
DATASrit' .. R 2.1

JANUARY 4, 1973

~/ A ~ t/ ~ -'- v/',If1 # J1""~

Jb'£ /- I L-~ 1ft -;;/7 r

Program
•

sers UI

COPYRIGHT ;(.) 1973 BY DATAPOINT CORPORATION

DATAPOINT CORPORATION

December 1973

DATASHARE USER'S GUIDE

Release 2

TABLE OF CONTENTS

1. INTRODUCTION

2. STATEMENTS

3. DATA DEFINITION
3.1 Variable definition
3.2 Numeric string variables
3.3 Character string variables
3.4 Common Data Areas

4. PROGRAM CONTROL INSTRUCTIONS
4.1 GO TO
4.2 BRANCH
4.3 CALL
4.4 RETURN
4.5 STOP
4.6 CHAIN
4.7 TRAP
4.8 TRAPCLR
4.9 ROLLOUT

5. CHARACTER STRING HANDLING INSTRUCTIONS
5.1 MOVE
5.2 APPEND
5.3 MATCH
5.4 CMOVE
5.5 CMATCH
5.6 BUMP
5.7 RESET
5.8 ENDSET
5.9 LENSET
5.10 CLEAR
5.11 EXTEND
5.12 LOAD
5.13 STORE
5.14 CLOCK
5.15 TYPE

6. ARITHMETIC INSTRUCTIONS
6.1 ADD
6.2 SUB
6.3 MULT
6.4 DIV
6.5 HOVE
6.6 COMPARE
6.1 LOAD
6.8 STORE

PAGE

1

3

5
6
6
7

8
8
9
9
9

10
10
11
12

14
15
16
17
17
17
18
18
19
19
19
19
19
20
21

23
23
23
23
23
24
24
24

1. INPUT/OUTPUT INSTRUCTIONS
7.1 KEYIN 25
7.2 DISPLAY 28
7.3 CONSOLE 28
1.4 BEEP 29
1.5 PRINT 29
1.6 RELEASE 29
1.7 PREPARE 29
1.8 OPEN 31
7.9 CLOSE 31
7.10 Disk Input/Output (WRITE, WRIT!B, and READ) 32

8. PROGRAM GENERATION
8.1 Preparing Source Files 41
8.2 Compiling Source Files 41
8.3 Compilation Diagnostics 45

9. SYSTEM GENERATION
9.1 Loading From Cassette 46
9.2 Port Configuration 46
9.3 Necessary Programs 47

10. SYSTEM OPERATION
10.1 Bringing Up the System 48
10.2 Taking Down the System 49
10.3 Fatal Error Conditions 50

11. ANSWER AND MASTER CONCEPTS
11.1 System Security 51
11.2 System Convenience 51
11.3 Sample Answer and Master Programs 52

12. PHYSICAL SYSTEM CHARACTERISTICS
12.1 Virtual Memory 55
12.2 Major Modules 57
12.3 Scheduling 60

13. PHYSICAL INSTALLATION
13.1 Main Peripherals 63
13.2 Terminal Connections 64
13.3 Port Speed Selection 67
13.4 Non-3360-102 Terminal Device 68

APPENDICES
A. Instruction summary
B. I/O List Controls
C. Program Examples

1. INTRODUCTION

DATASHARE permits the simultaneous exeoution of up to
eight DATABUS programs, each dealing wi th its own remote
Datapoint CRT terminal. The DATASHARE interpreter runs
under the Disk Operating System' (taking advantage of all of
its file handling characteristics), handles a high-speed
line printer, and allows intra-file access, thus providing a
powerful data entry and processing facility. This
configuration allows a flexible mix of remote, batch, and
interactive processing all under the control of a high level
language program, enabling the user to configure the system
to best suit his data prooessing needs.

In addition, the DOS with its variety of assembly and
DATABUS language systems may be used alternately to
DATASHARE, enabling prooessing of tasks not applicable to
the multiple terminal oonfiguraton.

USing virtual memory teohniques, DATASHARE provides
each program with a 16K byte area for executable statements.
This, in combination with the abili ty of the compiler to
accommodate over 700 labels, enables the user to create and
use programs of over one hundred pages (a very large high
level language program). To provide rapid program
execution, the data area for each program 1's maintained in
main memory and not swapped. A combined total of 4096 bytes
of main memory is allocated for the use of all ports
configured into the system. The system may be configured to
run with one through eight ports with the data area being
divided evenly among them. Thus, an eight port system
provides 512 bytes of data area for eaoh program, while a
six port system provides 682 and a two port system provides
2048 bytes of data area for each program.

Any of, the Datapoint 2200 printer· systems may be
connected to the DATASHARE configuration with printing being
oontrolled from any of the ports. If the printer is busy
wi th one port, another port trying to access the, printer
will wait until the first port releases the printer.

All program execution in DATASHARE oocurs 1n the
DATABUS language. Terminal oommand interpretation is
handled in special ANSWER and MASTER programs (unique for
each port) which also handle system security. These
programs are provided with the system but may be oompiled
like any other Databus program, enabling the user to
completely define his own terminal command system.

Program generation is performed under the DOS using the
general purpose editor and DATASHARE compiler.

1

NOTE: This release of DATASHARE has the following new
features which may cause compatibility problems for programs
written for the first version of DATASHARE. Refer to the
sections indioated for detailed explanations of the
features. The pound sign (I) is interpreted by the compiler
as a forcing character (Section 2). The OPEN and PREPARE
instructions now allow the programmer to specify a drive
number (Sections 7.8 and 7.9). The numeric READ no longer
uses the MOVE mechanism to reformat the data read in
(Section 7.10).

2

2. STATEMENTS

There are three basic types of statements in DATASHARE:
comment, data defini tion J and program execution. Comment

1:lnes begin with a period and may occur anywhere In the
program. Comments are most useful in explaining program
logic and subroutine function and parameterization to enable
someone reading through the program to understand it more
easily. Data defini tion statements must occur before any
program execution statements and are used for setting up ail
the variables in ene program. All data definition
statements must have unique labels. Program execution
statements must appear after any data definition statements
and mayor may not have labels. The labels on program
execution statements may be the same as labels on the data
definition statements. Program execution always begins with
the first executable statement. The following are some
examples of DATASHARE statements.

ONE
COUNTl
COUNT2
PROD

START
LOOP

FORM tt 1"
FORM "0"
FORM "0"
FORM 2

DISPLAY *ES,"HULTIPLICATION TABLE:",·N
MOVE COUNTl TO PROD
HULT COUNT2 BY PROD
DISPLAY tOUNT1,"X",COUNT2,":-,PROD," ";
ADD ONE TO COUNT2
GOTO LOOP IF NOT OVER
DISPLAY *N
ADD ONE TO COUNT1
GOTO LOOP IF NOT OVER
STOP

Labels for variables and executable statements can
consist of any combination of up to six letters and digits
beginning with a letter. The following are examples of
valid labels:

A
ABC
A1BC
81234
ABCDEF

The following are examples of invalid labels:

HI,JK
4DOGS

(contains an invalid character)
(does not begin with a letter)

Statements other than comments oonsist of a label
field, an operation field, an operand field, and a comment

3

field. The label field is considered emtpy if a space
appears in the first column. The operation field denotes
the operation to be performed on the following operands. In
many operations, two operands a"re required in the operand
field. These operands may. be oonnected either by an
appropriate preposi tion (BY, TO, OF, FROM, or INTO) or a
comma. One or more spaces should follow eaoh element in a
statement exoept where a comma is used, in which oase it
must . be the terminating character of the previous element
and may be followed by any number (inoluding zero) of
spaces. For example, the following are all examples of
valid statements:

LABELl
LABEL2
LABEL3
LABEL4

ADD ONE TO TOTAL
ADD ONE OF TOTAL
ADD ONE, TOTAL
ADD ONE,TOTAL

THIS IS A COMMENT

Note that any preposition may be used even if it does
not make sense in English. The following are examples of
invalid statements:

LABELl ADD ONE TOTAL
LABEL2 ADD ONE ,TOTAL

(missing conneotive)
(spaoe before comma)

Certain DATASHARE statements allow a list of items to
follow the operation field. In many cases, this list can be
longer than a single line, in which case the line must be
continued. This is accomplished by replaoing the comma that
would normally appear in the list with a colon and
continuing the list on the following line. For example, the
two statements:

DISPLAY A,B,C,D:
E,F,G

DISPLAY A,B,C,D,E,F,G

will perform 'the same function.

The pound sign (I) is interpreted by the compiler as a
forcing character. It may appear in any part of the
DATASHARE statement.. The character immediately following
the pound sign is taken 'as is' regardless of what it is.
Thus, the pound sign itself and the quote (") may be used in
DATASHARE statements. For example,

DISPLAY "CUSTOMER" SHOULD BE 1"22221""

would display exactly. CUSTOMERI SHOULD BE II 2222", on the
screen. Programs written for the first release of DATASHARE
will have to be modified if they use pound signs and are to
be compiled by the new ~ompiler.

3. DATA DEFINITION

There are two types of data used within the DATASHARE
language'. They are numeric strings and character strings.
The arithmetic operations are performed on numeric strings
and string operations are perfqrmed on character strings.
There are also operat1Qns allowing movement of numeric
strings into character strings and vice versa. Numeric
strings have the following memory format:

I. 0200 0203

'The leading character (0200) is used as an indicator that
the string is numeric. The trailing character (0203) is
used to indicate the location of the end of the string
(ETX). Note that the format of a numeric string is set at
definition time and does not change throughout the execution
of the program. When a move into a number oc.curs from a
string or differently formatted number, reformatting will
occur to cause the information to assume the format of the
destination number (decimal point pOSition and the number of
digits before and after the decimal point) with truncation
occurring if necessary (rounding occurs if truncation is to
the right of the decimal point). Character strings. have the
following memory format:

9 5 THE QUICK BROWN 0203

The first character 1s called the logical length and points
to the last character currently being used in the string (K
in the above example). The second character is called the
formpointer and points to a character currently being used
in the string (Q in the above example). The use of the
logical length and formpointer in character strings will be
explained in more detail in the explanations of each
character string handling instruction. Basic~lly, however,
these pointers are the mechanism via which the programmer
deals with individual characters within the string.

The term physical length will be used to mean the
number of possible data characte~s in a string (15 in the,
above example). The logical and physical lengths of string
variables is limited to 127.

3.1 Variable definition

Whenever a data variable is to be used in a program, it
must be defined at the beginning by using either the FORM,

5

INIT, or DIM instructions. These instructions reserve the
memory space described above for the data variable whose
name is given in the label field. Note that all variables
must be defined before the first executable statement is
given in the program and that once an executable statement
is given, no more variables may be defined. Numeric strings
are created with the FORM instruction while character
strings are created with the INIT or DIM instruction.

3.2 Numeric string variables

Numeric variables are defined in one of two ways with
the FORM instruotion as shown in the following illustration:

EHRATE FORM 4.2
XAMT FORM" 382.4 "

In this example, EMRATE has been defined as a string of
decimal digi ts which can cover the range from· 9999.99 to
-999.99. The FORM instruction illustrated reserves spaces
in memory for a number with four places to the left of a
decimal point and two places to the right of a decimal point
and ini tializes the value to zero. When the number is
negative, one of the places to the left of the deoimal point
is used by the minus sign. XAMT, in the example, is defined
with four places to the left of the decilllalpoint and three
to the right but with an initial decimal value of 382.400.
The physical length of a numeric variable is limited to 22
characters (decimal point and sign included).

3.3 Character string variables

Character strings are defined with either a DIM or INIT
instruction. DIH reserves a space in memory for the given
number of characters but sets the logical length and
formpointer to zero and initializes all the characters to
spaces. For example:

STRING DIM 25

A character string oan also be defined with some initial
value by using the INIT instruction. For example:

TITLE INIT "PAYROLL PROGRAM"

in1 tializes the string TITLE to the characters shown and
gives it a logical length of 15. The formpointer is set to
one. Note that in the case of strings, the actual amount of
memory space reserved is three bytes greater than the number
specified in the DIH or quoted 1n the IN!T instruction
(TITLE occupies 18 bytes in memory, 15 of which hold
characters).

6

Octal control oharaoters (000 to 037) may be included
when initializing a string. The control charaoter is
separated by commas, w1 thout quotes, and is preceded by a
zero. For example,

TITLE INIT "PAYROLL PROGRAM",015,"TEST1"

would initialize a string with a logical and physical length
of 21 oharacters. The octal control character, 015, would
appear after the H in PROGRAM and befo're the first T in
TEST1. This feature 1s included mainly for message
switohing applications and for allowing control of ASR
Teletype oompatible terminals. It is the responsibility of
the programmer to remember that some of these oharacters
(000, 003, 011, and 015) are used for control purposes in
disk files.

3.4 Common data areas

Since DATASHARE has the provision to chain programs so
that one program can cause another to be loaded and run, it
is desirable to be able to carry common data variables from
one program to the next. The prooedure for doing this is as
follows:

a. Identi fy those variables to be used in successi ve
programs and in each program define them in exactly
the same order and way and preferably at the
beginning of each program. The point in this is to
cause eaoh common variable to occupy the same
locations in each program. Strange results in
program execution usually occur if a common
variable is misaligned with respeot to the variable
in the previous program.

b. For the first program to use the varia~les, define
them in the normal way.

c. For all succeeding programs place an asterisk in
each FORM, DIM, or INIT statement, as illustrated
below, to prevent those variables from being
initialized when the program is loaded into memory.

Examples:

MIKE FORM .4.2
JOE DIM .20
BOB INIT -"THIS STRING WONT BE LOADED"

7

4. PROGRAM CONTROL INSTRUCTIONS

DATASHARE normally executes statements in a sequential
fashion. The program control instructions allow this flow
to be altered depending on the state of the condition flags.
There' are five cond1t1o'n flags in DATASHARE: OVER, LESS,
EQUAL, ZERO, and EOS. EQUAL and ZERO are two names for the
same flag. Only the numeric and character string
manipulating instructions al ter the states of these flags.
Reference should be made to the individual instruction
explanations for the meanings of the flags.

4.1 GOTO

The GOTO instruction transfers control to the program
statement indicated by the label following the instruction:

GOTO CALC

causes control to be transferred to tbe instruction labeled
CALC.

The GOTO instruction may be made conditional by
following the label by the preposi t ion IF and one of the
condition flag names. For example:

GOTO CALC IF OVER

will transfer control to the instruction labele4 CALC if an
overflow occurred in the last ari thmetic operation.
Otherwise, the instruction following the GOTO is executed.

The sense of the condition can be reversed by inserting
the word NOT before the condition flag name as follows:

GOTO CALC IF NOT OVER

meaning control is transferred only if the overflow did not
occur.

4.2 BRANCH

The BRANCH instruction transfers control to a statement
specified by an index. For example:

BRANCH N OF START,CALC,POINT

causes control to be transferred to the label in the label
list pointed to by the index N (i.e. START if N = 1, CALC if
N = 2, and POINT if N = 3). If N is negative, zero, or
larger than the number of labels in the list, control
continues with the following statement. The index is
truncated to no decimal places before it is used (1.7 = 1)~

8

The BRANCH instruction statement may be continued to
the next line by the use of a colon in place of one of the
variable delimiting commas. For example:

LABEL BRANCH N OF LOOP, START, READt, WRITE1:
WEOF1,STOP

4.3 CALL

The CALL instruction 1s very similar to the GO TO
instruction except that when a RETURN instruction is
encountered after a transfer, control is restored to the
next instruction following the CALL instruction. CALL
instructions may be nested up to 8 deep. That is, up to
eight CALL instructions may be executed before a RETURN
instruction is executed. Being able to call. subroutines
eliminates the need to repeat frequently used groups of
statements. Note, however, that in DATASHARE the space
allowed for a program is very large and that, due to the
virtual nature of this space, calling a subroutine is
considerably more time consuming than executing the code in
line it a page swap is invoked. Therefore, in many oases it
is much better to put some code 1n 11ne instead of making it
a subroutine, especially if the amount of code is quite
small (say, less than a dozen lines). This is a trade-off
which should be considered when one is dealing wi th code
that will be executed very often (for instance, code that is
executed every time a data item is entered). CALL
instructions may be made condl tional like the GOTO
instruction. For example:

CALL FORHAT
CALL XCOMP IF LESS

4.4 RETURN

The RETURN instruction is used to transfer oontrol to
the location indicated by the top address on the subroutine
call stack. This instruction has no operand field but may
be made conditional. For example:

RETURN
RETURN IF ZERO

JI.5 STOP

The STOP instruotion causes the program to terminate
and return to the MASTER program for that port. This
instruction has no operand field but may be made
conditional. For example:

STOP
STOP IF NOT EQUAL

9

4.6 CHAIN

The CHAIN instruction causes the program, whose DOS
name (with extension T5D) i8 in the specified string, to be
loaded and for control ,to be passed to its first executable
statement. Any characters atter the sixth will be ignored
and blanks will be appended if less than six characters are
in the variable. Note that the name used starts at the­
formpointer. So if in the following example, NXTPGH's
formpointer was 4, the chain command would try to load the
program named -ROL-:

NXTPGM INIT -PAYROL-.,

CHAIN NXTPGM

4.7 TRAP

TRAP is a unique instruction because, rather than
taking action at the time it is executed, it specifies the
location to which a transfer of control (via the CALL
mechanism) should occur if a specified event occurs during
later execution. For example:

TRAP EMSG IF PARITY

specifies that control should be transferred to EMSG if a
parity failure is encountered during a READ or WRITE
instruction. The control transfer is performed in a manner
similar to the CALL instruction. Therefore, in the above
example, if the parity error occurred during a disk READ
instruction, the effect would be to insert a CALL EMSG
instruction between the READ and the instruction immediately
following it.

If an event ocours and the trap corresponding to that
event has not been set, the message:

• ERROR • LLLLL X •

appears on the- line currently posi tioned to on the terminal
whose program caused the event. The LLLLL is the current
value of the program counter and the X is an error letter:

P - parity failure
R - record number out or range
F - reoord format error
C - chain failure
I - 1/0 error
B - illegal ope~ation code
U - call stack underflow

Note that the last two items shown above oannot be trapped.

The events that may be trapped are:

PARITY - disk' CRC error during READ
disk CRe error during write
(write/verify)

RANGE reoord nUllber ou tor range (offend or­
file, record read which was never
written, or WRITlS used on record which
was never written)

FORMAT - non-numerio data read into number (the
read stops at the list item 1n error so
the rest of the list. 1 tems will not be
changed)

CFAIL - the speoified program was not in the DOS
directory or a ROLLOUT was attempted with
one of ' the neceasary system files missing

10 - the file name supplied was null, a
PREPARE was executed using a file that
was delete or write protected if it
ex1sted, an OPEN was exeouted that oould
not find the specified tile name, a disk
operation was executed using a file that
was not open, the drive accessed was otf

. line, space needing to be allocated was
not available on the drive acoessed, or
the number ot data charaoters specified
in a WRITAS statement waa less than zero
or greater than 249.

Note that the trap looations are cleared whenever a CHAIN
oocurs. Therefore, each program must initialize all of the
trap~ it wishes to use. Also, whenever a certain event is
trapped. the trap location for tha~ event is cleared, which
implies that, if the event is to be trapped again tits
location must be reset by the trap routine.

4.8 TRAPCLR

This instruction will olear the speoified trap. For
example:

TRAPCLR PARITY

will clear the parity trap previously set.

11

4.9 ROLLOUT

The ROLLOUT feature allows execution of all ports
currently on the DATASHARE system to be temporarily
suspended while certain' funotions are performed under DOS.

When a ROLLOUT occurs, the program ROLLOUT/SYS will be run
which writes system status and memory in a file oalled
ROLLFILE/SYS. A beep 1s sounded at the console to alert the -
operator when a ROLLOUT is initiated. Clicks are sounded as
ROLLFILE/SYS is created and another beep occurs when the
file creation is completed. The DOS is then brought up at
the oonsole by the loading of programs SYSTEMO/SYS and
INTRHAND/SYS. It then supplies the characters in the string
specified by the Databus ROLLOUT instruction as if they were
keyed in from the console (this will usually call the CHAIN
program) . When the DOS funotions are completed, the DOS
file DSBACK/CHD may be executed to' restore the DATASHARE
system to its previous status (this is usually the last
program specified in the CHAIN file). DSBACK/CMD
re-ini tializes the soreen and then loads the ROLLFILE/SYS
objeot file. This returns all ports to their previous point
of execution when the ROLLOUT occurred.

ROLLOUT/SYS, ROLLFILE/SYS, and INTRHAND/SYS are all
provided on the DATASHARE interpreter system generation
tape. A CFAIL trap will occur if ROLLOUT/SYS does not exist
on disk, if ROLLFILE/SYS does not exist or is not big enough
(must be at least 61 sectors), or if INTRHAND/SYS and
SISTEMO/SYS do not exist.

ROLLOUT may be ini tiated by a DATASHARE program wi th
the following instruotion,

ROLLOUT (svar)

The string variable specifies what function 1s initially to
be executed under DOS. It should be a command line
acceptable to the DOS command handler. A CFAIL trap will
occur if the string variable is null. For example, the
string could be,

CHAIN DSCFILE

When DOS is brought up by the ROLLOUT, the first thing to
occur would be a chain to DSCFILE. The commands found 1n
DSCFILE would then be exeouted (see user's guIde on the DOS
CHAIN command). DSCFILE could oonsist of these simple
commands,

SORT AFILE,BFILE
SORT CFIL,E, DFILE
DSBACK

2

By using the CHAIN oommand t several DOS funotions may be
performed and the system automatically res~ored wi th the
DSBACK command. If DSBACK is not included in the chain
file, if the CHAIN aborted for some reason, if DOS was
booted during the chain,' or if the string specified in the
ROLLOUT consisted of a OOS function other than CHAIN, the
DATASHARE system will have to be restored by the operator
keying in DSBACK at the console.

A DATASHARE program could be written to request from
the port the DOS function he wishes to execute and then do a
ROLLOUT to that function. A program also could be written
to allow a port to create various cbain files that might be
needed.

The ROLLOUT feature is particularly useful when a file
needs to be sorted with the DOS SORT command. However,
ROLLOUT may be very inconvenient to the users at other ports
since execution of their programs will be suspended for at
least ~O seconds. Note that the usera at the other ports,
unless informed of the fact, will not know what is happening
when a ROLLOUT occurs. Since their terminals appear
inactive, they may think the system has gone down for some
other reason. Thus, consideration of other system users
should be kept in mind when a ROLLOUT is used. Also, note
that the time clock will be put behind how.ever long the
DATASHARE system is not executing.

13

..

5. CHARACTER STRING HANDLING INSTRUCTIONS

Each string instruction, except LOAD and STORE,
requires ei ther one or two character string variable names
following the instruction. (Note that the HOVE instruction
Is capable of moving st~ings to numbers, numbers to strings,
and numbers to nu.bers, as well as moving strings to
strings. See the following section and section 6.5 for the
entire description of the MOVE instruction.) In the
following sections, the first variable will be referred to
as the source string and the second variable w1ll be
referred to as the destination string.

5. 1 HOVE

HOVE transfers the oontents of the source string into
the destination string. Transfer from the source string
starts wi th the character under the formpointer and
continues through the logical length of the source string~
Transfer into the destination' string starts at the first
physical character and when transfer is complete, the
formpointer is set to one and the logical length points to
the last character moved. The EOS flag 1s set if the ETX in
the destination string would have been overstored and
transfer stopa with the character that would have overstored
the ETX.

The MOVE instruction oan also move oharaoter strings to
numeric strings and vice versa. (The movement of numeric
strings to numeric strings is covered in section 6.5.) A
character string will be moved to a numeric string only if
the character string is of valid numeric format (only
digits, spaces, a leading minus sign, and one decimal point
allowed). Otherwise, the numeric string is set to zero.
Note that only the part of the charaoter string starting
with the formpointer is oonsidered in the validity check and
transferred if the string is of valid numeric format. The
number in the character string will be reformatted to
conform to the format of the numeric string. Rounding
occurs if the number in the character string is too large to
fit into the format of the numeric string (see section 6 for
rounding rules followed). The TYPE instruction (see section
5. 14) is available to allow checking the character string
for valid numeric format before using the MOVE instruction.
When a numeric string is moved to a oharacter string, all
characters of the numeric item (unless the ETX would be
overstored) are transferred starting with the first physical
character in the destination string. The formpointer of the
destination string is set to one and the logioal length is
set to point to the la,at cl;laraoter' t,r,";:nsfe:r:'lsd

In the follcH,ing e,~amples t the logioal
f{)r~mpo1 tar f an :::lont.iS'nt erf each ,"ar able is s

length,
Defer's

the statement is executed, the statement is shown and the
contents of the variable that is changed by the execution of
that statement 1s shown:

STRNG1

STRNG2

4 2

6 3

ABCDXLM

DOGCAT

MOVE STRNG1 TO STRNG2

STRNG2

STRNG1

NUMBER

3 1

9 3

0200

BeDCAT

AB100.327

A39.00

MOVE STRNG1 TO NUMBER

NUMBER

NUMBER

STRNGl

0200

0200

9 3

100.33

100.33

A8100.327

HOVE NUMBER TO STRNG1

STRNG1 6 1 100.33327

5.2 APPEND

ETX

ETX

ETX

ETX

ETX

ETX

ETX

ETX

ETX

APPEND appends the souroe string to the destination
string. The characters appended are those from under the
formpointer through under the logioal length pointer of the
source string. The oharacters are appended to the
destination string starting after-the-foTmPointed-character
in the destination string. The source string pointers remain
unchanged, but the destination string pointers both point to
the last char~cter transferred. The EOS condition will be
set if the new string will not fi t physioally into the
destination string, but all characters that will fit will be
transferred.

The following example shows two strings before the
operation, the operation, and the result in the second
string after the operation:

15

STRNG' 8 6 JOHN"" DOE ETX

STRNG2 11 11 ETX.

APPEND STRNGl TO STRNG2

STRNG2 14 ljJ Jt;TX

5.3 MATCH

HATCH compares two oharacter strings starting at the
formpointer of each and stopping when the end of either
string is reached. If either formpointer is zero, the HATCH
operation will result 1n only clearing the LESS and EQUAL
flags and setting the EOS flag. Otherwise, the "length" of
eaoh string is calculated to be LENGTH-FORHPOINTER+1 and the
LESS flag is set if the destination string length is less
than that of the souroe string. The two strings are then
compared on a oharacter-for-character basis .for the number
of characters equal to the lesser of the two lengths. If
all the characters match, the EQUAL flag is set. Otherwise,
the LESS flag's meaning 1s ohanged to indicate whether the
numeric value of the destination charaoter is less than the
numeric value of the s.ource character (LESS flag set) or
vice versa (LESS flag reset for the first pair of
characters that do not matoh. Some exa~plel and eir
results follo'~:

SQURC~

,ABCDE
ABC
ZZZ
ABC
ABeD

ABeD
z
AA.A
ABC
ABCDE

Examoles:

t-tA,'TCH A TO B
MATCH STR '! J ST;12

EQUAL,LESS
NOT E:QUAL,NOl'
LESS t NO! F:QlJAL
EQUAL j NO ~;~ LESS
EC!;J.AL 1 NOT LBSS

5.4 CMOVE

CHOVE moves a oharactt:lt" from the source operand to
under the formpointer in the destination string. The
character from the source operand lI1ay be a quoted
alphanumeric, the character from under the formpo1nter of a
string variable, or an octal control character (000 to 031).
If either operand has a formpointer of zero, an EOS -
condition and no transfer occurs.

Examples:

CHOVE XDATA TO IDATA
CMOVE "A" TO CAT
CHOVE X,Y
CMOVE 015,Y

5.5 CMATCH

CHATCH oompares two charaoters, one taken from eaoh of
the souroe and destination operands. The oharacters may be
quoted alphanumerics, from under the formpointer of a string
variable, or octal control characters (OOO to 037). An EOS
condition occurs if either formpointer 1s zero, and no other
condi tiona are set. Otherwise, the EQUAL and LESS
conditions are set appropriately. The LESS condition is set
if the destination string character is less than the source
string character.

5.6 BUMP

Examples:

CHATCH XDATA TO YDATA
CHATCH "''',DOO
CHATCH CAT TO "B"
CHATCH 015,DOO

BUMP increments or decrements the forllpointer if the
result will be within the string (between 1 and the logical
le~gth). If no parame~er fs supplied, BUMP increments the
formpointer by ,one. However, a positive or negative literal
value may be supplied to cause the formpointer to be moved
in either direction by any amount. The EOS flag will be set
and no change in the formpointer occurs if it would be less
than one or greater than the logical length after the
movement had occurred.

Examples:

BUMP CAT
BUMP CAT BY 2
BUMP CAT,-l

5.1 RESET

RESET changes the value of the formpointer of the
sou roe string to the value indicated by the seoond operand.
If no seoond operand is given, the formpointer will be reset
to one. The second operand may be a quoted oharacter, in
which case the ASCII value minus 32 (space gives zero, I
one, n two, etc) will be used for the value of the
formpointer of the source string. The second operand may
also be a character string t in which case the ASCII value
minus 32 of the character under the formpointer of that
string will be used for the value of the formpolnter of the

'source string. The second operand may also be a numeric
string, in which case the value of the number will be used
for the formpointer of the source string.

RESET also has the capability of extending the logical
length of the first operand. If the formpointer value
specified is past the logical length of the first operand,
the logical length will be extended until it will
accommodate the formpointer value. If this would cause the
logical length to be past the physical end of the string,
the logical length and formponter will both be left pointing
to the last physical oharaoter in the string. This feature
is useful in extracting and inserting information within a
large string. The EOS condition will be set if a change in
the logical length of the first operand occurs.

Examples:

RESET XDATA TO 5
RESET Y
RESET Z TO NUMBER
RESET Z TO STRING

Note that the RESET instruction is very useful in code
conversions and hashing of char'acter string values as well
as large string manipulation.

5.8 ENDSET

ENDSET causes the operand's formpointer to point where
its logical length points.

Example:

ENDSET PNAME

8

5.9 LEN SET

LENSET causes the operand" s logioal length to point
where its formpointer points.

Example:

LENSET QNAME

5.10 CLEAR

CLEAR causes the
formpointer to be zero.
changed.

operand's logical length and
None of the data characters are

Example:

CLEAR HBUFF

5.11 EXTEND

EXTEND increments the formpointer, stores a space in
the position under the new formpointer, and sets the logical
length to point where the new formpointer points if the new
logical length would not paint to the ETX at the end of the
charaoter string. Otherwise, the EOS flag is set and no
other action is taken.

Example:

EXTEND BUFF

5.12 LOAD

LOAD performs a MOVE from the. character string pointed
to by the index numeric string, given as the seoond operand,
to the first oharacter string specified. The instruotion
has no effect if the index is negat! ve, zero t or greater
than the number of items" in the list. Note that the index
is truncated to no decimal places before 1 t 1s used (e. g.
1.7 = 1).

Example:

LOAD "AVAR FROM N OF NAHE,TITLE,HEDING

5.13 STORE

STORE performs a HOVE from the first character stri .. ,g
specified to a character string 1n a list specified by an
index numeric variable gi ven as the second operand. The
instruction has no effect if the index is negative, zero, or
greater than the number of items in the list. Note that the

19

index is truncated to no decimal places before it is used
(e.g. 1.7 = 1).

Example:

STORE Y INTO NUH OF ITEM,ENTRY,ALINK

The LOAD and STORE instructions may be continued to the
next line by the use of a colon:

Examples:

LABEL

NEXT

5.14 CLOCK

LOAD SYMBOL FROM N OF VAR,CONST,DEC:
COUNT,FLAG,LIST

STORE NAME INTO NUM OF A,B,C,D,E,F,G:
H,I,J,K,L,M

CLOCK enables the programmer to access the DATASHARE
system time clock, day, and year information. This
information is initialized by the operator when DATASHARE is
acti vated and then kept current by a foreground program
driven by the one millisecond interrupt clock. This
interrupt is accurate to approximately 0.005 percent or four
seoonds per day. There are three variables that the CLOCK
instruction can access. -These are gi ven tbe names TIME,
DAY, and YEAR. All are character strings with TIME being in
the format:

12:34:56

and ranging from 00:00:00 to 23:59:59, DAY being in the
format:

123

and ranging from 001 to 365 (except to 366 on leap years),
and YEAR being in the format:

12

and ranging from 00 to 99, being the last two digits of the
year. Note that when the TIME goes from 23:59:59 to
00:00:00, the day is not incremented. This implies that, if
the DATASHARE system is running 24 hours a day and is using
the date, it will have to be taken down at midnight to reset
the clock. The CLOCK instruction performs a character
string to character string move with the special variable in
the source and the character string to receive the
information in the destination operand specification. Note
that the user#s program may have variables called TIME, DAY,
and YEAR.

20

For example:

CLOCK TIME TO TIME
CLOCK DAY TO DAY
CLOCK YEAR TO YEAR

would move the information in the system variables into user
defined variables called TIME, DAY, and YEAR also.

The system brings itself up automatically one minute
after it is started if an operator does not attend the
system console. In this case, all CLOCK items are
initialized to zero. Therefore, one can determine that the
CLOCK items were not initialized by examining the DAY string
and checking for a value of 000.

5.15 TYPE

TYPE sets the EQUAL condition if the string is of valid
numeric format (only leading minus, one decimal point, and
digits or spaces).

6. ARITHMETIC INSTRUCTIONS

All of the arithmetio instructions have certain
characteristics in common. Except for LOAD and STORE, each
arithmetic - instruction, is always followed by two numeric
string variable names. The contents of the first variable
is never modified and, except in the COMPARE instruction,
the contents of the second variable is always the result of .
the operation. For example, in:

ADD XAMT TO YAMT

the content of XAMT is not changed t but YAMT contains the
sum of XAMT and YAMT after the instruction is executed.

Following each arithmetic instructioD. the condition
flags OVER, LESS, and ZERO (or EQUAL) are set to indicate
the results of the operation. OVER indicates that the
resul t of an operation is too large to fit 1n the space
allocated for the variable (a result is still given with
truncation at the left and rounding at the right, however).
LESS indicates that the content of the second variable 1s
negative following the execution of the instruction (or
would have been in the case of COMPARE). ZERO (or EQUAL)
indicates that the value of the second variable is zero
following the execution of the instruction.

Whenever overflow occurs, the higher valued digits that
do not fit the variable are lost. For example, if a
variable is defined:

NBR42 FORM 2.2

and a result of 4234.67 is generated for that variable,
NBR42 will contain only 34.67

Whenever an operation produces lower order digits than
a variable was defined for', the resul t is rounded up. A
variable with the FORM 3.1 would contain:

46.2
812 .. 5

3.7
3.9

632.0

for 46.213
fr>r 812.483
for 3.666
for 3.850
for 4632

Note that if an OVER o::curs during an ADD, SUB, or
COMPARE of two strings ~)r di fferen·, physical lengths, the
result and the LESS condltic~ flag ~ay not be correct.

" ,.t.,

6.1 ADD

ADD causes the content of variable one to be added to
the oontent of variable two:

6.2 SUB

Examples:

ADD X TO Y
ADD DOG,CAT

SUB causes the content of variable one to be subtracted
from the content of variable two.

6.3 MULT

Examples: ,
SUB RX350 FROM TOTAL
SUB Z,TOTAL

MULT causes the content of variable two to be
multiplied by the content of variable one.

6.4 DIY

Examples:

MULT B BY A
MULT W,Z

DIY oauses the oontent ot variable two to be divided by
the oontent of variable one. The number of decimal places
in the result is equal to the number of decimal plaoes in
variable two minus the number of deoimal places in variable
one. If this number is negattve, it is assumed to be zero.

6.5 MOVE

Examples:

DIY SFACT INTO XRSLT
DIV X3,HOURS

HOYE causes the content of variable one to replace the
content of variable two.

Examples:

HOVE FIRST TO SECOND
MOVE A,B

23

6.6 COMPARE

COMPARE does not change the content of either variable
but sets the condition flags exactly as if a SUB instruction
has occurred.

6.7 LOAD

Examples:

COMPARE XFRM TO IFRM
COMPARE T1M£1,TIH£2

The LOAD instruction selects the numeric string
variable out of a list based on a numeric index variable.
It then performs a MOVE operation from the contents of the
selected variable into the first operand. If the index is
negative, zero, or greater than the number of items in the
list, then the instruction has no effect. Note that the
index is rounded to no decimal places before it is used
(e.g. 0.1 = 0).

Example:

LOAD CAT FROM N OF CAT,MULT,SPACE

6.8 STORE

The STORE instruction seleots a numeric string variable
from a list based on the value ot a numeric index variable.
It then performs a MOVE operation from the contents of the
first operand into the selected variable. If the index 1s
negative, zero, or greater than the number of items 1n the
list, the instruction has no eftect. Note that the index is
rounded to no decimal places before it is used (e.g. 0.1 =
0).

Example:

STORE X INTO NUH OF VAL,SUB,TOT

The LOAD and STORE instruction statem~nts may be
continued to the next line by the use of a colon.

Examples:

LABEL

ENTRY

LOAD NUMBER FROM N OF N1,N2,N3,N4,N5:
N6,N6,N8,N9

STORE COUNT INTO HUM OF Tl,RATE,DIST:
SPD. COST, TOT, SU.M

24

7. INPUT/OUTPUT INSTRUCTIONS

The DATASHARE statements that actually move data
between the program variables and the terminal, printer, or
disk, all allow a list of variables to follow the operation
mnemonic. This list .ay be continued on more than one line
with the use of a colon. Continuation 1s encouraged over
repeating the operation on sequential lines because of the
resulting increase in execution speed. The reason for this
is that DATASHARE performs all terminal and printer I/O with
interrupt driven routines which execute the entire I/O
statement before having to return control to the background
program. The interrupt driven routine executes entirely out
of main memory while the background usually involves some
page swapping due to the virtual nature of its program
storage. If several 1/0 statements are given sequentially,
the background program ~ll have to be swapped in for each
statement. However, if 'the entire operation has been
performed with one 1/0 statement, background swapping would
not have occurred until· the operation was complete. This
increases execution speed greatly.

The 1/0 list may contain some special. control
information besides the names of the variables to be dealt
with. It may also include octal control characters (000 to
037). DATASHARE has no formatting information in its input
and output operations other than the list controls and that
implied by the format of the variables. The number of
characters transferred is always equal to the ·number of
characters physically allocated for the string (except ·in
some special. cases) allowing the programmer to set up his
formatting by the way he dimensions his data variables.

7.1 KEYIN

KEIIN causes data to be entered into either character
or numeric strings from the keyboard. A single KEYIN
instruction can contain many variable names and list control
items. When characters are being accepted from the
keyboard, the flashing cursor is on. At all other times the
cursor is off.

When a numeric variable is encountered in a KEYIN
statement, only an item of a format acceptable to the
variable (not too many digi ts to the left or right of the
decimal point and no more than one sign or decimal point) is
accepted. If a character is struck that 1s not acceptable
to the format of the numeric variable, the character is
ignored and a bell character is returned (causing a beep on
a Datapoint CRT terminal). Note that if fewer than the
allowable number of digi ts to the left or right of the
decimal point are entered, the number entered will be
reformatted to match the format of the variable being stored

25

into. When the ENTER key is struck, the next item in the
instruction list is processed.

When a character string variable is encountered, the
system accepts any set ot ASCII characters up to the limit
of the physical length of the string. The formpointer ot
the string variable is set to one and characters are stored
consecutively starting at the physical beginning of the
string. When the ENTER key is struck, the logical length is
set to the last character entered and the next item in the
keyin list is processed.

Other than variable names, the KEYIN instruction may
contain quoted items, list controls, and octal control
characters (000 to 037). Quoted items are simply displayed
as they are shown in the statement. The list controls begin
with an asterisk and allow such functions as cursor
positioning and soreen erasure. The .P<n):(m) oontrol
positions the cursor to horizontal position <n> and vertical
position <m). Note that these numbers may either be
literals or numeric variables and both positions must always
be given in a .p command. The horizontal position is
restricted by the interpreter to be from 1 to 80 and the
vertical position is restricted to be from 1 to 24. Numbers
outside this range have the effective value of 1. The .ES
control posi tions the cursor to 1: 1 and era'ses the entire
screen, the *EF control erases the screen from the current
cursor pOSition, the -EL control erases the rest of the line
from the current cursor position, the -C control causes the
cursor to be set to the beginning of the current line, the
-L control causes the cursor to be set to the following line
in the current horizontal pOSition, and the -N control
causes the cursor to be set to the first column or the next
line.

The control characters in the KEYIN instruction are
output according to their ASCII meaning. They are only
useful for teletype, UNITERH, and message swi tching
applications and should not be sent to the Datapoint
3360-102.

Normally, the cursor is positioned to the start of the
next line at the termination of a KEIIN statement,. However,
placement of a semicolon af~:.er the last item 1n the list
will cause thiS positioning to be suppressed, allow1ng the
l1ne to be continued ~1th the next KEYIN or DISPLAY
statement. This feature is .~l!o true of the PRINT command.

Example:

KEY IN. tt;:3 , " '., " HE: 111 '. N A ME" • P 3 5: , t " A eN T N R: Jt:
ACfNR r " ~~~RESS: h j STREET,·P10:3:
CrTY,'PX" ~~ /~ i.It>: U ;ZIP;

KEYIN "ABC",021,NVAR

During a KEIIN, any unrecognizable characters (not in
the printing ASCII set) sent in from the terminal will be
ignored and a beep returned. Also, a mode called keyin
continuous is available (turned on with list control e+ and
turned off with list control *- or the end of the statement)
which causes the system to react as if an ENTER key had been
struck when the operator enters the last character that will
fit into a variable. This mode allows the system to react
in much the same way as a keypunch machine wi th a control

.' card.

While keying a giYen variable, the operator can strike
the BACKSPACE key (control H on teletype) and cause the last
character entered to be dele-ted. He may' also strike the
CANCEL key (control X on teletype) and cause all of the
characters entered for that variable to be deleted.

A circular input buffer allows the operator to send up
to seven characters from the keyboard before they are
requested by the system. Note that there is no feedback at
this level as the characters are fed back only as they are
taken from the buffer. This buffer allows the operator to
continuously enter data without having minor delays in the
response of the system break his stride.

A special case of KEIIH is the interrupt character, the
INT key on a Datapoint 3360-102 (control shift L on a
teletype machine). Normally, when the cursor is not
flashing, all oharacters will be ignored. The exception,
however, is the interrupt character, which may be keyed at
any time and will result 1n a CHAIN to the MASTER program.
Thus, the currently executing program will stop, the printer
(if being used by the terminal) will be RELEASED, and the
MASTER program will begin execution.

Another special case of KEYIN is the NEW LINE character
which is the NEW LINE key on the Datapoint 3360 (shift 0 on
the teletype). If this key is struck during a KEIIN
statement, the current variable is terminated as if the
ENTER key was struck and all subsequent variables in the
statement will be set to zero or their formpointers and
logical lengths set to zero depending on whether they are
numeric or string variables. Control will fall through to
the next DATASHARE statement.

The list control, *T, may be included in the KEYIN
statement causing a time out if more than two seconds elapse
between the entry of two characters. The time out has the
same results as if the NEW LINE key had been struck. This
function 1s useful for mess ... switohing applications.

27

1.2 DISPLAY

DISPLAY follows the same procedure as KEYIN except that
when a var1able name is encountered in the list following
the instruction, the .ariable's contents is displayed
instead of keyed in on the terminal. Character strings are
displayed starting with the first physical character and
continuing through the logical length. Spaces will be
displayed for any character positions that exist between the
logical length and physical end ot the string unless the ••
mode (keyin continuous in the KEYINlnstruction) is active,
in which case nothing is put out after the logical length.
Numeric strings are always displayed in total. Quoted
strings, list controls, and octal control characters may be
included in the display instruction and are handled in the
same manner as described for the KEIIN instruction.

Examples:

7.3 CONSOLE

DISPLAY .P5:1,-RATE: -,RATE:
.P5:2,"AMOUNT: ",AMNT

DISPLAY "ABC",021,Sl;

CONSOLE is similar to DISPLAY except the output is on
the system console (2200 display screen) instead of the
terminal. The output always is on the line assigned for the
terminal executing the CONSOLE instruction and therefore any
vertical positioning of the cursor 1s ignored. All other
DISPLAY list controls, except for the ·C, are operative. A
CONSOLE statement which begins without positioning will
start displaying at column five on the appropriate port line
at the console. If positioning is speoified, ·Px:y, y i8
ignored and x may be any number from 1 to 80. Thus, the
port number and asterisk appearing 1n oolumn 1 through _ on
the CONSOLE may be overwritten. If the horizontal position
is out of the allowed range, position one is assumed. If
the display flows over the 80 character limit, the extra
characters will not be displayed. If the CONSOLE statement
is not terminated by a semi-colon, the carriage return and
l1ne feed 1s ignored but two spaoes are put out after the
last character displayed. The CONSOLE instruction is useful
1n alerting the system operator (if suoh a person exists) to
some condition in the program. The 2200 screen also
displays at the left the state of the carrier detection
signal from each terminal and the name of the program to
which a CHAIN was last executed as well as the current time.

Example:

CONSOLE .P20~,,"OPE~ArOR ALERT"

7.4 BEEP

BEEP causes an ASCII bell character to be sent to the
terminal.

7.5 PRINT

DATASHARE supports one local p~inter. The printer may
be accessed on a sequential shared basis by ·any of the eight
terminals. If the printer is being used by another terminal
when the g1 ven terminal executes a PRINT statement, the
g1 ven terminal will be suspended until the printer becomes
available, or until t~e interrupt character is keyed.

The PRINT instruction causes the contents of variables
in the list to be printed in a fashion similar· to the way
DISPLAY causes the contents of variables to be displayed.
The list controls are much the same as DISPLAY exoept that
cursor positioning cannot be used, oolumn tabulation is
provided (.<n> causes tabulation to column <n> unless that
column has been passed) and .F causes an advance to the top
of the next forll. Octal control characters may also be·
included in the print instruction. The PRINT statement may
be continued on more than one line by the use of a colon.

Examples:

7.6 RELEASE

PRINT DATE,.20,"TRANSACTION SUMMARY",·C,.L:
PNAME,·N,·10,RATE,·20,HOURS,*30:
!MT,*L

PRINT "ASe"t02l,S1;

The RELEASE instruction ends a user's control of the
printer and causes the printer to advanoe to the top of the
next form. When RELEASE is executed by a user, another user
that has been waiting for the printer will gain its control.
When a user disconnects from the system or keys the
interrupt character, the printer is automatically released.

7.7 PREPARE .

PREPARE creates a new DOS file with the name given in
the string variable specified. The oharacters used Cor the
name start from under the formpointer of the specified
variable and continue until ei ther the logical end of the
string has been reached or eight charaoters have been
obtained. If the end of the string 1s reached before eight
characters are obtained, the rest of the characters are
assumed to be spaces. All data files used in DATASHARE are
of extension TXT. The character after the 8th 1n the name
variable or the character after the logical length if the

29

name is less than 8 characters is used as the drive number
for that file. If the character is not an ASCII 0, 1, 2, or
3 or no character physically exists past the name, no drive
specification is assumed and all drives starting with drive
zero are searched when looking for a name in the directory
or directories. Otherwise, only the drive specified is
searched. This is a new feature included in this version of
DATASHARE and may effect programs written for the previous
DATASHARE version. Programs should be checked to be sure
that their file name variables will not assign drive numbers
unintentionally when used under the new DATASHARE version.

If a file by the name given already exists (and is not
delete or write protected), it· is deleted and a new flle
created. If the file has any protection or the drive
specified is off line, an I/O error will occur. The logical
record number llmi t is always set to 9696 by the PREPARE
instruction.

One always deals with "logical files" in DATASHARE once
he has opened them with either the PREPARE or OPEN
instructions. A terminal may have up to three logical flIes
(numbered 1, 2, and 3) which are specifled by a logical file
number in all disk 1/0 instructions.

For example, let the following strings be defined as
follows:

FNAHE
GNAHE
HNAME

IN!T "SOURCE"
INIT "SCRATCHX1"
INIT "F1FILEOF1FILE1"

Let the formpointer of FNAHE be 1 and its logical length be
6, let the formpointer of GNAME be 1 and its logical length
be 9, and let the formpointer of HNAME be 8 and its logical
length be 13. If the following PRE?.A RE operations were
executed:

PREPARE 1,FNAhiE
PREPARE 2,GNAHE
PREPARE 3,HNAHE

the file SOURCE/TXT would be prepared as logical file 1 on
the first drive (beginning with drive D) on which spaoe was
available, the file SCRATCHX/TXT would be prepared as
logical file 2 ora dri va 1 (if 00 spaoewas available or ·the
drive was off line, an 1iO er'"c,r would occur), and the file
F1FILE/TXT would be prepare1 a~ lo~1oal file 3 on drive 1.

If the logical rile spec fi~d is already open (having
been specified In a previous PA~~PARE or OPEN instruction and
not since in a CLOSE 1nstruot1.on)· the old file will be
closed befQre the new ~ne Is dea t ~ith.

, f

7.8 OPEN

OPEN causes a DOS file already in existence to be
prepared for use by tho DATASHARE program. Except for the
fact that it deals only with files already in existence
(giving an 1/0 error if the name specified cannot be found
and not killing the file if it already exists), OPEN works
in a fashion similar to PREPARE.

For example,
performed:

if the following operations were

FILE1
FILE2

INIT wF1NAHEw
~NIT nDATAtILEf"

OPEN 3,FILE2
OPEN 2,FILEl

all drives beginning with drive 0 would be searohed tor file
F1NAME/TXT. Only drive 3 would be searched, for file
DATAFILE/TXT. An 1/0 error would occur if drive 3 were off
line.

If the user plans to deal with a very large file in a
random access fashion, he should run a program that writes a
dummy record into the largest record number he plans to use.
This will cause the DOS to allocate all records up through
the one accessed in as physically contiguous a manner as
possible, thus increasing the. speed with which the file may
be~randomly accessed. Note that the use of the DOS implies
that a file must be contained on one drive, therefore
limiting anyone file in DATASHARE to approximately 9000
records (the exact limit depends upon the amount of program
information kept on the particular disk).

7.9 CLOSE

CLOSE closes the specified logical file. This insures
that any newly allocated space that was not used in the file
will be returned to the DOS for allocation to another file.

Example:

CLOSE 3

31

7.10 DISK INPUT/OUTPUT

DATASHARE disk files may be random or sequential. A
random file would have a well defined correspondence between
logical and physical records with each physical record
containing up to 2~9 data characters:

(data)(015)(003)

A sequential file may have any number of logical records per
physical record with some logical records cros~ing physical
record boundaries. The following shows five logical records
contained within three physical records:

Physical record n:
Physical record n+1:
Physical record n+2:

(data)(015)(data)(015)(003)
(data)(015)(data)(015)(data)(003)
(data)(015)(003)

When accessing a file, a record number is always
specified. A random access is indicated by a record number
greater than or equal to zero corresponding to the physical
record desired. A sequential access is indioated by a
record number less than zero. The actual record number
specified for a sequential access has no significance. The
interpreter only looks to see if the variable is negative.
In the following discussions and examples, RN will denote a
positive record number and SEQ will denote a negative record
number (e.g. -1). '

When a read or wri te statement is exeouted, there are
two conditions to consider: the position in the file where
reading or writing begins and the position in the file where
reading or wrl ting stops. The differenoe in the possible
wri te and read statements is the dl fferenoe in these two
conditions. A write or read operation always begins at the
current position of the logioal f1le. The current pos1tion
of each logical file open is defined by two pointers: a
physical record pOinter and a charaoter pointer. The
physical record pointer refers to the ourrent physical
record of the logical file. This pointer corresponds to the
DOS logical r~cord number. The character pOinter refers to
the current character position (1 to 249) within the current
physical record. When a file is opened, its phYSical record
pointer is initialized to zero and its character pointer to
one. The pointers are then moved with the various types of
read and write operations.

Space compreSSion may be used when writing flles. It
is most useful for sequfPitla.J. ftles but may be used on
random filesw When spac~ compression 1s on and t~o or more
consecutive spac1es are t.:> be flrltten t two octal bytes ar
WI" itt e n ins tea d the .. fu 1 n u m be r 0 f spa c e~. ~",' -.-
by t e i s the 0 eta T n 1,., m b'9 r 0' ~ . T h j,. by t, ·e i n d j ... ~ ,. .~ ~ " " ~

space compression count follows. The se'cond byte 1s the
number of spaces that have been compressed. When the space
compression characters are read, the spaces are expanded to
their full number. A 011 is never allowed to be written as
the 249th character of a physical record. If this case
should occur, the physioal record 1s terminated and both
space compression characters are written in the next
physical record.

Space compression is turned on by the list control, *.,
in a write statement. It is also turned on at the execution
of any read statement. When space compression is first
turned on, the space compression oounter is set to zero.
Space compression is turned off at the start of a random
WRITE, WRITAB, or WE OF • No change occurs in the space
compression status with the execution of a sequential WRITE~
WRITAB, or WEOF.

Note that sequential files may contain logical records
of extreme length through the use of continued writing. One
must be careful in the use of logical records longer than
255 characters when using space compression because the
oount may be overflowed. If an attempt is made to compress
more than 255 spaces, the actual number written will be the
number attempted modulo 256.

Also note that when space compression 1s on, trailing
spaces in a logical record are not written since the last
space compression count is simply dropped and the 015 is
wri t ten to signify the end of the logical record. This
action has consequence when space compressed records are
read (see the section on the READ statement).

RANDOM or SEQUENTIAL WRITE

The wri te statement oonsists of a logical file number
and a record number followed by a list. The list may
include variable names, quoted characters, list controls,
and octal control characters (000 through 037). Each
character string variable will be written from its first
physical character through the logical length. Spaces will
be wri t ten for' any character posi tions between the logical
length pointer and the physical end of string. Each numeric
item will be written in total. Note that only the data in
each variable is written and not any of the control
information (logical length, form pointer, 0200, or ETX).
The quoted items and octal control oharaoters will be
written exactly as they appear in the list. The list
controls are used for write tabbing and space compression.
For example,

WRITE 3,RN;"TIME: ",TIHE,015,"TOTAL: ",TOTAL

33

The following is a list of the different types of write
statements. Remember that SEQ 1s a numeric variable with a
negative value and HN represents a numeric variable with
some speoific non-negative value.

(1) WRITE 1,RN;A,B,C

This is a normal random write. The physical
record pointer would be set to RN and the character
pOinter to one. Variables A, B, and C would then be
written followed by an end of logioal record (015) and
end of physical record (003). The charaoter pointer
remains pointing at the 003.

(2) WRITE 1,RN;A,B,C;

This i8 a random write to be oontinued as
indicated by the semicolon at the end of the statement
list. The physical reoord pointer would be set to RN
and the character pOinter to one. Variables A, B, and
C would then be written without any trailing characters
(no end of logical record or physioal record). The
character pointer would be left pOinting one charaoter
position past the last character written for variable
c.

(3) WRITE 1,SEQ;A,B,C

This is a normal sequential wri te. Variables A,
a, and C are written beginning at the character
position currently being pointed to by the logical file
pointers. If the file had just been opened, the
current posi tion would be character position one in
record zero of logical file one. Otherwise, it would
be posi tioned according to the resul ts of the last
wri te or read statement executed. An end of logical
record (015) and end of physical record (003) are
wri t ten after the last character in variable C. The
character pointer is left painting at the (003).

(4) WRITE 1,SEQ;A,B,C;

This is a sequential wri te to be continued as
indicated by the semicolon at the end of the statement
list. Variables A, B, and C are written beginning at
the character posi tion Qurrently being pointed to by
the logical file painters. No other charaoters are
written and the oharacter pOinter 1s left pointing one
character position past the last character written for
variable C ..

(5) WRITAB 1,RN;A,*70,B,*10,C,-NVAR,"TIHE"

This is the wri te tab feature whioh requires a
different instruction mnemonic. With this feature,
characters may be written into any character position
of a physical record without disturbing the rest of the
record. A RANGE trap will occur and the logical file­
pointers will not be changed if a write tab is used on
a record of the file that has never been wri t ten
before. The list controls *(numeric literal) or
·(numeric variable) are used to position the character
pointer to the specified character posi tion in the
current physical record. Writing of the variable
begins at that point.

Tab positioning In random write tabs is calculated
from the first posl tion of the physical record
specified. If the tab position is greater than 249
characters, an 10 trap will occur. Only the quoted
characters, octal control characters and variables
appearing in the list are written. The character
pOinter is left pointing one character posi tion past
the last character written.

The above example would write variable A beginning
at character position one of physical record RN,
variable B beginning at character position 70, variable
C beginning at character posi ticn 10, and the
characters "TIME" beginning at the characterposi tion
indicated by numeric variable NVAR. The character
pOinter would be left pointing one character past the
'E" wri t ten for the quoted characters ,. TIME" • An 10
trap would occur and the record would not be written if
NVAR was greater than 249.

The write tab may also be used to position to a
particular place in a file when it is desired that
space compression be left off. For example,

WRITAS 1,ZERO;.1

would posi tion to the beginning of logical file one.
If space compression need not be left off, file
positioning can be performed more efficiently with the
READ operation.

Note that using wri te tab wi th a negative record
number is possible but is not advisable. Tab
positioning would be calculated from the first
character position in the current physical record.
Strange resul ts may occur if the programmer is not
aware of this fact. In order to use the write tab on
sequential files, he would have to know exactly where

35

the logical records were placed wi thin the physical
records.

To summarize disk write operations, a random write
starts with character position one of the specified physical
record number except when specified otherwise in a write tab
operation in which case the position may be specified with a
list control. Sequential writes start with the current
character position pointed to by the logical file pointers.
For all write statements except the write tab, if the
statement list is not terminated by a semicolon, an end of
logical record (015) and end of physical record (003) are
written· with the character pointer left pOinting at the 003.
If a semicolon terminates the statement list or the
statement is a write tab, no end of logical record (015) or
end of physical record (003) will be written and the
character pointer is left pointing one posi tion past the
last character written.

Thus, if example (l) or (3) were followed by a
sequential wri te, the 003 would be overstored by the first
data character of the new logical record written. If
example (2) or (~) were followed by a sequential write, the
data wri t ten would be a continuation of the same logical
record.

WRITE END OF FILE

Standard DOS end of file marks (000 000 000 000 000 000
003 in the first 1 character positions of a physical record)
may be written in DATASHARE. WEOF does not change the
physical record or character pointers for the file.

(6) WEOF 1,RN

This statement writes an end of file mark in
physical record RN.

(1) WEOF 1, SEQ

This statement would cause an end of file mark to
be placed in the next physical record into which the
first seven data characters may be written.

RANDOM or SEQUENTIAL READ

The read statemi:!nt con,slsts of a logical flle number
and a record Il\Jnb(~r followed by 3. list.. The list may
include variable names or a list control used for read
tabbing. When a numeric i~ero is read, the number of
character's corrE~S pon ding t . h e ~n~t b 0 f the va.riable are

read in. Any non-leading blanks read would be converted to
zeros (e.g. A3 A 2Al would be read as A30201). If a
non-numeric character other than a negative sign as the
first non-blank character, decimal point or blank is read, a
FORHAT trap will occur~ A FORHAT trap will also occur if
the variable is dimensioned to one and the character is a
negative sign. A FORMAT trap occurs if the data does not
match exactly the format of the numeric variable to be read. -
For example, if X was dimensioned to 4.2 and the characters
read were 7777811, a FORHAT trap would occur since the digit
8 appeared where a decimal point appeared in the variable.
If a FORMAT trap occurs during a read, the logical file
pointers are left pOinting at the current file posi tion
before the read was attempted.

Note that the numeric read in DATASHARE 2 is different
from that in DATASHARE 1 (which read the number into a
temporary location and then used the MOVE mechanism to
tranfer the data to the actual numeric variable, allowing
for reformatting and rounding). This condition may effect
programs written for DATASHARE 1 and should be considered if
chaining to the DATASHARE 2 system.

When a
corresponding
the variable.
length is set
string.

string is read, the number of characters
to the length of the variable are read into
The formpointer is set to one. and the logical

to point to the last physical character in the

If the end of the logical record is reached before all
variables in the list have been read in full, and the
variable which is being filled with data when the EOR is
detected 1s a string, it will have its logical length
pointer set to the last character entered before the EOR was
reached (and the rest of the characters padded with spaces).
Note that this fact can be used to advantage when reading
sequential space compressed files. Remember that the
trailing spaces in such file records are not wri t ten and
that the DISPLAY and PRINT statements can be forced to
output only up through the character being pointed to by the
logical length (using the .+ control). These features can
be combined to make listing sequential files on the terminal
or printer much faster by the deletion of trailing spaces.

The above di scussion deals wi th the action taken when
the end of the logical record is reached while reading data
into a string variable. If the data is being read into a
numeric variable, the rest of the variable is padded wi th
either spaces or zeros as appropriate. Note that if one of
these locations within the variable is the decimal point, a
FORMAT trap will occur.

If the list contains more variables after the one L21n~

37

filled when the end of the logical record 1s detected, these
variables will e1 ther be set to zero (if numeric) or have
their logical lengths and formpointers set to zero.

A RANGE trap will occur and the logical file pointers
will not be changed if an attempt is made to read a record
which has never before been written,.

The following is a list of the different types of read
statements:

'(8) READ l,RNjA,B,C

This is a normal random read. The physical record
pointer is set to RN and the character pointer to one.
Variables A, B, and C are then read. Any remaining
characters in that physical record are discarded since
the character pointer is left pOinting at the 003 for
that physical record.

(9) READ 1,RN;A,B,C®

This is a random read to be continued as indicated
by the semicolon at the end of the statement list. The
physical record pointer is set to RN and the character
pointer to one. Variables A, B, and C are then read.
The character pointer is left pointing one character
position past the last character read for variable C.

(10) READ 1,SEQ;A,B,C

This is a normal sequential read. Variables A, B,
and C are read from logical file one beginning at the
current character posi tion pointed to by the logical
file pointers. Any characters left over in that
logical record are discarded since the character
pointer is left pointing one character position past
the end of that logical record (015).

(11) READ 1, SEQ; A, B, C.~

This is a sequential read to be continued as
indicated by the semicolon at the end of the statement
list. Variables A, B, and C are read beginning at the
current character posi tion pointed to by the logical
file pointers. When r'eadl.ng is completed, the
character pointer is Itft pointing one character
pOSition past the last cha~acter read for variable C.

(12) READ 1,RN;A,*100;R,*NVAR,:.*50,D

By j.rlcl:1ding the l)"st I;}ont.rols in the read
statement above, spAcific ~haracters may be read from a

record. The list contrJols -(numeric literal) or
·(numeric variable) are used to position the pointer to
the specified charaoter position in the specified
physioal record. Reading of the variable begins at
that pOint.

Tab positioning in random read operations is­
calculated from the first position of the physical
record specified. If the tab position is greater than
249 characters, an 10 trap will occur. When reading is
completed, the character pointer is moved to the end of
record mark following the last charaoter read if the
statement list is not terminated by a semicolon. If it
is terminated by a semicolon, the character pOinter is
left pOinting one character position past the last
character read.

The above example would set the physical record
pOinter to RN and the character pointer to one.
Variable A would then be read. Variable B would be
read beginning at oharaoter position 100, variable C
beginning at the charaoter posi tion indicated by the
numeric variable NVAR, and variable D beginning at
oharacter position 50. The oharacter pointer would be
left pointing at the 003 following the last character
read into variable D.

Read tabbing may be
particular place in a file.

READ 1, ZERO;.1 ;

used to position
For example,

to a

would posi tion to the beginning of logical file one.
Remember, however, that if this post tioning is
performed for writing purposeSi space compresssion will
be on for the write operation.

Note that using the read tab with a negative
record number is possible but not advisable. Tab
positioning is always calculated from the first
character position in the current physical record.
Strange r'esults may oocur if the programmer is not
aware of this fact.

To summarize disk read operations, a random read starts
with character position one of the specified phYSical reoord
number. If tab list oontrols are included, the variables
are read beginning at the specified oharaoter position
relati ve to the beginning of the current physical record.
Sequential read operations begin with the ourrent charaoter
posi tion pointed to by the logical file pointers. If the
statement is random and is not terminated by a semioolon,
the character pointer is left pointing at the end of record

39

mark following the last character read. If the statement is
sequential and not terminated by a semicolon, the oharaoter
pOinter is left pointing one character pOSition past the end
of that logical reoord (015). For all read operations, if
the list is terminated by a semicolon, the character pOinter
is left pOinting one character pOSition past the last
character read '.

Thus, if statement (8) was followed by a sequential
read, the logioal record in the next physical record would
be read. If ·statements (9) or (11) were followed by a
sequential read, the rest of the characters in that same
logical record would be read. If statement (10) was
followed by a sequential read, the next logical record in
the file would be read.

TEST FOR END OF FILE

A test of the OVER flag may be made to determine if an
end of file was read" The test should be made after the
read statement. For example,

READ 1,RNjA,B,C
GOTO LABEL IF OiER

If an end of file 1s read, the variables in tbe statement
will be set to zero or have their logical lengths and
formpointers set to zero depending on whether they, are
numbers or strings. Note that the OVER flag 1s not set if a
READ to be continued t s execu,t.ed (semicolon at the end of
the st~tement list).

8. PROGRAM GENERATION

8.1 Preparing Source Files

Files containing the source language for DATASHARE
programs are prepared using the general purpose editor
running under the DOS. These files are prepared identically

.·to preparing DATABUS source files since DATASHARE runs
programs wri t ten in the DATABUS language. The use of the
general purpose editor running under the DOS is covered in a
separate document. This editor has a DATABUS mode providing
a tab stop to make the text more readable.

8.2 Compiling Source Files

DATASHARE programs are compiled using the DATASHAHE
compiler running under the DOS. Note that DATASHARE
programs must always be compiled using the DATASHARE
compiler running alone under the DOS. This implies that
programs cannot be generated while the DATASHARE system
itself is executing (the DATASHARE system must be stopped
either manually or with the use of ROLLOUT). The DATASHARE
compiler is parameterized in the following manner:

DSCMP <source>[,<object>][,<print>][;<L><X><D><C><E>]

File Specifications

The compiler may be parameterized with up to three file
specifications. These file specifications follow the
standard DOS conventions. Refer to the DOS User's Guide for
further information concerning DOS file specifications. A
bad drive specification for any of the files will result in
the error message:

BAD DEVICE SPECIFICATION

If any of the file specifications are identical, the
message:

SOURCE AND OBJECT FILES THE SAME or
SOURCE AND PRINT FILES THE SAME or
OBJECT AND PRINT FILES THE SAME

will be displayed.

The source file contains the DATASHARE program text
created wi th the edi tor. This file must always be
specified. If no extension is gi ven on the source file
name, the extension TXT is assumed. If the source file name
is not supplied, the message:

NAME REQUIRED.

41

will be displayed. If the source file name does not exist
in the DOS directory, the message:

NO SUCH NAME.

will be displayed. If no drive 1s specified, all drives
will be searched beginning with drive 0 for the source file.
The first thing the compiler does is try to find the source
file.

The object file will contain the object code generated
by the compiler from the specified source code. If it is
not given, the name of the source file with an extension of
TSD is assumed. Note that DATASHARE can run only those
files with extension TSD. If the file is specified without
a drive number, it will be placed on the same drive as the
source file.

The print file specification is also optional. If it
is given, any print output requested will be written in this
file (in the standard GEDIT format) instead of being printed
on the local printer. Top of form will be indicated by the
character '1' in column one of the print line. Otherwise,
column one is always blank and the line starts with column
two (this is the standard COBOL and FORTRAN print file
format). This option is particularly useful for
compilations during ROLLOUTs (see Section q. 9) • For
example, during the ROLLOUT several compilations could be
run which placed the print output into th~ print files
specified. The compilation results could then be printed by
a DATASHARE program when the DATASHARE system was restored.
This procedure would shorten the total time that the system
would have to be down while at the same time allowing the
programmer to obtain program listings.

If no name is gi ven for the print file speci flcation,
the source file name will be assumed. If no extension is
given, an extension of PRT will be assumed. However, if the
print file is to be used under DATASHARE, it must have an
extension of TXT. If no drive number is speci fied, the
print file will be placed on the same dri ve as the source
file.

Output Parameters

These parameters allow the user to specify what type of
output he wants 1n addition to the object file. If a print
file is specified, any print output is written in that file
instead of being sent to ~he local printer. If the
semicolon but no parameters are specified, the only output
is the object file (if a print file was specified, it would
be null). If no semicolon is typed ~ the l~ompiler a,sks the
operator t.he o~t ions ste~' st$P" Any 1 ir:tes which have

errors are always displayed on the screen with the
appropriate error flag.

To specify output options, a semioolon plus one or more
of the following should be placed after the last file
specification:

L A listing of the compilation results is printed. Each
line of source code is numbered. A' +' appearing as
the first character of a line causes a new print page
to be started. The rest of the line following the +
may be used as a comment line. A '.' appearing as the
first character of a line causes a new print page to be
started if the current line is within two inches from
the bottom of the current page.

X A cross-reference listing is printed at the end of the
compilation for the data variables defined and for the
statement labels defined. Each cross-reference is
sorted alphabetically. When the cross-reference is
printed, the data variable n,me or label symbol is
given and preceded by the octal looation where the item
was defined. Following the name is a list of all line
numbers in which the item was defined or referenced.
An asterisk flags those line numbers which are
defini tions. If a cross-reference is requested, the
following messages will be displayed as the data
variables and labels are being sorted and printed:

SORTING DICTIONARY
FINAL MERGE/PRINT DATA XREF
FINAL MERGE/PRINT -- XEQT XREF

A cross-reference may be obtained regardless of whether
a listing was requested.

D A oopy of the source and object code is displayed on
the screen during the compilatio~.

C If a listing was requested, the output will normally
consist of the source code preceded by the starting
octal location for that line. The aotual object bytes
generated will also be printed if the user specifies
this parameter. Printing the object code usually makes
the listing about twice as long. If this option is
gi ven, the L option is implied and therefore need not
also be supplied.

E The source code for lines wi th errors will be printed
in addi tion to being displayed on the screen. This
parameter has no meaning if the L or C options are also
specified since those listings will automatically
include error flags. •

43

If a listing has been requested, the compiler will 'ask:

HEADING:

This may be 70 characters long and is printed at the top of
e~ch page. Indicating the time and date of the listing is
helpful in keeping listings in chronological order. The
source file name 1s automatically listed to the left of the
heading.

Examples:

DSCHP PROGRAM;

This is the simplest compilation specification. The
source code found in file PROGRAM/TXT would be compiled with
the object code placed in file PROGRAM/TSD. No other output
would be given except for errors displayed on the screen.

DSCHP ANSWER,ANSWER4;CX

The source code in ANSWER/TXT would be oompiled and the
object code placed in ANSWERJI/TSD. A listing would be
printed on the local printer and consist of the source and
object code wi th a data and label cross-reference at the
end.

DSCHP FILE:DRO, ,FILELST/TXT:DRl jLX

The source code in FILE/TXT on drive 0 would be
compiled and the object code plaoed in FILE/TSD on drive O.
A copy of the source code and a data and label cross­
reference will be written in FILELST/TXT on drive 1.

The compiler may be stopped temporarily by depressing
the DISPLAY key. The DISPLAY light is turned on and
execution is not resumed until the DISPLAY key 1s depressed
aga!n (the DISPLAY light is turned otf). Compilation may be
aborted at any time before the cross-reference sort is begun
by depressing the KEYBOARD key.

8.3 Compilation diagnostics

The compiler prints and displays diagnostic messages on
the listing to help the programmer debug syntatical errors
in his code. These messages take the form of an error code
letter at the left and an asterisk under the line at the
posi tion of the scanning pOinter when the error occurred.
The letters are E for an expression error (a generalIzed
syntatical error). U for an undefined variable or label, and
I for an undefined instruction. If any of these flags
appear, the compiler will store a STOP instruotion into the
first executable location 1n the object file. If the faulty

program is then executed, 1 t will only execute the STOP
instruction which will simply return oontrol to the MASTER
program.

The DATASHARE system uses the DOS logical file zero for
reading and vri ting all data to and from the disk. This
implies that a segment ,boundary may not be crossed by the
object code during a READ or WRITE statement (sinoe fetching
the statement also involves disk 1/0). For this reason,
DATASHARE object files are restricted to onesegllent in
length. If, during code generation, more than one segment
was used to hold the object file, the compiler g1 ves an
error massage:

SEGMENT ERROR

and flags the file in a fashion similar to the way it flags
the file if syntax errors occur. In this case, the object
file for the gi ven program should be deleted from the DOS
(using the KILL command) and the program re-compiled
(without a listing). Segment errors usually occur when a
program has been edited such that its object file becomes
longer and vill no longer f1 t in the segment p'rev1ously
allooated to it. If the objeot file 1s very long and the
disk extremely fragmented then deleting the file and
re-compiling may not solve the problem. In this case, the
disk should be purged or the BACKUP program used (if a dual
dri ve system 1s available) to make more oontiguous free
space available.

45

9. SYSTEM GENERATION

9.1 Loading From Cassette

The DATASHARE compiler and interpreter system programs
are contained on one cassette.

The compiler files cataloged on the cassette are
CHPCHD, CHPOV1, and CHPOV2. They should be cataloged on the
disk using the DOS commands:

IN DSCMP/CHD,N5
IN DSCHP/OV1,N6
IN DSCHP/OV2,N1

The interpreter files cataloged on the cassette are DS,
DSOV1, DSCON, DSIN, DSOUT, DSBACK, ROLOUT, IHAND, and
ROLFIL. The files should be cataloged on disk with the DOS
commands:

IN DS/CHD,N2
IN DS/OV1, N3
IN DSCON/CHD,N4
IN DSIN/CHD,N10
IN DSOUT/CHD,Hl1
IN DSBACK/CHD,N12
IN ROLLOUT/SYS,N13
IN INTRHAND/SYS,Ml_
IN ROLLFILE/SYS,N15

The first three files are necessary for the DATASHARE system
to run without the ROLLOUT feature. Files 1 through 12 are
necessary if the ROLLOUT feature is to be used (see Section
4.9).

DSCON/CHD 1s a program to configure the system for a
given number of ports.

DSIN/CHD and DSOUT/CHD are substitute programs for the
normal DOS commands IN and OUT. Since DATASHARE object
files have a special disk format that is not compatible with
normal DOS file format, the DOS utility oommands oannot be
used with DATASHARE object files. DSIN/CHD and DSOUT/CHD
must be used instead.

9.2 Port Configuration

The DATASHARE system may be configured to run with from
one to eight ports. The total data space for the DATASHARE
system is 4096 bytes and is divided evenly among the ports
configured for the system. Therefore, systems requiring
fewer ports can have more data space allocated for each one.

The system is configured by running the DSCON program.
This program will ~sk:

NUMBER OF DATASHARE PORTS?

to which the response should be a digi t between one and
eight. If one of these digits is not given in response, an
error message will be given and the request repeated. Once
a valid response has been given, control will be returned to
the DOS.

Note that the number of ports configured for the system
may be changed at any time. The compiler generates oode
independently of this number, allowing toe user to oreate a
data space as large as necessary. However, when one ohains
to a program it will appear not to exist if its data space
will not fi t wi thin the limits incurred by the current
number of ports configured (4096 divided by the number of
ports). .

The number-ot-ports information is kept in logical
reoord number three of the DSCON/CMD object file to
eliminate the need for a separate file. This can be done
since the DSCON/CMD program is very short. The DS/CMD
program accesses the DSCON/CMD file by that name, thus the
requirement that the name be DSCON/CMD when the system is
brought up.

9.3 Necessary Programs

Before the DATASHARE system can be used, two more sets
of programs must exist. These are called the ANSWER and
MASTER programs and perform the tasks of dealing wi th the
user when he Inl tially signs onto the system and dealing
with him when he 1s not running another DATASHARE program.
Note that all execution in the DATASHARE system oocurs in
the high leve 1 language and since the user wrl tea his own
ANSWER and MASTER programs, he can determine how the system
command language appears. The ANSWER and MASTER programming
concepts are dealt with in Section 11.

41

10. SYSTEM OPERATION

10.1 Bringing Up the System

The DATASHARE system 1s brought up by entering the DOS
command:

DS

This runs a very short program which loads the main system
file, DS/OV 1, into memory. If this file cannot be loaded, _
the message:

••• DS/OVl HISSING •••

is di splayed and the machine beeps and hal ts. Otherwise,
the port configuration information is read. If the file
DSCON/CHD cannot be found, the message:

• DSCON/CHD MISSING - 8 PORTS ASSUMED •

is displayed. If the file can be found but the port number
information is not correctly formatted (this will occur if
the DSCON program has never been executed), the message:

• DSCON/CMD BAD - 8 PORTS ASSUMED •

is displayed. The system then displays the message:

OPERATOR, PLEASE DEPRESS THE KEYBOARD OR DISPLAY KEY.

This action will verify that an operator is present. A
design objective was that the time and date be initialized
by the operator when the system was brought up but that the
system also be capable of bringing itself up in the case of
power failure and unattended operation. The DS/CHD program
must be AUTO # ed under the DOS and the auto-restart tab on
the DOS boot tape punched to enable the DATASHARE system to
restart after a power failure. If ·the keyboard or display
key is not depress~d within 30 seconds after the message is
displayed, the machine will make a series of one second
beeps in an effort to attract the attention of any
operational personnel within the viCinity. If the ~eyboard
or display key is not depressed after 30 seconds of beeping,
the system assumes that it is being operated in an
unattended mode and should start operation without the time
and date being initialized. In this case, the time and date
entries at the upper right of the 2200 screen will be blank.

If the time and date are to be initialized, the
operator must depress ei ther the keyboard or display key.
Upon doing this, the screen will be initialized with a
message indicating the release of the DATASHARE system being

48

used, the number of' P'Y~' c.s configured for that system, and
the digi ts one thr-ough eight running down the left side of
the screen. These digits denote a line which is allocated
for eaoh physical port. The CHAIN statement displays on
this line the name of the program being invoked. The
program running for that port may also display on this line
using the CONSOLE statement" These lines are useful for
informing any operational personnel of the status of the
system.

To initialize the time and date,. the system will
display the message TIME: 1n the upper right part of the
screen. The operator should respond to this with a four
digit number indicating the current clock value in hours and
minutes (HHMM). Note that no colons should be entered and
that a valid 24-hour clock value must be entered ~ If the
value is not valid, the TIME: message will be repeated.
Otherwise, the system will display the message DATE: to the
right of the time value just entered. The operator should
respond to this wi th a three digi t number followed by a
slash followed by a two digi t number. The first number
should be the current julian date (a number between 1 and
365 or, on leap years, 366) and the second number should be
the last two digits of the current year. Note that the
format mentioned must always be followed, with leading zeros
used if necessary. It the julian date is not valid, the
DATE: message will be repeated. Otherwise, the system will
begin execution as denoted by the wall clock display running
in the upper right part of the screen. A period of
approximately 15 seconds will pass while the system looks up
all of the ANSWER and MASTER program names in the DOS
directory and stores their physical file numbers away in a
table. Ports requesting connection during this time will be
connected but no response will be made until the 15 second
period has passed. Note that an asterisk just to the right
of the port number at the left side of the screen will be
displayed if the Carrier Detect s~gnal for that port is
present.

10.2 Taking Down the System

. The DATASHARE system maintains its files totally under
the control of the DOS. The DOS normally may be halted at
ariy time without detriment to the file structure. However,
halting the system after a new file has been created or
after a new segment has been allocated will leave that file
wi th the maximum amount of space allocated to it. Proper
clOSing of the file collapses the space allocated to only
that used. Thus, to be sure all files are properly closed,
the system should be hal ted when all ports are in ,their
MASTER programs which should close all three logical files.
The operator can tell from the console screen when a port is

49

..

in its MASTER progr'am if the MASTER program displays lts
name as 1n the examples in Appendix C.

10.3 Fatal Error Conditions

There are error conditions within the DOS which oannot
be trapped. These errors envoke a DOS overlay oalled the
ABORT overlay which reloads the DOS to insure the presence
of the DSPLY$ routine, displays an error message in \ the
standard DOS format, and then returns control to the DOS­
command interpreter. Note that this sequence does not
provide for r'estoring the foreground interrupt handler or
insuring that the DOS does not overlay an interrupt process
that happens to be running. The DATASHARE for~ground
r'futines reside in an area which is overlayed by the DOS
apd, therefore, the normal abort message routine would cause
h!avoc· when it tr·1ed to load the DOS. For this reason t the
DATASHARE system overlays the DOS in a oritical place that
allows it to trap the action of untrappable DOS errors and
store a retUl"'n i.ostruction in location zero. This
effect! vely disables any interf'upt handler execution and
allows the DOS to be loaded for the abort message display
but does not restor'e the normal DOS foreground interr}Jpt
handler. The DJl T/\SHARE system also overlays the DOS EXIT$
entry point toli th ('1 jump to a beep and hal t. This causes the
machine to ha.I. t i.1~·hen the untrappabl(~ error message display
is completed. If the auto-restart tab is punohed on a DOS
bootstrap tape in the ~oar deck, the halting will cause the
DOS to be fully restorrd.

11. ANSWER AND MASTE~ CONCEPTS

There are two DATABUS 'Pr:0 gr'8tlUs wh.:tch miJS't exist fer
each port for that port to be active. The first 1s oalled
the ANSWER program and must have a name of ANSWERn where n
is the number of the port. For example, ANSWER 1 for the
first port, ANSWER2 for the second, and so on. The ANSWER
program deals wi th the user when he in1 tlally oonnects to
the system (calls on the telephone or turns on his CRT).
The second program i8 called the MASTER program and must
have a name of MASTERn where n is the number of the Dort.
The MASTER program deals wi th the user whenever he is not
executing the ANSWER program or an application program and
is generally used to 'allow the user to select the next
application program he wishes to execute. Note that both of
these programs are written in DATABUS, enabling the user to
tailor the command aspects of the DATASHARE system to his
particular needss Simple and complex examples of ANSWER and
MASTER programs are shown in the appendicea.

11.1 System Security

The ANSWER program allows the programmer to force the
user to give some type of identification before he is
allowed to use the system. Note that the INTERRUPT key on
the terminal is ignored while execution is taking place
between the time when the system first acknowledges the
presence df a user at a g1 ven port and the first ehain
executed by the program for that port. This means that
while the user is executing in the ANSWER program for a
given port when he first signs onto the system, he may not
escape around the identi fication request and get directly
into the MASTER program by simply striking the IffTERRUPT
key. The ANSWER program may also be structured to enforce
file access limitations depending upon the identification of
the user.

11.2 System Convenience

The ANSWER program chains to the MASTER program whioh
usually requests from the terminal operator the name of the
program he wishes to execute. This name can be generated
from information supplied by the terminal operator so, for
example, the operator may enter the number of a form and the
MASTER program will decide which program to exeoute for that
form number. The DOS directory cannot be direotly accessed
by the MASTER program, implying that a file must be
generated which contains the names of programs and files
that are ~o be accessed if directory service or file access
11mitationv 1s to be implemented. It is very much up to the
author of the ANSWER and HASTER programs to provide ~!:y
convenience facilities to the terminal user.

51

11.3 Sample Answer and Master Programs

Appendix C contains examples of both simple and complex
ANSWER and MASTER programs. Each program is edited for
entry of the appropriate port number in the variable PORTN
and then compiled for the given port. This procedure
(editing in the port number and then compiling into an
object file wi th the port number 1n 1 ts name) must be
followed for each port that is to be used in the system. If
a DATASHARE object file for either the ANSWER or MASTER
program does not exist for a gi ven port, the port will
simply not be activated when the system is brought up.

Note that the first thing any of the examples do is
execute a CLOSE statement for each f1le. The ANSWER program
should do this to properly close all files whenever a port
disconnects. The MASTER program should do this to properly
close all ftles whenever a STOP, chain failure, or INTERRUPT
key occurs. The Simple ANSWER program then displays on the
terminal the number of the port and displays its program
name on the console. The latter action is performed because
the system does not display the name of the program invoked
when the chain was caused by action other than the execution
of a CHAIN statement (e.g., the ANSWER program initiated by
terminal connection or the MASTER program in1 t1ated by a
STOP or INTERRUPT key). The system does display on the
console line allocated for the exeouting port the name of
all programs invoked by the CHAIN statement. The Simple
ANSWER program then requests an identification and checks it
for validity agains~ a very simple rule (the identification'
given must be exactly the word DATAPO:":NT). If the word
matches (note the use of both the NOT EQUAL and LESS
conditions for checking for an exact match), a STOP
statement is executed which ca'.1ses a chain to the MASTER
program. Otherwise, an indication is given that the proper
identification was not ente~eJ and another request for
identification is made.

The simple MASTER prog~am mF:!'ely closes all files (in
case the INTERRUPT key was st rucK) and then requests the
name of a program to be execu ted. A CHAIN is exeouted to
the name given and if a chain failure occurs an indication
is given that the name does not exist in the DOS directory
and- another request for a program name is made. Note that
both the ANSWER and MASTER ;rograms are written without the
use of cursor positioning in the KEYIN and DISPLAY
statements to aid in teletype terminal compatibility.

The complex ANSWF;R and ~ASTER programs perform tasks
similar tp those performed oy the simple programs except
that a number of ('fo)nvenJ.. ence fea tures are added to gl ve the
system the appearance of a mor"e conventional time shating
system .. Two files ar.e- as~~v::lated with the more (;()!'fJi~!"i:Y'

programs, the St _LE a~' ~~_~ \syste at~

f11es)~ ~he 8 tern file con~aln! identi:_oetlon ~od~
information a,no a. table associatin.g a E1'vel1 identif:1~.;:,lt,i(
code (user) wl~~ a given set of prog~ams (u!er-s directory] ~
The system file also contah1S a record for each physical
port (records zero through seven) which allows any executing
program to determine which user identification is associated
wi th the gi ven physical port a,t any gl'ven time. A user
identification number (an index into the rest of the file
from which the actual symbolic user identification can be
obtained), the time at sign on, and the date at sign on are
recorded in this record. The remainder of the file contains
four records for each user 1,dent1fied in the system. Each
record is broken into ten ten-character fields. The first
field of the first record is the identification code. The
rest of the fields in the first record and the following
three records contain program names associated with the
gi ven user identification. The list of program names is
terminated by a space appearing in the first column of the
name. The list of user identifications 1s terminated by a
space appearing 1n the first column of a user
identification.

The second file associated with the complex ANSWER and
MASTER programs is called the day file" This file simply
contains a set of records to be displayed at sign on time.
This information "is used to inform users of changes 1n the
system or any other facts pertinent to the use of the
system. Note that both of these files must exist before the
complex ANSWER and MASTER progr~m~ can be used, The files
can be created either with DATABUS 7 or DATASHARE, the
latter if simple ANSWER and MASTER programs exist.

The complex ANSWER program determines the month and day
of the month from the julian date. It detects if the date
has not been initialized by noting that the julian date is
zero (an. invalid initialization value). After the date is
displayed, a request is made for an identification code.
The identification code list in the system fl1e is then
scanned for a match wi th the one supplied. If a match
cannot be found, an indication is given to the user and the
request for identification is repeated. Note that only
three tries at identification are allowed in an effort to
prevent unauthorized access to the ~ystem via the technique
of trying identification codes until one 1s struck. After
the third try, the response to the user does not change but
he is not allowed access to the system even if he doe~ then
enter a valid identification and an alert message 15
displayed on the con~ole to alert the operator that someone
who apparently does not know an identification code is
trying to access the system. If a valid identification is
entered within three tries. the identification index into
the system file, the date of sign on, and the time of sign

53

on are wr1 tten 1n the record 1n the system file
corresponding to the physical port being used and execution
is passed to the MASTER program via the STOP statement.

The complex MASTER prog'rall allows a number of commands
as explained in the KEYIN statement under the label HELPI.
This particular program does not limit program or file
access to a given user to his programs only, but such a
scheme could be implemented without much difficulty.

12. PHYSICAL SYST~~ CHAR!CTE?ISTI~S

12.1 Virtual Memory

To achieve a reasoned;) e amount:.:! ;.i~c~;ram space fer
eight simultaneous programs~ DATASHARE employs a virtual
memory technique. ~)A fr ASH! HE code is very compaot, Wi tn very
few bytes of instructions being capable of invoking a large
amount of processor activity. Therefore, the rate at which
DATASHARE program bytes are fetohed is very low. Because of
this low rate, the actual program code bytes can be kept in
the randomly accessible disk buffers with very little effect
on program execution speed. Three of the four disk buffers
are used for the storage of pages of program code. This
gi ves the effect of having a DMA channel from the disk to
the high speed program storage memory_ Another
characteristic of DATASHARE code is that it is never
modified. Because of this, program code need only be read
in and never written back out to the disk.

A di fferent story exists in the case of the program
data, however. This data is aocessed at a very high rate
and must. be in main memory to be effectively accessible by
the DATASHARE interpreter. For this reason the program data
for all programs is kept resident 1n main memory. This fact
will be shown later to have further advantages in the case
of 1/0.

To implement an effective virtual memory accessing
algorithm, the program code is kept on the disk as 256 ~yte
pages wi th one page filling an entire disk sector. Those
familiar with DOS will note that this is not compatible with
the standard DOS data record format, which allows 253 bytes
for user data. The DATASHARE interpreter and compiler have
special disk read and write routines. to handle this problem.
The problem is not as extensive as might be imagined, since
only the READ$ and WRITE$ routines in the DOS deal with the
information in the first three bytes of each data sector.
Therefore, all of the space allocation routines in the DOS
are still used by DATASHARE. However, none of the standard
DOS utili ties may be used with the DATASHARE code files.
Remember that this concerns only the DATASHARE code files
and not the data files.

Because the code is paged in blooks of 256, the
DATASHARE programmer can make his program run much more
effeciently, in many cases, by forcing his code to cross a~
few page boundaries as possible. Each time a page boundary
is crossed, a new page must be read in. The paging scheme
used is purely demand wi th the least recently used page
being destroyed to make space for the new page. Actually,
in a lightly loaded system, a single program could get t~o
or three pages all resident in the disk buffer t~E~mor I at

55

once and crossing a gi ven page boundary would not cause a
disk read, but any significant loading will cause this
condition to cease. Therefore, the DATASHARE programmer can
assume that each time he crosses a page boundary, a new read
will occur. This read can cause from 2 to 130 milliseconds
delay in the execution of his program. This time is time
that cannot be used by any other program since the disk is
busy. By causing an excessive number of page boundary
crossings, the programmer can easily cause his program to
execute very slowly.

However, an instruction called TABPAGE exists in
DATASHARE to aid the programmer in making his, execution
speed as high as possible. This instruction causes the
location counter in the compiler to be incremented until it
is at the start of the next page (nothing will be generated
if the location counter is already at the start of a page).
When this instruction is executed, it causes a GOTO to the
start of the next page. By using this instruction, the
programmer can cause logical parts of his program to contain
as few page boundaries as possible. Another'way to increase
execution speed is to use in-line coding as much as
possible, especially for short operations, instead of the
subroutine calling feature if the subroutine is located in a
page different from the calling location. This is
economically feasible because of the large space available
for each program (16K bytes).

Since all program data 1s reSident, the amount of space
available to each port is limited. A total of 4096 bytes of
space is allocated for the combined use of all ports. For
an eight port system, this amounts to 512 bytes of data
space per port. However, t.he system is configurable to
allow fewer ports to be used in a system and correspondingly
more data area per port. The data area 1s always evenly
proportioned among all of the ports configured into the
system, and therefore is equal to the greatest interger
value of 4096 divided by the number of ports. This number
is 512, 585, 682, 819, 1024, 1365, 2048, and 4096 for 8, 7,
6, 5, 4, 3, 2, and 1 port systems respectively.

12.2 Major Modules

Memory map of the DATASHARE run-time system:

+ 037777
+ +
+
+
+
+
+
+
+
+
+
+
+

USER PROGRAM DATA AREA

+
+
+
+
+
+
+
+
+
+
+

+ 030000
+ +
+
+
+
+

INTERPRETER
+
+
+
+

+ 021000
+ +
+ +
+
+
+

SCHEDULER +
+
+

+ 014400
+
+
+
+

STATH

+
+
+
+

+ +
+ 010440
+ WORKING STORAGE +
+ 010000
+ +
+ USER INTERPRETER DATA +
+ 1/0 BUFFERS +
+ +
+ 005400
+ +
+ +
+ +
+
+
+
+

DOS +
+
+
+

+ 000000

57

As seen in the map on the previous page, DATASHARE 1s
broken into several major modules. The area between 0 and
05400 oontains all of the DOS that is used by DATASHARE.
This includes the file loader, basic sector read and write
routines (used by the interpreter), and file handling
routines.

The area between 05400 and 010000 is used for the user
logical files tables, interpreter working storage, 1/0 port
buffers, and printer buffer. When a particular user Is
executed, the 48 bytes corresponding to his three available
logical files are swapped into the DOS logical file table
and the 43 bytes corresponding to his interpreter working
storage are swapped into the interpreter working storage
area. When he stops execution (swapped out for another user
to execute), all of this information is swapped back into
his area between 05400 and 010000.

The area between 010000 and 010440 is the main working
storage for the entire system. The most actively accessed
data is kept within a single page of memory, increasing
coding effeciency.

The STATH package used wi th the DATASHARE system has
been reduced in size by removing the key!n and display
routines. In all other respects, it 1s similar to the
package used in the other DATABUS interpreters.

The DATASHARE scheduler 1s the most complex part of the
system. Its task involves all foreground 1/0 and scheduling
of background execution. Background execution is used to
interpret and execute the DATABUS statements and perform
disk 1/0 while foreground exeoution is used to interpret the
printer, console, and terminal 1/0 ~tatements. This portion
of the system 1s explained more thoroughly 1n the next
section.

The DATASHARE interpreter is similar to a standard
DATABUS interpreter ~xcept that it h~s been enhanced to deal
with based user varJ.&ble fJlta ;(1 ·,l~ grea at the end of main
memory and deal wi th us~r'\ pr,)gl"~m l~a ta in virtual storage
that actually resides on the d 1 sk . A base address table
exists in the workl"lg stlj")J'e a;a which tells the
interpreter which varlabl ~ !!a~~3 ~··'·e1 to use based on the
user number of the user "lP""'P~"~ \ b "';.ng executed. A page
address table also exj.st~ ~,"l • ".~ : .Jr lig storage area which
tells the interpreter whet' ~~ t, sk the user's program
resides. A virtual stor"age ~ .. 11 ,'ue is used which uses
disk buffers one, two, and "-:">, ,or the storage of the
currently acti ve program da' ~ il""r::'-':S.. When a program da ta
byte is acoessea, the tote t etar !\:,tch rcutine searches
through the rage address to', j '" lo(.,.:~",",ag t(.! set.: if that byte
;~x.i st'S i:~& 0 :le (J f the three .' ': k t:.ff ars " I f ttH~ byte d Sic S

..

exist, the interpreter merely direotly accesses it and the
fetch 1s finished. Otherwise, the interpreter decides which
disk buffer has been least recently accessed and reads the
necessary program data page into that buffer. The
interpreter then goes back and executes the normal fetch
routine which will find the byte available in a disk buffer
and fetch it for use by the rest of the interpreter.

DATASHARE object code files are stored wi th 256 bytes
per disk sector. This enables the most significant byte of
the DATABUS interpreter program address counter to indicate
which sector relati ve to the beginning of the object file
and the least significant byte of the address counter to
indica te which byte wi thin that sector is being accessed.
Actually, the first sector of the object file contains the
number of sectors that were used for user variable data
storage. These sectors are read into the user's variable
data area when a chain is made to the program. Bytes within
these sectors set to 0377 (octal) are not loaded into memory
but their slots are skipped. This mechainism allows common
variables to be positioned non-destructively. If, while
loading the data area, the interpreter exhausts the data
space allocated to a single user, a chain failure 1s
initiated. Therefore, the programmer cannot distinguish
between a program actually absent from the DOS directory and
one whose data area will not fit into the spaQe allocated to
an individual program for the number of ports currently
configured. The number of sectors used for variable data
storage is kept within a table in the working storage area
so the interpreter fetch routine knows by how much to bias
the MSB of the program address counter when determining the
logical record number of the object code block it needs when
obtaining a given program data byte.

12.3 Scheduling

To provide optimum response time, DATASHARE handles all
port and printer 1/0 using interrupt driven foreground
routines, which means that data transfer between the
terminal and the system can occur regardless of the
computational task being handled by the background program
at any given time. The foreground routines aotually­
interpret the KEYIN, DISPLAY, PRINT, and CONSOLE
instruotions, with the background interpretive code merely
passing these instructions to the foreground through a
oircular buffer allocated for each port. Conventional
systems use such a buffer to hold the actual characters
transferred between the system and the terminal. However,
DATASHARE uses this buffer to hold the interpretive oode
bytes, thus enabling many more bytes to be transferred than
can actually be held in the buffer. For example, a DISPLAY
statement may contain some quoted information and then a
variable name. The variable name 1s represented by two
bytes but the oontents of the variable could be flfty bytes
long, enabling two bytes of buffer space to invoke the
transfer of fifty bytes to the terminal. This 1s made
possible by the fact that all program data is resident in
main memory which enables the foreground routine to be
executing an 110 statement for a given port even though the
baokground program for that port may not be swapped in at
the tim~. .

As a matter of faot, the foreground and background
program for a given port always exeoute exclusively of each
other to prevent conflicts over data values. When the
background program executes a DISPLAY statement, the
statement is stored in the buffer for the g1 ven port and
then the background program is deaeti vated and the
foreground program acti vated. When the foreground program
has completely executed the 110 statement, it oauses a high
priority interrupt to the background, whioh deactivates the
ourrent program and acti vates the one whioh was executing
the DISPLAY statement which caused the interrupt. In
reality, the scheduling algorithm is more complex than this,
but this gi ves an idea of the sequence of events. One
important consideration which must be taken into account by
the DATASHARE programmer concerning port I/O is the fact
that every time an I/O instruction is completed 1n the
foreground, the background program is swapped in. If the
programmer is not careful, he can cause the system to thrash
(spend most of its time swapping background programs 1n
instead of dOing useful work) by causing a high rate of 110
completion interrupts. An example would be using many
separate DISPLAY statements instead of one long contj, nuer!
statement.

The above discusslon conoern5 only port, pr1r:t.er, a

console 1/0. All disk IiO is performed under the DOS which
is a background-only operation. This means that all DOS
functions are non-interruptable and long directory searches
(which can take up to several seconds wi th a four dri ve
system) will cause the response to 1/0 completion interrupts
to be delayed. Long DOS functions, however, occur
infrequently and therefor'e can be ignored from an average
response time calculation standpoint.

When the background program resumes execut 10n due to
the completion of a foreground 1/0 task, it is guaranteed a

'minimum amount of execution time. This prevents the system
from spending all of its time swapping background tasks when
the foreground 1/0 completion rate is high. The minimum
execution time can be used to advantage when one is dealing
with common data base file access. It 1s only structurally
sound to allow one port to modify a given record in a file
at any given time. For example, picture an inventory file.
Let us assume that a quantity of ten exists at some point in
t~me for a gi ven item. Let us also assume that two ports
are simultaneously attempting to deplete this quantity by
one. It is apparent that it would not be very difficult for
the first port to read the file and then be interrupted by
the second port which proceeds to read the file, deplete the
quanti ty by one, and modify the file wi th the new value.
Then the first port resumes execution and, depletes the
quantity which it had originally read and modifies the file
with its new value. Unfortunately, this new value is wrong
since the quanti ty read by the first port was out of date
when its execution resumed. For this reason, the first port
should have locked out access to the given record (or even
file) while it was trying to change its contents.

Access could have been locked out if the first port
knew that it could have read, deple·ted, and rewri t ten the
quanti ty wi thout being interrupted by the second port. If
before doing the file access, the first port had just
completed a foreground I/O operation (for example, a DISPLAY
statement), a minimum execution time of 800 milliseconds
would have been assured. Since a disk access consumes a
maximum of 180 milliseconds, this would be an adequate
amount of time" to read the record, perform a simple
computation, and rewri te the record. This is the
recommended technique of common file access lock out. If a
foreground I/O statement has not just been completed, the
program can perform the statement:

CONSOLE *Pl:79

which requires very Ii t tIe execution time and performs no
visible operation. Execution of this statement will cause
the user to be swapped out and back and may cause some delay
while another program executes, but must be performed if the

61

800 milliseconds of execution time is to be assured. Single
character string operations occur within five milliseoonds,
multiple character string operations oocur within five to
ten milliseconds, depending upon the length of the strings,
and arithmetic operations occur within five to fifty
milliseconds depending upon the operation being performed
(addi tion and subtraction being the shortest and di vision -
the longest) and the length of the numbers.

DATASHARE is capable of driving any serial terminal
device which uses an ASCII character set. Use of devices
without cursor positioning features, however, will restrict
the programmer from using the cursor positioning facility in
the KEYIN and DISPLAY statements. If the programmer does
not use the cursor positioning feature, he will be able to
wri te a program which is Teletype machine compatible. The
*ES and *EL list controls send control characters that are
ignored by a 35 ASR Teletype. However, the Cursor On
character which is sent before each KEIIN variable entry
request and the Cursor Ofr which is sent after the ENTER key
is struck, are Tape On and Tape Ofr respectively on a 35 ASR
Teletype.

DATASHARE is also capable of dealing with 103 type
datasets as well as hard wired connections and full duplex
four wire 202 dataset connections. It handles all of the
103 handshaking involved and needs only the proper cable to
work correctly. In fact, the 3360-102 hard wire cable is
connected in such a way as to make the 3360-102 appear as a
103 data set, with power on causing ring detect and carrier
detect to be sent to the DATASHARE system. The fact that a
hard wire or dataset connection 1s employed at a given
terminal cannot be differentiated by the DATASHARE
programmer. See Section 13 for more information concerning
terminal connections.

13. PHYSICAL INSTALLATION

13.1 Main peripherals

The DATASHARE system requires a- 2200-350 series disk
peripheral. Since the system maintains its entire file
structure under the DOS, anywhere from one to four disk
drives (2.5 to 10 million bytes) may be employed as long as
each disk cartridge used has a DOS file structure and the
cartridge in drive zero contains the system files. Note
that drive zero must be kept on line at all times during
system operation but the other three drives may be put on or
off line as the maintenance of the data base requires.

Any 2200-200 series printer which uses the ASCII
character set and requires no special motion controls may be
used as the local printer on the DATASHARE system. Note
that the current release of the software excludes the use of
the 2200-250 series servo printer. Only one printer may be
connected and must have the I/O bus address of 0303. Note
that, as in any 2200 installation, a 2200-420 parallel
interface may be connected to drive a special output device,
but that device must be capable of handling the output that
would normally be given to an ASCII printer.

Besides the 2200-350 series disk, the other required
peripheral for the operation of the DATASHARE system is the
2200-460 Multiple Port Communications Interface. This
device is capable of driving up to eight fully independent
full duplex asynchronous lines at speeds ranging from 110 to
9600 baud. The DATASHARE system is not capable of output
above 125 characters per second per port and normally uses
1200 baud for direct connection and four wire 202-type modem
connections and uses 300 or 110 baud for 103-type modem
connections. However, any speed may be strapped in the
2200-460 to achieve compatibility with specific terminals as
the occasion may require. The DATAPOINT 3360-102, the
recommended terminal device for the DATASHARE system, has
switch selectable speeds of 300, 1200, 2400, and 4800 baud.
Note that all ports are operated by the DATASHARE system in
full duplex mode ~nly.

13.2 Terminal connections

In general, a terminal may be connected to the
DATASHARE system in one of three ways: direct hardwire,
103-type modem, and 202-type modem. The following table
shows the pin assignments on the 25-pin connector for the
2200-460 individual port, the 3360-102 CRT terminal, and a
103 or 202 type modem:

PIN 2200-460 3360-102

PROT GROUND
DATA OUT
DATA IN

103/202

PROT GROUND
DATA IN
DATA OUT

1
2
3
4
5
6
7
8

DATA OUT
DATA IN
REQ TO SEND
CLR TO SEND

SIG GROUND
CARRIER DET

SIG GROUND

REQ TO SEND (202)
CLR TO SEND ~
DATA SET READY
SIG GROUND
CARRIER DET

20 DATA TERM RDY DATA TERM RDY DATA TERM RDY

22 RING DETECT RING DETECT

The DATASHARE system goes through the following
handshaking procedure when a connection 1s established:

1. Clear Data Terminal Ready and Request To Send
2. Wait for Ring Detection
3. Set Data Terminal Ready and Request To Send
4. Wait up to 10 seconds for Carrier Detect
5. Go to step 1 if time out 1n step 4
6. Wait one sec~nd 3nd then start the ANSWER program

This procedure willl,y.';rl< \Iii ~h any of the three types of
connections if the prv~,er caole is used.

DIRECT

Basically, the ::", ;!ct.. c,nnection cable swaps the data
wires (pins 2 and 3) fC(~onrects Carrier and Ring Detect on
one end to Data Te~"'L:a:', R~a1y on the other as shown in the
following table:

2200-46Q JO }360.~:.,."s. (,:\ ~Lf.;. .Q.ONN~TIONS

220.2.:-460

2
3
7
8 &r(1 22

:;~t:C .. ·'02
""'~--.~--

3
2
1
20

•

Note that this arrangement requires only five wires in the
cable (four if the optional wire is not used). If the cable
is to be made more than several hundred feet long, each of
the two signal wires (the ones connecting to pins 2 and 3)
should be twisted separately wi th a ground wire (no other
shielding 1s necessary). Direct connections up to one
thousand feet may be made if the above precautions are
followed.

The 3360-102 sets Data Terminal Ready whenever it is
running. Wi th the above cable connected, this will cause
ringing and carrier to be presented to the 2200-460. This
has the effect of causing the ANSWER program to be executed
whenever power is applied to the 3360-102.

103-TYPE MODEM

The 2200-460 can be connected to a 103-type mod~ with
a one to one cable (e.g., a pin at one end is connected to a
pin of the same number at the other end). Only pins 2, 3,
7, 8, 20, and 22 need to be connected but having all pins
connected will also work (this being the simplest to
describe to someone at a distance!). Note that 103 and 113B
modems have similar pin connections.

2200-460 TO 103-TYPE MODEM CONNECTIONS

2200-460 103-TYPE MODEM

2 2
3 3
7 7
8 8
20 20
22 22

If one is calling a 103-type modem over a dial-up
network, he will hear the telephone answered very shortly
after it starts ringing (should take one or two rings at
most). If the telephone ls not answered within that amount
of time, the caller ei ther has the wrong number or the
DATASHARE system is not up or is in the lnl tlal phase of
being taken down. In any case, the caller may as well hang
up (letting the phone rin'g for a long time can be very
irritating at the· other end). If the telephone is answered,
the caller will hear the carrier from the modem connected to
the 2200-460 which is his signal to either depress the DATA
key on his modem or put the telephone handset in the data
coupler (if he is using one). The DATASHARE system giv~s
the caller ten (10) seconds to perform the necessary action
to cause a carrier to be returned from his modem. If all is
satisfactorily completed, one more second ~ill pass and then
the ANSWER program will begin execution. If all is not

65

satisfactorily completed, the DATASHARE system will hang up
the telephone at its end and go back to waiting for ringing
to occur. Note that since the DATASHARE system does wait up
to ten seconds for a satisfactory connection, if one dials
the system and hangs up as soon as the telephone is
answered, he will have to wai t ten seconds before he can
dial the same telephone a~ain. Also'note that the DATASHARE
system will disconnect as soon as it loses the Carrier
Detect signal from the modem. This means that disconnection
will occur even if the carrier is broken only for a very
short time.

202-TYPE MODEM

The DATASHARE system requires a full duplex connection
to its terminals. A 202-type modem can be used in this
fashion only if it is connected via a four-wire circuit.
This means that one signal path must exit for data flow in
one direction and a separate data path must exit for data
flow in the other direction. This implies that a
point-to-point connect10n is made between the modems (the
switched telephone network cannot support four-wire
connections) • In this application, the 202 modem must be
strapped for use in four-wire mode.

The connecting cable between the 2200-460 and 202 modem
is similar to the one for connection to a 103-type modem
except that, since 202' s used in point-to-point four-wire
service do not use ringing, the carrier detection signal
from the 202 must be connected to both the carrier detection
and ring detection inputs on the 2200-460.

2200-460 TO ~ MODEM CO~.~TIONS

2200-460

2
3
4
7
8 and 22

. 20

202 MODEM,

2
3
4
1
8
20

When Data Terminal Ready is supplied by the terminal
device to the remote 202 modem. that modem will turn on its
carrier. This carrier will cause the modem connected to the
2200-460 to turn on lts carrier detect signal which will
present ring detection and carrl er detection to the
DATASHAftE system. The sy~te~ ~ill p~oceed to set its Data
Terminal. Ready signal whi ~ h 'I;': 1. ~<~.il ~e the 202 modem to turn
on its carrier an j COl'fI~;' ete ... ~It! ~('nnectlon. One second
later the ANSwER prog,~c=:'1 W.l" "e:gi.n execution. ThUS,
operation over a 2C2 mO ij\9: :"~,:"'jrHH~1-' 1:;1" w11.1 appear similar to

direct connection operation.

Remote modems are connected to Datapoint 3000 series
terminals via a standard modem cable supplied with the
terminal. This cable provides the required Data Terminal
Ready Signal to oause the operational oharacteristics
described above.

13.3 Port speed selection

The 2200-460 Multiple Port Communications Adaptor 1s
software programmable to transmi t and recei ve from five to
eight information bi ts wi th ei ther one or two stop bi ts.
However, the DATASHARE system always uses eight information

'bits and sends two stop bits (it will receive Signals with
only one stop bit). The speed of each port may be set
independently to a variety of speeds, depending on field
programmable hardwire straps.

There are three clock buses with1n the 2200-460,
11m1 t1ng the total number of d1fferent speeds used at any
one t1me to three. Each of these buses can be connected to
one of two crystal controlled time bases. Each time base is
connected to a binary di viding chain, g1 ving speeds
selectable in powers of twoo The standard cry'stals supplied
provide multiples of 110 and 300 baud. The baud rate of a
bus is set by strapping from a baud rate source pin to a
baud rate bus input pin. Each bus has eight baud rate
output points. The baud rate of a channel is set by
strapping from a baud rate bus output point to the channel
baud rate input pin. The following table gives the
respective pin numbers as found on the silk screening on the
printed circuit card in the 2200-~60:

BAUD RATE
Baud rate

300
600

1200
2400
4800
9600

110
220
440
880

1760
3520
7040

SOURCE
Pin
E29
E28
E21
E23
E22
E21
E33
E32
E31
830
E26
E25
E24

BAUD RATE
Bus Input

1 E3~
2 . E35
3 E36

BUS
Output

E37
E38
E39

CHANNEL BAUD RATE INPUT
Channel Input

1 E13
2 E14
3 E15
4 E16
5 E17
6 E18
7 E19
8 E20

A typioal installation may use baud rates of 110 for
teletype machines (remote or local), 300 tor remote 3360-102

67

terminals using 103-type modems, and 1200 for remote
3360-102 terminals using 202-type modems. For this
installation, one may connect bus 1 for 110 baud, bus 2 for
300 baud, and bus 3 for 1200 baud as shown in the following
table.

E34 to E33
E35 to E29
E36 to E27

make bus 1 110 baud
make bus 2 300 baud
make bus 3 1200 baud

Now, if channels 1 through 3 are to be 300 baud, channels 4
.through 7 1200 baud, and ch.nnel 8 110 baud, the following
connections would be made:

E38 to E13, E14, E15
E39 to E16, E17, E18, E19
E37 to E20

make ch 1-3 300 baud
make ch 4-7 1200 baud
make ch 8 110 baud

Port speeds other than multiples of 110 or 300 baud can be
accommodated by changing the crystal frequencies. Selection
of the proper crystal should be aided by the Datapoint
engineering staff.

13.4 Non-3360-102 terminal devices

Terminals other than the Datapoint 3360-102 can be
connected effectively to the DATASHARE system. The major
advantage of the 3360-102 is that its cursor can be
posi tioned directly by the issuance of a three character
sequence. This allows the usage of the cursor post tioning
list controls in the DISPLAY and KEYIN statements and
greatly enhances the speed of form displays.

Terminals such as the Teletype 33 and 35 KSR or ASR may
be connected either hardwire or over .modem connections. In
addition, conventional CRT terminals such as the Datapoint
3300 (for 300 or 1200 baud) or Datapoint 3000 (for 300 baud
only) may be connected. All Datapoint 3000 series terminals
use identioal cable oonfigurations for a given type of
installation. The key to making a cable for a given device
is to insure that both Carrier and Ring Detect on the
2200-460 are connected to a wire that is set when the
conneotion is to be established and 1s cleared when the
connection 1s to be broken.

68

APPENDIX A

INSTRUCTION SUMMARY

SYNTACTIC DEFINITIONS

condition

character string

event

list

name

label

nvar

nval

nlit

svar

sval

RN

The result of any arithmetio or
string .operation: OVER, LESS,
EQUAL, ZERO, or EOS (EQUAL and ZERO
are two names for the same
condition).

Any string of printing ASCII
characters except for a quote (").

The occurrence of a program trap:
PARITY, RANGE, FORMAT, or CFAIL.

A list of variables or controls
appearing in an input/output
instruction.

Any combination of letters (A-Z)
and digits (0-9) starting with a
letter (only the first six
characters are used).

A name assigned to a statement.

A name assigned to a directive
defining a numeric string variable.

A name assigned to a directive
defining a'numerio string variable
or an immediate numeric value.

An immediate numeric value.

A name aSSigned to a directive
defining a character string
variable.

A name aSSigned to a directive
defining a character string
variable or a quoted alphanumeric
character.

A positive record number (>= 0)
used to randomly READ or WRITE on a
file.

A-1

SEQ A negative number (< 0) used to
READ or WRITE on a file
sequentially ..

DIRECTIVES

FORM n.m
FORM "456.23"
DIM n
INIT "character string"
FORM .n.m
FORM ." 456.23"
DIM .n
INIT ·"CHARACTER STRING"

CONTROL

GOTO (label)
GOTO (label) IF (condition)
GOTO (label) IF NOT (condition}
BRANCH (nvar) OF (label list)
CALL (label)
CALL (label) IF (condition)
CALL (label) IF NOT (condition)
RETURN
RETURN IF (condition)
RETURN IF NOT (condition)
STOP
STOP IF (condition)
STOP IF NOT (condition)
CHAIN (svar)
TRAP (label) IF (event)
TRAPCLR (event)
ROLLOUT (svar)

CHARACTER STRING HANDLING

MATCH (svar) TO (svar)
HOVE (svar) TO (svar)
MOVE (svar) TO (nvar)
MOVE (nvar) TO (svar)
APPEND (svar) TO (svar)
CMOVE (sval) TO (svar)
CHATeH (sval) TO (aval)
BUMP (svar)
BUMP (svar) BY (nlit)
RESET (svar) TO (sval)
RESET (svar) TO (nvar)
RESET (svar)
ENDSET (svar)
LENSET (svar)
CLEAR (svar)

A-2

EXTEND (svar)
CHAIN (svar)
LOAD (svar) FROM (nvar) OF (svar list)
STORE (svar) INTO (nvar) OF (svar list)
CLOCK TIME TO (svar),
CLOCK DAY TO (svar)
CLOCK YEAR TO (svar)
TYPE (svar)

ARITHMETIC

ADD (nvar) TO (nvar)
SUB (nvar) FROM (nvar)
HULT (nvar) BY (nvar)
DIV (nvar) INTO (nvar)
HOVE (nvar) TO (nvar)
COMPARE (nvar) TO (nvar)
LOAD (nvar) FROM (nvar) OF (nvar list)
STORE (nvar) INTO (nvar) OF (nvar list)

INPUT/OUTPUT

KEIIN (list)
DISPLAY (list)
CONSOLE (list)
BEEP
PRINT (list)
RELEASE
PREPARE n,(svar)
OPEN n,(svar)
CLOSE n
WRITE n,RN;(list)
WRITE n,RN;(list);
WRITAS n,RN;(list}
WRITE n,SEQ;(list)
WRITE n,SEQ;(list);
WEOF n,RN
WEOF n,SEQ
READ n,RN;(list)
READ n,RN;(list);
READ n,SEQ;(list)
READ n,SEQ;(list);

A-3

APPENDIX B

INPUT/OUTPUT LIST CONTROLS ,

CONTROL USED IN FUNCTION

*P<m>:<n> KDC Causes the cursor to be positioned
horizontally and vertically to the
column and line indicated by the
numbers <m> (horizontal 1-80) and
<n> (vertical 1-24). These numbers
may either be literals or numeric
variables. Note that <n> is ignored
in the CONSOLE statement. This list
control is only effective on the
Datapoint 3360-102. ,

*N KDP Causes the cursor or printer to be
positioned in Column 1 of the next
line.

*EL KDC Causes the line to be erased from
the current cursor position.

*EF KDC Causes the screen to be erased from
the current cursor position to the
end of the line.

*+ KDCP Turn on Keyin Continuous for KEY IN
or space after logical length
suppression for DISPLAY, PRINT, and
CONSOLE.

*+ W Turn on space compression during
WRITE.

*- KDCP Turn orf Key!n Continuous (turned
off at the end of the statement) or
the space after logical length
suppression.

*<n> P Causes a horizontal tab on the
printer to the column indicated by
the number (n). No action occurs if
the carriage is past the column
indicated by <n>.

*<n> RW Tab specification for READ or WRITAB
*<nvar> operations; the logical file

pointers are moved to that character
position relative to the current

B-1

"

·F

physical reoord.

KDP Suppress a new l1ne function when
occurring at the end of a list.

KDCP

P

KDP

KDP

K

Any characters appearing between
quotes are displayed or printed when
enoountered (note that a quote
itself cannot be quoted).

Causes the printer to be positioned
to the top of form.

Causes a linefeed to be displayed or
printed.

Causes a carriage return to be
displayed or printed.

Time out after 20 seconds for KEYIN
statement.

B-2

APPENDIX C

PROGRAM EXAMPLES

Simple ANSWER Program

• SIMPLE ANSWER PROGRAM

PORTN
IDCODE
ID

FORM "4"
DIM 9
INIT "DATAPOINT"

CLOSE 1
CLOSE 2
CLOSE 3
DISPLAY -ES,"D A T ASH ARE
CONSOLE "ANSWER",PORTN

LOOP KEIIN "ID: "tIDCODE
HATCH ID TO IDCODE
GO TO BADID IF NOT EQUAL
GOTO BADID IF LESS
MATCH IDCODE TO ID
GOTO BADID IF LESS
STOP

BADID DISPLAY ft. __ INVALID 10 ••• "
GOTO LOOP

PORT ",PORTN," ON LINE"

Simple MASTER Program

. SIMPLE MASTER PROGRAM
•
PORTN FORM "4"
FILNAM DIM 8

RELEASE
CLOSE 1
CLOSE 2
CLOSE 3
CONSOLE "MASTER-,PORTN

LOOP KEIIN *N,*EL,"PROGRAH NAME: ",FILNAM
TRAP NONAHE IF CFAIL
CHAIN FILNAH

NONAME DISPLAY ft ••• NO SUCH PROGRAM ••• n
GOTO LOOP

" ,....,
. ,.""" !

Complex ANSWER Program

• DATASHARE ANSWER PROGRAM

PORTN
DATE
IDCODE
IDCTR
TIMEON
ZERO
ONE
FOUR
EIGHT
TEN
N28
NFEB
N30'
N31
SPACE
CENT
RN
TIME
DAY
YEAR
NDAYl
NDAY2
NYEARl
NYEAR2
SJAN
SFEB
SHAR
SAPR
SHAY
SJUN
SJUL
SAUG
SSEP
SOCT
SNOV
SDEC
LINE
SYSFILE
DAYFILE

FORM
DIM
DIM
FORM
DIM
FORM
FORM
FORM
FORM
FORM
FORM
FORM
FORM
FORM
INIT
INIT
FORM
INIT
INIT
INIT
FORM
FORM
FORM
FORM
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
INIT
DIM
INIT
INIT

CLOSE
CLOSE
CLOSE
DISPLAY
OPEN
CONSOLE

STARTO CLOCK
HOVE
CLOCK

"3" THE NUMBER OF THIS PORT
18 TODAY'S DATE IN MONTH, DAY,
10
"311
8
"on
"1"
"4"
"8"
"10"
"28"
"29"
"30"
"31"
" "
" 19" ,
"000"
"00:00:00"
"000"
"00"
3
3
2
2
-JANUARY"
"FEBRUARY"
"MARCH"
"APRIL"
"MAY"
"JUNE"
"JULY"
"AUGUST"
"SEPTEMBER"
"OCTOBER"
"NOVEMBER"
"DECEMBER"
100
"SYSFILE"
"DAYFILE"

1
2
3
-ES,*N,"D A T ASH ARE
1,SYSFILE
*EL,"ANSWER",PORTN
DAY TO DAY
DAY TO NDAY'
TIME TO TIME

C-03

PORT ",PORTH;

YEAR

CLOCK YEAR TO YEAR
HOVE NDAYl TO NDAYl
GOTO NODATE IF ZERO
HOVE YEAR TO NYEARl
HOVE NYEARl TO NYEAR2
DIY FOUR INTO NYEAR1
HULT FOUR BY NYEARl
COMPARE NYEARl TO NYEAR2
GOTO LEAP IF EQUAL
HOVE N28 TO HFEB

LEAP SUB N31 FROM NDAYl
GOTO JAN IF LESS
GOTO JAN IF EQUAL
SUB NFEB FROM NDAY'
GOTO FEB IF LESS
GOTO FEB IF EQUAL
SUB N31 FROM NDAY1
GOTO MAR IF LESS
GOTO MAR IF EQUAL
SUB N30 FROM NDAY1
GOTO APR IF LESS
GOTO APR IF EQUAL
SUB N31 FROM NDAYl
GOTO HAY IF LESS
GOTO MAY IF EQUAL
SUB N30 FROM NDAY1
GOTO JUN IF LESS
GOTO JUN IF EQUAL
SUB N31 FROM NDAYl
GOTO JUL IF LESS
GOTO JUL IF EQUAL
SUB N31 FROM NDAYl
GOTO AUG IF LESS
GOTO AUG IF EQUAL
SUB N30 FROM NOAYl
GOTO SEP IF LESS
GOTO SEP IF EQUAL
SUB N31 FROM NOAY1
GOTO OCT IF LESS
GO TO OCT IF EQUAL
SUB N30 FROM NOAYl
GOTO NOV IF LESS
GOTO . NOV IF EQUAL
MOVE SDEC TO DATE
GOTO START1

NOV ADD H30 TO NDAYl
MOVE SHOV TO DATE
GOTO START1

OCT ADD N31 TO NDAYl
HOVE SOCT TO DATE
GOTO START1

SEP ADD N30 TO NDAY1
HOVE SSEP TO DATE

c ... 04

GOTO STARTl
AUG ADD N31 TO NDAY1

HOVE SAUG TO DATE
GOTO START1

JUL ADD N31 TO NDAYl
HOVE SJUL TO DATE
GOTO START1

JUN ADD N30 TO NDAYl
HOVE SJUN TO DATE
GOTO START1

MAY ADD N31 TO NDAYl
MOVE SHAY TO DATE
GOTO START1

APR ADD N30 TO NDAY1
HOVE SAPR TO DATE
GOTO START1

HAR ADD N31 TO NDAYl
HOVE SHAR TO DATE
GOTO START1

FEB ADD NFEB TO NDAY1
HOVE SFEB TO DATE
GOTO START1

JAN ADD N31 TO NDAYl
HOVE SJAN TO DATE

START1 ENDSET DATE
HOVE NDAYl TO DAY
COHPARE TEN TO NDAYl
GOTO START2 IF NOT LESS
BUMP DAY

START2 APPEND DAY TO DATE
APPEND CENT TO DATE
APPEND YEAR TO DATE
RESET DATE
DISPLAY .+," ON LINE AT ",TIHE," ON ",DATE
GOTO DATEOK

NODATE DISPLAY I' ON LINE " . ,
BEEP
DISPLAY DATE NOT INITIALIZED ... "

DATEOK DISPLAY
TRAP LOOP 1 IF 10
OPEN 2,DAYFILE
HOVE ZERO TO RN

LOOPO READ 2,RNjLINE
CHATCH "9" TO LINE
GOTO LOOP 1 IF EQUAL
RESET LINE TO 72

LOOPOA BUHP LINE BY -1
GOTO LOOPOB IF EOS
CHATCH .. " TO LINE
GOTO LOOPOA IF EQUAL

LOOPOB LENSET LINE
RESET LINE
DISPLAY ·+,LINE

C-05

ADD
GOTO

LOOPl KEYIN

CLOCK
CONSOLE
HOVE
GOTO
MOVE

LOOP2 READ
CHATCH
GOTO

LOOP3 CMATCH
GOTO
BUMP
BUMP
GOTO
CHATCH
GOTO
SUB
WRITE
CLOSE
STOP

NEXTID ADD
GOTO

IDFAIL BEEP
DISPLAY
SUB
GOTO

KABOOM CONSOLE
BEEP
DISPLAY
GOTO

ONE TO RN
LOOPO
-EL,"PLEASE LOG IN: ",.N,IDCODE:
·C,"···········,·C,"OOOOOOOOOO"
TIME TO TIMEON
.P15:1,.EL,"ID: ",IDCODE," TIME ON: ",TIHEON
IDCTR TO IDCTR
KABOOM IF ZERO
EIGHT TO RN
1,RNjLINE
" n TO LINE
IDFAIL IF EQUAL
IDCODE TO LINE
NEXTID IF NOT EQUAL
LINE
IDCODE
LOOP3 IF NOT EOS
n " TO LINE
NEXTID IF NOT E~UAL
ONE FROM PORTN
1,PORTN;RN,DATE,TIME
1

FOUR TO litH
LOOP2

n ••• INVALID ID ••• n

ONE FROM IDCTR
LOOP1
.P60: 1 , .E:L," ID OVERRUN"

n ••• INVAlID ID ••• n

LOOP1

Complex MASTER Program

• DATASHARE MASTER PROGRAM .
PORTN FORM "3" THE NUMBER OF THIS PORT
SYSFILE IN IT "SYSFILE"
ANSWER INIT "ANSWERX "
LINE DIM 100
LINITM DIM 10
RN FORM "000"
RNX FORM "000"
ONE FORM "1"
FOUR FORM "4"
EIGHT FORM "S"
NINE FORM "9"
'IEN FORM "10"
COUNT FORM "00"
CMDLIN DIM 20
HELP INIT "HELP"
HELLO INIT "HELLO"
CAT INIT "CAT"
RUN INIT "RUN"
TIME INIT "TIME"
DATE INIT "DATE"
ONLINE INIT "ONLINE"
PORT INIT "PORT"
BYE INIT "BYE"

CLOSE ,
CLOSE 2
CLOSE 3
RELEASE
CONSOLE "MASTER",PORTN," "
DISPLAY *ES
OPEN 1,SYSFILE
SUB ONE FROM PORTN
READ 1,PORTN;RN

CMDREQ KEYIN ·ES,·N,"READy",.N,CMDL~N
TRYAGN HATCH HELP TO CMDLIN

GOTO HELPI IF EQUAL
HATCH HELLO TO CHDLIN
GOTO HELLO! .IF EQUAL
MATCH CAT TO CHDLIN
GOTO CATI IF EQUAL
HATCH PORT TO CMDLIN
GOTO PORTI IF EQUAL
HATCH TIME TO CHDLIN
GOTO TIMEI IF EQUAL
MATCH DATE TO CHDLIN
GOTO DATEI IF EQUAL
HATCH ONLINE TO CMDLIN
GOTO ONLI IF EQUAL
HATCH BYE TO CHDLIN

C-07

GOTO
HATCH
GOTO
CALL

TRINAM TRAP
CLOSE
CHAIN

CFAIL OPEN
KEIIN
GOTO

•
GETNAM BUMP

RETURN
CMATCH
GOTO
CHATCH
GOTO
CMATCH
GOTO
CMATCH
GOTO

GETEXX BUHP
RETURN .

HELPI KEIIN

GOTO

HELL'OI CALL
MOVE
MOVE

HELL02 READ
CHATCH
GOTO

HELL03 CMATCH
GOTO
BUMP
BUMP,
GOTO
CHATCH
GOTO
READ
WRITE
HOVE

BYEI IF EQUAL
RUN TO CMDLIN
TRINAH IF NOT EQUAL
GETNAH
CFAIL IF CFAIL
1
CMDLIN
1,SYSFILE
eN,"WHAT?",eN,CMDLIN
TRYAGN

CMDLIN
IF EOS
"0" TO CMDLIN
GETEXX IF LESS
":" TO CHDLIN
GETMAM IF LESS
"A" TO CHDLIN
GETBXI IF LESS
"[" TO CMDLIN
GETNAH IF LESS
CHDLIN

eES,·N:
"ENTER: HELLO-<ID> TO SIGN ON AS ANOTHER USER",*N:
" HELP TO GET THIS INFORHATION",*N:
It CAT TO GET A LIST OF PROGRAMS",*N:
It TIME TO GET THE CURRENTTIME",*N:
It DATE TO GET THE DATE AT LOGON",*N:
" ONLINE TO GET THE TIME AT LOGON",*N:
" PORT TO GET THE PORT BEING USED",*N:
.. RUN-<NAME> TO RUN A PROGRAM",*N:
" OR <NAME> TO RUN A PROGRAM",*N,*N:
ItREADY",*N,CMDLIN,*ES
TRIAGN

GETNAH
CHDLIN TO LINITM
EIGHT TO RNX
1,RNX;LINE
" .. TO LINE
IDFAIL IF EQUAL
LINITH TO LINE
NEXTID IF NOT EQUAL
LINE
LINITM
HELL03 IF NOT EOS
.. " TO LINE
NEXTIO IF NOT EQUAL
1,PORTN;RN,LINE
1,PORTN;RNX,LINE
RNX TO RN

C-08

GOTO

NEXTID ADD
GOTO

IDFAIL BEEP
KEYIN
GOTO

CATI

. CATR

CATR1

CATR3

CATRA
CATRB

PORTI

CATR4

TIMEI

DATEI

DISPLAY
HOVE
READ
RESET
MOVE
GOTO
READ
HOVE
RESET
LENSET
RESET
CMATCH
GOTO
CMOVE
BUMP
BUMP
GO TO
GO TO
BUMP
CHATCH
GOTO
LENSET
RESET
DISPLAY
SUB
GOTO
ADD
GOTO

ADD
DISPLAY
SUB
KEIIN
GOTO

CLOCK
DISPLAY
GOTO

READ
RESET
LENSET
RESET
MOVE

CHDREQ

FOUR TO RNX
HELL02

H. __ INVALID ID •• *",*N,"READY",-N,CMDLIN,-ES
TRYAGN

*ES,*N,"CATALOG: ",*N
RN TO RNX
1,RNX;LINE
LINE TO 11
NINE TO COUNT
CATR1
1,RNX;LINE
TEN TO COUNT
LINITM TO 99
LINITM
LINITM
" " TO LINE
CATR4 IF EQUAL
LINE TO LINITM
LINE
LINITM
CATR3 IF NOT EOS
CATRB
LINITM BY -1
LINITM TO It It

CATRA IF EQUAL
LINITM
LINITH
*+,LINITM
ONE FROM COUNT
CATRl IF NOT ZERO
ONE TO RNX
CATR

ONE TO PORTH
"YOU ARE ON PORT ",PORTN;
ONE FROM PORTN
*N,"READY",*N,CHDLIN,*ES
TRYAGN

TIME TO LINE
*+,"THE TIME IS ",LINE;
CATR4

1,PORTN;LINE
LINE T0 21
LINE
LINE TO 4
LINE TO CHDLIN

CHA'tCH CHDLIN TO " "
GOTO DATEIN IF EQUAL
DISPLAY .+,"THE DATE AT LOG IN WAS ",CMDLIN;
GOTO CATR4

DATEIN DISPLAY n... DATE! NOT INITIALZIED ••• n_ ,
GOTO CATR_

-ONLI READ 1,PORTN;LINE
RESET LINE TO 29
LENSET LINE
RESET LINE TO 22
MOVE LINE TO CHDLIN
DISPLAY .+,"THE TIME AT LOG IN WAS ",CMDLIN;
GOTO CATR4

-·BYEI CLOCK TIME TO LINE
DISPLAY .+,nLOGGED OFF AT ",LINE

BYEE KEIIN CHDLIN
RESET ANSWER TO 6
ADD ONE TO PORTN
HOVE PORTH TO CMDLIN
SUB ONE FROM PORTN
APPEND CMDLIN TO ANSWER
RESET ANSWER
TRAP AFAIL IF CFAIL
CHAIN ANSWER

AFAIL GOTO BYEE,

C-10

