Book \3

- Communicating
- with the
Monitor

Time-Sharing Monitors ‘

. 287

FOREWORD

This manual covers the use of the Time Sharing Monitors, which include the
Multiprogramming non-disk Monitor and the Multiprogramming disk Monitor
{formerly known as 10/40) and the Swapping Monitor (formerly known as 10/50).

The Single-User Monitor (formerly known as 10/20, 10/30) is covered in the
manual Single User Monitor Systems.

289

CONTENTS

CHAPTER 1 INTRODUCTION-MONITOR CAPABILITIES

Reentrant User-Programming Capability
Monitor Functions

Jéb Scheduling

Use of Swapping Space and Physical Coré
User Facilities

Segments

Files

Comparison of Segments and Files

CHAPTER 2 MONITOR COMMANDS

2.1

2.1.1
2.2

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7

Console and Job Control

Monitor Mode and User Mode

Command Interpreter and Command Format
Command Names

Arguments

Login Check

Job Number. Check

Core Storage Check

Delayed Command Execution
Completion-of-Command Signal
System Access Control Commands .
Facility Allocation Commands
Source File Preparation Commands
File ‘Manipulation Commands
Extended Command Forms

Compile Switches

Processor Switches

Page

1-4
1-7
1-8
1-11
1-12
1-13

2.6.4

2.6.5

2.11
2.12

290

CONTENTS (Cont)

ander Switches

Temporary Files

Run Control Commands

Additional Information on SAVE and SSAVE

Background Job Control Commands

- Job Termination Commands

System Timing Commands
System Administration Commands

Monitor Diagnostic Messages

i

CHAPTER 3 LOADING USER PROGRAMS

3.1
3.2
3.2.1

3.2.2

Memory Protection and Relocation
User's Core Storage
Job Data Area

Loading Relocatable Binary Files

CHAPTER 4 USER PROGRAMMING

4.1
4.2

User Mode

Programmed Operators (UUO's)

Operation Codes 001-034 .
Operation Codes 040-077, and 000
Operation Codes 100-127

Illegal Operation Codes

Prégram Control

Starting

Stopping

Trapping

Timing Control

201

CONTENTS (Cont)

Identification

Direct User I/0O

Segnient Handling

Input/Output Programming
File
Initialization

Data Transmission

~Status Checking and Setting

Terminating a File (CLOSE)
Synchronization of Buffered I/0

Relingquishing A Device (RELEASE)

Core Control

CALL AC, [SIXBIT/CORE/]

CALL AC, [SIXBIT/SETUWP/]

CHAPTER 5 DEVICE DEPENDENT FUNCTIONS

5.1

5.1.1
5.1.2
5.1.3
5.1.4
5.1.5
5.2

5.2.1

5.3

5.3.1

5.3.2-

5.4

Teletype

Data Modes

DDT Submode

Special Programmed Operator Service
Special Status Bits |
Paper Tape Input from the Telétype
Paper Tape Reader

Data Modes

Paper Tape Punch

Data Modes

Special Programmed Operator Service

Line Printer

5.6.1
5.6.2
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.7.7
5.8
5.8.1
5.8.2

‘5.8.3
5.8.4
5.8.5

5.9
5.9.1

292

CONTENTS (Cont)

Data Modes

Special Programmed Operator Service
Card Reader
Data Modes

Card Punch

Data Modes:
Special Programmed Operator Service
DEé£ape

Data Modes

DECtape Block Format

DECtape Directory Format

DECtape File Forﬁat

Special Programmed Operator Service
Special Sfatus Bits

Important Considerations
/

Magnetic Tape

Data Modes

Magnetic Tape Format

Special Programmed Operator Service
9-Channel Magtape -

Special Status Bits

Disk

Data Modes

Structure of Files on Disk
User Programming for the Disk
Incremental Plotter

Data Modes

Display with Light Pen

Page
5-14
5-15
5-15
5-15
5-16
5-16
5-18
5-19
5-19
5-20
5-20
5-22
5-22
5-26
5-26
5-27
5-27
5-28
5-29
5-32
5-34
5-35
5-35
5-36
5-42
5-48
5-48

293
CONTENTS (Cont)
5.11.1 Data Modes
5.11.2 Background
5.11.3 Display UUO's
5.12 CALL AC[SIXBIT/DEVCHR/]or CALLI AC, 4

{

APFENDIX 1 DECtape Compatibility Betw§§n DEC Computers
APPENDIX 2 Size of Multiprogramming Nénfdisk Monitor
_APPENDIX 3 Size of Swapping Monitor

APPENDIX 4 Writing Reentrant User Programs

"LIST OF ILLUSTRATIONS

1-1 . Core Management
3-1 User's Core Area
3-2 Loading User Core Area
4-1 User's Ring of Buffers
4-2 Detailed Diagram of Individual Buffer)
4-3 File Protection Key
LIST OF TABLES
2-1 Monitor Command tc Gain Access to the System
2-2 Monitor Commands to Allocate Facilities
2-3 Monitor Commands to Prepare Source Files

2-4 Monitor Command Diagnostic Messages

Al-l

A2-1

A3-1

A4-1

2-9
2-10
2-11
3-1
4-1

4-2

Monitor Commands to Manipulate Files

294

/ LIST OF TABLES (Cont)

Monitor Cbmmands to Call, Load, and Control
Programs

7
Monitor Commands to Control Background Jobs
Monitor Command to Terminate Jobs

Monitor Comﬁands for System Timing

Monitor Commands for System Administraticn
Time-Shéring Monitor Diagnostic Meséages
Job Data Area Locations,

Monitor Operation Codes

CALL and CALLI Monitcr Operations

Buffered Data Modes

Unbuffered Data Modes

File Status

Device Summary

PDP-10 Card Codes

DECtape Programmed Operators

MTAPE Functions

Magnetic Tape Special Status Bits

2-38
2-40

2-41

4-30
4-30
4-35
5-1

5-17
5-23
5-30
5-35

295

CHAPTER 1
INTRODUCTION - MONITOR CAPABILITIES

This book discusses the commands, program loading pro-
cedures, aﬁd user programming/fécilities available under the
PDP-10 Time-Sharing Monitors - three multiprogramming, time-
sharing systems designed to allow many independent user programs
to share the facilities of a single PDP;IO computer. Many users
can access the computer, at the same time from consoles located at
\the computer site, at nearby offices or laboratories, or at
remote points connected by telephone lines.
| Operating concurrently under Monitor control, users may
access available I/O devices and system software to cgmpile,
assemble, and execute their programs, or may have this sequence
performed automatically for many jobs ?y using'the batch control
processor (BATCH). Real-time jobs can operate either as indepen-
dent uéef programs or as fully integrated Monitor subroutines.

The Multiprogramming non-disk Monitor (formerly called
the 10/40 Monitor) is a multiprogramming, time-sharing system
which includes I/O control of all devices attached to the system,
run-time selection of I/O devices, job-to-job transition, job
save and restore features, and dynamic debugging facilities. All
of these features are incorporated with concurrent real-time
. processing, batch processing, and time sharing. The Multiprogram-
ming disk Monitor adds a comprehensive file system with both
sequential and fandom access of shared, named files to the
Multiprogramming non-disk system. The Swapping Monitor (formerly
called the 10/50 Monitor) has all the features of the Multi-

programming disk system and, in addition, swaps programs between

1-1

\

N

296
higﬁ—speed disk and core, thereby increasing the number of users

that can be accommodated simultaneously.

1.1 Reentrant User-Programming Capability
L

The number of users that can be handled by a given size
time-sharing configuratioﬁ is furﬁher increased by adding a
reentrant user-programming capability to the system. This means
that a sequence of instructions may be entered by more than one
user process at a time. A single copy of a reentrant program may
be shared by a number of users at the same time, thereby increas—
ing system economy. All the versions' of the Timé;sharing Monitor
normally include this reentrant capability but it may be deleted
onlsystems lacking the dual relocation KT10A hardware option.

In a non-reentrant system, the one rélocation register
hardware requires tﬂat a user area be a single continﬁous segment
of logical and physical core. Each user has a separate copy of a
program even though a large part of it is the same as for other
users. In a ;eentrant s?sfeﬁ, the two relocation register hard-
ware allows a user area to be divided into two logical segments

which may occupy non-contiguous areas in physical core. The

" Monitor allows one of the segments of each user area to be the

same as one or more other users, so that only one physical copy
of a shared segment need exist no matter how many users are using

it. The Monitor normally invokes hardware writevprotectiqn for

_shared segments to guarantee that they are not accidentally

modified.
In the PDP-10 Swapping Monitor, the reentrant capability
causes the following éystem resources to be used more efficiently:
a) core memory, since only one copy of a shared segment
exists for the entire system (Figure 1-1 illustrates this efficient

1-2 <

use of core memory),

b) swapping storage, éinée many users share the single
copy of the shared segment kept in swapping storagé,

c) swapping I/O channel, since a shared segment is read
into core only once and is not written back onto swapping storage
unless modified, and

d) file storage I/O channel, since a shared segment
exists on the fasterAswapping storage after it has been read into
core the first time from the storage aevice instead of being
retrieved from file storage on each usage as necessary in the

non-reentrant system.

NON-REENTRANT SYSTEM REENTRANT SYSTEM p

MONITOR MONITOR

FORTRAN USER 1

[: FORTRAN USER 1

FORTRAN COMPILER

COBOL USER
. COBOL USER 1 F—

FREE CORE
FORTRAN USER 2

FORTRAN USER 2

Pt

FORTRAN USER 3. COBOL COMPILER

FORTRAN USER 3
FORTRAN USER 4

COBOL USER 2

¢ COBOL USER 2 —

FORTRAN USER 4 FREE CORE

Figure 1-1

Core Management

“ A

i 298
1.2 MONITOR FUNCTIONS

The Time-Sharing Monitors act as the interface between
the user and the computervso that all users are protected frqm
one another and appear to have most resources available to them-
selves. The Monitors schedule multiple-user time sharing of the
éystem, allocate available sharable resources to user programs,
accept input from and direct output to all system I/0 devices,
and relocate and protect user programs in core memory.

The Monitors utilize the PDP-10 hardware features for
memory protection, memory relocation, executive/user mode, and
real—time‘clock to provide an advanced, third-generation, mulfi-
‘programming time-sharing environment. System facilities start
with a minimum configuration of 16K core and two DECtapes and can
accommodate magnetic tapes, disks, drums, communication line
controllers, card readers and punches, paper tape feaders and
punches, line prin£ers, displays, incremental plotters, and user
Teletype consoles. Other special devices, indluding real-time
digifiéers and anélog converters, easily interface with the
system.

Several user programs are loaded into core at once and
the Time-Sharing Monitors schedule each program to run for a
certain length of time, utilizing a scheduling algorithm that
makes efficient use of system capabilities. The Monitors direct
data flow betweén I/0 devices and the user programs, making them
device independent, and overlap I/O operations concurrehtly with
computation for high system efficiency. |

N

1.2.1 - Job Scheduling

One of the parameters which must be specified in

1-4

299

creaiing a PDP Time—éharing Mohitor‘is the number of jobs which
may be run simultaneously. Up to 127 jobs may be,épecified. Each
.user who accesses the system is assigned a job ﬁumber. The term
job is used to refer to the entire sequence of 6perations the
user initiates from his console.

In a multiprogramming system all ﬁobs reside in core,
and the scheduler decides which of these jobs should run. 1In a
swapping system jobs can exist on an external storage device
(usually disk) as well as in core. The scheduler decides not
only which job is to run but also wheﬁ a job is to be swapped out
onto the disk or brought back into core.

In the Swapping Monitor, jobs are retained in queues of
varying priorities that reflect the status of the jobs at any 4
given moment. Each job number possible in the system resides in
bnly one queue at any point in time. The possible queues a job
may be in include the following.

a) Run queues - for runnable jobs waiting to execute.
(There are three run queues of different levels of priorities.)

b) I/0 wait queﬁe ; for jobs waiting while doing I1/0.

c) I/O wait satisfied queue - for jobs waiting to run
after finishing I/O. ‘

d) Sharable device wait queue - for jobs waiting to use
sharable devices.

e) Teletype wait queue - for jobs waiting for inpu£ or
output on the user's console.

f) Teletype wait satisfied queue - for jobs that com-
pleted a Teletype operation and are a&aiting action. |

g) Stop gqueue - for processes that have been completed
or aborted by an error and are awaiting a new command for further

action.

300
h) Null queue - for all job numbers that are inactive

(unassigned).

| Each.of these queues is addressed through tables.

The position of a queue's address in a table represents the
priority of the queue with reséect to the.other queues. Within
each queue, the position of a job determines its priority with
respect to the other jobs in the same queue.. The status of a job
is changed when it is placed in a different queue.

Each job, when it is assigned to run, is given a quantum
time. When this time expires, the job ceases to run and moves to
a lower priority run queue. The activities of the job currently
running may causé it to move out of the run queue and enter one
of the wait queues. For example, when a currently rﬁnning job
begins input from a DECtape, it is placed in the I/0 wait queue,
and the input is begﬁn. A second job is set to run while the
first job's input proceeds. If the second job then deéides to
access a DECtape for an I/O operation, it is stopped because the
DECtape control is busy, and it is put in the queue for jobs
waiting to access‘the DECtape control. A third job is set to run.
Now the input operation of the first job finishes, making the
DECtape control available to the second job. The second job's I/0
operation is initiated, and.the job is transferred from the
device wait queue to the I/O wait queue. The first job is trans-
ferred from the I/O wait queue to the highest priority run queue.
This,permité the first job to preempt the third job's running.
When the quaﬁtum time of the first job becomes zero, it is moved
into the second run queue, and the third job runs again until the
second job completes its I/O operations.

' Scheduling occurs at each clock tick (1/60th or 1/50th
of a second) or may be forced at Monitor level between clock ticks

1-6)

301

if the current job becomes unrunnable. The asynchronoﬁs swapping
algorithm is also called at each c10ck tick and has the task of
bringing a jpb from disk into core. This function is dependent
upon (1) the core shuffling'routine, which consolidatéé unused
areas in core so as to make sufficient room for the incoming job,
and upon (2) the swapper, which creates additional room in core
‘by transferring jobs from core to disk. Therefore, when the

. scheduler is selecting the next job to be run, the swapper is
bringing the job to be run after that into core. The transfer
ifrom disk to core takes place while the central processor con-

tinues computation for the previous job.

1.2.2 Use of Swapping Space and Physical Core

The reentrant capability reduces the demands on core
memory,‘swapping storage, swappingkchannel, and storage channel.
However, to reduce the use of the storaée channel, copies of the
sharable segments are kept on the swapping device. This increases
the demand for swappiﬁg storage.. The Monitor achieves this space-
time balance dynamically by assuming thaﬁ there is no shortage of
swapping space. The amount-of swapping space is fixed by the
operator at system initialization. Thereafter, the Monitor keeps
a single coby of as many sharable segments as possible in the
swapping space; (The maﬁimum number of segments that may be kept
may be increased by individual installations but is always at
ieast as great.as the number of jobs plus one.) If a sharable
segment is currently unused, it is called a'dormant segment. If

the Monitor cannot find contiguous free space on the swapping

device, it will fragment the high and low segments of the user

i

: . 1
whose job is being swapped out. If swapping space runs out,

the Monitor deletes a dormant ségment and continues to fragment

1-7

;he user's segments. If and whejoi deleted segment is needed
again, it is retrieved from the storage device.

The Monitor keeps track of the total amount,of "virtual
core" assigned to all users. In computing virtual core, sharable
segments count only once and dormant segments do not count at all.

' The Monitor does not allow more yirtual'coie to be granted than
the system has capacity to handle. When the Monitor is started
the amount of unused virtual core is set equal to the amount of
swapping space pre-allocated on the disk. Thus, there is always
room to swap odt-the largest possible job in core and swap in
another job.

The same techniques used in allocating swapping space
are used to allocate core in both swapping and non-swapping
systems. A dormant segment will stay in core until core is
needed.‘rIn the swapping system, an active write-protected segment
remains in core even though no one in core is using it. Some

swapped-out user must be using it or else it would be dormant

rather than idle.

1.3 USER FACILITIES

»

Users gain access to the PDP-10 Time-Sharing system
from a terminal located either at the computer: facility 6r at a
spot remote from the facility but connected to it by telephone.
‘Three levels of communication are available at the console:

a) Monitor command level

b) CUSP command level

c) CUSP I/0 level.

At Monitor command level, the console communicates with
"the Monitor Command Interpreter. The Monitér Command Interpreter

a) provides the system with access protection,

1-8

303

b) allocates and protects memory and peripherals
'requested by the user, ;- |

c) provides cémmunication with the operator for mount-
ing of special tapes,

d) provides run control for the user over programs
stored in the system,

e) alloﬁs the user to initiate background jobs,

£) prdvides the user with job monitoring and debugging
facilities, and | ’

g) returns facilities to the system when the job. is
. finished using them.

Chapter 2 describes the various Monitor commands whi;h provide
each of these capabilities.

Using Monitor commands, the user at his console can call
in programs from the system file. The system file contains pro-
~grams for creating and editing program source files (TECO,EDITOR),
for assembling or compiling program source files (MACRO,FORTRAN,
BASIC, COBOL), and for loading relocatablé binary files (LOADER);
The usage of these and many other_CUSPs (Commonly Used Systems

Programs) are currently described in the System User's Guide

(DEC-10-NGCC-D) .

The user's console provides both a contrdl and data path
to any CUSP or other user program that the user/initiates via
Monitor commands.\ Once a particular CUSP has been called in, the
user's console is at CUSP command level and the user can issue a
commaﬁd to tﬁe CUSP. In processing that command, the CUSP may

access the user's console directly as an input or output device.

This is illustrated by the following example.

304

*R PIP . Monitor command level. User calls
CUSP named PIP, Peripheral Inter-
change Program.

*DSK : TEXT+TTY : CUSP command level. User instructs
PIP to create a file on the disk
named TEXT using Teletype console
as input medium.

THIS IS FILE TEXT CUSP I/O level. User types input to
\

PIP.
47 . +Z causes Teletype end of file.
: Return to CUSP command level.
*4C 4C is a special character that
causes return to Monitor command
. level.
. The period (.) signifies return to

Monitor command level.

\The console is switched back to the Monitor'Command
Interpreter by either the program or the user. The user can
éxercise another dimenéion of control over his program by loading
it with the powerful Dynamic Debugging Technique (DDT) available
in the system file. Entry to DDT is through the Monitor Command
Interpreter or by breakpoints in the program. While DDT is in
control of the pfogram, the user can examine intermediate results
on his console and then modify‘his program accordingly.

The user's program communicates with the Monitor by
means of PDP-10 opération codes 040 th:ough 077. These op-codes
are called UUO's and are described inndetail in Chapter 4.. With
these opération codes, the Monitor provides the program with com-
plete device-independent I/O services. The programmer is relieved
of the job of £/O programming and is freed from the dependence on
the availability of particular devices at run time. In. addition,
the user's program may exercise control over central processor
trapping, modify its memory allocation, and monitor its own
runping time. Provisions exist for inter-job communicgtion and -
control, reentrant user programs, and, in selected cases, direct

user I/O control.

. 305
1.4 . SEGMENTS ‘

‘A‘segment is a continuous region of the.user's core
area'that the ‘Monitor mainéains as a continuous unit in physical
core and/or as a possibly fragmented unit on the/swapping device.
A program or user job is composed of one or two segments. A
segment may contain instructions and/or data. The Monitor
determines the allocation and movement of segments in core and on
the swapping device.

A sharable segment is a segment which is the same for
many users. The Monitor keeps only one Cpr in core and/or on
the swapping device, no métter how many users are using it. bA
non-sharable segment is a segment which is different for each
user in core and/or on the swapping device.

The PDP-10's two relocation and protection :egisters;
which divide a user's dore area into two parts, permit a user
program to be composed of dne or two segments at any point iﬁ
time. The required low segment starts at user iocation 0. The
bptional high ségment starts at user location 400000 or at the
end of the low segment, whichever address is greater. The low
segment contains the user's accumulators, Job Data area, in-
structions and/or data, I/O buffers, and DDT symbols. "A user's
core image is composed of a low segment, which may have from 1K
to 256K words, in multiples of 1K (1K = 102410 words), and a high
segment which may have from 0K to 128K words, also in multiples
of 1K. A high segment may be sharable or non-sharable, whereas
a low segment is always non-sharable. The high segment may be
write-protected.

A reentrant program is always composed of two segments -
a low segment which usually contains just data, and a higﬁ

(sharable) segment which usually contains instructions and

1-11

,

. 306
constants. - The low segment is sometimes referred to as the im-

pure segment. The sharable high segment, if write-protected, is
referred to as the pure segment. ’

A one-segment non-reentrant program is composed of a
single low segment containing instructions andvdata. User pro-
grams written for machines with 6nly a sipgle relocatidn and,
protection register are always one-segment non-reentrant programs.

A two-segment non-reentrant program is composed of a
~ low segment and a non-sharable high segment. This kind of pro-

gram is useful when there is a requirement for two fixed-origin

data areas to increase and decrease independently during execution.

1.5 FILES

A file is a collection of 36-bit words comprising com-
puter instructions and/or data. A file can be of arbitrary
length, limited only by the available spéce on the device and the
user's maximum allotment of space on that device.

A named file is uniquely identified in the system by
its filename (up to six characters in length) and extension (up
to three characters in lengths and by its directory name (owne;'s
project-programmer numbers for disk, physical device name for
DECtape) in which the filename and extension appear. The fiiename,
being arbitrary, is specified by -the owner, whereas the extension,
usually one of a small number of sﬁandard names which identify
the. type of infbrmation in the file, is usually specified by the.
program. A named file may be writteh_by a user program in
buffered or unbuffered mode, or in both. It may 'be read and/or
modified sequentially or randomly with buffered or unbuffered
mode I/O independently of how it was written. Named files are

stored on the storage device. Each named file has certain access

> 1-12

307
privileges associated with it. These privileges désignate which

users can read of write the file or change its access privileges.
In regard to a given file, users are-divided into three groups:
the owner'df the file, the users in his project,. and the rest of
the users.

A file is said to be c¢reated if no file by the same name
existed when the file was opened for writing. A file is said to '
be superseded if another file by the same name already exists. A
file is said to be updated wheq one or more blocks of the file
are rewritten in place; Other users may read a disk file while a
certain user is superseding it. The older version of the fiie is
deleted only when all the readers have finished with it. Only one
user may open a file for updating at a time; all other users

attempting to open that file receive an error message.

1.6 COMPARISON OF SEGMENTS AND FILES

Files and segments have certain similarities and dif-
ferences. Both are named, one-dimensional arrays ofl36—bit words.
A file can be as long as the size of disk or DECtape. A segment
can be only as big as physical core. Both may be shared for
reading, but only-one user may supersede or updafe a file at a
time, whereas mény users share a segment for writing. When many
users share the same file, each user iS given his own copy of the
portion of the file that he is reading. It is read into his low
segment by the INPUT UUO. When many users share thé same segment,
each user does not have his own copy of thé segment. A file
exists on the storage device and portions of it may exist in dif-
ferent parts of fhe low segment of one or more users. A segment
never exists on the storage device; it exists as a continuous

unit only in core or on the swapping device.

1-13

» 309
CHAPTER 2

MONITOR COMMANDS

2.1 CONSOLE AND JOB CONTROL

The PDP-10 time-sharing system is a multiprogramming
system. This means that control is transferred rapidly among a
nﬁmber of programs or processes in such a way that all the
proéesses appear to be running simultaneously. Each process is
called a job. 1In cbnfigufing and loading a time-sharing Monitor,
the system administrator sets the maximum number of jobs which
his system will handle simultaneously. This number may be up to
127 jobs if the system has enough core, disk storage, processor
capacity, and time—sharingvconsoles to handle this load.

Jobs are initiéted by users typing on a time-sharing
console. A console is typically any of several moaels of
- Teletype machines but may also be a CRT (cathode ray tube) with a
keyboard. The console may be directly connected to the compu£ef
or may be remotely connected via a private wire or the public
telephone system.

There is not necessarily a one-to-one relationship
between jobs and consoles. A console must initiate a job, but&
the DETACH and ATTACH commands (see Table 2.7) permit a job to
"float" in a state where it is not associated with a particular
consoie. Therefore a ﬁser may control several jobs from the same
console. Each job is either in the ATTACHed or DETACHed mode
depending on wheéher a console is currently associated with that
job. At any point in time, each console is attached to at most
one job. The console is often referred to as being in a "detached

mode,"” but this results from a semantic confusion. It is really

2-1

. 310
meant that the job initiated from that console is in a detached

mode. By typing an appropriate command, the job may be attached

to the same console or to any other console. in the system.

2.1.1 Monitor Mode and User Mode

From the user's point of view, his console is in one of
two states - monitor mode or user mode. In monitor mode, each
line the user types in is sent to the Monitor Command Interpreter.
The execution of certain commands (as noted in the tables beléw)
places the console in user mode. Once the program is in user
mode, the console becomes simply an input/output device for that
user. In addition, user programs will use the console for two
purposes. The user program will accept command strings from the

console or will use the console as a direct input/output device.

Example:
monitor mode .R PIP ‘ monitor command
user mode *DSK:FOO<TTY: user program command
. ‘string
user mode THIS IS FILE FOO+Z user program using
" console as an input
device
monitor mode .R MACRO : monitor command
user mode *TTY: ,«DSK:PROG1 user program command
string
user mode user program using
console as an output
device

8
..QJ.O
[0]

The special character 4C (produced by typing C with the

CONTROL Key depressed) is used to stop a user program and return

the -console to monitor mode. There are certain commands which
o 2-2 '

cause the user program to start gg'éontinuevfunning (as.noted in

the t&bles below) but which leave the console in monitor mode.
When the system is started, each consolé is in monitqr

mode ready for users to begin typing in commands. However, if

the system becomes fully loaded (i.e., all the jobs .that the

system can accommodate have been initiated), then any unused con-

soles enter a speéial state where any command typed in will

receive either the message "JOB CAPACITY EXCEEDED" or "X."

. .)

2.2 COMMAND INTERPRETER AND COMMAND FORMAT

X Each command is a line of ASCII characters in upper
and/or lower case. Spaces and non-printing characters preceding
the command name are ignored. The Monitor Command Interpreter
will not interpret or execute a line of comments preceded by'a
‘semicolon. Eéery command to the Monitor Command Interpretér must
be terminated by pressing the RETURN key on the console. If the

command is not understood, an error message is typed out by the

‘Monitor and the mode is unchanged.

2.2.1 Command Names

Command names are strings from one to six letters.
Characters after the sixth are ignored. Ohly-enough'characters
to uniquely identify the commaq@ need be typed. In the tables
which follow, the comm9nly useq abbreviation of the command name
is shown. Installations which choose to implement additional
commands should take care to preserve the uniqueness of the first

few letters of existing commands.

2.2.2 Argumenté
Arguments follow the command name, separated from it by
2-3 i

\

, . 313 - ;
a space or any printing character that is not a letter or a

numeral. Argument formats’are described under the associated
commandé. | ’

If the Monitor Command Interpreter recognizes the com-
mand name, but a necessary argument is missing, the Monitor
responds with

TOO FEW ARGUMENTS

-Extra arguments are ignored;

2.2.3 Login Check (Disk Monitor Systems)

If a user who has not logged in (see Table 2.1) types ;
command requiring him to be logged in, the disk Monitor systems
will respond with

LOGIN PLEASE
and the usér‘s command will not be executed. Login is not re-

quired by a non-disk Monitor system.

2.2.4 ‘ Job Nuﬁber Check (Non-disk Monitor Systems)

If the non-disk Monitor system recognizes a command name
which requires a jdb number and no job number has been assigned,
the Monitor assigns a job number, n, and responds with

JOB n
and a line identifying tﬁe Monitor version. The Monitor will then

I3

proceed to execute the command.

2.2.5 Core Storége Check

If the Monitor Command Interpreter recognizes a command

name which requires core storage to have been allocated to the job

and the job has no core, the Monitor responds with

NO CORE ASSIGNED
2-4

: 33
The user's command is not executed.

2.2.6 Delayed Command Execution

If the Monitor Command Interpreter recognizes a com-
mand that requires all devices to be inactive and the job has
devices actively transmitting data to or from its core area, the
execution of the command will be delayed until the devices are
inactive. A command is also delayed if é job is swapped out to
the disk and the c&mmand requires core ;esidence: It will be

executed when the job is .returned to core.

2.2.7 Completion-of-Command Signal

Most commands are processed without delay. The completion
of each command is signaled by the output of a carriage return, V
line feed. If the console is left in Monitor mode, a period
follows the carriage return, line feed. If the console is left
in user mode, any response other than the carriage'return, line
feed comes from the user's program. For example, all standard
DEC CUSPS immediately send an asterisk (*) to the user's console

td indicate their readiness to accept user-mode command strings.

2.3 SYSTEM ACCESS. CONTROL COMMANDS

" Access to the system is limited to authorized personnel.
The system administrator provides each authorized user with a
project number, a programmer number, and a password. The project
‘and programmer numbers are octal numbers up to six digits each.
The project-programmer numbers will identify-not only the user

but also his file storage area on the disk. The password is from

one to five ASCII characters. To LOGIN successfully the project-

2-5

- m _
programmer numbers and the password typed in by the user must

match the project-programmer numbers and password stored in the

system accounting file (ACCT.SYS [1,1]).
Table 2-1

Monitor Command to Gain Access to the System

.

*

.o
To® .9‘}6
XY <>
558 o
w52 <5
Command P Explanation (o3 Monitor Messages
LOGIN LOG LOGIN initializes a Monitor routine u LOGIN PLEASE
: to accept the user's LOGIN data. R| 2
D
The following is the procedure used The user has typed a
to gain access to the system. command that the Monitor
cannot accept unless the
.LOGIN user logs in.
JOB n PDP-10 4S.S50F :
* ?INVALID ENTRY - TRY
' Job number assigned AGAIN
to user, followed by
‘Monitor name and An illegal project-
version number. programmer number was
‘entered or the password
System types out num- - did not match.
ber sign to indicate
user should type his
project~programmer ?1+1/nK CORE
number. VIR. CORE LEFT=0
proj,prog User types in his System core and swapping
project-programmer space exceeded,
number
PASSWORD: System requests user
: ' to type his pdssword.
User types password,
followed by carriage
return. To maintain
password security,
the Monitor will not
echo the password.
1135 8-AUG-69 TTY23
tC)
. | If user entries are
correct, Monitor
responds with time, .
date, TTY number, 4C
and a period, indica-
ting redadiness to
accept a command.
—
*Characteristics:
d = places job in detached mode L = LOGIN required (bisk Monitor)
m = places job in Monitor mode A = no active device
u = places job in user mode C = core required

requires a job number,

J =

R = runs a CUSP thereby replacing previous program in user's
addressing space.

D = available only in Multiprogramming Disk and in swapping

systems, not in Multiprogramming non-disk systems.

'

2-6 ' \

) ‘ : 315) ‘kt \ -
2.4 ~ FACILITY ALLOCATION COMMANDS

The Monitor allocates peripheral devicdes and core
memor§ to users upbn request and protects these allocated facili-.
ties from interference by other users. The Monitor maintains a
pool of available faéilities from which a user can draw. V

‘A user should never abandon a time-sharing consolée
without returning his allocated facilities to the Monitor pool.
Until a user returns his allocated facilities to the pool no
other users may utilize them.

All devices controllable by the system are listed in
Table 5—1; Associated with each device is a physical name, con-
sisting of three letters and zero to three numerals to specify
unit number. A logical device hame may also be assigned by the
user. This logical name of one to six alphanuﬁeric characters of
the user's choice is used synonymously with a physical device
name in all references to the device."In writing a program, the
user may use arbitrarily éelected device names which he assigns
to the most convenient physical devices at runtime. All refer-
ences to devicés in the Monitor pool are made by physical names
or by assigned logical names. |

When a device is assigned to. a job, it is removed from
the Monitor's pool of available facilities. Any attempt by\
another-job to reference the device fails. The device’is re-

turned to the pool when the user deassigns it or kills his job.

316
Table 2-2

Monitor Commands to Allocate Facilities

*

o
0% ,€5>9
T o% <>
4‘&3 o,(,e,
5 52
Command »° Explanation Cp’ Monitor Messages
ASSIGN! AS To assign an I1/0 device to the user's m dev: ASSIGNED
phys-dev job for the duration of the job or L The device has been suc-
log-dev until a DEASSIGN command is given. J geisfully assigned to the
job.
phys-dev "Any device listed in
Table 5-12. This argument NO SUCH DEVICE
is required. Device name does not
exist.
log-dev A logical name assigned by
. the user ALREADY ASSIGNED TO JOB n
The device has already
been assigned to another
user's job.
LOGICAL NAME ALREADY IN
USE DEVICE dev: ASSIGNED
The user. has previously
assigned this logical
name to another device.
DEASSIGN’ DEA Returns one or more devices currently| m NO SUCH DEVICE
dev assigned to the user's job to the L Device name does not
’ Monitor's pool of available devices. J exist. .
dev If this argument is not DEVICE WASN'T ASSIGNED
specified, all devices The device isn't current-
assigned to the user's job ly assigned to this job.
are deassigned.
If this argument is speci-
fied, it can be either the
logicaH or physical device
name -
N 1
] |‘f
REASSIGN REA | Allows one job to pass a device to a m DEVICE dev WASN'T
dev job second job without going through the L ASSIGNED
Monitor device pool. J The device isn't current-
C ly assigned to this job.
dev The physical or logical A '
name of the device to be JOB NEVER WAS INITIATED
reassigned. Cannot be a The job number specified
user console. has not been initialized.
job The number of the job to NO SUCH DEVICE
which the device is to be The device does not
reassigned. exist.
DEVICE CAN'T BE
REASSIGNED
A user's console Teletype
cannot be reassigned.

K3y

. ¢2
505~ -9""’6
7% 5
1> o<
‘O"e a‘a
Command 2 Explanation (o> Monitor Messages
FINISH F Terminates any input or output cur-. m NO SUCH DEVICE
dev rently in progress on the device. L Either the device does
. J not exist or it was not
dev The logical or physical (o] assigned to this job.
name of the device on A :
which I/0 is to be ter-
minated.
If no name is specified,
I/0 is terminated on all
devices assigned to the
job.
TALK dev TA To allow the user to type directly to m BUSY
another user's console. The console addressed is
either (1) not in the
dev Must be one of the follow- Monitor mode or (2) is
ing: not positioned at the
left margin.
CTY =~ Console
Teletype
TTYn - Where n can be in
the range of 0
through 77.
OPR - Operator's console (OPR is never busy.)
(the Teletype desig-
nated as such when
the Monitor was
initialized).
CORE n COR To modify the amount of core assigned m 10/40 Systems:
to the user's job. J m/p
A
n =o0 The low and high segments C 10/50 Reentrant Systems:
disappear from the job's m+n/p CORE
virtual addressing space. VIR. CORE LEFT=v
n>o Total number of 1K blocks Key:
of core to be agsigngd to m = number of 1K
the job from this point on. blocks in low
If n is omitted, Monitor _ segment.
types out the same re- n = number of 1K
sponse as when an error blocks in high
occurs, but does not change _ Segme“t .
core- assignment. P = maximum K per job
swappling systems-
‘max. physical user
core
non-swapping sys-
tems ~ free +
. dormant core
v = number of K

unassigned in
core and swapping
device

2-9

Command

318

Explanation

RESOURCES RES

To print out all the available devices
(except TTY's) and the number of free
blocks on the disk.

*Refer to footnote in Table 2-1

!The ASSIGN command applied to DECtapes clears the copy of the directory
currently in core, forcing any directory references to read a new copy

from the tape.
same function.

The DEASSIGN command applied to DECtapes performs the
(See 5.7.7 for further details.)

2If DTA or MTA is used, 'the Monitor performs a search for an available
drive and then types out DT%n (gr MTAn) ASSIGNED.

Examples showing

User types

Monitor
responds

User then
types

Monitor
responds

User then
types

Monitor
responds

User then
types

Monitor
responds

o

use of logical and physical names:

.ASSIGN DTA,ABC

DEVICE DTA6 ASSIGNED

1

.ASSIGN DTA,DEF

NO SUCH DEVICE ,
.ASSIGN PTP,ABC
LOGICAL NAME ALREADY
IN USE

DEVICE PTP ASSIGNED

.ASSIGN DTAl,DEF

ALREADY ASSIGNED
TO JOB 2!

(successful)

(find another unit)
(all in use)
(reserve paper tape
punch)

(paper tape punch is
reserved, but ABC

still refers to DTAG6
only)

(another user has
it)

. : R) :
User then .R PIP - (request for system

types v . program PIP)
User then *PTP : «ABC:FOO (command string to
types , PIP asking that file

FOO be transferred

. from device ABC

' (which is now
assigned as DTA6) to
device PTP (which is
assigned to user).

NOTE: The user does not type the period or the asterisk.
- The period is the Monitor response to the user and
the asterisk is the CUSP response. The user must
terminate every command to the Monitor Command
- Interpreter by pressing the RETURN key on the
Teletype. I

2.5 SOURCE_FILE PREPARATION -COMMANDS

The following commands call in the editing frograms

- and cause these proérams to open a specified text file for edit-
ing. Two of these commands call the TECO CUSP and two call the
LINED CUSP (a disk-oriented version of EDITOR). For éach editor,
one command causes an ‘existing file to be opened for changes and
the. other command causes a new file to be created. Each command
requires a filename as its argument and may have an optional
extension.

Filenames are from one to six letters or digits. All
letters or digits after the sixth are ignored. A filename is
terminated by any character othér than a letter or digit. If a
filename is terminated by a period, a filename extension is
assumed to follow. A filename extension is from one to three
letters or digits. It is generally used to indicate file format.
The filename extension is terminated by any character other than

a letter or digit.
' 2-11

<32

The following are the standard meanings for file

extensions:
. TMP
.MAC
.F4

.CBL

.LST
.REL
.CMD

.SAV

blank

Temporary file
Source file in MACRO language
Source file in FORTRAN IV language

Source file in COBOL language
(available in 1970)

Listing or CREF data

Relocatable binary file

Command file, for @ construction
Core dump, from SAVE command |

Unspecified ASCII text file

Each time one of these commands is executed the command

with its arguments is

"remembered"” as a file on the disk.

Because of this, the filename last edited may be recalled for the

next edit without specifying the arguments again. For example,

if the command

is executed, then the

instead of

.CREATE PROG1l.MAC
user may later type the command

.EDIT

.EDIT PROG1l.MAC

assuming no other source file preparation command was used in the

interim.

321
Table 2-3

Monitor Commands to Prepare Source Files

. c“?‘
30 o
X Y
P et
2 (%)
% 2
Command w2 Explanation 2 Monitor Messages
EDIT ED Runs LINED (Line Editor for Disk) and u See Table 2-4~/
file.ext opens an already existing sequence- L :
numbered file on disk for editing. R
’ D
J
CREATE CREA| Runs LINED and opens a new file on u See Table 2-4
file.ext disk for creation. L
. R
D
J
TECO TE Runs TECO (Text Editor and Corrector) u See Table 2-4
file.ext and opens an already existing non- L
sequence-numbered file on disk for R
editing. ' D
J
MAKE M Runs TECO and opens a new file on disk] u See Table 2-4
file.ext for creation. L
R
D
J

*Refer to footnote in Table 2-1

Table 2-4
Monitor Command Diagnostic Messages

(For File Manipulation Commands)

Message ' ~ Meaning
COMMAND ERROR The COMPIL CUSP cannot decipher the
command.
DEVICE NOT AVAILABLE Specified device could not be
initialized.
DISK NOT AVAILABLE Device DSK: could not be initial-
: . ized. B -

2-13

-

322

Table 2-4 (Cont)

Monitor Command Diagnostic Messages

(For File Manipulation Commands)

Message

Meaning

EXECUTION DELETED
(typed by LOADER)

FILE IN USE OR PROTECTED

INPUT ERROR

LINKAGE ERROR

NESTING TOO DEEP

NO SUCH FILE - file.ext

\

NOT ENOUGH CORE

OUTPUT ERROR
PROCESSOR CONFLICT
TOO MANY NAMES or

TOO MANY SWITCHES

UNRECOGNIZABLE SWITCH

Errors detected during assembly,
compilation, or loading prevent a
program from being executed.
Loading will be performed, but
LOADER will EXIT to the Monitor
without starting'exeqution.

A temporary command file could not
be entered in the user's UFD.

I/0 error occurred while reading a
temporary command file from the
disk. '

I/0 error occurred while reading a
CUSP from device SYS:.

The @ construction exceeds a depth
of nine; may be due to a loop of
@ command files.

Specified file could not be found
(may be a source file or a file re-
quired for operation of COMPIL
CUSP) .

System cannot supply enough core
for use as buffers or to read in a
CUSP.

I/0 error occurred while writing a
temporary command file on disk.

Use of + construction has resulted
in a mixture of source languages.

Command string complexity exceeds
table space in COMPIL CUSP.

An ambiguous or undefined word
followed a slash (/).

3

Lo

FILE MANIPULATION COMMANDS

Each of the following .commands performs complex func-

tions which would require a number of commands on a less sophis-

ticated system.

The commands in Table 2-5 list the user's_files

and file directories and cause his source files to be compiled,

loaded, and executed.

Table 2-5

Monitor Commands to-Manipulate Files

, L8
x500 &g‘y
1o =5
g o
5 : <2
Commands »° Explanation Coa Monitor Messages
TYPE list TY | Directs PIP (Peripheral Interéhange Program) m See Table 2-4 ,
to type contents of named source file(s) on L
user's Teletype. R
. D
list A single file specification, or a
string of file specifications
separated by commas. A file
specification is the same as that
described for COMPILE, LOAD,
EXECUTE, and DEBUG commands. In
addition, the x construction can
be used as follows: \
filename.* All files with this
) filename and any
extension .
*.ext All files with- this
extension and any
filename
* ok All files !
Examples: TYPE FILEA, DTAOQO:FILEB.MAC,*.TMP
TYPE A,DTA4:B,C[15,107]
LIST 1list LI Directs PIP to list contents of named source m See Table 2-4
file(s) on the line printer (LPT). L
R
Examples: LIST TEST.* D
LIST * MAC
LIST DTA4:A,B,C
DIRECT dev DI If dev: is omitted or DSK:, directory listing m See Table 2-4
’ of user's disk files is typed on the user's L :
Teletype. If DTAn: is specified, directory R
of that DECtape is typed.) D

Two switches can be used with the DIRECT
command :
/F List short form of directory (i.e., omit -
dates)
/L List on line printer (LPT) instead of
Teletype.

The : may be omitted in dev.

Commands

5

o 324
K

h%

q56°
&
. Explanation

¥
.o
e‘}o
=S
e
taob
cﬁa Monitor Messages

DELETE 1list

DEL

Deletes one or more files from disk or
DECtape. If a device name is specified, it
remains in effect until changed or end of
command string is reached.

Owp 3

See Table '2-4

RENAME arg

REN

Changes the name of one or more files on disk
or DEC tape. The arg is a ‘pair of file speci-
fications separated by an = sign, or a string
of such pairs separated hy commas:

RENAME newl = oldl,new2 = o0ld2,...
Device names can be specified only with the

new filename and remain in effect until
changed or end of command string is reached:

U3

See Table 2-4

CREF

CREF]

Runs CREF and lists on the line printer any
CREF listing files generated by previous
COMPILE, LOAD, EXECUTE, and DEBUG commands
using the /CREF switch. The file containing
the names of these CREF-listing files is then
deleted so that subsequent CREF commands will
not list them again.

Uw 3

4

/See Table 2-4

COMPILE
list

coM

. time]

Source File Extension Translator Used

“.MAC MACRO assembler

.F4 . FORTRAN IV compiler
(F40)

Other than . above, or "Standard processor" .

null is used (see 2.6.2).

Produces relocatable binary file(s) for the
specified program(s). The use of the MACRO
assembler and/or the FORTRAN IV compiler is
determined as follows. .

Condition Action

If no .REL (binary) Translate source file
file '
If source-file [date, Translate source file

time] is later than
binary-file [date,

If other than above Do not translate
source file; use cur-
. rent .REL (binary)
' file.

The list of files which may be a single file
specification, or a string of file specifica-
tions separated by commas. A file specifica-
tion consists of a filename (with or without
an extension) and may include a device name
(if the source file is not disk) or a project-
programmer number (if the source file is not
in the user's disk area).

Examples:

PROG1,PROG1.MAC,PROG1.F4,PROG1.XYZ,DTAO:PROGL
PROG1[10,16] ,PROGA,DTAO : PROGB
PROGC.MAC

(See 2.6.1, 2.6.2) ° '

oxme 3

See Table 2-4

- ' 2-16

325 7 LB
qvﬁy e

e
v‘ . . 2% .
Commands > Explanation " Monitor Messages

LOAD list LOA| Performs the COMPILE function for the speci- See Table 2-4
fied program(s), then runs LOADER and loads

the .REL files.

[N -]

EXECUTE EX| ,Performs the COMPILE and LOAD functions for
list the specified program(s) and begins execution
of the loaded program.

See Table 2-4

omrHe

7

DEBUG list DEB| Performs the COMPILE and LOAD functions and, See ' Table 2+
) in addition, prepares for debugging. DDT (the :
Dynamic Debugging Technique program) is loaded
first, followed by the user's programs with
local symbols. DDT is entered on completion

of loading. .

(w38 ol =1

Examples:

COMPILE PROGA ' N
EXECUTE DTA1l:TEST.MAC

DEBUG/L FILEA,FILEB,FILEC/N,TILED

(Generate listings for FILEA FILEB, and FILED;
see 2.6.2)

‘ LOAD FILEA,FILEB,3%60000FILEC . '

(Pass origin switch to LOADER; see "Loader-
Switches" 2.6.4)

*Refer to footnote in Table 2-1

:

Each time a COMPILE, LOAD, EXECUTE, or DEBUG COMMAND
is executed, the command with its arguments is "remembered" as a
file on the disk. Because of this, the filename last used may

be recalled for the next command without specifying the arguments

again. (See last paragraph in Section 2.5)

2.6.1 Extended Command Forms

The commands shown in Table 2-5 are adequate for the

compilation and execution of a single prbgram or a small group

of programs at one time. However, the assembly of large groups

of programs, such as the FORTRAN library or the Time-Sharing
2-17 ’

- 326
Monitor, is more easily accomplished by means of one or more of

the extended command forms.

2.6.1.1 The @ File

When there are many program names and switches, they
can be put into a file éo that they do not have to be typed in
for eachrcompilation. This is accomplished by the use of the
"@ file" construction, which may‘be combined with any of the
commands in Tables 2-3 and 2-5.

The "@ file" must appear at any point after the first
word in the command. 1In this construction "file" must be a file-
name, which may have an extension and éroject—programmer numbers.
If the extension is omitted, a searéh is made for the command
file with a null extension and then for a command file with the
extension .CMD. The information in. the command file specified
is then put into the command étring to replace the characters
"@ file".

For example, if the file FLIST contains the string

FILEB,FILEC/LIST,FILED
then tgé command
‘\ COMPILE FILEA,FILEB,FILEC/LIST,FILED,FII:EZ
could be replaced by
COMPILE FILEA,QFLIST,FILEZ -

Command files themselves may contain the "@ file" con-
struction to a depth of nine:levels. If this indirecting process
'shoﬁld result in files pointing inva loop, the maximum depth will
. rapidly be exceeded and an error message will be produced.

The following rules are used in the handling of format

characters in a command file.

* . . . , ;o o .
'a) Spaces are used to delimit words but are otherwise

ignored. sSimilarly, the characters TAB, VTAB, and FORM are
treated like spaces. ‘

b) The characters CARRIAGE RETQRN,LINE—FEED, AND
ALTMODE are ignored if the first non-blank character after a
'~ sequence of returns,’line—féeds, and altmodes is a comma. Other-
wise, they are treated éither as commas by the COMPILE, LOAD,

} EXECUTE, and DEBUG commands or as command terminators by all the
other commands appearing in Tables 2-3 and 2-5.

c) BlanK lines are completely ignored since strings
of returns and line-feeds are considered together.

d) Comments may be included in command files by pre-
ceding the cémment with a semicolon. All text from the semicolon
through the line-feed is ignored.

e) If command fiies are sequenced, the sequence num-

bers are ignored.

2.6.1.2 The "+" Construction!}

A single relocatable binary file may be produced from
a collection of input source files by means of the "+" construc-
tion. For example, a user may wish to compile the parameter
file, S.MAC, the switch file, FT50SB.MAC, and the file that is
the body of the program, APRSER.MAC. This is specified by the
following command:

COMPILE S‘+ FT50SB + APRSER-

The name of the last input file %n the string is given to any
output (.REL and/or .LST) files (é.g.,\APRSER. in .the foregoing

example). The source files in the "+" construction may each con-

l1ysed in COMPILE, LOAD, EXECUTE, and DEBUG commands oniy.

R 328 |
tain device and extension information and project-programmer

numbers.

2.6.1.3 The "=" Construction!

Usually the filenameref the binary file is the same as
that of the source file, with the extension specifying the dif-
ference. This can be changed by use of the "=" construction,
which allews‘a filename other than the source filename to be
given to the output file. For example, if a binary file is
desired with the name BINARY.REL from a source program with the
name SOURCE}MAC, the following command is used.

COMPILE BINARY = SOURCE
This same technique may be-ﬁsed to specify an output name to a
file produced'by use of the "+" construction. To give the name
WHOﬁE.REL to the binary file produced by PART1.MAC and PART2.MAC,

the following is typed.
COMPILE WHOLE = PART1 + PART2

2.6.1.4 The "< D Construction:!

The "> " construction causes the programs within the
angle brackets to be assembled with the séme parameter file. If
a + is used, it must appeax before the <> construction. For
example, to assemble the files LPTSER.MAC, PTPSER. MAC, and
PTRSER.MAC, each with the parameter file S.MAC, the user may
type

COMPILE S + LPTSER, S + PTPSEﬁ, S + PTRSER
But -by using the angle brackets, the command becomes
COMPILE S + <LPTSER,PTPSER,PTRSER >
The user cannot type

COMPILE < LPTSER,PTPSER,PTRSER >+ S

'Used in COMPILE, LOAD, EXECUTE, and DEBUG commands only.

2"20 | .

329
2.6.2 » Compiie Switches1

The COMPILE, LOAD, EXEC’UTE, and DEBUG commands may be
modified by a number of switches. Each switch is preceded by a
slash (/SWITCH) and is terminated by any non-alphanumeric charac-
ter, usually a space or a comma. ‘An abbreviation may be used as
long as it uniquely identifies a particular switch.

These switches ma§ be either temporary or permanent.

A temporary switch ié appended to the end of the filename, with-
out an intervening space, and applies only to that file.

Example: COMPILE A,B/MACRO,C (The MACRO assembler
applies only to file B)

A permanent switch is set~off from filenames by spaces,
commas or any combination of the two. It applies to all the
following files unless modified by a subsequent—switch.
~ Example:

COMPILE A,/MACRO,B,C
COMPILE A /MACRO B,C

COMPILE A,/MACRO B,C

2.6.2.1 Compilation Listings

Listing files may be generated by the use of switches.
The listings may be of the ordinary or the cross-reference type.
The operation of the switch produces a disk file with the ex-
tension .LST.

The compile-switches "LIST" and "NOLIST" cause 1isting
and non-listing of programs. These switches may be used as

either temporary or permanent switches.

1Used in COMPILE, LOAD, EXECUTE, and DEBUG commands only.
2-21

K
330
(COMPILE /LIST A,B,C
will generate listings of all’three programs.
COMPILE A/LIST, B,C
will generate a listing only of program A.
COMPILE /LIST A, B/NOLIST, C
will éenerate listings of programs A and C.

The compile-switch "CREF" is just like "LIST", except
that a cross-reference listing is generated, to be processed
later by the program "CREF".

-Unless the /LIST or /CREF is specified, no listing
file is generated. The LIST command is used to obtain printer
output of regular listing files and the CREF command tvobtain
printer output of CREF listing files.

Since the "LIST", "NOLIST", AND "CREF" switches are so

commonly used, the switches "L", "N", and "C" aré defined with

the corresponding meanings, even though there are (for instance)

other switches beginning with the letter "L". Thus the command
COMPILE /L A

produces a listing file- "A.LST" (as well as, of course, "A.REL").

2.6.2.2 The "Standard Processor"

The "standard processor" is used to compile or assemble
programs which do not have the extensions .MAC, .F4, or .REL.
There are é nuﬁber of switches for setting the "standard
processor”. If all source files are kept with the appropriate
extensions, this subject cén be disregarded.

If the command

COMPILE A

is executed and there is a file named "A." (that is, with a blank

\
\

2-22

. - 331
extension), then "A." will be translated to "A.REL“ by thé
"standard processor", Similarly, if the command

- COMPILE FILE.NéW‘
is executed, the extension ".NEW", although meaningful to the
user, does not specify a language, so the "standard processor"
will be used. For these cases the user must be able to control
the setting & the "standard procéssor".

The "standard processor" is FORTRAN IV at the begin-
ning of each command string.

The "standard processor" may be changed by the follow-

ing compile-switches:

i

MACRO change standard to MACRO

M same as MACRO

FORTRAN change standard to FORTRAN IV -

F same as FORTRAN

REL change standard to use RELocatable

binary; i.e., use existing .REL
files, even though a newer source
file may be present. (Useful
primarily in LOAD,; EXECUTE, DEBUG
commands) .

These switches may be used as "temporary" or "per-
manent". For example, assume that programs A, B, and C exist on
the disk, with blank extensions. Then '

COMPILE A, B/M, C
will cause A‘and C to be translated by FORTRAN, B by MACRO.
COMPILE A, /M B, C

will cause A to be translated by FORTRAN, B and C by MACRO.

NOTE

Programs with .MAC and .F4 extensions are always translated by
the extension implied, regardless of the "standard processor."

332
2.6.2.3 Forced Compilation

- The compilation (or assembly) occurs if the source
file is at least as recent‘as the relocatable binary file. 1If
thé'binary is newer than the source, there is not normally any
need to perform the translation.

There are cases, however, where such extra translation
may be desirable, as for instance, when one desi’es a listing of
the assembly. To force such an assembly, the switch "COMPILE"
is provided, again in both temporary and permanent fofm. For
example:

COMPILE /CREF / COMPILE A, B, C
will create cross-reference listing files A.LST, B.LST, and
C.LST, even though current .REL files may exist. In fact, the
binary files will also be recreated.

The corresponding switch "NOCOMPILE" is also provided,
to turn off the forced-compile made. Note that this differs
from the /REL switch which turns off even the normal compilation

caused by a source file newer than the .REL file.

2.6.2.4 Library Searches

\

N The LOADER normally performs a library search of the
FORTRAN library. Sometimes it is necessary to search other files
as libraries. To do this, the compile-switches "LIBRARY" and
(its complement) "NOSEARCH" are provided. -

These switches may be used as either "permanent" or
"témporary";

For example, suppose a special library file named
SPCLIB.REL were kept on device SYS at a particular installation.

Then to compile and load a user program, library search the

2-24

(
333

special library, and then search thé normal FOR%RAN'library, the
following command could be used: ‘

LOAD MAIN,SYS:SPCLIB/LIB
At fhis point, it should be noted that the program SPCLIB is not
assembled simply because its source file is presumably not on
dévice SYS. 'The COMPILE process will‘comﬁile.any program named’
in the command string, if its source is present and not older

than the .REL file, unless prevented by the /REL switch.

.2.6.2.5 Loader Maps

Loader maps are produced during the loading process by
the compile-switch "MAP". When this switch is encountered, a
loader map is requested fromKthe Loader. The map will be
written with fiiename MAP.MAP, in the user's disk area.

This compile-switch is the one exception to the

"permanent compile-switch" rule, in that it causes only one map

to be output, even though it may appear as a permanent switch.

2.6.3 Processor Switches !

Occasionally it is necessary to pasé switches to the -
assembler or compiler. Recall that for each translation (assem-
bly or compilation),-a command string is sent to the translator
containing three parts: the source files, a binary output file,
and a listing file. If the user wishes to add switches to those
files, he muét do so as follows:

a) If the "+" construction is used, group the switches
according to each related source filename. ‘

b) Group the switches according to the three types of

files (source, binary, and listing) for each source filename.
l
. «

lysed in COMPILE, LOAD, EXECUTE, and DEBUG commands only.
) 2-25

334

c) For each source filename, separate the groups of

switches by commas. V .

d) Enclose all the switches for each source filename

within one set of parentheses.

(SsSS) ' Only source switches are
present
(5SSS,BBBB) Source and binary switches

\ aré present

(ssss,BBBB,LLLL) Source, binary, and listing
switches are present.

e) Place each parenthesized string immediately after
the source filename to which it refers.

Examples:

DEBUG TEST (N) Suppress typeout of errors during
assembly.

COMPILE OUTPUT

MTAQ: (W,S,M) /L

’ Rewind the magtape (W), compile the
first file, produce binary output for
the PDP-6(S), and eleminate the MACRO
coding from the output listing (M).
Output files are given the names
OUTPUT.REL and OUTPUT.LST.

COMPILE/MACRO A

MTAO: (W, ,Q) /L :
Rewind the magtape (W), compile the

first file, and suppress Q (questionable)
error indications on the listing. Note
that when a binary switch is not present,.
the delimiting comma must appear.

COMPILE/MACRO A

MTAO:(::Q)/L .
Compile file at current position of the
tape and suppress Q error indications
on the listing. Note that when the
source and binary switches are not
present, the delimiting comma must
appear. .

2.6.4 Loader Switches!

In unusually complex loading processes, it may be

necessary to pass loader-switches to the LOADER to direct its

lysed in COMPILE, LOAD, EXECUTE, -and DEBUG commands only.

, /
2-26

operation. These are passed via the COMPILE, LOAD, EXECUTE, and
DEBUG commands. These switches must be passed to the LOADER"
(not to the compiler or assembler). This is accomplished by the
% character. The % has the same‘meaning as that of the / in the
Loader's command string. Also, like the /, it takes one letter
(or a sequence of digits and one letter) following it. Therefore,
to set a program origin of 6000 fqr program C, the user types
LOAD A,B, %G‘OOOOC,D

The most commonly usedISWitches are:

%S Load with symbols

%n0 Set program origin to n

3F Cause early search of FORTRAN library

%P Prevent FORTRAN iibrary search

2.6.5 Temporary Files

~ The COMPIL CUSP deciphers the commands found in Tables

2-3 and 2-5 and constructs new commands for the CUSPS that were
referenced. These new commands are written as temporary files
on the disk, as are all of the Monitor-level commands. COMPIL
and the other CUSPS transfer control direcﬁly to one another
without requiring additional typed-in commands from the user.

Temporary filenames have the following form:

nhnxxx.TMP

where nnn is the user's job humber in decimal, with leading
zeros to make three digiﬁs and xxx specifies the use of the file.
In the filenames listed below, job number 1 will be assumed.
2.6.5.1 001SVC.TMP

This file contains the most recent COMPILE, LOAD,
EXECUTE, or DEBUG comﬁand which includéd arguments. It is used

to remember those arguments. See section 2.6.
2-27

3%
2.6.5.2 001EDS.TMP .

This file contains the most recent EDIT, CREATE, TECO,
or MAKE command which included an argument. It is used to

remember that argument. See section 2.5

2.6.5.3 001MAC.TMP
This file contains commands to MACRO. It is written
. by COMPIL,‘and ready by MACRO. It contains one line for each
program to be assembled, and (if required) the command
‘ NAME ! \

to cause MACRO to transfer control to the named CUSP ("name

may be F40, LOADER, etc.).

2.6.5.4 001FOR.TMP
This file .corresponds exactly to the one described in
the preceding seétion, except that it is read by the FORTRAN IV

compiler, F40.

2.6.5.5 001PIP.TMP
This file is written by COMPIL and read by PIP. It
contains ordinary PIP commands to implement the DIRECTORY, LIST,

TYPE, RENAME, and DELETE commands. ~

2.6.5.6 001CRE.TMP

“This file is written by COMPIL and read by CREF. It
contains commands to CREF correspénding to each file which has
produced a - CREF listing on the disk.

COMPIL also reads this file, if it exists, each time

a new CREF listing is _generated, to prevent multiple requests
' 2-28

-

. 337 .
for the same file, and to prevent discarding other requests which

may not yet have been listed.

2.6.5.7 O00lEDT.TMP
This file is written by COMPIL for each EDIT, CREATE,

TECO, or MAKE command, and is read by either the LINED or TECO

CUSP.

For the commands MAKE or CREATE, it contains the
command N)

‘ Sfile.ext
For the commands TECO or EDIT, it contains the command
Sfile.ext (RETURN) <LINEFEED}
\

2.7 RUN CONTROL COMMANDS

By using a run control command, the user can load core
image files from retrievable storagekdevices (i.e., disk, DECtape,
magnetic tape). These files can be retrieved and controlled from
the user(s console. Files stored on disk and DECtape are addres-
sable by name. Files on magnetic tape require the user to pre-

position the tape to the beginning of the file.

, 338
Table .2-6

Monitor Commands to Call, Load, and Control Programs

Lo :»Oe
g &dc
55 g
ot%] oS
Command »° Explanation (2 Monitor Messages
RUN dev RU To load a core image from a retriev- u, | dev: NOT AVAILABLE
file.ext able storage device and start it at L The device has been
[proj,progl the location specified within the file | J assigned to another job.
core (JOBSA) . ’
NO SUCH DEVICE
If the program has two segments, both The device does not exist.
the low and high segments will be set
up. If the high file has extension nK OF CORE NEEDED
.SHR (as opposed tq .HGH), the high There is insufficient
segment will be shared. A two- free core to load the
segment program may have a low file file.
extension (.LOW).
NOT A DUMP FILE
3 dev The logical or physi- The file 1s not a core
. cal name of the device image file.
containing the core
image. TRANSMISSION ERROR
) A parity or device error
file.ext The name of the file occurred during loading.
containing the core .
image; if .ext is
omitted, it is assumed
to be SHR: + LOW,
HGH + LOW, or SAV.
See SAVE, SSAVE.
[proj.progl Project-programmer
R number; reqguired only
if core image file is
located in .a disk area
other than the user's.
core Amount of core to be
assigned if different
1 from minimum ‘core
' needed to load the
the program or from
the core argument of
the SAVE command which
saved the file. Since
previous core is re-
" turned, MTA must have
this argument because
there is no directory
to tell how much core
for low segment.
R file.ext R Same as RUN SYS: file.ext core. The u Same as RUN
core R command is the usual way to run a L
CUSP that does not have a direct J
Monitor command to run it. R
GET dev G. Same as RUN command except that m Same as RUN
file.ext Monitor types out L
[proj,progl) J
core JOB SETUP A

A
and does not start execution.

2-30

=)
Ao i 3” -dép /
32 e
q X
“b‘ce .;00
Command P Explanation C&a onitor Messages
START adr ST Begins execution of a program pre- u NO CORE ASSIGNED !
viously loaded with the GET command. L No core was allocated to
) J the user when the GET
adr The address at which o] command was given and no
execution is to begin A core argument was speci-
if other than the fied in the GET. ’ ’
i location specified
within the file NO START ADR
(JOBSA). If adr is - Starting address was 0
. not specified, the because user failed.to
starting address comes specify a starting
from JOBSA. address in END statement
of source program.
HALT (4C) +C Places the console in Monitor mode and |m
transmits a HALT command to the Moni-
tor Command Interpreter. Stops the
job and stores the program counter
in the job data area (JOBPC).
CONT ICON Starts the program at the saved pro- u CAN'T CONTINUE
gram counter address stored in JOBPC L The job was halted due
by a HALT command (+C) or a HALT J to a Monitor-detected
instruction. o] error and can't be
continued.
DDT DD Copies the saved program counter value |u NO START .ADR
from JOBPC into JOBOPC and starts the L DDT starting address was
program at an alternate entry point J 0 (JOBDDT) .
specified in JOBODT (beginning address |C T
of DDT as set by Linking Loader). . DDT
contains commands to allow the user to
start or resume at any desired address
REENTER REE Similar to the DDT command. Copies u NO START ADR '
saved program counter value from L REENTER starting address
JOBPC into JOBOPC and starts program J was 0 (JOBREN). :
at an alternate entry point specified c
in JOBREN (must be set by the user or
his program). ’
E adr E Examines a core location in the user's |m OUT OF BOUNDS
: area (high or low segment). L The specified adr is not
J in the user's core area,
adr If this argument is o] or the user does not have

specified, the con-
tents of the location
are typed out. in half-
word octal mode. Adr
is required the first
time the E or D
command is used.

If adr is not speci-
fied, the contents of

the location following-

the previously speci-
fied E adr or the
location of the

. previous D adr are
typed out.

read privileges to file
which initialized the
high segment.

2-31

‘a&>p° 340 ‘33‘
. i ! 69S9
Command 4 - Explanation {x@§
D 1lh rh adr D Deposits information in the user's m OUT OF BOUNDS
. core area (high or low segment). L The specified adr is
J not in the user's core
) 1h The octal value to be (&4 area, or high segment
' deposited in the left is write protected and
half of the location. user does not have
write privileges to
rh The octal value to be file which initialized
deposited in the * the high segment.
right half of the
location.
adr The address of the
location into which
the information is to
be deposited.
If adr is omitted, the
data is deposited in
the location following
the last D adr or in
the location of the
last E adr.
SAVE dev SA Writes out a core image of the user's m n 1K BLOCKS OF CORE
file.ext core area on the specified device. L NEEDED
core Saves any user program (reentrant, one| J The user's current core
segment non-reentrant, or two segment C allocation is less than
non-reentrant) as one or two files. A the contents of JOBFF.

Later when the program is loaded by a

. GET, R, or RUN command, it will be

non-reentrant. If DDT was loaded with
the program, the entire core area is
written; if not, the area starting
from zero up through the program break
(as specified by JOBFF) is written.

dev The device on which
the core image file is
to be written.

file.ext . The name to be assign-

ed to the core image
file. If ext is
omitted and the pro-
gram has only one
segment, the ext is
assumed to be .SAV.
If ext is omitted and
the program has two
segments, the high
segment will have
extension .HGH, and
the low segment will
have extension .LOW.

core Amount of core in

which the program is
to be run. This value
is stored in the job's
core area (JOBCOR) and
is used by the RUN and
GET commands. Speci-
fied as number of 1K
blocks.

DEVICE NOT AVAILABLE
Device dev is assigned
to another user.

TRANSMISSION ERROR
An error was detected
while reading or writ-
ing the core image
file.

DIRECTORY FULIL
The directory of device
dev is full; no more
files can be added.

JOB_SAVED
The output is completed.

2-32

-341

*
e x§p9
i¥e) (5
> 3
€ 5
&) ? .
‘ N3 25 . :
__ command . Explanation e Monitor Messages

If core is omitted,
only the number of
blocks required by
the core image area
(as explained above)
is assumed.

SSAVE dev SsA Same as SAVE except that the high
file.ext segment will be sharable when it is
core loaded with the GET command. To

indicate this sharability, the high

segment is written with extension.

-SHR instead of .HGH. A subsequent

GET will cause the high segment to be

sharable. Because an error message

is not given if the program does not
have a high segment, a user can use
this command to save CUSP's without
having to know which are sharable.

orar3

*Refer to footnote in Table 2-1

2.7.1 Additional Information on SAVE and SSAVE

Low segment files will be zero compressed on all
devices (DTA,MTA,DSK), but high segment files will not since the
high segment may be shared at the time of the command. Saved
files are ordinary binary files and can be copies using the /B
switch in PIP.

In order to save file space, only the high segment up
through the highest location (relative to high segment origin)
loaded, as specified in the LH of JOBHRL, will be written by the
SAVE command. If LH is zero (high segment created by CORE or
REMAP UUO) or DDT is present, the entire high segment will be

written.

S 342
i
It is possible for most programs to be written so that

only the high segment contains non-zero data. This will also
save file space and I/O time with the’GET command. SAVE will
write the high segment (.HGH) on}y.y The LOADER will indicate to
the SAVE command that no data was loaded above the Job Data area
in the low segment by setting the LH of JOBCOR to.the highest
location loaded in the low segment with non-zero data.

Thefe are a number of locations in the Job Data area
which need to be initialized on a GET, even'though there is no
other data in the low segment; The SAVE command copies these
locations into the first 108 locations of the high segment, pro- .
. vided it is not sharable. These 10 locations are referred to as
. the Vestigial Job Data area. Therefore, the LOADER will load
high segment programs starting at 1ocation 400010.

To prevent user confusion, SAVE and SSAVE delete a
previous file with the extension .SHR or .HGH: Therefore, SAVE
deletes a file with the extension .SHR and SSAVE deletes a file
with the extension .HGH. Both commands also delete a file with
the extension .LOW, if the high segment was the only ségment
written. 7

The regular access rights of the saved file indicate
whether a user can do a GET, R, or RUN command. These commands
will assume that the user wénts to execute (but not modify) the
high segment independent of the éécess rights of the file used
to initialize the segment. The Monitor will always.enable the
hardware user-mode write protect to prevent the user program
from stpring into the segment inadvertently.

To debug a reentrant CUSP which is in the system
directory, the usef should make a private; non-sharable copy,

rather than modifying the shared version and possibly causing
2-34

. 343
harm to other users. To make a private, non-sharable copy, the

following commands are used.
a) GET SYS CUSP
b) SAVE dev CUSP Writes a file in the user
' directory as non-sharable.
The high segment in the
user's addressing space
remains sharable. .
c) GET dev CUSP Overlays the sharable
program with the non-
sharable one from the
user's directory. Now
the user can make patches
while other users share
the version in the system
directory.
The Monitor will keep the shared and the non-shared versions
separate from each other. A sharable program may be superseded
into the directory by the SSAVE command. The Monitor will clear
the high segment in its table of storable segments in use but
will not remove the segment from the addressing space of users
currently using it. Only the users doing a GET, R, or RUN com-

mand or a RUN or GETSEG UUO will have the new sharable version.

When the SAVE or SSAVE command is used to save a
sharable program with only a high file, the Monitor will not
modify the Vestigial Job Data area unless the user has write
privileges to the file which initialized the shared segment.
This prohibits unauthorized users from modifying the first 10
locations of a shared segment. This restriction does not exist
if a low file is also written, since the GET command reads the
low file after the high file. The real Job Data area locations

are set from the low file.

under control of a user console.

344

BACKGROUND JOB CONTROL COMMANDS

A job is a background, or detached, job if it is not

Any console can initiate any

number of background jobs. I/O to the console while a job is

running in a background mode causes the job to stop until a

console is attached.

Command

Table 2-7

Monitor Commands to Control Background Jobs

Explanation

&%

o
>
(%)
23
@
2C
Monitor Messages

PJOB

PJ

Monitor responds by typing the job
number to which the user's console is
attached.

10/40 System - If the console is not
attached to a job, Monitor assigns a
job number and types the job number
and a line identifying the Monitor
version.

10/50 System - If the console is not
attached to a job, Monitor responds
with LOGIN PLEASE.

[- |

CSTART
CCONT

Cs
cC

Identical to the START and CONT com-
mands, respectively, except that the
console is left in the Monitor mode.
To Use:

1. Begin the program with the con-
sole in user mode.

2. Type control information to the
program, then type #C to halt job
with console in Monitor mode.

3. Type CCONT to allow job to con-
tinue running and leave console
in Monitor mode.

4. Further Monitor commands can now
be entered from the console.

Caution: These commands should not
be used when the user pro-
gram (which is continuing
to run) is also requesting
input from the console.

[e RN o]

Same as START and CONT.

DETACH

DET

Disconnects the console from the
user's job without affecting the
status of the job. The user console
is now free to control another job,
either by initiating a new job or
attaching to a currently running
background job.

2-36

345

K N
:»Oo' 7 9’()'
A 3’9 ..(‘3'
4> xZ
R 5
Command »° Explanation (o5 Monitor Messages
ATTACH job| AT Connects a console to a background m If an error message

job.
job The job number of the
job to which the con-
sole is to be attach-
ed.

The project-programmer
number of the orig-
inator of the desired
job. May be omitted
if same as job to
which console is cur-
rently attached. The
operator (device OPR)
may always attach to
a job even though
another console is
attached, provided he
specifies the proper
[proj,progl.

[proj,progl

occurs, the console re-
mains attached to its
current job.

TTYn ALREADY ATTACHED
Job number typed is

* erroneous and is attach-]
ed to another console,
or another user is
attached to the job.

NOT A JOB
The job number is not
assigned to any cur-
rently running job.

CAN'T ATTACH TO JOB
The project-programmer
number entered is not
that of the originator
of the desired job.

*Refer to footnote in Table 2-1

JOB TERMINATION COMMANDS

When a user leaves the system, all facilities allocated

to his jobs must be returned to the Monitor facility pool so that

they are available to other users.

Table 2-8

Monitor Command to Terminate Jobs

S
5
WO
,c‘)«
2
2
Command Explanation cvb‘ onitor Messages
KJOB K In Multiprogramming Systems: m
Stops all allocated I/0 devices and returns A

them to the Monitor pool.

Returns all allocated core to the Monitor
pool.

Returns the job number to the pool.
Leaves the console in the Monitor mode.
Performs an automatic TIME command.

In Swapping Systems:
All of the above procedures. 1In addition, if
user has any files, responds with:

A

v

CONFIRM:

2-37

Command

éﬂ»

ﬁﬁo Explanation

s>
e
2C.

& :
S Alonitor Messages

To which the user may type 4C to abort
log-out; or type one of the following:

K) to kill job and delete all unprotected
files; '

L) to list his disk directory;

I) to individually save and delete files as
follows:

After each file name is 1listed, type:

P to save and protect, S to save without
protecting, or) to delete. Files with
extensions.LST and .TMP will be deleted
automatically.

*Refer to footnote in Table 2-1

2.10

SYSTEM TIMING COMMANDS

All system times are kept in increments of one-sixtieth

or one-fiftieth of a second, depending on the poweér frequency of

the country in which the PDP-10 is installed.

Table 2-9

Monitor Commands for System Timing

. c?
- o% s &yc
2 5>
g e
e 5o
of . 2
Command \S) Expl s
: P xplanation 2 flonitor Messages
DAYTIME DA Types the date followed by the time of day. m
Time is typed in the format.
hh:mm
where
hh = hours
mm = minutes
TIME job TI Types out the total running time since the

last TIME command followed by the total
running time used by the job since it was
initialized (logged in), followed by the
integrated product of running time and core
size (KILO-CORE-SEC=).. Time is typed in the
format)

hh:mm:ss.hh

where
hh = hours
mm = minutes)
ss.hh = seconds to nearest hundredth. '

2-38

Command

. o
h%
q&ap
e

PP

347

Explanation

o2 ffonitor Messages

.charged to the

job

Interrupt level and job scheduling times are

user who was running when the

interrupt or rescheduling occurred.

The job number of the job
whose timing is desired.

If job is omitted, the job to
which the console is attached
is assumed. 1In this case,
Monitor types out the incre-
mental running time (running
time since last TIME command)
as well as the total running
time since the job was
initialized.

If job = 0, an approximation
of the time spent core shuf-
fling (SHFL) is printed,
followed by the amount of time
spent clearing core (ZCOR),
the running time of the null
job (NULL),the time during
which one or more jobs wanted
to run but were ‘swapped out or
in the process of being swap-
ped out (LOST), and the total
time system has been up (UP).

*Refer to

footnote in Table 2-1

SYSTEM ADMINISTRATION COMMANDS

The SYSTAT command permits a user to learn how heavily

the system is loaded and the status of devices in the sharable

device pool.

to system administrators only.

The .other commands in this section are restricted

348
Table 2-10

Monitor Commands for System Administration\

*
305 , &506
327 8%
<@ ’ 52
o . . 3‘3
Command » Explanation - CCMonitor Messages

SCHEDULE n| SCH Changes the scheduled use of the system, de- m
pending on n. This command is legal only from|
the operator's console. n is stored in RH of
STATES word in COMMON:

= regular time sharing.
= no further LOGINS allowed.
= no further LOGINS from remote TTY's.

NEHE O

If n is omitted, the current value of n is

SYSTAT SYS Types out status of the system: system name,
time of day, date, uptime, percent null time.
Status of each job: job number, project-
programmer number (**** jf detached), TTY
number, program name being run, size of low
segment, state (RN = runable, TT = TTY input
wait, C = Monitor command mode) and run time.
Status of high segments being used: name,
directory name, size, number of users in core
or on disk. Status of each assigned device:
name, job number, how assigned (AS = ASSIGN
command, INIT = INIT UUO).

.

ASSIGN To change the systems.deviée to device "dev."
SYS:dev . The user must be'logge?,in under either [1,1]

or [1,2]. " .

Q3

. .)
DETACH dev | DET To assign the device "dew" to JOB 0, thus
making it unavailable. The user must be
logged in under [1,1].

Q3

ATTACH dev AT To return a detached device to the Monitor
pool of available devices. The user must be
logged in under. [1,1]. '

[SE k-]

CTEST This command is used by system programmers to L
test extensions made to the COMPIL CUSP. R

*Refer to footnote in Table 2-1

! N - R 349 n
2.12 MONITOR DIAGNOSTIC MESSAGES

Once a user prégram has been started, a number of error
conditions may arise which cause the job to revert to monitor
mode. The error messages typed, and the meanings for each are

summarized in the following table.

Table 2-11

Time-Sharing Monitor Diagnostic Messages

Message Meaning
The typein is typed back The Monitor command decoder has
followed by ?) . encountered an incorrect character,

such as a letter in a numeric argu-
ment. The incorrect character
appears immediately before the 2.
Example: '

User types in: CORE ABC

Monitor responds: CORE A 2)

ADDRESS CHECK FOR DEVICE Monitor has checked a user address
dev AT USER adr and has found it to be too large

‘| (>C(JOBREL)) or too small (<JOBPFI) |
Some user addresses can be the
user's accumulators while others
cannot.

One of the following addresses may
be wrong:

buffer

buffer header

dump mode command list

data specified by dump mode

" command list

insufficient core available for

setting up
Monitor-generated buffers.

BAD DIRECTORY FOR DEVICE The DECtape directory is not in
DTAn; proper format or had a parity error
UUO AT USER adr when read. Many times this error

occurs when an attempt is made to
use a virgin tape. :

DEVICE dev OK? Device dev is temporarily in an
inoperable state, such as LPT off-
line. The user should correct the
obvious condition and then type a
CONT command.

2-41

350 .
Table 2-11 (Cont)

Time-Sharing Monitor Diagnostic Messages

Message !

Meaning

ERROR IN JOB n

HALT AT USER adr

HUNG DEVICE dev;
UUO AT USER adr

ILLEGAL DATA MODE FOR
DEVICE dev AT USER adr

ILLEGAL UUO AT USER adr
ILL INST. AT USER adr

ILL MEM REF AT USER adr

INCORRECT RETRIEVAL
INFORMATION:
UUO AT USER adr

INPUT DEVICE dev
CANNOT DO OUTPUT;
UUO AT USER adr

I/0 TO UNASSIGNED CHANNEL
AT USER adr

LOOKUP AND ENTER HAVE
DIFFERENT NAMES:
UUO AT USER adr

A fatal error has occurred in the
user's job (or in Monitor while
servicing the job). This typeout
is normally followed by a l-line
description .of the error.

The user program has executed a
halt instruction at loc. adr.
Typing CONT will resume execution
at the effective address of the
halt.

'

A device has not generated an in-
terrupt for a timed period and,
therefore, is in need of attention.

The data mode specified for a
device in the user's program is
illegal.

An illegal UUO has been executed
at user location adr.

An illegal operation code has been
encountered in the user's program.

An illegal memory reference has
been made by the user program at
adr or adr+l.

The retrieval pointers for a file
are not in the correct format; the
file is unreadable. If this type-
out occurs, the user should report-
it on a Software Trouble Report.

An illegal OUTPUT UUO has been
executed at user location adr.

No OPEN or INIT was performed on
the channel.

An attempt has been made to read
and write a file on the disk.
However, the LOOKUP and ENTER UUO's
have specified different names on
the same user channel. This mes~
sage does not indicate a DECtape
error.

351

Table 2-11 (Cont)

Time-Sharing Monitor Diagnostic Messages

Message

Meaning

MASS STORAGE DEVICE FULL'
UUO AT USER adr

NON-RECOVERABLE DISC READ
ERROR;
UUO AT USER adr

NON-RECOVERABLE DISC WRITE

ERROR;
UUO AT USER adr

NOT ENOUGH FREE CORE IN
MONITOR:
UUO AT USER adr

NOT FOUND

OUTPUT DEVICE dev CANNOT
DO INPUT;
UUO AT USER adr

PC EXCEEDS MEMORY BOUND
AT USER adr

SWAP READ ERROR

The storage disk is full. Users
must delete unneeded files before
the system can proceed.

Monitor has encountered an error
while reading or writing a crjitical
block in the disk file structure
(e.g., the MFD or the SAT table).
If this condition persists, the
disk must be reloaded using Fail-
safe after the standard location
for the MFD and SAT: table has been
changed using the Monitor once-
only dialogue.

The Monitor has run out of free
core for assigning disk data
blocks and Monitor buffers. If
this type-out occurs, the user
should report it on a Software
Trouble Report.

The program file requested cannot
be found on the systems device (or
on the specified device).

An illegal INPUT UUO has been
executed at user location adr.

An illegal transfer has been made
by the user program to user
location adr.

A consistent checksum error has
been encountered when checksumming
locations JOBDAC through JOBDAC+74
of the Job Data area during
swapping.

352

353

CHAPTER 3
LOADING USER PROGRAMS

\

3.1 MEMORY PROTECTION AND RELOCATION

. Each user program is run with the'processorrin a special
mode known as the user mode, in which the program muét operate
within an assigned area in core and certain operations are illegal.-
Since every user has an assigned area in core, the rest of core is
unavailable to him; he cannot gain access to the protected area for
either storage or retrieval of information.

The "assigned area of éach user may be divided into two
segments. If this is the case, the low segment is unique for a
given user and can be used for any purpose. The high segment may
be used by a single user or it may be shared by many users. If the
high segment is shared by other users, the program is a reentran£
program. The Monitor can write-protect the high segment so that
the usef cannot alter‘its contents. This is done, for example,
when the high segmeht is a pure procedure to be used reentréntly by
many users. One high pure segment may be used with any number of
low impure segments. See Chapter 1 for the distinctions between
pure and impure segments. Any user program which attempts to
write in a write-protected high segment is aborted and receives an
error message. If the Monitor defines two segments but does not
write-protect the high segment, the user has a two-segment non-
reentrant program (see SETUWP UUO) . ’

The Time-Sharing Monitor defines the size and position of
a user's area by specifying protection and relocation addresses for
the low and high segments. The protection address is the maximum
relative address the user can reference. The relocation address is

the absolute core address of the first location in the segment, as

2.1

-

o ‘ s
seen by the Monitor and‘the hardware. The Monitor defines these
addresses by loading four 8-bit registers‘(two 8-bit registers in
PDP-10's without the KT10A option), each of which corresponds to

the left eight bits of an 18-bit PDB-10 address. Thus, segments
always contain an even multiple of 1024 words.

In user mode, the PDP-10 hardware automatically relocates
user addresses by adding the contents of the memory relocation
register in the centrai processor to the high-order eight bits of
the user address before the address is sent to memory. The address
before the addition is the relative address and after the addition
is the absolute address. To determine whether a relative address
is legal, its eight high-order bits are compared with the contents
of the memory protection register. If the relative address is
greater than the contents of the memory protection register, the
Memory Protection flag is set in the central processor, and control
traps to the Monitor, which aborts the user prograﬁ and prints an
error message on the user's éonsole (unless the user pfogram has
instructed the Monitor to pass such interrupts'to itself for errof—
handling). See APRENB UUO, 4.3.3.1.

Some systems have only the low pair of protection and
relocation registers. 1In this case, the user program is always non-
reentrant and the assigned area comprises oﬂly the low segment.

When.the Monitor schedules a user's program to run, the
memory protecfion and relocation registers are set to the bounds of

. N
the user's allocated core area and the dentral processor is switched
to user mode.

To take advantage of the fast accumulators, memory ad-
dresses 0-17 are not relocated, all users having access to the
accumulators. Therefore, relative locations 0-17 cannot be refer-
enced by a user's program. The Monitor saves the user's‘accumulators

3-2

i

355 B . ' ,

N

in this area when the user's program is not running and while the

Monitor is servicing.a UUO from the user. See Book 1 for a more

complete description of the relocation and protection hardware.

.
0 ' \

3.2 USER'S CORE STORAGE

A user's core storage consists of blocks of memory whose
sizes are an integral multiple of 1024y, (2000g) words. In a non-
reentrant Monitor, the user's core storage is a single contiguous
block of memory. After relocation, the first address in a block
is a multiple of 2000g. The relative uéer and relocated address
configurationé are illustrated below, where PL, RL’ PH' and RH are
the protection and relocation addresses, respectively, for the low
and high segments as derived from the 8-bit registers loaded‘by the
Monitor.

If the low segment is more than half the maximum memory

capacity (PL> 400000) , the high segment starts at the first location

after the low segment (at P +:2000). The high segment is limited
to 128 K. HARDWARE
o o O~17 ACCUMULATORS
LOW —_——
SEGMENT <:\
PL+ 1777
\ N\
\ N\ - Ry + 400000
AN P2 HIGH
NN - SEGMENT
ILLEGAL N X Ry + Py +I777
NN
Ve \/
VR YRAN
-~ A \
400000 - - e ——{ RLp +20 -
HIGH P \ :
SEGMENT e | JOB_DATA AREA | g 4440
Py + 1777 \ Low ,
SEGMENT RL+PL+1777
ILLEGAL | I
l NON- | Ry MUST BE NEGATIVE
EXISTENT UNLESS SYSTEM HAS A
| MEMORY MEMORY LARGER THAN
| | 128K.
77T Lo _l

USER ADDRESSES

- BEFORE RELOCATION

Figure 3-1

TYPICAL PHYSICAL ADDRESS
CONFIGURATION AFTER

RELOCATION

User's Core Area

356 \
There are two methods available to the user for loadlng

his core area. The simplest way is to load a core image stored on
a retrievable device (see RUN and GET, Chapter 2). The other method
is to use the felocatgble binary loader to link-load binary files.

The user may then write the core image on a retrievable device for

future use (see SAVE, Chapter 2).

3.2.1 Job Data Area

The Job Data area provides storage for specific informa-
tiqn of interest to both the Monitor and the user. The first 140
}octal) locations of the user's core area always are allocated to
the Job Data area. Locations in this area have been given mnemonic
4 assignments whose first three characteré are JOB. Therefore, ali
mnemonics in this manual with a JOB prefix refer to locations in

~the Job Data area.

Table 3-1
Job Data Area Locations

(for user-program reference)

Octal
Name Location Description

JOBUUO 40 User's location 40,. Used for processing
user UUO's (001 through 037). Op code and
effective address are stored here.

JOB41 41 | User's location 4lg. Contains the beginning
- address of the user's programmed operator
service routine (usually a JSR or PUSHJ).

JOBERR 42 Left half: Unused at the present.

Right half: Accumulated error count from
one CUSP to the next. CUSPs should be
written to look at the right half only.

JOBREL N\ 44 Left half: O.

; : Right half: The highest relative core loca-
tion available to the user (i.e., the
contents of the memory protection reglster
when .this user is running). .

3-4

357
Table 3-1 (Cont)

Job Data Area Locations

(for user-program reference)

Name

Octal
Location

Description

JOBBLT

JOBDDT

JOBCN6

JOBHRL

JOBSYM

JOBUSY

JOBSA

45

74

106

115 .

116

117

120

Three consecutive locations where the LOADER
puts a BLT instruction and a CALLI UUO to
move the program down on top of itself.
These locations are destroyed on every exec-
utive UUO by the executive pushdown list.

Contains the starting address of DDT. If
contents are 0, DDT has not been loaded.

Six temporary locations used by CHAIN
(FORTRAN Runtime Routine) after it releases
all I/0 channels. JOBCN6 is defined to be
in JOBJDA. \

Left half: First relative free ‘location in
the high segment (relative to the high seg-
ment origin so it is the same as the high
segment length). Set by the LOADER and
subsequent GETs, even if there is no file

to initialize the low segment. The left
half is a relative quantity because the high
segment can appear at different user origins
at the same time. The SAVE command uses
this quantity to know how much to write from
the high segment.

Right half: Highest legal user address in
the high segment. Set by the Monitor every
time the user starts to run or does a CORE
or REMAP UUO. The word is 2 401777 unless
there is no high segment, in which case it
will be zero. The proper way to test if a
high segment exists is to test this word

~for a non-zero value.

Contains a pointer to the symbol table
created by Linking Loader.

Left half: Negative count of the length. of
the symbol table. i
Right half: Lowest register used.

Contains a pointer to the undefined symbol
table created by Linking Loader. . Not yet
used by DDT. ‘

Left half: First free location in low seg-
ment (set by Loader).

Right half: Starting address of the user's
program. .

358
Table 3-1 (Cont) -

Job Data Area Locations

(for user-program reference)

’ Octal ‘
Name | Location Description

JOBFF 121 Left half: 0.

: Right half: Address of the first free loca-
tion following the low segment. Set to
C(JOBSA);, by RESET UUO.

JOBREN 124 Left half: Unused at present.

. Right half: REENTER starting address. Set
by user or by Linking Loader and used by
REENTER command as an alternate entry point.

JOBAPR 125 Left half: O.

' Right half: Set by user program to trap
address when user is enabled to handle APR
traps such as illegal memory, pushdown over-
flow, arithmetic overflow, and clock. See
CALL APRENB UUO.

JOBCNI | 126 Contains state of APR as stored by CONI APR
when a user-enabled APR trap occurs.

JOBTPC 127 Monitor stores PC of next instruction to be
executed when a user-enabled APR trap occurs.

JOBOPC 130 The previous contents of the user's program
counter are stored here by Monitor upon
execution of a DDT, REENTER, START, or
CSTART command.

JOBCHN 131 Left half: 0 Address of first location
after first FORTRAN IV .loaded program.
Right half: Address of first location after
first FORTRAN IV Block Data.

JOBCOR 133 Left half: Highest location in low segment
loaded with non-zero data. No low file
written on SAVE or SSAVE if less than 140.
Set by the LOADER.

Right half: User argument on last SAVE or
GET command. Set by the Monitor.

JOBVER 137 Left half: Zero or the prograrmer number

of the programmer who made last identifica-
tion to the program.

Right half: Program version number in octal.
The number is never converted to decimal.
After a GET, R, or RUN command, a E command
can be used to find the version number.
(Digital always distributes CUSPs with the
left half = 0, so customers making modifica-
tions to CUSPs should change only the left

3-6

359

*w

Table 3~1 (Cont)
Job Data Area Locations

(for user-program reference)

Octal
Name Location Description
JOBVER 137 half. The right half will remain as a re-
(Cont) cord of the Digital version.)
JOBDA 140 The value of this symbol is the first loca-
tion available to the user.
X ,

NOTE

Only those JOBDAT locations of significant
importance to the user are given in this
table. JOBDAT locations not listed include
those which are used by the Monitor and
those which are unused at the present time.
User programs should not refer to any loca-
tions not listed above since such locations
are subject to change without notice.

Some locations in the Job Data area, such as JOBSA and
JOBDDT, are set by the user's program for use by the Monitor.
Others, such as JOBREL, are set by the Monitor for use by the user;s
program. In particular, the right half of JOBREL contains the
highest legal address set by the Monitor whenever the user's coré
allocation changes. 7

JOBDAT exists in binary form in the Systems Library for
loading with user programs that refer to Job Data area locations
symbolically. User programs must reference locations by means of
the assigned mnemonics, which are declared és EXTERNAL references
to the assembler. JOBDAT is loaded automatically, if needed, during
the Loader's library search for undefined global reférences, and

the values are assigned to the mnemonics.

360 .
3.2.2 Loading Relocatable Binary Files

The relocatable binary loader (LOADER, V.47) which
resides in the system file is started by the command
R LOADER core
‘where core is an optional argument. (See Book 5 for a description

of the Loader command string.)

o
LOADER LOADER
. LOADER
USER
JOBDAT . JOBDAT JOBDAT JOBDAT
LOADER LOADER ’ - T T T
LOADER
LOW SEGMENT . LOW SEGMENT LOW SEGMENT USER
: ' LOW SEGMENT
| | USER JOBDAT USER JOBDAT
i ! - T T T = 7 - T T T =T
t l :
USER
| USER !
] : LOW SEGMENT LOW SEGMENT :
!] ! !
| 1 : i
! I T I '
I] ' :
) 1 USER ‘ USER
| h SYMBOLS SYMBOLS USER
| ' L _ SYMBOLS
| I USER NOT] 1
HIGH NECESSARILY | ! i
: : SEGMENT PRESENT : : : :
. ' : ! l ‘
)]
400000 VESTIGIAL 400000 VESTIGIAL 400000 400000
VESTIGIAL VESTIGIAL
_ JOBDAT _ | | _ JOBDAT _ JOBDAT OBDAT
LOADER LOADER " T User -~ 7] - - JUSE’ﬁ -
HIGH _SEGMENT HIGH SEGMENT HIGH SEGMENT HIGH SEGMENT
H .
eer————————————————]
LOADER STARTING LOADING USER PROGRAM DURING LOADING AFTER LOADING
{LOADER EXPANDS CORE (LOADER DOES A REMAP UUO, {LOADER WIPES .
IN LOW SEGMENT AS » (LOADER WIPES OUT ITS OWN
NECESSARY) REPLACING ITS OWN HIGHl LOW SEGMENT BY MOVING
- SEGMENT WITH THE USER'S . DOWN THE USER'S LOW
HIGH SEGMENT IF THERE IS 'SEGMENT.
ONE) THE USER'S SYMBOLS MAY
OR MAY NOT MOVE DOWN
IN' CORE.)

Figure 3-2
Loading User Core Area

3-8

‘361 |

In writing reentrant user software, anreffort is made to
minimize the support reqﬁired to run such software on a ﬁachine
having only a single relocation fegister. Both the source and
- relocatable binary files are the same for a reentrant program that
must run on a non-reentrant system.

Since the Loader is reentrant,; its‘instruétions exist in
the high segment. In loading two segments, both segments are daté

with respect to the Loader and must exist in the low segment during

load time. Therefore, the following Loader variables must be dupli-
cated for each segment:)

a) offset (the number of locations a program must be
moved toward zero before it can be executed),

b) prograﬁ origin (the location assigned by the Loader
to relocatable zero of a program), and

. 14
c) location counter (the register that indicates the

location of the next instruction to be interpreted).

3.2.2.1 The H Switch

A program written to be reentrant can be loaded into one
segment instead of two by use of the H switch (/H). This switch
is used only when a two-segment program is to be loaded ihto one
segment. . This switch is not required when a one-segment program
is to be loaded into one segment. '

To minimize the use of the H switch on single-register

machines, the Loader will check to see if the system (i.e., hard-

ware plus software) has a two-segment capability. If the Monitor
has this capability but the machine does not, then the system does
not have the two-segment capability. If the system does not have
the twé-segment capability,rthe Loader automatically loads a two-

segment program into one segment, just as if the user had typed

3-9

~

362
tﬁe H switch.

To find out if the system has a two-segment capability,
the Loader uses the SETUWP UUO and attempts to set the user mode
write-protect bit to one. An error return indicates a single-
register capability. The Loadér cannot produce a”two-segment pro-
gram, and the Monitor cannot save a program ?S two segments.

If a user wants to load a program, in which the low segment
is longer than 400000 octal words, he can use the switch NNNNNNH.
This switch changes the origin of the high segment from its initial
setting of 400000 to NNNNNN where NNNNNN is larger. If NNNNNN is
missing, the Loader loads everything into the low segment.

Since it is not known before load time whether a réentrant
program is not going into -the high segment, the code executed kin-

" cluding the Monitor UUO's) is the same for either case.

3.2.2.2 The HISEG Pseudo-Op

’ After loading, a relocatable subprogram assembled by MACRO
is either put entirely in the user low segment or entirely in the
user high segment. To indicate that a subpfogram is to be ioaded
into the high segment, the HISEG pseuaé—op is used. It can appear
anywhere in the program although it is best to place it at the
beginning since a reader of the program wants to know that the pro-
gram is deétined for the high segment. Near the beginning of the
'binary output, MACRO generates code that tells the\Loader to load
subprograms into the high segment. Loader Version 47 loads programs
in any order. 1In earlier versions of the Loader, programs for the

i
low segment must be loaded before any programs for the high segment.

v

3.2.2.3 The Vestigial Job Data Area

There are a few "constant” data in the Job Data area

3-10

363

which may be loaded by altwo—segment, one—file’program\without using ;
instructions on a GET command (JOB41, JOBREN, JOBVER) and thefe are

a number of locations which the Monitor loéds on a GET (JOBSA, JOBCOR
JOBHRL) . The Vestigial Job Data area (the first 10 locations

of the high segment) is reserved for these low seément constants.
Therefore, a high segment program is loaded irto 400010 instead of
400000. wWith the Vestigial Job Data area in the high segment, the
Loader automatically loads the constant data into the Job Data‘area
without requiring a low file on a GET, R, or RUN command, or a RUN

Uuo. SAVE will write a low file for a two-segment program only if

the LH of JOBCOR is 140g or greater.

3.2.2.4 Completion of Loading

Thé new program code is loaded upward from an offset
above the resident Loader. The program origin (i.e., the first
location loaded) is 1408, uniess the user changes it by means of
the assembler LOC pseudo-instruction. After completion of the
loading but before exiting, the Loader does the following.

a) Sets the LH of JOBSA and the RH of JOBFF to the
address of the first location above the new code area (i.e., the
program break). The RH of JOBSA is set to the program starting
address. This value is the last non-zero address of the assembler
'END pseudo-instruction to be loaded, or zero. It is used by the
RUN and START commands. The LH of JOBFF is zero. -

b) Sets the LH of JOBHRL to the new highest relative
user address (relafive to the high segment origin) in high segment,
or zero if no high segment.

o) Sets the LH of JOBCOR to the highest location in the
low segment that is loaded with»nonézero date.

d) Uses REMAP UUO to take the top part of the low segment

3-11

364
which contains the user's high segment, and replaces the ﬁoader

high segment.

e) May move symbols and reduce core, if DDT was loaded.

f) Calls EXIT or starts up program.

If DDT was loaded by means of the D switch in the Loader
command string, the RH of JOBDDT is set by the Loader to the starting
address of DDT and the LH is zero. A new switch, /K; has been im-
plemented for use with DDT. This switch moves core back to the

absolute maximum needed. A /nK moves core back to nk.!

—

1In the latest version of the Loader, V.50, the /D is used to
“imply /B/K. ‘ -

3-12

-365
CHAPTER 4
USER PROGRAMMING

The PDP-10 central processor operates in one of three
modes: executive mode, user _I/0 mode, ‘or user mode. The Monitor
operates in executive mode, which is characterized by the lack of
memory protection and relocation (see Chapter 3) and by the normal
execution of all defined operation codes. The user I/O mode is -

a special mode, wherein memory protection and relocation are in
effect, as well as the normal execution of all defined operation
codes. (This mode is not used by the Monitor, and is not normally
available (see TRPSET) to the time-sharing user.) User programs
are run in user mode in order to guarantee the integrity of both

the Monitor and each user program.

4.1 USER MODE
The user mode of the central processor is characterized
by the following features:
a) Automatic memory protection and relocation (see
Chapter 3).
7 b) Trap to absolute location 40 on any of the following:

1. Operation codes 040 through 077 and operation
code 000.

2. Input/output instructions (DATAI, DATAO, BLKI,
BLKO, CONI, CONO, CONSZ, and CONSO).

3. HALT (i.e., JRST 4,).
4. Any JRST instruction that attempts to enter

executive mode or user I/0 mode.

’

c) Trap to relative location 40 on execution of operation

codes 001 through 037.
Since user programs run in user mode, the Monitor must

4-1

perform all input/output opérations for the user, as wéll as any
other user-requested operations that are not available in user:
mode. The purpose of this chapter is to describe the services
the Monitor makes available to user mode programs and how a user

program obtains such services.

4.2 PROGRAMMED OPERATORS (UUO's)

Operation codes 000 through 077 in the PDP-10 are pro-
grammed operators (sometimes referred to as UUO's- Unimplemented
User Operators since from a hardware point of view their function
is not pre-specified); some of these op-codes trap to the Monitor
and the rest trap to the user program.

After the effective address calculation is comélete, the
contents of the instruction register, along with the effective '
address, are stored in user or Monitor location 40 and the
instruction in user or: Monitor location 41 is executed out of
normal sequence. Location 41 must éontain a JSR instruction to

a routine to interpret the contents of location 40.

4.2.1 Operation Codes 001-037 (User UUO's)

.Operation codes 001 through 037 do not affect the mode
of the central processor.‘ Thus, when executed in user mode, they
trap to user locétion 40, which allows the user program complete
freedém in the use of these programmed operators.

If é user's undebugged program accidentally execdutes
one. of these op-codes when the user did not inﬁend to usé'it, the
following error message is normally issued.

ERROR IN JOB n
ILLEGAL UUO AT USER 41

«

This message is given because the user's relative location 41
4-2

\

367
contains zero (unless his program has overtly changed it) and 000
is an illegal Monitor UUO.

4.2.2 Operation Codes 040-077, and 000 (Monitor UUO's)

Operation codes 040 through 677 and 000 trap to absolute
location 40, with the central précessor in executive mode. These
programmed operators are interpreted by the ‘Monitor to perform
input/output operations and other control functions for the
user's -progran.

Operation code 000 always returhs the user to monitor
mode with the error message:

'ERROR IN JOB n
ILLEGAL UUO AT USER addr

Table 4-1 lists the operation codes 040 thru 077 and
their mnemonics. Most of this chapter is a detailed description
of their operation.

;

4.2.2.1 CALL and CALLI - Operation codes 040 through 077 limit

the Monitor to 40y operations. The CALL operation extends this
set by specifying the name of the operation by the contents of the
location specified by the effective address,e.g., CALL [SIXBIT/EXIT/]
This provides for indefinite extendabilify of the Monitor opera- -
tions, at the overhead cost to the Monitor of a table lookup.

The CALLI operation eliminates the table lookup of the
CALL operation by having the programmer perform the lookup him-
self and specify the index to,the'operation‘in the effective
address of the CALLI. Table 4-2 lists the Monitor operations
specified by the CALL and CALLI operations.

The customer is allowed to add hi; own CALL and CALLI
calls to the Monitor. A negative CALLI effective address

4-3

368

(starting with -2) should be used to specify such custémer added

operations.

4.2.2.2 Restriction on Monitor UUO's in Re-Entrant User Programs

There are a number of restrictions on UUO's which in-
volve a high segment. These restrictions are to prevent naive
or malicious users from clobbering other usefs while sharing
segments and to minimize Monitor overhead in handling two-segment
programs. The basic rules are as follows.

a) All UUO's can be executed from the low or high ségment
although some of their arguments cannot be in, or refer to, the
high segment.

b) No buffers, buffer headers, or dump mode command
lists may exist in fhe‘high segment. for reading from or writing
to any I/0 device.

c) No I/0 is processed into or out of the high segment
except via the SAVE and SSAVE commands.

‘d) No STATUS, CALL or CALLI UUO allows a store in the
high segment.

e) The effective address of the LOOKUP, ENTER, INPUT,

OUTPUT, and RENAME UUO's cannot be in the high segment. If any
one of these rules is violated,; an address éheck erroxr meséage is
given (see Table 2-11).

f) As a convenience in writing user programs, the Monitor
makés a special check so that the INIT UUO can be executed from‘
the high segment, even though the calling sequence is in the high
segment. The Monitor also allows the effective address of the CALL
UUO (contains the SIXBIT Monitor function name) and the effective
address of the OPEN UUO (contains the status bits, device name,

and buffer header addresses) in the high segment.

4-4

| 369
4.2.3 Opération Codes 100-127 (Unimplemented Op Codes)

Op code 100-UJEN Dismisses realtime interrupt
from user mode (see 4.3.6.2).

Op codes 101-127 Monitor prints ILL INST AT
USER n and stops job.

4.2.4 Illegal Operation Codes

The eight input/output instructions (DATAI, etc.) and
JRST instructions attempting to enter executive or user I/O mode
from the user mode are interpreted by the Monitor as illegal
instructions. The job is stopped and the foliowing error message
is printed on the user's console.
ERROR IN JOB n

ILL INST AT USER addr

4.3 PROGRAM CONTROL

4.3.1 Starting

All program starting is accomplished by the Monitor
commands RUN, .START, CSTART, CONT, CCONT, DDT, and REENTER (see
Chapter 2). The starting address is either an argument of the

command or stored in the user's job data area (see Chapter 3).

4.3.1.1 CALL AC, [SIXBIT/SETDDT/] or CALLI AC,2 - These cause

the contents of the AC to replace the DDT starting address, which
is stored in the protected job data area location, JOBDDT. This

starting address is used by the Monitor command, DDT (see 3.2.2.4).

4.3.2 Stopping
Any one of the following procedures can stop a running

" program:

4-5

370

a) One 4C from user conséle if user program is in a
Teletype input wait; otherwise, two 4C's from user console (see
Chapter 2);

b) A Monitor detected érror; or

c) Program execution of HALT,‘CALL [SIXBIT/EXIT/], or

CALL [SIXBIT/LOGOUT/].

4.3.2.1 Tllegal Instructions (700-777, JRST 10, JRST 14,) and

Unimplemented Op Codes (101-127) -

Illegal instructions trap to the Monitor, stop the job,
and print:
’ ERROR IN JOB
ILL.INST.AT USER n
Note that the program cannot be continued by typing the CONT or

CCONT commands.

4.3.2.2 HALT or JRST 4, - The HALT instruction is an exception

to the illegal instructions; it tréps to the Monitor, stops the
job, and prints:

ERROR IN JOB

HALT AT USER n ;
However, the CONT and CCONT'comﬁands are still valid and, if typed,"
will continue the program at the effective address of the HALT "
instruction. HALT is not the ;nstruction used to terminate a pro-

gram (see EXIT, section 4.3.2.3). HALT is useful for catching

"impossible" error conditions..

3N
Table 4-1

Monitor Operation Codes

Op Code ‘Mnemonic Function

040 CALL Operation code extension (See 4.2.2.1)
041 INIT Initialize I/0) device (See 4.4.2.2)

042 No operation h

Reserved for
043 No operation

installation-
044 . No operation P

dependent
045 No operation

calls
046 No . operation

J

047 CALLI Operation. code extension (See 4.2.2.1)
050 OPEN Open file (See 4.4.2.2)

' 051 TTCALL Special Teletype Operations (See 5.1.3)
052 No operation Reserved for ’ -
053 No operation future
054 No operation expansion by Digital
055 RENAME Rename or delete a file (See 4.4.2.5)
056 IN Input and Skip on error of EOF (See 4.4.3)
057 ouT Output and skip on error of EOF(See 4.4.3)
060 SETSTS Set file status (See 4.4.4) »
061 STATO Skip on file status one (See 4.4.4)

062 STATUS or Read file status (See 4.4.4)

’ GETSTS ’
063 STATZ Skip on file status zero (See 4.4.4)
064 INBUF Set up input buffer ring (See 4.4.2.3)
065 OUTBUF Set up output buffer ring (See 4.4.2.3)
066 INPUT Read (See 4.4.3) : N
067 OUTPUT Write (See 4.4.3)

Close file (See 4.4.5)

070

CLOSE

372

Table 4-1 (Cont)

Monitor Operation Codes

Op Code Mnemonic Function
071 RELEAS Release device (See 4.4.7) ‘
072 MTAPE Position tape (See 5.8.2 and 5.7.5)
073 UGETF Get next free block number (See 5.7.5)
074 USETI Set next input block number (See 5.7.5)
075 USETO Set next output block number (See 5.7.5)
076 LOOKUP Select file (See 4.4.2.4)
077 ENTER Create file (See 4.4.2.4)
100 UJEN Dismiss real-time interrupt (See 4.3.6.2)

Table 4-2

CALL and CALLI Monitor Operations

CALLTI AC, x | CALL AC, [SIXBIT/y/] Function
X = =2,.. y = Customer defined Reserved for definition by
RS o} each customer installation.
-1 ' LIGHTS Displays AC in console lights
0 RESET Reset I/0O devices (See 4.4.2.1)
1 DDTIN DDT mode console input
(See 5.1.2)
2 SETDDT Set protected DDT starting
address (See 4.3.1.1)
3 DDTOUT DDT mode console output
(See 5.1.2)
4 DEVCHR Get device characteristics
(See 5.12)
5 - (DDTGT) No operation
6 (GETCHR) Same as DEVCHR(4)

373
Table 4-2 (Cont)

CALL and CALLI Monitor Operations

CALLI AC, X |CALL AC, [SIXBIT/y/] Function
X = 7 y = (DDTRL) ~ No operation
10 WAIT Wait until device inactive
(See 4.4.6)
11 .CORE Allocate core (See 4.5)
12 EXIT Stop job, may release devices
(See 4.3.2.3)
13 UTPCLR Clear directory (See Table 5-3)
14 DATE . Return date (See 4.3.4.1)
15 . LOGIN Special operation for LOGIN
(See 4.3.5.3)
16 APRENB ‘ Enable central processor traps
’ (See 4.3.3.1)
17 ' LOGOUT ‘Kill job (See 4.3.2.4)
20 SWITCH Read processor console switches
: . (See 4.3.6.3) :
21 REASST : Reassign device (See 2.4.4)
22 TIMER Read clock in ticks

(See 4.3.4.2)

23 MSTIME . Read clock in milliseconds

(See 4.3.4.3)
24 GETPPN ‘ Read project-programmer pair

- (See 4.3.5.2)

25 TRPSET Set trap for user f/O mode

(See 4.3.6.1)
26 TRPJEN Illegai Uuo
27) RUNTIM Return job running time

(See 4.3.4.4)
30 PJOB Return job number (See 4.3.5.1)

31 SLEEP Stop job for specified time
: (See 4.3.4.5)

32 (SETPOV) Set pushdown overflow trap
(this command has been super-
seded by APRENB (16)

374
" Table 4-2 (Cont) -

CALL and CALLI Monitor Operations

CALLI AC, x| CALL AC, [SIXBIT/y/] Function

X = 33 y = PEEK Return specified Monitor loca-
' tion (See 4.3.5.4)

34 GETLIN » Return physical name of attach-
ed Teletype console.
(See 4.3.5.5)

35 RUN Call new program (both high
and low seagments) (See 4.3.7.2)

36 SETUWP Set user's write protect for
‘high segment (See 4.5.1)

37 REMAP Remap top of low segment into
. high segment (See 4.3.7.1)

40 GETSEG Replace high segment only
(See 4.3.7.3)

41 GETTAB Examine contents of specified
Monitor location (See 4.3.5.6)

42 SPY Make'physical core be high
segment for efficient looking
at Monitor (See 4.3.7.4)

43 _ SETNAM Set program name (See 4.3.6.4)

NOTE

1) Other CALLI UUO's will be implemented from time to time and
will be dogumented in Software Manual Updates and in revised
editions of this manual

2) Execution of a CALLI UUO with an address higher than the last
implemented operator will return control to the next location
in the user program. New implemented operators will cause a
skip return. In this way, the user program will know if the
UUO has been implemented.

4.3.2.3 CALL AC, [SIXBIT/EXIT/] or CALLI AC, 12 - When AC is

zero, all input/output devices are RELEASed (see Section 4.4.7)
and the job is stopped. The CR-LF operation is performed and

EXIT
+C

4-10

. 375 -
is printed on the‘uéer's consble, which is left in Monitor mode.
The CONT and CCONT commands cannot continue the program.
o When AC is non-zero, the job is stopped but devices afe
not releaéed. Instead of printing EXIT and 4C, only £he CR-LF oper-

ation is performed and a period is printed on the user's console.

The CONT and CCONT commands may be used to continue the program.

4.3.2.4 CALL. [SIXBIT/LOGOUT/] or CALLI 17 - All input/output

devices are RELEASed (see Section 4.4.7), and returned with the
allocated core and the job number to the Mohitor pool. The ac-
cumulated running time of the job is printed on the user's console,
which is left in Monitor mode. This UUO is not available to user
programmers. It is only for use by the LOGOUT CUSP. 1If a user
program executes a LOGOUT UUO, the Monitor Qill treat it like EXIT

(See 4.3.2.3).

4.3.3 Trapping

4.3.3.1 CALL AC, [SIXBIT/APRENB/] or CALLI AC, 16 - APR trapping

‘allows a user to handle aﬁy and all traps that occur while his job
'is running on the central processor, including illegal memory
feferences, non-existent memory references, pushdown list overflow,
arithmetic overflow, floating point overflow, and clock flag. To
enable for’trapping a éALL AC, [SIXBIT/APRENB/] or CALLI AC, 16 is
executed, where the AC contains the central processor flags to be

tested on interrupts, as defined below:

AC Bit Trap On
19 200000 pushdown overflow
22 20000 . memory protection violation
23 10000 non-existent memory flag
26 1000 clock flag
29 = 100 " floating point overflow
32 10 arithmetic overflow

/

A_11

376

When one of the specified conditions occurs while the
central processor is in user mode, the state of the central pro-
cessor is Conditioned Into (CONI) location JOBCNI, and the PC is
'stored‘in location JOBTPC in the job data area (see Table 3-1).
Then control is transferréd to the user trap-answering routine
specified by the contents of the right half of JOBAPR, after the
barithmetic overflow and floating point overflow flags have been
cleared. The user program must set up location JOBAPR before
executing the CALL AC, [SIXBIT/APRENB/] or CALLI AC, l6. To
return control to his interrupted program, the user's trap an-
swering routine must execute a JRST 2, @ JOBTPC to restore the
.state of the processor.

If the user program does not enable traps, the Monitor
sets the PDP—lO processor to ignore arithmetic and floating point
overflow, but enables interrupts for the other error conditions
inythe table above. If the user program proauces such an error
condition, the Monitor will cause the user job to be stopped and
print

ERROR IN JOB n
followed by one of the following apprdpriate messages:
PC OUT OF BOUNDS AT USER addr
ILL MEM REF AT USER addr
NON-EX MEM. AT USER addr
PDL OV AT USER addr
The CONT and CCONT commands will not succeed after such

an error.

4.3.3.2 Console-Initiated Traps - Program control can be changed

from the user's console by use of the 4C, START, DDT, and REENTER

commands (see Chapter 2).

317 | ' .
4.3.4 Timing, Control . ‘

.

The central processor clock, which;generates interrupts
at the power-source frequency (60 Hz in North America, 50 Hz in
most other countries), keeps time in the Monitor. Each clock o
interrupt (tick) corresponds to 1/60th (or 1/50th) of a second of
elapsed real time. The clock is set initiélly to the current time
of day by console input when the system is started, as is the
current date. When the clock reaches midnight, it is reset to
zero, and the date is advanced.

L ¢

O

4.3.4.1 CALL AC, [SIXBIT/DATE/] or CALLI AC, 14 - A 12-bit
binary integer computed byfthe formula '
". date=((year-1964)x12+(month-1))x31l+day-1
represents the date.
This integer representation is returnedvright—justified

in accumulator AC.

4.3.4.2 CALL AC, [SIXBIT/TIMER/] or CALLI AC, 22 - These return

the time of day, in clock ticks (jiffies), right-justified in

accumulator AC.

4.3.4.3 CALL AC, [SIXBIT/MSTIME/] or CALLI AC, 23 - These return

the time of day, in milliseconds right-justified in accumulator AC.

4.3.4.4 CALL AC, [SIXBIT/RUNTIM/] or CALLI AC, 27 - The accumu-

1atéd running time, in milliseconds, of the job whose nu@ber is in
accumulator AC, is returned right-justified in accumulator AC, If
the job number in AC is zero, the running time of the currently
running job is returned. If the job whose number is in AC does

not exist, zero is returned.

N

, 3718 ‘
4.3.4.5 CALL AC, [SIXBIT/SLEEP/] or CALLI AC, 31 - These stop

the job, and continue automatically after an elapsed real time of

[c(AC)xclock frequency] modulo 212 jiffies.

The contents of the AC are thus interpreted as the number of
seconds the job wishes to sieep; however, there is an implied max-
imum of approximately 68 seconds (82 seconds in 50 Hz countries)

or one minute.

4.3.5 Identification

¥

4.3.5.1 CALL AC, [SIXBIT/PJOB/] or CALLI AC, 30 - These return

the job number right-justified in accumulator AC.

4,3.5.2 CALL AC, [SIXBIT/GETPPN/] or CALLI AC, 24 - These return .

in AC the project-programmer pair of the job. The project number
is a binary number. in the left half of AC, and the programmer
number is a binary number in the right half of AC. If the program
bging run is LOGIN or LOGOUT from the system device, the current
project-programmer number is changed to 1,2 so that all files are
accessible for reading and writing, and a skip return is given if

the o0ld project-programmer number is also logged in on another job.

4.3.5.3 CALL AC, [SIXBIT/LOGIN/} or CALLI AC, 15 - These are

not available to user programmers.b They are for the exclusive use
of the LOGIN CUSP, which uses these operators to exit to the
Monitor and to pass it certain crucial parameters (including pro-
ject and programmer numbers) about the user who jus£ successfully
logged in. When the LOGIN CUSP calls these UUO's, any devices

the UUO's were using are released, and the foliowing is printed

~

379

on the user's console

+C

The console is left in Monitor mode ready to.accept the user's
first command.

Any other user program that calls these UUO's receives
the error message

- ILLEGAL UUO AT USER addr
The user's console is then put in Monitor mode, and the CONT and

CCONT commands are not permitted.

4.3.5.4 CALL AC, [SIXBIT/PEEK/] or CALLI AC, 33 - These allow a
user prégram to examine'any location in the Monitor. Some customers
may want fo restrict the use of this UUO to project 1.
The call is:
MOVEI AC, exec address {TAKEN MODULO SIZE OF MONITOR
'CALL AC, [SIXBIT/PEEK/] " ;OR CALLI AC, 33 .
This call feturns with the contents of the Monitor location in AC.
It is used by SYSTAT and could be used for on-line Monitor débugging.

k3

4.3.5.5 CALL AC, [SIXBIT/GETLIN/] or CALLI AC, 34 - These return

the SIXBIT physical name of the Teletypé console that thé program
is attached to.
The call is:
CALL AC, [SIXBIT/GETLIN/] ;OR CALLI AC, 34
The name is returned left-justified in the AC.
Example:
CTY or TTY3 or TTY30

This UUO is used by the LOGIN program-to print the TTY name.

A_1E

. 380 ,
4.3.5.6 CALL AC, [SIXBIT/GETTAB/] or CALLI AC, 41 - These pro-

vide a mechaniém for user programs to examine the contents of :
certain Mbﬁitor locations in é/way which will not vary from Monitor
to Monitor.
The call is:

CALL AC, [SIXBIT/GETTAB/] ;OR CALLI AC, 41

error return

normal return
The left half of AC contains a job number or some other index to
a table. Some job numbers may refer to high segments of progfams
by using arguments greater than the highest job number for the
current Monitor. A negative LH means the currentbjob number. The
right half of AC contains a table number from the list of Monitor
data tables and parameters set forth below. The entries in these
tables are all globals in the Monitor subroutine COMMON. The
actual values of the core addresses of these locations are subject
to change and can be found in the LOADER storage map for the Moni-
tor. The complete descriptions of these globals are found in the

listing of COMMON.

An error return leaves the AC unchanged. This means

.

"that the job number or index number in the left half of AC was too

high, or tﬁe table number in the right half‘of AC was too high, or
that the user does not have the privilegeyof accessing that table.
A skip return supplies the contents of the fequested table in AC,
or a zero if the table is not defined in the current Monitbr.

The SYSTAT CUSP makes frequent use of these UUO's.

The list of tables and their entries is as follows, with
a brief gescription of each.

Table Numbers (RH of AC)

00 - JBTSTS (job status word)

' - Index by job or segment number
01 - JBTADR (job relocation and protection)
: Index by job or segment number

4-16 , oo

02 -
03 -
04 -
05 -

06 -

10 -

12 -

14 -

Table

381
Numbers (RH of AC) (Cont)

PRJIPRG

JBTPRG

TTIME

JBTKCT

JBTPRV

JBTSWP

TTYTAB

CNFTBL

NSWTBL

SWPTBL

JBTSGN

ODPTBL

(project and programmer numbers)
Index by 3job or segment number
(user program name)

Index by job or segment number
(total time used)

Index by job numbér

(Kilo-core ticks)

Index by job number

(privilege bits)

Index by job number

(job's swapping parameters)
Index by job or segment number
(Teletype to job translation)
Index by line number
(configuration table)

Index by item number, see below
(non-swapping data)

.Index by item number, see below
(swapping data)

Index by item number, see below
(high segment table)

Index by- job number

(once-only disk parameters)
Index by item number, see below

Entries in CNFTBL (Configuration Table) -

Item Location
0 CONFIG
4 CONFIG+4
5 SYSDAT
6 SYSDAT+1
7 SYSTAP
10 TIME
11 THSDAT
12 SYSSIZ
13 DEVOPR
14 DEVLST
15 SEGPTR
16 TWOREG
17 STATES

Use

Name of sSystem in ASCIZ

Date of system in ASCIZ

Name of the system device (SIXBIT)

Time of day in jiffies

Today's date (12-bit format)

Highest location in the Monitor + 1

Name of the OPR TTY console (SIXBIT)

LH is start of DDB (device-data-block) chain
LH=-4 of high segments, RH=+# of JOBS
(counting NULL job)

Non-zero if system has two-register hardware
and software :

Location describing feature switches of this
system in LH, and current state in RH

Assembled according to MONGEN dlalog and S.MAC:

Bit 0=1 If disk system (FTDISK)

Bit 1=1 If swap system (FTSWAP)

Bit 2=1 If LOGIN system (FTLOGIN)

Bit 3=1 If full duplex software (FTTTYSER)
Bit 4=1 If privilege feature (FTPRV)

Bit 5=1 If assembled for choice of reentrant

or non-reentrant software at Monitor
load time (FT2REL)

4-17

207

SERIAL

382

B1t 6= 1 If clock is 50 cycle 1nstead of 60
cycle .
Set by the privileged operator command,
SCHEDULE:

Bit 34=1 Means no remote LOGINs

Bit 35=1 Means no more LOGINs

Serial number of PDP-10 processor

Set by MONGEN dialog

Entries in ODPTBL (once only disk parameters)

Item Location
0 SWPHGH
1 K4SWAP
2 PROT
3 PROTO

Use

Highest logical block # in the swapping space
K of disk words set aside for swapping
In-core protect time multiplies size of job
in K-1

In-core protect time added to above result

after multlply

Entries in NSWTBL (non-swapping data)

Item Location
0 CORTAB
7 CORTAB+7
10 CORMAX
11 CORLST
12 CORTAL
13 " SHFWAT
14 HOLEF
- 15 UPTIME
16 SHFWRD
17 STUSER
20 HIGHJB
21 CLRWRD
22 LSTWRD

Use

Map of physical core
1 bit for each K of core

Size in words of largest legal user job
(low. seg+high seg)
Byte pointer to last free block in CORTAB
Total freet+dormant+idle K physical core left
Job no. shuffler has stopped .
Abs. adr. of job above lowest hole, 0 if
no job
Time system has been up in jiffies
Tot. no. of words shuffled by system
Number of job using SYS' if not a disk
Highest job number currently assigned
Total no. of words cleared by CLRCOR
Total no. of clock ticks when null job ran
and other jobs wanted to but couldn't because:
1. Swapped out or on way in or out
2. Monitor waiting for I/O to stop
so can shuffle or swap
3. Job being swapped out because
expanding core

Entries 'is SWPTBL (swapping data)

Item Location
0 BIGHOL
1 FINISH

Use
No. of K in biggest hole in core

+Job no. of job being swapped out
-Job no. of job being swapped in

4-18 . N

2 FORCE Job being forced to swap out _

3 ~FIT Job waiting to be fit into core

4 VIRTAL Amount of virtual core left in system in K
(initially set to no. of K of swapping space)

5 SWPERC LH=no. of swap read or write errors
RH=error bits (bits 18-21 same as status bits)
+no. of K discarded

4.3.6 Direct User I/O

The user I/0 mode (bits 5 and 6 of PC word = 11) of the
central processor allows running privileged user programs with
automatic protection and relocation in effect. ThiS‘mo&e provides
some protection against partially debugged Monitor routines, and
permits running infrequently used device service routines as a
user job. Direct contfol by the user program of special deVices
is particularly important in real-time applications.

To utilize this mode, the job humber must be 1.

CALL [SIXBIT/RESET/] or CALLI 0 terminates user I/O mode.

4,.3.6.1 CALL AC, [SIXBIT/TRPSET/] or CALLI AC, 25 - These are

privileged UUO's which may or may not stop time-sharing (stop jobs:
from being scheduled)and allow the user program to gain control of
the interrupt locations. 1If the user is not job 1, an error return
to the next location after the CALL will always be given and the
user will remain in user mode. Time-Sharing will be turned back
on. If the user is job 1, the central processor is placed in user

I/0 mode. Under job-1l, if AC contains zero, time-sharing is turned |
\

back on if it was turned off. If the LH of AC is within the range
40 through757, all other jobs are stopped from being sche@uled and
the specified executive PI location (40-57) is patched to trap
directly o the user. 1In this case, the Monitor moves the contents
of the relative location specified in the right half of AC, adds
the job relocation address to the address field, and stores it in

the specified executive PI location.

- 84

Thus, the user can set up a priority interrupt trap into his re-
iocated core area. Upon a normal return, AC contains the previous
contents of the address specified by LH of AC, so that the usér
program may restore the original contents of the PI location when

the user is through using these UUO's. If the LH of AC is not
within the range 40 through 57, an error return will be given just
.,as if the user was not job 1.

The call is:

MOVE AC, XWD N, ADR

CALL AC, [SIXBIT/TRPSET/]
error return

normal return

ADR: JSR TRAP ;Instruction to be stored
- ;in exec PI location
;after relocation added to it.
TRAP: O ;Here on interrupt from exec.

The Monitor assumes that user location ADR contains either a JSR U
or BLKI U, where U is a user address. Consequently, the Monitor
will add the job's relocation to the contents of location U to
make it an absolute IOWD. Therefore, a usér should reset the con-
tents of U before every TRPSET call.

MOVEI AC, PNTR

HRRM AC, ADR

MOVE AC, XWD N, ADR

CALL AC, [SIXBIT/TRPSET/]
error- return

normal return

ADR: BLKI DEV,PNTR ;Block in PNTR to be stored
‘ ;in interrupt location
PNTR: IOWD LEN,BUFFER

Ay
" This UUO is a temporary expedient until some real-time UUO's are

implemented which will not stop time sharing and which cannot crash

«

the system.

. - o 385 .
4.3.6.2 "~ UJEN (Op code 100) - This op code dismisses a user I/0

mode interrupt if one is in progress. If the interrupt is from user
mode, a JRST 12, instruction can dismiss the interrupt. If the in-
terrupt came from executive mode, however, this operator must be
used.to dismiss the interrupt. Thé program must restore all accumu-
lators,and éxecute UJEN U where user location U contains the program

counter as stored by a JSR instruction when the interrupt occurred.

4.3.6.3 CALL AC, [SIXBIT/SWITCH/] or CALLI AC, 20 - These return

the contents of the central processor data switches in AC. Caution
must be exercised in using the data switches since they are not an

allocated resource and are always available to all users.

4.3.6.4 CALL AC, [SIXBIT/SETNAM/] or CALLI AC, 43 - These are used

by the LOADER. The contents of AC contain a.left-justified SIXBIT
program name, which is stored in a Monitor job table. The informa-
tion in the table is used by the SYSTAT CUSP (See JBTPRG table under

GETTAB UUO 4.3.5.6).
4.3.7 Segment Handling

4,3.7.1 CALL AC, [SIXBIT/REMAP/] or CALLI AC, 37 - These take

" the top part of a low segment and remap it into the high segment.

The previous high segment (if any) will be removed from the user's

addressing séace. The new low segment will be the previous low

segment minus £he amount remapped.

The call is: VMOVEI AC, Desired highest adr in 1o& segment
CALL AC, [SIXBIT/REMAP/] ;or CALLI AC, 37

error return
normal return

The amount remapped must be a multiple of 1K decimal
words. To insure this, the Monitor will perform the inclusive OR

function of 1777 and the user's réquest. If the argument exceeds

, 386, ‘ g p
the length of the low segment, remapping will not take place, the

high segment will remain unchanged in the user's addressing'space,
and the error return will be taken. The error return will also be
taken if the system does not have a two-register capability. 'The
contents of AC are unchanged.‘ The contents of JOBREL (see Job Data
area, Chapter 3) are set té the new highest legal user address in
the low segment. The RH of JOBHRL will be set to the highest legal
user address in the high segment (401777 or greater or 0). The
hardware relocation will be changed and the user-mode write protect
bit will be set.

This UUO is used by the LOADER to load reen%rant programs
which make use of all of physical core. Otherwise, the LOADER
‘might eceed core in assigning more core and moving the data from
the low to the high segment with a BLT instruction. The GET com-
mand also uses this UUO to do I/0 into the low segment instead of

the high segment.

4.3.7.2 CALL AC, [SIXBIT/RUN/] or CALLI AC, 35 - These have been

implemented so that programs can transfer control to one another.

Both the low and high segments of the user's addressing space are

/

replaced with the program being called.
The call is:

MOVSI AC, Starting address increment

HRRI AC, Adr of six-word arg. block

CALL AC, [SIXBIT/RUN/] or CALLI AC, 35
error return (unless HALT in LH) , .
[normal return is not here, but to starting
address plus increment of new program]

The arguments contained in the six-word block are:
E: SIXBIT/logical device name/

SIXBIT/filename/ ;for either or both high
and low files

4-22-

387 . ,
SIXBIT/ext .for low file/ ;if IH = 0, .LOW is as-
sumed if high segment
exists, .SAV is assumed

if high segment does
not exist.

0

XWD proj. no., prog. no. ;if = 0, use current
, user's proj,prog

XWD 0, optional core ;RH = New highest user
assignment address to be assigned

to low segment.

- LH is ignored rather
than setting high
segment,

Usually a user program will specify only the first two words and
set the otherg to zero; The RUN UUO destroys thé contents of all
of the user's ACs and releases all the user's I/0 channels. Thgre—
fore, arguments or devices cannot be passed to the next program.

) Programs on the system library (CUSPs) should be called\
by using device SYS wi%h a zero prgje?t—programmer number instead
of dévice DSK with the project—prégraﬁmer number 1,1. The exten-
sion‘should alsé be 6 so that the calling user pésgram does nog
need to know if the called CUSP is reentrant or not. .

The LH of AC is added to and stéred in the starting
address (JOBSA) of the néw program before control is transferred
to it. 4C followed by the START command will restart the program
at the same location as specified by the RUN UUO, so that the user
can start the current CUSP over again. The user is cohsidered to
vbe meddling with the program if the LH of AC is not 0 or 1. (Seé
Section 4.6)

Rroérams'which accept commands from a Teletype or a
file, depending on how they were started, do so as controlled by
the program calling the RUN UUO. The following convention is used
with all of Digital's standard CUSPs: 0 in LH of AC means type an

asterisk and accept commands from the Teletype. 1 means accept

commands from a command file, if it exists; if not type an asterisk

4-22

388

and accept commands from the Teletype. The convention for naming
CUsP commahd files is thatvthe filename be‘of the form

HH4III.TMP
where III are the first three (or fewer if three do not exist)
characters of the name of the CUSP doing the LOOKUP and ##4 is the
decimal character expansion (with leading zeroes) of the binary
job number. The job number is included to allow a user to run two
,or more jobs under the same project-programmer number. ForKexample,

009PIP.TMP
039MAC.TMP

Decimal numbers are used so that a user listing his directory can
see the same number as the PJOB command types. These command files
are temporary and are, therefore, deleted by the LOGOUT CUSP. (See
LOGOUT command in Chapter 2.)

The RUN UUO can give an error return with one of 13 error
codes in AC if any errors are detected. Thus, the user program may
attempt to recover from the error and/or give the user a more in-
formative message on ho@ to proceed. Some user programs do not go
to the bothef of including error recerry code. The Monitor
detects this and does not give an error return if the LH of the
error retdrn location is a HALT instruction. If this is the case,
the Monitor simply prints its étandard error message for tﬁat type
of errér and returns the ﬁser's console .to monitor mode. This
optional error recovery procedure also allows a user program to
analyze the error code received and then execute a second RUN UUO
with a HALT if the error code indicates an error for which the
Monitor message is sufficiently informative ‘or one from which the
user program cannot recover.

The error codes are an extension of the LOOKUP, ENTER;

and RENAME UUO error codes and are defined in the S.MAC Monitor

4-24

file.

LOOKUP, ENTER, RENAME, RUN, GETSEG UUO Error Codes

FNFEER 0 File not found

IPPEER 1 Incorrect proj-prog no.

PRTERR 2 Protection failure or direc-
tory full on DTA

FBMEER 3 File being modified

AEFEER 4! Already existing file

NLEEER 51 Neither LOOKUP or ENTER

TRNEER 6 Transmission error

NSFEER 7 Not a saved file

NECEER 10 Not enough core

DNAEER 11 Device not available

NSDEER 12 No such device

ILUEER 13! .Illegal UUO (GETSEG UUO on a

one- reglster machine)
The Monitor does not attempt an error return to a user program
after the high or low segment containing the RﬁN UUO has been
overlaid.
In order to éucceésfully program the RUN UUO for all size
systems and for all CUSPs whose size is not known at the time the

RUN UUO is coded, it is necessary to understand the sequencé of

s

operations it initiates.' Assume that the job executing the RUN UUO
has both a low and a high segment. (It can be executed from either
segment; however, fewer errors can be returned to the user if it is
executed from the high segment.)

The sequence of oéerations for the RUN UUO is as follows.

Does a high segment already exist with de51red name?
If yes, go to 30.
INIT and LOOKUP file name .SHR. If not found, go
to 10.
Read high file into top of low segment by extending
it. (Here the old low segment and new high segment
and old high segment together may not exceed the
capacity of core.)

. REMAP the top of low segment replacing old high
segment in loglcal addressing space.
If high segment is sharable (.SHR) store its name
so others can share it.
Always go to 40 or return to user if GETSEG UUO.

10. LOOKUP file name .HGH. If not found, go to 41 or
error return to user if GETSEG UUO.

!Not possible on RUN UUO

30.

35.

40.

41.

45.

390

~.

Read high file into top of low segment by extend-
ing it. (Here again the o0ld low segment and new
high segment and o0ld high segment together may not
exceed the capacity of core.)

Check for I/O errors. If any, error return to user
unless HALT in LH of return.

Go to 41.

Remove old high segment, if any, from logical ad-
dressing space.

Place the sharable segment in user's logical
addressing space. Go to 40 or return to user if
GETSEG UUO.)

Remove old high segment, if any, from logical
addressing space. .
(Go to 41)

Copy Vestigial Job Data area into Job Data area.
Does the new high segment have a low file

(LH JOBCOR>137)7?

If not, go to 45.

LOOKUP filename .SAV or .LOW or user specified
extension. Error if not found. Return to user if
there is no HALT in LH of error return, provided
that if the CALL is from the high segment it is
still the original high segment. Otherwise, the
Monitor prints the error message

ERROR IN JOB n

filename NOT FOUND, UUO AT USER addr
and stops the job.
Reassign low segment core according to size of file
or user specified core argument, whichever is
larger. Previous low segment is overlaid.

"Read low file into beginning of low segment.

Check for I/O errors. If there is an error, print
error message and do not return to user. If no
errors, perform START.

Reassign low segment core according to larger of
user's core argument or argument when file saved
(RH JOBCOR)

NOTE

In order to always be guaranteed of handling the
most number of errors, the cautious usger should
remove his high segment from high logical addressing
space (use core UUO with a one in LH of AC). The
error handling code should be put in the low seg-
ment along with the RUN UUO and the size of the low
segment reduced to 1lK. An even better idea would be
to have the error handling code be written once and
put in a seldom used (probably non-sharable) high
segment which ‘could be gotten in high segment using
GETSEG UUO (see below) when an error return occurs
to low segment on a RUN UUO.

4-26

. _ 391
'4.3.7.3 CALL\AC, [SIXBIT/GETSEG/] br CALLI AC, 40 - These have

been implemented so that a high segment can be initialized from é
file or shafed segment without affecting the low segment. It is
used for shared data segments and shared prograﬁ overlays. It is
also used for run—time routines such as FORTRAN or- COBOL operating
systems. These programmed operators work exactiy like the RUN UUO
with the following exceptions. ”

a) No attempt is made to read a low file.

b) The only change that is made to the low segment of

the Job Data area is to both halves of JOBHRL.

p
/

c) If an error occurs, control is returned to the loca-
tion of the erfor return, unless the left half of the location
contains a HALT instrﬁction.

d) On a normal return, control is returned to two loca-
tions following the UUO, whether it is called from low or high
segment. It should be called from low segment unless the normal
return coincides with the starting address of the new high segment.

‘ e) User channels 1 throuéh 17 are not released so the
GETSEG UUO can be used for program overlays, such as the COBOL
compiler. Channel 0 is released because it is used by the UUOZ

See steps 1 through 31 of the RUN UUO description for

details of the operation of the GETSEG UUO.

4.3.7.4 CALL AC, [SIXBIT/SPY/] or CALLI AC, 42 - These are used

lfor efficient examination of the Monitor during time sharing. Any
number of K of physical core is\placed into the user's logical high
segment. This amount canﬁot be saved (no error return if tried),
cannot be increased or decreased by the CORE UUO (error return
taken), or cannot have the user-mode write protect bit set (error

return taken).

392

\

The call is:

MOVEI AC, Highest physical core location
desired ’

CALL AC, [SIXBIT/SPY/] ;or CALLI AC, 42

error return

normal return

Any program that is written to use the SPY UUO should try the
PEEK UUO if it receives an error return. Some installations may

restrict use of the SPY UUO to certain privileged users (e.g.,

" project 1 only).

4.4 INPUT/OUTPUT PROGRAMMING

All user input/output operations are controlied by the
use of Monitor programmed operators. Thése are device independent,
iﬁ the sense that if an’operator is not pert%nent to a giVen de~-
vice, the operator is treated as a no-operation code. For
example, a rewipd directed to a line printer does nothing. Devices
are referenced by logicai names or physical names (see Chapter 2),
and the characteristics of a device can be obtained from the
Monitor. Properly used, these systems characteristics permit the
programmer to delay the device specification for his program from
program-generation until program—run time. I/O»is accomplished
by associating a device, a file,'and a ring buffer or command list

with one of a user‘s I1/0 channels.

4.4.1 File

A file is an ordered set of data on a peripheral device.
Its extent on input is determined by an end—of—file condition
dependent on the device. For instance, a file is terminated by
reading an end-of-file gap from magnetic tape, by an end-of-file
card from a card reader, -or by depressing the end-of-file switch

on a card reader (see Chapter 5). The eéxtent of a file on output

4-28

393
is determined by the amount of information written by the OUT
or OUTPUT programmed operators up through and including the next

CLOSE or RELEAS operator.

4.4.1.1 Device ~ To specify a filé, it is necessary to'specify
the device from wﬂich the file'is to be read or onto which the
file is to be written. This specification is made by an argument
of the INIT or OPEN programmed operators. Devices are separated
into two categories--those with no filename directory, and those
with one or more filename directories. \

a) NQn—difectory Devices - For non-directory devices,
e.g., card reader, line printer, paper tape reader and punch, and
user console, the only file specification required is the device
name. ‘All other file specifie?s, if ‘given, are ignored‘by the
Monitor. Magnetic tape, which is also a non—directpry device,
fequires, in addition to the name, that the tape be properly posi-
‘tioned. Even though LOOKUP is not required to read and ENTER is
not required to write, it is always advisable to use them so that
a directory device may be substituted for a non-di;ectory'hevice
at run time. (using the Monitor command, ASSIGN). Only in this way
can user programs be truly device independent.

v b) Directory Devices -~ For directory devices, e.qg.,
DE€tape and disk, files are addressable by name. If the device
has a single file directory, e.g., DECtape, the device name and
filename are sufficient information to determine a file. If the
devicé has multiﬁle file directories, e.g., disk, the name of the

file directory must also be specified. These names are specified

as arguments to the LOOKUP, ENTER, and RENAME programmed operafors.

-

304 /

4.4.1.2 Data Modes - Data transmissions are either unbuffered. or

buf fered.

(Unbuffered mode is sometimes referred to as dump modé.)

The mode of transmission is specified by a 4-bit argument to the

INIT, OPEN, or SETSTS programmed operators. Table 4-3 and Table

4-4 summarize the data modes.

‘

Table 4-3

Buffered Data Modes

Octal Code

Mnemonic

Meaning

0

2-7
10

11-12

13

14

A

AL

IB

ASCII. 7-bit characters packed left
justified, five characters per word.

ASCII line. Same as 0, except that the
buffer is terminated by a FORM, VT,
LINE-FEED or ALTMODE character.

Unused.

Image. A device dependent mode. The
buffer is filled with data exactly as
supplied by the device.

Unused.

image binarg. 36-bit bytes. This mode is
similar to binary mode, except that no
automatic formatting or checksumming

is done by the Monitor.

Binary. 36-bit byte. This is blocked
format consisting of a word count, n (the
right half of the first data word of the
buffer), followed by n 36-bit data words.
Checksum for cards and paper tape.

Table 4-4

Unbuffered Data Modes

15

16

17

ID

DR

Image Dump. A device dependent dump mode.

Dump as records without core buffering.
Data is transmitted between any contiguous

blocks of core and one or more standard
length records on the device for each
command word in the command list.

Dump one record without core buffering.
Data is transmitted bétween any contiguous
block of core and exactly one record of
arbitrary length on the device for each
command word in the command list.

. 395 . O
a) Unbuffered Data Modes - Data modes 15, 16 and 17\
utilize a command list to specify areas in the user's allocated
core to be read or written. The effective address of the IN, INPUT,
OUT, and OUTPUT programmed operators points to the first word of
the command list. Three types of entries may occur in the command
list.
1) IOWD - n, loc - Causes n words from loc through
loc+n=1 to be transmitted.. The next command
~ is obtained from the next location following
the IOWD. The assembler pseudo-op IOWD
generates XWD -h, loc-1.

2) XWD 0, y - Causes the next command to be taken
from location y. Referred to as a GOTO word.

3); 0 - Terminates the command list.

The Monitor does not return program control to the user
until the command list has been completely processed. If an illegal
address is encountered while processing the list, the job is stopped
and the Monitor prints |

ADDRESS CHECK AT USER addr
on the user's console, leaving the console in Monitor mode.

b) Buffered Data Modes - Data modes 0, 1, 10, 13, and
14 utilize a ring of buffers in the user area and the priority
interrupt system to permit the user to overlap computation with his
data transmission. Core memory in the user's area serves as an
intermediate buffer between the user's program and the device. A
ring of buffers consists of a 3-word header block for bookkeeping
and a data storage area subdivided into one or more individual
buffers linked togéther to form a ring. During input operations,
the Monitor fills a buffer, makes the buffer available tb the user's,
program, advances to the next buffer in the riﬁg and fills it if
it is free. The user's program follows along behind, emptying the

next buffer if it is full, or waiting for the next buffer to fill.

396

During output operations, the user's program and the Monitor ex-

change roles, the user filiing the buffers and the Monitor empty-

ing them.

1)

Buffer Structure - A ring of buffers consists of
a 3-word header block and a data storage area
subdivided into one or more individual buffers
linked together to form a ring. The ring buffer
layout is shown in Figure 4-1, and explained in
the paragraphs which follow.

(a)

(b)

Buffer Header Block - The location of the
3-word buffer header block is specified by
an argument of the INIT and OPEN operators.
Information is stored in the header by the
Monitor in response to user execution of
Monitor programmed operators. The user's
program finds all the information required
to fill and empty buffers in the header.
Bit position 0 of the first word of the
header is a flag which, if 1, means that
no input or output has occurred for this
ring of buffers. The right half of the
first word is the address of the second
word of the buffer currently in use by the

‘user's program. The second word of the

header contains a byte pointer to the
current byte in the current buffer. The
byte size is determined by the data mode.
The third worh of the header contains the
number of bytes remaining in the buffer.
A program may not use a single buffer
header for both input and output, nor may
a single buffer header be used for more
than one I/0 function at a time.

Buffer Data Storage Area - The buffer data
storage area is established by the INBUF
and OUTBUF operators, or, if none exists
when the first IN, INPUT, OUT, or OUTPUT
operator is executed, a 2-buffer ring is
set up. The effective address of the
INBUF and OUTBUF operators specifies the
number of buffers in the ring. The loca-
tion of the buffer storage area is speci-
fied by the contents.of the right half of
JOBFF in the user's Job Data area. The
Monitor updates JOBFF to point to the first
location past the storage area.

All buffers in the ring are identical
in structure. As Figure 4-2 shows, the
right half of the first word contains the
file status at the time that the Monitor
advanced to the next buffer in the ring.
Bit 0 of the second word of a buffer,
called the use bit, is a flag that indicates

4-32 ' \

397

whether the buffer contains active data.
This bit is set to 1 by the Monitor when
the buffer is full on input or being
emptied on output, and set to 0 when the
buffer is empty on output or is being filled
on input. The use bit prevents the.Monitor
and the user's program from interfering
with each other by attempting to use the
same buffer simultaneously. Buffers are
advanced by using the UUO's and not by the
user's program. The use bit in each buffer
should never be changed by the user's pro-
gram except by means of the UUO's. Bits 1
through 17 of the second word of the buffer
contain the size of the data area of the
buffer which .immediately follows the second
word. The size of this data area depends
on the device. The right half of the first
word of the data area of the buffer, i.e.,

~

BUFFER HEADER BLOCK
RING

USE
BIT

v CURRENT
_ BUFFER [~

BYTE POINTER

BYTE COUNT

DATA STORAGE AREA
USE FLAG

FILE STATUS

p | SIZE BUF2
BUF 1.

DATA

.
USE FLAG .
.

FILE STATUS
SIZE | BUFj+1 |ag—

BUF

DATA

.
USE FLAG .
.

FILE STATUS

bl SIZE I BUF1

BUFn!

DATA

Figure 4-1
User's Ring of Buffers

¢ 398 !

the third word of the buffer, is reserved
for a count of the number gf words (ex-
cluding itself) that actually contain data.
The left half of this word is reserved for
other bookkeeping purposes, depending on
the particular - 'device and the data mode.

FILE STATUS FIRST WORD
ADDRESS OF SECOND

SIZE OF

USE BIT — WORD OF NEXT | SECOND WORD
, DATA AREA | 5y FFER IN RING ; :
/ - BO0OKKEEPING WORD COUNT, N THIRD WORD
N DATA WORDS DATA AREA

UNUSED

Figure 4-2

Detailed Diagram of Individual Buffer

4.4.1.3 File Status - The file status is a set of 18 bits (right
half word), which reflects the current state of*a file transmission.
The initial status is a parémeter of the INIT and OPEN operators.

- Thereafter, bits are set by the Monitor, and may be tested and reset
by the user via Monitor programmed operators. Table 4-5 defines
the file status bits. All bits, except the end-of-file bit, are
set immediately by the Monitor as the conditions occur, rafher than
being -associated with the buffer that the user is currently working
on.\ Howevqf, the file status is stored with each buffgr so that
the user can determine which bufferful produced an error. A more
thorough desc;iption of bits 18 through 29 is given in Chapter 5.

4-34 ' ~ ‘

.\’3”. v‘ v . | '/
Table 4-5

Eile Status

Bit ' Meaning

18 ' Improper mode, e.g., attempt to write on a write-
locked tape.

19 Device detected error, other than hardware chechsum
or parity. Checksum, and/or parity error detected by
hardware and/or software.

20 Data error, e.g., a computed checksum failed or invalid
data was received,

21 Block too large. A block of data from a device is too

large to fit in a buffer, or a block number is too
large.

22 End of file.

23) Device is actively transmitting or receiving data.

24-29 ’ Device dependent parameters. (See Chapter 5.)

30 _ Synchronéus input. Stop the device after each buffer
is filled.

31 Forces the Monitor to use the word count in the first -
data word of the buffer (output only). The Monitor

p normally computes the word count from the byte pointer

in the buffer header.

32-35 . Data mode. See Table 4-3 and Table 4-4.

4.4.2 Initialization

4.4.2.1 Job Initialization - The Monitor programmed operator

CALL [SIXBIT/RESET/] or CALLI 0
should normally be the first instruction in each uéer program.
It immediately stops all input/output transﬁissions on all devices
without waiting for the devices to become inactive. All device
allocations made by the INIT and OPEN operators afe c1eared,>ana,

unless the devices have been assigned by the ASSIGN command

4-35 . :)

400
(see Chapter 2), the devices are returned to the Monitor facili-

ties pool. The content of the left half of JOBSA (program break)
ié stored in the right half of JOBFF 'so that the user buffer area
is reclaimed if the progrém is starting over.‘ The left half of
JOBFF is cleared. Any files which have not been closed are de-
leted on disk. Any older version having the same filename remains.
The user-mode write-protect bit is aﬁtomatically set if a high
segment exists, whether it is sharable or not, so that a program

cannot inadvertently store into the high segment.

4.4.2.2 Device Initialization

OPEN D, SPEC) INIT D,STATUS

error return . SIXBIT/ldev/

normal return XWD OBUF, IBUF
. error return
. normal return

SPEC:E&P STATUS
SIXBIT/ldev/
‘ XWD OBUF, IBUF
The OPEN (operation codg 050) and iNIT (operation code 041) pro-
~grammed operators initialize a file by specifying a device, ldev,
and initial file status, STATUS, and the location of £he input and
output buffer headers.

/ a) Data Channel - OPEN and INIT establish a correspon-
dence between the device, ldev, and a 4-bit data channel humber, D.
Most of the other input/output operators require this channel num-
ber as an argument. If a device is already assigned to channel D,
it is released. (See RELEAS in this chapter.) The device name,
ldev, is either a logical or physical name, with logical names
taking precedence over bhysical names. (See ASSIGN command,
Chapter 2.) 1If the device, ldev, is not the system device, SYS,
and is allocated to another job or does not exist, the error return

is taken. If the device is the system device, SYS, the job is

4-36

N

401
put iﬁto‘a system device.wait queué, and will continue running when
SYS becomes available. | ») |
p b) Initi;l File Status - The file status, inéluding the
daté mode, is set to the value of the symbol STATUS. If the data
mode isvnot legal (see Chapter 5) for the spécified device, the
job is stopped and the Moﬁitor brints
ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr,
where dev is the physical name of the device and addr is the loca-
tion of the OPEN or INIT operator, on the user's console and leaves
the console in Monitor mode. R
c) Bﬁffer Header - Symbols OBUF and IBUF, if non-zero,
specify the location of the first word of the 3-word buffer header
for output and input, respectively. Only those headers which are
to be used need to be specified. For instance, the output header
need not be specifiéd, if only input is to be done. Also, data
modes 15, 16, and 17 require no header. If either of the buffer
"headers or the 3-word block starting at 1ocation SPEC lies outsidé
the user's allocated Eére area,! the job is stopped and the Monitor
prints
ILLEGAL UUO AT USER addr
(addr is the address of the OPEN or INIT operator) on the user's
'console;leaving the console in Monitor mode.
The first and third words of the buffer header are set
to zero. The left half of the second word is set up with the byte

pointer size field in bits 6 through 11 for the selected device-

data mode combination.

!Buffer headers may not be in the user’'s AC's. ‘However,vthey may
be in locations above JOBPFI. (See Table 3.1)

4«37 .

402

4.4.2.3 Buffer Initialization - Buffer data storage areas may be

established by the INBUF and OUTBUF programmed operators, or by
the first IN, INPUT, OﬁT, or OUTPUT operator, if none exists at
that time, or the user may set up his own buffer data storage area.

. a) Monitor Generated Buffers - Each device has associated
with it a standard buffer size (see Chapter 5). The Monitor pro-
grammed operatobrs INBUF D, n (operation code 064) and OUTBUF D,n
(operation code 065) set up a ring‘of n standard size buffers
associated with the input and output buffer headéis, respectively,
specified‘by the last OPEN or INIT oper;tor on data channel D.
If no OPEN or INIT operator has been perfdrmed on channel D, the
Monitor stops the job and prints

I/O'TO UﬁASSIGNED CHANNEL AT USER addr

(addr is the location of the INBUF or OUTBUF operator) an the user's
console, leaving the console in Monitor mode.

The storage space for the ring is taken from successive
locations, beginning with the location specified in.the right‘half
‘bf JOBFF. This is set to the program break, which is the first
free location above the program area, by RESET. If there is in-
sufficient space to set up the ring, the Monitor will automatically
attempt to expand the user's core allocation by 1K. If this fails,
the Monitor stops the job and prints- - |

ADDRESS CHECK FOR DEVICE ldev AT USER addr

(ldev is the physical name of the device associated with channel D
and addr is the location of the INBUF ér OUTBUF operator) on the
user's console, leaving the console in Monitor mode.

The ring is set up by setting thé second word of each
buffer with a zero use bit, the‘appropriate data area size, and the
link to the nextlbuffer. The first word of the buffer header i§

set with“a 1 in the ring use bit, and the right half contains the

4-38

- o
address of the second word of the first buffer.

b) User Generated Buffers - The following code illus-
trates an alternative to the use of ﬁhe INBUF programﬁed operator.
‘Analogous code may replace OUTBUF. This user code operates simi-
larly to INBUF. SIZE'must be set equal to the greatest number of

data words expected in one physical record.

GO: INIT 1, O ; INITIALIZE ASCII MODE
: SIXBIT/MTAOQ/ sMAGNETIC TAPE UNIT O
XWD 0, MAGBUF : ; INPUT ONLY

JRST, NOTAVL

MOVE 0, [XWD 400000,BUF1+1] ;THE 400000 IN THE LEFT HALF
;MEANS THE BUFFER WAS NEVER
; REFERENCED.

MOVEM 0, MAGBUF ~

MOVE 0, [POINT BYTSIZ,0,35] ;SET UP NON-STANDARD BYTE

;SIZE
MOVEM 0, MAGBUF+1
JRST CONTIN : ;GO BACK TO MAIN SEQUENCE
MAGBUF: BLOCK 3 ; SPACE FOR BUFFER HEADER
BUF1: 0 ;BUFFER 1, 1ST WORD UNUSED
XWD SIZE+2,BUF2+1 ;LEFT HALF CONTAINS BUFFER

;SIZE, RIGHT HALF HAS
;ADDRESS OF NEXT BUFFER
BLOCK SIZE+1 ;SPACE FOR. DATA, 1ST WORD
;RECEIVES WORD-COUNT. THUS
;ONE MORE WORD IS RESERVED
;THAN IS REQUIRED FOR DATA

;ALONE

BUF2: 0 ; SECOND BUFFER

XWD SIZE+2,BUF3+1

BLOCK SIZE+1
BUF3: 0 , ;THIRD BUFFER

XWD SIZE+2,BUF1+1 ;RIGHT HALF CLOSES THE RING

BLOCK SIZE+1 ‘
4.4.2.4 File Selection (LOOKUP and ENTER) - The LOOKUP (operation

code 076) and ENTER (operation code 077) programméd operators select
a file for input and output, respectively. Although these operators
are not necessary for non-directory dévices, it is good programming
practice to always use them so that directory devices mé& be sub-

stituted at run time. (See ASSIGN, Chapter 2.)

a) LOOKUP D,E
error return.
normal return

.

E: SIXBIT/file/ ;filename, 1 to 6 characters.
SIXBIT/ext/ ;filename extension, 0 to 3
;characters.
0

XWD project number, programmer number,

LOOKUP selects a file for input on channel D. If no
device has been asséciated with channel D by an INIT or OPEN UUO,
tpe Monitor prints

I/0 TO UNASSIGNED CHANNEL AT USER addr
and returns the user's console to Monitor mode. If the input side
of channel D is-not closed (see CLOSE, in this chapter), it is now
closed. The output side of channel D is not affected. 1If the
device associated with channel D does not have a dfrectory, the
normal return is now taken. If the device has multiple directories,
e;g., disk, the Monitor searches the ﬁaster file directory of the
device for the user's file directory whose number is in“locétion
E+3 and whosé extension is UFD. If E+3 contains zero,vthg prdject—
prograﬁmer pair of_the current job is used as the name of the
user's file directoryl If this file is not found in the master
file directory, 1l is stored in bits 33 through 35 of location E+l
and the error return is takén.

| The éser's file directory or the device directory in the
case of a single-directory device (e.g., DECtape) is searched for
the file whose name is in location E and whose extension is in the
leftvhaif of location E+1. 1If the file is not found, 0 is stored
in the right half of E+1 and the error return is taken. If the
device is a multiple-directory device (e.g., disk) and the file is

foﬁnd, but is read protected (see File Protection in this chapter),

4-40

405

‘2 is stored in the right half of location E+l and the error return

is taken. Otherwise, location E+1 through E+3 are filled by the

Monitor with the following data concerning the file, and the normal

return is taken.

1)

2)

3)

4)

5)

6)

The left half of location E+1l remains set to the
filename extension.

If the device is a multiple-directory device,
bits 24 through 35 of location E+l1 are set to
the date (in the format of DAYTIME programmed
operator) that the file was last referenced.

If the déyice is a single-directory device,
the right half of location E+1 is set to the
device block number of the first block of the
file. »

If the device is a multiple-directory device,
bits 0 through 8 of location E+2 are set to the
file protection. (See "File Protection," this
chapter.)

Bits 9 through 12 of location E+2 are set .to the
data mode in which the file was written.

Bits 13 through 23 of location E+2 are set to the
time, in minutes, and bits 24 through 35 of loca-
tion E+2 are set to the date (in the format of
the DAYTIME programmed operator) of the file's
creation, i.e., of the last ENTER or RENAME
programmed operator. ,

If the device is a multiple-directory device, the
left half of location E+3 is set to the negative
of the. number of -words in the file, and the right
half is unchanged. If the file contains more '
than 2'7 words, then the left half contains the
positive number of 128-word blocks in the file.

If the device is a single-directory device,
location E+3 is used only for SAVed files (see
Chapter 3), and contains the IOWD of the core
image, i.e., the left half is the negative word
length of the file and the right half is the. core
address of the first word minus 1.

b) ENTER D,E
error return
normal return

E: SIXBIT/file/ ;filename, 1 through 6
. ;characters.
SIXBIT/ext/ ’ ;filename, extension, 0

. ;through 3 characters.
EXP<TIME>B23+4+DATE

XWD project number, programmer number.

ENTER selects‘a file for output on chénnel D. If no de-
vice has‘béep associated with channel D by an INIT or-OPEN uvo, the
Mgnitor prints

I/0 TO UNASSIGNED CHANNEL AT USER addr
and returns the user's console to Monitor mode. If the output side
of channel D is not closed (see CLOéE in this chapter), it is now
closed. The input side of channel D is ﬁot affected. 1If the device
doeé not have a directory, the normal return is now taken.

) If the device has multiple directories, e.g., disk, the
Monitor searches the master file directory of the device for the
user's file directory whose name is in location E+3 and whose ex-
tension if UFD. If E+3 contains 0, the project-programmer pair of
the current job is uséd as the name of the user's file directory.
If this file is not found in the master file directory, 1 is stored
in bits 33 through 35 6f location E+1l, and the error return is
taken. Since a null filename is illegal, if the filename in loca-
tion E is 0, 0 is stored in bits 33 through 35 of location E+l1l, and
the error return is taken. The user's file directory; or the device‘
file directory in the case of a single-directory device,.such as
DECtape, is sea;ched for the file whose name is in location E and
whose éxtension is in the left hélf of location E+l..

If the device is a multiple-directory device and the file

is found but is being written or renamed, 3 is stored in bits 33

7

‘

4-42

. . 407 . ,
through 35 of iocation E+1, and the error return is taken. If the

file is write protected (See "File Protection", this Chapter), 2
is stored in bité 33 through 35 of location E+1, and the error re-
turn is taken. ’

If the file is found, and is not being written ?r renamed
and is not writeiprotected, then the file is deleted, and the storage
space on the device is recovered.

On disk, this deletion of the previous version does not
6ccur until outpuf CLOSE time. Consequenfly; if the new file is
aborted when partiaily written, the o0ld version remains. On DECtape,
the deletion must occur immediately upon ENTER to insure that space
is available for writing the new version of ;he file.

The Monitor then makes the file entry by recording the
following information cdncerning the file and takes the normal return.

a) The filename is taken from location E.

b) The filename extension is téken from the left half of
location E+1.

c) If the device is a multiple—directory device, then

1) the current date is taken as the date of last
reference,

2) the file protection key is set to 055 (see "File
Protection," this chapter),

3) the current data mode is taken as the mode in
. which the file is to be written,

4) the project number of the current job is taken
as the file owner's project number, and

5) if bits 13 through 35 of location E+2 are non-
zero, bits 13 through 23 are taken as the time
of creation, in minutes, and bits 24 through 35
are taken as the date of creation (in the format
of the DAYTIME programmed operator) of the file.
Otherwise, the current time and date are used.

If the device is a single-directory device, and if

bits 24 through 35 of location E+2 are non-zero, they are taken as

408 .
the date of creation; otherwise, the current date is usedl

4.4.2.5 File Protection and the RENAME Operator - File protection

on non-directory and single-directory devices is obtained by use of

the ASSIGN command (see Chapter 2). Multiple-directory devices have

a master file directory for the device which contéins entries for

each user's filé directory. File selection (see LOOKUP and ENEER

in this chapter) requires specification of the name oan user's

file directory and a filename within that directory. Since this

permits each user to access all files on the device, a file pro-

“tection scheme to prevent unauthorized references is' necessary. .

For file protection purposés users are divided into three categories:
a) The file owner is the user whose programmer number

is the-same as that in the NAME field of the user's file directory

in which the file is entéred. (Some installations may modify the

Monitor to require both project and programmer numbers to match.)

b) Project members are users whose project number is the

same as that of the file owner.

c) All other users.

There are three types of protectioh against each of thé
three categories of users.

a) Protection-protection - the protection cannot be

altered.))

OWNER PROJECT OTHER
A A

—N v v)
o

LI] |

WRITE
PROTECTION

READ :
PROTECTION

PROTECTION
PROTECTION

Figure 4-3 File Protection’ Key

4-44

7 409

b) Read protection - tie file may not be read.

c) Write protection - the file may not be modified.

The file protection key, shown in the foregoing figure, is a
set of nine bits which specify the three types of protection for each
category of uéer. (See 5.8.2.4) WhenAa file is created by an ENTER
programmed operator, the file protection key is set to 055, indicating
that the file is protection-protected and wrife—protectéd against ali
‘users except the owner. The protection key is returned byAthe LOOKUP
D, E. programmed operator in bits 6 through 8 of location E+2. It can
be changed by the RENAME programmed operator. The owner's protection-
protection and read-protection bité are ignored by the Monitor, thereby
preventing a file from becoming‘inaccessible to everyone. Moreover,
the owner protection-protection bit has been‘taken over to specify that
a user wishes to protect his file from.deletion when he logs off the
system. This feature is handled completely by the LOGOUT CUSP.

.RENAME D,E

error return

normal return

E: SIXBIT/file/ ;filename, 1 thfough 6 characters.

SIXBIT/ext/ . ;filename extension, 0 through 3 characters.

EXP<PROT>B8+ ¢TIMEXB23+DATE :

XWD project number, programmer number.

The RENAME programmed operator (operation code 055) is used
to alter the filepame, filename extension, and file protection key or
delete a file associated with channel D on a directory device.

If no device is associated with channel D, the Monitor prints
I/0 TO UNASSIGNED CHANNEL AT USER addr and returns the user's console tc
Monitor mode. If the device is a nondirectory device, the normal re-
turn is taken. If no file is selected on channel D, 5 is stored in

bits 33 through 35 of location E+1, and the error return is taken.

4-45

410 '

If the device has multiple difectories, e.g., disk,‘the
Monifor searches the master file directory of the device for the.
usexr's file direcﬁory whose name is in location E+3 and whose ex-
tension is UFD. If E+3 contains 0, the project-programmer pair of
the current job is used as the name of the user's file directory
If this file is not found ih the master file directory, 1 is stored
in bits 33 through 35 of location E+l, and the error return is taken.
The user's file directory, or the device file directory in the case
of a single-directory device, is searched for the file currently
selected on channel D. If the file is not found, 0 is stored in
bits 33 through 35 of location E+l, and the error return is taken.

If the device is a multiple-directory device and the file
is found, but is being written or renamed, 3 is stored in bits 33
through 35 of location E+l, and the error return is taken. If the
file is owner write-protected or if the protection key is being
modified, i.e., bits 0 through 8 of location E+2 differ from the
current protection key, and the file is owner protection-protected,
‘2 is stored in bits 33 through 35 of location E+1, and the error
return is taken.

If the ﬁew filename in location E is 0, the file is
‘deleted, or marked for deletion, after all read references are com-
pleted,’and the normal return is taken. If the filename in location
E and the filename extension in the left half of location E+1 are
the same as the current filename and filename extension, respec-
tively, the protection key is set to the contents of bits 0 through
8 of location E+2, and the normal return.is taken.

If the new filename in location E and/or the filename
extension in the left half of,locatibn E+1l differ from the current
filename and/or filename exténsionr.the user's file directory (or the
device directory) is searched for the new filename and extension, as.

4-46

4n‘ ' . \
in LOOKUP. If a match is found, 4 is stored in bits 33 through 35
of location E+1l, and the érror return is taken. If no match is
found, the file is changed to the new name in location E, the file-
name extension is changed to the new filename extension in the left
half of location E+1, the protection key is set to the contents of
bits 0 through 8 of location E+2, the access date is set to the

current date, and the normal return is taken.

4.4.2.6 Examples

General Device Initialization

INIDEV: 0 ;JSR HERE
INIT 3, 14 ;BINARY MODE, CHANNEL 3
SIXBIT/DTA5/ ;DEVICE DECTAPE UNIT 5
XWD OBUF, IBUF ;BOTH INPUT AND OUTPUT
~ JRST NOTAVL ;WHERE TO GO IF DTA5 IS BUSY

;FROM HERE DOWN IS OPTIONAL DEPENDING ON THE DEVICE AND PROGRAM
;s REQUIREMENTS

'MOVE 0, JOBFF
MOVEM 0, SV JBFF ;SAVE THE FIRST ADDRESS OF THE BUFFER
;RING IN CASE THE SPACE MUST BE

’ i RECLAIMED
INBUF 3,4 ;SET UP 4 INPUT BUFFERS
OUTBUF 3,1 ;SET UP 1 OUTPUT BUFFER
LOOKUP 3, INNAM ;INITIALIZE AN INPUT FILE
JRST NOTFND ;WHERE TO GO IF THE INPUT FILE NAME IS

;NOT IN THE DIRECTORY
ENTER 3, OUTNAME ;INITIALIZE AN OUTPUT FILE

JRST NOROOM ;WHERE TO GO IF THERE IS NO RODM IN
;THE DIRECTORY FOR A NEW FILE NAME
JRST @INIDEV ;RETURN TO MAIN SEQUENCE
OBUF BLOCK 3 ;SPACE FOR OUTPUT BUFFER HEADER
IBUF BLOCK 3 ;SPACE FOR INPUT BUFFER HEADER
INNAM: SIXBIT/NAME/ ;FILE NAME
SIXBIT/EXT/ ;FILE NAME EXTENSION (OPTIONALLY 0),

i RIGHT HALF WORD RECEIVES THE
:) ;FIRST BLOCK NUMBER
0 i RECEIVES THE DATE

0 ;UNUSED FOR NONDUMP I/O ..
OUTNAM: SIXBIT/NAME/ ;SAME INFORMATION AS IN INNAME

SIXBIT/EXT/

0

0

S 412

»

4.4.3 Data Transmission

The programmed operators
INPUT D,E and IN D,E
normal return
error return

transmit data from the file selected on channel D to the user's

core area. The programmed operators
OUTPUT D,E and OUT D,E)
normal return
~error return
transmit dafa from the user's core area to thé file selected on
channel D.
If no OPEN or INIT operator has been performed on channel
D, fhe Monitor stops the job and prints
I/0 TO UNASSIGNED CHANNEL AT USER addr
(addr is the location of the IN, INPUT, OUT, ér OUTPUT programmed
operator) on the user's conscle leaving the console in Monitor mode.
If the device is a multiple-directory device and no file is selected

on channel D, bit 18 of the file status is set to 1, and control

N

returns to the user's program. Control always retruns to the
location immediately following an INPUT (operation code 066) and
an OUTPUT (operation ccde 067). A check of the file status for end-

of-file and error conditions must then be made by another programmed

operator. Control returns to the location immediately following
an IN (operation code 056) and an OUT (operation code 057), if no
end-of-file or error condition exists, i.e., if bits 18 through 22
of the file status are all 0. .Othérwise, control returns tc the
éecond location following the IN or OUT. Note that IN and OUT

UUO's are the only ones in which the error return is alskip and the

neormal return is not a skip..

. o . a3

4.4.3.1 Unbuf fered kDump) Modes - In data modes 15, 16, and 17,

the effective address E of the INPUT, IN, OUTPUT, and OUT pro-

grammed operators is the address of the first word cf a command
list (see Section 4.4.1).. Control does not return to the program
until transmission is terminated or an errcr is detected.
s Example
Dump Output
Dump input is similar to dump output. This routine outputs

fixed-length records.

DMPINI: 0 o ;JSR HERE TO INITIALIZE A FILE
. INIT 0, 16 ; CHANNEL 0, DUMP MODE
SIXBIT/MTA2/ ;MAGNETIC TAPE UNIT 2
0 / ~ ;NO RING BUFFERS
JRST NOTAVL ;WHERE TO GO IF UNIT 2 IS BUSY
JRST @DMPINI ; RETURN

DMPOUT : 0 ;JSR HERE TO OUTPUT THE OUTPUT AREA
OUTPUT 0,OUTLST ; SPECIFIES DUMP OUTPUT ACCORDING -

« : ;TO THE LIST AT OUTLIST

STATZ 0, 740000 ; CHECK ERROR BITS
CALL[SIXBIT/EXIT/] ;QUIT IF AN ERROR OCCURS
JRST @DMPOUT ; RETURN

DMPDON : 0 ;JSR HERE TO WRITE AN END OF FILE
CLOSE 0, ;WRITE THE END OF FILE
STATZ 0, 740000 ;CHECK FOR ERROR DURING WRITE

;END OF FILE OPERATION
CALL[SIXBIT/EXIT/] ;QUIT IF ERROR OCCURS

RELEAS 0, ;RELINQUISH THE DEVICE
JRST @DMPDON ; RETURN
OUTLST: IOWD BUFSIZ,BUFFER ;SPECIFIES DUMPING A NUMBER OF

;WORDS EQUAL TO BUFSIZ, STARTING
;AT LOCATION BUFFER

0 ;SPECIFIES THE END OF THE COMMAND
; LIST
BUFFER BLOCK BUFSIZ ;OUTPUT BUFFER, MUST BE CLEARED

;AND FILLED BY THE MAIN PROGRAM

4.4.3.2 Buffered Modes - 1In data modes 0, 1, 10, 13 and 14 the

effective address E of the INPUT, IN, OUTPUT, and OUT programmed
cperatcrs may be used to alter the normal sequence of buffer ref-
erence. If E is 0, the address of the next buffer is cbtained
from the right half of the second word of the current buffer. If
E is ncnzero, it is the address of the second word of the next
buffer to be referenced. The buffer pointed to by E can be in an

\ - '

4-49

am

entirely separate ring from the present buffer. Once a newAbuffer
location is established, the following buffers are taken from the
ring started at E.

a) Input - If no input buffer ring is éstablished when
the first INPUT or IN ié executed, a 2-buffer ring is set up. (See
INBUF, Section 4.4.2.3)

Buffered input may ke performed synchronously or asyn-
chronously at the option of the user. If bit 30 of the file status
is 1, each INPUT and IN programmed operator does the following.

; 1. Clears the use bit in the second word of the

buffer whese address is in the right half of
the first word of the buffer header, thereby

making the buffer available for refllllng by
the Nonltor.

2. Advances to the next buffer by moving the
contents of the second word of the current buffer
to the right half of the first word of the 3-word
buffer header.

3. Returns control to the user's program if an end-
of-file or error condition exists. Otherwise,
the Monitor starts the device which flllS the
buffer and stops transmission.

4. Computes the number of bytes in the buffer from
the number of words in the buffer (right half
of the first data word of the kuffer) and the byte
size, and stores the result in the third word of
the buffer header.

5. Sets the positfbn and address fields of the byte
pointer in the second word of the buffer header,
so that the first data byte is obtalned by an
ILDB instruction.

6. Returns control to the user's program.

.

Thus, in synchronous mode, the position of a device, such
as magnetic tape, relative to the current data is easily determined.
The asynchronous input mdde differs in that once a device is started,
successive buffers in the ring are filled at the interrupt level
without stopping transmissicn until é buffer whose bit is 1 is
encountered. Control returns to the user's program after the first
buffer.is filled. The position/of the device relative to the data

4-50

415

currently being processed by the user's program depends on the number
of buffers in the ring and when the device was last stopped
Example:

General Subroutine to Input One Character

GETCHR: 0 ;JSR HERE AND STORE PC
GETCNT: SOSG IBUF+2 ; DECREMENT ,THE BYTE COUNT
JRST GETBUF ;BUFFER IS EMPTY (OR FIRST CALL AFTER
;INIT) .
\
GETNXT: ILDB AC, IBUF+l ;GET NEXT CHAR FROM BUFFER 1
JUMPN AC Q@GETCHR ;RETURN TO CALLER IF NOT NULL CHAR
JRST -GETCNT ; IGNORE NULL AND GET NEXT CHAR
GETBUF': IN 3 ; CALL MONITOR TO REFILL THIS BUFFER
JRST GETNXT ;s RETURN HERE WHEN NEXT BUFFER IS
; FULL (PROBABLY IMMEDIATELY)
JRST ENDTST $RETURN HERE ONLY IF ERROR OR EOF
ENDTST: STATZ 3, 740000 ;CHECK FOUR ERROR BITS FIRST
JRST INERR ;WHERE TO GO ON AN ERROR
JRST ENDFIL ;s WHERE TO GO ON AN END OF FILE

b. Output- If no output buffer rlng has been establlshed,
i.e., if the first word of the buffer header is 0, when the first
OUT or OUTPUT is executed,‘a 2-buffer ring is set up (see OUTBUF,
this chapter). If the ring use bit (bit 0 of the first word of the .
buffer header) is 1, it is set to 0, the current buffer is cleared
Fo all 0s, and the position and address fields of the buffer byte
pointer (the second word of the buffer header) are set so that the
first byte is properly stored by an IDPB instruction. The byte count
(the third word of the buffer header) is set to the maximum of bytes
Fhat may be stored in the buffer, and control is returned to the
user's program. Thus, the first OUT or OUTPUT initializes the
buffer header and the first buffer, but does not result in data
transmission.

If the ring use bit is 0 and bit 31 of the file status is

For some devices in ASCII mode, the item count provided will always
be a multiple of five characters. Since the last word of a buffer

may be partlallv full, user programs which rely ‘upon the item -count
snould always ignore null characters.

‘ ‘ 4%_

0, the number of words in the buffer is computed from the address
field of the buffer byte pointer (the second word of the buffer
header) and the buffer pointer (the first word of the buffer header) ,
and the result is stored in the right half/of the first data word

of the buffer. If bit 31 of thebfile status is 1, it is assumed that
the user has already set fhe word count in the right half of the first
data word. The buffer‘use bit (bit 0 of the second word of the buffer)
is set to 1, indicating that the buffer contains data to be trans-
mitted to the device. 1If the device is not currently active i.e.,
hot‘receiving data, it is startea. The buffer header is advanced to
the next buffer by setting the buffer pointer in the first word of

the buffe; headér. If the buffer use bit of the new buffer is 1, the
job is put into é wait state until the buffer is emptied at the in-
terrupt level. The buffer is then cleared to 0s, the buffer byte
pointer and byte count are initialized in the buffer header, and con-
trol is returned to the user's program.

Example:
General Subroutine to Output One Character

PUTCHR 0 ;JSR HERE AND STORE PC

SOSG . OBUF+2 ;INCREMENT BYTE COUNT

JRST PUTBUF ;NO MORE ROOM (OR FIRST CALL AFTER INIT)
PUTNXT: IDPB AC, OBUF+1l ;STORE THIS CHARACTER

JRST @PUTCHR ;AND RETURN TO CALLER
PUTBUF: ouT 3 ’ ;CALL MONITOR: TO EMPTY .THIS BUFFER

JRST PUTNXT ;RETURN HERE WHEN NEXT BUFFER IS

;EMPTY (PROBABLY IMMEDIATELY)

JRST OUTERR ;RETURN HERE ONLY IF .OUTPUT ERROR
OUTERR: GETSTS 3,AC ;GET THE ERROR STATUS TO LOOK AT
4.4.4 Status Checking and Setting

The file status (seé Table 4-5) is manipulated by the GETSTS

(operation code 062), STATZ (operation code 063), STATO (operation code

~ 061) and SETSTS (op code 060) programmed operators. In each case the

A_RD

417

accumulator field of the instruction selects a data channel. If
no device is associated with the specified data channel, the Monitor

'

stops the job and prints,
I/0 TO UNASSIGNED CHANNEL AT USER addr

(addr is the location of the GETSTS, STATZ, STATO, or SETSTS pro-
grammed operator) on the user's console leéving the console in
Monitor mode.

GETSTS D,E stores the file status of data channel D in
the right half and 0 in the left half of location E.

STATZ D,E skips, if all file status bits selected by the
effective address E are 0.

STATO D,E skips, if any file status bit selected by the
effective addréss E is 1. . l

SETSTS D,E waits until the device on channel D stops
transmitting data and replaces the current file status, except bit
23, with the effective address E. If the new data mode, indicated
in the right four bits of E, is not legal for the device, the job

is stopped and the Monitor prints,

ILL DEVICE DATA MODE FOR DEVICE dev AT USER addr

(dev is the physical name of the device and addr is the location
of‘the SETSTS operator) on the user's console leaving the console in
Monitor mode. If the user program changes the data mode, it must
also change the byte size for ﬁhe byte pointer in the input buffer
header (if any) and the byte size and item count in the output
buffer header (if any). Changing the output item count should be
done using the count already placed there by the Monitor and
.dividing or multipling by the appropriate conversion factor, rather

than assuming the length of a buffer.

4-53

418
4.4.5 Terminating A File (CLOSE)

File transmission is terminated by the CLOSE D,N (Oper-
ation code 070) programmed operator. If no device is associated
with channel D or if bits 34 and 35 of the instruction are both 1,
control returns to the user's program immediately.

If bit 34 is 0 and the input side of data channel D is
open, it is now closed. 1In data modes 15, 16, and 17, the effect
is'to execute a device dependent function and clear the end-of-file
flag, bit 22 of the file sfgtus. Data modeé 0, 1, 10, 13, and 14
have the additional effect, if an input buffer ring exists, of
setting the ring use bit (bit 0 of the first word of‘the buffer
header) to 1, setting the buffer byte count (the third word of the
buffer header) to 0 and setting the buffer use bit (bit 0 of the
second word 6f the buffer) of each buffer to 0.

If bit)35 of the instruction is 0 and the output side of
channel D is open, it is now closed. In data modes 15, 16, and 17,
the effect is_to execute a devige deﬁendent function. In data modes
0, 1, 10, 13, and 14, if a buffer ring exists, the following oper-
- ations are performed.

a) All data in the buffers that has not yet been trans-
mitted to the device is now written.

b) Device dependent functions are performed.

c) The ring‘use bit is set to 1.

d) The buffer byte count is set to 0.

e) Control returns to the user after transmission is

complete.

4

Example:
Terminating A File
DROPDV: 0 ;JSR HERE :
CLOSE 3, sWRITE END OF FILE AND TERMINAT
: INPUT
STATZ 3, 740000 ’fRECHECK FINAL ERROR BITS
JRST OUTERR ;ERROR DURING CLOSE
RELEAS 3, . ;RELINQUISH THE USE OF THE

. : :DEVICE, WRITE OUT THE DIRECTORY
MOVE 0, SVJBFF

MOVEM 0, JOBFF ;RECLAIM THE BUFFER SPACE
JRST. @ DROPDV ;RETURN TO MAIN SEQUENCE
4.4.6 Synchronization of Buffered I/O (CALL D, [SIXBIT/WAIT/

In some instances, such as recovery from transmission errors,
it is desirable to delay until a device complétes its input/output
activities. The programmed operators,

CALL D, [SIXBIT/WAIT/land CALLI D,1l0
return control to the usef's program when all data transfers on channel
D have finished. This UUO doés not wait for a Magtape spacing
operation, since no data transfer is in progress. An MTAPE D, 0 (see
Section 5.7.2) should be used to wait for spacing and I/0 activity
to finish on Magtape. If no device is associated with data channel
D, control returns immediately. After the device is stopped, the
position of the device relative to the data currently being processed

by the user's program can be determined by the buffer use bits.

4.4.7 Relinguishing A Device (RELEASE)

When all transmission between the user's program and a
device is finished, the program must relinquish the'device_by per-
forming a V l

_ RELEASE D,

RELEASE (operation code 071) returns contrbl immediately,

if‘no device is associated with data channel D. Otherwise, both

input and output sides‘ofvdata channel D are CLOSEd and the -~ -
' 4-55

420
correspondence between channel D and the device, which was established

by the INIT or OPEN programmed operators, is terminated. If the de-
vice is neither associated with another data channel nor assigned
by the ASSIGN command (see Chapter 2), it is returned to the Monitor's

pool of available facilities. Control is returned to the user's pro-

gram.
4.5 CORE CONTROL
4.5.1 CALL AC,[SIXBIT/CORE/]or CALLT, li - These provide a

user program with the ability to expand and contracf its core size
as its memory requirements change; In order to allocate core in
either or both segments, the left half of AC is used to specify the
highest user address to be assigned to the high seémenf. If the
left half of AC.contains 0, the high segment core assignment is not
changed. If the left half of AC is non-zero and is either less

than 400000 or the length of the low segment, whichever is greater,
‘the hig@ segment is eliminated. If this is executed from the high
segment, an illegal memory error message is printed when £he Monitor
attempts to return control to the illegal membry.

The error return is given if LH is greater than or equal
to 400000 and if either the system does not have a two-segment
capability or the user has been meddiing without write access
‘privileges (see section 4.6). A RH of 0 leaves the low segment core
assignment unaffected. The Monitor clears new core before assigning
it to the user, so that privacy of information is insured.

'In swapping systems, these programmed operators return the
maximum number of 1K core blocks (all of core minus the Monitof, un-
less an inétallation chooses to restrict the amount of core) avail-

able to the user. By restricting the amount of core available to

4-56

21

users, the number of jobs in core simultaneously is increased. 1In
non-swapping systems, the number of free and dormant 1K blocks are

[l

returned. Therefore, the CORE UUO and the CORE command return the

z

same information.

The call is: MOVE ACiXWD HIGH ADR or 0, LOW ADDR or 0]
‘ CALL AC, [SIXBIT/CORE/] or CALLI AC, 11 .
error return
normal return

The CORE UUO reassigns the iow segment (if RH is non-zerof
and then reassigns the high segment (if LH is non-zero). If thé
sum of the new low segment and the o0ld high segment exceeds the
maximum amount of core, allowed to a user, the error return is given,
the core assignment is unchanged, and the maximum core available‘to
the user for high and low segments (in 1K blocks) is returned in the
AC. In a non-swapping system, the number of free and dormant 1K
»blocks is returned. |

If the sum of the new low segment and the new high segment
exceeds the maximum amount of core allowed to a user, the error re-
turn is given, the new low segment is assigned, the oid high
segment remains, and the ma#imum core available to the user in 1K
blocks is returned in the AC. Therefore to increase the low seg-
ment and decrease the high segment at the same time, two sepafate
CORE UUO's should be used in-order to reduce ﬁhe chanceé of exceeding
the maximum size allowed to a user job.

'If the new low segment extends beyond 377777, the high
segment shifts up into the virtual addressing space instead of being
overlaid. If a long low segment is shortened to 377777 or less, the
high segment shifts from the virtual addressing space to 400000 in-
stead of growing longer or remaining where it was. If the high seg-
ment is a program, it does not execute properly after a shift un-
less it is a self-relocating program in which all transfer instrucf

tions are indexed. /
4-57)

422
If the high segment is eliminated by a CORE UUO , a sub-

sequent CORE UUO in which the LH is greater than 400000 will create °
a new, non-sharable segment rather than reestablishing the old high
segment. This segment becomes sharable after it has been a) given
an extension .SHR, b) written onto the storage device, c) closed

so that a directory entry is made, and d) initialized from the
storage device by GET,R, or RUN commands or RUN or GETSEG UUO's.
This is the same sequence which the Loader and the SAVE and GET

commands use to create and initialize new sharable segments.

4.5.2 CALL AC, [SIXBIT/SETUWP/ Jor CALLI AC,36 - These allow a

user program to set or clear the hardware user-mode write protect
bit and‘to obtain the previous setting. It must be used if a user
program is to modify the high segment.
The call is: CALL AC, [SIXBIT/SETUWP/] ; OR CALLI AC,36

error return

normal return

If the system has a two-register capability, the no;mal

"return will be given unless the user has been meddiing without
write privileges, in which caée an error réturn will be givén. This
happens whether or not the prbgram has a high segment because the
reentrant software is designed to allow ﬁsers to write programs for
two—register machines which will run under one-register machines.
Compatibility of source and relocatable binary files is therefore
maintained between one-register and two-register méchines.‘

If the system has a one-register capability, the error
return (bit 35 of AC=0) is given. This allows the user program to
find oﬁt whether or not the system has a two-segment capability.
The user prog;am specifies the setting of the user-mode write pro-
tect bit in bit 35 of AC (write protect =1, write privileges =0).

The previous setting of the user-mode write protect bit is returned

4-58

- 423
- v A
in bit 35 of AC, so that any user subroutine can-preserve the pre-
vious setting before changing it. Therefore, nested user sub-.
routines which each set or clear the bit can be written, provided
the subroutines save the previous value of the bit and restore it
upon returning to its caller.

4.6 Modiﬁying Shared Segments, and Meddling

Usually a high segment is write-protected, but it is
possible for a user program to turn off the user write-protect
bit or to increase or decrease a shared segment's core assignment
by using the SETUWP or CORE UUO's. These are legal from the high
or low segment, provided the sharable segment has not been "meddled"
with unless the user has write privileges for the file that initializec
the high segment. Even the malicious user can have fhe privilege of
rhnning such a program, although he does not have .the access rights
to modify the file used to initialize the sharable segment.

Meddling is defined as any of the following, even if the
user has privileges to write‘the file which initialized the sharable
segment. |

a) START or CSTART commands with an argument.

b) 'DEPOSIT command in the low or high segment;

c) RUN UUO with anything other than a 0 or l:in LH of AC
as a starting address increment.

d) GETSEG UUO-

It is not considered meddling to éo any of the foregoing with a
non-sharable program. It is never considered meddling to éypei+C
followed by START (withoug an argument), CONT, CCONT, CSTART (with-
out an argument), REENTER, DDT, SAVE, or E command.

When a sharable program is meddled with, the Monitor sets

the meddle bit for the user. An error return is given when the
. © 4-59 .

L an
clearing of the usef write—p¥§tect bit is attempted with the’
SETUWP UUO or the reassignment of core for the high segment (except
to remove it completely) is attempted with the CORE UUO. An attempt‘
to modify the high segment with the DEPOSIT command causes the
message
OUT OF BOUNDS
to be printed. If the user write-protect bit was noﬁ set when the
user meddled, it willvbe set so as to protect the high segment in
case it is being shared. The command and fhe two UUO's are allowed in
spite of meddling, if the user .has the access privileges to write
the file which initialized the high segment. ,

A privileged programmer is able to supersede a sharable
program which is in the process of being shared by a number of
users. Whenever a successful CLOSE, OUTPUT, or RENAME UUO is ex-
ecuted for a file with the same directory name and filéname (previous
name if the RENAME UUO is used) as the segment being shared, the
segment's name will be set to 0. New usefs’will not share the older
version, but will share the newer version. This requires the Monitor
to read the newly created file only once to initialize it. ‘The
Monitor deletes the older version\when all users are finished
sharing it.

Users with access privileges are able to write programs
which access sharable da£a segments via the GETSEG UUO (which is
meddling) and then turn off the user write-protect bit using
SETUWP UUO. With DECtape, write privileges exist if it is assigned
to the job (cannot be a system tape) or is not assigned to any job
and is not a system tape.

'When control can be transferred only to a small number of .

425

entry points (2) which the shared program is preparga to handle,
thén the shared program can do anything it has the privileges to
do, eQen though the person running the program does not have
these privileges.

The ASSIGN (and DEASSIGN, FINISH, KJOB if device was pre-
viously assigned by console) command. clears all shared segment
names currently in use which were initialized from tﬁe device, if
the device is removable (DTA,MTA).‘ Otherwise new users could
continue to share the old segment indefinitely, even if a new
version were mounted on the device. Thereforé, it is possible to
update the library during regular time-sharing, if the programmer
has the access privileges. In a DECtape system, a new CUSP tape
can be mounted followed by an ASSIGN SYS command which clears seg-
‘ment namesfor the physical device but does not assign the device

because everyone needs to share it.

426

427
. CHAPTER 5

Device Dependent Functions

This chapter explains. the unique features of each stan-
dard I/0 device. All devices accept the programmed operators ex-
plained in Chapter 4 unless otherwise indicated. Buffer sizes are
giveh in octal and include two bookkeeping words. The user may
determine the physical characteristics associated with a logical
Table 5-1 is’

device name by executing a DEVCHR UUO. (See 5.12.)

a summary of the characteristics of all devices.

Table 5-1
, {
Device Summary
Hardware Buffer!?
Physical Type Programmed Data |Size
Name Name Number Operator Modes| (Octal)
CTY Console | 626 INPUT, IN A, AL 23
Teletype|Models 33, | OUTPUT, OUT
35, 37
TTYO, TTYl,|Teletype|630, 680, | INPUT, IN A, aL | 23
ceey TTY77 or DC10 ouTPUT, OUT,
' TTCALL
PTY Pseudo- |None INPUT, IN A, AL 23
Teletype OouTPUT, OUT
PTR Paper |760 INPUT, IN A, AL,| 43
Tape I, B,
Reader IB
PTP Paper [761 OUTPUT, OUT A, AL, | 43
Tape I, B,
Punch IB
PLT Plotter |XY 10 OUTPUT, OUT A, AL,| 46
I, B,
IB
LPT or LPTOJfLine 646, LP10 | OUTPUT, OUT A, AL, 34
eee, LPT7 Printer I,
CDR Card 461, CR1O0 INPUT, IN A, AL, 36
Reader I, B

428
. Table 5-1 (Cont.)

Device Summary

~

Hardware Buffer!
Physical Type Programmed Data Size
Name Name Number Operator Modes | (Octal)
CDP Card CP10 ouTPUT, OUT 1a, AL,|35
Punch : B, IB
DTAO0, DTAl/DECtape | 551/555, INPUT, IN A, AL,|202
«e«e, DTA7 TD10/TD55 | OUTPUT, OUT I, B,
. LOOKUP IB, DR
ENTER D
MTAPE
, USETO
. USETI
' UGETF
CALL BIXBIT/UTPCLR/]
MTAQ,- MTAlL {Magnetic| 516, TM10 | INPUT, IN A, AL,}203
“ee., MTA7 |Tape TU20, TU79| OUTPUT, OUT I, B,
MTAPE IB,
' DR, D
DSK Disk RC10 INPUT, IN A, AL,|[203
ouTPUT, OUT I, B,
LOOKUP IB,
ENTER DR, D
RENAME ’
USETO
DIS Display | 30, 340 INPUT ID - | Dump
OUTPUT only

!Buffer sizes are subject to change and should be calculated rather
than assumed by user programs. A dummy INBUF or OUTBUF may be em-
ployed for this purpose.

5.1 TELETYPE

Device Name - TTYO, TTYl, ..:, TTY76, TTY77, CTY

Line number n of the Type 630 Data Communications System,
Data Line Scanner DC10, PDP-8 680 System, or PDP-8/I 680I System is
referred to as TTYn. The console Teletype is CTY. The Time-Sharing

Monitor automatically gives the logical name, TTY, to the user's

5-2

" 429
console whenever a job is initialized.

Teletyée device names are assigned dynamically. For intérf
console communication by program, it is necessary for one of the two
users to type DEASSIGN TTY in order to make his Teletype available
to the other user's program as an output or input device. Typing
ASSIGN TTYn is the only way to reassign a Teletype that has been de-
aésigned. Also see TALK command, Chapter 2.

Buffer Size - 238 words.

Two choices of Teletype routines are pfovided: a newer,
full duplex software routine and -an older, half duplex software rou-
tine. Use of the full duplex software is encouraged.

With a full duplex Teletype service, the two functioﬁs of
a console, typein and typeout, are handledvindependently and need not
be handled in the strict sense of outéut first and4then input. For
" example, if two operations are desired from PIP, the request for the
second operation can be typed before receiving the asterisk after
completion of the first. The echo of characters typed in will dis-
appear since the keyboard and the printing operations are indepen-"
dent. To stop output that is not wanted, a "Control O" is typed.
Also, the command "Control C" will not stop a program instantly.
Rather, the Control C will be delayed until the program requeéts
input from the keyboard, and then the program will be stopped. When
a program must be stopped instantly, as when it gets into.a loop,
Control C typed twice will stop the program.

Programs waiting for Teletype output will bg awakened
eight charactérs before the output buffer is empty, céusiﬁg them to
be swapped in sooner and preventing pauses in typing. Programs
waiting for Teletype input will be‘awakened ten characters before the

input buffer is filled, thus reducing the probability of lost typein.

¢

{

430
5.1.1 - Data Modes

5.1.1.1 Full-Duplex Software A(ASCII) and AL(ASCII Line)

The input handling of all control characters is as follows.

(All are passed to program except as noted below).

000 NULL \ Ignored on input, suppressed on output.
001 +A Echoes as +A. Passed to program.
002 +B Complements switch controlling echoing,

not passed to program. Used on local-
copy dataphones and TWX's.

003 4+C The Teletype mode is switched to Monitor

" mode the next time input is requested by
the program. Two successive 4C's cause
the mode to be switched to Monitor mode
immediately.

004 +D (EOT) 004 passed to program. Not echoed, so
typing in a "Control D" (EOT) will not
cause a full duplex dataphone to hang up.

005 +E (WRU) No special action.

006 . 1F Complements switch controlling transla-
tion of lower case letters to upper case.

' Used when lower case input is desired to
programs. Not sent to program, but pro-
gram can sense the state of this switch
by the TTCALL UUO.

007 +G (Bell) 007 passed to program, and is a break
character.
< 010 +H (Back- Acts as a RUBOUT, unless either DDT mode
space) " or full character set mode is true, or

the 4F switch is on. In these cases,
010 is sent to the program.
011 +I (TAB) 011 passed to program. Echoed as spaces
. if Teletype is a model 33 (determined by
4P switch). Spaces are not passed to

program.
012 47 (Line- Is a break character. ' No other special
feed) , action.
013 ¥k (Vertical - 013 passed to program. Echoes as four
: " Tab) linefeeds, if a model 33. 1Is a break

character. Linefeeds are not passed to
program. ,

014 AL (Form) 014 passed to program. Echoes as 8 line-

feeds on a 33. 1Is a break character.
. Linefeeds are not passed to program.
015 M (Carriage If Teletype is in paper-tape input mode, 015
Return) is simply passed to program. Otherwise
- supplies & linefeed echo, and is passed
to program as a CR and LF, and is a break
‘ character (due to LF). -

016 AN . No special action

017 +0 Suppresses output until an INPUT, or an
INIT, or OPEN UUO occurs. Not passed to
program. Typed as 40 followed by carriage
return-linefeed.

5-4

020 +P

021 +Q (XON)

022 4R (TAPE)
023 4S (XOFF)

024 4T (NO TAPE)
025 40U

026 4V
027 W
030 +X
031 +Y
032 +2Z

033 +[(EsC)

034 N\
035 4]
036 +4
037 < -
040-137
140-174

175 and 176
177

. 431

Does not appear in the input buffer. Some
Teletype units (usually Models 35 and 37)
have horizontal tab, vertical tab, and
form feed mechanisms while other units
(usually Model- 33s) do not. If the user
finds that his particular Teletype unit
does not have these mechanisms, he should
type tP. Otherwise, tabs will not be
printed at all or spaces will be substi-
tuted for a tab depending upon the
Monitor's assumption.

Starts paper-tape-mode, as described above.

Passed to program.)

No special action. v

Ends paper-tape mode, as described above.

023 is passed to program.

No special action. .

Deletes input line back to last break char-

acter. Typed back as 4U followed by

carriage return-linefeed.

No special action.

No special action.

No special_action.

No special action. N

Acts as end-of-file on Teletype input.

Echoes as 4% followed by carriage return-

linefeed. 1Is a break character. Appears

in buffer as 032.

This is the ASCII altmode these days, but

is translated to 175 before being passed

to the program, unless in full character

set mode (bit 29 in INIT). 175 is the 1963

altmode. Echoes as a dollar sign. Always,

is a break character.

No special action.

No special action.

No special action

No special action.

Printing characters, no special action.

"Lower case" ASCII. Translated to upper

case, unless +F switch is set. Echoes as

upper case if translated to upper case.
0ld versions of altmode. See description

of "ESC" (033).

RUBOUT or DELETE:

A) Completely ignored if in papertape mode
(XON)

B) Is a break character, passed to program
if either DDTmode or fullcharacter-set
mode is true. i

C) Otherwise (ordinary case) causes a
character to be deleted for each rubout
typed. All the characters deleted are
echoed between a single pair of back-
slashes. If no characters remain to
be deleted, echoes as a carriage -return-
linefeed.

: , . a2 : ,
On output, all characters are typed just as they appéar

in the output buffer with the exception of TAB, VT, and FORM, which

are processed the same as on type in.

5.1.1.2 Half-Duplex Software A (ASCII) - If, during output opera-

tions, an echo-check failure occurs (the transmitted character was
not the same as the intended character), thé I/0 routine suspends
output until the user types the next character. If that character

is 4C, the console is placed in Monitor mode immediately. If it is
+0, all Teletype output buffers that are currently full are ignored,
thﬁs cutting the output short. All other characters cause the
service routines to continue output. The user may cause a deliber-
ate echo check by typing in while typeout is in progress. For ex-
ample, to return to Monitor éontrol mode while typeout.is in progress,
the user must type any character ("X", for‘example) until an echo

. check occurs and output is suspended;: then and only then @e types 1C.

The buffer is terminated when it fills up or when the user

types *+Z.

5.1.1.3 Half-Duplex Software AL (ASCII Line) - Same as ASCII mode

(usually preferred) with the addition that the input buffer is ter-
minated by a CR/LF pair, FF, VT, or ALTMODE.

N

5.1.2 DDT Submode

To allow a user's program and the DDT debugging)program
to use the same Teletype without interfering with one another, the
Teletype service routine provides the DDT submdde. This mode does
not affect the Teletfpe status if it is initialized with the INIT
operator. It is not necessaiy to use INIT in order to do I/O in the

DDT submode. I/O in DDT mode is always to the user's Teletype and

5-6

433
not to'any other device.

In the DDT submode, the user's program is responsible for
its own buffering. Inéut is usually one character at a time, but if
‘the typist types characters faster than they are processed, the Teie—
type service routine supplies bufferfuls of characters at a time.

To input characters in DDT mode, use the sequence

MOVEI AC,BUF
CALL AC, [SIXBIT/DDTIN/]

' BUF is the first address of a 21-word block in the user's area. The
DDTIN operator delays, if necessary, until one character is typed in.
Then all characters (in 7-bit packed format) typed in since the pré—
vious occurrence of DDTIN are moved to the user's area in locations
BUF, BUF+1, etc. The character string is always‘terminated by a
null character (000). RUBOUTs are not.processed by the service
routine but are passed on to the user. The special control char-
acters 10 and 1U have.no effect. Other characters are processed as
in ASéII mode.

To perform output in DDT mode, use the sequence

MOVEI AC, BUF ,
CALL AC, [SIXBIT/DDTOUT/]

BUF is the first address of a string of packed 7-bit characters ter-
minated by a null (000) character. The Teletype service routine
delays until the previous DDTOUT operation is complete, then moves
the entire character string into the Monitor, begins outputting the
string, and restarts the user's program. Character processing.is

the same as for ASCII mode output.

5.1.3 Special Programmed Operator Service

TTCALL UUO is (and will always be) implemented only in
the "full duplex scanner service", SCNSRF. The general form of this

UUO is as follows:

434

OPDEF _ TTCALL [51B8] .
TTCALL AC, ADR

The AC field describes the particular function desired, and the argu-
ment (if any) is contained in ADR. ADR may be an AC or any address
in low segment above JOB AREA (137). It may be in high segment for

AC fields 1 and 3. The functions are:

AC Field Mnemonic Action
0 INCHRW Input character and wait
1 OUTCHR Output a character
2 INCHRS Input character and skip
3 OUTSTR Output a string)
4 INCHWL Input character, wait, line mode
5 INCHSL Input character, skip, line mode
6 GETLIN Get line characteristics
7 SETLIN Set line characteristics
10 RESCAN Reset input stream to command
11 CLRBFI Clear typein buffer
12 CLRBFO Clear typeout buffer
13 SKPINC Skips if a character can be input
14 SKPINL Skips if a line can be input
15-17 (Reserved for Expansion)

INCHRW TTCALL 0,ADR

This command inputs a character into location ADR. ADR may be an
AC or any other lopation in the user's low segment. If there is
no character yet typed, the program waits for it. |
OUTCHR TTCALL 1,ADR

This command outputs a chaiacter to the Teletype from location ADR.
Only the low order 7. bits of the contents of ADR are‘used. The
rest need not.be zeroes. .)

If thefe is no room in the output buffer, the pfbgram waits until
room is available. ADR may be in high.segment. ’

INCHRS TTCALL, 2,ADR

’This command is similar to INCHRW, except that it skips on a success-

ful return, and does not skip if there is no character in the input

buf fer; it never puts the job into a wait.

5-8

435

TTCALL _ 2,ADR ;

JRST NONE “;NO TYPEIN

JRST DONE. ; CHARACTER IN ADR
OUTSTR . TTCALL 3,ADR

This command outputs a string of characters in ASCIZ format:

TTCALL ’ 3,MESSAGE

MESSAGE: ASCIZ /TYPE THIS 6UT/

ADR may be in high segment 7
INCHWL TTCALL 4,ADR
 This command is the same as INCHRW, except that it decides whether
or not to wait on the basis of lines rather than characters; as
such, it is the preferred way of inputting characters, since INCHRW
causes a swap to occur for each character rather than eaqh line
(compafe DDT and PIP input, fér instance).
INCHSL TTCALL 5,ADR '
This command is the same as INCHRS, except that its decision whether
to skip is made on the basis of lines rather than characters.
GETLIN TTCALL 6,ADR |
This command takes one argument, from location ADR, and returns one
word, also in ADR. The argument is a huﬁber, representing a Teletype
line. If the argument is negative, the line number controiling the
program is assumed. If the line number is greater than those de-
fined in the systeﬁ, a zero answer is returned.
The normal answer format is as follows:

Right half of ADR: The line number.

Left half of ADR: Bits, as follows:
Bit Meaning

0 Line is a pseudo-teletype.

1 Line is the CTY.

2 Line is a display console. ‘
3 Line is a dataset data line.

4 Line is a dataset control line.
5 Line is half-duplex.

5-9

4% N

Bit Meaning

11 A line has been typed in by the user.
12 A rubout has been typed.

13 "Control F" switch is on.

14) "Control P" switch is on.

15 "Control B" switch is on.

16 "Control Q" (paper tape) switch is on.
17 Line is in a "“talk" ring.

SETLIN - TTCALL . 7,ADR

This command allows a program to set and clear some of the bits
describéd for GETLIN. They may be_changed only for the controlling
Teletype. The bits which may be modified are bits 13, 14, 15 and
16. Example: |

SETO AC,0

TTCALL 6,AC

TLZ AC,BIT 13

TLO AC,BIT 14

TTCALL 7,AC
RESCAN ‘TTCALL 10,0
This command is intended for use only by the CCL CUSP. It causes
the Input Buffer to be re-scanned from the point where the last
command began. Obviously, if it is executed other than before the
first iﬁput, that command may no longer be in the buffer. ADR is
not used, (but-is address checked) .
CLRBFI TTCALL 11,0
This command causes the Iﬂput Buffer to be cleared (as if the user
had typed a number of "Control U's"). It is intended to be used
when an error has been detected, such that a user probably would not
want any commandslto be executed which he might have typed ahead.
CLRBFO TTCALL 12,0)
This command causes the output buffer to be cleared, as-if the user
had typed "CONTROL O". It should be used only rarely, since usu-

ally one wants to see all output, up to the point of an error. It

is included primarily for completeness.

5-10

SKPINC - PTCALL 13,0 7

This command skips if the user has typed at least one character.

It does not skip if no characters have been typed; howeven it never
inputs a character. It is useful for a compute basea program which
wants to oceasionally eheck for input and, if any, go off to an-
other routine (such as FORTRAN Operating System) to actually do the
input.

SKPINL TTCALL 14,0

This command is the same as SKPINC except that a skip occurs if a
line has been typed.

5.1.4 Special Status Bits (Full Duplex Software Only)

An INIT or OPEN, with bit 28 a one, suppresses echoing
on the Teletype. This is useful for LOGIN to eliminate the mask

for the password;

5.1.5 - Paper Tape Input from the Teletype (Full Duplex Software’

Paper tape input is éossible from a Teletype equipped
with a paper tape reader, controlled by the XON and XOFF cheracters.
When commanded by the XON character, the Teletype service will read

. paper tapes, starting aqd stopping the paper tape as needed and
continuing until the XOFF character is read or typed in. While in
this mode of operation, any RUBOUTS will be discarded and no free
line feeds will be inserted after carriage returns. Also,TABS and
FORMFEEDS will not be simulated on Model 33's, to insufevoutput of

the reader control characters. In order to use paper tape process-

ing, the Teletype with paper tape reader must be connected by a full

duplex connection and only ASCII paper tapes are intended to be

used.

o 438
The correct operating sequence for reading a paper tape

in this way is as follows:

.R PIP <RETURN>

*DSK: FILE<«TTY: <XON><RETURN><LINEFEED>
THIS IS WHAT IS ON TAPE
MORE OF SAME

LAST LINE -

+2

*<XOFF>

5.2 PAPER TAPE READER

Device Mnemonic - PTR \

Buffer Size - 438 words

5.2.1 Data Modes (Input Only)

NOTE: To initialize the paper tape reader, the
input tape must be threaded through the reading
mechanism and the FEED button depressed.

5.2.1.1 A (ASCII) - Blank tape (000), RUBOUT (377), and null
characters (200) are igndred. All other characters are truncated
to seven bits and appear in the buffer. The physical end of the

paper tape serves as an end-of-file. ' ~

5.2.1.2 AL (ASCII Line) - Character processing is the same as for

the A mode. The buffer is terminated by LINE FEED, FORM, or VT.

5.2.1.3 I (Image) - There is no character processing. The buffer
is packed with 8-bit echaracters exactly as read from the input tape.
Physical end of tépe is the end-of-file indication but does not

cause a character to appear in the buffer. ’

5.2.1.4 IB (Image Binary) - Characters not having the eighth hole

punched are ignored. Characters are truncated to six bits and

5-12.

-

439
-packed six to the word without further processing. This mode is

useful for reading binary tapes having arbitrary blocking format.
5.2.1.5 B (Binari) - Checksummed binary data is read in the follow-
ing format. The right half of thé first'word of each physical block
contains the number of data words thaf follow and the left contains
half a folded checksum; The checksum is formed by adding the data-
words using 2s complement arithmetic, then splitting the sum into
three 12-bit bytes and adding these using 1ls complement arithmetic
to form a 12-bit checksum. The data error status flag (see Tabie
4.5) is raised if the checksum miscompares. Because the checksum
‘and word count appear in the input buffer, the maximum block length
is 40. The byte pointer, however, is initialized so as not to pick
up the word count and checksum word.

Again, physical end of tape is the end-of-file indication

but does not result in putting a character in the buffer.

5.3 PAPER TAPE PUNCH

Device Mnemonic - PTP

Buffer Size - 433 words
5.3.1 Data Modes
5.3.1.1 A’(ASCII) - The eighth hole is punched for all . characters.
Tape-feed without the eighth hole (000) is inserted after form-feed.
A rubout is inserted after each vertical or horizontal tab. Null

characters (000) appearing in the buffer are notvpunched.

5.3.1.2 AL (ASCII Line) - The same as A mode. Format control must

be performed by ‘the user's program.

5-13

440

5.3.1.3 I (Image) - Eight—bit'characters are punched exactly as

they appear in the buffer with no additional processing.

5.3.1.4 IB (Image Binary) - Binary words taken from the output

buffer are split into six 6-bit bytes

and punched with the eighth

hole punched in each line. There is no format control or check-

summing performed by the I/O routine.

read béck by the paper tape reader in

4
-

5.3.1.5 B (Binary) - Each bufferful
checksummed binary block as described
Several blank lines are punched after

ity.

5.3.2 Special Programmed Operator

Data punched in this mode is

the IB mode.
of data is punched as one

for the paper tape reader.

each bufferful for visual clar-

Service

The first output programmed

operator of a file causes about

two fanfolds of blank tape to be punéhed as leader. Following a

CLOSE, an additional fanfold of blank

tape is punched as trailer.

No end-of-file character is punched automatically.

5.4 LINE PRINTER

Device Mnemonic = LPT

Buffer Size - 348 words

5.4.1 Data Modes

' 5.4.1.1 A (ASCII) - ASCII characters are transmitted to the line

printer exactly as they appear in the

buf fer. See the PDP-10 System

Reference Manual, for a list of the vertical spacing characters.

S

N

~5.4.1.2 AL (ASCII Line) - This mode is exactly the same as A and

is included for programming convenience. All format control must
be performed by the user's program; this includes placing a" RETURN,
LINE-FEED sequence at the end of each line.

5.4.1.3 I (Image) - Same as A(ASCII) mode.

5.4.2 Special Programmed Operator Service

The first output programmed opéerator of a file and the
CLOSE at the end of a file cause an extra form-feed to be printed

to keep files separated.

5.5 CARD READER
Device Mnemonic = CDR

Buf fer Size - 368 words

5.5.1 Data Modes
5.5.1.1 A (ASCII) - All 80 columns of each card are read and trans-

lated to 7-bit ASCII code. Blank columns are translated to spaces.
At the end of each card a carriage-return/line-feed is appended. A
card with the character 12-11-0-1 punched in column 1 is an end-of-
file card. Columns 2 through 80 are ignored. The end-of-file button
on the card reader has the same effegt/as the end-of-file card. As
many complete cards as can fit are placed in the input buffer, but
cards are not split between tWo buffers. Using the standérd—si%ed
buf fer, oniy one card is placed in each buffer,

éards are normally translated as IBM 026 card codes. If
a card containing a 12-0-2-4-6-8 punch in column 1 is encountered,

any following cards are translated as 029 codes (see Table 5-2

5-15

, a2 -
PDP-10 Card Codes) until the 029 conversion mode is turned off.
The 029 mode is turnedvoff either by a RELEASE command or by a card
containing a 12-2-4-8 punch in column 1, Columns 2 through 80 of

both of these cards are ignored.

5.5.1.2 AL (ASCII Line) - Exactly the same as the A mode.

5.5.1.3 I (fmage) - All 12,punches in all 80 columns are packed
into the buffer as 12-bit bytes. The first 12-bit byte is column 1.
The last word of the buffer contains columns 79 and 80 as the 1éft
and middle bytes, respectively. The end-of-file card and the end—-of -
file button are processed the same as in the A mode. Cards are not

split between two buffers.

5.5.1.4 B (Binary) - Card column 1 must contain a 7-9 punch to
verify that.the card is in binary format. Column 1 also contains

the word count in rows 12—2. ‘The absence of the 7-9 punch results

in raising the IOIMPM (improper moae) flag in the card reader

status word. Card column 2 must contain a 12-bit checksum as
described for the paper tape reader binary format. Columns\b through
80 contain binary data, 3 columns per word for up to 26 wd:ds. Cards
are not:.split between two buffers. The end-of-file card énd the end-
of-file button are processed the same as in the A mode with a word

~

containing 003200000000 appearing as the last word in the file,

5.6 : CARD PUNCH
Device Mnemonic - DCP

Buffer Size - 358 words

5.6.1 Data Modes)
i \ ’ - 5-16 o -

‘@B‘

Table 5-2
PDP-10 Card Codes ’)
PDP-10 DEC DEC PDP-10. DEC DEC

CHAR '} ASCII 029 026 CHAR ASCII 029 026
SPACE| 040 @ 100 84 84
! 041 1182 1287 A 101 121 121
" 042 87 085 B 102 122 122
043 83 086 C 103 123 . 123
$ 044 1183 1183 D 104 124 124
% 045 084 087 E 105 125 125
& 046 12 1187 F 106 126 126
' 047 85 86 G 107 127 127
(050 1285 084 H 110 128 128
) 051 1185 1284 I 111 . 129 129
* 052 1184 1184 J 112 111 111
+ 053 1286 12 K 113 112 112
’ 054 083 083 L 114 113 113
- 055 11 11 M 115 114 114
. 056 1283 1283 N 116 115 115
/ 057 01 01 0o 117 116 1lle6
0 060 0 0 P 120 117 117
1 061 1 1 Q - 121 118 118
2 062 2 2 R 122 119 119
3 063 3 3 S 123 02 02
4 064 4 4 T 124 03 03
5 065 5 5 U 125 04 04
6 066 6 6 v 126 05 05
7 067 7 7 W 127 06 06
8 070 8 8 X 130 07 07
9 071 9/ 9 Y 131 08 08
: 072 82 1182 Z 132 09 09

or 110 [133 - 1282 1185
; 073 1186 082 AN 134 1187 87
< 074 1284 1286] 135 082 1285
= 075 86 83 4 136 1287 85
> Q76 086 1186 < 137 085 82
? 077 . 087 1282

or 120

5.6.1.1 A (ASCII) - ASCII characteré.are converted to card codes

and punched (up to 80 characters per card). Tabs are simulated by
punching from 1 to 8 blank columns; form-feeds and carriage returns
are ignored. Line-feeds éause a card to be punched. All other
nontranslatable ASCII characters cause a question mafk to be punched.
Cards can be split between bpffers. Attempting to punch more than
80 columns per card causes the error bit IOBKTL’to be raised. The

: CﬁOSE will punch. the last partial card and then punch an EOF Card

=17

(12-11-0-1 in column 1).

Cérds are normally punched with DEC026 card codes. .If
bit 26 (octal 1000) of the status word is on (from INIT, OPEN, or
SETSTS), cards are punched with DEC029 codes. The first card of
any file indicates the card code used (12-0-2-4-6-8 punch in column
1 for DEC029 card codes; 12-~2-4-8 punch in column 1 for DECO026

card codes).

7

5.6.1.2 AL, (ASCII Line) - The same as A mode.

5.6.1.3 IB (Image Binary) - Up to 26 2/3 data words will be

punched in columns 1-80. The bﬁffer set up by the Monitor will
'only conéain room for 26 data words. To punch a full 80-column
card, the user has to set up his own buffers. image binary'will
cause exactly one card to be punched for each output. The CLOSE

will punch the last partial card, and then punch an EOF card

(12-11-0-1 in column 1).

5.6.1.4 B (Binary) - Column 1 will contain the word count in rows
1272; A 7-9 punch will also be in column 1. Column 2 will contain
a checksum; columns 3-80 will contain up to 26 data words, 3 columns
per word. Bihary will causé exactly one card to be punched for each

output. The CLOSE will punch the last partial card, and then punch

"~ an EOF card (12-11-0-1 in column 1).

5.6.2 Special Programmed Operator Service

Following a CLOSE, an end-of-file card is punched.

Both the first card of the file (the one that identifies
/

the card code used) and the end-of-file card are laced in columns

2 through 80 for eadasy identification of files. These laced punches
5-18

. . 445
are ignored by the card reader service routine.

5.7 DECTAPE
Device Mnemonic - DTAO, DTAl, ..., DTA7

Buffer Size - 2028 wofds

5.7.1 ~ Data Modes

5.7.1.1 A (ASCII) - Data is written on DECtape exactly as it
appears in the buffer. No processing or checksumming of any kind
is performed by the service routine. The self-checking of the
DECtape system is sufficient assurance that the data is correct.
Seé the description of DECtape format below for further information

concerning blocking of information.

5.7.1.2 AL (ASCII Line) - Same as A.

' 5.7.1.3 I (Image) - Same as A. Data consists of 36-bit words.
5.7.1.4 1IB (Image Binary) - Same as I.

5.7.1.5 B (Binary) - Same as I.

5.7.1.6 DR (Dump Records) - This mode is accepted but actually

functions as dump mode 17.

5.7.1.7 D _(Dump) - Data is read into or written from anywhere in
the user's core area without regard to the standard buffering
scheme. Control for read or write operations must be via a command

list in core memory. ' The command list format is as described in

5-19

446 .
Chapter 4, "Unbuffered (Dump) Modes;" any positive number appearing

in a command list terminates the list. Dump data is automatically
blocked into standard-length DECtape blocks by the DECtape control.
Unless the number of data words is an exact multiple of £he standard
length of a DECtape block (12874), after eaéh output programmed
operator, the remainder of the last block written is wasted. The
input programmed operator must specify the same number of words that -
the corresponding output programmed operator s?ecified in order to

skip over the wasted fractions of blocks.

5.7.2 DECtape Block Format

A standard reel of DECtape consists of 578 (11028) pre-
recorded blocks each capable of storing 128 (2008) 36-bit woras of
data. Block numbers which label the blocks for addressing purposes
are recorded between blocks. Thesée block numbers runlfrom 0 to
llOlg. Blocks 0, 1, and 2 are normally not used during time-sharing
and are reserved for a bootstrap loader. Block 10010 (1448) is the
directory block which contains the names of all files on. the tape
and information relating to each file. Blocks 1l;47 through'99;,
(1-143g) and 101;¢ through 5777 (145—11018) are usable for data.

If in the process of DECtape I/0, the I/0O service routine
is requested to use a block number largér than 1101g or smaller
than 0, the Monitor sets the Block Too Large flag (bit 21) in the

file status and returns.

5.7.3 DECtape Directory Format

The directory block (block 100;,) of a DECtape contains
directory information for all files on thatltape; a maximum of 22

files can be stored on any one DECtape.

\

5-20

. . 47
Words 0 through 821¢

The first 83 words of the directory contain "slots," each
"slot" representing one of the 577 (blocks 1 through 11014
are represented in these 83 words) blocks on the DECtape.
Each slot occupies five bits (seven élots are stored per
ﬁord) and contains the number of the file (1-26g) to which
the block the slot represents is assigned.

Words 83 through 10410
The next 22 words contain the.filehames of the 22 files
residing on the DECtape. Word 83 contains the filename
for file #1, word 84 the filename #2, etc. Filenames are
stored in S—bit code.

Words 105 through 12610
The next 22 words coﬁtain the extension names and dates
of the 22 files, in the same relative order as their file-

names above.

Bits 0 throlugh\l7lO The extension name of the file (in
6-bit code), | »

Bits 18 through 23lO Number of 1K blocks minus 1 needed
to load the file (maximum value = 63)
This information is stored for SAVEd
files only.

.Bits 24 through 3510- The date the filg was lést updated,
according to the formula:
((year-1964) *12+ (month-1)) *31+day-1

Word }27lO Unused.

The message

BAD DIRECTORY FOR DEVICE DTAn: EXEC CALLED FROM USER LOC n
' 5-21

448 .
is produced whenever any of the following conditions are detected.

a. A parity error while reading the directory block.

b. No "slots" are assigned to the file number of the file.

c. The tape block which may possibly be the first block
of the file (i.e., the first block for the file encountered while

searching backwards from the directory block) cannot be read.

5.7.4 DECtape File Format

A file consists of any number of DECtape blocks. Each
block contains:

Word 0 Left half The link. Tﬁe link is the block number
of the next block in the file. If the
link is zero, this block is the last
in the file.

Right half Bits 18 through 27: The block number
of the first block of the file.
Bits 28 through 35: A count of the
number of words in this block which
are used (maximum 177g).

Words 1 through 177é Data packed exacﬁly\as the user
placed in his buffer or in Dump Mode

files, the next 127 words of memory.}

-

5.7.5 Special Programmed Operator Service

(Several programmed operators are p;oyided for manipulating

DECtape. These allow the user to manipulate block numbers and to

handle directories.

TThe Monitor compresses the user's core ‘image by squeezing out
blocks of two or more consecutive zeroes before creating the SAVed
files; files with extension ,SAV may be read in Dump Mode, but
must be reexpanded before being run. The Monitor takes this action
after input on a RUN or GET.

5-22

In addition

49
to the operators above, INPUT, OUTPUT, CLOSE,>

and RELEAS have special effects. When performing nondump input

operations, the DECtape service routine reads the links in each

block to determine the next block to read and when to raise the

end-of-file flag.

When an OUTPUT is given, the DECtape service routine ex-

amines the left half
(the word containing
half contains -1, it
and the file is thus

0, it is not changed

of the first data word in the output buffer
the word count in the right half). If this
is replaced with a 0 before being written out,
terminatéd. If this half word is greater than

and the service routine uses it as the block

number for the next OUTPUT. If this half word is 0, the DECtape

service routine assigns the block number 'of the next block for the

next OUTPUT.

Table 5-3

DECtape Programmed Operators

Programmed Operator

‘Effect

USETI D, E

USETO D, E

UGETF D, E .

ENTER D, E

Sets the DECtape on device channel D to
input block E next. Input operations on
this DECtape must not be active because
otherwise the user has no way of determin-
ing which buffer contains block E.

Similar to USETI but sets the output block
. number, USETO waits until the device is in-
~ active before setting up the new output block

‘number. .)

Places the number of the first free block of
the file in user's location E.

User's location E, E+1, E+2, and E+3, must
be reserved for a directory entry. The DEC-
tape service routine searches the directory
for a filename and extension that match the
contents of E and the left half of E+1. If
no match is found and there is room in the
directory, the service routine places the
first free block number into the right half
of E+1, places the date in E+2 (unless al-

- ready non-zero), and places the necessary

S aso
Table 5=3 . (Cont)

DECtape Programmed Operators

Programmed Operator ; Effect

information into the directory. 1If a
match is found, similar actions occur, but
the new entry replaces the old. If there
is no room in the directory, ENTER returns
to the next location. Otherwise, ENTER
skips one location.

LOOKUP D, E Similar to ENTER but sets up an input file.

error return The contents of E and E+l1 are matched
against the filenames and extension names
in the DECtape directory. If a match is
found, information about the file is read
from the directory into the appropriate
portions of the 4-word block beglnnlng at

E. The first block of the file is then

found as follows.

1. The first 83 words of the DECtape
directory are searched in a backwards
manner, beginning with.the slot immedi-
ately prior to the directory block,
until the first slot containing the de-
sired file number is found.

2. The block associated with this slot is
then read in and bits 18 through 27
of the first word of the block (these
bits contain the block number of the
first block of the file) are checked.

If they are equal to the block number
of this block, then this block is the

N first block of the file; if not, then
the block with that block number is read
as the first block of the file.

LOOKUP then sklps one location.

If no match is found, LOOKUP returns to

the user's program at the next location.

CALL D, [SIXBIT/UTPCLR/]
UTPCLR clears the directory of the DEC-
tape on device channel D. A cleared
directory has zeroes in the first 83 words
except in those slots related to hlocks 0,
1, 2, and 10074 and nonexistent blocks
1102 through 1 05g. Only the directory
block (block 100) is ‘affected by UTPCLR;
the other blocks are unaffected. This
programmed operator does nothing if the
device on channel D is not DECtape.

RENAME D, E This programmed operator is used to alter
: . the name and extension of a file or to de-
lete it from the DECtape. Locations E to

E+3 are as in LOOKUP and ENTER. To be

- RENAMEd “a file must first be CLOSEd on

channel D, in order to identify for the’

for the RENAME UUO. RENAME then seeks

3 : R oy N .
L E_"n4

S _ Table .5-3 -(Cont) : '

DECtape Programmed Operators

Programmed Operator Effect

out this file and enters the informa-
tion specified in E through E+2 into

the retrieval information and proper
directory. If the contents of E is
zero, RENAME has the effect of deleting
the file. The error return is given if
the new file name and extension already
exist or if neither a LOOKUP nor an. .
ENTER has been done to 1dent1fy the file
to be renamed.

For both INPUT and OUTPUT, block 100 (the directory) is
treated as an exception case. If the user's program gives

)

USETI D, 144g
to read block 100, it is treated as a l-block file.

The CLOSE operator places a'-1 in the left half of thé
first word in the last output buffer, thus tefminating the file.

The RELEAS operator writes the copy of the directory which
is normally kept in core onto block 100, but only if any changes
have been made. Certain console commands, such ds KJOB or CORE- 0,
perform an implicit RELEAé of all devices and, thus, write out a
changed directory even though the user's program failed to givé a
RELEAS .

Two other special programmed operators are available:
MTAPE D, 1 and MTAPE D, 11. MTAPE D, 1 rewinds the DECtape anq
moves i£ into the end zone at the front of the tape. MTAPE D, }l
rewinds and unloads the tape, pulling the tape completely onto-the
1efthand‘reel. These commands affect only the physical position
of the tape, not the "logical" position. When either is used, the

user's job can be swapped out while the DECtape is rewinding; how-

ever, the job cannot be swapped out if an INPUT or OUTPUT is done

_while the tape is rewinding.

: 452
5.7.6 Special Status Bits

If an attempt is made to write on a unit with the WRITE-
LOCK switch on, the message

DEVICE DTAn OK?
+C

is typed on the user's Teletype. When the situation has been

rectified, CONT may be typed to proceed as normal.

/

5.7.6.1 _>Special DECtape Status Bits - An INIT or SETSTS to a
DECtape with bit 29 ON informs the DECtape sérvice roﬁtine-th@t

the DECtape is in nonstandard format. This implies that no file-
structured operations will be. performed on that tape. Blocks will
be read or written sequentially; no links will be generated (output)
or recognized (input). The firét block to be read or written must
be set by a USETI or USETO. In Dump Mode, 200g data words per
block will be read or written (as opposed to the normal 177g words).,
No "dead reckoning"” will be used on a search for a block ﬂumber as
the tape may be composed of blocks shorter than 200 words. The _
ENTER, LOO%UP, and UTPCLR UUOs are treated as no-ops. Block 0 of
the tape may not be read or written in Dump Mode if bit 29 is ON,

as thé data must be read in a forward direction and block 0 nor-

mally cannot be read forward.

5.7.7 Important Considerations

'

The DECtape service routine reads the directory from a
‘tape the first time it is required to perform a LOOKUP, ENTER, or
UGETF; the directory image remains in core until a new ASSIGN com-
mand‘is executed from\ghe consolé. To inform the DECtape servicg
routine that a new tape has been mounted on an assigned unit, the
user must use an ASSIGN command. The directory from the old tape

5-26

453 ,
1

could be transferred to the new tape, thus destroying the informa-
tion on that tape unless the user reassigns the DECtape transport

.every time he mounts a new reel.

5.8 MAGNETIC TAPE

Magnetic tape format is industry compatible, 7- or 9-
channel 200, 556, and 800 bpi (see description below).
Device Mnemonic -~ MTAO, MTAl, ..., MTA7

Buffer Size - 2038 words

5.8.1 Data Modes

5.8.1.,1 A (ASCII) - Data appears to be w?ittén on magnetic tape
exactly as it appears in the buffer. Né processing or check-
summing of any kind is performed by the service routine. The

parity checking of the magnetic tape system is sufficient assurance
that the data is correct. Normally, all data; both binary and V
ASCII, is written with odd parity and at 556 bits per inch. A maxi-
mum of 200g words per reéord is standard. The word count is nbt

written on the tape.

5.8.1.2 AL (ASCII Line) - Same as A.
5.8.1.3 I (Image) - Same as A but data consists of 36-bit words.

5.8.1.4 IB (Image Binary) - Same as I.

5.8.1.5 B (Binary) - Same as I.

5.8.1.6 DR (Dump Records) - Standard fixed length records (128

5-27

454
words is the standard unless installation standard is changed with

MONGEN) are read into or written from anywhere in the user's core
area without regard to the sténdard buffering scheme. Control for
read or write operations must be via a command lisf in core memory.
The command list format is as described in Chapter 4, "Unbuffered
(Dump) Modes." For imput operations a new record is read for each
word in the command list (excépt GOTO words); if the record termin-
ates before the command word is satisfied, the service routine
reads the next records. If the command word runs out before the
record terminates, the remainder of the recard is ignored. For each
output command word, as many standard length records are written
followed by one short record to exactly write all of the.words on
the tape. |

5.8.1.7 D (Dump) - Variable length rec;rds are read into or
written from anywhere in the user's éore area without regard to the
standard buffering scheme. Control for read or write operations
must be via a command list in core memory. The command list format
is as described in Chapter 4, "Unbuffered (Dump) Modes." ' For input
‘operations a new record is read for each word in the command list
(except GOTO words); if the record terminates before the command
word is satisfied, the service routine’skips to the next command
word. If £he command word runs out before the record terminates,
the remainder of the record is ignored. For each output command
word, exactly one record is written. See Section 4.4.1.2 for com-

mand list format.

5.8.2 Magnetic Tape Format

Magnetic tape format can be generally described as un-
labelled, industry compatible format. That is, as far as the user

5~28

455 . v
is concerned, the tape contains only data records and end-of-file

marks which signal the end of the data set or the end of the file.
Files are read from and written on the tape in a sequential manner.

An end-of-file mark consists of a record.containing a 174
(for 7-channel tapes) or a 23g (for 9-channel tapes). "End-of-file
ﬁgrks are used ih the following manner.

a. No end-of-file mark precedes the first file on

a magtape.

b. An end-of-file mark follows every file.

c. Two end-of-file marks follow a file if that file

is the last or only file on the tape.

Files are written on and read from a magtape in a sequen-
tial‘manner. A file consists éf an integral number of physical
records, separated from each other by interrecord gaps (area on
tape in which no data is written). There may or may not be more -

than one logical record in each physical record.

5.8.3 Special Programmed Operator Service

- CLOSE performs a spécial function for magnétic tape.
When an output file is closed (both dump ana nondump), the I/0
service routine automatically writes two end—of—file marks and
backspaces over one of them. If another file is now opened, the
second end-of-file is wiped out leaving one gnd-of-file between
files. At the end of the in—-use portion of the tape, however,
there appears a double end-of-file chéracter which is defined as-
the logical end of tape. When an input dump file is closed, the
I/0 service‘routine automatically skips to the next enfi-of-file.

A special programmed operator called MTAPE pfovides for

such tape manipulation functioné as rewind, backspace record, back-

space file, 9-channel tape initialization, etc. The format is

5-29

456
MTAPE D, FUNCTION

where D is the device channel on which the magnetic tape unit is

initialized. FUNCTION is selected according to the following table:

s

Table 5-4

MTAPE Functions

Function Action ' o
0 No operation; wait for spacing -
and I/0 to finish
' 1 Rewind to load boint
11 Rewind and unload!
7 - Backspace record
17 Backspace file
3 Write end of file
6 Skip one record
13 Write 3 inches of blank tape
16 Skip‘oge file |
10 Space to logical end of tape
100 Digital Compatible; 9-channel?
1ol Initialize for 9-channel tape?

MTAPE waits for the maghetic tape unit to complete whatever action

is in progress before performing the indicated function, including

10n the 516 Control, this function is not currently implemented as
such, but is treated as a Rewind function only.

’Digital Compatible mode writes (or reads) 36 data bits in five
frames of a 9-track magtape. It can be any density, any parity, and
is not industry compatible. This mode is in effect until a

RELEAS D, or an MTAPE D, 10l is executed.

3Industry compatible 9-channel mode writes (or reads) 32 data bits

per word in four frames of a 9-track magtape and ignores the last
four bits of a word. It must be 800 bpi density, odd parity.

5-30

. &57 :
né opéfafion (0). Bits 18 through 25 of the status word are then
cleared, the indicated function is initiated, and controi is re-
turned to the user's program immediately. It is important to re-
member that when performing buffered input/output, the I/0 service
routine can be reading several blocks ahead of the user's program.
\

MTAPE affects only the physical position of the tape and does not

change the data that has already been read into the buffers.

5.8.3.1 Backspace File on Magtape - Issuing a backspace file com-

mand to a magtape unif will move the tape in the reverse direction
until the tape has A) passed the end of filermark or B) reached

the beginning of the tépe. This means that the end of the béckspace
file operation will position the tape heads either immediately in
front of a file markbor at the beginning of the tape.

In most cases it is desirable to skip forward over this
file mark. This is decidedly not the case if you've reached the
beginning of the tape; in this case giving a skip file command
would indeed skip the entire first file on the tape stopping at the
beginning of the second file, rather than leaving.the tape positioned
at the beginning of the first file.

Therefore a typical (incofrect) sequence for backspace

i

file would be:

1

MTAPE MT, 17 ;Backspace file

CALLI WAIT ; *Wait for completion*
STATO MT, 4000 ;Beginning of tape?
MTAPE MT, 16 ;No, skip over file mark

Note that it is‘necessary to wait ;fter the backspace file
instruction in order to insure that the tape is moved to the end-
of-file mark or the beginning of the tape before testing to see
whether or not it is the beginning of the tape. The instruction

CALLI WAIT cannot be used for this purpose; it waits only for the

5-31

458 " s
completion of I/O transfer operation. (Backspace file %;/;,Spac—

ing operation, not an I/O transfer operation.)

Instead, use the following sequence for backspace file:

MTAPE MT, 17 i Backspace file

MTAPE MT, O ;Wait for completion
STATO MT, 4000 ;Beginning of tape?
MTAPE MT, 16 ;No, skip over file mark

A

in this case the device service routine must wait until
the magtape control is free before processing the MTAPE MT, 0
command, which tells the tape control to do nothing. Thus, the
service routine achieves the waiting period necessary fér the com-
plétion of the previous operation‘and the proper positioning of

the tape.

5.8.4 9-Channel Magtape

Nine-channel magtape may be written and read in two ways:

‘normal Digital Compatible format, and industry compatible format.

5.8.,4.1 D;gital Compatible Mode - Digital Compatible mode is the
usual mode and will allow old 7-channel usef mode programs to fead
and write 9-channel tapes with no modification. Digital Compatible
mode writes 36 data bits in five bytes of a nine track magtape: It
can be any density, and parity, and is not industry compatible.

~ The software mode is specified in the usual maﬂner during initial-
ization or with a SETSTS. User modé'I/O is handled precisely'as

in the case of 7-track magtape. It is assumed that most DEC mag-

tapes will be written and read this way.

s

: 459
Data Word on Tape

Tracks

9 8 7 6 5 4 3 2 1
BO Bl B2 B3 B4 BS B6 B7 P
B8 B9 B10 ' B1ll . B12 B13 Bl4 B15 P
Ble . B1l7 B18 B19 B20 B21 B22 B23 P
B24 B25 B26 B27 B28 B29 (B30) (B31) P
0 0 (B30) (B31) B32 B33 B34 B35 P
P = Parity

BN = Bit N in core

Data Word in Core - 5 magtape bytes/36-bit word. Parity
bits ére unavailable to the user. Bits are written on tape as
shown in diagram, note that bits 30‘and 31 get written twice and
that tracks 8 and 9 of byte 5 contain 0. On reading parity bits
and tracks 8 and 9 of byte 5 are ignored, tﬁé or of bits (B30) is
read into bit 30 of the data word, the or of bits'(B3l) is read
into bit 31. |

N

5.8.4.2 - Industry Compatible Mode - For reading and writing indus-

try compatible 9-channel magtapes, an MTAPE D, 101 UUO must be
executed to set the status. MTAPE D, 101 is meaningful for 9-

channel magtape only and is ignored for all other devices, 1In the

" left half of the status word, bit 2 (which cannot be read by the

user program) may be cleared (which returns the device to 9-channel
Digital Compatible status) by a RELEAS, a call to EXIT, or an
MTAPE D, 100 UUO. These MTAPE UUO's act only as a switch to and
from industry compatible mode and in no other way affect I/0 status,
éxcept to set the density to 800 bpi and odd parity.

On INPUT, four 8-bit bytes are read into each word in the

buffer, left justified with the remaining four bits of the word

. containing error checking information.

PN

5-33

. 460 e
On OUTPUT, the leftmost four 8-bit bytes of each word in

the buffer are written out in four frames, with the remaining four

rightmost bits of the word being ignored.

Data Word on Tape

Tracks
9 8 7 6 5 4 3 2 1
BO Bl B2 B3 B4 B5 B6 B7 B32
B8 B9 B10 Bl11l Bl12 B13. Bl4 B15 B33
Blé6 B17 B18 B19 B20 B21 B22 B23 B34
B24 B25 B26 B27 B28 B29 B30 B31 B35

Data Word in Core - four magtape bytes carry 4 8-bit bytes
from data word, parity bits are obtained as shown when reading.

Rightmost four bits are ignored on writing (bits 32-35) .

5.8.4.3 Changing Modes -~ MTAPE CH, 101 automatically sets density

at 800 bits (or 800 eight-bit bytes) per inch and sets odd parity.
Note that buffer headérs are set up when necessary by the Monitor

in the usual‘manner according to the I/O mode the device is initial-
ized in. Byfe pointers and byte counts in buffer header will have

to be changed by the user in order to operate on eight-bit bytes.

5.8.5 Special Status Bits

»

Special bits of the status word are reserved for select-
ing the density and parity mode of the magnetic tape. Table 5-4

lists the bits that are set and cleared by INIT or SETSTS.

P

461
Table 5-5

Magnetic Tape Special Status Bits.

Bit Action
18! Improper mode. When set to one during an output
operation means that the write enable ring is
out. -
241 I/0 Beginning of Tape. The tape is at the load
point. ‘
251 I/0 Tape END. The.tape is ‘at or past the end
point.
26 I/0 Parity. 0 for odd périty, 1 for even parity?
27-28 I/0 Density. 00 = System Standard (defined
' at MONGEN time)
01 = 200 bpi
10 = 556 bpi
11 = 800 bpi
29 I/0 No Read Check. Suppress automatic error

correction if bit 29 is a 1. Normal error
correction is to repeat the desired operation
10 times before setting an error status bit.

!These bits indicate special magnetic tape conditions and
are set by the magnetic tape service routine when the con-
ditions occur.

20dd parity is preferred. Even parity should be used only
when creating a tape to be read in BCD (Binary Coded Decimal)
on another computer.

5.9

Device Mnemonic - DSK

Buffer Size - 2038 words (of which 200g words are data)
5.9.1 Data Modes
5.9.1.1 A (ASCII) - Data is written on the disk exactly as it

appears in the buffer. Data consists of 36-bit words.

5-35

462
5.9.1.2 AL (ASCII Line) - Same as A. /

5.9.1.3 I (Image) - Same as A.

5.9.1.4 1IB (Image Binary) = Same as I.

5.9.1.5 B (Binary) - Same as I.

5.9.1.6 DR (Dump Records) - Functions exactly the same as D.

5.9.1.7 D_(Dump)- Data is read into or written from aﬁywhere in
the user's core area without regard to the normal buffering scheme.
Control for read or write operations must be via a command list in
core memory. The command list format is as described in Chapter 4,
"Unbuf fered (Dump) Modés.“ The disk control automatically measures
dump data into standard-length disk blocks of,200 octal words. Un-
less the”pumber of data words ié an exact multiple of the standard
length of a disk block (200 words) after each command word in the

command list, the remainder of that block is wasted.

5.9.2 Structure of Files on Disk

The file structure -of the disk system has been designed
to minimize the number of disk seeks for sequential or random
accessing uéing either buffered or dump mode I/O. The assignment
of physical space for data is performed automatically by the Moni-
tor as logical files are‘written or deleted by user programs.
Files may be of any length, and each user may have as many files
as he wishes, as long as disk space is available. No initial es-
timate of filé length or number of files need be given by users or

their programs. Files may be simultaneously read by more.than one

5-36

463 ’
user at a time, thﬁs allowing.data sharing. A new version of a
file may be recreated by one user while other users continue to
read the old version,‘thus allowing for smooth replacement of
shared programs and data files. 'Finally, one user may selectively

update portions of a file, rather than creating a new one (see

"General Notes;" 5.9.3.3).

5.9.2.1 Addressing by Monitor - The file structure described in

this section is generally transparent to the user, and a detailed
knowledge of this material is not essential for effective user-
mode use of the disk. There are two programs in the Time;Sharing
Monitor-that service the disk,‘DSKSER and DSKINT. BSKSER is the
devicé service routiné for a disk and reference; a disk by sym-
bolic addressing only. This routine is essentially independent

of what physical disk is attached to the system. DSKINT serves
only two functions: 1) that of translating the logical addressing
used elsewhere in the system to the physical addressing of the
pérticular disk being utilized, and 2)lcontroliiﬁg the. physical
disk. The Moﬁitor can be thought of as 'seeing all disksviﬁ the
séme manner; a change of disks requires only a change in DSKINT to
provide the proper software interface between the physical device
and the rest of the system.

All references made herein to addresses on the disk
refer to the logical or relative addresses used by the system and
not -to any physical addressing scheme involving records, sectors,
tracks, etc., that may pertain to a particular physical aévice.
The basic unit which may be addressed is a logical disk block

“

which consists of 2008 36-bit words.

5.9.2.2 Storage Allocation Table (SAT) Blocks - There is a

5-37

461

storage allocation table on the disk, which reflects the current
status of every addressable block on the disk. These SAT blocks
are contained in a file with the name "*SAT* .SYS". This file may
be used by any user, but can only be modified by the Monitor. Each
addressable block on the disk is represented by one pérticular bit
within the SAT blocks.

If a particular bit is on, it indicates that the corre-
sponding block is filled with data (all blocks on the disk are,
filled when any information is written on them); if the bit is off,
it indicates that the corresponding block is empty or available to
be written 6n. The disk can be wiped out by zeroing the SAT blocks
(which is exactly what is done when the disk is refreshed). The

disk may optionally be "refreshed" whenever the Monitor is reloaded.

5.9.2.3 File Directories - There are two levels of directories

“on the disk; one is referenced mainly by the system and the other
is referenced by individual users. There is only one higher level
directory, known as the Master File Diréctory (MFD). One of the
functions of the MFD is to serve as a directory for individual
ﬁsér's File Directories (UFD's). A UFD is a particular ﬁser's own
directory and will contain the names of files he has written on
the disk. The UFD itself is a file like any other file except
that its filename is a binary number combination (project-programmer)
rather than a 6-bit code and its extension is always UFD in SIXBIT.
The binary combination consists of a left half, which is the
project number, and a right half, which is called the programmer
number. When a user is logged in under a specific project-
programmer number and‘references the disk, he is actually refer-
encing his own area through the UFD having his project-programmer

number as its name. He may, of course, specifically code his

5-38

routine to referedce,files listed in the UFD's of other users or
the MFD; whether he is successful or not will then depend upon the
type of protection that has been specified for the file he is

trying to reference.

5.9.2.4 File Format - All disk files (including MFD and UFDs)
are cdmposed of two parts: 1) pure data, and 2) information needed
by the system to retrieve this data. - Each data block. contains
exactly 200 (octal) words. If a partially filled buffer is output
to the disk by a user, a full block is written with .trailing zeros
filling.in to maké 2008 words. Word counts associated with indi-
vidual blocks are not retained by the system. If such a partial
block is input later, it will appear to have a full 2008 data words.
There are three links in the chain by which the system
references data on the disk. The first link is the 2-word direc-
tory entry in the UFD, which points to the Retrieval Information
block(s), which in turn points to the iﬁdividual pure data blocks.
This chain is transparent to the user, who may look upon the

directory as having 4-word entries analogous to DECtapes.

DIRECTORY ENTRY NONCONTIGUOUS BLOCK
(MFD or UFD) OF PURE DATA

[~name |
[ExT [toc |
apR1 | DATA |
RETRIEVAL INFORMATION AORI+ITT DATA - 1
Loc [T naME .
Loc+1 | EXT DATE1 .
Loc+2 | pProT. |M] TIME [oaTE2 apbRn [DATA
LOC+3 SIZE NUMBER
___SUM 1 ADR 1
Size =n Mo ADRn ADRa+177 [DATA] .

Directory Entry

NAME - Filename in 6-bit ASCII, unless the directory is the MFD
and the file is a UFD; in that case, NAME is a project-
programmer number ‘in binary. |

EXT - Filename extension in 6-bit ASCII; if NAME ‘is a project-
programmer number, EXT is UFD.

LOC - Address of the first block on the disk that contains

Retrieval Information for this file.

Retrieval Information

NAME and EXT as abové;/used to check hardware for possible read
error, and to check against sbftware malfunctions. (A failure to
match NAME and EXT results in the messagé "INCORRECT RETRIEVAL
INFORMATION" .)

DATEL - In format of DATE UUQO; date file last referenced (RENAME,

or ENTER, or INPUT done) (bits 24-35).

. k .
DATE2 - Same format as DATEl; date file originally created (ENTER)

(bits 24-~35),
PROT. - Prétection; see below (bits 0-8).
M - Data Mode (ASCII, Binary, Dump, etc.) (bits 9-12).
TIME - 24-hour time kin minutes) that file was originally

created (bits 13-23).

SIZE - If negative, this portion indicates the number of words
“in the file; where all u10cks with the possible exception
of the last are assumed to contain a full 2008 words. If
positive, this is a count of the number of 2008—word
blocks contained in the file. For files of less than
words, the negative word count is used; for larger files,
the positive block count is used instead. \

NUMBER - Programmer Number .

5-40

217 .

1 467

suMl, - Checksum; two's complement, end-around-carry, sum of
«+.SUMn i
data in data-block whose disk address is ADRL.
ADRI, - Address of data block (logical block number on disk). '
.. .ADRNn ’ .
Protection

\

The first nine bits of the third word of a file's re-
trieval information are used to spécify the protection of the file.
This is a necessary proceduré since'the disk is shared. by many
users, who may each desire to keep certain files from being written
over, read, or deleted by other users.

The total number of users falls into three categories:

a. Owner of file (person whbse programmer number is thé
same as that in the right half of thevNAME field of the UFD in
which the file is entered).

b. Project members (users whoée project number is the
same as that in the left half of the NAME field of the UFD in which
the’fiie is entered).

c. All other users.

There are three types of protection against each of the

three categories of users:

(1) Protection - The protection itseif cannot be
altered. » '

(2) Read protection - The file may not be read.

(3) Write Protection - The file may not be re-
written, renamed, or deleted.

The protection mask (see above) consists of tﬁe‘first
nine bits of thé third word of retrieval information; each bit
(when on) represents a particular type of protection against a
speéific category of user, according to the following scheme.
However, owner protectidn-protéction and owner read-protection are

ignored lest the file become totally inaccessible.
\

/
OWNER PROJECT OTHERS
0 8

woe[] ..
] T ' 4 4 4 WRITE PROTECTION

READ PROTECTION

PROTECTION PROTECTION

All files created with an ENTER are given the protection,
0558 by the Monitor; if some other protection mask is desired, the
the RENAME UUO must be employed by the user. (Also see Section

4.4.2.5, "File Protection".)

5.9.3 User Programming for the Disk

5.9.3.1 Format - The actual file structure of the disk is gener-
ally transparent to the user. 1In programmiﬁg for input/output on -
the disk, a format analogous to that of DECtapes is used; that is,
-the user assumes a 4-word directory entry similar in form to the
first four words of retrieval information. The UUO format is
approximately the same as for DECtapes:

Uuo D, E
Where UUO is an input/output programmed operétor and D specifies
the user channel associated with this device; E points to a 4-word
directoryventry in the user's program which has the.following

format}

3 NAME

.
¢ E+1] EXT DATE
e+2 | PROT [m] TIME DATE2

PROJECT PROGRAMMER
43 NUMBER l NUMBER OR L—wono COUNT

o]

(Note that E+3 differs from the fourth word of retrieval in-
formation. See Retrieval Information, 5.8.2.4 for description)

5-42

469

5.9.3.2 Special Functions of Programmed Operatbrs (UUO's) -

ENTER b,E Causes fhe Monitor to store away the 4-word direc-
error return . v
tory entry for later entry into the proper UFD when
user channel D is CLOSEd or RELEASed.
NAME - The filename must be non-zeroy if not, an
error feturn results. |
EXT - The file extension may be zero; if so, the
Monitor will leave it zero.
DATEl - The correct date is always filled in by
the Monitor.
PROT - ' The protection is always supplied by the
, Monitor as 055. The RENAME may be used to change
protection after file has been completely written
and a CLOSE done.
M - The data mode is supplied by the Monitor as
set by the user in the last INIT, or SETSTS UUO
on channel D.

¢

TIME, DATE2 - If both of these are 0, the Monitor
supélies the current date and time as the creation
date and time for the file. 1If eithef is non-zero,
the Monitor will use the TIME and DATE2 supplied
by the user ih E+2; thus files may be copied with-
out changing the :original creation time and date.
PROJECT-NUMBER, PROGRAMMER-NUMBER - If both of
these éfe 0, the project-number and programmer -
number (binary) under which the user is légged—in
is supplied by the Monitor. Otherwise the Monitor
will use the project-number and programmer-number
supplied by the user in E+3; however, it is gener-

ally not possible to create (ENTER) files in another

5-43

LOOKUP D, E
error return

470

user's area of thé disk, since UFDs are usually
write-protected against all but the owner.
With certain types of error returns peculiar to
the disk, the right half of E+l1 is set to a speci-
fic number to indicate which type of error caused
the return. These numbers have the following
significance:

0 - E contained a zero file name

1 - E+3 contained an incorrect (or nonexistent)
project-programmer number.

2 - File already exists, but is write-protected.

3 - File was being created, re-created, updated,-
or renamed.

No user, except an a@ministrator with project
number 1, may create a UFD, since the MFD is uni-
versally write-protected. The LOGIN CUSP (running
under the administrator project number) createé a
UFD for any user the first time he logs into the
system.

When an ENTER is executed by the Monitor on a file
that already exists, a new file by that name‘is
written, and those bits in the SAT blocks that
correspond to the blocks of the old file are zeroed
when the CLOSE (or RELEAS) UUO is executed, thereby
retrieving space and making it available to any

other user.

Causes the Monitor to read the appropriate UFD. If
a later version of the file is being written, the

old version pointed to by the UFD will be read.

'NAME - The filename in SIXBIT.

5-44

RENAME D, E
error return

m

EXT - The file exteﬁsion in SIXBIT. A zero exten-
sion is not treated in any special manner.
DATEl, PROT, M, TIME, DATE2 are ignored. The
Monitor returns these quantities to the user in
E+1 and E+2.
PROJECT-NUMBER, PROGRAMMER-NUMBER - If both of
these are 0, the project-number and prégrammer—
number (binary) under which the user is logged-in
is supplied by the Monitor. Otherwise the Monitor
will use the project-number, programmer-numbér
supplied by the user in E+3. Thus, it is possible
to read files in other user's directories, provided
that the file's protection mask permits réading.
The Monitor returns the negative word count (or
positive block count for large files) in the LH of
E+3, 0 in RH or E+3.
The numbers placed by the Monitor in the right haif
of E+1 upon an error return have a significance
analogous to that described for the ENTER UUO:

0 - File was not found

1 - Incorrect project-programmer number in E+3

2 Protection failure

3 - File was being created (no earxlier version
existed).

If the file is currently being re-created, the old

file is used.

This programmed operator is used to alter the name,
extension, and/or protection of a file or to delete
a file from the disk. Locations E through'E+3 are

as described above. RENAME is the only UUO that

5-45

USETO b, A

USETI D, A

472

can set the protection of a file to that specified
in E+2. To be RENAMEd a file must first be CLOSEd

on channel D, in order to identify for the RENAME

UUO. RENAME then seeks out this file and enters

the information specified in E through E+2 into the

retrieval information and proper directory. If the
\

contents of E is zero, RENAME has the effect of

‘deleting the file.

The error return numbers in the right half of E+l
are the same as for ENTER, with the added possi-
bilities:

4 - Tried to RENAME file to already-existing
name.

5 ~ Neither LOOKUP nor ENTER has been done to
identify the file to be renamed.

These programmed oéerators are treated idéntically
by the disk service routines. Their function is
to notify the service routine that a particular
block is to be used on the next INPUT or OUTPUT
on channel D. A is a number that designafes a
particular block relative to the beginning‘of the
file. If A is greater than the current size of
the file.(in blocks), the next OUTPUT will write
a block immediately after the file; the next INPUT
will cause the end-of-file flag to be set. A=l
refers to the first block of the file (i.e.,
block 0).
If A = 0 or if no previous LOOKUP or ENTER has been
done, this dUO will set the improper mode error

bit (see bit 18, Table 4-4, and Section 4.4.4).

! 5-46

473

5.9.3.3 General Notes - Three types of "writing” on the disk may

be distinguished. If a user does an ENTER with a filename which
did not pre&iously exist‘in his UFD, he is said to be "creating"
that file. If the filename did previously exist in his UFD, he is
said to be superseding that file; the old version of the file stays
on the disk (and is available to anyone who wants to read it) until
the user does the output CLOSE (at this point, his UFD is changed
to point to the new version of the file and the old version is
either deleted immediately or marked for deletion later if someone
is Currently reading it; the space occupied by deleted files is |
always reclaimed in the SAT tables - see Section 5.8.2.2). Finally,
if a user does a LOOKUP followed by an ENTER (the order is impor-
tant) on the same filename on the same user channel, he will be
able to modify selected blocks of £hat‘file, using USETO and

USETI UUOs, without creating an entirely new version of it; this
»third type of writing is called "updating" and elimingtes the need
to copy a‘file when making only a small number of'changes.

As a standard practice, user programs should read, create,
and supersede (new file with1same filename) files on different user
channels. However, fof éompatibility with DECtapes, it is possible
to read and creafe, or read and supersede, two files on the same
user channel aé long as all OUTPUTs and the CLOSE output are done
béfore\the LOOKUP and the first input, or vice versa.. In other
words, a CLOSE UUO is required between successive LOOKUPs and
ENTERs unless updating is intended.

- When issuing a RENAME UUO, the user must insure that the
status at locations E through E+3 are.as he desires them to be.
Since an ENTER or LOOKUP, as well as CLOSE, must have preceded the
RENAME; the contents of E through E+3 will have been altered, or

filled if the E is the same for all UUO's.

5~47 .

474 ‘
CALL [SIXBIT/RESET/] - Any files which are in the

process of being wriﬁten, but have not beén CLOSEd
or RELEASed,‘will be deleted and the space re-
claimed. TIf a previous versién of the file with
the same name and extension existed, it will remain
on the disk (and in the UFD) unchanged.

If the programmer wants to retain the newly created
file and have the older version deleted, he must

CLOSE or RELEAS the file before doing a RESET UUO.

INCREMENTAL PLOTTER

Device Mnemonic - PLT

Buffer Size - 43 (oépal) words

The ploetter takes 6-bit characters with the bits of each

character decoded as follows:

functions.

=X +X +Y -Y
Pen Pen Drum Drum Car- Car-
Raise Lower Up Down riage riage

Left | Right

Do not combine pen raise or lower with any of the position

(For more details on the incremental plotter, see the

PDP-10 System Reference Manual, DEC-10-HGAA-D.)

5.10.1

5.10.1.1

Data Modes

A (ASCIT) Five, 7-bit characters per word are
transmitted to the plotter exactly
as they appear in the buffer. Since
the plotter is a 6-bit device, the
leftmost bit of each character is
ignored.

5_43 .) . -

. - 475
5.10.1.2 AL (ASCII LINE) This mode.is identical to the A mode.

5.10.1.3 I .(IMAGE) Six, 6-bit characters per word are
transmitted to the plotter exactly
as they appear in the buffer.

5.10.1.4 B (BINARY) - This mode is identical to the I mode.

5.10.1.5 1IB (IMAGE BINARY) This mode is identical to the I mode.

5.10.1.6 DR (DUMP RECORDS) Not available.

1

5.10.1.7 D (DUMP) Not available.

The firsf OﬁTPUT operator causes the plotter pen to be
lifted from the paper before any user data is sent to the plotter.
The CLOSE operator causes the plotter pen to be lifted after all
user data is sent to the plotter. These two pen-up commands are

the only modifications the Monitor makes to the user output file.

5.11 DISPLAY WITH LIGHT PEN (TYPE 30 and TYPE 340)

Device Mnemonic - DIS

Buffer Size - None (uses device-dependent dump mode
only - 15)

5.11.1 Data Modes

5.11.1.1 ID (IMAGE DUMP - 15)

An arbitrary length area in the user area may be dis-
played on the scope. The command list format is as described in
Chapter 4, "Unbuffered (Dump) Modes," with the addition for the
Type 30 display, that, if RH = 0, and LH # 0, then LH specifies
the intensity for the folloﬁing data (4 to 13). .

8-49

476

5.11.2 Background

- The purpose of the Monitor service routine for the VR-30
is to maintain a flicker-free picture on the display during time-
sharing. To do this, the picture data must be available for display
at least every two jiffies. This necessitates that the display data
remain in core. At present, this means that the user program must
alsp remain in core. To minimize swapping of other programs and to
make available a larger block of free core for other users, the
user program is shuffled toward the top of core between pictures.

5.11.3 Display UUO's

The input/output UUO's for both displays operate as

follows:

INIT D, 15 ;MODE 15 ONLY
SIXBIT /DIS/ ; DEVICE. NAME
0 ;NO BUFFERS USED
ERROR RETURN ;DISPLAY NOT AVAILABLE
NORMAL RETURN
CLOSE D, ; STOPS DISPLAY AND
or ; RELEASES DEVICE AS
RELEAS D, ;DESCRIBED IN MANUAL

5.11.3.1 INPUT D, ADR

If a light pen hit has been detected since the last

INPUT command, then C(ADR)- is set to the location .of last light

pen hit.
If no light pen hit has been detected since last INPUT

command, then C(ADR) is set to -1.

5.11.3.2 OUTPUT D, ,ADR

ADR specifies the first address of a table of pointers.

This table is composed of pointers with the following format:

For the
If

If

If

If

For the

If

If

If

a7
17 18 35

LH

RH

VR-30 Display:

LH

LH

LH

LH

= 0 and RH

0 and RH

= 0 and RH # 0.,)

Il

0 and RH # 0,

8

then this is-the end of the command list.

then LH is the desired intensity for the
following data or commands. The inten-
sity ranges from 4 to 13, where 4 is the
dimmest and 13 is the brightest.

then RH is the address of the next
pointer. Successive pointers are
interpreted beginning at RH.

then -LH words beginning at address RH+1

are output as data to the display. The
format of the data word is the following:

17 18 25 26 35 .

y-coord x-coord

N
340 Display:

RH

LH

LH

An example

LIST:

LIST1:

1}

RN

0 and RH # 0,

0, then this is the end of the command list.

0 and RH # 0, then RH is the éddress of the next

pointer. Successive pointers are in-
terpreted beginning at RH.

then -LH words: beginning at address RH+1
are output as data to the display. The
format of the data word is described in
the 340 programming manual.

of a valid pointer list for the VR-30 Display is:

OUTPUT

XWD
IOWD
IOWD
XWD
IOWD
IOWD

XWD
IOWD
IOWD

D, LIST ; OUTPUT DATA
: ; POINTED TO BY LIST

5, 0 " ;INTENSITY 5 (DIM)

1, A ;PLOT A

5,SUBP1 ;PLOT SUBPICTURE 1

13,0 ; INTENSITY 13 (BRIGHT)

1,C ; PLOT C

2,SUBP2 ;PLOT SUBPICTURE 2

0,LIST1 ; TRANSFER TO LIST 1

10,0 ; INTENSITY 10 (NORMAL)

1,B ;PLOT B

“1,D ; PLOT D

0,0 ;END OF COMMAND LIST

] 478
OUTPUT - D, LIST ; OUTPUT DATA 1

:POINTED . TO BY LIST
: XWD 6,6 1 Y= 6, X=6
B: . XWD 70,105 ;Y= 70, X=105
C: XWD 105,70 ;Y= 105, X=70
: XWD 1000,200 :Y=1000, X=200
SUBP1: BLOCK 5 ; SUBPICTURE 1
SUB2: BLOCK 2 ; SUBPICTURE 2

An example of a valid pointer list for the 340 Display:'is:

OUTPUT D, LIST ; OUTPUT DATA POINTED
; TO BY POINTER IN LIST

LIST: ~ IOWD 1,A ; SET STARTING POINT TO (6,6)
IOWD 5,SUBP1 ;DRAW A CIRCLE
IOWD 1,C ; SET STARTING POINT TO (70,105)
IOWD 5,SUBP1 . ;DRAW A CIRCLE
IOWD - 1,B ; SET STARTING POINT TO (105,70)
IOWD 2, SUBP2 ; DRAW A TRIANGLE
IOWD 0,LIST1 ; TRANSFER TO LIST1
LIST1: IOWD 1,D ; SET STARTING POINT TO
:) ; (1000,-200)
IOWD 5, SUBP1 ;DRAW A CIRCLE
IOWD ° 1,A ;SET STARTING POINT TO (6,6)
IOWD 2,SUBP2 ; DRAW A TRIANGLE
XWD . 0,0 ; STOP
A: X=6 Y=6 ,
B: X=105 Y=70
C: X=70 Y=105
D: X=1000 Y=-200
SUBPL1: BLOCK 5 ;DRAW A CIRCLE
SUBP2: BLOCK 2 . ;DRAW A TRIANGLE

The example shows Ehe flexibility of this format. The
user can display a subpic£ure by merely setting up a pointer to it.
He can also display the same subpicture in many different piaces
by setting up pointers to the subpicture, gach preceded by a pointer

to commands for the display to reset its coordinates. N

5.12 . CALL AC, [SIXBIT/DEVCHR/] or CALLI AC, 4

The user may determine the physical characteristics
associated with'a logical device name by executing a DEVCHR UUO.

The DEVCHR UUO returns the.following information in the AC
» . 5~52 . ’

referred.

(AC)L:

(AC)R:

10
20

40

100
200
400

1000

2000
4000

10000

20060
40000
100000
200000

400000

400000
200000

Remaining Bits:

479

Device can do output

Device can do input

Device has a directory (DTA or DSK)
Device is a TTY

Device is a magnetic tape

Device is available to this job or is
already assigned to this job

Device is a DECtape

Device is a paper tape reader

Device is a paper tape punch

Device has a long dispatch table (that
is, UUO's other than INPUT, OUTPUT,
CLOSE, and RELEAS perform real actions)
Device is a display”

TTY in use as an I1I/0 device

TTY in use as a user console (even if
detached)

TTY attached to a job

Device is a line printer

Device is a card reader

Device is a disk

DECtape directory is in core (this bit
is cleared by an ASSIGN or DEASSIGN
command to that unit)

Device assigned by a console command.

Device assigned by program (INIT UUO)

If bit 35-n contains a 1, then mode n

is legal for the device.

NOTE

The mode number (0 through 17) must be converted to

decimal; for example, mode 17g is represented by

bit 35-15745 or bit 20.

481

APPENDIX 1
DECtape Compufibility Between DEC Computers

PDP PDP PDP PDP PDP PDP PDP PDP PDP
4 5 6 7 8 8 8/1 9. 10
550& 552& 551& 550& 552& TCO1 TCO1 TCO1 TCOl

Read 555 555 555& 555 555 & & & &
By TU55 TU55 TU55 TU55 TU55 TU55 TU55 TU55 TU55
PDP-4 A D D A D D D D D
PDP-5 D A B C A A A/, YA A
PDP-6 D A A C A A A A A
PDP-7 A C C A c cC c C c
Written PDP-8 D A B C A A A A A
By 552 _
PDP-8 D A B C A A A A A
TCO1
PDP-8/1 D A B C A A A A A
PDP-9 D A A c A A A A A
PDP-10 - D A C A A A A A

A = Can be done
B = Can not be done because of difference in writing checksum
C = Can be done with programmed checksuni

D = Can probdbly be done as in (C) except that PDP-4 is too slow for calculating the
exclusive or checksum in line - this must be done before writing.

NOTE: PDP-10 will not allow search to find first or last blocks when searching from the
end-zone.

Al-1

482

APPENDIX 2

Size of Multiprogramming non-disk Monitor (Reentrant 4 series, Version 50) June, 1969

There are three components to the Monitor:

1) Required‘ code (4.7K)

2) Optional device ¢ode (0-4.4K)

3) Tables and buffers per job (73 words per job)

A. Required ;:ode (Assuming all features)

Lower core 96.
COMMON 409.
CLKCSS 82.
CLOCK1 367.
COMCON 1322. .
CORET 182.
DLSINT 48.
ERRCON 214,
SCNSRF 1260.
SEGCON 602.
SYSINT 78.
UUOCON 1144,

N

4692. words (Decimal)

B. Optional devices Cdmp|ete\ system
DTA 1284. +N(1)*146.N(1)=8 2612,
MTA 452. +N(2)*9. N(2)=2 470.
PTY 176. +N(3)*10. N(3)=2 196.
CDR . 220. 220.
CpP 308. 308.
DIS 190. 190.
LPT 100. 100.
PLT 65. ' 65.

A2-1

Optional devices Complete system
PTP 167. 167.
PTR 105. 105.

3067. +N(1)=146.+N(2)*9.N(3)*10. 4433.

C. Tables and buffers
. 18. words of tables per job
55. word of TTY device data block space per job
73. words per job
Total for complete 8 user system = 4692, + 443, + 8.*73. = 9709,

WARNING: The Monitor will continue to grow despite our best efforts to prevent it.
' Most new features are put in with conditional assembly so that a customer
can reduce this size of the Monitor by giving up some of the new features.

These sizes are subject to change without notice and should not be construed as a commitment

by Digital Equipment Corporation.

A2-2

'
i

485 .

APPENDIX 3

Size of Swapping Monitor (Reentrant 4 series, Version 50) June, 1969

There ore three components to the Monitor:

1) Required code (10K)

2) Optional device code (0-4K)
3) Tables and buffers per job (1K for every 8 jobs)

A. Required code (Assuming all features) '

Lower core 96.
COMMON 475.
CLOCK1 376.
COMCON 1592.
CORE1 214.
DLSINT 48.
DSKINT 130.
DSKSRB 2448.
ERRCON 211.
SCHEDB 741.
SCNSRF 1264.
SEGCON 709.
SYSINI 81.
UUOCON 1190.

10375.

B. Optional devices

DTA 1286.
MTA 452,
PTY 166.
CDR 220.
cop 308
DIS 191.

LPT 104.

words (Decimal)

Complete system
+N(1)*146. N(1) =8 2454,
+N(@2)*9. N@2)=2 470.
+N@)*10. N@3)=2 196.

220.
308.
191.
104.

A3-1

Optional Devices

PLT
PTP
PTR

80.
167.
105.

N

Complete system
| 80.
167.
105.

3089. +N(1)=146.+N(2)*9.+N(3)*10. 4295.

C. Tables and bt)ffers
21. - words of tables per job
54. words of DSK device data block space per job
(1.5 files/job) .
55. word of TTY device data block space per job

130. words per. job
Total for complete 16 user system = 10375, + 3987. + 16.*130. = 16442.

WARNING: The Monitor will continue to grow despite our best efforts > prevent it.
Most new features are put in with conditional assembly so that a customer
can reduce this size of the Monitor by giving up some of the new features.

For a complete Swapping System (all devices):

8 - JOBS 15.7K
16 JOBS 16.7K |
24 JOBS 17.7K .
32 JOBS 18.%K
40 JOBS 19.7%K
48 JOBS 20.7K
56 JoBs 21.7%K
64 JOBS 22.7%K

These sizes are subject to change without notice and should not be construed as a commitment

by Digital Equipment Corporation.

A3-2

» 87
"APPENDIX 4

Writing Reentrant User Programs

The LOADER simplification makes it somewhat more diffi-
cult to define variables and arrays. The easiest way to define
them so that the resulting relocatable binary can be loaded on a
one- or two—segment machine is to put them all in' a separate sub-
program as internal globai symbols using Block 1 and Block N
pseudo-ops. All other subp:ograms must refer to this data as ex-
ternal global 1ocatiqns. Most reentrant programs will have at
least ﬁwo subprograms, one for the definition of low segment loca-
tions and one for instructions and constants for the high segment.
(This last subprogram mﬁst have a HISEG pseudo-op.) Since programs
are self-initializing, they clear the low segment when they are
started even though the Monitor clears core whenever it assigns it
to a user.

Using Block 1 and Block N pseudo-ops causes the LOADER
to leave indications in the Job Data area (LH of JOBCOR) so that
a Monitor SAVE command will not write the low segment. This is
advantageous in sharable programs for two reasons. It reduces thé
number of files in small DECtape directories (22 files in the maxi-
mum). Also, I/O is done only on the first user's GET that initial-
izes the high segment but not on any subsequent user's GETs for

either the high or low segment.

A4-~1

" execution.

i

488

An Example of a Reentrant Program:

low segment subprdgram:

TITLE LOW - EXAMbLE OF LOW SEGMENT SUB-PROGRAM

JOBVER=137
LOC JOBVER
3 ~ _iversion3
RELOC a
INTERNAL LOWBEG,DATA,DATAl, DATA2, TABLE, TABLEL
LOWBEG:
DATA: BLOCK 1
DATAlL: BLOCK 1
DATA2: BLOCK 1
TABLE: BLOCK 19
TABLEl: BLOCK 18
LOWEND=.-1) ;last location to be cleared
END

high segment subprogram:

TITLE HIGH - EXAMPLE OF HIGH SEGMENT SUB-PROGRAM

BEGIN:

HISEG

EXTERN LOWBEG, LOWEND

T=1

SETZM LOWBEG ;clear data area
MOVEI T, LOWBEG+1

HRLI T, LOWBEG

BLT T, LOWEND .

MOVE T,DATALl ;jcompute

ADDI 1,1,

MOVEM T, DATA2

END BEGIN ;jstarting address

Some reentrant programs require certain locations in the

low segment to contain "constant" data which does not change during

Since the initialization of this data happens only once

after each GET inétead of after each START, programmers are tempted
to place these "constants" in the same subprogram that contains the
definition of the variable data locations. This action requires the
SAVE command to write them out and the GET command to load themyin

again. Therefore the "constant" data should be moved by the programs

¢

A4-~2

489
from the high aegment to the.low segment at the same time that the
rest of the low ségment is being initialized. The exception is
when the amount of code and constants in the high segment needed to
initialize the low segment constants tak? up too much room in the
high segment. In this case, it is best to have I/O in the low seg-
ment on each GﬁT. A rule to follow in deciding between this high
segment core space and the low segment GET I/O £ime is to éut the
code in the high segment if it does not put the high segment over
the next 1K boundary.

A second way of writing single save file reentrant programs
has been developed in which the source file can be a 51ngle file in-
stead of two separate ones. This is more convenient although it in-
volves conditional assembly and therefore produces two different re-
locatable binaries. A number of CUSPs have been wfitten ﬁhis way.

The idea is to have a conditional switch which is l.if a
reentrant.assembly and g if a non-reentrant assembly. The data is
placed last in the source file following a LIT pseudo-op and consists
only of Block 1 and Block N statements, along with data location
tags. If'a reentrant program is desired, a LOC 140 is asaembled
which~places the data area at absolute 140 in the low segment. Be-
cause of the LOC, no other relocatable program can be loaded into
the low segment. The program should be debugged as a non-reentrant
program with DDT since bDT is a low segment relocatable file. The
LOADER switch /B is used to protect the symbols. The usual way of
assembly is reentrant so, unless already defined, thé conditional
switch is 1. ‘ ‘

The program must have one location' in the Job Data area
when it is assembled to be reentrant so that the Monitor will know

to start assigning buffers at the end of the data area in the 1low

segment instead of at location 140. This is accomplished by chang-

A4-3

i

- 490
"ing the LH of JOBSA before the CALLI # (RESET) or changing the

contents of JOBFF after the CALLI g, depending on how the program
reinitializes itself on errors and upon completion. The program
should not change these locations if it is assembled as non-
reentrant. This is so that the symbol table can\be protected using
the LOADER /B switch, which places the symbols next to the last
program loaded and sets the LH of JOBSA appropriately higher. There-
fore, this code is under control of conditional assembly.

TITLE DEMO - DEMO ONE SOURCE REENTRANT PROGRAM -V@g1

SUBTTL) T. HASTINGS 25 JUN 69
JOBVER=137

LOC 137 :

EXP gg1 ;jversion number

INTERN JOBVER, PURE
EXTERN JOBSA,JOBFF

IFNDEF PURE,<PURE=1> ;assume reentrant if PURE undefined

IFN PURE,<HISEG> ;tell LOADER to load in high segment
/ ;if reentrant :
BEG:
IFN PURE,< ,only need if reentrant
; (not needed if two files)
. MOVSI T,DATAE ~set first free location in low seq,
HLIM T,JOBSA i RESET sets JOBFF from LH of JOBSA
>
CALLI ¢ ;jdo CALL RESET
MOVE T,JOBFF . ;assign at least enough core for data
CALLI T,11 ; CORE UUO
JRST ERROR
MOVE T, [XWD DATAB, DATAB+1]} -inow clear data region
SET2M DATAB
BLT T, DATAE-1 ; last location cleared
LIT iput literals in high seg
; DATA AREA:
IFN PURE,<LOC 148> ;start data area at 144 in low seg
‘ ;1f reentrant
DATAB: ;first location cleared every startup
DATA: BLOCK 1 : N
‘TABLE: BLOCK 128
DATAE: END BEG ;define free location

Ad-4

