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0. PREFACE

DASL (pronounced "dazzle") is Datapoint's Advanced Systems
Language. Some of you may have known DASL in the days when it was
called BABEL, and this volume was called The BABEL Book. The name
was changed when a trademark conflict was discovered.

This document is an attempt to familiarize programmers with
DASL. It is intended to convey the "flavor" of programming in
DASL, but is by no means a rigorous reference. For those
occasions when precise language definitions are required, the
reader may consult the DASL Language Reference Guide in the
appendix.

The tutorial will be divided into three parts, as follows:

1. Discussion of concepts
2. Sample programs
3. Technical appendices

The DASL compiler is only available under RMS. While DASL
itself is not operating system or machine dependent, the I/O
packages currently available only support RMS operation.
Therefore, readers who wish to type in and run the sample programs
provided will have to do so under RMS.

The I/0 package referenced in this tutorial is called SIO
(short for "Sample Input/Output"). SIO and its compile time
support file (SIOINC) will be made available, but readers are
urged to note that these entities are not defined by the DASL
language itself.

DASL was designed by Gene Hughes at Datapoint's Advanced
Product Development. In many ways, DASL can be seen as the
conceptual offspring of C, the systems programming language
developed by Bell Laboratories. Readers familiar with C should
feel right at home. The code generation component of DASL for
both the 5500 and 6600 instruction sets was written by Mark
Miller, also at APD.

We think that once the concepts of programming in DASL become
clear, the consistency of syntax, simplicity of constructs and
rich set of operators will make learning and using the full power
of the language an enjoyable experience.
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I. Be DASL'ed

Datapoint has a high-level systems programming language. Its
name is DASL.

DASL is a "high-level"” language in the sense that it provides
the kinds of powerful and general constructs required for
successful structured programming. On the other hand, DASL is one
of the few high-level languages which does not "hide" any part of
the machine from the programmer. Many tasks which previously
demanded the "low-level" capabilities of an assembler can now be
handled cleanly and elegantly in DASL.

A major aspect of DASL's design philosophy has been to
achieve this power and generality through simplicity: DASL is easy
to learn. DASL programs are easy to read, to maintain and to
modify. DASL compiles quickly and produces machine efficient
code.

This section of the tutorial will present some working DASL
programs and their explanations. This tutorial is not aimed at
breaking down the conceptual barriers of the computer-shy novice,
but at giving the experienced programmer quick hands-on exposure.

A few comments before we begin. The DASL language itself
does not contain any I/O facilities. Therefore DASL is not tied
to any operating system or machine. Users may wish to write their
own specialized I/0 functions for whatever operating systems and
whatever devices they require. There is a package named SIO,
which provides some basic screen and keyboard I/O for an RMS
workstation. SIO was written by Gene Hughes specifically for this
tutorial. It allows a DASL program to read data from the keyboard
and write data to the screen. Feel free to use SIO, but once you
are comfortable with DASL, you are encouraged to scout out the
other, more complex I/0 packages that have been developed, or to
"roll your own."

In the sample programs you will also notice directives to
INCLUDE files with names like DSINC, DSRMS and SIOINC. These are
for the most part just definitions required by the I/O package.
The complete text of these files will be included in the appendix,
along with source listings for SIO. Now, on to a real live DASL
program.
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II. A Real Live DASL Program

Page 2

/* This program prompts the user for a number, then
computes and displays the factorial of that number */

/* The factorial of n is the value obtained by

multiplying together all of the numbers from 1 to n, for

example: the factorial of 4 is (1 x 2 x 3 x 4) = 24.

*/

INCLUDE(DSINC)
INCLUDE (DSRMS)
INCLUDE(SIOINC)

FACTORIAL(N INT) INT :=
VAR MULT INT;
{
MULT := 1;
RESULT := 1;
LOOP { WHILE MULT <= N;
RESULT := RESULT * MULT;
MULT := MULT + 1;
Vi

ENTRY MAIN() :=

VAR KEYVAL, NFACT INT;

{
DSWRITE(SCREEN, LN, S,'Enter number:
KEYVAL := DSREADI(KEYBD);
NFACT := FACTORIAL(KEYVAL):;
DSWRITE(SCREEN, LN, S,'Factorial: ',
}i

l):

I,NFACT, LN);
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COMMENTS: In DASL, comments start with a /* and end with an */.
Lines which begin with a period, plus sign or asterisk will also
be treated as comments. Comments can be nested.

INCLUDE: Each include is a compile time directive to temporarily
switch the current input file to the one indicated. Each of the
three INCLUDEd files appears in the appendix.

PROGRAM FUNCTION: FACTORIAL

INPUT PARAMETER LIST: FACTORIAL is called with one parameter
whose name in this case is N. N is a local variable of
FACTORIAL whose type is INT, which is short for integer.

RESULT: The function returns a value of type INT upon
completion. This value is also a local variable of the
function, and is automatically named RESULT by the compiler.

VAR: This keyword indicates that local variable definitions
follow. 1In this case, only one local variable (aside from
N, the input parameter, and RESULT, the return value) is

. : . A
being defined. 1Its name is MULT and it is of type INT.

~aity AT A4

FUNCTION LOGIC: The body of the function between the
outermost set of braces actually performs the operation
of evaluating the factorial of N. When the processing
terminates, the value left in the variable named RESULT
will be returned to the caller.

PROGRAM FUNCTION: MAIN

Every DASL program has one function named MAIN, and it is where
execution of the program starts. MAIN takes no parameters and
returns no value. MAIN is always preceded with the keyword:

ENTRY. This means that MAIN can be seen by entities outside of
the file. We'll discuss import/export considerations later on.

FUNCTION LOGIC: MAIN is performing a series of function calls.
DSWRITE and DSREADI are both external functions defined by the
I/0 package. DSWRITE is used to display information to the
screen. DSREADI returns an integer value from the keyboard.
The only substantial act performed by MAIN is the call to the
FACTORIAL function, assigning the value returned into the local
variable called NFACT.
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The first thing to notice about the program is that it is
made up of two blocks of code (FACTORIAL and MAIN) referred to as
functions. One function in every DASL program is called MAIN, and
it is where execution of the program starts. A function may or
may not be called with parameters, and it may or may not return a
value. DASL functions are more or less analogous with standard
mathematical functions. For example:

f(x) = x2 -9

tells us the rule associated with changing an "input parameter”
("x") into the value returned by the function ("£(x)"). If this
function is "called” with a value of x equal to 5, it will
"return" the value of 16. The only substantial difference between
this formal sort of function and what we'll be seeing in DASL is
that mathematical functions deal only with values, while DASL
functions deal with both values and effects. An effect is some
change in the state of the world. For instance, I can call a
DASL function which does nothing but change what the user sees on
his screen. The function has propagated a very real effect, but
its action has nothing to do with returning a value to the caller.

Functions consist of local variables and statements. Local
variables are data elements which are the private property of the
function which defines them.

Statements specify the actions which the function must take.
Statements are composed of expressions and flow of control
constructs.

Expressions are pieces of DASL code which have a value. For
instance, (X + 2) is an expression. Statements, on the other
hand, dc not have values, only effects. The following is an

V A A AT TN s

example of a statement:
NUMVAR := (X + 2);

In this example, there are five different symbol groups which can
be thought of as expressions:

NUMVAR, X and 2 are each autonomous expressions. (X + 2) is an
expression, and NUMVAR := (X + 2) is as well. Each of these
symbol groups can be thought of as having a value. 1In the case of
NUMVAR := (X + 2), the expression has an effect as well as a
value. By putting a semicolon after the whole expression, we turn
the line into a statement, which causes only the effects to
remain. The values associated with the expressions "go away".
They are ephemeral, evaluated when necessary, but not stored in
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memory.

Note that the assignment operator in DASL is a colon followed
by an equals sign (:=). It is usually pronounced as "gets" when
reading a program aloud. The above example would read: "NUMVAR
gets X plus two". Compound statements can be made by enclosing a
group of smaller statements between open and close braces. The
compound statement must also terminate with a semicolon. For
example:

X := OFFSET(N);

NUMVAR := (X + 2);

DSWRITE (SCREEN, LN, I,NUMVAR);
}i

This is a single DASL statement, which is made up of three
component statements. In every way, the compound can be thought
of as a single statement.

Even though execution always begins with MAIN, it is
typically the last thing defined in the program module. This is
because in DASL, every entity must be declared before it is
referenced. Since MAIN will call the FACTORIAL function,
FACTORIAL must appear first. When reading through a program, it
is generally best to look at MAIN first and let the flow of the
program logic guide you.

Notice that MAIN itself is not doing a great deal. It is
simply putting up a prompt on the screen, calling a function to
get an integer value from the keyboard, handing off that value to
another program function (whose internal details MAIN knows
nothing at all about) and displaying the value returned by that
function call. That's it. MAIN's job is usually that of a
traffic manager, defining the superstructure of a program, and
calling special purpose functions to actually do the work.

In fact, the only thing that one function ever "knows" about
any other function is its type, that is, what types of parameters
(if any) it needs to be called with, and what type of value (if
any) it returns upon completion. This is very nearly the complete
interface between program functions, and it helps insure that only
a function's behavior, and not its methodology, determines how a
program executes. This is perhaps the single most important
benefit of modular programming, because it bundles complexity into
small and highly localized packages, which can be coded, debugged,
re-implemented or whatever--independently of each other.

DASL provides several flow of control constructs, three of
which are used in this program. The first is the most basic of
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all, the semicolon. Ending a statement causes the next statement,
if any, to be executed. Flow of control doesn't get any simpler
than that. When there are no statements left to execute, the
function returns. If the function has been defined as returning a
value, the contents of the variable named RESULT will be what is
returned. When MAIN runs out of statements to execute, the
program terminates.

The next flow of control construct used is the function call.
The statement which reads:

NFACT := FACTORIAL(KEYVAL):

calls the FACTORIAL function with KEYVAL as its parameter, and
assigns the value returned into the variable NFACT.

The last flow of control construct used in this program is
seen inside the body of FACTORIAL. It is the LOOP/WHILE construct
and true to its name, causes the statement following the LOOP to
be continually re-executed as long as the expression following the
WHILE remains logically true, that is, evaluates to a non-zero
value. As soon as the expression becomes logically false, that
is, takes on a value of zero, the loop is exited. Remember that
compound statements can be made by putting braces around a group
of smaller statements. The statement which is being LOOPed here
is such a compound, since it is composed of three smaller
statements.

It is interesting to note that even though the WHILE
statement in this example was the first one within the body of the
LOOP, this does not have to be the case. Not only that, but a
LOOP may have several different WHILE statements, providing for
multiple exits from the LOOP based on different conditions. And
of course, any LOOP which doesn't have at least one WHILE
statement in it will run forever. Or until you do something
dramatic:

SARTRE() :=
{
LOOP {
DSWRITE(SCREEN, LN, S, 'HELP! NO EXIT!');
Vi

The rest of the factorial program should be rather familiar
stuff: expressions, assignments, various operators. In the
interest of clarity the first sample program took no stylistic
shortcuts. But DASL does provide a number of notational
conveniences for the programmer which are frequently used. Below,
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I have rewritten the FACTORIAL function, using several of these
conventions:

FACTORIAL(N INT) INT :=

VAR MULT INT;

{ .
MULT := (RESULT := 1); /* Parentheses optional */
LOOP { WHILE MULT <= N;

RESULT *= MULT++;
}s
i

There are three shortcuts being used in this example:

First, the two assignment statements before the loop have been
merged into one statement. RESULT gets the value of 1, and MULT
gets the value of the expression (RESULT := 1). The value of an
assignment expression is the value being assigned. The assignment
expression has the side effect of assigning its value into some
other data element. Remember, expressions must have values and
can also have effects. Statements can only have effects.

Next, notice the ++ following MULT. This is DASL shorthand for
increment. If the ++ (or -- for decrement) comes before the
variable name, then the incrementing is done before the value is
used in the expression. If, as in the above example, the operator
comes after the variable, the current value is used in the
computation, then the value is incremented. If a variable is used
more than once in an expression, the order of evaluation is
undefined and the increment/decrement operators should not be
used.

The last trick is the *= operator. Very often, we need to modify
the value of a variable in some way, then plug the modified value
back into the source variable. This is what we did when we said:

RESULT := RESULT * MULT;

The *= notation means the same thing, not only saving keystrokes
but emphasizing the logical relationship between the left and
right sides of the statement. Every binary arithmetic and bitwise
operator in DASL can be used in this way (see the Language
Reference Guide in the appendix for a complete list of DASL
operators).

Before going on, it would probably be helpful for you to get
the sample program up and running (so you can convince yourself
that the language really works!). Turn the page for instant
enlightenment, or a reasonable facsimile thereof.
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III. The Joy of Running

Now that you've got a real live DASL program, the next step
is to get it up and running. The path from DASL source to
executable object feels like a single operation, but in fact, the
process has several components. For that reason, most DASL
programmers use a chain file to handle the less than fascinating
details. After all, that's what machines are for. The following
chain, which I call COMPLINK (for COMPILE and LINK), will work
just fine for programs which use SIO as their I/0 package and have
only a MAIN module. Feel free to use it, and to add improvements
as you go along.

DASL #IN#

SNAP DASLASM, #IN#;N
LINK ,#IN#/CMD;ERR,FASTLIB,NEW
SEGMENT #IN#

INCLUDE #IN#

INCLUDE DSLIB.DSSTART
LIBRARY SIO

LIBRARY DSLIB

LIBRARY RMSUFRS
SIGNON #IN#

*

Assuming that you have named your program something inspired like
FACTORIALIZE, this is what your command line will look like:

COMPLINK/CHN; IN=FACTORIALIZE

COMPLINK will take care of the details of compilation and linkage,
and leave behind, assuming no errors are encountered, an
executable file called FACTORIALIZE/CMD. By the way, if the
compiler does turn up any errors, it will create a file called
DASLERR/TEXT. DASLERR is a standard text format file which will
describe each of the errors encountered and tell you the line
number in your source where the offense occurred.

Taking a closer look at COMPLINK, you'll notice that it
really consists of three parts. First, there is a call to the
DASL ~ompiler, which turns your DASL code intc assembler sourcsa.
Next, there's a call to SNAP, which generates a relocatable code
module. The last step is an invocation of LINK, which performs
the final blending of modules required to make an executable
command file.

Following the line in which LINK is called, there is a stack
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of directives which specify to the linker which modules are
required to resolve all of your program's references. The file
called DSLIB contains the run-time support needed by DASL
programs. One of DSLIB's members, DSSTART, is explicitly INCLUDEd
in the link because it is responsible for starting up the
execution of a DASL program. In effect, it forges an interface
between the command interpreter and the program. The rest of the
run-time package contains the functions necessary for recursion
support, software divide and multiply for the 5500, and block
move/comparison. All things considered, that's not a whole lot of
run-time. SIO, of course, is the Sample I/0 package. RMSUFRS is
the standard RMS package of User Function Routines. Some of these
get called by SIO, and must therefore be included.

If your program consists of more than one module, or
references other function libraries, simply add them to the list.
The linker's INCLUDE directive will take the entire /REL module
specified, and plug it into the /CMD file, merrily resolving
references along the way. If you use the LIBRARY directive
instead, the /REL file will only be searched for those entities
required to resolve references. There is a separate manual for
the LINK command which will fill you in on all of the details.

The DASL compiler itself consists of two serial passes, one
which transforms DASL source code into a machine independent,
intermediate logical representation, and another which generates
the actual output code. Because pass one is machine independent,
different code generators may be hooked onto it for different
machines. At present, the default code generator produces SNAP
assembly source for the 6600 instruction set. The default output
file name is DASLASM.

If you want to run your programs on a machine which uses the
5500 instruction set (5500s and 3800s), you will have to change
the line which calls the DASL compiler so that it looks like this:

DASL #IN#;CODE=5500

The compiler itself must be run on a machine which uses the 6600
instruction set. For those of you who left your scorecards at
home, at present that means a 6600, an 8600 or an 8800. And if
you forget what the options and defaults are, you can always type:

DASL; HELP

The existing compiler package, DASL/CMD, stops after
producing assembler source code. It is the responsibility of the
rest of COMPLINK to SNAP and LINK the output to produce the
executable command file. 1In the future, some or all of these
services may be provided by the compiler package. In the
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meantime, you can expect to see all sorts of handy little CHAIN
files hanging around your work catalog. As time goes on,
programming accessories including a symbolic debugger should
become available, making life a little bit easier and a little
more productive for one and all.
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IV. Anatomy of a DASL Program

The standard model of computing hasn't changed much since
John von Neumann came up with the idea of the "stored program
machine." Basically, the computer's memory is seen as a bucket
into which we pour a molten stream of information. Some of this "
information is supposed to be interpreted as program code, the
stuff which gets executed and which controls what goes on. The
rest of the information is taken to be data elements which get
manipulated by the various actions, or effects, of the program
instructions. Very neat, very simple, and imperative that whoever
is in control of all of this keeps the relationship straight.
Executing your data can have some rather amusing results.

Given that the program ultimately translates into organized
chunks of memory, it is the job of the high-level language to
insure that the information which gets deposited into memory is
not only managed correctly, but is a logical reflection of what
the programmer has in mind. That is why constructs such as
arrays, integers and pointers were invented. To provide the
programmer with "templates" for the systematic and meaningful
organization of his program's memory space.

The largest modular unit in DASL is the PROGRAM. A PROGRAM
is made up of one or more MODULES, exactly one of which is called
the MAIN MODULE, because it contains the function named MAIN,
where program execution starts. Some programs will consist only
of a MAIN MODULE. One MODULE corresponds to exactly one source
file, and each module is independently compiled into a relocatable
code file. Programs which consist of more than one MODULE will
need to link the component /REL files together, as discussed in
the preceding chapter.

Individual MODULES are made up of definitions and
declarations of the actual entities which will inhabit memory when
the finished program is executed. It is helpful to think of these
entities as being of two categories: FUNCTIONS and DATA VARIABLES.

FUNCTIONS are autonomous program routines dedicated to carrying
out a specific task. Functions are made up of statements and
expressions.

DATA VARIABLES are named pieces of memory of various types.
Variables may range from being globally visible to an entire
program down to being the private property of a single statement
within a function.

Both FUNCTIONS and DATA VARIABLES have type information
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associated with them, and the compiler does type compatibility
analysis to help "keep the programmer honest."” As we discuss the
different data types and their properties, keep in mind that DASL
also provides a facility, called "casting" which allows local
reinterpretation of any data element's type. With casting, the
programmer is never unduly restricted by someone else's conception
of how the machine and its memory should be treated.

DASL provides for five different classes of data. Each of
these classes contains specific types. On the following pages we
will examine each of the data classes, the types associated with
them, and look at some examples of how they would be declared and
used in a DASL program.
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SCALAR - A scalar describes an integer value.
type:

BOOLEAN - One byte, unsigned

CHAR - One byte, unsigned

BYTE - One byte, unsigned

UNSIGNED - Two bytes, unsigned

INT - Two bytes, signed

LONG - Four bytes, signed
Example:

ENTRY MAIN() :=

VAR CHAR1, CHAR2 CHAR;
NUM1, NUM2 INT;
COUNTER UNSIGNED;

The DASL Document

A scalar can be of

CHAR1 := 'A'; /* Assigns value of ASCII 'A' to CHAR1l */
CHAR2 := 231; /* Assigns decimal 231 to CHAR2 */
CHAR1 := CHAR1l + '*'; /* Adds '*' to previous val */

/* Remember, CHARs are just small, unsigned integers */

NUM1 := CHAR]1l + CHAR2;

NUM2 := NUM1 - (012 + CHAR1l); /* 012 is an octal constant */
NUM1l++; /* Increment NUM1 */

NUM2--; /* Decrement NUM2 */

COUNTER := 64000; /* Set up a 64000 step decrement loop */

LOOP WHILE COUNTER-- > O0;
i
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ARRAY - An array is a continuous group of some type of data
element. The data elements which make up the array can be of any
defined data type, except for FUNCTION. The elements can
themselves be arrays, giving the effect of multi-dimensionality
with a single primitive class. The elements of an array are
numbered from zero to one less than the number of elements in the
array, so the first element of an array would look something like:
ARRAYNAME[O].

Example:

ENTRY MAIN() :=

VAR TEXTLINE [15] CHAR /* Array of 15 characters */
PAGE [24][15] CHAR; /* Array of 24 arrays of 15 chars */
NUMLINE [10] INT; /* Array of 10 integers */

. =

{
TEXTLINE[O] := 'A';
/* Assign an ASCII A into the first position of textline */

PAGE([0] := TEXTLINE;
/* Assign the TEXTLINE array into the first element of PAGE */

PAGE[1][5] := TEXTLINE[O];
/* Assign the first character of TEXTLINE into the sixth character
of PAGE's second array */

DSWRITE(SCREEN, C,PAGE[1]([5]);
/* Write the character from the previous example to the screen */

NUMLINE[O] := 10;
/* Assign a decimal value 10 into the first element of NUMLINE */

NUMLINE({1l] := NUMLINE[O] + TEXTLINE[S5];
/* Assign the sum of the first element of NUMLINE and the 6th
element of TEXTLINE into the 2nd element of NUMLINE */

}i
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POINTER - A pointer is a data element which contains the address
of some entity in memory. The two primitive pointer operations
which are available in DASL are:

& - "address of" operator. Takes the address of the entity
following it. Example: &CHARLINE[O] would represent the address
of the first element of the array named CHARLINE.

A - "indirection" operator. Takes the value of what the
pointer is pointing at. Example: CHARPOINTA would evaluate to the
actual entity in memory that CHARPOINT is holding the address of.

The type of a pointer is defined solely by the type of the thing
to which it points. All pointers themselves are the same size,
that is, the size of the address word of the machine on which the
program is to be run. For the current Datapoint architecture,
this magic number turns out to be two bytes.

Example:

ENTRY MAIN() :
VAR CP A CHAR;
C CHAR;

ARRAY [10] CHAR;

ARRAY := 'ABCDEFGHIJ'; /* Initialize the array with chars */

CP := &ARRAY[4]; /* CP gets the address of the 5th char */
C := CPa; /* C get the character pointed to by CP */
¥ i

The net effect of these operations is equivalent to:
C := ARRAY[4];
That is, C winds up containing the ASCII 'E' from the array. 1In

the sample programs later on, we'll be seeing a large number of
non-trivial pointer operations.
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STRUCTURE/UNION - STRUCTURES and UNIONS are similar classes of
data. In a structure, the programmer can define a compound type
made up of any of the available data types, except for FUNCTION.
For instance, if you were building a linked list, you might want a
structure that contained an integer value followed by a pointer to
the preceding structure in the list followed by a pointer to the
next structure in the list. Each of these three fields can be
named and referenced, and the entire structure can also be
manipulated as a logical whole.

The structure allocates sequential memory locations for the
separate fields defined within it. The union is also composed of
a group of subfields, but they all share a common starting point.
The union is only intended to hold one value at a time, but the
type of that value can be freely chosen from any of the data types
of its members. Unions are usually used within structures, to
represent an element whose type is different under different run
time conditions. The amount of memory allocated for the union is
the amount of memory needed for its largest member.

Example:

ENTRY MAIN() :=

VAR APPOINTMENT STRUCT { /* Struct of 4 data fields */
MONTH, DAY, YEAR INT;
REMINDER [25] CHAR;
}:

APPOINTMENT.MONTH := 06;
APPOINTMENT.DAY := 23;
APPOINTMENT.YEAR := 82
APPOINTMENT.REMINDER :
Vi

(IR

'NATIONAL SOFTWARE DAY "¢

Note that the way we refer to a particular field of a structure
(or a union) is: struct.field. Structures can have fields which
are themselves structures. The hierarchical field naming
convention simply continues, as in:

structl.struct2.field

since struct2 is simply a field of structl which happens to also
be a structure.
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TYPDEF - TYPDEF is not itself a data class, but rather, is a
facility whereby the programmer can invent and name his own data
types. For instance, in the STRUCTURE example above we saw a
local variable called APPOINTMENT which was a structure of 4
fields, named MONTH, DAY, YEAR and REMINDER. If we had first used
the TYPDEF facility to create a data type called DATE, we could
have defined APPOINTMENT as being a data element of type DATE. Or
we could have made arrays of DATEs or included DATEs as fields of.
other structures, and so on. Here's what the TYPDEF and variable
declaration portion would look like:

TYPDEF DATE STRUCT { /* Define new data type: DATE */
MONTH, DAY, YEAR INT;
REMINDER [25] CHAR;
Vi

APPOINTMENT DATE;
DATEARRAY [50] DATE;

DATELINK STRUCT ¢{ /* Define a new structure, made */
ADATE DATE; /* up of a DATE, followed by a */
NEXTDATE A DATE; /* pointer to DATE, for a linked */
}; /* list, etc. */
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FUNCTION - It turns out that the program functions themselves are
really another type of variable! After all, they live in memory.
Their values are determined by the actual pattern of machine codes
associated with them, their types by the types of their input
parameters and return values. And while it is probably not
desirable to change the function's value at run time (it is
possible!), there are other powerful things which we can do
because of this interpretation. For instance, we can store the
address of a function into a pointer and later call the function
indirectly. We can build arrays of pointers to functions and gain
indirect logical control over their patterns of execution. All of
this is a logical outgrowth of DASL's high-level/low-level
philosophy.

Because of DASL's type compatibility restrictions, two entities
which are "coincidentally,"” and not formally, of the same apparent
type are not taken to be compatible (see the Language Reference
Guide for complete details). For this reason, if you really did
want to call a function indirectly, it would be necessary to first
use the TYPDEF facility to create the definition of a function
type, and then declare both the actual function and pointers to it
to be of this type. Let's look at our factorial program in this
light:

TYPDEF FTYPE (N INT) INT; /* Define a function type: FTYPE */

FACTORIAL FTYPE := /* Function's type defined as FTYPE */
VAR MULT INT;
{
MULT := RESULT := 1;
LOOP { WHILE MULT <= N;
RESULT *= MULT++;
)i
)i

TAIMNYU wsAaTar/ \ PR
DINLINN1I runlivy .-

VAR KEYVAL, NFACT INT;
FUNCPTR A FTYPE; /* Pointer to a variable of type FTYPE */

{

DSWRITE(SCREEN, LN, S,'Enter number: ');

KEYVAL := DSREADI(KEYBD);

FUNCPTR := &FACTORIAL; /* FUNCPTR gets FACTORIAL's address */

NFACT := FUNCPTRA(KEYVAL); /* Indirect function call */

DSWRITE(SCREEN, LN, S,'Factorial: ', I,NFACT, LN);

}i

This program is identical to our original example, except that
FACTORIAL is being called indirectly (see program comments).
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The CAST Operator - As with the TYPDEF facility, CAST is not
itself a data class or type. The cast operator allows the type
definition of some entity to be locally reinterpreted, dissolving
type incompatibilities and permitting operations (hopefully under
the programmer's close scrutiny) which the compiler would
ordinarily consider to be in error.

DASL is not a "safe" language. It is possible, for instance, to
over or under subscript an array. This would probably be an
unacceptable condition for an applications oriented language, but
DASL's responsibility is to provide the most powerful programming
tools it can, within the context of high-level convenience and
modularity. The cast operator permits the programmer to view
memory as a pure pattern of bytes, independent of any particular,
external interpretation. It is up to the programmer, when
casting, to keep the world in order.

The cast operator appears as a set of angle brackets (the less
than, greater than symbols) around a type specification. The data
element following the cast operator is, in the local context,
reinterpreted as being of the type shown between the brackets.

For example:

P A CHAR;
I INT;

{
I := I + <INT>P;
)i

In this example, P, which is defined as a pointer to a character
in memory, is being locally re-cast as an integer. Therefore, the
pure 16 bit value which resides in P will be temporarily treated
as an INT (signed 2-byte integer) for the operation specified. P
is unchanged by the process; only its interpretation in the local
context has been altered.

Casting is an exception rather than a rule. Very few programs
need to cast extensively. The DASL compiler, which is probably
the most complex program yet written in DASL, only resorts to
extensive casting when using its dynamic storage allocator,
DSALLOC. In that instance, the motivation for casting is clear:
to the storage allocator, memory is just memory. It is the
outside world which wishes to impose high level structure
information onto it. This duality forces DSALLOC to resort to
casting in order to manage its increasingly more complex
interpretation of memory. When we call DSALLOC, we must cast a
pointer to the structure we wish to allocate as a pointer to CHAR.
That's sufficient to get the starting address of the allocated
memory into our pointer variable. Subsequently, the pointer can
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be used as we intended, reverting to its originally defined type
interpretation. The following example illustrates a typical use
of DSALLOC function:

DEFINE(FILESIZE, 30)

TYPDEF ITEM STRUCT {
FLAG CHAR:;
FILENAME [FILESIZE] CHAR:
ACTION CHAR;
NEXT A ITEM;
}i

ITEMPTR A ITEM;

{
< A CHAR> ITEMPTR := DSALLOC(SIZEOF ITEMPTRA);
}:

Casting is a powerful technique, best used sparingly, when no
other approach will suffice.
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V. Sorting It Out With Pointers

With all of that theory under your belt, you're probably
itching for some more code. The following program will perform a
bubble sort on an array of characters entered from the keyboard,
and scroll the intermediate results on the screen. The program
will perform its particular magic using pointers. Even though the
array to be sorted is a private, local variable of MAIN, other
functions can be given selective access to it through a pointer
which contains its address. This technique minimizes the amount
of data which needs to be passed back and forth between functions
while preserving the careful control of modularity afforded by the
local variable concept. You will also see some simple pointer
arithmetic being performed, which is explained in the program
annotations.

Right at the beginning of the program, after the standard
INCLUDEs, you will notice a DEFINE directive. DEFINE allows the
programmer to do text substitution (see MACROCHAPT for full
details). The first text element between the parentheses will be
replaced with the text of the second element (the one after the
comma) when encountered anywhere in the program, except inside of
comments and literal strings. In this case, by having ARRAYSIZE
symbolically DEFINEd and then using that definition throughout the
program, if the desired array length should change at a later
date, we need only change the DEFINE directive and recompile. 1In
general, DASL programmers avoid "magic numbers" in the body of
their code with a ferocity equaled only by their loathing of GOTO
statements.

This program also introduces the IF/THEN flow of control
construct. If the expression following the IF evaluates to a
logical TRUE, that is, if its value is anything but zero, the
statement following the THEN clause will be executed. If the
expression takes on a zero value, the rest of the statement is not
executed. Remember that the statement following the THEN can be a
compound statement block if you so choose. DASL also has an
IF/THEN/ELSE construct. If the test expression is found to be
FALSE, that is, equal to zero, the statement following the ELSE is
executed, rather than just falling through as in the simpler
IF/THEN construct.

The last new twist introduced in this program is the SIZEOF
operator, which evaluates to the number of bytes belonging to the
entity following it. For instance, if NUMARRAY were defined as an
array of 10 integers, the expression (SIZEOF NUMARRAY) would
evaluate to 20, since each integer is 2 bytes long. SIZEOF may be
applied to all DASL data types except for function, whose size is
ultimately machine dependent. Enough talk. Let's code.
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INCLUDE(DSINC)
INCLUDE(DSRMS)
INCLUDE(SIOINC)
DEFINE(ARRAYSIZE, 80)

SWITCH(CPl, CP2 A CHAR) :=
VAR TEMP CHAR;
{

TEMP := CPlAa:;
CP1A := CP2A;
CP2A := TEMP;

}i

GETARRAY(P A CHAR, SIZE INT) INT :=

{
DSWRITE(SCREEN, LN, S,'ENTER ARRAY', LN);
RESULT := DSREADS(KEYBD, P,SIZE);
b

RESPONSE() CHAR :=

{
DSWRITE(SCREEN, LN, S, 'ANOTHER SORT? ', F);
RESULT := DSREADC(KEYBD);
DSREADC(KEYBD); /* Bump past <ENTER> key */
Vi

ENTRY MAIN() :=
VAR P, MAXPT A CHAR;
ARRAY [ARRAYSIZE] CHAR;

LEN INT;
{
LOOP {
LEN := GETARRAY(&ARRAY[0], SIZEOF ARRAY);
MAXPT := &ARRAY[--LEN];
LOOP { WHILE --MAXPT >= &ARRAY([0];
P := &ARRAY[0];
LOOP {

DSWRITE(SCREEN, SL,&ARRAY[O0],LEN, LN);
WHILE (P + 1) <= MAXPT;
IF PA > (P + 1)A THEN SWITCH(P, P + 1);
P++;
]
i

WHILE RESPONSE() = 'Y';
1
}i

Page 22



The DASL Document

The function called SWITCH takes a pointer to the two
elements in the array which need to have their positions switched.
CPl points to the first of these characters, and the expression
CPlA represents the actual character to which CP points. GETARRAY
prompts the user for the data to be sorted, returning the number
of characters actually entered. RESPONSE will get called when the
entire sorting process is finished, and will ask the user if he
wishes to enter another array of data. If the character returned
by RESPONSE is a 'Y', the major loop in MAIN will be re-executed.
Any other character will cause the program to terminate.

As advertised, this program engaged in some pointer
arithmetic. 1In MAIN, only one pointer into the array, P, is
maintained. The next character in the array is handled
implicitly, in terms of the expression (P + 1). Adding a scalar
value to a pointer, as in the expression (P + 1), causes the
pointer to point at the next object in memory of the same type.
This is equivalent to increasing the value of the pointer by the
size of the scalar multiplied by the size of the data element
pointed to. If the object pointed to were, for instance, a 57
byte long structure, incrementing the pointer by 1 would increase
the pointer's value by 57. Adding 2 would increase the value by
114 and so forth. 1In this case, since the object we are pointing
at is only one byte long, adding 1 to the pointer only increases
its value by 1. Subtracting a scalar from a pointer works in the
same manner. Incidentally, the ++ and -- operators can also be
used.

Take some time out to read the program carefully. Start with
MAIN and follow the logic as it threads through the other program
functions. Kind of looks like a bubble sort, doesn't it? Right
now, the display statement is tucked inside of the inner loop, sO
we can see all of the intermediate states of the sort. You might
like to play around with moving the position of the display
statement. You might, for instance, only output the array when
elements need to be switched. Feel free to "break" the program,
deliberately introduce mistakes and observe the kinds of errors
which the compiler comes up with. It's more fun than educational
TV.
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VI. Recursion: See Recursion

Another strange and powerful feature of DASL is the ability
to use recursive functions, that is, functions which can call
themselves. Recursion is a powerful technique for a number of
programming applications, including sorts and various data
structure manipulations (one subtree looks a whole lot like
another from up here).

The factorial program we saw at the beginning of the tutorial
is a prime candidate for recursion. After all, what is n
factorial but n times (n - 1) factorial, and so on? In fact,
there are only two things you ordinarily need to keep in mind when
constructing recursive functions:

1. The function must have a "bottom”, that is, a condition in
which the functions stops calling itself and allows the stack to
pop all of its accumulated return values....

2. Each call of the function must, in some sense, bring you closer
to the "bottom", that is, the series of function calls must be
guaranteed to "converge" on the non-recursive condition.

There's no need to rewrite the MAIN function of the factorial
program, it stays just the same. The FACTORIAL function, written
recursively, looks like this:

RECURSIVE FACTORIAL(N INT) INT :=
{
IF N = 0 THEN RESULT := 1
ELSE RESULT := N * FACTORIAL(N - 1);
¥}

The keyword RECURSIVE precedes the function name, and informs the
compiler that the function can call itself. This is important,
since at compile time there is no way to determine how deep the
recursion stack will get, and space for the function must be
dynamically allocated. The beauty of recursion is that the
programmer is free to think of the algorithm in totally relative
terms. N factorial is expressed in terms of (N - 1) factorial.

As long as there is a bottom, it will all get resolved in the end.

Another simple example of recursion can be found in the
Fibonacci series. Each Fibonacci number is equal to the sum of
the two preceding Fibonacci numbers. The series is usually
started with the 0Oth value = 0 and the 1lst value = 1. Using these
two as the bottom conditions, you might try writing a recursive
function to evaluate the n'th Fibonacci number.
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VII. Random Observations on a STATIC Theme

In general, each time a function is called, all of its local
variables are "recreated." Input parameters take on the values
passed from the caller, and all other variables are of initially
indeterminate value.

If, however, you wish to retain a value from one call to the
next, the local variable declaration may be prefaced with the
keyword STATIC. 1In the following example, a random number
generating function has declared its seed variable to be STATIC.
In this way, each time a new random number is requested, the last
random value generated seeds the calculation. (Of course, these
numbers are "pseudo-random”, since they are generated by a
deterministic process. To quote von Neumann, "Anyone who
considers arithmetical methods of producing random digits is, of
course, in a state of sin." Sorry John.)

DEFINE(K1l, 31769)
DEFINE(K2, 28489)
DEFINE(K3, 32767)

RANDOM( ) UNSIGNED :=

VAR STATIC SEED UNSIGNED := 14723;

{
RESULT := SEED := ((SEED * K1) + K2) % K3;
}i

The three "big numbers", Kl, K2, and K3 are nothing special. 1In
fact, for this algorithm to work at its best they should be
"relatively prime." Perhaps some closet number theorist out there
will write a DASL implementation of Euclid's Algorithm, so we can
find some better values and generate some nastier random
sequences.

Notice that the local variable, SEED, is STATIC. Each time
RANDOM is called, SEED will start out with value left over from
the previous call. Also note the initialization capability which
we haven't seen before. STATIC and global variables (which are
simply variables defined outside of a function) can be initialized
when they are defined. SEED's initial value of 14723 will only be
applied the first time RANDOM is called. If you want to
re-initialize a variable each time a function is called, you must
use a regular assignment statement in the body of your code, and
not this initialization facility.

There is another new operator lurking in the program, the

modulo operator. The modulo operator, represented by the percent
sign ('%'), evaluates to the remainder after division when the
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expression to the left of the operator is divided by the value of

the expression to the right of the operator. For instance, the
value of (14 & 3) is 2, since 14 divided by 3 yields 4 (throw it
away) with a remainder of 2 (that's the good part). So, all

positive values taken % 10 (pronounced "mod 10") are mapped into
the range 0 to 9 and all negative values into the range -9 to 0.

By the way, now that you have a simple random number
generator, you can write a cute program which displays a character
to the screen at a random location. Let your horizontal position
be determined by RANDOM() % 80 and your vertical by RANDOM() % 24
(of course, a self-respecting DASL programmer would use DEFINEd
quantities such as SCREENWIDTH and SCREENHEIGHT instead of the raw
numerical values, but let your conscience be your guide). You can
even make the character displayed random by making it:

(RANDOM() & ('~' = ' ")) + ' '. Have fun!
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VIII. How To Succeed In Branching Without Really Trying

A familiar programming problem concerns the different actions
which need to be taken depending upon the run time value of some
expression. For instance, if we get a character from the
keyboard, we may first wish to determine if it's a backspace,
cancel, cursor up, and so forth, and take the appropriate action.
If the character doesn't turn out to be one of our special control
functions, we may wish to take a default action, for instance,
just displaying the character.

DASL provides a multi-branch flow of control construct called
the CASE statement, which simplifies this kind of programming
task. 1In the following example, let's assume that we have used
the DEFINE capability to symbolically pre-specify the values which
would be received for the various keyboard control keys. A
program function which intelligently echos keystrokes from the
terminal might look something like this:

Tounl Y .=

danodin g H

VAR IN CHAR;
{

LOOP {
IN := DSREADC(KEYBD) /* Get character from keyboard */
WHILE IN ~= ENDCHAR; /* Stay in LOOP while not end */
CASE IN { /* CASE switch on value in IN */

BCKSPACE: BACKSPACE();
CANCL: CANCEL();
TABCHAR: TAB();
CURSUP: CURSORUP()
CURSDN: CURSORDN( )
CURSRT: CURSORRT()
CURSLF: CURSORLF()
Fl: FUNC();
F2: FUNC2()
F3: FUNC3{()
F4: FUNC4()
F5: FUNC5();

DEFAULT: DISPLAY(IN); /* Defaults to displaying IN */
b

-
’
.
’
.
1

-
I
-
!
.
7
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Within the CASE statement, the case labels on the left side of
each line are compile time constants, followed by a colon. If the
value of the CASE expression (in this instance, the variable IN)
matches the value of any of the case labels, the statement
following the case label is executed. At the end of the case
list, there is an optional case label called DEFAULT. The
statement following it is executed if the switching expression
does not match any of the other case labels. If no DEFAULT is
specified and no match is found, then execution "falls through"
the CASE statement.
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DEFINE(MACROCHAPT, The DASL Macro Facility)

IX. MACROCHAPT

DASL contains a language within a language. It is the
compile time macro facility, which is used to logically manipulate
program text before the stage we normally think of as compilation.
In other words, the macro facility controls the actual text which
the compiler eventually sees.

In a strong sense, we never directly program in DASL. We
always write our source in a kind of SUPERDASL, which gets macro
processed into normal DASL source, ripe for compilation. And
though it is never truly necessary to think of the division this
radically, it does emphasize the fact that the macro facility
defines another layer of language, syntactically distinct from the
rest of DASL.

We have already seen two macro primitives at work: DEFINE and
INCLUDE. DASL has three other pre-defined macros, namely: IFELSE,
INCR and SUBSTR. Using these five primitives, it is possible to
construct a wide variety of user macros which can simplify and
clarify your programs. In fact (and this is a rather amusing
result), the macro facility in DASL constitutes a Universal Turing
Machine. In other words, every [finite] computational problem is
theoretically solvable using only the macro language. Just
thought you'd like to know.

Let's dispose of the INCLUDE directive right off the bat.
INCLUDE simply changes the compiler's current input file. So in
fact, the INCLUDE directive does not get replaced with any other
text. It simply has the compile-time effect of temporarily
changing the source file. As with any other programming
environment, INCLUDE is useful for neatly packaging logically
related sets of macros, declarations and the like. Take a look at
the listings of DSINC, DSRMS and SIOINC in the appendix for some
good examples.

DEFINE is used to create new macros. A new macro may be as
simple as the one-to-one relationship of an identifier with a text
string to be substituted for it. All of the cases of DEFINE we
have seen so far have been of this variety. For example:

DEFINE(ARRAYSIZE, 80)
has the effect of substituting an 80 every time the identifier
ARRAYSIZE is encountered in the program. The DEFINE substitution

is active everywhere in the program except for comments and
literal character strings. 1In this simplest form, DEFINE is an
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aid to the symbolic management of a program's "magic numbers."

But used to its fullest, the DEFINE directive allows you to create
powerful compile-time programs which can simplify your coding
effort. Let's start by looking at an extremely simple example:

DEFINE(ADD, ( (#1) + (#2)))

The example defines a new macro called ADD. The #1 and #2
represent the parameters which will be supplied each time the ADD
macro is invoked. For instance, consider the following program
statement:

NUMVAR := ADD(7,4);

The ADD macro takes the numbers 7 and 4 to be the values of
parameters #1 and #2 respectively, and the compiler sees the
statement expanded like this:

NUMVAR := ((7) + (4));

The macro invocation looks just like a function call, doesn't it?
The difference is, of course, that in-line text substitution is
taking place at compile-time, as opposed to parameter swapping
taking place between functions at run-time.

There seem to be a lot of parentheses in the macro definition
which in turn show up in the expanded text. These are extremely
important! Take a look at the definition of ADD. The outer set
of parentheses is required by the syntax of the DEFINE directive.
So much for those. The next set ensures that the contents of the
macro are insulated from the invoking context. Even though there
will be many situations in which the evaluation precedence of the
expanded text is unambiguous, the binding parentheses impose an
explicit order of evaluation, preserving the desired logic. The
same holds true for the binding parentheses around each of the

individual parameters.

To prove the point, let's take a look at what might happen if
these parentheses were omitted. Assume for a moment that we had
defined ADD in the "obvious" way:

DEFINE(ADD, #1 + #2)

Now, let's suppose that we invoked ADD with some interesting
parameters:

NUMVAR := 5 * ADD(3 = 4, 5 | 7);

First, what value did we want NUMVAR to get? Well, the value of
the expression 3 = 4 is FALSE, that is, 0, and the value of the
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expression 5 | 7 (5 logical or 7) is TRUE, namely 1. So ADD
should evaluate to 0 + 1 (everybody get 1?) and NUMVAR should get
5 times that, namely 5. So much for theory.

What really happens is that our "obvious" ADD macro expands
the statement as follows:

NUMVAR := 5 * 3 =4 + 5 | 7;

When it comes to implicit binding, DASL has other things in mind.
Applying DASL's precedence rules (see the Language Reference
Guide) this statement is equivalent to:

NUMVAR := ((5 * 3) = (4 + 5)) | 7;

Stepping through the evaluation, one comes to the dismal
conclusion that NUMVAR gets 1. The proof is left up to the reader
as an exercise, as all of those legitimate textbooks like to say.
So the moral is, always insulate your macro definitions -
parentheses are cheap.

Time for some more macro magic. Consider the following
definitions:

DEFINE (NUMCOUNT,0)

DEFINE(NEXTNUM, #]
NUMCOUNT
DEFINE(# [ NUMCOUNT#], INCR(NUMCOUNT))
#1)

NUMCOUNT represents the simple case of a DEFINE; the kind
which we have seen before. The identifier NUMCOUNT just gets
replaced with a 0 whenever it is encountered. The interesting
part of the example is NEXTNUM, which uses NUMCOUNT as a
"macro-time variable." More on this in a moment.

NEXTNUM is a curious little macro that has two parts. First
of all, it will return the current value of NUMCOUNT, which we
have initialized to 0. Next, it will have the effect of
incrementing NUMCOUNT, so the next invocation of NEXTNUM will
return, true to its name, the next number.

The important twist introduced here concerns the "protection

brackets," the #[ and #] symbols which enclose several pieces of
the macro. These ensure that the enclosed text will not be
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expanded when the macro is scanned. The only effect of scanning a
protected piece of text is the fact that the protection brackets
are stripped away. Keeping this in mind, let's look at what the
NEXTNUM macro expands into when invoked:

NUMCOUNT
DEFINE (# [NUMCOUNT#], INCR(NUMCOUNT))

The expanded text is always rescanned, because of the possibility
that it contains more macros in need of processing. The current
example is just such a case. Let's take a look at the interesting
intermediate states which the second scanning pass goes through:

0
DEFINE(# [NUMCOUNT#], INCR(NUMCOUNT))

Here, the first line has been rescanned, replacing NUMCOUNT with
its previously defined value of 0.

0
DEFINE (NUMCOUNT, INCR(NUMCOUNT))

At this point, we have stripped off the protection brackets from
the first parameter. The second parameter has not yet been
scanned.

0
DEFINE(NUMCOUNT, INCR(O0))

The second parameter has been partially scanned, replacing
NUMCOUNT with its current value, O.

0
DEFINE (NUMCOUNT, 1)

The second parameter has now been completely scanned, changing
INCR's 0 argument to a 1. The DEFINE can now be invoked, which
resets NUMCOUNT to be equivalent to 1.

0

Here, the effect of NUMCOUNT's redefinition has been propagated.
The DEFINE leaves behind its effect, but not a value. The only
value left for NEXTNUM to return is the 0. The next time NEXTNUM
is invoked, NUMCOUNT will already be defined to be 1 and the whole
process can start over again. This is the sense in which NUMCOUNT
has been used as a macro-time variable of NEXTNUM. Its value is
saved and continually updated each time NEXTNUM is invoked.
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TwOo more macro primitives require our attention:

IFELSE compares its first two parameters, and macro-evaluates to
its third parameter if they are equal, or its fourth if they are
not. The result of the IFELSE directive is then rescanned.

Example:
DEFINE(FLAG,ON)

IFELSE(FLAG,ON, #[INCLUDE(EXTRADEFS)#], )

In this example, the DEFINE of FLAG might exist at the beginning
of a program, which depending upon some compile-time conditions
may be set to ON or OFF. When the IFELSE is encountered, if FLAG
is defined to be ON, the INCLUDE will be invoked. If FLAG is OFF
(or anything else, for that matter) the IFELSE evaluates to the
fourth parameter, which in this example is null.

SUBSTR takes three parameters: a string and two numbers. SUBSTR
evaluates to the SUBSTRing of the first parameter which starts
with the character position indicated by the second parameter
(zero-relative) for as many characters as are indicated by the
third parameter. If the third parameter is omitted, it is
implicit that the substring should continue until the end of the
first parameter.

Example:
SUBSTR(Kiss me; I'm a DASL programmer, 9, 18)

expands to: I'm a DASL program

SUBSTR(Give me liberty or give me a substring, 19)

expands to: give me a substring
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PASCAL and some other languages have a feature known as
"enumerated types." This basically means that I can define a
type, for instance, COLOR, and define various unique instances of
that type, for instance, RED, GREEN and BLUE. In PASCAL, one
would simply say:

TYPE COLOR = (RED, GREEN, BLUE);
In DASL one could express this as:
TYPDEF COLOR BYTE;

DEFINE(RED, 0)
DEFINE(GREEN, 1)
DEFINE(BLUE, 2)

It would, however, be better if we had a shorthand notation for
the creation and management of enumerated types. ENUM and ENUMV
are macros which do just that:

DEFINE(ENUMV, #][
IFELSE(#2,,,#[DEFINE(#2, #1)
ENUMV(INCR(#1),#3,#4,#5,#%#6,#7,4#8,49)#1])
#1)

DEFINE(ENUM, #[ENUMV(O,#1,#2,#3,#4,#5,#6,#7,#8)#]BYTE)

Using these macros in our COLOR example, one would simply say:
TYPDEF COLOR ENUM(RED, GREEN, BLUE);

The effect of this declaration would be equivalent to the full set
of TYPDEF and DEFINEs shown above.

Rather than stepping through all of the details of ENUM's
macro evaluation, let's just take a look at some of the
highlights. ENUMV is a recursive macro. Keeping in mind the
principles of recursive programming discussed in Chapter VI, take
a good look at the IFELSE. The IFELSE is the "bottom" of the
recursive process; the light at the end of the Klein Bottle. Each
successive ENUMV which gets spawned by the recursion has its
parameter list shifted down one position from its parent's
corresponding list (parameter #3 is put in the second position,
and so on). In this fashion, the parameter list is getting
"chomped"” shorter with each invocation. At some point, parameter
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#2 will become null and ENUMV will stop giving birth to new
ENUMV's. With each level of recursion, parameter #1 (the number
which is being associated with each instance of the type) gets
incremented.

ENUM is simply a neat package which seeds ENUMV with 0, hands
off the actual names of the enumerated instances and leaves behind
the literal string BYTE, for use by the declaration in which ENUM
is invoked. For those of you who want to use ENUM, please note
that it is already defined in DSINC (see Appendix 2).

For those of you would are interested in looking at more
macro definitions of non-trivial complexity, the I/O package
support file, SIOINC (see Appendix 0), is a good place to start.

One last thought about dealing with DASL macros. The
compiler has a facility which will expand your macro-bearing
"SUPERDASL" program into a fully macro-evaluated, plain vanilla
DASL source file. To invoke this bit of magic, you must provide
an "EXP" file specification on the DASL command line. For
instance:

DASL BIGBANG,EXP=UNIVERSE

The program called BIGBANG will be compiled normally, but the full
source code, including the expanded version of all of BIGBANG's
macros, will be written into the file called UNIVERSE. You might
try compiling DSINC or SIO with the expand option active and take
a look at what pops out. Some day you'll be glad you did.
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X. Principia Apologia

In the pages that follow you will find some amusing, and
hopefully enlightening DASL programs. But before we get to thenm,
there are a few fine points which should be clarified:

The tutorial took a lot of shortcuts, and left out a number
of fascinating things in the interest of brevity. DASL has a rich
set of operators, logical, bitwise, arithmetic--even conditional.
You are urged to thumb through the DASL Language Reference Guide
while reading over the programs in the next section.

Another approximation which should be resolved: often the
word "variable” was used when the term "lvalue" was more correct.
An lvalue is an expression which refers to an entity which lives
in memory (and can therefore appear on the left side of an
assignment statement, hence the name). Variables are just one
sort of lvalue. A string constant is an lvalue, and the following
statement is meaningful in DASL:

CHARPOINT := &('this is a string constant'[0]);
Other examples of lvalues would include expressions such as:

(P + 10)A
STRUCTPA.FIELD
ARRAY[I]

and anything else which represents a value in memory. The DASL
Language Reference Guide explains the matter and uses the
technical meaning of lvalue in a consistent manner. Just thought
you'd like to see it here first.

We also breezed over global variables, probably because good
modular programming practice tends to keep them to a minimum. But
they are valuable when used properly. Global variables can be
declared anywhere in a program, outside of the body of a function.
They are necessarily STATIC, since they are not attached to
anything which can get re-initialized. Global variables may be
imported from other modules by prefacing their declaration with
the keyword EXTERN or can be exported by prefacing their
definitions with the keyword ENTRY.

Which brings up one last point: the difference between
definitions and declarations. A definition causes some new memory
entity to be created. A declaration causes some already existing
entity to become visible in the declaring context. Most often,
definitions and declarations take place at the same time. But
when we consider import/export, it is an important distinction to
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bear in mind.

With these fine points taken care of, you should now be in a
position to begin reading and writing DASL programs of some
complexity. In the next section, we will take a look at two "big"
DASL programs (big in this case means I couldn't fit all of the
source code onto a single page!). Feel free to play with them, to
improve upon them (there's certainly room), to break them and put
them back together again. And I heartily recommend that you
browse through the DASL Language Reference Guide (see Appendix 1)
at random and frequent intervals while doing so. It is an
excellent source of compact and precise information.
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SAMPLE DASL PROGRAMS

1. DATES

The following program defines a new data type called DATE
(see Chapter 4, Anatomy of a DASL Program, for the sections
dealing with STRUCTURES and TYPDEF). In this program, the user is
prompted to f£ill in the information corresponding to several DATE
structures. The DATEs are then sorted in ascending order of
year/month/day and redisplayed on the screen.

The actual sorting algorithm used is the same bubble sort
that we saw in Chapter V. Once again, notice that MAIN is
logically very sparse, farming out all of the real work. Also
notice the use of nested IF/THEN/ELSE constructs in the sorting
function called ASCENDING. Since we are accustomed to seeing
semicolons nearly everywhere in DASL, it might be worthwhile to
point out that at the end of the THEN portion of an IF/THEN/ELSE
construct there is - (dramatic pause) - no semicolon. This is
because the entire IF/THEN/ELSE construct is taken as a single
statement, and the ELSE clause at that point has yet to be stated.

There is a simpler way to write the ASCENDING function. One
could derive a unique value for each possible calendar date and
simply compare them. You might like to rewrite the function in
that manner as a coding exercise. Or you might not.

Toward the beginning of the program, you'll notice a
declaration which begins with the keyword EXTERN. This means that
the entity which follows (in this case a function named INITCHAR)
is not defined in the current module. It is to be found in
another module somewhere, and its /REL file must be linked with
this module's /REL file to make the program work (see The Joy of
Running). The compiler, however, does need to know the type of
the entity, so that it can properly handle data type compatibility
and expression evaluation. If you recall, the type of a function
is defined by the types of the parameters it is called with and
the type of the result which it returns. The syntax of the
language also demands that in such a function declaration, the
input parameters are given names (exactly like those of a normal
function definition), even though those names will never be used.

INITCHAR simply initializes memory starting with the position
pointed to by P, for as many characters as are specified by SIZE
with the character indicated by FILLER. You should take a minute
out to write INITCHAR and generate a /REL module for it. Then
make it the first member of your own private utility library.
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INCLUDE(DSINC)
INCLUDE (DSRMS)
INCLUDE(SIOINC)

DEFINE (NDATES, 5)
DEFINE(WIDTH, 80)
DEFINE(EEOF,0200)
DEFINE(EEOL,0201)
DEFINE(HOME, #[C,$H, C,0, C,$V, C,0#])

EXTERN INITCHAR(PA CHAR, SIZE INT, FILLER CHAR);

TYPDEF DATE STRUCT |{
MONTH,DAY,YEAR INT;
MESSAGE[WIDTH] CHAR;
Vi

SWITCH(PL, P2 A DATE) :=
VAR TEMP DATE;
{

TEMP := PlAa;
PlA := P2A;
P2A := TEMP;

ASCENDING(P1,
{

P2 A DATE) BOOLEAN :=

RESULT := TRUE;
IF P1A.YEAR > P2A.YEAR THEN RESULT := FALSE
ELSE {

IF PlA.YEAR = P2A.YEAR THEN {

IF P1A.MONTH > P2A.MONTH THEN RESULT :=

ELSE {
IF P1A.MONTH = P2A.MONTH THEN |{
IF PlA.DAY > P2A.DAY THEN RESULT
1

FALSE

:= FALSE;

Page 39



The DASL Document

SORTDATES(DP, MAXDP A DATE) :=
VAR P A DATE;
{
LOOP
P := DP;
LOOP { WHILE (P + 1) <= MAXDP;
IF “ASCENDING(P, P + 1) THEN SWITCH(P, P + 1);
P++;
b
WHILE --MAXDP > DP;
}i
}i

GETDATES(DP A DATE) :=

{
INITCHAR(&(DPA.MESSAGE([0]), SIZEOF (DPA.MESSAGE), ' '):
DSWRITE (SCREEN, HOME);
DSWRITE(SCREEN, C,EEOF);
DSWRITE(SCREEN, S, 'MONTH? (1-12): ');
DPA.MONTH := DSREADI(KEYBD):;
DSWRITE(SCREEN, LN, S,'DAY? (1-31): ')
DPA.DAY := DSREADI(KEYBD);
DSWRITE(SCREEN, LN, S,'YEAR? (00-99): ');

~e

DPA.YEAR := DSREADI(KEYBD);
DSREADC (KEYBD) ;
DSWRITE(SCREEN, LN, S,'ENTER MESSAGE FOR THIS DATE:', LN);

DSREADS(KEYBD, &(DPA.MESSAGE([0]), SIZEOF DPA.MESSAGE):
}i

SHOWDATES(DP A DATE) :=
VAR DPCOUNT INT;
TIMER UNSIGNED;
{
DPCOUNT := 0;
DSWRITE(SCREEN, HOME);
DSWRITE (SCREEN, C,EEOF);
DSWRITE(SCREEN, S,'Displaying DATES in sorted order:', LN);
LOOP { WHILE DPCOUNT < NDATES;
DSWRITE(SCREEN, C,SH, C,0, C,S$V, C,++DPCOUNT);
DSWRITE(SCREEN, I, (DPA.MONTH), C,'/');
DSWRITE(SCREEN, I, (DPA.DAY), C,'/"');
IF DPA.YEAR < 10 THEN DSWRITE(SCREEN, C,'0');
DSWRITE(SCREEN, I,(DPA.YEAR), C,EEOL, LN);
DSWRITE(SCREEN, S, (DP++A.MESSAGE), C,EEOL);
TIMER := 64000;
LOOP WHILE TIMER-- > 0;
bi
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ENTRY MAIN() :=
VAR DATEARRAY [NDATES] DATE;
DCOUNT INT;
{
DCOUNT := 0;
1OOP { WHILE DCOUNT < NDATES;
GETDATES ( §DATEARRAY [DCOUNT++] ) ;
Y7
SORTDATES ( & DATEARRAY([O0],
SHOWDATES ( &DATEARRAY[O01]) ;
Vi

&DATEARRAY [NDATES - 11);
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2. The Game of LIFE

John Conway's game of LIFE has probably been implemented for
every respectable computer (and some questionable ones) and in
every conceivable programming language. In fact, our own Harry
Pyle implemented a LIFE game on the 2200 back around 10 B.D.
("Before DASL").

The game of LIFE is very simple. Every character position on
the screen represents a "cell”. 1In any given generation a cell is
either alive (and therefore visible) or dead. From generation to
generation the following algorithm is used to decide which cells
survive, which die, and which are born:

l. 1If a cell is currently alive and either 2 or 3 of its 8
neighbors (that is, the 8 other cells which touch it) are alive,
the cell will survive into the next generation.

2. 1If a cell is currently dead, and it has exactly 3 live
neighbors, it will be born in the next generation.

| | I I
| NEIGHBOR | NEIGHBOR | NEIGHBOR |
i 1 | 2 | 3 I
[ === === | ====—==—— !
I | [ |
| NEIGHBOR | CELL | NEIGHBOR |
| 4 | | 5 I
| === === [ === |
| | | I
| NEIGHBOR | NEIGHBOR | NEIGHBOR |
i S i 7 i 8 I

That's it. From this simple set of constraints and an initial
"seeding” of the world with live cells, wonderful patterns emerge
and evolve. Formations such as "traffic lights"” and "gliders" are
familiar and well loved denizens of the LIFE world. Sections of
the world can become totally static, only to become reactivated
when other formations absorb them. At any rate, the game is
fascinating and sometimes profound.
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INCLUDE (DSINC)
INCLUDE (DSRMS)
INCLUDE (SIOINC)

DEFINE (EEOF,0200)
DEFINE(WIDTH, 80)
DEFINE (HEIGHT,12)
DEFINE(DEAD, ' ')
DEFINE(LIVE, '*")

TYPDEF WORLD [HEIGHT][WIDTH] BOOLEAN;

EXTERN INITCHAR(P A CHAR, SIZE INT, FILLER CHAR);

NEXTGEN(THIS, NEXT A WORLD) :=
VAR I, J, X, Y, SUM INT;
{

I := 0;
LOOP { WHILE I < HEIGHT;
J := 0;
LOOP { WHILE J < WIDTH;
SUM := 0;
X :=I - 1;
LOOP { WHILE X <= I + 1;
Y :=J - 1;
LOOP { WHILE Y <= J + 1;
IF X >= 0 & X < HEIGHT & Y >= 0 & Y < WIDTH THEN
SUM += THIS A [X][Y];
Y++;
Vi
X++;
Vs
IF THISA[I][J] THEN NEXTA[I][J] := ((SUM = 3) | (SUM = 4))
ELSE NEXTA[I][J] := (SUM = 3);
J++;
} s
I++4;

}i
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BINARIZE(P A CHAR) :=
VAR COUNT INT;
{

COUNT := 0;

LOOP { WHILE COUNT < WIDTH;
PA := ~(PA = DEAD);
COUNT++;

P++;

Vi

INITWORLD(P A WORLD) :=
VAR VCOUNT INT;
INPCOUNT INT:
{
VCOUNT := 0O;
DSWRITE(SCREEN, C,$H, C,0, C,SVv, C,0);
DSWRITE (SCREEN, C,EEOF);
LOOP { WHILE VCOUNT < HEIGHT;
INITCHAR(&(PA[VCOUNT][0]), WIDTH, DEAD);
DSWRITE (SCREEN, C,$H, C,0, C,$V, C,VCOUNT);
DSWRITE(SCREEN, F);:
INPCOUNT := DSREADS(KEYBD, &(PA[VCOUNT][O0]), WIDTH);
IF --INPCOUNT < WIDTH THEN PA[VCOUNT][INPCOUNT] := DEAD;
BINARIZE(&(PA[VCOUNT][O0]));
VCOUNT++;
1

CONVERT(BP A BOOLEAN, CP A CHAR) :=
VAR COUNT INT;
{

INITCHAR(CP, WIDTH, DEAD);

COUNT := 0;
LOOP { WHILE COUNT++ < WIDTH;
CP++A := (BP++A = TRUE) ? (LIVE) : (DEAD);

)i
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SHOWGEN(P A WORLD) :=
VAR LIFELINE [WIDTH] CHAR;

VCOUNT INT;
{

VCOUNT := 0;

LOOP { WHILE VCOUNT < HEIGHT;
CONVERT(&PA[VCOUNT][0], &LIFELINE[O]);
DSWRITE(SCREEN, C,$H, C,0, C,S$V, C,VCOUNT);
DSWRITE(SCREEN, S,LIFELINE, F);
VCOUNT++;

Vi

ENTRY MAIN() :=

VAR THIS, NEXT, TEMP A WORLD;
GENO, GEN1 WORLD;

{

THIS := &GENO;
NEXT := &GEN1;
INITWORLD(THIS);
LOOP {

NEXTGEN(THIS, NEXT):;
SHOWGEN (THIS) ;

TEMP := THIS;
THIS := NEXT;
NEXT := TEMP;

Vs
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This implementation lets the user enter an initial pattern of
live cells, and then runs an infinite loop of generations. The
initial entry facility is rather crude: the user types spaces for
dead cells and any non-space character to signify a live cell. No
random cursor positioning is provided. Hitting the ENTER key will
terminate a particular horizontal line and will fill all trailing
positions with dead cells. If you are feeling ambitious, I
strongly suggest that you build a more sophisticated pattern
editor for the LIFE game, and allow the loop to be exited
temporarily, so the user can manually reshape the current
generation.

The program carries a representation of each generation as a
two dimensional array of BOOLEAN's, that is, a 1 (or TRUE) for a
live cell and a 0 (or FALSE) for a dead cell. This makes some
aspects of the programming simpler, but means that a conversion
process must be invoked before the generation is displayed on the
screen. This conversion is done with the ternary or conditional
operator (see the CONVERT function). The expression containing
the conditional operator is made up of three smaller expressions.
If the first expression is evaluated to be logically TRUE (that
is, non-zero in value) then the total expression takes the value
of the component expression following the question mark. If the
first expression is logically FALSE (that is, it is equal to
zero), the total expression takes the value of the component
expression following the colon. You can think of the conditional
operator as an expression level flow of control construct, similar
in operation to the statement level IF/THEN/ELSE construct.

Another interesting feature of this program is that it uses
logical values directly. For instance, look at this line, taken
from the NEXTGEN function:

IF THISA[I][J] THEN NEXTA[II[J] := ((SUM = 3) | (SUM = 4))

Since the array pointed to by THIS contains only BOOLEANs, the
value of THISA[I][J] must be either a 1 or a 0. Therefore, it is
sensible to use its value directly to motivate the THEN/ELSE
decision. There is no need to compare the value with TRUE or
FALSE to force a logical interpre-ation. Also, we assign into
NEXTA[I][J] the result of the expression ((SUM = 3) | (SUM = 4)).
That is, if SUM = 3 is TRUE or SUM = 4 is TRUE, then NEXTA[I][J]
will get assigned a TRUE, namely, a 1. If the logical expression
comes up FALSE, then NEXTA[I][J] will have a 0 assigned into it.
In both of these cases, we are using the fact that these
expressions have a direct logical interpretation. This is why the
program operates on BOOLEANs and does a post-compute conversion to
displayable characters.
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Although DASL produces rather good object code, some source
level optimizations are possible. Some of these optimizations,
however, come at the expense of the readability and
maintainability of the code. On the following pages we will see
two optimized implementations of the NEXTGEN function. Because
the interface between NEXTGEN and the rest of the LIFE program is
so well defined, you can simply swap any of these implementations
and recompile.

The first optimization is rather reasonable, and is concerned
with tightening of the critical loop. The second optimization
attempts to re-write the NEXTGEN function purely in terms of
pointers. This strategy turns out to be of dubious merit, for
while it improves the speed of execution by some 10%, it also
renders the source code nearly unreadable. This is just another
one of those situations where common sense (and a healthy respect
for the role of software maintenance) will be your best guide.
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/* This version of NEXTGEN is almost identical to the previous
one. The only differences are that I, J, X, Y and SUM have been
defined as BYTEs (8 bit unsigned values) and one of the loops has
been significantly tightened. Since we know that the values won't
exceed 255, we can save a little space using 8 bit BYTEs rather
than 16 bit INTs. */

NEXTGEN(THIS, NEXT A WORLD) :=

VAR I, J, X, Y, SUM BYTE;

{

=0;

P { WHILE I < HEIGHT;

J := 0; '

LOOP { WHILE J < WIDTH;
SUM := 0;

I :
LOO

=1+ 1;
< HEIGHT THEN {

IE Y <= J + 1;
0 & Y < WIDTH THEN
SUM += THIS A [X1[Y];

Vi
IF THISA[I][J] THEN NEXTA[I][J] := ((SUM = 3) | (SUM = 4))
ELSE NEXTA[I]1[J] := (SUM = 3);
J++;
Vi
I++;

Vi
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/* This version of NEXTGEN is rather different from the previous
two. It deals with the evaluations totally in terms of pointers.
In general, the compiler generates shorter, and consequently
faster code if pointers are used. But the pointer representation
of a two dimensional data element can get rather hairy, as you
should be able to see from the code. */

NEXTGEN(THIS, NEXT A WORLD) :=

VAR I, J, X, Y, T, W, NEXTP A CHAR;
SUM BYTE;

{

I := &THISA[O][O0];
NEXTP := &NEXTA[O0][O0];
LOOP { WHILE I < &THISA[HEIGHT][0];
J := I;
LOOP { WHILE J < I + WIDTH;
SUM := 0;
X := I - WIDTH;
LOOP { WHILE X <= I + WIDTH;
IF X >= &THISA[0][0] & X <= &THISA[HEIGHT-1] [WIDTH-1]
THEN

X += WIDTH;
Vi
IF JA THEN NEXTPA := ((SUM = 3) | (SUM = 4))
ELSE NEXTPA := (SUM = 3)
NEXTP++;
J++;
Vs
I += WIDTH;
1 o

b

Page 49



The DASL Document

TECHNICAL APPENDICES

Appendix 0. SIO

SIO is a simple screen and keyboard only I/O package
developed by Gene Hughes specifically for this tutorial. 1In the
pages that follow, the complete source code for SIO and its
associated INCLUDE file, SIOINC, will be shown. Before looking at
the code, let's lay out an operational description of each of the
available functions:

DSREADC (KEYBD) - Returns a single character from the keyboard.

DSREADI (KEYBD) - Returns an integer from the keyboard. Accepts an
ASCII string and converts it to an INT.

DSREADS(KEYBD, POINTER, LENGTH) - Reads a string from the keyboard
into memory, starting at the character position pointed to by
POINTER, for as many characters as are specified by LENGTH. A
logical end of record character will be embedded in the array if
the number of characters entered is less than LENGTH. DSREADS
also returns the number of characters keyed in, including the
logical end of record if it is embedded.

DSREADCs and DSREADIs (unless followed by other DSREADIs) will
leave an end of record character sitting in the buffer which you
must bump past before you can successfully perform another I/O
call. Eating it up with an extra DSREADC is usually sufficient.

DSWRITE (SCREEN, parameters) - Outputs the indicated information to
the screen. DSWRITE works in terms of parameter groups:

To write a character: DSWRITE(SCREEN, C,CHARACTER)

To write an integer: DSWRITE(SCREEN, I,INTEGER)

To write a string: DSWRITE (SCREEN, S,STRING) or
DSWRITE(SCREEN, S,'Literal string')

To write a string

of specific length: DSWRITE (SCREEN, SL,POINTER,LENGTH)

To write a new line: DSWRITE(SCREEN, LN)

To flush the buffer: DSWRITE(SCREEN, F)

The buffer will automatically be flushed by a new line or by a
DSREAD type instruction. Parameter groups may be used in
combination inside of a single DSWRITE, as long as the total
number of parameters does not exceed nine. For example:

DSWRITE(SCREEN, LN, SL,&TEXT[O],WIDTH, I,TOTAL)
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SIOINC/TEXT - SIOINC is an INCLUDE file which contains the

definitions required by the SIO package.

Feel free to build upon

SIO0 and SIOINC to develop new functions which you think are

useful.

/* KEYBOARD AND DISPLAY SEQUENTIAL I/O DEFINITIONS */

TYPDEF DSFILET STRUCT ¢{
P A CHAR;
C UNSIGNED;
BUF ([81] CHAR;
}i

EXTERN DSIN DSFILET;

DEFINE(KEYBD, &DSIN)

EXTERN DSREADC (F A DSFILET) CHAR;
EXTERN DSREADS (F A DSFILET, S A CHAR,
EXTERN DSREADI (F A DSFILET) INT;

EXTERN DSWRITEC (F A DSFILET, C INT);

EXTERN DSWRITES
EXTERN DSWRITEI

(F A DSFILET, N INT);

EXTERN DSWRITEF (F A DSFILET);

DEFINE(DST, #[ IFELSE(SUBSTR(#1,0,1),
# [IFELSE(SUBSTR(#1,0,1),

,#[DST(SUBSTR(#1,1))#],#[DSWH#1#]1)#])#])

DEFINE(DSWRITE, #[{
DST(#2) (#1,#3,#4,#5,#6,#7,#8,#9) }#])

DEFINE(DSWC, # [DSWRITEC(#1,#2);
DST(#3) (#1,#4,#5,#6,#7,#8)#])

DEFINE (DSWS, # [DSWRITES(#1,&(#2)([01],
SIZEOF (#2));
DST(#3)(#1,#4,#5,#%#6,#7,#8)#])

DEFINE (DSWSL, # [DSWRITES (#1,#2,#3);
DST(#4) (#1,#5,%6,#7,4#8)#])

N UNSIGNED) UNSIGNED;

(F A DSFILET, S A CHAR, N UNSIGNED);

,#[DST(SUBSTR(#1,1))#],
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DEFINE (DSWI, # [DSWRITEI (#1,#2);
DST(#3) (#1,#4,#5,#6,#7,#8)#1)

DEFINE (DSWLN, # [DSWRITEC(#1,SLEOR) ;
DST(#2) (#1,#3,#4,#5,%#6,#7,4#8)#])

DEFINE (DSWF, # [DSWRITEF (#1);
DST(#2) (#1,#3,#4,#5,#6,#7,#8)#])

DEFINE(DSW, )

Page 52



The DASL Document

SIO/TEXT - This is the actual source code for the Sample I/O
package used in this tutorial. Note that SIO is a standard DASL
program, no different in principle from any of the others we have
looked at so far.

/* KEYBOARD AND DISPLAY SEQUENTIAL I/O ROUTINES */

INCLUDE (DSINC)
INCLUDE (DSRMS)
INCLUDE (DSRMSWS)
INCLUDE (DSUFRWS)
INCLUDE (SIOINC)

HOR BYTE :
VER BYTE :

0;
11;

ENTRY DSIN := { NIL, O };

ENTRY DSREADC :=
VAR LEN BYTE;

{

IF DSIN.C-- = 0 THEN f{
DSWRITEF (&DSOUT) ;
LEN := SIZEOF DSIN.BUF;
IF SGETLINE(&DSIN.BUF(0], 0, &LEN, &HOR, &VER) && DSCFLAG THEN
SERMSG( ) ;

DSWRITEC (&DSOUT, SLEOR);
LEN := SIZEOF DSIN.BUF - LEN;
DSIN.BUF[LEN-1] := SLEOR;
DSIN.P := &DSIN.BUF[O0];
DSIN.C := LEN - 1;
)i

RESULT := DSIN.P++A;

)i

ENTRY DSREADS :=
{

RESULT := 0;

LOOP {

WHILE N--;
SA := DSREADC(F);
RESULT++; '

WHILE S++A ~= SLEOR;

{
[

! .
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ENTRY DSREADI :=

VAR SIGN INT;
C CHAR;

{

LOOP {
C := DSREADC(F);
WHILE C = ' ' | C = SLEOR;
}i
SIGN
IF C THEN |{
SIGN := - 1;
C := DSREADC(F);

=1

-~

LOOP

WHILE '0' <= C
RESULT := C
C := DSREAD
Y

RESULT *= SIGN;

—-=FA.P;

FA.C++;

}i

C <= "'9"';
'0' + RESULT * 10;
)

ENTRY DSOUT := { &DSOUT.BUF[O0] };
ENTRY DSWRITEC :=
{
IF C = SLEOR THEN {
DSOUT.P++A := SEL;
DSWRITEF (&DSOUT) ;
}
ELSE {
IF DSOUT.P + (0200 <= C & C <= 0277)

> &DSOUT.BUF[ (SIZEOF DSOUT.BUF)-3] THEN DSWRITEF( &DSOUT) ;
DSOUT.P++A := C;

1.
5o

Vi

ENTRY DSWRITES :=
{
LOOP {
WHILE N--;
DSWRITEC(F, S++A);
Ve
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ENTRY RECURSIVE DSWRITEI :=
{
IF N < 0 THEN {

DSWRITEC(F, '-');
N := - N;
)i
IF N/ 10 "= 0 THEN DSWRITEI(F, (<UNSIGNED>N)/10);

DSWRITEC(F, (<UNSIGNED>N)%10+'0');
}i

ENTRY DSWRITEF :=
{
DSOUT.PA := SES;
IF SPUTNOTX(&DSOUT.BUF[0], &HOR, &VER) && DSCFLAG THEN SERMSG();
DSOUT.P := &DSOUT.BUF[O0];
}i
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Appendix 1. The DASL Language Reference Guide

1. Introduction

DASL, Datapoint's Advanced Systems Language, is a high level
systems programming language designed to replace assembly language
for most programming tasks. The primary design goal was to
provide a simple language with sufficient power for systems
programming. A simple language results in easy understanding,
fast compilation, and efficient code generation.

DASL takes most of its ideas from the languages C and PASCAL.
The language has variable size scalar data, as well as pointer,
array, structure, and function types. There are many expression
operators for efficiently manipulating data. There are a few
simple but powerful control constructs. Finally, the language
includes a simple macro facility which can be used for many
different functions ranging from constant definition to language
extensions.

2. Lexical rules

The DASL tokens are identifiers, numbers, strings, and other
symbols. Comments, blanks, and line ends may be used freely
between tokens.

Any line starting with a period, star, or plus character is
considered a comment line and is completely ignored by the
compiler, with the exception of a line beginning with */ (see
comments, section #2.5).

2.1 Identifiers

An identifier is a sequence of characters chosen from upper
or lower case letters, digits, and the characters $ and _
(underscore); the first character may not be a digit. The first
29 characters and last character are significant for determining
uniqueness. Only the first seven characters and last character
are significant for identifiers passed to the LINK utility as
ENTRY or EXTERN names.
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2.2 Reserved and predefined identifiers

The following identifiers are reserved for use as keywords:

CASE IF SYSTEM
DEFAULT LOOP THEN
ELSE RECURSIVE TYPDEF
ENTRY SIZEOF UNION
EXTERN STATIC VAR
FAST STRUCT WHILE
GOTO

The following identifiers are predefined by the compiler but
may be redefined:

BOOLEAN IFELSE LONG
BYTE INCLUDE SUBSTR
CHAR INCR UNSIGNED
DEFINE INT

The identifier RESULT is predefined inside functions but may
be redefined.

2.3 Numbers

A decimal number is a sequence of digits not beginning with
the digit 0. An octal number is a sequence of the digits 0
through 7 beginning with the digit 0. A hexadecimal number is a
sequence of digits and the characters A through F (upper or lower
case) beginning with the characters 0x or 0X.

2.4 Strings

A string is a sequence of characters surrounded by single
quotes, such as 'abc'. Within a string a quote is represented by
two consecutive quotes. An end of line in the middle of a string
is ignored.

2.5 Comments

A comment begins with the characters /* and ends with the
characters */. Comments may be nested.
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3. Syntax notation

identifier-list -> identifier
=> identifier , identifier-list

In this example, an identifier list is either an identifier,
or an identifier followed by a comma followed by an identifier
list. Words in upper case are keywords in the language. The
subscript ,,; on an item indicates that the item is optional.

4. Types

A type is used in a variable declaration (#7.2) to determine
the amount of storage allocated as well as the interpretation of
the variable when it is used in an expression. A type is also
used in a function declaration (#7.3) to specify the parameters to
and result of the function. The TYPDEF declaration (#7.1) is used
to give a type a name which may be then used as a type.

Every expression has an associated type which helps determine
the meaning of the expression and is used to detect errors. The
type of an expression may be changed by the use of a type in a
cast (#5.18).

4.1 Named types
type -> identifier

An identifier is a type, provided it has been predefined by
the compiler or has been defined by a TYPDEF declaration (#7.1).
4.2 Scalar types

A scalar type describes a value which is an integral number.
Associated with each scalar is its length in bytes and whether it

is signed (can be negative). The following scalar types are
predefined by the compiler:

BOOLEAN 1 byte unsigned
CHAR 1 byte unsigned
BYTE 1 byte unsigned
UNSIGNED 2 bytes unsigned
INT 2 bytes signed
LONG 4 bytes signed

The only scalar types which may be defined by a program are
types equivalent to the above, defined by a TYPDEF declaration.
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4.3 Pointer types
type -> A type

A pointer type describes a value which is either an address
of an object in memory or the value zero, representing a null
pointer. The type of the object to which the pointer points is
given by type following the A symbol; it may be any type. If the
type following the A symbol is an identifier, it may be a forward
reference which is defined later by a TYPDEF declaration; the
identifier may even never be defined, unless its definition is
needed by the compiler to determine the meaning of an expression
involving the pointer type. The size of a pointer is two bytes
for the 5500 instruction set.

Examples: A NODE
A A CHAR

4.4 Array types

type -> [ constant-expression... ] type

An array is an aggregate type containing a number of
components of the type given following the ] symbol. The number
of components is given by the expression, which must be a compile
time constant. The components are numbered from zero to one less
than the number of components specified as the upper bound. The
bound may be omitted in certain variable declarations (#7.2). If
the component type is also an array type the result is a
multidimensional array.

Examples: [100] INT

[32] [8] A CHAR
4.5 Structure types
type -> structure

structure -> STRUCT { struct-decl-list,, |}
-> UNION { struct-decl-list,,. |}

struct-decl-list -> struct-declaration ;
-> struct-declaration ; struct-decl-list

struct-declaration -> identifier-list type
=> structure
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A STRUCT is an aggregate consisting of a sequence of named
members. A UNION is an object which may, at a given time, contain
any one of several members. STRUCT and UNION types have the same
syntax.

The struct-decl-list is a sequence of declarations for the
members of the structure. The identifiers name the members of the
structure. Within a STRUCT, successive members have successive
positions; members have increasing offsets. In a UNION, each
member starts at the beginning of the object at offset zero, and
the UNION is large enough to hold the largest member.

One of the declarations making up a structure type may be an
unnamed STRUCT or UNION; in that case the members of the unnamed
structure may be referred to as part of the outer structure.

Example: TYPDEF NODE STRUCT ¢{

NAME [12] CHAR;

LEFT, RIGHT A NODE;

TYP INT;

UNION {
STR [8] CHAR;
S STRUCT { VALl, VAL2 INT; };
bi

N NODE;

This example defines a type containing an array of 12 characters,
two pointers to the same type, an integer, and an array which
overlaps with two integers. After the variable N has been
declared to be of type NODE, the expression N.NAME refers to the
NAME field of the variable N; N.STR and N.S are also a valid
references, but the VALl field must be accessed by N.S.VALL
because the structure containing VALl was named.

4.6 Function types

type -> ( param-decl-list,,: ) type.,:

param-decl-list -> param-declaration
-> param-declaration , param-decl-list

param-declaration -> identifier-list type

A function type describes the parameters and results of a
function call. The parentheses are required even if there are no
parameters. The types in the parameter declaration list describe
the types of arguments which are expected when a function of the
specified type is called; these types are used by the compiler to
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check for a valid call.

The type following the ) symbol specifies the type returned
by the function type; if this type is omitted, the function
returns no result.

The parameter and result types must be scalar or pointer, but
pointers to any types may be passed.

There are several restrictions on the use of a function type.
The members of arrays and structures may not be functions, and a
function parameter or result may not be a function type. However,
a pointer to a function is valid in any of these places.

Example: F (X A INT, Y, Z CHAR) INT :=
{ RESULT := XA := XA + Y + Z;
Vi

In this example of a function declaration, the identifier F is
followed by a function type which specifies three parameters and a
result type. The part from the := on is the function body (#7.3)
which computes the result returned by the function.

4.7 Type compatibility

Several operators require their operands to be of compatible
type. Two types are said to be compatible if one of the following
statements is true.

l. The types are scalar types.

2. The types are pointer types and the two types pointed to
are compatible types of the same size.

3. The type of the constant number zero is compatible with
any pointer type. 1In this context the number zero is
considered to be a null pointer of the same type. The
type of the constant number equal to the largest possible
value of a pointer is also compatible with any pointer

type.

3. The types are array types with the same upper bound and
the component types are compatible types of the same size.

4. The types are equivalent types. Two types are equivalent

if they were the same type declaration or one was a TYPDEF
name for a type which is equivalent to the other.
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Example:

TYPDEF S STRUCT { A, B INT; };
TYPDEF F ( X INT );

I INT; 1I2 INT;

PI A INT; PI2 A INT; PF A F; PC A CHAR;
AC [2] CHAR; AAC [2] [1] CHAR; AI [2] INT;
S1 S; S2 S; S3, S4 STRUCT { A, B INT; };
EXTERN Fl F;

F2 ( X INT ) :=

{ I :=1I2;
PI := PI2;
PI := PF; /* error, don't point to compatible types */
PI := PC; /* error, don't point to same size */
PI := 0;
AC := '12"';
AC := '1"'; /* error, array bounds differ */
AC := AAC; /* error, component types not compatible */
AC := AI; /* error, component types different size */
Sl := S2;
S2 := S3; /* error, not equivalent types */
S3 := S4;
PF := & F1l;
PF := & F2; /* error, don't point to equivalent types */

}:

5. Expressions

Expressions are used to compute values to be used in
statements or declarations, or to perform actions such as function
calls. Every expression has an associated type which helps
determine the meaning of the expression and is used for error

Fol o -Yol B R
\;llcbl\.l.ll\j .

Except as noted in the description of particular operators,
the order of evaluation of operands within expressions is
undefined.

5.1 Lvalues and variables

An lvalue is an expression referring to an object in memory.
The term "lvalue" comes from the assignment expression, in which
the left operand must be an lvalue. A variable is an object which
may be modified. An identifier is an lvalue referring to a
variable. A string constant is an lvalue, but it does not refer
to a variable. An integer constant is not an lvalue or variable.
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The discussion of each operator below indicates if the operator
expects lvalue or variable operands, and if the result is an
lvalue or variable.

5.2 Arithmetic conversions

Many arithmetic operators perform type conversions on their
scalar operands. These conversions are described here.

First any operands of type BOOLEAN, CHAR, or BYTE are
converted to UNSIGNED by zero fill.

Then if either operand is type LONG, that is the type of the
result. If the other operand is not type LONG, it is converted to
LONG, by sign extension if type INT, otherwise zero fill.

Otherwise if either operand is type INT, both operands are
considered to be type INT, and that is the type of the result.
Care is required when INT and UNSIGNED operands are mixed.

Otherwise both operands are UNSIGNED, and that is the type of
the result.

5.3 Operator precedence

The following table lists the operator precedence and the
implied grouping when several operators of the same precedence
appear at the same level. The operators listed first have the
highest precedence and are performed first; operators listed on
the same line have the same precedence. Parentheses may be used
to modify precedence or grouping.

post-unary: A [] . () ++ -- left to right

pre-unary: ++ -- & - 7 T SIZEOF <type> right to left

binary: */ % left to right
+ - left to right
<< >> left to right
&& left to right
o1 left to right
= "= < > <= >= left to right
& left to right
| left to right
?

ternary: : right to left
binary: := op= right to left
) left to right
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5.4 Constant expressions

Array bounds and case labels are required to be compile time
constant expressions. These are expressions which only involve
scalar constants and the arithmetic operators in sections #5.15
through #5.25.

5.5 Number
expression -> number

An integral number is a constant expression. 1Its type is
normally UNSIGNED if the value will fit in sixteen bits, otherwise
LONG. The constant values 0 and the largest possible pointer
value may also be considered as pointers in the context described
in section #4.7.
5.6 String
expression -> string

A string constant is an expression. A string normally has
the type array of CHAR, but a string consisting of a single
character may also be considered to be of UNSIGNED type. The
string is initialized with the ASCII value of the characters in
the string. A string is an lvalue.
5.7 Identifier
expression -> identifier

An identifier is an expression, provided it has been declared
in a variable or function declaration. Its type is specified in
its declaration, and an identifier is an lvalue.
5.8 Parentheses and comma operator

expression -> ( expression-list )

expression-list -> expression
-> expression , expression-list

Parentheses may be used around a single expression to

override the precedence of operators; they do not otherwise change
the meaning of an expression.
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If the expression list contains more than one expression
separated by commas, each comma operator causes the preceding
expression to be evaluated, but the value is discarded. The last
operator performed by the expression must be one that has a side
effect, namely function call, ++, --, assignment, or comma. The
result of a comma expression is the same as the right operand.
The comma expression is useful in macros (#8.) which return
expressions.

Examples: (I+l)*2
(I+=2,A[I])

5.9 Indirection operator
expression -> expression A

The A operator means indirection; the operand must be a
pointer, and the result is an lvalue referring to the variable to
which the pointer points. If the type of the operand is pointer
to T, then the type of the result is T.

Example: VAR I INT;

PI A INT;
{ PI := & I;

I :=1;

PIAn := 1;

}i

In this example the first assignment causes PI to point to I; the
last two assignments both have the same effect of assigning to I.

5.10 Subscripting operator
expression -> expression [ expression ]

The subscripting operator [] selects a member of an array.
The left operand must be an lvalue referring to an array, and the
right operand must be a scalar. The result is an lvalue referring
to the selected member of the array. The first member of an array
is numbered zero. If the type of the left operand is array of T,
then the type of the result is T.

Example: VAR AAC [32] [8] CHAR;
{ AAC[0][5] := AAC[1l][6];
AAC[1l] := '12345678"';

Vi
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5.11 Field operator
expression -> expression . identifier

The operator . selects a member of a structure or union. The
left operand must be an lvalue referring to a STRUCT or UNION, and
the . is followed by an identifier naming a member of that STRUCT
or UNION. The result is an lvalue referring to the named member
of the structure or union.

Example: VAR S STRUCT { A, B INT; };
{ S.A := 0;

5.12 Function call operator
expression -> expression ( expression-list,,, )

expression-list -> expression
-> expression , expression-list

The first operand of a function call must be an lvalue
referring to a function. The remaining expressions, if any, are
the actual parameters to the function. They must agree in number
with the formal parameters specified in the function type, and
each operand must be of compatible type with the corresponding
formal parameter. The parentheses are required even if there are
no parameters. Parameters are passed by value, but it is possible
to pass a pointer to an object which is to be modified. The order
of evaluation of the function arguments is undefined, and may vary
with the particular code generator used. The type of the result
is that specified in the function type, or none if the function
type specifies no result. Recursive calls are permitted if the
function being called has been declared RECURSIVE (#7.3).

Examples: EXTERN F (X INT):
VAR PF A (X CHAR);
{ F(l);
PFA('a');
}i

In this example PF is a pointer to a function; the expression PFa
yields an lvalue referring to a function, which is then called
with one parameter.
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5.13 Increment and decrement operators

expression -> expression ++
-> expression --
-> ++ expression
-> -- expression

The ++ operator increments the variable referred to by its
operand; the -- operator decrements its operand. The operand must
be an lvalue, and may be a scalar or pointer. If it is a scalar,
it is incremented or decremented by one. If it is a pointer, the
address to which the pointer points is incremented or decremented
by the length of the object to which the pointer points. The
value of the expression is the value of the operand after the
increment or decrement if the ++ or -- operator precedes the
operand, or the value before the increment or decrement if the
operator follows the operand.

Example: VAR I, J INT;
PC A CHAR:;
{ I++;
J = --I;
}i
The parentheses are used in the last assignment because unary
operators which follow an expression have a higher precedence than
unary operators preceding an expression.
5.14 Address operator
expression -> & expression
The unary & operator yields a pointer to the object referred
to by its operand, which must be an lvalue. If the type of the
operand is T, the type of the result is pointer to T.

Example: VAR I INT;

{ PI := & I;

Once PI is set to point to I by the first assignment, the last two
assignments both have the same effect of assigning to I.
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5.15 Unary arithmetic operators

expression -> - expression
-> Y expression

The - operator gives the negative of its operand. The result
is type LONG if the operand is LONG, otherwise INT.

The ~~ operator gives the one's complement of its operand.
The type of the result is LONG if the operand is type LONG, INT if
the operand is INT, and otherwise UNSIGNED.

5.16 Unary not operator

-~

expression -> expression

The result of the operator ~ is 0 if its operand is nonzero,
otherwise 1. The operand must be a scalar or pointer. The type
of the result is UNSIGNED.

5.17 SIZEOF operator

expression -> SIZEOF expression
=> SIZEOF < type >

The SIZEOF operator gives the size, in characters or bytes,
of its operand, which may be an expression or a type surrounded by
corner brackets. The result is an UNSIGNED constant. The
ambiguous case typified by SIZEOF<type>-1 is interpreted as
(SIZEOF<type>)-1 by requiring that when SIZEOF is followed by an
expression, the expression must not begin with <type> (#5.18).

5.18 Cast operator
expression -> < type > expression

An expression preceded by a type in corner brackets causes
the operand to be considered to be the specified type. If the
expression is a scalar or pointer, and the cast type is also
scalar or pointer, then the value of the expression is converted,
and the result is not an lvalue if the size changes. Otherwise
the expression must be an lvalue, and the result is an lvalue
referring to an object of the cast type at the memory address
referenced by the expression. 1In this case, if the operand is a
string constant, it will be padded with blanks if cast to a longer
type; such a cast to a shorter type is an error.
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Example: <ACHAR>P := ALLOC(SIZEOF PA);

In this example P is a pointer and ALLOC is a storage allocator
which returns a pointer to a CHAR. The ALLOC call obtains enough
storage for whatever P points to; the pointer is assigned to P,
which has been cast to the proper type.

5.19 Multiplicative operators

expression -> expression * expression
-> expression / expression
-> expression % expression

The * operator indicates multiplication. The / operator
indicates division. The % operator yields the remainder after the
division of the first operand by the second. Both operands must
be scalar. The arithmetic conversions described in #5.2 occur.
For / and %, the operation is signed if either operand is signed,
otherwise unsigned. The value of / and % is undefined if the
second operand is 0, but no error occurs. The remainder has the
same sign as the dividend. It is always true that A/B*B + A%B
equals A, if B is not 0. The multiplicative operators group left
to right.

5.20 Additive operators

expression -> expression + expression
-> expression - expression

The + operator yields the sum of its operands. The -
operator gives the difference of its operands. Both operators
group left to right.

For +, the operands may be scalars, in which case the
arithmetic conversions described in #5.2 occur, or they may be a
pointer and a scalar. In the second case the pointer is
incremented by the value of the scalar times the size of the
object to which the pointer points, and the result is a pointer of
the same type.

For -, if the operands are scalars, the result is type LONG
if either operand is LONG, otherwise INT. If a scalar is
subtracted from a pointer, the result is a pointer of the same
type, given by the value of the pointer minus the value of the
scalar times the size of the object to which the pointer points.
If two pointers of compatible type are subtracted, the result is a
signed scalar given by the difference of the two pointer values,
divided by the size of the object to which they point.
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Example: VAR I INT;

P, Q A INT;
A [10] INT;

{ P := & A[2];
Q := & Al4];
(P+1)A = 0; /* as31gns to A[3] */
(P=2)A := 0; /* assigns to A[0] */
I :=Q - P; /* value is 2 */
i

5.21 Shift operators

expression -> expression << expression
-> expression >> expression

The value of E1<<E2 is El left shifted E2 bits. The value of
E1>>E2 is El right shifted E2 bits; if El is a signed type, the
right shift will be arithmetic (sign £ill), otherwise it will be
logical (zero fill). Both operands must be scalars. The type of
the result is LONG if El is LONG, INT if El is INT, and otherwise
UNSIGNED. The value is undefined unless the value of E2 is less
than the number of bits in the result. The shift operators group
left to right.

5.22 Bit operators

expression -> expression && expression
-> expression || expression
-> expression !! expression

The && operator performs a bitwise AND function of its
operands; the || operator performs a bitwise inclusive OR
function; the i operator performs a bitwise exclusive OR
function. The && operator has higher precedence than || and !!
Both operands must be scalars. The conversions described in #5.
occur. The bit operators group left to right.

5.23 Relational operators

expression -> expression = expression
-> expression “= expression
-> expression < expression
-> expression > expression
-> expression <= expression
-> expression >= expression
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The relational operators are = (equal), = (not equal), <
(less than), > (greater than), <= (less than or equal), and >=
(greater than or equal). They yield a 1 result if the specified
relation is true and a 0 if it is false; the type of the result is
UNSIGNED. The two operands must be of compatible types. If
either operand is a signed scalar type, the comparison is signed;
if both operands are unsigned scalars, the comparison is unsigned.
Pointer comparisons are unsigned. Arrays, structures, and unions
are compared one byte at a time, from lowest address to highest,
using unsigned arithmetic. The relational operators group left to
right, but A<B<C will compare a 1 or 0 with C.

5.24 Logical operators

expression -> expression & expression
-> expression | expression

The binary & operator results in 1 if both operands are
nonzero, otherwise 0. The | operator results in 1 if either
operand is nonzero, otherwise 0. The & operator has a higher
precedence than |. The first operand is always evaluated first;
moreover the second operand is not evaluated unless needed to
determine the result. The operands need not be the same type, but
each must be a scalar or pointer. The result is always UNSIGNED.
The logical operators group left to right.

5.25 Conditional operator
expression -> expression ? expression : expression

If the value of the first operand is nonzero, the result is
the value of the second operand, otherwise the result is the value
of the third operand. Only one of the second and third operands
is evaluated. The first operand must be a scalar or pointer. If
the second and third operands are scalars, the type of the result
is given by #5.2, otherwise they must be compatible pointers and
the result is the same type. The conditional operator groups
right to left.

5.26 Assignment operators

expression -> expression := expression
-> expression *= expression
-> expression /= expression
-> expression %= expression
-> expression += expression
-> expression -= expression
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-> expression <<= expression
-> expression >>= expression
-> expression &&= expression
-> expression ||= expression
=> expression !!= expression

The simple assignment operator := places the value of the
second operand in the variable referred to by the left operand,
which must be an lvalue. The other assignment operators, of the
form Elop=E2, are equivalent to (El):=(El)op(E2); however, El is
only evaluated once. For := the operands must be compatible
types. For the other assignment operators, the right operand must
be a scalar; the left operand must be a scalar, or for += and -=
it may be a pointer, in which case the pointer arithmetic is as in
#5.20. The result of an assignment expression has the value and
type of the left operand after the assignment, but is not an

lvalue. The assignment operators group right to left.
Examples: VAR I, J, K INT;
PI A INT;
{ I :=1;
J = K := 0;
PI := 0;
}

6. Statements

Statements are normally executed in sequence, but several
kinds of statements alter the flow of control.
6.1 Expression statement
statement -> expression

An expression may be used as a statement. The last operator
performed by the expression must be one that has a side effect,
namely function call, ++4, --, assignment, or comma. If a function
call which returns a value is used as a statement, the value is
ignored.

6.2 Compound statement and block

statement -> VAR declaration-list { statement-list,,, }
-> { statement-list,,, }

declaration-list -> declaration

-> declaration ; declaration-list
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statement-list -> statement ;
-> statement : statement-list

A compound statement permits several statements to be used
where one is expected. If the compound statement starts with
declarations (#7.), it is a local block. The only function
declarations permitted in a local block are EXTERN declarations.
Initializations of local variables occur only when the program is
loaded, not when the block is entered.

Note that each statement in a compound statement must be
followed by a semicolon.

Examples: { J;

~

++
r
VAR M INT;
P A INT;
EXTERN F ();
{ M := PAa;
F();:
}

-G H

~. o~

6.3 Conditional statement

statement -> IF expression THEN statement
-> IF expression THEN statement ELSE statement

The scalar or pointer expression is evaluated and if it is
nonzero, the statement following the THEN is executed. If the
expression is zero and there is an ELSE statement, that statement
is executed. There is never a semicolon preceding an ELSE. The
ELSE is associated with the nearest possible IF in ambiguous cases

such as

IF e THEN IF e THEN s ELSE s

6.4 Loop statements
statement -> LOOP statement
statement -> WHILE expression
The LOOP statement causes the substatement to be repeated.
If the statement following LOOP is a compound statement, one or

more of its substatements may be a WHILE statement. Execution of
a WHILE statement terminates execution of the LOOP if the value of
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the scalar or pointer expression is zero.

Examples: LOOP SUBR(); /* loops forever */
I :=0;
LOOP WHILE ++I < 10000; /* loops 10000 times */
I := 0;
LOOP {
Al[I] := 0; /* clears A[0] through A[99] */

WHILE I++ < 99;
}i

6.5 CASE statement
statement -> CASE expression { case-statement-list,,, }

case-statement-list -> case-statement ;

-> case-statement case-statement-list

case-statement -> case-label-list : statement

case-label-list -> case-label
-> case-label , case-label-list

case-label -> constant-expression
=> DEFAULT

The case statement causes control to be transferred to one of
several statements depending on the value of an expression. The
expression must be a scalar. When the CASE statement is executed,
control is transferred to the statement preceded by a constant
expression having the same value as the expression. If no
statement is preceded by a matching value, control is transferred
to the statement preceded by a DEFAULT if there is one, otherwise
control is transferred to the next statement. After execution of
one of the statements in the CASE, control is transferred to the
next statement after the CASE statement.

Example: CASE I {
1: X++;
2, 3: ==
DEFAULT: X :
}i

I~

0;

6.6 GOTO statement
statement -> GOTO identifier

Control may be transferred unconditionally by this statement.
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The identifier must be a label (#6.7) on a statement in the same
function.

6.7 Labeled statement
statement -> identifier : statement

Any statement may be preceded by a label. The colon declares
the identifier as a label. The label may be used in a GOTO. The
scope of the label is the function in which it appears (see scope
rules #9.).

6.8 Null statement
statement ->

A null statement causes no special action but may be used
wherever any other statement may appear.

7. Declarations

program ->
-> declaration ; program

class =-> ENTRY
-> EXTERN
-> STATIC

A program module is a sequence of declarations of types,
variables, and functions. Variable and type declarations and
external function declarations may also appear in blocks (#6.2).
Optional class specifications control the scope and storage
allocation of declared objects.

7.1 Type declaration
declaration -> TYPDEF identifier-list type

The TYPDEF declaration declares one or more identifiers to be
an equivalent name for the specified type; such an identifier may
be then used anywhere a type is required.
Example: TYPDEF ID [8] CHAR;

A ID;
P A 1ID;
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7.2 Variable declaration

declaration -> class,,, identifier-list type,,,
-> class,,, identifier type,,, := initializer

initializer -> expression
-> { initializer-list,,, }

initializer-list -> initializer
-> initializer , initializer-list

A variable declaration defines one or more variables of the
specified type. The type may be any type but a function type.

The class ENTRY in a global variable declaration causes the
variable name to be an entry point which may be referenced by
other program modules when the modules are linked together by the
LINK utility. The class EXTERN causes no storage to be allocated
but declares that the name is defined as an entry point in some
program module, such as with the ENTRY class in another DASL
program module.

If a variable has been declared EXTERN, such as by an include
file, it may be redeclared as ENTRY in the same block; the second
declaration omits the type specification. 1In all other cases the
type is required.

The class STATIC causes a variable declared in a block inside
a function to be permanently allocated instead of being allocated
dynamically each time the function is called. Variables declared
globally are always STATIC.

A variable which is global or STATIC may be given an initial
value with an initializer. If an initializer is specified only
one identifier may be given in the identifier list. An
initializer for a scalar or pointer variable is an expression of
compatible type; an array of characters may also be initialized by
a string constant of identical size.

An array or STRUCT variable may be initialized by specifying,
inside braces, a list of initializers for the components of the
aggregate variable in increasing order; the initializers for
components of a character array may include string constants.
Fewer initializers may be specified than the number of components
if not all are to be initialized. Braces may be nested if the
component of an array is also an array or structure, or a
component variable of a structure is an array or named structure.
If an array is initialized, the first bound of the array type
specification may be omitted, and the compiler will £ill in the
bound from the number of initializers specified. A UNION is
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treated like a STRUCT, but only the first alternative of the UNION
is initialized.

Initializer expressions must be values which are constants
when the program is linked; such expressions may involve numeric
and string constants, addresses of static variables, and addresses
of arrays subscripted by constants.

Examples: ENTRY I INT := 0;
PC A CHAR := &'l1';
A [] CHAR := 'l123';
AAA [10] CHAR := { '123', 015 };

S STRUCT { A INT; UNION { B, C INT; }; D A CHAR:
{ 1, 2, &AAA[O0]+1

R adead
o
I

~-e

7.3 Function declaration

declaration -> fclass identifier-list type
-> fclass identifier type,,, := statement

fclass -> class,,y RECURSIVE,,,

A function declaration declares one or more identifiers to be
names of functions and may specify the code to be executed when
the function is called. The type must be a function type. With
the exception of EXTERN declarations, all function declarations
occur in the outer block; function declarations may not be nested.

The ENTRY and EXTERN class specifications function the same
as for variable declarations (#7.2). The RECURSIVE class declares
that the function may be called recursively.

If the statement body is present, only one identifier may be
specified. The statement body is omitted if the class is EXTERN,
or if the function type needs to be declared before the function
body is given, as in cases of mutual recursion. 1In this second
case the function name must be redeclared with the body provided.
A function name which has been declared as EXTERN may also be
redeclared, as ENTRY. In these two cases, the type is omitted on
the second declaration, but the ENTRY and RECURSIVE classes, if
needed, are specified on the second declaration. 1In all other
cases the type must be specified.

The statement becomes a block (#9.) which is executed when
the function is called. The formal parameters in the function
type become local variables in this block; they are initialized to
the values passed as the actual parameters. Within this block,
the variable name RESULT refers to the value of the function; an
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assignment to this variable sets the value returned by the
function.

Examples: EXTERN F (X INT);

G (X INT) INT;

THEN I := G(X);

8. Macros

Macros provide a text substitution facility. 1In the simplest
case, occurrences of a particular identifier may be replaced by
any desired string of characters; this permits constants to be
given a name, increasing program clarity. Macros may also have
parameters, providing the equivalent of function calls without the
function call overhead.

Five macro definitions are built in to the compiler. These
provide the ability to define a new macro, compare two text
strings, increment a numeric text string, select a substring, and
include additional files in a source program.

Macros are independent of the other syntax rules of the
language, and a macro call may occur anywhere except inside a

8.1 Macro call
A macro is called by one of the sequences
identifier or identifier(parameter,parameter,...)
where the identifier names a predefined macro or a macro which has
been defined by the DEFINE macro (#8.3). In the first case the
macro is called with no parameters; in the second case there are
zero to nine parameters to the macro, each of which is a string

(sequence) of characters. Blanks are significant inside
parameters; line ends are treated as characters. If a parameter
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contains a ( character, then any commas until the balancing )
character are considered part of the parameter and not a parameter
separator (see also evaluation deferral #8.2). Commas and
parentheses inside comments and quoted string constants are not
treated as macro delimiters.

When a macro call appears, each parameter is scanned, with
any macro calls within the parameter being performed, and the
parameters are saved. Next, the parameters are substituted into
the macro definition according to the parameter specifications in
the macro definition. Finally the adjusted macro definition
replaces the macro call, and the result is rescanned in case it
contains more macro calls. If a nested macro call is preceded by
the # symbol, this rescanning does not occur.

If a macro call supplies fewer parameters than the macro
definition requires, the unspecified parameters are considered to
be null strings. If the call supplies extra parameters, they are
ignored.

Examples: X
F(l+2,2)

8.2 Evaluation suppression

The character pair #[ indicates that the following characters
up to a balancing #] are all to be treated as ordinary characters;
macro names, parentheses, and commas have no special meaning. The
#[ and #] symbols are stripped. If these symbols occur in a macro
parameter, any suppressed macro calls may later occur if the
suppressed string is rescanned after substitution in the macro
definition. The #[ and #] symbols may be nested, with one level
being removed each time they are scanned. The #[ and #] symbols
are not treated as macro delimiters inside comments and quoted
string constants.

Example: #[ X #)

8.3 Macro definition
A macro is defined by the macro call
DEFINE(identifier,definition)
which is replaced by a null string but has the side effect of
defining the identifier as the name by which the macro is to be

called and the definition as the string to be substituted for the
macro call. Within the definition, the character pair #n, where n
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is a digit from 1 to 9, will be replaced by parameter n when the
macro is called, even inside comments, quoted string constants,
and #[ #] symbols. The definition may need to be surrounded with
the evaluation suppression symbols #[ and #] if it contains macro
calls which should not occur until the macro being defined is
called.

The identifier will normally be defined as a local definition
in the current block, and the definition will be forgotten at the
end of the block. If the identifier is already defined as a
macro, however, that definition (even if not in the current block)
will be replaced with the new definition and no error will occur.
In this case, the identifier should be surrounded by the #[ #]
symbols in the DEFINE so the old definition is not substituted
when the parameters to the DEFINE are scanned.

Examples: DEFINE(X,1l)
DEFINE(SQR, ((#1)*(#1)))
DEFINE(NEW, <ACHAR>(#l) := ALLOC(SIZEOF (#1)A )
DEFINE(GETC, ( LPA=EOL ? (GETLINE(),LP++A) : LP++A ) )

Note that no semicolon follows a DEFINE. Note also that it is
often good practice to surround a macro parameter reference with
parentheses to force proper expression evaluation order.

8.4 String comparison
The macro call
IFELSE(stringl,string2,equal,unequal)

compares the first two character strings. If they are equal, the
result of the macro call is the third string; otherwise the result
is the fourth string. If the two strings are unequal length, they
are considered unegual. If the third or fourth strings contain
macro calls, it may be necessary to surround them with the
evaluation suppression symbols #[ #] to defer the macro calls when

the IFELSE parameters are first scanned.

Examples: IFELSE(1,2,3,4) is replaced by 4
IFELSE(1,1,3,4) is replaced by 3
IFELSE( ,,3,4) is replaced by 4

8.5 Numeric incrementation
The macro call

INCR (number)
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gives as a result a string which is the decimal number following
the value of the parameter. The parameter may be an unsigned
decimal, octal, or hexadecimal number (#2.3), or it may be a
string constant (#2.4), in which case the value of the first
character of the string is used. If the parameter is neither of
these the value is considered to be zero. The parameter may have
leading blanks.

Example:

DEFINE(E,#[IFELSE(#2,, ,#[DEFINE(#2,#1)E(INCR(#1),#3,#4,#5,%6)%#]1)#])
E(0,A,B,C)

This complex example is a recursive macro which defines a list of
identifiers to be ascending numerical values. When the macro call
E(0,A,B,C) is scanned, it is replaced by the definition of E with
the parameters filled in. The result is

IFELSE(A,, ,#[DEFINE(A,0)E(INCR(0),B,C,,)#])
which is then rescanned. The parameters to the IFELSE macro are
scanned, but the #[ #] symbols inhibit the macro calls in the
fourth parameter. Since the first two parameters are not equal,
the result is

DEFINE(A,0)E(INCR(0),B,C,,)
which is then rescanned. The DEFINE call defines A to be the
string 0 and is replaced by a null string. Next the E macro is
seen and its parameters are scanned; the INCR(0) macro call is
replaced by the string 1. Next the call to E is replaced by the
definition of E

IFELSE(B,,,#[DEFINE(B,1)E(INCR(1),D,,,)#])
and everything repeats again but B is defined instead of A. The
third time C is defined, and the fourth time the recursion
terminates with the processing of

IFELSE(,,,#[DEFINE(,3)E(INCR(3),,,,)#])

in which the first two parameters of the IFELSE are equal, so the
IFELSE call is replaced with the third parameter, which is null.

8.6 Substring selection

The macro call
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SUBSTR(string,start,length)

selects the portion of the string parameter specified by the start
and length parameters. The start and length parameters are
numbers with the same rules as for the INCR macro. The result is
the number of characters specified by the length parameter,
starting at the position specified by the start parameter
(counting from 0). If the length parameter is omitted, the result
is the rest of the string from the start position. If the string
is shorter than required by the specified start and length, the
result is the portion of the string within the specified start and
length.

Examples: SUBSTR(ABC,1l) is replaced by BC
SUBSTR(ABC,0,2) is replaced by AB
SUBSTR(ABC, 2,2) is replaced by Cc

8.8 File inclusion
The macro call
INCLUDE(filespec)

is replaced by a null string but as a side effect causes
subsequent input lines to come from the specified file. 1Includes
may be nested. '

Example: INCLUDE (COMMON)

9. Scope rules

An identifier is declared by a TYPDEF, variable, or function
declaration, by its use as a formal parameter, by its use as a
label, or by its definition as a macro. Every identifier is
declared in a particular block; the whole input file is considered
to be the global block. Except for a macro name, an identifier
may have only one declaration in a particular block, but a
declaration may duplicate an identifier which has been declared in
an enclosing block; the outer definition is then temporarily
hidden. The definition of an identifier is visible in the block
in which it is declared and any inner blocks in which it is not
hidden by a redeclaration. All identifiers must be declared
before they are used, except for labels and the types to which
pointers point.
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Appendix 2. DASL Calling Sequences

This appendix describes the assembly language code generated
by the DASL compiler for function calls and for recursive function
storage allocation on the processors having the 5500 or 6600
instruction set. This information is useful for programmers
writing assembly language routines to be called from DASL, and for
programmers wishing to control the storage management for
recursive functions.

Function Calling Sequences

The function calling sequence is independent of whether the
called function is recursive or not. There are two cases,
however, depending on the number of parameters to be passed.

If there are three parameters or less, the third parameter
(if any) is passed in the BC register pair, the second in DE, and
the first in HL.

If there are more than three parameters, they are pushed on
the stack in reverse order, with the first parameter being pushed
last.

In all cases, if the formal parameter type is one byte long,
the high byte of the register pair or stack entry is undefined.
If the formal parameter type is LONG, the address of a memory
location containing the LONG value is passed.

If the function has a result, it is passed in the A register
if a single byte, or in HL if two bytes. If, however, the result
type is LONG, the code generated is as if the function had no
result but had another parameter of type pointer to LONG; the
generated code passes the address of a location in which to place
the LONG result.

Example: EXTERN F (I INT, B BYTE);
EXTERN G (A, B, C, D BYTE) BYTE;

F(1, 2);
LE 2
HL 1
CALL F
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IF G(1, 2, 3, 4) THEN ...
PUSH
PUSH
PUSH
PUSH
CALL
ORA
JTZ .o

QNN WD

Recursive Function Storage Allocation

The DASL run time library DSLIB includes a default set of
routines for managing recursive function calls. Many programs
with recursive functions will be able to use these routines. They
allocate recursive function storage from a fixed area in the
library. If this default area is not of adequate size, the
programmer may include in his program a storage area definition
such as

ENTRY DSSTACK [3000] BYTE; ENTRY DSSTACKE [0] BYTE;
defining an area of 3000 bytes.

The default routines will call a function named DSSTKOF if
the default or user supplied area is exceeded. There is a default
routine in the run time which outputs an error message, but the
user may supply his own error routine, such as

ENTRY DSSTKOF () := SERROR();

which simply calls the RMS error exit. Such an error routine must
not return normally to its caller.

The user may also perform his own storage management. At
entry to a recursive function, the compiler generates the
following code if there are three parameters or less

PUSH BC (if 3 parameters)
PUSH DE (if 2 or more parameters)
PUSH HL (if 1 or more parameters)

LC <number of parameters>
DE <number of bytes needed>
CALL DSRENREG

If there are more than three parameters, the code generated is
LC <number of parameters>

DE <number of bytes needed>
CALL DSRENSTK
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The DSRENREG or DSRENSTK routine should allocate a storage
area of the number of bytes specified in DE, leave its address in
the ENTRY variable DSRFRAME, and pop the parameters and function
return address off the stack and store them in the storage area.

The format of the local storage area is

—— ——— - . T —— ———— - - - ——— - — -

(DE)
At the end of a recursive function, the code generated is
JMP DSREXIT
This routine should deallocate the local storage, restore DSRFRAME
to point to the previous stack frame, and return to the caller of

the function. The A and HL registers should be preserved, since
they may contain a returned function value.
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Appendix 3. The DSINC INCLUDE

The DSINC INCLUDE file provides standard definitions for DASL
programs. This appendix describes the use of this file.

Several symbolic constants are defined: MAXINT (077777,
maximum value of an INT), MAXUNSIGNED (0177777), MAXLONG
(017777777777), NIL (0, null pointer), and FALSE (0) and TRUE(1l).

The macro ENUM is defined as BYTE, and additionally defines
up to nine arguments as ascending values from zero, as in the
variable declaration

STATUS ENUM(NORMAL, EOF, ERROR);

The macro ENUMV is similar, but just defines its arguments to be
ascending values from the first argument, as in

ENUMV(1l, CLOSED, FORWARD, BACKWARD)

The macros SET and SETV are similar, but define their arguments as
successive powers of two. The macro SETW is like SET but is
defined as UNSIGNED.

The type ULONG is a definition for 24 bit values. The
routines DSGET24 and DSPUT24 convert between 24 bit ULONG and 32
bit LONG values.

The external function D$SMOVE performs a block move of from O
to 65535 bytes, from the BYTE address given by the first parameter
to the BYTE address given by the second parameter, for the number
of bytes given by the third parameter. The function DSMOVER is
similar but takes the ending addresses of the blocks. The
external function DSCOMP performs a block compare between two
strings given by the first two parameters, which are BYTE
pointers, for the number of bytes given by the third parameter.

If the two strings are equal, the function returns zero, otherwise
it returns the difference of the first two differing bytes
(byte in first string minus byte in second string).

The external function DS$SC will perform an RMS system call;
its argument is the system call number. The function gets the
register values passed into the system call from external
variables corresponding to the registers; these variables may be
assigned values by the program before the D$SC call:

DSX, DSA, DSB, DSC, DSD, DSE, DSH, DSL, D$XA, DSBC, DSDE, DSHL

The DSSC function returns the register values after the system
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call in these same variables; in addition the condition code
returned by the system is returned as the function value and in
the external variable DSCC with a bit for each of the possible
flags. The masks for these bits are

DSCFLAG, DSZFLAG, DSSFLAG, DSPFLAG

The external function DSCALL works like DSSC, but performs a
CALL to an arbitrary subroutine; the argument is the subroutine
address, of type pointer to DSCALLF.

Several external 256 byte arrays, DSBUF1l through DSBUFS, are

defined. These arrays are aligned on memory page boundaries so
they may be used as RMS I/0 buffers.
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/* DASL STANDARD INCLUDE - SEPTEMBER 15, 1982 */

DEFINE(MAXINT,077777)
DEFINE (MAXUNSIGNED,0177777)
DEFINE (MAXLONG,017777777777)
DEFINE(NIL,O0)

DEFINE(ENUMV, # [IFELSE(#2,,,
# [DEFINE(#2,#1)ENUMV(INCR(#1),#3,#4,#5,#%6,#7,#8,#9)#1)#])
DEFINE(ENUM, #[DEFINE(#1,0)ENUMV(1,#2,#3,#4,#5,#6,#7,#8,#9)#]BYTE)

DEFINE(SETV, #[IFELSE(#2,,,

#[DEFINE(#2, (#1))SETV(#1*2,#3,#4,#5,#%#6,#7,#8,#9)#1)#1)
DEFINE(SET,#[SETV(1,#1,%#2,#3,#4,#5,#6,#7,#8)#1BYTE)
DEFINE(SETW, # [DEFINE(#1,1)SETV(2,#2,#3,#4,#5,#6,#7,#8,#9)# ] UNSIGNED)

ENUMV(0,FALSE, TRUE)

TYPDEF ULONG, ILONG STRUCT {
LSW UNSIGNED;
MSB BYTE;
}i

EXTERN DSGET24(pul A ULONG) LONG;
EXTERN DSPUT24(1 LONG, pul A ULONG);

EXTERN DSMOVE, DSMOVER (S, D A BYTE, N UNSIGNED);
EXTERN DSCOMP (S, D A BYTE, N UNSIGNED) INT;

EXTERN RASLRESS ();:

/* SYSTEM INTERFACE */

TYPDEF DSCCODE SET(DSCFLAG,DSZFLAG,DSSFLAG, DSPFLAG) ;

TYPDEF DSCALLF ():

/* Important: reference to the following register variables, DSSC,
DSCALL, and DSCC should be avoided outside of macro definitions
in include files to preserve machine independence. Reference
to the above DSxFLAG names is okay.

*/

EXTERN DSX, DSA, D$B, DS$SC, DSD, DSE, DSH, DSL BYTE;

EXTERN DSXA, DSBC, DSDE, DSHL UNSIGNED;

EXTERN DSSC (SCNUM BYTE) DSCCODE;

EXTERN DSCALL (F A DSCALLF) DSCCODE;

EXTERN DSCC DSCCODE;

EXTERN DSBUFl, DSBUF2, DSBUF3, DSBUF4, DSBUFS5 [256] BYTE;

Page 92



Appendix 4. The DSRMS Include

The DASL Document

DSRMS is the standard DASL include file which contains

definitions required to deal effectively with the RMS operating
environment.
heavily on the availability of these definitions.

In particular, SIO and other RMS I/0 packages rely

/* DASL COMMON RMS DEFINITIONS - DECEMBER 21, 1982 */

/*

and UFR functions.
these definitions,
whatever I/0 package is being used.

This file contains definitions for commonly used RMS nucleus

The hope is that most programs will just need
the ones in DSINC,

and the definitions for
Additional INCLUDE files are

organized according to chapters in the nucleus and UFR user's
guides as follows:

*/

DSRMSGEN
DSRMSPROG
DSRMSMEM
DSRMSTASK
DSRMSIO

DSRMSSTRUCT

DSRMSWS
DSRMSSPEC

DSUFRENV
DSUFRERR
DSUFRNUM
DSUFRSYS
DSUFRSCAN
DSUFRWS
DSUFRGEN
DSUFRLIB
DSUFRNQDQ
DSUFRRLD
DSUFRMEM
DSUFRWFIO

DSFAR
DSERRNUM

DSPCR

Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapters 7-10.
Chapter 8.
Chapter 11.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.
Chapter 10.
Chapter 11.
Chapter 12.
Chapter 13.

General System Functions
Program Loading and Execution

Memory Management

User Multi-tasking

File Handling, Block I/O, Disk,
Printer, Pipe

Disk Structure

Workstation

Special System Calls

Environment Handling
Error Handling
Numeric Manipulation
System Interface
Command Interpreter (Scanning)
Workstation Interface
General Utility
Library Manipulation
NQ/DQ

Relocating Loader
Memory Management
Work File I/0

File Access Routines
System Error Numbers

Program Communications Region
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/* NUCLEUS DEFINITIONS */

DEFINE (SNOADR,0177777)
DEFINE (SNOPSK,0377)

DEFINE(SLMCV,0371)
ENUMV(0371,SLSPC, SLEOR, SLEOF, SLST, SLEOB, SLXX, SLDEL)

. The SERRC structured variable contains the RMS error code
. after an error return from a system call or UFR. The system

. code number or UFR class is in S$ERRC.SFUNC (symbolic values are
. in the DSERRNUM include). The error number is in SERRC.SCODE.
. This structure should be used instead of the machine dependent
. places D$B and DSC.

TYPDEF SERRCODE STRUCT {
SCODE, SFUNC BYTE;
}i

EXTERN SERRC SERRCODE;

TYPDEF SNAMET (12] CHAR;
TYPDEF SEXTT [4] CHAR;
TYPDEF SNAMEEXT STRUCT {
SNAME SNAMET;
SEXT SEXTT;
}:
TYPDEF SHSI [32] CHAR;
TYPDEF SPACKPW [6] BYTE;
TYPDEF SLSN ULONG;
TYPDEF SFILEPTR UNION f{
STRUCT {
SFPTRBUFOF BYTE;
SFPTRLSN SLSN;
)i
SFP LONG;
}i
TYPDEF SLNAMET [8] CHAR;
TYPDEF STIME [5] BYTE;
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/* CHAPTER 7. GENERAL FILE HANDLING

TYPDEF SPFDBBUF STRUCT {
PSK, PAGE BYTE:
SYS UNSIGNED;
}i

TYPDEF S$PFDB STRUCT ({
SPFVID UNSIGNED;
UNION {
SPCLSN SLSN;
STRUCT ¢
UNION {
SPBLKL UNSIGNED;
STRUCT {
SPSYSCODE BYTE;
SPTASKID BYTE;
}i
}s:
UNION {
SPTIMER BYTE;
SPSUBF BYTE;
Vi
i
}i
SPTODO BYTE;
SPDONE BYTE;
SPMXBF BYTE;
SPBUFL [l1] S$PFDBBUF;
}i

*/

/*
/*

The DASL Document

DISK */

PIPE AND TAPE */

DIRECT RIM */
DIRECT RIM */

PIPE AND DIRECT RIM */
TAPE */

ENUMV(0,SOMREAD,SOMSHARE,$OMEXCL,$OMPREP,SOMCREAT,SOMCHECK,

SOMREPAR , SOMBYPAS)

DEFINE (SENVTERM,0377)
DEFINE ( SMAXNPW, 20)
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TYPDEF SOPENPT STRUCT {
SOTPFDB A SPFDB;
SOTENV A CHAR;
SOTFILE A SNAMEEXT;
SOTKIND ENUM(SDKWS, SDKDISK, SDKPIPE, SDKPRINT, SDKCASS, SDKMAGT,
SDKCOMM, SDKTIMER) ;
ENUMV ( 8, SDKCARDR , SDKCARDP, SDKPTR, SDKPTP, SDK883M, SDK863M,
SDKSMPLR , SDKRIM)
ENUMV (16, SDKFAX)
SOTSUBK BYTE;
SOTFEOFB BYTE;
SOTFLEN SLSN;
SOTFINC UNSIGNED;
SOTFMT ENUM(SFFMTSYS, SFFMTTMP , SFFMTTXT , SFFMTISM, SFFMTL55,
SFFMTRAC, SFFMTDBC) ;
ENUMV (7, SFFMTBAS, SFFMTMAC, SFFMTWPS, SFFMTJOB, SFFMTBIN,
SFFMTUTX, SFFMTMFD)
ENUMV (14, SFFMTUPF , SFFMTWPF , SFFMTAIM)
SOTTIME STIME;
SOTSQL BYTE;
SOTCODE BYTE;
SOTONOS BYTE;
SOTFID UNSIGNED;
SOTRID BYTE;
$O0TX [2] BYTE;
};:

ENUMV (0, SCMUNCH, SCMSIZE, SCMCHOP, SCMKILL)
. EXTERN SCLOSE (mode BYTE, pfdb A SPFDB) DSCCODE;
/* CHAPTER 11. WORKSTATION OPERATIONS */

ENUMV (015, SWSENTK)

el

ENUMV (0204, SWSBEEP, SWSCLICK)
ENUMV (0231, SES)
ENUMV(0234,SH,SV)

ENUMV (0241, SHU, $HD)
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/* CHAPTER 4. PROGRAM LOADING AND EXECUTION CONTROL */

TYPDEF $STARTADR A DSCALLF;

. EXTERN SLOAD (pfdb A SPFDB, lsn UNSIGNED, start A SSTARTADR)

. DSCCODE;
. EXTERN SEXIT () DSCCODE;

. EXTERN SERROR () DSCCODE;

/* UFR DEFINITIONS */

TYPDEF SENVN [8] CHAR;
TYPDEF SNAMEEXTENV STRUCT {
SNAME SNAMET;
SEXT SEXTT;
SENV SENVN;
}i

EXTERN SPCRCMDE SENVN;
EXTERN SPCRCMDN SNAMEEXT;

EXTERN SPCRABTF SET({SPCRAFGA);
/* CHAPTER 3. ERROR HANDLING USER FUNCTION ROUTINES */
. EXTERN SMSGC (errNum UNSIGNED, length A BYTE) DSCCODE;

DEFINE ( SMSGLGT,81)
EXTERN SMSG [SMSGLGT] CHAR;

. EXTERN SERMSG ();
/* CHAPTER 5. SYSTEM INTERFACE USER FUNCTION ROUTINES */

. EXTERN SOPEN (mode BYTE, openpt A SOPENPT) DSCCODE;
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/* CHAPTER 6. COMMAND INTERPRETER USER FUNCTION ROUTINES */
. Example usage of file name and option scanners:

.fileSpk [] SFILESPK := {

. {{"IN ', <SNAMET>'"', <SEXTT>'', <SENVN>"'"'},
. SFILNAMR, SNOADR, &<SEXTT> 'TEXT', &<SENVN>"'"'},
. {{'our ', <SNAMET>'"', <SEXTT>'"', <SENVN>'"'},
. SFILNDSP, &fileSpk[0] .SFSOSFT.SSFTNAM, &<SEXTT> 'REL', &<SENVN>''}
.}

.optl SOPTION := {'HELP ',0,80PTVCLR,0};

.opt2 SOPTION := {'CODE ',0,S0PTVCLR,3}; opt2s [3] CHAR := ' 'y
.optt SOPTTAIL := {SOPTTERM,0 };

. IF $SCANOS(&optl) && DSCFLAG THEN SERMSG();
. IF SSCANFLS(&fileSpk[0], 2) && DSCFLAG THEN SERMSG();

TYPDEF S$SFNT [8] CHAR;

TYPDEF SSFENT STRUCT |
SSFTSFN SSFNT;
SSFTNAM SNAMET;
SSFTEXT SEXTT;
SSFTENV SENVN;

}i

TYPDEF S$FILESPK STRUCT {
SFSOSFT SSFENT;
SFSOOPT SET(SFILNAMR,SFILEXTR,SFILENVR,SFILANYR,SFILFDEF,
SFILQMOK, SFILNDSP) ;
SFSODNAM A SNAMET;
SFSODEXT A SEXTT;
SFSODENV A SENVN;

1
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TYPDEF SSONT [8]) CHAR;

TYPDEF SOPTION STRUCT f{
SOPTSON S$SSONT;
SOPTFLG SET(S$OPTFDEF,SOPTFVAL, SOPTFQOK, SOPTFABB, SOPTFSUB) ;
SOPTVAL BYTE; ENUMV(254,S$OPTVSET,SOPTVCLR)
SOPTMAX BYTE;
SOPTSTR (0] CHAR;
Vi

DEFINE (SOPTTERM,0377)
TYPDEF SOPTTAIL STRUCT {
SSOPTTERM BYTE;
SOPTTOT BYTE;
}i

. EXTERN $SCANOS (option A SOPTION) DSCCODE;
/* CHAPTER 9. LIBRARY MANIPULATION USER FUNCTION ROUTINES */
. EXTERN

. SLBGTLSN (type BYTE, pfdb A SPFDB, name A SLNAMET, lsn A UNSIGNED)
. DSCCODE:
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DEFINE(SCLOSE, (DSA:=#1,<ASPFDB>DS$HL:=#2,DSSC(25)))

DEFINE(SLOAD, ( <ASPFDB>DSHL:=#1,DSDE:=#2,DS$SC(45),
(#3)A:=<S$SSTARTADR>DSDE,DSCC))

DEFINE(SEXIT,DS$SSC(42))
DEFINE(SERROR,DSSC(43))

EXTERN MSGCS DSCALLF;
DEFINE(SMSGC, (DSBC:=#1,DSCALL(&MSGCS), (#2)A:=DSA,DSCC) )

EXTERN DSJUMP (F A DSCALLF);
EXTERN ERMSGS DS$SCALLF;
DEFINE ( SERMSG, DSJUMP ( &ERMSGS) )

EXTERN OPENS DSCALLF;
DEFINE(SOPEN, (DSA:=#1, <A$OPENPT>D$HL =#2,DSCALL(&OPENS) ) )

EXTERN SCANFLSS DSCALLF;
DEFINE(S$SCANFLS, (<ASFILESPK>DSHL:=#1,D$C:=#2,DSCALL( &SCANFLSS) ) )

EXTERN SCANOSS DSCALLF;
DEFINE(SSCANOS, ( <ASOPTION>DSHL:=#1,DSCALL(&SCANOSS) ) )

EXTERN LBGTLSNS DSCALLF;

DEFINE(SLBGTLSN, (DSA:=#1, <ASPFDB>DSHL:=#2, <ASLNAMET>DSDE : =#3,
DSCALL( &LBGTLSNS ), (#4)A:=DSDE,DSCC) )
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