**:

STRUCTURED LANGUAGES SIG
NEWSLETTER

*hkkdkdkhkkhkdkhhkkhkhkhkkkhkrkhkhhhkhkhkhkhkhkrhkhkkkdkhdhhhhhkhkk

O3 3 % %3 % 3 % % %

*
*
*
*
*
*
*
*
*
*

Volume 4 Number 2 September 1980

Chairman's message:
Pascal SIG becomes the Structured Languages SIG

At the Spring DECUS Symposium in Chicago, the Pascal SIG was reorganized
to include all structured languages in its interest area. This happened
because there has been an increasing interest among members of the Pascal SIG
in languages similar to Pascal. A group of users interested in the programming
language C were the ones who got the change started. Hal Morris, who is our
new symposia coordinator, wanted to see more emphasis on C at DECUS symposia.
However, the proliferation of language SIGs would not be in the best interests
of DECUS members, as it drains the supply of volunteer leaders who may have some
common interests. We thought that the reorganization would increase the
activity in the Pascal SIG by recognizing that we do in fact work with languages
other than Pascal. With the continued interest in ADA, Concurrent Pascal, and
Modula, and the new interest in the languages PRAXIS and C, we felt that the
Pascal SIG should take these new users officially under its wing and build an
even stronger and more active SIG.

An interesting part of the reorganization was the selection of a new name.
We could not continue to be the Pascal SIG, as it would offend our new members.
At a rather large meeting of potential leaders, we tossed several names about
and voted on the best names. Our choices were "Structured languages," "Modern
languages," "Technical languages," and just plain "Languages." We first chose
the name Languages SIG, as it included everybody who did not have a home in any
other languages related SIG. However, the COBOL and BASIC SIGs did not approve
of that name. They were probably worried that we would eventually suck them up
as well. The second most popular choice was the Structured Languages SIG, as it
conveyed what we have been trying to impress upon the users of other languages
such as FORTRAN, COBOL, BASIC, etc. for sometime, that there is a class of
languages, which may be called Structured Languages,which are better for developing
programs in all programming environments. We have also recognized that there
may not be one all encompassing language which satisfies everybody's needs all
of the time.

With the reorganization, we have set some new goals. First of all, we
would like to see efficient programming environments available on all DIGITAL
computers. It may be possible to do this with DIGITAL operating systems, or
users may have to go to other operating systems to get the most out of their
hardware. In either case, the cooperation of the users who are convinced
that structured languages are better than non-structured languages, should be
able to benefit the overall programming environment. Within the efficient

Copyright ©, 1980, Digitai Equipment Corporation,
All Rights Reserved
It is assumed that all articles submitted to the editor of this newsletter are with the authors’ permission to publish in any DECUS publication.
The articles are the responsibility of the authors and, therfore, DECUS, Digital Equipment Corporation, and the editor assume no responsi-
bility or liability for articles or information appearing in the document.

programming environment, the second goal of the SIG will be to see that the
appropriate languages are available for use on DIGITAL computers. We do not
have many qualms about who supplies the language translators for these languages.
As in the past, if it is necessary for the SIG to produce an appropriate
translator, every effort will be made to get it done. We will also keep
continued pressure upon DIGITAL for them to provide the Tanguage translators

we need. I know that many users cannot utilize unsupported products when
implementing their software systems. DIGITAL is aware of this, and may yet

come out with a decent programming language for the PDP-11 computer systems.

One of the most critical items the SIG must handle, is the compatability
of the various languages and tools that programmers must use to implement
their systems. We will be working towards a common set of software tools for
the production of software, and towards common run-time systems for the various
language translators that the SIG may support.

I would 1ike to make you aware of who has agreed to work in the Structured
Languages SIG. We are by no means completely staffed, and will accept more
volunteers at any time. There will definitely be several meetings in San Diego
concerning the future structure of the SIG, and who will be doing the work. I
already mentioned that Hal Morris has agreed to be the symposia coordinator.

In addition, Roy Touzeau will continue to be the newsletter editor, but he will
have the help of several feature editors who will supply him with articles on
languages other than Pascal. We currently have the following feature editors:

Steven McGready - C Gray Beckman - RATFOR

Kockums Industries Joint Center for Radiation Therapy
P.0. Box 575 50 Binney Street

Tualatin, OR 97062 Boston, MA 02115

(503) 638-9811 (617) 732-8508

I expect that we will soon get people interested in ADA, Modula, and PRAXIS.
Hal Morris can be reached at:

Hal Morris

Prindle and Patrick
121 W. Oakland Avenue
Columbus, Ohio 43201
(614) 228-3233

We are also going to be revamping how the library functions. Bill Heidebrecht
has been doing a great job with the symposia SIG tape copy project, but would
like to pass his function on to someone else in the near future. The librarian
will have to become aware of the various operating system dependent tape formats,
as we are serving RT-11, RSTS, RSX, IAS, and Unix users.

I cannot emphasize enough that it takes volunteer efforts to make SIG work
properly. We are going to have several business and organizational meetings in
San Diego, so if you are truly interested in improving your programming environ-
ment, participate!

John R. Barr, Chairman

1980 Fall DECUS Symposium

The fall symposium promises to be one of the best we have had, with many
very interesting and informative sessions and pre-symposium seminars. Unfortunately,
one problem continues to plague us - conflicts in scheduling. A glance at the
preliminary program shows many interesting sessions scheduled for the same time,
in spite of the valiant efforts of our new symposia coordinator Hal Morris. We
regret this but were unable to avoid conflicts because of the large number of
related sessions.

If you are able to take in pre-symposium seminars, there are a couple which
look 1ike they will be excellent. The SIG is sponsoring a seminar on the program-
ming language C. C is a high level Tanguage which has been used for implementing
compilers and operating systems as well as many utilities and applications pro-
grams. For example, it has been used to implement most of the UNIX operating
system and most of the software that runs under it.

Another seminar which would be of interest is "Introduction to Pascal",
sponsored by the DIGITAL Educational Services Group. This seminar is being
taught by Kathleen Jensen who worked with Niklaus Wirth during the early seventies
(when Pascal was being developed) and is co-author with Wirth of the Pascal Users
Manual and Report. Many of you may have heard of the talk Ms. Jensen gave a year
ago and wished you had not missed it. Here is your chance.

The regular symposium schedule begins at 9 am on Tuesday with the SIG
roadmap. Try to attend this session if possible as it will be used to identify
SIG related activities throughout the symposium. Information will also be pre-
sented about the various languages which have come under the wing of the SIG
to enable you to better judge which sessions may be of interest to you.

In the afternoon there are several sessions on structured programming
and the language APL. The concurrent languages panel in the evening will
feature Modula, Ada and Concurrent Pascal. Those interested in Modula should
also notice the session (easily missed when scanning the program) at 8 pm on
Thursday describing the use of Modula to write data acquisition software in a
biomedical laboratory.

Beginning the day on Wednesday is the session on the new language PRAXIS.
Unfortunately this session conflicts with the session on VAX-11 PL/1 but if you
decide to go to the PL/1 session you may at least pick up the PRAXIS workshop later.

At the end of the day is an introductory session on the language C (hope
you are not too tired by then). Two more sessions are scheduled Thursday afternoon
describing the use of C in systems programming and other applications. The
comparison between C and Bliss at 8 pm should be interesting.

If you make it to Friday be sure to get to the symposium planning session
at 2 pm. It is a difficult job planning the sessions and we need all the help
we can get. Join us and help make the SIG a real "force" in DECUS.

The preliminary schedule has a good overview of the various sessions,
organized by subject. Look under the "Structured Languages SIG" section. It
will fill in some of the gaps I have left.

Roy Touzeau, Editor

Usterreichische
Studiengesellschaft fiir Atomenergie Ges.m.b.H.
Lena_ugasse 10 - A-1082 WIEN - Austria R

@ Lenaugasse 10 - A-1082 WIEN - Austria

Institut fiir Physik
Depar t of Computer Science Forschungszentrum Seibersdorf
c/o Dru.IEIJlol'm R. v Telefon: (02254) / 80 *
. . Telex: 014/ 353
University of Montana Telegramm: austratom wien

Missoula, MT 59812
(406) 243-2883

Bankverbindungen

C A - Bankverein: 26-34343/02
E. 6. Spar-Casse: 012-10122
Usterr. Landerbank: 106-100-432

thr Zeichen lhre Nachricht vom Unser Zeichen Sachbearbeiter Telefon (Durchwahl) Datum

PH/Ma/Schw * 1980-07-01

Betreff:

News from the PDP11/RSX Concurrent Pascal System

A new version of the Concurrent Pascal System under RSX11M is now available.
The main improvements are:

- The kernél/interpreter is faster. No system directives are needed to protect
process switching from interrupts (AST-routines).

- Generalized queue management:
All queues (delay-,monitor entry-,I0-, and ready queue)
are organized as doubly linked circular queues.

- EXTERNAL assembly written routines can be added by the user. This facility
allows the user to implement new IO-routines or time—critical routines
conveniently.

- Multiple DELAY's in a single queue variable:
More than just one process can wait in a single queue variable. A CONTINUE
operation resumes all waiting processes in the queue.
This feature is extremly useful for programming time tables where all proces
ses that are scheduled for a certain time can wait in a single queue variabl
and are awakened all at a time by a clock process.

Those who have already received the RSX/RT11 Concurrent Pascal version can get
a copy of the new version free of charge, if they send me a tape or any other
distribution medium.

PASCAL-S for PDP-8

Rrof. Stegbauer from the HTIL Mddling (near Vienna) has implemented a compiler
“Ynterpreter of Wirth’s Pascal subset PASCAL-S on a 28k PDP8 for teaching pur-
poseés. The operating system is OS/8. All messages are in German.

You can receive a free copy if you send me an OS/8 formatted DEC tape.

A MOCDULA-2 like Extension of CMSI Pascal V1.2

We are now working on a runtime system for OMSI Pascal V1.2 that extends Pascal
with MODULA-2 like concurrent programming features. If you work on similar pro-
blems or if you are interested in this work please write to me.

Sincerely yours

v MW

DI. K. Mayer

LEAS
KERMNEL START
SUURCE:SYNCTST . CFA

LIST :TI3

ERRORSITIS

CODE 318YNCTST,CODn
CONCURRENT FASCAL? LY/NIDY

C1.340CF1.C0ODN

D001 (k FROGRAM SYNCTST.CRA %)
Q002 (X TEST MULTIFLE UELAYCONTINUE X)

D003 .

2004 (K IN THE NEW CONCURRENT FASCAL KERMNEL IT IS FOSSIRLE

0005 THAT MORE THAN ONLY ONE FROCESS CAN WAIT IN A QUEUE VARIARLE.
0006 A YCONTINUES OFERATION OF THIS VARIABLE RESUMES al.l. WAITING

0007 FROCESSES IN THE QUEUE.

2008 THIS FEATURE IS EXTREMLY USEFUL FOR FROGRAMMING TIME TARLES

0009 WHERE ALL FROCESSESy THAT ARE SCHEDULED FOR & CERTAIN TIME.»

0010 CAN WAIT IN A SINGLE QUEUE VARIARLE AND ARE AWAKEND alLL AT A TIME
0011 RY THE CLOCK FROCESS. X)

Q012

0013 TYFE TOFARAM=RECORD OFERATION»STATUSyARGIINTEGER ENIDS
0014 CONST NL=7(11023)73

oGLS

0016 CONST PMAX= 263

Q01?7 TYFE FINDEX=1..FMAXS

Q018

0019 TYFE MTYF= MONITORS

2020 VaRk QF QUEUES

0021 FROCEDURE ENTRY DELAYFROCS
00232 BEGIN

0023 DELAY(Q) 3

G024 ENT S

0025 PROCEDURE ENTRY CONTINUEFROQCS
Q024 BEGIN

QOR7 CONTINUECQ)

0028 END®

2029 BEGIN END

D030

0031 TYFE TERMINAL=MONITORS

0032 VAR FARAMS IOFARAMS X CHARS

0033 FROCEDURE ENTRY WRITE(CICHAR)S
0034 REGIN ,

0035 1=03 [0(XrFARAM»0) 3

D036 ENDS

D037 REGIN

0038 FARAM. OFERATION:=13 CKOUTFUTX)
DOZY Xi=' '3

0040 ENDS

004l

004

0043 TYFE FTYP=PROCESS(CICHARFMIMTYF S TITERMINAL) 3
D044 VAR X:CHARS

D04 BEGIN

0044 Ai=0s

0047 REFEAT

G048 M DELAYFROC S

004G TOWRITE(C) $

D050 X =BLCE (XD b

D051 UNTIL X =273

DOED ENDG

0053

0054 TYFE XTYP= FROCESS(LIMITSINTEGERMS: MTYF$ TITERMINAL) S
0055 VAR I:INTEGERS$

0056 EREGIN

0057 FOR I$=1 TO LIMIT DO

0058 REGIN

D059 T WRITE(NL)$

D060 M.CONTINUEFROCS

0061 WATITS

Q0062 ENDS

G063 ENIG

0064

0065 VAR

0044 N INTEGERS

0067 FN? ARKRAYLL. FMAXI OF FTYF$
0068 Mi MTYFS X: XTYF$ T: TERMINALS
D069 EEGIN

0070 WAITS

0071 INIT MsT3

0072 FOR Ni=1 TO FMAX DO INIT FNONICCHRCORDC/AZ) +N=1) s My T)3
0073 INIT X(LO+FMAXsMsT)3
[19541CF2,CON

[1y541CF3.CON0

L1s5400F4,CON

[1r541CFS,COD

C1y5418CF6,.C0D

[1+5418CF7.CO0

COMFILATION OK

CODELENGTH? 2 FAGES

KERNEL ENI

FLER SYNCTST
X% CONCURRENT PASCAL KERNEL START XXX

ZARCIEFGHIJKLMNOFQRSETUVWXY
AARCIEFGHI JKLMNOFQRSTUVW
WARCDEFGHT JKLMNOFQRSTUV
VARCDEFGHIJKLMNOFQRSTU
UARCDEFGHIJKLMNOFQRST
TARCDEFGHI JKLMNOFQRS
SARCHEFGHIJKLMNOFQR
RARCHEFGHT JKLMNOFQ
RAARCDEFGHI JKLMNOF
FARCIHEFGHI JKLMNQO
MARDEFGHTI JKLMOC
CHABRDEFGHT OKLM
MCARDEFGHT JKL
LOARUEFGHT JK

KCHBREFGHI J

JCABRDEFGHT

LEARDEFGH

HUATIEFG

FROGRAM TERMINATED AT LINE 000463. IN FROCESS 00028,
FROGRAM HISTORY?:

ENTER MONITOR IN PROCESS 00028. AT LINE 00039.
I0 START IN FROCESS 00028. AT LINE 00033..
EXIT MONITOR IN FROCESS 00028. AT LINE 00036.
ENTER MONITOR IN FROCESS 00028. AT LINE 00060.
CONTINUE IN FROCESS 00028. AT LINE 00027.
EXIT MONITOR IN FROCESS 00028, AT LINE 00028.
I0 START IN FROCESS 00028. AT LINE 00061.
END FROCESS IN FROCESS 00028, AT LINE 00043,

%X CONCURRENT FASCAL KERNEL ENID %Xk

HIP TII=EXTERN.MAC

|y WF WP G P s G MF > VR Er e

r WP NI EE W B> B R NP CEF SR N@F G CE> BRI 'SP NS M G D eE

ge A SR G W @ SE X '@ S

+TITLE EXTERN
EXTERNAL ROUTINES FOR CONCURRENT FASCAL FROGRAMS

arn extermnal asssembly written routine cam he called in & Concurrent
Fascal rrodgram via the new standard srrocedure EXTERMNAL (M),

‘m’ is the rnumber of the exterrmal routine. The table EXTTARINI
contains the azddress of the routine. Everwy externsion or modification
of extermnal routimes needs recomrilation of the module EXTERN.MAC
arnd a3 new TRKR rum of the Cormcurrent FPascal kerrmel CER,

New I0 orerations camn easily added to the Concurrent Fascal
sustem using this facility., The roor I0 carabilities of the
I0 statement could be rerlaced bhw arerorriate extermal routines.
The I0 statement is sLill imrlemernted for comeatibility ressons.

Fxamrle of am externasl rrocedure declaration withinm & CoPy mrodgram:

FROCEDURE ARC(X,Y:INTEGERS VAR Z3? INTEGER)$
BEGIN EXTERNAL(2) END}

ARC(32»1) 3 (k CALL OF ARC %)

How to write external routinest

- Imsert the address of the routime at the n’th rosition in
table EXTTAR., The first index of EXTTAR is 0.
If necessaryy correct the mnumber of EXTTAR table erntries EXTN.
~ lo not modify redgisters RIvyR4yRS, Data rsushed on the stach
must he removed before leaving the routine. o not use
more than 32 words of stacksrazce.
ROsR1IYR2 may be used as scratch redisters,
- Terminate the extermnal routirme with
JME NEXTIN
- Farameters can bhe accessed via R4.
The rarameter list is stored in reverse order starting st 10.(R4).,
Integersycharsybooleansyand scalars are staored as 1 word values.
reasls are stored as 4 word and sets as 8 word(l28 hits) values.
VAR rarameters and all structured date tures (ARRAYsyRECORDS)
are celled by referernce (= address stored inm erarameter list).
It the routine ABC comrutes the sum Zi=X+Y ¢« the code would hel

ARC: MOV 14.(R4) RO i dget first rarameter
Al 12.(R4) RO 3 add second sarameter
MOU RO 10, (R4) y store resuylt
JMF NEXTIN i return

T TR T T e e R L T T e L L L L L R e L L R R L L e L L L T L

a

1

How to write extermal 10 routines?t

- I0 oreratiorms that carm not bhe comrleted immediatelw must be
syrchronized with other erocesses using AST routines.
- The kerrmel routirme IOSTART susrends the currerntls active srocess.

IOSTART exrects in R2 the sddress of 3 1 word emertw (=0) ausue
variabhle.Examerle?

MOV #Q1LsR2
CalL I0START
RIDGC obe

Q13 +WORD 0

TOSTART must be called immedistelw hefore starting

the 10 oreratiorn (in most cases the QIO directive).

It TO0START is called sflter the QI0 directive and the

I0 oreratiorn is comrleted hefore I0START susrends the
current srocessy therm the linkadge betweern the rrocesses
Wwill he destroued and the C.F. kernel will crash.

O the other hand TOSTART should be called as late as rossible
since I0OSTART switches from the current srocess to the

rnext srocess in the READY cueuwe and therefore chandes the
comrlete rrocess envirorment (even the stack rointer 1),
Conseauently wou maw not store data on the stack or in
temrorary redgisters when calling, I0START !

The onlye waw to save data for oreratiorns after ITO0START is
to store them inm a3 rrivate memory area.

Ariother waw to circumvent this sroblem is to disable

AST recodgnition (NSAR$S) before executing the QI0 directive

and to ensble AST recodrnition (ENAR$S) aflter callirmg I0START.
Evxameled

NSARES

QIOHS ..

MoV #Q1» R2
CalL.lL TOSTART
ENAR%$S

JHMF NEXTIN

Note that this method takes more time tharm the former one !

- The AST routine srecified in the I0 directive must save
redisters ROsR1+R2 omn the stack. The AST routimne loads
the address of bLhe cueue variable im R2 amd terminates with

JMF ASTEXIT

Onlw ROyR1IYE2 maw bhe on the stack. AST srecific sarzmeters
must have been removed from stack.
ASTEXIT will resume the rrocess waitinmg in the aueue and
restore the redgisters.

The following srosgsram gives an examrle of two external routines.

The first routine rerforms & ‘READ AFTER FROMT oreration orn LUN G,

The secornd routine is 3 fumction arnd comeutes the maximum value

af zr arrsw of N integers, The result is the index of the lardest element.

R LR I A T T T TR TR T LT 1

Er S W S e G

lDeclaration arnd call of the routines irm Concurrvent Fascal!

TYPE AINDEX=1..5% ATYFE=ARRAYLAINDEX] OF INTEGERS
BINDEX=1.,10% RBRTYFE=ARRAYLRINDEXI OF CHARS
VAR A: ATYFES R! RBTYFES AMAX?! INTEGERS
FROCEDURE READAFTERFROMT(FRMT: RTYFESFRMTLENGTH? BINDEXS
VAR REPLY: RTYFES REPLYLENGTH:D RINIEX) S
BEGIN EXTERNAL(0) ENDJ

FUNCTION MAXINDCA? ATYFES ALENGTH: AINDEX): AINDEXS
REGIN EXTERNAL(L) ENDJ

REGIN
AMAXI=AL MAXIND(AYS) 1
READAFTERFROMT CINFUT?E "9 7Ry 10) 3

+ o

END .

+ISARLE GRL
+GLOBL EXTERNs IOSTARTyASTEXITNEXTINy IOERROR y HARDERROR

FOKY OO O CAY CXY ORDCKRYCR) OO Ok Coled O O O OO ORD O ok Ok Ok kD ()

EXTERN? y START OF EXTERNAL ROUTINE DISFATCHER
MOV (SF)+sRO 3 GET ROUTINE NUMRER
CMF RO FEXTN # IN RANGE O+ .EXTN-1 7
ELO 14 s DKL IF LO
JMF ITOERROR 3 TERMINATE WITH ERROR MESSAGE
§ ASL RO 3 MAKE WORDN OQFFSET

1%

JMF BEXTTAR(RO) i CASE N OF s

FORY KDY O CRYCRY ORY O TR CRY CORD Ol ORDY KD OO O OO O O Ok Ok Ok (3)
¥
EXTTARS
+WORT RFRMT
+WORT MAXIND
EXTN=2 # NUMERER OF TARLE ENTRIES

A

READ AFTER FROMT ROUTINE:

5
LGLOBL I0.RFR
+MCALL QIDHSyDSARSSyENARSS
RFRMT ¢
NSARSS 3 DISARLE AST RECOGNITION
RIOES FIORFRs &Sy vy y FRFRAST» 12 (R4 » 1O, (R4 v v 1A (R4 2 L4, (RA) w44
RCC 14 3ODIRECTIVE D.K.7
Cal.l. HARDERROR i FATAL EXTT
162 MOV FORFRMT » R2 5 LLOAD ADNDRESS OF QUEUE VARTARLE
Cal.l TOSTART 3 BUSPFEND CURRENT PROCESS
§OAND SWITCH TO NEXT FROCESS
ENARSS 3OENABLE AST RECOGNITION
JMF NEXTIN
sUATAL
QRFRMTZ +WORD 0
»AST ROUTINES
RFRAST ¢
T8T (8F I+ i REMOVE AST FARAMETER
MOW Ro—(SF) 5 SAVE RORI1R2
MOy Ris~(SF)
MOV RZe~(5F)
Moy FORFRMT e R2 o ANLRESS OF QUEUE VARIARLE
JHME ASTEXIT
3 ENDOF AST ROUTINE 10

13

17

MAXINDS

143

1063

-

MOV
MOV
MOV
MOV
T8T
LEC
BLE
CMF
BLE
MOV
Moy
TST
EBR

SUR
ASRK
INC
MOV
JHMF

+END

FUNCTION MAXIND(AIARRAYLL..N

12 (R4 yR1
(R1)sRO
R1y~C(5F)
10+ (R4)yR2
(R1)+

R2

10%
(R1)++RO
1%
=-(R1)sRO
Rls(S5F)
(R1Y+

1%

12.(R4) 5 (SF)
(SF)

(SF)
(8F)+r14.(R4)
NEXTIN

5 THAT’S ALL

OF INTEGERSNIINTEGER)

Er Er EX EF GF WF 6P G >G> B > E» R e

ar er

INTEGER

It=1 (x ANDRESS OF ALL1 %)
TEMFMAXt= A[I]

LASTI!=1 (X INDEX OF LLAST MAXIMUMX)
LIMI=N

ITe=1+1

FOR I (= 2 TO I.IM DO

REGIN

IF ACTI:TEMFMAX

THEN

REGIN TEMFMAX (= ALI1s LASTI!=I END

ENDs
(x COMFUTE INDEX FROM ANDRESS Xx)

MAXIND (= LASTI
ENID

11

(k FUNCTION RESULT X

hello world!

Supplement for Users of ‘G’ vol. 0-num.(

Welcome to hello word, the sub—-newsletter for C language users.
When the o0ld PASCAL SIG was transformed into the Structured
Languages SIG, we (C users) were taken under the wing of the new
group. We hope to publish a regular supplement to the News-—
letter containing items of interest specifically to users of the
C language.

Contributions and comments should be addressed to:
Steven McGeady, c/o Kockums Industries

P.0O. Box 575, Tualatin, OR 97062

Contributions are preferred in machine-readable form, on RT
or RSX format floppy disk or 800 bpi DOS magtape, in RUNOFF for-
mat. Otherwise, contributions should be camera-ready copy, on
one side of 8.5 x 11 inch paper, with one—inch margins.

Table of Contents

1. Header - page O

2. Items of Business — S. McGeady — pages 1,2

3. Fall Symposium - S. McGeady, Hal Morris - page 2
4, Subroutine Linkage — S. McGeady - pages 3,4,5
S. "Manual Page" Documents - S. McGeady - pages 6,7

6. C and Systems Programming — Hal Morris — pages 8-36

12

RN R RN R RN NN RN NN AN RN RN RO NN R RN R R RN NN O RN NN NN NN RN R RN AR RRRRARRRRAR N AT1

Items of Business

The name of this newsletter was the rather dictatorial choice
of the editor, yours truly. Understanding that readers may have
better ideas, I would like to open up a competition for a per-
manent name for this newsletter. The winner will have his/her
name printed in our hallowed pages. The judge will be the edi-
tor, who must in all truthfullness admit a certain bias.
Nevertheless, your participation is encouraged.

The intended functions of this newsletter are many and var-
ied, and I will summarize them.

1. Software Irading - Users who have software written
wholly or partially in C who wish to share it with
other users are encouraged to send their name, address.
phone number, and a "manual page" (described later) to
the editor. It will be published in the first issve
after it is received.

2. Compiler Reporting — Trading information on the various
C compilers that are available or that become avail-
able, with emphasis on those that run on DEC computers,
or which generate code for DEC computers. Part of this
will be "wish list" presentations to various vendors,
i.e. Whitesmith’s or Yourdon. Also, some amount of
pressure will be exerted on DEC to come wup with a C
compiler.

3. Hints and Kinks — Little secrets (or big secrets) that
you have come across that would be off interest to
other C programmers. These <could be anything from
brief notes on nifty usages of bitfields to full-size
papers on particular applications. As we are somewhat
limited in space. some editorial discretion will be
used.

4. The CONROY Compiler — Although the editor knows very
little about this compiler at present, it is hoped that
the C sub-5IG will take an active rm0le in supporting
this public—domain compiler.

S. Distributions — It is hoped that we will be able to
team vp with either the PASCAL portion of the SLSIG, or
the fledgling UNIX(tm) SIG (if it exists yet) in order
to provide a tape distribution at the DECUS symposiums.

The list above is in no particular order, nor does it pretend to

be a complete list of potential activities.
13

For the record, UNIX is a trademark of Bell Laboratories.
PDP-11, RT-11, RSX-11, and almost anything with an ‘11‘ in it
are trademarks of Digital Equipment Corp. C is not anybody’s
trademark.

Steven McGeady
Newsletter Editor

The contingent of C users in the SLSIG is eagerly awaiting the
Fall DECUS conference, as we are giving a handful of talks which
promise to be very interesting. The will be a panel discussion
on the topic of Low-Level Machine Control, which will include
persons extolling the virtues of BLISS, C, MODULA, and perhaps
other 1languages. Along the same lines, there will be a short
talk on High—-Level Lanquages in Process Control, which will be a
case-study of one company’s choice of a high—-level language for
real-time control applications. A talk will be given on C for
Systems Programming, which will be an expose utilizing C which
are useful for system applications.

Several introductory talks will be presented, one of which 1is
What 1is C€?, which will be a discussion of what the C language
can do, what it can’t do, and what it shouldn‘t be asked to do.
This talk is oriented toward someone with no prior knowledge of
C. There will be two talks on Structured Programming theory and
practice, isolated from specifics of one language.

There will be two C workshops, an Applications Workskop, and a
Technical Workshop, which will present views of C and C applica-
tions without and with the "gory details", respectively.

The PASCAL portion of the group will present many other talks,
which will not be described here, and there will be talks on
PRAXIS, BLISS, FORTH, and possibly other languages. There will
be a UNIX workshop. and a discussion of UNIX-like systems.

There may be a one-day C Tutorial presented before the sympo-
sium which will teach high—-level language programmers about C.
This is still in the planning stage, and has not been finalized.

The San Diego conference promises to be full of discussion on

all aspects of computing, including € and other high-1level
languages, and everyone is encouraged to attend.

14

Subroutine Linkage in C

I have been asked by several people to explain the

tine 1linkage scheme in writing,
opportunity to do so.

The subroutine linkage convention used by the
piler is a small
generalized subroutine linkage.

To describe the workings of the linkage,

PDP-11 C
and very elegant approach to the problem of

we will step

C subrou-
and I have decided to take this

com—

through

the instructions one by one, following the processor as it exe-—
cutes them. The C call:
func(argl, arg2, arg3);

appears in assembler as:

mov arg3, —(sp) i push 1st arg onto stack
mov arg2, —(sp) i 2nd arg onto stack
mav argl, =(sp) i first arg onto stack
Jst pc, func i call function
i continue
This is the calling routine. The called routine would be:
func: JstT 5, csv i call save routine
C i execute function
Jmp cret i call return routine

The steps that are taken may be broken down into

six major

and

sections. We will examine these sections in the order in which
they occur. Sections 1 and 2 occur in the calling routine,
sections 3 through 6 occur in the called, with execution resum-—

ing in the calling routine after the initial jsr.

1. Arguments — or parameters are pushed onto
last argument first, first argument last.
complished with mov xxx, —(sp)
end of this operation,
cremented by the integer number of
the stack.
and that double
Floating-point
tegers.

words

words
numbers

are
are

passed as
passed as two

2. Call Routine — with the instruction st pc,
effectively pushes the address of the next
after the st onto the stack. This will be
as the return address. This is, of course,
where execution of the current routine will
the <called function is complete.
(pc) is then loaded with the address of

15

instructions. At
that stack pointer has been de-—
pushed
Remember that bytes are passed as integers,
two

the stack.,
This is ac—
the

onto

integers.
or four in-

func. This
instruction
referred to
the address
resume when

The program counter
the

beginning

of the function <to be called (func). Execution
proceeds at this address.

Call CSVY — with the instruction jsr 15, csv. CSV is
the C register saving routine. This instruction moves
the contents of register 5 onto the stack, and puts the
Teturn address into register 5. At this point the
stack frame consists of: our calling routine return
address; the arguments to the called routine; and the
contents of register 5. The CSV routine first moves r5
into TO0. (Registers O and 1 are reserved for return
values from subroutines. Thus, at this point 0 and ri
are scratch registers.) The contents of the stack po-
inter (i.e. the address of the top of the stack) is
moved into r5. Now, 7vO contains the address of the be-
ginning of the called routine, and t5 points to the top
of our "stack frame”. At this point, registers t4, 3,
and r2 are pushed onto the stack, with mov rr, —-(sp)
instructions. These are followed by a clr —(sp) in-—
struction, which reserves an empty scratch area at the
bottom of the stack. Finally, the called routine is
reentered with the Lmp (r0) instruction, which
transfers program control to the instruction after the
Jsr to csv.

Allocate Local Variables — by subtracting the size (in
bytes) of the local data area from the stack pointer.
Notice at this point that we still have r5 pointing at
our original stack frame, so we can access the passed
paramters with 4(r5) for the first argument, and &(r5),

10(rS), etc. for succesive arguments. These addresses
do not change no matter what we do to the stack. This
is an aid in both compiler—-writing and assembly

language programming because the compiler (or assembly
language programmer) need not perform complicated cal-
culations to determine where things are on the stack
every time the stack pointer is changed. Local vari-
ables are addressed either by there offsets from the
stack pointer, or by negative offset from rS5.

Execute Called Routine — using, if desired, temporary
space on the stack. There is no obligation to clean
off the stack after using temporary space. If the rou-
tine 1is to return an integer value to the caller, that
value is left in register O. If a long value is to be
returned, it is 1left in the register pair 1(0,1).
Floating-point values are returned in a variety of
ways, depending on the compiler and the presence of
floating—-point hardware.

Return to calling routine by jumping to the C register

restore Troutine, CRET. This is accomplished with the
instruction _jmp cret. CRET first moves the stack frame

16

pointer, 5, into register 2, then restores registers
r4, r3, and r2 with mov =(r2), rr instructions. Notice
that register 2 is the last to be restored, so that it
is overuwritten only after it is no longer needed. RS
was not wused for this because it is now moved to the
stack pointer, effectively removing all local data that
was placed on the stack by the called routine. The or-
iginal (calling) t5 can now be restored by mov (sp)+,
rS. At this point, only one word remains on the stack.,
that being the return address placed there by the ori-
ginal jsr pc. This is now loaded back into the PC, and
the stack incremented, by the 1rts pc instruction.
Execution continues in the calling routine at the in-
struction following the jsr instruction.

The actual code for the CSV and CRET routines is:

cCsV:
mov 5, 10
mov sp, 195
mov 4, —(sp)
mov r3, -(sp)
mov r2, —(sp)
clr -(sp)
Jmp (r0)

cret:
mov TS r2
mov -(r2), r4
mov -(r2), 3
mov —-(r2), r2
mov T3, sp
mov (sp)+, 5
Tts pc

The original UNIX V6 C compiler used r1 in CRET, but if 1long
integers are to be returned in the register pair rv(0,1), vl must
be preserved through CRET. Also, at least one compiler (Whites-—
mith’s) generates a subset of the CSV routine in-line when no
registers are used in the routine. Whitesmith‘s also has a var-
iant CRET which does not restore the registers on return. I am
not acquainted with the Yourdon or Conroy linkage methods, but
it 1is presumed that they are similar to the UNIX method, des-—
cribed above.

The above explanation is, by design., quite short. To aid
understanding, it is recommended that the reader first read the
description of the st and rts instructions, and also draw pic-

tures of the stack frame at various points. Also it is impor-—
tant to realize that the stack grows down, that is, toward loca-
tion zero. Thus, when decremented, it grows, and it shrinks

when incremented.
TR RN RN RN RN NN R RN RN RN NN NN OO N RN NN NN NN AN R RN RRRRRRRRRRRARRRRRANANR

17

NAME: doc — A Documentation Convention
SYNOPSIS: (see below)

DESCRIPTION:

Doc is a description of a documentation convention
that 1is particularly well suited for concisely docu-
menting programs and subroutines. It consists of the
following sections:

1. NAME - The name of the program or subroutine,
followed by a dash, then a short phrase des—
cribing its function. The phrase should be
worded such that it can be easy indexed by an
automatic indexing program.

n

SYNOPSIS - The is a short and extremely con-
cise description of the syntax of the call to
the program or subroutine. If you are des-
cribing a program, the line should be a des-—
cription of the syntax of the command line.
For example:

mac L[outll,listl=inil,in2,...1
type filel/pl:nlC/ou: fileldl/vt]

These are typical synopsis lines. The square
brackets indicate optional portions of the
command line. In the first example, "/sw" is
generic for all possible switches. In the
second example, each switch is given with its
syntax. A function call is defined somewhat
differently:

int main{(argc, argv)
int argc;
char ##argvi

3. DESCRIPTION — The is the guts of the documen-—
tation. It normally consists of one para-
graph describing what the program or subrou-
tine does, optionally followed by a paragraph
elaborating on this. The next section 1is a
list of either the command line arguments
(parameters) and switches (flags), or, in the
case of the subroutine, the calling parame-
ters, and side—effects. This section 1is
fairly free—form.

18

4. EXAMPLES — The section contains examples, if
they are desired. The heading is omitted if
no examples are given.

5. FILES - If the program uses some special
files, they should be listed here.

6. DIAGNOSTICS - A description of all
non—self-explanatory diagnostics.

7. BUGS - A list of actual bugs, limitations,
unimplemented features., and unexpected
side—effects.

8. SEE ALSO - A vector to more information about
the item. The "manual page” should not be a

tutorial. This section should vector the
user to other documentation should he/she
need help. This section should also refer to
Telated programs or routines. If the manual

page describes a subroutine, all external
routines which it requires should be listed
here.

9. AUTHOR - The section should contain your
name, affiliation, address and phone number.

Other sections can be added at will if they are nec-
cesary. The main idea, however, is to keep the manual
pages terse and concise. For a complex program, a
separate user manual should be written.

BUGS:

The manual pages can sometimes be too concise, and
sometimes too verbose. The format can hamper some
persons who are not familier with the format. Mostly,
it is not the be—-all and end-all.

SEE ALSO0:

The format was stolen from UNIX. One could refer to
the UNIX documentation for some good examples.

19

C and Systems Programming: Introduction

This paper is intended to demonstrate, largely through examples,
the potential of the C programming language for interfacing with an
operating system, CPU, or peripheral hardware. This capability is
not restricted to use with any particular system, and in fact, the
examples are for use with RT-11, the only PDP-1l1l operating system
which I have wused extensively. I am using the C compiler from
Whitesmith”s Ltd., which runs on RT-11, RSX, RSTS, VMS, and UNIX.
While it would be out of place to evaluate a commercial product here,
I think people would like to know that it exists. For the record, I
think that C is more than just a "systems programming language", and
for a small shop doing a mixture of systems and applications work, it
would do a good job. This runs counter to the maxim that whenever
you do a job, you should first chose the best language to do it 1in,
that maxim often proves impractical. One class of applications in
which C excels is any kind of text manipulation from sorting to
text-editing to compilers.

But regardless of how good or bad C may be for applications,
most people with sensible reasons for using assembler (ignoring those
who use it for sentimental reasons) would do better wusing C in at
least 90% of their code. I know of much work being done in C, mostly
with RSX or RT-1l1 systems, in process control, image processing, and
the control of exotic hardware. C allows almost the complete machine
control and the efficiency of assembler 1languages, while providing
data structuring and the structured control flow mechanisms ("while",
"if-then-else", and a few others which the purists may not like).

Kernighan and Ritchie”s The C Programming Language is one of the
better computor science textbooks around, and I recommend reading
Chapter 1: "A Tutorial Introduction" and parts of chapter 2, which
describes the operators. The book”s index is very complete, and
starts with all the operators (in case you wonder how they are
alphabetized), so you could look up the operators as you need them.
Part of the audience of the paper is someone in process control or
wishing to do laboratory data acquisition who wants to quickly see if
C will do their job. Such a person may get impatient reading through
all of Kernighan and Ritchie, which does not use pointers for half
the book, nor macros for 95% of the book.

What I am presenting now, which should be close to my talk to be
given at DECUS Fall “80 in San Diego, is roughly the 1lst 3 chapters
of the following outline:

1) Expressions Involving Bit Manipulation: This presents bit
manipulation. Using the macro preprocessor to define
parameterized expressions lets me present useable general
purpose "functions" such as getbits(x,p,n), which is the
n-bit field of x starting at bit p, building getbits up in a
gr adual, modular way.

2) Pointers both for Accessing Specific Addresses and Machine
Independant Uses (My meta-title at 1least). Again, an
interesting topic to the intended audience, and it 1is

20

3)

4)

3)

convenient to bring it up early so example programs can be
written the way they are written in practice (At 1least the
esoteric things I avoid will not be the very things my stated
audience is interested in.).

I/0 Processing and Interrupts on the PDP-11l: An appllcatlon
of the preceding sections, and hopefully for some novices
like myself, a revelation about how easy it is to learn about
UNIBUS devices and interrupts with the help of a reasonable
language.

Why is C Self-sufficient in Terms of I/0 Conversions?
a) Internal<->external conversions like atof (), RAD50 stuff.
b) Variable-sized argument lists and how to write them.
c) Sheer efficiency.
d) Meshes well with what little assembler you need.

Structures: Especially how C structures can mimick existing
0.S. structures that vyou "have to 1live with". E.qg.
defining structures which give you a handle on the RT-11
directory. A program to mimick "DIR/OUT:file/COL:1/BLO" was
written in about 6 hours (by a novice - me), and from this
can easily be build a pseudo-spooler, or a subroutine to
allow programs to use wildcard file descriptors.

Like The C Programming Language, and Software Tools, by
Kernighan and Plauger, both of which I admire, I have
developed and presented a series of very small examples which
do in fact do something useful, or a piece of something
useful, or illustrate a broad category of programming, 1like
interrupt-driven I/O.

I expect most readers will understand a structured
language, such as PL/1 or Pascal. I assume some vague
knowlege of assembler languages and/or operating systems. I
mean knowing for instance that computers generally have
various shift operations, that "A = A + B" might become one
binary instruction, while "A = B + C" probably would not;
that "A == 0" (A is equal to 0) will probably produce faster
more compact code than "A == B", It would help to have
understood at one time what the parts of some processor
status word or device register mean, even if you don“t
remember much about it now.

21

Expressions Involving Bit Manipulation:

Definition of some operators: The following discussion is
of ferred for those who do not have a copy of Kernighan and Ritchie
handy. However, as they do such a good job of describing the
operators, I have not sweated over it too much, so my recommendation
is that you read their chapter 1, and at least skim chapter 2, then
use it as a reference. What follows is a very dry listing which you
might skip now, and refer back to when you see an operator you don“t
recognize.

“=" is used in the traditional, FORTRAN, etc. way to denote
assignment.

"a == b" is the proposition "a is equal to b" and is wused as in
"if(a ==b)...", "while(a ==b)...".

The following are octal constants: "07, 0377, 0370" by virtue of
their leading “0”7.

a += b means a = a+b.
a *= b means a = a*b.
a /= b means a = a/b.
The pattern generalizes to all arithmetic and logical operators.

x++ means increment x by one after evaluating the expression it is
in. E.g. "y = x++;" is equivalent to "y=x ; x=x+1 ;".

++x means increment x by one before evaluating the expression. E.qg.
"y = ++x;" is equivalent to "x=x+1 ; y=x ;".

Xx-- and --s similarly mean decrement before and after. These are
tough to understand without examples.

Brackets are used around array subscripts: "x[i]", "x[1][2]" (which
you might expect to be written x[1,2].

The data types int and unsigned represent integers, but an unsigned
is always positive, the high bit being used for magnitude. For
example, 0177777, the largest possible 16 bit unsigned, is internally
the same as the int -1. Shift operations may affect unsigneds and
ints differently.

"m >> n" is the value of m shifted right n bits. Hence 077 >> 3 =
070 >> 3 == 07. Floating point data types (float and double) can”t
be shifted. What happens on shifting a negative int right depends on
the machine (and possibly the implementor). It is recommended (to
implementors) that copies of the sign bit should roll in on the 1left
so that it resembles division by a power of 2 (Though with improper
rounding) .

The & operator (in the right context, it has a 2nd meaning) 1is a

bitwise and, so, for instance "m & MASK" has bits turned on in every

position in which m and MASK both have a bit turned on. Or to turn

off on a particular bit (for instance bit 7) without affecting the
22

rest, one can say "m &= BIT7_OFF", where BIT70OFF has all bits on
except bit 7.

ints, unsigneds, and chars (act like ints or unsigneds depending on
the machine, and have size about 8 bits) are what is used for logical
propositions, and treated as "true" if and only if they are nonzero.
This means an bitwise and is inappropriate for propositions, since 1
and 01 are both considered true, but 1 & 01 is not, therefore:

&& is provided, which is 1 if and only if its two operands are
nonzero (would be considered true), and 0 otherwise.

Similarly, “|” and “||” are bitwise and logical or, respectively.
nn

is bitwise exclusive or,

"*" is bitwise complement,

"1" means truth value complement (and "!=" means does not equal).
"<<" means shift left.
"a % b" means remainder on dividing a by b

The expression " (cond) ? a : b" equals a if cond is true, or else it

is b. A reasonable use of "? :" is:
output (printing_char(c) ? charformat : octalformat , c)

to print the character ¢ in one of 2 ways depending on whether its
ascii value is printable or not.

23

Examples Using Macros: The most important preprocessor command
is #define. A macro definition consists of:

#define name-defined definition

which causes subsequent occurrences of name-defined to be replaced by
definition in a modified copy of the program which is then sent to
the compiler proper.

#define is frequently used to define constants. For example:

#define YES 1
$#define NO 0

This is preferable to having two variables YES and NO initialized to
1 and 0, since there 1is no way, however bizarre, to alter their
values; for instance "YES = NO" will be seen by the compiler as
"l = 0", and it will tell you politely that 1 does not belong on the
left side of an assignment statement.

"name-defined" may have a 1list of arguments after it in
parentheses, which makes things a little more involved. I hope that
the examples will show how the arguments work.

Suppose I want LoByte(w) to be the value of the low order byte
of w. The 1low order byte is "w & LO MASK", where LO MASK has just
the bits of its low order byte turned on. The following, then,
defines LoByte(w) as desired:

#define LO_MASK 0377
#define LoByte(x) ((x) & LO_MASK)

The parentheses around x in ((x) & LO MASK) are a good 1idea since
LoByte(x+3) will otherwise become (x+3 & LO_MASK), which looks like
it might be mean the same as (x+(3 & LO BYTE)) == (x + 3). In fact
addition has a higher precedence than &, but LoByte(a | b) will get
grouped wrong, and it seems best to me to Jjust habitually put
parentheses around all occurrences of the arguments in the body of a
macro.

Finally, I want to develop some tools for creating and pulling
apart dates in the RT-11 operating systems format which encodes them
in one 16 bit word. This format has bits 0-4 (low order)
representing a 5-bit integer y such that y + 1972 is the year, bits
5-9 represent the day of the month (in such a way that if you shift
it right 5 bits and throw away the rest of the word, you have it in
its ordinary form), and bits 10-13 have the number of the month in
them (1 for January, ... , 12 for December). If day is the day of
the month I want, then "day << 5" has the right thing in bits 5-9, or
the 5 bits starting at bit 5 (day will overflow that if it”s over 31,
but then it”s not a valid day of the month). Similarly, "month <<10"
will produce a bitstring with month in bits 10,... and 0Os elsewhere.
And if the century is 1left off, "year-72" will have RT-11"s
representation of year in bits 0-5, and zeroes elsewhere (until 2004,
when the format will cease to be valid. By oring these expressions

24

together, one should produce a date in the right format. Hence:

#define MakRtdate(month, day, year)\
((month)<<10 | (day)<<5 | (year)-72)
/* comment: “\” means "continue onto next line. */

will cause a subsequent reference to "MakRtdate(4, 15, 80)" to
produce the RT-11 internal representation of 4/15/80. Note that if
all its arguments are constants, MakRtdate produces an expression
containing only constants. The compiler notes this and does all the
arithmetic at compile time, so when the resulting binary program
runs, no shifting or oring result from this expression, and the
expression can be used in places requiring a constant, such as
variable initialization. For instance, the declaration:

extern int taxday = MakRtdate (4, 15, 80) ;

generates one properly initialized word in memory, makes "taxday"
refer to that word. It does not require any execution time.

#define TaxDay¥r (yr) MakRtdate (4, 15, (yr))
would make the declaration:

extern int taxday = TaxDayYr (80) ;

compile identically to the previous declaration.

Next, I want to develop some tools to extract the extract the
fields of an RT-11 date. To mask off the year (after which I will
add 72), I only need to & it with a mask having just the low order 5
bits 1 and the rest 0. To get the low order byte of something, one
needs to mask off the low order 8 bits of a word. It seems to be
quite a general problem. Is there a general way to get a mask for
the low order n bits? Such a method can be gotten from Kernighan and
Ritchie, p. 45, although I will develop it in detail here and produce
a macro rather than a function (or subroutine) . The complement of
zero, "“0", (any 0, whether 16 bits, 32 bits or what) is composed of
all 1ls. sShifting left always causes 0Os to file in from the right, so
shifting "0 to the left n produces a word, "0 << n", with its low
order n bits all 0, and the other bits 1. This is the complement of
what I want, so I complement it, or take "7 (70 << n)". So:

#define lowmask (n) (T(70 << (n)))

and to get the low order n bits of x:
#define lowbits(x, n) ((x) & lowmask (n))

and finally:
$#define yearpart(date) (72 + lowbits(date, 5))

will extract the year in the date word date.

25

The other parts of the date word: day and month, are small integers
occupying the 5 bits starting at bit 5, and the 4 bits starting at
bit 10. How to get a numeric value from a bit field in the middle of
a word? Suppose the field is in x, its starting bit is p, and its
length is n. Bit p is the lowest order bit (rightmost, as generally
pictured, consistently with "shift right", and "shift left"). If the
whole word is shifted to the right p places, via "x >> p", 1in the
result, the 1low order bit of the field is bit 0, anything of lower
order is discarded, and we just need to get rid of anything above the
low order n bits. But lowbits(z, n) does just this, so:

/* Extract the n bit field in x which starts at p. */
$define getbits(x,p,n) lowbits((x) >> (p) , (n))

and what we were after becomes easy:

#define daypart (date) getbits((date), 5, 5)
#def ine monthpart (date) getbits ((date), 10, 4)

so that the routine ptaxday():
[header]
extern int taxday = MakRtdate (4, 15, 80)
?taxday()

printf ("%d/%d/%d\n", monthpart(taxday), daypart(taxday),
yearpart(taxday) ;

using a general formatted output routine, will print "4/15/80".
Using Specified Addresses

In communicating with peripheral devices, and to some extent,
operating systems, it may be necessary to read and write to locations
in memory which you specify. This is the way one communicates with
devices on the UNIBUS. Partly for this purpose, C has a class of
data types <called pointer variables, of the form "pointer to
this-t ", where p is declared to be such a pointer by the
aeclaration:

this-type *p ;

The “*” is what makes this declaration a pointer declaration. In
subsequent code, after p is made to point to something, one can
access what p points to as "*p". If y is a wvariable of type
this-type, then

p =&y ;

makes p point to y. An example from Kernighan and Ritchie is:
int *p ; /* Declare p a pointer to int */

26

int X, V; /* X, y have type int. */
/* p becomes pointer to x. */
/* y gets contents of p, i.e.: X. */

P = &x
y =%

~e we

which is a Rube Goldberg way of doing the same thing as:
y =X 3

In addition to the sort of thing done above, which is entirely
portable, it 1is possible to have pointers point to an absolute
location in computer memory. However, a pointer is more than just a
location; it is "the integer at some address", or the "floating
point" at some address, and this affects, among other things, whether
"*p" is a l, 2, 4, 8, or other byte quantity. Coercion is a method
for converting things from one type to another, and should be used
for converting integers which represent address into pointers of
various types. For example, since the data types char, int, and
double represent character, integer, and double-precision variables
whose sizes are respectively 1, 2, and 8 bytes. The coercion
operator 1is a type descriptor within parentheses, which comes before
what 1is being coerced to that type. (char *), (int ¥*), and
(double *) convert what comes after them to address of a character,
address of an integer, and address of a double-precision floating
point, respectively. Consequently,

"* (char *) 0500"
refers to the byte at location 0500, taken as a character, while
* (double *) 0500

refers to the 8 bytes at location 0500, taken as a floating point
number, and:

* (char *) 0500
* (int *) 0500
* (double *) 0500

* (char *) 0600
* (int *) 0600
* (double *) 0600

e we wo

move, respectively, the 1, 2, and 8 bytes starting at location 0600
to the bytes starting at 0500. In the example programs to follow, I
have used a couple of macros which would allow the first two
statements above to be written as:

ByteAt (0500)
WordAt (0500)

ByteAt (0600)
Wordat (0600)

~e ~o

One of the macro definitions is:

#define ByteAt(address) (* (char *) (address))
which makes

"ByteAt (0500) " become " (* (char *) (0500))"

in the version of the program which the compiler sees.
27

The next sections will present programs which make use of specific
locations and coercions fairly heavily.

Coercion can be used for purposes unrelated to pointers and
addresses, such as converting floating point numbers to ints. For
further reading, I suggest chapter 5 of Kernighan and Ritchie.
Example of Specified Addresses and Other Pointer Techniques:

The part of RT-11 called the Resident Monitor (or RMON) 1is so
named because it always resides in memory, often alongside a running
program. Some of the data in the RMON is thus available to programs,
and several useful things are guaranteed to be certain distances from
the start of the RMON. For instance, the system date is 0262 bytes
from the start of the RMON (Recall that a number with a leading “0~
is in octal.). So if an unsigned variable rmon contains the address
of the start of the RMON, then "WordAt(rmon + 0262)" is the system
date.

The address of the start of the Resident Monitor can vary for
RT-11 systems with different options, but to make it easy to find, it
is always kept in a fixed location, namely 054. It is placed there
at bootstrap time. The following sequence puts the system date into
rtdat.

unsigned rmon, rtdat ;

rmon
rtdat

WordAt (054) ;
WordAt (rmon + 0262) ;

rtdat may then be used any way you like, such as extracting the day,
month, and year parts and printing them as in the "taxday" example
for bitfields and the macro preprocessor.

Now, instead of using a formatted output routine from a standard
library, as that example did, I would like to produce the output
string with my own subroutine and output it using a system call.
This will demonstrate two things. One 1is the ability to easily
manipulate text in C, and particularly the role pointers play in text
manipulation. This 1is, by the way, a system independent use of
pointers, and these are at least as important as the system dependent
uses. The second thing demonstrated is the advantage of having a
language in which I/O conversion routines can be written, rather than
one which has a lot of formatted I/O primitives built into it. Since
formatted I/0 is part of a support library (almost entirely written
in C), and is not part of the language, the I/O built into a program
can be as general or as specialized as I want. 1In this case I want
to make it very specialized to obtain a tiny object program. The
program occupies well under a block, which is 1/4K words (excluding a
normal sized stack and the low memory area). The techniques shown
are useful for putting a simple C program (with limited I/O needs) on
a microcomputer with very little memory, possible a one-chip computer
with the program burned into ROM. Since the compiler I use |is
available as a cross-compiler for "80 family" microcomputers, this is

28

a practical thought.

First, consider the relationship between arrays and pointers.
In C, an array of type this-type differs from a pointer to this-type
only in that the place to which the latter points cannot change, and
that a certain amount of memory (as determined by the array’s
declaration) has been set aside there. So given the declarations:

char buf [BUFSIZE] ; /* NOTE: defines buf[0]..buf[BUFSIZE-1] */
char *p = buf ; /* initial value of p is buf */

p and buf are temporarily the same thing.

buf[2] = “07%; and pl2] = “07%;

both put the ascii value for the digit 0 in the same byte of memory.
*buf, buf[0], *p, pl[0]

all mean the Oth element in the array of chars called buf.
and in general:

* (buf+n), buf[n], *(p+n), pln] all mean the same thing.

The differences are that: (1) The declaration of buf is what
actually caused space to be set aside for an array. (2) I can say
"p = p+1;" or equivalently "p++;", which will make the above
statements false. For instance, *p, or pl[0], is now the same as
* (buf+l), or buf[l]. However, "buf = buf+l;" (or "buf++;") is an
illegal statement because buf is considered to be a constant. Note
that buf is constant, not buf[i] for any index i.

Let me make a slight detour to pick up a couple of small tools.
The following macros will pick out the digits of non-negative 1 or 2
digit numbers:

#def ine OnesPlace (n) ((n) % 10)
/* a % b is a modulo b, or remainder on dividing a by b */
#define TensPlace(n) ((n) / 10)

/* 13/10 == 1, 45/10 == 4. Doesn”t work for over */

/* 2-digit numbers. */
#define ToDigit (ZeroToNine) (ZeroToNine + “07%)

/* “0” is the same as 060, or ascii rep. of 0. */

Now ToDigit(OnesPlace (27)) == “7° and ToDigit(TensPlace(27)) == “27,

Now, the way to write a program to print the system date without
these techniques is:

29

/* DAY . C = main

*/

#include <c:std.h>

#define WordAt (addr) (* (unsigned *) (addr))

#define lowmask (n) (T(°0 << (n)))

#define lowbits(x,n) ((x) & lowmask(n))

#define yearpart(date) (72 + lowbits(date, 5))

$define getbits(x,p,n) lowbits((x) >> (p) , (n))

#define daypart(date) getbits((date), 5, 5)

#define monthpart (date) getbits((date), 10, 4)

$define PutRtd(rtd) putfmt ("%i/%i/%i\n",\
monthpart(rtd) ,daypart(rtd) ,yearpart(rtd))

main ()

unsigned rmon, rtdat;

WordAt(054) ;
WordAt (rmon + 0262) ;

rmon
r tdat

PutRtd(rtdat) ;

One way of rewriting it to avoid bringing in bulky standard 1I/O
functions is:

/* DAY . C = main

*/

#include <c:std.h>

#define WordAt (addr) (* (unsigned *) (addr))
main()

unsigned rmon, rtdat;

WordAt (054) ;
WordAt (rmon + 0262) ;

rmon
rtdat

PutRtd(rtdat)

(The use of " main()" instead of "main()" in my system prevents the
facilities for I/O redirection being linked into the program. Since
I am not using normal C I/0, they are useless.)

30

/* PUTRTD.C = PutRtd(rtd)
*/

#include <c:std.h> /* Compile as if c:std.h were stuck in here. */

$define lowmask (n) (" (70 << (n)))

#define lowbits(x,n) ((x) & lowmask (n))
$define yearpart (date) (72 + lowbits(date, 5))
#define getbits(x,p,n) lowbits((x) >> (p) , (n))
#define daypart(date) getbits((date), 5, 5)
$define monthpart (date) getbits((date), 10, 4)

$def ine OnesPlace (n) ((n) % 10)
#define TensPlace(n) ((n) / 10)
#define ToDigit(n) ((n) + “0%)
#define RtPrint(msgqg) emt (0351, msg)

/* emt does most system calls; "0351" says which call */
PutRtd(rtd)
unsigned rtd;

register unsigned m, y, d;
char buf[9] ;

m = monthpart(rtd);

d = daypart(rtd);

y = yearpart(rtd) ;

buf[0] = ToDigit (TensPlace(m)) ;
buf[1l] = ToDigit(OnesPlace(m));
buf[2] = “/%;

buf[3] = ToDigit (TensPlace(d));
buf[4] = ToDigit (OnesPlace(d));
buf[5] = “/%;

buf[6] = ToDigit(TensPlace(y));
buf[7] = ToDigit (OnesPlace(y));
buf[8] = NULL;

RtPrint (buf);

This works by producing a NULL-terminated string, then printing
it with a system call. NULL is defined to be 0 in C:STD.H.

There is one idiom which is very often used in C programs for
text-processing. An example of it is:

*p++ = c;

where p is a char pointer and c¢ is a char or int (whose content is
small enough for a char). This adds ¢ to a buffer if p points to the

31

next position to be filled in the buffer. Recall that
*p++ = c;

means the same thing as: *p = c p = pt+l;

~e

So p starts as the pointer to "next position"; that position gets
filled; then p gets incremented so it again points to "next
position". For example:

char buf([4], *p;

p = buf;
*p++ - ’o‘;
*p++ -)u‘;
*p++ = “t7;
*p = NULL;

puts the NULL-terminated string "out" into the buffer buf.

register char *from, *to;

while(*from != NULL)
*to++ = *from ;

can be used to copy one NULL-terminated string to another. Finally,
PutRtd() can be rewritten as (omitting parts that stay the same):

register char *pi

p = buf;

p++ = TensDigit(m); / [a] (see below) */
*p++ = OnesDigit(m);

*p++ = &/&;

p++ = TensDigit(d); / [b] */
*p++ = OnesDigit(d) ;
*p++=)/1;

*p++ = TensDigit(y);

*p++ = OnesDigit (y);

*p++ = NULL;

Now one needn”t worry about exactly which character postion
everything 1is going to; the characters are just tossed into the

buffer in the right order.

The buffer-pointer technique provides some flexibility which it
is otherwise quite awkward to get. For instance if I don“t like
having 1leading O0s, 1i.e., I want to get "6/2/80" instead of
"06/02/80", I can replace [a] and [b] by:

32

*p = TensDigit(m) ;
if (*p '= “07)
p++; /* otherwise, don“t move; write on top of it */

*p = TensDigit(d) ;
if (*p 1= “07%)
p++;

With most languages, something like the 1lst version of PutRtd()
would be the only alternative, and to eliminate the trailing 0Os would
require switching from the constant indexes to a running index
variable, which would make PutRtd() look a good bit more complex.
Granted the "*p++ = c;" idiom may 1look complex (or bizarre or
counter-revolutionary) if you’re not used to it, but it is very
analogous to something of the form "output-character(c) ;" except that
I am outputting ¢ to a string (very likely an output buffer) instead
of directly to a terminal or file. By the way, switching to the
pointer technique decreased the program size by 37 words. It could

be improved quite a bit, but I think it is already pretty small for a
high level language program.

(Hal Morris'.discussion of C will be continued in the next issue with
"I/0 Processing and Interrupts on the PDP-11." - ed.)

33

O
DECUS

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
ONE IRON WAY, MR2-3/E55

MARLBORO, MASSACHUSETTS 01752

BULK RATE
U.S. POSTAGE
PAID
PERMIT NO. 129
NORTHBORO, MA
01532

MOVING OR REPLACING A DELEGATE?

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Aliow up to six weeks
for change to take effect.

() Change of Address
() Delegate Replacement

DECUS Membership No.:

Name:

Company:

Address:

State/Country:

Zip/Postal Code:

Mail to: DECUS - ATT: Membership
One Iron Way, MR2-3
Marlboro, Massachusetts 01752 USA

o t:]

‘Alissaniun ‘Aued
-wo3 ‘uotlejjeisul

40 aweu apnjou|

*a1ay ssaippe
plo wund ‘ajgejiene
10U SI jaqge| }| ‘8s8y

jaqe| burjiew xiyyy

