
DATA PO I NT

TM

DASL

User's Guide

50807-02

October 16, 1984

Document No. 50807-02. 10/84
Copyright © 1984 by DATAPOINT Corporation. All

rights reserved The "D" logo, DATAPOINT, DATABUS,
DATAFORM, DATAPOLL, DATASHARE, Lightlink, Integrated
Electronic Office, DATACCOUNTANT, ARC, Attached
Resource Computer and ARCNET are trademarks of
DATAPOINT Corporation registered in the U.S. Patent and
Trademark Office. AIM, Associative Index Method,
ARCGATE, ARCLINK, DASP, RMS, Resource Management
System, EMS, DASL, RASL, EASL and DATASORT are
trademarks of DATAPOINT Corporation.
System features and technical details are subject to change
without notice.

ii

Preface

The DASL USER'S GUIDE is the first book to be produced in
the new DATAPOINT documentation standard format. It is
written using the Information Mapping writing method. The
final masters for this book were produced on the
DA T APOINT 9660 Laser Printer.

Please forward your comments about this document to:

DATEC Publications
DATAPOINT Corporation
9725 Datapoint Dr. MS T-72
San Antonio, Texas 78284

iii

iv

TABLE OF CONTENTS

1. INTRODUCTION TO EASL

OVERVIEW 1-1
ORGANIZATION AND USE OF THIS SECTION . 1-3

2. B"EGINNING EASL

OVERVIEW 2-1
HARDWARE REQUIREMENTS FOR EASL 2-2
BEGINNING AND ENDING AN EASL SESSION . 2-3
ACCESSING EASL HELP SCREENS 2-6

3. TEXT EDITING WITH EASL

OVERVIEW 3-1
THE NUMERIC KEYPAD AND FUNCTION KEYS . 3-5
INSERTING TEXT 3-8
EDITING SPECIAL TEXT RECORDS 3-10
CHANGING THE POSITION OF THE CURSOR .. 3-11
DELETING TEXT 3-15
COPYING TEXT 3-19
POPPING TEXT FROM THE STACKS 3-21
MOVING TEXT 3-22
FORMATTING TEXT 3-24
CHANGING THE VALUE OF A CHARACTER 3-27

4. EASL COMMANDS

OVERVIEW 4-1
END COMMAND 4-5
QUIT COMMAND 4-7
LOCATE COMMAND 4-9
CLEAR COMMAND 4-16
POP COMMAND 4 -1 7
MACRO COMMAND 4-19
DETECT COMMAND 4-28
TAB COMMAND 4-32
KEYBOARD COMMAND 4-34
WINDOW COMMAND 4-39

v

5. EASL FILE ~PECS AND OPTIONS

OVERVIEW 5-1
EASL FILES 5-2
EASL OPTIONS 5-5

6. EASL RECOVERY MECHANISMS

OVERVIEW 6-1
RECOVERY FROM AN ABORTED EASL SESSION 6-2
RECOVERY WHEN COPY-BACK FAILS 6-4

7. INTRODUCTION TO RASL

OVERVIEW 7-1
ORGANIZATION AND USE OF THIS SECTION . 7-3

8. REQUISITES FOR USING RASL

OVERVIEW 8-1
VERSIONS OF SNAP AND LINK 8-2
PROPERLY FORMATTED FUNCTIONS 8-3
TWO WORKSTATIONS 8-4
PIPE FOR COMMUNICATION 8-5
DEBUGGING FILES 8-6

9. HOW TO USE RASL

OVERVIEW 9-1
PART A: INVOKING RASL " 9-4
PART B: THE RASL SCREEN 9-5
DESCRIPTION OF THE RASL SCREEN 9-6
ACCESSING PARTS OF THE SCREEN 9-8
ENTERING INFORMATION ON MENU LINES ... 9-11
HOW RASL UPDATES
USING MENU LINE:
USING MENU LINE:
USING MENU LINE:
USING MENU LINE:
USING MENU LINE:
USING MENU LINE:
USING MENU LINE:

THE MENU DISPLAY · .
SEGMENT · . · . · .
MODULE · . · . · . · . · .
FUNCTION ... · .
LINE ..
VARIABLE · . · . . . · .
AD DR · . · . · ...
TYPE .. · ... · ... · .

vi

9-13
9-15
9-16
9-18
9-19
9-21
9-24
9-26

USING MENU LINE: VALUE 9-28
PART C: BREAKPOINTS AND TRACEPOINTS .. 9-31
USING BREAK AND TRACEPOINTS 9-32
BREAK AND TRACEPOINT RESTRICTIONS 9-36
PART D: RASL COMMANDS............ 9-39
EXECUTE COMMAND 9-41
CALLER COMMAND
WHERE, QUIT, AND INVERT COMMANDS.

lO. ASSEMBLY LANGUAGE

9-42
9-44

USING RASL TO DEBUG ASSEMBLY CODE 10-1

ll. RUNNING A DASL PROGRAM

OVERVIEW
GOING FROM SOURCE TO EXECUTABLE CODE

.11-1

.11-2
USING THE DASL/CHN FILE 11-5
LISTING OF DASL/CHN FILE 11-10

l2. MAKE REFERENCE SECTION

OVERVIEW
LIMITATIONS OF MAKE
THE MAKE COMMAND LINE
MAKE RULES FILE FORMAT

.12-1

.12-3

.12 - 5

.. ... 12-9
HOW MAKE DECIDES WHAT TO REMAKE 12-14
EXAMPLES: THE RULES AND CHAIN FILES .. 12-17
HOW MAKE DECIDES WHAT TO REMAKE 12-22

l3. TRACE REFERENCE SECTION

OVERVIEW 13-1
OVERVIEW OF RUNNING TRACE 13-4
USING OPTION DASLMAP 13-7
USING OPTION MAP 13-12
USING OPTIONS CALL, RET, SC, & JUMP .. 13-13
USING OPTIONS SKIP AND NOLOAD 13-17
USING THE ON/OFF FACILITy 13-19
RESTRICTIONS 13-22

vii

14. CPUTIME: CPU TIMING PROGRAM

OVERVIEW 14-1
HOW CPUTIME WORKS 14-2
USING CPUTIME 14-4

15. THE INCLUDE FILE D$INC

OVERVIEW 15-1
D$INC INCLUDE FILE LISTING 15-2
DESCRIPTION OF D$INC FILE ENTRIES 15-4

viii

Chapter 1.
INTRODUCTION TO EASL

OVERVIEW

Description

This section (Chapters 1-6) of the DASL User's Guide is a
reference guide for the editor EASL (Editor for Advanced
Systems Languages).

Features of EASL

EASL was designed to be an easy to learn, convenient text
editor for programmers of high level languages.

The features of EASL include the following:

• simplicity,

• extensive help screens,

• recovery mechanisms to prevent loss of work,

• ability to handle long lines (250 characters) and print
files,

• capability to move quickly through long files,

• facility for easily modifying arbitrary parts of lines,

• provision of macros for "programming" repetitive tasks,
and

• ability to work well with low-speed remote connections.

Chapter 1. INTRODUCTION TO EASL 1-1

OVERVIEW

Invoking EASL features

1-2

Many of the EASL editing features can be invoked directly
by using the function keys and the numeric keypad keys.

Additional features are invoked by entering the Command
Key and the first letter of the name of one of the 11 EASL
commands.

The basic editing features and the specific commands are
discussed in Chapters 1-6.

DASL USER'S GUIDE 50807-02

ORGANIZATION AND USE OF THIS SECTION

Purpose of this section

Chapters 1-6 provide more information than the EASL help
screens.

Different uses of this section

Different people will make different use of this section,
depending on their preference for printed vs. on-line
documentation.

You can learn to use EASL by relying

• primarily on Chapters 1-6 of this document,

• primarily on the on-line documentation, or

• on a combination of the two resources.

Chapter 1. INTRODUCTION TO EASL 1-3

ORGANIZATION AND USE OF THIS SECTION

Using this section as a supplement

1-4

For people who prefer to use this section as a
supplementary resource, the following chapters provide
more detailed information than is included on-line:

• Chapter 2 - Beginning EASL

• Chapter 5 - EASL File Specifications and Options, and

• Chapter 6 - EASL Recovery Mechanisms.

In addition, at the beginning of Chapter 3 there is an
expanded version of the on-line chart which shows the use
of the numeric keypad and function keys.

DASL USER'S GUIDE 50807-02

ORGANIZATION AND USE OF THIS SECTION

Contents of section

The following table describes Chapters 1-6 of the DASL
User's Guide.

THIS chapter ... DESCRIBES ...

INTRODUCTION the features of EASL and the
TO EASL organization of this section.

• how to begin and end an
EASL session and

BEGINNING EASL
• how to access EASL help

screens.

how to insert, change, and
BASIC TEXT format text using the numeric
EDITING WITH EASL keypad and function keys.

each of the EASL commands for
EASL COMMANDS invoking special features.

EASL FILE
SPECIFICATIONS EASL files and options.
AND OPTIONS

how to recover from:
EASL
RECOVERY • an aborted session or
MECHANISMS

• failure of copy-back
mechanism.

Chapter 1. INTRODUCTION TO EASL 1-5

1-6 DASL USER'S GUIDE 50807-02

Chapter 2.
BEGINNING EASL

OVERVIEW

Introduction

Coming up

This chapter provides the necessary information to help a
new user begin to work with EASt. The user can decide
whether to refer to the remaining chapters in this section
or to access the help screens for further information.

This chapter includes the following topics:

• hardware requirements for EASL,

• beginning and ending an EASL session, and

• accessing the EASL help screens.

Chapter 2. BEGINNING EASL 2-1

HARDWARE REQUIREMENTS FOR EASL

Restriction on types of workstations

Because EASL uses the subwindowing capability of the RMS
workstation interface, EASL will not run on 3600 or 6600
consoles or version I 8200 workstations. EASL also will not
run on 3800 or 5500 processors.

Two kinds of keyboards

2-2

EASL was intended for the word processing version of the
keyboard, but it will also work on the data processing
keyboard.

The following chart shows how three keys are marked
differently on the two keyboards.

SYMBOL ON SYMBOL ON
KEY WP KEYBOARD DP KEYBOARD

Command Key 0 \ or ,

Delete Key ~I- DEL

Insert Key I~I SP (shifted 0)

DASL USER'S GUIDE 50807-02

BEGINNING AND ENDING AN EASL SESSION

Introduction

The following pages briefly describe how to begin and end
an EASL session.

Beginning an EASL session

To begin an EASL session, enter on the RMS command line

EASL <file name>

If a file of the name you enter does not exist, EASL asks if
you wish to create a new file.

The default extension of the file is TEXT, and the default
environment is blank. EASL places any new file it creates
in the :W environment.

Other files and options

In addition to the source file, you may specify other files
and options. See Chapter 5 for information.

Chapter 2. BEGINNING EASL 2-3

BEGINNING AND ENDING AN EASL SESSION

Result of EASL command

After you enter the EASL command

• the screen clears,

• a welcome message appears in inverse video on the
EASL command line on the bottom of the screen, and

• the first line of the file you are editing appears above
the command line with the cursor positioned at the
beginning of the line.

Ending an EASL session

To end an EASL session, saving the changes you have
made, use the End Command.

To end an EASL session without saving changes, use the
Quit Command.

To execute the End and Quit Commands

STEP ACTION

1 Press the COimnand Key

2 Enter E (for End) or Q (for Quit)

2-4

3 Enter Y at the prompt

4 Press the ENTER Key

These commands are described in more detail in Chapter
4.

DASL USER'S GUIDE 50807-02

BEGINNING AND ENDING AN EASL SESSION

Recovery from an aborted session

EASL has a recovery mechanism to prevent loss of work
due to an aborted session. For information see Chapter 6.

Chapter 2. BEGINNING EASL 2-5

ACCESSING EASL HELP SCREENS

Introduction

The Help Command allows you to access on-line
documentation describing

• basic text editing using the numeric keypad and function
keys,

• each EASL command, and

• new features of EASL.

In this written guide, basic text editing is discussed in
Chapter 3 and EASL commands are discussed in Chapter 4.

New features of EASL are documented on-line when they
are implemented.

Beginning the Help Command

To begin the Help Command

STEP ACTION

1 Press the Command Key

2 Enter H on the command line

The following prompt is displayed on the command line:

HELP: enter a command letter (?CDEHKLMPQTW) for more
information.

2-6 DASL USER'S GUIDE 50807-02

ACCESSING EASL HELP SCREENS

Names of EASL commands

The EASL commands are:

• Clear,

• Detect,

• End,

• Help,

• Keyboard,

• Locate,

• Macro,

• Pop,

• Quit,

• Tab,and

• Window.

To list these names on the screen, press the Command Key
and enter a ? or space character on the command line.

Chapter 2. BEGINNING EASL 2-7

ACCESSING EASL HELP SCREENS

Accessing different kinds of information

TO access information ENTER this character
on ... after the Help prompt ...

basic text editing H (for help)

specific EASL commands C. D. E. K. L. M. p. Q.
T. or W

Note: Each letter is
the first letter of a
command.

new features of EASL ?

2-8 DASL USER'S GUIDE 50807-02

ACCESSING EASL HELP SCREENS

Accessing information on basic text editing

To access information on basic text editing, respond to
the first Help prompt with the letter H and press the
Enter Key. The following prompt appears on the command
line:

HELP: enter H again for general help or C for chart
of number pad:

If you respond with H again, general help information
on text editing is displayed.

If you respond with C, the following prompt appears:

HELP: enter D to display chart or F to place it in
your file:

If you enter D, the chart illustrating the number pad
and function keys is displayed on the screen.

If you enter F, the chart is inserted below the cursor
in the file you are editing. This allows you to print
out the chart and attach it to your workstation for
reference.

Chapter 2. BEGINNING EASL 2-9

ACCESSING EASL HELP SCREENS

How help information is displayed

2-10

For some of the commands (Clear, End, Quit and Tab), the
help information fits on just one line and is displayed on
the command line itself.

Information for the other specific commands, new EASL
features, and basic editing features is displayed on the full
screen in place of the file you are editing.

The display scrolls automatically if it is longer than the
screen.

DASL USER'S GUIDE 50807-02

ACCESSING EASL HELP SCREENS

Pausing or terminating display

When help information is being displayed on the screen,
the command line displays the following information:

HELP: use DSP Key to pause display or INT Key to
terminate -->

If you use the DSP Key, the information stops scrolling.
You may press any key on the keyboard to resume
scrolling.

When all of the information has been displayed or when
you have pressed the INT Key, the command line prompts:

Now hit the NewLine (Enter) Key when ready to resume
editing:

Pressing the Enter Key

• repaints the screen with the text you are editing and

• returns you to normal editing mode.

Chapter 2. BEGINNING EASL 2 -11

I~

2-12 DASL USER'S GUIDE 50807-02

Chapter 3.
TEXT EDITING WITH EASL

OVERVIEW

Introduction

This chapter explains how to insert, change, and format
text using the numeric keypad and the function keys.

Organization of chapter

The chart on page 7 of this chapter summarizes the uses of
each of the numeric keypad and function keys.

The remainder of the chapter expands on the information
provided in the chart.

Chapter 3. TEXT EDITING WITH EASL 3-1

OVERVIEW

Where to find information on commands

This chapter makes reference to several of the EASL
commands, including

• Clear,

• Keyboard,

• Overstrike,

• Wordwrap,

• Pop, and

• Window.

If you are not familiar with these commands, you can find
complete information in Chapter 4.

Subwindowing capability

3-2

EASL is a single window editor. However, EASL has
commands which allow you to

• reduce the size of the window,

• replace part of your window with a "frozen" picture so
that you can see part of the file while you are editing
another part, and

• change the horizontal offset of the window.

For more information, see the section on the Window
Command in Chapter 4.

DASL USER'S GUIDE 50807-02

OVERVIEW

Definitions

Diagrams

The following terms are used throughout the rest of this
guide to describe your file and how you see it on the EASL
screen.

The ribbon is a 250 character wide virtual representation of
the file with the modifications made in the current edit
session. It is space filled allowing you to move the cursor
anywhere on it.

The window is an area of the workstation screen which
looks onto part of the ribbon. The window is constrained to
stay on the ribbon horizontally.

The picture is a frozen view that was once in part of a
window.

The diagram below shows how the window appears at the
beginning of an EASL session.

window
(80 characters wide)

ribbon

L (250 characters wide)

Chapter 3. TEXT EDITING WITH EASL 3-3

OVERVIEW

Coming up

3-4

The following diagram shows a window which has been
reduced in side and offset horizontally.

picture

window
ribbon

The contents of this chapter include:

• chart of numeric keypad and function keys,

• inserting text,

• editing special text records,

• changing the position of the cursor,

• deleting text,

• copying text,

• popping text from the stacks,

• moving text,

• formatting text, and

• changing characters in place.

DASL USER'S GUIDE 50807-02

(

THE NUMERIC KEYPAD AND FUNCTION KEYS

Introduction

The chart presented on these pages summarizes the uses of
each of the numeric keypad and function keys.

Accessing chart on-line

The Help Command allows you to access on-line a slightly
abbreviated version of this chart. See the pages in Chapter
2 called Accessing EASL Help Screens.

Chapter 3. TEXT EDITING WITH EASL 3-5

THE NUMERIC KEYPAD AND FUNCTION KEYS

Chart

3-6

Use the following chart as an introduction or as a reference
to the use of the numeric keypad and function keys.

line up

IT] Ir:!Jpast
to first~ 9 last
nonblank nonblank

Charm
left LJ 0 Char

right

wordLJ
left

IT] Dword
right

line down

[ill] D<UnUSed)

Use the number pad 5 key followed by

• number pad 2,4,6, or 8 key for express cursor
movements (6 lines or 20 columns),

S<unuSed)

BCOpy

EZ]REMOVE

SINSERT

SRECALL

• number pad 1,3,7, or 9 key to move cursor to corners of
window,

• Tab Key to move cursor to previous tab stop,

• Command Key to put out a ' or \ character (shifted or
unshifted), or

• Insert or Delete Key to put out a 0177 character.

Use the DSP and KBD Keys to slide the window up or down
the ribbon.

Use the ENTER Key alone to insert a blank line below the
cursor.

DASL USER'S GUIDE 50807-02

THE NUMERIC KEYPAD AND FUNCTION KEYS

Press the ENTER Key while holding down

• COpy to split line at cursor (cursor not moved),

• REMOVE to weld line to one above,

• INSERT to split line at cursor (cursor moved to new
line), or

• RECALL to rejustify line at word wrap column.

REMOVE and COpy work with all but the 5,8, and 0 keys to
delete or copy portions of text and push them onto the
stack. REMOVE and COpy work with the 0 key to pop one
line from the line stack.

RECALL works identically with the 1,3,4,6,7,9 and 0 keys
to pop one item from the character stack.
RECALL/ .@. pops an entire line from the stack.

INSERT is used with

• the 4 key to decrement the ASCII value of a character,

• the 6 key to increment the ASCII value of a character, or

• the 5 key to invert the case of an alphabetic character.

Chapter 3. TEXT EDITING WITH EASL 3-7

INSERTING TEXT

Introduction

Inserting text in EASL works in two different ways,
depending on whether you are in overstrike or insert
mode.

Every EASL session begins in insert mode. You can reverse
the mode by performing the Keyboard command.

Inserting text in insert mode

To insert characters while in insert mode, enter them with
the cursor in the desired place.

If there are nonblanks at or to the right of the cursor, they
are shifted to the right one position for each new
character.

The Insert and Delete Keys are not differentiated in insert
mode. Both keys delete the character under the cursor and
move the rest of the line to the left.

Inserting text in overstrike mode

3-8

In overstrike mode, each new character which is entered
replaces any character or nonblank under the cursor. The
cursor is then moved to the right one position.

The DELETE Key works as in insert mode, but the Insert Key
inserts a blank and shifts the rest of the line to the right.

For more detailed information on the overstrike mode, see
the pages titled KEYBO~RD COMMAND in Chapter 4.

DASL USER'S GUIDE 50807-02

INSERTING TEXT

Side-scrolling during insertion

If you insert a character at the rightmost column of the
window, then all of the lines in the window slide to the left
one position.

Chapter 3. TEXT EDITING WITH EASL 3-9

EDITING SPECIAL TEXT RECORDS

Special text records

EASL allows you to display special text records and edit
them like "normal" records. Special text record lines are
not included in the line number count.

Special text records are marked by a small solid square
(the octal 0177 character) appearing in the first column of
the line.

Entering a special text record indicator

3-10

To enter a square (0177 character), press the number pad 5
key followed by the insert/delete key.

If you enter a square in column 1, that line will be written
out as a special text record. Squares in other columns have
no special meaning in EASL.

DASL USER'S GUIDE 50807-02

:)HANGING THE POSITION OF THE CURSOR

Int reduct ion

EASL provides the capability for moving the cursor quickly
and easily to any place in a file.

The following pages expand on the information provided on
the chart at the beginning of the chapter.

Window sliding during cursor movement

The following chart shows how the window slides when the
position of the cursor is changed.

IF the cursor THEN the window slides in the
bumps into ... appropriate direction

the left or right • the specified distance or
edge of the • until the edge of the window
window is at the edge of the ribbon.

the top or bottom • the specified distance or
of the window • as many lines as exist in

direction of travel.

Moving the cursor one space or one line

The keys on the numeric keypad marked with arrows (2, 4,
6, and 8) move the cursor one space or one line at a time in
the direction of the arrow.

Chapter 3. TEXT EDITING WITH EASL 3 -11

the

CHANGING THE POSITION OF THE CURSOR

Moving the cursor to the beginning or end of line

The number pad 7 key moves the cursor to the first
nonblank of the current line.

The 9 key moves the cursor to the second column after the
last nonblank on the line.

If the entire line is blank, both the 7 and 9 keys move the
cursor to the leftmost column of the line.

Moving cursor by words

3-12

All word operations treat the characters. , and; a.s spaces.

The 1 and 3 number pad keys move the cursor to the left or
right, respectively, until a nonspace following a space is
found.

If there are only spaces to the left of the cursor when 1 is
pressed, the cursor moves to the left edge of the file.

If there are only spaces to the right when 3 is pressed, the
cursor moves one space to the right.

DASL USER'S GUIDE 50807-02

:)HANGING THE POSITION OF THE CURSOR

Jsing express cursor movements

The number pad 5 key is used in combination with other
keys for express cursor movements.

IF you press THEN the cursor moves ...
5 and then ...

"@ up 6 lines.

.§ down 6 lines.

~ to the left 20 spaces.

~ to the right 20 spaces.

Vloving cursor to window corners

The number pad 5 key is used in combination with other
keys to move the cursor to any corner of the portion of the
window which is on the screen. The window does not slide
during these movements.

IF you press THEN the cursor moves to this
5 and then ... corner of the window ...

7 upper left.

9 upper right.

1 lower left.

3 lower right.

Chapter 3. TEXT EDITING WITH EASL 3 -13

CHANGING THE POSITION OF THE CURSOR

Sliding the window using KBD and DSP

3-14

Pressing the KBD or DSP Key causes the window to slide up
or down the ribbon, respectively, without changing the
position of the cursor in the window.

Sliding continues as long as

• either the KBD or DSP Key is depressed or

• the first or last line of the ribbon appears in the window.

DASL USER'S GUIDE 50807-02

DELETING TEXT

Introduction

These pages describe the different methods for deleting
text and the way in which stacks are used to save
deletions.

Kinds of deletions

There are several different ways in EASL to perform
deletions.

You may use

• the Backspace or Delete Key to delete a single character
or

• the REMOVE function key together with the number pad
keys to delete a portion of a line or a whole line.

Deleting characters with backspace key

To delete the character to the left of the cursor, press the
Backspace Key (REMOVE/ ~ does the same thing). The
rest of the line from the cursor to the right shifts to the left
one position.

Nothing happens if you are at the left edge of the line when
you press the Backspace Key.

Chapter 3. TEXT EDITING WITH EASL 3-15

DELETING TEXT

Deleting characters with Delete Key

To delete the character under the cursor, press the Delete
Key (REMOVE/ rn> does the same thing).

The rest of the line to the right of the cursor shifts to the
left to fill the gap. The cursor is not moved by the Delete
Key.

Deleting with the REMOVE function key

The REMOVE (F3) function key is used with all of the
number pad keys except 5, 8, and 0 to delete different
portions of text.

The following chart describes how the REMOVE function
works.

IF you hold THEN this portion AND the
down the of text is deletion
REMOVE key deleted ... stored on
and press ... the ...

• 1 (word left) • any char (char-
• 4 (char left) acters) the cur-
• 7 (to first sor moves over

nonblank)

is

character
• 3 (word right) • any char that stack.

• 6 (char right) gets pulled
• 9 (past last into the cursor

nonblank)

2 (line down) the entire line line
the cursor was on stack.

3-16 DASL USER'S GUIDE 50807-02

DELETING TEXT

Purpose for stacking deletions

EASL stacks deletions so that the user can

• "undo" unintended deletions or

• move text from one place in a file to another.

See POPPING TEXT FROM THE STACKS on starting on page
3-22 and MOVING TEXT starting on page 3-24.

How deletions are stacked

EASL uses a character stack and a line stack to save all
deletions of text.

Description of the character stack

The character stack saves all deletions of

• characters,

• words, and

• portions of lines.

The character stack is 250 characters deep. When the stack
is filled, the oldest items are discarded. No indication is
given when characters drop off the stack.

In addition to storing the character codes, the stack stores
tags indicating what kind of delete action caused the
characters to be pushed on the stack. Therefore, only one
"undo" function serves to undo all kinds of deletions.

Chapter 3. TEXT EDITING WITH EASL 3-17

DELETING TEXT

Description of the line stack

3-18

The line stack is used for storing all deletions of complete
lines.

The line stack is stored in a work file which can contain up
to 65,535 lines.

The stack work file is preserved between EASL sessions
and can therefore be used for moving lines from one file to
another. When you start an EASL session, the command
line states how many lines are currently on the line stack.

DASL USER'S GUIDE 50807-02

COPYING TEXT

Introduction

EASL provides a way to copy different portions of text and
store the copies on the character or line stacks.

Copying with the COPY function key

The COPY function key is used with all of the number pad
keys except 5,8, and 0 to copy different portions of text.

The COpy function works in the same way as the REMOVE
function, except that the characters moved over by the
cursor are not deleted. The following chart describes how
the COPY function works.

Chapter 3. TEXT EDITING WITH EASL 3-19

COPYING TEXT

Copying

IF you hold THEN this portion AND the
down the of text is copy is
COPY key and copied ... stored on
press ... the ...

• 1 (word left) • any chars which
• 4 (char left) the cursor would
• 7 (to first move over and

nonblank)
• the char which

ends up beneath
the cursor

character
• 3 (word right) • the char beneath stack.

• 6 (char right) the cursor and
• 9 (past last

nonblank) • any char which
the cursor would
move over

2 (line down) the entire line line stack.
which the cursor
was on

How copies are stacked

3-20

EASL stacks copies of text as if a deletion were performed.

For a description of the character and line stacks, see the
preceding pages titled DELETING TEXT.

DASL USER'S GUIDE 50807-02

(

(

POPPING TEXT FROM THE STAOKS

Introduction

Once you have deleted or copied text onto the character or
line stacks, you can then place the text back into the file by
using either the function keys or the Pop Command.

Popping text with function keys

The following chart shows how the function and number pad
keys are used to pop text from the stacks.

IF you want to pop ... THEN either ...

the most recent deletion • hold down RECALL and
or copy from the press 1,3,4,6,7,9 or
character stack or

• press ° by itself.

one line from the line • hold down RECALL and
stack press 2 or

• hold down either COPY

0,

or REMOVE and press 0.

Using the Clear and Pop Commands

The CLEAR Command clears both the line stack and the
character stack.

The Pop Command pops all the lines on the line stack.

For more information on using these commands, see the
pages called CLEAR COMMAND and POP COMMAND in
Chapter 4.

Chapter 3. TEXT EDITING WITH EASL 3-21

MOVING TEXT

Introduction

By using the procedures for deleting, copying, and
recalling text in combination, you can move portions of
text either

• within a file or

• from one file to another.

Moving portions of lines

To move portions of lines within a file use the following
procedure:

STEP ACTION

1 Delete or copy the text

Place the cursor in the position to the
2 left of where you want the text to be

deposited

3 Pop the text from the character stack

3-22 DASL USER'S GUIDE 50807-02

MOVING TEXT

Moving lines within a file

To move lines within a file, use the following procedure:

STEP ACTION

1 Perform the Clear Command to clear the stack

2 Delete or copy the desired lines

3 Position the cursor on the line above which
you want the line to be deposited

4 Perform the Pop Command to pop the entire
line stack in the new location

Moving lines across files

You can move lines from one file to another since the line
stack is preserved between EASL sessions.

Perform the steps listed above, except after deleting or
copying the desired lines, you must exit the EASL session
and enter the new session before popping the stack.

Chapter 3. TEXT EDITING WITH EASL 3-23

FORMATTING TEXT

Introduction

EASL has several formatting functions which make it easy
to create the indentation used to show the structure of high
level language programs.

These functions are performed by

• pressing the ENTER Key or

• using the ENTER Key in combination with the function
keys.

Using the ENTER Key alone

3-24

To insert a blank line below the cursored line with
automatic indentation, press the ENTER Key.

Result: The cursor moves to the newly created blank line.
The horizontal position of the cursor is under the first
non blank of the previous line.

If the previous line is blank, the line previous to that is
tried. If that line is also blank, then the horizontal position
of the cursor is the first column of the line.

DASL USER'S GUIDE 50807-02

FORMA DING TEXT

Using ENTER with the function keys

The following chart describes the different formatting
effects of using the ENTER Key in combination with the
function keys.

IF you press the
ENTER Key while
holding down this
function key ...

RECALL

INSERT

THEN ...

line rejustification is per­
formed around the wrap column.

Note: The word wrap mode
must be on or nothing happens.

the line that the cursor is
on is split at the cursor.

The part of the line to the
left of the cursor remains on
the current line.

The part of the line from un­
der the cursor to the right
is inserted below the first
nonblank of the current line.
The cursor also moves to the
new line. The horizontal po­
sition of the cursor is below
the first nonblank of the
previous line.

Chapter 3. TEXT EDITING WITH EASL 3-25

FORMATTING TEXT

IF you press the
ENTER Key while
holding down this
function key ...

REMOVE

COpy

THEN ...

the line that the cursor is
on is welded onto the previous
line.

The horizontal position of the
cursor has no effect.

The first nonblank of the
cursored line is placed one
space after the last nonblank
of the previous line.

An extra space is inserted if
the last nonblank is a ?
or !

the same result occurs as with
INSERT except the cursor does
not move. This is useful for
inserting blank lines at the
beginning of the file.

3-26 DASL USER'S GUIDE 50807-02

CHANGING THE VALUE OF A CHARACTER

Introduction

There are three ways to change the value of individual
characters:

• incrementing the ASCII value,

• decrementing the ASCII value, and

• inverting the case.

Changing the ASCII value can be useful in repetitive
macros.

Changing the value

Move the cursor to the character you want to change and ...

IF you want to ... THEN hold down the INSERT
function key and press the
number pad key ...

increment the 6.
ASCII value of
a character The sequence wraps from 127

O.

decrement the 4.
ASCII value

The sequence wraps from 0 to
127.

invert the case 5.

to

After the function is perform-
ed, the cursor moves one
space to the right.

Chapter 3. TEXT EDITING WITH EASL 3-27

CHANGING THE VALUE OF A CHARACTER

ASCII functions with digits

If you use the increment or decrement function with a
digit, a decimal carry or borrow is performed.

Examples:

• If you increment the digit 9 in 169, the result is 170 .

• If you decrement the last 0 digit in 200, the result is 199.

3-28 DASL USER'S GUIDE 50807-02

Chapter 4.
EASL COMMANDS

OVERVIEW

Introduction

EASL provides 11 commands which allow you to perform
various functions.

You may also write up to ten macros which are invoked by
the commands 0 through 9.

Chapter 4. EASL COMMANDS 4-1

OVERVIEW

Kinds of commands

4-2

The following chart briefly describes each of the EASL
commands.

COMMAND NAME DESCRIPTION

Ends EASL. updating source file
End with changes

Quits EASL. not updating source
Quit file

Accesses on-line documentation
Help for EASL (See Chapter 2)

Locates a line in the file by
Locate number or content

Clears the line and character
Clear stacks

Pop Pops the entire line stack

"Programs" repetitive editing
Macro tasks

Detects a string on a line for
Detect aborting macro playback (espe-

cially loops)

Tab Sets tab stops

Changes five different keystroke
Keyboard modes: keystroke click. shift

key inversion. overstrike. video.
and word wrap

• Sets horizontal offset of
screen and

Window • changes the "working" part of
the file to a smaller vertical
or horizontal window.

DASL USER'S GUIDE 50807-02

OVERVIEW

Listing the names of EASL commands

To list the names of all of the EASL commands on the
screen

STEP ACTION

1 Press the Command Key

2 Enter a ? or space character

3 Press the ENTER Key

EASL lists the command names and then awaits the entry
of the command letter.

Leaving command mode

To begin any command, press the Command Key and the
cursor moves to the command line.

If you change your mind and do not want to perform a
command, you can press

• the Command Key before you enter a command or

• the ENTER Key before you have responded to a
command prompt.

The cursor then leaves the command line and EASL returns
to the normal editing mode.

Chapter 4. EASL COMMANDS 4-3

OVERVIEW

Coming up

4-4

The rest of this chapter provides specific information
about each of the EASL commands.

DASL USER'S GUIDE 50807-02

END COMMAND

Description

The End Command allows you to

• update your source file with changes made in the
current editing session and

• leave EASL.

Performing the End Command

To perform the End Command

STEP ACTION

1 Press the Command Key

2 Enter E on the command line

3 Enter Y at the prompt END?

4 Press the ENTER Key

Chapter 4. EASL COMMANDS 4-5

END COMMAND

Results of the End Command

4-6

When the End Command is executed, EASL first checks to
see if you have made any changes in the file during the
current editing session.

THEN this message
IF appears on the AND the WORKjE$
changes ... command line ... file ...

Work file complete is completed
have been and is being properly and
made copied back to copied back to

source file. source file.

There were no does not have a
have not changes; work file complete copy of
been made NOT completed. the file and is

of no use.

DASL USER'S GUIDE 50807-02

QUIT COMMAND

Description

The Quit Command allows you to quit EASL without
updating the source file.

Performing the Quit Command

To perform the Quit Command

STEP ACTION

1 Press the Command Key

2 Enter Q on the command line

3 Enter Y at the prompt QUIT?

4 Press the ENTER Key

Chapter 4. EASL COMMANDS 4-7

QUIT COMMAND

Results of the Quit Command

4-8

When the Quit Command is performed, EASL first checks to
see it you have made any changes in the file during the
current editing session.

If no changes were made, then EASL displays the message:

There were no changes; work file NOT completed.

If changes were made, then EASL displays this warning and
prompt:

Modifications were made. Still want to quit?

If you enter a Y at the prompt, then EASL writes out a
complete WORK/E$ file, but does not update the source
file with changes made during the current editing session.

DASL USER'S GUIDE 50807-02

LOCATE COMMAND

Description

The Locate Command allows you to locate a specific line or
a string in a file.

You can locate

• a specific line by line number,

• a line which is a specified number of lines toward the
end (or beginning) of the file from the current cursor
position,

• a string which occurs after (or before) the current cursor
position,

• a string which occurs at the beginning of a line, or

• an entirely blank line.

The Locate Command also allows you to

• position the cursor to the place where the previous
Locate was performed or

• display the current line number.

Chapter 4. EASL COMMANDS 4-9

LOCATE COMMAND

Effect of Locate Command

After a Locate, the cursor is positioned on the specified
string or line in the file.

The window is repainted with the cursor in the same
relative vertical position. The window is offset
horizontally as necessary to accommodate the cursor.

Note:

You can reduce the window repaint time by reducing the
size of the window. See the pages titled WINDOW
COMMAND.

Beginning the Locate Command

To begin the Locate Command

STEP ACTION

1 Press the Conunand Key

Z Enter L on the conunand line

The prompt LOCATE: is displayed on the conunand line.

4-10 DASL USER'S GUIDE 50807-02

LOCATE COMMAND

Specifications for line Locate

This table shows the specifications for different kinds of
line Locates. The optional character t (or T) specifies that
the located line will appear at the top of the window.

ENTER this
TO locate ... after the

LOCATE: prompt ...

a specific line by line number [tl<number>

a line which is a specific
number of lines toward the
beginning of the file from [tl-<number>
the current cursor position

a line which is a specific
number of lines toward the
end of the file from [tl+<number>
the current cursor position

Notes:

• Special text records are not counted in the line
numbering.

• If the file contains fewer lines than the specified
line number, then the cursor moves to the last line
in the file.

• Line numbers are modulo 65,536, so line 65,536
appears to be line 0, line 65,537 appears to be
line 1, and so on. This can cause confusion when
locating by line number in extremely large files.

Chapter 4. EASL COMMANDS 4-11

LOCATE COMMAND

Cursor movement in line Locate

When a line Locate is performed, the cursor is placed at
the first nonblank of the line.

Normally, the vertical position of the cursor does not
change. However, if you enter a t at the beginning of the
specification, the cursor appears at the top of the window.

Displaying current line number

To find out the number of the line where the cursor is
positioned, enter? after the LOCATE: prompt.

The line number is displayed on the command line, and the
cursor returns to its original position.

Specifications for string Locate

4-12

This table shows the specifications for different kinds of
string Locates.

Specifications inside brackets are optional. The character
t (or T) specifies that the located string will appear at the
top of the window.

The character - causes the string search to travel toward
the beginning of the file.

The character + causes the string search to travel towards
the end of the file.

No - or + implies + in a string Locate.

DASL USER'S GUIDE 50807-02

LOCATE COMMAND

Specifications for string Locate,

ENTER this after the
TO Locate ... LOCATE: prompt ...

the first match of a string Itl I - or +l <string>

the first match of a string
which is preceded by noth-
ing or only spaces on the Itll- or +l$<string>
line

an entirely blank line [tl [- or +l $

the next match of the
string specified in the [tl [- or +l
previous Locate or Detect

How strings are stored

The space or $ character is saved along with the specified
string in a "previous string" storage area each time a
nonnull string is given.

The Locate and Detect commands share the "previous
string" storage.

Chapter 4. EASL COMMANDS 4-13

LOCATE COMMAND

Cursor movement in string Locates

When a string Locate is performed, the cursor is placed at
the beginning of the string.

Normally, the vertical position of the cursor does not
change. However, if you enter a t at the beginning of the
specification, the cursor appears at the top of the screen.

If the specified string cannot be located, the message
"_- STRING NOT FOUND __ " is displayed on the command
line and the cursor returns to where it was in the file prior
to the Locate Command.

Moving back to previous Locate positions

4-14

To position the cursor to the place where the previous line
or string Locate was performed, enter a period after the
LOCATE: prompt.

Only the last five locations are saved. When all have been
popped, the. Locate simply does nothing.

DASL USER'S GUIDE 50807-02

LOCATE COMMAND

Examples of LOCATE specifications

The following examples illustrate different specifications
for the Locate command.

ENTER this after
TO Locate ... LOCATE: prompt ...

line number 53 53

a line which is 10 lines toward
the beginning of the file from -10
the current cursor position

a line which is 12 lines toward
the end of the file from the +12
current cursor position

line number 53 and have it ap-
pear at the top of the window t53

the string XYZ toward the end XYZ or
of the file + XYZ

the next occurrence of the
string specified in the +
previous LOCATE

the string XYZ at the beginning
of a line toward the beginning - XYZ
of the file

,
an entirely blank line toward
the beginning of the file -$

the position where the previous
Locate was done

Chapter 4. EASL COMMANDS 4-15

CLEAR COMMAND

Description

The Clear Command clears both the line stack and the
character stack at the same time.

When to use

The Clear Command is useful if you want to clear the line
stack before moving a group of lines.

Performing the Clear Command

To perform the Clear Command

STEP ACTION

1 Press the CODDDand Key

2 Enter C on the cODDDand line

3 Enter Y at the prompt CLEAR STACKS?

4 Press the ENTER Key

4-16 DASL USER'S GUIDE 50807-02

POP COMMAND

Description

The Pop Command allows you to unstack all the lines on the
line stack.

This command also tells you the current depth of the stack.

Performing the Pop Command

To execute the Pop Command

STEP ACTION

1 Press the Command Key

2 Enter P on the command line

3 Enter Y at the prompt

POP all <n> lines from the stack?

4 Press the ENTER Key

Chapter 4. EASL COMMANDS 4-17

POP COMMAND

Suggestion

4-18

For the following reasons, it is a good idea to use the Clear
Command regularly to keep the stack cleared of lines that
you do not need to save.

• When you use the Pop Command, there is no way to stop
the unstacking process short of aborting the session •

• The stack is copied into the LOG file at the beginning of
every session. See Chapter 5 for information on the LOG
file.

DASL USER'S GUIDE 50807-02

MACRO COMMAND

Description

The Macro Command allows you to "program" repetitive
editing tasks.

You can define up to ten different macros, which can be
saved for use in later EASL sessions.

Definition of macro

A macro in EASL is a recording of up to 250 keystrokes.

Chapter 4. EASL COMMANDS 4-19

MACRO COMMAND

Beginning the Macro Command

To begin the Macro Command

STEP ACTION

1 Press the Command Key

2 Enter M on the command line

Result: The following prompt appears on the command
line:

MACRO DEF (0 .. 9, R or W):

STEP ACTION

3 Enter one of the following:

• a digit to begin the macro
definition,

• W to write a macro to a disk, or

• R to read a macro from a disk.

4-20 DASL USER'S GUIDE 50807-02

MACRO COMMAND

Beginning a macro definition

To begin a macro definition, respond to the Macro prompt
with a digit from 0 through 9. The digit which you enter
appears at the left of the command line (in normal video)
to indicate that recording of the macro is in progress.

Example: If you enter the digit 5, the following message
appears on the command line.

-- starting macro 5 definition --

Chapter 4. EASL COMMANDS 4-21

MACRO COMMAND

Defining a macro

4-22

While the macro definition is in progress, you may enter a
sequence of up to 250 keystrokes, including function keys
and commands.

The only two keys which are not allowed are the DSP and
KBD Keys. These keys are disabled during macro
definition.

You can invoke another macro during definition. You may
also invoke the same macro which you are defining, but
this causes the definition to be terminated (the indicator
goes out).

If you overflow the 250 character limit, the definition is
nullified and the definition mode is terminated.

If there is a syntax error in a command, that command is
erased from the macro definition.

Currently, there is no way to edit a macro except to reenter
the complete definition.

DASL USER'S GUIDE 50807-02

MACRO COMMAND

Example of a macro definition

Suppose that you want to replace the word "good" with the
word "fine" in a file.

The following chart shows how you can create a macro
(let's say macro 5) to accomplish the task.

ENTER these keystrokes
To perform this step ... during macro definition

Command Key
locate the word "good" L

+ good

delete the word "good" Delete Key four times

insert the word "fine" fine

invoke the macro which Command Key
is being defined 5

This macro will loop or call itself until the LOCATE
Command fails.

Chapter 4. EASL COMMANDS 4-23

MACRO COMMAND

Terminating a macro definition

To terminate a macro definition in a nonlooping macro,

STEP ACTION

1 Press the COimnand Key

2 Enter M on the command line

3 Enter Y or after the prompt
MACRO STOP?

The command line now reads

MACRO STOP? -- macro <n> definition completed --

If you type in any character other than y or ., the
command line reads

<n> MACRO STOP? * MACRO DEFINITION CONTINUES *

Displaying macro contents

4-24

Currently, there is no way to display the contents of a
macro; You must remember the definitions.

DASL USER'S GUIDE 50807-02

MACRO COMMAND

Invoking a macro

Before invoking a macro, position the cursor at the desired
location in the file.

To invoke a macro

STEP ACTION

1 Press the Command Key

2 Enter a digit from 0 through 9 on the
command line

When a macro is invoked, its contents are pushed onto
a 1000 character playback stack. It is possible to
make this stack overflow by having several macros
looping on each other, but this does not usually
happen.

Aborting a macro

To abort a macro which is in progress, press the KBD key or
any other key. This causes the remainder of the stack to be
discarded when the end of the top macro definition is
reached.

Macros also terminate if there is an error condition, such
as

• running off the beginning or end of the file or

• having the Detect or Locate Command fail to meet a
specified condition.

Chapter 4. EASL COMMANDS 4-25

MACRO COMMAND

Writing a macro to a disk

New macros defined in an editing session are not saved on
a disk unless you enter a specific sequence of commands.

To write a macro definition to a disk

STEP ACTION

1 Enter the M Conunand

2 Enter W (for write) after the Macro
prompt

3 Enter a digit from 0 through 9 to
indicate which macro definition to
save

The message "_- macro <n> definition written out __ "
appears on the conunand line.

Pressing the ENTER Key at any point in this sequence
aborts the Macro Conunand.

All macros are written to the storage file specified
in the EASL conunand or to the default file
MACNSTACK/E$.

Automatic reading of macro definitions

4-26

When an EASL session is started, all ten macros are
automatically read from the macro storage file. The
default storage file is MACNSTACK/E$:W. If the storage
file does not exist when the EASL session is started, the file
is created with all entries null.

DASL USER'S GUIDE 50807-02

MACRO COMMAND

Reading a specific macro definition from disk

Sometimes you might want to read a macro definition from
a disk if you have created a different definition for that
macro during the current editing session.

To read a macro definition from a disk

STEP ACTION

1 Enter the M Command

Enter R (for read) after the Macro
2 prompt

Enter a digit from 0 through 9 to
3 indicate which macro definition to

read

The message "_- macro <n> definition read in -- II

appears on the command line.

Pressing the ENTER Key at any point in this sequence
aborts the Macro Command.

The definition read from the disk replaces any
definition which you may have created in the current
editing session.

Chapter 4. EASL COMMANDS 4-27

DETECT COMMAND

Description

The Detect Command determines the presence or absence
of a specified string on the current line.

The Detect Command is usually used in macros. It causes
looping macros to terminate when the specified condition
of string presence or absence is met. For more information
on the use of the Detect Command in macros, see the pages
titled MACRO COMMAND in this chapter.

Beginning the Detect Command

To begin the Detect Command

STEP ACTION

1 Press the Command Key

2 Enter D on the command line

The prompt DETECT: is displayed on the command line.

4-28 DASL USER'S GUIDE 50807-02

DETECT COMMAND

Specifications for Detect Command

The following table shows the different kinds of
specifications for the Detect Command.

Specifications inside brackets are optional.

The character t (or T) specifies that the detection is for the
presence of a string.

The characters - or + specify that the detection scan is to
the left or right of the cursor, respectively.

No - or + implies + in a Detect.

TO detect the presence ENTER this after the
or absence of ... DETECT: prompt ...

a string on the current
line [tl [- or +1 <string>

a string at the start
of the current line [tl [- or +1 $ <string>

the string specified in
the previous Locate or [t I [- or +1
Detect Command

an entirely blank line [tl [- or +1$

Chapter 4. EASL COMMANDS 4-29

DETECT COMMAND

Results of Detect Command

4-30

The Detect Command does not affect the position of the
cursor in the file.

This table shows the possible results of a Detect
Command.

IF you are AND the
detecting .. string is .. THEN ...

a looping macro
found continues.

the presence • a looping macro
of a string nates and

It]
not found • the message

termi-

-- STRING NOT FOUND --
appears on the command
line.

a looping macro
not found continues.

the absence • a looping macro termi-
of a string nates and

found • the message
-- STRING FOUND --
appears on the command
line.

DASL USER'S GUIDE 50807-02

DETECT COMMAND

Examples of Detect specifications

The following examples illustrate different specifications
and results for the Detect Command.

TO detect ... ENTER this after RESULT ...
the DETECT: prompt

the presence A looping
of the string macro termi-
XYZ to the t+ XYZ or nates if XYZ
right of the t XYZ is not
cursor present.

the absence of
the string XYZ A looping
with nothing macro termi-
but zero or -$ XYZ nates if XYZ
more blanks is present.
before it on
the line

A looping
the presence macro termi-
of an entirely t$ nates if the
blank line current line

is not blank.

Chapter 4. EASL COMMANDS 4- 31

TAB COMMAND

Description

The Tab Command allows you to set tab stops at any
column.

Description of default tabs

At the beginning of an EASL session, EASL initializes the
tab stops to every third column, starting in column 1.

Once you change the tab stops, there is no way to reset to
the default tabs, except by exiting and reentering EASL.

Setting new tab stops

4-32

To set new tab stops

• enter in your file a line of text which has a nonblank at
each column where you want a tab stop to be set and

• perform the Tab Command:

STEP ACTION

1 Press the Command Key

2 Enter T on the command line

3 Enter Y at the prompt SET TABS?

4 Press the ENTER Key

DASL USER'S GUIDE 50807-02

TAB COMMAND

Results of Tab Command

The results of the Tab Command are to

• erase any existing tab stops,

• set the new tabs to the columns indicated, and

• delete the line of text which you created to set the tabs,
pushing it onto the line stack.

Chapter 4. EASL COMMANDS 4-33

KEYBOARD COMMAND

Introduction

The Keyboard Command includes five subcommands which
allow you to reverse the state of a particular mode.

Kinds of subcommands

The following table lists the Keyboard subcommands and
the modes which they control.

THIS subcommand ... REVERSES this mode ...

Click keystroke clicking.

Invertcaps shift key inversion.

Overstrike overstrike.

Reversevideo reverse video.

Wordwrap word wrap.

Description of mode states

4-34

Each mode has two states, which can be thought of as off
or on.

If a particular mode is off, then the appropriate Keyboard
subcommand turns the mode on and vice versa. An
exception to this rule is the word wrap mode, which is
described later.

At the beginning of an EASL session, all of the modes are
off.

DASL USER'S GUIDE 50807-02

KEYBOARD COMMAND

Performing a Keyboard Command

To perform a Keyboard Command

STEP ACTION

1 Press the Command Key

2 Enter K on the command line

Select a subcommand by entering
3 the prompt either C, I, 0, R, W

[column number]

4 Press the ENTER Key

Description of keystroke clicking mode

In keystroke clicking mode, a click sounds with every
keystroke.

Description of shift key inversion mode

In shift key inversion mode, keystrokes result in
uppercase letters. To get lowercase letters, you must hold
down the Shift Key.

at

Chapter 4. EASL COMMANDS 4-35

KEYBOARD COMMAND

Description of overstrike mode

In overstrike mode, a newly entered character replaces
any character under the cursor and the cursor is moved to
the right one position.

Each overstruck character is pushed onto the character
stack. The "undo" key (number pad 0)

• moves the cursor one position to the left and

• pops a character from the stack, which replaces any
character under the cursor.

Overstrikes caused by "undo" cannot be undone.

The Insert Key inserts a blank and shifts the rest of the line
to the right.

Description of reverse video mode

4-36

In reverse video mode, the entire screen appears in
reverse video.

DASL USER'S GUIDE 50807-02

KEYBOARD COMMAND

Description of word wrap mode

In word wrap mode, a wrap margin is set at the column
number specified in the Wordwrap subcommand. Column
numbering starts with I at the beginning of the line.

If no column number is specified, the word wrap mode is
forced off.

The columns beyond the wrap margin are considered to be
the "hot zone".

The following are allowed in the hot zone:

• spaces,

• cursor movements,

• characters which are popped from the character stack,
and

• characters that are pushed over due to insertion.

Rejustifying a line at wrap column

To rejustify a line such that no characters remain in the hot
zone, hold down the RECALL Key and press the ENTER
Key.

Chapter 4. EASL COMMANDS 4-37

KEYBOARD COMMAND

Welding of lines

4-38

The line which the cursor is on is welded to the previous
line if a backspace is performed which

• leaves the cursor line blank and

• occurs when the line above contains only blanks from
the cursor position to the left.

DASL USER'S GUIDE 50807-02

WINDOW COMMAND

Definitions

The following terms are used in describing the effects of
the Window Command.

The ribbon is a 250 character wide virtual representation of
the file with the modifications made in the current edit
session. It is space filled so you can move the cursor
anywhere on it.

The window is an area of the workstation screen which
looks onto part of the ribbon. The window stays on the
ribbon horizontally. However, the window can only stay on
one vertical line of the ribbon.

A picture is the part of the screen that is frozen when a
window is formed.

Description of Window Command

The Window Command allows you to

• create a smaller active window,

• cause one or more portions of the file to become frozen
pictures on the screen, and

• change the horizontal offset of the window.

Chapter 4. EASL COMMANDS 4-39

WINDOW COMMAND

Beginning the Window Command

To begin the Window Command

STEP ACTION

1 Press the Command Key

2 Enter W on the command line

The prompt WINDOW (~, for restore): appears on the
command line.

4-40 DASL USER'S GUIDE 50807-02

NINDOW COMMAND

~educing window size and taking pictures

At the beginning of an EASL session, the window is the size
of the full screen.

The following chart shows how you can reduce either the
height or width of the window. At the same time a portion
of the file becomes a picture on the screen.

TO cause
the active
window to
be ...

from the
cursored
line down

from the
cursored
column to
the right

ENTER after
the Window
prompt ...

space

I
(vertical
bar)

RESULTS

• A horizontal separator
line is inserted at the
cursored line. causing
the lines from the cur­
sor down to be scrolled
down one line and

• the lines above the
separator become a
picture.

• A vertical separator
line is inserted at the
cursored column. caus­
ing the lines from the
cursor to the right to
be scrolled to the
right one column and

• the lines to the left
of the separator to
become a picture.

Chapter 4. EASL COMMANDS 4-41

WINDOW COMMAND

Restoring the window size

To restore the window to its original height and width,
enter * after the Window prompt.

Taking multiple pictures

By repeating the Window Command with the cursor at
different locations, you can create a number of different
frozen pictures on the workstation screen at once.

Advantages of the Window Command

4-42

One advantage of reducing the window size is that small
windows reduce window redisplay time after a Locate
Command. This is useful when doing many Locates.

Freezing portions of the file allows part of the file to be
viewed while another part is being accessed.

Freezing a portion of the file vertically is useful when
dealing with lines longer than the screen width.

DASL USER'S GUIDE 50807-02

WINDOW COMMAND

Changing the horizontal offset

At the beginning of an EASL session, the first column of the
file is at the left edge of the screen. EASL starts with an
offset of 1.

To change the horiwntal offset of the window, respond to
the Window prompt with a number between 1 and (250 -
window width + 1).

This causes the file to be offset horizontally such that the
specified column number in each file line appears at the
left edge of the window. When the window is offset from
column 1, the mode indicator "<" appears at the left edge of
the command line.

Chapter 4. EASL COMMANDS 4-43

4-44 DASL USER'S GUIDE 50807-02

Chapter 5.
EASL FILE SPECS AND OPTIONS

OVERVIEW

Introduction

Syntax

Coming up

When you invoke EASL from the RMS command line, you
may specify

• names for any of the five files which EASL uses and

• four options.

The standard RMS command line syntax is used to specify
EASL files and options.

Example:

EASL POWER LOG=SAVE; SCAN, TEST

i i t'--....I....-,t I
name of name of options
IN file LOG file

This chapter provides information about the use and
purpose of each file and option.

Chapter 5. EASL FILE SPECS AND OPTIONS 5-1

EASL FILES

Description

5-2

EASL deals with five different files during every editing
session.

If you do not specify a name for any of these files on the
RMS command line, then EASL specifies a default file
name. EASL also specifies default extensions and
environments if they are not provided.

The following chart shows the default specifications and
describes how each file is used.

The files are listed in the order in which they must be listed
on the command line.

DASL USER'S GUIDE 50807-02

EASL FILES

SYMBOLIC . DEFAULT
FIELD SPECIFICA- DESCRIPTION
NAME TION

IN .?/TEXT Source text file

Non text file which
MAC STACK MACNSTACK/E$ stores macro definitions

and the line stack

Non text file which is
used for recovering from
an aborted session

This files stores

• macro definitions and
line stack as of the

LOG RECOVERYLOG/ beginning of the
E$:W session,

• all input during
session, and

• output from invoked
macros.

Text file which stores
results of edit session

WORK WORK/E$:W before copying back to
the IN file

Non text file which
stores lines that disap-

RWORK RWORK/E$:W pear off the top of the
screen if they do not all
fit in memory

Chapter 5. EASL FILE SPECS AND OPTIONS 5 - 3

EASL FILES

Additional information about the IN file

If you do not have WRITE access to the IN file, the SCAN
option is automatically invoked. This option is described
on the following page.

You cannot edit a file which has an end-of-file pointer
that does not point to a $LEOF character in the file. If your
file has this error, you will have to run a utility program to
fix the file before you can edit it with EASL.

Additional information about the WORK file

5-4

The WORK file is written out whenever you have made
changes during an edit session and then enter the End or
Quit Command.

In case something happens to the source file, you have a
complete backup in the WORK file.

However, if you End or Quit without having changed
anything, the WORK file does not have a complete copy of
the source file and is of no use.

DASL USER'S GUIDE 50807-02

EASL OPTIONS

Introduction

Description

There are four options in EASL which you may specify
on the RMS command line.

The following chart describes the four EASL options. The
TEST and RASL options are used for certification and
development of the EASL Program.

OPTION DESCRIPTION

Displays on the screen a brief summary
HELP of the info on files and options.

Forces the source file to be opened in
read-only mode. This option is auto-

SCAN matically assumed if you only have read
or access to the source file. You are
S still allowed to make changes in the

file, but they will only alter the
WORK file, not the source file.

Forces recovery if a LOG file is found
TEST and saves the LOG file for use as a

test script.

Invokes the RASL debugger resident that
is built into EASL. The pipe name is

RASL EASLRASLPIPE. The source code for EASL
is required to make any use of this
option.

Chapter S. EASL FILE SPECS AND OPTIONS 5-5

5-6 DASL USER'S GUIDE 50807-02

i~
'~

~hapter 6.
:ASL RECOVERY MECHANISMS

)VERVIEW

ntroduction

~oming up

EASL has recovery mechanisms to prevent loss of work due
to

• an aborted EASL session, or

• failure of the copy-back from the WORK file to the
source file.

This chapter discusses

• recovery from an aborted EASL session, and

• recovery when copy-back fails.

Chapter 6. EASL RECOVERY MECHANISMS 6-1

RECOVERY FROM AN ABORTED EASL SESSION

Introduction

Whenever an EASL session is aborted, EASL automatically
saves the work and gives the user the option of recovering
the aborted file.

Function of the LOG file

6-2

The LOG file is used to recover from an aborted EASL
session.

Whenever you use EASL, the LOG file keeps track of
everything you are doing.

The LOG file stores

• macro definitions and the line stack as of the beginning
of the session,

• all input during the session, and

• output from invoked macros.

The LOG file is updated

• every 256 keystrokes or

• whenever the keyboard is idle for more than five
seconds.

DASL USER'S GUIDE 50807-02

RECOVERY FROM AN ABORTED EASL SESSION

Role of the LOG file in recovery

When you start an EASL session, EASL searches for the
specified LOG file or the default file
RECOVERYLOG/E$:W.

If EASL cannot find the file, it creates a new one.

If EASL finds the file, it searches for a flag that indicates
whether the previous session was aborted.

If the previous session was aborted, EASL displays the
following prompt:

A previous EASL session was aborted, do you wish to
recover?

Responding to the recover prompt

If you respond with N to the recover prompt, then the LOG
file is reset and you lose your work.

If you enter Y, the previous EASL session will "replay"

• up to the point where it was aborted or

• until you press the INT key.

Pressing the INT key causes the LOG file to be truncated on
the spot. It is a good idea to make a backup copy of the
LOG file if it is important.

Warning: Be careful not to replay the recovery log from
one edit session into a new session in which you are
working with a different file.

Chapter 6. EASL RECOVERY MECHANISMS 6-3

RECOVERY WHEN COPY-BACK FAILS

Introduction

When an EASL session is terminated normally, but the
copy-back mechanism fails, you can recover your work
from the WORK file.

Function of the WORK file

When you end an editing session with the End Command

• the entire file is first stored in the WORK file and then

• the WORK file is copied back on top of the source file.

How to recover

6-4

It is possible for something to go wrong during this
copy-back. In this case, you can recover your source file
from theWORK file by

• renaming the WORK file to something other than
WORK/E$,

• checking the file to make sure everything is there, and

• copying the renamed file into your original file.

DASL USER'S GUIDE 50807-02

Chapter 7.

INTRODUCTION TO RASL

OVERVIEW

Description

Purpose

RASL (~oam ~mong ~ymbolic hocations) is the symbolic
debugger for DASL programs.

RASL allows you to stop the execution of a program at
particular points and examine variables.

Advantages

Some of the important advantages of RASL are listed
below.

• With RASL, DASL programs can be debugged without the
need for assembly code listings or absolute address
calculations.

• RASL permits the user to set breakpoints by function
name or line number and to examine variables by name.

• RASL makes it easy to debug programs with complex
workstation I/O. It also allows debugging of
independent tasks.

• There is no increase in the amount of generated code for
debugging because all of the debugging information is in
files.

Chapter 7. INTRODUCTION TO RASL 7-1

OVERVIEW

Parts of RASL

7-2

RASL consists of two parts which communicate over a
pipe .

• RASLRES$ is a small (400 byte) relocatable routine which
is linked with the program being debugged .

• RASL is a separate command file which accepts
debugging keyins from the user and displays debugging
information.

DASL USER'S GUIDE 50807-02

ORGANIZATION AND USE OF THIS SECTION

Introduction

Coming up

This section is organized to provide programmers with
reference information that

• addresses all the aspects of RASL and

• is easy to retrieve.

The following table describes Chapters 7-10 of this book.

THIS chapter ... DESCRIBES ...

INTRODUCTION TO the basic features of RASL and
THE RASL the organization of the RASL
REFERENCE SECTION section of the guide.

• the required hardware and
REQUIREMENTS FOR software for RASL and
USING RASL

• what the user must do to set
up debugging files for RASL.

all aspects of using RASL to
HOW TO USE RASL debug a DASL program.

ASSEMBLY LANGUAGE how to use RASL to debug
DEBUGGING WITH assembly language programs.
RASL

Chapter 7. INTRODUCTION TO RASL 7-3

7-4 DASL USER'S GUIDE 50807-02

Chapter 8.
REQUISITES FOR USING RASL

OVERVIEW

Introduction

Coming up

Before you can use RASL, you need to

• make sure that you have the appropriate software and
hardware and

• set up the debugging files which RASL requires.

This chapter describes the following five requirements for
running RASL:

• appropriate versions of SNAP and LINK,

• properly formatted DASL functions,

• two workstations,

• a pipe for communication between the parts of RASL,
and

• debugging information files.

Chapter 8. REQUISITES FOR USING RASL 8-1

VERSIONS OF SNAP AND LINK

Description

RASL requires the following versions of SNAP and LINK:

• SNAP 1.2.D or later and

• LINK 1.4.1 or later.

8-2 DASL USER'S GUIDE 50807-02

PROPERLY FORMATTED FUNCTIONS

Description

In order for RASL to work properly, the first executable
statement of a function must be on a separate line from the
assignment operator following the function header.

Chapter 8. REQUISITES FOR USING RASL 8-3

TWO WORKSTATIONS

Description

RASL normally requires two workstations, one to run RASL
and one to run your program.

If your program can run without a workstation, you may be
able to run it as an independent background task.

Using two different processors

8-4

If the two workstations are running on two different
processors, the one running RASL must be a data resource
processor because of the way pipes work. See the RMS
System Software Installation and Configuration User's
Guide, Document # 50624. It describes how to use the
CONFIG utility to set up a processor to be a resource
processor.

The other processor must have access to the resource
processor which contains the pipe local resource. In order
to provide this access, you insert an environment on the
other processor and press the Enter Key at the RESOURCE
prompt.

DASL USER'S GUIDE 50807-02

PIPE FOR COMMUNICATION

Description

The two parts of the RASL program, RASL and RASLRES$,
require a pipe in order to communicate.

Supplying the pipe name

Follow these steps to supply the name of the pipe to be
used for communication between RASL and RASLRES$.

STEP ACTION

Enter on the RMS command line:
1

COPY RASLPIPE,RASLPIPENAME

This command copies RASLPIPE to a file
called RASLPIPENAME in your catalog.

In the file RASLPIPENAME, locate the pipe
2 name HSPRASLPIPE:

• in the comment line at the beginning and

• in the line starting with RASLPNAME$.

Change the initials HSP to your own name,
initials, or project name. This name
should be unique so that it will not con-
flict with anyone else's pipe.

Enter on the RMS command line:
3

SNAP RASLPIPENAME;N

Chapter 8. REQUISITES FOR USING RASL 8-5

DEBUGGING FILES

Description

8-6

The RASL command uses debugging information files to
determine code and data addresses and variable types.
These debugging information files must be available to the
RASL command.

RASL is more useful if the module source files are also
available, because then the text of the program can be
displayed.

DASL USER'S GUIDE 50807-02

DEBUGGING FILES

How debugging files are produced

The debugging information files are produced by the DASL
compiler and the linker when the DEBUG option is given
with DASL, SNAP, and LINK.

The following chart shows the specific effects of the DEBUG
option.

THE DEBUG option
causes. . . TO ...

• produce a symbol table file
with the name <source>/SYMl
and

the DASL compiler • include directives in the
assembly language output
code relating source file
line numbers to code
addresses.

• include this line number
the SNAP information in the output
assembler relocatable file.

• produce for each output
segment a file called
<segment>/SYM2 which contains

• the line number informa­
tion from the relocatable

LINK file for each PROG,

Chapter 8.

• the addresses of PROG's
PABs (code and data areas),
and

• the addresses of the PROG's
external references.

REQUISITES FOR USING RASL 8-7

DEBUGGING FILES

Using the DASLICHN file

8-8

The DASL/CHN file can be used to compile, assemble, and
link a single DASL source file.

Two of the DASL/CHN options, DBUG and RASL, both set up
a program to be run with RASL.

A complete listing of the DASL/CHN file is included in
Chapter 11: INTRODUCTION TO RUNNING A DASL
PROGRAM.

DASL USER'S GUIDE 50807-02

)EBUGGING FILES

~omparison of DASL/CHN options

The DBUG and RASL options are similar in that they both

• cause the DEBUG option to be given with DASL, SNAP,
and LINK in order to produce the debugging information
files and

• INCLUDE the file, RASLPIPENAME, which supplies the
pipe name for communication between RASL and
RASLRES$.

The difference between the two options is shown in the
following table.

CAUSES this
THIS module to be CONSEQUENCE
option included ...

D$STARTS calls the
RASLRES$ routine as soon
as the program begins

DBUG D$LIB.D$STARTS executing. If the pipe
does not exist, then the
program executes normal-
ly without RASL.

To run RASL you have to
call RASLRES$ as a sub-
routine from your pro-

RASL D$LIB.START gram, perhaps condition-
ally based on a command
line option.

Chapter 8. REQUISITES FOR USING RASL 8-9

DEBUGGING FILES

Calling RASLRES$

If you use the RASL option, you must call RASLRES$ as a
subroutine from your program in order to run RASL.

The RASLRES$ subroutine returns a D$CCODE indicating the
result of the $OPEN of the pipe. This permits a program to
take special action if the pipe cannot be opened.
However, if the program does not check for an error and
the pipe cannot be opened, the program will continue just
as if RASLRES$ had not been called.

Example: The following code causes the program to take
special action if the pipe cannot be opened.

IF raslOpt THEN
IF RASLRES$O && D$CFLAG THEN $ERMSOO;

Calling RASLEND$

8-10

You can call RASLEND$ as a subroutine from your program
in order to close the the pipe and turn off the error
traps before the end of the program. If you do not
call RASLEND$, the program runs to the end with RASL.

Warning: Before calling RASLEND$, you should have
cleared any breakpoints or tracepoints.

DASL USER'S GUIDE 50807-02

DEBUGGING FILES

Modifying DASL/CHN

The DASL/CHN file can serve as a prototype for setting up
more complex programs to be run with RASL.

The DEBUG option must be specified

• on the DASL and SNAP command for each module for
which you want symbolic information available to RASL
and

• on the LINK command for each segment for which you
want symbolic information available.

If you are debugging several overlays, RASLRES $ should
probably be linked into your root segment.

The file RASLPIPENAME must be INCLUDEd in the
directives to LINK.

Chapter 8. REQUISITES FOR USING RASL 8-11

8-12 DASL USER'S GUIDE 50807-02

8hapter 9.
HOW TO USE RASL

)VERVIEW

ntroduction

This chapter provides detailed information on how to use
RASL to debug a DASL program.

nteraction between RASL and program

At any time, either one or the other of the following is
happening:

• your program is running and RASL is inactive or

• your program is suspended and you are interacting with
RASL.

When you first invoke RASL, the program is suspended.

Chapter 9. HOW TO USE RASL 9-1

OVERVIEW

Process for using RASL

9-2

The following table outlines a typical use of RASL. The
purpose of the table is to provide an overall view of how
the different features of RASL work together. There can be
variations of this typical use. They are described in this
chapter and in Chapter 10.

SEE
STAGE DESCRIPTION PART(S)

1 You invoke RASL. A

You enter a segment, module,
2 and function on the RASL menu B

lines.

You set one or more break-
3 points or tracepoints on the C

RASL screen.

You use the RASL command
Execute to begin execution of

4 the program which you want to D
debug.

The program is suspended when
it reaches a breakpoint and
RASL is reentered. At this

5 time you may examine variables B,D
on the RASL screen or use any
of the RASL commands.

You repeat the process as of-
6 ten as necessary, beginning at

Stage 2, 3, or 4.

7 You quit RASL. D

DASL USER'S GUIDE 50807-02

OVERVIEW

Coming up

The following chart shows how the information in this
chapter is organized.

PART TITLE

A Invoking RASL

B Description and Use of the RASL screen

C Breakpoints and Tracepoints

D Description and Use of RASL COlIllllands

Chapter 9. HOW TO USE RASL 9-3

PART A: INVOKING RASL

Procedure for invoking RASL

Follow this procedure to invoke RASL.

STEP ACTION

Enter the command RASL at workstation 1;
This workstation -must be running on a re-

1 source processor if the two workstations
are running on different processors.

Results: RASL checks to make sure that no one
else is already using the pipe with the name spec-
ified in the RASLPIPENAME file.

RASL creates the pipe if it doesn't already exist
and displays the message

Pipe XXXRASLPIPE:L is being waited on

Enter the name of the program to be
2 debugged at workstation 2.

Result: Once the program enters RASLRESS. the
program is suspended and the RASL menu is display-
ed at workstation 1.

9-4 DASL USER'S GUIDE 50807-02

PART B: THE RASL SCREEN

Introduction

Coming up

This part describes what the RASL screen looks like and
how to enter and interpret information on the screen.

This part includes the following topics:

• description of the RASL screen,

• accessing parts of the screen,

• entering information on menu lines,

• how RASL updates the menu display, and

• purpose and description of menu lines.

Chapter 9. HOW TO USE RASL 9-5

DESCRIPTION OF THE RASL SCREEN

Diagram of screen

9-6

This diagram shows what the RAS~ screen looks like upon
initial entry.

text I
window ---~) L.. ______________ _

reason for .
program -----~) Initial Entry
suspension

SEGMENT:
MODULE:

FUNCTION:
RASL LINE:
menu ----~) VARIABLE:

ADDR:
TYPE:

VALUE:

Note:

On 6600 type processors with 12-line screens,the
text window is not displayed with the menu.

DASL USER'S GUIDE 50807-02

DESCRIPTION OF THE RASL SCREEN

Parts of the screen

The following table describes the parts of the RASL screen.

PART FUNCTION

Shows 11 lines of the currently se-
text window lected source module

reason for Explains the reason why the program
program being debugged is suspended and
suspension RASL is active

Displays eight lines which can be
used for two purposes:

• to allow the user to make selec-
RASL menu tions or

• to display information about the
state of the program.

Chapter 9. HOW TO USE RASL 9-7

ACCESSING PARTS OF THE SCREEN

Introduction

These pages describe procedures for accessing different
parts of the screen, including

• moving the cursor,

• scrolling the text window, and

• changing the size of the text window.

RASL uses the 12-1ine screen of 6600 type processors in a
modified way.

The use of the 24-1ine screen is described first, followed by
modifications for the 12-\ine screen.

Moving the cursor

9-8

The following chart shows how to move the cursor to the
beginning of any line on the screen.

PRESS on the numeric
TO move the cursor ... keypad ...

up or down to any menu
line 8 (up) or 2 (down).

back and forth from the
menu lines to the text 5.
window

up or down in the text
window 8 or 2.

DASL USER'S GUIDE 50807-02

ACCESSING PARTS OF THE SCREEN

Scrolling the text window

To scroll the text window up or down through the source
module, use the KBD (up) or DSP (down) Keys.

Changing to a larger text window

To display a 22-line text window (on a processor which
supports a 24-line screen), press the ENTER Key while the
cursor is in the text window.

The bottom line of the screen shows just the LINE menu
line.

To restore the complete RASL menu, repress ENTER.

Accessing the text window on 6600 processors

On 6600 type processors with l2-line screens, the text
window cannot be displayed at the same time as the menu.

You can display either

• the full RASL menu or

• the text window (11 lines) and just the LINE line of the
menu.

To switch back and forth between these options, press the
number pad 5 key and the KBD Key at the same time.

Chapter 9. HOW TO USE RASL 9-9

ACCESSING PARTS OF THE SCREEN

Moving the cursor on 6600 processors

On 6600 type processors which do not encode the numeric
keypad, you simulate the up and down cursor keys by using
the number pad 2 and 8 keys and the KBD Key at the same
time.

Scrolling on 6600 processors

9-10

To scroll through the source program on 6600 processors

• hold down the DSP Key and then press KBD (scroll down)
or

• hold down the KBD Key and then press DSP (scroll up).

DASL USER'S GUIDE 50807-02

ENTERING INFORMATION ON MENU LINES

Int roduct ion

Procedure

One of the functions of the menu lines is to allow the user
to enter information.

To enter information on a menu line

STEP ACTION

1 Move the cursor to the line

2 Enter the information

3 Press the ENTER Key

The following chart explains what happens when you
enter various keystrokes.

IF you ... THEN RASL ...

backspace to the begin-
ning of the line or restores the old infor-
press CANCEL mation on the line.

beeps and restores old
enter invalid information information.

responds as if you had
press the ENTER Key by retyped the current in-
itself formation on the line.

enter a space followed
by the ENTER Key clears the line.

Chapter 9. HOW TO USE RASL 9-1l

ENTERING INFORMATION ON MENU LINES

Entering numeric information

When you type in numbers, they are in

• octal if they begin with zero or

• decimal if they do not begin with zero.

9-12 DASL USER'S GUIDE 50807-02

HOW RASL UPDATES THE MENU DISPLAY

Introduction

One of the functions of the RASL menu lines is to display
information about the state of the program.

RASL automatically updates the display whenever RASL is
reentered after the initial entry to RASLRES$.

Description of normal display

In most cases of reentry to RASL, RASL updates the
MODULE, FUNCTION, and LINE lines and displays on the
VALUE line the current value of the selected variable or
address.

Display update for special cases

If the program address belongs to a module without a
symbol table file, <module>/SYMI, then RASL

• clears the FUNCTION, LINE, and VARIABLE lines and

• sets the ADDR line to the program address and displays
its VALUE.

If the program address does not belong to a module in the
current segment, RASL does the same thing but it also
clears the MODULE line.

Chapter 9. HOW TO USE RASL 9-13

HOW RASL UPDATES THE MENU DISPLAY

Display update when a run-time error occurs

9-14

RASL sets the ADDR line to the program address if the RASL
entry occurred because of

• an undefined or privileged instruction or

• memory access or write violation.

DASL USER'S GUIDE 50807-02

USING MENU LINE: SEGMENT

Purpose

On the SEGMENT menu line, you enter the name of the
segment in which you are interested.

For single segment programs, you enter the program
(command) name.

Requirement

The LINK output debug file <segment>/SYM2 must be
available.

Results of selection

If the segment selection is successful, RASL

• blanks the information on the MODULE, FUNCTION, and
LINE lines,

• moves the cursor to the MODULE line, and

• attempts to select a module with the same name as the
segment.

The module selection is successful for programs which
have the same name for the source file and command.

Chapter 9. HOW TO USE RASL 9-15

USING MENU LINE: MODULE

Purpose

On the MODULE menu line you must select a module.

Description of module

A module consists of

• a DASL source file,

• its associated relocatable PROG in a relocatable file or
library, and

• the same PROG within an absolute code command or
segment.

Requirements

9-16

There should normally be a compiler debug file
<module>/SYMl. The one exception is described on the
pages called Assembly Language Debugging.

There must have been a PROG with the module name
LINKed into the current segment.

DASL USER'S GUIDE 50807-02

USING MENU LINE: MODULE

Results of selection

If the module selection is successful, RASL blanks the
current information on the FUNCTION and LINE lines and
moves the cursor to the FUNCTION line.

If RASL can find a file with the module name and extension
TEXT, then the text window is initialized to the beginning
of this file. Otherwise, the text window area is not used
for the module.

Chapter 9. HOW TO USE RASL 9-17

USING MENU LINE: FUNCTION

Purpose

On the FUNCTION menu line, you select a function within
the current module.

Results of selection

If the function selection is successful, RASL

• moves the cursor to the LINE menu line and

• displays the line number of the first line of code in the
function after the function entry code.

The function selection also determines the scope of
variable references.

No function selection

9-18

If you do not want to select a function, enter one space and
press the ENTER Key.

Result: Any information on the LINE menu line is cleared.

This can be useful if you are interested in examining a
global variable which has the same name as a local
variable.

DASL USER'S GUIDE 50807-02

USING MENU LINE: LINE

Purposes

The LINE menu line displays the line number for a function
selection. It can also be used to select a line number
within the current module.

Results of selection

If the line selection is successful, that line appears in the
text window. An arrow appears next to any line you select.

Changing the current LINE

There are three ways to change LINE information:

• enter a function on the FUNCTION line, or

• enter a line number on the LINE menu line, or

• change the cursor position in the text window using the
cursor, KBD, or DSP Keys.

Note: If the cursor position is changed

• the line indicator moves and
• the LINE menu line displays the line number of the

current cursor position.

Chapter 9. HOW TO USE RASL 9-19

USING MENU LINE: LINE

Restriction

9-20

The line numbers in RASL always refer to the source file.
Therefore, you cannot use RASL to debug executable code
in an INCLUDE file.

DASL USER'S GUIDE 50807-02

USING MENU LINE: VARIABLE

Purpose

On the VARIABLE menu line, you can select a variable in
the current module.

Kinds of variables allowed

The selected variables can be

• a simple name or

• a complex variable containing /\, [number] and
.field components.

Examples: You can select

• num

• a/\.b[l].c

If /\ is used, the value of the preceding pointer must not be
NIL (0).

The meaning and type checking of variables is as in DASL.

Chapter 9. HOW TO USE RASL 9-21

USING MENU LINE: VARIABLE

Variables in recursive functions

Because of the way recursive functions are allocated from
a stack, you cannot select a recursive function on the
FUNCTION line and then look at its variables.

Instead, you can use the Caller command repeatedly to
step out to the desired function and then examine its
variables. The Caller command is described in PART D of
this chapter on the pages titled USING RASL COMMAND:
CALLER.

Scope of variables

9-22

RASL will first look for a variable declared locally to the
current function if there is one. Then it will look for
variables declared globally.

The variable may be external if it

• was declared EXTERN in the current function or globally
and

• was actually referenced by the code in the current
module.

DASL USER'S GUIDE 50807-02

USING MENU LINE: VARIABLE

Results of selection

If the variable selection is successful, RASL displays the
variable's

• absolute address on the ADDR menu line,

• type on the TYPE line, and

• value on the VALUE line.

Clearing lines

To clear the VARIABLE, ADDR, TYPE, and VALUE lines,
enter a space and the ENTER Key on the VARIABLE line.

Chapter 9. HOW TO USE RASL 9-23

USING MENU LINE: ADDR

Purposes

The ADDR menu line normally displays the address of a
selected variable.

You can also select an address on the ADDR line.

Selecting an address

9-24

The following chart shows the different ways that you can
select an address.

ENTER on the AD DR menu
TO select ... line ...

the absolute address
a particular absolute (preceded by zero if
address octal).

the previously displayed
address plus or minus the right or left cursor
one keys.

the previously displayed
address incremented or + or - followed by the
decremented by a speci- number.
fic number

the two byte value at
the current address as 1\.

the new address

DASL USER'S GUIDE 50807-02

USING MENU LINE: ADDR

Results of selection

When a new address is selected,

• the VARIABLE line is cleared,

• the TYPE line is changed to null for unknown, and

• the VALUE of the selected location is displayed.

Clearing lines

To clear the ADDR, TYPE, and VALUE lines, enter a zero
and the ENTER Key on the ADDR line.

Chapter 9. HOW TO USE RASL 9-25

USING MENU LINE: TYPE

Purposes

The TYPE menu line normally displays the type of a
selected variable.

You can also enter information on the line to change the
type.

Changing the type

9-26

The following examples illustrate two common situations
when it is useful to change the type .

• You have a character stored as a BYTE and want to see it
asa CHAR •

• You are passing a string to a function by using a pointer
to a CHAR and want to see the whole string.

DASL USER'S GUIDE 50807-02

USING MENU LINE: TYPE

Changing the type

You may change the type by entering

• any DASL predefined type,

• a TYPDEF name defined in the current module,

• A for pointer,

• [J for array,

• STRUCT, or

• space and ENTER Key for null.

The information on the TYPE line determines the format of
the VALUE line.

Chapter 9. HOW TO USE RASL 9-27

USING MENU LINE: VALUE

Purposes

9-28

The VALUE menu line displays the value of a selected
variable or address.

You can also enter a value on this line to change the value
of a variable or address.

DASL USER'S GUIDE 50807-02

USING MENU LINE: VALUE

Format of value

The format of the value is determined by the displayed
TYPE.

The following chart shows the value format for different
data types.

TYPE FORMAT of value

CHAR character

BOOLEAN FALSE or TRUE

BYTE one byte unsigned

UNSIGNED two bytes unsigned

INT two bytes signed, if negative

LONG four bytes signed

POINTER octal address of pointer

string (possibly truncated to
CHARACTER ARRAY fit on the line)

they have one and two byte values
MISCELLANEOUS at the current address that are
TYPES: displayed in several formats:

• other array • character
types • one byte octal

• two bytes octal
• STRUCT • two bytes reversed octal

• one byte unsigned
• UNION • two bytes unsigned

• two bytes signed, if negative.
• NULL

Additionally, the entire value is
displayed as a sequence of octal
bytes and as a string.

Chapter 9. HOW TO USE RASL 9-29

USING MENU LINE: VALUE

Changing the value

9-30

You can enter a value on the VALUE menu line to change
the value of a variable or address.

The value may be

• an octal or decimal number with optional preceding sign
or

• a string in single quotes with DASL's double quotes
forcing rules.

If the current type is an array or STRUCT, then the size of
the type and the size of the value are compared. The
smallest of the two determines the number of bytes which
will be modified. The size of a numeric value is one byte
if the value fits in eight bits, two if 16 bits, and
otherwise four.

DASL USER'S GUIDE 50807-02

::>ART C: BREAKPOINTS AND TRACEPOINTS

Description

Coming up

A breakpoint or tracepoint may be set at any line of a
program which actually generates object code.
Breakpoints and tracepoints modify the program at the line
where they are set.

A breakpoint causes an executing program to

• suspend execution before the breakpoint line is
executed and

• reenter RASL.

A tracepoint also causes the program to reenter RASL
before the line is executed. However, RASL resumes
execution of the program after updating the RASL menu
display.

This part discusses the following topics:

• using breakpoints and tracepoints, and

• restrictions on placement of breakpoints and
tracepoints.

Chapter 9. HOW TO USE RASL 9-31

USING BREAK AND TRACEPOINTS

Introduction

These pages describe how to set and use breakpoints and
tracepoints.

When to use

Breakpoints allow the user to stop program execution,
examine values of variables, and trace the logic flow.

Tracepoints allow the user to see a variable changing
without stopping the program. The user can also set
several tracepoints and watch which ones are executed.

Setting a breakpoint

There are two ways to set a breakpoint. You can enter B

• on the LINE menu line, or

• in the text window area with the cursor positioned on the
desired line.

9-32

Results: If the chosen line does not actually generate
object code, then the LINE is set to the next line which
does.

The LINE menu displays the word "Breakpoint".

A "B" appears to the left of the line in the text window.

If the breakpoint is set in the text window area, then the
LINE is set to the following line.

DASL USER'S GUIDE 50807-02

USING BREAK AND TRACEPOINTS

Removing a breakpoint

To remove a breakpoint, enter "B" again on the desired
line.

Setting and removing a tracepoint

To set or remove a tracepoint, use "T" and follow the same
procedure as for setting and removing breakpoints.

Association of variables with breakpoints and tracepoints

RASL permits different variables to be associated with
different breakpoints and tracepoints.

Whenever a breakpoint or tracepoint is set, the current
state of each of the RASL menu line displays is
remembered and associated with that breakpoint or
tracepoint.

Exception: the VALUE menu line display is not
remembered.

IF the LINE display is later set to or execution resumes at a
line which has a breakpoint or tracepoint set, THEN

• the display is restored to what it was when the
breakpoint or tracepoint was set and

• the current value of the selected variable or address is
displayed on the VALUE line.

Chapter 9. HOW TO USE RASL 9-33

USING BREAK AND TRACEPOINTS

Examining breakpoints or tracepoints

To examine all of the breakpoints or tracepoints which
have been set, press the left or right cursor keys on the
LINE menu line.

Each time you press a cursor key, the RASL menu is .
updated to display all of the information associated with the
next (or previous) breakpoint or tracepoint in the
program.

Using the Execute command with breakpoints

9-34

The Execute command causes the debugged program to
resume from where it was last suspended. See the pages
titled USING RASL COMMAND: EXECUTE in PART D of this
chapter.

If a program has been suspended due to a breakpoint or
tracepoint, the Execute command causes the breakpoint or
tracepoint to be temporarily removed so that execution can
resume.

This is indicated on the screen by

• the message "Breakpoint pending" or "Tracepoint
pending" on the LINE menu line and

• a lowercase "b" or "t" to the left of the line in the text
window.

The next time RASL is reentered, the breakpoint or
tracepoint is restored.

DASL USER'S GUIDE 50807-02

USING BREAK AND TRACEPOINTS

Entering RASL through a loop

If you want to enter RASL each time through a loop, you
need to set more than one breakpoint or tracepoint in the
loop.

Chapter 9. HOW TO USE RASL 9-35

BREAK AND TRACEPOINT RESTRICTIONS

Introduction

Example 1

9-36

There are several restrictions on the placement of
breakpoints and tracepoints. If you try to set a breakpoint
or tracepoint where one is not allowed, then RASL
automatically sets the breakpoint or tracepoint at an
acceptable position.

In each of the following examples, the user tries to set a
breakpoint at line X, but RASL actually sets the breakpoint
at line B. The same resetting would occur for tracepoints.

If the user tries to set a breakpoint on the right brace at the
end of a LOOP statement and the last statement before the
right brace is a WHILE statement, then RASL sets the
breakpoint on the next statement after the loop.

The reason for this is that the end of the loop has been
optimized into the WHILE.

x

LOOP {
y += x;

WHILE ++x <= 10;
} ;

B IF y > 40 THEN z .= 0;

DASL USER'S GUIDE 50807-02

BREAK AND TRACEPOINT RESTRICTIONS

Example 2

Example 3

If the user tries to set a breakpoint on the right brace at the
end of a function and the last statement of the function is
an assignment to RESULT, then RASL sets the breakpoint at
the beginning of the next function.

The end of the function has been optimized into the
assignment.

funct() . =
{

x:=a+b;
y := x * 3;
RESULT y;

X };

B modO .=
{

c := r + S;
s++;
} ;

If the user tries to set a breakpoint on a line which starts
with an ELSE, then RASL sets the breakpoint after the end
of the statement following the THEN.

IF x = y THEN
b 0;
a .= 1 ;

B }

X ELSE b .= 5 ;

Chapter 9. HOW TO USE RASL 9-37

BREAK AND TRACEPOINT RESTRICTIONS

Example 4

9-38

If the user tries to set a breakpoint on the closing brace of
a CASE statement, then RASL sets the breakpoint on the
code which evaluates the CASE expression.

B CASE x {

one : a .= 3 ;
four : a .= 5· .

X I;

DASL USER'S GUIDE 50807-02

::>ART D: RASL COMMANDS

Introduction

This part describes how to execute and use the five
commands in RASL:

• Execute,

• Caller,

• Where,

• Quit, and

• Invert.

Chapter 9. HOW TO USE RASL 9-39

PART D: RASL COMMANDS

Executing commands

Follow this procedure to execute a RASL command.

STEP ACTION

Press the COIIDnand Key.

1 Result: The five commands are displayed
on the bottom line. The Execute Command
is displayed in inverse video to show
that it is the selected command.

Change the selected command by entering
either

• its first letter.
2 • the Right Cursor Key or a space to

move to the next command. or
• the Left Cursor Key to move to the

previous command.

3 Execute the command by pressing the ENTER
Key.

You can cancel the command mode at any time by
repressing the Command Key.

9-40 DASL USER'S GUIDE 50807-02

EXECUTE COMMAND

Purpose

The Execute Command causes execution of the debugged
program to resume from where it was last suspended.

Special condition of reentry

If there is a breakpoint or tracepoint set at the program
reentry address, the breakpoint or tracepoint is
temporarily removed from the program so execution can
resume. See the pages titled USING BREAKPOINTS AND
TRACEPOINTS in PART C of this chapter.

Conditions for suspending execution

While the program is running, RASL displays the message
"Executing ... ". Execution continues until one of the
following occurs:

• breakpoint,

• tracepoint,

• undefined or privileged instruction,

• access or write violation, or

• debug key sequence (KBD-CAN-KBD) typed at the
keyboard running the program.

Chapter 9. HOW TO USE RASL 9-41

CALLER COMMAND

Purpose

The following chart describes the uses of the Caller
Command.

IF you execute the
Caller Command ... THEN RASL displays ...

the module, function,
for the first time after and line number which
an entry to RASL or af- called the function
ter the Where Command where execution was sus-

pended.

the next outer function
call.

again Repeated use of the
Caller Command reveals
the current program call
nesting.

Use of Caller with recursive functions

9-42

The Caller Command can be used to examine variables in
recursive functions. See the pages titled USING MENU
LINE: VARIABLE in PART B of this chapter.

DASL USER'S GUIDE 50807-02

CALLER COMMAND

Restrictions on use of Caller Command

You cannot use the Caller Command again if

• the function line was blank on the reentry display or
after the previous Caller Command (meaning the return
address is unknown) or

• the program suspension occurred in the function header
before the return address was stored.

In the second case, you can set a breakpoint on the next
line and enter the Execute Command.

Module name restriction

Module names which are longer than eight characters can
cause problems with the Caller Command, because module
names are truncated to eight characters by SNAP and LINK.

If the Caller Command gets a truncated module name, then
RASL cannot find the /SYMI or source file.

Chapter 9. HOW TO USE RASL 9-43

WHERE, QUIT, AND INVERT COMMANDS

Description of uses

9-44

The following chart describes the use of the remaining
three RASL commands.

COMMAND ... DESCRIPTION

Displays the program reentry point,
Where just as when RASL is entered

Terminates RASL

Quit The debugged program remains sus-
pended and must be aborted from
the workstation

Reverses the shift key inversion,
Invert which is initially off

DASL USER'S GUIDE 50807-02

Chapter 10.
ASSEMBLY LANGUAGE
USING RASL TO DEBUG ASSEMBLY CODE

Introduction

Description

RASL was designed as a debugger for DASL programs.

However, RASL can also be used to debug programs written
in assembly language.

RASL allows you to use the ADDR and LINE menu lines in
alternate ways for assembly language debugging.

You can perform either of these alternatives:

• set the current address of the ADDR line to the machine
state save area in RASLRES$ or

• change the mode on the LINE line so that entries on this
line are absolute addresses instead of line numbers.

These uses of the LINE and ADDR lines are only meaningful
if you have used assembly language code in your program.

Chapter 10. ASSEMBLY LANGUAGE 10-1

USING RASL TO DEBUG ASSEMBLY CODE

Using the ADDR line

10-2

To set the current address on the ADDR line to the machine
state save area in RASLRES$, enter an M on the ADDR line.

You may examine or modify this area as any other memory
area.

The following table indicates the number of bytes used and
the contents of each item in the 32-byte machine state save
area.

NUMBER OF BYTES CONTENTS

1 internal use

RMS interrupt state save area,
which includes

• condition code (1 byte)

13 • A, B, C, D, E, H, L, X
registers (8 bytes)

• program reentry address
(2 bytes)

• internal use (2 bytes)

address of recursive frame
2 pointer (D$RFRAME)

top 8 stack entries (excluding
16 reentry address)

DASL USER'S GUIDE 50807-02

JSING RASL TO DEBUG ASSEMBL Y CODE

Jsing the LINE line

To toggle a mode in which entries on the LINE line are
absolute addresses instead of line numbers, enter an M on
the LINE line. (Remember to precede octal numbers with a
zero.)

Breakpoints and tracepoints work the same as for line
numbers.

:xceptions to use of ADDR and LINE

If there is no /SYMI file for a name entered on the MODULE
line,

• the ADDR line is set to the address of the second PAB of
the module (usually data) and

• the LINE line, if toggled to the absolute address mode,
shows the address of the first PAB of the module (usually
code).

Chapter 10. ASSEMBLY LANGUAGE 10-3

10-4 DASL USER'S GUIDE 50807-02

Chapter 11.
RUNNING A DASL PROGRAM

OVERVIEW

Scope of this section

Coming up

This section briefly describes the steps involved in going
from DASL source code to executable object code.

What is not covered: This section does not include
information on compiling and linking programs with more
than one module or programs which have overlays.

For complete and detailed information on linking see the
section on LINK in the RMS Utility User's Guide.

This section provides introductory information on

• the process of going from DASL source code to
executable code and

• the use of the chain file, DASL/CHN, to perform this
process.

The complete DASL/CHN file is listed at the end of this
chapter.

Chapter 11. RUNNING A DASL PROGRAM 11-1

GOING FROM SOURCE TO EXECUTABLE CODE

Stages of process

11-2

The process of going from DASL source code to executable
object code involves the following three stages:

STEP ACTION

1 Compilation by the DASL compiler

2 Assembly by the SNAP assembler

3 Linkage by the LINK editor

DASL USER'S GUIDE 50807-02

GOING FROM SOURCE TO EXECUTABLE CODE

Diagram

The diagram below outlines the stages of the process.

DASL compiler

DASL
source code

assembly
source code

SNAP assembler

relocatable
object code

LINK linkage editor 1
executable
object code

relocatab1e
object code

re1ocatab1e
object code

Function of the DASL compiler

The DASL compiler consists of two serial passes.

• Pass one transforms DASL source code into a machine
independent, intermediate logical representation.

• Pass two generates the actual assembly output code.

Because pass one is machine independent, different code
generators may be hooked onto it for different machines.

Chapter 11. RUNNING A DASL PROGRAM 11-3

GOING FROM SOURCE TO EXECUTABLE CODE

Function of SNAP

The SNAP assembler generates a relocatable code module
from the assembly source code produced by the compiler.

Description of relocatable code modules

The additional relocatable code modules in the diagram
represent either

• modules which have already been compiled and
assembled by the user, or

• modules which are part of some standard RMS package,
such as for run-time support, I/O routines, User
Function Routines, and so on.

Function of LINK

11-4

LINK performs the final blending of relocatable code
modules required to make an executable command file.

The directives to the linker specify which modules are
required to resolve all of your program's references.

DASL USER'S GUIDE 50807-02

USING THE DASLICHN FILE

Introduction

DASL programmers frequently use a chain file to
accomplish the three steps of compiling, assembling, and
linking a program module.

The following pages describe how to use the standard chain
file, DASL/CHN.

Definition of DASLICHN

DASL/CHN is a chain file which is designed to work for
programs which have only a MAIN module.

DASL/CHN can serve as a prototype for more complex
programs.

A listing of DASL/CHN is included at the end of this
chapter.

Chapter 11. RUNNING A DASL PROGRAM 11-5

USING THE DASL/CHN FILE

Description of DASL/CHN options

11-6

DASL/CHN has five options which the user may specify on
the DASL/CHN command line. These options determine

• which options are given to DASL, SNAP, and LINK, and

• which files and libraries are included in the LINK
directives.

The following chart describes the function of each option.

THIS option ... PERFORMS this function ...

compiles and links a program so that
it produces information needed by the
debugger, RASL.

When you use the DBUG option, the
DBUG program tries to activate the de-

bugger every time it is run.

If the pipe needed by RASL cannot be
opened, the program executes without
RASL.

compiles and links a program for
debugger, RASL.

RASL The program itself must call RASLRES$
if it wants to use the debugger.

compiles and links a program so that
TRACE it produces information needed by

TRACE.

determines whether the code generator
for the 6600 or the 5500 instruction

CODE set is used.

The default is CODE = 6600.

generates a print file of the LINK
PRT map.

DASL USER'S GUIDE 50807-02

USING THE DASL/CHN FILE

Running DASL/CHN

To run DASL/CHN, enter on the command line

DASL/CHN[;IN=<filename>] [,<options>]

DASL/CHN prompts you for the name of your program if you
do not include it on the command line.

If no errors are encountered, an executable file is
produced called <filename>/CMD.

Display of compilation errors

If the compiler finds any errors, it describes each error and
indicates the line number where it occurred.

The error information is displayed on the screen and is also
written to a text file called DASLERR/TEXT.

Description of LINK directives

The directives to LINK specify to the linker which modules
are required to locate all of your program's references.

The INCLUDE directive takes the entire /REL module
specified and plugs it into the /CMD file, locating any
references.

The LIBRARY directive searches the /REL module only for
those entities that are required to locate references.

Chapter 11. RUNNING A DASL PROGRAM 11-7

USING THE DASLICHN FILE

LINK directives in DASLICHN

11-8

Some of the directives in DASL/CHN are conditional and
depend upon which options are given.

The following table briefly describes the LINK directives
which appear in DASL/CHN.

DIRECTIVE DESCRIPTION OF FILE OR LIBRARY

D$START is responsible for starting
INCLUDE up the execution of a DASL program.
D$LIB.D$START D$START calls the MAIN function of

the program.

INCLUDE D$STARTS first calls the RASLRES$
D$LIB.D$STARTS routine and then calls MAIN.

LIBRARY RASLRES$
This library and file are needed in

INCLUDE order to run RASL.
RASLPIPENAME

0$10 is one of the many I/O packages
LIBRARY 0$10 which are available. Other I/O

packages are discussed in the SYSTEM
PROGRAMMERS REFERENCE MANUAL.

D$LIB contains the run-time support
needed by DASL programs. includiQg
in part

LIBRARY D$LIB • recursion support.
• software divide and multiply

for the 5500. and
• block move/comparison.

RMSUFRS is the standard RMS package
of User Function Routines and other
definitions. Some of these are

LIBRARY called by D$LIB and must. therefore.
RMSUFRS be included. Library RMSUFRS should

be the last library directive to
LINK

DASL USER'S GUIDE 50807-02

USING THE DASLICHN FILE

Modifying DASLICHN

If your program consists of more than one module or
references other function libraries, you may add the
appropriate INCLUDE or LIBRARY directives to DASL/CHN.

For information on making more extensive modifications,
see the CHAIN and LINK sections of the RMS Utility User's
Guide.

Chapter 11. RUNNING A DASL PROGRAM 11-9

LISTING OF DASLICHN FILE

Introduction

The following is a listing of the complete DASL/CHN file.

DASL/CHN file

11-10

1& DASL/CHN ;IN=file,DBUG,RASL,TRACE,CODE,PRT

DBUG - Compile and link for debugger
1&
1&
1&
1&
1&
1&
1&
1&
1&

RASL - Compile and link for debugger, but
program must call RASLRESS

TRACE - Compile with debug options for TRACE

CODE = 5500 or 6600 (6600 assumed)
PRT - Generate print file of LINK map

II ASSIGN TIME=CLOCK()
II IF - IN
II IF - OUT
I I KEVIN "ENTER PROGRAM NAME: " OUT
II XIF
II ASSIGN IN = OUT
I I XIF
II IF DBUG I RASL I TRACE
DASL #IN#;CODE=#CODE#,DEBUG
SNAP DASLASM;N,DEBUG
II IF PRT
LINK,#IN#/CMD,#IN#;ERR,FASTLIB,NEW,PRNT,DEBUG
#TIME#
II ELSE
LINK ,#IN#/CMD,#IN#;ERR,FASTLIB,NEW,DEBUG
II XIF
II ELSE
DASL #IN#;CODE=#CODE#
SNAP DASLASM;N
/1 IF PRT
LINK ,#IN#/CMD,#IN#;ERR,FASTLIB,NEW,PRNT
#TIME#

DASL USER'S GUIDE 50807-02

LISTING OF DASLICHN FILE

II ELSE
LINK .#IN#/CMD.#IN#;ERR.FASTLIB.NEW
II XIF
I I XIF
SEGMENT #IN# •• $LOADTOP
INCLUDE DASLASM
II IF DBUG
INCLUDE D$LIB.D$STARTS
II ELSE
INCLUDE D$LIB.D$START
II XIF
II IF DEBUG I RASL
INCLUDE RASLPIPENAME
LIBRARY RASLRES$
II XIF
II IF CODE = 5500
LIBRARY D$IO/REL5
II ELSE
LIBRARY D$IO
I I XIF
LIBRARY D$LIB
LIBRARY RMSUFRS
SIGNON #IN# - #TIME#

Chapter 11. RUNNING A DASL PROGRAM 11-11

11-12 DASL USER'S GUIDE 50807-02

Chapter 12.
MAKE REFERENCE SECTION

OVERVIEW

Purpose

MAKE is a program to aid in automating the maintenance of
a set of interrelated files.

Common uses of MAKE

MAKE is commonly used to detect updates to the various
source and INCLUDE files that implement a user command.
MAKE then recompiles only those source modules which
have changed or that INCLUDE text which has changed.

MAKE can also be used to make backups or listings of files
which have changed.

How MAKE works

The user provides a rules file to MAKE which specifies

• the file interdependencies for a system of files and

• the actions to be taken in order to update any dependent
files.

MAKE uses this rules file in order to create a chain file.
The chain file includes a minimal set of commands which
will assure that a specified file is up-to-date. MAKE
automatically executes this chain file.

Chapte~ 12. MAKE REFERENCE SECTION 12-1

OVERVIEW

Coming up

12-2

In this chapter, we discuss

• Limitations of MAKE,

• The MAKE Command Line,

• MAKE Rules File Format,

• How MAKE Decides What to Remake,

• An Example Illustrating the Rules File and Chain File,
and

• An Example Illustrating How MAKE Decides What to
Remake.

DASL USER'S GUIDE 50807-02

LIMITATIONS OF MAKE

Introduction

MAKE is only as good as the file time stamps stored in the
files. The user must try to ensure that the file times
are accurate and up to date.

File times of RMS 1 and 2

In RMS 1, the only file time available is the RMS create
time.

There are commands, such as LINK, which do not update
the create time of the file being modified.

Later versions of RMS may have a last modified time which
MAKE will use.

Use of the command TOUCH

The command TOUCH, an RMS utility, takes a file name as
its only parameter and changes the file I s create time to the
current time.

If you are using RMS 1, it is important to run TOUCH before
invoking MAKE.

Chapter 12. MAKE REFERENCE SECTION 12-3

MAKE RULES FILE FORMAT

Description

The user provides a rules file to MAKE which specifies

• the file interdependencies for a system of files and

• the actions to be taken in order to update any dependent
files.

Description of rules file format

The rules file format is an extension of the chain file
format which the user might normally use to cause the
required actions to be accomplished.

Chapter 12. MAKE REFERENCE SECTION 12-9

THE MAKE COMMAND LINE

Introduction

The following pages describe each of the file
specifications and options for the MAKE command line.

Format for MAKE command line

The format for the MAKE command line is:

MAKE [TARGET=targetl [RULES=rulesl [CHN=chain];
[optionsl

Chapter 12. MAKE REFERENCE SECTION 12-5

THE MAKE COMMAND LINE

Description of file specifications

12-6

The chart below describes each of the optional file
specifications and shows the default name for the file.

FILE
SPECIFI- DESCRIPTION DEFAULT
CATION

<unit 1>/*
The name <unit 1> means
that every dependent in
the first make-unit is

Specifies the to be updated.
target files that

are to be The extension * means
updated that the target is a

pseudofi1e, which is a
name used to identify a
group of predecessors.

RULES/MAKE
Specifies the
file contain- The rules environment

rules ing the MAKE defaults to the target
rules environment.

Specifies the
chain file

chain that MAKE MAKE$/CHN:W
creates and
executes

DASL USER'S GUIDE 50807-02

fHE MAKE COMMAND LINE

Jptions

The MAKE command line may include any combination of
the following options.

THIS option ... Causes MAKE to ...

create the required chain file
NORUN but not execute it.

create a chain file which up-
dates all target file times as

UPDATE if the commands in the make-
units for the out-of-date tar-
gets were executed.

assume that all targets are
ALL out-of-date and must be remade.

pass the indicated chain op-
CHNOPT = tions through to the chain
"chain options" file MAKE creates.
or

That is, MAKE will execute the
CHNOPT= chain file
chain_option

• MAKE$/CHN:W;chain options, or

• MAKE$/CHN:W;chain_option .

ignore any errors that occur
IGNORERR and attempt to generate the

chain file.

Chapter 12. MAKE REFERENCE SECTION 12-7

THE MAKE COMMAND LINE

Use of UPDATE and ALL

12-8

UPDATE and ALL are essentially opposites.

UPDATE is useful to update the file times when you know
that nothing is really out-of-date but the file times are not
indicating that.

ALL is useful when you have reason to believe that the file
times do not indicate the actual state of
"up-to-date-ness. "

DASL USER'S GUIDE 50807-02

MAKE RULES FILE FORMAT

Description

The user provides a rules file to MAKE which specifies

• the file interdependencies for a system of files and

• the actions to be taken in order to update any dependent
files.

Description of rules file format

The rules file format is an extension of the chain file
format which the user might normally use to cause the
required actions to be accomplished.

Chapter 12. MAKE REFERENCE SECTION 12-9

MAKE RULES FILE FORMAT

Kinds of syntactic elements

The rules file consists of three basic MAKE syntactic
elements. The following chart defines each element and
shows its delimiters.

SYNTACTIC
ELEMENT DEFINITION DELIMITERS

A group of cOllDDands that
must be executed to up-
date any of the files
listed in one of the
rules file's dependent-
list based on the files
listed in one of the

make-unit rules file's predeces- {* *}
sor-lists

Every make-unit must have
at least one dependent-
list and one predecessor-
list.

A list of one or more
dependent- files which would change
list if any file in the <* *>

predecessor-list changed

A list of one or more
predeces- files which are depended
sor-list on by the file(s) in the (* *)

dependent list

12-10 DASL USER'S GUIDE 50807-02

MAKE RULES FILE FORMAT

Syntax for make-unit

A make-unit is delimited by the symbols {* and *}.

All text outside of a make-unit is discarded. The
remainder of the line on which {* or *} appears is ignored
and discarded.

Make-units may not be nested.

Syntax for dependent- and predecessor-lists

Dependent-lists and predecessor-lists have the same
structure.

A dependent-list is delimited by the symbols <* and *>. A
predecessor-list is delimited by the symbols (* and *).

If a list contains more than one element, the elements are
delimited by any combination of blanks, commas, and line
ends.

Dependent-lists and predecessor-lists may not be nested.

The same file specification may appear in more than one
dependent- or predecessor-list in the same make-unit.

Chapter 12. MAKE REFERENCE SECTION 12-11

MAKE RULES FILE FORMAT

Example of make-unit

The following example shows one make-unit which is part
of a longer rules file.

{*
/& (* DEFS/TEXT *)
DASL (* MAIN/TEXT *)
SNAP DASLASM <* MAIN/REL *>
*}

This make-unit includes one dependent-list,

<* MAIN/REL *>,

and two predecessor-lists,

(* DEFS/TEXT *) and (* MAIN/TEXT *).

File specification format

12-12

Each element of a dependent- or predecessor-list is a file
specification in standard RMS format.

The name portion of the file has no default and should be
specified.

The extension defaults to /TEXT and the environment
defaults to blank.

Generic file specifications are not interpreted, and,
therefore, will probably not work as intended.

DASL USER'S GUIDE 50807-02

MAKE RULES FILE FORMAT

Exception to format

The one exception to the RMS format is that the extension *
may be specified.

The * extension indicates to MAKE that this file
specification is not really an RMS file but is instead a
"pseudofile. "

Definition of pseudofile

A pseudofile is a name that is used in a make-unit to
identify a group of predecessors.

Example: In the following make-unit, a pseudofile,
defs/*, is used to group the two INCLUDE
files, SUB2DEFS and DEFS.

{*
1& <1< def s 11< *>
1& (* SUB2DEFS DEFS *)
*!

Chapter 12. MAKE REFERENCE SECTION 12-13

HOW MAKE DECIDES WHAT TO REMAKE

Description of process

MAKE uses the rules file to decide what dependent files
need to be remade.

MAKE first scans the entire rules file looking for all
dependencies.

Then MAKE applies a set of rules to determine which
make-units must be output to the MAKE chain file.

Description of terms

12-14

Several terms are used in describing the set of rules which
MAKE applies. These terms are described below.

• Dependent. File X is a dependent of file Y if X is in a
dependent-list make-unit which has Y in one of its
predecessor-lists.

• Predecessor. File A is a predecessor of file B if A is in a
predecessor-list of a make-unit which has B in one of its
dependent-lists.

• Target. A file is a target if it is one of the files specified
by "TARGET" on the command line or it is a predecessor
of a target.

• Real file. Any file which is not a pseudofile is called a
real file.

• Remade. A file is to be remade if it is a dependent of a
make-unit which is to be output.

DASL USER'S GUIDE 50807-02

HOW MAKE DECIDES WHAT TO REMAKE

Rules for determining file age

MAKE usually determines the age of a file by using the
file's create time. Additionally, the following rules apply.

• If a real file is to be remade, then it is considered to be
the youngest possible file.

• A real file which cannot be found is considered the
oldest possible file.

• The age of a pseudofile is determined from the age of its
dependents or predecessors, as shown on the following
page.

WHEN compar-
ing a pseudo- THEN the pseudofile
file with one AND ... is considered ...
of its ...

at least one
predecessor as young as its
exists youngest predecessor

dependents
no predeces- the oldest possible
sors exist file.

at least one
dependent as old as its oldest
which is a dependent which is a
target exists target.

predecessors
no dependents
which are the youngest possible
targets exist file.

Chapter 12. MAKE REFERENCE SECTION 12-15

HOW MAKE DECIDES WHAT TO REMAKE

Rules for outputing make-units

12-16

MAKE applies the following rules to determine which
make-units must be output to the MAKE chain file. These
rules are applied in parallel, along with the rules for
determining file age.

• A make-unit will be output to the chain file if one of its
dependents is a target and either

- the target does not exist or

- one of the target's predecessors is newer than the
target.

• Make-units will appear in the chain file in an order
which assures that all predecessors which are to be
remade are remade before any dependents are remade.

• If a target is to be remade by more than one make-unit,
then the make-units will appear in the chain file in the
same order they appeared in the rules file.

DASL USER'S GUIDE 50807-02

:XAMPLES: THE RULES AND CHAIN FILES

ntroduction

The example on the following pages illustrates

• a typical rules file and

• the chain file which MAKE creates.

Jescription of the problem

Consider the problem of keeping up to date an RMS
command, PROG, which is implemented from three DASL
source files, MAIN, SUBI, and SUB2.

Each source file INCLUDES a file of definitions:

• MAIN INCLUDES the file DEFS,

• SUBl INCLUDES the file SUBlDEFS, and

• SUB2 INCLUDES the file SUB2DEFS.

SUB2DEFS, in turn, INCLUDES DEFS.

Chapter 12. MAKE REFERENCE SECTION 12-17

EXAMPLES: THE RULES AND CHAIN FILES

The configuration looks like this:

I PROG I

MAIN I
--.t i t_

EJ SUB2

~

12-18 DASL USER'S GUIDE 50807-02

:XAMPLES: THE RULES AND CHAIN FILES

rhe Rules file

To use MAKE to keep the command PROG up to date, a user
must first create a rules file which describes the
dependencies for the system of files.

The following rules file assumes a straightforward LINK
structure.

LINK
make-unit

DASL and
SNAP

make-units

"grouping"
make-unit

{*
//ASSIGN time = CLOCK()
LINK ,<* PROG/CMD *> ;ERR,FASTLIB,NEW
SEGMENT PROG

O INCLUDE (* MAIN/REL,SUBI/REL *)
INCLUDE (* SUB2/REL *)
INCLUDE D$LIB.D$START
LIBRARY D$IO
LIBRARY D$LIB
LIBRARY RMSUFRS
SIGNON PROG - #time#

* TOUCH PROG/CMD
*}

O {*
2 /& (* DEFS/TEXT *)

DASL (* MAIN/TEXT *)
SNAP DASLASM <* MAIN/REL *> ;N
*}

O {*

3 /& (* SUB1DEFS *)
DASL (* SUB1 *)
SNAP DASLASM <* SUB1/REL *> ;N
*}

{*

G /& (* defs /* *)
4 DASL (* SUB2 *)

SNAP DASLASM <* SUB2/REL *> ;N
*}

O {*
5 /& <* defs/* *>

/& (* SUB2DEFS DEFS *)
*1

Chapter 12. MAKE REFERENCE SECTION 12-19

E~AMPLES: THE RULES AND CHAIN FILES

Parts of the rules file

12-20

The rules file on the previous page consists of five
make-units which are described below.

PART DESCRIPTION

Indicates that PROG/CMD
1

• is a dependent of the
LINK unit and

make-unit • has as predecessors the
three /REL files

Indicate that the /REL file
each unit

2-4

in

• is a dependent of its DASL
DASL and SNAP unit and

make-units • has as predecessors its
source file and some set
of INCLUDE files

Uses a "pseudofile," defs/*,
"grouping" to group the two INCLUDEs,
make-unit SUB2DEFS and DEFS

DASL USER'S GUIDE 50807-02

EXAMPLES: THE RULES AND CHAIN FILES

Using MAKE to update files

Suppose in our example that the user changes SUB2DEFS
and wants to make sure that PROG/CMD is up to date.

The user can invoke MAKE, using the rules file that
was listed previously. The file PROG/CMD will be
the default target since it is a dependent of the
first MAKE unit.

MAKE will then create a chain file which takes care of any
necessary recompiling and linking.

MAKE chain file

MAKE creates the following chain file if the user changes
SUB2DEFS and then invokes MAKE with PROG/CMD as the
target.

/& defs/*
/& SUB2DEFS DEFS
/& defs/*
DASL SUB2
SNAP DASLASM SUB2/REL
//ASSIGN time = CLOCK()
LINK ,PROG/CMD ;ERR,FASTLIB,NEW
SEGMENT PROG
INCLUDE MAIN/REL,SUB1/REL
INCLUDE SUB2/REL
INCLUDE D$LIB.D$START
LIBRARY D$IO
LIBRARY D$LIB
LIBRARY RMSl)FRS
SIGNON PROG - #time#

*
TOUCH PROG/CMD

By comparing this chain file with the rules file, you can see
that MAKE outputs the make-units labeled 5, 4, and 1 to the
chain file.

Chapter 12. MAKE REFERENCE SECTION 12-21

HOW MAKE DECIDES WHAT TO REMAKE

Introduction

The example on the following pages builds on the previous
example of keeping the command PROG up to date.

These pages explain how MAKE applies its set of rules to
the MAKE rules file to create the chain file.

Diagram of file interdependencies

The diagram on the next page illustrates all of the file
interdependencies for the system of files on which the
command PROG depends.

The following symbols are used in the diagram:

• ovals depict files,

• arrows point from the predecessors of a make-unit to
the dependents of the same make-unit,

• labels inside boxes indicate the associated make-units,

• times shown are file times, and

• numbers next to arrows indicate the order in which
MAKE c9mpares the file times of files.

Note that the file time of SUB2DEFS changed from 8:00 to
16:02.

12-22 DASL USER'S GUIDE 50807-02

HOW MAKE DECIDES WHAT TO REMAKE

DASL
SNAP

DEFS
09:29 0

DASLI---i
SNAP

DASL
SNAP

SUB2DEFS Igl
08:00 -> 16:02 LJ

Chapter 12. MAKE REFERENCE SECTION 12-23

HOW MAKE DECIDES WHAT TO REMAKE

How MAKE decides what to output

12-24

The previous diagram helps to show how MAKE determines
what to output to the chain file.

MAKE compares the file times of files in the order
indicated by the numbers in the diagram.

MAKE does not find any targets which are out of date until
it gets to comparison (9).

The following chart explains why MAKE outputs to the
chain file the make-units associated with comparisons (9),
(to), and (11).

For each comparison, the following rule applies:
a make-unit is output to the chain file if one of its
dependents is a target and one of the target's predecessors
is newer that the target.

DASL USER'S GUIDE 50807-02

HOW MAKE DECIDES WHAT TO REMAKE

AT com- MAKE compares AND outputs the associated make-
parison the file times unit to the chain file because ...
.. . of ...

SUB2DEFS is newer than defs/*.

Rule: When comparing a
9 defs/* and pseudofile (defs/*) with one of

SUB2DEFS its predecessors, the pseudofile
is considered as old as its
oldest dependent which is a
target (SUB2/REL).

defs/* is newer than SUB2/REL.

Rule: When comparing a
pseudofile (defs/*) with one of

10 SUB2/REL and its dependents, the pseudofile
defs /"1< is considered as young as its

youngest predecessor (SUB2DEFS).

SUB2/REL is newer than PROG/CHO.

U SUB2/REL and Rule: Ifa real file (SUB2/REL)
PROG/CHD is to be remade, then it is

considered to be the youngest
kind of file.

Chapter 12. MAKE REFERENCE SECTION 12-25

12-26 DASL USER'S GUIDE 50807-02

Chapter 13.
TRACE REFERENCE SECTION

OVERVIEW

Purpose

Description

The purpose of TRACE is to provide execution statistics
that are useful in the performance analysis and
optimization of DASL programs.

The TRACE program interprets loadable object code and
provides different kinds of data which indicate where a
program spends its time.

Depending on the options given by the user, TRACE

• produces data about the usage of each function in a
particular overlay,

• tabulates the number of instructions executed in each 64
bytes of code, and

• traces specified instructions, including CALL, RET, SC,
and JUMP.

Chapter 13. TRACE REFERENCE SECTION 13-1

OVERVIEW

Space required by TRACE

TRACE requires a logical address space of 64k. The TRACE
program and its data reside in the top 8k. This is the region
from 56k to 64k of the physical address space.

No program may map into the region from 56k to 64k. An
attempt to do so via a $MEMKEYor $MEMMAP system call
is trapped. TRACE makes the program being traced "think"
the top 8k are not available.

No program may initially load into the top 8k. TRACE treats
this as a terminal error.

Speed of TRACE

13-2

Since TRACE is actually interpreting the object code, it can
run quite slowly. Depending on which options are used,
TRACE can run 30 to 500 times slower than normal.

DASL USER'S GUIDE 50807-02

OVERVIEW

Coming up

The contents of this chapter include:

• Overview of Running TRACE,

• Using TRACE Option DASLMAP,

• Using TRACE Option MAP,

• Using TRACE Options CALL, RET, SC, and JUMP,

• Using TRACE Options SKIP and NOLOAD,

• Using On/Off Facility, and

• Restrictions.

Chapter 13. TRACE REFERENCE SECTION 13-3

OVERVIEW OF RUNNING TRACE

Int roduct ion

The following pages provide general information on how to
run TRACE.

Each of the specific TRACE options is discussed separately
later in this section.

Invoking TRACE

To invoke TRACE, enter on the command line:

TRACE [<output file>] [;<options>]

If you enter the option DASLMAP, then TRACE will request
additional information.

TRACE always prompts for the command line of the program
which you wish to trace.

Where TRACE outputs information

13 -4

To specify where TRACE outputs information, you may

• specify a file name on the command line where TRACE
directs all output, or

• use the DISP option to direct the output to the screen.

If you do not specify an output file or use the DISP option,
the default output file is TRACEOUT/TEXT:W.

DASL USER'S GUIDE 50807-02

OVERVIEW OF RUNNING TRACE

Kinds of TRACE options

TRACE has ten options which are briefly described in the
following chart. Several options are incompatible, but
many of them can be used in combination with others.

THIS option ... PERFORMS this function ...

produces data about the usage
DASLMAP of each function in a particu-

lar overlay.

tabulates the number of in-
MAP structions executed in each

64 bytes of code.

CALL
RET produces data about each exe-
SC cution of the specified
JUMP machine level instruction.

directs output to the screen
DISP instead of to the output file.

causes TRACE to begin tracing
SKIP = n after the nth SLOAD system

call.

causes TRACE to stop at the
NOLOAD first $LOAD encountered, after

tracing has begun, and produce
an output file.

SKIP and NOLOAD are used to-
gether to isolate a single
overlay to be traced from the
rest of the program.

gives information about the
HELP TRACE options on the screen.

Chapter 13. TRACE REFERENCE SECTION 13-5

OVERVIEW OF RUNNING TRACE

On/Off facility

13-6

The On/Off facility of TRACE allows the user to turn tracing
on and off by commands embedded in the object code of
the program. This facility is discussed later in this chapter
on the pages titled USING THE ON/OFF FACILITY.

DASL USER'S GUIDE 50807-02

JSING OPTION DASLMAP

'urpose

The DASLMAP option causes TRACE to produce an output
file with information about the use of each function in a
particular overlay.

Jse of ISYM1 and ISYM2 files

To gain information about the functions in a program,
TRACE needs to access the debugging information files,
/SYMI and /SYM2.

In order to create the /SYMI and /SYM2 files, you must
compile, assemble, and link your program using the DEBUG
option. You can accomplish this by running the chain file,
DASL/CHN, using either the TRACE or RASL option.

~estrictions on file names

/SYMI files with names longer than eight characters will
not be found. DASL programs take their /SYMI file names
from their source file names. Therefore, you must either

• name your source files with no more than eight
characters or

• rename the /SYMI files before you begin tracing.

/SYM2 file names are truncated to eight characters.

Chapter 13. TRACE REFERENCE SECTION 13-7

USING OPTION DASLMAP

DASLMAP'S output file

13 -8

The information in DASLMAP's output file is arranged in
seven columns. The heading of each column and its
meaning is described in the chart below.

COLUMN HEADING

usage

MEANING

A term to describe how TRACE saw the
interaction between the functions in
your program

• element - function never called
anything

• normal - function called other
functions

• recurs - function was called
recursively

• self rec - function called only
itself

• untraced - for every section of
memory with no function assigned to
it, TRACE created an untraced
"function"

• unused - function was never invoked

• error - count is incorrect, possibly
due to a function which never exited
or which was contained in an INCLUDE
file

DASL USER'S GUIDE 50807-02

JSING OPTION DASLMAP

COLUMN HEADING MEANING

Total number of machine level
this function's instructions executed by the function
instruction itself

Total number of times that the
total calls to function was called either by itself
function or by any other function

Sum of the total number of in-
son's + this structions executed by both the
function's function and all of the functions
instruction which it called

non-re-ent Total number of top level entries
(top level) calls the function

function's name Name of the function

start Starting address of the function

:xample of the output file

The following example shows the TRACE output file for a
program with four functions. The untraced functions
represent I/O modules for which there were no /SYMI
files.

total sons' nonrecurs
this calls +this (top

into

func. 's to func.' s level) function's
usage instr. func. instr. calls name
element 150 10 150 10 random
normal 162 1 312 1 fillArray
element 121 1 121 1 average
normal 60 1 2412 1 MAIN
untraced 6 no name given
untraced 1916 no name given

Chapter 13. TRACE REFERENCE SECTION 13-9

USING OPTION DASLMAP

Invoking TRACE with DASLMAP option

If you invoke TRACE with the DASLMAP option, then TRACE
will prompt for the names of up to 16 /SYM2 files.

You may enter only the names of /SYM2 files, not the
extensions or environments.

Entry terminates upon entry of a blank line or the 16th
name.

Isolating a piece of code

Limitations

13-10

If you try to TRACE overlapping overlays at the same time,
you will get meaningless results.

In order to isolate a particular overlay for tracing with the
DASLMAP option, you may use either

• the SKIP and NOLOAD options or

• the On/Off facility of TRACE.

The On/Off facility may also be used to isolate any
particular piece of code.

See the pages in this chapter titled USING TRACE OPTIONS
SKIP AND NOLOAD and USING THE ON/OFF FACILITY.

The number of functions and untraced "functions"
contained in your program cannot exceed 512. This
limitation is imposed by the amount of memory which
TRACE has available.

DASL USER'S GUIDE 50807-02

JSING OPTION DASLMAP

t1emory space requirements

With the DASLMAP option, TRACE uses 20k of physical
memory, but only uses the top 8k of logical memory. Thus,
the DASLMAP option will work on a 128k machine with all
programs except those that require a great deal of
memory.

Chapter 13. TRACE REFERENCE SECTION 13-11

USING OPTION MAP

Purpose

The MAP option causes TRACE to produce an output file
which contains

• the number of machine level instructions executed in
each ()4 byte block of logical memory from Ok to 56k and

• a graph of the instruction count for quick comparison.

When to use

The MAP option can be useful in optimizing assembly
language code. However, this option is not particularly
useful in optimizing DASL code.

Isolating an overlay

13 -12

If you try to TRACE overlapping overlays at the same time,
you will get meaningless results.

You can use the SKIP and NOLOAD options to isolate a
particular overlay for tracing with the MAP option. (The
On/Off facility does not work with the MAP option.)

See the pages titled USING TRACE OPTIONS SKIP AND
NOLOAD later in this chapter.

DASL USER'S GUIDE 50807-02

JSING OPTIONS CALL, RET, SC, & JUMP

)urpose

The options CALL, RET, SC and JUMP each cause TRACE to
write a line of information in the output file whenever an
instruction with the same name is executed.

Any combination of these four options may be given at the
same time.

Nhen to use

3peed

The CALL, RET, and JUMP options can be useful in
analyzing assembly language programs. However, their
use is limited in the performance analysis of DASL
programs.

The SC option is somewhat more useful in relation to DASL
programs because it shows what files a program uses and
how much I/O a program is using.

As you might expect, CALL, RET, SC and JUMP are the
slowest TRACE options.

Chapter 13. TRACE REFERENCE SECTION 13-13

USING OPTIONS CALL, RET, SC, & JUMP

Information in the output file

13-14

The following chart shows the kinds of information listed
in the output file for each instruction.

COLUMN
HEADING DESCRIPTION

Running total of instructions executed
TOTAL since tracing was begun

Number of instructions executed since
SUBTOT the last line was printed

Absolute address of the first byte of
FROM the instruction

Name of the instruction

All conditional JUMPs, CALLs, and RETs
are named simply JUMP, CALL, and RET.

INST
A conditional transfer which does not
actually cause a transfer will not be
printed.

Absolute address to which the instruction
passes control

TO In the case of SC instructions, this is
either the name of the system call or
the number of the system call.

Only used for the system call instruction
more
info Additional useful information is given

here for $OPENENV and all the $SECR,
etc. system calls.

DASL USER'S GUIDE 50807-02

USING OPTIONS CALL, RET, SC, & JUMP

Using options with DISP

The DISP option directs all output which normally goes to
the output file to the screen.

If any of the four options (CALL, RET, SC, or JUMP) is given
with the DISP option, TRACE will be competing with the
traced program for the screen. This can create problems
with programs which make considerable use of the screen.

TRACE does not print out instructions executed below
010000 (in the PCR) because of the possible conflict with
logging. This conflict occurs when logging is active and the
DISP option is given.

Detecting an infinite loop

An effective way to detect an infinite loop is to use these
four options (especially JUMP) with the DISP option.

Tracing part of a program

You may use the On/Off facility with CALL, RET, SC, or
JUMP to trace a particular part of a program. You may also
use the SKIP and NOLOAD options to isolate an overlay.

Another way to trace just the beginning of a long program is
to turn on logging and use the DISP option. You can then
abort the program and read the information in the log file.
This strategy is effective because TRACE does not update
the end of file pointer in its output file until it ends.

Chapter 13. TRACE REFERENCE SECTION 13-15

USING OPTIONS CALL, RET, SC, & JUMP

Caution

13-16

The JUMP option has the potential of producing a very large
output file.

DASL USER'S GUIDE 50807-02

USING OPTIONS SKIP AND NOLOAD

Purpose

The SKIP and NOLOAD options are used together to isolate
a single overlay to be traced from the rest of the program.

Description of SKIP option

The SKIP option must be followed by an integer in the range
from 0 to 255.

The value given SKIP indicates the number of $LOAD system
calls which will be executed before tracing begins. The
initial load which TRACE performs when it loads the root
segment is not counted.

Example: Suppose that you want tracing to begin with the
second overlay.

The option SKIP=2 causes TRACE to interpret
the first overlay, load the second overlay, and
then begin tracing.

Description of NOLOAD option

The NOLOAD option causes TRACE to stop at the first
$LOAD system call encountered after tracing has begun and
produce an output file.

TRACE treats the first $LOAD system call as a $EXIT system
call.

Chapter 13. TRACE REFERENCE SECTION 13-17

USING OPTIONS SKIP AND NOLOAD

Alternative to SKIP and NOLOAD

The On/Off facility can be used instead of the SKIP and
NOLOAD options. This facility is described on the
following pages.

The advantages of using the SKIP and NOLOAD options are
that

13 -18

• they do not require the program to be remade and

• they allow TRACE to "lie" to the program about how
much memory is available.

DASL USER'S GUIDE 50807-02

JSING THE ON/OFF FACILITY

::Iurpose

The On/Off facility of TRACE allows the user to turn tracing
on and off by commands embedded in the object code of
the traced program.

When to use

~estriction

This facility makes it possible to trace just the portion of
the program which is of interest and to accelerate the
process of collecting information.

The On/Off facility does not work with the MAP option or
the SKIP option.

::Ireferred method of using facility

The preferred method of using the On/Off facility involves
the following steps.

Turn tracing on just prior to calling the function(s) of
interest and turn tracing off after leaving the function(s).

The normal entry mode of TRACE is On. Thus, if you want
to trace a portion of code which does not start at the
beginning of the program, you can turn TRACE off as soon
as the program is entered.

Be sure to turn TRACE back on before the program ends or
you will not get a~y output.

Chapter 13. TRACE REFERENCE SECTION 13-19

USING THE ON/OFF FACILITY

Use of facility with DASLMAP

When using the On/Off facility, some functions may be
described as "error" in the output from the DASLMAP
option. This reflects the fact that TRACE did not have
complete information about the program that it was
tracing.

If you turn TRACE on or off within a function, you will get
inaccurate results in the following data produced by
DASLMAP:

• total number of instructions executed by the function
and

• total caIls to the function.

Turning TRACE on and off

13 - 20

In order to use the On/Off facility, you must modify and
recompile your source code.

TO turn TRACE ... INSERT in source code ...

on CALL 0

off CALL 0614000

DASL USER'S GUIDE 50807-02

USING THE ON/OFF FACILITY

Using DEFINEs

Cautions

The following three DEFINEs are designed to facilitate the
turning of TRACE on and off.

DEFINE(D$TRCON,#IIFELSE(D$TRACE,ON,«A(»0164000)A(),)#I)

DEFINE(D$TRCOFF,#IIFELSE(D$TRACE,ON,«A(»O)A(),)#I)

DEFINE(D$TRACE,ON)

Several serious problems are inherent in the
implementation of the On/Off facility.

When TRACE is turned off, it is completely turned off. This
means that it no longer

• "lies" to the program being traced about the memory
above 56k or

• traps $RUN, $LOAD, $EXIT, and $ERROR system calls.

Be sure to turn TRACE on before a loop to determine the
available memory space (via $MEMKEYor $MEMMAP
system calls) or you will overstore the TRACE program.

Chapter 13. TRACE REFERENCE SECTION 13-21

RESTRICTIONS

Introduction

There are several restrictions to running TRACE.

Restriction for ISYM1 files

/SYM1 files with names longer than eight characters will
not be found.

Restrictions for ISYM2 files

The following are restrictions on /SYM2 files:

• no more than 16 /SYM2 files are allowed,

• /SYM2 file names are truncated to eight characters, and

• extensions of /SYM2 files may not be given.

Limit on running time

13-22

All instruction counters and invocation counters are 32 bit
numbers. TRACE will run for approximately two days
before these numbers start to overflow.

DASL USER'S GUIDE 50807-02

RESTRICTIONS

Restrictions for system calls

TRACE is not capable of tracing a $RUN system call. All
$RUN system calls are treated as $EXIT system calls.

TRACE does not "lie" to the system about the $SETMIN
system call.

$CLOSEAL closes TRACE's output file also and TRACE dies
because of it.

Incompatibility with RASL

TRACE and RASL are mutually incompatible.

Chapter 13. TRACE REFERENCE SECTION 13-23

13-24 DASL USER'S GUIDE 50807-02

Chapter 14.
CPUTIME: CPU TIMING PROGRAM

OVERVIEW

Purpose

Coming up

CPUTIME is a CPU timing program. It is used to measure
the amount of time (wall clock time) which a processor
devotes to one or more tasks performed by a program.

This chapter discusses

• how CPUTIME works and

• the procedure for using CPUTIME.

Chapter 14. CPUTIME: CPU TIMING PROGRAM 14-1

HOW CPUTIME WORKS

Introduction

14-2

CPUTIME is a simple but powerful program. These pages
outline the process that CPUTIME uses to determine how
much time a processor devotes to a specific task or tasks.

DASL USER'S GUIDE 50807-02

HOW CPUTIME WORKS

Process

CPUTIME's timing process involves the following three
stages.

STAGE DESCRIPTION

CPUTIME begins by calibrating itself so
that it knows the speed of the machine on
which it is being run.

1 To perform the calibration, CPUTIME
times a very specific loop without any
other tasks active to find out how long
the loop takes. The timing is performed
through the wall clock function of
$GETIME.

CPUTIME times a second (nearly identical)
2 loop with other tasks active.

These tasks are selected by the user.

CPUTIME calculates and displays the dif­
ference in

• the time that it takes CPUTIME to
perform the loop with other tasks
active (Stage 2) and

• the expected time it takes CPUTIME
3 to perform the loop alone (known

from the calibration in Stage 1).

The difference in the two times represents
the time it takes another task or
tasks to run on the same processor with
CPUTIME.

Chapter 14. CPUTIME: CPU TIMING PROGRAM 14-3

USING CPUTIME

Before you begin

Caution

14-4

In order to use CPUTIME, you need to be signed on at two
workstations which are running on the same processor.

Make sure that no other tasks are actively running on the
processor on which you plan to run CPUTIME. If other tasks
are running, CPUTIME will be calibrated incorrectly.

Be careful to eliminate "invisible" tasks such as
background tasks and timekeeping tasks.

While you are running CPUTIME, you need to be careful
that no one else initiates tasks on the same processor.
This can be difficult on a machine which is a file processor
or which supports many terminals.

DASL USER'S GUIDE 50807-02

USING CPUTIME

Procedure

Follow this procedure to use CPUTIME.

STEP ACTION

1 Invoke CPUTIME at workstation 1 by entering its
name on the command line. CPUTIME has no options.

Result: CPUTIME displays the following message:
Calibrating. Make sure other tasks are idle.

When CPUTIME is finished calibrating, it displays this
message:
Type any key to start, then any key to stop.

IF you want
2 to time a THEN ...

program ...

1) press any key at workstation 1
from the and
beginning

2) begin the program you wish to
time at workstation 2.

1) begin the program at workstation
from some 2 and
point after
the 2) press any key at workstation 1
beginning when you wish to begin timing.

Result: The cursor disappears when you press a key at
workstation 1.

Chapter 14. CPUTIME: CPU TIMING PROGRAM 14-5

USING CPUTIME

STEP ACTION

3 To stop timing, press any key at workstation 1.
You may stop timing at any point during the
execution of the program.

Result: CPUTIME prints how many seconds the processor
took to perform the program's tasks and returns to the
start message.

4 To exit from the CPUTIME program, use the ABORT
key sequence (DSP-BACKSPACE-DSP).

14-6 DASL USER'S GUIDE 50807-02

Chapter 15.
THE INCLUDE FILE D$INC

OVERVIEW

Purpose

This section of the DASL Programmer's Guide describes the
contents and use of the DASL Standard INCLUDE file
(D$INC).

Organization of this chapter

Coming up

This chapter displays the listing of the D$INC file followed
by a description of the file entries. Entries and
descriptions are linked with call-out numbers. These
numbers indicate which file entries are being described on
that page.
Diagram

File Listing File Description

ENTRY 0 o DESCRIPTION

The listing of the D$INC file begins on the next page.

Chapter 15. THE INCLUDE FILE D$INC 15-1

D$INC INCLUDE FILE LISTING

15-2

DEFINE(MAXINT.077777) 0
DEFINE(MAXUNSIGNED.0177777) 1
DEFINE(MAXLONG.017777777777)
DEFINE(NIL.O)

DEFINE(ENUMV.#IIFELSE(#2 ••• #IDEFINE(#2.#1) ~
ENUMV(INCR(#l) .#3 .#4. #5 .#6 .#7 .#8 .#9)#1)#1) tJ

DEFINE(ENUM.#IDEFINE(#l.O)
ENUMV(1.#2.#3.#4.#5.#6.#7. #8.#9)#IBYTE)

DEFINE(SETV.#IIFELSE(#2 ••• #IDEFINE(#2.(#1»
SETV(#1*2.#3.#4.#5.#6.#7.#8.#9)#I)#I)

DEFINE(SET.#ISETV(1.#1.#2.#3.#4.#5.#6.#7.#8)#IBYTE) ~
DEFINE(SETW.#IDEFINE(#l.l)

SETV(2.#2.#3.#4.#5.#6.#7. #8.#9)#IUNSIGNED)

ENUMV(O.FALSE.TRUE) ~
TYPDEF ULONG. ILONG STRUCT { 0

LSW UNSIGNED;
MSB BYTE;
I;

EXTERN D$GET24 (pul A ULONG) LONG;
EXTERN D$PUT24 (1 LONG. pu1 A ULONG);

EXTERN D$MOVE. D$MOVER (S. D A BYTE. N UNSIGNED); ~
EXTERN D$COMP (5. D A BYTE. N UNSIGNED) INT; ~
EXTERN D$INFO () BYTE; ~
/* SYSTEM INTERFACE */

TYPDEF D$CCODE SET(D$CFLAG.D$ZFLAG.D$SFLAG.D$PFLAG); ~
TYPDEF D$CALLF ();

DASL USER'S GUIDE 50807-02

D$INC INCLUDE FILE LISTING

/* Important: reference to the following register variables,
DSC, DCALL, and D$CC should be avoided outside of
macro definitions in INCLUDE files to preserve
machine independence. Reference to the above
D$xFLAG names is okay. */

EXTERN DX, DA, DB, DC, DD, DE, DH, DL BYTE:
EXTERN DXA, DBC, DDE, DHL UNSIGNED:
EXTERN D$SC (SCNUM BYTE) D$CCODE:
EXTERN D$CALL (F A D$CALLF) D$CCODE:
EXTERN D$CC D$CCODE:

/* DEBUGGER */

EXTERN RASLRES$, RASLEND$ () D$CCODE:

/* PAGE ALIGNED BUFFERS */ ~
EXTERN D$BUFl, D$BUF2, D$BUF3, D$BUF4, D$BUF5

(256) BYTE;

Chapter 15. THE INCLUDE FILE D$INC 15-3

DESCRIPTION OF D$INC FILE ENTRIES

Description

15-4

The D$INC INCLUDE file provides standard definitions for
DASL programs. The following table' contains a description
of the contents of the file. In some cases the description
covers a group of definitions where it is logicallo do so.

SECTION DESCRIPTION

These are the definitions for standard
1 symbolic constants.

The recursive macros ENUM and ENUMV are
similar except that ENUM defines up to
nine arguments as ascending from 0 and

2 has a result of BYTE; ENUMV defines its
arguments to be ascending from the first
argument and has no result.

SET and SETV macros are similar to ENUM
and ENUMV macros except that they define
arguments in successive powers of two.

3
SETW is similar to SET except it is
defined as UNSIGNED.

The standard definition for FALSE (0) and
4 TRUE (1).

ULONG is a definition for 24 bit values.
The D$GET24 and D$PUT24 routines convert

5 between 24 bit ULONG and 32 bit LONG
values.

DASL USER'S GUIDE 50807-02

DESCRIPTION OF D$INC FILE ENTRIES

SECTION

6

7

DESCRIPTION

D$MOVE is an external function that
performs a block move of from 0 to 65,535
bytes. It performs a block move from the
BYTE address given by the first parameter
to the BYTE address given by the second
parameter for the number of bytes given
by the third parameter.

D$MOVER is similar but takes the ending
addresses of the blocks.

D$COMP performs a block comparison between
two strings given by the first two
parameters (which are BYTE pointers) for
the number of bytes given by the third
parameter.

If the two strings are equal, the function
returns 0, otherwise it returns the
difference of the first two differing
bytes (byte in first string minus byte in
second string).

D$INFO is a byte which indicates the
8 type of processor ... a 5 indicates an

8600, a 1 indicates a 6600 etc.

D$CCODE and D$CALLF are the system
interface types.

The D$CCODE type value is the condition
9 code returned by the system.

The D$CALLF function type is assigned the
register values which are passed into the
system call from the external variables
corresponding to the registers.

These are external variables which
correspond to the registers. These

9a variables may be assigned values by the
program before the D$SC call.

Chapter 15. THE INCLUDE FILE D$INC 15 - 5

DESCRIPTION OF D$INC FILE ENTRIES

SECTION DESCRIPTION

The external function O$SC performs an RMS
system call; its argument is the system
call number.

The function gets the register values to
9b passed into the system call from external

variables (see 9a above). It returns the
register values to the same variables
after the system call.

D$CALL works like D$SC but the argument
9c is the subroutine address of type pointer

to D$CALLF.

D$CC receives the condition code value
with a bit for each of the possible flags.

9d The masks for these bits are D$CFLAG,
D$ZFLAG, D$SFLAG, and O$PFLAG.

RASLRES$ and RASLENO$ are the external
10 functions for starting and ending the

DASL debugger, RASL.

D$BUFl through D$BUF5 are external 256
byte arrays. These arrays are aligned

11 on memory page boundaries so they may
be used as RMS 1(0 buffers.

15-6 DASL USER'S GUIDE 50807-02

