
DECUS 12 BIT SPECIAL INTEREST GROUP
NEWSLETTER

Nuaber 22

Contribu~ions and cor~~~~rAence should be' sent to:
.:.~r __ -"c- -

--""?~~-

Robert. Hass,inse~¥~~CQOMinator

1977

"-:12 Bit sis'
c/o DECU!;
146 Hain St.reet
"a~rard. HA 01754

•• or •• Liberty Mutual Research Center
71 Frankland Road
Hopkinton. HA 01748

DECUS/Europe cootribu~ions are solicited t; ~ugh:

Lars Palaer
,~EC~S/E~rope 12 Bit. SIG Newsletter Liaison
Hassle"
Fack -,-:-
S-4~1 20 HOLNDAL 1
SWEDEN

<Please include re~erence to Newsletter nuaber and paSe when inauirins
about aat.eria! published.)

NEWSLETTER DEADLINE

The deadlines ~~r read~-to-use aaterial ~or the next two Newsletters are
24-June-1977 and 26-AWIust-1977. Hat.erial reauirins editinSl're-t.~pins
.u«:;.t. be in earlier. Read!:l-to-use .at.erial should use an area 6 1/2
inches (16.5 ca) wi~e by no 80re than 9 inches (23 c.> Ions on each
page. It.:~should be on whit.e bond paPer whenever possible and .ust.. be
reason~~1v-eiean, le9ible and su~~icientl~ dark ~or .ood photosraphic
.rep l"oduc'tion.

DECUS/US SPRING SYMPOSIUM

The Sprins S!:I.posiu. should be soins on or Just done about. ~ha ti.e t..his
Newslet.t.er re~ches you. Un~ortunately, t.he people who wrot.e UP the
advanced prOS1"aa did not realize this and said that t.his issue would
docuaent. the open session we have planned t.o handle current
develop_ent.s. As t.his issue soes to press it is still too early t.o be
sure o~ t.he cont.ent o~ that sesson (1 expect that. so.e o~ it will not be
developed until t.he Sy"po5iua starts) and it would be t.oo lat.e i~ it was
published here in aoy case. The open session ti.e is an e~~ort to deal
with the desi~e ~or current in~or.ation exchange at a .eet.ins that .ust.
be cast in concret.e .ont.hs in advance. The proble. is particularl~ bad
this t.iee due to the uncertain state o~ proSress in several 50~tware

~ield t.est situations and t.he ~act t.hat DEC is plannins announce.ents
that they are no~ willins to coordinate with us in advance.

122 PAGE 2

Ideas on better wa~s to deal with this issue as well as all inputs ~n
Sy.posia subjects such as how to broaden participation and upgrade
use~ulness are alwa~s welcome.

NOTE FROM LARS PALMER

Lars sent a response to the paper I mentioned in the last Newsletter by
Ji. van Zee that compares 05/8 FORTRAN IV, 05/8 FORTRAN II, 05/8 BASIC,
and his U/W FOCAL. In order to have the response be .eaning~ul, I will
try to reproduce Ji.'s pape~ as well as Lars' response. Many o~ the
points Lars makes re~lect .~ own reasons ~or ~reQuentlY choosing FORTRAN
IV for new pro~ra.s. I do think, however. that an important point ~or a
great .any o~ our readers is so~tware and hardware cost. FORTRAN II may
not be the most advanced o~ the choices but it comes in the basic
software kit at no extra cost and it does a great deal. It can do some
things that none o~ the other languages can do (i.e. e~ficent 12 bit
data manipulations at near asse.bl~ language speed that can be expressed
in FORTRAN and i.bedded assembly language instru~tions ~or doing special
manipulations and operations). It has many of the same advantages as
FORTRAN IV in the area of self contained subroutines written in FORTRAN
or asse.bl~ language that can be loaded or included in a library. U/W
FOCAL is the next cheapest in software cost and it is optimized to run
on minimum cost hardware configurations. It is the most interactive and
responsive choice and it is (to me at least) almost an order of
magnitude better tuned to the user's needs than 05/8 BASIC. My personal
bias is that 05/8 BASIC is. and always has been. a ~ailure. Its desisn
is faulty, it is not well maintained by DEC, it costs .ore than the
preceding c~oices and to make it ~n~thing close to interactive or
power~ul ~ou need a relatively ex?ensive system configuration. I~ YOU
must have the BASIC language ~or compatibility or training reasons or i~
YOU .ust have fairl~ e~~ective string .anipulations YOU have to choose
it however. Finall~, given enough hardware for BASIC e~fective, I find
the better choice ~or ~e is usuall~ FORTRAN IV. It is (almast)
co_patible with ANSI standard FORTRAN IV which gives access to a vast
array o~ programs and trained programmers. The so~tware is portable to
a .uch higher degree than BASIC due to the ANSI standardization o~ a
version that is su~ficent to do real work. This is as opposed to BASIC
where the ·standard- currently being oeveloped is still only ~or the
minimal version which is useful ~or games and teachinS, but not real,
hiSh oualit~ production prosramming that must use all o~ the s~stem's
~acilities e~fectivel~. For example, the DECUS program libraries
contain a rich collection o~ ?rograms written in -BASIC-. On closer
inspection it turns out that the larger, more use~ul packages are
usually written in DEC's ·BASIC PLUS-. I have translated or tried to
translate a number o~ these programs to OS/8 BASIC with poor results.
Even thouSh I know something about BASIC PLUS I still ~ind the
conversion Job as hard as a converson from FOCAL or FORTRAN. On the
other hand, I have converted a number of packages in FORTRAN ~rom the
PDP-10 and PDP-11 lib~aries as well as other sources with very little
trouble (i.e. SSP, CH~COHP packages, and man~ others). I have also been
able to take 05/8 FORTRAN IV programs directl~ to the PDP-ll with no
changes at all except for I/O unit numbers that I alwa~s assign to an
integer variable at the beginning of the proSram an~wa~ and a little
caution with the use of Hollerith data ~nd A format. The onl~ caution I

#22 PAGE 3

have ~or prospective users o~ FORTRAN IV is this: DEC is not activelY
developin~ badly needed enhancements (Lars notes that YOU need a number
of user written e,:tensions ~or really ~ood programs)p indeed DEC is not
really doin~ any ~=~lous maintenence on FORTRAN IV. The SPR answers are
comin~ out saying things 11ke Yes, this is a bug, it will be
considered a permanent restriction - rather than ~ixing the problems.
In view o~ its advanced features, compatibility and the ~act that this
is the only DEC so~tware that can use the new FPP-8A ~loating point
option, I think it is sad and strarlge that DEC seems to be approaching
the point where they will be forced to withdraw FORTRAN IV for lack of
resources and determination to support it.

Lars also sent some advanced information on the ~orthcomins European
DECUS Symposium. The 12 Bit program is shapeing UP very nicely. There
are several interesting papers on advanced work with 8 1 s and a workshop.
J am pleased to see that RTS/8 seems well represented. DEC will have
time to talk about what they are doin~ and there are hopes o~ having
some 12 bit hardware to demonstrate software, exchan~e pr~grams and
serve as a ~ocal point for user activity the way we try to do in the US.
They are also plannin~ user run training seminars ~or the afternoon and
evening o~ the day before thp SYmposium be~ins. By scedulinS in this
way, members can attend one o~ the sessions without having to stay in
London an extra night.

UNSIGNED COMPARES ON THE PDP-8/12

In talking to Ed Steinbeger ~'ecently, the subJect of doing unsigned
co~pari50ns came UP. We ag~eed that, while not hard to code, they are
still O'le of the most freQuent sources of codin~ errors on the 8 and 12.
It is rare to see anything in ~rint that spells out how to do them. Ed
offered a cop~ o~ some notes he had made on the subject. I have ed~ted
them and added some explanation as ~ollows.

Ed was interested in two cases. First is the common case were YOU

define 0000 thru 7777 octal as representinS 0 thru 7777 octal (0 thru
+4095 decimal). The second case is the less common assumption that 0001
thru 7777 octal represent 1 thru 7777 octal (+1 thru +4095 decimal),
and 0000 represents 10000 octal (i.e. +4096 decimal). In other words, in
the second case there is no representation for a zero value but there is
one ~or 4096. Ed looked at two wa~s o~ codinS the comparisons in each
o~ these cases~ They are to start with the link bit cleared or with the
link bit set. Although the more natural way to use the 8 is to start
with the link bit clear, Ed ~eels that the code comes out better
starting with it set. Both versions for each case are shown.

Set UP code for unsiSned comparison of locations -A- and -B-
0-7777 case:

Link starts ; 0 Link starts = 1

CLA CLA
TAD B TAD B
eLL CIA elL CMl CIA
TAD A TAD A

in the

122 PAGE 4

Set UP code ~or unsisned comparison o~ locations eA- and -B· in the
1-10000 case:

Lin"~ ~t.arts = 0 Link. start.s = 1
-----------... --- ---------------
CLA ClL CLA CLL CHL
TAD B TAD B
SZA SZA
CIA CIA
DCA TEMP DCA TEHP
TAD A TAD A
SMA SMA
CHL CHL
TAD TEMP TAD TEMP

The above set. UP is then ~ollowed with a skip seauence selected ~rom

below dependins on which link start was used and which skip is desired.

Skip next locat.ion i~:

B>A

B=A

B<A

B>=A

B<=A

B not. eQual A

L starts = 0

SZL

SZA

SZL
SNA

SNL
JHP .+3
SZA

SNl

SNA

L starT"s = 1

SNL

SZA

SZL SNA

SNL SZA

SZL

SZA

I~ ~ou have an~ inputs on subjects such as this it would be useful to
~anY o~ our readers ~or ~ou to submit them ~or publication in the
Newsletter.

NOTE FROM BENJAMIN A. FAIRBANK

BenJamin wrote wonderi~~ how to bridSe the Sap between the information
DEC sUPplies with GS/8 and th~ tips in the Newsletter. He feels that
many of the contributor$ ar~ much more advanced than besinners like
himself. He would like to know were they ~et their back~round
information on such thinss a~ OS/8 conventions, stora~e, etc.

(I think the first answer is the 05/8 Software Support Manual which I am
alwa~s amazed to find how few users know about. Maybe DEC does
somethinS odd about the way they distribute it so new users are not made
aware of it. The second answer is that our contributors include the
authors and current maintaineps of the software at DEC as well as a
number of people who have spent as much as six or seven years working

#22 PAGE 5

with the s~stem~ Man~ o~ them either have sources (now available ~or a
price) or have -dis-assembled- considerable parts o~ the s~stem as I did
in the earl~ days be~ore sources were available. Just care~ul stud~ o~
the source o~ CCL (which is included in the basic so~tware kit) will
uncover many chances ~or modi~~in~ the wa~ the s~stem works to suit ~our
desires. Man~ o~ the items available ~rom the DECUS prosram library
also contain valuable lessons ~or those interested in being advanced
OS/8 s~stem pro~rammers. Finally, developing contacts amons the active
user communit~ throu~h the newsletter, direct"contact at the SYmposia,
and ~y personal contact throu~h the mail and phone will help broaden
~our perspective and sources o~ in~ormation+ B~ the way, many o~ our
contributors are not so advanced and all contrabutions are always
welcome and solicited. For example see the next paragraph. RH)

Benjamin discibes how he cut the cost o~ a bootstrap when he started
using OS/B. It seems that a ROM bootstrap option ~or his PDP-Be ~rom
DEC would have cost $900. Instead he bought an 8k semiconductor memor~
board ~rom -brand X· ~or $650. By rearranging the address Jumpers, he
was able to put his existin~ 8k o~ core memory in ~ields zero and three
and the volatile semiconductor memory in ~ields one and two. He then
wrote a permdnently resident bootstrap program ~or the ~op page o~ ~ip.ld
three. The proSram initializes itself, copies the standard DEC bootstra?
to Field 0, then Jumps to it. Thus for less than the cost o~ a ROM he
was able to upgrade to 16k and have the advantage o~ a bootstrap saved
in non-volatile memory. In his case the area where the permanent
bootstrap is saved is rarely altered b~ the programs he runs. I~ that
sot to be a problem he could use the CORE command to protect the top
~ield o~ memorY (at the cost o~ losing 4k o~ course).

NOTE FROM JOHN YOUNGQUIST

John sent copies o~ a couple o~ TECD ~ditins macros called CLEAN and
ALIGN. The~ clean UP tabs in assembl~ lansuage sources and aliSn the
co~ment ~ields. They can both be used with the MUNG command. The ~irst
line demonstrates how to do this for other macros. I will attach the
copies o~ the typeouts to the Newsletter. John is i~terested in
communicating with an~one else who is writing TECO macros. His address
is Verus Instruments Inc., Box 122, Fort Erie, Ontario. He also
included a plea ~or DEC to improve the handling o~ 10W6r case ~haracters
and rubout seauences in the monitor in the next release of 05/8. The
problem is that the monitor has a1wa~s been extremely tjght ~or space
and it sets tishter with each ~elease so the desired features take
several loctions that are almost impossible to ~ind. I have heard that
there is an ef~ort to implement something to help this situation
however. One wa~ to minimize the space problem is to use a SET command
to automaticallY patch the monitor for thinss like a SCOPb st~l@ rubout
seauence rather than ttae printing t~pe. This wau YOU only need space
for one or the other rather than both. John notes that a ~ood example
of how the terminal should be treated is in Dewar Information System's
aICE- editor. He ~eels that this editor is ver~ good by the way and
recommends it highly. He also likes their aACID a document senerator and
thinks it is superior to RUNOFF, MEMO and so on.

#22 PAGE 6

NOTE FROM LYMAN BYRD

The followin~ in~ormation was received a while back but did not get into
the last newsletter because I had set it aside to try to find out what
program it re~ers to. I still am not sure but I think it is the one
that is in the LAB-8 (LAB-8e?) software. Mr. BYrd writes that while he
was tryin~ to figure out a way for the pro~ram CONVER.SV to be used
under BATCH control he came to the conclusion that the following changes
would accomplish the pu~pose that is to convert data formats from
avera~ing programs tL that of FORTRAN format. The change works very
well except that YOU must start the CONVER.SV program over again for the
next ~ile. He chan~ed the name o~ CONVER.SV to F4XAV.SV to distinguish
it. The conversion can be any lesal input to the conversion program by
changin~ the four locations to the desired ASCII representations.

15600 0000 0000
15601 6031 2211 /ISZ 15611
15602 5201 1611 /TfiD I 15611
15603 603':, 3Z20 /DCA 15620
15604 3220 1220 /TAB 15620
15605 1220 4221 IJMS 15621
15606 1377 1220 /TAB 1.5620
15607 7450 5600 jjMP I i5600
15610 5600 >~x>:x /null (not used)
15611 1376 5611 IPointer
15612 7450 0306 /-F
15613 5245 0264 /84
15614 1375 0274 /8 (Backarrow)
15615 4221 0301 /-A
15616 1220 0326 I-V
15617 5600 0215 /8 (Carrage return)

NOTE FROM ERIC OLSON

Eric wrote with resp~nses to some items in the Newsletter. First he
says that the ite~ on static (P. 2, NL 21) sounded like a problem he is
havinS. It seems that at BromfLeld they are having a bad time with
their one and only DECtape drive. Whenever anything Soes wronS with the
sYstem, it dies. Since the~ onl~ have one drive, he says the onl~ way
to copy tapes is with a program called CORE from EBUCOMP which reads a
hunk of a tape into memory, lets YOU change t~pes, writes it out on the
new tape, then starts over again for the next hunk.

In response to Jerome Vuoso's problem (p. 8 NL 21) he notes that when he
talked to his DEC salesman about the CLASSIC when it first came out he
was told that it was not intended as an expandable s~stem but if YOU

understood a little about t:1e bus st~!Jct!..ir~ (oi ,.., '\;; . nMMTl:J1 Ie \
'-I'''' ~'-I...." so:.,! cotild

r-robably get an irlterf'ace and install it ~ourself. (Note: I would
suggest that an~ CLASSIC owners thinkinS about this 3Pproch who are not
familiar with the ins and outs of configuring OMNIBUS systems get some
help. The main issues that come to mind are: are there any slots left
in the processor?, can the bus drive an~ more loads?, what do ~ou have
to do to extend the bus into an expander box and how will YOU mount,
power, and cool it. One of th~ cost savings that DEC realizes in the

#22 PAGE 7

packaSe s~stems like the CLASSIC and 310 is to select coo~igurations

that Just fit in a partcular processor with no room to spare in the box
or on the power supplies or in the cabinets. It is true that the
processor inside has alwa~s been a regular PDP-8 though that has the
same expansion potential as i~ it had been purchased in the normal wa~.
You save money on the special packages because DEC can -mass produce
~ixed configurations that make the best use of the configuration
possibilities of a given processor model. RH)

He thinks that Jerome can solve his problem o~ students zeroing or
otherwise distro~ing diskettes by Just removing PIP from the system
disk. COPY, DIRECT~ and DELETE will stiil work but ZERO and SQUISH will
not. This will mean that from time to time someone will have to do file
maintenence for everyone using a system disk that does have PIP. You
better not have too much on each disk. When I use a flopp~ disk system
I am alwa~s filling UP the disks and running out of space even with all
~he functions of PIP available to help maintain the file storage. Note
that -DELETE *.*- will still remove everything from the disk but at
least the system blocks will not be wiped out.

NOTE FROM JEFF WYATT ON FORTRAN IV BUG

Jef~ found a bug in OS/8 FORTRAN IV which may not be known. He did not
say if he had submitted an SPR. Jeff reports that the followin3 code
co~piles incorrectly:

DIMENSION A(100),B<100)
EQUIVALENCE (A(100),B(100»

The trouble is that the COd2 the compiler generates forgets the
dimension for B and starts the executable code that follows these two
statements Just after A(100). Therefore any references to B(2) thru
B(100) will be iZlcOrrect and if any values are stored in those locations
part of the proSram will IJe distro~ed! A way around the problem is to
dimension A larse enough to include all o~ B (1.e. A(199) or more).

PROM DAN SMItH
Ire Research lDatitut.
20 Stani~ord St.
Boston, Ma88. 02114 617 742-)140

i22 PAGE 8

1) QJERY !O OS/8 BXP.BHSI You are running OS/8 and •• jU8t r.turned to
the keyboard .onitor. Now you r.place the .. diu. in the OS/8 syste.
device with another O/8-ayst •• -b.aring .ediua. What must you do?
Are there any circumstanc.s (aY8teas bay device co~i~ationl
systems are strictly identical, etc.) under .hich it is sara to just
continue? I~ not, does a r.start at 7600 do everything necessary?
Or are there subtle dangers in anything short o~ a full reboot?

2) POHRAN IV BUG-OF-~-.OWfHI It i. unaafe to use .. ny IlUltidilleDsional
array with aore 'than 2047 ale.ents, turthermore. it is un~e to use
any aultidi .. nsional array with more than 102) elements it individual
ale •• nts or SUb~8 are to be pas.ed to a Bubpro.sra- (i... it the
argument pas.ed to the subprogram i. 8ubscriptedj. Exact details follo ••

Suppose .e DIMENSION A(d1.d2,d) and reterence A(I1.12.I).
Let

D - 11 + 12d1 + l)d142

KN - 1 + 41 + d1d2 (i.e. MN - D tor A(l.l,l))

D' = D - KN - (11-1) + (12-1)dl + (1)-1)41d2
D iB e •• y to calculated, but D' i. the correct displace .. nt fro. the
array ba.e. (The probl •• i8 'that the d ••• ers o-r FOR~RAN apparently
.ere used to Roman nu.er~. and didn't know 'thaot you should start counting
with zero.) ~.Y, in a n~~ 8ubscript reference, ~h* FORTRAN IV
d08S. apparently in order to aave cycle.. is to calculate D. place i~
in an index register (say 7). and ret.rence. e.g. FLDA A-IUI*,.1
~he problem is that in a .u1tidt.eDslonal arr~. D BaY exceed 4095
even if the array Biz •• and the quanti"ty D - D, doe8 not. In this
case the XR overflows and the wrong addres8 i8 re~.renced.

If the subBcripted quantit.J i8 betng pa •• ed to a subprogram, as
before D i8 computed and placed in an XR. .ay 7. filen D i8 retrieved
via an HA, aul tip11ed by 3. and added in STARTD .ode to a JA A-IN·)
to tara the argument. !he proble. here ia that XTA retrieve. as a
s1811.d number, 80 in this cas. the wrong addres8 1s computed it D
exce.ds 2047.

For example. if DIMENSION A(2000,2), all ele.ent. from (4a,i) on
up will be transmitted incorrectly, and ele-.nt8-A(96,2) through (2000,2)
will be referenced incorrectly even within the subprograa.

the rule i8 that dl + dld2 + 41d2d) must not exceed 2041. In the
worst case, DIMENSION A(11,2,2,2,2,2,2) will have proble.s because
D c: 2159, although there are only 1088 elei1lenta. If the total array
size is les8 than 1024 elements, the problem cannot arise. larger array.
may be permissible depending on the exact di.en.iona, but it i. neceBsary
~~ do the above calculation to find out.

I've written a nasty SPR about this and hope the reply will be
more helpful than DSN April 11, p. 14.

J) A plotter hardware problem with PDP-12's. XY12 interfaces, and Calcomp
565 plottera. The sequence PLPR,PLSF,JMP .-l,PLCF.JMP .-4 which ought
to run the carriage to the right, doesn't. It iwill, however, if the
program is auto single-stepped at slightly 1e8s than maxi ... ape.d. or
it about five NOP'. are inserted between the PLPR and PLSF. If you have
this proble., ask your rep about Tech Tip XY12-TT-l 8/20/16. PLPB
.ets ~ flip-flop that's supposed to at., set for 2.5 •• eci however. IOPl
~ro. the PLSF clears it, and the 56S won't re.pond to very ahort pule •••

DEAR BOB:

PORTSMOUTH ABBEY, PORTSMOUTH R.I. 02871 122 PAGE
12 APR. 1977 9

A problem can turn UP with the E.A.E. in newer machines when
YOU want to ~ind out which mode -- Mode B or Mode A -- YOU are actuall~
in. The standard method (do a DPSZ; i~ it skips, ~ou're in Mode B) can
cause t~ouble i~, in ~act, YOU are in Hode A. The accumulator and
the step counter are both altered.

The ~ollowing is used in the current ETOS s~stem head. I have
tried to mark the speci~icallY ETOS stu~f; but the idea should be of
general use.

/ PATCH FOR ETOS HEAD -- E.A.E. PALB-V9H 04/11/77 PAGE 1

02071
02072
02073
02074
02075
02076
02077
02100
02101

02115
02116
02117
O'i20
02121
O~122

/ PATCH FOR ETOS HEAD

/ 'ETOS.SV' BLOCK 65, LOC. 71 (FOR EPIC)

0000 FIELD 0

2071

7441
7104
3332
7501
6001
3024
7403
2332
7431

2115

1332
7110
7403
7420
7447
7300

7441
2132
0024
7431
7447

7403

7403

*2071

*2115

SCA=
EAESAV=
LT2Mll=
SWAB=
SWBA=

ASC=

Sel=

seA /GET STEP COUNT
CLL RAL /SHIFT UP 1 BIT
fiCA EAESAV /SAVE.
HUA /(ETOS: GET Ma>
ION /(ETOS: INTERRUPT ON)
DCA LT2HG /(ETOS: SAVE MO)
Ase SCL /WHICHEVER
ISZ EAESAV /SET BIT 11 IF MODE 'B'
SWAB

TAD EAESAV
eLL RAR
Ase

/GET STEP COUNTER THAT WE SAVED
/SHIFT BACK TO OLD VALUE
/(ETOS IS IN MODE 'B' AT THE MOMENT)
/LINK CARRIES HODE INFO SNL

SWBA
CLA elL

7441
2132
24
7431
7447

7403

7403

/ WORKS THE SA~E IN BOTH MODES.

/ MQL + set Mcde B
/ set Mode A

/MOfiE 'B':
/ AC INTO STEP COUNTER
/MODE ' A' :
/ lOAD COMPLEMENT OF BITS 7-11
/ OF NEXT WORD INTO STEP COUNTER
/ ~ SKIP NEXT WORD

$$$ after J. Dempse~ $$$
G. Chase OSS

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

t1AR. Z9,

01754 F22 PAGE 10

I An WRITT!~G TO YGU FOR THE FIRST 1£"£; AS A MEHBER O~ ~ REL~Tr ~iY
:...~RGE BUT tiNORGFtHIZEB GROUP Of OS·'S USERS - THOSE tiHO !-!Ai!f A GEtiE:?'Hl RAJ Q-' e
'. -92 OR 1795 TEST S"fSTEi't. THE S'fST£M COtiSISTS Of A PDP-~'t {,;iTH)!j~L ~;. ~}S
:;;!vES. liE HA\.~E 29 K OF CORE (SO.)" Tl) BE £.~p~~nED 7";) 32:(·. ;. :Tf, ~ i~L_:
2~~u - 2e0LP~ LINE PRINTERs HI-SPEED PRPER tRPE RE~nER RriD A 1EC-415 ~ ~ ~
:.i:TH R DIRECT PfiKP.LLEL iNrERF~eE YO THE e,,·E. THIS::~ R fAiRL'i P:):JE;:F:-'L •
!'! ~ R D WA REP A e i=~ AGE . rNA!J Ii! r I (; N r u 1 H E 0 S " S M O:i ! T u R " G. R. P- Ii n s ! i S :j ~ ~i
~~~rTOR UH!CH IT CALLS CAPS. THE CA~S "OHITOR HANDLES !EST PROGR~" 
JE¥ELOPMEWf AND TEST EXECUT!ON. CA?S ALSO CONTP.IHS ~ ?uUE~FUL rE~r E~r'J~ 
:':-!lIZI;~G THE TEC-41S. THE C. R. T. HOLDS it P"AGE Of IE:::!; A~D ALL:)~S THE ;J5ER • 
-0 "OnIFY IT IH ANY WAY. ADDING OR DELETING CHA~ACTEiS ON THE SCREE~ 7~E 
?~GE IS THEN RERD 9HCK INTO CORE, WHICH IS USED TO SUfFER AS MUCH GF THE 
F:LE AS CAN BE frT. ANY PAGE :N CORE CAN BE CALLED UP AMP "D9rFfE9 Ai ~[Ll 
;JHEN THE USER IS SAT!SF!EDJ THE" COR£ BUFFER CAN BE UR!1TE~ TO DrSK TH~ e 
~JrTOR CAM HRHDlE ANY SIl£ FILES. SEARC~ P.ND OVERWRiTiNG ~~Citr::E3 ~R£ 
: tICLUDED. 

I AM CURRENTLY USING BASIC fO FOR" A DATA S~5E "A~AG~HE~l S~STE~ 
FOR KEEPING TRACK OF PRODUC1IOH TEST DATA THIS LEADS TO A CO~PLE OF 
~UEST!OHS. DOINC STR!~C ~AHIPULAT[OH ON LARGE ~sc[r F[lES [S QUr:E SLO~, 
E~E~ WI1H DISK. I BELIEVE TH~T THIS IS CAUSED BY BRTS CONIIHU~LlY ~AlL:~G 
:.J f HE. S F A ~ D . F F i) .., E R l H Y S . r WA S W 0 H II £ R r H G r F A H "f I) tl E HAD Ii U ~~ £ H ~~.:- !.J :) p: ;: e 
~H HODIFYING BRTS SO THAT TWO OR "ORE OF THE OYERLA~S COULD BE CORE-RFS:D£HT 
~E HAYE "ORE THHN ENOUGH COREJ SO THAT EXTEHD!HG BASIC ro RE~U!RE !2K. o~ 
"~RE WOULD BE NO PROBLEftJ IF ijE COULD GET SOKE EXPANDED FEATU~ES 
: F 0 U H D S T E ¥ E l ! GET r: S S AS! C "Ii R G ! N F U H C:- ! 0 H ¥ E R Y U '5 E F U LOU R L! r! E ;. R I N r :: R e 
~~~ GO TO 132 COLUflHS. HAS ANvONE ~XP~HDEi THE $TRI~C RCCUMULATO~ TO 
rtDRE THAN 72 CH~RACT£RS? I WOULD ~LSO L[Kf TO KHO~ iF ~NYDHE HRS BEE~
~aLE TO INCREASE THE NU"BER OF ACTIYE fIlE~ THAT BRTS CA~ SU?POR1.
~?!T!NG TO ANY DEVICE OTHER THAN rH~ T1Y REQU!RES A FiLE MU"SER

SUCH AS LPT=). ! WOULD BE HAPPY TO SEE THE HU~BE~ RAISED TO ~ O~ a
RHD THE FILE FUH~TIOHS "ABE CORE-RES!DE"T~.

ANOTHER AREA THAT I WAHT TO EXPLORE IS "Ulri-T~SKIHG. ONE DR~~
B04CK TO THE G R. SYSTEP! IS THAT !JE CAr~: T DCj PROGRAfit PRE?H1{AT! O~, l O:::~::
-) : M U LA T r 0 HAN D T EST r N GAT THE S A rt E T! r. E . J,J H Eli rES T I t~ G ; T H f T E "3 T E ~: S P f tl D S
:i GREAT DEAL OF rIriE DOING t~OTH!t~G, WAITING FOR THE OPERATOR 10 ';ETlJP
~OD TAKE DOWN THE p.e CAR~S. IT WOULD 8E NICE TO BE ~SLE TO H~V£ ~ BArCH
JOB RUHHIHG IN THE BACKGROUND. IT WOULD ALSO BE NICE TO 8E ABLE 10 A1TA~H
~rlQrHER TERHINAl, AHD DO ~ULr[PLE SIMULTANEOUS EDrr:NG OR FILE MA":~ULArIGN.
: HAVE CONTACTED THE EDUCO"P PEOPLE ABOUT ETOS. I A" PlAHHING TO HAVE rHE~
: ti F (j R SO t1 E E X P =- R r " E H T S . ! T ill ILL HOT BEE ~ S Y 1" 0 ACe 0,. P l ! S H ~Jti ~ T ! l:1;' ,,~ T , e
~:NCE THE ENTIRE CAPS SYSTEP' IS ~OH-!t~TERR!JPT. IF YOU WH~n; r'lL
LET YOU KNOW HO~ ! MAKE OUT.

THE SEYERAl HUHDPED G R TESTERS I~ THE FIELD REPRESENTS A ~ARGE
~OMPurATIONAl RfSOVOIR WHICH RE"AINS LARGELY UNTAPPED~ SiNCE G.R SEE~S
F.: =: L u eTA NT T:) FOR 11 A USE R S G R 0 UP L r KED E C US. r ~ SO r1 E SO R T 0 F i1 !j l 1! r "s :: ~ ~~ G
~~~ ~YRiLABlEI r FEEL THAT MORE OF THE USERS ~OULD ~~AiL THEMS~lVES OF 7~~ 
r i) iJ f R S 0 F r H f S ,. E . I TiS D 0 U B Y F iJ L T HAT i:=. R. ;j r L l H E L P I ri T HI'; l r!! E. r-' .; 

-- SEEMS THAT T~EY ARE "ORE tNTERESTED IN MOYING ON TO rHE PDP-l1 ~OR 
0TUR£ DEVELOPNENT WORK. [WILL BE INTEREStED TO HEAR OF DEC'S (AND 
~HERS~ DEVELOPMENTS IN l~E L[NE OF NEW SOFTUARE FOR THE 8/E. KEE? UP 
HE GOOD WORK WrTH THE SIG !t~ KEEPING US INFORr1EII., THHNK '\'OU. 

I .' ," /. / ,/ J 
',," t--'J-, t ~-.'L.~ . 

• .lIM SCHHRF 
./ 

TEST ENGINEER 

COt4RAC COR? 
32 FAIRFIELD Fl 
W E S:- CAL D I,j ELL, tf .J 
070'-)6 
201-5?S-8eee ~264 

• 

• 
• 



i22 PAGE 11 

Bil! Ha~~~d has dEveloped a new comPuter-assisted instructional (CAl) system 
for train~ .ostal clerks to use the Multi-Position Letter Sorter ~cbin.s 
(MP/lSMl&) at the Salt Lake City, Utah and six other Vestenn post offices. 
The i1t.-tual MP/lSM requires 12 operators who IIlUst e~ch keY one I etter per 
second (Yia 2 or 3 key hits on a special keyboard) which translates to 3.600 
letters ~er hour per clerk. As recently demonstrated at the Van Nuys. CA 
post ~ffice, the software can support 12 train~ YT-52 CRT tenninals. Since 
there are severe tim~ constraints in the simulation. the 12 CRTIS must run 
in real time. A sinlle P.DP-8/e with 32K core memory and a s~le RKOS disk 
drive drove 12 VT-52 CRTls each displayiN! one it_ per second and each CRT 
requirine one disk access per second (12 disk accesses per second). The 2nd 
test consisted of 11 CRTIS do~ the one item per second simulation while the 
12th CRT was runnin&! 05/8 doinl! data base a!enerations fr_ the RXS-E ;.. Floppy 
disk and p·rintiN! on the LA1SO I ine printer. Addi tiona II Y. when the CPU had 
nothina! el se to do ( i) , it An a NULL job in the AI; I iahts. Du rinl! a I I the 
tests. none of the 12 experienced MP/LSM operators could detect any chanee 
in the rhyt .. of the i t.-s at any tentina I • The CAl trainer prOi!r. occupies 
8K for its re-entr,ant code and another 8K for user stacks. A special real 
tiae executive was used in fields 0 and 1 (all 1/0 buffers were located in 
field 1). Any ONE 1:en.inal on the Syst_ can call ald run OS/8 ~concurrentlY 
with CAl on the r .. ininl! CRTls. The software. by the way, was written in 
its entirety in PAGES consistine of approxiaatel~ ~,ooo state.ents and about 
a dozen or so macros. The project consisted of three parts. the executive, 
the CAl trainer. Wld the data base t!enerator (which runs WIder OS/8 in either 
stand-alone or under the t~-shar~ executive. Tbis test clearly demon
strates that the hu.ble PDP-8 is capable of a lot more than many think. By 
the way, even durin&! the 12-tensinal tests. the MILL job ran at least 50S of 
the tillel 

Bill also has available a .ulti-user OS/8 time-sharin&! executive which allows 
2 or 3 tenninals each runn~ 05/8 on a .inimua hardware conf~uration of a 
PDP-8/e, f, m, or A with 20K memory (for 2 tennj~als) or 28K (for 3 te~), 

one RKOS disk drive and a DKB-EA real tiDe clock. SYstem response is said to 
be very ~ood because all users are always core resident. Bill also has in 
the works a 2 te~inal OS/8 time-shar~ executive which will require only 
12K memory (with other hardware same as above). Interested parties may write 
tal Bill HaYi!ood, 3704 Rid~ecrest Drive, Salt Lake City, Utah 84118. 



i22 PAGE -12 

!THIS IS A TECO MACRO TO PROCESS PALS SOURCE FILES 
IT R&~OVES TABS BETWEEN MNEMONICS &~D LABELS WITHOUT 
MISALIGNING THE COMMENT FIELD. 
STORE IT AS nCLEAN.TE n 

IT REQUIRES STUART DOLES -B PATCH FOR END 
OF FILE FLAG 1332/1035 1037 

5002/0011 1332 
-8=4095 FILE OPEN,=O IF BOF SEEN 

CALL IT WITH: .MUNG CLEAN,DEV:FILE.PA 

J HXZSHK$@I'EBS'S-CGZSHXZ HK MZS 

!START! QUA -AMACRO CLEANUP IN PROGRESS 
-A 
<P liAS 
J< S AND S -0 I S 4<OA-13"E L OTERM1S' 
OA-9 Q E 91$ L OTERMlS' C> !TERM1!>$ 
J< S AND I S -0 I S 2<OA-13"E L OT~~2S' 
OA-9"E 91$ L OTERM2$' C> !TE~~2!>S 
J< S TAD S -D I S 4<OA-13"E L OTERM3S' 
OA-9 1'E 91$ L OTERM3S' C> !TERM3! >S 
J< S TAD ~ S -D I S 2<OA-13"E L OTERM4$' 
OA-9"E 91$ L OTE~~4S' C> !TERM4!>$ 
J< S ISZ S -D I S 4<OA-13"E L OTERMSS' 
OA-9 Q E 9I$ L OTERMSS 1 C> !TERMS!>$ 
J< S ISZ I S -0 I $ 2<OA-13"E L OTERM6S' 
OA-9"E 9I~ L OTERM6$' C> !TERM6!>$ 
J< S DCA S -0 I S 4<OA-13"E L OTERM7$' 
OA-9"E 91$ L OTERM7S' C> !TERM7!>S 
J< S DCA I S -0 I S 2<OA-13"E L OTERMSS' 
OA-9"E 9IS L OTERM8S' C> !TERM8!>S 
J< S JMP S -D I S 4<OA-13 t1 E L OTERM9S' 
OA-9"E 9IS L OTERM9S' C> !TERM9!>S 
J< S JMP I $ -0 I $ 2<OA-13 t1 E L OTERM10S' 
OA-9"E 91$ L OTERMIOS' C> !TERMI0!>S 
J< S JMS $ -0 I S 4<OA-13"E L OTERMll S .. 
OA-9 n E 91$ L OTERMllS" C> !TERMll!>S 
J< S JMS I $ -D I S 2<OA-13"E L OTERM12S" 
OA-9"E 9IS L OTERM12S' C> !TERM12!>$ 
-8;> -APAGES EDITED -A QA=S 
-AJOB COMPLETE-ASEX$ 



!THIS IS A TECO MACRO TO ALIGN THE CO~4ENT 
FIELDS IN A PALS SOURCE FILE. 
STORE IT AS DALIGN.TE s 

IT REQUIRES STUART DOLES -a PATCH FOR END 
OF FILE FLAG 1332/1035 1037 

5002/0011 1332 
-S=4095 FILE OP~N,=O IF BOF SEEN 

CALL IT WITH .MUNG ALIGN,DEV:FILE.PA 

-AMACRO ALIGNMENT IN PROGRESS 
-ASJ HXZSHKS@1'EB$'$-CGZ$HXZ HK MZ$YS 
<J<!START! ~UA OUB SIS OL 
< 8<1%AS OA-47~E OSLASHS' OA-9"E OTABS' C> 
-C !TAB! 8%B$ C lUA$> 
!SLASH! QA%BS QB-12~L OENDS' 
SQB-2S"L 3<91S 8%B>$' 
<SQB-34"L O~~DS' -D -8%B> 

i22 PAGE 13 

!END! L> P -B;> -ACOMMENT ALIGNMENT COMPLETE 
-A EXS 

Abstract or GT.PA, OS/8 Handler for Tekt~onix 4006-1 Graphic Terminal 
as Console Device 

GT.PA is an os/8 handler for the Tektronix 4006-1 Graphic Display 
Terminal in alphanumeric mode. It allows the terminal to input and 
output as the console device (devic( codes 3 and 4), possibly replacing 
a teletype in this capacity. Tne s~andard os/8 features are available, 
plus the added feature of stopping at the bottom of the screen during 
output, allowing the operator to hit any key in order to erase and refill 
the ~ereen with the next section of the text. 

The handler was created by modifying the Digital KLBE.PA handler. 
It occupies two pages. 

Submitted to DECUS. Ronald P. Larkin 

The Rockefel~er Univerr; ty 
1230 York Avenue 
New York) N.Y. 10021 



U/.-FGCAL: A CCHPARISON WITH UI~ER O~/b LANGUAGES 

Jim· van lee 122 
Dept. of Chem. - Univ. ct wash. 

In the Deginnin, there was the PDPl, fOllowed socn aft~r ty the ~DP~ 
and the ?~Po. Ana u~C lookeo upon them and reeliseQ they needeo SuFThAkE. 
So DEC said to Richard Merrill, 'let there oe a lan~~age which all may speak 
with only 5 min~tes instruction' and behold: rGCAL com~ into bein~. 

From its inception, fuCAl (short for eitt.er FGrm~la CAlculator or For
mulatin, On-line Calculations in an Algebraic Language) was £ntt.usiastically 
receiveo by POPS progra~.ers. This language offeree such ease of use, yet 
had sucn power and flexibility, that thousanGs of people aoopted and aaaPtec 
it to solve ~heir problems. FeCAL provided a convenient starting pOint for 
applications p~ograGS covering the range from ~achjne teol centrol to hcs
pital analytical instruments. Yet ~ithin a few years of its introduction 
(roughly l~b&J. DEC apparently lost all interest in 'tt:eir' lan~uage. 

The original ~UCAL was written primarily for a 4K papertape installa
tien, but Mas designed to allow expansion to bK ana a,~ptation to a time
sharing environment. une of the significant cesign features was the use of 
the interrupt system which not only isproved the apparent executi~n sreed 
(since calculations proce~ded in parallel with the output), but openeo the 
door for many real-tiEe applications. Anoth~r blessin~ ~as an optional 
overlay whicn increaseo the arithmetic precision to flO-digits· in place of 
the more usual 16-aigit' floating-point softhare. Thus FOCAL appealea to a 
wide ran~e of users: laboratory personel (pro~inent a~ono tne early users 
of DEC comp~ters) ~t.o co~ld adapt ftCAl to automate teoious· measurements, 
and educational groups who found the language easy to teacn_ very forgiving 
in terms of syntak, ana at once both powerful 2nd p:e,ise. 

With the a~yent of 8 full-blown operating syste~ tor the fD?&, ho"ever, 
FOCAL more or le~s officially disappeared. The new e~phasis trom naynard 
was on fORTkAN (supplieo with PSIS, OS/8) and BASIC (available for an aaai
tiona. charge). These lan.uages, of course, hao been developea elsewh6re 
and were an widespreaa use on big machines, ana, 1 am sure, were a necessary 
part of a successf~1 ~arketin~ strategy. We ourselves incluced the availa
bility of fGRTKAN as part ot the bid specifications tor our initial purchase 
even though we ~ere not at all certain of its ~setulness for laboratory ap
plications. In the mid-seventies DEC continued deyelop~ents on FCRTRAN and 
be~an marketin~ a so~histicat~d FORTRAN-IV compiier, leavinG little 010 4K 
papertape fLCAL tar Dehino. 

But tne users had not forgotten fOCAL. ~any, mony people continuea to 
submit impr,tJvements to OECUS and several expanced versions appeareo ",,,ic.h 
Horkea nlth Doth oser-aeveloPto monitor systeffis 'such as tt.e RT monitor) dna 
also with U~/ij. One of t~e most successful ot these wos written b) Barry 
Smith and Dave Schneioer at OMSI. Their 'PS/6 fOCAL' "as designed simply a~ 
an overlay to tne last DEC-released version (feCAL '69) and proviaeo 'devict 
indepencent I/G' as well &s automatic program loaoins Gno 'abrary rnaintalo
ence. ~hen we purchased cur computer system he got rLCAL '69 on a paper tap~ 

and 0 n I '1 sen. C: III 0 nth s I a t (; r d j s c 0 v ere U 0 M S I • s v e r s ion qui t e b y ace i a e n t • T n e 
point of tnis story ;s that if it had not been for an intense inte(e~t witnjn 
the user cOffifuun.ty, fOCAL Houlo surely by now tave become a 'aead lanyuagc' 
since the or.~jnal p~per-tape version is certainly not on a par with the aa
vanced tore¥rouno/tac~grouno, tieJd-indepenaent, multi-overlay structure ot 
FCRTRAN IV. The purpose of tnis paper is to examine ~om~ of l~e stren~th~ 
of a user-developeo ~OCALI an outgrowth of PS/8 FGCAL~ jn comparison to the 
DEC supporteo lan,ua~~s currently availaole to toe CS/d progra~mer. 



i22 PAGE 15 
The versIon of fOCAL unaer discussion has teen labeled '~/~-fOCAl' or 

'UWF' for short. In its current form i~ represents tt.e 'end l ct approxi
mately 5 y~ars ot evolution, and wh~le it began simpl) as a massive overlay 
to FOCAL '69, it ~as event~.lly completely rehritten (several times as a 
matter ot fact!) ana now bears only a formal resembJc~ce to thE original 
design. There are thO chief characteristics of thi~ ~ersicn' the first is 
to retain some of the 'simple~inaedness' of the original lanGuage. By this 
I mean that no attempt has been made to transcend fielG bounoaries or to 
implement fancy oata structures or create run-time overlays. What you see 
is what you've got anc you can patch it to do )our 'thing' ra~her easil). 

The second characteristic is to pack 8S ~any features as is hu~anly pos
sible into the smallest amount of core space. 80th of these c~aracteristics 
are rather .t variance witt. current software trenos. first, of course, toe 
price of memory is now so low that a ido-it-)ourselfer' can t.ave 32K for ap
proxi.ately Sl~, hhile seconcJy the cost of developin, 'core-tight' pro,ra~s 
tends to rise exponentially. Econo.ics thus aictates the inefficient use ot 
core ana the efficient ~se of hu.an resources. The ~GtAl program~er, on the 
other hand, 'likes to get nis money's worth' and often savors a clever tric~ 

(which might ta«e hours to invent) which saves a single line in a program. ~ 
will not atte.pt to justify tnis attitude, but merely observe it, both in m)
self ana a_ong many other FOCAL pro»r2~mers throughout the world. Perhaps it 
is the innate elle~ance ot the language (8 quality shared by AflJ whiCh mokes 
us want to 'write the whole program on one line l • 

This desire for conciseness te~ins our co~parison: in FOCAL all the dir
ectives can Ge abbreviated to a single letter, and expressions not requireo 
can Simply be omitted. To consider, for example the coaing requirea for a 
simple loop, we have the following: 

fOCAL BASIC FORTRAN 
F I z l,2J'lOO; FOR 1=1 TO 100 STEP 2\ \~EXT 1 DO 999 !:al,lOO,2 

Continuing this example, let us suppose that ttis loop calls a subroutine 
in which case the feCAL progra~mer would appenc a phr.se such as 'D 2' after 
the semicolon. the bASIC progra •• er would insert 'GOSUe 2000' bet~een the 
slashes and fLRIRAh hQuld require the statement '99~ CAll SUBROUTINE lwO'. 
Thus for this simpie, yet com.on example# FOCAL has an appealing simpliCity. 

Now this sort of thin» can be viewea in oifterent lights. First of all, 
it is undoubtedly tr~e that the 'wordiness' ~f 8ASIC ~oa FGRTRAN imprOVES 
the 'readibili~y' of the program. Indeed, FOCAL programs often appear com
pletely 'dehydrated' and need to be 'soaked for several ho~rs' in order to 
make them inteilioibie. This, however~ is discretionary on the part ot the 
programmer, ~ho may spell out all the commanos if he hishes: FeR I~l,~,lOv; 
00 2. This improves the program legibility im"ensely, yet is still more com
pact than the other two exa~ples. But once accusto~ea to the abbreviations, 
conciseness is quite ·a practical advantage since all programs must be t)ped
in a character at a time, and many of us are 'l-f;n~er pokers'. The fact 
that only the first letter of the command matters is clsa often convenient. 
At the wrouna level it mini~ises the conseq~ences ot s~elling errors: fC~ 
and fIR do the S8ffie tning! It also makes for~.~n langua~e versions easy to 
construct, for example, FUk works as well in ~erman a~ fOR does in cn~lisn. 

ThiS leads to t~e pro~'e~ of program prEP2rat.on in ~~neral. Certainly 
one of the rr.ost appealin~ features of feCAL is the ~~CifY corrmand. This dl
lows the pro~raffimer to rapi~ly make changes in an ~xistjn~ prc~rarr wltn most 
of the pOher of the GS/b EOITC~, tut ~ithout ha~ing to load in an overlay (as 
in BASIC), vr worse sli •• , return to the monitor anc r~n an entirely ~epar4te 
prooram (as you must when oeveloping fORTRA~ ~rogramst. feCAL is thus more 



122 PAGE 16 
- --

highly integrated; it lOOkS at the problem of program cevelopment for what it 
is' the constant alternation of ·ty~ing and tr)ing·. Any programwer accom
plishes more when he (she) can take advantage of the computer in the develop
ment phase as well as in executing the fi~al result. It there is only a sin
gle feature ~hich ~akes·F~CAl appealing. it is surely that the programmer can 
fix a mistake and -'sceGiately- rerun the program. Inoeed, he can often ju~t 
selectively execute a tew steps to see if the result is correct. 

Since all the defineo variables are aV6ilatie for inspecJion at any time 
it is a si.ple matter to change so.e values, fix up the program and continue. 
Ho~ .uch grief is caused hy not being able to "ook back' ~hen IYersion 11 of 
a FORTRAN or BASlC progra. goes astray! The progra& must then be altered to 
include aaditional PRINT or ~RITE coma.nds aOG the entire process be~un over. 
This usually .eans creating a Nhole series of slightl) different source files 
with all the i.plications this has for rapidly using ~p even the largest of 
mass-storaGe devices, ana of course, those of us with OECtapes or cassette 
systems absolutely cringe every time we see the tape start to wind out tcwaro 
the end! 

So FOCAL is si.ply more productive. This has been verified by at least 
two large daia-procesSing installations: the Hoeing cocpany in Seattle, and 
the U.S. Coast Guard in Connecticut. Both installations have co_pared u/w
FOCAL and fOkTRAN IV and found that the former has sase distinct advantaQes. 
True, FOCAL progra.s run sloNer since most implementations of fOCAL have been 
as interpreters.. But! Wbo caresl As long 6S the CF~ is faster than the 
lineprinter, or _ore general.}, as long as any output device, even a CRT 
terminal, is faster than hu.an co.prehension of the output, the program run
ning time beco.es less i~portant than the pro»ram development time. 

The key here is the nature of s.all computer_ syste.s, even those whiCh 
are pr;~arily useo si.ply as 'number crunchers'. The typical fOPS pro»ra~mer 
views his co.puter as just another 'tool-of-the-trade l and needs to be aDle 
to program it qUiCkly to run a slightly different experiment, or analyze the 
results, omitting the first and third runs, etc. H~lfw.y through the pro.raa 
he may suodenly M6nt to see a few more significant a.gits, or need to change 
the calibration routir.~ to include .ore points ••• Rather than tr~ing to de
sign an 'all-purpose' pro;r •• which is co_piled once and run forever, FeCAL 
users preter a 'hands-on l approach in which so.e operations are executeo oS 
'direct ~om.ands' while others can be developeo into convenient subroutines 
which can then be c.lleo directly or saved tor use later on. As a simple 
illustration, jf an experi~~nter would like to exa.ine a few of the data 
points near _ suspectea ·Q.itCh' he doesn·t neeo to sit down and write out 
a special program for this (FuRTRAN), or save the proGram ·he was running 
so he can ~r;te a neft one (BASIC), he wil' simpl, type in SOMething like: 
'FOR I=lOO,105;TYPE FRA(l)' ~here the 'FRA' function (file Rancom ACCeSS) 
is his means of r~aain; any data point in the file. It an anomc'y is found 
he can then replace it with tne average value, or take some ot~er course 
of action - again al' with ~irect commands or combinations of direct co~
mands and short ~ubroutines which he develops is he needs them. 

wn.t I am expounoing here. of course, ;s the ala orgument in favor of 
·interactive' pro~raming anQ the message's: fC'AL nas it and CS/8-bA$lC 
anj FOKT~AN do not! 

* Two notable exceptions are clos.e to home here in Sanff: first Jim Goslin~ 
(formerly hith the ~niver$ity of Calgary - where is he now~?) ceveloped a 
compiler for a 4K versior of fuCAl about 5 years ago. And seconaly, Prof. A. 
S. French up at Eamonton has also completed a compiler and an interpreter tor 
his 80S~ operatio~ system on a POPll. I..,i., let nim'tell tl1at story wnen Of,; 

returns from his satbatic~1 .eive next year. 



i22 PAGE 17 -But there are other operational differences, little things perhaps, but 
ones which tena to b~come annoying after a wt.i Ie. for instance, the BASIC 
editor offers no way to correct a program line Short of re-typing the whole 
thing, ana liKewise there is no simple way to list Just a few parts of your 
program or to print the listing on anything tut the terminal. Another 
annoyin~ teature about BASIC is the restriction on variable naies~ the fact 
that only 1 or 2 character names are allowed, hith the requirea.ent that the 
second Character f:UST be a nu~ber. 80th fORTRAN ana fOCAL ollo~ names of an) 
length, although in f~CAL it is true that the first two characters must be 
u~iq~e and names beginning the the letter 'F' are ille~al. fORT~AN has its 
own naming restrictions, however, since v8riables teginning with the letters 
'I-N' are treateo uifferently from others. This peculiarity can be removed 
in FORrRAN !~, but nevertheless the restrictions on the use of various oata 
types in expressions has alMays struck me as ~nfortunate. why, for example, 
jf the co_piler is smart enou~h to know that 'l*X' is a 'mixed mode' expres
sion, doesn't it just auto.atically float the quantity 'II and quietly g~ 
about its businessl A si.ilar comment applies to the neceSSity of writing 
small integers such as '2' in the form 'Z.O', or even worse, as ·Z.OLi';CO' in 
order to avoid 'moce errors'. Fortunately Dott. FOCAL 2~U BASIC (end FORTRA~ 
IVI use floating-point numbers throughout and thus avoio this nuisance. 

Then there is the question of formatting. Both FORTRAN and FOCAL otfer 
integer, decimal anG scientific formats, the choice ana the number of di~it· 
printed being up to the program~er, while BASIC more or less makes UP its o~ 
mind, using a format ~hjch depends upon the ma,nituoe of the oata! It is im
pos~ible, for instance, to print the nu~ber 1.234~E-b in BASIC to more than 3 
significant fig~~es: 0.00000123 - a situation aany ~ill find intolerable. Go 
the ot~er hana, I find just as objectionable FCRTKA~s idea that if the numoer 
is too large for the space allowed the best ttaing to do is to ·fill the fielo 
with stars! Compare these actions with FeCAL's con~ept: within a given fielc 
specification a number will be output so as to pres~rve as many significant 
digits as possible. Thus if you specify a for~at 01 %5.03 (the same as Fo.3 
since fOCAL aoes not include the cecilEal point or the" sign :'r the separatioil 
space in the fiela count) you will get the values '12.345', '1234.5' or 
'l.Z345E+O&' aepenGinQ upon the magnitude of the oafa. In FORTRAN only the 
first value Nill be printed ana you ~ill have no idea at all about the other 
values! Another minor annoyance is that both BASIC ana FORTRAN insist upon 
putting the first significant figure to the right of the decimal point in 
'E-type' output. Thus you get ·O.lCOOOOOE+Oql rather than the standaro for~ 

of 'l.OOO ••• E+OS'. ~ne of the small improvements in ~~f in this re~ard ii 
the ability to specify 8 variaole precision scientific format with tne first 
digit printeo aheaa of the cecimal point. 

Well, what about input? Inputting numbers fro~ the keyboard in fOKTRA~ 
II is frustratin, since the only ~ay to correct a t)Ping mistake is to type 
an illegal character ana then re-enter all the values associated with that 
particular READ command (generally this is unknown). The necessity ot adr.er
ing to specitic colu~n positions when typing in numters is also very aWkhard. 
fOCAL, UASIC and F(jRTRAN IV all allo .. free-forrr.at input with the ability to 
'wipe-out' an incorrect numberj the latter two even allow inoividual di,its 
to be correcteu wher£as fOCAL requires the entire n~ffittr to be re-ent~reo. A 
related q~estion involves tne convenience of input pro~ptinQ. In FLCAl one 
may iaentify the quantity bein~ input in one of two ways: the com~ano 'ASK 
"OATA" VALUE' will print the ... ord 'DATA' and tt.en input the value of 'VALuE', 
whi Ie the cOP'tmanG 'ASt< ?DATA1' wi' I aoain print the word 'DATA' and also reaa 
in a value tor that Guantity. In both cases tt.e ~rompting information IS in
ctujed naturally as part ot the input commano. This is also true in FL~T~~~ 
II. JJt in bASiC ana fORTRAN IV~ on the other ttand, one must use a separate 
PRINT (or wKITE) statement to ~upply the iaentitication. BASIC also has no 
provision for vertical spacing aside from using a nul I PRINT command. 



#22 PAGE 18 
well, you may be thinkin~, when will he find something tad to say about 

FOCAL? Let us consider the ability to handle strings. BASIC clearly Nins 
this comparison as it has a very powerful set of strin~ functions while FG~
TRAN sort of limps along with its 'A' format ano ~_F finishes last ~ith its 
FIN/fOU1~haracter-at-a-time functions. This is rather unfortunate since, in 
the 'real Norld', string manipulation is probably more important to the user 
than is arithmetic ability. FOCAL (and FORT~A~) ho~ever, ~ere oriyinal Iy oe
weloped as al~ebraic lanyuages ana so far only one version has appeared (for 
the PDP1IJ Nith extensive string functions •• So if your problem is to scan a 
parts inventory or to alphabetize a list of 500 stu~ent names~ BASIC (or per
haps SNOBOL!) is the language to use. 

let us consider next subroutining facilities (in general) and the abil
ity to link to other program seg.ents. SASIC provides a GOSUB co~mand for 
calling 'Internal' subroutines (those which are written as part of the same 
program wni,h calls them) and the 'FNx' facility for ceclaring user defined 
functions. The GOSOa com.and permits multiple entry points (which is often 
convenient) while the CHAIN com.and allows one progr4m to link to another. 

UWf, of course, has the powerful '00' com~and for executing any line or 
group of lines as an internal subrootine. 'Du's ma) De combined to achieve 
extremely compact cooing, i.e. 'DO 4,5,6' will call 3 subroutines, and con
ditional calls via the 'ONI command are also possible. A 'RETURN' commana is 
usually optional since the range of the subroutine is automatically aefined 
by the call (either a group or a single line). This .llows the 'subroutine' 
to actually be a part of Che 'main' program, but it does preclude the use of 
multiple entry points. U.F 81~o has 'FOCAL Stetement Function' (FSFJ calls 
which provide for passing arguments to the subroutine and returning with a 
numerical result. Gn a larger scale, the lIBkARY GCSUB command permits cal
ling all (or part of) an existing program as a subroutine, while the ll&KARY 
RUN command permits chaining from one program to another. 

FORTRAh however, appears to have the most extensive sutrootine features. 
Internally one is li.itec to arithmetic statement functions (not available in 
FORTRAN 11), but externalJ) (i.e. coded as a separate program) one can define 
any sort of complex function or subprogram with its own set of local sy~bols. 
Thus While fLCAl pro~rams can be called as subroutines, they must be written 
to operate ~ith tt.e same variables defined in the 'Klain' program. fORTRAN 
subroutines, on the other hand, usually employ 'dum~) ~ariables' which are 
replaceo by toe those specified in the actual function or subroutine call. 
Since arguments may consist of array names, this is 6n extremely powerful 
facility which is simply not available in fO~AL or BASIC. fCRTRAN II can 
also link from one program segment to another via the CALL. ChAIN comma~a 
whereas fGRTkAN I~ accomplishes the same thinQ throu~h its multilevei o~erlay 
structure. In general, if the problem at hanQ requires the manipulation of 
large data arra)s or appears to need 32K when you onl) have 16, fCRTKAN IV is 
probably tne most suitable langua~e. 

Anot~er importaoL dspect of a language is its extensiblity; how easy is 
it to aod new functions or implement a speCial subroutine wnich must be cooec 
in asseffioly janguage~ BASIC provides for up to 16 user functions which are 
'oaded as needed into a fixeo core area; 5 pages are available for suc~ func
tions. These functions are not permanently resident, ho~ever, hence they con 
not be useo to imp.effient any real-time operations. Another inconvenience js 
that the every program which hishes to use the~ must contain an appropr iatlv 
ordered set of 'UOlf' statements speCifying the function ha~e and the number 
of ar9uments assoc~~ted hith it. There is no hay to acO new commands: all 
new features must be implemented as function calls (not always oesirable) • 

• Developea by Oarrel J. Duff) at west virginia University, Mogantown, w.~~. 



PAGE' 19 
U/w-FOCAL has room for more than a dozen new f~nctions anu perhap~ luur 

or five new commands. The routines to implement these would be loa~eQ at 
fixed locations and koulo be permanent additions to the language - aVoi la~le 
to any program which wished to use tpem. Approximately 4 pages have been 
reserved for such aaditions. Since such routines are aiways resicent they 
may be used for real-time operations such as keepin~ track of elapsed time, 
monitorinQ a Schmitt trig~er, etc. FeCAL in fact, has a uniGue facility for 
performing a 100' ~all baseo upon -the occurance of a hardware interrupt. 
User routines can be implemented either as function calls -or- as commcpds. 
The latter is partic~larly convenient for 'control l operations such as set
ting relays, initiating the clock, etc. 

FORTRAN 11 offers b) far the easiest method of implementing assembly 
language functions. ~outines written in SABR can be freely intermixea hith 
FORTRAN statements and can reference FORTRAN ~ariables or call internal sub
routines ~heneyer necessar). Such routines can be compiled inaepenoently aRC 
then lin~ed together to build a highly modular program. Both 'functions· ana 
'subpro~ra.s· can be implemented in this Nay. The one oisadvantage in thiS 
.ethod is the cooe is all relocatable and hence somewhat difficult to debug. 

In principle it is- possible to construct esse.bly-Ianguage routines 
tor FORTRAN IV by writing tne. in RAlF code ana then loading the resultant 
binary along ~ith all the other subroutines required by the main prograw.." 
The main oifficuly with this venture seems to te unQerstanoing the intri
cacies of the floating-point Processor when all you h&ve is a oescripticn 
of the instruction set. Since the addressin~ ~odes of the FPP are so com
pletely different from those in the familiar horld of 'TAO ••• DCA' ana since 
in all liklihoOQ your function will need to e~ecute in POP-8 mode (but may 
be reloacted almost anywhere (including right on top of an inoex reoister!) 
part of the battle is simply learning about something new. At the moment 
it appears best to use FGRTRAN IV 'as is' for number cruncning rather than 
trying to seriously modify it tor ~ther purposes. 

What sort of Gata types are ava; lable in these languages? Both eA~IC 
and FORTRAN IV use a 3-word floating point foraat with 23 bits of mantissa 
and 11 bits of exponent (plus signs). FORTRAN II u~es 8 27-bit mantissa 
with a 7-bit exponent which provides an extra aigit of accuracy at the ex
pense of a smaller range of magnitudes. U/W-FCCAL uses a 4-~ord floatin~ 
point format with 11 bits of exponent and 35 bits of ~antissa. This trans
lates to 'lO-oigit' accuracy with a magnitude range of lOAb14. Single and 
double precision integer array storage is also available via the FCOM/FSUF 
functions. fORTkAN 11 also supports signed 12-bit inte,ers ~hile fORTRAN 
IV offers both complex and double precision variables._The latter have 59 
bits of mantissa - but are only available if YOU' have-the appropriate float
ing point processor. Thus for most installations, u/~-fOCAL offers the most 
accurate math package available tor a POP8 processor. For those acquainted 
with earlier versions of FOCAL, let me add that tne internal functions are 
now just as accurate as the basic arithmetic operations. 

Branch ~ommands: BASIC has a 'logical IF' which proviaes a sinole 
branch basea upon the truth of a postulated arithmetic relationship. This 
"ooks' conveni~nt, but get5 'messy' in practice since one must frequently 
test seve.al oifferent possible relationships. Thus to decide if A is <, 
=, or> a requires the fo.tcwing logic: IF A(S THEN lOC\If A=8 THEN 200\. 
In contrast, both feCAL an~ fGRTRAN have arithnetic If tests which can 
dispose of this question abruptly: IF (A-B)lCO,~JO,30C. In fOCAL the I~ 
command is even more t'exiole: any statement numoer may be omitteo to in~i
cate that the program is to continue with the next command. Thus one has 
both the simpj;city of a 'logical IF' with the power of a complete 'arith
metic IF' command. To illustrate: IF (N-IJ,l.l;IF (N-2),2.1jIF (N-~),3.1. 
This is a sieve with c~ly 'eq~ality' causin~ a branLh. This p~rtic~Jar e.-



#22 PAGE -20 

ample woula be better programeo as a 'Computeo GOrG'. This element is 'neit 
available io BASIC t~t is available in both FLCAl and FtRTRAh. In f~CAl one 
would write: JUh~ (~) 1.1,2.1,3.1 which in fLRTRAN is: GOTO (11,21,31J,N. 
Anot er form of program transfer is ~he 'Assiyned GOTC'. Agein this is not 
available in dASIC or in FORTRAN II, but in fGKTRAN IV consists of 8 state
ment suen as: AS~IG~ !Ol T~ J ••• GOTG J. In f~CAl this is eas~ accomplisheo 

y usin~ an arithffietic expression as a statement number. Thus ~e could say: 
SET JalG.l ••• GGTG J. Cbviously however, the ability to use computeo line 
numbers in branch cou.~anas is much more powerrul than the an8lo~y with ~OR
fRAN trancnes might inaicate. The following little loop, for instance, will 
call three Qifferent subroutines: FOR Is13,1~;D~ I. This is equiYalent to: 
00 13,14,1~. fOCAL 86so has a conditional subroutine call, the 'eN' co~mono 
mentionea earlier. Tnis command functions like the arithmetic IF command, 
but performs a subro~tine c211 to one of three possible routines depenoing 
upon the sign of the expression: ON 'A-8)l~2,3. When you consioer the state
ments necessary to implement the same control function in FCRTRAN or 8A~rC, 
you can begin to appreciate the elegance of tnis lan9uage. 

A very important consiceration for any lan~uage runnin, under the OS/S 
operatin9 syste~ is ~hat sort of file manipulation routines ere available. 
BASIC provices for up to ~ concurrent files which can be either input or 
output fi les. lhese fi les may be opened by the program using any sort of 
user supplied name, 6nO can De declared to be either ASCII or binary files. 
There is a provision for 'rewinding' a file, i.e. restartin, from the begin
ning, but no provision tor 'random access'. Any plogra~ 110 except to or 
from the Te~etype must occur through one of tnese files. There is no provi
sion for specifying the anticipated size of an output file. 

U/~-FwCAL can have one output file and thO input files. One of the in
put files may be useo for reaaing -or- writing binary data. Tt.e other one 
(and the output file) are can on:y be used ~ith ASCII ccta. To alleviate the 
lack of OSlo ports, UWf has an optional internal Lineprinter handler so that 
the output file may be used for £omethin~ else. There is a 'rewind' co~rnanU 
for the input fi'e, ana an 'abort' command for the out~ut file which avoids 
having to 'close' a temporary ti Ie in case an error _occurs. All fi Ie names 
may be specified at run time u~ing a computeo file name and the 'square brac
ket' option is available to assist in optimizing file location. A novel ap
proach to file names consists of spe~ifying part of the name in the pro~ram 
and enclosing a Y8.;aole numeric part in parentheses. Thus the commano 'UPc~ 
INPUT FILEt!)' mdY be useo (in a loop perhaps) to read any file from IfILtO. 
to 'FIlc99 1 • It is also PossiDle to specify an OS/ti -clock number- in place 
of the file name. This only workS f~r INPUT files, but may te used to speeo 
pro¥ram loaoing and file searches on OECtapes. It has also proven to be a 
valuable system tool. A spe&iallty available in U~F whic~ is not offereo 
elsewhere is the abi';ty to I ist the directory of any d£vice either in toto, 
or selectlvlly (incluoin~ emptiesJ~ It is also poss.~le to celete files or 
to create 'o~mmy' files of any length. These file ffianagement features are 
very useful, for example in recovering "ost' files or repairing bae oirec
tories. finally, the binary file proviJes true rancom access to any woro .n 
any blOCK on an entare OSl8 mass-storage device. four data modes are a~ail
able: signeo or unsigneo 12-bit integers, si~nea 24 ~it integers ana 4-wora 
f:oatin~ pOint numbers. 

Fo~t~AN IL pr~v.oes a single OS/8 input ana outp~t file, but a.so has 
its own intern&1 han~lers fer the papertape (rader/punch anC the card reaoer, 
lineprinter. A minor nu~sance is the neea tc tctively specity the '2-pa~~' 

handier o~tion to thE;; ioaoer If YOU expect tu u~c sJch a hanoler. Ali t.le 
and de v j c e n am e sma 'i be s pee i fie d at run (; i o. E: a. tho U SJ h the r e ; sam; nor d i f
ficulty with names wr.icn are not six characters long. There;s no 'rewinu' 
operation. lhe files contain only ASCII oata ~nJes~ you have a leOa DECtope 
controller, In whiCh CdS~ you can read and w( i te binary fi I es hi tr. complete 
random acces.". 



'22 PAGE 21 
In F~RTRAN IV there are 9 lOGical units which ~a) be ~ssigh.a .n any 

number of Na~s. Norroally 4 of these logical units are aSsigned to intern~1 
hanolers ieaving 5 available for general-purpose fiS/o 1/0. Up to 8 could be' 
used for this purpose however. File names must De specified via the Command 
Decoder when loading the program. They can -not- be specified by the program 
itself. This is distinct disaovantage since it means that it is not posSiole 
to automate file operations. However,. there are .any different sorts of data 
structures possible: formatted files (ASCII), unfor~atted files (~equential 
binary), ana direct access files (random access binor) files). Both RE~.NO 
and BACKSPACE oper~tions are ~vailable. 

Finally we will consider how these languages support various other de
vices. BASIC has a support pac~age available for the LASSie which provioes 
routines to operate the ClOCk' drive the display and acquire data from ~ari
ous AID channels. The 'new' EAE is also supporteu by the BASIC Run-time sys
te •• FORTkAN IV also offers support for all the LASSie peripherals as hell 
as the FDP12. It also supports the 8/e EAE, but again~ not the earlier one. 
One other a~yice ~hich is supported quite well is the incremental plotter, 
both the ole ana the new models. SpeCial subroutine calls are used to access 
the plotter ~hich is not considered as one of the 'regular' lie devices. 
FORTRAN II offers no support tor devices other than those controlled by stan
dard OS/8 handlers. 

U/W-fOCA~ offers support for an extremely wide range of optional haro
ware. The LASSie is tully supported as is the PDP12. Cf special nGte for 
both of these machines is the availabi=ity of 8 'scope overlay whiCh permits 
using the CRT.for progra. development as well as oisplaying graphical output. 
The Tektronix graphics terminals are also supported, as are all styles of in
cremental plotters. The plotter routines 811o~ Doth plotting and annotation, 
treating the plotter as just another output oevice. Thus it is possible to 
list programs on the plotter in the same way that you ~ould get a listing on 
a lineprinter, or punch a ~aper tape. Both the old anG the ne~ EAE harcware 
is supported and although not standard, routines fo~ powerf8il/auto-r~start 
have also been i~plemented. 

Miscellaneous: All 4 languages offer doubie subscriptin~; BASIC uses 
subscripts beginning with ·0' while yGCAL and fORTRAN start from !l'. fOR
TRAN IV has implied 00 loops for transmitting array elements, fORTRAN II, 
8ASIC and rOCAL 00 not. FOCAL has a Slightly oifferent set of arithmetic 
priorities in that multiplication takes preceoence over division rather than 
being of equal stature. ihis only affects expressions such as A/B*C which is 
A/CS.C) in FOCAL and (A/B).C in all other lan~uaQes. U~F, BAStC, and FC~T~'~ 
IV all proviae a ~ay to print the =urrent system date; in aoaition, UWF can 
change it! The program name and the current ~ate are saved in the program 
'header' line making it very easy to identif) the version of program when it 
is loaded. 

Implementation consioerations: BASIC ana fORIRAh IV make ~ood ~se of 
memory since tney are cooed to ignore field boundaries. fOCAL anc FOKT~AN II 
do not ~ttempt to cross fields and are thus restrictea to one field (maximum) 
for the moin prowram, using an additional tiele for storing ~ariables. dAS!C 
uses overlays in order to fit all of the run-ti~e systew into 8K and stell 
have some room for the program. This has serious i~plicatjons for oper~tion 
on a tape system, especially it you are not thoughtful scout mi~ing tiD ana 
string functions, tor example, since tnese resioe in oifferent overla}s. The 
8K version of UWF can only use I-page handlers and has, obviously, some re
strictions on the s.ze of th~ program and th~ number of variables. Not all 
of the teature~ mentioned aoove are availabJe ~n the bK version. Unlike 
FORTRAN LV and BASIC, a separate vers;cn of ~~F is required tor different 
memory sizes. This is a re~ult of optimizing the ass~~bly for each contj~-
uration. All four lanQu3wes will ooerate in the oackgrounC1 ,lder ~T;'ti. 



#22 PAGE 22 

In conclusion 1 hope I have presented a Guic~ overview cf both U/~-fOCAL 
and its cont~nuers - ~S/8-6ASIC and FGRTRAN IIIIV - s~ch that it appears that 
U~F is, inoeea, a serious language tbr the Pu~& progr~mmer, and one with very 
pronouncea .ovantages for so.~ applications. f.any people have participated 
in tne G~yelcpment ttroughout the years. I would I.kt to thank espe'ially 
Mr. Marquis .ooa$. for his mony fruitful SugQ~stions, ~2ul O.e~encach for his 
invalua~le ass~~t~oc~ with the manual, Jim Crapuchettes for his deep insight 
into tne '~hys ano ~herefors' of FOCAL, Tom hclntyre fer supplyin; me with a 
decent eoitor (SCRGLL) ana t~e latest copy of RUNOFf. the current ~ersion 
would n~yer have happened without the support of C. R. Tamasi·ano the H)oro
graphic Service (Canada). Closer to ho~e, Dr. A. L. K~iram has been ~ore 
than patient through endless revisions, and last, but foremost, a special 
note of tnanks to ~y family. 



FROM LARS PALMER 122 PAGE 23 

Jim van Zee has written a well composed article comparing the various OS/8 
high level languages. (Well not all. COBOL. ALGOL and USP are also l'l08/8 -
Did you know that?) 

I have also at various times tested most of the available aJ/8 languages. but 
th6 evolution at onr installation has been slightly different to that desQribed by 
Jim. I shAl try to give you my views on some of the points he raises. 

Let me start with two general remarks. 

1. I do not think: it is quite fair to compare the end line of the evolution of 
FOCAL as procilced by the extremely good FOCAL users. like Jim himself. 
with DEC standard products in the form of BASIC and FORTRAN. We must 
in the comparison include user produced enhancemeuts of these languages. 

2. The main part of my discussion will focus on comparisons between FORTRAN 
IV and FOCAL. these representing more or less the two extremes of the 
different lines of program development. 

Let me just give some short remarks on the other two relevant lauguages. 

a) BASIC. I agree with most of the remarks Jim makes on BASIC. However. 
for those who feel that the big drawback of OB/8 BASIC is its editor. let me 
just point out that there exists another BASIC usable under C:S/8 produced 
by EDUCOMP Corporation. Hartford. USA. In this version the editor is an 
integral part of the program and is much more powerful than the 0;/8 BASIC 
editor. There also exists an highly interactive BASIC compner for lab usage 
(Lab BASIC) J an extension of SIC BASIC. I have a small patch making it usable 
under 03/8 in 12K of core. 

b) As to FORTRAN n. I have almost forgotten it as an useful language. However, 
two small remarks. There exists a subroutine in the DECUS Library which 
makes it possible to do unformatted input to FORTRAN n with the same klnd 
of power that the FORTRAN IV input has and let us not forget that the FORTRAN 
n is a very powerful 1 ango age if you have a lot of integer manipulation to do in 
your program. Any program which does Boating and integer calculation with a 
heavy slant towards the integer part. runs much faster in the FORTRAN n than 
in any other language. due to the fact that the FORTRAN II is the only language 
which uses real true PDP-8 integers to handle the integers with only PDP-8 code 
to do integer arithmetic. 

Now let us look at the specific pOints that Jim has brought up. specially then with reference 
to FOCAL and FORTRAN IV. 

As Jim starts to point out, FORTRAN IV is really a language optimized to utilize all the 
possible POl{ er of the PDP-8 system rather than utilizing the small system as well as 
possible. I think a good deal of the differences between mine and Jim's approach to the 
languages lies here. Jim works in an univeI'sity environment, where people do a lot of the 
programming on a half hobby basis. It is not considered "funny" if you spend a lot of time 



122 PAGE 24 

on getting a program in on a siDgle line. I work on an industrial installation where 
we VPUlt to get the maximum power out of our machine and where it is cheaper to pay for 
machine hardware than for human resources. Normally. it is better to put in another 
field of core in the machine than to spend a lot of time reducing the core requirements 
of the program. Jim also mentions the CPU running times and his attitude is that in 
most PDP-8 ilUltaI1ations the CPU time is simply always so short that it is not worth 
talking about in relation to the human times. This attitude is not quite true as you well 
know. We have a fast PDP-8 with a FPP. Even in this machine we sometimes get 
l1Jnning times coontable in half hoors and hours. Maybe you then would say" so why 
run them on the PDP-8? Well" the thing is that the PDP-8 is there. the time is available 
so I run them. on it. With the FPP and FORTRAN the program may take half an hour 
to run in the PDP-B. If I weat along to a large machine. at a computing center" it woold 
take at least a day before I had my answers. so I prefer to run it on the PDP-8. And even 
in the true PDP-8 laboratory environment rmmiDg time can become critical. If you do 
laboratory work and have calculations including fourier transt~l"ms, it is very easy to 
get CPU times running into the minutes even with a FPP. And as reasooable speed 
factors are setting FOCAL to 1. FORTRAN without FPP about 10 and FORTRAN with 
FPP about 20 ". it is quite evident that these programs are very difficult to run lD FOCAL .. 

The conciseness of FOCAL is a very neat point in many cases. If I want to write a small 
program to tabulate the logarithms of a function between two given values. I would almost 
certaiDly write it in FOCAL. It will only require a few lines of code maybe one siDgle 
statement to achieve iL In FORTRAN my amount of coding wouid be much larger. However. 
if I write a program this is two or three pages long in FOCAL with the conciseness that 
FOCAL can give me, put it away for a month and then try to use it again. I ha,;e to, as 
Jim so well puts it, soak the program for several hours before I can use it. In FORTRAN 
this is not quite so true. A reasonably well written FORTRAN program is much easier 
both for me and for somebody else to modify. It is not quite true that this can be solved 
by writing the FOCAL program wordy because, as Jim knows as well as anyone of us. 
the contEm.t of the FOCAL program is saved as it is, while the FORTRAN program is 
compiled. Therefore. the FORTRAN program takes no more space to save if its variables 
are given 5 letter names instead of one letter names or if it is heavily commented, while 
a FOCAL program quickly runs out of space if I do not try to C<Xlserve space by keeping 
down. the variable names and the amount of comments. 

I certainly agree with Jim that the Interactive programming feature of FOC AL is much 
stronger than that of any other language. However, comparing to large installations, I 
would say that OS/8 BASIC and FOR '!'RAN are not interactive. The diffIculty of running 
back and forth between say TECO and FORTRAN in a disc based OS/8 system is not great. 
Changing a line in a FOR mAN program and rerunning it is done in a matter of a few 
seconds. This situation is of course quite different if the media is DEC tape in which 
case running FORTRAN or BASIC becomes a very frustrating non-interactive process. 
Again this shows what I said in the beginning. We in our case can find it easier to pay for 
a disc than to pay for the time necessary to develope a required program in another 
language." 

Let us look lit some of the nuisance points that Jim brings up. 



The question of format!!!; 122 PAGE 25 

Firstly, FORTRAN bas a format which is equivalent to FOCAL's format, the G 
format,·in which I just derme the number of digits I want and FORTRAN changes the 
decimal point to fit Lly requirement. Secondly, there is a definite usage of the 
asterisc field (oh. I certaiDlyagree that it is often irritating when a program has nm 
for quite some time" suddenly a field of asteriscs is prcduced as the only answer). 
If you write a program which is to be run many times. it is very neat to have the program 
put its output in nice vertical columns. In this case. it can be aunoying when a column 
suddenly is destroyed by the language deciding it needs a wider field for a digit than I 
thought it woold. Which of these two points is more difficult" I do not know. My approach 
is to use the G format in FORTRAN" whenever I am unsure what the result will be. 
The asterlscs lnFOB'ftlAN have another usage by the way. If I want to mark a field 
with asteriscs. as it is extremely difficult in FORTRAN in this case to put an error 
text in the field, something which FOCAL wUl allow me to do quite nicely. 

As Jim also has rema.xed. the unformatted input reader routines in FORTRAN IV as 
they are now. are very powerful. more powerful than those of FOCAL. With the DECUS 
published patches. it is possible for the executing program to check if the input was 
correct aud reask for the input if there was a numerical error in it. This I do not think 
is possible to do f-1 any of the other languages. 

Jim seems to think that it is very difficult to add new routines to FORTRAN. When 
talking about the subroutines. Jim forgets the most powerful feature of FORTRAN. 
that of its standardization. It is possible to use many hundred subroutines avanable 
from various sources in a FORTRAN program without any kino of reediting of the 
subroutine. We have c. g. the SSP package of subroutines. many of which are very 
useful. It is also ,l:ossible to use many programs as such as available from various 
sources. We have Implemented some of the BMD programs in a PDP-8 computer. 
The approach to the usage of the assembler subroutines shows how dependent this is 
on a thorough knowledge of the system you are working with. I would say that one of the 
reasons that I prefer FORTRAN IV over the FOCAL and B/_ ~C languages is because 
of the easy calling up of assembler subrootines.. In the first place there are now ways 
of calling PDP-8 routines without ever looking at. the RALF assembler code. Such routines 
are available in the DECUS Library wriUen by Robert Phelps. However, I do not think 
it is very difficult to learn and understand the FPP code. The difficulty of the same order 
is that of learning the floating point package used by the lnterpreters and the code one 
then has learnt Is very much more powerful. Also to write to a subroutine to do a specific 
job in FPP code or in PDP-8 code means that I only have to write and compile this piece 
of code. nothing else, and then load it up with the FORTRAN system. This is of course 
the basiS of the true subroutines used in FOR '!'RAN and I find that it gives a very high 
power to the combination of FORTRAN and assembler code. It is even quite easy to 
link in a large PDP-8 code. We have an example of one such code which fills the whole 
of field one and which is then linked up to FORTRAN routines for the number crunching. 
The PDP-8 code existed long before the FORTRAN IV code and was simply relocated 
from field zero and linked up with FOR TB AN, a trick which would be very difficult to 
do in the FOCAL atmosphere. 



122 PAGE 26 

As to the question of data formats, FOCAL comes out definitely first. One of the 
cases where I turn to FOCAL is when I need an high precision calculation of such 
format that FORTRAN IV cannot do it. However, I will soon be receiving a PDP-8A 
with a FPP and with this hardware the power of the complex and double precision 
variables in FORTRAN IV becomes available. This is an extremely powerful double 
precision format. 59 bits of mantissa. and with the PDP-8A and FPP it will become 
more and more used in the PDP-8 installations. I am not going to question Jim's 
point of the different features of the programming langua,;es. branch, statements etc. 
Jim's points are well brought out and I quite agree with him that when looking at that 
kind of detail. FOCAL quite often comes out ahead. 

The me manipulations of FORTRAN IV of c'OUrse are the strongest of any of the high 
level languages. In contrary to what Jim says, it is possible to call USB from the 
prllgram. It is possible to construct program names. We have programs rllnning which 
use the current date as set in the date word as a rue name. Again we rely on the routines 
constructed by Robert Phelps. But again I think it is unfair not to include this kind of 
features in such a comparison when we are comparing against U/W-FOCAL. When it 
comes to support of various devices, again I think FORTRAN has one of the easiest 
ways of implementing such. In the first place, FORTRAN supports most of Lab 8 
devices as standard (in some cases the standard support is that for PDP-12 device, 
however, the DECUS routines are available for the PDP-8 devices). It also supports 
the FPP12 which makes for an extremely fast number crunching. a system which is 
unbeatable even by many PDP-ll installations. Adding new devices.. either as standard 
asynchronous calls or as interrupt driven or driven through the clock mechanism.. is 
not difficult ~d is supported in the original program package. 

ID conclusion let me summarize my views. We are very grateful for people like Jim 
for constructing extremely ,owerful variants of FOCAL. Certainly carry on with this 
world Give us FOCAL variants that will handle as much as possible of the sopbisticated 
hardware appearing on the scene, that will utilize FOCAL's ability for the highly driven 
interactive programming .. where as you. say Jim, I can sit down and type a few commands 
to read the value from an AD CODverter and calculate the sine of that value. But let us 
also be grateful to DEC for the construction of FORTRAN IV. A program which really 
comes to its rights in large PDP-8 installations like ours where we find that the majority 
of our programs require 16K of core and even then will run into 4,5 maybe 10 overlays. 
Programs even with a FPP can run for several minutes, sometimes up in the half-hour 
range. Using the fast disc devices compiling and loading of the programs. specially with 
the support of the batch monitor, is not the slow and tedious process that it is on a DEC 
tape system. Finally, just so that nobody will misunderstand me" let me say that I have 
worked myself up from a 4A PDP-8 system with paper tape reader and punch up to the 
system which 1 am now running. a disc based system with dual processors, one running 
timesharing and one running a FPP. However, I shall come back later with a separate 
story to give an idea of the installation. 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26

