
DATAPOINT

RMS
Interactive Software

Design Practices

61695

DATAPOINT

RMS
Interactive Software

Design Practices

61695

Copyright© 1984 by DATAPOINT Corporation. All rights reserved. The "D" logo, DATA­
POINT, the Integrated Electronic Office, and ARC are trademarks of DATAPOINT Corporation
registered in the U.S. Patent and Trademark Office. RMS, PRO-VISTA, VISTA-GUIDE, VISTA­
VIEW, VISTA-SCRIPT, and VISTA-MAIL are trademarks of DATAPOINT Corporation.

System features and technical details are subject to change without notice.

Copyright© 1984 by DATAPOINT Corporation. All rights reserved. The "D" logo, DATA­
POINT, the Integrated Electronic Office, and ARC are trademarks of DATAPOINT Corporation
registered in the U.S. Patent and Trademark Office. RMS, PRO-VISTA, VISTA-GUIDE, VISTA­
VIEW, VISTA-SCRIPT, and VISTA-MAIL are trademarks of DATAPOINT Corporation.

System features and technical details are subject to change without notice.

Preface

This document presents a set of interactive software
design standards that apply to all application software
developed to run under the RMS ™ operating system,
version 2 or later. The standards have been developed
in consultation with software designers and
architects, system programmers, development
managers, customer support representatives, product
marketing personnel, and corporate management.

This document is intended for system programmers
writing software for DATAPOINT@. It assumes a
working knowledge of the RMS operating system and
the DATAPOINT software development
environment.

61695-01 SOFfWARE DESIGN PRACTICES

Preface

This document presents a set of interactive software
design standards that apply to all application software
developed to run under the RMS ™ operating system,
version 2 or later. The standards have been developed
in consultation with software designers and
architects, system programmers, development
managers, customer support representatives, product
marketing personnel, and corporate management.

This document is intended for system programmers
writing software for DATAPOINT@. It assumes a
working knowledge of the RMS operating system and
the DATAPOINT software development
environment.

61695-01 SOFfWARE DESIGN PRACTICES

NOTES

11 SOFfWARE DESIGN PRACTICES 61695-01

NOTES

11 SOFfWARE DESIGN PRACTICES 61695-01

CONTENTS

CHAPTER 1. INTERACTIVE SOFTWARE AT
DATAPOINT 1,.1
The Interactive Model 1-2

Four Interactive Techniques 1-2
Benefits of Software Standards 1-4
Software Design Objectives 1-6

Support Real-Time Interaction 1-6
Control the User's Point of View 1-7
Avoid the Teletype I/O Model 1-8
Create a Single Interactive Context 1-9
Avoid Hard Mode Changes 1-11
Optimize Program Performance 1-12

CHAPTER 2. GENERAL STANDARDS 2-1
The RMS Dashboard 2-3

The Banner Line 2-4
The Frame 2-4
The Option/Prompt Line 2-7
The Help/Response Window 2-7
The Continuation Bar 2-7
Transitions Between Dashboard Programs .2-11
The Alternate RMS Dashboard 2-13

The Cursor 2-13
Indicates Current Program State 2-14
Indicates User's Focal Point 2-14
Indicates VISTA-VIEW Focal Point 2-14

The RMS 2 Keyboard 2-15
Keys on the Keyboard 2-18

Keystroke Recording 2-22
Synchronous Recording 2-23
Log File Housekeeping 2-24

CHAPTER 3. THE MILLER COLUMN
TECHNIQUE•...... 3-1

61695-01 SOFfWARE DESIGN PRACTICES iii

CONTENTS

CHAPTER 1. INTERACTIVE SOFTWARE AT
DATAPOINT 1,.1
The Interactive Model 1-2

Four Interactive Techniques 1-2
Benefits of Software Standards 1-4
Software Design Objectives 1-6

Support Real-Time Interaction 1-6
Control the User's Point of View 1-7
Avoid the Teletype I/O Model 1-8
Create a Single Interactive Context 1-9
Avoid Hard Mode Changes 1-11
Optimize Program Performance 1-12

CHAPTER 2. GENERAL STANDARDS 2-1
The RMS Dashboard 2-3

The Banner Line 2-4
The Frame 2-4
The Option/Prompt Line 2-7
The Help/Response Window 2-7
The Continuation Bar 2-7
Transitions Between Dashboard Programs .2-11
The Alternate RMS Dashboard 2-13

The Cursor 2-13
Indicates Current Program State 2-14
Indicates User's Focal Point 2-14
Indicates VISTA-VIEW Focal Point 2-14

The RMS 2 Keyboard 2-15
Keys on the Keyboard 2-18

Keystroke Recording 2-22
Synchronous Recording 2-23
Log File Housekeeping 2-24

CHAPTER 3. THE MILLER COLUMN
TECHNIQUE•...... 3-1

61695-01 SOFfWARE DESIGN PRACTICES iii

General Principles 3-3
Benefits of the Miller Column Technique 3-7

What Miller Columns Look Like 3-8
Miller Columns in the RMS Dashboard 3-8
Dimensions of the Miller Column Display ... 3-9
Item Padding Spaces 3-9
Inverse Video 3-9
Cursor Behavior 3-9
The Icon 3-9

Moving Around in Miller Columns 3-11
Left Arrow Key 3-11
Right Arrow Key 3-11
Up Arrow Key 3-12
Down Arrow Key 3-12
Top Left Corner Key 3-12
Bottom Left Corner Key 3-12
Top Right Corner Key 3-13
Bottom Right Corner Key 3-13
Screen Update Timeout 3-13
Inverse Video During Scrolling 3-13

Editing Operations 3-15
Insert 3-15
InsertLeft 3-16
InsertRight 3-17
Remove 3-18
Copy 3-20
Recall 3-20
Discard 3-21
Rename 3-22
Merge 3-23

Application-Dependent Extensions 3-24

CHAPTER 4. THE RING MENU TECHNIQUE ... 4-1
General Principles 4-2

The Purpose of Ring Menus 4-2
What a Ring Menu Looks Like 4-4

Option Strings 4-4
Option String Padding Spaces 4-4
Bringing Up a Ring Menu 4-4
The Current Option 4-5
Spacing Between Option Strings 4-5

Ring Menu Operations 4-6
Mode Switching 4-6

IV SOFTWARE DESIGN PRACTICES 61695-01

General Principles 3-3
Benefits of the Miller Column Technique 3-7

What Miller Columns Look Like 3-8
Miller Columns in the RMS Dashboard 3-8
Dimensions of the Miller Column Display ... 3-9
Item Padding Spaces 3-9
Inverse Video 3-9
Cursor Behavior 3-9
The Icon 3-9

Moving Around in Miller Columns 3-11
Left Arrow Key 3-11
Right Arrow Key 3-11
Up Arrow Key 3-12
Down Arrow Key 3-12
Top Left Corner Key 3-12
Bottom Left Corner Key 3-12
Top Right Corner Key 3-13
Bottom Right Corner Key 3-13
Screen Update Timeout 3-13
Inverse Video During Scrolling 3-13

Editing Operations 3-15
Insert 3-15
InsertLeft 3-16
InsertRight 3-17
Remove 3-18
Copy 3-20
Recall 3-20
Discard 3-21
Rename 3-22
Merge 3-23

Application-Dependent Extensions 3-24

CHAPTER 4. THE RING MENU TECHNIQUE ... 4-1
General Principles 4-2

The Purpose of Ring Menus 4-2
What a Ring Menu Looks Like 4-4

Option Strings 4-4
Option String Padding Spaces 4-4
Bringing Up a Ring Menu 4-4
The Current Option 4-5
Spacing Between Option Strings 4-5

Ring Menu Operations 4-6
Mode Switching 4-6

IV SOFTWARE DESIGN PRACTICES 61695-01

Moving Around in a Ring Menu 4-8
Nested Ring Menus 4-10

CHAPTER 5. THE FIELD KEVIN TECHNIQUE .. 5-1
General Principles 5-2
Field Keyin Is Non-Destructive 5-3

Initial Field Display 5-3
Field Editing 5-3
Additional Keys 5-4

CHAPTER 6. THE FREEFORM TEXT EDITING
TECHNIQUE 6-1
General Principles 6-2
Moving Around in Freeform Text 6-3

Up and Down Arrow Keys 6-3
Left and Right Arrow Keys 6-3
Bottom Left and Bottom Right Corner Keys . 6-3
Top Left and Top Right Corner Keys 6-4
Window Key 6-4
The Scrolling Technique 6-6

Editing Keys 6-8

CHAPTER 7. TECHNICAL CONSIDERATIONS AND
GUIDELINES 7-1
Program Performance 7-2

A New Context for Software Development .. 7-2
The Objective 7-3

International Transportability: The Standard
Workstation Font 7-5

61695-01 SOFfWARE DESIGN PRACTICES v

Moving Around in a Ring Menu 4-8
Nested Ring Menus 4-10

CHAPTER 5. THE FIELD KEVIN TECHNIQUE .. 5-1
General Principles 5-2
Field Keyin Is Non-Destructive 5-3

Initial Field Display 5-3
Field Editing 5-3
Additional Keys 5-4

CHAPTER 6. THE FREEFORM TEXT EDITING
TECHNIQUE 6-1
General Principles 6-2
Moving Around in Freeform Text 6-3

Up and Down Arrow Keys 6-3
Left and Right Arrow Keys 6-3
Bottom Left and Bottom Right Corner Keys . 6-3
Top Left and Top Right Corner Keys 6-4
Window Key 6-4
The Scrolling Technique 6-6

Editing Keys 6-8

CHAPTER 7. TECHNICAL CONSIDERATIONS AND
GUIDELINES 7-1
Program Performance 7-2

A New Context for Software Development .. 7-2
The Objective 7-3

International Transportability: The Standard
Workstation Font 7-5

61695-01 SOFfWARE DESIGN PRACTICES v

NOTES

vi SOFTWARE DESIGN PRACTICES 61695-01

NOTES

vi SOFTWARE DESIGN PRACTICES 61695-01

CHAPTER 1.
INTERACTIVE SOFTWARE
AT DATAPOINT

Contents
The Interactive Model 1-2

Four Interactive Techniques 1-2

Benefits of Software Standards 1-4

Software Design Objectives 1-6
Support Real-Time Interaction 1-6
Control the User's Point of View 1-7
Avoid the Teletype 1/0 Model 1-8
Create a Single Interactive Context 1-9
Avoid Hard Mode Changes 1-11
Optimize Program Performance 1-12

61695·01 SOFTWARE DESIGN PRACTICES 1-1

CHAPTER 1.
INTERACTIVE SOFTWARE
AT DATAPOINT

Contents
The Interactive Model 1-2

Four Interactive Techniques 1-2

Benefits of Software Standards 1-4

Software Design Objectives 1-6
Support Real-Time Interaction 1-6
Control the User's Point of View 1-7
Avoid the Teletype 1/0 Model 1-8
Create a Single Interactive Context 1-9
Avoid Hard Mode Changes 1-11
Optimize Program Performance 1-12

61695·01 SOFTWARE DESIGN PRACTICES 1-1

The Interactive Model

DATAPOINT has determined there is a need to
design and implement software that conforms to a set
of uniform standards. It has now developed a
generally applicable model for interactive software
behavior and is adopting this interactive model for
future RMS software.

A new keyboard has been designed to support the
model through certain dedicated keys and internal
processing. The command interpreter of the RMS
operating system has been modified to support the
model. It is now time to define the interactive model
formally so that RMS user software can be designed
and implemented in accord with its tenets.

This document describes the interactive model and
presents specific standards that will ensure its
successful implementation. You should use it at first
to learn about the interactive model. Later it will
serve as a reference manual containing the answers to
specific questions you encounter in designing and
implementing RMS user software.

Four Interactive Techniques

1-2

The interactive model consists of four distinct
techniques:

• The Miller Column Technique: The Miller
column technique allows programs to represent
hierarchically structured information in a
graphically interactive context. It is ideally suited
to programs that deal primarily with tree­
structured data.

• The Ring Menu Technique: The ring menu
technique is the standard method for allowing
users to specify commands and options relating to

SOFTWARE DESIGN PRACTICES 61695-01

The Interactive Model

DATAPOINT has determined there is a need to
design and implement software that conforms to a set
of uniform standards. It has now developed a
generally applicable model for interactive software
behavior and is adopting this interactive model for
future RMS software.

A new keyboard has been designed to support the
model through certain dedicated keys and internal
processing. The command interpreter of the RMS
operating system has been modified to support the
model. It is now time to define the interactive model
formally so that RMS user software can be designed
and implemented in accord with its tenets.

This document describes the interactive model and
presents specific standards that will ensure its
successful implementation. You should use it at first
to learn about the interactive model. Later it will
serve as a reference manual containing the answers to
specific questions you encounter in designing and
implementing RMS user software.

Four Interactive Techniques

1-2

The interactive model consists of four distinct
techniques:

• The Miller Column Technique: The Miller
column technique allows programs to represent
hierarchically structured information in a
graphically interactive context. It is ideally suited
to programs that deal primarily with tree­
structured data.

• The Ring Menu Technique: The ring menu
technique is the standard method for allowing
users to specify commands and options relating to

SOFTWARE DESIGN PRACTICES 61695-01

61695-01

the execution of a program. It integrates
effectively into Miller column, field keyin, and
freeform text editing applications.

• The Field Keyin Technique: Field keyin is
almost as old as data processing itself. However,
the interactive model defines some specific
behavior that all progams invovled with field
keyin must support.

• The Freeform Text Editing Technique:
Freeform text editing enables programs to collect
arbitrary streams of characters from a user. As
with field keyin, the interactive software model
defines some specific behavior that all programs
involved with freeform text editing must support.

These four techniques provide sufficient interactive
opportunities for all RMS-targeted software. This
document defines the keystroke processing and screen
animation that support each of these techniques and
clearly identifies opportunities for application-specific
extensions.

SOFfWARE DESIGN PRACTICES 1-3 61695-01

the execution of a program. It integrates
effectively into Miller column, field keyin, and
freeform text editing applications.

• The Field Keyin Technique: Field keyin is
almost as old as data processing itself. However,
the interactive model defines some specific
behavior that all progams invovled with field
keyin must support.

• The Freeform Text Editing Technique:
Freeform text editing enables programs to collect
arbitrary streams of characters from a user. As
with field keyin, the interactive software model
defines some specific behavior that all programs
involved with freeform text editing must support.

These four techniques provide sufficient interactive
opportunities for all RMS-targeted software. This
document defines the keystroke processing and screen
animation that support each of these techniques and
clearly identifies opportunities for application-specific
extensions.

SOFfWARE DESIGN PRACTICES 1-3

Benefits of Software Standards

1-4

The interactive software standards are part of an
overall effort to change the image that DATAPOINT
software conveys to the RMS user community. They
will provide tangible benefits to

• Users, who may have been confused when they
migrate between DATAPOINT software
environments and discover they have little or
nothing in common;

• Programmers, who have previously had
insufficient information about the direction in
which DATAPOINT wants its software
development efforts to move;

• Development managers, who can use the
standards in product design, business planning,
and evaluating programmers' efforts; and

• Certification personnel, who can evaluate
products based on their compliance with
established standards.

Users: Our primary objective is to place users
in an environment which encourages the natural
mechanisms of intuition and heuristic learning. It is
the responsibility of each interactive program to
achieve this objective. However, we cannot succeed
throughout our product line unless each program is
consistent not only within itself, but also with the
entire set of products that makes up a user's
interactive context. The software standards, then, are
the key to ensuring that we achieve our primary
objective.

After using just one program, users will understand
the basic rules for using any DATAPOINT software
product. They will not have to learn to cope with a
separate interactive environment for each type of
problem they use our software to solve.

SOFTWARE DESIGN PRACTICES 61695-01

Benefits of Software Standards

1-4

The interactive software standards are part of an
overall effort to change the image that DATAPOINT
software conveys to the RMS user community. They
will provide tangible benefits to

• Users, who may have been confused when they
migrate between DATAPOINT software
environments and discover they have little or
nothing in common;

• Programmers, who have previously had
insufficient information about the direction in
which DATAPOINT wants its software
development efforts to move;

• Development managers, who can use the
standards in product design, business planning,
and evaluating programmers' efforts; and

• Certification personnel, who can evaluate
products based on their compliance with
established standards.

Users: Our primary objective is to place users
in an environment which encourages the natural
mechanisms of intuition and heuristic learning. It is
the responsibility of each interactive program to
achieve this objective. However, we cannot succeed
throughout our product line unless each program is
consistent not only within itself, but also with the
entire set of products that makes up a user's
interactive context. The software standards, then, are
the key to ensuring that we achieve our primary
objective.

After using just one program, users will understand
the basic rules for using any DATAPOINT software
product. They will not have to learn to cope with a
separate interactive environment for each type of
problem they use our software to solve.

SOFTWARE DESIGN PRACTICES 61695-01

61695-01

Because basic operating procedures remain constant,
more sophisticated users will be able to learn
advanced techniques more easily. Even naive users
will develop greater interactive capabilities because
they are not constantly relearning the basics.

Software Developers: DATAPOINT programmers
and development managers will benefit too. The
interactive model and the standards contained in this
document provide measurable criteria by which to
evaluate new proejcts. You will be able to determine
objectively whether a product design is suitable for
the RMS software product line.

Program Performance: Program performance will
improve. Many current programs issue hundreds or
thousands of unnecessary characters for each user
keystroke. This document provides concrete
guidelines that will assist you in solving this and
similar performance problems.

New Product Integration: Software standards will
also result in a more graceful expansion of the
software product line. All new products will conform
to a uniform set of interactive standards. It will be
easier to integrate them into the product line.

VISTA-VIEW™ Compatibility: Standardized
software behavior paves the way for important new
products, most notably the VISTA-VIEW context
management system. Since the programs VISTA­
VIEW manages will behave similarly, integration
will be simplified.

International Transportability: In combination with
the new keyboard, the interactive model will enable
DATAPOINT to ensure international transportability
of our software. This will make us more competitive
in the international marketplace. A standardized
software environment will also make us more
competitive domestically.

Documentation and Training: Finally, we will find
it less time-consuming to document new products and
train customers in their operation.

SOFTWARE DESIGN PRACTICES 1-5 61695-01

Because basic operating procedures remain constant,
more sophisticated users will be able to learn
advanced techniques more easily. Even naive users
will develop greater interactive capabilities because
they are not constantly relearning the basics.

Software Developers: DATAPOINT programmers
and development managers will benefit too. The
interactive model and the standards contained in this
document provide measurable criteria by which to
evaluate new proejcts. You will be able to determine
objectively whether a product design is suitable for
the RMS software product line.

Program Performance: Program performance will
improve. Many current programs issue hundreds or
thousands of unnecessary characters for each user
keystroke. This document provides concrete
guidelines that will assist you in solving this and
similar performance problems.

New Product Integration: Software standards will
also result in a more graceful expansion of the
software product line. All new products will conform
to a uniform set of interactive standards. It will be
easier to integrate them into the product line.

VISTA-VIEW™ Compatibility: Standardized
software behavior paves the way for important new
products, most notably the VISTA-VIEW context
management system. Since the programs VISTA­
VIEW manages will behave similarly, integration
will be simplified.

International Transportability: In combination with
the new keyboard, the interactive model will enable
DATAPOINT to ensure international transportability
of our software. This will make us more competitive
in the international marketplace. A standardized
software environment will also make us more
competitive domestically.

Documentation and Training: Finally, we will find
it less time-consuming to document new products and
train customers in their operation.

SOFTWARE DESIGN PRACTICES 1-5

Software Design Objectives

DATAPOINT's interactive software model is based
on a coherent design strategy. It has been developed
in consultation with software, hardware, marketing,
customer support, and documentation personnel.

It is beyond the scope of this document to convey an
entire philosophy of software design. However, six
specific guidelines evolved while the interactive
model was being designed, and understanding these
guidelines is instrumental to understanding the
interactive model itself. This section explains these
guidelines; you may want to read it before you read
the specific standards contained in the rest of this
document.

Support Real-Time Interaction

1-6

Interactive software gives the user the impression
that he is directly manipulating the objects and
data with which the program is concerned.

To solve a problem with a batch or batch-like
facility, you generally must take at least two separate
steps. First, you must configure, or set up, the
problem in such a way that the batch facility can
understand it. Then you run the batch facility to solve
the problem as configured. Normally, you use such a
facility to derive a static result (like "657") or to
produce some particular effect (like printing a 300-
page report).

Interactive facilities, on the other hand, let you solve
problems dynamically. Rather than configuring a
problem, you can explore and modify an information
environment in real time.

SOFTWARE DESIGN PRACTICES 6\695-0\

Software Design Objectives

DATAPOINT's interactive software model is based
on a coherent design strategy. It has been developed
in consultation with software, hardware, marketing,
customer support, and documentation personnel.

It is beyond the scope of this document to convey an
entire philosophy of software design. However, six
specific guidelines evolved while the interactive
model was being designed, and understanding these
guidelines is instrumental to understanding the
interactive model itself. This section explains these
guidelines; you may want to read it before you read
the specific standards contained in the rest of this
document.

Support Real-Time Interaction

1-6

Interactive software gives the user the impression
that he is directly manipulating the objects and
data with which the program is concerned.

To solve a problem with a batch or batch-like
facility, you generally must take at least two separate
steps. First, you must configure, or set up, the
problem in such a way that the batch facility can
understand it. Then you run the batch facility to solve
the problem as configured. Normally, you use such a
facility to derive a static result (like "657") or to
produce some particular effect (like printing a 300-
page report).

Interactive facilities, on the other hand, let you solve
problems dynamically. Rather than configuring a
problem, you can explore and modify an information
environment in real time.

SOFTWARE DESIGN PRACTICES 6\695-0\

Comparing the RMS CONFIG and STARTUP
utilities is instructive. CONFIG is a batch facility.
When you invoke it, you must answer a series of
questions about the cofiguration file you want to
create. Then, when you think you have properly
constructed the configuration file, you copy it to the
RMSAUTOSTART catalog on your booted resource
and reboot your node. If you make an error in
constructing the configuration file, you may not
realize this until after you reboot, and you must then
go through the entire process again. You cannot, in
other words, reconfigure a node dynamically in real
time.

The STARTUP utility is far more interactive. Its
purpose is quite simple. Once you have dynamically
established the environments you require (using the
ENV or SCOUT utility), you run STARTUP to
record what you have done. What makes STARTUP
an interactive utility is that you "configure" your
startup file by building it dynamically rather than by
answering questions in a static environment, as with
CONFIG.

Control the User's Point of View

61695-01

Interactive software always deals with the user's
point of view.

Programs in a ready state always display a single
blinking system cursor. The cursor always appears at
the position which currently requires the user's
attention. Programs are free to change the user's
focal point but should do so only by changing the
position of the cursor. For example, as you enter text
in IEOS ™ the cursor moves along with the text as
you enter it. When you press the Command Key to
enter a command, the cursor moves to the command
line.

SOFTWARE DESIGN PRACTICES 1-7

Comparing the RMS CONFIG and STARTUP
utilities is instructive. CONFIG is a batch facility.
When you invoke it, you must answer a series of
questions about the cofiguration file you want to
create. Then, when you think you have properly
constructed the configuration file, you copy it to the
RMSAUTOSTART catalog on your booted resource
and reboot your node. If you make an error in
constructing the configuration file, you may not
realize this until after you reboot, and you must then
go through the entire process again. You cannot, in
other words, reconfigure a node dynamically in real
time.

The STARTUP utility is far more interactive. Its
purpose is quite simple. Once you have dynamically
established the environments you require (using the
ENV or SCOUT utility), you run STARTUP to
record what you have done. What makes STARTUP
an interactive utility is that you "configure" your
startup file by building it dynamically rather than by
answering questions in a static environment, as with
CONFIG.

Control the User's Point of View

61695-01

Interactive software always deals with the user's
point of view.

Programs in a ready state always display a single
blinking system cursor. The cursor always appears at
the position which currently requires the user's
attention. Programs are free to change the user's
focal point but should do so only by changing the
position of the cursor. For example, as you enter text
in IEOS ™ the cursor moves along with the text as
you enter it. When you press the Command Key to
enter a command, the cursor moves to the command
line.

SOFTWARE DESIGN PRACTICES 1-7

In screen dialogue, programs should deal with
directional input and output from the user's
perspective. For example, when a user presses the
Right Arrow Key, he indicates his desire to move his
perspective to the right. This is sometimes
accomplished by moving the cursor to the right, as in
EASL, OOZL, and WP; at other times, the cursor
remains in place while the text moves to the left
beneath it, as in VISTA-VIEW. Screen dialogue
must also refer to directions from the user's
perspective. For example, a help message should use
the term "scroll up" to indicate moving the user's
perspective up - and thus moving the text down.

Avoid the Teletype® I/O Model

1-8

Interactive software prefers full-screen, runtime­
adaptable screen interactions and avoids the
teletype model.

An interactive facility can use the workstation screen
in a variety of ways. Traditionally, DATAPOINT
software has used the teletype model for screen
interactions. The teletype model is fine for programs
whose interaction is entirely defined by a single
command line. However, the constraints it imposes
on software designers render it useless in designing
interactive software.

For example, the teletype model works well for the
ENV utility when you invoke it to obtain a listing of
your current environments. Inserting environments,
however, is not well suited to the teletype model;
SCOUT does a far better job of supporting
dynamically interactive environment management.

To replace the teletype model, DATAPOINT has
developed a general screen layout called the RMS
Dashboard. The Dashboard provides an ideal
backdrop for implementing the four techniques that

Teletype is a Trademark of Teletype Corp., Skokie, Ill.

SOFTWARE DESIGN PRACTICES 61695·01

In screen dialogue, programs should deal with
directional input and output from the user's
perspective. For example, when a user presses the
Right Arrow Key, he indicates his desire to move his
perspective to the right. This is sometimes
accomplished by moving the cursor to the right, as in
EASL, OOZL, and WP; at other times, the cursor
remains in place while the text moves to the left
beneath it, as in VISTA-VIEW. Screen dialogue
must also refer to directions from the user's
perspective. For example, a help message should use
the term "scroll up" to indicate moving the user's
perspective up - and thus moving the text down.

Avoid the Teletype® I/O Model

1-8

Interactive software prefers full-screen, runtime­
adaptable screen interactions and avoids the
teletype model.

An interactive facility can use the workstation screen
in a variety of ways. Traditionally, DATAPOINT
software has used the teletype model for screen
interactions. The teletype model is fine for programs
whose interaction is entirely defined by a single
command line. However, the constraints it imposes
on software designers render it useless in designing
interactive software.

For example, the teletype model works well for the
ENV utility when you invoke it to obtain a listing of
your current environments. Inserting environments,
however, is not well suited to the teletype model;
SCOUT does a far better job of supporting
dynamically interactive environment management.

To replace the teletype model, DATAPOINT has
developed a general screen layout called the RMS
Dashboard. The Dashboard provides an ideal
backdrop for implementing the four techniques that

Teletype is a Trademark of Teletype Corp., Skokie, Ill.

SOFTWARE DESIGN PRACTICES 61695·01

comprise the interactive model. It is discussed in
detail in Chapter 2, "General Standards."

Create a Single Interactive Context

61695-01

Interactive software incorporates its entire set of
capabilities into a single interactive context.

This guideline has two significant implications:

• A product that provides layered capabilities (to
serve different user groups, for example) should
do so within a single interactive context.

• A product that requires users to configure some
aspect of its operation should integrate the
configuration and operation modes in such a way
that they are procedurally indistinguishable.

Layered Capabilities: A single software product
often must serve several different groups of users.
These groups frequently have different backgrounds,
different levels of experience, and different needs.

In designing the VISTA-GUIDE™ component of the
RMS 2 command interpreter, for example, it was
necessary to serve both the naive end user, whose
computer experience is minimal and likely to stay
that way, and the RMS network administrator, whose
experience is substantial and likely to increase.
DATAPOINT determined it would answer the needs
of both groups in a single interactive context.
VISTA-GUIDE allows a network administrator to
provide VISTA-GUIDE users with different
capabilities by assigning security attributes to the
files that support a user's VISTA-GUIDE context.
However, these capabilities are implemented within a
single interactive framework.

Distinctions between different classes of users do not
justify developing separate interactive environments.

'SOFfWARE DESIGN PRACTICES 1-9

comprise the interactive model. It is discussed in
detail in Chapter 2, "General Standards."

Create a Single Interactive Context

61695-01

Interactive software incorporates its entire set of
capabilities into a single interactive context.

This guideline has two significant implications:

• A product that provides layered capabilities (to
serve different user groups, for example) should
do so within a single interactive context.

• A product that requires users to configure some
aspect of its operation should integrate the
configuration and operation modes in such a way
that they are procedurally indistinguishable.

Layered Capabilities: A single software product
often must serve several different groups of users.
These groups frequently have different backgrounds,
different levels of experience, and different needs.

In designing the VISTA-GUIDE™ component of the
RMS 2 command interpreter, for example, it was
necessary to serve both the naive end user, whose
computer experience is minimal and likely to stay
that way, and the RMS network administrator, whose
experience is substantial and likely to increase.
DATAPOINT determined it would answer the needs
of both groups in a single interactive context.
VISTA-GUIDE allows a network administrator to
provide VISTA-GUIDE users with different
capabilities by assigning security attributes to the
files that support a user's VISTA-GUIDE context.
However, these capabilities are implemented within a
single interactive framework.

Distinctions between different classes of users do not
justify developing separate interactive environments.

'SOFfWARE DESIGN PRACTICES 1-9

1-10

The filing clerk, the technical writer, and the editor
of the corporate newsletter must be equally at home
using DATAPOINT's word processing software. The
facilities that it provides for· high-end users cannot
negate the simplicity and ease of use for low-end
users. The best solution is to design the product to
support several layers of capabilities.

Integrating Configuration and Operation: Certain
desirable software features cannot be implemented
without requiring users to configure some aspect of
their operation. For example, a product cannot
support user-programmable function keys without
requiring the user to program them. We cannot
eliminate configuration altogether, but interactive
programs should allow users to configure an activity
by actually performing it.

Comparing the IEOS function keys with the EASL
. macro facility is instructive. Before using a function

key in lEOS, you must enter a syntactically correct
. command to configure the definition you wish to
assign to it. If you have used the IEOS function key
facility, you may have noticed that it can take several
minutes of experimentation to get the configuration
correct. The source of the difficulty lies in the fact
that the configuration process requires you to think in
stereo - tracking the keystrokes as you enter them
and the effect they would have if you were actually
entering them as instructions to IEOS rather than as
the configuration of a function key.

The EASL macro facility, on the other hand, allows
you to record a macro by actually performing the
activity you want the macro to perform. You tell
EASL that you want to record a macro, and EASL
begins to record your keystrokes. You then do the
activity you want to store as a macro and tell EASL
when you have finished. Although you have entered
a configuration, you have done so in exactly the same
way that you would have performed the activity
manually. Configuring a macro and performing the
task manually are procedurally indistinguishable.

SOFTWARE DESIGN PRACTICES 61695-01 1-10

The filing clerk, the technical writer, and the editor
of the corporate newsletter must be equally at home
using DATAPOINT's word processing software. The
facilities that it provides for· high-end users cannot
negate the simplicity and ease of use for low-end
users. The best solution is to design the product to
support several layers of capabilities.

Integrating Configuration and Operation: Certain
desirable software features cannot be implemented
without requiring users to configure some aspect of
their operation. For example, a product cannot
support user-programmable function keys without
requiring the user to program them. We cannot
eliminate configuration altogether, but interactive
programs should allow users to configure an activity
by actually performing it.

Comparing the IEOS function keys with the EASL
. macro facility is instructive. Before using a function

key in lEOS, you must enter a syntactically correct
. command to configure the definition you wish to
assign to it. If you have used the IEOS function key
facility, you may have noticed that it can take several
minutes of experimentation to get the configuration
correct. The source of the difficulty lies in the fact
that the configuration process requires you to think in
stereo - tracking the keystrokes as you enter them
and the effect they would have if you were actually
entering them as instructions to IEOS rather than as
the configuration of a function key.

The EASL macro facility, on the other hand, allows
you to record a macro by actually performing the
activity you want the macro to perform. You tell
EASL that you want to record a macro, and EASL
begins to record your keystrokes. You then do the
activity you want to store as a macro and tell EASL
when you have finished. Although you have entered
a configuration, you have done so in exactly the same
way that you would have performed the activity
manually. Configuring a macro and performing the
task manually are procedurally indistinguishable.

SOFTWARE DESIGN PRACTICES 61695-01

Avoid Hard Mode Changes

6\695-0\

Interactive software avoids hard mode changes
within an interactive context.

Simply defined, a mode is the set of capabilities a
program makes available to its users at any given
time. From time to time, programs may need to
change modes. For example, when you press the
Command Key in lEOS, you enter command mode
and cannot perform editing functions until you return
to editing mode by pressing the Return Key. In lEOS
pressing the Command Key places you in a hard
mode.

Programs that frequently change a user's set of
capabilities in non-obvious ways tend to be confusing
and disorienting. Programs should make any hard
mode change visible on the screen so that a user
knows his capabilities have changed. In lEOS, for
example, you know you are in command mode
because the cursor moves to the command line, and
you know you are in insert mode because the word
INSERT appears in inverse video on the information
line.

There are several standard hard modes. Ring menus,
for example, are a hard mode and are the standard
method for command and option specification. The
nature of command/option specification differs
intrinsically from normal program operations, and
ring menus enable command specification to function
the same way in all interactive products.

Generally, however, interactive software should
avoid hard mode changes within a single interactive
context. One way to accomplish this is to support key
chords. A key chord is simply a combination of keys
which, when depressed at the same time, issues a
single instruction to a program.

SOFTWARE DESIGN PRACTICES 1-11

Avoid Hard Mode Changes

6\695-0\

Interactive software avoids hard mode changes
within an interactive context.

Simply defined, a mode is the set of capabilities a
program makes available to its users at any given
time. From time to time, programs may need to
change modes. For example, when you press the
Command Key in lEOS, you enter command mode
and cannot perform editing functions until you return
to editing mode by pressing the Return Key. In lEOS
pressing the Command Key places you in a hard
mode.

Programs that frequently change a user's set of
capabilities in non-obvious ways tend to be confusing
and disorienting. Programs should make any hard
mode change visible on the screen so that a user
knows his capabilities have changed. In lEOS, for
example, you know you are in command mode
because the cursor moves to the command line, and
you know you are in insert mode because the word
INSERT appears in inverse video on the information
line.

There are several standard hard modes. Ring menus,
for example, are a hard mode and are the standard
method for command and option specification. The
nature of command/option specification differs
intrinsically from normal program operations, and
ring menus enable command specification to function
the same way in all interactive products.

Generally, however, interactive software should
avoid hard mode changes within a single interactive
context. One way to accomplish this is to support key
chords. A key chord is simply a combination of keys
which, when depressed at the same time, issues a
single instruction to a program.

SOFTWARE DESIGN PRACTICES 1-11

Key chords are already quite common. For example,
to type a .capital letter, you normally chord the Shift
Key with the letter you want. To associate a
command with an item in the VISTA-GUIDE
hierarchy, you chord the Insert and Command Keys;
to insert a help message, you chord the Insert and
Help Keys. Because key chords do not create a
program state that persists when you remove your
hands from the keyboard, they are considered soft
mode changes.

Because of DATAPOINT's new expanded function
keyboard, you can use key chords to accomplish the
same objectives you might previously have
implemented through hard mode changes. The new
keyboard will support key chords with any of the
keys. This will allow WP to implement express
cursor movement through chording the Window Key
with cursor movement keys, thus avoiding the
undesirable hard mode change.

Optimize Program Performance

1-12

Interactive software is optimized to enhance
program performance to the maximum extent
possible within current hardware limitations.

No one argues against the importance of program
performance, but it is frequently underestimated as a
factor in product acceptance. Simply stated,
unacceptable performance can ruin a product's
chance for success in the marketplace.

Program performance is increasingly important at
DATAPOINT because of architectural and software
changes that will impose significantly greater
overhead on user programs. VISTA-VIEW, CPF, and
ATTACH slow response time user programs.
Programs also perform less efficiently through a local
or dial-up serial port. And finally, this extra overhead

SOFTWARE DESIGN PRACTICES 61695-01

Key chords are already quite common. For example,
to type a .capital letter, you normally chord the Shift
Key with the letter you want. To associate a
command with an item in the VISTA-GUIDE
hierarchy, you chord the Insert and Command Keys;
to insert a help message, you chord the Insert and
Help Keys. Because key chords do not create a
program state that persists when you remove your
hands from the keyboard, they are considered soft
mode changes.

Because of DATAPOINT's new expanded function
keyboard, you can use key chords to accomplish the
same objectives you might previously have
implemented through hard mode changes. The new
keyboard will support key chords with any of the
keys. This will allow WP to implement express
cursor movement through chording the Window Key
with cursor movement keys, thus avoiding the
undesirable hard mode change.

Optimize Program Performance

1-12

Interactive software is optimized to enhance
program performance to the maximum extent
possible within current hardware limitations.

No one argues against the importance of program
performance, but it is frequently underestimated as a
factor in product acceptance. Simply stated,
unacceptable performance can ruin a product's
chance for success in the marketplace.

Program performance is increasingly important at
DATAPOINT because of architectural and software
changes that will impose significantly greater
overhead on user programs. VISTA-VIEW, CPF, and
ATTACH slow response time user programs.
Programs also perform less efficiently through a local
or dial-up serial port. And finally, this extra overhead

SOFTWARE DESIGN PRACTICES 61695-01

61695-01

often slows the performance of other workstations
when one abuses the processing power of the
computer. There are a number of techniques you can
use to optimize your programs to run well under such
circumstances. These techniques are discussed in
Chapter 7, "Technical Considerations and
Standards. "

SOFTWARE DESIGN PRACTICES 1-13 61695-01

often slows the performance of other workstations
when one abuses the processing power of the
computer. There are a number of techniques you can
use to optimize your programs to run well under such
circumstances. These techniques are discussed in
Chapter 7, "Technical Considerations and
Standards. "

SOFTWARE DESIGN PRACTICES 1-13

NOTES

1-14 SOFfWARE DESIGN PRACTICES 61695-01

NOTES

1-14 SOFfWARE DESIGN PRACTICES 61695-01

CHAPTER 2.
GENERAL STANDARDS

Contents
The RMS Dashboard 2-3

The Banner Line 2-4
The Frame 2-4
The Option/Prompt 2-7
The Help/Response Window 2-7
The Continuation Bar 2-7
Transitions Between Dashboard Programs . 2-11

Assuming Control from a Dashboard
Program 2-11

Assuming Control from a Non-Dashboard
Program 2-12

The Alternate RMS Dashboard 2-13

The Cursor 2-14
Indicates Current Program State 2-14
Indicates User's Focal Point 2-14
Indicates VISTA-VIEW Focal Point 2-14

The RMS 2 Keyboard 2-15
Keys on the Keyboard 2-18

Alphanumeric Keys 2-18
Alternate Shift Keys 2-18
Backspace Key 2-18
Command Key 2-19
Function Keys 2-19
Geometric Keys 2-19
Help Key 2-19
Numeric Keypad 2-20
Quit Key 2-20
Shift/Shift Lock Keys 2-21
System Key 2-21
Tab Key 2-21

61695-01 SOFTWARE DESIGN PRACTICES 2-1

CHAPTER 2.
GENERAL STANDARDS

Contents
The RMS Dashboard 2-3

The Banner Line 2-4
The Frame 2-4
The Option/Prompt 2-7
The Help/Response Window 2-7
The Continuation Bar 2-7
Transitions Between Dashboard Programs . 2-11

Assuming Control from a Dashboard
Program 2-11

Assuming Control from a Non-Dashboard
Program 2-12

The Alternate RMS Dashboard 2-13

The Cursor 2-14
Indicates Current Program State 2-14
Indicates User's Focal Point 2-14
Indicates VISTA-VIEW Focal Point 2-14

The RMS 2 Keyboard 2-15
Keys on the Keyboard 2-18

Alphanumeric Keys 2-18
Alternate Shift Keys 2-18
Backspace Key 2-18
Command Key 2-19
Function Keys 2-19
Geometric Keys 2-19
Help Key 2-19
Numeric Keypad 2-20
Quit Key 2-20
Shift/Shift Lock Keys 2-21
System Key 2-21
Tab Key 2-21

61695-01 SOFTWARE DESIGN PRACTICES 2-1

Undo Key 2-22
View Key 2-22

Keystroke Recording 2-23
Synchronous Recording 2-23
Log File Housekeeping 2-24

2-2 SOFfWARE DESIGN PRACTICES 6\695-0\

Undo Key 2-22
View Key 2-22

Keystroke Recording 2-23
Synchronous Recording 2-23
Log File Housekeeping 2-24

2-2 SOFfWARE DESIGN PRACTICES 6\695-0\

The RMS Dashboard

61695·01

The dashboard in your car has a number of meters,
lights, and gauges that provide you with information
you need in order to drive efficiently and safely. The
information always appears in the same place.
Imagine how confusing and annoying it would be if
the speedometer was in a different place each time
you got into your car.

The four techniques that comprise the interactive
model work together within a general screen layout
called the RMS Dashboard. The RMS Dashboard
provides the information you need in order to
"drive" your workstation. Its design ensures that the
same information always appears in the same place,
no matter what application you are using. This
consistency permits users to concentrate fully on the
work they are doing; they are not visually distracted
as they migrate from one program environment to
another.

The VISTA-GUIDE™ and VISTA-SCRIPT™
components of the RMS 3 command interpreter
exemplify the RMS Dashboard design. VISTA­
GUIDE and VISTA-SCRIPT will provide the only
framework through which a significant number of oUI
RMS users interact with the operating system. It is
therefore sensible to develop an RMS 2 software
environment based on the RMS Dashboard.

All future RMS software will work within the RMS
Dashboard (Figure 2-1). It consists of four screen
elements:

• the Banner Line,
• the Frame,
• the Option/Prompt Line, and
• the Help/Response Window.

Programs that are primarily concerned with freeform
text editing often have certain special requirements,

SOFTWARE DESIGN PRACTICES 2-3

The RMS Dashboard

61695·01

The dashboard in your car has a number of meters,
lights, and gauges that provide you with information
you need in order to drive efficiently and safely. The
information always appears in the same place.
Imagine how confusing and annoying it would be if
the speedometer was in a different place each time
you got into your car.

The four techniques that comprise the interactive
model work together within a general screen layout
called the RMS Dashboard. The RMS Dashboard
provides the information you need in order to
"drive" your workstation. Its design ensures that the
same information always appears in the same place,
no matter what application you are using. This
consistency permits users to concentrate fully on the
work they are doing; they are not visually distracted
as they migrate from one program environment to
another.

The VISTA-GUIDE™ and VISTA-SCRIPT™
components of the RMS 3 command interpreter
exemplify the RMS Dashboard design. VISTA­
GUIDE and VISTA-SCRIPT will provide the only
framework through which a significant number of oUI
RMS users interact with the operating system. It is
therefore sensible to develop an RMS 2 software
environment based on the RMS Dashboard.

All future RMS software will work within the RMS
Dashboard (Figure 2-1). It consists of four screen
elements:

• the Banner Line,
• the Frame,
• the Option/Prompt Line, and
• the Help/Response Window.

Programs that are primarily concerned with freeform
text editing often have certain special requirements,

SOFTWARE DESIGN PRACTICES 2-3

including a larger displayable area than the
Dashboard allows. There is an alternate Dashboard
fonnat that allows for the special requirements of
such programs. This alternate format is described at
the end of this chapter.

The Banner Line

The Banner Line occupies the first screen line and
displays a program identification message. The
message is left-justified at column 1 and appears in
nonnal video.

Most applications are free to display a message from
positions 1 through 79; however, Miller column
applications that provide editing services must reserve
positions 27 through 80 for screen animation relating
to a recallable LIFO stack. Detailed information
about this screen animation is contained in Chapter 3,
"The Miller Column Technique."

The Frame

2-4

The Frame is a bordered box that occupies screen
lines 2 through 19. Most routine program activities
occur within the Dashboard Frame.

The Frame is left-justified at column 1. The box top
appears on screen line 2; the box bottom appears on
screen line 19. The sides of the box are drawn in
columns 1 and 79. Column 80 is not used. The
Frame contains a displayable area of 16 lines by 77
columns.

Programs that utilize the teletype model for screen
interactions should use the Dashboard Frame in the
same manner they have traditionally used the full
workstation screen; that is, teletype interactions, such
as those in the INFO and SECURE utilities, should
take place entirely within the Frame. Available
subwindowing facilities enable you to use the full

SOFTWARE DESIGN PRACTICES 61695-01

including a larger displayable area than the
Dashboard allows. There is an alternate Dashboard
fonnat that allows for the special requirements of
such programs. This alternate format is described at
the end of this chapter.

The Banner Line

The Banner Line occupies the first screen line and
displays a program identification message. The
message is left-justified at column 1 and appears in
nonnal video.

Most applications are free to display a message from
positions 1 through 79; however, Miller column
applications that provide editing services must reserve
positions 27 through 80 for screen animation relating
to a recallable LIFO stack. Detailed information
about this screen animation is contained in Chapter 3,
"The Miller Column Technique."

The Frame

2-4

The Frame is a bordered box that occupies screen
lines 2 through 19. Most routine program activities
occur within the Dashboard Frame.

The Frame is left-justified at column 1. The box top
appears on screen line 2; the box bottom appears on
screen line 19. The sides of the box are drawn in
columns 1 and 79. Column 80 is not used. The
Frame contains a displayable area of 16 lines by 77
columns.

Programs that utilize the teletype model for screen
interactions should use the Dashboard Frame in the
same manner they have traditionally used the full
workstation screen; that is, teletype interactions, such
as those in the INFO and SECURE utilities, should
take place entirely within the Frame. Available
subwindowing facilities enable you to use the full

SOFTWARE DESIGN PRACTICES 61695-01

BANN ER LINE

FRAM E

OPTIO
LINE

N/PROMPT

RESPONSE HELP/
WIND OW

61695-01

I~

1-
1'-

........
..-

....
V

Now showing on your local SCOUT screen: Nodes and stuff

I I
I I
I I
I I
I I
I GALAXY I
I GENESIS I
I - ! fi'P··PP'
I I MCAPOI
I ! MCAP02
! ! MCAP07
! ! MCAP88
I I MCPA08
! ! TYPSET2
! !
! !
! !
! !
h MIUl,\,ng,\1 Connect Mask Sidescroll

APD_FPl is a node on the net named MC supporting incoming access.
This is the node running your task.
RMSNL88A/RMS version: 2.l.i startup time: 3 Oct 1983 13:46
RMSCOMMANDA/RMS booted from disk APDl

SOFTWARE DESIGN PRACTICES

/
" l.l.b

I I
I I
I I
I I
I I
I I
I Controllers I
! -- !
I Links !
! Pipes !
I Resources !
I Tasks !
! WorkStations I
! !
! !
I !
! !
! !

./~

Figure 2-1. The RMS Dashboard

2-5

BANN ER LINE

FRAM E

OPTIO
LINE

N/PROMPT

RESPONSE HELP/
WIND OW

61695-01

I~

1-
1'-

........
..-

....
V

Now showing on your local SCOUT screen: Nodes and stuff

I I
I I
I I
I I
I I
I GALAXY I
I GENESIS I
I - ! fi'P··PP'
I I MCAPOI
I ! MCAP02
! ! MCAP07
! ! MCAP88
I I MCPA08
! ! TYPSET2
! !
! !
! !
! !
h MIUl,\,ng,\1 Connect Mask Sidescroll

APD_FPl is a node on the net named MC supporting incoming access.
This is the node running your task.
RMSNL88A/RMS version: 2.l.i startup time: 3 Oct 1983 13:46
RMSCOMMANDA/RMS booted from disk APDl

SOFTWARE DESIGN PRACTICES

/
" l.l.b

I I
I I
I I
I I
I I
I I
I Controllers I
! -- !
I Links !
! Pipes !
I Resources !
I Tasks !
! WorkStations I
! !
! !
I !
! !
! !

./~

Figure 2-1. The RMS Dashboard

2-5

capabilities of the workstation screen within the
Dashboard Frame.

The Option/Prompt Line

The Option/Prompt Line occupies columns 1 through
79 on screen line 20. It is reserved for ring menus
and associated prompts.

The Help/Response Window

The Help/Response Window occupies screen lines 21
through 24 from column 1 through 79. Programs may
use it to display context-sensitive help messages and
to collect user input relating to program operations or
ring menu interactions.

The Continuation Bar

61695-01

Many users will only see RMS through VISTA­
GUIDE, which, like all Dashboard programs, uses
the full workstation screen. Each time a user wants to
run a program, he will locate the appropriate activity
in the VISTA-GUIDE hierarchy and then invoke the
program by pressing the Return Key. When the
program terminates, it will return control to VISTA­
GUIDE so that the user can select the next activity he
wants to run.

With certain types of programs, users need the ability
to pause before returning to VISTA-GUIDE. For
example, after selecting the "List file names"
activity in VISTA-GUIDE, the following series of
events might occur:

• control passes from the command interpreter to
the CAT utility;

• the utility reads the selected catalog and displays
file names on the screen in accord with any
parameters the user specified;

SOFTWARE DESIGN PRACTICES 2-7

capabilities of the workstation screen within the
Dashboard Frame.

The Option/Prompt Line

The Option/Prompt Line occupies columns 1 through
79 on screen line 20. It is reserved for ring menus
and associated prompts.

The Help/Response Window

The Help/Response Window occupies screen lines 21
through 24 from column 1 through 79. Programs may
use it to display context-sensitive help messages and
to collect user input relating to program operations or
ring menu interactions.

The Continuation Bar

61695-01

Many users will only see RMS through VISTA­
GUIDE, which, like all Dashboard programs, uses
the full workstation screen. Each time a user wants to
run a program, he will locate the appropriate activity
in the VISTA-GUIDE hierarchy and then invoke the
program by pressing the Return Key. When the
program terminates, it will return control to VISTA­
GUIDE so that the user can select the next activity he
wants to run.

With certain types of programs, users need the ability
to pause before returning to VISTA-GUIDE. For
example, after selecting the "List file names"
activity in VISTA-GUIDE, the following series of
events might occur:

• control passes from the command interpreter to
the CAT utility;

• the utility reads the selected catalog and displays
file names on the screen in accord with any
parameters the user specified;

SOFTWARE DESIGN PRACTICES 2-7

2-8

• control returns to the command interpreter, which
erases the file names from the screen and repaints
the VISTA-GUIDE hierarchy.

The problem here is that the user never got the
chance to read the file names. The RMS Dashboard
supports a continuation bar to resolve this problem.

Any program that displays data for its users but does
not provide them with runtime, interactive control
should display a continuation bar upon normal
program termination for any user running under
VISTA-GUIDE. Actually, the command interpreter
displays the continuation bar, depending on the
contents of the $PCRCMDF flag (explained further
below).

The continuation bar is an inverse video strip
occupying columns 1 through 79 on screen line 24.
The following message appears centered within the
continuation bar:

• Press any key to continue

The cursor appears one position to the left of the
capital P.

Some programs support interactive environments of
their own. These programs normally support the Quit
Key to allow users to return voluntarily to the
command interpreter and therefore should not display
a continuation bar. For example, MAIL, SCOUT,
lEOS, and Multiplan ™ should not display
continuation bars, whereas ENV, CAT, and INFO
should.

NOTE: No program should ever display a
continuation bar when control passes to the command
line interface of the command interpreter.
Continuation bars only appear for users running
under VISTA-GUIDE. To suppress the continuation

Multiplan is a Trademark of Microsoft, Inc.

SOFTWARE DESIGN PRACTICES 6\695-0\ 2-8

• control returns to the command interpreter, which
erases the file names from the screen and repaints
the VISTA-GUIDE hierarchy.

The problem here is that the user never got the
chance to read the file names. The RMS Dashboard
supports a continuation bar to resolve this problem.

Any program that displays data for its users but does
not provide them with runtime, interactive control
should display a continuation bar upon normal
program termination for any user running under
VISTA-GUIDE. Actually, the command interpreter
displays the continuation bar, depending on the
contents of the $PCRCMDF flag (explained further
below).

The continuation bar is an inverse video strip
occupying columns 1 through 79 on screen line 24.
The following message appears centered within the
continuation bar:

• Press any key to continue

The cursor appears one position to the left of the
capital P.

Some programs support interactive environments of
their own. These programs normally support the Quit
Key to allow users to return voluntarily to the
command interpreter and therefore should not display
a continuation bar. For example, MAIL, SCOUT,
lEOS, and Multiplan ™ should not display
continuation bars, whereas ENV, CAT, and INFO
should.

NOTE: No program should ever display a
continuation bar when control passes to the command
line interface of the command interpreter.
Continuation bars only appear for users running
under VISTA-GUIDE. To suppress the continuation

Multiplan is a Trademark of Microsoft, Inc.

SOFTWARE DESIGN PRACTICES 6\695-0\

61695-01

LINE 1 ~

LINE 2 ~

LINE 19 ~
LINE 20 .,

LINES 21-24

COLUMN 1

~
BANNER LINE

FRAME

(LINES 2-19/COLUMNS 1-79)

OPTION/PROMPT LINE

HELP/RESPONSE WINDOW

V

SOFTWARE DESIGN PRACTICES

COLUMN 79

/

~

~

Figure 2-2. A More Detailed Look at the Dashboard

2-9 61695-01

LINE 1 ~

LINE 2 ~

LINE 19 ~
LINE 20 .,

LINES 21-24

COLUMN 1

~
BANNER LINE

FRAME

(LINES 2-19/COLUMNS 1-79)

OPTION/PROMPT LINE

HELP/RESPONSE WINDOW

V

SOFTWARE DESIGN PRACTICES

COLUMN 79

/

~

~

Figure 2-2. A More Detailed Look at the Dashboard

2-9

bar, set on the $PCRDFNS bit in the $PCRCMDF
flag.

Transitions Between Dashboard Programs

61695-01

Whenever control passes from one program to
another, the newly invoked program is responsible
for ensuring a visually smooth transition. The new
program's first actions depend upon whether the
program from which it assumes control conforms to
the Dashboard design described above.

Upon being invoked, a program should read the
$PCRCMDF flag in the PCR to determine the type of
program from which it is assuming control. The
visual nature of the transition depends upon the
contents of the two bit flags:

• $PCRDFNS: If this bit is on, the previous
program was a Dashboard program, and it is
leaving data on the bottom 4 screen lines which
the newly invoked program should not erase.

• $PCRCMDF: If this bit is on, the previous
program was a Dashboard program, and it is
surrendering the entire screen.

If neither of these bit flags is set on, you may assume
that the previous program was not Dashboard-based.

Assuming Control from a Dashboard Program

If either the $PCRDFNS or $PCRDFNC bits in the
$PCRCMDF flag are set on, the new program is
assuming control from a Dashboard program. The
new program should assure a smooth transition by
supporting the following animation (See Fig. 2-2):

1. Ifthe $PCRDFNC bit is set on, erase
everything on the screen except for the box­
drawing characters. If the $PCRDFNS bit is set
on, erase everything on the screen except for

SOFTWARE DESIGN PRACTICES 2-11

bar, set on the $PCRDFNS bit in the $PCRCMDF
flag.

Transitions Between Dashboard Programs

61695-01

Whenever control passes from one program to
another, the newly invoked program is responsible
for ensuring a visually smooth transition. The new
program's first actions depend upon whether the
program from which it assumes control conforms to
the Dashboard design described above.

Upon being invoked, a program should read the
$PCRCMDF flag in the PCR to determine the type of
program from which it is assuming control. The
visual nature of the transition depends upon the
contents of the two bit flags:

• $PCRDFNS: If this bit is on, the previous
program was a Dashboard program, and it is
leaving data on the bottom 4 screen lines which
the newly invoked program should not erase.

• $PCRCMDF: If this bit is on, the previous
program was a Dashboard program, and it is
surrendering the entire screen.

If neither of these bit flags is set on, you may assume
that the previous program was not Dashboard-based.

Assuming Control from a Dashboard Program

If either the $PCRDFNS or $PCRDFNC bits in the
$PCRCMDF flag are set on, the new program is
assuming control from a Dashboard program. The
new program should assure a smooth transition by
supporting the following animation (See Fig. 2-2):

1. Ifthe $PCRDFNC bit is set on, erase
everything on the screen except for the box­
drawing characters. If the $PCRDFNS bit is set
on, erase everything on the screen except for

SOFTWARE DESIGN PRACTICES 2-11

2-12

the box-drawing characters and the bottom 4
lines of the screen.

2. If the new program is a Miller column
application, divide the Frame into three equal
columns. To do so, first rewrite the characters
in columns 27 and 53 on screen line 2, then
paint vertical lines in those columns through
screen line 18, and finally rewrite the Frame
characters in columns 27 and 53 on screen
line 19.

3. Write the contents of the Banner Line.

4. Write the contents of the Frame. For a Miller
column application, write the contents of the
three columns - first the left column, then the
center column, then the right column.

5. Write any information that appears in the
Option/Prompt Line and Help/Response
Window.

Assuming control from a Non-Dashboard
Program

If both the $PCRDFNS and $PCRDFNC bits in the
$PCRCMDF flag are set off, the new program is
assuming control from a program that does not
conform to the standard RMS Dashboard model. In
this situation, it is not possible to ensure a visually
smooth transition, but the new program should
support the following animation:

1. Erase everything on the screen.

2. Write the Banner Line.

3. Write the Frame and its contents line by line.
(Write screen line 2, then screen line 3, then
screen line 4, etc.)

SOFfWARE DESIGN PRACTICES 61695-01 2-12

the box-drawing characters and the bottom 4
lines of the screen.

2. If the new program is a Miller column
application, divide the Frame into three equal
columns. To do so, first rewrite the characters
in columns 27 and 53 on screen line 2, then
paint vertical lines in those columns through
screen line 18, and finally rewrite the Frame
characters in columns 27 and 53 on screen
line 19.

3. Write the contents of the Banner Line.

4. Write the contents of the Frame. For a Miller
column application, write the contents of the
three columns - first the left column, then the
center column, then the right column.

5. Write any information that appears in the
Option/Prompt Line and Help/Response
Window.

Assuming control from a Non-Dashboard
Program

If both the $PCRDFNS and $PCRDFNC bits in the
$PCRCMDF flag are set off, the new program is
assuming control from a program that does not
conform to the standard RMS Dashboard model. In
this situation, it is not possible to ensure a visually
smooth transition, but the new program should
support the following animation:

1. Erase everything on the screen.

2. Write the Banner Line.

3. Write the Frame and its contents line by line.
(Write screen line 2, then screen line 3, then
screen line 4, etc.)

SOFfWARE DESIGN PRACTICES 61695-01

4. Write any information that appears in the
Option/Prompt Line and Help/Response
Window.

The Alternate RMS Dashboard

61695-01

Programs that are primarily concerned with freeform
text editing, including word processing programs,
often have as a major activity displaying as much
data at once as possible, for example displaying as
much of a document as possible. The standard RMS
Dashboard format is not ideal for such programs.
You may use the alternate format described below for
programs whose primary concern is displaying
freeform data.

The alternate format entails a simple rearrangement
of the Dashboard elements, as follows:

• Frame: The Dashboard frame occupies screen
lines 1 through 19 from column 1 through column
80. There are no box -drawing characters, and the
entire area is available to the application program.

• Banner Line: Screen line 20 appears in inverse
video from column 1 through column 80 and
contains the program identification message that
would appear in the Banner Line in the standard
RMS Dashboard.

• Option/Prompt Line: The Option/Prompt Line
appears on screen line 21 and functions as
described earlier.

• Help/Response Window: The Help/Response
Window appears on screen lines 22 through 24
and functions as described earlier.

SOFfWARE DESIGN PRACTICES 2-13

4. Write any information that appears in the
Option/Prompt Line and Help/Response
Window.

The Alternate RMS Dashboard

61695-01

Programs that are primarily concerned with freeform
text editing, including word processing programs,
often have as a major activity displaying as much
data at once as possible, for example displaying as
much of a document as possible. The standard RMS
Dashboard format is not ideal for such programs.
You may use the alternate format described below for
programs whose primary concern is displaying
freeform data.

The alternate format entails a simple rearrangement
of the Dashboard elements, as follows:

• Frame: The Dashboard frame occupies screen
lines 1 through 19 from column 1 through column
80. There are no box -drawing characters, and the
entire area is available to the application program.

• Banner Line: Screen line 20 appears in inverse
video from column 1 through column 80 and
contains the program identification message that
would appear in the Banner Line in the standard
RMS Dashboard.

• Option/Prompt Line: The Option/Prompt Line
appears on screen line 21 and functions as
described earlier.

• Help/Response Window: The Help/Response
Window appears on screen lines 22 through 24
and functions as described earlier.

SOFfWARE DESIGN PRACTICES 2-13

The Cursor

2-14

Ready-state programs always display a single
blinking system cursor, which serves three purposes.

Indicates Current Program State

The cursor indicates whether a program is currently
prepared to accept user input. Whenever a program is
listening to the keyboard, the cursor appears on the
screen; whenever it is not, it turns the cursor off.

Indicates User's Focal Point

DATAPOINT's interactive software must always deal
with the user's point of view. Therefore, all programs
must display the cursor in the position that is the
user's current focal point. (In field keyin
applications, the cursor must always be positioned in
the field all-d at the precise location into which the
user is entering data.) This is clearly a requirement
when subwindows are used in VISTA-VIEW, as
explained below.

Indicates VISTA-VIEW Focal Point

No program may ever display more than one cursor
at a time. VISTA-VIEW uses the cursor position to
determine the part of a full-screen display visible.

For example, if the cursor appears in the Frame while
the program is waiting for the user to select a ring
menu option, the user may not even be able to see
the ring menu through the VISTA-VIEW window he
has created. However, if the cursor moves from the
Frame to the ring menu when the user invokes the
ring menu, VISTA-VIEW will reposition the display
so that the ring menu is visible through the VISTA­
VIEW subwindow.

SOFTWARE DESIGN PRACTICES 61695-01

The Cursor

2-14

Ready-state programs always display a single
blinking system cursor, which serves three purposes.

Indicates Current Program State

The cursor indicates whether a program is currently
prepared to accept user input. Whenever a program is
listening to the keyboard, the cursor appears on the
screen; whenever it is not, it turns the cursor off.

Indicates User's Focal Point

DATAPOINT's interactive software must always deal
with the user's point of view. Therefore, all programs
must display the cursor in the position that is the
user's current focal point. (In field keyin
applications, the cursor must always be positioned in
the field all-d at the precise location into which the
user is entering data.) This is clearly a requirement
when subwindows are used in VISTA-VIEW, as
explained below.

Indicates VISTA-VIEW Focal Point

No program may ever display more than one cursor
at a time. VISTA-VIEW uses the cursor position to
determine the part of a full-screen display visible.

For example, if the cursor appears in the Frame while
the program is waiting for the user to select a ring
menu option, the user may not even be able to see
the ring menu through the VISTA-VIEW window he
has created. However, if the cursor moves from the
Frame to the ring menu when the user invokes the
ring menu, VISTA-VIEW will reposition the display
so that the ring menu is visible through the VISTA­
VIEW subwindow.

SOFTWARE DESIGN PRACTICES 61695-01

The RMS 2 Keyboard

61695-01

DATAPOINT has created a new keyboard, called the
RMS 2 keyboard, that supports the interactive
software model more efficiently than the current
general purpose keyboard. A number of new features
have been designed into the RMS 2 keyboard,
including:

• dedicated editing keys,
• dedicated context switching keys,
• LCD status indicators,
• a new software interface,
• eight program-definable function keys,
• separate cursor movement and numeric entry

keypads,
• alternate shift keys, and
• several new program control keys.

Because of certain software and hardware
compatibility concerns that accompany the
introduction of a new keyboard, the RMS 2 keyboard
operates in two different modes.

Mode One: In mode one, the RMS 2 keyboard
simulates the current general purpose keyboard (See
Figure 2-3). It generates only those codes that can be
generated by the general purpose keyboard.

Mode Two: In mode two (See Figure 2-4), each
keys witch generates one unique code when pressed
and another unique code when released. A layer of
the RMS nucleus known as OPTIK serves as the
interface between the keyboard hardware and user­
level software.

SOFTWARE DESIGN PRACTICES 2-15

The RMS 2 Keyboard

61695-01

DATAPOINT has created a new keyboard, called the
RMS 2 keyboard, that supports the interactive
software model more efficiently than the current
general purpose keyboard. A number of new features
have been designed into the RMS 2 keyboard,
including:

• dedicated editing keys,
• dedicated context switching keys,
• LCD status indicators,
• a new software interface,
• eight program-definable function keys,
• separate cursor movement and numeric entry

keypads,
• alternate shift keys, and
• several new program control keys.

Because of certain software and hardware
compatibility concerns that accompany the
introduction of a new keyboard, the RMS 2 keyboard
operates in two different modes.

Mode One: In mode one, the RMS 2 keyboard
simulates the current general purpose keyboard (See
Figure 2-3). It generates only those codes that can be
generated by the general purpose keyboard.

Mode Two: In mode two (See Figure 2-4), each
keys witch generates one unique code when pressed
and another unique code when released. A layer of
the RMS nucleus known as OPTIK serves as the
interface between the keyboard hardware and user­
level software.

SOFTWARE DESIGN PRACTICES 2-15

tv
I

0"1

U'l
0
~
~
i'J
tTl
U
tTl
U'l -Cl
Z
'i::j
i'J
>-n, -n
tTl
U'l

"rj
0;;'
::::
~
w
c...

;2
'" ()
lS:
c;')

'" ;:

'" ~
"tl
::::
~ a
'" '" >::
~
<:r-a
\:>

il

I 2 3 4 5 6 7 8 9 0 - = I_I «--t]~~~~[g~~[g~B~88 ~~~ B~
B~ggggg~ggg~~~ ~0~ ~§
~~~~~ggg~~gH~~ [g][@J~ ~§ 
~B8~888tjBtj8~ ,~ ~8 8B 

~ I) Bl§ 

tv 
I ..... 

0"1 

U'l 
0 
~ 
~ 
i'J 
tTl 
U 
tTl 
U'l -Cl 
Z 
'i::j 
i'J 
>-n ...., -n 
tTl 
U'l 

"rj 
0;;' 
:::: 
~ 
w 
c... 

;2 
'" () 
lS: 
c;') 

'" ;: 

'" ~ 
"tl 
:::: 
~ a 
'" '" >:: 
~ 
<:r-a 
\:> 

il 

I 2 3 4 5 6 7 8 9 0 - = I_I «--t]~~~~[g~~[g~B~88 ~~~ B~ 
B~ggggg~ggg~~~ ~0~ ~§ 
~~~~~ggg~~gH~~ [g][@J~ ~§ 
~B8~888tjBtj8~ ,~ ~8 8B

~ I) Bl§

tv
I

-..,J

tv
I

-..,J

Keys on the Keyboard

2-18

Certain standards apply to the manner in which
interactive software uses the keys on the RMS 2
keyboard. These standards are described below.

Alphanumeric Keys

These keys generate printable characters in the range
of 02-176 (octal). Programs may
not implement program control sequences that use
printable characters, except for such standard
program mechanisms as ring menus and command
lines which are message member translatable.

Alternate Shift Keys

The Alternate Shift Keys (marked Alt) provide a
level of differentiation beyond the Shift Keys. There
is a lowercase A, an uppercase A (ShiftA), and an
alternate A (AltA). The same holds true for each key
on the keyboard.

Currently, the only USA functions of the Alt Keys
are: scrolling, when combined with certain cursor
movement keys; and, deletion of imbedded
characters, much as the shift/delete works on the
general purpose keyboard. Chording either Alt Key
with any arrow key causes scrolling to occur in the
indicted direction. For example, AltLeft moves the
user's perspective left (and the text right); AltUp
moves the user's perspective up (and the text down).
There is no definition for the chords formed by the
Alt Key and the comer keys or the Window Key, and
until they are formally defined by DATAPOINT,
user programs should avoid recognizing these chords.

Backspace Key

The Backspace Key causes the cursor to move
backward, deleting each character it moves over. The

SOFTWARE DESIGN PRACTICES 61695-01

Keys on the Keyboard

2-18

Certain standards apply to the manner in which
interactive software uses the keys on the RMS 2
keyboard. These standards are described below.

Alphanumeric Keys

These keys generate printable characters in the range
of 02-176 (octal). Programs may
not implement program control sequences that use
printable characters, except for such standard
program mechanisms as ring menus and command
lines which are message member translatable.

Alternate Shift Keys

The Alternate Shift Keys (marked Alt) provide a
level of differentiation beyond the Shift Keys. There
is a lowercase A, an uppercase A (ShiftA), and an
alternate A (AltA). The same holds true for each key
on the keyboard.

Currently, the only USA functions of the Alt Keys
are: scrolling, when combined with certain cursor
movement keys; and, deletion of imbedded
characters, much as the shift/delete works on the
general purpose keyboard. Chording either Alt Key
with any arrow key causes scrolling to occur in the
indicted direction. For example, AltLeft moves the
user's perspective left (and the text right); AltUp
moves the user's perspective up (and the text down).
There is no definition for the chords formed by the
Alt Key and the comer keys or the Window Key, and
until they are formally defined by DATAPOINT,
user programs should avoid recognizing these chords.

Backspace Key

The Backspace Key causes the cursor to move
backward, deleting each character it moves over. The

SOFTWARE DESIGN PRACTICES 61695-01

61695-01

Backspace Key does not allow users to move from
one field to another in field keyin applications; cursor
movement keys support this function. The
AltIBackspace Key has the same effect as the
shift/delete key on the general purpose keyboard.

Command Key

The Command Key toggles a user in and out of
command mode, in which he uses a ring menu to
select or specify options relating to the activity in
which he is currently involved.

Function Keys

The RMS 2 keyboard has eight program-definable
function keys. Applications should avoid using these
keys to provide command/option specification; this is
correctly done through the ring menu technique.
However, application developers may incorporate
function keys into a new product so long as the
implementation does not violate any of the guidelines
or standards presented in this document.

Geometric Keys

These three keys, marked by a circle, a triangle, and
a square, will be used to integrate certain context
management mechanisms that are still under design.
Application programs should not use these keys or
the corresponding LCD indicators on the keyboard.

Help Key

The Help Key provides the user with context­
sensitive, clearly written help messages, which
normally appear in the Help/Response Window.

SOFTWARE DESIGN PRACTICES 2-19 61695-01

Backspace Key does not allow users to move from
one field to another in field keyin applications; cursor
movement keys support this function. The
AltIBackspace Key has the same effect as the
shift/delete key on the general purpose keyboard.

Command Key

The Command Key toggles a user in and out of
command mode, in which he uses a ring menu to
select or specify options relating to the activity in
which he is currently involved.

Function Keys

The RMS 2 keyboard has eight program-definable
function keys. Applications should avoid using these
keys to provide command/option specification; this is
correctly done through the ring menu technique.
However, application developers may incorporate
function keys into a new product so long as the
implementation does not violate any of the guidelines
or standards presented in this document.

Geometric Keys

These three keys, marked by a circle, a triangle, and
a square, will be used to integrate certain context
management mechanisms that are still under design.
Application programs should not use these keys or
the corresponding LCD indicators on the keyboard.

Help Key

The Help Key provides the user with context­
sensitive, clearly written help messages, which
normally appear in the Help/Response Window.

SOFTWARE DESIGN PRACTICES 2-19

2-20

Numeric Keypad

On the numeric keypad, the number keys and the
comma generate the printable characters and
functions that appear on the key caps.

In mode one, the Tab and Return Keys, along with
the four keys on the top row, generate the printable
characters that appear on the key caps. In mode two,
however, these six keys generate unique codes.
Applications may elect to treat these keys as identical
to those on the alphanumeric keypad, or they may
elect to alter processing depending on which key is
pressed.

To ensure compatibility between the current general
purpose keyboard and the RMS 2 keyboard, the zero
and decimal point keys on the numeric keypad of the
current general purpose keyboard must be recognized
as an ASCII zero and period. This requirement
applies to all RMS and DOS software under all
circumstances.

Quit Key

The Quit Key is the standard method for allowing a
user to leave a context. This context may be a
program (such as SCOUT) or a context within a
program (such as a help message).

Programs that do not involve writing data should
return control to the next program to be run (usually
the command interpreter) whenever a user presses the
Quit Key. On the other hand, if a user might lose
data by exiting accidentally, a program should
respond to the Quit Key by displaying a ring menu
that includes two options: "Save" and "Discard."
The user can then indicate whether or not he wishes
to retain the data he has entered.

The Quit Key is also the standard mechanism for
interrupting a process that is not currently listening to
the keyboard. For example, the Quit Key should

SOFTWARE DESIGN PRACTICES 61695-01 2-20

Numeric Keypad

On the numeric keypad, the number keys and the
comma generate the printable characters and
functions that appear on the key caps.

In mode one, the Tab and Return Keys, along with
the four keys on the top row, generate the printable
characters that appear on the key caps. In mode two,
however, these six keys generate unique codes.
Applications may elect to treat these keys as identical
to those on the alphanumeric keypad, or they may
elect to alter processing depending on which key is
pressed.

To ensure compatibility between the current general
purpose keyboard and the RMS 2 keyboard, the zero
and decimal point keys on the numeric keypad of the
current general purpose keyboard must be recognized
as an ASCII zero and period. This requirement
applies to all RMS and DOS software under all
circumstances.

Quit Key

The Quit Key is the standard method for allowing a
user to leave a context. This context may be a
program (such as SCOUT) or a context within a
program (such as a help message).

Programs that do not involve writing data should
return control to the next program to be run (usually
the command interpreter) whenever a user presses the
Quit Key. On the other hand, if a user might lose
data by exiting accidentally, a program should
respond to the Quit Key by displaying a ring menu
that includes two options: "Save" and "Discard."
The user can then indicate whether or not he wishes
to retain the data he has entered.

The Quit Key is also the standard mechanism for
interrupting a process that is not currently listening to
the keyboard. For example, the Quit Key should

SOFTWARE DESIGN PRACTICES 61695-01

61695·01

terminate a search and replace operation, a Place
command in lEOS, or the recalculation of a
Multiplan spreadsheet. The KBD Key is used to
serve this purpose; however, the RMS 2 Keyboard
does not have a KBD Key, and the KBD Key on the
current keyboard is now used for scrolling (and is
often called the Upscroll Key).

Shift/Shift Lock Keys

The current general purpose keyboard supports shift
lock. In mode one, the RMS 2 keyboard also
supports shift lock. However, in mode two, u~ers
who press the Lock Key will be placed in caps lock
mode.

Program controls should always operate without
respect to case. For example, IEOS does not require
users to enter commands in upper case; they can use
upper case, lower case, or any combination of the
two. All programs should support this type of case
insensitivity.

System Key

User programs should not use the System Key for
any purpose. It is the basis of a number of key chords
that send instructions directly to the RMS nucleus.
Any time the System Key is pressed, all subsequent
keystrokes are processed by the nucleus until the
System Key is released. Consequently it is not
available to user programs.

Tab Key

The Tab Key should only be used for tabbing in
freeform text editing applications. It does not allow
users to advance from one field to the next in field
keyin applications; cursor movement keys support
this function.

SOFTWARE DESIGN PRACTICES 2-21 61695·01

terminate a search and replace operation, a Place
command in lEOS, or the recalculation of a
Multiplan spreadsheet. The KBD Key is used to
serve this purpose; however, the RMS 2 Keyboard
does not have a KBD Key, and the KBD Key on the
current keyboard is now used for scrolling (and is
often called the Upscroll Key).

Shift/Shift Lock Keys

The current general purpose keyboard supports shift
lock. In mode one, the RMS 2 keyboard also
supports shift lock. However, in mode two, u~ers
who press the Lock Key will be placed in caps lock
mode.

Program controls should always operate without
respect to case. For example, IEOS does not require
users to enter commands in upper case; they can use
upper case, lower case, or any combination of the
two. All programs should support this type of case
insensitivity.

System Key

User programs should not use the System Key for
any purpose. It is the basis of a number of key chords
that send instructions directly to the RMS nucleus.
Any time the System Key is pressed, all subsequent
keystrokes are processed by the nucleus until the
System Key is released. Consequently it is not
available to user programs.

Tab Key

The Tab Key should only be used for tabbing in
freeform text editing applications. It does not allow
users to advance from one field to the next in field
keyin applications; cursor movement keys support
this function.

SOFTWARE DESIGN PRACTICES 2-21

2-22

Undo Key

The Undo Key acts as a toggle switch, reversing the
effect of an action the user has taken when such an
action is not reversible through any other obvious
mechanism. In lEOS, for example, if you press the
word forward key, you can easily reverse the action
by pressing the word backward key; since the word
forward action is easily reversible, IEOS need not
support it through the Undo Key. In VISTA­
SCRIPT, on the other hand, accidentally typing a
single letter can change the entire composition of an
activity script; there is no obvious way to reverse the
action, so pressing the Undo Key returns the script to
its former state.

Specific functions of the Undo Key have been
defined for field keyin, but not for the other
techniques. Application developers may use the Undo
Key in application-specific ways that are consistent
with the general guideline presented above.

View Key

Only programs that perform global context
management should use the View Key. Currently, the
only such program is VISTA-VIEW. The View Key
is the basis of a number of key chords that send
instructions directly to the VISTA-VIEW program.
Any time the View Key is pressed, all subsequent
keystrokes are processed by VISTA-VIEW until the
View Key is released. Consequently this key is not
available to any program that might operate under
VISTA-VIEW; currently, this includes all programs.

SOFfWARE DESIGN PRACTICES 6\695-0\ 2-22

Undo Key

The Undo Key acts as a toggle switch, reversing the
effect of an action the user has taken when such an
action is not reversible through any other obvious
mechanism. In lEOS, for example, if you press the
word forward key, you can easily reverse the action
by pressing the word backward key; since the word
forward action is easily reversible, IEOS need not
support it through the Undo Key. In VISTA­
SCRIPT, on the other hand, accidentally typing a
single letter can change the entire composition of an
activity script; there is no obvious way to reverse the
action, so pressing the Undo Key returns the script to
its former state.

Specific functions of the Undo Key have been
defined for field keyin, but not for the other
techniques. Application developers may use the Undo
Key in application-specific ways that are consistent
with the general guideline presented above.

View Key

Only programs that perform global context
management should use the View Key. Currently, the
only such program is VISTA-VIEW. The View Key
is the basis of a number of key chords that send
instructions directly to the VISTA-VIEW program.
Any time the View Key is pressed, all subsequent
keystrokes are processed by VISTA-VIEW until the
View Key is released. Consequently this key is not
available to any program that might operate under
VISTA-VIEW; currently, this includes all programs.

SOFfWARE DESIGN PRACTICES 6\695-0\

Keystroke Recording

61695-01

Ensuring the recoverability of terminal sessions is a
critical aspect of developing reliable, quality
software. RMS programs that let users write data
must support work session recoverability. As a
minimum, some programs may implement keystroke
recording as a means to this end.

In evaluating the suitability of keystroke recording,
however, you must consider the possibility that
multiple users will access the same information
simultaneously, as with a shared database. In such
cases, recovery may well not be possible with a
mechanism as simple as keystroke recording.

However, keystroke recording is adequate in many
situations. For example, a word processing package,
an electronic spreadsheet, and a text editor all may
support work session recoverability through keystroke
recording.

Keystroke recording is a simple process. When a
program is invoked, it creates a special log file and
begins to write each user keystroke into the log file.
If the program terminates cleanly, it deletes the log
file. If it terminates abnormally, however, a complete
reconstruction of the work session is possible.

Synchronous Recording

Certain types of program actions are not obviously
reconstructable - text scrolling, for example. It is
not sufficient to know that the user pressed the
Downscroll Key for six seconds. A different level of
system overhead during recovery will result in a
different amount of scrolling within the same time
period.

SOFTWARE DESIGN PRACTICES 2-23

Keystroke Recording

61695-01

Ensuring the recoverability of terminal sessions is a
critical aspect of developing reliable, quality
software. RMS programs that let users write data
must support work session recoverability. As a
minimum, some programs may implement keystroke
recording as a means to this end.

In evaluating the suitability of keystroke recording,
however, you must consider the possibility that
multiple users will access the same information
simultaneously, as with a shared database. In such
cases, recovery may well not be possible with a
mechanism as simple as keystroke recording.

However, keystroke recording is adequate in many
situations. For example, a word processing package,
an electronic spreadsheet, and a text editor all may
support work session recoverability through keystroke
recording.

Keystroke recording is a simple process. When a
program is invoked, it creates a special log file and
begins to write each user keystroke into the log file.
If the program terminates cleanly, it deletes the log
file. If it terminates abnormally, however, a complete
reconstruction of the work session is possible.

Synchronous Recording

Certain types of program actions are not obviously
reconstructable - text scrolling, for example. It is
not sufficient to know that the user pressed the
Downscroll Key for six seconds. A different level of
system overhead during recovery will result in a
different amount of scrolling within the same time
period.

SOFTWARE DESIGN PRACTICES 2-23

2-24

Each program must assume responsibility for
ensuring that the events recorded in its log file are
deterministically repeatable. This means, for
example, that the log file needs to know exactly how
many lines of text the user scrolled through.

Log File Housekeeping

Some programs must erase their log files periodically
to ensure that completed tasks are not re-executed
when the user attempts to recover a work session.
Electronic mail provides a useful example.

In a typical RMS Mail work session, you might
create and send a memo, then start to create a second
memo. At this point, the system may crash. While it
is desirable to be able to recover the work in progress
on the second memo, you do not want the recovery
function to regenerate and resend the first memo; that
task was already successfully completed. In
applications like RMS Mail, the keystroke recording
mechanism must make intelligent decisions about
when to clear its log file.

SOFTWARE DESIGN PRACTICES 6\695-0\ 2-24

Each program must assume responsibility for
ensuring that the events recorded in its log file are
deterministically repeatable. This means, for
example, that the log file needs to know exactly how
many lines of text the user scrolled through.

Log File Housekeeping

Some programs must erase their log files periodically
to ensure that completed tasks are not re-executed
when the user attempts to recover a work session.
Electronic mail provides a useful example.

In a typical RMS Mail work session, you might
create and send a memo, then start to create a second
memo. At this point, the system may crash. While it
is desirable to be able to recover the work in progress
on the second memo, you do not want the recovery
function to regenerate and resend the first memo; that
task was already successfully completed. In
applications like RMS Mail, the keystroke recording
mechanism must make intelligent decisions about
when to clear its log file.

SOFTWARE DESIGN PRACTICES 6\695-0\

CHAPTER 3.
THE MILLER COLUMN TECHNIQUE

Contents
General Principles 3-3

Benefits of the Miller Column Technique 3-7

What Miller Columns Look Like 3-8
Miller Columns in the RMS Dashboard 3-8
Dimensions of the Miller Column Display ... 3-9
Item Padding Spaces 3-9
Inverse Video 3-9
Cursor Behavior 3-9
The Icon 3-9

Moving Around in Miller Columns 3-11
Left Arrow Key 3-11
Right Arrow Key 3-11
Up Arrow Key 3-12
Down Arrow Key 3-12
Top Left Corner Key 3-12
Bottom Left Corner Key 3-12
Top Right Corner Key 3-13
Bottom Right Corner Key 3-13
Screen Update Timeout 3-13
Inverse Video During Scrolling 3-13

Editing Operations 3-15
Insert 3-15
InsertLeft 3-16
Insert Right 3-17
Remove 3-18
Copy 3-20
Recall 3-20
Discard 3-21
Rename 3-22

61695-01 SOFTWARE DESIGN PRACTICES 3-1

CHAPTER 3.
THE MILLER COLUMN TECHNIQUE

Contents
General Principles 3-3

Benefits of the Miller Column Technique 3-7

What Miller Columns Look Like 3-8
Miller Columns in the RMS Dashboard 3-8
Dimensions of the Miller Column Display ... 3-9
Item Padding Spaces 3-9
Inverse Video 3-9
Cursor Behavior 3-9
The Icon 3-9

Moving Around in Miller Columns 3-11
Left Arrow Key 3-11
Right Arrow Key 3-11
Up Arrow Key 3-12
Down Arrow Key 3-12
Top Left Corner Key 3-12
Bottom Left Corner Key 3-12
Top Right Corner Key 3-13
Bottom Right Corner Key 3-13
Screen Update Timeout 3-13
Inverse Video During Scrolling 3-13

Editing Operations 3-15
Insert 3-15
InsertLeft 3-16
Insert Right 3-17
Remove 3-18
Copy 3-20
Recall 3-20
Discard 3-21
Rename 3-22

61695-01 SOFTWARE DESIGN PRACTICES 3-1

Merge 3-23

Application-Dependent Extensions 3-24

3-2 SOFTWARE DESIGN PRACTICES 61695-01

Merge 3-23

Application-Dependent Extensions 3-24

3-2 SOFTWARE DESIGN PRACTICES 61695-01

General Principles

61695-01

The Miller column technique allows programs to
represent hierarchically structured information in a
graphically interactive context. The technique
consists of

• a screen layout,
• definitions for eight scrolling keys, and
• definitions for nine editing operations.

The VISTA-GUIDE component of the RMS 2
command interpreter lets you roam around a Miller
column presentation of activities you might want to
perform with your RMS system. SCOUT uses the
Miller column technique to represent the files and
resources available through an RMS network.

The Miller column technique divides the Dashboard
Frame into three columns of equal width. Each
column may contain a series of 23-character,
alphanumeric items which represent in a hierarchical
pattern the objects or data with which the program is
concerned.

An example of the VISTA-GUIDE hierarchy appears
below. Notice that the three columns are linked
hierarchically. Two items always appear in inverse
video - one in the left column and one in the center
column. The highlighted item in the left column is
the hierarchical ancestor of the highlighted item in
the center column. The items in the right column are
the hierarchical descendants of the highlighted item
in the center column.

SOFTWARE DESIGN PRACTICES 3-3

General Principles

61695-01

The Miller column technique allows programs to
represent hierarchically structured information in a
graphically interactive context. The technique
consists of

• a screen layout,
• definitions for eight scrolling keys, and
• definitions for nine editing operations.

The VISTA-GUIDE component of the RMS 2
command interpreter lets you roam around a Miller
column presentation of activities you might want to
perform with your RMS system. SCOUT uses the
Miller column technique to represent the files and
resources available through an RMS network.

The Miller column technique divides the Dashboard
Frame into three columns of equal width. Each
column may contain a series of 23-character,
alphanumeric items which represent in a hierarchical
pattern the objects or data with which the program is
concerned.

An example of the VISTA-GUIDE hierarchy appears
below. Notice that the three columns are linked
hierarchically. Two items always appear in inverse
video - one in the left column and one in the center
column. The highlighted item in the left column is
the hierarchical ancestor of the highlighted item in
the center column. The items in the right column are
the hierarchical descendants of the highlighted item
in the center column.

SOFTWARE DESIGN PRACTICES 3-3

3-4

In the VISTA-GUIDE hierarchy above, "Create a
new document," "Modify a document," "Scan a
document," and "Create new doc from old" are the
hierarchical descendants of "Document editing"
(Figure 3-1).

23 Mar 1983

Information
1I1''9i!1II9,·en,j,MM
Document handling
Document printing
Conversion activities
Autotype activities
Resource connections

9:45 am

HM!I;,iSiiliii3ij·"9"M
Modify a document

Scan a document
Create new doc from old

Create a new document and add text into the new document.

Figure 3-1. The RMS Dashboard

SOFTWARE DESIGN PRACTICES 61695-01 3-4

In the VISTA-GUIDE hierarchy above, "Create a
new document," "Modify a document," "Scan a
document," and "Create new doc from old" are the
hierarchical descendants of "Document editing"
(Figure 3-1).

23 Mar 1983

Information
1I1''9i!1II9,·en,j,MM
Document handling
Document printing
Conversion activities
Autotype activities
Resource connections

9:45 am

HM!I;,iSiiliii3ij·"9"M
Modify a document

Scan a document
Create new doc from old

Create a new document and add text into the new document.

Figure 3-1. The RMS Dashboard

SOFTWARE DESIGN PRACTICES 61695-01

/

61695-01

The Miller column technique supports eight scrolling
keys, which you can use to move around in the
hierarchy. If you use one of these keys to highlight a
different item in the center column, new items may
appear in the right column. Similarly, if you
highlight a different item in the left column, new
items may appear in both the center and right
columns. Look what happens when you change the
current item in the sample VISTA-GUIDE screen
(Figure 3-2):

23 Mar 1983 9:45 am

Information
Document editing

I .;;Silmyn,.,,,, I E'i"!I"'''1!9iii!%ih
I Document printing
J Conversion activities
J Autotype activities
1 Resource connections
t
I

I Delete documents
r Rename documents

I Set autoname pattern
I
t
t

Copy or move a document from one RMS catalog to another.

Figure 3-2. The RMS Dashboard

SOFTWARE DESIGN PRACTICES 3-5

/

61695-01

The Miller column technique supports eight scrolling
keys, which you can use to move around in the
hierarchy. If you use one of these keys to highlight a
different item in the center column, new items may
appear in the right column. Similarly, if you
highlight a different item in the left column, new
items may appear in both the center and right
columns. Look what happens when you change the
current item in the sample VISTA-GUIDE screen
(Figure 3-2):

23 Mar 1983 9:45 am

Information
Document editing

I .;;Silmyn,.,,,, I E'i"!I"'''1!9iii!%ih
I Document printing
J Conversion activities
J Autotype activities
1 Resource connections
t
I

I Delete documents
r Rename documents

I Set autoname pattern
I
t
t

Copy or move a document from one RMS catalog to another.

Figure 3-2. The RMS Dashboard

SOFTWARE DESIGN PRACTICES 3-5

I~

/'

3-6

Item is not a very descriptive word, but this is
deliberate. The precise nature of the items that appear
in a Miller column display depends upon the
objectives and requirements of each application. For
example, SCOUT, a network management aid, uses
items that represent the hierarchical elements in an
RMS network (Figure 3-3):

/
Now showing on your local SCOUT screen: Nodes and stuff l.l.b

I I I I
I I I I
I I I I
I I I I
I I I I
I GALAXY I I I
I GENESIS I I Controllers I
I m.. I ImJmI I 'II I
I I MCAPOI I Links I
I I MCAP02 I Pipes I
I I MCAP07 I Resources I
I I MCAP88 I Tasks I
I I MCPA08 I WorkStations I
I I TYPSET2 I I
I I I I
I I I I
I I I I
I I I I

Environment Connect Mask Sidescroll
APD_FPI is a node on the net named Me supporting incoming access.
This is the node running your task.
RMSNL88NRMS version: 2.1.i startup time: 3 Oct 1983 13:46
RMSCOMMANDNRMS booted from disk APD I

~

Figure 3-3. The RMS Dashboard

Any application that needs to represent a hierarchical
information structure is probably well-suited to the
Miller column technique.

SOFfWARE DESIGN PRACTICES 6\695-0\

I~

/'

3-6

Item is not a very descriptive word, but this is
deliberate. The precise nature of the items that appear
in a Miller column display depends upon the
objectives and requirements of each application. For
example, SCOUT, a network management aid, uses
items that represent the hierarchical elements in an
RMS network (Figure 3-3):

/
Now showing on your local SCOUT screen: Nodes and stuff l.l.b

I I I I
I I I I
I I I I
I I I I
I I I I
I GALAXY I I I
I GENESIS I I Controllers I
I m.. I ImJmI I 'II I
I I MCAPOI I Links I
I I MCAP02 I Pipes I
I I MCAP07 I Resources I
I I MCAP88 I Tasks I
I I MCPA08 I WorkStations I
I I TYPSET2 I I
I I I I
I I I I
I I I I
I I I I

Environment Connect Mask Sidescroll
APD_FPI is a node on the net named Me supporting incoming access.
This is the node running your task.
RMSNL88NRMS version: 2.1.i startup time: 3 Oct 1983 13:46
RMSCOMMANDNRMS booted from disk APD I

~

Figure 3-3. The RMS Dashboard

Any application that needs to represent a hierarchical
information structure is probably well-suited to the
Miller column technique.

SOFfWARE DESIGN PRACTICES 6\695-0\

Benefits of the Miller Column Technique

61695-01

The ability to explore freely helps the user to make
sense out of what may in fact be a complicated
information hierarchy. The ability to edit the
hierarchy allows users to manipulate the objects
represented in the hierarchy and to tailor application
software to their own requirements.

The Miller column technique constantly provides a
visual indication of your position within a hierarchy
and thus within the task you are performing. In
VISTA-GUIDE, for example, you can see your
current set of alternatives in the center column, with
the preceding level and the next generation to either
side. This prevents you from becoming disoriented in
a complex information environment.

Finally, since even the best application developer
cannot anticipate the needs of every user, the editing
model for Miller columns lets users tailor hierarchies
to suit their own particular needs.

SOFTWARE DESIGN PRACTICES 3-7

Benefits of the Miller Column Technique

61695-01

The ability to explore freely helps the user to make
sense out of what may in fact be a complicated
information hierarchy. The ability to edit the
hierarchy allows users to manipulate the objects
represented in the hierarchy and to tailor application
software to their own requirements.

The Miller column technique constantly provides a
visual indication of your position within a hierarchy
and thus within the task you are performing. In
VISTA-GUIDE, for example, you can see your
current set of alternatives in the center column, with
the preceding level and the next generation to either
side. This prevents you from becoming disoriented in
a complex information environment.

Finally, since even the best application developer
cannot anticipate the needs of every user, the editing
model for Miller columns lets users tailor hierarchies
to suit their own particular needs.

SOFTWARE DESIGN PRACTICES 3-7

What Miller Columns Look Like

The screen layout for Miller column applications has
been standardized and is presented here to ensure
cross-application uniformity.

Miller Columns in the RMS Dashboard

3-8

The Miller column technique has been designed to
integrate into the RMS Dashboard described in
Chapter 2, "General Standards." It makes the
following use of its four elements:

Banner Line: The Banner Line holds a standard
program identification message. However, if a Miller
column application supports editing capabilities,
columns 27 through 80 of the Banner Line are
reserved for the animation of activities relating to the
LIFO stack. This animation is discussed later in this
chapter.

Frame: In Miller column applications, the Frame
serves as a border drawn with box-drawing
characters, as discussed in Chapter 3.

Option/Prompt Line: The Option/Prompt Line is
reserved expressly for ring menus. Many of the
standard Miller column editing techniques involve the
use of ring menus. Applications which support these
techniques must do so through standard ring menus.
Applications which do not support these techniques
should not use the Option/Prompt Line.

Help/Response Window: Miller column applications
should use the Help/Response Window to display
context-sensitive help information or to collect user
input relating to program operations or ring menu
interactions.

SOFTWARE DESIGN PRACTICES 61695-01

What Miller Columns Look Like

The screen layout for Miller column applications has
been standardized and is presented here to ensure
cross-application uniformity.

Miller Columns in the RMS Dashboard

3-8

The Miller column technique has been designed to
integrate into the RMS Dashboard described in
Chapter 2, "General Standards." It makes the
following use of its four elements:

Banner Line: The Banner Line holds a standard
program identification message. However, if a Miller
column application supports editing capabilities,
columns 27 through 80 of the Banner Line are
reserved for the animation of activities relating to the
LIFO stack. This animation is discussed later in this
chapter.

Frame: In Miller column applications, the Frame
serves as a border drawn with box-drawing
characters, as discussed in Chapter 3.

Option/Prompt Line: The Option/Prompt Line is
reserved expressly for ring menus. Many of the
standard Miller column editing techniques involve the
use of ring menus. Applications which support these
techniques must do so through standard ring menus.
Applications which do not support these techniques
should not use the Option/Prompt Line.

Help/Response Window: Miller column applications
should use the Help/Response Window to display
context-sensitive help information or to collect user
input relating to program operations or ring menu
interactions.

SOFTWARE DESIGN PRACTICES 61695-01

Dimensions of the Miller Column Display

The Dashboard Frame is modified by the addition of
vertical lines in columns 27 and 53. These lines
divide the Frame into three Miller columns, each of
which contains a 16 line by 25 character displayable
area. The positions at which these vertical lines
intersect with the Frame borders are occupied by T
and inverted-T graphic characters.

Item Padding Spaces

Each item always appears with a blank space to its
right and left. When an item appears in inverse
video, so do these padding spaces.

Inverse Video

In the left and center columns, the items that appear
on the tenth screen line always appear in inverse
video (along with their padding spaces). Items in the
right-hand column never appear in inverse video.

Cursor Behavior

The Icon

61695-01

The highlighted item in the center column is called
the current item. It is the user's focal point. The
system cursor always appears over the left-hand
padding space of the current item, unless the user's
focal point changes, for example to a ring menu on
the Option/Prompt Line.

Every Miller column application has associated with
it an icon, which is an alphanumeric or graphic image
suggestive of the application. For example, VISTA­
GUIDE uses an icon suggestive of the DATAPOINT
software world: the DATAPOINT "D".

SOFTWARE DESIGN PRACTICES 3-9

Dimensions of the Miller Column Display

The Dashboard Frame is modified by the addition of
vertical lines in columns 27 and 53. These lines
divide the Frame into three Miller columns, each of
which contains a 16 line by 25 character displayable
area. The positions at which these vertical lines
intersect with the Frame borders are occupied by T
and inverted-T graphic characters.

Item Padding Spaces

Each item always appears with a blank space to its
right and left. When an item appears in inverse
video, so do these padding spaces.

Inverse Video

In the left and center columns, the items that appear
on the tenth screen line always appear in inverse
video (along with their padding spaces). Items in the
right-hand column never appear in inverse video.

Cursor Behavior

The Icon

61695-01

The highlighted item in the center column is called
the current item. It is the user's focal point. The
system cursor always appears over the left-hand
padding space of the current item, unless the user's
focal point changes, for example to a ring menu on
the Option/Prompt Line.

Every Miller column application has associated with
it an icon, which is an alphanumeric or graphic image
suggestive of the application. For example, VISTA­
GUIDE uses an icon suggestive of the DATAPOINT
software world: the DATAPOINT "D".

SOFTWARE DESIGN PRACTICES 3-9

3-10

The Miller column icon occupies the leftmost column
in the hierarchy. Whenever the application is
invoked, the Miller columns appear with the icon in
the left column and the first data column in the
center. An exception is Vista-Guide, which returns
the user to the position the columns occupied when
they were last displayed.

SOFTWARE DESIGN PRACTICES 61695-01 3-10

The Miller column icon occupies the leftmost column
in the hierarchy. Whenever the application is
invoked, the Miller columns appear with the icon in
the left column and the first data column in the
center. An exception is Vista-Guide, which returns
the user to the position the columns occupied when
they were last displayed.

SOFTWARE DESIGN PRACTICES 61695-01

Moving Around in Miller Columns

One of the primary purposes of Miller columns is to
allow users to roam around within an information
hierarchy. There are standard definitions for eight
scrolling keys that allow a user to change his position
within a hierarchy.

These eight keys do not provide cursor movement.
The cursor always appears over the current item
unless the user is engaged in a ring menu or prompt
on the Option/Prompt Line.

The following pages describe the screen animation
associated with each of the eight scrolling keys.
There are references throughout to columns changing
position. Whenever the standards call for columns to
move a column width to the left or right, what is
called for is smooth scrolling, not a sudden repainting
of the screen.

Left Arrow Key

The Left Arrow Key moves the Miller columns one
column width to the right.

If the center column is already the topmost data
column (i.e., the icon currently appears in the left
column), the Left Arrow Key produces no effect.
Otherwise, the Left Arrow Key changes the current
item from inverse to normal video, then moves all
three columns one column width to the right.

Right Arrow Key

61695-01

The Right Arrow Key moves the Miller columns one
column width to the left.

SOFTWARE DESIGN PRACTICES 3-11

Moving Around in Miller Columns

One of the primary purposes of Miller columns is to
allow users to roam around within an information
hierarchy. There are standard definitions for eight
scrolling keys that allow a user to change his position
within a hierarchy.

These eight keys do not provide cursor movement.
The cursor always appears over the current item
unless the user is engaged in a ring menu or prompt
on the Option/Prompt Line.

The following pages describe the screen animation
associated with each of the eight scrolling keys.
There are references throughout to columns changing
position. Whenever the standards call for columns to
move a column width to the left or right, what is
called for is smooth scrolling, not a sudden repainting
of the screen.

Left Arrow Key

The Left Arrow Key moves the Miller columns one
column width to the right.

If the center column is already the topmost data
column (i.e., the icon currently appears in the left
column), the Left Arrow Key produces no effect.
Otherwise, the Left Arrow Key changes the current
item from inverse to normal video, then moves all
three columns one column width to the right.

Right Arrow Key

61695-01

The Right Arrow Key moves the Miller columns one
column width to the left.

SOFTWARE DESIGN PRACTICES 3-11

If the current item has no descendants, the Right
Arrow Key produces no effect. Otherwise, the Right
Arrow Key changes the item on the tenth screen line
in the right column from normal to inverse video,
then moves all three columns one column-width to
the left.

Up Arrow Key

The Up Arrow Key moves the items in the center
column down one line. If the current item is at the
top of the column, the Up Arrow Key produces no
effect.

Down Arrow Key

The Down Arrow Key moves the items in the center
column up one line. If the current item is at the
bottom of the column, the Down Arrow Key
produces no effect.

Top Left Corner Key

The Top Left Comer (TLC) Key moves the items in
the left column down one line. If no item appears
above the tenth screen line in the left column, the
TLC Key produces no effect.

If the user selects an item in the left column for
which no descendants exist, thus leaving a "black
hole" in the center column, all three columns move
one column width to the right (as if the user had
pressed the TLC Key followed by the Left Arrow
Key).

Bottom Left Corner Key

3-12

The Bottom Left Comer (BLC) Key moves the items
in the left column up one line. If no item appears

SOFTWARE DESIGN PRACTICES 61695·01

If the current item has no descendants, the Right
Arrow Key produces no effect. Otherwise, the Right
Arrow Key changes the item on the tenth screen line
in the right column from normal to inverse video,
then moves all three columns one column-width to
the left.

Up Arrow Key

The Up Arrow Key moves the items in the center
column down one line. If the current item is at the
top of the column, the Up Arrow Key produces no
effect.

Down Arrow Key

The Down Arrow Key moves the items in the center
column up one line. If the current item is at the
bottom of the column, the Down Arrow Key
produces no effect.

Top Left Corner Key

The Top Left Comer (TLC) Key moves the items in
the left column down one line. If no item appears
above the tenth screen line in the left column, the
TLC Key produces no effect.

If the user selects an item in the left column for
which no descendants exist, thus leaving a "black
hole" in the center column, all three columns move
one column width to the right (as if the user had
pressed the TLC Key followed by the Left Arrow
Key).

Bottom Left Corner Key

3-12

The Bottom Left Comer (BLC) Key moves the items
in the left column up one line. If no item appears

SOFTWARE DESIGN PRACTICES 61695·01

below the tenth screen line in the left column, the
BLC Key produces no effect.

If the user selects an item in the left column for
which no descendants exist, all three columns move
one column width to the right (as if the user had
pressed the BLC Key followed by the Left Arrow
Key).

Top Right Corner Key

The Top Right Comer (TRC) Key moves the items in
the right column down one line. If no item appears
above the tenth screen line in the right column, the
TRC Key produces no effect.

Bottom Right Corner Key

The Bottom Right Comer (BRC) Key moves the
items in the right column up one line. If no item
appears below the tenth screen line in the right
column, the BRC Key produces no effect.

Screen Update Timeout

When you change the highlighted option in the center
or left column, other items in the hierarchy may
change. Applications should not attempt to update the
items in the hierarchy during the scrolling process; to
do so would visually confuse users and impose
unacceptable performance limitations. The standard
timeout for Miller column updating is one-half
second. This means that Miller column applications
should update the items in the columns whenever a
user ceases scrolling for one-half second.

Inverse Video During Scrolling

61695-01

During vertical scrolling of the columns, the inverse
video bars that mark the current item and its ancestor

SOFTWARE DESIGN PRACTICES 3-13

below the tenth screen line in the left column, the
BLC Key produces no effect.

If the user selects an item in the left column for
which no descendants exist, all three columns move
one column width to the right (as if the user had
pressed the BLC Key followed by the Left Arrow
Key).

Top Right Corner Key

The Top Right Comer (TRC) Key moves the items in
the right column down one line. If no item appears
above the tenth screen line in the right column, the
TRC Key produces no effect.

Bottom Right Corner Key

The Bottom Right Comer (BRC) Key moves the
items in the right column up one line. If no item
appears below the tenth screen line in the right
column, the BRC Key produces no effect.

Screen Update Timeout

When you change the highlighted option in the center
or left column, other items in the hierarchy may
change. Applications should not attempt to update the
items in the hierarchy during the scrolling process; to
do so would visually confuse users and impose
unacceptable performance limitations. The standard
timeout for Miller column updating is one-half
second. This means that Miller column applications
should update the items in the columns whenever a
user ceases scrolling for one-half second.

Inverse Video During Scrolling

61695-01

During vertical scrolling of the columns, the inverse
video bars that mark the current item and its ancestor

SOFTWARE DESIGN PRACTICES 3-13

3-14

must remain solid. You can accomplish this by
treating each column as a set of three separate
subwindows:

• the region above the tenth screen line,

• the tenth screen line itself, and

• the region below the tenth screen line.

If your program first rewrites the tenth screen line,
then scrolls the other two subwindows, the inverse
video bars need never blink off.

SOFTWARE DESIGN PRACTICES 61695·01 3-14

must remain solid. You can accomplish this by
treating each column as a set of three separate
subwindows:

• the region above the tenth screen line,

• the tenth screen line itself, and

• the region below the tenth screen line.

If your program first rewrites the tenth screen line,
then scrolls the other two subwindows, the inverse
video bars need never blink off.

SOFTWARE DESIGN PRACTICES 61695·01

Editing Operations

Insert

61695-01

Some Miller column applications just allow the user
to move around in, and thus investigate the structure
and content of, an information hierarchy. However,
most applications will want to provide some users the
ability to edit the hierarchy - to add, delete, and
change items and information that is associated with
them. For example, one of VISTA-GUIDE's benefits
is that it allows users to tailor the activity hierarchy
to their own personal requirements.

The Miller column editing model allows for complex
restructuring of the items in a hierarchy. It provides
the user with facilities that enable him to enter new
items, delete existing items, and move items from
one position to another within the hierarchy. Central
to the editing model is a last-in-first-out (LIFO) stack
in which the user can temporarily store items that he
is editing or repositioning within the hierarchy.

Miller column applications that support any of the
editing capabilities discussed in this section must
provide these capabilities as described here. For
example, programs must use the Insert Key to
support the Insert operation; this may not be
implemented as a ring menu option. Application
designers may of course develop application-specific
program controls that are not discussed here.

The Insert operation allows the user to add an item to
the hierarchy. The Insert operation is invoked by
pressing and releasing the Insert Key - or, on the
current general purpose keyboard, the F2 Key.

SOFTWARE DESIGN PRACTICES 3-15

Editing Operations

Insert

61695-01

Some Miller column applications just allow the user
to move around in, and thus investigate the structure
and content of, an information hierarchy. However,
most applications will want to provide some users the
ability to edit the hierarchy - to add, delete, and
change items and information that is associated with
them. For example, one of VISTA-GUIDE's benefits
is that it allows users to tailor the activity hierarchy
to their own personal requirements.

The Miller column editing model allows for complex
restructuring of the items in a hierarchy. It provides
the user with facilities that enable him to enter new
items, delete existing items, and move items from
one position to another within the hierarchy. Central
to the editing model is a last-in-first-out (LIFO) stack
in which the user can temporarily store items that he
is editing or repositioning within the hierarchy.

Miller column applications that support any of the
editing capabilities discussed in this section must
provide these capabilities as described here. For
example, programs must use the Insert Key to
support the Insert operation; this may not be
implemented as a ring menu option. Application
designers may of course develop application-specific
program controls that are not discussed here.

The Insert operation allows the user to add an item to
the hierarchy. The Insert operation is invoked by
pressing and releasing the Insert Key - or, on the
current general purpose keyboard, the F2 Key.

SOFTWARE DESIGN PRACTICES 3-15

Screen Animation

When a user presses and releases the Insert
Key, the following animation occurs:

1. The current item and the items above it
in the center column move up one screen line,
leaving a blank space in which the user may
enter a new item from the keyboard.

2. The cursor appears in the first data column of
the blank item, and the application waits for
field keyin (which proceeds according to the
standards presented in Chapter 5, "The Field
Keyin Technique' ').

The inverse video bar remains constant throughout
this operation. The reason for moving the current
item up, rather than down, is to allow the user to
enter a series of items in top-to-bottom order.

The Return Key: If the user presses the Return Key
with the cursor over the first character position of the
new item, or if he presses the Return Key when he
has entered only blanks, no new item is inserted.
Instead, the animation is reversed; that is, the items
which originally moved up to make room for the new
item move back down one screen line, and the
current item is the same item that was current when
the user invoked the Insert operation.

InsertLeft

3-16

The InsertLeft operation allows the user to create a
new column between the left and center columns.
The InsertLeft operation is invoked by chording the
Insert Key with the Left Arrow Key.

SOFfWARE DESIGN PRACTICES 6\695-0\

Screen Animation

When a user presses and releases the Insert
Key, the following animation occurs:

1. The current item and the items above it
in the center column move up one screen line,
leaving a blank space in which the user may
enter a new item from the keyboard.

2. The cursor appears in the first data column of
the blank item, and the application waits for
field keyin (which proceeds according to the
standards presented in Chapter 5, "The Field
Keyin Technique' ').

The inverse video bar remains constant throughout
this operation. The reason for moving the current
item up, rather than down, is to allow the user to
enter a series of items in top-to-bottom order.

The Return Key: If the user presses the Return Key
with the cursor over the first character position of the
new item, or if he presses the Return Key when he
has entered only blanks, no new item is inserted.
Instead, the animation is reversed; that is, the items
which originally moved up to make room for the new
item move back down one screen line, and the
current item is the same item that was current when
the user invoked the Insert operation.

InsertLeft

3-16

The InsertLeft operation allows the user to create a
new column between the left and center columns.
The InsertLeft operation is invoked by chording the
Insert Key with the Left Arrow Key.

SOFfWARE DESIGN PRACTICES 6\695-0\

Screen Animation

When a user presses and releases the
InsertLeft key chord, the following animation
occurs:

1. The current item changes from inverse
to normal video.

2. While the left column remains stationary, the
center and right columns move one column
width to the right; the old center column
becomes the new right column, and the old
right column disappears off screen. This creates
a blank center column into which the user can
enter an item from the keyboard.

3. As soon as the new center column is three
columns wide, an inverse video bar appears and
stretches out to fill the new column.

4. The cursor appears in the first data column of
the blank item, and the application waits for
field keyin (which proceeds according to the
standards outlined .in Chapter 5, "The Field
Keyin Technique' ').

The Return Key: If the user presses the Return Key
with the cursor over the first character position of the
new item, or if he presses the Return Key when he
has entered only blanks, the new item and the new
column must be discarded and the animation which
created them reversed. In other words, with the left
column stationary, the center and right columns move
one column width to the left; the old right column
becomes the new center column, and a new right
column moves in from off-screen.

InsertRight

61695·01

The InsertRight operation is the geometric opposite
of InsertLeft. In other words, it allows the user to

SOFfWARE DESIGN PRACTICES 3-17

Screen Animation

When a user presses and releases the
InsertLeft key chord, the following animation
occurs:

1. The current item changes from inverse
to normal video.

2. While the left column remains stationary, the
center and right columns move one column
width to the right; the old center column
becomes the new right column, and the old
right column disappears off screen. This creates
a blank center column into which the user can
enter an item from the keyboard.

3. As soon as the new center column is three
columns wide, an inverse video bar appears and
stretches out to fill the new column.

4. The cursor appears in the first data column of
the blank item, and the application waits for
field keyin (which proceeds according to the
standards outlined .in Chapter 5, "The Field
Keyin Technique' ').

The Return Key: If the user presses the Return Key
with the cursor over the first character position of the
new item, or if he presses the Return Key when he
has entered only blanks, the new item and the new
column must be discarded and the animation which
created them reversed. In other words, with the left
column stationary, the center and right columns move
one column width to the left; the old right column
becomes the new center column, and a new right
column moves in from off-screen.

InsertRight

61695·01

The InsertRight operation is the geometric opposite
of InsertLeft. In other words, it allows the user to

SOFfWARE DESIGN PRACTICES 3-17

Remove

3-18

create a new column between the center and right
columns. It is also the only way to extend the
hierarchy to a new level. The InsertRight operation is
invoked by chording the Insert Key with the Right
Arrow Key.

Screen Animation

The animation that accompanies the
InsertRight operation is similar to that for
InsertLeft. While the right column remains
stationary, the center and left columns move
one column width to the left; the old center
column becomes the new left column, and
the old left column disappears off screen.
This leaves a blank center column into which
the user can enter an item from the keyboard.

The Return Key: If the user presses the Return Key
with the cursor over the first character position of the
new item, or if he presses the Return Key when he
has entered only blanks, the new item and the new
column must be discarded and the animation which
created them reversed. In other words, with the right
column stationary, the center and left columns move
one column width to the right; the center column
(which is vacant) disappears; the old left column
becomes the center column again; and a new left
column moves in from off screen.

The Remove operation allows the user to remove the
current item from the hierarchy (along with any of its
hierarchical descendants) and place it in a recallable
LIFO stack. The Remove operation is invoked by
pressing and releasing the Remove Key - or, on the
current general purpose keyboard - the F3 Key.

SOFTWARE DESIGN PRACTICES 61695·01

Remove

3-18

create a new column between the center and right
columns. It is also the only way to extend the
hierarchy to a new level. The InsertRight operation is
invoked by chording the Insert Key with the Right
Arrow Key.

Screen Animation

The animation that accompanies the
InsertRight operation is similar to that for
InsertLeft. While the right column remains
stationary, the center and left columns move
one column width to the left; the old center
column becomes the new left column, and
the old left column disappears off screen.
This leaves a blank center column into which
the user can enter an item from the keyboard.

The Return Key: If the user presses the Return Key
with the cursor over the first character position of the
new item, or if he presses the Return Key when he
has entered only blanks, the new item and the new
column must be discarded and the animation which
created them reversed. In other words, with the right
column stationary, the center and left columns move
one column width to the right; the center column
(which is vacant) disappears; the old left column
becomes the center column again; and a new left
column moves in from off screen.

The Remove operation allows the user to remove the
current item from the hierarchy (along with any of its
hierarchical descendants) and place it in a recallable
LIFO stack. The Remove operation is invoked by
pressing and releasing the Remove Key - or, on the
current general purpose keyboard - the F3 Key.

SOFTWARE DESIGN PRACTICES 61695·01

61695-01

Screen Animation

Generally, the following animation occurs
when a user presses the Remove Key:

1. The current item disappears from its
position, and the items above it in the center
column move down one screen line.

2. The removed item reappears in inverse video
aligned over the center column on the banner
line. The program smoothly scrolls columns 28
through 80 of the banner line 27 columns to the
right, which leaves the removed entry properly
aligned over the right column.

3. If an item already exists in the LIFO stack, it
simultaneously scrolls off-screen to make room
for the newly removed item, which now
occupies the top position in the stack.

Exceptions: There are three conditions under which
the screen animation is different:

• Removing the Top Item: If the current item is
the topmost item in the center column when the
user presses the Remove Key, the remaining
items in the column scroll up one screen line.

• Leaving an Empty Column: If the current item
is the only item in the center column when the
user presses the Remove Key, the columns move
one column width to the right, leaving an empty
right column with the parent of the removed item
as the new current item. Whenever this occurs,
the keyahead buffer is cleared, and no keyin is
accepted until the cursor is turned back on
marking the new current item.

• Emptying the Hierarchy: If the current item is
the only item in the hierarchy when the user
presses the Remove Key, the Remove operation
leaves the center column set up for the user to
enter a new current item from the keyboard. The

SOFTWARE DESIGN PRACTICES 3-19 61695-01

Screen Animation

Generally, the following animation occurs
when a user presses the Remove Key:

1. The current item disappears from its
position, and the items above it in the center
column move down one screen line.

2. The removed item reappears in inverse video
aligned over the center column on the banner
line. The program smoothly scrolls columns 28
through 80 of the banner line 27 columns to the
right, which leaves the removed entry properly
aligned over the right column.

3. If an item already exists in the LIFO stack, it
simultaneously scrolls off-screen to make room
for the newly removed item, which now
occupies the top position in the stack.

Exceptions: There are three conditions under which
the screen animation is different:

• Removing the Top Item: If the current item is
the topmost item in the center column when the
user presses the Remove Key, the remaining
items in the column scroll up one screen line.

• Leaving an Empty Column: If the current item
is the only item in the center column when the
user presses the Remove Key, the columns move
one column width to the right, leaving an empty
right column with the parent of the removed item
as the new current item. Whenever this occurs,
the keyahead buffer is cleared, and no keyin is
accepted until the cursor is turned back on
marking the new current item.

• Emptying the Hierarchy: If the current item is
the only item in the hierarchy when the user
presses the Remove Key, the Remove operation
leaves the center column set up for the user to
enter a new current item from the keyboard. The

SOFTWARE DESIGN PRACTICES 3-19

Copy

Recall

3-20

inverse video bar does not move from its position,
and the cursor appears in the first data column of
the blank item.

The Copy operation allows the user to make an
identical copy of the current item (and its hierarchical
children) and place the copy at the top of the LIFO
stack. The Copy operation is invoked by pressing and
releasing the Copy Key - or, on the current general
purpose keyboard, the F4 Key.

Screen Animation

When the user presses the Copy Key, the following
screen animation occurs:

1. An identical copy of the current item appears in
inverse video aligned over the center column on
the Banner Line.

2. The program then smoothly scrolls columns 28
through 80 of the Banner Line 27 chracters to
the right, which leaves the copied entry
properly aligned over the right column. If an
item already exists in the LIFO stack, it scrolls
off-screen to make room for the copied item.
The copied item is now the topmost item in the
LIFO stack.

The Recall operation allows the user to recall the
topmost item from the LIFO stack and insert it as the
current item in the center column. The Recall
operation is invoked by pressing and releasing the
Recall Key - or, on the current general purpose
keyboard, the F1 Key.

SOFTWARE DESIGN PRACTICES 61695-01

Copy

Recall

3-20

inverse video bar does not move from its position,
and the cursor appears in the first data column of
the blank item.

The Copy operation allows the user to make an
identical copy of the current item (and its hierarchical
children) and place the copy at the top of the LIFO
stack. The Copy operation is invoked by pressing and
releasing the Copy Key - or, on the current general
purpose keyboard, the F4 Key.

Screen Animation

When the user presses the Copy Key, the following
screen animation occurs:

1. An identical copy of the current item appears in
inverse video aligned over the center column on
the Banner Line.

2. The program then smoothly scrolls columns 28
through 80 of the Banner Line 27 chracters to
the right, which leaves the copied entry
properly aligned over the right column. If an
item already exists in the LIFO stack, it scrolls
off-screen to make room for the copied item.
The copied item is now the topmost item in the
LIFO stack.

The Recall operation allows the user to recall the
topmost item from the LIFO stack and insert it as the
current item in the center column. The Recall
operation is invoked by pressing and releasing the
Recall Key - or, on the current general purpose
keyboard, the F1 Key.

SOFTWARE DESIGN PRACTICES 61695-01

Discard

61695-01

Screen Animation

The screen animation for the Recall operation is the
exact opposite of the Remove animation. When the
user presses the Recall Key, the following animation
occurs:

1. Columns 28 through 80 on the Banner Line
move 27 columns to the left, aligning the item
being recalled over the center column.

2. Simultaneously, the next recallable item from
the stack scrolls on screen to align with the
right column.

3. Then, the item being recalled disappears from
the Banner Line and appears as the current item
in the center column. The current item and the
items above it in the center column move up
one screen line to make room for the recalled
item.

Recall with the Insert Operations: If the user
invokes one of the insert operations (Insert,
InsertLeft, or InsertRight), then presses the Recall
Key while the cursor is over the first data column of
the new item, Recall results in moving the topmost
item in the LIFO stack into the position opened up by
the Insert operation.

The Discard operation allows the user to delete
permanently the topmost item in the LIFO stack. The
Discard operation is invoked through a ring menu.
Miller column applications that support the Discard
operation must use "Discard" as the ring menu
option string through which it is invoked.

SOFfWARE DESIGN PRACTICES 3-21

Discard

61695-01

Screen Animation

The screen animation for the Recall operation is the
exact opposite of the Remove animation. When the
user presses the Recall Key, the following animation
occurs:

1. Columns 28 through 80 on the Banner Line
move 27 columns to the left, aligning the item
being recalled over the center column.

2. Simultaneously, the next recallable item from
the stack scrolls on screen to align with the
right column.

3. Then, the item being recalled disappears from
the Banner Line and appears as the current item
in the center column. The current item and the
items above it in the center column move up
one screen line to make room for the recalled
item.

Recall with the Insert Operations: If the user
invokes one of the insert operations (Insert,
InsertLeft, or InsertRight), then presses the Recall
Key while the cursor is over the first data column of
the new item, Recall results in moving the topmost
item in the LIFO stack into the position opened up by
the Insert operation.

The Discard operation allows the user to delete
permanently the topmost item in the LIFO stack. The
Discard operation is invoked through a ring menu.
Miller column applications that support the Discard
operation must use "Discard" as the ring menu
option string through which it is invoked.

SOFfWARE DESIGN PRACTICES 3-21

Rename

3-22

Screen Animation

When the user selects the Discard operation, the
following screen animation occurs:

1. The first and last characters of the inverse video
item that appears in the stack position on the
Banner Line are replaced with normal video
spaces.

2. Step 1 reiterates until the item has been
completely erased.

3. The new topmost item in the stack moves in
from off-screen until it is aligned over the right
column.

NOTE: Once discarded, an item can never be
recalled.

The Rename operation allows the user to change the
text associated with the current item. The Rename
operation is invoked through a ring menu. Miller
column applications that support the Rename
operation must use "Rename" as the ring menu
option string through which it is invoked.

Screen Animation

When the user invokes the Rename operation, the
cursor appears over the first text character of the
current item (not over the padding space to its left).
Entry of the new current option conforms to the non-

\destructive field keyin standards discussed in Chapter
5, "The Field Keyin Technique."

SOFTWARE DESIGN PRACTICES 61695-01

Rename

3-22

Screen Animation

When the user selects the Discard operation, the
following screen animation occurs:

1. The first and last characters of the inverse video
item that appears in the stack position on the
Banner Line are replaced with normal video
spaces.

2. Step 1 reiterates until the item has been
completely erased.

3. The new topmost item in the stack moves in
from off-screen until it is aligned over the right
column.

NOTE: Once discarded, an item can never be
recalled.

The Rename operation allows the user to change the
text associated with the current item. The Rename
operation is invoked through a ring menu. Miller
column applications that support the Rename
operation must use "Rename" as the ring menu
option string through which it is invoked.

Screen Animation

When the user invokes the Rename operation, the
cursor appears over the first text character of the
current item (not over the padding space to its left).
Entry of the new current option conforms to the non-

\destructive field keyin standards discussed in Chapter
5, "The Field Keyin Technique."

SOFTWARE DESIGN PRACTICES 61695-01

Merge

6\695-0\

The Merge operation is the most complex of Miller
column operations, allowing the user to remove the
current entry while retaining its descendants. First the
current entry is removed to the LIFO stack, then its
descendants are promoted one hierarchical level (i.e.,
one column position to the left), filling and often
expanding the gap left by their common ancestor.
The Merge operation is invoked through a ring menu.
Miller column applications that support the Merge
operation must use "Merge" as the ring menu option
string through which it is invoked.

Screen Animation

When the user invokes the Merge operation, the
following screen animation occurs:

1. The current item is removed; the accompanying
animation is the same as it would be if the user
had pressed the Remove Key.

2. The items in the rightmost column move up
until the bottommost item appears on the tenth
screen line.

3. The bottommost item disappears from the right
column and reappears as the current item in the
center column. The items in the right column
move down one line. The previous current item
and any other items that appeared above it
move up one screen line in the center column to
accommodate the item that has moved over
from the right column.

4. Step 3 reiterates until there are no items left in
the right column.

SOFfWARE DESIGN PRACTICES 3-23

Merge

6\695-0\

The Merge operation is the most complex of Miller
column operations, allowing the user to remove the
current entry while retaining its descendants. First the
current entry is removed to the LIFO stack, then its
descendants are promoted one hierarchical level (i.e.,
one column position to the left), filling and often
expanding the gap left by their common ancestor.
The Merge operation is invoked through a ring menu.
Miller column applications that support the Merge
operation must use "Merge" as the ring menu option
string through which it is invoked.

Screen Animation

When the user invokes the Merge operation, the
following screen animation occurs:

1. The current item is removed; the accompanying
animation is the same as it would be if the user
had pressed the Remove Key.

2. The items in the rightmost column move up
until the bottommost item appears on the tenth
screen line.

3. The bottommost item disappears from the right
column and reappears as the current item in the
center column. The items in the right column
move down one line. The previous current item
and any other items that appeared above it
move up one screen line in the center column to
accommodate the item that has moved over
from the right column.

4. Step 3 reiterates until there are no items left in
the right column.

SOFfWARE DESIGN PRACTICES 3-23

Application-Dependent Extensions

3-24

This document has described a significant number of
standards for the Miller column technique. However,
these standards should not discourage application
designers from implementing extensions that are
appropriate for particular product requirements.

If you need to inc1udeany of the features we have
discussed, you should do so in the manner described
in this chapter. However, if you need to implement a
feature we have not discussed, you need only ensure
that your design and implementation are in keeping
with the general principles and guidelines presented
throughout this document. For example, VISTA­
GUIDE displays a help message about the current
item whenever you press the Help Key.

SOFTWARE DESIGN PRACTICES 61695-01

Application-Dependent Extensions

3-24

This document has described a significant number of
standards for the Miller column technique. However,
these standards should not discourage application
designers from implementing extensions that are
appropriate for particular product requirements.

If you need to inc1udeany of the features we have
discussed, you should do so in the manner described
in this chapter. However, if you need to implement a
feature we have not discussed, you need only ensure
that your design and implementation are in keeping
with the general principles and guidelines presented
throughout this document. For example, VISTA­
GUIDE displays a help message about the current
item whenever you press the Help Key.

SOFTWARE DESIGN PRACTICES 61695-01

CHAPTER 4.
THE RING MENU TECHNIQUE

Contents
General Principles 4-2

The Purpose of Ring Menus 4-2

What a Ring Menu looks Like 4-4
Option Strings 4-4
Option String Padding Spaces 4-4
Bringing Up a Ring Menu 4-4
The Current Option 4-5
Spacing Between Option Strings 4-5

Ring Menu Operations 4-6
Mode Switching 4-6

The Command Key 4-6
The Quit Key 4-7
The Return Key 4-7

Moving Around in a Ring Menu 4-8
The Left and Right Arrow Keys 4-8
Alternative Cursor Movement 4-8

Nested Ring Menus 4-10

61695-01 SOFfWARE DESIGN PRACTICES 4-1

CHAPTER 4.
THE RING MENU TECHNIQUE

Contents
General Principles 4-2

The Purpose of Ring Menus 4-2

What a Ring Menu looks Like 4-4
Option Strings 4-4
Option String Padding Spaces 4-4
Bringing Up a Ring Menu 4-4
The Current Option 4-5
Spacing Between Option Strings 4-5

Ring Menu Operations 4-6
Mode Switching 4-6

The Command Key 4-6
The Quit Key 4-7
The Return Key 4-7

Moving Around in a Ring Menu 4-8
The Left and Right Arrow Keys 4-8
Alternative Cursor Movement 4-8

Nested Ring Menus 4-10

61695-01 SOFfWARE DESIGN PRACTICES 4-1

General Principles

Most programs allow users to specify options or
commands in one form or another. RMS utilities
support option specification through a combination of
short text strings, commas, semicolons, and hyphens.
lEaS provides its Command Line. RMS Mail and
Multiplan support versions of ring menus that are
functionally dissimilar.

Before the release of this document, there was no
standard convention for command entry or option
specification. The RMS Dashboard was designed to
provide a standard method: the ring menu technique.
All programs that require an option specification
mode should use the ring menu technique, which
consists of

• a screen format,

• definitions for 5 control keys, and

• description of some related screen behavior.

Ring menus are designed to work effectively in
Miller column, freeform text, and field keyin
applications. Some Miller column applications
support the Discard, Rename, and Merge operations
through a ring menu. Freeform text and field keyin
applications can also use ring menus; for example,
VISTA-SCRIPT™ supports field keyin Within the
Dashboard Frame and provides a ring menu on the
Option/Prompt Line.

The Purpose of Ring Menus

4-2

A ring menu consists of a series of words or phrases,
each of which corresponds to an activity you might
want to perform in a given context. For example,

SOFTWARE DESIGN PRACTICES 61695-01

General Principles

Most programs allow users to specify options or
commands in one form or another. RMS utilities
support option specification through a combination of
short text strings, commas, semicolons, and hyphens.
lEaS provides its Command Line. RMS Mail and
Multiplan support versions of ring menus that are
functionally dissimilar.

Before the release of this document, there was no
standard convention for command entry or option
specification. The RMS Dashboard was designed to
provide a standard method: the ring menu technique.
All programs that require an option specification
mode should use the ring menu technique, which
consists of

• a screen format,

• definitions for 5 control keys, and

• description of some related screen behavior.

Ring menus are designed to work effectively in
Miller column, freeform text, and field keyin
applications. Some Miller column applications
support the Discard, Rename, and Merge operations
through a ring menu. Freeform text and field keyin
applications can also use ring menus; for example,
VISTA-SCRIPT™ supports field keyin Within the
Dashboard Frame and provides a ring menu on the
Option/Prompt Line.

The Purpose of Ring Menus

4-2

A ring menu consists of a series of words or phrases,
each of which corresponds to an activity you might
want to perform in a given context. For example,

SOFTWARE DESIGN PRACTICES 61695-01

6\695-0\

here is one of the ring menus that the OOZL editor
displays:

OOZL l.l.j ...
Find Remember Tabs Window IAItY.I Uppercase

"Find," "Remember," "Tabs," "Window,"
"End," and "Uppercase" are called option strings.
Whenever a ring menu appears on the screen one of
its option strings appears in inverse video. This is the
current option and, like the current item in a Miller
column display, is the user's focal point. The cursor
appears immediately to the left of the current option.
U sing cursor movement keys, you can move the
cursor (and the i~verse video bar) from one option to
another and select the one you want by pressing the
Return Key.

At any time, a ring menu allows a user to do any of
three things:

• invoke the current option,

• select a different current option, or

• exit the ring menu and resume the previous
activity.

Occasionally ring menus are nested; that is, invoking
the current option causes a new ring menu to appear
so the user can provide a more detailed description of
the desired activity. When ring menus are nested, an
additional function should be supported: you must
also be able to move from one level to the next.

This chapter discusses each of these functions in
detail and provides specific implementation
guidelines.

SOFTWARE DESIGN PRACTICES 4-3 6\695-0\

here is one of the ring menus that the OOZL editor
displays:

OOZL l.l.j ...
Find Remember Tabs Window IAItY.I Uppercase

"Find," "Remember," "Tabs," "Window,"
"End," and "Uppercase" are called option strings.
Whenever a ring menu appears on the screen one of
its option strings appears in inverse video. This is the
current option and, like the current item in a Miller
column display, is the user's focal point. The cursor
appears immediately to the left of the current option.
U sing cursor movement keys, you can move the
cursor (and the i~verse video bar) from one option to
another and select the one you want by pressing the
Return Key.

At any time, a ring menu allows a user to do any of
three things:

• invoke the current option,

• select a different current option, or

• exit the ring menu and resume the previous
activity.

Occasionally ring menus are nested; that is, invoking
the current option causes a new ring menu to appear
so the user can provide a more detailed description of
the desired activity. When ring menus are nested, an
additional function should be supported: you must
also be able to move from one level to the next.

This chapter discusses each of these functions in
detail and provides specific implementation
guidelines.

SOFTWARE DESIGN PRACTICES 4-3

What a Ring Menu Looks Like

The Option/Prompt Line of the RMS Dashboard is
reserved expressly for displaying a ring menu and
any prompts that may go along with it.

Ring menus normally occupy a single screen line.
There may be products in which this goal is
impossible to attain. When no alternative is available,
ring menus may occupy two lines (the Option/Prompt
Line and the first line of the Help/Response
Window). No ring menu, however, should ever
occupy more than two screen lines.

Option Strings

A ring menu consists of a series of option strings that
appear on the Option/Prompt Line of the RMS
Dashboard. Each option string consists of a word or
short phrase, the first letter of which is capitalized.

Option String Padding Spaces

A blank space always appears on each side of each
option string in a ring menu. These blanks are called
padding spaces. When an option string appears in
inverse video, so do its padding spaces.

Bringing Up a Ring Menu

4-4

A ring menu appears only when a user specifically
requests it by pressing the Command Key. When the
ring menu first appears, the cursor appears one
column to the left of the left-hand padding space of
the first option string.

SOFTWARE DESIGN PRACTICES 6\695-0\

What a Ring Menu Looks Like

The Option/Prompt Line of the RMS Dashboard is
reserved expressly for displaying a ring menu and
any prompts that may go along with it.

Ring menus normally occupy a single screen line.
There may be products in which this goal is
impossible to attain. When no alternative is available,
ring menus may occupy two lines (the Option/Prompt
Line and the first line of the Help/Response
Window). No ring menu, however, should ever
occupy more than two screen lines.

Option Strings

A ring menu consists of a series of option strings that
appear on the Option/Prompt Line of the RMS
Dashboard. Each option string consists of a word or
short phrase, the first letter of which is capitalized.

Option String Padding Spaces

A blank space always appears on each side of each
option string in a ring menu. These blanks are called
padding spaces. When an option string appears in
inverse video, so do its padding spaces.

Bringing Up a Ring Menu

4-4

A ring menu appears only when a user specifically
requests it by pressing the Command Key. When the
ring menu first appears, the cursor appears one
column to the left of the left-hand padding space of
the first option string.

SOFTWARE DESIGN PRACTICES 6\695-0\

The Current Option

One option string is always the current option. This
option appears in inverse video (along with its
padding spaces). The cursor always appears one
position to the left of the left-hand padding space of
the current option string. For example:

Incomingliffli§niitjLookup Utility Exit

Spacing Between Option Strings

61695-01

The Option strings are spaced as evenly as possible
across the screen. The left-hand padding space of the
leftmost option string appears in column 1 on screen
line 20. At least one but not more than five spaces
(excluding padding spaces) separate each option
string.

If the only alternative is to display a ring menu on
two lines rather than one, you may omit these
separating spaces, resulting in a series of option
strings that are separated only by their padding
spaces. For example:

IncomingMNiliiMLookup Utility Exit

SOFTWARE DESIGN PRACTICES 4-5

The Current Option

One option string is always the current option. This
option appears in inverse video (along with its
padding spaces). The cursor always appears one
position to the left of the left-hand padding space of
the current option string. For example:

Incomingliffli§niitjLookup Utility Exit

Spacing Between Option Strings

61695-01

The Option strings are spaced as evenly as possible
across the screen. The left-hand padding space of the
leftmost option string appears in column 1 on screen
line 20. At least one but not more than five spaces
(excluding padding spaces) separate each option
string.

If the only alternative is to display a ring menu on
two lines rather than one, you may omit these
separating spaces, resulting in a series of option
strings that are separated only by their padding
spaces. For example:

IncomingMNiliiMLookup Utility Exit

SOFTWARE DESIGN PRACTICES 4-5

Ring Menu Operations

Option specification is a simple matter. Ring menus
recognize only a small number of keys:

• Command Key

• Quit Key

• Left Arrow Key

• Right Arrow Key

• Return Key.

This section describes the behavior of these keys. If
you want to read the general guidelines that apply to
these keys, please see Chapter 2, "General
Standards. "

Mode Switching

4-6

Entering and leaving a ring menu involves moving
the user back and forth between two hard modes. The
Command, Quit, and Return Keys support the
required mode switching. These keys are discussed in
more detail below.

The Command Key

The Command Key functions as a toggle switch
between normal operation mode and option
specification mode. You use the Command Key to
enter and exit a ring menu.

When you press the Command Key, a ring menu
appears. If you press it again, the ring menu
vanishes, and the focus of the user's attention returns
to the context from which the ring menu was entered.

SOFTWARE DESIGN PRACTICES 6\695-0\

Ring Menu Operations

Option specification is a simple matter. Ring menus
recognize only a small number of keys:

• Command Key

• Quit Key

• Left Arrow Key

• Right Arrow Key

• Return Key.

This section describes the behavior of these keys. If
you want to read the general guidelines that apply to
these keys, please see Chapter 2, "General
Standards. "

Mode Switching

4-6

Entering and leaving a ring menu involves moving
the user back and forth between two hard modes. The
Command, Quit, and Return Keys support the
required mode switching. These keys are discussed in
more detail below.

The Command Key

The Command Key functions as a toggle switch
between normal operation mode and option
specification mode. You use the Command Key to
enter and exit a ring menu.

When you press the Command Key, a ring menu
appears. If you press it again, the ring menu
vanishes, and the focus of the user's attention returns
to the context from which the ring menu was entered.

SOFTWARE DESIGN PRACTICES 6\695-0\

61695-01

When a ring menu first appears, the leftmost option
string on the Option/Prompt Line is the current
option.

The Quit Key

The Quit Key enables users to leave a context - for
example to exit SCOUT or to return to VISTA­
GUIDE from an activity script without running it.

In a ring menu, the Quit Key allows users to leave
the ring menu and return to the interactive context of
the current program. When you press the Quit Key,
the ring menu disappears from the screen, and the
cursor returns to the location it occupied at the time
you requested the ring menu.

The Return Key

The Return Key lets users select a command or
option. Pressing the Return Key instructs a program
to do the activity specified by the current option. This
often entails changing or somehow manipulating the
data or objects in the Dashboard Frame.

Pressing the Return Key causes the ring menu to
vanish and generally causes the cursor to return to its
former position within the Frame. Sometimes,
however, when a program needs to collect additional
information from a user about the option he has
selected, the ring menu is replaced by one or more
prompts on the Option/Prompt Line. Depending on
the nature of the information to be collected by a
prompt, programs should utilize the standard field
keyin or freeform text model to collect additional
information.

Once in a while, a ring menu is replaced by another
ring menu. This situation is discussed completely
under "Nested Ring Menus" later in this chapter.

SOFTWARE DESIGN PRACTICES 4-7 61695-01

When a ring menu first appears, the leftmost option
string on the Option/Prompt Line is the current
option.

The Quit Key

The Quit Key enables users to leave a context - for
example to exit SCOUT or to return to VISTA­
GUIDE from an activity script without running it.

In a ring menu, the Quit Key allows users to leave
the ring menu and return to the interactive context of
the current program. When you press the Quit Key,
the ring menu disappears from the screen, and the
cursor returns to the location it occupied at the time
you requested the ring menu.

The Return Key

The Return Key lets users select a command or
option. Pressing the Return Key instructs a program
to do the activity specified by the current option. This
often entails changing or somehow manipulating the
data or objects in the Dashboard Frame.

Pressing the Return Key causes the ring menu to
vanish and generally causes the cursor to return to its
former position within the Frame. Sometimes,
however, when a program needs to collect additional
information from a user about the option he has
selected, the ring menu is replaced by one or more
prompts on the Option/Prompt Line. Depending on
the nature of the information to be collected by a
prompt, programs should utilize the standard field
keyin or freeform text model to collect additional
information.

Once in a while, a ring menu is replaced by another
ring menu. This situation is discussed completely
under "Nested Ring Menus" later in this chapter.

SOFTWARE DESIGN PRACTICES 4-7

Moving Around in a Ring Menu

4-8

There are two methods for changing the current
option, which are described below.

The Left and Right Arrow Keys

Ring menus support the Left and Right Arrow Keys
for cursor movement. The Left Arrow Key moves the
cursor (and the inverse video bar) one option string to
the left. The Right Arrow Key moves them one
option string to the right. Both keys support wrapping
at the first and last option string. This is what makes
them ring menus.

Alternative Cursor Movement

When a ring menu includes numerous options, it can
be cumbersome to use the Left and Right Arrow
Keys to move to the option you want. The technique
permits users to minimize keystrokes and to keep
their hands in home position by using an alternative
method of cursor movement.

Each option string begins with a capital letter. You
can move the cursor immediately to an option by
typing its capitalized letter.

IncomingC@'4iJiiiiLookup Utility Exit

In this ring menu you can type a u to select "Utility"
as the current option.

As a general rule, interactive software should avoid
using option strings that begin with the same letter.
If, however, the only alternative is to use an option
string that inadequately suggests the function it
corresponds to, option strings may commence with
the same letter.

SOFTWARE DESIGN PRACTICES 61695-01

Moving Around in a Ring Menu

4-8

There are two methods for changing the current
option, which are described below.

The Left and Right Arrow Keys

Ring menus support the Left and Right Arrow Keys
for cursor movement. The Left Arrow Key moves the
cursor (and the inverse video bar) one option string to
the left. The Right Arrow Key moves them one
option string to the right. Both keys support wrapping
at the first and last option string. This is what makes
them ring menus.

Alternative Cursor Movement

When a ring menu includes numerous options, it can
be cumbersome to use the Left and Right Arrow
Keys to move to the option you want. The technique
permits users to minimize keystrokes and to keep
their hands in home position by using an alternative
method of cursor movement.

Each option string begins with a capital letter. You
can move the cursor immediately to an option by
typing its capitalized letter.

IncomingC@'4iJiiiiLookup Utility Exit

In this ring menu you can type a u to select "Utility"
as the current option.

As a general rule, interactive software should avoid
using option strings that begin with the same letter.
If, however, the only alternative is to use an option
string that inadequately suggests the function it
corresponds to, option strings may commence with
the same letter.

SOFTWARE DESIGN PRACTICES 61695-01

61695-01

When two or more option strings begin with the same
letter, typing that letter causes the cursor (and the
inverse video bar) to advance to whichever option
begins with that letter and would be reached first by
pressing the Right Arrow Key. For example:

Enter Igloo Exit_Fill End Fickle

Because of the current cursor position, typing an e
selects "End" as the current option. Typing another
e selects "Enter."

SOFTWARE DESIGN PRACTICES 4-9 61695-01

When two or more option strings begin with the same
letter, typing that letter causes the cursor (and the
inverse video bar) to advance to whichever option
begins with that letter and would be reached first by
pressing the Right Arrow Key. For example:

Enter Igloo Exit_Fill End Fickle

Because of the current cursor position, typing an e
selects "End" as the current option. Typing another
e selects "Enter."

SOFTWARE DESIGN PRACTICES 4-9

Nested Ring Menus

4-10

From time to time it may be desirable to nest ring
menus. For example, VISTA-SCRIPT allows you to
save an activity script by invoking the Save option on
the ring menu:

Run_Add to chain Quit

You select the Save option by typing an sand
pressing the Return Key. Because there are three
different ways to save an activity script, VISTA­
SCRIPT now displays another ring menu:

Update script Save new script save Command

This ring menu is nested beneath the Save option on
the first-level VISTA-SCRIPT ring menu. The user
only confronts the variations on the Save operation
when he is actually in the process of saving an
activity script.

When necessary, user programs may implement
nested ring menus. However, there should never be
more than two levels of ring menus.

In a nested ring menu, the Enter and Command Keys
behave as described earlier. The Quit Key, however,
operates somewhat differently in a second-level ring
menu. When a user presses the Quit Key, the
program returns him to the first-level ring menu, with
the cursor (and inverse video) positioned over the
previously current option (i.e., the option that
expanded into the second-level ring menu).

SOFTWARE DESIGN PRACTICES 6\695-0\

Nested Ring Menus

4-10

From time to time it may be desirable to nest ring
menus. For example, VISTA-SCRIPT allows you to
save an activity script by invoking the Save option on
the ring menu:

Run_Add to chain Quit

You select the Save option by typing an sand
pressing the Return Key. Because there are three
different ways to save an activity script, VISTA­
SCRIPT now displays another ring menu:

Update script Save new script save Command

This ring menu is nested beneath the Save option on
the first-level VISTA-SCRIPT ring menu. The user
only confronts the variations on the Save operation
when he is actually in the process of saving an
activity script.

When necessary, user programs may implement
nested ring menus. However, there should never be
more than two levels of ring menus.

In a nested ring menu, the Enter and Command Keys
behave as described earlier. The Quit Key, however,
operates somewhat differently in a second-level ring
menu. When a user presses the Quit Key, the
program returns him to the first-level ring menu, with
the cursor (and inverse video) positioned over the
previously current option (i.e., the option that
expanded into the second-level ring menu).

SOFTWARE DESIGN PRACTICES 6\695-0\

CHAPTER 5.
THE FIELD KEVIN TECHNIQUE

Contents
General Principles 5-2

Field Keyin Is Non-Destructive 5-3
Initial Field Display 5-3
Field Editing 5-3
AddWon~ Keys 5-4

6\695-0\ SOFfWARE DESIGN PRACTICES 5-1

CHAPTER 5.
THE FIELD KEVIN TECHNIQUE

Contents
General Principles 5-2

Field Keyin Is Non-Destructive 5-3
Initial Field Display 5-3
Field Editing 5-3
AddWon~ Keys 5-4

6\695-0\ SOFfWARE DESIGN PRACTICES 5-1

General Principles

5-2

The field keyin technique allows programs to collect
data strings from a user. Field keyin is quite common
in numerous existing programs. It allows the VISTA­
SCRIPT component of the RMS command interpreter
to collect information about how a user wants to
perform a particular task. In more complex
situations, field keyin is but a small part of a larger
context, as in VISTA-SCRIPT, where collecting the
label of an item is accomplished through the standard
field keyin mechanisms described in this chapter.

Unlike Miller columns and ring menus, field keyin
has no particular screen format associated with it. It
fits appropriately into the Dashboard Frame, the
Option/Prompt Line, or the Help/Response Window,
as required by the application.

The field keyin technique described in this chapter is
properly implemented in the VISTA-SCRIPT
component of the RMS 2 command interpreter. If
you would like to see an example of the technique,
simply run VISTA-SCRIPT.

SOFTWARE DESIGN PRACTICES 6\695-0\

General Principles

5-2

The field keyin technique allows programs to collect
data strings from a user. Field keyin is quite common
in numerous existing programs. It allows the VISTA­
SCRIPT component of the RMS command interpreter
to collect information about how a user wants to
perform a particular task. In more complex
situations, field keyin is but a small part of a larger
context, as in VISTA-SCRIPT, where collecting the
label of an item is accomplished through the standard
field keyin mechanisms described in this chapter.

Unlike Miller columns and ring menus, field keyin
has no particular screen format associated with it. It
fits appropriately into the Dashboard Frame, the
Option/Prompt Line, or the Help/Response Window,
as required by the application.

The field keyin technique described in this chapter is
properly implemented in the VISTA-SCRIPT
component of the RMS 2 command interpreter. If
you would like to see an example of the technique,
simply run VISTA-SCRIPT.

SOFTWARE DESIGN PRACTICES 6\695-0\

Field Keyin Is Non-Destructive

The DATAPOINT field keyin technique lets you
enter data into a field without committing yourself to
it until you enter a confirming keystroke. At any
time, you can recall data that was previously
"stored" in the field without retyping (or even
remembering) it. We talk about this technique as
"non-destructive field keyin. "

These non-destructive keyin techniques are not
supported by the RMS nucleus. Rather, programs
that need to support field keyin must create their own
field keyin logic using standard RMS single character
keyin mechanisms. The techniques, however, are
extremely simple.

Initial Field Display

If data for a particular field already exists, the
program displays this data intact in the field. When
the user selects that field for editing or entry, the
program places the cursor over the first character of
the data in that field.

Field Editing

61695-01

As soon as the user enters the first new data
character, the pre-existing data vanishes, and the
program begins to echo the user's input. Programs
must screen input intelligently, accepting data that is
alphanumeric or numeric only, depending upon the
requirements of the program. Workstations do not
beep when users enter invalid data during field keyin;
rather, the program simply disregards and does not
echo invalid keystrokes.

SOFTWARE DESIGN PRACTICES 5-3

Field Keyin Is Non-Destructive

The DATAPOINT field keyin technique lets you
enter data into a field without committing yourself to
it until you enter a confirming keystroke. At any
time, you can recall data that was previously
"stored" in the field without retyping (or even
remembering) it. We talk about this technique as
"non-destructive field keyin. "

These non-destructive keyin techniques are not
supported by the RMS nucleus. Rather, programs
that need to support field keyin must create their own
field keyin logic using standard RMS single character
keyin mechanisms. The techniques, however, are
extremely simple.

Initial Field Display

If data for a particular field already exists, the
program displays this data intact in the field. When
the user selects that field for editing or entry, the
program places the cursor over the first character of
the data in that field.

Field Editing

61695-01

As soon as the user enters the first new data
character, the pre-existing data vanishes, and the
program begins to echo the user's input. Programs
must screen input intelligently, accepting data that is
alphanumeric or numeric only, depending upon the
requirements of the program. Workstations do not
beep when users enter invalid data during field keyin;
rather, the program simply disregards and does not
echo invalid keystrokes.

SOFTWARE DESIGN PRACTICES 5-3

Additional Keys

5-4

Programs supporting field keyin acknowledge four
special keys in addition to those they accept as user
data input.

Backspace: The Backspace Key behaves normally,
except that when the user backspaces to the
beginning of the field, any data which was there
before modification began reappears in the field.

Undo: Pressing the Undo Key has the same effect as
backspacing to the beginning of a field. If the user
presses the Undo Key at any time prior to pressing
the Return Key, the program cancels any
modifications that have been made and redisplays any
data which was previously in the field, placing the
cursor again over the first data character.

Enter: The Return Key confirms the data that
currently appears in the field. If the user has entered
new data, the Return Key confirms that; otherwise,
field keyin is terminated, retaining the original data.

Quit: Pressing the Quit Key at any time causes field
keyin to terminate with the original value intact and
correctly displayed.

SOFTWARE DESIGN PRACTICES 61695-01

Additional Keys

5-4

Programs supporting field keyin acknowledge four
special keys in addition to those they accept as user
data input.

Backspace: The Backspace Key behaves normally,
except that when the user backspaces to the
beginning of the field, any data which was there
before modification began reappears in the field.

Undo: Pressing the Undo Key has the same effect as
backspacing to the beginning of a field. If the user
presses the Undo Key at any time prior to pressing
the Return Key, the program cancels any
modifications that have been made and redisplays any
data which was previously in the field, placing the
cursor again over the first data character.

Enter: The Return Key confirms the data that
currently appears in the field. If the user has entered
new data, the Return Key confirms that; otherwise,
field keyin is terminated, retaining the original data.

Quit: Pressing the Quit Key at any time causes field
keyin to terminate with the original value intact and
correctly displayed.

SOFTWARE DESIGN PRACTICES 61695-01

CHAPTER 6.
THE FREEFORM TEXT
EDITING TECHNIQUE

Contents
General Principles 6-2

Moving Around in Freeform Text 6-3
Up and Down Arrow Keys 6-3
Left and Right Arrow Keys 6-3
Bottom Left and Bottom Right Corner Keys . 6-3
Top Left and Top Right Corner Keys 6-4
Window Key 6-4
The Scrolling Technique 6-6

Editing Keys 6-8

SOFfWARE DESIGN PRACTICES 6-1

CHAPTER 6.
THE FREEFORM TEXT
EDITING TECHNIQUE

Contents
General Principles 6-2

Moving Around in Freeform Text 6-3
Up and Down Arrow Keys 6-3
Left and Right Arrow Keys 6-3
Bottom Left and Bottom Right Corner Keys . 6-3
Top Left and Top Right Corner Keys 6-4
Window Key 6-4
The Scrolling Technique 6-6

Editing Keys 6-8

SOFfWARE DESIGN PRACTICES 6-1

General Principles

6-2

The freefonn text editing technique allows programs
to collect arbitrary streams of characters from a user.
Programs supporting freefonn text entry or editing
must process each user keystroke as a single entity.

Freefonn text editing fonns the basis of word
processing programs (like IEOS and WP) and text
editors (like OOZL and EASL). There is a particular
screen fonnat associated with the freefonn text
editing technique (p 2-13). It includes definitions of

• eight cursor movement keys,
• two scrolling keys, and
• four editing keys ..

Freefonn text editing generally occurs in one of two
types of editors:

Line Editors: As the name suggests, line editors deal
with single lines, often called records, of text. Line
editors generally do not provide word wrap or other
WP-type features, although some do provide limited
facilities in this area.

Stream Editors: Stream editors deal with streams of
text that conform to their run-time containers. Stream
editors always support word wrap, although users can
often override it. Most word processing systems are
stream editors.

Both line and stream editors should always place the
user in insert mode as the default. An editor may also
support typeover mode; but, insert mode should be
the default. A method of implementing typeover
mode is presented in the discussion of the Insert Key
under "Editing Keys" at the end of this chapter.

SOFTWARE DESIGN PRACTICES 61695-01

General Principles

6-2

The freefonn text editing technique allows programs
to collect arbitrary streams of characters from a user.
Programs supporting freefonn text entry or editing
must process each user keystroke as a single entity.

Freefonn text editing fonns the basis of word
processing programs (like IEOS and WP) and text
editors (like OOZL and EASL). There is a particular
screen fonnat associated with the freefonn text
editing technique (p 2-13). It includes definitions of

• eight cursor movement keys,
• two scrolling keys, and
• four editing keys ..

Freefonn text editing generally occurs in one of two
types of editors:

Line Editors: As the name suggests, line editors deal
with single lines, often called records, of text. Line
editors generally do not provide word wrap or other
WP-type features, although some do provide limited
facilities in this area.

Stream Editors: Stream editors deal with streams of
text that conform to their run-time containers. Stream
editors always support word wrap, although users can
often override it. Most word processing systems are
stream editors.

Both line and stream editors should always place the
user in insert mode as the default. An editor may also
support typeover mode; but, insert mode should be
the default. A method of implementing typeover
mode is presented in the discussion of the Insert Key
under "Editing Keys" at the end of this chapter.

SOFTWARE DESIGN PRACTICES 61695-01

Moving Around in Freeform Text

The cursor movement keys allow the user to change
his position within freeform text.

Up and Down Arrow Keys

The Up and Down Arrow Keys move the cursor a
single screen line up or down respectively. These
keys cause scrolling whenever necessary to keep the
cursor on the screen.

Left and Right Arrow Keys

The Left and Right Arrow Keys move the cursor a
single column to the left or right respectively. These
keys cause horizontal scrolling whenever necessary to
keep the cursor on the screen.

Stream Editor: In a stream editor, the Left and
Right Arrow Keys wrap at line boundaries.

Line Editor: In a line editor, the Left and Right
Arrow Keys do not wrap at line boundaries.

Bottom Left and Bottom Right Corner Keys

61695-01

The Bottom Left and Right Comer Keys move the
cursor backward and forward by word, always
leaving the cursor over the first character of a word.
These keys also cause scrolling whenever necessary
to keep the cursor on the screen.

Stream Editor: In a stream editor, these keys wrap
at line boundaries.

Line Editor: In a line editor, the BLC or BRC Key
must be pressed twice to accomplish wrapping. For

. SOFTWARE DESIGN PRACTICES 6-3

Moving Around in Freeform Text

The cursor movement keys allow the user to change
his position within freeform text.

Up and Down Arrow Keys

The Up and Down Arrow Keys move the cursor a
single screen line up or down respectively. These
keys cause scrolling whenever necessary to keep the
cursor on the screen.

Left and Right Arrow Keys

The Left and Right Arrow Keys move the cursor a
single column to the left or right respectively. These
keys cause horizontal scrolling whenever necessary to
keep the cursor on the screen.

Stream Editor: In a stream editor, the Left and
Right Arrow Keys wrap at line boundaries.

Line Editor: In a line editor, the Left and Right
Arrow Keys do not wrap at line boundaries.

Bottom Left and Bottom Right Corner Keys

61695-01

The Bottom Left and Right Comer Keys move the
cursor backward and forward by word, always
leaving the cursor over the first character of a word.
These keys also cause scrolling whenever necessary
to keep the cursor on the screen.

Stream Editor: In a stream editor, these keys wrap
at line boundaries.

Line Editor: In a line editor, the BLC or BRC Key
must be pressed twice to accomplish wrapping. For

. SOFTWARE DESIGN PRACTICES 6-3

example, if you press the BRC Key while the cursor
is within the final word in a record, the cursor
advances to one column to the right of the last
nonblank character in the record; if you press it
again, the cursor moves to the first nonblank
character in the next record.

Top Left and Top Right Corner Keys

The Top Left and Right Comer Keys move the cursor
backward and forward by whatever unit is logically
next larger than a word. In a stream editor, this is
generally a paragraph; in a line editor, it is generally
a record. These keys also cause scrolling whenever
necessary to keep the cursor on the screen.

Line Editor: In a line editor, the TLC Key moves
the cursor to the first nonblank character in the
current record; the TRC Key moves the cursor to one
column to the right of the last nonblank character in
the current record. These keys do not wrap at record
boundaries.

Stream Editor: In a stream editor, the TLC and TRC
Keys generally cause cursor movement by paragraph.
The TLC Key moves the cursor to the first nonblank
character in the current paragraph or, if the cursor is
already there, the first nonblank character in the
preceding paragraph. The TRC Key moves the cursor
to the first nonblank character in the next paragraph.

Window Key

6-4

In freeform text editing applications, the Window
Key performs no independent function but rather
serves as a toggle switch between two modes: one for
normal editing operations, the other for express
cursor movement.

When a user presses the Window Key, he enters
express cursor movement mode. The next keystroke

SOFTWARE DESIGN PRACTICES 61695-01

example, if you press the BRC Key while the cursor
is within the final word in a record, the cursor
advances to one column to the right of the last
nonblank character in the record; if you press it
again, the cursor moves to the first nonblank
character in the next record.

Top Left and Top Right Corner Keys

The Top Left and Right Comer Keys move the cursor
backward and forward by whatever unit is logically
next larger than a word. In a stream editor, this is
generally a paragraph; in a line editor, it is generally
a record. These keys also cause scrolling whenever
necessary to keep the cursor on the screen.

Line Editor: In a line editor, the TLC Key moves
the cursor to the first nonblank character in the
current record; the TRC Key moves the cursor to one
column to the right of the last nonblank character in
the current record. These keys do not wrap at record
boundaries.

Stream Editor: In a stream editor, the TLC and TRC
Keys generally cause cursor movement by paragraph.
The TLC Key moves the cursor to the first nonblank
character in the current paragraph or, if the cursor is
already there, the first nonblank character in the
preceding paragraph. The TRC Key moves the cursor
to the first nonblank character in the next paragraph.

Window Key

6-4

In freeform text editing applications, the Window
Key performs no independent function but rather
serves as a toggle switch between two modes: one for
normal editing operations, the other for express
cursor movement.

When a user presses the Window Key, he enters
express cursor movement mode. The next keystroke

SOFTWARE DESIGN PRACTICES 61695-01

61695-01

completes the express cursor movement. It may be
processed in several different ways; each possibility
is discussed below.

Non-Cursor Movement Key

If the user presses the Window Key followed by any
key other than one of the cursor movement keys,
express cursor movement is terminated, the normal
system cursor reappears on the screen, and normal
editing resumes.

Left or Right Arrow Key

If the user presses the Window Key followed by the
Left Arrow Key, the cursor moves to the left margin
or left screen boundary on the current screen line,
whichever is closer to the current cursor position.

The animation becomes more complicated when the
editing container is wider than the physical
workstation screen. If the cursor is at the screen
boundary and the left margin is still off-screen, the
key sequence moves the cursor to the left margin,
scrolling as necessary to keep the cursor on-screen.
This means users may have to press WindowLeft
twice - once to get to the screen boundary and once
to get to the left margin.

The Right Arrow Key works the same way but in the
opposite direction.

Up or Down Arrow Key

If the user presses the Window Key followed by the
Up Arrow Key, the cursor moves to the top of the
text container or the top screen boundary in the
current column, whichever is closer to the current
cursor position.

SOFfWARE DESIGN PRACTICES 6-5 61695-01

completes the express cursor movement. It may be
processed in several different ways; each possibility
is discussed below.

Non-Cursor Movement Key

If the user presses the Window Key followed by any
key other than one of the cursor movement keys,
express cursor movement is terminated, the normal
system cursor reappears on the screen, and normal
editing resumes.

Left or Right Arrow Key

If the user presses the Window Key followed by the
Left Arrow Key, the cursor moves to the left margin
or left screen boundary on the current screen line,
whichever is closer to the current cursor position.

The animation becomes more complicated when the
editing container is wider than the physical
workstation screen. If the cursor is at the screen
boundary and the left margin is still off-screen, the
key sequence moves the cursor to the left margin,
scrolling as necessary to keep the cursor on-screen.
This means users may have to press WindowLeft
twice - once to get to the screen boundary and once
to get to the left margin.

The Right Arrow Key works the same way but in the
opposite direction.

Up or Down Arrow Key

If the user presses the Window Key followed by the
Up Arrow Key, the cursor moves to the top of the
text container or the top screen boundary in the
current column, whichever is closer to the current
cursor position.

SOFfWARE DESIGN PRACTICES 6-5

If the cursor is at the screen boundary and the top of
the container is still off-screen, the key sequence
causes the text to move downward such that the
previous top line becomes the new bottom line. The
cursor remains on the top screen line. If there is not
enough document to do this, the first line of the
document becomes the new top line.

The Down Arrow Key works the same way, but in
the opposite direction.

Corner Keys

If the user presses the Window Key followed by the
Top Left Comer Key, the cursor moves to the
intersection of the left margin and the top of the
editing container or the top screen boundary,
whichever is closer to the current cursor position.

If the cursor is at the top left screen boundary and the
top of the container or the left margin is still off­
screen, the key sequence causes the text to move
downward such that the previous top line becomes
the new bottom line and the cursor moves to the left
margin. If there is not enough document to do this,
the first line of the document becomes the new top
line. The cursor appears at the intersection of the left
margin and the top screen line.

The other comer keys cause the same series of
actions in the appropriate directions.

The Scrolling Technique

6-6

Scrolling occurs whenever a user attempts to move
the cursor outside of the window through which he is
currently viewing some element of the system. For
example, pressing the Down Arrow Key eventually
moves the cursor onto the last screen line; pressing it
again causes the text to move up a line so that the
cursor remains visible on the screen.

SOFTWARE DESIGN PRACTICES 61695·01

If the cursor is at the screen boundary and the top of
the container is still off-screen, the key sequence
causes the text to move downward such that the
previous top line becomes the new bottom line. The
cursor remains on the top screen line. If there is not
enough document to do this, the first line of the
document becomes the new top line.

The Down Arrow Key works the same way, but in
the opposite direction.

Corner Keys

If the user presses the Window Key followed by the
Top Left Comer Key, the cursor moves to the
intersection of the left margin and the top of the
editing container or the top screen boundary,
whichever is closer to the current cursor position.

If the cursor is at the top left screen boundary and the
top of the container or the left margin is still off­
screen, the key sequence causes the text to move
downward such that the previous top line becomes
the new bottom line and the cursor moves to the left
margin. If there is not enough document to do this,
the first line of the document becomes the new top
line. The cursor appears at the intersection of the left
margin and the top screen line.

The other comer keys cause the same series of
actions in the appropriate directions.

The Scrolling Technique

6-6

Scrolling occurs whenever a user attempts to move
the cursor outside of the window through which he is
currently viewing some element of the system. For
example, pressing the Down Arrow Key eventually
moves the cursor onto the last screen line; pressing it
again causes the text to move up a line so that the
cursor remains visible on the screen.

SOFTWARE DESIGN PRACTICES 61695·01

6\695-0\

From time to time, it is desirable to cause scrolling
without moving the cursor. The DSP and KBD Keys
on the current general purpose keyboard support
scrolling. The DSP Key, also referred to as the
Downscroll Key, moves the user's perspective down
and therefore the text up. The KBD Key, also
referred to as the Upscroll Key, moves the user's
perspective up and therefore the text down.

On the RMS 2 keyboard, scrolling occurs when a
user chords either Alt Key with any of the arrow
keys. For example, AltUp scrolls the user's
perspective up and therefore the text down. AltLeft
scrolls the user's perspective left and therefore the
text right.

SOFTWARE DESIGN PRACTICES 6-7 6\695-0\

From time to time, it is desirable to cause scrolling
without moving the cursor. The DSP and KBD Keys
on the current general purpose keyboard support
scrolling. The DSP Key, also referred to as the
Downscroll Key, moves the user's perspective down
and therefore the text up. The KBD Key, also
referred to as the Upscroll Key, moves the user's
perspective up and therefore the text down.

On the RMS 2 keyboard, scrolling occurs when a
user chords either Alt Key with any of the arrow
keys. For example, AltUp scrolls the user's
perspective up and therefore the text down. AltLeft
scrolls the user's perspective left and therefore the
text right.

SOFTWARE DESIGN PRACTICES 6-7

Editing Keys

6-8

Chapter 3, "The Miller Column Technique,"
describes a recallable LIFO stack available in
applications that support editing a Miller column
hierarchy. This same LIFO stack is important to
effective text editors.

In a Miller column application the nature of the item
you are manipulating is always clear; it is a 23-
character text string that appears in the center
column. In freeform text editing, however, users
need to define the size and shape of the item they
wish to manipulate. This is accomplished by a block
selection technique based on chording editing keys
with cursor movement keys to produce the effects
described below.

Remove Key: The Remove Key removes an item
from the text and places it in the LIFO stack. Upon
receiving the downstroke of the Remove Key, the
program disables all input other than cursor
movement keys. As the user presses cursor
movement keys, the cursor advances and the text that
it passes is placed in inverse video. When the user
releases the Remove Key, the selected text is
removed to the LIFO stack.

The Copy Key: The Copy Key duplicates an item
from the text to the LIFO stack. Upon receiving the
downstroke of the Copy Key, the program disables
all input other than cursor movement keys. As the
user presses cursor movement keys, the cursor
advances and the text that it passes is placed in
inverse video. When the user releases the Copy Key,
the selected text is copied to the LIFO stack.

The Recall Key: The Recall Key recalls the top-most
item in the stack, inserting it into the text starting at
the current cursor position. The length of the item is
determined by the operation that originally placed it

SOFfWARE DESIGN PRACTICES 61695·0\

Editing Keys

6-8

Chapter 3, "The Miller Column Technique,"
describes a recallable LIFO stack available in
applications that support editing a Miller column
hierarchy. This same LIFO stack is important to
effective text editors.

In a Miller column application the nature of the item
you are manipulating is always clear; it is a 23-
character text string that appears in the center
column. In freeform text editing, however, users
need to define the size and shape of the item they
wish to manipulate. This is accomplished by a block
selection technique based on chording editing keys
with cursor movement keys to produce the effects
described below.

Remove Key: The Remove Key removes an item
from the text and places it in the LIFO stack. Upon
receiving the downstroke of the Remove Key, the
program disables all input other than cursor
movement keys. As the user presses cursor
movement keys, the cursor advances and the text that
it passes is placed in inverse video. When the user
releases the Remove Key, the selected text is
removed to the LIFO stack.

The Copy Key: The Copy Key duplicates an item
from the text to the LIFO stack. Upon receiving the
downstroke of the Copy Key, the program disables
all input other than cursor movement keys. As the
user presses cursor movement keys, the cursor
advances and the text that it passes is placed in
inverse video. When the user releases the Copy Key,
the selected text is copied to the LIFO stack.

The Recall Key: The Recall Key recalls the top-most
item in the stack, inserting it into the text starting at
the current cursor position. The length of the item is
determined by the operation that originally placed it

SOFfWARE DESIGN PRACTICES 61695·0\

61695-01

in the stack. For example, the topmost item in the
stack may be a page, the next item a paragraph, and
the next a few words.

The Insert Key: The Insert Key functions as a toggle
switch between insert and typeover modes in those
editors that support a typeover mode. Whenever the
user is in typeover mode, the program displays the
message "TYPEOVER" in the Help/Response
Window.

SOFTWARE DESIGN PRACTICES 6-9 61695-01

in the stack. For example, the topmost item in the
stack may be a page, the next item a paragraph, and
the next a few words.

The Insert Key: The Insert Key functions as a toggle
switch between insert and typeover modes in those
editors that support a typeover mode. Whenever the
user is in typeover mode, the program displays the
message "TYPEOVER" in the Help/Response
Window.

SOFTWARE DESIGN PRACTICES 6-9

NOTES

6-10 SOFTWARE DESIGN PRACTICES 61695-01

NOTES

6-10 SOFTWARE DESIGN PRACTICES 61695-01

CHAPTER 7.
TECHNICAL CONSIDERATIONS
AND GUIDELINES

Contents
Program Performance 7-2

A New Context for Software Development .. 7-2
The Objective 7-3

International Transportability: The Standard
Workstation Font 7-5

61695-01 SOFTWARE DESIGN PRACTICES 7-1

CHAPTER 7.
TECHNICAL CONSIDERATIONS
AND GUIDELINES

Contents
Program Performance 7-2

A New Context for Software Development .. 7-2
The Objective 7-3

International Transportability: The Standard
Workstation Font 7-5

61695-01 SOFTWARE DESIGN PRACTICES 7-1

Program Performance

Program performance plays a significant role in
determining the "feel" of a product, its potential
success in the marketplace, and the degree to which
customers find it useful. A certain level of program
performance is critical to properly interactive
software, and this document specifies minimum
program performance standards.

A New Context for Software Development

7-2

The introduction of VISTA-VIEW, ATTACH, and
CPF imposes significant WSIO performance
overhead. For example, consider a program that
reads a single character and echoes it on the
workstation screen. Under the current system
architecture, the character follows this path:

1. Keyboard
2. Nucleus
3. User program
4. Nucleus
5. Screen

When VISTA-VIEW is running, however, the
character must follow a far more complex path:

1. Keyboard
2. VISTA-VIEW task's nucleus
3. VISTA-VIEW
4. VISTA-VIEW task's nucleus
5. Pipe
6. VISTA-VIEW channel's nucleus (potentially

local or remote)
7. Second PCR
8. User program
9. VISTA-VIEW channel's nucleus

10. Second PCR

SOFTWARE DESIGN PRACTICES 61695·01

Program Performance

Program performance plays a significant role in
determining the "feel" of a product, its potential
success in the marketplace, and the degree to which
customers find it useful. A certain level of program
performance is critical to properly interactive
software, and this document specifies minimum
program performance standards.

A New Context for Software Development

7-2

The introduction of VISTA-VIEW, ATTACH, and
CPF imposes significant WSIO performance
overhead. For example, consider a program that
reads a single character and echoes it on the
workstation screen. Under the current system
architecture, the character follows this path:

1. Keyboard
2. Nucleus
3. User program
4. Nucleus
5. Screen

When VISTA-VIEW is running, however, the
character must follow a far more complex path:

1. Keyboard
2. VISTA-VIEW task's nucleus
3. VISTA-VIEW
4. VISTA-VIEW task's nucleus
5. Pipe
6. VISTA-VIEW channel's nucleus (potentially

local or remote)
7. Second PCR
8. User program
9. VISTA-VIEW channel's nucleus

10. Second PCR

SOFTWARE DESIGN PRACTICES 61695·01

11. VISTA-VIEW channel's nucleus
12. Pipe
13. VISTA-VIEW task's nucleus
14. VISTA-VIEW
15. VISTA-VIEW task's nucleus
16. Screen

Eventually, most users may access all software
products through VISTA-VIEW. When the
keyin/echo/ready operation constitutes the primary
activity of a program - as it does in WP, RMS
Mail, and other highly interactive programs - and
performance is additionally encumbered by redirected
workstation 110, serious performance optimization
becomes essential.

VISTA-VIEW, ATTACH, and CPF are being
optimized, but application developers must create
optimized programs on the user level as well.

The Objective

61695·01

DATAPOINT has established a minimum
performance requirement for all RMS-targeted
interactive software: The keyin/echo/ready loop may
take no longer than 60 milliseconds running in a local
processor under VISTA-VIEW. The following
guidelines should assist you in achieving this
objective.

Minimize WSIO System Calls: To the greatest
extent possible, reduce the number of WSIO calls
required to complete any given operation. There is a
significant amount of overhead associated with each
call. Each WSIO call should perform the greatest
amount of work possible. In any event, programs
processing field keyin should issue no more than one
WSIO call per field, and programs processing
character keyin should issue no more than one WSIO
call per user keystroke, including the updating of
counters, ruler lines, and similar screen elements.

SOFTWARE DESIGN PRACTICES 7-3

11. VISTA-VIEW channel's nucleus
12. Pipe
13. VISTA-VIEW task's nucleus
14. VISTA-VIEW
15. VISTA-VIEW task's nucleus
16. Screen

Eventually, most users may access all software
products through VISTA-VIEW. When the
keyin/echo/ready operation constitutes the primary
activity of a program - as it does in WP, RMS
Mail, and other highly interactive programs - and
performance is additionally encumbered by redirected
workstation 110, serious performance optimization
becomes essential.

VISTA-VIEW, ATTACH, and CPF are being
optimized, but application developers must create
optimized programs on the user level as well.

The Objective

61695·01

DATAPOINT has established a minimum
performance requirement for all RMS-targeted
interactive software: The keyin/echo/ready loop may
take no longer than 60 milliseconds running in a local
processor under VISTA-VIEW. The following
guidelines should assist you in achieving this
objective.

Minimize WSIO System Calls: To the greatest
extent possible, reduce the number of WSIO calls
required to complete any given operation. There is a
significant amount of overhead associated with each
call. Each WSIO call should perform the greatest
amount of work possible. In any event, programs
processing field keyin should issue no more than one
WSIO call per field, and programs processing
character keyin should issue no more than one WSIO
call per user keystroke, including the updating of
counters, ruler lines, and similar screen elements.

SOFTWARE DESIGN PRACTICES 7-3

7-4

Use $ESNF Instead of $ES: RMS 2 supports a new
WSIO control code that simplifies the packaging of
WSIO calls. Strings terminated with a $ESNF are
buffered until a $ES is encountered. The $ESNF
control code can provide measurable performance
benefits.

Sensible Screen I/O: Under DATAPOINT's
traditional architecture, we have been able to rewrite
vast amounts of the screen with minimal performance
penalties. When workstation 110 is redirected,
though, the penalties become more pronounced.
Programs must avoid redisplaying information that
already appears on the screen, instead saving more
screen state information internally and updating the
screen selectively. Additionally, programs should use
an ERASE EOF or ERASE EOL rather than writing a
large number of blank characters.

Use the Full WSIO Facility: The WSIO facility
supports more powerful screen manipulation than
many programs use. The WP-style insert facility, for
example, saves an average of one thousand characters
sent to the screen each time the Insert Key is pressed.
This facility was added to WSIO to emulate exactly
the capability required by the WP editor. Failure to
use such facilities effectively eliminates multi-user
operation of DATAPOINT processors in the office
environment - even without VISTA-VIEW,
ATTACH, or CPF.

SOFTWARE DESIGN PRACTICES 61695-01 7-4

Use $ESNF Instead of $ES: RMS 2 supports a new
WSIO control code that simplifies the packaging of
WSIO calls. Strings terminated with a $ESNF are
buffered until a $ES is encountered. The $ESNF
control code can provide measurable performance
benefits.

Sensible Screen I/O: Under DATAPOINT's
traditional architecture, we have been able to rewrite
vast amounts of the screen with minimal performance
penalties. When workstation 110 is redirected,
though, the penalties become more pronounced.
Programs must avoid redisplaying information that
already appears on the screen, instead saving more
screen state information internally and updating the
screen selectively. Additionally, programs should use
an ERASE EOF or ERASE EOL rather than writing a
large number of blank characters.

Use the Full WSIO Facility: The WSIO facility
supports more powerful screen manipulation than
many programs use. The WP-style insert facility, for
example, saves an average of one thousand characters
sent to the screen each time the Insert Key is pressed.
This facility was added to WSIO to emulate exactly
the capability required by the WP editor. Failure to
use such facilities effectively eliminates multi-user
operation of DATAPOINT processors in the office
environment - even without VISTA-VIEW,
ATTACH, or CPF.

SOFTWARE DESIGN PRACTICES 61695-01

International Transportability: The
Standard Workstation Font

61695·01

All RMS software must be internationally
transportable. Historically, the major obstacle to
transportability has been the lack of agreement on the
character set. A standard workstation font has now
been designed. Programs may no longer load their
own character sets; rather, they must use the standard
character set that appears on the next page.

Special Symbols: Domestically, characters in the
range 0002-0032 support certain special symbols, and
0033-0037 are not used. In other countries, however,
characters in the range 0002-0037 may be national
data characters, and the special symbols may be
unavailable. This reality imposes certain constraints
on programs that use characters in the range 0002-
0037:

• Characters in the range 0002-0037 must be
message member translatable;

• The absence of these characters may not damage
the program's functionality or usefulness. (Since
these characters are not available in all countries,
no program whose functionality depends upon
them is internationally transportable.); and

• These characters may not be used in program
control sequences. For example, no application
may support a key chord like RemoveA because
some countries do not have A in their alphabet.

Programs must, of course, support message member
translatability for error messages, prompts, and other
language-dependent program mechanisms.

SOFTWARE DESIGN PRACTICES 7-5

International Transportability: The
Standard Workstation Font

61695·01

All RMS software must be internationally
transportable. Historically, the major obstacle to
transportability has been the lack of agreement on the
character set. A standard workstation font has now
been designed. Programs may no longer load their
own character sets; rather, they must use the standard
character set that appears on the next page.

Special Symbols: Domestically, characters in the
range 0002-0032 support certain special symbols, and
0033-0037 are not used. In other countries, however,
characters in the range 0002-0037 may be national
data characters, and the special symbols may be
unavailable. This reality imposes certain constraints
on programs that use characters in the range 0002-
0037:

• Characters in the range 0002-0037 must be
message member translatable;

• The absence of these characters may not damage
the program's functionality or usefulness. (Since
these characters are not available in all countries,
no program whose functionality depends upon
them is internationally transportable.); and

• These characters may not be used in program
control sequences. For example, no application
may support a key chord like RemoveA because
some countries do not have A in their alphabet.

Programs must, of course, support message member
translatability for error messages, prompts, and other
language-dependent program mechanisms.

SOFTWARE DESIGN PRACTICES 7-5

THE STANDARD WORKSTATION FONT

0000 System cursor
0001 VISTA-VIEW quiescent cursor

BOX-DRAWING CHARACTERS
0002 Upper left comer
0003 Upper right comer
0004 Lower left comer
0005 Lower right comer
0006 Vertical bar
0007 Horizontal bar
0010 Upper vertical divider
0011 Lower vertical divider
00 12 Left horizontal divider
0013 Right horizontal divider
0014 Center divider

KEYBOARD SYMBOLS
0015 Up arrow
0016 Down arrow
0017 Left arrow
0020 Right arrow
0021 Enter Key
0022 Command Key

VISTA-VIEW
CURRENT WINDOW
SYMBOLS

0023 Upper left comer
0024 Upper right comer
0025 Lower left comer
0026 Lower right comer
0027 Horizontal top bar
0030 Horizontal bottom bar
0031 Vertical left bar
0032 Vertical right bar

0033 thru 0037
Unused

0040 thru 0176
ASCII 7 -bit printable
character set

0177 Meta character

7-6 SOFTWARE DESIGN PRACTICES 61695-01

THE STANDARD WORKSTATION FONT

0000 System cursor
0001 VISTA-VIEW quiescent cursor

BOX-DRAWING CHARACTERS
0002 Upper left comer
0003 Upper right comer
0004 Lower left comer
0005 Lower right comer
0006 Vertical bar
0007 Horizontal bar
0010 Upper vertical divider
0011 Lower vertical divider
00 12 Left horizontal divider
0013 Right horizontal divider
0014 Center divider

KEYBOARD SYMBOLS
0015 Up arrow
0016 Down arrow
0017 Left arrow
0020 Right arrow
0021 Enter Key
0022 Command Key

VISTA-VIEW
CURRENT WINDOW
SYMBOLS

0023 Upper left comer
0024 Upper right comer
0025 Lower left comer
0026 Lower right comer
0027 Horizontal top bar
0030 Horizontal bottom bar
0031 Vertical left bar
0032 Vertical right bar

0033 thru 0037
Unused

0040 thru 0176
ASCII 7 -bit printable
character set

0177 Meta character

7-6 SOFTWARE DESIGN PRACTICES 61695-01

	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-01
	2-02
	2-03
	2-04
	2-05
	2-07
	2-08
	2-09
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06

