DATASHAH 2.1
JANUARY—=-—13873
AW A e S ORI
SEL F el Fr 7y

Jogom
Users Gude

=
O |
Q
g
O

COPYRIGHT (@) 1873 BY DATAPOINT CORPORATION

DATAPOINT CORPORATION

December 1973

DATASHARE USER’S GUIDE

Release 2

TABLE OF CONTENTS

PAGE
1. INTRODUCTION 1
2. STATEMENTS ‘ 3
3. DATA DEFINITION
3.1 Variable definition 5
3.2 Numeric string variables 6
3.3 Character string variables 6
3.4 Common Data Areas 7
4. PROGRAM CONTROL INSTRUCTIONS
4.1 GOTO 8
4.2 BRANCH 8
4.3 CALL 9
4.4 RETURN 9
4.5 STOP 9
4.6 CHAIN 10
4.7 TRAP 10
4.8 TRAPCLR 11
4.9 ROLLOUT 12
5. CHARACTER STRING HANDLING INSTRUCTIONS '
5.1 MOVE 14
5.2 APPEND . 15
5.3 MATCH 16
5.4 CMOVE 17
5.5 CMATCH 17
5.6 BUMP , 17
5.7 RESET 18
5.8 ENDSET 18
5.9 LENSET 19
5.10 CLEAR 19
5.11 EXTEND : 19
5.12 LOAD 19
5.13 STORE _ 19
5.14 CLOCK 20
5.15 TYPE » 21
6. ARITHMETIC INSTRUCTIONS
6.1 ADD 23
6.2 SUB 23
6.3 MULT 23
6.4 DIV 23
6.5 MOVE 23
6.6 COMPARE 24
6.7 LOAD 24
6.8 STORE 24

—

7. INPUT/OUTPUT INSTRUCTIONS
1 KEYIN

2 DISPLAY

3 CONSOLE

4 BEEP

5 PRINT

6 RELEASE

7 PREPARE

8 OPEN

9 CLOSE

1

0 Disk Input/Output (WRITE, WRITAB, and READ)

I
7.
7.
7.
7.
7.
T.
7.
7.
7.
7.

8. PROGRAM GENERATION

8.1 Preparing Source Files

8.2 Compiling Source Files
8.3 Compilation Diagnostics

9. SYSTEM GENERATION
9.1 Loading From Cassette
9.2 Port Configuration
9.3 Necessary Programs

10. SYSTEM OPERATION
10.1 Bringing Up the System
10.2 Taking Down the System
10.3 Fatal Error Conditions

11. ANSWER AND MASTER CONCEPTS
11.1 System Security
11.2 System Convenience
11.3 Sample Answer and Master Programs

12. PHYSICAL SYSTEM CHARACTERISTICS
12.1 Virtual Memory
12.2 Major Modules
12.3 Scheduling

13. PHYSICAL INSTALLATION
13.1 Main Peripherals
13.2 Terminal Connections
13.3 Port Speed Selection
13.4 Non-3360-102 Terminal Device

APPENDICES
A. Instruction summary
B. I/0 List Controls
C. Program Examples

25
28
28
29

29
29
N
31
32

41
41
45

46
46
47

48
u9
50

51
51
52

55
57
60

63
64
67
68

1. INTRODUCTION

DATASHARE permits the simultaneous execution of up to
eight DATABUS programs, each dealing with its own remote
Datapoint CRT terminal. The DATASHARE interpreter runs
under the Disk Operating System (taking advantage of all of
its file handling characteristics), handles a high-speed
line printer, and allows intra-~file access, thus providing a
powerful data entry and ©processing facility. This
configuration allows a flexible mix of remote, batch, and
interactive processing all under the control of a high level
language program, enabling the user to configure the system
to best suit his data processing needs.

In addition, the DOS with its variety of assembly and
DATABUS 1language systems may be used alternately to
DATASHARE, enabling processing of tasks not applicable to
the multiple terminal configuraton.

Using virtual memory techniques, DATASHARE provides
each program with a 16K byte area for executable statements.
This, in combination with the ability of the compiler to
accommodate over 700 labels, enables the user to create and
use programs of over one hundred pages (a very large high
. level language progranm). To provide rapid program
execution, the data area for each program is maintained in
main memory and not swapped. A combined total of 4096 bytes
of main memory is allocated for the use of all ports
configured into the system. The system may be configured to
run with one through eight ports with the data area being
divided evenly among them. Thus, an eight port system
provides 512 bytes of data area for each program, while a
six port system provides 682 and a two port system provides
2048 bytes of data area for each program.

Any of the Datapoint 2200 printer. systems may be
connected to the DATASHARE configuration with printing being
controlled from any of the ports. If the printer is busy
with one port, another port trying to access the. printer
will wait until the first port releases the printer.

All program execution in DATASHARE occurs 1in the
DATABUS 1language. Terminal command interpretation 1is
handled in special ANSWER and MASTER programs (unique for
each port) which also handle system security. These
programs are provided with the system but may be compiled
like any other Databus program, enabling the user to
completely define his own terminal command system.

Program generation is performed under the DOS using the
general purpose editor and DATASHARE compiler.

NOTE: This release of DATASHARE has the following new
features which may cause compatibility problems for programs
written for the first version of DATASHARE. Refer to the
sections 1indicated for detailed explanations of the
features. The pound sign (#) is interpreted by the compiler
as a forcing character (Section 2). The OPEN and PREPARE
instructions now allow the programmer to specify a drive
number (Sections 7.8 and 7.9). The numeric READ no longer
uses the MOVE mechanism to reformat the data read in
(Section 7.10).

2. STATEMENTS

There are three basic types of statements in DATASHARE:
comment, data definition, and program execution. Comment
“ITTnes begin with a period and may occur anywhere in the
program. Comments are most useful in explaining program
logic and subroutine function and parameterization to enable
someone reading through the program to understand it more
easily. Data definition statements must occur before an
program execution statements and are used for setting up all

variables n program. All data definition
statements must have unique 1labels. Program execution
statements must appear after any data definition statements
and may or may not have labels. The 1labels on progranm
execution statements may be the same as labels on the data
definition statements. Program execution always begins with

the first executable statement. The following are some
examples of DATASHARE statements.

ONE FORM ™"
COUNT1 FORM "O"
COUNT2 FORM "O"
PROD FORM 2

START DISPLAY *ES,"MULTIPLICATION TABLE:",®N
LOOP MOVE COUNT1 TO PROD

MULT COUNT2 BY PROD)

DISPLAY COUNT1,"X",COUNT2,"=",PROD," ";

ADD ONE TO COUNT2

GOTO LOOP IF NOT OVER

DISPLAY *N

ADD ONE TO COUNT1

GOTO LOOP IF NOT OVER

STOP

Labels for variables and executable statements can
consist of any combination of up to six letters and digits
beginning with a letter. The following are examples of
valid labels:)

A

ABC
A1BC
B1234
ABCDEF

The following are examples of invalid labels:

HI,JK (contains an invalid character)
4DOGS (does not begin with a letter)

Statements other than comments consist of a label
field, an operation field, an operand field, and a comment

. ComMmeENT

field. The 1label field is considered emtpy if a space
appears in the first column. The operation field denotes
the operation to be performed on the following operands. In
many operations, two operands are required in the operand
field. These operands may = be connected either by an
appropriate preposition (BY, TO, OF, FROM, or INTO) or a
comma. One or more spaces should follow each element in a
statement except where a comma is used, in which case it
must ‘be the terminating character of the previous element
and may be followed by any number (including zero) of

spaces. For example, the following are all examples of
valid sStatements:

LABEL1 ADD ONE TO TOTAL

LABEL2 ADD ONE OF TOTAL THIS IS A COMMENT
LABEL3 ADD ONE, TOTAL

LABEL4 ADD ONE,TOTAL

Note that any preposition may be used even if it does
not make sense in English. The following are examples of
invalid statements:

LABEL1 ADD ONE TOTAL (missing connective)
LABEL2 ADD ONE ,TOTAL (space before comma)

Certain DATASHARE statements allow a list of items to
follow the operation field. In many cases, this list can be
longer than a single line, in which case the line must be
continued. This is accomplished by replacing the comma that
would normally appear in the 1list with a c¢olon and
continuing the list on the following line. For example, the
two statements:

DISPLAY A,B,C,D:
E,F,G

DISPLAY A,B,C,D,E,F,G

will perform thé same function.

The pound sign (#) is interpreted by the compiler as a
forcing character. It may appear in any part of the
DATASHARE statement.. The character immediately following
the pound sign is taken ‘as is’ regardless of what it 1is.
Thus, the pound sign itself and the quote (") may be used in
DATASHARE statements. For example,

DISPLAY "CUSTOMER## SHOULD BE #"2222#""

would display exactly, CUSTOMER# SHOULD BE %"2222", on the
screen. Programs written for the first release of DATASHARE
will have to be modified if they use pound signs and are to
be ¢ompiled by the new compiler.

3. DATA DEFINITION

There are two types of data used within the DATASHARE
language. They are numeric strings and character strings.
The arithmetic operations are performed on numeric strings
and string operations are performed on character strings.
There are also operations allowing movement of numeric
strings 1into character strings and vice versa. Numeric
strings have the following memory format:

-

~ 0200 1 2 . 3 0203

" The leading character (0200) is used as an indicator that
the string is numeric. The trailing character (0203) is
used to indicate the location of the end of the string
(ETX). Note that the format of a numeric string is set at
definition time and does not change throughout the execution
of the program. When a move into a number occurs from a
string or differently formatted number, reformatting will
occur to cause the information to assume the format of the
destination number (decimal point position and the number of
digits before and after the decimal point) with truncation
occurring if necessary (rounding occurs if truncation is to
the right of the decimal point). Character strings have the
following memory format: ’

9 5 THE QUICK BROWN 0203

L ! » -f

The first character is called the logical length and points
to the last character currently being used in the string (K
in the above example). The second character is called the
formpointer and points to a character currently being used
in the string (Q in the above example). The use of the
logical length and formpointer in character strings will be
explained in more detail in the explanations of each
character string handling instruction. Basically, however,
these pointers are the mechanism via which the programmer
deals with individual characters within the string.

The term physical 1length will be used to mean the
number of possible data characters in a string (15 in the
above example). The logical and physical lengths of string
variables is limited to 127.

3.1 Variable definition

Whenever a data variable is to be used in a program, it
must be defined at the beginning by using either the FORM,

INIT, or DIM instructions. These instructions reserve the
memory space described above for the data variable whose
name is given in the label field. Note that all variables
must be defined before the first executable statement is
given in the program and that once an executable statement
is given, no more variables may be defined. Numeric strings
are created with the FORM instruction while character
strings are created with the INIT or DIM instruction.

3.2 Numeric string variables

Numeric variables are defined in one of two ways with
" the FORM instruction as shown in the following illustration:

EMRATE FORM 4.2
XAMT FORM " 382.4 *

In this example, EMRATE has been defined as a string of
decimal digits which can cover the range from 9999.99 to
-999.99. The FORM instruction illustrated reserves spaces
in memory for a number with four places to the left of a
decimal point and two places to the right of a decimal point
and initializes the value to zero. When the number is
negative, one of the places to the left of the decimal point
is used by the minus sign. XAMT, in the example, is defined
with four places to the left of the decimal point and three
to the right but with an initial decimal value of 382.400.
The physical length of a numeric variable is limited to 22
characters (decimal point and sign included).

3.3 Character string variables

Character strings are defined with either a DIM or INIT
instruction. DIM reserves a space in memory for the given
number of characters but sets the 1logical 1length and
formpointer to zero and initializes all the characters to
spaces. For example:

STRING DIM 25

A character string can also be defined with some initial
value by using the INIT instruction. For example:

TITLE INIT "PAYROLL PROGRAM"

initializes the string TITLE to the characters shown and
gives it a logical length of 15. The formpointer is set to
one. Note that in the case of strings, the actual amount of
memory space reserved is three bytes greater than the number
specified in the DIM or quoted in the INIT instruction
(TITLE ocecupies 18 bytes in memory, 15 of which hold
characters).

Octal control characters (000 to 037) may be included
when initializing a string. The control character is
separated by commas, without guotes, and is preceded by a
zero. For example,

TITLE INIT "?AYROLL PROGRAM",015,"TEST1"

would initialize a string with a logical and physical length
of 21 characters. The octal control character, 015, would
appear after the M in PROGRAM and before the first T in
TEST1. This feature 1s included mainly for message
switching applications and for allowing control of ASR
Teletype compatible terminals. It is the responsibility of
the programmer to remember that some of these characters
(000, 003, 011, and 015) are used for control purposes in
disk files. »

3.4 Common data areas

Since DATASHARE has the provision to chain programs so
that one program can cause another to be loaded and run, it
is desirable to be able to carry common data variables from
one program to the next. The procedure for doing this is as
follows:

a. Identify those variables to be used in successive
programs and in each program define them in exactly
the same order and way and preferably at the
beginning of each program. The point in this is to
cause each common variable to occupy the same
locations in each progranm. Strange results in
program execution wusually occur 1if a common
variable is misaligned with respect to the variable
in the previous program. '

b. For the first program to use the variables, define
them in the normal way.

¢. For all succeeding programs place an asterisk in
each FORM, DIM, or INIT statement, as illustrated
below, to prevent those variables from being
initialized when the program is loaded into memory.

Examples:
MIKE FORM #4.2

JOE DIM #20
BOB INIT #"THIS STRING WONT BE LOADED"

4. PROGRAM CONTROL INSTRUCTIONS

DATASHARE normally executes statements in a sequential
fashion. The program control instructions allow this flow
to be altered depending on the state of the condition flags.
There are five condition flags in DATASHARE: OVER, LESS,
EQUAL, ZERO, and E0S. EQUAL and ZERO are two names for the
same flag. Only the numeric and character string
manipulating instructions alter the states of these flags.
Reference should be made to the individual instruction
explanations for the meanings of the flags.

- 4.1 GOTO

The GOTO instruction transfers control to the program
statement indicated by the label following the instruction:

GOTO CALC

causes control to be transferred to the instruction labeled
CALC.

The GOTO instruction may be made conditional by
following the label by the preposition IF and one of the
condition flag names. For example:

GOTO CALC IF OVER

will transfer control to the instruction labeled CALC if an
overflow occurred in the 1last arithmetic operation.
Otherwise, the instruction following the GOTO is executed.

The sense of the condition can be reversed by inserting
the word NOT before the condition flag name as follows:

GOTO CALC IF NOT OVER

meaning control is transferred only if the overflow did not
occur.

4.2 BRANCH

The BRANCH instruction transfers control to a statement
specified by an index. For example:

BRANCH N OF START,CALC,POINT

causes control to be transferred to the label in the label
list pointed to by the index N (i.e. START if N = 1, CALC {if
N = 2, and POINT if N = 3). If N is negative, zero, or
larger than the number of 1labels in the 1ist, control
continues with the following statement. The index 1is
truncated to no decimal places before it is used (1.7 = 1).

The BRANCH instruction statement may be continued to
the next line by the use of a colon in place of one of the
variable delimiting commas. For example:

LABEL BRANCH N OF LOOP, START, READ?!, WRITE1:
WEOF1,STOP

4.3 CALL

The CALL instruction 1s very similar to the GOTO
instruction except that when a RETURN instruction is
encountered after a transfer, control is restored to the
next instruction following the CALL instruction. CALL
instructions may be nested up to 8 deep. That is, up to
eight CALL instructions may be executed before a RETURN
instruction is executed. Being able to call subroutines
eliminates the need to repeat frequently used groups of
statements. Note, however, that in DATASHARE the space
allowed for a program is very large and that, due to the
virtual nature of this space, calling a subroutine is
considerably more time consuming than executing the code in
line if a page swap is invoked. Therefore, in many cases it
is much better to put some code in line instead of making it
a subroutine, especially if the amount of code is quite
small (say, less than a dozen lines). This is a trade-off
which should be considered when one is dealing with code
that will be executed very often (for instance, code that is
executed every time a data item is entered). CALL
instructions may be made conditional 1like the GOTO
instruction. For example:

CALL FORMAT
CALL XCOMP IF LESS
4.4 RETURN

The RETURN instruction is used to transfer control to
the location indicated by the top address on the subroutine
call stack. This instruction has no operand field but may
be made conditional. For example: .

RETURN
RETURN IF ZERO

4.5 STOP

The STOP instruction causes the program to terminate
and return to the MASTER program for that port. This
instruction has no operand field but may be made
conditional. For example:

STOP
STOP IF NOT EQUAL

4.6 CHAIN

The CHAIN instruction causes the program, whose DOS
name (with extension TSD) is in the specified string, to be
loaded and for control -to be passed to its first executable
statement. Any characters after the sixth will be ignored
and blanks will be appended if less than six characters are

in the variable. Note that the name used starts at the

formpointer. So if in the following example, NXTPGM's
formpointer was 4, the chain command would try to load the
program named "ROL":

NXTPGM INIT "PAYROL"

CHAIN NXTPGM
4.7 TRAP

TRAP 1is a unique instruction because, rather than
taking action at the time it is executed, it specifies the
location to which a transfer of control (via the CALL
mechanism) should occur if a specified event occurs during
later execution. For example:

TRAP EMSG IF PARITY

specifies that control should be transferred to EMSG if a
parity failure 1is encountered during a READ or WRITE
instruction. The control transfer is performed in a manner
similar to the CALL instruction. Therefore, in the above
example, if the parity error occurred during a disk READ
instruction, the effect would be to insert a CALL EMSG
instruction between the READ and the instruction immediately
following it.

If an event occurs and the trap corresponding to that
event has not been set, the message:

® ERROR * LLLLL X ®

appears on the line currently positioned to on the terminal
whose program caused the event. The LLLLL is the current
value of the program counter and the X is an error letter:

parity failure

record number out of range
record format error

chain failure

I/0 error '

illegal oper~ation code
call stack underflow

- OT DY
[B D D DO B B |

Note that the last twe items shown above cannot be trapped.
The events that may be trapped are:

PARITY - disk CRC error during READ
' disk CRC error during write
(write/verify)

RANGE - record number out of range (off end of -
file, record read which was never
written, or WRITAB used on record which
was never written)

FORMAT - non-numeric data read into number (the
read stops at the list item in error so
the rest of the 1list items will not be
changed)

CFAIL - the specified program was not in the DOS

directory or a ROLLOUT was attempted with
one of the necessary system files missing
I0 - the file name supplied was null, a
PREPARE was executed using a file that
was delete or write protected if it
existed, an OPEN was executed that could
not find the specified file name, a disk
operation was executed using a file that
~was not open, the drive accessed was off
line, space needing to be allocated was
not available on the drive accessed, or
the number of data characters specified
in a WRITAB statement was less than zero
or greater than 249.

Note that the trap locations are cleared whenever a CHAIN
occurs. Therefore, each program must initialize all of the
traps it wishes to use. Also, whenever a certain event is
trapped, the trap location for that event is cleared, which
implies that, if the event is to be trapped again, its
location must be reset by the trap routine.

4.8 TRAPCLR

This instruction will clear the specified trap. For
example:

TRAPCLR PARITY
will clear the parity trap previously set.

1

4.9 ROLLOUT

The ROLLOUT feature allows execution of all ports
currently on the DATASHARE system to be temporarily
suspended while certain functions are performed under DOS.
When a ROLLOUT occurs, the program ROLLOUT/SYS will be run
which writes system status and memory in a file called
ROLLFILE/SYS. A beep is sounded at the console to alert the -
operator when a ROLLOUT is initiated. Clicks are sounded as
ROLLFILE/SYS is created and another beep occurs when the
file creation is completed. The DOS is then brought up at
the console by the loading of programs SYSTEMO/SYS and
INTRHAND/SYS. It then supplies the characters in the string
specified by the Databus ROLLOUT instruction as if they were
keyed in from the console (this will usually call the CHAIN
program). When the DOS functions are completed, the DOS
file DSBACK/CMD may be executed to restore the DATASHARE
system to its previous status (this is usually the last
program specified in the CHAIN file). DSBACK/CMD
re-initializes the screen and then loads the ROLLFILE/SYS
object file. This returns all ports to their previous point
of execution when the ROLLOUT occurred.

ROLLOUT/SYS, ROLLFILE/SYS, and INTRHAND/SYS are all
provided on the DATASHARE interpreter system generation
tape. A CFAIL trap will occur if ROLLOUT/SYS does not exist
on disk, if ROLLFILE/SYS does not exist or is not big enough

(must be at least 61 sectors), or if INTRHAND/SYS and
SYSTEM0O/SYS do not exist.

ROLLOUT may be initiated by a DATASHARE program with
the following instruction,

ROLLOUT (svar)

The string variable specifies what function is initially to
be executed under DOS. It should be a command 1line
acceptable to the DOS command handler. A CFAIL trap will

occur 1if the string variable is null. For example, the
string could be,

CHAIN DSCFILE

When DOS is brought up by the ROLLOUT, the first thing to
occur would be a chain to DSCFILE. The commands found in
DSCFILE would then be executed (see user’s guide on the DOS

CHAIN command). DSCFILE could consist of G(hese simple
commands,

SORT AFILE,BFILE
SORT CFILE,DFILE
DSBACK

By using the CHAIN command, several DOS functions may be
performed and the system automatically restored with the
DSBACK command. If DSBACK is not included in the chain
file, if the CHAIN aborted for some reason, if DOS was
booted during the chain, or if the string specified in the
ROLLOUT consisted of a DOS function other than CHAIN, the
DATASHARE system will have to be restored by the operator
keying in DSBACK at the console.

A DATASHARE program could be written to request from
the port the DOS function he wishes to execute and then do a
. ROLLOUT to that function. A program also could be written
to allow a port to create various chain files that might be
needed.

The ROLLOUT feature is particularly useful when a file
needs to be sorted with the DOS SORT command. However,
ROLLOUT may be very inconvenient to the users at other ports
since execution of their programs will be suspended for at
least 40 seconds. Note that the users at the other ports,
unless informed of the fact, will not know what 1is happening
when a ROLLOUT occurs. Since their terminals appear
inactive, they may think the system has gone down for some
other reason. Thus, consideration of other system users
should be kept in mind when a ROLLOUT is used. Also, note
that the time clock will be put behind however long the
DATASHARE system is not executing.

13

5. CHARACTER STRING HANDLING INSTRUCTIONS

Each string instruction, &except LOAD and STORE,
requires either one or two character string variable names
following the instruction. (Note that the MOVE instruction
is capable of moving strings to numbers, numbers to strings,
and numbers to numbers, as well as moving strings to
strings. See the following section and section 6.5 for the .
entire description of the MOVE instruction.) In the
following sections, the first variable will be referred to
as the source string and the second variable will be
referred to as the destination string.

5.1 MOVE

MOVE transfers the contents of the source string into
the destination string. Transfer from the source string
starts with the character under the formpointer and
continues through the logical length of the source string.
Transfer into the destination string starts at the first
physical character and when transfer 1is complete, the
formpointer is set to one and the logical length points to
the last character moved. The EOS flag is set if the ETX in
the destination string would have been overstored and
transfer stops with the character that would have overstored
the ETX.

The MOVE instruction can also move character strings to
numeric strings and vice versa. (The movement of numeric
strings to numeric strings is covered in section 6.5.) A
character string will be moved to a numeric string only if
the character string is of valid numeric format (only
digits, spaces, a leading minus sign, and one decimal point
allowed). Otherwise, the numeric string is set to zero.
Note that only the part of the character string starting
with the formpointer is considered in the validity check and
transferred if the string is of valid numeric format. The
number in the character string will be reformatted to
conform to the format of the numeric string. Rounding
occurs if the number in the character string is too large to
fit into the format of the numeric string (see section 6 for
rounding rules followed). The TYPE instruction (see section
5.14) is available to allow checking the character string
for valid numeric format before using the MOVE instruction.
When a numeric string is moved to a character string, all
characters of the numeric item (unless the ETX would be
overstored) are transferred starting with the first physical
character in the destination string. The formpointer of the
destination string is set to one and the logical length 1s
set to point %to the last character transferred.

In the following examples, the logical length,
formpointer, anc¢ 2ontent of eagh variable is shown before

ES 1l
L

the statement is executed, the statement is shown and the
contents of the variable that is changed by the execution of
that statement is shown:
STRNG1 y 2 ABCDXLM ETX
STRNG2 6 3 DOGCAT ETX
MOVE STRNG1 TO STRNG2

STRNG2 3 1 BCDCAT ETX

STRNG1 9 3 AB100.327 ETX
NUMBER 0200 ~39.00 ETX
MOVE STRNG1 TO NUMBER
NUMBER 0200 100.33 ETX

NUMBER 0200 100.33 ETX
STRNG1 9 3 AB100.327 ETX
MOVE NUMBER TO STRNG1
STRNG1 6 1 100.33327 ETX

5.2 APPEND

APPEND appends the source string to the destination
string. The characters appended are those from under the
formpointer through under the logical length pointer of the
source string. The characters are appended to the
destination string starting after-the-formpojnted-character
in the destination string. The source string pointers remain
unchanged, but the destination string pointers both point to
the last character transferred. The EOS condition will be
set if the new string will not fit physically into the
destination string, but all characters that will fit will be
transferred.

The following example shows two strings before the

operation, the operation, and the result in the second
string after the operation:

15

STRNG? 8 6 JOHN"DOE ETX

STRNG2 P 1 MARY"JONES""""""""""" ETX
APPEND STRNG1 TO STRNG2

STRNG2 w1 MARY " JONES DOE""""""~ ETX

5.3 MATCH

MATCH compares two character strings starting at the
formpointer of each and stopping when the end of either
string is reached. If either formpointer is zero, the MATCH
operation will result in only clearing the LESS and EQUAL
flags and setting the EOS flag. Otherwise, the "length" of
each string is calculated to be LENGTH-FORMPOINTER+1 and the
LESS flag is set if the destination string length is less
than that of the source string. The two strings are then
compared on & character~for-character basis for the number
of characters equal to the lesser of the two lengths. If
all the characters match, the EQUAL flag is set. Otherwise,
the LESS flag’s meaning is changed to indicate whether the
numeric value of the destination character is less than the
numeric value of the source character (LESS [lag set] or
vice versa (LESS flag reset, for the first pair of

characters that do not matoh, Some examplezx and tLaeir
results follow:

SQURCE DESTINATION RESQLT

ABCDFE ABCD EQUAL,LESS

ABC Z NOT EQUAL,NOT .x5d

7.1 AAA LESS,ROT EQUAL

ABC ABL EQUAL,NCT LESS

ABCD ABUDE EQUAL HOT LESS

Examples:

MATCH A TC B
MATCH STR1T,STR?2

5.4 CMOVE

CMOVE moves a character Irom the source operand to
under the formpointer in the destination string. The
character from the source operand may be a quoted
alphanumeric, the character from under the formpointer of a
. String variable, or an octal control character (000 to 037).
If either operand has a formpointer of zero, an EOS
condition and no transfer occurs.

Examples:

CMOVE XDATA TO YDATA
CMOVE "A"™ TO CAT
CMOVE X,Y

CMOVE 015,Y

5.5 CMATCH

CMATCH compares two characters, one taken from each of
the source and destination operands. The characters may be
quoted alphanumerics,; from under the formpointer of a string
variable, or octal control characters (000 to 037). An EOS
condition occurs if either formpointer is zero, and no other
conditions are set. Otherwise, the EQUAL and LESS
conditions are set appropriately. The LESS condition is set
if the destination string character is less than the source
string character.

Examples:

CMATCH XDATA TO YDATA
CMATCH "A",DOG

CMATCH CAT TO "B
CMATCH 015,DOG

5.6 BUMP

BUMP increments or decrements the formpointer 1f the
result will be within the string (between 1 and the logical
length). If no parameter is supplied, BUMP increments the
formpointer by one. However, a positive or negative literal
value may be supplied to cause the formpointer to be moved
in either direction by any amount. The EOS flag will be set
and no change in the formpointer occurs if it would be less
than one or greater than the 1logical 1length after the
movement had occurred.

Examples:
BUMP CAT

BUMP CAT BY 2
BUMP CAT,-~1

v

5.7 RESET

RESET changes the value of the formpointer of the
source string to the value indicated by the second operand.
If no second operand is given, the formpointer will be reset
to one. The second operand may be a quoted character, in
which case the ASCII value minus 32 (space gives zero, !
one, " two, etc) will be used for the value of the
formpointer of the source string. The second operand may
also be a character string, in which case the ASCII value
minus 32 of the character under the formpointer of that
string will be used for the value of the formpointer of the
" source string. The second operand may also be a numeric

string, in which case the value of the number will be used
for the formpointer of the source string. :

RESET also has the capability of extending the logical
length of the first operand. If the formpointer value
specified is past the logical length of the first operand,
the 1logical 1length will be extended wuntil it will
accommodate the formpointer value. If this would cause the
logical length to be past the physical end of the string,
the logical length and formponter will both be left pointing
to the last physical character in the string. This feature
is useful in extracting and inserting information within a
large string. The EOS condition will be set if a change in
the logical length of the first operand occurs.

Examples:
RESET XDATA TO 5
RESET Y

RESET Z TO NUMBER
RESET Z TO STRING

Note that the RESET instruction is very useful in code
conversions and hashing of character string values as well
as large string manipulation.

5.8 ENDSET

ENDSET causes the operand’s formpointer to point where
its logical length points.

Example:

ENDSET PNAME

5.9 LENSET

LENSET causes the operand’s logical length to point
where its formpointer points.

Example:
LENSET QNAME
5.10 CLEAR

CLEAR causes the operand’s logical 1length and
formpointer to be zero. None of the data characters are
changed.

Example:
CLEAR NBUFF
5.11 EXTEND

EXTEND increments the formpointer, stores a space in
the position under the new formpointer, and sets the logical
length to point where the new formpointer points if the new
logical length would not point to the ETX at the end of the
character string. Otherwise, the EOS flag is set and no
other action is taken.

Example:
EXTEND BUFF
5.12 LOAD

LOAD performs a MOVE from the character string pointed
to by the index numeric string, given as the second operand,
to the first character string specified. The instruction
has no effect if the index is negative, zero, or greater
than the number of items 1in the list. Note that the index
is truncated to no decimal places before it is used (e.g.
1.7 = 1).

Example:
LOAD AVAR FROM N OF NAME,TITLE,HEDING
5.13 STORE
STORE performs a MOVE from the first character stri.g
specified to a character string in a list specified by an
index numeric variable given as the second operand. The

instruction has no effect if the index is negative, zero, or
greater than the number of items in the list. Note that the

19

%ndex is truncated to no decimal places before it is used
e.g. 1.7 = 1).

Example:
STORE Y INTO NUM OF ITEM,ENTRY,ALINK

The LOAD and STORE instructions may be continued to the
next line by the use of a colon:

Examples:

LABEL LOAD SYMBOL FROM N OF VAR,CONST,DEC:
COUNT,FLAG,LIST

NEXT STORE NAME INTO NUM OF a,B,C,D,E,F,G:
H,I1,J,K,L,M

5.14 CLOCK

CLOCK enables the programmer to access the DATASHARE
system time c¢lock, day, and year information. This
information is initialized by the operator when DATASHARE is
activated and then kept current by a foreground program
driven by the one millisecond interrupt clock. This
interrupt is accurate to approximately 0.005 percent or four
seconds per day. There are three variables that the CLOCK
instruction can access. These are given the names TIME,
DAY, and YEAR. All are character strings with TIME being in
the format:

12:34:56

and ranging from 00:00:00 to 23:59:59, DAY being in the
format:

123

and ranging from 001 to 365 (except to 366 on leap years),
and YEAR being in the format:

12

and ranging from 00 to 99, being the last two digits of the
year. Note that when the TIME goes from 23:59:59 to
00:00:00, the day is not incremented. This implies that, if
the DATASHARE system is running 24 hours a day and is using
the date, it will have to be taken down at midnight to reset
the clock. The CLOCK instruction performs a character
string to character string move with the special variable in
the source and the character string to receive the
information in the destination operand specification. Note
that the user’s program may have variables called TIME, DAY,
and YEAR.

20

For example:

CLOCK TIME TO TIME
CLOCK DAY TO DAY
CLOCK YEAR TO YEAR

would move thé information in the system variables into user
defined variables called TIME, DAY, and YEAR also.

The system brings itself up automatically one minute
after it 1is started if an operator does not attend the
~ system console, In this case, all CLOCK items are
initialized to zero. Therefore, one can determine that the
CLOCK items were not initialized by examining the DAY string
and checking for a value of 000.

5.15 TYPE
TYPE sets the EQUAL condition if the string is of valid

numeric format (only leading minus, one decimal point, and
digits or spaces).

21

6. ARITHMETIC INSTRUCTIONS

All of the arithmetic instructions have certain
characteristics in common. Except for LOAD and STORE, each
arithmetic - instruction is always followed by two numeric
string variable names. The contents of the first variable
is never modified and, except in the COMPARE instruction,

the contents of the second variable is always the result of -

the operation. For example, in:
ADD XAMT TO YAMT

the content of XAMT is not changed, but YAMT contains the
sum of XAMT and YAMT after the instruction is executed.

Following each arithmetic instruction, the condition
flags OVER, LESS, and ZERO (or EQUAL) are set to indicate
the results of the operation. OVER 1indicates that the
result of an operation is too large to fit in the space
allocated for the variable (a result is still given with
truncation at the left and rounding at the right, however).
LESS indicates that the content of the second variable is
negative following the execution of the instruction (or
would have been in the case of COMPARE). ZERO (or EQUAL)
indicates that the value of the second variable is zero
following the execution of the instruction.

Whenever overflow occurs, the higher valued digits that
do not fit the variable are lost. For example, 1if a
variable is defined:

NBRY42 FORM 2.2

and a result of U4234.67 is generated for that variable,
NBR42 will contain only 34.67

Whenever an operation produces lower order digits than
a variable was defined for, the result is rounded up. A
variable with the FORM 3.1 would contain:

46.2 for 46.213
812.5 for 812.483

3.7 for 3.666
3.9 for 3.850
632.0 for U632

Note that if an COVER ozcurs during an ADD, SUB, or
COMPARE of two strings of different physical lengths, the
result and the LESS conditicr flag may not be correct.

6.1 ADD

ADD causes the content of variable one to be added to
the content of variable two:

Examples:

ADD X TO Y
ADD DOG,CAT

6.2 SUB

SUB causes the content of variable one to be subtracted
from the content of variable two.

Examples:

&
SUB RX350 FROM TOTAL
SUB Z,TOTAL

6.3 MULT

MULT causes the content of variable two to be
multiplied by the content of variable one.

Examples:

MULT B BY A
MULT W,Z

6.4 DIV
DIV causes the content of variable two to be divided by
the content of variable one. The number of decimal places
in the result is equal to the number of decimal places in
variable two minus the number of decimal places in variable
one. If this number is negative, it is assumed to be zero.
Examples:

DIV SFACT INTO XRSLT
DIV X3,HOURS

6.5 MOVE

MOVE causes the content of variable one to replace the
content of variable two.

Examples:

MOVE FIRST TO SECOND
MOVE A,B

23

6.6 COMPARE

COMPARE does not change the content of either variable
but sets the condition flags exactly as if a SUB instruction
has occurred.

Examples:

COMPARE XFRM TO YFRM
COMPARE TIME1,TIMEZ2

6.7 LOAD

The LOAD instruction selects the numeric string
variable out of a list based on a numeric index variable.
It then performs a MOVE operation from the contents of the
selected variable into the first operand. If the index is
negative, zero, or greater than the number of items in the
list, then the instruction has no effect. Note that the
index 1s rounded to no decimal places before it is used
(eogo 001 = D)o

Example:
LOAD CAT FROM N OF CAT,MULT,SPACE
6.8 STORE

The STORE instruction selects a numeric string variable
from a list based on the value of a numeric index variable.
It then performs a MOVE operation from the contents of the
first operand into the selected variable. If the index is
negative, zero, or greater than the number of items in the
list, the instruction has no effect. Note that the index is
r?unded to no decimal places before it is used (e.g. 0.1 =
0). ‘

Example:
STORE X INTO NUM OF VAL,SUB,TOT

The LOAD and STORE instruction statements may be
continued to the next line by the use of a colon.

Examples:
LABEL LOAD NUMBER FROM N OF N1,N2,N3,N4,N5:
N6'N6’N8,N9

ENTRY STORE COUNT INTO NUM OF T1,RATE,DIST:
SPD,COST,TOT,SUX

24

7. INPUT/0UTPUT INSTRUCTIONS

The DATASHARE statements that actually move data
between the program variables and the terminal, printer, or
disk, all allow a list of variables to follow the operation
mnemonic. This list may be continued on more than one line
with the use of a colon. Continuation 1is encouraged over
repeating the operation on sequential lines because of the
resulting increase in execution speed. The reason for this
is that DATASHARE performs all terminal and printer 1/0 with
interrupt driven routines which execute the entire I1I/0
- statement before having to return control to the background
program. The interrupt driven routine executes entirely out
of main memory while the background usually involves some
page swapping due to the virtual nature of its program
storage. If several I/0 statements are given sequentially,
the background program will have to be swapped in for each
statement. However, if ‘the entire operation has been
performed with one I/0 statement, background swapping would
not have occurred until the operation was complete. This
increases execution speed greatly.

The I/0 1list may —contain some special control
information besides the names of the variables to be dealt
with. It may also include octal control characters (000 to
037). DATASHARE has no formatting information in its input
and output operations other than the list controls and that
implied by the format of the variables. The number of
characters transferred 1is always equal to the number of
characters physically allocated for the string (except in
some special cases) allowing the programmer to set up his
formatting by the way he dimensions his data variables.

7.1 KEYIN

KEYIN causes data to be entered into either character
or numeric strings from the keyboard. A single KEYIN
instruction can contain many variable names and list control
items. When characters are being accepted from the
keyboard, the flashing cursor is on. At all other times the
cursor is off.

When a numeric variable is encountered in a KEYIN
statement, only an item of a format acceptable to the
variable (not too many digits to the left or right of the
decimal point and no more than one sign or decimal point) is
accepted. If a character is struck that is not acceptable
to the format of the numeric variable, the character is
ignored and a bell character is returned (causing a beep on
a Datapoint CRT terminal). Note that if fewer than the
allowable number of digits to the 1left or right of the
decimal point are entered, the number entered will be
reformatted to match the format of the variable being stored

s

25

into. When the ENTER key is struck, the next item in the
instruction list is processed.

When a character string variable is encountered, the
system accepts any set of ASCII characters up to the limit
of the physical length of the string. The formpointer of
the string variable is set to one and characters are stored
consecutively starting at the physical beginning of the
string. When the ENTER key is struck, the logical length is
set to the last character entered and the next item in the
keyin 1list is processed.

Other than variable names, the KEYIN instruction may
contain quoted items, 1list controls, and octal control
characters (000 to 037). Quoted items are simply displayed
as they are shown in the statement. The 1list controls begin
with an asterisk and allow such functions as cursor
positioning and screen erasure. The #P<n>:<m> control
positions the cursor to horizontal position <n> and vertical
position <m>. Note that these numbers may either be
literals or numeric variables and both positions must always
be given in a ®*P command. The horizontal position 1is
restricted by the interpreter to be from 1 to 80 and the
vertical position is restricted to be from 1 to 24. Numbers
outside this range have the effective value of 1. The #ES
control positions the cursor to 1:1 and erases the entire
screen, the #EF control erases the screen from the current
cursor position, the ®EL control erases the rest of the line
from the current cursor position, the ®C control causes the
cursor to be set to the beginning of the current line, the
*LL control causes the cursor to be set to the following line
in the current horizontal position, and the ®N control
causes the cursor to be set to the first column of the next
line.

The control characters in the KEYIN instruction are
output according to their ASCII meaning. They are only
useful for teletype, UNITERM, and message switching
applications and should not be sent to the Datapoint
3360-102.

Normally, the cursor is positioned to the start of the
next line at the termination of a KEYIN statement. However,
placement of a semicolon af.er the last item in the list
will cause this positioning to be suppressed, allowing the
line to be continued with the next KEYIN or DISPLAY
statement. This feature is 21s0 true of the PRINT command.

Example:
KEYIN #ES "y HE: " NAME,®P35:1,"ACNT NR: ":

ACINR,"™ ADLRESS: »,STREET,®#Pi10:3:
CITY, ®pX-" " Iv: " ZIP;

KEYIN ®ABC%",021,NVAR

During a KEYIN, any unrecognizable characters (not in
the printing ASCII set) sent in from the terminal will be
ignored and a beep returned. Also, a mode called keyin
continuous is available (turned on with list control ®+ and
turned off with list control ®- or the end of the statement)
which causes the system to react as if an ENTER key had been
struck when the operator enters the last character that will
fit into a variable. This mode allows the system to react

in much the same way as a keypunch machine with a control
- card.

While keying a given variable, the operator can strike
the BACKSPACE key (control H on teletype) and cause the last
character entered to be deleted. He may also strike the
CANCEL key (control X on teletype) and cause all of the
characters entered for that variable to be deleted.

A circular input buffer allows the operator to send up
to seven characters from the keyboard before they are
requested by the system. Note that there is no feedback at
this level as the characters are fed back only as they are
taken from the buffer. This buffer allows the operator to
continuously enter data without having minor delays in the
response of the system break his stride.

A special case of KEYIN is the interrupt character, the
INT key on a Datapoint 3360-102 (control shift L on a
teletype machine). Normally, when the cursor 1s not
flashing, all characters will be ignored. The exception,
however, is the interrupt character, which may be keyed at
any time and will result in a CHAIN to the MASTER program.
Thus, the currently executing program will stop, the printer
(if being used by the terminal) will be RELEASED, and the
MASTER program will begin execution.

Another special case of KEYIN is the NEW LINE character
which is the NEW LINE key on the Datapoint 3360 (shift O on
the teletype). If this key is struck during a KEYIN
statement, the current variable is terminated as if the
ENTER key was struck and all subsequent variables in the
statement will be set to zero or their formpointers and
logical lengths set to 2zero depending on whether they are
numeric or string variables. Control will fall through to
the next DATASHARE statement.

The 1ist control, #T, may be included in the KEYIN
statement causing a time out if more than two seconds elapse
between the entry of two characters. The time out has the
same results as if the NEW LINE key had been struck. This
function is useful for message switching applications.

27

7.2 DISPLAY

DISPLAY follows the same procedure as KEYIN except that
when a variable name is encountered in the 1list following
the instruction, the variable’s contents is displayed
instead of keyed in on the terminal. Character strings are
displayed starting with the first physical character and
continuing through the logical 1length. Spaces will be
displayed for any character positions that exist between the
logical length and physical end of the string unless the %«
mode (keyin continuous in the KEYIN instruction) is active,
in which case nothing is put out after the logical length.
Numeric strings are always displayed in total. Quoted
strings, list controls, and octal control characters may be
included in the display instruction and are handled in the
same manner as described for the KEYIN instruction.

Examples:

DISPLAY ®#PS5:1,"RATE: " ,RATE:
#p5:2,"AMOUNT: ",AMNT
DISPLAY "ABC",021,S1;

T.3 CONSOLE

CONSOLE is similar to DISPLAY except the output is on
the system console (2200 display screen) instead of the
terminal. The output always is on the line assigned for the
terminal executing the CONSOLE instruction and therefore any
vertical positioning of the cursor is ignored. All other
DISPLAY list controls, except for the #C, are operative. A
CONSOLE statement which begins without positioning will
start displaying at column five on the appropriate port line
at the console. If positioning is specified, ®*Px:y, y is
ignored and x may be any number from 1 to 80. Thus, the
port number and asterisk appearing in column 1 through 4 on
the CONSOLE may be overwritten. If the horizontal position
is out of the allowed range, position one is assumed. If
the display flows over the 80 character limit, the extra
characters will not be displayed. If the CONSOLE statement
is not terminated by a semi-colon, the carriage return and
line feed is ignored but two spaces are put out after the
last character displayed. The CONSOLE instruction is useful
in alerting the system operator (if such a person exists) to
some condition in the program. The 2200 screen also
displays at the left the state of the carrier detection
signal from each terminal and the name of the program to
which a CHAIN was last executed as well as the current time.

Example:

CONSOLE #P20.1,"0PERATOR ALERT"

7.4 BEEP

BEEP causes an ASCII bell character to be sent to the
terminal.

7.5 PRINT

DATASHARE supports one local printer. The printer may
be accessed on a sequential shared basis by any of the eight
terminals. If the printer is being used by another terminal
when the given terminal executes a PRINT statement, the
given terminal will be suspended until the printer becomes
available, or until the interrupt character is keyed.

The PRINT instruction causes the contents of variables
in the list to be printed in a fashion similar to the way
DISPLAY causes the contents of variables to be displayed.
The list controls are much the same as DISPLAY except that
cursor positioning cannot be used, column tabulation is
provided (%#<n> causes tabulation to column <n> unless that
column has been passed) and *F causes an advance to the top
of the next form. Octal control characters may also be "
included in the print instruction. The PRINT statement may
be continued on more than one line by the use of a colon.

Examples:

PRINT DATE,®20,"TRANSACTION SUMMARY",*C,®L:
PNAME, ®*N,#10,RATE, *20,HOURS, #30:
AMT , *L,

PRINT "ABC",021,S1;

7.6 RELEASE

The RELEASE instruction ends a user’s control of the
printer and causes the printer to advance to the top of the
next form. When RELEASE is executed by a user, another user
that has been waiting for the printer will gain its control.
When a user disconnects from the system or keys the
interrupt character, the printer is automatically released.

7.7 PREPARE

PREPARE creates a new DOS file with the name given in
the string variable specified. The characters used for the
name start from under the formpointer of the specified
variable and continue until either the logical end of the
string has been reached or eight characters have been
obtained. If the end of the string is reached before eight
characters are obtained, the rest of the characters are
assumed to be spaces. All data files used in DATASHARE are
of extension TXT. The character after the 8th in the name
variable or the character after the logical length if the

29

name is less than 8 characters is used as the drive number
for that file. If the character is not an ASCII 0, 1, 2, or
3 or no character physically exists past the name, no drive
specification is assumed and all drives starting with drive
zero are searched when looking for a name in the directory
or directories. Otherwise, only the drive specified 1is
searched. This is a new feature included in this version of
DATASHARE and may effect programs written for the previous
DATASHARE version. Programs should be checked to be sure
that their file name variables will not assign drive numbers
unintentionally when used under the new DATASHARE version.

If a file by the name given already exists (and is not
delete or write protected), it is deleted and a new file
created. If the file has any protection or the drive
specified is off line, an 1/0 error will occur. The logical
record number limit is always set to 9696 by the PREPARE
instruction.

One always deals with "logical files"™ in DATASHARE once
he has opened them with either the PREPARE or OPEN
instructions. A terminal may have up to three logical files
(numbered 1, 2, and 3) which are specified by a logical file
number in all disk I/0 instructions.

For example, let the following strings be defined as
follows:

FNAME INIT "SOURCE"
GNAME INIT "SCRATCHX1"
HNAME INIT "F1FILEOFIFILE1®

Let the formpointer of FNAME be 1 and its logical length be
6, let the formpointer of GNAME be 1 and its logical length
be 9, and let the formpointer of HNAME be 8 and its logical
length be 13. If the following PREPARE operations were
executed:

PREPARE 1,FNAME
PREPARE 2,GNAME
PREPARE 3,HNAME

the file SOURCE/TXT would bec prepared as logical file 1 on
the first drive (beginning with drive () on which space was
available, the file SCRATCHX/TXT would be prepared as
logical file 2 on drive 1 (if :o0 space was available or the
drive was off line, an I/0 er:ir wouid occur), and the file
F1FILE/TXT would be prepared as iogical file 3 on drive 1.

If the logical file spec [ivd is already open (having
been specified in a previous PR:PARE or OPEN instruction and
not since in a CLOSE instrueticn). the old file will be
closed before tis new cne is dea't with.

7.8 OPEN

OPEN causes a DOS file already in existence to be
prepared for use by the¢ DATASHARE program. Except for the
fact that it deals only with files already in existence
(giving an 1/0 error if the name specified cannot be found
and not killing the file if it already exists), OPEN works
in a fashion similar to PREPARE.

For example, if the following operations were
performed:

FILE1 INIT "FINAME"
FILE2 INIT "DATAFIL%E"

Ld

OPEN 3,FILE2
OPEN 2,FILE1

all drives beginning with drive 0 would be searched for file
FINAME/TXT. Only drive 3 would be searched for file

DATAFILE/TXT. An I/0 error would occur if drive 3 were off
line.

If the user plans to deal with a very large file in a
random access fashion, he should run a program that writes a
dummy record into the largest record number he plans to use.
This will cause the DOS to allocate all records up through
the one accessed in as physically contiguous a manner as
possible, thus increasing the, K speed with which the file may
be randomly accessed. Note that the use of the DOS implies
that a file must be contained on one drive, therefore
limiting any one file in DATASHARE to approximately 9000
records (the exact limit depends upon the amount of program
information kept on the particular disk).

7.9 CLOSE
CLOSE closes the specified logical file. This insures
that any newly allocated space that was not used in the file
will be returned to the DOS for allocation to another file.
Example:

CLOSE 3

31

7.10 DISK INPUT/OQUTFUT

DATASHARE disk files may be random or sequential. A
random file would have a well defined correspondence between
logical and physical records with each physical record
containing up to 249 data characters:

(data)(015)(003)

A sequential file may have any number of logical records per
physical record with some logical records crossing physical
record boundaries. The following shows five logical records
contained within three physical records:

Physical record n: (data)(015)(data)(015)(003)
Physical record n+1: (data)(015)(data)(015)(data)(003)
Physical record n+2: (data)(015)(003)

When accessing a file, a record number is always
specified. A random access is indicated by a record number
greater than or equal to zero corresponding to the physical
record desired. A sequential access is 1indicated by a
record number less than zeroc. The actual record number
specified for a sequential access has no significance. The
interpreter only looks to see if the variable is negative.
In the following discussions and examples, RN will denote a
positive record number and SEQ will denote a negative record
number (e.g. =1).

When a read or write statement is executed, there are
two conditions to consider: the position in the file where
reading or writing begins and the position in the file where
reading or writing stops. The difference in the possible
write and read statements is the difference in these two
conditions. A write or read operation always begins at the
current position of the logical file. The current position
of each logical file open is defined by two pointers: a
physical record pointer and a character pointer, The
physical record pointer refers to the current physical
record of the logical file. This pointer corresponds to the
DOS logical record number. The character pointer refers to
the current character position (1 to 249) within the current
physical record. When a file is opened, its physical record
pointer is initialized to zero and its character pointer to
one. The pointers are then moved with the various types of
read and write operations.

Space compression may be used when writing files. It
is most useful for sequsantiz. files but may be used on
random files. When space compression is on and two or more
consecutive spaces are {0 be written, two octal bytea df
written instead of the full rumber of spaces. T~ 777
byte is the octa® number 0'7'. Thises hyte indiazsw-s »oow

space compression count foliows. The second byte is the
number of spaces that have been compressed. When the space
compression characters are read, the spaces are expanded to
their full number. A 011 is never allowed to be written as
the 249th character of a physical record. If this case
should occur, the physical record 1s terminated and both
space compression characters are written 1in the next
physical record. :

Space compression is turned on by the list control, %+,
in a write statement. It is also turned on at the execution
of any read statement. When space compression is first
turned on, the space compression counter is set to zero.
Space compression is turned off at the start of a random
WRITE, WRITAB, or WEQOF. No change occurs in the space

compression status with the execution of a sequential WRITE,
WRITAB, or WEQF.

Note that sequential files may contain logical records
of extreme length through the use of continued writing. One
must be careful in the use of logical records longer than
255 characters when using space compression because the
count may be overflowed. If an attempt is made tc compress
more than 255 spaces, the actual number written will be the
number attempted modulo 256.

Also note that when space compression is on, trailing
spaces in a logical record are not written since the last
space compression count is simply dropped and the 015 is
written to signify the end of the logical record. This
action has consequence when space compressed records are
read (see the section on the READ statement).

RANDOM or SEQUENTIAL WRITE

The write statement consists of a logical file number
‘and a record number followed by a 1list. The 1ist may
include variable names, quoted characters, list controls,
and octal control characters (000 through 037). Each
character string variable will be written from its first
physical character through the logical length. Spaces will
be written for any character positions between the logical
length pointer and the physical end of string. Each numeric
item will be written in total. Note that only the data in
each variable is written and not any of the control
information (logical length, form pointer, 0200, or ETX).
The quoted items and octal control characters will be
written exactly as they appear in the 1list. The 1list
controls are used for write tabbing and space compression.
For example,

WRITE 3,RN;“TIME: ",TIME,015,"TOTAL: ",TOTAL

33

The following is a list of the different types of write

statements. Remember that SEQ is a numeric variable with a
negative value and RN represents a numeric variable with
some specific non-negative value.

(1

(2)

(3)

(4)

WRITE 1,RN;A,B,C

This is a normal random write. The physical
record pointer would be set to RN and the character
pointer to one. Variables A, B, and C would then be
written followed by an end of logical record (015) and
end of physical record (003). The character pointer
remains pointing at the 003.

WRITE 1,RN;A,B,C;

This 1is a random write to be continued as
indicated by the semicolon at the end of the statement
list. The physical record pointer would be set to RN
and the character pointer to one. Variables A, B, and
C would then be written without any trailing characters
(no end of logical record or physical record). The
character pointer would be left pointing one character
position past the last character written for variable
Cl

WRITE 1,SEQ;A,B,C

This is a normal sequential write. Variables A,
B, and C are written beginning at the character
position currently being pointed to by the logical file
pointers. If the file had just been opened, the
current position would be character position one 1in
record zero of logical file one. Otherwise, it would
be positioned according to the results of the last
write or read statement executed. An end of logical
record (015) and end of physical record (003) are
written after the last character in variable C. The
character pointer is left pointing at the (003).

WRITE 1,SEQ;A,B,C;

This is a sequential write to be continued as
indicated by the semicolon at the end of the statement
list. Variables A, B, and C are written beginning at
the character position currently being pointed to by
the logical Trfile pointers. No other characters are
written and the character pocinter is left pointing one
character position past the last character written for
variable C.

Lad
Az

(5)

WRITAB 1,RN;A,%#70,B,%10,C,#NVAR,"TIME"

This 1is the write tab feature which requires a
different instruction mnemonic. With this feature,
characters may be written into any character position
of a physical record without disturbing the rest of the
record. A RANGE trap will occur and the logical file-
pointers will not be changed if a write tab is used on
a record of the file that has never been written
before. The 1ist controls #(numeric 1literal) or
#(numeric variable) are used to position the character
pointer to the specified character position in the
current physical record. Writing of the variable
begins at that point.

Tab positioning in random write tabs is calculated
from the first position of the physical record
specified. If the tab position is greater than 249
characters, an IO trap will occur. Only the quoted
characters, octal control characters and variables
appearing in the 1list are written. The character
pointer is left pointing one character position past
the last character written.

The above example would write variable A beginning
at character position one of physical record RN,
variable B beginning at character position 70, variable
C beginning at character position 10, and the
characters "TIME" beginning at the character position
indicated by numeric variable NVAR. The character
pointer would be left pointing one charaeter past the

‘E” written for the quoted characters °‘TIME®. An IO
trap would occur and the record would not be written if
NVAR was greater than 249.

The write tab may also be used to position to a
particular place in a file when it is desired that
space compression be left off. For example,

WRITAB 1,ZERO;*1

would position to the beginning of logical file one.
If space compression need not be 1left off, file
positioning can be performed more efficiently with the
READ operation.

Note that using write tab with a negative record
number 1is possible but 1is not advisable. Tab
positioning would be calculated from the first
character position in the current physical record.
Strange results may occur if the programmer is not
aware of this fact. In order to use the write tab on
sequential files, he would have to know exactly where

35

the 1logical records were placed within the physical
records.

To summarize disk write operations, a random write
starts with character position one of the specified physical
record number except when specified otherwise in a write tab
operation in which case the position may be specified with a
list control. Sequential writes start with the current
character position pointed to by the logical file pointers.
For all write statements except the write tab, if the
statement list is not terminated by a semicolon, an end of
~logical record (015) and end of physical record (003) are
written with the character pointer left pointing at the 003.
If a semicolon terminates the statement 1list or the
statement is a write tab, no end of logical record (015) or
end of physical record (003) will be written and the
character pointer is left pointing one position past the
last character written.

Thus, if example (1) or (3) were followed by a
sequential write, the 003 would be overstored by the first
data character of the new 1logical record written. If
example (2) or (4) were followed by a sequential write, the
data written would be a continuation of the same logical
record.

WRITE END OF FILE

Standard DOS end of file marks (000 000 000 000 000 000
003 in the first 7 character positions of a physical record)
may be written in DATASHARE. WEQOF does not change the
physical record or character pointers for the file.

(6) WEOF 1,RN

This statement writes an end of file mark in
physical record RN.

(7) WEOF 1,SEQ

This statement would cause an end of file mark to
be placed in the next physical record into which the
first seven data characters may be written.

RANDOM or SEQUENTIAL READ

The read statement consists of a logical file number
and a record aumber follcocwed by a3 list. The 1list may
include variable names or a list control used for read
tabbing. When a numeric i:em is read, the number of
characters norresponding . " he lanzth of the variable are

read in. Any non-leading blanka read would be converted o
zeros (e.g. ~372"1 would be read as “30201). If a
non-numeric character other than a negative sign as the
first non-blank character, decimal point or blank is read, a
FORMAT trap will occur. A FORMAT trap will also occur if
the variable is dimensioned to one and the character is a
negative sign. A FORMAT trap occurs if the data does not
match exactly the format of the numeric variable to be read.
For example, if X was dimensioned to 4.2 and the characters
read were 7777877, a FORMAT trap would occur since the digit
8 appeared where a decimal point appeared in the variable.
If a FORMAT trap occurs during a read, the logical file
pointers are left pointing at the current file position
before the read was attempted.

Note that the numeric read in DATASHARE 2 is different
from that in DATASHARE 1 (which read the number into a
temporary location and then used the MOVE mechanism to
tranfer the data to the actual numeric variable, allowing
for reformatting and rounding). This condition may effect
programs written for DATASHARE 1 and should be considered if
chaining to the DATASHARE 2 system.

When a string 1is read, the number of characters
corresponding to the length of the variable are read into
the variable. The formpointer is set to one and the logical
length is set to point to the last physical character in the
string.

If the end of the logical record is reached before all
variables in the 1list have been read in full, and the
variable which is being filled with data when the EOR is
detected is a string, it will have 1its logical 1length
pointer set to the last character entered before the EOR was
reached (and the rest of the characters padded with spaces).
Note that this fact can be used to advantage when reading
sequential space compressed files. Remember that the
trailing spaces in such file records are not written and
that the DISPLAY and PRINT statements can be forced to
output only up through the character being pointed to by the
logical length (using the *+ control). These features can
be combined to make listing sequential files on the terminal
or printer much faster by the deletion of trailing spaces.

The above discussion deals with the action taken when
the end of the logical record is reached while reading data
into a string variable. If the data is being read into a
numeric variable, the rest of the variable is padded with
either spaces or zeros as appropriate. Note that if one of
these locations within the variable is the decimal point, a
FORMAT trap will occur.

If the list contains more variables after the one tiing

filled when the end of the logical record is detected, these
variables will either be set to zero (if numeric) or have
their logical lengths and formpointers set to zero.

will

A RANGE trap will occur and the logical file pointers
not be changed if an attempt is made to read a record

which has never before been written.

The following is a list of the different types of read

statements:

- (8)

(9)

(10)

(11)

(12)

READ 1,RN;A,B,C

This is a normal random read. The physical record
pointer is set to RN and the character pointer to one.
Variables A, B, and C are then read. Any remaining
characters in that physical record are discarded since
the character pointer is left pointing at the 003 for
that physical record.

READ 1,RN;A,B,C)

This is a random read to be continued as indicated
by the semicolon at the end of the statement 1list. The
physical record pointer is set to RN and the character
pointer to one. Variables A, B, and C are then read.
The character pointer is left pointing one character
position past the last character read for variable C.

READ 1,SEQ;A,B,C

This is a normal sequential read. Variables A, B,
and C are read from logical file one beginning at the
current character position pointed to by the logical
file pointers. Any characters 1left over 1in that
logical record are discarded since the character
pointer is left pointing one character position past
the end of that logical record (015).

READ 1,SEQ;A,B,Cj

This 1is a sequential read to be continued as
indicated by the semicolon at the end of the statement
list. Variables A, B, and C are read beginning at the
current character position pointed to by the logical
file pointers. When reading 1is completed, the
character pointer 1is le¢ft pointing one character
position past the last character read for variable C.

READ 1,RN;A,*100,8,*NVAR,Z,%5C,D

By inc¢luding the l1ist wontrols in the read
statement above, spreific 2harasters may be read from a

record. The 1list contrels #(numeric 1literal) or
#(numeric variable) are used to position the pointer to
the specified character position in the specified
physical record. Reading of the variable begins at
that point. ,

Tab positioning in random read operations is .

calculated from the first position of the physical
record specified. If the tab position is greater than
249 characters, an 10 trap will occur. When reading is
completed, the character pointer is moved to the end of
record mark following the last character read if the
statement list is not terminated by a semicolon. If it
is terminated by a semicolon, the character pointer is
left pointing one character position past the last
character read.

The above example would set the physical record
pointer to RN and the character pointer to one.
Variable A would then be read. Variable B would be
read beginning at character position 100, variable C
.beginning at the character position indicated by the
numeric variable NVAR, and variable D beginning at
character position 50. The character pointer would be
left pointing at the 003 following the last character .
read into variable D.

Read tabbing may be used to position to a
particular place in a file. For example,

READ 1,ZERO;®1;

would position to the beginning of logical file one.
Remember, however, that if this ©positioning |is
performed for writing purposes; space compresssion will
be on for the write operation.

Note that wusing the read tab with a negative
record number 1is possible but not advisable. Tab
positioning 1is always calculated from the first
character position in the current physical record.
Strange results may occur if the programmer is not
aware of this fact.

To summarize disk read operations, a random read starts
with character position one of the specified physical record
number. If tab list controls are included, the variables
are read beginning at the specified character position
relative to the beginning of the current physical record.
Sequential read operations begin with the current character
position pointed to by the logical file pointers. If the
statement is random and is not terminated by a semicolon,
the character pointer is left pointing at the end of record

39

mark following the last character read. If the statement is
sequential and not terminated by a semicolon, the character
pointer is left pointing one character position past the end
of that logical record (015). For all read operations, if
the 1list is terminated by a semicolon, the character pointer
is left pointing one character position past the last
character read.

Thus, if statement (8) was followed by a sequential
read, the logical record in the next physical record would
be read. If statements (9) or (11) were followed by a
- sequential read, the rest of the characters in that same
logical record would be read. If statement (10) was
followed by a sequential read, the next logical record in
the file would be read.

TEST FOR END OF FILE

A'teat of the OVER flag may be made to determine if an
end of file was read. The test should be made after the
read statement. For example,

READ 1,RN;A,B,C
GOTO LABEL IF OVER

If an end of file 1is read, the variables in the statement
will be set to zero or have their logical lengths and
formpointers set to zero depending on whether they - are
numbers or strings. MNote that the CVER flag is nct set if a
READ to be continued is executed (semicolon at the end of
the statement list).

8. PROGRAM GENERATION

8.1 Preparing Source Files

Files containing the source language for DATASHARE
programs are prepared using the general purpose editor
running under the DOS. These files are prepared identically
~to preparing DATABUS source files since DATASHARE runs
programs written in the DATABUS language. The use of the
general purpose editor running under the DOS is covered in a
separate document. This editor has a DATABUS mode providing
a tab stop to make the text more readable.

8.2 Compiling Source Files

DATASHARE programs are compiled using the DATASHARE
compiler running under the DOS. Note that DATASHARE
programs must always be compiled wusing the DATASHARE
compiler running alone under the DOS. This implies that
programs cannot be generated while the DATASHARE system
itself is executing (the DATASHARE system must be stopped
either manually or with the use of ROLLOUT). The DATASHARE
compiler is parameterized in the following manner:

DSCMP <source>[,<object>][,<print>][;<L><X><D><C><E>]
File Specifications

The compiler may be parameterized with up to three file
specifications. These file specifications follow the
standard DOS conventions. Refer to the DOS User’s Guide for
further information concerning DOS file specifications. A
bad drive specification for any of the files will result in
the error message:

BAD DEVICE SPECIFICATION

If any of the file specifications are identical, the
message:

SOURCE AND OBJECT FILES THE SAME or
SOURCE AND PRINT FILES THE SAME or
OBJECT AND PRINT FILES THE SAME

will be displayed.

The source file contains the DATASHARE program text
created with the editor. This file must always be
specified. If no extension is given on the source file
name, the extension TXT is assumed. If the source file naas
is not supplied, the message:

NAME REQUIRED.

41

will be displayed. If the source file name does not exist
in the DOS directory, the message:

NO SUCH NAME.

will be displayed. If no drive is specified, all drives
will be searched beginning with drive 0 for the source file.

The first thing the compiler does is try to find the source
file.

The object file will contain the object code generated
by the compiler from the specified source code. If it is
not given, the name of the source file with an extension of
TSD is assumed. Note that DATASHARE can run only those
~files with extension TSD. If the file is specified without
a drive number, it will be placed on the same drive as the
source file.

The print file specification is also optional. If it
is given, any print output requested will be written in this
file (in the standard GEDIT format) instead of being printed
on the local printer. Top of form will be indicated by the
character “1° in column one of the print line. Otherwise,
column one is always blank and the line starts with column
two (this is the standard COBOL and FORTRAN print file
format). This option is particularly useful for
compilations during ROLLOUTs (see Section 4.9). For
example, during the ROLLOUT several compilations could be
run which placed the print output into the print files
specified. The compilation results could then be printed by
a DATASHARE program when the DATASHARE system was restored.
This procedure would shorten the total time that the system
would have to be down while at the same time allowing the
programmer to obtain program listings.

If no name is given for the print file specification,
the source file name will be assumed. If no extension 1is
given, an extension of PRT will be assumed. However, if the
print file is to be used under DATASHARE, it must have an
extension of TXT. If no drive number 1s specified, the
print file will be placed on the same drive as the source
file.

Output Parameters

These parameters allow the user to specify what type of
output he wants in addition to the object file. If a print
file is specified, any print output is written in that file
instead of being sent to GiLhe local printer. If the
semicolon but no parameters are specified, the only output
is the object file (if a print file was specified, it would
be null). If no semicolon is typed, the compiler asks the
operator the 2ptiuns ster by step. Any lines which have

errors are always displaved on the screen with the
appropriate error flag.

To specify output options, a semicolon plus one or more
of the following should be placed after the last file
specification:

L A listing of the compilation results is printed. Each
line of source code is numbered. A ‘+° appearing as
the first character of a line causes a new print page
to be started. The rest of the line following the +
may be used as a comment line. A “*° appearing as the
first character of a line causes a new print page to be
started if the current line is within two inches from
the bottom of the current page.

X A cross-reference listing is printed at the end of the
compilation for the data variables defined and for the
statement labels defined. Each cross-reference is
sorted alphabetically. When the cross-reference is
printed, the data variable name or label symbol is
given and preceded by the octal location where the item
was defined. Following the name is a list of all line
numbers in which the item was defined or referenced.
An asterisk flags those 1line numbers which are
definitions. If a c¢ross-reference 1is requested, the
following messages will be displayed as the data
variables and labels are being sorted and printed:

SORTING DICTIONARY
FINAL MERGE/PRINT -- DATA XREF
FINAL MERGE/PRINT -- XEQT XREF

A cross-reference may be obtained regardless of whether
a listing was requested.

D A copy of the source and object code is displayed on
the screen during the compilation.

C If a listing was requested, the output will normally
consist of the source code preceded by the starting
octal location for that line. The actual object bytes
generated will also be printed if the user specifies
this parameter. Printing the object code usually makes
the listing about twice as 1long. If this option 1is
given, the L option is implied and therefore need not
also be supplied.

E The source code for lines with errors will be printed
in addition to being displayed on the screen. This
parameter has no meaning if the L or C options are also
specified since those 1listings will automatically
include error flags. s

43

If a listing has been requested, the compiler will ask:
HEADING:

This may be 70 characters long and is printed at the top of
each page. Indicating the time and date of the listing is
helpful in keeping 1listings in chronological order. The
source file name is automatically listed to the left of the
heading. ‘

Examples:
DSCMP PROGRAM;

This is the simplest compilation specification. The
source code found in file PROGRAM/TXT would be compiled with
the object code placed in file PROGRAM/TSD. No other output
would be given except for errors displayed on the screen.

DSCMP ANSWER,ANSWERM ;CX

The source code in ANSWER/TXT would be compiled and the
object code placed in ANSWERM/TSD. A 1listing would be
printed on the local printer and consist of the source and
object code with a data and label cross-reference at the
end.

DSCMP FILE:DRO,,FILELST/TXT:DR1;LX

The source code in FILE/TXT on drive 0 would be
compiled and the object code placed in FILE/TSD on drive O.
A copy of the source code and a data and label cross-
reference will be written in FILELST/TXT on drive 1.

The compiler may be stopped temporarily by depressing
the DISPLAY key. The DISPLAY 1light is turned on and
execution is not resumed until the DISPLAY key is depressed
again (the DISPLAY light is turned off). Compilation may be
aborted at any time before the cross-reference sort is begun
by depressing the KEYBOARD key.

8.3 Compilation diagnostics

The compiler prints and displays diagnostic messages on
the listing to help the programmer debug syntatical errors
in his code. These messages take the form of an error code
letter at the left and an asterisk under the line at the
position of the scanning pointer when the error occurred.
The letters are E for an expression error (a generalized
syntatical error), U for an undefined variable or label, and
I for an undefined instruction. If any of these flags
appear, the compiler will store a STOP instruction intc the
first executable location in the object file. 1If the faulty

4

program is then executed, it will only execute the STOP
instruction which will simply return control to the MASTER
program.

The DATASHARE system uses the DOS logical file zero for
reading and writing all data to and from the disk. This
implies that a segment boundary may not be crossed by the
object code during a READ or WRITE statement (since fetching
the statement also involves disk 1/0). For this reason,
DATASHARE object files are restricted to one segment in
length. If, during code generation, more than one segment
was used to hold the object file, the compllier gives an
error message:

SEGMENT ERROR

and flags the file in a fashion similar to the way it flags
the file if syntax errors occur. In this case, the object
file for the given program should be deleted from the DOS
(using the KILL command) and the program re-compiled
(without a listing). Segment errors usually occur when a
program has been edited such that its object file becomes
longer and will no longer fit in the segment previously
allocated to it. If the object file is very long and the
disk extremely fragmented then deleting the file and
re-compiling may not solve the problem. In this case, the
disk should be purged or the BACKUP program used (if a dual
drive system is available) to make more contiguous free
space available. ' _

U5

9. SYSTEM GENERATION
9.1 Loading From Cassette

The DATASHARE compiler and interpreter system progranms
are contained on one cassette.

The compiler files cataloged on the cassette are
CMPCMD, CMPOV1, and CMPOV2. They should be cataloged on the
disk using the DOS commands:

IN DSCMP/CMD,NS
IN DSCMP/OV1,N6
IN DSCMP/OV2,N7

The interpreter files cataloged on the cassette are DS,
DSOv1, DSCON, DSIN, DSOUT, DSBACK, ROLOUT, IHAND, and
ROLFIL. The files should be cataloged on disk with the DOS
commands:

IN DS/CMD,N2

IN DS/0V1,N3

IN DSCON/CMD,NY

IN DSIN/CMD,N10

IN DSOUT/CMD,N11

IN DSBACK/CMD,N12
IN ROLLOUT/SYS,N13
IN INTRHAND/SYS,N14
IN ROLLFILE/SYS,N15

The first three files are necessary for the DATASHARE system
to run without the ROLLOUT feature. Files 7 through 12 are
necessary if the ROLLOUT feature is to be used (see Section
”.9).

DSCON/CMD is a program to configure the system for a
given number of ports.

DSIN/CMD and DSOUT/CMD are substitute programs for the
normal DOS commands IN and OUT. Since DATASHARE object
files have a special disk format that is not compatible with
normal DOS file format, the DOS utility commands cannot be
used with DATASHARE object files. DSIN/CMD and DSOUT/CMD
must be used instead.

9.2 Port Configuration

The DATASHARE system may be configured to run with from
one to eight ports. The total data space for the DATASHARE
system is 4096 bytes and is divided evenly among the ports
configured for the system. Therefore, systems requiring
fewer ports can have more dats space allocated for each one.

¥
£

The system is configured by running the DSCON program.
This program will ask:

NUMBER OF DATASHARE PORTS?

to which the response should be a digit between one and
eight. If one of these digits is not given in response, an
error message Will be given and the request repeated. Once

a valid response has been given, control will be returned to
the DOS.

Note that the number of ports configured for the system
may be changed at any time. The compiler generates code
independently of this number, allowing the user to create a
data space as large as necessary. However, when one chains
to a program it will appear not to exist if its data space
will not fit within the 1limits incurred by the current
numbeg of ports configured (4096 divided by the number of
ports

The number-of-ports information is kept in logical
record number three of the DSCON/CMD object file to
eliminate the need for a separate file. This can be done
since the DSCON/CMD program is very short. The DS/CMD
program accesses the DSCON/CMD file by that name, thus the
requirement that the name be DSCON/CMD when the system is
brought up.

9.3 Necessary Programs

Before the DATASHARE system can be used, two more sets
of programs must exist. These are called the ANSWER and
MASTER programs and perform the tasks of dealing with the
user when he initially signs onto the system and dealing
with him when he is not running another DATASHARE program.
Note that all execution in the DATASHARE system occurs in
the high level language and since the user writes his own
ANSWER and MASTER programs, he can determine how the system
command language appears. The ANSWER and MASTER programming
concepts are dealt with in Section 11.

h7

10. SYSTEM OPERATION
10.1 Bringing Up the System

The DATASHARE system is brought up by entering the DOS
command:

DS

This runs a very short program which loads the main system
file, DS/0V1, into memory. If this file cannot be loaded,
the message:

#%#% DS/0V1 MISSING ###

is displayed and the machine beeps and halts. Otherwise,
the port configuration information is read. If the file
DSCON/CMD cannot be found, the message:

* DSCON/CMD MISSING - 8 PORTS ASSUMED *

is displayed. If the file can be found but the port number
information is not correctly formatted (this will occur 1if
the DSCON program has never been executed), the message:

% DSCON/CMD BAD - 8 PORTS ASSUMED #
is displayed. The system then displays the message:
OPERATOR, PLEASE DEPRESS THE KEYBOARD OR DISPLAY KEY.

This action will verify that an operator is present. A
design objective was that the time and date be initialized
by the operator when the system was brought up but that the
system also be capable of bringing itself up in the case of
power failure and unattended operation. The DS/CMD program
must be AUTO ’ed under the DOS and the auto-restart tab on
the DOS boot tape punched to enable the DATASHARE system to
restart after a power failure. If ‘the keyboard or display
key is not depressed within 30 seconds after the message is
displayed, the machine will make a series of one second
beeps 1in an effort to attract the attention of any
operational personnel within the vicinity. If the keyboard
or display key is not depressed after 30 seconds of beeping,
the system assumes that it 1is being operated in an
unattended mode and should start operation without the time
and date being initialized. In this case, the time and date
entries at the upper right of the 2200 screen will be blank.

If the time and date are to be initialized, the
operator must depress either the keyboard or display key.
Upon doing this, the screen will bhe initialized with a
message indicating the release of the DATASHARE system being

48

used, the number of poris configured for that system, and
the digits one through eight running down the left side of
the screen. These digits denote a line which is allocated
for each physical port. The CHAIN statement displays on
this 1line the name of the program being invoked. The
program running for that port may also display on this line
using the CONSOLE statement. These lines are useful for
informing any operational personnel of the status of the
systen. '

To 1initialize the time and date, .the system will
display the message TIME: in the upper right part of the
screen. The operator should respond to this with a four
~digit number indicating the current clock value in hours and
minutes (HHMM). Note that no colons should be entered and
that a valid 24-hour clock value must be entered. If the
value is not valid, the TIME: message will be repeated.
Otherwise, the system will display the message DATE: to the
right of the time value just entered. The operator should
respond to this with a three digit number followed by a
slash followed by a two digit number. The first number
should be the current julian date (a number between 1 and
365 or, on leap years, 366) and the second number should be
the last two digits of the current year. Note that the
format mentioned must always be followed, with leading zeros
used if necessary. If the julian date is not wvalid, the
DATE: message will be repeated. Otherwise, the system will
begin execution as denoted by the wall clock display running
in the upper right part of the screen. A period of
approximately 15 seconds will pass while the system looks up
all of the ANSWER and MASTER program names in the DOS
directory and stores their physical file numbers away in a
table. Ports requesting connection during this time will be
connected but no response will be made until the 15 second
period has passed. Note that an asterisk just to the right
of the port number at the left side of the screen will be
displayed if the Carrier Detect signal for that port is
present.

10.2 Taking Down the System

, The DATASHARE system maintains its files totally under
the control of the DOS. The DOS normally may be halted at
any time without detriment to the file structure. However,
halting the system after a new file has been created or
after a new segment has been allocated will leave that file
with the maximum amount of space allocated to it. Proper
closing of the file collapses the space allocated to only
that used. Thus, to be sure all files are properly closed,
the system should be halted when all ports are in their
MASTER programs which should close all three logical files,.
The operator can tell from the console screen when a port is

49

in its MASTER program if the MASTER program displays its
name as in the examples in Appendix C.

10.3 Fatal Error Conditions

There are error c¢onditions within the DOS which cannot
be trapped. These errors envoke a DOS overlay called the
ABORT overlay which reloads the DOS to insure the presence
of the DSPLY$ routine, displays an error message in :'the
standard DOS format, and then returns control to the DOS
command interpreter. Note that this sequence does not
provide for restoring the foreground interrupt handler or
insuring that the DOS does not overlay an interrupt process
that happens to be running. The DATASHARE foreground
rmoutines reside in an area which 1is overlayed by the DOS
qnd, therefore, the normal abort message routine would cause
havoc when it tried to lcad the DOS. For this reason, the
DATASHARE system overlays the DOS in a critical place that
allows it to trap the action of untrappable DOS errors and
store a return 1instruction in location zero. This
effectively disables any interrupt handler execution and
allows the DO3 to be loaded for the abort message display
but does not restore the normal DOS foreground interrupt
handler. The DATASHARE system also overlays the DOS EXITS$
entry point with & jump to a beep and halt. This causes the
machine tc halt wnen the untrappable error message display
is completed. If the autc-restart tadb is punched on a DOS
bootstrap tape in the rcar deck, the halting will cause the
DOS to be fully raestored,

17. ANSWER AND MASTER CONCEPTS

There are two DATABUS programs which aust exist for
each port for that port to be active. The first is callied
the ANSWER program and must have a name of ANSWEAn where n
is the number of the port. For example, ANSWER? for the
first port, ANSWER2 for the second, and so on. The ANSWER
program deals with the user when he initizlly connects to
the system (calls on the telephone or turns on his CRT).
The second program is called the MASTER program and must
have a name of MASTERn where n is the number of the port.
The MASTER program deals with the user whenever he is not
executing the ANSWER program or an application program and
is generally used to allow the user to select the next
application program he wishes to execute. Note that both of
these programs are written in DATABUS, enabling the user to
tailor the command aspects of the DATASHARE system to his
particular needs. Simple and complex examples of ANSWER and
MASTER programs are shown in the appendices.

11.1 System Security

The ANSWER program allows the programmer to force the
user to give some type of identification before he 1is
allowed to use the system. Note that the INTERRUPT key on
the terminal is ignored while execution 1is taking place
between the time when the system first acknowledges the
presence Of a user at a given port and the first chain
executed by the program for that port. This means that
while the user is executing in the ANSWER program for a
given port when he first signs onto the system, he may not
escape around the identification request and get directly
into the MASTER program by simply striking the INTERRUPT
key. The ANSWER program may also be structured to enforce
file access limitations depending upon the identification of
the user.

11.2 System Convenience

The ANSWER program chains to the MASTER program which
usually requests from the terminal operator the name of the
program he wishes to execute. This name can be generated
from information supplied by the terminal operator so, for
example, the operator may enter the number of a form and the
MASTER program will decide which program to execute for that
form number. The DOS directory cannot be directly accessed
by the MASTER program, implying that a file must bhe
generated which contains the names of programs and files
that are to be accessed if directory service or file access
limitatior’ is to be implemented. It is very much up to the
author of the ANSWER and MASTER programs to provide oy
convenience facilities to the terminal user.

51

11.3 Sample Anawer and Master Programs

Appendix C contains examples of both simple and complex
ANSWER and MASTER programs. Each program is edited for
entry of the appropriate port number in the variable PORTN
and then compiled for the given port. This procedure
(editing in the port number and then compiling into an
object file with the port number in its name) must be
followed for each port that is to be used in the system. If
a DATASHARE object file for either the ANSWER or MASTER
. program does not exist for a given port, the port will
simply not be activated when the system is brought up.

Note that the first thing any of the examples do is
execute a CLOSE statement for each file. The ANSWER program
should do this to properly close all files whenever a port
disconnects. The MASTER program should do this to properly
close all files whenever a STOP, chain failure, or INTERRUPT
key occurs. The simple ANSWER program then displays on the
terminal the number of the port and displays its program
name on the console. The latter action is performed because
the system does not display the name of the program invoked
when the chain was caused by action other than the execution
of a CHAIN statement (e.g., the ANSWER program initiated by
terminal connection or the MASTER program initiated by a
STOP or INTERRUPT key). The system does display on the
console line allocated for the executing port the name of
all programs invoked by the CHAIN statement. The simple
ANSWER program then requests an identification and checks it
for validity against a very simple rule (the identification
given must be exactly the word DATAPOXNT). If the word
matches (note the use of both the NOT EQUAL and LESS
conditions for checking for an exact match), a STOP
statement is executed which causes a chain to the MASTER
program. Otherwise, an iadication is given that the proper
identification was not entered and another request for
identification is made.

The simple MASTER program mevely closes all files (in
case the INTERRUPT key was struck) and then requests the
name of a program to be executed, A CHAIN is executed to
the name given and if a chair failure occurs an indication
is given that the name does not exist in the DOS directory
and another request for a program name is made. Note that
both the ANSWER and MASTER ;rograms are written without the
use of cursor positioning 4in the KEYIN and DISPLAY
statements to ald in teletype terminal compatibility.

The complex ANSWER and MASTER programs perform tasks
similar to those performed by the simple programs except
that a number of convenience featuress are added to give the
system the appearance of a more conventional time sharing
system. Two files arz asenoiated with the more comilavy

programs, the SISYLILE an: the LiYFILL (systen arnc
files). The systesm file oonteine ddenti? *'tf*w
information ani a table asscolating a piven 119n fl:uu
code (user) witn a given set »i programs (usar’'s directary
The system file alsc contains a record {or each physical
port (records zero through seven) which allows any executing
program to determine which user identification is associated
with the given physical port at any given time. A user
identification number (an index into the rest of the file
from which the actuali symbolic user identificaticn can be
obtained), the time at sign on, and the date at sign on are
recorded in this record. The remainder of the file contains
four records for each user identified in the system. Each
record is broken into ten ten-character fields. The first
field of the first record is the idenctification code. The
rest of the fields in the first record and the following
three records contain program names associated with the
given user identification. The 1list of program names is
terminated by a space appearing in the first column of the
name. The list of user identifications is terminated by a
space appearing in the first column of a user
identification.

g e

| U [
e b

The second file associated with the complex ANSWER and
MASTER programs is called the day file. This file simply
contains a set of records to be displayed at sign on time.
This information 1is used to inform users of changes in the
system or any other facts pertinent to the use of the
system. Note that both of these files must exist before the
complex ANSWER and MASTER programs can be used, The files
can be created either with DATABUS 7 or DATASHARE, the
latter if simple ANSWER and MASTER programs exist.

The complex ANSWER program determines the month and day
of the month from the julian date. It detects if the date
has not been initialized by noting that the julian date is
zero (an invalid initialization value). After the date is
displayed, a request is made for an identification code.
The identification code 1ist in the system file is then
scanned for a mateh with the one supplied. If a matcech
cannot be found, an indication is given to the user and the
request for identification 1is repeated. Note that only
three tries at identification are allowed in an effort to
prevent unauthorized access to the system via the technique
of trying identification codes until one is struck. After
the third try, the response to the user does not change but
he is not allowed access to the system even if he does then
enter a valid identification and an alert message 1is
displayed on the console to alert the operator that someons
who apparently does not know an identification code is
trying to access the system. If a valid identification 1is
entered within three tries, the identification index into
the system file, the date of sign on, and the time of sign

53

on are written in the record in the system file
corresponding toc the physical port being used and execution
is passed to the MASTER program via the STOP statement.

The complex MASTER program allows a number of commands
as explained in the KEYIN statement under the label HELPI.
This particular program does not 1limit program or file
access to a given user to his programs only, but such a
scheme could be implemented without much difficulty.

12. PHYSICAL SYSTxx CHARICTE®RISTICS
12.1 Virtual Memcry

To achieve a reasonab.e amount 27 srogram space for
eight simultaneous programs, DATASHARE enmploys a virtual
memory technique. DATASHARE ccde is very compact, with very
few bytes of instructions being capable of invoking a large
amount of processor activity. Therefore, the rate at which
DATASHARE program bytes are fetched is very low. Because of
this low rate, the actual program code bytes can be kept in
- the randomly accessible disk buffers with very little effect
on program execution speed. Three of the four disk buffers
are used for the storage of pages of program code. This
gives the effect of having a DMA channel from the disk to
the high speed program storage memory. Another
characteristic of DATASHARE code is that it is never
modified. Because of this, program code need only be read
in and never written back out to the disk.

A different story exists in the case of the program
data, however. This data is accessed at a very high rate
and must be in main memory to be effectively accessible by
the DATASHARE interpreter. For this reason the program data
for all programs is kept resident in main memory. This fact
will be shown later to have further advantages in the case
of 1/0.

To implement an effective virtual memory accessing
algorithm, the program code is kept on the disk as 256 byte
pages with one page filling an entire disk sector. Those
familiar with DOS will note that this is not compatible with
the standard DOS data record format, which allows 253 bytes
for user data. The DATASHARE interpreter and compiler have
special disk read and write routines. to handle this problem.
The problem is not as extensive as might be imagined, since
only the READ$ and WRITE$ routines in the DOS deal with the
information in the first three bytes of each data sector.
Therefore, all of the space allocation routines in the DOS
are still used by DATASHARE. However, none of the standard
DOS utilities may be used with the DATASHARE code files.
Remember that this concerns only the DATASHARE code files
and not the data files.

Because the code 1is paged in blocks of 256, tihe
DATASHARE programmer can make his program run much more
effeciently, in many cases, by forcing his code to cross as
few page boundaries as possible. Each time a page boundary
is crossed, a new page must be read in. The paging scheme
used is purely demand with the least recently used page
being destroyed to make space for the new page. Actually,
in a lightly loaded system, a single program could get iwc
or three pages all resident in the disk buffer remor; at

once and crossing a given page boundary would not cause a
disk read, but any significant 1loading will cause this
condition to cease. Therefore, the DATASHARE programmer can
assume that each time he crosses a page boundary, a new read
will occur. This read can cause from 2 to 130 milliseconds
delay in the execution of his program. This time is time
that cannot be used by any other program since the disk is
busy. By causing an excessive number of page boundary
crossings, the programmer can easily cause his program to
execute very slowly.

However, an instruction called TABPAGE exists in
DATASHARE to aid the programmer in making his execution
speed as high as possible. This instruction causes the
location counter in the compiler to be incremented until it
. 1s at the start of the next page (nothing will be generated
if the location counter is already at the start of a page).
When this instruction is executed, it causes a GOTO to the
start of the next page. By using this instruction, the
programmer can cause logical parts of his program to contain
as few page boundaries as possible. Another:-way to increase
execution speed 18 to use 1in-line coding as much as
possible, especially for short operations, instead of the
subroutine calling feature if the subroutine is located in a
page different from the «calling 1location. This 1is
economically feasible because of the large space available
for each program (16K bytes).

Since all program data is resident, the amount of space
available to each port is limited. A total of 4096 bytes of
space is allocated for the combined use of all ports. For
an eight port system, this amounts to 512 bytes of data
space per port, However, the system 1is configurable to
allow fewer ports to be used in a system and correspondingly
more data area per port. The data area is always evenly
proportioned among all of the ports configured into the
system, and therefore is equal to the greatest interger
value of 4096 divided by the number of ports. This number
is 512, 585, 682, 819, 1024, 1365, 2048, and 4096 for 8, 7,
&6, 5, 4, 3, 2, and 1 port systems respectively.

12.2 Major Modules

Memory map of the DATASHARE run-time system:

LR IR BE S AR SE EE SRR K K IR IR I B AR RE N B N B AR SR 2R IR K L B K L K K B BE 2R BE IR BE IR 2K 2R 2R 2 B 2 R 4

LR I T R NI T I T N S S S S s

USER PROGRAM DATA

+ 4+ + +

TR R T T S s

INTERPRETER

T N A S A

SCHEDULER

TR B R R

STATH

R R R R N 3

WORKING STORAGE

AREA

+

+

TR R R R R IR I

USER INTERPRETER DATA

I/0 BUFFERS

I S S A e Ik I IR O S

boOoSs

O R I I I I A |

57

LR IR IR AR IR T I TR S BRSO R AR 2K 2 K 2 R AR R BL BRI B R B AL K BE BE K BE K 2R 2R 2R 2R 2 O 2 4

0377717

030000

021000

- 014400

010440
010000

005400

000000

As seen in the map on the previous page, DATASHARE is
broken into several major modules. The area between 0 and
05400 contains all of the DOS that is used by DATASHARE.
This includes the file loader, basic sector read and write
routines (used by the interpreter), and file handling
routines. ‘

The area between 05400 and 010000 is used for the user
logical files tables, interpreter working storage, I/0 port
buffers, and printer buffer. When a particular user is
executed, the 48 bytes corresponding to his three available
logical files are swapped into the DOS logical file table
and the 43 bytes corresponding to his interpreter working
storage are swapped into the interpreter working storage
area. When he stops execution (swapped out for another user
to execute), all of this information is swapped back into
his area between 05400 and 010000.

The area between 010000 and 010440 is the main working
storage for the entire system. The most actively accessed
data is kept within a single page of memory, increasing
coding effeciency.

The STATH package used with the DATASHARE system has
been reduced in size by removing the keyin and display
routines. In all other respects, it is similar to the
package used in the other DATABUS interpreters.

The DATASHARE scheduler is the most complex part of the
system. Its task involves all foreground 1/0 and scheduling
of background execution. Background execution 1is used to
interpret and execute the DATABUS statements and perform
disk I/0 while foreground execution is used to interpret the
printer, console, and terminal I/0 <tatements. This portion
of the system is explained more thoroughly in the next
section. :

The DATASHARE interpreter is similar to a standard
DATABUS interpreter except that it has been enhanced to deal
with based user varicble aita in “%we srea at the end of main
memory and deal with user pgrozram Jdazta in virtual storage
that actually resides on the olsk. A base address table
exists 1in the working storare ar:a which tells the
interpreter which variab.» da%a a-es to use based on the
user number of the user ~ur-sm*.y b>.ng executed. A page

address table also exists {n --¢ -,r ‘ug storage area which
tells the interpreter wher: n= ¢ sk the user’s program
resides. A virtual storage =.h1 vue is used which uses
disk buffers one, two, and ."%.. .or the storage of the
currently active program da - -»=s, ¥When a program data
byte is accessea, the inte . eter Fotch routine searches
through the jage address t©s'i~ locv.ng to ses 1f that byte

2xists {5 one of the three . =¥ b.ffars. If the byte does

exist, the interpreter merely directly accesses it and the
fetch is finished. Otherwise, the interpreter decides which
disk buffer has been least recently accessed and reads the
necessary program data page 1into that buffer. The
interpreter then goes back and executes the normal fetch
routine which will find the byte available in a disk buffer
and fetch it for use by the rest of the interpreter,

DATASHARE object code files are stored with 256 bytes
per disk sector. This enables the most significant byte of
the DATABUS interpreter program address counter to indicate
which sector relative to the beginning of the object file
and the 1least significant byte of the address counter to
indicate which byte within that sector is being accessed.
Actually, the first sector of the object file contains the
number of sectors that were used for user variable data
storage. These sectors are read into the user’s variable
data area when a chain is made to the program. Bytes within
these sectors set to 0377 (octal) are not loaded into memory
but their slots are skipped. This mechainism allows common
variables to be positioned non-destructively. If, while
loading the data area, the interpreter exhausts the data
space allocated to a single user, a chain failure is
initiated. Therefore, the programmer cannot distinguish
between a program actually absent from the DOS directory and
one whose data area will not fit into the space allocated to
an individual program for the number of ports currently
configured. The number of sectors used for variable data
storage is kept within a table in the working storage area
so the interpreter fetch routine knows by how much to bias
the MSB of the program address counter when determining the
logical record number of the object code block it needs when
obtaining a given program data byte.

54

12.3 Scheduling

To provide optimum response time, DATASHARE handles all
port and printer 1/0 using interrupt driven foreground
routines, which means that data transfer between the
terminal and the system can occur regardless of the
computational task being handled by the background program
at any given time. The foreground routines actually -
interpret the KEYIN, DISPLAY, PRINT, and CONSOLE
instructions, with the background interpretive code merely
passing these instructions tc the foreground through a
circular buffer allocated for each port. Conventional
systems use such a buffer to hold the actual characters
transferred between the system and the terminal. However,
DATASHARE uses this buffer to hold the interpretive code
bytes, thus enabling many more bytes to be transferred than
can actually be held in the buffer. For example, a DISPLAY
statement may contain some quoted information and then a
variable name. The variable name 1is represented by two
bytes but the contents of the variable could be fifty bytes
long, enabling two bytes of buffer space to 1invoke the
transfer of fifty bytes to the terminal. This is made
possible by the fact that all program data 1is resident in
main memory which enables the foreground routine to be
executing an I/0 statement for a given port even though the
background program for that port may not be swapped in at
the time.

As a matter of fact, the foreground and background
program for a given port always execute exclusively of each
other to prevent confliects over data values. When the
background program executes a DISPLAY statement, the
statement is stored in the buffer for the given port and
then the background program 1is deactivated and the
foreground program activated. When the foreground program
has completely executed the I/0 statement, it causes a high
priority interrupt to the background, which deactivates the
current program and activates the one which was executing
the DISPLAY statement which caused the interrupt. In
reality, the scheduling algorithm is more complex than this,
but this gives an 1idea of the sequence of events. One
important consideration which must be taken into account by
the DATASHARE programmer concerning port I/0 is the fact
that every time an 1/0 instruction is completed in the
foreground, the background program is swapped 1in. If the
programmer is not careful, he can cause the system to thrash
(spend most of its time swapping background programs in
instead of doing useful work) by causing a high rate of I1/0
completion interrupts. &n exampls would He using many
separate DISPLAY statements instead of one 1long continuad
statement.

The above discussion concerns only pert, printer, anc

console 1/0. All disk I/0 is performed under the DOS which
is a background-only operation. This means that all DOS
functions are non-interruptable and long directory searches
(which can take up to several seconds with a four drive
system) will cause the response to I/0 completion interrupts
to be delayed. Long DOS functions, however, occur
infrequently and therefore can be ignored from an average
response time calculation standpoint.

When the background program resumes execution due to
the completion of a foreground I/0 task, it is guaranteed a
‘minimum amount of execution time. This prevents the system
from spending all of its time swapping background tasks when
"the foreground I1I/0 completion rate is high. The minimum
execution time can be used to advantage when one is dealing
with common data base file access. It is only structurally
sound to allow one port to modify a given record in a file
at any given time. For example, picture an inventory file.
Let us assume that a quantity of ten exists at some point in
time for a given item. Let us also assume that two ports
are simultaneously attempting to deplete this quantity by
one. It is apparent that it would not be very difficult for
the first port to read the file and then be interrupted by
the second port which proceeds to read the file, deplete the
quantity by one, and modify the file with the new value,
Then the first port resumes execution and . depletes the
quantity which it had originally read and modifies the file
with its new value. Unfortunately, this new value is wrong
since the quantity read by the first port was out of date
when its execution resumed. For this reason, the first port
should have locked out access to the given record (or even
file) while it was trying to change its contents.

Access could have been locked out if the first port
knew that it could have read, depleted, and rewritten the
quantity without being interrupted by the second port. If
before doing the file access, the first port had Jjust
completed a foreground 1/0 operation (for example, a DISPLAY
statement), a minimum execution time of 800 milliseconds
would have been assured. Since a disk access consumes a
maximum of 180 milliseconds, this would be an adequate
amount of time to read the record, perform a simple
computation, and rewrite the record. This is the
recommended technique of common file access lock out. If a
foreground I/0 statement has not just been completed, the
program can perform the statement:

CONSOLE #P1:79
whieh requires very little execution time and performs no
visible operation. Execution of this statement will cause

the user to be swapped out and back and may cause some delay
while another program executes, but must be performed if the

61

800 milliseconds of execution time is to be assured. Single
character string operations occur within five milliseconds,
multiple character string operations occur within five to
ten milliseconds, depending upon the length of the strings,
and arithmetic operations occur within five to fifty
milliseconds depending upon the operation being performed
(addition and subtraction being the shortest and division -
the longest) and the length of the numbers.

DATASHARE is capable of driving any serial terminal
device which uses an ASCII character set. Use of devices
without cursor positioning features, however, will restrict
the programmer from using the cursor positioning facility in
the KEYIN and DISPLAY statements. If the programmer does
not use the cursor positioning feature, he will be able to
write a program which is Teletype machine compatible. The
®ES and ®*EL list controls send control characters that are
ignored by a 35 ASR Teletype. However, the Cursor On
character which is sent before each KEYIN variable entry
request and the Cursor Off which is sent after the ENTER key
is struck, are Tape On and Tape Off respectively on a 35 ASR
Teletype.

DATASHARE is also capable of dealing with 103 type
datasets as well as hard wired connections and full duplex
four wire 202 dataset connections. It handles all of the
103 handshaking involved and needs only the proper cable to
work correctly. In fact, the 3360-102 hard wire cable is
connected in such a way as to make the 3360-102 appear as a
103 data set, with power on causing ring detect and carrier
detect to be sent to the DATASHARE system. The fact that a
hard wire or dataset connection is employed at a given
terminal cannot be differentiated by the DATASHARE
programmer. See Section 13 for more information concerning
terminal connections.

ne

13. PHYSICAL INSTALLATION
13.1 Main peripherals

The DATASHARE system requires a 2200-350 series disk
peripheral. Since the system maintains its entire file
structure under the DOS, anywhere from one to four disk
drives (2.5 to 10 million bytes) may be employed as long as
each disk cartridge used has a DOS file structure and the
cartridge in drive zero contains the system files. Note
that drive zero must be kept on line at all times during
system operation but the other three drives may be put on or
off line as the maintenance of the data base requires.

Any 2200-200 series printer which wuses the ASCII
character set and requires no special motion controls may be
used as the 1local printer on the DATASHARE system. Note
that the current release of the software excludes the use of
the 2200-250 series servo printer. Only one printer may be
connected and must have the I/0 bus address of 0303. Note
that, as in any 2200 installation, a 2200-420 parallel
interface may be connected to drive a special output device,
but that device must be capable of handling the output that
would normally be given to an ASCII printer.

Besides the 2200-350 series disk, the other required
peripheral for the operation of the DATASHARE system is the
2200-460 Multiple Port Communications Interface. This
device is capable of driving up to eight fully independent
full duplex asynchronous lines at speeds ranging from 110 to
9600 baud. The DATASHARE system is not capable of output
above 125 characters per second per port and normally uses
1200 baud for direct connection and four wire 202-type modem
connections and uses 300 or 110 baud for 103-type modem
connections. However, any speed may be strapped in the
2200-460 to achieve compatibility with specific terminals as
the occasion may require. The DATAPOINT 3360-102, the
recommended terminal device for the DATASHARE system, has
switech selectable speeds of 300, 1200, 2400, and 4800 baud.
Note that all ports are operated by the DATASHARE system in
full duplex mode only.

N

H<

13.2 Terminal connections

In general, a terminal may be connected to the
DATASHARE system in one of three ways: direct hardwire,
103-type modem, and 202-type modem. The following table
shows the pin assignments on the 25-pin connector for the
2200-460 individual port, the 3360-102 CRT terminal, and a
103 or 202 type modem:)

PIN 2200-460 3360-102 1037202
1 - PROT GROUND PROT GROUND
2 DATA OUT DATA OUT DATA IN
3 DATA IN DATA IN DATA OUT
Yy REQ TO SEND - REQ TO SEND (202)
5 CLR TO SEND - CLR TO SEND
6 - - DATA SET READY
7 SIG GROUND SIG GROUND SIG GROUND
8 CARRIER DET - CARRIER DET
20 DATA TERM RDY DATA TERM RDY DATA TERM RDY

N
N

RING DETECT - RING DETECT

The DATASHARE system goes through the following
handshaking procedure when a connection is established:

1. Clear Data Terminal Ready and Request To Send

2. Wait for Ring Detection

3. Set Data Terminal Ready and Request To Send

4. Wait up to 10 seconds for Carrier Detect

5. Go to step 1 if time out in step 4

6. Wait one second and then start the ANSWER program

This procedure will :#urk with any of the three types of
connections if the prouper capbie is used.

DIRECT

Basically, the - .r2ct c.onnection cable swaps the data
wires (pins 2 and 3) r:rC conrects Carrier and Ring Detect on
one end to Data Teii.a’ Rzady on the other as shown in the
following table:

2200-460 TO 2360-°'< (A:LE CONNECTIONS

2200-460 L.8L-l02
2 3
3 2
7 1
8 aru 22 20

i

Note that this arrangement requires only five wires in the
cable (four if the optional wire is not used). If the cable
is to be made more than several hundred feet long, each of
the two signal wires (the ones connecting to pins 2 and 3)
should be twisted separately with a ground wire (no other
shielding i3 necessary). Direct connections up to one
thousand feet may be made if the above precautions are

followed. :

The 3360-102 sets Data Terminal Ready whenever it is
running. With the above cable connected, this will cause
ringing and carrier to be presented to the 2200-460. This
has the effect of causing the ANSWER program to be executed
whenever power is applied to the 3360-102.

103-TYPE MODEM

The 2200-460 can be connected to a 103-type modem with
a one to one cable (e.g., a pin at one end is connected to a
pin of the same number at the other end). Only pins 2, 3,
7, 8, 20, and 22 need to be connected but having all pins
connected will also work (this being the simplest to
describe to someone at a distance!). Note that 103 and 113B
modems have similar pin connections.

2200-460 TO 103-TYPE MODEM CONNECTIONS

2200-460 103-TYPE MODEM
2 2
3 3
7 7
8 8
20 20
22 22

If one is calling a 103-type modem over a dial-up
network, he will hear the telephone answered very shortly
after it starts ringing (should take one or two rings at
most). If the telephone is not answered within that amount
of time, the caller either has the wrong number or the
DATASHARE system is not up or is in the initial phase of
being taken down. In any case, the caller may as well hang
up (letting the phone ring for a long time can be very
irritating at the other end). If the telephone is answered,
the caller will hear the carrier from the modem connected to
the 2200-460 which is his signal to either depress the DATA
key on his modem or put the telephone handset in the data
coupler (if he 1is using one). The DATASHARE system gives
the caller ten (10) seconds to perform the necessary action
to cause a carrier to be returned from his modem. If all is
satisfactorily completed, one more second will pass and then
the ANSWER program will begin execution. If all is not

65

satisfactorily completed, the DATASHARE system will hang up
the telephone at its end and go back to waiting for ringing
to occur. Note that since the DATASHARE system does wait up
to ten seconds for a satisfactory connection, if one dials
the system and hangs up as soon as the telephone |is
answered, he will have to wait ten seconds before he can
dial the same telephone again. Also note that the DATASHARE
system will disconnect as soon as it 1loses the Carrier
Detect signal from the modem. This means that disconnection
will occur even if the carrier is broken only for a very
short time.

202-TYPE MODEM

The DATASHARE system requires a full duplex connection
to its terminals. A 202-type modem can be used in this
fashion only if it is connected via a four-wire circuit.
This means that one signal path must exit for data flow in
one direction and a separate data path must exit for data
flow 1in the other direction. This impiies that a
point-to-point connection is made between the modems (the
switched telephone network cannoct support four-wire
connections). In this application, the 202 modem must be
strapped for use in four-wire mode. :

The connecting cable between the 2200-460 and 202 modem
is similar to the one for connection to a 103-type modenm
except that, since 202°s used in point-to-point four-wire
service do not use ringing, the carrier detection signal
from the 202 must be connected to both the carrier detection
and ring detection inputs on the 2200-460.

2200-460 TO 202 MODEM CONNECTIONS

00-460 202 MCDEM
2 2
3 3
y i
7 7
8 and 22 8
" 20 20

When Data Terminal Ready is supplied by the terminal
device to the remote 202 mode=m. that modem will turn on its
carrier. This carrier will cause the modem connected to the
2200-460 to turn on its carrier detect signal which will
present ring detection and <carrier detection to the
DATASHARE system. The svstem will p-~oceed to set its Data
Terminal Ready signal which wi'l ~.use the 202 modem to turn
on its carrier ani comp.ete *t.uo 2onnection, One second
later the ANSWER progrew wi'' owgin execution. Thus,
operation over a 202 mode: oarmract oo will appear similar to

direct connection operation.

Remote modems are connected to Datapoint 3000 series
terminals via a standard modem cable supplied with the
terminal. This cable provides the required Data Terminal

Ready signal to cause the operational characteristics
described above.

13.3 Port speed selection

The 2200-460 Multiple Port Communications Adaptor is
software programmable to transmit and receive from five to
eight information bits with either one or two stop bits.
However, the DATASHARE system always uses eight information
~bits and sends two stop bits (it will receive signals with
only one stop bit). The speed of each port may be set
independently to a variety of speeds, depending on field
programmable hardwire straps.

There are three clock buses within the 2200-460,
limiting the total number of different speeds used at any
one time to three. Each of these buses can be connected to
one of two crystal controlled time bases. Each time base is
connected to a binary dividing chain, giving speeds
selectable in powers of two. The standard crystals supplied
provide multiples of 110 and 300 baud. The baud rate of a
bus is set by strapping from a baud rate source pin to a
baud rate bus input pin. Each bus has eight baud rate
output points. The baud rate of a channel is set by
strapping from a baud rate bus output point to the channel
baud rate input pin. The following table gives the
respective pin numbers as found on the silk screening on the
printed circuit card in the 2200-460:

BAUD RATE SOURCE BAUD RATE BUS
Baud rate Pin Bus Input Qutput
300 E29 1 E34 E37
600 E28 2 - E35 - E38
1200 E27 3 E36 E39
2400 E23
4800 E22 CHANNEL BAUD RATE INPUT
9600 E21 Channel Input
110 E33 1 E13
220 E32 2 E14
440 - EN 3 E15
880 E30 4 E16
1760 E26 5 E17
3520 E25 6 E18
7040 E24 7 E19
8 E20

A typical installation may use baud rates of 110 for
teletype machines (remote or local), 300 for remote 3360-102

67

terminals wusing 103-type modems, and 1200 for remote
3360-102 terminals wusing 202-type modems. For this
installation, one may connect bus 1 for 110 baud, bus 2 for
300 baud, and bus 3 for 1200 baud as shown in the following
table. :

E34 to E33 make bus 1 110 baud
E35 to E29 make bus 2 300 baud
E36 to E27 make bus 3 1200 baud

Now, if channels 1 through 3 are to be 300 baud, channels 4
.through 7 1200 baud, and channel 8 110 baud, the following
connections would be made:

E38 to E13, E14, E15 make ch 1-3 300 baud
E39 to E16, E17, E18, E19 make ch 4-7 1200 baud
E37 to E20 make ch 8 110 baud

Port speeds other than multiples of 110 or 300 baud can be
accommodated by changing the crystal frequencies. Selection
of the proper crystal should be aided by the Datapoint
engineering staff.

13.4 Non-3360-102 terminal devices

Terminals other than the Datapoint 3360-102 can be
connected effectively to the DATASHARE system. The major
advantage of the 3360-102 1is that its cursor can be
positioned directly by the issuance of a three character
sequence. This allows the usage of the cursor positioning
list controls in the DISPLAY and KEYIN statements and
greatly enhances the speed of form displays.

Terminals such as the Teletype 33 and 35 KSR or ASR may
be connected either hardwire or over modem connections. In
addition, conventional CRT terminals such as the Datapoint
3300 (for 300 or 1200 baud) or Datapoint 3000 (for 300 baud
only) may be connected. All Datapoint 3000 series terminals
use identical cable configurations for a given type of
installation. The key to making a cable for a given device
is to insure that both Carrier and Ring Detect on the
2200-460 are connected to a wire that 1is set when the
connection is to be established and is c¢leared when the
connection is to be broken,

68

APPENDIX A

INSTRUCTION SUMMARY

SYNTACTIC DEFINITIONS

condition

character string
event
list

name

label

nvar

nval

nlit

svar

sval

RN

The result of any arithmetiec or
string operation: OVER, LESS,
EQUAL, ZERO, or EOS (EQUAL and ZERO
are two names for the same
condition).

Any string of printing ASCII
characters except for a quote (").

The occurrence of a program trap:
PARITY, RANGE, FORMAT, or CFAIL.

A list of variables or controls
appearing in an input/output
instruction.

Any combination of letters (A-Z)
and digits (0-9) starting with a
letter (only the first six
characters are used).

A name assigned to a statement,

A name assigned to a directive
defining a numeric string variable.

A name assigned to a directive
defining a numeric string variable
or an immediate numeric value.

An immediate numeric value.

A name assigned to a directive
defining a character string
variable.

A name assigned to a directive
defining a character string
variable or a quoted alphanumeric
character.

A positive record number (>= 0)
used to randomly READ or WRITE on a
file.

SEQ A negative number (< 0) used to
READ or WRITE on a file
sequentially.

DIRECTIVES

FORM n.m

FORM "456.23"

DIM n

INIT "character string"
FORM #n.m

FORM #n4s56 . 23"

DIM #n

INIT #"CHARACTER STRING"

CONTROL

GOTO (label)

GOTO (label) IF (condition)
GOTO (label) IF NOT (condition)
BRANCH (nvar) OF (label list)
CALL (label)

CALL (label) IF (condition)
CALL (label) IF NOT (condition)
RETURN

RETURN IF (condition)

RETURN IF NOT (condition)

STOP

STOP IF (condition)

STOP IF NOT (condition)

CHAIN (svar)

TRAP (label) IF (event)

TRAPCLR (event)

ROLLOUT (svar)

CHARACTER STRING HANDLING

MATCH (svar) TO (svar)
MOVE (svar) TO (svar)
MOVE (svar) TO (nvar)
MOVE (nvar) TO (svar)
APPEND (svar) TO (svar)
CMOVE (sval) TO (svar)
CMATCH (sval) TO (sval)
BUMP (svar)

BUMP (svar) BY {(nlit)
RESET (svar) TO (sval)
RESET (svar) TO (nvar)
RESET (svar)

ENDSET (svar)

LENSET (svar)

CLEAR (svar)

A-2

EXTEND (svar)

CHAIN (svar)

LOAD (svar) FROM (nvar) OF (svar list)
STORE (svar) INTO (nvar) OF (svar list)
CLOCK TIME TO (svar) .

CLOCK DAY TO (svar)

CLOCK YEAR TO (svar)

TYPE (svar)

ARITHMETIC

ADD (nvar) TO (nvar)

SUB (nvar) FROM (nvar)

MULT (nvar) BY (nvar)

DIV (nvar) INTO (nvar)

MOVE (nvar) TO (nvar)

COMPARE (nvar) TO (nvar) ;
LOAD (nvar) FROM (nvar) OF (nvar list)
STORE (nvar) INTO (nvar) OF (nvar list)

INPUT/0OUTPUT

KEYIN (list)
DISPLAY (l1ist)
CONSOLE (1list)
BEEP

PRINT (1list)
RELEASE

PREPARE n, (svar)
OPEN n, (svar)
CLOSE n

WRITE n,RN;(list)
WRITE n,RN;(list);
WRITAB n,RN;(1list)
WRITE n,SEQ;(list)
WRITE n,SEQ;(1list);
WEQOF n,RN

WEOF n,SEQ

READ n,RN;(list)
READ n,RN;(list);
READ n,SEQ;(list)
READ n,SEQ;(list);

A-3

CONTROL

8p<m> : <n>

&N

*EL

®EF

#<n>

#<n>
#{nvar>

APPENDIX B

INPUT/OUTPUT LIST CONTROLS

USED IN
KDC

KDP

KDC

KDC

KDCP

KDCP

FUNCTION

Causes the cursor to be positioned
horizontally and vertically to the
column and line indicated by the
numbers <m> (horizontal 1-80) and
<n> (vertical 1-24). These numbers
may either be literals or numeric
variables. Note that <n> is ignored
in the CONSOLE statement. This list
control is only effective on the
Datapoint 3360-102.

Causes the cursor or printer to be
positioned in Column 1 of the next
line.

Causes the line to be erased from
the current cursor position.

Causes the screen to be erased from
the current cursor position to the
end of the line.

Turn on Keyin Continuous for KEYIN
or space after logical length
suppression for DISPLAY, PRINT, and
CONSOLE.

Turn on space compression during
WRITE.

Turn off Keyin Continuous (turned
of f at the end of the statement) or
the space after logical length
suppression.

Causes a horizontal tab on the
printer to the column indicated by
the number <n>. No action occurs if
the carriage is past the column
indicated by <n>.

Tab specification for READ or WRITAB
operations; the logical file
pointers are moved to that character
position relative to the current

-e

*F

L

oC

#T

KDP

KDCP

KDP

KDP

physical record.

Suppress a new line function when
occurring at the end of a list.

Any characters appearing between
quotes are displayed or printed when
encountered (note that a quote
itself cannot be quoted).

Causes the printer to be positioned
to the top of form.

Causes a linefeed to be displayed or
printed.

Causes a carriage return to be
displayed or printed.

Time out after 20 seconds for KEYIN
statement.

B=2

APPENDIX C
PROGRAM EXAMPLES

Simplé ANSWER Program
. SIMPLE ANSWER PROGRAM

PORTN FORM "yn
IDCODE DIM 9
ID INIT "DATAPOINT"
CLOSE 1
CLOSE 2
CLOSE 3
DISPLAY ®*ES,"D AT A SHARE PORT “,PORTN," ON LINE"
CONSOLE "ANSWER",PORTN
LOOP KEYIN "ID: *,IDCODE
MATCH ID TO IDCODE
- GOTO BADID IF NOT EQUAL
GOTO BADID IF LESS
MATCH IDCODE TO ID
GOTO BADID IF LESS
STOP
BADID DISPLAY "##% INVALID ID ##&#w
GOTO LoOGP

C-01

Simple MASTER Program

. SIMPLE MASTER PROGRAM

PORTN
FILNAM

- LOOP

NONAME

FORM "™yn»
DIM 8

RELEASE

CLOSE 1

CLOSE 2

CLOSE 3

CONSOLE "MASTER",PORTN :

KEYIN #N,®EL,"PROGRAM NAME: ",FILNAM
TRAP NONAME IF CFAIL

CHAIN FILNAM

DISPLAY "###% NO SUCH PROGRAM #&an
GOTO LOOP :

Complex ANSWER Progran
. DATASHARE ANSWER PROGRAM

PORTN FORM n3n | THE NUMBER OF THIS PORT
DATE DIM 18 * TODAY’S DATE IN MONTH, DAY, YEAR
IDCODE DIM 10
IDCTR FORM "3n
TIMEON DIM 8
ZERO FORM non
ONE FORM "qn
FOUR FORM "y
EIGHT FORM ngw
TEN FORM w10
N28 FORM n2gn
NFEB FORM nagw
N30 FORM n3Qw
N31 FORM n3qm
SPACE INIT "o
CENT INIT noqgw
RN FORM "000"
TIME INIT "00:00:00"
DAY INIT "0o0"
YEAR INIT “oo"
NDAY1 FORM 3
NDAY2 FORM 3
NYEAR1 FORM 2
NYEAR2 FORM 2
SJAN INIT » JANUARY"
SFEB INIT "FEBRUARY"
SMAR INIT “MARCH"
SAPR INIT wAPRIL"
SMAY INIT "MAY"®
SJUN INIT " JUNE"
SJUL INIT "JULY"
SAUG INIT "AUGUST"
SSEP INIT "SEPTEMBER®
SOCT INIT "OCTOBER®™
SNOV INIT "NOVEMBER"
SDEC INIT "DECEMBER®"
LINE DIM 100 |
SYSFILE INIT "SYSFILE"
DAYFILE INIT "DAYFILE"
CLOSE 1
CLOSE 2
CLOSE 3
DISPLAY #ES,*N,"D AT A SHARE PORT " ,PORTN;
OPEN 1,SYSFILE

CONSOLE ®EL,"ANSWER",PORTN
STARTO CLOCK DAY TO DAY

MOVE DAY TO NDAY1

CLOCK TIME TO TIME

C-03

LEAP

NOV

0oCT

SEP

CLOCK
MOVE
GOTO
MOVE
MOVE
DIV
MULT
COMPARE
GOTO
MOVE
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
SUB
GOTO
GOTO
MOVE
GOTO
ADD
MOVE
GOTO
ADD
MOVE
GOTO
ADD
MOVE

YEAR TO YEAR
NDAY1 TO NDAY1
NODATE IF ZERO
YEAR TO NYEAR?1
NYEAR1 TO NYEARZ2
FOUR INTO NYEAR?1
FOUR BY NYEAR1
NYEAR1 TO NYEAR2
LEAP IF EQUAL
N28 TO NFEB
N31 FROM NDAY1
JAN IF LESS
JAN IF EQUAL
NFEB FROM NDAY1
FEB IF LESS
FEB IF EQUAL
N31 FROM NDAY1
MAR IF LESS
MAR IF EQUAL
N30 FROM NDAY1
APR IF LESS
APR IF EQUAL
N31 FROM NDAY1
MAY IF LESS
MAY IF EQUAL
N30 FROM NDAY1
JUN IF LESS
JUN IF EQUAL
N31 FROM NDAY1
JUL IF LESS
JUL IF EQUAL
N31 FROM NDAY1
AUG IF LESS
AUG IF EQUAL
N30 FROM NDAY1
SEP IF LESS
SEP IF EQUAL
N31 FROM NDAY1
OCT IF LESS
OCT IF EQUAL
N30 FROM NDAY1
NOV IF LESS

" NOV IF EQUAL

SDEC TO DATE
START1

N30 TO NDAY1
SNOV TO DATE
START1

N31 TO NDAY1
SOCT TO DATE
START1

N30 TO NDAY1
SSEP TO DATE

(=04

AUG

JUL

JUN

MAY

APR

MAR

FEB

JAN
START1

START2

NODATE

DATEOK

LOOPO

LOOPOA

LOOPOB

GOTO
ADD
MOVE
GOTO
ADD
MOVE
GOTO
ADD
MOVE
GOTO
ADD
MOVE
GOTO
ADD
MOVE
GOTO
ADD
MOVE
GOTO
ADD
MOVE
GOTO
ADD
MOVE
ENDSET
MOVE
COMPARE
GOTO
BUMP
APPEND
APPEND
APPEND
RESET
DISPLAY
GOTO
DISPLAY
BEEP
DISPLAY
DISPLAY
TRAP
OPEN
MOVE
READ
CMATCH
GOTO
RESET
BUMP
GOTO
CMATCH
GOTO
LENSET
RESET

DISPLAY

START1

N31 TO NDAY1
SAUG TO DATE
START1

N31 TO NDAY1
SJUL TO DATE
START?

N30 TO NDAY1
SJUN TO DATE
START1

N31 TO NDAY1
SMAY TO DATE
START1

N30 TO NDAY1
SAPR TO DATE
START1

N31 TO NDAY1
SMAR TO DATE
START1

NFEB TO NDAY?1
SFEB TO DATE
START1

N31 TO NDAY1
SJAN TO DATE
DATE

NDAY1 TO DAY
TEN TO NDAY1
START2 IF NOT LESS
DAY

DAY TO DATE
CENT TO DATE
YEAR TO DATE
DATE

#4," ON LINE AT ",TIME," ON ",DATE
DATEOK

" ON LINE v

n&##* DATE NOT INITIALIZED ###n
"n n

LOOP1 IF IO
2,DAYFILE

ZERO TO RN
2,RN;LINE

"g" TO LINE
LOOP1 IF EQUAL
LINE TO 72

LINE BY -1
LOOPOB IF EOS

* » TO LINE
LOOPOA IF EQUAL
LINE

LINE

%, LINE

C-05

LOOP1

LOOP2

LOOP3

NEXTID

IDFAIL

KABOOM

ADD
GOTO
KEYIN

CLOCK
CONSOLE
MOVE
GOTO
MOVE
READ
CMATCH
GOTO
CMATCH
GOTO
BUMP
BUMP
GOTO
CMATCH
GOTO
SUB
WRITE
CLOSE
STOP

ADD
GOTO

BEEP
DISPLAY
SUB
GOTO
CONSOLE
BEEP
DISPLAY
GOTO

ONE TO RN
LOOPO

®EL,"PLEASE LOG IN: ",®N,IDCODE:
SC, neupuunsnun #C_w0000000000"

TIME TO TIMEON
#P15:1,%EL,"ID: *,IDCODE,"
IDCTR TO IDCTR
KABOOM IF ZERO

EIGHT TO RN
1,RN;LINE

» v TO LINE

IDFAIL IF EQUAL
IDCODE TO LINE
NEXTID IF NOT EQUAL
LINE

IDCODE

LOOP3 IF NOT EOS

m v TQ LINE

NEXTID IF NOT EQUAL
ONE FROM PORTN

1, PORTN; BN, DATE, TIME
1

FOUR TO EN
LooP2

ne#% INVALID ID #ean
ONE FROM IDCTR

LOOP1

*P60:1,#EL,"ID OVERRUN"

neRE INVLIID ID uwan
LooP1

TIME ON: ",TIMEON

Complex MASTER Program

. DATASHARE MASTER PROGRAM

PORTN
SYSFILE
ANSWER
LINE
LINITM
RN

RNX
ONE
FOUR
EIGHT
NINE
TEN
COUNT
CMDLIN
HELP
HELLO
CAT
RUN
TIME
DATE
ONLINE
PORT
BYE

CMDREQ
TRYAGN

FORM
INIT
INIT
DIM
DIM
FORM
FORM
FORM
FORM
FORM
FORM
FORM
FORM
DIM
INIT
INIT
INIT
INIT
INIT
INIT
INIT

CINIT

INIT

CLOSE
CLOSE
CLOSE
RELEASE
CONSOLE
DISPLAY
OPEN
SUB
READ
KEYIN
MATCH
GOTO
MATCH
GOTO
MATCH
GOTO
MATCH
GOTO
MATCH
GOTO
MATCH
GOTO
MATCH
GOTO
MATCH

n3n
"SYSFILE"
"ANSWERX "
100

10

000"
"000"
"1"

" jj

"8"

”9"

" 10"
“00"

20
HELP"
"HELLO"
"CAT™
“RUN"
"TIME®
"DATE"
"ONLINE"
"PORT*
"BYE"

1
2
3

THE NUMBER OF THIS PORT

"MASTER",PORTN," "

*ES
1,SYSFILE
ONE FROM PORTN

- 1,PORTN; RN

®*ES, *N,"READY", ®*N,CMDLIN

HELP TO CMDLIN
HELPI IF EQUAL
HELLO TO CMDLIN
HELLOI IF EQUAL
CAT TO CMDLIN
CATI IF EQUAL
PORT TO CMDLIN
PORTI IF EQUAL
TIME TO CMDLIN
TIMEI IF EQUAL
DATE TO CMDLIN
DATEI IF EQUAL

ONLINE TO CMDLIN

ONLI IF EQUAL
BYE TO CMDLIN

C-07

GOTO BYEI IF EQUAL
MATCH RUN TO CMDLIN

GOTO TRYNAM IF NOT EQUAL
CALL GETNAM

TRYNAM TRAP CFAIL IF CFAIL
CLOSE 1
CHAIN CMDLIN

CFAIL OPEN 1,SYSFILE
KEYIN ®N,"WHAT?", ®N,CMDLIN
GOTO TRYAGN

GETNAM BUMP CMDLIN

RETURN IF EOS
CMATCH *0" TO CMDLIN

GOTO GETEXX IF LESS
CMATCH ":* TO CMDLIN
GOTO GETNAM IF LESS
CMATCH "A" TO CMDLIN
GOTO GETEXX IF LESS
CMATCH "[" TO CMDLIN
GOTO GETNAM IF LESS
GETEXX BUMP CMDLIN
RETURN

HELPI KEYIN #ES, ®N: :
"ENTER: HELLO-<ID> TO SIGN ON AS ANOTHER USER", *N:

" HELP TO GET THIS INFORMATION",#®N:
. CAT TO GET A LIST OF PROGRAMS",®#N:
» TIME TO GET THE CURRENT TIME",#®N:
" DATE TO GET THE DATE AT LOGON",*N:
" ONLINE TO GET THE TIME AT LOGON", #N:
" PORT TO GET THE PORT BEING USED", #N:
" RUN-<NAME> TO RUN A PROGRAM", ®N:
" OR <NAME> TO RUN A PROGRAM", ®N, @&N:
"READY", ®*N,CMDLIN, ®*ES
GOTO TRYAGN
HELLOI CALL GETNAM
MOVE CMDLIN TO LINITM
MOVE EIGHT TO RNX
HELLO2 READ 1,RNX;LINE
CMATCH W * TO LINE
GOTO IDFAIL IF EQUAL
HELLO3 CMATCH LINITM TO LINE
GOTO NEXTID IF NOT EQUAL
BUMP - LINE
BUMP LINITM
GOTO HELLO3 IF NOT EOS
CMATCH " » TO LINE
GOTO NEXTID IF NOT EQUAL
READ 1,PORTN;RN,LINE
WRITE 1,PORTN; RNX,LINE
MOVE RNX TO RN

c-08

NEXTID

IDFAIL

CATI

- CATR
CATR1

CATR3

CATRA
CATRB

PORTI
CATRAY

TIMEI

DATEI

GOTO

ADD
GOTO

BEEP
KEYIN
GOTO

DISPLAY
MOVE
READ
RESET
MOVE
GOTO
READ
MOVE
RESET
LENSET
RESET
CMATCH
GOTO
CMOVE
BUMP
BUMP
GOTO
GOTO
BUMP
CMATCH
GOTO
LENSET
RESET
DISPLAY
SUB
GOTO
ADD
GOTO

ADD
DISPLAY
SuB
KEYIN
GOTO

CLOCK
DISPLAY
GOTO

READ
RESET
LENSET
RESET
MOVE

CMDREQ

FOUR TO RNX
HELLOZ2

ne4® INVALID ID ##&» &N ®wREADY",®N,CMDLIN,®*ES

TRYAGN
#ES,®N,"CATALOG: ",#®N
RN TO RNX
1,RNX;LINE

LINE TO 11

NINE TO COUNT
CATR1

1,RNX;LINE

TEN TO COUNT
LINITM TO 99
LINITM

LINITM

" » TO LINE
CATR4 IF EQUAL
LINE TO LINITM
LINE

LINITM

CATR3 IF NOT EO3
CATRB

LINITM BY -1
LINITM TO " "
CATRA IF EQUAL
LINITM

LINITM

*+,LINITM

ONE FROM COUNT
CATR1 IF NOT ZERO
ONE TO RNX

CATR

ONE TO PORTN

"YOU ARE ON PORT ",PORTN;
ONE FROM PORTN
®N,"READY",®*N,CMDLIN, *ES
TRYAGN

. TIME TO LINE

*4+,"THE TIME IS ",LINE;
CATRY

1,PORTN;LINE
LINE TG 21
LINE

LINE TO 4

LINE TO CMDLIN

C~09

DATEIN

ONLI

'BYEI
BYEE

AFAIL

CMATCH
GOTO
DISPLAY
GOTO
DISPLAY
GOTO

READ
RESET
LENSET
RESET
MOVE
DISPLAY
GOTO

CLOCK
DISPLAY
KEYIN
RESET
ADD
MOVE
SUB
APPEND
RESET
TRAP
CHAIN
GOTO

CMDLIN TO " ®

DATEIN IF EQUAL

#+,"THE DATE AT LOG IN WAS ",CMDLIN;
CATRY4

n#%% DATE NOT INITIALZIED %&#n,
CATR&

1,PORTN;LINE

LINE TO 29

LINE

LINE TO 22

LINE TO CMDLIN

#+,"THE TIME AT LOG IN WAS ",CMDLIN;
CATRY

TIME TO LINE
#+,"LOGGED OFF AT ",LINE
CMDLIN

ANSWER TO 6

ONE TO PORTN
PORTN TO CMDLIN
ONE FROM PORTN
CMDLIN TO ANSWER
ANSWER

AFAIL IF CFAIL
ANSWER

BYEE

C-10

