
DATAPOINT

DASL™

User's Guide

50807

TIM
Document No. 50807. 4/84.

This manual has been prepared according to
the standards of the Information Mapping
Method. Information Mapping is a Registered
Trademark of Information Mapping, Inc., of
Lexington, MA. USA.

Copyright © 1984 by DATAPOINT Corporation. All rights reserved.
The "0" logo, DATAPOINT, DATABUS, DATAFORM, DATAPOLL, DATASHARE, LightLink,
Integrated Electronic Office, DATACCOUNTANT, ARC, Attached Resource Computer
and ARCNET are trademarks of DATAPOINT Corporation registered in the U.S.
Patent and Trademark Office. AIM, Associative Index Method, ARCGATE, ARCLlNK,
DASP, RMS, Resource Management System, EMS, SHARE, DASL and DATASORT are
trademarks of DATAPOINT Corporation.
System features and technical details are subject to change without notice.

Preface

The DASL USER's GUIDE is the first document to be
produced in the new DATAPOINT documentation
standard format. It is written using the Information
Mapping writing method. It was produced in draft
form on the 9660 Laser Printer and in final form via
the ATD (Automated Technical Documentation)
system.

Please forward your comments on this document to:

DATEC Publications
DATAPOINT Corporation
9725 Datapoint Dr. MS T-72
San Antonio, Texas 78284

iii

IV

CONTENTS

CONTENTS
CHAPTER 1. INTRODUCTION TO THE DASL
REFERENCE SECTION 1-1
OVERVIEW 1-3
ORGANIZATION OF THIS SECTION 1-5

CHAPTER 2. STRUCTURE OF A DASL
PROGRAM 2-1

OVERVIEW OF DASL PROGRAM STRUCTURE 2-3
A SAMPLE PROGRAM ILLUSTRATING
PROGRAM STRUCTURE 2-8

CHAPTER 3. STRUCTURED PROGRAMMING .. 3-1
OVERVIEW 3-3
PRINCIPLES OF STRUCTURED
PROGRAMMING 3-7

TOP DOWN DESIGN GUIDELINES 3-8
INDEPENDENT FUNCTIONS 3-12
THREE BASIC TYPES OF STATEMENTS 3-14
GUIDELINES FOR CODING 3-17
GUIDELINES FOR CODING IDENTIFIERS AND
CONSTANTS 3-18

GUIDELINES FOR INDENTATION 3-22
GUIDELINES FOR CODING MULTIPLE
STATEMENTS AND MULTIPLE LINES 3-23

GUIDELINES FOR CODING PARENTHESES .. 3-24
GUIDELINES FOR CODING COMMENTS 3-25
CRITERIA FOR A QUALITY DASL PROGRAM. 3-28

CHAPTER 4. LEXICAL RULES 4-1
OVERVIEW•. 4-3
LEXICAL RULES: IDENTIFIERS AND
KEYWORDS 4-5

LEXICAL RULES: NUMBERS AND STRINGS ... 4-8

v

LEXICAL RULES: OPERATORS AND
SEPARATORS 4·10

LEXICAL RULES: COMMENTS 4·11

CHAPTER 5. DATA TYPES AND
DECLARATIONS 5·1

OVERVIEW 5·3
OVERVIEW OF DATA TYPES 5·5
TYPDEF DECLARATION 5·10
VARIABLE DECLARATION - OVERVIEW 5·14
VARIABLE DECLARATION: LOCAL AND
GLOBAL VARIABLES 5·16

VARIABLE DECLARATIONS: STORAGE
CLASSES 5·21
VARIABLE DECLARATION: INITIALIZATION .. 5·25
SCALAR TYPES 5·28
POINTER TYPE 5·33
ARRAY TYPE 5·41
STRUCTURE TYPES 5·51

CHAPTER 6. FUNCTIONS 6·1
OVERVIEW 6·3
FUNCTION DECLARATION 6·5
FUNCTION CALL 6·12
POINTERS AS FUNCTION ARGUMENTS 6·16
FUNCTION STORAGE CLASSES 6·23

CHAPTER 7. EXPRESSIONS 7·1
OVERVIEW 7·3
CONSTANT EXPRESSIONS 7·5
IDENTIFIER EXPRESSIONS 7·8

CHAPTER 8. OPERATORS 8·1
OVERVIEW 8·3
LVALUES AND VARIABLES 8·7
SIMPLE ASSIGNMENT OPERATOR (:=) 8·10
TYPE COMPATIBILITY 8·13
ARITHMETIC CONVERSION OF SCALARS ... 8·15
ADDITIVE OPERATORS (+.) 8·20
MULTIPLICATIVE OPERATORS (* I %) 8·23
INCREMENT AND DECREMENT
OPERATORS (+ + - -) 8·27

ARITHMETIC OPERATORS USED WITH
POINTERS 8·31

VI

UNARY ARITHMETIC OPERATORS (-'v'v) 8-36
RELATIONAL OPERATORS
(= "v = < > < = > =) 8-40

LOGICAL OPERATORS (& I) 8-45
CONDITIONAL OPERATOR (?:) 8-50
SHIFT OPERATORS « < > » 8-53
BIT OPERATORS (&& II I!) 8-57
POINTER OPERATORS (... &) 8-62
SIZEOF OPERATOR (SIZEOF) 8-65
CAST OPERATOR « » 8-68
UNARY NOT OPERATOR ("v) 8-72
SUBSCRIPTING OPERATOR ([]) 8-74
FIELD OPERATOR (.) 8-78
FUNCTION CALL OPERATOR « » 8-80
ASSIGNMENT OPERATORS (operator =) 8-83
THE PARENTHESES AND COMMA
OPERATORS «) ,) 8-86

OPERATOR PRECEDENCE 8-90

CHAPTER 9. STATEMENTS 9-1
OVERVIEW 9-3
EXPRESSION STATEMENTS 9-6
COMPOUND STATEMENTS AND BLOCKS 9-9
IF ... THEN AND IF. .. THEN ... ELSE
STATEMENTS 9-12

CASE STATEMENT 9-21
LOOP WHILE STATEMENTS 9-27
LABELED AND GOTO STATEMENTS 9-33
NULL STATEMENT 9-37

CHAPTER 10. DASL MACROS 10-1
OVERVIEW 10-3
MACRO CALL FORMATS 10-6
THE INCLUDE MACRO 10-10
THE DEFINE MACRO 10-11
THE IFELSE MACRO 10-13
THE INCR MACRO 10-15
THE SUBSTR MACRO 10-17
RECURSIVE MACROS 10-19
EVALUATION SUPRESSION SYMBOLS # [#] 10-23
COMMAS AND PARENTHESES IN MACROS . 10-24

vii

viii

CHAPTER 1.
INTRODUCTION TO THE DASL
REFERENCE SECTION

Contents
OVERVIEW•.•...................... 1-3

ORGANIZATION OF THIS SECTION 1-5

50807-01 DASL USER'S GUIDE 1-1

1-2 DASL USER'S GUIDE 50807-01

OVERVIEW

Introduction

This section is a reference guide on the use of
Datapoint's Advanced Systems Programming
language (DASL). It is designed to be used by
programmers as they design, code, and debug DASL
programs. It can also be used in conjunction with
training to reinforce and review information.

Description of DASL

DASL is a high level language that provides the
powerful general constructs required for successful
structured programming. DASL also has many of the
'low level' capabilities of an assembler language.

Continued on next page

50807-01 DASL USER'S GUIDE 1-3

OVERVIEW, Continued

Features of DASL

1-4

The features of DASL include the following:

• simplicity

• ease of program

- analysis
- maintenance
- modification

• variety of data types and operators

• a simple macro facility

• fast compilation

• efficient execution

• independence from a specific machine or operating
system.

DASL USER'S GUIDE 50807-01

ORGANIZATION OF THIS SECTION

Rationale for organization of this section

This section is organized to provide programmers with
reference information that

• is comprehensive enough to address all the
components of DASL,

• is in categories that are most useful to a programmer,

50807·01

• anticipates the types of questions that might prompt
the programmer to turn to the guide,

• includes many specific examples illustrating
concepts, and

• is easy to retrieve.

Information is presented so that there is a logical
progression from the beginning to the end of this
section. However, each chapter can be read and
understood independently of other chapters.

Information is organized by major components of
DASL. A programmer can quickly find the answer to
a specific question about using one component of the
language.

Continued on next page

DASL USER'S GUIDE 1-5

ORGANIZATION OF THIS SECTION, Continued

Coming up

1-6

The following table describes the chapters of this
section of the guide.

THIS chapter ... DESCRIBES ...

INTRODUCTION the features of DASL and
the organization of the
DASL section of the guide.

PROGRAM the structure of a DASL
STRUCTURE program, and introduces the

major components of DASL.

STRUCTURED guidelines for using the
PROGRAMMING structured programming

approach with DASL.

LEXICAL RULES DASL vocabulary rules.

DATA TYPES AND the declaration and uses of
DECLARATIONS data types.

FUNCTIONS the declaration and uses of
functions.

EXPRESSIONS the meaning and use of
expressions.

OPERATORS the syntax, semantic rules,
and use of DASL operators.

Continued on next page

DASL USER'S GUIDE 50807-01

ORGANIZATION OF THIS SECTION, Continued

Coming Up,
(continued)

THIS chapter... DESCRIBES ...

STATEMENTS the syntax, semantic rules,
and use of statements,
including flow of control
constructs.

MACROS the rules for, and
uses of, macros, including
predefined and recursive
macros.

1/0 independent

S0807-01

Because DASL is designed to be machine and
operating system independent, the language itself does
not contain any inputKmtput (110) facilities. Therefore,
this section does not refer to any specific 110 package
or operating system. Rather, it describes the syntax
and structure of the language.

DASL USER'S GUIDE 1-7

1-8 DASL USER'S GUIDE 508070 \

CHAPTER 2.
STRUCTURE OF A DASL PROGRAM

Contents

50807-01

OVERVIEW OF DASL PROGRAM STRUCTURE .. 2·3

A SAMPLE PROGRAM ILLUSTRATING
PROGRAM STRUCTURE 2·8

DASL USER'S GUIDE 2-1

2-2 DASL USER'S GUIDE 50801-{}1

OVERVIEW OF DASL PROGRAM
STRUCTURE

Introduction

A DASL program is made up of declarations of
functions and data variables. The diagram below
gives you a 'picture' of a DASL program.

Continued on next page

50807-01 DASL USER'S GUIDE 2-3

OVERVIEW OF DASL PROGRAM STRUCTURE,
Continued

Diagram

2-4

The following diagram outlines the main parts of a
DASL program. The parts do not necessarily occur in
this order.

INCLUDE FILES

TYPE DECLARATIONS

GLOBAL VARIABLE
DECLARATIONS

FUNCTION DECLARATIONS
local variables

Statements
Function calls

MAIN FUNCTION DECLARATION I Program
local variables I execution

statements I starts
Function calls I here.

Continued on next page

DASL USER'S GUIDE 50807-01

OVERVIEW OF DASL PROGRAM STRUCTURE,
Continued

Description of INCLUDE files

INCLUDE is a compile time directive to temporarily
switch the current input file to the one indicated.

Description of type declaration

Every data variable in DASL must be declared to be a
specific type. The data type determines the amount of
storage to allocate and how to interpret the data item.

The data types in DASL include scalar, pointer, array,
structure, and function. DASL includes a facility
called TYPDEF which allows the programmer to
create new names for data types.

Description of local and global variables

Data variables may be either local or global.

A local variable is declared within a function, and its
scope is limited to that particular function.

A global variable is declared outside of any function.
Its scope lasts from the point at which it is declared to
the end of the module.

Continued on next page

50807·01 DASL USER'S GUIDE 2-5

OVERVIEW OF DASL PROGRAM STRUCTURE,
Continued

Definition of a DASL function

A junction in DASL is an independent unit which
consists of local variables and statements.

A function performs one or more actions, usually
related to one specific task.

You can reference a function with a statement from
within any other function which is declared
subsequently.

Functions allow for modular programming because
they can be coded, debugged, or re-implemented
independently of each other.

Statements, expressions, and operators

2-6

Statements specify the actions which a function must
take. Statements are composed of expressions and
flow of control constructs, such as LOOP WHILE
and IE . .THEN ... ELSE.

One or more expressions are often combined with an
operator, which indicates what is to be done with the
expression(s). DASL provides a large variety of
operators.

Continued on next page

DASL USER'S GUIDE 50807-01

OVERVIEW OF DASL PROGRAM STRUCTURE,
Continued

Description of MAIN function

Every DASL program has one function named MAIN,
which is where program execution starts.

50807-01

The MAIN function usually serves to define the
overall structure of the program and consists of calls
to other functions and I/O routines.

DASL USER'S GUIDE 2-7

A SAMPLE PROGRAM
ILLUSTRATING PROGRAM
STRUCTURE

Introduction

On the following page, a short DASL program is
presented to illustrate the basic structure of the
language.

Following the sample program are:

• a brief description of the major components of the
program,

• a description of some of the statements, operators
and expressions used in the program, and

• an explanation of what the program does.

Purpose of sample program

2-8

The purpose of the sample program is to provide a
general introduction to DASL. You may want to refer
back to the sample after you have studied specific
details of the language.

Continued on next page

DASL USER'S GUIDE 50807-01

A SAMPLE PROGRAM ILLUSTRATING
PROGRAM STRUCTURE, Continued

Example

50807·01

1* This program computes the average vaLue
in an array of numbers, determines the
Largest vaLue in the array, and prints the
resuLts. *1 1* 1 */

INCLUDE (DSINe>
INCLUDE (DSRMS) 1* 2 *1

DEFINE (si zeArray, 10) 1* 3 *1

list [sizeArrayl BYTE:= { 1* 4 *1
10,9,7,1,2,6,5,4,2,9
};

calculateAverage (ptrLi st "BYTE, 1* 5 *1
si zeLi st BYTE) UNSIGNED :=

VAR sum UNSIGNED;

{
n BYTE;

IF sizeList = 0 THEN RESULT := 0
ELSE {

};

sum := n := 0;
LOOP {

sum += ptrList++";
WHILE ++n < sizeList;

};
RES U L T : = sum 1 s i z eLi s t ;
};

Continued on next page

DASL USER'S GUIDE 2-9

A SAMPLE PROGRAM ILLUSTRATING
PROGRAM STRUCTURE, Continued

Example,
(continued)

LargestVaLue (ptrList A BYTE,
sizeList BYTE) BYTE :=

VAR item, n BYTE;
{

RESULT := ptrList A ;

n : = 0;
LOOP {

item := ptrList++ A;
IF item> RESULT THEN RESULT := item;

WHILE ++n < sizeList;
};

} . ,
ENTRY MAIN () :=
VAR LargestItemInList BYTE;

averageOfList UNSIGNED;
{

averageOfLi st :=

1* 6 *1

1* 7 *1

1* 8 *1

caLcuLateAverage (&List[OJ, SIZEOF List);
LargestItemInLi st :=

2-10

LargestVaLue (&List[OJ, SIZEOF List); 1* 9 *1

ij"r1t e (' A v era 9 e i s I, a v era 9 e 0 f Lis t) ;
\. ·.w,.r i t e (' La r 9 est vaL u e i n Lis tis I

. . LargestItemInLi sO;

Continued on next page

DASL USER'S GUIDE 50807,01

A SAMPLE PROGRAM ILLUSTRATING
PROGRAM STRUCTURE, Continued

Part of program

50807·01

The following chart describes the important elements
of the example program.

PARr DESCRIPTION

Comment Documents part of program; ignored
1 by compiler

INCLUDE Compile time directive to temporarily
2 switch current input file to one indicated

DEFINE A macro which can be used to define a
3 name for a constant

global Declares global variables, which may
variable be initialized
declaration

4

function Independent unit which performs a
5 specific task

function type Describes the formal parameters and
6 return value of a function

statement Includes one or more statements which
body indicate actions to be performed

7

Continued on next page

DASL USER'S GUIDE 2-11

A SAMPLE PROGRAM ILLUSTRATING
PROGRAM STRUCTURE, Continued

Part of program
(continued)

PART DESCRIPTION

local Declares one or more variables which
variable are local to the function in which
declaration they are declared

8
function call A statement which passes control to

9 another function

Description of statements

2-12

Statements are made up of expressions and flow of
control constructs, such as LOOP - WHILE.

Statements in DASL are normally executed in
sequence, but several kinds of statements alter the flow
of control.

Each statement ends with a semi-colon.

Compound statements begin and end with braces.

Continued on next page

DASL USER'S GUIDE 50807-01

A SAMPLE PROGRAM ILLUSTRATING
PROGRAM STRUCTURE, Continued

Description of operators

DASL provides a variety of operators, only a few of
which are illustrated in the sample program.

An understanding of the operators which involve
pointers is essential to understanding the sample
program.

These operators are described in the following chart.

OPERAIDR USE OF OPERAIDR
WITH POINTERS

" Returns the value of the object to
which a pointer points

& Returns the address of an object in
memory

++ Increments a pointer by the size of the
object to which a pointer points

The position of the + + operator before
or after the operand determines
whether the operand is incremented
before or after the value of the
operand is used in the expression.

Continued on next page

50807-01 DASL USER'S GUIDE 2-13

A SAMPLE PROGRAM ILLUSTRATING
PROGRAM STRUCTURE, Continued

Summary of program

2-14

The chart below summarizes the actions performed by
the sample program.

STAGE PERFORMS
THIS function ... this action ...

1 MAIN calls the function
calculateAverage with 2
parameters.

2 calculateAverage computes the average value
of the components of list,
and returns the value to
MAIN.

3 MAIN assigns the result of the
function calculateAverage
to the variable
averageOfList.

4 MAIN calls the function
largestValue with two
parameters.

5 largest Value determines the largest
value among the components
of list, and returns the
value to MAIN.

Continued on next page

DASL USER'S GUIDE 50807·01

A SAMPLE PROGRAM ILLUSTRATING
PROGRAM STRUCTURE, Continued

Summary of program,
(continued)

STAGE
THIS function ...

6 MAIN

PERFORMS
this action ...

assigns the result of the
function largest Value to the
variable largestItemList.

7 MAIN calls on standard 110
routines to print the
values of averageOfList and
largestItemInList on the
screen.

50807-01 DASL USER'S GUIDE 2-15

2-16 DASL USER'S GUIDE 50807-01

CHAPTER 3.
STRUCTURED PROGRAMMING

Contents

50807-01

OVERVIEW•.......•..•............. 3-3

PRINCIPLES OF STRUCTURED
PROGRAMMING ...••..•...........•..... 3-7

TOP DOWN DESIGN GUIDELINES .•.....•.... 3-8

INDEPENDENT FUNCTIONS •.....••..••.••• 3-12

THREE BASIC TYPES OF STATEMENTS •...... 3-14

GUIDELINES FOR CODING•........... 3-17

GUIDELINES FOR CODING IDENTIFIERS AND
CONSTANTS 3-18

GUIDELINES FOR INDENTATION •••......... 3-22

GUIDELINES FOR CODING MULTIPLE
STATEMENTS AND MULTIPLE LINES .•...•.. 3-23

GUIDELINES FOR CODING PARENTHESES ..•• 3-24

GUIDELINES FOR CODING COMMENTS .•.••• 3-25

CRITERIA FOR A QUALITY DASL PROGRAM .. 3-28

DASL USER'S GUIDE 3-1

3-2 DASL USER'S GUIDE 50807-0

OVERVIEW

Introduction

This chapter highlights the major concepts of
structured programming as they relate to DASL.

The remaining chapters of this section provide the
information a programmer needs to code a DASL
program based on structured programming concepts.

Most programmers have had some exposure to, and
experience with, structured programming. This
chapter is included to provide

• a summary of the structured programming approach,

;0807-01

• a common framework for DASL programmers,

• guidelines for coding a DASL program that reflect
structured programming, and

• criteria for a quality DASL program.

Continued on next page

DASL USER'S GUIDE 3-3

OVERVIEW, Continued

Definition

Benefits

3-4

Structured programming is an approach to
programming that systematically integrates the process
of program design, coding, and testing.

Structured programming involves the use of

• top down design

• independent program functions

• structured coding principles.

Structured programming offers the following benefits
to the DASL programmer.

BENEFIT

Easier to develop
large programs

EXPLANATION

• Programming is based on an
explicit general design.

• Hierarchy of blocks of code
allows programmer to solve
small problems in order.

• Programmer can work from
general aspects of problem to
specific details.

Continued on next page

DASL USER'S GUIDE 50807·01

OVERVIEW, Continued

Benefits,
(continued)

BENEFIT

Fewer initial
errors

Easier to test
and debug

Easier to
maintain

•

•

•

•

•

•

•

EXPLANATION

Time spent designing program
minimizes logic errors.

Use of small functions narrows
the focus, reducing the
factors the programmer must
keep track of at one time.

Improved readability allows
programmer and others to spot
errors before compiling.

A function with a single entry
and single exit generally
limits the source of errors to
that one function.

Use of stub (dummy functions)
allows the program to be
tested before it is complete.

Improved readability allows
programmer (or others) to go
back to a program and follow
its logic.

Use of independent functions
generally allows one function
to be changed with no impact
on other functions.

Continued on next page

50807·01 DASL USER'S GUIDE 3-5

OVERVIEW, Continued

Coming up

The following pages describe

• principles of structured programming,

• top down design,

• independent functions,

• three basic types of statements,

• guidelines for coding, and

• criteria for a quality DASL program.

3-6 DASL USER'S GUIDE 50807-01

PRINCIPLES OF STRUCTURED
PROGRAMMING

Introduction

The programmer's objective is to write correct,
efficient, and easily modifiable programs. The
principles of structured progamming provide a basis
for obtaining this objective.

Principles

The following are four basic principles of structured
programming.

• The design approach is top down.

• A program is composed of basically independent
functions .

• Only three types of statements are necessary for
constructing functions.

• Programs should be readable by programmer and
anyone involved in the maintenance of the programs.

50807-01

Each of these principles is discussed on the following
pages.

DASL USER'S GUIDE 3-7

TOP DOWN DESIGN GUIDELINES

Introduction

3-8

The design approach in structured programming is top
down.

Top down design involves the following steps:

• definition of the problem

• general design of the whole program

• development of a main module which controls flow
of processing for the whole program

• continuous refinement from general task to specific
subtasks.

Continued on next page

DASL USER'S GUIDE 50807·01

TOP DOWN DESIGN GUIDELINES, Continued

Designing a program

STAGE DESCRIPTION GUIDELINES

1 Define the • Describe what you
problem want to do.

• Describe input and
output.

2 Design general • Use English language
structure of statements. I

the program • Indicate what you
want to accomplish,
not how.

3 Refine program • Break each general
in steps task into specific

subtasks.

• Develop data structure
details needed by each
subtask.

• Check that subtasks,
together, achieve task.

• Validate each subtask
before further
refinement.

Continued on next page

50807·01 DASL USER'S GUIDE 3-9

TOP DOWN DESIGN GUIDELINES, Continued

Hierarchy diagram

A hierarchy diagram helps in designing a structured
program. A diagram graphically indicates the
relationships between the tasks and subtasks.

Example: The following is an example of a hierarchy
diagram developed for a program that generates
several random numbers, finds the average of those
numbers, and prints that average.

I MAIN module I
fill the array find the print the

average average
I

find a random
number

Use of stubs

3-10

Use stubs to test the coding of general tasks or
subtasks.

A stub is a dummy function included in a program to
allow compilation and execution to take place.
Generally, stubs only write a message that you have
reached this function, indicating that the link to the
function is correct.

Continued on next page

DASL USER'S GUIDE 50807·01

TOP DOWN DESIGN GUIDELINES, Continued

Additional design hints

50807·01

The following hints help insure a well designed
program:

• Have someone else read your programs; a fresh set
of eyes can often spot flaws in logic or omissions
that you may not notice.

• Don't be afraid to start over; sometimes it is more
efficient to start over than it is to keep refining a
problematic unit of code.

• Refer to documentation to determine available
options.

DASL USER'S GUIDE 3-11

INDEPENDENT FUNCTIONS

Description

A structured program is made up of a series of small
functions. Each function addresses a single task.

Each program function should be self-contained and
independent of other functions in the program (to the
greatest degree possible). Each function should have a
single entry and a single exit.

Advantages of independent functions

A program consisting of independent functions allows
a programmer to modify or remove one function
without affecting the rest of the program (assuming
the inputkmtput specifications for the function remain
the same).

Function length guideline

3-12

Although structured programming does not have rules
for the length of a function, most functions should
not include more than 50 to 60 lines. This should be
enough code to perform one task, which is all a
function should do.

Continued on next page

DASL USER'S GUIDE 50807·01

INDEPENDENT FUNCTIONS, Continued

Making functions independent

50807-01

The following hints can help you make functions
independent.

• Avoid unnecessary modifictions of global variables
(keep function free of undesirable side effects).

• Declare all temporary variables local to the function
in which they occur.

• Avoid changes to input parameters that are passed
indirectly whenever possible (if there are not
memory space limitations); input parameters should
be passed by value.

DASL USER'S GUIDE 3-13

THREE BASIC TYPES OF
STATEMENTS

Introduction

Coding a structured program can be done using only
three basic types of statements:

• sequential

• conditional

• iterative.

Description of sequential statement

A sequential statement performs an operation and
then continues on to the next statement in the
program, as the diagram below indicates:

Sta~ment H State2ment ~ Sta~ment

Continued on next page

3-14 DASL USER'S GUIDE 50807-01

THREE BASIC TYPES OF STATEMENTS,
Continued

Description of conditional statement

50807-01

A conditional statement performs a test to decide
which statements to execute next. The IF/THENIELSE
and CASE statements are examples of DASL
conditional statements. The diagram on the next page
illustrates a conditional statement.

Statement
2

Statement
1

Continued on next page

DASL USER'S GUIDE 3-15

THREE BASIC TYPES OF STATEMENTS,
Continued

Description of iterative statement

3-16

An iterative statement repetitively executes a statement
or number of statements as long as the condition is
true. The lOOP WHILE statement is the only
iterative statement in DASL. The following diagram
illustrates an iterative statement.

false

Comment: The Gam statement is not necessary in
DASL, although it can be used. (See pages called
Gam Statements.)

DASL USER'S GUIDE 50807-01

GUIDELINES FOR CODING

Principle

The program code should clearly reflect the logic of a
structured program. The programmer should never
sacrifice program clarity for

• cleverness

• minor reductions in machine execution time.

Coming up

50807·01

The following pages provide guidelines that promote
readable code that clearly reflects the structured
program logic.

Guidelines are presented for the following aspects of
coding:

• identifiers and constants

• indentation

• multiple statements and multiple lines

• parentheses

• comments.

DASL USER'S GUIDE 3-17

GUIDELINES FOR CODING
IDENTIFIERS AND CONSTANTS

Hints

3-18

Good mnemonic identifiers are very important in
making a program easy to read and understand.

The following table provides some hints for clear
identifiers.

HINT EXAMPLE

Use description identifier average : = sumkount;

Don't abbreviate unnecessarily; Instead of txl, use a
DASL allows 30 characters more readable identi-

fier, such as textLine.

Make identifiers made up The identifier nega-
of more than one word tivesum should be
easier to read by using written as negativeSum.
uppercase and lowercase
letters. Capitalize the
first letter of each word
after the first word.

Continued on next page

DASL USER'S GUIDE 50807-01

GUIDELINES FOR CODING IDENTIFIERS AND
CONSTANTS, Continued

Hints,
(continued)

HINT

Name associated items with
the same prefix (or suffix)

Do not choose identifiers
that might be confused.

EXAMPLE

The prefix 'scroll'
could be used with
identifiers associated
with scrolling:

• scrollUp
• scrollDown
• scrollS top

The suffix 'line' could
be used with identi-
fiers associated with
lines:

• firstLine
• maxLine
• currentLine

yz and y2 are easily
confused, as are
positionMax and
positionMax2.

Continued on next page

50807-01 DASL USER'S GUIDE 3-19

GUIDELINES FOR CODING IDENTIFIERS AND
CONSTANTS, Continued

Hints,
(continued)

HINT

Use relevant function
identifiers.

EXAMPLE

The following excerpt of a
MAIN function illustrates
that relevant function names
permit the reader to under­
stand what the program does:

readData(List);
vaLidDate(List,ok);
IF ok THEN {

computeMean(List,mean);
computeVariance (List,

variance);
printResuLts (mean,

variance);
}

ELSE errorHandLer;

Continued on next page

3-20 DASL USER'S GUIDE 50807·01

GUIDELINES FOR CODING IDENTIFIERS AND
CONSTANTS, Continued

Constants

50807·01

Name constants instead of using numbers in the code.
This provides the following advantages:

• easier reading (the reader doesn't have to figure out
the significance of a number in a statement).

• easier maintenance (only the value associated with
the constant name needs to be changed; no other
code needs to be c~anged when a constant value).

NOTE: For information on assigning names to
constants, see pages called The Define Macro.

DASL USER'S GUIDE 3-21

GUIDELINES FOR INDENTATION

Introduction

Standard

Since DASL is a free-format language, indentation is
simply used to promote readablility.

DASL programs should be written as a series of
properly nested control constructs. The depth of this
nesting is usually called the level of nesting.

A recommended standard for indentation is to indent
3 spaces for each level. All statements on the same
level should be aligned.

Formats for different statements

3-22

The recommended indentation formats for the
following types of statements are discussed in the
section called Statements:

• LOOP WHILE,

• IF..THEN and IF..THEN ... ELSE, and

• CASE.

DASL USER'S GUIDE 50807-01

GUIDELINES FOR CODING
MULTIPLE STATEMENTS AND
MULTIPLE LINES

Guidelines

50807-01

The following guidelines relate to multiple statements
per line and multiple lines per statement.

• Generally, put only one control statement (i.e.,
lDOP WHILE, IE . .THEN, CASE) on one line.

• Two non-control statements may be put on the same
line only if they are logically related, or if you want
to describe them both with a single comment.

• If a statement is too long to fit on a single line,
position the continuation on the next line so that
structurally related parts of the statement are
aligned, andbr indent at least 2 spaces.

Example:

IF (a < 0 I a > 99) &
(b < 0 I b > 99) &
(c < 0 I c > 99) THEN getArray ();

DASL USER'S GUIDE 3-23

GUIDELINES FOR CODING
PARENTHESES

Purpose

Caution

Use parentheses to make clear to the reader the
operands associated with each operator. The reader
should not have to memorize precedence and syntax
rules to interpret code.

Example:

The following statement is ambiguous to the reader
unfamiliar with DASL precedence rules:

status := lines> page & sum + 1 < totalLines;

Parentheses make the statement easier to read:

status := (l i nes > page) & «sum + 1) <tota l Li nes);

NOTE: The expression in the inner parentheses is
performed first.

Although parentheses make the program more
readable, using too many of them can make the code
cluttered and confusing.

Also, be careful that the use of parentheses is
consistent with the processing you want to occur.

DASL USER'S GUIDE 50807·01

GUIDELINES FOR CODING
COMMENTS

Purpose

Rules

Comments should be included as part of the program
code. These comments should help make explicit to
the reader the logic of the program.

Comments do not affect the processing of the
program.

Comments start with a /* and end with a *l You can
also use a period, plus sign, or asterisk at the
beginning of a line to indicate that line is a comment.

Comments may be placed on a separate line, at the
end of a statement or expression, or even nested in the
middle of a line.

Comment as you code

5Q8Q7-01

You should include comments in a program as you
write it, while the code is fresh in your mind.

Continued on next page

DASL USER'S GUIDE 3-25

GUIDELINES FOR CODING COMMENTS,
Continued

Guidelines

3-26

The following are some guidelines for using comments
to improve the readability of a program.

• Don't restate the obvious.

Example: The following comment is unnecessary:
read(date); /* input the date */

• Use simple, clear language.

Example: For the following statement:
IF text" = page" THEN

instead of this comment:
/* check the 2 link fields in the doubly linked list

to see if they are pointing to the same node
element */

it is clearer to say:
/* determine if we have come to the end of the

list */

• Comment on the purpose of a section of code, not
on how it works.

• Use comments to indicate the beginning and ending
of LOOP WHILE statements, if there are many
layers of nesting.

• Comment on each item in a declaration.

Continued on next page

DASL USER'S GUIDE 50807-01

GUIDELINES FOR CODING COMMENTS,
Continued

Guidelines,
(continued)

Examples:

DEFINE (high, 999) /* highest valid character
count */

counter INTi 1* total number of times
through the loop *1

• Comment at the beginning of the program, indicating

- what the program does
- the method(s) it uses
- programmer's name and the date the program was

written.
- documents used (if any)
- date of, and reason for, modification

• Separate function with comments explaining

- what the function does
- entry conditions (initial values passed into function)
- exit conditions (values returned and any resulting
changes in the state of the program).

50807-01 DASL USER'S GUIDE 3-27

CRITERIA FOR A QUALITY DASL
PROGRAM

Introduction

In addition to consistency with the structured
programming principles and guidelines for coding
already discussed in this chapter, there are several
criteria for a quality DASL program.

These additional criteria include

• the program produces meaningful results from any
data set

• the program does not terminate during execution
because of run-time errors

• functions are used properly

• the program is portable

• the program is generalizable.

Continued on next page

3-28 DASL USER'S GUIDE 50807·01

CRITERIA FOR A QUALITY DASL PROGRAM,
Continued

Meaningful results from any data set

50807·01

A quality program should produce meaningful results
. from any data. The program should not terminate
because of invalid data.

The program should contain validity tests for the data
and error messages. Error messages should be
generated when the program encounters invalid data.

These messages should indicate:

• what data is invalid,

• why it is invalid, and

• how the problem can be corrected.

Continued on next page

DASL USER'S GUIDE 3-29

CRITERIA FOR A QUALITY DASL PROGRAM,
Continued

Avoid run-time errors

3-30

The following run-time errors may cause a program to
terminate abnormally during execution:
• an improper argument for a function

• an attempt to read past end-of-file

• referencing a data object before it is initialized

• a condition which the CASE statement does not
address (use of the DEFAULT statement avoids this
possibility).

The following run-time conditions lead to meaningless
results:

• an array subscript which is greater than the number
of elements in the array

• division by zero

• a loop without a condition to terminate it.

Continued on next page

DASL USER'S GUIDE 50807·01

CRITERIA FOR A QUALITY DASL PROGRAM,
Continued

Functions are used properly

A program uses functions properly if it:

• takes advantage of commonly used functions that
are already in a program file

• protects the values of input parameters (if possible,
pass values directly rather than indirectly, i.e. using
pointers)

• keep temporary variables local to the function in
which they are used

• uses global variables minimally

• uses, where appropriate, signal flags to return to
the calling function error or abnormal condition
indications for a computation.

Program is portable

50807·0]

A portable program is independent from the
hardware, operating system, or compiler on which it is
run.

To the degree possible, avoid machine dependent
constructs. Localize and identify any such constructs.

Continued on next page

DASL USER'S GUIDE

CRITERIA FOR A QUALITY DASL PROGRAM,
Continued

Program is generalizable

3-32

A generalizable program is not dependent on any
specific data set. This means that the program
requires minimal changes as user needs change.

To promote generality

• use variables instead of constants

• use flexible data formats (e.g., use a named constant
for array bounds).

DASL USER'S GUIDE 50807·01

CHAPTER 4.
LEXICAL RULES

Contents

50807-01

OVERVIEW•.... 4-3

LEXICAL RULES: IDENTIFIERS AND
KEYWORDS •...•.••.•••••....•.•..•.... 4-5

LEXICAL RULES: NUMBERS AND STRINGS 4-8

LEXICAL RULES: OPERATORS AND
SEPARATORS ...•.................••.. 4-10

LEXICAL RULES: COMMENTS•... 4-11

DASL USER'S GUIDE 4-1

4-2 DASL USER'S GUIDE 50807-01

OVERVIEW

Introduction

In this chapter, we discuss the vocabulary of the
DASL language and the specific rules which apply to
each DASL token.

Classes of tokens

There are six classes of tokens in DASL:

• identifiers,

• keywords,

• numbers,

• strings,

• operators, and

• separators.

Continued on next page

50807-01 DASL USER'S GUIDE 4-3

OVERVIEW, Continued

White space and comments between tokens

Blanks, tabs, new lines, and comments may be used
freely between tokens. They are ignored by the
compiler except as they serve to separate tokens.

Either a blank or newline is required to separate
otherwise adjacent identifiers, keywords, and numbers.

Coming up

4-4

The following pages describe the lexical rules for

• identifiers and keywords

• numbers and strings

• operators and separators

• comments.

DASL USER'S GUIDE 50807·01

LEXICAL RULES: IDENTIFIERS AND
KEYWORDS

Kinds of identifiers

An identifier in DASL can represent a

• label,

• macro,

• variable,

• type, or

• function.

Continued on next page

50807·01 DASL USER'S GUIDE 4-5

LEXICAL RULES: IDENTIFIERS AND
KEYWORDS, Continued

Lexical rules for identifiers

The following rules apply to all identifiers regardless
of what kind of object they represent.

Composition: An identifier can contain any
combination of upper or lower-case letters, digits, and
the characters $ and _ (underscore). The first
character may not be a digit.

The compiler distinguishes between upper and
lower-case letters. For example, the identifiers
number, NUMBER and Number are all different.

Length: An identifier can be any length, as long as it
fits on one line. However, the compiler uses only the
first 29 characters and the last character to distinguish
one identifier from another.

Only the first seven characters and the last character
are significant in ENTRY or EXTERN identifiers.

Examples of identifiers

4-6

The following are examples of valid DASL identifiers:

b
file_Name
$CLOSE

Continued on next page

DASL USER'S GUIDE 50807-0

LEXICAL RULES: IDENTIFIERS AND
KEYWORDS, Continued

Predefined identifiers

I
I
I
I

50807-01

The identifiers on the next page are reserved use as
keywords. They may not be redefined. These
keywords are grouped here according to their use in a
program.

USED IN ...
STATEMENT DECLARATIONS OTHER

CASE ENTRY FAST
DEFAULT EXTERN SIZEOF
ELSE RECURSIVE SYSTEM
GOTO STATIC
IF STRUCT
LOOP TYPDEF
THEN UNION
WHILE VAR

The following identifiers are predefined by the
compiler.

TYPES MACROS

BOOLEAN DEFINE
BYTE IFELSE
CHAR INCLUDE
INT INCR
LONG SUBSTR
UNSIGNED

The identifier RESULT is predefined inside functions.

DASL USER'S GUIDE 4-7

LEXICAL RULES: NUMBERS AND
STRINGS

Lexical rules for numbers

The following chart shows the rules for representing
decimal, octal, or hexadecimal numbers.

THIS type of number. .. IS a sequence of digits ...

decimal not beginning with the digit O.

Examples: 56
700

octal • beginning with the digit
0, and

• not including the digits
8 or 9.

Examples: 05
0706

hexadecimal • combined with the
characters A through F
(upper or lower-case),
and

• beginning with the
characters Ox or OX.

Examples: OXA5
Oxfb6

Continued on next page

4-8 DASL USER'S GUIDE 50807-01

LEXICAL RULES: NUMBERS AND STRINGS,
Continued

Lexical rules for strings

50807·01

A string is a sequence of characters surrounded by
apostrophes. A newline in the middle of a string is
ignored.

Example:

'cat'
'This is a string.'
'hello
good-bye'

An apostrophe within a string is represented by two
consecutive apostrophes.

Example:

'This is Tom"s book.'

DASL USER'S GUIDE 4-9

LEXICAL RULES: OPERATORS AND
SEPARATORS

Operator symbols

Each of the following characters can be used
independently, or in combinations, to represent
operators.

! % I & * () - + = [] '\, ,.. < > .: ? I

Separator symbols

The following characters are used as separators.

{ } :;,

4-10 DASL USER'S GUIDE 50807·0i

LEXICAL RULES: COMMENTS

Lexical rules for comments

50807·01

A comment is a line or other portion of text which is
completely ignored by the compiler.

A comment line is any line starting with a period,
asterisk, or plus character.

A comment is any text which begins with the
characters /* and ends with the characters */.

Comments may be nested.

DASL USER'S GUIDE 4-11

4-12 DASL USER'S GUIDE 50807·0

CHAPTER 5.
DATA TYPES AND DECLARATIONS

Contents
OVERVIEW 5-3

OVERVIEW OF DATA TYPES 5-5

TYPDEF DECLARATION 5-10

VARIABLE DECLARATION - OVERViEW 5-14

VARIABLE DECLARATION: LOCAL AND
GLOBAL VARIABLES 5-16

VARIABLE DECLARATIONS:
STORAGE CLASSES 5-21

VARIABLE DECLARATION:
INITIALIZATION 5-25

SCALAR TYPES 5-28

POINTER TYPE 5-33

ARRAY TYPE 5-41

STRUCTURE TYPES 5-51

50807-01 DASL USER'S GUIDE 5-1

5-2 DASL USER'S GUIDE 5080Ull

OVERVIEW

Introduction

DASL is a typed language. This means that every
variable must be declared as a type before it can be
used in a DASL program.

Definition of data type

A data type is a construct which is used to define the
set of values a variable may assume.

The data type determines

• the amount of storage to allocate for a particular
data item, and

• how to interpret the data item when it is used in an
expression.

Description of variable declaration

A variable declaration establishes the type of a
variable and determines its scope. The variable
declaration may also cause storage to be allocated.

All variables must be declared before they can be used
in a program.

Continued on next page

50807-01 DASL USER'S GUIDE 5-3

OVERVIEW, Continued

Coming up

5-4

The chapter describes

• data types

• TYPDEF declaration

• variable declaration

- local and global variables
- storage classes
- initialization

• scalar types

• pointer type

• array type

• structure types.

DASL USER'S GUIDE 50807-0

OVERVIEW OF DATA TYPES

Introduction

The following pages provide a brief description of the
data types in DASL.

Each type is discussed in more detail later in the
chapter.

Kinds of data types

DASL provides several predefined types, and various
methods for creating more complex data structures.

The data types in DASL include

• scalar,

• pointer,

• array,

• structure, and

• function.

Continued on next page

50807-01 DASL USER'S GUIDE 5-5

OVERVIEW OF DATA TYPES, Continued

Definition of scalar type

A scalar type describes an integer value.

The six predefined scalar types in DASL are:

• BOOLEAN

• CHAR

• BYTE

• UNSIGNED

·INT

• LONG.

NOTE: There is currently no floating point type.

Definition of pOinter type

5-6

A pointer type describes a value which is the address
of some object in memory.

Continued on next page

DASL USER'S GUIDE 50807-01

OVERVIEW OF DATA TYPES, Continued

Definition of array type

An array type is an aggregate type containing a fixed
number of components which are all the same type.
Each component of an array can be accessed by an
index.

Definition of structure type

A structure type is an aggregate type containing a
fixed number of components which may be of
different types. Each component of a structure can be
accessed by name.

There are two kinds of structure types, STRUCT and
UNION. The difference between the STRUCT and
UNION types is in their memory allocation.

Continued on next page

50807·01 DASL USER'S GUIDE 5-7

OVERVIEW OF DATA TYPES, Continued

Definition of function type

A junction type describes the parameters and results
of function call.

A function is considered a type in DASL because

• a pointer can contain the address of a function, and

• a function type can be defined in a TYPEDEF
declaration.

Description of TYPDEF

TYPDEF is a facility for creating new data type
identifiers. See the pages called TYPDEF
Declarations.

Type compatibility

5-8

Several operators require their operands to be of
compatible type. The rules for type compatibility are
presented in the discussions of each specific data type.

Continued on next page

DASL USER'S GUIDE 50807-0

OVERVIEW OF OAT A TYPES, Continued

Other derived types

It is possible to simulate other data types by using the
DASL macro facility.

For example, the DASL programmer can use macros
to declare enumerated types and sets. See the chapter
called Macros.

Changing an expression's type

50807·0]

You can cause the type of an expression to be
reinterpreted locally by using the cast operator. See
the pages called Cast Operator.

DASL USER'S GUIDE 5-9

TYPDEF DECLARATION

Introduction

A data type in DASL may be either directly described
in the variable declaration or referenced by a type
identifier.

DASL provides several standard type identifiers for
scalar types. In addition, DASL provides a facility
called TYPDEF for creating new data type identifiers.

Description of TYPDEF

Syntax

5-10

TYPDEF is a facility for creating new data type
identifiers.

TYPDEF declarations do not reserve storage. Instead,
they define identifiers which can be used later as if
they were type keywords.

TYPDEF does not introduce brand new types, only
synonyms for types which could be specified in
another way.

The syntax for a TYPDEF declaration is:

--C TYPDEF ~~er ~~t-ype---'~

Continued on next page

DASL USER'S GUIDE 50807-01

TYPDEF DECLARATION, Continued

Example

In the following example, the TYPDEF facility is used
to create the type identifier Matrix.

TYPDEF Matrix [50J [50J BOOLEAN;

Important: In the declaration above, Matrix has not
been declared as a variable. Rather, Matrix has been
declared as a type identifier for a particular
two-dimensional array.

Naming convention for type identifiers

50807'()1

The naming convention for type identifiers is to
capitalize the first letter of the identifier.

Continued on next page

DASL USER'S GUIDE 5-11

TVPDEF DECLARATION, Continued

Using TVPDEF in a program

5-12

By using TYPDEF declarations a programmer can
avoid repetition of lengthy definitions.

Example: In the following example, Date is first
declared as a type. Later in the program, variables are
declared which are of type Date, or which have
elements of type Date.

TYPDEF Date STRUCT {
month, date, year INT;
remi nder [25] CHARi
} ;

appointment, meeting Date; 1* declares variables
of Date *1

dateArray [50] Date;

person STRUCT {

name [25] CHAR;
birthdate Date;
} ;

dateptr " Date;

1* declares an array
of Date *1

1* declares a
structure which
includes another
structure *1

1* as one *1
1* of the fields */

1* declares a pointer
to a Date type */

Continued on next page

DASL USER'S GUIDE 50807·01

TYPDEF DECLARATION, Continued

Advantages

50807·01

One of the advantages of using TYPDEF declarations
is that they eliminate repetition of definitions, as
illustrated in the previous example.

TYPDEFs also make program modification easier. If
a programmer decides to change the definition of a
variable, the change only has to be made in one place.

Another advantage in using TYPDEFs is that they add
clarity to program documentation. It is easier to read
and refer to type definitions which are grouped
together rather than scattered and repeated throughout
a program.

DASL USER'S GUIDE 5-13

VARIABLE
DECLARATION - OVERVI EW

Description

Rule

Syntax

5-14

A variable declaration establishes the type of a
variable, and determines its scope. The variable
declaration may also cause storage to be allocated.
Storage is discussed on the pages called Storage
Classes.

The type of a variable may be any type except a
function type.

You must declare all variables before you can use
them in a program.

This diagram shows the syntax for declaring a
variable.

The type is omitted only for ENTRY declarations
which follow EXTERN declarations in the same block.

Continued on next page

DASL USER'S GUIDE 50807-01

VARIABLE DECLARATION-OVERVIEW,
Continued

Example

This is an example of a variable declaration which
includes an initializer and the storage class ENTRY.

i1entifier r initializer

ENTRY lineNum INT : = 0;
t t

storage type
class

Coming up

Next, the following aspects of variable declaration are
discussed:

• local and global variables

• storage classes

• initialization.

50807·01 DASL USER'S GUIDE 5-15

VARIABLE DECLARATION: LOCAL
AND GLOBAL VARIABLES

Introduction

In this section, we discuss local and global variables
and how they differ in

• declaration,

• scope, and

• storage.

Scope of variables

The scope of a variable refers to the part of the
program for which the variable is defined.

Continued on next page

5-16 DASL USER'S GUIDE 50807-01

VARIABLE DECLARATION: LOCAL AND
GLOBAL VARIABLES, Continued

Comparison

The following table compares various aspects of local
and global variables.

S0807'()1

ASPECT OF LOCAL
COMPARISON: VARIABLES

Declaration Local variables are
declared at the
beginning of a
function.

The keyword V AR
precedes local vari­
able declarations.

Function parameters
and the RESULT
identifier are also
local varables, but
they are not
explicitly declared.

GLOBAL
VARIABLES

Global variables
are declared out­
side of any
function.

Continued on next page

DASL USER'S GUIDE 5-17

VARIABLE DECLARATION: LOCAL AND
GLOBAL VARIABLES, Continued

Comparison,
(continued)

ASPECT OF LOCAL GLOBAL
VARIABLES

5-18

COMPARISON: VARIABLES

Scope

Optional
storage
classes

The scope of a local The scope of a
variable is limited global variable
to the function in lasts from the
which it is point at which it
declared. is declared in a

Variables of the
same name outside
of the function are
unrelated.

module to the end
of that module.

A global variable
can have no
effect inside a
function which
has a local variable
of the same name.

Local variables can Global variables
be declared STATIC can be declared
or EXTERN. EXTERN or ENTRY.

Use of the keyword
STATIC is not
necessary for global
variables since they
are always static.

Continued on next page::

DASL USER'S GUIDE 50807-0

VARIABLE DECLARATION: LOCAL AND
GLOBAL VARIABLES, Continued

Comparison,
(continued)

ASPECT OF LOCAL GLOBAL
VARIABLES

50807-01

COMPARISON: VARIABLES

Storage
allocation

Storage is allocated Storage is allocated
for a local variable for a global variable
only when the func- when it is defined
tion is called. The except in the case of
variable disappears EXTERN declarations.
when the function is
exited. A global variable

Exception: Storage
is allocated perman­
ently for the class
STATIC.

remains in existence
permanently and
retains its value
between different
function calls.

Continued on next page

DASL USER'S GUIDE 5-19

VARIABLE DECLARATION: LOCAL AND
GLOBAL VARIABLES, Continued

Example

5-20

The following program fragment shows the
declaration of both local and global variables.

pWork A [256] BYTE;
flags BOOLEAN;
size BYTE;

1* global variable
1* declarations

*1
*1

func (b INT) INT := 1* b is a local variable*1
VAR length, count INT; 1* local variable

declarations *1
{

RESULT := length; 1* RESULT is a local
variable *1

} ;

ENTRY MAIN () :=
VAR ch CHAR; 1* local variable *1

intArray [20] INT; 1* declaration *1
{

c h : = I A I; 1* ass gnment to local
var able *1

size := 5; 1* ass gnment to global
var able *1

} . ,

DASL USER'S GUIDE 50807-01

VARIABLE DECLARATIONS:
STORAGE CLASSES

Introduction

DASL provides three optional storage classes for
variables. These classes are:

• STATIC

• ENTRY

• EXTERN.

Description of STATIC storage class

50807-01

The storage class STATIC causes a local variable to be
permanently allocated instead of being allocated
dynamically each time a function is called.

A STATIC variable can be initialized. The value of a
STATIC variable remains in memory between one
function call and the next.

Continued on next page

DASL USER'S GUIDE 5-21

VARIABLE DECLARATIONS: STORAGE
CLASSES, Continued

Declaration of a STATIC local variable

To declare a STATIC variable, you preface the
variable declaration with the keyword STATIC.

Example:

random () UNSIGNED: =
VAR STATIC seed UNSIGNED :=14723;
{

RESULT: = seed :=(seed * k1) + k2) + k3;
};

NOTE: Each time the function random is called, the
previous result becomes the seed for the next
calculation.

Use of ENTRY and EXTERN storage classes

5-22

The storage classes ENTRY and EXTERN are
commonly used in large programs in order to allow
communication between different modules.

Continued on next page

DASL USER'S GUIDE 50807-01

VARIABLE DECLARATIONS: STORAGE
CLASSES, Continued

Description of ENTRY storage class

A global variable declared as ENTRY becomes an
entry point which may be referenced by other program
modules when the modules are linked together.

The ENTRY definition causes new memory space to
be allocated for the variable.

An ENTRY definition for a particular variable can
occur in only one module in a complete program.

Description of EXTERN storage class

50807-01

The keyword EXTERN in a variable declaration
indicates that storage for the identifiers being declared
is allocated somewhere else in the program.

If a variable is declared to be EXTERN, then
somewhere among the modules of the complete
program there must be a definition for the variable
which allocates storage. Often this definition occurs
with the ENTRY class in another DASL program
module or in an assembly language routine.

Local variables may be declared as EXTERN, but this
is not very common.

Continued on next page

DASL USER'S GUIDE 5-23

VARIABLE DECLARATIONS: STORAGE
CLASSES, Continued

ENTRY and EXTERN in the same block

If a variable has been declared EXTERN, such as by
an INCLUDE file, it may be redeclared as ENTRY in
the same block.

In this case, the ENTRY declaration omits the type
specification. In all other cases the type is required.

If is a good idea to put EXTERN declarations in an
INCLUDE file so that the type specification appears
in only one place.

Example of ENTRY and EXTERN declarations

5-24

The ENTRY and EXTERN storage classes are more
commonly used with function declarations than with
other variable declarations.

Therefore, a complete example of how the ENTRY
and EXTERN classes are used in a program is
presented in the next chapter on the pages called
Function Storage Classes.

DASL USER'S GUIDE 50807-0

VARIABLE DECLARATION:
INITIALIZATION

Description

Certain kinds of variables may be given an initial
value in their declaration.

Initialization takes place when the program is loaded
rather than at run time.

No default initialization

If you do not explicitly initialize variables, or assign
values to them in program statements, then the
variables have undefined values.

Continued on next page

50807-01 DASL USER'S GUIDE 5-25

VARIABLE DECLARATION: 'INITIALIZATION

General rules for variable initialization

5-26

There are four general rules which apply to the
initialization of variables of any type.

1. You may initialize a variable in its declaration if
the variable is

• STATIC, or

• global but not EXTERN.

2. If you specify an initializer, then you may give
only one identifier in the identifier list.

3. An initializer for a scalar or pointer variable is an
expression of compatible type. You may also
initialize an array of characters with a string
constant of identical size.

4. Initialized expressions must be values which are
constants when the program is linked. These
expressions may involve

• numeric and string constants,

• addresses of STATIC variables, and

• addresses of arrays subscripted by constants.

Continued on next page

DASL USER'S GUIDE 50807-01

VARIABLE DECLARATION: INITIALIZATION

Specific rules for initialization

Specific rules for initialization are given on the pages
called

• Scalar Types,

• Pointer Type,

• Array Type, and

• Structure Types.

Syntax for initializer

50807~1

This first diagram shows where the optional initializer
comes at the end of a variable declaration.

The following diagram shows the syntax for initializers
which may be nested.

DASL USER'S GUIDE 5-27

SCALAR TYPES

Description of scalar type

A scalar type describes an integer value. Each scalar
has associated with it

• its length in bytes, and

• whether it is signed or unsigned.

Predefined scalar types

5-28

The following scalar types are predefined by the
compiler.

TYPE NUMBER
IDENTIFIER OF BYTES SIGNED UNSIGNED

BOOLEAN 1 X

CHAR 1 X

BYTE 1 X

UNSIGNED 2 X

INT 2 X

IDNG 4 X

NOTE: The only scalar types which may be defined by
a TYPDEF declaration are types equivalent to the
predefined types.

Continued on next page

DASL USER'S GUIDE 50807-01

SCALAR TYPES, Continued

Syntax for scalar declaration

To declare a variable as a scalar type, use the
following syntax.

~(~-"'.~I ide n t i fie r 11---]or---t.~1 ~; ~; • r
-------(0 ----

Example of scalar variable declaration

S080HH

The following variable declarations. declare two
variables of type CHAR and two variables of type
UNSIGNED.

CHAR;
UNSIGNED;

c 1. c 2
length
currPos UNSIGNED; 1* line number of current

record· *1

Comment: You can declare variables of the same type
together, separating them with a comma.

Sometimes it is more convenient to declare variables of
the same type on separate lines. This allows you to
add a comment for a specific declaration.

Continued on next page

DASL USER'S GUIDE 5-29

SCALAR TYPES, Continued

Variable initialization

You may initialize a global or STATIC scalar variable
in the declaration.

See the pages entitled Variable Declaration: Initialization
for the general rules for initializing variables.

Example:

lineOnBL UNSIGNED :=0;
currPos UNSIGNED :=0;
eof BOOLEAN:= FALSE;

Type compatibility for scalars

Any two scalar types are compatible with each other.

Continued on next page

5-30 DASL USER'S GUIDE 50807-01

SCALAR TYPES, Continued

Operations permitted on scalars

The following chart lists the operations which are
permitted on scalars.

See the chapter called Operators for a complete
description of each operator.

Continued on next page

S0807-O) DASL USER'S GUIDE 5-31

SCALAR TYPES, Continued

Operations permitted on scalars,
(continued)

OPERATOR(S)
)

SEE THESE PAGES
/\ / [J . (--

+ - Additive Operators

* I % Multiplicative Operators

++ -- Increment/Decrement Operators

= "-= <> <= >= Relational Operators

& I Logical Operators

? : Conditional Operators

« » Shift Operators

- "-"- Unary Arithmetic Operators

&& II !! Bit Operators

& Pointer Operators

SIZEOF SIZEOF Operator

<type> Cast Operator

- op= Assignment Operators

'" Unary Not Operator

5-32 DASLUSER'S GUIDE 50807-0

POINTER TYPE

Description of pointer type

A pointer type describes a value which is either

• the address of some object in memory, or

• the value zero, representing a null pointer.

Definition of null pOinter

A null pointer is a pointer whose value is zero.

DASL guarantees that no pointer that points to data
ever contains zero. Therefore, a null pointer can be
used to signal a special event such as the end of a
linked list.

Pointer size

For the 5500 instruction set, all pointers are two bytes
long.

Continued on next page

50807-01 DASL USER'S GUIDE 5-33

POINTER TYPE, Continued

Syntax for pOinter type

The syntax for a pointer type is:

-+0---1 type I •
A pointer may contain the address of an object of any
data type. This type must be declared in the pointer
declaration following the 1\ symbol.

Syntax for pOinter declaration

5-34

To declare a variable as a pointer, use the following
syntax.

-C"7'""""·~11 identifier 1-1-r--... ·..40J-----tl·~1 type r--.
----c0""-4)

Continued on next page

DASL USER'S GBIDE 50807·01

POINTER TYPES, Continued

Example of pOinter declaration

50807-01

The following variable declarations declare pointers to
several different types.

intPtr A INTi
charPtr A CHARi
pWork A [256] BYTEi
pNode A STRUCT {

name [12] CHARi
flags BYTEi
};

Pointers to arrays or structures contain the address of
the fIrst component of the object.

Continued on next page

DASL USER'S GUIDE 5-35

POINTER TYPE, Continued

Forward reference

5-36

The identifier for the type which a pointer points to
may be a forward reference which is defined later by a
TYPDEF declaration.

Example:

TYPDEF Node STRUCT {
name [12] CHAR;
link A Arc;
};

TYPDEF Arc STRUCT {
start. end Node;
};

You only have to define a type identifier if the
definition is needed by the compiler to determine the
meaning of an expression involving the pointer type.

Continued on next page

DASL USER'S GUIDE 50807·0

POINTER TYPE, Continued

Variable initialization

You may initialize a global or STATIC pointer
variable in the declaration.

See the pages called Variable Declaration:
Initialization for the general rules for initializing
variables.

Usually the values for pointer initialization are zero
(null pointer) or an expression involving addresses of
previously defined data of appropriate types.

Example of pointer initialization

0807-01

This example uses the address operator &. The
address operator yields the address of the operand
which follows it.

intPtr" INT:= 0;
fi leNode [255] BYTE;
pFi leNode" BYTE := &fi leNode[O];

The last statement in this example assigns the address
of the first component of fileNode to the pointer
pFileNode.

Continued on next page

DASL USER'S GUIDE 5-37

POINTER TYPE, Continued

Type compatibility

5-38

Pointer types are compatible only if the types pointed
to are compatible types of the same size.

Two pointers must be of compatible type if they are
operands for the assignment operator, conditional
operator, or one of the relational operators.

Continued on next pag

DASL USER'S GUIDE 50807-i

POINTER TYPE, Continued

Operations permitted on pOinters

50807-01

The following chart lists the operations which are
permitted on pointers or which return a pointer value.

See the chapter entitled Operators for a complete
description of each operator.

I
USE OF OPERATOR(S) SEE THESE

OPERATOR(S) WITH POINTERS PAGES

+ add a pointer and a scalar

- subtract a scalar from Pointer
a pointer, or subtract Arithmetic
a pointer from a pointer

++ -- increment (or decrement)
a pointer by the size of
the object to which the
pointer points

= '\,= establish an ordered Relational
<> relationship Operators
<= >=

&1 establish a logical Logical
relationship Operators

? establish a conditional Conditional
relationship Operators

Continued on next page

DASL USER'S GUIDE 5-39

POINTER TYPE, Continued

Operations permitted on pOinters,
(continued)

USE OF OPERATOR(S) SEE THESE
OPERATOR(S) WITH POINTERS PAGES

& return the address of Pointer
an object

1\ return the value of Operators
the object to which a
pointer points

SIZEOF return the size of, SIZEOF
in bytes Operators

'" return the logical Unary
"not" Negation

Operator

<type> cast (reinterpret Cast
locally) as the Operator
Specified type

- assign a value Simple
Assignment
Operator

+= add (subtract) a scalar Assignment
-= to a pointer, and then Operators

assign the result to
pointer.

5-40 DASL USER'S GUIDE 50807·01

ARRAY TYPE

Definition of array

An array is an aggregate type containing a number of
components which are all the same type. The array
components may be any type except function type.

The number of components in an array is given by a
compile-time constant.

The compiler allocates sequential memory locations
for the array components.

Syntax for array type

The syntax for the array type is:

-([)i+j oonstant expression il-<D-I type ~
Continued on next page

50807-01 DASL USER'S GUIDE 5-41

ARRAY TYPE, Continued

Syntax for array declaration

To declare a variable as an array, use the following
syntax,

constant expression

Example: The following variable declaration declares
typefaces to be an array of six characters,

typefaces [6] CHAR i

'd 'f'· bt d t<-__ _ 1 ent 1 1 e r--.1 uppe r oun - type
(number of
eLements)

General syntax for initializing arrays

5-42

You may initialize an array by listing initializers for
components of the array in ascending order inside
braces,

Example:

date [4] INT:={1, 2,3, 4}i

See the pages called Variable Declaration:
Initialization for the general rules for initializing
variables,

Continued on next pag€

DASL USER'S GUIDE 50807-0

ARRAY TYPE, Continued

Formats for initializing arrays

50807-01

The following 5 formats for initializing arrays
represent variations of the general syntax.

FORMAT EXAMPLE

Bound may be omitted: The first date [] INT :=

bound of the array type specifica- {1,2,3,4};

tion may be omitted if the array is
initialized. The compiler will
determine the bound from the
number of initializers specified.

String constants as initializers: line [] CHAR :=

String constants may be used to {'abc',015};

initialize part or all of
a character array.

Braces may be omitted with string options

constants: You may omit the braces [3] CHAR :=

. around a string constant initializer
'abc';

if the length of the string matches
the array bound.

Braces must be nested: Braces must dimension

be nested if a component of an array [3] [2] INT :=
{{1,2},{2,4},

is an array or a named structure. {3,6}};

Continued on next page

DASL USER'S GUIDE 5-43

ARRAY TYPE, Continued ..

Formats for initializing arrays,
(continued)

FORMAT

:; '.' ,:

Partial initialization: You do not
have to initialize all the compon-
ents when you initialize an array.
However, any initializers listed
will be assigned to the array
starting with the first components
of the array.

EXAMPLE

date [4] INT :=
{1 , 2};

NOTE: The bound may not be omitted if you are not
initializing all the components of an array.

No default initialization

If you do not assign values to array components, the
compiler does not automatically assign zeros or blanks.

The array components assume the value of whatever
values exist in the memory space reserved for the array.

Continued on next page

DASL USER'S GUIDE 50807·01

ARRAY TYPE, Continued

Accessing a component of an array

50807·01

The components of an array are numbered with
indices from zero to one less than the number of
components specified as the upper bound.

You can access an individual component of an array
using the index. Set the index to one less than the
position in the array of the component you wish to
access.

Example:

VAR lineNumber [8] INT:
{

.
lineNumber[O] := 5;
} ;

In the statement, lineNumber[O] : = 5; the index 0
refers to the first component of the array, lineNumber.
Thus, this statement assigns the value 5 to the first
component of the array, lineN umber.

Continued on next page

DASL USER'S GUIDE 5-45

ARRAY TYPE, Continued

Index out of bounds

5-46

There is no run-time checking for array indices which
are out of bounds.

For example, if you declare the variable charArray
[15] CHAR, then the expression charArray[20] does
not necessarily result in an error.

Continued on next pag

DASL USER'S GUIDE 50807·

~RRAY TYPE, Continued

Definition of multi-dimensional arrays

0807-01

A multi-dimensional array is an array whose
components are arrays.

An array such as page [24] [15] is considered a
two-dimensional array. It can be thought of as a
matrix or grid. You can have arrays with as many
dimensions as you need.

Example:

VAR textLine [15] CHAR;
page [24] [15] CHAR;

{

textLine[O] :='A';
page[1] [5] :=textLine[O];

.
};

The expression, page [1] [5], accesses the sixth
component of page's second array:

page [1]

•
[5]

• • identifier index of second index of the sixth
element (an array)
of the page (array)

element (of the
second array)

Thus, the statement, page[1] [5] : = textLine[O];, assigns
the character 'A' (the value of the first component of
the first component of the array, textLine), to the sixth
component of page's second array.

Continued on next page

DASL USER'S GUIDE 5-47

ARRAY TYPE, Continued

Arrays of other aggregate types

5-48

The components of an array can be any type except
the function type. The following two examples
illustrate arrays of the structure types, STRUCT and
UNION.

Example 1: This variable declaration declares an array
date of structures.

date [10] STRUCT {
month, day, year INTi
message [20] CHARi
}i

Example 2: This example shows a TYPDEF
declaration for a UNION, uval and then a variable
declaration for an array of type Uval.

TYPDEF UvaL UNION {
ivaL INTi
cvaL CHARi
} . ,

List [50] UvaLi

Continued on next pa~

DASL USER'S GUIDE 50807-

ARRAY TYPE, Continued

Type compatibility for arrays

0807-01

Two array types are compatible if they

• have the same upper upper bound, and

• are made up of components which are of compatible
types of the same size.

Two arrays must be of compatible type if they are
operands for the assignment operator or for one of the
relational operators.

You can assign values of components of one array to
the components of another array if both arrays are
compatible.

Example:

VAR a [3] CHAR;
b [3] BYTE;

{

a : = b;

};

The statement, a : = b; assigns the values of components
of array b to the components of array a.

Continued on next page

DASL USER'S GUIDE 5-49

ARRAY TYPE, Continued .

Operations permitted on arrays

5-50

This chart lists the operations which are permitted on
arrays.

See the chapter entitled Operators for a complete
description of each operator.

OPERATOR(S) DESCRIPTION SEE THESE PAGES

- assign a value Simple Assignment
Operator

= '\,= <> establish an Relational
<= >= ordered relation- Operators

ship

& Take the address Pointer
of Operators

SIZEOF return the size SIZEOF Operators
of, in bytes

<type> Cast (reinterpret Cast Operator
locally) as the
specified type

[] select an array Subscripting
component Operator

DASL USER'S GUIDE 50807-0

STRUCTURE TYPES

Definition of structure

50807-01

A structure is a collection of one or more variable
components, possibly of different types, grouped
together under a single name.

A structure can include components of any type except
the function type.

Every component (also known as a field) of a
structure can be named and referenced.

Names of fields are unique to each structure.

Continued on next page

DASL USER'S GUIDE 5·51

STRUCTURE TYPES, Continued

Kinds of structure types

DASL provides two different kinds of structure types,
STRUCT and UNION. The following table shows
how these types differ in their use and memory
allocation.

ASPECT OF
COMPARISON STRUCT

use The STRUCT type
permits a group of
variables to be treated
as a unit instead of as
separate entities.

STRUCTs can be used
to build linked lists, trees
and other recursive data
structures.

memory The compiler allocates
allocation sequential memory

locations for each
separate field of a
STRUCT

UNION

UNIONs are usually
used within
STRUCTs to represent
an element whose
type is different under
different run-time
conditions.

The compiler allocates
only the amount of
storage needed for the
longest field of the
UNION.

The first field starts at Each field starts at

5-52

offset zero. the beginning of the
UNION at offset
zero.

Continued on next page

DASL USER'S GUIDE 50807-0

STRUCTURE TYPES, Continued

Syntax for structure types

The syntax is the same for STRUCT and UNION
types.

Syntax for structure declaration

To declare a variable as a STRUCT or UNION, use
the following syntax.

The identifier is optional if the structure is nested
within another structure.

Continued on next page

50807·01 DASL USER'S GUIDE 5-53

STRUCTURE TYPES, Continued

Example of STRUCT declaration

A description of a student consists of name, age, sex
and grade.

These four variables can all be placed into a single
STRUCT like this:

student STRUCT {
name [30] CHARi
age, grade INTi
sex CHARi
} i

Example of UNION declaration

5-54

The following declaration declares a UNION variable,
uval, which may contain a value of type BYTE or
CHAR.

uva l UNION {
bBYTEi
ch CHARi
}i

Either a BYTE or a CHAR may be assigned to uval
and then used in expressions. The type retrieved from
a UNION must be the type most recently stored.

Continued on next page

DASL USER'S GUIDE 50807·01

STRUCTURE TYPES, Continued

Declaring structures with TYPDEF

50807-01

Structures are commonly declared in a TYPDEF
declaration. Subsequent variable declarations can
then refer to the name of the structure.

Example:

TYPDEF NodeInfo STRUCT {
name [12] CHAR;
flags BYTE;
} ;

node NodeInfo; 1* declares a variable of type *1
1* NodeInfo *1

nodeArray [256] NodeInfo; 1* dec lares an array of
NodeInfo *1

Continued on next page

DASL USER'S GUIDE 5-55

STRUCTURE TYPES, Continued'

Syntax for initializing a STRUCT

5-56

You may initialize a STRUCT by listing in order the
fields of the STRUCT inside braces.

See pages called Variable Declaration: Initialization
for general rules for initializing variables.

Example:

TYPDEF String STRUCT {
firstPtr 1\ CHAR;
len, max Len UNSIGNED;
firstFlag, prevFlag BOOLEAN;
};

line [201] CHAR;

str String := {
&line[OJ,
0, SIZEOF line,
TRUE, TRUE
};

Continued on next pagl

DASL USER'S GUIDE 50807·(

STRUCTURE TYPES, Continued

Example of accessing structure fields

The following example shows how you can access
different fields of STRUCT.

person STRUCT {
firstName [10] CHAR;
LastName [10] CHAR;
age INT;
UNION {

} ;

unempLoyed STRUCT {
sex CHAR;
numMonth INT;
};

empLoyed STRUCT {
company [15] CHAR;
numYears INT;
} ;

};

init () :=
{ , . , , . ,

= 30;

person.firstName := 'Joe
person.LastName := 'Brown
person. age
person.unempLoyed.sex
person.unempLoyed.numMonths =
} ;

• M I;
7;

Note that the field unemployed of the unnamed
UNION is referred to as part of the outer STRUCT.

Continued on next page

50807·0] DASL USER'S GUIDE 5-57

STRUCTURE TYPES, Continued

Syntax for initializing a nested STRUCT

You must nest braces if you are initializing a STRUCT
which contains an array field or a named STRUCT or
UNION field.

Example:

str STRUCT {
array [5] INT;
flag BOOLEAN;
5 STRUCT {

ch CHAR;
num INT;
};

} := {{1,2,3,4,5}, TRUE, {'A',4}};

If the nested STRUCTs were unnamed, then you
would write 'A', 4 instead of {'A',4}.

Accessing fields of a structure

5-58

To access a field of a structure, use both the name of
the structure and the name of the field, separated by a
period.

To access a field of a nested structure, name each of
the outer structures in order, and the field.

If a nested structure is unnamed, then you refer to its
fields as part of the outer structure.

Continued on next pa~

DASL USER'S GUIDE 50807-,

STRUCTURE TYPES, Continued

Partial initialization of a STRUCT

You do not have to initialize all of the fields when you
intialize a STRUCT. However, any initializers listed
will be assigned to the first fields of the STRUCT.

Syntax for initializing a UNION

50807·01

A UNION is treated like a STRUCT in its
initialization. However, only the first alternative
field of a UNION may be initialized.

Example:

uvaL UNION {
i I NT;
b BYTE;
un UNSIGNED;
}:={S};

In this example i is assigned the value 5. You cannot
initialize the variables b or un in the declaration of
uval.

Continued on next page

DASL USER'S GUIDE 5-59

STRUCTURE TYPES, Continued

Nested structures

5-60

A UNION or a STRUCT may be nested within
another UNION or STRUCT. Any nested structure
can be unnamed.

The following example shows a STRUCT nested
within a UNION, which is in turn nested within a
STRUCT. In this example, the UNION is unnamed.

TYPDEF Node STRUCT {
name [12] CHAR;
left, right A Node;
typ INT;
UNION {

};

str [8] CHAR;
s STRUCT {

};

val1, val2 INT;
};

This example declares a STRUCT type, Node, which
contains an array of 12 characters, two pointers to the
same STRUCT type, and a UNION. The UNION
contains an array or a STRUCT of two integers.

Continued on next pag(

DASL USER'S GUIDE 50807·0

STRUCTURE TYPES, Continued

Type compatibility for structures

50807·01

Two structures are of compatible type if they are
equivalent types.

Two types are equivalent if

• they are declared in the same type declaration, or

• one is a TYPDEF name for a type which is
equivalent to the other.

Two structures must be of compatible type if they are
operands for the assignment operator or for one of the
relational operators.

Continued on next page

DASL USER'S GUIDE 5-61

STRUCTURE TYPES, Continued

Operations permitted on structures

5-62

This chart lists the operations which are permitted on
structures.

See the chapter called Operators for a complete
description of each operator.

OPERATOR(S) DESCRIPTION SEE THESE
PAGES

- assign a value Simple
Assignment
Operator

= '\,= <> establish an ordered Relational
<= >= relationship Operators

& take the address of Pointer
Operators

SIZEOF return the size of, SIZEOF
in bytes Operator

<type> cast (reinterpret Cast
locally) as the Operator
specified type

select a field Field
Operator

Dl\SL USER'S GUIDE 50807-1

CHAPTER 6.
FUNCTIONS

Contents
OVERVIEW 6·3

FUNCTION DECLARATION 6·5

FUNCTION CALL 6·12

POINTERS AS FUNCTION ARGUMENTS 6·16

FUNCTION STORAGE CLASSES 6·23

0807-01 DASL USER'S GUIDE 6-1

6-2 DASL USER'S GUIDE 50807-01

OVERVIEW

Definition of function

A junction in DASL is an independent unit which
consists of local variables and statements.

A function performs one or more actions which are
usually related to one specific task.

You can reference a function from within any other
function, as long as the first function has already been
declared.

A function mayor may not return a value to its caller.
A function returns a value either directly, by an
assignment to RESULT, or indirectly through a
pointer. -

Functions and modular programming

)807-01

Functions allow you to break longer computing tasks
into small modules.

DASL programs usually consist of a number of small
functions, each dedicated to performing a specific task.

You can write, debug, test, and change functions
independently.

Continued on next page

DASL USER'S GUIDE 6-3

OVERVIEW, Continued

Coming up

6-4

The following aspects of functions are discussed in this
chapter:

• function declaration

• function call

• pointers as function arguments

• function storage classes.

DASL USER'S GUIDE 50807-(

FUNCTION DECLARATION

Description of function declaration

A function declaration declares one or more identifiers
to be names of a function.

The function declaration may also include

• storage class(es)

• function type,

• statement body.

Syntax diagram for function declaration

50807-01

This diagram shows the syntax for a function
declaration.

The type is omitted only when functions are redeclared
as ENTRY or RECURSIVE.

Function declarations may not be nested, except
EXTERN declarations.

The class specifications, ENTRY, EXTERN, and
RECURSIVE, are discussed on the pages called
Function Storage Classes.

Continued on next page

DASL USER'S GUIDE 6-5

FUNCTION DECLARATION, Continued

Example of a function declaration

6·6

The following example shows the different parts of a
function declaration.

statement
body

identifier functiontype

fac~oriaL~:=
VARmuLt INTi I*LocaLvariabLedecLaration*1
{

mu L t : = 1 i
RESULT := 1 i
LOOP {

WHILE muLt <= ni

}i

RESULT := RESULT * muLti
muLt ++i
}i

Continued on next page

DASL USER'S GUIDE 50807-01

FUNCTION DECLARATION, Continued

Description of function type

The function type describes the formal parameters and
the return value of a function.

The parameters and return value must be scalar or
pointer types.

Syntax for function type

50807·01

This diagram shows the syntax for a function type.

Example: The type of the function factorial in the
previous example is

(n I NT> I NT

~" ---formal type of type of
parameter parameter return value

A function may have more than one formal parameter
or none at all.

A function may return either one value or none.

Continued on next page

DASL USER'S GUIDE 6-7

FUNCTION DECLARATION, Continued

Definition of formal parameters

The formal parameters in a function type are value
parameters.

Formal parameters declare the type and the number of
arguments which can be passed to the function in a
function call.

Parentheses required

6-8

If a function has no formal parameters, you still need
to include parentheses in the function type declaration.

Example:

response () CHAR :=
{

.
};

Continued on next page

DASL USER'S GUIDE 50807·0

FUNCTION DECLARATION, Continued

Return value

To have a function return a value, you must

• declare the value in the function declaration, and

• assign a value to the predefined variable, RESULT,
in one of the statements in the function body.

Example:

RESULT :=time*multi

Description of statement body

The statement body of a function specifies the code to
be executed when the function is called.

50807·01

The statement may include local variable declarations.

If the statement body is present, only one identifier
may be specified.

Continued on next page

DASL USER'S GUIDE 6-9

FUNCTION DECLARATION, Continued

Omission of statement body

The statement body is omitted if

• the storage class is EXTERN, or

• the function type needs to be declared before the
function body is given, as in the case of mutual
recursion.

See the pages called Storage Classes for more
information.

Type compatibility for functions

6-10

Two functions are of compatible type if their types are
equivalent.

Two types are equivalent if

• they are declared in the same type declaration, or

• one is a TYPDEF name for a type which is
equivalent to the other.

Continued on next pag

DASL USER'S GUIDE 50807

FUNCTION DECLARATION, Continued

Operations permitted on functions

;0807·0)

The only three operators that may be used with
functions are the

• function call operator

• address operator

• cast operator.

DASL USER'S GUIDE 6-11

FUNCTION CALL

Definition

A function call is an expression which shifts the flow
of control to the beginning of the called function.

A function may be called from within any other
function, including itself or the function MAIN.

A function may be called with parameters and it may
return one value to the function which called it.

Description of function arguments

6-12

The parameters in the function call are referred to as
arguments in order to distinguish them from the
formal parameters in the function declaration.

Continued on next pag

DASL USER'S GUIDE 50807·

FUNCTION CALL, Continued

Example of a function call

This example shows a function call in the MAIN
function to the function max.

max (a, b INT) INT :=
{

IF a > b THEN RESULT := a
ELSE RESULT := b;

};

ENTRY MAIN () :=
VARn1,n2,n3INT;
{

n3 : = m a x (n 1 , n 2) ;

actual
arguments

function
call

} ;

In this example, max returns a value to the calling
function MAIN. The value of the function call max
(nl, n2) is the larger of nl or n2.

Continued on next page

50807·01 DASL USER'S GUIDE 6-13

FUNCTION CALL, Continued

Semantic information for function calls

The following rules apply to function calls.

• The expression preceding the parentheses in a
function call must be an lvalue referring to the
function. See the pages called Lvalues and
Variables .

• The expressions inside the parentheses (if any) are
the arguments for the function. The arguments
must agree in number, and be of compatible type,
with the formal parameter specified in the function
type.

• The type of the result (if specified) is the same as the
result type specified in the function type declaration.

Order of evaluation of arguments

6-14

The order of evaluation of the function arguments is
undefined by the language and depends on the
particular code generator used.

Usually the order of evaluation is not significant.
However, it can be cases where argument expressions
involve side effects as in the function call, func(p,p+ +).

Continued on next pag

DASL USER'S GUIDE 50807

FUNCTION CALL, Continued

Description of call by value

All function calls in DASL are 'call by value~ This
means that the called function receives a private,
temporary copy of each argument, not its address.

Within a function, each argument is a local variable
initialized to the value with which the function was
called. When the function is exited, the values of the
local variables are indeterminant.

The values of the formal parameters may be changed
within a function. However, these changes do not
affect the values of the actual arguments in the calling
function.

Function calls with pOinters

0807·01

You can indirectly modify variables in a calling
function by passing pointers as arguments.

The called function may change the value of the object
to which a pointer points.

For more information, see the following pages called
Pointers As Function Arguments.

DASL USER'S GUIDE 6-15

POINTERS AS FUNCTION
ARGUMENTS

Introduction

In· DASL, pointers are frequently used as actual
arguments in functions.

Using a pointer as a function argument is the only way
in DASL to

• modify a variable in the calling function,

• pass variables of aggregate types to functions, or

• pass function variables to other functions.

Modifying variables in the calling function

6-16

All argument passing in DASL is strictly by value.

Therefore, there is no direct way for the called
function to modify a variable in the calling function.

However, the called function can indirectly modify
variables in a calling function if pointers are passed as
arguments. The called function may change the value
of the object to which a pointer points.

Continued on next pagf

DASL USER'S GUIDE 50807·

POINTERS AS FUNCTION ARGUMENTS,
Continued

Example of using pOinters to modify variables

50807·01

In this example, the function swap is used to exchange
two integers.

swap (a, b" INT) :=
VARtempINTi
{

temp:=a"i
a":=b"i
b":=tempi
} . ,

ENTRY MAIN () :=
VARx,yINTi
{

IF x> y THEN swap (&x, &Y)i
} i

Comment: The arguments in the function call swap
(&x, &y) are pointers to x and y. In the function
swap, the formal parameters a and b also become
pointers to x and y. The function swap can change
the values x and y (in the MAIN function) by changing
the values of the objects to which the pointers point.

Continued on next page

DASL USER'S GUIDE 6-17

POINTERS AS FUNCTION ARGUMENTS,
Continued

Passing aggregate variables

6-18

Function parameters and return values must be of type
scalar or pointer. However, you can achieve the effect
of passing a variable of any type to a function by
passing a pointer to that type.

Continued on next page

DASL USER'S GUIDE 50807·01

POINTERS AS FUNCTION ARGUMENTS,
Continued

Example of passing an array

)807·01

The function maxAge has two parameters which are
both pointers to the structure type Person. The
function returns the value of the greatest age in an
array of Person.

TYPDEF Person STRUCT {
name [30] CHAR;
age INT;
};

maxAge (p, maxP A Person) INT :=
{

RESULT := ph.age;
LOOP { 1* cycle through array using *1

WHILE ++p <= maxP; /* pointer arithmetic *1
IF pA.age > RESULT THEN RESULT := pA.age;
};

};

ENTRY MAIN () :=
VAR personList [100] person;

max INT;
{

.
max:=maxAge(&personList[0],&personList[99]);
};

Continued on next page

DASL USER'S GUIDE 6-19

POINTERS AS FUNCfION ARGUMENTS,
Continued

Example of passing an array,
(continued)

Comment: The arguments in the function call

&personU st [0], &personLi st [99]

are pointers to the first and last components of the
array personList.

The function maxAge, using pointer arithmetic,
accesses the actual address of each component of the
array. In this example, the values in the array are not
changed. However, any change to the array within the
function maxAge would also change the array in the
calling function.

Passing function variables

6-20

Sometimes it is useful to develop a general function
which can call on alternative functions at each step of
a process.

You cannot pass a function as a parameter to another
function. However, you can pass a pointer to a
function, and then call that function indirectly.

Continued on next pag€

DASL USER'S GUIDE 50807-1

POINTERS AS FUNCTION VARIABLES,
Continued

Passing function variables,
(continued)

In order to do this, you must first define a function
using a TYPDEF declaration. You can then declare

• actual functions of this type, and

• pointers to this type.

Example of passing function variables

In the following example, the function treeWalk
traverses a tree and calls on one of two functions,
printTree or scanTree, to perform a process at each
node.

Continued on next page

50807·01 DASL USER'S GUIDE 6-21

POINTERS AS FUNCTION ARGUMENTS,
Continued

Example of passing function variables,
(continued)

TYPDEF FType (n A Node);

treeWaLk (tree A Node, process A Ftype);
{

Ivisit node of treel

process A (n); 1* indi rect function call to the *1
I*function pointed to by process*,

6-22

· };

printTree FType :=
{

· };

scanTree FType :=
{

·
};

ENTRY MAIN () :=
VAR tr A Node;
{

· treeWaLk(tr, &printTree);

· treeWaLk(tr, &scanTree);

};

DASL USER'S GUIDE 5080701

FUNCTION STORAGE CLASSES

Introduction

DASL provides three optional storage classes for
function variables:

• ENTRY,

• EXTERN, and

• RECURSIVE

Description of ENTRY and EXTERN classes

50807·01

The ENTRY and EXTERN class specifications have
the same meaning in function declarations as they do
in variable declarations.

The class ENTRY in a function declaration causes the
function name to be an entry point which may be
referenced by other program modules when the
modules are linked together.

The class EXTERN causes no storage to be allocated
but declares that the function name is defined as an
entry point in some program module.

If the storage class of a function is EXTERN, then the
statement body is omitted in the declaration but is
located in another DASL program module.

Continued on next page

DASL USER'S GUIDE 6-23

FUNCTION STORAGE CLASSES, Continued

Description of ENTRY and EXTERN classes,
(continued)

A function name which has been declared as
EXTERN may also be redeclared as ENTRY. In this
case, the type is omitted in the ENTRY declaration.

EXTERN declarations in INCLUDE files

EXTERN declarations are often grouped together in
an INCLUDE file.

In this way, declarations which are accessed by
multiple module only need to be written once. Also,
the types of variables and functions do not have to be
redeclared in the ENTRY declarations.

Example of ENTRY and EXTERN declarations

6-24

In the following example, the INCLUDE file
COMMON declares one variable and one function as
EXTERN.

The module FILE! redeclares the variable as ENTRY
while the module FILE2 redeclares the function as
ENTRY.

The two modules must be linked together using the
LINK utility.

Continued on next page

DASL USER'S GUIDE 50807·01

FUNCTION STORAGE CLASSES, Continued

Example of ENTRY and EXTERN declarations,
(continued)

50807-01

INCLUDE fi le: COMMON

EXTERN var INTi
EXTERN func (x INT)i

Module: FILE1

INCLUDE(COMMON)

ENTRY var := 1 i

f () : =
{

func(Y)i

}i

Module: FILE2

INCLUDE(COMMON)

ENTRY func :=
{

var := Xi

}i

Continued on next page

DASL USER'S GUIDE 6-25

FUNCTION STORAGE CLASSES, Continued

Description of RECURSIVE storage class

The RECURSIVE storage class declares that the
function may call itself. The keyword RECURSIVE
precedes the function name.

Example: This function computes the factorial of an
integer recursively.

RECURSIVE factorial (n INn INT:=
{

IFn=OTHENRESULT :=1/*non-recursive*1
ELSE RESULT:= n * factorial (n-1); 1* condi t i ons*,

};

Uses- of recursion

6-26

Recursion may be used in a number of programming
applications, such as

• parsing,

• tree and graph processing, and

• sorting.

Recursive routines usually cost more in terms of time
but sometimes work better or are easier to read than
iterative routines.

Continued on next page

DASL USER'S GUIDE 50807·(

FUNCTION STORAGE CLASSES, Continued

Non-recursive condition

Every recursive function must have a non-recursive
condition, in which the function stops calling itself
and allows the stack to pop off all of its accumulated
return values.

Each call of the function must in some manner bring
you closer to the non-recursive condition.

Syntax for mutual recursion

50807-01

In the case of mutual recursion, the function type
needs to be declared before the function body is given.

Subsequently, the function name must be redeclared
with the body provided. The type is omitted on the
second declaration, but the RECURSIVE class, if
needed, must be specified.

Continued on next page

DASL USER'S GUIDE 6-27

FUNCTION STORAGE CLASSES, Continued

Example of mutual recursion

6-28

The following example outlines a case of mutual
recursion in which the type of the function f is given
before its body.

f ex INT);

RECURSIVE 9 () :=
{

fey>;

· };

RECURSIVE f :=
{

· 9 ();

· };

DASL USER'S GUiDE 50807-U

CHAPTER 7.
EXPRESSIONS

Contents
OVERVIEW 7-3

CONSTANT EXPRESSIONS 7-5

IDENTIFIER EXPRESSIONS 7-8

0807-01 DASL USER'S GUIDE 7-1

7-2 DASL USER'S GUIDE 50807-Oi

OVERVIEW

Definition

An expression is a piece of DASL code which has a
value, and mayor may not have an address in
memory.

Expressions are used to

• compute a value to be used in statements or
declarations, or

• perform actions such as function calls.

:xpressions and operators

DASL provides a wide variety of operators which are
used to build expressions of different kinds.

Each operator and the expressions associated with it
are discussed in the following chapter.

Continued on next page

;0807-01 DASL USER'S GUIDE 7-3

Associated type of expressions

Every expression in DASL is evaluated to result in a
value of some specific type. The type of the result
depends on the operator and the kind of operands in
the expression.

The type helps determine the meaning of an expression
and is used for error checking.

Example: The meaning of the expression a-b depends
on the types of both a and b.

IF a is ... AND b is ... THEN type of a-b is ...

scalar scalar scalar.

pointer pointer scalar.

pointer scalar pointer.

Coming up

7-4

In this chapter we discuss constant expressions and
identifier expressions.

DASL USER'S GUIDE 50807·Qj

CONSTANT EXPRESSIONS

Description

A constant expression may be a

• numeric constant,

• string constant, or

• more than one scalar constant combined with
arithmetic operators.

Constant expressions are evaluated at compile time,
rather than run time.

Array bounds and case labels are required to be
compile-time constant expressions.

Definitions

A numeric constant is an integral number.

A string constant is a sequence of characters
surrounded by single quotes, such as 'abc'.

Continued on next page

50807-01 DASL USER'S GUIDE 7-5

CONSTANT EXPRESSIONS, Continued

Type of numeric constant

The following chart shows how the value of a
numberic constant determines its type.

IF the value of a numeric THEN its type is ...
constant...

fits in 16 bits UNSIGNED.

does not fit in 16 bits WNG.

is zero or the largest • pointer, when used
possible pointer value an operation with

a pointer, or

• UNSIGNED.

Type of string constant

A string normally has the type array of CHAR. A
string consisting of a single character may also be
considered to be of type UNSIGNED.

Continued on next page

7-6 DASL USER'S GUIDE 50807-01

CONSTANT EXPRESSIONS, Continued

String initialization

A string is initialized with the ASCII value of the
characters in the string.

Examples of constant expressions

The following expressions are all constant expressions.

'a'
5
'a' *5
3-'b' + ('x' -320)

t{ (< 1-
----'

"
.)

-f li :} r - ,l Ix

50807-01 DASL USER'S GUIDE 7-7

IDENTIFIER EXPRESSIONS

Definition

Type

7-8

An identifier expression is an expression which refers
to a previously declared (either in a variable or
function declaration) variable.

The type of an identifier is specified in its declaration.

DASL USER'S GUIDE 50807·01

CHAPTER 8.
OPERATORS

Contents

50807-01

OVERVIEW ...•............•......•...•. 8-3

LVALUES AND VARIABLES 8-7

SIMPLE ASSIGNMENT OPERATOR (:=) 8-10

TYPE COMPATIBILITY •..•................ 8-13

ARITHMETIC CONVERSION OF SCALARS 8-15

ADDITIVE OPERATORS (+, -) 8-20

MULTIPLICATIVE OPERATORS (* I %) 8-23

INCREMENT AND DECREMENT
OPERATORS (+ + - -) 8-27

ARITHMETIC OPERATORS USED WITH
POINTERS•••..••.•. 8-31

UNARY ARITHMETIC OPERATORS (- "'''') 8-36

RELATIONAL OPERATORS
(= "'= < > <= > =) 8-40

LOGICAL OPERATORS (& I) 8-45

CONDITIONAL OPERATOR (?:) 8-50

SHIFT OPERATORS « < > » 8-53

DASL USER'S GUIDE 8-1

BIT OPERATORS (&& II I!) .•...•...•.•.•..• 8·57

POINTER OPERATORS (I' &) 8·62

SIZEOF OPERATOR (SIZEOF)•..... 8·65

CAST OPERATOR « » 8·68

UNARY NOT OPERATOR ("') 8·72

SUBSCRIPTING OPERATOR ([]) 8·74

FIELD OPERATOR (.) ...•................ 8·78

FUNCTION CALL OPERATOR « » 8·80

ASSIGNMENT OPERATORS (operator =) 8·83

THE PARENTHESES AND COMMA
OPERATORS (0 ,) 8·86

OPERATOR PRECEDENCE•...••.•.•. 8·90

8-2 DASL USER'S GUIDE 50807'()1

OVERVIEW

Introduction

DASL provides a wide range of operators. An
operator indicates what is to be done with expressions.

In a sense, operators are like verbs in an English
sentence. They perform some process with expressions
or establish a relationship between expressions.

Definition of operand

An operand is an expression upon which an operator
acts.

Continued on next page

50807-01 DASL USER'S GUIDE 8-3

OVERVIEW, Continued

Uses of operators

Operators have several uses, including:

• assigning values

• performing arithmetic processes

• establishing relationships between operands

• performing processes at the bit level

• performing pointer processes

• indicating the size of an operand

• reinterpreting locally an operand's type definition

• selecting an element of an aggregate type.

Operator precedence

8-4

There is an order of precedence for DASL operators
reflecting the order in which they are performed.

This guide presents the DASL operators by the types
of processes they perform or the relationships they
establish, not in order of operator precedence. At the
end of this chapter there is a discussion of operator
precedence, with a chart for easy reference.

Continued on next page

DASL USER'S GUIDE 50807-01

OVERVIEW, Continued

Coming up

50807·01

The rest of this chapter addresses the following aspects
of operators:

• lvalues and variables

• type compatibility

• arithmetic conversion of scalars

• arithmetic operators used with pointers

• each DASL operator

• operator precedence.

Continued on next page

DASL USER'S GUIDE 8-5

OVERVIEW, Continued

Operator information

8-6

Each operator is described in terms of

• what it does

• syntax format, and

• semantic information, including

• operand requirements

• grouping, and

• results.

Examples are provided to illustrate how each operator
can be used.

DASL USER'S GUIDE S0807·0i

LVALUES AND VARIABLES

Operators and expressions

Certain operators require their operands to be lvalues
or variables, and yield results which are lvalues or
variables. Other operands do not involve lvalues or
variables.

It is important to distinguish between the terms lvalue
and variable and to recognize expressions which are
neither lvalues nor variables.

Definition of Ivalue

An lvalue is an expression which refers to an object in
memory.

Any expression which you can take the address of is
an lvalue.

Definition of variable

50807-01

A variable is an lvalue which can be modified. The
only lvalue which is not a variable is a string constant,
which cannot normally be modified.

An expression which can appear on the left side of an
assignment statement is a variable.

Continued on next page

DASL USER'S GUIDE 8-7

LVALUES AND VARIABLES, Continued

Distinction between Ivalues and variables

The only difference between the class of lvalues and
the class of variables is that lvalues include string
constants.

A string constant is considered an lvalue because it has
an address. However, it is not a variable because it
cannot be modified.

Examples of Ivalues and variables

8-8

The following expressions represent different kinds of
lvalues. (struct is a structure, list is an array, and p is
a pointer)

p
length"
structfield
list[5]
'hello'

All of these expressions are also variables except for
the string 'hello'.

Continued on next page

DASL USER'S GUIDE 50807-01

LVALUES AND VARIABLES, Continued

Numeric constants

50807-01

In addition to lvalue and variable operands, operators
may involve numeric constants.

A numeric constant is not an lvalue because it does
not have an addresss in memory.

DASL USER'S GUIDE 8-9

SIMPLE ASSIGNMENT OPERATOR
(:=)

Syntax

The syntax of the simple assignment operator is

expression -> expression: = expression

Example:

upperLimit :=10;
next Day : = today + 1;

The simple assignment operator requires two
operands. The assignment operator groups right to
left.

Semantic information

The operands must be of compatible types (see pages
called Type Compatibility).

The result of an assignment expression:

• has the value and type of the left operand

• is not an lvalue.

Continued on next page

8-10 DASL USER'S GUIDE 50807-01

SIMPLE ASSIGNMENT OPERATOR (:=),
Continued

Using more than one : = operator

You can use more than one assignment operator in a
statement if you want to assign the same value to more
than one operand.

Example:

You could combine the following two assignment
statements:

MU L T : = 1 ;
RESULT:=1;

into the following assignment statement:

MULT := RESULT := 1;

RESULT gets the value of 1, and MULT gets the
value of the expression (R E S U L T : = 1).

Continued on next page

0801·01 DASL USER'S GUIDE 8-11

SIMPLE ASSIGNMENT OPERATOR (:=),
Continued

Examples

8-12

ENTRY MAINO:= 1* assignment operator is always *1
1* used in function declaration *1

VAR char1 CHAR;

{

sum, num1, num2 INT;
counter UNSIGNED;

c h a r 1 : =' A ' ; I * ass i 9 n s val u e 0 f AS C I I 'A' to
l*char1

num1 := 231 ;1* assigns decimal 231 of num1
num2 : = counter: = 0; 1* ass i gns dec i rna l 0 to

counter
1* and to num2 11

sum := num1 + num2; 1* assi gns va lue of expressiol
11

1* num1 + num2 to sum
} . ,

DASL USER'S GUIDE 50807·01

TYPE COMPATIBILITY

Type compatibility rules

Several operators require their operands to be of
compatible types. The following chart lists the rules
for type compatibility.

TYPE RULE(S)

scalar Any two scalar types are compatible.

pointer Two pointer types are compatible if
they both point to compatible types of
the same size.

A pointer type is also compatible with

• the constant number 0, and
• the constant number equal to the

largest possible value of a pointer.

array Two array types are compatible if they
have

• the same upper bound, and
• components which are compatible

types of the same size.

any type Any two types are compatible if they
are equivalent types.
Two types are equivalent if

• they were the same type declaration,
or

• one was a TYPDEF name for a
type which is equivalent to the
other.

Continued on next page

50807·01 DASL USER'S GUIDE 8-13

TYPE COMPATIBILITY, Continued

Order of evaluation of operands

DASL does not specify in what order the operands of
an operator are evaluated, except in the cases of the
comma, conditional, and logical operators.

In most cases, the order of evaluation does not make
any difference in the result. However, it can make a
difference in cases where the evaluation of one
operand has side effects which affect the other
operand.

Example:

8-14

In the statement a: = b + b++;

either b or b + + could be evaluated first. In this case,
the value that a assumes depends on the particular
order of evaluation.

DASL USER'S GUIDE 5UMU7-Ul

ARITHMETIC CONVERSION OF
SCALARS

Introduction

Arithmetic operators, such as additive and
multiplicative operators, perform type conversions on
scalar operands. These type conversions insure that
scalars are always compatible when used with
arithmetic operators.

Operators that perform conversion

The following types of operators perform the scalar
conversions described on these pages:

• additive (+)

• multiplicative (* I %)

• bit (&& II !!).

Continued on next page

50807-01 DASL USER'S GUIDE 8-15

ARITHMETIC CONVERSION OF SCALARS,
Continued

Scalar operands

A scalar describes an integer value.

The following table describes the six scalar types.

TYPE NUMBER OF
IDENTIFIER BYTES SIGNED. UNSIGNED

BOOLEAN 1 X

BYTE 1 X

CHAR 1 X

UNSIGNED 2 X

INT 2 X

lDNG 4 X

Continued on next page

8-16 DASL USER'S GUIDE 50807-0i

ARITHMETIC CONVERSION OF SCALARS,
Continued

Type conversions

When you use scalar operands with arithmetic
operators, the following type conversions occur.

IF one operand AND the other operand THEN both
is type ... is ... operands and

the result
are type. ..

WNG any scalar type WNG.

INT not type WNG INT.

not WNG or INT not type WNG UNSIGNED.
or type INT

Mixing INT and UNSIGNED operands

)807-01

Be careful when you use INT and UNSIGNED
operands together.

If and UNSIGNED operand has a value large enough
to affect the bit reserved for sign indication, this will
affect the result.

Continued on next page

DASL USER'S GUIDE 8-17

ARITHMETIC CONVERSION OF SCALARS,
Continued

Examples of arithmetic conversion

8-18

The following examples do not reflect a realistic
DASL program, but are included only to illustrate
arithmetic conversion of scalars.

VAR

{

} ;

bool
byt
ch
integer
unsign
longVAR

BOOLEAN;
BYTE;
CHAR;
INT;
UNSIGNED;
LONG;

The following three examples illustrate the conversions
involved with expressions using the above variables.

The expression longVar + bool gives a result of type
LONG, and the operand bool is converted to type
LONG.

The expression integer - unsign gives a result of type
INT, and the operand unsign is converted to type INT.

The expression ch * byt gives a result of type
UNSIGNED, and the operands are converted to type
UNSIGNED.

Continued on next page

DASL USER'S GUIDE 50807-01

ARITHMETIC CONVERSION OF SCALARS,
Continued

Conversion with assignment operators

In a statement which has an assignment operator, the
type of the expression to the right of the assignment
operator is converted to the type of the variable to the
left of the assignment operator.

Example:

50807·01

VAR page INTi

{

counter CHARi
totaL LONGi

totaL := page + counter;

.
};

The type of the result of the expression page +
counter is type INT, since one of its operands, counter,
is type INT.

Then it is converted to type LONG, which is the type
of total, the variable to the left of the assignment
operator.

DASL USER'S GUIDE 8-19

ADDITIVE OPERATORS (+, -)

Description

The + operator yields the sum of its operands.

The - operator yields the difference of its operands.

Syntax

The syntax of the additive operators is:

expression -> expression + expression

Example: nextDay := today + 1;

expression -> expression - expression

Example: text := pageSize - margin;

The additive operators each require two operands.
The operators group left to right.

Continued on next page

8-20 DASL USER'S GUIDE SOBO/-Oi

ADDITIVE OPERATORS (+, -), Continued

Semantic information for the + operator

IF operand THEN the result is ...
types are ...

both scalar a scalar. (See pages called
Arithmetic Conversions.)

a pointer a pointer of the same type as the
and a scalar pointer operand.

The pointer is incremented by the
value of the scalar times the size of
the object to which the pointer
points. (See pages called Arithmetic
Operators Used With Pointers.)

Continued on next page

)0807·01 DASL USER'S GUIDE 8-21

ADDITIVE OPERATORS (+, -), Continued

Semantic information for the - operator

IF operand THEN the result is ...
types are ...

both scalar a scalar that is either type lONG or
INT.

If at least one operand is type
lONG, the result it type lONG.

If neither operand is type lONG,
the result is type INT.

a pointer a pointer of the same type as the
and a scalar pointer operand.

The pointer is decremented by the
value of the scalar times the size of
the object to which the pointer
points.

two pointers a signed scalar.
of compatible
types This signed scalar is given by the

difference of the two pointer values,
divided by the size of the object to
which the pointers point. (See pages
called Arithmetic Operators Used
With Pointers.)

8-22 DASL USER'S GUIDE 50807·01

MULTIPLICATIVE OPERATORS (* I 0/0)

Description

50807-01

The following table describes multiplicative operators
for DASL.

DASL
OPERATION SYMBOL DESCRIPTION

multiplication * yields the product of two
operands.

division I yields the quotient of the
first operand divided by
the second operand,
dropping any remainder.

modulo % yields the remainder
(only) after division of
the first operand by the
second.

DASL USER'S GUIDE 8-23

MULTIPLICATIVE OPERATORS (* 10/0),
Continued

Syntax

expression -> expression * expression

Example: area := width * Length;

expression -> expression / expression

Example: haLfTime:= fuLlTime / 2;

expression -> expression % expression

Example: seed := K1 % 3;

Continued on next page

8-24 DASL USER'S GUIDE 50807-0:

MULTIPLICATIVE OPERATORS (* 1 0/0),
Continued

Semantic information

50807·01

The three multiplicative operators (* I %) have the
following semantic requirements in common. They all

• require two operands, which must be SCALAR,

• group left to right, and

• yield a scalar result (see pages called Arithmetic
Conversion).

For the division (n and modulo (%) operators, the
following table describes the result.

IF. .. THEN the result is ...

either operand is signed signed.

neither operand is signed unsigned.

the second operand is zero undefined (however, no
error occurs).

The sign of the result of a statement using the %
operator is always the same as the sign of the first
operand.

Continued on next page

DASL USER'S GUIDE 8-25

MULTIPLICATIVE OPERATORS (* 1 %),

Continued

Examples

The following examples illustrate uses of the
mUltiplicative operators:

d := a * 2 ; 1* If a is 3. assigns the value
1* (3*2) to d

6

e := b 1 4; 1* If b is 10, assigns the vaLue 2
1* (10/4 without a remainder) to e

f : = c % 4; 1* If b is 15. assigns the value 3
1* 15/4 leaves a remainder of 3) to

8-26 DASL USER'S GUIDE

*1
*1

*1
*1

*1
f *1

50S07·0i

INCREMENT AND DECREMENT
OPERATORS (+ + - -)

Description

The + + operator increments iti) operand.

The - - operator decrements its operand.

Two ways to use the increment/decrement
operators

50807·01

The increment and decrement operators can be used

• preceding the operand, or

• following the operand.

The following table indicates the processing that
occurs when the + + or - - operator is used with an
operand which is part of an expression involving other
operators.

IF the + + or - -THEN the operand is incremented
operator. .. or decremented ...

precedes the before the value of the operand
operand is used in the expression.

follows the after the value of the operand
operand is used in the expression.

Continued on next page

DASL USER'S GUIDE 8-27

INCREMENT AND DECREMENT OPERATORS
(+ + - -), Continued

Syntax

expression -> expression + +

Example: page := counter++;

expression -> expression -­

Example: LineCount--;

expression -> + + expression

Example: nextOay := ++today;

expression -> - -expression

Example: Length" := newLength;

Continued on next page

8-28 DASL USER'S GUiDE 50807-01

INCREMENT AND DECREMENT OPERATORS
(+ + - -), Continued

Semantic information

Caution

;0807·01

The increment and decrement operators require one
operand, which must be a variable. The operand must
be a scalar or pointer.

i If the operand is THEN it is incremented or dec­
I
i a... remented by ...

scalar

pointer

one.

the length of the object to which
the pointer points. (See pages called
Aritmetic Operators Used with
pointers.)

Do not use the increment or decrement operators with
an operand that is used more than once in one
expression. The order of evaluation is undefined.

Be careful when using the increment or decrement
operators with the logical OR and the logical AND
operators (1&). All expressions may not be evaluated,
and the increment or decrement not performed.

Continued on next page

DASL USER'S GUIDE 8-29

INCREMENT AND DECREMENT OPERATORS
(+ + - -), Continued

Examples using the + + and· - - operators with
scalars

8-30

The following four examples illustate uses of the
increment and decrement operators with scalar
operands.

nextDay := ++todaYi 1* assigns the value of
1* today +1 to next Day

--todaYi 1* give the value today
1* -1 to today

counter++i 1* adds 1 to counter

space Left := counter--i 1* assi gns the va lue of
1* counter before
1* decrement> to
1* spaceLeft, then
1* decrements value of
1* counter by 1

*1
*1
*1
*1

*1

*1
*1
*1
*1
*1
*1

DASL USER'S GUIDE 50807-01

ARITHMETIC OPERATORS USED
WITH POINTERS

Introduction

You can use the following arithmetic operators with
pointers:

• addition (+)

• subtraction (-), and

• increment and decrement (+ + - -)

The following pages describe how each of these
arithmetic operators is used with pointers. For
additional information on the operators, see pages
called Additive Operators and Increment and
Decrement Operators.

Usually used with arrays

Pointer arithmetic is usually used with pointers to
arrays. This allows you to point to successive
components of an array. You can access any
component of an array through using pointers and
pointer arithmetic.

Continued on next page

50807-01 DASL USER'S GUIDE 8-31

ARITHMETIC OPERATORS USED WITH
POINTERS, Continued

Using the + operator with a scalar and pOinter

8-32

Only scalars can be added to pointers.

The pointer is incremented by the value of the scalar
times the size of the object which the pointer points.

Continued on next page

DASL USER'S GUIDE 50807-01

ARITHMETIC OPERATORS USED WITH
POINTERS, Continued

Example using the + operator with a scalar and
pointer

50807-01

The following example is a progam excerpt that
illustrates how pointer arithmetic is used to access the
components of an array.

print (p, maxp 1\ INn:=
{

LOOP {
WHILE P <= maxPi

/* function prints the component pointed to by p */

} i

p:=p+1;
}i

ENTRY MAIN () :=
VAR intArray [10] INT;
{

pri nt (&i ntArray [0], &i ntArray [9]) i

} ;

When the loop is first entered, p points to the first
component of intArray. This first component is
printed.

Continued on next page

DASL USER'S GUIDE 8-33

ARITHMETIC OPERATORS USED WITH
POINTERS, Continued

Example using the + operator with a scalar and
pointer,
(continued)

The statement p := p + 1; increments the pointer p by
2 (the size of intArray[O] times the scalar 1). This results
in p pointing to the second component of intArray.

On each successive pass through the loop, another
array component is printed, and p is incremented to
point to the next component of the array.

Using the minus (-) operator with a pointer

8-34

You can subtract either a scalar or another pointer
from a pointer.

Subtraction of a scalar from a pointer is performed in
the same manner as addition of a scalar and a pointer,
except the pointer is decremented.

Subtraction of one pointer from another pointer results
in the value of the difference between the two pointer
values, divided by the size of the object to which the
pointers point. For two pointers to components of an
array, this simply means the difference between the
array indices.

Continued on next page

DASL USER'S GUIDE 50807·01

ARITHMETIC OPERATORS USED WITH
POINTERS, Continued

Example of using the minus (-) operator with
two pOinters

VAR ; INTi

{

p. q " I NT i
array [20] INTi

p := &array[3]i
q := &array[9]i
; := q - Pi
}i

The difference between p and q is 12 bytes.

This value (12) is divided by 2, since p and q are
pointers to integers, which have a size of 2 bytes.

Thus, the effect of i : = q - p; is to assign the value 6
to i.

Using the increment/decrement operators with
pointers

50807·01

The increment (+ +) and decrement (- -) operators can
be used with a pointer to increment or decrement the
address to which the pointer points. The address is
incremented or decremented by the size of the object
to which the pointer points.

DASL USER'S GUIDE 8-35

UNARY ARITHMETIC OPERATORS
(- '\, '\,)

Description of unary negation (-) operator

The unary negation (-) operator gives the negative of
its operand.

Description of the "v "v operator

The "v "v operator gives the one's complement of its
operand.

The one's complement operator replaces the 0 digits, at
the bit level, with 1 digits, and replaces 1 digits with 0
digits.

Example:

Syntax

The binary number for 11 is 0000 0000 1011.

The one's complement of 11 is 1111 1111 0100.

expression -> - expression

Example: negNum:= - num;

expression -> "v "v expression

Example: camp Lement : = '" '" b;

Continued on next page.

8-36 DASL USER'S GUIDE 50807·0i

UNARY ARITHMETIC OPERATORS (- "v "v),
Continued

Semantic information for the unary negation (-)
operator

50807-01

The unary negation (-) operator requires one operand,
which must be a scalar type.

IF the operand is ... THEN the result is type ...

type LONG LONG.

any scalar type INT.
except LONG

Continued on next page

DASL USER'S GUIDE 8-37

UNARY ARITHMETIC OPERATORS (- "v "v),
Continued

Examples using the unary negation (-) operator

8-38

The following examples illustrate uses of the unary
negation (-) operator.

VAR seed INT;

{

val1, val2 LONG;
num1, num2 UNSIGNED;

seed := -3; /* assigns the value */
/* negative 3 to seed *1

num1 := -(val2 + num2); /* assigns the negative */
/* of the result of */
/* (va l2 + num1) to num1 */

num2 := -seed; /* assigns the value */
/* positive 2 [the neg- */
/* ative ~f -3 (from */
/* first statement)] to */
/* num2 */

} ;

Continued on next page

DASL USER'S GUIDE 50807-01

UNARY ARITHMETIC OPERATORS (- "v "v),
Continued

Semantic information for "v "v operator

The one's complement operator ('" "') requires one
operand, which must be a scalar.

IF the operand is ... THEN the result is type ...

type IDNG IDNG.

type INT INT.

any scalar type UNSIGNED.
except.
o IDNG, or
oINT

Example using the "v "v operator

The following example illustrates the use of the one's
complement operator.

allColors := "-"-black; 1* This would result in *1
1* all the bits except *1
1* black being on. *1

50807·01 DASL USER(S GUIDE 8·39

RELATIONAL OPERATORS
(= '\,= < > <= >=)

Description

Syntax

The relational operators compare the value of the first
operand to the value of the second operand, in terms
of magnitude with sign (i.e., equal to, greater than,
less than). The value of the relationship is true
(1) or false (0).

expression -> expression (relational operator)
expression

Example:

sum = 50;
RESULT := address1 >= address2;

Continued on next page

8-40 DASL USER'S GUIDE 50807-01

RELATIONAL OPERATORS (= 'V= .< > < = > =),
Continued

DASL relational operator

50807-01

The folloiwng table lists the DASL relational
operators, indicates the symbol for the operator, and
provides an example of the operator in use.

OPERAIDR SYMBOL EXAMPLE

equal = length = width

not equal '\,= length '" = width

greater than > IF lines > limit
. THEN overflow' ();

less than < IF year <
currentYear THEN
error ();

greater than or equal to >= RESULT:= addressl
> = address2;

less than or equal to <= SUM <= 50

Continued on next page

DASL USER'S GUIDE 8-41

RELATIONAL OPERATORS (= "Iv = < > < = > =),
Continued

Operand information

The relational operators require two operands, which
must be of compatible types (see pages called Type
Compatibility).

The relational operators group left to right. However,
A <B <C is not very useful because it compares the
result of A <B, which is true or false, with C.

Sign of comparison

8-42

The following table indicates the sign of the
comparison of different types of operands, using
relational operators.

IF the operands ... THEN the comparison is ...

are both unsigned scalars unsigned.

include at least one signed.
signed scalar

are pointers unsigned.

are aggregate type, made one byte at a time,
including starting with the lowest
• arrays address. The comparisons
• structures, or use unsigned arithmetic.
• unions

Continued on next page

DASL USER'S GUIDE 50807-01

RELATIONAL OPERATORS (= 'V = < > < = > =),
Continued

Result

The relational operators yield a result of 1 or o.

IF the relationship indicated THEN the result is ...
by the operator is ...

true 1.

false O.

The type of the result is BOOLEAN.

Example 1: Using relational operators with
scalars

50807-01

VAR status, linesPrinted, page INT;
{

page := 50;
status := linesPrinted > page;

1* the comparison is signed because at least one
operand is signed. *1
} ;

If linesPrinted is greater than 50 (page), then the
comparison is true, so the value 1 is assigned to status.

Continued on next page

DASL USER'S GUIDE 8-43

RELATIONAL OPERATORS (= 'V = < > < = > =),
Continued

Example 2: Using relational operators with
arrays

8-44

VAR num [3] BYTE := {1,2,4}i
primeNum [3] BYTE := {1,2,3}i

{

IF num < primeNum THEN printNum()i

.
}i

The comparison is unsigned because aggregate
operands (such as arrays) use unsigned arithmetic.

The first elements of each array are compared.

In this example, the first elements of each array are
equal. Similarly, the second elements are equal.

The third elements of each array are then compared.
Since 4 does not equal 3, a result of the comparison is
returned. Because 4 is not less than 3, the result is 0
(false).

DASL USER'S GUIDE 50807·01

LOGICAL OPERATORS (& I>

Description of the & operator

The binary & operator indicates a logical AND
condition, resulting in 1 if both operands are nonzero.
If either operand is 0, then the result is O.

Description of the I operator

50807·01

The binary I operator indicates a logical OR condition
resulting in 1 if either operand is nonzero. If both
operands are zero, then the result is O.

Continued on next page

DASL USER'S GUIDE 8-45

LOGICAL OPERATORS (& I), Continued

True/false relationship

Syntax

The logical operators are usually used to compare two
operandf. involving relational expressions giving a
value of true (one) or false (zero).

IF the left AND the right THEN the re- AND the re-
operand operand is ... suit using suIt using
is ... the binary the binary

& operator I operator
is ... is ...

true true true true.

true false false true.

false true false true.

false false false false.

expression -> expression & expression

Example: status := (sum> minimum) &(sum<limit);

expression -> expression I expression

Example: IF <LinesPrinted>page) I <LinesPrinted 0)
THEN newpage();

Continued on next page

8-46 DASL USER'S GUIDE 50807-01

LOGICAL OPERATORS (& I), Continued

Semantic information

The logical operators require two operands, which
must be a scalar or pointer (both operands do not
have to be the same type).

The logical operators group left to right.

The result is always unsigned.

Evaluation of operands

The left operand is always evaluated first. The right
operand is not evaluated unless needed to determine
the result.

IF the first AND the operator THEN the second
operand is ... is ... operator is ...

true & evaluated.

I not evaluated.

false & not evaluated.

I evaluated.

Continued on next page

50807-01 DASL USER'S GUIDE 8-47

LOGICAL OPERATORS (& I), Continued

Order of precedence

The binary & operator has a higher precedence than
the I operator.

Examples using logical operators

Example 1:

8-48

status := (sum> minimum) & (sum < limit);

If the expression sum > minimum is true (sum is
greater than minimum) and the expression sum < limit
is also true (sum is less than limit), then the value I is
assigned to status.

If either expression is false, then the value 0 is assigned
to status.

Continued on next page

DASL USER'S GUIDE 50a07-0l

LOGICAL OPERATORS, Continued

Examples using logical operators,
(continued)

Example 2:

50807-01

VAR pAINT;
b A INT;
validPointer BOOLEAN;

{

validPointer := p I b;

};

if p and b are both null pointers, then the value 0 is
assigned to validPointer.

If either p or b point to an address of an object in
memory then the value 1 is assigned to validPointer.

DASL USER'S GUIDE 8-49

CONDITIONAL OPERATOR (?:)

Description

Syntax

The conditional operator results in the value of the
second or the third operand, depending on the value
of the first operand.

IF the value of the first THEN the result is the
operand is ... value of the ...

true (nonzero) second operand.

false (zero) third operand.

expression -> expression? expression: expression

Example:

long side := (length> = width> ? length: width;

Continued on next page

8-50 DASL USER'S GUIDE 50807-01

CONDITIONAL OPERATOR (?:), Continued

Semantic information

50807-01

The conditional operator requires three operands. The
first operand must be a scalar or pointer. The second
and third operands must both be scalars or compatible
pointers.

If the second and third operands are compatible
pointers, the type of the result is the type of the
pointer.

If the second and third operands are scalars, the type
of the result depends on the types of the operands:

IF one operand AND the other THEN both operands
is ... operand is ... and the result are

type ...

type LONG any scalar type LONG.

type INT not type LONG INT.

not type LONG not type LONG UNSIGNED.
or type INT or type INT

The conditional operator groups right to left.

Continued on next page

DASL USER'S GUIDE 8-51

CONDITIONAL OPERATOR (?:), Continued

Evaluation of operands

Example

8·52

Only one of the second and third operands is
evaluated, depending on the value of the first operand.

The following example illustrates a use of the
conditional operator.

longSide := (length >= width) ? length: width;

IF length is ... THEN 10ngSide gets the
value of...

greater than or equal to length.
width

not greater than or equal width.
to width

DASL USER'S GUIDE 50801'()1

SHIFT OPERATORS « < > >)

Description

Syntax

The shift operators « < > » shift the value of the first
operand left or right by the number of bits indicated
by the value of the second operand.

The < < operator shifts to the left.

The > > operator shifts to the right.

expression -> expression < < expression

Example: doubleSize := size « 1;

expression -> expression > > expression

Example: flag := b » 2;

Semantic information

50807·01

The shift operators require two operands, which must
be scalars

The shift operators group left to right.

Continued on next page

DASL USER'S GUIDE 8-53

SHIFT OPERATORS « < > », Continued

Shift fill

8-54

The shift caused by the shift operators is either
arithmetic (sign fill) or logical (zero fill).

!
IF the AND the first THEN the shift
operator is operand is ... will be ...

» signed arithmetic (sign
fill).

unsigned logical (zero
fill).

« either signed logical (zero
or unsigned fill),

I
NOTE: This may
affect the sign
bit.

Continued on next page

DASL USER'S GUIDE 50807-01

SHIFT OPERATORS « < > », Continued

Result

i0807-0I

The type of the result is determined by the first
operand.

IF the first operand THEN the result is type ...
is type ...

LONG LONG.

INT INT.

any scalar except UNSIGNED.
• LONG or
• INT

If the value of the second operand is greater than or
equal to the number of bits in the result, the result is
undefined.

Continued on next page

DASL USER'S GUIDE

SHIFT OPERATORS « < > », Continued

Examples of the shift operators

Example 1:

e : = 11;
f : = 2;
c : = e « f;

The statement e < < f; shifts the value of e left two
bits. Thus e (1011 as a binary number) becomes
101100.

Example 2:
VAR c, d BYTE;
{

c := 14;
d : = 3;
f : = c » d;
};

The statement c > > d; shifts the value of c right three
bits, using zero fill (since c is not signed). Thus c
(1110 as a binary number) becomes 0001.

8-56 DASL USER'S GUIDE 50807-01

BIT OPERATORS (&& II I!)

Description

The bit operators compare two operands bit by bit.
The result depends on the logical relationship
established by the bit operator.

THIS operator ... ESTABLISHES this logical
relationship between
operands ...

&& AND.

II inclusive OR.

!! exclusive OR.

One/zero relationship

50807·01

The following table indicates the result for each bit
operator for each possible combination of operand bit
patterns.

&&
o
1

o 1

o 0
o 1 * 1

001
1 1 1

!!
o
1

o 1
o 1
1 0

Continued on next page

DASL USER'S GUIDE 8-57

BIT OPERATORS (&& II !!), Continued

Syntax

expresssion expression && expression

Example: b && 2

expression -> expression II expression

Example: flag := b II 3;

expression -> expression !! expression

Example: f lagOff := b !! 2;

Semantic information

The bit operators require two operands, which must be
scalars. They yield a scalar result (see pages called
Arithmetic Conversion).

The bit operators group left to right.

Continued on next page

8-58 DASL USER'S GUIDE 50807-01

BIT OPERATORS (&& II I!), Continued

Examples of the bit operators

The following examples illustrate uses of the three bit
operators. This obviously is not a realistic program
sample, but is included to demonstrate how each of
the bit operators works.

VAR fLag, error INT;
{

fLag := 27;
error: := 42;
a := error && fLag;
b := error I I fLag;
c := error!! fLag;

} ;

Example of the result using the && operator

50807-01

The expression error && flag causes the following
comparison and result:

0001 1011 binary number for 27 (flag)
0010 1010 binary number for 42 (error)

0000 1010 result

Note: Only those corresponding bits that have a one (1)
in both operands cause a 1 to be place in the cor­
responding bit of the result.

Continued on next page

DASL USER'S GUIDE 8-59

BIT OPERATORS (&& II I!), Continued

Example of the result using the II operator

The expression error II flag causes the following
comparison and result:

0001 1011 binary number for 27 (flag)
0010 1010 binary number for 42 (error)

0011 0001 result

Note: Only those corresponding bits which have a 1 in
either operand cause a 1 to be placed in the
corresponding bit of the result.

Example of the !! operator

8-60

The expression error !! flag causes the following
comparison and result:

0001 1011 binary number for 27 (flag)
0010 1010 binary number for 42 (error)

0011 0001 result

Note: Those corresponding bits which have a 1 in only
one operand cause a 1 to be placed in the correspon­
ding bit of the result.

Continued on next page

DASL USER'S GUIDE 50807·0i

BIT OPERATORS (&& II I!), Continued

Example using the bit operators

5080701

The following example illustrates the use of each bit
operator (&& II !!).

DEFINE (black, 0)
DEFINE (blue, 01)
DEFINE (yellow, 02)
DEFINE (green, 04)
DEFINE (red, 010)
DEFINE (brown, 020)
DEFINE (violet, 040)
DEFINE (orange, 0100)
DEFINE (pink, 0200)

TYPDEF Colors BYTE;

adjustColors () :=
VAR colorsInPi cture Colors := blue II yellow II green;
{

IF colorsInPicture && blue THEN highliteWater();
1* highlights blue *1

colorsInPicture := colorsInPicture I I brown;
1* adds brown to picture *1

IF colorsInPicture && pink THEN
colorsInPicture := colorsInPicture I! pink;

1* removes pink from picture*1
} . ,

DASL USER'S GUIDE 8-61

POINTER OPERATORS (A &)

Description of the address operator

The address operator (&) yields a pointer to the object
referred to by its operand. In other words, the &
operator takes the address of the operand following it.

Description of the indirection operator

Syntax

The indirection operator (") yields an lvalue referring
to the variable to which the operand (a pointer) points.

For more information on pointers, see the pages called
Pointer Type and Using Arithmetic Operators with
Pointers.

expression-> & expression

Example: next := & counter;

expression -> expression 1\

Example: p2" := temp;

Continued on next page

8-62 DASL USER'S GUIDE 50807·01

POINTER OPERATORS (" &), Continued

Semantic information for the & operator

The & operator (address operator) requires one
operand, which must be an lvalue.

The type of the result is a pointer to the type of the
operand.

Example using the & operator

The following example illustrates a use of the address
operator (&).

VAR text CHAR;
p .. CHAR;

{

p := &text; 1* assigns the address of text to *1
1* the pointer p *1

} . ,

Semantic information for the " operator

50807-01

The indirection operator (J\) requires one operand,
which must be a pointer.

The type of the result is the type to which the operand
points.

Continued on next page

DASL USER'S GUIDE 8-63

POINTER OPERATORS (A &), Continued

Example using the A operator

8-64

The following example illustrates a use of the
indirection operand ("). It also shows a use of the
address operator (&).

VAR firstCh, text CHAR;
p " CHAR;

{

fi rstCh := 'A';I* assigns ASCII 'A' to fi rstCh *1
p := &firstCh; 1* p gets the address of firstCh*1
text := p"; 1* assigns the character pointed*1

1* to by p (in this case, 'A' *1

}

DASL USER'S GUIDE 50807·Oi

SIZEOF OPERATOR (SIZEOF) .

Description

Syntax

The SIZEOF operator gives the size, in characters or
bytes, of its operand.

expression -> SIZEOF expression

Example: length := SIZEOF dateArray;

expression -> SIZEOF < type>

Example: typeS; ze := SIZEOF < INT >;

Semantic information

The SIZEOF operator requires one operand, which
may be any type except function.

The result is an UNSIGNED constant.

Continued on next page

50807·01 DASL USER'S GUIDE 8-65

SIZEOF OPERATOR (SIZEOF), Continued

SIZEOF with arrays

Example

8-66

If you don't know how large an array is, pass a pointer
to the array[O], and then use SIZEOF with the array
and divide by array[O].

The following example illustrates a use of the SIZEOF
operator.

DEFINE (fi LeSize, 30)

TYPDEF Item STRUCT {
fLag CHAR;
fi Lename [fi LeSize] CHAR;
action CHAR;
} ;

itemptr " Item;
{

< " BYTE> itemptr := $ALLOC(SIZEOF itemptr");
} ;

The last line, < A BYTE > itemptr : =
$ALLOC(SIZEOF itemptrA); assigns to itemptr (which
has been cast as a pointer to a byte) the result of the
function $ALLOC, which uses the argument (SIZEOF
itemptr A).

Continued on next page

DASL USER'S GUIDE 50807-01

SIZEOF OPERATOR (SIZEOF), Continued

Example,
(continued)

50807-01

(SIZEOF itemptr A) is converted into a constant at
compile time. The size of itemptr is the total size, in
bytes, of the components of the structure item, to
which itemptr points. Thus, (SIZEOF itemptr A) is
converted to a constant of 32:

• the size of flag is 1,

• the size of filename is 30
(since fileSize is defined as 30), and

• the size of action is 1.

DASL USER'S GUIDE 8-67

CAST OPERATOR « »

Description

Syntax

An expression preceded by a type in corner brackets
causes the operand to be considered to be the specified
type.

The cast operator « » allows the type definition of
the operand to be locally reinterpreted to eliminate
type incompatibilities.

expression <type> expression

Example: <" CHAR> p := b;

Continued on next page

8-68 DASL USER'S GUIDE 5080;·0

CAST OPERATOR « », Continued

Semantic information

50807-01

The cast operator requires one operand.

The result depends on the declared type of the operand
and the cast type.

IF the AND the cast THEN ...
operand is ... type is ...

• a scalar or • a scalar or • the value of the
• pointer • pointer operand is

converted to the
cast type, and

• the result is not
an lvalue, if the
size changes.

• a scalar or any type other the result is an
• pointer than lvalue referring to

an object of the
• scalar or cast type at the
• pointer memory location

referenced by the
operand.

an lvalue any type the result is an
which is not lvalue referring to

an object of the
• a scalar or cast type at the
• pointer memory location

referenced by the
operand.

Continued on next page

DASL USER'S GUIDE 8-69

i

CAST OPERATOR « », Continued

Semantic information,
(continued)

If the operand is a string constant of more than one
character, or the cast type is other than a scalar or

" pointer, the operand will be padded with blanks if cast
--~~a longer type. You must not cast to a shorter type
~ i the operand is a string constant. This results in an

. or.

Caution

8-70

You should use the cast operator sparingly because
type-checking is bypassed. Very few programs require
extensive casting.

Continued on next page

DASL USER'S GUIDE 50807·01

CAST OPERATOR « », Continued

Example

50807-01

The following example illustrates a use of the cast
operator.

VAR p ,. CHAR;
i INT;

{

i : = i + <INT> p;

} ; /
The expression <INT> p recas p(which was defined

an integer. Thus, the 16
bit value which reside will be treated as an INT
(signed two-byte integer) for the statement
i := i + <INT>p;.

The pointer p is unchanged by this process. If it is
used in subsequent statements, it is treated as a pointer.

DASL USER'S GUIDE 8-71

UNARY NOT OPERATOR ('\,)

Description

Syntax

The unary not operator ("') results in the value of 1 or
0, depending on the operand's current value.

IF the value of the operand
is ...

nonzero

zero

THEN the result is ... 1

I

o.
1.

expression -> '" expression

Example: If ",flag THEN a := C;

Semantic information

8-72

The unary not operator requires one operand, which
must be a scalar or pointer.

The type of the result is UNSIGNED.

Continued on next page

DASL USER'S GUIDE 50807·0i

UNARY NOT OPERATOR (IV), Continued

Example

50807-01

The following example illustrates a use of the unary
not operator.

IF'\, ascending (p, q) THEN switch (p, q);

IF the value re- THEN the value of AND the func
turned from the '\, ascending is ... tion switch ...
function ascend-
ing is ...

zero 1 is performed.

nonzero 0 is not
performed

DASL USER'S GUIDE 8-73

SUBSCRIPTING OPERATOR ([])

Description

Syntax

The subscripting operator ([]) references a component
of an array.

For more information on arrays, see the pages called
Array Type.

expression -> expression [expression]

Example: textArray[1]

Semantic information

8-74

The subscripting operator requires two operands:

• the left operand must be an lvalue referring to an
array, and

• the right operand must be a scalar.

The result is an lvalue referring to the selected
component of the array. The type of the result is the
type of the component of the left operand (the array).

Continued on next page

DASL USER'S GUIDE 50807-01

SUBSCRIPTING OPERATOR ([)), Continued

Numbering of components

50807·01

The components of an array can be referenced by
sequential numbers. The first component is referenced
by o.

The value of the right operand indicates the number of
the component being referenced. This value is also
called a subscript, or an index, of an array.

Continued on next page

DASL USER'S GUIDE 8-75

SUBSCRIPTING OPERATOR ([)), Continued

Examples

8-76

The following examples illustrate uses of the
subscipting operator.

VAR charArray[10] CHARi /* declares charArray to */

{
charCount INTi

charCount := 1;
charArray[O] := 'A';

charArray[S] := 'I';

charArray[charCount]
:= • 8 1 ;

} ;

/* be an array of 10 */
/* characters */

/* assigns ASCII 'A' to */
/* the first component of*/
/* charArray */
/* assigns ASCII 'I' to */
/* the ninth component of*/
/* charArray */
/* assigns ASCII '8' to */
/* the second component */
/* of charArray. since */
/* charCount has a value */
/* of 1 */

Continued on next page

DASL USER'S GUIDE 50807·01

SUBSCRIPTING OPERATOR ([]), Continued

Using the subscript operator with
multi-dimensional arrays

Multi-dimensional arrays are arrays that have arrays
as components. Multi-dimensional arrays require
subscripting operators for each dimension.

Example:

50807-01

VAR textLine [15] CHAR; 1* array of 15 characters*1
page [24] [15] CHAR; 1* array of 24 arrays of *1

1* 15 characters *1
{

page[1][6] ;= textLine[2];

} ;

The statement p[1][6] := textLine[2] assigns the second
component of the array textLine to the sixth position
of page's second array.

DASL USER'S GUIDE 8-77

FIELD OPERATOR (.)

Description

The field operator (.) selects a member of a STRUCT
or UNION. For more information on STRUCTs and
UNIONs, see the pages called Structured Types.

Syntax

expression -> expression.identifier

Example: date.year

Semantic information

The operator requires two operands:

• the left operand must be an lvalue referring to a
structure

• the right operand must be an identifier naming a
component of a structure referred to by the left
operand.

The result is an lvalue referring to the named
component of the STRUCT or UNION.

Continued on next page

8-78 DASL USER'S GUIDE 50807-01

FIELD OPERATOR C.), Continued

Example using the field operator

50807-01

The following example illustrates a use of the field
operator.

VAR date STRUCT { month, day, year INTi }i

{

IF date. month> 12 THEN error()i

.
}i

The expression date. month selects the component
month from the STRUCT date. If month is greater
than 12, then the error function is performed.

DASL USER'S GUIDE 8-79

FUNCTION CAll OPERATOR « »

Description

Syntax

The function call operator (()) calls a function.

Calling a function involves an lvalue referring to the
function and parameters to the function. These
parameters correspond to the formal parameters in the
function type declaration.

For more information on functions, see the pages
called

• Function Declaration and Type

• Function Call.

expression -> expression (expression -list)

The expression list enclosed by the function call
operator (()) is optional. However, the function call
operator is required, even if there is no expression list
of parameters.

Example: getArray(p", size)

Continued on next page

8-80 DASL USER'S GUIDE S0807-Vi

FUNCTION CALL OPERATOR « », Continued

Semantic information

The first operand must be an lvalue referring to the
function.

The remaining expression, if any, are the arguments to
the function. These expressions must

.. agree in number with the formal parameters
specified in the function type declaration, and

• be of a compatible type with the corresponding
formal parameters.

The type of the result (if a result is specified) is that
specified in the function type declaration.

Order of evaluation

50807-01

The order of evaluation of the function agruments is
undefined. This order of evaluation depends on the
particular code generator used.

Continued on next page

DASL USER'S GUIDE 8-81

FUNCTION CALL OPERATOR « », Continued

Example

8-82

The following program excerpt demonstrates the
relationship between the use of the function call
operator and the function type declaration.

getArray (p A CHAR, si ze INTl INT :=
{

{

};

.
b := getArray(&array[Ol, length);
} ;

The function arguments &array[O] and length
correspond to the formal parameter p and size. The
type of the result is INT, as declared in the function
type.

DASL USER'S GUIDE 50807'{)1

ASSIGNMENT OPERATORS
(operator =)

Description

There are ten assignment operators in addition to the
simple assignment operator, described earlier in this
chapter (see pages called Simple Assignment
Operators).

These other assignment operators can be thought of as
the combination of other DASL operators which
require two operands and the simple assignment
operator. These assignment operators assign to the
left operand the value of the processing indicated by
the operator, using the left and right operands.

The left operand is evaluated only one time.

The assignment operators

50807·01

The following table lists the ten assignment operators
and explains what they assign to the left operand.

THIS operator ... ASSIGNS to the left operand the
result of ...

*= multiplying the operands.

1= dividing the left operand by the
right operand.

%= computing the remainder after
dividing the left operand by the
right operand.

Continued on the next page

DASL USER'S GUIDE 8-83

ASSIGNMENT OPERATORS (operator =),
Continued

The assignment operators,
(continued)

THIS operator ... ASSIGNS to the left operand
the result of...

+= adding the operands.

-= subtracting the right operand
from the left operand.

«= shifting left the bits of the left
operand by the value of the
right operand.

»= shifting right the bits of the left
operand by the value of the
right operand.

&&= making a bitwise AND
comparison between the left and
right operands.

11= making a bitwise inclusive OR
comparison between the left and
right operands.

!!= making a bitwise exclusive OR
comparison between the left and
right operands.

8-84 DASL USER'S GUIDE 50807·01

ASSIGNMENT OPERATORS (operator =)

Semantic information

The assignment operators require two operands, which
both must be scalars, with the following exceptions.

Exceptions: For the + = and the - = assignment
operators, the left operand may be a pointer (see pages
called Using Arithmetic Operators With Pointers).

The result has the value and type of the left operand
after assignment. The result is not an Ivalue.

The assignment operators group right to left.

Examples

50807-01

RESULT *= factor;l* assigns the product of RESULT *1

flag 11= b;

1* * factor to RESULT *1

1* assigns to flag the result of *1
1* performing a bitwise inclusive*1
1* OR comparison of flag and b to*1
1* flag *1

DASL USER'S GUIDE 8-85

THE PARENTHESES AND COMMA
OPERATORS (() ,}

Description of the parentheses operator

The parentheses operator (()), may be used to modify
precedence or grouping. Operators within parentheses
are always performed first. If an expression within
parentheses involves more than one operator, the
operators are performed in order of precedence.

Otherwise, parentheses do not change the meaning of
an expression. See pages called Operator Precedence.

Syntax for the parentheses operator

expression -> (expression-list)

The expression-list is made up of one or more
expressions.

Example: num:= (seed + k1> * k2;

8-86

The addition operator (+) has a lower precedence than
the mUltiplication operator (*), and would normally (if
there were no parentheses) be performed after the
multiplication of kl by k2. However, the parentheses
operator causes seed + kl to be performed first, then
its result is multiplied by k2.

Continued on next page

DASL USER'S GUIDE 50807-01

THE PARENTHESES AND COMMA
OPERATORS (() ,), Continued

Description of the comma operator

The comma operator is used when the expression -list
within parentheses contains more than one expression.

Processing of comma operator

50807-01

The comma operator causes the following processing
to occur:

• the expression preceding each comma is evaluated
in left-to-right order,

• the values are discarded, and

• the value of the last expression is used, if necessary, in
any subsequent expression outside the parentheses
parentheses

Continued on next page

DASL USER'S GUIDE 8-87

THE PARENTHESES AND COMMA
OPERATORS (() ,), Continued

Syntax for the comma operator

expression -> (expression-list)

The expression -list can be made up of one or more
expression. Each expression must be separated by a
comma.

Example: counter;= <total ;= 1.fO);

Semantic information for the comma operator

8-88

The last operator of each operand preceding a comma
has a side effect. The operators that have a side effect
are:

• function call operator (()),

• increment and decrement operators (+ + - -),

• assignment operators (:= operator=), or

• comma (,).

The result of a comma expression is the same as the
last operand.

Continued on next page

DASL USER'S GUIDE 50807-01

THE PARENTHESES AND COMMA
OPERATORS (() ,), Continued

Comma operator useful with macros

50807·01

The comma operator is useful in macros which return
expressions. See the chapter called Macros for more
information and examples.

DASL USER'S GUIDE 8-89

OPERATOR PRECEDENCE

Introduction

There is a pre-established order in which DASL
operators are performed.

The order in which operators are performed can affect
the result obtained from a statement.

Example of the importance of precedence

8-90

The following example demonstrates the importance
of operator precedence.

d := a + b * Ci

The multiplication operator (*) has a higher
precedence than the addition operator (+), which in
turn has a higher precedence than the assignment
operator (: =). Thus, the product of b * c is added to
a, and the result is assigned to d.

Because of the pre-established order of precedence, this
statement would not be equivalent to the sum
of a + b multiplied by c.

Continued on next page

DASL USER'S GUIDE 50807-01

OPERATOR PRECEDENCE, Continued

Operator precedence chart

50807·01

The following chart indicates the operator precedence
when more than one operator is used in a statement.

The operators are listed in order of precedence. Those
listed first have the highest precedence and are
performed first.

Operators listed on the same line have the same
precedence. The column labeled Grouping indicates
the order in which operators of the same precedence
are performed.

PRECEDENCE OPERAIDRS GROUPING

1 1\ [] • () and + + left to
- - (when used right
after the operand)

2 & - ""\, "- right to
SIZEOF <type> left
and ++
- - (when used
in front of the
operand)

Continued on next page

DASL USER'S GUIDE 8-91

OPERATOR PRECEDENCE, Continued

Operator precedence chart,
(continued)

PRECEDENCE OPERAIDRS

3 * I %

4 +-

5 « »

6 &&

7 1\ !!

8 = "v= < > < = >=

9 &

10 I
11 ?:

~

12 := operat'~
t!?~

.'

13 ,

GROUPING

left

to

right

right to

left

left to
right

Continued on next page

8-92 DASL USER'S GUIDE 50807·01

OPERATOR PRECEDENCE, Continued

Parentheses

Parentheses may be used to modify precedence or
grouping. Operators within parentheses are performed
first, regardless of the pre-established order of
precedence.

Example illustrating order of precedence

S0807-())

a : = b > (c - e) / d++;

The processing in this statement occurs in the
following order:

• c - e (parentheses have highest precedence) and
d + + (the + + operator has the highest precedence
of operators used in this statement) are performed first;

• the value of c - e is divided by (I) the value of d + +
(the I operator has the next highest precedence);

• b is compared to the value of the above division to
determine if b is greater than (» that value (the >
operator has the next highest precedence);

• the value of the above comparison is assigned (: =) to
a (the : = operator has the lowest precedence of the
operators in this statement).

Continued on next page

DASL USER'S GUIDE 8-93

OPERATOR PRECEDENCE, Continued

Order of evaluation of operands

DASL does not specify in what order the operands of
an operator are evaluated, except in the cases of the
comma, conditional, and logical operators.

In most cases, the order of evaluation does not make
any difference in the result. However, it can make a
difference in cases where the evaluation of one
operand has side effects which affect the other
operand.

Example:

8-94

In the statement a := b + b++;

either b or b+ + could be evaluated first. In this case,
the value that a assumes depends on the particular
order of evaluation.

DASL USER'S GUIDE 50807-01

CHAPTER 9.
STATEMENTS

Contents

S0807'()(

OVERVIEW •••..•.....••....••.•••...••• 9-3

EXPRESSION STATEMENTS .•••.••••..•••••• 9-6

COMPOUND STATEMENTS AND BLOCKS •.•••• 9-9

IF ••• THEN AND IF ... THEN ... ELSE
STATEMENTS •.••••.••.••••..•••••.•.•• 9-12

CASE STATEMENT •.•••.••..••••..••••••. 9-21

LOOP WHILE STATEMENTS ••.....••.•••••. 9-27

LABELED AND GOTO STATEMENTS .•.•...•• 9-33

NULL STATEMENT •..••....•••.•••..•.••• 9-37

DASL USER'S GUIDE 9-1

9-2 Di\SL USER'S GUIDE 50807-01

OVERVIEW

Description

Statements specify the actions which a function must
take.

Statements have effects only; they do not have values.

Definitions of effects and values

An effect is a change that occurs as the result of
processing part of a DASL program.

Examples of effects include changing what one sees on
the screen or assigning a value to an lvalue.

A value, on the other hand, is a numeric quantity.

Components of a statement

A statement is composed of expressions and flow of
control constructs (i.e., IF..:rHEN ... ELSE,
WOP..WHILE, CASE, and function call).

Continued on next page

50807·01 DASL USER'S GUIDE 9-3

OVERVIEW, Continued

Expressions as components of a statement

Expressions are used to compute values to be used in a
statement.

Each expression making up a statement has a value,
but the statement as a whole has no value, only an
effect. The values associated with the component
expressions are not stored in memory.

Example of statement/expression relationship

9-4

The statemment numVar : = (x + 2); is made up of the
following expressions:

• numVar

• x

• 2

• (x+2), and

• numVar:= (x+2)

Because numVar : = (x + 2); is a statement, the values
of the expressions that make up the statement
'disappear' after they have been evaluated. The effect
of the statement remains; that is, the value of the
expression (x + 2) is assigned to the expression
numVar.

Continued on next page

DASL USER'S GUIDE 50807·01

OVERVIEW, Continued

Coming up

50807-01

The rest of this chapter discusses

• expression statements,

• compound statements,

• IE..THEN statements,

• CASE statements,

• WOP WHILE statements,

• labeled and GOIO statements, and

• null statements.

DASL USER'S GUIDE 9-5

EXPRESSION STATEMENTS

Description

An expression used with a semicolon (;) is a statement.
The expression must be one whose last operator
performed has a side effect.

The operators that have a side effect are

• function call,

• increment and decrement,

• assignment, and

• comma.

Syntax notation

9-6

The following is the syntax notation for an expression
statement.

statement ~ expression I

Example:

sum:=D;
b++;
random ();

Continued on next page

DASL USER'S GUIDE 50807·01

EXPRESSION STATEMENTS, Continued

Function call

You can use an expression whose last operator
performed is the function call operator as a statement
(by adding a semicolon at the end).

If the function called returns a value, that value is
ignored unless it is assigned to a variable. Only the
effect of the called function remains.

Continued on next page

50807·01 DASL USER'S GUIDE 9-7

EXPRESSION STATEMENTS, Continued

Example of a function call expression

9-8

The following example illustrates the use of a function
call expression as a statement.

ascending (p1, p2 1\ INT) BOOLEAN:=
{

RESULT:= true;
p1 += 1 ;
};

ENTRY MAIN () :=
VAR dateArray [10] INT;

counter INT;

{

ascending(&dateArray [0], & dateArray [9]);

.
};

The function call expression ascending(&dateArray[O],
&dateArray[9], is used as a statement, since it has

• an operator (the function call operator) which has a
side effect and which is the last operator in this
expression to be performed, and

• a semicolon at the end.

Although the function called (ascending) returns a
value (RESULT), the function call statement results
only in the side effects of the function, not the value
of RESULT.

DASL USER'S GUIDE 50807·01

COMPOUND STATEMENTS AND
BLOCKS

Description of compound statement

A compound statement is a series of statements treated
as if they were one statement.

Description of local block

A local block is like a compound statement, but it
starts with declarations.

Only EXTERN function declarations are permitted in
a local block.

Local variables are initialized when the program is
loaded, not when the block is entered.

Continued on next page

50807-01 DASL USER'S GUIDE 9-9

COMPOUND STATEMENTS AND BLOCKS,
Continued

Syntax notation

The following is the syntax notation for a compound
statement and local block.

Example 1:

The following is an example of a local block.

VARmINT;
p1 , p2 INT;

{

m := p1 ;
p1 := p2 ;
p2 :=m;
};

Example 2:

9-10

LOOP {WHILE dCount < nDates;
get Dates (&dateArray[dCount++])i
} ;

NOTES:

• The braces indicate the beginning of the compound
statement. Note that each statement making up the
compound statement ends with a semicolon.

• Note the use of the braces at the end of the
compound statement.

Continued on next page

DASL USER'S GUIDE 50807-01

COMPOUND STATEMENTS AND BLOCKS,
Continued

Compound statements with flow of control
constructs

50807-01

Frequently, the flow of control constructs IF..THEN,
IF .. THEN ... ELSE, and LOOP WHILE use
compound statements. This permits a number of
actions to be performed depending on one condition.

Example: The following example shows the structure
of a compound statement used with the
IF ... THEN ... ELSE construct.

I F express ion THEN{
statement1;
statement2;
}

ELSE statement3;

This whole example represents one compound
statement, made up of

• a compound statement, consisting of statementl and
statement2 (notice the use of braces to indicate these
statements are part of a compound statement), and

• statement3.

DASL USER'S GUIDE 9-11

IF ... THEN AND IF ... THEN ... ELSE
STATEMENTS

Description of IF ... THEN statement

IF..l'HEN statements establish a true/false condition
and the statement(s) to be performed if the condition
is true (non-zero). IF..THEN statements create a
two-way branch.

Description of IF ... THEN ... ELSE statement

Syntax

Statement

9-12

The use of the ELSE statement after the IF. .. THEN ...
statement contains statements to be performed if the
condition is false (zero).

The following is the syntax notation for the
IE..THEN ... ELSE statement.

Example:

IF side 1 > maxLength THEN
errorMessage() 1* note there is no semicolon *1

ELSE 1* preceding an ELSE statement*1
area := side1 * side2;

Continued on next page

DASL USER'S GUIDE 50807-01

IF ... THEN AND IF ... THEN ... ELSE
STATEMENTS, Continued

Semantic information

The expression following the IF must be a scalar or
pointer expression.

The statement following the THEN and ELSE may be
any of the types of statements discussed in this chapter.

Recommended formats

50807-01

Indentation is important to indicate to the reader the
structure of IF..:THEN ... ELSE statements. The
examples below are recommend structured coding
guidelines; indentation does not affect the execution of
these statements.

• Format if whole IF..1'HEN statement fits on one
line:

IF expression THEN statement1;

• Format if whole IE.THEN ELSE statement fits on
one line:

IF expression THEN statement1 ELSE statement2;

Continued on next page

DASL USER'S GUIDE 9-13

IF ... THEN AND IF ... THEN ... ELSE
STATEMENTS, Continued

Recommended formats,
(continued)

• Format if the statement following THEN wouldn't
fit on the same line as THEN:

9-14

IF expression THEN
statement1

ELSE statement2;

• Format for more than one statement following
THEN:

IF expression THEN {
statement1;
statement2;
}

ELSE statement3;

• Format for more than one statement after ELSE:

IF expression THEN statement1;
ELSE { .

statement2;
statement3;
} . ,

Continued on next page

DASL USER'S GUIDE 50807·01

IF. .. THEN AND IF ... THEN ... ELSE
STATEMENTS, Continued

Braces

50807·01

To make clear with which THEN an ELSE statement
is associated, use braces.

Example:

The following statement:

IF sum >0 THEN
IF seed >0 THEN root := seed

ELSE root := sum;

could be made more clear by using braces:

IF sum >0 THEN {
IF seed >0 THEN root :=

ELSE root := sum;
};

1* Use brace to *1
seed/* mark the be- *1

1* ginning of *1
1* main THEN *1
1* statement. *1
1* Use brace to *1
1* mark the end *1
1* of main *1
1* statement. *1

Continued on next page

DASL USER'S GUIDE 9-15

IF. .. THEN AND IF. .. THEN ... ELSE
STATEMENTS, Continued

Flow of control

The IF. . .THEN ... ELSE statements determine a
specific flow of control, depending on whether the
condition is true or false.

Example 1:

The following example illustrates the flow of control
in a simple IF. . .THEN statement.

IF date <= 30 THEN date++;
printDate(date); 1* this is the next statement *1

9-16

IF date is ...

less than or
equal to 30

greater then 30

1* after the IF ... THEN statement*/

THEN the statement(s) ...
I

date + +; and
printDate(date); are performed.

printDate(date); is performed.

Continued on next page

DASL USER'S GUIDE 5080i·Oi

IF ... THEN AND IF ... THEN ... ELSE
STATEMENTS, Continued

Flow of control,
(continued)

50807·01

Examp/e2:

The following example illustrates the flow of control
for an IF. .. THEN ... ELSE statement.

IF date <= 30 THEN date++
ELSE

errorMessageO;
printDate(date); 1* this is the next statement *1

1* after the IF ... THEN ... ELSE *1
1* statement *1

IF date is ... THEN only these statements are
performed ...

less than or date + + and printDate(date)
equal to 30

greater than 30 errorMessage() and
printDate(date).

Continued on next page

DASL USER'S GUIDE 9-17

IF. .. THEN AND IF. .. THEN ... ELSE
STATEMENTS, Continued

Use of multiple conditions

9-18

IF .. THEN statements can include other IF. THEN
statements.

Each THEN and ELSE is associated with the nearest
preceding IF

Recommendation: Combine multiple conditions, such
as

IFa=2THEN
IF status = 1 THEN

printChar()i

by using the binary operator &, as below

IF (a = 2) & (status = 1) THEN
printChar();

Continued on next page

DASL USER'S GUIDE 50807-01

IF ... THEN AND IF. .. THEN ... ELSE
STATEMENTS,
Continued

Example using IF ... THEN statements

This function compares two dates to determine
whether the first date is smaller than the second date.

Example:

ascending (p1. p2 A date) BOOLEAN
{

RESULT := 1;
IF p1 A .year > p2A.year THEN

RESULT := 0
ELSE {

IF p1 A .year = p2 A.year THEN
IF p1 A.month > p2 A .month

RESULT := 0
ELSE {

: = 1* dateisa
1* structure
1* made up of
1* year, and
1* day

{

THEN

IF p1A.month = p2.month THEN {
IF p1A.day > p2 A .day THEN

RESULT := 0;
};

} ;
} ;

};
} ;

*1
*1
*1
*1
*1

Continued on next page

50807-01 DASL USER'S GUIDE 9-19

IF ... THEN AND IF ... THEN ... ELSE
STATEMENTS, Continued

Example using IF ... THEN statements,
(continued)

Explanation:

9-20

The RESULT is initialized as I (true); if none of the
following conditions are true, the RESULT will
remain true.

If the year of the first date is greater than the year of
the second, the RESULT is assigned a value of 0
(false) and no further processing occurs in this
function, since there are no statements after the whole
compound IF...THEN statement.

If the year of the first date is not greater, then the next
condition is tested (IF pI" .year = p2" .year). If the
years are equal, then the months are compared, using
the same approach as used to compare the year part of
the dates. Similarly, if the months turn out to be
equal, then the days are compared.

If the year of the first date is smaller than the year of
the second, then no further testing is necessary, and
the RESULT remains 1. Similar logic is used for
comparing months and comparing days.

DASL USER'S GUIDE 50807·01

CASE STATEMENT

Description

50807·01

The CASE statement causes control to be transferred
to one of several statements, depending on the value
of an expression.

Thus, the CASE statement is a multi-branch flow of
control statement that allows different actions to be
taken, depending on the run-time value of an
expression.

Continued on next page

DASL USER'S GUIDE 9-21

CASE STATEMENT, Continued

Syntax notation

Statement

Example:

The following is the syntax notation for the CASE
statement.

The DEFAULT statement is optional. Each CASE
statement may only have one DEFAULT statement.

CASEin{
'1': X++i
'2','3':x--i
DEFAULT: x:=Di
};

Continued on next page

9-22 DASL USER'S GUIDE SOB07-0i

CASE STATEMENT, Continued

Semantic information

The expression that is compared to the constant
expression must be a scalar. The constant expressions
must be compile-time constants.

The statement following each constant expression may
be any of the types of statements discussed in this
chapter.

Recommended format

50807·01

Indentation is important to indicate to the reader the
structure of a CASE statement. The example below is
a recommended structured coding guideline;
indentation does not affect the execution of CASE
statements.

CASE expression {
constant expression: statement1;
constant expression: statement2;
DEFAULT : statement3;
} . ,

Continued on next page

DASL USER'S GUIDE 9-23

CASE STATEMENT, Continued

Flow of control

. When the CASE statement is executed, the following
.. flow of control occurs:

IF the run-time value of THEN control is trans-
the expression ... ferred to ...

matches the value of the statement which
of the constant follows the matching
expressions constant expression.

does not match any statement which
constant expression follows DEFAULT or, if

there is no DEFAULT,
control is transferred to
the next statement after
the CASE statement.

After CASE statement execution

9-24

After execution of anyone statement in the CASE
statement, control is tranferred to the first statement
after the CASE statement.

Continued on next page

DASL USER'S GUIDE 50807-01

CASE STATEMENT, Continued

Caution

50807-01

If possible, avoid using large ranges with the case
statement, as the ranges require considerable memory.

If you do not use a DEFAULT, be sure that the
constant expressions account for all possible values of
the CASE statement expression.

Continued on next page

DASL USER'S GUIDE 9-25

CASE STATEMENT, Continued

Example using the CASE statement

9-26

The following example shows a CASE statement that
causes different functions to be performed, depending
on the character keyed in.

{

I in:= character keyed in at terminall

CASEin{
'1': x++;
'2','3': x--;
DEFAULT: x:=O;
} ;

p : =0;
} ;

This CASE statement takes the value keyed in and
compares it to the constant expressions:

• if 1 is keyed in, then x is incremented, or

• if 2 or 3 is keyed in, then x is decremented, or

• if anything other than 1, 2, or 3 is keyed in, x is
assigned the value O.

The next statement performed is p :=0;.

DASL USER'S GUIDE 50807-0

LOOP WHILE STATEMENTS

Description

The LOOP statement causes the statement which
follows it to be repeated.

The WHILE statement contains the condition that
stops the performance of the LOOP statement. If the
value of the expression following WHILE is zero, then
the LOOP processing stops.

Use of LOOP statement alone

50807·01

You can use the LOOP statement without the WHILE
statement. However, this causes the loop to be
repeated infinitely. This would only be used for an
application you want to run indefinitely.

Continued on next page

DASL USER'S GUIDE 9-27

LOOP WHILE STATEMENTS, Continued

Syntax notation

The following is the syntax notation for the WOP
WHILE statement.

statement

NOTES:

• The WOP statement can stand alone (with no
WHILE expression)

• The WHILE expression must follow WOP directly,
or be part of a compound statement immediately
following WOP.

Example:

9-28

LOOP {
read (x,y,z);

W H I L E "ve 0 f ;
};

Continued on next pag(

DASL USER'S GUIDE 50807-01

LOOP WHILE STATEMENTS, Continued

Semantic information

The statement following LOOP may be any of the
types of statements discussed in this chapter.

Recommended formats

50807-01

Indentation is important to indicate to the reader the
structure of a LOOP WHILE statement. The
examples below are recommended structured coding
guidelines; indentation does not affect the execution of
LOOP WHILE statements.

LOOP { /* format if there is not state-*/
WHILE expressioni/* ment between LOOP and WHILE */

statement1;
statement2;
} ;

LOOP { /* format if there are statement*/
statement1; /* between Loop and WHILE */
statement2;

WHILE expression;
} ;

Continued on next page

DASL USER'S GUIDE 9-29

LOOP WHILE STATEMENTS, Continued

Recommended format for a LOOP
WHILE/IF. .. THEN statement

Caution

9-30

The following example shows the indentation format
for a LOOP WHILE statement that includes an
IF. .. THEN statement and another LOOP WHILE
statement.

LOOP {
WHILE expression;

IF expression2 THEN {
statement1 ;
LOOP {

statement2;
WHILE expression3;

statement3;
};

};
statement4;
} ;

Be careful to avoid the following examples of possible
problems when using LOOP WHILE statements.

Continued on next page

DASL USER'S GUIDE 50807·01

LOOP WHILE STATEMENTS, Continued

Caution,
(continued)

Example:

a : = 1;
1 := 0;
LOOP{

WH!L;= i;:~~O;
};

a : = 1;
i : = 1;
LOOP {

a := a*i;
WHILE i++<10;

};

/* This LOOP WHILE statemen}4ests */
/* the condition (WHILE i++!t,<10;)- */
/* if it is true, then it performs */
/* the next statement, then tests */
/* the condition again, etc. */

/* The LOOP WHILE statement per- */
/* forms the statement a := a*i; */
/* then tests the condition */
/* i++<10;-ifitistrue,the */
/* loop is performed again, and */
/* so on. */

• This is an example of placing the WHILE
statement incorrectly; the boolean expression
following the WHILE is evaluated at the time it is
executed. _:: -R-,P "~1. f:' "0:--; t .. "

Example:

50807,01

LOOP
WHILEj<10;

j++;

1* There are no statements to be *1
1* performed other than the test *1
1* of the condition. The state- *1
1* ment j++ i s not cons i de red part *1
1* of LOOP WHILE; braces after *1
1* LOOP and after j++ would avoid *1
I*thenullloop. *1

• This is an example of omitting braces, which can
cause a null loop, which as no statements to be
performed.

Continued on next page

Icc {fi/f-iii.::
<--

(I =- \ /
~'

I
/

l f '7 a. y j:2-'2,
(

DASL USER'S GUIDE 9-31

LOOP WHILE STATEMENTS, Continued

Example using LOOP WHILE statements

9-32

The following example illustrates the use of the WOP
WHILE statement that includes another WOP
WHILE statement as one of its substatements.

r : = 0;
LOOP {

WHILE r <= row;
c : = 0;
LOOP {

WHILE c <= col;
di sp layChar ();
c++;
};

r++;
};

If r is less than or equal to row, then the condition c
< = col is tested.

If c is less than or equal to col, then the next two
statements are performed (the function displayChar is
called, and c is incremented by 1).

The last statement, r+ +; is associated with the main
LOOP WHILE statement. Thus, r+ + is performed as
long as r < = row, regardless of whether c < = col; is
true or false.

The main loop is then repeated with the statement r
< = row; being evaluated with the new value of r
(which is one greater than the first time through the
loop).

DASL USER'S GUIDE 50807-01

LABELED AND GOTO STATEMENTS

Description of labeled statements

Any statement may be identified by a label.

Gam statements branch to another statement in the
same function by referring to the label of that
statement.

Syntax notation

The following is the syntax notation for a labeled
statement.

statement ~ identifier ~ statement I

The colon (:) declares the identifier as a label.

The label cannot begin with an integer.

Example:

statementl : next : = &counter;

Semantic information for labeled statements

The scope of the label is the function in which it
appears.

Continued on next page

50807-01 DASL USER'S GUIDE 9-33

LABELED AND GOTO STATEMENTS, Continued

Description of the GOTO statement

Caution

9-34

The Gam statement is an unconditional branch,
transferring control to a labeled statement.

Generally, DASL programs should not include Gam
statements. Structured programming is composed of
properly nested segments that are entered only at the
top and exited from the bottom. Gam statements
do not follow that pattern.

IF. .. THEN ... ELSE and LOOP WHILE statements
can be used instead of Gam statements.

Use Gam statements if there is no clearer method for
exiting with an error or forward branching out of a
complex nested structure. Be careful that you do not
bypass statements you want to be executed.

Continued on next page

DASL USER'S GUIDE 50807·01

LABELED AND GOTO STATEMENTS, Continued

Syntax notation

Example:

50807·01

The following is the syntax notation for the GOID
statement.

statement ---.[1]G[§aro22:}I-~~{1 :]id~en~tif~ie!:r]

The identifier must be a label on a statement in the
same function.

IF index >maxNum THEN
GOTO statement3; 1* statement3 must be in the *1

1* same function as this *1
1* IF .•• THEN statement *1

statement3 : error{);

Continued on next page

DASL USER'S GUIDE 9-35

LABELED AND GOTO STATEMENTS, Continued

Example using the GOTO statement

9-36

The following example illustrates the use of the GOlD
statement to exit from a loop with an error.

b:=O;
LOOP {

WHILE b < size;
b++;
IF key + list[b] THEN

GOTO errorStatement;
};

errorStatement : printErrorC);

In the statement

IF key + lisUb] THEN GOTO errorStatement;

The GOIO statement exits the loop with an error
message. The GOIO statement branches to the
statement (in the same function) labeled
errorStatement.

The statement labeled errorStatement is
printError();, which is a function call to the function
which displays an error message.

DASL USER'S GUIDE 50807·C

NULL STATEMENT

Description

A null statement causes no special action, but it may
be used wherever any other statement may appear.

Syntax notation

Example:

;0807-01

The following is the syntax notation for the null
statement.

statement ~

The null statement includes no expression or operators.

b : = 0;
1* a nu L L statement*1

Continued on next page

DASL USER'S GUIDE 9-37

NULL STATEMENT, Continued

Possible uses of the null statement

Two examples of uses of the null statement are using it
with

• the Gam statement, to exit a function without
performing any action, and

• the CASE statement, if no action is to be performed
for a specific condition.

Example 1:

IF counter=50 then GOTO endStatement;

endStatement: ; 1* This last statement in *1
l*thefunctionisanuLL *1
1* statement. Thus *1
1* GOTO passes cont ro L to *1
1* the end of the function *1
1* wi thout performi ng *1
1* any action. *1

Example 2:

9-38

CASE in {
, 1 '
'2 '

DEFAULT:
} . ,

X++;
I*Ifinis'2'thenno *1
I*actionistaken. *1

x--i

DASL USER'S GUIDE 50807·0

CHAPTER 10.
DASL MACROS

Contents

50807'()1

OVERVIEW 10-3

MACRO CALL FORMATS 10-6

THE INCLUDE MACRO '" .. 10-10

THE DEFINE MACRO••.......... 10-11

THE IFELSE MACRO ..•................. 10-13

THE INCR MACRO 10-15

THE SUBSTR MACRO 10-17

RECURSIVE MACROS 10-19

EVALUATION SUPRESSION SYMBOLS #[#] ... 10-23

COMMAS AND PARENTHESES IN MACROS .. 10-24

DASL USER'S GUIDE IO-I

10-2 DASL USER'S GUIDE 50807-01

OVERVIEW

Description

The DASL macros provide text substitution
capabilities. In the simplest case, an identifier may be
replaced by any desired string of characters.

Macros are independent of the DASL syntax rules.

Advantages of macros

50807·01

Some of the advantages of macros are:

• constants can be named, increasing program clarity;

• macros can have parameters which provide the
equivalent of a function call, except that the text
substitution is done at compile time ... not at run time;

• macros allow extension of the language.

Continued on next page

DASL USER'S GUIDE 10-3

OVERVIEW, Continued

DASL macros

10-4

There are five predefined DASL macros:

• DEFINE - defines a new macro

• IF ELSE - compares two text strings

• INCR - increments a numeric string

• SUBSTR - selects a substring

• INCLUDE - includes additional files in a source
program.

In addition to the predefined macros, you can create
your own macros or use the macros already defined in
an INCLUDE file.

Continued on next page

DASL USER'S GUIDE 50807-01

OVERVIEW, Continued

Coming up

50807-01

This chapter discusses the following topics:

• macro call formats

• the five predefined macros

• recursive macros

• evaluation suppression

• commas and parentheses.

DASL USER'S GUIDE 10-5

MACRO CALL FORMATS

Macro syntax

A macro can be called by one of the following
sequences:

identifier

or

identifier (parameter, parameter •••)

NOTE: You can have up to nine parameters.

Definition of identifier

An identifier either names a predefined macro
IFELSE, SUBSTR, INCLUDE, INCR, DEFINE or
names macros defined by the DEFINE macro.

Continued on next page

10-6 DASL USER'S GUIDE 50807-01

MACRO CALL FORMATS, Continued

Parameter rules

50807·01

The following rules apply to macros called with
parameters.

• Blanks are significant inside parameters.

• Line ends are treated as characters.

• If the parameter contains commas as part of a
character sequence, you must put evaluation
supression brackets #[#] around each parameter.
Otherwise, the commas will be treated as parameter
separators.

• Unspecified parameters are considered to be null
strings.

• Extra parameters are ignored.

Continued on next page

DASL USER'S GUIDE 10-7

MACRO CALL FORMATS, Continued

Macro call process

10-8

The macro call and text substitution process includes
the following stages:

STAGE DESCRIPTION

1 DASL compiler sends macro call to the
macro processo~

2 If the macro contains parameters, each
parameter is scanned for any macros
inside the parameter.

If there is a macro, that call is performed.

3 The parameters are substituted into the
macro definition.

4 The adjusted macro definition replaces thf
macro call. The result is rescanned for
more macro calls.

If there are no macro calls, the result is
sent to the compiler scanner and parser.

I

I
Continued on next page

af~1 .~ tk",~ 0, --!ltr /:fl/ 0 ~"""~l"

DASL USER'S GUIDE 50807,01

MACRO CALL FORMATS, Continued

Macro expansion

50807·01

Macro expansion is depth first as opposed to breadth
first.

DASL USER'S GUIDE 10-9

THE INCLUDE MACRO

Description

Format

During compile time, the INCLUDE macro
temporarily changes the compiler's current input file.
This macro call is useful for packaging logically
related sets of macros, declarations, etc.

The format for the INCLUDE macro is

INCLUDE(filename)

Example:

10-10

INCLUDE (DSINe)
INC LUDE (D$RMS)

NOTE· INCLUDE macros may be nested.

DASL USER'S GUIDE 50807·01

THE DEFINE MACRO

Introduction

The DEFINE macro creates new macros. A new
macro is created by the macro call

DEFINE(identifier, definition)

NOTE: You can have up to nine parameters in the
definition.

Description

The DEFINE macro has the effect of defining the
identifier as the name by which the macro is called.
The definition is the string to be substituted for the
macro.

Example: DEFINE(x,z) 1* replace x with z *1

Text substitution

50807-01

Text substitution occurs inside comments, quoted
string constants, and the #[#] symbols.

Use of the evaluation suppression symbols around the
definition will prevent the substitution until the macro
being defined is called.

Continued on next page

"

DASL USER'S GUIDE 10-11

THE DEFINE MACRO, Continued

Scope of DEFINE macro

The scope of the definition of an identifier is normally
local to the current block. If the identifier is already
defined as a macro, that definition (even if outside the
current block) will be replaced by a new definition.

Use the #[#] brackets to surround the identifier to
prevent the definition substitution.

Example: If you wanted months to be defined as two
different numbers in your program, you would have
to do the following:

10-12

DEFINE(month,3) in the first part of your program.

When you wanted to redefine month later, you would
use the #[#] brackets.

DEFINE(#[month#],5).

If you didn't use the brackets, every time month was
called, it would be replaced with 3.

DEFINE(3,5)

DASL USER'S GUIDE 50807-01

THE IFELSE MACRO

Description

Format

The IF ELSE macro call compares two character
strings and performs either the third or fourth
depending on the comparison.

IF the first two THEN ...
strings are ...

equal result is the third string.

unequal result is the fourth string.

The format for the IF ELSE macro is as follows:

IFELSE(stringl, string2, equal, unequal)

Continued on next page

50807·01 DASL USER'S GUIDE 10-13

THE IFELSE MACRO, Continued

Examples

The following table illustrates the possible results of
string comparisons using the IFELSE macro.

STRING COMPARISON RESULT REASON I

i

IFELSE(I,2,3,4) 4 (unequal) The first 2 strings!
are not equal.

IFELSE(l,1,3,4) 3 (equal) The first 2 strings
are equal.

IFELSE(l,,3,4) 4 (unequal) The first string
and a null string
are not equal.

IFELSE(,,3,4) 3 (equal) The first 2 strings
are null. They are
therefore,
assumed to be
equal.

Uses of the #[#] symbols

10-14

If the third or fourth strings contain macro calls, it
may be necessary to use the #[#] symbols to ensure
that the calls are made in the proper order.

DASL USER'S GUIDE 50807·0

THE INCR MACRO

Description

The INCR macro is used for numeric incrementation.

Format

The format for an INCR call is

INCR(number)

NOTE: Leading blanks are allowed.

Parameter values

50807-01

The parameter may be:

• an unsigned decimal

• an octal number

• a hexadecimal number

• a string constant.

If the value is a string constant, the value is considered
to be zero.

Continued on next page

DASL USER'S GUIDE 10-15

THE INCR MACRO, Continued

Result of an INCR

The result of an INCR macro call is a string which is
the decimal number following the value of the
parameter.

Example:

10-16

DEFINECa,4)

DEFINECb,INCRCa»

DEFINECc,INCRCb»

DASL USER'S GUIDE 50807-01

THE SUBSTR MACRO

Description

The SUBSTR macro selects the portion of the string
parameter specified by the start and length parameters.
The result is the number of characters specified by the
length parameters, starting as the position specified
from the start position.

Example:

SUBSTR(ABC,1,2) I*startingatthefirst *1
l*goover2 *1

Format

The SUBSTR macro takes three parameters:

SUBSTR(string, start, length)

Example:suBSTR(ABCD,1,2)

Continued on next page

;0807·01 DASL USER'S GUIDE 10-17

THE SUBSTR MACRO, Continued

SUBSTR rules

The following rules apply to the SUBSTR macro call:

• The start and length numbers must be an unsigned
decimal, octal, or hexadecimal.

• The start position begins at position zero.

Example: SUBSTR(ABC,O,2) is replaced by AB

• If there is no length parameter, the result is the rest
of the string from the start position.

Example: SUBSTR(ABC,O,2) is replaced by BC

• If the string is shorter than specified by the start and
length parameters, then the result is the string from tl
start position until the end of the string~

Example: SUBSTR(ABC,2,2) is replaced by C

Use of SUBSTR

10-18

A SUBSTR can be used to examine a parameter
character by character. This is helpful when special
processing is required for different characters such as
blanks.

DASL USER'S GUIDE 50807-0,

RECURSIVE MACROS

Five types

50807·01

There are five recursive macros that are not predefined
to the compiler but are defined in the INCLUDE file,
D$INC.

These macros are

• ENUM and ENUMV

• SET, SETV, and SETW.

Continued on next page

DASL USER'S GUIDE 10-19

RECURSIVE MACROS, Continued

Description and format

10-20

The description and format for each macro follows:

• ENUMV-defines up to eight arguments as
ascending values from the first argument.

DEFINECENUMV,
#[IFELSEC#2",#[DEFINEC#2,#1)

ENUMVCINCRC#1),#3,#4,
#5,#6,#7,#8,#9)#])#])

• ENUM-defines up to nine arguments as ascending
values zero to eight, and declares a preceeding
variable name as type BYTE.

DEFINECENUM,
#[DEFINEC#1,8)

ENUMV<1,#2,#3,#4,#5,#6,#7,#8,#9)#]BYTE)

• SETV-defines up to eight arguments in ascending
values from the first argument in successive powers
of 2.

DEFINECSETV,
#[IFELSEC#2",#[DEFINE)#2,<#1»

SETV<#1«1,#2,#3,#4,
#5,#6,#7,#8,#9)#])#])

• SET-defines up to eight arguments in ascending
values in successive powers of 2.

DEFINECSET,#[SETV<1,#1,#2,#3,#4,#5,#6,#7,
#8) #] BYTE)

• SETW-Same as SET except that the type is
unsigned and it takes up to nine arguments.

DEFINE<SETW,#[DEFINEC#1,1)SETVC2,#2,#3,#4,#S
#6,#7,#8,#9)#]
UNSIGNED)

Continued on next page

DASL USER'S GUIDE 50807·0

RECURSIVE MACROS, Continued

Possible uses for ENUM/ENUMV

The ENUM and ENUMV macros are useful for
defining a type and instances of that type.

Example: You want to define Color as a type and

50807-01

RED, GREEN and BLUE as instances of that type.

You could express this as:

TYPDEF CoLor BYTE;

DEFINECred,O)
DEFINE(green,1)
DEFINECbLue,2)

or, you could use the ENUM or ENUMV macros and
express it as

TYPEDEF CoLor ENUMCred,green,bLue);

or,

TYPEDEF CoLor BYTE;
ENUMVCO,red,green,bLue);

Continued on next page

DASL USER'S GUIDE 10-21

RECURSIVE MACROS, Continued

Example of SET and SETV use

10-22

One example of SET and SETV use is from the DASL
compiler. These macros are how it keeps track of
expressions.

T Y POE F F lag sSE T (va r ; a b l e , l val u e , con s tan t)

If none of these bits are on, it is the result of an
expression.

DASL USER'S GUIDE 50807·(

EVALUATION SUPRESSION
SYMBOLS #[#]

Evaluation supression description

The evaluation supression symbols #[and #] are an
important part of the macro call process. These
symbols indicate to the compiler that the characters
between these symbols are to be treated as ordinary
characters and to supress the macro call at that time.

Example of evaluation supression

50807·0]

If you wanted to count how many times a macro is
called, you would use the brackets as follows:

DEFINE (#[count#],INCR(count))

DASL USER'S GUIDE 10-23

COMMAS AND PARENTHESES IN
MACROS

Use of comma operator

~ The comma operator is used to separate a list of
expressions in macros and as a delineator in
parameters.

How the comma operator works in an
expression list

The comma operator causes the preceding expression
to be evaluated. However, only the result or side
effect of the last expression is retained. The result of a
comma expression is the same as a right operand.

Last expression operators

10-24

The last expression must contain one of the following
operators:

• function call ()

• increment + +
I 1

(

!

• decrement -- j

(,

• assignment : = or

• comma,

Continued on next page

DASL USER'S GUIDE 50807·01

COMMAS AND PARENTHESES IN MACROS,
Continued

Comma operator in parameters

If the definition contains parameters, the parameters
will be completed in the same order as they appear in
the macro call.

Each comma causes the preceding parameter to be
evaluated.

Example:

DEFINE(INIT,#1 :=#3:=#2)

.
INIT<A,B,C)

Use of parentheses with expression lists

Parentheses are useful in a list of expressions separated
by commas because they force proper evaluation order.

Example:

DE FIN E (get C • (l p "\' $ LEO R ? (g e t lin e () , l p++) : l p++"))

.
c:=getC()i

Continued on next page

50807·01 DASL USER'S GUIDE 10-25

COMMAS AND PARENTHESES IN MACROS,
Continued

Parentheses and macro definitions

Parentheses also help 'insulate' macro definitions. If
you don't use them, you may get incorrect results.

Example:

BASIS WITH PARENTHESES • WITHOUT PARENTHESES

format DEFINECmult.CC#1)*C#2» DEFINECmult.#1*#2)

Statement

answer INT := multC2+2,2)

result answer gets 8 answer gets 6

/{)2706!32 &
10-26 DASL USER'S GUIDE 50807-01

