DOS FORTRAN COMPILER
FORTRAN/FORT55

User's Guide
Version 1
March, 1981

Document No. 50526

Copyright © 1981 Datapoint Corporation. All Rights Reserved.

PREFACE

Datapoint FORTRAN contains features and enhancements
that render it comparable to FORTRAN compilers ﬁsed on large
mainframes and minicomputer systems. All of ANSI Standard
FORTRAN X3.9-1966 is included except the COMPLEX data type.

This user's guide describes Datapoint FORTRAN for the
programmer. Chapter 1 is a short overview that includes a
discussion of notational éonventions used throughout the
text‘and example material. Chapter 2 describes the form and
components of a FORTRAN source program, and Chapters 3 and 4
define data types and their expressional relationships as
they are used in the program. Chapters 5 through 9 describe
the proper construction and use of the various statement
classes.

Appendix A is a listing of the error messages that can
occur during compilation. Appendices B and C give
compilation procedures for the 1500 FORTRAN and the 5500
FORT55 and show a sample test program compile input;
Appendix D contains an explanation of the ARC

Enqueue/Dequeue Subsystem.

TABLE OF CONTENTS

1. INTRODUCTION
1.1 Overview of FORTRAN
1.2 Features of Datapoint FORTRAN
1.3 Notation Used in This Guide

2. FORTRAN PROGRAM FORM
2.1 Introduction
2.2 FORTRAN Character Set
2.2.1 Letters
2.2.2 Digits
2.2.3 Alphanumerics
2.2.4 Special Characters
2.3 FORTRAN Line Format
2.3.1 Fields
2.3.2 Lines
2.3.3 Statement Labels
2.3.4 Statements
2.3.4.1 Executable Statements
2.3.4.2 Non-Executable Statements

3. FORMAT FOR DATA REPRESENTATION AND STORAGE
3.1 Introduction
3.2 Data Names
.2.1 Constant
Variable
Array
Array Element
Types
Integer
Real
Double Precision
Logical
Hollerith

e o o o o e o o
NEWNactWND
]

3.5 Variables
3.5.1 Variable Types
3.5.2 Variable Value Assignments
3.6 Arrays and Array Elements
3.7 Subscripts
3.8 Data Storage Allocation

4., FORTRAN EXPRESSIONS
4,1 Introduction

ol
0
(1]
o

-t b b =
(IR D D D D D e O I I D R B BN I |
AN VILWWW NN e e cd it ad (W b =d =2

GVIGSIGVIGVIGURGN IV VRO VIV RV VAV

WWWwWwWwWw
[D D 2 I I O I I N IO A
O=~JOOOMNTUVNIV NN = b d o

EE WLwLwLwwLwLwuwwwwwwwww

-t b

4.2 Arithmetic Expressions
4.3 Expression Evaluation
4.4 Logical Expressions
4.4.1 Relational Expressions
4.4.,2 Logical Operators
4.5 Hollerith, Literal, and Octal Constants

23.&'##
EEWN-—-

in Expressions 4-7
REPLACEMENT STATEMENTS - 5«1
5.1 Introduction 5=1
5.2 Replacement Statements 5-1
SPECIFICATION STATEMENTS 6-1
6.1 Introduction 6-1
6.2 Specification Statements 6-1
6.3 Array Declarators 6-1
6.4 Type Statements 6-2
6.5 IMPLICIT Statements 6-4
6.6 External Statements 6-5
6.7 Dimension Statements 6-5
6.8 Common Statements 6-5
6.9 EQUIVALENCE Statements 6-7
6.10 Data Initialization Statement 6-9
FORTRAN CONTROL STATEMENTS T=
7.1 Introduction T~
7.2 GO TO Statements -
7.2.1 Unconditional GO TO -
7.2.2 Computed GO TO -
7.2.3 Assigned GO TO -

7.3 ASSIGN Statement
7.4 1IF Statement
7.4.1 Arithmetic IF
T.4.2 Logical IF
7.4.2.1 Control Conditions
5 DO Statement
6 CONTINUE Statement
7 STOP Statement -
8 PAUSE Statement T7-10
9
1
1

—a~r<-q-4~rr-q-a-r4-q
O WO UV £ EWW N = = s =

CALL Statement
0 RETURN Statement
1 END Statement

==
L
- b amd
- 00

INPUT/OUTPUT
8.1 Introduction
8.2 Formatted READ/WRITE Statements
8.2.1 Formatted READ Statements
8.2.2 Formatted WRITE Statements
8.3 Unformatted READ/WRITE
8.3.1 Unformatted READ
8.3.2 Unformatted WRITE
8.4 File Formats

< Co
U
N et

N0

iii

Formatted Files
Unformatted Files
k File I/0
Random Disk I/0
OPEN Subroutine
Updating in Place with REWRITE
.5.3.1 Form of Rewrite Statement
.5.3.2 Considerations of Updating
in Place
5.4 Indexed Sequential Files
5.5 Deleting or Inserting Multiple
ISAM Keys
Auxiliary I/0 Statements
E
I
8.

o fdeo o
WN =0 N

oo 0o
L]
VIV IO &= &=

©0 Co

8.
8.

NCODE/DECODE
NPUT/OUTPUT List Specification
List Item Types
8.8.1.1 Single Datum Identifier
8.8.1.2 Multiple Data Identifiers
8.2 Special Notes on List Specifications
FORMAT Statements
9.1
9.2

8.6

8.7

8.8
8.

Field Descriptors

. Numeric Conversions
F-Type Conversions
F Output
F Input
E-Type Conversion
E Output
E Input
D-Type Conversions
G-Type Conversions
G Input

G Output

I-Type Conversions
12 I Output

13 I Input
lerith Conversions
A-Type Conversion
A Output
A Input
H-Type Conversion
H
H

.

.

*

\OOJQO\UIJ'-'U\)N—&

—I—I
-0

8.9.3

2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
1
3.
3.
3.
3.
OQutput
Input
al Conversions
L Output
L Input
escriptor
Descriptor
8.9.6.1 Effect of Scale Factor
on Input
8.9.6.2 Effect of Scale Factor
on Output
8.9.7 Repeat Specifications
8.9.7.1 Field Separators

(o]
L]
\0
L
F
oooo ooooooooooor: oooaoooooooocoooonoooooooo

1
2
3
i
5
6
(o]
1
2

9.
9.
9.
9.
.9.
.9
9.
9.
.9.
9.
9.
9.
.9.
H
9.
.9.
.9.
.9.
.9.3.

.9.3.

Logi
.9.4,

9.4,

XD

P

8.9.
8.9.

o Ut

8-9
8-9
8-10
8-11
8-12
8-12

8-13
8-13

8-14
8-14
8-15
8-15
8-16
8-16
8-16
8-17
8-18
8-19
8-20
8-20
8-20
8-20
8-21
8-21
8-22
8-23
8-23
8§-23
8-23
8-21
8-24
8-24
8~-25
8-25
8-25
8-25
8-26
8-26
8-27
8-27
8-27
8-27
8-28
8-28

8-28
8-29

8-29
8-30

iv

9.

F

APPEN

APPEN

APPEN

C
APPENDI
D

8.9.8 Format Control, List Specifications,
and Record Demarcation

8.9.9 FORMAT Carriage Control

8.9.10 FORMAT Spcification in Arrays

NCTIONS AND SUBPROGRAMS

Introduction

The PROGRAM Statement

Statement Functions

Library Functions

FUNCTION Subprograms

Construction of FUNCTION Subprograms
Referencing a FUNCTION Subprogram
SUBROUTINE Subprograms

Construction of SUBROUTINE Subprograms
Referencing a SUBROUTINE Subprogram
RETURN from FUNCTION and SUBROUTINE
Programs ’
Processing Arrays in Subprograms
BLOCK DATA Subprograms

(e AAXel Ve RV ¥ ol

] L] . . L] L]

S =2V~ UVTLEZWN
-0 -

e o & o

-—
w N

IX A. FORTRAN ERROR MESSAGES
Fatal Compilation Errors
Compilation Error Warnings
FORTRAN Runtime Error Messages
.1 Warning Errors

3
3.2 Fatal Errors
B

S>30 WO WVYOWOWVOWO
- < B3N -

. [

I . 1500 FORTRAN
1500 Operating Environment
Installation
Compilation
3.1 Command Line Files
3.2 Command Line Options

Compilation Example Procedure

. 5500 FORTS55

5500 Operating Environment
Installation
C

oo O

> Ewmow

IX C

QO Ow o 2

Y EOQOOWN =

ompilation Procedure
3.1 Command Line Files
3.2 Command Line Options
Compilation Example Procedure

D. ARC Enqueue/Dequeue Subsystem
Enqueueing Shared Files

D.2 1Invoking Enqueue

D.3 Enqueueing Errors

(Vo] \O\D\O\'O\D\O\OO

1
=20 oO~JOOOWN

o

]
- -t s
WN —=

Bk WO
] I |

]
EEEWND-

J www 2>
b W N = cd cd et

? uninmw
—-—

s XeXeKel
[I I |
-t

-t

C-2

Q
]
w

D-1
D=1
D=2
D=2

CHAPTER 1. INTRODUCTION TO DOS FORTRAN

1.1 Overview of FORTRAN

FORTRAN is a universal, problem-oriented programming
language. The name of the language is an acronym for
FORmula TRANslator. The Datapoint FORTRAN compiler is
designed to simplify the preparation and checkout of
programs written in the FORTRAN language.

Syntactical rules for using FORTRAN are rigorous and
require the programmer to define fully the characteristiecs
of a problem in a series of precise statements. These
statements, collectively called the source program, are
translated by a system program called _the FORTRAN compiler
into an object program in the machinéflangusge of thm -
computer on which the program is to be executed.

1.2 Features of Datapoint FORTRAN

This language includes the American National Standard
FORTRAN language as described in ANSI document X3.9-1966,
approved on March 7, 1966, plus a number of language
extensions and some restrictions. The language extensions
anddrestrictions are described in the text of this user's
guide.

NOTE

This FORTRAN differs from the
American National Standard

in that it does not include
the COMPLEX data type.

Datapoint FORTRAN is unique in that it provides an
assembly language development package that generates

relocatable object modules. Only the subroutines and system

routines required to run FORTRAN programs need to be loaded

before execution. Users are able to develop a common set of
subroutines for their programs and place these in the system
library. Then, if one module of a program is changed, it is

necessary to recompile only that one module.

CHAPTER 1. INTRODUCTION TO DOS FORTRAN 1-1

Enhancements:

The FORTRAN compiler contains a8 number of enhancements
to the ANSI Standard:

. LOGICAL variables which can be used as integer
quantities in the range +127 to -128.

. LOGICAL DO loops for tighter, faster execution of small
valued integer loops.

. Mixed mode arithmetic.
. Octal constants.
. Literals and Holleriths allowed in expressions.

. Logical operations on integer data -AND., .OR., .NOT.,
-XOR. can be used for 16-bit or 8-bit Boolean
operations.

. READ/WRITE End-of-File or Error Condition transfer.
END=n and ERRz=n (where n is the statement number) can
be included in READ or WRITE statements to transfer
control to the specified statement on detection of an
error or end-of-file condition.

. ENCODE/DECODE for FORMAT operations to memory.

Characteristics:

The FORTRAN compiler can compile several hundred
statements per minute in a single pass. All extra available
memory will be used by the compiler for extended
optimizations. v

In spite of its small size, the FORTRAN compiler
optimizes the generated object code in several ways:

Common subexpressions elimination. Common
subexpressions are evaluated once, and the value is
Substituted in later occurrences of the subexpression.

. Peephole optimization. Small sections of code are
replaced by more compact, faster code in special cases.

1-2 DATAPOINT DOS FORTRAN COMPILER

Constant folding. Integer constant expressions are
evaluated at compile time.

Branch optimizations. The number of conditional jumps in
arithmetic and logical IFs is minimized.

Descriptive error messages are another feature of the

compiler. For example, the following message is printed if
the compiler scans a statement that is not an assignment or
other FORTRAN statement:

? STATEMENT UNRECOGNIZABLE

The last twenty characters scanned before the error is

detected are also printed.

1.3 Notation Used in This Guide

The syntax of FORTRAN is displayed using the following

fundamental conventions:

.

Words in all capital letters stand for themselves.

Words in lower case letters are the names of other
constructs.

Corner brackets (< >) are placed around lower-case
words which name a class of items that can be
substitutes for the corner-bracketed name. For
example, 1f manual instructions specify the item
<digit>, this means that any digit may be entered. The
instruction might look like this:

<letter><digit>

This means "any letter followed by any digit."

CHAPTER 1. INTRODUCTION TO DOS FORTRAN 1-3

. Square brackets ([]) enclose optional items or groups
of items. If the digit in the example above were to be
optionally included, the notation would be:

<letter>[<digit>]

If the word "TO" may be optionally included, the
notation would be: [TO] :

. Ellipsis, represented by three consecutive periods
(...), means "more of the same." For example:

BYTE <string>[<string>...)

This instruction means that the operation BYTE is to be
performed on the characters contained in a string
followed by an optional series of Successive strings.

. The vertical bar (!) indicates an either-or choice.
Thus:

{letter>[<letter> | <digit>]...

In this example, a <letter) is optionally followed by
either a letter (or a series of letters) or a digit (or
series of digits).

Examples are included throughout this manual to
illustrate the construction and use of FORTRAN language
elements. The programmer should be familiar with all
aspects of the language to take full advantage of its
capabilities.

1-4 DATAPOINT DOS FORTRAN COMPILER

CHAPTER 2. FORTRAN PROGRAM FORM

2.1 Introduction

FORTRAN source programs consist of one program unit
called the MAIN PROGRAM and unlimited program units called
SUBPROGRAMS. Subprogram types, and methods of writing and
using them, are discussed in Chapter 9.

Programs and program units are constructed of an
ordered set of statements which precisely describe
procedures for solving problems, and define information to
be used by the FORTRAN processor during generation of the
source program. Each statement is written using the FORTRAN
character set and follows a prescribed line format.

2.2 FORTRAN Character Set

To simplify reference and explanation, the FORTRAN
character set is divided into four subsets and a name is
given to each.

2.2.1 Letters

A, B,C,D, E,F,G,HI,J, kK, L, M, N, O, P, Q, R,
S, T, U, v, W, X, Y, Z, $

NOTE:
No distinction is made between upper and
lower case letters; however, for clarity and
legibility, exclusive use of upper case letters is
recommended.

2.2.2 Digits
o, 1, 2, 3, 4, 5,6, 7,8,9

CHAPTER 2. FORTRAN PROGRAM FORM 2-1

2.2.3 Alphanumerics

This is a subset of characters made up of all letters
and all digits.

2.2.4 Special Characters

Blank

Equality sign
Plus Sign

Minus Sign
Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point

e v AN R+

NOTES:

1. The following special characters are classed as
Arithmetic Operators and are significant in the
unambiguous statement of arithmetic expressions:

Addition or Positive Value
Subtraction or negative Value
Multiplication
Division

* Exponentiation

xRN w1l +

2. The other special characters have specific
application in the syntactical expression of the
FORTRAN language and in the construction of
FORTRAN statements.

3. Any printable character may appear in a Hollerith
or Literal field.

2=-2 DATAPOINT DOS FORTRAN COMPILER

2.3 FORTRAN Line Format

The FORTRAN coding form contains the format of FORTRAN
program lines. The lines of the form consist of 80
character positions or columns, numbered 1 through 80,
divided into four fields.

2.3.1 Fields

1. Statement Label (or Number) field: Columns 1
through 5. (Statement labels are discussed in
Section 2.3.3.)

2. Continuation character field: Column 6.

3. Statement field: Columns 7 through T2.

4. Identification field: Columns 73 through 80.

The identification field is available for any purpose
desired and is ignored by the FORTRAN compiler.
2.3.2 Lines

The lines of a FORTRAN statement are placed in Columns
1 through 72, where they are formatted according to line

types. There are four line types; definitions and column
formats for each are given below.

INITIAL LINE-~- the first or only line of each
statement.

a. Columns 1-5 may contain a statement label to
identify the statement.

b. Column 6 must contain a zero or blank.

¢. Columns 7-72 contain all or part of the statement.

d. An initial line may begin anywhere within the
statement field.

Examgle:

C THE STATEMENT BELOW CONSISTS
c OF AN INITIAL LINE
C

A= .5%SQRT(3-2.%C)

CHAPTER 2. FORTRAN PROGRAM FORM 2=3

CONTINUATION LINE-- A continuation line is used when
additional lines of coding are required to complete a
statement originating with an initial line.

a. Column 6 must contain a character other than
zero or blank.

b. Columns 7-72 contain the continuation of the
statement.

c. There may be as many continuation lines as
needed to complete the statement.

Examgle:

C THE STATEMENTS BELOW ARE AN INITIAL
C LINE AND 2 CONTINUATION LINES
C

63 BETA(1,2) =
1 A6BAR**7.(BETA(2,2)-A5BAR%*50
2 +SQRT (BETA(2,1)))

COMMENT LINE-- A comment line is used for source
program annotation at the programmer's convenience.
a. Column 1 contains the letter C.

b. Columns 2 - 72 are used in any desired format to
express the comment, or may be left blank.

c. A comment line may be followed only by an initial
line, an END line, or another comment line.

d. Comment lines have no effect on the object program
and are ignored by the FORTRAN processor except
for display purposes in the program listing.

Examgle:
C COMMENT LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1.

C THESE ARE COMMENT LINES

END LINE-- the last line of a program unit.
a. Columns 1-5 may contain a statement label.

b. Column 6 must contain a zero or blank.

2-U4 DATAPOINT DOS FORTRAN COMPILER

¢. Columns 7-72 contain the characters E, N, or D, in
that order, preceded by, separated by, or followed
by blank characters.

d. Each FORTRAN program unit must have an END line as
its last line, to inform the compiler that it is
at the physical end of the program unit.

e. An END line may follow any other line type.

Example:
END

2.3.3 Statement Labels

A

statement label may be placed in columns 1-5 of a

FORTRAN statement initial line and is used for reference
purposes in other statements.

The following considerations govern use of statement

labels:
al

b.

The label is an integer from 1 to 99999.

For calculating the numeric value of the label,
leading zeros and blanks are not significant.

A label must be unique within a program unit.

A label on a continuation line is ignored by the
FORTRAN compiler.

Example:

C EXAMPLES OF STATEMENT LABELS
C
1
10
99999
763

NOTE:
Embedded blanks within statement

labels are discarded; thus, 1 blank 0
is evaluated as 10 (ten).

CHAPTER 2. FORTRAN PROGRAM FORM 2-5

2.3.4 Statements

Individual statements deal with specific aspects of a
procedure described in a program unit and are classified
either as executable or non-executable.
2.3.4.1 Executable Statements

Executable statements sSpecify actions and cause-the
FORTRAN compiler to generate object program instructions.
There are three types of executable statements.

1. Replacement statements.

2. Control statements.

3. Input/Output statements.

2.3.4.2 Non-Executable Statements

Non-executable statements describe to the processor the
nature and arrangement of data, and provide information
about input/output formats and data initialization to the
object program during program loading and execution. There
are five types of non-executable statements.

1. Specification statements.

DATA initialization statements.

2

3. FORMAT statements.

4. FUNCTION-defining statements.
5

Subprogram statements.

The proper use ahd construction of the various types of
statements are described in Chapters 5 throughl9.

2-6 DATAPOINT DOS FORTRAN COMPILER

CHAPTER 3. FORMAT FOR DATA REPRESENTATION AND STORAGE

3.1 Introduction

The FORTRAN language prescribes a definitive method for
identifying data by name and type.
3.2 Data Names

FORTRAN defines four data names: constant, variable,
array, and array element.

3.2.1 Constant

A constant is an explicity stated datum.
3.2.2 Variable

A variable is a symbolically identified datum.
3.2.3 Array

An array is an ordered set of data in 1, 2, or 3
dimensions.

3.2.4 Array Element

An array element is one member of the set of data in an
array.
3.3 Data Types

There are five defined data types in FORTRAN: integer,
real, double precision, logical, and Hollerith.

3.3.1 Integer
An integer is a whole number which can be positive,

negative, or zero, having precision to 5 digits in the range
-32768 to +32767 (-2%%#15 to 2%#15-1).

CHAPTER 3. FORMAT FOR DATA REPRESENTATION 3-1

3.3.2 Real

Approximations of real numbers (positive, negative or
zero) are represented in computer storage in U4-byte,
floating-point form. Real data are precise to 7 or more
significant digits and their magnitude may lie between the
aggrox%mate limits of 10%%-38 and 10%%#38 (2%#-127 and
2%%127),

3.3.3 Double Precision

Double precision approximations of real numbers
(positive, negative, or zero) are represented in computer
storage in 8-byte, floating-point form. Double precision
data are precise to 16 or more significant digits in the
same magnitude range as real data.

3.3.4 Logical

Logical data types are one-byte representations of the
truth values TRUE or FALSE, with FALSE defined to have an
internal representation of zero. The constant .TRUE. has
the value of -1; however any non-zero value will be treated
as .TRUE. in a Logical IF statement. In addition, logical
type data may be used as one-byte signed integers in the
range of -128 to +127, inclusive.

3.3.5 Hollerith

A string of characters from the ASCII character set
used to represent the alphabet, integers 0 through 9, and
symbols. All characters including blanks are significant.
Hollerith data requires one byte for storage of each
character in the string.
3.4 Constants

FORTRAN constants are indentified explicitly by stating
their actual value. The plus (+) character need not precede
positive-valued constants.

Formats for writing constants are shown in Table 3-1.

3-2 DATAPOINT DOS FORTRAN COMPILER

TABLE 3-1. FORMATS OF CONSTANTS

TYPE FORMATS AND RULES FOR USE EXAMPLES
INTEGER 1. 1 to 5 decimal digits +763
interpreted as a decimal -763
number - 1
2. A preceding plus sign or +32767
minus sign is optional -32768

3. No decimal point (.)
or comma (,) is allowed.

4, Value range: -32768 through
through +32767 (-2%%15
through 2%¥¥15-1).

REAL 1. A decimal number with 345,
precision to T digits -.345678
and represented in one +345.678
of the following forms: +.3E3

~-T3E4

a. Plus or minus .f ; or
plus or minus i.f.

b. Plus or minus i.Ee, where
e is plus or minus e;
or plus or minus .fEe ,
where e is plus or minus e.
Plus or minus i.fEe , where
e is plus or minus e.

where i, f, and e are each
strings representing
integer, fraction, and
exponent respectively.

2. Use of the plus character (+) with
real data is optional.

3. In the form shown in 1.b above, if r
represents any of the forms preceding Ee,
where e 1is plus or minus e , the value
of the constant is interpreted as r
times 10%%*e , where the range of the
exponent e 1is always plus or minus 38.

CHAPTER 3. FORMAT FOR DATA REPRESENTATION 3-3

DOUBLE
PRECISION

LOGICAL

LITERAL

3-4

4, 1If the constant preceding E,
plus or minus e , contains
more significant digits than
the precision for real data
allows, truncation occurs, and
only the most significant digits
in the range will be presented.

A decimal number with precision +345.678
to 16 digits. All formats and +.3D3
rules are identical to those for -T73D4

REAL constants, except D is

used in place of E . Note that

a real constant is assumed to be
single precision unless it contains
a D exponent.

.TRUE. generates a non-zero .TRUE.
byte (octal 377) and .FALSE.

generates a byte in which

all bits are 0.

If logical values are used as
one-byte integers, the rules
for use are the same as for
type INTEGER, except that the
range allowed is -128 to +127,
inclusive.

In the literal form, any number 'EXAMPLE'
of characters may be enclosed

by apostrophes.

The form is as follows:

'X1X2X3...Xp"'

where each xj is any character
other than '.'(the period).

Two apostrophes in succession

may be used to represent the
character within the string; i.e.,
if xp is to be the apostrophied
character, the string appears as
the following:

'X]"X3...Xn'

DATAPOINT DOS FORTRAN COMPILER

OCTAL

1. A literal where the first 0'101!
character is the upper-case
letter 0 and followed by
three digits enclosed by
apostrophes is recognized as
an octal value.

2. An octal constant is right-
justified in storage.

3.5 Variables

Variable data are identified in FORTRAN statements by
symbolic names. The names are unique strings of from 1 to 6
alphanumeric characters of which the first is a letter.

3.5.1

NOTE:

System variable names and run time
subprogram names are distinguished
from other variable names in that
they begin with the dollar sign
character ($). It is therefore
strongly recommended that in order
to avoid conflicts, symbolic names
in FORTRAN source programs begin
with some letter other than "$".

Examples:
15, TBAR, B23, ARRAY, XFM79, MAX, A1$C
NOTE: Blanks embedded within variables

are discarded; thus, T BAR is evaluated
as TBAR.

Variable Types

Variable data are classified into four types: INTEGER,
REAL, DOUBLE PRECISION and LOGICAL. The specification of type is
accomplished in one of the following ways:

1.

Implicit typing, in which the first letter of the
symbolic name specifies Integer or Real type. Unless
explicitly typed (see 3.5.2. below), symbolic names
beginning with I, J, K, L, M or N represent Integer
variables, and symbolic names beginning with letters
other than I, J, K, L, M or N represent Real variables.

CHAPTER 3. FORMAT FOR DATA REPRESENTATION 3=-5

Integer Variables:

ITEM
Ji
MODE
K123
N2

Real Variables:

BETA
H2
ZAP
AMAT
XID

2. Variables may have their type specified explicitly.
That is, they may be given a particular type without
reference to the first letters of their names.
Variables may be explicitly typed as INTEGER, REAL,
DOUBLE PRECISION or LOGICAL. The statements used in
gxplicitly specifying data type are described in Chapter

3.5.2 Variable Value Assignments

Variable data receive their numeric value assignments during
program execution or, initially, in a DATA statement (Sec. 6.2).

Hollerith or Literal data may be assigned to any type

variable. Section 3.8 contains a discussion of Hollerith data
storage.

3.6 Arrays and Array Elements

An array is an ordered set of data characterized by the
property of dimension. An array may have 1, 2, or 3 dimensions
and is identified and typed by a symbolic name in the same manner
as a variable, except that an array name must be so declared by
an "array declarator." Complete discussion of the array
declarators appears in Chapter 5 of this manual. An array
declarator also indicates the dimensionality and size of the
array. An array element is one member of the data set that makes
up an array. Reference to an array element in a FORTRAN
Statement is made by appending a subscript to the array name.

The term "array element" is Synonymous with the term "subscripted
variable" used in some FORTRAN texts and reference manuals.

3-6 DATAPOINT DOS FORTRAN COMPILER

An initial value may be assigned to any array element by a
DATA statement or its value may be derived and defined during
program execution. :

3.7 Subscripts

A subscript follows an array name to uniquely identify an
array element. In use, a subscript in a FORTRAN statement takes
on the same representational meaning as a subscript in familiar
algebraic notation.

Rules for the use of subscripts are as follows:
1. A subscript contains 1, 2, or 3 subscript expressions

(see item 4 below) enclosed in parentheses.

2. If there are two or three subscript expressions within
the parentheses, they must be separated by commas.

3. The number of subscript expressions must be the same as
the specified dimensionality of the Array Declarator
except in EQUIVALENCE statements (see Chapter 6).

4., A subscript expression is written in one of the
following forms:

k chy v=-k v+k v ck¥vaek ck¥v-k

where ¢ and k are integer constants and v is an integer
variable name. See Chapter 5 for a discussion of
expression evaluation.

Examples:

X(2%J-3,T7) A(I,J,K) I1(20) C(L-2) Y(I)

5. Subscripts themselves may not be subscripted.

3.8 Data Storage Allocation

Allocation of storage for FORTRAN data is made in numbers of
storage units. A storage unit is the memory space required to
store one real data value (4 bytes).

Table 3-2 defines the storage unit formats of the three data
types.

CHAPTER 3. FORMAT FOR DATA REPRESENTATION 3=7

Octal data may be associated--via a DATA statement--with any
type data. Its storage allocation is the same as the associated
datum.

Hollerith or literal data may be associated with any data
type by use of DATA initialization statements. See Chapter 7.

Up to eight Hollerith characters may be associated with

Double Precision type storage, up to four with Real, up to two
with Integer, and one with Logical type storage.

TABLE 3-2. STORAGE ALLOCATION BY DATA TYPES

TYPE ALLOCATION
INTEGER 2 bytes/ 1/2 storage unit
Sign Binary value

Negative numbers are the 2's complement of
positive representations.

LOGICAL 1 byte/ 1/4 storage unit
Zero (false) or non-zero (true)
A non-zero-valued byte indicates true
(the logical constant). .TRUE. is represented
by the octal value 0377. A zero-valued byte
indicates false.
When used as an arithmetic value, a Logical

datum is treated as an Integer in the range
-128 to +127.

3-8 DATAPOINT DOS FORTRAN COMPILER

REAL 4 bytes/ 1 storage unit

Character-
istic Sign Mantissa Mantissa

The first byte is the characteristic expressed

in excess 0200 (octal) notation; i.e., a value
of 0200 corresponds to a binary exponent of 0.
Values less than 0200 correspond to negative
exponents, and values greater than 0200 correspond
to positive exponents. By definition, if the
characteristic is zero, the entire number is zero.

The next three bytes constitute the mantissa. The
mantissa is always normalized such that its high
order bit is one, eliminating the need to actually
save that bit. The high bit is used instead to
indicate the sign of the number. A one indicates
a negative number, a zero indicates a positive
number. The mantissa is assumed to be a binary
fraction whose binary point is to the left of the
mantissa.

DOUBLE : 8 bytes/ 2 storage units

PRECISION
The internal form of Double Precision data is
identical to that of Real data except Double
Precision uses 4 extra bytes for the mantissa.

CHAPTER 3. FORMAT FOR DATA REPRESENTATION 3-9

CHAPTER 4. FORTRAN EXPRESSIONS

4.1 Introduction

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expression
types--Arithmetic and Logical--are provided by FORTRAN. The
operand, operators, and rules for using both types are described
in the following paragraphs.

4,2 Arithmetic Expressions

The following rules define all permissible arithmetic
expression forms:

1. A constant, variable name, array element reference, or
FUNCTION reference (Chapter 9) standing alone is an
expression.

Examples:

S(I)
JOBNO

217

17.26
SQRT(A+B)

2. If e 1is an expression whose first character is not
an operator, then +e and -e are called signed
expressions.

Examples:

-S
+JOBNO
<217

. +17.26
~SQRT(A+B)

3. If e is an'expression, then (e) means the quantity
resulting when e 1is evaluated.

Examples:
(-4)
-(JOBNO)

-(X+1)
(A-SQRT(A+B))

CHAPTER 4. FORTRAN EXPRESSIONS 4-1

If e 1is an unsigned expression and f is any
expression, then f+e, f-e, f¥e, f/e and f*e are all
expressions.

Examples:

-(B(I,J)+SQRT(A+B(K,L)))
1.7TE-2%%(X+5.0)
-(B(I+3,3%J+5)+A)

An evaluated expression may be Integer, Real, Double
Precision, or Logical. The type is determined by the
data types of the elements of the expression. If the
elements are not all of the same type, the
expression's type is determined by the element having
the highest type. The type hierarchy, from highest to
lowest, is: DOUBLE PRECISION, REAL, INTEGER,
LOGICAL.

Expressions may contain nested parenthesized elements
as in this example:

A¥(Z-((Y+X)/T))ung

where Y+X is the innermost element, (Y+X)/T is the
next innermost, Z-((Y+X)/T) the next. In such
expressions, the number of left and right :
parentheses must be equal, and the number of
nested parentheses cannot exceed 14.

4.3 Expression Evaluation

Arithmetic expressions are evaluated according to the
following rules:

1.

Parenthesized expression elements are evaluated first.
If parenthesized elements are nested, the innermost
elements are evaluated first, the next innermost next,
and so forth until the entire expression has been
evaluated.

Within parentheses and/or wherever parentheses do not
govern the order of evaluation, the hierarchy of
operations in order of precedence is:

a. FUNCTION evaluation

b. Exponentiation

¢c. Multiplication and Division
d. Addition and Subtraction

DATAPOINT DOS FORTRAN COMPILER

Example:
The expression

A®(Z-((Y+R)/T))**J+VAL

is evaluated in the following sequence:

Y+R = el
(e1)/T = e2
l-e2 = e3
e3kkg = el
A¥ el = e5
e5+VAL = eb

3. The expression X¥#Y#*##7 jis not allowed. It should be
written as:

(X#eY)®%7 or Xeu(y%ez)

g, Use of an array element reference requires the
evaluation of its subscript. Subscript expressions
are evaluated under the same rules as other
expressions.

Logical Expressions
A Logical Expression may be any of the following:

1. A single Logical Constant (i.e., .TRUE. or .FALSE.), a
Logical Variable, Logical Array Element or Logical
FUNCTION reference (discussed in Chapter 9).

2. Two arithmetic expressions separated by a relational
operator, that is, a relational expression.

3. Logical operators acting upon logical constants,
logical variables, logical array elements, logical
FUNCTIONS, relational expressions or other logical
expressions. The value of a logical expression is
always either .TRUE. or .FALSE.

CHAPTER 4. FORTRAN EXPRESSIONS 43

4.4.1 Relational Expressions
The general form of a relational expressibn is:
<e1><r><e2>
In this relational expression, el and e2 are arithmetic

expressions and r is a relational operator. There are six
relational operators:

.LT. Less than

.LE. Less than or equal to
-EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

The value of the relational expression is .TRUE. if the
condition defined by the operator is met. Otherwise, the
value is .FALSE. ‘
Examples:
A.EQ.B

(A%%*J) .GT.(ZAP*(RHO*TAU-ALPH)
C.LT.'Z'

4.4.2, Logical Operators

Table 4-1 lists the logical operations. Logical operations
are denoted by u and v.

4-4 DATAPOINT DOS FORTRAN COMPILER

TABLE 4-1. LOGICAL OPERATIONS

.NOT.u The value of this expression is the logical
complement of u, that is, 1 bits become 0 and 0
bits become 1.

u.AND.v The value of this expression is the logical product
of u and v, that is, there is a 1 bit in the
result only where the corresponding bits in both u
and v are 1.

u.OR.v The value of this expression is the logical sum of
u and v, that is, there is a 1 in the result if
the corresponding bit in u or v 1is 1 or if the
corresponding bits in both u and v are 1.

u.XOR.v The value of this expression is the exclusive OR of
u and v, that is, there is a one in the reult if
the corresponding bits in u and v are 1 and 0
or 0 and 1 respectively.

Examples:

If u = 01101100 and v = 11001001, then

.NOT.u = 10010011
u.AND.v = 01001000
u.OR.v = 11101101
u.XOR.v = 10100101

CHAPTER 4. FORTRAN EXPRESSIONS .Q-S

4-6

The following are additional considerations for construction
of Logical Expressions:

1.

Any Logical Expression may be enclosed in parentheses.
However, a Logical Expression to which the .NOT.
operator is applied must be enclosed in parentheses if
it contains two or more elements.

In the hierarchy of operations, parentheses may be
used to specify the ordering of the expression
evaluation. Within parentheses, and where parentheses
do not dictate evaluation order, the order is
understood to be as follows:

a. FUNCTION Reference

b. Exponentiation (%#%)

€. Multiplication and Division (* and /)
d. Addition and Subtraction (+ and -)

e. .LT., .LE., .EQ., .NE., .GT., .GE.

f. .NOT.

g. .AND.

h. .OR., .XOR.

Examples:

The expression
x tANDo Y QOR. B(3’2) -GT. z

is evaluated as:

el = B(3,2).GT.Z
e2 = X .AND. Y
e3 = e2 .0OR. el

The expression

X .AND. (Y .OR. B(3,2) .GT. 2)

is evaluated as:

81 = B(3’2) oGTo Z
e2 = Y .OR. e1
e3 = X .AND. e2

DATAPOINT DOS FORTRAN COMPILER

4.5

3. It is invalid to have two contiguous logical operators
except where the second operator is .NOT.

That is, .AND..NOT. and .OR..NOT. are valid.

Example:
A.AND..NOT.B is permitted
A.AND..OR. B is invalid and not permitted

Hollerith, Literal, and Octal Constants in Expressions

Hollerith, Literal, and Octal constants are allowed in

expressions in place of Integer constants. These special
constants always evaluate to an Integer value and are therefore
limited to a length of two bytes. The only exceptions are:

1. Hollerith or Literal constants may be used as
subprogram parameters. '

2. . Hollerith, Literal, or Octal constants may be up to
four bytes long in DATA statements when associated
with Real variables, or up to eight bytes long when
associated with Double Precision variables.

CHAPTER 4. FORTRAN EXPRESSIONS 4-7

CHAPTER 5. REPLACEMENT STATEMENTS

5.1 Introduction

Replacement statements define computations.and are used
in much the same way as equations in normal mathematical
notation. They have the following form:

<v> = <e>

where v 1is any variable or array element and é is an
expression.

FORTRAN semantics defines the equality sign (=) as
meaning to be replaced by rather than the normal is
equivalent to. Thus the object program instructions
generated by a replacement statement will, when executed,
evaluate the expression on the right of the equality sign
and place that result in the storage space allocated to the
variable or array element on the left of the equality sign.

5.2 Réplacement Statements

The following conditions apply to replacement
statements:

1. Both v and the equality sign must appear on the
same line. This holds even when the statement is
part of a logical IF statement--see Chapter 7.

Example:

C IN A REPLACEMENT STATEMENT THE '='
C MUST BE IN THE INITIAL LINE.
A(5,3) =
1 B(7,2) + SIN(C)

The line containing v = must be the initial
line of the statement unless the statement is
part of a logical IF statement. 1In that case the
v = must occur no later than the end of the
first line after the end of the IF.

CHAPTER 5. REPLACEMENT STATEMENTS 5=1

Variabl
Types

Integer
Real
Logical
Double

If the data types of the variable, v, and the
expression, e, are different, the value
determined by the expression will be converted,
if possible, to conform to the typing of the
variable. Table 5-1 shows which type expressions
may be equated to which type variable. Y
indicates a valid replacement. Footnotes to Y
(the lower-case letters) indicate conversion
considerations.

TABLE 5-1. REPLACEMENT BY TYPE

Expression Types (e)

e Double
Integer Real Logical Precision
Y Ya Yb Ya
Yc Y Ye Ye
Yd Ya Y Ya
Prec. Yc Y Ye Y
The Real expression value is converted to

Integer, truncated if necessary to conform to the
range of Integer data.

The sign is extended through the second byte.

The variable is assigned the Real approximation
of the Integer value of the expression.

The variable is assigned the truncated value of
the Integer expression (the low-order byte is
used, regardless of sign).

The variable is assigned the rounded value of the
Real expression.

DATAPOINT DOS FORTRAN COMPILER

CHAPTER 6. SPECIFICATION STATEMENTS

6.1 Introduction

Specification statements are non-executable,
non-generative statements which define data types of
variables and arrays, specify array dimensionality and size,
allocate data storage or otherwise supply determinative
information to the FORTRAN compiler. DATA initialization
statements are non-executable, but generate object program
data and establish initial values for variable data.

6.2 Specification Statements
The seven kinds of specification statements are:

Type, IMPLICIT, EXTERNAL, and DIMENSION statements
COMMON statements
EQUIVALENCE statements

_ DATA initialization statements

All specification statements are grouped at the
beginning of a program unit and must be ordered as they
appear above. Specification statements may be preceded only
by a FUNCTION, SUBROUTINE, PROGRAM, or BLOCK DATA statement.
All specification statements must precede statement
functions and the first executable statement.

6.3 Array Declarators

Three kinds of specification statements may specify
array declarators. These statements are the following:.

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration of
arrays as their sole function. The other two serve dual

purposes. These statements are defined in Sections 6.4,
6.7, and 6.8.

CHAPTER 6. SPECIFICATION STATEMENTS 6-1

Array declarators are used to specify the name,
dimensionality, and sizes of arrays. An array may be
declared only once in a program unit.

An array declarator has one of the following forms:

<ui> (<k>)
<uid> (<k1>,<k2>)
<ui> (<k1>,<k2>,<k3>)

where uj 1is the name of the array, called the declarator
name, and the k elements are integer constants.

Array storage allocation is established upon appearance
of the array declarator. Such storage is allocated linearly
by the FORTRAN compiler where the order of ascendancy is
determined by the first subscript varying most frequently
and the last subscript varying least frequently.

For example, if the array declarator AMAT(3,2,2)
appears, storage is allocated for its 12 elements in the
following order:

AMAT(1,1,1), AMAT(2,1,1), AMAT(3,1,1), AMAT(1,2,1),
AMAT(2,2,1), AMAT(3,2,1), AMAT(1,1,2), AMAT(2,1,2),
AMAT(3,1,2), AMAT(1,2,2), AMAT(2,2,2), AMAT(3,2,2)

6.4 Type Statements

Variable, array, and FUNCTION names are automatically
typed as Integer or Real by the 'predefined' convention
unless they are changed by Type statements. For example,
the type is Integer if the first letter of an item is I, J,
K, L, M, or N. Otherwise, the type is Real.

Type statements provide for overriding or éonfirming
the 'predefined' convention by specifying the type of an

item. In addition, these statements may be used to declare
arrays.

The general form of Type statements is:
<t> <vid>,<v2>,...Lvn>
where t represents one of the terms INTEGER, INTEGER*1,
INTEGER*2, REAL, REAL*4, REAL®*8, DOUBLE PRECISION, LOGICAL,
LOGICAL*1, LOGICAL*2, or BYTE.

Each v 1is an array declarator or a variable, array or
FUNCTION name.

6-2 DATAPOINT DOS FORTRAN COMPILER

The INTEGER®1, INTEGER*2, REAL*4, REAL*8, LOGICAL*1, and
LOGICAL¥2 types are allowed for readibility and
compatibility with other FORTRANSs.

BYTE, INTEGER*1, LOGICAL®*1, and LOGICAL are all equivalent;
INTEGER®*2, LOGICAL*2, and INTEGER are equivalent; REAL and
REAL*Y4 are equivalent; DOUBLE PRECISION and REAL*®*8 are
equivalent.

Example:

REAL AMAT(3,3,5),BX,IETA,KLPH

NOTE:

1. AMAT and BX are redundantly typed, since under
the convention they are Real already.

2. IETA and KLPH, which under the convention would
be Integer, are unconditionally declared Real.

3. AMAT(3,3,5) is a constant array declarator
specifying an array of 45 elements.

Example:

INTEGER M1, HT, JMP(15), FL

NOTE:

M1 is redundantly typed here. Typing of HT and FL by
the 'predefined' convention is overridden by their
appearance in the INTEGER statement. JMP(15) is a
constant array declarator. It redundantly types the
array elements as Integer and communicates to the
processor the storage requirements and dimensionality
of the array.

Example:

LOGICAL L1,TEMP

NOTE:

All variables, arrays or FUNCTIONs required to be

typed Logical or double-precision must appear in a
type statement, since no starting letter indicates
these types by the default convention.

CHAPTER 6. SPECIFICATION STATEMENTS 6-3

6.5 IMPLICIT Statements
IMPLICIT statements have this form:
IMPLICIT <t> (al[,al...) [,<t>(al,al...)]

where <t> represents one of the terms INTEGER, REAL,‘DOUBLE‘
PRECISION, or LOGICAL;

and where a 1is either a single letter or a range of single
letters in alphabetical order. A range is denoted by the
first and last letter of the range separated by a minus
sign. Writing a range of letters al - a2 has the same
effect as writing a list of the single letters a1l through
az.

An IMPLICIT statement specifies a type for all
variables, arrays, symbolic names of constants, external
functions, and statement functions that begin with any
letter that appears in the specification, either as a single
letter or included in a range of letters. IMPLICIT
statements do not change the type of any intrinsic
functions. An IMPLICIT statement only applies to the
program unit that contains it.

Type specification by an IMPLICIT statement may be
overridden or confirmed for any particular variable, array,
symbolic name of a constant, external, external function, or
statement function name by the appearance of that name in a
type-statement. An explicit type specification in a
FUNCTION statement overrides an IMPLICIT statement for the
name of that function subprogram.

Within the specification statements of a program unit,
IMPLICIT statements must precede all other specification
statements. A program unit may contain more than one
IMPLICIT statement.

The same letter hust not appear as a single letter, or
be included in a range of letters, more than once in all of
the IMPLICIT statements in a program unit.

6-4 DATAPOINT DOS FORTRAN COMPILER

6.6 External Statements
EXTERNAL statements have this form:
EXTERNAL <u1>,<u2>,...<un>

where each uj is a SUBROUTINE, BLOCK DATA, or FUNCTION name.
When the name of a subprogram is used as an argument in a
subprogram reference, it must have appeared in a preceding
EXTERNAL statement.

When a BLOCK DATA subprogram is to be included in a
program load, its name must have appeared in an EXTERNAL
statement within the main program unit.

For example, if SUM and AFUNC are subprogram names to

be used as arguments in the subroutine SUBR, the following
statements would appear in the calling program unit:

EXTERNAL SUM, AFUNC

CALL SUBR(SUM,AFUNC,X,Y)

6.7 Dimension Statements
A DIMENSION statement has the following form:
DIMENSION <u1>,<u2>,<u3>,...<un>
where each uj is an array declarator.
Example:
DIMENSION RAT(5,5),BAR(20)

This statement declares two arrays--the 25-element
array RAT and the 20-element array BAR.

6.8 Common Statements

COMMON statements are non-executable,
storage-allocating statements which assign variables and
arrays to a storage area called COMMON storage and provide
the facility for various program units to share the use of
the same storage area.

CHAPTER 6. SPECIFICATION STATEMENTS 6-5

COMMON statements are expressed in this form:

COMMON /<y1>/<a1>/<y2>/<a2>.../<{yn>/<an>

Each yj is a COMMON block storage name and each aj is a
sequence of variable names, array names or constant array
declarators, separated by commas. The elements in aj make
up the COMMON block storage area specified by the name yi.
If any yj 1Is omitted, leaving two consecutive slash
characters (//), the block of storage so indicated is called
blank COMMON. If the first block name (yi) is omitted, the
two slashes may be omitted.

Example:

COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FL,ZAP(30)

In this example, two blocks of COMMON storage are
allocated--AREA with space for three variables, and BDATA,
with space for four variables and the 30 element array, ZAP.

Example:

COMMON //A1,B1/CDATA/Z0T(3,3)
X //T2,23

In this example, A1, B1, T2 and Z3 are assigned to
blank COMMON in that order. The pair of slashes preceding
A1 could have been omitted.

CDATA names COMMON block storage for the nine-element
array, ZOT. Thus Z0T(3,3) is an array declarator. ZOT must
not have been previously declared. See Array Declarators,
Section 6.3.

Additional considerations:

1. The name of a COMMON block may appear more than
once in the same COMMON statement, or in more
than one COMMON statement.

2. A COMMON block name is made up of from 1 to 6
alphanumeric characters, the first of which must
be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

6-6 DATAPOINT DOS FORTRAN COMPILER

4. The size of a COMMON area may be increased by use
of EQUIVALENCE statements. See EQUIVALENCE
Statements, Section 6.9.

5. The lengths of COMMON blocks of the same name
need not be identical in all program units where
the name appears. However, if the lengths
differ, the program unit specifying the greatest
length must be loaded first--see the discussion
of LINK in the User's Guide. The length of a
COMMON area is the number of storage units
required to contain the variables and arrays
declared in the COMMON statement or statements,
unless expanded by EQUIVALENCE statements.

6.9 EQUIVALENCE Statements

EQUIVALENCE statements permit sharing the same storage
unit by two or more entities. The general form of the
statement is this:

EQUIVALENCE (<u1>),(<u2>)....,(<und>)

where each uj represents a sequence of two or more variable
or array elements, separated by commas. Each element in the
sequence is assigned the same storage unit--or portion of
one--by the compiler. The order in which elements appear is
not significant.

Example:

EQUIVALENCE (A,B,C)

The variables A, B, and C will share the same storage
unit during object program execution.

If an array element is used in an EQUIVALENCE
statement, the number of subscripts must be the same as the
number of dimensions established by the array declarator, or
the number must be one, where the one subscript specifies
the array element's number relative to the first element of
the array.

As an example, if the dimensionality of an array, Z,

has been declared as Z(3,3) then in an EQUIVALENCE statement
Z(6) and Z(3,2) have the same meaning.

CHAPTER 6. SPECIFICATION STATEMENTS 6-7

6-8

Additional considerations:

The subscripts of array elements must be integer
constants. :

An element of a multi-dimensional array may be
referred to by a single subscript, if desired.

Variables may be assigned to a COMMON block
through EQUIVALENCE statements.

Example:

COMMON /X/A,B,C
EQUIVALENCE (A,D)

In this case, the variables A and D share the
first storage unit in COMMON block X.

EQUIVALENCE statements can increase the size of a
block indicated by a COMMON statement by adding
more elements to the end of the block.

COMMON block size may be increased only from the
last element established by the COMMON statement
forward, not from its first element backward.

The COMMON block established by the following
example establishes 3 storage units via the
COMMON statement. It is expanded to 4 storage
units by the EQUIVALENCE statement.

Example:
DIMENSION R(2,2)

COMMON /Z/W,X,Y
EQUIVALENCE (Y,R(3))

The resulting COMMON block will have the
following configuration:

Variable Storage Unit
W = R(1,1) 0
X = R(2,1) 1
Y = R(1,2) 2

DATAPOINT DOS FORTRAN COMPILER

Note that EQUIVALENCE (X,R(3)) would be invalid
in this example. The COMMON statement
established W as the first element in the COMMON
bloek and an attempt to make X and R(3)
equivalent would be an attempt to make R(1) the
first element. ‘

5. ‘It is invalid to EQUIVALENCE two elements of the
same array or two elements belonging to the same
or different COMMON blocks.

Example:

DIMENSION XTABLE(20), D(5)
COMMON A,B(4)/ZAP/C,X

EQUIVALENCE (XTABLE(6), A(7)
X B(3), XTABLE(5)),
Y (B(3),D(5))

This EQUIVALENCE statement has the following errors:

1. It attempts to EQUIVALENCE two elements of the
same array--XTABLE(6) and XTABLE(5).

2. It attempts to EQUIVALENCE two elements of the
same COMMON block, A(7) and B(3).

3. Since A is not an array, A(7) is an illegal
reference.

4. Making B(3) equivalent to D(5) extends COMMON
backwards from its defined starting point.

6.10 Data Initialization Statement
The DATA initialization statement is a non-executable
statement which provides a means of compiling data values

into the object program and assigning these data to
variables and array elements referenced by other statements.

CHAPTER 6. SPECIFICATION STATEMENTS 6-9

The statement has this form:

DATA list/u1,u2,...,un/,list/uk,uk+1,...uk+n/

where "list" represents a list of variable, array, or array
element names, and the uj are constants corresponding in
number to the elements in the list. An exception to the
one-for-one correspondence of list items to constants is
that an array name (unsubscripted) may appear in the list,
and as many constants as necessary to fill the array may
appear in the corresponding position between slashes.
Instead of wuj, it is permissible to write k*ui in order
to declare the same constant, uj, k times in succession. k

must be a positive integer. Dummy arguments may not appear
in the 1list.

Example:

DIMENSION C(7)
DATA A, B, C(1), C(3)/14.73,
X -8.1,2%7.5/

This implies that:
A=14.73, B=-8.1, C(1)=7.5, C(3) = 7.5

The type of each constant uj must match the type of
the corresponding item in the 1list, except that a Hollerith
or Literal constant may be paired with an item of any type.

When a Hollerith or Literal constant is used, the
number of characters in its string should be no greater than
four times the number of storage units required by the
corresponding item, i.e., 1 character for a Logical
variable, up to 2 characters for an Integer variable, and 4
or fewer characters for a Real variable.

If fewer Hollerith or Literal characters are specified,
trailing blanks are added to fill the remainder of storage.

6-10 DATAPOINT DOS FORTRAN COMPILER

The example below illustrates many of the features of
the DATA statement:

REAL LIT(2)

LOGICAL LT,LF

DIMENSION Hu4(2,2),PI3(3)

DATA A1,B1,K1,LT,LF,H4(1,1),H4(2,1)
1 Hu(1,2),Hu(2,2),PI3/509’2.5E-u,
2 6”,.FALSE.,'TRUE"1075E-3,

3 0.85E-1,2%75.0,1.,2.,3.14159/
y LIT(1)/'NOGO'/

This implies that:

A1 = 5.9 H4(1,2) = 75.0
B1 = 205E-u Hu(2,2) = 7500
LT = .FALSE. PI3(2) = 2.

LF = .TRUE. PI3(3) = 3.14159
H4(1,1) = 1.75E=3 LIT(1) = NOGO
H4(2,1) = 0.85E-1

CHAPTER 6. SPECIFICATION STATEMENTS 6-11

CHAPTER 7. FORTRAN CONTROL STATEMENTS

7.1 Introduction
FORTRAN control statements are executable statements
which affect and guide the logical flow of a FORTRAN
program. The statements in this category are as follows:
1. GO TO statements:
a. Unconditional GO TO
b. Computed GO TO
c. Assigned GO TO
2. ASSIGN
3. IF statements:
a. Arithmetic IF
b. Logical IF
y, DO
5 CONTINUE
6. STOP
7 PAUSE
8. CALL
9. RETURN
When statement labels of other statements are a part of
a control statement, such statement labels must be
associated with executable statements within the same
program unit in which the control statement appears.
7.2 GO TO Statements
7.2.1 Unconditional GO TO
Unconditional GO TO statements are used whenever

control is to be transferred unconditionally to some other
statement within the program unit.

CHAPTER 7. FORTRAN CONTROL STATEMENTS T=-1

Unconditional GO TO statements have this form:
GO TO <k>

In this statement, k is the statement label 6f an
executable statement in the same program unit.

Example:

GO TO 376
310 A(T) = V1 - A(3)

376 A(2) = VECT
GO TO 310

In these statements, statement 376 is executed prior to
statement 310 in the logical flow of the program of which
they are a part.

7.2.2 Computed GO TO
Computed GO TO statements have this form:
GO TO (<k1>,<k2>,...,<kn>),<35>

where kj are statement labels, and J 1is an integer

variable greater than or equal to 1 and less than or equal
to n.

This statement causes transfer of control to the
statement labeled kj. If j 4is less than or equal to 0 or
if j 1is greater than n, control will be passed to the next
statement following the Computed GOTO.

Example:

J = 3

GO TO (7, 709, 700, 7000, 70000), J
310 J =5
GO TO 325

When J = 3, the computed GO TO transfers control to
statement 700. Changing J to 5 changes the transfer to
statement 70000. Making J = 0 or J = 6 would cause control
to be transferred to statement 310.

7=-2 DATAPOINT DOS FORTRAN COMPILER

7.2.3 Assigned GO TO ,
Assigned GO TO statements have this form:
GO TO <j>[(<k1>,<k2>,...,<kn>)]

In these examples, Jj 1is an integer variable name, and the
kj are statement labels of executable statements. This
statement causes transfer of control to the statement whose
label is equal to the current value of j.

Qualifications:

1. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J
which is a statement label included in the list
of k's, if the list is specified.

Example:

GO TO LABEL(80, 90, 100)

Only the statement labels, 80, 90, or 100 may be
assigned to LABEL.

7.3 ASSIGN Statement

The ASSIGN statement has the following form:
ASSIGN <j> TO <i>
In this ASSIGN statement, j is a statement label of an
executable statement and i is an integer variable.
The statement is used in conjunction with each assigned
GO TO statement that contains the integer variable 1i. When

the assigned GO TO is executed, control will be transferred
to the statement labeled j.

CHAPTER 7. FORTRAN CONTROL STATEMENTS - 7-3

Example:

ASSIGN 100 TO LABEL

.

ASSIGN 90 TO LABEL
GO TO LABEL (80, 90, 100)
7.4 IF Statement
IF statements transfer control to one of a series of
statements depending upon a condition. Two types of IF
statements may be made:
Arithmetic IF
Logical IF
7.4.1 Arithmetic IF

Arithmetic IF statements have the form:
IF (<e>)<m1>,<m2>,<m3>
In this statement, e 1is an arithmetic expression and
ml, m2, and m3 are statement labels.

Evaluation of expression e determines one of three
transfer possibilities:

If e is: Transfer to:

<0 m1

=0 m2

>0 m3
Examples:

Expression Transfer

Statement: Value: to:
IF (A)3,4,5 15 5
IF (N-1)50,73,9 0 73

T-4 DATAPOINT DOS FORTRAN COMPILER

7.4.2 Logical IF
The Logical IF statement has this form:
IF (<u>)<s>

In this Logical IF, u is a Logical expression and s |is
any executable statement except a DO statement (see Section
7.5, item 4) or another Logical IF statement. The Logical
expression u is evaluated as .TRUE. or .FALSE. See Chapter
4 for a discussion of Logical expressions. '

7.4.2.1 Control Conditions:

If u is .FALSE., the statement s 1is ignored and
control goes to the next statement following the Logical IF
statement. If, however, the expression is .TRUE., then
control goes to the statement s, and subsequent program
control follows normal conditions.

If s 1is a replacement statement (v = e, see Chapter
5), the variable and equality sign (=) must be on the same
line, either immediately following IF(u) or on a separate
continuation line with the line spaces following IF(u) left
blank. See example 4 below.

Examples:
1. IF(I.GT.20) GO TO 115
If the evaluation of I is greater than 20,
program control will be transferred to label 115.
2. IF(Q.AND.R) ASSIGN 10 TO J
If the evaluation of (Q.AND.R) is "™true", the
variable J will be assigned the number 10.
3. IF(Z) CALL DECL(A,B,C)

If the evaluation of Z is "true", program
control will be passed to the subroutine DECL.

4., IF(A.OR.B.LE.PI/2)I=J
or

IF (A.OR.B.LE.PI/2)
X I=J

CHAPTER 7. FORTRAN CONTROL STATEMENTS 7-5

7.5 DO Statement

The DO statement, as implemented in FORTRAN, provides a
method for repetitively executing a series of statements.
The DO statement takes the following form:

DO <k>,<i> = <m1>,<m2>[,<m3>]

where k 1is a statement label, i is an integer or logical
variable, and m1, m2, and m3 are integer constants or
integer or logical variables. If m3 is not specified, it is
assumed to be a constant 1.

The elements of the above DO statement are defined as
follows:

k is the terminal statement.

i is the index or controlling variable.
m1 1is the initial index value.

m2 1is the terminal index value.

m3 is the index increment value.

The following conditions and restrictions govern use of
DO statements:

1. The DO and the first comma must appear on the
initial line.

2. The statement labeled k, called the terminal
statement, must be an executable statement.

3. The terminal statement must physically follow its
associated DO, and the executable statements
following the DO, up to and including the
terminal statement, constitute the range of the
DO statement.

y, The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP, PAUSE, or another DO.

5. If the terminal statement is a Logical IF and its
expression is .FALSE., then the statements in the
DO range are reiterated.

If the expression is .TRUE., the statement of the
Logical IF is executed and then the statements in
the DO range are reiterated. The statement of
the Logical IF may not be a GO TO, Arithmetic IF,
RETURN, STOP, PAUSE, or DO statement.

7-6 DATAPOINT DOS FORTRAN COMPILER

The controlling integer variable, i, is called
the index of the DO range. The index must be
positive and may not be modified by any statement
in the range.

If m1, m2, and m3 are Integer®1 variables or
constants, the DO loop will execute faster and be
shorter, but the range is limited to 127
iterations.

During the first execution of the statements in
the DO range, i 1is equal to m1; the second
execution, i = m1+m3; the third, i=m1+2%m3,
etc., until i is equal to the highest value in
this sequence which is less than or equal to m2,
at which time the DO is said to be satisfied.
The statements in the DO range will always be
executed at least once, even if m1 is greater
than or equal to m2.

When the DO has been satisfied, control passes to
the statement following the terminal statement.
If the DO is not yet satisfied, control transfers
back to the first executable statement following
the DO statement.

Example:

100 DIMENSION A(100)

SUM = A(1)
DO 31 I = 2,100
31 SUM = SUM + A(I)

END

The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement, but are executed logically in the DO
range. This is called the extended range.

CHAPTER 7. FORTRAN CONTROL STATEMENTS T-1

10.

11.

Example:

DIMENSION A(500), B(500)

DO 50 I = 10, 327, 3

IF (V7 - C*C) 20, 15, 31

30
50 ACI) = B(I) + C
20 C =C - .05
GO TO 50
31 C =C+ .0125
GO TO 30

It is invalid to transfer control into the range
of a DO statement from a statement not itself in
the range or extended range of the same DO
statement.

Within the range of a DO statement, there may be
other DO statements, in which case the DO's must
be nested. That is, if the range of one DO
contains another DO, then the range of the inner
DO must be entirely included in the range of the
outer DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

For example, given a two-dimensional array A of
15 rows and 15 columns, and a 15 element
one-dimensional array B, the following statements
compute the 15 elements of array C to the
formula:

Formula:

15
Ck = X PysBm. k=1,2,....15
j=1

DATAPOINT DOS FORTRAN COMPILER

Code:
DIMENSION A(15,15), B(15), C(15)

DO 80 J = 1, 15
C(J) = 0.0
DO 80 K = 1,15
80 C(J) = C(J) + A(J,K) ® BWJ)

NOTE: In the above example, the inner DO loop will

be completed before the next iteration of the outer
DO loop.

7.6 CONTINUE Statement

CONTINUE is classified as an executable statement.

However, its execution does nothing. The form of a CONTINUE
statement is:

CONTINUE

CONTINUE is frequently used as the terminal statement
in a DO statement range when the statement which would
normally be the terminal statement is one of those which are
not allowed or is only executed conditionally.

Example:

DO 5 K =1,10

*

L]

IF (c2) 5,6,6
6 CONTINUE

C2 = C2 + .005
5 CONTINUE

7.7 STOP Statement
A STOP statement has the form:
STOP [<c>]

CHAPTER 7. FORTRAN CONTROL STATEMENTS 7-9

As shown here, ¢ 1is any string of one to six
characters.

When STOP is encountered dufing execution of the object
program, the characters ¢ (if present) are displayed on
the processor screen and program execution terminates.

The STOP statement, therefore, constitutes the logical
end of the program, and must be located before the END
statement in a program.

7.8 PAUSE Statement
PAUSE statement has the following form:
PAUSE [<c>]

In the above PAUSE statement, ¢ is any string of up to
six characters.

When PAUSE is encountered during execution of the
object program, the characters c¢ (if present) are
displayed on the processor screen and program execution is
suspended.

The decision to continue execution of the program is
not under program control. If execution resumes through
operator intervention without changing the state of the
processor, the normal execution sequence following PAUSE is
continued.

During a PAUSE, the operator may resume execution of
the program by pressing the DISPLAY key.

7.9 CALL Statement

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms. The general form of CALL statements and a
detailed discussion of their structure appear in Chapter 9,
FUNCTIONS AND SUBPROGRAMS.

7-10 DATAPOINT DOS FORTRAN COMPILER

T7.10 RETURN Statement

The form, use, and interpretation of,thé'kETURN
statement is described in Chapter 9.
7.11 END Statement

The END statement must physically be the last statement
in any FORTRAN program. Its form is:

END
The END statement is an executable statement and may
have a statement label. It causes a transfer of control to

be made to the system exit routine, which returns control to
the DOS.

CHAPTER 7. FORTRAN CONTROL STATEMENTS T7-11

CHAPTER 8. 1INPUT / OUTPUT

8.1 Introduction

FORTRAN provides a series of statements which define
the control and conditions of data transfer between computer
memory and external devices.

These statements are grouped as follows:

1.

Formatted READ and WRITE statements which cause
formatted information to be transferred between
the computer and I/0 devices.

Unformatted READ and WRITE statements which
transfer unformatted binary data in a form
similar to internal storage.

Auxiliary I/0 statements for positioning and
demarcation of files.

ENCODE and DECODE statements for transferring
data between memory locations.

FORMAT statements used in conjunction with
formatted record transfer to provide data

conversion and editing information between
internal data representation and external

character string forms.

CHAPTER 8. INPUT/OUTPUT 8-1

8.2 Formatted READ/WRITE Statements

8.2.1 Formatted READ Statements

A formatted READ statement is used to transfer
information from an input device to the processor.

The form of a READ statement is as follows:

READ (<u>,<f>[,END=<11>]1[,ERR=<12>][,REC=<n> | KEY=<xx>1)[<k>]

The formatting elements are defined as follows:

u - specifies a Physical and Logical Unit Number and
may be either an unsigned integer or an integer
variable in the range 1 through 8. If an Integer
variable is used, an Integer value must be
assigned to it prior to execution of the READ
statement.

Logical Unit Number (LUN) 9 is preassigned to the
console. LUN 10 is preassigned to the Local
Printer--if one is attached to the processor and
online.

LUNs 1-8 are assumed to reference disk files. 1If
not specifically opened to a named file, default
is to a name in the form of "FORnnDAT" where the
"nn" represents the LUN. The default assignments
may be overridden by the OPEN (to a file name)
subroutine, permitting LUNs 1-8 to be reassigned
by the user.

When a formatted file is opened without
specifying the file name, the extension defaults
to /TXT. When an unformatted file is opened
without the filename specified, the assumed
default extension 1is /TMP.

f - is the statement label of the FORMAT statement
describing the type of data conversion to be used
within the input transmission, or it may be an
array name, in which case the formatting
information may be input to the program at
execution time. Section 8.9.10 has more details.

8-2 DATAPOINT DOS FORTRAN COMPILER

11 - is the FORTRAN label on the statement to which
the I/0 program routine will transfer control if
an End-of-File is encountered.

12 - is the FORTRAN label on the statement to which
the I/0 program routine will transfer control if
an I/0 error is encountered.

k - is a list of variable names, separated by commas,
specifying the input data.

n - defines the record number to be used in a READ
statement using the Random Access method.

defines the Key to be used in a READ statement
using Indexed Sequential Access method (ISAM).

XX

READ (<u>,<f>)<k> is used to input a number of items,
corresponding to the names on the list k, from the file on
logical unit u, and using the FORMAT statement f to
specify the external representation of these items (FORMAT
Statements, Sec. 8.9). The ERR = and END = clauses are
optional. If not specified, I/0 and End-of-File errors
cause fatal run-time errors.

The following notes further define the function of the
READ (<u>,<f>)<k> statement:

1. Each time execution of the READ statement begins,
f?f program reads a new record from the input
e.

2. The number of records to be input by a single
‘ READ statement is determined by the list, k, and
format specifications.

3. The 1ist k specifies the number of items to be
read from the input file and the locations into
which they are to be stored.

y, Any number of items may appear in a single list
and the items may be of different data types.

5. If there are more quantities in an input record
than there are items in the list, only the number
of quantities equal to the number of items in the
1ist are transmitted. Remaining quantities are
ignored.

CHAPTER 8. INPUT/OUTPUT 8-3

6. Exact specifications for the list k are
described in 8.8.

Examples:

1. Assume that four data entries are in a disk
record, with three blanks separating each, and
that the data have field widths of 3, 4, 2 and
5 characters respectively, starting in column
1 of the record. The statements:

READ(5,20)K,L,M,N
20 FORMAT(I3,3X,I4,3X,I12,3X,I5)

read the record (assuming the Logical Unit
Number 5 has been assigned to the file via an
OPEN) and assign the input data to the

variables K, L, M, and N. The FORMAT
statement could also be:

20 FORMAT(I3,I7,I5,18)

Section 8.9 contains a complete description of
FORMAT statements.

2. Input the quantities of an array (ARRY):
READ(6,21)ARRY

Only the name of the array needs to appear in
the list (Sec. 8.8). All elements of the
array ARRY are read and stored using the

appropriate formatting specified by the FORMAT
statement labeled 21.

READ(u,k) may be used in conjunction with a FORMAT
statement to read H-type alphanumeric data into an existing
H-type field. (Hollerith Conversions are discussed in
Section 8.9.3).

8-4 DATAPOINT DOS FORTRAN COMPILER

8.2.2 Formatted WRITE Statements

A formatted WRITE statement is used to transfer
information from the processor to an output device.

The form of the statement is:

WRITE (<u>,<f>[,ERR=<11>][,END=<12>][,REC=<n> | KEY=<xx>])[<k>]

The
follows:

u-

f -

11
12

XX

format elements of these statements are defined as

specifies a Logical Unit Number.

is the statement label of the FORMAT statement
describing the type of data conversion to be used
with the output transmission.

specifies an I/0 error branch.

specifies an EOF branch.

is a 1list of variable names separated by commas,
specifying the output data.

defines the record number to be used in a WRITE
statement using the Random Access method.

defines the Key to be used in a WRITE statement
using the Indexed Sequential Access method (ISAM).

WRITE (<ud>,<f>)<k> is used to output the data specified in
the 1ist k to a file on logical unit u using the FORMAT
statement f to specify the external representation of the
data (see FORMAT statements, Sec. 8.9). The following notes
further define the function of the WRITE statement:

1.

Several records may be output with a single WRITE
statement, with the number determined by the list
and FORMAT specifications.

Successive data are output until the data specified
in the list are exhausted.

If output is to a device which specifies fixed
length records and the data specified in the list do
not fill the record, the remainder of the record is
filled with blanks.

CHAPTER 8. INPUT/OUTPUT 8-5

required.

Example:

WRITE(2,10)A,B,C,D

= The data assigned to the variables A, B, C, and D

are output to the Logical Unit Number 2, formatted
according to the FORMAT statement labeled 10.

WRITE(u,f) may be used to write alphanumeric information
when the characters to be written are specified within the
FORMAT statement. 1In this case a variable list is not

For example, to write the characters 'H CONVERSION' on
unit 1:

WRITE(1,26)

.

26 FORMAT (12HH CONVERSION)

8.3 Unformatted READ/WRITE

8-6

Unformatted I/0--that which does not have data
conversion--is accomplished with READ and WRITE statements.

The following notes define the functions of unformatted
I/0 statements.

1.

Unformatted READ/WRITE statements perform

memory-image transmission of data with no data
conversion or editing.

The amount of data transmitted corresponds to the
number of variables in the list k.

An error will result if the total length of the 1list
of variable names in an unformatted READ is longer
than the record length. If the logical record
length and the length of the list are the same, the
entire record is read. If the length of the list is
shorter than the logical record length, the unread
items in the record are skipped.

The WRITE(u)k statement writes one logical record.

A logical record may extend across more than one
physical record.

Unformatted files may only be processed
Sequentially. :

DATAPOINT DOS FORTRAN COMPILER

8.3.1 Unformatted READ
The unformatted READ has the following form:
READ (<u>[,ERR=<11>])(<k>)

In the above example:
u - specifies a Logical Unit Number.
11 - specifies an 1/0 error branch.

k - is a list of variable names, separated by commas,
specifying the I/0 data.

8.3.2 Unformatted WRITE
The unformatted WRITE has the following form:
WRITE (<u>[,ERR=<11>])[<k>]

In this example:
u - specifies a Logical Unit Number.
11 - specifies an I/0 error branch.

k - is a list of variable names, separated by commas,
specifying the I/0 data.

8.4 File Formats

FORTRAN deals with two different types of files:
formatted and unformatted. While it is possible to write
formatted records into an unformatted file and unformatted
records into an formatted file, such unorthodox operations
would result in a non-standard file, the structure of which
would be generally unintelligible. Programs attempting to
read such a file will generate I/0 errors. Format types
should not be mixed within a single file.

CHAPTER 8. INPUT/OUTPUT 8=7

8.4.1 Formatted Files

FORTRAN formatted I/0 reads and writes DOS standard
text files (described in the DOS User's Guide, in the
chapter titled SYSTEM STRUCTURE). All access methods use
record-compressed format. Space compression can be turned
on or off by the SPCON/SPCOFF routine after a file has been
opened. Sequential and ISAM access default to space
compression on; random access defaults to space compression
off. Once space compression has been set on or off for a
file, it remains in the set-on or set-off condition until
specifically changed by the SPCON/SPCOFF routine, or until
the file is closed through ENDFILE, or until FORTRAN program
termination.

Maximum record length is determined by the logical
record length specified or assumed when the file is opened.
Sequential and ISAM files use variable length records;
random access files use fixed-length records. When writing
a random file, if the format specified writes too few
characters to satisfy the specified record length, the
record is padded with blanks. Using any access method, if
the format specified writes more characters than fit in the
specified record length, the record is truncated and
trailing characters are discarded.

The text end-of-file (EOF) is automatically written
when using sequential or ISAM access. A sequential EOF is
written when the file is closed; an ISAM EOF is maintained
throughout all file modification. FORTRAN does not write an
EOF to a random file. 1If a random file is to be accessed
Sequentially (by FORTRAN or by any other Datapoint
facility), an EOF must be written to it by some other means
to avoid a record format error. The problem may be avoided
in two ways:

1. Do not attempt to read a FORTRAN random access file
sequentially.

2. Pre-allocate the random file, and write the EOF to
it using FORTRAN sequential access or using another
language.

For example, the file could be opened for sequential access
and the desired number of fixed-length records, all blanks,
written to it; then an EOF can be written when the file is
closed. If this procedure is followed, the file cannot grow
past its original pre-allocated Size without destroying the
EOF. The file can only increase in size by repeating the
pre-allocation procedure to obtain more space.

8-8 DATAPOINT DOS FORTRAN COMPILER

Space compression may be turned on for a random file,
but doing so serves no purpose. Since all records of a
random file must be physically the same length, when space
compression is on, a string of spaces will be written in
normal compressed format, then the number. of bytes required
for the compressed spaces will be padded out with deleted
data characters (032). As an example, a random file with
space compression on the string O40 O40 040 040 would have
the string written as 011 004 032 032. Both strings will
produce the same result (four spaces) when read.

8.4.2 Unformatted Files

FORTRAN unformatted files are binary image files, not
DOS text files. Unformatted files are readable only by
FORTRAN unformatted I/0 statements and are not compatible
with other Datapoint languages or utilities. An unformatted
file uses fixed-length records. There are no logical
end-of-record or end-of-sector marks. When the physical end
of a sector is reached on an unformatted read or write, the
I1/0 operation continues with the first data byte of the next
sector. Because of the lack of compatibility and the lack
of format testing on input, unformatted files should not
normally be used for data storage and, if used, should
always be accessed sequentially.

Unformatted files typically are used only for temporary
storage of working data during a program, as implied by the
default extension /TMP. Unformatted I/0O is somewhat faster
than formatted I/0 since no data translation is performed;
and the binary representation is more compact than ASCII
representation, so fewer bytes are needed.

8.5 Disk File I/0

A READ or WRITE to a disk file (Logical Unit Numbers 1
through 8) automatically OPENs the file for I/0. The file
remains open until closed by an ENDFILE command (discussed
in Section 8.6) or until normal program termination.

NOTE
Exercise caution when doing sequential output to disk

files. If output is done to an existing file, the
existing file will be overwritten by the new file data.

CHAPTER 8. INPUT/OUTPUT 8-9

8.5.1 Random Disk I/O

For random disk aécess, the record number is specified
by using the REC=<n> option in the READ or WRITE statement.
For example:

I =10
WRITE (6,15,REC=I,ERR:50) X, Y, 2
15 FORMAT (17,14,16)

This program Segment writes a record 10 (REC=I) on
Logical Unit Number 6. If a previous record 10 exists, it
is written over. If no previous record 10 exists, the file
is extended to create one. Any attempt to read a
non-existent record results in an I/0 error.

For the specific case of reading a random file
Sequentially, the file must first be built Sequentially;
otherwise, when no EOF is found, the read terminates in a
record format error. Such a file is created by an initial

WRITE (6,10)
10 FORMAT ('50b')

This creates a Sequential file that can be written and
read randomly, as well as a random access file that can be
read sequentially,

Any disk file OPENed by a READ or WRITE Statement is
assigned a default filename in the form of: FORnnDAT/xxx.

if the default for a formatted file and /TMP is the default
for an unformatted file. The logical record length of a
default file is 128 bytes (127 characters plus end-of-record
mark for formatted files, 32 storage units for unformatted).
A file may be default-opened only once in a program; a file
may be opened more than once, but subsequent opens can only
be done by using the OPEN subroutine.

8-10 DATAPOINT DOS FORTRAN COMPILER

8.5.2 OPEN Subroutine

Alternatively, a file may be OPENed using the OPEN
subroutine. Logical Unit Numbers 1 through 8 may be
assigned to disk files with OPEN. The OPEN subroutine
allows the program to specify a filename and device to be
associated with a Logical Unit Number.

Once a Logical Unit Number is associated with a file
through the OPEN subroutine, that LUN may not be associated
with another file in the same program. This limits the
number of files allowed in one program to 8.

When attempting to create a new file with the OPEN
subroutine, the file does not exist until written to. An
OPEN of an existing file followed by sequential output
overwrites the existing file. An OPEN of an existing file
followed by an input allows access to the current contents
of the file.

The OPEN subroutine call has this form:
CALL OPEN (<lun>,<filename>,<1lrl>)

where lun = the Logical Unit Number assigned
to the file; filename is the file to be opened;
and 1lrl is the maximum length of a record in
the file.

Logical Unit Number may specify a disk or printer.
<filename> is any constant or variable that may include the
extension and drive specification for the file.

The file specification must be terminated by a
non-alphanumeric character that is neither "/" nor ":"
The default extension for the file specification is /TXT.

Example: CALL OPEN(1,'FILEINb',50)
Where: b=blank and 50=1rl

1rl = logical record length. The first time a LUN is
opened, lrl must be the maximum that will be used with that
LUN. If a file is closed, then opened again, 1rl must be
less than or equal to the value of the first OPEN. The
logical record length must always be specified when the OPEN
subroutine is called.

When a file is opened with the OPEN subroutine, 1rl
of formatted files must be logical record length plus one
byte more for the end-of-record mark; for unformatted files,
1rl must be logical record length only. '

CHAPTER 8. INPUT/OUTPUT 8-11

If LUN 1, 2, or 3 is OPENed with a filename of "b"

(blank), the filename will be taken from the COMMAND line
default.

8.5.3 Updating in Place with REWRITE
It is frequently necessary to update a logical record

in place on the disk. The REWRITE statement provides this
capability.

8.5.3.1 Form of the REWRITE Statement

The REWRITE statement has the same syntax as a WRITE
statement. For example:

REWRITE (<u>,<f>[,END=<11>]1[,ERR=<12>][,REC=<n> | KEY=<xx>])[<k>]

In this example:
u - specifies a Logical Unit Number.

f - 1s the statement label of the FORMAT statement
describing the type of data conversion to be used
with the output transmission.

11 - specifies an I/0 error branch.
12 - specifies an EOF branch.

k - is a list of variable names, separated by commas,
specifying the I1/0 data.

n - defines the record number to be used in a REWRITE
statement using the Random Access method.

xXx - defines the Key to be used in a REWRITE statement
using Indexed Sequential Access method (ISAM).

Example of Random REWRITE:

I=10
READ (6,100,REC=I,ERR=50) X, Y, Z
REWRITE (6,100,REC=I,ERR=50) X, Y, 2Z

This program segment reads record 10 on YLogical Unit
Number 6. It then rewrites record 10 on Logifal Unit Number

6. The previous record 10 must exist and it is overwritten.
)

8-12 DATAPOINT DOS FORTRAN COMPILER

If no previous record 10 exists, an I/0 error occurs and
control will be transferred to label 50.

The effect of this is to replace the data read from the
file in the last READ statement with the data from the
REWRITE statement. i

NOTE: The READ must have been a random READ.

An ISAM REWRITE is identical to the random REWRITE shown
above, except that KEY= option replaces REC= option to read
the file.

8.5.3.2 Considerations of Updating In Place

The size of the record or records named in the READ
statement and the subsequent REWRITE statement must be
identical.

8.5.4 1Indexed Sequential Files

A file with an extension of /ISI is assumed to be an
index file. It must first be created by the DOS INDEX
utility before ISAM READs or WRITEs are performed and may
be either a null file or a file created sequentially. The
index file contains the name of the indexed data file.
When a file is opened with the extension /ISI, both the
index file and data file are associated with the LUN.

READ and WRITE operations are normally performed on the
data file in physical order by logical records. If a "KEY="
option is specified in a READ statement, the data file is
positioned to the logical record associated with the
specified key, and then the READ operation is performed. The
key value must be terminated by an octal character less than
040.

NOTE: Set the key array to zero initially.

A null key value is used to specify that the data file
is to be read in key sequence. If the specified key is not
in the index file, the data file is positioned to the end of
the file in preparation for adding a new key and the
associated data. The "END=" option is used to specify a "key
not found" exit.

A WRITE statement with the "KEY=" option specified is
used to insert a new key into the index 'and to begin writing
the data associated with the key. A null key is not allowed
in this case.

CHAPTER 8. INPUT/OUTPUT : 8-13

8.5.5 Deleting or Inserting Multiple ISAM Keys

In Datapoint's file structure, ISAM files may have more
than one index (/ISI) file associated with them. For
deleting keys and inserting keys in an index file when an
indexed file has more than one index, the following routines
are provided:

CALL DELKEY (<lun>,<key>)
CALL INSKEY (<1lun)>,<key>)

DELKEY deletes the specified key from the index. It
also marks the corresponding data record as deleted by
overstoring it with 032 (octal) codes.

INSKEY inserts the specified key in the index. The key
points to the end of the file where the new data will be
written.

When multiple indices are used, each index file must be
opened as a separate LUN. All but one of the keys must be
inserted in the corresponding index file with INSKEY. The
first key must be inserted in its index file with the "KEY="
option of the WRITE statement.

8.6 Auxiliary I/0 Statements

Four auxiliary I/0 statements are provided:

REWIND <u>
ENDFILE <u>
CALL SPCON <u>
CALL SPCOFF <uw>

The actions of these statements depend on the Logical
Unit Number with which they are used. When the LUN is for a
local or Servo printer, the REWIND and ENDFILE statements
cause no action.

When the LUN specifies a disk file, the ENDFILE and
REWIND commands allow further program control of disk files.
ENDFILE <u> closes the file associated with Logical Unit
Number u and writes an EOF. REWIND <u> closes the file
associated with LUN u, then opens it again. It does not
write an EOF.

8-14 DATAPOINT DOS FORTRAN COMPILER

Space compression default for random files is OFF and
must be specified ON with SPCON <u> if desired.
For sequential files, space compression default is ON, and
must be specified OFF by CALL SPCOFF <u>. Files should not
be mixed OFF and ON.

8.7 ENCODE/DECODE

ENCODE and DECODE statements transfer data, according to
format specifications, from one section of memory to another.
DECODE changes data from ASCII format to the specified
format. ENCODE changes data of the specified format into
ASCII format. The two statements are of the form:

ENCODE (<a>,<f>)<k>
DECODE(<a>,<f>)<k>

a, f, and k are defined as follows:

a is an array name
f is FORMAT statement number
k is an I/0 list

DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format. ENCODE is
analogous to a WRITE statement, causing conversion from
internal formats to ASCII.

NOTE:

Care should be taken that the array a 1is always large
enough to contain all of the data being processed.
There is no check for overflow. An ENCODE operation
which overflows the array will probably wipe out
important data following the array. A DECODE operation
which overflows will attempt to process the data
following the array.

8.8 INPUT/OUTPUT List Specifications

Most forms of READ/WRITE statements may contain an
ordered list of data names which identify the data to be
transmitted. The order in which the list items appear must
be the same as that in which the corresponding data exists
(INPUT), or will exist (OUTPUT), in the external I/0 medium.

Lists have the following form:

CHAPTER 8. INPUT/OUTPUT 8-15

<m1>,<m2>,...,<mn>
where the my are list items Separated by commas, as shown.
8.8.1 List Item Types
A list item may be a single datum identifier or a
multiple data identifier.
8.8.1.1. Single Datum Identifier
A single datum identifier item is the name of a variable
or array element. One or more of these items may be enclosed
in parentheses without changing their intended meaning.
Examples:
A
€(26,1),R,K,D,I,J
B,1(10,10),S,(R,K),F(1,25)
8.8.1.2. Multiple Data Identifiers
Multiple data identifier items are in two forms:
a. An array name appearing in a list without
Subscript(s) is considered equivalent to the
listing of each Successive element of the array.

Example:

If B is a two-dimensional array, the list item
B is equivalent to:

B(1,1),B(2,1),B(3,1)...,B(1,2),8(2,2)...,B(j,k)

where j and k are the Subscript limits of B.

b. DO-implied items are lists of one or more single
datum identifiers or other DO-implied items
followed by a comma character and an expression of
the form:

<1> = <m1>,<m2>[,<m3>)

DO-implied items are enclosed in parentheses as shown
below.

The elements i, m1,m2,m3 have the same meaning as

8-16 DATAPOINT DOS FORTRAN COMPILER

defined for the DO statement. The DO implication applies to
all 1ist items enclosed in parentheses with the implication.

Examples:
DO-Implied Lists Equivalent Lists
(X(I),I=1,4) X(1),X(2),X(3),X(4)
(Q(J),RWJ),d=1,2) Q(1),RrR(1),Q(2),R(2)
((A(I,J),I=3,5),J=1,9,4) A(3,1)’A(u, 1),A(5, 1)
A(3,5),A(4,5),A(5,5)
A(3,9),A(4,9),A(5,9)
(R(M),M=1,2),I,ZAP(3) R(1),R(2),I,ZAP(3)
(R(3),T(I),I=1,3) R(3),T(1),R(3),T(2),
R(3),T(3)

In this way the elements of a matrix, for example, may
be transmitted in an order different from the order in which
they appear in storage. The array A(3,3) occupies storage in
the order:

A(C1,1),A(2,1),A(3,1)
(2 .

,A(1,2),A(2,2),
A(3,2),A(1,3),A(2,3),A(3,3)

"By specifying the transmission of the array with the
DO-implied list item ((A(I,J),Jd=1,3),I=1,3), the order of
transmission becomes:

A(1,1),A(1,2),A(1,3),A(2,1),
A(2,2),A(2,3),A(3,1),A(3,2),A(3,3)

8.8.2 Special Notes On List Specifications

1. The ordering of a list is from left to right with
repetition of items, other than those as
subscripts, enclosed in parentheses when
accompanied by controlling DO-implied index
parameters.

2. Arrays are transmitted by the appearance of the
unsubscripted array name in an input/output list.

3. Constants may appear in an input/output list only
as subscripts or as indexing parameters.

y, For input lists, the DO-implying elements i, mi,

CHAPTER 8. INPUT/OUTPUT 8-17

m2 and m3, may not appear within the parentheses
as list items.

Examples:
READ (1,20)(I,J,A(I),I=1,J,2) is not allowed.

READ (1,20)I,J,(A(I),I=1,J,2) is allowed, but the
read value of I will be lost.

WRITE(1,20)(I,J,A(I),I=1,J,2) is allowed.

Consider the following examples:

DIMENSION A(25)

A(C1) = 2.1
A(3) = 2.2
A(5) = 2.3
J =5

WRITE (1,20) J,(I,A(I),I=1,d,2)

.

The output of this WRITE statement is:
5,1,2.1,3,2.2,5,2.3

5. Any number of items may appear in a single list.

6. In a formatted READ or WRITE, each item of the

list must have the correct type as specified by a
FORMAT statement.

8.9 FORMAT Statements

FORMAT statements are non-executable, generative
statements used in conjunction with formatted READ and WRITE
statements. They specify conversion methods and data editing
information as the data is transmitted between computer
storage and external media representation.

FORMAT statements require statement labels for reference
(f) in the READ(u,f)k or WRITE(u,f)k statements.

8-18 : DATAPOINT DOS FORTRAN COMPILER

The general form of a FORMAT statement is this:
<n> FORMAT (<81>,<82>,...,$8n>/<81>,<82>,...,<8n>/"'<xxx>"')

In this statement, n is the statement label, each sj
is a field descriptor, and xxx is a literal string. The word
FORMAT and the parentheses must be present as shown. The
slash (/) and the comma (,) characters are field separators
and are described in Section 8.9.7.1. The field is defined
as that part of an external record occupied by one
transmitted item.

8.9.1 Field Descriptors

Field descriptors describe the sizeé of data fields and
specify the type of conversion to be exercised upon each
transmitted datum. The FORMAT field descriptors may have any
of the following forms:

Descriptor: Classification:

<ro>F<w>.<d> Numeric Conversion
r>GAwd> . Kd> Numerie Conversion
<r>E<w>.<d> Numeric Conversion
<r>bD<w> . <d> Numeric Conversion
<r>I<w> Numeric Conversion
<r>L<w> Logical Conversion
<r>A<w> Hollerith Conversion

nHh{hs...hp Hollerith Conversion
'1415...1p" Hollerith Conversion

nX Spacing Specification
mP Scaling Factor

Elements of the Field Descriptors are defined:

1. w and n are positive integer constants defining
the field width--including digits, decimal points,
and algebraic signs--in the external data
representation.

2. d is an integer specifying the number of
fractional digits appearing in the external data
representation.

3. The characters F, G, E, D, H I, A, and L indicate
the type of conversion to be applied to the items
in an input/output list. They are discussed in
the following sections.

CHAPTER 8. INPUT/OUTPUT 8-19

4, r is an optional, nonzero integer indicating that
the descriptor will be repeated r times.

5. The hj and 1§ are characters from the FORTRAN
character set.

6. m is an integer constant, either positive,
negative, or zero, indicating scaling.

8.9.2 Numeric Conversions

Input operations with any of the numeric conversions
will allow the data to be represented in a "free format";
i.e., commas, spaces, or any nonnumeric characters, may be
used to separate the fields in the external representation.

8.9.2.1 F-type conversion
Form: Fw.d

Real or Double Precision type data are processed using
this conversion. w characters are processed, of which d
are considered fractional.

8.9.2.2 F-output

Values are converted and output as minus sign (if
negative), followed by the integer portion of the number, a
decimal point, and d digits of the fractional portion of
the number. If a value does not fill the field, it is right
Justified in the field and enough preceding blanks to fill
the field are inserted. If a value requires more field
positions than allowed by w , the first w-1 digits of the
value are output, preceded by an asterisk.

F-Output Examples:

FORMAT - Internal Output
Descriptor Value (b=blank)
F10. 4 368.42 bb368.4200
FT.1 -4786.361 -4786.4
F6.4 §739.76 * .7600
FT7.3 -5.6 b=5.600

% Note the loss of leading digits in the 4th line above.

8.9.2.3 F-Input

8-20 DATAPOINT DOS FORTRAN COMPILER

See the description under E-Input, Section 8.9.2.6.

8.9.2.4 E-type Conversion
Form: Ew.d
Real or Double Precision type data are processed using

this conversion. w characters are processed, of which d
are considered fractional.

Values are converted, rounded to d digits, and output
in the following order as:

1. a minus sign (if negative)
. a zero and a decimal point
. d decimal digits

2

3

4, the letter E

5. the sign of the exponent (minus or blank)
6

. two exponent digits

The values as described are right-justified in the field w
with preceding blanks to fill the field if necessary. The
field width w should satisfy the relationship:

w>da+ 7

Otherwise, significant characters may be lost. Some
E-Output examples follow:

FORMAT Internal Output
Descriptor Value (b=blank)
E12.5 76.573 bb.76573Eb02
E14.7 -32672.354 -b.3267235Eb05
E13.4 -0.0012321 bb-b. 1232E-02
E8.2 76321.73 b.7T6EbO5

CHAPTER 8. INPUT/OUTPUT 8-21

8.9.2.6 E-Input

Data values which are to be processed under E, F, or G

conversion can be a relatively loose format in the external
input medium. The format is identical for each conversion
and is as follows:

data.

8-22

Leading spaces (ignored)

A plus or a minus sign (an unsigned input is assumed
to be positive) :

A string of digits

A decimal point

A second string of digits
The character E

A plus or a minus sign

A decimal exponent

Each item in the list above is optional, but the
following conditions must be observed:

If FORMAT items 3 and 5 (above) are present, then 4
is required.

If FORMAT items 3 and 5 (above) are present, then 6
or 7 or both are required.

All non-leading spaces are considered zeros.

Input data can be any number of digits in length and
correct magnitudes will be developed, but precision will be
maintained only to the extent specified in Chapter 3 for Real

E- and F- and G-Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value
E10.3 +0.23756E+4 +2375.600
E10.3 bbbbb17631 +17.631

DATAPOINT DOS FORTRAN COMPILER

G8.3 b1628911 +1628.911
F12.4 bbbb-632113 -632.1130

Note in the above examples that if no decimal point is
given among the input characters, the fractional length
specification in the FORMAT specification establishes the
decimal point in conjunction with an exponent, if given. If
a decimal point is included in the input characters, the
fractionl length specification is ignored.

The letters E, F, and G are interchangeable in the input
format specifications. The end result is the same.
8.9.2.7 D-Type Conversions

D-Input and D-Output are identical to E-Input and
E-Output except the exponent may be specified with a "D"
instead of an "E".
8.9.2.8 G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed using
this conversion. w characters are processed, of which d
are considered significant. Note that G-type conversions

differ from E-type and F-type in that d refers to
significant digits, not to fractional digits.

8.9.2.9 G-Input:

See the description under E-Input

8.9.2.10 G-Output:

The method of output conversion is a function of the
magnitude of the number being output. Let n be the
magnitude of the number. The following table shows how the
number will be output:

Magnitude: Equivalent Conversion:
.1 <= n< 1 F(w-4).d,4X

1 <= n< 10 F(w=4).d=-1),U4X

109-2 <= n < 10d-1 F(w=4).1,4X

CHAPTER 8. INPUT/OUTPUT 8=-23

10d-1 <= n <10d F(w=4).0,4X
Otherwise Ew.d

8.9.2.11 I-Type Conversions

Form: Iw

Only Integer data may be converted by this form of
conversion. w specifies field width.

8.9.2.12 I-Output:

Values are converted to Integer constants. Negative
values are preceded by a minus sign. If the value does not
fill the field, it is right-justified in the field and enough
preceding blanks to fill the field are inserted. If the
value exceeds the field width, only the least significant w-1
characters are output preceded by an asterisk.

Examples:

FORMAT Internal Output
Descriptor Value (b=blank)
16 +281 bbb281
I6 -23261 -23261
I3 126 126
Iy -226 -226

8.9.2.13 I-Input:

A field of w characters is input and converted to
internal integer format. A minus sign may precede the
integer digits. If a sign is not present, the value is
considered positive.

Integer values in the range -32768 to 32767 are
accepted. Non-leading spaces are treated as zeros.

Examples:

FORMAT Input + Internal
Descriptor (b=blank) Value

I4 b124 124

I4 -124 =124

I7 bb6732b 67320

8-24 DATAPOINT DOS FORTRAN COMPILER

Iy 1b2b 1020

8.9.3 Hollerith Conversions

8.9.3.1 A-Type Conversion
The form of the A conversion is as follows:

Aw

This descriptor causes unmodified Hollerith characters
to be read into or written from a specified list item.

The maximum number of actual characters which may be
transmitted between internal and external representations
using Aw is four times the number of storage units in the
corresponding list item--i.e., 1 character for Logical items,
2 characters for Integer items, 4 characters for Real items
and 8 characters for Double Precision items.

8.9.3.2 A-Output:

If w is greater than Un, where n is the number of
storage units required by the list item, the external output
field will consist of w=4n blanks followed by the 4n
characters from the internal representation. If w 1is less
than Un, the external output field will consist of the
leftmost w characters from the internal representation.

Examples:

FORMAT Internal Type Output
Descriptor Value (b=blanks)
A1l A1 Integer A

A2 AB Integer AB

A3 ABCD Real ABC

AlY ABCD Real ABCD

A7 ABCD Real bbbABCD

8.9.3.3 A-Input:

If w is greater than U4n, where n is the number of
storage units required by the corresponding list item, the
rightmost 4n characters are taken from the external input
field. If w is less than U4n, the w characters appear
left justified with w-4n trailing blanks in the internal

CHAPTER 8. INPUT/OUTPUT 8-25

rephesentation.

Examples:

FORMAT Input Type Internal
Descriptor Characters (b=blanks)
A1 A Integer Ab

A3 ABC Integer BC

Ay ABCD Integer CcD

A1 A Real Abbb
A7 ABCDEFG Real DEFG

8.9.3.4 H-Type Conversion
The forms of H conversion are as follows:

nHhqhy. . .h,

'hihp...hp'

These descriptors process Hollerith character strings
between the descriptor and the external fields, where each h
represents any character from the ASCII character set.

NOTE:

Special consideration is required if an apostrophe (')
is to be used within the literal string in the second
form. An apostrophe character within the string is

represented by two successive apostrophes. See the
examples below.

8.9.3.5 H-Output

The n characters hj are placed in the external
field. 1In the nHhiho...hy form the number of characters in
the string must be exactly as specified by n. Otherwise,
characters from other descriptors will be taken as part of
the string. 1In both forms, blanks are counted as characters.

Examples:
FORMAT Output
Descriptor (b=blanks)
1HA or 'A! A
8HbLSTRING or 'bSTRINGbD' bSTRINGD

8-26 DATAPOINT DOS FORTRAN COMPILER

11HX(2,3)=12.0 or 'X(2,3)=12.0' X(2,3)=12.0
11HIbSHOULDN'T or 'IbSHOULDN''T! IbSHOULDN'T

The n characters of the string hjy are replaced by
the next n characters from the input record. This results
in a new string of characters in the field descriptor.

Examples:
FORMAT Input Resultant
Descriptor (b=blank) . Descriptor
4H1234 or '1234" ABCD YHABCD or 'ABCD'
THbbFALSE or 'bbFALSE' bFALSED THLFALSEb or 'bFALSED'
6Hbbbbbb or 'bbbbbb’ MATRIX 6HMATRIX or MATRIX

8.9.4 Logical Conversions
The form of the logical conversion is as follows:

Lw

8.9.4.1 L-Output

If the value of an item in an output list corresponding
to this descriptor is 0, an F will be output; otherwise, a T
will be output. If w 1is greater than 1, w-1 leading
blanks precede the letters.

Examples:
FORMAT Internal Output
Descriptor Value (b=blank)
L1 =0 F
L1 <>0 T
L5 <>0 bbbbT
L7 =0 bbbbbbF

The external representation occupies w positions. It

consists of optional blanks followed by a "T" or wFn . followed
by optional characters.

CHAPTER 8. INPUT/OUTPUT 8-27

8.9.5 X Descriptor
The form of X conversion is as follows:

nX

This descriptor causes no conversion to occur, nor does
it correspond to an item in an input/output 1ist. When used
for output, it causes n blanks to be inserted in the output
record. Under input circumstances, this descriptor causes the
next n characters of the input record to be skipped.

Output Examples:

Output

FORMAT Statement (bz=blanks)
3 FORMAT (1HA,4X,2HBC) AbbbbBC
7 FORMAT (3X,4HABCD,1X) bbbABCDD

Input Examplés:

Input Resultant
FORMAT Statement String Input
10 FORMAT (F4.1,3X,F3.0) 12.5ABC120 12.5,120
5 FORMAT (T7X,I3) 1234567012 012

8.9.6 P Descriptor

The P descriptor is used to Specify a scaling factor
for real conversions (F, E, D, G). The form is nP where n
is an integer eonstant--positive, negative, or zero.

The scaling factor is automatically set to zero at the
beginning of each formatted 1/0 call (each READ or WRITE
statement). If a p descriptor is encountered while Scanning
a FORMAT, the scale factor is changed to n. The Scale factor
remains changed until another P descriptor is encountered or
the I/0 terminates.

8.9.6.1 Effects of Scale Factor on Input:

During E, F, or G input the scale factor takes effect
only if no exponent is present in the external representation.
In that case, the internal value will be a factor of 10#%#p

8-28 DATAPOINT DOS FORTRAN COMPILER

less than the external value; that is, the number will be
divided by 10%#n before being stored.

8.9.6.2 Effect of Scale Factor on Output:

E-Output, D-Output: The coefficiént is shifted left n
places relative to the decimal point, and the exponent is
reduced by n; the value remains the same.

F-Output: The external value will be 10**n times the
internal value.

G-Output: The scale factor is ignored if the internal
value is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.

8.9.7 Repeat Specifications

1. The E, F, D, G, I, L, and A field descriptors may
be indicated as repetitive descriptors by using a
repeat count r in the form rEw.d, rFw.d, rGw.d,
riw, rLw, or rAw. The following pairs of FORMAT
statements are equivalent:

66 FORMAT (3F8.3,F9.2)
C IS EQUIVALENT TO:
66 FORMAT (F8.3,F8.3,F8.3,F9.2)

14 FORMAT (213,2A5,2E10.5)
C IS EQUIVALENT TO:
14 FORMAT (I3,I3,A5,A5,E10.5,E10.5)

2. Repetition of a group of field descriptors is
accomplished by enclosing the group in parentheses
preceded by a repeat count. Absence of a repeat
count indicates a count of one. Up to two levels
of parentheses, including the parentheses required
by the FORMAT statement, are permitted.

Note the following equivalent statements:

22 FORMAT (I3,4(F6.1,2X))
C IS EQUIVALENT TO:
22 FORMAT (I3,F6.1,2X,F6.1,2X,F6.1,2X,
1 F.6.1,2X)

3. Repetition of FORMAT descriptors is also initiated
when all descriptors in the FORMAT statement have
been used but there are still items in the

CHAPTER 8. INPUT/OUTPUT 8-29

input/output 1ist that have not been processed.
When this occurs, the FORMAT descriptors are
re-used, starting at the first opening parenthesis

in the FORMAT statement. A repeat count preceding
the parenthesized descriptor(s) to be re-used is also
active in the re-use. This type of repetitive use of
FORMAT descriptors terminates processing of a new
record and initiates the processing of a new record
each time re-use begins. Record demarcation under
these circumstances is the Same as in the Section
8.9.7.1.

Input Example:

DIMENSION A(100)
READ (3,13) A

13 FORMAT (5F7.3)

In this eéxample, the first 5 quantities from each
of 20 records are input and assigned to the array
elements of the array A.

Output Example:

WRITE (6,12)E,F,K,L,M,AA,BB,K3,L3,
1 M3

12 éORMAT (2F9.4,317)

In this example, two records are written. Record 1

contains E, F, K, L, and M. Because the FORMAT

Statement has been exhausted, the FORMAT statement

is re-used starting at the first left parenthesis

and record 2 contains AA, BB, K3, L3, and M3.
8.9.7.1 Field Separators

. Two adjacent descriptors must be Separated in the
FORMAT statement by either a comma or one or more slashes.

Example:

2HOK/F6.3 or 2HOK,F6.3

8-30 DATAPOINT DOS FORTRAN COMPILER

The slash not only separates field descriptors, but
also specifies the demarcation of formatted records.

Each slash terminates a record and sets up the next one
for processing. The remainder of an input record is ignored;
the remainder of an output record is filled with blanks.
Successive slashes (///.../) cause successive records to be
ignored on input and successive blank records to be written on
output.

Output Example:
DIMENSION A(100),J(20)

WRITE (7,8) dJ,A
8 FORMAT (10I7/1017/50F7.3/50F7.3)

In the above example, the data specified by the list of
the WRITE statement are output to unit 7 according to
the specifications of FORMAT statement 8. Four records
are written, as follows:

Record 1 J(1), J(2), ... J(Q10)

Record 2 J(11), J(12) ... J(29)

Record 3 AC1), A(2), ... A(50)

Record 4 A(51), A(52), ... A(100)

Input Example:
DIMENSION B(10)

READ (4,17) B
17 FORMAT (F10.2/F10.2///8F10.2)

In this example, the two array elements B(1) and B(Z2)
receive their values from the first data fields of
successive records--the remainders of the two recoras
are ignored. The third and fourth records are ignored

CHAPTER 8. INPUT/OUTPUT 8-31

and the remaining elements of the arrays are filled
from the fifth record.

8.9.8 Format Control, List Specifications, and Record
Demarcation

FORMAT
should

8-32

The following relationships and interactions between
control, input/output lists and record demarcation
be noted: :

1'

2.

Execution of a formatted READ or WRITE statement
initiates FORMAT control.

The conversion performed on data depends on
information Jointly provided by the elements in the
input/output 1ist and field descriptors in the
FORMAT statement.

If there is an input/output list, at least one
descriptor of types E, F, D, G, I, L, or A must be
present in the FORMAT statement.

Each execution of a formatted READ statement causes
a4 new record to be input.

Each item in an input 1list corresponds to a string
of characters in the record and to a descriptor of
the types E, F, D, G, I, L, or A in the FORMAT
statement.

H and X descriptors communicate information
directly between the external record and the field
descriptors without reference to list items.

On input, whenever a slash is encountered in the
FORMAT statement or the FORMAT descriptors have
been exhausted and re-use of descriptors is
initiated, processing of the current record is
terminated and the following occurs:

a. Any unprocessed characters in the record are
ignored.
b. If more input is necessary to satisfy list

requirements, the next record is read.

A READ statement is terminated when all items in
the input list have been satisfied, if:

a. The next FORMAT descriptor is E, F, D, G, I,
L, or A. \

DATAPOINT DOS FORTRAN COMPILER

b. The FORMAT control has reached the last
outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the next
FORMAT descriptor is H or X, more data are
processed--with the possibility of new records
being input--until one of the above conditions
exists.

9. If FORMAT control reaches the last right
parenthesis of the FORMAT statement but there are
more list items to be processed, all or part of the
descriptors are re-used. (See item 3 in the
description of Repeat Specifications, Sec. 8.8.7.)

10. When a formatted WRITE statement is executed,
records are written each time a slash is
encountered in the FORMAT statement, or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in one
of the two methods described for READ termination
in 8 above. 1Incomplete records are filled with
blanks to maintain record lengths.

8.9.9 FORMAT Carriage Control

The first character of every print-formatted output
record is used to convey carriage control information to the
printer, and is therefore never printed. The carriage control
character determines what action will be taken before the line
is printed. The options are as follows:

Control Character Action Taken Before Printing
0 Skip 2 lines
1 Insert Form Feed
+ No advance
Other Skip 1 line

8.9.10 FORMAT Specifications in Arrays

The FORMAT reference, f, of a formatted READ or WRITE
statement (Sec. 8.2) may be an array name instead of a
statement label. If such reference is made, at the time of
execution of the READ/WRITE statement the first part of the
information contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The array may
contain non-FORMAT information following the right parenthesis

CHAPTER 8. INPUT/OUTPUT 8-33

that ends the FORMAT specification.

The FORMAT specification which is to be inserted in the
array has the same form as defined for a FORMAT statement,
that is, it begins with a left parenthesis and ends with a
right parenthesis.

The FORMAT specifications may be inserted in the array
by use of a DATA initialization statement, or by use of a READ
statement together with an Aw FORMAT. As an example, assume
that the FORMAT specification:

(3F10.3,416)

or a similar 12-character specification is to be stored in an
array. The array must allow a minimum of 3 storage units.

The FORTRAN coding below shows the various methods of
establishing the above-example FORMAT specification, and then
referencing the array for a formatted READ or WRITE.

C DECLARE A REAL ARRAY
DIMENSION A(3), B(3), M(4)
C INITIALIZE FORMAT WITH DATA STATEMENT

DATA A/'(3F1','0.3,','416)'/

c READ DATA USING FORMAT SPECIFICATIONS
c IN ARRAY A
READ (6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

C READ éORMAT SPECIFICATIONS

READ (7,15) IA
C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS

15 FORMAT (4A2)

c READ DATA USING PREVIOUSLY INPUT
c FORMAT SPECIFICATION
READ (7,IA) B,M

8-34 - DATAPOINT DOS FORTRAN COMPILER

. CHAPTER 9. FUNCTIONS AND SUBPROGRAMS

9.1 Introduction

The FORTRAN language provides a means for defining and
using often-needed programming procedures in such a way that
the statement or statements of the procedures need appear only
once in a program, but may be referenced and brought into the
logical execution sequence whenever needed.

These procedures are as follows:
1. Statement functions.
2. Library functions.
3. FUNCTION subprograms.
y, SUBROUTINE subprograms.

Each of these procedures has its own unique requirements
for reference and definition purposes. These requirements are
discussed in subsequent sections of this chapter. However,
certain features are common to the whole group, or to two or
more of them. These common features are:

1. Each of these procedures is referenced by its
name, which in all cases is one to six
alphanumeric characters of which the first is a
letter.

2. The first two procedures are designated
"functions" and are alike in that:

a. They are always single-valued--i.e., they
return one value to the program unit from
which they are referenced.

b. They are referred to by an expression
containing a function name.

¢. They must be typed by type-specification
statements if the data type of the
single-valued result is to be different from
that indicated by the predefined convention.

3. FUNCTION and SUBROUTINE subprograms are
considered program units.

CHAPTER 9. FUNCTIONS AND SUBPROGRAMS 9-1

In the following descriptions of these procedures, the
term "calling program" means the program unit or procedure in
which a reference to a procedure is made, and the term "called
program" means the procedure to which a reference is made.

9.2 The PROGRAM Statement

The PROGRAM statement provides a means of specifying a
name for a main program unit. The form of this statement is:

PROGRAM name

If present, the PROGRAM statement must .appear before
any other statement in the program unit. The name consists of
one to six alphanumeric characters, the first of which is a
letter. If no PROGRAM statement is present in a main program,
the compiler assigns a name of $MAIN to that program.

9.3 Statement Functions

Statement functions are defined by a single arithmetic
or logical assignment statement and are relevant only to the
program unit in which they appear. The general form of a
statement function is:

f(a1,32,...,an) = e

where f 1is the function name, the aj are dummy arguments,
and e 1is an arithmetic or logical expression.

Rules for ordering, structure, and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede all executable
statements in the unit and follow all
specification statements.

2. The aj are distinct variable names or array
elements, but being dummy variables may have
the same names as variables of the same type
appearing elsewhere in the program unit.

3. The expression e 1is constructed according to
the rules in Chapter 5 and may contain only
references to the dummy arguments and
non-Literal constants, variable and array
element references, utility and mathematical
function references and references to
previously defined statement functions.

9-2 DATAPOINT DOS FORTRAN COMPILER

y, The type of any statement function name or
argument that differs from its predefined
convention type must be defined by a
type-specification statement.

5. The relationship between f and e must
conform to the replacement rules in Chapter 5.

6. A statement function is called by its name,
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the call, and the reference is
replaced by the result.

7. The 1ith paramenter in every argument list
must agree in type with the 4ith dummy in the
statement function.

The following example shows a statement function
definition and a statement function call.

C STATEMENT FUNCTION DEFINITION
C
FUNC1(A,B,C,D) = ((A+B)%*¥*C)/D

C STATEMENT FUNCTION CALL
C

A12=A1-FUNC1(X,Y,27,CT)

9.3 Library Functions

Library functions are a group of utility and
mathematical functions which are designed into the FORTRAN
system. Their names are predefined to the FORTRAN compiler
and automatically typed. The functions are listed in Tables
9-1 and 9-2. In the tables, arguments are denoted as
al,a2,...,an, if more than one argument is required; or as
a, 1if only one is required.

A library function is called when its name is used in
an arithmetic expression. Such a reference takes the
following form:

f(al,a2,...,an)
where f 1is the name of the function and the aj are actual

arguments. The arguments must agree in type, number, and
order with the specifications indicated in Tables 9-1 and 9-2.

CHAPTER 9. FUNCTIONS AND SUBPROGRAMS 9-3

Function
Name

ABS
IABS
DABS

AINT
INT
IDINT

AMOD
MOD

AMAXO
AMAX1
MAXO
MAX1
DMAX1

AMINO
AMIN1
MINO

MIN1
DMIN1

FLOAT

IFIX

SIGN
ISIGN
DSIGN

DIM
IDIM

SNGL
DBLE

TABLE 9-1

INTRINSIC FUNCTIONS

Definition

Sign of a times-
largest integer
<=}a|

al (mod a2)

Max(a1,a2,...)

Min(atl,a2,...)

Conversion from
Integer to Real

Conversion from
Real to Integer

Sign of a2 * |a]

al - Min(at,a2)

Types
Argument Funetion
Real Real
Integer Integer
Double Double
Real Real
Real Integer
Double Integer
Real Real
Integer Integer
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Integer
Real Real
Integer Integer
Double Double
Real Real
Integer Integer
Double Real
Real Double

DATAPOINT DOS FORTRAN COMPILER

Name

EXP
DEXP

ALOG
DLOG

ALOG10
DLOG10

SIN
DSIN

Cos
DCOS

TANH

SQRT
DSQRT

ATAN
DATAN

ATAN2
DATAN2

DMOD

Number
of

Arguments

VI \ VRV

CHAPTER 9.

TABLE 9-2

BASIC EXTERNAL FUNCTIONS

Definition

ey

1n (a)

log10(a)

sin (a)

cos (a)

tanh (a)
(a)®®q/2

arctan (a)

arctan (a1/a2)

at(mod a2)

Typé
Argument

Real
Double

Rea1°
Double

Real
Double

Real
Double

Real
Double

Real

Real
Double

Real
Double

Real
Double

Double

FUNCTIONS AND SUBPROGRAMS

Function

Real
Double

Real
Double

Real
Double

Real
Double

Real
Double

Real

Real
Double

Real
Double

Real
Double

Double

9.5 FUNCTION Subprograms

A program unit which begins with a FUNCTION statement is
called a FUNCTION subprogranm.

A FUNCTION statement has one of the following forms:
t FUNCTION f(al1,a2,...,an)
or
FUNCTION f(al,a2,...,an)
where:

1. t 1is either INTEGER, REAL, DOUBLE PRECISION, or
LOGICAL, or is empty as shown in the second form.

2. f is the name of the FUNCTION subprogram.

3. The aj are dummy arguments, of which there must
be at least one, representing variable names, array
names, or dummy names of SUBROUTINE or other
FUNCTION subprograms.

9.6 Construction of FUNCTION Subprograms

Construction of FUNCTION subprograms must comply with the
following restrictions:

1. The FUNCTION statement must be the first statement
of the program unit.

2. Within the FUNCTION subprogram, the FUNCTION name
must appear at least once on the left side of the
equality sign of an assignment statement or as an
item in the input list of an input statement. This
defines the value of the FUNCTION so that it may be
returned to the calling program.

Additional values may be returned to the calling

program through assignment of values to dummy
arguments.

9-6 DATAPOINT DOS FORTRAN COMPILER

Example:

FUNCTION Z7(A,B, C)

27 = 5.%(A-B + SQRT(C)

C REDEFINE ARGUMENT
B=B + 27

RETURN

END

The names in the dummy argument list may not appear
in EQUIVALENCE, COMMON, or DATA statements in the
FUNCTION subprogram.

If a dummy argument is an array name, then an array
declarator must appear in the subprogram with
dimensioning information consistent with that in the
calling program.

A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK DATA statements,
SUBROUTINE statements, another FUNCTION statement or
any statement which references either the FUNCTION
being defined or another subprogram that references
the FUNCTION being defined.

The logical termination of a FUNCTION subprogram is a
RETURN statement--there must be at least one of
these.

A FUNCTION subprogram must physically terminate with
an END statement.

Example:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY(10,20)
SUM = 0.0
DO 8 K = 1,1
DO 8 M =1,J

8 SUM = SUM + BARY(K,M)
RETURN
END

CHAPTER 9. FUNCTIONS AND SUBPROGRAMS 9-7

9.7 Referencing a FUNCTION Subprogram
FUNCTION subprograms are called whenever the FUNCTION
name, accompanied by an argument list, is used as an operand
in an expression. Such references take the following form:
f(al,a2,...,an)

f 1is a FUNCTION name and the aj are‘actual arguments}
Parentheses must be present in the form shown.

The arguments aji must agree in type, order, and number
with the dummy arguments in the FUNCTION statement of the
called FUNCTION subprogram. They may be any of the following:

1. A variable name.

2. An array element name.

3. An array name.

4. An expression.

5. A SUBROUTINE or FUNCTION subprogram name.
6. A Hollerith or Literal constant.

If an aj 1is a subprogram name, that name must have
previously been distinguished from ordinary variables by
appearing in an EXTERNAL statement and the corresponding dummy

arguments in the called FUNCTION subprograms must be used in
subpgrogram references.

If aj 1is a Hollerith or Literal constant, the
corresponding dummy variable should encompass enough storage
units to correspond exactly to the amount of storage needed by
the constant.

When a FUNCTION subprogram is called, program control
goes to the first executable statement following the FUNCTION
statement.

Examples:
Z10 = FT1+27(D,T3,RHO)

DIMENSION DAT(5,5)

S1 = TOT1 + SUM(DAT,5,5)

9-8 DATAPOINT DOS FORTRAN COMPILER

9.8 SUBROUTINE Subprograms

A program unit which begins with a SUBROUTINE statement
is called a SUBROUTINE subprogram. The SUBROUTINE statement
has one of these forms:

SUBROUTINE s (al,a2,...,an)
or
SUBROUTINE s

where s 1is the name of the SUBROUTINE subprogram and each
aj 1is a dummy argument which represents a variable or array
name or another SUBROUTINE or FUNCTION name.

9.9 Construction of SUBROUTINE Subprograms

1. The SUBROUTINE statement must be the first statement
of the subprogram. ‘

2. The SUBROUTINE subprogram name must not appear in any
statement other than the initial SUBROUTINE
statement.

3. The dummy argument names must not appear in
EQUIVALENCE, COMMON, or DATA statements in the
subprogram.

4, If a dummy argument is an array name then an array
declarator must appear in the subprogram with
dimensioning information consistent with that in the
calling program.

5. If any of the dummy arguments represent values that
are to be determined by the SUBROUTINE subprogram and
returned to the calling program, these dummy
arguments must appear within the subprogram on the
left side of the equality sign in a replacement
statement, in the input list of an input statement,
or as a parameter within a subprogram reference.

6. A SUBROUTINE may contain any FORTRAN statements other
than BLOCK DATA statements, FUNCTION statements,
another SUBROUTINE statement, a PROGRAM statement or
any statement which references the SUBROUTINE
subprogram being defined or another subprogram which
references the SUBROUTINE subprogram being defined.

7. A SUBROUTINE subprogram may contain any number of
RETURN statements. It must contain at least one.

CHAPTER 9. FUNCTIONS AND SUBPROGRAMS 9-9

8. The RETURN statement(s) is the logical termination
point of the subprogram.

9. The physical termination of a SUBROUTINE subprogram
is an END statement.

10. If an actual argument transmitted to a SUBROUTINE
subprogram by the calling program is the name of a
SUBROUTINE or FUNCTION subprogram, the corresponding
dummy argument must be used in the called SUBROUTINE
sSubprogram as a subprogram reference.

Example:

C SUBROUTINE TO COUNT POSITIVE ELEMENTS
c IN AN ARRAY
SUBROUTINE COUNT P(ARRY,I,CNT)
DIMENSION ARRY(7)
CNT = 0
DO9J =1,I
IF (ARRY(J))9,5,5
9 CONTINUE
RETURN
5 CNT = CNT + 1.0
GO TO 9
END

9.10 Referencing a SUBROUTINE Subprogram

A SUBROUTINE subprogram may be called by using a CALL
statement. A CALL statement has one of the following forms:

CALL s(al,a2,...,an)
or

CALL s

where s 1is a SUBROUTINE subprogram name and the aj are the
actual arguments to be used by the subprogram. The aj must
agree in type, order and number with the corresponding dummy
arguments in the subprogram-defining SUBROUTINE statement.

The arguments in a CALL statement must comply with the
following rules:

1. FUNCTION and SUBROUTINE names appearing in the

argument list must have previously appeared in an
EXTERNAL statement.

9-10 DATAPOINT DOS FORTRAN COMPILER

3.

If the called SUBROUTINE subprogram contains a
variable array declarator, then the CALL statement
must contain the actual name of the array and the
actual dimension specifications as arguments.

If an item in the SUBROUTINE subprogram dummy
argument list is an array, the corresponding item in
the CALL statement argument list must be an array.

When a SUBROUTINE subprogram is called, program control
goes to the first executable statement following the
SUBROUTINE statement.

Example:

C
c
C

9.11

DIMENSION DATA(10)

THé STATEMENT BELOW CALLS THE
SUBROUTINE IN THE PREVIOUS PARAGRAPH

CALL COUNTP(DATA, 10,CPOS)

RETURN from FUNCTION and SUBROUTINE Subprograms

The logial termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement which transfers control back
to the calling program. The general form of the RETURN
statement is simply the word:

RETURN

The following rules govern use of the RETURN statement:

1.

2.

3.

LB

There must be at least one RETURN statement in each
SUBROUTINE or FUNCTION subprogram.

RETURN from a FUNCTION subprogram is to the
instruction sequence of the calling program following
the FUNCTION reference.

RETURN from a SUBROUTINE subprogram is to the next
executable statement in the calling program which
would logically follow the CALL statement.

Upon return from a FUNCTION subprogram, the
single-valued result of the subprogram is avalable to
the evaluation of the expression from which the
FUNCTION call was made.

CHAPTER 9. FUNCTIONS AND SUBPROGRAMS 9-11

5. Upon return from a SUBROUTINE subprogram the values
assigned to the arguments in the SUBROUTINE are
available for use by the calling program.

Example:

Calling Program Unit:

CALL SUBR(Z9,B7,R1)

Called Program Unit:

SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B¥¥C
RETURN
7 FORMAT (F9.2)
END

In this example, the new values for Z9 and B7 are
made available to the calling program when the RETURN
occurs.

9.12 Processing Arrays in Subprograms

If a calling program passes an array name to a
subprogram, the subprogram must contain the dimension
information pertinent to the array. A subprogram must contain
array declarators if any of its dummy arguments represent
arrays or array elements.

For example, a FUNCTION subprogram designed to compute
the average of the elements of any one dimension array might
be as follows:

Calling Program Unit:
DIMENSION Z1(50),22(25)

]
.
.

A1l

AVG(Z1,50)

A2

.

A1-AVG(Z2,25)

9-12 DATAPOINT DOS FORTRAN COMPILER

20

Called Prorgam Unit:

FUNCTION AVG(ARG,I)
DIMENSION ARG(50)
SUM = 0.0

DO 20 J = 1,I

SUM = SUM + ARG(J)
AVG = SUB/FLOAT(I)
RETURN

END

Note that actual arrays to be processed by the FUNCTION
subprogram are dimensioned in the calling program and the
array names and their actual dimensions are transmitted to the

FUNCTION subprogram by the FUNCTION subprogram reference. The
FUNCTION subprogram itself contains a dummy array and
specifies an array declarator.
Dimensioning information may also be passed to the

subprogram in the parameter 1ist. For example:

Calling Program Unit:

DIMENSION A(3,4,5)

CALL SUBR(A,3,4,5)

END

Called Program Unit:

SUBROUTINE SUBR(X,I,J,K)

DIMENSION X(I,J,K)

RETURN

END

It is valid to use variable dimensions only when the
array name and all of the variable dimensions are dummy
arguments. The variable dimensions must be type Integer. . It
is invalid to change the values of any of the variable
dimensions within the called program.
CHAPTER 9. FUNCTIONS AND SUBPROGRAMS 9-13

9.13 BLOCK DATA Subprograms

A BLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during loading of a
FORTRAN object program. BLOCK DATA subprograms begin with a
BLOCK DATA statement of the following form: .

BLOCK DATA [subprogram-name]

and end with an END statement. Such subprograms may contain
only Type, EQUIVALENCE, DATA, COMMON, and DIMENSION statements
and are subject to the following considerations:

1. If any element in a COMMON block is to be
initialized, all elements of the block must be listed
in the COMMON statement even though they might not
all be initialized.

2. Initialization of data in more than one COMMON block
may be accomplished in one BLOCK DATA subprogram.

3. There may be more than one BLOCK DATA subprogram
loaded at any given time.

4. Any particular COMMON block item should only be
initialized by one program unit.

5. A BLOCK program must be INCluded at link time.

Example:

BLOCK DATA INITIT

LOGICAL A1
COMMON/BETA/B(3,3)/GAM/C(4)
COMMON/ALPHA/A1,C,E,D

DATA B/1.1,2.5,3.8,3%4.96,
12%0.52,1.1/,C/1.2E0,3%4.0/
DATA A1/.TRUE./,E/=5.6/

9-14 DATAPOINT DOS FORTRAN COMPILER

APPENDIX A. FORTRAN ERROR MESSAGES

The FORTRAN compiler detects two kinds of errors:
Warnings and Fatal Errors. When a Warning issues, compilation
continues with the next item on the source line. A Fatal
Error, however, causes the compiler to ignore the rest of the
logical line, including any continuation lines.

Warning messages are preceded by percent signs (%), while
Fatal Errors are preceded by question marks (?). The physical
line number follows the question mark and percent sign, and
the error code or message follows the line number.

Example:

?Line 25: Mismatched Parentheses
4Line 16: Missing Integer Variable

When either type of error occurs, the program should be
modified so that it will compile without errors.

APPENDIX A. ERROR MESSAGES A-1

A1

Fatal Compilation Errors

Message

Array Name Misuse

Backwards DO Reference
Consecutive Operators

Data Pool Overflow

Function Call with No Parameters
Identifier Too Long

Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal

Character for Syntax

Data Constant

DO Nesting

Hollerith Construction

Integer Quality

Item Following INTEGER or REAL or LOGICAL
Logical Form Operator

Mixed Mode Operation

Operator

Procedure Name

Statement Completion

Statement Following Logical IF
Statement Function Name
Statement Number

Improper Subscript Syntax
Incorrect Integer Constant
Incorrect Number of DATA Constants

Invalid
Invalid
Invalid
Invalid
Invalid
Literal
Missing
Missing

DATA Constant or Repeat Factor
Data List Element in I/0
Logical Operator

Operand Usage

Statement Number

String Too Large

Integer Quantity

Name

Not a Variable Name

Premature End of File on Input Device
Stack Overflow

Statement Out of Sequence

Statement Unrecognizable or Misspelled
Too Many Parentheses. 14 Allowed
Unbalanced DO Nest

DATAPOINT DOS FORTRAN COMPILER

A.2 Compilation Error Warnings

Array Multiply EQUIVALENCEd within a Group
Array Name Expected '
Block Name = Procedure Name
Code Output in BLOCK DATA

" COMMON Base Lowered
COMMON Name Usage
Division by Zero
Duplicate Statement Label
Empty List for Unformatted WRITE
Format Nest Too Deep
Function with No Parameter
Hex Constant Overflow
Illegal Argument for ENCODE/DECODE
Illegal DO Termination
Invalid Statement Number Usage
Missing DO Termination
Missing Integer Variable
Missing Statement Number on FORMAT
Mixing of Operand Modes Not Allowed
Multiple EQUIVALENCE of COMMON
No Path to this Statement
Non-COMMON Variable in BLOCK DATA
Non-Integer Expression
Operand Mode Not Compatible with Operator
RETURN in a Main Program
Statement Number Not FORMAT Associated
STATUS Error on READ
Undefined Labels Have Occurred
Wrong Number of Subscripts
Zero Format Value
Zero Repeat Factor

APPENDIX A. ERROR MESSAGES

A.3 FORTRAN Runtime Error Messages

Runt ime error messages carry a leading and trailing
double asterisk, in this manner:

BRPEE

A.3.1 Warning Errors

After a warning error, execution continues; after 20
warnings, however, execution ceases.

Code Meaning
A2 Both Arguments of ATAN2 are O
BE Binary Exponent Overflow
BI Buf fer Size Exceeded During Binary I/0
CN Conversion Overflow
on REAL to INTEGER Conversion
DE Decimal Exponent Overflow

(Number in input stream had an exponent
larger than 99)

FW Format Field Width Is Too Small

IB Input Buffer Limit Exceeded

IN Input Record Too Long

I0 Illegal I/0 Operation

IS Integer Size Too Large

OB Output Buffer Limit Exceeded

ov Arithmetic Overflow

RC Negative Repeat Count in FORMAT

SN Argument for SIN Too Large

TL Too Many Left Parentheses in FORMAT

A.3.2 Fatal Errors

Fatal errors cause execution to cease; control returns to
the DOS.

DT Data Type Does Not Agree with FORMAT
Specification

Dz Division by ZERO, REAL, or INTEGER

EF EOF Encountered on READ

FO FORMAT Field Width is Zero

ID Illegal FORMAT Descriptor

IT I/0 Transmission Error

LG Illegal Argument to LOG Function
(Negative or Zero)

ML Missing Left Parenthesis in FORMAT

MP Missing Period in FORMAT

SQ Illegal Argument to SQRT Function (Negative)

A-Y4 DATAPOINT DOS FORTRAN COMPILER

APPENDIX B. 1500 FORTRAN

B.1 1500 Operating Environment

In the 1500-series processor operating environment,
FORTRAN requires a 1500 with at least 64K of memory operating
under DOS.H.

B.2 Installation

The FORTRAN release consists of FORTRAN/CMD and
FORLIB/REL which reside on a single diskette. To install,
boot the 1500 processor from a DOS.H diskette in drive 0, and
insert the FORTRAN diskette in drive 1, 2, or 3.

B.3 Compilation

A FORTRAN source program that is contained in an existing
text file can be compiled to an output code file and later
linked with LINK15 by a command to the operating system. The
user keys in the command to DOS in the following format:

FORTRAN <sourcefile>[,<relfile>][,<printfile>][;<options>]

B.3.1 Command Line Files

Up to three (3) files may be specified on the command
line:

<sourcefile> Filename of the file containing the FORTRAN
program. This file name is required; the
default extension is /TXT.

<relfile> Filename of the Relocatable object file that
will be created by this compilation. This name
is not required and its default value is
<sourcefile>/REL.

{printfile> Filename of the printer output file of the
compilation. This name is not required; its
default value is <{sourcefile>/PRT.

APPENDIX B. 1500 FORTRAN B-1

B.3.2 Command Line Options

The command line options indicate disposition of the
output file; they are indicated by the semicolon (;)
following the file specifications. Options available are
mutually exclusive: only one option letter may be given on the
command line. The choices for output file disposition are
designated by four different alpha characters: L, P, Q, and D.
The action instituted by each of these characters is described
below.

L - List on Local printer.

The L option causes a printer listing of the source
program that includes internal references.
P - List on disk file.

The P option causes a listing file to be produced on the
disk. If <printfile> is specified on the command line, this
disk file will have the name of the source file with the
extension of /PRT.

Q - Append to existing disk file.

The Q option appends the listing file to an existing
listing file. There is no default filename for the Q option,
so the <printfile> name must be specified on the command line
when Q option is selected.

D - Display listing on terminal's video screen.

The D option causes the listing file to be displayed on
the screen.

B-2 DATAPOINT DOS FORTRAN COMPILER

B.4 Compilation Example

FORTRAN compiles and LINKs with a set of instructions in
the following form.

FORTRAN DEBTEST
LINK15;N

SEGMENT DEBTEST/CMD
INCLUDE DEBTEST/REL
LIBRARY FORLIB/REL
LIBRARY DOSGUP/REL

APPENDIX B. 1500 FORTRAN B-3

APPENDIX C. 5500 FORT55

C.1 5500 Operating Environment

FORT55 executes on a processor using the 5500 instruction
set. These are the 1800, 3800, 5500, and 6600 series of
Datapoint computers. Execution is standalone on a processor
with 48K of memory; with 56K of memory, FORT55 executes under
ARC. The operating system required is:

DOS.D, version 2.6.1 -~ 3800, 1800, 5500, 6600
DOS.E, version 2.6 - 5500, 6600 '
DOS.G, version 2.6 - 1800

C.2 Installation

FORT55 is released on 3 cassette tapes; it ‘is installed
using the MIN utility program (refer to the Disk Operating
System DOS User's Guide, document number 50432). After the
tapes gre input, build the FORLIB/REL by keying in the chain
command:

CHAIN FS55RTL/TXT

C.3 Compilation Procedure

A FORTRAN source program that is contained in an existing
text file can be compiled to an output code file and later
linked with LINK15 by a command to the operating system. The
user keys in the command to DOS in the following format:

FORT55 <sourcefiled>[,<relfile>][,<printfile>][;<options>]

C.3.1 Command Line Files
Up to three (3) files may be specified on the command
line: o

<sourcefile>‘ Filename of the file containing the FORTRAN
program. This file name is required; the
default extension is /TXT. ' ‘

APPENDIX C. 5500 FORT55 C-1

{relfile> Filename of the Relocatable object file that
will be created by this compilation. This name
is not required and its default value is
<sourcefile>/REL.

{printfile> Filename of the printer output file of the
compilation. This name is not required; its
default value is <sourcefile>/PRT.

C.3.2 Command Line Options

The command line options indicate disposition of the

stput file; they are indicated by the semicolon (;)
"21lowing the file specifications. Options available are

rually exclusive: only one option letter may be given on the
command line. The choices for output file disposition are
designated by four different alpha characters: L, P, Q, and D.
T-e action instituted by each of these characters is described
below. :

L - List on Local printer.

The L option causes a printer listing of the source
program that includes internal references.
P - List on disk file.

The P option causes a listing file to be produced on the
disk. If <printfile> is specified on the command line, this
disk file will have the name of the source file with the
extension of /PRT.

Q - Append to existing disk file.

The Q option appends the listing file to an existing .

listing file. There is no default filename for the Q option,

so the <printfile> name must be specified on the command line
when Q option is selected.

D - Display listing on terminal's video screen.

The D option causes the listing file to be displayed on
the screen.

C-2 DATAPOINT DOS FORTRAN COMPILER

C.4 Compilation Example

FORT55 compiles and LINKs with a set of instructions in
the following form. A starting load address of 017000 must be.
specified for FORT5S.

Example:

FORT55 DEBTEST

LINK ;N

SEGMENT DEBTEST/CMD,017000
INCLUDE DEBTEST/REL
LIBRARY FORLIB55/REL
%IBRARY DOSEPT/REL

NOTE: If the program does not use ISAM files, the following
line may be included to save room in the object code:

INCLUDE FORLIB55.ISIGONE
This prevents the inclusion of generalized ISAM

subroutines that would otherwise be brought in with the
FORLIB55/REL 1library.

APPENDIX C. 5500 FORTS55 c-3

APPENDIX D. DOS ARC ENQUEUE AND DEQUEUE

This discussion follows closely the material presented in
the Attached Resource Computing System ARC User's Guide
(document number 50299-2), Chapter 5, titled *Updating of
Shared Files.' Reviewing the detailed description of the
updating of shared files presented in the ARC user's guide -
will aid the user in understanding the philosphy and
implementation of enqueue and dequeue requests.

D.1 Enqueuing Shared Files

In the ARC system, data files are shared among multiple
processors and are accessed and updated concurrently by the
several processors. There must be a method of coordinating
simultaneous requests for file access and update. Determining
which processor gets access to what file and whether or not an
update should be made often depends on many other data items,
as well as on a precise, instantaneous knowledge of the state
of all files before a valid update is possible.

The portion of ARC that resolves this dilemma is called
the Enqueue/Dequeue Subsystem. It is now possible to have
several programs executing simultaneously, written variously
in FORTRAN, DATASHARE, COBOL and assembler, that have the
capability to access and update the same file. This ability
to do simultaneous operations is not inherent in the FORTRAN,
DATASHARE, COBOL, and assembler code programs; the enqueueing
and dequeueing is effected by the convention of including
specific program code to invoke the Enqueue/Dequeue Subsystem.
The enqueue and dequeue instructions are coded into any
program that is to update a file, or to read or write to a
shared file.

Under ARC, enqueues may be implemented at several
different levels. These levels correspond to the naturally
nested functions occurring as a result of requests made by the
applications programs. FORTRAN allows only level 3 enqueue
requests. Level 3 is called the Multiaccess Transaction Level
and corresponds to DATASHARE PI statements. Level 3 supports
transactions which may include a number of individual
accesses, some of which may result in DOS disk storage
management functions being performed.

APPENDIX D. DOS ARC ENQUEUE AND DEQUEUE D-1

D.2 Invoking Enqueue

To acquire the exclusive use of a resource (a file, or a
volume of files), the applications program must contain two
separate steps: the request for exclusive use, c¢alled
enqueueing; and the release of the resource for its use by
others, called dequeueing. The enqueue request is made before
beginning to look at the data items, which must not change
during the course of the update. Then, when the update is
complete, dequeue releases the file, making it available for
update requests from other processors and programs.

FORTRAN issues level 3 enqueue requests. (A complete
description of enqueue levels is contained in the ARC user's
guide.) An ISAM file may be asociated with many ISAM index
(/ISI) files. However, to enqueue any ISAM file, only the
related data file needs to be enqueued. This has the effect
of enqueueing all related ISAM index files. The /ISI file(s)
should not be specifically enqueued; FORTRAN performs this
function internally.

The FORTRAN calling sequence is:
CALL ARCNQ (n, lun <,lun ,...,lun>)
where n 1is the number of logical units in the list and lun
is the logical unit number to be enqueued.
The sequence CALL ARCDQ performs a level 3 dequeue.
As an example of the enqueue/dequeue coding convention:
OPEN (4, 'SCRATCH ', 80)
CALL ARCNQ (1, 4)

READ (4, 15) T
CALL ARCDQ

D.3 Enqueueing Errors
Errors that can occur are:
ARC NQ/DQ ERR:1 - Bad logical unit number (1..8)
ARC NQ/DQ ERR:2 - Wrong number of luns (1..8)
ARC NQ/DQ ERR:3 - ARC NQ failure (logical)
ARC NQ/DQ ERR:4 - ARC NQ failure (RIM interconnect)

D=2 DATAPOINT DOS FORTRAN COMPILER

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	D-01
	D-02

