
DATA PO I NT

TM

DASL

User's Guide

50807

NOVEMBER 14, 1984

Document No. 50807-01. 1l/84
Copyright © 1984 by DATAPOINT Corporation. All

rights reserved The "D" logo, DATAPOINT, DATABUS,
DATAFORM, DATAPOLL, DATASHARE, Lightlink, Integrated
Electronic Office, DATACCOUNTANT, ARC, Attached
Resource Computer and ARCNET are trademarks of
DATAPOINT Corporation registered in the U.S. Patent and
Trademark Office. AIM, Associative Index Method,
ARCGATE, ARCLINK, DASP, RMS, Resource Management
System, EMS, DASL, RASL, NOSL, EASL and DATA SORT are
trademarks of DATAPOINT Corporation.
System features and technical details are subject to change
without notice.

ii

Preface

The DASL USER's GUIDE, Vol. IV, is another reference in
the DASL library. Vol. IV describes the Common User
Functions.

This work is a DATEC production. CUFs was written on a
DATAPOINT processor using an experimental writing tool.
Then, the masters for printing were produced on a
DATAPOINT 9660 Laser Printer.

Please forward your comments on this document to:

DATEC Publications
DATAPOINT Corporation
9725 Datapoint Dr. MS T-72
San Antonio, Texas 78284

iii

iv

TABLE OF CONTENTS

1. INTRODUCTION

OVERVIEW 1-1
INTRODUCTION TO COMMON USER FUNCTIONS 1-3

2. INCLUDING A CUF

OV E R V lEW 2 - 1
INCLUDE CUF DEFINITION FILE 2-2
DECLARE CUF VARIABLES 2-3
INITIALIZE CUF VARIABLES 2-4
CALL CUF FUNCTION 2-5
INCLUDE CUF RELOCATABLE LIBRARY 2-6

3. MEMORY ALLOCATION CUFS

OVERVIEW 3-1
$ALLOC 3-2
$BUDDY 3-12

4. CHARACTER AND STRING CUFS

OVERVIEW 4-1
$CONVERT 4-2
$FILL 4-5
$MATCH 4-6
$SCAN 4-7
$SEARCH
$STRING
$STRCMP

5. INPUT /OUTPUT CUFS

4-10
4-13
4 -17

OVERVIEW............. 5-1
$BUFFER 5-2
$EZOPEN 5-6
$GETKEYCH 5-13
$KEYCH 5-17
$SEQFH 5-22

v

6. MESSAGE HANDLING CUFS

OVERVIEW 6-1

$MSG 6-2

$MSGIO 6-6

7. LIST PROCESSING CUFS

OVERVIEW 7-1

$LINKS 7-2

$QUEUE 7-6

8. PROGRAM STRUCTURING CUFS

OVERVIEW 8-1

$ASSERT 8-2

$assert 8-3

$CATCH 8-4

$FIELD 8-8

$FOR 8-15

IFINC 8-19

9. SCHEDULER CUFS

OVERVIEW 9-1

$SWITCH 9-2

$SCHED 9-13

$RMSIDLE 9-50

10. MISCELLANEOUS CUFS

OVERVIEW 10-1

$catWa1k 10-2

$EUCLID 10-6

$LEXER 10-17

$PATH 10-32

$RNDBYTE 10-36

vi

Chapter 1.
INTRODUCTION
OVERVIEW

About this document

This document describes the Common User Functions. It
contains general information about the Common User
Functions, as well as a detailed description of each
individual Common User Function.

Intended audience

This document is intended for programmers writing
software in DASL on the RMS operating system.

It contains code segments of DASL programs that reference
the NOSL I/o package, the D$IO package, and the RMS
operating system.

Chapter 1. INTRODUCTION 1-1

OVERVIEW

How this document is organized

1-2

This document is divided into ten chapters. Chapters 3
through 10 contain detailed descriptions of the Common
User Functiol),s which have been categorized by
programming function.

Chapter Content

1 Introduction to the Common User Functions.

2 Procedures for including a Common User Function
into your DASL program.

3 Memory allocation Common User Functions.

4 Character and string Common User Functions.

5 Input/output Common User Functions.

6 Message handling Common User Functions.

7 List processing Common User Functions.

8 Program structuring Common User Functions.

9 Scheduler Common User Functions.

10 Miscellaneous Common User Functions.

DASL USER'S GUIDE 50807-01

INTRODUCTION TO COMMON USER FUNCTIONS

Introduction

You can probably remember an occasion when you needed
to write code that another programmer had already
written. But because that code was undocumented or
buried deep within an unfamiliar program, you probably
ended up writing your own version.

In response to this problem, a collection of useful,
efficient, well written functions have been assembled and
packaged as the Common User Functions.

Definition of a Common User Function

A Common User Function is

• a macro,
• a function, or
• a set of related macros and functions

specifically designed for solving a DASL programming
problem.

DeSigned to run efficiently

Each Common User Function has been designed to run
efficiently. Several functions take advantage of specific
machine instructions to attain maximum efficiency.

Chapter 1. INTRODUCTION 1-3

INTRODUCTION TO COMMON USER FUNCTIONS

Common User Functions are also called "CUFs"

The Common User Functions are commonly referred to by
the acronym, "CUFs". "CUFs" will be used throughout
the remainder of this document.

Anatomy of a CUF

Each CUF may contain one or more of the following DASL
elements:

DASL Element Description

Type definition Type definitions define a variable
structure needed by a CUF.

Variable Variables are flags, counters,
structures, etc ... that
• must be declared by you prior to

calling a CUF, or
• are provided for you to examine

status or result of a CUF.

Macro Macros
• interface you to a CUF function,

the

or
• are changed into a problem solving

statement or group of statements.

Note: Macros that are called like
functions will be referred to as
functions throughout the remainder of
this document.

Function Functions solve part or all of a
common programming problem.

1-4 DASL USER'S GUIDE 50807-01

INTRODUCTION TO COMMON USER FUNCTIONS

Examples of CUFs

Some examples of CUFs are

• a macro that determines the maximum of two values,
• a function that makes a copy of a string, and
• a set of functions and macros that dynamically allocate

memory.

Chapter 1. INTRODUCTION 1-5

1 - 6 DASL USER'S GUIDE 50807-0l

Chapter 2.
INCLUDING A CUF
OVERVIEW

Introduction

This chapter contains the procedures for including a CUF
into your DASL program.

Overview of the procedure

The procedures for including a CUF are outlined in the
following table. A description of each procedure in this
table is included in this chapter.

Task Action

1 Include the cur definition file into your DASL
program.

2 Declare any variables needed by the cur in your
DASL text.

3 Initialize any variables needed by the cur in
your DASL text.

4 Edit the cur function call into your DASL text.

5 Include the CUF relocatable library in your LINK
directives.

Chapter 2. INCLUDING A cur 2 -1

INCLUDE CUF DEFINITION FILE

Introduction

Each individual CUF has a corresponding CUF definition
file which must be included in the INCLUDE portion of your
DASL program.

Task Action

1 Include the CUF definition file into your DASL
program.

Description of a CUF definition file
,

Example

2-2

A CUF definition file is a text file that contains definitions
and external references that are needed to reference the
CUF. Its filename is made from the name of the CUF with a
"/DEFS" extension.

Example: The $SCAN CUF filename is $SCAN/DEFS.

The following program segment includes the $SCAN CUF
definition file.

INCLUDE(D$INC)
INCLUDE(D$RMS)
INCLUDE($SCANjDEFS)

: (rest of the program)

1* Include $SCAN CUF *1

DASL USER'S GUIDE 50807-01

DECLARE CUF VARIABLES

Introduction

Example

Several CUFs require you to declare variables of certain
types to be passed as parameters to the CUF functions or
returned as results of the CUF functions.

Task Action

2 Declare any variables needed by the CUF in
DASL text.

your

The $SCAN function of the $SCAN CUF requires you to pass
the address of the first character of a string, a character to
scan for in the string, and the number of characters to scan
in the string. The following program segment declares the
variables needed for the call to $SCAN.

INCLUDE(D$INC)
INCLUDE(D$RMS)
INCLUDE($SCAN/DEFS)

ENTRY MAIN () : =
VAR n BYTE;

string (SO] CHAR;
scanChar CHAR;

scanChar := '?';

1* Include $SCAN CUF *1

n := n$read(n$WSIn, &string[O], SIZEOF string);
IF $SCAN(&string[O], scanChar, n) = n THEN

error('Scan character not found. ');

: (rest of the program)

Chapter 2. INCLUDING A CUF 2-3

INITIALIZE CUF VARIABLES

Introduction

Example

2-4

Several CUFs require you to initialize variables prior to
calling the functions.

Task Action

3 Initialize any variables needed by the CUF
your DASL text.

The $SCAN function requires you to pass in an initialized
string, character, and number. The following program
segment initializes these variables.

in

INCLUDE(D$INC)
INCLUDE(D$RMS)
INCLUDE($SCAN/DEFS) /* Include $SCAN CUF */

ENTRY MAIN () ;=
VAR n BYTE;

string [80) CHAR;
scanChar CHAR;

scanChar := '?';
n := n$read(n$WSln, &stringIOJ, SIZEOF string);
IF $SCAN(&string[O) , scanChar, n) = n THEN

error('Scan character not found.');

; (rest of the program)

DASL USER'S GUIDE 50807-01

CALL CUF FUNCTION

Introduction

Example

After you have declared and initialized any variables
required by the CUF function, the function call must be
edited into your DASL text.

Task Action

4 Edit the CUF function call into your DASL text.

The following program segment calls the $SCAN function of
the $ SCAN CUF.

INCLUDE(DSINC)
INCLUDE(DSRMS)
INCLUDE(SSCAN/DEFS)

ENTRY MAIN () : =
VAR n BYTE;

string [80] CHAR;
scanChar CHAR;

scanChar := '7';

/* Include SSCAN CUF */

n := nSread(nSWSIn. &string[O]. SIZEOF string);
IF $SCAN(&stringfOJ, scanChar, n) = n THEN

error('Scan character not found. ');

: (rest of the program)

Chapter 2. INCLUDING A CUF 2-5

INCLUDE CUF RELOCATABLE LIBRARY

Introduction

All of the individual CUF's relocatable object files are
combined into a single relocatable library which must be
included by the LIBRARY directive in LINK.

Task Action

5 Include the CUF re1ocatab1e library in your LINK
directives.

Selecting the correct CUFs library

2-6

There are several copies of the CUFs library that support
three of the DA T APOINT instruction sets. Use this table to
select the proper CUFs library for your instruction set.

If you are writing for the ... then use ...

5500 instruction set SCUFS/REL5

6600 instruction set SCUFS/REL

16000 instruction set SCUFS/RL16

DASL USER'S GUIDE 50807-01

INCLUDE CUF RELOCATABLE LIBRARY

Example

If you had selected $CUFS/REL, your LINK directives might
look like this:

SEGMENT MYPROG
INCLUDE DASLASM
INCLUDE D$LIB.D$START
LIBRARY N$
LIBRAKY $CUFS
LIBRARY D$LIB
LIBRARY RMSUFRS

""

Chapter 2. INCLUDING A CUF 2-7

2 - 8 DASL USER'S GUIDE 50807-01

Chapter 3.
MEMORY ALLOCATION CUFS
OVERVIEW

Introduction

This chapter contains a description of the two memory
allocation CUFs, $ALLOC and $BUDDY.

The memory allocation CUFs obtain memory from RMS that
can be dynamically allocated and deallocated by your
program. The memory maintained by the memory
allocation CUFs is referred to as the "memory pool".

Selecting a CUF

Use the following table to select a memory allocation CUF.

In addition to allocating then use ...
memory, if you want to ...

• find additional memory when the SALLOe.
memory pool has been exhausted,

• add memory to the memory pool, or
• add the unused memory above the top

of your program to the memory pool

• allocate aligned memory, up to 32K SBUDDY.
at a time, or

• use the same memory allocation eUF
as the NOSL 1/0 package

Chapter 3. MEMORY ALLOCATION CUFS 3-1

page

3-2

3-12

$ALLOC

Introduction

The $ALLOC CUF is a dynamic memory allocation package
with supporting functions that can be used to

• find additional memory when the memory pool has been
exhausted,

• add memory to the memory pool, and
• add the unused memory above the top of your program

to the memory pool.

$ALLOC and RMS

3-2

The $ALLOC CUF allocates memory from RMS and manages
the memory internally in a memory pool. The $ALLOC CUF
does not provide a facility to return the memory to RMS.

DASL USER'S GUIDE 50807-01

$ALLOC

$ALLOC variables and functions

Use the following table to select a $ALLOC variable or
function.

If you want to ... then see ...

determine the amount of memory $MAXALLOC.
allocated up till now

allocate memory from the memory pool $ALLOC, or
$NEW.

return memory to the memory pool $FREE, or
$DISPOSE.

allocate memory from RMS $MOREMEM.

add memory to the memory pool $MEMFREE.

add high memory to the memory pool $TOPFREE.

$MAXALLOC variable

page

3-3

3-4
3-5

3-6
3-7

3-8

3-10

3-11

$MAXALLOC is declared as part of the $ALLOC CUF and is
available for you to examine.

Variable Definition Description

$MAXALLOC UNSIGNED; Maximum amount of dynamic memory
allocated from the memory pool up
to now.

Chapter 3. MEMORY ALLOCATION CUFS 3-3

$ALLOC

$ALLOC function

$ALLOC allocates memory from the memory pool.

3-4

Function Syntax Input

SALLoe (
size UNSIGNED Number of

allocate.

) 1\ BYTE;

Example:

function ()
VAR ptr 1\ BYTE;
{

ptr := $ALLOC(4096);

bytes to

DASL USER'S GUIDE

Output

Points to the
allocated memory.
Note: Equals NIL
if there's no more
memory available.

50807-01

$ALLOC

$NEW function

$NEW allocates enough memory for whatever the input
variable is pointing to.

Function Syntax Input

$NEW (
ptr A Anything Pointer

type.

) ;

Example:

function () .=
VAR ptr A $SFENT;
{

$NEW(ptr);

Output

to any Points to the
allocated variable
of that type.
Note: Equals NIL
if there's no more
memory available.

Chapter 3. MEMORY ALLOCATION CUFS 3-5

$ALLOC

$FREE function

$FREE returns memory to the memory pool.

Function Syntax Input Output

SFREE (
ptr A BYTE Pointer to the first byte of

memory to return.
Note: Must point to memory that

3-6

was previously allocated by
SALLOe or SNEW.

) ;

Example:

function () : =
VAR ptr A BYTE;
{

ptr := SALLOe(4096);
$FREE(ptr);

DASL USER'S GUIDE 50807-01

$ALLOC

$DISPOSE function

$DlSPOSE returns the memory used by whatever the input
variable is pointing to back to the memory pool.

Function Syntax Input

$DISPOSE (
ptr 1\ Anything Pointer to a variable of any

type.
Note: Must point to a
variable that was previously
allocated by $ALLOe or $NEW.

) ;

Example:

function ()
VAR ptr 1\ $SFENT;
{

$NEW(ptr) ;
$DISPOSE(ptr);

Output

Chapter 3. MEMORY ALLOCATION CUFS 3-7

$ALLOC

$MOREMEM function

3-8

$MOREMEM allocates additional memory from RMS when
the memory pool has been exhausted. $MOREMEM is

• automatically called by $ALLOC and $FREE when the
memory pool has been exhausted and

• automatically calls $MEMFREE if it is successful in
allocating additional memory .

Function Syntax Input Output

SMOREMEM (
size UNSIGNED Amount of memory

needed.

) BOOLEAN; TRUE if additional
memory was found
FALSE otherwise.

Note: There are benefits for replacing this function with
your own version. Two replacements are described below.

• Define $MOREMEM to terminate program execution with
an error message if it cannot get additional memory.
You can avoid having to check each $ALLOC call
for a NIL return by defining $MOREMEM this way.

• Define $MOREMEM to $MEMFREE any buffers or tables
that are no longer used by your program to the memory
pool and return TRUE.

DASL USER'S GUIDE 50807-01

$ALLoe

$MOREMEM function (continued)

Example: The following program segment replaces the CUF
$MOREMEM function with the first of the replacement
functions described on the previous page.

Note: $MOREMEM must be declared "ENTRY".

ENTRY $MOREMEM (size UNSIGNED) BOOLEAN
VAR msn BYTE;

{

i, n BYTE;
psk BYTE;

RESULT := FALSE;
msn := 0;
i := 0;
n := (size + 4095) / 4096;
LOOP (

WHILE i < n & msn < 16;
IF $MEMKEY(msn++ « 4, &psk) && D$CFLAG

& $ERRC.$CODE = 1 THEN i++
ELSE i := 0;

};
IF i = n THEN {

i := 0;
LOOP (

WHILE i < n
& -($$MEMGET(&psk) && D$CFLAG)
& -($MEMMAP(--msn « 4, psk) && D$CFLAG);

i++;
};

IF i = n THEN (

} ;

$MEMFREE(<A BYTE>(msn « 12), 4096 ,~ n);
RESULT := TRUE;
};

IF - RESULT THEN (

};

disp1ay('FATAL ERROR: No more memory.');
$ERROR();
} ;

Chapter 3. MEMORY ALLOCATION CUFS 3-9

$ALLOC

$MEMFREE function

3-10

$MEMFREE adds memory to the memory poo\.

Note: You don't need to call this function unless

• you are setting up your own memory pool, or
• you replaced the $MOREMEM function with your own

version and are giving additional memory to $ALLOC.

Function Syntax Input

$MEMFREE (
ptr 1\ BYTE. Address of the first byte in

memory to add to the memory
pool.

size UNSIGNED Number of bytes to add to the
memory pool.

) ;

Example:

function () : =

VAR STATIC memPool [500) BYTE;
{

$MEMFREE(&memPool{OJ. SIZEOF memPool);

Output

DASL USER'S GUIDE 50807-01

$ALLOC

$TOPFREE function

$TOPFREE adds the unused memory above the top of your
program to the memory pool.

You must define $LOADTOP as the "next available byte"
address label of the SEGMENT directive in the linkage
phase of the DASL compile process.

Example: Your LINK directives might look like
this:

SEGMENT MYPROG,,$LOADTOP
INCLUDE DASLASM
INCLUDE D$LIB.D$START
LIBRARY N$
LIBRARY $CUFS
LIBRARY D$LIB
LIBRARY RMSUFRS

*

Function Syntax

$TOPFREE (
) ;

Example:

I function () ::

($TOPFREE();

Input Output

Chapter 3. MEMORY ALLOCATION CUFS 3-11

$BUDDY

Introduction

The $BUDDY CUF is a dynamic memory allocation package
that allocates aligned memory based upon the amount of
memory requested from the memory pool.

Aligned memory

Memory allocated from $ BUDDY is aligned on the nearest
2n boundary, where 2n is the lowest power of 2 greater
than or equal to the amount of memory requested. For
example:

• a request for 256 bytes will return memory aligned on a
page boundary that may be used for a $PFDB buffer, and

• a request for 4096 bytes will return memory aligned on a (
sector boundary which can be mapped in and out of
logical space.

$BUDDY and RMS

3-12

The $BUDDY CUF allocates memory from RMS and manages
the memory internally in a memory pool. The $ BUDDY CUF
does not provide a facility to return the memory to RMS.

DASL USER'S GUIDE 50807-01

$BUDDY

$BUDDY functions

Use the following table to select a $BUDDY function.

IE you want to ... then see ... page

allocate memory from memory pool Salloc. or 3-13
Snew. 3-14

return memory to memory pool Sfree. or 3-15
Sdispose. 3-16

$alloc function

$alloc allocates aligned memory from the memory pool.

Function Syntax Input

Salloc (
size UNSIGNED Number of

allocate.

) A BYTE;

Example:

function ()
VAR ptr A BYTE;
{

ptr := $alloc(*096);

Output

bytes to

Points to the
allocated memory.
Note: Equals NIL
if there's no more
memory available.

~Chapter 3. MEMORY ALLOCATION CUFS 3 -1 3

$BUDDY

$new function

3-14

$new allocates aligned memory for whatever type the
input variable is pointing to.

Function Syntax Input

$new (
ptr 1\ Anything Pointer

type.

) ;

Example:

function ()
VAR ptr 1\ SSFENT;
{

$new(ptr);

to any

DASL USER'S GUIDE

Output

Points to the
allocated variable
of that type.
Note: Equals NIL
if there's no more
memory available.

50807-01

$BUDDY

$free function

$free returns memory to the memory pool.

Function Syntax Input

$free (
ptr A BYTE, Pointer to the first byte of

memory to return.
Note; Must point to memory
that was previously allocated
by $alloc or $new.

size UNSIGNED Number of bytes of memory to
return to the memory pool.
Note; The number of bytes must
be the same as the number
originally allocated.

) ;

Example:

function ()
VAR ptr A BYTE;
(

ptr ;= $alloc(4096);
$free(ptr, 4096);

Output

Chapter 3. MEMORY ALLOCATION CUFS 3 -1 5

$BUDDY

$dispose function

3-16

$dispose returns the memory used by whatever the input
variable is pointing to back to the memory pool.

Function Syntax Input

$dispose (
ptr 1\ Anything Pointer to a variable of any

type.
Note: Must point to a
variable that was previously
allocated by $a11oc or $new.

) ;

Example:

function ()
VAR ptr 1\ $SFENT;
{

$new(ptr);
$dispose(ptr);

DASL USER'S GU1DE

Output

(

50807-01

Chapter 4.
CHARACTER AND STRING CUFS
OVERVIEW

Introduction

This chapter describes the character and string handling
CUFs.

The character and string handling CUFs are used to search,
compare, convert, and clear characters and strings.

Selecting a CUF

Use the the following to select a character and string
handling CUF.

If you want to ... then use ...

• perform a byte-by-byte translation $CONVERT.
on an input string, or

• look for the first occurrence in a
string for one of a number of
possible characters

initialize a table, array, etc ... $FILL.
with a certain character

compare two strings for a mismatch $MATCH.

scan a string for a character $SCAN.

search a string for an instance of $SEARCH.
another string

define, compare, or copy strings $STRING or
that are part of a type that also $STRCMP.
includes the string length

Chapter 4. CHARACTER AND STRING CUFS 4-1

page

4-2

4-5

4-6

4-7

4-10

4-13
4-17

$CONVERT

Introduction

The $CONVERT CUF is a single function which performs a
byte-by-byte translation on the input string until

• the termination character is found in the string, or
• the maximum number of characters to translate is

reached.

8yte-by-byte translation process

4-2

The byte-by-byte translation process is shown in the
following diagram.

$CONVEK1' ... Example

takes the byte value of

GEtE]
byte value

the character in the of "a" is
input string. 0141

I

1
uses that value as an

8 E8 E] index into the
translation table that
you provide. 0 o 0 0

0 1 1 3

244
7

1 2

stops if the character o = G? example
from the translation termination
table is equal to the character
termination character. 1 is "*"

and replaces the string

~
the "a" in

character with the the string
character from the is replaced
translation table. by an "s".

7

DASL USER'S GUIDE 50807-01

$CONVERT

$CONVERT function

$CONVERT performs a byte-by-byte translation on the
input string looking for a termination character.

Function Syntax

$CONVERT (
str A CHAR,

len UNSIGNED,

Input

Address of the
first character of
a string.

Number of
characters to
translate in the
string.

tablePtr A (256) CHAR, Address of a
translation table.
Note: The
translation table
must be page
aligned for the
55/6600 instruction
set.

term CHAR Terminate
translation if this
character is found
in the string.
Note: This
character cannot be
o on the 55/6600
instruction set.

) UNSIGNED;

Chapter 4. CHARACTER AND STRING CUFS

Output

Number of
characters
translated.
Note: Does
not include
"term" if
found.

4-3

$CONVERT

$CONVERT function (continued)

4-4

Example: The following program segment demonstrates
how to use the $CONVERT CUF to look for the first
occurrence of any of several characters in an input string.
Note how the translation table is initialized to translate all
characters except 'b' into themselves. $CONVERT will
terminate if it finds either 'b' or 'c' in the input string.

function () : =
VAR trans A [256] CHAR;

i BYTE;
STATIC str [4] CHAR := 'abcd';

$new(trans); 1* allocate aligned trans table *1
i := 0;
LOOP {

transA[i) i;
WHILE i++ -= 255;

} ;
tranSA['b'] := 'c';
i := $CONVERT(&str(O}, 4, trans, 'c');

DASL USER'S GUIDE 50807-01

$FILL

Introduction

The $FILL CUF is a single function which initializes
memory.

$FILL function

$FILL initializes strings, arrays, tables, structures, etc ... to
a specified character.

Function Syntax Input

SFILL (
P 1\ BYTE, Address of the first byte to

initialize.

size UNSIGNED, Number of bytes to initialize.

filler BYTE Value to store into each byte.
) ;

Example:

function () : =

VAR a [1000) CHAR;
(

$FILL(&a{OJ, SIZEOF a, '0');

Output

Chapter 4. CHARACTER AND STRING CUFS 4-5

$MATCH

I nt roduct ion

The $MATCH CUF is a single function which compares two
strings for a mismatch.

$MATCH function

$MATCH compares two strings for a mismatch.

Function Syntax Input Output

SMATCH (
p A BYTE, Address of the first

byte of the first
string to compare.

q A BYTE, Address of the first
byte of the second
string to compare.

len UNSIGNED Number of bytes to
compare.

) UNSIGNED; Number of bytes
that match.

Example:

function () : =
VAR s r2561 CHAR;

STATIC P r81 CHAR := 'PASSWORD';

nSread(nSWSIn, &srOI, SIZEOF p+1);
IF $MATCH(&p[OI, &8[01, 8) = 8 THEN matched();

4-6 DASL USER'S GUIDE 50807-01

$SCAN

Introduction

The $SCAN CUF is a character scanning package which
scans

• forward or
• backward

through a string for a character.

$SCAN functions

Use the following table to select a $SCAN function.

If you want to ... then see ...

scan forward for character $SCAN.

scan backward for character $SCANR.

Chapter 4. CHARACTER AND STRING CUFS 4-7

page

4-8

4-9

$SCAN

$SCAN function

4-8

$SCAN scans forward through a string for a character.

Function Syntax Input Output

SSCAN (
str " CHAR, Address of the

first character in
the input string.

key CHAR, Character to look
for in the string.

len UNSIGNED Number of
characters in the
string to scan.

) UNSIGNED; Number of characters
that were skipped
before the character

Example:

function 0 : =

VAR n BYTE;
s [80) CHAR;

was found.

n .= nSread(nSWSIn, &s[OI, SIZEOF s);
IF $SCAN(&slOJ, '?'. n) = n THEN

error('Invalid input string');

DASL USER'S GUIDE 50807-01

(

$SCAN

$SCANR function

$SCANR scans backward through a string for a character.

Function Syntax Input

$SCANR (
str " CHAR, Address of the

last character in
the input string.

key CHAR, Character to look
for in the string.

len UNSIGNED Number of
characters in the
string to scan.

) UNSIGNED;

Example:

function () : =

VAR n BYTE;
s [80J CHAR;

Output

Number of characters
that were skipped
before the character
was found.

n nSread(n$WSIn, &S[OJ, SIZEOF s);
n $SCANR(&sln-lJ, 'A', n);

Chapter 4. CHARACTER AND STRING CUFS 4-9

$SEARCH

Introduction

The $SEARCH CUF is a string searching package which
searches

• forward or
• backward

through a string for an instance of another string.

$SEARCH functions

Use the following table to select a $ SEARCH function.

If you want to ... then see ... page

search forward for string SSEARCH. 4-11

search backward for string SSEARCHR. 4-12

4-10 DASL USER'S GUIDE 50807-01

$SEARCH

$SEARCH function

$SEARCH searches forward through a string for an instance
of another string.

Function Syntax

$SEARCH (
key 1\ CHAR,

keyLen UNSIGNED,

str 1\ CHAR,

strLen UNSIGNED

) UNSIGNED;

Example:

function () : =

VAR n BYTE;

Input

Address of the first
character of the
string you are
searching for.

Number of characters
in the string you are
searching for.

Address of the first
character of the
string you are
searching.

Number of characters
in the string you are
searching.

s [SO] CHAR;
STATIC key [] CHAR := 'HELLO';

Output

Number of
characters
that were
skipped before
the string was
found.

n n$read(n$WSIn, &s[O], SIZEOF s);
n := $SEARCH(&key[OI, SIZEOF key, &8[01, n-l);

Chapter 4. CHARACTER AND STRING CUFS 4 -11

$SEARCH

$SEARCHR function

4-12

$SEARCHR searches backward through a string for an
instance of another string.

Function Syntax

SSEARCHR (
key 1\ CHAR,

keyLen UNSIGNED,

str 1\ CHAR,

strLen UNSIGNED

) UNSIGNED;

Example:

function () :=
VAR n BYTE;

Input

Address of the last
character of the
string you are
searching for.

Number of characters
in the string you are
searching for ..

Address of the last
character of the
string you are
searching.

Number of characters
in the string you are
searching.

s [80) CHAR;
STATIC key [] CHAR := 'HELLO';

Output

Number of
characters
that were
skipped before
the string was
found.

n := n$read(n$WSIn,&s[O], SIZEOF s);
n := $SEARCHR(&keyI4) , SIZEOF key, &sln-l) , n);

DASL USER'S GUIDE 50807-01

$STRING

Introduction

The $STRING CUF is a string manipulation package which
contains a macro and functions to

• initialize,
• compare, and
• copy

strings which are declared as part of a type, $String, which
also includes their length.

$STRING types, macros, and functions

Use the following table to select a $STRING type, macro, or
function.

IE you want to ... then see ...

define a string variable $String.

initialize a $String variable $str.

check two strings for equality $stringEqua1.

copy a string $stringCopy.

Chapter 4. CHARACTER AND STRING CUFS 4-13

page

4-14

4-14

4-16

4-16

$STRING

$String type

$str macro

4-14

$String is defined as follows:

Type Definition Description

TYPDEF $String STRUCT {

ptr 1\ CHAR; Pointer to a string.

len UNSIGNED; Length of the pointed string.
I;

$str is a macro which generates an initializer for variables
of type $String.

Function Syntax Input Output

$str (
str [any size) CHAR Any character

string.

) $String; A $String
initializer
containing the
string and the
string length.

Example:

function () :=
VAR STATIC s $String $str('I am a string');

DASL USER'S GUIDE 50807-01

$STRING

$stringEqual function

$stringEqual compares two strings, described by their
respective $String types, to determine if they are equal.

Function Syntax Input Output

$stringEqua1 (
str1 1\ $String. Address of the

first string
descriptor.

str2 1\ $String Address of the
second string
descriptor.

) BOOLEAN; TRUE if the
strings are equal
in content and
length. FALSE
otherwise.

Example:

function () : =

VAR STATIC key SString
st $String;

Sstr('PASSWORD');

s [80) CHAR;

st.ptr := &s[O);
st.1en := nSread(nSWSIn. st.ptr. SIZEOF s) - 1;
IF $stringEqua1 (&key, &st) THEN equa1();

Chapter 4. CHARACTER AND STRING CUFS 4-15

$STRING

$stringCopy function

4-16

$stringCopy copies one string, described by the $String
type, into another.

Function Syntax Input Output

$stringCopy (
from A $String, Address of the

source string
descriptor.

to A $String, Address of the Describes the
destination copied string.
string Note: No copy is
descriptor. done if source

is larger than
the destination.

leftOver A $String May be NIL. If Describes the
not it is used unused area in
as an output the resulting
variable. destination

string, tOA.

) BOOLEAN; TRUE if source
fits into
destination.
FALSE otherwise.

Example:

function () :=
VAR STATIC sourcel $String

STATIC source2 $String
s [801 CHAR;

$str('Source');
$str(' String');

STATIC dest $String
leftOver $String;

$str(s);

IF $stringCopy(&sourcel, &dest, &leftOver)
& $stringCopy(&source2, &leftOver, NIL) THEN

concatenatedStrings();

DASL USER'S GUIDE 50807-01

$STRCMP

Introduction

The $STRCMP CUF is a single function which compares two
strings that are described by the $String type.

Note: $String is declared in the $STRING CUF.

$STRCMP definition file

The $STRCMP definition file must be included after the
$STRING definition file.

Example: Your DASL include directives might look
like this:

INCLUDE(DS INC)
INCLUDE(DSRMS)
INCLUDE($STRING/DEFS)
INCLUDE($STRCMP/DEFS)

: (rest of the program)

Chapter 4. CHARACTER AND STRING CUFS 4-17

$STRCMP

$strCmp function

4-18

$strCmp compares two strings described by their
respective $String types.

Function Syntax Input Output

$strCmp (
slP 1\ $String, Address of the

first string
descriptor.

s2P 1\ $String Address of the
second string
descriptor.

) SET (
$strL, The first string is

less than the second.

$strS. The first string is
an initial substring
of the second.

$strE, The strings are equal.

$strB, The second string is
an initial substring
of the first.

$strG The first string is
greater than the
second.

) ;

DASL USER'S GUIDE 50807-01

$STRCMP

$strCmp function (continued)

Example: The following program segment compares two
strings, key and st, and tests the $strE flag which will be
set if the two strings are equivalent in length and content.

function () : =

VAR STATIC key SString
st SString;
s 180] CHAR;

st.ptr := &510];

Sstr('PASSWORD');

st. len := nSread(nSWSIn, st.ptr, SIZEOF s) - 1;
IF $strCmp(&key, &st) && $strE THEN equal();

Chapter 4. CHARACTER AND STRING CUFS 4-19

4-20 DASL USER'S GUIDE 50807-01

Chapter 5.
INPUT/OUTPUT CUFS
OVERVIEW

Introduction

This chapter describes the input/output CUFs.

The input/output CUFs are used to handle general keyboard
and file I/O.

Selecting a CUF

Use the following table to determine which input/output
CUF to use.

If you want to ... then use ...

allocate a page aligned buffer and $BUFFER.
a $PFDB that describes the buffer

open or create a binary or text file $EZOPEN.
under D$lO and automatically
allocate buffers and supporting file
structures

read a text file forward and $SEQFH.
backward and insert and delete lines

obtain a- single translated character $GETKEYCH.
from the keyboard

obtain a single untranslated $KEYCH.
character from the keyboard

Chapter 5. lNPUT/OUTPUT CUFS 5-1

page

5-2

5-6

5-22

5-13

5-17

$BUFFER

Introduction

The $BUFFER CUF is a file I/O package that allocates and
deallocates a page aligned buffer and a $PFDB (with
$PFDBBUFs if necessary) that describe the buffer.

Note: $BUFFER uses the $BUDDY CUF for its memory
allocation and deallocation.

$BUFFER types and functions

Use the following table to select a $BUFFER type or
function.

If you want to ... then see ...

declare a buffer descriptor $BufDesc.

allocate a page aligned buffer $alocBuf.

free a buffer allocated by $alocBuf $freeBuf.

page

5-3

5-4

5-5

5-2 DASL USER'S GUIDE 50807-01

$BUFFER

$BufDesc type

$BufDesc is defined as follows:

Type Definition Description

TYPDEF SBufDesc STRUCT (

addr A BYTE; Points to the allocated page
aligned buffer.

size UNSIGNED; Size of allocated buffer.
Note: Always a mUltiple of
256.

pfdbP A SPFDB; Points to the allocated SPFDB.
} ;

Chapter 5. INPUT/OUTPUT CUFS 5-3

$BUFFER

$alocBuf function

5-4

$alocBuf allocates a page aligned buffer and a $PFDB that
describes the buffer.

Function Syntax Input Output

$alocBuf (
bDP " $BufDesc. Address of a Stores the

buffer descriptor. address, size,
and $PFDB of the
buffer in bDP".

size UNSIGNED Number of bytes to
allocate for the
file buffer.
Note: Number is
rounded up to a
mUltiple of 256.

) BOOLEAN; TRUE if able to
allocate buffer.
FALSE otherwise.

Example:

function () :=
VAR bufDesc $BufDesc;
{

IF $alocBuE(&buEDesc, 4096) THEN allocated();

DASL USER'S GUIDE 50807-01

$BUFFER

$freeBuf function

$freeBuf frees the buffer and $PFDB allocated by $alocBuf
and returns it to the memory manager, $BUDDY.

Function Syntax Input Output

$freeBuf (
bDP A $BufDesc Address of the buffer

descriptor which describes
the buffer and $PFDB to
return.
Note: Must point to a
buffer descriptor that was
previously set by $alocBuf.

) ;

Example:

function () : =

VAR bufDesc $BufDesc;
(

IF $alocBuf(&bufDesc. 4096) THEN allocated();
$EreeBuE(&buEDesc);

Chapter 5. INPUT/OUTPUT CUFS 5-5

$EZOPEN

Introduction

The $EZOPEN CUF is an interface to the D$IO package that
manages its own buffer allocation and tables. $EZOPEN
contains functions for both binary and text files that can

• open a file for reading,
• prepare a file for writing, and
• close a file.

$EZOPEN functions

Use the following table to select a $EZOPEN function.

If you want to ... then see ...

open a text file for reading $textRead.

open a text file for writing $textPrep.

close a text file $textClose.

open a binary file for reading $binaryRead.

open a binary file for writing $binaryPrep.

close a binary file $binaryC1ose.

page

5-7

5-8

5-9

5-10

5-11

5-12

5-6 DASL USER'S GUIDE 50807-01

$EZOPEN

$textRead function

$ text Read opens a D$IO text file for reading.

Note: $textRead will terminate through $ERMSG if the file
does not exist.

Function Syntax Input

$textRead (
sfent A $SFENT Address of the

file entry table
of the file to
be opened.

) A D$FILET;

Example:

function () : ~
VAR inFileET $SFENT;

inFile A D$FILET;

inFileET.$SFTSFN 'IN ';
inFileET.$SFTNAM 'MYFILE
inFileET.$SFTEXT 'TEXT' ;
inFileET.$SFTENV 'W ';
inFile :~ $textRead(&inFileET);
IF inFile ~ NIL THEN

Output

Address of the
D$IO text file.
Note: NIL if it
can't allocate
memory.

, . ,

display('Insufficient memory');

Chapter 5. INPUT/OUTPUT CUFS 5-7

$EZOPEN

$textPrep function

5-8

$textPrep creates a D$IO text file for writing.

Note: $textPrep will recreate an existing file.

Function Syntax Input Output

$textPrep (
sfent 1\ $SFENT Address of the

file entry table
of the file to
be created.

) 1\ D$FILET; Address of the
D$ 10 text file.
Note: NIL if it

Example:

function () : =

VAR outFileET $SFENT;
outFile 1\ D$FILET;

it can't
memory.

outFileET . $SFTSFN 'OUT ' ;
outFileET.$SFTNAM .= 'MYFILE ' ;
outFileET.$SFTEXT 'TEXT' ;
outFileET.$SFTENV 'w ' ;
outFile := $textPrep(&outFileET);
IF outFile = NIL THEN

display('Insufficient memory');

DASL USER'S GUIDE

allocate

50807-01

$EZOPEN

$textClose function

$textClose closes a D$IO text file and deallocates the
memory allocated by $textRead or $textPrep.

Function Syntax Input

$te'xtGlose (
filet A D$FILET Pointer to an open D$IO text

file.
Note: Must point to a file
that was opened by $textRead
or $textPrep.

) ;

Example:

function () : =

VAR outFileET $SFENT;
outFile A D$FILET;

outFileET.$SFTSFN 'OUT
outFileET.$SFTNAM 'MYFILE
outFileET.$SFTEXT 'TEXT' ;
outFileET.$SFTENV 'W

, . ,

outFile := $textPrep(&outFileET);
$textClose(outFile);

, ;

Output

Chapter 5. INPUT/OUTPUT CUFS 5-9

$EZOPEN

$binaryRead function

5-10

$binaryRead opens a D$IO binary file for reading.

Note: $binaryRead will terminate through $ERMSG if the
file does not exist.

Function Syntax Input

$binaryRead (
sfent 1\ $SFENT Address of the

file entry table
of the file to
be opened.

) 1\ O$FILEB;

Example:

function 0 : =

VAR inFileET $SFENT;
inFile 1\ O$FILEB;

inFileET.$SFTSFN 'IN ' ;
inFileET.$SFTNAM := 'MYFILE
inFileET.$SFTEXT := 'REL ';
inFileET.$SFTENV := 'w ' ;

Output

Address of the
0$10 binary file.
Note: NIL if it
it can't
memory.

, . ,

allocate

inFile := $binaryRead(&inFileET);
IF inFile = NIL THEN

display('Insufficient memory');

DASL USER'S GUIDE 50807-01

$EZOPEN

$binaryPrep function

$binaryPrep creates a D$IO binary file for writing.

Note: $binaryPrep will recreate an existing file.

Function Syntax Input Output

$binaryPrep (
sfent A $SFENT, Address of the

file entry table
of the file to
be c::-eated.

format BYTE RMS file format.
ExamEle: $FFMTBIN

) A D$FILEB; Address of the
D$IO binary file.
Note: NIL if it
it can't allocate
memory.

Example:

function () :=
VAR outFileET $SFENT;

outFile A D$FILEB;

outFileET.$SFTSFN 'IN
outFileET.$SFTNAM 'MYFILE
outFileET.$SFTEXT .= 'REL ';

, . ,

outFileET. $SFTENV 'W ' ;
outFile := $binaryPrep(&outFileET ,
IF outFile = NIL THEN

display('Insufficient memory');

Chapter 5. INPUT/OUTPUT CUFS

, ;

$FFMTL55);

5-11

$EZOPEN

$binaryClose function

5-12

$binaryClose closes a D$IO binary file and deallocates the
memory allocated by $binaryRead or $binaryPrep.

Function Syntax Input

$binaryClose (
filet 1\ D$FILEB Pointer to an open D$IO

binary file.
Note: Must point to a file
that was opened by
$binaryRead or $binaryPrep.

) ;

Example:

function () : =

VAR outFileET $SFENT;
outFi1e 1\ D$FILEB;

outFileET. $SFTSFN 'IN ' ;
outFi1eET.$SFTNAM := 'MYFILE ' ;
outFileET.$SFTEXT := 'REL ';
outFileET.$SFTENV := 'W ';

Output

outFi1e := $binarYPrep(&outFi1eET, $FFMTLSS);
$binaryClose(outFile);

DASL USER'S GUIDE 50807-01

$GETKEYCH

Introduction

The $GETKEYCH CUP is a general keyboard I/O package
that contains

• definitions for the cursor control keypad,
• a function to obtain one translated character from the

keyboard, and
• a function to turn shift inversion on or off.

$GETKEYCH definitions and functions

Use the following table to select a $GETKEYCH definition
or function.

IE you want to ... then see ...

use the translated numeric keypad Cursor
definitions control

keypad
definitions.

obtain one translated character from SGETKEYCH.
the keyboard

turn shift inversion on or off SGETKEYCHI.

Chapter 5. INPUT/OUTPUT CUFS 5-13

page

5-14

5-15

5-16

$GETKEYCH

Cursor control keypad definitions

5-14

The following definitions are the translated definitions of
the numeric keypad into the cursor control keypad by
$GETKEYCH.

aboveLeft
7

arrowLeft
4

belowLeft
3

~ ______ w_i_de_g_e_r_o ______ ~I~
Two other definitions are also provided. They are

• numberPad, which is the first value in the cursor control
keypad definitions, and

• afterNumberPad, which is the value after the cursor
control keypad definitions.

Example: The following example shows how these
definitions can be used in a program segment.

IF numberPad <= char & char < afterNumberPad THEN
CASE char {

arrowUp
arrowLeft
arrowRight
arrowDown
}

moveUp();
moveLeft();
moveRight();
moveDown();

ELSE notCursorControl();

DASL USER'S GUIDE 50807-01

$GETKEYCH

$GETKEYCH function

$GETKEYCH obtains one translated character from the
keyboard. The character is not echoed on the screen.

Function Syntax Input

$GETKEYCH (
h BYTE, Horizontal position to

obtain the character.
Note: Valid inputs are
o to 79.

v BYTE Vertical position to
obtain the character.
Note: Valid inputs are
o to 23 on a 24 line
screen.

) CHAR;

Example:

function () :=
VAR char CHAR;
{

char := $GETKEYCH(15, 20);

Chapter 5. INPUT/OUTPUT CUFS

Output

Translated
character.

5-15

$GETKEYCH

$GETKEYCHI function

$GETKEYCHI turns shift inversion on or off.

Function Syntax Input Output

$GETKEYCHI (
invert BOOLEAN TRUE turns shift inversion

on, FALSE turns shift
inversion off.

) ;

Example:

!
function () ::

{ $GETKEYCHI(TRUE);

5-16 DASL USER'S GUIDE 50807-01

$KEYCH

Introduction

The $KEYCH CUF is a general keyboard I/o package that
contains functions to

• obtain one untranslated character from the keyboard,
• restore the keyboard translate pointer,
• allow or inhibit control of the cursor, and
• set a keyin timeout value.

$KEYCH functions

Use the following table to select a $KEYCH function.

If you want to ... then see ...

obtain one untranslated character $KEYCH.
from the keyboard

restore the keyboard translation $KEYCHR.
table pointer

allow or inhibit control of the $KEYCHE.
cursor

set keyin timeout value $KEYCHT.

Chapter 5. INPUT/OUTPUT CUFS 5-17

page

5-18

5-19

5-20

5-21

$KEYCH

$KEYCH function

5-18

$KEYCH obtains one untranslated character from the
keyboard. The character is not echoed on the screen.

Note: This function changes the keyboard translation table
pointer. Call $KEYCHR to restore this pointer.

Function Syntax Input

$KEYCH (
horz BYTE. Horizontal position to

obtain the character.
Note: Valid inputs are
o to 79.

vert BYTE Vertical position to
obtain the character.
Note: Valid inputs are
-12 to 11 on a 24 line
screen.

char" CHAR

) D$CCODE:

Example:

function () : =

VAR char CHAR:
(

Output

Stores the
untranslated
character in
char".
$WSTIMEO if
time out
occurred.

$WSIO error
if one occurs.

IF $KEYCH(O. -12. &char) && D$CFLAG THENSERMSGO;

DASL USER'S GUIDE 50807-01

$KEYCH

$KEYCHR function

$KEYCHR restores the keyboard translation table pointer
to the value it had before $KEYCH was called the first
time. This function must be called before calling any keyin
routines that expect translated characters. Example:
$WSIO, $GETKEYCH, etc ...

Function Syntax Input

$KEYCHR (
) DSCCODE;

Example:

function () : =
VAR char CHAR;
{

Output

$WSIO error if one occurs.

IF $KEYCH(O, -12, &char) && D$CFLAG THEN $ERMSG();
IF $KEYCHR() && D$CFLAG THEN $ERMSG();

Chapter 5. INPUT/OUTPUT CUFS 5-19

$KEYCH

$KEYCHE function

5-20

$KEYCHE allows or inhibits $KEYCH from controlling the
cursor.

Function Syntax Input

$KEYCHE (
cursOn BOOLEAN TRUE enables SKEYCH to turn

the cursor on and off, FALSE
inhibits $KEYCH from
controlling the cursor.

) ;

Example:

I function () : =

{ $KEYCHE(TRUE);

Output

DASL USER'S GUIDE 50807-01

(

$KEYCH

$KEYCHT function

$KEYCHT sets the keyin timeout value in seconds.

Note: The keyin timeout value will default to $FOREVER if
this function is not called.

Function Syntax Input

$KEYCHT (
timeOut BYTE Number of seconds to

keyin character.
Note: $FOREVER means
time out.

) ;

Example:

Ifunction () :=

($KEYCHT(lO);

Output

wait for

not to

Chapter 5. INPUT/OUTPUT CUFS 5-21

$SEQFH

Introduction

Input file

5-22

The $SEQFH CUF is a sequential text file handling package
that allows reading a text file forwards and backwards
while inserting and deleting lines.

The sequential file handler manages the text file through
three individual windows:

• The records above the current
sequential record. CJ

• the current sequential record. and

• the records below the current
s'equential record.

Your view of the input file is through the current
sequential record window.

DASL USER'S GUIDE

I

50807-01

$SEQFH

How the windows work

This diagram illustrates the three window file management:

Input File State Input File Diagram

Initially. a file only has records I I in the below window.

I I

1st record
2nd record
3rd record

When you "get" a record from the I I below window. it becomes the current
sequential record.

lIst I record
The current sequential record is
written into data space that you
specify. It is not actually part of 2nd record
the file until it is "put" back into 3rd record
either the above or below window.

Another "get from below" overstores I I the record that was in the current
sequential window with the next I 2nd I record from the below window. record

Note: Successive "gets", without
matching "puts". will delete records

1
3rd record I from the file.

A "put record above" copies the I 2nd record in the current sequential record I window into the above window.

Note: Successive "puts", without
1
2nd record I matching "gets". will insert records

into the file.

1
3rd I record

Chapter 5. INPUT/OUTPUT CUFS 5-23

$SEQFH

$SEQFH types and functions

Use the following table to select a $SEQFH type or
function.

IE you want to ... then see ... page

declare a sequential file SFH$IPT. 5-25

initialize the sequential file $sfhlnit. 5-26
handler

get a record from the above window $sfhGetA. 5-27

write the character string into the $sfhPutA. 5-29
above window

get a record from the below window $sfhGetB. 5-30

write the character string into the $sfhPutB. 5-32
below window

force the records in the above and $sfhQuit . 5-33
below windows to be written to the
output file

release all memory sectors used by $sfhRmem. 5-34
the sequential file handler

5-24 DASL USER'S GUIDE 50807-01

$SEQFH

SFH$IPT type

SFH$IPT is defined as follows:

Type Definition Description

TYPDEF SFH$IPT STRUCT {

SFH$IMNS BYTE; Maximum number of sectors to
allocate in 4K quantities.

SFH$IEFP LONG; Input end-of-file pointer.

SFH$IIN A $PFDB; Address of the open input file
$PFDB.

SFH$IOUT A $PFDB; Address of the open output
file $PFDB.

SFH$ISCR A $PFDB; Address of the open scratch
file $PFDB.

SFH$IASM BYTE; Mapped sector number, MSN, of
a 4K sector of memory to be
used for buffering the portion
of the input file above the
current sequential record.

SFH$IBSM BYTE; Mapped sector number, MSN, of
a 4K sector of memory to be
used for buffering the portion
of the input file below the
current sequential record.

SFH$IGET A D$CALLF; Address of a memory allocation
routine.
ExamEle: MEMGET$

SFH$IREL A D$CALLF; Address of a memory
deal location routine.
ExamEle: MEMREL$

} ;

Chapter 5. INPUT/OUTPUT CUFS 5-25

$SEQFH

$sfhlnit function

5-26

$sfhlnit initializes the sequential file handler.

Function Syntax Input

$sfhlnit (
sfhPtr A SFHSIPT Address of an

initialized
sequential file
descriptor.

) D$CCODE:

Example:

function () : =

VAR sfhIpt SFHSIPT:
(

Output

DSCFLAG if there
is insufficient
memory available.

sfhlpt.SFHSIMNS
sfhlpt.SFHSIEFP

64; 1* 256 K max *1
D$GET24(&inOpenPt.SOTFLEN) « 8

I I inOpenPt.SOTFEOFB:
sfhlpt.SFHSIIN &inpfdb;
sfhIpt.SFH$IOUT &outPfdb;
sfhIpt.SFH$ISCR &scratchpfdb;
sfhlpt.SFHSIASM 016«4;
sfhIpt.SFHSIBSM 017«4;
sfhIpt.SFHSIGET := &MEMGETS;
sfhlpt.SFHSIREL := &MEMREL$;

1* 016-0167777 *1
1* 017-0177777 */

IF $sfhInit(&sfhIpt) && D$CFLAG THEN
error('Insufficient memory available');

DASL USER'S GUIDE 50807-01

$SEQFH

$sfhGetA function

$sfhGetA gets a record from the above window into the
current sequential record buffer.

Function Syntax Input Output

$sfhGetA (
destPtr AA CHAR, Address of a Pointer destPtrA points

pointer to to the byte before the
the last first byte stored in the
position in current sequential record
the current buffer.
sequential
record
buffer.
Note: This
buffer must
include space
for two
$LEORs.

len BYTE Size of the
buffer.

) D$CCODE; D$CFLAG D$ZFLAG Function
Result

FALSE - No error.

TRUE FALSE Maximum
length
overflow.

TRUE Beginning
of file.
One $LEOR
obtained.

Chapter 5. INPUT/OUTPUT CUFS 5-27

$SEQFH

$sfhGetA function (continued)

5-28

Example: In the following program segment, $sfhGetA
gets (or pops) the last record from the above window and
stores it into the buffer.

function () :=
VAR DEFINE(bufSize. 250)

buffer [bufSizeJ CHAR;
ptr 1\ CHAR;
flag D$CCODE;

ptr := &buffer[bufSize-l] ;
flag := $sfhGetA(&ptr. bufSize);
IF flag && D$CFLAG THEN {

IF flag && D$ZFLAG THEN display('Top of file. ')
ELSE error('Input record too large');

I
ELSE {

n$write(n$WSOut. ptr+l. &buffer[bufSizeJ-ptr);

DASL USER'S GUIDE 50807-01

$SEQFH

$sfhPutA function

$sfhPutA writes the character string into the above
window.

Function Syntax Input

SsfhPutA (
source /\ CHAR Address of the first character

in the line storage buffer
terminated by a SLEOR.

) ;

Example: In the following program segment, $sfhPutA
puts (or pushes) the record in the buffer into the above
window.

function () :=

VAR DEFINE(bufSize, 250)
buffer IbufSize] CHAR;
ptr /\ CHAR;
n BYTE;

ptr := &bufferIO] ;
n := nSread(nSWSln. ptr. bufSize);
bufferln-l] := SLEOR;
$sfhPutA(ptr);

Output

Chapter 5. INPUT/OUTPUT CUFS 5-29

$SEQFH

$sfhGetB function

$sfhGetB gets a record from the below window.

Function Syntax Input Output

$sfhGetB (
destPtr /\/\ CHAR. Address of a Pointer destPtr/\ points

pointer to to the byte after the
the first last byte stored in the
position in current sequential record
the current buffer.
sequential
record
buffer.
Note: This
buffer must
include space
for one
$LEOR.

len BYTE Size of the
buffer.

) D$CCODE; D$CFLAC D$ZFLAG Function
Result

FALSE - No error.

TRUE FALSE Maximum
length
overflow.

TRUE End of
file.
One $LEOR
obtained.

5-30 DASL USER'S GUIDE 50807-01

$SEQFH

$sfhGetB function (continued)

Example: In the following program segment, $sfhGetB
gets (or pops) the first record from the below window and
stores it into the buffer.

function () : =
VAR DEFINE(bufSize, 250)

buffer [bufSize[CHAR;
ptr /\ CHAR;
flag D$CCODE;

ptr := &buffer[O[;
flag := $sfhGetB(&ptr, bufSize);
IF flag && DSCFLAG THEN {

IF flag && D$ZFLAG THEN display('End of file. ')
ELSE error('Input record too large');

}

ELSE {
n$write(n$WSOut, &buffer[Ol, ptr-buffer[Ol);

Chapter 5. INPUT/OUTPUT CUFS 5 - 31

$SEQFH

$sfhPutB function

5-32

$sfhPutB writes the character string into the below window.

Function Syntax Input

$sfhPutB (
source /I. CHAR, Address of the $LEOR

following the last character
in the line storage buffer.

len BYTE Number of characters from the
line storage buffer to write.
Note: Including space for the
$LEOR.

) ~

Example: In the following program segment, $sfhPutB
puts (or pushes) the record in the buffer into the below
window.

function () : =

VAR DEFINE(bufSize, 250)
buffer [bufSize] CHAR;
n BYTE;

n n$read(n$WSIn, &buffer[OJ, bufSize);
buffer[n-1J := $LEOR;
$sfhPutB(&bufferln-lJ, n);

Output

DASL USER'S GUIDE 50807-01

$SEQFH

$sfhQuit function

$sfhQuit forces the records in the above and below
windows to be written to the output file and puts an EOF
mark into the output file.

Function Syntax Input

$sfhQuit (
eofPtr " LONG Address of

variable.

) ;

Example:

function () ::
VAR eof LONG;
{

$sEhQuit(&eof);

Output

a LONG Stores the output
file EOF pointer in
eofPtr".

Chapter 5. INPUT/OUTPUT CUFS 5-33

$SEQFH

$sfhRmem function

5-34

$sfhRmem releases all memory sectors used by the
sequential file handling routines.

Function Syntax

$sfhRmem (
) ;

Example:

function () : =

VAR eof LONG;
{

$sfhQuit(&eof) ;
$sfhRmem();

Input

DASL USER'S GUIDE

Output

50807-01

Chapter 6.
MESSAGE HANDLING CUFS
OVERVIEW

Introduction

This chapter describes the message handling CUFs.

The message handling CUFs are used to handle message
I/O.

Selecting a CUF

Use the following table to determine which message
handling CUF to use.

IE you want to ... then use ...

• open a specific message file, $MSG.
• access specific messages, or
• access messages sequentially

access specific message members from $MSGIO.
OSlO DSWRITE statements

Chapter 6. MESSAGE HANDLING CUFS 6-1

page

6-2

6-6

$MSG

Introduction

The $MSG CUF is a message I/O package that can

• open a command file and search for a message member,
• copy a message from the message member into

memory, and
• get sequential messages from the message member.

$MSG functions

Use the following table to select a $MSG function.

IE you want to ... then see ...

open a message member SMSGOPEN.

get a specific message SMSGGET.

get the next message SMSGNEXT.

page

6-3

6-4

6-5

6-2 DASL USER'S GUIDE 50807-01

$MSG

$MSGOPEN function

$MSGOPEN looks up a message member in the specified
file.

Function Syntax Input Output

$MSGOPEN (
pfdbPtr " $PFDB, Address of a cOlllllland

file $PFDB.
Note: If the $PFDB
$FAVID is a $ NOADR,
it will open the
executing cOlllllland
file.

memNamePtr " $LNAMET Address of the name
of the message
member.

) D$CCODE; D$CFLAG
if I/O
error.

Example:

function () :=
VAR bufDesc $BufDesc;

STATIC mName $LNAMET
/* $BUFFER CUF */

'MESSAGE ';

IF $alocBuf(&bufDesc, 256) THEN (
bufDesc.pfdbP".$PFVID := $PCRFVUP;
IF $MSGOPEN(buEDesc.pEdbP, &mName)

&& D$CFLAG THEN $ERMSG();

ELSE error('Insufficient memory');

Chapter 6. MESSAGE HANDLING CUFS 6-3

$MSG

$MSGGET function

6-4

$MSGGET copies a specified message from the message
member into memory.

Function Syntax Input

$MSGGET (
msgNr UNSIGNED, Number of the message

to get.

msgPtr 1\ CHAR, Address of the first
character in the area
to store the message.

msgMaxLen BYTE Maximum space
available to store the
message.

) D$CCODE;

Example:

function () :=
VAR flag D$CCODE;

message [801 CHAR;

Output

Points to
the message
terminated by
a $ES.

D$ZFLAG if
message not
found.
D$CFLAG if
I/O error.

flag := $HSGGET(lO, &message{O/, SIZEOF message);
IF flag && D$CFLAG THEN $ERMSG();
IF flag && D$ZFLAG THEN error('Message not found');

DASL USER'S GUIDE 50807-01

$MSG

$MSGNEXT function

$MSGNEXT copies the next sequential message from the
message member into memory.

Function Syntax

$MSGNEXT (
msgPtr 1\ CHAR.

msgMaxLen BYTE

) D$CCODE;

Example:

function () : =

VAR i. n BYTE;

Input

Address of the first
character in the area
to store the message.

Maximum space
available to store the
message.

message (80) CHAR;

i := 0;
LOOP {

Output

Points to
the message
terminated by
a $ES.

D$CFLAG if
I/O error.

IF $MSGNEXT(&message{O}, SIZEOF message)
&& D$CFLAG THEN $ERMSG();

n := $SCAN(&messageIO). SES. SIZEOF message);
n$format(n$WSOut. S(message. n). LN);

WHILE ++i < 10;
I;

Chapter 6. MESSAGE HANDLING CUFS 6-5

$MSGIO

Int roduct ion

The $ MSGIO CUF is used to access a message member
through D$IO.

Open the message member first

The $MSGIO CUF uses the $MSG CUF to access the message
member. You must open the message member with
$ MSGOPEN before using the $ MSGIO CUF.

The "M" phrase type

6-6

$MSGIO adds the "M" or message phrase type to the D$IO
D$WRlTE phrases.

The "M" instructs the D$IO driver that a message number
will follow as the next parameter. This message number is
used to look up the corresponding message in the message
member. The corresponding message is written to the
output device.

Syntax for the "M" phrase is

M, <message number>

DASL USER'S GUIDE 50807-01

$MSGIO

The "M" phrase type (continued)

Example:

pfdb $PFDB := { $ NOADR, { 0, 0 I, 1, 0, 1,
{ { $NOPSK, «UNSIGNED>&D$BUF1) »8 I I
I;

function () :=
VAR STATIC mName $LNAMET := 'MESSAGE ';
(

IF $MSGOPEN(&pfdb, &mName) && D$CFLAG THEN $ERMSG();
D$WRITE(&D$DSP, S, 'Message # 24 is " M, 24, LN);

Chapter 6. MESSAGE HANDLING CUFS 6-7

6-8 DASL USER'S GUIDE 50807-01

Chapter 7.
LIST PROCESSING CUFS
OVERVIEW

Introduction

This chapter describes the list processing CUFs.

The list processing CUFs are used to process linked lists
and character queues.

Selecting a CUF

Use the following table to determine which list processing
CUF to use.

If you want to ... then use ...

manipulate data with doubly linked SLINKS.
lists

buffer characters on a queue SQUEUE.

Chapter 7. LIST PROCESSING CUFS 7-1

page

7-2

7-6

$LlNKS

Introduction

The $LINKS CUF is a doubly linked list manipulation
package.

$LlNKS types and functions

Use the following table to select a $LINKS type or function.

IE you want to ... then see . ..

declare a linked list descriptor SListHeader.

insert a node into the linked list SLLINS.

delete a node from the linked list SLLDEL.

page

7-3

7-4

7-5

7-2 DASL USER'S GUIDE 50807-01

$LlNKS

$ListHeader type

$ListHeader is defined as follows:

Type Definition Description

TYPDEF $ListHeader STRUCT {

f /\ $ListHeader; Forward pointer to the next
linked list node.

r /\ $ListHeader; Reverse pointer to the
previous linked list node.

} ;

Example: Linked lists are not useful unless they contain
more data than the links. This example uses the linked list
type as a field in a larger structure.

TYPDEF NameList STRUCT
links $ListHeader;
name [30 J CHAR;
address [SOJ CHAR;
id UNSIGNED;
} ;

Chapter 7. LIST PROCESSING CUFS 7-3

$LlNKS

$LLlNS function

7-4

$LLlNS inserts a new node onto the linked list.

Function Syntax

$LLINS (
new /\ $ListHeader,

after /\ $ListHeader

) ;

Example:

start NameList;

function () : =

VAR node NameList;
{

Input

Address of the new
to insert onto the
linked list.

Address of the node
the linked list to
insert the new node
after.

$LLINS(&node.links, &start.links);

DASL USER'S GUIDE

Output

node

in

50807-01

$LlNKS

$LLDEL function

$LLDEL deletes a node from the linked list.

Function Syntax Input

$LLDEL (
old A $ListHeader Address of the

node to remove
from the linked
list.

) A $ListHeader;

Example:

function (pNode A $ListHeader)
{

$LLDEL(pNode);

Output

Address of the
node removed
from the linked
list.

Chapter 7. LIST PROCESSING CUFS 7-5

$QUEUE

Introduction

The $QUEUE CUF is a set of functions for handling a
circular character queue buffer.

$QUEUE types and functions

Use the following table to select a $QUEUE type or
function.

If you want to ... then see ...

declare a character queue $Queue.
descriptor

initialize a queue descriptor $initQueue.

add a character to the queue $addQueue.

delete a character from the queue $remQueue.

determine the number of characters $sizeQueue.
in the queue

determine the number of character $slacklnQueue.
places left in the queue

determine if the queue is full $isQueueFull.

determine if the queue is empty $isQueueEmpty.

page

7-7

7-8

7-9

7-10

7-11

7-12

7-13

7-14

7-6 DASL USER'S GUIDE 50807-01

$QUEUE

$Queue type

$Queue is defined as follows:

Type Definition Description

TYPDEF $Queue STRUCT {

start A CHAR; Pointer to the starting boundary
of the queue.

end A CHAR; Pointer to the ending boundary
of the queue.

first A CHAR; Pointer to the first character
in the active queue.

after A CHAR; Pointer to the character after
the last character in the active
queue.

I;

Chapter 7. LIST PROCESSING CUFS 7-7

$QUEUE

$initQueue function

$initQueue initializes a queue descriptor.

Function Syntax Input

$initQueue (
q A Queue, Address of a queue

descriptor.

buff A CHAR, Address of the
first character
in the character
buffer to be used
as the queue.
Note: The buffer
should be one byte
larger than what
you are intending
to use.

len UNSIGNED Number of
characters in the
buffer to be used
as the queue.

) ;

Example:

function () : =

VAR queue $Queue;
buffer [lOOO[CHAR;

{

Output

Initialized queue
descriptor with
starting and ending
boundaries, and
active queue
pointers.

$initQueue(&queue, &buffer{OJ, SIZEOF buffer);

7-8 DASL USER'S GUIDE 50807-01

$QUEUE

$addQueue function

$addQueue adds a character into the queue.

Function Syntax Input

$addQueue (
q 1\ $Queue. Address of the

queue descriptor.

c CHAR Character to be
added to the queue.

) BOOLEAN;

Example:

function (pQueue 1\ $Queue)
VAR letter CHAR;
{

letter := 'A';
LOOP {

Output

TRUE if successful
in adding the
character to the
queue. FALSE
otherwise.

IF - $addQueue(pQueue. letter) THEN
error('No more room in the queue');

WHILE letter+t < 'Z';
} ;

Chapter 7. LIST PROCESSING CUFS 7-9

$QUEUE

$remQueue function

7-10

$remQueue removes the first character from the queue.

Function Syntax Input

$remQueue (
q 1\ $Queue, Address of the

queue descriptor.

cPtr 1\ CHAR Address of a
character.

) BOOLEAN;

Example:

function (pQueue 1\ $Queue)
VAR ch CHAR;
{

Output

Stores the
character removed
from the queue into
cPtrl\.

TRUE if successful
in removing the
character from the
queue. FALSE
otherwise.

IF $remQueue(pQueue, &ch) THEN
n$format(n$WSOut, 'Removed' C(ch}, LN);

DASL USER'S GUIDE 50807-01

$QUEUE

$sizeQueue function

$sizeQueue determines the number of characters in the
queue.

Function Syntax Input

SsizeQueue (
q 1\ SQueue Address of the

queue descriptor.

) UNSIGNED;

Example:

function (pQueue 1\ SQueue) :~

{

Output

Number of characters
in the queue.

nSformat(nSWSOut, D($sizeQueue(pQueue)),
, characters in the queue', LN);

Chapter 7. LIST PROCESSING CUFS 7 -11

$QUEUE

$slacklnQueue function

7-12

$slacklnQueue determines the number of available
character places left in the queue.

Function Syntax Input

SslackInQueue (
q A $Queue Address of the

queue descriptor.

) UNSIGNED;

Example:

function (pQueue A $Queue) :=
{

Output

Number of available
character places
left in the queue.

n$format(n$WSOut, D($slackInQueue(pQueue)),
, available characters in the queue', LN);

DASL USER'S GUIDE 50807-01

$QUEUE

$isQueueFull function

$isQueueFull determines whether the queue buffer space
has been exhausted.

Function Syntax Input

$isQueueFull (
q 1\ $Queue Address of the

queue descriptor.

) BOOLEAN;

Example:

function (pQueue 1\ $Queue)
(

IF $isQueueFull(pQueue) THEN
display('Queue is full');

Output

TRUE if the queue
buffer is full.
FALSE otherwise.

Chapter 7. LIST PROCESSING CUFS 7 -13

$QUEUE

$isQueueEmpty function

$isQueueEmpty determines whether the queue is empty.

7-14

Function Syntax Input

SisQueueEmpty (
q 1\ $Queue; Address of the

queue descriptor.

) BOOLEAN;

Example:

function (pQueue 1\ $Queue) :=
(

IF $isQueueEmpty(pQueue) THEN
display('Queue is empty');

DASL USER'S GUIDE

Output

TRUE if the queue
does not contain
any entries. FALSE
otherwise.

50807-01

Chapter 8.
PROGRAM STRUCTURING CUFS
OVERVIEW

Introduction

This chapter describes the program structuring CUFs.

The program structuring CUFs are used to conditionally
compile code, simulate bit fields, etc ...

Selecting a CUF

Use the following table to determine which message
handling CUF to use.

If you want to ... then use ...

exit your program with an internal $ASSERT.
error message written with D$lO if
certain conditions in your program
are not TRUE

exit your program with an internal $assert.
error message written with NOSL if
certain conditions in your program
are not TRUE

jump between two functions $CATCH.

simulate bit fields $FIELD.

simulate C language "for" loops $FOR.

selectively compile parts of your IFINC.
program

Chapter 8. PROGRAM STRUCTURING CUFS 8-1

page

8-2

8-3

8-4

8-8

8-15

8-19

$ASSERT

Introduction

The $ASSERT CUF is a single function which checks
conditions in a program that should be TRUE. If a "FALSE
assertion" occurs, $ASSERT will terminate the program
with an internal error message through D$IO.

$ASSERT function

8-2

$ASSERT displays an internal error message and exits
through $ERROR on a false boolean input.

Function Syntax

SASSERT (
flag BOOLEAN,

msg (any size)

) ;

Example:

function () : =

{

Input

Boolean condition to
examine.

CHAR Message to display
before terminating
program execution.

Output

$ASSERT(ptr -= NIL, 'Pointer cannot be NIL');

DASL USER'S GUIDE 50807-01

/
\

$assert

Introduction

The $assert CUF is a single function which checks
conditions in a program that should be TRUE. If a "FALSE
assertion" occurs, $assert will terminate the program with
an internal error message through the NOSL I/o package.

$assert function

$assert displays an internal error message and exits
through $ERROR on a false boolean input.

Function Syntax Input

Sassert (
flag BOOLEAN, Boolean condition to

examine.

msg [any size] CHAR Message to display
before terminating
program execution.

) ;

Example:

function () : =

Output

$assert(ptr -= NIL, 'Pointer cannot be NIL');

Chapter 8. PROGRAM STRUCTURING CUFS 8-3

$CATCH

Int roduct ion

The $CATCH CUF is a machine dependent implementation
of nonlocal goto's.

Note: If you need to use this CUF, you may be doing
something wrong.

$CATCH types and functions

Use the following table to select a $CATCH type or
function.

If you want to ... then see ...

declare a goto location descriptor $SAVE.

set a return address for a nonlocal $CATCH.
goto

jump to the address in the location $THROW.
descriptor

page

8-5

8-5

8-6

8-4 DASL USER'S GUIDE 50807-01

$CATCH

$SAVE type

The $SA VE type is nonportable and its contents need not be
examined by your program.

$SAVE is defined as follows:

Type Definition Description

TYPDEF $SAVE STRUCT {

retPC A BYTE; Return address to exit to.

prevSP A BYTE; Saved stack pointer.
} ;

$CATCH function

$CA TCH sets a return address for a nonlocal goto.

Function Syntax Input Output

$CATCH (
p A $SAVE Address of an Initialized address

address and state and state descriptor
descriptor. with current

position info.

) BOOLEAN; Always returns TRUE.
Note: If $THROW is
called with this
address descriptor,
program control
returns to this
$CATCH call with a
FALSE result.

Chapter 8. PROGRAM STRUCTURING CUFS 8 - 5

$CATCH

$THROW function

$THROW jumps to the specified address.

Function Syntax Input Output

STHROW (
p 1\ SSAVE Address of the

address and state
descriptor to goto.

) BOOLEAN; Always FALSE.
Note: This value
actually gets set
into SCATCH so that
FALSE is returned
by SCATCH after a
STHROW.

8-6 DASL USER'S GUIDE 50807-01

$CATCH

Example of the $CATCH CUF

In the following example, $CATCH [Il is executed. It will
set throwAddr [2] with the return address, and return a
TRUE boolean condition. This causes functionO to be
called. If $THROW [3] is called, it will return through the
$CATCH [Il call, returning a FALSE boolean condition
which will result in $ERRORO [4] being called.

throwAddr $SAVE;

function () : =

VAR s [80J CHAR;
n BYTE;

n := nSread(nSWSIn, &s[OJ, SIZEOF s);
IF s[OJ = ' , THEN $THROW(&throwAddr);

: (rest of the function)
} ;

ENTRY MAIN () : =
{

IF $CATCH(&throwAddr) THEN function()
ELSE SERROR();

} ;

Chapter 8. PROGRAM STRUCTURING CUFS 8-7

[2J

[3 J

IlJ
[4J

$FIELD

Introduction

The $FIELD CUF is a bit field simulation package which
enables you to set up a named mask to define a bit or a
set of adjacent bits in a single scalar to be a separate field.

Bit field numbering

The bit positions in a scalar are numbered starting at zero
from least to most significant.

The following diagram shows the bit numbers of a byte.

7 6 543 2 1 0

$FIELD macros and functions

Use the following table to select a $FIELD macro or
function.

IE you want to ... then see . ..

define a field identifier field.

get a field fieldGet.

test a field for nonzeros fieldTest.

store a value into a field fieldStore.

set a field fie1dSet.

clear a field fie1dClear.

page

8-9

8-10

8-11

8-12

8-13

8-14

8-8 DASL USER'S GUIDE 50807-01

$FIELD

field macro

field defines an identifier to be a location and width of a
field within a scalar.

Function Syntax Input

field (
name Identifier. A DASL identifier.

Note: Be careful not to use
the same name more than
once.

offset BYTE. Bit position of the field.

size BYTE Number of bits in the
field.

)

Example: The following program segment defines six
different bit fields bitO, bitl, ... , bits5t07. All but the last
field are one bit masks. bits5t07 is a three bit mask.

function () : =

VAR byte BYTE;
fie1d(bitO. 0, 1)
fie1d(bit1, 1. 1)
fie1d(bit2, 2, 1)
fie1d(bit3, 3, 1)
fie1d(b{t4, 4, 1)
fie1d(bits5tol. 5, 3)

Output

Chapter 8. PROGRAM STRUCTURING CUFS 8-9

$FIELD

fieldGet function

8-10

fieldGet gets the field defined by the identifier from a
DASL scalar.

Function Syntax Input Output

fie1dGet (
value Scalar, DASL scalar that

contains the
field.

name Identifier Name of the mask
that identifies
the field within
the scalar.

) Scalar; Contents
field.

Example: The following program segment gets the high
order 8 bit field of the integer "i".

field(highByte, 8, 8)

function (i INT) :=
VAR fld BYTE;
(

fld := fieldGet(i, highByte);

DASL USER'S GUIDE

of the

50807-01

$FIELD

fieldTest function

fieldTest tests for nonzeros in a field.

Function Syntax Input

fieldTest (
value Scalar, DASL scalar that

contains the field
to evaluate.

name Identifier Name of the mask
that identifies
the field within
the scalar.

) BOOLEAN;

Example:

fie1d(prtF1ag, 13, 1)

function (flags UNSIGNED)
{

Output

TRUE if the value
of the field is
nonzero. FALSE
otherwise.

IF fieldTest(flags, prtFlag) THEN printIt();

Chapter 8. PROGRAM STRUCTURING CUFS 8-11

$FIELD

fieldStore function

8-12

fieldS tore stores a value into a field.

Function Syntax Input

fieldS tore (
valuePtr 1\ Scalar, Address of the

DASL scalar that
contains the
field to be
stored into.

name Identifier, Name of the mask
that identifies
the field within
the scalar.

value Scalar Value to be
stored into the
field.

) Scalar;

Example:

field(highByte, 8, 8)

function (i UNSIGNED) .=
{

fieldStore(&i, highByte, 0377);

DASL USER'S GUIDE

Output

The input DASL
scalar with the
updated field.

50807-01

$FIELD

fieldSet function

fieldSet sets the bits in the field of a scalar to ones.

Function Syntax Input

fieldSet (
valuePtr 1\ Scalar. Address of the

DASL scalar that
contains the
field to be set.

name Identifier. Name of the mask
that identifies
the field within
the scalar.

) Scalar;

Example:

field(prtFlag. 13. 1)

function (flags UNSIGNED)
{

fieldSet(&flags. prtFlag);

Output

The input DASL
scalar with the
updated field.

Chapter 8. PROGRAM STRUCTURING CUFS 8 -1 3

$FIELD

fieldClear function

8-14

fieldClear clears the bits in a field to zeros.

Function Syntax Input

fieldClear (
va1uePtr A Scalar, Address of the

DASL scalar that
contains the
field to be
cleared.

name Identifier, Name of the mask
that identifies
the field within
the scalar.

) Scalar;

Example:

field(prtF1ag, 13, 1)

function (flags UNSIGNED)
(

fieldClear(&flags, prtFlag);

DASL USER'S GUIDE

Output

The input DASL
scalar with the
updated field.

50807-01

$FOR

Introduction

The $FOR CUF is a set of macros which simulate the C
language "for" statement.

$FOR macros

Use the following table to select a $FOR macro.

If you want to ... then see ...

begin "for" loop structure $for.

end "for" loop structure $next.

Chapter 8. PROGRAM STRUCTURING CUFS 8 -15

page

8-16

8-16

$FOR

$for macro

$for designates the beginning of the "for" loop structure.
It is parameterized with

• a preloop initialization statement,
• a conditional exit expression, and
• an incrementation statement.

Macro Syntax Parameter Description

$for (
initialization statement, Statement that will be

executed prior to the
structure.

termination expression, Boolean condition
expression that will
terminate execution of
loop when it becomes
FALSE.

incrementation statement Last statement in the
to be executed.

) ;

loop

the

loop

$next macro

8-16

$next designates the end of the "for" loop structure.

Macro Syntax Parameter Description

$next;

Statements located between the $next and matching $for
macros make up the loop body.

DASL USER'S GUIDE 50807-01

$FOR

$FOR lOOp structure

A $FOR loop is opened with a $for and closed with a $next.

$for (statement, expression, statement);

(DASL code)

$next;

Nested $FOR loops

$FOR loops may be nested within one another.

$for (statement, expression, statement);

(DASL code)

$for (statement, expression, statement);

(DASL code)

$next;

(DASL code)

$next;

Chapter 8. PROGRAM STRUCTURING CUFS 8-17

]

]

$FOR

Cautions

Users of the $FOR loops should be aware that $for ... $next
loops need to be enclosed in braces if they are used where
a single statement is required.

Example:

IF i = 0 THEN {
$for (i := 0, i < 100, i++);

n$format(n$WSOut, D(i), LN);
$next;
} ;

Expanded DASL code

8-18

This is an example of the $FOR and the resultant expanded
DASL code.

function () : =

VAR i BYTE;
{

$for (i := 0, i < 100, i++);
n$format(n$WSOut, D(i), LN);

$next;

Which expands to ...

function () :=
VAR i BYTE;
{

i := 0;
LOOP (

WHILE i < 100;
n$format(n$WSOut, D(i), LN);
i++;
I;

DASL USER'S GUIDE 50807-01

IFINe

Introduction

The IFINC CUF is a set of macros which enables selective
compilation of DASL code.

IFINC definition file

The IFINC definition file has a "/TEXT" extension.

IFINC macros

Example:

INCLUDE(DSINC)
INCLUDE(DSRMS)
INCLUDE(IFINC/TEXT)

: (rest of the program)

Use the following table to select a IFINC macro.

If you want to ... then see ...

begin a decision block Sif.

designate an alternate decision Selse.
block branch

end a decision block Sendif .

Chapter 8. PROGRAM STRUCTURING CUFS 8-19

page

8-20

8-21

8-21

IFINe

$if macro

8-20

$if designates the beginning of the decision block for
selective compilation.

Note: $if must be preceded by n$esc*/".

Macro Syntax Parameter Description

$esc* I $if (
first characters to compare, A sequence of

characters or defined
name of the first
parameter to compare.

second characters to compare A sequence of
characters or defined
name of the first
parameter to compare.

)

If the two parameters contain exactly the same characters,
the code immediately following this macro will be
compiled.

Note: Blank characters are significant.

DASL USER'S GUIDE 50807-01

IFINC

$else macro

$else designates the alternate branch of the decision block.

Note: $else must be preceded by "$esc*/".

Macro Syntax Parameter Description

Sesc'~ I Selse

The $else macro serves two purposes:

• it terminates the condition block that began at the
matching $if macro, and

• it designates the beginning of another condition block
which ends at the matching $endif macro.

$endif macro

$endif designates the end of the decision block.

Note: $endif must be preceded by "$esc* /".

Macro Syntax Parameter Description

$esc* / $endif

Statements located between the $endif and matching $if
macros make up the decision block body.

Chapter 8. PROGRAM STRUCTURING CUFS 8-21

IFINe

Decision block structure

A decision block is opened with a $if and closed with a
$endif.

$esc*/ $if (parameterl, parameter2)

. (DASL code)

$esc*/ $endif

The code inside the decision block is compiled if the $if
parameters are equal.

Alternate decision branch

A decision block may contain an alternate decision branch,
$else.

$esc j ,/ $if (parameter1, parameter2)

(DASL code)

$esc>~/ $else

(DASL code)

$esc* / $endif

The code between the $if and the $else is compiled if the
$if parameters are equal. Otherwise, the code between the
$else and the $endif is compiled.

]

8-22 DASL USER'S GUIDE 50807-01

IFINC

Nested decision blocks

Decision blocks may be nested within one another.

$esc*1 $if (parameterl. parameter2)

(DASL code)

$esc*/ $if (parameterl. parameter2)

(DASL code)

$esc'~ / Send if

(DASL code)

$esc'" I $endif

Chapter 8. PROGRAM STRUCTURING CUFS

]

8-23

IFINe

Example

8-24

This is an example of the IFINC CUF. The compiled lines
are bold faced.

INCLUDE(D$INC)
INCLUDE(D$RMS)
INCLUDE(IFINCITEXT)

DEFINE(off,O)
DEFINE(on,l)
DEFINE(NOSL,on)
DEFINE (LOGGING ,off)

1* Set either "on" or "off" *1
1* Set either "on" or "off" '~I

$esc*/ $if(NOSL,on)
INCLUDE(N$IDEFS)
$esc*/ $else
INCLUDE(D$IO)
$esc* / $endif

ENTRY MAIN ()
(

$esc*/ $if(NOSL,on)
$esc*/ Sif(LOGGING,on)

n$format(n$LogOut, 'NOSL is on, LOGGING is on', LN);
$esc* / Selse

n$format(n$WSOut, 'NOSL is on, LOGGING is off', LN);
$esc* / Sendif

$esc~< / Selse
Sesc*/ Sif(LOGGING,on)

DSWRITE(&D$OUT, 'NOSL is off, LOGGING is on', LN);
$esc*/ Selse

D$WRITE(&D$DSP, 'NOSL is off, LOGGING is off', LN);
Sesc* / Sendif

$esc~< / $endif
} ;

DASL USER'S GUIDE 50807-01

IFINe

Reserved words

In addition to $esc, $if, $else, and $endif, the following
names are DEFINEd in the IFINC CUF and should not be
used.

• $cat
• $push
• $pop
• $ifStk
• $cond
• $getCond

• $zap
• $dolf

Chapter 8. PROGRAM STRUCTURING CUFS 8-25

8·- 26 DASL USER'S GUIDE 50807-01

Chapter 9.
SCHEDULER CUFS
OVERVIEW

Introduction

This chapter describes the scheduler CUPs.

The scheduler CUFs are used to schedule multiple
programs running in a single RMS task.

Scheduler layers

The scheduler has been broken up into three CUPS in order
to separate the actual scheduler from the machine
dependent and operating system dependent functions.

The separate parts of the scheduler are layered as
illustrated in the following diagram.

$SWITCH
machine dependent,
coroutine switching
package

page 9-2 $SCHED
multiple threading
scheduler

page 9-13 $RMSIDLE
operating system
dependent, idle
thread

page 9-50

Chapter 9. SCHEDULER CUFS 9-1

$SWITCH

Introduction

The $SWITCH CUF is the machine dependent, coroutine
switching part of the scheduler.

What is a coroutine?

9-2

A coroutine, or concurrent routine, is a routine running
simultaneously with one or more other routines.

The term "concurrent" is somewhat misleading since the
coroutines do not actually run simultaneously. Each
coroutine runs independently until an instruction is given
to pass execution control to another coroutine. When
execution control is returned to the originating coroutine,
it resumes execution at the point it gave up control. All
other coroutines are "asleep" until they are "awakened" by
the one active coroutine.

The term "routine" simply means a sequence of
instructions. The instructions can be part of one or more
functions.

DASL USER'S GUIDE 50807-01

(

$SWITCH

$SWITCH classifications, types, variables, and functions

Use the following table to select a $SWITCH classification,
type, variable, or function.

If you want to ... then see . ..

declare a function REENTRANT REENTRANT.

define the message parameter u$Param.
descriptor

declare a coroutine stack $StackDesc.
descriptor

use the current stack descriptor $coStackDesc.

initialize the program to be a $colnit .
coroutine

create a new coroutine $coFork.

switch to another coroutine $coSwitch.

save the state of a coroutine $coSave.

restore the state of a coroutine $coRestore.

Chapter 9. SCHEDULER CUFS 9-3

page

9-4

9-4

9-5

9-5

9-6

9-7

9-9

9-10

9-11

$SWITCH

REENTRANT function classification

REENTRANT is a defined name that is available for you to
use as a function classification.

Macro Definition Description

DEFINE(REENTRANT,RECURSIVE) Function classification
for functions that initiate
new coroutines and for
functions that may be
suspended in one coroutine
while another coroutine is
running.

Example:

I~EENTRANT function ()

u$Param type

9-4

The u$Param type is a type that must be declared by you.
It is used for passing messages or variables between
co routines.

Example: If you wanted to pass 100 byte arrays between
coroutines, you would define u$Param like this:

ITYPDEF u$Param {IOOl BYTE;

DASL USER'S GUIDE 50807-01

$SWITCH

$StackDesc type

The $StackDesc type is needed to define variables used by
the $SWITCH functions. The contents, however, do not
need to be set or examined by your program.

$StackDesc is defined as follows:

Type Definition Description

TYPDEF $StackDesc STRUCT {
framePtr A $Frame; Points to the function stack

information.

stacklst A BYTE;

} ;

$coStackDesc variable

Note: $Frame type is defined
in the $SWITCH text. You
will not need to examine
variables of this type so
its description has not been
made available.

Points to the first byte
of the stack information.

$coStackDesc is declared as part of the $SWITCH CUF and
is available for you to examine.

Variable Definition Description

$coStackDesc A $StackDesc; Pointer to the stack
descriptor of the currently
active coroutine.

Chapter 9. SCHEDULER CUFS 9-5

$SWITCH

$colnit function

9-6

$coInit initializes the running program to be a separate
coroutine.

Note: This function must be called prior to all other calls to
the coroutine functions. It should also be called prior to
any calls to REENTRANT or RECURSIVE functions.

Function Syntax

$colnit (
stackDesc A $StackDesc,

stack A BYTE,

len UNSIGNED

) ;

Example:

routinel $StackDesc;
stackl [5001 BYTE;

function () : =
{

Input Output

Address of a Initialized
stack descriptor
descriptor. with

information
about the
stack.

Address of the
first byte of
the stack
storage area.

Length of the
stack storage
area.

$coInit(&routinel, &stackl(OJ, SIZEOF stackl);

DASL USER'S GUIDE 50807-01

$SWITCH

$coFork function

$coFork creates a new coroutine.

• The newly created coroutine begins executing from the
statement following the $coFork.

• $coFork must be called from within a REENTRANT
function that is defined to return a pointer to a u$Param.

• The newly created coroutine must never return from
the function which called $coFork or a fatal error will
occur. Processing may be terminated by switching to
another coroutine. See $coSwitch for further details.

• The coroutine that calls $coFork falls asleep. If
execution control is passed back to this coroutine, it
resumes execution as if it was returning from the
function that called $coFork. It does not execute the
remaining code in the function following the $coFork.

Function Syntax Input Output

$coFork (
stackDesc A $StackDesc, Address of a Initialized

stack descriptor
descriptor. with

information
about the
created
coroutine.

stack A BYTE, Address of the
first byte of
the stack
storage area.

len UNSIGNED Length of the
stack storage
area.

) ;

Chapter 9. SCHEDULER CUFS 9-7

$SWITCH

$coFork function (continued)

9-8

Example: The following segment of code calls the $coFork
function.

TYPDEF u$Param BYTE;

routine2 $StackDesc;
stack2 [500) BYTE;

REENTRANT function () A u$Param :=
(

$coFork(&routine2, &stack2[O] , SIZEOF stack2);

DASL USER'S GUIDE 50807-01

$SWITCH

$coSwitch function

$coSwitch passes execution control from one coroutine to
another. The input parameter, params, will be the RESULT
of the function that wakes up in the resumed coroutine.

Function Syntax

$coSwitch (
stackDesc A $StackDesc.

params A u$Params

) A u$Params;

Example:

TYPDEF u$Param BYTE;

routine2 $StackDesc;
stack2 [500) BYTE;

Input

Address of the
stack
descriptor to
switch to.

Address of a
parameter you
are passing
into the
coroutine you
are switching
to.

REENTRANT function () A u$Param :=
{

Output

Pointer to a
parameter
passed back to
this coroutine
when it resumes
execution.

$coFork(&routine2. &stack2[0). SIZEOF stack2);
functionl();
function2();
$coSwitch(&routinel. NIL);

Chapter 9. SCHEDULER CUFS 9-9

$SWITCH

$coSave function

9-10

$coSave saves the stack information of the current
coroutine.

$coSave and $coRestore are lower level functions used by
$coSwitch. You will probably not need to call these
functions directly.

Function Syntax

ScoSave (
) ;

Example:

Ifunction () :=

{ $coSave();

Input

DASL USER'S GUIDE

Output

50807-01

$SWITCH

$coRestore function

$coRestore restores the stack information which

• causes the executing coroutine to go to sleep. and
• causes the coroutine described by stackDesc to resume

execution.

Note: $coRestore must be called from within a REENTRANT
function. The restored coroutine does not actually
resume execution until the REENTRANT function returns.
The function may also specify a return parameter for
passing information between the coroutines. RESULT
should be assigned after the $coRestore.

$coSave and $coRestore are lower level functions used by
$coSwitch. You will probably not need to call these
functions directly.

Function Syntax Input

$coRestore (
stackDesc 1\ $StackDesc, Address of the

stack descriptor

) ;

Example:

routine2 $StackDesc;
stack2 [5001 BYTE;

the coroutine to
resume execution.

REENTRANT function () 1\ u$Param
(

$coSave();
$coRestore(&routine2);
RESULT NIL;
} ;

of

Output

Chapter 9. SCHEDULER CUFS 9 - 11

$SWITCH

Example of the $SWITCH CUF

9-12

The following program segment demonstrates a two
coroutine program. The first coroutine (bold faced
lines) is created by the $colnit function call [I] and falls
asleep after creating a second coroutine by $coFork [2].
The second coroutine (italicized lines) begins after the
call to $coFork [3] and continues until the call to $coSwitch
[4]. The $coSwitch returns execution control to the first
coroutine which resumes as though it was returning from
the function [5]. Note that the line [6] following the
$coSwitch is never executed.

TYPDEF u$Param BYTE;

routine1 $StackDesc;
stack1 [500) BYTE;

routine2 $StackDesc;
stack2 [500) BYTE;

REENTRANT function () A u$Param :=
{

functionO();
$coFork(&routine2, &stack2[0) , SIZEOF stack2); [2)
functionl(); [3)
function2();
$coSwitch(&routinel, NIL); [4)

function3(); [6)
} ;

ENTRY MAIN () :=
VAR pB A u$Param;
{

$coInit(&routine1, &stack1[0) , SIZEOF stack1); [1)
pB := function();
function4() ; [5)
function5();
} ;

DASL USER'S GUIDE 50807-01

$SCHED

Introduction

The $SCHED CUF is a set of functions that enables multiple
threads to coexist within one RMS task.

$SCHED definition file

The $SCHED definition file must be included after the
$LlNKS and $STRING definition files.

Note: The $SCHED definition file includes the $SWITCH
definition file.

Example: Your DASL include directives might look
like this:

INCLUDE(D$INC)
INCLUDE(D$RMS)
INCLUDE($STRING/DEFS)
INCLUDE($LINKS/DEFS)
INCLUDE($SCHED/DEFS)

: (rest of the program)

Chapter 9. SCHEDULER CUFS 9-13

$SCHED

Overview of the $SCHED documentation

9-14

This table contains an overview of the $SCHED
documentation.

To learn more about ...

scheduler terminology

scheduler properties

scheduler initialization and control

scheduler synchronization and message
passing

scheduler tickling

scheduler logging

scheduler termination

DASL USER'S GUIDE

see page ...

9-15

9-16

9-17

9-30

9-40

9-43

9-49

50807-01

$SCHED

Scheduler terminology

$SCHED contains terminology that you may not be familiar
with. Here is a rundown of a few of the terms used:

• thread - A thread is a separate process running within a
single RMS task. A thread can be in one of three states:
• active (there is only one active thread at one time),
• waiting to become active, or
• waiting for a signal or a message from another thread.

• execution control - Execution control refers to the
period of time when a thread is actually running as the
RMS task.

• ready queue - The ready queue is a queue for threads
which are ready to execute but are waiting to be
scheduled.

• semaphore - A semaphore is a communications device
that is used to synchronize one thread with another.

• message - A message is data that is transferred between
threads and is synchronized by a semaphore.

• feather - A feather is a variable that can be used to
transfer information to threads. Feathers are primarily
useful for informing threads that they should abort
processing or stop waiting for a signal or a message.

• tickle - Tickle refers to the sending of a feather to a
thread.

Chapter 9. SCHEDULER CUFS 9 -1 5

$SCHED

Scheduler properties

9-16

$SCHED has several properties that will help you to
understand this scheduler:

• run to completion - Each thread initiated in the
scheduler executes to completion unless it gives up
execution control. In other words, a thread runs without
being interrupted by the scheduler. It is the
responsibility of each thread to give up execution
control to the scheduler if other threads are expected to
execute.

• prioritized - Each thread has a priority that is specified
at the time of creation. The scheduler schedules higher
priority threads to execute before lower priority
threads.

• first come, first serve - Within each priority, waiting
threads are allowed to execute in a first come, first
serve basis.

DASL USER'S GUIDE 50807-01

(

$SCHED

Scheduler initialization and control

This section describes the variables, types, and functions
that are provided for scheduler initialization and control.

Use the following table to select a $SCHED constant, type,
variable, or function.

If you want to ... then see ...

determine the maximum priority $maxPriority.

declare a priority for a thread $Priority.

define the private data descriptor u$SchedData.

declare a thread control block $ThreadCt1B1k.
descriptor

use the current thread control $curTCB.
block

declare a thread entry point $Thread.

initialize the program to be a $initSched.
thread

start a new thread $fork.

determine if there are threads $wou1dPass.
waiting to be scheduled

pass execution control to any $pass.
waiting threads

define a function that will u$threadln.
execute before a scheduled thread

define a function that will u$threadOut.
execute after a scheduled thread

release thread control block u$re1Tcb.
memory

Chapter 9. SCHEDULER CUFS 9-17

page

9-18

9-18

9-19

9-20

9-21

9-21

9-22

9-23

9-25

9-26

9-27

9-28

9-29

$SCHED

$maxPriority constant

$maxPriority is defined as a constant and is available for
you to use.

Constant Definition Description

DEFINE($maxPriority. 7) Maximum priority of a thread.

$Priority type

$Priority is defined as follows:

Type Definition Description

TYPDEF $Priority BYTE; The priority of the thread. It
is used by the scheduler to
determine the order to execute
the threads. o is the lowest
priority. $maxPriority is the
highest.

9-18 DASL USER'S GUIDE 50807-01

$SCHED

u$SchedData type

The u$SchedData type is a type that must be defined by
you. Variables of this type may be used to store
information that is unique to individual threads.

Example: This example uses u$SchedData to keep
information about NOSL streams which are unique to each
thread. Any commonly used function that needs to do any
NOSL I/O can use this information without knowing which
thread it is processing.

TYPDEF u$SchedData STRUCT {
stream n$Stream;
ptr A BYTE;
len BYTE;
} ;

Chapter 9. SCHEDULER CUFS 9-19

$SCHED

$ThreadCtlBlk type

9-20

The $ThreadCtlBlk type is needed to define variables used
by the $SCHED functions. All fields, except privData, do
not need to be set or examined by your program.

$ThreadCtIBlk is defined as follows:

Type Definition Description

TYPDEF $ThreadCtlBlk STRUCT {
link $ListHeader; A link that is used to

place this thread control
block on a queue.

msg A $Message; Points to any message
that has been received.

privData A u$SchedData; Points to data that is
ini tialized and used by
you.

pending A $Sema4; Points to the semaphore
this thread is waiting
on. NIL if the thread is
not waiting.

feather A u$Feather; Points to the data passed
into the thread if it has
been tickled.

priority $Priority; Priority of this thread.

stack $StackDesc; Describes the stack for
this thread.

stackData l$stackSizel BYTE; Storage area for the
recursive stack.

name $String; Name used for logging
scheduler events.

I;

DASL USER'S GUIDE 50807-01

$SCHED

$curTCB variable

$curTCB is declared as part of the $SCHED CUF and is
available for you to examine.

Variable Definition Description

$curTCB A $ThreadCt1B1k; Pointer to the currently
active thread control block.

$Thread type

Use the $Thread type to declare functions that are entry
points of new threads.

$Thread is defined as follows:

Type Definition Description

TYPDEF $Thread (
feather A u$Feather Address of a feather. Will

indicate whether a tickle
occurred sometime between when
this function was placed on the
ready queue and when it actually
began executing. NIL if no
tickle occurred.

) ;

Example:

I~unction $Thread

Chapter 9. SCHEDULER CUFS 9-21

$SCHED

$initSched function

9-22

$initSched initializes the running program to be a
scheduled thread. $curTCB is left pointing at the thread
control block that describes this thread.

Note: This function must be called prior to all other calls to
the scheduler. It should also be called prior to any calls to
REENTRANT or RECURSIVE functions.

Function Syntax Input

$initSched (
priority $Priority. Priority of this thread.

Note: Valid inputs are
o to $maxPriority.

name 1\ $String Address of the name for
this thread which will
be used for scheduler
logging.

) ;

Example:

function 0 :=

Output

VAR STATIC name $String .= $str('Main Thread');
{

$initSched(l, &name);

DASL USER'S GUIDE 50807-01

$SCHED

$fork function

$fork starts up a new thread. The new thread is placed at
the end of the ready queue where it begins execution once
the current thread, threads with higher priorities, and
threads with equal priority that were already on the ready
queue yield execution control.

Function Syntax

$fork (
fp A $Thread,

Input

Address of the
function to
begin executing
as the new
thread.

newTCB A $ThreadCtlBlk, Address of a
thread control
block.

priority $Priority,

name A SString

) ;

Chapter 9.

Note: The
privData field
should be
ini tialized.

Priority of the
this thread.
Note: Valid
inputs are 0 to
$maxPriority.

Address of the
name for this
thread which
will be used
for scheduler
logging.

SCHEDULER CUFS

Output

Initialized
thread control
block with
information
about the new
thread.

9-23

$SCHED

$fork function (continued)

9-24

Example:

TYPDEF u$SchedData STRUCT
stream n$Stream;
ptr II BYTE;
len BYTE;
} ;

threadOne $Thread
{

(DASL code)

} ;

function () : =

VAR tcbl $ThreadCtlBlk;
privData u$SchedData;
string (80) CHAR;
STATIC name $String := $str('Thread One');

tcbl.privData := &privData;
tcbl.privDatall.stream := n$WSOut;
tcbl.privDatall.ptr := string(Ol ;
tcbl.privDatall.len := SIZEOF string;
$fork(&threadOne, &tcb1, 1, &name);

DASL USER'S GUIDE 50807-01

$SCHED

$wouldPass function

$wouldPass determines if there are threads waiting to be
scheduled at or above the same priority on the ready
queue.

Function Syntax Input

$wouldPass (
) BOOLEAN;

Example:

function () : =
{

Output

TRUE if there are threads
to be scheduled. FALSE
otherwise.

IF - $wouldPass() THEN

ready

display('No threads on the ready queue. ');

Chapter 9. SCHEDULER CUFS 9-25

$SCHED

$pass function

9-26

$pass causes the active thread to give up execution control
to any threads on the ready queue with higher or equal
priority. If no such threads exist, the current thread
resumes execution control.

Function Syntax Input Output

$pass (
) A u$Feather; Returns the address of a

feather if this thread was
tickled while asleep. NIL if

Example:

function () : =
{

not tickled.

IF $pass() -= NIL THEN
display('I was tickled awake. ')

ELSE display('The scheduler awakened me. ');

DASL USER'S GUIDE 50807-01

(

$SCHED

u$threadln function

u$threadln is a function that must be declared by you. It
is called right after a thread is scheduled and may be
written for any purpose.

Note: u$threadln must be declared "ENTRY".

The scheduler expects a function with the following
syntax:

Function Syntax Input Output

u$threadln (
) ;

Example: The following program segment is the minimum
u$threadln. This is a perfectly acceptable definition for
this function.

I~NTRY u$,hr,"In

};

Chapter 9. SCHEDULER CUFS 9-27

$SCHED

u$threadOut function

9-28

u$threadOut is a function that must be declared by you. It
is called right before a thread is unscheduled and may be
written for any purpose.

Note: u$threadOut must be declared "ENTRY".

The scheduler expects a function with the following
syntax:

Function Syntax Input Output

u$threadOut (
) ;

Example: The following program segment is the minimum
u$threadOut. This is a perfectly acceptable definition for
this function.

I~RY u$'''o.oo.,
};

DASL USER'S GUIDE 50807-01

$SCHED

u$relTcb function

u$relTcb is a function that must be declared by you. It
should release the memory used by the thread control
block which is pointed to by $curTCB.

Note: u$relTcb must be declared "ENTRY".

The scheduler expects a function with the following
syntax:

Function Syntax Input Output

uSrelTcb (
) ;

Example: The following program segment uses the $BUDDY
CUF to deallocate the memory used by the thread control
block.

ENTRY u$relTcb :=
(

$free($curTCB, SIZEOF $curTCBA);
} ;

Chapter 9. SCHEDULER CUFS 9-29

$SCHED

Scheduler synchronization and message passing

Semaphores and messages are used to synchronize and
transfer information between threads.

Types and functions

This section describes the types and functions provided for
scheduler synchronization and message passing.

Use the following table to select a $SCHED type or
function.

If you want to ... then see ...

declare a semaphore descriptor $Sema4.

declare a message descriptor $Message.

initialize a semaphore $initSema4.

signal a semaphore $signal.

wait for a semaphore $waitOn.

send a message $sendMsg.

wait for a message $waitMsg.

page

9-31

9-32

9-33

9-34

9-35

9-37

9-38

9-30 DASL USER'S GUIDE 50807-01

$SCHED

$Sema4 type

The $Sema4 type is needed to define variables used by the
$SCHED functions. The contents, however, do not need to
be set or examined by your program.

$Sema4 is defined as follows:

Type Definition Description

TYPDEF $Sema4 STRUCT {

count INT; A counter used to synchronize
threads.

link $ListHeader; A link used to queue threads
that are waiting for this
semaphore to be signaled.

name $String; A name that is used for logging
scheduler events.

} ;

Chapter 9. SCHEDULER CUFS 9 - 31

$SCHED

$Message type

9-32

$Message is defined as follows:

Type Definition Description

TYPDEF $Message STRUCT {

link $ListHeader; A link that is used to save
this message for a thread.
Note: This field will be
maintained by the scheduler.

name $String; A name that will be used for
logging scheduler events.
Note: This field must be
initialized by your program.

} ;

In order to pass messages between threads, a field of type
$ Message should be declared as the first member in a
structure which contains the elements of your message.

Example: If you need to pass an array of 10 characters
between threads, your message type might look like this:

TYPDEF Message STRUCT
msgCtl $Message;
msgStr [10] CHAR;
} ;

DASL USER'S GUIDE 50807-01

$SCHED

$initSema4 function

$initSema4 initializes a semaphore so that it can be used by
the scheduler.

Function Syntax Input Output

$initSema4 (
ptr " $Sema4. Address of Initialized

semaphore to semaphore.
initialize.

name 1\ $String Address of a name
for this semaphore
which will be used
for scheduler
logging.

) ;

Example:

function () : =

VAR sema4 $Sema4;
STATIC name $String := $str('Semaphore 1');

$initSema4(&sema4, &name);

Chapter 9. SCHEDULER CUFS 9-33

$SCHED

$signal function

9-34

$signal uses a semaphore to let another thread know that a
certain event has taken place. If a thread has been waiting
for this signal, $signal places it onto the ready queue.
Otherwise, the signal is saved so a thread will know this
event has taken place.

Function Syntax Input

$signal (
ptr 1\ $Sema4 Address

signal.
) ;

Example:

sema4 SSema4;

function () :=
{

$signal(&sema4);

of the semaphore to

Output

DASL USER'S GUIDE 50807-0l

$SCHED

$waitOn function

$waitOn checks to see if a semaphore has been signaled
to determine if a certain event has taken place in another
thread. If the semaphore has been signaled, the thread
continues to execute. Otherwise, the thread gives up
execution control and waits for a signal.

Function Syntax

$waitOn (
ptr 1\ $Sema4,

Input

Address of the
semaphore to
wait on.

completed 1\ BOOLEAN Address of a
boolean.

) 1\ u$Feather;

Output

TRUE if the
semaphore you
were waiting on
was signaled.
FALSE if tickled
before receiving
the message.
Note: This flag
can be TRUE even
if the thread
was tickled.

Returns the
address of a
feather if this
thread was
tickled while
asleep. NIL if
not tickled.

Chapter 9. SCHEDULER CUFS 9-35

$SCHED

$waitOn function (continued)

9-36

Example:

sema4 $Sema4;

function 0 : =
VAR completed BOOLEAN;

feather A u$Feather;

feather := $waitOn(&sema4, &completed);
IF feather -= NIL THEN

display('I was tickled awake. ');
IF completed THEN

display('I received the signal. ')
ELSE display('I did not receive the signal. ');

I;

DASL USER'S GUIDE 50807-01

$SCHED

$sendMsg function

$sendMsg uses a semaphore to let another thread know
that a message has been sent to it. If a thread has been
waiting for this message, $sendMsg places the thread onto
the ready queue. Otherwise, the message is saved so a
thread will know this message has been sent.

Function Syntax Input

$sendMsg (
ptr 1\ $Sema4, Address

signal.

msg 1\ $Message Address
send.

) ;

Example:

TYPDEF Message STRUCT
msgCt1 $Message;
msgStr [10] CHAR;
} ;

message Message;

sema4 $Sema4;

function () :=

of the semaphore to

of the message to

Output

VAR STATIC name $String := $str('Message 1');
{

n$read(n$WSIn, &message.msgStr[O], 10);
message.msgCt1.name := name;
$sendMsg(&sema4, &message.msgCtl);

Chapter 9. SCHEDULER CUFS 9-37

$SCHED

$waitMsg function

9-38

$waitMsg checks to see if a semaphore has been signaled
to determine if a certain message has been sent by another
thread. If the semaphore has been signaled, the thread
receives the message and continues to execute.
Otherwise, the thread gives up execution control and waits
for the message.

Function Syntax Input Output

$waitMsg (
ptr /\ $Sema4, Address of the

semaphore to
wait on.

msgPtr /\/\ $Message Address of a Points to the

) /\ u$Feather;

pointer to a message sent by
message. the sending

thread. NIL if
tickled before
receiving the
message.
Note: This pointer
can point to a
message even if
the thread was
tickled.

Returns the
address of a
feather if this
thread was tickled
while asleep. NIL
if not tickled.

DASL USER'S GUIDE 50807-01

$SCHED

$waitMsg function (continued)

Example:

TYPDEF Message STRUCT (
msgCtl $Message;
msgPtr A [801 CHAR;
I;

message Message;

sema4 $Sema4;

function () : ~
VAR mPtr A $Message;

feather A u$Feather;

feather := $waitMsg(&sema4, &mPtr);
IF feather -~ NIL THEN

display('I was tickled awake. ');
IF mPtr -~ NIL THEN

displaY«<AMessage>mPtr)A.msgStr)
ELSE display('I did not receive the message. ');

Chapter 9. SCHEDULER CUFS 9-39

$SCHED

Scheduler tickling

Tickling refers to the sending of a feather to a thread.
Tickling is primarily useful for informing threads that they
should abort processing or stop waiting for a signal or a
message.

Types and functions

This section describes the types and functions provided for
scheduler tickling.

Use the following table to select a $SCHED type or
function.

If you want to ... then see ...

define the feather descriptor uSFeather.

pass a feather to a thread Stickle.

page

9-41

9-42

9-40 DASL USER'S GUIDE 50807-01

$SCHED

u$Feather type

The u$Feather type is a type that must be defined by you.
Variables of this type can be used to transfer information
to threads such as "terminate processing" or "stop waiting
for a signal" .

Note: By convention, a thread should terminate itself if it
receives a feather pointer that equals $NOADR.

Example: This example defines u$Feather to be a byte.
Since a byte has 256 possible representations (0 to 255), a
feather of this type could represent 256 different messages
when passed into a thread.

iTYPDEF u$Feather BYTE;

Chapter 9. SCHEDULER CUFS 9-41

$SCHED

$tickle function

9-42

$ tickle passes a feather to a thread. If the thread is waiting
for a signal or a message, it stops waiting and is placed on
the ready queue. By convention, a thread should terminate
itself if it receives a feather pointer that equals $NOADR.

Note: If the thread is tickled twice before it obtains
execution control, the first feather will be lost.

Function Syntax Input

Stickle (
tcb A $ThreadCtlBlk, Address of the

thread control
block to
tickle.

feather A u$Feather Address of the
feather to
tickle the
thread with.

) ;

Example:

killFeather A u$Feather .= $NOADR;

function ()
{

$tickle(tcbl, killFeather);

DASL USER'S GUIDE

Output

Thread control
block feather
field set.

50807-01

(

$SCHED

Scheduler logging

Events in the scheduler can be traced by an optional logging
facility. If logging is active, each event in the scheduler
calls the logging function at the beginning and ending of the
scheduler event. Three exceptions are $signal, $sendMsg,
and $tickle which only log the beginning of the event.

Variables, types, constants, and functions

This section describes the variables, types, constants, and
functions provided for scheduler logging.

Use the following table to select a $SCHED variable, type,
constant, or function.

If you want to ... then see ...

turn logging on or off u$eventLoggingOn.

determine the types of $EventType.
scheduler events logged

use the mask that sIgnifies $resultOfEvent.
the end of an event

define the function to log u$eventLog.
events

Chapter 9. SCHEDULE·R CUFS 9-43

page

9-44

9-45

9-46

9-47

$SCHED

u$eventLoggingOn variable

9-44

u$eventLoggingOn is a boolean variable that must be
declared by you. It is used to determine whether or not to
log the events of the scheduler.

Note: u$eventLoggingOn must be declared "ENTRY".

Example:

IENTRY u$eventLoggingOn BOOLEAN := TRUE;

DASL USER'S GUIDE 50807-01

$SCHED

$EventType type

$ EventType contains the values of all of the possible
events to be logged by the scheduler.

$EventType is defined as follows:

Type Definition Description

TYPDEF $EventType ENUM (
$eventInitSema4. Initializing a semaphore

$eventFork. Creating a new thread.

$eventPass. Thread is giving up execution
control.

$eventSwitch. Scheduling the next thread.

$eventSignal. Signaling a semaphore.

$eventWaitOn. Waiting on a semaphore.

$eventSendMsg. Sending a message.

$eventWaitMsg. Waiting on a message.

$eventTickle Tickling a thread.
) ;

Chapter 9. SCHEDULER CUFS 9-45

$SCHED

$resultOfEvent constant

9-46

$resultOfEvent is defined as a constant and is available for
you to use.

Constant Definition Description

DEFINE($resultOfEvent, Ox80) Bit mask that is "or"ed
with the $eventTypes
logged at the end of an
event. This distinguishes
the ending log of an event
from the beginning log.

Example:

ENTRY u$eventLog 1* (event $eventType,
aI, a2 A $String,
feather A u$feather) *1

IF event && $resultOfEvent THEN
n$format(logStream, 'Event end', LN);

DASL USER'S GUIDE 50807-01

$SCHED

u$eventLog function

u$eventLog is a function that must be declared by you if
u$eventLoggingOn is TRUE. It should log the events of the
scheduler.

Note: u$eventLog must be declared "ENTRY".

Function Syntax Input

u$eventLog (
event $EventType, Scheduler event.

al A $String, Address of a string. See
table on next page.

a2 A $String, Address of a string. See
table on next page.

feather A u$Feather Address of a feather.
See table on next page.

) ;

Example:

ENTRY u$eventLog /,~ (event $eventType,
aI, a2 A $String,
Eeather A u$Eeather) ,~/

IF event && $resultOEEvent THEN
n$Eormat(logStream, 'Event end.', LN);

event &&= -- $resultOEEvent;
n$Eormat(logStream, S(events{eventJ),

, " S(aIA.ptrA, alA. len));
IF a2 -= NIL THEN

Output

n$Eormat(logStream, ' , S(a2A.ptrA, a2A.len));
n$Eormat(logStream, LN);
} ;

Chapter 9. SCHEDULER CUFS 9-47

$SCHED

u$eventLog function (continued)

9-48

u$eventLog can expect the following input parameters
based upon the events listed on the left side of the table:

Event al/\ a2/\ feather/\

InitSema4 Semaphore NIL NIL
name.

Fork Current thread New thread NIL' on entry.
control block name. Current
name. feather on

exit.

Pass NIL NIL on entry.
Feather if
tickled on
exit.

Switch NIL on entry.
Current
feather on
exit.

Signal Semaphore NIL
name.

WaitOn NIL on entry.
Feather if
tickled on
exit.

SendMsg Message name. NIL

WaitMsg NIL on entry. NIL on entry.
Message name Feather if
on exit. tickled on

exit.

Tickle Thread NIL Feather to
control block tickle with.
name to
tickle.

DASL USER'S GUIDE 50807-01

$SCHED

Scheduler termination

The threads running under the scheduler are terminated if

• the program ends normally by exiting the MAIN
function, or

• an end RMS task is issued such as $ ERROR or $EXIT.

Chapter 9. SCHEDULER CUFS 9-49

$RMSIDLE

Introduction

The $RMSIDLE CUF is the operating system dependent part
of the scheduler that includes

• functions that enable a thread to go to sleep while
waiting for an RMS I/O to complete, and

• an idle thread which wakes up threads after their I/O has
completed.

$RMSIDLE definition file

9-50

The $RMSIDLE definition file must be included after the
$LINKS and $STRING definition files.

Note: The $RMSIDLE definition file includes the $SCHED
definition file.

Example: Your DASL include directives might look
like this:

INCLUDE(D$INC)
INCLUDE(D$RMS)
INCLUDE($STRING/DEFS)
INCLUDE($LINKS/DEFS)
INCLUDE($RMSIDLE/DEFS)

: (rest of the program)

DASL USER'S GUIDE 50807-01

$RMSIDLE

$RMSIDLE types and functions

Use the following table to select a $RMSIDLE type or
function.

If you want to ... then see ...

declare a file access variable $Favld.
descriptor

start the idle thread $initRmsld1e.

wait for 1/0 to complete $waitSing1eIO.

give up execution control if $yie1d.
there are any waiting threads

declare a function to handle u$deadLock.
scheduler deadlock

obtain finer control over I/O $RMSIDLE low
scheduling level

functions.

$Favld type

$Favld is defineo as follows:

Type Definition Description

page

9-51

9-52

9-53

9-55

9-56

9-57

TYPDEF $FavId UNSIGNED; File access variable ID that
identifies a file to a thread.

Chapter 9. SCHEDULER CUFS 9 - 51

$RMSIDLE

$initRmsldle function

9-52

$initRmsldle starts up a 0 priority idle thread on the
scheduler.

Note: $initRmsIdle should be called right after $initSched is
called.

Function Syntax Input Output

$initRmsIdle (
privData A u$SchedData Address of any

information that may
be unique to this
individual thread.

) ;

Example:

function () : =

VAR STATIC name $String
{

$str('Main Thread');

$initSched(l, &name);
$initRmsIdle(NIL};

DASL USER'S GUIDE 50807-01

$RMSIDLE

$waitSinglelO function

$waitSinglelO informs the idle thread of a pending I/O and
causes the current thread to give up execution control
while waiting for a specific file I/O to complete.

Function Syntax

$waitSingleIO (
favld $Favld,

name A $String,

Input

File access
variable ID of
the file with
the pending I/O.

Address of a
name to be used
as the name of
the semaphore to
wait on.

completed A BOOLEAN, Address of a
boolean.

errCode A $ERRCODE

) A u$Feather;

Chapter 9.

Address of a
$ERRCODE.

SCHEDULER CUFS

Output

TRUE if the
pending I/O
completed. FALSE
if tickled
before the I/O
completed.
Note: May be
TRUE even if the
thread was
tickled.

Error code if
$SECWAIT error.
$CODE field is 0
if no error.

Returns the
address of a
feather if this
thread was
tickled while
asleep.

9 - 5 3

$RMSIDLE

$waitSinglelO function (continued)

9-54

Example:

function (pfdb A $PFDB) :=
VAR feather A u$Feather;

STATIC name $String $str('Readl');
completed BOOLEAN;
errCode $ERRCODE;

IF $SECR(pfdb, FALSE) && D$CFLAG THEN $ERMSG();
feather := $waitSingleIO(pfdbA.$PFVID,

&name,
&completed,
&errCode);

IF feather -= NIL THEN
display('I was tickled awake.');

IF completed THEN {
display('The I/O completed. ');
checkForIOError(&errCode);
} ;

DASL USER'S GUIDE 50807-01

$RMSIDLE

$yield function

$yield causes the thread to give up execlltion control if
there are any threads with higher or equal priorities ready
to execute. Otherwise, any threads that were waiting on an
I/O are checked to see if their I/O completed. If so, the
first thread found is placed on the ready queue and obtains
execution control if it has a higher or equal priority
than the current thread.

Function Syntax Input Output

Syield (
) 1\ uSFeather; Returns the address of a

feather if this thread was
tickled while asleep. NIL

Example:

function () : =

(

not tickled.

IF $yield() -= NIL THEN
display('I was tickled awake.')

ELSE display('The scheduler awakened me. ');

Chapter 9. SCHEDULER CUFS 9-55

if

$RMSIDLE

u$deadLock function

9-56

u$deadLock is a function that must be declared by you. It
is called if the idle thread obtains execution control and
finds

• no threads waiting for an I/O, or
• an I/o that was issued without informing the idle thread

by calling $waitSingleIO or $doneIO.

Note: This function must be declared "ENTRY" and should
not return to the calling function.

Function Syntax Input

u$deadLock (
favld $Favld NIL if there are no threads

waiting on an I/O. Otherwise,
file access variable ID of a
file that has a pending 1/0
that the idle thread was not
aware of.

) ;

Example:

ENTRY u$deadLock /* (favId $FavId) */
(

a

Output

IF EavId = NIL THEN display('Scheduler DeadLock')
ELSE n$format(n$WSOut, 'Unknown FAV " D(favId));

$ERROR();
} ;

DASL USER'S GUIDE 50807-01

$RMSIDLE

$RMSIDLE low level functions

The functions $doneIO, $waitIO, $checkIO, and $stopIO are
all low level functions that are called by the $RMSIDLE
functions described on the previous pages. In most cases,
these functions, along with the $IOMsg type, can be ignored
unless finer control is needed.

Low level $RMSIDLE types and functions

Use the following table to select a $RMSIDLE type or
function.

If you want to ... then see . ..

declare an I/O message descriptor $IOMsg.

inform the scheduler of an I/O SdoneIO.

wait for an I/O to complete $waitIO.

check for completed I/Os $checkIO.

terminate an I/O request $stopIO.

Chapter 9. SCHEDULER, CUFS 9-57

page

9-58

9-59

9-60

9-62

9-63

$RMSIDLE

$IOMsg type

$IOMsg is defined as follows:

Type Definition Description

TYPOEF $IOMsg STRUCT {

msg $Message; Message used to describe this
pending I/O.

compIO 1\ $Sema4; Semaphore to signal once the
I/O has completed.

favId $FavId; File access variable 10 of the
file with the pending I/O.

errCode $ERRCOOE; Resulting $SECWAIT error if an
I/O error occurred.

} ;

I

------------------------------------\

9-58 OASL USER'S GUIDE 50807-01

$RMSIDLE

$donelO function

$donelO informs the idle thread that an I/O has been done.

Function Syntax Input

$doneIO (
msg A $IOMsg Initialized I/O message. The

message name field. the compIO
field. and the favld field must
be initialized.

) ;

Example:

function (pfdb A $PFDB) :=
VAR message $IOMsg;

STATIC name $String $str('Readl');
compIO $Sema4;

Output

IF $SECR(pfdb. FALSE) && D$CFLAG THEN $ERMSG();
message.msg.name := name;
message.compIO := &compIO;
message.favld := pfdbA.$PFVID;
$doneIO(&message);

Chapter 9. SCHEDULER CUFS 9-59

$RMSIDLE

$waitlO function

9-60

$waitIO causes the thread to give up execution control
until the I/o announced by the $donelO completes.

Function Syntax Input Output

$waitIO (
compIO /\ $Sema4, Address of the

semaphore to
wait on.

msgPtr /\/\ $IOMsg Address of a Points to the I/O
pointer to an message sent by
I/O message. the sending

thread. NIL if
tickled before
receiving the
message.
Note: This pointer
can point to a
message even if
the thread was
tickled.

) /\ u$Feather; Returns the
address of a
feather if this
thread was tickled
while asleep. NIL
if not tickled.

DASL USER'S GUIDE 50807-01

$RMSIDLE

$waitlO function (continued)

Example:

function (pfdb A $PFDB) :=

VAR message $IOMsg;
STATIC name $String $str('Readl');
compIO $Sema4;
pMsg A $IOMsg;

IF $SECR(pfdb, FALSE) && D$CFLAG THEN $ERMSG();
message.msg.name := name;
message.compIO := &compIO;
message.favld := pfdbA.$PFVID;
$doneIO(&message);
$initSema4(&compIO, &name);
IF $waitIO(&compIO, &pMsg) -= NIL THEN

displaY('I was tickled awake. ');
IF pMsg -= NIL THEN display('The I/O completed. ')

ELSE display('The I/O did not complete. ');

Chapter 9. SCHEDULER CUFS 9-61

$RMSIOLE

$checklO function

9-62

$checklO checks to see if there are any threads that are
waiting on an I/O to see if their I/O completed. If so,
the first thread found is placed on the ready queue.

Note: Unlike $yield, execution control is always retained.

Function Syntax Input

ScheckIO (
) BOOLEAN;

Example:

function () : =

(

Output

TRUE if a message was sent to a
thread to verify a completed
I/O. FALSE otherwise.

IF $checkIO() THEN
display('A thread completed an I/O. ');

DASL USER'S GUIDE 50807-01

$RMSIDLE

$stoplO function

$stoplO terminates an I/o request that a thread is currently
waiting to complete.

Note: A $waitlO must be issued to remove the waiting
message from the pending I/o queue.

Function Syntax Input Output

$stopIO (
favId UNSIGNED File access

variable ID of the
file to stop the
I/O.

) BOOLEAN; TRUE if the I/O
was stopped.
FALSE if favId
not waiting
I/O.

Example:

function (pfdb A $PFDB)
VAR pMsg A $IOMsg;
{

IF $stopIO(pfdbA.$PFVID) THEN
display('I/O was terminated. ');

$waitIO(&compIO, &pMsg);

Chapter 9. SCHEDULER CUFS 9-63

on
was
an

9-64 DASL USER'S GUIDE 50807-0l

Chapter 10.
MISCELLANEOUS CUFS
OVERVIEW

Description

The miscellaneous CUPs are an assortment of CUPs that
handle several programming problems that were not
covered in the previous chapters.

Selecting a CUF

Use the following table to determine which miscellaneous
CUPs are available.

If you want to ... then use . ..

examine RMS catalogs, subcata1ogs, ScatWalk.
and related files

perform mathematical computations SEUCLID.
on points and rectangles

parse tokens under DSIO with a SLEXER.
simple lexical scanner

pack or unpack environmental data SPATH.
into and from a character string

generate a random number (byte) SRNDBYTE.

Chapter 10. MISCELLANEOUS CUFS 10-1

page

10-2

10-6

10-17

10-32

10-36

$catWalk

Introduction

The $catWalk CUF is a single function CUF which examines
RMS catalogs, subcatalogs, and related files.

$catWalk types and functions

Use the following table to select a $catWalk type or
function.

IE you want to ... then see ...

declare a function as an entry point $CatFunc.
for $catWa1k.

examine a catalog $catWa1k.

page

10-3

10-4

10-2 DASL USER'S GUIDE 50807-01

$catWalk

$CatFunc type

Use the $CatFunc type to declare functions that will be
called by $catWalk with the information it obtains about the
catalogs, subcatalogs, and files.

$CatFunc is defined as follows:

Type Definition Description

TYPDEF $CatFunc (
env 1\ $ENVT. A pointer to an environment file

entry table.

file 1\ $FILEINFO A pointer to a file information
structure.

) ;

Example:

I~unction $CatFunc

Chapter 10. MISCELLANEOUS CUFS 10-3

$catWalk

$catWalk function

10-4

$ catWalk opens a catalog file and calls a specified function
with the result for each valid file in the catalog.

Note: If the function called by $catWalk in turn calls
$catWalk, the function must be declared RECURSIVE.

Function Syntax Input Output

$catWalk (
openMode BYTE, Open mode to open the

catalog file under.
Exam~le: $OMREAD

env A $ENVT, Address of the
environment entry
table for the catalog
file to examine.

fileName A $NAMET, Address of the name of
the catalog file to
examine.
Note: If the name is
blank, the environment
specified by enVA will
be used. Otherwise,
filenameA must be a
catalog under enVA.

func A $CatFunc Address of the Calls funcA with
function to be called the environment
by $catWalk with the entry table of
result. the current

catalog and the
filename.

) BOOLEAN; TRUE if $catWalk
completes with
no errors. FALSE
otherwise.

DASL USER'S GUIDE 50807-01

$catWalk

$catWalk function (continued)

Example: The following program displays all file and
catalog names in the :W environment and all subcatalogs
of the :W environment.

INCLUDE(D$INC)
INCLUDE(D$RMS)
INCLUDE(D$RMSIO)
INCLUDE(D$UFRENV)
INCLUDE(N$/DEFS)
INCLUDE($catWalk/DEFS)

walk (env A $ENVT, file A $NAMET);

RECURSIVE write $CatFunc :=
(

n$format(n$WSOut, S(fileA.$FILFNAM), 'I',
S(fileA.$FILFEXT), LN);

IF fileA.$FILFEXT = <$EXTT>, , THEN
walk(env, &fileA.$FILFNAM);

I;

RECURSIVE walk :=
(

IF - $catWalk($OMREAD, env, file, &write)
THEN $ERMSG();

I;

ENTRY MAIN () : =

VAR env AA $ENVT;
prior AA $ENVT;

IF $ENVLOC(&<$ENVN>'W', &env, &prior)
&& D$CFLAG THEN $ERMSG();

walk(priorA, &<$NAMET>");
I;

Chapter 10. MISCELLANEOUS CUFS 10-5

$EUCLID

Introduction

The $EUCLID CUF is a euclidean geometry package for
performing mathematical computations on points and
rectangles.

$EUCLID functions, types, and constants

Use the following table to select a $EUCLID function,
type, or constant.

If you want to ... then see ...

determine the minimum of two scalars $MIN.

determine the maximum of two scalars $MAX.

declare a point descriptor $POINT.

use one of the predefined points $EUCLID
point
constants.

add two points $PTADD.

subtract two points $PTSUB.

increment a point $PTINC.

decrement a point $PTDEC.

declare a rectangle descriptor $RECTANGLE.

determine an intersecting rectangle $INTERSECT.

determine an enclosing rectangle $ENCl.OSE.

page

10-7

10-8

10-9

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

10-6 DASL USER'S GUIDE 50807-01

$EUCLID

$MIN function

$MIN determines the minimum of any two DASL scalars.

Function Syntax Input

$MIN (
numl Scalar, First value

compared.

num2 Scalar Second value
compared.

) Scalar;

Example:

function (x, y INT) :=
{

Output

to be

to be

Minimum of the two
values.

n$format(n$WSOut, 'The minimum of x and y is '
D($MIN(x, y)), LN);

Chapter 10. MISCELLANEOUS CUFS 10-7

$EUCLID

$MAX function

10-8

$MAX determines the maximum of any two DASL scalars.

Function Syntax Input

$MAX (
numl Scalar, First value

compared.

num2 Scalar Second value
compared.

) Scalar;

Example:

function (x, y INT) :=
(

Output

to be

to be

Maximum of the two
values.

n$format(n$WSOut, 'The maximum of x and y is
D($MAX(x, y)), LN);

DASL USER'S GUIDE 50807-01

$EUCLID

$POINT type

$POINT is defined as follows:

Type Definition Description

TYPDEF SPOINT STRUCT {

x INT; x axis coordinate.

y INT; Y axis coordinate.
I;

$EUCLID point constants

The following constants are declared as part of the
$EUCLID CUF and are available for you to use.

Constant Definition Description

SPTZERO SPOINT {O, 01 ; Point with (0,0)

SPTONE SPOINT {i, 1I; Point with (1. 1)

SPTTWO SPOINT {2, 21 ; Point with (2,2)

coordinates.

coordinates.

coordinates.

Chapter 10. MISCELLANEOUS CUFS 10-9

$EUCLID

$PTADD function

10-10

$PTADD adds the x, y coordinates of one point to another.
a:= b + c;

Function Syntax Input Output

SPTADD (
a /\ SPOINT, Address of a Stores the result

point descriptor. of the addition
between b/\ and c/\.

b A SPOINT, Address of the
first point to add.

c /\ SPOINT Address of the
second point to
add.

) /\ SPOINT; Pointer to the
input variable

Example:

function (pPointl, pPoint2 /\ SPOINT)
VAR total SPOINT;
{

$PTADD(&total, pPointl, pPoint2);

a.

DASL USER'S GUIDE 50807-01

$EUCLID

$PTSUB function

$PTSUB subtracts the x, y coordinates of one point from
another. a:= b - c;

Function Syntax Input Output

SPTSUB (
a A SPOINT, Address of a Stores the result

point descriptor. of the subtraction
between bA and CA.

b A SPOINT, Address of the
first point to
subtract.

c A SPOINT Address of the
second point to
subtract.

) A SPOINT; Pointer to the
input variable

Example:

function (pPointl, pPoint2 A SPOINT)
VAR total SPOINT;
(

$PTSUB(&total, pPointl, pPoint2);

Chapter 10. MISCELLANEOUS CUFS 10-11

a.

$EUCLID

$PTINC function

10-12

$PTINC increments the x, y coordinates of one point by
another. a + = b;

Function Syntax Input Output

$PTINC (
a A $POINT, Address of the Stores the result

point to increment. of the addition
between aA and bA.

b 1\ $POINT Address of the
amount to increment
the point by.

) A $POINT; Pointer to the
input variable a.

Example:

function (pPointl, pPoint2 A $POINT)
(

$PTINC(pPointl, pPoint2);

DASL USER'S GUIDE 50807-01

$EUCLID

$PTDEC function

$PTDEC decrements the x, y coordinates of one point by
another. a - = b;

Function Syntax Input Output

SPTDEC (
a A SPOINT, Address of the Stores the result

point to decrement. of the subtraction
between aA and bA.

b A SPOINT Address of the
amount to decrement
the point by.

) A SPOINT; Pointer to the
input variable

Example:

function (pPointl, pPoint2 A SPOINT)
{

$PTDEC(pPointl, pPoint2);

Chapter 10. MISCELLANEOUS CUFS 10-13

a.

$EUCLID

$RECT ANGLE type

$RECTANGLE is defined as follows:
(

Type Definition Description

TYPDEF $RECTANGLE STRUCT {
P $POINT; The bottom left x, y

coordinate of the rectangle.

size $POINT; Length of the rectangle
along the x and y axis.

} ;

10-14 DASL USER'S GUIDE 50807-01

$EUCLID

$INTERSECT function

$INTERSECT determines if there is a common rectangle
shared by two rectangles.

Function Syntax Input Output

$INTERSECT (
a A $RECTANGLE. Address of a Stores the values

rectangle of the common
descriptor. rectangle between

bA and CA.

b A $RECTANGLE. Address of the
first rectangle to
check for an
intersection.

c A $RECTANGLE Address of the
other rectangle to
check for an
intersection.

) BOOLEAN; TRUE if there is
a common
rectangle. FALSE
otherwise.

Example:

function (pRecl. pRec2 A $RECTANGLE)
VAR interRect $RECTANGLE;
(

IF $INTERSECT(&interRect. pRecl. pRec2) THEN
commonRectangle(&interRect);

Chapter 10. MISCELLANEOUS CUFS 10-15

$EUCLID

$ENCLOSE function

10-16

$ENCLOSE generates the coordinates for a rectangle that
encloses two other rectangles.

Function Syntax Input Output

$ENCLOSE (
a A $RECTANGLE, Address of a Stores the values

rectangle of the rectangle
descriptor. that encloses bA

and CA.

b A $RECTANGLE. Address of the
first rectangle to
enclose.

c A $RECTANGLE Address of the
second rectangle
to enclose.

) ;

Example:

function (pRecl. pRec2 A SRECTANGLE)
VAR encloseRect SRECTANGLE;
(

$ENCLOSE(&encloseRect. pRecl, pRec2);

DASL USER'S GUIDE 50807-01

(
I
\

$LEXER

Introduction

The $LEXER CUF is a simple token parsing or lexical
scanning package that works under 0$10.

Lexical scanners are most commonly used in compilers
where certain characters or grouping of characters, called
tokens, are expected in a certain arrangement.

$LEXER definition file

The $LEXER definition file must be included after the
$STRING definition file.

Example: Your OASL include directives might look
like this:

INCLUDE(DSINC)
INCLUDE(DSRMS)
INCLUDE($STRING/DEFS)
INCLUDE($LEXER/DEFS)

: (rest of the program)

Chapter 10. MISCELLANEOUS CUFS 10-17

$LEXER

$LEXER types, variables, and functions

Use the following table to select a $LEXER type, variable,
or function.

If you want to ... then see . ..

declare a character class $LexClass.
descriptor

use a token type $LexType.

examine a $LEXER variable $LEXER
variables.

initialize the character classes $1exClasslnit.

reclassify a range of characters $lexClassify.

reclassify a string of $lexStrClassify.
characters

initialize the lexical scanner $lexlnit .

get the next token $lexNext.

compare token with a string $lexEqual.

terminate if token -= string $lexTaste.

get next token if token = string $lexEat.

get next token if token = string $lexChew.
otherwise terminate

display error and terminate if $lexError.
fatal

page

10-19

10-20

10-21

10-22

10-23

10-24

10-25

10-26

10-27

10-28

10-29

10-30

10-31

10-18 DASL USER'S GUIDE 50807-01

$LEXER

$LexClass type

Every character the lexical scanner parses must be
classified to be one of the seven lexical scanner character
classes, $LexClass.

$LexClass is defined as follows:

Type Definition Description

TYPDEF $LexClass ENUM (
$lexClassAlpha, Alphabetic characters.

$lexC lassDigit, Numeric characters.

$lexClassSpace, Space and token division
characters.

SlexClassQuote, Quotation marks.

SlexClassSyntax, Separators, delimiters, and
other syntactic characters.

SlexClassError, Invalid characters.

SlexClassEnd Lexical termination characters.
) ;

Chapter 10. MISCELLANEOUS CUFS 10-19

$LEXER

$LexTypetype

10-20

The character classes are used by the lexical scanner to
identify the type of the current token. There are seven
lexical scanner token types, $ LexType.

$LexType is defined as follows:

Type Definition Description

TYPDEF $LexType ENUM (
$lexTypeNil. No current token type.

Note: This value is only used
internally by the lexical
scanner.

$lexTypeld. The first character in the
current token is a
$lexC1assA1pha.

$lexTypeNum. The first character in the
current token is a
$lexC1assDigit.

$lexTypeStr. The current token iS,contained
within $lexC1assQuotes.

$lexTypeSyntax. The current single character
token is a $lexC1assSyntax.

$lexTypeEnd The current single character
token is a $lexC1assEnd.

) ;

DASL USER'S GUIDE 50807-01

$LEXER

$LEXER variables

The following variables are declared as part of the $LEXER
CUF and are available for you to examine.

Variable Definition Description

SlexLineNo UNSIGNED; Current input text file line
number.

SlexErrFlag BOOLEAN; TRUE if the lexical scanner error
function, SlexError, has been
called. FALSE otherwise.

$curLexType SLexType; Lexical scanner type of the
current token.

ScurLexVal $String; Current token.
Note: This value is meaningful --
only if the token is contained on
one line.

ScurLexNum LONG; Numeric value of the token.
Note: This value is meaningful
only if the lexical scanner type
of the current token is
SlexTypeNum.

ScurLexStr SString; String value of the token.
Note: This value is meaningful
only if the lexical scanner type
of the current token is
$lexTypeStr.

Chapter 10. MISCELLANEOUS CUFS 10 - 21

$LEXER

$lexClasslnit function

10-22

$,lexClass[nit sets the character classifications to the
predescribed default values.

Function Syntax Input Output

$lexClasslnit (
) ;

The default character classifications are:

$LexClass Character Default
Classifications Characters

$lexClassAlpha A .. Z
a .. Z

$

$lexClassDigit O .. 9

$lexClassSpace Space
$LEOR

$lexClassQuote ,

"

$lexClassEnd $LEOF

$lexClassError All other
characters

$lexClassSyntax No defaults

Example:

I function () : =

($lexClassInit();

DASL USER'S GUIDE 50807-01

$LEXER

$lexClassify function

$lexClassify reclassifies a range of characters.

Note: This function should not be used to

• reclassify $LEOR, $LEOF or the two quotation marks, or
• classify any other characters as $lexClassQuote.

Function Syntax

$lexClassify (
from CHAR,

to CHAR,

lexClass $LexClass

) ;

Example:

function () : =

{

$lexClasslnit();

Input

Beginning character to
reclassify.

Ending character to
reclassify.

Character classification
to assign to the
characters.

$lexClassify('a', 'z', $lexClassError);

Output

Chapter 10. MISCELLANEOUS CUFS 10-23

$LEXER

$lexStrClassify function

10-24

$lexStrClassify reclassifies all the characters in a string.

Note: This function should not be used to

• reclassify $LEOR, $LEOF or the two quotation marks, or
• classify any other characters as $lexClassQuote.

Function Syntax

$lexStrClassify (
str [any size] CHAR,

lexClass $LexClass

) ;

Example:

function () :=
(

$lexClasslnit();

Input

Any character string.

Character
classification to
assign to the
characters.

Output

$lexStrClassify('+-*I', $lexClassSyntax);

DASL USER'S GUIDE 50807-01

(

$LEXER

$Iexlnit function

$Iexlnit initializes the lexical scanner with the input and
error files and scans off the first token.

Note: You must call $lexClasslnit prior to calling this
function.

Function Syntax Input

$lexlnit (
inFile A O$FILET. Pointer to an open 0$10

text file to read.

errFile A O$FILET Pointer to an open 0$10

) ;

Example:

function () : =

{

text file to write.

$lexClasslnit() ;
$lexInit(&D$IN. &D$OUT);

Output

Chapter 10. MISCELLANEOUS CUFS 10-25

$LEXER

$lexNext function

10-26

$lexNext obtains the next token from the input file.

Function Syntax Input

SlexNext (
) SLexType;

Example:

function () : =
{

Output

The type of the token
from the input file.

LOOP WHILE $lexNext() - $lexTypeId;

DASL USER'S GUIDE

obtained

50807-01

$LEXER

$lexEqual function

$lexEqual compares a string to the current token for
equality.

Function Syntax

SlexEqual (
str [any sizel

) BOOLEAN;

Example:

function () : =

{

CHAR

Input Output

String to
compare the
current token
against.

TRUE if the
string and
are equal.
otherwise.

IF SlexNext() = SlexTypeId
& $lexEqual('GOOD') THEN goodToken();

Chapter 10. MISCELLANEOUS CUFS 10 - 27

token
FALSE

$LEXER

$lexTaste function

10-28

$lexTaste terminates the program if a string and the
current token do not match.

Function Syntax Input

$lexTaste (
str [any size] CHAR String to compare the

current token against.
) ;

Example:

function () : =

$lexTaste('PASSWORD');

DASL USER'S GUIDE

Output

50807-01

$LEXER

$lexEat function

$lexEat obtains the next token if a string and the current
token are equal.

Function Syntax

SlexEat (
str [any size]

) BOOLEAN;

Example:

function () :=
(

Input Output

CHAR String to
compare the
current token
against.

TRUE if the
string and
are equal.
otherwise.

IF - $lexEat('PASSWORD') THEN
SlexError('Password expected', TRUE);

Chapter 10. MISCELLANEOUS CUFS 10-29

token
FALSE

$LEXER

$lexChew function

10-30

$lexChew terminates the program if a string is not equal to
the current token. Otherwise, the next token is obtained.

Function Syntax

$lexChew (
str [any size]

) ;

Example:

function () : =
{

Input

CHAR String to compare the
current token against.

$lexChew('PASSWORD');

Output

DASL USER'S GUIDE 50807-01

$LEXER

$lexError function

$lexError displays an error message and terminates on
fatal errors.

Function Syntax

SlexError (
str [any size]

fatal BOOLEAN

) ;

Example:

function () : =

{

Input

CHAR, Error message to
display.

Program terminates if
TRUE.

IF - SlexEat('PASSWORD') THEN {
$lexError('Password expected', TRUE);

Output

Chapter 10. MISCELLANEOUS CUFS 10 - 31

$PATH

Introduction

The $PATH CUF packs and unpacks environment data
strings that are used by the environment handling routines
$ENVINS, $ENVLOC, $catWalk, etc ...

$PATH types and functions

Use the following table to select a $PATH type or function.

If you want to ... then see ...

declare an environment descriptor SPath.

pack environment data into a string $pathPack.

unpack environment data $pathUnPack.

page

10-33

10-34

10-35

10-32 DASL USER'S GUIDE 50807-01

$PATH

$Path type

$Path is defined as follows:

Type Definition Description

TYPDEF SPath STRUCT {

net $NAMET; Name of the ARC network
for the environment.

node $NAMET; Name of the node
for the environment.

res $NAMET; Name of the resource
for the environment.

hsi $HSI; Hierarchical structure
information for the
environment.
Note: Information is in
standard text format.

name Ext $NAMEEXT; File name in the
environment.
Note: This field is not
used by either packing
or unpacking functions.

nPass BYTE; Number of passwords
for the environment.

passwords I$MAXNPWl $PACKPW; Packed passwords
for the environment.

I;

Chapter 10. MISCELLANEOUS CUFS 10-33

$PATH

$pathPack function

10-34

$pathPack takes information in the environment path
descriptor and packs it into an environment data string.

Function Syntax Input Output

$pathPack (
path A SPath, Address of the

environment path
descriptor to
pack.

envString A CHAR Address of a Initialized
character in a environment
character string. string.

) ;

Example:

function () : =

VAR P SPath;
ptr A CHAR;
STATIC password $UNPACKPW
envDataString [2561 CHAR;

'PASSWORD' ;

p.net 'GENESIS
p.node 'APD FPO
p.res 'APDO
p.hsi 'UTILITY
p.nPass := 1;

, ;
, . , , . ,

IF $PAKPW(&password, &p.passwords[01,
&& D$CFLAG THEN $ERMSG();

$pathPack(&p, &envDataString£OJ);

&ptr)

, . ,

data

DASL USER'S GUIDE 50807-01

$PATH

$pathUnPack function

$pathUnPack takes information in the environment data
string and unpacks it into a environment path descriptor.

Function Syntax Input

SpathUnPack (
envString 1\ CHAR, Address of the

the first
character in the
environment data
string to unpack.

path 1\ SPath Address of an
environment path
descriptor.

) ;

Example:

function (pEnv 1\ CHAR)
VAR P SPath;
{

$pathUnPack(pEnv, &p);

Output

Ini tialized
environment
descriptor.

Chapter 10. MISCELLANEOUS CUFS 10-35

path

$RNDBYTE

Introduction

The D$RNDBYTE is a single function CUF that generates a
random number (byte).

D$RNDBYTE function

10-36

D$RNDBYTE generates a random byte.

Function Syntax Input

D$RNDBYTE (
) BYTE;

Example:

function () :;
VAR rand BYTE;
{

Output

Generated random number.
Note: The generator always
starts from the same state.

rand := D$RNDBYTE();

DASL USER'S GUIDE 50807-01

