
, r'

.c
o
Q
Q
a

Q

casse e ope
•

opera Ing
s stem

Datapoint 2200

Cassette Tape

Operating System

Nay, 1972

1

DATAPOINT CORPORATION

4/6/72

Datapoint 2200 Cassette Tape Operating System

Section 1 INTRODUCTION

Section 2

1.0 Operating System
1.1 Function
1.2 Keyboard Facilities
1.3 Program Facilities
1.4 Physical Layout

TAPE
2.0
2.1
2.2
2.3
2.4
2.5

FORMATS
The Loader
Bootstrap Actions
File Organization
File Layout and Record
Loader Action
Parity Checking

Format

Section 3 OPERATING SYSTEM CO~1ANDS
3.0 Keyboard Facilities

(Operating System Command Handler)
3.1 The Catalog
3.2 Syntax Rules & Entry Error Actions
3.3 Operating System Command Instructions

Section 4 OPERATING SYSTEM SUBROUTINES
4.0 System Subroutines

Appendix A

Appendix B

Appendix C

4.1 Symbolic Loader Routines
4.2 Loader Routines
4.3 OS Utility Routines
4.4 Keyboard and Display Routines
4.5 Operating System File Handler

System Subroutine Locations

Operating System Commands

Prior Operating System Versions

2

CASSETTE TAPE OPERATING SYSTEM

SECTION I

INTRODUCTION

1.0 THE OPERATING SYSTEM

The operating system is a conversational mode program
for the Datapoint 2200 ~hich allows the user to catalog, load,
debug, run programs, and provide other utilities important to
the user of the Datapoint 2200.

The operating system itself is a relatively long program
which is overlayed when user programs are called in from tape.
Hm..rever, a family of resident utility routines is loaded with
the operating system that may be used by user programs to sim­
plify frequently used functions such as reading from keyboard,
writing to CRT screen, reading and writing tape records, etc.

When power is first applied to the Datapoint 2200, the
first step must be to load a block of data from the rear tape
cassette deck into the processor's memory and transfer control
to it. In the operating system, this first block of data is
called a LOADER and when control is transferred to it, it pro­
ceeds 1) to first check itself to see if it was loaded properly
2) to determine if a version I or a version II machine is being
used and then 3) to load the next file on the same tape which
is the rest of the operating system program. This process can
be executed at any time (assuming a proper program tape is in
the rear deck) by pressing the RESTART key on the right hand
side of the 2200.

1his first block of data can be used to load programs
other than the operating system and is generally useful for
all applications of the 2200. In order to use the operating
system, a full 8K bytes of memory must be provided with the
2200, but the loader can be used with any size memory.

1.1 FUNCTION

The primary function of CTOS is to provide the user with
an easily accessible data environment which will greatly facil­
itate program generation. This function is fulfilled through

3

the use of a file handling system which is available both
directly from the keyboard in the form of system commands
and through program calls to file handling input/output sub­
routines. Note that the keyboard facility deals mainly with
the system (rear) tape (using the data [front] tape mainly
for input/output and scratch space) but that the program
routines are generalized to allow use of either tape.

1.2 KEYBOARD FACILITIES

The keyboard accessible facility allows the user to
fetch and execute object files, which may be either system
packages, such as the editor and assembler, or files the user
has generated with either the assembler or other code gener­
ating programs. This facility also allows the user to create
new files, alter or delete old ones, or perform certain util­
ity functions. The system tracks the files on the system tape
in a symbolic catalog which may be manipulated by the operator
at the keyboard or used in program linking.

Keyboard accessible facilities also include tape posi­
tioning, listing and tape modification.

1.3 PROGRAM FACILITIES

The program routines perform basic operations such as
reading and writing records with all parity checking and gen­
eration handled for the user. Other operations such as posi­
tioning to the beginning or end of a file, backspacing over
records, or rewinding the tape are also provided. Parame­
terization is handled in a generalized way to make subroutine
usage easy and consistent.

1.4 PHYSICAL LAYOUT

The memory layout of the operating system is shown below.
The OS FILE HANDLER is the program accessible facility men­
tioned above while the OS COMMAND HANDLER is the keyboard ac­
cessible facility. Note that only 017400 and up need be in
memory if only t.l-J.e symbol linker (which calls in an overlay
by name so that its physical file number may be changed with­
out having to rewrite the program calling in the overlay) is
to be used, only 016200 and up need be in memory if only the
debugging tool is to be used, and only 014000 and up need to
be in memory if the keyboard facilities are not to be used (of

4

course, 00777 is always reserved by the system).

CTOS MEMORY USAGE ~AP:

SYMBOLIC LINKER

CATALOG

KEYBOARD DISPLAY

DEBUG

OS FILE HANDLER

OS BOOTBLOCK COpy

OS COM..lI1AND HANDLER

FIX & LIST COMMANDS

LOADER

5

017777

017600

017400

017000

016200

014000

013000

003400

001000

000000

CASSETTE TAPE OPERATING SYSTEM

SECTION II

TAPE FORMATS

2.0 THE LOADER

The loader is the heart of CTOS. It enables other
programs to load files from the. tapes into memory wi th­
out the tape having to be at the beginning of the de­
sired file and provides extensive error protection. It
is the routine used by the bootstrap mechanism (indeed,
it is part of the bootblock) to load the initial pro­
gram and is also the routine used in overlay and linkup
operations both by CTOS and utility packages.

2.1 BOOTSTRAP ACTIONS

When a restart occurs, the rear deck is rewound and
the first block on the tape (called the bootblock) is
loaded into memory starting at location zero. The first
512 bytes of memory (0 to 0777 octal) have been reserved
for a permanently resident program which is loaded from
the bootblock. The first 44 bytes of this block consti­
tute a program which runs a parity check on the rest of
the block that should have been loaded. The processor is
halted (note auto.,..restart implications if the-auto-restart
tab on the cassette is punched out) if this routine finds
a fault in the check. Otherwise, zeros are stored in the
memory locations used in the parity check routine. This
will cause a halt if an early data drop-out from the tape
machine occurs during the next bootstrap load (typically
only one or two bytes get loaded in this failure mode) .

The loader then stores a mask into location 020663 to
set the memory limit mask for a version I or a version II
machine. Since memory addresses in version I (machines wrap
around at 020000, the mask (037 for 8K limit) will be stored
at location 0663 in the loader. "In version II machines no
wrap around occurs and the original mask (077 for 16K limit)
will be unchanged.

6

2.2 FILE ORGANIZATION

Once file zero has been loaded from the system tape,
the bootstrap program (locations 0 through 044) is never
used again until the next restart operation which will
overlay it. The loader, however, will be used many times.
The physical layout of information on the system tape is
as follows~

BOOTBLaCK

Pile 0 is the one executed by the bootstrap and is typically
followed by a sequential (required to be sequential by the
loader) set of minimally increasing (file numbers go up by
only one at a time) files up to 31 (a CTOS catalog size limi­
tation, although the loader will load a file with any positive
numbers), followed by a file 3~, which is a system scratch
file, follo~,.,ed by a file 127 (largest positive eight bit num­
ber) , which is a dummy to mark the logical end of the tape.

2.3 FILE LAYOUT AND RECORD FORMAT

Each file is a group of records starting with a very
special four byte record. Every record used by CTOS starts
with t~,.,o special bytes to indicate that it is one of three
types: file marker, numeric data, or symbolic data. The
file marker, which is the special four-byte record at the
beginning of a file, contains two additional bytes that de­
note the file number. The use of two bytes for both the re­
cord type and file number provides redundancy for error con­
trol, since the second byte is simply the one's complement
of the first. The record types are denoted by 0201 for file
marker, 0303 for numeric data, and 0347 for symbolic data.
The following tape summarizes all of the various data for­
mats used by the system. XP and CP denote the two longitu­
dinal parity checks and will be described later. FN denotes
the file number and FN its one's complement.

FILE MARKER RECORD: 0201/0176/FN/-FN

NUMERIC DATA RECORD: 0303/074/XP/CP/DATA

SYMBOLIC DATA RECORD: 0347/030/XP/CP/DATA(with VRC)

7

FILE: FILE MARKER/DATA RECORD/DATA RECORD/ •••

SYSTEM TAPE: BOOTBLOCK/FILEO/FILEI/ ••. /FILE31/FILE32/
FILEl27

DATA TAPE: FILEO/FILEI/ ... /FILEI27

2.4 LOADERACTION

When the loader is told to load a given file, it begins
searching the tape (the loader can load files from either
deck, depending. upon which entry point is used) forward until
it finds a file marker record. Note that all records passed
over must have a valid type number pair or an error recovery
procedure will be initiated which will try up to three times
to read the record correctly and then make an error exit if
failure occured all three times. Upon finding a file marker,
the loader determines, from the number in that marker, whether
the tape is positioned to the correct place (the number is
equal to that requested), is not positioned far enough forward
(the number is less than that requested). If the tape is
positioned to the correct place, the loader proceeds to load
all of the numeric records it finds, obtaining the memory
address of where it is to put the data from the beginning of
each record, (symbolic records are ignored) until it runs
across another file marker. At this point it stops the tape
(which was in slew forward mode) and backs up over the file
marker so a succeeding call nn the loader would cause a file
to be found immediately. If there were no numeric records in
the file, an error return is made. If the tape is not l?osi­
tioned too far forward, the loader enters a reverse search
mode. If, in this mode, the loader finds a file marker that
indicates that the tape is not positioned backward far enough,
the loader.continues searching in the reverse mode for the
next file. If, however, a file marker is found that indicates
that the tape has.been positioned too far backward, the loader
decides that the file is not on the tape and makes an error
return. Error returns are also made if a record cannot be
read without a parity failure or type indicator discrepancy (the
two characters are either not the one's complement of each other
or are not one of the three special numbers") occurring in all
three trials or if loading the record would overs tore the
loader. In all of these cases, the carry condition will be
true (a satisfactory load always rendering the carry condition
false) and the tape will be positioned after any offending record.

8

2.5 PARITY CHECKING

The third and fourth bytes of every data record contain
longitudinal parity checks. These bytes are set up by the
record generation program such that the following exclusive OR
sums will yield zeros: the first byte with all the data char­
acters (data characters start with the fifth byte of the re­
cord and proceed to the end) and the second byte with the same
characters except the sum is shifted right circularly one place
after each exclusive OR. In the case of symbolic records, the
additional condition of the vertical parity of each character
being odd must also be met. One thing not mentioned in the
discussion of the loader was that the first four data characters
(fifth through eighth bytes in the record) are not really data
but are the MSP and LSP of the starting memory address followed
by the one's complement of the MSP and LSP of the starting
memory address of where the data is to be loaded.

9

I-'
o

I +-8-+

SYSTEM
TAPE

DATA
TAPE

IBOOT
BLOCK

IFILE JJ I><1FILE 1 f><J

+-8-+

BITS . ~ ~
(034,7 1030 I xp I CP 1 DATA f DATA I· . . DATA t

(SYMBOLIC RECORD) ~ I

/

I FILE 31 .. MF .. ILE .3.2 [)<JFILE 127
I ._. (SCRATCH)
"}

ELE-127

~- INTER-RECORD GAP
FN - FILE MARK NUMBER
XP - "EXCLUSIVE OR" PARITY
CP - CIRCULAR PARITY

TAPE FORMAT

CASSETTE TAPE OPERATING SYSTEM

SECTION III

OPERATING SYSTEM COMMANDS

3.0 KEYBOARD FACILITIES (OPERATING SYSTEM COMMAND HANDLER)

The operating system contains a program which will
interpret user commands given at the keyboard and perform
the tasks indicated. These tasks mainly involve copying
new files from the data tape, deleting and updating files
on the system tape, and executing programs kept in these
files, as well as several other functions.

3.1 THE CATALOG

The operating system maintains a catalog of names and
numbers which correspond to the files on the system tape.
This catalog may be used in manipulating the files'from the
keyboard or in symbolically calling in overlays using the
symbolic loader from a user program.

3.1.1 CATALOG CHARACTERISTICS

Each name in the catalog must start with a letter and
may additionally contain from one to five alpha-numeric char­
acters. There is room in the catalog for up to fourteen
names so there is a limit of fourteen named files on one
system tape. Another 16 files may be assigned as numeric
files (020 - 037). Numeric files are specified by preceding
the octal physical file number by a Ii'. The symbolic loader
contains routines which will look uF."'a given name in the cat­
alog and load the correspondin~ file'; This same lookup rou­
tine is used by the command handler and is labled LOOKUP.

3.2 SYNTAX RULES AND ENTRY ERROR ACTIONS

The command input format is purposely made quite· strict
to reduce the chance of causing unwanted action which could
be catastrophic to the user's data. The command must start

11

with the first character entered (leading spaces are illegal)
and any alphabetic after the third character is ignored
(thus DEBACLE will be interpreted as the DEB command just as
well as DEBUG). The first non-alphabetic character must be
either an ENTER, a space or a dash (minus sign). Some commands
will not allow the ENTER but typing a non-alphabetic other
than these three will always net you an error message of
WHAT? This will also appear if a command that has legal syn­
tax but is not one of those defined is entered. If the command
is to be parameterized, the first name or number must follow
the dash or space immediately and must be terminated with an
ENTER if that is the only parameter. Names must start with
an alphabetic but may contain any number of alphanumeric char­
acters even though all after the six will be ignored. File
numbers must be preceeded immediately by a pound sign (#) and
must be between 020 and 037 octal. If the command has more than
one parameter, the last must be terminated by an ENTER. Para­
meters must be separated by commas with no embedded blanks.
If a name. is not supplied but the command requires one, the
error message NAME REQUIRED will be displayed. If the name
given is required to be in the file catalog but is not, the
error message NO SUCH Nl\.J4E will be displayed. If the inverse
is true, the error message NkME IN USE will be displayed.

3.3 OPERATING SYSTEM COMl'1AND INSTRUCTIONS

The follmving paragraphs described the usage and effect
of each command in the system. Each paragraph is titled by
what must be entered to used the corresponding routine. Note
for clarity, more than just the necessary three characters
have been shown. For an abreviated description of commands
see Appendix A.

3.3.1 CATALOG

The CATALOG command lists the names and numbers of all
files that are currently on the system tape. They are listed
across the screen in the physical order in which .the files
appear on the tape. Any parameters supplied are ignored.

3.3.2 NAME (old), (new)

The NAME command will change the name of the file specified
by the first name given to the second name given. This command
requires that the first and not the second name be in the sym­
bolic catalog. The catalog file on the system tape (a one re-

12

cord file [number one] that immediately follows the
operating system file) will be overwritten with the
new catalog. Note that this leaves the system tape
positioned before the file marker of any existing first
cataloged file. This operation is performed by all com­
mands that change the catalog.

3.3.3 RUN (name) or RUN # (nurnber)

The RUN command uses the loader to load the file
specified by the name or number given and then trans­
fers processor control to the starting address indi­
cated to the loader by the file information. Note that
it is the responsibility of the loaded program to return
to or reload the operating system if this is desired.

There is a special case to the RUN command that
breaks the general syntax rules.

If the name consists of exactly one asterisk termi­
nated by an ENTER (RUN *), the loader ~;'ill be directed to
load physical file I from the data tape. This provision
is made to allow the user to run a program he has gener­
ated without having to load it onto the system tape. This,
along with the F command in the debugging tool eliminates a
loss of tape movement when debugging programs.

Symbolic files in the named catalog cannot be run.

3.3.4 IN (name), IN (number) or IN $

Note that exactly the characters shown must be typed
to execute this command since the space which must be the
third command character will also terminate the command.
For a named file where there are no numbered files present,
this command will position the system tape after the la.st
cataloged file and the data tape to the beginning of phys­
ical file 1. (The data tape convention is that physical
file 0 will be the first piece of information on the tape,
containing the users symbolic data for a given program, and
that physical file 1 will be the second piece of information
on the tape and will contain the users object data for a
given program, and all tape after this is to be considered

13

..

a scratch area 'which is properly terminated by physical
file 127 to indicate the logical end of the tape.) The
command then copies all records in the file from the data
tape onto the system tape creating a file on the system
tape ·(a file marker being written before the data ~as
copied) which h:as the next available physical file number.
Following this new file, file marker 32 and 127 are written
on the system tape to indicate the new start of system
scratch and logical end of tape. If the system tape con­
tained no cataloged files before this command was issued,
the file entered will be physical file 2 and immediately
follow the catalog file. After the new file has been
written, the new name is entered into the catalog and the
catalog file is updated as in the NAME command. Note that
if the catalog was full when the command was entered, the
error message LIBRARY FULL will be displayed and no other
action will occur. The name supplied must not already be
in the catalog. If a numbered file was specified and there
are no numbered files greater than the one in the command,
the action is as described above with the exception that the
file marker written on the system tape will be the number
specified in the command and not the next available number.
No name will be entered but a bit will be set in.the numeric
catalog (two bytes in which every bit represents a possible
numeric file, if the corresponding bit is a one, the file is
present on the system). If a name is specified and there
are files present with higher file numbers, this command
proceeds like the INSERT command.

There is a special case of the IN command that breaks
the general syntax rule.

If ,the name consists of exactly one dollar sign termi­
nated by an ENTER (IN $), the front tape will be assumed to
be a CTOS or a tape created by the. OUT $ command. This com-

. mand will position both the system tape and the data tape to
file 1 (the catalog) and will copy the entire data fape.up
to file 32 onto the system tape. Following these new files,
file markers 32 and 127 are written on the system tape. This
command, therefore, replaces the catalog and all files on the
original system. If the tape being IN'd is a CTOS tape, it
must be positioned past the loader and file 0 marker since the
file handling routines cannot process the loader.

14

3.3.5 OUT (name), OUT # (number) , OUT $, OUT *, OUT! or OUT CS$

The OUT command first executes the PREPARE command to
provide itself with a null data tape \'I7hich can be handled
by the file handling routines. It then positions the sys­
tem tape to the beginning of the given file (the name or
number must have been in the catalog) and the data tape to
the beginning of physical file one and copies all the re­
cords in the file on the system tape onto the data tape. It
then places a file marker 127 on the data tape and quits.
This command is provided to allmrl moving a file from one
system tape to another through L~e associated use of the
IN command. Outed non-symbolic files are written as file
1. Symbolic files are written as file 0 with a file 1
following.

There are four special cases to the OUT command that
break the general syntax rules.

If the name consists of exactly one dollar sign termi­
nated by an ENTER (OUT $) then an exact copy is made of the
system tape up to file marker 32 at which time the copy ~s
terminated by file markers 32 and 127 (which causes any
scratch data on the old system tape to be removed).

If the name is exactly one asterisk terminated by an
ENTER (OUT *) the action is similar to the previous case
except physical file 0 and 1 (namely, the operating system
and catalog) are deleted and the file numbers of all following
named data files are lowered by two. Numeric files numbers
are preserved unless there are no named files, in which case,
the first numeric file is written as file O. Note that if
this tape is now bootstrap loaded, the first program loaded
will be what was the first file cataloged in the operating
system. This is most useful in preparing bootstrap tapes that
will be used in machines with less than 8K of memory.

If the name is exactly OS$ followed by an ENTER (OUT OS$),
a eTaS operating system tape with a blank catalog will be
generated. The original catalog will be reread at the com­
pletion of this command.

15

If the name is exactly! (OUT !), a three byte JMP
DEBUG$ (016453) record will be written on ~he front deck
followed by file 32 and 127 markers.

3.3.6 DELETE (name) or DELETE # (number)

The DELETE command takes two different courses of
action depending on whether or not the file deleted is
the last one cataloged. If it is, the system tape is
moved to the end of the next to the last cataloged ,file
and file markers 32 and 127 are written, thus logically
destroying the last file. The name is then deleted from
the catalog and the catalog file. is updated. If the file
is not the last one cataloged, the PREPARE command called
to obtain a fresh data tape, as in the OUT command, and the
system tape is positioned to the end of the narned file.
The rest of the system tape (up to file 32 marker) is then
copied onto the data tape and the data tape is terminated
with a file marker 127.. Note that the data tape file numbers
start out at one and increase by one for each succeeding file
copied onto the data tape. Numeric file numbers (020 - 037)
are maintained. These numbers are not used for named files
since all the copy back part needs to know is file delimi­
tation since it is getting its file number information from
catalog positions. The copying onto data tape is followed
by the system tape being positioned to the end of the-file
before the one named and the data tape being positioned to
the beginning of file one. A file marker having a value
one greater than the previous marker is then written on the
system tape with every file marker encountered on the data
tape causing a file marker of value one greater then the
previous marker to be written on the system tape. This pro­
cess terminates when a file marker 127 is encountered on the
data tape which causes file markers 32 and 127 to be written
on the system tape. The given name is d~leted from the cata­
log, all following entries are dropped down one place to cor­
respond to the similar shift in file numbers that took place,
and the catalog file is updated.

3.3.7 REPLACE (name) or REPLACE # (number)

The REPLACE command is quite similar to the DELETE com­
mand except that instead of preparing the data tape with the

16

PREPARE command, it positions it to the end of file 1
and then writes a file marker 2. Nmv, copying all the
files after the named one onto the data tape in a fash­
ion as in the DELETE co~mand will replace the named file
by file 1 on the data tape, with any necessary physical
expansion or contraction taking place. Even though the
catalog is not changed in this operation, it is updated
anyv.ray since this is an easy way to position the system
tape to a place before file marker 127. Without this,
a succeeding call on the loader would run into trouble
since the system tape would be off the logical end of
the tape. The loader starts with a forward search be­
cause the very first time it is used, the tape is posi­
tioned just after the boot block and a backward search
for a file marker would cause trouble. The operating
system routine which searches for files can start with
a reverse search to avoid the problem since the tape
will never be resting before file zero.

3.3.8 AUTO or AUTO (name) or AUTO # (number)

There is a word in the catalog which contains the
physical file n~~er of a file which should be loaded
and executed immediately upon loading and execution of
the operating system. This enables a user program to be
run after restart without interaction wi~h the operating
system being required. If this word is a zero or the
keyboard switch is being depressed upon initial execu­
tion of the operating system, the normal entry is made
in the operating system and the start up message and
reSDonse request are displayed.

If the AUTO command is given with no name and the
auto pointer is zero than the error message NAME RE­
QUIRED will be displayed. Otherwise, the name of the
file being pointed to will be displayed in the message
A.UTO SET TO (name). If the auto command is given ~'I7ith
a name (which must be in the catalog) and the auto
pointer is a zero, the pointer will be changed to the
corresponding file number and the catalog (which con­
tains the pointer) will be updated. If the auto pointer
is non-zero, the name is ignored and the AUTO SET TO
(name) will be displayed as in the no-name case.

17

3.3.9 l'1ANUAL

The ~UAL command will zero the auto pointer and
update the catalog if the auto pointer was non-zero.
Otherwise, the message AUTO NOT SET will be displayed.

3.3.10 PREPARE

The PREPARE command first asks the operator if the
data tape contains anything of value and then halts.
(Note that the auto-restart tan should not be broken
out of the system tape because it will prevent use of
the OUT, DELETE, or PREPARE commands since halting the
processor ~A}'ill cause an auto-restart.) After the oper­
ator hits the RQN button as a response,_ it is assumed
that the data tape is of no value as it is re\vound and
fi~e markers 0, 1 and 121 are written on it. This is
needed sinc~· the operating system routines require file
markers for which they can search in using the data tape.

3.3.11 REWIND

This command rewinds the data tape on the front deck.

3.3.12 CHOP (name) or CHOP # (number)

The CHOP command deletes the specified file and all
subsequent files.

3.3.13 INSERT (new,old)

The INSERT command places the object file from the
data tape onto the system tape before the "old" file named
in the co:mrtl.and. This is accomplished by copying the files
from the system tape starting at the 'old' file through file 32
onto the data tape at the end of file Ii and then copying back
the files starting at file 1, the "new" named file. The cat­
alog is rewritten at the end of the operation.

3.3.14 APPEND (name) or APPEND #(number)

The APPEND command appends the object file from the
data tape onto the end of the named file on the CTOS sys­
tem tape. Like the DELETE command, it has two possible

18

courses of action, depending on whether or not the file
being appended is the last cataloged file. If it is,
the tape is positioned to the end of the cataloged file
and a new object file is copied from the front deck. If
the named file is not the last cataloged file, the oper­
ation proceeds like the REPLACE except that the system
tape is positioned to the end of the named file before
the update is performed.

3.3.15 LGO (name [,name, name ... ~)

The LGO command makes a tape with a loader and the
specified (named or numbered) file (s) in the sequence
named in the command. The files will have sequential file
markers starting with O. There is a limitation of 55
characters on the command length, thus to name many files
in the LGO command it may be necessary to temporarily
rename the files with one character label. LGO-* is not
permitted. OUT-* has the desired effect of generating a
load and go tape of all cataloged files (note, OUT-* pre­
serves numeric file numbers 020 - 037). Files 32 and 127
are written at the end.

3.3.16 SYMBOLIC (name) or SYMBOLIC # (number)

The SYMBOLIC command adds a compressed source file
(file 0) to the CTOS tape in a fashion similar to IN.
The name in the internal catalog will have an '~' in the
seventh (not displayed) position to identify the file as
symbolic. If a file number is specified, no ind.icator
will be set to distinguish symbolic from non-symbolic files.

3.3.17 SREPLACE (name) or SREPLACE # (number)

The SREPLACE, symbolic replace, command is performed
exactly as the REPLACE except the compressed source file
(file 0) is used instead of the object file. File 1 will
be overwritten if the file being replaced is not the last
one on the system tape.

3.3.18 SINSERT (new), (old)

The SINSERT, symbolic insert, command is performed ex­
actly as the INSERT except the compressed source file is
inserted instead of the object file. File 1 will be over­
written.

, q

, .

3.3.19 ATTACH (name [, name, name •••])

The ATTACH command positions the front tape to the
end of file 0 and (without file markers) cppies specified
fi1e(s) from the system tape to the front deck. Numeric
files may be specified. Files are not checked to insure
symbolic format. This is useful for combining subroutine
source files with program source.

3.3.20 ATOBJECT (name [, name, name ...])

The ATO command positions the data tape to the end
of file 1 and proceeds as the ATTACH command.

3.3.21 FADVANCE

Advances the front cassette past the next file mark.

3.3.22 RADVANCE

Advances the front" tape past one record - the record
format is ignoredi therefore, FAD or RAD may be used to
position a rewound CTOS tape for use with the IN-$ command.

3.3.23 BACKUP

Backspaces the front tape one record.

3.3.24 DEBUG

The debugging program allows the user to observe and
modify any location in memory to load files from either the
system or data tapes, and to start execution at any place
in memory. This allows him to load and debug programs with
surprising ease. The major debugging technique is to insert
RETURN instructions in critical places in memory so one rou­
tine at a time may be checked using the CALL command. All
but two (user specifiable) of the registers may be saved
upon return from the program being tested, allowing the user
to determine if the proper actions are taking place by ob­
serving critical register and memory values. The registers
A, B, C, D, E (subject to the Hand L commands) are stored in
locations 016770, 016771, 016772, 016773 and 016774 respec­
tively upon a return to Debug from a program which was called
by Debug.

20

3.3.24.1 INPUT SYNTAX AND ERROR ACTION

The debugging program is entered from the command
handler as ex~lained in a later section or by processor
execution control beinq passed to the location labeled
DEBUG$. At this time the bottom line of the display will
be erased and the current location and its contents ~vill
be displayed there. The program is now ready to accept
input in the format <number> <command>. Only sixteen
bits of significance are kept for the input value. If
more are entered, the first digits entered are lost. Some
commands use only the lmver order eight bits. The number
is terminated by the first character that is not bet'veen
zero and seven and this character is taken to be the com­
mand. Note that leading spaces are not permitted. This
line is read in using the KEYIN$ routine discussed (in sec­
tion 4) thus enabling the use of the backspace and cancel
keys but requiring the ENTER key to be struck to obtain a
response. In one case the ENTER character is the command
and in -some others the number is disregarded. If the com­
mand is ~ot recognized, the program simply ignores it and
the.old current address and its contents are displayed
again. After every command, control is returned to the
entry point of the debugging program which will display the
now current address and its contents.

3.3.24.2 THE CURRENT ADDRESS

Two memory locations in the debug routine contain an
address (initialized to zero upon loading) which points
to a memory location which is the current center of interest.
Available commands allow one to change the contents of this
memory location and move the pointer as well as perform
other functions.

3.3.24.3 DEBUG COM~ND MEANINGS

The following is a list of each command character vii th
its effect and the number (in parenthesis) of bits of the
given number used:

F

G

load file one from the data tape

load from the system tape the file whose
number is given (8)

21

ENTER

I

D

set the curr.ent address to the number
given (16)

increment the current address by one (0)

decrement the current address by one (0)

change tha current address contents to
the number given (8)

do the H followed by the I command (8)

L upon return from a C command, cause the
L register to be stored into the register
whose number is given (3)

H same as the L command but for the H register
(3)

C execute a CALL instruction to the location
whose number is given (16)

o return to the operating system command handler
(be sure it is there) (0)

3.3.25 LIST

The LIST command displays any tape. The tape must be
placed in the front deck and previously positioned. If
records are numeric (record type 0303), parity errors will
be indicated by the 'Internal Error D' message - no reread
will be performed. The first four bytes (0303/074/XP/CP)
will not be dis?layed for numeric records.

The operator must answer the question 'Alpha or Octal?'
by typing 'A' or '0'. Any type of symoblic tape may be
listed in the alpha mode, including compressed source tapes
generated by the editor; however, compressed source blotks
will not be linked together - each block will be displayed
as an independent entity.

To initiate and continue the display type ILl.

To advance to the next record, type 'N'.

22

To backspace a record, type 'B'.

To return to the command handler, type '0'.

A maximum of 256 bytes can be displayed.

3.3.26 FIX

The FIX command permits the operator to look at and
change an object file. The tape must be placed in the
front deck and the operator must ans''I7er the question
'CTOS or OBJ?'. If 'C' is typed, the actual octal file
number, 'FILE NO?' must be supplied; otherwise, the tape
will be positioned to the object file (file 1). New
blocks cannot be generated on a CTOS tape.

The routine is now ready to accept input in the for-
mat <Nll1BER><COMMAND>. The number is assumed to be octal
and the absence of any digits between zero and seven implies
a value of zero for the number. Only sixteen bits of signi­
ficance are kept for the input value. If more are entered,
the first digits entered are lost. Some commands use only
the lower order eight bits. The number is terminated by the
first character that is not between zero and seven and this
character is taken to- be the command.

In one case the ENTER character is the command and in
some others the number is disregarded. If the command is
not recognized, the program simply ignores it and the old
current address and its contents are displayed again.

Operation is similar to DEBUG. The following is a list
of command characters with its effect and the number (in
parenthesis) of bits of the given number used:

ENTER:
a) if no block is currently in memory, read
object file until block containing given loca­
tion is found, then display the contents of
th at location.
b) if a block is in memory and the location
given is within the limits of the block, the
contents of the location will be displayed.
c) if a block is in memory and the location
given is not.within the block limits, the
current address will be set to the minimum or
maximum address, its contents will be displayed and

23

A

T

N

I

D

M

o

R

a beep will sound.
d) if a new block is being created in
memory and the given location is between
the starting address and the current ad­
dress + 1 both the current and maximum
address will be set to the given location
and its contents will be displayed. (16)

abort processing of current block. Reposi­
tion tape to beginning of file (~).

write block currently in memory out to tape
over original block (~).

develop a new block with starting address
given. The last block (which transfers control
to the starting address) will be rewritten
after the new block. The length of the new
block is determined by the last address dis­
played before 'T' is typed (16). (Object tape
only)

increment up to maximum address in current
block. If new block, increase length of
block (~).

decrement to minimum address of current block.
If new block, decrement length of block (~).

change contents of dis8layed address to number
given (8).

change contents of displayed address to number
given and display contents of next location
(See 'I' command) (8).

transfer control back to operating system
command handler (~).

reset file number - aborts processing and re­
asks the first question.

The tape will not be repositioned to the beginning when
you type 'T' - so if you enter corrections in the same se­
quence they are arranged on tape, operation will be most
efficient. If you need to access a previous block, type 'A'
and then the address.

24

CASSETTE T.APE OPERATING SYSTENJ"

SECTION IV

SYSTEM SUBROUTINES

4.0 SYSTEJ'1 SUBROUTINES

~I[any of the subroutines resident in the operating
system can be useful to user programs. Functions such
as keyboard input, screen output, tape handling and
linking can be performed using proper input parameters
to these memory resident routines.

4.1 SYNBOLIC LOADER ROUTINES

4.1.1 UTILITY ROUTINES

Several utility routines contained in the symbolic
loader area are a block transfer, labeled BLKTFR and a
routine, labeled INCSWP, which increments the Hand L
register pair and then swaps it with the D and E register
pair. The block transfer will move the number of char­
acters specified by the entry value in the C register
from a memory address starting with the entry values in
the Hand L registers to a memory address starting with
the entry values in the D and E registers.

4.1.2 LOADING ROUTINES

To use the symbolic loading routine, one loads into
the D and E registers the address of the six characters
of the desired name (trailing blanks must be included) and
calls MLOAD$. If the zero condition is false upon return,
then the given name was not in the catalog. If the zero
condition is true but the carry condition is false upon
return, the laoder could not either find or correctly load
the file requested. Note that one must be certain to place
the call to .MLOAD$ in a place that will not be overlayed
since execution will resume following the CALL instruction
after the file has been loaded.

25

4.1.3 OTHER SYMBOLIC LOADER FACILITIES

Another facility in the symbolic loader area will
load and execute a file whose number (not name) is in
the B register upon call.' Calling MAUTO$ will load the
file from the system tape and calling MAUT2$ will load
the file from the data tape. If the loader could not
either find or load the file, the operating system is
automatically reloaded.

4.2 LOADER ROUTINES

There are several routines avai·lable in the loader
that can be used without the symbolic loader interface.
BOOT$ reloads the operating system from the rear deck.
LOAD$ loads and executes the file specified in the B
register from the rear deck. LOAD2$ loads and executes
the file specifi~d in the B register from the front deck.

4.3 OS UTILITY ROUTINES

INCHL increments the Hand L registers by one. INDEX
increments the Hand L register by t~e value in the A
register. DECHL decrements the Hand L registers by one.
SAVHL and RESHL are two routines to save and restore the
Hand L registers as long as no file handling is performed
between the call to SAVHL and the call to RESHL.

4.4 KEYBOARD AND DISPLAY ROUTINES

The operating system contains facilities to ease the
burden of communicating with the operator. Two routines
exist. The first accepts the characters from the keyboard,
displays them on the screen, and stores them in a memory
buffer. The second writes a string of characters from a
memory buffer onto the screen.

4.4.1 KEYBOARD INPUT

The keyboard input routine, labeled KEYIN$, accepts a
specified maximum number of characters, given by the entry
value of the C register, from the keyboard and puts them in-

26

to memory starting at the entry value of the Hand L
registers and onto the screen at starting horizontal
cursor position of the entry value of the D register
and vertical cursor position (which cannot be changed
during the course of one input) of the entry value of
the E register. Note that if the cursor collides with
the right edge of the screen during entry, characters
other than backspace, cancel, and ENTER will not be
accepted, although they will print over each other in
the last display position. The ENTER character (015)
terminates input .and is stored in the memory buffer to
specify the end of data but is not written to the
screen. Hitting the backspace key will delete the last
character entered and move the cursor appropriately
while hitting the cancel key will delete all characters
entered and also move the cursor appropriately. These
two keys also back up L~e buffer memory pointer appro­
priately. Note that if one has typed a character at
either the screen limit or at the maximum character
count limit, hitting a backspace will cause the previous
character to be erased and leave the last character still
on the screen, although it will either not appear on the
memory buffer or be'after the 015.

4.4.2 DISPLAY OUTPUT

The display routine, labeled DSPLY$, will display
the string of characters stored in memory starting at
the address which is the entry value of the Hand L
registers and terminating with a character whose numerical
value is either a 003 (ETX) or 015 (ENTER). The cursor
starts at the entry values in the D (horizontal) and E
(vertical registers a cursor position that is off the
screen will not be sent to the CRT) and stops after the
last character printed if the terminating character was
an 015. Note that, as in KEYIN the cursor stops at the
right edge of the screen and the characters overwrite each
other if more are available after collision. Also note
that if display was occuring on the bottom line and the
terminating character is an 015, then the whole screen is
rolled up to force the existance of a following line and
the information that was at the top of the screen is lost.
After return from the display routIne, the Hand L registers

27

will point to the location after the terminating char­
acter and the D and E registers will reflect the current
cursor position. The cursor will be off while the dis­
play routine is writing, but it is turned back on upon
exit even if it was off upon entry. Other special con­
trol characters can cause cursor positioning line/frame
erasure, and screen rollTup~

all a new horizontal position (0 to 79)
follows

013 a new vertical position (0 to 11)
follows

021 erase to the end of the frame

022 erase to the end of the line

023 roll the screen up one line

4.5 OPERATING SYSTEM FILE HANDLER

The operating system contains a set of routines which
will perform all of the various input/output functions
needed to maintain the files of data on the tapes. These
routines are packed in the upper 2K of memory and are made
available to the user if he wishes to handle his mass stor­
age problems in conformance with the conventions of the
operating system. All routines are uniformly parameterized
and are accessed through an entry point table (a group of
JUMP instructions to the actual routine locations) so any
update to the operating system will not have any effect upon
the user's code.

4.5.1 ROUTINE PA~~TERIZATION

Routine parameterization consists of a memory location
in the D (HSB) and E (LSB) registers of the first byte of
a group of four bytes (called a packet) which parameterizes
the call more explicitly. This method reduces the number of
memory locations required to perform a routine call since,
in a typical program, one needs only a few different packets
but will have many different calls. The parameterization of
some routines is not as extensive as that of others, but the
same packet can generally be used for the different calls
when they are affecting the same file.

28

4.5.2 LOGICAL FILE NUMBERS

The first byte in the packet is the logical file
number and must be between zero and seven or an internal
error H will occur upon calling the routine. The second
and third bytes in the packet contain the LSB andMSB
(respectively) of the first location in memory to be
used as a data buffer. Actually, the two bytes previous
to this location will be used by some of the routines as
discussed later. This data buffer may be located any­
where in memory. The fourth byte in the packet specifies
the length of the data buffer when numeric data is being
handled. Note that using only one byte for the length
implies that numeric records may not contain more than
256 data bytes. Actually the maximum number of data bytes
specified may not be greater than 254 for reasons that
are made clear in the numeric routine instructions. The
four bytes of the packet may be located any,..,rhere in memory.

4.5.3 PHYSICAL DEVICE AND FILE NUMBERS

The logical file number specified in the packet is
converted by each routine, via an internal transformation
table, into physical file and device numbers. The physical
device number specifies whether the operation is to be
performed on deck one (rear) or deck two (front) and the
physical file number specifies which file is to be treated
on the given deck. Actually, not all routines use all
of this information since, for instance, when one is read­
ing records from a file he assumes that he is using the
file to i..,rhich the tape was last positioned. The internal
transformation table is initialized at load time to the
following values:

LOGICAL PHYSICAL PHYSICAL GENERAL
FILE FILE DEVICE USE

0 a a Unassigned

1 a I General deck one

2 a 2 General deck two

3 I I CTOS catalog

29

LOGICAL PHYSICAL PHYSICAL GENERAL
FILE FILE DEVICE USE

4 0 2 Symbolic data

5 1 2 Object data

6 0 0 Unassigned

7 32 I System scratch

It is shown that logical files I and 2 are specified
for use of any physical file, even though 0 is shown in
the table. This can be done by use of a routine that will
change the physical file number of a given logical file.
A routine also exists to allow the physical device number
to be changed, thus allowing the user to set up logical
files in any physical configuration needed. Note, however,
that one must have logical files I through 5 and 7 in the
state shown (except for the physical device numbers of
logical files I and 2) if one returns control to the oper­
ating system command handler, since the loaded values are
assumed by this program. Logical files 0 and 6 may be used
freely but must be set before the first call utilizing them.
The following is an example of a packet usage as it would
be expressed in the assembler: (Note all calls to CTOS tape
routines must as in the following example, be preceededbx
a DE to the first byte of the packet. Note also that the
packet consists of 4 bytes: Logical file number, LSP of
buffer, MSP of buffer and length of buffer)

LA
DE
CALL
LA
DE
CALL
DE
CALL

LOOP DE
CALL
JTC

JFZ

2
PACKET
CPDN$
3
PACKET
CPFN$
PACKET
PBOF$
PACKET
SSFR$
DONE

TERR

30

Set up logical file six
to be used as physical
file 3 on the front deck

Position to the beginning
of the file
Read a record of symbolic
Into BUFFER
Quit it to the next file
marker
Exit if type error

Action taken for each record

DONE

TERR

BUFFER
PACKET

JMP LOOP

DC

SKIP
DC
DA
DC

0,0

128
6
BUFFEH
a

Action taken when file
completely in

Type error action

Room for parity check
generation
Buffer area
Logical file 6
Buffer address
Length (not used)

4.5.4 ROUTINE USAGE INSTRUCTIONS

To use a routine, one sets up whatever is required
for proper parameterization and then calls the desired
location in the entry point table. The locations are
labeled with the first word in the following paragraph
titles followed by a $. For example, to call the serial
numeric file read, one ,,,auld say CALL SNFR$. The routine
·will either perform the requested task or take one of two
error exit paths. Th.e first path is taken in the case of
fatal errors, for which it is decided that the only re­
course is to reload the operating system. This is called
an internal error and the message INTERNAL ERROR (letter)
is wrltten on the bottom line of the display before the
system is reloaded. The various letters which may appear
are the following:

A Illegal device specification

B" Illegal record format

D Unrecoverable parity error

G Unfindable file

H Illegal logical file specification

The other path is non-fatal and simply returns with
certain condition flags in states other than normal ~o
indicate that something unusual happened. Since every

31

routine uses a common subroutine (labeled GETPKT) to
get the parameters from the specified packet, cornmon
internal errors can occur. If the logical file number
is not between zero and seven, an internal error H occurs.
If the physical device number is not either a 1 or a 2,
an internal error A occurs. Other than for these error
actions, the following paragraphs described the effects
of and the exact parameterization needed for each
routine.

4.5.4.1 SNFR - SERIAL NUMERIC FILE READ

This routine reads the next record from the specified
device. If the record is of symbolic type, the- zero and
carry condition are set false and return occurs with no
parity checking or data storage being performed. If the
record is a file marker, the carry condition is set true
and the taoe is backed UP to where it was before the rou­
tine was c~lled. Again,-return occurs with no data storaqe
being performed. If the type is numeric, the two parity
bytes followed by the data are read into the buffer. If
the parity checking fails or the record type is bad, three
efforts are made at reading the record by backing up to
its beginning and starting over. If recovery is not made
in one of these efforts, an internal error D occurs. If
the record is read successfully, return occurs with the
zero condition true, the carry condition false, and the
Hand L registers containing the memory location of the
byte following the last one loaded from the tape. To cal­
culate the length of the buffer area used, one must sub­
tract the buffer starting address from returned values in
the Hand L registers. Remember that the first two char­
acters in the buffer are not data characters but are the
two longitudinal check sums. To obtain the number of data
characters loaded, one must subtract the buffer starting
address plus two from the returned values in the Hand L
registers. The parity checks are stored because the SBFW
routine uses them instead of regenerating them from the
data, thus shortening the time required to copy numeric
records from one deck to the other.

4.5.4.2 SSFR - SERIAL SY~ffiOLIC FILE READ

This routine reads the next record from the specified
device. If the record is of type numeric or file marker,
the action taken will be the same as when SNFR reads a sym-

32

bolic or file marker record. Action similar to that
taken by SNFR is also taken if parity or type faults
occur. If the record is read satisfactorily, only data
characters will be in the buffer starting at the address
specified. An 015 will mark the end of the data string
and all vertical parity bits will be zero. The same
normal exit conditions as in SNFR will occur.

4.5.4.3 SB~N - SERIAL BLOCK FILE WRITE

This routine writes a record of type numeric on the
specified device. The total number of bytes, including
the parity initialization sums as the first two, must be
in the fourth byte of the packet. Note that inclusion
of the parity initialization sums implies that the total
number of actual data bytes cannot exceed 254. This rou­
tine assumes that the first two bytes in the buffer are
the correct parity initialization sums since it does not
generate them from the data. There are no error exits
from this routine which implies that writing off the end
of the tape will not be caught and that-read after-write
checking is not performed.

4.5.4.4 SNFW - SERIA.L NUMERIC FILE WRITE

This routine performs in a fashion similar to the
SBFW routine except the two parity bytes are not included
in the data buffer and the length specifies the number of
actual data characters. The routine generates the two
longitudinal parity sum initialization values and inserts
them in the two locations preceeding the buffer. It then
writes on the specified device a record of type numeric
containing the two parity bytes generated, followed by the
number of data bytes specified. Note that the length is
adjusted to accomodate the bolO parity bytes so, as in the
SB~~ routine, only 254 actual data bytes may be written.
If one specifies a length of 255 or 0, the only bytes
(besides the record type) written on the tape will be
respectively the first or both parity initialization sums.
No error exits are. made from this routine.

4.5.4.5 SSFW - SERIAL SYMBOLIC FILE WRITE

This routine performs in a fashion similar to the SN~~
routine except that an 015 character in the data string

33

rather than a specified value is used to determine the
buffer length, vertical (in addition to longitudinal)
parity generation is performed, and a record of type
symbolic rather than numeric is written. The terminating
015 character is not included in the set of characters
written to th.e tape, but remember that it will appear
again if the SSFR routine is used to read the record.

4.5.4.6 PEOF - POSITION TO END OF FILE

This routine searches forward on the specified device
until it finds a file marker. It then. backspaces the tape
until it is between the next to the last and the last re­
cord in the file. It then forward spaces the tape one
record which puts it at the end of the file, having arrived
there via fon..,ard tape motion. This forward arrival is
important to observe when one plans to append one record
after another and still maintain physical interrecord gap
integrity. Note that every record passed over by the PEOF
routine must have a valid record type or it will be read
again in action similar to parity failure action in the
SNFR routine.

4.5.4.7 PBOF - POSITION TO BEGINNING OF FILE

This routine searches for a file marker in a fashion
similar to the loader except it starts by searching back­
wards. The file number searched for is specified by the
physical file number supplied by the generalized paramet­
erization. Note that since this routine starts by searching
backwards, it will not decide that the requested file is
not on the tape until it has found ih the search forward mode
a file marker-that specifies a file number greater than the
one desired, if indeed the file is not on the tape. Also
note that if the leader is found in the search backward
mode, the tape is positioned forward past the first record
and the back'tvard search is continued. If the first record
is not a file marker (operating system convention requires
it to be) or is a file marker whose value is greater than
the one desired, the first record on the tape ,..,ill be passed
over back and forth until external intervention is imposed.
Otherwise, all search rules and error exit conditions of the
loader routine apply here. If, upon return, the c~rry condi-

34

tion is true, then the file \'las not found. Other~'lise,
the tape will be positioned at the interrecord gap fol­
lowing the file marker, having approac~ed that point with
forward tape motion for the reasons exoressed in the PEOF
routine.

4.5.4.8 BSP - BACKSPACE

This routine simply backspaces the tape one record using
the hardware backspace function. No checking is made to
see if the record ~.vas of proper type or if the tape ran
onto the leader.

4..5.4.9 CPDN - CHANGE PHYSICAL DEVICE NU~mER

This routine stores the entry value of the A register
(note the break from generalized parameterization) into
the physical device number entry for the specified logical
file in the internal transformation table.

4.5.4.10 CPFN - CHANGE PHYSCIAL FILE NmmER

This routine stores the entry value of the A register
(note the break from generalized parameterization) into the
physical file number entry for the specified logical file
in the internal transformation table.

4.5.4.11 TRW - TAPE RETIlj'IND

This routine performs a hardware high speed rewind of
only the front deck. If the rear deck (physical device 1)
is specified, an internal error A will occur. Upon exit
from this routine, the tape will be positioned to the clear
leader.

4.5.4.12 TFNR - TAPE FILE NUMBER READ

This routine acts in a fashion similar to PEOF until it
finds the file marker. At this point, it simply reads the
value of that marker and leaves the tape positioned after the
marker record. The value read is return to the C register.
Error exits similar to the PEOF routine can occur.

35

4.5.4.13 TFm.v - TAPE FILE NUMBER T.vRITE

This routine will write on the specified deck the
special four byte file marker record containing the
physical file number specified. No error exits will
occur.

36

SNFR$

SSFR$

SBFW$

SNFW$

SSFW$

PEOF$

PBOF$

BSP$

CPDN$

CPFN$

TRW$

TFNR$

TFNW$

KEYIN$

DSPLY$

INCHL

DECHL

BLKTFR

APPENDIX A

SYSTEM SUBROUTINE LOCATIONS

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

EQU

014000

014003

014006

014011

014014

014017

014022

014025

014030

014033

014036

014041

014044

017000

017151

017353

017364

017745

A-I

Serial Numeric File Read

Serial Symbolic File Read

Serial Block File write

Serial Numeric File Write

Serial Symbolic File Write

Position to End-Of-File

Position to Beginning-of-File

Backspace One Record

Change Physical Device Number

Change Physical File Number

Tape Rewind

Tape File Number Read

Tape File Number Write

Keyboard Entry Routine

CRT Display Routine

Increment H & L

Decrement H & L

Transfer Block from HL to DE
C Characters

SYSTEM SUBROUTINE LOCATIONS

INCSWP EQU 017765 Increment HL & Swap it with DE

BOOT$ EQU 064 Reload OS

MLOAD$ EQU 017620 Symbolic File Loader

MAUTO$ EQU 017601 Load and Execute - OS tape

MAUT2$ EQU 017612 Load and Execute - Deck 2

LOAD $ EQU 0100 Load and Execute - Deck 2

LOAD 2 $ EQU 0112 Load and Execute - Deck 2

A-2

APPENDIX B

OPERATING SYSTE.1II! COMMANDS

COMMAND

CAT

NAME (old), (new)

RUN (name) or RUN # (number)

RUN *

IN (name)

IN # (number)

IN $

OUT (name) or OUT # (number)

OUT $

OUT *

OUT OS$

B-1

FUNCTION

Lists names and numbers of all
files on the system tape.

Changes the name of the file
specified in the catalog.

Loads and executes specified
file

Loads and executes file 1 on
the front deck

Adds file 1 from the front deck
to the system tape after the
last cataloged file.

Adds file 1 from the front deck
to the system tape in the spec­
ified file position.

Copies the catalog and all pro­
gram files from the front deck
to the rear deck.

Moves specified file from the
system tape to the front deck.
File 0 if symbolic, file 1 if
non-symbolic.

Copies rear deck to front deck
(in total) .

Copies rear deck to front deck
(excluding catalog and operating
system). Makes a load and go
tape.

Generates system tape with blank
catalog on front deck.

COMMAND

OUT

DELETE (name) or
DELETE # (number)

REPLACE (name) or
REPLACE # (number)

AUTO

AUTO (name) or
AUTO # (number)

Jl1ANUAL

PREPARE

RET..vIND

CHOP (name) or
CHOP # (number)

INSERT (net.,), (old)

APPEND (name) or
APPEND # (number)

LGO (name,name •••)

SYMBOLIC (name) or
SYMBOLIC #(number)

OPERATING SJSTEM CQl\1MANDS

B···2

FUNCTION

Generates JMP DEBUG$ tape on
front deck.

Removes specified file from
the system tape.

Replaces specified file with
file I from the front deck.

Displays current file in
AUTO status.

Changes catalog to reflect that
the program or file specified
will automatically be loaded
and executed upon restart.

Permanently removes the affect
of a previous AUTO command.

Rewinds front deck and writes a
null data tape.

Rewinds front deck. ,.

Deletes specified file and all
subsequent files.

Inserts file I from front deck
in front of the specified file.

Adds the object file I from the
front deck to the end of the
existing file specified.

Generates a load and go tape with
the programs in the order spec­
ified.

Adds file a from the front deck
to the system tape after the last
cataloged file.

OPERATING SYSTEM CO~~DS

COMMAND

SREPLACE (name) or
SREPLACE # (number)

SINSERT (new) ,(old)

ATTACH (name,name •••)

ATOBJECT (name,name .•.)

FAD VANC E

RADVANCE

BACKUP

DEBUG

LIST

FIX

FUNCTION

Replaces the symbolic file
specified with file 0 from the
front deck.

Inserts file 0 from the front
deck to the specified position
on the rear deck.

Adds specified symbolic files from
the system tape to the end of the
current-file 0 on the front deck.

Adds specified non-symbolic file
from the system tape to the end
of the current file I on the front
deck.

Advances the front cassette past
the next file mark.

Advances the front cassette past
the next record.

Backspaces the front cassette one
record.

Enters DEBUG routine in the
operating system.

Enters LIST routine which displays
any tape on the CRT.

Enters FIX routine which permits
~ermanent modification of program
tapes.

B-3

APPENDIX C

The following chart indicates differences and limi­
tations of operating systems released prior to CTOS 3.1.

CTOS CTOS
VERSION/ STARTING
REVISION LOADER LOCATION CATALOG COMMAND NOT AVAILABLE

CTOS 1.2 8K limit 05000 No numeric No numeric file hand-
ling commands

File space OUT OS$
OUT !
REWIND
FAD VANCE
RADVANCE
LIST
FIX
ATOBJECT
BACKUP
IN $
CHOP *
LGO *
INSERT *
SYMBOLIC.*
SREPLACE *
ATTACH *

CTOS 2.2 8K limit 03400 LIST
FIX
OUT !

eTaS 2.3 03400 LIST
FIX
OUT !

*Available if overlay SOSX used.

C-l

: ,

I) Dotopoint
Datapoint Corporation
9725 Datapoint Drive
San Antonio, Texas 78284
512/696-4520

