline.
PY - Generate total calcutation mainline.

PZ - Generate RPG subroutines.

Phases PX, PY, and PZ generate calculation control

the code for other operators.

APPENDIX G. RPGII REFERENCE TABLES

sequences.

code and

G-3

Qutput Generation Phases:

SA - Generate output field processors.

SO - Generate heading/detail output mainline.
SP - Generate total output mainline.

SQ - Generate overflow output processor.

SR - Generate exception output processor.

SS - Generate put routines.

Final Generation Phases:

UA - Generate file description blocks.
UF - Generate open mainline.

UG - Generate end mainline.

UU - Generate assembly parameters.

UV - Link generated segments with the fixed library.

Assembly Phases:

WA - Initialize assembly, set up symbol table.

WM - Assembly passés 1 and 2.

WL - Scan library and include referenced segments.
WS - Sort dictionary.

WU - Dictionary listing.

WX - Cross reference sort and listing.

ZZ - RPG Close phase.

G-4 REPORT PROGRAM GENERATOR II

RPG Preprocessor:

(PP) - Preprocess ASM text to object text.

APPENDIX G. RPGII REFERENCE TABLES G=-5

Format of File Description Blocks

A partial description of the format of a file description block is
given symbolically in this section. For a complete and absolute
listing look at an assembly listing of the second object program
segment. All symbols defined below have blank qualification, and
are input to the pre-processor as ':XXXXXX'. Symbols beginning
with the letter 'D' are byte displacements relative to the start
of an FDB entry. Symbols beginning with 'M' are masks for parts
of a byte. For example the displacement of the two-byte record
length is 'DRLNFD', and the mask for the end-of-file flag is
'MEOFFD"'.

Name Purpose

DFLGFD Displacement of the three-byte flag field.

MEOFFD End of file.
MCLSFD File closed.

MPUTFD OQutput record ready for update or chained output file.
: Output pending.

MPBFFD Buffer output pending (update files).

MADDFD ADD file.

MCHNFD CHAIN file.

MWACFD Output/Update file.
MRACFD Input/Update file

MISAFD 1Indexed (ISAM) File.

DRLNFD Logical record length (two-bytes - MSB,LSB).

DBLFFD Blocking factor (one-byte).

G-6 REPORT PROGRAM GENERATOR II

DFWAFD Address of File (record) Working Area (two-bytes -
LSB,MSB).

DFNMFD Address of internal file name (LSB,MSB)

APPENDIX G. RPGII REFERENCE TABLES | G=-T7

Format of Table Description Blocks
The format of table description blocks is given symbolically in
this section. For an absolute listing look at the assembly
listing for the segment named 'COMMON TABLE PROCESSOR'. The
conventions are the same as for file description blocks.
Name Purpose

DTHATD Address of table/array storage area (two-bytes -
LSB,MSB).

DFLDTD Address of current selected entry (LSB,MSB).

DNELTD Number of elements (two-bytes - MSB,LSB).

DELNTD Length of an element (one-byte).

DCENTD 1Index of current entry (two-bytes - MSB,LSB).

DCEATD Address of current entry (two-bytes - LSB,MSB)
Note: By convention, addresses are stored in the
least-significant, then the most-significant byte order, whereas
two-byte binary numbers are stored in the most-significant,

least-significant order. For Boolean (bit) values, true = 1 and
false = 0.

G-8 REPORT PROGRAM GENERATOR II

No.

= w

O o J O WU,

11
12
13
14
15
16

17
18
19

W/F

= =2 £ = m =

=

Card Text
H
H INVALID
H INVALID
H CC16-25
F INVALID
F INVALID
F INVALID
F INVALID
F
F INVALID
F INVALID
F INVALID
F INVALID
F CC29-31
F INVALID
F

CC33-34,
F CC35-38
F INVALID
F

APPENDIX H. RPGII COMPILE TIME MESSAGES

CCT7-9 SHOULD BE BLANK.

CORE SIZE, CC12-14.

DEBUG CODE, C15.

SHOULD BE BLANK.

OR BLANK FILE NAME, CCT7-1%4.

OR BLANK FILE TYPE, C15.

OR BLANK FILE DESIGNATION, C16.
PROCESS TO END OF FILE ENTRY, C17.

SEQUENCE ENTRY INVALID, OR SPECIFIED WITH FILE TYPE
NOT PRIMARY OR SECONDARY, C18.

FORMAT ENTRY, C19.

BLOCK LENGTH, CC20-23.

RECORD LENGTH, CC24-2T.

MODE OF PROCESSING ENTRY, C28.
SHOULD BE BLANK.

OVERFLOW ENTRY, CC33-34.

OVERFLOW SPECIFIED WITH DEVICE OTHER THAN PRINTER,

SHOULD BE BLANK.
EXTENSION OR LINE COUNTER ENTRY, C39.

LINE COUNTER SPECIFIED WITH DEVICE OTHER THAN

PRINTER,

APPENDIX

C39.

H. RPGII COMPILE TIME MESSAGES H-1

20
21
22

23
24
25

26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41

42

Mmoo xE = ¥ X E o= = o= =

Mmoo S oMM M

=

H=-2

moom o

]

T m

o m M m

INVALID DEVICE CODE, CC40-46.
CC47-52 SHOULD BE BLANK.

CC53-59 SHOULD BE BLANK UNLESS DEVICE SPECIFIED AS
'SPECIAL'.

INVALID 'K' ENTRY, C53.
INVALID UNLESS SPECIAL DEVICE NAME, CC54-59,

INVALID NAME FOR SPECIAL DEVICE I/O ROUTINE,
CC54-59.

CC60-65 SHOULD BE BLANK.

C66 SHOULD BE BLANK.

INVALID ADDITIONS ENTRY, C66.

CC67-69 SHOULD BE BLANK.

C70 SHOULD BE BLANK UNLESS TAPE DEVICE.
INVALID REWIND OPTION, C70.

INVALID FILE CONDITION ENTRY, CCT71-T72.
CC73-T4 SHOULD BE BLANK.

CC7-10 SHOULD BE BLANK.

INVALID OR UNRECOGNIZABLE 'FROM' FILE NAME,
CC11-18.

INVALID OR UNRECOGNIZABLE 'TO' FILE NAME, CC19-26.
CHAINED, INDEXED OUTPUT FILE C66 MUST BE A.
INVALID TABLE/ARRAY NAME, CC27-32.

INVALID NUMBER OF ENTRIES PER RECORD; CC33-35.

INVALID NUMBER OF ENTRIES FOR TABLE/ARRAY, CC36-39.

INVALID LENGTH OF ENTRY, CC40-42 OR CC52-54.

INVALID FORMAT ENTRY, C43 OR C55 - IGNORED.

- REPORT PROGRAM GENERATOR II

43
4y
45
46
47

48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64-65
66

moo= m

1)

= ™ =™ ™ = = = = m

moom =5 =5 0Tm

T m M

m

-

=

o e S o

INVALID DECIMAL POSITIONS ENTRY, C44 OR C56.
INVALID SEQUENCE ENTRY, C45 OR C57 - IGNORED.
INVALID ALTERNATE TABLE NAME, CC46-51.
EXECUTION-TIME TABLES NOT ALLOWED.

ALTERNATE TABLE SPECIFICATION NOT ALLOWED WITH
EXECUTION-TIME ARRAYS.

'FROM' FILE MUST BE AN INPUT-TABLE FILE.

'TO'" FILE MUST BE ORDINARY OUTPUT OR OUTPUT-TABLE
FILE.

'FROM' FILE TOO SHORT FOR TABLE RECORD.
'TO' FILE TOO SHORT FOR TABLE RECORD.

MORE THAN 8192 BYTES OF TABLE STORAGE ALLOCATED.
INVALID COLLATE SEQUENCE ENTRY, CC26.
CC27-7T4 SHOULD BE BLANK.

INVALID OR UNDEFINED FILE NAME, CC7-14.
FILE MUST BE ASSIGNED TO THE PRINTER.

FORM LENGTH, CC15-17, INVALID OR >99.
CC18-19 SHOULD CONTAIN 'FL'.

OVERFLOW LINE, CC20-22, INVALID OR >99.
CC23-24 SHOULD CONTAIN 'OL'.

CC25-T74 SHOULD BE BLANK.

OVERFLOW LINE IS GREATER THAN FORM LENGTH.
MULTIPLE LINE COUNTER SPECIFICATION LINES.
UNASSIGNED.

MIXED RECORD AND FIELD DATA, CCT7-42, 43-74.

APPENDIX H. RPGII COMPILE TIME MESSAGES ~ H=3

67

68

69
70

[

72
73

T4
75
76
T7
78

79

80
81
82
83
84
85
86
87
88
89
90

= = = m=

W

"y

moom om M om m m

"

H-Y

CC7-14 SHOULD BE BLANK FOR 'AND' AND 'OR' CARDS.
FILE NAME,

INVALID

INVALID
INVALID OPTIONAL SEQUENCE ENTRY,

INVALID RECORD INDENTIFYING INDICATOR,

cC7-14,

SEQUENCE ENTRY,

SEQUENCE ENTRY, C17.

CC15-16.

INCOMPLETE RECORD INDENTIFYING CODE,

cC32-34,

INVALID
INVALID
INVALID
STACKER
INVALID
INVALID

INVALID

NEGATIVE FIELD LENGTH,

INVALID

- INVALID

INVALID

INVALID
INVALID
INVALID

CCT1-74

OR CC39-41,
POSITION ENTRY, C24,
NOT ENTRY, C25,

C/Z/D ENTRY,

SELECT NOT IMPLEMENTED,

FORMAT ENTRY, C43.
FROM LOCATION ENTRY,

'TO' LOGATION ENTRY,

DECIMAL POSITION ENTRY,

FIELD NAME, CC53-58.
CONTROL LEVEL ENTRY,

MATCH FIELD ENTRY,

Cc18.

NOT SPECIFIED IN FILES SECTION.

cC25-27,

31 OR 38.

32 OR 39.
C26, 33 OR 40.

cu42.

coluy-u7,
cCcu8-51.
Cclu-51.

ch2.

CC59-60.

CC61-62.

FIELD RECORD RELATION ENTRY,

FIELD INDICATOR(S),

SHOULD BE BLANK.

RECORD DESCRIPTION ILLEGAL.

INVALID ENTRY IN CCT7-8.

REPORT PROGRAM GENERATOR II

CC65-70.

CC63-64.

CC19-20.

91 F c INVALID NOT ENTRY IN cC9, 12, 15.

92 F o INVALID INDICATOR IN CC10-11, CC13-14, OR CC16-18.
93 F C INVALID FACTOR 1 ENTRY, CC18-27.

94 F c UNRECOGNIZABLE OPERATION, CC28-32.

95 F C INVALID FACTOR 2 ENTRY, CC33-42.

9% F C INVALID RESULT FIELD, CCA43-48.

97 W C HALF-ADJUST ENTRY IN C53 UNRECOGNIZABLE OR NOT
ALLOWED.

98 F ¢ INVALID RESULT INDICATOR ENTRY, CC54-59. .
99 F C INVALID LENGTH IN CC49-51.
100 F c DECIMAL POSITIONS INVALID, C52.

101 F C CC49-52 SHOULD BE BLANK IF NO RESULT FIELD IS
SPECIFIED.

102 F C INVALID FILE NAME IN CC33-42.
103 F C INVALID LITERAL SPECIFICATION.
104 F C INVALID BIT MASK, CC33-42.

105 F C CONDITION INDICATORS NOT ALLOWED WITH 'TAG',
'RLABL', 'BEGSR', OR 'ENDSR' OPERATIONS.

106 F F INVALID KEY LENGTH, CC29-30.
107 F F INVALID KEY STARTING POSITION, CC35-38.

108 W F ISAM OUTPUT FILE MUST BE "INDEXED" AFTER CREATION.

109 F F SEQUENTIAL WITHIN LIMITS VALID ON INDEXED FILES,
c28.

110 F 0 RECORD AND FIELD DATA IN SAME LINE.
1M F 0 INVALID OR UNSPECIFIED FILE NAME, CC7-14.
112 F 0 INVALID 'AND' OR 'OR' ENTRY, CC14-16.

APPENDIX H. RPGII COMPILE TIME MESSAGES H-5

113
114

115

116

M7
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135

136

e TS -

= = = I o=

H-6

o O

O o O o © o ©o o o o

o o O o O o O o © o o o

CC17=-22
INVALID

INVALID

INVALID
INVALID

INVALID
INVALID
INVALID
INVALID
INVALID

INVALID

SHOULD BE BLANK ON 'AND' OR 'OR' LINES.

LINE TYPE, C15.

FETCH OVERFLOW ENTRY, C16.

'SPACE BEFORE' ENTRY, C17.

'SPACE AFTER' ENTRY, C18.

'SKIP BEFORE' ENTRY, CC19-20.

'SKIP AFTER' ENTRY, CC21-22.

'NOT' ENTRY, C23, 26, OR 29.
FIELD CONDITIONING INDICATOR.
FIELD NAME.

EDIT CODE, C38.

C38 SHOULD BE BLANK IF NO FIELD NAME SPECIFIED.

INVALID
INVALID

INVALID

'"BLANK AFTER' ENTRY, C39.

END POSITION ENTRY, CC40-43.

DATABUS FORMAT ENTRY, C44,.

C44 SHOULD BE BLANK IF NO FIELD NAME SPECIFIED.

LITERAL

NOT STARTED WITH A QUOTE, C45.

EMBEDDED SINGLE QUOTE, CC45-70.

REMAINDER OF CCH45-70 NOT BLANK AFTER LITERAL.

LITERAL
INVALID
CCU5-U7
INVALID

CCT1=-TH4

TOO LONG, CC70-80.

COMBINATIONS OF $ AND * IN CCU5-47.
NOT $, ¥, OR BLANK..

EDIT WORD.

SHOULD BE BLANK.

REPORT PROGRAM GENERATOR II

137 W H MULTIPLE HEADER CARDS.

138 W H INVALID ENTRY, C10.

139 W H INVALID ENTRY, C11.

140 W F FILE NAME TABLE FULL.

41 W F DUPLICATE FILE NAME, CCT7-14.

142 W F INVALID TYPE FOR GIVEN DEVICE CODE, C15.

143 F F INVALID DESIGNATION FOR GIVEN DEVICE CODE, C16.
44 W F INVALID FILE FORMAT FOR THIS DEVICE, C19.

145 W F BLOCKING FACTOR GREATER THAN 255, CC20-27.

146 W F BLOCK LENGTH LESS THAN RECORD LENGTH, CC20-27.
7 W F BLOCK LENGTH NOT A MULTIPLE OF RECORD LENGTH,

CC20-27.

148 F F BLOCK LENGTH GREATER THAN ALLOWED FOR GIVEN DEVICE,
CC20-23.

149 W F BLOCK LENGTH NOT EQUAL TO RECORD LENGTH, CC20-27.

150 F F NO FILE DESCRIPTION SPECIFICATIONS.

151 F F NO PRIMARY OR SECONDARY FILE SPECIFIED.

152 W F SECONDARY FILE PRECEDES PRIMARY FILE.

153 W F MULTIPLE PRIMARY FILES. SECONDARY ASSUMED.
154 W F AN EXTENSION, C39, MUST BE SPECIFIED FOR TABLE

FILES.

155 W F EXTENSION, C39, INVALID WITH GIVEN DEVICE OR
NON-TABLE FILE.

156 F F DEVICE ASSIGNED TO MORE THAN ONE FILE.

157 W F CONDITION INDICATOR, CC71-72, INVALID FOR TABLE
FILE. : :

APPENDIX H. RPGII COMPILE TIME MESSAGES ~ H-7

158 W F FILE NAME ASSIGNED BUT NEVER USED IN' PROPER

SECTION.
159 F F SEQUENCE, C18, INVALID WITH NO MATCH FIELDS.
160 W F SEQUENCE, C18, MUST BE SPECIFIED WITH MATCH FIELDS.

161 F F EXTENSION OR LINE COUNTER SPECIFICATION MISSING,
€39.

162 W F EXTENSION OR LINE COUNTER SPECIFICATION FOUND FOR
THIS FILE, BUT C39 IS NOT 'E' OR 'L'.

163 F F OUTPUT REFERENCE REQUIRED FOR UPDATE FILE.

164 W F CC7-52 ON CONTINUATION CARD SHOULD BE BLANK.

165 F F CC54~59 ON CONTINUATION CARD NOT EQUAL 'ASCII'.

166 W F CC60-74 ON CONTINUATION CARD SHOULD BE BLANK.

167 F F TAPE RECORD LENGTH LESS THAN 18.

168 F F ADDITIONS INVALID FOR FILE OR DEVICE, . C66.

169 W F ALL PRIMARY AND SECONDARY FILES CONDITIONED.

170 F F CALCULATION REFERENCE REQUIRED FOR CHAIN OR DEMAND
FILES.

171 UNASSIGNED.

172 W F INVALID ENTRY IN C53. 'A' ASSUMED.

]73 W F INVALID LABEL EXIT.V

174 W F C53 SHOULD BE BLANK.

175 W F CC60-65 SHOULD BE BLANK ON ASCII CARD.

176 F F UNRECOGNIZABLE DISK CONTINUATION OPTION IN CC54-59,

177 F F UNRECOGNIZABLE ENTRY IN CC60-65.

178 UNASSIGNED.

179 W F VARIABLE BLOCKING INVALID FOR THIS FILE TYPE, FIXED
BLOCKING ASSUMED.

H-8 REPORT PROGRAM GENERATOR II

180

181
182

183
184

185

186
187
188
189
190

191
192
193
194

195

196
197

198
199
200

moomom oM T

CC31-32 SHOULD CONTAIN 'I ' OR 'AI' FOR RANDOM
PROCESSING.

CC29-32 SHOULD CONTAIN ' 3IT' FOR ADDROUT FILES.

ADDROUT FILES MUST BE FIXED-FORMAT, UNBLOCKED FILES
WITH RECORD LENGTH EQUAL TO 3.

THIS FILE MUST BE CONTROLLED BY AN ADDROUT FILE.
ADDROUT FILE MUST CONTROL A PRIMARY/SECONDARY FILE.

CORRESPONDING ADDROUT AND PRIMARY/SECONDARY FILES
MUST HAVE THE SAME EXTERNAL INDICATOR CONDITION.

UNRECOGNIZABLE PRINTER CONTINUATION.

RECORD ADDRESS TYPE SHOULD BE 'A' OR 'I', CC31.
UNRECOGNIZABLE RECORD ADDRESS TYPE, CC31.
UNRECOGNIZABLE FILE ORGANIZATION, C32.

CC29-30 SHOULD BE BLANK FOR FILE PROCESSED BY
ADDROUT FILE.

UNASSIGNED
ISAM FILE CAN'T BE CONTROLLED BY TAG FILE.
NO DATA FOR COMPILE TIME TABLE.

MORE THAN ONE ADDROUT FILE CONTROLS THIS
PRIMARY/SECONDARY FILE.

MORE THAN ONE PRIMARY/SECONDARY FILE IS CONTROLLED
BY THIS ADDROUT FILE.

'FROM' FILE MUST BE AN ADDROUT FILE.

'TO' FILE MUST BE A RANDOMLY-PROCESSED
PRIMARY/SECONDARY FILE.

TOO MANY TABLES DEFINED.
MULTIPLE TABLE DEFINITIONS.

NO INPUT SPECIFICATION SECTION.

APPENDIX H. RPGII COMPILE TIME MESSAGES H-9

201
202
203
204

205
206
207
208

209

210 .

211
212
213
214
215

216

217
218
219
220

221
222

223

1y

moom ™

o= o= 0m

H-10

L T

FIELD PRECEDES FIRST RECORD.
FILE ASSIGNED IS NOT AN INPUT OR UPDATE FILE.
MORE THAN 256 INPUT RECORD TYPES SPECIFIED.

INPUT RECORDS MUST BE DESCRIBED IN SAME ORDER AS
FILES.

CONTROL LEVEL SPECIFICATION INVALID WITH FILE TYPE.
MATCH FIELD SPECIFICATION INVALID WITH FILE TYPE.
MORE THAN 255 RECORD ID TESTS FOR THIS RECORD.
FIRST LINE IS AN 'AND' OR 'OR' LINE.

MULTIPLY DEFINED FIELD.

LENGTH OF CONTROL FIELDS GREATER THAN 255 BYTES.
LENGTH OF MATCH FIELDS GREATER THAN 255 BYTES.
MORE THAN 32 'AND' LINES.

UNASSIGNED.

'"AND' LINE FOLLOWS LINE WITHOUT RECORD ID CODES.
NO FIELDS DESCRIBED FOR PREVIOUS RECORD.

NUMERIC SEQUENCE ENTRIES NOT IN ORDER, OR FIRST
ENTRY NOT EQUAL 01.

CC17-18 SHOULD BE BLANK FOR ALPHABETIC SEQUENCE.
CC17-20 SHOULD BE BLANK FOR 'AND' LINES.
CC17-18 SHOULD BE BLANK FOR 'OR' LINES.

LENGTH OF NUMERIC FIELD GREATER THAN 15, OR LENGTH
OF ALPHABETIC FIELD GREATER THAN 255.

DECIMAL POSITION ENTRY INVALID FOR ARRAY.
NUMBER OF DECIMAL POSITIONS EXCEEDS FIELD LENGTH.

TABLE NAME INVALID FOR A FIELD NAME.

REPORT PROGRAM GENERATOR II

224
225
226
227
228

229

230
231

232

233
234

235

236

237

238

239
210
241
242

243

'"AND' LINES INVALID WITH LOOK-AHEAD RECORD.
CC17-18, 21-42, AND 59-7n INVALID WITH LOOK-AHEAD.
FIELD LOCATION ENTRIES EXCEED RECORD LENGTH.

FIELD NAME IS A RESERVED WORD OTHER THAN 'PAGE'.

CONTROL AND MATCH SPECIFICATIONS INVALID FOR
ARRAYS.

LOOK-AHEAD INVALID WITH CHAIN OR DEMAND FILES OR
WITH THIS DEVICE.

NO FIELDS SPECIFIED FOR LOOK-AHEAD RECORD.

ARRAY LENGTH EXCEEDS OR IS NOT A MULTIPLE OF LENGTH
IN EXTENSION SPECIFICATION.

INCONSISTENT LENGTHS FOR CONTROL OR MATCHING FIELDS
OF ONE LEVEL.

INVALID SPLIT CONTROL FIELD SPECIFICATION.

CONTROL OR MATCHING FIELDS SPECIFIED AS ALPHA AND
NUMERIC.

ALL VALID MATCH LEVELS WERE NOT REFERENCED IN THE
LAST RECORD GROUP.

CONTROL OR MATCH FIELDS WITHOUT FRR MUST PRECEDE
THOSE WITH FRR.

CONTROL OR MATCH FIELDS WITH FRR MUST BE GROUPED BY
FRR.

FIELD RECORD RELATION INDICATOR USED IMPROPERLY
WITH CONTROL OR MATCH FIELDS.

INDICATOR ASSIGNED BUT NOT USED.

INDICATOR USED, BUT NOT ASSIGNED.

FIELD LENGTH NOT MULTIPLE OF TABLE ENTRY LENGTH.
INDEX FIELD NOT NUMERIC OR DECIMAL POSITIONS > 0.

LITERAL INDEX OUT-OF-BOUNDS.

APPENDIX H. RPGII COMPILE TIME MESSAGES H-11

244 CONFLICT IN TAPE DEWSITY.

mom

245 F FILE’ORGANIZATION SHOULD BE BLANK, CC32.
246 F F FILE ORGANIZATION SHOULD BE 'I' OR 'T', CC32.

2HT F F~ RECORD ADDRESS TYPE AND FILE ORGANIZATION ARE
A INCOMPATIBLE, CC31-CC32.

248-249 UNASSIGNED.
250 F C INVALID FILE FOR FORCE.

251 F C INVALID FILE FOR READ.

252 F e INVALID CHAINING FIELD.

253 F C INVALID FILE IN CHAIN.

254 F C DEBUG FILE NOT OUTPUT FILE.

255. W C DEBUG OPERATIONS IN PROGRAM IGNORED.

256 W C DEBUG OPTION WITHOUT DEBUG OPERATION.

257 F C DIFFERENT DEBUG FILES.

258 F C INVALID FILE FOR DSPLY,

259 W C CALCULATIONS CONSIST ONLY OF SUBROUTINES.

260 F C ~ SUBROUTINE MUST BEGIN WITH 'BEGSR' OPERATION.
261 F C TOTAL OR DETAIL RECORD OUT OF SEQUENCE.

262 F C ARRAY IMPROPERLY USED IN RESULT FIELD.

263 F C FACTOR 1 OR 2 MAY NOT BE AN ARRAY UNLESS RESULT
FIELD IS.

264 F C RECORD LENGTH FOR DEBUG FILE IS TOO SMALL.

265 F C FACTORv1 IN 'DEBUG' SHOULD BE LESS THAN NINE BYTES
LONG. ‘

266 F C SUBROUTINE MUST END WITH 'ENDSR'.

267 F C RESULT FIELD MUST BE ALPHANUMERIC.

H=-12 REPORT PROGRAM GENERATOR II

268

F
269 F
270 F
271 F
272 F
273 F
274 F
275 F
276 F
277 F
278 F
279 F
280 F
281 F
282 W
283 W
284 F
285 F
286 F
287 F
288 F
289-327
328 W

FACTOR 2 MUST BE ALPHANUMERIC.

FACTORS 1 & 2 MUST HAVE SAME TYPE.

BIT OPERATIONS TAKE SINGLE-BYTE FIELDS.
FACTOR 2 IN 'LOKUP' MUST BE A TABLE OR ARRAY.

CORRESPONDING TABLE MAY NOT BE USED WITH ARRAY
LOOK-UP.

RESULT FIELD IN LOKUP MUST BE A TABLE.

FACTOR 1 MUST HAVE SAME LENGTH AS FACTOR 2 1IN
LOOK-UP.

'BEGSR' IN MIDDLE OF SUBROUTINE.

'RLABL' MUST IMMEDIATELY FOLLOW 'EXIT'.
INVALID LABEL OPERAND.

'"BEGSR' OR 'ENDSR' IN DETAIL OR TOTAL RECORDS.
FACTOR 1 MUST BE NUMERIC.

FACTOR 2 MUST BE NUMERIC.

RESULT FIELD MUST BE NUMERIC.

HALF-ADJUST NOT NEEDED, ENTRY ASSUMED BLANK.
COMPUTED RESULT MAY OVERFLOW RESULT FIELD.
FACTOR 2 IN 'XFOOT' MUST BE AN ARRAY.

'MVR' MUST FOLLOW 'DIV'.

HALF-ADJUST ON PREVIOUS 'DIV' ILLEGAL WITH 'MVR'.
FACTOR 2 NOT A PROCESS WITHIN LIMITS FILE.
FACTOR 1 IS NOT A VALID KEY.

UNASSIGNED

DATAPOINT COMPATIBLE FIELD SHOULD BE NUMERIC.

APPENDIX H. RPGII COMPILE TIME MESSAGES H=13

329 F 0 NEITHER FIELD NAME OR LITERAL IS PRESENT.
330 F 0 "AND' OR 'OR' LINE NOT PRECEDED BY RECORD LINE.

331 W 0 SPACE AND SKIP INVALID WITH DEVICE OTHER THAN
CONSOLE OR PRINTER.

332 W 0 SKIP ENTRY GREATER THAN FORM LENGTH.

333 W 0 FETCH OVERFLOW INVALID FOR DEVICE OTHER THAN
PRINTER.

334 F 0 OVERFLOW INDICATOR INVALID FOR EXCEPTION LINE.
335 W 0] FETCH OVERFLOW INVALID WITH OVERFLOW INDICATORS.

336 0 OVERFLOW INDICATOR USED IS NOT ASSIGNED TO THIS
FILE.

337 W 0 1P INDICATOR INVALID ON TOTAL OR EXCEPTION LINES.

338 W 0 FETCH OVERFLOW INVALID WITH 1P INDICATOR.

339 W 0 SPACE BEFORE OF O INVALID FOR CONSOLE.

340 F 0 INVALID INDICATORS USED WITH 1P INDICATOR.

341 F 0 END POSITION GREATER THAN RECORD LENGTH.

342 F 0] LENGTH OF ARRAY, ELEMENT, OR FIELD EXCEEDS RECORD

LENGTH.
343 F 0 END POSITION TOO LOW.

344 W 0 ALL INDICATORS MISSING OR NEGATIVE IN PREVIOUS
RECORD.

345 W 0 ALL INDICATORS MISSING ON THIS LINE.
346 F 0 INVALID EDIT WORD SIZE.

347 F 0] EDIT CODE INVALID WITH ALPHA FIELD OR CONSTANTS
OTHER THAN $ OR ¥,

348 F 0 CONSTANT INVALID WITH EDIT CODES X, Y OR Z.

349 F 0 INVALID FIELD LENGTH FOR Y EDIT CODE.

H-14 REPORT PROGRAM GENERATOR II

350
351
352

353
354
355
356
357
358
359
360
361
362
363
364

365
366

367
368
369
370
371

m m om o= = oW

7

= = =

o o O o o o O o

o o O O

DECIMAL POSITIONS INVALID WITH Y EDIT CODE.
INVALID FILE TYPE FOR OUTPUT RECORD.

BLANK AFTER INVALID WITH RESERVED WORD OTHER THAN
'PAGE"'.

MORE THAN 32 'AND' OR 'OR' LINES.

BLANK AFTER SPECIFIED FOR A CONSTANT.

ARRAY INDEX EXCEEDS NUMBER OF ELEMENTS.
BLANK AFTER INVALID WITH LOOK-AHEAD.
INDICATOR ASSIGNED BUT NEVER USED.
INDICATOR USED BUT NEVER ASSIGNED.

FiELD NAME USED BUT NOT DEFINED.

TABLE OR ARRAY NAME USED AS INDEX.

NUMBER OF DECIMAL POSITIONS EXCEEDS FIELD LENGTH.
LO-L9 IN 'OR' RELATIONSHIP WITH LR.
ADDITIONS INVALID WITH 'AND' OR 'OR' LINES.

FOR ADD FILES, EACH RECORD MUST HAVE 'ADD' IN

ADDITIONS INVALID WITH FILES EXCEPT SEQUENTIAL DISK
FILES. ’

'T* IN C15, OR E WITH LO-L9 INVALID WITH UPDATE
FILES.

FIELD LINE PRECEEDS FIRST RECORD LINE.
UNASSIGNED.

MORE THAN 255 OUTPUT RECORD TYPES SPECIFIED.
NO OUTPUT SPECIFICATION SECTION FOUND.

RECORDS MUST BE IN SAME ORDER AS FILES.

APPENDIX H. RPGII COMPILE TIME MESSAGES H-15

372 F 0 H, D, T AND E LINES MUST BE IN ORDER.

373 F 0 FIELD LENGTH DOES NOT CORRESPOND TO NUMBER OF
REPLACEABLE CHARACTERS IN EDIT WORD.

374 W 0 EXCEPT RECORD WITHOUT 'EXCPT' OPERATION.

375 F 0 EDIT CODE INCOMPATIBLE WITH OPTIONS USED IN
CCU5-4T.

376 F 0 NO REPLACEABLE CHARACTERS IN EDIT WORD.
377 F 0 FILE IS NOT A DISK ADD FILE, CC16-18.
378=379 UNASSIGNED.

380 W SEQUENCE NUMBERING ERROR IN SOURCE RECORDS, CC1-5.
SEE NOTE BELOW.

381 F RECORD TYPE OUT OF SEQUENCE IN SOURCE RECORDS, C6.
38é F INVALID CHARACTERS IN (MAIN) OPERAND NAME.

383 F INVALID CHARACTERS IN INDEX OF OPERAND.

384 F INDEX IS INVALID WITH THIS OPERAND.

385-399 UNASSIGNED.

400 F SEQUENCE ERROR IN COMPILE-TIME TABLE OR ARRAY.

401 F NUMERIC FIELD ERROR IN COMPILE~TIME TABLE OR ARRAY.
402 W END OF FILE FOLLOWS '¥#¥*b' RECORD.

4o3 F NO FILE NAME IN LIBRARY INCLUSION RECORD.

4o4 F USER LIBARY FILE DOES NOT EXIST.

405 W DELIMiTER CARD FORMAT ERROR.

406 W SHORT COMPILE-TIME TABLE OR ARRAY.

407 F TABLE/ARRAY FILLED.

408 F ALTERNATE TABLE BUFFER FULL.

409 W NO '#*¥p' RECORD FOLLOWS LIBRARY INCLUSION RECORD.

H-16 REPORT PROGRAM GENERATOR II

-

410 W NO COMPILE-TIME TABLE/ARRAY FOR DATA.

411 W INVALID LIBRARY FILE NAME.

412 F COMPILE-TIME TABLE/ARRAY DATA RECORD LENGTH > 80.
¥%¥¥NUMBER FOR CONVERSION WON'T FIT-This is an
indication
that the RPG II Compiler has failed. Report problem
to Datapoint.

NOTE: A SEQUENCE ERROR WILL OCCUR IF A BLANK RECORD
IS PRESENT IN THE SOURCE CODE.

APPENDIX H. RPGII COMPILE TIME MESSAGES H=-17

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES

During the execution of an RPG II object program, messages
will be displayed on the screen either to request input from the
user or merely to inform him of certain actions being performed.
In addition, error messages will be displayed if abnormal
situations are encountered. The following list of messages are
all those which could possibly occur during an RPG II object
program execution. The list includes an explanation of each
message, the action taken by the object program after displaying
the message, and an explanation of the response from the user, if
necessary. Note that any data typed in by the user must be
terminated with the ENTER key.

OTMO1: ¥%¥%¥ INVALID INPUT

Explanation: Error message displayed 1if the data given
in response to either the DATE message (0OTM23) or
the INDICATOR message (0OTM24) is not in the
correct format.

Program Action: The appropriate request for data is made

again.
User Response: Re-enter the data requested.
0TMOZ2: ABSENT RECORD AND NO INDICATOR
Explanation: Error message displayed if a record was not

found during a CHAIN operation and no indicator
was specified in columns 54-55.

Program Action: Display message OTM10.

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES I-1

OTMO3: ASC/BIN ERROR

Explanation: Error message displayed whenever an ASCII
numeric string, being converted to an -internal
binary number, contains either no digits or more
than 6 digits. :

Program Action: Display message OTM10.

OTMOY4 : ATTEMPT TO READ PAST END OR FROM CLOSED FILE
Explanation: Error message displayed if the READ
operation was attempted on a file which was at
end-of-file or was closed.

Program Action: Display message OTM10.

- - —— - — - — S TN W WD R T R G e G G I S M WD D WD R G G S W L T NS L D G WD WD D

OTMO5: (BAD FILE SPEC)

Explanation: Error message displayed if a specification
of a file during the file opening sequence is
incorrect.

Program Action: A file name will be asked for again.

User Response: A correct file name should be entered.
OTMO6: BAD RECORD NUMBER
Explanation: Error message displayed if a disk access is

attempted to a record number less than zero or to
a record number above the currently allocated
space.

Program Action: Display the program name of the file and
then message OTM10.

I-2 REPORT PROGRAM GENERATOR II

Explanation:

Program Action:

OTMO8:

Explanation:

Program Action:

OTMO09:

Explanation:

Program Action:

APPENDIX I.

BAD TABLE OR ARRAY SEQUENCE

Error message displayed if the sequence of

data being read into a pre-execution time table
or array is not ‘as specified on the Extension
Specs.

Display message OTM10.

- — - —— - ——— - ——— - - - - —— - - —— -

BIN/ASC ERROR

Error message displayed whenever an ASCII
numeric string, destined to receive a converted
binary value, is of zero length.

Display message OTM10.

BIN/DEC ERROR

Error message displayed if the length of a

field being used to store an index after an array
LOKUP operation is not long enough to contain the
result.

Display message OTM10.

RPGII OBJECT (EXECUTION) TIME MESSAGES I-3

OTM10:

Explanation:

Program Action:

User Response:

OTM11:

‘Explanation:

Program Action:

User Response:

0TM12:

Explanation:

Program Action:

User Response:

I-4

BYPASS/CANCEL/ABORT

General error message displayed after many

‘other specific error messages to give the user

the option as to what action should be taken by
the program.

Wait for input.

Three different responses are allowed.

Typing a 'B' will cause the program to bypass the
current cycle and read the next record. Typing a
'C' will cancel program execution and close all
the files. Typing an 'A' will immediately return
control to the operating system without closing
any files.

CANCEL/ABORT

Similar to OTM10.
if the program is

Displayed in place of 0TM10
in the last cycle.

Wait for input.

Same as for OTM10
and 'B' responses

and OTM55, except the 'R!
are not valid.

CANNOT LOAD ISAM OVERLAY

Error message displayed if the program

tries to load the overlay RPGISA/0V]1 to add
records to an indexed file, and is unable to do
50,

Execution is terminated.
The file RPGISA/0OV1 should be re-installed

from the RPG II generation tapes and the progranm
re-run.

REPORT PROGRAM GENERATOR II

OTM13:

Explanation:

Program Action:

OTM14:

Explanation:

Program Action:

OTM15:

Explanation:

Program Action:

OTM16:

Explanation:

Program Action:

APPENDIX I.

CHAINING ERROR

Error message displayed if Factor-1 used in

a CHAIN operation contains invalid data. See the
CHAINED RECORD PROCESSING table in Chapter 8.

Display the progam name of the file and
then message OTM10,

DATABUS INPUT ERROR

Error message displayed if the format of a

number being read from an input file is incorrect
(not correct Databus format).

Display message OTM10.

DEBUG:

Message written on an output file whenever
the DEBUG operation is executed.

A series of records are written on the

output file, according to the format of the DEBUG
operation.

DEC/BIN ERROR

Error message displayed if a field or
literal, used as an array index or a record
address of a Chain file, is less than zero or
greater than 65535.

‘Display message OTM10.

RPGII OBJECT (EXECUTION) TIME MESSAGES I-5

OTM17:

Explanation:

Program Action:

OTM18:

Explanation:

Program Action:

O0TM19:

Explanation:

Program Action:

User Response:

D - - - D - D D —— D D G S W D D S W e e S - — - -

DELETE PROTECT

Error message displayed if an attempt is
made to shorten a disk file which is delete
protected.

Display the program name of the file and
then message OTM10. '

DRIVE OFF LINE

Error message displayed if an attempt is
made to access a disk drive which is either
physically absent or off 1line.

Display the program name of the file and
then message O0TM10.

DSPLY

Message displayed whenever the DSPLY
operation is executed.

The contents of one or two fields are
subsequently displayed, depending upon the format
of the DSPLY statement.

If the cursor is on after the contents of

the last field are displayed, the program is -
waiting for data to be entered by the user. This
data will become the contents of the Result field
used in the DSPLY operation (last field shown
before cursor).

I-6 REPORT PROGRAM GENERATOR II

O0TM20: DSPLY FIELD TOO LARGE

Explanation: Error message displayed if the length of a
field being displayed in the DSPLY operation is
greater than 80.

Program Action: Display message OTM10.

OTM21: DUPLICATE KEY

Explanation: Error message displayed if the program
attempts to add a record to an indexed file and a
record already exists with the same key.

Program Action: Display the program name of the file and
then the message 0TM10.

0TM22: END OF TAPE

Explanation: Error message displayed if the end of the
tape 1is encountered while reading or writing a
Cassette file.

Program Action: Display the program name of the file and
then message O0TM10.

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES I-7

0TM23:

Explanation:

Program Action:

User Response:

OTM24:

Explanation:

Program Action:

User Response:

0TM25:

Explanation:

Prograin Action:

- ——— - - - - ——— - — - —— - — - —— — - - - - -

ENTER DATE AS MM/DD/YY

Displayed if any of the special words:
UDATE, UDAY, UMONTH, or UYEAR were used in the
source program.

Wait for input.

The desired date should be typed in. The
format of the date is fixed, in that Sept. 5,
1973 should be entered as 09/05/73.

ENTER EXTERNAL INDICATOR SETTING IN BINARY

Displayed if any of the external
indicators, U1 to U8, were used in the source
program.

Wait for input.

The values of the external indicators used

in the program should be typed in. Detailed
formatting information can be found in Appendix
F . :

EOF AND NO INDICATOR

Error message displayed if a READ operation
encounters an end-of-file condition and no
indicator was specified in columns 58-59.

Display message 0TM10.

I-8 REPORT PROGRAM GENERATOR II

0TM26:

- Explanation:

Program Action:

0TM27:

Explanation:

Program Action:

0TM28:

Explanation:

Program Action:

ERROR HALT n

Message displayed at the end of a cycle if
Halt indicator n is found on. -

Display message OTM10.

- - —— - - ——-—— - - D e T . D . - - —————— -

FILE FORMAT ERROR

Error message displayed if the format of a
fixed format disk file does not match the program
specifications of the file.

Display the program name of the file and
then message OTM10.

- - R . S W T R S S A P A . N D WA WP A . A G R D S A W D - - - - -

FILE SPACE FULL

Error message displayed if an attempt is

made to allocate space to a disk file when either
the disk is full or no more segment descriptor
slots are available for the file.

Display the program name of the file and
then message OTM10.

APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES I-9

0TM29:

Explanation:

Program Action:

User Response:

OTM30:

Explanation:

Program Action:

User Response:

OTM31:

Explanation:

Program Action:

FORMAT CORRECT. CONTINUE?

Message displayed if the format of the tape
header labels was correct.

Display label (OTM34) and wait for input.

If the correct tape is mounted, a "Y"

should be typed in so processing can continue. If
the incorrect tape is mounted, an "N" should be
typed in, which will stop program execution.

FORMAT ERROR, TRY AGAIN?

Error message displayed if the format of a
number being entered during a DSPLY operation is
not correct (Incorrect Databus format).

Wait for input.

A "Y" should be typed in if the user wishes

to re-enter the data. A "N" should be typed if
the user does not wish to try again, in which
case OTM50 is displayed and entered.

ILLEGAL FORMAT IN LABEL

Error message displayed if the format in
the HDR2 label of an input tape is not "F",.

Display message OTM10.

I-10 REPORT PROGRAM GENERATOR II

OTM32: INVALID BUFFER ADDRESS

Explanation: Error message displayed if the buffer
address in a Record Address file is invalid.

Program Action: Display the program name of the file and
then message O0TM10.

- - - - D - D - - D D WD 0 - D D WD e WP D P D D S G e D D G S D D S D D T Y D D SR D S R -

OTM33: INVALID INDEX

Explanation: Error message displayed if an array index
is less than 1 or greater than the number of
elements in the array.

Program Action: Display message OTM55. If the response to

this message is Resume, the first element of the
array is accessed.

- - —— - - - . - - D = - e T D D D - - ——— - - - ——— ——— -

OTM34: LABELS:

Explanation: Message displayed prior to display of tape
labels during header label tape processing.

Program Action: Display header labels.

0TM35: MATCH SEQUENCE ERROR

Explanation: Error message displayed if the sequence of
data in any specified match fields is not as
specified on the File Description Specs.

Program Action: Display message O0TM10,

" APPENDIX I. RPGII OBJECT (EXECUTION) TIME MESSAGES I-1

OTM36:

Explanation:

Program Action:

User Response:

OTM37:

Explanation:

Program Action:

OTM38:

Explanation:

Program Action:

MORE CARDS?

Message displayed when the card reader
hopper becomes empty.

Wait for input.

If more cards are to be processed, they

should be put into the hopper and a "Y" typed in.
If there are no more cards to be processed, an
"N" should be typed in, which will cause anhn
end-of-file condition on the reader.

MULTIPLE CHAINED OUTPUT IN SAME CYCLE

- Error message displayed if the program

attempts to write two or more chained output
records into the same file during a single cycle.

Display the program name of the file and
then the message 0TM10.

MULTIPLE LOADER OUTPUT

Error message displayed if more than one
record is written to the LOADER device.

Display message OTM10.

I-12 REPORT PROGRAM GENERATOR II

OTM39:

Explanation:

Program Action:

OTM4O:

Explanation:

Program Action:

OTM41:

Explanation:

Program Action:

APPENDIX TI.

—— - - D - A - - - A = A D - S S D - -

MULTIPLE UPDATE IN SAME CYCLE

Error message displayed if the program
attempts to write two or more records onto an
Update file during a single cycle.

Display message OTM10.

- - —— - ———— - - - —————— - -— - T . - ————— =

NO DATA FOR TABLE OR ARRAY

Error message displayed if there is no data
for a pre-execution time table or array.

Display message O0TM55. If the response

to this message is Resume, the table will remain
empty and the object program will resume
execution.

NO HDR1 LABEL - NO PROBLEM

Message displayed if the HDR1 label is not
present on an output tape.

The program will supply a dummy HDR1 label
and processing will continue.

RPGII OBJECT (EXECUTION) TIME MESSAGES I-13

OTM42:

Explanation:

Program Action:

User Response:

OTM43:

Explanation:

Program Action:

User Response:

OTM4y:

Explanation: .

Program Action:

I-14

NO LOADER OVERLAY

Error message displayed if the source
program has specified the LOADER device and the
loader object file (RPGLDR/OV1) does not exist.

Execution is terminated.

The file RPGLDR/0V1 should be re-installed
from the RPG II generation tapes and the progam
re-run. :

(NO SUCH FILE)

Error message displayed if, when néming an
input file during the file opening sequence, the
named file does not exist.

A file name will be asked for again.

The name of an existing file should be
typed in.

NON-ZERO BLOCK COUNT

Error message displayed if the block count
in the HDR1 label of an input tape is not =zero.

Display message OTM10.

REPORT PROGRAM GENERATOR II

OTMA45:

Explanation:

Program Action:

User Response:

OTM46;

Explanation:

Program Action:

OTMUT:

Explanation:

Progam Action:

User Response:

APPENDIX I.

- - - - — A - A - - — - —— - . - - - —— -

(NOT READY)

Message displayed when the program attempts

to open either the tape unit or card reader and
the device is not in a ready condition.

Wait for device to become ready.

The device should be made ready.

NUMERIC FIELD ERROR

Error message displayed if a character in
a numeric field is not a digit.

Display message OTM10,.

OPEN XXXXXXXX AS YYYYYY FILE:

General message displayed during the file
opening sequence for every file described in the
program. The program name for the file will
appear in place of the X's and the type of file
will appear in place of the Y's.

Depending upon the type of the device

specified for the file or, if a DISK file,
whether it has an assignable or defined name, the
program will either supply a name after this
message or wait for input.

If the file is an assignable DISK file the
appropriate file name should be typed in. An
extension of "TXT" and "all drives" will be
assumed if neither the extension nor drive number
is supplied.

RPGII OBJECT (EXECUTION) TIME MESSAGES I-15

OTM48:

Explanation:

Program Action:

OTM49:

Explanation:

Program Action:

User Response:

0TM50:

Explanation:

Program Action:

OTM51:

Explanation:

Program Action:

I-16

————————————— S D S D WD WD N S G . D G . D A T - —

OPT TEST LOOP

Error message displayed if all record types

for an input file are described as optional and

the current input record is not identifyable.

~Display message OTM10.

PARITY ERROR IN INDEX. RE-INDEX

Error message displayed if a parity is
found in the index of an indexed (ISAM) file.

Display‘the program name of the file and
then the message 0TM10.

When Jjob terminates, use the INDEX
utility to re-index the file.

RE~TRY DECLINED

Message displayed if the response'to
message 0OTM30 was 'N'.

Display message O0TM10.

READ PARITY

Error message displayed if a parity fault
occurred while reading a disk file.

Display the program name of the file and
then message O0TM10.

REPORT PROGRAM GENERATOR II

0TM52:

Explanation:

Program Action:

OTM53:

Explanation:

Program Action:

OTM54:

Explanation:

Program Action:

APPENDIX 1I.

READER CHECK!

Error message displayed if a card reader
error is detected.

Display message OTM56.

RECORD FORMAT ERROR

Error message displayed if the physical

file number or logical record number in a disk
record do not match the entries in the logical
file table.

Display the program name of the file and
then message OTM10.

RESULT OVERFLOW

Error message displayed if the result of an
arithmetic operation is too large for the result
field.

Display message OTM10.

RPGII OBJECT (EXECUTION) TIME MESSAGES I-17

OTM55:

Explanation:

Program Action:

User Response:

0TM56:

Explanation:

Program Action:

User Response:

L - - - D R - G S . - - Sy = - . = - - D -

RESUME/BYPASS/CANCEL /ABORT

General error message displayed after many
other specific error messages to give the user
the option as to what action should be taken by
the program.

Wait for input.

Four different responses are allowed.

Typing an 'R' will cause the program to Resume
execution at the point where the error occurred.
Typing a 'B' will cause the program to Bypass the
current cycle and read the next record. Typing a
'C' will Cancel program execution and close all
the files. Typing an 'A' will immediately return
control to the operating system without closing
any files.

RESUME/CANCEL/ABORT

Displayed after message OTM52. Check card

reader indicator lights. If STACKER and DATA
lights are both off, an invalid punch combination
has been detected in the last card in the
stacker. If the STACKER light is on, the stacker
is full. If the DATA light is on, the last card
in the stacker was read incorrectly.

Wait for input.

Remove the last card stacked, correct it

if necessary and insert it in front of the cards
in the hopper. Type 'R' to resume. Type 'C' to
cancel program execution or 'A' to abort if the
error cannot be corrected.

I-18 REPORT PROGRAM GENERATOR II

OTM57:

Explanation:

Program Action:

OTM58:

Explanation:

Program Action:

OTM59:

Explanation:

Program Action:

- - - — - - - -

OTM60:

Explanation:

Program Action:

APPENDIX I.

RPGII OBJECT (EXECUTION) TIME MESSAGES

RID TESTS FAILED

Error message displayed if a record in an

input file can not be identified; i.e. does not
match any of the Record Identifying Codes on the
Input Specifications.

Display message OTM10.

SQRT OF NEGATIVE NUMBER

Error message displayed if the SQRT

operation was attempted on a number less than
zero.

Display message OTM10,.

TAPE BLOCK COUNT BAD

Error message displayed if the block count

in the EOF1 label of an input tape is not the
same as the number of blocks processed by the
program.

Display message OTM10.

TAPE PROCESSING ABORTED

Message displayed if the response to 0TM29
was a "N",

Display message OTM11.

I-19

OTM61:

Explanation:

Program Action:

OTM62:

Explanation:

Program Action:

0TM63:

Explanation:

Program Action:

TOO MUCH DATA FOR TABLE OR ARRAY

Error message displayed if a pre-execution

time table or array has been entirely filled and
there is another record of data for that table or
array.

Display message OTM56. If the response to

this message is Resume, the offending record will
be ignored and the table loading process will
continue. '

- - —— - - . S e . R G - - - - —— = =

UNFINDABLE FILE

Error message displayed if there 1is no file
zero on a Cassette tape.

Display the program name of the file and
then message O0TM10.

WRITE PARITY

Error message displayed if a parity fault
occurred while writing a disk file.

Display the program name of the file and
then message 0OTM10.

I-20 REPORT PROGRAM GENERATOR II

OTM64

Explanation:

Program Action:

- - - - - .- - - - -

OTM65:

Explanation:

Program Action:

OTM66:

Explanation:

Program Action:

OTM6T:

Explanation:

Program Action:

APPENDIX TI.

RPGII OBJECT (EXECUTION) TIME MESSAGES

WRITE PROTECT

Error message displayed if an attempt is
made to write on a disk file which is write
protected.

Display the program name of the file and
then message OTM10.

- ————— ————— e - - ———— - . . - - ———— - - ———— - -

WRONG BLOCK LENGTH

Error message displayed if the block length
in the HDR2 label of an input tape is not the
same as that specified in the source program.

Display message OTM10.

WRONG RECORD LENGTH

Error message displayed if the record

length in the HDR2 label of an input tape is not
the same as that specified in the source program.

Display message OTM10.

3 FILES

Error message displayed if only three disk
files were specified in the program, but more
than three are being used during program
execution. : :

Display message 0TM10.

I-21

APPENDIX J. RPGII USER ASSEMBLY LANGUAGE FACILITIES

J.1 The RPG II Library Facility

An integral component of the RPG II compiler system is the
LIBRARY facility. This facility includes the three system library
files, RPGALIB/RPG, RPGBLIB/RPG and RPGCLIB/RPG, the library
pre-processor, RPGPP, and, optionally, one user library file. The
libraries contain fixed code sequences which can be selectively
included in an RPG II object program, depending upon the
particular operations specified in the source program. The
pre-processor transforms a library file from the standard text
(assembler) format into a format compatible with the RPG II
compiler. The USER LIBRARY facility allows for user written
routines to be assembled into an RPG II object program: SPECIAL
device drivers, user label processors, and routines referenced by
the EXIT operation. The calling sequences generated for these
features will be described at the end of this appendix.

A library file is partitioned into SEGMENTS, each of which can be
included separately into an RPG II object program. A segment
inclusion is done on the basis of ENTRY POINTS in the segment and
undefined symbols in the object code. In other words, during the
library inclusion phase of the compiler, a segment will be
included if at least one of its entry points corresponds to an
undefined symbol in the main dictionary. When such a segment is
found, it becomes part of the object code and treated exactly as
if it were code directly generated by the compiler. Any undefined
symbols it may have, if not already defined previously, will then
cause additional library segments to be included. In this way, a
hierarchy of segments can be included in the object code,
depending upon the particular operation specified in the source
program, _

All symbols in an RPG II object program are QUALIFIED, in that
they have the form:

<{A'CHAR>:<SYMBOL> or <SYMBOL>
where A'CHAR is any alphabetic character. This effectively
increases the length of a symbol to 7 characters and reduces the

possibility of conflicts. The compiler uses this facility to
partition the object symbols into a number of categories,

APPENDIX J. RPGII USER ASSEMBLY LANGUAGE FACILITIES ' J=1

depending on the particular function the symbol is involved with.

J.2 The RPG II Pre-processor

As discussed previously, the pre-processor, RPGPP, translates
a text file to library format. Its input is substantially 1like
that of ASSEMBLER 5, with some additions and deletions consistent
with generating a library file. The start of an independent
segment is denoted with the IDENT directive, which must be the
first statement in the input file. The end of a segment is the
next IDENT directive, or the end of the file. 1In other words,
IDENT directives partition the file into independent segments. A
segment ENTRY POINT is declared by terminating a label with an
asterisk. There may be any number of entry points, but there
should be at least one. If not, there is no way for the segment
to be included in the object program.

The following table lists the additional directives accepted by
the pre-processor.

Pre-processor Directives

IDENT Define the start of a segment, which continues until the
next IDENT directive or the end of the file. It must be
the first statement in the input file.. The label and
expression fields are ignored. The system libraries use
the expression field to denote the hierarchical level of
the segment, where 0 means a primitive level and higher
numbers mean more general levels. This denotation,
however, is for documentation purposes only.

QUAL QUALIFY. Defines the current qualification character.
The expression field can contain any alphabetic character,
or can be blank. The current qualification character is
that character which is affixed to every symbol (during
pre-processing) which is not explicitly qualified. For
example, if X were the current qualification character,
the statement:

'LABEL MSA ¥COUNT
would be transformed into:

X:LABEL MSA *¥X:COUNT

J=2 REPORT PROGRAM GENERATOR II

PPLIST

EBCDIC .

ASCII

and this latter form would appear in the object code.:
However, this automatic qualification can be inhibited on
a per-symbol basis by explicitly qualifying a symbol with
"CCHAR>:". For example:

LABEL MSA ¥Y:COUNT
would be transformed into:
X:LABEL MSA %¥Y:COUNT
if X were the current qualification. The initial current

qualification character in the pre-processor is X. It is
recommended that any user library routines be restricted

.to X, B, or Q qualification, so as not to conflict with

RPG II system symbols.

PRE-PROCESSOR LIST control. This directive can accept the
L or I flags (as in the LIST directive) and controls the
listing during pre-processing.

Sets the mode to EBCDIC, whereby all string characters are
transformed into their EBCDIC equivalent values.

Sets the mode to ASCII, whereby all string characters are
transformed into their ASCII equivalent values.

The following ASSEMBLER 5 directives are illegal as input to the
pre-processor:

SET, LOC, ORG, USE, END.

The function of the pre-processor is to translate text files to

library

files. The syntax of the source code and the opcode

specifications are checked for validity, and some directives are
evaluated. In particular, an INCLUDE directive is evaluated
during pre-processing and the contents of the included file put in
the library file. Also, the IF and LIST directives have no effect
during pre-processing. The '#¥' terminator for a label, as
mentioned previously, declares that label as an ENTRY POINT of the

segment

in which it is located. This is a pre-processor

evaluation; the '¥' is ignored by the compiler. All macros and
any directive or construct not mentioned in this section is

exactly

the same as in ASM 5, and is evaluated by the compiler,

APPENDIX J. RPGII USER ASSEMBLY LANGUAGE FACILITIES - J=3

J.3 RPG II Calling Sequences to User Subroutines

‘The RPG II system will generate calls to user subroutines
when any of the following language features is invoked:

1. SPECIAL files,
2. non-standard tape labels, or
3. EXIT operations.

In each case the name of the subroutine must be given in special
columns as follows:

1. cc54-59 - Label Exit - in the File Description Specifications,
and
2. c¢c33-38 - Factor 2 - in the Calculation Specifications.

The compiler always uses 'X'-qualified symbols to refer to a user
subroutine. We will now discuss the calling sequence used for
each feature,. '

J.3.1 SPECIAL Device Drivers

All files in the RPG object program are described by a table
entry called the File Description Block (FDB). The format of this
table is given in Appendix G, and in the second object program
segment. A SPECIAL device subroutine will be called: to open the
file, to read from it, to write on it, or to close it. 1In all
cases the subroutine will be called with an operation code in A
and the address of the FDB in HL. The user must clear the
file-closed flag (MCLSFDB) upon OPEN, set the end-of-file flag
(MEOFFD) when the end of file has been read, and reset the
file-closed flag when called with the CLOSE function. The
operation codes are as follows:

Value of A Operation
0 Open

1 Input

2 Output

3 Close

Thus a simple input driver which requires no open or close actions
might start like this (remember that '"X'-qualification is the
default):

J=-4 REPORT PROGRAM GENERATOR II

IDENT - "SPECIAL DRIVER SUBR

QUAL X
SPCL ORA OPEN OPERATION?
JTZ SETOPN YES
CP 3 CLOSE?
JTZ SETCLS YES
LDH NO< ASSUME INPUT OPERATION
LEL COPY FDB ADDR TO (DE)
. N
SETOPN LAM GET FLAG BYTE
ND -1.XOR.MCLSFD & CLEAR CLOSED
LMA & UPDATE FLAG
: RET EXIT i
* o
SETCLS LAM GET FLAG BYTE
OR MCLSFD & SET CLOSED -
LMA & UPDATE FLAG
RET EXIT

J.3.2 Non-standard Tape Labels

A non-standard label routine is called with the operation in
A and the FDB address in HL. The standard tape drivers may be
used for input-output; wuse the LOI options with some tape program
to get a listing. The operation code is O for open (i.e., header
labels) and 1 for close (i.e., trailer labels). The tape will be
positioned before the first label record in each case and it is
the responsibility of the label routine to properly position the
tape at the beginning of data (for headers) or before the last
tape mark (for trailers).

APPENDIX J. RPGII USER ASSEMBLY LANGUAGE FACILITIES | J=5

APPENDIX K. DETAILED RPG OBJECT FLOW (COMMON)

The flowcharts in this appendix give the object program flow.
The numbers beside each box refer to the description which

follows.

program

Initialization is covered in steps 1 through U; the
cycle, 5 through 38; and termination, 39 and 40.

K.1 Initialization

1. Start: For each external indicator (U1-U8) used, the prdgram
requests the setting from the keyboard.

2. For
- and

3. All
The
the

4, All
set

each table input file in use, the program opens the file,
then reads all the tables on that file into memory.

files used during normal processing are opened/prepared.
names of files assigned to the disk may be keyed in. If
program is unable to open all files, DOS is reloaded.

working areas are cleared to blank/zero. 1Indicators are
to off except 1P. Records are requested for all

input/update files.

K.2 Program Cycle

5. Cycle: All heading and detail records whose output condition

is true

are written. The overflow indicator and switch are turned

on if necessary and overflow output. is performed if fetched during
detail output. '

6. The overflow switch is copied to the overflow indicator (see
also step 35).

7. Bypass: If any halt indicator (H1-H9) is on, a halt code is
set, and the corresponding indicator is turned off. Control then

goes to

step 18 (Error). 1If all halt indicators are off this step

is skipped.

APPENDIX K. DETAILED RPG OBJECT FLOW (COMMON) K-1

8. All record identifying indicators are turned off, as well as
control level indicators.

9. If the last record indicator (LR) is on, a branch is taken to
step 30 (Last Cycle).

Input:

The input steps 10 through 17 are performed for all
input/update files. The exit to Select is taken only for the last
file.

10. If no record request 1is pending for this file, go to step 10
for the next file or go to step 21 (Select) if this is the last
input file. Note that on the first cycle, requests are pending
for all input files. '

11. Go to step 17 if this file is at end-of-file.

12. Read the next record from this file.

13. Go to step 18 (Error) if an Input/Output error occurred.

14, Go to step 17 if file now at end.

15. Try to identify the record type and check the type sequence.

16. Go to step 18 (Error) if type or type sequence error,

17. Turn off the record request. Control goes to the next input
sequence or to step 21 (Select).

18. Error: The code for the halt is displayed and the program
requests whether to bypass, cancel, or abort.

19. If the halt is to be bypassed, go to step 7 (Bypass).

20. If the halt is to cause cancellation, go to step 30 (Last
Cycle). Otherwise abort to DOS.

Select:

Depending on the program, one of four select routines is compiled.
The others are subsets of matching with multiple input files.

21. If all input files which must be at end-of-file are at their
end, go to step 30 (Last Cycle).

K-2 REPORT PROGRAM GENERATOR II

22. If a valid FORCE has been executed, make that file current;
reset FORCEing.

23. If the current record of the currently selected file has no
matching fields go to step 26.

24. Select the record and file with matching-fieids with the
highest priority (lowest in sequence if ascending).

25. Request next record and go to step 18 (Error) if selected
record is not in sequence.

26. Turn on the record identifying indicator of the selected
record.

27. Test Break: If the current record contains control fields, a
test for control break occurs. If no control break, go to step 33
(Test End). .

28. Turn on indicators for all appropriate control levels. Reset
switch to bypass totals (takes effect next cycle).

29. Go to step 33 (Test End) until after the first control break
has been found.

30. Last Cycle: Turn on LR indicator and all control level
indicators (L1-L9).

31. Perform all total calculations whose enabling conditions are
met. Since I/0 can be performed, set indicators as needed.

32. Perform all enabled total output, process overflow as in step
5.

33. Test End: Go to step 39 (End=-of-Job) if LR is on.
34. Go to step 36 if the overflow indicator is off.

35. Turn off the overflow switch. Perform overflow output only if
overflow not previously fetched.

36. Turn on the MR indicator if the primary file matches some
secondary file.

37. Move current input record to fields, setting resulting
indicators. Request new read for current file.

38. Perform detail calculations as in step 31. Go to step 5

APPENDIX K. DETAILED RPG OBJECT FLOW (COMMON) K-3

(Cycle).

K.3 Termination

39. EOJ (End-of-Job): Close all files except table output files.

40. For each table output file, write out all tables and arrays

requested for the file, and then close the file. Exit to DOS
after all table output.

K-4 REPORT PROGRAM GENERATOR II

APPENDIX L. COMMON REFERENCE TABLES

Standard Tape Label Format

Name Description
VOL1 Volume Label
HDR 1 Header Label 1
HDR2 Header Label 2
File Mark
Data
File Mark
EOF1 Trailer Label 1
EQOF2 Trailer Label 2
File Mark
File Mark

Format of Unlabeled RPG Tape

Data Blocks

File Mark
File Mark

Reading a tape with a file mark on the front will cause an EOF

condition at the beginning of the file. A user label routine
could read the file mark and ignore it.

APPENDIX L. COMMON REFERENCE TABLES L-1

Volume Label Format

Columns

1-4
5-80

Contents

VOL1
Arbitrary

Format of Label 1

1-3

m
5-54
55-60

61-80

HDR

EOF

1
Arbitrary
Number
000000
Arbitrary

Format of Label 2

1-3

y
5
6-10
11-15
16

L-2

HDR
EOF

2

F
Number
Number
2

Description

Label Identifier
Volume Identification

Header Label Identifier
Trailer Label Identifier
Label Number

Data Identification
Block Count (Trailer)
Zero (Header)

Data Identification

Header Label Identifier
Trailer Label Identifier
Label Number

Fixed Format

Block Length

Record Length

800 BPI Density

REPORT PROGRAM GENERATOR II

3 1600 BPI Density
17 0 No Volume Switch

18-34 Arbitrary Job Step Identification
35-80 Blank

APPENDIX L. COMMON REFERENCE TABLES L-3

ASCII to EBCDIC Translation Table

MSH
LSH
000U
001
002
003
004
005
U06
007
g1l0
011
012
013
014
015
g1e6
017

EBCDIC to ASCII Translation

MSH
LSH
000
001
062

003 .

004
005
0006
007
010
011
012
013
0l4
015
Glo
G117

40 60 100 120 140 160 200

|

| SpP 0 @ b *
| ! 1 A Q a
| - 2 B R D
| # 3 C S ¢
| S 4 D T a
| % 5 E U e
| & 6 F A" £
| 7 G W g
I § H X h
b) 9 I ' i
| A s J Z.]
|+ ; K { k
I < L \ 1
| - = M | m
i - > N - n
| 7/ ? 0 o

!

40 60 100 120 140

e s At e i B M o et s s e i o P B o o P e e v P~ —— g O S i B Pt e Gt SIS P o P G Fi e i o P o i e Pkt S S Do G o

P O s S P B e o e o B o P S o P - 8 s o o P (D O o s s s B o o i P s o B B e S S Vs s i Pl St B G G S G

[\
[we]
-
[\¥)
N
- s
w
[eo]
w
st
N
w
(98]
[T
W

212 232 ° ! DEL
213 233 . S ,
214 234 < * %
215 235 () _
216 236 + H >
211 2371 | - ?

) 40
q 41
r 42
s 43
t 44
u 45
\Y 46
w 47
X 50
Yy 51
Z 52
{ 53
| 54
3} 55
- 56

DEL 57

Table

160 200

265 251

26b a

207 Db

210 ¢

360 d

361 e

362 £

363 g

271 h

212 A
: 304
305
@ 306
’ 307
= 310
v 311

344
345
346
347
350
351

L-4 REPORT PROGRAM GENERATOR 1II

HEOHEOoDOI P~

312

313
314
315
316
317

CX U WO

312
373
374

315

376
377

NOTE: MSH= Most Significant Half
LSH= Least Significant Half

For example: MSH (240) + LSH (013) = 0253

Values between 000 and 037 map into themselves.

APPENDIX L. COMMON REFERENCE TABLES L-5

APPENDIX M. COMMON INPUT/OUTPUT DEVICE INTERFACES

This section contains information about each of the I1I/0
devices supported by the RPG II system, including what, if any,
actions must be performed by the user for any particular device.

PRINTER : .

The printer must be correctly positioned at top of form prior to
executing programs that use the printer as an output device. The
printer will remain at this initial position when it is opened at
the beginning of object program execution. When the printer is
closed at the completion of execution, it will skip to
top-of-form. Depending upon the form length used in the RPG
program, a "soft" top-of-form will be issued in place of a "hard"
top-of-form.

CONSOLE

When the keyboard is used as an input device and the object
program requires input, a "¥" will be displayed, followed by the
blinking cursor. The input record should then be entered, with
column 1 of the record being the character position just after the
n¥n_ End-of-file for this device is signaled by simultaneously

~ depressing the DISPLAY key while entering a null record with the
ENTER key.

DISK

Disk files may be organized with either variable or fixed length
records.

Each file sector contains 3 system bytes followed by up to 250
data and control bytes and a byte containing 003 to indicate the
logical end of the sector. Logical records are terminated with an
015 byte and are packed contiguously into sectors, spanning to the
next sector when the 250th data byte is filled.

Fixed format files contain records of equal length, with no

compression of spaces. This organization is necessary to allow
the files to be randomly processed and updated.

APPENDIX M. COMMON INPUT/OUTPUT DEVICE INTERFACES M=-1

Variable format is the standard GEDIT format with compressed
blanks and variable length records. Contiguous blanks are ,
represented by an 011 byte followed by a byte containing the count
of the number of spaces compresed (2-255 in binary).

RPG disk record formats are compatible with records written by
other DOS programs, however, caution should be excercised 1in
selecting a record length that does not exceed the maximum record
size accepted by other DOS programs that may be handling the same
data. When creating fixed format records with Databus or
Datashare, they must be written using the physically sequential
- access method if they are to be processed by RPG as output, update
or direct files. The one exception to this rule is 249 character
records written using the physically random access method.

CARD READER

If the card reader is specified as an input device in an RPG 1II
program, the object program will try to start it up during the
open sequence. If the power to the reader is off or the hopper is
empty at this time, the program will BEEP and display "NOT READY"
until power is on and cards are in the hopper.

After one or more cards have been read by the program, and the
hopper becomes empty, the message "MORE CARDS (Y OR N)" will be
displayed. Place the last card in front of any additional cards
and ready the card reader. If there is a hardware error in the
card reader, the message "CLEAR READER ERROR"™ will be displayed.
When the reader is made ready, the message 1s removed from the
screen and cards continue to be read. To indicate an end-of-file
condition on the card reader, an end-of-file card must be placed
at the end of the deck. This card contains a multi-punch in card
column one of 1-2-3-4-5-6-7-8-9.

TAPE

RPG II supports 9-track industry-compatible magnetic tape as
elither an input or output device. During the open sequence, the
RPG II object program will interrogate the tape unit to determine
if it is ready for operation. If the deck is not in service, "NOT
READY" will be displayed and a BEEP will sound until the deck is
in service. (To cause the deck to be in service, the tape must be
loaded, the disable switch must be in RUN, and the REMOTE button
must be pressed). In addition, if the TAPE is an output device,
the presence of a write ring is checked for, and an error message
is displayed if one is not on the reel.

M=-2 REPORT PROGRAM GENERATOR II

The user has the option, in his source program, to specify one of
three tape label options: wunlabeled tape, user labels, or IBM
standard labels. The procedures for invoking one of these options
and for processing user labels are discussed in other sections of
this manual. This portion discusses the IBM standard label
option. The tape will always be rewound when the file is opened.
However, the tape is not rewound when the file is closed.

TAPE INPUT

Upon opening the tape, the volume label (VOL1) and the two header
labels (HDR1, HDR2) are read and displayed. The first four
characters of each one are checked, the block count in HDR1 is
checked for zero, and HDRZ2 is checked for "F" format and the
correct block length and record length. If all checks are
successful, the user is asked if the program should continue.

Upon encountering end-of-file, the first trailer label (EOF1) is
read. The first four characters are checked and the block count is
compared against the internal block count. The second trailer
label is not checked.

TAPE OUTPUT

Upon opening the tape, the volume label (VOL1) is read and
displayed. If it is not present, or if the first four characters
are not "VOL1", tape processing is aborted. Next a read of the
first header label (HDR1) is attempted. If it does not exist, a
dummy HDR1 label is generated and displayed. The user is then
asked if the correct tape is mounted. If "Y" is the response,
"HDR1" is displayed and the user is asked to key in data for
columns 5 to 80. After the data is entered, a block count of zero
is put in columns 55 to 60, but all other columns can have
arbitrary information in them. Next a new HDR2 label is generated
with the current format information and then displayed. The user
may now enter any data in the ‘job-step identification field
(columns 18 to 34). The tape is now rewound, the VOL1 label
re-written, the new header labels are written, and a file mark
written. The tape is now positioned for normal output operations.

Upon closing the tape, the current block is written on the tape.
If the block is not full, dummy blank records are generated so
that all data blocks will be of the same length. A file mark is
then written, the EOF1 and EOF2 labels are generated and written,
followed by two file marks.

APPENDIX M. COMMON INPUT/OUTPUT DEVICE INTERFACES M-3

CASSETTES

Both cassette decks may be used as RPG II I/0 devices. The rear
deck is designated CASSET1 and the front deck CASSET2. Either may
be used as input or output, independently of each other. The data
on a cassette is assumed to be a standard source file (file 0) in
GEDIT format, with compressed blanks and variable length logical
records.

M-4 REPORT PROGRAM GENERATOR II

APPENDIX N. CODING SHEET SUMMARY (COMMON)

N.1 Common Fields

Columns 1- 2: (Page)
Columns 3- 5: (Line)

Page/line number must be in strictly
ascending order, if used.

Column 6: (Form Type)

Header (control) card.

File description specifications.
Extension specifications.

Line counter specifications.
Input record formats.
Calculations.

Qutput record formats.

oOOQHmTI

Column T7: (Comments)
* Comment line identifier.

Columns 75-80: (Program Identification)

XXXXXX Alphanumeric consisting of any 6
characters.

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-1

N.2 Header Specification

- Column 6: (Form Type)
H To identify this source line type.

Column 10: (Object Output)

C
D
blank

Column 11: (Listing Options)

B Suppress 1listing.
blank List source code.

Columns 12-14: (Core Size to Execute) v
Size of memory required for object program.

Columns 13-14: Number of 1K blocks: (1K = 1024).

0 or

blank If same as that used to compile the
program.

01-13 For 01K-13K bytes, if the object program is

to be executed on a system with less memory
than the compilation system.

Column 12: (Number of additional quarter blocks)

0 or

blank If none.

Q If one additional Quarter block (256 bytes)
is needed.

H ~ If two quarter blocks are needed (i.e., a
Half block (512 bytes)).

T (768 bytes).

Column 15: (Debug)
1 To perform DEBUG operation (calculations).
blank To ignore DEBUG commands.

N-2 REPORT PROGRAM GENERATOR II

Column 26: (Alternate Collating Sequence)

A ASCII sequence.
blank EBCDIC sequence.

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-3

N.3 File Description Specifications

Column 6: (Form Type)
F File Specification statement type
identification.

Columns 7-14: (File Name)
file name Name to be used for this file throughout
the program.

Column 15: (File Type)

Input.
Output.
Update.
Display.

ccCOH

Column 16: (File Designation)

blank This column must be blank for display and
non-chained output files.

P ' Primary -- there must be exactly one
primary input/update file.

S Secondary.

C Chained.

R Record address file.

T Table or array file (see Extension specs).

D Demand file.

Column 17: (End of File)

E or If all records of the file(s) must be
blank for processed before the program can be

all files terminated.

blank for If all records of the file need not be
some files read.

blank for If all files must be read to end-of-file.
all files

N-4 - REPORT PROGRAM GENERATOR II

Column 18: (Sequence)

A Records are in ascending order.
D Records are in descending order.
blank No sequence checking.

Column 19: (File Format)

F Fixed length records: record length
specified will be that of all records.
v Variable length records: maximum length

will be given.
Columns 20-23: (Block Length)
nnnn Length of block.
blank Default length.

maxima are: For:

78 Console input.
80 Console output.
132 Printer.

80 Card reader.
9999 Disk.

249 Cassette.

1057 800 BPI Tape.
2048 1600 BPI Tape.
80 Loader.

9999 Special.

Columns 24-27: (Record Length)
nnnn Record length (number of bytes per record).

Column 28: (Mode of Processing)

L Sequential within limits. (Must be indexed
file).

R - Random. (Chained disk files and files
processed by ADDROUT).

blank Sequential. (Non-disk files must be

processed sequentially).

Columns 29-30: (Length of Key)

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-5

nn Length of indexed file keys or ADDROUT file
record. ‘

Column 31: (Record Address Type)

A ’ Unpacked indexed file keys.

I File is an ADDROUT file or 1is processed by
one. :

blank A1l other files.

Column 32: (File Organization)

I Indexed file.

T ADDROUT file.

blank Any other type of file.

1-9 Additional I/0 areas (ignored).

Columns 33-34: (Overflow Indicator)

OV or The indicator to be used.
0A-0G
blank None used.

Columns 35-38: (Key Field Starting Location)

nnnn Key field starting location for indexed
files.

Column 39: (Extension Code)

E On the Extension form.
L On the Line counter form.
blank Neither needed.

Columns 40-46: (Device)

PRINTER Printer (default is LOCAL).

CONSOLE Keyboard display.

DISK Disk.

READER Card reader.

TAPE Industry-compatible tape unit.

CASSET1 Rear tape cassette.

CASSET2 Front tape cassette.

LOADER Pseudo device for use with the DOS CHAIN
command. ,

SPECIAL Special input/output device supported only

through user assembly language coding.

N-6 REPORT PROGRAM GENERATOR II

Column 53: (Continuation Code)

A Assign disk file name at run-time.

D Internal name is to be used externally as
well,

S Standard tape labels are used.

N Non-standard tape labels are used.

U Tapes are unlabeled.

K Continuation line, columns 54-59 must be
filled.

blank Defaults to same as "A". (Assign disk file

name at run-time).

Columns 54-59: (Continuation Option)

EXTDRV Extension and/or drive for disk file.

MAXSEC Maximum number of sectors for new disk
files.

LOCAL The local printer is used at object-time.

SERVO The servo printer is to be used at
object-time.

ASCII Tape file is written in ASCII.

800 or Tape Density (800 is assumed if not given).

1600

RPG name Name of user written subroutine which will

perform I1/0 for a Special device or process
non-standard labels,

blank Neither a special device, nor non-standard
labels are being used.

Columns 60-62: (Extension)

extension File name extension to be used for a disk
file.

Columns 63-65: (Drive)

drive Drive to be selected for disk file (DRO-DR1
or D0O0O-D15).

Columns 60-65: (Number of Sectors)

nnnnnn With MAXSEC, to specify LRN limit.

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-T7

Column 66: (File Addition)

A If new records are to be'added to the file
(APPEND file).

Columns T71-72: (File Conditioning Indicator)

Uu1l-u8 If the file is to be used only when the
specified external indicator is on.

N-8 REPORT PROGRAM GENERATOR II

N.4 Extension Specifications

Column 6: (Form Type)

E

Form type.

Columns 11-18: (From Filename)

table or
. array

file name

blank

record
address
file name

If the table or array is to be loaded at
pre-execution time (From file name).

Table or array loaded at compile time if
number of entries per record is specified,
otherwise at execution time.

If record address file is defined.

Columns 19-26: (To Filename)

name of
output
file

name of
an input
or update
file

Columns 27-32: (Table

TABXxX

array name

If a table or an array is to be written out
at the end of a program (To file name).

If file processed via a record address file
specified in columns 11-18.

or Array Name)

Table name, xxx being from 1-3 alphanumeric
characters.
An array name must not begin with "TAB".

Columns 33-35: (Number of Entries per Record)

1-999

APPENDIX

N.

Exact number of table or array entries per
input record, if loaded at compile or
pre-execution time. Use the sum of the
contents of columns 40-42 and 52-54 (entry
lengths) in computing this number.

CODING SHEET SUMMARY (COMMON) N-9

Columns 36-39: (Number of Entries/Table)
1-9999 Maximum number of table or array entries.
This number is limited by the size of
object time memory as the whole table is
kept in main memory.

Columns 40-42: (Length of Entry)
1-256 Length of a table or array entry.

Column 43: (Packed or Binary Field)

- If an execution time array is in
Databus-compatible format.

Column 44: (Decimal Positions)

0-9 Number of decimal positions for numeric
field.
blank Alphanumeric.

Column 45: (Sequence)

A Ascending order.
D ' Descending order.
blank No particular order.

Columns 46-57: (Alternate Table/Array Specification)
Entries to this table or those of the array
are paired with those of the table
described in columns 27-45.

Columns 46-51: (Alternate Table or Array Name)
(see Columns 27-32)

Columns 52-54: (Alternate Length of Entry)
(see Columns 40-42)

Column 55: (Alternate Packed or Binary Field)
(see Column 43)

Column 56: (Alternate Decimal Position)
(see Column 44)

Column 57: (Alternate Sequence)
(see Column 45)

N-10 REPORT PROGRAM GENERATOR II

Columns 58-74: (Comments)

text Any programmer comments

APPENDIX N. CODING SHEET SUMMARY'(COMMON) N-11

N.5 Line Counter Specifications

Column 6: (Form Type)

L Form type.
Columns 7-14: (Filename)

file name Name of a PRINTER file.
Columns 15-17: (Lines per Page)

1-99 Number of printing lines available per
page.

Columns 18-19: (Form Length)
FL Previous entry is Form Length.
Columns 20-22: (Line Number of Overflow Line)

1-99 Number of the line at which the overflow
indicator is to be set on. (Allow
additional lines to complete groups of
detail records and for totals).

Columns 23-24: (Overflow Line)

oL Previous entry is Overflow Line.

N=-12 REPORT PROGRAM GENERATOR II

N.6 Input Record Descriptions

N.6.1 Record Type Definition

Column 6: (Form Type)
I Form type.
Columns 7-14: (Filename)

file name Name of input file containing the record
described.

Columns 15-18: (Record Order)

Columns 15-16: (Sequence)

aa Any two alpha characters if no check for
sequence is to be made.
01-99 If records must be in order by type: first

type must be 01, subsequent types must be
defined in ascending order.

Column 17: (Number)

1 Only one.
N More than one.

Column 18: (Option)

0 Record type is optional.
blank Record type is required.

Columns 19-20: (Record Identifying Indicator)
01-99, Only one RID is on at a time.
LO"Lgy

LR or
H1-H9

APPENDIX N. CODING SHEET SUMMARY (COMMON) N=-13

Columns 21-41: (Record Identification Codes)

This set of columns can contain up to three
codes whose presence is to be ANDed
together per 1line.

Columns 21-24, 28-31, 35-38: (Position)

1-256 Position (column) in record of code.
blank No (additional) code needed.

Columns 25, 32, and 39: (Not)

blank Code is present in this type of record.
N Code is Not present.

Columns 26, 33, and 40: (C/Z/D)

Entire Character is code.
Only Zone portion is used.
Digit part only.

oNOQ

Columns 27, 34, and 41: (Character)

Any character at all to indentify this
record type.

N.6.2 And/Or Line
Column 6: (Form Type)

I Form type.

Columns 14-16: (Logical relation)

AND To AND the result of tests specified on
this line.
OR To (inclusive) OR the result.

Columns 21=41: (Record Identification Codes)

Additional codes as specified above for these columns.

N-14 REPORT PROGRAM GENERATOR II

N.6.3 Field Definitions

Columns 6: (Form Type)
I Form type.
Column 43: (Datapoint-compatible Format)

- If data in Datapoint-compatible decimal
format. '

Columns 44-51: (Field Location)

Field location, up to 256 positions if alphanumeric
(final - initial + 1 <= 256).

Columns U44-47: (From)
1-9999 Initial position (column).
Columns 48-51: (To)

1-9999 Final position.
(File-dependent).

Column 52: (Decimal positions)

blank Alphanumeric field.
0-9 Number of decimal places (numeric field).

Columns 53-58: (Field Name)
field name,
array name or
array element
PAGE To input initial page number.

Columns 59-60: (Control Level)

L1-L9 A control level indicator.
blank If none needed. '

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-15

Columns 61-62: (Matching Fields) -- If fields match Matching

‘M1-M9
blank

Columns 63-64: (Field

01-99
L1-L9

MR
Uul-us
H1-H9
blank
" Columns 65-70: (Field
01-99
H1-H9
blank
Columns 65-66: (Plus)

(+)

Columns 67-68: (Minus)

(=)

Columns 69-70: (Zero)

(0)
(blank)

Record indicator is set on.-

Matching field number.
If none used.

record relation (FRR))

Field only used if indicator is on.

Data only used at previously specified
control level.

Matching Record permits acceptance of data
from this field. :

Field used only when this external
indicator is on.

Relates field to a record type with a halt
indicator in columns 19-20.

If none needed.

Indicators)

Field status indicator set.
Halt indicator set.
None used.

Indicator is to be set on when numeric
field is greater than zero.

Indicator set when contents of numeric
field is less than zero.

Set if numeric field equal to zero.
Set if numeric or alphanumeric field is
blank.

N-16 REPORT PROGRAM GENERATOR II

N.7 Calculation Specifications

Column 6: (Form Type)
_ C Form type.
Columns 7-8: (Control Level)

Calculation selected:

L0, L1-L9 At control break (LO is always on).

LR When Last Record read.

SR As part of a subroutine.

blank Otherwise.

AN This line of indicators is to be ANded with
the previous one.

OR This line is to be ORed with the previous
line.

Note: The line containing the operation
code is the last in a series of ANds and
ORs.

Columns 9-17: (Indicators) performance of the operation.

blank If operation is to be done for every record
(but see columns 7-8).

Columns 10-11, 13-14, and 16-17: 1Indicator

01-99, If performance of operation is dependent on
L1-L9, the specified indicator.
LR, MR, '
H1-H9,

Uu1-us,

0A-0G,

or 0OV

Columns 9, 12, and 15: Negation relation

N Operation performed when indicator is Not
on.

blank When indicator is on.

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-17

Columns 18=27:
Columns 33-42:

Columns 28-32:

N-18

field name,
table name,
array name,

(Factor 1)
(Factor 2)

array element,

literal,
PAGE, UDATE,
UMONTH, UDAY,
or UYEAR

a label for one of the following operations
(factor 1 only):

TAG

BEGSR

ENDSR

a file name for one of the explicit I/O0
operations (factor 2 only):

CHAIN

DEBUG

DSPLY

READ

FORCE

the name of the external subroutine (factor
2 only) called by the EXIT command.

(Operation)

Arithmetic operations:

ADD
Z-ADD

SUB

Perform an operation using factor 1 and
factor 2 to give the result.

ADD factor 1 to factor 2.
ADD factor 2 to a field of Zeros.

SUBtract factor 2 from factor 1.

REPORT PROGRAM GENERATOR II

Z-3UB

MULT

DIV

MVR

SQRT

XFOOT

SUBtract factor 2 from a field of zeros to
yield the result (the negative of factor
2).

MULTiply factor 1 by factor 2. Note that
the length of the result could be up to the
sum of the lengths of the two factors.

DIVide factor 1 by factor 2 storing the
quotient in the specified result field:
factor 2 may not be zero.

Move the Remainder of the previous DIVide
to the result field. '

Place the SQuare RooT of factor 2 in the
result field: factor 2 may not be negative.

Crossfoot: the result is the sum of the
elements of the array named as factor 2.

Comparison and test:

COMP

TESTZ

Binary field

APPENDIX

N.

COMPare factor 1 to factor 2 and as a
result set indicators showing whether
factor 1 is greater than, less than, or
equal to factor 2.

Test zone of the leftmost character of the
result field setting indicators as follows:

+ if &, or A-I (12 zone)
- if -, } or J-R (11 zone)
0 otherwise, '

operations:

Using bit positions specified in factor 2,
operate on 1 or more bits of the result
field. Factor 2 may be a string of decimal
digits each specifying a position or it may
be the name of a one-position mask having a
bit on wherever a result field bit is to be
operated on.

CODING SHEET SUMMARY (COMMON) N-19

N=-20

BITON
BITOF

TESTB

Set specified BIT(s) ON.
Set BIT(s) OFf.
TEST Bit(s) and set indicators to show if

the bits specified were all zero, of mixed
values, or were all ones, respectively.

Indicator set and reset:

SETON

SETOF

Moves:

MOVE

MOVEL

MOVEA

MHHZO

MHLZO

MLLZO

MLHZO

SET indicators listed in columns 54-59 ON.

SET listed indicators OFF.

(Move the contents of the field named as
tactor 2 to the result field, ignoring
decimal points).

MOVE characters of factor 2 starting with
the rightmost position.

MOVE characters, starting with the leftmost
position.

MOVE characters, starting with leftmost
position, ignoring array element
boundaries.

Move High to High ZOne: move the leftmost
zone only from factor 2 to the result
field.

Move High to Low ZOne: from the leftmost
position of factor 2 to the rightmost
position of the result.

Move Low to Low ZOne: rightmost to
rightmost.

Move Low to High ZOne: rightmost to
leftmost.

REPORT PROGRAM GENERATOR II

Branching:

GOTO Factor 2 names the label (factor 1) of the
instruction with which to resume
computation. (GO TO <label>).

TAG TAG (label) a location in the calculations
with the name given as factor 1.

Table lookup:

LOKUP LOoK UP factor 1 in table or array named as
factor 2. The result field contains the
name of thee alternating table or array;
the resulting indicators give the results
of the search.

Subroutine operations:

BEGSR BEGin a SubRoutine whose name is contained
in factor 1.

ENDSR END a SubRoutine and return to the command
following the EXSR which caused this to be
executed: factor 1 may contain a label
(TAG) .

EXSR EXecute the SubRoutine named as factor 2.

Programmed control of Input/Output:

Note: normal program cycle is:

1. Read.
2. Calculate.
3. Write.
EXCPT Write exception records (identified by an E

in column 15 of the output format
description).

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-21

N-22

DSPLY

DEBUG

FORCE

READ

CHAIN

SETLL

BEEP

CLICK

Display on the console (file named as
factor 2) the data specified as either
factor 1 and or as the result field or
both; if the result field is used, the
machine will wait for input from the
keyboard to enter into the named field or
array: 1if only the enter key is pressed
then no change will be made.

Output data for DEBUGging the program:
write the data specified in the factor 1
and result fields into the file named as
factor 2; also list those indicators which
are on. Column 1 of the Header card must
contain a 1 for this to be executed.

FORCE the file specified as factor 2 to be
read on the next program cycle.

READ a record from a demand file during the
current cycle. Note -- record identifying
indicators are not automatically turned
off until the end of the cycle. The
resulting indicator designated in columns
58-59 will be turned on if the end of the
file has been found.

Read or write a record of a CHAINed file
(factor 2). Columns 54-55 should contain
an indicator to be turned on if the record
specified as factor 1 is not found.

Set lower limit (factor 1) for processing
sequential indexed file (factor 2).

Emit an audible BEEP.

Emit an audible CLICK.

REPORT PROGRAM GENERATOR II

External subroutine access:

The following two commands are used to
generate a call to an external (assembly
language) subroutine and to pass an
argument address vector to it. (See
Appendices E or I of the DATAPOINT RPG
User's Guide for further information.)

EXIT EXIT to (call) the pre-processed external
subroutine named as factor 2.

RLABL Pass the LABEL (data name) in the Result
field to the subroutine EXITed to. The
result field contains the name of a field,
table or array or it contains INxx where
XX 1s an indicator; the field length and
number of decimal positions may be
specified. The RLABL command must
immediately follow the EXIT instruction.

Columns 43-48: (Result Field)
field name
table name
array name

array element

Columns 49-52: Result field definition (blank if previously
defined)

Columns 49-51: (Field Length)
1-256 Field length.

Column 52: (Decimal Positions)

0-9 Number of decimal positions, if field is
numeric. :
blank If field is alphanumeric.

Column 53: (Half Adjust)

"H To Half-adjust (round) result.
blank Truncate result.

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-23

Columns

Columns

Columns

Columns

Columns

N=-24

54-59: (Resulting Indicators)

01-99, Indicators to be set depending upon the
H1-H9, result of the operation.

L1-L9,LR,

OA-0OG or

ov -

54-55: (Plus or High)

(+, >) Set if result positive,
than, or higher.

56-57: (Minus or Low)

(-, <) Result negative, less than,

lower.

58-59: (Zero or Equal)

(0, =) Zero, equal, or successful match.

60-7T4: (Comments)

Comments

REPORT PROGRAM GENERATOR II

greater

N.8 Output Format Specifications

N.8.1 Record Type Definition

Column 6: (Form Type)

0

Form type.

Columns T7-14: (File Name)

file name
blank

Column 15: (Type)

MmO T

Name of file being described.
For subsequent record descriptions.

Heading records.

Detail records.

Total records.

Exception records (to be written during
calculation time).

Columns 16-18: (Add a Record)

ADD

To add a record to a sequential or indexed
disk file (optional).

Column 16: (Fetch Overflow)

F

blank

Column 17: (Space)

space code

To perform (Fetch) the printer page
overflow routine if at the end of the page.
Otherwise: overflow type printing done at
normal point in the cycle.

Space before printing.

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-25

Column 18: (Space)

space code Space after printing.

0 Zero lines.
1 or ‘

blank One 1line.

2 Two lines.

3 Three 1lines,
Columns 19-20: (Skip)
01-99 Skip to specified line of page before

printing, next page if number less than or
equal to current one, suppressing overflow

printing.
blank No skip before printing.
Columns 21-22: (3kip)
01-99 Skip after printing.
blank No skip after printing.

(If both 19-20 and 21-22 blank, skip one after
printing). ,

Columns 24-25, 27-28, and 30-31: (Output Indicators)

01‘991

L1-L9,

H1-H9,

ui-us,

0A-0G,

oV, MR, ‘

LR, (On only at end of program during total
output).

1P, (On only at the very beginning of the
program).

or LO

Columns 23, 26, and 29: (Negation Relation)

N If output is to occur when indicator is Not
on.
blank Otherwise.

N-26 REPORT PROGRAM GENERATOR II

N.8.2 And/Or Line

Column 6: (Form Type)
0 Form type.
Columns 14-16: (Logical Relation)

AND AND indicator 1lines.
OR OR 1lines.

Columns 23-31: 1Indicator specifications (see above).
N.8.3 Record Formats and Field Editing

Column 6: (Form Type)
0 Form type.
Columns 23-31: Indicator specifications (see above)
(blank If field always used)
Columns 32-37: (Field Name)
field name Name of a field previously used in the
program.
table name

array name
array element

PAGE
UDATE, UDAY, UMONTH, or UYEAR
blank To write a constant of value given in

columns 45-70.

APPENDIX N. CODING SHEET SUMMARY (COMMON) N=27

Column 38: (Edit codes) -

blank No editing, or use specified edit word (see
below).
No CR - Commas Zeros to print
Sign
1 A J Yes Yes
2 B K Yes No
3 C L No Yes
4 D M No No
X Remove plus sign.
Y Date field (insert "/"'s).
Z Zero suppress.

Column 39: (Blank After)

B Blank or zero field after writing it.
blank Do not destroy it.

Columns 40-43: (End Position in Output Record)

1-9999 End position of field in output record
(output file limited).

Column 44: (Packed or Binary Field)

- Field is Datapoint-compatible numeric.
blank Otherwise.

N-28 REPORT PROGRAM GENERATOR II

Columns 45=47: (Edit Codes)

blank No additional editing (See Column 38).
vE Replace leading zeroes with asterisks.
'$! Floating dollar sign.

(These are used in conjuction with Column
38 edit codes 1-M.)
Columns 45-70: (Constant or Edit Word)

Constant Constant to be printed, columns 32-37
(field name) must be blank.
Edit Word To be used - with numeric field named in
- columns 32-37 (field name).
edit mask Mask to control editing of the field within
the Edit Word when column 38 is blank:
Mask: Function:
3 Fixed or floating dollar sign.
¥ Replace leading zeroes by
asterisks.
0 End suppression of leading zeroes.
& Replace this character with a
space.,
- or CR Write sign if negative.
blank Replace with the next consecutive
digit of the field.
other Write this character here -- may

not begin an edit mask.

APPENDIX N. CODING SHEET SUMMARY (COMMON) N-29

ge B-2 Assign Phase Summary
reads:
- Define
and 22222322 LLLEIILILLITILLLLTLLLTIILLILL929989%%

FILLILTILLTLLITLLLTILLITALIBLAIITIHIIILLIIA3BB2343%9%
TLIILLTIILILILILILIRYRY

FLILLLIITLILILLT2LTILITITILT23233%2%%%¢%%table
and field storage, generate table storage.

ould read:

- Define and assign control field storage, .

v Assign file working areas,

- Define and assign match field storage.

Scan extension, input and calculation compressions,
define table and field storage, generate table storage,

ge N-10
reads:
lumn 43: (Packed or Rinary Field)

- If an execution time array is in Databus -
compatible format,

ould read:
lumn 43: (Packed or Rinarv Field)
- If an execution time array is in Databus -
compatible format and has no dec1ma1 point in

the input,

D If an execution time array is in Databus -

compatible format and has a decimal voint in the

input,

ige N-15
i readsy
lumn 43: (Datapoint - compatible format)

- If data in Datapoint - compatible decimal
format,

~

’

Addendum to RPG User's Guide
‘Model #56325

April, 1978

Page 5-6, varagraph 5,10 Column 43 (Packed or Rinary Field)
As reads:
Entry Explanation

- Data for table or arravy is in Databus - compatible
format.

Should read:
Entrv Fxplanation

- Data for table or array is in Databus - compvatible
format and has no decimal point in the inout.

D Data for table or arrav is in Databus - compatible
format and has a decimal point in the input.
Page 7-10, varagravh 7.10 Column 43 (Packed or Binary Field)

As reads:

Entry Explanation

- Blank Field is in IBM - compatible decimal format, or is

alohanumeric.

- Field is in Datavpoint - comvatible decimal format,

- Should read:

Entry Explanation

Blank Field is in IBM - compatible decimal format, or is
alphanumeric.

- Field is in Datavoint - compatible decimal format
and has no decimal voint in the inout.

D Field is in Datapoint - compatible decimal format
and has a decimal point in the input,.

Should read:
Column 43: (Datapoint - compatible format)

(ﬁi? - If data is in Datapoint - compatible decimal
o format and has no decimal point in the input.

D If data is in Datavoint - compatible decimal
format and has a decimal point in the input,

